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ÖZET

BİR GRAFIN LAPLASYEN MATRİSİNİN ÖZDEǦERLERİ VE

DİǦER GRAF DEǦİŞMEZLERİ ARASINDAKİ İLİŞKİ

TUNÇEL, Hande

Doktora Tezi, Matematik Anabilim Dali

Tez Yöneticisi: Prof. Dr. Pınar Dündar

Mayis 2013, 80 sayfa

Bu tez esas olarak beş bölümden oluşmaktadır. Birinci bölümde,

tez konusu ve tezde yapılan çalışmalar hakkında kısaca bilgi verilmiştir.

İkinci bölümde, bir grafın Laplasyen matrisi ve özdeǧerleri ile ilgili

temel tanım ve kavramlar verilmiştir. Daha sonra işaretli graflarin Laplasyen

matrisi ve özdeǧerleri ile ilgili tanımlara yer verilmiştir.

Üçüncü bölümde, bir işaretli grafın normalize Laplasyen spektru-

muna ait örüntü (interlacing)sonuçlari verilmiştir. Ayrıt atma, tepe büzme,

tepe ikileme gibi işlemlerinden sonra ortaya çıkan özdeǧer örüntü sonuçlarının

yanında, işaretli graflar için ardışık büzme işlemi tanımlanmıştır ve baskınlık

sayısı ile ilişkilendirilip, örüntü sonucu elde edilmiştir. Ayrıca, 1 özdeǧeri ile

ardışık büzme, motif ve tepe çoǧaltma işlemleri arasındaki ilişki incelenmiştir.

Dördüncü bölümde, işaretli graflar için join, tamamlayici prizmalar

ve coalescence işlemleri ele alınıp denge durumları incelenmiştir. Grafların

denge durumlarına göre, işaretlı grafın Laplasyen özdeǧerleri ile ilgili sınır

deǧerler bulunmuştur.

Beşinci bölümde, işaret dereceli Laplasyen matris tanımı ortaya

koyulmuştur. Tanımlanan bu yeni matrise ait, temel özellikler verilmiştir.

Ayrıca, işaretli grafların Laplasyen matrisinin spektrumu ile işaret dereceli

Laplasyen matrisin spektrumuna ait örüntü sonuçları elde edilip, iki matrisin

spektrumu arasinda ilişki kurulmuştur.

Anahtar Sözcükler: Laplasyen matris, normalize Laplasyen matris, özdeǧerler,

örüntü (interlacing), graf islemleri, baskınlık sayısı.





vii

ABSTRACT

RELATION OF LAPLACIAN MATRIX OF A GRAPH AND

OTHER GRAPH INVARIANTS

TUNÇEL, Hande

Ph.D. in Department of Mathematics

Supervisor: Prof. Dr. Pınar Dündar

May 2013, 80 pages

This thesis essentially consists of five chapters. In the first chapter,

information concerning the subject of the thesis and works which are related

with this subject are shortly given.

In the second chapter, firstly basic definitions, properties and

theorems related with Laplacian matrix, normalized Laplacian matrix and

signed graphs are involved.

In the third chapter, some interlacing results are given about

normalized Laplacian spectrum. Moreover, when such a sequence of contraction

operation is well defined for signed graphs are introduced and set up interlacing

relation between signed graph Γ and this well defined successive contractions

associated with domination number γ(G). Also, effect of successive contraction,

motif and vertex doubling operations on eigenvalue 1 is investigated.

In the fourth chapter, join, complementary prisms and coalescence

operations for signed graphs and balanceness of these operations are discussed.

Beside, according to balanceness of graph, some boundary results for Laplacian

eigenvalues are obtained.

In the fifth chapter, the signed degree Laplacian matrix is introdu-

ced and some fundamental properties of the matrix are given. Furthermore,

some interlacing results are obtained both Laplacian of signed graphs and

signed degree Laplacian matrix and relation between spectra of these two

matrix is constructed.

Key Words: Laplacian matrix, normalized Laplacian matrix, eigenvalues,

interlacing, domination number.
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sagladıkları maddi manevi her türlü destek için, başta direktör Jurgen
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1 GİRİŞ

Cebir ve graf teorinin kombinasyonundan meydana gelen cebirsel graf

teori, 1974’den beri gelişimine devam etmektedir. Bu dal, cebirsel objeleri grafla

ilişkilendirir ve cebirde kullanılan araçlar ile graf özelliklerini çeşitlendirir.

Literatürde bu konuda yazılmış bir çok kitap ve araştırma bulunmaktadır

(Godsil and Royle, 2001, Biggs, 1993, Beineke et al., 2004, Mohar, 1991, Merris,

1994, Fiedler, 1973, Cvetković et al., 1979). Matrisler ve özdeğerleri yardımıyla

graf yapıları yorumlanmıştır. Cebirsel graf teorinin en önemli konularından

biri olan bir grafın Laplasyen matrisi kavramı ve bu matrisin özdeğerleri,

diskret matematik, kombinatoriyel optimizasyon ve çeşitli kimya problemleri

gibi matematiğin çeşitli alt dallarında kullanılmaktadır. Laplasyen matrisin

yanı sıra bir grafın bitişiklik matrisinin özdeğerleri ile ilgili de birçok sonuç

elde edilmiştir. Fakat Mohar (Mohar, 1991), Laplasyen matrisin spektrumunu

daha sezgisel ve önemli bulmuştur. Literatürde, Laplasyen matrisin spektrumu

ve grafın tepe dereceleri, yarıçapı, bağlantılığı, baskınlık sayısı vb gibi, graf

teorik parametrelerin ilişkisine dair çalışmalar bulunmaktadır (Anderson et

al., 1985, Li et al., 1998, Merris, 1994, Aouchiche 2010, Stevanović et

al., 2008, Lu et al., 2007).

Bütün Laplasyen özdeğerler arasında, ikinci en küçük özdeğer en ünlü olan-

larından biridir ve Fiedler (Fiedler, 1973) tarafından cebirsel bağlantı olarak

adlandırılmıştır. Önemi, grafın bağlantılılığı ile ilişkilendirilmesinden kaynak-

lanmaktadır. Örneğin, ”bir G grafı bağlantılı bir graftır ancak ve ancak cebirsel

bağlantısı sıfırdan farklıdır” sonucu iyi bilinmektedir.

Bir n tepeli ve m ayrıtlı bir G grafının Q tepe ayrıt komşuluk matrisi

olmak üzere K = QTQ matrisi ile L(G) Laplasyen matrisi arasında nasıl bir

ilişki olduğu Forsman (Forsman, 1976) ve Gutman (Gutman, 1978) tarafından

aynı zamanlarda açıklanmıştır. Ayrıca, m grafın ayrıt sayısı ve A(G∗) çizgi

(line)grafın bitişiklik matrisi olmak üzere, K matrisi, K(G) = 2Im + A(G∗)

şeklinde ifade edilir. Buradan yola çıkarak, A(G∗) matrisinin en küçük

özdeğerinin, en az -2 olduğu, Alan Hoffman tarafından söylenmiştir. En küçük
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özdeğeri -2 olan graflarla ilgili çalışmalar Cameron, Goethals, Sholt ve Seidel

tarafından ortaya koyulmuş ve ayrıca kök teorisi ile şaşırtıcı ve yakın bir ilişki

ortaya çıkmıştır (Cvetković et al., 1988, Seidel et al., 1994). Laplasyen matrisin

ilk farkedilir ortaya çıkışı, Kirchhoff’un matrix-tree teoremi (Kirchhoff, 1847)

ile olmuştur:

Teorem 1.1 L(i|j), n tepeli G grafının, L(G) Laplasyen matrisinin, i. satır

ve j. sütun elemanlarının silinmesi ile elde edilmiş (n−1)×(n−1) türünde bir

alt matris olsun. Böylece, (−1)i+j det(L(i|j)), G grafının spanning ağaçlarının

sayısını verir.

Bu tezin esas amacı, işaretli grafların Laplasyen ve normalize Laplasyen

matrislerinin özdeğerleri ile ilgili sonuçlar vermektir. İşaretli graflar ilk olarak,

sosyal psikolojideki sosyal denge teorisi ile ilişkilendirilip, Harary tarafından

ortaya atılmıştır (Harary, 1953). Daha sonra, Zaslavsky, grafların matroidleri

kavramını işaretli grafların matroidlerine genişletmiştir (Zaslavsky, 1982).

Ayrıca, işaretli graflar için Matrix Tree teorem Zaslavsky ve Chaiken ta-

rafından elde edilmiştir (Zaslavsky, 1982, Chaiken, 1982). Seidel tarafından,

graflar üzerinde tartışmalarda önemli bir role sahip olan, değiştirme (switching)

kavramı ortaya atılmıştır (Seidel et al., 1994). İşaretli grafların Laplasyen

spektrumu ile ilgili çalışmalar, ikibinli yılların başında ilk defa Hou tarafından

yapılmıştır (Hou et al., 2003). Yine Hou tarafından, işaretli grafın dengesiz

olduğu durumlarda, en küçük özdeğer ile ilgili isoperimetrik sonuçlar elde

edilmiştir (Hou, 2005). Daha sonra, Chung tarafından ortaya çıkarılan, bir

grafın normalize Laplasyen matrisi kavramı, Li tarafından işaretli graflara

genişletilmiş ve bazı temel sonuçlar elde edilmiştir (Li et al., 2009).

Tezin ikici bölümünde Laplasyen ve normalize Laplasyen matris, işaretli

graflar, işaretli graflar için Laplasyen ve normalize Laplasyen matris kavram-

ları ele alınmıştır ve ilerleyen bölümlerde kullanılacak olan temel tanım ve

teoremlerden bahsedilip, gerekli önbilgiler sağlanmıştır.

Tezin üçüncü bölümünde işaretli grafların normalize Laplasyen spekt-

rumu için örüntü (interlacing) sonuçları elde edilmiştir. Özellikle, ayrıt atma
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ve ekleme, tepe büzme gibi temel graf operasyonlarının Laplasyen özdeğere

etkisi araştırılmıştır. Bu işlemlere ek olarak, işaretli graflar için izin verilebilir

ardışık büzme işlemi tanımlanmış, baskınlık parametresi ile ilişkilendirilmiş

bir örüntü sonucu elde edilmiştir. Ayrıca, işaretli graflarda tepe çoğaltma

işlemi çalışılıp, bu işlemin bir özdeğerini meydana getirdiği gösterilmiştir.

Son olarak, motif çoğaltma işlemini işaretli graflara genelleştirip, motif olarak

adlandırılan bir işaretli grafın belli, küçük bir alt grafı, 1 özdeğerine sahip ise

bu motifin çoğaltılması ile elde edilen graf 1 özdeğerine sahip olacağı sonucu

elde edilmiştir.

Tezin dördüncü bölümünde, join, tamamlayıcı prizmalar (complementary

prisims) ve coalescence işlemleri, işaretli graflara genişletilmiş ve bu graf

işlemlerinin Laplasyen özdeğerlere ektisi araştırılmıştır. İşlemler sonrası oluşan

grafların denge durumları incelenmiş, grafların denge durumlarına göre en

büyük ve en küçük özdeğerler ile ilgili sonuçlar elde edilmiştir. Tamamlayıcı

prizmalar ve coalescence işlemlerine ait sonuçlar için, Fan’nın majorizasyon

kavramından yararlanılmıştır (Grone and Merris, 1990).

Tezin beşinci bölümünde, köşegen elemanlarında, tepelerin işaret dere-

celerinin yer aldığı, işaret dereceli Laplasyen matris kavramı tanımlanmıştır.

Bu yeni matrisin özdeğerlerine ait temel sonuçlar elde edilip, özel graf türleri

için matrisin spektrumları incelenmiştir. Ayrıca, graftan tepelerin silinmesi ile

ilişkilendirilen örüntü (interlacing) sonucu, işaretli grafların Laplasyen spektru-

muna ve işaret dereceli Laplasyen matrisin spektrumuna genişletilmiştir. Elde

edilen bu sonuçlar birleştirilerek, yeni bir eşitsizlik ortaya çıkarılmıştır.
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2 GENEL BİLGİLER

2.1 Bir Grafın Laplasyen Matrisi

Bitişiklik, komşuluk (tepe-ayrıt), mesafe matrisinin yanı sıra, Laplasyen

matris graf ile ilişkilendirilebilen diğer bir matris türüdür. Matrisin özdeğerleri,

Laplasyen matrisin spekturumunu oluştururlar. Bu kısımda Laplasyen matrisin

tanımı ve diğer bölümler için gerekli ön bilgiler verilecektir.

G bir graf, Q tepe-ayrıt komşuluk matrisi, D(G) derece matrisi olsun.

G’nin Laplasyen matrisi

L(G) = QQT = D(G)− A(G)

dir. Ayrıca, L(G) Laplasyen matrisi aşağıdaki eşitliği sağlayan f : V → R

fonksiyonlar uzayında operasyon olarak da alınabilir; i, j ∈ V ve di, i tepesinin

derecesini göstermek üzere

Lf(i) = dif(i)−
∑
j,j∼i

f(j) (1)

dır. (1) denklemindeki toplam, j ∼ i ile gösterilen komşu i ve j tepeleri üzerinde

alınmıştır. Laplasyen matris oryantasyondan bağımsız ve simetriktir. Matrisin

özdeğerleri reeldir ve negatif değildir. Laplasyen matrisin özdeğerleri aşağıdaki

şekilde, azalmayan sıra ile sıralanırsa:

λ1(G) ≤ λ2(G) ≤ ... ≤ λn(G)

• Bütün bileşenleri 1 olan n × 1 lik özvektör değeri için λ1(G) = 0 dır.

L(G).1=0.1.

• λ2(G) > 0 ⇔ G grafı, birleştirilmiştir. Sıfıra eşit özdeğer sayısı kadar

grafın birleştirilmiş bileşeni vardır.

• Eğer G grafı, k regüler graf ise, bitişiklik matrisinin özdeğerleri θ1, ..., θn

olmak üzere, Laplasyen matrisin özdeğerleri k− θ1, ..., k− θn şeklindedir.
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Sıradaki özellikler , Laplasyen matrisin özdeğerleri hakkında önemli bilgi

sağlayacaktır.

Lemma 2.1 (Dirichlet Toplamı) G, n tepeli bir graf, L, Laplasyen matrisi

olsun. Herhangi bir x ∈ Rn vektörü için:

xTLx =
∑

ij∈E(G)

(xi − xj)2.

dir.

İspat. xTLx = xTQQTx = (QTx)T (QTx) eğer ij ∈ E(G) ise QTx nin ij

ayrıtına karşılık gelen bileşeni ±(xi − xj) dir.

Buradan da özdeğerlerle ilgili önemli bir sonuca varılabilir:

λ2(G) = inf
x∈R

xTLx

xTx
= inf

x∈R

∑
ij∈E(G)

(xi − xj)2.

n∑
i=1

x2
i

(2)

λn(G) = sup
x∈R

xTLx

xTx
= sup

x∈R

∑
ij∈E(G)

(xi − xj)2.

n∑
i=1

x2
i

(3)

Bu orana x vektörünün Rayleigh oranı diyeceğiz. Rayleigh oranı, özdeğerler

için üst ve alt sınır belirmede kullanışlı bir araçtır.

Laplasyen matrisin ilk uygulamalarından birisi Matrix-Tree Teoremidir.

Teorem 2.1 (Kirchhoff Matrix-Tree teorem) G grafının farklı spanning ağaçlarının

sayısı, Laplasyen matrisin (L = D − A) herhangi bi kofaktörünün değerine

eşittir.

Bu tezde kullanılacak olan işaretli grafların Laplasyen ve normalize

Laplasyen matrisi kavramına geçmeden önce, işaretli graflarla ilgili önemli

bilgiler verilecektir.
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2.2 İşaretli Graflar

G=(V,E) bir graf olsun. İşaretli graf Γ = (G, σ), G grafının ayrıtlarının

+ ve − ile işaretlenmesi ile elde edilir. Burada σ:E → {+,−} işaret

fonksiyonudur. İşaretli grafın tepeler kümesini V (Γ), ayrıtlar kümesini E(Γ) ile

göstereceğiz. Bir işaretli grafın bir v tepesinin işaret derecesi, o tepeye komşu

pozitif işaretli ayrıt sayısı (d+
v ) ile negatif işaretli ayrıt sayısının (d−v ) arasındaki

farktır, sdeg(v) ile gösterilir. sdeg(v) = d+
v −d−v dir. İşaretli grafın bir tepesinin

derecesi dv = d+
v + d−v olarak bulunur. Yani işaretli graf ile altında yatan G

grafı aynı tepe derecesi dizisine sahiptir. Γ bir işaretli graf ve C, Γ′nin bir

döngüsü (cycle) olmak üzere, C’nin işareti sgn(C) =
∏
e∈C

σ(e) şeklinde bulunur.

Tanım 2.1 (Harary, 1953)Bir işaretli grafın bütün döngüleri (cycles) pozitif

ise o işaretli grafa dengeli işaretli graf (balanced signed graph) denir.

Tanım 2.2 (Seidel et al., 1994) θ : V → {+,−} işaret fonksiyonu, Γ = (G, σ)

bir işaretli graf olsun. σθ(e) = θ(i)σ(e)θ(j) ile işaretlendirilmiş, Γ grafından

elde edilen yeni işaretli grafa θ ile döndürülmüş graf denir. Γθ = (G, σθ) ile

gösterilir.

Tanım 2.3 (Seidel et al., 1994) Γ1 ve Γ2 iki işaretli graf olmak üzere, Γ2 = Γθ1

olacak şekilde öyle bir θ fonksiyonu varsa bu iki grafa eş dönüştürülmüş graflar

(switching equivalent) denir ve Γ1 ∼ Γ2 ile gösterilir.

Tanım 2.4 M1 ve M2 n × n lik iki matris olsun. M2 = SM1S olmak üzere

öyle bir S = diag(s1, ...sn), si = ±1 diagonal matrisi varsa bu iki matrise

işaret olarak benzer (signature similar) matrisler denir.

Teorem 2.2 (İşaretli Graflar için Matrix-Tree Teorem)(Chaiken, 1982, Zaslavsky,

1982) Γ n tepeli birleştirilmiş bir işaretli graf ve bl, l tane negatif döngü (cycle)

içeren spanning altgrafların sayısı olmak üzere:

detL(Γ) =
n∑
l=0

4lbl
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Matrix-Tree teoreme göre eğer Γ grafı dengeli bir graf ⇔ detL(Γ) = 0

dir. Buradan da anlaşılır ki 0 ancak ve ancak dengeli bir graf için özdeğerdir

(Hou et al., 2003).

2.3 İşaretli Graflarda Laplasyen Matris

Bu bölümde işaretli graflar için Laplasyen matrisden bahsedilecektir.

İşaretli graflar için Laplasyen matris aşağıdaki şekilde tanımlanır:

Tanım 2.5 (Hou et al., 2003) Γ = (G, σ) işaretli bir graf olmak üzere, L(Γ)

ile göstereceğimiz Laplasyen matris L(Γ) = D(Γ)−As(Γ) şeklinde tanımlanır.

Burada D(Γ) işaretli grafın diagonal tepe derece matrisidir, As(Γ) bileşenleri

aσij = σ(i, j)aij şeklinde tanımlı, işaretli grafın bitişiklik matrisidir.

L(Γ) simetrik bir matristir ve satır toplamları 2(d−1 , ..., d
−
n )t şeklindedir.

Bahsedilen kavramlara göre, ayrıtların hepsi + veya − ile etiketlendiğinde:

L(G) = L(G,+) ve D(G) + A(G) = L(G,−) olduğu açıkça görülür.

İşaretli olmayan graflarda olduğu gibi, işaretli grafların Laplasyen matrisini

de komşuluk matrisi ile ifade edebiliriz. İşaretli graflar için komşuluk matrisi

aşağıdaki şekilde tanımlanır:

C = C(Γ) = (cij) komşuluk matrisi olmak üzere;

cij =



+1, eğer i, ej ayrıtının ilk tepesi(head) ise

−1, eğer i, ej ayrıtının son tepesi(tail) ve σ(ej) = + ise

+1, eğer i, ej ayrıtının son tepesi(tail) ve σ(ej) = − ise

0, aksi halde

Matrisin bileşenlerinin genelleştirilmiş hali, cie = −σ(e).cje dir.

