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ABSTRACT

UNIFIED COMBINATORIAL INTERACTION TESTING

HANEFI MERCAN

Computer Science and Engineering Ph.D Dissertation, June 2021

Dissertation Supervisor: Assoc. Prof. Cemal Yılmaz

Keywords: Combinatorial interaction testing, covering arrays, sequence covering
arrays, constraint solving, structural coverage, coverage criteria

We present Unified Combinatorial Interaction Testing (U-CIT), which aims to im-
prove the flexibility of combinatorial interaction testing (CIT) by eliminating the
necessity of developing specialized constructors for CIT problems that cannot be effi-
ciently and effectively addressed by the existing CIT constructors. U-CIT expresses
the entities to be covered and the space of valid test cases, from which the samples
are drawn to obtain full coverage, as constraints. Computing a U-CIT object (i.e., a
set of test cases obtaining full coverage under a given coverage criterion) then turns
into an interesting constraint solving problem, which we call cov-CSP. cov-CSP aims
to divide the constraints, each representing an entity to be covered, into a minimum
number of satisfiable clusters, such that a solution for a cluster represents a test
case and the collection of all the test cases generated (one per cluster) constitutes
a U-CIT object, covering each required entity at least once. To solve the cov-CSP
problem, thus to compute U-CIT objects, we first present two constructors. One of
these constructors attempts to cover as many entities as possible in a cluster before
generating a test case, whereas the other constructor generates a test case first and
then marks all the entities accommodated by this test case as covered. We then
use these constructors to evaluate U-CIT in three studies, each of which addresses a
different CIT problem. In the first study, we develop structure-based U-CIT objects
to obtain decision coverage-adequate test suites. In the second study, we develop
order-based U-CIT objects, which enhance a number of existing order-based cover-
age criteria by taking the reachability constraints imposed by graph-based models
directly into account when computing interaction test suites. In the third study,
we develop usage-based U-CIT objects to address the scenarios, in which standard
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covering arrays are not desirable due to their sizes, by choosing the entities to be
covered based on their usage statistics collected from the field. Then, we empir-
ically demonstrated that the performance (i.e., the construction times) of U-CIT
constructors can be significantly improved by using hints. We also carry out user
studies to further evaluate U-CIT. The results of these studies suggest that U-CIT
is more flexible than the existing CIT approaches.
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ÖZET

TÜMLEŞİK KOMBİNEZON ETKİLEŞİM SINAMA YÖNTEMİ

HANEFI MERCAN

Bilgisayar Bilimi ve Muhendisliği Doktora Tezi, Haziran 2021

Tez Danışmanı: Doç Dr. Cemal Yılmaz

Anahtar Kelimeler: Kombinezon etkileşim sınaması, kapsayan diziler, sıralı
kapsayan diziler, kısıt çözümü, yapısal kapsama, kapsama kriteri

Önermiş olduğumuz Tümleşik Kombinezon Etkileşim Sınama (T-KES) yöntemi,
mevcut Kombinezon Etkileşim Sınama (KES) yöntemleri ile verimli ve etkili bir şek-
ilde çözülemeyen KES problemleri için özel hesaplama yöntemleri geliştirme gereklil-
iğini ortadan kaldırarak, KES’in esnekliğini arttırmayı amaçlamaktadır. T-KES
kapsanması gereken test edilebilen isterleri ve test havuzunun (yani T-KES ob-
jesinin) oluşturulacağı test durumları uzayını kısıt olarak ifade etmektedir. Böylece
bir T-KES objesi oluşturma problemi (yani, belirli bir kapsama kriteri altında tam
kapsama elde eden test durumları kümesi) bizim cov-CSP olarak adlandırdığımız
ilginç bir kısıt çözme problemine dönüşmektedir. cov-CSP kapsanması gereken her
isteri temsil eden kısıtları minimum sayıda kümelere bölmeyi hedeflemektedir. Öyle
ki, bu kümelerin her birisi daha sonra bir test durumunu ifade edecek olup, üretilen
tüm bu test durumlarından (her kısıt kümesi için bir tane) oluşan test havuzu ise
T-KES objesini oluşturmaktadır. Böylece T-KES objesi her isterin en azından bir
test durumu tarafından kapsandığını garanti etmektedir. Tez kapsamında, cov-
csp problemini çözmek ve dolayısıyla T-KES objelerini üretebilmek için iki tane
hesaplama yöntemi önerilmektedir. Bu hesaplama yöntemlerinden biri, bir test du-
rumu oluşturulmadan önce bir kümede mümkün olduğunca çok fazla isteri kap-
samaya çalışırken, diğer yöntem ise önce bir test durumu oluşturur ve ardından
bu test durumunun kapsadığı tüm isterleri kapsanmış olarak işaretlemektedir. Ak-
abinde, bu hesaplama yöntemleri kullanılarak her biri farklı KES problemini çözm-
eye çalışan 3 farklı çalışmada T-KES yaklaşımı test edilmiştir. İlk çalışmada, karar
kapsaması tabanlı yapısal T-KES objeleri üretilmiştir. İkinci çalışmada, çizge ta-
banlı modellerin getirdiği erişilebilirlik kısıtlarını dikkate alarak bir takım sıralama
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tabanlı kapsama kriteri geliştirilmiş ve bu kapsama kriterleri ile sıralama tabanlı
T-KES objeleri üretilmiştir. Üçüncü çalışmada ise, standart kapsayan dizilerin çok
sayıda test durumları üretmesinden ötürü kullanılamadıklarından, sahadan toplanan
kullanım istatistiklerine göre kapsanması gereken isterler seçilerek kullanıma day-
alı T-KES objeleri geliştirilmiştir. Sonrasında, yeni önerdiğimiz ipucu kavramının
T-KES’in etkinliğini daha da arttırdığını göstermek adına bir takım deneysel çalış-
malar yapılmıştır. Son olarak T-KES’i daha ileri düzeyde değerlendirebilmek için
saha çalışmaları da yapılmıştır. Bu çalışmaların sonuçları, T-KES’in mevcut KES
yaklaşımlarından daha esnek olduğunu göstermektedir.
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1. INTRODUCTION

Exhaustively testing the input spaces of modern software systems in a timely man-
ner (if not impossible at all) is generally far beyond the available resources for
testing (Yilmaz, Fouche, Cohen, Porter, Demiroz & Koc, 2014), such as time, com-
puters, storage devices, network resources, and person-hour. Combinatorial interac-
tion testing (CIT) approaches systematically sample the input space and test only
the selected instances of the system’s behavior (Nie & Leung, 2011; Yilmaz et al.,
2014). Note that the term “input” in CIT is used in the most general sense to refer
to any factor, which can affect program executions, such as configuration options,
input parameters, user events, etc.

CIT approaches typically model the software under test as a set of parameters, each
of which takes its values from a discrete domain. As not all possible combinations
of parameter values may be valid in practice, the model can also have a set of
constraints, which invalidate certain combinations. Based on this model, CIT then
generates a sample, i.e., a set of test cases, which from now on will be referred to as
a CIT object, meeting a specified coverage criterion. That is, the sample contains
some specified combinations of parameters and their values. For instance, t-way
covering arrays – a well-known CIT approach, where t is called the coverage strength
– requires that each valid combination of parameter values for every combination
of t parameters appears at least once in the sample (Cohen, Dalal, Fredman &
Patton, 1997), aiming to reveal all the failures caused by the interactions of t or
fewer parameters.

As an example, which will further be studied in detail in Chapter 4.1, Figure 1.1a
presents a configurable system with 6 compile-time configuration options (o1, . . . ,o6)
implemented by using preprocessor directives. Each option has two levels of settings
{(T)rue, (F)alse} and there are no inter-option constraints (i.e., all combinations
of option settings are valid). The set of test cases in Figure 1.1b represent a 2-
way covering array, i.e., a CIT object, for this system. Since t = 2, all pairwise
combinations of settings for these 6 configuration options can be found in at least
one of the 7 test cases selected by this CIT object.
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1 #ifdef (o1 && o2)
2 #ifdef (o3 || o4)
3 ...
4 #endif
5 #endif

6 #ifdef (o5)
7 #ifdef (o6)
8 ...
9 #endif
10 #endif

(a)

test cases decision outcomes
o1 o2 o3 o4 o5 o6 o1∧o2 o3∨o4 o5 o6
T F T F F F F - F -
F T F T T F F - T F
T T T T F T T T F -
T F F F T F F - T F
F F T F T T F - T T
F F F T F T F - F -
T T T F F T T T F -

(b)

entities to be covered
e1 : (o1∧o2)
e2 : ¬(o1∧o2)
e3 : (o1∧o2)∧ (o3∨o4)
e4 : (o1∧o2)∧¬(o3∨o4)
e5 : (o5)
e6 : (¬o5)
e7 : (o5∧o6)
e8 : (o5∧¬o6)

(c)

test cases decision outcomes
o1 o2 o3 o4 o5 o6 o1∧o2 o3∨o4 o5 o6
T T T T T T T T T T
F F T F F T F - F T
T T F F T F T F T F

(d)

Figure 1.1 (a) An example set of preprocessor directives for a system with 6
compile-time configuration options, (b) an example 2-way standard covering array
created for the system, (c) entities to be covered to obtain full coverage under the
decision coverage criterion, and (d) an example test suite obtaining full coverage

under the decision coverage criterion.

To reduce the cost of testing, CIT constructors, i.e., the tools to compute CIT
objects, aim to obtain a full coverage under the given criterion by using the smallest
number of test cases possible. CIT has indeed been successfully used in many
application domains, including systematic testing of network protocols (Williams
& Probert, 1996), input parameters (Schroeder, Faherty & Korel, 2002), software
configurations (Yilmaz, Cohen & Porter, 2006a), software product lines (Johansen,
Haugen & Fleurey, 2012), multi-threaded applications (Lei, Carver, Kacker & Kung,
2007), and graphical user interfaces (Yuan et al., 2011).

We, however, observe that when the actual CIT problems differ from the ones ad-
dressed by the existing CIT approaches, it can be difficult to use these approaches in
an efficient and effective manner (Demiroz & Yilmaz, 2012; Yilmaz, 2013a; Yilmaz
et al., 2014). Note that, in this context, changes in CIT problems refer to changes in
the coverage criteria or in the properties of the test spaces from which the samples
are drawn, such that existing CIT constructors cannot be used as they are (i.e.,
requiring modifications, if at all possible) or demand excessive number of test cases

2



to guarantee full coverage.

For example, if the coverage criterion in our running example was changed from
t-way coverage to decision coverage (Javeed & Yilmaz, 2015), where the goal is to
cover every outcome of a decision in Figure 1.1a at least once, then, to guarantee full
coverage, the strength of the standard covering array to be used would be at least
4 (i.e., t≥ 4). This is because the outcome of the decision in line 2 (Figure 1.1a)
depends on the interactions among 4 options, namely o1, o2, o3, and o4. This,
however, requires to have at least 16 test cases, while a full decision coverage in this
scenario can be achieved by using as little as 3 test cases, such as the ones given in
Figure 1.1d.

Different CIT problems typically necessitate the development of specialized con-
structors. Taking a brief look at the historical perspective of covering arrays can
help understand this trend: The very first variants of covering array constructors
supported only pairwise testing of binary parameters, where t = 2 and each param-
eter had exactly two levels of values (Lawrence, Kacker, Lei, Kuhn & Forbes, 2011).
When these strict conditions were not met, the aforementioned objects were of little
worth. Consequently, new CIT constructors were developed to handle the CIT prob-
lems, in which the parameters could take on a different number of values and the
covering arrays could be computed for t≥ 2 (Cohen et al., 1997). However, as these
objects assumed that all possible combinations of parameter values were valid, they
were not appropriate in the presence of system-wide inter-parameter constraints,
causing wasted resources in testing (Cohen, Dwyer & Shi, 2007; Dumlu, Yilmaz,
Cohen & Porter, 2011). Thus, new CIT constructors were developed to handle
system-wide constraints (Bryce & Colbourn, 2006; Mats, Jeff & Jonas, 2006). How-
ever, these objects then became inappropriate in the presence of test case-specific
constraints, which led to the development of test case-aware covering arrays and
their specialized constructors (Yilmaz, 2013b).

Developing specialized constructors can, however, be quite challenging and time-
consuming, which is also apparent from more than 50 papers published in the lit-
erature, the sole purpose of which is to compute standard covering arrays (Nie &
Leung, 2011; Yilmaz et al., 2014).

In this thesis, we introduce Unified Combinatorial Interaction Testing (U-CIT) to
improve the flexibility of CIT by eliminating the necessity of developing specialized
constructors for every distinct CIT problem. In U-CIT, both the entities to be
covered and the space of test cases, from which the samples will be drawn, are
expressed as constraints. The problem of computing an U-CIT object to cover all the
requested entities then turns into an interesting constraint solving problem, which

3



we call cov-CSP (Makaś, 2016; Rescher & Manor, 1970; Schotch & Jennings, 1980).
Given a set of constraints, each of which represents an entity to be covered, cov-CSP
aims to divide the constraints into a minimum number of satisfiable clusters, such
that each cluster depicts a subset of the entities, which can be tested together in
a single test case. A solution for a cluster then represents a test case, covering all
the entities included in the cluster. Consequently, the collection of all the test cases
generated (one per cluster) constitutes an U-CIT object that covers each required
entity at least once. In the remainder of the thesis, we use the terms “CIT object”
and “U-CIT object” interchangeably to refer to a set of test cases, which obtain full
coverage under a given coverage criterion.

Going back to our running example (Figure 1.1), a decision coverage-adequate U-
CIT object can be computed by representing each configuration option as a Boolean
variable. Then, each entity to be covered corresponds to a distinct outcome of a
decision, represented as a constraint in Boolean logic. Figure 1.1c presents all the
entities that need to be covered to obtain full decision coverage for the system given
in Figure 1.1a. These entities can be divided into 3 satisfiable clusters: {e1, e3, e5, e7},
{e2, e6}, and {e4, e8}. A solution for each cluster represents a test case. For example,
the three test cases in Figure 1.1d, each of which corresponds to a solution computed
for a distinct cluster, represent an U-CIT object, achieving full decision coverage.

Note that we use the term “constraint” in the general sense in U-CIT. That is, any
restriction, independent of the logic in which it is specified, is considered to be a
constraint. Consequently, an U-CIT constructor can be used as long as the entities
to be covered are expressed as constraints and an appropriate procedure (i.e., a
“solver”) is provided to determine if a given set of entities can be tested together
in a single test case, i.e., if the respective constraints can be satisfied together. In
our running example (Figure 1.1), for instance, we can use an ordinary SAT or
CSP solver (Biere, Heule & van Maaren, 2009) to figure out whether the constraints
included in the clusters are satisfiable or not. We, therefore, believe that U-CIT can
be used in a wide spectrum of domains, including software product lines, system of
systems, and cyber-physical systems, in addition to the domains, which we used for
evaluating U-CIT in this work, i.e., highly-configurable systems and event-driven
systems.

U-CIT is not a methodology for deciding what needs to be tested. It, in fact, takes
as input a set of entities to be covered and aims to cover them in a minimum number
of test cases by accommodating as many entities as possible in a single test case.
Note that for a given CIT problem, regardless of whether an U-CIT constructor is
to be used or a specialized constructor is to be developed, entities to be covered
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need to be enumerated and a procedure needs to be devised to determine whether a
given set of entities can be covered together in a single test case or not. Once these
are given, though, U-CIT provides a constructor right away.

Furthermore, U-CIT does not aim to replace existing CIT approaches. We, indeed,
don’t see much value in using U-CIT to compute the same CIT objects that the
existing CIT constructors compute, as the generalized U-CIT constructors may not
be as efficient and as effective as their specialized counterparts. We rather aim to
reduce the barriers to applying CIT to other domains and testing problems by gen-
eralizing the construction of CIT objects as much as possible, so that the collective
effort spent for developing U-CIT constructors can be leveraged to address a wider
spectrum of CIT problems.

In this thesis, we present two U-CIT constructors, namely cover-and-generate and
generate-and-cover. While the former aims to cover as many entities as possible in a
cluster first and then generates a test case for the cluster, the latter generates a test
case first and then marks all the entities accommodated by the test case as covered.

To evaluate U-CIT, we then carry out three case studies, each of which focuses on a
different CIT problem. In the first study, we use U-CIT to compute structural code
coverage-based test suites. In the second study, we use U-CIT to improve a number
of existing order-based covering arrays for testing event-driven systems by taking
the reachability constraints imposed by graph-based models directly into account
during the construction of CIT objects. In the last study, we use U-CIT to compute
usage-based CIT objects, where the entities to be covered are determined according
to their usage statistics in the field – an approach which is of importance especially
when standard covering arrays are not desirable due to their sizes.

In these studies, we observed that it was either unclear how to use the existing
constructors (if at all possible) to compute the requested CIT objects; or the exist-
ing constructors required non-trivial modifications or excessive number of test cases
to guarantee a full coverage. U-CIT, on the other hand, used the same construc-
tor to compute all the requested CIT objects without requiring any modifications,
demonstrating the flexibility of the proposed approach.

We present new method, which we call “hints”, to improve the efficiency of U-
CIT constructors by capturing the domain knowledge of systems in the forms of
hints. The idea behind using hints stems from an observation of ours: Testable
entities to be covered are typically composed of the same set of sub-entities, e.g.,
the same conjuncts appear in multiple testable entities. Therefore, in the processes
of computing U-CIT objects, the same constraints are often solved multiple times.
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Consequently, capturing the relationships between these recurring constraints (i.e.,
sub-entities) in the form of hints can improve the efficiency of U-CIT constructors
by reducing the number of times the solver is called and/or by calling the solver
with simpler constraints.

We also carry out user studies to further evaluate the proposed approach. More
specifically, we observe human subjects working on the smaller instances of the
very same CIT problems we study in this work and report the results we obtained
together with the insights we gained.

In previous work (Mercan & Yilmaz, 2016), we presented an initial set of definitions
for U-CIT and provided an algorithm for computing U-CIT objects. And, we did
this without providing any implementations or empirical evaluations. In this thesis,
however, we present a simplified set of more formal definitions, an additional U-CIT
constructor, a tool implementing the U-CIT constructors, and three case studies
together with user studies, in which U-CIT is evaluated.

The contributions of this thesis can be summarized as follows:

• A flexible approach, U-CIT, for computing combinatorial objects for testing,

• Two constructors together with a tool implementing these constructors to com-
pute U-CIT objects,

• Definition and construction of structure-based U-CIT objects,

• Definition and construction of order-based U-CIT objects,

• Definition and construction of usage-based U-CIT objects,

• A series of experiments demonstrating the flexibility of U-CIT,

• A new method to improve the efficiency of U-CIT constructors by capturing
the domain knowledge of systems in the forms of hints,

• User studies demonstrating the usability of U-CIT.

The remainder of the paper is organized as follows: Chapter 2 presents some back-
ground information; Chapter 3 discusses related work; Chapter 4 introduces U-CIT
on a motivating example; Chapter 5 develops two constructors for computing U-
CIT objects; Chapter 6 presents three case studies, demonstrating the drawbacks of
the existing CIT approaches and how U-CIT addresses these drawbacks; Chapter 7
describes hints approach with two case studies; Chapter 9 provides a general dis-
cussion of the applicability of U-CIT; Chapter 10 discusses threats to validity; and
Chapter 11 presents concluding remarks and possible directions for future work.
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2. BACKGROUND INFORMATION

This chapter presents some background information about combinatorial interaction
testing as well as its widely used two covering array types, and structural coverage
criterion with its well known two different criterion.

2.1 Combinatorial Interaction Testing

Combinatorial interaction testing (CIT) approaches systematically sample the input
space and test only the selected instances of the system’s behavior (Nie & Leung,
2011; Yilmaz et al., 2014). The term “input” in CIT is used in the most general sense
to refer to any factor, which can affect program executions, such as configuration
options, input parameters, user events, etc.

CIT approaches typically model the software under test as a set of parameters, each
of which takes its values from a discrete domain. As not all possible combinations
of parameter values may be valid in practice, the model can also have a set of
constraints, which invalidate certain combinations. Based on this model, CIT then
generates a sample, i.e., a set of test cases, which from now on will be referred to as
a CIT object, meeting a specified coverage criterion. That is, the sample contains
some specified combinations of parameters and their values.

2.1.1 Standard Covering Arrays

A t-way covering array is well-known CIT object which is a set of valid configura-
tions, where t is called the coverage strength – requires that each valid combination
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Table 2.1 An example of 2-way covering array for a system having 5 boolean
configuration options and with a system constraint o1 6= o2.

o1 o2 o3 o4 o5
0 1 1 1 1
1 0 0 0 0
0 1 0 0 1
1 0 1 1 0
0 1 1 0 0
1 0 0 1 1

of parameter values for every combination of t parameters appears at least once
in the sample (Cohen et al., 1997), aiming to reveal all the failures caused by the
interactions of t or fewer parameters.

An example of a 2-way covering array for a system having 5 boolean configuration
options {o1,o2,o3,o4,o5} which either takes 0 or 1, and with a system constraint
o1 6= o2 which invalidates some certain configurations is given in Table 2.1. Note that
every possible combinations of parameter values is covered at least by one of the
configurations of given covering array except < o1 = 0,o2 = 0 > and < o1 = 1,o2 = 1 >

due to the given system constraint. For o2 and o3 pair (since t=2), for instance,
< o2 = 1,o3 = 1 >, < o2 = 0,o3 = 0 >, < o2 = 1,o3 = 0 >, and < o2 = 0,o3 = 1 > are
covered by the first, second, third, and fourth configurations, respectively.

2.1.2 Sequence Covering Arrays

Sequence covering arrays (Chee, Colbourn, Horsley & Zhou, 2013; Kuhn, Kacker, Lei
& others, 2010) are typically used for testing event-driven systems, such as graphical
user interfaces (Kuhn, Higdon, Lawrence, Kacker & Lei, 2012a; Yuan et al., 2011),
where each symbol corresponds to an event, such as clicking on a button and each
row of the array corresponds to a test case. In event driven systems, the system
behavior typically depends on the order, in which the events occur. For example,
the behavior of a word processor would be quite different when a “paste” event is
followed by a “copy” event on an empty clipboard, compared to that of a “copy”
event followed by a “paste” event.

In this context, (n, k) sequence covering arrays, aim to exercise the system behavior
caused by the orderings of k or fewer events by testing all possible permutations
of k distinct events. More formally, an (n, k) sequence covering array (S-CA) is a
set of permutations of n distinct symbols, such that each permutation of k distinct
symbols appears as a sub-sequence (i.e., not necessarily in a consecutive manner) in
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Table 2.2 An example (4, 3) sequence covering array for symbols {e1, e2, e3, e4}.

[e1, e4, e2, e3]
[e2, e1, e3, e4]
[e2, e4, e3, e1]
[e3, e1, e2, e4]
[e3, e4, e2, e1]
[e4, e1, e3, e2]

at least one of the permutations included in the set.

An example (4, 3) sequence covering array for the symbols {e1, e2, e3, e4} is given
Table 2.2. Note that each row in this table corresponds to a permutation of the 4
symbols and that each permutation of 3 distinct symbols is covered at least once.
For example, the first row, i.e., [e1, e4, e2, e3], covers the permutations [e1, e4, e3],
[e1, e2, e3], and [e4, e2, e3].

2.2 Structural Coverage Criterion

Structural coverage criterion (Chilenski & Miller, 1994; Javeed, 2015) are generally
studied in two groups: control flow and data flow. Whereas data flow considers the
flow of data, i.e., variables definitions and their usage in the codes, the control flow
criterion are based on measuring control flow between block of statements. In this
work, we study two well know structural coverage criterion: Decision Coverage and
Condition Coverage.

2.2.1 Decision Coverage

Decision coverage (DC) (Chilenski & Miller, 1994) is a structural coverage criterion
which states that all possible outcomes (true or false) of Boolean expressions at
decision points (e.g., if statement, while loop etc.) needs to be exercised. In other
words, decision coverage aims to validate all the accessible source code by ensuring
that each one of the possible branches from each decision point is executed at least
once.

As an example, consider the if statement given in Figure 2.1. The decision condition
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if ((x == 1) && (y == 2) && (z > 3)) {
...
...

}
...

Figure 2.1 An example of decision condition for an if statement.

Table 2.3 Test cases ensuring full coverage for the if statement given in Figure 2.1
under decision coverage criterion.

test cases
x y z outcome
1 2 5 true
1 3 3 false

in the if statement contains 3 integer parameters (x, y and z) each of which can take
any possible integer values. To get a full coverage under decision coverage criterion
for this code segment, one can use the test cases given in Table 2.3 both covering
true and false outcome of the decision.

2.2.2 Condition Coverage

Condition coverage (CC) (Chilenski & Miller, 1994) is another structural coverage
criterion which states that all possible outcomes (true or false) of every Boolean
condition which does not have any logical operators such as AND, OR, or NOT,
needs to be tested. As an example, for the if statement given in Figure 2.1, there
are 3 conditions: x == 1, y == 2, and z > 3. Therefore, to achieve a full coverage
under condition coverage criterion, following Boolean expressions needs to be tested:
x == 1, !(x == 1), y == 2, !(y == 2), z > 3, and !(z > 3).

The example test cases given in Table 2.4 satisfies full coverage under condition
coverage, i.e., every possible outcome of Boolean conditions is exercised. However,
note that, outcome of the both test cases are false
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Table 2.4 Test cases ensuring full coverage for the if statement given in Figure 2.1
under condition coverage criterion.

test cases
x y z outcome
2 2 2 false
1 1 5 false
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3. RELATED WORK

This chapter presents some related work on CIT object computation techniques,
mainly standard CAs (Chapter 2.1.1) and sequence CAs (Chapter 2.1.2), how the
constraints are handled in CIT and usage of seeding mechanism.

3.1 Computing CIT Objects

The results of many empirical studies suggest that a majority of parameter-related
failures in practice are often caused by the interactions of only a small number of
parameters (Blue, Hicks, Rawlins & Tzoref-Brill, 2019; Li, Chen & Gong, 2019; Nie
& Leung, 2011; Petke, Cohen, Harman & Yoo, 2015). That is, t is generally much
smaller than the number of parameters, typically 2≤ t≤ 6 with t=2 (i.e., pairwise
testing) being the most common case (Alazzawi & Rais, 2019; Charbachi, Eklund
& Enoiu, 2017; Mohammad & Valepe, 2019). Thus, covering arrays have been
successfully used in many domains, including systematic testing of input parame-
ters (Eitner & Wotawa, 2019; Jarman & Smith, 2019; Rao & Li, 2021), software
configurations (Mukelabai & Nešić, 2018; Yilmaz, Cohen & Porter, 2006b), soft-
ware product lines (Lopez-Herrejon, Fischer, Ramler & Egyed, 2015; Qian, Zhang
& Wang, 2018), graphical user interfaces (Klammer, Ramler & Stummer, 2016;
Michaels, Adamo & Bryce, 2020; Mirzaei & Garcia, 2016), multi-threaded applica-
tions (Qi, Tsai, Colbourn, Luo & Zhu, 2018), and network protocols (Choi, 2017).
Consequently, efficient and effective ways of computing covering arrays are of great
practical importance (Li et al., 2019; Nie & Leung, 2011), which is also evident from
many works in the literature (Akhtar & Maity, 2016; Bombarda & Gargantini, 2020;
Luo & Lin, 2021; Mercan, Yilmaz & Kaya, 2018; Sheng, Jiang & Wei, 2019; Wu,
Nie, Kuo, Leung & Colbourn, 2014; Zhang, Cai & Ji, 2017).

