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ABSTRACT

MULTIROBOT EXPLORATION WITH BUBBLE SPACE
BASED TOPOLOGICAL MAPS

This thesis is concerned with autonomous exploration with single and multirobot
systems. In particular, the robots are assumed to be endowed with three-dimensional
laser sensors. The exploration strategies are based on bubble space representation that
has been previously proposed to represent nodes in topological maps. First, the ex-
ploration of an environment by a single robot is considered. There are two aspects to
this problem: terrain mapping and determining where to go. Terrain mapping aims to
infer the environmental surface shape - as this certainly would affect the robot in deter-
mining where to go. For this, a novel approach based on bubble space representation
is proposed and experimentally evaluated. For explorative navigation, the movement
direction should be such that it should point the robot to unexplored territory while
being accessible. A novel approach is proposed where the generation and recognition of
nodes and their associated edges are achieved simultaneously with graph exploration
in a topological map based on bubble space. The validity of these approaches are
demonstrated by simulations and real-time experimental results.Next, the explorative
navigation strategy is extended to multirobot exploration. In this case, the robots are
assumed to be communicating with each other and determine their movement direc-
tions using the bubble surface information as well as their relative position information.
Experimental results with real data show that the robots are able to explore unknown

territories without much overlapping.



OZET

BALONCUK UZAYI TABANLI TOPOLOJIK
HARITALARDA COKLU ROBOTLARLA ORTAM
KESFETME

Bu calisma, tek robotla ve coklu robotlarla ortam kesfetme algoritmalarin ele
almaktadir. Bu amagla, topolojik haritalarda diigiim noktalarini temsil etmek igin
daha 6énceden bulunmus baloncuk uzayr kullamlmigtir. Ilk olarak tek robotla ortam
kesfetme problemini gergeklegtirme amaglanmigtir. Bu problem yer haritalama ve
kesfetme stratejisi olmak iizere iki alt probleme ayrilmigtir. Yer haritalama segilen
ortamin onceden belirlenmig ozelliklerini ¢ikarma iglemidir. Yer haritalama ile il-
gili olarak baloncuk uzayimdan ortamin yiikselti haritasinin ¢ikarilmasini saglayan bir
yontem geligtirilmistir. Bir ortamin robot tarafindan basarili ve verimli bir sekilde
haritalandirilmasi i¢in, robotun akilci bir kesif stratejisi olmahdir. Kesif stratejisi ile
ilgili olarak baloncuk uzayi imgeye dontistiiriillmiis ve imge isleme ile kesif i¢in ilging
noktalar belirlenmistir. Bu yaklagimimizin gecerliligi simulasyonlarla ve gercek ortam-
daki deneylerle gosterilmistir. Tek robotla ortam kesfetme algoritmasi ¢oklu robot
sistemlerine uyarlanmigtir. Caligmanin bu kisminda robotlar arasindaki haberlesmenin
kusursuz sayildigi ortamda, ortam kesfinin zamanin azaltilmasinmi saglayacak yontemler
geligtirilmesi amacglanmigtir. Bu amacla, tek robotla ortam kesfetme algoritmasi ¢oklu

robotlara uyarlanmig ve bu yontemin verimliligi simulasyonlarla gosterilmistir.
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1. INTRODUCTION

Autonomous exploration is one of the most challenging problems in robotics. The
primary goal is to determine the map of an unknown environment. The maps are repre-
sented primarily using two different approaches: metric and topological. While metric
maps represent the geometric structure of the environment, typically they have too
high computational demands for a direct application on a mobile robot [2]. Alterna-
tively, topological maps represent environments by graph-like structures where nodes
correspond to places and edges to paths between them [3]. Although topological maps
scale better to large environments, they are thought to lack the ability to represent the

geometric structure of the environment [4].

In this thesis, exploration with topological maps is considered. In particular, we
use bubble space as the nodes of the topological map [5]. In bubble space representa-
tion, bubble surfaces encode different sensory features in a manner that is implicitly
dependent on robot pose. Each bubble surface is a deformable surface that simulta-
neously encodes one type of sensory feature values and their local S2-metric relations
from the robot’s viewpoint. For completeness, the mathematical formulation of bubble
space is presented in Appendix A. In this thesis, the robots are assumed to be endowed
with three-dimensional (3D) laser sensors and bubble surfaces are constructed using

3D laser data.

The exploration of an environment can be accomplished either via a single robot
or multiple robots. Initially, we have focused on single robot exploration. There are
two aspects to this problem: terrain mapping and determining where to go. Terrain
mapping aims to infer the environmental surface shape - as this certainly would affect
the robot in determining where to go. For this, a novel approach based on bubble
space representation is proposed. In this approach, bubble surfaces constructed using
3D laser data are used to define local slope maps - which in turn are used to generate

the local terrain map on-demand for its localization and motion planning.



For explorative navigation, the movement direction should be such that it should
point the robot to unexplored territory while being accessible. As the nodes (bubble
surfaces) of the topological map are actually used to determine the unexplored direc-
tions, the robot is able to incrementally extend its map via the nodes generated at new

places that are reached via moving in these directions.

For correct mapping, the robots should consider pose correction. Pose correction
is necessary due to odometric errors as well as environmental conditions. In our ap-
proach, pose correction is done in bubble space via comparing expected bubble surfaces

with those that are actually generated.

This approach is then extended to multirobot setting. In this case, the robots are
assumed to be communicating with each other and determine their movement directions
using the bubble surface information as well as their relative position information with
the overall strategy that they should be maximally scattered over the terrain with

minimal overlapping of places explored by different robots.

1.1. Contributions

The contributions of this thesis can be summarized as follows:

Terrain mapping: A novel approach to local terrain mapping with topological maps
is proposed. In this approach, bubble surfaces constructed using three-dimensional
laser data are used to derive local terrain maps that encode local terrain slope and its

proximity for each pan direction.

Single robot explorative navigation: A bubble space based approach to determining the
movement directions is proposed. The novelty of this approach is that the generation
and recognition of nodes and their associated edges are achieved simultaneously with
graph exploration. As the nodes (bubble surfaces) of the topological map are actually
used to determine the unexplored directions, the robot is able to incrementally extend

its map via the nodes generated at new places that are reached via moving in these



directions.

Multi-robot explorative navigation: The single robot exploration strategy is extended
to multirobot settings. The contribution of this approach is that the robots deter-
mine movement directions based on 3D laser sensory feedback from their current en-
vironments as well relative pose information - assuming that the robots are able to

communicate with each other and exchange relative position information.

1.2. Outline

This thesis is organized as follows: In Chapter 2, the local terrain mapping ap-
proach is presented along with experimental evaluation results. Single robot explo-
ration is explained in Chapter 3 and tested using both simulated and experimental data
as well as with a real-time tracked robot. In Chapter 4, the single robot explorative
navigation strategy is extended to the multirobot settings along with experimental
results. The thesis concludes with a brief summary. For completeness, the mathe-
matical formulation of bubble space representation is presented in Appendix A. The

description of Jaguar robot used in single robot exploration is given in Appendix B.



2. LOCAL TERRAIN MAPPING VIA 3D LASER BASED
BUBBLE SURFACES

Terrain mapping is the process by which surface shape obtained from different
vantage points are accumulated into a consistent environmental model [6]. As such,
it requires sensing the inclined or ramped parts of the ground surface and building
a terrain representation accordingly [7]. It is a critical component of mobile robot
navigation in unknown outdoor environments - as the local topography directly affects
the robot’s pose and imposes constraints on its motion [8-12]. In this chapter, we focus

on local terrain mapping with topological maps.

2.1. Related Literature

There are two related aspects: sensing and representation. The surrounding terrain can
be sensed by a variety of sensors [12]. However, due to availability and reliability, stereo
vision and laser rangefinders are most commonly used. Most work on terrain mapping
are based on analyzing the images captured from the robots’ camera [7,13-15]. How-
ever, these approaches are not robust against changes in illumination conditions that
may dramatically alter the appearance of the terrain in natural settings [16]. While
this problem may be alleviated via augmenting the intensity values with additional
information [16], the strong dependency on intensity values remains nevertheless. Al-
ternatively, distance sensors are used as these sensors are relatively robust in case of
varying light and temperature [17,18]. For example, time-of-flight measurements from
two vertically placed sonar sensors having the same viewing direction are used to es-
timate the terrain slope [19]. Similarly, laser range finders scanning the environment
vertically and horizontally are used for terrain modelling [4,18,20]. With the recent
developments in three-dimensional (3D) lasers, it has become possible to obtain high
resolution digital terrain data [1]. Although visually appealing, efficient terrain mod-
elling structures have become more imperative as the enormous number of points make

data management and reasoning both complex and time consuming [21,22].



Hence, the second aspect pertains to representation. In most works, this is based
in metric maps using a variety of tile representations such as grid-based approximations
or geometric primitives [21]. For example, the map is obtained via fitting of planes to
small areas in the sensed data using a variety of different methods [7,14,15,23,24]. The
complexity of full three-dimensional maps is reduced by using Cartesian elevation maps
which encode 2%—dimensional height information of the terrain in a two-dimensional
grid [4,6,20,25,26]. While metric maps represent the geometric structure of the environ-
ment, still, they typically have too high computational demands for a direct application
on a mobile robot [2]. Alternatively, topological maps represent environments by graph-
like structures where nodes correspond to places and edges to paths between them [3].
While topological maps scale better to large environments, they are thought to lack the
ability to represent the geometric structure of the environment [4]. Perhaps partially
due to this, to the best of authors’ knowledge, there is no reported work on deriving
terrain maps from the topological representation of nodes only. This is fundamentally
different from adding terrain information — which can easily be done as topological

representations are agnostic with respect to the type of metrical information.

