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ÖZET

Bu tez çalışmamda zamandan bağımsız kuantum metodu kullanılarak F + DCl

reaksiyonu için toplam reaksiyon ihtimaliyetleri, tesir kesitleri ve reaksiyon hız sabitleri

hesaplandı. Bu tür kuantum mekaniksel büyüklüklerin hesaplanması atom – molekül

saçılmaları hakkında bilgi verir. Elde edilen kuantum mekaniksel sonuçlar literatürdeki ilk

teorik sonuçlar olması açısından herhangi bir karşılaştırma yapılmamıştır.
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SUMMARY

Investigation of atom – molecule interactions with time – independent quantum

method

In this master thesis, total reaction probability, cross sections and reaction rate

coefficients have been calculated for the reaction of F + DCl by using a time-independent

quantum method. This kind of calculation of quantum mechanical quantities gives

information about atom - molecule scattering. The obtained quantities are the first

theoretical results in the literature and  has not been compared with any available data.
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1.GİRİŞ

Atomlar arasındaki bağların bozulduğu ve yeni bağların oluştuğu kimyasal

reaksiyonlarda kuantum mekaniksel bilgilerin elde edilmesi, reaksiyonun oluşması ve

kontrol edilmesi açısından önemlidir. Bu nedenle, atom-molekül veya molekül-molekül

etkileşmelerini incelemek için çoğu zaman teorik metotlara ihtiyaç duyulmaktadır. Teorik

metotlar gelişim sırasına göre Klasik, Yarı-Klasik ve Kuantum Mekaniksel Metotlar adı

altında toplanabilirler.

Kimyasal reaksiyonların Klasik metot ile incelenmesinde bütün atom ve moleküllerin

hareketleri (öteleme, titreşim ve dönme hareketleri) klasik mekaniğin kanunlarına göre

incelenmektedir. Atom ve moleküllerin hareketleri için çeşitli başlangıç şartları dikkate

alınarak Newton’un hareket denklemleri çözülmekte ve bütün başlangıç durumları

üzerinde ortalama alınarak bazı fiziksel büyüklükler elde edilmektedir (Stephanie ve

Chapman, 1997).

Yarı-Klasik metot ile amaç, bir takım kuantum mekaniksel özellikleri (sıfır nokta

enerjisi gibi) hesaba katmak, fakat bununla birlikte klasik yörünge metodunun basit çözüm

tekniğinden de faydalanmaktır. Bu nedenle, Yarı-Klasik metotta atom ya da  molekülün

öteleme hareketleri klasik olarak, titreşim ve dönme hareketleri ise kuantum mekaniksel

olarak ele alınmaktadır (Hirst, 1985).

Tamamen kuantum mekaniksel olan saçılma problemlerinin kuantum mekaniksel

teorilere dayanan metotlar ile incelenmesi gerekir. Ancak kuantum mekaniksel incelemeler

genellikle bilgisayarların gelişimine paralel olarak ilerlemektedir (Goldberger ve Watson,

1964; Taylor, 1972). Atom-molekül ya da molekül-molekül saçılma problemlerini

incelemek için son yıllara kadar zamandan bağımsız Schrödinger denkleminin çözümüne

dayanan kuantum mekaniksel metotlar kullanılmıştır. Ancak, son yıllarda zamana bağlı

Schrödinger denklemi için de çözüm algoritmaları geliştirilmiş ve çeşitli sistemler zamana

bağlı kuantum metodu ile de incelenebilmektedir.

1.1.Zamandan Bağımsız Kuantum Metodu

Zamandan bağımsız Schrödinger denklemini çözmek için genel olarak iki metot

geliştirilmiştir. Bunlardan ilki, Varyasyon prensibine dayanan ve matrislerin köşegen hale

getirilmesini gerektiren metottur. Bu metotta, sistemin hareketini tanımlayan dalga
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fonksiyonu bir baz seti cinsinden seriye açılır. Sınır şartlarının uygulanması ve

Hamiltonyen matrisinin köşegen hale getirilmesi ile açılım katsayıları ve enerji öz

değerleri elde edilir. Açılım katsayıları cinsinden ifade edilen dalga fonksiyonunun

asimptotik davranışından saçılma genlikleri elde edilir ve bu genliklerin mutlak kareleri

reaksiyon ihtimaliyetlerini verir. Fakat bu metotta, reaksiyona giren atomların kütleleri ve

sayıları arttıkça daha çok baz vektörünün kullanılması gerekir. Bu ise Hamiltonyen

matrisinin boyutunu arttırır ve köşegen hale getirilmesini güçleştirir. Zamandan bağımsız

kuantum metodunda ikinci çözüm yolu ise zamandan bağımsız Schrödinger denkleminin

tekrarlanan integrasyonudur. Zamandan bağımsız Schrödinger denklemi bir sınır değer

problemidir ve birçok sistem için tam olarak çözülebilmektedir (Gordon,1971; Baer,1985).