U-CIT is different in that it defines the testable entities to be covered and the space
12



which the test cases will be selected as a constraint problem. Then, by solving
this problem, it computes a CIT object. U-CIT does not need to know about the
semantics of constraints. As long as a solver which checks whether given a set of
constraints is satisfiable, is provided, it provides the constructor right away.

Furthermore, while these constructors are developed to compute covering arrays,
the constructors we have presented in this paper compute U-CIT objects, of which
the covering arrays are a special instance, by solving the cov-CSP problem. Note
that, U-CIT does not aim to replace existing CIT approaches. We, indeed, don’t see
much value in using U-CIT to compute the same CIT objects that the existing CIT
constructors compute, as the generalized U-CIT constructors may not be as efficient
and as effective as their specialized counterparts. We rather aim to reduce the
barriers to applying CIT to other domains and testing problems by generalizing the
construction of CIT objects as much as possible, so that the collective effort spent
for developing U-CIT constructors can be leveraged to address a wider spectrum of
CIT problems.

3.2 Constraint Handling in CIT

Using constraint solving techniques to compute covering arrays is not a new
idea (Wu, Changhai, Petke, Jia & Harman, 2019). Several approaches empirically
demonstrate that ignoring constraints when computing covering arrays often results
in a waste of resources (Cohen, Dwyer & Shi, 2008; Lin & Luo, 2015; Yu, Lei,
Nourozborazjany, Kacker & Kuhn, 2013). Yilmaz et al. introduce test case-specific
constraints (Yilmaz, 2013b), which invalidate option setting combinations on a per
test case basis, and demonstrate that not handling them can cause masking ef-
fects (Yilmaz, Dumlu, Cohen & Porter, 2014). CASA uses a SAT solver to handle
the system-wide constraints within its simulating annealing algorithm (Garvin, Co-
hen & Dwyer, 2011). Banbara et al. describe several encodings suitable for modern
SAT solvers (Banbara, Matsunaka, Tamura & Inoue, 2010). In another work of
Banbara et al. (Banbara & Inoue, 2017), they present a new approach to compute
CIT objects for constrained systems using Answer Set Programming. Hnich et al.
present a SAT encoding designed for incomplete SAT solvers (Hnich, Prestwich &
Selensky, 2004; Hnich, Prestwich, Selensky & Smith, 2006). Furthermore, Yan and
Zhang (Yan & Zhang, 2006) proposes a SAT-based method with a backtracking
mechanism for computing covering arrays. In a more recent work (Jin, Kitamura,
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Choi & Tsuchiya, 2018), Jin et al. developed a new algorithm by combining the
existing satisfiability based techniques to compute covering arrays.

The constraints, however, in U-CIT are interpreted quite differently than the ones
used in existing CIT approaches. More specifically, while the constraints in existing
CIT approaches are typically used to specify combinations of parameter values that
should be avoided, they are used in U-CIT to specify both the combinations (i.e.,
the entities) to be covered and the space of valid test cases, from which the samples
are drawn. Therefore, the scope of a constraint in existing CIT approaches is all the
test cases included in a covering array. That is, all of the selected test cases should
satisfy all the constraints. On the other hand, the scope of a constraint representing
an entity to be covered in U-CIT is limited to a single test case. That is, such a
constraint needs to be satisfied by at least one test case, rather than by all the test
cases selected, allowing a considerable amount of flexibility.

For instance, in our running example (Figure 1.1), expressing o5 and ¬o5 (i.e., the
outcomes of the decision in line 6) as constraints to selectively determine what to
cover in standard covering arrays, prevents the generation of any covering arrays as
these conflicting constraints are enforced to be satisfied by all of the selected test
cases. In U-CIT, however, these constraints are required to be satisfied by different
test cases. For example, in Figure 1.1d, while the former constraint is satisfied by
the first and third test cases, the latter one is satisfied by the second test case.

3.3 Seeding

Seeding has also been frequently used in combinatorial interaction testing (Gladisch,
Heinzemann, Herrmann & Woehrle, 2020; Nie & Leung, 2011). Some example uses
can be summarized as follows: 1) to guarantee the inclusion of certain configurations
by having them in the seed (Deng, Zhang, Li, Yan & Zhang, 2020; Gao, Deng & Yan,
2019); 2) to reduce the cost of testing by including already tested configurations in
the seed (Ma, Zhang, Xue, Li, Liu, Zhao & Wang, 2018); and 3) for incremental
construction of covering arrays by using lower strength covering arrays as seeds
to compute higher strength covering arrays (Galinier, Kpodjedo & Antoniol, 2017;
Yilmaz et al., 2014). In this work, we have developed a seeding mechanism for U-
CIT and used it in two different ways: 1) to combine multiple coverage criteria and
2) to incrementally construct U-CIT objects (Chapter 6.1).
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4. UNIFIED COMBINATORIAL INTERACTION TESTING

In this chapter, we first continue with our running example (Chapter 1) to show
how CIT fails or generates an excessive number of test cases to compute a CIT
object meeting a specified coverage criterion. Then, we show how U-CIT computes
the same requested CIT object in a more flexible way. Finally, we give some formal
definitions for U-CIT.

Note that, to increase the readability of this chapter, Figure 1.1 is replicated as
Figure 4.1 in this chapter.

4.1 Motivating Example

We provide more details on our running example discussed in Chapter 1. In this
example, we are concerned with compile-time configuration options implemented in
the form of preprocessor directives, such as #ifdef and #ifndef directives found
in C and C++. Figure 4.1a presents a hypothetical system with 6 compile-time
configuration options, namely o1, . . . , o6, each of which happens to have two levels
of settings (T)rue and (F)alse. In the remainder of the thesis, we use the term “if-
then-else directive” to refer to an #ifdef, #ifndef, or a similar conditional branch
directive, the conditions of which are comprised of only compile-time configuration
options and/or constants. Note that such directives allow the decision outcomes
to be directly controlled from outside the system by modifying the settings of the
compile-time options as a part of the build process.

An if-then-else directive essentially describes how configuration options interact with
each other. That is, the outcome of a decision (thus the behavior of the system)
may change due to these interactions. Consequently, these interactions may need to
be tested. To this end, one structural test adequacy criterion that the developers
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1 #ifdef (o1 && o2)
2 #ifdef (o3 || o4)
3 ...
4 #endif
5 #endif

6 #ifdef (o5)
7 #ifdef (o6)
8 ...
9 #endif
10 #endif

(a)

test cases decision outcomes
o1 o2 o3 o4 o5 o6 o1∧o2 o3∨o4 o5 o6
T F T F F F F - F -
F T F T T F F - T F
T T T T F T T T F -
T F F F T F F - T F
F F T F T T F - T T
F F F T F T F - F -
T T T F F T T T F -

(b)

entities to be covered
e1 : (o1∧o2)
e2 : ¬(o1∧o2)
e3 : (o1∧o2)∧ (o3∨o4)
e4 : (o1∧o2)∧¬(o3∨o4)
e5 : (o5)
e6 : (¬o5)
e7 : (o5∧o6)
e8 : (o5∧¬o6)

(c)

test cases decision outcomes
o1 o2 o3 o4 o5 o6 o1∧o2 o3∨o4 o5 o6
T T T T T T T T T T
F F T F F T F - F T
T T F F T F T F T F

(d)

Figure 4.1 (a) An example set of preprocessor directives for a system with 6
compile-time configuration options, (b) an example 2-way standard covering array
created for the system, (c) entities to be covered to obtain full coverage under the
decision coverage criterion, and (d) an example test suite obtaining full coverage

under the decision coverage criterion.

can use is the decision coverage criterion (Chapter 2.2). A full coverage under DC
is obtained when every decision, such as (o1∧o2) and (o3∨o4) in Figure 4.1a, is
evaluated to both true and false.

Consider a scenario where the goal is to create a DC-adequate test suite for the
system given in Figure 4.1a. Note that since a single configuration can cover multiple
decision outcomes, the number of configurations required to obtain full coverage
under DC can be reduced by covering as many outcomes as possible in each of the
selected configurations. This is, indeed, the main motivation behind CIT. Therefore,
CIT should be of help.

4.1.1 Applying standard CIT
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It, however, turns out that standard covering arrays are infeasible to achieve the
aforementioned coverage criterion in an efficient and effective manner.

As an in initial attempt, a standard 2-way covering given in Figure 4.1b is created.
The first 6 columns in this figure present the 2-way covering array and the last
4 columns depict the outcomes of the decisions: ‘T ’ for true, ‘F ’ for false, and
‘−’ for decisions that are not exercised due to some unsatisfied guard conditions.
For example, the first row indicates that the decision (o3∨o4) is not exercised by
the configuration (o1 = T,o2 = F,o3 = T,o4 = F,o5 = F,o6 = F ), because the guard
condition (o1∧o2) evaluates to F .

This covering array while obtaining a full coverage for the if-then-else directive
between the lines 6 and 10 in Figure 4.1a, obtains only 75% DC coverage for the
if-then-else directive between the lines 1 and 5, covering 3 out of 4 decision outcomes
required for full coverage. More specifically, out of the decision outcomes {(o1∧o2),
¬(o1∧ o2), (o1∧ o2)∧ (o3∨ o4), (o1∧ o2)∧¬(o3∨ o4)}, the last one where the inner
decision (o3∨o4) needs to be evaluated to F , is not covered. Note that this outcome
can only be achieved with a single 4-way combination, in which o1=T , o2=T , o3=F ,
and o4=F .

One solution approach to overcome this issue is to increase the strength of the
covering array, i.e., to use a larger t. This, however, can excessively increase the
number of configurations to be tested. For example, since the missing combination in
our example is a 4-way combination, to guarantee the coverage of this combination,
a 4-way covering array needs to be created at the very least. However, a 4-way
covering array for this scenario can have as many as 28 configurations.

An alternative approach is to use a variable-strength covering array, requiring a 4-
way coverage only for the options {o1, . . . ,o4}. However, since what is actually being
requested is the exhaustive testing of all possible combinations of settings for these
4 binary options, at least 16 configurations are required by this alternative.

Note that decision outcomes that need to be covered cannot be expressed as con-
straints in standard covering arrays in an attempt to selectively determine what to
cover. This is because constraints in standard covering arrays are globally enforced.
That is, the constraints should be satisfied by each and every configuration included
in the covering array. Therefore, expressing the decision outcomes as constraints
in standard covering arrays prevents the creation of any CIT objects because the
alternative outcomes of a decision are guaranteed to conflict with each other. For
example, since the outcomes of the decision at line 6 in Figure 4.1a, i.e., o5 and ¬o5,
conflict with each other, no configuration satisfying both of these constraints can be
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generated; thus, no standard covering array can be constructed.

4.1.2 Applying U-CIT

U-CIT, on the other hand, can flexibly be used as follows to obtain DC-adequate
test suites. Each entity to be covered corresponds to a distinct decision outcome.
The entities are then expressed as constraints by using Boolean logic where each
configuration option is represented by a Boolean variable. For our running example,
Figure 4.1c presents all the entities required to be covered to obtain full coverage
under the DC criterion. For instance, the first two entities (e1 and e2) represent the
T and F outcomes of the decision at line 1 in Figure 4.1a, respectively.

Given the entities in Figure 4.1c, an U-CIT constructor divides them into 3 clusters:
{e1, e3, e5, e7}, {e2, e6}, and {e4, e8}, such that all the constraints within a cluster
can be satisfied together and that the number of clusters required to cover all the
entities is minimized as much as possible.

Each cluster represents a set of decision outcomes that can be covered together in
a single configuration. Therefore, a solution computed for a cluster represents a
configuration, which covers all the decision outcomes included in the cluster. Con-
sequently, the U-CIT constructor generates the three configurations (one for each
cluster) given in Figure 4.1d, which obtain full coverage under the DC criterion; the
first configuration covers the entities {e1, e3, e5, e7}, the second configuration covers
{e2, e6}, and last configuration covers {e4, e8}.

Note that neither the clusters nor the configurations generated in this study are
unique in the sense that there are other sets of configurations that an U-CIT con-
structor can generate to achieve full coverage. This is indeed similar to what we
have in standard covering arrays as different t-way covering arrays can be computed
for the same input space model.

Note further that although half of the constraints in Figure 4.1c conflict with the
other half, it does not create an issue for U-CIT. This is because as each of these
constraints represents an entity to be covered, U-CIT enforces them at the level of
a test case. This, in turn, improves the flexibility of CIT, compared to enforcing
the constraints at the level of a test suite as is the case with standard covering
arrays where each and every test case included in a test suite should satisfy all the
constraints. That is, U-CIT aims to satisfy each constraint representing an entity
in at least one test case, rather than enforcing all the selected test cases to satisfy

18



all of the entity constraints. For example, in the test suite given in Figure 4.1d, the
constraint for entity e2 : ¬(o1∧o2) is satisfied by the second configuration only. The
other configurations included in this test suite, indeed, violate this constraint.

4.2 U-CIT Formal Definitions

U-CIT takes as input a set of entities E to be covered and a model M =< P,D,C >,
where P = {p1,p2, . . . ,pk} is a set of parameters, D = {D1,D2, . . . ,Dk} is a set of
respective domains of values, and C is a constraint defined over P . While C defines
the space of valid test cases, from which the samples are drawn, E specifies what
needs to be covered by these samples.

Next, we make a number of definitions, starting from the “standard” definitions and
going towards the U-CIT-specific ones:

Definition 1 A constraint is a tuple < P ′,R > where P ′ ⊆ P is a subset of l ≤ k

parameters and R is an l-ary relation on the corresponding domains.

Definition 2 An evaluation is a function from a subset of parameters to a particular
set of values in the corresponding subset of domains.

Definition 3 An evaluation satisfies a constraint < P ′,R >, if the values assigned
to the parameters in P ′, satisfies the relation R.

Definition 4 An evaluation is consistent with respect to a set of constraints, if it
satisfies all the constraints.

Definition 5 An evaluation is complete, if it includes all the parameters in P .

Definition 6 An U-CIT testable entity is a constraint over a subset of P , which
has at least one evaluation consistent with C, representing an entity to be covered
in testing.

Definition 7 An U-CIT test case is a complete evaluation of P , which is consistent
with C.

Definition 8 An U-CIT testable entity is said to be covered by an U-CIT test case,
if and only if the test case is consistent with the testable entity.

Definition 9 Given an U-CIT model M =< P,D,C > and a set of testable entities
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E to be covered, an U-CIT object is a set of U-CIT test cases, such that every U-CIT
testable entity in E, is covered by at least one U-CIT test case.

Going back to our running example in Chapter 4.1, the U-
CIT model M =< P,D,C > is defined as follows: P = {o1, . . . ,o6},
D = {{T,F},{T,F},{T,F},{T,F},{T,F},{T,F}}, and C : true, indicating
that all possible configurations are valid. An U-CIT testable entity corresponds
to a distinct decision outcome expressed as a constraint in Boolean logic. The
testable entities to be covered E = {e1, . . . , e8} are then defined as they are given in
Figure 4.1c. For example, the testable entity e1 is defined as ¬(o1∧o2), representing
the F outcome of the first decision in Figure 4.1a. An U-CIT test case corresponds
to a configuration, in which each configuration option assumes the value of either T

or F , such as the second configuration in Figure 4.1d where o1 = F , o2 = F , o3 = T ,
o4 = F , o5 = F , and o6 = T . An U-CIT object then corresponds to a decision
coverage-adequate set of U-CIT test cases, such as the ones given in Figure 4.1d.
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5. COMPUTING U-CIT OBJECTS

It turns out that computing U-CIT objects requires us to solve an interesting con-
straint satisfaction problem, which we call cov-CSP (Mercan & Yilmaz, 2016), in-
spired from the theoretical concepts for “measuring” the level of consistency in
paraconsistent logic (i.e., “inconsistency-tolerant” systems of logic) (Makaś, 2016;
Rescher & Manor, 1970; Schotch & Jennings, 1980).

Given a set of constraints H, cov-CSP aims to divide H into a minimum number of
satisfiable clusters. That is, cov-CSP seeks to satisfy the constraints, not necessarily
as a whole, but in groups. We first define cov-CSP in the most general sense and
then show how solving this problem helps compute U-CIT objects.

Definition 10 Given a set of constraints H = {h1, . . . ,hm}, cov-CSP divides H into
a minimum number of clusters S = {H1, . . . ,Hn}, such that ⋃

Hi∈S Hi = H and that
for each Hi ∈ S, ∧

h∈Hi
h is satisfiable, i.e., all the constraints in a cluster are sat-

isfiable together.

Given a model M =< P,D,C > and a set of U-CIT testable entities to be cov-
ered E = {e1, . . . , em}, each of which is represented as a constraint, computing an
U-CIT object proceeds by first solving the cov-CSP problem, so that E is divided
into a “minimum” number of satisfiable clusters S = {E1, . . . ,En} (as specified by
Definition 10). Note that since computing the global minimum may not be com-
putationally feasible (or desirable), U-CIT aims to compute an approximation to
it.

Each cluster depicts a set of testable entities that can be tested together. Therefore,
a solution for a cluster, represents a U-CIT test case covering all the U-CIT testable
entities included in the cluster. Consequently, the collection of all the test cases
generated (one per cluster), constitutes a U-CIT object covering each testable entity
in E at least once.

The only remaining detail to ensure the generation of valid test cases, is to take
the model constraint C into account. To this end, when checking the satisfiability
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of a cluster Ei ∈ S or computing a solution for it, the constraint to satisfy simply
becomes C ∧∧

e∈Ei
e.

Note that, in order to reduce the number of test cases required, it is desirable to avoid
redundancy as much as possible by covering each testable entity in exactly one test
case. However, a testable entity, in the process of covering other testable entities,
may end up being covered by multiple test cases. This can happen unintentionally
(i.e., by chance) or intentionally to satisfy the model constraint C.

Next, we present two constructors for computing U-CIT objects (thus, for solving
the cov-CSP problem), namely cover-and-generate and generate-and-cover.

5.1 The Cover-and-Generate Constructor

Algorithm 1 The cover-and-generate constructor for computing U-CIT objects
Input: A test space model M =< P,D,C >
Input: A set of testable entities E to be covered
Output: An U-CIT object T

1: S←{}
2: for each testable entity e ∈ E do
3: accommodated← false
4: for each E′ ∈ S do
5: if satisfiable(e∧∧

e′∈E′ e
′∧C) then

6: E′← E′∪{e}
7: accommodated← true
8: break
9: end if
10: end for
11: if not accommodated then
12: S← S∪{{e}}
13: end if
14: end for
15:
16: T ←{}
17: for each E′ ∈ S do
18: T ← T ∪ solve(C ∧∧

e′∈E′ e
′)

19: end for
20: return T
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The cover-and-generate constructor (Algorithm 1) maintains a pool S of clusters,
each representing a set of testable entities that can be covered together. The pool
is initially empty (line 1). Then, for each testable entity e ∈ E, we attempt to
accommodate it in an existing cluster E′ ∈ S (lines 4-10). To this end, we check
to see if e is satisfiable together with all the constraints in E′ as well as with the
model constraint C, i.e., whether e∧∧

e′∈E′ e
′∧C is satisfiable (line 5). If so, e is

included in E′ (line 6), indicating that e can be accommodated together in a single
test case with the other testable entities in E′. Otherwise (i.e., if no such cluster is
found), we populate S with a new cluster initially having only e (line 12). Once all
the testable entities are processed, for each cluster E′ ∈ S, we generate a test case
by solving C ∧∧

e′∈E′ e
′ (line 18). The collection of all the test cases generated (T ),

is then returned as the U-CIT object computed, covering all the testable entities in
E (lines 17-20).

5.2 The Generate-and-Cover Constructor

The generate-and-cover constructor associates a cluster with an U-CIT test case,
rather than with a set of U-CIT testable entities. Conceptually, this constructor
generates a test case first and then marks all the testable entities accommodated
by the test case as covered. Therefore, it is different than the cover-and-generate
constructor, which attempts to cover as many testable entities as possible in a cluster
before generating a test case. Consequently, the set of clusters maintained through
the iterations of the generate-and-cover constructor, simply represents the U-CIT
test cases that have already been included in the U-CIT object being computed.

Given a model M =< P,D,C > and a set of testable entities E to be covered, one
way to generate a test case is to compute a solution for the model constraint C,
regardless of E. However, generating test cases without taking the testable entities
to be covered into account, may make it quite difficult to cover the entities that are
hard to cover by chance. We, therefore, employ an alternative approach in this work,
which guarantees that at least one previously uncovered testable entity is covered
by every test case generated.

Algorithm 2 presents the generate-and-cover constructor. The U-CIT object T is
initially empty (line 1). Then, for each testable entity e∈E, we check to see if e has
already been covered by a test case t ∈ T (lines 4-9), i.e., if there exists a test case
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Algorithm 2 The generate-and-cover constructor for computing U-CIT objects
Input: A test space model M =< P,D,C >
Input: A set of testable entities E to be covered
Output: An U-CIT object T

1: T ←{}
2: for each testable entity e ∈ E do
3: accommodated← false
4: for each t ∈ T do
5: if satisfiable(e∧ t∧C) then
6: accommodated← true
7: break
8: end if
9: end for
10: if not accommodated then
11: T ← T ∪ solve(e∧C)
12: end if
13: end for
14: return T

t ∈ T , which is consistent with e (line 5). If no such test case is found, a new U-CIT
test case covering e, is generated by solving the constraint e∧C and T is populated
with the newly generated test case (lines 10-12). Once all the testable entities in E

have been processed, T is returned as the U-CIT object computed (line 14).

5.3 A Seeding Mechanism

Both of the constructors we have discussed so far can also take as input a seed,
which in this context refers to a set of U-CIT test cases. Given a seed, all the U-
CIT testable entities in the seed, are considered to have already been covered and
additional U-CIT test cases are generated only to cover the remaining entities.

To this end, the only change that needs to be made is to modify line 1 in Algorithms 1
and 2, such that instead of starting with an empty pool of clusters, we start with
an initially populated pool of clusters, each of which is created to include a single
U-CIT test case in the seed. Nothing else in the algorithms needs to be changed.

In Chapter 6.1, we use the seeding mechanism both to compute higher strength U-
CIT objects from lower strength U-CIT objects (by using the lower strength objects
as seeds) and to generate U-CIT objects that satisfy multiple coverage criteria (by

24



Table 5.1 An U-CIT object (second column) created for the set of satisfiable
clusters S = {E1,E2,E3} (first column) obtained for the testable entities in

Figure 4.1c.

satisfiable clusters DC-adequate U-CIT object
S = {E1,E2,E3} o1 o2 o3 o4 o5 o6

E1 = {e1, e3, e5, e7} T T T T T T
E2 = {e2, e6} F F T F F T
E3 = {e4, e8} T T F F T F

using an object satisfying a coverage criterion as a seed to compute another object
satisfying a different coverage criterion).

5.4 Example: Computing DC-Adequate Test Suites as U-CIT Objects

In this section, for illustrative purposes, we use the cover-and-generate constructor
(Algorithm 1) to compute DC-Adequate test suites as U-CIT objects using our run-
ning example in Chapter 4.1. For the sake of the discussion, however, we introduce
the following system-wide constraint to the problem: (o2 = F ) =⇒ (o6 = T ), i.e., if
o2 is false, then o6 must be true, invalidating the combination (o2 = F,o6 = F ).

Modeling. The U-CIT model is defined as M =< P,D,C >, where P = {o1, . . . ,o6},
D = {{T,F}, . . . ,{T,F}}, and C : (¬o2 =⇒ o6). Each U-CIT testable entity then
naturally corresponds to a decision outcome to be covered. Figure 4.1c presents all
the U-CIT testable entities that need to be covered to obtain full coverage under
the decision coverage criterion.

Assuming that the testable entities in Figure 4.1c are processed in the order e1, . . . , e8,
the cover-and-generate constructor proceeds as follows: First, e1 : (o1∧o2) is pro-
cessed. Since the pool S is initially empty (line 1), a new cluster E1 = {e1} is
created and S is populated with E1, i.e., S = {E1} (line 12). Then, e2 : ¬(o1∧o2)
is processed. Since e1∧ e2∧C, i.e., (o1∧o2)∧¬(o1∧o2)∧ (¬o2 =⇒ o6), is not sat-
isfiable (line 5), e2 cannot be placed in E1. So, a new cluster E2 = {e2} is created
and S is updated to {E1,E2} (line 12). Next, e3 : (o1∧o2)∧ (o3∨o4) is processed.
Since e1∧ e3∧C, i.e., (o1∧o2)∧ ((o1∧o2)∧ (o3∨o4))∧ (¬o2 =⇒ o6), is satisfiable
(line 5), e3 is included in E1 (line 6). After processing all the remaining testable
entities in Figure 4.1c, we have the clusters given in the first column of Table 5.1.

For each cluster in S = {E1,E2,E3}, we then generate an U-CIT test case by sat-
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isfying the constraints included in the cluster together with the model constraint
C (lines 16-19). For example, for E1, solving e1∧ e3∧ e5∧ e7∧C produces the test
case (o1 = T,o2 = T,o3 = T,o4 = T,o5 = T,o6 = T ). Processing all the clusters would
then generate the U-CIT object given in the second column of Table 5.1 (line 20),
which is, indeed, DC-adequate.

5.5 Discussion

Regarding constraints and solvers. The terms “constraint” and “solver” are
used in the general sense in U-CIT. That is, any restriction, independent of the logic
in which it is specified, is considered to be a constraint and a solver conceptually
determines whether a given set of testable entities can be covered together in a
single test case or not. Therefore, U-CIT expects that the underlying solver supports
essentially a single computational primitive, namely solve. The other primitive used
in Algorithms 1 and 2, namely satisfiable, can actually be implemented by using
solve as the absence of a solution indicates unsatisfiability.

Having a simple interface between U-CIT constructors and solvers further improves
the flexibility of U-CIT. For example, all of the widely-used SAT and CSP solvers,
in one form or another, provide a solve primitive. Furthermore, this feature also
allows application- and domain-specific solvers to be used with U-CIT constructors
(Chapter 6.3).

This interface can indeed be further generalized by having solve to take as input a
set of constraints, each of which can represent a testable entity, a model constraint,
or a test case. Since an U-CIT constructor does not then need to interpret these
constraints, the testable entities, the model constraints, and the test cases can be
expressed in any form desired, which may not even need to be formal.

Regarding constructors. We have presented two constructors in this chapter,
namely the cover-and-generate constructor and the generate-and-cover constructor.
We introduced the latter solely to mimic one of the simplest ways of generating
U-CIT objects: Keep on generating valid test cases until all the required entities
have been covered. As such, we use this constructor as a base line for comparisons
in our experiments (Chapter 6), demonstrating that computing U-CIT objects in an
efficient and effective manner is not trivial. Indeed, the results of our experiments
strongly suggest that the cover-and-generate constructor performed better than the
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generate-and-cover constructor in reducing both the sizes and the construction times
of U-CIT objects (Chapter 6).

We, therefore, generally suggest to use the cover-and-generate constructor. How-
ever, the generate-and-cover constructor can still be of practical interest in scenarios
especially when it is costly to determine whether multiple testable entities can be
covered together or not (due to, for example, the complexity of the constraints to
be solved) and when it is easy to cover the entities by chance in valid test cases.
Note that the presence of these factors favors the generate-and-cover constructor as
multiple testable entities can be covered by generating a valid test case. Further-
more, by making sure that each test case covers at least one previously uncovered
testable entity, the generate-and-cover constructor guarantees the convergence into
full coverage. Clearly, the end-users can always experiment with both constructors
to determine the one to use in their projects.

With all these in mind, we have implemented the U-CIT constructors given in
Algorithms 1 and 2 in Python in the form of an extensible tool that can work with
any types of constraints and solvers. The tool can be downloaded at https://
github.com/susoftgroup/UCIT/.

