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ABSTRACT

TRUST-AWARE LOCATION RECOMMENDATION IN LOCATION-BASED
SOCIAL NETWORKS

Cantürk, Deniz
Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Pınar Karagöz

August 2021, 104 pages

Users can share their location with other social network users through location-embedded

information in LBSNs (Location-Based Social Network). LBSNs contain useful re-

sources, such as user check-in activities, for building a personalized recommender

system. Trust in social networks is another important concept that has been inte-

grated into a recommendation system in various settings. In this thesis, we propose

two novel techniques for location recommendation, TLoRW and SgWalk, to improve

recommendation performance through integrated trust information. In both of the al-

gorithms, the elements of LBSN and their relationships (user-user, user-location) are

represented by using a graph model. For trust modeling, we develop a method to gen-

erate trust scores of LBSN users. With the developed method, the global trust score of

a user is predicted with respect to the check-in history. The trust model is integrated

into the LBSN graph model to be used within the proposed location recommendation

algorithms. The first algorithm, TLoRW, generates location recommendations based

on the user’s current location by exploiting the friendships, experts, and trusted users

traversing the region of user’s spatial context through a random walk based algorithm.

This region is constructed as the subgraph of the user according to the current loca-
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tion. In the second recommendation algorithm, SgWalk, we consider user subgraph as

a heterogeneous information network and propose a novel HIN embedding technique.

The location recommendation is generated by the proximity between users and loca-

tions based on their corresponding node embedding. SgWalk is differentiated from

the previous node embedding techniques relying on meta-path or bi-partite graphs

by utilizing the user subgraphs generated based on spatial context. By this way, it is

aimed to capture the relationship between the entities with respect to the spatial con-

text.The recommendation performance of TLoRW and SgWalk is analyzed through

extensive experiments conducted on benchmark datasets by evaluating the accuracy

in top-k location recommendations. The experiments reveal that trust information

has a significant effect on improving the location recommendation performance. The

performance evaluation results show a substantial improvement compared to baseline

techniques and the state-of-the-art trust-aware recommendation and heterogeneous

graph embedding techniques in the literature.

Keywords: Location-based Social Networks, Location Recommendation, Heteroge-

neous Information Network Embedding, Information Fusion, Trust Prediction, Trust-

aware Recommendation, Random Walk
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ÖZ

KONUM TEMELLİ SOSYAL AĞLARDA GÜVEN FARKINDA KONUM
ÖNERİSİ

Cantürk, Deniz
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Pınar Karagöz

Ağustos 2021 , 104 sayfa

Kullanıcılar, LBSN’lerde (Konum Tabanlı Sosyal Ağ) konuma gömülü bilgiler aracı-

lığıyla konumlarını diğer sosyal ağ kullanıcılarıyla paylaşabilmektedir. Kullanıcıların

konumlar için yaptıkları giriş bilgilerinden oluşan sonuç veri seti kişiselleşmiş konum

öneri sistemi inşa etmek için kullanılmaktadır. Güven, sosyal ağlara çeşitli ortamlarda

öneri sistemlerine entegre edilmiş bir başka önemli kavramdır. Bu tezde, öneri perfor-

mansını iyileştirmek için konum önerisi için iki yeni teknik olan TLoRW ve SgWalk

öneriyoruz. İleri sürülen yaklaşımlarda LBSN öğeleri (kullanıcı- kullanıcı, kullanıcı-

konum) ve aralarındaki ilişkiler çizge modeli kullanılarak temsil edilmektedir. Güven

modellemesi için, LBSN kullanıcılarının güven puanlarını tahmin eden bir yöntem

geliştirdik. Geliştirilen yöntemle, bir kullanıcının check-in geçmişine göre global gü-

ven puanı tahmin edilmektedir. Güven modeli, önerilen konum öneri algoritmalarında

kullanılmak üzere LBSN grafik modeline entegre edilmiştir. İlk algoritma, TLoRW,

rastgele yürüyüş tabanlı bir algoritma olup kullanıcının uzamsal bağlam bölgesini do-

laşarak arkadaşlıklardan, uzmanlardan ve güvenilir kullanıcılardan yararlanarak kul-

lanıcının mevcut konumuna dayalı konum önerileri üretir. Bu uzamsal bağlam bölge,
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mevcut konuma göre kullanıcının altçizgesi olarak oluşturulur. İkinci öneri algorit-

masında, SgWalk, kullanıcı altçizgesini heterojen bir bilgi ağı olarak ele alarak yeni

bir HIN yerleştirme tekniği öneriyoruz. Konum önerileri, kullanıcılar ve konumlar

arasındaki yakınlığa bağlı olarak yapılan düğüm yerleştirmelerine dayalı olarak oluş-

turulmaktadır. SgWalk, uzamsal bağlama dayalı olarak oluşturulan kullanıcı altçizge-

lerini kullandığı için meta-path veya iki parçalı çizgelere dayanan önceki düğüm yer-

leştirme tekniklerinden farklıdır. Bu sayede, varlıklar arasındaki ilişkinin mekânsal

bağlam açısından yakalanması amaçlanmaktadır TLoRW ve SgWalk’un öneri perfor-

mansı, ilk k konum önerilerindeki doğruluk değerlendirilerek bilinen veri setleri üze-

rinde gerçekleştirilen kapsamlı deneyler aracılığıyla analiz edildi. Deneyler, güven

bilgilerinin konum önerisi performansını iyileştirmede önemli bir etkiye sahip oldu-

ğunu ortaya koymaktadır. Performans değerlendirme sonuçları, literatürde temel tek-

nikler ve son zamanlarda yayınlanan güvene duyarlı öneri ve heterojen grafik gömme

tekniklerine kıyasla önemli bir gelişme olduğunu göstermektedir.

Anahtar Kelimeler: Konum Tabanlı Sosyal Ağlar, Konum Önerisi, Heterojen Bilgi

Ağı Gömme, Bilgi Füzyonu, Güvenilirlik Tahminlemesi, Güven-Farkında Konum

Önerisi, Rastgele Yürüyüş
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

The rapid growth of the internet and mobile communication led to the development

of social networks on the web, and advancements in positioning technology allow the

utilization of location data through social networks in various ways, such as sharing an

instant location with other users or exchanging travel experiences with friends. These

opportunities foster sharp increases in LBSNs (location-based social networks), such

as Foursquare1 and GeoLife2.

An LBSN stores the users’ check-in history, which is a precious resource for a recom-

mender system to recommend a variety of information, such as friends, locations, and

events, according to the user’s context. Given a check-in history from an LBSN as a

collection of tuples consisting of (user, check-in date and time, location information)

and the user’s social network connections, a list of locations can be suggested by the

location recommender for the LBSN to the target user. The quality of the recom-

mendation can be improved with additional information from LBSNs, such as users’

demographic information or the performed activity type[1].

In this thesis work, LBSN is considered as the basis and the problem of location rec-

ommendation is challenged within this setting. More specifically, it is aimed to pro-

vide accurate location recommendations with respect to the current location (spatial

context) of a given user. Furthermore, trust concept is modeled for LBSN setting and

integrated into LBSN model to improve recommendation accuracy. Consequently,

1 https://www.foursquare.com/
2 https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
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we propose two approaches for location recommendation. In the first approach, we

represent LBSN data (the users and the locations visited) as vertices and visiting re-

lations as edges of a graph model and rank the nodes on the graph for generating rec-

ommendations. In this approach, random walk is applied on the generated subgraph

to estimate the ranking value of the locations. Then, locations are sorted according

to their ranking values, and the top-n locations are recommended to a user. In the

second approach, we construct a user subgraph that considers a wide range of infor-

mation sources, such as personal, social, spatial, and trustworthiness contexts, and

generated random walk sequences over the user subgraph. Then, we learn the graph

embeddings of nodes in the LBSN and generate a location recommendation list from

the vector representation of the nodes.

1.2 Proposed Methods and Models

Trust is a phenomenon that has been extensively studied in several fields and uti-

lized in various contexts as a basis for decision-making. Although these fields define

trust differently, the problems they attempt to solve share the common objective of

accurately assessing trust as a sound basis for decision-making, where an incorrect

estimation of trust may lead a trustor to set a wrong trust to a trustee, resulting in

betrayal by the trustee or loss of opportunities for good collaborators [2, 3]. Because

all required knowledge is unavailable in several problem areas, crucial decisions are

generally made with insufficient, incomplete, uncertain, and conflicting information.

This vagueness leads a decision-maker to risk negative output from fallacious choices

because of the possibility of misplaced trust in another object.

The dictionary definition of trust is “to have confidence in someone; to believe that

someone is good, sincere, honest, etc.”3. Simply, trust is a relationship in which an

object, usually called a trustor, relies on something or someone called a trustee based

on some conditions. Since trust is an interdisciplinary concept, the term has been used

in various fields to model varying types of relationships. To derive an interdisciplinary

definition of trust that includes these concepts, we review the definitions of trust in

various fields and reach a common definition of trust.
3 https://www.oxfordlearnersdictionaries.com/us/definition/english/trust_2
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The social sciences work on the trust relationships of people in a general social set-

ting. In this setting, people have expectations about the behavior of others. In a

classic definition from sociology, [4] defines trust as the trustor’s subjective probabil-

ity of whether the trustee (or trustees) will perform a particular action to the trustor’s

advantage. Probability is assessed before the trustee takes action according to the

uncertain conditions about the trustee. In philosophy, trust is an individual, internal

phenomenon that helps to preserve ethical relationships between people, and breach

of trust is an obvious violation of ethical behavior that leads to distrust [5]. In psy-

chology, trust is described as a cognitive construct by Rotter [6] that a person learns

from social experiences as the outcomes of trusting behavior in a positive or negative

manner. It is concluded that a person who has had negative experiences of greater

trust in the past is unlikely to trust in the future, and vice versa. Trust propensity is

a recognized concept that reveals differences in the degrees of trust among people in

the same circumstance. In particular, trust propensity is strongly influenced by who

or what the trustee is. In computing, trust is an important concept and is applied to

many different areas, including artificial intelligence, telecommunications, and cy-

ber/network security. As a subjective judgment, an agent’s trust is dependent on their

belief that another object will behave reliably in a given context. According to the

agent’s experience, it can maximize its interests (or utility) or reduce its risks [7, 8].

As a result of the common themes across disciplines, the concept of trust can be

summarized as follows:

Trust is a relationship where an individual takes a risk, based on a subjective belief

that a trustee will involve in reliable behavior to maximize their interests under am-

biguous, conflicting, and incomplete information of a given circumstance based on

the cognitive assessment of actions taken according to the trustee. [2]

We used trust in our thesis research in the meaning of the above definition.

Trust is a relationship between trustor and trustee, and the strength of the relation-

ship is determined by the decision that results in positive or negative outcomes is

called trustworthiness, which represents objective trust based on the observed out-

come. Conversely, overall trust can be formed by combining subjective and objective

trust. Basically, trustworthiness refers to trust that is validated by evidence. Zarghami
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et al. [9] introduced a metric, the T-index, to estimate a user’s trustworthiness as a

recommendation maker in the same way as the h-index is used by researchers commu-

nity. In our research, we do not have trust relationships between users and calculate

the global trustworthiness scores of users and identify globally trustable users (TUs)

In addition to the trust relationship, trustworthiness of the users also has the poten-

tial to improve the recommendation quality. To identify TUs, we employed users’

relevant properties to determine their trustworthiness by utilizing feature engineer-

ing techniques [10]. According to computational social science investigations [11],

which analyze online information characteristics, the loyalty of a user’s attitude can

be inferred as follows. When a user who does not have prejudgements maintains an

objective attitude (i.e., objectivity) and provides a consistent perspective (i.e., consis-

tency), loyalty tends to increase [12]. In addition, when a user frequently communi-

cates with other users by accessing the data produced by him or her (i.e., activity), the

reliability tends to increase as well. Therefore, activity, objectivity and consistency

can be considered the basic features to recognize TUs.

