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ABSTRACT

CHARACTERISTICS OF WEB-BASED TEXTUAL
COMMUNICATIONS

Tayfun Kucikyillmaz
PhD in Computer Engineering
Supervisor: Prof. Dr. Cevdet Aykanat
December, 2012

In this thesis, we analyze different aspects of Web-basddabcommunications
and argue that all such communications share some commeenties. In order to
provide practical evidence for the validity of this argurhewe focus on two com-
mon properties by examining these properties on variousstyjf Web-based textual
communications data. These properties are: All Web-basethwinications contain
features attributable to their author and reciever; and\&b-based communications
exhibit similar heavy tailed distributional properties.

In order to provide practical proof for the validity of ouratins, we provide three
practical, real life research problems and exploit the psgal common properties of
Web-based textual communications to find practical sohgtito these problems. In
this work, we first provide a feature-based result cachiagiiework for real life search
engines. To this end, we mined attributes from user quemiesder to classify queries
and estimate a quality metric for giving admission and ésrctiecisions for the query
result cache. Second, we analyzed messages of an onlingechet in order to predict
user and mesage attributes. Our results show that several arsd message-based
attributes can be predicted with significant occuracy udioth chat message- and
writing-style based features of the chat users. Third, vexide a parallel framework
for in-memory construction of term partitioned inverted@xes. In this work, in order
to minimize the total communication time between processwee provide a bucketing
scheme that is based on term-based distributional pregestiWeb page contents.

Keywords:Web search engine, result caching, cache, chat miningndiaiag, index
inversion, inverted index, posting list.



OZET

WEB TABANLI YAZILI ILETISIM
KARAKTERISTIKLERI

Tayfun Kugikyilmaz
Bilgisayar Muihendisligi, Doktora
Tez YoOneticisi: Prof. Dr. Cevdet Aykanat
Aralik, 2012

Bu tezde, Web tabanli iletisim metotlarinin farkli 6@d#rini inceleyip, degisik
iletisim metotlarinin ortak karakteristikleri oldugundne surdik. Bu tezimizi
kanitlayabilmek icin bu ortak ozelliklerden iki tanesinizerinde yogunlasacak ve
bu ozellikleri derinlemesine inceleyecegiz. Bu 6zdér: Butiin Web tabanli iletisim
metotlar yazarlarina,alicilarina, veya mesajlarin Kenide atfedilebilecek ozellikler
tasirlar. Ve butiin Web tabanli iletisim metotlari bendagilimsal 6zellikler gosterirler.

Bu iki hipotezi kanitlayabilmek amaciyla tg¢ farkl, pigtgercek yasamla ilgili
arastirma problemi tizerinde durduk ve bu iki hipotezilanérak sunulan arastirma
problemlerini cozmeye calistik. Bu problemlerdennltte, halihazirda kullaniimakta
olan bir sorgu motoru icin sorgu 6zelliklerine dayanandtomatik 6grenme yaklasimi
one surdik. Bu calismada, kullanici sorgularindasitd 6zellikler ¢ikartarak bu
Ozellikleri otomatik ©6grenilmis bir model olusturrkaicin kullandik. Bu mod-
ele gore her sorguya bir kalite metrigi atayarak, aramaomoon bellegine kabul
ve atilma kararlarini bu metrik sayesinde yaptikkinci problemde, kullanici ve
mesaj ozelliklerini tahmin etmek amaci ile bir chat surawgwin verilerini inceledik.
Sonuclarimiz birgok kullanici ve mesaj bazli ozelligahmin edilebilirligine 151k
tuttu. Uclinci calismamizda, terim bazl ters indekslerifizzabazl ve paralel
olarak olusturulmalarini inceledik. Bu arastirmada iskemciler arasi toplam iletisim
zamanini minimize edebilmek amaci ile, Web sayfalarindekimlerin dagilimsal
ozelliklerini temel alan bir guruplama metodu onerdik.u Bzellikleri kullanarak,
islemciler arasi iletisim zamanini, islemci gorewgdanini da dikkate alacak sekilde
nasil azaltabilecegimiz yoniinde arastirmalar yaptik

Anahtar $zdikler. Arama Motoru, Sonug 6n bellegi, on bellek, Chat madéricveri
madenciligi, indeks tersleme, ters dizin.

Vi
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Chapter 1

Introduction

1.1 A Cohesion of Definitions: Communication and

Knowledge Dissemination

It is widely believed that the first use of written languagaiorates to Mesopotamia
around 3200 BC. At that time, the use of writing was eithergektrack of valuable
resources such as grain or beer, or to preserve memorabitse¥®r a very long time,
writing is used solely to preserve the available informa@md pass it to next genera-
tions. Around 500 BC, writing has started to be used for a detefy different reason:
communication. First written communique according to #itmony of ancient his-
torian Hellanicus the first, is a hand written letter by PamsQueen Atossa daughter
of Syrus, mother of Xerxes. Although not an invention by litsine use of writing

1
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as a means of communication is a ground breaking event fdrihean kind that still

affects our lifestyle.

From the first appearance of letters in human history up omtl 1940’s, writing
is used only for two distinct purposes: as a means of commatioit (such as us-
ing letters or telegrams), or for sharing and protectingwdealge (e.g., books, glyphs
and etc.). When we examine post-40’s writing style, comrmation-oriented writ-
ings have several distinctions from other literary producFirst and foremost, all
communication-oriented writings target a person or a pmsjtwvhich implies a degree
of intimacy (acquaintance) between two peers. An even muopoitant distinction
due to this intimacy is that, these writings are generallyepted as a private commu-
nication media and involve some sort of secrecy between aamuating peers. Even
today, social custom dictates that we seal envelopes whaingdetters as a courtesy

of privacy.

With the development of computers, the mankind finds new séaustore valu-
able information. Instead of writing on paper, papyrus,m@cribing on temple walls,
computers allow information to be kept as electrical statathout physical limita-
tions or constraints. Just as in the case of the inventiohefaritten text, the use of
computers as a means for communication followed the intbon of computers as
a knowledge storage medium. HERMES, the email system bititiwARPANET,
was one of the first attempts of mankind for using computessragans to communi-

cate. Still, the use of computers both as a storage and a coioation medium was
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not very different from the paper-based methods, up unil-&880’s, until when the

Internet emerges.

The Internet phenomenon arose in mid 1990’s, when smallorktistart to merge
with each other, and the World Wide Web start to be availabledmmon people.
Throughout the world, millions of people start to connectiriternet, building the
worlds’ largest society. Starting as a huge interactivewkedge repository, Internet
also rapidly assumed the mantle of a communications mediowever, it was evi-
dent from the first day that, letters or mails, as the sole okt traditional textual
communications, would both be unsuitable and insufficieeans of communication
for such a large community. Thus, the community has devitsedaw ways to com-

municate.

As the Internet community grows larger and larger, peopt®bee acquainted with
a lot of new terms such as “forums, bulletin boards, and blog¢hile these terms
are derived from the physical world, the Internet commuaggigns them whole new
meanings. With such communication platforms, people gasitess expert knowl-
edge and opinions, share their personal feelings and thsughd even create new

relationships.

The most significant aspect of this new form of communicaisotwofold. First,
the intimacy and privacy aspects of the traditional text@hmunications become

extinct in this new communication media. Most of the dialagssuch platforms
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cannot be classified as peer-to-peer communications, therrgeer-to-community
communications. Trust and privacy in these media are rdathigeted towards a self-
constructed community instead of individuals. Secondhsndirect communication

methods combine both objectives of traditional writingttbwriting as a knowledge
media, and writing as a communication media. In fact, whiaajgpening at the current
time is that we, the new Internet generation, are assigncwgpletely new meaning
to communication. Today, communication through the Worid&XVeb does not only
mean a conversation between two peers, but also a texiakiferience within a com-
munity. It also encapsulates the knowledge sharing phenomef traditional writing,

making everyday conversation a more elite and complex issue

In this thesis, we address this amalgamation of commupoicaind knowledge
dissemination. Throughout this text we will call this conmation and information
sharing phenomenon the “Internet communication” and tyyrave that every Internet
communication method shares some common properties. &r twgrove our claim,
we will provide three works from various areas of computeesce, each of which is

performed on different types of communication platforms.

Before presenting these varying works, we will first provadbackground on the
differing communication platforms over a taxonomy of todayommunications. Then
we continue by establishing the common properties of difiecommunication plat-
forms, and present the connections of the works presenttddsrihesis with the ac-

claimed properties.
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Web-Based Textual Internet Communications

/

/

Peer-to-Peer Internet Indirect Internet
Communications Communications

Instant Asynchronous User-Directed Anonymous

MSN Email Services / / \
Chats

/

1cQ Human Automated Human Automated
GooaleTalk Generated MovieLens Generated Web Search
9 Twitter Wikipedia Engines
MUD's Recommender
Facebook Systems Wiktionary Google Scholar
LinkedIn E-Commerce Forums Dblp
Sites .
MySpace Fraud Detection Blogs LiveJournal
Club Nexus Tools Yahoo!Answers
Youtube
Imdb

Figure 1.1: A taxonomy of Web-based textual communicatiealia.

1.2 Background

The number of proposals and presentations about Web-bestel Internet commu-
nications in the literature is so vast that it would be a &fittempt to list even the
mainstream publications. Instead we try to provide a diassion of the textual Inter-
net communications on the Web. Figure 1.1 provides a taxgraiieb-based textual
communications media. In this taxonomy, we first categaezéual communications

media into two according to its target audience: peer-te-pad indirect.

In peer-to-peer communications, each message/dialogtantiated by a specific
user, and each user message/dialog is written to targetiaatiecipient. Commonly,
the aim of peer-to-peer communications is to contact anderse with an acquain-

tance. This conversation can be on a real time basis sinsilarface-to-face talk, or
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without any timely obligation like writing a letter. Thuseer-to-peer communication
media can be further classified according to their temp@atiures as instant peer-to-

peer and asynchronous peer-to-peer communication media.

In instant peer-to-peer communications, users can invalveal time textual con-
versations over the Internet. The Microsoft Network (conmig&known as MSN) (89),
Google Talk (Gtalk), Instant Messaging Computer Prograog)(i(155), chatting
servers (8; 81; 82; 118), and multi user dungeons (MUD’syarg well known exam-

ples of such communication platforms.

In asynchronous peer-to-peer communications, the intethieouser is to transmit
a message to another user. The most well known type of theseuoaications me-
dia is emails (19; 22; 39; 40; 78; 130; 141; 144; 149) A largenhar of work has
been conducted on email messages and mailing platforms.e ®briine streamline
topics of these research are focused on writing style aisa{$49), author characteri-
zation (141), author attribution (39; 144), social networiking (19; 22; 78; 130), and

forensic studies (40).

In indirect textual communication platforms, users comioate through access-
ing/producing published data. In this sense, indirectrimdecommunications resemble
a knowledge sharing activity more than a communicatiorvegti In indirect com-

munication platforms, the accessible information coulthexi be created by a user,
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or published automatically according to the needs of thesulsg means of a com-
puterized system. Thus, indirect communications, by theiy nature, are all asyn-
chronous. In these platforms, the use of the communicatiedianis to disseminate
information within a computer-mediated society, or as atgbution to a knowledge

base over the Internet. According to the audience of thesemumications we cate-
gorize indirect communications into two: peer-to-comntydirected and anonymous
communications media. Within these categories, indireotrmunications can further
be categorized with respect to the author of the data: hureaergted or automated

communication platforms.

The peer-to-community directed human-generated comratiait platforms are
generally social networking sites where people can rate thiémacy by declaring
each other as friends, foes, or acquaintances. A commomadiesistic of such plat-
forms is that they allow their users to create communities, disseminate informa-
tion within these communities. The asset of ability to cgescial communities is
twofold. First it allows users to establish a trust with atlh&formation publishers
based on common interests, and thus allow users to only krowsted information.
Second it facilitates two types of communication altenwesj either to communicate
with the trusted users in a private manner, or disseminavevladge publicly. Twit-
ter (66; 67; 115; 137), Facebook (43; 93; 150), Myspace (89; 140), LinkedIn (90),

Club Nexus (3), and Slashdot Zoo (52; 85) are excellent ekzsrgd such platforms.

In user-directed automated communication media, throuffgrent statistical and



Chapter 1.Introduction 8

machine learning methods, the user patterns are analyzedder to extract user-
preferential information. As an illustrative example, th®vieLens (132) platform
is a movie recommendation site, where the user ratings dregal and analyzed in
order to find user movie preferences. In the light of the figdinthe site make rec-
ommendations to each user about upcoming movies. Reconamgystems (84) and

e-commerce (102; 112) sites are other examples of such comation platforms.

Anonymous human-generated communication platforms spaed to knowledge
bases over the Internet. These knowledge bases are ustedhgd and maintained
by Internet users either as a community effort or individjgalVarious forums (2),
blogs (1; 17), and bulletin boards fall into this categonyjith¥he recent popularity of
such platforms, some professional, corporate funded wessof this media has also
emerged. Some examples of such efforts are Wikipedia (1&8}, Wiktionary (161),

Yahoo!Answers (90), Youtube (20; 51), and Internet Movig¢dbase (IMDB) (68).

Unlike other platforms, the objective of anonymous aut@datystems is analyz-
ing the already existing information base and facilitaterusccess instead of gener-
ating new information. The most commonly used example ohgnmmus automated
systems is Web search engines (53; 157). Web search engimédepa means to
"dig out” existing information without consulting to an esqt or doing exhaustive
searches over the Internet. In order to provide sound resgsoto user queries, Web

search engines catalog the whole Internet knowledge bask tihis knowledge base
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according to each user query, and by using several anabdss éxtract the most rel-
evant results that would possibly satisfy the user requeSiher than Web search
engines, several more specialized cataloging servicesfallsinto this category ac-
cording to our taxonomy. Co-authorship sites such as DBLRGB LiveJournal (16),

and GoogleScholar (37) are examples of such specializeitssr

1.3 Motivation

As Section 1.2 suggests, the versatility of Internet comigation media is unparallel.
However, literature also suggests that all communicatiatigrms, and the text within
such communications have common properties. These commoperties vary from

community graph-based properties (i.e. the connectiviith® community, the degree
and radius of the communication graph), vocabulary-basegdepties (i.e. the varia-
tions of peer vocabularies and vocabulary distributiots)structural properties (i.e.

heavy use of misspelling and noise due to anonymity of thenconities).
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In this work, we will concentrate on two of the most heavilyedsand exploitted
properties of the Internet communication media and try tw/jale practical evidence
that these properties hold no matter how versatile the conation structures are.

These properties are:

e Claim 1:All textual communications contain characteristic maskeherent to

its author and receiver.

e Claim 2:All textual Internet communications exhibit similar disttional prop-
erties. Here, as distributional properties, we refer tovigdail distibutions ex-
hibitted by both message logs and vocabularies of textdainat communica-

tions.

In order to prove that these properties hold for all commatidn types, we provide
three practical works on differing areas of computer sagemsing data from differing

communication media:

e AS the first problem, we examined whether it is possible torowp the perfor-
mance of a query result cache for a search engine. To thisnvendse the real

life query logs retrieved from a commercial search engine.

¢ In the second work, we analyzed an efficient framework forstarcting in-

verted indexes in a distributed environment. We use a dataseposed of
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crawls seeded from the university sites in the USA in thiskvofhe dataset

contains more than 7 millin Web Pages.

¢ In the third work, we analyzed the chat message and usebwts on a chat
message log. We use a peer-to-peer chat data retrieved fiihodgs of a uni-
versity chat server. The data contains messages of overgddi}fle during a 30

day period.

In this thesis, we have used three different datasets téyvaur claims. In order
to cover the presented taxonomy as wide as possible, we ehamsdatasets from
Indirect anonymous automated Internet communicatiorigytais and one dataset from

peer-to-peer instant communication platforms.

As the indirect anonymous automated communications dataysed the query
logs of a commercial search engine and a crawl dataset. Téwy ¢pg dataset is not
publicly available and we are not permitted to disclose dpeifications in this thesis.
The crawl dataset is created by downloading the contenttnalf fages starting from
several university sites in the United States. The raw sizbig dataset is 30 GB. As
the peer-to-peer instant communications data, we usedotineersation logs of 1616
people using a local chat server which originates in Bilkemiversity, Turkey. The

dataset contains more than 200,000 chat messages betwarrs\zeers.

The rest of this thesis is organized as follows:

In chapter 2, we will provide a discussion about a machinmiag approach for
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the query result caching using features extracted from #& gueries submitted to
a commercial search engine. The problem of caching on a Wattls@ngine can
be summarized as follows: A critical observation about We#rsh engines is that,
the query load of a Web search engine follows a heavy taitidigion. That is, a

small subset of queries are frequently submitted to theckeamgine, while most of
the distinct queries are submitted only once or no more thauale of times. Given a
set of previously submitted queries and their results, byirsg the frequent queries in
memory, it is possible to respond to a majority of future geby using just memory

references.

The very nature of the caching problem requires that theoelshbe some queries
that are more frequent than others. In fact, these frequesries should be “common
enough” to compensate the computational costs. Thus, thie pvesented in Chap-
ter 2 would provide an insight on claim 2. Additionally, inishwork, we provide a
methodology to improve the hit rate of the cache by usinguiestextracted from user
gueries. In this sense, the presented work exploits thequssy-based characteristics
in order to improve cache performance and thus verifies clairm this chapter our

contributions are as follows:

o First, we apply a machine learning approach to the quenjtreaching problem.
To this end, we attempt to predict the next arrival time ofreqeery and use this

perdiction as a quality metric.
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Second, in our machine learning approach, we used and ¢wdlaa extensive
set of features and examine the importance values of diffdeatures in the

caching problem.

e Third, we identified several different class labels for owahine learning model

and evaluated their predictability and usefulness for tehing problem.

e Fourth, we conducted our experiments on a realistic seargime data. We also
discussed the results of the previous works, and evalub&dapplicability on

realistic datasets.

e Fifth, we applied our approach to both static caching andadyin caching and

evaluated its effectiveness.

e Sixth, during the analysis of static and dynamic cachingpmesent several accu-
rate optimality conditions for both caching methods, arehitfied the possible

room for improvement.

e Last, we applied our findings on a state-of-the-art cachiagnéwork with both

static and dynamic components and present our results.

In Chapter 3, we provide a chat mining framework, where westjae whether
several user and message attributes are predictable by tesih based features of
instant messaging conversations. Some of the examinechndamessage attributes

are: the author of a message, the receiver of the messageotbscope of the user,
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the educational level of a user and etc. We have used seeemaltased and writing
style-based features in order to prove the predictabifityser and message attributes.
The results of this work would be used to verify claim 1. Ountibutions in this

work are as follows:

e To the best of our knowledge, the presented work is the fitstrgit to analyze

online chat messages in the literature.

e We propose a chat mining framework to analyze online chatsages. Our
framework also includes methods for analyzing very shodtehessages and

dealing with several data imbalance problems.

e We analyze both user-specific and message-specific adisilmfitchat messages

and their predictability.

e We used both term-based and writing style-based featurassitomarize and

examine the predictability of chat user and message-spetifibutes.

In Chapter 4, we present a memory-based parallel inverekiframework. In a
nutshell, index inversion problem can also be formulated asatrix transpose prob-
lem, where the transposed matrix would be a term-documeitrixnadn a parallel
formulation of the index inversion problem, the naive agmio would be to trans-
pose local term-document matrices, find a suitable storaggng and communicate

the local indexes among processors. In this work, upon gheafamination of this
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model, we realized that the communication of all local vadabes to a server ma-
chine would create a bottleneck and slow the communicatmsiderably to a point
that naive approach would be inapplicable for real life egst. Thus, we exploit dis-
tributional properties of the term-document matrix andgoree a bucketing strategy.
In this sense, the success of the proposed scheme hints ¢ortieetness of claim 2.

In this chapter our contributions are:

e We propose an in-memory parallel inverted index constauncticheme and com-
pare the effects of different communication-memory orgation schemes to the

parallel inversion time.

e We propose a method to avoid the communication costs assdaiath global
vocabulary construction which also eliminates the needediting a global vo-

cabulary completely.

¢ We investigate several assignment heuristics for impmptie final storage bal-
ance, the final query processing loads, and the communicatists of inverted

index construction.

e We investigate the effects of various communication-mgmanganization

schemes.

e We test the performance of the proposed schemes by perforboth simu-
lations and actual parallel inversion of a realistic Webadat and report our

observations.
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In Chapter 5, we first discuss each presented work in thistlseperately, summa-
rize their scientific contributions and comment on possitbtere directions of these
works. Next, we repeat our remarks on how we exploit our ckamithin these works
and conclude by explaining about how these works can be igettas proof for our

claims in these thesis.



Chapter 2

A Machine Learning Approach for

Result Caching

2.1 Introduction

Today, Web search is the most dominating method for findirdyastessing knowl-
edge. As the volume of information on the Web grows largdseitomes almost im-
possible to find relevant Web documents manually. Web seargines alleviate this
problem by providing their users an easy way to access awmynr#tion over the In-
ternet. However, considering the sheer volume of data oimtieenet and the growing
number of Web users, responding to all user requests wittéagsonable time interval

is not an easy task. In order to respond to user queries, alrseagine must identify

17
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the relevant pages, rank them in relevance order and pridsergsulting set of pages.
All these operations should be carried out in a short amotititne before the Web

user loses interest to the result of his/her query. On therdtand, from the standpoint
of a Web user, the advances in networking and computati@caiblogies are gen-
erating an even increasing demand for faster and more prgcisry results from the

Web search engines.

In order to meet these high access latency and throughpuiteeents of the Web
community, Web search engines employ several performamgeivement techniques.
One of the most commonly used techniques for improving tlaeckeengine perfor-
mance is caching. Caching is motivated by the repetitiodeany of popular queries
and the resulting high temporal locality of the user queriébe idea of caching is
straightforward. By storing only a small portion of the mostmmonly accessed data
in memory, a search engine can respond to future refererfagseo queries without

wasting too much computational and networking resources.