The efficiency and effectiveness of the U-CIT constructors we introduced in this work
(i.e., the construction times and the sizes of the U-CIT objects computed), can be
effected by the order, in which the testable entities are processed. In the presence
of some knowledge regarding a favorable order (or a partial order), the testable
entities can be sorted accordingly before they are fed to an U-CIT constructor. If
not, a random order can be used by shuffling the entities. Furthermore, the con-
struction process can be repeated multiple times in an attempt to compute smaller
U-CIT objects at the cost of increased construction times. In Chapter 6.3.4, we
carry out additional set of experiments to evaluate the sensitivity of the cover-and-
generate constructor (which generally performed better than the generate-and-cover
constructor) to the order the testable entities are processed.

Furthermore, U-CIT constructors may not be as efficient as their specialized coun-
terparts. Our ultimate goal, however, is not to perform better than the existing
constructors when U-CIT is used to compute the same CIT objects that these con-
structors are specifically designed to compute. As a matter of fact, we don’t see
much value in using U-CIT in such scenarios unless the U-CIT constructors per-
form better than the existing ones. Our goal is rather to improve the flexibility,
thus the applicability, of CIT by eliminating the necessity of developing specialized
constructors for every distinct CIT problem, which is not addressed by the existing
constructors.
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6. EXPERIMENTS

U-CIT does not aim to replace existing CIT constructors, but rather to reduce
the barriers to applying CIT to other domains and problems. Note that, in this
context, changing the underlying CIT problem is not the same as simply changing
the parameters of an existing problem, but rather changing the problem itself. For
example, for standard covering arrays, we do not consider the changes in system-wide
constraints and/or the changes in model parameters to be a change in the underlying
CIT problem. This is because the only thing that changes in such situations is the
problem parameters, while the original problem remains intact, which is to cover all
valid t-tuples at least once.

To evaluate U-CIT, we, therefore, carry out three case studies, each of which focuses
on a different CIT problem. In the first study (Chapter 6.1), we compute structure-
based CIT objects to obtain decision coverage-adequate objects. In the second
study (Chapter 6.2), we compute order-based CIT objects, where the reachability
constraints imposed by an underlying graph-based model are taken into account to
cover various sequences of events. In the third study (Chapter 6.3), we compute
usage-based CIT objects by selecting the tuples to be covered based on their usage
statistics in the field, which is especially useful when standard covering arrays are
not desirable due to their sizes.

In each study, we first introduce the CIT problem of interest and discuss the moti-
vation behind this problem. We then discuss and empirically demonstrate that to
compute the requested CIT objects, the existing constructors (as they are) require
excessive number of test cases to guarantee full coverage. Or, they require non-trivial
modifications. Or, it is not clear (if at all possible) how to modify them.We finally
express the CIT problems in U-CIT and show that the very same U-CIT construc-
tor (thus, the same construction approach) can compute all of the requested CIT
objects in all the studies without any modifications, demonstrating the flexibility of
the proposed approach.

In the experiments, we integrate different “solvers” with U-CIT. This, however, is
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solely for the purpose of demonstrating that U-CIT can work with different solvers.
The very same solver, such as the CSP solver we use in Chapter 6.1, can indeed be
used in all the studies.

Note further that although the CIT problems in our studies are different than the
ones addressed by existing CIT constructors, we opt to use existing constructors
for comparisons in the experiments to justify the need for U-CIT. That is, in these
studies, we are not claiming that U-CIT constructors perform better than standard
CIT constructors (because the underlying CIT problems are different), but rather
demonstrating that a different CIT constructor is indeed needed to compute the
requested CIT objects in an efficient and effective manner. Otherwise, i.e., had
the existing constructors addressed the CIT problems presented in this paper in an
efficient and effective manner, there would be no need for U-CIT.

We, furthermore, use our generate-and-cover U-CIT constructor as a base line to
show that computing U-CIT objects is not trivial at all and that better construction
approaches, such as the cover-and-generate approach, are needed.

The raw data we obtained from the experiments can be found at https://github
.com/susoftgroup/UCIT/.

6.1 Structure-Based CIT

In this study, we use the same CIT problem discussed in Chapter 4.1.

6.1.1 Coverage criterion

In (Javeed, 2015; Javeed & Yilmaz, 2015), a novel CIT object has been introduced,
which given a structural coverage criterion, such as decision coverage (DC), computes
a “minimal” test suite to obtain full coverage under the criterion. In this work,
we not only express the same coverage criterion using U-CIT, demonstrating the
expressiveness of U-CIT, but also generalize the aforementioned coverage criterion
to higher coverage strengths, demonstrating the flexibility of U-CIT. We call this
structure-based CIT.
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In a nutshell, structure-based CIT takes as input the source code of the system under
test, a coverage strength t, and a structural code coverage criterion. First, for each
outer-most if-then-else directive in the implementation, a virtual configuration option
is defined. Then, for a given a virtual configuration option, conditions that must be
satisfied to obtain a full coverage under the given structural coverage criterion for
the respective if-then-else directive, are defined as virtual settings. Finally, a number
of configurations are selected to cover all valid t-way combinations of virtual option
settings. The smaller the number of configurations selected, the better the approach
is.

Next, without losing generality, we provide more details by using DC as the struc-
tural code coverage criterion of interest. The proposed approach, on the other hand,
is readily available to use with other structural coverage criteria, such as condition
coverage (Yu & Lau, 2006).

Definition 11 A virtual configuration option (or virtual option, in short) repre-
sents an outer-most if-then-else directive, which is not nested in another if-then-else
directive.

For example, the system in Figure 1.1a has two virtual options: vo1 representing
the outer-most if-then-else directive between lines 1 and 5 and vo2 representing the
outer-most if-then-else directive between lines 6 and 10.

Definition 12 Given a virtual configuration option, each feasible outcome of every
decision in the respective if-then-else directive, is defined as a virtual setting and
expressed as a constraint, such that covering all of these virtual settings obtains a
full coverage under DC.

For instance, the virtual option vo1 in our running example has four virtual settings:
{o1∧o2, ¬(o1∧o2), (o1∧o2)∧ (o3∨o4), (o1∧o2)∧¬(o3∨o4)}. The first two settings
are respectively for covering the true and false branches of the decision o1∧o2 and
the last two settings are respectively for covering the true and false branches of the
decision o3∨o4 while taking the guard condition o1∧o2 into account. Similarly, vo2

has four virtual settings: {o5, ¬o5, o5∧o6, o5∧¬o6}.

Not all virtual settings of a virtual option may be valid due to some conflicting
settings required for the actual configuration options that appear multiple times in
the same if-then-else directive. Since each virtual setting is expressed as a constraint,
an invalid virtual setting can be marked and filtered out by determining whether or
not the respective constraint is satisfiable. That is, a virtual setting is invalid, if the
respective constraint is not satisfiable. Clearly, covering invalid virtual settings is
not required to achieve full coverage. Consequently, in the remainder of the paper,
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Table 6.1 Information about the subject applications used in Study 1.

actual virtual valid valid valid
sut version description options options 1-combs 2-combs 3-combs
mpsolve 2.2 Mathematical solver 14 4 30 296 1104
dia 0.96.1 Diagramming application 15 11 42 734 7170
irissi 0.8.13 IRC client 30 11 70 2102 36056
xterm 2.4.3 Terminal emulator 38 31 78 2871 66497
parrot 0.9.1 Virtual machine 51 29 152 10359 426194
gimp 3.2.5 Vector graphics editor 79 28 198 16438 794050
pidgin 2.4.0 IM 53 43 199 17857 986926
python 2.6.4 Programming language 68 49 210 21180 1368012
xfig 2.6.8 Graphics manipulator 79 48 237 26985 1969006
vim 7.3 Text editor 79 49 239 27442 2019176
sylpheed 2.6.0 E-mail client 84 48 258 31597 2451586
cherokee 1.0.2 Web server 97 28 272 32530 2318986

the term “virtual setting” is used to refer to valid virtual settings.

Definition 13 A t-combination is a combination of virtual settings for a combina-
tion of t distinct virtual options, which is expressed by joining the respective con-
straints with the AND logical operator.

As was the case with virtual settings, a t-combination is invalid, if the respective
constraint is not satisfiable. In the remainder of the paper, the term “t-combination”
is used to refer to valid t-combinations.

Note that each t-combination represents an interaction that can be tested. Go-
ing back to our running example and considering that t = 2, some example 2-
combinations for the virtual options vo1 and vo2 are: (o1∧o2)∧ (o5), testing the
interaction between the true branches of the decisions at lines 1 and 6; and
((o1∧o2)∧¬(o3∨o4))∧ (o6), testing the interaction between the false branch of
the decision at line 2 and the true branch of the decision at line 7.

Definition 14 Given a set of virtual configuration options, their virtual settings,
and a coverage strength t, t-way structure-based coverage criterion Kstruct marks all
valid t-combinations for coverage.

Definition 15 Given a set of virtual configuration options, their virtual settings,
and a coverage strength t, a t-way structure-based U-CIT object is a set of actual
system configurations, in which each t-combination selected by Kstruct is covered by
at least one configuration.

In this context, an actual system configuration is said to cover a t-combination, if
the configuration is consistent with the respective constraint.

Note further that the coverage strength t in Kstruct can be 1, which simply marks
the virtual settings of all the virtual options for coverage. Therefore, covering all
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valid 1-combinations (i.e., all virtual settings) guarantees to obtain full coverage
under DC. Consequently, 1-way structure-based U-CIT objects are the same/similar
combinatorial objects we introduced in our short paper (Javeed & Yilmaz, 2015),
but expressed in U-CIT, demonstrating the expressiveness of U-CIT.

One issue with the 1-way structure-based U-CIT objects, however, is that they
don’t take the interactions between structurally isolated if-then-else directives into
account. Take the 1-way structure-based object given in Figure 1.1d as an example,
although a DC-adequate test suite, it does not, for example, test the interaction
between the true branch of the decision o1∧o2 (line 1) and the false branch of the
decision o5 (line 6).

This issue, which was not addressed in (Javeed & Yilmaz, 2015), can now easily be
handled in U-CIT by simply increasing the strength of Kstruct, demonstrating the
flexibility of U-CIT by generalizing the coverage criterion introduced in (Javeed &
Yilmaz, 2015). Going back to our running example in Figure 1.1 and considering
that t = 2, Kstruct selects 4∗4 = 16 2-combinations for vo1 and vo2, covering all the
pairwise interactions between the settings of these virtual options.

6.1.2 Study setup

For the evaluations, we used 12 subject applications. Each application had a number
of binary compile-time configuration options implemented by using preprocessor
directives. Table 6.1 provides information about these subject applications. The
columns of this table respectively present the subject applications, their versions and
descriptions, the numbers of actual compile-time options they have, the numbers of
virtual options extracted, and the numbers of 1-, 2- and 3-combinations selected by
our structure-based coverage criterion. Note that since we were not aware of any
inter-option constraints for these subject applications, all possible combinations of
option settings were considered to be valid. Furthermore, to give an idea about the
structural complexities of the virtual options we extracted, Table 6.2 presents the
percentages of the virtual options that are of cyclomatic complexities of 2, 3, 4, 5,
and ≥ 6, respectively. Throughout the paper cyclomatic complexities are computed
on a per virtual option basis by using Radon (Lacchia, 2018) – a tool to compute
various code metrics.

All the experiments, unless otherwise stated, were repeated 5 times and carried
out on Google Cloud using Intel Xeon CPU 2.30GHz machine with 4 GB of RAM,
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Table 6.2 Percentages of the if-then-else directives (one per virtual option) that are
of cyclomatic complexity 2, 3, 4, 5, and ≥ 6.

cyclomatic complexity
sut 2 3 4 5 ≥ 6
mpsolve 0 50 0 0 50
dia 9.09 63.64 27.27 0 0
irissi 0 36.36 36.36 0 27.27
xterm 54.84 25.81 6.45 6.45 6.45
parrot 24.14 37.93 13.79 6.90 17.24
gimp 0 57.14 10.71 28.57 3.57
pidgin 2.33 53.49 25.58 9.30 9.30
python 8.16 63.27 16.33 4.08 8.16
xfig 2.08 50 20.83 14.58 12.50
vim 4.08 48.98 20.41 14.29 12.24
sylpheed 10.42 56.25 8.33 6.25 18.75
cherokee 3.57 32.14 14.29 7.14 42.86

running 64-bit Ubuntu 17.10 as the operating system.

6.1.3 Applying standard CIT

Modeling. The very first observation we make is that standard covering arrays
cannot be used (as they are) with virtual options because the settings of virtual
options are constraints, rather than discrete values as is the case with standard
covering arrays. For example, one setting for vo1 is (o1∧o2)∧ (o3∨o4) and another
is (o1∧o2)∧¬(o3∨o4). To the best of our knowledge, there is no standard covering
array constructor that can take constraints as settings. Note that these virtual
settings cannot be expressed as constraints in standard constructors either, because
such constraints are globally enforced and virtual settings can conflict with each
other, which prevents the creation of any covering arrays (Chapter 4.1).

An alternative approach can be to create a standard covering array for the actual
configuration options to obtain full coverage under Kstruct. This, however, may
unnecessarily increase the number of configurations required. For example, the
standard 2-way covering array given in Figure 1.1b obtains only 38% coverage under
the 2-way Kstruct criterion (covering only 9 out of 24 2-combinations). Since the
maximum number of actual configuration options involved in a 2-combination is 6
in this example, a 6-way covering array needs to be used to guarantee full coverage.
This, however, is the same as exhaustive testing. Indeed, using variable strength
covering arrays as an alternative, also suffers from the same issue.
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Table 6.3 Percentages of the 1-, 2-, and 3-combinations covered by standard 2- and
3-way covering arrays.

sut
standard 2-way CA standard 3-way CA
% of t-combinations % of t-combinations

covered covered
t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

mpsolve 100 55 23 100 83 56
dia 99 39 18 100 46 27
irissi 100 36 11 100 49 22
xterm 97 49 29 98 55 38
parrot 90 29 8 94 33 15
gimp 95 36 14 98 47 21
pidgin 99 23 11 100 25 17
python 98 31 12 99 36 18
xfig 99 31 12 100 35 18
vim 99 30 11 100 34 18
sylpheed 97 39 16 98 45 25
cherokee 99 21 5 100 28 10

Table 6.4 Percentages of valid 1-combinations of various cyclomatic complexities
covered by standard t-way covering arrays.

standard t-way
cyclomatic covering arrays
complexity t = 2 t = 3

2 100.00 100.00
3 100.00 100.00
4 98.96 100.00
5 98.17 99.84
≥ 6 94.17 97.28

Next, to demonstrate that the CIT problem defined in this study is indeed different
than the ones addressed by standard covering arrays, which justifies the need for a
different constructor to guarantee full coverage in an efficient and effective manner,
we apply standard CIT on the subject applications in Table 6.1.

Evaluations. We first observed that since standard covering arrays do not nec-
essarily take the complex interactions between configuration options into account,
they, especially in the presence of tangled options, either fail to obtain full decision
coverage or require excessive number of test cases (Javeed, 2015; Javeed & Yilmaz,
2015).

More specifically, we first created standard 2-way and 3-way covering arrays for our
subject applications and measured the t-way structure-based coverage they provided
for t = 1, 2, and 3. The experiments for t = 1 and 2 were repeated 30 times, whereas
those for t = 3 were repeated 5 times as measuring the coverage for higher strengths
was costly. The average sizes of the standard 2-way and 3-way covering arrays
created were 13.74 and 36.78, respectively.
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Table 6.5 Using standard covering arrays to guarantee full coverage under
structure-based coverage criterion. The columns indicate the subject application,
the coverage strength of the standard covering array computed together with the
average construction time and size obtained by repeating the experiments 3 times

for 1-, 2-, and 3-way structure-based CIT, respectively. The symbol ’-’ marks
experimental setups, for which the standard constructor failed with an “out of

memory” exception.

sut

t-way standard covering arrays created for structure-based CIT
1-way structure- 2-way structure- 3-way structure

based CIT based CIT based CIT
t time size t time size t time size

mpsolve 2 0.34 10 4 0.33 54 6 0.56 272
dia 3 0.36 26 5 0.46 134 7 0.97 608
irissi 4 0.90 82 7 - - 9 - -
xterm 9 - - 12 - - 15 - -
parrot 10 - - 15 - - 18 - -
xfig 6 - - 9 - - 12 - -
python 5 616.80 299 9 - - 12 - -
pidgin 8 - - 11 - - 14 - -
gimp 5 - - 10 - - 15 - -
vim 5 - - 10 - - 15 - -
sylpheed 10 - - 16 - - 20 - -
cherokee 4 73.77 130 7 - - 10 - -

Standard covering arrays did not even guarantee DC adequacy, i.e., 1-way structure-
based coverage (Table 6.3). More specifically, in about 58% (14 out of 24) of the
experimental setups, standard covering arrays could not obtain full DC coverage.
Overall, the DC coverages achieved were 97.58% and 99.08%, on average, for t = 2
and 3, respectively.

Furthermore, the higher the strength of the structure-based criterion, the more
the required combinations were missing from the standard covering arrays (Ta-
ble 6.3). Overall, the 2- and 3-way standard covering arrays, while respectively
covering 34.92% and 43.00% of all the 2-combinations, achieved 14.17% and 23.75%
coverage of the 3-combinations.

Similarly, the more the cyclomatic complexity of the virtual options, the more the
required combinations were missing (Table 6.4). For example, standard 2-way cov-
ering arrays, on average, covered 100.00%, 100.00%, 98.96%, 98.17%, and 94.17% of
the 1-combinations for the virtual options with cyclomatic complexities of 2, 3, 4,
5, and ≥ 6, respectively.

We have then created higher strength as well as variable strength covering arrays.
For the former, we determined the maximum number of distinct configuration op-
tions that appear in a t-way virtual option combination and used it as the strength
of the standard covering array. For the latter, we determined the number of distinct
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Table 6.6 Using variable strength covering arrays to guarantee full coverage under
structure-based coverage criterion. The columns indicate the subject application

and the average construction time and size of the variable strength covering arrays
computed for 1-, 2-, and 3-way structure-based CIT, respectively. The experiments
were repeated 3 times. The symbol ’-’ marks experimental setups, for which the

standard constructor failed with an “out of memory” exception.

sut

variable strength covering arrays created for structure-based CIT
1-way structure- 2-way structure- 3-way structure-

based CIT based CIT based CIT
time size time size time size

mpsolve 0.29 8 0.41 47 0.88 252
dia 0.32 8 0.42 48 0.79 202
irissi 0.33 16 0.99 323 554.99 3217
xterm 0.54 512 12.05 4187 - -
parrot 5.49 3750 - - - -
xfig 364.78 585 - - - -
python 0.40 32 4.70 845 6319.56 13350
pidgin 0.44 256 15.90 3447 - -
gimp 0.41 32 6.07 730 4317.48 8908
vim 0.41 36 4.82 718 43198.74 9037
sylpheed 19.62 5062 - - - -
cherokee 0.43 18 - - - -

configuration options that appear in each t-way virtual option combination and used
it as the coverage strength to be satisfied for these configuration options. All of the
covering arrays in these experiments were computed by using ACTS (Yu, Lei, Kacker
& Kuhn, 2013) and the experiments were repeated 3 times.

Tables 6.5 and 6.6 present the results we obtained. In 75% (27 out of 36) of the
experimental setups for computing fixed-strength covering arrays and in 28% (10 out
of 36) of the experimental setups for computing variable strength covering arrays,
the standard constructor (ACTS) failed with an “out of memory” exception. The
tables, therefore, present only the experiments, in which we were able to compute
a covering array using the standard constructor. Although the covering arrays we
could compute achieved full coverage, they did so at the expense of excessive number
of configurations. For comparisons, the reader can refer to Table 6.7 to check the
sizes of the U-CIT objects computed for the study.

6.1.4 Applying U-CIT

Modeling. We have defined the U-CIT model as M =< P,D,C >, where P is the
set of variables representing the actual configuration options; D is their respective
domains, i.e., the settings that the actual configuration options can take on; and C
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Table 6.7 Information about the structure-based U-CIT objects created. The
symbol ’*’ marks the experimental setups, in which the generate-and-cover

constructor timed out after six days.

1-way 2-way 3-way
generate- cover-and- generate- cover-and- generate- cover-and-
and-cover generate and-cover generate and-cover generate

sut time size time size time size time size time size time size
mpsolve 0.37 3.00 0.31 3.00 17.61 15.20 2.07 14.00 221.54 93.40 11.99 39.80
dia 0.37 4.40 0.34 4.20 16.35 19.60 2.26 19.40 482.35 131.80 24.79 70.60
irissi 0.69 4.00 0.66 4.00 74.21 25.20 13.16 24.20 8461.64 316.40 139.32 109.20
xterm 0.61 4.20 0.58 4.20 50.54 19.80 5.74 21.20 7025.89 271.60 92.54 79.00
parrot 2.03 10.00 1.95 10.00 877.18 57.80 46.65 55.80 206682.44 841.33 1070.67 317.40
gimp 2.45 8.20 2.27 8.00 825.78 49.80 67.11 48.00 457184.81 998.50 1645.61 272.80
pidgin 2.26 4.40 2.29 4.40 788.98 34.00 31.82 33.40 * * 628.75 172.00
python 2.16 4.80 2.07 4.40 743.89 36.00 28.68 34.60 * * 932.46 187.00
xfig 2.81 5.80 2.74 6.00 1355.77 46.00 78.54 45.80 * * 2311.84 270.00
vim 2.82 6.40 2.69 6.20 1357.64 48.60 56.47 48.60 * * 1679.70 291.20
sylpheed 3.18 6.00 3.04 6.60 1737.00 49.20 78.20 47.40 * * 2724.60 279.20
cherokee 3.59 5.00 3.53 5.00 2792.24 45.40 79.89 45.00 * * 2095.94 252.40

is the model constraint (if any) invalidating certain combinations of option settings.
Each U-CIT testable entity then naturally corresponded to a valid t-combination
to be covered (Definition 13) and each U-CIT test case naturally corresponded to a
configuration, in which every actual configuration option has a valid setting.

We have also used the seeding mechanism of U-CIT in this study to combine multiple
coverage criteria. In particular, to construct 1-way structure-based U-CIT objects
in some experiments, we used standard 2-way or 3-way covering arrays computed
for the actual configuration options, as seeds. By doing so, we effectively computed
t-way DC-adequate covering arrays, which not only covered all t-way combinations
of actual option settings, but also achieved DC adequacy.

To further demonstrate that the very same seeding mechanism can also be used to
incrementally compute U-CIT objects – a well-known approach for computing stan-
dard covering arrays (Fouché, Cohen & Porter, 2009), we have used lower strength
structure-based U-CIT objects as seeds to compute higher strength U-CIT objects.

Cost. To extract virtual options from source code, we used cppstats, which is a
static analysis tool for analyzing C/C++ preprocessor-based variability in highly
configurable systems (Liebig, Apel, Lengauer, Kästner & Schulze, 2010). The tool
parsed the if-then-else directives into an XML-based tree representation. We then
simply traversed the representation to identify the elements that corresponded to
virtual options. An if-then-else directive, which was not structurally contained in
another if-then-else directive simply became a virtual option. Once a virtual option
was found, we traversed the respective tree to determine the virtual settings, i.e.,
visiting the decisions in the possibly nested if-then-else directive. For each decision
d with a guard condition g, two virtual settings were created: g∧d and g∧¬d. All
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told, developing a generic script to carry out these steps took about 10 hours.

We have integrated our constructors given in Algorithms 1 and 2 with SATisPy (Lás-
zló, 2018), which is a Python library that interfaces with various SAT solvers, such
as MiniSat (Eén & Sörensson, 2003). Since the decisions in the source code were
already expressed as Boolean expressions and since the virtual settings (thus, the
testable entities) were simply obtained by joining these expressions (or their nega-
tions) with the AND logical operator, the integration step took about 1 hour. Most
of this time was, indeed, spent for developing simple syntactic transformations to
match the input format of the solver. Furthermore, since all the testable entities in
this study are expressed in Boolean logic, the SATisPy solver, which we opted to
use in the first place due to its ease-of-use, can easily be replaced with any other
SAT or CSP solver.

Evaluations. The t-way structure-based U-CIT objects we computed in this study
covered all the required t-combinations by construction. Furthermore, the cover-
and-generate constructor generally performed better than the generate-and-cover
constructor in reducing both the sizes and the construction times (Table 6.7). We,
therefore, ran the generate-and-cover constructor with a time-out period of six days
per construction. Overall, the cover-and-generate constructor reduced the sizes by
an average of 2%, 77%, and 66%, while at the same time reducing the construction
times by an average of 3.31%, 95.39%, and 99.56%, when t = 1, 2, and 3, respectively.
Note further that in 16.67% (6 out of 36) of the experimental setups, te generate-
and-cover constructor timed out (Table 6.7). We, therefore, focus on the results
obtained from the cover-and-generate constructor in the remainder of this section.

As expected, the higher the coverage strength, the larger the size and the construc-
tion time of the structure-based U-CIT objects tended to be. More specifically, the
average sizes were 5.50, 36.45, and 195.05 with the average constructions times of
1.87, 40.88, and 1113.18 seconds for 1-, 2-, and 3-way structure-based U-CIT objects,
respectively.

Computing t-way DC-adequate covering arrays. Note that as the ultimate goal of the
structure-based U-CIT objects is to obtain full coverage under the Kstruct coverage
criterion, they may not cover all the standard t-tuples. For example, the 1-way
structure-based U-CIT objects we generated covered 67.33% and 40.00% of all the
2- and 3-tuples, on average, respectively. The numbers were 94.33% and 86.33%
for the 2-way structure-based and 95.17% and 91.75% for the 3-way structure-based
U-CIT objects.

