
THREAD VULNERABILITY FOR MULTICORE ARCHITECTURES

by

Işıl Öz

B.S., Computer Engineering, Marmara University, 2004

M.S., Computer Engineering, Marmara University, 2008

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2013

ii

THREAD VULNERABILITY FOR MULTICORE ARCHITECTURES

APPROVED BY:

Prof. Oğuz Tosun

(Thesis Supervisor)

Prof. Haluk Rahmi Topçuoğlu.

(Thesis Co-supervisor)

Prof. Can Özturan

Assoc. Prof. Alper Şen

Assist. Prof. Zeki Bozkuş

DATE OF APPROVAL: 08.05.2013

iii

ACKNOWLEDGEMENTS

I would like to thank my advisors, Prof. Oğuz Tosun and Prof. Haluk Topçuoğlu

for their academic support, guidance, and encouragement throughout my graduate

study and the completion of this thesis. I would like to thank Prof. Mahmut Kandemir

from Pennsylvania State University for his valuable feedback and guidance during my

dissertation. I would also like to thank Prof. Can Özturan, Assoc. Prof. Alper Şen,

and Assist. Prof. Zeki Bozkuş for serving my thesis committee.

I gratefully acknowledge the financial support of The Scientific and Technologi-

cal Research Council of Turkey (TUBITAK) with a research grant (Project Number:

108E035). Additionally a partial fund is provided by The Marmara University Scien-

tific Research Committee with a research grant (Project Number: FEN-A-200611-0210,

2011) and the Boğaziçi University Foundation (BUVAK).

I would like to thank my colleagues from the department of Computer Engineering

at Marmara University for their support and friendship. In particular, I would like to

thank Sanem Arslan Yılmaz, Berna Kiraz, Betül Demiröz Boz, Fatma Çorut Ergin,

and Emel Küpçü, for their invaluable support throughout the years. I would also like

to thank Fuat Geleri for his academic and technical support as well as his friendship.

I am grateful to my unique family; my mother Vahide Hasırcıoğlu, my father

Ayhan Hasırcıoğlu for their endless love and great support during my dissertation like

as during my whole life. Finally, I would like to thank my husband Dindar Öz for his

patience, support, motivation, and everything that I cannot express with words.

iv

ABSTRACT

THREAD VULNERABILITY FOR MULTICORE

ARCHITECTURES

Continuously reducing transistor sizes and aggressive low power operating modes

employed by modern architectures tend to increase transient error rates. A metric of

reliability is required in order to evaluate approaches that address soft errors. This

thesis explores a soft error vulnerability analysis of parallel applications running on

multicore architectures. We propose and evaluate a novel metric, Thread Vulnerability

Factor, in order to quantify thread vulnerability and to qualify the relative vulnerabil-

ity of parallel applications to soft errors. We present the analytical definition of our

metric, and develop a framework to calculate the metric value by gathering application

data. To demonstrate the validity of the metric, fault injection based experiments are

conducted for multithreaded applications. This thesis also presents the performance-

vulnerability analysis of parallel applications for a variety of applications and discusses

the effects of design choices on system performance and reliability. By considering

tradeoff between these two concerns, we observe that design choice becomes clear for

some of the applications which provide different vulnerability values with almost equal

performance. Additionally, we propose and evaluate reliability-aware core partition-

ing schemes for multicore architectures. A simulation study with various workloads

consisting of multiple multithreaded applications is performed in order to evaluate the

proposed partitioning schemes. We also present a thread-level vulnerability assessment

tool by considering user preferences; and we propose a novel critical thread identifica-

tion algorithm to determine critical thread and critical thread region in a multithreaded

application. We utilize our algorithm to determine the thread for redundant execution

in a partial fault tolerance system and demonstrate the efficiency of the method by

providing vulnerability values for executions with different redundancy levels.

v

ÖZET

ÇOK ÇEKİRDEKLİ MİMARİLERDE İŞ PARÇACIĞI

GÜVENİLİRLİĞİ

Modern işlemci teknolojisinde transistör boyutlarının gittikçe küçülmesi ve tran-

sistörlerin çok daha hızlı frekanslarda çalışması nedenleri ile, yonga bileşenlerinin geçici

hata oranları artmaktadır. Geçici hatalar için sunulan çözümlerin değerlendirilmesi için

bir güvenilirlik metriğine ihtiyaç duyulmaktadır. Bu tez, çok çekirdekli mimarilerde

çalışan paralel uygulamaların geçici hata hassasiyetlerini incelemektedir. İlk olarak, iş

parçacıklarının hata hassasiyetlerini ölçen ve paralel uygulamaların göreceli hata has-

sasiyetlerini belirleyen, İş Parçacığı Hasar Görebilirlik Faktörü olarak isimlendirdiğimiz

bir metrik önerilmektedir. Çalışmamız kapsamında, metriğin analitik tanımı verilerek

uygulama verisinden metrik değerini hesaplayacak bir yapı oluşturulmuştur. Metriğin

doğrulanmasına yönelik olarak, paralel uygulamalar için hata enjeksiyon deneyleri

uygulanmıştır. Bu tezde ayrıca, farklı problemlerin paralel uygulamaları için performans-

hata hassasiyeti analizi yapılarak farklı tasarım seçeneklerinin sistem performansı ve

güvenilirliği üzerindeki etkileri incelenmiştir. Bu iki özelliği hesaba katarak yaptığımız

analizler sonucunda, birbirine yakın performans değerlerine sahip ancak farklı hata

hassasiyeti gösteren iki seçenek için tercih belirgin bir şekilde ortaya çıkmaktadır.

Bu tez ayrıca, çok çekirdekli sistemler için güvenilirlik tabanlı çekirdek paylaştırma

stratejileri önermektedir. Çekirdek paylaştırma stratejilerimizi değerlendirmek için,

çok iş parçacıklı birden fazla uygulamadan oluşan iş yükleriyle deneysel çalışmalar

yapılmıştır. Bu tezde ayrıca, iş parçacığı seviyesinde hassasiyet analizi yapılarak uygu-

lamadaki kritik iş parçacığı ve iş parçacığı bölgesi tespiti için bir kritik iş parçacığı

belirleme algoritması önerilmiştir. Bu algoritma, güvenilirliği arttırmak için kullanılan

kısmi çoklama yönteminde en önemli kod parçacıklarının tespitinde kullanılmış, farklı

çoklama seviyeleriyle ölçülen hassasiyet değerleriyle tekniğin etkinliği gösterilmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xv

LIST OF SYMBOLS . xvii

LIST OF ACRONYMS/ABBREVIATIONS . xviii

1. INTRODUCTION . 1

1.1. Soft Error Resilience . 2

1.2. Thesis Contributions . 7

1.3. Outline of the Thesis . 8

2. THREAD VULNERABILITY FACTOR . 9

2.1. Vulnerability Metrics in the Literature 9

2.1.1. Architectural Vulnerability Factor (AVF) 9

2.1.2. Register Vulnerability Factor (RVF) 11

2.1.3. Instruction Vulnerability Factor (IVF) 13

2.1.4. Program Vulnerability Factor (PVF) 14

2.2. Thread Vulnerability Factor (TVF) . 16

2.2.1. Formal Definition of Thread Vulnerability Factor 16

2.2.1.1. Local Vulnerability Factor (LVF) 18

2.2.1.2. Remote Vulnerability Factor (RVF) 21

2.2.2. An Example for Calculating TVF Values of Multiple Threads . 28

2.3. Experimental Setup . 32

2.3.1. Simulation Platform . 32

2.3.2. Benchmarks . 36

2.4. Experimental Results . 37

2.4.1. TVF Results . 38

2.4.2. Weight Analysis . 44

2.4.3. Cache Size Variation . 47

vii

3. VALIDATING THREAD VULNERABILITY FACTOR 49

3.1. An Overview on Fault Injection . 49

3.2. TVF Validation by Using Simics Environment 50

3.2.1. Fault Injection Framework . 51

3.2.2. Experiments on the Simics Environment 53

3.3. TVF Validation on a Multicore Architecture 56

3.3.1. Pin Overview . 56

3.3.2. Experiments on the Multicore Architecture 57

4. PERFORMANCE-RELIABILITY ANALYSIS OF MULTITHREADED AP-

PLICATIONS . 61

4.1. Multithreaded Applications . 61

4.1.1. Fast Fourier Transform . 61

4.1.2. Jacobi Kernel . 65

4.1.3. Water Simulation . 66

4.2. Experimental Results . 69

5. RELIABILITY-AWARE CORE PARTITIONING FOR MULTICORE ARCHI-

TECTURES . 77

5.1. An Overview on Core Partitioning . 77

5.2. Reliability-Aware Core Partitioning . 80

5.2.1. Equal Partitioning . 82

5.2.2. Reliability-Oriented Partitioning 82

5.2.3. Performance-Oriented Partitioning 83

5.2.4. Partitioning Based on a Combined Metric 84

5.3. Experimental Evaluation . 86

5.3.1. Workload Construction . 87

5.3.2. Performance and Reliability Metrics 91

5.3.3. Evaluating Partitioning Schemes 92

5.3.3.1. Performance-Reliability Tradeoff Analysis 92

5.3.3.2. Detailed Workload Analysis 96

5.3.4. Sensitivity Analysis . 98

5.3.4.1. Initial Core Assignment 98

viii

5.3.4.2. The Number of Applications in the Workload 101

5.3.4.3. The Number of Cores in the System 103

6. PARTIAL FAULT TOLERANCE BASED ON THREAD-LEVEL VULNERA-

BILITY ASSESSMENT . 106

6.1. An Overview on Fault Tolerance Techniques 106

6.2. Motivation . 109

6.3. Thread-Level Reliability Assessment 112

6.3.1. System Design and Overview 112

6.3.2. Critical Thread Replication . 113

6.3.2.1. Thread Vulnerability 113

6.3.2.2. Thread Interactions 114

6.3.2.3. Critical Thread Identification Algorithm 117

6.3.2.4. An Example Execution 119

6.3.3. Critical Region Replication . 120

6.4. Vulnerability of Redundant Computations 122

6.4.1. Vulnerability Evaluation . 122

6.4.2. A Case Study . 124

6.5. Benchmark Applications . 125

6.6. Experimental Results . 126

6.6.1. Evaluating Critical Thread Replication 127

6.6.1.1. Critical Thread Analysis 127

6.6.1.2. Critical Thread Replication 129

6.6.1.3. Validation of Critical Thread Replication 133

6.6.2. Evaluating Critical Region Replication 136

7. CONCLUSIONS AND FUTURE WORK . 141

REFERENCES . 144

ix

LIST OF FIGURES

Figure 1.1. Possible outcomes of a single-bit fault [1]. 2

Figure 2.1. A set of program instructions and the resulting hardware opera-

tions [2]. 15

Figure 2.2. Data sharing between four threads. 17

Figure 2.3. An example for representing data sharing between threads. 23

Figure 2.4. An example for more complex data sharing scenario. 25

Figure 2.5. The communication of four threads in a multithreaded application. 27

Figure 2.6. Data flow among three threads for the sample code given in Table

2.2. 29

Figure 2.7. Simics architecture [3]. 32

Figure 2.8. Simics architecture used in our experiments. 34

Figure 2.9. Normalized RVF values and normalized execution times of our

benchmark applications. 43

Figure 2.10. RVF values with different vulnerability weights (blackscholes). . . 44

Figure 2.11. RVF values with different vulnerability weights (cholesky). 46

Figure 2.12. Memory TVF values for canneal with different cache sizes. 47

x

Figure 2.13. Memory TVF values for barnes with different cache sizes. 48

Figure 3.1. Our fault injection framework, where the numbers in the arrows

represent the flow of our one experiment. 51

Figure 3.2. Fault injection experiment results for 4 benchmark applications. . 53

Figure 3.3. Vulnerability values (SDC rate and RVF value) for 4 benchmark

applications. 55

Figure 3.4. Pin’s software architecture [4]. 57

Figure 3.5. Pintool for printing addresses of all program memory reads and

writes. 58

Figure 3.6. Fault insertion analysis routine. 59

Figure 3.7. Vulnerability values (SDC rate and RVF value) for 4 benchmark

applications running on our 16-core architecture. 60

Figure 4.1. The Cooley-Tukey algorithm for one-dimensional, unordered, radix-

2 FFT [5]. 63

Figure 4.2. The pattern of combination of input array elements in an 8-point

FFT computation. 63

Figure 4.3. Binary-exchange algorithm for a 16-point FFT on four cores. . . . 64

Figure 4.4. Transpose algorithm for a 16-point FFT on four cores. 65

Figure 4.5. 2-D Jacobi code. 66

xi

Figure 4.6. Unrolled 2-D Jacobi code. 67

Figure 4.7. Fused 2-D Jacobi code. 68

Figure 4.8. Interchanged 2-D Jacobi code. 68

Figure 4.9. RVF contribution of each thread for binary-exchange algorithm. . 72

Figure 4.10. RVF contribution of each thread for transpose algorithm. 72

Figure 4.11. The change in percentage of RVF values and execution time for

versions of FFT. 74

Figure 4.12. The change in percentage of RVF values and execution time for

loop transformations of Jacobi code. 75

Figure 4.13. The change in percentage of RVF values and execution time for

versions of water simulation. 76

Figure 5.1. System architecture. 81

Figure 5.2. Example execution time/core count behavior of two applications. . 83

Figure 5.3. Basic partitioning algorithm. 85

Figure 5.4. Normalized execution time of our benchmark applications. 88

Figure 5.5. Normalized TVF values of our benchmark applications. 89

Figure 5.6. Normalized VDP values of our benchmark applications. 90

xii

Figure 5.7. Normalized weighted-speedup values of partitioning schemes to equal

core partitioning for selected 10 workloads. 94

Figure 5.8. Normalized weighted-reliability loss values of partitioning schemes

to equal core partitioning for selected 10 workloads. 94

Figure 5.9. Normalized weighted-vulnerability-delay product gain values of par-

titioning schemes to equal core partitioning for selected 10 workloads. 94

Figure 5.10. NWS, NWRL and NWVDPG values of partitioning schemes to

equal core partitioning for selected 10 workloads with 2 core initial

assignment. 99

Figure 5.11. NWS, NWRL and NWVDPG values of partitioning schemes to

equal core partitioning for selected 10 workloads with 4 core initial

assignment. 100

Figure 5.12. NWS, NWRL and NWVDPG values of partitioning schemes to

equal core partitioning for selected 10 workloads with 3, 4, 5 core

initial assignment. 100

Figure 5.13. NWS, NWRL and NWVDPG values of partitioning schemes to

equal core partitioning for 2-application workloads. 101

Figure 5.14. NWS, NWRL and NWVDPG values of partitioning schemes to

equal core partitioning for 4-application workloads. 102

Figure 5.15. NWS, NWRL and NWVDPG values of partitioning schemes to

equal core partitioning for 18-core system. 104

xiii

Figure 5.16. NWS, NWRL and NWVDPG values of partitioning schemes to

equal core partitioning for 24-core system. 104

Figure 6.1. Sample data distribution. 111

Figure 6.2. Flow of our reliability assessment tool. 113

Figure 6.3. Thread interaction graph with four threads. 115

Figure 6.4. Thread behavior of an 8-thread application. 115

Figure 6.5. An example thread interaction graph which has multiple remote

write operations of a single thread. 116

Figure 6.6. Algorithm for calculating direct and indirect criticality degree val-

ues of threads. 118

Figure 6.7. Algorithm for determining critical thread of an application. 119

Figure 6.8. A thread interaction graph with 8 threads. 120

Figure 6.9. A TIG example to represent synchronization of thread regions. . . 122

Figure 6.10. TIG for thread replication case. 123

Figure 6.11. Metric values for benchmark applications. 128

Figure 6.12. The vulnerability values for redundant cases of PARSEC applications.130

Figure 6.13. The vulnerability values for redundant cases of SPLASH-2 appli-

cations. 132

xiv

Figure 6.14. SDC rates for redundant cases. 134

Figure 6.15. Vulnerability values (SDC rate and RVF value) vs number of re-

dundant threads. 135

Figure 6.16. Metric values of LU execution steps for distinct threads. 137

Figure 6.17. Vulnerability values for partially redundant cases of lu application. 138

Figure 6.18. Metric values of FFT execution steps for distinct threads. 139

xv

LIST OF TABLES

Table 2.1. Memory location access of two threads. 24

Table 2.2. A sample code for TVF calculation. 29

Table 2.3. Parameters of the simulated multicore architecture. 33

Table 2.4. Sample memory accesses of a thread. 35

Table 2.5. A sample communication of two threads. 35

Table 2.6. TVF values of our PARSEC benchmark applications for 2-core and

4-core executions. 39

Table 2.7. TVF values of our SPLASH-2 benchmark applications for 2-core

and 4-core executions. 40

Table 3.1. Characteristics of our workstation environment. 59

Table 4.1. TVF values and execution time of our benchmark applications. . . 70

Table 5.1. NWS, NWRL and NWVDPG mean values among 56 workloads for

core partitioning schemes. 93

Table 6.1. Matrix for direct and indirect criticality degree values for critical

thread analysis. 121

Table 6.2. Metric values for critical thread analysis of synthetic application. . 124

xvi

Table 6.3. RVF values of redundant executions of synthetic application. . . . 126

xvii

LIST OF SYMBOLS

LV F (Ti) Local vulnerability factor for thread i

RV Parameter for total number of remote memory accesses

RV F (Ti) Remote vulnerability factor for thread i

rV F (Ti, Tj) Remote vulnerability factor for thread i induced by thread j

TV F (Ti) Thread vulnerability factor for thread i

TV FRF Thread vulnerability factor for register file resources

TV FALU Thread vulnerability factor for ALU resources

TV Fmem Thread vulnerability factor for memory resources

wL Local vulnerability weight coefficient

wR Remote vulnerability weight coefficient

xviii

LIST OF ACRONYMS/ABBREVIATIONS

ACE Architecturally Correct Execution

AVF Architectural Vulnerability Factor

CMP Chip Multiprocessor

DMR Dual Modular Redundancy

ECC Error Correcting Code

LVF Local Vulnerability Factor

NWRL Normalized Weighted Reliability Loss

NWS Normalized Weighted Speedup

NWVDPG Normalized Weighted Vulnerability-Delay Product Gain

PVF Program Vulnerability Factor

RVF Remote Vulnerability Factor

SDC Silent Data Corruption

SEU Single Event Upset

SMT Simultaneous Multithreading

QoS Quality of Service

TMR Triple Modular Redundancy

TVF Thread Vulnerability Factor

VDP Vulnerability Delay Product

WRL Weighted Reliability Loss

WS Weighted Speedup

WVDPG Weighted Vulnerability-Delay Product Gain

1

1. INTRODUCTION

The performance of microprocessors has been increasing exponentially by faster

processor and memory chips as well as increasing number of the resources in the sys-

tem [6]. Although the techniques to accelerate single processor do not bring much

performance gain with excessive power consumption and high design complexity, chip

multiprocessors (CMPs), which have multiple cores in a single chip, yield high perfor-

mance by the execution of multiple concurrent software processes in the system in a

power and area efficient way. Replacing a large processor with several small processors

in a single die has been proven successful in CMP architectures. In these architec-

tures, one small core works slowly than one large core but overall throughput of the

system becomes much higher by simultaneous execution of several cores in the same

chip size. The communication overhead resulted from the execution of multiple threads

at different cores is minimized in the shared-memory CMP architectures. While the

distinct threads are executed in distinct processors in a distributed multiprocessor sys-

tem which causes high latency due to inter-thread communications, there is not much

performance decrease due to communication delays in a chip multiprocessor system

which has several cores in the same chip. With these several advantages, CMPs have

been accepted as the most promising architecture for higher performance [6].

To be able to place large number of transistors on a single chip in CMPs, it is

necessary to scale down the size of the transistors with higher frequencies. Since the

size of transistors continuously reduces and the transistors operate in higher frequen-

cies with low power modes, the chip components become more error prone. Transient

errors are temporary corruptions of hardware elements’ operations due to environmen-

tal effects [7]. The transient error rate in the chip processors increases by the trend in

the transistor size. Moreover, reduction of the voltage of the transistors reduces noise

margin, thus the chip is more susceptible to transient fault [8].

2

Figure 1.1. Possible outcomes of a single-bit fault [1].

1.1. Soft Error Resilience

Soft errors, which constitute a class of transient errors, result from a fault in a

single-bit (single-event upsets (SEU)) in the processors due to particle strikes, cosmic

rays, electrical noise, or other environmental effects [1, 7, 8]. Figure 1.1 [1] shows the

possible outcomes of a single-bit fault in a hardware structure. The most critical case is

silent data corruption (SDC) which is represented by Outcome 4 in the figure, since it

results in unnoticed erroneous outputs in the system. The errors called DUE (detected

unrecoverable errors) are detected by the system but they are not recovered by any

mechanism. The events which cause faulty bit read, but do not affect program output

are called as false DUE, while true DUE events affect program output by affecting

single bit. In order to reduce error rates, fault-tolerance methods including both error

detection and recovery techniques are applied to the system by eliminating the cases 3

through 6 in the figure.

In order to solve the problems resulting from soft errors in chip multiprocessors,

many fault-tolerance techniques have been proposed in the literature. They are based

3

on redundancy which implies the addition of some functionalities that are not needed

for carrying out the jobs the user demands from the system [9]. Redundancy is not

used to implement the normal system operations that are supposed to perform, but

it is used to guarantee that the system functions are performed correctly even if the

errors exist. The system has to pay extra cost in any case of redundancy which uses

extra resource.

There are various reliability techniques in the literature based on hardware or

software redundancy in the system. Moreover, hybrid methods which merge hardware

and software solutions provide more reliable and low-cost solutions.

Hardware-based reliability techniques rely on hardware redundancy which corre-

sponds to the physical replication of the hardware components of a system. Three

approaches for hardware redundancy implementation are the static redundancy, the

dynamic redundancy, and the hybrid redundancy [10]. The aim of static or masking

redundancy techniques is to mask the faults in the system by using a voting mech-

anism. The redundancy system, known as Triple Modular Redundancy (TMR), has

three identical versions of the system which are connected to a majority voter [11–14].

The system output is determined by using the output of the voter which relies on

the majority of the versions. If one version fails, the system continues by using the

other two fault-free modules’ output. Although static redundancy provides tolerance

to errors by fault masking, dynamic redundancy techniques deal with the problem

by considering error detection, error location, and error recovery. The redundancy

method, known as standby sparing, has one operating module and one or more spare

modules. As soon as an error is detected and localized in the operating module, the

operating module is replaced by one spare module to recover the error. On the other

hand, the hybrid redundancy combines static and dynamic redundancy techniques. It

uses the fault masking to prevent the system to produce erroneous output (static) and

error detection, location, recovery to restore the erroneous module to a fault-free state

(dynamic).

Fault-tolerant processor architectures have been proposed in the literature in

4

order to deal with soft errors. One of the hardware-based solutions, a dynamic im-

plementation verification architecture (DIVA), utilizes dual execution units in order to

increase the reliability of the system [15]. DIVA uses the speculation mechanism of

the processors for detecting errors in the processor core, where it consists of two main

components including DIVA core and DIVA checker. DIVA core is composed of all

microprocessor units including fetch, decode, execute stages except retirement stage.

It stores the speculative results in the re-order buffer after execution. The instructions,

input operands and the results are sent to DIVA checker. The checker verifies the cor-

rectness of the results and sends the verified results to the commit phase. If any errors

are detected by the checker, it corrects the computation and restarts the processor at

the next instruction. It is a hardware solution which adds DIVA checker architecture

to the core processor.

Simultaneous and Redundantly Threaded (SRT) processor [16] and Redundant

Multithreading (RMT) [17] are two architectures based on Simultaneous Multithread-

ing (SMT) that provides fault-tolerance by running two identical copies of the same

program as independent threads and comparing their outputs. An enhanced store

queue is proposed for output comparison of the threads. After stores from the leading

thread are appended to the store buffer, trailing thread stores enter the same store

buffer and they are compared to the corresponding store operation for error detection.

DMR (Dual Modular Redundancy), which is the duplication of a hardware struc-

ture and decides the fault by voting the results of the duplicated units, has been used

for two cores of chip multiprocessors by switching the DMR-on and the DMR-off modes

in order to balance performance-reliability trade-off [18]. The applications requiring

high reliability are executed by turning on the DMR mode, while the applications re-

quiring high performance are executed by turning off DMR in order to avoid DMR

penalty.

In order to improve system reliability of multicore architectures, an asymmetric

multicore architecture, which consists of cores with different reliabilities, has been

proposed [19]. The architecture has multiple cores, which have identical Instruction

5

Set Architecture (ISA), and the same speed and performance but different fault tolerant

hardware and properties. The software processes, which are classified as critical, run on

more reliable cores, while non-critical processes, which requires less reliability, execute

on the cores with smaller fault-tolerance.

On the other hand, software-based redundancy approaches propose the replication

of the application code by adding additional instructions to the original program to

implement software information and time redundancy [9]. Information redundancy

adds redundant information to data for error detection, masking, and correction. For

instance, single-bit parity code adds one extra bit to a binary data in order to detect

error on the data by checking the number of 1s in the data. Time redundancy performs

the same operation at different times and compares the results to detect the error. Since

the techniques require no hardware addition or modification, they come free of cost.

EDDI is a software-based fault detection mechanism which duplicates the instruc-

tions and uses redundant execution to achieve fault tolerance [20]. The instructions

are duplicated by the compiler and executed through the original program flow. Each

copy uses different registers and memory locations. At the synchronization points, ex-

tra check instructions are added in order to check whether the results of the original

instructions and the added ones are the same.

SWIFT is another technique that proposes a compiler-based transformation [21].

It recompiles the source files by replicating the instructions and adding comparison

points, in order to detect the errors in the execution as in EDDI [20]. In addition to

EDDI, it eliminates memory penalty by using enhanced control-flow checking mecha-

nism. It restricts the control-flow checking only to blocks which have stores in them.

While hardware-based fault-tolerance techniques provide almost-perfect fault cov-

erage with low performance degradation, they are not suitable for the cases restricted

by high hardware cost. Although software-based techniques are more reasonable with

zero hardware cost, they result in performance degradation due to extra software.

Moreover, software solutions are not capable of directly examining microarchitectural

6

components of the system. Therefore hybrid approaches, which combine hardware-

based and software-implemented techniques, have been proposed.

In the literature, there are three hybrid techniques that are called as CompileR-

Assisted Fault Tolerance (CRAFT), which combine the software-only technique SWIFT

with hardware modifications from RMT by achieving nearly perfect reliability, low per-

formance degradation and low hardware cost [22]. The first technique, CRAFT:Checking

Store Buffer (CSB), duplicates store instructions in the same way that it duplicates all

other instructions. The compiler schedules store instructions, which are tagged as orig-

inal or duplicate, so that the duplicate stores happen in the same order as the original

stores. When the original and duplicated versions’ store values and addresses are the

same, it is validated. The code is run on CSB which is normal store buffer except it

does not commit entries to the memory until they are validated. The second technique,

CRAFT:Load Value Queue (LVQ), considers vulnerability between address validation

and address consumption as well as vulnerability between load instruction and value

duplication. Redundant load execution is achieved by the LVQ structure by accessing

memory for only original load instruction and bypassing the load value for the dupli-

cated load from the structure. On the other hand, the last one, CRAFT:CSB+LVQ,

duplicates both store and load instructions for the fault-tolerance of the system.

To quantify the system vulnerability to soft errors and evaluate the efficiency of

fault-tolerance techniques, a metric of vulnerability comparison is required. Architec-

tural Vulnerability Factor (AVF) has been defined as the probability of an error in the

program output which results from a fault in a hardware structure [23]. AVF looks at

the vulnerability problem from an architectural perspective, but it does not quantify

the program level vulnerability to soft errors. While AVF is a hardware-based met-

ric, Program Vulnerability Factor (PVF) quantifies program codes’ vulnerability [24].

Although PVF looks at the vulnerability from software perspective, it is for single

threaded applications and does not work directly for multithreaded programs. Given

emerging trends toward multicore architectures and their ensembles, one needs a new

metric to quantify vulnerability of multithreaded applications.

7

1.2. Thesis Contributions

This thesis explores the soft error reliability analysis of parallel applications run-

ning on multicore architectures. We can summarize the main contributions of this

thesis as follows:

• We propose and evaluate Thread Vulnerability Factor (TVF), a reliability metric

for quantifying relative vulnerability of multithreaded applications. We calculate

the local and remote TVF values using a set of multithreaded applications from

the PARSEC and SPLASH-2 benchmark suites. We also perform a validation

study to compare our metric values and SDC (Silent Data Corruption) rates of

fault-injection experiment results.

• We perform a performance-reliability tradeoff analysis of different multithreaded

applications running on multicore architectures. We calculate TVF values and

gather execution clock cycles on different versions of a set of parallel programs.

We discuss the effect of design choices on the system performance and reliability

by comparing different implementations. By considering tradeoff between these

two concerns, we observe that design choice becomes clear for some of the applica-

tions which provide different vulnerability values with almost equal performance.

• We propose and evaluate reliability-aware core partitioning schemes for multicore

architectures. Our schemes consider the reliability of the system which has a

performance bound to satisfy the quality of service. The goal of our reliability-

oriented core partitioning scheme is to maximize the reliability of the system while

allocating available cores for the multithreaded applications. Another scheme

that we propose considers both the system performance and reliability, and par-

titions the residual cores (i.e., the cores remaining after satisfying the performance

bounds) to maximize the value of the combined metric defined as Vulnerability-

Delay Product (VDP). We perform a simulation study with various workloads

consisting of multiple multithreaded applications to evaluate our proposed parti-

tioning schemes.

• We present a reliability assessment tool for multithreaded applications which

takes into account user preferences. Our tool evaluates the target application for

8

the most vulnerable threads or thread regions, then it recommends the most effi-

cient way for the replicated execution. We propose a critical thread identification

algorithm to evaluate the most critical thread in a parallel application for the

redundancy. We extend our analysis to eliminate the thread regions that do not

contribute to the system vulnerability. We validate the effectiveness of our tool

by performing fault injection based analysis.

1.3. Outline of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 presents definition

and implementation details of our vulnerability metric including motivating examples.

The validation study for TVF metric is presented in Chapter 3. Chapter 4 and Chap-

ter 5 demonstrate the utilization of our vulnerability metric to analyze performance-

reliability tradeoff for multithreaded applications and perform reliability-aware core

partitioning on multicore architectures. Thread-level partial fault tolerance scheme

based on critical thread analysis is presented in Chapter 6. We conclude the thesis in

Chapter 7.

9

2. THREAD VULNERABILITY FACTOR

In this chapter, we introduce a novel metric, Thread Vulnerability Factor (TVF),

for quantifying the relative vulnerability of multithreaded applications to soft errors on

multicore architectures. Since TVF comprises vulnerability values resulted from the

dependency of the threads, our metric presents more effective and detailed information

on vulnerability of applications.