2.2. General Approach

This chapter presents a novel approach to generating local terrain maps. As most
work, we assume that the terrain is lightly cluttered so that there are no overwhelming
obstacles in any direction that block the robot’s sight of view [8]. Unlike most work
that use metric maps, in our approach, local terrain maps are derived based on bubble
surfaces - which have been shown to correspond to nodes in the topological maps via
representing all features in a manner that is implicitly dependent on robot pose while
preserving their local S2-geometry and [5]. The contribution of this chapter is to derive
local terrain maps from bubble surface representation based on 3D laser sending. We
show that each bubble surface along with the robot’s geometry defines a local slope
map of the terrain gradient and its proximity for each pan direction - depending on the
robot’s base. Hence, instead of generating a global terrain map, the robot generates

a local terrain map on-demand depending on its pose which can then be used for its



localization and motion planning.
2.3. Local Slope Map

Suppose the robot is at base x with a 3D laser sensor mounted at height h as shown in
Figure 2.1 and constructs a laser bubble surface B(z,t). The robot’s viewing direction
with respect to its horizon depends on the tilt viewing direction f,. If the tilt angle
f2 = 0, then the robot’s viewing direction is parallel to the ground. If fo < 0, then f
is associated with a viewing direction that is looking downwards from its horizon by
an amount that is given by the magnitude of f;. On the other hand, if f, > 0, then
the robot is looking upwards from its horizon. We consider the part of bubble surface

when the robot is looking downwards with fo < fg.

The local terrain model is based on approximating the terrain in each (pan)
viewing direction f; by two piecewise planar surfaces as shown in Figure 2.1. Of
course, this will lead to a coarse modelling of the terrain in realistic settings [21].
Nevertheless, such terrain maps will still be useful — particularly in cases when steep
ramps and inclines are detected which may need to be avoided by the autonomous
robots. Furthermore, as the robot computes local variations in the terrain slope as
formulated in the sequel, this information can be used if crucial to the task at hand.
The first plane corresponds to the terrain on which the robot is standing while the
second plane corresponds to a sloped terrain. The sloped terrain may be either a ramp
(slope upwards) or incline (slope downwards) as shown in Figure 2.1. The relative
geometry of the two planes can be described by two parameters — relative slope 6 of
the second plane with respect to the first plane and its starting distance \;. As such
an approximation is made for each pan viewing direction f;, each bubble surface is
associated with a map s, : F; — S! x R - which we will refer to as the local slope map.
This map is an egocentric representation of the gradients of the surrounding terrain

and their proximity as seen from the current robot pose z as:

s:(f1) = [ 0(f1) A(f1) ]T



The first component 6(f;) denotes the gradient of the terrain in pan direction f; and
A(f1) denotes its corresponding proximity. In the sequel, we will omit the f; argument

in order to simplify the notation.

Horizon (f; = 0) Horizon (f; = 0)

Figure 2.1. Left: Ramped slope; Right: Inclined slope.

2.3.1. Slope Type

Suppose that the robot is looking with pan viewing direction f;. In case of flat

terrain, the geometry dictates that the range reading p(b,t) to be:

h
sin(fa)

p(l. 1) = £<0 (2.1)
In case of sloped terrain, Equation 2.1 will not hold for f; < f, < 0 where f; <0 is
the critical tilt value associated with the start of the sloped terrain. The f5 value can
be determined by starting from the smallest possible f, and keep looking upwards until
the equality is satisfied or maximum upward direction is reached as explained in detail
later in the sequel. Hence, the type of slope (flat, ramp or incline) can be determined
as:

Ramp if p(b,t) — =~ <0, f5 < fo <0,

sin(f2)

(
Incline if p(b,t) — ﬁ >0,f5 < fa<0 (2.2)

Flat otherwise
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Figure 2.2. Geometry of a ramped terrain.

2.3.2. Ramp Estimation

Consider a ramped slope as shown in Figure 2.2. The critical tilt direction f5 is defined

by:

h <0 fi<fi<O
b, t) — = 2.3
COTEmm T 0 s 2

The value of p(¥/,t) will decrease depending on the amount of ramp:

h
bVit) = ——+ — A 24
with A; # 0. The starting distance \; of the ramp is equal to:
h
A =
L tan(f3)
Letting A5 denote the relative elevation, the ramp gradient at (fi, f5) is equal to:
0(f1, f2) = atan2(Xs, A2) (2.5)
Using the similarity of triangles P, P, Pjs and Py PyPys as:
A A
A5 _ A M (2.6)

o X p(b,t)+ A
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where

h
X = M+XA+d3=—-— 2.
6 1+ A2+ A3 tan(f3) (2.7)
h
A = —p(b',t 2.8
7 Sln(fé) p( ) ) ( )
Again based on geometry:
As = Arsin(f5) (2.9)
With some manipulation after combining Equation 2.6 and Equation 2.7,
Ay = ho_ A1 — A7 cos(fs) (2.10)
Ty T |
The overall ramp gradient is then defined as the average ramp gradient as:
1 f2
e I L (211)
fo= 13 =gz

Of course, if the local variations in the slope are required for the task at hand, the

robot will keep the individual slope values without averaging.
2.3.3. Incline Estimation

Next, we consider the case when at he robot faces an inclined terrain as seen in Fig-
ure 2.3(Top). Due to the change in geometry, the resulting formulation changes slightly.

Again, for each pan viewing direction f{, the incline associated with a tilt direction f;:

, h >0 f3<f3<0
V,t) — — - 2.12
OTEEH T 0 g )
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Figure 2.3. Top: General geometry. Center: Detailed geometry of incline start.

Bottom: Detailed geometry of incline.

The gradient of the incline can be easily derived as seen in Figure 2.3(bottom):

0 = arcsin(Ag, A2) (2.13)



Now we need to find the values Ag and A\ respectively. From Figure 2.3

N h
* 7 tan(f)  tan(f)

The distance to the incline A; is equal to:

h

M= fan()

Computing
)\5 = )\2 sm(fé)

By similarity of triangles P1P2P7 and P4P5P7,

As Ao Y
h p(b,t)— X AL+ Ao

Thus,

As(A1+ A
A3 = % = A cos(f2)

12

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

Now consider the triangles P3Py Ps and P3;PsP; as shown in Figure 2.3(Top). By their

similarity,
A
A6 = As—
6 e
where
h
A = pb,t)—
T

M:=V£+w+MP

(2.19)



13

Substituting, Ag is equal to:

)\2 sm(fé))\4

= 2.20
YT st )2 (2:20)
The gradient of the incline is equal to:
Ao sin(f5)A
0, 1) = awesin( 22y (2.21)

YN+ (A3 + \y)

The overall ramp gradient is computed again using Equation 2.11.

2.4. Local Terrain Map

The robot can estimate relative elevation in its neighborhood using the bubble
surface B(z,t) and the local slope map s,. Since the estimation is valid only locally,
we refer to it as the local terrain map. Note that unlike metric maps, local terrain
map is generated only for a neighborhood of each base point x. In bubble space,
consider B’ C B where B’ = {b € B | w(b) = x}. The local terrain map is constructed

via defining the map 6X : B’ — R? where

de(b)

X (b) =
dz(b)

where dc(b) € R? and 6z(b) € R are relative base displacement and relative elevation

parameters. Note that

se(v) = ey | "V (222)

cos(f1)
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2.4.1. Ramped Slope

For the ramped slope, [|d¢|| is equal to:

b,t)cos(fy) if fo g
ocy) = § AT costh) iR < (229

(A1 +A2) otherwise

On the other hand, the associated relative elevation dz(b) is:

0 i |[dc|| < Ay
52(b) =

Ao tan @ otherwise

where the Equation 2.8 and Equation 2.10,

h h
Ay = m i (m — p(b, t)) cos(f2) (2.:24)

2.4.2. Inclined Slope

In case of inclined slope, ||d¢|| corresponds to the line that passing from the points

Py, P, P; and Ps as shown in Figure 2.3:

6l = p(b,t)cos(fo) if fo < f5 (2.25)

(A1 + A2 + Ag) otherwise

The elevation map is equal to:

0 if ||dc]| < A\
(A2 + Ag) tan @ otherwise

6z(b) =

where

)\8 = )\4 COS(fQ) (226)
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2.5. Experimental Results

The proposed approach has been tested with a variety of different settings rang-
ing from simulated terrains in Webots to Canadian Planetary Emulation Terrain 3D

Mapping Dataset [1].

2.5.1. Simulated Outdoors Terrain

The first set of experiments are conducted with simulated outdoors environment
with varying terrain ramp using Webots [27]. The robot is made to stand in front of a
terrain with a given gradient #* that starts in A} meters as shown in Figure 2.4. The
gradient 0* is varied between 2.86°-11.44° while its proximity A} is varied between 0.5-1
meters. It uses the proposed approach to generate estimates ¢ and A;. The results are
as shown in Table 2.1. The gradient estimates 6 have an average error Ey = 15%
while the distance estimates A\; have an average error of Ey, = 5 %. As expected, as
both the gradient magnitude and the distance to the slope increase, estimation errors
increase. Interestingly, for a fixed gradient magnitude, as robot’s distance increases by
100%, the corresponding error increases by around 5%. Table 2.2 involves comparision

between our method and a recent work based on slope prediction by using laser range

finder [18].

Figure 2.4. A sample terrain simulated using Webots.

2.5.2. Canadian Planetary Emulation Terrain 3D Mapping Dataset

Next, we apply our approach with Canadian Planetary Emulation Terrain 3D

Mapping (CPET3DM) dataset which is a collection of 3D laser scans [1] . Note that,
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Table 2.1. Webots Results.

