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ABSTRACT

MULTIROBOT EXPLORATION WITH BUBBLE SPACE

BASED TOPOLOGICAL MAPS

This thesis is concerned with autonomous exploration with single and multirobot

systems. In particular, the robots are assumed to be endowed with three-dimensional

laser sensors. The exploration strategies are based on bubble space representation that

has been previously proposed to represent nodes in topological maps. First, the ex-

ploration of an environment by a single robot is considered. There are two aspects to

this problem: terrain mapping and determining where to go. Terrain mapping aims to

infer the environmental surface shape - as this certainly would affect the robot in deter-

mining where to go. For this, a novel approach based on bubble space representation

is proposed and experimentally evaluated. For explorative navigation, the movement

direction should be such that it should point the robot to unexplored territory while

being accessible. A novel approach is proposed where the generation and recognition of

nodes and their associated edges are achieved simultaneously with graph exploration

in a topological map based on bubble space. The validity of these approaches are

demonstrated by simulations and real-time experimental results.Next, the explorative

navigation strategy is extended to multirobot exploration. In this case, the robots are

assumed to be communicating with each other and determine their movement direc-

tions using the bubble surface information as well as their relative position information.

Experimental results with real data show that the robots are able to explore unknown

territories without much overlapping.
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ÖZET

BALONCUK UZAYI TABANLI TOPOLOJİK

HARİTALARDA ÇOKLU ROBOTLARLA ORTAM

KEŞFETME

Bu çalışma, tek robotla ve çoklu robotlarla ortam keşfetme algoritmalarını ele

almaktadır. Bu amaçla, topolojik haritalarda düğüm noktalarını temsil etmek için

daha önceden bulunmuş baloncuk uzayı kullanılmıştır. İlk olarak tek robotla ortam

keşfetme problemini gerçekleştirme amaçlanmıştır. Bu problem yer haritalama ve

keşfetme stratejisi olmak üzere iki alt probleme ayrılmıştır. Yer haritalama seçilen

ortamın önceden belirlenmiş özelliklerini çıkarma işlemidir. Yer haritalama ile il-

gili olarak baloncuk uzayından ortamın yükselti haritasının çıkarılmasını sağlayan bir

yöntem geliştirilmiştir. Bir ortamın robot tarafından başarılı ve verimli bir şekilde

haritalandırılması için, robotun akılcı bir keşif stratejisi olmalıdır. Keşif stratejisi ile

ilgili olarak baloncuk uzayı imgeye dönüştürülmüş ve imge işleme ile keşif için ilginç

noktalar belirlenmiştir. Bu yaklaşımımızın geçerliliği simulasyonlarla ve gerçek ortam-

daki deneylerle gösterilmiştir. Tek robotla ortam keşfetme algoritması çoklu robot

sistemlerine uyarlanmıştır. Çalışmanın bu kısmında robotlar arasındaki haberleşmenin

kusursuz sayıldığı ortamda, ortam keşfinin zamanın azaltılmasını sağlayacak yöntemler

geliştirilmesi amaçlanmıştır. Bu amaçla, tek robotla ortam keşfetme algoritması çoklu

robotlara uyarlanmış ve bu yöntemin verimliliği simulasyonlarla gösterilmiştir.
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1. INTRODUCTION

Autonomous exploration is one of the most challenging problems in robotics. The

primary goal is to determine the map of an unknown environment. The maps are repre-

sented primarily using two different approaches: metric and topological. While metric

maps represent the geometric structure of the environment, typically they have too

high computational demands for a direct application on a mobile robot [2]. Alterna-

tively, topological maps represent environments by graph-like structures where nodes

correspond to places and edges to paths between them [3]. Although topological maps

scale better to large environments, they are thought to lack the ability to represent the

geometric structure of the environment [4].

In this thesis, exploration with topological maps is considered. In particular, we

use bubble space as the nodes of the topological map [5]. In bubble space representa-

tion, bubble surfaces encode different sensory features in a manner that is implicitly

dependent on robot pose. Each bubble surface is a deformable surface that simulta-

neously encodes one type of sensory feature values and their local S2-metric relations

from the robot’s viewpoint. For completeness, the mathematical formulation of bubble

space is presented in Appendix A. In this thesis, the robots are assumed to be endowed

with three-dimensional (3D) laser sensors and bubble surfaces are constructed using

3D laser data.

The exploration of an environment can be accomplished either via a single robot

or multiple robots. Initially, we have focused on single robot exploration. There are

two aspects to this problem: terrain mapping and determining where to go. Terrain

mapping aims to infer the environmental surface shape - as this certainly would affect

the robot in determining where to go. For this, a novel approach based on bubble

space representation is proposed. In this approach, bubble surfaces constructed using

3D laser data are used to define local slope maps - which in turn are used to generate

the local terrain map on-demand for its localization and motion planning.
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For explorative navigation, the movement direction should be such that it should

point the robot to unexplored territory while being accessible. As the nodes (bubble

surfaces) of the topological map are actually used to determine the unexplored direc-

tions, the robot is able to incrementally extend its map via the nodes generated at new

places that are reached via moving in these directions.

For correct mapping, the robots should consider pose correction. Pose correction

is necessary due to odometric errors as well as environmental conditions. In our ap-

proach, pose correction is done in bubble space via comparing expected bubble surfaces

with those that are actually generated.

This approach is then extended to multirobot setting. In this case, the robots are

assumed to be communicating with each other and determine their movement directions

using the bubble surface information as well as their relative position information with

the overall strategy that they should be maximally scattered over the terrain with

minimal overlapping of places explored by different robots.

1.1. Contributions

The contributions of this thesis can be summarized as follows:

Terrain mapping : A novel approach to local terrain mapping with topological maps

is proposed. In this approach, bubble surfaces constructed using three-dimensional

laser data are used to derive local terrain maps that encode local terrain slope and its

proximity for each pan direction.

Single robot explorative navigation: A bubble space based approach to determining the

movement directions is proposed. The novelty of this approach is that the generation

and recognition of nodes and their associated edges are achieved simultaneously with

graph exploration. As the nodes (bubble surfaces) of the topological map are actually

used to determine the unexplored directions, the robot is able to incrementally extend

its map via the nodes generated at new places that are reached via moving in these
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directions.

Multi-robot explorative navigation: The single robot exploration strategy is extended

to multirobot settings. The contribution of this approach is that the robots deter-

mine movement directions based on 3D laser sensory feedback from their current en-

vironments as well relative pose information - assuming that the robots are able to

communicate with each other and exchange relative position information.

1.2. Outline

This thesis is organized as follows: In Chapter 2, the local terrain mapping ap-

proach is presented along with experimental evaluation results. Single robot explo-

ration is explained in Chapter 3 and tested using both simulated and experimental data

as well as with a real-time tracked robot. In Chapter 4, the single robot explorative

navigation strategy is extended to the multirobot settings along with experimental

results. The thesis concludes with a brief summary. For completeness, the mathe-

matical formulation of bubble space representation is presented in Appendix A. The

description of Jaguar robot used in single robot exploration is given in Appendix B.
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2. LOCAL TERRAIN MAPPING VIA 3D LASER BASED

BUBBLE SURFACES

Terrain mapping is the process by which surface shape obtained from different

vantage points are accumulated into a consistent environmental model [6]. As such,

it requires sensing the inclined or ramped parts of the ground surface and building

a terrain representation accordingly [7]. It is a critical component of mobile robot

navigation in unknown outdoor environments - as the local topography directly affects

the robot’s pose and imposes constraints on its motion [8–12]. In this chapter, we focus

on local terrain mapping with topological maps.

2.1. Related Literature

There are two related aspects: sensing and representation. The surrounding terrain can

be sensed by a variety of sensors [12]. However, due to availability and reliability, stereo

vision and laser rangefinders are most commonly used. Most work on terrain mapping

are based on analyzing the images captured from the robots’ camera [7, 13–15]. How-

ever, these approaches are not robust against changes in illumination conditions that

may dramatically alter the appearance of the terrain in natural settings [16]. While

this problem may be alleviated via augmenting the intensity values with additional

information [16], the strong dependency on intensity values remains nevertheless. Al-

ternatively, distance sensors are used as these sensors are relatively robust in case of

varying light and temperature [17,18]. For example, time-of-flight measurements from

two vertically placed sonar sensors having the same viewing direction are used to es-

timate the terrain slope [19]. Similarly, laser range finders scanning the environment

vertically and horizontally are used for terrain modelling [4, 18, 20]. With the recent

developments in three-dimensional (3D) lasers, it has become possible to obtain high

resolution digital terrain data [1]. Although visually appealing, efficient terrain mod-

elling structures have become more imperative as the enormous number of points make

data management and reasoning both complex and time consuming [21,22].
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Hence, the second aspect pertains to representation. In most works, this is based

in metric maps using a variety of tile representations such as grid-based approximations

or geometric primitives [21]. For example, the map is obtained via fitting of planes to

small areas in the sensed data using a variety of different methods [7,14,15,23,24]. The

complexity of full three-dimensional maps is reduced by using Cartesian elevation maps

which encode 21
2
-dimensional height information of the terrain in a two-dimensional

grid [4,6,20,25,26]. While metric maps represent the geometric structure of the environ-

ment, still, they typically have too high computational demands for a direct application

on a mobile robot [2]. Alternatively, topological maps represent environments by graph-

like structures where nodes correspond to places and edges to paths between them [3].