1.1.1.Kapalı Çiftlenim-Çiftlenimli Kanal (Close Coupling-Coupled Channel) Metodu

Herhangi bir A atomu ile bir BC molekülü arasındaki etkileşme problemi Jacobi

koordinatları kullanılarak en iyi şekilde tanımlanabilir. Şekil 1 ´de + sistemi için

Jacobi koordinatları şematik olarak gösterilmiştir. Burada R, atomu ile molekülünün

kütle merkezi arasındaki uzaklığı; r, molekülünün atomları arasındaki mesafeyi;  ise

R ve r arasındaki açıyı göstermektedir.

Şekil 1. Jacobi koordinat sistemi.

+ şeklindeki atom-iki atomlu molekül etkileşme problemi için toplam

Hamiltonyen operatörü cisim merkezli koordinat sisteminde, Jacobi koordinatları

cinsinden
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HjJH (1.1)

olarak yazılabilir. Burada , A+BC sisteminin indirgenmiş kütlesi; J, toplam açısal

momentum operatörü; VBC, B ve C atomları arasındaki etkileşme potansiyelidir. V(R,r,), A

atomu ile BC molekülü arasındaki etkileşmeyi temsil eder ve potansiyel enerji yüzeyi

olarak da adlandırılır. BCH ise iki atomlu BC molekülü için Hamiltonyen operatörü olup

 rV
rdr

d
BC

BCBC
BC  2

2

2

2

22
1


jH (1.2)

şeklinde tanımlanır. Burada BC iki atomlu BC molekülünün indirgenmiş kütlesidir. j ise

BC molekülünün kendi kütle merkezi etrafındaki dönme hareketini tanımlayan dönme

açısal momentum operatörüdür.

Zamandan-bağımsız Schrödinger denklemi basitçe

JJ E H (1.3)

şeklinde ifade edilebilir.

A+BC etkileşmesinde, toplam enerji (E) ve toplam açısal momentum (J) etkileşme

boyunca sabit kalır. Bu nedenle (1.3) denkleminin her bir J ve E değeri için ayrıca

çözülmesi gerekir. Çiftlenimli-kanal yaklaşımında herhangi bir J değeri için (1.3)

denkleminin çözümü olan dalga fonksiyonu, H ile yer değiştirme özelliğine (komütatif)

sahip olan J2 ve j2 operatörlerinin öz fonksiyonları cinsinden bir seriye açılabilir:

     





,,

1
j

j
jJ

j
J PrRF

R 
  (1.4)

Burada;  RF J
j açılım katsayılarını,  rj

 titreşim öz fonksiyonlarını ve  jP

ise dönme durumu öz fonksiyonlarını göstermektedir. Titreşim ve dönme öz fonksiyonları

küresel harmonikler adı altında       
  j

j
j PrrY , şeklinde birleştirilebilirler.  jP

dönme durumunu temsil eden öz fonksiyonlar Asosiye Legendre polinomları cinsinden

ifade edilebilirler.  rj
 titreşim öz fonksiyonları ise, iki atomlu molekül için
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   rr j
j

j
BC   H (1.5)

şeklinde ifade edilen Schrödinger denkleminin çözümünden elde edilirler. Burada BCĤ iki

atomlu molekül için Hamiltonyen operatörüdür ve

   
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2
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2
1

r
jjrV

dr
d

BC
BC

BC
BC 


H (1.6)

şeklinde yazılabilir. Burada j ve j, sırasıyla, iki atomlu molekülün dönme-titreşim enerji

seviyeleri ve BC molekülünün kendi kütle merkezi etrafında dönmesinden kaynaklanan

dönme açısal momentum kuantum sayılarıdır. Denklem (1.4) denklem (1.3) te kullanılıp,

j fonksiyonları ile soldan çarpıldıktan sonra  ve r değişkenleri üzerinden integral

alındığında

       


















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





j

J
j

J
jj RFj

R
jJjjRrVjRFk

dR
d


 


 2

2
2

2

2

2

ˆˆ
,,2 (1.7)

ifadesi bulunur. Burada,

   jjUjRrVj  ,,, (1.8)

ile verilen potansiyel enerji matrisi ve

   jjBjjJj  ,

2ˆˆ (1.9)

ise açısal momentum matrisidir. Zamandan bağımsız kuantum metodunda asıl zorluk,

potansiyel veya genel anlamda Hamiltonyen matrisinin boyutlarının çok büyük

olmasındandır. Denklem (1.7) de verilen ifadeyi çözmek için potansiyel enerji matrisi ve

açısal momentum matrisinin nasıl hesaplanacağının bilinmesi gerekir. Potansiyel matrisini

hesaplamak için, etkileşme potansiyeli  ,,RrV ´yi, Legendre polinomları cinsinden
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      



max

0
cos,,,




  PRrVRrV (1.10)

bir seriye açmak uygun olur. Burada P, . dereceden Legendre polinomlarıdır. (1.10)

denkleminin  jjU  , ifadesinde kullanılması ile

      

















max

0

2
1

, 0
12121






 jj
jjU jj  


 