L(Γ) = CCt

x = (x1, ..., xn)t reel bir vektör olmak üzere, komşuluk matrisinden yararlana-

rak elde edilen, Laplasyen matrisin kuadratik ifadesi aşağıdaki gibidir:

xtL(Γ)x = xtCCTx =
∑
i∼j

(xi − σ(i, j)xj)
2 dir.
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Ayrıca, L(Γ) Laplasyen matrisi, aşağıdaki eşitliği sağlayan f : V → R

fonksiyonlar uzayında operasyon olarak da tanımlanabilir. ∀i ∈ V (Γ) için:

Lf(i) = dif(i)−
∑
j,j∼i

σ(i, j)f(j) (4)

2.4 İşaretli Grafların Laplasyen Spektrumu

İşaretli grafların Laplasyen spektrumu ilk olarak Hou tarafından ele

alınmıştır (Hou et al., 2003). Hou, ilk olarak işaretli grafların en büyük

özdeğerini ele almış ve onunla ilgili sonuçlar elde etmiştir (Hou et al., 2003).

Daha sonra, en küçük özdeğeri ele alıp, isoperimetrik eşitsizlikler elde etmiştir

(Hou, 2005). Γ = (G, σ) n tepeli işaretli grafının pozitif tanımlı, negatif

olmayan özdeğerlere sahip Laplasyen matrisi L(Γ) ile gösterilsin. Laplasyen

matrisin spektrumu, artmayan sırada

λ1(Γ) ≥ λ2(Γ) ≥ ... ≥ λn(Γ)

şeklinde sıralansın. En küçük özdeğeri ifade etmek için Rayleigh oranı kul-

lanılarak :

λ1(Γ) = sup{
∑
i∼j

(xi − σ(i, j)xj)
2 :

n∑
i=1

x2
i = 1, x ∈ Rn}. (5)

olduğu elde edilir.

İşaretli grafların Laplasyen spektrumu ilgili birkaç önemli sonuç aşağıda

verilmiştir:

Lemma 2.2 (Hou et al., 2003) Γ1 = (G, σ1) ve Γ2 = (G, σ2) iki işaretli graf

olmak üzere, Γ1 ∼ Γ2 ⇔ L(Γ1) ve L(Γ2) işaret olarak benzer matrislerdir.

Teorem 2.3 (Hou et al., 2003) Γ = (G, σ) işaretli bir graf olmak üzere

aşağıdaki ifadeler birbirine denktir:

1. Γ dengelidir;
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2. Γ = (G, σ) ∼ (G,+);

3. Öyle bir S işaret matrisi vardır ki SL(Γ)S nin diagonal dışındaki tüm

bileşenleri 0 veya -1 dir;

4. Tepelerin öyle bir parçalanmasını bulabiliriz ki V (Γ) = V1(Γ) ∪ V2(Γ) ,

V1 ile V2 arasındaki tüm ayrıtlar − ve V1 veya V2 içindeki tüm ayrıtlar

+ dir.

Benzer düşünce ile;

Teorem 2.4 (Hou et al., 2003) Γ = (G, σ) işaretli bir graf olmak üzere

aşağıdaki ifadeler birbirine denktir.

1. Γ deki tüm tek döngüler (cycles) negatif ve tüm çift döngüler pozitiftir;

2. Γ = (G, σ) ∼ (G,−);

3. Öyle bir S işaret matrisi vardır ki SL(Γ)S nin diagonal dışındaki tüm

bileşenleri 0 veya 1 dir;

4. Tepelerin öyle bir parçalanmasını bulabiliriz ki V (Γ) = V1(Γ) ∪ V2(Γ) ,

V1 ile V2 arasındaki tüm ayrıtlar + ve V1 veya V2 içindeki tüm ayrıtlar

− dir.

Lemma 2.3 (Hou et al., 2003) Γ = (G, σ) n tepeli birleştirilmiş işaretli bir

graf ise

λ1(σ) ≤ λ1(−) dir.

λ1(σ) = λ1(−) ⇔ (G, σ) ∼ (G,−) dir.

Teorem 2.5 (Hou et al., 2003) Γ = (G, σ) n tepeli birleştirilmiş işaretli bir

graf ise

λ1(Γ) ≤ 2(n− 1) dir

Ayrıca, Γ ∼ (Kn,−) olduğu durumda eşitlik sağlanır.
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λ1(σ) özdeğerinin üst sınırını elde etmek için L(G,−) = D(G) + A(G)

matrisinin en büyük özdeğerinden faydalanılmıştır. Sıradaki lemma L(G,−) =

D(G) + A(G) martisi ile grafın çizgi grafının bitişiklik matrisi arasında ilişki

kurar.

Lemma 2.4 (Biggs, 1993) G, n tepeli bir graf olmak üzere, A, G grafının

bitişiklik matrisi, AL, G grafının çizgi grafının bitişiklik matrisi olsun ve X

n×m matrisi

(X)ij =

 1 , eğer i tepesi ve ej ayrıtı komşu ise

0 , aksi halde

şeklinde tanımlanır ise X tX = AL + 2Im dir.

İspat.

(X tX)ij =
n∑
l=1

(X)li(X)lj

şeklinde ifade edilir. (X tX)ij, eğer ei ej ayrıtları komşu ise 1 , eğer i=j ise 2,

eğer ayrıtlardan herhangi biri grafta yer almıyorsa 0 değerini alır. Yani diğer bir

değişle, l tepesinin, hem ei hem ej ayrıtına komşu olup olmadığıdır. Buradan,

X tX = AL + 2Im sonucu elde edilir.

Bir işaretli grafın en büyük Laplasyen özdeğeri ile tepe dereceleri

arasındaki ilişki, Hou tarafından aşağıdaki şekilde kurulmuştur (Hou et

al., 2003):

Tanım 2.6 Γ = (G, σ) n tepeli birleştirilmiş işaretli bir graf ve j ∈ V (Γ)

olmak üzere, mj = (1/dj)
∑

ij∈E(Γ)

di eşitliğine, j tepesinin 2-derecesi denir.

Böylece;

Teorem 2.6 (Hou et al., 2003)Γ = (G, σ) n tepeli birleştirilmiş işaretli bir

graf ise

1. λ1(σ) ≤ max{di + dj :ij∈ E}.
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2. λ1(σ) ≤ max{di +mi : i∈ V }.

3. λ1(σ) ≤ max{di(di +mi) + dj(dj +mj)/(di + dj) : (ij)∈ E}.

dir.

Ayrıca, yine Hou tarafından, dengesiz bir işaretli grafın en küçük

Laplasyen özdeğeri ile isoperimetrik sayı parametresine oldukça benzer, graf

teorik bir parametre olan ω(Γ) ile ilgili bağlantı aşağıdaki şekilde kurulmuştur

(Hou, 2005):

W , V (Γ) tepeler kümesinin bir alt kümesi olsun. ∂W , W kümesindeki

tepeleri W nın dışındaki tepelere bağlayan ayrıt sayısını göstermek üzere,

işaretli grafın ω(Γ) parametresi

ω(Γ) = min
∅6=W⊆V

emin(W ) + |∂W |
|W |

şeklinde tanımlanmıştır. Burada emin(W ), grafı dengeli yapmak için, W

tarafından oluşturulmuş alt graftan atılması gereken minimum ayrıt sayısıdır.

Önerme 2.1 (Hou, 2005) Γ işaretli bir graf olmak üzere, λn ≤ 4ω(Γ) dır.

Teorem 2.7 (Hou, 2005) Γ, n tepeli birleştirilmiş işaretli bir graf ve ∆ en

büyük tepe derecesi olmak üzere, en küçük Laplasyen özdeğer λn

λn(Γ) ≥ ∆−
√

∆2 − ω2(Γ)

dir.

2.5 Bir Grafın Normalize Laplasyen Matrisi

Bir grafın normalize Laplasyen matrisi kavramı Chung tarafından ortaya

atılmıştır (Chung, 1997). Bu tanım, stokastik süreçler ve spektral geometrideki

özdeğerler ile uyum sağlamaktadır. Bu açıdan önemli bir avantaj sağlar.
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Bazı durumlarda sadece regüler graflar için söylenebilen özellikler, normalize

Laplasyen matris ile genel graflara genelleştirilebilir. Düğüm ve katlı ayrıt

içermeyen G grafı için, L̄ ile gösterilen normalize Laplasyen matris aşağıdaki

şekilde tanımlanır:

Tanım 2.7 (Chung, 1997) G, n tepeli bir graf ve di, i tepesinin derecesi olmak

üzere, grafın normalize Laplasyen matrisi

L̄(i, j) =


1, eğer i = j ve dj 6= 0,

−1/
√
didj eğer i ve j bitişik ise

0 aksi halde.

şeklindedir.

D diagonal derece matrisi ve di = 0 olduğu durumda D−1/2(i, i) = 0 olarak

alınmak üzere, L̄ = D−1/2LD−1/2 dir. Ayrıca, L̄, aşağıdaki eşitliği sağlayan

g : V → R fonksiyonlar uzayında operatör olarak alınabilir; i, j ∈ V (G) olmak

üzere,

L̄g(i) := g(i)−
∑
j,j∼i

g(j)√
didj

(6)

k-regüler bir graf için

L̄ = I − 1

k
A

dır. Genel graflar için, normalize Laplasyen matris, Laplasyen matriste olduğu

gibi komşuluk matrisi cinsinden ifade edilir. S, satırları tepeler, sütunları

ayrıtlar olan komşuluk matrisi olsun. Matrisin bileşenleri, e = (i, j) ayrıtına

karşılık gelen i tepesi için 1/
√
di değerine, j tepesi için −1/

√
dj değerine ve

geri kalan heryerde 0 değerine sahiptir. Bu tanıma göre, normalize Laplasyen

matris

L̄ = SST

şeklinde ifade edilir. Ayrıca, g sütun vektörü olarak ele alınırsa, normalize

Laplasyen için Rayleigh oranı, g = D1/2f olmak üzere

〈g, L̄g〉
〈g, g〉

=

∑
i∼j

(fi − fj)2∑
j

f 2
j dj

(7)

şeklindedir.
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2.6 İşaretli bir Grafın Normalize Laplasyen Matrisi

İşaretli graflar için Normalize Laplasyen Matris kavramı Li tarafından

aşağıdaki şekilde tanımlanmıştır (Li et al., 2009).

Tanım 2.8 (Li et al., 2009) n tepeli Γ işaretli grafının normalize Laplasyen

matrisinin bileşenleri

L̄(i, j) =


1 eğer i = j ve dj 6= 0,

−σ(i, j)/
√
didj eğer (i, j) ∈ E(Γ),

0 aksi halde.

şeklinde tanımlanır ve L̄(Γ) veya L̄(G, σ) şeklinde gösterilir.

D diagonal derece matrisi ve dj = 0 olduğu durumda D−1/2(j, j) = 0 olarak

alınmak üzere, L̄(Γ) = D−1/2L(Γ)D−1/2 dir. L̄(Γ), aşağıdaki eşitliği sağlayan

f : V → R fonksiyonlar uzayında operatör olarak alınabilir

L̄f(i) := f(i)−
∑

j, j∼i
σ(i, j)

f(j)√
didj

(8)

İşaretli bir Γ grafının normalize Laplasyen matrisi L̄(Γ), pozitif yarı tanımlıdır.

Yani özdeğerleri reel ve negatif değildir. İşaretsiz graflada olduğu gibi, işaretli

grafın normalize Laplasyen özdeğerleri 2’den küçük eşittir (Li et al., 2009).

İşaretli grafın normalize Laplasyen spektrumu azalmayan sırada 0 ≤ λ̄1 ≤

... ≤ λ̄n ile gösterilsin. Böylece, L̄(Γ) matrisinin Rayleigh oranı

λn = sup
f∈Rn

f>L̄(Γ)f

f>f
= sup

f∈Rn

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f 2
j dj

≤ 2 (9)

şeklinde ifade edilir. Bütün bu sonuçlardan da anlaşıldığı gibi, dengeli bir Γ

grafı için L(Γ) ve L(G) işaret olarak benzerdir ve aynı spektruma sahiptir.

Buna ek olarak, bağlantılı bir G grafı için 0 bir Laplasyen özdeğerdir ve bir

tanedir. Buradan, aşağıdaki Lemma söylenebilir:

Lemma 2.5 Γ = (G, σ) dengeli ve bağlantılı bir işaretli graf olmak üzere, L(Γ)

ve L̄(Γ) matrisleri bir tane 0 Laplasyen özdeğerine sahiptir.
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İşaretsiz graflarda olduğu gibi, aşağıdaki sonuç iki kümeli işaretli graflar

için de söylenebilir:

Lemma 2.6 Γ = (G, σ) iki kümeli işaretli bir graf olsun. Eğer λ, L̄(Γ)

matrisinin özdeğeri ise, 2− λ L̄(Γ) matrisinin özdeğeridir.

İspat. Γ, V1 ve V2 tepeler kümesinin ayrık birleşiminden oluşmuş, iki kümeli

işaretli bir graf olsun. f fonksiyonunun, L̄(Γ) matrisinin λ özdeğerine karşılık

gelen özfonksiyon olduğu kabul edilsin. Böylece, (8) denkleminden, di i

tepesinin derecesi olmak üzere

L̄f(i) = f(i)−
∑
j∈V2

σ(i, j)f(j)√
didj

(10)

eşitliği elde edilir. Aşağıdaki şekilde bir g fonksiyonu tanımlansın:

g(i) =

 f(i) eğer i ∈ V1

−f(i) eğer i ∈ V2

g fonksiyonu (10) denklemine uygulanırsa;

g(i)−
∑
j∈V2

σ(i, j)g(j)√
didj

= λ′g(i) (11)

f(i) +
∑
j∈V2

σ(i, j)f(j)√
didj

= λ′f(i), i ∈ V1 için (12)

−f(i)−
∑
j∈V2

σ(i, j)f(j)√
didj

= −λ′f(i), i ∈ V2 için (13)

denklemleri elde edilir. Böylece, (10), (12) ve (10), (13) denklemlerinin

birleşiminden λ′ = 2−λ özdeğerinin g özfonksiyonuna karşılık gelen bir özdeğer

olduğu sonucuna ulaşılır.
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3 İSARETLİ GRAFIN NORMALİZE LAP-

LASYEN MATRİSİNİN ÖZDEGERLERİ

ve ÖRÜNTÜ İLE İLGİLİ SONUÇLAR

Özdeǧerlerin örüntüsü, graf yapılarına ve çeşitli graf matrislerine ilişkin

kıyaslama ve sisteme uygunluk açısından kullanışlı bir araçtır. İşaretsiz graf-

ların Laplasyen ve bitişiklik matrislerini düşünerek, özdeğerlerin örüntü sonuçları

ile ilgili birçok çalışma yapılmıştır (Haemers, 1995, Heuvel, 1995, Mohar, 1991,

Chen et al., 2004, Li, 2006). Aksine, işaretli grafların özdeğer örüntüsü ile ilgili

literatürde sonuç bulunmamaktadır.

Tezin bu kısmında, L̄(Γ) ile gösterilecek olan, işaretli grafların normalize

Laplasyen matrisi ele alınıp, spektrumunun örüntüsü ile ilgili sonuçlar veri-

lecektir. Ayrıca, tepe çoğaltma ve büzme işlemleri ile normalize Laplasyen

özdeǧerlerinin örüntü sonuçları ilişkilendirilecektir. Bunlara ek olarak, işaretli

graflar için ard arda büzme işlemi tanımlanıp, ardışık büzme, motif ve tepe

çoğaltma işlemlerinin, 1 özdeǧerine etkisi incelenecektir.

3.1 Ön Bilgiler

Öncelikle, matris analizinden bazı kullanışlı sonuçları kısaca hatırlayacağız.

Sıradaki sonuç, özdeğer örüntüleri ile ilgili temel araçlardan biridir.

Teorem 3.1 (Horn et al., 1985) (Cauchy’s interlacing teoremi) A, n×n reel,

simetrik bir matris ve B, A nın (n− 1)× (n− 1) esas alt matrisi olsun. Eǧer

λ1 ≤ λ2 ≤ ... ≤ λn ve θ1 ≤ θ2 ≤ ... ≤ θn−1

sırası ile A ve B matrislerinin spektrumları ise

λi ≤ θi ≤ λi+1 for i = 1, 2, ..., n− 1.

dir.
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Teorem 3.2 (Courant-Fischer Teoremi) M n × n tipinde reel simetrik bir

matris ve

λ1 ≤ λ2 ≤ ... ≤ λn,

M matrisinin özdeğerleri olmak üzere

λ1 = min

{
〈Mf, f〉
〈f, f〉

: 0 6= f ∈ Rn

}
ve

λn = max

{
〈Mf, f〉
〈f, f〉

: 0 6= f ∈ Rn

}
.

dir. Üstelik, St, Rn’nin t boyutlu alt uzayını ve f ⊥ St, her f i ∈ St için f ⊥ f i

belirtmek üzere, k. en küçük özdeğer λk için

λk = min
Sn−k−1

max
f⊥Sn−k−1
f 6=0

〈Mf, f〉
〈f, f〉

= max
Sk

min
f⊥Sk
f 6=0

〈Mf, f〉
〈f, f〉

dir.

Sıradaki lemma, ilerideki bölümlerde elde edilecek sonuçların ispatı için

kullanışlı bir araçtır.

Lemma 3.1 (Chen et al., 2004) Reel a, b, ve γ için

a2 − 2γ2 ≥ 0, b2 − γ2 > 0, ve
a2

b2
≤ 2.

olduğunu varsayılırsa
a2 − 2γ2

b2 − γ2
≤ a2

b2
.

dir.

Gerekli temel teoremler sağlandıktan sonra, bu bölümün esas sonuçları

verilebilir:

3.2 Ayrıt Atma

İşaretsiz graflar için, bir graftan ayrıt atıldıktan sonra, bitişiklik mat-

risi, A(G), Laplasyen matris, L(G) ve normalize Laplasyen matrisin L̄(G),
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özdeğerleri ile ilgili örüntü sonuçları daha önceden elde edilmiş olup, iyi bilin-

mektedir. Sıradaki sonucumuz, bir işaretli graflartan ayrıt atıldığında, işaretli

grafın normalize Laplasyen matrisinin, L̄(Γ), özdeğerlerine bir genişletme

sağlayacaktır.

Teorem 3.3 Γ, isole tepesi olmayan işaretli bir graf ve H = Γ − e, Γ dan e

ayrıtının atılması sonucu elde edilmiş bir diğer işaretli graf olsun. Eğer

0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn ve 0 ≤ θ1 ≤ θ2 ≤ ... ≤ θn

sırasıyla L̄(Γ) ve L̄(H) matrislerinin özdeğerleri ise, λn+1 = 2 ve λ0 = 0 olmak

üzere, herbir i = 1, 2, ..., n için

λi−1 ≤ θi ≤ λi+1 (14)

dir.

İspat. g = D1/2f ile (9) denkleminde verilen Rayleigh oranını düşünelim.