One good thing about having a seeding mechanism in U-CIT is that it can be
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Table 6.8 Information about the t-way DC-adequate covering arrays created by
computing 1-way structure-based U-CIT objects using t-way standard covering
arrays as seeds. The column ’+cfgs.’ reports the average numbers of additional

configurations needed.

sut

using 2-way standard using 3-way standard
CAs as seeds CAs as seeds

generate- cover-and- generate- cover-and-
and-cover generate and-cover generate
constructor constructor constructor constructor
time +cfgs. time +cfgs. time +cfgs time size

mpsolve 0.72 0.00 0.61 0.00 0.70 0.00 0.60 0.00
dia 0.47 0.00 0.42 0.00 0.45 0.00 0.40 0.00
irissi 1.07 1.00 0.83 1.00 1.05 0.00 0.83 0.00
xterm 0.74 3.80 0.86 1.00 0.77 0.00 0.92 0.00
parrot 3.84 12.40 3.53 7.00 4.25 6.00 4.14 5.00
gimp 5.68 12.20 3.98 3.00 6.28 4.60 4.63 2.00
pidgin 2.53 1.00 3.09 1.00 2.71 0.00 3.31 0.00
python 3.82 5.00 3.51 2.00 3.85 0.00 3.61 0.00
xfig 4.23 3.00 4.24 1.00 4.41 0.00 4.20 0.00
vim 3.72 3.40 4.12 3.00 3.64 0.00 4.14 0.00
sylpheed 5.08 3.40 4.57 2.00 5.71 1.00 5.02 1.00
cherokee 5.80 3.00 6.12 1.00 6.22 1.00 6.13 1.00

Table 6.9 Using structure-based U-CIT objects as seeds to cover the missing 2- and
3-tuples by computing standard covering arrays. The column ’+cfgs.’ reports the

average numbers of additional configurations needed.

sut

standard 2-way CA standard 3-way CA
using t-way structure-based objects as seeds using t-way structure-based objects as seeds

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3
time +cfgs. time +cfgs. time +cfgs. time +cfgs. time +cfgs. time +cfgs.

mpsolve 0.07 7.00 0.06 2.40 0.06 0.80 0.07 19.40 0.08 13.20 0.07 8.40
dia 0.06 6.80 0.07 2.00 0.07 2.00 0.08 18.80 0.08 11.60 0.08 9.20
irissi 0.07 8.80 0.08 2.00 0.10 2.00 0.16 27.80 0.16 16.60 0.23 34.80
xterm 0.08 9.00 0.09 7.00 0.13 7.00 0.24 31.20 0.24 25.20 0.31 24.40
parrot 0.10 8.40 0.14 4.40 0.24 4.00 0.41 34.40 0.48 21.20 0.66 18.00
gimp 0.15 10.80 0.22 8.20 0.35 7.80 0.97 39.80 1.19 30.40 1.47 28.20
pidgin 0.10 10.00 0.12 7.00 0.21 7.00 0.42 35.40 0.46 24.60 0.69 29.80
python 0.13 10.40 0.19 5.00 0.27 5.00 0.72 38.60 0.70 24.20 1.19 58.60
xfig 0.16 10.80 0.22 3.00 0.34 3.00 1.04 40.00 1.05 21.00 1.43 23.60
vim 0.15 11.00 0.20 3.00 0.34 3.00 0.97 40.20 1.10 20.80 1.40 24.00
sylpheed 0.16 10.60 0.22 4.80 0.39 4.80 1.25 41.00 1.48 24.00 1.65 26.00
cherokee 0.19 12.00 0.27 7.40 0.48 6.80 1.73 43.80 2.24 29.80 2.26 26.00
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Table 6.10 Information about the 3-way structure-based U-CIT objects created by
using 2-way structure-based U-CIT objects as seeds.

generate-and-cover cover-and-generate

sut constructor constructor
time size time size

mpsolve 45.75 30.00 49.78 34.00
dia 152.62 58.20 65.38 59.60
irissi 2050.65 97.60 1029.66 92.00
xterm 594.90 73.20 167.30 71.60
parrot 18647.29 278.40 4103.58 279.60
gimp 12679.40 216.40 5563.53 215.80
pidgin 52514.79 158.80 30171.88 157.20
python 38510.67 170.40 16897.34 168.20
xfig 59537.75 230.40 14543.20 222.40
vim 67225.58 258.20 19227.10 247.80
sylpheed 117420.77 236.00 67550.43 243.80
cherokee 161779.40 211.20 57712.16 208.40

leveraged to satisfy multiple coverage criteria. For example, one way to obtain t-way
DC-adequate covering arrays, i.e., standard t-way covering arrays that guarantee full
DC coverage, is to use standard t-way covering arrays as seeds to compute 1-way
structure-based U-CIT objects.

To demonstrate the feasibility of this approach, we generated 2- and 3-way DC-
adequate covering arrays (Table 6.8). We observed that 1-way structure-based U-
CIT objects turned the standard covering arrays into DC-adequate test suites with
little increases in both the sizes and the construction times. The average numbers of
additional configurations required on top of the standard 2-way and 3-way covering
arrays were 1.83 and 0.75, respectively, with the additional construction times of
2.99 and 3.16 seconds, on average.

Note that using structure-based U-CIT objects as seeds to compute standard cover-
ing arrays is also possible. To demonstrate the feasibility, we used, 1-, 2-, and 3-way
structure-based U-CIT objects as seeds to compute 2- and 3-way standard covering
arrays (Table 6.9). The average numbers of additional configurations required on
top of the 1-, 2-, and 3-way structure-based U-CIT objects were 21.92, 13.28, and
15.18, respectively, with the additional construction times of 0.40, 0.46, and 0.60
seconds, on average.

Incrementally computing structure-based U-CIT objects. Another use of the seeding
mechanism is to leverage lower strength U-CIT objects as seeds for computing higher
strength U-CIT objects. To demonstrate the feasibility, we used 2-way structure-
based U-CIT objects as seeds to compute 3-way structure-based U-CIT objects. The
results of these experiments can be found in Table 6.10.

Computing 4-way structure-based U-CIT objects. Last but not least, we have run
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Table 6.11 Information about the 4-way structure-based U-CIT objects created.

valid
sut 4-combs time size
mpsolve 1344 16.24 62
dia 32346 111.32 197
xterm 615994 576.92 281
irissi 395504 2067.48 442
pidgin 15293336 16772.38 751
python 19856465 16958.23 869
gimp 14678226 42706.50 1293
parrot 7587625 19631.76 1482
cherokee 47087747 90360.34 2300
sylpheed 81732014 111090.57 3040
xfig 76405845 149335.77 3987
vim 76661558 96900.90 4340

our cover-and-generate constructor for t = 4. Table 6.11 presents the results we
obtained. Overall, the minimum, the average, and the maximum sizes of the 4-
way structure-based U-CIT objects we computed were 62, 1587, and 4340 with the
construction times of 16.24, 45544,03, and 96900.90 seconds respectively.

6.1.5 Discussion

Standard covering arrays and structure-based U-CIT objects clearly employ different
coverage criteria. We, therefore, do not claim that the U-CIT constructors developed
in this work performed better than the standard CIT constructor used in the study.
We rather demonstrate that a different CIT constructor is indeed needed to obtain
full coverage under the structure-based coverage criterion in an efficient and effective
manner. Had the existing constructors addressed the structure-based CIT problem
in an efficient and effective manner, there would be no need for U-CIT.

6.2 Order-Based CIT

In this study, we use graphs to model the input spaces of software systems, which we
believe can address many interesting test scenarios, such as the ones that arise during
the systematic testing of event-driven systems as well as multi-threaded applications.
We first define the model of the input space in an abstract manner and briefly discuss

41



Figure 6.1 Example graph-based models.

two scenarios in which the same or similar models have been used for testing, then
present a number of coverage criteria for which CIT can be used to satisfy and
discuss the shortcomings of the state-of-the-art CIT approaches, and finally present
how U-CIT overcomes these shortcomings.

The model of interest in this study, in its simplest form, is a directed graph
G = (V,E,v0,v⊥), where V is a set of nodes; E is a set of ordered pairs of the form
(v,w), representing a directed edge from node v ∈ V to node w ∈ V ; and v0 ∈ V and
v⊥ ∈ V are two distinguished nodes, namely the entry and the exit node. The entry
node has an in-degree of 0 and the exit node has an out-degree of 0. Furthermore,
all the nodes are reachable from the entry node and the exit node is reachable from
all the nodes. Figure 6.1 presents some example models.

Given a graph-based model, one high-level testing objective is to generate test cases
to satisfy some structural coverage criterion, such as exercising every node and/or
edge at least once (Samuel & Joseph, 2008). When graphs are used as a model,
however, the coverage criterion is often concerned with the order of the entities (e.g.,
nodes and edges) to be tested. For Figure 6.1a, one such criterion for example, would
be to generate a set of paths from the entry node to the exit node, such that every
valid order of two (not necessarily distinct) nodes is covered (not necessarily in a
consecutive manner) by at least one path. Given this criterion, some example orders
to be covered for Figure 6.1a are: [v3,v4], [v1,v6], [v6,v6], and [v6,v5], which can all
be covered (together with other orders) by the path (v0,v1,v3,v4,v5,v6,v5,v6,v⊥).
On the other hand, [v2,v3] and [v2,v4] are not valid orders since no paths can include
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them.

The same and similar graph-based models and coverage criteria have indeed been
used for software testing. For example, in systematic testing of event-driven systems,
such as graphical user interfaces (GUIs), graph-based models can capture the flow
of events in the form of event sequence graphs (Belli, Beyazit & Güler, 2011) or
event-flow graphs (Belli et al., 2011; Memon, 2007), where each node represents an
event and a directed edge from v1 to v2 indicates that event v2 can follow event
v1. In this context, an event is considered as an environmental or a user stimulus
that from the perspective of testing can be mimicked by a test case. Since the
behavior of an event-driven system often depends on the order, in which the events
are processed, testing such a system typically involves validating the system response
under different event orders.

Another domain, in which graph-based models have been used for testing, concerns
the systematic testing of multi-threaded applications. In this domain, the model of
a thread captures all sequences of “atomic blocks” that might be traversed through
the thread during its execution (Bruening, 1999; Çalpur, 2012). In the remainder
of the paper, the aforementioned models are referred to as atomic block flow graphs
(AFGs).

Each node in an AFG represents an atomic block and the edges connecting the
nodes represent the possible execution sequences of atomic blocks. For the programs
adhering to a strict mutual-exclusion locking principle (Bruening, 1999), an atomic
block is defined as a code segment from one lock exit to the subsequent lock exit.
And, a lock exit in this context corresponds to the release of a lock previously
acquired for a synchronized code segment (Bruening, 1999; Lu, Jiang & Zhou, 2007;
Musuvathi, Qadeer, Ball, Musuvathi, Qadeer & Ball, 2007). For such programs,
testing approaches aim to reveal non-deadlock errors, namely atomicity-violation
and order-violation errors. Atomicity-violation errors occur when a sequence of
operations that need to be carried in an atomic manner is erroneously divided into
multiple atomic blocks, such that the atomicity of the entire operation cannot be
guaranteed. Order-violation errors occur when an implicit execution order between
two groups of atomic blocks is assumed, but not enforced, e.g., thread A is assumed
to start before thread B. To detect these errors, different orders of atomic blocks
need to tested.

Note that for these and similar scenarios, since a test case (e.g., a path from the
entry node to the exit node) can cover more than one order, the number of test cases
to obtain full coverage under a given coverage criterion can be reduced by carefully
constructing the test cases. Consequently, CIT approaches can be of practical help.
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With standard covering arrays, however, the order of parameter values in a test
case is assumed to have no effect on the fault revealing ability of the test case. For
example, given a software configuration, such as the ones studied in Chapter 6.1, any
permutation of the option settings constituting the configuration, covers exactly the
same set of option setting combinations, thus all these permutations should detect
the same faulty interactions. For the scenarios we are interested in this study,
however, the order matters. Consequently, the types of CIT objects we need in this
study are quite different than the one we have computed in Chapter 6.1.

6.2.1 Coverage criterion

To take the orders into account, a different type of covering array, called a sequence-
covering array, was defined in (Kuhn, Higdon, Lawrence, Kacker & Lei, 2012b)
and a number of interesting order-based coverage criteria were presented in (Yuan
et al., 2011). In this study, we improve on these works by making both the coverage
criteria and the construction approach take the reachability constraints imposed by
a given graph-based model into account. Further discussion on this can be found in
Chapter 6.2.3.

Definition 16 Given G = (V,E,v0,v⊥), a path is an ordered sequence of nodes
(vi1 , . . . ,vin), such that (vij ,vij+1) ∈ E for 1≤ j < n.

Definition 17 Given G = (V,E,v0,v⊥), a test case is a path from v0 to v⊥.

For a given test case p of length n, let pi, where 0 ≤ i ≤ n, be the node located at
position i in the test case, such that p0 = v0 and pn = v⊥.

Definition 18 Given G = (V,E,v0,v⊥), a t-order [vi1 , . . . ,vit ], where vij ∈ V for
1 ≤ j ≤ t, is an ordered tuple of not-necessarily-distinct t nodes, such that there
exists a test case p, in which the nodes [vi1 , . . . , vit ] appear in the order they are
given (not necessarily in a consecutive manner, though). A test case p of length n,
such that pmj = vij and 0 < m1 < m2 < · · · < mt < n for 1 ≤ j ≤ t, is said to cover
the t-order [vi1 , . . . ,vit ].

For instance, for the graph given in Figure 6.1a, [v1,v2] and [v1,v6], which are
both covered by the test case (v0,v1,v2,v5,v6,v⊥), are examples of 2-orders, whereas
[v2,v3] is not a 2-order, since there is no path from v2 to v3.

Definition 19 Given G = (V,E,v0,v⊥), a consecutive-t-order [vi1 , . . . ,vit ] is a t-
order, such that there exists a test case p of length n, where vij ∈ V and pmj = vij
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for 1≤ j ≤ t, and mk+1 = mk +1 for 1≤ k < t, i.e., [vi1 , . . . ,vit ] is a subpath in path
p. Such a test case p is said to cover the consecutive-t-order [vi1 , . . . ,vit ].

For instance, for the graph given in Figure 6.1a, [v1,v2], [v6,v5], and [v6,v6], which
all appear as subpaths in (v0,v1,v2,v5,v6,v5,v6,v6,v⊥), are examples of consecutive-
2-orders, whereas [v1,v6], although a 2-order, is not a consecutive-2-order, as there
is no edge from v1 to v6.

Definition 20 Given G = (V,E,v0,v⊥), a non-consecutive-t-order [vi1 , . . . , vit ] is a
t-order, such that there exists a test case p of length n, where vij ∈ V and pmj = vij

for 1 ≤ j ≤ t, and mk+1−mk > 1 for at least one 1≤ k < t. Such a test case p is
said to cover the non-consecutive-t-order [vi1 , . . . ,vit ].

For Figure 6.1a, [v1,v5] is an example of a non-consecutive-2-order, because there is
at least one path, e.g., (v0,v1,v2,v5,v6,v⊥), where the nodes constituting the order
can appear in a non-consecutive manner. On the other hand, [v3,v4], although a
2-order, is not a non-consecutive-2-order, because all the paths including this order
have it in a consecutive manner.

Based on these definitions, we define the four coverage criteria given below (inspired
from Yuan et al. (2011)). We call this order-based CIT.

Definition 21 Given G = (V,E,v0,v⊥), a set of test cases T is t-order adequate,
if and only if for every t-order in G, there exists at least one test case in T , which
covers it.

Definition 22 Given G = (V,E,v0,v⊥), a set of test cases T is t-cover adequate,
if and only if for every consecutive-t-order in G, there exists at least one test case
in T , which covers it.

Definition 23 Given G = (V,E,v0,v⊥), a set of test cases T is t+-cover adequate,
if and only if for every non-consecutive-t-order in G, there is at least one test case
in T , which covers it.

Definition 24 Given G = (V,E,v0,v⊥), a set of test cases T is t∗-cover adequate,
if and only if T is both t-cover adequate and t+-cover adequate.

Note that to satisfy the t-order adequacy criterion, all possible t-orders need to
be covered at least once regardless of whether they are covered in the form of a
consecutive- or non-consecutive-t-order, whereas to satisfy the t-cover adequacy cri-
terion all possible t-orders that can be covered in a consecutive manner need to
be covered in the form of a consecutive-t-order. Similarly, to satisfy the t+-cover
adequacy criterion, all possible t-orders that can be covered in a non-consecutive
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Figure 6.2 Results obtained for the coverage criteria given in Definitions 21-24. The
horizontal axes represent the numbers of U-CIT entities to be covered, whereas the
vertical axes depict either the average sizes of the U-CIT objects constructed or

the average construction times (in seconds), depending on the graph.

manner need to be covered in the form of a non-consecutive-t-order. Finally, t∗-
cover adequacy criterion is different than the t-order adequacy criterion, because
when a t-order can be covered both in a consecutive and non-consecutive man-
ner, the t∗-cover adequacy criterion guarantees that it is covered in the form of both
consecutive- and non-consecutive-t-order, whereas for the t-order adequacy criterion
covering it in either way is enough.

6.2.2 Study setup

In this study, we used 171 AFGs obtained from Apache ActiveMQ v5.9.1 (Apache
Software Foundation, 2014) – a high-performance, open source message oriented
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middleware – to evaluate the proposed approach. We unrolled the cycles in these
graphs once to get acyclic graphs, which is a frequently used approach in bounded
model checking (Biere, Cimatti, Clarke, Strichman, Zhu & et al., 2003) (see Chap-
ter 6.2.4 for more details). After being unrolled, these graphs had an average of
312.82 nodes (min = 12 and max = 3604) and an average of 493.23 edges (min = 12
and max = 6566). All the experiments were carried out on the same Google Cloud
platform we used in Study 1 (Chapter 6.1).

Table 6.12 Summary statistics for the construction times (in seconds) and the sizes
of the t-way order-based U-CIT objects created for a) t = 2 and (b) t = 3 b. For
each partition, the minimum, median, and maximum values encountered in the

partition for the metrics in the columns are reported.
part. stat. nodes edges entities time size

t-
or
de
r

1
min 12 12 31 2 1
med 44 66 61 11 5
max 46 67 71 18 6

2
min 14 13 78 3 1
med 34 38 123 13 3
max 70 99 224 41 13

3
min 35 40 227 18 2
med 59 82 394 38 5
max 172 248 1020 188 26

4
min 118 150 1037 116 11
med 580 871 1936 725 54
max 3604 6566 5215 2608 210

t-
co
ve
r

1
min 12 12 10 3 1
med 28 37 15 5 5
max 44 66 17 9 5

2
min 19 23 18 6 2
med 40 47 18 8 4
max 54 73 21 11 5

3
min 23 28 23 7 3
med 69 98 30 15 5
max 460 620 52 36 12

4
min 112 150 54 29 5
med 580 871 83 92 11
max 3604 6566 151 399 21

t+
-c
ov
er

1
min 12 12 30 12 1
med 44 66 59 27 5
max 46 67 68 39 6

2
min 16 18 73 27 1
med 34 38 114 50 3
max 71 111 222 141 13

3
min 35 40 241 114 2
med 59 82 397 215 5
max 172 248 1032 722 47

4
min 118 150 1089 695 11
med 580 871 1936 2067 55
max 3604 6566 5200 7559 213

t∗
-c
ov
er

1
min 12 12 42 15 1
med 44 66 76 35 8
max 46 67 86 53 8

2
min 16 18 88 35 2
med 34 38 134 62 4
max 70 99 240 151 14

3
min 35 40 242 118 2
med 59 82 409 232 6
max 172 248 1065 807 27

4
min 118 150 1084 644 14
med 580 871 2029 2234 59
max 3604 6566 5351 8383 218

(a)

part. stat. nodes edges entities time size

t-
or
de
r

1
min 12 12 121 3 1
med 28 37 312 34 9
max 44 66 340 49 12

2
min 17 18 373 5 1
med 46 67 526 38 8
max 70 99 1023 81 19

3
min 34 38 1329 36 3
med 54 69 3742 90 8
max 172 248 14056 1612 98

4
min 99 128 15196 333 24
med 580 864 65389 12517 347
max 3604 6566 297308 155572 2643

t-
co
ve
r

1
min 12 12 10 4 1
med 28 37 20 11 4
max 54 69 24 20 9

2
min 20 24 25 15 3
med 44 66 28 29 10
max 50 72 30 33 11

3
min 23 28 31 17 5
med 69 98 46 29 10
max 152 219 73 84 17

4
min 112 150 80 49 11
med 580 871 134 234 23
max 3604 6566 276 1163 42

t+
-c
ov
er

1
min 12 12 121 18 1
med 28 37 310 60 9
max 44 66 330 82 12

2
min 17 18 371 39 1
med 46 67 521 74 9
max 70 99 1007 156 19

3
min 34 38 1327 160 3
med 54 69 3735 277 8
max 172 248 14034 2865 98

4
min 99 128 15185 1169 25
med 580 864 65389 17037 349
max 3604 6566 297294 173798 2672

t∗
-c
ov
er

1
min 12 12 136 22 1
med 28 37 338 79 16
max 44 66 346 142 18

2
min 17 18 401 49 3
med 46 67 544 119 14
max 70 99 1038 175 26

3
min 34 38 1373 182 4
med 54 69 3763 394 15
max 172 248 14144 3262 102

4
min 99 128 15253 1359 32
med 580 864 65507 23023 368
max 3604 6566 297570 144652 2665

(b)

Note that due to the volume of the data to be reported in this section, using tabular
notations was simply out of the question. Therefore, we opted to present different
views of the data as we see fit by using plots, such as Figure 6.2, or by using
summary tables, such as Tables 6.12-6.13. The raw data can, however, be found at
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Table 6.13 Summary statistics for the construction times (in seconds) and the sizes
of the 4-way order-based U-CIT objects computed. For each partition, the

minimum, median, and maximum values encountered in the partition for the
metrics in the columns are reported.

part. stat. nodes edges entities time size

t-
or
de
r

1
min 12 12 274 1 1
med 28 37 1059 34 9
max 44 66 1432 61 10

2
min 17 18 1456 3 1
med 46 67 1735 35 6
max 51 73 2866 59 15

3
min 23 28 3189 6 1
med 44 55 19424 51 6
max 76 111 27601 786 191

4
min 41 49 29070 35 4
med 99 135 118962 559 64
max 578 804 4360399 92109 5742

t-
co
ve
r

1
min 12 12 10 2 1
med 44 55 11 3 3
max 2889 4956 14 23 7

2
min 17 18 15 3 2
med 51 70 18 6 7
max 1703 3121 21 19 9

3
min 19 23 23 9 5
med 56 80 27 16 8
max 2652 4147 39 67 15

4
min 59 82 40 19 6
med 456 702 51 40 14
max 2748 4264 143 197 26

t+
-c
ov
er

1
min 12 12 264 15 1
med 28 37 1044 81 9
max 44 66 1426 129 9

2
min 17 18 1438 43 1
med 46 67 1724 103 6
max 51 73 2833 140 15

3
min 23 28 3174 107 1
med 44 55 19410 290 6
max 76 111 27572 1145 191

4
min 41 49 29046 389 4
med 112 154 149246 3071 70
max 578 804 4360336 171050 5821

t∗
-c
ov
er

1
min 12 12 274 20 1
med 28 37 1059 93 11
max 44 66 1432 123 13

2
min 17 18 1456 47 2
med 46 67 1735 112 11
max 51 73 2561 172 17

3
min 23 28 2866 119 4
med 40 47 19424 259 7
max 71 111 27214 1539 199

4
min 41 49 27601 414 10
med 99 137 117735 2381 53
max 578 804 4360399 189773 5858
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https://github.com/susoftgroup/UCIT/.

In the summary tables, we first divide the experiments into 4 almost equal-size
partitions with increasing complexity either by using the number of settings each
configuration option has (e.g., Table 6.14) or by using the number of U-CIT entities
to be covered (e.g., Tables 6.12 and 6.13). For each partition, we then report the
minimum, median, and maximum results obtained in the partition. For a better
interpretation of the results, we also filter out the experimental setups, in which the
number of testable entities to be covered is less than 10. Furthermore, the partitions
are indicated in the summary tables by the unique ID numbers reported under the
“part.” column.

6.2.3 Applying standard CIT

Modeling. The coverage criteria we have defined in Chapter 6.2.1 are inspired
from (Yuan et al., 2011), which empirically demonstrates that these order-based
criteria are effective in detecting faults in event-driven software systems, such as
graphical user interfaces.

On the other hand, although the aforementioned work presents an approach to gen-
erate order-based CIT objects for a given graph-based model, it does not provide
a systematic way of taking the reachability constraints imposed by the underly-
ing graph into account during the construction of these objects. Such constraints
are rather attempted to be handled after a CIT object is constructed with the
aim of converting the invalid test cases, which are erroneously selected due to the
overlooked-for constraints, to valid ones. However, no systematic way of carrying
this post-mortem analysis is provided in (Yuan et al., 2011). Therefore, this ap-
proach can generate many invalid test cases, which may not be trivially “fixed.” For
example, for the model given in Figure 6.1b, out of 24 possible permutations of 4
nodes (excluding v0 and v⊥), only one of them (4.2%) is a valid test case, which
is difficult to generate by chance. Invalid test cases is an important issue in CIT,
because they often result in wasted testing resources (Cohen et al., 2007; Dumlu
et al., 2011).

More specifically, the proposed construction approach in (Yuan et al., 2011) uses
standard covering arrays to compute order-based CIT objects. It takes as input
a set of e events, a coverage strength t, and a predetermined length l for the test
cases to be generated (i.e., only fixed-length test cases can be generated) and as
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Table 6.14 Summary statistics for the construction times (in seconds) and the sizes
of the standard covering arrays obtained by using the order-based construction

approach presented in (Yuan et al., 2011). None of the test cases chosen by these
standard covering arrays were valid. For each partition, the minimum, median,
and maximum values encountered in the partition for the metrics in the columns

are reported.

settings
part. stats. options per options time size

t=
2

1
min 13 9 0.38 175
med 28 12 0.64 336
max 29 13 0.67 344

2
min 15 14 0.47 289
med 31 17 0.86 561
max 47 18 2.57 812

3
min 23 19 0.74 703
med 39 22 3.22 1118
max 129 37 80.44 3974

4
min 54 38 14.99 3474
med 180 47 377.5 6282
max 1153 63 43879.56 12171

t=
3

1
min 13 9 2.28 2594
med 29 12 15.07 7014
max 29 12 19.84 7014

2
min 15 13 3.8 6496
med 28 13 19.1 8776
max 32 15 90.78 14156

3
min 18 16 3.82 4096
med 32 17 140.7 20501
max 47 18 760.67 28240

4
min 23 19 62.53 24659
med 33 21 410.34 38834
max 62 27 11241.67 103923

output computes a standard t-way covering array for l options, each of which can
take on e settings (one distinct setting per event). For example, to compute a 2-
cover-adequate CIT object for the model given in Figure 6.1a, the aforementioned
approach would generate a standard 2-way covering array for 6 options (because the
minimum length of a test case to guarantee the coverage of all consecutive-2-orders
is 6), each of which has 6 settings (because the number of nodes except for v0 and
v⊥ is 6).

Evaluations. We used the aforementioned construction approach (Yuan et al.,
2011) to obtain full coverage under the order-based coverage criteria for the graphs
discussed in Chapter 6.2.2. To this end, given a graph with e nodes, we, in an
attempt to make sure that every requested order can be covered, used the longest
path length l in the graph as the fixed-length. Note that this approach requires
us to fix the length of the test cases to be generated. Consequently, the problem
of covering different types of t-orders, independent of the actual coverage criterion
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used, was turned into a problem of computing a standard t-way covering array for
l options, each of which can take on e settings. We used ACTS (Yu et al., 2013) to
compute the required standard covering arrays. The experiments were repeated 5
times.

Table 6.14 presents the results we obtained. As the graphs got larger, since the num-
ber of settings for each option (i.e., the number of nodes e in the graph) increased,
it took increasingly longer times to compute the required covering arrays. This was
indeed the case even for relatively small option counts (i.e., small values of l). As
it was not feasible for us to generate all the required covering arrays, we employed
a threshold value of 70 when t = 2 and 30 when t = 3 on the number of settings an
option can have. This enabled us to cover all of the experimental setups, in which
e < 70 when t = 2 and e < 30 when t = 3. These thresholds were chosen, such that
the standard covering array constructor had one day to compute the requested ob-
ject. Within the allocated time limits, we were able to generate standard covering
arrays for 96.49% (165 out of 171) of the models when t = 2 and for 66.67% (114
out of 171) of the models when t = 3.

None of the test cases in the generated covering arrays, on the other hand, were
valid. As no systematic approach is presented in (Yuan et al., 2011) to take the
reachability constraints enforced by the underlying graphs into account or to fix the
invalid test cases in a post-mortem manner, it is was not clear at all how to avoid
and/or fix these invalid test cases.

6.2.4 Applying U-CIT

Given a graph G = (V,E,v0,v⊥), which models the input space of the system under
test, an U-CIT testable entity corresponds to a t-order, a consecutive-t-order, or
a non-consecutive-t-order to be covered, depending on the the coverage criterion
(Definitions 21-24). Then, an U-CIT test case corresponds to a path from v0 to v⊥

(Definition 17). Finally, the graph G, as it restricts the orders to be covered as well
as the test cases to be generated, is expressed as the U-CIT model constraint C.