The trust concept has been studied in recommendation systems with the opinion that

each user’s attitude is influenced by the user’s trust connections, and hence, various

trust-aware recommendation approaches have been proposed [13, 14, 15, 16, 17, 18,

19, 20, 21, 22]. According to the theoretical and experimental results of these pro-

posed approaches, it has been reported that making use of trust relationships improves

recommendation performance. In the studies considering explicit trust, the trust score

explicitly declared by users is utilized [13, 14, 15, 16, 19, 21, 22]. However, for some

other solutions, the implicit trust score is used in the form of friendship relations be-

tween the users [14, 15, 16, 17, 18]. In LBSN models explicit trust information is

rarely available. In this thesis work, we model implicit trust in terms objectivity and

consistency of TUs and incorporate into LBSN model. This extended LBSN model

is used in both of the proposed algorithms in the form of a graph. The first algorithm,

TLoRW, makes use of random walk on the trust extended graph to generate loca-

tion recommendations. The same extended graph model is also used in the second

algorithm, SgWalk, in order to generate node embeddings, which are to be used for

recommending locations.
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Given a check-in history of an LBSN and the user’s social network connections, the

location recommender for an LBSN attempts to recommend locations. As the num-

bers of users and locations in an LBSN are too high, processing and analyzing formed

social networks requires considerable effort. To overcome this issue, network embed-

ding has attained popularity in recent years with the idea of representing graph nodes

(vertices) with vectors of low-dimensional space that preserve the graph structure and

its fundamental properties by generating a continuous vector representation of nodes.

Hence, network embedding can provide the capability to identify the social charac-

ters closer to each other according to their corresponding vector representations. This

leads to the adoption of network embedding approaches in various graph analysis

tasks by considering node distances (similarities).

Recent graph embedding approaches can be grouped as homogeneous or heteroge-

neous graph embedding into two categories, according to the types of vertices in the

graphs[23]. In a homogeneous graph, which only contains nodes belonging to a sin-

gle notion (such as users in an LBSN), graph embedding techniques use sequences

of nodes obtained as random samples from a graph (by performing random walks

through the graph [24]) to preserve the proximity between node pairs. However, a

heterogeneous graph has a complicated structure that includes nodes from several no-

tions and edges, both homogeneous and heterogeneous, for connecting nodes from

the same notion or relating nodes from different notions. [25, 26]. For instance, an

LBSN graph with user (U), location (L), and friend (F) notions contains the homo-

geneous edges between users (friendship) as well as heterogeneous edges linking a

user and location (visits). These types of graphs are also called HINs (heterogeneous

information networks). Moreover, HINs have richer semantics and embody more in-

formation than homogeneous graphs. This phenomenon presented a new viewpoint

to heterogeneous data analysis and drew the attention of many researchers.

With the basic idea, a heterogeneous graph can be directly embedded by homoge-

neous graph embedding techniques, but it suffers from poor results [23]. Therefore,

network embedding techniques for heterogeneous graphs need to consider the in-

formation fusing methodology and structure of the graph while generating node se-

quences. Many studies have been performed on the techniques for HIN embedding

[27, 28, 29, 30, 25, 26, 19, 31] and have proven the usefulness of HIN embedding
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in HIN analysis tasks. In such studies, some of the techniques rely on metapaths to

preserve the similarity between nodes while generating node sequences in a random

walk [25, 26, 31]. Other techniques break down the HIN into smaller networks (bi-

partite graphs) and then jointly learn the embeddings of each subnetwork [29, 30, 32].

Additionally, there are solutions that learn nonlinear mapping functions by employing

neural network-based approaches for HIN embedding [27, 33, 19, 34]. HIN embed-

ding learned by the aforementioned techniques has been used in many tasks, such

as clustering [35], classification [36], recommendation [37, 38], and link prediction

[39].

In this thesis, we propose two approaches for location recommendation. In the first

approach, TLoRW, we represent LBSN data (the users and the locations visited) as

vertices and visiting relations as edges of a graph model and rank the nodes on the

graph for generating recommendations. In this approach, trust scores are also at-

tached to user nodes, and all locations’ ranking values are estimated by employing

a random walk on the generated subgraph. Then, locations are sorted according to

estimated ranking values, and desired top-n locations are recommended to a user.

Second approach, SgWalk, includes a novel use of node embedding model for HINs.

From the LBSN graph, which is a HIN by its nature consisting of a variety of node

and edge types, subgraphs are generated based on spatial contexts within the data.

Node embeddings are learned by using walk sequences obtained on subgraphs. The

motivation behind using such contextual subgraphs is to be able to capture the rela-

tionships between the entities (i.e. the edges) with respect to different spatial context.

The similarities between a user node and location nodes in terms of their embeddings

determine the locations to be recommended.

1.3 Contributions and Novelties

We can highlight the contributions of this thesis as follows:

• We propose two novel location recommendation techniques, TLoRW and Sg-

Walk.

• We propose a trust model for LBSN users based on activities. Instead of ex-
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plicit trust scoring or personal preferences, we develop a latent trust model,

leveraging the features of objectivity, consistency and activity.

• We extend the LBSN user subgraph model by including trusted user nodes.

• We propose a random walk-based location recommendation algorithm on the

trust-aware graph model, Trust-aware Location Recommendation with random

Walk (TLoRW), such that social connections, trustworthiness, user preferences

and spatial context are employed together.

• To analyze the recommendation accuracy of the TLoRW, we conduct extensive

experiments on four real-world datasets. The results show that TLoRW outper-

forms the state-of-the-art recommendation methods, such as collaborative deep

learning and collaborative filtering.

• We propose,SgWalk (Subgraph Walk), a user subgraph-based graph embedding

technique, to eliminate the links in the whole graph representing LBSNs that

are not related to the user requesting a recommendation. Current embedding

techniques in the literature use the whole graph to generate walk sequences that

cause unrelated nodes to occur together in the embedding window and obtain

low embedding performance. We solve this problem by constructing subgraphs

specific to each user according to the user preferences and social connections.

• Based on the random walk sampling process on the user subgraph, we adopt

the popular word embedding technique in a new setting for heterogeneous in-

formation network embeddings.

• We create heterogeneous information networks that consist of trustworthiness,

user preferences, social connections, and spatial-context notions and fuse them

successfully in learning graph embedding.

• SgWalk utilizes user subgraphs instead of bipartite subgraphs proposed in the

literature and does not depend on metapaths.

• To analyze the recommendation accuracy of SgWalk, we perform extensive ex-

periments on four real-world datasets. The results indicate that SgWalk outper-

forms the state-of-the-art graph embedding methods.
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1.4 The Thesis Outline

The rest of the thesis is organized as follows. Related works are summarized in

Section 2. We present the LBSN model, trust model and details of the proposed

techniques in Section 3. We report our conducted experiments and the results in

Section 4. The paper is concluded in Section 5 with final remarks.
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CHAPTER 2

RELATED WORK

In this chapter, we provide a summary of the previous work related to location recom-

mendation from LBSN data, the trustworthiness of users in recommendation systems

and heterogeneous information network embedding.

2.1 Location Recommendation in LBSNs

Mainly, location recommendation approaches are built on top of collaborative filtering-

based methods [40, 41, 42, 43, 44, 45]. Current developments in machine learning

with deep neural network models allow studies to use deep learning methods in rec-

ommendation systems [27, 33, 46, 47, 18, 48]. In addition, other methods, such as

random walks, decision trees, and Bayesian networks, are also applied in location

recommendation [49].

Zheng et al. [42] used GPS trajectory data to recommend location and activity. In

their approach, GPS history data are converted to a location-activity matrix, and then

the matrix is factorized to recommend locations for a given activity, or vice versa. Ad-

ditionally, in [43], the authors proposed a social networking service, namely, GeoLife

2.0, that provides an opportunity for sharing their travel experiences with other users.

GeoLife aims to model GPS data, locations, and users and determine the similarity

between users and locations. The predicted similarity values are employed for friend

recommendations. Leung et al. [50] proposed the collaborative location recommen-

dation (CLR) framework, which recommends locations by using user GPS trajectory

data. In their work, the user-activity-location tripartite graph and a coclustering algo-

rithm were employed to represent GPS trajectory data. Recommendation refinement
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was performed by using clusters of similar locations for a particular activity issued

by a specific user.

Cho et al. [41] investigated human mobility patterns on location-based social net-

works through temporally and geographically periodic movement with the social net-

work structure. They developed a model of human mobility for predicting future

locations by using the check-in similarity of friends. Additionally, Wang et al. [51]

included a temporal cyclic effect with the sequential influence of user check-in times

and the corresponding visited locations to improve recommendation accuracy.

Lian et al. [40] proposed a weighted matrix factorization-based location recommen-

dation technique, namely, GeoMF. In [40], users’ and locations’ latent feature vectors

were augmented with area vectors of user activities or location influence, respectively.

Additionally, the GeoMF approach explains why integrating geographical influence

into matrix factorization is beneficial to location recommender systems.

Wang et al. [27] proposed the collaborative deep learning (CDL) approach, which

extracts the deep feature representation from content and captures the implicit rela-

tionship and proximity between users (and locations) by performing deep learning

collaboratively. The learned representation is used for location recommendations.

In [33], Yin et al. proposed a spatial-aware hierarchical collaborative deep learn-

ing model (SH-CDL), which jointly learns deep representation from heterogeneous

location features and hierarchical additive representation of spatially-aware personal

preferences. The authors aimed to overcome issues such as cold start and data sparsity

that cause performance loss in collaborative filtering-based methods.

2.2 Trust Detection and Trust-aware Recommendation

Trust is a significant concept for enhancing recommendation quality. In recent stud-

ies, there have been many proposed approaches for trust-aware recommendation in

different settings. In a social network that contains trust relations, the trustor is a

user who trusts another user, and the trustee is a user who is trusted by another user.

In a trust network, when explicit distrust is provided as well as explicit trust, such

networks are considered signed trust networks. Trust/distrust is a one-directional re-
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lationship between two users indicating that both agree/disagree on the feedback of

the same item. In other words, a user has a similar/dissimilar impression on the item

as the other user [15].

Guo et al. [14] proposed a trust-based matrix factorization method to address the

cold start and data sparsity problems in the trust-aware recommendation system. To

improve the accuracy, a trust propagation mechanism is incorporated into the model.

In this method, explicit trust and the implicit influence of ratings are merged in the

recommendation process. In [15], Ali et al. proposed a trust-aware recommendation

method for utilizing both implicit and explicit trust relationships. The implicit trust

relationship is inferred from rating information. In this way, the trust relationship

sparsity problem is alleviated as well. In [52], multiple trustor and trustee relation-

ships in trust networks were modeled to mine more information from social networks.

In this approach, users are modeled in two separate models for the roles of trustors

and trustees, and then the results from both models are incorporated to make rec-

ommendations. In [53], the trust-based competitive influence diffusion model was

established to simulate the dynamic spreads of competitive influence. Trust and dis-

trust relationships were used to model positive or negative influence, respectively, and

trust values were estimated through generalized network flows.

Mayer et al. [54] proposed the trust ancestor framework (TAF), which includes four

trust factors for trust evaluation. These four factors are the trustee’s benevolence, abil-

ity, integrity and the trustor’s trust propensity. In [55], Guo et al. extended the TAF

model (called ETAF) by using all interactions among users with the target trustees

and obtaining the global trustworthiness. The ETAF model, as in TAF, is based on

the four trust factors, but here, each factor can be formalized into local and global

perspectives.

Oh and Kim [10] proposed an approach to identify and exploit trustworthy users with

robust features in an online rating system. The candidate features to determine trust

are the activity, objectivity, and consistency. The values for each of the features are

normalized, and the influence of each feature is measured according to the correlation

between the trustworthiness and the feature. In [56], trust was measured by using an

uncertainty distribution variable that represents the trust relationship. In the approach,
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single-path trust chains are established, and missing trust information is derived from

the uncertainty distribution.

In the proposed work, we extend the concepts in Oh and Kim’s [10] study to define

trust within the LBSN context. However, the setting of our work is different. In

[10], the authors focused on identifying trustworthy users, and they did not calculate

the trust scores. Additionally, the authors did not employ the identified trustworthy

users in recommendation generations. Guo et al. [55] used a similar methodology to

our approach, such that they used formulas to find trust scores based on trust factors,

mainly depending on the items’ comments or ratings. However, in our setting, LBSN

data do not include ratings for locations given by users. We calculate location ratings

on the spot, so ETAF does not apply to our case. The problem setting of our work

is different from those given in Ali et al.’s studies. Because, in our work, there are

no available trust data in the dataset, we use generated trust scores in the recommen-

dation. In contrast, Ali et al. employed existing trust data to fill the trust value gaps

by utilizing the trust propagation approach. Furthermore, [18] and [57] used different

techniques to estimate the trust values. To summarize, our approach is the first work

that includes the trust node in an LBSN graph as an independent context and uses the

trust node with a random walk technique for location recommendation.