While topological maps scale better to large environments, they are thought to lack the

ability to represent the geometric structure of the environment [4]. Perhaps partially

due to this, to the best of authors’ knowledge, there is no reported work on deriving

terrain maps from the topological representation of nodes only. This is fundamentally

different from adding terrain information – which can easily be done as topological

representations are agnostic with respect to the type of metrical information.

2.2. General Approach

This chapter presents a novel approach to generating local terrain maps. As most

work, we assume that the terrain is lightly cluttered so that there are no overwhelming

obstacles in any direction that block the robot’s sight of view [8]. Unlike most work

that use metric maps, in our approach, local terrain maps are derived based on bubble

surfaces - which have been shown to correspond to nodes in the topological maps via

representing all features in a manner that is implicitly dependent on robot pose while

preserving their local S2-geometry and [5]. The contribution of this chapter is to derive

local terrain maps from bubble surface representation based on 3D laser sending. We

show that each bubble surface along with the robot’s geometry defines a local slope

map of the terrain gradient and its proximity for each pan direction - depending on the

robot’s base. Hence, instead of generating a global terrain map, the robot generates

a local terrain map on-demand depending on its pose which can then be used for its
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localization and motion planning.

2.3. Local Slope Map

Suppose the robot is at base x with a 3D laser sensor mounted at height h as shown in

Figure 2.1 and constructs a laser bubble surface B(x, t). The robot’s viewing direction

with respect to its horizon depends on the tilt viewing direction f2. If the tilt angle

f2 = 0, then the robot’s viewing direction is parallel to the ground. If f2 < 0, then f

is associated with a viewing direction that is looking downwards from its horizon by

an amount that is given by the magnitude of f2. On the other hand, if f2 > 0, then

the robot is looking upwards from its horizon. We consider the part of bubble surface

when the robot is looking downwards with f2 < fH .

The local terrain model is based on approximating the terrain in each (pan)

viewing direction f1 by two piecewise planar surfaces as shown in Figure 2.1. Of

course, this will lead to a coarse modelling of the terrain in realistic settings [21].

Nevertheless, such terrain maps will still be useful – particularly in cases when steep

ramps and inclines are detected which may need to be avoided by the autonomous

robots. Furthermore, as the robot computes local variations in the terrain slope as

formulated in the sequel, this information can be used if crucial to the task at hand.

The first plane corresponds to the terrain on which the robot is standing while the

second plane corresponds to a sloped terrain. The sloped terrain may be either a ramp

(slope upwards) or incline (slope downwards) as shown in Figure 2.1. The relative

geometry of the two planes can be described by two parameters – relative slope θ of

the second plane with respect to the first plane and its starting distance λ1. As such

an approximation is made for each pan viewing direction f1, each bubble surface is

associated with a map sx : F1 → S1×R - which we will refer to as the local slope map.

This map is an egocentric representation of the gradients of the surrounding terrain

and their proximity as seen from the current robot pose x as:

sx(f1) =
[
θ(f1) λ1(f1)

]T
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The first component θ(f1) denotes the gradient of the terrain in pan direction f1 and

λ(f1) denotes its corresponding proximity. In the sequel, we will omit the f1 argument

in order to simplify the notation.

Figure 2.1. Left: Ramped slope; Right: Inclined slope.

2.3.1. Slope Type

Suppose that the robot is looking with pan viewing direction f1. In case of flat

terrain, the geometry dictates that the range reading ρ(b, t) to be:

ρ(b′, t) =
h

sin(f2)
f2 ≤ 0 (2.1)

In case of sloped terrain, Equation 2.1 will not hold for f ∗2 < f2 ≤ 0 where f ∗2 ≤ 0 is

the critical tilt value associated with the start of the sloped terrain. The f ∗2 value can

be determined by starting from the smallest possible f2 and keep looking upwards until

the equality is satisfied or maximum upward direction is reached as explained in detail

later in the sequel. Hence, the type of slope (flat, ramp or incline) can be determined

as:


Ramp if ρ(b, t)− h

sin(f2)
< 0, f ∗2 < f2 < 0,

Incline if ρ(b, t)− h
sin(f2)

> 0, f ∗2 < f2 < 0

Flat otherwise

(2.2)
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Figure 2.2. Geometry of a ramped terrain.

2.3.2. Ramp Estimation

Consider a ramped slope as shown in Figure 2.2. The critical tilt direction f ∗2 is defined

by:

ρ(b′, t)− h

sin(f ′2)
=

 < 0 f ∗2 < f ′2 < 0

0 f ′2′ ≤ f ∗2

(2.3)

The value of ρ(b′, t) will decrease depending on the amount of ramp:

ρ(b′, t) =
h

sin(f ′2)
− λ7 (2.4)

with λ7 6= 0. The starting distance λ1 of the ramp is equal to:

λ1 =
h

tan(f ∗2 )

Letting λ5 denote the relative elevation, the ramp gradient at (f1, f
′
2) is equal to:

θ(f1, f
′
2) = atan2(λ5, λ2) (2.5)

Using the similarity of triangles P1P2P12 and P11P9P12 as:

λ5

h
=
λ3

λ6

=
λ7

ρ(b′, t) + λ7

(2.6)
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where

λ6 = λ1 + λ2 + λ3 =
h

tan(f ′2)
(2.7)

λ7 =
h

sin(f ′2)
− ρ(b′, t) (2.8)

Again based on geometry:

λ5 = λ7 sin(f ′2) (2.9)

With some manipulation after combining Equation 2.6 and Equation 2.7,

λ2 =
h

tan(f ′2)
− λ1 − λ7 cos(f ′2) (2.10)

The overall ramp gradient is then defined as the average ramp gradient as:

θ(f1) =
1

f̄2 − f ∗2

∫ f̄2

f2=f∗2

θ(f1, f2)df2 (2.11)

Of course, if the local variations in the slope are required for the task at hand, the

robot will keep the individual slope values without averaging.

2.3.3. Incline Estimation

Next, we consider the case when at he robot faces an inclined terrain as seen in Fig-

ure 2.3(Top). Due to the change in geometry, the resulting formulation changes slightly.

Again, for each pan viewing direction f ′1, the incline associated with a tilt direction f ∗2 :

ρ(b′, t)− h

sin(f ′2)
=

 > 0 f ∗2 < f ′2 < 0

0 f ′2 ≤ f ∗2

(2.12)
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Figure 2.3. Top: General geometry. Center: Detailed geometry of incline start.

Bottom: Detailed geometry of incline.

The gradient of the incline can be easily derived as seen in Figure 2.3(bottom):

θ = arcsin(λ6, λ2) (2.13)
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Now we need to find the values λ6 and λ2 respectively. From Figure 2.3

λ2 =
h

tan(f ′2)
− h

tan(f ∗2 )
(2.14)

The distance to the incline λ1 is equal to:

λ1 =
h

tan(f ∗2 )
(2.15)

Computing

λ5 = λ2 sin(f ′2) (2.16)

By similarity of triangles P1P2P7 and P4P5P7,

λ5

h
=

λ2

ρ(b′, t)− λ4

=
λ3

λ1 + λ2

(2.17)

Thus,

λ3 =
λ5(λ1 + λ2)

h
= λ2 cos(f2′) (2.18)

Now consider the triangles P3P4P5 and P3P6P7 as shown in Figure 2.3(Top). By their

similarity,

λ6 = λ5
λ4

λ7

(2.19)

where

λ4 = ρ(b′, t)− h

sin(f ′2)

λ7 = 2

√
λ2

5 + (λ3 + λ4)2
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Substituting, λ6 is equal to:

λ6 =
λ2 sin(f ′2)λ4

2
√
λ2

5 + (λ3 + λ4)2
(2.20)

The gradient of the incline is equal to:

θ(f1, f
′
2) = arcsin(

λ2 sin(f ′2)λ4

2
√
λ2

5 + (λ3 + λ4)2
, λ2) (2.21)

The overall ramp gradient is computed again using Equation 2.11.