As part of this chapter, a set of vulnerability metrics presented in the literature

and their limitations are given in Section 2.1. The definition and implementation details

of our metric, TVF, is presented in Section 2.2. Finally, Section 2.3 and Section 2.4

presents the details of experimental setup and results of performance evaluation to

demonstrate the effectiveness of our metric, respectively.

2.1. Vulnerability Metrics in the Literature

In this part, we summarize the details of four vulnerability metrics presented in

the literature, which are Architectural Vulnerability Factor (AVF) [23], Register Vul-

nerability Factor (RVF) [25], Instruction Vulnerability Factor (IVF) [26], and Program

Vulnerability Factor (PVF) [24].

2.1.1. Architectural Vulnerability Factor (AVF)

Architectural Vulnerability Factor (AVF) has been defined as the probability

that a fault in a processor structure will result in an error in the program output [23].

While some transient errors in the processor or memory structures’ bits cause incorrect

execution of the instructions, they do not affect the program output. On the other

hand, some bits which have been called Architecturally Correct Execution (ACE) bits

affect the program execution and output. ACE bits have been used in the calculation

of AVF of a hardware structure. These bits can be classified as architectural and

microarchitectural bits.

10

In the ACE analysis, all bits have been considered as ACE-bit unless it is figured

out otherwise and un-ACE bits, which have no effect on the program output, have

been identified at both architectural and microarchitectural levels. Microarchitectural

un-ACE bits are processor state bits that do not affect the committed instruction

path, whereas architectural un-ACE bits are hardware-independent bits that affect the

instruction execution path but do not change the program output. Microarchitectural

un-ACE bits are classified into four situations:

(i) Idle or Invalid State. When a data or status bit is idle or does not contain any

valid information, the error on the bit does not affect the output of the program.

(ii) Mis-speculated State. When speculated operations such as branch prediction and

speculative memory disambiguation are incorrectly speculated, they do not have

any effect on the execution.

(iii) Predictor Structures. An error on predictor structures such as branch predictors,

jump predictors, return stack predictors, store-load dependence predictors causes

only wrong prediction, it does not have any effect on the program execution.

(iv) Ex-ACE State. ACE bits, which have become un-ACE bits after their last use,

do not affect the execution.

On the other hand, architectural un-ACE bits are classified into five situations:

(i) NOP Instructions. Many instruction sets implement NOP instructions that do

not affect the state of the processor. These instructions are used to align instruc-

tions to address boundaries or to fill instruction templates.

(ii) Performance-Enhancing Instructions. An error in performance-enhancing in-

structions only causes the performance not to be improved.

(iii) Predicated-False Instructions. Predicated instruction-set architectures allow in-

struction execution based on a predicate register that means if the register is

true, the instruction commits. All bits in the predicated-false instructions except

predicate register are un-ACE bits.

(iv) Dynamically Dead Instructions. The instructions whose results are not used by

11

any other instructions are dynamically dead instructions.

(v) Logical Masking. Some bits that belong to operands in an instruction do not

affect the output of the program.

After ACE analysis, AVF value of a hardware structure is calculated by the

division of the average number of ACE bits in one cycle by the total number of bits in

the hardware structure (Equation 2.1) [23].

AV F =
total residency of all ACE bits in a structure (in cycles)

total number of bits in the hardware structure × total execution cycles
(2.1)

ACE analysis has been used to evaluate soft error rates of target designs [27] as

well as dynamic estimation of vulnerability for soft errors [28, 29].

While AVF looks at the vulnerability problem from an architectural perspective,

it does not quantify the program level vulnerability to soft errors. Therefore, AVF

is not appropriate vulnerability metric for a software-centric analysis which needs a

hardware-independent metric to measure the soft error vulnerability of a program.

2.1.2. Register Vulnerability Factor (RVF)

The register file susceptibility to soft errors has been studied; consequently, Reg-

ister Vulnerability Factor (RVF) has been defined as the probability that a soft error in

registers can be propagated to other system components [25]. While AVF is interested

in the effect of soft error propagation, RVF focuses on the probability of soft error

propagation to other hardware elements. The concept of AVF, which provides an es-

timation of soft error rate for hardware components by considering ACE bits affecting

the final program output, can be used for register files. However, the soft errors in the

register file can be overlapped by the write operations to the register file which leads

AVF analysis insufficient.

In general, a value is first written into a register, then it is read by one or more

12

times and finally another value is written into the same register, which terminates the

lifetime of the old value and begins the lifetime of the new value. The access to the

register file can be divided into four patterns, namely intervals including write-read

(W-R), read-read (R-R), read-write (R-W), and write-write (W-W). The register file

is vulnerable in the W-R and R-R intervals. The soft errors occurred during R-W and

W-W intervals can be overlapped by the last write operation. RVF has been defined

with the following equation [25]:

RV F =

n∑
i=1

SusceptibleT ime(RVi)

n∑
i=1

Lifetime(RVi)
, (2.2)

where n represents the number of register values, RVi represents any register value,

SusceptibleT ime(RVi) represents the time intervals that RVi is exposed to the suscep-

tible intervals (i.e., W-R and R-R intervals for RVi), and Lifetime(RVi) represents the

lifetime of RVi, which is the interval between the time that register is allocated and

overlapped by another value.

Compiler-guided techniques based on instruction re-scheduling and reliability-

oriented register assignment have also been proposed to improve register file reliability

in terms of Register Vulnerability Factor metric [25]. One technique schedules the

register read-write operations by delaying the write operations as late as possible and

schedules the read operations as early as possible which causes shortening in the vulner-

able W-R and R-R intervals and thus reduces RVF values. Another technique modifies

the register allocation algorithm by distinguishing the registers with Error-Correcting

Code (ECC) and the registers without ECC, by assuming that some registers are pro-

tected by ECC codes. If the registers with the highest RVF values are not protected

by ECC, the compiler re-assigns the registers so that the registers with ECC have the

highest RVF values. The reliability of the register file can be improved since the most

vulnerable registers are protected by a hardware protection method.

Similarly, to measure the cache susceptibility to soft errors accurately and quan-

13

titatively, Cache Vulnerability Factor (CVF) has been defined [30,31]. Both RVF and

CVF values are calculated by considering susceptible times of register values and cache

blocks respectively. [32] has also proposed a static analysis method to estimate program

vulnerability in caches.

2.1.3. Instruction Vulnerability Factor (IVF)

Instruction Vulnerability Factor (IVF) has been defined to evaluate how faults

in every instruction affect the final application output [26]. Although IVF is similar

to AVF, it measures how much of the final output is corrupted due to faults in every

instruction instead of faults in a hardware structure. IVF estimation requires monitor-

ing how different faults in every instruction propagate to the final application output.

This can be accomplished by fault-injection experiments and offline-profiling. Since in-

jection of all the possible faults into every executed instruction would require too large

number of experiments, random fault injection into every instruction has been pre-

ferred in the IVF estimation process. The final application output has been compared

to the correct one and the output corruption has been measured. These measurements

have been performed offline and the results have been saved in a program binary as

a separate table, which maps application instructions to the IVF values. These IVF

values have been used to determine protection levels for each instruction by loading

into a special hardware buffer.

Instruction-Level Fault Tolerance Configurability (ILCOFT) hardware-based tech-

nique [33] has been supported by IVF estimation process. In ILCOFT, the programmer

is able to specify which instructions are critical, and should be highly fault tolerant and

which instructions are not. The application instructions have been protected (dupli-

cated for redundancy) according to this specification. The criticality of the instructions

can be determined and ILCOFT can be automatized by using IVF estimation. IVF-

based selective instruction duplication for fault tolerance has resulted in performance

improvements over full instruction duplication by small fault coverage.

14

2.1.4. Program Vulnerability Factor (PVF)

To define the vulnerability of a software to transient errors, Program Vulnerability

Factor (PVF) has been proposed in the literature [2, 24]. This metric measures the

vulnerability of a program to the hardware faults in a microarchitecture independent

way and provides the relative vulnerability of the programs to be able to make decisions

about the reliability of these programs. Moreover, instead of applying full redundancy

to protect all application, it is possible to protect the most vulnerable part of a program,

which is evaluated by PVF analysis, that reduces cost for the reliability.

While calculating PVF, microarchitectural resources that are hardware depen-

dent are not considered and only architectural resources are taken into account by the

software’s view. As a processor consists of many hardware structures, a program is

composed of several architectural resources. For instance, an arithmetic addition oper-

ation is visible to a program in architectural level. However, in the microarchitectural

level; this operation is implemented by more complex micro operations.

PVF is calculated for each architectural resource including register file, load/store

queue, and ALU units by division of instructions, which have effect on the output by

total number of instructions. The average PVF of a program is obtained by combining

them and weighting appropriately for their size.

PVF can be defined as a component of AVF as in the following representation [2]:

AV FH =

N∑
n=1

ACE m-bits in H at cycle n

BH × N
, (2.3)

PV FR =

I∑
i=1

ACE a-bits in R at instruction i

BR × I
, (2.4)

where AV FH is the AVF of the hardware structure H with size BH over a period

of N cycles, and PV FR is the PVF of architectural resource R with size BR over I

instructions.

15

Figure 2.1. A set of program instructions and the resulting hardware operations [2].

Figure 2.1 shows a series of operations to byte b in architectural memory. In the

left, the operations are represented by the programs’s point of view and the PVF of b

is calculated as follows:

PV Fb =

I∑
i=1

ACE a-bits in R at instruction i

BR × I

PV Fb =
(8 + 8 + 8 + 0 + 8)

8 × 5
= 80%

AVF is calculated as following by using conversion:

AV FH =

I∑
i=1

ACE a-bits at instruction i × mi × ni

BR × I × MH × NI

AV FH =
(8 × 0 × 4) + (8 × 1 × 2) + (8 × 1 × 2) + 0 + (8 × 1 × 2)

8 × 5 × 8
8
× 12

5

= 50%

Although PVF is a software-based metric, it is useful for single-thread programs

and does not work directly for multithreaded programs. Given emerging trends to-

ward multicore architectures and their ensembles, one needs a new metric to quantify

vulnerability of multithreaded applications.

16

2.2. Thread Vulnerability Factor (TVF)

In this section, we introduce our proposed metric, Thread Vulnerability Fac-

tor (TVF) [34, 35]. To provide better understanding, we first describe data sharing

mechanism between threads in a multithreaded application, then illustrate TVF using

examples.

In shared memory systems, threads of a given multithreaded application can read

from and write to shared memory [36]. Figure 2.2 illustrates a data sharing scenario

(write/read order representation) between different threads in a multithreaded appli-

cation running on a shared memory system. In this scenario, four threads running in

parallel, share data elements along their execution. Thread2 reads the value of variables

(X) and (Z) that Thread1 and Thread3 have written, respectively. Therefore, we can

say that the reader thread (Thread2) is dependent on the writer threads (Thread1 and

Thread3). Moreover, Thread4 reads data (Q) which Thread3 has written. In this case,

Thread4 is dependent on Thread3 as well as on Thread2 and Thread1. Another data

dependency between threads results from variable (Y), which is written by Thread2

and read by Thread3. In this case, Thread3 is dependent Thread2 and Thread1 which

has previously written a value (X) read by Thread2. In the following subsections, we

illustrate our metric called Thread Vulnerability Factor (TVF) using examples.

2.2.1. Formal Definition of Thread Vulnerability Factor

TVF measures the vulnerability of a thread to hardware faults. Since threads

may be dependent on each other in a multithreaded application, the vulnerability of

one thread is also dependent on that of other threads that share data with that thread.

Therefore, we also have to consider these threads to calculate the TVF of one thread.

TVF of thread i can be calculated as follows:

TV F (Ti) = [wL × LV F (Ti)] + [wR × RV F (Ti)], (2.5)

17

 Thread
1

 Thread
4

 Thread
3

 Thread2

read X

write X

write Y

read Y

write Z

read Z
write Q

read Q

Figure 2.2. Data sharing between four threads.

where LV F (Ti) is the local vulnerability factor for thread i and RV F (Ti) is the remote

vulnerability factor for thread i which iterates over all threads that sends data to thread

i. wL and wR are weight values for local and remote vulnerability factors, respectively.

The weight values provide the analysis of different cases that needs to consider the

weights of local and remote terms, and may get values between 0 and 1. We use equal

local and remote vulnerability weights (0.5), unless otherwise stated. A sensitivity

analysis is conducted to examine the effect of different weights (see Section 2.4.2).

Remark 2.1. Since both LV F (Ti) and RV F (Ti) terms can only take values between

0 and 1 (as explained in the following subsections) and these terms are multiplied by

weight values (positive values less than 1) in TVF calculation, TVF of a thread (i.e.,

TV F (Ti) term) can only have values between 0 and 1.

Remark 2.2. While TVF considers the vulnerability of threads that have data sharing

with target thread, TVF value of one thread which has no remote memory access (i.e.,

RV F = 0) simply equals to Local Vulnerability Factor (LVF) value.

Remark 2.3. We consider three hardware components in our TVF evaluation includ-

ing register file, ALU unit, and memory (cache), which are evaluated separately and

denoted as TV FRF , TV FALU and TV Fmem in the equations, respectively.

18

2.2.1.1. Local Vulnerability Factor (LVF). The local vulnerability of the thread (LVF)

is calculated in a similar fashion given for PVF [24], where the vulnerability values of

the software resources in the thread are combined and normalized by considering their

vulnerable intervals. The resources that we consider are registers, ALU (addition,

subtraction etc.), and memory (load/store) operations.

• Vulnerability of Registers: The vulnerability of register resources is defined be-

tween Write-Read and Read-Read operations on these registers [24]. A register

is vulnerable during the lifetime of a value that starts with a write operation on

that register and ends with the last read operation. As soon as another write

operation on the register occurs, its value is updated and different lifetime is

activated. The hardware faults between these lifetime intervals may affect the

register. LVF of a register R for thread i can be calculated as follows:

LV FR(Ti) =

n∑
j=1

V intervalj

T instruction
, (2.6)

where V interval represents the number of instructions in the interval that the

register R is vulnerable, n represents the number of vulnerable intervals for reg-

ister R, and T instruction represents the total number of instructions in the

application. We may consider the following code fragment as an example:

1 : ld r1 = [r4]

2 : ld r2 = [r5]

3 : ld r3 = [r6]

4 : add r1 = r1, r2

5 : add r1 = r1, r3

6 : st[500] = r1

In the code above, r1 is written by the first instruction by loading a value from

memory location. It is both read and then written by the fourth and fifth instruc-

19

tions; and it is read by the sixth instruction, which stores the calculated value to

the memory location. Therefore, r1 is vulnerable between instructions 1 and 4,

instructions 4 and 5, and instructions 5 and 6. The LVF value of r1 register in

the code segment can be calculated as:

LV Fr1 = [(4− 1) + (5− 4) + (6− 5)]/6 = 5/6.

To calculate the vulnerability factor of the thread with respect to all register

resources, LVF value for registers can be averaged by dividing the sum of LVF

values into the total number of registers [24]. Since it is possible to use different

number of registers on the different code segments, it is essential to evaluate an

average vulnerability value.

• Vulnerability of ALU Operations: We consider ALU resource as the architecturally-

visible arithmetic-logic operations (i.e., addition, subtraction, and, xor etc.) in

the code segment. The vulnerability is obtained by dividing the number of ALU

operations by the total number of instructions [2]. For instance, LVF of ALU

operations (LV FALU) in the code fragment below is equal to 2/5 (i.e., number of

arithmetic operations divided by the total number of instructions).

1 : ld r3 = [100]

2 : ld r2 = [200]

3 : add r3 = r3, r2

4 : add r3 = r3, r2

5 : st[300] = r3

Since our goal is to look at the vulnerability from compiler perspective, we do

not distinguish between different ALUs, as they are not visible to the compiler.

The compiler just sees an ADD, it does not know which ALU will execute it at

runtime. However, individual (logical) registers such as r1, r2 are visible to the

compiler. Therefore, our criterion is compiler (software) visibility.

• Vulnerability of Memory Operations: We assume a multi-level cache structure and

20

our baseline architecture has one L2 cache (protected) shared by all processor

cores, and L1 private cache for each core. A soft error may hit data residing

in private L1 cache structure. Additionally, main-memory and L2 cache units

are assumed to be well-protected (e.g., using some sort of ECC). Therefore, a

memory error means that data catches a soft error while in L1 data cache. We

also assume that the cache write-policy in the architecture is write-through. That

is, the cache locations are only vulnerable between write and read operations as

in the register case. If a soft error hits the cache block which is evicted before a

read operation, the error does not affect the vulnerability of the program since

the correct value in the higher level of storage will be used in the subsequent read

operations. Therefore, we do not have to consider the data in the cache which

is evicted or replaced by any other block before it is used. Whenever a memory

read operation (load) occurs, the write-read interval is considered as vulnerable

unless it is a miss in the L1 cache. The vulnerability is calculated for only L1 hit

read operations.

If we consider the following code fragment executed by single thread, it is clear

that location X in L1 is vulnerable between the instructions 1 and 4 assuming

that load X operation is a hit in L1 cache structure.:

1 : st[X] = r1

2 :

3 :

4 : ld r2 = [X]

The LVF value of memory location X in the code segment can be calculated as:

LV FX = (4− 1)/4 = 3/4.

The situation is similar when threads share data, i.e., store (st[X] = r1) is exe-

cuted by one thread (in Core 1) and load (ld r2 = [X]) is executed by another

thread (in Core 2). In this case, the flow is follows: Thread 1 stores r1 in X, X

21

is in both L1 of Core 1 and shared L2; thus X is vulnerable in Thread 1 (Core

1)’s L1 cache, that is, an error may hit the updated X while in L1. Thread 2

executes load (ld r2 = [X]), and (updated and possibly erroneous) value in X is

transferred to L1 of Thread 2 (via shared L2). Memory vulnerability of X mem-

ory location is between all instructions (of Thread 1) executed between Store (in

Thread 1) and Load (in Thread 2). Once X is loaded to r2 (of Thread 2), any

vulnerability of it is the register vulnerability of r2 (of Thread 2).

We measure the vulnerable intervals of each memory location accessed by the

application and calculate the vulnerability values for these locations. To calculate

the vulnerability factor of the entire thread with respect to all memory operations,

LVF value of a cache structure can be averaged by dividing the sum of LVF values

into the total number of memory locations accessed by the target thread.

Since LVF values are averaged by dividing into the number of resources (registers

or memory locations), LVF of a thread (i.e., LV F (Ti)) can only take values between 0

and 1.

2.2.1.2. Remote Vulnerability Factor (RVF). RVF represents the vulnerability impact

of the threads that interact with the target thread in a multithreaded application. If

one thread does not read data written by any other thread previously, its vulnerability

becomes LVF term which only considers the code of the target thread itself. Since

threads generally have interactions in a multithreaded application, the definition of

RVF term, which also considers the code of the other threads, is essential. RVF of

thread i can be calculated as follows:

RV F (Ti) =

n∑
j=1

rV F (Ti, Tj)

RV
, (2.7)

where rV F (Ti, Tj) represents the remote vulnerability factor for thread i induced by

thread j which sends data to thread i, and n is the number of threads that sends data

to thread i. RV F (Ti) iterates over all these n threads. This is because these threads

can pass a corrupted value to thread i. The RV parameter represents the total number

22

of remote memory accesses on thread i. To normalize RVF value, total value is divided

by the RV parameter. Due to this normalization operation, RVF of a thread (i.e.,

RV F (Ti)) can only take values between 0 and 1, similarly to LV F (Ti) values.

When a thread reads a data (from shared-memory) that is written by another

thread, TVF of the writer thread becomes RVF of the reader thread. Since a soft error

affecting the reader thread may propagate to the writer thread (via remote memory

operation), the total vulnerability of the writer thread is counted for the remote vul-

nerability of the reader thread as well. That is, the vulnerability of the writer thread

is double-counted. The rV F (Ti, Tj) term in Equation 2.7 can be calculated by con-

sidering total TVF value of thread j at the end of the instruction which it stores the

value read by thread i.

Since the vulnerability value of the remote thread at the end of the store instruc-

tion defines the remote vulnerability factor of the target thread, the schedule of the

store operation becomes as important as the store operation itself. It is possible that

there can be many interactions among threads of an application, where these inter-

actions do not bring much vulnerability due to remote threads’ local behavior before

the store operations. On the other hand, an application with smaller number of in-

teractions but larger local vulnerability value (before the remote write operation) may

generate larger remote vulnerability factor value. In that case, modeling shared data

accesses of threads may not be enough to determine the vulnerability of the application.

Therefore, it is essential to consider RVF analysis as well as LVF analysis.

Figure 2.3 represents data sharing between the threads in a multithreaded appli-

cation, where TVF value of each thread can be calculated as follows:

TV F (T1) = LV F (T1)

= LV F (X + Z).

TV F (T2) = [wL × LV F (T2)] + [wR × RV F (T2)]

23

= [wL × LV F (T2)] + [wR × rV F (T2, T1)]

= [wL × LV F (Y + Q + P)] + [wR × LV F (X)].

TV F (T3) = [wL × LV F (T3)] + [wR × RV F (T3)]

= [wL × LV F (T3)] + [wR × rV F (T3, T2)]

= [wL × LV F (T3)]+

[wR × (wL × LV F (T2) + wR × rV F (T2, T1))]

= [wL × LV F (R + S)]+

[wR × (wL × LV F (Y + Q) + wR × LV F (X))].

read B

write B

Y

Q

P
S

X

Z

R

Thread
2 3

Thread

write A

read A

Thread
1

Figure 2.3. An example for representing data sharing between threads.

To calculate TVF of a thread, the vulnerability of each thread on which that

thread is dependent should be considered in order to capture the effect of these threads

on the vulnerability of the thread investigated. Since Thread1 is not dependent on

other threads, its TVF is calculated using only its instructions. However, the portion

of Thread1 should also be considered to obtain TVF of Thread2. Since Thread2 reads

data written by Thread1 at the end of the code fragment shown as X (in Figure 2.3),

the vulnerability of X affects the vulnerability of Thread2. Similarly, to calculate TVF

of Thread3, code portions of both Thread1 and Thread2, which affect the vulnerability

of Thread3, should be considered.

24

Table 2.1. Memory location access of two threads.

Thread1 Thread2

100: store X 50: ...

...

... ... 200: load X

250: load X

... ... 300: store X

...

... ... 400: load X

Table 2.1 presents sample locations and corresponding memory operations that

belong to Thread1 (T1) and Thread2 (T2) in the code segment. The memory location

X is vulnerable on code segment Thread1 as well as Thread2. The value is written to

the location by 100th instruction and read by 250th instruction in the code segment

of Thread1. The vulnerability factor (VF) of the location (at the end of the 250

instructions) is calculated as follows:

LV FX(T1) = (250− 100)/250 = 0.60.

Since there is a store operation by Thread1 before the load operation of Thread2 in

200th instruction, the memory location of X is vulnerable both locally and remotely

due to this load operation. X location is vulnerable in Thread2 between 50 and 200

instructions locally (assuming that X is in the L1 cache), because the store operation

by Thread1 is executed in 50th instruction of Thread2. Moreover, the location has

remote vulnerability due to the store operation is performed by Thread2 which is not

the thread itself reading the value from memory address.

The vulnerability factor (VF) calculation of Thread2 (at the end of the 400 in-

structions) due to load operation in 200th instruction of Thread2 consists of two phases

25

read Y

write Z

write Y

read Z

G

H

C

D

E

F
I

A

B

 .

ThreadThread1 2 3Thread

write X

read X

Figure 2.4. An example for more complex data sharing scenario.

including local memory VF and remote VF:

LV FX(T2) = (200− 50)/400 = 0.375

RV F (T2) = rV F (T2, T1)

total TV F value in the 100th instruction of T1.

There is another load operation on X by Thread2 in the 400th instruction. In this

case, the last store operation is performed by the Thread2 itself. Therefore, only local

memory vulnerability of the location X is considered and calculated as follows:

LV FX(T2) = (400− 300)/400 = 0.25.

To obtain total local memory VF value of X location at the end of the instructions

given above, the local memory VF values are added for this memory location:

LV FX(T2) = 0.375 + 0.25 = 0.625.

The vulnerability of any threads having various data sharing characteristics can be

calculated by using Thread Vulnerability Factor. Figure 2.4 represents more complex

data sharing scenario between the threads in a multithreaded application. For this

26

case, Thread1 writes X value to the shared memory location at the end of the code

segment A and Thread3 writes Y value to the shared memory location at the end of

the code segment G. Then these X and Y values are loaded by Thread2 at the end

of C and C + D code segments, respectively. Another shared value is Z written by

Thread2 and then read by Thread3. TVF value of each thread can be calculated as

follows:

TV F (T1) = LV F (T1)

= LV F (A + B).

TV F (T2) = [wL × LV F (T2)] + [wR × RV F (T2)]

= [wL × LV F (T2)]+

[wR ×
rV F (T2, T1) + rV F (T2, T3)

2
]

= [wL × LV F (C + D + E + F)]+

[wR ×
LV F (A) + LV F (G)

2
].

TV F (T3) = [wL × LV F (T3)] + [wR × RV F (T3)]

= [wL × LV F (T3)] + [wR × rV F (T3, T2)]

= [wL × LV F (T3)]+

[wR × (wL × LV F (T2) + wR × RV F (T2))]

= [wL × LV F (G + H + I)]+

[wR × (wL × LV F (C + D + E)+

wR ×
LV F (A) + LV F (G)

2
)].

It is also valid for this scenario that the vulnerability of each thread on which that

thread is dependent should be considered to capture the effect of these threads on

the vulnerability of the thread investigated. Since Thread1 is not dependent on other

threads, its TVF is calculated using only its code segment. However, the portion

of Thread1 and Thread3 should be also considered to obtain TVF of Thread2. Since

Thread2 reads data written by Thread1 at the end of the code fragment shown as A and

27

data written by Thread3 at the end of the code fragment shown as G (in Figure 2.4),

the vulnerability of A and G affect the vulnerability of Thread2. Similarly, to calculate

TVF of Thread3, code portion of Thread2 which affects the vulnerability of Thread3

should be considered. Since Thread2 is affected by Thread1 and Thread3 before its

write operation on Z value, the vulnerability values coming from these threads should

be also considered.

 Thread
4

 Thread
3

 Thread2

read X

write X
write Q

read Q

write Z

write Y

read Y

1
 Thread

read Z

B

C

D

E

G

H

I

F J

K

L

A

Figure 2.5. The communication of four threads in a multithreaded application.

Figure 2.5 demonstrates another example communication behavior of threads in a

multithreaded application executing on a shared memory multicore architecture. Since

Thread2 reads data written by two other threads (Thread1 and Thread3), we can say

that any soft error that hits Thread1 or Thread3 before their remote data write op-

erations (write X and write Z) affects the execution of Thread2. The vulnerability of

Thread2 is dependent on the code segments of these two threads. While local term of

TVF metric considers the code segment of the Thread2, remote term counts Thread1

and Thread3. Another memory operation pair, which causes communication between

threads, is write and read operations on Q location. Thread3 is similarly dependent

on the code segment of Thread4. Moreover, the vulnerability of Thread2 is affected

by this memory operation. If there is an error on Thread4 before its write operation,

it influences Thread3 directly and Thread2 indirectly. Therefore, the TVF value for

Thread2 is calculated by considering the code segment of Thread4 as well. Moreover,

the write operation on Y memory location affects the vulnerability of Thread4. The re-

28

mote vulnerability from the writer thread Thread3 includes both the local vulnerability

and the remote vulnerability which results from earlier write operation by Thread4.

TVF value of each thread in Figure 2.5 can be calculated as follows:

TV F (T1) = LV F (T1)

= LV F (A + B).

TV F (T2) = [wL × LV F (T2)] + [wR × RV F (T2)]

= [wL × LV F (T2)] + [wR ×
rV F (T2, T1) + rV F (T2, T3)

2
]

= [wL × LV F (C + D + E)]+

[wR ×
LV F (A) + [wL × LV F (F + G) + wR × LV F (J)]

2
].

TV F (T3) = [wL × LV F (T3)] + [wR × RV F (T3)]

= [wL × LV F (T3)] + [wR × rV F (T3, T4)]

= [wL × LV F (F + G + H + I)] + [wR × LV F (J)].

TV F (T4) = [wL × LV F (T4)] + [wR × RV F (T4)]

= [wL × LV F (T4)] + [wR × rV F (T4, T3)]

= [wL × LV F (J + K + L)]+

[wR × [wL × LV F (F + G + H) + wR × LV F (J)]].

2.2.2. An Example for Calculating TVF Values of Multiple Threads

In this section, we go through a detailed example to demonstrate how the TVF

values of threads in a multithreaded application are obtained. The example deals with

register vulnerability factors; and the threads involved are given in Table 2.2. There

are three threads which are dependent on each other by data sharing in the example

above. The second thread reads the memory address [500], which the first thread has

written and the third thread reads the memory address [200], which the second thread

has written. The data flow between the threads are illustrated in Figure 2.6. It is

29

Table 2.2. A sample code for TVF calculation.

Thread1 Thread2 Thread3

1: ld r1 = [r2] ld r1 = [r2] ld r3 = [r2]

2: ld r3 = [r2] ld r3 = [r2] ld r4 = [r2]

3: ld r4 = [r2] ld r4 = [500] add r3 = r3, r4

4: ld r5 = [r2] add r3 = r3, r4 ld r5 = [200]

5: add r3 = r3, r4 sub r1 = r1, 1 add r5 = r5, r3

6: add r5 = r5, r1 st[200] = r1

7: st[500] = r3

8: sub r1 = r1, 1

read 500

write 200

read 200

write 500

Thread Thread32 Thread1

Figure 2.6. Data flow among three threads for the sample code given in Table 2.2.

assumed that the store operation to memory location [500] by Thread1 is performed

before the load operation at Thread2 and the store operation to memory location [200]

is performed before the load operation at Thread3.

The vulnerability of the First Thread. The TVF value of Thread1 which has no

dependent threads can be calculated as:

For r1 resource : [(6− 1) + (8− 6)]/8 = 7/8

For r2 resource : [(2− 1) + (3− 2) + (4− 3)]/8 = 3/8

30

For r3 resource : [(5− 2) + (7− 5)]/8 = 5/8

For r4 resource : (5− 3)/8 = 2/8

For r5 resource : (6− 4)/8 = 2/8.

The TVF of all (total 5) register resources for Thread1 is:

TV FRF (T1) = LV FRF (T1)

= (19/8)/5 = 0.475.

The vulnerability of the Second Thread. The TVF value of the Thread2 which

is dependent on the first thread is calculated by adding its LVF and TVF of the

instructions of the first thread until it writes to the memory. The TVF value of the

second thread itself can be calculated similarly and the vulnerability factor values equal

to 5/6 for r1, 1/6 for r2, 2/6 for r3 and 1/6 for r4. The LVF of all (total 4) register

resources is:

LV FRF (T2) = (3/2)/4 = 0.375.