To this end, we encode the problem of finding a path from a source node to a sink
node as a single-source single-sink flow problem (Ahlswede, Cai, Li & Yeung, 2000).
In particular, flow on an edge (vi,vj) ∈ E (using the terminology of flow networks)
is represented by a unique variable eij . From the perspective of finding a path, an
edge (vi,vj) ∈ E is either taken, i.e., eij = 1, indicating that there is a flow on the
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edge, or not taken, i.e., eij = 0, indicating that there is no flow on the edge:

eij ∈ {0,1}.(6.1)

Leaving cyclic graphs aside for the moment (which will be discussed later on in this
section), to generate a test case, i.e., to form a flow from the source node v0 to the
sink node v⊥, one of the outgoing edges of v0 and one of the incoming edges of v⊥

must be taken:

∑
(v0,vi)∈E

e0i = 1(6.2)

∑
(vi,v⊥)∈E

ei⊥ = 1.(6.3)

Note that since the graph is acyclic, at most one of the incoming and at most one
of the outgoing edges of a node can be taken, i.e., there can be a flow on at most
one incoming and at most one outgoing edge.

The flow through node i is then expressed as a constraint indicating that the amount
of outgoing flow from i is the same as the amount of incoming flow to i:

∑
(vk,vi)∈E

eki =
∑

(vi,vl)∈E

eil ≤ 1.(6.4)

Note that the source and the sink nodes are exempt from (6.4) since there is no flow
into the source node and no flow out of the sink node.

As an example, Figure 6.3 presents an encoding to compute a test case, i.e., a path
from v0 to v⊥, for the graph given in Figure 6.1c.

To make sure that a specific order is covered by a test case, additional constraints are
needed. More formally, to cover a t-order [vi1 , . . . ,vit ] in a graph G = (V,E,v0,v⊥),
the following additional constraints are needed:
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e01, e12, e13, e14, e15, e24, e34, e45, e5⊥ ∈ {0,1}
e01 = 1
e5⊥ = 1

e01 = e12 + e13 + e14 + e15

e12 = e24

e13 = e34

e24 + e14 + e34 = e45

e45 + e15 = e5⊥

Figure 6.3 Single-source single-sink encoding to find a path from the entry node v0
to the exit node v⊥ in the graph given in Figure 6.1c.

∑
(vk,vis)∈E

ekis = 1 for 1≤ s≤ t,(6.5)

which indicate that all the nodes in the requested order must be visited. Since the
graph is acyclic, the order of visit is guaranteed.

For example, to cover the 3-order [v1,v4,v5] in Figure 6.1c, the encoding in Figure 6.3
needs to be extended with:

(6.6)
e01 = 1

e24 + e14 + e34 = 1

e45 + e15 = 1.

To cover the same order [vi1 , . . . ,vit ] in a non-consecutive manner, however, the
following constraint is required in addition to (6.5):

∑
1<s≤t

eis−1is < t−1,(6.7)

which ensures that the length of the path from vi1 to vit is at least t.

Going back to our running example, to cover [v1,v4,v5] in a non-consecutive manner,
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the following additional constraint is required on top of (6.6):

e14 + e45 < 2.(6.8)

If, on the other hand, the t-order [vi1 , . . . ,vit ] needs to be covered in a consecutive
manner, then the following constraints are needed instead of (6.5) and (6.7):

eis−1is = 1 for 1 < s≤ t,(6.9)

making sure that the edges between all the consecutive pairs of nodes in the order
are taken.

For our running example in Figure 6.3, we would need the following additional
constraints to cover [v1,v4,v5] in a consecutive manner:

(6.10)
e14 = 1

e45 = 1.

For a given graph G = (V,E,v0,v⊥), we have, therefore, defined the U-CIT model
in this study as M =< P,D,C >, where P is the set of variables, each of which
represents a distinct edge in the graph; D is a set of sets {0,1}, one per edge,
indicating whether there is flow on the edge or not (i.e., whether the edge is taken
or not); and C is the model constraint capturing the reachability restrictions in the
graph. More specifically, for a given graph, Equations 6.1-6.4 constitute the model
constraint C. For example, Figure 6.3 presents the U-CIT model constraint created
for the graph given in Figure 6.1c. Note that, given a graph, C stays the same
regardless of the testable entities to be covered. Each U-CIT testable entity then
corresponds to an order to be covered (Definitions 21-24). In particular, to cover a
t-order, Equation 6.5; to cover a t-order in a non-consecutive manner, Equations 6.5
and 6.7; and to cover a t-order in a consecutive manner, Equation 6.9 needs to be
used. As an example, Equation 6.6 presents the constraints to be used to cover
the 3-order [v1,v4,v5] in the graph given in Figure 6.1c. Similarly, Equations 6.6
and 6.8 are needed to cover the same 3-order in a non-consecutive manner. And,
Equation 6.10 is needed to cover it in a consecutive manner. Each U-CIT test case
then corresponds to a path from the entry node v0 to the exit node v⊥ (Definition 17),
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% graph
edge(v0, v1).
edge(v1, v2).

% ’reaches’ definitions
reaches(A, B) :- edge(A, B).
reaches(A, B) :- edge(A, C), reaches(C, B).

% 3-orders
order(A, B, C) :- reaches(A, B), reaches(B, C).

% consecutive-3-orders
consec(A, B, C) :- edge(A, B), edge(B, C).

% non-consecutive-3-orders
nonconsec(A, B, C) :- reaches(A, X), X!=A, X!=B, reaches(X, B), reaches(B, C).
nonconsec(A, B, C) :- reaches(A, B), reaches(B, X), X!=B, X!=C, reaches(X, C).

Figure 6.4 An example ASP encoding for determining the valid consecutive,
nonconsecutive, and regular 3-orders.

covering a number of required orders.

Note that we have so far been concerned with directed acyclic graphs (DAGs). To
work with cyclic graphs, we unroll the cycles k times (for this work, k = 1), which is
a frequently used approach in bounded model checking (Biere et al., 2003). To this
end, we first convert a given graph to a regular expression (Hopcroft, 2013), where
all the Kleene plus operators are replaced by using the Kleene star operator, i.e.,
converting a+ to aa∗. We then replace all the Kleene stars in the expression using
the bounded repetition operator, such that the respective strings can be repeated at
most k times, i.e., converting a∗ to a{0,k}. Finally, the resulting regular expression
is converted back to a graph.

For this work, we used the Vcsn tool (Lombardy, Régis-Gianas & Sakarovitch, 2004)
to carry out these steps. More specifically, converting a graph to a regular expres-
sion and a regular expression to a graph were carried out by using a single Vcsn
shell command. And, replacing the unbounded Kleene star operators by bounded
repetition operators was performed by another shell command using the replace
string-replacement utility.

After having an acyclic graph, we used ASP (Answer Set Programming) (Marek &
Truszczyński, 1999; Niemelä, 1999) to determine the different types of t-orders to be
covered. Note that this step could also have been carried out by using reachability-
based graph algorithms. We, however, chose to use ASP because, being a declarative
logic programming paradigm, it was a perfect match for the task at hand. We
were even able to provide whole code segments in the paper (e.g., Figure 6.4) to
demonstrate the effort involved in the development
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Figure 6.4 presents an example ASP encoding to determine the consecutive, non-
consecutive, and regular 3-orders. Below, we explain the encoding in a nutshell with
no intention to introduce ASP. For more details about ASP, the interested reader
may refer to an introduction (Eiter, Ianni & Krennwallner, 2009) or a book (Baral,
2003).

A DAG is expressed by using edge(..) facts. There is a path from node A to node
B, i.e., A reaches B or B is reachable from A, if there is an edge from A to B (i.e.,
edge(A, B) holds) or there is an edge from A to C and B is reachable from C:

reaches(A, B) :- edge(A, B).

reaches(A, B) :- edge(A, C), reaches(C, B).

Then, [A, B, C] is a valid 3-order, i.e., order(A, B, C), if A reaches B and B
reaches C:

order(A, B, C) :- reaches(A, B), reaches(B, C).

For a 3-order [A, B, C] to be covered in a consecutive manner, there should be an
edge from A to B and edge from B to C:

consec(A, B, C) :- edge(A, B), edge(B, C).

And, for the same order to be covered in a non-consecutive manner, B should be
reachable from A via another node or C should be reachable from B via another node:

nonconsec(A, B, C) :- reaches(A, X), X!=B, reaches(X, B),
reaches(B, C).

nonconsec(A, B, C) :- reaches(A, B), reaches(B, X), X!=C,
reaches(X, C).

Note that this encoding can trivially be extended to determine t-orders for any
strength t.

Cost. All told, developing a generic Python script to unroll the cycles in a given
graph using Vcsn took about 2 hours, which was mostly spent for writing procedures
to match the input and output formats of Vcsn. Similarly, developing a generic
Python script to automatically generate the ASP encodings for determining different
types of t-orders to be covered, such as the one given in Figure 6.4, took about
another 2 hours. Integrating a CSP solver, namely Sugar (Tamura & Banbara,
2008), with the constructors (as also discussed in Chapter 6.3.4) took less than 1
hour.
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Evaluations. To evaluate the proposed approach, we first used our U-CIT con-
structors to compute t-way (t = {2,3}) order-based U-CIT objects for the graphs
discussed in Chapter 6.2.2. The experiments were repeated up to 5 times; 94%
of the experiments with the best-performing U-CIT constructor (i.e., cover-and-
generate) were repeated exactly 5 times. By construction, all the test cases selected
by the U-CIT objects computed were valid and all these U-CIT objects achieved full
coverage under the respective coverage criterion.

As was the case with the previous study (Chapter 6.1), the cover-and-generate con-
structor performed generally better than the generate-and-cover constructor. There-
fore, we ran the generate-and-cover constructor with a time-out period of one day,
while letting the cover-and-generate constructor run to completion. For 93.20%
(1275 out of 1368) of the experimental setups, the generate-and-cover constructor
computed the requested U-CIT objects within the allocated time limits. For these
setups, the cover-and-generate constructor reduced the sizes by an average of 65.86%
and 60.79%, while at the same time reducing the construction times by an average
of 72.24% and 77.03% when t = 2 and 3, respectively. We, therefore, focus on the
results obtained from the cover-and-generate constructor in the remainder of this
section.

Figure 6.2 presents the results obtained from the cover-and-generate constructor
and Table 6.12 provides some summary statistics. As expected, the coverage criteria
listed in the order of increasing number of entities they required to cover, were: t-
cover, t+-cover, t-order, and t∗-cover. These criteria respectively marked an average
of 38.50, 665.87, 672.37, and 704.36 entities for coverage when t = 2; and an average
of 61.73, 21678.98, 21685.99, and 21740.71 entities when t = 3.

The sizes of the order-based U-CIT objects as well their construction times tended to
be correlated with the number of entities to be covered. Overall, the minimum, the
average, and the maximum sizes of the U-CIT objects created were 1, 17.28, and 220,
respectively, when t = 2; and 1, 54.27, and 2672 when t = 3. And the construction
times for these objects respectively were 2.57, 461.32, and 4156.25 seconds when
t = 2; and 3.24, 2568.12, and 136116.19 seconds when t = 3.

Another trend we observed was that although the numbers of entities to be covered
by the t-order criterion were similar to those to be covered by the t+-cover and
t∗-cover criteria, covering the latter set of entities took longer than covering the
former set of entities. The average constructions times were 251.29, 751.03, and
806.92 seconds for t-order, t+-cover, and t∗-cover criteria, respectively, when t = 2;
and 6885.59, 9508.46, and 10626.21 seconds when t = 3. We believe that this was
because of the additional constraints to be satisfied to make sure that the requested
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orders are covered in a non-consecutive manner (i.e., need for solving the constraints
in Equation 6.7 on top of Equation 6.5).

Computing 4-way order-based U-CIT objects. Last but not least, we ran our cover-
and-generate constructor for t = 4 with a time-out period of 200 hours. For 88.01%
(602 out of 684) of the experimental setups, the constructor was able to generate the
requested U-CIT objects within the allocated time limits, whereas for the remaining
11.99% of the setups, it timed out.

Table 6.13 presents the results we obtained. Overall, the minimum, the average,
and the maximum sizes of the 4-way order-based U-CIT objects computed were
1, 136.42, and 5858, respectively. And the construction times for these objects
respectively were 1.87, 4522.53, and 189773.20 seconds.

6.2.5 Discussion

Note that given a graph, there are different approaches for solving the problem of
finding a path covering certain sequences of nodes. In this study, however, our goal
was to demonstrate that there is at least one solution, which can be expressed in U-
CIT. For example, instead of using a constraint solver, one can use a model checker
and formulate the same problem as a property stating that there is no path covering
the requested orders. A counter example (if any) would then be a test case covering
the orders. Similarly, one can even develop a special purpose constraint solver, which
uses graph-based reachability algorithms, to determine whether a given set of orders
can appear on a single path. These solutions would all work with U-CIT as long as
the underlying solver supports the single primitive solve as discussed in Chapter 5.

6.3 Usage-Based CIT

An electronics company has approached us to improve their CIT-based testing prac-
tices. In particular, they were interested in testing the Internet connectivity feature
of a consumer device, which they market in dozens of countries. The end-users of
this device can customize the aforementioned feature by using 9 configuration op-
tions, which have 308, 280, 154, 82, 58, 41, 6, 3, and 2 settings, respectively. Since
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there is no system-wide constraint, all possible configurations (i.e., all possible com-
binations of option settings) are valid. All told, these options constitute a space of
more than 90 billion valid configurations.

The company provided us with 526691 real configurations that they collected from
the field during the month of May in 2016. Each configuration was obtained from
a different consumer device and there were a total of 37503 distinct configurations,
i.e., some configurations were used by multiple costumers.

Historically, configuration-related failures in this system have often been caused by
the faulty interactions among the configuration options. However, exhaustive testing
of neither the whole configuration space nor the distinct configurations seen in the
field, is desirable for the company. Due to legal and privacy concerns, we are not
able to provide further details.

6.3.1 Coverage criterion

We first attempted to create standard covering arrays for the scenario at hand (see
Chapter 6.3.3 for more information). It turned out that the smallest covering array
we could generate was a 2-way covering array of size 86241. It is, however, quite
difficult to justify the use of all these configurations for testing when one knows
that the total number of distinct configurations used in the field is 37503. Had the
company had enough resources (i.e., time and computing platforms) to test all the
distinct configurations in the field, they would have done it.

We, therefore, defined two novel coverage criteria, namely Kseen and Kweighted, based
on the idea that when testing all t-tuples is not feasible, one should at the very least,
consider testing the t-tuples appearing in the field. We call this usage-based CIT.

Definition 25 The seen-t-way coverage criterion Kseen takes as input a set of con-
figurations T , a coverage strength t, and a cutoff frequency in [0,1), and mark for
coverage all the t′-tuples (1≤ t′ ≤ t) appearing in T , the frequencies of which are
greater than the cutoff frequency.

The frequency of a tuple is computed as follows:

Definition 26 Given a set of configurations T , the frequency of a tuple is the ratio
of the number of configurations in T , in which the tuple appear, to the total number
of configurations in T .
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Note that, when the frequency cutoff is 0, Kseen selects all the t′-tuples (1≤ t′ ≤ t)
appearing in T .

Kseen can further be extended to obtain variable strength coverage by using a
weighted sum of the frequencies, where the weight of a tuple is defined as follows:

Definition 27 Given a set of configurations T , the weight of a tuple is the ratio of
the number of times the tuple appears in T to the total number of tuples in T .

Note that computing the denominator in Definition 27 does not require to explicitly
enumerate all possible tuples appearing in T . More specifically, since the number of
tuples in a given configuration of k options is 2k−1, the total number of tuples in
T (thus the denominator) is |T |(2k−1).

Definition 28 The weighted-t-way coverage criterion Kweighted takes as input a set
of configurations T , a coverage strength t, and a cutoff weight in (0,1], and mark for
coverage a minimal set of t′-tuples (1≤ t′ ≤ t), the total weight of which is greater
than or equal to the given cutoff weight.

To determine the tuples to be covered by this criterion, all the t′-tuples (1≤ t′ ≤ t)
appearing in T are sorted by the descending order of their weights. Then, the
minimum number tuples from the top of the list are selected, such that the total
weight of the selected tuples is greater than or equal to the cutoff weight. Note that
the Kweighted criterion with the cutoff weight of 1 can be satisfied by selecting all
the distinct configurations in T .

6.3.2 Study setup

For the evaluations, we used the aforementioned subject application with 9 configu-
ration options, which had 308, 280, 154, 82, 58, 41, 6, 3, and 2 settings, respectively,
together with the 526691 real configurations collected from the field, out of which
37503 were distinct.

All the experiments were carried out on the same Google Cloud platform with the
previous two studies (Chapters 6.1 and 6.2).

6.3.3 Applying standard CIT
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Modeling. We first attempted to create standard covering arrays of various
strengths by using a number of well-known covering array constructors, namely
Jenny (Jenkins, 2005), PICT (Czerwonka, 2008), and ACTS (Yu et al., 2013).

The very first thing we observed was that although we had a small number of
configuration options (only 9), due to the large number of settings some of these
options had, many of the existing covering array constructors failed to generate
the requested covering arrays. For example, we were not even able to model the
configuration space in Jenny, because it turned out Jenny employs the letters of the
English alphabet to represent the settings of a configuration option, limiting the
maximum number of settings that an option can have to 52 (the number of capital
and lowercase letters in the English alphabet). On the other hand, PICT, which is
specifically designed for scalability (Czerwonka, 2008), was able to generate a 2-way
covering array of size 86241 in 100 seconds. It, however, failed to generate a 3-way
covering array in 10 days, after which we terminated the process. Whereas ACTS
was able to generate a 2-way covering array of size 86255 in 16 seconds and a 3-way
covering array of size 13283730 in 1887 seconds (about 32 minutes). However, when
we attempted to generate 4-way covering arrays, ACTS crashed after a while with
some memory-related errors.

Note that given a usage-based coverage criterion, neither the tuples to be covered nor
the tuples not to be covered can be expressed as constraints in standard constructors
in an attempt to selectively determine what to cover and what not to cover. This
is because constraints in standard constructors are globally enforced, i.e., all of the
test cases selected must satisfy all of the constraints. Therefore, expressing a tuple,
which is selected by a given coverage criterion, as a constraint to indicate that the
tuple needs to be covered, will enforce the same tuple to appear in all of the selected
configurations. Since this can prevent conflicting tuples from being covered, no
covering array can be created. Similarly, expressing a tuple, which is not selected
by a given coverage criterion, as a constraint to indicate that the tuple needs to be
avoided, can also prevent the creation of a covering array. It may not, for example,
be possible to assign values to certain model parameters due to some invalidated
tuple combinations.

An alternative approach might be to express tuples that are not needed to be covered
as soft constraints, which mark combinations of parameter values that are permitted,
but not desirable (Bryce & Colbourn, 2006). However, when the tuples to be covered
is a small fraction of all the tuples, the number of soft constraints can get quite large,
which can in turn cause performance and scalability issues. For example, in our
experiments, 99.90% of all the tuples (of strength up to and including a given value
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Table 6.15 Statistics about the Kseen coverage obtained by standard covering
arrays. The columns, respectively, report the frequency cutoff values, the numbers
of testable entities to be covered, and the numbers of testable entities covered by

the standard 2-way and 3-way covering arrays created for the study.
t=2 t=3 t=4 t=5 t=6
% covered % covered % covered % covered % covered

no of by standard CAs no of by standard CAs no of by standard CAs no of by standard CAs no of by standard CAs
cutoff entities 2-way 3-way entities 2-way 3-way entities 2-way 3-way entities 2-way 3-way entities 2-way 3-way

0.5 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100
0.25 20 100 100 25 100 100 26 100 100 26 100 100 26 100 100
0.2 34 100 100 44 100 100 49 100 100 50 98 100 50 98 100
0.15 54 100 100 89 97 100 100 94 100 101 93 100 101 93 100
0.1 80 100 100 164 90 100 235 78 100 264 70 97 269 69 96
0.05 200 100 100 474 85 100 734 67 96 900 56 87 971 51 81
0.04 240 100 100 601 84 100 964 65 95 1204 53 85 1318 48 79
0.03 299 100 100 811 80 100 1395 58 94 1811 46 82 2001 42 75
0.02 422 100 100 1281 76 100 2382 53 92 3256 39 79 3705 35 71
0.01 669 100 100 2201 74 100 4475 47 90 6585 33 74 7825 28 63
0.005 1056 100 100 3751 71 100 7949 44 89 12028 30 71 14634 25 59
0.001 2652 100 100 11604 67 100 27890 39 85 45599 25 65 57741 19 53

0 22554 100 100 182952 42 100 658825 11 67 1240182 1 27 1321685 0 4

Table 6.16 Statistics about the Kweighted coverage obtained by standard covering
arrays. The columns, respectively, report the weight cutoff values, the numbers of
testable entities to be covered, and the numbers of testable entities covered by the

standard 2-way and 3-way covering arrays created for the study.
t=2 t=3 t=4 t=5 t=6
% covered % covered % covered % covered % covered

no of by standard CAs no of by standard CAs no of by standard CAs no of by standard CAs no of by standard CAs
cutoff entities 2-way 3-way entities 2-way 3-way entities 2-way 3-way entities 2-way 3-way entities 2-way 3-way
0.70 332 100 100 2171 74 100 8037 44 89 18518 28 69 29272 22 56
0.75 426 100 100 2951 72 100 11240 42 87 26467 27 68 42694 21 54
0.80 566 100 100 4117 70 100 16252 41 87 39309 25 66 63498 19 52
0.85 793 100 100 6051 69 100 24798 39 86 60222 23 64 98886 17 50
0.90 1185 100 100 9675 68 100 40330 37 85 101015 21 62 169254 15 47
0.95 2073 100 100 17826 64 100 79330 33 83 211007 17 58 368650 12 43

of t), on average, did not need to be covered. In other words, had soft constraints
been used to express these need-not-to-be-covered tuples, the number of constraints
would have been as high as 4.7 trillion in some experiments. We couldn’t experiment
with this approach, because none of the standard constructors that we have access
to, supported soft constraints.

Evaluations. All told, the size of the smallest standard covering array that we
could generate was larger than the number of distinct configurations seen in the
field, which rendered the use of standard covering arrays in this context hard to
justify.

To further demonstrate that obtaining full coverage in an efficient and effective
manner under the usage-based coverage criteria is a non-trivial task, Tables 6.15-6.16
report the coverage percentages obtained by the standard covering arrays generated
in this study. In particular, when t > 3 with Kseen, the standard 2- and 3-way
covering arrays did not guarantee to cover all the requested tuples. For example,
when cutoff=0.001, only 39% (85%), 25% (65%), and 19% (53%) of all the required
tuples for t = 4, 5, and 6 under Kseen, were covered by the standard 2-way (3-
way) covering arrays (Table 6.15). Similarly, the standard covering arrays did not
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guarantee to cover all the tuples requested by Kweighted either, especially for large
values of coverage strength and weight cutoff values. For example, when t = 6 and
cutoff=0.95 only 12% and 43% of all the required tuples were covered by the standard
2-way and 3-way covering arrays, respectively (Table 6.16).

6.3.4 Applying U-CIT

Modeling. We have defined the U-CIT model as M =< P,D,C >,
where P = {o1, . . . ,o9}, D = {{1..308},{1..280},{1..154},{1..82},{1..58},{1..41},
{1..6},{1..3},{1,2}}, and C : true, indicating that all possible configurations were
valid.

Each U-CIT testable entity then naturally corresponded to a tuple selected by the
coverage criterion Kseen or Kweighted, which was expressed as a constraint over
finite sets. For example, the 3-tuple (o1 = 204,o5 = 12,o9 = 1) was expressed as
o1 = 204∧o5 = 12∧o9 = 1. Note that the very same approach can readily be used to
define and compute standard t-way covering arrays as U-CIT objects by expressing
all valid t-tuples as U-CIT testable entities.

Consequently, any solver that works with logical operators, such as ∧ (AND), and
equality constraints over finite sets, such as o1 = 204, including the commonplace
SAT and CSP solvers (de Moura & Bjørner, 2009; Katebi, Sakallah & Marques-
Silva, 2011), can be used with the U-CIT constructors compute the U-CIT objects
satisfying the Kseen and Kweighted criteria.

Indeed, being able to work with any type of constraints as long as an appropri-
ate solver is provided, improves the flexibility of U-CIT. To demonstrate that this
feature also enables the use of domain- and/or application-specific solvers, we have
implemented a quite simple solver for this study, instead of trivially using an existing
SAT or CSP solver.

Algorithm 3 presents the aforementioned solver. It simply determines whether a
given set of tuples E can be accommodated together in a single configuration or
not. In particular, it marks E as satisfiable as long as the option settings appearing
in E do not contradict with each other (lines 7-8).

Cost. All told, developing a generic script to determine the tuples (i.e., the testable
entities) selected by the Kseen and Kweighted coverage criteria for any configuration
space model, coverage strength, and cutoff value, took less than 2 hours. And, im-
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Algorithm 3 Determine if a given set of tuples can be accommodated together in
a configuration cfg.
Input: Set of tuples E
Output: True or False

1: cfg← undef
2: for each tuple e in E do
3: for each option o in e do
4: Let e[o] is the value of o in e
5: Let cfg[o] is the value of o in cfg, which is initially undef
6: if defined cfg[o] and cfg[o] 6= e[o] then
7: return False
8: else
9: cfg[o] = e[o]
10: end if
11: end for
12: end for
13: return True

plementing the solver in Algorithm 3 and integrating it with the U-CIT constructors
took less than 1 hour. To further demonstrate the flexibility of U-CIT, we have also
integrated our constructors with a CSP solver (namely, Sugar (Tamura & Banbara,
2008)) to solve exactly the same set of constraints. Interestingly enough, it took
about the same time (less than 1 hour) for us to do that as we needed to implement
a simple procedure to match the input format of the solver. The implementation
was done in Python.

Evaluations. To evaluate the proposed approach, we carried out a series of ex-
periments. In these experiments, we used the cover-and-generate and generate-and-
cover constructors given in Algorithms 1 and 2 to compute U-CIT objects of various
strengths. Since the cover-and-generate constructor performed generally better than
the generate-and-cover constructor, the experiments with the latter constructor were
repeated up to 3 times and with a time-out period of one day for each repetition to
keep the cost of the experiments under control. The experiments with the former
constructor, on the other hand, were repeated 100 times to evaluate the sensitivity
of the proposed approach to the order, in which the testable entities are processed,
except for the experimental setups where the frequency cutoff was 0 and t > 2, which
were repeated only once, to keep the cost under further control. In all the experi-
ments, the orders were randomly generated by shuffling the testable entities to be
covered.