Actual Estimated %) %)
Eyo(7) | By (T
0 (°) | Ai(m) | € (°) | A(m)
0.5 2.63 | 0.48 8 4
2.86
1 2.952 0.91 12 9
0.5 498 | 0.49 13 2
5.72
1 4.87 | 0.93 15 7
0.5 7.44 | 0.49 14 2
8.58
1 7.16 | 0.92 17 8
0.5 9.74 | 0.495 15 1
11.44
1 9.16 | 0.94 20 6

Table 2.2. Comparision of two slope prediction methods.

Slope prediction method average prediction error (%)
Slope Prediction with Bubble Space 15
Slope Detection based on Orthogonal Assumption 4

this dataset is compatible with our assumptions and the environment that data col-
lected can be considered as a realistic outdoor scenario which can be seen in Figure 2.6.
In particular, we use a100_dome_vo dataset that is generated in the UTTAS indoor rover
test facility. This dataset consists of 3D laser scans that are obtained from 50 different
locations with a large inter-scan spacing in a gravel-filled circular workspace area 40
m in diameter. The real view of the terrain is shown in Figure 2.6. At each location
¢, the robot has 3D laser data with f; € [0,360]° having increments ¢ f; = 0.36° and
fo € [=30, —3]° having increments § f, = 0.5° respectively. Hence, the number of scan
points is N; = 1000 and Ny = 56 in each direction. It generates the local terrain map
s, associated with the current base point x. The bubble surfaces, actual and estimated
local terrain maps for three different base points are as shown in Figure 2.5. The black
crosses in Figure 2.5 indicate the position of the robot. As expected, it is observed that
the robot is able to estimate closer terrain quite accurately. However, estimation error
increases as distance increases. This is because - from the perspective of the robot,

the two plane approximation may not be valid. For example, if a ramped terrain is
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Figure 2.5. Top: Location ¢ = [4.92.2]". Left: Bubble surface; Center: Actual

elevation map ; Right: Estimated terrain map. Middle: Location ¢ = [0 O]T. Left:
Bubble surface; Center: Actual elevation map; Right: Estimated terrain map.
Bottom: ¢ = [—6.7 — 9.8]": Left: Bubble surface; Center: Actual elevation map;

Right: Estimated terrain map.

followed by an inclined terrain, the robot may be blocked from viewing the inclined
terrain unless it moves to the end of ramped terrain. In local terrain map, this terrain
will be wrongly estimated as being ramped slope. The results are compared with the

actual elevation values 0z* as shown in Figure 2.7 with error defined as:

21 0.052
Eéz / /
0.52

where 30° &~ 0.52 rad and 3° ~ 0.052 rad. It is observed that the average error is 0.033

- 52( )
(b)

‘dflde

m (around 3%) with variance is 0.0026 m. Furthermore, the data size is reduced from

3N1N2 down to 2N1
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Figure 2.7. CPET3DM dataset- Es, for each robot base point.

As expected, as the resolution of the tilt angle § f; increases, the estimation errors
will decrease accordingly. The results are as shown in Table 2.3. When the resolution

goes from down dfy = 0.5° to 0 fo = 4°, average Es, increases by 10%.

Table 2.3. Average Fs, wrt tilt resolution 0 fs.

0f2 (°) | Es (%)

0.5 3
1 6
2 9
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3. SINGLE ROBOT EXPLORATION VIA 3D LASER
BASED BUBBLE SURFACES

One of the central questions in the autonomous exploration of unknown environ-
ments is determining where to go - given what the robot knows about the world [28,29].
Initially the robot knows nothing except what it senses from where it’s standing, so that
the movement directions cannot be handed to the robot in a pre-meditated manner.
Rather, it operates in reflexive mode based on sensory feedback from the environment
and its so far acquired knowledge - which it may simultaneously use to construct a par-
tial map. Hence, as it starts exploring, at each location, it will determine a movement
direction. The movement direction should be such that it should point the robot to
unexplored territory while being accessible -namely a path must exist from the robot’s

current base to it [29].

The contribution of this chapter is to consider the problem of exploration with
topological maps. In particular, we use bubble space representation where the nodes
of the topological map are represented as bubble surfaces [5]. We assume that there is
no a priori map. Node candidates are generated concurrently as the robot is exploring
its surroundings. The novelty of this approach is that the nodes of the topological
map (bubble surfaces) are used in generating movement directions associated with

unexplored regions.

3.1. Related Literature

Exploration algirothms vary depending on whether the environment is known or
unknown [30]. In a known environment, the environment model is given and motion
planning becomes geometric programming [31] or graph search [32]. In an unknown
environment, such knowledge is not available and the robot obtains information as it
is moving around and collecting local information via its sensor. The map must be

incrementally computed as new regions in the environment are explored [30]. In this
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chapter, we consider the latter. Exploration of unknown environments with mobile
robots have been studied intensively. In all, processing is based on local information
which implies that sensing is integral to navigation [30]. Thus, the approaches must
schedule the sensor operations. Most of these approaches guide the robot to the clos-
est unexplored area. These techniques mainly differ in the way the environment is

represented - which in turn affects the determination of closest unexplored areas.

Traditional approaches are based on the accumulation of accurate geometrical
descriptions of the environment [33]. Most exploration strategies work with metric
maps that use either two-dimensional grid-based or three-dimensional voxel represen-
tations [34]. One simple approach is to use a random selection mechanism (random
walk) [35] or greedy mapping [36,37]. A competitive algorithm for the case of a polygo-
nal room with a bounded number of obstacles in it is presented in [31]. A more efficient
approach is accomplished in [29] where the robot moves to the closest frontier point
which is determined based on laser-limited sonar and evidence grids. There has been
many variants of the frontier based approach where the robot is made to approach the
boundary between explored and unexplored space such depending on performance cri-
teria [38,39]. Each frontier is evaluated based on the expected number of unknown cells
the robot can see from the frontier as well as the distance from the robot [40]. Thus the
exploring robots choose the frontier which will provide the highest utility (information
gain minus driving cost) rather than simply the closest frontier. The robot moves as
to maximize the number of viewable frontier cells [41], information gain using [39] or
Rao-Blackwellized particle filters [42]. This idea is generalized to three-dimensional
mapping where a frontier voxels are those that lie between explored and unexplored
space [34]. An alternative approach to metric space maps is to use configuration space
based approaches. A next-best view type algorithm is proposed to guide the robot
through a series of locations with high expected amount and quality of the informa-
tion [43]. The robot plans the next sensing action to maximally reduce the expected
C-space entropy [44]. The exploration is defined by the incremental expansion of a
sensory exploration tree in the configuration space [45] based on frontiers of explored

regions - motivated by rapidly exploring random trees [46].
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While grid-based and configuration space methods produce accurate metric maps,
their complexity often prohibits efficient planning and problem solving in large-scale
environments [47]. Alternatively, exploration is done with topological maps where the
unknown environment is modelled as a graph - albeit unknown - with more efficiency
[48]. In the spatial hierarchies model, the nodes correspond to distinctive places and
arcs correspond to travel paths [33]. Exploration is based on developing algorithms for
traversing this graph efficiently. In the semantic hierarchy of spatial representations,
the exploration strategy consists of moving into an open direction, following a path
with a control strategy, hill-climbing in case of detecting a distinct place until reaching
a local maximum that defines being at another distinctive place [33]. The topological

map is built as a side-effect of motion through this transition graph.

In most approaches, it is assumed that the robot is able to recognize a node,
enumerate edges incident on the current node and traverse edges without specifying
how they are achieved. These approaches can further be categorized into two groups
depending on the robot’s inability to distinguish vertices and edges from each other. In
the former case, a common approach is to endow it with markers. The graph is explored
via adding new vertices having outgoing edges that lead to unknown places using
multiple markers [49,50]. Reducing the number of markers, an unknown, undirected
planar graph is learned in time linear the size of the graph by a robot equipped with
one marker [51]. In the map verification problem, an efficient algorithm enables a robot
- given a map of the world with its pose indicated on the map, - to find out whether this
map is correct with the aid of one edge markers [32]. This idea is generalized to directed
graph models in [52]. In the latter case - namely when the robot is able to distinguish
visited nodes and edges, but does not know the endpoints of the unvisited edges, the
robot is able to explore with a bounded efficiency when the deficiency is bounded [53].
This result has been extended for dense graphs [54] and improved in general depending
on the deficiency of the graph [55,56]. As stated, all these approaches require the
robot to recognize nodes and their associated edges. In general, both are assumed to
be achieved separately from the graph search process. In this chapter, we present a
novel approach that integrates the two — namely the generation and/or recognition of

nodes and their associated edges is achieved simultaneously with graph exploration.
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Here, the nodes of the topological map are used to determine the unexplored directions.
The robot expands its topological map by adding the places reached and the nodes

generated after navigating in these directions.

3.2. Where to move next?

Each environment is represented by a topological map - which is a connected
graph g whose nodes are represented in bubble space [5] and whose edges are labelled.
Let S = {1,..., N;} be the set of bubble surfaces — each from one different base - and ¢
denote an undirected graph defined on §. As the environment is completely unknown
a priori, initially V; = 0 and g = (). At each location, its laser starts providing sensory
data feedback. It generates a bubble surface B(z,t) and the corresponding bubble
descriptor I(z,t) - which is then added as a node S;. Let g; denote the map that exists
at time t. Let E denote the set of edges. Two nodes ¢ and j have an edge — namely
17 in g if and only if when the robot can navigate from one to the other, the place
changes from node ¢ to node j directly. The label of each edge includes the navigation
direction between the two nodes. If where ij € E, g + ¢j denotes the graph obtained
by adding the edge ij to the existing graph g and g — ij denotes the graph obtained
by removing the link ¢5 from ¢g. Each edge ij in E is also associated with the label
b(tr+1) — x(tx). The robot decides where to move depending on S; and the current
graph g; - as explained in the sequel. As the robot is exploring its world, N; increases

accordingly.