D1/2 tersinir bir matris olduğu için, onun t boyutlu alt uzaydaki işlemleri,

yine t boyutlu altuzaya sahip olacaktır. Böylece, L̄(Γ) matrisinin k. en küçük

özdeğeri için Courant-Fisher teoremi aşağıdaki şekilde ifade edilebilir:

λk = min
Sn−k−1

max
g⊥Sn−k−1

g>L̄(Γ)g

g>g

= min
Sn−k−1

max
D1/2f⊥Sn−k−1

D1/2f 6=0

f>L(Γ)f

f>Df

= min
S
′
n−k−1

max
f⊥
f 6=0

S
′
n−k−1

∑
i∼j

(fi − σ(i, j)fj)
2∑

i

f 2
i di

. (15)

Benzer şekilde,

λk = max
S
′
k

min
f⊥
f 6=0

S
′
k

∑
i∼j

(fi − σ(i, j)fj)
2∑

i

f 2
i di

. (16)

Şimdi e = (v1v2) ∈ E ayrıtının Γ grafından attıldığı ve ayrıtın işaretinin

σ(v1, v2) = − olduğu varsayılsın. Ayrıt atma işleminden sonra, v1 ve v2 tepe-

lerinin dereceleri bir azalacaktır. Böylece payda aşağıdaki şekle dönüşecektir.∑
j

f 2
j dj →

∑
j

f 2
j dj − f 2

1 − f 2
2 .
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Ayrıca, komşuluk ilişkilerindeki değişimden ötürü, pay kısmı∑
i∼j

(fi − σ(i, j)fj)
2 →

∑
i∼j

(fi − σ(i, j)fj)
2 − (f1 + f2)2.

olur. Böylece, e1 ve e2 standart baz vektörlerini göstermek üzere

θk = max
S
′
k

min
f⊥
f 6=0

S
′
k

∑
i∼j

(fi − σ(i, j)fj)
2 − (f1 + f2)2∑

j

f 2
j dj − f 2

1 − f 2
2

≤ max
S
′
k

min
f⊥S′k

f1=f2, f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 − (f1 + f2)2∑

j

f 2
j dj − f 2

1 − f 2
2

= max
S
′
k

min
f⊥S′k
f 6=0

ve f⊥e1−e2

∑
i∼j

(fi − σ(i, j)fj)
2 − 4f 2

1∑
j

f 2
j dj − 2f 2

1

(17)

γ2 = 2f 2
1 , a2 =

∑
i∼j(fi − σ(i, j)fj)

2, ve b2 =
∑

j f
2
j dj değerleri ile Lemma

3.1 yi kullanıp, bölüm 2 de bahsedilen özdeğerlerin üstten 2 ile sınırlı olması

özelliğini de hatırlayarak (17) denkleminden aşağıdaki şekilde devam edilebilir:

θk ≤ max
S
′
k

min
f⊥S′k
f 6=0

,and f⊥e1−e2

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f 2
j dj

≤ max
S
′
k+1

min
f⊥S′k+1
f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f 2
j dj

= λk+1. (18)

Benzer şekilde, Courant-Fisher teoreminin min-max formunu kullanılarak

θk = min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 − (f1 + f2)2∑

j

f 2
j dj − f 2

1 − f 2
2

≥ min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

f1=−f2

∑
i∼j

(fi − σ(i, j)fj)
2 − (f1 + f2)2∑

j

f 2
j dj − f 2

1 − f 2
2

≥ min
S
′
n−k−1

max
f⊥S′n−k−1 and f⊥e1+e2

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f 2
j dj − 2f 2

1

≥ min
S
′
n−k

max
f⊥S′n−k
f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f 2
j dj

= λk−1 (19)

elde edilir. (18) ve (19) denklemlerinin birleşiminden (14) denklemi sağlanır.

σ(v1, v2) = + durumu benzer şekilde gösterilir.
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Γ Γ− e Γ− e′

λ1 = 0.1852 θ1 = 0.1968 θ̄1 = 0.2019

λ2 = 0.5978 θ2 = 0.6667 θ̄2 = 0.4980

λ3 = 1.0661 θ3 = 0.8315 θ̄3 = 1.0000

λ4 = 1.4718 θ4 = 1.5289 θ̄4 = 1.5020

λ5 = 1.6792 θ5 = 1.7761 θ̄5 = 1.7981

Şekil 3.1: Γ işaretli grafından ayrıt atma ile elde edilen Γ−e ve Γ−e′ grafları ve özdeğerleri.

Yorum 3.1 İşaretsiz graflarda ayrıt atma işleminden sonra, Laplasyen mat-

risin özdeğerlerinin azaldığı ya da aynı kaldığı bilinen bir sonuçtur (Mohar,

1991). Teorem 3.3 gösterir ki işaretli grafın normalize Laplasyen matrisinin

özdeğerleri, ayrıt atma işleminden sonra artış gösterebilir. Teorem bununla

ilgili bir üst sınır sağlamıştır. Örnek olarak şekil 3.1 de gösterilen ayrıt

atma ile elde edilen iki grafın özdeğerleri incelensin. Laplasyen spektrumları

kıyasladığımızda görülür ki özdeğerler artabilir ya da azalabilir.

3.3 Tepe Büzme

G bir graf ve v ∈ V (G) olsun. v ∈ V (G) tepesinin açık komşuluğu

N(v) = {u ∈ V : uv ∈ E}

kümesidir ve kapalı komşuluğu ise N [v] = N(v) ∪ {v} dir. G grafının iki u

ve v tepesi için, u ve v tepelerinin komşuluklarının birleşiminin yeni bir (uv)

tepesinin komşulukları olacak şekilde, graftan u ve v tepesinin silinip, grafa

yeni bir (uv) tepesi ekleme işlemine, u ve v tepesini tek bir tepeye büzme işlemi
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denir. G grafından büzme işlemi sonucu elde ettiğimiz bu yeni graf G/{u, v}

ile gösterilir. u ve v tepeleri bitişik olduğu zaman, G/{u, v} grafı, uv ayrıtının

büzülmesi ile G grafından elde edilecektir.

İşaretsiz graflar için tanımlanan bu büzme işlemi, işaretli graflar için de

ayrıtların işaretlerini koruyarak benzer şekilde tanımlanabilir. İşareti koruya-

bilmek için büzülen u ve v tepelerinden, ortak komşularına olan ayrıtların aynı

işarete sahip olma şartı aranmaktadır. Diğer bir değişle, Γ işaretli grafındaki

her x ∈ N(u)∪N(v) tepesi için, eğer σ(x, (uv)) = σ(x, u) = σ(x, v) ise Γ/{u, v}

işlemine izin verilebilir büzülme denir. Bundan dolayı, Γ grafı tarafından elde

edilen izin verilebilir büzme, Γ/{u, v}, graftan u ve v tepelerinin silinip, yerine

u ve v tepelerinin her x ortak komşuluğu için σ(x, (uv)) = σ(x, u) = σ(x, v)

olmak üzere yeni bir (uv) tepesi ekleyerek elde edilir. Özellikle, N(u)∩N [v] = ∅

olduğu durumda Γ/{u, v} izin verilebilir büzülmedir. Bir sonraki örüntü özelliği

bu durumda uygun olacaktır.

Teorem 3.4 Γ bir işaretli graf, u ve v N(u) ∩ N [v] = ∅ olacak şekilde Γ

grafının iki tepesi olsun.

λ1 ≤ λ2 ≤ ... ≤ λn ve θ1 ≤ θ2 ≤ ... ≤ θn−1

sırasıyla L̄(Γ) ve L̄(Γ/{u, v}) nin özdeğerleri ve λn+1 = 2 ve λ0 = 0 olmak

üzere

λi−1 ≤ θi ≤ λi+1

dir.

İspat. j ∈ J ancak ve ancak vj ∈ N(v1) olacak şekilde J bir indeks kümesi

olsun. u = v1, v = v2 olmak üzere N(u) ∩ N [v] = ∅ olduğundan, Γ/{v1, v2}

işlemi graftan (v1vj) ayrıtlarını atıp, aynı anda (v2vj) ayrıtlarını, işaretleri

korunacak şekilde grafa ekleme olarak görülebilir. Böylece Courant-Fisher

teoreminin (15) denklemini kullanarak ve Teorem 3.3 in ispatında olduğu gibi

L̄(Γ/{u, v}) matrisinin θk özdeğeri;
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θk = min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 +

∑
j∈J

(f2 − σ(v2, vj)fj)
2 − (f1 − σ(v1, vj)fj)

2∑
j

f 2
j dj − d1f 2

1 + d1f 2
2

şeklinde ifade edilir. Burada pay ve paydadaki toplam, başlangıçtaki Γ

grafından hesaplanacaktır. Böylece, işaretsiz graflara benzer olarak (Chen et

al., 2004), f1 = f2 alarak λk−1 alt sınır değeri sağlanacaktır. λk+1 üst sınır

değeri, Courant Fisher teoreminin max min ifadesinden (16) elde edilecektir.

Böylece, istenildiği şekilde λi−1 ≤ θi ≤ λi+1 olacaktır.

3.4 Baskınlık Kümesi ve Ardışık Büzme

v1, v2 tepelerinin büzülmesini takiben , oluşan yeni (v1v2) tepesinin bir

diğer v3 tepesine büzülmesiyle elde edilen yeni graf (G/{v1, v2})/{(v1v2), v3}

olarak düşünülebilir. Notasyonel yükten kurtulmak için, yeni oluşan graf,

basitçe G/{v1, v2, v3} ile gösterilsin. Genelleştirilirse, k − 1 kez ardışık büzme

ile G/{v1, v2, . . . , vk} grafının elde edileceği düşünülebilir. Örüntü sonuçlarını

vermeden önce, bu şekilde bir büzme işlemi dizisinin ne zaman iyi tanımlı

olacağı incelenebilir.

Tanım 3.1 V , G grafının tepeler kümesi, S ⊆ V olmak üzere, eğer V − S

kümesindeki her tepe, S kümesindeki herhangi bir tepeye bitişik ise, S kümesine

baskınlık kümesi denir. G grafının en az elemana sahip baskınlık kümesinin,

eleman sayısına baskınlık sayısı denir ve γ(G) ile gösterilir. γ(G) eleman

sayısına sahip G grafının baskınlık kümesine γ(G)-kümesi diyeceğiz.

Tanım 3.2 S bir baskın küme, N [w] ∩ S = {v} olacak şekilde w ∈ V

tepesine, v ∈ S tepesinin S-özel komşuluğu denir. v tepesinin bütün S-özel

komşulularının kümesi pn[v, S] ile gösterilir.

Benzer şekilde, açık S-özel komşulukları, N(w) ∩ S = {v} şartı altında

tanımlanır. Graflarda baskınlık konusuyla ilgili (Haynes et al., 1998) genel bir
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Şekil 3.2: Γ işaretli grafı ve S = {3, 7} baskın küme örneği.

bakış sağlamaktadır. Eğer V deki her tepe, herhangi bir vi ∈ S tepesinin S-

özel komşuluğu ise
⋂γ(G)
i=1 N(vi) = ∅ dir. (bakınız Şekil 3.2). Dahası, bu şartlar

altındaki Γ/{v1, v2, v3, . . . , vk} ardışık büzme işlemi iyi tanımlıdır.

Şekill 3.2’de verilen örnek incelenirse, Γ işaretli grafının baskın kümesi

S = {3, 7} dir. 1, 2 ve 4 tepeleri 3 tepesinin S-özel komşuluklarıdır. Ayrıca, 5 ve

6 tepeleri, 7 tepesinin S-özel komşularıdır. Bunun sonucu olarak,N(3)∩N(7) =

∅ dur.

Teorem 3.5 Γ = (G, σ) bir işaretli graf, γ(G) = k, S = {v1, ..., vk} bir γ(G)-

kümesi ve Γ/{v1, v2, v3, . . . , vk} ardışık büzme işlemi iyi tanımlı olsun.

λ1 ≤ λ2 ≤ ... ≤ λn ve θ
(k−1)
1 ≤ θ

(k−1)
2 ≤ ... ≤ θ

(k−1)
n−(k−1)

sırasıyla L̄(Γ) ve L̄(Γ/{v1, v2, v3, . . . , vk}) matrislerinin özdeğerleri ise, i ≤ 0

olduğu durumda λi = 0 ve i > n olduğu durumda λi = 2 olmak üzere

λi−k+1 ≤ θ
(k−1)
i ≤ λi+k−1, (20)

dir.

İspat. Teorem 3.4 den, L̄(Γ) ve L̄(Γ/{v1, v2}) matrislerinin özdeğerleri aşağıdaki

eşitsizliği sağlar

λi−1 ≤ θi ≤ λi+1.
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Benzer şekilde, oluşan yeni (v1v2) tepesinin v3 tepesi ile büzülmesinden

sonra, L̄(Γ/{v1, v2}) ve L̄(Γ/{v1, v2, v3}) matrislerinin özdeğerleri aşağıdaki

eşitsizlikleri sağlar

λi−2 ≤ θi−1 ≤ θ
(2)
i ≤ θi+1 ≤ λi+2.

Argümanların tekrarından (20) denklemi elde edilir.

3.5 Tepe Çoğaltma

Γ = (G, σ) n tepeli, bir işaretli graf ve v ∈ V (Γ) olmak üzere,

tepe çoğaltma, grafa yeni bir v′ tepesi ekleyip, eklenen yeni tepeyi v nin

tüm komşularıyla, aralarındaki ayrıt işaretleri korunacak şekilde birleştirme

işlemidir, Γv ile gösterilir. Diğer bir ifade ile, x ∈ N(v′) ancak ve ancak

x ∈ N(v) ve her x ∈ N(v) için σ(v′, x) = σ(v, x) dir. Gerekli tanım

sağlandıktan sonra, sıradaki Γv grafının Laplasyen matrisinin özdeğerleri ile

ilgili sonuca geçilebilir.

Teorem 3.6 Γ, n tepeli bir işaretli graf ve Γv, Γ grafından tepe çoğaltma ile

elde edilmiş diğer bir işaretli graf olsun.

λ1 ≤ λ2 ≤ · · · ≤ λn+1 ve θ1 ≤ θ2 ≤ · · · ≤ θn

sırasıyla L̄(Γv) ve L̄(Γ) matrislerinin özdeğerlerini göstermek üzere, θn+1 =

θn+2 = 2 olacak şekilde

θi ≤ λi+1 ≤ θi+2,

dir.

İspat. j ∈ J ancak ve ancak vj ∈ N(v) olacak şekilde J bir indeks kümesi ve v′

tepesi v ∈ V (Γ) tepesinin kopyası olsun. Her x ∈ N(v) ∩N(v′) için σ(x, v) =

σ(x, v′) olmasından ötürü, v ve v′ tepelerinin, tepe çoğaltma ile yeni oluşan

Γv grafında büzülme işlemi izin verilebilir büzülmedir ve Γv/{v, v′} = Γ dir.

Şimdi, v′ tepesinin Γv grafından atıldığı varsayılsın. Böylece Courant-Fisher
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teoremini (15) kullanıp, Teorem 3.3 in ispatındaki şeklinde ele alınırsa, L̄(Γ)

matrisinin θk özdeğerleri aşağıdaki şekilde ifade edilebilir

θk = min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 −

∑
j∈J

(fv′ − σ(v′, vj)fj)
2∑

j

f 2
j dj − dv′f 2

v′ −
∑
j∈J

f 2
j

Burada pay ve paydadaki toplamlar Γv grafı üzerinden alınmıştır.

θk ≥ min
S
′
n−k−1

max
f⊥S′n−k−1

f 6=0

fv′=σ(v′,vj)fj

∑
i∼j

(fi − σ(i, j)fj)
2 −

∑
j∈J

(fv′ − σ(v′, vj)fj)
2∑

j

f 2
j dj − dv′f 2

v′ −
∑
j∈J

f 2
j

Aşağıdaki şekide bir f ′ fonksiyonu tanımlansın:

f ′i =


1 eğer i = v′

−σ(v′, i)/dv′ eğer i ∈ N(v′)

0 aksi halde

j ∈ J ancak ve ancak vj ∈ N(v′) olacak şekilde bir J indeks kümesi ve

fj, vj tepesine karşılık gelen değer olmak üzere, fv′ = σ(v′, vj)fj formundaki

fonksiyonlar için

≥ min
S
′
n−k−1

max
f⊥S′n−k−1 and f⊥f ′

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f 2
j dj − 2dv′f 2

v′

≥ min
S
′
n−k

max
f⊥S′n−k
f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f 2
j dj

= λk−1

dir. f ′′ fonksiyonu aşağıdaki formda tanımlanmak üzere

f ′′i =


1 eğer i = v′

σ(v′, i)/dv′ eğer i ∈ N(v′)

0 aksi halde

Courant-Fisher teoreminin max-min formunu benzer şekilde kullanarak,

θk = max
S
′
k

min
f⊥S′k
f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 −

∑
j∈J

(fv′ − σ(v′, vj)fj)
2∑

j

f 2
j dj − dv′f 2

v′ −
∑
j∈J

f 2
j

≤ max
S
′
k

min
f⊥S′k
f 6=0

fv′=−σ(v′,vj)fj

∑
i∼j

(fi − σ(i, j)fj)
2 −

∑
j∈J

(fv′ − σ(v′, vj)fj)
2∑

j

f 2
j dj − dv′f 2

v′ −
∑
j∈J

f 2
j

≤ max
S
′
k

min
f⊥S′k and f⊥f ′′

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2 − 4dv′f

2
v′∑

j

f 2
j dj − 2dv′f 2

v′
(21)
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eşitsizliği elde edilir. Burada, γ2 = 2dv′f
2
v′ , a

2 =
∑

i∼j(fi − σ(i, j)fj)
2 ve b2 =∑

j f
2
j dj alarak Lemma 3.1 kullanılarak, J tanımlanan indeks kümesi olmak

üzere fv′ = −σ(v′, vj)fj formundaki fonksiyonlar için

∑
i∼j

(fi − σ(i, j)fj)
2 − 4dv′f

2
v′ =

∑
i∼j
i 6=v′

(fi − σ(i, j)fj)
2 ≥ 0

dir. Ayrıca,

∑
j

f 2
j dj − 2dv′f

2
v′ = (dv′f

2
v′ +

∑
j∈J

djf
2
j +

∑
j /∈N [v′]

djf
2
j )− 2dv′f

2
v′

=
∑
j∈J

djf
2
v′ − dv′f 2

v′ +
∑

j /∈N [v′]

djf
2
j

= f 2
v′((
∑
j∈J

dj)− dv′) +
∑

j /∈N [v′]

djf
2
j

her j ∈ J için, dj > 1 ve
∑
j∈J

dj toplamı dv′ tane terim toplamından

oluşmaktadır. Böylece, (
∑
j∈J

dj)− dv′ > 0 dır. Bundan dolayı ,

∑
j

f 2
j dj − 2dv′f

2
v′ > 0

olduğu görülür. Bölüm 2 den özdeğerlerin üstten 2 ile sınırlı olduğunu

hatırlayarak, Lemma 3.1 nin a2 − 2γ2 ≥ 0, b2 − γ2 > 0 ve a2/b2 ≤ 2 şartları

sağlanılır. Denklem (21) den devam edilerek,

θk ≤ max
S
′
k

min
f⊥S′kand f⊥f ′′

f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f 2
j dj

≤ max
S
′
k+1

min
f⊥S′k+1
f 6=0

∑
i∼j

(fi − σ(i, j)fj)
2∑

j

f 2
j dj

= λk+1.

sonucuna ulaşılır. Böylelikle,

λi−1 ≤ θi ≤ λi+1 ≤ θi+2 ≤ λi+3

eşitsizliği elde edilir ve

θi ≤ λi+1 ≤ θi+2

ispatlanmış olur.
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3.6 Motif Çoğaltma, Ardışık Büzme ve 1 Özdeğeri

3.6.1 1 Özdeğeri

Γ = (G, σ), n tepeli işaretli bir graf olsun. i, j ∈ V (Γ) tepeleri bitişik ise

i ∼ j ile ve i tepesinin derecesini di ile göstermek üzere, f fonksiyonu için,

L̄f(i) := f(i)−
∑
j, j∼i

σ(i, j)
f(j)√
didj

olduğu (8) denkleminden biliniyor. g ∈ Rn, L̄(Γ) matrisinin λ özdeğerine

karşılık gelen bir özvektör olmak üzere

L̄g − λg = 0. (22)

dır. (8) denklemi kullanılarak, (22) numaralı denklemden her i tepesi için

1√
di

∑
j∼i

σ(i, j)
g(j)√
dj

= (1− λ)g(i)

elde edilir. Eğer λ = 1 ise her i tepesi için∑
j∼i

σ(i, j)
g(j)√
dj

= 0 (23)

dir. 1 özdeğeri herhangi bir işaretli grafta tepe çoğaltma işlemi ile herzaman

elde edilebilir. ΓΣ, vα ∈ V (Γ)(α = 1, . . . ,m) tepelerinin ardışık m kez

çoğaltılması ile elde edilmiş bir işaretli graf olmak üzere, L̄(ΓΣ) matrisi aşağıda

tanımlanan f1 lokalize fonksiyonuyla 1 özdeğerine sahip olur.

f1(i) =


1 eğer i = vα

−1 eğer i = uα

0 aksi halde

Burada uα, vα tepesinin kopyasıdır. Böylelikle, 1 özdeğerinin sayısı, ΓΣ grafının

Laplasyen matrisinde m kadar artar. Şimdi, motif çoğaltma ve ardışık büzme

operasyonlarının, işaretli graflarda 1 özdeğeri üzerindeki etkisine bakacağız.