2.4. Local Terrain Map

The robot can estimate relative elevation in its neighborhood using the bubble

surface B(x, t) and the local slope map sx. Since the estimation is valid only locally,

we refer to it as the local terrain map. Note that unlike metric maps, local terrain

map is generated only for a neighborhood of each base point x. In bubble space,

consider B′ ⊂ B where B′ = {b ∈ B | π(b) = x}. The local terrain map is constructed

via defining the map δX : B′ → R3 where

δX(b) =

 δc(b)

δz(b)


where δc(b) ∈ R2 and δz(b) ∈ R are relative base displacement and relative elevation

parameters. Note that

δc(b) = ‖δc(b)‖

 sin(f1)

cos(f1)

 (2.22)
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2.4.1. Ramped Slope

For the ramped slope, ‖δc‖ is equal to:

‖δc(b)‖ =

 ρ(b, t) cos(f2) if f2 < f ∗2

(λ1 + λ2) otherwise
(2.23)

On the other hand, the associated relative elevation δz(b) is:

δz(b) =

 0 if ‖δc‖ < λ1

λ2 tan θ otherwise

where the Equation 2.8 and Equation 2.10,

λ2 =
h

tan(f2)
− λ1 −

(
h

sin(f2)
− ρ(b, t)

)
cos(f2) (2.24)

2.4.2. Inclined Slope

In case of inclined slope, ‖δc‖ corresponds to the line that passing from the points

P1, P5, P7 and P8 as shown in Figure 2.3:

‖δc‖ =

 ρ(b, t) cos(f2) if f2 < f ∗2

(λ1 + λ2 + λ8) otherwise
(2.25)

The elevation map is equal to:

δz(b) =

 0 if ‖δc‖ < λ1

(λ2 + λ8) tan θ otherwise

where

λ8 = λ4 cos(f2) (2.26)
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2.5. Experimental Results

The proposed approach has been tested with a variety of different settings rang-

ing from simulated terrains in Webots to Canadian Planetary Emulation Terrain 3D

Mapping Dataset [1].

2.5.1. Simulated Outdoors Terrain

The first set of experiments are conducted with simulated outdoors environment

with varying terrain ramp using Webots [27]. The robot is made to stand in front of a

terrain with a given gradient θ∗ that starts in λ∗1 meters as shown in Figure 2.4. The

gradient θ∗ is varied between 2.86◦-11.44◦ while its proximity λ∗1 is varied between 0.5-1

meters. It uses the proposed approach to generate estimates θ and λ1. The results are

as shown in Table 2.1. The gradient estimates θ have an average error Eθ = 15%

while the distance estimates λ1 have an average error of Eλ1 = 5 %. As expected, as

both the gradient magnitude and the distance to the slope increase, estimation errors

increase. Interestingly, for a fixed gradient magnitude, as robot’s distance increases by

100%, the corresponding error increases by around 5%. Table 2.2 involves comparision

between our method and a recent work based on slope prediction by using laser range

finder [18].

Figure 2.4. A sample terrain simulated using Webots.

2.5.2. Canadian Planetary Emulation Terrain 3D Mapping Dataset

Next, we apply our approach with Canadian Planetary Emulation Terrain 3D

Mapping (CPET3DM) dataset which is a collection of 3D laser scans [1] . Note that,
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Table 2.1. Webots Results.

Actual Estimated
Eθ(%) Eλ1(%)

θ∗ (◦) λ∗1(m) θ (◦) λ1(m)

2.86
0.5 2.63 0.48 8 4

1 2.52 0.91 12 9

5.72
0.5 4.98 0.49 13 2

1 4.87 0.93 15 7

8.58
0.5 7.44 0.49 14 2

1 7.16 0.92 17 8

11.44
0.5 9.74 0.495 15 1

1 9.16 0.94 20 6

Table 2.2. Comparision of two slope prediction methods.

Slope prediction method average prediction error (%)

Slope Prediction with Bubble Space 15

Slope Detection based on Orthogonal Assumption 4

this dataset is compatible with our assumptions and the environment that data col-

lected can be considered as a realistic outdoor scenario which can be seen in Figure 2.6.

In particular, we use a100_dome_vo dataset that is generated in the UTIAS indoor rover

test facility. This dataset consists of 3D laser scans that are obtained from 50 different

locations with a large inter-scan spacing in a gravel-filled circular workspace area 40

m in diameter. The real view of the terrain is shown in Figure 2.6. At each location

c, the robot has 3D laser data with f1 ∈ [0, 360]◦ having increments δf1 = 0.36◦ and

f2 ∈ [−30,−3]◦ having increments δf2 = 0.5◦ respectively. Hence, the number of scan

points is N1 = 1000 and N2 = 56 in each direction. It generates the local terrain map

sx associated with the current base point x. The bubble surfaces, actual and estimated

local terrain maps for three different base points are as shown in Figure 2.5. The black

crosses in Figure 2.5 indicate the position of the robot. As expected, it is observed that

the robot is able to estimate closer terrain quite accurately. However, estimation error

increases as distance increases. This is because - from the perspective of the robot,

the two plane approximation may not be valid. For example, if a ramped terrain is



17

Figure 2.5. Top: Location c = [4.9 2.2]T . Left: Bubble surface; Center: Actual

elevation map ; Right: Estimated terrain map. Middle: Location c = [0 0]T . Left:

Bubble surface; Center: Actual elevation map; Right: Estimated terrain map.

Bottom: c = [−6.7 − 9.8]T : Left: Bubble surface; Center: Actual elevation map;

Right: Estimated terrain map.

followed by an inclined terrain, the robot may be blocked from viewing the inclined

terrain unless it moves to the end of ramped terrain. In local terrain map, this terrain

will be wrongly estimated as being ramped slope. The results are compared with the

actual elevation values δz∗ as shown in Figure 2.7 with error defined as:

Eδz(x) =

∫ 2π

0

∫ −0.052

−0.52

∣∣∣∣δz∗(b)− δz(b)

δz∗(b)

∣∣∣∣ df1df2

where 30◦ ≈ 0.52 rad and 3◦ ≈ 0.052 rad. It is observed that the average error is 0.033

m (around 3%) with variance is 0.0026 m. Furthermore, the data size is reduced from

3N1N2 down to 2N1.
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Figure 2.6. Real view of the terrain where the dataset collected [1].

Figure 2.7. CPET3DM dataset- Eδz for each robot base point.

As expected, as the resolution of the tilt angle δf2 increases, the estimation errors

will decrease accordingly. The results are as shown in Table 2.3. When the resolution

goes from down δf2 = 0.5◦ to δf2 = 4◦, average Eδz increases by 10%.

Table 2.3. Average Eδz wrt tilt resolution δf2.

δf2 (◦ ) Eδz (%)

0.5 3

1 6

2 9

4 13
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3. SINGLE ROBOT EXPLORATION VIA 3D LASER

BASED BUBBLE SURFACES

One of the central questions in the autonomous exploration of unknown environ-

ments is determining where to go - given what the robot knows about the world [28,29].

Initially the robot knows nothing except what it senses from where it’s standing, so that

the movement directions cannot be handed to the robot in a pre-meditated manner.

Rather, it operates in reflexive mode based on sensory feedback from the environment

and its so far acquired knowledge - which it may simultaneously use to construct a par-

tial map. Hence, as it starts exploring, at each location, it will determine a movement

direction. The movement direction should be such that it should point the robot to

unexplored territory while being accessible -namely a path must exist from the robot’s

current base to it [29].

The contribution of this chapter is to consider the problem of exploration with

topological maps. In particular, we use bubble space representation where the nodes

of the topological map are represented as bubble surfaces [5]. We assume that there is

no a priori map. Node candidates are generated concurrently as the robot is exploring

its surroundings. The novelty of this approach is that the nodes of the topological

map (bubble surfaces) are used in generating movement directions associated with

unexplored regions.

3.1. Related Literature

Exploration algirothms vary depending on whether the environment is known or

unknown [30]. In a known environment, the environment model is given and motion

planning becomes geometric programming [31] or graph search [32]. In an unknown

environment, such knowledge is not available and the robot obtains information as it

is moving around and collecting local information via its sensor. The map must be

incrementally computed as new regions in the environment are explored [30]. In this
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chapter, we consider the latter. Exploration of unknown environments with mobile

robots have been studied intensively. In all, processing is based on local information

which implies that sensing is integral to navigation [30]. Thus, the approaches must

schedule the sensor operations. Most of these approaches guide the robot to the clos-

est unexplored area. These techniques mainly differ in the way the environment is

represented - which in turn affects the determination of closest unexplored areas.