Aside from its immediate benefits, caching could also be @eta®r a search
engine in multiple perspectives: First, by reducing theadatbe transmitted to the
servers, it reduces the network load of the search enginmn8eit reduces user per-
ceived delays by eliminating computation time that neecetsfiient on a query. Third,
by reducing the computational load on the server side, iblesahigher throughput.
Last, it provides higher availability since cached data @ be used as a replica of

the original data regardless of availability constraii®2)(
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Temporal locality in the caching problem for Web search eagimanifests itself
in two forms: as recency and frequency. Recency descriedursty behavior of
user queries. In that respect, a query that is submitted &agecks engine is likely to
be submitted again within a very short time interval. As dnsirative example, this
behavior can be best explained by query submissions bdfier@remiere of a new
sensational movie. It would be reasonable to expect thaymeaople would search
about the movie or its’ cast right before it is shown in theatdut after a couple of
weeks, the number of related queries start to decrease siosepeople have already
watched it. Frequency , describes the steady behavior ofquszies. Some queries,
because of their general popularity, tend to be submittecérfrequently than others.
For example, navigational queries directed to social n&t\sites, shopping sites, and
Web search engines tend to cover a large proportion of theathegiery load of a Web
search engine. Thus, it is reasonable to expect that suaiegueill be submitted

repetitively over long periods of time.

Although recency and frequency of user queries are majoetlyidg features for
the caching problem, none of these two features have suipgower the other in terms
of caching. Past works (45) on caching show that, a comhinaif both works best
as a state-of-the-art caching strategy in Web caching.dlisis stated in literature (13;
50; 87) that Web search queries can be mined to extract $deatares that are not
directly related to temporal locality, but can still impethe effectiveness of caching.

As an illustrative example, it is reasonable to assume that gjueries have a higher
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probability of reoccurring than longer queries. For theesak this example, a good
cache replacement policy should also take query lengthaictount. In that sense, for
an effective caching strategy, not only recency and frequdiut other features should

be incorporated into one policy.

In this chapter, we propose a machine learning approachdafiigood” caching
policy which incorporates several different aspects ofrguiesult caching. Our main
objective is to find a method for incorporating both recennd &equency, as well
as several other valuable features, into a caching polioythis end, we first define
each query as a set of representative features extractedtifr® user queries. In our
approach, instead of a recency- or frequency-sorted caghese a machine learning
cache, where we try to predict the next re-occurrence (nextahitime or IAT-Next)
of each user query and use this information as the cachecespknt policy. In that
respect, the work presented in this chapter is the first gatemliterature to use a
machine learning approach as a cache replacement poliagenRg and frequency,
as two major caching policies, are also incorporated intoapproach as a set of

representative features.

The organization of this chapter is as follows: In Sectio®, 2he previous work
on caching is presented, focusing mainly on the query resaling. In section 2.3,
the machine learning approach in this work is presentedcisgealy, the features and
class labels that are used in this work are presented. liosezt4, the dataset and

experimental setup are explained.
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In Section 2.5 and 2.6, we look at the two extreme cases faoitreaching: First,
in Section 2.5 we analyze the effectiveness of result cgchvinen the cache is fully
static. Then in Section 2.6, we evaluate the other extrenmenvthe cache is fully
dynamic. In these two Sections, different static and dycamsult caching methods
and optimality conditions of both approaches are analyaed,application of the pro-
posed machine learning approach to both cases are exanimepveith experimental
results. In Section 2.7, we combine static and dynamic cgchpproaches into one.
We take the state-of-the-art static-dynamic cache (SD6) & a baseline method,
and apply our machine learning strategy on SDC. We preseeki@mded discussion

on the result caching problem and the results of our experigia Section 2.8.

2.2 Related Work

For search engines caching can be employed on differenitdata such as the posting
lists, precomputed scores, query results, and documebiy.(T'he literature mainly
concentrate on two of these data items: storing the possigydnd storing the query
results. Apart from these works, several hybrid models e proposed in literature.
In (111), the authors propose a five-level caching architector different data items
and propose methods to adress dependencies between tlee ciath items. In (12),
the problem of storing posting lists, query results, andligtentersections are exam-

ined on a static cache setting. The work of (95) and (129) eomate on the similar
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problem on a dynamic setting. In another work (99), the sinproblem is examined
on a parallel architecture. In (134), the authors concémiwa pruning posting lists

and storing these pruned lists to conserve cache space.

The posting list caching (12; 14; 143; 162) correspondsdorgj the inverted lists
of query terms in memory. The aim of posting list caching iavoid disk accesses and
computations required to calculate the relevant queryltes8ince posting list sizes
follow a Zipfian (164) distribution for the Web data, it is @ilsle to answer a large
number of queries by just storing a limited number of poslists (12). However,
even when all the posting lists required to answer a quergtared in memory, these
posting lists may need to be combined to achieve final resuiftieh would still require
additional computational power. Thus, even though highdigs are easily possible

for posting list caching, the computational gain would eited.

Query result caching (5; 6; 13; 45; 87; 88; 98; 101; 110; 138)esponds to
storing the answers of a particular query in memory. The diouery result caching
is to exploit temporal locality of popular queries and resgdo later queries by using
pre-computed answers. Since a query result cache hit esyair exact matching of
the incoming query and the query that is in the cache, theahét of a query result
cache is lower than that of a posting list cache. Howevernhkeit occurs, the results
can be directly answered by the result cache, and thus nei@uhlicomputation is
required. In this work, we focus on caching the query resltais, in this section, we

will concentrate on the proposals about query result cacimiiterature.
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The methods for improving the efficiency of query result éaghin literature
can be categorized into four classes according to policysaets employed during
caching: admission, eviction, prefetching, and refreghiAdmission (13) relates to
giving a decision about whether to cache a query or not, basedjuality metric. The
main purpose of admission is to identify queries that wouwddype the cache and act
as if those queries were never submitted. Eviction (6; 1245550; 98) corresponds
to selecting queries that are least likely to get a hit in tharduture in order to provide
space for admitting newer query submissions. As a baselicéian policy, recency

feature (evicting the least recently used query (LRU) ) idely adopted in literature.

Usually in most search engines, a query returns top 10 méstamt results to
the user. The search engine-generated response pagencugtidie links to these
relevant pages is often referred to as a result page. Forrahseagine, sometimes it
could be more beneficial to admit more than only one resulepgaghe result cache.
Prefetching (45; 87; 88; 100; 101) policies are used to aebmyv many of the result
pages would be most beneficial to store in the result cachke\atmitting a query to
the cache. This way, if a user requests the results of moredha page, the results
would be returned without any extra cost. The main drawbdgkefetching is that
selecting an optimistic policy would pollute the cache wehults that would never be

required which would waste cache space.

Refreshing (24; 25; 31; 125; 126) aims to improve the hit cdtthe result cache

by improving the freshness of the already existing resutigesl in cache. The main
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motivation behind refreshing is that the contents of theheamight get older in time
and would not be able to serve as adequate answers to usejuerefreshing policy
decides which query results should be re-fetched from the ¥dethat the freshness
of the cache contents are preserved and that, the Web sewtte@loes not provide

users outdated information.

In this work, our aim is to find a caching policy by employing chane learning
methods to the query log, so that the hit rate of the queryltresghe is improved.
To this end, we use a static-dynamic cache assumption. $mibthod, the cache is
divided into two segments; a static segment and a dynamineseiy For the static
segment, we use our machine learning approach to find a yunaditric among user
gueries, and use that metric to fetch the most beneficialfaiaries to fill the static
cache. For the dynamic segment, we use our machine leamprgach as an eviction
policy, to find the least beneficial query within the dynamacle and to evict that
guery in order to provide cache space for more recent, andilpiganore beneficial

submissions.

Our proposed method is motivated by several works in thealitee. Throughout
this work, we also adopted some of the past proposals, usedkéaseline for com-
parison, and evaluated their performances on a real litangetWe also feel that, some
of these works should be mentioned due to the parallelisrheir approaches to the

caching problem.
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The work of (98) examines the query result caching for the finse in the litera-
ture. In (98), the author evaluates the effectiveness altreaching with four recency
based eviction policies. The author also emphasizes thertance of frequency for
caching, and for the first time in literature, proposes aistzching scheme. Ac-
cording to his proposed scheme, a static cache is composgkgwith the highest

frequency in the training set.

In (45), the authors, proposed the partitioning of the riesaghe into two segments:
a static segment and a dynamic segment. In their proposeeIn(®dC), the static
cache is filled with the most frequent queries using a quegywhile the dynamic
cache uses a LRU-based eviction policy. In essence, the st&he responds popular
(frequently submitted) queries while a small LRU-basedaiyit component is used
to respond to bursty query behavior. Today, most of the workke literature accept
SDC as a state-of-the-art caching policy and use it as a ddzaseline method along

with LRU.

For result caching in search engines, in literature, thezesaveral proposals that
emphasize using feature-based approaches to exploitatiffeharacteristics of the
user queries. In (13), the authors present a feature-babkession method for query
result caching. In their proposed method, cache is dividemitivo parts: an admission
cache and a controlled cache. Using the query length fedt@rgroposed policy
decides whether to admit the query into the admission cachetoRemaining queries

are admitted into the controlled cache, which is using th& ipRlicy.
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In (110), the authors present another feature-based agptoamprove hit rate
of the static cache. In their approach, they define a stailétric, where stability is
defined as the standard deviation of query frequency witlsordtized time intervals.
In this method, a low standard deviation means that quenoigtikely to be received
again than other queries with higher deviations. Insteaddwfitting most frequent

gueries into the static cache, they filled the cache with rfetable” queries.

Another feature-based result caching architecture isemtesl in (50). In their
work, the authors present a fully dynamic feature-basegltreache eviction scheme.
Using several query-based features, the authors clasadli @coming query into
“query buckets”, where each query bucket is essentially & cRche segment. Then
they prioritize these buckets with respect to their relatit rates and evict queries in
from the bucket with the least hit rate. In that respect, tiheate of a bucket can be

considered as a quality metric for that bucket.

Machine learning methods are also used in result cachegiliténature. In a re-
cent article, (126) applied machine learning methods omyqusult caching. In their
work, th authors propose a machine learned cache invalid&tichnique is proposed-
for determining whether a query result/posting list is fres stale. In their approach,
the authors train a machine learning model in order to ptetthte-to-leave (TTL)
values for each query occurence. To this end, they use $eperey log features for
training their machine learning model. In the sense that fireposed machine learn-

ing approach is applied to each query occurence in the querytheir approach is
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similar to our proposed mechine learning method in this work

As a feature-based result caching policy, our proposed madearning cache
has several differences from the previous works in thedttee. First, we use sev-
eral query-, frequency-, recency-, term-, and user-basatlfes in order to learn a
policy from the past query logs. In that respect, our prodasedel not only incor-
porates query recency and frequency, but also exploits otteacteristic markers of
user queries. Second, our model enables a more flexible agpfor caching, where
the caching policy can be re-trained over time in order teecfthe changes in user
and query bevavior. Third, it allows us to analyze the impddifferent features on

caching.

2.3 Machine Learning Approach for Result Caching

In this work, our aim is to find a “good quality metric” for usqueries, which would
encapsulate query recency, query frequency, and sevdrat query characteristics.
For this purpose, we model the query quality metric as the aeival time (IAT-Next)
of a query. In order to predict the IAT-Next of the queries,wedel the result caching
problem as a single-label regression problem, where nexbhtime is the predicted
class label. We experimented with several variants of |A&xNising different machine
learning tools and algorithms. In this section, we first diéscthe features used as

variables in our machine learning approach, then we desthié class labels used in
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our experiments.

2.3.1 Features

In this work, we used 30 different features extracted fronealistic query log. For a

clear presentation, we classify these features into segoaies. These categories are:
query string-based, user-based, search engine relatadl,fiiequency-based, query
frequency-based, and temporal features. Table 2.1 surpesatie features used in

this work and their categories.

Query string-based features describe the structural piepeof a query. We find
guery string-based features particularly important irs twork, because in the liter-
ature, there were several works that use such features farowing cache perfor-
mance (13; 50). These features are also quite popular inatieirg research since
these features are static. That is, they do not need re-gsmeesince queries do not
change feature values at every occurence. We use five suthiefea Quernyength
is the query size in characters and Wdedunt is the number of terms in a query.
Is.URL_Present is a binary feature, which takes value 1 if the quimygscontains
the sub-string “HTTP” or “FTP”, and 0 otherwise._BomainPresent is another bi-
nary feature that gets the value 1 if the query contains anyeftop-level domain
names (94), and 0 otherwise. AveraQeery Term. Length is the query length divided

by word count of a query.
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User-based features describe general user behavior dilmngubmission of the
guery. We use four user-based featuresUser Logged feature is the average num-
ber of users that are logged into their user accounts diviethe query frequency.
PageNumber describes which page of the query result is requiispdayed by the
user. PagéNumber is a particularly interesting feature for our workca it encap-
sulates the essence of prefetching. Although beyond theesabthe work presented
here, itis also possible to integrate prefetching in ouppsed machine learning cache
using the Pag®&lumber feature. ClickCount is the average number of clicks users is-
sue after getting the result of their query. We include tleatéire in our work, since
it is closely related with the accuracy of the query respensiethe search engine.
First Link_Click_Count is a subset of the Cliokount feature. It is defined as the av-
erage number of first link clicks issued per occurrence ofergju/Ve expect that both
accuracy and the popularity of a query could be exploitedgiboth Click Count and

First Link_Click_Count features.

Search engine related features describe attributes tleanatr directly visible
to the user, but could still contain hints about the poptyadf a query. To-
tal_ NumberOf_Hits is the average number of relevant result pages thattisned
by the search engine to the user query. Note that, the nunildetsos not a static
feature since it is possible that the relevant pages maynekpae to posting of
new pages during testing or some servers may contain partialtdated informa-

tion. RarestQuery Term.Index Size, MostCommonQuery Term.Index Size, and
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AverageQuery Term.Index Size are the minimum, maximum, and average posting

list sizes of the query terms respectively.

The term frequency-based features describe the frequetated aspects of the
guery log. These features relate to the general populafityueries and may infer
the submission rate for each query over time. In order tornpoate frequency to
our approach, as well as to detect possible variances iryfuesguency, we use a
windowing mechanism. In our approach, we calculate the feeguencies of each

guery using its last one minute, one hour, and one day occesan the query log.

Similar to recency, query frequency is another valuabléufeafor caching in the
literature. In order to incorporate query frequency in owamine learning approach,
we define four query frequency-based features. Like termuieacy-based features,
we use a similar windowing method. We define four time frames @alculate query
frequencies within these time frames. These time framesauery frequencies for

the last minute, last hour, and the overall query log.

Temporal features describe the behavior related with sskiomn time of a query.
We define three different features for this purpose. QuupmissionHour is dis-
cretization of query time in hours in Greenwich timezone.e@uDay Count is the
average number of times a query is submitted during day twmheye day time is de-
fined as the interval between 7.00 AM to 19.00 PM. QuEime_Compatibility is a

binary classification for Querfpay_Count feature. After Querpay_Count of a query
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is calculated from the query log, queries are classified tintee groups: day queries,
night queries, and without timezone. If a query is submittedight time more than
80% of the time in the observed portion of the query log, thes tonsidered as a
night query. Similarly, if a query is submitted at day time nmthan 80% of the time
in observed portion of the query log, it is considered as aglagry. A query that is
submitted at a time inconsistent to its timezone is coungeiti@ompatible and given

value 0, and in the latter case 1.

2.3.2 Class Labels

In this work, for predicting the next arrival time of the qiesswe used a two classifier-
approach. First, we trained a singleton classifier in ordepriedict the singleton
gueries. Then, we train a second classifier with a trainirigndeere all singleton

gueries are removed and try to find a regression for the nexaatime (IAT-Next) of

the remaining queries.

The rationale behind using a two-classifier approach islasfe: Since Web query
logs follow a power law distribution (164), most of the disti queries occur only once.
However, singleton queries do not have inter-arrival tirsiese they appear only once
in the dataset, which makes such queries “uninformativétivagard to IAT-Next. Our
experiments also showed that using singleton queries itrdireng set for predicting

next arrival time of queries cause poorly predicted regogsgesults.
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In our approach, the first classifier maps each test instantteetinterval (0,1) by
fitting a regression model, where class label 0 in the trgiset means that the query is
a singleton and class label 1 in the training set means otbenthe results of the first
classifier gives an estimate for each test query being aetimglor not. Throughout

this work, we will refer to this classifier as “the singletdassifier”.

The second classifier takes only the non-singleton queritgeiquery log for fitting
a second regression model, where class label represen¢stingated IAT-Next of a
qguery. Throughout this work, we will refer to this secondsdlidier as “the IAT-Next
regressor”. The class labels in the training set is constdugsing the next arrival times
of the queries within the training set. For the test set, #raeslabel is the objective to
be predicted by the machine learning methods. In our apprdhis prediction would
be used as the quality metric of a query during eviction; itlgde most beneficial to
evict queries that are expected to come later than othewxss ey are the expectation
we infer from the predictions of the machine learning methisdhat such queries will
reside in the cache longest without producing any hits. Nioé&¢, in our approach,
predicting queries as singleton or non-singleton is a dubléhe latter problem in
regard to the information to be predicted, since both clessicompute a regression
of the re-occurence time for each query. However, sinceAlieNext regressor make
the predictions of IAT-Next for singleton queries in an abtarbitrary fashion without
any prior knowledge of singleton queries, in terms of instasize, singleton prediction

is a superset of the latter problem.
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In order to combine the results of these two classifiers we tise approaches. In
the first approach, we used the singleton classifier as ansatnipolicy. According
to this admission policy, the queries that are predictedirgletons are eliminated
directly before cache admission, while the result cacherdered according to the
next arrival time predictions. In the second approach, teeiptions of the singleton
classifier are used as support values for the regressionimdtat is, the results of
both classifiers are multiplied in order to obtain the qyatitetric for each query. In
this sense, the latter approach is an eviction policy forghery result cache. Our
experimental results show that, using singleton queryiptieth as a support value
perform consistently better than using it as an admissiditypoFor this reason, in
the forthcoming discussions we will only refer to the secap@roach as our caching

strategy.

For each of these classifiers, we experimented with fouerdfit class labels: The
number of queries between two appearances, logarithm afuheber of queries be-
tween two appearances, time in seconds between two appearand logarithm of
time in seconds between two appearances of a query. Ourimeal evaluations
showed that all of these class labels perform almost equmlfyredicting the next
arrival time of queries. However, experiments using the benof queries between
two appearances as class label perform slightly better akizer class labels. For the
purpose of clarity, we will present the results of only theatfure in the upcoming

discussions.
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2.4 Data and Setup

In order to examine the effectiveness of the proposed madbarning approach, we
conducted extensive experiments on a realistic datasstromted using query logs of
a commercial search engine. Furthermore, as machine hgpatgorithms, we used
several classifiers for training our result caching polity.this section, we first in-
troduce the query log and discuss the experimental setupambdave used during
our experiments. Then, we present the classifiers that we égyverimented with and

discuss our criterion while selecting these classifiers.

2.4.1 Query Log and Experimental Setup

In order to verify our claims, we conduct our experiment omany log constructed us-
ing submissions to a commercial search engine during 20410 experiments, we
applied several preprocessing operations on the quengstriThe punctuation marks
in the queries are cleared, and query strings are normaliyembnverting all charac-
ters into lowercase. All query terms are rearranged in dpheal order in order to
eliminate dissimilarity as a result of term positions. Hipaspell correction is applied

to the dataset.

In order to test our result caching approach and conduct xpereanents, we di-

vide the dataset into five phases. These phases are call@ddravarmup, training,
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Figure 2.1: The division of the dataset in our experimergirsg.

cooldown, warmup, and test phases. Figure 2.1 summariresdparation on the
qguery log. For a balanced partitioning of data among thessgdh while preserving
the practicality of our approach for deployment on a reatdeangine, the dataset is
divided as follows: The first day of the query log is used formang up the query re-
sult cache for training, the next 6 days are used for traiaingachine learning model.
The 8th day of the query log is used as the cooldown phase. ddldavn phase can
be considered as the dual of the warmup phase. It providesdlohine learning model
a “future knowledge” so that the model can reflect to the faat the data stream is
infinite and the queries at the end of the training log may appegain in the future.
The 9th day of the query log is used as warmup for testing amthgt day of the query
log is used as the test phase. In a practical deploymenggirahe aim of this division
is to use an already existing query log for training a cachgaticy every day, and at
the end of the day prepare a new caching policy for the fortting days in a pipelined

fashion.

As noted earlier in Table 2.1, several features used in tbhikware defined over a
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time frame such as term and query frequency-based featursasg the queries from
the first day of the query log may lead to inconsistencies tmhstime-windowed

features. The purpose of the training-warmup phase is tovadtabilization of these
features. Queries within the training-warmup phase arpped from the dataset for

training purposes.

The queries in the training phase are used for generatingnétodine learned evic-
tion policy. Each query in the training phase is labeled wgHuture interarrival time

(IAT-Next), and we fit our regression model on these queries.

One important problem while generating a regression mad#ie training phase
is that, the very last occurrence of every query in the tragrset would unavoidably
marked with infinite next arrival timestamp due to the fattthe training set is finite
and those queries would not be expected anymore. Howevarpiactical case, it is
highly likely that many such queries would appear again mftiture. The purpose
of the cooldown phase is to provide the queries in the trgiphase a “finite future
knowledge”. This way, the last occurrences of queries intithi@ing phase would be

labeled reflecting their future behaviors.

The last two days of the query log is used as warmup phase ahghase re-
spectively. For both phases, we use our fitted regressiorelmad order to find a
likelihood of future occurrences, and sort the result cacsiag these likelihood val-

ues. The queries in the warmup phase are first used for filhegcache in order to
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prevent cold-start. Then queries in the test phase are osmtuate the effectiveness

of our algorithms.

2.4.2 Setup - Classifiers

We have used several machine learning tools such as WekaJEaf)ge (41), Liblin-

ear (46), and GBDT (159) to fit a regression model to our tregrdata. We analyzed
the results of several machine learning algorithms suchwslayer perceptron, pace
regression, support vector machines, k-nearest neigkladgorithm, logistic regres-
sion, and gradient boosted decision trees in order to findrtbst suitable algorithm

for our problem.