Consider an exploration task starting at time t,. Assume the robot is at base
point x(t) at time ¢ > to with a partial topological map g;. Its exploration related

decision-making has two aspects to it:

e Local exploration: Locally, it should decide which direction to move.
e Global exploration: Globally, it should try to navigate so that all unexplored

regions in the environments are visited at least once.
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Figure 3.1. Local exploration algorithm.

3.2.1. Local Exploration - Finding Directions

At each new base, the robot finds a set of candidate directions for exploration
using the 3D laser bubble surface associated with the respective node. These are then
sorted with respect to their utility and the robot moves in the unexplored direction

with maximal utility as shown in Figure 3.1.

Consider a particular bubble surface point b = [z f]” with f = [fy fo]". If the
tilt angle fo = 0, then b is associated with a viewing direction that is parallel to
the ground. If f5 < 0, then b is associated with a viewing direction that is looking
downwards from its horizon by an amount that is given by the magnitude of f;. On
the other hand, if fo > 0, then the robot is looking upwards from its horizon. As
the part of the bubble surface with fo > fg is considered to be not accessible since
we assume terrestrial navigation! , it considers only the part of bubble surface with

viewing direction —5 < fo < fg .

The candidate exploration directions are found via transforming this part of the
bubble surface via thresholding and applying connected component analysis on the
transformed surface in order to determine regions for potential exploration. The thresh-

old value 7y : B — R>° plays a critical role. It is defined adaptively based on the surface

IFor aerial robots with flying capabilities, this constraint will no longer be applicable.
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via considering the lines of constant latitude fy or parallels as:

Tl(b> - /'vafQ + Up7f2

where average surface deformation p, s, along each parallel and standard deviation

0,1, of this deformation are defined as:

1
- — 3 .t
H’P7f2 ’.F1| p( ) )

fh=1ra
b'eIm(h(zx))

In particular, each bubble surface point b that is closer than a threshold distance
71(b) is considered to be explored - namely if p(b,t) < 71(b). Inaccessible regions are
determined depending on the robot’s physical capabilities and obstacles along the way.
If there is an obstacle along the way, then the robot cannot move in this direction.
This can be detected by determining if there are any bubble surface points " having
the same pan angle f] = fi, but with lower tilt values f; < fo and p(¥/,t) < 71(b).

Thus, with this thresholding, the bubble surface is binarized as:

B'(x,t) = d |VfeF and b= [z f]" (3.1)

k(b, p(b, 1))
with

0 <)

0 fo>fu

k(b,z) =< 0 W € Im(h(z))st. fo<f
p(t',t) < 71(b)

1 otherwise
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Next, connected component analysis is performed on the binarized bubble surface
Bi(x,t). Let A(t) = {A(t,1),..., A(t, M)} be the set of resulting connected com-
ponents. Each connected component A(t,7) C F corresponds to one set of viewing
directions in which distance of objects are relatively further and is thus an area of
interest for exploration. Hence, it represents a potential direction of exploration as

defined by the map u : A(t) — B:

Let b* be the bubble surface point that corresponds to a potential direction of

exploration, u(A(t,1)), at robot’s current base x :

S
*
I

(3.2)
u(A(t, 1))

Let v : A(t) — R be the maximal horizontal extension of each component along

Ja=0:

v(A(t, 1)) = [{b € A(t,4) | f2 = 0}

If the extension v(A(t,i)) of a given A(t,i), exceeds a pre-specified threshold 73, the
pan coverage of A(t,i) is extensive and can be broken into regions with smaller pan
coverage of v*. On the other hand, if v(A;,) is less than a pre-specified threshold 73,
then this indicates that the associated region is too narrow and the robot cannot pass

through it. Hence, those components are removed from A().

If the cardinality of the resulting .A(¢) is greater than 1, this means that there are

several potential movement directions. These are ordered via defining a utility function
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¢ A(t) — R”Y. In our case, the utility function measures the distance of that region

weighted by its extension in the pan direction as:

p(A(t,7)) = v(A(t, 7)) * p(bi, 1) (3.3)

The robot adds an unexplored edge for each potential direction. The edge is
labelled with its direction u(A(¢,7)) and utility value ¢(A(t,7)). The robot moves in

the direction with maximal utility.

Local Exploration
Algorithm

A direction
exist?

New

place
?

Turn back

Move

Pose Correction|

Figure 3.2. Global exploration algorithm.

3.2.2. Global Exploration

At each stage of the exploration, the robot knows a proper subgraph g; consisting
of traversed nodes and edges. In other words, the robots knows all the visited nodes and

traversed edges and can recognize them when they are encountered again. However,
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the robot does not know:

e How many nodes or edges are there in the graph g corresponding to the whole
environment

e Where each edge that is not traversed leads to

The robot needs to explore the complete g. This problem is known as the classic
graph exploration problem [53]. Global exploration requires repeatingly selecting an
outgoing edge from its current node and traversing it. Our global exploration strategy
is depth-first traversal [54] as shown in Figure 3.2. Each node is associated with a set
of unexplored directions - namely unexplored edges. The robot chooses moving in the
utility maximizing direction among the set of unexplored directions. If a robot cannot
find any directions in a node, it is stuck. When it is stuck, it turns back and moves to
the base point it came from. It then checks to see if there remains unexplored directions
at this node. This is repeated until every place that is strongly connected is explored
or a node with unexplored direction is reached. The exploration is finished when robot
comes the first generated node(mothernode) and can not find any new directions that

have not been moved to.

3.2.3. Integrated Exploration

While in exploration, the robot applies both local and global strategies. A sample
scenario is shown in Figure 3.3. This scenario is conducted in a Webots simulated
indoor environment [27]. Terrain has been designed with a slippery surface that cause
a 10% pose error. Gaussian encoder noise is also added to robot encoder in order
to make simulations similar to real time. The robot starts its exploration via local
exploration concept and moves as to generate nodes 1-4. At node 4, it can not find any
movement direction. Hence, it turns back until coming to a node with and unexplored
direction. This happens at node 2 and the robot moves move along this direction and
generates nodes 5-6. At this node, again there are no unexplored direction and again
it turns back. As it cannot find any unexplored directions until node 1, it comes back

to where it has started. At this node, it finds an unexplored direction and moves along
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Figure 3.3. The graphs indicate the partial topological map generated so far where

node numbers ¢ indicate visit times ¢; where ¢; > t;_;.

this direction until node 8. When it is stuck at this node, it turns back. In this case,
it comes back to node 1. There are no remaining directions to explore. The mission is

completed.

3.3. Pose Correction & Loop Closure

After the robot determines an exploration direction, it moves in this direction for
a prespecified distance. However due to the environmental factors and encoder errors,
robot may not reach its desired target position. Since the robot uses odometric data
to determine b € B and b € B, it is crucial to minimize odometric error in order to
prevent the accumulation of this error. When the robot navigates around, the base

and the bubble surface both change accordingly. Suppose that the robot is at b € B at
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time ¢ and goes to &' € B at time ¢ + dt. Let

T
b= and b = (3.4)
f f

As the robot knows how much it has planned to move, pose correction is based on
comparing the expected bubble surface with the actual bubble surface generated after

the completion of the motion.

Two different transformations must be applied on the bubble surface. First,
feature values change their location on the bubble due to robot navigation from o €
Im(h(x)) to o' € Im(h(z")). Hence, the bubble surface B; needs to be transformed
to B! depending on the robot’s movement. This is accomplished in two steps: First,
it removes all the local bumps introduced previously up to t 4+ 0t at each point o €
Im(h(z)). Next, the transformation map dpy : Im(h(z)) — Im(h(z')) between
the previous and the transformed bubble surfaces need to be computed so that the
corresponding bubble points are determined as o' = d_y(0). The subscript b — ¥
is used to denote the dependency of the transformation on the previous and current
base points b and b’ respectively. Note that depending on the environment and the
transformation, the map d;_,;y can be one-to-one, one-to-many or many-to-one. Finally,
all the removed bumps are moved to their corresponding o’ € I'm(h(z’)) as: Hence,

each bubble surface B;, i = 1,..., N, is transformed as follows:

pi(oa t+ 5t) = pi(07 O)

pi(d,t+8t) = pio,t) (3.5)

Secondly, new observations are made at the newly arrived viewpoint and the bubble
surfaces should be deformed as defined by Equation A. Of course, this formulation of
the transformation maps ignores problems related with odometry data, sensor noise,
changes in the lightness of the scene and the scaling effect previously explained. In
reality, the model must be revised in order to accommodate these issues. Finally, the

bubble transformation is applicable only if the transformation map d;_,; is determined.
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Next, this is investigated for different type of robot movements.

3.3.1. Heading Correction

First, let us consider a robot movement involving only rotation by da € S! as
seen in Figure 3.4. Due to odometric errors, the robot may not rotate by the amount it
planned. Even if the error is small, it can accumulate in every movement so the robot

can not localize itself correctly and this leads to wrong mapping.

Figure 3.4. Left: Heading correction; Center: Robots’ initial pose before exploration;

Right: Robot determines its orientation.

Note that the base vectors « and 2’ will differ only in their 3"¢ components — as
this represents the robot’s heading. Hence, the transformation between the base points

can be expressed as:

Lo
Consider o = € Im(h(p)). The deformation map d,_ is defined as
Jo
0
Ty +
db—)b’ (0) = Yo" (36)
fotdf

where § f = [0 O]T since a heading change is equivalent rotation of the pan coordinate

system. Note that 0 f is identical for all the bubble surface points. Furthermore, it is
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independent of the distance of the objects to the robot.

Let Bj(x,t) and B;(2',t + dt) be the two consecutive bubbles generated before
and after the rotation of the robot. It is clear that the only difference between x and

Z' is the rotation.

r—2'=1| 0 (3.7)

Let Bj(x],,t + dt) be the bubble rotated da amount along z-axis. The actual, da

minimizes the following expression:

da = nélin(Bi(x, t) — By(x),,t + 6t))? (3.8)

Since da is computed from Equation 3.8, the robot knows its actual rotation amount.