2.3 Heterogeneous Information Network Embedding

The goal of network embedding is finding the network’s low-dimensional vector rep-

resentation by protecting the structure of the network and properties of the nodes in

the network [58, 23, 47]. Hence, network embedding can be considered a dimension-

reducing method. In early studies, [59, 60], dimensionality reduction techniques de-

composed the network to learn the latent representations of vertices and edges in

terms of low-dimensional vectors. For example, Ahmed et al. [61] represented the

graph as a matrix with the entries representing the edges that connect graph nodes

and applied matrix factorization for learning a low-dimensional graph representation.

Nevertheless, decomposition-based models are not scalable due to the high computa-

tional cost and are not flexible enough to decompose a large-scale matrix [23]. Hence,

decomposition-based methods are not practical to use in large networks for data min-
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ing tasks.

Recently, deep learning-based models have taken place in network embedding to han-

dle decomposition issues in large networks. Motivated by the word2vec [62] ap-

proach, Perozzi et al. [24] proposed DeepWalk, which learns network representations

by feeding the generated random walk sequences to the skip-gram model. DeepWalk

assumed nodes as "words" and random walk sequences as "sentences" and then maxi-

mized the co-occurrence probability of each node pair. Next, node2vec was proposed

by Grover et al. [63], in which a biased random walk was performed on homoge-

nous networks by employing depth-first and breadth-first sampling. In addition, with

the LINE model, Tang et al. [28] employed both first- and second-order proximities

among vertices by the edge-sampling algorithm for learning vectorial representations

of nodes in large information networks. Furthermore, higher-order graph proximity

for network representations was proposed in the GraRep model by Cao et al. [64].

Unfortunately, these state-of-the-art methods concentrated on learning node repre-

sentations in a homogeneous network, but these methods cannot be directly used in

heterogeneous networks.

Recently, heterogeneous information networks have gained popularity due to their

powerful capability to model nodes from several aspects and their specific relations.

HIN embedding attempts to embed the nodes from multiple notions into the shared

low-dimensional space. HIN embedding methods have improved the ideas in ho-

mogenous graph embedding research to handle information graph heterogeneity. For

example, metapath2vec [25], as an extension of DeepWalk, generates node sequences

from metapath-based random walks to accommodate heterogeneous neighborhoods

of a node and learns the representation of heterogeneous networks by applying the

skip-gram model. HIN2vec [26] first discovers different relationship types between

nodes by using a list of combined metapaths having shorter lengths than a specified

value and employs them to generate better walk sequences. PTE [29] extends LINE

by decomposing heterogeneous graphs into bipartite subgraphs and performs indi-

vidual network embedding by using the LINE approach. Additionally, PTE is a text

embedding technique. However, GE [30] and JLGE [32] extend the LINE approach

for embedding location nodes. Both GE and JLGE decompose LBSNs into bipartite

user-location subgraphs and then jointly perform representation learning for all node
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pairs of subgraphs.

Last, deep neural network-based methods are imported to heterogeneous data embed-

ding methods due to the power of deep models, such as autoencoders and graph neu-

ral networks, in modeling heterogeneous data. SHINE [34] borrows the autoencoder

model to encode and decode the heterogeneous information in the social network

to obtain the feature representation, and in [33, 48], the stacked denoising autoen-

coder (SDAE) was used as the deep learning model for feature representation. A

graph neural network (GNN) is another model that learns graph representations us-

ing specifically designed neural layers and defines convolutions in the graph domain

by aggregating the feature information of each node from the connected neighbors.

GraphSAGE [65] is proposed as the seminal spatial-based GNN framework that is

founded upon the general notion of aggregator functions for node embeddings. Zhang

et al. [66] proposed a heterogeneous GNN model to consider heterogeneous graph

structure and the heterogeneous contents together by collecting strongly correlated

heterogeneous neighbors and aggregates feature information of the sampled neigh-

bor nodes. Additionally, for better representation of heterogeneous graphs with rich

node content features, Fu et al. [67] employed intrametapath aggregation for the con-

tent transformation of heterogeneous node attributes and intermetapath aggregation to

generate node embeddings by applying the attention mechanism for every metapath.

Finally, we note that few research efforts can be found that employ subgraphs in the

embedding process for recommending locations to the users. Our approach differs

from previous works in the subgraph creation process. In these works, graphs are

decomposed along with relationships or metapaths. However, we decompose the

graphs according to the geographical attributes of the nodes such that location nodes

around the user’s current positions with the specified radius and user nodes (friend,

expert, trusted) visiting these locations.
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CHAPTER 3

TRUST-AWARE LOCATION RECOMMENDATION

In this chapter, we provide detailed explanations of our proposed location recommen-

dation techniques. First, the main elements in the LBSN and the problem descriptions

are stated in Section 3.3.1. Then, the models used in the proposed techniques, the

LBSN model and the proposed trust model, are introduced in Section 3.1 and Section

3.2, respectively. After that, the Trust-aware Location Recommendation with Random

Walk: TLoRW technique is described in detail in Section 3.3 and User Subgraph-

based Graph Embedding technique SgWalk (Subgraph Walk) is described in detail in

Section 3.4.

3.1 LBSN Model

We represent the particular LBSN with an unweighted and undirected graph model.

This model, represented by G, is a graph G < V , E >, where V denotes the set of

nodes v and E denotes the edges e between nodes. V = U ∪ L where U is the set of

users and L is the set of locations. V contains six different types of nodes:

• User node u ∈ U , requesting recommendation.

• Friend nodes, denoting friends of the user u, such that each friend f ∈ F .

• Expert nodes, denoting location experts in the user’s vicinity, such that each

expert eu ∈ EU .

• Trusted user nodes, denoting trustworthy users in user u’s vicinity, such that

each trusted user, tu ∈ T U .
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• Location nodes, denoting locations visited in the user’s vicinity either by user

u or by a friend f , such that each location l ∈ L.

• Popular location nodes, denoting popular locations in the user’s vicinity, such

that each popular location pl ∈ PL.

The set of edges denoted by E is used for defining the links among the items in V . E
contains seven distinct edge types between the six nodes above, as shown in Figure

3.1.

Figure 3.1: Vertex and edge types in the LBSN model.

3.2 Trust Model

Trust is widely recognized as an important component in human social relationships.

In general, trust is a measure of confidence that an entity will behave in an expected

manner, despite its inability to monitor or control the environment in which it operates

[68]. Trust is a belief that does not necessarily presuppose past observed behavior,

which is different from trustworthiness, which is a verified objective of trust through

observed evidence [69]. Thus, trust includes both subjective and objective trust (i.e.,

trustworthiness). Trust is denoted in [70] simply as T (i, j, α) and read as "i trusts j in

a situation α."

In this thesis, we focus on the objective part of the trust and propose an approach to

compute user trustworthiness scores. In our model, there is no available explicit trust

relationship between users, and we employ the reliable behavior of trustee as stated in
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the common definition of trust in the Section 1.2 in a global manner. To model a user’s

global trustworthiness score within an LBSN, we adopt the trust features described

in [10]: objectivity and consistency. In our approach, the definition of these features

and the way they are computed differ based on the LBSN environment and the data

generated within the LBSN.

Definition 1 (Objectivity) The objectivity of user u, denoted byOu, is the normalized

average of the objectivity scores of the visits by user u.

The objectivity score of a visiting location l, Ol, depends on Ul, which is the visiting

status of user u for location l, as given in Equation 3.1.

Ul =

1, {a|a ∈ A, a.u = u ∧ a.l = l} 6= ∅

0, {a|a ∈ A, a.u = u ∧ a.l = l} = ∅
(3.1)

The objectivity of a visit for location l,Ol, indicates that user u exhibits more objective

behavior in visiting location l as Ol approaches 0. Ol is computed based on the

location rating represented by Rl and the standard deviation, represented by σl as

given in Equation 3.2. Note that Rl is the popularity score of location l calculated in

3.7.

Ol = | Ul −Rl

σl
| (3.2)

The user’s objectivity, represented by Ou, is calculated as the mean of the objectivity

scores of the user’s visit, where L is the set of locations in the dataset (given in

Equation 3.3). As the objectivity value approaches 0, the user is considered more

objective.

Ou =
1

| L |
∑
l∈L

Ol (3.3)

Definition 2 (Consistency) A user is considered to be consistent if her or his check-

in behavior conforms to the expected behavior in visiting locations. The consistency
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of a user, represented by Cu, can be defined as the deviations in the objectivity of her

or his visits, as given in Equation 3.4.

Cu = | Ou −Om

su
| (3.4)

Cu is computed by using the average objectivity of all users, denoted by Om. If Cu
is closer to 0, the user is considered to be more consistent. The consistency value is

considered to provide the trustworthiness of the user. Finally, the trust score of a user,

Tu, is calculated by Equation 3.5.

Tu = 1− Φ(Cu) (3.5)

In this equation, function Φ(x) = 1/(1 + exp(−x)) is the sigmoid function, which

limits Cu within the range [0, 1]. Given an LBSN, the global trust score of each user

in the LBSN is calculated as shown in Algorithm 1.

Algorithm 1 Trustworthiness prediction algorithm
1: procedure PREDICTTRUST

2: Initialize O, T

3: users← GetUsers ()

4: for all u in users do

5: Ou ← compute value according to Equation 3.3

6: Om ← FindAverage(O)

7: for all u in users do

8: Tu ← compute value according to Equation 3.5

3.3 Trust-aware Location Recommendation with Random Walk: TLoRW

We present our recommendation algorithm’s details, Trust-aware Location recom-

mendation with Random Walk with restart (TLoRW) in this section. As the main

contribution of this algorithm, location recommendations for a given user with a spe-

cific spatial context are generated by considering the trusted users in the vicinity. The
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random walk with restart approach is used for the creation of location recommenda-

tion lists. First, we explain the user subgraph algorithm. Following this, random walk

execution details are given. Finally, a location recommendation with the proposed

trust-aware location recommendation algorithm (TLoRW) is described in detail.

3.3.1 Preliminaries

In this section, definitions of the main elements in LBSNs and problem descriptions

are given.

Definition 3 (User) User is the essential human entity in a social network named

user, member, etc. It is denoted by u and identified either by an anonymized id number

or nickname in our datasets.

Definition 4 (Location) A location is a specific venue (such as a cafe or a cinema)

that can be uniquely identified. A location has two attributes: a unique identifier

(name) and geographical position. We use l to denote a location and lc to represent

its positional attribute as geographical coordinates in terms of longitude and latitude

values.

Definition 5 (Check-in Activity) A check-in activity is in the form of a quadruple

a(u, l, lc, τ ) such that for an activity a, location l is visited by user u on coordinates

lc at time τ .

Definition 6 (Vicinity) Vicinity is a circular region defined by the user’s current lo-

cation pu and specifies the radius parameter ρ such that |pu − lc| < ρ. The obtained

circular area is used as the recommendation region.

Definition 7 (Friend) Each user who takes part in an explicit direct relationship

(friendship, following, etc.) in social networks is considered friend. A direct rela-

tionship between two users ui and uj is denoted as a tuple of (ui, uj)
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Definition 8 (Trusted User) A user is considered trusted if the user’s check-in activ-

ity behavior conforms to the most common behavior in visiting locations in a partic-

ular region.

Trustworthiness score calculation of a user is performed according to the formulas

stated in section 3.2.

Definition 9 (Expert) An expert is a user who is supposed to have more knowledge

about the locations in the given spatial context.

Since LBSN data typically do not include expert information explicitly, in this work,

we execute a HITS-based [71] algorithm to determine the experts in the vicinity. In

the HITS-based method, people who visit the majority of the important locations in a

region are regarded to have plenty of knowledge about the region. In the algorithm,

users’ expert scores are calculated by using Equation 3.6. The users are sorted in

descending order according to the score, and the top-n% of the users are considered

experts.

Definition 10 (Popular Location) A location is considered popular if it is worth vis-

iting in the given spatial context.

As in expert information, LBSN datasets do not include any explicit information

about the popularity of the locations. Therefore, we execute the same HITS-based

[71] algorithm to find the popular locations in a vicinity. In the algorithm, if a venue is

visited by many people, it should be considered an important location [72]. Location

scores are calculated by using Equation 3.7. The locations are sorted in descending

order according to the scores, and the top-n% of the locations are considered popular

locations.