Our experiments showed that algorithms provided by botha\ekd Orange are
not suitable for evaluating large scale data due to their poming time performances.
In terms of efficiency, GBDT performed consistently bettert Liblinear in all exper-
iments. Thus, we choose gradient boosted decision treestaly provided by GBDT

for training our proposed result cache eviction policy.

Gradient boosted decision trees (49) (GBDT) is one of thet mimkely used learn-
ing algorithms in machine learning today. Two appealingdegits popularity are that
first, the results produced by GBDT are simple and interjptetasecond, the models
created by decision tree-based methods are non-pararaettioon-linear. GBDT is

a machine learning method based on on decision trees. ttsaitegression model in
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stages, by computing a sequence of simple decision treeewdach successive tree
is built for refinement of the results of the preceding treeGBDT, decision trees are
generally binary trees, where each tree is composed ofidaai®des. The learning
method is to find the most discriminative criteria for theajatse this criteria as a

decision node, and recursively partition the data at eade wbthe tree.

For our experiments, we have used a version of GBDT basededmiplementation
of (159) which is currently deployed in some commercial skangines. After eval-
uating the effectiveness of GBDT with different number ofideon trees and different
number of nodes in each decision tree, both in terms of rghtime and regression
accuracy, we set the maximum number of trees as 40 and theamahbodes in each

tree as 20 in our experiments.

2.5 Static Caching

In this section, we analyze the effects of static cachingHemresult caching problem.
First, we present several static caching methods alreaggepted in the literature.
Then, we propose two new methods for selecting which quésiadmit into the static
cache: A recency-frequency based approach and a machménlgdased approach.
Additionally, in order to better evaluate the room for impeonent in static caching,

we provide two new, and tighter, bounds for the optimalitpditions of static caching.
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2.5.1 Techniques

In the static cache assumption, the result cache shouldlee fitior to deployment
of the cache. The basic strategy is to use a quality metrizatuate/predict which
gueries would be more likely to come more frequent than atlaerd construct the
static cache using these queries. In this work, in order &duate the effectiveness of
our proposed strategies we have implemented 5 differenypstection strategies. In
order to evaluate the room for improvement in static cackeglso propose two new

optimality conditions. These query selection strategres a

Recency Sorted:Recency is the underlying metric for least recently usedy).R
caching strategy. The LRU heuristic assumes that queriesutnitted recently will
have a lower probability of getting submitted in the neaufat LRU is considered as

a baseline method in most previous caching literature.

Frequency Sorted: Frequency is the underlying metric for least frequentlyduse
(LFU) caching strategy. The LFU heuristic is closely rethteith temporal locality
and is based on the assumption that the most frequent qiretlesquery log are also
likely to exhibit a similar behavior in the future. That isiely are more likely to be

submitted in the future.

Query Deviation Sorted: This strategy is based on the work presented in (110).

In this work, the authors emphasize the fact that frequésased strategies have the
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disadvantage of under-valuing the bursty behavior in qieffic and propose a fre-
guency stability metric. In this strategy, queries that submitted in a more steady

fashion are better candidates for the static cache.

In query deviation sorted caching strategy, in order to wsta the stability of a
query, first the query log is divided into constant lengthdiframes. Then, the query
submissions within each time frame is considered as a udisabmission variation
between frames is calculated for each query. Queries hawiedeast variation is
considered as the best candidates for admission to the ssa&tie. In our experiments,

we selected a time frame of 1 day for evaluating the effentgs of this strategy.

Recency + Frequency SortedDuring our evaluations we observe that, the strat-
egy proposed in (110) suffers from the fact that it is pogsiblover-value queries that
are observed infrequently but have very stable behaviothikstrategy, we adopted

the proposed strategy and make several adjustments.

First, similar to (110), we divide the query log into unit gnframes. We use a
time frame size of 1 day for our experiments. Second, we nbzemthe frequencies of
each query for each time frame using the total number of gaetibmitted during that
time frame. Our motivation is that, since the total numbesumissions within each
time frame is not constant, a normalized query frequencylaevearve better for the
stability of a query. Third, instead of using stability feed¢, we used query expected

frequency as the admission metric. In our strategy, quepgeted frequency is equal
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to the average normalized frequency of a query for one timmé. Finally, we make
an attempt to combine the recency feature into our new glyaféo this end, we use
an aging function during the calculation of query expectedjdiency. According to
our strategy, the query frequency within a newer time frarag tmore effect than the
guery frequency within an old time frame. For example, a yuleat is more frequent
recently but less frequent in the past is more valuable thgueay that is less frequent

recently but more frequent in the past.

Oracle - Test + Train: In order to propose a tighter optimal bound for the static
caching problem we used the Belady’s algorithm. Accordm@eélady’s algorithm,
if, hypothetically, we have known all future occurrenceath query, we could have
decided which queries to keep in the cache in the best pessdy. That is, given a
finite-sized cache, we could select the best set of queriksdp in the static cache.
To this end, we calculated the query frequencies within ¢isé¢ et and pick the most

frequent queries to use in the static cache.

Oracle - Train Only: Although the above strategy is optimal, it requires us to
“clairvoyantly guess” the queries that have never occuirethe train set. In this
strategy, we only picked the most frequent queries in thedets only if they also

occur in the training set.

Machine Learned: In this strategy, we used our proposed machine learning ap-

proach to the training set. We first fitted a regression maglalltqueries, where the
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regression model predicts the next arrival time of the qggerAccording to this model,
gueries with smaller next arrival times are likely to comelieathan others during
the test phase. Using these regression values, we caldulaeestimated test phase-

frequencies of each query and use this value as admissioitrogtthe static cache.

2.5.2 Results
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Figure 2.2: Performance of different static caching sg&e for a fully static cache.

In order to evaluate the effectiveness of different stagiching strategies, we per-
form several experiments. We use the hit rate of each algoras the performance
metric. We have done experiments with each strategy onmgugéche capacities. In

our experiments, we selected the cache capacity as a farafttbe number of distinct
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gueries in the test set and used 1%, 2%, 4%, 8% and 16% of theetess cache ca-
pacities. Figure 2.2 summarizes the performances of éiftestatic caching strategies

on various cache capacities.

For the fully static caching problem, both LRU and LFU stgaés perform almost
equally well, where LRU perform better for the cache capesip to 8% and LFU per-
form better with the 16% cache capacity. Reminding thatmegéeature is more suited
for detecting bursts in query appearance, these resultisechast explained by the fact
that when the cache capacity is limited, increasing popuylaf some queries over-
whelm the frequency order. That is, keeping new queriegatsbf frequent queries
have merits for a more effective caching. However, when #iehe capacity is large
enough, frequency feature start to acknowledge the papulair such new queries
and start performing similarly. And when the cache capasitgrge enough recency
feature start to degrade with respect to frequency due tbecaollution caused by

singleton queries.

Among all policies, the query stability policy perform pest for small cache sizes.
This is due to the fact that several less frequent queries sigwificantly better stability
values than some popular queries, polluting the staticeadbwever, when the cache
size is large enough stability perform better than both LRId &FU policies, since
even with cache pollution there is enough cache space tarancdate the queries
which are both stable and popular at the same time. The sestithis experiment

also show that, the real life search engine data and thewasquery behavior in the
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search engine data is quite different and much more robast tther datasets, and

methods proposed over such data are not directly applitaléal life problems.

In general, our proposed recency + frequency policy perfeeny poorly. This is
due to the fact that, even with normalization, the undegygature of our method is a
combination of query stability and query frequency and buo#thods perform poorly
for small cache sizes. We also argue that combining recendyfraquency into one

policy is not a trivial task that require a more complex nelatthan query aging.

Among all methods, our proposed machine learning strategppn consistently
best for static caching. For small cache sizes the perfocmahthe machine learned
static cache is almost similar to other methods. Howeveh@sache capacity grows
larger the improvement due to machine learned cachingeglyadbecome even more
apparent. We can come up to two conclusions according te ttessilts: First, ma-
chine learning is a viable way for combining both query regeand frequency into
one strategy. Second, in addition to recency and frequdrerg tmay be other global

characteristics of user queries that can be mined to fawlitaching.

Table 2.2 shows the 10 most discriminating features of thehna learning ap-
proach for static caching. Two of the top 3 most discrimingtieatures is variants of
guery frequency which validates the importance of the fezgpy feature in caching.
The QueryTime_Compatibility feature shows that our machine learning apph also

identifies the fact that some queries are more susceptilselimission during certain
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periods of time within a day. word count, page number, quength, and inverted
index sizes of user queries are also identified as severat qtlery characteristics that

may be closely related to the popularity of a user query.
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Figure 2.3: Comparison of machine learned static cachiagesty versus Oracle static
caching strategies and baseline frequency-based strategy

Figure 2.3 compares the baseline algorithm LFU and the madbarned caching
policy with two Oracle algorithms. Although the results sethat, our proposed ma-
chine learned caching policy improve the hit rate of thestzdche only by 0.66%, the
comparison with the optimal methods show that this cortsti@usignificant improve-
ment of 10% within the room of possible improvement. The carigon of the two
oracles also hints the difficulty of the caching problem. fEhis almost 8% difference

in hit rate when the queries that only appear in the test sitcisded in the static
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cache. These queries require a “completely clairvoyantthme to be added to the
static cache, which is for all practical purposes, impdssibhis also hints the robust-
ness of the user behavior and shows it may be possible theddhefor improvement

might be even tighter than what is presented here.

2.6 Dynamic Caching

In this section, we evaluate the dynamic result cachinglprobFor this purpose, we
take the other extreme case, where the result cache is cechpd®nly the dynamic
part. In order to evaluate the room for improvement in theaigit caching problem,
we present Belady’s algorithm as an optimal method of dyosaraching. We then
present our proposed machine learning approach for thenigraaching problem and

validate its effectiveness.

2.6.1 Techniques

The dynamic caching problem is quite different than stagéiching. While in static
caching it is not possible to exchange queries that are icdlobe, dynamic caching
allows us to evict queries from the cache in exchange for sotimer query that would
be more beneficial for the time being. In that sense, dynaatbiag is more flexible

than static caching. In literature (45), the results wighhliybrid models show that static
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caching is more effective for detecting steady behavier frequency) of user queries
while dynamic caching is used for elevating the effectiwsnef a caching policy by

detecting bursty behavior (i.e recency) in user queries.

In order to evaluate the effects of dynamic caching, we conhduperiments on
a fully dynamic cache with several caching policies. As aebas dynamic caching
policy we used the LRU caching policy. We also present theltesf Belady's algo-
rithm as an optimal dynamic caching policy. Finally, we agglour proposed machine
learning approach to dynamic caching and evaluate thetseduie algorithms we have

used can be summarized as:

Least Recently Used (LRU):This is the underlying caching policy for recency.

LRU attempts to fill the cache with the most recent queries.

Belady’s Algorithm: The best possible strategy for a cache with finite size would
be to always keep the queries that would be referenced léiséifuture. This optimal
caching strategy is referred to as the clairvoyant algoritr the Belady’s algorithm.
The impracticality of implementing such a caching strategyan online framework
comes from the fact that it is not possible to know future geegeduring execution.
For representing the room for improvement in the cachindlenmm, we implemented
the Belady’s algorithm as a method that “knows” the futurergureferences during

warmup and test phases.

Machine Learned: In this strategy, we again used our proposed machine learnin
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approach to the training set. Similar to the machine leastatic caching strategy,
we first fitted two regression models to all queries, wherefits® model gives an
estimate whether a query is singleton or not and the secomigingives an estimation
of query’s IAT-Next. We then use the multiplication of bot#gressions and calculate a
guery quality metric. For dynamic result caching, we keapdberies with the highest

guality values in the cache, evicting queries with lowerlguaalues.

During our experiments, we have made an important observatncerning the
performance of the machine learned dynamic result cachernhe regression model
is used to decide which queries to keep in the dynamic cabkbeyredicted singleton
gueries, the singleton queries that are predicted as popudald pollute the cache
and degrade the performance of the result cache severetyreBson of this behavior
is that such singleton queries may rank better than somedracqueries, effectively

preventing them from getting admitted in the long run.

In order to prevent pollution of the cache due to misclassifins, we propose a
segmentation method that merges and honors the LRU policgoling to our seg-
mentation method, we patrtition the query result cache ititceal number of segments.
After each time we process a fixed number of queries, we sfaesh cache partition
that we call a “segment”, in order to write the incoming qgesriln our method, the old
segment become stale since the proposed method quitsgiritio the old segment.
The queries that take hits within the old segment/s are aswved from their re-

spective segments and admitted into the new segment. Addity, whenever a query
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needs to be evicted from the result cache, the eviction idecis performed only on
the queries that are in the oldest segment. Note that all setgnare governed by the
same machine learned policy, and the only difference iskiidtonoring LRU more,
it is possible to evict old, polluting queries from the caetighout any other means of

interference.

2.6.2 Results

We conduct experiments on a dynamic cache using differefitecaapacities and seg-
ment sizes. These experiments have three motivations, Wesvaluate the effects of
varying segment size on the machine learned cache perfaam&scond, we analyze
whether there is a “most suitable” segment size for diffecathe capacities. Third,
we evaluate whether it is possible to find the best segmenfsizhe machine learned
cache prior to testing. That is, whether the best segmeafsund by solely using the
training data would perform equally well while testing therfprmance of the cache

or not.

Figure 2.4 shows the performance of the machine learnedecauth different
cache capacities and segment sizes. The main purpose @xihésiment is to find
the best segment size for each cache capacity. Thus, themadeharning model used
in these experiments is tested the training data to find th&t eféective segment size

prior to testing..
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Figure 2.4: Effect of segment size on hit rate. Machine ledmynamic caching policy
with varying segment sizes.

For all cases, when the segment size is 1 query, the machameeld caching
method performs exactly like LRU policy. This is becausecien decisions are
given over the oldest segment, and due to the order of seghmntapproach exhibit
a recency-sorted behavior. For the 1% cache capacity,astrg the segment size
up to 30,000 queries also increases the hit rate of the cggiohicy. However, with
larger segment sizes, the performance of the algorithmmemtisly drop down, even-
tually to 2.7% when using only 1 segment. This is due to thetfaat, small segment

sizes respect LRU policy more while larger segment sizgzeethe machine learned
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Figure 2.5: Comparison of machine learned caching poliagebne policy LRU, and
Belady’s algorithm.

approach more. Increasing the segment size in a small seakfibthe caching pol-
icy, since using the machine learning approach enablesdii®ypo give more correct
caching decisions. However, further increasing the segmiea leads to cache pol-
lution due to misclassification of singleton queries. Whaa ¢ache capacity is very
small, the effects of this cache pollution is much more apparBoth for cache ca-
pacities 1% and 2of the result cache drops down significavitlyincreasing segment
size. However, with larger segment sizes the performangeadation due to cache

pollution is almost negligible.

Next, we conducted experiments to compare the effectigeenésthe machine

learned dynamic caching policy with the optimal cachingoalhm and the baseline
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LRU. Figure 2.5 shows the results of these experiments. \Wehesbest segment sizes
for each cache capacity by using the results from the exgerirabove. The results
show that our proposed machine learned approach perforovegsistently better than
the baseline LRU policy for all cache capacities. For 16%heamapacity, the machine
learned caching policy improves LRU by 0.65% which cong$u’.4% of the possible

room for improvement.

Table 2.3 shows the 10 most discriminating features seldnyeGBDT for single-
ton prediction model and next arrival time regression modedpectively. In the ta-
ble, columns 1-3 denote the most discriminating featuresifgleton prediction, and
columns 4-6 denote the most discriminating features fot agwal time prediction.

It is notable that, frequency of a query is selected as thdé mygsortant indicator of
the singleton prediction, while features that hint more opuydarity of a query, such as
Query Time_Compatibility and TopICLICK are selected as best indicators for IAT-
Next regression. Another notable feature within theseltesue that Pag&lumber

being important in singleton prediction while not ratedHiigfor IAT-Next regression.

2.7 Static-Dynamic Caching

In this section, we use the insights we have gathered frorexqeriments with the two
extreme cases in query result caching, the fully static aiy lynamic caching, and

combine these two methods in a sensible manner. As a bas#tith®d we selected the
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state-of-the-art SDC and apply our machine learning agbraa SDC. To this end,
we will first explain the different techniques that we useddwaluating the machine

learning approach, and next we present experimental sesult

2.7.1 Techniques

For evaluating the effectiveness of the machine learnimyagch for query result
caching we implemented several policies. As a baseline adetlie implemented the
static-dynamic cache (SDC) strategy. We also perform exyats with two differ-

ent caching policies and propose three optimality boundthi® static-dynamic result

caching. The caching policies we evaluated are:

Static-Dynamic Cache (SDC)According to SDC (45), the result cache is divided
into 2 segments. A static segment and a dynamic segment.tatiesegment is cre-
ated using the most frequent queries in the dataset and teardg segment uses a
LRU eviction policy. For SDC, the best ratio of this divisies found through ex-
perimentation and may vary for different datasets depandimthe query submission
characteristics. For our dataset, our experiments yiedd#st results when we set the

static segment size as 70% of the total result cache.

Belady’s Algorithm: The optimal algorithm used in this caching policy is the

same as the policy explained in section 2.6.
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SDC - Dynamic Oracle: This policy is based on the SDC strategy, where Be-
lady’s algorithm is used for admission and eviction decision the dynamic part. The
static part is created using the most frequent queries irrttieing set. This policy
gives an even tighter bound than the Belady’s algorithm lier aptimality condition
of SDC strategy. The performance of this method gives ames# for the room of

improvement in the dynamic segment of SDC.

SDC - Static Oracle: In this strategy, instead of filling the static segment of SDC
with the most frequent queries in the training set, we créagestatic contents of the
result cache using the most referenced queries in the testThe dynamic segment
uses LRU policy for admission and eviction decisions. Thégomance of this policy
would present an insight concerning the room for improveniehe static segment

of SDC.

SML + LRU: In this caching policy, we applied our proposed machineniegr

approach to the static segment of SDC using the method pezsen2.5.

Machine Leaned Static-Dynamic Cache (MLRU):We applied our proposed ma-
chine learning approach to both static and dynamic segnr&C. The training
method for both segments are the same techniques presargedtions 2.5 and 2.6

respectively.
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Figure 2.6: Comparison of different result caching pobdier various cache sizes.

2.7.2 Results

Figure 2.6 shows the relative performances of differeniicstdynamic caching poli-
cies on varying cache capacities. In this figure, Beladygoathm gives the optimal
caching algorithm when cache is fully dynamic. It can alsoubed to roughly es-
timate an optimality condition for static-dynamic cachirfgDC-Dynamic and SDC-
Static Oracles do not actually show an upper bound for thenroimprovement in the
static-dynamic caching problem. However, they give an mfeaom for improvement

in the dynamic and static segments of SDC.
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One striking observation that can be made on the resultsesketiexperiments is
that, although Belady’s algorithm is indeed the optimalhtag strategy, both SDC-
Dynamic and SDC-Static outperform it on large cache sizdss & due to the fact
that Belady’s algorithm is optimal only for dynamic cachiagd is prone to non-
compulsory misses (misses that happen when a query is setrefiirst time), while
static segments of the two latter algorithms are not sinaécssegments are pre-
computed and placed in the cache ahead of time. Thus, it isildedor a static

approach to outperform the dynamic optimal.

Comparison of the two machine learning approaches with SB@vshat, both
machine learned caching policies outperform SDC for alheacapacities. Also, the
machine learned caching method perform better at largdrecaapacities. For 16%
cache capacity, machine learned caching policy improvegérformance of SDC by
0.47%, which is more than 11% of the possible improvemeninagéhe best oracle.
When two machine learned approaches are compared with ¢laeh both machine
learned algorithms perform almost equally. Addition of thaamic machine learned
strategy does not seem to benefit the static-dynamic casegesds expected, and al-

though MLRU performs better than SML+LRU, the improvemerdlimost negligible.
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Table 2.1: The features used in our machine learning approac

Abbreviation Feature Description Feature Category
Q_LEN Query.Length
WORD.C Word Count

URL_PRESENT
DOM_PRESENT

ISURL_Present
IsDomainPresent

Query String-Based
Features

SPELLCORR IsSpellLCorrected

AVG_QT_LEN AverageQuery. Term.Length

USERLOGGED IsUserLogged

PAGENUM PageNumber User-Based
CLICK_C Click_Count Features
TOP1CLICK First Link_Click_Count

HIT_C Total Number Of_Hits

RAREST.TERM RarestQuery Term.Index Size Search Engine
COMMON_TERM MostCommonQuery. Term.Index Size  Related Features
AVG_TERM Averagelndex Size

MIN _TFREQMIN Minimum_Term.FrequencylLast Minute

MAX _TFREQMIN Maximum_Term_FrequencylLast Minute

AVG _TFREQMIN Average Term_FrequencylLast Minute

MIN_TFREQHOUR  Minimum.Term.FrequencylLastHour Term Frequency-
MAX _TFREQHOUR MaximumTerm.FrequencylLastHour Based Features
AVG_TFREQHOUR  AverageTerm FrequencylLastHour

MIN _TFREQDAY Minimum_Term_FrequencylLast Day

MAX _TFREQDAY Maximum_Term_FrequencylLast Day

AVG _TFREQDAY Average Term.FrequencylLast Day

QFREQ OverallQuery Frequency

QFREQMIN Query_FrequencylLast Minute Query Frequency
QFREQHOUR QueryFrequencyLastHour Features
QFREQDAY Query_FrequencylLast Day

Q_TIME Query_SubmissionHour

DAY _C QueryDay_Count Temporal Features
TIME_COMP QueryTime_Compatibility
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Table 2.2: The most discriminating 10 features for machewseried static caching
strategy

Rank Feature Feature
Importance
Rate
1 QFREQ 100
2 TIME_COMP 35.3822
3 QFREQDAY 34.7971
4 WORDC 17.8072
5 RARESTTERM 17.1516
6 PAGENUM 11.9368
7 QFREQHOUR  11.9225
8 Q.LEN 11.2414
9 CLICK_C 9.6561

=
o

USERLOGGED 8.8371

Table 2.3: The most discriminating 10 features for mach@aeried dynamic caching
strategy.