3.6.2 Motif çoğaltma

Σ, v1, . . . , vm tepelerine sahip, Γ grafının bağlantılı küçük bir alt grafı

olsun. Σ alt grafı, Γ’nın bu tepeler arasındaki bütün ayrıtlarını işaretleri
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koruyacak şekilde içersin. Bu Σ alt grafını motif olarak adlandıracağız.

v1, v2, . . . , vm teperini içeren Σ motifinin Laplasyen matrisi L̄(Σ), f ∈ Rm

özvektörü ile 1 özdeğerine sahip olsun. f , Σ grafının tepeleri dışıdaki değerleri

0 olacak şekilde genişletildiğinde, ne f fonksiyonu L̄(Γ) matrisinin özvektörü ve

ne 1 özdeğeri L̄(Γ) matrisinin özdeğeri, olmak zorunda değildir. Fakat Γ grafı,

Σ motifi ile çoğaltma yapıldığında, genişletilmiş grafın normalize Laplasyen

matrisi 1 özdeğerine sahip olacaktır. Σ motifi ile elde edilmiş graf ΓΣ ile

gösterilsin. ΓΣ grafı, Γ grafından , Σ motifinin, Σ′ ile gösterilen kopyasının grafa

eklenmesi ile elde edilmiştir. u1, . . . , um kopya tepelerinden oluşan Σ′ grafı,

Σ motifinin tepeleri ile aynı tepe bağlantılarına ve ayrıt işarelerine sahiptir.

Ayrıca, herbir uα ∈ V (Σ′) tepesi, vα ∈ V (Σ) tepelerinin Σ motifi dışındaki

bütün açık komşulukları ile bitişiktir.

İşaretsiz graflar için, motif çoğaltma ve bu işlemin 1 özdeğeri üzerine et-

kisi, normalize Laplasyen matrisler için çalışılmıştır (Banerjee and Jost, 2008).

Bu kısımda, elde edilmiş bu sonuçlar, işaretli graflara genişletilecektir. Buna

ek olarak, ardışık büzme sonrası 1 özdeğeri ile ilgili sonuçlar elde edileceltir.

Teorem 3.7 Γ işaretli bir graf, Σ, Γ grafının motifi, Σ′ motifin kopyası ve ΓΣ,

Γ grafından motif çoğaltma ile elde edilmiş işaretli graflar olsun. Eğer L̄(Σ)

matrisi 1 özdeğerine sahipse, L(ΓΣ) matrisi, vα ∈ Σ ve uα ∈ Σ′ tepeleri dışında

0 değerine sahip olan f özfonksiyonu ile 1 özdeğerine sahiptir.

İspat. Γ ve Σ sırasıyla n ve m dereceli işaretli graflar olsun. f , L̄(Σ)

matrisinin 1 özdeğerine karşılık gelen özfonksiyonu ve d′vα , vα ∈ V (Σ)

tepesinin Σ grafındaki derecesi (veya uα ∈ V (Σ′) tepesinin Σ′ grafındaki

derecesi) olsun. Böylece, (23) denkleminden, i ∈ V (Σ) veya V (Σ′) tepesi için∑
j, j∼i σ(i, j) f(j)√

d′j
= 0 olduğu söylenir. Ayrıca, i ∈ V (ΓΣ) için di, i tepesinin ΓΣ

grafındaki derecesini göstermek üzere g ∈ Rn+m fonksiyonu aşağıdaki şekilde

tanımlansın

g(i) =


f(vα)

√
dvα√
d′vα

eğer i = vα ∈ V (Σ),

−f(vα)

√
dvα√
d′vα

eğer i = uα ∈ V (Σ′),

0 aksi halde.
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O zaman

L̄(ΓΣ)g(i) = g(i)− 1√
di

∑
j, j∼i

σ(i, j)
g(j)√
dj

where i, j ∈ V (ΓΣ)

şeklinde ifade edilebilir. Eğer i ∈ V (Σ) ise∑
j, j∼i

σ(i, j)
g(j)√
dj

=
∑

j∈V (Σ)

σ(i, j)
g(j)√
dj

+
∑

j /∈V (Σ)

σ(i, j)
g(j)√
dj

=
∑

j∈V (Σ)

σ(i, j)
f(j)√
d′j

+
∑

j /∈V (Σ)

σ(i, j)
g(j)√
dj

= 0 + 0 = 0

olduğu elde edilir. Benzer düşünce ile, her i ∈ V (Σ′) için,
∑

j, j∼i σ(i, j) g(j)√
dj

= 0

olduğu kolayca gösterilir. Eğer i /∈ V (Σ) veya V (Σ′) ise∑
j, j∼i

σ(i, j)
g(j)√
dj

=
∑

j∈V (Σ)

σ(i, j)
g(j)√
dj

+
∑

j∈V (Σ′)

σ(i, j)
g(j)√
dj

+
∑

j /∈V (Σ)
j /∈V (Σ′)

σ(i, j)
g(j)√
dj

=
∑

j∈V (Σ)

σ(i, j)
f(j)√
d′j
−

∑
j∈V (Σ′)

σ(i, j)
f(j)√
d′j

+ 0

= 0

olduğu elde edilir. Böylece, her i ∈ V (ΓΣ için,
∑

j, j∼i σ(i, j) g(j)√
dj

= 0 sonucuna

ulaşılmış olunur. Böylece, 1, L̄(ΓΣ) matrisinin g özvektörüne karşılık gelen

özdeğer olduğu ispatlanmış olur.

3.6.3 Ardışık büzme

Şimdi ardışık büzme işleminin 1 özdeğerine etkisini inceleyelim.

Teorem 3.8 Γ = (G, σ), n tepeli işaretli bir graf ve G grafının baskınlık

sayısı γ(G) = k olsun. S = {v1, . . . , vk} bir γ(G)-kümesi ve V nin her tepesi

herhangi bir vα ∈ S tepesinin S-özel komşusu olmak üzere eğer L̄(Γ) matrisi

1 özdeğerine sahip ve karşılık gelen özfonksiyon f , her i ∈ S için f(i) = 0 ise

L̄(Γ/{v1, . . . , vk}) matrisi 1 özdeğerine sahiptir.

İspat. Bölüm 3.4’den eğer Γ nın her tepesi herhangi bir vα ∈ S S-özel

komşuluğu ise Γ/{v1, . . . , vk} işleminin iyi tanımlı olduğu ve
⋂
vα∈SN(vα) = ∅
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olduğu biliniyor. f , 1 özdeğerine karşılık gelen L̄(Γ) matrisinin özvektörü olmak

üzere, (23) denkleminden, her i ∈ V (Γ) tepesi için

∑
j∼i
σ(i, j)

f(j)√
dj

= 0

dır. Notasyonel yükten kurtulmak için, (k−1). ardışık büzülmeden sonra oluşan

yeni tepe w = ((. . . ((v1v2)v3) . . . vk)) ile gösterilsin.

L̄(Γ/{v1, . . . , vk}) matrisi için aşağıdaki gibi bir g fonksiyonu tanımlansın

g(i) =

 0, eğer i = w,

f(i), aksi halde.

V deki hertepe herhangi bir vα ∈ S tepesinin S-özel komşuluğunda olduğu için,

w tepesinin komşuları her vα ∈ S tepesinin komşuluklarının ayrık birleşimde

olduğu biliniyor. Diğer bir ifade ile, w ∈ Γ/{v1, . . . , vk} tepesi için, N(w) =

N(v1)∪N(v2)∪ · · · ∪N(vk) için
⋂
vα∈SN(vα) = ∅ dir. Böylece, her vα ∈ S için

σ(vα, j) = σ(w, j) ve
∑
vα∼j

σ(vα, j)
f(j)√
dj

= 0 olduğundan, eğer i = w ise

∑
j, j∼i

σ(i, j)
g(j)√
dj

=
∑

j∈N(v1)

σ(w, j)
g(j)√
dj

+ · · ·+
∑

j∈N(vk)

σ(w, j)
g(j)√
dj

=
∑

j∈N(v1)

σ(w, j)
f(j)√
dj

+ · · ·+
∑

j∈N(vk)

σ(w, j)
f(j)√
dj

= 0 + · · ·+ 0 = 0

dır. Diğer yandan, eğer i 6= w durumu ele alınırsa; Ardışık büzmeden önce,

vα ∈ S için f(vα) = 0 ve vα tepesine bitişik bir i ∈ V (Γ) tepesi için, (23)

denkleminden ,∑
j,j∼i

σ(i, j)
f(j)√
dj

= σ(i, vα)
f(vα)√
dvα

+
∑
j∼i
j 6=vα

σ(i, j)
f(j)√
dj

= 0 +
∑
j∼i
j 6=vα

σ(i, j)
f(j)√
dj

= 0

olduğu biliniyor. Buradan, ∑
j∼i
j 6=vα

σ(i, j)
f(j)√
dj

= 0 (24)
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olduğu elde edilir. Ardışık büzme işleminden sonra, i tepesi, w tepesi ile ve

ayrıca vα tepesi dışındaki büzme işleminden önce komşu olduğu aynı tepelere

komşu olacaktır. (24) denkleminden,
∑
j∼i
j 6=w

σ(i, j) g(j)√
dj

=
∑
j∼i
j 6=vα

σ(i, j) f(j)√
dj

= 0

olduğundan; ∑
j,j∼i

σ(i, j)
g(j)√
dj

= σ(i, w)
g(w)√
dw

+
∑
j∼i
j 6=w

σ(i, j)
g(j)√
dj

= 0 +
∑
j∼i
j 6=w

σ(i, j)
f(j)√
dj

= 0.

dır. Böylece, her i ∈ V (Γ/{v1, . . . , vk}) için,∑
j∼i

σ(i, j)
g(j)√
dj

= 0

elde edilir. Sonuç olarak, 1, L̄(Γ/{v1, . . . , vk}) matrisinin özdeğeri olduğu

ispatlanmış olur.
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4 İŞARETLİ GRAFLARDA İŞLEMLER VE

LAPLASYEN ÖZDEGERLER

Bu bölümde, işaretli graflar için birkaç graf operasyonu ve onların Laplas-

yen özdeğerlerine etkisi ele alınacaktır. İşaretli grafların Kartezyen, Cvétkovic

(NEPS) çarpımları ve çizgi grafları Zaslavsky tarafından çalışılmış, Laplasyen

ve bitişiklik matrisinin spektrumu ve enerjileri ile ilgili sonuçlar elde edilmiştir

(Zaslavsky et al., 2011). Tezin bu kısmındaki amaç, işaretli graflar ile yapılan

join, tamamlayıcı prizmalar ve coalescence işlemlerinin, grafın dengesine olan

etkisinden söz etmek ve Laplasyen özdeğerler ile ilgili sonuçlar vermektir.

Ayrıca, herbir operasyon için ortaya çıkan grafın Laplasyen özdeğerlerini,

işleme giren grafların Laplasyen özdeğerleri ile ilişkilendirmektir. Öncelikle, bu

bölümde Laplasyen özdeğerlerin ilişkilendirilmesinde sıkça kullanılacak olan

majorizasyon kavramı ile ilgili tanım ve teoremden söz edelim.

Tanım 4.1 (Grone and Merris, 1990)Farzedelim ki b = (b1, . . . , bp) ve c =

(c1, . . . , cq) artmayan sırada sıralanmış, negatif olmayan reel değerli diziler

olsun. Eğer,
k∑
i=1

bi ≥
k∑
i=1

ci, 1 ≤ k ≤ min{p, q}

ve
p∑
i=1

bi =
q∑
i=1

ci

ise b dizisi c dizisini majorize eder denir ve c ≺ b ile gösterilir.

Teorem 4.1 (Horn et al., 1985)(Fan, 1954) Eğer H ve H̄, H11 : l × l, H22 :

m×m, l +m = n, olmak üzere, aşağıdaki formda, n× n türünde Hermitian

matrisler ise

H =

H11 H12

H21 H22

 , H̄ =

H11 0

0 H22

 ,
(λ(H11), λ(H22)) = λ(H̄) ≺ λ(H) (25)

dir.
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4.1 İşaretli Grafların Laplasyen Matrisleri için Join

İşlemi

Γ1 = (G, σ1) ve Γ2 = (H, σ2), sırasıyla n ve m tepeli iki işaretli graf

olsun. Bu iki grafın Γ1 + Γ2 ile gösterilen join işlemi, Γ1 ve Γ2 graflarının,

Γ1 ∪ Γ2 = (V (Γ1)∪ V (Γ2), E(Γ1)∪E(Γ2))), Γ1 şeklinde tanımlı birleşiminden,

Γ1 işaretli grafının her tepesinden Γ2 işaretli grafının her tepesine positif ayrıt

eklenerek elde edilmiş n+m tepeli bir graf olarak tanımlanır. Γ1 ve Γ2 grafları

arasındaki ayrıtları i ∈ V (Γ1) ve j ∈ V (Γ2) olmak üzere (i, j) ∈ E(Γ1,Γ2) ile

gösterilsin. Sıradaki Lemma, işaretli graflarda tanımlı join işleminin dengesi ile

ilgilidir.

Lemma 4.1 Γ1,Γ2, . . . ,Γk işaretli graflar olsun. Eğer bu işaretli graflardan

en az birtanesi negatif ayrıt içeriyorsa, bu grafların join işlemi sonucu elde

edilmiş graf Γ1 + Γ2 + . . .+ Γk dengesizdir.

İspat. Γi işaretli grafı (vi, vj) ∈ E(Γi) negatif ayrıtını içerdiği kabul edilsin.

Böylece, i 6= j olmak üzere, vk ∈ V (Γj) için join işlemi sonucunda, vi, vj, vk

tepelerinden oluşan bir tane C3 negatif döngüsü elde edilir. Buradan, Γ1 +Γ2 +

. . .+ Γk grafının dengesiz olduğu sonucuna ulaşılır.

Lemma 4.2 Γ = (G, σ), θ : V → {+,−} işaret fonksiyonu ile G grafından

dönüştürülen, n tepeli, dengeli bir işaretli graf olsun. Eğer, f = (f1, f2, . . . , fn)

fonksiyonu, L(G) matrisinin, λ özdeğerine karşılık gelen bir özfonksiyon ise

Γ = (G, σθ) işaretli grafının, λ Laplasyen özdeğerine karşılık gelen özfonksi-

yonu f ′ = (θ(1)f1, θ(2)f2, . . . , θ(n)fn) şeklindedir.

İspat. f = (f1, f2, . . . , fn) fonksiyonunun λi Laplasyen özdeğerine karşılık

gelen özfonksiyon olduğu biliniyor. Laplasyen matrisin operasyonel tanımı (1)

ve L(G)fi = λifi olduğu bilgisi kullanılarak;

difi −
∑
i∼j
fj = λifi (26)
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denklemi elde edilir. Eğer Γ, dengeli bir graf ise (Γ, σ) ∼ (G,+) eş dönüştürülmüş

graflardır ve aynı Laplasyen spektruma sahiptir, (Hou, 2005). f ′ = (f ′1, f
′
2, . . . , f

′
n),

L(Γ) = D(Γ) − As(Γ) matrisinin λi özdeğerine karşılık gelen özvektör olsun.

θ : V → {+,−} işaret fonksiyonu ile i, j ∈ V (G) tepeleri işaretlenerek,

e = (i, j) ∈ E(G) ayrıtları σθ(e) = θ(i)σ(e)θ(j) olacak şekilde dönüştürülür.

Böylece, L(Γ) matrisi, (G,+) grafının, θ ile Γ grafına dönüştürülmesinden

sonra aşağıdaki şekilde ifade edilir:

Lij(Γ) =


di , eğer i = j ise

−θ(i)θ(j) , eğer i bitişik j ise

0 , aksi halde

f ′ fonksiyonunu Laplasyen matrisin operasyonel tanımına uygulanarak,

dif
′
i −

∑
i∼j
θ(i)θ(j)f ′j = λif

′
i (27)

denklemi elde edilir. (26) ve (27) denklemlerinden∑
i∼j
fj

fi
=

∑
i∼j
θ(i)θ(j)f ′j

f ′i

=

∑
i∼j
θ(j)f ′j

θ(i)f ′i

dir. Böylelikle, her i ∈ V (Γ) için, f ′i = θ(i)fi elde edilmiş olur.

Sıradaki bölümlerde, iki grafın join işleminden sonra, λmin(Γ) özdeğerinin,

grafların denge durumları göz önünde bulundurularak, üst sınır değerleri

incelensin.

4.1.1 Bir dengeli, bir dengesiz grafın join işlemi

Γ1 dengesiz ve Γ2 dengeli işaretli graflar olsun. Buradan, Γ1 ve Γ2 graf-

larının spektrumlarını sırası ile (λmin(Γ1), . . . , λmax(Γ1)) ve (0, λmin(Γ2), . . . ,

λmax(Γ2)) şeklinde gösterilsin. Lemma 4.1 den, Γ1+Γ2 grafının dengesiz olduğu

biliniyor. Sıradaki sonuçta, Γ1 +Γ2 grafının Laplasyen matrisinin sıfırdan farklı

en küçük özdeğeri için bir üst sınır elde edilecektir.
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Önerme 4.1 Γ1 = (G, σ1) ve Γ2 = (H, σ2) sırasıyla dengesiz n tepeli ve

dengeli m tepeli işaretli graflar olmak üzere

λmin(Γ1 + Γ2) ≤ n

dir. Eşitlik durumu, σ 6= + ve tam iki tane (Km
2
,+) alt graf içeren Γ2 =

(Km, σ) grafı için sağlanır.

İspat. θ : V → {+,−}, (H,+) = (H, σθ2) olacak şekilde bir işaret fonksiyonu

olsun. Böylece, Lemma 4.2 den, L(Γ2) matrisinin 0 özdeğerine karşı gelen

özfonksiyonu y = (θ(1) 1√
m
, . . . , θ(m) 1√

m
) şeklinde tanımlansın. Aşağıdaki gibi

bir f fonksiyonu tanımlansın:

fi =

 0 , eğer i ∈ Γ1 ise

yi , eğer i ∈ Γ2 ise

f = (fi) ∈ Rn+m

λmin(Γ1 + Γ2) ≤

∑
(ij)∈E(Γ1+Γ2)

(fi − σ(i, j)fj)
2

∑
i

f 2
i

= (
∑

(ij)∈E(Γ1)

(fi − σ(i, j)fj)
2 +

∑
(ij)∈E(Γ2)

(fi − σ(i, j)fj)
2

+
∑

(ij)∈E(Γ1,Γ2)

(fi − fj)2)

= 0 + 0 + n ·m · 1

m

= n

olduğu elde edilir. Eşitlik durumu için, y = (θ(1) 1√
m
, . . . , θ(m) 1√

m
), L(Γ2)

matrisinin 0 özdeğerine karşılık gelen özfonksiyon olduğu biliniyor. Eğer f ,

λmin(Γ1 + Γ2) matrisinin özfonksiyonu ise L(Γ1 + Γ2) matrisinin

L(Γ1 + Γ2) =

L(Γ1) +mIn −1n×m

−1m×n L(Γ2) + nIm


formundan ötürü

∑
i∈V (Γ2)

yi toplamı, 0 değerine eşit olmalı. Böylece, L(Γ1 +

Γ2)f = λ(Γ1 + Γ2)f eşitliğinden λ(Γ1 + Γ2) = n olduğu elde edilir. λmax(σ) ≤

λmax(−) olduğunu biliniyor (Hou et al., 2003). Buradan anlaşılır ki, üst sınır

değerine ulaşmak için, Γ2 grafının
∑

i∈V (Γ2)

yi = 0 olacak şekilde maximum sayıda
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negatif ayrıt içermesi gereklidir. Maximum sayıda negatif ayrıt içerebilmesi

için grafın ayrıt sayısının en fazla sayıya ulaşması gerekli, yani Γ2 grafı Km

formunda olmalı.
∑

i∈V (Γ2)

yi = 0 olduğundan y özfonksiyonu m
2

tane negatif ve

m
2

tane pozitif bileşene sahiptir. Bu formda bir dengeli Γ2 grafı oluşturmak için,

(Km,+
θ) = (Γ2) olacak şekilde öyle bir θ : V → {+,−} fonksiyonu vardır ki,

grafının m
2

tane tepesini negatif, m
2

tane tepesini pozitif ile işaretlenir. Böylece,

Γ2 grafının iki tane (Km
2
,+) alt grafa sahip olduğu sonucu elde edilir.