Rui
=

∥∥∥∥∥∥
∑

lj∈Aui

Rlj

∥∥∥∥∥∥ (3.6)

Rlj =

∥∥∥∥∥∥
∑

ui∈Alj

Rui

∥∥∥∥∥∥ (3.7)
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Expert user and popular location score calculation algorithms run simultaneously in

an iterative manner, as depicted in equations 3.6 and 3.7. In the equations, Rui
de-

notes the expert score of user ui, Rlj denotes the popularity score of location lj and

Aui
,Alj denotes the check-in activities of user ui or location lj . In each iteration,

popularity scores are updated by using the previous iteration’s expert scores, and then

recently updated popularity scores are used to update the new expert scores within

the same iteration. Popularity scores and expert scores are normalized at the end of

each iteration. The algorithm stops once it converges.

Based on the definitions for the basic LBSN concepts, we define the problems that

we focus on in this study as follows.

Problem 1 (Trustworthiness Score Prediction) Given an LBSN history as a user

check-in activity setA = {a1,a2,...,an}, a user ui in U , the task is to predict trust score

T (i) of user ui so that the user with highest score will conform to the most objective

check-in behavior.

Problem 2 (Location Recommendation) Given a check-in activity setA= {a1,a2,...,an},

a target user uq in U within the target region rq, our objective is to generate a set of

top-n locations { l1, ..., lN} as recommendations so that the recommendation set con-

sisting of locations uq will visit the next time with the highest accuracy.

In this approach, we devise trust-aware location recommenders based on random

walks, and our hypothesis is that incorporating trusted users improves recommen-

dation accuracy. The main notations used in this thesis are given in Table 3.1.

3.3.2 User Subgraph Construction

We represent the particular subgraph with an unweighted and undirected graph model.

This subgraph represented by G is a graph G < V , E >, where V denotes the set of

nodes v and E denotes the set of edges e. V ⊂ (U ∪ L) where U is the set of users and

L is the set of locations. Note that V contains different subsets of U and L. Moreover,

it includes six different types of nodes: user, friend, expert, trusted user, location, and

popular location.
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Table 3.1: Definitions of Main Notations in TLoRW

Notation Description

U Set of all users

L Set of all locations

A Set of check-in activities

G Graph of location based social networks

V Set of all vertices as union of users and locations

E Set of edges representing connections between v ∈ V
Tui

Trustworthiness score of a user i

Rui
Expert score of a user i

Rlj Popularity score of a location j

Aui
Check-in activities of user ui

Alj Check-in activities of location lj

F Set of friends for a given user

T U Set of trusted users

EU Set of expert users

PL Set of popular locations

Ul Visited status of location by a user

Ol Objectivity of a visit for a location

Ou Objectivity of a user

Om Mean objectivity of all users

Cu Consistency of a user

To recommend locations to a user at a specified position, TLoRW first constructs the

subgraph using the following items:

• Locations in the check-in history of the user in the vicinity (personal and spatial

contexts)

• Friends and their check-in history in the vicinity (social and spatial contexts)

• Trusted users and their check-in history for popular locations in the vicinity

(trustworthiness and spatial contexts)
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• Experts and their check-in history for popular locations in the vicinity (social

and spatial contexts)

A user subgraph can be constructed incrementally according to the available data. The

simplest user subgraph can be constructed by depending on only her or his own and

friends’ check-in history (Figure 3.2a). It can be further enriched by adding trusted

users and popular locations visited by them (Figure 3.2b). Similarly, experts and their

visited popular locations were added (Figure 3.2c). Finally, a complex user subgraph

is constructed (Figure 3.2d) by using all introduced nodes, which are user, friend,

location, expert, trusted user and popular locations. To analyze the effect of including

additional types of nodes, we conduct accuracy performance analysis experiments by

using each subgraph structure separately.

(a)
(b)

(c)
(d)

Figure 3.2: Incremental Construction of User Subgraph

The details of user subgraph construction adopted from [49] are given in Algorithm

2. In this algorithm, the target user for recommendation and the user’s current posi-

tion for vicinity are denoted by usrId and crLocation, respectively. In the algorithm,

the GetUserLocationsInVicinity procedure obtains the check-in history of the current

user in the vicinity. Similarly, the GetFriendLocationsInVicinity procedure retrieves

the check-in activity of friends in the vicinity. Likewise, GetExpertLocationsInVicin-
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ity and GetTULocationsInVicinity procedures find the check-ins of popular locations

visited by experts and trusted users, respectively, in the recommendation region. Fol-

lowing this, the friends of the target user having a check-in history in the vicinity are

retrieved in the GetFriendsOfUser method. In GetExpertsInVicinity and GetTrust-

edUsersInVicinity methods, top-n experts and trusted users having check-ins in the

vicinity are fetched. Once all those users are collected, the relationships between the

current user and these users (i.e., friends, experts, and trusted users) are included. Fi-

nally, the visited location nodes and the edges between users and these locations are

added to the subgraph. A sample user subgraph is shown in Figure 3.3.

Figure 3.3: Sample user subgraph used for location recommendation.

In the algorithm, tuCount, expCount and plCount parameters restrict the number of

trusted users, experts and popular locations in the user subgraph. Trusted users are

obtained through the trust score calculation, as defined in Section 3.2. For experts

and popular locations, the HITS-based [71] algorithm is adopted, in which user and

location nodes correspond to authority and hub nodes, respectively. Score calcula-

tions of the user and location nodes for estimating the expert and popular location are

performed by HITS-based algorithm iterations. User and location scores are ordered

once iterating is complete, and the desired top-n experts and popular locations from

the ordered lists are selected. A constant value (i.e., 40) is used as the iteration count

during the work. Since we work on a subgraph constructed from the filtered LBSN
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data, the count of locations and users in the vicinity is limited.

Algorithm 2 User subgraph construction algorithm
1: procedure GENERATESUBGRAPH(usrId, crLocation)

2: tuCount← max top-n percent of trustable user in the vicinity

3: expCount← max top-n percent of experts in the vicinity

4: plCount← max top-n percent of popular location in the vicinity

5: Initialize G < V,E >

6: vicinity ← GetUserLocationsInVicinity (usrId, crLocation)

7: vicinity ← vicinity ∪ GetFriendLocationsInVicinity (crLocation)

8: vicinity ← vicinity ∪ GetExpertLocationsInVicinity ( crLocation, plCount)

9: vicinity ← vicinity ∪ GetTULocationsInVicinity (crLocation, plCount)

10: V ← currentuser

11: users← GetFriendsOfUser (usrId)

12: users← users ∪ GetExpertsInVicinity(crLocation, expCount)

13: users← users ∪ GetTrustedUsersInVicinity(crLocation, tuCount)

14: for all user in users do

15: E ← E ∪ new edge connecting currentuser and user

16: V ← V ∪ users

17: for all data in vicinity do

18: V ← V ∪ new location node for data.location

19: E ← E ∪ new edge connecting data.user and data.location

3.3.3 Random Walk with TLoRW

Edges used to connect the nodes on a graph can be utilized to rank the nodes effi-

ciently [16]. The random walk starts traversing the graph from a particular node, and

the traversal continues through the links according to the edges’ transition probabili-

ties. The random walk traverses the graph until it reaches a stationary state. The visit

counts per node are used to rank nodes of the graph during the graph traversal. Hence,

the random walk’s output is the vector of probabilities of each node in the stationary

state. A random walk may go away from the initial node, which may result in context

loss. As a solution to this issue, a random walk with restart is considered, where a
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random probability that lets jump back to the starting node is available in every tran-

sition. As a result, the random walk traverses mostly the vicinity of the starting node

without losing the location context.

The transition probability of the links can be presented in a matrix Q = αW + (1 −
α)R as specified in [73] to perform a random walk with restart. Here, W denotes

the probability of transition by the links among nodes. R regulates the likelihood of

resetting back to the initial node, and the α value adjusts the nature of the random

walk.

The random walk is performed with a restart option, as described in Section 3.3.4,

on the underlying graph of LBSN to recommend locations to users. The proposed

random walk process initiates from the target user node and traverses over the location

and user nodes over the graph. Whenever a location node is visited, 1 is added to the

location’s visit count. A constant probability of jumping back to the initial node

is considered before shifting to the next node in each movement. When random

walk iteration is completed, locations are sorted by visit counts, and the location

recommendation results are provided. It is worth mentioning that the random walk

is not done on the graph of the entire LBSN data. Instead, the proposed algorithm

traverses over the subgraph of the user, which is constructed according to the spatial

context of the user.

3.3.4 Location Recommendation with TLoRW

We can define the problem of trust-aware location recommendation as follows. Given

a graph G, which models the trust-aware LBSN, a user u in U , and the current location

of the user, we aim to generate a set of locations { rl1, ..., rlj, ..., rlk} as recommen-

dations, such that each rlj is in L in the vicinity. The challenge in this problem is

generating the recommendation list with the highest accuracy.

To fulfill this challenge, we propose the Trust-aware Location Recommendation with

Random Walk (TLoRW) algorithm. TLoRW considers social, personal, trustworthi-

ness, and positional (spatial) contexts. The algorithm is composed of two stages: con-

struction of the subgraph and recommendation location. In the subgraph construction
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stage, a user subgraph is formed for a particular user according to the user’s spatial

context, i.e., current location, and the random walk is performed on this subgraph as

the second stage to generate recommendations.

Location recommendation list generation is performed according to Algorithm 3. The

subgraph of a given user is constructed using Algorithm 2 and provided as an input to

Algorithm 3 to perform the location recommendation by a random walk with restart.

In the location recommendation algorithm, the recmCount parameter represents the

desired recommendation count, itCount parameter denotes the random walk itera-

tion bound and rstProb parameter represents the restart probability of jumping back.

crUser and crLocation store the user and location nodes, respectively, currently being

visited by the random walk algorithm. During the iteration, next user is selected ran-

domly in SelectNextUser method from the users that visited crLocation. Similarly,

next location is selected randomly from the locations visited by crUser in SelectNext-

Location method and 1 is added to the node’s visit count. The random walk stops after

iterating up to the specified number, and location nodes are ordered by the algorithm

according to the visit counts. Then, the top recmCount locations from the ordered

list are selected, and the algorithm returns the recommendations to the user. The pro-

posed LBSN model is an unweighted and undirected graph so that the movements can

be done to both sides with equal probabilities in the random walk iterations. In other

words, all of the neighbor location nodes of the user node have the same possibility

of being the next crLocation. In addition, the user node decides whether to move

to the initial location or its neighboring location nodes to facilitate the restart option

according to the restart probability parameter

3.4 Location Recommendation with User Subgraph-based Graph Embedding:

SgWalk

In this section, we introduce our method SgWalk, a heterogeneous graph embedding

method using random walks on user subgraphs rather than using the whole social

graph. Basically, we develop a graph embedding-based solution combining random

walks with a skip-gram-like model, which has been widely adopted in the literature

and provides high accuracy performance on different tasks [24, 63, 25, 26, 46]. Our
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Algorithm 3 Location recommendation algorithm
1: recmCount← desired recommendations count

2: itCount← random walk iteration count

3: rstProb← jumping back probability in each transition

4: G < V,E >← subgraph of the user

5: crLocation← null

6: while i < itCount do

7: if rand(0, 1) < rstProb then

8: crLocation← null

9: else

10: crUser← SelectNextUser(crLocation)

11: crLocation← SelectNextLocation(crUser)

12: crLocation.visitCount← crLocation.visitCount + 1

13: i← i + 1

14: sortedNodes← SortNodesByVisitCount(G < V,E >)

15: result← SelectFirstKNodes(sortedNodes, recmCount)

proposed method first constructs a user subgraph for user preferences, which helps to

eliminate unintended users and uninterested locations, and then performs a random

walk over a heterogeneous input graph to generate walk sequences that are fed into a

skip-gram model for learning the node embedding. In the rest of the section, we first

present our user subgraph construction strategy, followed by the node embedding

learning process using skip-gram.

We can define the personalized location recommendation problem as follows. Given

a graph G corresponding to a particular LBSN, a user u ∈ U and the current location

of the user, we aim to generate a set of locations {rl1 , ..., rli , ..., rln} that have not

been visited by u as recommendations, such that each rli ∈ L is in the vicinity.

The challenge is to populate this recommendation set with the highest accuracy. We

follow four steps to fulfill this challenge: user subgraph construction, random walk

generation, graph embedding, and location recommendation.
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3.4.1 Preliminaries

Definition 11 (User) User is the essential human entity in the social networks named

user, member, etc. It is displayed by u and identified either by anonymized number or

nickname in our datasets.