Traditional approaches are based on the accumulation of accurate geometrical

descriptions of the environment [33]. Most exploration strategies work with metric

maps that use either two-dimensional grid-based or three-dimensional voxel represen-

tations [34]. One simple approach is to use a random selection mechanism (random

walk) [35] or greedy mapping [36,37]. A competitive algorithm for the case of a polygo-

nal room with a bounded number of obstacles in it is presented in [31]. A more efficient

approach is accomplished in [29] where the robot moves to the closest frontier point

which is determined based on laser-limited sonar and evidence grids. There has been

many variants of the frontier based approach where the robot is made to approach the

boundary between explored and unexplored space such depending on performance cri-

teria [38,39]. Each frontier is evaluated based on the expected number of unknown cells

the robot can see from the frontier as well as the distance from the robot [40]. Thus the

exploring robots choose the frontier which will provide the highest utility (information

gain minus driving cost) rather than simply the closest frontier. The robot moves as

to maximize the number of viewable frontier cells [41], information gain using [39] or

Rao-Blackwellized particle filters [42]. This idea is generalized to three-dimensional

mapping where a frontier voxels are those that lie between explored and unexplored

space [34]. An alternative approach to metric space maps is to use configuration space

based approaches. A next-best view type algorithm is proposed to guide the robot

through a series of locations with high expected amount and quality of the informa-

tion [43]. The robot plans the next sensing action to maximally reduce the expected

C-space entropy [44]. The exploration is defined by the incremental expansion of a

sensory exploration tree in the configuration space [45] based on frontiers of explored

regions - motivated by rapidly exploring random trees [46].
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While grid-based and configuration space methods produce accurate metric maps,

their complexity often prohibits efficient planning and problem solving in large-scale

environments [47]. Alternatively, exploration is done with topological maps where the

unknown environment is modelled as a graph - albeit unknown - with more efficiency

[48]. In the spatial hierarchies model, the nodes correspond to distinctive places and

arcs correspond to travel paths [33]. Exploration is based on developing algorithms for

traversing this graph efficiently. In the semantic hierarchy of spatial representations,

the exploration strategy consists of moving into an open direction, following a path

with a control strategy, hill-climbing in case of detecting a distinct place until reaching

a local maximum that defines being at another distinctive place [33]. The topological

map is built as a side-effect of motion through this transition graph.

In most approaches, it is assumed that the robot is able to recognize a node,

enumerate edges incident on the current node and traverse edges without specifying

how they are achieved. These approaches can further be categorized into two groups

depending on the robot’s inability to distinguish vertices and edges from each other. In

the former case, a common approach is to endow it with markers. The graph is explored

via adding new vertices having outgoing edges that lead to unknown places using

multiple markers [49, 50]. Reducing the number of markers, an unknown, undirected

planar graph is learned in time linear the size of the graph by a robot equipped with

one marker [51]. In the map verification problem, an efficient algorithm enables a robot

- given a map of the world with its pose indicated on the map, - to find out whether this

map is correct with the aid of one edge markers [32]. This idea is generalized to directed

graph models in [52]. In the latter case - namely when the robot is able to distinguish

visited nodes and edges, but does not know the endpoints of the unvisited edges, the

robot is able to explore with a bounded efficiency when the deficiency is bounded [53].

This result has been extended for dense graphs [54] and improved in general depending

on the deficiency of the graph [55, 56]. As stated, all these approaches require the

robot to recognize nodes and their associated edges. In general, both are assumed to

be achieved separately from the graph search process. In this chapter, we present a

novel approach that integrates the two – namely the generation and/or recognition of

nodes and their associated edges is achieved simultaneously with graph exploration.
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Here, the nodes of the topological map are used to determine the unexplored directions.

The robot expands its topological map by adding the places reached and the nodes

generated after navigating in these directions.

3.2. Where to move next?

Each environment is represented by a topological map - which is a connected

graph g whose nodes are represented in bubble space [5] and whose edges are labelled.

Let S = {1, . . . , Nt} be the set of bubble surfaces – each from one different base - and g

denote an undirected graph defined on S. As the environment is completely unknown

a priori, initially Nt = 0 and g = ∅. At each location, its laser starts providing sensory

data feedback. It generates a bubble surface B(x, t) and the corresponding bubble

descriptor I(x, t) - which is then added as a node Si. Let gt denote the map that exists

at time t. Let E denote the set of edges. Two nodes i and j have an edge – namely

ij in g if and only if when the robot can navigate from one to the other, the place

changes from node i to node j directly. The label of each edge includes the navigation

direction between the two nodes. If where ij ∈ E, g + ij denotes the graph obtained

by adding the edge ij to the existing graph g and g − ij denotes the graph obtained

by removing the link ij from g. Each edge ij in E is also associated with the label

b(tk+1) − x(tk). The robot decides where to move depending on Si and the current

graph gt - as explained in the sequel. As the robot is exploring its world, Nt increases

accordingly.

Consider an exploration task starting at time t0. Assume the robot is at base

point x(t) at time t ≥ t0 with a partial topological map gt. Its exploration related

decision-making has two aspects to it:

• Local exploration: Locally, it should decide which direction to move.

• Global exploration: Globally, it should try to navigate so that all unexplored

regions in the environments are visited at least once.
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Figure 3.1. Local exploration algorithm.

3.2.1. Local Exploration - Finding Directions

At each new base, the robot finds a set of candidate directions for exploration

using the 3D laser bubble surface associated with the respective node. These are then

sorted with respect to their utility and the robot moves in the unexplored direction

with maximal utility as shown in Figure 3.1.

Consider a particular bubble surface point b = [x f ]T with f = [f1 f2]T . If the

tilt angle f2 = 0, then b is associated with a viewing direction that is parallel to

the ground. If f2 < 0, then b is associated with a viewing direction that is looking

downwards from its horizon by an amount that is given by the magnitude of f2. On

the other hand, if f2 > 0, then the robot is looking upwards from its horizon. As

the part of the bubble surface with f2 > fH is considered to be not accessible since

we assume terrestrial navigation1 , it considers only the part of bubble surface with

viewing direction −π
2
≤ f2 ≤ fH .

The candidate exploration directions are found via transforming this part of the

bubble surface via thresholding and applying connected component analysis on the

transformed surface in order to determine regions for potential exploration. The thresh-

old value τ1 : B → R>0 plays a critical role. It is defined adaptively based on the surface

1For aerial robots with flying capabilities, this constraint will no longer be applicable.
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via considering the lines of constant latitude f2 or parallels as:

τ1(b) = µρ,f2 + σρ,f2

where average surface deformation µρ,f2 along each parallel and standard deviation

σρ,f2 of this deformation are defined as:

µρ,f2 =
1

|F1|
∑
f ′2=f2

b′∈Im(h(x))

ρ(b′, t)

σρ,f2 =

√√√√√ 1

|F1|
∑
f ′2=f2

b′∈Im(h(x))

(ρ(b′, t)− µρ,f2)2

In particular, each bubble surface point b that is closer than a threshold distance

τ1(b) is considered to be explored - namely if ρ(b, t) < τ1(b). Inaccessible regions are

determined depending on the robot’s physical capabilities and obstacles along the way.

If there is an obstacle along the way, then the robot cannot move in this direction.

This can be detected by determining if there are any bubble surface points b′ having

the same pan angle f ′1 = f1, but with lower tilt values f ′2 < f2 and ρ(b′, t) < τ1(b).

Thus, with this thresholding, the bubble surface is binarized as:

B′(x, t) =


 f

κ(b, ρ(b, t))

 | ∀f ∈ F and b = [x f ]T

 (3.1)

with

κ(b, x) =



0 x ≤ τ1(b)

0 f2 > fH

0 ∃b′ ∈ Im(h(x)) s.t. f ′2 < f2

ρ(b′, t) < τ1(b)

1 otherwise
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Next, connected component analysis is performed on the binarized bubble surface

B′i(x, t). Let A(t) = {A(t, 1), . . . , A(t,M)} be the set of resulting connected com-

ponents. Each connected component A(t, i) ⊂ F corresponds to one set of viewing

directions in which distance of objects are relatively further and is thus an area of

interest for exploration. Hence, it represents a potential direction of exploration as

defined by the map u : A(t)→ B:

u(A(t, i)) =
1

|A(t, i)|
∑

b∈A(t,i)

f

Let b∗ be the bubble surface point that corresponds to a potential direction of

exploration, u(A(t, i)), at robot’s current base x :

b∗i =

 x

u(A(t, i))

 (3.2)

Let ν : A(t)→ R be the maximal horizontal extension of each component along

f2 = 0:

ν(A(t, i)) = |{b ∈ A(t, i) | f2 = 0}|

If the extension ν(A(t, i)) of a given A(t, i), exceeds a pre-specified threshold τ2, the

pan coverage of A(t, i) is extensive and can be broken into regions with smaller pan

coverage of ν∗. On the other hand, if ν(Ati) is less than a pre-specified threshold τ3,

then this indicates that the associated region is too narrow and the robot cannot pass

through it. Hence, those components are removed from A(t).

If the cardinality of the resulting A(t) is greater than 1, this means that there are

several potential movement directions. These are ordered via defining a utility function
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ϕ : A(t)→ R>0. In our case, the utility function measures the distance of that region

weighted by its extension in the pan direction as:

ϕ(A(t, i)) = ν(A(t, i)) ∗ ρ(b∗i , t) (3.3)

The robot adds an unexplored edge for each potential direction. The edge is

labelled with its direction u(A(t, i)) and utility value ϕ(A(t, i)). The robot moves in

the direction with maximal utility.