The RVF value of the second thread from the dependent first thread (assuming the

instructions of the first thread have finished with the seventh store instruction):

For r1 resource : (6− 1)/7 = 5/7

For r2 resource : [(2− 1) + (3− 2) + (4− 3)]/7 = 3/7

For r3 resource : [(5− 2) + (7− 5)]/7 = 5/7

For r4 resource : (5− 3)/7 = 2/7

For r5 resource : (6− 4)/7 = 2/7.

31

The vulnerability factor value of all (total 5) register resources is:

rV FRF (T2, T1) = (17/7)/5 = 0.485.

We have defined total TVF of one thread by weighted (equal weights in this case) sum

of its local and remote VF values. Thus we have TVF of the second thread:

TV FRF (T2) = [0.5× LV FRF (T2)] + [0.5× rV FRF (T2, T1)]

= (0.5× 0.375) + (0.5× 0.485) = 0.43.

The vulnerability of the Third Thread. The TVF value of the Thread3, which

is dependent on the second thread and affected by the first thread, can be calculated

by adding its LVF and TVF of the instructions of the second and first thread until

they write the data to the memory. The TVF value of the third thread itself can be

computed similarly and the vulnerability factor values equal to 1/5 for r2, 4/5 for r3,

1/5 for r4 and 1/5 for r5. The LVF of all (total 4) register resources is:

LV FRF (T3) = (7/5)/4 = 0.35.

Since the store instruction in the second thread is the last instruction, we need to

obtain the entire TVF value of this thread itself. Further, we have already calculated

the partial TVF of the first thread which writes to the memory address that the second

thread reads. Thus, we have TVF of the third thread:

TV FRF (T3) = [0.5× LV FRF (T3)] + [0.5× rV FRF (T3, T2)]

= [0.5× LV FRF (T3)]+

[0.5× (0.5× LV FRF (T2) + 0.5× rV FRF (T2, T1)]

= (0.5× 0.35) + (0.5× 0.43) = 0.39.

32

2.3. Experimental Setup

In this section, we present the details of our simulation platform, which is followed

by a brief information on benchmarks considered in our experimental evaluation given

in Section 2.4.

2.3.1. Simulation Platform

To measure the thread vulnerability factor of multithreaded applications, we

use the Simics toolset [3]. Simics has ability to simulate various complete operating

systems including Linux, Solaris and Windows. It is fast enough to run the realistic

workloads including scientific benchmarks and desktop applications. Microprocessor

design, operating system development, fault injection studies and hardware design

verification are possible activities to be studied by using Simics. It also provides a

multi-processor simulation environment by simulating many different hardware and

software platforms.

Figure 2.7. Simics architecture [3].

Figure 2.7 shows the overview of the architecture of the Simics. It simulates

the target machine in the left which hosts an operating system and applications, this

machine is configured by specifying its processor, memory hierarchy properties. Sim-

ics application programming interface (API) provides extensibility by allowing users

to write new modules, to add new commands, or to modify existing modules. The

command-line and graphical-user interfaces are the interface between the Simics and

33

the user. The users can communicate with the Simics via the interfaces by providing

commands, using tools such as tracing, debugging, scripting. Simics also have inter-

face to the other simulators having model written in a hardware description language

(HDL) such as Verilog.

We extend the trace module of Simics to track –at a thread level– different types of

instructions including arithmetic and memory operations; and the vulnerability of each

target resource (register, ALU, cache) is calculated during simulation using instruction

and data traces. Since the architecture simulated in our experiments has X86 Pentium4

processors which implement X86 ISA [37], trace data provides assembly codes with X86

instructions. Our target multicore machine employs private L1 (data and instruction)

caches and a shared L2 cache. Salient characteristics of the simulated multicore are

given in Table 2.3. We use this configuration in our experiments throughout the thesis.

Table 2.3. Parameters of the simulated multicore architecture.

L1 data cache 16K/core 2-way cache

L1 cache latency 1 cycle

L2 shared cache size 4MB 4-way cache

L2 cache latency 10 cycles

Memory latency 200 cycles

We track hits and misses in these caches to determine the vulnerability of memory

locations by modifying the g-cache module of Simics. Also, to trace instructions that

belong to the application for which we want to calculate TVF, the linux-process-tracker

tool provided by Simics is used. Since the process-tracker tracks all processes and

threads in the system, we add magic instructions that trigger the tracker and enable

to track only application threads. The results from this tracking are then used in our

modified trace module to collect statistics about instructions. Simics infrastructure,

which provides our system simulation, is illustrated in Figure 2.8.

A sample trace code obtained from the blackscholes application by trace module

is demonstrated in Table 2.4. The table includes assembly instructions on the left

34

Figure 2.8. Simics architecture used in our experiments.

and the corresponding memory accesses for these instructions on the right side. The

instruction sequence numbers (which are given as [xxxxxx]) lead to assembly instruc-

tions on the instruction list. The application threads, which have data dependency on

each other, have both local and remote vulnerability values. There are two memory

locations read or written from the L1 cache in the program flow (g-cache module pro-

vides the cache statistics which specify that these data accesses are hit on the L1 cache

location). Both instruction and data access traces have been obtained via the simula-

tion. First, 0ede7418 which is pointed by −24[ebp] is vulnerable between two different

intervals including 895624− 895636 and 895640− 895653 and the other memory loca-

tion 0ede7414, which is pointed by −28[ebp], is vulnerable between 895643 − 895644

instructions. Therefore, only one code segment is considered to calculate the vulnera-

bility of the location 0ede7414 while both intervals are taken into account to get the

vulnerability factor of the memory location 0ede7418. It means that the first memory

location in consideration (0ede7418) has much higher vulnerability factor value.

Another trace example from the same application illustrates the remote vulner-

ability of one thread, as shown in Table 2.5. Here, Thread5 loads the value in the

35

Table 2.4. Sample memory accesses of a thread.

Instruction Memory access

[895624] mov dword ptr -24[ebp],0x0 Write to 0x0ede7418

.........

[895636] mov ecx,dword ptr -24[ebp] Read from 0x0ede7418

.........

[895640] mov dword ptr -24[ebp],edx Write to 0x0ede7418

.........

[895643] sub dword ptr -28[ebp],0x1 Write to 0x0ede7414

[895644] mov eax,dword ptr -28[ebp] Read from 0x0ede7414

.........

[895653] mov ecx,dword ptr -24[ebp] Read from 0x0ede7418

memory location cffde000 which has been stored by Thread1. The remote vulnera-

bility factor value of Thread5 is calculated by the vulnerability factor of Thread1 in

the state where the store operation has occurred. The vulnerability factor with respect

to ALU, register and memory resources of Thread1 becomes the remote vulnerability

factor of Thread5. For each load operation in Thread5, the remote vulnerability value

is increased by the vulnerability factor of the thread, which is stored on that memory

location.

Table 2.5. A sample communication of two threads.

Thread1 Thread5

[1071340] sub dword ptr 4[edi],0x1 ...

(Write to 0xcffde000)

... [1071343] mov eax,dword ptr 4[edi]

(Read from 0xcffde000)

... ...

... [1071364] mov eax,dword ptr 4[edi]

(Read from 0xcffde000)

36

2.3.2. Benchmarks

To collect the TVF related statistics, we use two parallel benchmark suites: PAR-

SEC [38] and SPLASH-2 [39]. SPLASH-2 suite has been developed to support the study

of distributed and shared-address space multiprocessors for multithreaded workloads.

PARSEC is a relatively new benchmark suite which has focused on the shared-memory

multicore processors. These suites have various applications with different characteris-

tics [40]. We use medium-sized input provided with PARSEC benchmark and default

problem size with SPLASH-2 benchmark. Pthread implementations of the applications

are used in our experiments. We select five applications (blackscholes, canneal, stream-

cluster, fluidanimate, swaptions) from PARSEC suite and five applications (barnes,

fmm, cholesky, water-spatial, radix) from SPLASH-2 suite for our experimental study.

They are chosen to provide a variety of data sharing patterns at different domains, as

explained in the following:

• blackscholes is an Intel RMS benchmark which computes partial differential equa-

tions in order to calculate the prices for a portfolio of European option. The

program divides the portfolio into a number of work units equal to the number of

threads and processes them concurrently. It has 100 runs of the price calculation

process.

• canneal tries to minimize the routing cost of a chip design by using simulated

annealing method. It has many synchronization points which causes much inter-

thread communication. The medium-sized input set used in our experiments has

64 temperature steps and 15,000 runs (swaps) per temperature step.

• streamcluster is an Intel RMS kernel which solves the online clustering problem

for a stream of input points. The program employs partitioning of data points and

it is memory bound for low-dimensional data while it has intensive computations

for higher dimensions. It has 8,192 input points for the medium-sized input set.

• fluidanimate is an Intel RMS application which simulates an incompressible fluid

for animation purposes by using Smoothed Particle Hydrodynamics method. It

executes five different kernels and the work of each kernel is divided into the

number of threads. It does not have much data sharing between threads.

37

• swaptions is an Intel RMS workload which computes the prices for a portfolio of

swaptions by using Monte Carlo simulation. The medium-sized input set has 32

swaptions and 10,000 simulations.

• barnes is implementation of Barnes-Hut N-body method simulating the interac-

tion of a system of bodies. The communication patterns are dependent on the

particle distribution and not structured. The default particle number equals to

16,384.

• fmm is another application which simulates the interaction of system bodies by

using another method called as Fast Multipole Method. Since there is no specific

distribution of particle data in main memory, the communication patterns are

unstructured. It has also 16,384 particles as default.

• cholesky factors a matrix into the product of a lower triangular matrix and its

transpose. Since the program works on sparse matrices, it has higher communi-

cation than computation. The matrix used in our experiments has 134,579,320

columns and 134,579,328 rows.

• water-spatial evaluates forces and potentials occurring in a system of water molecules.

The program uses cell grids which access other cells during execution, which

causes communication. The default number of molecules is 512.

• radix implements an integer radix sort based on an iterative algorithm. Each iter-

ation involves a local histogram generation where all histograms are accumulated

into a global histogram. Then a permutation phase which requires all-to-all com-

munication is performed by using this global histogram. Since the permutation is

determined by sender threads, the communication is based on write operations.

The default number of integers to be sorted is 262,144.

2.4. Experimental Results

While thread vulnerability factors can be calculated in principle for any archi-

tectural resource, we focus on three important components: registers, ALUs and cache

locations. We want to emphasize that the L2 cache in our simulated multicore machine

is assumed to be protected using ECC. Consequently, in this setting, error transfer

38

across cores can happen in two different ways. First, a wrong value can be calculated

by a core (e.g., due to a soft error that hit the ALU) and written to shared L2. This

(wrong) value can then be read by another core and it corrupts the computation in

this consumer core. The second way is that a correct value is written to L1; but before

it can get to transfer to L2, it can be hit by a soft error while residing in L1. To

summarize, although L2 is protected well, if it gets a wrong value, it will pass it to

other cores.

We execute our parallel benchmark applications with different number of threads.

Each multithreaded application considered in our experimental study is a parallel

Pthread implementation and provides executions with different number of threads.

The overall work of an application is divided into a number of work units that are

equal to the number of threads (i.e., a homogeneous distribution), which are processed

concurrently. Our experiments are conducted by using the same number of threads as

the core counts in the target architecture. Moreover, we assign one thread per core by

mapping one application thread to the specific core in the system.

2.4.1. TVF Results

We calculate the thread vulnerability factor of each thread in our applications

with respect to L1 caches, register file, and ALU units. Each thread, which reads

data from another thread, has both local and remote vulnerability factor values. Un-

less otherwise stated, we use equal local and remote vulnerability weights. Table 2.6

and Table 2.7 give the local and remote TVF values for our PARSEC and SPLASH-2

applications in two-thread and four-thread execution scenarios. Local VF values for

each thread of a given application are very close to each other since threads in our

applications execute similar code bodies and consequently perform similar work. The

values with respect to ALU and register resources are almost the same while LVF values

resulting from cache memory are slightly different due to the VF calculations which de-

pend on hit/miss patterns. Further, VF values of each thread for two cases (two-thread

and four-thread) are similar. Also, the total VF values for each resource, calculated by

augmenting the values per core, increase as the number of threads increases.

39

Table 2.6. TVF values of our PARSEC benchmark applications for 2-core and 4-core

executions.

2-core execution 4-core execution

T1 T2 T1 T2 T3 T4
b
la

ck
sc

h
o
le

s LVF

ALU 0.221 0.221 0.221 0.221 0.221 0.221

Register 0.222 0.222 0.222 0.222 0.262 0.263

Memory 0.118 0.167 0.118 0.167 0.222 0.219

RVF

ALU 0.184 0.147 0.184 0.147 0.147 0.147

Register 0.205 0.189 0.205 0.189 0.189 0.189

Memory 0.150 0.125 0.150 0.126 0.126 0.126

fl
u
id

a
n
im

a
te LVF

ALU 0.296 0.296 0.296 0.295 0.296 0.295

Register 0.475 0.452 0.475 0.481 0.481 0.452

Memory 0.838 0.828 0.834 0.824 0.826 0.815

RVF

ALU 0.310 0.290 0.309 0.297 0.287 0.284

Register 0.310 0.240 0.322 0.265 0.236 0.241

Memory 0.462 0.321 0.469 0.362 0.316 0.310

st
re

a
m

cl
u
st

er LVF

ALU 0.452 0.451 0.450 0.450 0.451 0.451

Register 0.385 0.403 0.396 0.381 0.390 0.390

Memory 0.381 0.789 0.210 0.772 0.773 0.773

RVF

ALU 0.440 0.433 0.434 0.426 0.426 0.425

Register 0.386 0.366 0.389 0.378 0.377 0.376

Memory 0.660 0.560 0.629 0.515 0.522 0.521

ca
n
n
ea

l

LVF

ALU 0.199 0.199 0.199 0.199 0.199 0.199

Register 0.223 0.332 0.281 0.334 0.278 0.281

Memory 0.483 0.495 0.450 0.464 0.462 0.464

RVF

ALU 0.212 0.217 0.212 0.217 0.216 0.216

Register 0.332 0.328 0.352 0.345 0.343 0.341

Memory 0.310 0.302 0.313 0.311 0.311 0.311

sw
a
p
ti
o
n
s LVF

ALU 0.491 0.491 0.491 0.491 0.491 0.491

Register 0.255 0.313 0.251 0.309 0.269 0.251

Memory 0.016 0.016 0.011 0.011 0.011 0.011

RVF

ALU 0.344 0.198 0.347 0.246 0.248 0.207

Register 0.189 0.172 0.220 0.203 0.203 0.195

Memory 0.125 0.087 0.140 0.115 0.116 0.101

40

Table 2.7. TVF values of our SPLASH-2 benchmark applications for 2-core and

4-core executions.

2-core execution 4-core execution

T1 T2 T1 T2 T3 T4
b
a
rn

es

LVF

ALU 0.290 0.290 0.290 0.290 0.290 0.290

Register 0.415 0.348 0.397 0.268 0.327 0.283

Memory 0.289 0.412 0.267 0.361 0.350 0.381

RVF

ALU 0.335 0.334 0.328 0.328 0.327 0.329

Register 0.443 0.457 0.448 0.445 0.450 0.453

Memory 0.274 0.258 0.271 0.260 0.266 0.259

ch
o
le

sk
y

LVF

ALU 0.457 0.512 0.410 0.443 0.456 0.464

Register 0.430 0.295 0.314 0.239 0.271 0.299

Memory 0.108 0.088 0.077 0.081 0.073 0.087

RVF

ALU 0.470 0.473 0.461 0.470 0.447 0.456

Register 0.288 0.289 0.333 0.323 0.320 0.336

Memory 0.123 0.149 0.130 0.138 0.131 0.132

fm
m

LVF

ALU 0.502 0.503 0.495 0.502 0.494 0.503

Register 0.368 0.389 0.295 0.327 0.320 0.288

Memory 0.334 0.355 0.266 0.313 0.312 0.298

RVF

ALU 0.394 0.333 0.404 0.381 0.390 0.377

Register 0.344 0.338 0.333 0.338 0.340 0.342

Memory 0.322 0.299 0.267 0.266 0.264 0.279

ra
d
ix

LVF

ALU 0.329 0.329 0.329 0.329 0.329 0.329

Register 0.305 0.229 0.235 0.222 0.305 0.230

Memory 0.269 0.266 0.264 0.259 0.262 0.255

RVF

ALU 0.303 0.309 0.308 0.310 0.309 0.310

Register 0.257 0.269 0.276 0.277 0.276 0.277

Memory 0.395 0.431 0.408 0.414 0.409 0.413

w
a
te

r-
sp

a
ti
a
l LVF

ALU 0.242 0.238 0.245 0.238 0.238 0.239

Register 0.502 0.416 0.455 0.328 0.328 0.353

Memory 0.620 0.699 0.559 0.718 0.709 0.715

RVF

ALU 0.220 0.200 0.219 0.203 0.203 0.199

Register 0.295 0.225 0.300 0.243 0.243 0.240

Memory 0.425 0.217 0.444 0.253 0.252 0.254

41

Although the local values are similar for different threads, the remote values ex-

hibit different patterns, which stems from the data sharing behavior of the threads

in the application. If we consider the canneal benchmark simulated on a four-core

architecture, although the local values with respect to register resources are very sim-

ilar, remote values with respect to the same resource differ among the threads (see

Table 2.6).

It is also observed that the source of RVF values changes by the data sharing

pattern of the threads. As an example, the RVF values with respect to ALU for the

blackscholes benchmark simulated on four-thread architecture are different. The last

three threads have similar values (which is equal to 0.147), but the first thread has more

remote vulnerability value (which is equal to 0.184) for ALU resource. This results from

blackscholes’s data access and sharing patterns (the first thread has input data at the

beginning of the execution and distributes to the other threads). The remote values of

the other threads completely come from the first thread. At the end of the execution,

the output values generated by the worker threads are sent to the first thread to form

the complete output. Therefore, the first thread obtains data from all other threads in

the application, and this influences its remote VF values.

On the other hand, the threads in the canneal benchmark have stronger data

sharing. Each thread in the application frequently reads from and writes to other

threads during its lifetime. Therefore, the remote vulnerability factor values of these

threads are influenced by all other threads in the application. Further, streamcluster

threads have distinct data sharing characteristics which results in different RVF values

for each thread with respect to ALU and cache resources.

We obtain TVF of an entire multithreaded application by summing TVF values

across all threads (cores for one thread per core case). Figure 2.9 presents the remote

vulnerability factor (RVF) values for register file, ALUs, and L1 (data) caches as well

as execution cycles, where higher number of cores are considered. Since Local vulner-

ability factor (LVF) values have been counted for remote vulnerability factor (RVF)

calculation, we consider only RVF values which include both LVF and RVF values of

42

threads communicating with target thread for Figure 2.9.

To present the values in the same plot, the RVF values and execution cycles

are normalized to have values between 0 and 1. These plots help us to carry out a

performance-reliability tradeoff analysis. Specifically, if we consider the plots given

in Figure 2.9, one can see that, while the parallel execution time gets reduced as we

increase the number of cores, the RVF values tend to increase.Therefore, based on the

amount of performance one can sacrifice, resilience against soft errors may vary. For

instance, if we execute the streamcluster application using 12 threads, we achieve a nor-

malized execution cycles value of 0.20. The cache RVF value under the same core count

is about 0.76. However, if we are willing to work with an execution cycles count of 0.25

(25% worse than 0.20), we can use 8 cores (instead of 12 cores) and achieve a cache RVF

value of 0.52 (35% better than 0.74). To sum up, by sacrificing 25% performance, one

can obtain about 35% improvement in overall cache RVF value. Similar observations

can be made with other benchmarks as well. These results clearly illustrate potential

performance-reliability tradeoffs one can explore using thread vulnerability factors.

In our experimental study, the computation time and memory requirements of

trace process, which includes tracing of all resources and distinguishing the resources

which affect the remote write, are very large. Therefore, we take into account overall

TVF of the remote thread to compute the RVF of one thread, instead of taking only

TVF of the resources that affect the store operations performed remotely. Specifically,

we consider overall LV FRF of Thread1 at the end of the store operation to calculate

RVF of Thread2 in the example given in Section 2.2.2. Here, the value of r3 register is

written to the shared memory location and the resources that may affect the remote

write are only the registers used to calculate this value. However, we do not trace r3

register to find out these registers and we consider the overall vulnerability of Thread1

at the remote write operation.

43

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
blackscholes

core count

no
rm

al
iz

ed
 v

al
ue

RVF
ALU

RVF
RF

RVF
mem

Execution time

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
canneal

core count

no
rm

al
iz

ed
 v

al
ue

RVF
ALU

RVF
RF

RVF
mem

Execution time

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
cholesky

core count

no
rm

al
iz

ed
 v

al
ue

RVF

ALU

RVF
RF

RVF
mem

Execution time

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
streamcluster

core count

no
rm

al
iz

ed
 v

al
ue

RVF
ALU

RVF
RF

RVF
mem

Execution time

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
swaptions

core count

no
rm

al
iz

ed
 v

al
ue

RVF

ALU

RVF
RF

RVF
mem

Execution time

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
radix

core count

no
rm

al
iz

ed
 v

al
ue

RVF
ALU

RVF
RF

RVF
mem

Execution time

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
barnes

core count

no
rm

al
iz

ed
 v

al
ue

RVF
ALU

RVF
RF

RVF
mem

Execution time

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
fmm

core count

no
rm

al
iz

ed
 v

al
ue

RVF

ALU

RVF
RF

RVF
mem

Execution time

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
water−spatial

core count

no
rm

al
iz

ed
 v

al
ue

RVF

ALU

RVF
RF

RVF
mem

Execution time

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
fluidanimate

core count

no
rm

al
iz

ed
 v

al
ue

RVF
ALU

RVF
RF

RVF
mem

Execution time

Figure 2.9. Normalized RVF values and normalized execution times of our benchmark

applications.

44

2.4.2. Weight Analysis

The weight values in TVF definition (Equation 2.5) enable us to obtain vul-

nerability for the cases that need to consider different weights of local and remote

terms. While we use equal weights in our experimental study unless otherwise stated,

we also conduct experiments with different local and remote vulnerability weights to

measure the impact of weight values on our results. We perform our experiments by

using the same number of threads as the core counts and mapping one thread per core

in the target architecture (Table 2.3). Figure 2.10 and Figure 2.11 show the remote

vulnerability factors (averaged across all cores), calculated by three different weight

combinations (w1, w2, w3) for blackscholes and cholesky executed on different number

of cores. The selected weights are wL = wR = 0.5 for w1, wL = 0.7, wR = 0.3 for w2

and wL = 0.3, wR = 0.7 for w3.

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

core count

A
LU

 V
F

 v
al

ue

LVF RVF for w1 RVF for w2 RVF for w3

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

core count

re
gi

st
er

 V
F

 v
al

ue

LVF RVF for w1 RVF for w2 RVF for w3

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

core count

m
em

or
y

V
F

 v
al

ue

LVF RVF for w1 RVF for w2 RVF for w3

Figure 2.10. RVF values with different vulnerability weights (blackscholes).

45

We observe that the RVF values of these two applications have different variations

as weight values change. The RVF values (with respect to all resources including

memory, register and ALU units) of blackscholes benchmark tend to increase with an

increase in local VF weights (w2 case) and they tend to decrease with an increase in the

remote VF weight (w3 case). On the other hand, cholesky’s RVF values (in particular

for the case of memory resources) are in the opposite direction which reduce with

increasing value of the local VF weight (w2 case) and increase with increasing value of

the remote VF weight (w3 case). This trend in RVF values is valid for all number of

core counts. The values of cholesky application do not have such a distinguishing trend

for ALU and register resources. Since RVF values are mainly contributed by memory

operations, the effect of ALU operations and register resources is not large for that

application.

As can be observed from the first two columns in Figure 2.10, which hold data re-

lated to the experiments conducted with equal weights, the local VF values for blacksc-

holes application are larger than remote VF values in general. These larger local values

which have larger contribution to RVF values lead to higher remote values if the weight

of the local values which is used to calculate the RVF values are kept larger (70%); and

when the weight of the local values is reduced (30%), the remote values decrease. For

instance, average LVF value for ALU resource is 0.221 for 8-core execution and RVF

value equals to 0.193 for equal weight case. The RVF value, which is calculated by

summation of local and remote values, becomes larger (0.243) if we increase LVF weight

to 70%. Nevertheless, the value decreases to 0.123 for smaller (30%) LVF weight.

We also conduct statistical tests to analyze the significance of the difference

among vulnerability values. One-way ANOVA tests at a 95% confidence interval reveal

that local vulnerability values for blackscholes application are significantly larger than

remote vulnerability values with equal weights for ALU and register resources. The

same analysis also shows that RVF values with larger local weight (w2 case) are the

largest remote values and the RVF values with larger remote weight (w3 case) are the

smallest remote values. Although the difference between local and remote values is not

significant for memory resources, the remote vulnerability factor values are significantly

46

different from each other and the case with larger local weight (w2 case) has the largest

remote vulnerability value.

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

core count

A
LU

 V
F

 v
al

ue

LVF RVF for w1 RVF for w2 RVF for w3

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

core count

re
gi

st
er

 V
F

 v
al

ue

LVF RVF for w1 RVF for w2 RVF for w3

2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

core count

m
em

or
y

V
F

 v
al

ue

LVF RVF for w1 RVF for w2 RVF for w3

Figure 2.11. RVF values with different vulnerability weights (cholesky).

Although the RVF values vary with the weight values, the characteristics of the

resources are the same for each case. The VF values with respect to register resources

are always the highest values and the values for memory (cache) resources are smaller

than the values for ALU resources.

On the other hand, cholesky application has different characteristics for vulnera-

bility values. While the local vulnerability values are mostly smaller than remote VF

values with equal weights, the variation is not so large for ALU and register resources.

Therefore, the difference among remote vulnerability values with different weights is

not significant for these resources. However, memory resources have significantly larger

remote vulnerability values (with equal weights) than local vulnerability values. There-

fore, its RVF values which are mostly affected by (larger) remote values increase by

47

larger remote VF weight (70%). This behavior can be observed from Figure 2.11. 12-

core execution has 0.041 LVF value for memory resources while RVF value equals to

0.130. If we decrease the RVF weight (from 50% to 30%), the remote value decreases

as well (0.113). However, the RVF value becomes larger (0.146) for larger RVF weight.

It is clear that the vulnerability of threads differs by giving different weights on

local and remote vulnerability factors and the weight selection criteria is influential on

the VF values.

2.4.3. Cache Size Variation

Since the vulnerability values with respect to memory resources are considered for

only data residing on L1 cache location, it is highly possible that the cache size affects

these vulnerability values. To analyze the effect of cache size variation in vulnerabil-

ity of memory (cache) resource, we conduct experiments with configurations having

different L1 cache sizes.

As given in Section 2.3, 16K L1 cache size is used in our experiments so far. To be

able to observe the effect of cache size variation, we consider two more configurations

with 8K and 32K L1 cache sizes for two applications (canneal, barnes) with different

memory access patterns from each benchmark. Figure 2.12 and 2.13 demonstrates

TVF values (both LVF and RVF) with respect to memory (cache) resource for canneal

and barnes applications respectively.

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7
canneal

core count

LV
F m

em

8k
16k
32k

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6
canneal

core count

R
V

F m
em

8k
16k
32k

Figure 2.12. Memory TVF values for canneal with different cache sizes.

48

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
barnes

core count

LV
F m

em

8k
16k
32k

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
barnes

core count

R
V

F m
em

8k
16k
32k

Figure 2.13. Memory TVF values for barnes with different cache sizes.

The results reveal that TVF values tend to increase as the cache size increases.

Although the variation is not large, it is clear that the cache locations become more

vulnerable to soft errors as the size (the probability of data residence) increases. Since

cache hit ratio is larger for larger cache structures, our TVF metric for cache resources,

which is calculated for cache hit condition, has larger values. For instance, canneal

application has 0.605, 0.611 and 0.612 RVF values for 8K, 16K and 32K cache sizes

respectively for 2-core execution. However, the RVF values are 2.520, 2.537 and 2.543

for 8-core execution; 5.273, 5.300 and 5.303 for 16-core execution.

49

3. VALIDATING THREAD VULNERABILITY FACTOR

Since our TVF metric is the first attempt for a reliability analysis of multicore

architectures, it may not be practical its validation with comparisons due to the lack

of any reference work on reliability evaluation for parallel applications. We conduct

a validation study based on a set of fault injection experiments on the Simics envi-

ronment, as an approximate analysis. Additionally, we extend our TVF framework

to collect statistics and calculate metric values on a real multicore architecture. We

conduct similar fault injection experiments on the real environment, and compare TVF

analysis and fault injection results by analyzing the difference between them.

This chapter presents both validation study including fault injection experiments

and the details of our TVF framework extension. Section 3.1 provides a background

about fault injection-based reliability analysis and we present the details of our fault-

injection framework by providing a comparison analysis between TVF values and fault-

injection experiment results for a set of applications in Section 3.2. We present our TVF

and fault injection framework for real environment in Section 3.3, which is followed by

a comparison analysis on the real environment by using a set of selected benchmark

applications.

3.1. An Overview on Fault Injection

Fault injection is a dependability validation technique based on the controlled

experiments which introduce faults into the system [41]. Fault injection experiment

setting requires the identification of fault space which includes fault type, fault location,

and injection time.

Hardware fault injection uses additional hardware to introduce low-level faults.

While it is possible to inject permanent hardware faults including stuck-at, open, and

bridging [42], transient faults at random locations can also be injected by applying

heavy ion radiation [43] and electromagnetic fields [44]. On the other hand, software

50

fault injection targets applications and operating systems without any extra hardware

requirement [45]. Compile time injection approaches may inject errors to source or

assembly code, runtime injection techniques may implement time-out event to trigger

injection [46] or use software traps to inject faults [47].

The dependability of parallel systems has been validated via fault injection as

well as uni-processor systems. NFTAPE [48] architecture provides a fault injection

framework for distributed systems’ dependability analysis by supporting several fault

injector classes. LOKI [49] implements a fault injection environment by considering

global-state of distributed systems. Moreover, fault injection has been used to gather

fault behavior of multithreaded applications running on multicore architectures [50].

Fault injection-based analysis [51] has been conducted for Architectural Vulner-

ability Factor (AVF), which is a metric to quantify the vulnerability as the probability

that a fault in a processor structure will result in an error in the program output [23].

The study compares ACE analysis against a fault injection study, which includes single

bit flip for pipeline stage, register files, data, and instruction buffers. Fault injection

results demonstrate that ACE analysis is a conservative approach by providing a lower

bound for reliability.

3.2. TVF Validation by Using Simics Environment

We conduct a simulation-based fault injection by assuming that the failures are

uniformly distributed. Our fault injection campaign introduces a single bit flip on a

register of one processor core during the execution of the target application. Mainly, our

experiments select one bit position (among 32 bits), one register (among 8 registers),

one processor core (among n cores), and one instruction (among number of instructions

for the target application) for the injection point.