Evaluating the Kseen coverage criterion. Table 6.17 summarizes the results we ob-
tained for the Kseen coverage criterion. We first observed that the U-CIT con-
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Table 6.17 Statistics about the U-CIT objects created for the Kseen coverage
criterion, where the columns, respectively, report the coverage strengths, the
frequency cutoff values, the numbers of testable entities to be covered, and the
average construction times (in seconds) as well as the average sizes of the U-CIT
objects computed by the generate-and-cover and cover-and-generate constructors
together with the minimum, maximum, standard deviation, and coefficient of
variation statistics for the results obtained from the latter constructor. The
character ’*’ marks the experimental setups, in which the generate-and-cover
constructor timed out after one day. Furthermore, the number of times the

experiments were repeated are given in the column “repeat count.”
generate-and-cover

constructor cover-and-generate constructor
no of avg. avg. repeat time size repeat

t cutoff entities time size count min. avg. max. sd. cv. min. avg. max. sd. cv. count
2 0.5 4 0.02 2.00 3 0.00 0.03 0.06 0.01 57.86 1 1.00 1 0.00 0.00 100
2 0.25 20 0.05 8.67 3 0.01 0.08 0.19 0.05 56.35 2 2.31 3 0.46 20.02 100
2 0.2 34 0.13 16.00 3 0.01 0.13 0.27 0.07 56.09 3 3.89 5 0.61 15.80 100
2 0.15 54 0.25 24.00 3 0.00 0.18 0.38 0.11 61.40 4 4.70 7 0.62 13.29 100
2 0.1 80 0.60 38.33 3 0.02 0.29 0.60 0.16 56.09 5 6.50 9 0.83 12.78 100
2 0.05 200 3.02 94.33 3 0.06 0.73 1.54 0.41 55.85 13 16.00 19 1.33 8.34 100
2 0.04 240 4.51 124.00 3 0.06 0.93 1.95 0.52 55.76 19 21.72 25 1.46 6.74 100
2 0.03 299 6.05 152.33 3 0.04 1.14 2.40 0.66 58.07 21 27.46 31 1.77 6.46 100
2 0.02 422 10.47 211.33 3 0.14 1.74 3.61 0.97 55.53 35 40.53 45 1.93 4.75 100
2 0.01 669 23.79 333.00 3 0.32 3.07 6.07 1.67 54.36 61 69.34 75 2.82 4.06 100
2 0.005 1056 50.97 518.33 3 0.30 4.92 9.60 2.75 55.91 113 118.83 126 2.91 2.44 100
2 0.001 2652 265.32 1275.00 3 2.29 14.85 27.08 7.51 50.58 311 327.31 342 5.89 1.80 100
2 0 22554 10389.32 9606.33 3 228.72 364.05 493.08 75.38 20.71 3589 3625.24 3666 17.06 0.47 100
3 0.5 4 0.01 2.33 3 0.00 0.02 0.05 0.01 56.45 1 1.00 1 0.00 0.00 100
3 0.25 25 0.10 8.33 3 0.01 0.08 0.18 0.04 58.47 2 2.26 3 0.44 19.41 100
3 0.2 44 0.12 15.33 3 0.01 0.12 0.29 0.07 58.07 3 3.82 6 0.77 20.07 100
3 0.15 89 0.61 32.00 3 0.01 0.16 0.38 0.10 58.08 4 4.96 8 0.95 19.11 100
3 0.1 164 1.20 53.67 3 0.03 0.28 0.68 0.17 57.97 5 6.86 10 1.33 19.34 100
3 0.05 474 8.16 170.00 3 0.06 0.79 2.66 0.50 63.02 14 18.54 24 2.22 12.00 100
3 0.04 601 10.22 194.00 3 0.13 1.08 2.09 0.57 52.87 20 26.24 32 2.32 8.84 100
3 0.03 811 20.99 285.33 3 0.12 1.37 2.82 0.74 54.17 27 34.60 42 3.14 9.08 100
3 0.02 1281 40.73 456.00 3 0.19 2.30 4.48 1.26 54.66 45 57.47 68 3.95 6.87 100
3 0.01 2201 106.93 781.67 3 0.58 4.66 9.26 2.48 53.10 103 113.27 129 4.67 4.13 100
3 0.005 3751 251.85 1340.67 3 1.26 9.05 17.85 4.59 50.71 203 217.86 238 6.87 3.15 100
3 0.001 11604 1813.94 4137.00 3 14.21 43.31 71.85 16.66 38.46 790 817.66 853 12.96 1.59 100
3 0 182952 197208.59 72642.00 2 8266.04 8266.04 8266.04 n/a n/a 24971 24971.00 24971 n/a n/a 1
4 0.5 4 0.02 2.33 3 0.00 0.02 0.06 0.01 60.87 1 1.00 1 0.00 0.00 100
4 0.25 26 0.05 7.67 3 0.01 0.08 0.18 0.04 58.93 2 2.31 3 0.46 20.02 100
4 0.2 49 0.15 16.00 3 0.01 0.11 0.28 0.07 59.04 3 3.65 5 0.73 19.90 100
4 0.15 100 0.43 24.33 3 0.01 0.15 0.37 0.09 57.23 4 4.91 8 0.91 18.46 100
4 0.1 235 1.69 65.33 3 0.01 0.24 0.55 0.14 58.37 5 6.32 10 1.22 19.23 100
4 0.05 734 10.29 188.33 3 0.07 0.66 1.29 0.34 51.88 11 16.82 22 2.09 12.40 100
4 0.04 964 16.06 235.00 3 0.12 0.90 1.99 0.49 54.20 16 23.26 31 3.06 13.15 100
4 0.03 1395 31.92 368.67 3 0.14 1.25 2.85 0.66 52.82 26 32.07 41 2.90 9.04 100
4 0.02 2382 74.45 606.67 3 0.30 2.17 4.51 1.10 50.58 44 54.46 66 3.93 7.21 100
4 0.01 4475 189.34 1136.00 3 1.10 5.07 10.46 2.43 47.96 99 118.57 138 7.23 6.10 100
4 0.005 7949 503.37 2073.33 3 2.97 11.06 19.49 4.85 43.84 223 248.91 270 9.51 3.82 100
4 0.001 27890 3793.76 7266.00 3 39.78 76.39 114.12 20.34 26.63 1089 1124.70 1165 17.37 1.54 100
4 0 658825 * * 1 62011.15 62011.15 62011.15 n/a n/a 59960 59960.00 59960 n/a n/a 1
5 0.5 4 0.01 3.00 3 0.00 0.02 0.05 0.01 56.31 1 1.00 1 0.00 0.00 100
5 0.25 26 0.05 8.67 3 0.01 0.08 0.19 0.05 59.27 2 2.30 3 0.46 19.92 100
5 0.2 50 0.10 14.33 3 0.00 0.11 0.28 0.07 60.11 3 3.76 5 0.72 19.22 100
5 0.15 101 0.39 28.33 3 0.01 0.15 0.39 0.09 59.85 4 4.89 7 0.86 17.57 100
5 0.1 264 1.31 53.00 3 0.02 0.21 0.46 0.12 56.31 5 5.84 10 1.01 17.25 100
5 0.05 900 11.66 185.00 3 0.10 0.62 1.44 0.33 52.70 13 15.91 21 1.65 10.37 100
5 0.04 1204 18.24 236.33 3 0.14 0.85 1.76 0.45 52.63 16 21.74 28 2.70 12.42 100
5 0.03 1811 32.68 339.33 3 0.21 1.19 4.40 0.65 54.62 24 29.79 38 2.82 9.47 100
5 0.02 3256 68.51 598.67 3 0.48 2.07 4.04 0.94 45.63 40 48.82 57 3.92 8.02 100
5 0.01 6585 217.98 1188.67 3 1.20 4.64 7.92 1.95 41.96 89 106.41 126 7.00 6.58 100
5 0.005 12028 564.90 2256.67 3 4.33 11.50 19.43 4.18 36.39 206 228.94 244 8.89 3.88 100
5 0.001 45599 4400.78 8645.33 3 66.72 100.02 133.16 18.82 18.81 1056 1123.06 1168 20.17 1.80 100
5 0 1240182 * * 1 171331.44 171331.44 171331.44 n/a n/a 88314 88314.00 88314 n/a n/a 1
6 0.5 4 0.01 2.33 3 0.00 0.03 0.05 0.01 56.15 1 1.00 1 0.00 0.00 100
6 0.25 26 0.03 5.00 3 0.01 0.07 0.18 0.04 56.12 2 2.22 3 0.41 18.66 100
6 0.2 50 0.14 14.33 3 0.00 0.11 0.64 0.08 75.56 3 3.73 5 0.72 19.28 100
6 0.15 101 0.36 27.00 3 0.01 0.15 0.41 0.09 57.95 4 4.73 7 0.86 18.15 100
6 0.1 269 1.18 43.33 3 0.02 0.20 0.59 0.12 57.36 5 5.84 10 0.97 16.55 100
6 0.05 971 10.15 155.67 3 0.07 0.57 1.27 0.30 52.93 13 15.45 20 1.66 10.77 100
6 0.04 1318 16.74 223.33 3 0.11 0.80 1.64 0.40 50.33 17 21.15 29 2.22 10.47 100
6 0.03 2001 25.10 280.67 3 0.24 1.14 2.17 0.53 46.50 24 28.33 35 2.45 8.63 100
6 0.02 3705 68.32 538.33 3 0.51 1.93 3.87 0.84 43.62 38 46.23 60 3.58 7.74 100
6 0.01 7825 196.90 1061.00 3 1.39 4.44 8.35 1.77 39.80 78 95.96 112 6.31 6.58 100
6 0.005 14634 493.02 2031.00 3 5.10 10.83 17.33 3.52 32.50 186 206.63 225 7.91 3.83 100
6 0.001 57741 3880.13 7842.67 3 74.39 105.56 139.61 16.58 15.71 963 1015.85 1065 20.88 2.06 100
6 0 1321685 * * 1 179456.00 179456.00 179456.00 n/a n/a 80350 80350.00 80350 n/a n/a 1
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Table 6.18 Statistics about the U-CIT objects created for the Kweighted coverage
criterion, where the columns, respectively, report the coverage strengths, the
weight cutoff values, the numbers of testable entities to be covered, and the

average construction times (in seconds) as well as the average sizes of the U-CIT
objects computed by the generate-and-cover and cover-and-generate constructors
together with the minimum, maximum, standard deviation, and coefficient of

variation statistics for the results obtained from the latter constructor.
Furthermore, the number of times the experiments were repeated are given in the

column “repeat count.”
generate-and-cover

constructor cover-and-generate constructor
no of avg. avg. repeat time size repeat

t cutoff entities time size count min. avg. max. sd. cv. min. avg. max. sd. cv. count
2 0.70 332 7.16 167.67 3 0.07 0.76 1.73 0.48 62.75 27 31.74 37 1.97 6.22 100
2 0.75 426 10.23 209.67 3 0.09 0.99 2.16 0.63 63.43 36 41.10 47 2.20 5.36 100
2 0.80 566 17.90 279.33 3 0.13 1.38 3.03 0.88 63.99 49 55.73 61 2.26 4.05 100
2 0.85 793 34.33 400.33 3 0.24 2.11 4.64 1.30 61.60 77 85.40 94 3.00 3.51 100
2 0.90 1185 63.95 574.67 3 0.46 3.33 7.03 1.99 59.87 126 133.28 141 3.60 2.70 100
2 0.95 2073 162.53 990.33 3 1.10 6.42 14.11 3.73 58.04 235 245.66 256 4.46 1.82 100
3 0.70 2171 100.70 777.33 3 0.49 2.73 5.86 1.54 56.41 100 111.32 120 4.15 3.73 100
3 0.75 2951 181.72 1090.00 3 0.89 4.14 8.51 2.25 54.34 150 164.80 178 5.04 3.06 100
3 0.80 4117 303.40 1488.67 3 1.59 6.60 12.70 3.40 51.50 227 242.96 263 6.28 2.58 100
3 0.85 6051 582.78 2164.00 3 3.40 11.20 21.29 5.25 46.83 362 384.02 405 8.09 2.11 100
3 0.90 9675 1291.66 3447.33 3 9.26 22.47 38.32 8.79 39.12 639 666.56 696 10.16 1.52 100
3 0.95 17826 3671.09 6332.00 3 34.85 63.21 94.30 17.61 27.86 1320 1347.32 1387 14.03 1.04 100
4 0.70 8037 493.52 2095.67 3 3.07 7.74 13.70 3.07 39.64 218 251.25 275 8.98 3.57 100
4 0.75 11240 850.59 2905.67 3 6.23 13.25 25.50 4.72 35.59 357 382.40 414 10.73 2.80 100
4 0.80 16252 1608.39 4222.33 3 12.85 23.91 37.19 7.35 30.76 568 605.22 645 13.96 2.31 100
4 0.85 24798 3177.50 6454.67 3 31.82 50.10 71.79 11.96 23.88 947 984.22 1039 19.26 1.96 100
4 0.90 40330 6942.08 10454.67 3 90.62 127.55 200.33 23.77 18.64 1675 1734.26 1816 24.83 1.43 100
4 0.95 79330 21111.57 20702.00 3 403.89 459.80 500.68 19.50 4.24 3768 3868.14 3923 29.77 0.77 100
5 0.70 18518 1070.09 3516.67 3 10.01 16.76 24.58 4.39 26.17 362 386.81 413 11.02 2.85 100
5 0.75 26467 1896.90 5018.33 3 20.37 31.69 46.81 7.37 23.24 573 608.41 662 15.30 2.51 100
5 0.80 39309 3540.80 7484.33 3 47.71 66.26 109.47 12.47 18.83 911 956.32 1003 19.17 2.00 100
5 0.85 60222 6776.82 11397.67 3 115.87 132.83 148.14 7.46 5.61 1499 1555.03 1612 25.24 1.62 100
5 0.90 101015 15938.67 19338.33 3 362.41 411.02 439.87 14.26 3.47 2751 2849.14 2937 37.23 1.31 100
5 0.95 211007 50420.67 40552.50 2 1977.17 2081.92 2156.12 39.50 1.90 6738 6857.15 6974 48.97 0.71 100
6 0.70 29272 1380.18 4027.33 3 18.73 27.23 40.74 5.67 20.81 442 475.20 502 12.64 2.66 100
6 0.75 42694 2511.12 5857.00 3 40.92 54.86 90.64 9.36 17.06 708 743.64 789 16.65 2.24 100
6 0.80 63498 4650.73 8831.33 3 86.44 102.17 113.87 5.70 5.58 1065 1113.34 1156 20.65 1.85 100
6 0.85 98886 9152.57 13601.33 3 227.07 260.64 288.15 10.86 4.17 1765 1853.89 1936 32.88 1.77 100
6 0.90 169254 22546.59 23611.67 3 775.99 846.07 896.63 25.20 2.98 3359 3449.67 3540 37.66 1.09 100
6 0.95 368650 75936.20 52238.00 1 4482.59 4611.18 4785.40 61.42 1.33 8495 8627.77 8794 57.54 0.67 100
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structors, especially the cover-and-generate constructor, were scaled to obtain full
coverage under Kseen for various values of t up to and including 6, even when the
frequency cutoff was 0. As a matter of fact, we chose to stop at the strength of 6,
because, in the presence of 9 options, increasing the strength any further was quickly
becoming exhaustive testing, which, in this context, is the same as testing all the
distinct configurations seen in the field.

We then observed that the cover-and-generate constructor performed generally bet-
ter than the generate-and-cover constructor in reducing both the covering array
sizes and construction times. More specifically, the cover-and-generate constructor
reduced the sizes by an average of 65.62%, 82.55%, 86.35%, 88.25%, and 88.16%
while at the same time reducing the construction times by an average of 96.35%,
97.20%, 97.88%, 97.72%, and 97.32% when t = 2, 3, 4, 5, and 6, respectively. We,
therefore, focus on the results obtained from the cover-and-generate constructor in
the remainder of this section.

When t≤ 3 and cutoff=0, i.e., when all the t-tuples seen in the field are required
to be covered, the sizes of the U-CIT objects generated by the cover-and-generate
constructor, were smaller than the number of distinct configurations seen in the
field, i.e., 37503. More specifically, the average sizes were 3625.24 and 24971.00
with the average construction times of 205.55 and 7216.62 seconds for t = 2 and 3,
respectively (Table 6.17). When t > 3 and cutoff=0, however, the U-CIT objects
had more than 37503 configurations, on average (Table 6.17).

In reality, when testing all the t-tuples seen in the field is still not practical due to
the cost, the cutoff parameters of the usage-based coverage criteria can be utilized to
select a weighted fraction of the tuples for testing. For example, when the frequency
cutoff was set to 0.001 with Kseen, i.e., when the tuples that appeared in at least one
thousandth of the configurations seen in the field were to be covered, the average
sizes of the U-CIT objects became 327.31, 817.66, 1124.70, 1123.06, and 1015.85
when t = 2, 3, 4, 5, and 6, respectively.

All the results we obtained under different coverage strengths and cutoff values can
be found in Table 6.17. For a fixed strength, as the cutoff increased, the number
of testable entities as well as the size of the U-CIT objects tended to decrease. For
example, when t = 6, the average sizes of the U-CIT objects were 1015.85, 206.63,
95.96, 46.23, and 5.84 for cutoff=0.001, 0.005, 0.01, 0.02, and 0.1, respectively. For
a fixed cutoff, as the strength increased, on the other hand, although the number of
testable entities to be covered increased, this did not necessarily cause an increase
in the sizes of the U-CIT objects computed. For example, when cutoff=0.005, the
average size of the U-CIT objects was 228.94 for t = 5, but 206.63 for t = 6. We
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believe that this was because covering a frequently appearing t-tuple covers mul-
tiple frequently appearing t′-tuples, where t′ < t. Thus, covering higher strength
tuples may help reduce the number of test cases needed by covering more required
tuples per test case. Regarding the construction times, except for the experimental
setups, in which cutoff=0, all the constructions times were under 106 seconds, with
a majority of them being under 12 seconds, on average.

Evaluating the Kweighted coverage criterion. Table 6.18 summarizes the results we
obtained from the experiments, in which we used the Kweighted coverage criterion.

As was the case with Kseen, the cover-and-generate constructor, compared to the
generate-and-cover constructor, computed smaller covering arrays at a fraction of
the cost. More specifically, the cover-and-generate constructor reduced the sizes by
an average of 77.39%, 80.93%, 83.29%, 83.09%, and 80.29% while at the same time
reducing the construction times by an average of 94.94%, 98.20%, 98.00%, 95.88%,
and 92.00%, when t = 2, 3, 4, 5, and 6, respectively. We, therefore, focus on the
results obtained from the cover-and-generate constructor in the remainder of this
section.

We observed that the sizes of all the U-CIT objects we computed for the study,
were profoundly smaller than the number of distinct configurations observed in the
field (Table 6.18). More specifically, the maximum average size was 8627.77, which
occurred when t = 6 and the weighted cutoff was 0.95. That is, to cover 95% of
the most frequently appearing t-tuples for all 1≤ t≤ 6 in a weighted manner as
described in Definition 28, an U-CIT object of size 8627.77 was needed, on average.

For a fixed strength, as the cutoff decreased, the number of testable entities to be
covered as well as the size of the U-CIT objects tended to decrease. For example,
when t = 6, the sizes of the U-CIT objects for cutoff=0.95, 0.90, 0.85, 0.80, 0.75,
and 0.70, were, respectively, 8627.77, 3449.67, 1853.89, 1113.34, 743.64, and 475.20
(Table 6.18). Similarly, for a fixed cutoff, as the coverage strength decreased, both
the number of testable entities to be covered as well as the size of the U-CIT objects
tended to decrease. For example, when cutoff=0.95, the average sizes were 8627.77,
6857.15, 3868.14, 1347.32, and 245.66 for t = 6, 5, 4, 3, and 2, respectively. Last
but not least, the maximum average construction time in all the experiments was
4611.18 seconds, which happened when t = 6 and cutoff = 0.95. A majority of the
construction times (79.4%) were, on the other hand, under 150 seconds (Table 6.18).

Evaluating sensitivity to the order of processing. Tables 6.17 and 6.18 report the
minimum, maximum, standard deviation, and coefficient of variation (i.e., the ra-
tio of the standard variation to the mean, in short CV) results obtained from the
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cover-and-generate constructor by repeating the experiments 100 times (except for
the experimental setups where the frequency cutoff was 0 and t > 2, which were
repeated only once due to their costs). Clearly, the performance of the cover-and-
generate constructor can be affected by the order, in which the testable entities are
processed. Consequently, in the absence of any knowledge regarding a favorable
order (or a partial order), a random order can be used by shuffling the entities to be
covered before they are fed to the constructor. This process can further be repeated
multiple times in an attempt to generate smaller CIT objects at the cost of increased
construction times.

6.3.5 Discussion

Note that the maximum coverage strength that can be used with the Kweighted cov-
erage criterion is the number of configuration options that the system under test
has. Therefore, Kweighted, in a sense, offers a solution to an important, but still an
open question of how to determine the coverage strength in CIT, by automatically
determining strength based on usage statistics. That is, the strength of a tuple to
be covered by Kweighted, essentially depends on how frequently the tuple appears in
the field. Consequently, the strength may vary across the test space. This is differ-
ent than variable strength covering arrays (Cohen, Gibbons, Mugridge, Colbourn &
Collofello, 2003), because in variable strength covering arrays, the strengths are de-
termined a priori and they vary at the level of option combinations. In the Kweighted

coverage criterion, on the other hand, the strengths vary at the level of option set-
ting combinations and they are determined based on usage statistics. Therefore, no
strength needs to be determined beforehand.

Note that U-CIT does not aim to replace standard covering array constructors. We,
indeed, don’t see much value in using U-CIT to compute the same CIT objects
that the existing CIT constructors compute, as the generalized U-CIT constructors
may not be as efficient and as effective as their specialized counterparts. For exam-
ple, when we used the cover-and-generate constructor to compute standard covering
arrays for the configuration space models used in the experiments, the aforemen-
tioned U-CIT constructor generated a 2-way standard covering array of size 87586
in 32263.90 seconds (vs. a 2-way covering array of size 86241 generated in 100 sec-
onds by ACTS) and failed to generate a 3-way standard covering array within a day,
after which we stopped the constructor (vs. a 3-way covering array of size 13283730
generated in 32 minutes by ACTS).
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The point we want to emphasize, however, is that even if U-CIT was able to reduce
the sizes by half and did so in seconds, it would still not be feasible at all (for the
consumer company, for which we carried out the study) to run all the test cases
selected. Therefore, the coverage criteria needed to be changed. However, existing
constructors, as they are, could not take advantage of these new criteria, which
required fewer tuples to be covered.

Last but not least, it seems that for the usage-based CIT problem, it may actually
be possible to modify an existing constructor. This, however, requires that the
source code of the constructor is available, the code is reversed engineered, and
a modification strategy is implemented, tested, and maintained. Note, however,
that even if this was possible, these modifications would be of little help (or of
no help at all) to compute the structure-based and order-based CIT objects we
discussed in Chapter 6.1 and Chapter 6.2, respectively. Consequently, another set
of modifications would be required to compute the structure-based CIT objects, such
that the values of model parameters can be expressed as arbitrarily complex Boolean
expressions. Similarly, different set of modifications would be required to compute
the order-based CIT objects, such that the reachability restrictions imposed by a
graph-based model can be expressed as constraints to cover various orders of nodes.
As a matter of fact, we don’t know how these modifications can be made without the
solution quickly converging to U-CIT. This is exactly why U-CIT aims to eliminate
the need of modifying existing constructors or developing specialized constructors,
by generalizing the construction of CIT objects as much as possible.
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7. HINTS

In this chapter, we present a new approach to improve the efficiency of the U-
CIT constructors. A U-CIT constructor can be used as long as the entities to
be covered are expressed as constraints and an appropriate solver is provided to
determine if a given set of entities can be tested together in a single test case, i.e.,
if the respective constraints can be satisfied together. However, this may get quite
expensive since finding an efficient solver for the given constraints may not be trivial
in general. On the other hand, efficiency of U-CIT constructor highly depends on
the number constraint problems solved by the constructor. Thus, we believe that
the performance can be significantly increased by decreasing the number of attempts
to solve constraint problems with constraint solvers.

To this end, we extend Unified Combinatorial Interaction Testing with a new mech-
anism, which we call “hints”. The idea behind using hints stems from an observation
of ours: Testable entities to be covered are typically composed of the same set of
sub-entities, e.g., the same conjuncts appear in multiple testable entities. Therefore,
in the processes of computing U-CIT objects, the same constraints are often solved
multiple times. Consequently, capturing the relationships between these recurring
constraints (i.e., sub-entities) in the form of hints can improve the efficiency of U-
CIT constructors by reducing the number of times the solver is called and/or by
calling the solver with simpler constraints.

As an example, consider a software system modelled as a directed acyclic graph and
the requested coverage criterion to be achieved is to cover every possible 3-length
node orderings. Moreover, assume that this graph has only two possible paths from
the source node to sink node, meaning that if there is a solution to cover any possible
node ordering, it can be only one of those paths. Then, the problem to be solved
becomes that given a set of 3-length node orderings, can we find a path covering all
those orderings from the source node to sink node? Solving these type of constraint
problems using constraint solvers repeatedly may consume unnecessary resources
when we consider how easy the problem is.
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To overcome this issue, we define 2 type of hint sets for each entity, namely contains
and conflicts. The contains set contains the sub-parts of entities in which satisfying
all those sub-parts is enough to tell the respective entity is satisfiable with the
constraints in the cluster. For instance, in order to show that the node ordering
[n1,n2,n3] is satisfiable with a cluster, the sub-parts, e.g., [n1,n2] and [n2,n3], of the
ordering needs to be satisfied by the cluster. Then, for this example, the contains
set becomes: {[n1,n2], [n2,n3]}. On the other hand, the conflicts set contains the
negated sub-parts of entities expressing that if at least one of those parts is satisfiable
with the cluster, then, the respective entity is unsatisfiable. As an example, for the
same node ordering [n1,n2,n3], the conflicts set becomes {[n2,n1], [n3,n2], [n3,n1]}.
Note that, even one of the orderings from conflicts set becomes satisfiable with the
cluster, the respective entity can not be added to the cluster.

The contains set, therefore, may decide whether an entity can be satisfiable with a
set of constraints, i.e., can be added to a cluster, on the other hand, the conflicts set
may decide whether the entity can not be satisfiable with the given set of constraints.
However, it is not guaranteed that either contains or conflicts set can always decide
the satisfiability or unsatisfiability of an entity with the cluster. In this situations,
standard U-CIT procedure is followed by calling the “solver” function.

U-CIT constructor does not need to interpret the semantics of any constraints.
Thus, instead of giving sub-parts of entities as sub-constraints, we assign them a
symbolic parameters. As an example, the conflicts set {[n2,n1], [n3,n2], [n3,n1]}, can
be represented with the parameters: {h1,h2,h3}, i.e., for each sub-parts, a unique
parameter hi is defined.

To better explain how hints approach work and compare it with the cover-and-
generate constructor (Algorithm 1) given in Chapter 5, we replicate the same algo-
rithm in this chapter as Algorithm 4.

In the next sections, to illustrate how the hint approach works, we, first, express a
standard t-way covering array (Chapter 2.1.1) as a U-CIT problem and compute the
covering array using cover-and-generate constructor. Then, on the same example,
we describe how the hints can be defined for the standard covering arrays and use
the cover-and-generate constructor extended with hint mechanism (Algorithm 5) to
compute the requested covering array. Finally, we apply the hint approach on two
different domains to further both show the flexibility of the U-CIT and efficiency of
hints approach.
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Algorithm 4 The cover-and-generate constructor for computing U-CIT objects
Input: A test space model M =< P,D,C >
Input: A set of testable entities E to be covered
Output: An U-CIT object T

1: S←{}
2: for each testable entity e ∈ E do
3: accommodated← false
4: for each E′ ∈ S do
5: if satisfiable(e∧∧

e′∈E′ e
′∧C) then

6: E′← E′∪{e}
7: accommodated← true
8: break
9: end if
10: end for
11: if not accommodated then
12: S← S∪{{e}}
13: end if
14: end for
15:
16: T ←{}
17: for each E′ ∈ S do
18: T ← T ∪ solve(C ∧∧

e′∈E′ e
′)

19: end for
20: return T

7.1 Expressing Standard Covering Arrays as U-CIT Problem

We express a standard 2-way covering array for a given configuration space model
as a U-CIT object and then use the cover-and-generate constructor (Algorithm 4)
to compute the requested object.