Singleton Prediction Next Arrival Time Prediction
Rank Feature Feature | Rank Feature Feature
Importance Importance
Rate Rate
1 QFREQ 100 1 TIME_COMP 100
2 TIME_COMP 41.1229 2 TOP1CLICK 49.1376
3 WORDC 17.2646 3 MIN_.TFREQHOUR 43.2057
4 USERLOGGED 14.8581 4 WORDC 42.1965
5 PAGENUM 10.8796 5 QFREQ 41.1560
6 CLICK_C 10.2059 6 USERLOGGED 33.1946
7 Q.LEN 9.1032 7 HIT C 30.6932
8 TOP1CLICK 9.0213 8 CLICK_C 27.5653
9 MIN_TFREQDAY 8.5213 9 MIN_TFREQDAY 26.9315
10 HIT_C 8.2852 10 SPELLCORR 22.8226
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Table 2.4: The most discriminating 10 features for mach&aeried SDC caching strat-
egy for cache capacities 1% and 16%.

1% Cache Capacity

Singleton Prediction Next Arrival Time Prediction
Rank Feature Feature | Rank Feature Feature
Importance Importance
Rate Rate
1 QFREQ 100 1 QFREQDAY 100
2 QFREQDAY 62.1077 2 WORDC 31.7027
3 QFREQHOUR 24/8774 3 QFREQ 22.6615
4 WORDC 23.0789 4 MIN_TFREQDAY 21.4185
5 RARESTTERM 19.8314 5 RARESTTERM 20.1371
6 PAGENUM 16.1379 6 QFREQHOUR 18.8391
7 AVG_TERM 8.6129 7 SPELLCORR 15.8205
8 QFREQDAY 6.3245 8 AVG_TERM 13.3344
9 SPELLCORR 4.9722 9 AVG_TFREQDAY 11.0508
10 MIN_.TFREQMIN 2.7914 10 PAGENUM 9.4277
16% Cache Capacity
Singleton Prediction Next Arrival Time Prediction
Rank Feature Feature | Rank Feature Feature
Importance Importance
Rate Rate
1 QFREQ 100 1 QFREQDAY 100
2 QFREQDAY 37.1112 2 WORDC 29.6291
3 TIME_COMP 35.7186 3 QFREQ 21.9625
4 WORDC 19.4112 4 HIT C 20.6426
5 RARESTTERM 17.0336 5 RARESTTERM 19.6790
6 QFREQHOUR 14.9345 6 TIME_COMP 19.6191
7 PAGENUM 14.4185 7 QFREQHOUR 18.2379
8 Q.LEN 9.3008 8 SPELLCORR 15.5671
9 DAY _C 7.6380 9 AVG_TERM 13.1281
10 AVG_TERM 5.7492 10 DAY C 11.0828
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Table 2.4 show the 10 most discriminating features for twfedént cache capac-
ities, 1% and 16%, for both singleton and IAT-Next prediatidn the table, columns
1-3 denote the most discriminating features for singlet@ulistion, and columns 4—
6 denote the most discriminating features for IAT-Next pcadn. The first 10 rows
denote the feature importances for 1% cache capacity andsh&0 rows denote the
feature importances for 16% cache capacity. First observdhat can be done on
Table 2.4 is that the most discriminating features for batig®&ton prediction and
IAT-Next prediction are very similar apart from several keshifts for both cache ca-
pacities. When compared to the results presented in TaBJeaddition of the static
cache to the dynamic problem seem to affect the IAT-Nextiptiesh adversely, de-

grading the regression model towards the singleton priedichodel.

Although when the cache capacity grows larger the improvemete of the ma-
chine learned caching policy increases, the improvemahttdameet the expec-
tations that can be inferred from both fully static and futlynamic caching ex-
periments. There can be two different explanations for bekavior. It is either
the frequency features start to lose their importance, mpteal features, such as
Query. Time_Compatibility and QuenbDay_Count start to gain importance. If the for-
mer case is true, then we can conclude that the dynamic metatsto suffer from
overfitting, which is a common problem in decision tree l&@agn However if the latter
case is true, then we can conclude that with the growing caapacity, the machine

learning algorithm start to utilize other features andtsaiperform better. Although
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we indicate both of these two possibilities, since featstgsh as PagBlumber and
Word_Count still have similar feature importance rates with exgpo query frequency

in both cache capacities, we strongly believe that therlatise is true.

2.8 Discussions

The query distribution of the query log is essential for wstEnding the nature of
the caching problem, the relationship between static andhmlyc caching and the
effectiveness of the SDC policy. In this work, the query treqcy distribution of the

examined search engine query log follows a power law distidin (164). In literature,

power law graphs, occording to their frequency distribatican be partitioned into 3
segments (27) for sake of data analysis. These segmentalbee: cThe head, torso,
and tail. The head of the query log contains the most freqgaaties, which also
represent a large portion of the search engine query traffie queries in the tail on
the other hand, appear in the query log very rarely, whichieggnt unpopular and

unanticipated queries.

The SDC policy partitions the cache exploiting these thesgrents. By storing
the head of the query log in the static segment, SDC policyle # respond to a
large portion of the incoming queries from the cache withtbetneed of any dynamic
caching policy. The rest of the cache space is reserved asaandy cache, responding

to the torso and the tail of the query log, in the hope of dé@tgcand responding to
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rather infrequent queries. Although, the motivation of Sp@s a great emphasis on
the static portion of the cache for responding to frequericueries, in both (98) and
(45) it is shown that a static cache alone does not perforrfaraleal life querie sets.
In other words, for an effective caching policy, cachingemtcbut rather less popular

gueries is almost as important as caching the frequentegieri

During our experimentation we came up with similar conaasi. Some of the
features that we initially predicted as potentially vergaiminative and influential
for differentiating turn out to rank low at feature importanorder for both single-
ton prediction and IAT-Next regression. As an illustratexeample, we anticipated
that PageNumber feature would be an important feature for distiniging between
frequent and infrequent queries. However, the feature nlapoe values in our experi-
ments show that this feature bear little value for a quemdééiequent or not. Our first
hand observations over the data lead us to the following thgsis: some automated
systems, such as Web bots and crawlers are continuouslyitsimgrqueries with large
page numbers, leading to unanticipated feature valuesadt through observation,
we have also verified that there are several robot query sgdom activities within
our dataset. However, since we have no empirical methodetatiig or verify that a
query is definitely the result of some automated activityaneeunable to provide these

results here.

The application of the proposed machine learning approacthe static-dynamic

caching also introduce several difficulties. Although itigtiishing the head segment
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from the torso segment is rather a trivial problem for ourraggh, our machine learn-
ing models have difficulties for distinguishing torso gesrfrom the tail queries. Our
experiments show that, for machine learned SDC cachingyadklie improvements are
mostly gained via the machine learned static cache segarahthe benefit of machine
learned dynamic segment on top of the improvement gain fluerstatic segment is

very small.

Introduction of the static cache to the caching problem edsalts in a harder dy-
namic caching problem. Our experimental results show tbatur dataset, using an
SDC cache with 1% cache capacity where 70% of the cache dedita the static
cache, all queries with frequencies higher than 136 woulsttd in the static cache.
For an SDC cache with 16% cache capacity and 70% static ctoehgueries with fre-
guencies higher than only 4 are stored in the static cachiegldsatic cache segment,
where the cache size is considerably large leaves dynamiecsegment with only
a small, but harder portion of the problem where all queriesiathe torso or in the
tail portion of the query log. The difficulty of dynamic caalgi problem with a static
component comes from the fact that, tail and torso queriesaao very little distin-
guishable information. Our conclusion is that, the feaguse have used and that are
proposed in literature are not, without other inference Ima@isms, such as storing ad-
ditional temporal information or using some other meansédrmation for inferring
guery popularity, adequate and does not contain enougimglisshable information

for addressing the dynamic caching problem for the currealk-life query logs. That
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is mostly because the user and query behavior in today’slseagines is much more

dynamic and unanticipated than query logs examined in tbature in the past.

Finally, our experiments also show a potential problem imgisnachine learning
techniques for finding a dynamic caching policy. Due to naissifications during test-
ing, the use of machine learning methods cause a cacheipolluthere the misclas-
sified queries start to occupy cache space. Due to the oWgati@n of such queries,
the machine learned policy can tend to evict more valuabkrigs. In this work,
we propose a cache segmentation method to alleviate thidgono In our approach,
after processing a constant number of queries, the dynaegiment of the cache is
re-started so that the misclassified instances can be évrcm@ the cache. Although,
this method prevents pollution to a degree, more accurathimalearning methods is

ultimately required for a better caching policy.



Chapter 3

Chat Mining:
Predicting User and Message
Attributes in

Computer-Mediated Communication

3.1 Introduction

With the ever-increasing use of the Internet, computeriated communication via
textual messaging has become popular. This type of eléctdistourse is observed in

point-to-point or multicast, text-based online messagieyices such as chat servers,

65
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discussion forums, emails and messaging services, newggrand IRCs (Internet
relay chat). These services constantly generate large mimottextual data, providing
interesting research opportunities for mining such datee Mlieve that extracting
useful information from this kind of messages/conversetican be an important step

towards improving the human—computer interaction.

According to a study by (71), “electronic discourse is neittvriting nor speech,
but rather written speech or spoken writing, or somethinigjue.” Due to its mostly
informal nature, electronic discourse has major syntatifferences from discourse
in literary texts (e.g., word frequencies, use of punctuatinarks, word orderings,
intentional typos). The informal nature of electronic discse makes the information
obtained more realistic and reflects the author attributeseraccurately. Analysis of
electronic discourse may provide clues about the attribot¢he author of a discourse

and the attributes of the discourse itself.

Specifically, machine learning can be a powerful tool forlgriag electronic
discourse data. This work particularly concentrates onddi@ obtained from chat
servers, which provide a point-to-point online instant saggng facility over the Inter-
net. We investigate the rate of success in the problem ofigined various author- and
message-specific attributes in chat environments usingnimadearning techniques.
For this purpose, we first employ a term-based approach antufate the chat min-
ing problem as an automated text classification problem hiiclivthe words occurring

in chat messages are used to predict the attributes of therauie.g., age, gender) or
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the messages (e.g., the time of a message). Second, we eargildg-based approach
and investigate the effect of stylistic features (e.g.,dMengths, use of punctuation
marks) on prediction accuracies, again for both author aeslsage attributes. Finally,

we briefly discuss the effect of the author and message @islon the writing style.

The main contributions of this study are four-fold. Firgtetchat dataset used in
this work has unique properties: the messages are comntedibatween two users;
they are unedited; and they are written spontaneously. \Wevieethat extracting in-
formation from real-time, peer-to-peer, computerized sages may have a crucial
impact on the areas such as financial forensics, threat sisaBnd detection of ter-
rorist activities in the near future. Our work presents a regfert in that direction,
aiming to retrieve previously unexplored information frammputerized communica-
tions. Second, for the first time in the literature, sevenatiiesting attributes of text
and its authors are examined. Examples of these attribteesdaicational affiliations
and connectivity domains of the authors and the receivetileomessages. Third, the
performance of term- and style-based feature sets in giegithe author and mes-
sage attributes are compared via extensive experimentdimurth, to the best of our
knowledge, our work is the first one that investigates reagéf peer-to-peer, comput-
erized communications in the context of authorship studi@sr findings are good

pointers for researchers in this new application area, haahat mining.

The rest of this chapter is organized as follows. Table 3spldys a list of fre-

guently used abbreviations in this work. We provide a dethliterature survey of the
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Table 3.1: The summary of abbreviations

AA Authorship attribution k-NN K-nearest neighbor

AC Authorship characterization NB Naive Bayesian

CE Cross entropy NN Neural networks

DA Discriminant analysis PCA Principal component analysis
DT Decision trees PRIM  Patient rule induction method
EG Exponentiated gradient RM Regression models

GA Genetic algorithms SD Similarity detection

HMM  Hidden Markov models SVM Support vector machines
IRC Internet relay chat TC Text classification

related work in Section 3.2. In Section 3.3, we discuss tladieristics of computer-
mediated communication environments and elaborate omtbemation that can be
extracted from such environments. Section 3.4 introdubeschat mining problem
and discusses our formulations, which are based on the usenof and style-based
feature sets. In Section 3.5, we provide information abloettataset used in this study
and present our framework for solving the chat mining probl&ection 3.6 provides
the results of a large number of experiments conducted tuateathe feasibility of
predicting various author and message attributes in a civelomment. In Section 3.7,

we finalize the chapter with a concluding discussion.
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3.2 Related Work

In the last ten years, the Internet has become the most paqmutanunication medium.
Chat servers, IRCs, and instant messaging services prowides users the ability to
communicate with each other simultaneously. Discussiomfiig, emails, and news-
groups enable their users to create virtual communitieartdgss of geographical and
political barriers. This information dissemination plati provides new research pos-
sibilities such as assessing the task-related dimensibtieednternet use. In their
work, (42) examine the communication process of chat useasiindustrial setting.
They investigate how customers and customer service reqpias/es respond to each
other and identify the reasons of miscommunication betwestners. The collabo-
rative work within virtual groups is explored by (151). Thethors identify six com-
munication rules for enhancing trust, which in turn enabilatcusers to work more
efficiently. (118) examines several problems concerningroonications in a virtual
library reference service. The quality of chat encountets/ieen librarians and clients,
compensation of lack of emotional cues, and relational dsrans of chat references
are among the questions investigated. The author idensiéesral relational facilita-
tors, communication themes and concludes that computdrateel communication is

no less personal than face-to-face communication.
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Understanding the user behavior is another aspect of theilmggesearch on
computer-mediated communication. (119) examine the comgation and informa-
tion seeking preferences of the Internet users. They alsgpace traditional libraries
and the Internet as the means for an information repositotyeanphasize the fact that

the Internet is starting to become an alternative for tegdal communication.

The investigation of chat user attributes is another dinmenshat attracts re-
searchers. (60) examine gender variations in Web logs usgigtic regression tech-
niques. However, the authors cannot find any conclusivdteebinding the users’
genders and Web writings. In their work, (61) examine se\aspects of the language
use in the Internet. They assert that gender is reflected lineodiscourse in every

language they studied.

Extracting interesting information from anonymous elentc document collec-
tions using authorship attribution may also provide seuwasearch opportunities. A
quick literature survey reveals the fact that the previdusligs in authorship attribu-
tion were mostly considered in the context of law enforcen(&a5), religious studies
(117; 124), and humanities (33; 44; 109). In the past fewsjethe examination of
electronic discourse in the context of authorship studiadesd to got attention of a

growing number of researchers.

The history of authorship studies dates back to more thamtilennia. The first

work in literature is reported in the fourth century BC, whtre librarians in the
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famous library of Alexandria studied the authenticatiortefts attributed to Homer
(96). Since then, a large number of documents have beendhs & authorship stud-
ies. Broadly, the authorship studies in literature can &dd into three categories

(40; 163): authorship attribution, similarity detecti@md authorship characterization.

Authorship attribution is the task of finding or validatiniget author of a docu-
ment. Some well-known examples of authorship attributice the examination of
Shakespeare’s works (44; 65; 105) and the identificatioh@guthors of the disputed
Federalist Papers (64; 92; 109; 146). Similarity detecsimns to find the variations in
the writing style of an author (114) or to find the resemblaoetween the writings of

different authors, mostly for the purpose of detecting @eagm (55).

Authorship characterization is the task of assigning thiéings of an author into
a set of categories according to the author’s sociolinguatributes. Some attributes
previously investigated in literature are gender (77; 849)1 language background
(149), and education level (72). (77) and (81) evaluatechou for determining the
gender of a document’s author. (149), in addition to genulied to predict the lan-
guage background of authors using machine learning teabriq(72) analyzed the

educational backgrounds of the authors employing crossnt

With the advent of computers, it has become possible to emgbphisticated
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techniques in authorship analysis. The techniques emglayeuthorship analy-
sis can be broadly categorized as statistical and macharaeitg techniques. Ex-
amples of statistical techniques are Hidden Markov modely, (regression mod-
els (74), cross entropy (72), discriminant analysis (33; 78; 141), and princi-
ple component analysis (10; 28; 63). Machine learning tegles are also fre-
guently used in authorship studies. Most commonly usednigoles arek-nearest
neighbor (79; 81; 138), naive Bayesian (76; 81; 138), suppector machines
(39; 40; 70; 144; 163), genetic algorithms (64), decisi@es$r (163), and neural net-

works (55; 76; 105; 79; 81; 138; 146; 163).

With the widespread use of computers, new pursuits thatctefie personal char-
acteristics of individuals drew attention of authorshipdsés. Computer programming
and musical composition are examples of such pursuits. (38} used several struc-
tural and syntactic features to predict the author of a @ogr They generate these
features by analyzing the variations in programming carcstpreferences of the au-
thors. The work of (136) achieved 73% accuracy in predictmgauthor of 88 pro-
grams written by 29 different authors. In their work, (11)a8rzed the musical style
of five well-known composers using various classificatiagoathms on a dataset with
computer-generated features like the stability measurdseaomposition, voice den-

sity, and entropy measures.

The emergence of electronic discourse also presents stitggeopportunities for
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authorship analysis. As electronic discourse becomes al@oform of communi-

cation, detecting illegal activities by mining electromiscourse turns out to be im-
portant. In their work, (149) analyzed the information inahmessages in order to
identify the distinguishing features in writing styles ahails for predicting authors’
identity, gender, and language background. In additiorotneswell-known stylistic

features, they used features like smileys and emoticongy akhieved 72.1% and
85.6% accuracies in predicting the gender and languagegbaakd of more than 300

authors, respectively.

(144) analyzed email messages for predicting the identither authors using a
term-based feature set. (141) analyzed the gender of a nurhleenail authors and
concluded that email authors had used gender-preferdatigbage in informal elec-
tronic discourse. (163) constructed a language-indep#rficEamework to predict the
identity of the author of online Chinese and English newsgmmessages. For a selec-
tion of 20 authors they have succeeded in predicting thetityesf the authors with an
impressive 95% accuracy for the English message colleao88% accuracy for the
Chinese message collection. (7) also studied newsgrougages for identification of
the authors using a style-based classification approactnoédgh they used a highly
imbalanced dataset, over 40% accuracy is achieved in piaglithe messages of 20

different authors.

(163) presented a table that provides a summary (featuess tgpe of analysis,
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Table 3.2: A summary of the previous works on authorshipyasigl

Study Type Technique Features
(109) AA Statistics style
(28) AA PCA style
(44) AA Statistics both
(73) TC DA style
(76) AA NB, NN style
(105) AA NN style
(64) AA GA style
(10) AA PCA both
(74) TC RM style
(79) AA k-NN, DA, NN  style
(70) TC SVM term
(138) AA,TC k-NN, NB,NN style
(75) AA HMM term
(141) AC DA style
(144) AA,AC SVM style
(149) AC SVM term
(7 AA EG style
(40) AA SVM style
(114) AC DA style
(55) SD NN style
(72) AA/AC CE term
(65) AC SVM style
(81) AC k-NN,NB, NN  both
(163) AA SVM, DT, NN  style

and dataset properties) of the previous works on authowshédbysis. Here, we pro-
vide a similar table with additional information for a nunmlgg#f previous works. In
chronological order, Table 3.2 gives details such as thiysisdechniques used in the
works and the type of the features used (i.e., term-baset/lerlsased features). In
compliance with our previous taxonomy, the table categsrezach work as an author-
ship attribution (AA), similarity detection (SD), or autrship characterization (AC)
task. Several text classification (TC) works, which are elpselated with authorship

studies, are also displayed in the table.
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3.3 Computer-Mediated Communication

3.3.1 Characteristics

Using textual messages in order to interact with other peaph popular method in
computer-mediated communication. Point-to-point instaessaging, also referred to
here as chatting, has several properties which makes iuanigth respect to both
literary writing and messaging in other types of online #mg: Messages (1) are
written by users with a virtual identity; (2) specificallyrgget a single individual; (3)
are unedited; and (4) have a unique style and vocabulanovBele elaborate more

on these characteristics.

In most chat servers, the real identity of a user is hiddemfaodher users by a
virtual identity, called “nickname.” Typically, the usemave the option of building
up this virtual identity and setting its different charact#c features. This gives the
users the opportunity to provide others false informatibou their real identities. For
example, a male user may set the gender of his virtual ideasittemale and try to
adapt his writing style accordingly to fool others. Havingk misleading information
in chat environments makes authorship attribution andatttarization quite difficult

even for domain experts.

Unlike literary writing, where the documents are writtem public audience, chat

messages target a particular individual. Most often, chassages are transmitted
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between two users, that is, each message has a specific sentarreceiver. The
writing style of a user not only varies with his personaltsabut also heavily depends
on the identity of the receiver. For example, a student mayg semessage to another
student in a style which is quite different from the style ohassage he/she writes
to his supervisor. This type of an ability of effectively cligng one’s writing style is
known as sociolinguistic awareness (56). As an interegjerge detection task, chat

messages can be examined in order to find out who the recsiver i

Books and plays are the most common type of literary matasgad in authorship
analysis (47). This type of documents are usually modifie@diyors who polish the
initial drafts written by authors. Hence, most of the timlee writing style of the
original author is mixed with that of an editor. (122) disses the undesirable effects
of this type of editing on authorship analysis and conclutasedited texts are hard to
mine since stylistic traces of the author and the editor ateseparable. The real-time
nature of chat messages prevents any editorial changescimalic discourse, and thus
the writing style reflects that of the original author. Inglaspect, it is quite valuable
to work on unedited chat messages. However, in the mean kiaweng no editorial
modifications means that, in chat messages, misspelliegsare frequent compared
to edited text. It is debatable whether these misspellingpart of an author’s writing

style or not.