3.3.2. Translation Correction

After the the rotational correction, the robot starts to move in this direction.
Again due to odometric errors, robot may move more or less than desired amount.
Lets call the planned amount of translation is dc and lets call the actual translation
as 0c’ . If we determine ||dc’||, we can clearly find the amount of translation error and
offset accordingly. After the robot has moved by ||d¢/||, it creates another bubble surface
Bi(x2,t5). Note that this bubble surface is the translated version of the B;(z!,,t + 0t).
Assuming the robot moves on a flat surface, the difference of these bubbles at f; =0
and fy = 0 gives the actual amount of translation. Let [; and [ are the sensor values

at fi=0 and fo=0 for the bubbles B;(z},,t+ dt) and B;(x2,t2) respectively. The actual
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translation is equivalent to the difference of /; and [, .

lo = p(x2,12) (3.10)
6 = p(b',t + ot) — p(b, 1) (3.11)

As 6 can be predicted from Equation 3.11, the robot knows its actual translation

amount.

A sample case of pose correction is as shown in Figure 3.5. For slippery surface
with varying amounts of encoder noise, it is observed that the actual trajectory deviates
from the planned trajectory. The deviation increases with the amount of encoder noise
- as expected. With pose correction, actual trajectory becomes almost identical to the
planned trajectory. It is observed that this is achieved regardless of the amount of

encoder noise.
3.3.3. Position Update for Ramped/Inclined terrain

Another reason for position error is moving on ramped or inclined terrain. In such
regions, robot should detect and estimate the place and slope of the ramp and update its
new position (in our case location of the bubble namely ¢). The prediction of the slope
of the ramp/incline in an environment(6) and the distance between ramped/inclined
part and robot(A;) has been proposed in Chapter 2 and in [57]. Assume that the robot
moves by dc amount in the direction of a terrain with slope 6 and distance A\;. The

new location point ¢ is;

ot o it loc] < A
c+ )\1”2—2” + R(0)(0c — )\1%) otherwise

where the matrix R(f) is a 2 x 2 rotation matrix.
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Figure 3.5. Left: Planned trajectory without noise; Top Left: Trajectory with 10%

noisy encoder readings; Top right: Trajectory with pose correction; Center left:
trajectory with 20% noisy encoder readings; Center Right: Trajectory with pose
correction; Bottom Left: Trajectory with 20% noisy encoder readings; Bottom Right:

Trajectory with pose correction.

cos(f) —sin(6)
sin(f)  cos(6)

R(0) =

3.3.4. Loop Closure

In order to detect visited place, each node is associated explicitly with its base
point z based on odometric information. One can readily calculate ¢(t+4dt) and x(t+0t)

by using the previous base vector ¢(t) and odometry data ( da and ||oc|| ) .

a(t+0t) = a(t) + da (3.12)
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c(t +dt) = c(t) + ||dc|| [cos(a(t + t)) sin(a(t + dt))] (3.13)
st 46t = | T (3.14)
a(t + 0t)

In order to detect the visited nodes, let z(¢ + 1) be the new target base which
is determined by Equation 3.14. If the location component of x(t+1) namely ¢, is
similar with the previous location vectors, this position is regarded as a visited place.
The similarity is measured by Euclidean distance with a predetermined threshold 7,.
Assume that robot finds n candidate nodes for time t+1 and base point b. Let, r(t+1, b)

is the node assigner function for any time t and base point b.

1 d(cip1,¢) <1
r(t+1,b) = (€1, 00) < 7 (3.15)
Niyq1  otherwise

Equation 3.15 makes possible to detect the visited nodes and also enable to do
a more effective exploration algorithm. In particular, the robot eliminates some move-
ment directions that correspond to the previous visited node positions. This makes the

exploration process faster and more effective.

3.4. Simulation Results

The proposed approach has been tested with a variety of different settings includ-
ing Canadian Planetary Emulation Terrain 3D Mapping Dataset and Jaguar robot.
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3.4.1. Canadian Planetary Emulation Terrain 3D Mapping Dataset

Next, we apply our approach on the Canadian Planetary Emulation Terrain 3D
Mapping (CPET3DM) dataset [1]. In particular, we use p2at_met dataset that is
generated in the UTIAS indoor rover test facility. This dataset consists of 3D laser
scans that are obtained from 102 different locations with a grid-like structure whose
dimensions are 60mx120m. At each location ¢, the robot has 3D laser data with viewing
direction f; € [0,360]° and f, € [~16,—5]° with increments 0 f; = 0.3° and df, = 0.5°
respectively. For generating a bubble surface, the robot choses the dataset from the
most nearby data collection point to itself so a sampling error is inevitable. However,
since the data collection points are almost uniformly grid-like dataset with small grid

dimensions, it is a convenient dataset for exploration.

The robot is made to start at varying starting points and a sample exploration
path is shown in Figure 3.6. The starting positions are labelled as a cross. As an
example, in the left part of the Figure 3.6, the robot starts exploration at [-17.4 10.5].
This point is labelled as node 1 in corresponding map as shown left bottom of the
Figure 3.6. The robot uses proposed method to find its new direction and moves
in this direction for 20 meters. The nodes associated with all the places visited are
numbeted in an increasing manner. Thus, the robot moves incrementally from node
1 to node 16. At this node, it can not find any unexplored direction so it turns back
until it is able to do so. At node 15, robot finds such a direction and moves to nodes 17
and 18 respectively. At node 18 robot can not find any unexplored direction to move
and then it turns back again. This continues until node 1. At node 1, the robot finds
an unexplored direction and move there which is labelled as 19. At node 19, there
are no unexplored directions and the robot turns back to node 1. At this initial node,
as, there are no unexplored directions and it finishes its exploration task. A similar
reasoning is followed even if the robot starts at different position as shown in Figure
3.6. In each case, the exploration path is different but in all cases robot cover the
whole environment. These paths are different while covering roughly the same regions.
This can be attributed to the fact that bubble surfaces at initial positions are different.

Therefore, the robot moves in different directions which leads to different paths.
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Figure 3.6. Travelled paths and graphs Top Left: Initial ¢ = [~17.410.5]7; Top

Center: Initial ¢ = [-19.2 — 76.4]"; Top Right: Initial ¢ = [13.4 — 93.4]"; Bottom
Left: Initial ¢ = [—38.411.0]7; Bottom Center: Initial ¢ = [—0.4 — 44.5]7; Bottom
Right: Initial ¢ = [—14.9 — 76.0]”.
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Table 3.1. CPET3DM results with different starting points.

Starting position ¢ | Area coverage (m?) | # Places | Path length (m)
(-17.4 10.5) 4850 36 720
(-19.2 -76.4) 4620 36 720
(13.4 -93.4) 4460 36 720
(-38.4 -11.0) 4070 32 640
(-0.4 -44.5) 4670 30 600
(-14.9 -76.0) 5120 30 600

Table 3.1 presents the total covered area and the length of the travelled path for
each exploration mission. In some parts, the dataset does not involve the sensor values
at higher than f, = —5. Due to this limitation, the area is found by using the bubble
values at fo = —b5. This leads to find a smaller value than the actual covered area.
It is observed that changing the starting position affects area coverage slightly while
travelled path lengths also vary by 10% . The variability in area coverage is attributed
to the varying number of places that are explored as seen in Figure 3.6. Furthermore,
the actual locations of the nodes are important. For example, if the robot is near to a

ramp, the corresponding area coverage decreases accordingly.

3.4.2. Jaguar Robot

The last set of experiments are done with the Jaguar robot as shown in Fig-
ure 3.7(top left). The Jaguar robot is a tracked robot endowed with two cameras, 2D
laser scanner, encoders and IMU. A special user interface based on QT and ROS has
been designed for operating the robot in teleoperation and autonomous modes. For

the interested reader, the technical details of the robot are presented in Appendix B.

First, an extensive dataset is collected via teleoperating the robot around the floor
as shown in Figure 3.7 (top right) and have it collect data at 75 different locations.
The dataset consists of camera, laser, gps, encoder and imu data. At each location c,
the robot has 2D laser data with viewing direction f; € [0,360]° with increments ¢ f; =

0.166° and and f = 0. In fact, robot’s laser scanner is capable to pan between f; €
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]

Figure 3.7. Top Left: Jaguar robot in the floor; Top Right: Floor plan; Bottom Left:

A sample front camera image; Bottom right: A sample laser data.

[—90,90]° , we turned robot 180 degrees to make laser scan omnidirectional. Sample
camera and laser data are as shown in Figure 3.7(bottom left) and Figure 3.7(bottom

right) respectively.

50—
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Figure 3.8. Left: Exploration path with dataset; Right:Real-time exploration path

under autonomous mode.

The algorithm is then applied with this dataset and the resulting exploration path
is as shown in Figure 3.8(left). The robot starts exploration at a base as indicated with

the pink cross. It then navigates along the corridor until coming back to its starting
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point. Then, it turns back to explore interesting places that are detected, but not
explored. While turning back, robot goes to some of the offices and finishes exploration
by turning back to the initial position. the details of the exploration stages are shown

in Figure 3.9 .

Finally, this approach is implemented in real-time on the Jaguar robot and is
put to test. In this mode, the robot is completely autonomous in determining its
exploration path — using the approach as explained. The given environment and the
robot path is given in Figure 3.8(right). The robot goes to the northern part of the
environment. When it realizes that there are no unexplored directions, it turns back

and moves to the southern part and covers the whole environment.