Suppose that the system under test has three configuration options {o1,o2,o3}, each
of which can take on either true or false. Two system-wide constraints are defined
on these options: (o2 = true) =⇒ (o3 = true), i.e., if o2 is true, then o3 must be
true, and ¬(o1 = true∧ o3 = false), i.e., the combination (o1 = true,o3 = false)
is invalid. Suppose further that all valid 2-tuples are required to be covered, i.e.,
essentially a standard 2-way covering array is needed.

Boolean logic can be used to define the U-CIT object to be computed in this
scenario, where each configuration option is represented as a boolean variable
and the system-wide constraints are represented as boolean constraints. Conse-
quently, the U-CIT model can be defined as M =< P,D,C >, where P = {o1,o2,o3},
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Table 7.1 U-CIT testable entities to be covered for a 2-way standard covering array.

(o1,o2) (o1,o3) (o2,o3)
e1 : ¬o1∧¬o2 e5 : ¬o1∧¬o3 e8 : ¬o2∧¬o3
e2 : ¬o1∧o2 e6 : ¬o1∧o3 e9 : ¬o2∧o3
e3 : o1∧¬o2
e4 : o1∧o2 e7 : o1∧o3 e10 : o2∧o3

D = {{true,false},{true,false},{true,false}}, and C : (o2 =⇒ o3)∧¬(o1∧¬o3).

Each U-CIT testable entity then naturally corresponds to a valid 2-tuple, which is
expressed as a boolean constraint. Table 7.1 presents all the U-CIT testable enti-
ties E = {e1, . . . , e10} to be covered. For example, the testable entity e2 : (¬o1∧o2)
represents the 2-tuple (o1 = false,o2 = true). Note that two 2-tuples are excluded
from Table 7.1 as they are invalid given the model constraint C. One of these
tuples is (o2 = true,o3 = false). It is an invalid tuple because C ∧ (o2∧¬o3), i.e.,
(o2∧¬o3)∧ (o2 =⇒ o3)∧¬(o1∧¬o3), is not satisfiable.

Assuming that the testable entities in Table 7.1 are processed in the order
e1, . . . , e10, our cover-and-generate constructor (Algorithm 4) proceeds as fol-
lows: First, e1 : (¬o1∧¬o2) is processed. Since the pool S is initially empty
(line 1), a new cluster E1 = {e1} is created and S is populated with E1,
i.e., S = {E1} (line 12). Then, e2 : (¬o1∧o2) is processed. Since e1∧ e2∧C,
i.e., (¬o1∧¬o2)∧ (¬o1∧o2)∧ (o2 =⇒ o3)∧¬(o1∧¬o3), is not satisfiable (line 5),
e2 cannot be placed in E1. So, a new cluster E2 = {e2} is created and S

is updated to {E1,E2} (line 12). After processing the testable entities e3

and e4, S will have four clusters E1, E2, E3, and E4, having e1, e2, e3,
and e4, respectively. Next, e5 : (¬o1∧¬o3) is processed. As e1∧ e5∧C, i.e.,
(¬o1∧¬o2)∧ (¬o1∧¬o3)∧ (o2 =⇒ o3)∧¬(o1∧¬o3), is satisfiable (line 5), e5 is in-
cluded in E1 (line 6). After processing all the remaining testable entities in Table 7.1,
we will have the four clusters given in the first column of Table 7.2.

For each cluster in S = {E1,E2,E3,E4}, we then generate a U-CIT test case by
satisfying the constraints included in the cluster together with the model constraint

Table 7.2 A U-CIT object (second column) created for the set of satisfiable clusters
S = {E1,E2,E3,E4} (first column) obtained for the testable entities in Table 7.1

2-way covering array
S = {E1,E2,E3,E4} o1 o2 o3
E1 = {e1, e5, e8} false false false
E2 = {e2, e6} false true true
E3 = {e3, e7, e9} true false true
E4 = {e4, e10} true true true

74



Algorithm 5 Extended cover-and-generate constructor with hints for computing
U-CIT objects
Input: A test space model M =< P,D,C >
Input: A set of testable entities E to be covered
Output: An U-CIT object T

1: S←{}
2: for each testable entity e ∈ E do
3: S′←{}
4: accommodated← false
5: for each E′ ∈ S do
6: decision← hint(E′, e)
7: if decision == contains then
8: E′← E′∪{e}
9: accommodated← true
10: break
11: else if decision 6= conflicts then
12: S′← S′∪E′

13: end if
14: end for
15:
16: if accommodated then
17: continue
18: end if
19:
20: for each E′ ∈ S′ do
21: if satisfiable(e∧∧

e′∈E′ e
′∧C) then

22: E′← E′∪{e}
23: E′contains← E′contains∪ econtains

24: accommodated← true
25: break
26: end if
27: end for
28: if not accommodated then
29: E′′←{e}
30: E′′contains← econtains

31: S← S∪E′′

32: end if
33: end for
34:

C (lines 16-19). For example, for E1, solving e1∧ e5∧ e8∧C produces the test case
(o1 = false,o2 = false,o3 = false). Processing all the clusters would then generate
the U-CIT object given in the second column of Table 7.2 (line 20), which is indeed
a standard 2-way covering array.
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7.2 U-CIT with Hints

In this section, first, we discuss the motivation behind hint approach using the exam-
ple given in the previous section, then, we explain how we embedded the proposed
approach into U-CIT by applying the approach on the same example.

To explain our reasoning, lets count the number of solver calls (line 5 of Algorithm 4)
made in the previous example. For e1, line 5 is not executed, hence there is no solver
call for the entity. For e2, the algorithm attempts to accommodate the entity to E1

cluster and then create a second cluster E2. Thus, there is 1 solver call. In the end,
18 solver call needs to be done (excluding lines 16-20) to accommodate every entity
to a cluster.

However, we believe that to compute a 2-way standard covering array having only 3
binary configuration options, there would not need to make 20 solver calls when we
consider how easy the problem is. Note that the number of solver calls depends on
the number of entities exponentially. That is, an increase in the number of entities
may increase the number of solver calls dramatically. Thus, the number of solver
calls may play an important role in the cost of covering array computation.

With help of hints (contains and conflicts sets), on the other hand, the tool could
have easily decided the satisfiability or unsatisfiability of several entities to avoid
making unnecessary solver calls.

To illustrate the usage of hints, we use the same example given in the previous sec-
tion. The contains set of an entity is defined as a set of symbols representing each
option-setting pair < oi,vij > of the respective entity. The symbols for each possible
option-setting pair are given in Table 7.3 and the contains set of all entities are given
in the second column of Table 7.4. For example, for the entity e3 : o1∧¬o2, the con-
tains set is formed with symbolic representations of < o1, true > and < o2,false >,
i.e., h1 and h5. On the other hand, the conflict set of an entity is constructed by
enumerating all possible < oi,vik > pairs for each pair < oi,vij > from entity where
k 6= j. That is, we enumerate all possible negotiations for each option-setting pairs
to ensure that the entities which contain conflicting option-pairs, can not be con-

Table 7.3 Hint symbols for each option and setting pair.

options true false
o1 h1 h4
o2 h2 h5
o3 h3 h6
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Table 7.4 Contains and conflicts set of entities.

entity contains conflicts
e1 : ¬o1∧¬o2 h4,h5 h1,h2
e2 : ¬o1∧o2 h4,h2 h1,h5
e3 : o1∧¬o2 h1,h5 h4,h2
e4 : o1∧o2 h1,h2 h4,h5
e5 : ¬o1∧¬o3 h4,h6 h1,h3
e6 : ¬o1∧o3 h4,h3 h1,h6
e7 : o1∧o3 h1,h3 h4,h6
e8 : ¬o2∧¬o3 h5,h6 h2,h3
e9 : ¬o2∧o3 h5,h3 h2,h6
e10 : o2∧o3 h2,h3 h5,h6

tained by the cluster. For the same entity e3 : o1∧¬o2, as an example, the conflict
set is formed with symbolic representations of < o1,false > and < o2, true > from
Table 7.3, i.e., h4 and h2. The conflicts sets for all the entities are given in the last
column of Table 7.4.

We present our proposed approach U-CIT with hints in Algorithm 5. Compared
to Algorithm 4, Algorithm 5, before making a solver call (line 21 of Algorithm 5),
checks to see whether the entity can be accommodated to any cluster using hints
approach (lines 5-14 of Algorithm 5). If the hint approach can not tell anything
about the entity, then, we use the same cover-and generate constructor.

In Algorithm 5, the clusters (e.g., Ei) needs to hold the hint information, more
specifically contains set. Each time an entity is accommodated to a cluster (lines
21-26 and 28-32 of Algorithm 5), the symbols from contains set of entity are added
to contains set of cluster. Then, to decide that an entity can be accommodated to a
cluster, all symbols within entity contains set must be present in the contain set of
the cluster. On the other hand, to decide that an entity cannot be accommodated to
a cluster, at least one of the symbols from conflict set of the entity must be present
in the contains set of cluster.

Revisiting our running example given in Section 7.2, assuming that the testable
entities in Table 7.4 are processed in the order e1, . . . , e10, the new constructor (Al-
gorithm 5) proceeds as follows: First, e1 : (¬o1∧¬o2) is processed. Since the pool S

is initially empty, the constructor skips the hint part (lines 4-18) and creates a new
cluster with e1, E1 = {e1}. All symbols from contains set of e1 are added to contains
set of cluster E1contains={h4,h5} (line 30). Then, e2 : (¬o1∧o2) is processed. The
algorithm checks whether all symbols within the contains set of entity {h4,h2} are
present in the contains set of cluster: {h4,h5}. Since not all of them are present, the
contains set did not help in this case. Then, we check whether any symbol within
the conflict set of entity {h1,h5} is present in the contains set of cluster. Since
h5 is present, we can directly say that e2 can not be placed in cluster E1 without
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Table 7.5 Clusters covering each entity given in Table 7.4 and their contains sets.

S = {E1,E2,E3,E4} contains sets
E1 = {e1, e5, e8} h4,h5,h6
E2 = {e2, e6, e10} h2,h3,h4
E3 = {e3, e7, e9} h1,h3,h5
E4 = {e4} h1,h2

making a solver call. Note that even though contains set can not tell anything for
this entity, with the help of conflict set we can skip the solver call part (lines 20-
27). Therefore, a new cluster E2 = {e2} is created with E2contains={h4,h5} and S

is updated to {E1,E2} (lines 28-32). After processing the testable entities in the
order e3, e4, e5, e6, and e7 with the help of conflict sets, S will have four clusters:
E1={e1, e5}, E2={e2, e6}, E3={e3, e7}, and E4={e4}, and contains set of clusters be-
comes E1contains={h4,h5,h6}, E2contains={h2,h3,h4}, E3contains={h1,h3,h5}, and
E4contains={h1,h2}.

Next, e8 : ¬o2∧¬o3 is processed. There are 2 symbols in the contains set of e8: h5

and h6, which are both contained by the contains set of E1. Thus, the entity can
be accommodated to cluster E1 (lines 7-10). Next, e9 : ¬o2∧o3 is processed. In the
same manner, both symbols from contains set of e9 is contained by the E2. Thus,
e9 is accommodated to E2. After all entities are processed, the clusters and their
contains sets become as in Table 7.5.

In total, Algorithm 4 attempts to make 18 solver calls, whereas the Algorithm 5
using hint approach makes only 3 solver calls, proving the efficiency of the approach
even on an easy covering array computation problem.

In the following sections, to evaluate hint approach, we carry out two case studies.
In the first study (Chapter 7.3), we compute structure-based CIT objects similar to
Chapter 6.1, however, in this work, we compute condition coverage-adequate objects
(Chapter 2.2.2) instead of decision coverage-adequate objects to further show the
flexibility of the approach. In the second study (Chapter 7.4), we compute sequence
covering arrays 2.1.2, which are well-known combinatorial objects in CIT for mostly
testing event-driven based systems.

All the experiments conducted in this chapter, unless otherwise stated, were re-
peated 3 times and carried out on Google Cloud using Intel Xeon CPU 2.30GHz
machine with 4 GB of RAM, running 64-bit Ubuntu 18.04 as the operating system.
Furthermore, we used OR-Tools (Perron & Furnon, 2019) as the constraint solver in
the U-CIT constructor. In all the experiments we put a 5 hours (18000 secs.) time
threshold.
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Table 7.6 Information about the subject applications.

actual virtual valid valid valid
sut version description options options 1-combs 2-combs 3-combs
mpsolve 2.2 Mathematical solver 14 4 30 296 1104
dia 0.96.1 Diagramming application 15 11 40 694 6942
irissi 0.8.13 IRC client 30 11 72 2230 39492
xterm 2.4.3 Terminal emulator 38 31 84 4088 137844
parrot 0.9.1 Virtual machine 51 29 149 10264 424810
gimp 3.2.5 Vector graphics editor 79 28 231 26674 2011858
pidgin 2.4.0 IM 53 43 167 13919 729783
python 2.6.4 Programming language 68 49 178 16322 981792
xfig 2.6.8 Graphics manipulator 79 48 212 17798 874930
vim 7.3 Text editor 79 49 231 26647 2002485
sylpheed 2.6.0 E-mail client 84 48 300 43706 4057960
cherokee 1.0.2 Web server 97 28 238 28024 2075410

1 #ifdef (o1 && o2)
2 ...
3 #ifdef (o3 || o4)
4 ...
5 #endif
6 #endif
7
8 #ifdef (o5)
9 ...
10 #ifdef (o6)
11 ...
12 #endif
13 #endif

(a)

virtual hint
options conds. virtual settings symbols

vo1

o1 e1 : o1 h1
¬o1 e2 : ¬o1 h2

o2 e3 : o1∧o2 h3
¬o2 e4 : o1∧¬o2 h4

o3 e5 : (o1∧o2)∧o3 h5
¬o3 e6 : (o1∧o2)∧¬o3 h6

o4 e7 : (o1∧o2)∧¬o3∧o4 h7
¬o4 e8 : (o1∧o2)∧¬o3∧¬o4 h8

vo2

o5 e9 : o5 h9
¬o5 e10 : ¬o5 h10

o6 e11 : o5∧o6 h11
¬o6 e12 : o5∧¬o6 h12

(b)

Figure 7.1 (a) An example set of preprocessor directives for a system with 6
compile-time configuration options and (b) set of entities for each possible

condition for the given system.

7.3 Study 1: Structural Coverage

In Chapter 6.1, we computed structural U-CIT objects for the decision coverage,
however, in this work, we not only compute U-CIT objects to get full coverage under
condition coverage, also apply hints approach on the same subject applications to
demonstrate the efficiency and effectiveness of hints approach.

In this section, as an example, we use the same set of preprocessor directives (Fig-
ure 4.1a) for a system with 6 compile-time configuration options for the condition
coverage as given in Figure 7.1a. There are two virtual configuration options for
this system: vo1 representing the outer-most if-then-else directive between lines 1
and 6 and vo2 representing the outer-most if-then-else directive between lines 8 and
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13. Then, given a virtual configuration option, we define virtual setting as the each
feasible outcome of every condition for the configuration options in the respective if-
then-else directive. Virtual settings are expressed as a constraint, such that covering
all of these virtual settings obtains a full coverage under CC. All of the virtual set-
tings for both vo1 and vo2 are given in Figure 7.1b. For instance, the virtual option
vo1 in the example has 8 virtual settings: o1, ¬o1, o1∧o2, o1∧¬o2, (o1∧o2)∧o3,
(o1∧o2)∧¬o3, (o1∧o2)∧¬o3∧o4, and (o1∧o2)∧¬o3∧¬o4. The first two settings,
as an example, are respectively for covering the true and false condition outcome
of the o1. In the same perspective, the third and fourth settings are respectively
for covering the true and false condition outcome of the o2. Note that in order to
evaluate o2, o1 must be evaluated as true due to short-circuit decision evaluation.

We, then, define an entity as a t-combination. That is, a combination of virtual
settings for a combination of t distinct virtual options, which is expressed by joining
the respective constraints with the AND logical operator. A t-combination is invalid,
if the respective constraint is not satisfiable. An example of 2-combination for
the virtual options vo1 and vo2 can be (o1∧¬o2)∧ (o5∧o6) testing the interaction
between the false evaluation of o2 and true evaluation of o6.

Finally, a number of configurations are selected to cover all valid t-way combinations
of virtual option settings. The smaller the number of configurations selected, the
better the approach is.

7.3.1 Expressing Problem as U-CIT

We have defined the U-CIT model as M =< P,D,C >, where P is the set of variables
representing the actual configuration options; D is their respective domains, i.e.,
the settings that the actual configuration options can take on; and C is the model
constraint (if any) invalidating certain combinations of option settings. Each U-CIT
testable entity then naturally corresponded to a valid t-combination to be covered
and each U-CIT test case naturally corresponded to a configuration, in which every
actual configuration option has a valid setting.

7.3.2 Coverage Hints
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For each possible outcome of conditions, we define a hint symbol as given in the
fourth column of Figure 7.1b. Then, the contains set of an entity becomes the set
of symbols which represents the conditions (the third column of Figure 7.1b) from
t-way combination. On the contrary, the conflict set of an entity becomes the set
of symbols which represents the negotiations of conditions from t-way combination.
For example, consider the 2-way combination < vo1 = (o1∧o2),vo2 = (o5∧¬o6) >

to cover o2 = true and o6 = false conditions. The contains and conflicts set for this
2-way combination becomes {h3,h12} and {h4,h11}, respectively.

Note that, if both of the virtual settings o1∧o2 and o5∧¬o6 are already satisfied
by a cluster, then one can conclude that the given 2-way combination is already
covered without further calling a constraint solver. In the same perspective, if any
of the negotiation of virtual setting is already covered by the cluster, then, there is
no way the respective 2-way combination can be covered.

7.3.3 Experiments

We used the same 12 subject applications studied in Chapter 6.1.2. Each appli-
cation had a number of binary compile-time configuration options implemented by
using preprocessor directives. Table 7.6 provides information about these subject
applications. The columns of this table respectively present the subject applica-
tions, their versions and descriptions, the numbers of actual compile time options
they have, the numbers of virtual options extracted, and the numbers of 1-, 2- and
3- combinations selected by our structure-based coverage criterion. Note that since
we were not aware of any inter-option constraints for these subject applications, all
possible combinations of option settings were considered to be valid.

To evaluate the proposed approach, we both compared the size of computed U-CIT
objects and time to compute the U-CIT objects. In the overall evaluation, we only
compared the experimental setups in which both methods have results, i.e., was not
terminated due to the time threshold.

Table 7.7 presents all results. First column represents the subject applications used
in the study, second and third columns compares the time to compute U-CIT objects
in seconds, and 4th and 5th columns compares the sizes of computed U-CIT objects
with and without using hints when t=1. The other columns compares the time and
size results when t=2 and 3.

We observed that in 33% of the experimental setup (17% and 83% of them when
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Table 7.7 Comparing structural U-CIT objects computed by using standard U-CIT
constructor and U-CIT constructor with hint approach.

t=1 t=2 t=3
time (secs.) size time (secs.) size time (secs.) size
with wout with wout with wout with wout with wout with wout

SUT hints hints hints hints hints hints hints hints hints hints hints hints
cherokee 97.4 2.8 5.0 6.3 124.8 - 43.7 - 424.4 - 243 -
dia 2.6 0.3 4.3 4.0 4.0 17.4 19.0 21.3 6.8 859.1 67.7 72.7
gimp 85.7 2.7 5.0 5.7 115.7 16520.4 42.0 43.3 405.3 - 237.3 -
irissi 7.8 0.6 4.0 4.0 11.9 93.1 23.7 24.7 23.3 - 104.3 -
mpsolve 1.5 0.3 3.3 3.0 2.2 6.5 15.0 14.3 3.1 58.2 39.3 40.0
parrot 38.4 2.0 10.3 10.7 56.4 1589.6 59.0 58.3 158 - 334.7 -
pidgin 44.4 1.8 4.7 4.0 57.6 3281 34.0 34.0 162.7 - 168.7 -
python 52.7 2.0 4.7 4.0 70.5 3756.3 36.3 36.0 196.6 - 191.7 -
sylpheed 141.2 3.8 5.7 5.7 204.2 - 46.7 - 797 - 272.3 -
vim 85.8 2.6 6.0 6.0 112.7 13586.9 45.3 42.7 464.8 - 258.0 -
xfig 79.3 2.7 8.0 8.3 106.8 5552.2 53.3 53.7 257.6 - 300.3 -
xterm 10.1 0.8 4.0 4.0 13.8 183.2 20.0 20.0 27.8 - 74.0 -

t=2 and t=3, respectively), the traditional U-CIT constructor (without hint) failed
to generate U-CIT objects in the given timeout.

In the comparable results, where both approaches have results, the average time to
compute an U-CIT object was 50.4 and 1897.0 secs with hints and without hints,
respectively. More specifically, when t=1, 2 and 3, for the former approach the
results were 646.9, 551.6 and 9.9 seconds whereas for the latter approach the results
were 22.4, 44586.6 and 917.3 secs, respectively. Note that, in all the results, except
when t=1, timings to compute U-CIT objects much smaller for the approach using
hints. For t=1, on the other hand, since entities are not formed as the conjunction
of smaller parts, i.e., they are already a single component, hints did not help at all,
as expected.

For the comparable size results, when t=1 and t=2, there were no significant differ-
ence. More specifically, when t=1, the average size results were 5.4 and 5.5, for the
approaches with hints and and without hints, respectively. Moreover, when t=2,
the results were both 34.8. However, we observed that when t=3, our proposed ap-
proach decreased the size of the U-CIT objects by 5.1% on the average. We believe
the reason for this results is that when the entities can be accommodated with the
help of contains set, we do not alter anything in the cluster. In other words, we
mark that the entity is already covered with the current state of the cluster and
the entity constraints are not added to the cluster as it is assumed to be already
covered. However, when hints are not used, the entity may be accommodated to a
different cluster and the complexity of constraint problem for that respective cluster
would be increased even though it is already covered by any other cluster. Hence,
the chance for that cluster to cover next entities might decrease.
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7.4 Study 2: Computing Sequence Covering Arrays

In our earlier work (Mercan & Yilmaz, 2021), we described how to express a sequence
covering array (Chapter 2.1.2) as a U-CIT problem. In this thesis, we use the same
encoding both to express the the efficiency of hints approach and to compute higher
strength sequence covering arrays.

7.4.1 Expressing Sequence Covering Arrays as U-CIT Objects

Sequence covering arrays can be expressed as a U-CIT problem as follows: Given
a set of n events and a value of k, each event ei (1 ≤ i ≤ n) is represented by a
parameter ei ∈ [1,n], the value of which determines the order of the respective event
in a test case.

The U-CIT model is then specified as M = < P , D, C >, where P = {e1, e2, . . . , en}
and D = {[1,n], . . . , [1,n]}. Since, in a permutation of events, each event shall have
a distinct order index, the model constraint C is defined as:

(7.1) ∀ei, ej ∈ P,i 6= j =⇒ ei 6= ej .

For example, when n = 4, four parameters (e1, e2, e3, e4), each of which takes it
value from the range of [1,4], are defined. And, the assignments e1 = 4, e2 = 3,
e3 = 1, e4 = 2, for instance, represents the test case [e3, e4, e2, e1].

Given such a U-CIT model, a permutation of events (ei1 , ei2 , . . . , eik
) to be tested

corresponds to an entity to be covered, which is represented by the constraint:

(7.2) ei1 < ei2 < · · ·< eik

Table 7.8 represents a formulation for an (4, 3) sequence covering array. System
model implicitly defines a valid space for test cases and each permutation of k

distinct event is represented as a constraint.
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Table 7.8 An example U-CIT formulation for (4, 3) sequence covering arrays

U-CIT Model
e1, e2, e3, e4 ∈ [1,4]
e1 6= e2 6= e3 6= e4

Entities
e1 < e2 < e3
e1 < e3 < e2
e2 < e1 < e3
e2 < e3 < e1
e3 < e1 < e2
e3 < e2 < e1
e1 < e2 < e4
e1 < e4 < e2

. . .
e4 < e3 < e2

7.4.2 Coverage Hints

An important observation for a pair of events ei and ej in a test case is that there can
be only 2 possible orderings. That is, either first ei is executed then ej , or vice versa.
Thus, in general, every pair orderings will be present in a sequence covering array as
the half of the number of test cases. In other words, the event pair orderings [ei, ej ]
and [ej , ei] will be covered almost equal number of times. We use this observation to
define hint symbols for pair of event orderings since the more the entity components
repeatedly occur in other entities, the better the hint approach works.

Then, for each event pair ordering ei, ej , a symbol hj
i is defined as below:

(7.3) hj
i : ei < ej ,∀ei, ej ∈ P,i 6= j

hj
i represents that ei event is executed before ej . Then, coverage hint symbols are

all appended to each event ordering [e1, e2, . . . et] as below:

(7.4)
contains : {h2

1,h3
1, . . . ,ht

t−1}

conflicts : {h1
2,h1

3, . . . ,ht−1
t }
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Table 7.9 Comparing sequence covering arrays computed by using standard U-CIT
constructor and U-CIT constructor with hint approach.

construction
time (secs.) size

with without with without
events k entities hints hints hints hints
10 3 720 0.9 13.9 13.7 14.0
15 3 2730 5.0 171.4 15.7 16.3
20 3 6840 17.1 1046.0 18.3 18.3
25 3 13800 44.5 3919.9 19.7 20.3
30 3 24360 105.3 12462.9 21.0 21.0
40 3 59280 382.0 - 23.3 -
50 3 117600 1131.3 - 25.3 -
60 3 205320 2634.2 - 26.7 -
10 4 5040 3.0 845.1 72.0 73.3
15 4 32760 23.0 31154.2 96.7 98.0
20 4 116280 92.7 - 114.0 -
25 4 303600 267.0 - 127.3 -
30 4 657720 652.3 - 140.0 -
40 4 2193360 2512.6 - 158.0 -
50 4 5527200 7126.3 - 172.0 -
60 4 11703240 15720.7 - 183.7 -

7.4.3 Experiments

To evaluate the proposed approach, we have conducted a set of experiments. In
the experiments, we have used the cover-and-generate constructor (Algorithm 4)
to compute (n, k) sequence covering arrays for n ∈ {10,15,20,25,30,40,50,60} and
k ∈ {3,4}. Note that since (n, 2) sequence covering arrays can trivially be computed
by randomly generating a permutation of the events and then adding the reverse of
this permutation as the second test case, we did not experiment with k = 2.

Table 7.9 presents the results we obtained. The columns from left to right in the table
indicate that the number of events used (i.e., n), the length of a sub-sequences to be
covered, the average time (in seconds) it took to compute the respective sequence
covering array, and the size of the arrays both for with hint and without hint. The
symbol “-” marks experimental setups for which the respective constructor failed to
compute sequence covering array within given time threshold.

In 56.3% (9 out of 16) of the experiment setups, standard U-CIT (without hints)
failed to compute sequence covering arrays within given time threshold. For all the
setups in which both approaches successfully computed U-CIT objects, on average,
U-CIT with hints was 63, and 818 times faster than standard U-CIT for k 3 and 4,
respectively. Moreover, U-CIT with hints managed to decrease the sizes by 0.3, and
1.3 configurations for k is 3 and 4, on average, respectively.
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7.5 Discussion

In this chapter, we empirically demonstrated that the performance (i.e., the con-
struction times) of U-CIT constructors can be significantly improved by using
“hints”. The idea behind using hints stems from a simple observation of ours:
Testable entities to be covered are typically composed of the same set of sub-entities,
e.g., the same conjuncts appear in multiple testable entities. Therefore, in the pro-
cesses of computing U-CIT objects, the same constraints are often solved multiple
times. Consequently, capturing the relationships between these recurring constraints
(i.e., sub-entities) in the form of hints can improve the efficiency of U-CIT construc-
tors by reducing the number of times the solver is called and/or by calling the solver
with simpler constraints.
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8. USER STUDIES

To further evaluate the proposed approach, we have also carried out user studies.