Due to its simultaneous nature, electronic discourse itsfid® author’'s current

emotional state much better than any other writing. Sineentiessages transmitted
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between users are purely textual, chat messaging has ehitdvavn means for trans-
ferring emotions. Emoticons (emotion icons) are commomgwn and widely used
ways of representing feelings within computer-mediated (&52). We restrict our
work on a particular subset of emoticons: smileys. Smildgsy, “:-)” and “:-(")
are sequences of punctuation marks that represent fealuasas happiness, enthu-
siasm, anger, and depression. Repetition of specific cteasam a word can also
be used as a means of transferring emotions by putting an a&sigpbn a text. (e.g.
“Awesomeeee!”). In chat messages, the use of such consgidoise misspellings is
also frequent. Since the use of smileys and emphasized wohiighly dependent on
the writing style of an author, they pose valuable informiati However, preserving
such information makes traditional text processing mesh@dg., stemming and part

of speech tagging) unsuitable for mining chat messages.

3.3.2 Predictable Attributes

In general, chat messages can be used to predict two diffigyees of attributes: user-
or message-specific attributes. In the first type, the djsishing features of a chat
message may be used to predict the biological, social, aychpkgical attributes of
the author who wrote the message. In the latter, the disBhgwg features may be

used to predict the attributes of the message itself.
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Examples of user-specific attributes are gender, age, édoahbackground, in-
come, linguistic background, nationality, professionyghlogical status, and race.
In this work, we concentrate on four different user-spedifitibutes: gender, age,
educational environment, and Internet connection domatheousers. Among these
attributes, the gender of an author is widely examined eraiure (81; 149), and it is
observed that authors have the habit of selecting genedéenential words (141). In
this work, we also try to predict the user age based on thetlf@ttevery generation
has its own unique vocabulary. Predicting the age of a usgraaiseful for profiling
the user and hence may help in forensic investigations. &l environment is
also worth studying since it is possible that the vocabudary writing style of a user
might be affected by the school he/she is affiliated with. fdeo to test this claim,
we analyzed the chat messages of users in different uriestsiWe also noted that
computer-mediated communication adds new dimensions evapnalysis may vyield
valuable information. As an illustrative task, we try to gie the Internet connection
domains of users, which may have veiled means for the edunzdtand occupational
status of a user. For example, a user connected from thededoain probably has an
affiliation with a university, whereas a user connected fthen“.gov” domain possibly

works for the government.

For message-specific attributes, we concentrate on thrdmiéds: author, receiver,
and time of the messages. The identity of the author of a ge®nis the most fre-

guently studied attribute in authorship analysis (64; 799;1163). In case of chat
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Table 3.3: The attributes predicted in this work and the nemnalp classes available for
each attribute

User-specific attributes  # of classes Message-specifibutis  # of classes

Gender 2  Receiver 1165
Age 17  Author identity 1616

School 60 Day period 4
Connection domain 7 - -

mining, the characteristics of chat messages are firmlglaigto the author’s linguis-
tic preferences. Hence, we try to predict the authors of ametsages as a typical
authorship attribution task. The audience of a chat messagyealso affect the lingual
preferences of an author. For the first time in literature tsyeo predict the audience
of textual documents; i.e., the receivers of the chat messathe real time nature of
chat messages makes it possible to examine whether the tinessage is written is
predictable. For example, in active hours of the day (mayrand afternoon), peo-
ple may compose long and complex sentences although, iivedssirs (nighttime),
people may tend to create short and simple sentences. Hentgs work, we also

investigate the predictability of the period of the day atahassage is written.

Table 3.3 presents a complete list of the attributes we tpraalict in this work.
In this table, the number of classes refers to the maximumbeurof possible values
an attribute can have. For example, the gender attributdvi@apossible class val-
ues (male and female) while the connection domain attribateseven possible class

values, each of which represents a different Internet cctiviy domain.
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3.4 Chat Mining Problem

The chat mining problem can be considered as a single-lédmditication problem. If
the attribute to be predicted is user-specific, a supertesding solution to this prob-
lem is to generate a prediction function, which will map easkr instance onto one
of the attribute classes. The prediction function can bmkby training supervised
classification algorithms over a representative set of us#ances whose attributes
are known. In case of message-specific attributes, the ggdsesimilar. However,
this time, the individual chat messages are the instancesewttributes are to be pre-
dicted, and the training is performed over a set of chat ngessehose attributes are

known.

In predicting the user-specific attributes, each user nt&as represented by a set
of features extracted from the messages that are generathdtlparticular user. Sim-
ilarly, in predicting message-specific attributes, eaclssage instance is represented
by a set of features extracted from the message itself. Biwlork, for predicting
both types of attributes, we evaluate two competing typdsature sets: term-based

features versus style-based features.

When term-based features are used, the vocabulary of treagesollection forms
the feature set, i.e., each term corresponds to a featurqrelticting user-specific
attributes, the set of terms typed by a user represents danstance to be classified.

In predicting message-specific attributes, the terms in ssage represent a message
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instance. This type of a formulation reduces the chat mipnogplem to a standard text

classification problem (131).

In literature, term-based feature sets are widely used. (88)fortunately, term-
based features may not always reflect the characteristiaa afuithor since the terms
in a document are heavily dependent on the topic of the dootine chat mining, a
feature set that is independent of the message topic maytddaetter results in pre-
dicting the user- and message-specific attributes. Hesagg the stylistic preferences

instead of the vocabulary emerges as a viable alternative.

(122) states that there are more than 1000 different styfesitures that can be used
to define the literary style of an author. The most commongdustylistic features are
word frequencies; sentence and word lengths; and the usglables, punctuation
marks, and function words (62). So far, there is no conseonsube set of the most

representative features.

This study, in addition to the traditional stylistic featgr considers several new
and problem-specific stylistic features (e.g., smileys eambticons) used in order to
find better representations for user or message instan¢essmileys and emoticons
are two important features that are frequently found in chassages. A summary of
the style-based features used in this study is given in TaldleThe stylistic features
used in this work are grouped into 10 categories. Each catemgmtains one or more

features with categorical feature values. For exampleatieeage word length feature
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Table 3.4: The stylistic features used in the experiments

Feature category Features in the category Possible fealues
character usage frequency of each character low, mediwh, hi
message length average message length short, average, long
word length average word length short, average, long
punctuation usage frequency of punctuation marks  low, omadhigh
punctuation marks a list of 37 punctuation marks exists emats
stopword usage frequency of stopwords low, medium, high
stopwords a list of 78 stopwords exists, not exists
smiley usage frequency of smileys low, medium, high
smileys a list of 79 smileys exists, not exists
vocabulary richness  number of distinct words poor, average

can possibly have three values: short, medium, and longs discretization is per-
formed depending on the feature value distributions ovestamessages randomly

selected from the chat dataset.

3.5 Dataset and Classification Framework

3.5.1 Dataset

The chat dataset used in this chapter is obtained from artdiyri@active chat server
called Heaven BBS, where users had peer-to-peer commiamicata textual mes-
sages. The outgoing chat messages (typed in Turkish) of 6itpie users is logged
for a one-month period in order to generate the dataset. Hssages are logged with-
out the notice of the users, but respecting the anonymityesfsages. The vocabulary

of the dataset contains 165 137 distinct words. There ar&228hat messages, which
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are usually very short (6.2 words per message on the average)message log of a

typical user contains around 160 chat messages.

The dataset also contains users’ subscription informaitimh as the name, gender,
email address, and occupation. Some fields of the subsmriptformation may be
missing as they are optionally supplied by the users. Algajrest our best efforts
to validate the correctness of the entries, there may besfakeuplicates among the

users.

3.5.2 Classification Framework

In this section, we provide an overview of the framework wealeped for solving the

chat mining problem. Here, we restrict our framework to pegdn of user-specific at-

tributes using the term-based feature set. Extensionsofrttmework to the message-
specific attributes and the style-based feature set areistied later in this section.
Figure 3.1 summarizes the classification procedure usegkatigiing the user-specific
attributes. The framework consists of three stages: dajaisition, preprocessing,
and classification. The last two stages contain severavacftmodules that execute

in a pipelined fashion.

The corpus creation module of the data acquisition stagaeda tagged corpus
from the raw message logs obtained from the chat server. dar&i3.2, we provide

a sample fragment from this corpus. For each user instantieeicorpus, between
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ACQUISITION

Chat messages ! CORPUS CREATION !
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Figure 3.1: The classification framework.

an “INSTANCE” tag pair, the attributes of the user and the sages typed by the
user are stored. The target users receiving the messagles oéér are separated by
the “RECEIVER” tag pairs. Each receiver may receive muitiplessages, which are

separated by the “X” tag pairs.

After the chat corpus is generated, it undergoes severgirgressing steps to
improve classification accuracies. Each preprocessimgistdesigned as a separate
software module. In our framework, the preprocessing siagaves three modules:

cleansing/filtering, undersampling, and feature selectio

The cleansing/filtering module aims to obtain a set of regmestive terms for each
user. For this purpose, non-alphanumeric characters, (@hgtespaces, punctuation

marks) are eliminated. A list of 78 Turkish stopwords (i@mnnectives, conjunctions,
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<I NSTANCE=al i >

<NAME=al i guney>

<GENDER=mal >

<EMAI L=Guney @l pha. eng. ege. edu. tr >
<DOVAI N=edu>

<SCHOOL=ege>

<Bl RTHDAY=19>

<BI RTHMONTH=Cct ober >

<Bl RTHYEAR=1979>

<HORCSCOPE=! i br a>

<RECEI VER=bl andi nka>

<X>

<DATE=Wed Apr 5 16:09:40 2000>
MESELA COK GENI'S BI R I NSANSI N AMA BAZEN COK KUCUK BI R SEYE
TAKI YOSUN G Bl

/1 For Exanple, you are a flexible person. But Sonetines you concentrate
on snmall things

</ X>

</ RECEI VER>

<RECEI VER=ageof eye>

<X>

<DATE=Wed Apr 5 16:10: 48 2000>
KONUSMAK | STI YORMUSUN BENLE

/! do you want to talk with ne

</ X>

</ RECEI VER>

</ | NSTANCE>

Figure 3.2: A sample fragment of the chat corpus formed. e name is deidenti-
fied to preserve the anonymity. English translations aredddr convenience.

and prepositions) is further used to eliminate contenepahdent terms. Single-word
messages are also ignored since these are mostly uninfeensatutations. The fea-
tures of the user instances are formed by the remaining tesnare the tf-idf (term

frequency-inverse document frequency) values (127) aed as the feature values.
Finally, the user instances that contain only a small nurobéatures, i.e, those that

have less than a pre-determined number of terms, are elietina
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The existence of imbalanced classes is a crucial problesxirctassification (80).
If the number of instances selected from each class are nghtpequal, the classifiers
may be biased, favoring more populated classes. The malrofjtiee undersampling
module is to balance the number of instances in each classhisgurpose, an equal
number of instances with the highest term counts are seléaim each class and the
remaining instances are discarded. In this dataset, anlamt®is also observed on
instance sizes since the number of distinct terms of eachgusatly varies. In order
to balance instance sizes, a fixed number of consecutive isrselected for each user,

and the remaining terms are discarded.

The high dimensionality of text datasets badly affects fhygliaability of classi-
fication algorithms. Feature selection (158) is a widelydugeeprocessing stage for
reducing the dimensionality of the datasets. In the featelection module, we employ
the x? (CHI square) statistic for every term in order to calculdteit discriminative
power. Most discriminative features are selected accgrttithey? scores and used as
the feature set. The remaining less discriminative featare eliminated in the feature

selection module.

The operation of the modules of the preprocessing stagesharations in case
of message-specific attributes or the style-based feattird=sr the case of message-
specific attributes, the cleansing/filtering module als@leys word blocking. This is
because chat messages typically contain only a few wordkjtas difficult to cor-

rectly classify a message with this little information. Tt¢leansing/filtering module
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concatenates multiple consecutive messages of the sammtgsa single long mes-
sage. After blocking, the message instances become lergtiygh to have sensible

information (40).

In the case of the style-based feature set, instead of termamber of stylistic
features are extracted. Some of these features contaististbout the punctuation
and stopword usage. Thus, for the construction of stylethésature sets, punctuation
marks and stopwords are not eliminated in the cleansirgyifiilj module. Addition-
ally, for user-specific attributes, the feature sets of Ritcmessages belonging to a
user are combined and used as the feature set for that usee ®ie instances con-
tain roughly equal number of features in style-based feasets, the undersampling

module does not try to balance the instance sizes.

The classification stage contains three modules. In the eglation module, the
instances in the dataset are shuffled and divided into 10l-strexd instance blocks.
One of these blocks is selected as the test instance blod& wthier instance blocks
are used for the training the framework. The training moduges the training in-
stances supplied by the cross validation module. The outptlte training module
is a classification model, which is used by the testing modularder to predict the
classes of each test instance. The testing module prodgetebpredictions based on
the classification model and the accuracy of a test is defiagdeanumber of correct

predictions divided by the number of total predictions. STperation is repeated 10
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times, each time with a different block selected as the tetaince block. The aver-
age of all predictions gives the prediction accuracy of asifeer. The testing module
uses a set of algorithms selected from the Harbinger madéameing toolkit (30) and
SVM-light (70). An overview of the selected algorithms cam found in the corre-

sponding referenceés.

3.6 Experimental Results

3.6.1 Experimental Setup

In order to examine the predictability of user and messagéuates, the personal
information within the chat server logs are used. The attab retrieved from the
server logs such as the users’ birth years, and educatios@baments are submitted
voluntarily, they may be missing. As a consequence, somibwtt classes are very
lightly populated and the use of such classes in evaluatiagtedictability of that

attribute may be impractical. Thus, the experiments arelgoted on a selection of

the most populated classes of each attribute.

As an illustrative example, the connectivity domain atitéohas seven possible

class values. For examining the predictability of the caingy domain attribute, the

1The source codes of these algorithms are publicly availablime and may be obtained from the
following Web addresses:
http://bmi.osu.edu/ barla/coding/HMLT/download/HMtar.gz
http://download.joachims.org/svetruct/current/svnstruct.tar.gz
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most populated two and three classes are selected from fsébppseven classes, and

the experiments are conducted only on the instances belgngithose classes.

Table 3.5 summarizes the experiments conducted for estigiie prediction ac-
curacies of each attribute. The table contains informadioout the number of classes,
the number of instances, and a set of sample classes usethitesaiset. Test sets are
tagged by concatenating the attribute name, the numbeas$es$, and the number of
instances used to represent each class. For example, thelStBO0 tag corresponds
to the experiment conducted for predicting the educatienaironment of users. This
experiment involves three possible classes, each of wiiakams 80 representative
instances. As an example for the case of message-speaiilnites, the experiment
tagged with Author-10-26 involves 10 possible classedh efevhich contains 26 in-
stances. Here, each class represent a different authornatahces correspond to

message blocks generated by concatenating a particutasrautnessages.

A selection of classifiers from the Harbinger machine leagripolkit (30) is used
for predicting the user and message attributes. The sdletdssifiers ar&-NN (58),
NB (103), and PRIM. Additionally, SVM-light (70) software used in order to apply
SVM to the chat mining problem. In each test setting, 90% efritost discrimina-
tive features are used as the representatives. A sequeB&®0fwords is used as the
maximum document size for term-based feature sets. Themargderms in the doc-

uments containing more than 3000 terms are discarded. EdMN classifier, the
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Table 3.5: Test sets, their parameters, and sample classes

# of instances

Test set # of classes ineachclass Sample classes
Author-2-35 2 35 Andromeda and Taru
Author-10-26 10 26 Andromeda, Taru, Zizer, ...
Author-100-10 100 10 Andromeda, Taru, Zizer, ...
BirthYear-2-30 2 30 birth year before 1976 (inclusive),
birth year after 1976 (exclusive)
BirthYear-4-30 4 30 1975, 1976, 1977, 1978
DayPeriod-2-34 2 34 Day, night

(representing 12-hour periods)

DayPeriod-4-17 4 17 Morning, afternoon,evening, night
(representing 6-hour periods)

Domain-2-35 2 35 .edu, .com

Domain-2-50 2 50 .edu,.com

Domain-2-65 2 65 .edu,.com

Domain-3-30 3 30 .edu, .com, .net

Gender-2-50 2 50 Male, Female

Gender-2-100 2 100 Male, Female

Gender-2-200 2 200 Male, Female

Receiver-2-35 2 35 Andromeda, Taru

Receiver-10-26 10 26 Andromeda, Taru, Zizer, ...

School-2-190 2 190 Bilkent, METU

School-3-80 3 80 Bilkent, METU, Ege

School-3-120 3 120 Bilkent, METU, Ege

School-5-50 5 50 Bilkent, METU, Ege, KHO, ...

School-10-29 10 29 Bilkent, METU, Ege, KHO, ...

cosine similarity measure is used as the distance metricgl@dumber of the near-
est neighborsk, is selected as 10. A polynomial kernel (70) is used in SVMcHEa

experiment is repeated 5 times and the average predictamaaies are reported.
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3.6.2 Analysis of Predictability

In order to visualize the predictability of different atitites, PCA is used. By using
PCA, it is possible to reduce the dimensionality of the ins&s, allowing them to
be plotted in two dimensions (21). Figure 3.3 shows PCA teduor four different
attributes using a term-based feature set. These attsilaméethe gender, identity, and
Internet connectivity domain of an author and the time pkabthe messages. As the
PCAs of the style-based feature set is similar, they aretethftom this study. Also,
note that the coordinate values of the principle componealyais are not displayed.
In this work, PCA is only used for the reduction of dimensiktyaof the dataset.
Thus, the values of the data points are not indicative oftangt and only the relative

proximities of the data points are important.

Since the data points for each author cover separate regioissreasonable to
expect high accuracies in predicting the identity of thenaubf a message. For the
PCA of the Internet connection domain, it can be seen thatisteibution of data
points that belong to the “.com” and “.net” domains coverrheaentical regions
while the data points belonging to the “.edu” domain coves@esate region. Hence, it
would be reasonable to expect that the “.edu” class coulddxigied accurately while
“com” and “net” domains would be frequently mispredictedhelresults of PCA show
that it would not be possible to discriminate all attribugegially using a term-based

feature set.
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Figure 3.3: The results of the PCA for four different atttiési (following our earlier
convention): a) Author-3-20, b) Domain-3-20, ¢) Gend&2&®, and d) DayPeriod-2-

34.

3.6.3 User-Specific Attributes

Table 3.6 summarizes the prediction accuracies of the expats conducted on

the user-specific attributes. Among all experiments, tlghést prediction rates are

achieved for the Internet connection domain of a user. Herdttribute, the NB clas-

sifier predicts 91.8% and 68.7% of the test instances cdyrémt the Domain-2-50

and Domain-3-30 test cases respectively. The gender, gon@vironment, and the

birth year attributes of a user are also predicted accyraldie prediction accuracies
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Table 3.6: Prediction accuracies of experiments condumtagser-specific attributes

Term-based feature set Style-based feature set

Tag k-NN NB PRIM SVM k-NN NB PRIM SVM
BirthYear-2-30 50.1 60.8 53.8 56.3 50.0 754 55,5 48.0
BirthYear-4-30 24.0 27.3 20.0 265 228 374 199 220
Domain-2-35 59.7 90.0 77.2 64.3 63.9 90.0 669 59.7
Domain-2-50 58.2 918 740 63.6 64.2 88.2 744 69.0
Domain-2-65 559 914 793 65.2 68.6 89.8 78.0 74.1
Domain-3-30 340 674 496 39.6 347 68.7 48.2 458
Gender-2-50 73.4 80.0 53.4 81.5 63.2 71.8 512 714
Gender-2-100 745 815 58.3822 61.7 819 642 723
Gender-2-200 722 782 56.4 80.2 624 817 649 7738
School-2-190 56.8 68.8 558 66.8 59.3 55.2 50.3 62.9
School-3-80 43.6 56.7 35.9 59.7 43.1 47.0 340 51.0
School-3-120 42.7 53.2 41.161.0 441 404  32.0 63.7
School-5-50 30.8 48.9 26.8 53.4 29.1 41.2 259 437
School-10-29 225 37.8 17.6 39.0 204 26.7 139 26.2

of 82.2% and 75.4% are achieved in prediction of the gendeértlaa birth year of a
user respectively. The educational environment of a ugamat68.8%, 53.4%, and
39.0% correct prediction rates for the School-2-190, Stbes0, and School-10-29
test cases respectively. The results of the classificakparenents using a term-based
feature set lead to the conclusion that gender, identity|aternet connection domain
attributes contain information that reflect the languagef@ences of a user and it is

possible to predict these attributes.

In order to verify whether the experiments are more than shroky guessing,
the level of significance for each experiment is determin&dr this purpose, two
prediction functions are generated. These functions agé s represent a control

group and a treatment group. The control group consistsrafam guesses for each
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Table 3.7: Significance analysis conducted on user-spetifioutes

Term-based feature set Style-based feature set

Tag Z-score p-value Z-score p-value
BirthYear-2-30 1.73 8.3e-1 2.10 2.7e-2
BirthYear-4-30 1.66 1.9e-1 2.03 5.8e-2
Domain-2-35 4.45 6.2e-7 3.74 8.0e-4
Domain-2-50 5.32 9.5e-9 4.27 3.3e-5
Domain-2-65 5.44 8.4e-8 5.61 7.1e-9
Domain-3-30 4.11 3.6e-6 3.94 6.6e-5
Gender-2-50 4.02 3.3e-5 2.32 3.7e-2
Gender-2-100 5.31 3.4e-7 5.39 5.1e-8
Gender-2-200 6.51 6.4e-10 7.11 1.1e-11
School-2-190 3.74 2.0e-4 2.92 3.2e-3
School-3-80 4,72 9.8e-7 2.60 1.2e-3
School-3-120 6.78 1.3e-12 6.64 5.2e-12
School-5-50 7.17 1.1e-12 4.49 2.1e-5
School-10-29 7.10 4.1e-10 3.44 2.1e-5

instance while the treatment group consists of predictadtes the classifiers are used.
The value of the prediction function is 1 if the instance isreotly predicted and
0 otherwise. Wilcoxon signed-rank test (153) is used foedwrining the levels of
significance. The significance levels are computed for thet blassification result,
represented in bold case in Table 3.6. Table 3.7 summahees-$cores and p-values
for each experiment group for user-specific attributes.imgpthat the most common
level of significance is 5%, all experiments performed digantly better than random
guesses. The experiments conducted on the Internet contyedbmain, gender, and
educational environment attributes all result in very l@wdls of significance, which

means that the methods proposed in this work can be usediegfgco predict these

attributes in chat messages.
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In predicting the user-specific attributes, the use of temnd style-based feature
sets perform almost equally well. While the term-baseduieasets performs better
than style-based feature sets for predicting the Internahection domain and the
educational environment of a user, the use of style-bassdrie sets perform better

for predicting the birth year of a user.