Y 30— Y 30— Yo 30—

L X 72‘0 r1|c (‘} 1|c 2‘(} 3‘0 4‘0 5‘0 X rz‘a r1|o (‘} 1|o 2‘0 3‘0 4‘0 SL X ,g‘g 71‘0 (‘3 1L zlo a‘o 4‘0 5|o

Figure 3.9. Stages of the Exploration paths with Jaguar robot.
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4. MULTIROBOT EXPLORATION VIA 3D LASER
BASED BUBBLE SURFACES

This chapter is about autonomous exploration of a priori unknown environments
with multiple robots. Each robot builds a topological map about the environment that
it covers which are merged to construct the map of the environment. Initially, each
robot knows nothing except what it can sense from where it’s at and the initial relative
positions of the other robots. Each robot starts exploration in a manner similar to that
described for a single robot. However, here, robots exchange information at each base.
In particular, they inform each other of their current positions. By using this data
each robot knows where the other robots are roughly and makes movement decisions
accordingly. Thus, the robots are able to cover the whole area to be explored with

minimal overlap.

4.1. Related Literature

More recent work in exploration has started considering exploration missions with
multiple robots. It is expected that using multi-robot systems instead of a single one
would improve exploration performance [50,58,59]. First, the amount of coverage in a
given amount of time will increase. Similarly multi-robots cover the given environment
faster than a robot. Furthermore, there is a possibilty of verifying information collected

by each robot.

Approaches to multirobot exploration can be categorized depending on two fac-
tors : maps used and the nature of decision making. As discussed for the single robot
case, maps can be metric or topological. The second dimension refers to how the
robots decide where to go. This decision-making can be centralized or decentralized.
In centralized strategies, the robots’ motions and coordinations are determined by a
central agent or a base station. In decentralized approaches, each robot makes its own

decision for exploration. These decisions can depend on various criteria including the
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cooperative information gathering from other robots. Even though the decision of the
robot may be related to the information coming from other robots, robot makes its own
decision independently. In all these work, communication among the robot is critical

to task performance.

As a metric and centralized strategies, a central station determines the frontier
cells based on a utility value for each location in [60] where the utility value depends
on the expected travel cost and the information gain. The information gain is the
estimated number of unknown map cells within a radius at the location. When one
robot is assigned to some location, the information gain of the location cells is decreased.
A method using a Monte Carlo localizer and maximum likelihood on grid maps is based
on using maximum likelihood function determines the best alignment of laser data [61].

A team leader merges the maps and shares the grid map with the rest of the team.

As a metric and decentralized strategies, frontier-based exploration has been pro-
posed [62]. The definition of frontiers is basically the boundaries between the explored
and unexplored areas. An utility function is derived for less cost and much exploration
and robots utilize that function. Robots exchange their grid maps and continuously
update their own map by merging the map received with their local maps. Frontier
concepts have been used in many projects such as [60,63,64]. In [65], when two or
more robots come in each other’s communication range, they merge their local maps
and choose a leader which is responsible for building a complete map that represents
the data collected by all robots in the communication range, and broadcasts the map

frequently to all the robots in that range [65] .

One of the earlier work in centralized and topological strategies [66] includes one
moving and two stationary robots, robots behave according to a centrally agreed plan
and triangle formed by two stationary and one moving robot is considered as free space.
The formed triangles are connected to graph and map is formed. It is proved that this
approach is more successful than single robot exploration but in that approach many

robots remain stationary [66].
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In [67], a topological and decentralized approach which is a randomized strat-
egy for cooperative exploration based on SRT(Sensor based Random Tree) concept is
proposed. The method entails two decentralized cooperation mechanisms at different
levels. The first simply consists in an appropriate definition of the local frontier, by
which each robot plans its motion towards areas that appear to be unexplored by the
rest of the team on the basis of the availible information. The second allows a robot
that has completed its individual exploration phase to support the others in their task.
Another example of decentralized and topological strategies is ” Sensor Based Random
Graph” (SGR) [68], the nodes of the SRG represent view configurations that have been
visited by at least one robot and these nodes are connected by arcs that represent safe
paths which is equivalent to edges. In [69], the robots cooperatively explore the whole
environment and generate its topological map. The robots independently generate lo-
cal topological maps and by transferring them to each other, they are able to integrate

these maps and generate a whole global map.

In summary, centralized systems obtain solutions close to the optimal but are
computationally intensive and inefficient for large number of robots, these approach
also have a single point of failure; on the other hand, decentralized systems are flexible
and robust, but frequently achieve considerably sub-optimal solutions compared to

centralized systems [60].

There are also some works on this subject which includes different concepts. For
assigning the next optimal target for exploration Hungarian method [70] has been used
in some recent projects [71,72]. In an active approach, RFID tags are dropped along
the way to some suitable parts of the environment [73]. These tags store the relative
locations of frontier cells and visited cells and they are helpful for determining the
explored and unexplored part. On the other hand it is an active approach which is not
a desired situation. There are also many works in robot formation problem. Yang et
al focus on a different problem in multi robot exploration. In many cases, formation
of robots is very important. For instance, robots may need to form a formation such
as line, triangle etc. for effective exploration. They derive a mathematical foundation

for robots formation and find the optimal path for robots to obtain a line [74].
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4.2. General Approach

The contribution of this chapter is to consider the problem of decentralized multi-
robot exploration with topological maps - assuming a perfect communication among
robots and propose a new approach based on bubble space representation [5]. The
bubble space representation is used for not only mapping but motion planning which

determines where to go next and localization that means where I am.

The multirobot system consists of a set of R = {1,...,r} robots. Each robot
is associated time-varying bubble space point b; = [ T fi }T with base z; € X
and viewing direction f; € F. Initially the robots do not know anything about the
environment except the relative positions of the other robots. During the course of the
mission, as each robot comes to a new place, it sends its new position to other robots.
As the robots all take this information into considertion while deciding where to go

next, they are able to explore the environment with minimal overlap.
4.3. Where to Explore Next?

The robots use the same strategy as has been developed for the single robot
case. At each place, each robot uses a local exploration algorithm followed by global
exploration algorithm. The local exploration algorithm is identical to that one used in
the single robot case with the following exception. The utility function used is modified
in order to take other robots into account. Let A;(¢) denote the set of bubble surface

segments at time ¢. Consider robot 7 and its utility function ; : A, — R .

With the single robot case, for each segment A;(¢, k) on the bubble surface, the
function ¢; is a measure of the horizontal extent v; and average depth pu; of that
segment. In this case, it is modified to incorporate relative distance to other robots’
current and previous positions. For this define the index set of robot pairs Qg2 =
{ijli,j € R,i < j}. For each pair ij € Qg2 of robots, let d;;(A;(t, k), ') =|| ¢(t) +

u(Aq(t,k)

Ta( @R — G () || denote the pairwise distance between a potential new place location

and that of robot 7 at time t’. The distance of this potential new place location to all
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the robots is defined as:

di(Ai(t k), 1) = 6i(Ai(t k), )

J#i

Furthermore, A measure of how distant this potential new place location to all previous

positions of the robots is defined as:

di(Ai(t k), ) =T D 6ii(Au(t k), )
t'<t ng‘cj
VE=]

The utility function is constructed via incorporating

pi(Ailt, k) = (vi(Ailt, k) p(b ;1) + dp(Ai(t, F))) di(Ai(E, k), 1) (4.1)

The general concept of the local algorithm for multi robot is given in Figure 4.1.

The global algorithm is completely same as with the single robot exploration case.

Sensory datal
{laser)

v
Bubble

surface

Other robots' Find exploration|
positions directions

Sort directions
based on
utility function

Figure 4.1. Local exploration algorithm.
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Figure 4.2. Exploration paths: Top left: Robot 1 operating only; Top Right: Robot 2
operating only; Bottom Left: Robot 3 operating only; Bottom Right: All robots

operating concurrently.

4.4. Simulation Results

In this section, simulation and experimental results with multirobot exploration

tasks are presented.

4.4.1. Simulated Environments in Webots

The first set of experiments are conducted in a Webots simulated outdoors envi-
ronment with three robots. Each of the robots is placed at different location as shown
in Figure 4.2. Gaussian encoder noise is also added to robot encoder in order to make
simulations similar to real time. The ground is slippery floor so that there is 10% error
pose error. Operating only, the exploration paths are as shown in the first three figures
in Figure 4.2. When the three robots do the task together, the resulting exploratory
path is as shown in Figure 4.2(bottom right).
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Figure 4.3. Exploration paths with varying initial positions with CPET3DM. The
initial positions are indicated by the big colored crosses. Top: 2-robot paths; Bottom:

Corresponding graphs.

4.4.2. Canadian Planetary Emulation Terrain 3D Mapping Dataset

Next, we apply our approach with CPET3DM [1] . In particular, we use p2at_met
dataset that is generated in the UTTAS indoor rover test facility. This dataset consists
of 3D laser scans that are obtained from 102 different locations with a grid-like structure
whose dimensions are 60m x 120m. At each location ¢, the robot has 3D laser data
with viewing direction f; € [0,360]° and fy € [—16,—5]° with increments df; = 0.3°
and ¢ fs = 0.5° respectively. For generating bubble surfaces, each robot chooses the
dataset nearest to itself - which leads to odometric errors. The exploration mission is
finished when all the robots decide to stop. For example, in Figure 4.3, the exploration
is finished when the robot (whose trajectory as shown by the pink color is longer than

the other robots) stops.

A 2-robot team is made to explore this terrain starting at different initial positions
varying from nearby to far away. The results are as shown in Figure 4.3. It is observed
that different initial positions lead to different exploration paths - as expected. It is
observed the robots go in different directions - even when they start within each other’s

vicinity. In all, area coverage is about the same and is seemingly balanced.