51

3.2.1. Fault Injection Framework

We use Simics toolset to construct our experiments, and build an automated

tool for injection analysis. Figure 3.1 illustrates our fault injection framework, which

includes several tools to implement the phases of the experiments. Our framework

Figure 3.1. Our fault injection framework, where the numbers in the arrows represent

the flow of our one experiment.

consists five modules given below:

(i) Fault injection parameter file: First of all, we randomly create uniformly dis-

tributed fault injection points by specifying fault injection instruction, processor

core, register number, and register bit position and store the parameters of each

experiment in a configuration file.

(ii) Simulation trigger: This module executes on the host machine and basically

starts the execution of the fault injection simulations by providing parameters of

the fault data. It reads the parameter for the first experiment, triggers the Simics

with the first parameter set. After the experiment ends, it starts the following

experiment given in the fault injection parameter file.

(iii) Fault injector: This module executes on the Simics middleware to manage fault

52

injection experiment. It gets the fault injection parameters and enables the trace

module, which tracks the target application. When the simulation reaches the

fault injection point (the execution of the specified instruction on the specified

processor core), trace module activates the related procedure of the fault injector.

At this point, the fault injector flips the specified bit on the specified register and

lets the simulation end up.

(iv) Controller: After the injection of the specified fault, the controller becomes the

only active module in the framework. This module waits for the termination

of the target application, which executes on the simulated target machine, and

gathers the result of the experiment by evaluating the termination condition. If

the program terminates with an error code (segmentation fault, floating point

exception etc.), the experiment result is defined as Program Error. Moreover, the

program may never terminate if the fault causes an infinite loop error or similar

stuck failure. The controller handles these kind of failures by specifying a timeout

for the execution. When the program still continues to execute for an amount of

time exceeding the threshold time, the result of this fault injection experiment

is also defined as Program Error. If the program terminates normally (with zero

exit status), there are two different scenarios including Correct Execution and

Output Error. To understand the result of the execution, the controller checks the

output file created by the program by comparing it to the golden output file (the

output file produced by the correct execution). If there is no difference between

the output files, then the result is defined as Correct Execution. Otherwise, the

result becomes Output Error and the details are logged into the fault injection

result file.

(v) Fault injection result file: The controller writes the result of the fault injection

experiments to the fault injection result file stored on the host machine. When a

new result is logged in the file, the simulation trigger finds out that the experiment

finished, and continues with the following experiment. The result file is formed

online by executing the experiments and processed offline by an external analysis

tool to conclude overall fault injection scenario.

53

3.2.2. Experiments on the Simics Environment

Although the program errors result in corruption of the complete execution, the

errors that affect the program output may corrupt the program partially and may

be tolerable. Therefore, the output errors may be analyzed and the failure severity

may be calculated [52]. To analyze the output errors and detect data corruption, the

application output should be deterministic and easy to compare. Therefore, we select

a subset of applications that have exact results from the PARSEC and SPLASH-2

benchmarks for our fault injection experiments including blackscholes, LU, cholesky,

and radix.

��

���

���

���

���

���

���

	��

��

���

����

��
��������� �� �
��� ��������

������� ������ ����� !����
 �����

(a) 4 core execution

"#

$"#

%"#

&"#

'"#

("#

)"#

*"#

+"#

,"#

$""#

-./012034.52 .6 7/89: 034.521;

<47750= >6=?6= @7747 A74B7/C @7747

(b) 8 core execution

DE

FDE

GDE

HDE

IDE

JDE

KDE

LDE

MDE

NDE

FDDE

OPQRSTRUVPWT PX YQZ[\ RUVPWTS]

^VYYWR_ `X_aX_ bYYVY cYVdYQe bYYVY

(c) 16 core execution

Figure 3.2. Fault injection experiment results for 4 benchmark applications.

We analyze the results of the experiments by comparing the correct results (the

54

golden output) with the experimental results. While the program failures such as seg-

mentation fault, floating point error, and the program timeout cases are categorized as

the application crash, the termination with a successful exit status cases may represent

the correct execution or may represent the data corruption. The former output has

no difference from the golden output, while the latter output differs from the golden

output.

We execute our target applications on our fault-injection framework to validate

our TVF analysis. We consider Silent Data Corruptions (SDCs) which include both

self-thread errors and fault propagation errors in a parallel program execution, and use

SDC rate as a metric to compare our results. SDC rate is the fraction of the injected

faults that results in unacceptable outputs [50]. We assume all data corruptions are

unacceptable, because we do not classify the data corruptions as acceptable or unac-

ceptable. Since TVF measures the relative vulnerability of multithreaded applications,

we compare the trend of four selected applications for both TVF values and SDC rates.

We conduct fault injection experiments for 4-core, 8-core, and 16-core architec-

tures by introducing one bit flip for one register of a specific processor core during a

specific instruction execution. We define two set of bit levels (the lower and upper

16 significant bits), two types of registers (data and address registers), and generate

2× 2× n× r fault points, where n represents the number of cores in the system and r

is the replication count (50 for our case), by uniformly distributing the faults through

program execution. We have 2× 2× 4× 50 = 800 experiments for 4-core architecture,

2× 2× 8× 50 = 1600 experiments for 8-core architecture, and 2× 2× 16× 50 = 3200

experiments for 16-core architecture for each selected application. Figure 3.2 represents

the fault injection experiment results by reporting execution outcomes.

We calculate RVF values for register resources, and collect SDC rates from the

fault injection experiments for each application. Figure 3.3 presents both results in the

same scale by considering the relative vulnerability of four selected applications. Since

thread vulnerability factor is not a measure to represent absolute reliability, the exact

values are different from SDC rates. On the other hand, the values for both measures

55

including vulnerability and fault injection results are close to each other if they are

represented in the same scale (Figure 3.3). It is observed that the applications have

similar behavior for RVF values and SDC rates, which both represent the vulnerability

of the applications. While lu has the largest RVF values and SDC rates, blackscholes

has the smallest values. If we compare the vulnerability of all pair-wise applications,

we can see that it is possible to conclude with the same result for RVF metric and SDC

rates.

blackscholes lu radix cholesky
0

0.2

0.4

S
D

C
 R

at
e

1

1.5

2

R
V

F
 (

re
gi

st
er

)

(a) 4 core execution

blackscholes lu radix cholesky
0

0.2

0.4

S
D

C
 R

at
e

0

2

4

R
V

F
 (

re
gi

st
er

)

(b) 8 core execution

blackscholes lu radix cholesky
0

0.2

0.4

S
D

C
 R

at
e

0

5

10
R

V
F

 (
re

gi
st

er
)

(c) 16 core execution

Figure 3.3. Vulnerability values (SDC rate and RVF value) for 4 benchmark

applications.

Since the fault-injection experiments include one faulty-case for each execution

and it does not differ for different number of cores in the system, SDC rates for different

architectures are similar. However, the RVF values increase as the number of cores in

the system increases. Therefore, the proportion between RVF values and SDC rates

56

are not the same for the applications while both metric provide the same ordering for

all applications.

3.3. TVF Validation on a Multicore Architecture

We implement TVF evaluation on Simics architecture (Section 2.3) to execute

multithreaded applications on different architectures having different number of cores,

cache level and sizes. To evaluate TVF metric values on a real environment and

compare the results with the fault injection results, we also extend our implementation

by using Pin system which performs dynamic binary instrumentation for both single-

threaded and parallel programs [4, 53].

3.3.1. Pin Overview

Pin is a dynamic binary instrumentation framework that provides the creation

of dynamic program analysis tools. The tools created using Pin, called Pintools, make

possible the analysis of user programs by performing instrumentation at run time on

the binary executable files. As shown in Figure 3.4, Pin environment includes three

levels including Pin, Pintool, and the user application. Pintool communicates with Pin

via instrumentation and analysis routines. The Pin virtual machine coordinates the

application execution [4]. A pintool consists of instrumentation, analysis, and callback

routines. Instrumentation routines decide the code insertion point. Analysis routines

include the code to execute at insertion points. Callback routines are invoked when

an event occurs. Figure 3.5 presents a simple Pintool that generates a trace of all

memory addresses referenced by a program. Whenever an instruction is executed by

the application, Instruction instrumentation function is called by Pin. It inserts a

call to analysis functions RecordMemRead or RecordMemWrite, if the instruction is

a memory read or memory write, respectively. Fini function is called at the end of

the program execution, as registered in main function, which registers instrumentation

and callback functions.

Pin also provides callbacks when each thread starts and ends, and makes possible

57

Figure 3.4. Pin’s software architecture [4].

tool implementation for multithreaded applications. Instrumenting a multithreaded

program requires that the tool be thread safe. Pin API has primitives for locking

mechanism (lock, mutex, semaphore) to avoid deadlocks and provide synchronization

between threads of a parallel program.

To calculate Thread Vulnerability Factor of a parallel application, we implement

a thread-level Pintool to trace all instructions and memory operations of a parallel

program. We ensure the synchronization of threads by using Pin’s lock mechanism

and inject our LVF and RVF calculation code into analysis routines protected by locks

for each thread. Our Pintool provides TVF calculation of any parallel program running

on a target architecture. We also extend register fault pin tool for parallel applications,

which injects the fault into an architectural register and analyzes the impact of the fault

in the application [54]. Figure 3.6 presents the analysis routine of our pin tool which

inserts a bit flip fault to the specified bit of the specified register on the faulty core.

3.3.2. Experiments on the Multicore Architecture

We conduct our validation study on the real environment for the same set of

benchmark applications selected for the simulation environment (Section 3.2.2). We

58

#inc lude <s td i o . h>

#inc lude ‘ ‘ pin .H’ ’

FILE ∗ t r a c e ;

// Pr int a memory read record

VOID RecordMemRead(VOID ∗ ip , VOID ∗ addr){
f p r i n t f (t race , ‘ ‘%p : R %p\n ’ ’ , ip , addr) ;

}
// Pr int a memory wr i t e record

VOID RecordMemWrite (VOID ∗ ip , VOID ∗ addr){
f p r i n t f (t race , ‘ ‘%p : W %p\n ’ ’ , ip , addr) ;

}
// I s c a l l e d f o r every i n s t r u c t i o n and instruments reads and wr i t e s

VOID In s t r u c t i o n (INS ins , VOID ∗v){
UINT32 memOperands = INS MemoryOperandCount(i n s) ;

// I t e r a t e over each memory operand o f the i n s t r u c t i o n .

f o r (UINT32 memOp = 0 ; memOp < memOperands ; memOp++){
i f (INS MemoryOperandIsRead(ins , memOp)){

INS Ins e r tPr ed i ca tedCa l l (

ins , IPOINT BEFORE, (AFUNPTR)RecordMemRead ,

IARG INST PTR, IARG MEMORYOP EA, memOp, IARG END) ;

}
i f (INS MemoryOperandIsWritten (ins , memOp)){

INS Ins e r tPr ed i ca tedCa l l (

ins , IPOINT BEFORE, (AFUNPTR)RecordMemWrite ,

IARG INST PTR, IARG MEMORYOP EA, memOp, IARG END) ;

}
}

}
VOID Fin i (INT32 code , VOID ∗v){ f c l o s e (t r a c e) ; }
i n t main (i n t argc , char ∗ argv []) {

PIN Ini t (argc , argv) ;

t r a c e = fopen (‘ ‘ p ina t r a ce . out ’ ’ , ‘ ‘w ’ ’) ;

INS AddInstrumentFunction (In s t ruc t i on , 0) ;

PIN AddFiniFunction (Fini , 0) ;

PIN StartProgram () ;

r e turn 0 ;

}

Figure 3.5. Pintool for printing addresses of all program memory reads and writes.

59

VOID In s e r tFau l t (CONTEXT∗ c tx t , THREADID threadid)

{
i f (thread id == fau l tCo r e){

GetFaultyBit (c tx t , &faultReg , &f a u l tB i t) ;

UINT32 o l d va l = PIN GetContextReg(c tx t , fau l tReg) ;

faultMask = (1 << f a u l tB i t) ;

UINT32 new val = o ld va l ˆ faultMask ;

PIN SetContextReg (c tx t , faultReg , new val) ;

PIN RemoveInstrumentation () ;

faultDone = 1 ;

PIN ExecuteAt (c tx t) ;

}
}

Figure 3.6. Fault insertion analysis routine.

execute blackscholes, LU, cholesky, and radix applications on a 16-core architecture by

utilizing different number of cores. The characteristics of our architecture are given in

Table 3.1. Our experiments include both TVF calculation and fault injection phases

for each application for different thread counts.

Table 3.1. Characteristics of our workstation environment.

Processor Dual Intel Xeon Processor E5-2680,

2.7 GHz, 20 MB cache, 1600 MHz memory, Eight-core

Hard disk 256GB SATA 1st SSD, 1TB SATA 7200 2nd HDD

Main memory 32GB (8x4GB) DDR3-1600

Operating system Red Hat Enterprise Linux 6

Figure 3.7 presents both SDC rates and RVF values by considering the relative

vulnerability of four selected applications. Our real environment tests give consistent

results with our simulation results. Although the values for both cases are not the same

for simulation and real environment case, the relative behavior is not very different.

60

While lu has the largest RVF values and SDC rates, blackscholes has the smallest

values. The order of applications’ reliability is the same for both RVF values and SDC

rates on our 4-core, 8-core, and 16-core utilization cases.

blackscholes lu radix cholesky
0

0.02

0.04

0.06

0.08

0.1

0.12

S
D

C
 R

at
e

0.7

0.8

0.9

1

1.1

1.2

1.3

R
V

F
 (

re
gi

st
er

)
(a) 4 thread execution

blackscholes lu radix cholesky
0

0.02

0.04

0.06

0.08

0.1

S
D

C
 R

at
e

1.6

1.8

2

2.2

2.4

2.6

R
V

F
 (

re
gi

st
er

)

(b) 8 thread execution

blackscholes lu radix cholesky
0

0.05

0.1

S
D

C
 R

at
e

3

4

5

R
V

F
 (

re
gi

st
er

)

(c) 16 thread execution

Figure 3.7. Vulnerability values (SDC rate and RVF value) for 4 benchmark

applications running on our 16-core architecture.

61

4. PERFORMANCE-RELIABILITY ANALYSIS OF

MULTITHREADED APPLICATIONS

As illustrated in TVF-execution clock cycles curves (Figure 2.9), in general, per-

formance of a multithreaded application increases as the number of cores increases in a

multicore system; however the reliability, which is represented in terms of vulnerability

of the application threads, tends to decrease. This behavior leads to a performance-

reliability tradeoff for different core counts in the system. One can choose to work with

lower performance but higher reliability for safety-critical applications. Such tradeoff

may be exploited for different parallel implementations of an algorithm or different

algorithms of a problem. By analyzing system behavior in terms of vulnerability and

performance, one implementation or algorithm may be selected to achieve system need.

We conduct an analysis for multithreaded applications running on multicore ar-

chitectures by considering performance and reliability characteristics of different ver-

sions [55]. We first present details of selected multithreaded applications for our analy-

sis in Section 4.1. Then, results of performance-reliability tradeoff for different versions

of the applications are given in Section 4.2.

4.1. Multithreaded Applications

To evaluate performance and reliability behaviors of multithreaded applications,

we select three scientific applications; which are Fast Fourier Transform, Jacobi, and

Water Simulation.

4.1.1. Fast Fourier Transform

Fast Fourier Transform (FFT) is an algorithm to compute discrete Fourier Trans-

form (DFT) which is a mathematical transform requiring complex number calculations

and used in various applications including time series, partial differential equations, and

62

digital signal processing [5]. While DFT is a mathematical transform which requires

complex number calculations, FFT is an algorithm to compute this transform by re-

ducing its complexity. There are several forms of FFT algorithm; in this analysis, our

focus is on one-dimensional, unordered, radix-2 FFT.

Algorithm 4.1 represents the sequential version of n point one-dimensional FFT

algorithm. X and Y parameters are the input vector and output fourier transform,

respectively. This algorithm divides DFT into smaller DFT computations along with

multiplications by complex roots of unity, known as twiddle factors, where ω is the

primitive nth root of unity in the complex plane which equals to e2π
√

−1/n.

In the algorithm, the outer loop is executed log n times, and the inner loop is

executed n times for each iteration of the outer loop, which results in Θ(nlogn) time

complexity.

The highest computation effort is required for the calculation of R[i] by using S[j]

and S[k]. The pattern of combination of input array elements used in this calculation

is represented by a butterfly network as shown in Figure 4.2. In a parallel algorithm, it

is important to assign input elements into threads by considering communication cost,

which affects both performance and reliability. We consider two parallel algorithms

defined in [56]: binary-exchange and transpose algorithms which have different thread

communication pattern.

In the binary-exchange algorithm, the array elements, which are denoted as their

binary representations, are mapped to cores such that elements with indices having

the same d = logp most significant bits are mapped into the same core where p is

the number of cores in the system. For 8-point FFT calculation on 4 cores, mapping

is applied as follows: X[0] (000) and X[1] (001) elements are mapped into Core1,

X[2] (010) and X[3] (011) elements are mapped into Core2, X[4] (100) and X[5] (101)

elements are mapped into Core3, X[6] (110) and X[7] (111) elements are mapped into

Core4.

63

procedure serial FFT (X, Y, n)

r← logn

for i← 0 to n− 1 do

R[i]← X [i]

end for

for m← 0 to r − 1 do

for i← 0 to n− 1 do

S[i]← R[i]

end for

for i← 0 to n− 1 do

j ← (b0...bm−10bm+1...br−1)

k ← (b0...bm−11bm+1...br−1)

R[i]← S[j] + S[k] ∗ ωbmbm−1...b00...0

end for

end for

for i← 0 to n− 1 do

Y [i]← R[i]

end for

Figure 4.1. The Cooley-Tukey algorithm for one-dimensional, unordered, radix-2

FFT [5].

X[3]

X[4]

X[5]

X[6]

X[7]

X[1]

X[2]

X[0] Y[0]

Y[1]

Y[2]

Y[3]

Y[4]

Y[5]

Y[6]

Y[7]

m = 1 m = 2m = 0

Figure 4.2. The pattern of combination of input array elements in an 8-point FFT

computation.

64

The elements belong to different cores are combined during first d iterations (out

of m iterations), while the elements belong to the same cores are combined in the

remaining iterations. The communication between the cores only exists along these

first d iterations. Figure 4.3 represents the combination pattern of array elements and

the communication behavior of cores among iterations for 16-point FFT calculation on

4-cores system.

C0

C2

C1

C3

X[4]

X[8]

X[12]

X[0]

X[14] X[15]X[13]

X[11]X[10]X[9]

X[7]X[6]X[5]

X[3]X[2]X[1]

C0

C2

C1

C3

C0

C2

C1

C3

X[4]

X[8]

X[12]

X[0]

X[14] X[15]X[13]

X[11]X[10]X[9]

X[7]X[6]X[5]

X[3]X[2]X[1]

C0

C2

C1

C3

X[4]

X[8]

X[12]

X[0]

X[14] X[15]X[13]

X[11]X[10]X[9]

X[7]X[6]X[5]

X[3]X[2]X[1]

X[4]

X[8]

X[12]

X[0]

X[14] X[15]X[13]

X[11]X[10]X[9]

X[7]X[6]X[5]

X[3]X[2]X[1]

Iteration m = 2

Iteration m = 0 Iteration m = 1

Iteration m = 3

Figure 4.3. Binary-exchange algorithm for a 16-point FFT on four cores.

The transpose algorithm, which involves a matrix transposition operation, re-

quires smaller amount of communication among cores. The input array with size n is

arranged in an
√

n×√n two dimensional array in row major order where FFT calcu-

lation can be performed by applying FFT over the rows and then applying FFT over

the columns. These array elements are mapped to p cores such that each core stores
√

n/p rows. FFT over the rows requires no communication among the cores. After

transposition, FFT over the rows (old columns) is computed to complete FFT opera-

tion. The communication between the cores is needed for only transposition operation.

Figure 4.4 represents the combination pattern of array elements among iterations and

shows that there is no communication between cores for 16-point FFT calculation on

4-cores system.

The binary-exchange algorithm, which requires more communication among its

65

threads, performs well on parallel architectures with high communication bandwidth

(e.g., chip multiprocessors which have processors on a single die) than the transpose

algorithm, which has lower overhead due to the communication but spends more time

to initiate the communication.

C0

C2

C1

C3

C0

C2

C1

C3

C0

C2

C1

C3

C0

C2

C1

C3

X[4]

X[8]

X[12]

X[0]

X[14] X[15]X[13]

X[11]X[10]X[9]

X[7]X[6]X[5]

X[3]X[2]X[1]

Iteration m = 2 Iteration m = 3

X[1]

X[2]

X[3]

X[0]

X[11] X[15]X[7]

X[14]X[10]X[6]

X[13]X[9]

X[12]X[8]X[4]

X[5] X[1]

X[2]

X[3]

X[0]

X[11] X[15]X[7]

X[14]X[10]X[6]

X[13]X[9]X[5]

X[12]X[8]X[4]

Iteration m = 0 Iteration m = 1

X[4]

X[8]

X[12]

X[0]

X[14] X[15]X[13]

X[11]X[10]X[9]

X[7]X[6]X[5]

X[3]X[2]X[1]

Figure 4.4. Transpose algorithm for a 16-point FFT on four cores.

4.1.2. Jacobi Kernel

Stencil computation represents a common kernel for engineering applications in-

cluding multimedia processing, quantum dynamics, and electromagnetics [57]. The

performance optimization of computations has been extensively studied and several

code transformations have been developed to improve data locality in the calcula-

tions [58–60].

To illustrate the effect of the loop transformations, we consider 2-dimensional

Jacobi code, which updates the contents of grid elements by using neighbor elements

in two consecutive loop iterations. Our parallel implementation is simply parallelization

of two loops in the calculation (Figure 4.5).

The loop transformations used in our performance-reliability analysis are loop

unrolling (Figure 4.6) which reduces the loop overhead with smaller number of iter-

66

procedure jacobi(A, B, n)

for t← 1 to iterations do

for i← 0 to n− 1 do

for j ← 0 to n− 1 do

B[i, j]← (A[i][j] + A[i− 1][j] + A[i + 1][j] + A[i][j − 1] + A[i][j + 1])× 0.2

end for

end for

for i← 0 to n− 1 do

for j ← 0 to n− 1 do

A[i, j]← B[i, j]

end for

end for

end for

Figure 4.5. 2-D Jacobi code.

ations, loop fusion (Figure 4.7) which replaces multiple loops with a single one, and

loop interchange (Figure 4.8) which exchanges the order of two iteration variables. We

consider 512x512 grid size for Jacobi computations in our experiments.

4.1.3. Water Simulation

The Water Simulation is N-body molecular dynamics application, which simulates

forces and potential energy of water molecules. The method of molecular dynamics is

widely used to analyze the atomic structures in materials science, biochemistry, and

biophysics [61].

The SPLASH-2 benchmark suite [39] has two parallel pthread versions of water

simulation application: Water-nsquared and Water-spatial. Water-nsquared is an im-

proved version of the original Water program in SPLASH [62], and computes force and

potentials in O(n2). The computation is performed over a number of time steps by

using a predictor-corrector method. It improves the original version by using a locking

strategy in the updates, which stores a local copy of the particle accelerations as it

67

procedure unrolling(A, B, n)

for t← 1 to iterations do

for i← 0 to n− 1 do

for j ← 0 to n− 1 by 4 do

B[i][j]← (A[i][j] + A[i− 1][j] + A[i + 1][j] + A[i][j − 1] + A[i][j + 1])× 0.2

B[i][j + 1]← (A[i][j + 1] + A[i− 1][j + 1] + A[i + 1][j + 1] + A[i][j] + A[i][j + 2])× 0.2

B[i][j + 2]← (A[i][j + 2] + A[i− 1][j + 2] + A[i + 1][j+ 2] + A[i][j + 1] + A[i][j + 3])× 0.2

B[i][j + 3]← (A[i][j + 3] + A[i− 1][j + 3] + A[i + 1][j+ 3] + A[i][j + 2] + A[i][j + 4])× 0.2

end for

end for

for i← 0 to n− 1 do

for j ← 0 to n− 1 by 4 do

A[i][j]← B[i][j]

A[i][j + 1]← B[i][j + 1]

A[i][j + 2]← B[i][j + 2]

A[i][j + 3]← B[i][j + 3]

end for

end for

end for

Figure 4.6. Unrolled 2-D Jacobi code.

68

procedure fusion(A, B, n)

for t← 1 to iterations do

for i← 0 to n− 1 do

for j ← 0 to n− 1 do

if (j == 0) then

B[i, j]← (A[i][j] + A[i− 1][j] + A[i + 1][j] + A[i][j − 1] + A[i][j + 1])× 0.2

else if (j == n− 1) then

A[i][j − 1]← B[i][j − 1]

else

B[i][j]← (A[i][j] + A[i− 1][j] + A[i + 1][j] + A[i][j − 1] + A[i][j + 1])× 0.2

A[i][j − 1]← B[i][j − 1]

end if

end for

end for

end for

Figure 4.7. Fused 2-D Jacobi code.

procedure interchange(A, B, n)

for t← 1 to iterations do

for j ← 0 to n− 1 do

for i← 0 to n− 1 do

B[i, j]← (A[i][j] + A[i− 1][j] + A[i + 1][j] + A[i][j − 1] + A[i][j + 1])× 0.2

end for

end for

for j ← 0 to n− 1 do

for i← 0 to n− 1 do

A[i, j]← B[i, j]

end for

end for

end for

Figure 4.8. Interchanged 2-D Jacobi code.

69

calculates and sends to the shared copy at the end. Water-spatial is a more efficient

method and uses an O(n) algorithm. It divides the molecules into a grid of cells (pro-

cessors) and employs spatial locality to calculate inter-molecular forces by considering

only molecules in nearby cells. Our experiments for water simulation are conducted for

Water-nsquared and Water-spatial programs by considering 512 water molecules and

default parameters provided by the SPLASH-2 benchmark.

4.2. Experimental Results

To evaluate performance and reliability of the multithreaded applications by mea-

suring their execution times and thread vulnerability factors respectively, we execute

our target applications in the Simics toolset [3]. We measure execution clock cycles

and calculate TVF of each thread in target applications with respect to L1 caches,

register file, and ALU units. Unless otherwise stated, we use equal local and remote

vulnerability weights (wL = wR = 0.5). Our experiments are conducted by using the

same number of threads as the core counts (assign one thread per core) in the target

architecture.

Table 4.1 presents the vulnerability and execution time values of our benchmark

applications for two, four, eight, and sixteen-thread (one thread per core) execution

scenarios.

One can see from the FFT results that two parallel algorithms have different TVF

values. As mentioned in Section 2.3, the binary-exchange algorithm has more commu-

nication whereas the transpose algorithm does not have much thread communication

after transpose operation. However, the transpose algorithm spends its execution cycles

to transposition which requires more local resource usage. The effect of this distinct

characteristics of the algorithms can be observed on the local vulnerability values as

well as on the remote vulnerability values. LVF values for transpose algorithm, which

requires more computation, are larger than LVF values for binary-exchange, especially

for register resources (e.g., binary-exchange 1.27, transpose 1.56 for the 4-core case,

binary-exchange 2.53, transpose 3.13 for the 8-core case). Since these parallel algo-

70

Table 4.1. TVF values and execution time of our benchmark applications.

FFT WATER JACOBIAN

binary-

exchange

transpose nsquared spatial original fused inter-

changed

unrolled

2
c
o
re

LVF

ALU 0.61 0.61 0.46 0.48 0.92 0.95 0.92 0.96

Register 0.62 0.76 0.84 0.91 0.51 0.51 0.51 0.51

Memory 0.55 0.53 1.26 1.32 1.00 1.14 0.99 1.00

RVF

ALU 0.44 0.45 0.43 0.42 0.90 0.91 0.90 0.94

Register 0.37 0.38 0.51 0.52 0.40 0.41 0.40 0.39

Memory 0.29 0.23 0.58 0.64 0.90 0.92 0.86 0.90

Execution time 32.61 33.35 9.78 8.27 13.52 10.87 13.85 9.19

4
c
o
re

LVF

ALU 1.21 1.22 0.93 0.96 1.83 1.90 1.83 1.92

Register 1.27 1.56 1.42 1.46 0.99 1.01 1.03 0.90

Memory 1.00 1.06 2.36 2.69 2.00 2.28 1.98 2.00

RVF

ALU 0.82 0.84 0.85 0.83 1.81 1.82 1.81 1.89

Register 0.68 0.66 1.05 1.03 0.91 0.86 0.91 0.90

Memory 0.52 0.41 1.01 1.20 1.82 1.84 1.73 1.82

Execution time 16.32 16.68 5.46 4.49 6.80 5.42 6.93 4.63

8
c
o
re

LVF

ALU 2.43 2.45 1.86 1.92 3.67 3.80 3.67 3.84

Register 2.53 3.13 2.63 2.77 2.02 1.99 1.89 2.06

Memory 2.00 2.12 4.40 5.05 4.03 4.55 3.99 4.03

RVF

ALU 1.66 1.63 1.69 1.64 3.66 3.64 3.63 3.80

Register 1.16 1.19 2.08 2.05 1.78 1.87 1.87 1.85

Memory 0.87 0.75 1.73 2.19 3.68 3.67 3.49 3.68

Execution time 8.17 8.35 3.29 2.59 3.49 2.78 3.56 2.42

1
6

c
o
re

LVF

ALU 4.87 4.89 3.73 3.83 7.33 7.60 7.33 7.67

Register 5.14 6.35 4.97 5.29 3.96 3.94 4.00 3.99

Memory 2.86 4.23 8.55 9.73 8.13 9.08 8.06 8.13

RVF

ALU 3.26 3.25 3.36 3.28 7.28 7.29 7.28 7.61

Register 2.22 2.18 4.19 4.13 3.78 3.78 3.78 3.73

Memory 1.64 1.43 3.15 4.33 7.47 7.34 7.10 7.46

Execution time 4.09 4.18 2.35 1.69 1.99 1.51 2.02 1.45

71

rithms have different thread communication patterns, RVF values, which result from

communication of threads in a multithreaded application, differ for these algorithms as

well. The binary-exchange algorithm, which requires thread communication for more

iterations, has larger RVF (especially for memory resource) values than the transpose

algorithm which has thread communication only for one phase (before transposition)

of the algorithm (e.g., binary-exchange 0.87, transpose 0.75 for the 8-core case and

binary-exchange 1.64, transpose 1.43 for the 16-core case). On the other hand, the

execution time values are not so distinct while binary-exchange performs well for all

core cases.

Figure 4.9 represents the contribution of remote threads to the RVF value of the

target thread for 4-core, 8-core, and 16-core execution cases of the binary-exchange

algorithm. The darker the grid is, the higher the contribution is. Although there

are some values for each grid, the smaller values are represented as no contribution.