  RrV
jj

,
000

(1.11)

denklemi elde edilir (Zare, 1988). Denklem (1.9) da verilen  2jJ 

    jJjJjJjJjJ zz2222 (1.12)

şeklinde açılabilir. Burada J ve j yükseltme (+) ve alçaltma (-) operatörleridir

(Zare,1988). Böylece açısal momentum matrisi elemanları Asosiye Legendre polinomları

cinsinden

  
  jj PjjY 12j


  jjz PYJ


  jjz PYj

     12
1

11 
  jj PJJY J

     12
1

11 
  jj PjjYj (1.13)

ifadeleri ile hesaplanabilir. Etkileşme potansiyeli ve açısal momentum matrisleri

belirlendikten sonra denklem (1.7) ile verilen saçılma problemi bir sınır değer denklemine

dönüşür. Bu denklemin çözümü için en az iki sınır şartının bilinmesi gerekir. Bu şartlar,

  00  RF J
j

  sabitR
dR

dF J
j  0 (1.14)
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şeklinde tanımlanır. Asimptotik olarak R için etkileşme potansiyeli sıfır olur ve özel

bir J değeri için dalga fonksiyonu,

      
 


 

,, ,,

2
1

2exp1
j j

j
J
jj

J jJrkiA
R  




       jj
J

jj jJrkiS  
2exp

(1.15)

şeklinde bir düzlem dalga olarak yazılabilir. Burada jk dalga vektörü olup toplam enerji

ve iki atomlu molekülün titreşim-dönme enerji öz değerleri cinsinden

)(2 jBCj Ek    (1.16)

olarak ifade edilebilir. J
jA  gelen akının ihtimaliyetini gösteren sabit bir değerdir ve


 


j

j

k
 dır. J

jjS   ise saçılma matrisi elemanları olup; mutlak kareleri sabit bir J ve E

değeri için reaktif saçılma ihtimaliyetlerini verir:

    2
ESEP J

jjjj    (1.17)

Denklem (1.6) ile verilen Kapalı Çiftlenim Açılımında N tane baz fonksiyonu

kullanılırsa o zaman çözülmesi gereken N tane ikinci dereceden diferansiyel denklem var

demektir.  Denklem (1.16)´da E > j olduğu zaman j enerjili kuantum durumları açık

kanal, E< j olduğu zaman ise kuantum durumları kapalı kanal olarak adlandırılır. Bir

kuantum kanalının açık veya kapalı olması, iki atomlu molekülün söz konusu kanala

uyarılıp uyarılamayacağını gösterir. İki atomlu bir molekülde her bir titreşim durumu için

en az 10 ile 20 arasında dönme kuantum durumu vardır (Krems, 2000). Her bir j dönme

kuantum durumu için  ´nın farklı değerleri ile birlikte 2j+1 durum olduğundan iki atomlu

bir molekülün ilk titreşim enerji seviyesine eşit bir enerjide molekül uyarıldığı zaman

gerekli olan kuantum mekaniksel denklemlerin çözümü kolayca yapılabilir. Fakat ikinci
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titreşim seviyesindeki bir enerji değerinde 300 ile 500 arasında çiftlenimli denklemin

çözülmesi gerekir. Modern literatürde en iyi hesaplamalar 600 kanala kadar

yapılabilmektedir (Krems, 2000). Bu durum, Kapalı Çiftlenim metodunun çoğu iki atomlu

moleküllerin ilk uyarılmış titreşim seviyeleri için çözümünün oldukça zor olacağını

göstermektedir. Bu nedenle, kuantum mekaniksel hareket denklemlerindeki terim sayısını

azaltmak için bazı yaklaşımlar yapılır. Bu yaklaşımlardan biri Kapalı Çiftlenimli -

Çiftlenimli Durum yaklaşımıdır.