Figure 3.2. Global exploration algorithm.

3.2.2. Global Exploration

At each stage of the exploration, the robot knows a proper subgraph gt consisting

of traversed nodes and edges. In other words, the robots knows all the visited nodes and

traversed edges and can recognize them when they are encountered again. However,
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the robot does not know:

• How many nodes or edges are there in the graph g corresponding to the whole

environment

• Where each edge that is not traversed leads to

The robot needs to explore the complete g. This problem is known as the classic

graph exploration problem [53]. Global exploration requires repeatingly selecting an

outgoing edge from its current node and traversing it. Our global exploration strategy

is depth-first traversal [54] as shown in Figure 3.2. Each node is associated with a set

of unexplored directions - namely unexplored edges. The robot chooses moving in the

utility maximizing direction among the set of unexplored directions. If a robot cannot

find any directions in a node, it is stuck. When it is stuck, it turns back and moves to

the base point it came from. It then checks to see if there remains unexplored directions

at this node. This is repeated until every place that is strongly connected is explored

or a node with unexplored direction is reached. The exploration is finished when robot

comes the first generated node(mothernode) and can not find any new directions that

have not been moved to.

3.2.3. Integrated Exploration

While in exploration, the robot applies both local and global strategies. A sample

scenario is shown in Figure 3.3. This scenario is conducted in a Webots simulated

indoor environment [27]. Terrain has been designed with a slippery surface that cause

a 10% pose error. Gaussian encoder noise is also added to robot encoder in order

to make simulations similar to real time. The robot starts its exploration via local

exploration concept and moves as to generate nodes 1-4. At node 4, it can not find any

movement direction. Hence, it turns back until coming to a node with and unexplored

direction. This happens at node 2 and the robot moves move along this direction and

generates nodes 5-6. At this node, again there are no unexplored direction and again

it turns back. As it cannot find any unexplored directions until node 1, it comes back

to where it has started. At this node, it finds an unexplored direction and moves along
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Figure 3.3. The graphs indicate the partial topological map generated so far where

node numbers i indicate visit times ti where ti > ti−1.

this direction until node 8. When it is stuck at this node, it turns back. In this case,

it comes back to node 1. There are no remaining directions to explore. The mission is

completed.

3.3. Pose Correction & Loop Closure

After the robot determines an exploration direction, it moves in this direction for

a prespecified distance. However due to the environmental factors and encoder errors,

robot may not reach its desired target position. Since the robot uses odometric data

to determine b ∈ B and b′ ∈ B, it is crucial to minimize odometric error in order to

prevent the accumulation of this error. When the robot navigates around, the base

and the bubble surface both change accordingly. Suppose that the robot is at b ∈ B at
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time t and goes to b′ ∈ B at time t+ δt. Let

b =

 x

f

 and b′ =

 x′

f ′

 (3.4)

As the robot knows how much it has planned to move, pose correction is based on

comparing the expected bubble surface with the actual bubble surface generated after

the completion of the motion.

Two different transformations must be applied on the bubble surface. First,

feature values change their location on the bubble due to robot navigation from o ∈

Im(h(x)) to o′ ∈ Im(h(x′)). Hence, the bubble surface Bi needs to be transformed

to B′i depending on the robot’s movement. This is accomplished in two steps: First,

it removes all the local bumps introduced previously up to t + δt at each point o ∈

Im(h(x)). Next, the transformation map db→b′ : Im(h(x)) → Im(h(x′)) between

the previous and the transformed bubble surfaces need to be computed so that the

corresponding bubble points are determined as o′ = db→b′(o). The subscript b→ b′

is used to denote the dependency of the transformation on the previous and current

base points b and b′ respectively. Note that depending on the environment and the

transformation, the map db→b′ can be one-to-one, one-to-many or many-to-one. Finally,

all the removed bumps are moved to their corresponding o′ ∈ Im(h(x′)) as: Hence,

each bubble surface Bi, i = 1, . . . , Nv is transformed as follows:

ρi(o, t+ δt) = ρi(o, 0)

ρi(o
′, t+ δt) = ρi(o, t) (3.5)

Secondly, new observations are made at the newly arrived viewpoint and the bubble

surfaces should be deformed as defined by Equation A. Of course, this formulation of

the transformation maps ignores problems related with odometry data, sensor noise,

changes in the lightness of the scene and the scaling effect previously explained. In

reality, the model must be revised in order to accommodate these issues. Finally, the

bubble transformation is applicable only if the transformation map db→b′ is determined.
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Next, this is investigated for different type of robot movements.

3.3.1. Heading Correction

First, let us consider a robot movement involving only rotation by δα ∈ S1 as

seen in Figure 3.4. Due to odometric errors, the robot may not rotate by the amount it

planned. Even if the error is small, it can accumulate in every movement so the robot

can not localize itself correctly and this leads to wrong mapping.

Figure 3.4. Left: Heading correction; Center: Robots’ initial pose before exploration;

Right: Robot determines its orientation.

Note that the base vectors x and x′ will differ only in their 3rd components – as

this represents the robot’s heading. Hence, the transformation between the base points

can be expressed as:

x′ = x+

 0

δα



Consider o =

 xo

fo

 ∈ Im(h(p)). The deformation map db→b′ is defined as

db→b′(o) =

 xo +

 0

δα


fo + δf

 (3.6)

where δf = [δα 0]T since a heading change is equivalent rotation of the pan coordinate

system. Note that δf is identical for all the bubble surface points. Furthermore, it is



31

independent of the distance of the objects to the robot.

Let Bi(x, t) and Bi(x
′, t + δt) be the two consecutive bubbles generated before

and after the rotation of the robot. It is clear that the only difference between x and

x′ is the rotation.

x− x′ =


0

0

δα

 (3.7)

Let Bi(x
′
m, t + δt) be the bubble rotated δα amount along z-axis. The actual, δα

minimizes the following expression:

δα = min
δα

(Bi(x, t)−Bi(x
′
m, t+ δt))2 (3.8)

Since δα is computed from Equation 3.8, the robot knows its actual rotation amount.

3.3.2. Translation Correction

After the the rotational correction, the robot starts to move in this direction.

Again due to odometric errors, robot may move more or less than desired amount.

Lets call the planned amount of translation is δc and lets call the actual translation

as δc′ . If we determine ||δc′||, we can clearly find the amount of translation error and

offset accordingly. After the robot has moved by ||δc′||, it creates another bubble surface

Bi(x2, t2). Note that this bubble surface is the translated version of the Bi(x
′
m, t+ δt).

Assuming the robot moves on a flat surface, the difference of these bubbles at f1 = 0

and f2 = 0 gives the actual amount of translation. Let l1 and l2 are the sensor values

at f1=0 and f2=0 for the bubbles Bi(x
′
m, t+ δt) and Bi(x2, t2) respectively. The actual
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translation is equivalent to the difference of l1 and l2 .

l1 = ρ(x′m, t) (3.9)

l2 = ρ(x2, t2) (3.10)

δc′ = ρ(b′, t+ δt)− ρ(b, t) (3.11)

As δc′ can be predicted from Equation 3.11, the robot knows its actual translation

amount.

A sample case of pose correction is as shown in Figure 3.5. For slippery surface

with varying amounts of encoder noise, it is observed that the actual trajectory deviates

from the planned trajectory. The deviation increases with the amount of encoder noise

- as expected. With pose correction, actual trajectory becomes almost identical to the

planned trajectory. It is observed that this is achieved regardless of the amount of

encoder noise.

3.3.3. Position Update for Ramped/Inclined terrain

Another reason for position error is moving on ramped or inclined terrain. In such

regions, robot should detect and estimate the place and slope of the ramp and update its

new position (in our case location of the bubble namely c). The prediction of the slope

of the ramp/incline in an environment(θ) and the distance between ramped/inclined

part and robot(λ1) has been proposed in Chapter 2 and in [57]. Assume that the robot

moves by δc amount in the direction of a terrain with slope θ and distance λ1. The

new location point c′ is;

c′ =

 c+ δc if ‖δc‖ < λ1

c+ λ1
δc
‖δc‖ +R(θ)(δc− λ1

δc
‖δc‖) otherwise

where the matrix R(θ) is a 2× 2 rotation matrix.
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Figure 3.5. Left: Planned trajectory without noise; Top Left: Trajectory with 10%

noisy encoder readings; Top right: Trajectory with pose correction; Center left:

trajectory with 20% noisy encoder readings; Center Right: Trajectory with pose

correction; Bottom Left: Trajectory with 20% noisy encoder readings; Bottom Right:

Trajectory with pose correction.

R(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)



3.3.4. Loop Closure

In order to detect visited place, each node is associated explicitly with its base

point x based on odometric information. One can readily calculate c(t+δt) and x(t+δt)

by using the previous base vector c(t) and odometry data ( δα and ||δc|| ) .