For instance, the value in the grid representing the contribution of Thread4 to remote

vulnerability of Thread6 (the black colored) is 13437.5; while the value in the lower

grid (the white colored), which represents the contribution of Thread3, is 2.87. These

values are measured before normalization which divides these values by the number of

remote counts.

We exclude the contribution of the main thread which has complete input data

and sends the specific portion to the related threads at the beginning of the execution.

In the 8-core execution, which has the pattern of combination illustrated in Figure 4.2;

Thread0 reads data from Thread4, Thread2, and Thread1 during first, second, and

third iterations respectively. The impact of this pattern on RVF values is demonstrated

in Figure 4.9, such that RVF value of Thread0 for the binary-exchange algorithm is

constructed by the values written by Thread1 and Thread2. Since Thread0 reads data

from the main thread in the first iteration (m = 0), the contribution of Thread4 is not

visible for this thread. However, one can see that Thread0 reads remote data written by

Thread2 and Thread1 in the following iterations (m = 1 and m = 2 respectively). The

same scenario is valid for 4-core and 16-core execution cases. Since the data exchange

occurs at the first d = logp iterations and data at the first iteration is always read

72

from the main thread; each thread communicates with d− 1 threads which contribute

its RVF value. While these threads are Thread1 in the 4-core execution; Thread1

and Thread2 in the 8-core execution; Thread1, Thread2 and Thread4 in the 16-core

execution for Thread0.

target thread

re
m

ot
e

th
re

ad

0 1 2 3

0

1

2

3

target thread

re
m

ot
e

th
re

ad

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

target thread

re
m

ot
e

th
re

ad

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

0.5

1

1.5

2

2.5

3

x 10
4

Figure 4.9. RVF contribution of each thread for binary-exchange algorithm.

On the other hand, RVF values of the threads in the transpose algorithm do not

have such a certain pattern as shown in Figure 4.10, which represents the communi-

cation pattern of threads in the transpose algorithm. Since the values are very small

representing lower communication between threads in the algorithm, their difference

becomes diverse in the grid display. While the black colored grid in the second column

for 8-core execution case represents the value 12.42, the gray colored grid located just

below is 2.36.

target thread

re
m

ot
e

th
re

ad

0 1 2 3

0

1

2

3

target thread

re
m

ot
e

th
re

ad

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

target thread

re
m

ot
e

th
re

ad

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

5

10

15

20

25

30

35

40

45

50

Figure 4.10. RVF contribution of each thread for transpose algorithm.

The results of the Jacobi kernel reveal that loop fusion and loop unrolling improves

73

the performance of the code by eliminating loop overhead. On the other hand, loop

interchange has no significant effect on the execution time. While the fusion increases

the vulnerability values (for both local and remote) which results in a tradeoff between

performance and reliability, the loop unrolling, which has the largest performance gain,

does not affect the vulnerability if compared with the original version. The unrolled

version has similar vulnerability results, the values are even the same for some cases

(1.00, 2.00, 4.03 for memory resources in the 2-core, 4-core, and 8-core executions

respectively).

The execution time values of the water simulation application are significantly

different for two parallel versions. The difference becomes more clear as the core count

rises due to the communication overhead of the nsquared algorithm. Although there is

more communication overhead in the nsquared algorithm, RVF values that result from

remote read operations are larger in the spatial algorithm. Since cache miss rates are

smaller for nsquared version due to the lack of spatial locality, LVF values with respect

to memory (cache) resources are smaller as well. Therefore, RVF values calculated by

using local vulnerability become larger for the spatial version which demonstrates that

the faster spatial algorithm is more vulnerable to soft errors with larger vulnerability

values (e.g., nsquared 0.58, spatial 0.64 for the 2-core case and nsquared 1.01, spatial

1.20 for the 4-core case).

Since LVF values have been counted for RVF calculation (RVF value of one thread

is calculated by adding TVF values of threads communicating with the target thread),

only RVF values are considered as the reliability metric by ignoring very small LVF

values that are not counted for RVF calculation. We also examine the vulnerability

values for the resource which has the largest difference between different cases. For

instance, RVF values with respect to ALU and register resources are not significantly

different for two FFT algorithms (e.g., 2.21% higher in transpose algorithm in the

2-core execution for the ALU resource, 3.18% higher in binary-exchange algorithm in

the 4-core execution for the register resource). On the other hand, the change in RVF

values with respect to memory (cache) resources is large enough to evaluate reliabil-

ity measure in tradeoff analysis. To evaluate performance-reliability tradeoff between

74

different versions of our applications, we demonstrate the change (in percentage) for

both vulnerability values and execution time of the applications (see Figure 4.11, Fig-

ure 4.12, and Figure 4.13). The plots provide the behavior of the applications in terms

of both reliability and performance if we choose a specific version.

Figure 4.11 reveals that if we use the transpose algorithm instead of the binary-

exchange algorithm, we should sacrifice approximately 3% performance but gain 20%

reliability with lower RVF values in the 2-core case. This observation is valid for any

number of cores. We can say that one may prefer the transpose algorithm rather than

the binary-exchange algorithm to work with much higher reliability by accepting little

amount of performance loss.

−25

−20

−15

−10

−5

0

5

FFT
binary−exchange vs transpose

ch
an

ge
 (

%
)

2 core 4 core 8 core 16 core

RVF
mem

Execution time

Figure 4.11. The change in percentage of RVF values and execution time for versions

of FFT.

There is similar observation for the versions of the Jacobi codes, in that case the

choice is clear for the performance. Since the loop unrolling gives the best performance

among the other loop transformations, we evaluate the vulnerability and performance

change if one prefers loop unrolling instead of other versions. Figure 4.12 presents

the change in both RVF and execution time values for loop unrolling and other code

versions (original, fused, and interchanged respectively). The vulnerability values do

not differ much for each case. Specifically, the values are smaller than 5% even there

is almost no change if we compare the original version with the unrolled one. On

75

the other hand, the performance gain is obvious if the unrolled version is used. For

instance, if one employs the unrolled version instead of the interchanged one, about

50% speedup is possible by sacrificing only 5% reliability.

−50

−40

−30

−20

−10

0

jacobi
unrolled vs original

ch
an

ge
 (

%
)

2 core 4 core 8 core 16 core

RVF
mem

Execution time

−20

−15

−10

−5

0

5
unrolled vs fused

ch
an

ge
 (

%
)

2 core 4 core 8 core 16 core

RVF
mem

Execution time

−60

−50

−40

−30

−20

−10

0

10
unrolled vs interchanged

ch
an

ge
 (

%
)

2 core 4 core 8 core 16 core

RVF
mem

Execution time

Figure 4.12. The change in percentage of RVF values and execution time for loop

transformations of Jacobi code.

Although the choice is clear for two applications in terms of performance and

reliability, water simulation application reveals more interesting results which yield

a tradeoff between performance and reliability concerns. Figure 4.13 demonstrates

76

this tradeoff between two different water simulation algorithms. While spatial has

larger performance advantage, nsquared is more reliable with similar rates. For the

8-core execution, one should trade 27% performance gain with 21% reliability loss if

he selects spatial algorithm. We cannot easily conclude that one version satisfies both

performance and reliability constraints. While the safety-critical systems with higher

reliability needs may prefer the nsquared version by sacrificing some performance, the

systems for which the performance is the most crucial factor may opt for the spatial

version, which has higher performance but is much more vulnerable to hardware errors.

However, it is difficult to trade the vulnerability with performance for the systems which

do not have evident performance and reliability needs.

−30

−20

−10

0

10

20

30

40

water
nsquared vs spatial

ch
an

ge
 (

%
)

2 core 4 core 8 core 16 core

RVF
mem

Execution time

Figure 4.13. The change in percentage of RVF values and execution time for versions

of water simulation.

77

5. RELIABILITY-AWARE CORE PARTITIONING FOR

MULTICORE ARCHITECTURES

Executing multiple applications concurrently is an important way of utilizing the

computational power provided by emerging chip multiprocessor (CMP) architectures.

However, this multiprogramming brings a resource management and partitioning prob-

lem, for which one can find numerous examples in the literature. Most of the resource

partitioning schemes proposed to date focus on performance or energy centric strate-

gies.

In this chapter, we explore reliability-aware core partitioning strategies targeting

CMPs based on performance and reliability characteristics of multi-application work-

loads. We first present an overview on core partitioning problem for multicore systems

and related work in Section 5.1. Section 5.2 presents the system model targeted by our

work and core partitioning schemes for multithreaded applications. The details and

results from our experimental analysis are presented in Section 5.3.

5.1. An Overview on Core Partitioning

Chip multiprocessors (CMPs) are fast replacing conventional single-core machines

in most application domains [6]. Major vendors have already shifted to CMP technol-

ogy for their laptop, desktop and server processing units. CMPs provide both power

and scalability gains when compared with single-core designs. CMPs are also prefer-

able from a parallelism perspective as they enable thread level parallelism, in addition

to instruction level parallelism.

The degree of parallelism extracted from an application is the primary factor

that determines the potential performance gains that can be achieved from a multicore

architecture. Intel has already prototyped 80-core Teraflop machine [63] and simi-

lar/larger designs have been discussed [64]. Since emerging CMPs target to provide

78

large number of cores, executing multiple multithreaded applications at the same time

is an efficient way of utilizing CMP architectures.

Core partitioning is a critical problem in the context of CMPs, which deals with

how many cores to allocate to each application running simultaneously. A number of re-

cent studies has addressed partitioning and/or scheduling related issues in CMPs where

they mostly target on performance speedup or quality of service (QoS) [65, 66]. Since

energy consumption has become a crucial problem in recent years [67], energy-delay

product [68] has also been used as an optimization metric [69]. Energy efficiency has

been considered for task partitioning problem in multicore architectures [70]. Another

concern in the context of CMP architectures is the system reliability [71].

The easiest way to partition available cores is to allocate equal number of pro-

cessors to each application in the workload. However, this strategy becomes unfeasible

for the cases having different requirements. While the approach yields acceptable re-

sults for the workloads that highly require performance, it does not make sense to

increase the number of allocated cores if we consider reliability related issues. Recent

studies show that CMP architectures become more vulnerable as the number of cores

increases [72, 73]. Since the reliability of the system decreases as the number of allo-

cated cores increases, the safety-critical applications requiring high reliability cannot

get benefit from additional cores in a CMP system. If performance gains obtained by

additional cores are not very high, even the systems that do not have very high relia-

bility concerns can prefer not to use the core and work with fewer cores than available

to provide higher reliability by sacrificing little performance.

Resource partitioning strategies have been widely studied for parallel architec-

tures including CMP systems. While some research aim to maximize performance,

recent work focuses on both performance and power related issues. The policies also

deal with partitioning of different resources in the system among threads of multiple

multithreaded application workloads.

Liu et al. [74] proposes a processor partitioning strategy for distributed-memory

79

multiprocessor systems. Their work deals with mesh-connected systems running mul-

tiple jobs concurrently and aims to improve system performance by minimizing com-

munication cost. The technique is based on creating partitions for each job such that

communication distance within each partition to be as small as possible. Moreover,

a thread mapping strategy which tries to find out an optimum way to map threads

of an individual job to the processors allocated to that job has been proposed. The

strategy aims higher performance by considering communication among threads and

thread adjacency in the network.

A Clustered Multi-Threaded (CMT) processor based on SMT architectures has

been presented in [75]. The CMT approach partitions the execution units among pro-

cessors in CMP architectures such that the application threads, which are assigned to

the processor cores, utilize system resources. Thus the computation-intensive threads

benefit from the resources and lightweight threads do not cause the reduction in uti-

lization. Raasch et al. [76] also investigates the performance impact of resource parti-

tioning polices on SMT architectures. Both static and dynamic approaches which deal

with partitioning of microarchitectural resources have been examined and compared

by presenting weighted-speedup values of multiple threaded workloads.

Several studies have focused on cache partitioning in CMP platforms [77–79].

Ravi [77] proposes a cache framework which provides priority-based management of

shared cache structures among heterogeneous threads. The framework, constructed

by considering priority assignment to applications according to their memory access

behavior, allows higher priority applications to use more cache lines and lower priority

applications to use fewer cache lines. Chang and Sohi [78] presents a cooperative cache

partitioning strategy which considers multiple requirements including thrashing avoid-

ance, fairness improvement, priority support and QoS guarantee. Power related issues

as well as performance metrics have been considered for shared cache partitioning prob-

lem in chip multiprocessors [79]. The power-aware cache partitioning strategy based

on a power-aware cache design improves energy efficiency and conducts a performance-

power tradeoff analysis by working together with a performance-aware partitioning

technique.

80

Energy-aware core partitioning techniques have been studied as well as strategies

for cache partitioning on multicore architectures [69, 80]. Ding et al. [69] proposes

a dynamic core partitioning scheme of which main objective is to decrease energy

consumption while maintaining high performance. To be able to evaluate the efficiency

of the scheme satisfying both requirements, energy-delay product (EDP) metric [68]

which considers both execution time and energy consumption has been used. Moreover,

weighted energy-delay product gain (W-EDPG) metric which represents the average

improvement in EDP values of all multithreaded applications executing concurrently

has been proposed to compare different schemes.

Srikantaiah et al. [81] examines processor partitioning and cache partitioning to

be able to build an integrated partitioning strategy. The algorithm proposed by the

scheme combines processor partitioning and cache partitioning iteratively, and aims to

maximize fair speedup metric and maintain quality of service metric. The efficiency

of different schemes including equal partitioning, implicit processor partitioning, pro-

posed processor only partitioning, proposed cache only partitioning and integrated

partitioning has been compared to be able to emphasize the effectiveness of the pro-

posed strategy.

5.2. Reliability-Aware Core Partitioning

We conduct a core partitioning analysis for multiple multithreaded applications

executing on the same CMP architecture. We propose and evaluate reliability-aware

core partitioning schemes for multicore architectures [82]. We use TVF for the eval-

uation of the multithreaded applications’ reliability while analyzing various core par-

titioning schemes. Our schemes consider the reliability of the system, which has a

performance bound to satisfy the quality of service. The goal of our reliability-oriented

partitioning scheme is to maximize the reliability of the system while distributing avail-

able cores to the multithreaded applications. Another scheme that we propose consid-

ers both the system performance and reliability, and partitions the residual cores (i.e.,

the cores remaining after satisfying the performance bounds) to maximize the value

of the combined metric defined as Vulnerability-Delay Product (VDP). We also per-

81

form a simulation study with various workloads consisting of multiple multithreaded

applications to evaluate our proposed partitioning schemes. To quantify system reli-

ability, TVF metric is used as demonstrating the vulnerability of the multithreaded

applications running on architectures having various number of cores. We compare the

weighted speedup, the weighted reliability loss and the weighted vulnerability-delay

product gain on the system for different partitioning schemes.

We consider a chip multiprocessor (CMP) system consisted of p cores and s

applications (each of which can be multithreaded) running on the system, as illustrated

in Figure 5.1.

Figure 5.1. System architecture.

Each of these applications (i.e., its threads) can be mapped to a subset of available

cores; but, no core is shared by threads that belong to different applications. In our

experiments, we assume one-to-one assignment between threads and cores. Since the

total number of threads cannot exceed the number of cores, we have the following

constraint:

s∑

i=1

pi ≤ p,

where pi represents the number of threads for application i. That is, pi cores of the

82

system are reserved for pi threads of the ith application. Our goal is to determine the

number of threads (the number of cores reserved) of each application running on the

system.

While most of recent CMP-based studies target performance and/or energy, re-

liability is also becoming a first-class citizen. Motivated by this, we consider both

reliability and performance to partition available cores for a set of multithreaded ap-

plications’ threads. Although performance is measured by various metrics [78] which

are based on execution cycles of an application, there has not been a common software

centric metric for reliability.

The primary goal behind our work is to determine efficient core partitioning by

determining the number of cores allocated to each application with the restriction of one

application thread per core, based on performance and reliability metrics. We evaluate

four different core partitioning schemes, which are equal partitioning, reliability-oriented

partitioning, performance-oriented partitioning, partitioning based on a combined met-

ric.

5.2.1. Equal Partitioning

In this scheme, the cores in the target CMP are equally partitioned among all

applications in the system by assuming that there is no information on performance

and reliability characteristics of the applications. This strategy partitions the processor

cores (p) into a number of partitions that is equal to the number of applications (s)

in the system such that each application runs with equal number of threads (p/s).

Throughout this study, we use this equal core partitioning scheme as our baseline

strategy against which we compare other approaches.

5.2.2. Reliability-Oriented Partitioning

In Chapter 2, we have observed that the reliability of multithreaded applications,

measured in terms of TVF, decreases as the number of cores increases (see Figure 2.9

83

for an example). Consequently, if the reliability is the main concern, one needs to use

as fewer cores as possible. On the other hand, there is an execution time bound for each

application to be satisfied in a system having multiple applications. Many applications

that target emerging CMPs require a guarantee of a certain level of performance which

is referred as Quality of Service (QoS) [66]. In this scheme, we specify the execution

time to be satisfied for each application and allocate the number of cores in the CMP

architecture according to this minimum performance level requirement. Given that

system has s different multithreaded applications and p processor cores, when each

application i has pi threads running on pi cores, the total number of cores allocated

to the workload is equal to k =
s∑

i=1

pi. To maximize system reliability, we do not use

remaining (q = p− k) cores.

5.2.3. Performance-Oriented Partitioning

After allocating the processor cores by considering execution time bound on each

application, this scheme attempts to achieve the highest performance gains by using

remaining cores in the system, and is illustrated in Figure 5.2. Consider an 8-core

CMP architecture and two multithreaded applications to be executed in the system.

Normalized execution time values of the applications under various number of threads

are given in Figure 2.3.

Figure 5.2. Example execution time/core count behavior of two applications.

Let us assume that the (normalized) execution time bounds are 0.5 and 0.6 time

units for Application1 and Application2, respectively. As a consequence, we need to

allocate at least 3 cores to Application1 and 2 cores to Application2. Then, we can

84

distribute 3 remaining cores one by one by considering a workload wide performance

metric (e.g., weighted speedup which represents the sum of entire applications’ speedup

values [83]). When additional core’s effect on each application is examined, it is clear

that allocating one more thread of Application1 brings more speedup. If we give one

more thread to Application1 by increasing its thread number from 3 (running on 3

cores) to 4 (running on 4 cores), its execution time decreases from 0.5 to 0.3 time

units. On the other hand, the execution time of Application2 decreases only by 0.05

time units (0.6 to 0.55) if it is executed by 3 threads instead of 2 threads. After allo-

cating a free core to Application1, we look at the second free core’s allocation decision.

Although Application1 scales well up to that point, its performance is not affected very

much beyond 4 threads. In comparison, the execution time of Application2 decreases

continuously until 6 thread execution. Therefore, the remaining 2 cores in the sys-

tem should be allocated to Application2’s threads to achieve the maximum weighted

speedup.

5.2.4. Partitioning Based on a Combined Metric

The goal behind this scheme is to distribute the remaining cores (after satisfy-

ing the performance bounds) across applications such that the value of a combined

performance-reliability metric is maximized.

To achieve both high performance and reliability in the system, we need a com-

bined metric which includes both execution cycles representing performance and TVF

metric representing the vulnerability of the system to the errors. One of the first met-

rics that can be come up with is the product of the execution time and TVF as in

Energy-Delay product [68]. This combined metric, referred to as Vulnerability-Delay

product (VDP) in the rest of this chapter, can be calculated as follows:

V DP = V ulnerability ×Delay

= TV F × Execution cycles. (5.1)

85

Both TVF and execution cycles should be minimized to improve the vulnerability-

delay product of an application. As the number of threads in the application increases,

execution cycles decrease but the TVF value increases conversely. Therefore, we should

carry out a tradeoff analysis which requires to find an optimum point to be able to

reduce the combined metric.

procedure partition(n, workload)

for each n cores to allocate do

initialize maximum gain

for each application in the workload do

calculate gain for an additional core

if there is no gain then

continue with other application

else if gain > maximum gain then

maximum gain ← gain

end if

end for

if there is no gain then

terminate partitioning

else

allocate the core to the application with the maximum gain

end if

end for

Figure 5.3. Basic partitioning algorithm.

Figure 5.3 represents the algorithm skeleton used in our partitioning schemes.

The partitioning strategies (including reliability-oriented, performance-oriented and

the scheme maximizing both reliability and performance) aim to get the largest gain

with allocation of one additional core. The only difference between the strategies is the

target metric to optimize. For instance, performance-oriented scheme considers perfor-

86

mance gain by using execution time vs core count curve (as in Figure 5.2), whereas the

scheme maximizing both performance and reliability tries to maximize vulnerability

delay product metric by using VDP vs the core count curve for the applications in the

workload.

5.3. Experimental Evaluation

To evaluate our core partitioning strategies, we execute benchmark applications

(from PARSEC and SPLASH-2) for different number of threads running on different

number of cores by mapping one thread onto one core. Our experiments include 16

different executions for each application by varying the number of cores from 1 to 16,

simulated on Simics simulator.

Execution clock cycles are measured and Thread Vulnerability Factor of each

thread in target applications are calculated with respect to L1 caches, register file and

ALU units. Since the combination of those values for different resources is not much

feasible, we consider the highest value as the value of TVF. The local vulnerability

factor (LVF) values have been counted in remote vulnerability factor (RVF) calcula-

tion [34], since the RVF value of a thread is calculated by adding the TVF (both LVF

and RVF) values of threads communicating with target thread. The values which have

not counted in RVF calculation of another thread are considered as LVF term. Since

the LVF values are significantly smaller than the RVF values, we consider only the

RVF values as the reliability metric, which is referred as the TVF term in this section.

Figure 5.4 plots the normalized execution clock cycles of benchmark applications

for different number of cores. Most of the applications (barnes, blackscholes, canneal,

fmm and streamcluster) except those which have heterogeneous threads, scale reason-

ably well as the number of cores (threads running on the cores) increases, due to their

data-parallel characteristics. Two applications including swaptions, which has two sets

of threads running different code portions for each core, and water-spatial, which has

non-homogeneous threads having different tasks, i.e., one thread differs from the other

threads, have diverse behavior. Cholesky application also shows different trend for

87

larger number of cores. Since these three applications are not-so-well scalable, we call

them as non-scalable applications in the rest of the chapter.

The reliability trend represented by TVF values vs core counts is shown in Fig-

ure 5.5. It can be observed that the reliability of the multithreaded applications de-

creases by increasing the number of cores, which is opposite to the performance increase

(There are two exceptions including swaptions and water-spatial where TVF values

show different behavior for some cases.) This behavior reflects the tradeoff between

performance and reliability, which can be explored by analysis of plots.

Figure 5.6 presents the vulnerability-delay product which represents both relative

reliability and performance of multithreaded applications. This plot is constructed by

calculating the combined metric value for each core case.

5.3.1. Workload Construction

In our experiments, we construct workloads consisting of multiple multithreaded

applications by considering the performance scalability of the applications. Our work-

loads, having 3 applications selected from benchmark suites, are composed of either

scalable, non-scalable or mix of two kinds of applications. Since we have 3 applica-

tions (swaptions, water-spatial and cholesky) which do not scale as the number of cores

increases, only one of the workloads includes only non-scalable applications. On the

other hand, 10 different workloads are possible which have different combination of

scalable applications. Each other workload is constructed by including mix of scalable

and non-scalable applications which have either two scalable and one non-scalable ap-

plications or two non-scalable and one scalable applications. There have been a total

of 56 workloads, comprising all possible combinations.

To represent workload mixes, we use letter combinations of benchmark applica-

tions denoted by ‘H’, ‘B’, ‘C’, ‘F’, ‘T’, ‘K’, ‘S’, ‘W’ letters for barnes, blackscholes, can-

neal, fmm, streamcluster, cholesky, swaptions, water-spatial applications respectively.

For instance, ‘KSW’ stands for the workload which consists of all non-scalable applica-

88

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
blackscholes

core count

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
canneal

core count

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
streamcluster

core count

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
swaptions

core count

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
barnes

core count

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
fmm

core count

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
cholesky

core count

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
water−spatial

core count

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

Figure 5.4. Normalized execution time of our benchmark applications.

89

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
blackscholes

core count

no
rm

al
iz

ed
 T

V
F

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
canneal

core count

no
rm

al
iz

ed
 T

V
F

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
streamcluster

core count

no
rm

al
iz

ed
 T

V
F

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
swaptions

core count

no
rm

al
iz

ed
 T

V
F

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
barnes

core count

no
rm

al
iz

ed
 T

V
F

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
fmm

core count

no
rm

al
iz

ed
 T

V
F

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
cholesky

core count

no
rm

al
iz

ed
 T

V
F

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1
water−spatial

core count

no
rm

al
iz

ed
 T

V
F

 v
al

ue

Figure 5.5. Normalized TVF values of our benchmark applications.

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3
blackscholes

core count

no
rm

al
iz

ed
 V

D
P

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3
canneal

core count

no
rm

al
iz

ed
 V

D
P

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3
streamcluster

core count

no
rm

al
iz

ed
 V

D
P

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3
swaptions

core count

no
rm

al
iz

ed
 V

D
P

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3
barnes

core count

no
rm

al
iz

ed
 V

D
P

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3
fmm

core count

no
rm

al
iz

ed
 V

D
P

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3
cholesky

core count

no
rm

al
iz

ed
 V

D
P

 v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3
water−spatial

core count

no
rm

al
iz

ed
 V

D
P

 v
al

ue

Figure 5.6. Normalized VDP values of our benchmark applications.

91

tions cholesky, swaptions and water-spatial applications; ‘BCF’ stands for the workload

with scalable applications including blackscholes, canneal and fmm; ‘WHT’ stands for

the workload with one non-scalable water-spatial application and two scalable barnes,

streamcluster applications.

5.3.2. Performance and Reliability Metrics

The comparison of the core partitioning schemes is based on execution clock

cycles and thread vulnerability factor values which represent the system’s performance

and reliability respectively. To evaluate the performance gain in the multi-application

system, the Weighted Speedup metric (WS) of the workload for a given scheme is

defined as the sum of application speedup values [81, 83],

WS(scheme) =

s∑

i=1

IPCAi
(scheme)

IPCAi
(base)

, (5.2)

where s is the number of co-runner applications in the system, IPC is instruction per

cycle which represents measure of speedup. We consider equal core partitioning scheme

as the base scheme for our experiments. We use normalized weighted speedup which

is equal to NWS = WS/s, where s is the number of applications.

The reliability metric used in the core partitioning analysis is similar to weighted

speedup. We define the metric Weighted Reliability Loss of a given scheme as the sum

applications’ TVF ratios,

WRL(scheme) =

s∑

i=1

TV FAi
(scheme)

TV FAi
(base)

. (5.3)

As in the previous case, we consider the normalized weighted reliability loss value, which

is equal to NWRL = WRL/s. Since our objective is to increase the performance gain

and reduce the reliability loss, we aim higher values for normalized weighted speedup

(NWS) metric and smaller values for normalized weighted reliability loss (NWRL)

metric.

92

We consider VDP metric to analyze our results with respect to both performance

and reliability and define the metric Weighted Vulnerability-Delay Product Gain of a

given partitioning scheme as the sum applications’ VDP ratios,

WV DPG(scheme) =

s∑

i=1

V DPAi
(base)

V DPAi
(scheme)

. (5.4)

We consider the normalized weighted vulnerability-delay product gain value, which is

equal to NWV DPG = WV DPG/s. Our goal is to get the highest values of NWVDPG

metric which demonstrates the efficiency of the scheme for both performance and vul-

nerability.

5.3.3. Evaluating Partitioning Schemes

We compose workloads each having 3 benchmark applications among the 8 appli-

cations as mentioned in Section 5.3.1; and we apply different partitioning schemes to

map the available cores onto these applications’ threads. After applying partitioning

schemes and determining complete core partition, we compare the performance and

reliability results of the alternative schemes. To analyze different core partitioning

schemes, we assume that we have 21 available cores in the system and our aim is to

partition these cores for 3 multithreaded applications for each case. We also assume

that the QoS values are guaranteed by providing 3 cores for each application in the

workloads, that is, 3 cores are assigned to each application in the workload before

applying our partitioning schemes.

5.3.3.1. Performance-Reliability Tradeoff Analysis. We apply partitioning schemes for

all workloads and evaluate weighted-speedup, weighted reliability loss and weighted

vulnerability-delay product gain metrics with respect to equal partitioning scheme.

Table 5.1 represents arithmetic, harmonic and geometric means among all workloads

with different partitioning schemes. The weighted speedup, weighted reliability loss

and weighted vulnerability-delay product gain values are calculated by considering

all applications in the workload, and then normalized by dividing by the number of

93

applications. While the scheme maximizing reliability achieves the highest reliability

gain (as can be expected), the highest speedup is achieved by the scheme maximizing

performance in average. One may conduct performance-reliability tradeoff analysis of

core partitioning strategies by using performance gain and reliability loss values. If

the performance is the most critical criteria for the workload, performance-oriented

scheme gives the highest weighted-speedup values. However, the performance gain is

not significant and simple equal partitioning may be the choice. On the other hand,

the reliability-oriented scheme provides significantly better reliability loss values (60%

gain to equal partitioning). It may be reasonable to employ this scheme in safety-

critical workloads where some performance can be sacrificed for the sake of reliability.

Moreover, the scheme maximizing both performance and reliability, which also yields

better results for vulnerability, may be a good choice for the systems in which the

reliability is important but smaller loss are tolerable with some performance gain. The

weighted vulnerability-delay product gain (NWVDPG) may also helpful to consider

both vulnerability and performance issues.

Table 5.1. NWS, NWRL and NWVDPG mean values among 56 workloads for core

partitioning schemes.

Arithmetic mean Geometric mean Harmonic mean

Partitioning

Scheme

NWS NWRL NWVDPG NWS NWRL NWVDPG NWS NWRL NWVDPG

Reliability

Oriented

0.5036 0.4178 1.3090 0.5022 0.4160 1.2785 0.5008 0.4141 1.2501

Performance

Oriented

1.0968 0.9711 1.2240 1.0946 0.9706 1.2145 1.0924 0.9701 1.2048

Based on

Combined

Metric

0.6338 0.4920 1.3980 0.6279 0.4866 1.3696 0.6221 0.4811 1.3425

After evaluating all workloads, we pick 10 workloads by including different com-

binations based on the scalability classification to use in our detailed evaluation. We

include 1 workload (KSW) consisting only non-scalable (not-well scalable) applications,

3 workloads (BCT, HCF, HBF) consisting only scalable applications and 6 mixed work-

loads (BHS, BTS, CFW, HKW, TKS, TSW).

94

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
S

P−O
R−O
BOTH

Figure 5.7. Normalized weighted-speedup values of partitioning schemes to equal core

partitioning for selected 10 workloads.

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
R

L

P−O
R−O
BOTH

Figure 5.8. Normalized weighted-reliability loss values of partitioning schemes to

equal core partitioning for selected 10 workloads.