The performance of different classifiers vary throughoeteékperiments. The ex-
perimental results on the prediction of user-specificlates show that NB and SVM
perform best in all settings although the results show tbhaingle classifier can be the
“best performer.” While NB performs better than SVM in pretilig the connection
domain of a user, SVM performs slightly better in predictthg educational environ-
ment of a userk-NN produces the worst results for the prediction of the imé¢ con-
nection domain while PRIM performs the poorest in predicid all other attributes.
PRIM’s poor performance is a result of it being a rule-badadsifier. PRIM generates
a set of classification rules covering all the instances itass; and use these rules to
classify the test instances. Due to the high dimensionefithe dataset, these rules
contain only the most discriminative features, and thugj te be valid for only a small
subset of the instances in a class. Since such rules fahssity a large enough subset

of the test instances, the classification of PRIM degengrate random guesses.
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Table 3.8: Prediction accuracies of experiments conductedhessage-specific at-
tributes

Term-based feature set Style-based feature set
Tag k-NN NB PRIM SVM k-NN  NB PRIM SVM
Author-2-35 100.0 100.0 98.7 100.0 98.3 99.7 929 97.1
Author-10-26 98.7 100.0 744 99.9 84.0 89.1 51.7 97.1
Author-100-10 88.3 899 44.0 99.7 312 29.7 5.8 78.9
DayPeriod-2-34 66.2 71.6 48.8 60.7 59.9 63.8 54.3 59.6
DayPeriod-4-17 34.6 47.6 254 39.6 30.7 389 285 41.6
Receiver-2-35 60.0 750 516 67.0 58,5 60.5 53.7 534
Receiver-10-26 25.1 409 218411 12.4 11.2 9.2 10.6

3.6.4 Message-Specific Attributes

Table 3.8 summarizes the prediction accuracies of expatsneonducted on the
message-specific attributes. The identity of the authoreslipted with perfect ac-
curacy for two and 10 authors using term-based feature $btsprediction accuracy
drops to 99.7% even when the number of users is increaseditoTte experiments
for predicting the identity of the author of a message shat #ach author has a dis-
tinct communication style and word selection habits. The aisstyle-based feature
sets also show that the receiver of a message and the tinoelfibe message is writ-
ten is also predictable. The receiver of a message is pesbieith 75.0% and 40.9%
accuracy for the Receiver-2-25 and Receiver-10-26 tegtscasspectively. The clas-
sification accuracies for the DayPeriod-2-34 and DayPe#i@Y test cases are 71.6%
and 47.6%, respectively. Table 3.9 also summarizes thefisigmce tests conducted

on message-specific attributes.

The use of style-based feature sets perform equally with-tessed feature sets
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Table 3.9: Significance analysis conducted on messagéfistributes

Term-based feature set Style-based feature set

Tag Z-score p-value Z-score p-value
Author-2-35 5.24 1.5e-7 4.79 1.2e-5

Author-10-26 13.37 7.1e-73 13.12 9.2e-69
Author-100-10 27.19 3.3e-318 24.16 2.5e-200
DayPeriod-2-34 3.30 1.9e-3 1.46 1.8e-1
DayPeriod-4-17 2.32 3.9e-3 1.80 7.6e-2
Receiver-2-35 2.39 2.0e-3 1.20 2.4e-1
Receiver-10-26 6.18 5.2e-9 1.42 3.6e-1

when the number of classes is small. However, as the numbeasdes increases,
the decrease in the prediction accuracy is more significdrenawusing style-based
feature sets than using term-based feature sets. The re&slois rapid decrease in
the prediction accuracies is that the dimensionality ofdtyée-based feature sets are
much smaller than that of the term-based feature sets; atfieasumber of classes

increases, all classifiers exhibit difficulties in diffetieting the instances of different

categories.

Contrary to the results of the experiments employed usiegdéim-based feature
sets, the receiver and day period of a message can only bietegtdlmost with ran-
dom accuracy using a style-based feature set. This integefstding shows that the
vocabulary use of a person is dependent on the target andithetthe message while

the communication style is only dependent on the persoringrihat message.

For predicting the message-specific attributes, NB and S¥¢Meae best results

among all classifiers. While both classifiers perform sinyldor small number of
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classes, the experiments on the authors’ identity showahdhe number of classes
increases SVM performs better than NB. The PRIM classifieiopas the worst for

all attributes for both term- and style based feature sets.

3.7 Concluding Remarks

In this chapter, the predictability of various user- and sag®-specific attributes in
electronic discourse is examined. Specifically, the wotdcd®n and message orga-
nization of chat users are investigated by conducting exystts over a large real-life

chat dataset. Our observations show that many charaateridtchat users and mes-
sages can be predicted using their word selection and gititabits. The experiments
point out that some attributes have recognizable tracebehrtguistic preferences of
an author. A possible alternative view to the chat miningopem is to examine how

the linguistic traits of a person effect the writing stylen this section, we take this

alternative view and discuss how a person’s attributesglffis writing style.

Table 3.10 shows the set of most discriminative terms fded#ht attributes. As
chat conversations occur in a spontaneous environmenyshef slang words and
mispellings is frequent. Two different users may write taeng word quite differently.
For example, the word “something” (spelled as “birsey” inkisgh with ASCII charac-
ters) is used in its syntactically correct form by the usend®omeda” while “Paprika”

uses a slang version (“bishiy” in Turkish with ASCII chara) of the same word in
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Table 3.10: The most discriminating words for each attebuiThe discriminative
power of each word is calculated using tirestatistic

Attribute name Example Class The most discriminating words

Author Andromeda byes (bye — slang), ok, birsey (something)
Paprika diil (nothing — misspelled), ehe (hah — slang)
bishiy (something — misspelled)
Taru hmm (emoticon), dakika (minute), ha (hah!)
BirthYear 1979 dusunuyon (thinking — misspelled), ucuzeeéply
acar (opens)
1978 onemli (important), demek (then), git (go)
DayPeriod Afternoon kusura (fault), uzgunum (I'm sorrytfén (please)
Evening geceler (nights), hosca (finely), grad (graduate)
Domain .edu git (go), gelir (comes — 2nd person), saat (¢lock
.com cikardin (you displace — 2nd person), muhabbet (chat)
karsindaki (opposite)
Gender male abi (brother), olm (buddy — misspelled)
lazim (required)
female ayyy (ohhh!), kocam (my husband)
sevgilimin (my lover's)
Receiver Celefin olm (buddy — misspelled), falan (so)
yaw (hey! — misspelled)
Kebikec hmm (a notification), seker (sugar), adam (man)
School Ege Univ. Ege (a region), Bornova (a city in Agea rajio
Izmirde (in Izmir, a city in Agea region)
Bilkent Univ. Bilkent (Univ. Name), BCC (Bilkent Computere@ter)
Bilkentte (in Bilkent)
METU Univ. ODTU (univ. Name in Turkish), METU (Univ. name)

yurtlar (dormitories)

his messages. The receiver of a message also affects theseleadion habits. Some

users tend to receive messages containing more slang wadothers. The vocab-

ulary use is additionally affected from the period of the .d®ur observations show

that during the day hours, users tend to converse more |yliging apologetic words

more frequently.
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The user-specific attributes also affect the word seledtadits. The most discrim-
inative words of the users connected from the “.edu” domaimain more inquiries
and imperatives. On the contrary, the users connected fierhcom” domain employ
mostly responses and second person references. The uskees‘afom” domain tend
to use shorter words than the users connected from otheridsnmatheir conversa-
tions. Another attribute that clearly affects the vocabplaf a user is gender. It is
apparent that males tend to use more decisive, dominatirigrsges using words that
can be considered as slang while female conversations/@wobre content-dependent
words and emoticons (e.g., Ayyy!). These findings show sirties with the findings
presented in (160). The most discriminative words for tlassés of user's educational
environment are mostly dominated by the regional terms.alld 3.10, the most dis-
criminating words of users from three universities in diffiet regions are given. The
vocabulary of the users contain many location-specific $eand is clearly affected by

the location of the university and its facilities.

The stylistic analysis also provides interesting resusch chat user expresses
himself/herself using an almost-unique and identifiabkeo$dinguistic preferences.
The messages of three different users is examined in orderesent their stylistic
differences. The user named “Andromeda” employs smilegssarrage-length words
more than others, while “Paprika” tend to converse usingtghanessages, prevent
using punctuation marks, smileys, and function words. T8 liTaru” communicates

with longer messages containing a large number of punctuatiarks and function
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words. The time of a message also affects the style and vizogimf a message. Dur-
ing the day hours, messages are generally shorter and edessi auxiliary elements
such as smileys and punctuation marks, while during thethigrs the messages tend

to be longer containing many function words and punctuatianks.

The writing style shows variations between different damsail he users connected
from the “.edu” domain have a smaller vocabulary and use fpation marks and
numerals frequently. On the contrary, the users of the “‘cdomain have a larger
vocabulary, use a small number of numerals, and write longgssages. The educa-
tional environment of a user is another factor that affeleeswriting style. The users
from different universities prefer to use separate setsroleys. The style of a person
is also affected by his/her gender. In general, female ysefer longer and content
bearing words. They also prefer shorter sentences than usels and omit the use
of stopwords and punctuation marks. Long messages and s$®afwords are most
discriminating stylistic characteristics of male userdieTuse of style-based feature
sets prove to be more effective than the use of term-baséuatéesets for determining
the birth year of an author. This result also shows that tleegagup of an individual
is an important factor that affects the stylistic charastas of a person’s messages.
The experiments conducted for determining the birth yeaibate of a user show that
younger users mostly have a smaller vocabulary. Additignas (119) also pointed

out, younger users prefer using smileys more than oldesuser



Chapter 4

A Parallel Framework for
In-Memory Construction of

Term-Partitioned Inverted Indexes

4.1 Introduction

The evolution of communication technologies in recent gemve rise to a rapid in-
crease in the amount of textual digital information and taménd to search over this
type of information. One of the largest industries of our, ¢hee searching industry,

has flourished around these demands.

102
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Inverted indexes, due to their superior performance in a&ns\y phrase
qgueries (128), are the most commonly used data structuré¢eln search systems.
An inverted index consists of two partsvacabularyandinverted lists The vocabu-
lary contains the collection of distintérms which are composed of character strings
(wordsg that occur in the documents of the collection. For each iarthe vocabulary,
there is an associateaverted list or posting list The inverted list for a term is a list
of postings where a posting contains an identifier for a document thatains that
term. Depending on the granularity of information, the fregcy and the exact term

positions may also be stored in the postings.

Inverted index data structure is quite simple, yet Webesgaineration of a global
inverted index is very costly due to the size, distributetiirmand growth/change rate
of the Web data (35). Fast and efficient index constructidreses are required to
provide fresh and up-to-date information to users. Furtieee, since the data to be
indexed is crawled and stored by distributed or paralletays (due to performance

and scalability reasons), parallel index constructiommtégues are essential.

There are two major partitioning schemes used in distnitguthe inverted index
on parallel systems: document-based and term-basedqartg. In document-based
partitioning, the documents are assigned to index servetsall the postings related
with the assigned documents are stored in a particular iséexer. In term-based
partitioning, each term in the vocabulary and the relate@ried lists are assigned to

an index server.
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Almost all of the major search engines use document-baseiligraing due to
the ease in parallel index construction of document-baaeéittipned inverted indexes.
Term-based partitioning on the other hand has advantagesdém be exploited for
better query processing (108). In this study, we proposeffariemt parallel index
construction framework that can be used for generating-tesised partitioned inverted
indexes starting from a document-based partitioned didleenost possibly generated

via a parallel crawling of Web documents.

4.1.1 Related Work

Early studies on index construction are focused aroundbizsled algorithms designed
for sequential systems (59; 106; 154). In (154), authorsgartea method that traverses
the disk-based document collection twice; once for geimeyat term-based partition
to divide the work into loads, and once for inverting the datateratively for each pass
defined in the previous pass. The emphasis is on using a&srigmory as possible.
In (106), authors use a multi-way, in-place, external matgerithm for inverted index
construction with less primary memory. In (59), authorsgm®e an in-memory index
construction method for disk-based inverted indexes wtirerelocument set is divided
into batches that are inverted in memory and then merged attéminto disk. In their
work, authors facilitate the use of compression in orderdbieve a more effective

inversion.
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More recent works on sequential systems are mainly focusenhdine incremen-
tal updates over disk-based inverted indexes (29; 91). 9 tRe authors propose a
hybrid indexing technique. The proposed method mergesl sosling lists with the
already existing index, while using posting list re-alltboa for large posting lists. The
authors also propose two in-place merge techniques fortungdbong posting lists.
In (91), the authors evaluate two index maintenance siegeand propose alterna-
tives for improving these strategies. These improvemartdased on over-allocation
of posting lists and keeping incremental updates withinabotary before index re-

merging.

The following studies on index construction (48; 69; 10481020; 121; 135),
extend disk-based techniques for parallel systems. In @8pcument-based alloca-
tion scheme for inverted indexes is presented. The authophasize both storage
balance and inter-processor communication times and tngitimize both using ge-
netic algorithms. In (69), the authors evaluate the effetterm- and document-based
partitioning methods on a shared-everything architectlifeey use query statistics to

balance the required I/0O times among processors on a dsddkachitecture.

In (120) and (121), the authors present a disk-based pliradiex construction al-
gorithm, where initially the local document collectiong amverted by all processors in
parallel. The processors generate a global vocabulary @stgnocessor and the host
processor divides the document collection among all psarssn lexicographic order

assuming global knowledge over the document collectiore dithors also analyze
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the merging phase of the inverted lists in (121), preseritinge algorithms. In their
work, the authors mainly focus on the parallel generatiothefdistributed index and

the communication costs are not taken into consideration.

In (135), the author describes an index inversion framevioridistributed infor-
mation retrieval systems. Although the method presented 3%) achieves storage
balance among processors, it does not consider minimin@gdmmunication loads
of the processors. In (135), itis also assumed that it isiples®r the inverted indexes
to be incrementally updated over time, and specialized stati@tures for minimizing
the index update times are proposed. The cost of the invepsiacess is also empha-
sized, and four different index inversion methods are pre=sk In (104), the authors
again start from a document partitioned collection and usef@vare-pipelined archi-
tecture to invert document collections. The collection id®d into runs, and for
each run, documents are parsed, inverted, sorted, and dlustoedisk in a pipelined
fashion. In (108), the authors propose a load balancingestyan a term-partitioned
inverted index on a pipelined query processing architectli®7). In (108), both repli-
cation of inverted lists and a query statistics-based assgmnt scheme is presented,

yielding up to %30 net query throughput improvements.
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4.1.2 Motivation and Contributions

We would like to repeat a catchy phrase often credited to JiayG‘Memory is the
new disk, disk is the new tape”. With the advent of 64-bit #esttures, huge memory
spaces are available to single machines and even very lavgeied indexes can fit
into the total distributed memory of a cluster of such systeemabling memory-based
index construction. Furthermore, cloud computing systeuth as Amazon EC2 are
commercially available today. They offer leasing of vittagchines without owning
and maintenance costs and thus ease the utilization andyeraeat of large cluster of
servers. Thus, we believe that the benefits of parallel imd@struction is not limited
to dividing and distributing the computational task to dréint processors. The current
advances in network technologies, cloud computing and itjie dwailability of low
cost memory provides an excellent medium for memory resigelutions for parallel

index construction.

In this work, we extend our previously proposed in-memomaflal inverted index
construction scheme (83) and compare the effects of diff@@mmunication-memory
organization schemes to the parallel inversion time. Infamework, we propose to
avoid the communication costs associated with global vaeap construction with a
term-to-bucket assignment schema. This schema preventsritormation to be sent
to a host, where a reasonable term-to-processor assignmeid be computed using
the term distribution among processors, thus avoiding aiptesbottleneck of commu-

nication. Furthermore, term-to-bucket partitioning alfothe framework to completely
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avoid creating a global vocabulary, eliminating the neea &firther communication

phase.

We also investigate several assignment heuristics foromipg the final storage
balance, the final query processing loads, and the comntionceosts of inverted
index construction. Here, storage balance is importarteswe are trying to build a
memory-based inverted index. Query processing load balanmnportant since the
reason for building the inverted index is for faster querggassing and this can be
done better if the loads of the processors are balanced.llyittee communication

cost is important since it effects the running time of palatversion.

Furthermore, we investigate the effects of various comcation-memory orga-
nization schemes. Since parallel inversion is a commuigicdiound process, we
observe that the utilization of the communication-memaryg éhe network has sig-
nificant effects on the overall inversion time. Our findingdicate that, dividing the
communication memory int@ x K buffers, whereK of which are used for sending
messages and the remainiRgare used for receiving messages, yields the best perfor-
mance. This is due to the fact that this communication-mgrogganization scheme

maximizes the communication/computation overlap.
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Finally, we test the performance of the proposed schemegitigrming both sim-
ulations and actual parallel inversion of a realistic Webadat and report our obser-
vations. Our contributions in this work are prior to optimions such as compres-
sion (165). However, it is possible to apply data comprestiathe proposed model,

making it possible to work with even larger data collections

The organization of this chapter is as follows: In Sectio®, 4ve introduce the
memory-resident distributed index inversion problem aadatibe our framework. In
Section 4.3, we provide our overall parallel inversion suke In Section 4.4, we de-
scribe the investigated assignment schemes in detail.dimoBet.5, we present several
memory organization schemes in order to reduce the comratioictime and discuss
their advantages and disadvantages. We provide our expetsintheir analysis, and
extensive discussions on the results of our experimentedtic 4.6. Finally, in Sec-

tion 4.7 we conclude and discuss some future work.

4.2 Framework

Most of the largest text document collections that are abtiin use today are Web-
based. These repositories are mainly created and used bys&#ebh engines. An
important consideration in the design of parallel indexstanction systems should
be their applicability to such real life data collections this work, our efforts are

based on presenting an efficient and scalable index cotistniamework specifically



Chapter 4.In-Memory Construction of Inverted Indexes 110

designed for Web-based document collections.

Parallel search engines collect Web pages to be indexed istebdted Web
Crawlers (26). In general, at the end of a crawling sessiap@ment-based par-
tition of the whole document collection is obtained, whesaete part is stored in a
physically separate repository (26). The state-of-theapproach to distributing the
crawling and storage tasks uses a site-hash-based assigrvhere the site names of
pages are hashed and documents are assigned to repositmieding to those hash

values (18; 36; 34).

The framework presented in this study has three assumptioribe initial data
distribution. First, the initial document collection issasned to be distributed among
the processors of a parallel system. That is, each procesassumed to have a por-
tion of the crawled Web documents and maintain informatiooua only its own local
dataset. Thus in this work, no processor contains a glolest wif the document col-
lection. Second, each processor is assumed to containandisgt of documents.
This means that the overall system contains no replica ofdmeyiment. Third, the
Web pages are assumed to be distributed among these pnacassua a site-based
hashing. That is, all pages from a site are assigned to aesprgtessor, hence each
site is assumed to be an atomic storage task. Consequéetipitial storage loads of
the processors are not necessarily perfectly balancedseTieee assumptions are in

concordance with the output format of general purpose ¢navdystems.
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In this framework, the objective of parallel index constrao is to generate a final
term-partitioned parallel inverted index from a documpattitioned collection stored
on a distributed shared-nothing architecture. The finahtpartitioned inverted index
will also be stored in a distributed fashion in order to allbath inter- and intra-query
parallelism on query processing. In this context, our apphohas similarities with

parallel matrix transpose operations.

4.3 Parallel Inversion

Our inversion scheme starts with a document-based iniéiditpn. Such an initial
document-based partition is depicted in Figure 4.1(a). @erall parallel inversion

scheme has the following phases:

e Local inverted index construction: Each processor generates a local inverted
index from its local document collection. This process lasifrated in Fig-
ure 4.1(b). Note that inverted lists for some terms can apipaaultiple proces-

SOrs.

e TermBucket-to-processor assignmentEach processor uses hashing to find a
deterministic assignment of terms into a pre-determinedber buckets. Buck-

ets are used to randomly group inverted lists so that the aemization costs in
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the termBucket-to-processor assignment phase is redédkeptocessors com-
municate the sizes of their term buckets to the host proceEhe host processor
generates a termBucket-to-processor mapping under thetraart that in the fi-
nal assignment, the storage and query processing loaddeaismchieved and
communication cost is minimized. This process is illustdain Figure 4.1(c).
Note that many buckets exist in multiple processors duedartiial document

partitioning.

e Inverted list exchange-and-merge:The processors communicate appropriate
parts of their local inverted indexes in an all-to-all famhi This process is
illustrated in Figure 4.1(d). The remaining local invertiedlex portions are
merged with the received portions and final inverted indegeaserated. The
final term-partitioned inverted index of the initial documtgartitioned index in

Figure 4.1(b) can be seen in Figure 4.1(e).

4.3.1 Local Inverted Index Construction

In the local inverted index construction phase, each psmragenerates a local vocab-
ulary and local inverted lists from its local document cotlen. Since each processor
only contain a unique subset of documents, this operationbeaachieved concur-
rently without any communication. In this phase, the logatabularies and inverted

list sizes are determined and each term is given a uniqueifiéenin our local index
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ToToTaTs

(a) Initial document patrtition.

Bucket 1

Bucket-to-processor
T BT Assignment:
T, BT 11
L B Bucket 1 — P,

Bk Bucket 2 — P,
Bucket 3 — P3

(c) TermBucket-to-processor assignment. (d) Invertacekshange-and-merge.