Definition 12 (Location) A location is a specific site (e.g., a cafe or a cinema) that

can be uniquely identified. In our dataset, a location has two attributes: identifier

(name) and geographical location. We use l to represent a location and lc to denote its

corresponding geographical attribute in terms of longitude and latitude coordinates.

Definition 13 (Check-in Activity) A check-in activity is made of a quadruple a(u, l,

lc, τ ), which means in activity a, user u visits location l on coordinates lc at time τ .

Definition 14 (Vicinity) Vicinity is a circular region defined by the user’s current

location pu and the radius parameter ρ such that | pu− lc | < ρ. The obtained circular

area is used as the recommendation region.

Definition 15 (Node Embedding) Given an LBSN as a heterogeneous information

network (HIN), represented by G, is a graph G < V , E >, we aim to learn the d di-

mensional latent vector representations that preserve the structural and semantic re-

lations among nodes, where d� |V |.

Based on the definitions for the basic LBSN concepts, we define the problems that

we focus on in this study as follows.

Problem 3 (Location Recommendation) Given a check-in activity set A = {a1, a2,

..., an}, a querying user uq in U within a vicinity, our goal is to find latent represen-

tations of v in V and generate a set of top-k locations { l1, ..., li, ..., lk} as recommen-

dations so that the recommendation set consisting of previously not visited locations

uq will be visited next time with the highest accuracy.

In this work, we devise a user subgraph-based location recommender, and we hypoth-

esize that utilizing user subgraphs to generate random walk sequences improves the
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Table 3.2: Definitions Of Main Notations in SgWalk

Notation Explanation

G Graph of location based social network

A Set of check-in activities

U Set of all users

L Set of all locations

V Set of all vertices as union of users and locations

E Set of edges representing connections between v ∈ V
Rui

Expert score of a user i

Rlj Popularity score of a location j

Aui
Check-in activities of user ui

Alj Check-in activities of location lj

W Set of walk sequences

r Number of walks per node

s Length of walk sequence

w Window size for the skip-gram process

d Embedding vector dimension

@k Recommendation count from top

recommendation accuracy. The main notations used in this paper are given in Table

3.2.

3.4.2 User Subgraph Construction

The user subgraph construction in SgWalk follows the same steps in the TLoRW

technique as described in section 3.3.2.

3.4.3 Random Walk with SgWalk

In our technique, random walks are performed over the user subgraphs to sample

from an input heterogeneous information network. Formally, for each user node u
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in U , we initiate a random walk sequence that starts from u and finishes when the

walk length is reached. Likewise, in existing graph embedding approaches based on

random walks [24, 25, 26, 46], we generate a set of node sequences with length s by

performing a specified number of random walks r on the subgraphs of each node u in

U . Algorithm 4 illustrates our random walk process to generate a set of walks.

Algorithm 4 Random walk generation algorithm
1: procedure GENERATERANDOMWALKS

2: walkLength← maximum number of nodes in a random walk sequence

3: walkCount← count of random walk sequences per user subgraph

4: walks← ∅
5: for all user in U do

6: userLocations← FindClusters(user)

7: for all crLocation in userLocations do

8: G < V,E >← GenerateUserSubgraph(user, crLocation)

9: nextLocation← null

10: while i < walkCount do

11: walkSequence← ∅
12: while len(walkSequence) < walkLength do

13: nextUser← SelectNextUser(nextLocation)

14: walkSequence.append(nextUser)

15: nextLocation← SelectNextLocation(nextUser)

16: walkSequence.append(nextLocation)

17: walks.append(walkSequence)

18: i← i + 1

19: return walks . returns the set of generated random walk sequences

After the subgraph of a given user is obtained according to Algorithm 2, the yielded

user graph is provided to Algorithm 4 for the generation of the walk sequences. In this

algorithm, walkLength and walkCount variables denote the maximum walk length

and the numbers of sequences per subgraph, respectively. FindClusters method ap-

plies clustering algorithm DBSCAN [74] to the check-in activities Au of user u with

the radius parameter ρ. DBSCAN needs two parameters: the radius of the neighbor-

hood and the minimum number of points in a neighborhood. Therefore, we prefer
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this algorithm because DBSCAN does not need the number of cluster parameters and

generates clusters according to neighborhood and density concepts. Random walks

are generated for each cluster (subgraph) of the user. At each move, nextLocation and

nextUser variables store the last visited location and the user nodes, respectively, by

the random walk algorithm. In each iteration, nextLocation is updated, and the visited

node id is appended to the walk sequence. When the random walk length is reached,

the algorithm returns the generated random walk sets. Since our LBSN graph has un-

weighted and undirected edges from user to location, the movement probabilities are

equal for all the nodes in all random walk iterations. Therefore, a uniformly sampled

node from the neighbors of the current node is selected as the next node.

3.4.4 Node Embedding Learning with Skip-Gram

Since the frequency distribution of vertices in random walks of social networks and

words in a language both follow a power law [75], in our method, we use a tech-

nique similar to word2vec [62] to generate the low-dimensional vector-space (d-

dimensional) representation of a node in the graph. We adopt a skip-gram model

with hierarchical softmax to generate the node embeddings. Skip-gram is a model

that maximizes the co-occurrence probability among the nodes that appear within a

window with size w in the set of walk sequences, and hierarchical softmax is utilized

to speed up the training phase. Formally, for a pair of nodes, vi and vj , appearing in

the window in the set of walksW , the co-occurrence probability is defined as given

in Equation 3.8.

Pr((vi, vj) ∈ W) = Φ(~vi · ~vj) (3.8)

In equation Φ(·), is the sigmoid function Φ(x) = 1/(1 + exp(−x)), and ~vi and ~vj

refer to the embeddings (vectors) of vi and vj , respectively. In addition, the skip-gram

model employs negative edge sampling techniques to improve embedding accuracy

by a randomly sampled edge between negative nodes ṽk and vi that does not appear
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in the set of walks. The negative edge probability is defined as given in Equation 3.9.

Pr((vi, ṽk) /∈ W) = 1− Pr((vi, ṽk) /∈ W) = Φ(−~vi · ~̃vk) (3.9)

Here, negative samples (nodes) are uniformly drawn from node distributions in the

walks. In summary, for the pair of nodes (vi, vj), the skip-gram model maximizes the

objective function as given in Equation 5.

O = log(Φ(~vi · ~vj)) +
N∑

k=1,(vi,ṽk)/∈W

log(Φ(− ~̃vk · ~vi)) (3.10)

In the equation, N is the number of negative edge samples. Parallel asynchronous

stochastic gradient descent (ASGD) is utilized to learn the node embeddings (vector

representations) efficiently by iterating over all node pairs appearing within a context

window of size w in each walk sequence. The dimension size, d, of embedding

vectors and the window size, w, (i.e., the context size) for model training using the

skip-gram model are given in the experiments section (see Section 4.4.3).

3.4.5 Location Recommendation with SgWalk

Once the graph embedding of the nodes in an LBSN is performed, the vectorial repre-

sentation of locations and users is learned in a shared space. For a given user ui ∈ U ,

we calculate the prediction score for each of the unvisited location lj ∈ L in the vicin-

ity according to Equation 3.11, and then we recommend the top-n of the ranked list

of locations having the highest scores.

Prediction_Score(ui, lj) = ~uT i ·~lj (3.11)

In the equation, ~ui and ~lj refer to the embeddings (vectors) of ui and lj , respectively.
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3.5 Complexity Analysis

In the proposed approach, 3 algorithms are considered for complexity analysis. First,

in the trustworthiness prediction algorithm, objectivity score calculation is performed

for the users u ∈ U and the locations l ∈ L per user, so its complexity is O(|L|×|U|).
However, consistency is computed for the users u ∈ U over the obtained objectivity

values that correspond to the complexity of O(|U|). Therefore, the overall algorithm

complexity can be concluded as O(|L| × |U|) since O(|U|) is asymptotically smaller

than O(|L| × |U|).

Second, in the user subgraph construction, we employ R-tree indices for the spatial

database queries. The R-tree algorithm complexity for the average case is O(logn),

and the worst case is O(N). Therefore, in the subgraph construction algorithm, lo-

cations in the vicinity can be filtered with a complexity of O(|L|) in the worst case.

Similarly, experts and trusted users in the vicinity can be selected with a complexity

of O(|U|). Therefore, we can calculate the complexity of vertex selection by O(|U|) +

O(|L|), which is equal to O(|V|). The complexity of adding the edges among u ∈ U
is C(|U|, 2), which is O(|U|2), and between l ∈ L and u ∈ U is |L| × |U| in the

worst case, where C is the combination function. Consequently, the overall complex-

ity of subgraph construction can be determined as O(|V|2), as O(|V|) + O(|U|2) +

O(|L| × |U|) is asymptotically smaller than O(|V|2).

Last, in random walks, complexity relies on the iteration count. The required iteration

counts are determined by the graph size, which depends on the edge count. In the

worst case, a graph may have C(|V|, 2) edges at maximum, where C denotes the

combination function. Let m be the expected movements for an edge on average.

Since not all edges are evenly visited in movements, we specify m as the mean of

movement counts for each edge to limit the iteration count.

Hence, random walk iteration complexity can be derived as C(|V|, 2) × m, and it

asymptotically equals O(|V|2). In addition, vertices are sorted next until the random

walk iterations are finished. The sorting complexity of vertices in a graph is O(|V|
log |V|). As the sorting complexity is asymptotically smaller than random walk com-

plexity, the overall complexity of random walk-based recommendation generation is
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deduced as O(|V|2).

It is crucial to note that the user subgraph construction and location recommenda-

tion algorithm is executed on the subgraph covering the current context of the user.

Therefore, the |V| value for the user subgraph is expected to have considerably smaller

values compared to the entire graph.
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CHAPTER 4

EXPERIMENTAL ANALYSIS

In this chapter, we describe the datasets and methods used for the experiments and

present the details of the experimental results.

4.1 Datasets

We employ 4 real-life datasets in our experiments. These are Brightkite [41], Foursquare

[76], Gowalla [41] and Wee Places [77] datasets. All of these datasets contain user

check-in data for the locations and friends of users. Check-in data contains anonymized

user id and location id, longitude and latitude of the location and time of visit at-

tributes in all datasets. In addition to these attributes, Foursquare dataset contains

category of the location and Wee Places dataset contains city name and category of

the location. We used the common attributes for evaluation in all datasets. Ten lines

of check-in data from Brightkite dataset is given in Table 4.1

We use the subsets of the datasets that are filtered for New York City in the experi-

ments. The statistics of our datasets are given in Table 4.2. As shown in Table 4.2, all

these datasets have different average check-in counts per user. In contrast, the aver-

age numbers of friends per user are similar to each other. The numbers of friends per

user in the Brightkite and Gowalla datasets are closer, but Foursquare has a slightly

higher number than Brightkite and Gowalla. Furthermore, Wee Places has the highest

number of friends per user among all datasets.
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Table 4.1: Sample check-in data from Brightkite dataset

userid check-in date latitude longitude locationid

14736 2009-03-13T12:12:30Z 41.978563 -87.901799 9384ff46b84611dd8c13003048c10834

14738 2009-10-12T03:22:19Z 47.043218 -122.846168 ee43ba97c492be062eb23ff3d3840e70

14738 2009-10-12T02:41:51Z 46.422401 -122.891093 a18297ccc38c899b30ae6afd63518af2

14738 2009-06-06T06:08:53Z 47.299900 -122.254000 af9fe2e0aed211dda29d003048c10834

14738 2009-06-06T04:05:08Z 47.273074 -122.228913 d73df63a524611de8249003048c10834

14738 2009-05-01T02:44:02Z 47.466815 -122.342836 8bad6d9835f111dea2fd003048c10834

14738 2008-12-17T07:26:01Z 47.329026 -122.222428 91cabc60cc0311dd8600003048c10834

14738 2008-12-06T18:50:39Z 47.063599 -121.580536 6131134ec3be11dd8bff003048c10834

14738 2008-11-23T05:14:29Z 47.299900 -122.254000 af9fe2e0aed211dda29d003048c10834

14738 2008-11-13T07:52:19Z 47.302724 -122.225676 71bde1eca30211ddac69003048c10834

Table 4.2: Dataset Statistics

Dataset Brightkite Foursquare Gowalla Wee Places

No. of Users 6,144 11,154 10,142 4,812

No. of Locations 41,870 103,822 57,756 28,598

No. of Friendships 27,138 59,078 45,618 31,915

Check-ins per User 40.28 45.96 26.68 150.07

No. of Check-ins 247,464 512,645 270,571 722,119

Friends per User 4.42 5.30 4.50 6.63

4.2 Evaluation Metrics

We utilized three widely used metrics to evaluate the performance of SgWalk and

baseline methods: precision@k, recall@k and f-measure@k [49, 26, 37, 23], where

@k notation denotes the recommendation count top k. Precison@k is calculated by

checking whether locations in the ground truth are ranked in the recommendation list.