α(t+ δt) = α(t) + δα (3.12)
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c(t+ δt) = c(t) + ||δc|| [cos(α(t+ δt)) sin(α(t+ δt))] (3.13)

x(t+ δt) =

 c(t+ δt)

α(t+ δt)

 (3.14)

In order to detect the visited nodes, let x(t + 1) be the new target base which

is determined by Equation 3.14. If the location component of x(t+1) namely ct+1 is

similar with the previous location vectors, this position is regarded as a visited place.

The similarity is measured by Euclidean distance with a predetermined threshold τp.

Assume that robot finds n candidate nodes for time t+1 and base point b. Let, r(t+1, b)

is the node assigner function for any time t and base point b.

r(t+ 1, b) =

 i d(ct+1, ci) ≤ τp

Nt+1 otherwise
(3.15)

Equation 3.15 makes possible to detect the visited nodes and also enable to do

a more effective exploration algorithm. In particular, the robot eliminates some move-

ment directions that correspond to the previous visited node positions. This makes the

exploration process faster and more effective.

3.4. Simulation Results

The proposed approach has been tested with a variety of different settings includ-

ing Canadian Planetary Emulation Terrain 3D Mapping Dataset and Jaguar robot.
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3.4.1. Canadian Planetary Emulation Terrain 3D Mapping Dataset

Next, we apply our approach on the Canadian Planetary Emulation Terrain 3D

Mapping (CPET3DM) dataset [1]. In particular, we use p2at_met dataset that is

generated in the UTIAS indoor rover test facility. This dataset consists of 3D laser

scans that are obtained from 102 different locations with a grid-like structure whose

dimensions are 60mx120m. At each location c, the robot has 3D laser data with viewing

direction f1 ∈ [0, 360]◦ and f2 ∈ [−16,−5]◦ with increments δf1 = 0.3◦ and δf2 = 0.5◦

respectively. For generating a bubble surface, the robot choses the dataset from the

most nearby data collection point to itself so a sampling error is inevitable. However,

since the data collection points are almost uniformly grid-like dataset with small grid

dimensions, it is a convenient dataset for exploration.

The robot is made to start at varying starting points and a sample exploration

path is shown in Figure 3.6. The starting positions are labelled as a cross. As an

example, in the left part of the Figure 3.6, the robot starts exploration at [-17.4 10.5].

This point is labelled as node 1 in corresponding map as shown left bottom of the

Figure 3.6. The robot uses proposed method to find its new direction and moves

in this direction for 20 meters. The nodes associated with all the places visited are

numbeted in an increasing manner. Thus, the robot moves incrementally from node

1 to node 16. At this node, it can not find any unexplored direction so it turns back

until it is able to do so. At node 15, robot finds such a direction and moves to nodes 17

and 18 respectively. At node 18 robot can not find any unexplored direction to move

and then it turns back again. This continues until node 1. At node 1, the robot finds

an unexplored direction and move there which is labelled as 19. At node 19, there

are no unexplored directions and the robot turns back to node 1. At this initial node,

as, there are no unexplored directions and it finishes its exploration task. A similar

reasoning is followed even if the robot starts at different position as shown in Figure

3.6. In each case, the exploration path is different but in all cases robot cover the

whole environment. These paths are different while covering roughly the same regions.

This can be attributed to the fact that bubble surfaces at initial positions are different.

Therefore, the robot moves in different directions which leads to different paths.
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Figure 3.6. Travelled paths and graphs Top Left: Initial c = [−17.410.5]T ; Top

Center: Initial c = [−19.2− 76.4]T ; Top Right: Initial c = [13.4− 93.4]T ; Bottom

Left: Initial c = [−38.411.0]T ; Bottom Center: Initial c = [−0.4− 44.5]T ; Bottom

Right: Initial c = [−14.9− 76.0]T .
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Table 3.1. CPET3DM results with different starting points.

Starting position c Area coverage (m2) # Places Path length (m)

(-17.4 10.5) 4850 36 720

(-19.2 -76.4) 4620 36 720

(13.4 -93.4) 4460 36 720

(-38.4 -11.0) 4070 32 640

(-0.4 -44.5) 4670 30 600

(-14.9 -76.0) 5120 30 600

Table 3.1 presents the total covered area and the length of the travelled path for

each exploration mission. In some parts, the dataset does not involve the sensor values

at higher than f2 = −5. Due to this limitation, the area is found by using the bubble

values at f2 = −5. This leads to find a smaller value than the actual covered area.

It is observed that changing the starting position affects area coverage slightly while

travelled path lengths also vary by 10% . The variability in area coverage is attributed

to the varying number of places that are explored as seen in Figure 3.6. Furthermore,

the actual locations of the nodes are important. For example, if the robot is near to a

ramp, the corresponding area coverage decreases accordingly.

3.4.2. Jaguar Robot

The last set of experiments are done with the Jaguar robot as shown in Fig-

ure 3.7(top left). The Jaguar robot is a tracked robot endowed with two cameras, 2D

laser scanner, encoders and IMU. A special user interface based on QT and ROS has

been designed for operating the robot in teleoperation and autonomous modes. For

the interested reader, the technical details of the robot are presented in Appendix B.

First, an extensive dataset is collected via teleoperating the robot around the floor

as shown in Figure 3.7 (top right) and have it collect data at 75 different locations.

The dataset consists of camera, laser, gps, encoder and imu data. At each location c,

the robot has 2D laser data with viewing direction f1 ∈ [0, 360]◦ with increments δf1 =

0.166◦ and and f2 = 0. In fact, robot’s laser scanner is capable to pan between f1 ∈
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Figure 3.7. Top Left: Jaguar robot in the floor; Top Right: Floor plan; Bottom Left:

A sample front camera image; Bottom right: A sample laser data.

[−90, 90]◦ , we turned robot 180 degrees to make laser scan omnidirectional. Sample

camera and laser data are as shown in Figure 3.7(bottom left) and Figure 3.7(bottom

right) respectively.

Figure 3.8. Left: Exploration path with dataset; Right:Real-time exploration path

under autonomous mode.

The algorithm is then applied with this dataset and the resulting exploration path

is as shown in Figure 3.8(left). The robot starts exploration at a base as indicated with

the pink cross. It then navigates along the corridor until coming back to its starting
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point. Then, it turns back to explore interesting places that are detected, but not

explored. While turning back, robot goes to some of the offices and finishes exploration

by turning back to the initial position. the details of the exploration stages are shown

in Figure 3.9 .

Finally, this approach is implemented in real-time on the Jaguar robot and is

put to test. In this mode, the robot is completely autonomous in determining its

exploration path – using the approach as explained. The given environment and the

robot path is given in Figure 3.8(right). The robot goes to the northern part of the

environment. When it realizes that there are no unexplored directions, it turns back

and moves to the southern part and covers the whole environment.

Figure 3.9. Stages of the Exploration paths with Jaguar robot.
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4. MULTIROBOT EXPLORATION VIA 3D LASER

BASED BUBBLE SURFACES

This chapter is about autonomous exploration of a priori unknown environments

with multiple robots. Each robot builds a topological map about the environment that

it covers which are merged to construct the map of the environment. Initially, each

robot knows nothing except what it can sense from where it’s at and the initial relative

positions of the other robots. Each robot starts exploration in a manner similar to that

described for a single robot. However, here, robots exchange information at each base.

In particular, they inform each other of their current positions. By using this data

each robot knows where the other robots are roughly and makes movement decisions

accordingly. Thus, the robots are able to cover the whole area to be explored with

minimal overlap.

4.1. Related Literature

More recent work in exploration has started considering exploration missions with

multiple robots. It is expected that using multi-robot systems instead of a single one

would improve exploration performance [50,58,59]. First, the amount of coverage in a

given amount of time will increase. Similarly multi-robots cover the given environment

faster than a robot. Furthermore, there is a possibilty of verifying information collected

by each robot.

Approaches to multirobot exploration can be categorized depending on two fac-

tors : maps used and the nature of decision making. As discussed for the single robot

case, maps can be metric or topological. The second dimension refers to how the

robots decide where to go. This decision-making can be centralized or decentralized.

In centralized strategies, the robots’ motions and coordinations are determined by a

central agent or a base station. In decentralized approaches, each robot makes its own

decision for exploration. These decisions can depend on various criteria including the
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cooperative information gathering from other robots. Even though the decision of the

robot may be related to the information coming from other robots, robot makes its own

decision independently. In all these work, communication among the robot is critical

to task performance.

As a metric and centralized strategies, a central station determines the frontier

cells based on a utility value for each location in [60] where the utility value depends

on the expected travel cost and the information gain. The information gain is the

estimated number of unknown map cells within a radius at the location. When one

robot is assigned to some location, the information gain of the location cells is decreased.

A method using a Monte Carlo localizer and maximum likelihood on grid maps is based

on using maximum likelihood function determines the best alignment of laser data [61].

A team leader merges the maps and shares the grid map with the rest of the team.