The same is repeated for 3 and 4 robot teams as seen in Figure 4.4. Due to
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Figure 4.4. Exploration paths with varying initial positions with CPET3DM. The
initial positions are indicated by the big colored crosses. Top: 2-robot paths; Center:

3-robot paths; Bottom: 4-robot paths.

variations in the initial positions, the trajectory of each robot changes accordingly.
The statistical evaluation of this performace is presented in Table 4.1. It is observed
that both average distance travelled as well as area explored by each robot decreases
as the number of robots increase with a corresponding decrease in their respective
standard deviations. As explained earlier, the area explored by each robot is computed
bu using the bubble surface restricted to fo = —5. This actually leads a smaller value
than the actual covered area. Furthermore, if a base is close to a ramp, then the covered
area is relatively smaller than a flat terrain. However, in all area coverage is about the

same.

Since all the robots move for a fixed amount of time with the same speed at each
exploration step, distance values in Table 4.1 are strongly related with the time. Next,

we study the effect of team size on the total exploration time as shown in Figure 4.5. It
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48

Distance/Robot (m) | Area /Robot (Km?)
# Robots Total area (Km?)
Mean | Std. Dev. | Mean | Std. Dev.
2 14.50 3.42 2.13 0.58 4.26
3 10.33 0.82 1.48 0.11 4.44
4 6.75 1.04 1.09 0.10 4. 37
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Figure 4.5. The relation between number of robots and exploration time.

is observed that as the number of robots is increased from one to four, the exploration

time decreases in an exponential manner.
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5. CONCLUSION

This thesis has presented novel approaches to autonomous exploration with single
and multiple robots. In particular, the robots are assumed to be endowed with three-
dimensional laser sensors. The exploration strategies work with topological maps. Al-
though topological maps are less accurate than metric maps, they are computationally
much more efficient - which is really important in real time applications. In partic-
ular, the nodes in the topological map are based on bubble space representation. In
the bubble space representation, bubble surfaces encode different sensory features and
their local S2-metric relations in a manner that is implicitly dependent on robot pose.
Hence, exploration is considered with bubble space based topological maps. First, the
exploration of an environment by a single robot is studied. There are two aspects to

this problem: terrain mapping and determining where to go.

Terrain mapping aims to infer the environmental surface shape - as this certainly
would affect the robot in determinig where to go. For this, a novel approach based
on bubble space representation is proposed and experimentally evaluated. For terrain
mapping, we show that each constructed bubble surface can be associated with a
slope map that defines local terrain slope and its proximity for each different pan
direction. Thus, instead of constructing a global terrain map a priori, local terrain
map is estimated on demand in real-time as the robot navigates to a new place and
constructs a bubble surface. We present experimental results with simulated and real

datasets to validate this approach.

For explorative navigation, the movement direction should be such that it should
point the robot to unexplored territory while being accessible. In this approach, bubble
surfaces are transformed via a thresholding and are processed in order to determine
candidate directions. A depth-first search algorithm is used to ensure that all the
candidate directions are explored. The novelty of this approach is that the generation
and recognition of nodes and their associated edges are achieved simultaneously with

graph exploration. We have used simulated data as well as real experimental datasets
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in order to evaluate this approach. The approach is finally applied with the Jaguar
robots for autonomous explorative navigation. The results reveal that our proposed

method is useful for exploring the environments.

Next, the explorative navigation strategy is extended to multirobot exploration.
In this case, the robots are assumed to be communicating with each other and deter-
mine their movement directions using the bubble surface information as well as their
relative position information. The developed method is independent from the number
of robots and initial positions of the robots. This method reduces the exploration time
as the number of robots are increased while ensuring that maximal area is covered with

minimal overlap.

In order to ensure that bubble surfaces have correct base points, pose correction is
considered. This is based on comparing the expected bubble surfaces with those that
are actually realized. This approach is implemented in both single and multi robot

exploration applications.
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APPENDIX A: BUBBLE SPACE

In this Section, we briefly review bubble space. The interested reader is referred
to [5] for details. Consider a robot positioned at location ¢ € R? with a heading o € S*.
Its base is defined as = = [c, a]T and the base space is defined to be the set of all
possible viewpoints X = R? x S!. Let the set of (pan and tilt) viewing directions be
denoted by F C S? where f = [f; fg]T. The bubble space B = X x F is an abstract
representation of the robot’s base along with its viewing directions. Each point b € B
is defined as b = [z f]T where z € X and f € F. The robot’s base point is given
by 7 : B — X - defined as the projection of b onto X as m(b) = x. The section is a
continuous map h : X — B such that Vo € X, w(h(z)) = x. The image of a section h

—namely I'm(h(z)) — is the set of viewing directions from a given base position x.

Assume that at time ¢, the robot is at base x € X. For each viewing direction
f € F, it obtains 3D laser data ¢(b,t). Now, visualize the robot to be surrounded
by an hypothetical spherical surface that is deformed at each f by an amount that is
dependent on the sensed data value. This surface is referred to as bubble surface B(x, t).
As the robot’s sensor moves through a sequence of pan and tilt viewing directions, the
sensed data is encoded by the bubble surface B(z,t) . It is an egocentric representation
of its surroundings. Mathematically, the bubble surface is a deformed sphere embedded

in R? with an intrinsic parametrization:

B(x,t) = d |VfeF and b= [z f]" (A1)

p(b,t)

where p : B x RZ% — R2" is a Riemannian metric that encodes the 3D laser data. It is
initialized to be a S? sphere with radius py € RZ° — namely p(b,0) = py. As the robot
looks around, for each fixation direction, an observation ¢(b,t) is made, each bubble

surface is also deformed in N,(b) - the e-neighborhood of b - via introducing a local
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bump at b

p(o,t7) = p(o,t7) + go(0)q(b, t)

where the bump function g, : B — [0,1] is any continuous decreasing function that

satisfies the following two conditions:

1 if [|b—o| =0
0 if o—of =e

The bubble surface can be explicitly represented by the double Fourier series as:

H{ H>

m=0 n=0

For each (m,n), the vector e,,,(f) € R* consists of an orthonormal set of trigonometric

basis functions as:

nfa

(mfy)cos
n( cos(nfa

emn(f) =

stn(n fo

Jcos(n.f2)
Jcos(n.fa)
cos(mfi)sin(nfs)
(mf)sin(nfs) |

The corresponding vector 2, ..,(t) € R* of double Fourier series coefficients associated

with base point z at time ¢ is:

T
Za:,mn(t) = [ nx,mn(t) ﬁx,mn(t) Hz,mn(t) Vx,mn(t) :|
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APPENDIX B: JAGUAR MOBILE ROBOT

B.1. Robot System

Jaguar robot is a robot that is designed for both indoor and outdoor applications
as shown in Figure B.1. It can operate in extreme terrains and is capable of climbing

up stairs (up to 200mm step). Its technical details and components are as given in

GPS and 9 DOF IMU
(Gurof Accelerometer, /Compass)

Figure B.1. Left: Jaguar robot; Right: Robot components.

Table B.1. The technical specifications of Jaguar robot are as shown in Table B.2.

B.2. Teleoperation User Guide

In this part, teleoperation user guide of Jaguar Robots is explained. This is a
software interface designed together with Hakan Karaoguz and Ramazan Arikan. The
interface is designed in Ubuntu 12.04 operating system. Although not tested, more
recent versions of Ubuntu are thought to be suitable for the interface. The interface
is QT and ROS based. Hence, QT and ROS need to be installed. In particular, the
software is developed with ROS Fuerte, so it is highly recommended to install this
version of the ROS.
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Table B.1. Jaguar robot components.

No | Component Unit Properties

1 | Length mm 820

2 | Height mm 176

3 | Width mm 700

4 | Portable Weight | kg 25

5 | Battery 1 22.2V (Li-Po)

6 | Motors 3 1 arm unit, 2 track-wheel unit

7 | Encoders JAGUAR-ME (1227.4 per revolution)
8 | Camera 1 30fps, 640x480 resolution

9 | Camera 2 30fps 640x480 resolution

10 | 2D Laser Scanning Angle:240° (Resolution:0.36°)
11 | GPS OGPS501

12 | IMU IMU9000

13 | Wireless WRT802G

Table B.2. Jaguar robot - Technical Data.

Property Unit Theory Experimental
Axis No 3 3
Maximum Linear Speed m/s 1.52 1
Maximum Rotational Speed | rad/sec 0.57 0.4
Maximum Arm Speed rad/sec 1.52 1
Drive Method tracked
Maximum Slope to Climb Up | degree higher than 45° higher than 45°
External Interface Wireless Connection
Working Temperature Celcius | Up to approx. 24°

B.2.1. Operating the Robot

In this section we present how to activate the robot, connect to it with interface

and have it operating.
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(i) Opening the Jaguar Robot: Install the battery as shown in Figure B.2(left).
Make sure that the red connector is connected with red and black with black. The
robot is made operational by turning the switch on as shown in Figure B.2(right).
A simple check to see if the robot is activated is to observe whether the red light
of the laser scanner is on or not.

(ii) Using the interface:

Figure B.2. Left: Battery connection; Right: Turning the power on.

e Open the computer running Ubuntu and connect to the Jaguar Robot with

wireless as shown in Figure B.3.

bayr-mayrn-n!vr:-s roscor‘

-

a
)

ks

Figure B.3. Left: Wireless connection; Right: Activating the robot software.

Y

e Open a terminal and write "‘roscore”’ as shown in Figure B.3(left-right).
Roscore is the collection of nodes and programs that you will run. A series
of text will appear on the screen as shown in Figure B.4.

e Jaguar robots has its own topic that enable to communicate with computer
that need to be started. Note that you need to go to the directory of the

terminal to run the topic as shown in Figure B.5 and Figure B.6 respectively.

e Robot status information will be listed as seen in Figure B.7.



roscore http://bayram-F83VF:11311/

started roslaunch server http://bayram-F83VF:52058/
ros_comm version 1.8.11

* [rosdistro

* [rosversion

NODES

auto-starting new master
process[master]: started with pid [2108]
ROS_MASTER_URI=http://bayram-F83VF:11311/

setting frun_id to %e23ab32-fdfb-11e2-b00Ob-1c4bd63396d8
process[rosout-1]: started with pid [2126]
started core service [/rosout]

Figure B.4. Running roscore.