4.1.2 İki dengeli işaretli grafın join işlemi

Γ1 = (G, σ1) ve Γ2 = (H, σ2) iki dengeli işaretli graf ve en az bir tanesi

negatif ayrıt içersin. Lemma 4.1 den join işlemi sonrasında elde edilen Γ1 +

Γ2 grafının dengesiz olduğu biliniyor. Bu şartlar altında Laplasyen matrisin

sıfırdan farklı en küçük özdeğerinin, üst sınırı incelensin.

Önerme 4.2 Γ1 = (G, σ1) ve Γ2 = (H, σ2) sırasıyla n ve m tepeli ve en az bir

tanesi negatif ayrıf içeren dengeli işaretli graflar olsun. Bu durumda Laplasyen

matrisin sıfırdan farklı en küçük özdeğeri;

λmin(Γ1 + Γ2) ≤ min{m,n}

dır.

İspat. m ≤ n ve x = (xi) ∈ Rn, ‖x‖ = 1 olacak şekilde, L(Γ1) matrisinin

0’a karşılık gelen özfonksiyonu olsun. Aşağıdaki şekilde bir f = (fi) ∈ Rn+m

fonksiyonu tanımlansın:

fi =

 xi eğer i ∈ Γ1 ise

0 eğer i ∈ Γ2 ise
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λmin(Γ1 + Γ2) ≤ inf
f∈Rn+m

∑
(i,j)∈E(Γ1+Γ2)

(fi − σ(i, j)fj)
2

∑
i

f 2
i

= inf
f∈Rn+m

∑
(i,j)∈E(Γ1)

(fi − σ(i, j)fj)
2 +

∑
(i,j)∈E(Γ2)

(fi − σ(i, j)fj)
2

∑
i

f 2
i

+

∑
(i,j)∈E(Γ1,Γ2)

(fi − fj)2

∑
i

f 2
i

= inf
f∈Rn+m

(
∑

(i,j)∈E(Γ1)

(fi − σ(i, j)fj)
2 +

∑
(i,j)∈E(Γ2)

(fi − σ(i, j)fj)
2

+
∑

(i,j)∈E(Γ1,Γ2)

(fi − fj)2)

= 0 + 0 + inf
f∈Rn+m

∑
(i,j)∈E(Γ1,Γ2)

(fi − fj)2 = n.m.
1

n
= min{n,m}

olduğu sonucuna ulaşılır.

4.1.3 Dengesiz iki işaretli grafın join işlemi

Γ1 = (G, σ1) ve Γ2 = (H, σ2) iki işaretli dengesiz graf olsun. Lemma 4.1

den, bu iki grafın joini sonucu elde edilen Γ1 + Γ2 grafının dengesiz olduğu

biliniyor. Sıradaki sonuç, bu türdeki bir join işlemi için, Laplasyen matrisin

sıfırdan farklı en küçük özdeğerinin üst sınırı ile ilgilidir.

Önerme 4.3 Γ1 = (G, σ1) ve Γ2 = (H, σ2) sırasıyla n ve m tepeli dengesiz iki

işaretli graf olsun. Γ1 + Γ2 grafının Laplasyen matrisinin en küçük özdeğeri

λmin(Γ1 + Γ2) ≤ min{λmin(Γ1) +m, λmin(Γ2) + n}

dir.

İspat. ‖x‖ = 1 olmak üzere, x ∈ Rn vektörü, L(Γ1) Laplasyen matrisinin,

λmin(Γ1) özdeğerine karşılık gelen özvektörü ve ‖y‖ = 1 olmak üzere, y ∈

Rm vektörü, L(Γ2) Laplasyen matrisinin λmin(Γ2) özdeğerine karşılık gelen

özvektörü olsun. Aşağıdaki formda bir f fonksiyonu tanımlansın

fi =

 xi eğer i ∈ Γ1 ise

0 eğer i ∈ Γ2 ise
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Bu durumda;

λmin(Γ1 + Γ2) ≤ inf
f∈Rn+m

∑
(i,j)∈E(Γ1+Γ2)

(fi − σ(i, j)fj)
2

∑
i

f 2
i

= inf
f∈Rn+m

∑
(i,j)∈E(Γ1)

(fi − σ(i, j)fj)
2 +

∑
(i,j)∈E(Γ2)

(fi − σ(i, j)fj)
2

∑
i

f 2
i

+

∑
(i,j)∈E(Γ1,Γ2)

(fi − fj)2

∑
i

f 2
i

= λmin(Γ1) + 0 + inf
f∈Rn+m

∑
(i,j)∈E(Γ1,Γ2)

(fi − fj)2

= λmin(Γ1) +m.n.
1

n
= λmin(Γ1) +m

Benzer şekilde, aşağıdaki gibi bir g fonksiyonu tanımlanarak:

gi =

 0 eğer i ∈ Γ1

yi eğer i ∈ Γ2

λmin(Γ1+Γ2) ≤ λmin(Γ1)+n olduğu sonucuna ulaşılır. Böylece, λmin(Γ1+Γ2) ≤

min{λmin(Γ1) +m, λmin(Γ2) + n} eşitsizliği elde edilmiş olur.

4.2 İşaretli Grafların Laplasyen Matrisinin Özdeğerleri

için Tamamlayıcı Prizmalar İşlemi

Bu bölümde, (Haynes et al., 2009) de tanımlanan tamamlayıcı prizma

işleminin işararetli graflara genişletilmesinden sonra, Laplasyen matrisin sıfırdan

farklı en küçük ve en büyük özdeğerleri ile ilgili sınırlar verilecektir.

Tanım 4.2 GG ile gösterilen G grafının tamamlayıcı prizma grafı, G ve G

graflarının, ayrık birleşimleri olan G ∪G grafı üzerinde tanımlanır ve iki grafta

aynı etikete sahip tepeler arasında oluşturulan mükemmel eşleme işlemi ile

oluşturulur.

Aynı işlem işaretli graflar için de tanımlanabilir. İşaretli tamamlayıcı prizma

grafı, Γ = (G, σ1) işaretli bir graf ve Γ = (G, σ2), Γ grafının tümleyen işaretli
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Şekil 4.1: C5C5 işaretli Tamamlayıcı Prisma grafı

grafı olmak üzere, iki grafın aynı etikete sahip tepeleri arasına mükemmel

eşleme ile pozitif işaretli ayrıt eklenerek elde edilir ve Γ ve Γ şeklinde gösterilir.

Şekil 4.1’de de görüldüğü gibi, Γ = (C5, σ1) işaretli grafı ve onun tümleyen

işaretli grafı Γ = (C5, σ2), üzerinde tanımlanan tamamlayıcı prizma işlemi ile

oluşturulan, işaretli Petersen grafıdır. Literatürde tamamlayıcı prizma işlemi

sonucu oluşan grafın Laplasyen matrisinin özdeğerleri ile ilgili işaretli ve

işaretsiz graflar için bir sonuç bulunmamaktadır. Bu bölümde, tamamlayıcı

prizma işleminin Laplasyen spektrumuna ait sonuçlar elde edilecektir. Sıradaki

sonuçta, tamamlayıcı prizma işlemi sonrası grafın dengeliliği incelenecektir.

Böylelikle, grafın denge durumlarına göre Laplasyen matrisin özdeğerleri için

majorizasyon kavramından yararlanılarak, sınır değerler elde edilecektir.

4.2.1 Tamamlayıcı prizmaların dengeliliği

Teorem 4.2 Γ = (G, σ1) ve Γ = (G, σ2) dengeli işaretli graflar olmak üzere,

en az bir tanesi negatif ayrıt içersin. Γ ve Γ graflarını sırasıyla (G,+) ve (G,+)

graflarına çevirebilen, i ∈ Γ, i ∈ Γ olmak üzere, θ(i) = θ(i) olacak şekilde öyle

bir θ : V → {+,−} fonksiyonu varsa, ΓΓ tamamlayıcı prizma grafı dengeli

işaretli bir graftır.
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İspat. Eğer θ(i) = θ(i) ise (ΓΓ, σ) grafı (GG,+) grafına dönüştürülebilir.

Yorum 4.1 ΓΓ dengeli işaretli bir graf ve f = (x1, . . . , xn, y1, . . . , yn), λ

özdeğerine karşılık gelen L(GḠ) matrisinin özfonksiyonu olmak üzere her

i ∈ V (ΓΓ̄) için Lemma 4.2 ve (4) denklemi kullanılarak;

(di + 1)θ(i)xi −
∑
j∼i
aσijθ(j)xj − θ(i)yi = θ(i)λxi

(di + 1)θ(i)xi − θ(i)
∑
j∼i
θ2(j)xj − θ(i)yi = θ(i)λxi (28)

(di + 1)xi −
∑
j∼i
xj − yi = λxi

elde edilir. Böylece, tamamlayıcı prizma grafı dengeli olduğunda, θ(i) işaret

fonksiyonu işaretsiz graflarda olduğu gibi ihmal edilebilir.

Teorem 4.3 Γ veya Γ dengesiz işaretli graf ise ΓΓ dengesizdir.

4.2.2 Majorizasyon ve tamamlayıcı prizmalar

Bu kısımda L(ΓΓ̄) matrisinin özdeğerleri ile ΓΓ̄ grafını oluşturan Γ ve

Γ̄ graflarının Laplasyen matrisinin özdeğerleri arasındaki ilişki majorizasyon

kavramından yararlanarak incelenecektir.

Teorem 4.4 ΓΓ̄, Γ grafının tamamlayıcı prizması ise (λ(Γ) + 1, λ(Γ̄) + 1) ≺

λ(ΓΓ̄) dir.

İspat.

L(ΓΓ̄) =

L(Γ) + In −In
−In L(Γ̄) + In

 , L′ =
L(Γ) + In 0

0 L(Γ̄) + In


olmak üzere, Teorem 4.1 yi uygulanarak

(λ(Γ) + 1, λ(Γ̄) + 1) = (λ(L(Γ) + In), λ(L(Γ̄) + In) ≺ λ(ΓΓ̄)

elde edlilir.
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4.2.3 Γ ve Γ grafları dengeli, ΓΓ̄ grafı dengesiz olduğunda

Γ = (G, σ1) ve Γ = (G, σ2), n tepeli dengeli işaretli graflar ve onların

tamamlayıcı prizması ΓΓ̄, 2n tepeli dengesiz graf olmak üzere; L(Γ), L(Γ̄) ve

L(ΓΓ̄) matrislerinin spektrumu sırasıyla, azalmayan formda (0, λmin(Γ), · · · , λmax(Γ)),

(0, λmin(Γ̄), · · · , λmax(Γ̄)) ve (λmin(ΓΓ̄), · · · , λmax(ΓΓ̄)) şeklinde gösterilsin. Sıradaki

sonuçta, λmin(ΓΓ̄) özdeğeri için bir üst sınır değeri verilecektir.

Önerme 4.4 Γ = (G, σ1) ve Γ = (G, σ2) n tepeli dengeli işaretli graflar ve ΓΓ̄

2n tepeli dengesiz işaretli graf olsun. L(ΓΓ̄) matrisinin en küçük özdeğeri için

λmin(ΓΓ̄) ≤
⌊n

2

⌋
.
2

n

dir.

İspat. Γ = (G, σ1), n tepeli dengeli grafının Laplasyen matrisi için, 0 bir

özdeğerdir. ‖x‖ = 1 olmak üzere, x = ±(θ(1) 1√
n
, . . . , θ(n) 1√

n
), L(Γ) matrisinin

0 özdeğerine karşılık gelen özfonksiyonu olsun. Benzer şekilde ‖y‖ = 1 olmak

üzere y = ±(θ′(1̄) 1√
n
, . . . , θ′(n̄) 1√

n
), L(Γ̄) matrisnin 0 özdeğerine karşılık

gelen özfonksiyonu olsun. Aşağıdaki şekilde bir f = (fi) ∈ R2n fonksiyonu

tanımlansın:

fi =

 xi√
2

eğer i ∈ Γ ise

yi√
2

eğer i ∈ Γ̄ ise

Böylece,

λmin(ΓΓ̄) ≤ inf
f∈Rn+m

∑
i∼j

(i,j)∈E(ΓΓ̄)

(fi − σ(i, j)fj)
2

∑
i

f 2
i

= inf
f∈R2n

∑
(i,j)∈E(Γ)

(fi − σ(i, j)fj)
2 +

∑
(i,j)∈E(Γ̄)

(fi − σ(i, j)fj)
2 +

∑
(i,j)∈E(Γ,Γ̄)

(fi − fj)2

∑
i

f 2
i

= 0 + 0 + inf
f∈R2n

∑
(i,j)∈E(ΓΓ̄)

(fi − fj)2 ≤
⌊n

2

⌋
.
2

n

üst sınırı elde edilir.

Şimdi de λmax(ΓΓ̄) en büyük özdeğeri ile ilgili sıradaki sonuç verilsin:
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Önerme 4.5 Γ ve Γ̄ grafları n tepeli dengeli graflar iken, ΓΓ̄ grafı, 2n tepeli

dengesiz işaretli graf olsun. L(ΓΓ̄) matrisinin en büyük özdeğeri için

λmax(ΓΓ̄) ≥ max{λmax(Γ), λmax(Γ̄)}+ 1

dir.

İspat. b = (λmax(ΓΓ̄), . . . , λmin(ΓΓ̄)), artmayan sırada yazılmış L(ΓΓ̄) matrisi-

nin spektrumunun dizisi ve c = (max{λmax(Γ), λmax(Γ̄)}+1, . . . ,min{λmin(Γ),

λmin(Γ̄)}+1, 1, 1), λ(L(Γ)+In) ve λ(L(Γ̄)+In) matrislerinin artmayan sırayla

yazılmış spektrumlarının dizisi olsun. Teorem 4.4’den biliniyor ki b dizisi c yi

majorize eder. Böylece Tanım 4.1’den;

k∑
i=1

bi ≥
k∑
i=1

ci, 1 ≤ k ≤ 2n (29)

ve
2n∑
i=1

bi =
2n∑
i=1

ci (30)

dir. Eğer k = 1 ise λmax(ΓΓ̄) ≥ max{λmax(Γ), λmax(Γ̄)}+ 1 elde edilir.

Yorum 4.2 (29) ve (30) denklermlerinden
2n−1∑
i=1

bi ≥
2n−1∑
i=1

ci ve
2n∑
i=1

bi =
2n∑
i=1

ci

olduğu biliniyor. Buradan, λmin(ΓΓ̄) ≤ 1 olduğunu söylenebilir. Böylece,

Önerme 4.4 de elde edilen sonuç sağlanır.

Sıradaki teorem ΓΓ̄ grafının dengeli olup olmadığından bağımsız olarak, Γ ve

Γ̄ grafları dengeli olduğu durumlar için söylenebilen bir sonuçtur.

Teorem 4.5 Γ ve Γ̄ n tepeli dengeli işaretli graflar, λ ve λ̄, sırasıyla L(Γ) ve

L(Γ̄) matrislerinin bir özdeğeri olmak üzere; L(ΓΓ̄) matrisi, 1 veya λ + λ̄ + 1

özdeğerlerine sahip olması için gerek ve yeter koşul λλ̄ = 1 dir.

İspat. x = (x1, . . . , xn), L(Γ) matrisinin λ özdeğerine karşılık gelen özvektörü ve

y = (y1, . . . , yn), L(Γ̄) matrisinin λ̄ özdeğerine karşılık gelen özvektörü olsun.

Aşağıdaki şekilde bir f = (fi) ∈ R2n fonksiyonu tanımlansın

fi =

 xi eğer i ∈ Γ ise

yi eğer i ∈ Γ̄ ise
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L(ΓΓ̄) matrisinin bir λ′ özdeğerine karşılık gelen u özvektörü için

L(ΓΓ̄)u = λ′u (31)

eşitliği yazılabilir. ΓΓ̄ grafındaki, her i ∈ V (Γ) tepesi için, f fonksiyonunu (4)

ve (31) denklemlerine uygularsak

(di + 1)xi −
∑
i∼j
aσijxj − yi = λ′xi

λxi + xi − yi = λ′xi (32)

elde edilir. Benzer şekilde, ΓΓ̄ grafındaki, her i ∈ V (Γ̄) tepesi için

(di + 1)yi −
∑
i∼j
aσijyj − xi = λ′yi

λ̄yi + yi − xi = λ′yi (33)

dir. (32) ve (33) denklemlerinin birleşiminden

−yi = (λ′ − λ− 1)xi

−xi = (λ′ − λ̄− 1)yi

⇒

(λ′ − λ− 1)(λ′ − λ̄− 1) = 1 (34)

denklemi elde edilir. (34) denkleminin köklerinin hesabından, λ′ = 1 ve λ′ =

λ+ λ̄+1 ise λλ̄ = 1 olduğu, eğer λλ̄ = 1 ise , λ′ = 1 veya λ′ = λ+ λ̄+1 olduğu

kolayca görülür.

4.2.4 ΓΓ̄ grafı dengeli ise

Teorem 4.6 ΓΓ̄ grafı, Γ ve Γ̄ graflarından oluşmuş 2n tepeli dengeli tamam-

layıcı prizma grafı olsun. 2, L(ΓΓ̄) matrisinin özdeğeridir.

İspat.
n∑
i=1

xi = −
n∑
i=1

yi 6= 0 olacak şekilde bir f = (x1, x2, . . . , xn, y1, . . . , yn)

fonksiyonu tanımlansın. ΓΓ̄ dengeli bir graf olduğu için, Yorum 4.1 da

belirtildiği gibi yapılan işlemlerde işaret ihmal edilebilir, graf işaretsiz bir

graf gibi ele alınabilir. Bir L(ΓΓ̄) matrisinin, λ 6= 0 özdeğerine karşılık gelen
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bir g özvektörü olsun. 0 özdeğerinden farklı bir özdeğere karşılık gelen bir g

özvektörü için
2n∑
i=1

gi = 0 dır. Böylece, di, i ∈ V (ΓΓ̄) tepesinin derecesi olmak

üzere, (1) denkleminden,

λg(i) := dig(i)−
∑
j, j∼i

g(j) (35)

denklemi yazılabilir. Eğer, her i ∈ V (Γ) tepesi için, f fonksiyonu (35)

denklemine uygulanırsa,

(d1 + 1)x1 −
∑
j∼1

xj − y1 = λx1

... =
... (36)

(dn + 1)xn −
∑
j∼n

xj − yn = λxn

eşitlikleri elde edilir. (36) de yeralan bütün denklemlerin toplamından

n∑
i=1

xi +
n∑
i=1

dixi −
n∑
i=1

dixi −
n∑
i=1

yi = λ
n∑
i=1

xi

bulunur.
n∑
i=1

xi = −
n∑
i=1

yi 6= 0 olduğu kullanılarak

2
n∑
i=1

xi = λ
n∑
i=1

xi

λ = 2

elde edilir. Benzer şekilde, her ī ∈ Γ̄ için, f fonksiyonu (35) denklemine

uygulanırsa

(d̄1 + 1)y1 −
∑
j∼1̄

yj − x1 = λy1

... =
... (37)

(d̄n + 1)yn −
∑

j∼n̄yj − xn = λyn

eşitlikleri elde edilir. (37) denklemlerindeki bütün eşitlikler toplanarak

n∑
i=1

yi +
n∑
i=1

d̄iyi −
n∑
i=1

d̄iyi −
n∑
i=1

xi = λ
n∑
i=1

yi

eşitliği bulunur. Tekrar f fonksiyonunun formunu kullanarak,

2
n∑
i=1

yi = λ
n∑
i=1

yi

λ = 2
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olduğu elde edilir. Böylece, ΓΓ̄ dengeli olduğu durumda, 2, L(ΓΓ̄) matrisinin

özdeğeridir ve
n∑
i=1

xi = −
n∑
i=1

yi 6= 0 olmak üzere f = (x1, x2, . . . , xn, y1, . . . , yn)

fonksiyonu, 2 özdeğerine karşılık gelen özfonksiyondur.