1.1.2.Kapalı Çiftlenim-Çiftlenimli Durum (Close Coupling-Coupled  States)Yaklaşımı

Yukarıda belirtildiği gibi iki atomlu bir molekülün her bir dönme-titreşim durumu

 kuantum sayısının 2j+1 tane değer almasından dolayı 2j+1  katlı dejeneredir. Her bir

dejenere durum ise alçaltma ve yükseltme operatörünün izdüşümü olan  ´dan dolayı

birkaç farklı alt duruma bölünür ve böylece çarpışma probleminde yeni dönme durumları

ortaya çıkar. Dolayısıyla problemin çözümü oldukça zorlaşır. Kapalı Çiftlenim metodunda

 ´nın çarpışma süresince korunduğu kabul edilir. Bu, 2j+1 tane çiftlenimli denklemin

bağımsız olarak düşünülmesine ve verilen her bir j dönme durumu için 2j+1 tane büyük

problemin 2j+1 tane küçük probleme indirgenmesi anlamına gelir. Kapalı Çiftlenim-

Çiftlenimli durum yaklaşımının temeli de bu düşünceye dayanır. Çarpışma süresince ´nın

korunması sonucunda (1.12) denklemi matematiksel olarak

  zz jJjJjJ 2222  (1.18)

şeklinde yaklaşık olarak ifade edilebilir. Çiftlenimli Durum yaklaşımının temelini

oluşturan bu denklem Kouri tarafından geliştirilmiştir (McGuire ve Kouri, 1974; McGuire,

1975; Alexander ve McGuire, 1976). Böylece çarpışma problemi J, E ve  gibi üç sabite

parametrik olarak bağlı olup dalga fonksiyonu

      
 

j
j

jJ
j

J YrRF
R ,

1


  (1.19)

olarak yazılabilir. (1.7) denklemini elde etmek için yapılan işlemler ile birlikte (1.18)

denklemi de göz önüne alındığı zaman sabit bir J, E ve  değeri için Kapalı Çiftlenim-

Çiftlenimli Durum denklemleri
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   








 
 J

jj F
R

jjJJk
dR
d

 2

2
2

2

2 211    RFjRrVj J
j

j






 


 ,,2

(1.20)

şeklindeki bir probleme dönüşür. (1.20) denklemi sadece etkileşme potansiyeline

parametrik olarak bağlıdır ve bu da kısım 1.1.1. de tanımlandığı gibi çözülür. Kapalı

Çiftlenim metodunda olduğu gibi (1.20) denkleminin asimptotik olarak çözümü saçılma

matrisini verir. Gerçek Çiftlenimli Durum yaklaşımı literatürde He+H2 (McGuire ve

Kouri, 1974; McGuire, 1975; Alexander ve McGuire, 1976) ve He+CO (Reid ve diğ.,

1997; Balakrishnan ve diğ., 2000) inelastik saçılma problemlerine uygulanmıştır.

Kapalı Çiftlenim-Çiftlenimli Kanal metodunun bir çok avantajı vardır. Bu metotla,

doğrudan deneysel sonuçlarla karşılaştırılabilen sonuçlar elde edilebilir ve bir çarpışma

enerjisi değeri için bütün kuantum seviyeleri arasındaki geçiş ihtimaliyetleri bir defada

hesaplanabilir. Ancak, ağır atomları içeren sistemlere uygulandığı zaman (1.19) denklemi

ile verilen Kapalı Çiftlenim açılımında çok fazla baz fonksiyonu kullanılması gerekir. Bu

ise, Hamiltonyen matrisinin boyutlarının artması anlamına gelir. Öyle ki, çok gelişmiş

bilgisayarlarda bile köşegen hale getirilmesi imkansız olan matrisler ile karşılaşılabilir.

Kapalı Çiftlenim-Çiftlenimli Kanal metodunun dezavantajı, her bir çarpışma enerji değeri

için zamandan bağımsız Schrödinger denkleminin çözülmesi ihtiyacıdır.



9

2.HİPER KÜRESEL KOORDİNATLAR

Zamandan bağımsız Schrödinger denklemini çözmek için kullanılan

koordinatlardan birisi de hiper küresel koordinatlardır.

Bir kolineer + ⇌ + reaksiyonu için hiper küresel koordinatlar basitçe

polar koordinatlardır.

Şekil 2. Hiper küresel koordinatlar.

= ( + ) (2.1)

ve

= tan (2.2)

Burada , reaksiyonun giriş kısmında yer alan molekülünün atomları arasındaki

mesafeyi, ise ürünler kısmında yer alan molekülün atomları arasındaki mesafeyi
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gösterir. Hiper küresel koordinatlarda açısı hiper açı olarak tanımlanır ve hiper açının

azalması veya artması her sistem için farklı sonuçlar ortaya koyabilir. Hiper küresel

koordinatların esas avantajı kinetik enerji operatörünün bu koordinat sisteminde basit

olarak çözülebilmesidir. Kolineer reaktif saçılma Hamiltonyen ’i ve θα cinsinden

yazılabilir ;

= − ℏ + + + ( , ) (2.3)

Burada hiper yarıçapı atomu ile molekülünün kütle merkezi arasındaki

mesafe anlamına gelmektedir. Hiper küresel koordinatlarda reaktif saçılma problemi ya

bağlı genleşme katsayısı , ( ) ile titreşim koordinatı ya bağlı ( ) ortonormal

temel fonksiyonları kümesinde dalga fonksiyonu yayılımı durumunda doğal çarpışma

koordinatında olduğu gibi aynı prensipte çözülebilir.