It is calculated as given in Equation 4.1.

precision@k =
number of true locations in recommendation@k

number of recommendations@k
(4.1)
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Recall@k measures the ratio of truly recommended locations to all visited locations

in the ground truth, which is calculated as given in Equation 4.2.

recall@k =
number of true locations in recommendation@k

number of locations in ground truth
(4.2)

Precison@k and Recall@k are inversely affected in evaluations. In other words, when

Precison@k is high, Recall@k is low or vice versa. To normalize these metrics, the

f-measure is used, which is calculated as given in Equation 4.3.

f -Measure@k =
2× Precision@k ×Recall@k
Precision@k +Recall@k

(4.3)

In the experiments, for all of the metrics, the performance is analyzed under k values

of 3, 5, 8, 10, 15, 20.

4.3 Evaluation of TLoRW

In this section, we present the details of the experimental results of the TLoRW tech-

nique and describe the methods used for the experiments.

4.3.1 Evaluation methodology and parameter settings

Since the challenging problem and the proposed solution involve spatial context, we

need to acquire locations for the test users. To simulate the current locations of the

user and the vicinity of the current locations, we cluster the check-in data. As the

clustering algorithm, we use DBSCAN [74]. We prefer this algorithm since it does not

need the number of cluster parameters and generates the cluster according to density.

Additionally, since DBSCAN is based on the concepts of neighborhood and density,

it is possible to set the current locations for users with other locations in the vicinity.

To fulfill this, DBSCAN needs two parameters: the radius of the neighborhood and

the minimum number of points in a neighborhood. In the experiments, we set the

minimum number of points to 3 and the neighborhood radius to 2,000 m, which is

also consistent with the optimal neighborhood size in [78]. When TLoRW is used as
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a live recommender system, the current location of a target user is directly used as a

starting node. Therefore, it does not need DBSCAN in real use.

After the check-in data of a user are clustered by the DBSCAN algorithm, the center

of each cluster is considered the current location of the user for the region of recom-

mendation. The clustered user data are sorted by check-in date from old to recent.

The sorted check-in data for each cluster are partitioned into training and test datasets

such that the old data constitute the training dataset since we aim to generate location

recommendations to visit next.

To set the restart probability (α value), during validation experiments, we observed

that the α parameter had different best values according to the datasets. However,

using high values of α for different datasets may result in model overfitting. Hence,

we set a unique α value of 0.05 for all the datasets[49].

The experiments are conducted under 5-fold cross validation (such that the number

of check-ins in the training dataset is four times the number of check-ins in a test

dataset). We set the random walk iteration count to 1,000.

4.3.2 Investigation on Effect of Friendships

In this section, we investigate the impact of friendship on recommendation accuracy.

For this study, we first analyze the number of friendship connections per user. As

stated in [75], the frequency distribution of words in a language fits to a power law,

and we can see the same pattern in the distribution of user count according to the

number of friends. Distributions for the Brightkite, Foursquare, Gowalla, and Wee

Places datasets are given in Figure 4.1. We used these obtained distributions to create

user groups for testing.

The size of user groups differs in literature, and there is no common methodology or

systematic to do it. For example, while Tang et al. [79], investigating the influence

of the friends on the output, users having 2, 5, and 10 friends were compared with

each other. In [80], ’Friend Groups’ were studied and in the evaluation, groups sizes

are considered as follows, G1: [1-1], G2: [2-5], G3: [6-10], G4: [11-15], G5:[16-20].

Therefore, groups are constructed according to the best fit for their circumstances.
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In our case, we attempted to keep the user counts in each group closer to each other

for the same dataset to be able to compare them. Groups should also be compatible

across datasets. To satisfy these constraints, we slightly modified the setup in [80]

to fit power law and created six user groups as follows: (i) users having no friend

at all ([0–0]), (ii) users having only 1 friend ([1–1]), (iii) users having 2 or 3 friends

([2–3]), (iv) users having 4, 5 or 6 friends ([4–6]), (v) users having 7, 8, 9 or 10 friends

([7–10]), and (vi) users having 11 or more friends ([11–350]). User counts per created

group are given in Table 4.3. As shown in Table 4.3, while most people are in the first

group for Foursquare and Gowalla with 3,276 and 1,528, respectively, in the third

group for Brightkite and Wee Places 575 and 942, respectively. The fewer users are

moved to the end of the table as the fifth group for the Brightkite and Gowalla with

188 and 344, respectively, the sixth group for Foursquare with 150, and the first group

for Wee Places with 452.

Table 4.3: User counts for having a number of friends

[0-0] [1-1] [2-3] [4-6] [7-10] [11-350]

Brightkite 495 534 575 288 188 196

Foursquare 3,276 1,397 816 334 159 150

Gowalla 1,528 1,242 1,053 554 344 375

Wee Places 452 720 942 697 473 699

We performed the tests using these six groups independently for different recom-

mendation counts in all datasets according to the setting explained in the evaluation

methodology. Evaluation results are displayed in terms of the f-measure metric per

group and per recommendation count in Figure 4.2. In accordance with the number

of friendships, performance values are minimal when the users have no friends. How-

ever, performance values are noticeably increased by the increasing number of friends

in all recommendation counts for all datasets. According to Figure 4.2, an increase in

the friends of the user has a more significant effect for the Gowalla and Wee Places

dataset compared to a monotonic increase in the Brightkite and Foursquare datasets.

When we check the impact on the recommendation count, fewer recommendations

(R3, R5) have remarkable improvements with respect to the higher number of recom-

mendations (R15, R20)
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(a) Brightkite (b) Foursquare

(c) Gowalla (d) Wee Places

Figure 4.1: Distribution of user count according to number of friends Brightkite,

Foursquare, Gowalla and Wee Places datasets.
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(a) Brightkite (b) Foursquare

(c) Gowalla (d) Wee Places

Figure 4.2: F-measure values for varying numbers of friends with Brightkite,

Foursquare, Gowalla and Wee Places datasets.
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In all datasets, performance value increases with the increase in the number of friends

user nodes and gains the maximum values at a certain point; after that, users having 11

and more friends suffer losing personal context and decrease in performance except

for Wee Places dataset. The same pattern for performance change can be observed

on different recommendation counts R3, R5, R8, R10, R15 and R20. According to

the results, maximum performance is achieved with [4-6] friends in Gowalla dataset,

[7–10] friends in Brightkite and Foursquare datasets, and [11-350] friends in Wee

Places dataset.

4.3.3 Analysis on the Effect of Information Fusion

As the first set of experiments, we compared the user subgraphs covering different

types of nodes to assess the impact of information fusion:

• Friend is the simplest subgraph that is constructed with three types of nodes:

user, friend and location nodes and the edges between them. It is displayed as

G < V , E >friend where Vfriend ⊂ (U ∪ F ∪ L) and

Efriend = {e|e ∈ E , e.start ∈ Vfriend ∧ e.end ∈ Vfriend}.
The accuracy results of G < V , E >friend are used as a base for performance

comparison.

• Expert is the derived subgraph that is constructed by including two additional

latent nodes, which are experts and popular location nodes, to G < V , E >friend.

It is displayed as G < V , E >expert where Vexpert ⊂ (Vfriend ∪ EU ∪ PL) and

Eexpert = {e|e ∈ E , e.start ∈ Vexpert ∧ e.end ∈ Vexpert}.
Subgraph G < V , E >expert is designed to assess the effect of adding expert

nodes.

• Trust is the derived subgraph that is constructed by including two additional la-

tent nodes, which are trusted user and popular location nodes, to G < V , E >friend.

It is displayed as G < V , E >trust where Vtrust ⊂ (Vfriend ∪ T U ∪ PL) and

Etrust = {e|e ∈ E , e.start ∈ Vtrust ∧ e.end ∈ Vtrust}.
Subgraph G < V , E >trust is designed to assess the effect of adding trusted user

nodes.
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• TLoRW is the proposed subgraph that is constructed by including three addi-

tional latent nodes, which are expert, trusted user and popular location nodes,

to the G < V , E >friend. It is displayed as G < V , E >TLoRW where

VTLoRW ⊂ (Vfriend ∪ T U ∪ EU ∪ PL) and

ETLoRW = {e|e ∈ E , e.start ∈ VTLoRW ∧ e.end ∈ VTLoRW}.
We aim to evaluate the effect of fusing two types of latent nodes, expert and

trusted user, with subgraph G < V , E >TLoRW .

In particular, we aim to determine which subgraph performs best to be able to con-

tinue our evaluation with state-of-the-art techniques. The results of the subgraph

evaluation experiments conducted on the Brightkite, Foursquare, Gowalla and Wee

Places datasets are given in Table 4.4. The results clearly indicate that the types

of nodes affect the recommendation performance in terms of precision, recall and

f-measure metrics.

Friendship relations exist on all datasets, so we set G < V , E >friend as the base-

line subgraph. Then, we investigate the impacts of 2 latent node types: expert and

trusted users. As expected, a subgraph having only friend nodes and its check-

ins (G < V , E >friend) has the lowest recommendation accuracy in the experiments

among all subgraphs. It can be concluded that the friends of a user cannot cover

a sufficient number of locations for the user’s current context. Then, we experi-

mented with the performance of subgraphs with latent nodes. Experimental results

of subgraphs including friend and expert nodes (G < V , E >expert) and subgraphs in-

cluding friend and trusted user nodes (G < V , E >trust) indicate that both subgraphs

acquire better metric values than subgraph G < V , E >friend. In addition, subgraph

(G < V , E >expert) performs better than subgraph G < V , E >trust in all datasets. It

is reasonable since if a location is visited by an expert, then it has a higher possibility

of being visited by other users. Trusted users may also recommend essential places,

so their contribution is not as high as that of experts. As the last option, we consider

the subgraph containing all node types together (subgraph G < V , E >TLoRW ), and

then we obtain the best performance in all datasets. Experts and trusted users have

different check-in behaviors, and including these latent nodes improves the perfor-

mance in terms of popularity and trustworthiness. These results also indicate that

combining disjoint types (friend, expert, trusted user) improves the accuracy of the
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recommended locations.

In all four datasets, we observe a similar performance pattern. It is an important obser-

vation revealing that the performance of subgraph G < V , E >TLoRW is not dataset-

specific. Although all datasets’ statistics differ in terms of check-ins per user and

friends per user values, subgraph G < V , E >TLoRW attains the best performance in

all of the test cases. Furthermore, the experimental results are more distinctive for

a small number of recommendations, but all subgraphs yield similar results by the

increase in the number of recommendations.

4.3.4 Parameter Tuning Experiments

In this set of experiments, we further elaborate on the effect of the number of experts

and trusted users on the accuracy of the proposed TLoRW algorithm. The configu-

ration parameter values of this experiment are the same as those of the information

fusion experiments except for the parameter for the inclusion of experts and trusted

users. In this analysis, to facilitate the comparison, we use recall@5 as the metric,

since it gives the most distinctive values in Table 4.6.

In this experiment, expert and trusted user inclusion is increased from 0 to 10, and

the results of each configuration are acquired separately. The results of this experi-

ment are depicted in Figure 4.3. For better visualization of performance changes, a

heat map graph is preferred, and for the intermediate values, experimental results are

interpolated.

In accordance with information fusion, performance values are minimal when there

are no expert and trusted user nodes added to the user subgraph. However, the per-

formance values increase noticeably immediately after latent node inclusion in all

datasets. According to Figure 4.3(a) and 4.3(b), an increase in the expert node per-

cent has a greater effect than a trusted user in the Brightkite and Foursquare datasets.

However, for the Gowalla and Wee Places datasets, given in Figure 4.3(c) and 4.3(d),

respectively, adding latent nodes has an almost symmetric effect.