Yorum 4.3 Teorem 4.6 nin ispatında da gösterildiği gibi, ΓΓ̄ dengeli grafının

2 Laplasyen özdeğerine karşılık gelen f = (x1, x2, . . . , xn, y1, . . . , yn)

özfonksiyonunun formu aşağıdaki gibidir:

n∑
i=1

xi = −
n∑
i=1

yi 6= 0 (38)

Lemma 4.3 ΓΓ̄ = (GḠ, σ) grafı, Γ ve Γ̄ graflarının oluşturduğu, dengeli

işaretli bir tamamlayıcı prizma grafı olsun. λ1 = 0 < λmin(ΓΓ̄) ≤ · · · ≤

λmax(ΓΓ̄), L(ΓΓ̄) matrisinin spektrumu, λmin(ΓΓ̄) ve λmax(ΓΓ̄) özdeğerleri 2

den farklı olmak üzere

λmin(ΓΓ̄) + λmax(ΓΓ̄) = n+ 2 (39)

dir.

İspat. ΓΓ̄ grafı dengeli bir graf olduğundan, altında yatan GḠ grafının Lap-

lasyen spektrumu ile L(ΓΓ̄) matrisinin spektrumu aynıdır (Hou et al., 2003).

İşaret yükünden kurtulmak için, dengeli graf, işaretsiz olarak alınabilir. f =

(x1, . . . , xn, y1, . . . , yn) L(GḠ) matrisinin k. özdeğeri λk değerine karşılık gelen
n∑
i=1

xi = −
n∑
i=1

yi = 0 formundaki özfonksiyon olsun. (4) numaralı denklemden

g, L Laplasyen matrisinin λ özdeğerine karşılık gelen, özfonksiyonu ise di i

tepesinin derecesi olmak üzere

λg(i) := dig(i)−
∑

j, j∼i
σ(i, j)g(j) (40)

olduğunu biliniyor. f fonksiyonu (40) denklemine uygulanmak üzere, her i ∈

V (G) için

(di + 1)xi −
∑
j∼i
i,j∈G

xj − yi = λkxi (41)

eşitliği elde edilir. Benzer düşünce ile, her i ∈ V (Ḡ) için

(d̄i + 1)yi −
∑
j∼i
i,j∈Ḡ

yj − xi = λkyi (42)
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dir. Her i ∈ G için yazılan (41) denkleminin sol tarafındaki xi yerine −yi,

karşılığındaki ī ∈ Ḡ tepesi için aldığı yi değeri yerine xi değerleri alınarak

−(di + 1)yi +
∑
j∼i
i,j∈G

yj − xi = −(n− 1− d̄i + 1)yi +
∑
j∼i
i,j∈G

yj − xi

= −(n+ 1)yi + (d̄i + 1)yi +
∑
j∼i
i,j∈G

yj − xi

eşitliğine ulaşılır. (42) denklemi ve
n∑
i=1

yi = 0 toplamı kullanılarak devam edilirse

= −(n+ 1)yi +
∑
j∼i
i,j∈Ḡ

yj + xi + λkyi +
∑
j∼i
i,j∈G

yj − xi

= −(n+ 1)yi + λkyi − yi

= (λk − n− 2)yi

dır. Buradan,

−(di + 1)yi +
∑
j∼i
i,j∈G

yj − xi = −(n+ 2− λk)yi

elde edilir. Benzer şekilde, Her i ∈ Ḡ için yazılan (42) denkleminin sol

tarafındaki yi yerine xi, karşılığındaki i ∈ G tepesi için aldığı xi değeri yerine

−yi değeri alınarak

(d̄i + 1)xi −
∑
j∼i
i,j∈Ḡ

xj + yi = (n− 1− di + 1)xi −
∑
j∼i
i,j∈Ḡ

xj + yi

= (n+ 1)xi − (di + 1)xi −
∑
j∼i
i,j∈Ḡ

xj + yi

denklemi elde edilir. (41) denklemini ve −
n∑
i=1

xi = 0 olduğu kullanılarak devam

edilirse

= (n+ 1)xi −
∑
j∼i
i,j∈G

xj − yi − λkxi −
∑
j∼i
i,j∈Ḡ

xj + yi

= (n+ 1)xi − λkxi + xi

= (n+ 2− λk)xi

sonucuna ulaşılır. Böylece,

(d̄i + 1)xi −
∑
j∼i
i,j∈Ḡ

xj + yi = (n+ 2− λk)xi
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dir. Buradan, f ′ = (−y1, . . . ,−yn, x1, . . . , xn)’nin L(GḠ) için n + 2 − λk

özdeğerine karşılık gelen bir özfonksiyon olduğu anlaşılır. Diğer bir ifade ile,

L(GḠ) matrisinin öyle bir λm özdeğeri vardır ki

(λk + λm) = n+ 2 (43)

dir. Teoremin ifadesinde de bahsedildiği gibi, λmin(GḠ) ve λmax(GḠ) ın 2’den

farklı özdeğerlerdir. λmin(GḠ) + λmax(GḠ) 6= n + 2 olduğu kabul edilsin.

Kabulden ve (43) denkleminden

λm(GḠ) = λmin(GḠ)

λk(GḠ) < λmax(GḠ) (44)

olmak üzere,

λk(GḠ) + λmin(GḠ) = n+ 2 (45)

dır. Aynı şekilde, spektrumdaki 2 den farklı λn(GḠ) ve λt(GḠ) özdeğerleri için

(43) denklemi kullanılarak

λn(GḠ) = λmax(GḠ)

λt(GḠ) > λmin(GḠ) (46)

olmak üzere

λt(ΓΓ̄) + λmax(ΓΓ̄) = n+ 2 (47)

dir. (44) ve (46) denklemlerinin taraf tarafa toplamından

λmin(ΓΓ̄) + λk(ΓΓ̄) < λt(ΓΓ̄) + λmax(ΓΓ̄) (48)

eşitsizliği elde edilir. Fakat (45) ve (47) denklemleri ile (48) denklemi çelişmektedir.

Bu çelişki kabulden kaynaklanmaktadır. Böylece, (39) denklemine ulaşılmış

olur.

Önerme 4.6 ΓΓ̄ = (GḠ, σ), dengeli bir işaretli graf olsun. λmin(Γ) ve λmin(Γ̄)

sırasıyla Γ ve Γ̄ graflarının sıfırdan farklı en küçük Laplasyen özdeğerleri olmak

üzere, L(ΓΓ̄) matrisinin sıfırdan farklı en küçük Laplasyen özdeğeri için

λmin(ΓΓ̄) ≤ min{2, λmin(Γ) + λmin(Γ̄) + 2

2
}

dir.
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İspat. Graf dengeli olduğundan, işaretsiz olarak ele alınabilir. ‖x‖ = 1 olacak

şekilde, x = (x1, . . . , xn), L(Γ), λmin(Γ) Laplasyen özdeğerine karşılık gelen bir

özvektör ve ‖y‖ = 1 olacak şekilde y = (y1, . . . , yn) L(Γ̄), λmin(Γ̄) Laplasyen

özdeğerine karşılık gelen bir özvektör olsun. Laplasyen matrisin operasyonel

tanım (4) kullanılarak, her i ∈ Γ için, di, i ∈ V (Γ) tepe derecesini göstermek

üzere

dixi −
∑
j∼i

xj = λmin(Γ)xi (49)

dir. Benzer şekilde, her ī ∈ Γ̄ için, d̄i, ī ∈ V (Γ̄) tepe derecesini göstermek üzere

d̄iyi −
∑
j∼i

yj = λmin(Γ̄)yi (50)

dir. (49) denkleminin yi ile (50) denkleminin xi ile çarpımından elde edilen

modifikasyon sonucu

dixiyi − yi
∑
j∼i

xj = λmin(Γ)xiyi (51)

d̄ixiyi − xi
∑
j∼i

yj = λmin(Γ̄)xiyi (52)

denklemleri elde edilir. Her i ∈ Γ için oluşturulan (51) denklemleri ve her ī ∈ Γ̄

için oluşturulan (52) denklemleri taraf tarafa toplanırsa;

(n− 1)
n∑
i=1

xiyi+
n∑
i=1

xiyi = (λmin(Γ) + λmin(Γ̄))
n∑
i=1

xiyi (53)

denklemine ulaşılır. Böylece,
∑n

i=1 xiyi 6= 0 için λmin(Γ) + λmin(Γ̄) = n dir.

λmin(Γ) + λmin(Γ̄) < n olduğu kabul edilsin. Bu durumda,
∑n

i=1 xiyi = 0

olacaktır. Buna göre aşağıdaki şekilde bir f = (fi) ∈ R2n

fi =

 xi/
√

2 , i ∈ Γ

yi/
√

2 , ī ∈ Γ̄
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Buradan,

λmin(ΓΓ̄) ≤ inf
f∈R2n

∑
i∼j

i,j∈ΓΓ̄

(fi − σ(i, j)fj)
2

∑
i

f 2
i

= inf
f∈R2n

(

∑
(i,j)∈E(Γ)

(fi − σ(i, j)fj)
2 +

∑
(i,j)∈E(Γ̄)

(fi − σ(i, j)fj)
2

∑
i

f 2
i

+

∑
(i,j)∈E(Γ,Γ̄)

(fi − fj)2

∑
i

f 2
i

)

=
λmin(Γ)

2
+
λmin(Γ̄)

2
+ inf

f∈R2n

∑
(i,j)∈E(Γ,Γ̄)

(fi − fj)2

dir.
∑n

i=1 xiyi = 0 kabulünden
∑

(i,j)∈E(ΓΓ̄)

(fi−fj)2 = 1 olacaktır. Bundan dolayı

λmin(ΓΓ̄) ≤ λmin(Γ) + λmin(Γ̄) + 2

2

eşitsizliğine ulaşılır. Teorem 4.6’dan, ΓΓ̄ dengeli bir graf ise 2, L(ΓΓ̄) matrisinin

özdeğeri olduğu bilinmektedir. Böylece,

λmin(ΓΓ̄) ≤ min{2, λmin(Γ) + λmin(Γ̄) + 2

2
}

sonucu ispatlanmış olur.

Teorem 4.7 ΓΓ̄ = (GḠ, σ), 2n tepeli Γ ve Γ̄ graflarından oluşmuş dengeli,

işaretli bir tamalayıcı prizmalar grafı olsun. Eğer ΓΓ̄ en az bir tane pendant (1.

dereceden) tepe içeriyorsa, λmin(ΓΓ̄) ve λmax(ΓΓ̄) özdeğerleri L(ΓΓ̄) matrisinin

sırasıyla sıfırdan farklı en küçük ve en büyük özdeğerleri

λmin(ΓΓ̄) =
(n+ 2)−

√
n2 + 4

2

λmax(ΓΓ̄) =
(n+ 2) +

√
n2 + 4

2

şeklindedir.

İspat. Graf dengeli olduğu için L(ΓΓ̄) ile aynı Laplasyen spektruma sahip,

altında yatan işaretsiz GḠ grafını ele alalım. f = (x1, . . . , xn, y1, . . . , yn),∑
i∈ΓΓ̄

fi = 0 olacak şekilde, L(GḠ) matrisinin, λ özdeğerine karşılık gelen bir



49

özfonksiyonu olmak üzere, L(GḠ) matrisinin, λ özdeğerine karşılık gelen f

özfonksiyonu için

L(GḠ)f = λf (54)

olduğu biliniyor. Kabul edilsin ki, ΓΓ̄ grafındaki pendant tepe, Γ̄ grafında isole

olarak bulunan ī tepesi olsun. Bu tepenin Γ grafındaki karşılığı (n−1) dereceli

i tepesi için, (4) denklemi kullanılarak

nxi −
∑
j∼i
xj − yi = λxi

(n+ 1)xi −
n∑
j=1

xj − yi = λxi (55)

elde edilir. Aynı şekilde, ī pendant tepesi için

−xi + yi = λyi

−xi = (λ− 1)yi (56)

yazılır. λ 6= 2 olduğu kabul edilsin. Buradan,
n∑
j=1

xi = 0 dir. (55) ve (56)

denklemleri kullanılarak yi 6= 0 için

−(n+ 1)(λ− 1)yi − yi = −λ(λ− 1)yi (57)

λ2 − λ(n+ 2) + n = 0

elde edilir. Buradan,

λ =
(n+ 2) +

√
n2 + 4

2
veya

λ =
(n+ 2)−

√
n2 + 4

2

dir. λ = (n+2)−
√
n2+4

2
değerinin L(GḠ) matrisinin en küçük özdeğeri olduğu

gösterilmek isteniyor. λ = (n+2)−
√
n2+4

2
< 2 olduğu açıktır. Bu durumda,

(n+2)−
√
n2+4

2
değerinin minimum özdeğer olma ihtimali vardır. Eğer, (n+2)−

√
n2+4

2

değerinden daha küçük bir özdeğer varsa, (57) denkleminin sağlaması için,

minimum özdeğere karşılık gelen özfonksiyonda, pendant tepeye karşılık gelen

değerin 0 olması gerekmektedir. Dolayısıyla, (56) denkleminden, G grafındaki

n dereceye sahip tepeye, özfonksiyonda karşılık gelen değer de 0 dır. Buna göre

aşağıdaki şekilde bir h ∈ R2n fonksiyonu tanımlansın:

hi =

 fi di 6= n veya 1

0 aksi halde
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Buradan,

λmin(ΓΓ̄) ≤ λ = inf
f∈R2n

∑
i∼j

i,j∈(ΓΓ̄)

(fi − fj)2

∑
i

f 2
i

≤ inf
h∈R2n

∑
i∼j

i,j∈(ΓΓ̄)

(hi − hj)2

∑
i

h2
i

dir. Böylece, (n+2)−
√
n2+4

2
değerinden daha küçük bir değer bulunamamış olur.

λmin(ΓΓ̄) =
(n+ 2)−

√
n2 + 4

2

Lemma 4.3, kullanılarak, λmax(ΓΓ̄) = (n+2)+
√
n2+4

2
elde edilir.

İşaretsiz graflar için, sıfırdan farklı en küçük özdeğer ile bağlantılılık arası

ilişki iyi bilinmektedir (Fiedler, 1973). Grafın bağlantılılığı arttığında, ’cebirsel

bağlantılılık’ diye adlandırılan, sıfırdan farklı en küçük özdeğerin değeri de

artar. Sıradaki sonuçta, bu bilgiden yola çıkarak dengeli bir tamamlayıcı prizma

grafının sıfırdan farklı en küçük Laplasyen özdeğeri için bir üst sınır değeri elde

edilecektir.

Teorem 4.8 λmin(ΓΓ̄) ve λmin(ΓΓ̄), ΓΓ̄ 2n tepeli dengeli işaretli grafının

Laplasyen matrisinin sıfırdan farklı minimum ve maximum özdeğerleri olmak

üzere
(n+ 2)−

√
n2 + 4

2
≤ λmin(ΓΓ̄)

ve

λmax(ΓΓ̄) ≤ (n+ 2) +
√
n2 + 4

2
.

dir.

İspat. Γ1Γ̄1 ve Γ2Γ̄2, 2n tepeli iki farklı, dengeli, işaretli graf olsunlar.

Γ1Γ̄1 grafının en az bir tane pendant tepe içerdiği kabul edilsin. Graflar

dengeli olduğundan, altında yatan işaretsiz graf ile Laplasyen spektrumları

aynıdır (Hou et al., 2003), bu yüzden grafları işaretsiz olarak ele alınabilir.

Kabulden ötürü, Γ1Γ̄1 grafının bağlantılılığı, Γ2Γ̄2 grafının bağlantılılığından
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küçük eşittir. Teorem 4.7’den ve grafın bağlantılılığı ile sıfırdan farklı en

küçük özdeğer arasındaki ilişkiden yararlanılarak, herhangi bir ΓΓ̄ dengeli bir

tamamlayıcı prizma grafı için

(n+ 2)−
√
n2 + 4

2
≤ λmin(ΓΓ̄)

olduğu söylenebilir. Ayrıca, Lemma 4.3 kullanılarak

λmax(ΓΓ̄) ≤ (n+ 2) +
√
n2 + 4

2

eşitsizliğine ulaşılır.

Sıradaki sonuçta, Teorem 4.4 kullanılarak λmax(ΓΓ̄) ve λmin(ΓΓ̄) için sınır

belirlenecektir.

Önerme 4.7 Γ ve Γ̄ birleştirilmiş işaretli graflar, ΓΓ̄, 2n tepeli dengeli işaretli

graf olmak üzere, L(ΓΓ̄) matrisinin en büyük özdeğeri

λmax(ΓΓ̄) ≥ max{λmax(Γ), λmax(Γ̄)}+ 1

dir.

İspat. b = (λmax(ΓΓ̄), . . . , λmin(ΓΓ̄), 0), L(ΓΓ̄) matrisinin spektrumunun

artmayan sırada sıralanmış dizisi ve c = (max{λmax(Γ), λmax(Γ̄)}+1, . . . ,min

{λmin(Γ), λmin(Γ̄)} + 1, 1, 1), L(Γ) + In ve L(Γ̄) + In matrislerinin spektrum-

larının artmayan sırada sıralanmış dizisi olsun. Teorem 4.4 kullanılarak, b dizisi

c dizisini majorize ettiği söylenir. Böylelikle, Tanım 4.1’den;

k∑
i=1

bi ≥
k∑
i=1

ci, 1 ≤ k ≤ 2n (58)

ve
2n∑
i=1

bi =
2n∑
i=1

ci (59)

dir. k = 1 durumu ele alındığında, λmax(ΓΓ̄) ≥ max{λmax(Γ), λmax(Γ̄)} + 1

eşitsizliği elde edilir.

Yorum 4.4 (58) ve (59) numaralı denklemlerden
2n−2∑
i=1

bi ≥
2n−2∑
i=1

ci ve
2n∑
i=1

bi =

2n∑
i=1

ci olduğunu biliniyor. Buradan, λmin(ΓΓ̄) ≤ 2 olduğu açıktır. Teorem
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4.6’dan, dengeli tamamlayıcı prizma grafının 2 Laplasyen özdeğerine sahip

olduğu söylenebilir. Böylece, 2’nin, sıfırdan farklı en küçük özdeğer için bir

üst sınır olduğu, majorizasyon kavramı kullanılarak elde edilmiş olur.

4.2.5 Γ dengeli, Γ dengesiz olduğu durumda

Önerme 4.8 Γ dengeli ve Γ̄ dengesiz, n tepeli işaretli graflar olmak üzere,

L(ΓΓ̄) matrisinin sıfırdan farklı en büyük ve en küçük özdeğeri

λmax(ΓΓ̄) ≥ max{λmax(Γ), λmax(Γ̄)}+ 1

λmin(ΓΓ̄) ≤ 1

dir.

İspat. Teorem 4.3’den, ΓΓ̄ grafının dengesiz olduğu söylenir. b = (λmax(ΓΓ̄), . . . ,

λmin(ΓΓ̄)), L(ΓΓ̄) matrisinin spektrumlarının artmayan sıradaki dizisi ve c =

(max{λmax(Γ), λmax(Γ̄)}+ 1, . . . ,min{λmin(Γ), λmin(Γ̄)}+ 1, 1), L(Γ) + In ve

L(Γ̄) + In matrislerinin spektrumunun artmayan sırada yazılmış dizisi olmak

üzere, Teorem 4.4’den b dizisinin c dizisini majorize ettiği biliniyor. Böylece,

Tanım 4.1 kullanılarak;

k∑
i=1

bi ≥
k∑
i=1

ci, 1 ≤ k ≤ 2n (60)

ve

2n∑
i=1

bi =
2n∑
i=1

ci (61)

denklemleri elde edilir. k = 1 durumu için, λmax(ΓΓ̄) ≥ max{λmax(Γ), λmax(Γ̄)}+

1 dir. Ayrıca, (60) ve (61) denklemleri kullanılarak
2n−1∑
i=1

bi ≥
2n−1∑
i=1

ci ve
2n∑
i=1

bi =

2n∑
i=1

ci olduğu elde edilir. Buradan, λmin(ΓΓ̄) ≤ 1 eşitsizliğine ulaşılır.
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4.2.6 Γ ve Γ dengesiz olduğu durumda

Önerme 4.9 Γ ve Γ̄, n tepeli dengesiz işaretli graflar olmak üzere, L(ΓΓ̄)

matrisinin sıfırdan farklı en büyük ve en küçük özdeğerleri için

λmax(ΓΓ̄) ≥ max{λmax(Γ), λmax(Γ̄)}+ 1

λmin(ΓΓ̄) ≤ min{λmin(Γ), λmin(Γ̄)}+ 1

dir.