( , ) = ∑ , ( ) ( ) (2.4)

Bu yayılım yerine Schrödinger denklemi içinde = yazılırsa standart

teknikler kullanılarak çözülebilen öteleme dalga fonksiyonları , ( ) için kapalı

çiftlenimli denklemler kümesi elde edilir.

, ( ) = ∑ ( ) , ( ) (2.5)

denkleminde

( ) = ℏ ∫ ( )∗[ ( ) − ]Ѳ ( ) (2.6)

ile

( ) = − ℏ + + ( , ) (2.7)

yerlerine yazılır.
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Denklemde ( ) fonksiyonu yerine ‘ya bağlı ( ; ) öz değer

fonksiyonu yazılırsa

( ) ( ; ) = ( ) ( ; ) (2.8)

çözümünü verir.

Burada amaç öz fonksiyonları belirledikten sonra öz değer denklemini çözüp enerji

öz değerlerini bulmaktır.
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3.ZAMANDAN BAĞIMSIZ KUANTUM METODU İÇİN GELİŞTİRİLEN

PROGRAM: ABC

Atom – iki atom kimyasal reaksiyonlarının kuantum mekaniksel reaktif saçılma

denklemlerinin çözümü için günümüzde kullanılan yayın program tarafından

geliştirilmiştir. Program tek bir Born-Oppenheimer potansiyel enerji yüzeyinde üç

çekirdekli hareketin Schrödinger denkleminin çözümünde hiper küresel koordinatları

kullanır. Bu program test edilmiş olup literatürde döteryum izotopları + , ++ reaksiyonları için tüm ihtimaliyetler hesaplanıp fortran alt programlarında

bu reaksiyonların potansiyel enerji yüzeyleri test edilmiştir.

Bu programın asıl amacı hiper küresel koordinatları kullanarak üç atomlu bir sistem

için Schrödinger hareket denklemini çözmektir.

Kuantum reaktif saçılmasının sınır şartları sanal bir emici potansiyel kullanılmadan

tamamen uygulanır. Orbital ve açısal momentum arasındaki birleşim ayrıca toplam açısal

momentum kuantum sayısının her bir değeri için uygun biçimde uygulanmıştır.

Kuantum mekaniğinde klasik mekanikten farklı olarak girenler ve ürünlerin tanımı

aynı değildir. Kuantum mekaniğinde uzayın her yerinde teknik zorluklar görülebilir ve

çarpışma süreci kolay değildir. Koordinat sorunu kuantum reaktif saçılma teorisinin

komplike bir özelliğidir.

Bu komplikasyonun sonucu olarak genel bilgisayar programları kuantum reaktif

saçılma için mevcut hale getirildi. ABC programı geçmiş yıllarda üç boyutlu kimyasal

reaksiyonlar için geliştirilen kuantum reaktif saçılma programlarından biridir. Diğer

program ise Zhang grubu tarafından eşzamanlı geliştirilen Dynasol programıdır (D.H.

Zhang ve diğ.).

Dynasol programı hacim ölçekli Jacobi koordinatları ile özellikle koordinat

sorunundan kaçınmıştır. Bunun aksine ABC programı hiper küresel koordinatlarda üç

kimyasal düzenlemede kullanılıp yeterli olmuştur.

Aslında program döteryum izotopları ve üç farklı reaksiyon ( + , + , +) için denenmiş ve bu üç reaksiyon bir yere kadar kolay çalışmıştır. Hidrojenden az

molekül içeren ve potansiyel enerji yüzeyleri derin olmayan kuyular için ABC programı

son deneyleri anlamaya yardımcı olmuştur.
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3.1.Programa genel bakış

ABC programı kuantum reaktif saçılma sınır şartlarının hayali emme potansiyeli

hariç tamamen uygulandığı üç boyutlu Schrödinger hareket denkleminin hiper küresel

koordinatları kullanan programdır. ABC programının çalışmasında her J (toplam açısal

momentum kuantum sayısı), P (üç atomlu öz değer), p (iki atomlu öz değer) için farklı

hesaplamalar mevcuttur.

Tablo 1. Farklı reaksiyonlar için J, P ve p ’nin gereken değerleri.

Reaksiyon J P p

+ ( = 0) 0,1,2, … (−1) +1
+ ( > 0) 0 +1 (−1)

1,2,3, … ±1 (−1)
+ ( = 0) 0,1,2, … (−1) −
+ ( > 0) 0 +1 −

1,2,3, … ±1 −
Sonuçta oluşan çıktılar denk uyarlanmış saçılma matris elemanlarını, iki atomlu

titreşim kuantum sayılarını, dönme kuantum sayılarını ve moleküller arası eksen açısal

momentum izdüşümü olan sarmal kuantum sayılarını içermektedir. Reaksiyonun

girenlerine ve ürünlerine bakılırsa α = 1; + girenler kanalını, α = 2; ürünler +
kanalını ve α = 3; + ürünler kanalını gösterir. Saçılma matrisinin E elemanı

asimptotik reaktant çukurunun altından toplam enerji ölçümüdür.