P4
Bucket 1

Bucket 2

(e) Final term-partitioned index

Figure 4.1: Phases of the index inversion process.
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construction scheme, the local document collection is teace. In the first pass,
the local vocabularies and inverted list sizes are detexthand each term is given a
unique identifier. The memory required for local invertesidiis allocated according
to the determined inverted list sizes. In the second passgddlcument collection is

parsed and stored in the respective inverted lists.

4.3.2 TermBucket-to-Processor Assignment

After the local inversion phase, processors contain a decitbased partitioned in-
verted index. In this partition, processors contain dédferportions of inverted lists for
each term. In order to create a term-based partitionedtiedéndex, each inverted list,
in its full form, should be accumulated in one of the process®o this end, each term

in the global vocabulary should be assigned to a particutzzgssor.

This term-to-processor assignment depicts an invertegkipartitioning problem.
A suitable index partitioning can be defined by many différeniteria. In this work,

we set the following quality metrics for a “good” term-togmessor assignment:

QML: Balancing the “expected” query processing loads of pramsss
QWe: Balancing the storage loads of processors.

QWB: Reducing the communication overhead during the inversimtgss through

minimizing:
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(a) Total communication volume.

(b) Communication load of the maximally loaded processor.

The final query processing loads of processors indicate timuat of processing
that a processor is expected to perform once the inversiéinished and the query

processing begins. We can estimate this load utilizingiptes/query logs.

The storage balance of processors guarantees an evebutistmiof the final in-

verted index allowing larger indexes to fit in the same setrotessors.

Since inversion is a communication-bound process, themipation of the com-
munication overhead ensures that the inverted list exahah@se of the parallel in-
version process takes less time. In this work, minimizatbrihe communication
overhead is modeled as the minimization of total commuimoatolume while main-
taining the balance on the communication loads of the pemes These are the two
commonly used quality metrics that determine the commtioicgerformance of a
task-to-processor assignment when the message latendyeaderemains negligible
compared to the message volume overhead (147), (23), whitleicase for parallel

index inversion.

To optimize the above-mentioned metrics, we investigatstiey assignment
schemes, comment on possible enhancements over theseesclagith propose a novel
assignment scheme which performs better than its’ couatexpOur discussions about

bucket-to-processor assignment schemes are explainedait ih Section 4.4.
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For the purpose of finding a suitable term-to-processolgassént, the previous
works in the literature either assume the existence of aajjleficabulary or generate
a global vocabulary from the local vocabularies. The glaloalabulary can be created
by sending each term string, in its word form, to a host preceswhere they are
assigned global term-ids, and these global term-ids aradoasted to all processors.
However in such a scheme, a particular term would be sentedtist machine by
all processors if all processors contain that specific te@ur observations indicate
that the cost of such an expensive communication stage jmpronal to the cost of
inverted list exchange phase. Furthermore, since the hosegsor receives all the

communication, it constitutes a serious bottleneck.

In this work, we propose a novel and intelligent scheme thabks us to avoid
global vocabulary construction cost. We propose to groupgento buckets prior to
the term-to-processor assignment. Using string hashingtions, each word in a lo-
cal vocabulary is assigned to a bucket. Afterwards, onlyhiheket size information
is sent to the host processor. The host processor computes Bucket-to-processor
assignment, which induces a term-to-processor assignmettoroadcasts this infor-
mation to the processors. The effect of bucket processidgramn the quality of the
assignment is not investigated in this work and the sameoranibucket processing
order is used in evaluating the assignment schemes. Wedshtza note here that it
is not necessary to build a global index at the host processanr It suffices for the

host processor to store only a bucket-to-processor asgigtanray. Whenever the host
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processor receives a query term, all it has to do is to contpetbash of the term, find

the bucket for that term and forward the term to the owner @ssor of the bucket.

4.3.3 Inverted List Exchange-and-Merge

At the end of the termBucket-to-processor assignment plaiskucket-to-processor
assignments are broadcast to the processors by host procasshat each processor
is aware of the bucket-to-processor assignments. In oodenefte a term-partitioned
inverted index, the document-based partitioned localrbegelist portions should be
communicated between processors in such a way that the \pbsteng list of each
term resides in one of the processors. To this end, all psoceshould exchange their
inverted lists portions in an all-to-all fashion. Howewetilizing termBuckets instead
of terms for assignment dictates a major change (and anawlalitost) in the inverted

list exchange-and-merge phase.

Since termBucket-to-Processor assignment prevents @ ofecreating a global
vocabulary, when a processor receives a posting list podfoa term from another
processor, it also requires additional information to tifgrihe posting list it receives.
To this end, upon sending the posting list portions, the ggsors should also send
the associated term, in its word form, to the receiving pssoe Due to this, the all-
to-all inverted list exchange communication becomes #iyghore costly. However,

since the processor-to-host bottleneck due to global wdaapconstruction is already
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avoided, the performance degradation in all-to-all ins@dist exchange communica-
tion is more than compensated. Furthermore, this vocapebechange is distributed

among all processors evenly, further reducing its overhead

The inverted list exchange between processors is achievédd steps. First,
terms, in their word form, and their posting sizes are comicated. This is done
by an all-to-all personalized communication phase, whax gprocessor receives a
single message from each other processor. At the end oftépsall processors obtain
their final local vocabularies and can reserve space for fimail local inverted index
structures. Second, inverted list portions are exchangédicket id order, and within
the buckets in alphabetical order. This step is again pexdras an all-to-all person-
alized communication. However, since this step consunggsfgiant amount of time,
the inverted list portions are sent via multiple messagegmiry organization and
communication scheme used in this phase is explained il degection 4.5. At the
end of inverted list exchange, the remaining inverted ligtsl obtained inverted lists

for each term are merged and written into their reservedespacmemory.

4.4 Term-to-Processor Assignment Schemes

In this section, we try to solve the termBucket-to-processsignment problem with
the objectives of minimizing the communication overheadrdyuthe inversion and

maintaining a balance on the query processing and storagks lof processors after
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the inversion. We present adaptations of two previouslyppsed assignment algo-
rithms (9) to the problem at hand, discuss the shortcomimgsese algorithms and

propose a novel assignment algorithm that provides supeai@llel performance.

In the forthcoming discussions we use the following notaioThe vocabulary
of terms is indicated witlY". Due to the initial site-hash-based crawling assumption,
the posting list of each tery € 7 is distributed among thé& processors. In this
distribution,w(¢;) denotes the size of the posting list portion of ternthat resides
in processorp, at the beginning of the inversion, whereasg,(t;) = Eszl wi(t;)

denotes the total posting list size of tetm

We assume that prior to bucket-to-processor assignmech, @acessor has built
its local inverted indeX;, and partitioned the vocabula®y = {t¢,,t,, ..., t,} contain-
ing n terms, into a predetermined numberof buckets. The number of bucketsis

selected such that < n andm > K. Let

B=1(T)={T,=b;, To=bs, ..., Trn=bn}. (4.1)

denote a random term-to-bucket partition, wh&falenotes the set of terms that are
assigned to bucket. In this partitionw;, (b;) denotes the total size of the posting lists
of terms that belong tb andwy(b;) denotes the total size of the posting list portions of

terms that belong t; and that reside in processgr at the beginning of the inversion.
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We also assume that we are given a querybsethere each query € Q is a subset

of 7,i.e.,qg C 7. The number of queries that a termis requested by is denoted with

f(t5)-

In anm-bucket andK -processor system, the bucket-to-processor assignment ca

be represented via&-way partition

1(B)={B,Bs, ..., By} (4.2)

of the buckets among the processors. The quality of a buokptecessor assignment
I1(B) is measured in terms of three metrics: The query proceseamlbalance@VL),
storage load balanc€¥R) and the communication coSPB8). The query processing

load @ P(py) of a processop,, induced by the assignmel{ B) is defined as follows:

QP(pr) = Y > wialty) x f(t)). (4.3)

b, By, tj €b;

The storage load'(p,) of a processop,. induced by the assignmehit B) is defined

as follows:

Soe) = > ) wialty). (4.4)

b, By t; €b;
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The communication cost of a procesggrinduced by the assignmefit( B) has two
components. Each processor must receive all portions obtickets assigned to it

from other processors. Thus total reception cost/volumemiocessop;, is:

Reco(pr) = > > (wia(ty) — wi(ty)). (4.5)

b, eBy, tiji
Each processor must also send all postings that are notasistg it to some other
processor. The total transmission cospgpis represented b¢end(p,) and is defined

as:

Send(py) = Z Z wy(t5) (4.6)

bi By t; €b;

The total communication cost of a processor is defined as:

Comm(py) = Send(py) + Recv(py) 4.7)

4.4.1 Minimum Communication Assignment (MCA)

MCA algorithm minimizes the total communication volume Vehignoring storage
and communication balancing (9). The MCA scheme is basedefotlowing simple

observation. If a termBucket is assigned to the processairdbntains the largest
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portion of the inverted lists of the terms belonging to thatket, the total message
volume incurred due to this assignment will be minimized.u3hif we assign each
termBuckeb, € B to the processay, that has the largesty (b;) value, the total volume
of communication for this term will be minimized. By assiggiall terms using the
above criteria, an assignment with global minimum total ommication volume can

be achieved.

4.4.2 Balanced-Load Minimum Communication Assignment (BIMCA)

The BLMCA scheme is an effort to incorporate storage balapdeo MCA (9). In
this scheme, termBuckets are iteratively assigned to gems. In BLMCA, for each
termBucket, first the target processor that will incur thenimial total communica-
tion is determined using the criteria in MCA scheme. If asgignt of the particular
termBucket to that processor does not make the storage @ddts processors more
skewed (does not increase the maximum storage load of @épsors) at that iteration,
the assignment proceeds as in MCA scheme. Otherwise, th8teket is assigned to

the minimally loaded processor.

4.4.3 Energy-Based Assignment (EA)

In BLMCA, two separate cost metrics are evaluated: The g®l@ad balance and total

communication cost. However, at each iteration, only onthe$e metrics is chosen
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to be optimized. Furthermore, both MCA and BLMCA models tlenenunication
cost as the total communication volume and disregards thémmouan communication
volume of a single processor. In order to minimize the maxmaommunication cost
of a processor, we should consider both the reception cateodssigned processor

and the transmission costs of all other processors.

In the EA scheme, we propose a model that prioritizes redutiie maximum
communication cost of processors as well as maintainingg&and query processing
load balance. To this end we define the endfggf an assignmenrit(B). This energy
definition is based on the storage loads, query processadsland communication
costs of processors. Recall ti@bmm(p,) of a processor incorporates both reception
and transmission costs of procesgpr We define two different energy functions for a

given termBucket-to-processor assignmeb):

EY(II(B)) = Max{Mazi<k<x{Comm(p:)},
Maz1<p<x{S(pr)}, (4.8)

Max <p<x{QP(pr)}}

E*(II(B)) = Y _(Comm(pi))* + ) (S(pe))* + Y _(QP(pr)*  (4.9)
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Utilizing these two energy functions, we propose a constra@lgorithm that as-
signs termBuckets to processors in a successive fashion.térmBuckets are pro-
cessed in some order, and the energy increase in the systdihmssible assign-
ments of each bucket are considered. The assignment thas ithee minimum energy
increase is performed. That is, for the assignment of a teich&tb; in the given order,

we select the assignment that minimizes

E(II(Bi-1 U {bi})) — E(II(B;-1)). (4.10)

whereB;_; denotes the set of already assigned termBuckets.

We should note here that proposed energy-based assignoferhess also have
the nice property of being easily adaptable for incremeinidéx updates. To enable
this feature at the end of inversion process, it is sufficiergtore the energy levels of
each process. These values then can be used to perfornsigeyagnt of indexes in
an incremental fashion. The minimization of inversion tifeature of these schemes
would be very helpful in minimizing the incremental updated as well. However,
we should note that enabling incremental update in thesenses would necessitate

the construction of a global vocabulary on the server node.

We consider both%! and E? energy definitions and report the results of both
schemes in our experiments. We call thé-based assignment scheme/asA and

the £2-based assignment schemelZ4.
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4.5 Communication-Memory Organization

In the final stage of the memory-based parallel invertedxrmmstruction, the por-
tions of each posting list are communicated between procgss accumulate each
posting list in one processor, where they would be mergeddierato construct the
final inverted index. This phase can be summarized as an-all-personalized com-
munication phase with different number of messages andlitegasage sizes. In this
phase, each processor should identify local posting listiges to be sent to other
processors, prepare message buffers to send them usinggitebbe memory for this
communication and send them to the target processors. Adaime time, each pro-
cessor should retrieve posting list portions assignedamtirom other processors and

merge them in order to generate the final posting lists.

Posting list exchange operation requires intensive conmeation between proces-
sors and dominates the total time required to complete ttexiinversion. An im-
portant question when communicating the posting list pogiis how to use/organize
the available memory so that the communication phase thieleast possible time.
In this work, we evaluate four different communication meynarganization schemes

and their impact on total run time of index inversion. Thesleesnes are:
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e 1-Send 1-Receive buffer scheme (1s1r)

e 1-Send ((-1)-Receive buffer scheme (k%)

e (K-1)-Send 1-Receive buffer schemigg1r)

e (K-1)-Send {-1)-Receive buffer schemé(sKT)

In investigating different communication-memory orgaian schemes, we as-
sume that the total memory spared for communication is fisegt,)/. In 1slr, the
communication memory is split into one send and one recaiffet) each with size
M/2. In 1sKr and Kslr, the memory is split intd{ buffers each with sizé// K.

In 1sKr, one of these buffers is used as a send buffer and the remgaifil buffers

are reserved for receiving messages from other processor&’slr, each processor
maintains one receive buffer arfd-1 send buffers, which are reserved for sending
messages to other processors.AIBKr, the memory is split intd2 x K') —2 buffers
each with sizé\//((2x K)—2). K-1 of these buffers are reserved as send buffers as in

K'slr, while the othef(-1 buffers are reserved as receive buffers as iirls

In all of these schemes, the communication commences threegeral stages.
First, all processors issue non-blocking receives for eackive buffer. Then, each
processor starts preparing the outgoing send buffer(s)inQuhis preparation, the
vocabulary of the local inverted index is traversed in orttecopy the local posting
list portions to the send buffer(s). Whenever a send busféuli, the owner processor

issues a blocking send operation. Blocking send operatalfs sll computation on
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the sender-side until the send operation is successfullypteted. Upon receiving
a message, each processor starts emptying its respeateiwadouffer by copying
the received posting list portions to the final inverted deffectively finalizing the
merge of posting list portions. After the merging phase is\pteted, processors issue
a new non-blocking receive in order to receive any remaimmessages from other

processors, and restart filling their send buffers.

4.5.1 1-Send (1s) versugx-1)-Send (K's) Buffer Schemes

In the 1s buffer schemes, in order to prepare messages tott® £ther processors, all
posting list portions targeted to a specific processor shbalput into the single send
buffer prior to sending it. For a single target processomider to send all required
posting list portions, the vocabularies of each local itegrindex must be traversed
once. As each processor probably requires to communicdltealNiother processors,

preparation of the send buffers requit€sl traversals over the local inverted index.

On the other hand, in th&'s buffer schemes, in order to prepare outgoing mes-
sages, only one traversal of the local inverted index is@efit. In this traversal, the
processor would pick any outgoing posting list portion atate it into the appropriate
send buffer. Once one of the send buffers is full, the comeatiin can commence.
However, using blocking sends ultimately results in stgliihe process every time a

send is issued, reducing the processor utilization.
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4.5.2 1-Receive (1r) versusK-1)-Receive () Buffer Schemes

In 1r schemes, the communication memory is fairly utilizetiereas ink'r schemes,
the utilization of the communication memory depends on tamlmer of messages
received by each processor and may be poor for most of thegsocs. In 157, since
there can be only” messages over the network at any time, diilpf the K'x (K —1)
receive buffers would be actively used. In this case; (K —2) unused receive buffers
are left idle, leaving thé K—2)xM of the totalK' x A/ memory unused. I& SKr, since
there isk'-1 send buffers, the processors can produce enough meseagisely use
most of theK x (K —1) receive buffers, resulting with a more utilized communicat

memory.

In Kr schemes, since each processor has a specific receive tuffall other
processors, cycles in the communication dependency graptoticause deadlocks.
However, in 1r schemes, depending on the communicatiorr,acgeles in the com-
munication dependency graph may cause deadlocks. To desd tleadlocks, we can
utilize non-blocking sends instead of blocking sends. Ktwtking sends allow a pro-
cessor to continue processing after a send is issued witheuteed of waiting it to
finalize, thus avoiding any possible deadlocks. Howeverjsbued send still requires
its particular send buffer to be intact. As a result, the pssor should again be halted
in case a local posting list is required to be written in tretdbuffer. For this reason,
each send buffer is locked after a send, and all such buffergrabed after each mes-

saging iteration. If a send buffer is released after a ssfoksend, the lock is freed
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allowing the processor to issue writes into that send buaffgtin.

In K's1r, whenever a non-blocking send is issued, it is possibfél other send
buffers, allowing computation to overlap with communioati However, in 1s1r, dead-
lock avoidance via non-blocking sends may cause poor pagnce since there is only
one send buffer and it is not possible to overwrite the castenthis buffer until the

non-blocking send is completed, causing the computatide tstalled.

Itis also possible to avoid deadlocks in 1s1r scheme by eyimi@ BSP-like (148)
communication/computation pattern and by ensuring thévoe@rocessors send mes-
sages to the same processor in any given communication $tepslr, sincek-1
traversals over the local inverted index is required forhepmcessor, it is possible
to divide the computation intd(-1 traversal steps and communicate at the end of
each computation step. We can also freely choose the congation order in such a
scheme. By exploiting this freedom, we can find a commurooachedule that avoids
deadlocks. Minimizing the number of communication stepiiged by this schedule

corresponds to minimizing the total inversion time of thegmwsed BSP-like scheme.

In this work, we show that the problem of finding a communmaschedule with
minimum number of steps can be reduced to the “Open Shop SkhgdProblem”
(OSP). In OSP, there atd| jobs and|IW| workstations. Each job; € J has to visit
all workstations and perform a different task. There is ssvamted time(j;, wy) for

finishing job j; at workstationw, € . No restrictions are placed on the execution
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order of jobs and it is given that no job can be carried out fimameously on more than

one workstation.

In (54), the authors proposed an optimal algorithm to findimimm finish time in
an OSP. This is achieved by constructing a bipartite grapm fihe jobs and worksta-
tions, iteratively finding complete matchings over thisgiraand modifying the graph
by decreasing edge weights of edges in the discovered magtblyithe smallest edge
weight until no more complete matchings can be found. Figdicomplete matching
ensures that no two jobs are assigned to the same workstafilie no two worksta-

tions are working on the same job at any time.

The posting list exchange and merge phase of index invepmeess can also be
modeled using the above mentioned algorithm. In the paratlex inversion problem,
each processor has to send inverted list portions to otleeegsors. The send operation
of inverted list portions corresponds to jobs in the schiedyproblem. Also, each send
should be received by a processor and merged into the finadtewlists. In that sense,
each processor also functions as a workstation in the sthgdaroblem. There are
two associated vertexes, one job vertex and one workstedidex, for each processor
in the bipartite graph. That is, the send responsibilitieprocessors constitute the
jobs and the receive responsibilities of processors comstihe workstations. If a
processop; has to send a message to procegsathere is an associated edge between
the job vertex ofp; and workstation vertex gf; and the number of the messages to

be sent fronp; to p; is the weight of this edge. In this model, each match found on
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the constructed graph correspond to a schedule step, wheiadian optimal finish
time schedule defines an optimal communication schedutelagist possible number

of communication steps.

4.6 Experiments

4.6.1 Experimental Framework

We conducted our experiments on a realistic dataset olatdiperawling educational
sites across America. The raw size of the dataset is 30 GB amiios 1,883,037
pages from 18,997 different sites. The biggest site coatHn352 pages while average
number of pages per site is 99.1. The vocabulary of the datassists of 3,325,075
distinct terms. There are 787,221,668 words in the datale¢. size of the inverted
index generated from the dataset is 2.8 GB. For query loaanbalg purposes, we
used a syntetically generated query log of 1,000,000 distjueries each of which
contains 1 to 7 terms. In our experiments, we used a fixed numwbbuckets in

termBucket-to-processor assignment and set the numbercé&ebs to 10,000.

We tested the performance of the proposed assignment sshame&o different
ways: First we report the relative performances of the ass@nt schemes in terms of
the quality metrics described in Section 4.3.2 through &tmns. In simulations we

theoretically compute the assignment of terms to procesamil compute the storage,
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guery processing, and communication costs of the assignmitrout performing ac-
tual parallel inversion. The simulation experiments aneciacted fork'={4, 8, 16, 32,

64, 128 values on a Sun AMD-opteron machine with 128GB of RAM.

Second, we provide a set of experiments using actual phiratkersion runs in or-
der to show how improvements in quality metrics relate tapakrunning times. For
this purpose, we developed an MPI-based parallel invexside that can utilize each
of the four communication-memory organization schemesritgsd in Section 4.5 for
a given termBucket-to-processor assignment. These sesenadf experiments are
conducted on a 32-node PC-cluster, where each node is driPBriidum 1V 3.0 GHz
processors with 1 GB RAM connected via an interconnectidwowrk of 100 Mb/sec
fast Ethernet. The total communication-memory size M id& MB in these exper-

iments.

4.6.2 Evaluation of the Assignment Schemes

As a baseline inversion method, we implemented a random assignment (RT) al-
gorithm. In RT scheme, each term is assigned to a random ggocevithout a term-
to-bucket assignment. In this scheme, the global vocaptlks to be created. In order
to evaluate the viability of term-to-bucket assignment asch baseline termBucket-
to-processor assignment scheme, we also implemented amaadsignment (RA)

algorithm which assigns buckets to processors randomlye Nt RA requires the
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Table 4.1: Percent query processing load imbalance values.