İspat. Teorem 4.3’dan ΓΓ̄ tamamlayıcı prizma grafının dengesiz olduğu bilini-

yor. b = (λmax(ΓΓ̄), . . . , λmin(ΓΓ̄)), L(ΓΓ̄) matrisinin spektrumunun artmayan

formda yazılmış dizisi ve c = (max{λmax(Γ), λmax(Γ̄)}+ 1, . . . ,min{λmin(Γ),

λmin(Γ̄)}+ 1), L(Γ) + In ve L(Γ̄) + In matrislerinin spektrumlarının artmayan

formda yazılmış dizisi olmak üzere, Teorem 4.4’dan biliniyor ki b dizisi c dizisini

majorize eder. Böylece, Tanım 4.1 kullanılarak;

k∑
i=1

bi ≥
k∑
i=1

ci, 1 ≤ k ≤ 2n (62)

ve
2n∑
i=1

bi =
2n∑
i=1

ci (63)

olduğu elde edilir. k = 1 durumu için λmax(ΓΓ̄) ≥ max{λmax(Γ), λmax(Γ̄)}+ 1

dir. Ayrıca, (62) ve (63) denklemlerinden,
2n−1∑
i=1

bi ≥
2n−1∑
i=1

ci and
2n∑
i=1

bi =
2n∑
i=1

ci

olduğu biliniyor. Böylelikle, λmin(ΓΓ̄) ≤ min{λmin(Γ), λmin(Γ̄)} + 1 sonucuna

ulaşılır.

4.3 İşaretli Grafların Laplasyen Matrisi İçin Coales-

cence İşlemi

G1 grafının bir tepesini, G2 grafının bir tepesi ile tek bir tepe gibi

birleştirme işlemi coalescence işlemi olarak adlandırılır. Bu işlem işaretli graflar

için de tanımlanabilir. Γ1 ve Γ2 işaretli graflar olmak üzere, iki graftan ayrı ayrı

seçilen bir tepeyi, bu tepelere bitişik ayrıtların işaretleri korunacak şekilde tek
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bir tepede birleştirme işlemine, işaretli grafların coalescence işlemi denir. Γ1 ve

Γ2 graflarının coalescence işlemi, Γ1 ◦ Γ2 ile gösterilecektir. Coalescence işlemi

sonucunda, n1 + n2 − 1 tepeli bir graf elde edilir. Diğer bir çok graf işleminin

aksine, genelde tek bir graf elde edilmez. Şekil 4.2’de coalescence işlemi ile ilgili

bir örnek verilmektedir.

.

Şekil 4.2: (K1,3, σ1) ve (C4,+) graflarının bütün coalescence işlemleri

Önerme 4.10 Γ1 ve Γ2 işaretli graflarından en az bir tanesi dengeli olmak

üzere, Γ1 ve Γ2 graflarının herhangi bir Γ1 ◦ Γ2 coalescence işleminin sıfırdan

farklı en büyük ve en küçük Laplasyen özdeğerleri

λmin(Γ1 ◦ Γ2) ≤ min{λmin(Γ1), λmin(Γ2)},

λmax(Γ1 ◦ Γ2) ≥ max{λmax(Γ1), λmax(Γ2)}

dir.

İspat. Γi = (Vi, Ei), i = 1, 2 olmak üzere, ni tepeli ve mi ayrıtlı graflar ve Q1

ve Q2 sırasıyla Γ1 ve Γ2 graflarının tepe-ayrıt komşuluk matrisleri olsun. Grone
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ve Merris’in ispatındakine benzer şekilde ((Grone and Merris, 1990), Theorem

1), aşağıdaki gibi matrisler oluşturulabilir.

K(Γ1 ◦ Γ2) =

Qt
1Q1 R

RT Qt
2Q2

 (64)

K(Γ1 ∪ Γ2) =

Qt
1Q1 0

0 Qt
2Q2

 (65)

Burada R, m1 × m2 matrisi temsil etmektedir. K(Γ1 ◦ Γ2) ve K(Γ1 ∪ Γ2)

matrislerinin özdeğerlerine Teorem 4.1’de elde edilen sonuç uygulanırsa,

(λ(Γ1), λ(Γ2)) = λ(Γ1 ∪ Γ2) ≺ λ(Γ1 ◦ Γ2) (66)

olduğu elde edilir. Eğer, Γ1 ve Γ2 graflarının her ikisi de dengeli ise, K(Γ1 ◦Γ2)

ve K(Γ1 ∪ Γ2) matrislerinin, artmayacak düzende oluşturulmuş, sırasıyla b ve

c olarak adlandırılan spektrumunun dizisi aşağıdaki gibidir:

b = (λmax(Γ1 ◦ Γ2), . . . , λmin(Γ1 ◦ Γ2), 0)

c = (max{λmax(Γ1), λmax(Γ2)}, . . . ,min{λmin(Γ1), λmin(Γ2)}, 0, 0)

(66) numaralı denklemden b dizisinin c dizisini majorize ettiği bilinmektedir.

Böylelikle,
k∑
i=1

bi ≥
k∑
i=1

ci, 1 ≤ k ≤ n1 + n2 − 1

ve
n1+n2−1∑

i=1

bi =
n1+n2∑
i=1

ci

dir. k = 1 için

λmax(Γ1 ◦ Γ2) ≥ max{λmax(Γ1), λmax(Γ2)}

elde edilir. Ayrıca, majorizasyon tanımını kullanarak, b ve c spektrum dizile-

rinin formundan ötürü,
n1+n2−2∑

i=1

bi =
n1+n2−2∑

i=1

ci

iken,
n1+n2−3∑

i=1

bi ≥
n1+n2−3∑

i=1

ci

olduğu açıkça görülür. Böylece,

λmin(Γ1 ◦ Γ2) ≤ min{λmin(Γ1), λmin(Γ2)}
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eşitsizliği elde edilir. Eğer Γ1 veya Γ2 graflarından bir tanesi dengesiz ise, L(Γ1)

ve L(Γ2) matrislerinin sırasıyla b ve c diye adlandırılan artmayacak düzende

oluşturulmuş spektrum dizisi aşağıdaki şekildedir:

b = (λmax(Γ1 ◦ Γ2), . . . , λmin(Γ1 ◦ Γ2))

c = (max{λmax(Γ1), λmax(Γ2)}, . . . ,min{λmin(Γ1), λmin(Γ2)}, 0)

Tekrar, (66) numaralı denklemden, b dizisinin c dizisini majorize ettiği bilgisi

kullanarak, k = 1 durumu için

λmax(Γ1 ◦ Γ2) ≥ max{λmax(Γ1), λmax(Γ2)}

olduğu elde edilir. Ayrıca,b ve c dizilerinin formundan,

n1+n2−1∑
i=1

bi =
n1+n2−1∑

i=1

ci

iken,
n1+n2−2∑

i=1

bi ≥
n1+n2−2∑

i=1

ci

olduğu açıkça görülür. Böylece,

λmin(Γ1 ◦ Γ2) ≤ min{λmin(Γ1), λmin(Γ2)}

olduğu sonucuna ulaşılır.

Önerme 4.11 Γ1 ve Γ2 sırasıyla n1 ve n2 tepeli dengesiz işaretli graflar olmak

üzere, Γ1, Γ2 ve herhangi bir coalescence operasyonu Γ1 ◦ Γ2’nın en büyük

Laplasyen özdeğerleri

λmax(Γ1 ◦ Γ2) ≥ max{λmax(Γ1), λmax(Γ2)}

şeklindedir.

İspat. Γ1 ◦ Γ2 grafının n1 + n2 − 1 tepeli bir graf olduğunu biliniyor. Γ1 ve

Γ2 graflarının, sırasıyla b ve c ile gösterilen, Laplasyen özdeğerlerinin dizileri

aşağıdaki gibi artmayan sırada sıralansın:

b = (λmax(Γ1 ◦ Γ2), . . . , λmin(Γ1 ◦ Γ2))

c = (max{λmax(Γ1), λmax(Γ2)}, . . . ,min{λmin(Γ1), λmin(Γ2)})
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b ve c dizilerine, Teorem 4.1 uygulanarak

k∑
i=1

bi ≥
k∑
i=1

ci, 1 ≤ k ≤ n1 + n2 − 1

ve
n1+n2−1∑

i=1

bi =
n1+n2∑
i=1

ci

olduğu elde edilir. k = 1 için, λmax(Γ1 ◦ Γ2) ≥ max{λmax(Γ1), λmax(Γ2)} dir.

Yorum 4.5 Şekil 4.3, iki dengesiz işaretli grafın coalescence operasyonundan

sonra, sıfırdan farklı en küçük Laplasyen özdeğerleri arasında, λmin(Γ1 ◦Γ2) ≤

min{λmin(Γ1), λmin(Γ2)} olmadığına dair bir aksi örnek sağlamaktadır. Çizelge

4.1’da görüldüğü gibi, λmin(Γ1 ◦ Γ2) > min{λmin(Γ1), λmin(Γ2)} dir.
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Şekil 4.3: Γ1 ve Γ2 işaretli grafları ve onların bir coalescence işlemi

L(Γ1) L(Γ2) L(Γ1 ◦ Γ2)

λ1 = 1 λ̄1 = 0.5858 θ1 = 0.7756

λ2 = 1 λ̄2 = 1.2679 θ2 = 1

λ3 = 4 λ̄3 = 3.4142 θ3 = 1.3567

λ̄4 = 4.7321 θ4 = 2.6232

θ4 = 3.8572

θ4 = 6.3874

Çizelge 4.1: Γ1, Γ2 ve Γ1 ◦ Γ2 graflarına ait sırasıyla λi, λ̄i ve θi ile gösterilen Laplasyen

spektrumlar.



59

5 İŞARET DERECELİ LAPLASYEN MATRİS

5.1 Tanımlar ve Genel Bilgiler

Bu bölümde, yeni bir Laplasyen matris tanımlanacaktır ve ortaya konulan

bu yeni tanıma göre, matrisin spektrumu incelelenecektir.

Tanım 5.1 Γ=(G, σ) işaretli bir graf olmak üzere, Ls(Γ) ile gösterilecek işaret

dereceli Laplasyen matris

Ls(Γ) = Ds(Γ)− As(Γ)

şeklindedir. Burada Ds(Γ), tepelerin işaret derecelerine göre tanımlanmış,

diagonal işaret derece matrisi ve As(Γ), bileşenleri aσij = σ(i, j)aij şeklinde

tanımlı, Γ işaretli grafının bitişiklik matrisidir.

Ls(Γ) simetrik bir matristir ve satır toplamı sıfırdır. Matrisin satır toplamları

0 olduğundan, 0 herzaman bir özdeğerdir, fakat herzaman tek değildir. Buna

göre µ0 = 0, µ1 ≥ µ2 ≥ ... ≥ µn−1 işaret dereceli Laplasyen spektrum

olsun. İşaret dereceli Laplasyen matris tanımına göre, grafın tüm ayrıtları + ile

işaretlerdiğinde, işaret dereceli Laplasyen matris, Ls(G,+) = L(G) formuna,

tüm ayrıtlar − ile işaretlendiğinde Ls(G,−) = −L(G) formuna dönüşür.

İşaretsiz ve işaretli grafların Laplasyen matrisinde olduğu gibi, işaretli bir

grafın, işaret dereceli Laplasyen matrisinin diagonal bileşenleri negatif değer

alabileceğinden, komşuluk matrisi ve transpozesinin çarpımı şeklinde ifade

edilemez. İşaret dereceli Laplasyen matris için, Dirichet toplamı ve Rayleigh

oranı aşağıdaki şekildedir:

Lemma 5.1 (Dirichlet Toplamı) Γ, n tepeli işaretli bir graf, Ls(Γ), işaret

dereceli Laplasyen matris olsun. Herhangi bir x ∈ Rn vektörü için:

xTLs(Γ)x =
∑

ij∈E(Γ)

σ(i, j)(xi − xj)2.

dir.
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İspat.

xTLsx =
∑
i∈V (Γ)

(d+
i − d−i )x2

i −
n∑
i=1

n∑
j=1

σ(i, j)xixj

=
n∑
i=1

n∑
j=1

σ(i, j)x2
i −

n∑
i=1

n∑
j=1

σ(i, j)xixj

=
∑

ij∈E(Γ)

σ(i, j)(xi − xj)2

İşaretli ve işaretsiz grafların Laplasyen özdeğerleri ile ilgili, alt ve üst

sınırları belirlemede önemli role sahip olan, bir x vektörünün Rayleigh oranı,

işaretli Laplasyen matrisin özdeğerleri için de yazılabilir. Sıfırdan farklı en

küçük ve en büyük özdeğer için,

µmin(Γ) = inf
x∈Rn

xTLsx

xTx
= inf

x∈Rn

∑
ij∈E(Γ)

σ(i, j)(xi − xj)2

n∑
i=1

x2
i

µmax(Γ) = sup
x∈Rn

xTLsx

xTx
= sup

x∈Rn

∑
ij∈E(Γ)

σ(i, j)(xi − xj)2

n∑
i=1

x2
i

dir.

Lemma 5.2 Γ = (G, σ), σ 6= +, n tepeli dengeli işaretli bir graf ve Ls(Γ)

işaret dereceli Laplasyen matrisi olsun. µ0 = 0, µ1 ≤ µ2 ≤ ... ≤ µn−1, Ls(Γ)

matrisinin spektrumu ve g = (g1, ..., gn) ∈ Rn, sıfırdan farklı enküçük µmin

özdeğerine karşılık gelen özvektör olmak üzere, eğer (i, j) ∈ E− ise gigj < 0 ve

(i, j) ∈ E+ ise gigj > 0 dır.

İspat. Ls(Γ) matrisinin sıfırdan farklı en küçük özdeğeri µmin için Rayleigh

oranı aşağıdaki gibidir:

µmin(Γ) = inf
g∈Rn

∑
(i,j)∈E(Γ)

σ(i, j)(gi − gj)2

n∑
i=1

g2
i

Buna göre, toplamın en küçük değeri alması,
∑

(i,j)∈E(Γ)

σ(i, j)(gi − gj)
2 top-

lamının en küçük değerine ulaşması demektir. Buradan, σ(i, j) = − olduğunda
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gi ve gj zıt işaretli, σ(i, j) = + olduğunda gi ve gj aynı işaretli olması

gerekmektedir. Grafın dengeli olmadığı kabul edilsin. Graf dengeli olmadığı

durumda, en az bir tane negatif Ck, 0 ≤ k ≤ n, döngüsü içermektedir. Negatif

bir döngüde, tek sayıda negatif ayrıt bulunmaktadır. Döngüdeki tepelere

karşılık gelen özvektörün bileşenleri için, herbir (i, j) ∈ E− için gigj < 0 ve

herbir (i, j) ∈ E+ için gigj > 0 ise,
∏

i∈Ck g
2
i < 0 dır. Bu çelişki, grafın dengesiz

olarak kabul edilmesinden kaynaklanmaktadır. Graf dengeli olmak zorundadır.

Hou’nun işaretli graflar için tanımladığı Laplasyen matrisin özdeğerleri

ile tanımlanan işaret dereceli Laplasyen matrisin özdeğerleri arasında ilişki

kurmak amacıyla, kullanışlı bir araç olan Weyl eşitsizliği sıradaki lemmada

verilsin.

Lemma 5.3 (Horn et al., 1985) A,B n×n reel simetrik matris olsun. 1 ≤ i ≤

n olacak şekilde herbir i için, λi(A), λi(B), λi(A+B) matrislere ait özdeğerleri

göstermek üzere,

min
r+s=i+1

{λr(A) + λs(B)} ≥ λi(A+B) ≥ max
r+s=i+n

{λr(A) + λs(B)}

dir.

Weyl’in eşitsizliğinden yararlanarak sıradaki sonuç elde edilir:

Teorem 5.1 Γ, n tepeli işaretli bir graf olsun. µ0 = 0, µ1 ≥ µ2 ≥ ... ≥ µn−1

ve λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0, sırasıyla Ls(Γ) ve L(Γ) matrislerinin Laplasyen

spektrumu ve 1 ≤ i ≤ n olmak üzere

λn(Γ)− 2 max
j∈V

d−j ≤ µn(Γ) (67)

ve

λ1(Γ)− 2 min
j∈V

d−j ≥ µ1(Γ) (68)

dir
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İspat. D−, bileşenleri bir tepeye bitişik negatif ayrıt sayısı olan köşegen matris

olmak üzere, Ls(Γ) = L(Γ)− 2D− olarak ifade edilir. Lemma 5.3 kullanılarak,

(67) ve (68) eşitsizlikleri elde edilir.

5.2 Bazı Özel Graf Türleri için İşaret Dereceli Laplas-

yen Matrisin Spektrumu

Bu bölümde, yol, çevre, yıldız ve tam graf gibi bazı özel graf sınıflarının

işaret dereceli Laplasyen spektrumu incelenecektir.

5.2.1 Tam graf (Kn)

Ls(Kn, σ) Laplasyen matrisinin µ özdeğerine karşılık gelen özvektörü ol-

sun. f ∈ Rn olmak üzere

Lsf = µf

olduğunu biliniyor.

• Öncelikle, n ≥ 4 için, grafın bir negatif ayrıt içerdiği durum incelenirse:

V = {1, 2, ..., n}, Kn grafının tepeler kümesi ve (1, 2) ∈ E− olsun. Buna

göre, Lsf = µf eşitliğinde, 1 ve 2 tepelerine karşılık gelen satırları ele

alınırsa;

(n− 3)f1 + f2 −
n∑
i=3

fi = µf1

(n− 3)f2 + f1 −
n∑
i=3

fi = µf2

dir.
∑n

i=1 fi = 0 olduğundan, f1 6= f2 olacak şekilde, bir tane µ = (n−4)

özdeğeri elde edilir. Benzer şekilde, işaret derecesi n − 1 olan tepelere

karşı gelen satırlar için;

(n− 1)fj −
n∑
i=1

fi + fj = µfj

dir. Buradan, (n-2) tane µ = n özdeğeri elde edilir.
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• İki tane ayrık negatif ayrıt içeren tam grafları incelensin: V = {1, 2, . . . , n}

tepeler kümesi olmak üzere, (1, 2) ∈ E− ve (n− 1, n) ∈ E− olsun. Buna

göre, (n− 3) işaret derecesine sahip tepeler için

(n− 3)f1 + f2 −
n∑
i=3

fi = µf1

(n− 3)f2 + f1 −
n∑
i=3

fi = µf2

ve

(n− 3)fn−1 + fn −
n−2∑
i=1

fi = µf1

(n− 3)fn + fn−1 −
n−2∑
i=1

fi = µf2

dir. Buradan f1 6= f2 ve fn−1 6= fn olmak üzere iki tane µ = (n − 4)

özdeğeri elde edilir. Benzer düşünce ile, (n − 1) tepe derecesine sahip

tepeler için

(n− 1)fj −
n∑
i=1

fi + fj = µfj

yazılması sonucunda n− 3 tane µ = n özdeğeri elde edilir. Ls matrisinin

formu gereği µ = 0 da bir özdeğerdir.

• Benzer düşünce ile devam edilirse, k ≤ n/2 olmak üzere k ∈ Z tane

ayrık negatif işaretli ayrıt için spektrumu incelensin: Graftaki (n − 3)

işaret dereceli tepeler için

(n− 3)fi + fj −
∑
i∼k

fk = µfi

(n− 3)fj + fi −
∑
i∼k

fk = µfj

dir. Böylece, k tane µ = (n−4) özdeğeri, (n−1−k) tane µ = n özdeğeri

ve 1 tane 0 özdeğeri elde edilir.