İlk kez bu saçılma matris elemanları yeterince J değerleri ve enerji değerleriyle

reaksiyonun gözlenen her değerini kullanarak hesaplanmıştır (Zhang ve Miller,1989). Bu

süreçte ilk aşama denk uygulanmış S matris elemanlarına dönüşür.

, = , =
( ) , + , (3.1)

, = , = (−1) ( ) , + , (3.2)
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Başlangıç durumu reaksiyon tesir kesitleri ve hız sabitleri gibi daha büyük ölçüde

ortalama miktarlar aracılığıyla tamamen kararlı durum diferansiyel tesir kesitleri ve

integral tesir kesitlerine oranla S matris elemanlarını temsilen sonuçlardan gözlemler

hesaplanabilir.

′ ′←
Ω
( , ) = ∑ (2 + 1) ′ ( ) ′ ′, ( ) (3.3)

← ( ) = ∑ (2 + 1) , ( ) (3.4)

Bununla birlikte, ABC programının denklem (3.3) ve (3.4) teki gibi tamamen

kararlı durumlarda en uygun şekilde hesaplamalar yapılabilir. Çünkü kararlı olmayan

ürünlerin kuantum durumlarında daha az ayrıntılı miktarları hesaplamak için etkili başka

metotlar mevcuttur.

Birleşmiş kanal fonksiyonları düzenlemede kullanılan referans potansiyelleri üç

atomlu her bir hiper yarıçapın kesilmesinin yerine her bir hiper küresel yüzeyde iki atomlu

potansiyeller alınarak kullanılmıştır.

Logaritmik türev metodu (Manolopoulos,1986) = arasındaki

değerler ile sabit bir referans potansiyel olarak kullanan ABC programında birleşmiş kanal

hiper radyal denklemleri çözülür. Her bir saçılma enerjisi, biraz değişiklik yapılarak reaktif

saçılma sınır şartlarının uygulanmasıyla son logaritmik türev ( ) matrisinden elde

edilen , ( ) saçılma matrisidir (Pack ve Parker, 1987).

Bu değişim ihtiyacının ortaya çıkmasının sebebi ABC programında kullanılan

açısal momentum temel fonksiyonlarının orbital açısal momentum ( ) yerine sarmal ( )
açısal momentum temel fonksiyonları olmasıdır. Sarmal esaslar kullanılsaydı böyle bir

sorun olmayacaktı. Çünkü dikey dönüşümden eş orbital açısal momentum fonksiyonu| 〉 elde edilebilirdi (Pack ve Parker, 1987).

| 〉 = | 〉( , )( , ) (3.5)

denklem (3.5) de ;



15

= ( ; 0 ) (3.6)

Oysa, ABC programını daha etkili yapmak için her bir düzenlemede kullanılan

toplam açısal momentum kuantum sayısının büyük değerleri için genelde tamamlanamaz.

Bunun yerine kuantum katsayısı , | | ≤ ( , , ) olarak sınırlandırıldı. Bu

kısıtlama J ve j büyük değerleri için gerekli olan açısal büyüklüğün azaltılmasında

yararlıdır. Çünkü iyi birleştirilmiş sonuçlar kolineer olarak kısıtlanmış olan reaksiyonların

3 ya da 4 kadar küçük değerleri ile sıklıkla elde edilebilir.

, kuantum sayılarının kesik bir aralığının kullanımı anlamına gelir, bununla

birlikte denklem (3.5) değiştirilerek;

| 〉 = | 〉( , , )( , , ) (3.7)

Burada helicity tabanlı kesiğinde operatörünü temsil eden matrisin bir öz

vektör bileşenidir. Bilindiği gibi, ‘nin bu matris temsili diagonal elemanları ve diagonal

olmayan elemanları ile tridiagonaldir.

〈 | | 〉 = ( + 1) + ( + 1) − 2 (3.8)

ve diaogonal olmayan elemanlar

〈 | | 〉 = [ ( + 1) − ] [ ( + 1) − ] , (3.9)
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4.TESİR KESİTİ

Eşit enerjili parçacıklardan oluşan bir demetin, orijine konulmuş bir saçılma hedefi

üzerine gönderildiğini varsayalım. Gelen parçacıkların her birinin momentumu ⃗ = ℏ ⃗ ve

parçacıkların gidiş yönü z-ekseni olarak alınsın.