In all datasets, the performance value increases with the increase in n for both expert

and trusted user nodes and gains the maximum values at a certain point, after which
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Table 4.4: Recommendation performance under varying k values for the effect of

information fusion

Friend Expert Trust TLoRW

@k precision recall f-measure precision recall f-measure precision recall f-measure precision recall f-measure

B
ri

gh
tk

ite

3 22.52 30.08 25.76 26.11 34.88 29.87 23.67 31.62 27.07 29.15 38.94 33.34

5 18.51 37.79 24.85 20.73 42.33 27.83 19.40 39.61 26.04 21.49 43.87 28.85

8 14.60 45.38 22.09 15.99 49.70 24.19 15.44 48.01 23.37 16.74 49.92 25.07

10 12.92 49.41 20.49 13.69 52.34 21.70 13.30 50.85 21.09 14.48 52.53 22.70

15 9.96 56.04 16.92 10.22 57.50 17.36 10.06 56.58 17.08 10.95 58.96 18.47

20 8.05 59.78 14.19 8.08 59.98 14.24 8.07 59.94 14.23 8.17 60.66 14.40

G
ow

al
la

3 16.20 22.29 18.76 17.04 23.44 19.73 16.83 23.16 19.49 17.40 23.94 20.15

5 12.45 26.32 16.90 13.79 29.16 18.73 13.58 28.70 18.43 14.04 29.68 19.06

8 9.26 29.75 14.12 10.76 34.57 16.41 10.86 34.91 16.57 11.06 35.54 16.87

10 7.91 31.20 12.62 9.41 37.11 15.01 9.62 37.93 15.34 9.64 38.04 15.39

15 5.89 34.01 10.04 7.11 41.04 12.12 7.50 43.29 12.78 7.78 44.04 13.23

20 4.70 35.77 8.31 5.71 43.41 10.09 6.11 46.49 10.80 6.36 47.56 11.21

Fo
ur

sq
ua

re

3 13.91 18.75 15.97 14.67 19.77 16.84 14.41 19.42 16.54 16.54 22.29 18.99

5 11.49 23.36 15.41 12.41 25.23 16.64 12.19 24.76 16.33 12.85 26.12 17.23

8 9.67 29.66 14.59 10.20 31.27 15.38 10.04 30.77 15.13 10.39 31.33 15.61

10 8.76 33.00 13.85 9.12 34.34 14.41 8.97 33.80 14.18 9.59 34.85 15.04

15 7.19 37.82 12.08 7.65 39.65 12.83 7.59 39.27 12.71 7.98 40.91 13.36

20 5.99 41.04 10.46 6.82 42.79 11.77 6.82 42.78 11.77 7.21 44.26 12.40

W
ee

Pl
ac

es

3 7.94 9.49 8.64 8.34 11.15 9.54 8.07 10.34 9.06 8.62 11.49 9.85

5 7.09 10.89 8.59 7.87 12.09 9.53 7.38 11.58 9.02 8.05 12.68 9.84

8 6.51 13.09 8.69 6.71 13.50 8.96 6.61 13.28 8.82 7.12 14.33 9.52

10 6.06 14.52 8.55 6.21 14.91 8.77 6.13 14.90 8.68 6.50 15.09 9.09

15 5.10 15.90 7.73 5.46 16.66 8.23 5.23 15.93 7.87 5.66 17.59 8.57

20 4.37 18.88 7.09 4.87 19.10 7.76 4.70 18.42 7.49 5.08 19.92 8.09

it changes little if n is increased further. To better represent the locality and trustwor-

thiness, we aim to keep the n value as small as possible; therefore, we use the top 5%

of the experts and the top 5% of trusted users as the maximum number of experts and

trusted users, respectively, in the following experiments.
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(a) Brightkite (b) Foursquare

(c) Gowalla (d) Wee Places

Figure 4.3: Performance comparison of top n% expert vs. trusted user under recall@5

for Brightkite, Foursquare, Gowalla and Wee Places datasets.

4.3.5 Comparative Accuracy Performance Analysis

We analyze the accuracy performance of TLoRW under a varying number of recom-

mendations against the state-of-the-art methods from the literature that were devel-

oped as trust-based recommendation techniques. The details of the compared meth-

ods are listed as follows:

• CLR [50] clusters similar users and locations by applying pattern similarities

between different objects to obtain location recommendations. In this approach,

the probability of a particular user visiting a particular location is calculated by
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using the user similarity scores. We calculate the similarity of a pair of users

and locations in terms of location or user vectors, respectively, by employing

cosine similarity.

• CDL [27] is deep representation learning for content information and collabo-

rative filtering for the rating values, considering two-way interactions between

the two. In this work, the stacked denoising autoencoder (SDAE) is used as

the deep learning model. We provide the U × L matrix as training data and

geographical coordinates of locations as feature data to obtain the location rec-

ommendations from the CDL approach.

• TECF [18] calculates trust-enhanced user similarity by performing network

embedding on the user-user network constructed based on covisiting behavior

and then fuses trust and geographic and temporal contexts to generate location

recommendations. In the experiments, we set the parameters as δ = 0.2, θ = 0.1

and d = 100.

• TrustMF [52] models users with trustor and trustee roles and predicts ratings

with these two separate models, and then the results of these two models are

incorporated to generate the final predictions. We set the parameters as λU =

λV = 0.001 and λT = 1 in the evaluation.

• TrustSVD [14] alleviates trust-based matrix factorization by considering ex-

plicit and implicit information of user trust and item ratings in the recommen-

dation process. We use parameters λt = 1 and λ = 0.5 in the evaluation.

The results of the experiments performed on the Brightkite, Foursquare, Gowalla and

Wee Places datasets are given in Figures 4.4, 4.5, 4.6, and 4.7, respectively. Accord-

ing to the results, the performance values of the proposed method are very competitive

with several state-of-the-art methods in terms of precision, recall, and f-measure met-

rics along with all datasets; hence, TLoRW outperforms all comparisons (in terms

of the f-measure). TrustSVD has the second-best performance value in the evalua-

tion. However, its performance is worse than the CLR and TECF approaches on the

Brightkite dataset. The low performance of these techniques may be caused by the

Brightkite dataset having the lowest social data statistics (friends per user) among
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all datasets. TrustMF, the other matrix factorization technique, behaves similarly to

TrustSVD. Its performance values are close to TrustSVD, and it performs worse on

the Brightkite dataset. TECF has moderate performance on average, but it has the

second-best result on the Brightkite dataset. In TECF, trust calculation is performed

on the user network embedding, and it does not rely on explicit social network data.

For this reason, it has higher performance on the dataset with the lowest social net-

work statistics than the other datasets. The CLR technique cannot perform well since

it does not consider the social connections between users and only focuses on user-

user and location-location similarities. CLR also achieves its best performance on

the Brightkite dataset. In contrast, CDL has the lowest performance among all. CDL

heavily depends on item features to perform well. However, we can only feed the

longitude and latitudes of the locations as a future in the datasets used for evaluation.

For this reason, it may not reach its expected performance during the experiments.

As a summary, accuracy improvement with respect to the compared methods (in terms

of f-measure under @5 recommendations) across the datasets are given in Table 4.5.

It is observed that TLoRW provides the maximum improvement against CDL with

15% on average. The minimum improvement is over TrustSVD with 5% on average.

These results show a strong indication that TLoRW, focusing on spatial context, social

context (expert and trusted users as well as friendship) and user preferences, can

generate more accurate recommendations.

Table 4.5: TLoRW Improvement Percentages in f-Measure @5

CDL TECF TrustMF TrustSVD CLR

Brightkite 21% 3% 16% 13% 4%

Four Square 11% 8% 10% 3% 7%

Gowalla 19% 16% 5% 2% 17%

Wee Places 8% 6% 7% 3% 8%

Average 15% 8% 9% 5% 9%

The performance of the techniques varies depending on the characteristics of the

dataset used (Table 4.2). However, on all four datasets, TLoRW attains the best per-

formance values in all test cases. Hence, we can conclude that the performance of
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(a) Precision (b) Recall

(c) F-measure

Figure 4.4: Precision, recall and f-measure values of the comparison algorithms for

varying numbers of recommendations with the Brightkite dataset.
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(a) Precision (b) Recall

(c) F-measure

Figure 4.5: Precision, recall and f-measure values of the comparison algorithms for

varying numbers of recommendations with the Foursquare dataset.
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(a) Precision (b) Recall

(c) F-measure

Figure 4.6: Precision, recall and f-measure values of the comparison algorithms for

varying numbers of recommendations for the Gowalla dataset.
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(a) Precision (b) Recall

(c) F-measure

Figure 4.7: Precision, recall and f-measure values of the comparison algorithms for

varying numbers of recommendations with the Wee Places dataset.
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TLoRW is not dataset dependent. When we analyze the performance of the state-

of-the-art methods on datasets, we see that TECT, TrustSVD, and TrustMF perform

better on the Foursquare and Gowalla datasets, but CLR and CDL perform better on

the Brightkite dataset. This may have resulted from the fact that the Foursquare and

Gowalla datasets have relatively higher social relation statistics than the Brightkite

dataset. Performance values are very close to each other and even overlap on the Wee

Places dataset, which has the highest check-ins per eser value. The results also show

that the check-ins per user value affects the recommendation accuracy. The recom-

mendation accuracy improves while the number of check-ins per user is increasing.

Moreover, when the number of recommendations is low, the experimental results are

more distinctive, but with the increase in the number of recommendations, all tech-

niques produce similar results.

4.4 Evaluation of SgWalk

In this section, we present the experiments conducted for empirical evaluation of our

approach, SgWalk. We first describe the datasets used in the experiments and eval-

uation metrics. Then, our experimental setup and parameter settings are presented.

In the experiments, we first present the evaluation results on the effects of two key

parameters, vector dimension and window size, on the quality of the learned embed-

dings. Then, we compare our proposed technique against the state-of-art methods.

4.4.1 Evaluation methodology and parameter settings

SgWalk is a subgraph-based approach, and subgraphs are determined according to

the check-ins clustered with respect to the spatial information. The size of the created

clusters needs to be relatively small compared with the whole graph for SgWalk in

order to capture the contextual relationships and to execute efficiently. Therefore, as

the clustering algorithm, we use DBSCAN [74]. We prefer this algorithm since it

does not require the number of clusters in advance, and it determines clusters based

on the concepts of neighborhood and density. To fulfill this, DBSCAN needs two

parameters: the radius of the neighborhood and the minimum number of points in
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a neighborhood. In the experiments, we set the minimum number of points as 3

and the neighborhood radius as 2,000 m, which is also consistent with the optimal

neighborhood size in [78].

We want to highlight the inclusion of DBSCAN in our work as it is used for different

purposes in the proposed approaches. In TLoRW, DBSCAN is used to determine the

starting coordinates for the cases to generate recommendations.Hence it is only part

of the analysis process. On the contrary, in SgWalk clustering is crucial in subgraph

construction step. Here, we use DBSCAN as the clustering algorithm.

Once the clustering is performed, the center of each cluster is considered the current

location of the user to define the spatial context of the user and the vicinity for rec-

ommendation. The clustered user data are sorted by check-in date from old to recent.

The sorted check-in data for each cluster are partitioned into training and test datasets

such that the old data constitute the training dataset since we aim to find the next

location recommendations. Data are partitioned such that 80% of the data per user is

used for training and 20% is used for testing. The experiments are conducted under

5-fold cross validation. We set the walk count r to 10 per subgraph and the length of

walk sequence s to 40 in random walk generation processes.