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

2

N
or

m
al

iz
ed

 W
V

D
P

G

P−O
R−O
BOTH

Figure 5.9. Normalized weighted-vulnerability-delay product gain values of

partitioning schemes to equal core partitioning for selected 10 workloads.

95

While Figure 5.7 presents normalized weighted speedup for these three-application

workloads with different partitioning schemes (‘P-O’, ‘R-O’ and ‘BOTH’ stand for

performance-oriented scheme, reliability-oriented scheme and the scheme maximizing

both respectively), Figure 5.8 plots the reliability loss values for the same workloads

partitioned by the same schemes. The figures include per workload values as well as

arithmetic (A-m), harmonic (H-m) and geometric (G-m) mean values. It is observed

that the trend in metric values is similar to the mean values evaluated for all possible

workload combinations, that is, reliability-oriented scheme against the scheme based

on combined metric gives better (smaller) reliability loss (NWRL) values but reduces

performance gain badly while performance-oriented scheme increases speed-up (NWS)

by increasing reliability loss values in a relatively acceptable rate. Moreover, reliability

loss values are not very different between reliability-oriented scheme and the scheme

based on combined metric even the same for some cases (HKW workload).

However, the specific values exhibit a certain level of diversity for different work-

load sets with different scalability characteristics. The workloads consisting of only

scalable programs do not exploit performance-oriented scheme, that is, the weighted-

speedup metric equals to 1 for each case. If equal core partitioning was used instead

of performing performance gain analysis, the final partition would be the same since

the applications scale for the same rate. On the other hand, the workloads which

have mostly not-so-well scalable applications yield better performance gain results for

performance-oriented scheme. The performance gain against equal partitioning can

reach 15%-20% (KSW, TSW respectively) for these workload types.

To evaluate the effect of our partitioning strategies on both performance and

vulnerability, we present the normalized weighted vulnerability-delay product gain

(NWVDPG) values in Figure 5.9. It is observed that the scheme maximizing the com-

bined metric yields the highest gain in the vulnerability-delay product values. Since

reliability-oriented scheme improves the vulnerability more than the performance gain

that performance-oriented scheme provides, it results in larger NWVDPG values.

96

5.3.3.2. Detailed Workload Analysis. To better understand the steps of our partition-

ing approach, we now focus on two example workloads and analyze in detail the be-

havior of the different partitioning schemes regarding these workloads.

Assuming that the specified QoS values are guaranteed by providing 3 cores for

each application in a three-application workload; there are residual 12 cores on a 21-

core CMP system. The gain maximization analysis starts with these available 12 cores

in the system.

• Our first workload, HCF, consists of 3 scalable benchmark applications including

barnes, canneal and fmm.

(i) Reliability-Oriented. Since the vulnerability values increases as the number

of cores increases for each application in the HCF workload, any of additional

12 cores are not used to maximize reliability of the system.

(ii) Performance-Oriented. Since all applications in this workload are scalable,

there are performance gains for each application with an additional core.

To be able to apply performance-oriented partitioning, it is necessary to

examine the amount of performance gain for each application and decide

allocation of additional cores with the highest gain. If we investigate the

execution time plots, we can see that the structure of the curves is very

similar to each other and it is not difficult to say that applications take

each additional core in order. To follow allocation order, we can provide

preliminary partitioning steps as follows: If we increase the core count by one

(3 to 4), our performance gain is 0.0849, 0.0828 and 0.0846 in barnes, canneal

and fmm applications respectively. Therefore, performance-oriented scheme

assigns first additional core to barnes application. Since the execution time

curves become flatter as the number of the cores increases, the gain for

one more additional core (4 to 5) is smaller (0.0450) for barnes. However,

other two applications in the workload can still benefit from an additional

core which provides execution on 4 cores instead of 3. Larger gain (0.0840)

comes from fmm application which takes the second of 12 additional cores.

The algorithm continues in the same manner and ends with 7 cores assigned

97

for each application in the workload. The final result is the same as equal

partitioning scheme.

(iii) Based on combined metric. To evaluate this scheme, we should look at values

of our combined metric for target applications as illustrated in Figure 5.6.

For the first core assignment case, we can see that the VDP (Vulnerability

Delay Product) of canneal application increases (from 3 to 4 cores) while

the value decreases for other two applications. Therefore we should assign

the core to one with the highest decrease in VDP value to maximize both

performance and reliability. Since VDP gain is 0.0012 and 0.0047 for barnes

and fmm applications respectively, we assign the first available core to fmm.

The second core allocation is suitable only for barnes application since other

two applications have larger VDP values for an additional core. If we try to

assign the other core to an application, we can see that the VDP value for

all three applications increases for another core allocation (barnes and fmm

from 4 to 5, canneal from 3 to 4). Therefore, in this case, the best option

is not to allocate any other core to the applications in the system. We have

11 allocated cores; 4 cores to barnes, 4 cores to fmm and 3 cores to canneal.

• Our second workload, BTS, consists of two scalable benchmark applications

(blackscholes, streamcluster) and one non-scalable application (swaptions).

(i) Reliability-Oriented. The scenario is the same as HCF workload for reliability-

oriented scheme. Since the vulnerability values of three applications in the

BTS workload increases as the number of cores increases, any of additional

12 cores are not used to maximize reliability of the system.

(ii) Performance-Oriented. The performance maximization scheme attempts

mapping 12 available cores to the applications by considering the highest

performance gain. The performance plots demonstrate that the most suit-

able application for the first core is swaptions since it provides the highest

performance gain (from 3 to 4 core, 0.1146 decrease in execution time). The

speedup is 0.0819 for streamcluster and 0.0836 for blackscholes. However,

reserving one more core for swaptions does not cause larger gain (0.0070)

than the benefit of other two applications. Therefore, we should assign

98

the remaining 11 cores to blackscholes (5 cores) and streamcluster (6 cores)

applications in order as in the first workload case. Thus we partition 21

cores such that 4 cores to swaptions, 8 cores to blackscholes and 9 cores to

streamcluster.

(iii) Based on combined metric. The vulnerability delay product plots (Fig-

ure 5.6) for blackscholes and swaptions applications in this workload demon-

strate that there is no VDP gain for the additional core if we assign 4 cores

instead of 3 cores. Since blackscholes and swaptions has larger VDP val-

ues for 4 core counts instead of 3 core execution and only streamcluster

application gets benefit from the additional core, the first core is assigned

to streamcluster to minimize the combined metric. The vulnerability delay

product gain continues with one more additional core for streamcluster appli-

cation. Therefore, we can assign the next core to this application. However,

its VDP keeps decreasing until 5 core execution. Beyond that point, there

is no reduction on VDP values in the workload and we do not use additional

cores after allocating 2 cores to streamcluster application. This scheme gives

3 cores to blackscholes, 5 cores to streamcluster and 3 cores to swaptions.

5.3.4. Sensitivity Analysis

To study the effect of several factors in our core partitioning strategies, we con-

duct a sensitivity analysis which includes four different initial core assignments, three

different number of applications in the workload and three different number of cores in

the system.

5.3.4.1. Initial Core Assignment. Since Quality of Service (QoS) [66] requirements for

the applications running on CMP architectures differ, it is important to study the ef-

fect of initial core allocation which guarantees a certain level of performance for our

partitioning schemes. We perform a sensitivity analysis that employs different initial

core assignments. In the previous experiments, we start our partitioning with 3 core as-

signment for each application in the workload. We also apply our partitioning schemes

99

by assigning initially 2 (Figure 5.10) and 4 (Figure 5.11) core for each application.

Another case (Figure 5.12) is to assign 3 cores, 4 cores and 5 cores for the first, second

and third application in the workload, respectively. We assume that the number of

available cores is 21 and our workloads have 3 applications. We evaluate performance

and reliability metrics for each case. It is observed that as the number of cores assigned

initially (given as quality of service) increases performance gain (weighted speedup met-

ric) increases as well for reliability-oriented scheme and the scheme based on combined

metric. However, the reliability loss (weighted reliability loss metric) is affected badly

since more allocated cores make the system more vulnerable. Performance-oriented

partitioning scheme is not affected by the initial core assignments. If we assign dif-

ferent number of cores to each application, it does not affect the performance and

reliability results in any partitioning scheme unless there is the same total number of

initial core assignments (Figure 5.11, 5.12). The metric values are similar for 4 cores

for each application and 3, 4, 5 cores for the applications in the workload, each case

has 12 cores assigned initially.

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
S

P−O
R−O
BOTH

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
R

L

P−O
R−O
BOTH

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

1

2

3

4

5

N
or

m
al

iz
ed

 W
V

D
P

G

P−O
R−O
BOTH

Figure 5.10. NWS, NWRL and NWVDPG values of partitioning schemes to equal

core partitioning for selected 10 workloads with 2 core initial assignment.

100

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
S

P−O
R−O
BOTH

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5
N

or
m

al
iz

ed
 W

R
L

P−O
R−O
BOTH

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

2

N
or

m
al

iz
ed

 W
V

D
P

G

P−O
R−O
BOTH

Figure 5.11. NWS, NWRL and NWVDPG values of partitioning schemes to equal

core partitioning for selected 10 workloads with 4 core initial assignment.

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
S

P−O
R−O
BOTH

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
R

L

P−O
R−O
BOTH

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

2

N
or

m
al

iz
ed

 W
V

D
P

G

P−O
R−O
BOTH

Figure 5.12. NWS, NWRL and NWVDPG values of partitioning schemes to equal

core partitioning for selected 10 workloads with 3, 4, 5 core initial assignment.

101

5.3.4.2. The Number of Applications in the Workload. The number of applications

per workload is important for core partitioning problem. To evaluate the effects of

the number of applications on our results, we also conduct experiments with two-

application and four-application workloads. We use our selected 10 workloads and

again assume that 3 cores are assigned for each application initially. To keep equal core

partitioning, we allocate 20 cores (both 2 and 4 applications are evenly partitioned to

20 cores) instead of 21. Therefore, equal core partitioning scheme allocates 10 cores

and 5 cores for each application respectively. We first exclude one application from

each benchmark and evaluate our partitioning strategies. Figure 5.13 demonstrates

the performance and reliability values of new workload set. Since our initial assign-

ment requires smaller number of cores to be allocated, reliability-oriented scheme and

the scheme based on combined metric yield better results for reliability loss but both

reduces performance gain. On the other hand, the effectiveness of the performance-

KS BC HC HB HB BT CF HK TK TS A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
S

P−O
R−O
BOTH

KS BC HC HB HB BT CF HK TK TS A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
R

L

P−O
R−O
BOTH

KS BC HC HB HB BT CF HK TK TS A−m H−m G−m
0

0.5

1

1.5

2

2.5

N
or

m
al

iz
ed

 W
V

D
P

G

P−O
R−O
BOTH

Figure 5.13. NWS, NWRL and NWVDPG values of partitioning schemes to equal

core partitioning for 2-application workloads.

oriented scheme disappears when using the two-application workloads. The scheme

approaches to equal core partitioning results since we select non-scalable application

102

KSWHBCTH HCFT HBFT HBST BTSHCFWHHKST TKSH TSWH A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
S

P−O
R−O
BOTH

KSWHBCTH HCFT HBFT HBST BTSHCFWHHKST TKSH TSWH A−m H−m G−m
0

0.5

1

1.5
N

or
m

al
iz

ed
 W

R
L

P−O
R−O
BOTH

KSWHBCTH HCFT HBFT HBST BTSHCFWHHKST TKSH TSWH A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
V

D
P

G

P−O
R−O
BOTH

Figure 5.14. NWS, NWRL and NWVDPG values of partitioning schemes to equal

core partitioning for 4-application workloads.

to remove from the workloads. Three-application workloads (HBS, BTS, CFW) consist-

ing of two scalable and one non-scalable benchmarks become two-application workloads

(HB, BT, CF) that contain only scalable applications and the partitioning results of

these two-application workloads are the same as equal partitioning case which yields

no weighted-speedup. For instance, our three-application workload BTS has 8, 9 and 4

cores under the performance-oriented scheme; however, two-application workload BT

that is constructed by removing non-scalable swaptions has 10 core allocation for each

application under the same scheme. This results show that the characteristics of the

applications is as important as the number of applications in the workload sets. If

we excluded scalable streamcluster benchmark instead of swaptions, our performance-

oriented scheme would allocate 16 cores to blackscholes which is scalable but only 4

cores to non-scalable swaptions. Thus we could obtain both performance (11%) and

reliability (20%) gain against equal core partitioning. We also conduct experiments

for four-application workloads which are constructed by including one more applica-

tion to our 10 workloads used in the previous experiments. Figure 5.14 demonstrates

103

the weighted metric values for four-application sets. Since we initially allocate more

cores for one extra application, our reliability loss metric is affected negatively but the

performance gain becomes larger for reliability-oriented scheme and the scheme based

on combined metric. Performance-oriented scheme again behaves similar to equal core

partitioning scheme since the applications (barnes and streamcluster) included are scal-

able for each case. 15%-20% performance gains obtained by the scheme are lost for

four-application workloads.

5.3.4.3. The Number of Cores in the System. Since the number of cores is a key pa-

rameter in a CMP system, we analyze the effect of the number of cores by conducting

experiments for the systems with different core counts. Our simulation analysis includes

24-core and 18-core multicore architectures. We use the same 10 workloads consist-

ing of 3 applications with the same initial assignment. Figure 5.15 and Figure 5.16

demonstrate the performance and reliability values of the 18-core system and 24-core

system respectively. The results for performance-oriented scheme are not significantly

different since additional cores provide the same amount of performance gain and re-

liability loss if compared to the base equal partitioning scheme. On the other hand,

reliability-oriented scheme and the scheme based on combined metric affect the perfor-

mance and reliability metric values as the number of cores alters in the system. The

schemes, which consider the vulnerability, aim to allocate minimum number of cores

in the system to maximize the system reliability. Essentially, the final assignment for

these schemes are the same for the 18-core, 21-core and 24-core cases. However, the

metric values differ due to the different assignments in the base equal partitioning

scheme. While the proposed schemes are compared to the case which assigns 6 cores

for each application in the 18-core system, the analysis for the 21-core and 24-core

systems considers the 7 cores and 8 cores assignment for each application. Therefore,

the weighted speedup tends to decrease as the number of cores increases in the system.

Moreover, the weighted reliability loss metric has the highest values for the 24-core

system which compares the metric with the equal partitioning scheme that assigns 8

cores to each application. NWVDPG metric that combines both the performance and

vulnerability has the same trend for the reliability-oriented scheme and the scheme

104

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
S

P−O
R−O
BOTH

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5
N

or
m

al
iz

ed
 W

R
L

P−O
R−O
BOTH

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
V

D
P

G

P−O
R−O
BOTH

Figure 5.15. NWS, NWRL and NWVDPG values of partitioning schemes to equal

core partitioning for 18-core system.

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
S

P−O
R−O
BOTH

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
R

L

P−O
R−O
BOTH

KSW BCT HCF HBF HBS BTS CFW HKS TKS TSW A−m H−m G−m
0

0.5

1

1.5

N
or

m
al

iz
ed

 W
V

D
P

G

P−O
R−O
BOTH

Figure 5.16. NWS, NWRL and NWVDPG values of partitioning schemes to equal

core partitioning for 24-core system.

105

based on combined metric, it increases as the number of cores decreases in the system.

106

6. PARTIAL FAULT TOLERANCE BASED ON

THREAD-LEVEL VULNERABILITY ASSESSMENT

To deal with soft errors and raise the fault tolerance level in the system, the

replication of system resources has been used at both hardware and software level.

Since the redundancy causes performance degradation and resource consumption, it is

required to explore partial redundancy techniques which replicate the most vulnerable

parts of the code. The redundancy level of user applications depends on user preferences

and may be different for the users with different requirements.

In this chapter, we propose a user-assisted reliability assessment tool based on

critical thread analysis for redundancy in parallel architectures [84]. We present intro-

duction to fault tolerance techniques and related work in the literature in Section 6.1.

Section 6.2 emphasizes the motivation behind our partial fault tolerance mechanism

based on critical thread analysis. Section 6.3 represents our user-assisted reliability

assessment mechanism by providing critical thread and critical region analysis, and

the effect of redundancy on the system vulnerability is examined in Section 6.4. The

benchmark applications used in our evaluations is given in Section 6.5, and results from

our experimental analysis are presented in Section 6.6.

6.1. An Overview on Fault Tolerance Techniques

Redundancy, as a fault tolerance technique, is the replication of hardware and/or

software components of a system by targeting to increase reliability [16, 21, 22, 85].

While the replication of hardware components is a method for reliability [15,16], there

have been software redundancy methods which execute the program code redundantly

and compare the results at the end of the execution [20, 21, 86, 87].

In SRT (Simultaneous and Redundantly Threaded) method, two threads (two

copies of the application) redundantly execute the same instructions in an SMT core [16].

107

Master (leading) thread executes the instructions but it updates LVQ (load value

queue), which is a special memory unit, instead of memory. Slave (trailing) thread

executes the same instructions, then reads value from LVQ and checks the results.

Although SRT provides high fault-coverage rate, it results in high performance degra-

dation since the leading and trailing threads compete for the resources in the system.

The fault tolerance mechanisms have been proposed for multithreaded applica-

tions as well as serial programs [88–92]. The program code is replicated as in the

single-threaded case, but the atomic operations are synchronized between master and

slave threads to provide correct execution.

Since the redundancy causes performance degradation and resource consumption,

the replication of whole program may not be efficient and practical. Therefore, partial

redundancy techniques based on the selective replication of instructions in a program

have been proposed for higher performance and acceptable reliability [33, 93–97].

Partial explicit redundancy (PER) distinguishes execution phases as Single Ex-

ecution Mode (SEM) and Redundant Execution Mode (REM) [93]. While only the

main thread executes in SEM, the redundant thread executes with the main thread

by considering IPC characteristics in REM phase. It provides both high soft error-

coverage and low performance degradation due to partial redundancy scheme. Slick

also proposes a partial redundant threading mechanism based on SRT processor [98].

It uses a set of predictors to estimate the output of the master thread without re-

execution. Since the instructions, whose output has been predicted, do not need to be

executed redundantly, the performance degradation of full redundancy scheme is re-

duced. Soundararajan et al. [94] also proposes a selective redundancy mechanism which

selects a set of instructions for redundancy to provide maximum performance and min-

imum vulnerability based on a greedy heuristic dealing with the constraints. Silva et

al. [52] proposes a partial redundancy scheme for stream processing applications. Their

scheme is based on application quality analysis by considering an application-specific

output score function.

108

Instruction-level redundancy schemes duplicate the instructions in a program

at the compile time and compare the results of the replicated instructions at run-

time [20, 21]. To reduce the cost of the full redundancy, there have been partial re-

dundancy techniques which analyzes how the instructions affect the final application

output [26, 33, 99]. Instruction-level fault tolerance configurability (ILCOFT) tech-

nique provides different protection levels for different instructions in an application by

specifying the critical instructions which affect the output at most. ILCOFT-enabled

system uses Instruction Vulnerability Factor (IVF) metric to determine the protection

level of each instruction. Kumar et al. [100] also proposes an instruction-level partial

redundancy method to reduce both performance loss and energy consumption. They

define self-checking instructions, which do not need replication for fault tolerance, and

reduce instruction redundancy level by implementing self-checking in redundant multi-

threading scheme.

There have been redundancy techniques for fault tolerance of shared-memory

multithreaded applications as well as single-threaded applications [88–90]. Sanchez et

al. [89] proposes a new design for simultaneous and redundantly threaded method to

reduce performance degradation of atomic operations. Atomic operations in parallel

applications are handled by synchronizing master and slave threads in the redundant

execution. An efficient redundancy scheme to deal with communication latency and

nondeterministic ordering of communication events is proposed by mining available

redundancy in the program execution [90].

Chen et al. [101] proposes a reliability-oriented approach for the computation of

embedded array-intensive applications executing on chip multiprocessor systems. The

approach uses idle processors to improve reliability by executing on them duplicates

of the computation performed by the active processors. They consider performance,

energy, and reliability issues for the redundant system. [102] also proposes partial

code and data duplication schemes for embedded chip multiprocessors by considering

memory overhead of the redundant execution.

109

6.2. Motivation

In CMP architectures, each additional core used for replication increases the

system reliability for most of the cases. On the other hand, each additional core

induces power consumption and affects energy efficiency badly. Moreover, potential

performance improvement of additional processor core may be obstructed by consuming

the core for the replication. To provide performance, reliability and energy efficiency,

it is essential to use a few cores for the optimum reliability requirement. If the system

tolerates some vulnerability, partial replication, which uses some of the cores, may be

a reasonable choice.

Furthermore, the fault tolerance of applications running on multicore systems

may be performed based on user preferences. Different user requirements may deter-

mine how much vulnerability is tolerable for the parallel execution. While some users

may prefer to execute their applications in a system with a larger number of processors

to provide higher reliability, others may tolerate vulnerability by considering higher

hardware expenses. It is also possible for the user to define specific replication limits

to be tolerated in terms of both cost and performance. Therefore, the redundancy iden-

tification process requires feedback from the user of an application and it is practical

to apply partial redundancy by taking into account user preferences.

By considering vulnerability tolerance of the system and user-specific require-

ments, it is essential to analyze the target application and the system to determine the

critical parts to be replicated. In a parallel program, it is reasonable to apply partial

redundancy by considering the replication of the critical thread(s) affecting the system

vulnerability mostly and to use idle cores for redundant threads’ execution in an effi-

cient way (in terms of performance, power and reliability). Additionally, thread-level

redundancy may be extended by exploring critical regions of individual threads and

executing redundantly only those regions to reduce redundancy overhead.

Soft errors may cause data corruption during program execution as well as pro-

gram execution termination. Output corrupting faults have different severity, and it

110

depends on the corruption magnitude and corruption location for an error to be im-

portant [103].

In a parallel application, there are multiple threads running concurrently each

responsible for individual task. While some multithreaded applications exhibit data-

parallel characteristics in which data is partitioned among threads, the others have

multiple distinct tasks assigned for each thread. If the final output is composed of the

partial results obtained by different threads, a possible error in one thread causes the

final output corruption. However, partial data corruption may not have the same effect

with the entire corruption for some applications.

Identifying the critical thread in an application is more clear for some domains

including image processing and computer graphics. Due to large amount of data to be

processed on an image processing application, parallel processing reduces computation

time by partitioning data among multiple threads [104]. In general, each thread works

on pixel values by considering local region of the entire image in an image processing

application. Since the output is formed with the partial operations provided by distinct

threads, the correct execution of each thread is important for the correct final result.

However, data corruption can be tolerable if the error occurs in different parts of the

resulting image [105].

The characteristics of input data may affect the fault tolerance identification and

the impact of input image is significant for image processing applications. Assume

that, the image given in Figure 6.1 is partitioned column-wise among 8 threads for a

filtering process of an image processing application. If an error occurs on threads that

process the first or the last column, fault in the resulting image is tolerable since the

error corrupts only the background of the image. However, the failure of the other

threads (e.g., Thread 5 or Thread 6) is more critical due to loss of the important part

of the image. Therefore, we should replicate more critical threads to provide higher

fault tolerance.

In general, a parallel computer vision framework consists of several tasks in a

111

(a) Thread 1 corruption (b) Thread 8 corruption (c) Thread 5 corruption

(d) Thread 6 corruption (e) Original

Figure 6.1. Sample data distribution.

pipelined structure. First of all, data acquisition and preprocessing phase is performed.

Then compute-intensive tasks with multiple data processing are parallelized among

threads. An error occurrence in the first phase is carried out by one or more threads;

which may seriously affect the overall execution since the other threads use output data

of this step due to the pipelined structure. Therefore, threads that are responsible for

data preprocessing become the most critical threads for redundancy.

As can be seen in computer vision applications, all threads in a parallel appli-

cation may not have the same vulnerability and reliability impact on the execution;

therefore, it will be more practical to replicate only the most critical threads to provide

redundancy in the system. Since users have different requirements for an application

execution, and the redundancy level is identified by the users, a partial fault tolerance

mechanism based on critical thread analysis should be managed based on user prefer-

ences. To the best of our knowledge, there is no user-assisted thread-level vulnerability

assessment tool in the literature.

112

6.3. Thread-Level Reliability Assessment

This section presents our user-assisted reliability assessment tool design details

and partial replication analysis algorithms.

6.3.1. System Design and Overview

Our reliability assessment tool consists of two components as illustrated in Fig-

ure 6.2:

• User: The user provides input to the analysis phase by specifying the number of

cores to be used for redundant execution of a given parallel application. The num-

ber of cores indicates the maximum number of cores that is required by the user

for reliability improvement. Then, the user executes the target application with

redundant execution of threads and/or regions by considering direction advised

by the analysis phase.

• Analysis: Our critical thread/region analysis consists of a simulation environ-

ment, based on Simics toolset [3]. The decision unit is a front-end component,

which gets reliability preferences of users (in the form of number of cores for repli-

cations), and it initiates the execution of the target application on the simulator.

Our critical thread/region analyzer (which is a Simics module) works in parallel

with the application, and collects information about the execution threads at run-

time. It calculates vulnerability value and criticality degree value (explained in

Section 6.3.2) of each thread; and it performs region level analysis by considering

the synchronization points to determine partial thread replications. At the end of

the execution, analyzer decides the most critical threads and/or thread regions.

It reports the criticality results to the decision unit of our tool. Finally, our de-

cision unit combines user preferences and criticality results to make a suggestion

on redundant execution of the application.

As an example, assume that a user has three available cores for replication of

an application. Our decision unit may advise the replication of three most critical

113

Figure 6.2. Flow of our reliability assessment tool.

threads if they are highly critical based on the analysis of our critical thread analyzer

in our assessment tool; or it may suggest that two cores should be used for replication

but third one may not be essential, which can be used for performance improvement

or powered off for energy efficiency. The decision unit may also advise region level

replication if it is more appropriate than thread replication.

6.3.2. Critical Thread Replication

To decide the most critical thread for redundancy, we consider both thread vul-

nerability and interactions between threads.

6.3.2.1. Thread Vulnerability. Although the thread having the largest TVF value is

the most vulnerable one to transient errors, the redundancy of this thread may not be

efficient for the vulnerability of the system.

The redundant execution of the thread that has the largest LVF value increases

114

the system reliability by decreasing the vulnerability of the thread. Since the thread

is more vulnerable to soft errors locally, it becomes more appropriate for redundant

execution than the other alternatives, since by having higher probability of a soft error

hits. However, RVF value of one thread does not provide relevant information about

the redundancy of the thread since it has only the vulnerability of the other threads in

the application. On the other hand, considering only the local term for the redundancy

is not efficient for a multithreaded application due to the communication behavior of

the threads.

6.3.2.2. Thread Interactions. In general, a thread that affects the other threads via

remote memory write operations is critical for the system vulnerability since an error

in this thread probably causes a failure on the other dependent threads, which read the

erroneous data from the faulty thread. Therefore, it seems to be efficient for redundancy

analysis to discover thread that has the most remote writes, i.e., the thread with the

highest out-degree value. Additionally, depth of a thread and number of writes to the

same destination thread are the other concerns that are utilized for retrieving thread

interactions of our analyzer.

In a multithreaded application, in which multiple threads can communicate to

each other along the execution, the vulnerability of one thread induced by the other

threads should also be considered. Since the threads communicate via shared-memory,

an error affecting one thread may cause failure in another thread, which reads the

erroneous data written previously. Errors can propagate even if the memory system

or the last level cache is highly reliable. Once the data written is faulty, ECC or any

method will not be able to do anything.

Figure 6.3 represents a thread interaction graph (TIG) for the threads in a multi-

threaded application, which illustrates the communication of the threads in a timeline.

In this application, T2 frequently writes data which is read by the other threads. If an

error hits T2 and it calculates an erroneous data, the other threads may yield incorrect

results using the wrong value. Since T2 has the largest out-degree, its failure badly

115

affects the system vulnerability by causing the reliability loss for all threads in the

application.

1 3 4 T 2 T T T

Figure 6.3. Thread interaction graph with four threads.

There are several thread communication patterns in parallel applications. Fig-

ure 6.4 represents a thread behavior of an 8-thread execution, where T1 writes data

read by other two threads (T2 and T4). While T2 and T4 reads data directly from T1,

all other threads (T3 via T2; T5, T6, T7 and T8 via T4) in the execution may be affected

by T1 indirectly. Therefore, a failure in T1 is critical for all the other threads in the

application. If T1 had more depth (which is 2 for this case), the importance of this

thread would be much larger. On the other hand, T4 has many outgoing edges which

indicate that many threads may be affected directly if an error hits T4. The effect of

out-degree and the depth may depend on the thread interaction graph of the given

application.

 T 3 T 4 T 5 T 6 T 7 T 8 T 1 T 2

.

.

Figure 6.4. Thread behavior of an 8-thread application.

During the execution of a parallel application, one thread may write data and it

is read by a specific thread multiple times. Each remote write operation may affect

116

the remote thread directly, since an error causing incorrect calculation also corrupts

the remote thread. Although we should consider each write operation separately, it is

also possible to take into account only the last write.

Figure 6.5 represents an example communication scenario in which T2 writes data

read by T1 for three times (X, Y and Z values). An error hit at the code segment

marked with “a” possibly corrupts X value. The corruption of Y value is possible in

case of an error which hits the code segment “b”. Z value may be corrupted due to an

error on the code segment “c”, similarly. Moreover, Y and Z values are dependent on

the code segment of T1 which includes “a” and “a+b” respectively. Since we consider

the code segment “a+b+c” for the last write operation (Z value), it is not necessary

to count the previous remote write operations (X and Y values) for the critical thread

analysis. Although these multiple write operations increase the dependency of T1 on

T2, they do not enhance the importance of T2 for redundancy analysis. The same Z

value is also read by T3, and T2 becomes more critical since it affects two different

threads. However, the remote write operations on T1 and T3 have the same effect on

the critical thread analysis in our tool.

a

c

b

write X

write Y

write Z write Z

 T1 T2 T3

.

Figure 6.5. An example thread interaction graph which has multiple remote write

operations of a single thread.

117

6.3.2.3. Critical Thread Identification Algorithm. Our thread-level vulnerability as-

sessment tool considers both local behavior of each individual thread and thread inter-

actions to determine the critical thread for redundancy in a parallel application.

The analyzer (given in Figure 6.2) tracks memory load/store operations during

program execution. It logs store operations for each thread and evaluates load opera-

tions by considering the interactions between threads. We calculate LVF value of each

thread during execution and we also keep track of thread interactions.

The criticality degree of each node in the thread interaction graph is calculated by

using two components, which are direct criticality degree and indirect criticality degree.

The former one represents the criticality induced from the write/read relationship

between two threads. If one thread alters a memory location and another thread reads

that data, the writer thread directly affects the reader thread and becomes more critical

due to its effect on the reader thread. This interaction leads to an increase on direct

criticality degree value. Since the vulnerability is represented by LVF, we increase

value of direct criticality degree of the writer thread by LVF amount of the thread. On

the other hand, the indirect criticality degree represents the criticality propagated from

previous write/read relationships of the writer thread. All threads having affected the

writer thread has an indirect effect on the reader thread. This causes a slight increase

in indirect criticality degree value of the threads due to the weighted sum of direct and

indirect criticality degree values.