As a metric and decentralized strategies, frontier-based exploration has been pro-

posed [62]. The definition of frontiers is basically the boundaries between the explored

and unexplored areas. An utility function is derived for less cost and much exploration

and robots utilize that function. Robots exchange their grid maps and continuously

update their own map by merging the map received with their local maps. Frontier

concepts have been used in many projects such as [60, 63, 64]. In [65], when two or

more robots come in each other’s communication range, they merge their local maps

and choose a leader which is responsible for building a complete map that represents

the data collected by all robots in the communication range, and broadcasts the map

frequently to all the robots in that range [65] .

One of the earlier work in centralized and topological strategies [66] includes one

moving and two stationary robots, robots behave according to a centrally agreed plan

and triangle formed by two stationary and one moving robot is considered as free space.

The formed triangles are connected to graph and map is formed. It is proved that this

approach is more successful than single robot exploration but in that approach many

robots remain stationary [66].
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In [67], a topological and decentralized approach which is a randomized strat-

egy for cooperative exploration based on SRT(Sensor based Random Tree) concept is

proposed. The method entails two decentralized cooperation mechanisms at different

levels. The first simply consists in an appropriate definition of the local frontier, by

which each robot plans its motion towards areas that appear to be unexplored by the

rest of the team on the basis of the availible information. The second allows a robot

that has completed its individual exploration phase to support the others in their task.

Another example of decentralized and topological strategies is ”Sensor Based Random

Graph” (SGR) [68], the nodes of the SRG represent view configurations that have been

visited by at least one robot and these nodes are connected by arcs that represent safe

paths which is equivalent to edges. In [69], the robots cooperatively explore the whole

environment and generate its topological map. The robots independently generate lo-

cal topological maps and by transferring them to each other, they are able to integrate

these maps and generate a whole global map.

In summary, centralized systems obtain solutions close to the optimal but are

computationally intensive and inefficient for large number of robots, these approach

also have a single point of failure; on the other hand, decentralized systems are flexible

and robust, but frequently achieve considerably sub-optimal solutions compared to

centralized systems [60].

There are also some works on this subject which includes different concepts. For

assigning the next optimal target for exploration Hungarian method [70] has been used

in some recent projects [71, 72]. In an active approach, RFID tags are dropped along

the way to some suitable parts of the environment [73]. These tags store the relative

locations of frontier cells and visited cells and they are helpful for determining the

explored and unexplored part. On the other hand it is an active approach which is not

a desired situation. There are also many works in robot formation problem. Yang et

al focus on a different problem in multi robot exploration. In many cases, formation

of robots is very important. For instance, robots may need to form a formation such

as line, triangle etc. for effective exploration. They derive a mathematical foundation

for robots formation and find the optimal path for robots to obtain a line [74].
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4.2. General Approach

The contribution of this chapter is to consider the problem of decentralized multi-

robot exploration with topological maps - assuming a perfect communication among

robots and propose a new approach based on bubble space representation [5]. The

bubble space representation is used for not only mapping but motion planning which

determines where to go next and localization that means where I am.

The multirobot system consists of a set of R = {1, . . . , r} robots. Each robot

is associated time-varying bubble space point bi =
[
xi fi

]T
with base xi ∈ X

and viewing direction fi ∈ F . Initially the robots do not know anything about the

environment except the relative positions of the other robots. During the course of the

mission, as each robot comes to a new place, it sends its new position to other robots.

As the robots all take this information into considertion while deciding where to go

next, they are able to explore the environment with minimal overlap.

4.3. Where to Explore Next?

The robots use the same strategy as has been developed for the single robot

case. At each place, each robot uses a local exploration algorithm followed by global

exploration algorithm. The local exploration algorithm is identical to that one used in

the single robot case with the following exception. The utility function used is modified

in order to take other robots into account. Let Ai(t) denote the set of bubble surface

segments at time t. Consider robot i and its utility function ϕi : At → R>0 .

With the single robot case, for each segment Ai(t, k) on the bubble surface, the

function ϕi is a measure of the horizontal extent νi and average depth µi of that

segment. In this case, it is modified to incorporate relative distance to other robots’

current and previous positions. For this define the index set of robot pairs QR,2 =

{ij |i, j ∈ R, i < j }. For each pair ij ∈ QR,2 of robots, let δij(Ai(t, k), t′) =‖ ci(t) +

u(Ai(t,k)
‖u(Ai(t,k)‖ − cj(t

′) ‖ denote the pairwise distance between a potential new place location

and that of robot j at time t′. The distance of this potential new place location to all
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the robots is defined as:

di(Ai(t, k), t) =
∑
j∈R
j 6=i

δij(Ai(t, k), t)2

Furthermore, A measure of how distant this potential new place location to all previous

positions of the robots is defined as:

di(Ai(t, k), t′) =
∏
t′<t

∑
j∈R
j 6=i

δij(Ai(t, k), t′)2

The utility function is constructed via incorporating

ϕi(Ai(t, k)) = (νi(Ai(t, k))ρ(b∗i , t) + dp(Ai(t, k))) di(Ai(t, k), t′) (4.1)

The general concept of the local algorithm for multi robot is given in Figure 4.1.

The global algorithm is completely same as with the single robot exploration case.

Figure 4.1. Local exploration algorithm.
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Figure 4.2. Exploration paths: Top left: Robot 1 operating only; Top Right: Robot 2

operating only; Bottom Left: Robot 3 operating only; Bottom Right: All robots

operating concurrently.

4.4. Simulation Results

In this section, simulation and experimental results with multirobot exploration

tasks are presented.

4.4.1. Simulated Environments in Webots

The first set of experiments are conducted in a Webots simulated outdoors envi-

ronment with three robots. Each of the robots is placed at different location as shown

in Figure 4.2. Gaussian encoder noise is also added to robot encoder in order to make

simulations similar to real time. The ground is slippery floor so that there is 10% error

pose error. Operating only, the exploration paths are as shown in the first three figures

in Figure 4.2. When the three robots do the task together, the resulting exploratory

path is as shown in Figure 4.2(bottom right).
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Figure 4.3. Exploration paths with varying initial positions with CPET3DM. The

initial positions are indicated by the big colored crosses. Top: 2-robot paths; Bottom:

Corresponding graphs.

4.4.2. Canadian Planetary Emulation Terrain 3D Mapping Dataset

Next, we apply our approach with CPET3DM [1] . In particular, we use p2at_met

dataset that is generated in the UTIAS indoor rover test facility. This dataset consists

of 3D laser scans that are obtained from 102 different locations with a grid-like structure

whose dimensions are 60m × 120m. At each location c, the robot has 3D laser data

with viewing direction f1 ∈ [0, 360]◦ and f2 ∈ [−16,−5]◦ with increments δf1 = 0.3◦

and δf2 = 0.5◦ respectively. For generating bubble surfaces, each robot chooses the

dataset nearest to itself - which leads to odometric errors. The exploration mission is

finished when all the robots decide to stop. For example, in Figure 4.3, the exploration

is finished when the robot (whose trajectory as shown by the pink color is longer than

the other robots) stops.

A 2-robot team is made to explore this terrain starting at different initial positions

varying from nearby to far away. The results are as shown in Figure 4.3. It is observed

that different initial positions lead to different exploration paths - as expected. It is

observed the robots go in different directions - even when they start within each other’s

vicinity. In all, area coverage is about the same and is seemingly balanced.

The same is repeated for 3 and 4 robot teams as seen in Figure 4.4. Due to
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Figure 4.4. Exploration paths with varying initial positions with CPET3DM. The

initial positions are indicated by the big colored crosses. Top: 2-robot paths; Center:

3-robot paths; Bottom: 4-robot paths.

variations in the initial positions, the trajectory of each robot changes accordingly.

The statistical evaluation of this performace is presented in Table 4.1. It is observed

that both average distance travelled as well as area explored by each robot decreases

as the number of robots increase with a corresponding decrease in their respective

standard deviations. As explained earlier, the area explored by each robot is computed

bu using the bubble surface restricted to f2 = −5. This actually leads a smaller value

than the actual covered area. Furthermore, if a base is close to a ramp, then the covered

area is relatively smaller than a flat terrain. However, in all area coverage is about the

same.

Since all the robots move for a fixed amount of time with the same speed at each

exploration step, distance values in Table 4.1 are strongly related with the time. Next,

we study the effect of team size on the total exploration time as shown in Figure 4.5. It
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Table 4.1. Canadian Dataset exploration results for multiple robots.

# Robots
Distance/Robot (m) Area /Robot (Km2)

Total area (Km2)
Mean Std. Dev. Mean Std. Dev.