Saçılma olayını gözlemlemek için kullanılan bir dedektör, kutupsal koordinatları⃗ = ( , , ) olan bir noktaya konulmuş olsun. Genellikle her dedektörün etkin bir kesit

alanı vardır. Bu etkin alana dersek, bunun gördüğü açı Ω

Ω = = sin (4.1)

bağıntısıyla verilir.

Mermi parçacıklarının sürekli olarak aynı yönde ve aynı enerjide gönderildiği

düşünülürse, saçılma sonucu parçacıklar da her yönde kararlı bir şekilde saçılacaklardır.

Birim zamanda ve birim kesitten gerçek gelen parçacık sayısına akı adı verilir ve

ile gösterilir. Bu akıya karşılık, dedektörün kapsadığı Ω katı açısı içine birim zamanda

saçılan parçacık sayısı olsun. Bir saçılma deneyin diferansiyel tesir kesiti

Ω
= birim zamanda Ω açısı içine saçılan parçacık sayısıbirim zamanda birim kesitten gelen parçacık sayısı

= dNJ
bağıntısı ile tanımlanır. Diferansiyel tesir kesitinin bir alan boyunda ( ) olduğuna dikkat

çekelim. Gerçektende, bu büyüklük aslında kesit değil, saçılma olasılığıyla ilişkilidir.

Ancak, boyutu alan olduğu için bu terim kullanılmaktadır.

Bu büyüklük genellikle, seçilen ( , ) kutupsal açılarının bir fonksiyonu olacaktır.

Diferansiyel tesir kesitinin tüm açılar üzerinden integrali alınırsa toplam tesir kesiti elde

edilir:

= ∫ Ω
Ω

= ∫ ∫ Ω
sin (4.3)
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Tüm bu bağıntılar klasik ve kuantum mekaniğinde birlikte geçerlidir. Reaktif

saçılma olaylarında integral tesir kesitleri

, (E) = ( ) /ℏ ∑ (2 + 1) ∑ ′ ′ ′, ( )′ (4.4)

şeklinde saçılma matrisine bağlı olarak verilir. Bu nedenle tesir kesitlerini elde etmek için

birçok J değeri için reaktif saçılma matrisini hesaplamak gerekir. Saçılma olaylarında

saçılma matrisi reaksiyon ihtimaliyetlerini verdiğinden tesir kesiti

, (E) = ( ) /ℏ ∑ (2 + 1) ∑ ′ ′, ( ) (4.5)

olur. Bu ifade bireysel kuantum durumları arasındaki tesir kesitini verir ve başlangıçtaki

kuantum durumları için tesir kesitleri

(E) = ∑ , (E) (4.6)

şeklinde elde edilir. (Padmanaban, 2005)
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5.KUANTUM MEKANİKSEL REAKSİYON HIZ SABİTİ

Kuantum mekaniksel olarak reaksiyon hızı, verilen bir sıcaklık değerinde

reaksiyonun oluşum hızıdır. Maxwell Boltzmann dağılımına göre tüm enerji değerleri

üzerinden reaksiyon tesir kesitlerinin integre edilmesiyle edilir.

, ( ) = ∫ E , ( ) dE (5.1)

Burada Boltzmann sabitidir. , ( ) , T sıcaklığında bireysel kuantum

seviyeleri arasındaki hız sabitini gösterir. Başlangıç kuantum durumları için hız sabitleri

ürün kuantum durumları üzerinden hız sabitlerinin toplanmasıyla

( ) = ∑ , ( ) (5.2)

şeklinde elde edilir. Son olarak termal hız sabiti, her bir kuantum durumuna karşılık gelen

Boltzmann ihtimaliyetleri ile hız sabitlerinin çarpılıp toplanmasıyla

( ) = ∑ ( ) ( ) (5.3)

elde edilir. Buradaki ( ) Boltzmann ihtimaliyet ifadesi olup, ( )
( ) = ( ) ε

∑ ( ) ε (5.4)

olarak ifade edilir. Son denklemde paydadaki ifade başlangıç durumları için dağılım

fonksiyonudur.
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6.SONUÇLAR VE TARTIŞMA

Şekil 3. Reaktif saçılma için zamana bağlı dalga paketi metodunun şeması (Manolopoulos, 2000).

Şekil 3. de yer alan + giriş kanalında tepkimeye girenleri temsil eden dalga

modeli ve + çıkış kanalındaki ürünleri temsil eden dalga modeli görülmektedir. Bu

şekilde giriş kanalında yer alan dalga fonksiyonuna ℏ⁄ operatörü uygulanıp

çözüm yapılarak çıkış kanalındaki dalga fonksiyonu elde edilir. Ürünler kısmında yer

alan fonksiyonu ile giriş kısmındaki fonksiyonu karşılaştırılarak reaksiyon

ihtimaliyetleri hesaplanır.