We track memory operations in our target parallel application running on a mul-

ticore architecture and store them on a hashmap, where each entry of the hashmap

contains a memory location and the number of the thread that writes to the given

location. Whenever a store operation occurs, a new entry, for representing thread that

performs the store operation, is added to the hashmap. If the map already contains

this memory location, the entry is updated by the current thread number.

Algorithm 6.6 presents criticality degree calculation procedure for load opera-

tions. The direct and indirect criticality degree values are stored in direct degree and

118

indirect degree matrices, respectively. If the memory location in the load operation

has been altered by another thread previously, the writer thread criticality degree

value is incremented due to its effect on the reader thread. In Algorithm 6.6, the

[tidout][tidin] entry of direct degree matrix, which stores total vulnerability effect of

the writer threads on the reader threads, is updated. Additionally, the indirect degree

matrix is modified by analyzing all threads. For both direct and indirect criticality

computations, there are three distinct structures of each resource including ALU, reg-

ister, and memory. To reduce the effect of the indirect threads, the vulnerability values

are multiplied by a weight term which is a predefined value in the range [0..1].

procedure on store operation(tid, location, hashmap)

add (hashmap,location, tid)

procedure on load operation(tid, location, hashmap)

tidin ← tid

tidout ← search (hashmap,location)

if tidin <> tidout then

direct degree[tidout][tidin]+ = LV F (Ttidout
)

//Update direct criticality values

for each thread tidX do

indirect degree[tidX][tidin]+ =

weight× (direct degree[tidX][tidout] + indirect degree[tidX][tidout])

//Update indirect criticality values

end for

end if

Figure 6.6. Algorithm for calculating direct and indirect criticality degree values of

threads.

After running the multithreaded application and collecting statistics on the be-

havior of threads, the most critical thread or threads for redundancy is determined

based on the Algorithm 6.7. The algorithm considers either criticality degree matrices

of vulnerability factors based on a predefined threshold value, ǫ. If maximum number

of remote memory write operations is larger than ǫ, then degree metrics are utilized

to determine the critical thread. If the remote write operations are not large enough,

119

local vulnerability values are used since local behavior of threads determines the criti-

cal thread in the application. We assign the threshold value by comparing values from

different applications. The majority of three resources, which are ALU, memory, and

registers determines the most critical thread of the given application. As an example,

if T1 is selected by both ALU and memory, and T2 is selected by register unit as the

critical thread, then our algorithm returns the T1 as the most critical thread.

procedure evaluate(n, threshold)

MCT ← the most critical thread

RC ← max(remote count[tidn])

if RC > threshold then

CT ALU ← max
n

(degreeALU [tidn])

CT mem← max
n

(degreememory[tidn])

CT reg ← max
n

(degreeregister [tidn])

else

CT ALU ← max
n

(LV FALU [tidn])

CT mem← max
n

(LV Fmemory[tidn])

CT reg ← max
n

(LV Fregister [tidn])

end if

MCT ← majority(CT ALU, CT mem, CT reg)

Figure 6.7. Algorithm for determining critical thread of an application.

6.3.2.4. An Example Execution. Figure 6.8 represents an example thread interaction

graph for an 8-thread execution. For this execution scenario, T2 reads a value which

calculated by T1 previously. Then T2 writes a value which will be read by T3. T4

produces data; and the threads other than T1 and T2 read these data values along their

execution. T1 is the thread with the largest depth which writes to T2 directly, and T3

indirectly. LV F1, LV F2 and LV F4 values denote the local vulnerability factor values

in the course of remote write operation for threads T1, T2, and T4, respectively.

We may store remote write/read relationships in a matrix structure where the

rows represent the writer threads and the columns represent the reader threads (see

Table 6.1). When a thread, T1, remotely writes a value which is read by another thread,

120

T2, the entry in the first row and the second column is filled with the vulnerability

value that T1 has at the time of write operation; i.e., LV F1 = LV F (T1). This entry

indicates that T1 affects the vulnerability of T2 by the specified value. The other

remote write operation (i.e., from T2 to T3) is more interesting since there is an indirect

communication between T1 and T3. Firstly, the cell of the second row and the third

column in Table 6.1 is filled with LV F2 values for direct communication between T2

and T3. This operation also leads to a new entry at the cell of the first row and the

third column, due to an indirect communication between T1 and T3. Since the effect

is not direct and the possibility of that T1 impacts T3 is not large as the effect on T2,

we may reduce the vulnerability value by a constant rate (w). If the vulnerability is

multiplied with a number between 0 and 1, we may reduce the effect of the indirect

remote thread. The other remote write operations by T4 to other threads also are

added to the related locations of the matrix. At the end of the execution, each row

of the table (Table 6.1 for thread interaction graph given in Figure 6.8) represents the

criticality degree of the corresponding thread.

LVF2

LVF1 LVF4

 T 3 T 4 T 5 T 6 T 7 T 8 T 1 T 2

Figure 6.8. A thread interaction graph with 8 threads.

6.3.3. Critical Region Replication

Since the redundancy introduces synchronization overhead between replicated

threads, it may be more preferable not to replicate the complete code of a thread if

the reliability gain is not significant; one or more critical regions of the thread can be

replicated, instead.

121

Table 6.1. Matrix for direct and indirect criticality degree values for critical thread

analysis.

T1 T2 T3 T4 T5 T6 T7 T8

T1 - LV F1 w × LV F1 - - - - -

T2 - - LV F2 - - - - -

T3 - - - - - - - -

T4 - - LV F4 - LV F4 LV F4 LV F4 LV F4

T5 - - - - - - - -

T6 - - - - - - - -

T7 - - - - - - - -

T8 - - - - - - - -

For critical region replication, we track communication points at thread codes and

determine the code region that contributes most to the criticality of the thread. The

TIG of an application given in Figure 6.9 represents remote write operations of threads

in an execution, where a number above an edge represents an interaction between two

threads. Our critical thread analyzer clearly concludes that the most critical thread

for redundancy is T2 due to its plenty of remote write operations; and it suggests

the replication of T2 for this figure. However, full replication of thread 2 may not be

necessary. Since most of the remote write operations occur until the interaction 5, the

replication of the thread code up to this point may be adequate for fault tolerance.

To determine the critical code region of a given thread, we perform criticality de-

gree calculations at the end of each synchronization point during program execution.

After gathering thread-level criticality degree values at distinct points, we compare

the values of consecutive points. If the values are not significantly different, we may

conclude that the replication of the last region is not crucial and suggest the partial

replication of the thread by excluding the ineffective region. As an example, if the

criticality degree values between the last two write operations (interaction 5 and in-

teraction 6 in Figure 6.9) are not much different, we may say that the redundancy of

the code region after interaction 5 does not provide significant gain.

122

5

3

1

4

2

6

 T1 2 T3 T4 T

Figure 6.9. A TIG example to represent synchronization of thread regions.

6.4. Vulnerability of Redundant Computations

6.4.1. Vulnerability Evaluation

To illustrate the effect of the selective thread redundancy on the system reliability,

we extend Thread Vulnerability Factor (TVF) which measures the vulnerability of

multithreaded applications running on multicore architectures. Since TVF metric does

not consider thread redundancy, we extend it to evaluate the thread vulnerability for

redundant execution. First of all, we should evaluate how TVF is affected by redundant

computations and how to calculate TVF if there are redundant threads. Since the

local term of the thread vulnerability (i.e., LVF term) represents the vulnerability of

the thread induced by the code itself, its value decreases if this is a redundant copy of

the thread. While the redundancy increases the reliability of the redundant thread, it

increases the reliability of the other threads as well. The remote term of the thread

vulnerability (RVF) represents the vulnerability impact of the threads that interact

with the target thread and is calculated by considering the vulnerability of remote

threads. Specifically, RVF for T2 in Figure 6.8 can be calculated as follows:

RV F (T2) = TV F (T1)

123

= [wL × LV F (T1)] + [wR × RV F (T1)]

 T 1 T 2 T 1

XX

comparison

X

LVF LVF

R

Figure 6.10. TIG for thread replication case.

Assume that TR
1 is the replica of T1 in Figure 6.10. Then the vulnerability (LVF)

of the remote thread T1 decreases; therefore, LVF term should be reduced in the above

calculation. If we multiply the local term by itself, its value decreases and the effect of

the redundancy appears in the vulnerability of the dependent thread T2. RVF for T2

in the redundant execution of T1 becomes:

RV F (T2) = TV F (T1)

= [wL × (LV F (T1)× LV F (T1))] + [wR × RV F (T1)]

Since LVF term takes value in range [0..1], the local vulnerability of T1 (i.e., the

partial vulnerability of the remote vulnerability of T2) is reduced. These reductions

on the vulnerability of threads that read data from the redundant thread result in the

reduction on the overall system vulnerability which is calculated by augmenting TVF

of each thread in the application.

For the partial thread replication case, we calculate remote values with the same

124

consideration. We reduce remote values only for the replicated code regions, while the

calculation is the same for non-redundant parts.

6.4.2. A Case Study

To evaluate critical thread identification and the vulnerability computation of a

redundant system, we execute a synthetic application with the thread interaction graph

given in Figure 6.8. In our application, the remote write operations consist of simple

array element calculations. The amount of data for each communication is fixed, that

is, the number of elements written and read for each interaction is equal. Since the

synchronization part in the application is not related to our analysis, we exclude the

barrier code which provides atomic operations in the parallel application. We also

do not consider remote write operations that are less than a predetermined threshold

value, due to the simulation inconsistencies. We gather vulnerability data for three

architectural resources including register, memory, and ALU. The reduction factor for

indirect remote writes is taken as 0.8 in our experiments.

The result of the critical thread analysis for this application is given in Table 6.2,

which includes only threads’ criticality degrees. We also provide the number of remote

write operations (given in remote count column) to point out the out-degree value,

without concerning vulnerability concept. Based on Table 6.2, the most critical thread

Table 6.2. Metric values for critical thread analysis of synthetic application.

T1 T2 T3 T4 T5 T6 T7 T8

ALU 689.104 399.537 0.000 1839.236 0.000 0.000 0.000 0.000

register 775.859 430.016 0.000 2235.174 0.000 0.000 0.000 0.000

memory 1033.348 474.736 0.000 2457.000 0.000 0.000 0.000 0.000

remote count 1800 1001 0 5001 0 0 0 0

for redundancy is T4 which has the largest out-degree values for all resources (register,

memory and ALU). T4 has also the largest number of remote write operations as seen

in the last row.

125

After we determine the most critical thread for redundancy in the application,

we gather TVF values for the redundant case. Table 6.3 represents the vulnerability

values of each thread in the synthetic application. We evaluate the redundant cases

for T4 which is the largest criticality degree values for our critical thread analysis and

T1 which is the largest depth (i.e., its depth is equal to 2) in the dependency structure.

Although our analysis recommends us to replicate T4, we also evaluate vulnerability

values for T1 redundancy in order to compare the results of different cases. Table 6.3

demonstrates that T3, which has the most remote read operations (due to direct read

from T2 and T4, and indirect read from T1), has the largest remote vulnerability values

for all resources. Since T1 and T4 have no dependent threads, their remote vulnerability

factor values equal to zero. The vulnerability values for the other threads are similar

to each other due to the same number of remote read operations.

The effects of the redundant threads on the vulnerability values are given in

Table 6.3. We calculate the vulnerability values as explained previously by reducing

the vulnerability effect of the redundant thread. If one thread is replicated, the remote

vulnerability values of the threads that read data written by this thread decrease since

the this thread’s code reliability is improved by means of redundant execution. While

the vulnerability of all threads except T2 is decreased for the redundancy of T4, only T1

and T2 have smaller vulnerability values for the redundancy of T1. Thus total system

vulnerability, which is equal to the sum of thread vulnerabilities, decreases by larger

amount for T4 redundant case.

6.5. Benchmark Applications

In our experimental analysis, we perform critical thread evaluation for a variety

of parallel programming patterns and thread behavior. We select four main classes

of patterns including task parallel, divide and conquer, geometric decomposition, and

pipeline programming model [106]. We evaluate our analysis on parallel benchmark

applications from PARSEC [38] and SPLASH-2 [62] suites by choosing applications

that exhibit different patterns.

126

Table 6.3. RVF values of redundant executions of synthetic application.

T1 T2 T3 T4 T5 T6 T7 T8 Total

No redundancy

ALU 0.000 0.191 0.239 0.000 0.184 0.184 0.184 0.184 1.166

Register 0.000 0.215 0.272 0.000 0.223 0.224 0.224 0.224 1.382

Memory 0.000 0.287 0.313 0.000 0.245 0.246 0.246 0.247 1.584

Redundant=4

ALU 0.000 0.191 0.182 0.000 0.068 0.068 0.068 0.068 0.645

Register 0.000 0.216 0.211 0.000 0.100 0.100 0.101 0.101 0.829

Memory 0.000 0.291 0.252 0.000 0.121 0.122 0.122 0.123 1.031

Redundant=1

ALU 0.000 0.074 0.210 0.000 0.184 0.184 0.184 0.184 1.020

Register 0.000 0.094 0.242 0.000 0.223 0.224 0.224 0.224 1.231

Memory 0.000 0.172 0.285 0.000 0.246 0.246 0.247 0.247 1.443

• Task parallel: The thread tasks are balanced and there is no data dependencies

between tasks (blackscholes, swaptions from PARSEC).

• Divide and conquer: The task is divided into subtasks, the solutions to the

subtasks are then combined to give a solution to the original task (radix from

SPLASH-2).

• Geometric decomposition: The problem is decomposed into smaller chunks oper-

ated in parallel, the solutions is composed of updates to local chunks and bound-

aries of chunks which induces data sharing between neighboring threads (barnes,

fft, lu from SPLASH-2).

• Pipeline: There is data flow between coarse grained tasks and it is executed on

pipeline stages (canneal from PARSEC).

6.6. Experimental Results

We execute our benchmark applications on an 8-core multicore architecture by

mapping one thread onto one core in order to evaluate our vulnerability analysis. Our

experimental analysis consists of two phases including critical thread evaluation and

critical region evaluation. We consider the replication of the execution codes (both

thread and region) in our redundancy experiments, with the assumption of improving

the system reliability. In this work, we do not deal with redundancy levels (duplicate,

127

triplicate) that may have distinct effects on the reliability.

6.6.1. Evaluating Critical Thread Replication

For evaluating our critical thread assessment tool, it requires critical thread anal-

ysis, replication and validation phases, which are summarized at the following subsec-

tions.

6.6.1.1. Critical Thread Analysis. An application is executed by mapping one thread

onto one core and memory operations are tracked to construct dependency structures

for critical thread analysis. At the end of the execution, we figure out the most critical

thread(s) for replication, and collect statistics to calculate the vulnerability (TVF) of

the execution. Figure 6.11 presents values of criticality degree terms of each thread

for ALU, register, and memory resources, for 8 applications selected from benchmark

suites. When the results are examined, the criticality degree values are evidently

larger for one thread (T1) in blackscholes, canneal and swaptions. Since blackscholes

and swaptions have task-parallel characteristics, their threads have similar tasks with

no communication along their execution. Therefore the threads other than the first

thread have similar criticality degree values which are not too large due to the lack

of communication. Only the first thread, which distributes the input data to other

threads, has large criticality degree values for each resource. Canneal application, which

exhibits pipeline pattern, has large communication between its threads. However, the

threads have similar criticality degree values due to the homogeneous work. Again

the first thread having the input data has the largest criticality degree value for all

the resources. For blackscholes, canneal and swaptions, the first thread should be

selected for replication if we want to increase the reliability with minimum number of

replications. Our analyzer suggests exactly one thread replication to the user, and it

advises not to use any other processor core for reliability improvement.

Since FFT threads exchange data along their executions, the criticality degree

values are similar to each other. It is probable that the replication of any thread results

128

T1 T2 T3 T4 T5 T6 T7 T8
0

0.5

1

1.5

2
x 10

6

D
eg

re
e

(A
LU

)
T1 T2 T3 T4 T5 T6 T7 T8

0

1

2

3
x 10

6

D
eg

re
e

(r
eg

is
te

r)

T1 T2 T3 T4 T5 T6 T7 T8
0

5

10

15
x 10

5

D
eg

re
e

(m
em

or
y)

(a) blackscholes

T1 T2 T3 T4 T5 T6 T7 T8
0

1

2

3
x 10

6

D
eg

re
e

(A
LU

)

T1 T2 T3 T4 T5 T6 T7 T8
0

1

2

3

4
x 10

6

D
eg

re
e

(r
eg

is
te

r)

T1 T2 T3 T4 T5 T6 T7 T8
0

1

2

3

4
x 10

6

D
eg

re
e

(m
em

or
y)

(b) canneal

T1 T2 T3 T4 T5 T6 T7 T8
0

0.5

1

1.5

2
x 10

7

D
eg

re
e

(A
LU

)

T1 T2 T3 T4 T5 T6 T7 T8
0

0.5

1

1.5

2
x 10

7
D

eg
re

e
(r

eg
is

te
r)

T1 T2 T3 T4 T5 T6 T7 T8
0

2

4

6

8
x 10

6

D
eg

re
e

(m
em

or
y)

(c) swaptions

T1 T2 T3 T4 T5 T6 T7 T8
0

2

4

6

8
x 10

4

D
eg

re
e

(A
LU

)

T1 T2 T3 T4 T5 T6 T7 T8
0

2

4

6

8
x 10

4

D
eg

re
e

(r
eg

is
te

r)

T1 T2 T3 T4 T5 T6 T7 T8
0

2

4

6
x 10

4

D
eg

re
e

(m
em

or
y)

(d) FFT

T1 T2 T3 T4 T5 T6 T7 T8
0

1

2

3

4
x 10

6

D
eg

re
e

(A
LU

)

T1 T2 T3 T4 T5 T6 T7 T8
0

1

2

3

4
x 10

6

D
eg

re
e

(r
eg

is
te

r)

T1 T2 T3 T4 T5 T6 T7 T8
0

1

2

3
x 10

6

D
eg

re
e

(m
em

or
y)

(e) LU

T1 T2 T3 T4 T5 T6 T7 T8
0

2

4

6

8
x 10

4

D
eg

re
e

(A
LU

)

T1 T2 T3 T4 T5 T6 T7 T8
0

2

4

6

8
x 10

4

D
eg

re
e

(r
eg

is
te

r)

T1 T2 T3 T4 T5 T6 T7 T8
0

5

10
x 10

4

D
eg

re
e

(m
em

or
y)

(f) radix

T1 T2 T3 T4 T5 T6 T7 T8
0

1

2

3

4
x 10

7

D
eg

re
e

(A
LU

)

T1 T2 T3 T4 T5 T6 T7 T8
0

2

4

6

8
x 10

7

D
eg

re
e

(r
eg

is
te

r)

T1 T2 T3 T4 T5 T6 T7 T8
0

2

4

6
x 10

7

D
eg

re
e

(m
em

or
y)

(g) barnes

Figure 6.11. Metric values for benchmark applications.

129

in the same amount of reliability gain. We cannot select the thread for redundancy

with our critical thread analysis. We may suggest to the user to use as much as possible

cores for replication to improve system reliability.

On the other hand, the difference between the criticality degree values of applica-

tion threads for LU, radix and barnes is more apparent. Since the application threads

have diverse characteristics, the critical thread analysis becomes more essential for

these applications. While LU threads have more similar criticality degree values, radix

and barnes threads exhibit diverse values. If we have resources for only one thread

replication, we select T3 for LU and T8 for radix as well as barnes in order to decrease

the vulnerability in a most efficient way.

An inference on the least critical thread can be stated by using our critical thread

analysis. Since each replication causes additional resource and performance cost, it is

also critical to decide the thread which may not be replicated. Radix application figures

show that T3 and T4 have almost no effect on the other threads. If we do not execute

these threads redundantly, the reliability does not change significantly due to the lack

of remote effects of these threads.

6.6.1.2. Critical Thread Replication. After discovering the most critical thread(s) for

redundancy, we re-execute our applications by a redundant copy of the most critical

thread (if any) and calculate the vulnerability values by considering the effect of the re-

dundant copies. In this work, we do not deal with synchronization of redundant copies

and do not consider performance issues. We assume that redundant threads decrease

the vulnerability and partial redundancy based on critical thread analysis reduces the

vulnerability with smaller performance degradation. To validate and demonstrate the

efficiency of our analysis, we also include experiments of no redundancy and the repli-

cation of other threads in the application. We compare the vulnerability values for

different replication cases. Our executions include at most one thread replication for

each case. Figure 6.12 and Figure 6.13 present the vulnerability values (RVF for ALU,

register and memory resources) for redundant cases of PARSEC and SPLASH-2 appli-

130

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.1

0.2

R
V

F
(A

LU
)

No redundancy

T1 redundancy

T6 redundancy

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(r

eg
is

te
r)

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.1

0.2

R
V

F
(m

em
or

y)

(a) blackscholes

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.1

0.2

R
V

F
(A

LU
)

No redundancy

T1 redundancy

T6 redundancy

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(r

eg
is

te
r)

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(m

em
or

y)

(b) canneal

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(A

LU
)

No redundancy

T1 redundancy

T6 redundancy

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(r

eg
is

te
r)

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.1

0.2

R
V

F
(m

em
or

y)

(c) swaptions

Figure 6.12. The vulnerability values for redundant cases of PARSEC applications.

131

cations respectively. We include the normal execution case with no redundancy and

two additional scenarios with one thread replication for each application. The fig-

ures demonstrate the remote vulnerability factor values for each thread as well as the

arithmetic mean (shown with A-m bars).

Since T1 is the most critical thread for blackscholes, canneal and swaptions ap-

plications, we include the first thread replication which demonstrates the vulnerability

decrease in case of the most critical thread replication. We also execute a randomly

selected thread (T6) redundantly as a second scenario; and calculate the vulnerabil-

ity values for ALU, register and memory resources. Figure 6.12 demonstrates that

while T1 replication increases the reliability significantly, there is almost no effect of T6

replication in the vulnerability values.

Since none of FFT threads exhibit distinct characteristics for critical thread anal-

ysis, we select two threads (T5 and T6) randomly for redundancy in order to evaluate

the effect of any thread’s replication on the vulnerability. Figure 6.13(a) demonstrates

that the vulnerability values decrease for redundant cases, where the difference is not

significant in average.

While LU has more diverse communication behavior between its threads, the

average reliability improvement for T3 (the most critical thread) replication is not

much different compared to T5 (the least critical thread) replication. T3 is the most

critical thread, but the difference between the criticality degree values are not much

significant. Therefore, the effect of the most critical thread replication is not clear for

LU application. While the distinct vulnerability values for individual threads differ,

the mean values are similar.

The most interesting results that demonstrate the effect of critical thread analysis

belong to radix and barnes applications. T8 is the most critical thread for both appli-

cations. The replication of the most critical thread decreases the vulnerability values

for each resource significantly. We include the replication of the least critical threads

in order to emphasize the difference between the partial replication cases. Although

132

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(A

LU
)

No redundancy

T5 redundancy

T6 redundancy

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(r

eg
is

te
r)

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(m

em
or

y)

(a) FFT

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.5

1
R

V
F

(A
LU

)

No redundancy

T3 redundancy

T5 redundancy

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.5

1

R
V

F
(r

eg
is

te
r)

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(m

em
or

y)

(b) LU

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(A

LU
)

No redundancy

T8 redundancy

T4 redundancy

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(r

eg
is

te
r)

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.5

1

R
V

F
(m

em
or

y)

(c) radix

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(A

LU
)

No redundancy

T8 redundancy

T6 redundancy

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.5

1

R
V

F
(r

eg
is

te
r)

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.2

0.4

R
V

F
(m

em
or

y)

(d) barnes

Figure 6.13. The vulnerability values for redundant cases of SPLASH-2 applications.

133

the replication of thread T4 for radix and thread T6 for barnes causes vulnerability

decrease for some threads, the overall reliability improvement is smaller than the case

of replicating the most critical thread. These results demonstrate that if we replicate

the thread other than the most critical one, the decreases at vulnerability values would

not be so high. Therefore, the thread with the highest criticality degree value should

be selected, if there are limited resources for full redundancy.

6.6.1.3. Validation of Critical Thread Replication. We execute selected benchmark ap-

plications on our fault-injection framework (given in Chapter 3) to validate our critical

thread-based fault tolerance scheme. SDC (Silent Data Corruption) errors are subtle

form of errors considered in our study, which include both self-thread errors and fault

propagation errors in a parallel program execution. SDC rate is utilized as a metric to

compare results, which is the fraction of the injected faults that results in unacceptable

outputs [50]. We do not classify the data corruptions as acceptable or unacceptable, we

assume all data corruptions are unacceptable. To analyze the output errors and detect

data corruption, the application output should be deterministic and easy to compare.

Therefore, we select a subset of applications that have exact results from the Parsec

and Splash-2 benchmarks for our fault injection experiments including blackscholes,

LU, FFT, and radix. Figure 6.14 represents the SDC rates of applications for different

redundant cases. We include no redundancy case as well as the replication of the most

critical and the least critical threads evaluated at Section 6.6.1.2. While blackscholes

has significantly lower SDC rates for the most critical thread replication (T1), LU and

FFT redundant cases have relatively similar results. It is also observed that the repli-

cation of T8 and T6 which have the largest criticality degree values (see Figure 6.11) for

radix application reduces the SDC rates more than the replication of T3 and T4 which

have the smallest criticality degree values.

In another experiment, SDC rates are computed by varying the number of re-

dundant threads (See Figure 6.15). We start with no redundant case and include one

thread replication by considering the criticality degree value. For example, we assume

the replication of T8, the replication of both T8 and T6, the replication of T8, T6, and

134

None T1 T2 T3 T6
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

S
D

C
 R

at
e

Redundant thread

(a) blackscholes

None T5 T6 T7
0.1

0.11

0.12

0.13

0.14

0.15

0.16

S
D

C
 R

at
e

Redundant thread

(b) fft

None T3 T2 T4 T5 T6
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

S
D

C
 R

at
e

Redundant thread

(c) lu

None T8 T6 T4 T3
0.01

0.015

0.02

0.025

0.03

0.035

0.04

S
D

C
 R

at
e

Redundant thread

(d) radix

Figure 6.14. SDC rates for redundant cases.

135

0 1 2 3 4 5 6 7 8
0

0.005

0.01

S
D

C
 R

at
e

of redundant threads
0 1 2 3 4 5 6 7 8

0

1

2

R
V

F
 (

re
gi

st
er

)

(a) blackscholes

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

S
D

C
 R

at
e

of redundant threads
0 1 2 3 4 5 6 7 8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

R
V

F
 (

re
gi

st
er

)

(b) fft

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

S
D

C
 R

at
e

of redundant threads
0 1 2 3 4 5 6 7 8

2

2.5

3

3.5

4

R
V

F
 (

re
gi

st
er

)

(c) lu

0 1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

S
D

C
 R

at
e

of redundant threads
0 1 2 3 4 5 6 7 8

0.5

1

1.5

2

2.5

3

R
V

F
 (

re
gi

st
er

)

(d) radix

Figure 6.15. Vulnerability values (SDC rate and RVF value) vs number of redundant

threads.

136

T2 for radix application for the case of one, two, and, three thread replications, respec-

tively. We construct the complete graph by including one more thread replication, and

end with full redundancy which results in zero SDC rate. We also conduct experiments

for the replication of different number of threads and calculate the vulnerability val-

ues by considering the redundancy effect on vulnerability values. The similar results

for our RVF values are represented in Figure 6.15. These results validate our partial

replication scheme based on critical thread evaluation.

6.6.2. Evaluating Critical Region Replication

We extend our critical thread analysis by considering synchronization points of

the applications. We consider execution steps as thread codes divided by these points

in our critical region evaluation. The applications that has the behavior of geometric

decomposition pattern are more appropriate for critical region analysis due to much

communication between threads and many synchronization points. Therefore, we se-

lect LU and FFT for evaluating critical region replications. The first application for

our critical region analysis is LU, which has 19 synchronization points in SPLASH-2

implementation. Since the first three intervals do not have any criticality degree val-

ues, we include only the last 16 regions for our analysis. We calculate criticality degree

values at the end of each 16 execution steps by considering register, ALU, and memory

resources. Since register resource has the largest values, we use the results of the that

resource in our analysis. We construct graphs for distinct threads in Figure 6.16 to

illustrate the criticality degree values at the end of each execution step represented by

the synchronization points in the code. As presented in our previous critical thread

analysis, the most critical threads for redundancy in LU application were T2, T3, and

T4. While the criticality degree values of these threads do not differ significantly, we

may select T3 for critical thread replication if we have only one available core. However,

critical region analysis allows us to replicate different regions from different threads.

The most critical regions of the most critical threads (T2, T3, and T4) are execution

intervals between 10-11, 5-6, and 6-8 (among 16 intervals) respectively. If the user has

only one core to use for redundancy, we may advise the selective redundancy for dif-

137

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 T1

execution step

de
gr

ee
 v

al
ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 T2

execution step

de
gr

ee
 v

al
ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 T3

execution step

de
gr

ee
 v

al
ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 T4

execution step

de
gr

ee
 v

al
ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 T5

execution step

de
gr

ee
 v

al
ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 T6

execution step

de
gr

ee
 v

al
ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 T7

execution step

de
gr

ee
 v

al
ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 T8

execution step

de
gr

ee
 v

al
ue

Figure 6.16. Metric values of LU execution steps for distinct threads.

138

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.1

0.2

0.3

0.4

0.5

R
V

F

None
Full T3
Partial v1
Partial v2

Figure 6.17. Vulnerability values for partially redundant cases of lu application.

ferent time intervals. While T2 is executed redundantly between 10-11 execution steps,

T4 is replicated at 6-8 execution steps. The interval between 5-6 execution step is more

critical for T3, and the redundancy level for other steps may be determined by similar

observations. If the synchronization overhead for redundant threads is not tolerable for

performance, no redundancy may be applied for some intervals due to slight increase

in vulnerability.

To illustrate the effect of critical region replication on the vulnerability of LU,

we execute the application for different redundancy cases and calculate vulnerability

values based on our critical region replication technique. We gather values for both one

critical thread replication and partial replication of selective threads for LU application.