2 14.50 3.42 2.13 0.58 4.26

3 10.33 0.82 1.48 0.11 4.44

4 6.75 1.04 1.09 0.10 4. 37

Figure 4.5. The relation between number of robots and exploration time.

is observed that as the number of robots is increased from one to four, the exploration

time decreases in an exponential manner.
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5. CONCLUSION

This thesis has presented novel approaches to autonomous exploration with single

and multiple robots. In particular, the robots are assumed to be endowed with three-

dimensional laser sensors. The exploration strategies work with topological maps. Al-

though topological maps are less accurate than metric maps, they are computationally

much more efficient - which is really important in real time applications. In partic-

ular, the nodes in the topological map are based on bubble space representation. In

the bubble space representation, bubble surfaces encode different sensory features and

their local S2-metric relations in a manner that is implicitly dependent on robot pose.

Hence, exploration is considered with bubble space based topological maps. First, the

exploration of an environment by a single robot is studied. There are two aspects to

this problem: terrain mapping and determining where to go.

Terrain mapping aims to infer the environmental surface shape - as this certainly

would affect the robot in determinig where to go. For this, a novel approach based

on bubble space representation is proposed and experimentally evaluated. For terrain

mapping, we show that each constructed bubble surface can be associated with a

slope map that defines local terrain slope and its proximity for each different pan

direction. Thus, instead of constructing a global terrain map a priori, local terrain

map is estimated on demand in real-time as the robot navigates to a new place and

constructs a bubble surface. We present experimental results with simulated and real

datasets to validate this approach.

For explorative navigation, the movement direction should be such that it should

point the robot to unexplored territory while being accessible. In this approach, bubble

surfaces are transformed via a thresholding and are processed in order to determine

candidate directions. A depth-first search algorithm is used to ensure that all the

candidate directions are explored. The novelty of this approach is that the generation

and recognition of nodes and their associated edges are achieved simultaneously with

graph exploration. We have used simulated data as well as real experimental datasets
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in order to evaluate this approach. The approach is finally applied with the Jaguar

robots for autonomous explorative navigation. The results reveal that our proposed

method is useful for exploring the environments.

Next, the explorative navigation strategy is extended to multirobot exploration.

In this case, the robots are assumed to be communicating with each other and deter-

mine their movement directions using the bubble surface information as well as their

relative position information. The developed method is independent from the number

of robots and initial positions of the robots. This method reduces the exploration time

as the number of robots are increased while ensuring that maximal area is covered with

minimal overlap.

In order to ensure that bubble surfaces have correct base points, pose correction is

considered. This is based on comparing the expected bubble surfaces with those that

are actually realized. This approach is implemented in both single and multi robot

exploration applications.
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APPENDIX A: BUBBLE SPACE

In this Section, we briefly review bubble space. The interested reader is referred

to [5] for details. Consider a robot positioned at location c ∈ R2 with a heading α ∈ S1.

Its base is defined as x = [c , α]T and the base space is defined to be the set of all

possible viewpoints X = R2 × S1. Let the set of (pan and tilt) viewing directions be

denoted by F ⊂ S2 where f = [f1 f2]T . The bubble space B = X × F is an abstract

representation of the robot’s base along with its viewing directions. Each point b ∈ B

is defined as b = [x f ]T where x ∈ X and f ∈ F . The robot’s base point is given

by π : B → X - defined as the projection of b onto X as π(b) = x. The section is a

continuous map h : X → B such that ∀x ∈ X , π(h(x)) = x. The image of a section h

– namely Im(h(x)) – is the set of viewing directions from a given base position x.

Assume that at time t, the robot is at base x ∈ X . For each viewing direction

f ∈ F , it obtains 3D laser data q(b, t). Now, visualize the robot to be surrounded

by an hypothetical spherical surface that is deformed at each f by an amount that is

dependent on the sensed data value. This surface is referred to as bubble surfaceB(x, t).

As the robot’s sensor moves through a sequence of pan and tilt viewing directions, the

sensed data is encoded by the bubble surface B(x, t) . It is an egocentric representation

of its surroundings. Mathematically, the bubble surface is a deformed sphere embedded

in R3 with an intrinsic parametrization:

B(x, t) =


 f

ρ(b, t)

 | ∀f ∈ F and b = [x f ]T

 (A.1)

where ρ : B×R≥0 → R≥0 is a Riemannian metric that encodes the 3D laser data. It is

initialized to be a S2 sphere with radius ρ0 ∈ R≥0 – namely ρ(b, 0) = ρ0. As the robot

looks around, for each fixation direction, an observation q(b, t) is made, each bubble

surface is also deformed in Nε(b) - the ε-neighborhood of b - via introducing a local
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bump at b

ρ(o, t+) = ρ(o, t−) + gb(o)q(b, t)

where the bump function gb : B → [0, 1] is any continuous decreasing function that

satisfies the following two conditions:

gb(o) =

 1 if ‖b− o‖ = 0

0 if ‖b− o‖ = ε

The bubble surface can be explicitly represented by the double Fourier series as:

ρ(b, t) =

H1∑
m=0

H2∑
n=0

ςmnz
T
x,mn(t)emn(f)

For each (m,n), the vector emn(f) ∈ R4 consists of an orthonormal set of trigonometric

basis functions as:

emn(f) =


cos(mf1)cos(nf2)

sin(mf1)cos(nf2)

cos(mf1)sin(nf2)

sin(mf1)sin(nf2)


The corresponding vector zx,mn(t) ∈ R4 of double Fourier series coefficients associated

with base point x at time t is:

zx,mn(t) =
[
ηx,mn(t) βx,mn(t) µx,mn(t) νx,mn(t)

]T
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APPENDIX B: JAGUAR MOBILE ROBOT

B.1. Robot System

Jaguar robot is a robot that is designed for both indoor and outdoor applications

as shown in Figure B.1. It can operate in extreme terrains and is capable of climbing

up stairs (up to 200mm step). Its technical details and components are as given in

Figure B.1. Left: Jaguar robot; Right: Robot components.

Table B.1. The technical specifications of Jaguar robot are as shown in Table B.2.

B.2. Teleoperation User Guide

In this part, teleoperation user guide of Jaguar Robots is explained. This is a

software interface designed together with Hakan Karaoğuz and Ramazan Arıkan. The

interface is designed in Ubuntu 12.04 operating system. Although not tested, more

recent versions of Ubuntu are thought to be suitable for the interface. The interface

is QT and ROS based. Hence, QT and ROS need to be installed. In particular, the

software is developed with ROS Fuerte, so it is highly recommended to install this

version of the ROS.
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Table B.1. Jaguar robot components.

No Component Unit Properties

1 Length mm 820

2 Height mm 176

3 Width mm 700

4 Portable Weight kg 25

5 Battery 1 22.2V (Li-Po)

6 Motors 3 1 arm unit, 2 track-wheel unit

7 Encoders JAGUAR-ME (1227.4 per revolution)

8 Camera 1 30fps, 640x480 resolution

9 Camera 2 30fps 640x480 resolution

10 2D Laser Scanning Angle:240◦ (Resolution:0.36◦)

11 GPS OGPS501

12 IMU IMU9000

13 Wireless WRT802G

Table B.2. Jaguar robot - Technical Data.

Property Unit Theory Experimental

Axis No 3 3

Maximum Linear Speed m/s 1.52 1

Maximum Rotational Speed rad/sec 0.57 0.4

Maximum Arm Speed rad/sec 1.52 1

Drive Method tracked

Maximum Slope to Climb Up degree higher than 45◦ higher than 45◦

External Interface Wireless Connection

Working Temperature Celcius Up to approx. 24◦

B.2.1. Operating the Robot

In this section we present how to activate the robot, connect to it with interface

and have it operating.
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(i) Opening the Jaguar Robot: Install the battery as shown in Figure B.2(left).

Make sure that the red connector is connected with red and black with black. The

robot is made operational by turning the switch on as shown in Figure B.2(right).

A simple check to see if the robot is activated is to observe whether the red light

of the laser scanner is on or not.

(ii) Using the interface:

Figure B.2. Left: Battery connection; Right: Turning the power on.

• Open the computer running Ubuntu and connect to the Jaguar Robot with

wireless as shown in Figure B.3.

Figure B.3. Left: Wireless connection; Right: Activating the robot software.

• Open a terminal and write ”‘roscore”’ as shown in Figure B.3(left-right).

Roscore is the collection of nodes and programs that you will run. A series

of text will appear on the screen as shown in Figure B.4.

• Jaguar robots has its own topic that enable to communicate with computer

that need to be started. Note that you need to go to the directory of the

terminal to run the topic as shown in Figure B.5 and Figure B.6 respectively.

• Robot status information will be listed as seen in Figure B.7.
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Figure B.4. Running roscore.

Figure B.5. The directory of Jaguar Robots communication topic.
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Figure B.6. Launching the communication topic.

Figure B.7. The robot’s data collected by communication topic.
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• Now, the robot is ready to run. The interface can be invoked via going to

the bin directory and running the application as shown in Figure B.8. Some

sample applications are as shown in Figure B.9.

Figure B.8. Jaguar gui interface.

Figure B.9. Top: Teleoperated navigation; Bottom: Teleoperated data collection.
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