Devices « [P Home ros_workspace jaguarControllSL drrobot jaguarv2 player src € = Q search

Bos

= - il ﬁ

2 Yeni Birim

axis_cameraHK deneme DrRobotMotionsen encoder26 encoder26tclock  encoder26tcounter

Computer sorDriver

lsi Home

Bl el e - el - ] -

[ Documents encoder26_trans2 encodertest gps_node hokuyo_node_tcp imu_node kareblok kareblok2

i pownloads

e e - e = | e e e

[ Pictures Kareblok3 kareblok4 qtcreator-build qviewer sdata sensorData testing

[@ Videos

= File System J J \_J E

@ Trash testing1 testing2 trial axis1 buildall gps.txt imu.bxt
Network

=i Browse Net

laser.txt ptz qlviewer.txt roscore.kxt run

"drrobot_jaguarV2_player" selected (containing 16 items), Free space: 14.9GB

Figure B.5. The directory of Jaguar Robots communication topic.



roscore http:/ m-FB3VF:11311/ #®  bayram@bayram-F83VF: ~/ros_workspacefjaguarControlisL/drrobot_jaguarV2_player %

bayramgbayram-F83VF:~$ s

besktop examples.desktop Pictures ros_workspace yedek

Documents exploration.cpp Public

Downloads Music Qt

bayramgbayram-F83VF:~$ roscd

bayram@bayram-F83VF:~/ros_workspace$ ls

beginner_tutorials jaguarControlISL player

exploration sdat

bbayram@bayram-F83VF:~/ros_workspace$ <d jaguarControlISL/

bayramgbayram-F83VF:~/ros_workspace/jaguarControlISL$ s

i encoder26_trans2 eblo run~

encodertest karebloka sdata
gps_node laser.txt sensorData
gps. txt ptz testing

drrobot_jaguarv2_player hokuyo_node_tcp qtcreator-build testingl

brRobotMotionsensorDriver qtviewer testing2

lencoder26 olE qtviewer.txt i

lencoder26tclock k k roscore. txt

lencoder26tcountercloc k run

bayram@bayram-F83VF:~/ros_workspace/jaguarControlISLS <d drrobot_jaguarv2_playe

E

bayramgbayram-F83VF:~/ros_workspace/jaguarControlIsL/drrobot_jaguarv2_player$ 1
s

dump. yanl nsg

include msg_gen

launch <

mainpage.dox  svn-commit.2.tmp

Makefile svn-commit. tmp
drrobotplayer_jaguardx4.yaml- manifest.xml
drrobotplayer_jaguar.yaml manifest.xml~
bbayram@bayram-F83VF:~/ros_workspace/jaguarControlISL/drrobot_jaguarv2_player$
bayramgbayram-F83VF:~/ros_workspace/jaguarControlISL/drrobot_jaguarV2_player$
bayramgbayram-F83VF:~/ros_workspace/jaguarControlISL/drrobot_jaguarV2_player$
bayramgbayram-F83VF:~/ros_workspace/jaguarControlIsL/drrobot_jaguarv2_players
bayram@bayran-F83VF:~/ros_workspace/jaguarControlISL/drrobot_jaguarV2_player$ roslaunch drrobot_jaguarVz_player drrobot_playi.launch [l

Figure B.6. Launching the communication topic.

Sscore http W | Jhome/bayramyros workspace/|aguar ControlSL/drrobot Jaguarve. playerlaunch/arrob. - %

INFO] [1375726919.002035389 Board Over Heat Sensor: [1781, 1768]

INFO] [1375726919.602691960]: Tilting Sensor:[3064, 3068]

INFO] [1375726919.002164735]: Left Front Motor Temperature:[28.57]

INFO] [1375726919.002223820]: Right Front Motor Temperature:[27.36]

INFO] [1375726919.002284163]: Left Rear Motor Temperature:[28.16]

INFO] [1375726919.002342551]: Right Rear Motor Temperaturek-26.00]

INFO] [1375726919.1061431484]: Motor Encoder Pos: [6, ©, 6, 32767, 32767, 0]

INFO] [1375726919.101517808]: Motor Encoder Vel: [8, ©, 8, 0, @, 0]

INFO] [1375726919.101577801]: Motor Encoder Dir: [1, 1, 8, 1, 1, 0]

INFO] [1375726919.101655046]: Motor Motor Current: [0.60, 0.00, 0.00, 0.00, 0.060, 0.00]
INFO] [1375726919.101767630]: Motor Motor_PWM: [16384, 16384, 16384, 16384, 16384, 16384]
INFO] [1375726919.101890201]: Human Sensor:[3056, 3045, 3064, 3070]

INFO] [1375726919.1621234060]: Board Power Voltage: [4.84 V]

INFO] [1375726919.102309317]: Motor Power Voltage: [23.18 V]

INFO] [1375726919.102473095]: Servo Power Voltage: [6.54 V]

INFO] [1375726919.102651120]: Temperature Sensor: [3044]

INFO] [1375726919.102861621]: Board Over Heat Sensor: [1781, 1747]

INFO] [1375726919.103145944]: Tilting Sensor:[3061, 3071]

INFO] [1375726919.103443607]: Left Front Motor Temperature:[28.92]

INFO] [1375726919.103723809]: Right Front Motor Temperature:[27.30]

INFO] [1375726919.104001149]: Left Rear Motor Temperature:[28.06]

INFO] [1375726919.104273389]: Right Rear Motor Temperature:[-26.00]

INFO] [1375726919.201361506]: Motor Encoder Pos: [0, 0, 8, 32767, 32767, 0]

INFO] [1375726919.201466338]: Motor Encoder Vel: [8, 6, 6, 6, 8, 0]

INFO] [1375726919.201526052]: Motor Encoder Dir: [1, 1, 8, 1, 1, 0]

INFO] [1375726919.201649601]: Motor Motor Current: [©.00, 0.00, 0.80, 0.00, ©.00, 0.00]
INFO] [1375726919.201748427]: Motor Motor_PWM: [16384, 16384, 16384, 16384, 16384, 16384]
INFO] [1375726919.201893697]: Human Sensor:[3064, 3038, 3068, 3070]

INFO] [1375726919.201991335 Board Power Voltage: [4.84 V]

INFO] [1375726919.202086319]: Motor Power Voltage: [23.23 V]

INFO] [1375726919.202179837]: Servo Power Voltage: [6.69 V]

INFO] [1375726919.202270491]: Temperature Sensor: [3037]

INFO] [1375726919.202361633]: Board Over Heat Sensor: [1782, 1768]

INFO] [1375726919.202452986]: Tilting Sensor:[3064, 3072]

INFO] [1375726919.202561868]: Left Front Motor Temperature:[28.61]

INFO] [1375726919.202669494]: Right Front Motor Temperature:[27.32]

INFO] [1375726919.202975818]: Left Rear Motor Temperature:[28.22]

INFO] [1375726919.203128491]: Right Rear Motor Temperature:[-26.00]
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Figure B.7. The robot’s data collected by communication topic.

57



o8

e Now, the robot is ready to run. The interface can be invoked via going to

the bin directory and running the application as shown in Figure B.8. Some

sample applications are as shown in Figure B.9.

roscore http://bayram-F83 311/ ®

bayram@bayram-F83VF:~/ros_workspace/jaguarcontrolISLS 1s
axis1 DrRobotMotionSensorDriver encodertest
s_cameraHK encode gps_node
encoder26tclock aps . txt
encoder26tcounterclock yo_node_tcp
u encoder26_t
bayramgbayram-F83VF:~/ros_workspace/jaguarControlISL$ cd qtv
bayram@bayram-F83VF:~fros_workspace/jaguarControlISL/qtviewer$ 1s
bin CMakelists.txt.user  include Makefile
cMakeLists.txt encoderTra mainpage.dox manifest.xml resources
bayram@bayram-F83V. jaguarControlISL/qtviewer$ cd bin/
lbayram@bayram-F83VF:~/ros_workspace/jaguarcontrolIsL/qtviewer/binS ls
2 inu_gps
bayramgbayram-F83VF:~/ros_workspace/jaguarControlIsL/qtviewer/bin$ ./imu_gps

3

/home/bayram/ros_workspace/jaguarControllSL/drrobo
bayram@bayram-F83VF:~/ros_workspace/jaguarControlISL/drrobot_jaguarv2_player$ ed ..

laser. txt

manifest.xml~

x

roscore.txt

rotationcloc|
rotationcounterclock

Figure B.8. Jaguar gui interface.

QRosApp

Ros Communications | IMU  GPS | Laser Motor Camera | velocity

ENCODER
LEFT RIGHT

send Velocity| [0.1] |

Send Angular

send Arm

stop

Command Panel ®
Connection | Logging

sensor logging
Logging directory
Iros_workspace/jaguarControlisL/qtviewer/bin
min interarrival time(ir
100
Log continuously

SAVE(single message)

Quit

QRosApp

Ros Communications | IMU | GPs | Laser | Motor | Camera | velocity

Front Camera

L
—

PTZ Camera

PTZ Control

Command  Current
Pan 180.00

Figure B.9. Top: Teleoperated navigation; Bottom:

Command Panel ®
Connection | Logging

sensor logging
Logging directory
Jros_workspace/jaguarControlist/encodertest
min interarrival time(ir
100
Log continuously

SAVE(single message)

Quit

bayram@bayram-F83VF: ~/ros_workspace/jaguarContro... 3%

Teleoperated data

collection.
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