8.1 Study Setup

We asked the Junior, Senior, and graduate-level computer science students study-
ing at Sabanci University whether they would take part in the study. A total of
13 graduate-level and 7 undergraduate-level students agreed to participate on a
voluntary basis. Table 8.1 summarizes the demographic information about the par-
ticipants. Note that students at Sabanci University study standard combinatorial
interaction approaches at different levels and/or for different purposes in the Soft-
ware Engineering (undergraduate level), Software Verification and Validation (un-
dergraduate/graduate level), and Automated Debugging (graduate level) courses,
which explains the participants knowledgable of CIT in Table 8.1.

The participants were first given a 1-hour lecture. In this lecture, after a brief
introduction of how the study would be carried out, the basic concepts in constraint
solving, such as Boolean logic and satisfiability, were discussed. Then, U-CIT was
introduced. To this end, the definitions and the algorithms given in Chapter 5 were
studied. Finally, a short tutorial on the U-CIT tool, which we had developed for

Table 8.1 Demographic information about the participants.

undergraduate graduate
no of participants 7 13

knowledgeable of CIT yes no yes no
1 6 10 3

experience in ≤ 2 3 4 ≥ 5 ≤ 2 3 4 ≥ 5
programming (in years) 2 3 2 0 0 2 5 6
experience in software ≤ 2 3 4 ≥ 5 ≤ 2 3 4 ≥ 5

testing (in years) 7 0 0 0 11 1 0 1
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▪ The graph has a source vertex ‘s’ and a terminating 
vertex ‘t’.

▪ Every edge ‘e’ has a capacity.
▪ No edge can have flow exceeding its capacity.
▪ For every vertex, except for ‘s’ and ‘t’, the amount of 

total incoming flow to the vertex must be the same as 
the amount of total outgoing flow.

▪ To visit a vertex, there must be an incoming flow to 
the vertex, i.e., there must be flow on at least one of 
the incoming edges to the vertex.

(a) (b)

Figure 8.1 Explanations used for the second problem in the user study: (a) the
description of the network flow problem and (b) an example network flow with

incoming flow as 5 (i.e., es = 5) and its solution, where each edge has a label in the
form of ex,c, indicating that c (except es and et) is the capacity of the edge ex.

Table 8.2 Problems used in the user studies.

Problem 1 Problem 2 Problem 3

de
sc

ri
pt

io
n

The same problem in
Chapter 6.1 with 6
Boolean configuration
options: p1, . . . ,p6.

The same problem in
Chapter 6.2 with the
graph given in Figure 8.2.

The same problem in Chapter 6.3
with 5 parameters: p1,p2 : [1,3],
p3 : [1,4], and p4,p5 : [1,5].

en
ti

ti
es

p3 – t-orders – (p5 = 4)
p1∧p2 [a1,a5] (p1 = 1,p2 = 3)
¬p6∧p4 [a1,a3,a4] (p2 = 1,p5 = 2)

p2∧¬p3∧¬p4 [a2,a4,a6] (p3 = 3,p4 = 3,p5 = 2)
¬(p5∨¬p6) – consecutive-t-orders – (p1 = 2,p2 = 2,p3 = 2,p4 = 5,p5 = 2)

[a4,a6]
[a1,a3,a4]
[a3,a4,a6]

– non-consecutive-t-orders –
[a1,a2]

[a1,a3,a4]
[a4,a6]

the study was given (see below for more information about this tool).

The participants, after taking the lecture, took part in the study at their spare
times. To gain better insight, each participant carried out the study with one of the
authors playing the role of an observer, sitting by the participant and taking notes.
The participants were asked to think out loud as much as possible. When it was
not clear for the observer what the participant was doing, the observer prompted
the participant with questions, such as what do you want to do now? Is the output
what you were expecting? What do you think what went wrong? etc.

Each participant was given with the same three problems. These problems were,
indeed, the smaller instances of the very same problems we studied in Chapter 6.1,
Chapter 6.2, and Chapter 6.3, respectively. For each problem, the participants were
first asked to develop an U-CIT model M =< P,D,C >, then to express a number
of U-CIT entities as constraints using M , and finally to generate an U-CIT object
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Figure 8.2 The graph-based model used in the user studies.

(by using the U-CIT constructor provided) to cover all of the given entities. The
problems as well as the entities used in the study were given in Table 8.2.

Note that U-CIT is not a methodology for choosing the entities to be tested. It
rather takes as input a set of entities to be tested. Therefore, the participants in the
study were given with a set of entities to cover. For each problem, the entities were
presented starting from the easier ones progressing to the more challenging ones.
Furthermore, the number of entities was kept small not to tire the participants.

We designed the studies such that if a participant working on a problem got stuck
after the first 10 minutes, the observer would remind the participant of the basic
concepts that 1) the U-CIT model M =< P,D,C > should define a set of parameters
P and their domains D; 2) the model constraint C is a constraint that should be
satisfied by all of the U-CIT test cases generated; and 3) the entities should be
expressed as constraints over P .

Furthermore, for the second problem (Table 8.2), if the participant got stuck after
the first 15 minutes, he/she was provided with a description of the network flow
problem Bazaraa, Jarvis & Sherali (2011) given in Figure 8.1a. If the participant
got stuck again 15 minutes after reading the description, a solution for the example
flow problem given in Figure 8.1b was presented to the participant. Note that both
the description in Figure 8.1a and the example in Figure 8.1b are general enough
that they can be found in any textbook on the subject Bazaraa et al. (2011). Given
these artifacts, the participants were still required to figure out how to express
reachability in a graph as a flow problem and how to express different types of
order-based entities (Chapter 6.1) as flow constraints.
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Figure 8.3 A screen dump of the tool we have developed for the user studies.

We did this because solving the aforementioned problem requires specific knowledge
of network flow problems and not all participants might have had the right back-
ground. Therefore, by providing a general description of the network flow problems
together with an example, we aim to answer the following question: Had the par-
ticipants had a basic background information on network flow problems, could they
have leveraged it in U-CIT to obtain full coverage under various order-based coverage
criteria?

Last but not least, we have developed an U-CIT tool for the practitioners to use
in the study. Figure 8.3 presents a screen dump taken from this tool. At a very
high level, the tool has three frames. A description frame on the left, presenting the
problem to be solved. An U-CIT frame in the middle where the participant expresses
a solution to the given problem in U-CIT. An output frame on the right, which
(among other things, see below for more information) presents the results obtained
from the cover-and-generate constructor (Chapter 5.1) for the U-CIT formulation
given in the middle frame.

The middle frame had a multi-line text field (model field) to express the U-CIT
model and a multi-line text field (entity field) for expressing each entity to be cov-
ered. Each field had a “Test” button associated with it. When the Test button
of the model field was clicked, the constraints entered for this field were fed to a
constraint solver and the result was displayed in the output frame, allowing the
participant to check whether the U-CIT model is capable of generating valid test
cases. When the Test button of an entity field was clicked, on the other hand, the
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Table 8.3 The exit survey used in the user studies. All the questions, except for
the last two, were Likert scale questions. Questions 1-2 and 6-8 had the following
answer options: 1 - strongly disagree, 2 - disagree, 3 - neutral, 4 - agree, and 5 -
strongly agree. And, questions 3-5 had the following answer options: 1 - very
difficult, 2 - difficult, 3 - normal, 4 - easy, and 5 - very easy. The last three

questions (5-7) were open-ended questions.

no question
Q1 I understand the following concepts:

a constraints
b satisfiability
c unsatisfiability

Q2 I understand the following concepts:
a U-CIT models
b U-CIT entities
c U-CIT test cases
d U-CIT objects

Q3 For problem 1 – Difficulty of encoding:
a U-CIT model
b U-CIT entities

Q4 For problem 2 – Difficulty of encoding:
a U-CIT model
b U-CIT entities

Q5 For problem 3 – Difficulty of encoding:
a U-CIT model
b U-CIT entities

Q6 I found U-CIT useful.
Q7 I would use U-CIT in projects.
Q8 I would recommend U-CIT to others.
Q9 What was the most challenging part in the

study?
Q10 Any suggestions to improve U-CIT?

constraints entered in the respective entity field and those in the model field were
combined and fed to the constraint solver. The result was then displayed in the
output frame, allowing the participant to check whether the entity can be covered
in a valid test case. In both cases, when the constraints were satisfiable, the output
frame presented a solution where each parameter defined in the U-CIT model took
on a valid value. Otherwise, a warning message indicating that the constraints were
not satisfiable, was emitted.

In addition to the Test buttons, we also had a “Generate” button, which fed all the
constraints entered (the ones entered in the model and entity fields) to the cover-and-
generate constructor (Chapter 5.1) to compute an U-CIT object. When an U-CIT
object was created (which is, indeed, a set of test cases), it was displayed in the
output frame in the form of a table, where rows represented the test cases generated
and columns depicted the parameters defined in the U-CIT model (Figure 8.3).
Furthermore, the entities covered by each test case are reported.
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Table 8.4 Demographic information about the participants categorized based on
their performances in addressing the second problem.

experience (in years) in
degree knowledgeable software
level of CIT programming testing

cat. count cat. count cat. count cat. count

su
cc
es
sf
ul

fo
rm

ul
at
io
ns

after seeing only
the description

undergrad. 2 yes 4 ≤ 2 2 ≤ 2 6
3 1 3 0

grad. 4 no 2 4 1 4 0
≥ 5 2 ≥ 5 0

after seeing both
the description
and example

undergrad. 2 yes 1 ≤ 2 0 ≤ 2 4
3 1 3 0

grad. 2 no 3 4 2 4 0
≥ 5 1 ≥ 5 0

fo
rm

ul
at
io
ns

w
ith

iss
ue
s

undergrad. 0 yes 2 ≤ 2 0 ≤ 2 2
missing 3 1 3 0

constraints grad. 3 no 1 4 1 4 0
≥ 5 1 ≥ 5 1

undergrad. 3 yes 2 ≤ 2 0 ≤ 2 5
non-trivial 3 2 3 0

generalization grad. 2 no 3 4 3 4 0
≥ 5 0 ≥ 5 0

give-ups
undergrad. 0 yes 2 ≤ 2 0 ≤ 2 1

3 0 3 1

grad. 2 no 0 4 0 4 0
≥ 5 2 ≥ 5 0

After completing all the studies, participants filled out an exit survey. Table 8.3
presents this survey.

8.2 Evaluation Framework

To evaluate the proposed approach, we first counted the number of successful for-
mulations. For a given problem, we define a successful formulation as a formulation
where both the U-CIT model and the entities to be covered are correctly expressed
in a generalizable manner, such that an U-CIT object obtaining full coverage can
be computed. Note that we also take the generalizability of the formulation into
account because we observed that (solely for the second problem) some participants
came up with formulations that are too specific for the problem instance given in
the study and that, therefore, are non-trivial to generalize for other instances of the
same problem. These formulations were often obtained by introducing additional
constraints in the U-CIT model in an ad hoc manner just to avoid some undesirable
results. More discussion on this can be found in Chapter 8.3.
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We also measured the time it took for the participants to complete the study. More
specifically, for a given problem, we measured the completion time as the difference
between the time the description of the problem was presented to the participant
and the time the participant completed the study. Note that a study was com-
pleted whenever the participant chose to finish the study. In all but two cases, this
happened after computing an U-CIT object achieving full coverage. In two cases,
however, the participants chose to stop working on the current problem in the mid-
dle of the study as they found the problem “very difficult” (see Chapter 8.3 for more
information). Each participant worked on the problems one after another.

We, furthermore, counted the number of errors made by the participants. To this
end, we counted the number of times the Test and the Generate buttons were clicked
(Chapter 8.1) and the result obtained did not meet the expectation of the partici-
pant. More specifically, if a participant, after clicking on a Test button or a Generate
button, made some changes and clicked on the same button, we assumed that the
participant made an error before the first click (as the expectation of the partici-
pant after the first click did not seem to be met). Note that this metric provides an
approximation of the number of errors made because on numerous occasions, we ob-
served that the participants intentionally developed incorrect or missing constraints
to test their hypotheses or to gain insight into the problem. We still opted to use
this metric because attempting to figure out the actual intention of the participant
after every click of a button would have introduced a great deal of intervention.

Furthermore, the percentage of the participants, who “agreed” or “strongly agreed”
with a question group in the exit survey, was computed as the average percentage
of the participants, who “agreed” or “strongly agreed” with the questions in the
group. The percentage of the participants, who found the problems “difficult” or
“very difficult,” is computed in the same manner.

8.3 Data and Analysis

We first observed that all of the participants understood how U-CIT works. In
particular, none of the participants were reminded of the basic U-CIT concepts
during the study.

We then observed that the participants could also formulate previously unseen prob-
lems in U-CIT. More specifically, all of the participants successfully formulated the
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first and the third problems. That is, for each of these problems, all of the partic-
ipants correctly expressed the U-CIT model as well as all of the U-CIT entities to
be covered in a generalizable manner and generated an U-CIT object obtaining full
coverage. And, they did so in a relatively fast manner. The average time it took
for the participants to complete these studies was 4.88 minutes (min = 1.47 and
max = 13.89) for the first problem and 5.38 minutes (min = 2.29 and max = 9.02)
for the third problem.

As expected, the participants found the second problem more difficult than the other
two problems, which was also reflected on the outcomes of the exit survey. While
65% of the participants found the second problem “difficult” or “very difficult,” none
of the participants thought the same thing for the first and third problems. As a
matter of the fact, based on the answers given to the open-ended Q9 (Table 8.3),
the most challenging part in the entire study turned out to be expressing an U-CIT
model for the second problem. Two participants, indeed, chose to terminate this
study in the middle of it after spending 42.56 minutes on average as they found the
problem “very difficult” (see the row marked with “give-ups” in Table 8.4 for the
demographic information of these participants).

Half (10 out of 20) of the participants, however, successfully formulated the prob-
lem in a generalizable manner by using the same (or similar) approach introduced
in Chapter 6.2.4 and obtained full coverage. 6 of them did so after seeing the de-
scription in Figure 8.1a and 4 after seeing both the description and the example flow
problem in Figure 8.1b (see the rows marked with “after seeing only the descrip-
tion” and “after seeing both the description and example” in Table 8.4, respectively,
for the demographic information of these participants). None of the participants,
who came up with a generalizable solution for this problem, did so without seeing
the description or the example. The average completion time was 47.14 minutes
(min = 25.79 and max = 69.49).

The remaining 40% (8 out of 20) of the participants, although generated U-CIT ob-
jects obtaining full coverage, either came up with a formulation, the generalization
of which was non-trivial, or covered some of the entities by chance. More specifi-
cally, 3 participants developed generalizable formulations by representing edges using
Boolean variables (rather than using integer variables), which were quite similar to
the formulation we developed in Chapter 6.2.4. However, the constraints, which
should have invalidated the presence of multiple independent flows, were missing
from the U-CIT models (see the row marked with “missing constraints” in Table 8.4
for the demographic information of these participants). The participants failed to
identify the issue because their formulations happened to obtain full coverage by
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generating valid test cases for the graph given in the study. Had they worked on
larger graphs, however, they might have pinpointed and fixed the issue. The average
completion time for this category of participants was 37.36 minutes (min = 33.91
and max = 43.01).

The remaining 5 participants developed formulations, the generalizations of which
were non-trivial (see the row marked with “non-trivial generalization” in Table 8.4
for the demographic information of these participants). In particular, all of these
participants chose to represent each vertex (rather than each edge) in the graph by
using an integer variable, the value of which represents the order in which the vertex
is visited. For a given variable, the set of possible values were determined manually
by considering all possible paths that could be traversed. The invalid combinations
of variable values (i.e., invalid paths) were then prevented by introducing model
constraints in a rather ad hoc manner every time the participant observed that
some of the generated test cases were invalid and/or some of the entities could not
be covered. 4 (out of 5) of these participants correctly expressed all the constraints
as well as the entities for the graph given in the study and obtained full coverage.
The remaining participant, although had some missing and/or faulty constraints
in the U-CIT model, happened to obtain full coverage by chance. The average
completion time for this category of participants was 46.42 minutes (min = 23.26
and max = 64.54).

We did not find any correlations between the performances of the participants and
their levels of degree, knowledge of CIT, or experiences in programming and testing.
We, however, observed that the knowledge of the domain was influential in success-
fully completing the studies. More specifically, for the first and third problems,
which required basic knowledge of programming and testing, all of the participants
successfully formulated the problems in U-CIT. For the second problem, which re-
quired basic knowledge of network flow problems, all of the participants, who suc-
cessfully formulated the problem in U-CIT, did so either after seeing a definition
of the network flow problem or after seeing both the definition and an example
flow problem. Table 8.4 provides demographic information about the participants
categorized based on their performances in addressing the second problem.

Regarding the mistakes made during the study, we first observed that (as expected)
the participants made more mistakes when solving the second problem, compared
to the other two problems. While the average number of mistakes made for the
second problem was 5.06, those for the first and third problems were 0.50 and 0.67,
respectively.

We then observed a debugging pattern. The participants, solely for the second
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Table 8.5 Responses to the exit survey given in Table 8.3.

strongly strongly
disagree disagree neutral agree agree

Q1a 0 0 0 2 18
Q1b 0 0 0 3 17
Q1c 0 0 0 4 16
Q2a 0 0 0 3 17
Q2b 0 0 0 6 14
Q2c 0 0 0 4 16
Q2d 0 0 0 7 13
Q6 0 0 0 7 13
Q7 0 0 0 7 13
Q8 0 0 0 4 16

very very
difficult difficult normal easy easy

Q3a 0 0 1 3 16
Q3b 0 0 1 4 15
Q4a 1 12 7 0 0
Q4b 1 6 9 4 0
Q5a 0 0 0 2 18
Q5b 0 0 0 2 18

problem, found expressing the entities as constraints easier than expressing the U-
CIT models. They, therefore, used the entity constraints to debug the models. More
specifically, to gain insight as well as to test their hypotheses, they tended to click
on the Test buttons associated with the entity fields. When the results obtained
were not expected, they modified and fixed the models.

Another interesting observation we made is that more than half of the participants
(especially for the first and third problems) encoded the U-CIT models as they were
reading the study descriptions. That is, as they discovered new system constraints
(e.g., parameters and their domains), they updated the models, suggesting that they
knew what to look for in the requirements to develop the U-CIT models.

Last but not least, Table 8.5 presents the outcome of the exit survey. Regarding the
questions Q1-Q2 (i.e., Q1.a-Q1.c and Q2.a-Q2.d) and Q6-Q8, all of the participants
“agreed” or “strongly agreed” that 1) they understood the basic concepts both in
constraint solving and in U-CIT, 2) they found U-CIT useful, 3) they would use
U-CIT in a project, and 4) they would recommend U-CIT to others.

Regarding Q10, one suggestion was to improve the syntax of the language we used
for expressing the constraints in a way that closely resembles the Boolean expressions
used in main stream programming languages. Another suggestion was to develop
a means of expressing “long and repetitive” constraints in a more efficient and ef-
fective manner, which, in turn, can further simplify the processes of developing the
constraints.
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8.4 Discussion

We observed that some problems are more difficult to formulate in U-CIT than
others. This is, indeed, to be expected. After all, solving some problems may require
specific background knowledge and not everybody may possess it. Note, however,
that the proposed approach still allows experts to formulate such problems in U-CIT
and others to use the existing formulations to compute U-CIT objects. For example,
the U-CIT formulation we developed to express reachability in graph-based models,
can be used to obtain full coverage under other reachability-based coverage criteria
(other than the ones we studied in this work) by changing the entities to be covered.
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9. GENERAL DISCUSSION

In this chapter, we informally discuss the proposed approach in an attempt to 1)
address the additional questions that the reader may have, 2) discuss the big picture,
in which we envision U-CIT to be an integral part, and 3) present possible avenues
for future research.

U-CIT is not a methodology for choosing the entities to be tested. It rather takes
as input a set of testable entities and aims to find a minimum number of test cases,
such that every required entity is covered by at least one test case.

In the absence of a methodology or a tool that can automatically determine what
needs to be tested, such as the existing structural code coverage criterion we used
in Chapter 6.1, identifying the set of entities to be tested may require some effort.
Note, however, that if the entities at question should really be tested, then they, in
one way or another, must be defined and enumerated regardless of whether U-CIT
or a specialized constructor is used.

Once the entities are determined, one may consider developing a specialized CIT
constructor. To do that, however, a procedure, which determines whether a given
set of entities can be covered together in a test case or not, needs to be devised.
But, then, the very same procedure can be used as the “solver” in U-CIT, which in
turn offers a constructor for free. Note that, as we have discussed in Chapter 5.5,
given such a procedure, the entities can be represented in any form desired (e.g.,
not necessarily in formal logic), since U-CIT does not need to interpret them.

After all, developing specialized CIT constructors may not be easy. As a matter of
fact, we introduced our generate-and-cover constructor (Algorithm 2) to mimic one
of the simplest ways of generating CIT objects: Keep on randomly generating valid
test cases until all the required entities have been covered. However, developing a
high-performing specialized constructor is quite challenging, which is also apparent
from more than 50 papers published in the literature, the sole purpose of which
is to compute standard covering arrays Nie & Leung (2011). Therefore, our goal
is to generalize the construction as much as possible, so that the collective effort
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spent for developing U-CIT constructors can be leveraged in a wider spectrum of
test scenarios, which in turn increases the flexibility of CIT.
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10. THREATS TO VALIDITY

All empirical studies suffer from threats to their internal and external validity. For
this work, we were primarily concerned with threats to external validity since they
limit our ability to generalize the results of our studies to industrial practice.

One threat concerns the representativeness of the case studies as well as the subject
applications used in the experiments. To alleviate this issue, we addressed a different
CIT problem in each case study.

In the first study (Chapter 6.1), we enhanced standard CIT with a well-known struc-
tural code coverage metric, namely decision coverage, and conducted comparative
studies on 12 well-known software systems, including Python, vim, and xterm. In the
second study (Chapter 6.2), we enhanced a number of existing order-based coverage
criteria. In the third study (Chapter 6.3), we developed solutions for a problem faced
by a successful consumer electronics company and evaluated the proposed approach
by using the data collected from the field. Furthermore, not only the CIT prob-
lems we have addressed, but also the solution approaches we have developed were
diverse. In the first study (Chapter 6.1), the values of the parameters were Boolean
constraints, rather than discrete values, and we used U-CIT with a SAT solver. In
the second study (Chapter 6.2), we expressed the reachability problem in DAGs as
a constraint satisfaction problem (CSP) and used a CSP solver. In the third study
(Chapter 6.3), we worked with parameters, each of which takes on a value from a
discrete set of values and used U-CIT with a simple, application-specific constraint
solver.

We have, however, not directly studied the fault-detection abilities of the U-CIT
objects we computed. In the first study (Chapter 6.1), we developed U-CIT ob-
jects to obtain full decision coverage. The decision coverage criterion is, indeed, a
well-known structural code coverage criterion for measuring the adequacy of test
suites. Therefore, its fault-detection abilities are well-studied (Cai & Lyu, 2005).
In the second study (Chapter 6.2), we enhanced a number of existing order-based
coverage criteria, which have already been shown to be effective in testing event-
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driven systems (Yuan et al., 2011). In the third study (Chapter 6.3), we developed
usage-based CIT objects to reduce the size of the interaction test suites by covering
only the t-tuples (or a fraction of them) seen in the field. Consequently, for the test
scenarios, in which standard covering arrays are infeasible (or undesirable) due to
their sizes, usage-based CIT objects would offer the same (or similar) fault revealing
abilities for the faults caused by the t-tuples seen in the field.

The number of times we repeated the experiments in the paper varied depending on
the cost of the respective experiments. We, however, opted to work on larger CIT
problems with smaller repetition counts, rather than working on smaller formula-
tions with larger repetition counts. Furthermore, for each study, we have added a
discussion for the costs involved in the study. The actual costs, however, may vary
depending on the experience of the tester.

For the hints approach, the testable entities needs to be defined as conjunction of
smaller parts. However, it may not always be straight forward to represent the
testable entities as conjunction of smaller parts. In such cases, even though, the
hints approach would not work, the standard U-CIT will still be a useful tool to
compute the requested U-CIT object.

Regarding the user studies, all the participants in these studies were students. We,
however, had both undergraduate- and graduate-level students with some back-
ground on software testing. Furthermore, more than half of these students had
taken at least one course where standard CIT approaches were studied. A related
threat concerns the representativeness of the problems used in the user studies. We,
however, used the smaller instances of the very same problems we studied in this
work (Chapters 6.1-6.3). Furthermore, these problems were not known to the partic-
ipants before taking part in the study. The participants were asked to finish working
on one problem before moving to the subsequent problem. They were also required
to finish all the studies in a single session. Had they been given more time and/or
more instances of the same problems, more participants might have successfully for-
mulated them in a generalizable manner and/or identified and fixed the issues with
their formulations.
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11. CONCLUDING REMARKS

In this work, we have first presented U-CIT to make combinatorial interaction testing
more flexible. In U-CIT, both the testable entities to be covered and the space of
test cases, from which the samples will be drawn, are expressed as constraints.
Consequently, the problem of computing U-CIT objects, turns into an interesting
constraint solving problem, which we call cov-CSP. Given a set of constraints, each
representing a testable entity to be covered, cov-CSP aims to divide the set into a
minimum number of satisfiable clusters, such that a solution for a cluster represents
a test case, covering the testable entities included in the cluster. The collection of
all the test cases computed for the clusters constitute the U-CIT object, covering
each required testable entity at least once.

We have then developed two constructors, namely cover-and-generate and generate-
and-cover, to solve the cov-CSP problem, thus to compute U-CIT objects. These
constructors can work with any types of constraints as long as an appropriate solver,
the purpose of which is to determine whether a given set of entities can be covered
in a single test case or not, is provided.

To evaluate U-CIT, we have first carried out three case studies, each of which focused
on a different CIT problem, demonstrating that U-CIT is more flexible than the
existing CIT approaches. We have arrived at this conclusion by noting that, in these
studies, it was either unclear how to use the existing constructors (if at all possible)
to compute the requested CIT objects, or the existing constructors required non-
trivial modifications or excessive number of test cases to guarantee full coverage.
U-CIT, on the other hand, used the same U-CIT constructor to compute all the
requested CIT objects these studies without requiring any modifications.

Moreover, we empirically demonstrated that the performance (i.e., the construction
times) of U-CIT constructor can be significantly improved by using “hints”. Hints
can improve the efficiency of U-CIT constructors by reducing the number of times
the solver is called and/or by calling the solver with simpler constraints.

Last but bot least, we have also carried out user studies to further evaluate U-
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CIT, demonstrating the usability of the proposed approach. One thing we observed
in these studies is that some problems are more difficult to formulate in U-CIT
than others as they require some specific background knowledge, which may not be
possessed by everybody.

A possible future work, tools (e.g., front-ends) that can provide various means for
defining the coverage criteria as well as the input spaces, such that the testable enti-
ties selected by the coverage criteria are automatically generated, can be developed
to improve the usability of U-CIT in the field. Another avenue for future work is
to develop alternative approaches for solving the cov-CSP problem, i.e., develop-
ing better constructors. We also plan to investigate the fault revealing capabilities
of U-CIT. Lastly, the computational complexity analysis of the problems and the
asymptotic time complexity of the algorithms are missing and left for future work.
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