Figure 6.17 represents RVF values for four cases including no replication, full replication

of thread T2, and two partial thread replication cases (stated as Partial v1 and Partial

v2). For the case of Partial v1 replication, we replicate the most effective three regions

from three most critical threads obtained from our critical region analyzer, which are

the replication of T2 between 10-11 execution steps, the replication of T3 between

5-6 execution steps, and the replication of T4 between 6-8 execution steps. We do

not execute any redundant code in any other regions. We include the redundancy of

relatively less effective regions for Partial v2 case. Since we assume that we have one

available core for the redundant execution, all regions from different threads have been

replicated to increase the reliability of the application. We select the replicated thread

by considering its contribution at the region, and compare the values for the eight

threads. For LU application, we determine following replications: the replication of

T2 between 1-5 and 10-11 execution steps, the replication of T3 between 5-6 execution

139

1 2 3 4 5
0

50

100

150

200

250

300
T1

execution step

cr
iti

ca
lit

y
de

gr
ee

1 2 3 4 5
0

50

100

150

200

250

300
T2

execution step

cr
iti

ca
lit

y
de

gr
ee

1 2 3 4 5
0

50

100

150

200

250

300
T3

execution step

cr
iti

ca
lit

y
de

gr
ee

1 2 3 4 5
0

50

100

150

200

250

300
T4

execution step

cr
iti

ca
lit

y
de

gr
ee

1 2 3 4 5
0

50

100

150

200

250

300
T5

execution step

cr
iti

ca
lit

y
de

gr
ee

1 2 3 4 5
0

50

100

150

200

250

300
T6

execution step

cr
iti

ca
lit

y
de

gr
ee

1 2 3 4 5
0

50

100

150

200

250

300
T7

execution step

cr
iti

ca
lit

y
de

gr
ee

1 2 3 4 5
0

50

100

150

200

250

300
T8

execution step

cr
iti

ca
lit

y
de

gr
ee

Figure 6.18. Metric values of FFT execution steps for distinct threads.

140

steps, and the replication of T4 between 6-10 and 11-16 execution steps. As illustrated

in Figure 6.17, Partial v2 case, which considers both the critical region redundancy

from the critical threads and the utilization of the available core for the redundancy,

has the smallest vulnerability values. While Partial v1 case does not present the best

case for the vulnerability, it may be a choice to avoid from the performance loss that

is induced by the synchronization overhead of the replicated threads.

Another benchmark application for our analysis is FFT, which we do not conclude

any critical thread identification for full thread replication. The execution steps also

have similar behavior for FFT threads (see Figure 6.18). While the first two intervals

do not contribute the criticality significantly, the last two intervals (especially interval

3-4) are effective for all threads. We may advise to replicate only the code region

between 3-4 if the synchronization overhead is very crucial.

141

7. CONCLUSIONS AND FUTURE WORK

The main focus of this thesis is to quantify reliability of multithreaded applica-

tions and to propose reliability-oriented solutions to map multithreaded applications

on CMP architectures.

We propose a novel reliability metric, Thread Vulnerability Factor (TVF), which

represents the vulnerability of multithreaded applications to soft errors on multicore

architectures. It takes into account remote vulnerability factor which is reflected from

related threads as well as its local vulnerability factor. Since the TVF includes the

vulnerability resulted from the dependency of the threads, it gives more effective and

detailed information about the vulnerability of the multithreaded applications. Our

results indicate that TVF values tend to increase with increasing number of cores,

which means the system becomes more vulnerable as the core count rises.

We validate our proposed metric with both fault injection based experiments

on Simics simulator and executions on a real multicore architecture. The fault injec-

tion based experiments demonstrate that a vulnerability comparison between multiple

parallel applications based on TVF analysis yields similar results with a costly fault

injection experimental study. We can use TVF metric to evaluate the relative vul-

nerability of multithreaded applications efficiently. Sample runs on a real multicore

architecture provides consistent results with our simulation-based TVF evaluation.

Additionally, we present a performance-reliability analysis of different multi-

threaded applications running on multicore architectures. While the performance of

the applications is measured by execution clock cycles, we use TVF metric to evaluate

the relative reliability of multithreaded applications. Using these values gathered from

experimental evaluation, we conduct a performance-reliability tradeoff analysis which

compares different parallel versions of an application in terms of reliability as well as

performance. We repeat this on three different applications. Our results indicate that

the choice is clear for FFT and Jacobi Kernel. The transpose algorithm for FFT cal-

142

culation results in less than 5% performance loss while the vulnerability increases by

20% compared to binary-exchange algorithm. One can prefer transpose algorithm for

better reliability by sacrificing little performance. The unrolled Jacobi code reduces

execution time up to 50% by not effecting vulnerability values. However, the tradeoff

is more interesting for Water Simulation application. While nsquared version reduces

the vulnerability values significantly, it increases execution time with similar rates com-

pared to spatial version. One should trade performance with reliability to choose one

version of the application.

As part of this thesis, we propose and evaluate reliability-aware core partitioning

schemes of multicore architectures for multiple multithreaded applications. To consider

both high performance and reliability objectives, a novel metric called Vulnerability-

Delay product (VDP) is presented as part of this study. The VDP metric is a combined

metric that includes both execution time for representing the performance and TVF

for representing the vulnerability of the system to the soft errors. Experimental study

performed on various workloads validates our core partitioning schemes.

A thread-level vulnerability assessment tool is presented by considering user pref-

erences in this thesis. We propose a novel critical thread identification algorithm to

determine critical thread and/or critical region of a thread in a multithreaded applica-

tion. Our analysis evaluates the application threads of a parallel program by consider-

ing their criticality in the execution and selects the most critical thread or threads to be

replicated. The most critical thread in a parallel program is the thread that affects the

other threads via remote memory write operations, since an error in a thread probably

causes a failure also on the dependent threads. Moreover, we extend the evaluation

by exploring critical regions of individual threads and execute redundantly only those

regions to reduce redundancy overhead. Our experimental evaluation indicates that

the replication of the most critical thread improves the system reliability more than

the replication of any other thread.

As a future work, a vulnerability aware thread scheduling strategy can be pro-

posed in order to reduce the residence time of shared data between threads of a mul-

143

tithreaded application on a multicore system in order to increase the reliability of the

computation by decreasing the possible data corruption on shared caches [107]. DAG

(Direct Acyclic Graph) based structures, where nodes represent threads and edges rep-

resent thread communications, may be useful by adding vulnerability related weights

that represent the reliability values. The scheduling algorithm may try to optimize

the graph-based structures with the aim of minimizing application vulnerability to soft

errors [108].

Another direction for future work is to consider energy and power constraints

in addition to reliability for parallel computer architectures. Data reliability may be

investigated in an energy-efficient fashion in the presence of soft errors. Vulnerability-

energy tradeoff analyzes may be possible to optimize system reliability [109, 110]. As

investigated reliability-aware systems in this thesis, energy-aware computing may be

an extension for highly reliable computer architectures [111, 112].

144

REFERENCES

1. Weaver, C., J. Emer, S. S. Mukherjee and S. K. Reinhardt, “Techniques to Re-

duce the Soft Error Rate of a High-Performance Microprocessor”, 31st Annual

International Symposium on Computer Architecture (ISCA), 2004.

2. Sridharan, V. and D. R. Kaeli, “Eliminating Microarchitectural Dependency from

Architectural Vulnerability”, Proceedings of IEEE 15th International Symposium

on High Performance Computer Architecture (HPCA), 2009.

3. S.Magnusson, M.Christensson, J.Eskilson, D.Forsgren, G.Hallberg, J.Högberg,

F. Larrson, A. Moestedt and B. Werner, “Simics: A Full System Simulation

Platform”, IEEE Computer , Vol. 35, No. 2, pp. 50–58, 2002.

4. Luk, C.-K., R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi and K. Hazelwood, “Pin: building customized program analysis tools

with dynamic instrumentation”, Proceedings of the conference on Programming

language design and implementation, 2005.

5. Cooley, J. W. and J. W. Tukey, “An Algorithm for the Machine Calculation

of Complex Fourier Series”, Mathematics of Computation, Vol. 19, No. 90, pp.

297–301, 1965.

6. Olukotun, K., B. A. Nayfeh, L. Hammond, K. Wilson and K. Chang, “The case

for a single-chip multiprocessor”, Proceedings of the seventh international confer-

ence on Architectural support for programming languages and operating systems

(ASPLOS), 1996.

7. Hayes, J. P., I. Polian and B. Becker, “An Analysis Framework for Transient-Error

Tolerance”, Proceedings of the 25th IEEE VLSI Test Symposium (VTS), 2007.

8. Shivakumar, P., M. Kistler, S. Keckler, D. Burger and L. Alvisi, “Modeling the

145

Effect of Technology Trends on the Soft Error Rate of Combinational Logic”,

Proceedings of International Conference on Dependable Systems and Networks

(DSN), 2002.

9. Goloubeva, O., M. Rebaudengo, M. S. Reorda and M. Violante, Software-

Implemented Hardware Fault Tolerance, Springer, 2006.

10. Pradhan, D. K., Fault-Tolerant Computer System Design, Prentice Hall, 1996.

11. Neumann, J. V., “Probabilistic logics and the synthesis of reliable organisms from

unreliable components”, Automata Studies , Vol. 34, pp. 43–99, 1956.

12. Brown, W., J. Tierney and R. Wasserman, “Improvement of Electronic-Computer

Reliability through the Use of Redundancy”, IEEE Transactions on Electronic

Computers, Vol. 10, No. 3, pp. 407–416, 1961.

13. Vaidya, N. and D. Pradhan, “Fault-Tolerant Design Strategies for High Reliability

and Safety”, IEEE Transactions on Computers , Vol. 42, No. 10, pp. 1195–1206,

1993.

14. Koren, I. and S. Su, “Reliability analysis of N-modular redundancy systems with

intermittent and permanent faults”, IEEE Transactions on Computers , Vol. 28,

No. 7, pp. 514–520, 1979.

15. Austin, T. M., “DIVA: A Reliable Substrate for Deep Submicron Microarchitec-

ture Design”, Proceedings of 32nd Annual ACM/IEEE International Symposium

on Microarchitecture (MICRO), 1999.

16. Reinhardt, S. K. and S. S. Mukherjee, “Transient Fault Detection via Simul-

taneous Multithreading”, 27th Annual International Symposium on Computer

Architecture (ISCA), 2000.

17. Mukherjee, S. S., M. Kontz and S. K. Reinhardt, “Detailed Design and Eval-

146

uation of Redundant Multithreading Alternatives”, 29th Annual International

Symposium on Computer Architecture (ISCA), 2002.

18. Wells, P. M., K. Chakraborty and G. S. Sohi, “Mixed-Mode Multicore Reliabil-

ity”, Proceedings of International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), 2009.

19. Ungsunan, P. D., C. Lin, X. Kong and Y. Gai, “Improving Multi-Core System

Dependability with Asymmetrically Reliable Cores”, International Conference on

Complex, Intelligent and Software Intensive Systems, 2009.

20. Oh, N., P. P. Shirvani and E. J. McCluskey, “Error Detection by Duplicated In-

structions in Super-Scalar Processors”, IEEE Transactions on Reliability , Vol. 51,

No. 1, pp. 63–75, 2002.

21. Reis, G. A., J. Chang, N. Vachharajani, R. Rangan and D. I. August, “SWIFT:

Software Implemented Fault Tolerance”, Proceedings of International Symposium

on Code Generation and Optimization (CGO), 2005.

22. Reis, G. A., J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S.

Mukherjee, “Design and evaluation of hybrid fault-detection systems”, Proceed-

ings of International Symposium on Computer Architecture (ISCA), 2005.

23. Mukherjee, S. S., C. Weaver, J. Emer, S. K. Reinhardt and T. Austin, “A Sys-

tematic Methodology to Compute the Architectural Vulnerability Factors for a

High-Performance Microprocessor”, Proceedings of Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), 2003.

24. Sridharan, V. and D. R. Kaeli, “Quantifying Software Vulnerability”, Workshop

on Radiation Effects and Fault Tolerance in Nanometer Technologies (WREFT),

2008.

25. Yan, J. and W. Zhang, “Compiler-guided Register Reliability Improvement

147

Against Soft Errors”, Proceedings of 5th ACM international conference on Em-

bedded software (EMSOFT), 2005.

26. Borodin, D., B. B. Juurlink and S. Vassiliadis, “Instruction-Level Fault Tolerance

Configurability”, International Conference on Embedded Computer Systems: Ar-

chitectures, Modeling and Simulation (IC-SAMOS), 2007.

27. Nair, A. A., L. K. John and L. Eeckhout, “AVF Stressmark: Towards an Auto-

mated Methodology for Bounding the Worst-Case Vulnerability to Soft Errors”,

Proceedings of the 43rd Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), 2010.

28. Walcott, K. R., G. Humphreys and S. Gurumurthi, “Dynamic prediction of ar-

chitectural vulnerability from microarchitectural state”, Proceedings of the 34th

annual international symposium on Computer architecture (ISCA), 2007.

29. Li, X., S. V. Adve, P. Bose and J. A. Rivers, “Online Estimation of Architectural

Vulnerability Factor for Soft Errors”, Proceedings of the 35th Annual International

Symposium on Computer Architecture (ISCA), 2008.

30. Zhang, W., “Computing Cache Vulnerability to Transient Errors and Its Impli-

cation”, Proceedings of 20th IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems (DFT), 2005.

31. Zhang, W., “Computing and Minimizing Cache Vulnerability to Transient Er-

rors”, IEEE Design and Test , Vol. 26, No. 2, pp. 44–51, 2009.

32. Shrivastava, A., J. Lee and R. Jeyapaul, “Cache Vulnerability Equations for Pro-

tecting Data in Embedded Processor Caches from Soft Errors”, Proceedings of

conference on Languages, compilers, and tools for embedded systems (LCTES),

2010.

33. Borodin, D. and B. B. Juurlink, “Protective Redundancy Overhead Reduction

148

Using Instruction Vulnerability Factor”, Computing Frontier (CF), 2010.

34. Oz, I., H. R. Topcuoglu, M. Kandemir and O. Tosun, “Quantifying Thread Vulner-

ability for Multicore Architectures”, Proceedings of 19th Euromicro International

Conference on Parallel, Distributed and Network-Based Computing (PDP), 2011.

35. Oz, I., H. R. Topcuoglu, M. Kandemir and O. Tosun, “Thread vulnerability in

parallel applications”, Journal of Parallel and Distributed Computing , Vol. 72,

No. 10, pp. 1171–1185, 2012.

36. Culler, D., J. Singh and A. Gupta, Parallel Computer Architecture: A Hardware/-

Software Approach, Morgan Kaufmann, 1999.

37. Intel Architecture Software Developer’s Manual Volume 2: Instruction Set Refer-

ence, http://www.intel.com/design/intarch/manuals/243191.htm, accessed

at March 2012.

38. C.Bienia, S.Kumar, J. P. Singh and K. Li, “The PARSEC Benchmark Suite:

Characterization and Architectural Implications”, Proceedings of international

conference on Parallel architectures and compilation techniques (PACT), 2008.

39. Woo, S. C., M. Ohara, E. Torrie, J. P. Singh and A. Gupta, “The SPLASH-

2 Programs: Characterization and Methodological Considerations”, Proceedings

of the 22nd Annual International Symposium on Computer Architecture (ISCA),

1995.

40. Bienia, C., S. Kumar and K. Li, “PARSEC vs. SPLASH-2: A Quantitative

Comparison of Two Multithreaded Benchmark Suites on Chip-Multiprocessors”,

Proceedings of the IEEE International Symposium on Workload Characterization

(IISWC), 2008.

41. Clark, J. A. and D. K. Pradhan, “Fault Injection”, Journal Computer , Vol. 28,

No. 6, pp. 47–56, 1995.

149

42. Arlat, J., M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins

and D. Powell, “Fault Injection for Dependability Validation: A Methodology and

Some Applications”, IEEE Transactions on Software Engineering , Vol. 16, No. 2,

pp. 166–182, 1990.

43. Gunnetlo, O., J. Karlsson and J. Tonn, “Evaluation of Error Detection Schemes

Using Fault Injection by Heavy-ion Radiation”, International Symp. Fault-

Tolerant Computing , 1989.

44. Karlsson, J., J. Arlat and G. Leber, “Application of Three Physical Fault In-

jection Techniques to the Experimental Assessment of the MARS Architecture”,

IEEE International Working Conference Dependable Computing for Critical Ap-

plications , 1995.

45. Hsueh, M.-C., T. K. Tsai and R. K. Iyer, “Fault Injection Techniques and Tools”,

Journal Computer , Vol. 30, No. 4, pp. 75–82, 1997.

46. Han, S., K. Shin and H. Rosenberg, “DOCTOR: An IntegrateD SOftware Fault In-

jeCTiOn EnviRonment”, Computer Performance and Dependability Symposium,

1995.

47. Kanawati, G. A., N. A. Kanawati and J. A. Abraham, “FERRARI: A Flexible

Software-Based Fault and Error Injection System”, IEEE Transactions on Com-

puters, Vol. 44, No. 2, pp. 248 – 260, 1995.

48. Stott, D. T., B. Floering, D. Burke, Z. Kalbarczyk and R. K. Iyer, “NFTAPE: A

Framework for Assessing Dependability in Distributed Systems with Lightweight

Fault Injectors”, In Proceedings of the IEEE International Computer Performance

and Dependability Symposium, 2000.

49. Chandra, R., R. M. Lefever, K. R. Joshi, M. Cukier and W. H. Sanders, “A

Global-State-Triggered Fault Injector for Distributed System Evaluation”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 15, No. 7, pp. 593–605,

150

2004.

50. Hari, S. K. S., M.-L. Li, P. Ramachandran, B. Choi and S. V. Adve, “mSWAT:

low-cost hardware fault detection and diagnosis for multicore systems”, Proceed-

ings of the 42nd Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO), 2009.

51. Wang, N. J., A. Mahesri and S. J. Patel, “Examining ACE analysis reliabil-

ity estimates using fault-injection”, Proceedings of the 34th annual international

symposium on Computer architecture, 2007.

52. Jacques-Silva, G., B. Gedik, H. Andrade, K.-L. Wu and R. K. Iyer, “Fault

injection-based assessment of partial fault tolerance in stream processing applica-

tions”, Proceedings of the 5th ACM international conference on Distributed event-

based system, 2011.

53. Bach, M. M., M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood,

A. Jaleel, C.-K. Luk, G. Lyons, H. Patil and A. Tal, “Analyzing Parallel Programs

with Pin”, Journal Computer , Vol. 43, No. 3, pp. 34–41, 2010.

54. Fault Analysis Using Pin, http://www.cs.virginia.edu/kim/publicity/pin/

tutorials/ISCA33/index.htm, accessed at November 2012.

55. Oz, I., H. R. Topcuoglu, M. Kandemir and O. Tosun, “Performance-reliability

tradeoff analysis for multithreaded applications”, Design, Automation, and Test

in Europe (DATE), 2012.

56. Gupta, A. and V. Kumar, “The Scalability of FFT on Parallel Computers”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 4, No. 8, pp. 922–932,

1993.

57. Dursun, H., K.-I. Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia,

A. Nakano and P. Vashishta, “A Multilevel Parallelization Framework for High-

151

Order Stencil Computations”, Proceedings of International Euro-Par Conference

on Parallel Processing , 2009.

58. Krishnamoorthy, S., M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev

and P. Sadayappan, “Effective automatic parallelization of stencil computations”,

Proceedings of Programming language design and implementation (PLDI), 2007.

59. Kamil, S., K. Datta, S. Williams, L. Oliker, J. Shalf and K. Yelick, “Implicit

and explicit optimizations for stencil computations”, Proceedings of Workshop on

Memory system performance and correctness, 2006.

60. Renganarayana, L., M. Harthikote-Matha, R. Dewri and S. Rajopadhye, “To-

wards Optimal Multi-level Tiling for Stencil Computations”, Proceedings of Par-

allel and Distributed Processing Symposium, 2007.

61. Frenkel, D. and B. Smit, Understanding Molecular Simulation: From Algorithms

to Applications , Academic Press, 2001.

62. Singh, J. P., W. Weber and A. Gupta, “SPLASH: Stanford parallel applications

for shared-memory”, Technical Report, Stanford University , 1991.

63. Teraflops Research Chip, http://techresearch.intel.com/articles/

Tera-Scale/1449.htm, accessed at December 2011.

64. Borkar, S., “Thousand core chips: a technology perspective”, Proceedings of the

44th annual Design Automation Conference (DAC), 2007.

65. Bitirgen, R., E. Ipek and J. F. Mart́ınez, “Coordinated Management of Multiple

Interacting Resources in Chip Multiprocessors: A Machine Learning Approach”,

Proceedings of International Symposium on Microarchitecture (MICRO), 2008.

66. Guo, F., Y. Solihin, L. Zhao and R. Iyer, “A Framework for Providing Quality of

Service in Chip Multi-Processors”, Proceedings of 40th IEEE/ACM International

152

Symposium on Microarchitecture (MICRO), 2007.

67. Eyerman, S. and L. Eeckhout, “System-Level Performance Metrics for Multipro-

gram Workloads”, IEEE Micro, Vol. 28, No. 3, pp. 42–53, 2008.

68. Gonzalez, R. and M. Horowitz, “Energy Dissipation In General Purpose Micro-

processors”, IEEE Journal of Solid-State Circuits , Vol. 31, No. 9, pp. 1277–1284,

1996.

69. Ding, Y., M. Kandemir, M. J. Irwin and P. Raghavan, “Dynamic Core Partition-

ing for Energy Efficiency”, Proceedings of the 6th Workshop on High-Performance,

Power-Aware Computing (HPPAC), 2010.

70. Chen, J.-J. and L. Thiele, “Platform synthesis and partitioning of real-time tasks

for energy efficiency”, Journal of Systems Architecture, Vol. 57, No. 6, pp. 573–

583, 2011.

71. Pan, A., O. Khan and S. Kundu, “Improving Yield and Reliability of Chip Mul-

tiprocessors”, Design, Automation and Test in Europe Conference and Exhibition

(DATE), 2009.

72. Bosilca, G., R. Delmas, J. Dongarra and J. Langou, “Algorithm-based fault toler-

ance applied to high performance computing”, Journal of Parallel and Distributed

Computing (JPDC), Vol. 69, No. 4, pp. 410–416, 2009.

73. Soundararajan, N., A. Sivasubramaniam and V. Narayanan, “Characterizing the

soft error vulnerability of multicores running multithreaded applications”, Pro-

ceedings of the ACM SIGMETRICS international conference on Measurement and

modeling of computer systems, (SIGMETRICS), 2010.

74. Liu, H., W.-M. Lin and Y. Song, “An efficient processor partitioning and thread

mapping strategy for mesh-connected multiprocessor systems”, Proceedings of the

ACM symposium on Applied computing (SAC), 1997.

153

75. El-Moursy, A., R. Garg, D. Albonesi and S. Dwarkadas, “Partitioning Multi-

Threaded Processors with a Large Number of Threads”, IEEE International Sym-

posium on Performance Analysis of Systems and Software (ISPASS), 2005.

76. Raasch, S. E. and S. K. Reinhardt, “The impact of resource partitioning on SMT

processors”, 12th International Conference on Parallel Architectures and Compi-

lation Techniques (PACT), 2003.

77. Ravi, I., “CQoS : A Framework for Enabling QoS in Shared Caches of CMP

Platforms”, Proceedings of the 18th Annual International Conference on Super-

computing (ICS), 2004.

78. Chang, J. and G. S. Sohi, “Cooperative Cache Partitioning for Chip Multiproces-

sors”, Proceedings of the International Conference on Supercomputing , 2007.

79. Kamil, K., F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu and M. Valero, “Power

and Performance Aware Reconfigurable Cache for CMPs”, The Second Interna-

tional Forum on Next Generation Multicore/Manycore Technologies , 2010.

80. Yi-Hung, W., Y. Chuan-Yue, K. Tei-Wei, H. Shih-Hao and C. Yuan-Hua,

“Energy-efficient real-time scheduling of multimedia tasks on multi-core proces-

sors”, Proceedings of the 2010 ACM Symposium on Applied Computing (SAC),

2010.

81. Srikantaiah, S., R. Das, A. K. Mishra, C. R. Das and M. Kandemir, “A case for in-

tegrated processor-cache partitioning in chip multiprocessors”, Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis ,

2009.

82. Oz, I., H. R. Topcuoglu, M. Kandemir and O. Tosun, “Reliability-Aware Core

Partitioning in Chip Multiprocessors”, Journal of Systems Architecture, Vol. 58,

No. 3-4, pp. 160–176, 2012.

154

83. Snavely, A. and D. M. Tullsen, “Symbiotic jobscheduling for a simultaneous multi-

threaded processor”, Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2000.

84. Oz, I., H. R. Topcuoglu, M. Kandemir and O. Tosun, “User-Assisted Thread-Level

Vulnerability Assessment Tool”, submitted to IEEE Transactions on Computers,

2013.

85. Reis, G. A., J. Chang, N. Vachharajani, R. Rangan, D. I. August and S. S.

Mukherjee, “Software-controlled fault tolerance”, ACM Transactions on Archi-

tecture and Code Optimization, Vol. 2, No. 4, pp. 366–396, 2005.

86. Wang, C., H. seop Kim, Y. Wu and V. Ying, “Compiler-Managed Software-based

Redundant Multi-Threading for Transient Fault Detection”, Proceedings of Inter-

national Symposium on Code Generation and Optimization (CGO), 2007.

87. Shye, A., J. Blomstedt, T. Moseley, V. J. Reddi and D. a. Connors, “PLR: A

Software Approach to Transient Fault Tolerance for Multicore Architectures”,

IEEE Transactions on Dependable and Secure Computing , Vol. 6, No. 2, pp. 135–

148, 2009.

88. Sanchez, D., J. L. Aragon and J. M. Garcia, “REPAS: Reliable Execution for

Parallel ApplicationS in Tiled-CMPs”, 15th International Euro-Par Conference,

2009.

89. Sanchez, D., J. L. Aragon and J. M. Garcia, “Extending SRT for parallel appli-

cations in tiled-CMP architectures”, Proceedings of the 2009 IEEE International

Symposium on Parallel and Distributed Processing , 2009.

90. Hyman, R., K. Bhattacharya and N. Ranganathan, “Redundancy Mining for

Soft Error Detection in Multicore Processors”, IEEE Transactions on Computers ,

Vol. 60, No. 8, pp. 1114–1125, 2011.

155

91. Ozturk, O., “Improving chip multiprocessor reliability through code replication”,

Computers and Electrical Engineering , Vol. 36, pp. 480–490, 2010.

92. Rashid, M. and M. Huang, “Supporting highly-decoupled thread-level redundancy

for parallel programs”, International Symposium on High Performance Computer

Architecture (HPCA), 2008.

93. Gomaa, M. A. and T. N. Vijaykumar, “Opportunistic Transient-Fault Detection”,

Proceedings of International Symposium on Computer Architecture (ISCA), 2005.

94. Soundararajan, N., A. Parashar and A. Sivasubramaniam, “Mechanisms for

Bounding Vulnerabilities of Processor Structures”, Proceedings of the 34th an-

nual international symposium on Computer Architecture (ISCA), 2007.

95. Feng, S., S. Gupta, A. Ansari and S. Mahlke, “Shoestring: probabilistic soft

error reliability on the cheap”, Proceedings of the fifteenth edition of ASPLOS on

Architectural support for programming languages and operating systems , 2010.

96. Vera, X., J. Abella, J. Carretero and A. González, “Selective replication: A

lightweight technique for soft errors”, ACM Transactions on Computer Systems

(TOCS), Vol. 27, No. 4, pp. 40–70, 2009.

97. Reddy, V. K., E. Rotenberg and S. Parthasarathy, “Understanding prediction-

based partial redundant threading for low-overhead, high- coverage fault toler-

ance”, Proceedings of the 12th international conference on Architectural support

for programming languages and operating systems (ASPLOS), 2006.

98. Parashar, A., A. Sivasubramaniam and S. Gurumurthi, “SlicK: slice-based local-

ity exploitation for efficient redundant multithreading”, Proceedings of the 12th

international conference on Architectural support for programming languages and

operating systems (ASPLOS), 2006.

99. Borodin, D., B. B. Juurlink, S. Hamdioui and S. Vassiliadis, “Instruction-Level

156

Fault Tolerance Configurability”, Journal of Signal Processing Systems, Vol. 57,

No. 1, pp. 89–105, 2009.

100. Kumar, S. and A. Aggarwal, “Self-checking instructions: reducing instruction

redundancy for concurrent error detection”, Proceedings of the 15th international

conference on Parallel architectures and compilation techniques (PACT), 2006.

101. G.Chen and M.Kandemir, “Energy-aware computation duplication for improving

reliability in embedded chip multiprocessors”, Asia and South Pacific Conference

on Design Automation, 2006.

102. G.Chen, M.Kandemir and I.Kolcu, “Memory-Conscious Reliable Execution on

Embedded Chip Multiprocessors”, International Conference on Dependable Sys-

tems and Networks (DSN), 2006.

103. Shye, A., T. Moseley, V. J. Reddi, J. Blomstedt and D. A. Connors, “Using

Process-Level Redundancy to Exploit Multiple Cores for Transient Fault Toler-

ance”, Proceedings of the 37th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), 2007.

104. Braunl, T., S. Feyrer, W. Rapf and M. Reinhardt, Parallel Image Processing ,

Springer, 2001.

105. Sheaffer, J. W., D. P. Luebke and K. Skadron, “The Visual Vulnerability Spec-

trum: Characterizing Architectural Vulnerability for Graphics Hardware”, Pro-

ceedings of Eurographics/ACM Graphics Hardware 2006 (GH), 2006.

106. Mattson, T. G., B. A. Sanders and B. L. Massingill, Patterns for Parallel Pro-

gramming , Addison-Wesley, 2004.

107. Kadayif, I., H. Sen and S. Koyuncu, “Modeling soft errors for data caches and al-

leviating their effects on data reliability”, Journal Microprocessors and Microsys-

tems , Vol. 34, No. 6, pp. 200–214, 2010.

157

108. Bosilca, G., A. Bouteiller, A. Danalis, T. Hèrault, P. Lemarinier and J. J. Don-

garra, “DAGuE: A Generic Distributed DAG Engine for High Performance Com-

puting”, IEEE International Symposium on Parallel and Distributed Processing

Workshops and Phd Forum (IPDPSW), 2011.

109. Li, L., V. Degalahal, N. Vijaykrishnan, M. Kandemir and M. J. Irwin, “Soft error

and energy consumption interactions: a data cache perspective”, International

symposium on Low power electronics and design (ISLPED), 2004.

110. Jeyapaul, R. and A. Shrivastava, “Smart cache cleaning: Energy efficient vulnera-

bility reduction in embedded processors”, International Conference on Compilers,

Architectures and Synthesis for Embedded Systems (CASES), 2011.

111. Zhao, H., M. Kandemir and M. J. Irwin, “Exploring Performance-Power Tradeoffs

in Providing Reliability for NoC-Based MPSoCs”, International Symposium on

Quality Electronic Design (ISQED), 2011.

112. Ozturk, O., M. Kandemir, M. J. Irwin and S. H. K. Narayanan, “Compiler

Directed Network-on-Chip Reliability Enhancement for Chip Multiprocessors”,

Conference on Languages, compilers, and tools for embedded systems (LCTES),

2010.