K RT RA MCA BLMCA FE'A E’A

4 305 543 91.4 516 478 196
8 555 863 1150 782 741 241
16 1004 102.8 352.1 924 90.1 448

32 319.3 233.8 4573 167.1 1234 61.7
40 437.2 2849 755.8 225.6 189.3 79.8
64 6025 503.7 1446.2 4079 3745 1125
128 857.3 969.4 8456.8 821.7 6821 216.4

least possible time to compute a termBucket-to-processsigament while avoiding
the need for global vocabulary creation, and thus it can leel tis compare/analyze
the merits of the proposed bucketing scheme and the assigscieemes. The perfor-

mance of the proposed assignment schemes are comparest&jaand RA schemes.

4.6.2.1 Simulation Results

Tables 4.1, 4.2 and 4.3 compare the performance of the assigrschemes in terms

of the quality metrics described in Section 4.3.2.

Table 4.1 displays the performance of the proposed assignsceemes in opti-
mizing the quality metricQVLL. In the table, the query load imbalance percentages for
different assignment schemes and different number of gsms is presented. The

guery load imbalance values are calculated according ttotlmeving formula:

(MaxlgkgK{Q(pk>}
(i (Qpe)) /K

. 1) % 100. (4.11)
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Table 4.2: Percent storage load imbalance values.

Initial Final

K RT RA MCA BLMCA ETA E~“A
4 13.8 4.4 12.1 38.3 0.0 2.8 5.9
8 31.9 11.7 09.9 60.0 0.1 7.2 14.1
16 38.2 18.2 27.4 66.2 1.7 9.3 23.2
32 58.4 44.1 29.6 83.0 5.4 16.1 325
40 66.3 32.2 37.0 77.4 6.2 17.9 33.1
64 69.0 44.7 56.6 92.2 11.5 21.7 36.0
128 81.4 65.3 94.7 95.6 15.7 32.6 45.8

Table 4.2 shows the performance of the proposed assignmieatnes in optimiz-
ing quality metricQVR. In the table, the initial imbalances due to hash-basedi-dist
bution and the final imbalances after applying the assignseremes are presented.

The storage imbalance values are computed according tolibeving formula:

(Ma$1<k<K{S(pk)}

- — 1) % 100. (4.12)
(k=1 (S(or))/ K

Table 4.3 compares the communication performance of thgrasgnt schemes in
terms of average and maximum message volume to be handlegptcessor dur-
ing parallel index inversion. Total volume of communicatieequired by an assign-
ment scheme can be computed from the table by multiplyingebpective average
message volume value of the assignment scheme with thectegpk value. Thus,
the “Avg” columns of Table 4.3 indicate the performance @& #ssignment schemes
in optimizing QvB(a) . The “Max” columns in Table 4.3 indicate the communica-

tion load of the maximally loaded processor and thus inditla¢ performance of the
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Table 4.3: Message volume (send + receive) handled per sgocén terms ofx 10°
postings)

RT RA MCA
K Avg Max Avg Max Avg Max
4 131.184 133.233 131.189 145.713 122.091 150.263
8 76.511 88.862 76.554 90.582 71.448 119.745
16 41.002 44562 41.008 49.249 38.322 77.114
32 21.118 32254 21.188 28.754 19.817 71.127
40 17.026 26.629 17.053 23.962 15991 44.793
64 10.761 18.690 10.761 17.769 10.088 74.273
128 5423 11.883 5.424  11.967 5.088 65.586

BLMCA E'A E2A
K Avg Max Avg Max Avg Max
4 127.450 128.619 129.437 134.683 131.857 131.154
8 73402 75974 77562 80.327 77.385 78.229
16  39.217 43.443 43.205 44.944 42.792 42.953
32 20.283 26.025 21.218 25.788 21.047 21.695
40 16.322 20.014 17.072 20.576 17.471 18.118
64 10.339 15421 10.981 15.222 11.201 12.354
128 5.222  10.980 5.662 10.437 7.233 8.178

assignment scheme in optimizigdB( b) . The communication-load balancing per-
formance of each assignment scheme can be evaluated by Gogie “Avg” and

“Max” columns.

The comparison of RT and RA schemes relates to the effeetsgeof the proposed
term-to-bucket assignment. As shown in Table 4.2, RA perfoslightly better than
RT for K < 64. Both Tables 4.1 and 4.3 displays that RT and RA perform sityil
in terms of query load balancing and communication volun@smparison of these
two assignment schemes shows that term-to-bucket assigmmevents the global

vocabulary construction without much degrading our qyatetrics.
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Table 4.4: Parallel inversion times (in seconds) includasgignment and inverted
list exchange times for different assignment and commitioicanemory organization
schemes.

K RT RA MCA BLMCA FE'A  E2A
2110590 109.80 85.72 106.08 108.15 108.13
4| 7160 69.19 81.34 68.63 69.34 68.49
1slr 8| 66.44 5142 66.76 46.45 47.27 45.74
16| 63.00 3589 60.82 33.04 3365 3248
32| 73.38 19.31 48.45 18.20 1853 17.20
21 105.66 109.82 86.04 105.87 107.36 107.97
4| 69.55 73.69 80.31 70.60 7151 70.71
Kslr 8| 68.10 53.34 68.27 50.04 49.77 48.58
16| 6259 36.66 60.30 3432 3470 32091
32| 73.10 20.21 50.34 18.52 20.13 17.72
2 [ 105.17 109.60 86.06 106.31 108.11 108.91
4| 7137 70.84 80.82 70.11 70.35 69.44
1sKr 8| 69.60 58.13 64.97 4578 47.63 45.22
16 | 60.17 34.67 59.13 3254 3297 3141
32| 73.31 20.24 48.36 18.59 19.02 18.07
2 1106.30 110.05 86.13 106.01 108.14 108.12
4| 67.25 66.79 71.89 6450 64.08 62.51
KsKr 8| 62.23 4544 59.82 41.46 40.89 38.79
16 | 57.92 31.28 54.56 29.36 28.78 26.00
32| 72.17 1843 4781 18.11 18.01 16.97
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As seenin Table 4.1, MCA achieves significantly worse queaygllimbalance than
all other assignment schemes. Similarly, Table 4.2 shoatsMICA considerably de-
grades the initial storage balance. On the other hand, FaBleeveals that MCA
achieves the best average communication cost. These el findings are ex-
pected since MCA only considers the minimization of theltotanmunication cost,

disregarding storage and communication balancing.

As mentioned in Section 4.4.2, BLMCA is a modified version d@Mwith added
emphasis on storage balancing. As seen in Table 4.2, BLM®#eeaes the best final
storage balance in all instances. However, as seen in Tabéh& storage balance
in BLMCA is achieved at the expense of increased total comoation volume com-
pared with MCA. Table 4.1 also shows that especially withréasing/i’, BLMCA

fails in balancing query processing loads.

Table 4.1 displays that for all processor valuesA performs significantly better
than all other assignment schemes in terms of query prowpssad balance. Addi-
tionally, in terms of query load imbalances! A is the second best performer. As seen
in Tables 4.2 and 4.3, althoudt¥ A slightly degrades the storage balance, it performs
better than the other schemes in terms of maximum commumicablume handled by
a processor for almost alt’ values (except fof{=2 and4). Although £' A produces
better storage balance th&? A, the communication volume handled by a processor
incurred byE!' A is slightly worse than BLMCA. In terms of maximum communica-

tion volume handled by a processél A achieves the best results far> 8. Table 4.3
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also indicates that the average and maximum communicatibime values induced
by E2A are close, which shows thdt?A manages to distribute the communication

load among processors evenly.

4.6.2.2 Parallel Inversion Results

W Irverted List Communication

O Yocabulary Communication
il | @ Bucketto-Proc Assignment

W Local Inv. Indt. Construction

Time (sec)

SCHHH U G g dd e dddd
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Figure 4.2: Times (secs) of various phases of the paralelrgion algorithm for dif-
ferent assignment and communication-memory organizaotiemes o’ = 8 pro-
cessors.

Table 4.4 compares the running times of our parallel ineersiode for different
assignment schemes. Since the creation of the local iarteexes from local doc-
ument sets is an operation prior to our inversion schemésagsumed that the local
inverted indexes are already created. Thus, the time fovexting local document

collection to local inverted indexes is not included in thedrsion times displayed in

Table 4.4.
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We provide RT scheme in order to present the benefits of usiegnato-bucket
assignment. RT scheme differs from other schemes in two wayst, in RT scheme
termBucket-to-processor assignment is replaced withma-terprocessor assignment.
Second, in RT scheme there is an additional phase calle@lgtobabulary construc-
tion phase. As seen in Table 4.4, RT performs significantlyseraghan other assign-
ment schemes for alk’ values other thark’ = 2. This indicates that our bucketing

scheme has a significant impact on performance.

As seen in Table 4.4, fak'=2, MCA achieves the lowest inversion time compared
to the other schemes. This is because, &6r2, minimizing total communication
volume also minimizes the maximum communication volumedtethby a processor.
However, for allK values greater than 2, MCA performs significantly worse sitihe
maximum message volume handled by a processor for MCA isiderably higher
than other assignment schemes. As seen in Table/#.A4, performs considerably
better than the other assignment schemes. For examplé€ f082, E?A performs up
to 9% better than RA in terms of running time and achievesbétial query load and
storage balancing. The relative performance order of tegament schemes in terms
of actual inversion time values displayed in Table 4.4 aneegally in concordance
with the relative performance order of the assignment s@samterms of the quality

metrics displayed in Tables 4.2 and 4.3.

Figure 4.2 displays the dissection of parallel inversionetiinto: local inverted
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index construction, termBucket-to-Processor assignraadtinverted list exchange-
and-merge phases for different assignment and communinzatemory organization
schemes or=8 processors. For the sake of a better insight on the ovedéixinn-
version process, inverted list exchange-and-merge ptsafether divided into two
components. The first component is called vocabulary conmration, where pro-
cessors send each other the terms, in their word form, andgbeciated posting list
sizes in an all-to-all personalized fashion. The secondomrant is called inverted list

communication, where the posting list portions are commateid between processors.

Figure 4.2 shows that for the in-memory inversion task, thastruction of a global
vocabulary takes considerable time. HgE8 processors, almost 35% of the total

inversion time is spent on global vocabulary constructioRT scheme.

As seen in Figure 4.2, the local inverted index constructikes the same time in
all schemes since local index inversion depends only onrtiti@lidata distribution.
Figure 4.2 also shows that, as the complexity of the assighsahiemes increases, the
time required for termBucket-to-processor assignmernt elsreases. The RA-based
termBucket-to-processor assignment phase takes lessl®anf the total inversion
time, whereas thé&?A-based termBucket-to-processor assignment phase takes mo
than 4% of the total inversion time. As the “Max” columns obl@4.3 suggest, the
time spent on vocabulary communication phase is minimunffot and maximum

for MCA assignment scheme.
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As seenin Figure 4.2, the inverted list exchange-and-mangee takes almost 85%
of the total inversion time, thus confirming that parallelersion is a communication-
bound process. We compare and analyze the impact of diffe@mmunication-

memory organization schemes on this phase in the followugaction.

4.6.3 Evaluation of Communication-Memory Organization Stiemes

Table 4.4 compares the running times of parallel inversooulifferent communication-
memory organization scheme&slr has the worst overall performance for Allval-
ues greater than 2. Althoughislr avoids redundant memory reads by doing only
one traversal over the local inverted lists, the use of bloglsends causes stalls and

prevents overlap between communication and computation.

Although 19<r performs better than 1s1r fak < 16, its relative performance
decreases when the number of processors increases. Thig i dower memory
utilization of 1d<r on higher number of processors since each processor mugiaina
K —1 receive buffers. We theorize that for higher number of pssces, 1&r would

perform even worse.

For all K values greater than ZsKr performs superior with respect to the other
communication-memory organization schemes. As the nuiy@ocessors increase,
the performance gap betweetisKr and the other schemes increases in favor of

KsKr. This is becausé{sKr avoids redundant traversals during the preparation of
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Figure 4.3: The effect of the available communication-mgnsize (M) on inverted
list exchange-and-merge phase aka8 processor parallel inversion system utilizing
E?A and KsKT.

send buffers and overlaps computation with communicatan this reason, we select
KsKTr as the de-facto communication-memory organization sehimthe remaining

experiment.

Figure 4.3 evaluates the effect of the available commuiticahemory size (M)
on the running time of parallel inversion code utilizing thA8A assignment scheme
and K'sKr communication-memory organization scheme for= 8 processors. As
seen in Figure 4.3KsKr scales well with increasing communication-memory size.
The ability to continue to process several send buffersautistalling allowsiK'sKr to

function relatively better with larger communication-memsizes.
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Concluding Discussions

In this work, we first theorized and then analyzed two comntwaracteristics of Web-
based textual communication media. These common chasdgrare: First, the
web-based textual communications all contain personabatés that can be used to
exploit or identify several aspects of the communicatiothisressages of all web-based
textual communications have similar distributional pndjgs. Second, all Web-based
textual communications have similar heavy tailed distiiins, for both message logs,

vocabularies, and user behavior.

In order to verify our claims, rather than going over a set mvous literature
work, we decided to select different web-based textual camioations and examine
their patterns over real-life applications. In order to @t first, a taxonomy of the

communication media with the corresponding state-ofdattditerature is provided.
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Using this taxonomy, we selected three types of commuisatata from different

classes of the web-based communications and analyzeddhtse

For this purpose, we also selected three different exangblesal life applications.
As a first application, we selected the query collection ada life Web search engine
over a 10 day period and by the aid of our claims we proposethodstto improve
caching rate over the search engine architecture. In thenseapplication, we se-
lected online messages on a real time chat server and exaithiegredictability of
several attributes of both users of this chat server and thessages. As a final work,
we selected a collection of Web pages and picked the invertkzk creation task. We
identified potential challenges on the distributed indeersion problem and using the
distributional properties of the Web data we theorize a metio efficiently carry out
the inversion task. Our results show that identifying anpleiting the common char-
acteristics of common characteristics of computer mediatgnmunications is crucial
when undertaking any research challenge related to Weldlzamgemunications. Our

findings and conclusions can be summarized as follows:

In Chapter 2, we presented a machine learning approachitoarieature-based
caching model for the query result caching problem. Fontraj the caching mod-
els we have used in this work, we evaluated several featurhese features can be
grouped into five categories. These categories are: quengsdiased, user-based,
search engine related, term frequency-based, query fnegtieased, and temporal fea-

tures.
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Using the features that are gathered from the logs of a feal\eb search engine,
we trained two machine learning models. The first machinenieg model trains a
singleton prediction model, where each query is ranked fodim 1 with respect to its
probability of being a singleton query or not. The second elticins a regression of
each query’s next arrival time, that is the estimated timguedry being re-submitted
to the search engine by some user. Using these two modelgivetracted a caching
policy, where admission and eviction decisions are givesetlan which queries are

more likely to be observed in the near future and when.

For evaluating our models, we first examined two extreme iogcbrganizations:
a fully static cache and a fully dynamic cache. Our resultsasthat the proposed
machine learning approach improves the performance ofilmgéh both conditions.
We have also provided several tighter optimality boundsofmth problems and show
that the machine learning approach in fact improves theygquesult cache up to 11%

of the possible room for improvement.

We then combine both caching organizations into one by apgplthe proposed
machine learning approach to SDC. Our experiments inditetethe room for im-
provement in the caching problem is in fact smaller than wiehave expected. Com-
bining machine learned static cache and machine learneahaigrcache did not lead
to the expected improvements. Although the resulting cagimodel still improves
SDC by 7.8% of the maximum possible improvement, our resundticate a deteriora-

tion in the quality of the regression model in the dynamideaahen a static cache is
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also present.

In terms of our claims, we have shown that query features,booad with a ma-
chine learning approach, can be used to improve the perfarenaf the query result
cache of a real life search engine. Moreover, our evaluatmnthe regression mod-
els show that, many of the most discriminative featuresaiamon-temporal features.
In that respect, our findings validate claim 1, that Web-tdegtual communications

contain characteristic markers inherent to the text mesgag|f or its user.

In this work, our results have also verified claim 2 by using ttmporal locality
within the caching problem. Caching, as the main motivatibthe proposed work,
is based on the fact that there is a strong temporal comelatithin the query sub-
missions to a Web search engine. In order for caching to beflotal for a search
engine, a small subset of queries should be frequent enautfia by merely stor-
ing them in memory, the search engine can respond to mosteoqjileries without
re-computing the results. Our evaluations on the query lsg mdicate that almost
40% of the queries are submitted to the search engine only, @macresponding to a
heavy tail distribution. Thus, we can conclude that seargtryjlogs follow a heavy
tail distribution which can be categorized as a power lawogrthormal distribution,

which verifies that claim 2 holds for query search logs.

In Chapter 3, we examined a peer-to-peer instant messagtagrk. Personal and

message-based features are used to predict several udememsage-based classes.
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The result of this study show that personal and environnhehtaacteristics have sig-
nificant impact on ones’ vocabulary use and writing styleeepto-peer communica-
tions. In this work, it is shown that by using the word selectpatterns and stylistic
preferences of chat users, it is possible to predict theiradioguistic characteristics
by employing classification techniques. It is also shown éxgéernal factors such as
the time of a conversation and the recipient of a messagedmassderable effect on the

vocabulary use and writing style of an author.

The dataset used in this work also has distinguishing ptigserThe spontaneous
nature of chatting and point-to-point nature of the chatsages makes the chat dataset
quite different from any literary writing. To the best of dumowledge, in this study, for
the first time in literature, the authorship analysis tegnes are applied to real-time

online conversations.

In terms of our claims which are presented in Chapter 1, amabyf peer-to-peer
instant messaging conversations show that messages bgbeers contain many pre-
dictable attributes. The identity of the author of a messtgereceiver of a message,
the age group, connectivity domain, and gender are somepgarof such attributes.
Our findings clearly indicate the truth of claim 1, which isiant messaging communi-
cations contain characteristic markers inherent to thinar and receiver and verifies

its validity.

We believe that the outcome of this work will prove to be besiafifor many
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application areas such as e-commerce and Internet sectistyexample, it is pos-
sible that companies supporting virtual reference sesvibay use this method for
gathering client profiles, determining a target populateomd provide better and more
customized service to these clients. With the growing udatefnet communication,
spamming becomes a worldwide phenomenon. This applicatiaralso be used in
the implementation of dynamic spam filters. Once the classHitrained by a set of
previously available spam messages, it may be possibletdifg the structural prop-
erties of spam messages and detect them. The style-basedeppresented in this
chapter may prove to be useful for this purpose. Anotherctliraplication is the use
of our work for ensuring security within virtual groups. Inast messaging services,
a user is not permitted to have more than one account. Maakser profiles may
prevent duplicate user accounts and can be used to detaaa¢heource of malicious

messagdes.

This work can be extended in several ways. First, our apprésiested using only
one corpus. Application of our methods on different datasell strengthen the find-
ings of this work. Applying our methods to other types of &lecic discourse such
as emails, IRC messages, and newsgroup messages may iitaltes between
different computer-mediated communication media. Sectinsgl work has only been
tested on Turkish documents. While the applied procedwmséo be independent of
the language, the effectiveness and applicability to odmeguages remain untested.

Additionally, such a work may provide clues on common andjlaage-independent
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characteristics of electronic discourse. Third, this walies on the “supervised learn-
ing” assumption. This means that the procedures describezldre applicable only
if a set of training samples is available. A framework basedinsupervised classifi-
cation seems to be a natural extension of this work. In thepgrised classification
approach, the classifier generates a set of spectral chastbesit requiring any input.
Information classes are assigned to these spectral clafteeward with user inter-
vention. Fourth, the problem can be modeled as a probabiligbrmation retrieval
model. Using the procedure described in this work, it may bssgble to answer
gueries such as “find the documents that are predicted to i&ervduring a certain
period of time” or “find the documents that are possibly verittoy someone who has

a PhD degree”.

In chapter 4, a memory-based, term-partitioned parall@ned index construction
framework was examined. Several problems were identifiedissprovements were

proposed for a parallel index inversion framework.

First, we proposed a termBucket-to-processor assignnuodr@nse. This scheme
minimizes the communication cost of local vocabularies mgprocessors and dis-
tributes the final query processing and storage loads ambpgpaessors, allowing a
finer grained parallelism. We also showed that, by using mBercket-to-processor
assignment scheme, the need to create a global vocabulatyecaliminated and all

associated communications can be prevented.
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Second, we developed and investigated several heuristiggeherating term-to-
processor assignment. The results of our experiments dhawdompared to a base-
line random assignment scheme, our proposed methods iegbtbe parallel inversion
times significantly while providing reasonable final quergqessing and storage bal-

ances.

Third, we presented and explored four different commuiwcaimemory organiza-
tion schemes in order to reduce the communication time requiWe also presented
methods to avoid deadlocks and network congestion and comeshen memory uti-
lization of the overall system. Our results show that, §plif the communication-

memory in2 x (K —1)parts yields the best results.

Fourth, Simulations and actual parallel inversion times resented in order to
give insight on our improvements. According to the obsemesililts, we recommend
the use of the?A scheme for termBucket-to-processor assignment, anddtier

scheme for communication-memory organization.

Our analysis of the index inversion problem show that a naperoach for a dis-
tributed inversion problem would be too slow for any praatigse. As our experiments
also indicate, that is because the creation of a global wdaabin such a system would
create a serious bottleneck on processors. In order toiaiethis problem, we used
our second claim; the Web page data distributions followaeail distribution, and

proposed a bucketing scheme. In the proposed method the taerhashed into a
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finite number of buckets and information about these bucketscommunicated be-
tween processors instead of posting list information. Bplydpg this simple, yet

effective bucketing strategy we prevent almost 35 % of thal ttommunication and
avoid global vocabulary communication all together. Thecgss of this work also
verifies that Web based communications follow similar disttions which can also be

exploited in order to alleviate challenging problems on Wehrch engines.

This work can also be extended in several ways. First, thedveork used in this
work does not consider the effect of bucket processing ofelarexample, processing
buckets in decreasing size order might present betterteebath in respect of final
storage balance and communication costs. Second, the nafngckets is assumed
to be fixed throughout this work. The scaling of our framewaskng different number

of buckets can also be considered.
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