• δ = n − 5 durumu için incelenirse, n − 5 işaret derecesine sahip tepeler

için;

(n− 5)fi + fj + fk −
∑
i∼m

fm = µfi

dir. Buradan, fj + fk = −fi olduğunda µ = n − 6 bir özdeğerdir. Bu

şekilde devam edilerek, 1 ≤ k ≤ n − 1 olmak üzere δ = n − (2k + 1)

minimum tepe derecesine sahip tam graflar için µ = n − (2k + 2) bir

işaret dereceli Laplasyen özdeğerdir.
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5.2.2 Yıldız graf (K1,n−1)

0 ≤ k ≤ n − 1 olmak üzere, k tane negatif ayrıt içeren bir yıldız grafta,

1,−1 ve (n−1−2k) işaret derecesine sahip tepeler bulunabilir. V = {1, 2, ..., n}

işaretli yıldız grafın tepeler kümesi, degs1 = n−1−2k ve S = {2, 3, . . . , k+1}, 1

tepesine negatif ayrıt ile bağlı tepeler kümesi olmak üzere, x = (x1, ..., xn) ∈ Rn

özvektörüne karşılık gelen µ özdeğeri için

−xi + x1 = µxi (69)

k+1∑
i=2

xi + (n− 3)x2 −
n∑

j=k+2

xi = µx1

dir. Buradan,
∑n

i=1 xi = 0 olması kullanılarak,

µ1 =
−(1 + 2k − n)−

√
(1 + 2k − n)2 + 4n

2
< 0

ve

µn =
−(1 + 2k − n) +

√
(1 + 2k − n)2 + 4n

2

özdeğerleri elde edilir. Ayrıca, Ls(Γ)x = µx eşitliğinde, derecesi 1 olan tepelere

karşılık gelen satırlar ele alındığında

−x1 + xi = µxi

dir. Buradan, işaret dereceli Laplasyen matrise ait, x1 = 0 formundaki

özvektörler için, grafta 1 derecesine sahip tepe sayısı n − 1 − k > 0 olmak

üzere n − 2 − k tane µ = 1 özdeğeri, aynı şekilde (69) denklemini kullanarak

−1 derecesine sahip tepe sayısı k > 0 olmak üzere k− 1 tane µ = −1 özdeğeri

elde edilir. Yani burada dikkat edilmelidir ki, grafta hiç pozitif ayrıt yoksa, 1

özdeğeri, grafta hiç negatif ayrıt yoksa −1 özdeğeri elde edilemez.

5.2.3 Çevre graf (Cn)

V = {1, 2, . . . , n} tepeler kümesine sahip çevre grafın işaret dereceli

Laplasyen özdeğerleri için, öncelikle grafı 0 regüler veya −2 regüler olarak ele

alılım. Bu tür n tepeli (n çift) 0 regüler işaretli çevre graflar için, işaret dereceli
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Laplasyen matrisin özvektörü fk(i), 0 ≤ k ≤ n/2 olmak üzere, aşağıdaki gibi

tanımlansın:

fk(i) = sin(2πki/n)(i’nin etiketi çift ise)

fk(i) = − cos(2πki/n)(i’nin etiketi tek ise)

Buna göre, çift sayı ile etiketli i tepesi için

µfk(i) = 0fk(i) + fk(i− 1)− fk(i+ 1)

= 0 + cos(2πk(i+ 1)/n)− cos(2πk(i+ 1)/n)

= −2 sin(2πki/n) sin(2πk/n)

dir. Benzer şekilde tek sayı ile etiketlenmiş i tepesi için

µfk(i) = 0fk(i) + fk(i− 1)− fk(i+ 1)

= 0 + sin(2πk(i+ 1)/n)− sin(2πk(i+ 1)/n)

= 2 cos(2πki/n) sin(2πk/n)

dir. Buradan anlaşılır ki, 0 regüler bir çevre grafın özdeğeri, fk(i) özvektörüne

karşılık gelen −2 sin(2πk/n) dir. Ayrıca, aynı düşünce ile n tepeli (n çift) 0

regüler işaretli çevre grafın, işaret dereceli Laplasyen matrisin, aşağıdaki gibi

tanımlanan özvektörü, gk(i) için 0 ≤ k ≤ n/2 olmak üzere,

gk(i) = − sin(2πki/n)(i’nin etiketi çift ise)

gk(i) = cos(2πki/n)(i’nin etiketi tek ise)

karşılık gelen özdeğer µ = 2 sin(2πk/n) dir. Benzer düşünce ile −2 regüler

çevre graflar için, işaret dereceli Laplasyen matrisin özvektörleri, 0 ≤ k ≤ n/2

olmak üzere,

xk(i) = sin(2πki/n)

ve

yk(i) = cos(2πki/n)

şeklindedir. Buradan, V = 0, 1, . . . , n− 1 tepeler kümesi olmak üzere, 1 tepesi

için

[Lsxk]1 = −2xk(1) + xk(0) + xk(2)

= −2 sin(2πk/n) + 0 + sin(4πk/n)

= (2 cos(2πk/n) cos(2πk/n)− 2) sin(2πk/n)
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dir. Yani −2 regüler bir işaretli çevre grafın özdeğeri 2 cos(2πk/n) − 2 dir.

O zaman, en az bir negatif ayrıt içeren, işaretli çevre graflar için minimum

tepe derecesi δ = −2 ise, en küçük özdeğer µ1 ≥ min
0≤k≤n/2

2 cos(2πk/n)− 2 ve

minimum tepe derecesi δ = 0 ise, en küçük özdeğer µ1 ≥ min
0≤k≤n/2

±2 sin(2πk/n)

dir.

5.2.4 Yol graf (Pn)

İşaretsiz grafların Laplasyen spektrumunda olduğu gibi (Kelner, 2007),

işaretli Pn yol grafının işaret dereceli Laplasyen spektrumunu incelerken, C2n

çevre grafından yararlanılacaktır. Pn grafı, C2n grafını tarafından içerilmektedir

ve işaretsiz yol ve çevre grafların Laplasyen spektrumları aynıdır. −2 regüler

işaretli bir çevre graf ele alınsın ve işaretli Laplasyen matrisinin özvektörü z,

0 ≤ i < n olmak üzere z(i) = z(2n−1−i) olduğu kabul edilsin. z özvektörünün

ilk n bileşeni, v(i) ile gösterilmek üzere, Pn grafı için,

Ls(Pn)v(i) = −2(v(i)−
∑

v(i tepesinin Pn grafındaki komşuları))

= −2(z(i)−
∑

z(i tepesinin C2n grafındaki komşuları))

= −(z(i)−
∑

z(i tepesinin C2n grafındaki komşuları))−

(z(2n− i− 1)−
∑

z(2n− i− 1 tepesinin C2n grafındaki komşuları))

= −1

2
(Ls(C2n)z(i) + Ls(C2n)z(2n− i− 1))

= −1

2
(µ z(i) + µ z(2n− i− 1))

= µz(i)

= µv(i)

dir. Şimdi, i = 0 durumu ele alınsın:

Ls(Pn)v(0) = −v(0) + v(1)

= −2v(0) + v(1) + v(0)

= −2z(0) + z(1) + z(0)

= −2z(0) + z(1) + z(2n− 1)

= µz(0)

= µv(0)
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Şekil 5.1: 0 regüler Çevre graf ile yol graf arasındaki ilişki

dır. Böylece anlaşılır ki, v, −2 regüler Pn grafının, işaret derceli Laplasyen

matrisinin özvektörüdür. v vektörünün varlığından söz edilirse, 0 ≤ i < n

olmak üzere, zk(i) = zk(2n− 1− i) olacak şekilde, zk(i) = sin(πki/n+ π/2n),

C2n grafının özvektörüdür:

zk(i) = sin(πki/n+ π/2n)

= sin(πki/n) cos(π/2n) + cos(πki/n) sin(π/2n)

= xk(i) cos(π/2n) + yk(i) sin(π/2n)

Anlaşılır ki, zk, xk ve yk vektörlerini gerer. Yani, zk, C2n grafının işaret

dereceli Laplasyen matrisinin özvektörüdür ve zk(i) = zk(2n− 1− i) eşitliğini

sağlar. Benzer düşünce ile, 0 regüler C2n grafından, Pn grafına geçilebilir,

(Şekil 5.1 ). n tek olmak üzere, 0 regüler C2n grafı ile, ayrıt işaretleri sırasıyla

+ ve − (veya sırasıyla − ve +) ile işaretlenmiş, Pn grafının spektrumu

aynıdır. n çift olmak üzere, yol grafın en küçük tepe derecesi, δ = −1 ise

specPn=specC2n\{2}, δ = 0 ise specPn=specC2n\{−2} dir. Böylece, graftaki

pozitif ayrıt sayısı arttıkça spektrumdaki değerler artacak, negatif ayrıt sayısı

arttıkça spektrumdaki değerler azalacaktır.
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5.3 İşaret Dereceli Laplasyen Matrisin Spektrumunun

Örüntü Sonuçları

Örüntü ile ilgili literatürde olan ve bu tez çalışmasında bulunan, işaretli

grafların Normalize Laplasyen matrisinin spektrumu ile ilgili sonuçlar Bölüm

3’de ele alındı. Bu bölümde, işaret dereceli Laplasyen matrisin spektrumu ile

ilgili örüntü sonuçları ele alınacaktır. Bulunan sonuçlar, Hou’nun işaretli graflar

için tanımladığı Laplasyen matrisin spektrumuna ait sonuçlar ile kombine

edilip, yeni sınır değerler elde edilecektir. İlk olarak, bu bölüm için gerekli

olan birtakım önbilgiler verilsin:

U , V (G) tepeler kümesinin, 0 ≤ k ≤ n olmak üzere k elemanlı bir alt

kümesi olsun. G− U alt grafı, G grafından U ’daki bütün tepelerin ve bunlara

bağlı ayrıtların silinmesi ile elde edilir. Aynı işlem, işaretli graflar için de, ayrıt

işaretleri korunmak şartıyla tanımlanabilir. λ1 ≥ λ2 ≥ . . . ≥ λn, ile Laplasyen

spekterum belirtilmek üzere, G ile G−U graflarının Laplasyen spektrumunun

arasında:

λi(G)− w1 ≥ λi(G− U) ≥ λi+k(G)− w2

ilişkisi vardır (Wu et al., 2010). Burada, w1 = min
v∈V \U

{|NG(v) ∩ U | ve w2 =

max
v∈V \U

{|NG(v) ∩ U | dir.

λ̄1 ≥ . . . ≥ λ̄n, Γ işaretli grafının Laplasyen spektrumu olmak üzere, Γ

ve Γ− U işaretli grafları için, Laplasyen spektrum ilişkisi ele alınmadan önce,

Lemma 5.3’de verilen, Weyl’in eşitsizliği ile Bölüm 3’de kullanılan Cauchy

Interlacing teoremi hatırlanırsa:

Teorem 5.2 (Cauchy Interlacing Theorem) A, n×n reel simetrik matris, m,

1 ≤ m ≤ n olacak şekilde bir tam sayı ve Am, m × m tipinde A’nın esas

altmatrisi olmak üzere, özdeğerler arasında

λi(A) ≥ λi(Am) ≥ λi+n−m(A), i = 1, 2, ...,m

ilişkisi vardır.
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Teorem 5.3 Γ, n tepeli, işaretli bir graf ve V , Γ grafının tepeler kümesi olsun.

U , V tepeler kümesinin k elemanlı alt kümesi, w1 = min
v∈V \U

|NΓ(v) ∩ U | ve

w2 = max
v∈V \U

|NΓ(v) ∩ U | olmak üzere, her i = 1, ..., n− k, için:

λ̄i(Γ)− w1 ≥ λ̄i(Γ− U) ≥ λ̄i+k(Γ)− w2

dir.

İspat. L(Γ) matrisininden, U kümesindeki tepelere ait satır ve sütun ele-

manlarının silinmesi ile elde edilmiş esas alt matrisi LU(Γ) ile gösterilsin.

Cauchy Interlacing teoremi uygulanarak, λ̄i(Γ) ≥ λ̄i(LU(Γ)) ≥ λ̄i+k(Γ) (i =

1, 2, . . . , n − k) elde edilir. DU(Γ) = LU(Γ) − L(Γ − U) olmak üzere, DU(Γ),

her bir v tepesine karşılık gelen bileşeni |NΓ(v)∩U | olacak şekilde bir köşegen

matristir. Böylece, Lemma 5.3’i kullanarak, herbir (i = 1, 2, . . . , n− k) için;

λ̄i(Γ− U) = λ̄i(L(Γ− U)) = λ̄i(LU(Γ)−DU(Γ))

≤ min
r+s=i+1

λ̄r(LU(Γ)) + λ̄s(−DU(Γ))

≤ λ̄i(LU(Γ)) + λ̄1(−DU(Γ))

= λ̄i(LU(Γ))− λ̄n−k(DU(Γ))

≤ λ̄i(Γ)− min
v∈V \U

|NΓ(v) ∩ U | (70)

elde edilir. Ayrıca,

λ̄i(Γ− U) ≥ max
r+s=n−k+i

λ̄r(LU(Γ)) + λ̄s(−DU(Γ))

≥ λ̄i(LU(Γ)) + λ̄n−k(−DU(Γ))

= λ̄i(LU(Γ))− λ̄1(DU(Γ))

≥ λ̄i+k(Γ)− max
v∈V \U

|NΓ(v) ∩ U | (71)

dir. (70) ve (71) denklemlerinin birleşiminden ispat tamamlanır.

Gerekli bilgiler ve sonuçlar verildikten sonra, işaret dereceli Laplasyen

matrisin spektrumu ile ilgili sıradaki sonuç verilebilir. Γ = (G, σ), n tepeli,

işaretli bir graf olmak üzere, Ls(Γ) işaret dereceli Laplasyen matrisin spekt-

rumu, artmayan sırada µ1 ≥ ... ≥ µn şeklinde sıralansın. Buna göre;

Teorem 5.4 Γ işaretli bir graf ve V , n elemanlı tepeler kümesi olsun. U ,

V tepeler kümesinin k elemanlı alt kümesi, d1 = min
v∈V \U

(
∑
v∼u
u∈U

σ(u, v)) ve d2 =
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max
v∈V \U

(
∑
v∼u
u∈U

σ(u, v)) olmak üzere, her i = 1, ..., n− k, için

µi(G)− d1 ≥ µi(G− U) ≥ µi+k(G)− d2

dir.

İspat. Ls(Γ) matrisinin esas alt matrisi, Ls(Γ) matrisinden U kümesindeki

tepelere karşılık gelen satır ve sütunların silinmesi ile elde elde edilmiş, LUs (Γ)

ile gösterilen n− k × n− k tipindeki matris olsun. Cauchy interlacing teorem

uygulanarak,

µi(Γ) ≥ µi(L
U
s (Γ)) ≥ µi+k(Γ), i = 1, ..., n− k

eşitsizliği elde edilir. DU
s (Γ) = LUs (Γ)−Ls(Γ−U) olmak üzere DU

s (G) köşegen

matrisinin v ∈ V \U tepesine karşılık gelen bileşenleri
∑
u∈U

σ(u, v) şeklindedir.

Böylece, Lemma 5.3 ve Cauchy Interlacing Teoremi kullanılarak;

µi(Γ− U) = µi(Ls(Γ− .U)) = µi(L
U
s (Γ)−DU

s (Γ))

≤ min
r+s=i+1

{µr(LUs (Γ)) + µs(−DU
s (Γ))}

≤ µi(L
U
s (Γ)) + µ1(−DU

s (Γ))

= µi(L
U
s (Γ))− µn−k(DU

s (Γ))

≤ µi(Γ)− min
v∈V \U

∑
u∈U

σ(u, v) (72)

elde edilir. Ayrıca,

µi(Γ− U) = µi(Ls(Γ− .U)) = µi(L
U
s (Γ)−DU

s (Γ))

≥ max
r+s=i+n

{µr(LUs (Γ)) + µs(−DU
s (Γ))}

≥ µi(L
U
s (Γ)) + µn−k(−DU

s (Γ))

= µi(L
U
s (Γ))− µ1(DU

s (Γ))

≥ µi+k(Γ)− max
v∈V \U

∑
u∈U

σ(u, v) (73)

dir. (72) ve (73) denklemlerinin birleşiminden sonuca ulaşılmış olur.

Yorum 5.1 Teorem 5.4’de tanımlanan d1 ve d2, d1 = min
v∈V \U

{
∣∣N+

Γ (v) ∩ U
∣∣ −∣∣N−Γ (v) ∩ U

∣∣} ve d2 = max
v∈V \U

{
∣∣N+

Γ (v) ∩ U
∣∣ − ∣∣N−Γ (v) ∩ U

∣∣} şeklinde de ifade

edilebilir.
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5.4 İşaret Dereceli Laplasyen Matris ve İşaretli Graf-

ların Laplasyen Matrisinin Spektrum İlişkisi

Bu bölümde, işaretli grafların Laplasyen matrisinin ve bu tezde tanımlanan,

işaret dereceli Laplasyen matrisin spektrumlarının karışımı ile ilgili bir örüntü so-

nucu verilecektir. D−(Γ) matrisi, bileşenleri grafın tepelerine bitişik negatif

ayrıt sayısı olan bir köşegen matris olmak üzere, işaretli grafların Laplasyen

matrisi ile işaret dereceli Laplasyen matris arasındaki ilişki:

L(Γ) = Ls(Γ) + 2D−(Γ)

şeklinde ifade edilebilir. λ̄1 ≥ . . . ≥ λ̄n ve µ1 ≥ ... ≥ µn sırasıyla L(Γ) ve

Ls(Γ) matrislerinin spektrumları olmak üzere, matrislerin arasındaki ilişkiden

yararlanarak aşağıdaki sonuç verilir:

Teorem 5.5 Γ, n tepeli işaretli bir graf, V tepeler kümesi, U , V tepeler

kümesinin, k elemanlı bir alt kümesi olsun. d−j , j tepesine bitişik negatif ayrıt

sayısı, w1 = min
v∈V \U

|NΓ(v) ∩ U | ve w2 = max
v∈V \U

|NΓ(v) ∩ U | olmak üzere, her

i = 1, ..., n− k, için:

µi(Γ) + 2max
j∈V

d−j − w1 ≥ λi(Γ− U) ≥ µi+k(Γ) + 2min
j∈V

d−j − w2 (74)

dir.

İspat. Teorem 5.3 kullanılarak,

λi(Γ− U) ≥ λi+k(Γ)− w2

= λi+k(L(Γ))− w2

= λi+k(Ls(Γ) + 2D−(Γ))− w2

≥ max
r+s=n+i+k

µr(Ls(Γ)) + 2µs(D
−(Γ))− w2

≥ µi+k(Γ) + 2λn(D−(Γ))− w2

≥ µi+k(Γ) + 2min
j∈V

d−j − w2 (75)
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ve

λi(Γ− U) ≤ λi(Γ)− w1

= λi(L(Γ))− w1

= λi(Ls(Γ) + 2D−(Γ))− w1

≤ min
r+s=i+1

µr(Ls(Γ)) + 2µs(D
−(Γ))− w1

≤ µi(Γ) + 2λ1(D−(Γ))− w1

≤ µi(Γ) + 2max
j∈V

d−j − w1 (76)

elde edilir. (75) ve (76) denklemlerinden, (74) sonucuna ulaşılır.
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6 SONUÇ

Bu tezin ikinci bölümünde gerekli altyapı hazırlanıp, tezin üçüncü bölü-

münde, işaretli graftan ayrıt atma ve tepe büzme işlemlerinden sonra, nor-

malize Laplasyen spektrumların örüntü oluşturduğu ispatlanmıştır. Ardışık

büzme işleminin iyi tanımlı olabilmesi için, baskınlık sayısından yararlanılmıştır.

İyi tanımlı ardışık büzme ve tepe çoğaltma işlemlerinden sonra, grafların

normalize Laplasyen spektrumların örüntü oluşturduğu kanıtlanmıştır. Ayrıca,

motif ve tepe çoğaltma işlemlerinin 1 özdeğeri ile ilişkisi gösterilmiştir.

Tezin üçüncü bölümünden, (Atay and Tunçel, 2013) çalışması hazırlanmıştır.

Tezin dördüncü bölümünde, işaretli graflar için tamamlayıcı prizmalar işlemi

tanımlanmıştır. Join, coalescence ve tamamlayıcı prizma işlemleri sonrası

oluşan grafın, en büyük ve en küçük Laplasyen özdeğerleri ile ilgili sonuçlar

elde edilmiştir. Tezin son bölümünde, köşegen elemanlarında bir tepenin işaret

dereceleri olacak şekilde oluşturulmuş Laplasyen matris tanımı verilmiştir. Bu

yeni tanımlanan matrisin spektrumuna ait sonuçlar elde edilmiştir.
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scribe2.pdf (2007)(Erişim tarihi: 29 Mayıs 2013)
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