Önceki bölümlerde verilen teori ve metotlar göz önüne alınarak zamandan bağımsız

Schrödinger denkleminin çözümü F+DCl saçılma problemi için çözülüp reaksiyon dinamik

ve kinetikleri elde edildi.
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Şekil 4. F + DCl( =0,j=0) reaksiyonunda J = 0, 10, 20 ve 30 değerleri için toplam ihtimaliyetin
çarpışma enerjisine göre değişimi.
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Şekil 6. F + DCl( =0,j=0) reaksiyonunda J = 80 ve 90 değerleri için toplam ihtimaliyetin çarpışma
enerjisine göre değişimi.
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F + DCl( =0,j=0) reaksiyonu için farklı J toplam açısal momentum kuantum

sayılarında elde edilen toplam ihtimaliyetler, çarpışma enerjisine bağlı olarak Şekil 4-6 da

verilmiştir. Reaksiyon gerçekleşme ihtimaliyetinin belli bir çarpışma enerjisi (0.16 eV)

değerinden sonra elde edildiği gözlenmektedir. Endotermik reaksiyonlar için geçerli olan

bu eşik enerjisi durumu beklenen bir sonuçtur. Grafikler incelendiğinde çarpışma

enerjisinin artmasıyla reaksiyon gerçekleşme ihtimaliyeti de artmaktadır. Reaksiyon

ihtimaliyetleri enerjiye bağlı olarak değişirken rezonans yapılar görülmemektedir. Artan J

değerine bağlı olarak Centrifugal bariyeri arttığı için reaksiyon ihtimaliyetlerindeki eşik

enerjisi artan enerji değerine doğru kaymaktadır. Toplam reaksiyon ihtimaliyetleri J=0 dan

J=110 değerine kadar 10 adımda bir hesaplanmıştır. Bu hesaplamalar sonucunda çarpışma

enerjisinin 0.65 eV değeri için ihtimaliyetlerdeki yakınsama(converge) sağlanmıştır.

Dolayısıyla hesaplanacak olan integral tesir kesitlerinin enerji aralığı maksimum 0.65 eV

olacaktır.
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Şekil 7. F + DCl( =0,j=0) reaksiyonu için tüm J toplam açsal momentum kuantum sayılarında toplam
ihtimaliyet ile çarpışma enerjisi değişim grafiği.
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Elde edilen toplam reaksiyon ihtimaliyetlerinin her bir toplam açısal momentum

kuantum sayısına bağlı olarak değişimi karşılaştırmalı olarak Şekil 7. de verilmiştir.

Şekilden de görüldüğü üzere toplam açısal momentum kuantum sayısı J değeri arttıkça

aynı çarpışma enerji seviyelerindeki reaksiyon gerçekleşme ihtimaliyeti düşmekte ve eşik

değeri yüksek enerji bölgesine doğru kaymaktadır.

Atom molekül etkileşmelerinde, reaksiyon integral tesir kesitleri hesaplanırken bütün

J değerleri için Zamandan bağımsız Schrödinger denklemini çözüp toplam reaksiyon

ihtimaliyetlerini elde etmek gerekir. Bu çalışmada, çalışılan enerji aralığında toplam 110

tane J değeri mevcuttur. Her bir J değeri için ve ayrıca her bir enerji değeri için

Schrödinger denkleminin çözülmesi gerekmektedir. Bu durum bilgisayar zamanı

bakımından oldukça uzun hesaplamalar gerektirmektedir. Bu çalışmada integral(toplam)

tesir kesitlerini hesaplamak için belli J değerlerinde toplam reaksiyon ihtimaliyetleri

hesaplanıp ara değerler için bir lineer interpolasyon metodu uygulandı. Bu metot

sonucunda elde edilen bütün toplam reaksiyon ihtimaliyetleri toplanarak integral tesir

kesitleri hesaplandı. Bu hesaplama sonucunda elde edilen değerler Şekil 8. de verilmiştir.
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Şekil 8. İntegral tesir kesitinin çarpışma enerjisi değerine göre değişimi.
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Bu şekilde integral tesir kesiti değeri çarpışma enerjisinin belli bir değerine kadar

görülmemektedir. Eşik enerjisi değerinden itibaren integral tesir kesiti artan enerjiye bağlı

olarak artmaktadır.
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Şekil 9. Kuantum mekaniksel reaksiyon hız sabitinin mutlak sıcaklıkla değişimi.

Şekil 9. da reaksiyon hız sabiti değerleri verilmiştir. Bu değerler, integral tesir

kesitinin Maxwell-Boltzmann dağılımı üzerinde integrali alınarak elde edilmiştir.

Sıcaklığın artması ile birlikte reaksiyon hızı artış gösterip belli bir değerden sonra

sıcaklıktan bağımsız hale gelmektedir. Bu artış reaksiyonun bariyerli bir potansiyele sahip

olduğunu ifade etmektedir.
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