4.4.2 Analysis of the Effect of Adding Different Node Types

As the first analysis, we compare the recommendation accuracy under subgraphs A,

B, C and D illustrated in Figures 3.2a, 3.2b, 3.2c, and 3.2d, respectively, to assess the

impact of adding a new type of node. The results of the experiments performed on the

Brightkite, Foursquare, Gowalla, and Wee Places datasets are given in Table 4.6. The

results clearly indicate that the types of nodes affect the recommendation performance

in terms of precision, recall and f-measure metrics. Friendship relations exist on four

datasets, so we set them as the baseline subgraph. Then, we investigate the impacts of

2 latent node types: expert and trusted users. As expected, the subgraph having only

friend nodes and its check-ins (subgraph A) has the lowest recommendation accuracy

in the experiments among all subgraphs. It can be concluded that the friends of a user

cannot cover a sufficient number of locations for the user’s current context.
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Table 4.6: Recommendation performance under varying k values for the effect of

different node types

Subgraph A Subgraph B Subgraph C Subgraph D

@k precision recall f-measure precision recall f-measure precision recall f-measure precision recall f-measure

B
ri

gh
tk

ite

3 30.11 19.42 23.61 30.68 19.79 24.06 30.89 19.92 24.22 31.15 20.09 24.42

5 21.01 22.57 21.76 21.75 23.37 22.53 21.72 23.34 22.50 22.22 23.88 23.02

8 14.57 25.05 18.42 15.25 26.22 19.29 14.96 25.72 18.92 15.54 26.73 19.65

10 12.04 25.89 16.44 12.57 27.03 17.16 12.43 26.73 16.97 12.90 27.73 17.61

15 8.32 26.83 12.70 8.68 28.01 13.25 8.71 28.07 13.29 9.02 29.07 13.77

20 6.39 27.46 10.37 6.61 28.44 10.73 6.62 28.47 10.74 6.92 29.75 11.23

Fo
ur

sq
ua

re

3 6.53 3.18 4.28 9.24 4.49 6.05 10.51 5.11 6.88 12.24 5.96 8.01

5 4.90 3.97 4.39 6.77 5.49 6.06 7.75 6.28 6.94 9.28 7.52 8.31

8 3.52 4.56 3.97 4.81 6.25 5.43 5.61 7.27 6.33 6.68 8.66 7.54

10 2.98 4.83 3.68 4.07 6.61 5.03 4.71 7.62 5.81 5.61 9.11 6.94

15 2.12 5.16 3.01 2.90 7.05 4.11 3.31 8.04 4.68 3.94 9.61 5.59

20 1.64 5.32 2.51 2.22 7.21 3.39 2.52 8.16 3.85 3.02 9.81 4.62

G
ow

al
la

3 6.53 3.18 4.28 9.24 4.49 6.05 10.51 5.11 6.88 12.24 5.96 8.01

5 4.90 3.97 4.39 6.77 5.49 6.06 7.75 6.28 6.94 9.28 7.52 8.31

8 3.52 4.56 3.97 4.81 6.25 5.43 5.61 7.27 6.33 6.68 8.66 7.54

10 2.98 4.83 3.68 4.07 6.61 5.03 4.71 7.62 5.81 5.61 9.11 6.94

15 2.12 5.16 3.01 2.90 7.05 4.11 3.31 8.04 4.68 3.94 9.61 5.59

20 1.64 5.32 2.51 2.22 7.21 3.39 2.52 8.16 3.85 3.02 9.81 4.62

W
ee

Pl
ac

es

3 10.24 6.34 7.83 11.68 7.24 8.94 11.84 7.34 9.06 12.08 7.48 9.24

5 7.19 7.42 7.30 8.20 8.47 8.33 8.38 8.65 8.51 8.53 8.80 8.66

8 4.95 8.18 6.17 5.60 9.24 6.97 5.79 9.56 7.21 5.86 9.69 7.30

10 4.11 8.49 5.54 4.65 9.59 6.26 4.81 9.94 6.48 4.85 10.01 6.53

15 2.88 8.93 4.35 3.24 10.03 4.90 3.33 10.32 5.04 3.38 10.47 5.11

20 2.23 9.19 3.59 2.48 10.25 3.99 2.55 10.54 4.11 2.60 10.74 4.19

Experimental results for subgraph B and subgraph C indicate that both subgraphs ac-

quire higher performance values than subgraph A. In addition, subgraph B performs

better than subgraph C on all datasets. It is reasonable since if a location is visited

by an expert, then it has a higher possibility of being visited by the other users. Ad-

ditionally, trusted users may recommend essential places, so their contribution is not

as high as that of experts. As the last option, we consider the subgraph containing all

node types together (subgraph D), and then we obtain the best performance in four

datasets. Experts and trusted users have different check-in behaviors, and including
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these latent nodes improves the performance from popularity and trustworthiness as-

pects. These results also indicate that combining disjoint types (friend, expert, trusted

user) improves the accuracy of the recommended locations.

In all datasets, we observe a similar performance pattern. It is an important observa-

tion revealing that the performance of SgWalk is not dataset-specific. Although all

datasets’ statistics differ in terms of check-ins per user and friends per user values,

subgraph D, which contains friend, trusted user and expert together, attains the best

performance in all of the test cases. Furthermore, the experimental results are more

distinctive for a small number of recommendations, but all subgraphs yield similar re-

sults by increasing the recommendation number. Subgraph D has the best f-measure

value with a recommendation count of 3 for Brightkite and Wee Places and 5 for

Foursquare and Gowalla, and the performance of the top 5 in Brightkite and Wee

Places is closer to the top 3 than the top 8. Therefore, we choose the top 5 as the

recommendation count in the following experiments.

4.4.3 Parameter Tuning Experiments

In this section, we present the results of tuning the parameters of our embedding

model described in Section 3.4.4. In particular, we examine the impact of window

size w and the embedding vector dimension d when we train the model using the

skip-gram language model. The candidate values of these two variables are w = 1, 2,

3, 4, 5, 6, 7, 8 and d = 100, 120, 150, 200, 250.

Best values for the w and d parameters differs in the literature and obtained by tuning

process. For example, w parameter value is set to 5 in [67] , 10 in [46, 24] or 20 in

[81] and d parameter value is set to 100 in [30], 128 in [24, 46] or 200 in [32, 81] as

best values for the maximum performance of the technique. Here, we examine the

different values of the window size w and the dimension size d, i.e., (w, d) pairs that

reach the best values per cost in terms of the f-measure. Table 4.7 shows the SgWalk’s

f-measure values for the top@5 predictions for different values of w and d.

It is noticeable that as the dimension d increases until approximately 200, the per-

formance increases as well. Increasing the dimension of the vector has an inverse
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Table 4.7: Recommendation performance (in f-measure) under varying window size

w and dimension size d values

brightkite@5 foursquare@5

w/d 100 120 150 200 250 100 120 150 200 250

1 2.98 3.01 3.17 3.18 3.11 0.22 0.24 0.26 0.27 0.31

2 27.48 27.51 27.54 27.61 27.48 11.3 11.77 11.77 12.19 12.05

3 20.72 21.3 21.76 21.85 21.79 8.03 7.99 7.9 7.95 7.91

4 23.4 22.66 22.92 23.21 23.34 9.2 9.19 9.03 8.86 9.14

5 18.78 18.65 18.88 18.94 18.68 6.48 6.57 6.29 6.3 6.19

6 19.91 20.11 20.04 20.08 19.98 6.99 7.08 7.06 7.09 6.92

7 17.65 17.81 17.58 17.23 17.52 5.77 5.75 5.82 5.52 5.72

8 18.62 18.56 18.26 18.39 18.07 6.36 6.06 6.4 6.29 6.07

gowalla@5 weeplaces@5

w/d 100 120 150 200 250 100 120 150 200 250

1 0.49 0.49 0.49 0.51 0.56 0.52 0.54 0.55 0.63 0.63

2 10.44 10.48 10.62 10.68 10.65 6.01 6.47 6.96 7.53 7.48

3 8.48 8.56 8.60 8.87 8.81 5.33 5.34 5.35 5.38 5.37

4 8.94 8.81 8.99 8.88 8.82 5.29 5.42 5.50 5.20 5.12

5 7.13 7.41 7.47 7.57 7.51 4.36 4.21 4.07 3.52 3.17

6 7.63 7.66 7.39 7.51 7.67 3.81 3.76 3.55 3.14 2.72

7 6.78 6.69 6.77 6.70 6.84 3.31 3.05 2.77 2.33 2.11

8 6.52 6.66 6.63 6.68 6.68 2.80 2.70 2.50 2.05 1.94

effect after the convergence point. Therefore, we set the dimension size to 200 for all

datasets.

We also observe that the window size w has an interesting effect on the f-measure

value. It converges alternatingly according to whether w is odd or even (Figure 4.8,

Figure 4.9, Figure 4.10 and Figure 4.11). This is due to the nature of the gener-

ated walk sequences, which contain mostly user and location nodes alternatingly as

user-user nodes occurrence frequency is too smaller than user-location nodes. The

f-measure has the highest value at w=2 and drops and increases gradually as long as

the window size w increases. Having lower w values also reduces the computational

cost significantly. In Tables 4.7, we highlight the parameter values that achieve the

best performance and are used for the rest of the evaluation.
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Figure 4.8: Effect of changing window size for dimension = 200 for the Brightkite

dataset

Figure 4.9: Effect of changing window size for dimension = 200 for the Foursquare

dataset
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Figure 4.10: Effect of changing window size for dimension = 200 for the Gowalla

dataset

Figure 4.11: Effect of changing window size for dimension = 200 for Wee Places

dataset

61



Figure 4.12: Batch script used for test execution

4.4.3.1 Parameter Tuning Process

Test execution for parameter tuning is handled manually. The proposed algorithm

implementation is executed in a parameterized way, as shown in Figure 4.12, so that

we can run parallel executions without affecting each other. Execution results of pre-

cision and recall values are recorded into the log files once the run finishes success-
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fully, as shown in 4.13. After all executions are finished, we collect all the results in a

spreadsheet and pick the maximum performance values with the help of spreadsheet

functions.

After the experiment runs are completed, we examine the accuracy results and check

if the maximum value is obtained by the boundary values of the parameters. If so, we

conduct new tests by increasing or decreasing the value of the parameter according

to the boundary condition (being either min or max value in the previous experiment

run). We continue until the parameter value that provides the maximum accuracy

falls within the minimum and the maximum values (i.e. not a boundary value). For

example, for vector dimension size tuning, we started with dimensions 100, 120, and

150, but the maximum value was obtained at the boundary of the dimension size

values. For this reason, we conducted new tests with dimension 200. Nevertheless,

the maximum value was still obtained at the boundary. And then, we executed new

tests with dimension 250. Finally, the dimension size setting providing the maximum

accuracy fell inside the minimum and maximum boundaries. Therefore we concluded

that the optimal dimension value is 200 for the SgWalk method.

Figure 4.13: Test execution logs

4.4.4 Comparative Accuracy Performance Analysis

We analyze the accuracy performance of SgWalk under a varying number of recom-

mendations against the state-of-the-art methods from the literature that were devel-

oped as graph embedding techniques. The details of the compared methods are listed

as follows:

63



• DeepWalk [24] learns node embeddings by first performing classical random

walks on an input graph and then feeds the generated random walks to a skip-

gram model. DeepWalk was originally designed for homogeneous graphs, so it

is applied to a heterogeneous graph by ignoring the heterogeneity and treating

all nodes and edges of the graph as being of the same type. We set the number

of walks per node r = 10, length of walk sequence s=40, window size w = 10

and embedding vector dimension d = 100 for skip-gram

• PTE [29] is a semisupervised model for learning text embeddings using both

labeled and unlabeled data. In these experiments, we used PTE in an unsu-

pervised way. Specifically, for a heterogeneous graph, we created bipartite sub-

graphs as follows: (U)ser-(L)ocation, (U)ser-(F)riend, (U)ser-(T)rusted, (U)ser-

(E)xpert, and then fed these graphs to PTE to output the node embeddings.

• Metapath2vec [25] generates random walks depending on a specific metapath

and feeds the generated sequences to a skip-gram model. In these experiments,

we used four different metapaths: "U-L-U" for representing different users vis-

iting the same location, "U-F-L-U" for representing locations visited by friends

of users, "U-T-L-U" for representing locations visited by trusted users, and "U-

E-L-U" for representing locations visited by expert users. For random walk

generation and the skip-gram process, we used the same values in the Deep-

Walk case for parameters r, s, w, and d.

• HIN2Vec [26] forms metapath guided random walks from the combined set of

metapaths shorter than a specified length and jointly learns both node embed-

dings and metapath embeddings. In these experiments, we set the maximum

metapath length to 3 and provided eight different edge types: "U-L", "L-U",

"U-F", "F-L", "U-T", "T-L", "U-E" and "E-L". For random walk generation

and the skip-gram process, we used the same values in the DeepWalk case for

parameters r, s, w, and d.

• JUST [46] is a heterogeneous graph embedding technique using random walks

with the jump and stay strategies to learn node embeddings more efficiently. In

these experiments, we set the stay or jump parameter across domains α = 0.5

and provided five domains as follows: (U)ser, (L)ocation, (F)riend, (T)rusted
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user, and (E)xpert user with the allowed transitions between domains. For ran-

dom walk generation and the skip-gram process, we used the same values in

the DeepWalk case for parameters r, s, w, and d.

• JLGE [32] is a spatial-temporal graph-based model that recommends location

with learnt embeddings. It extends the LINE method on LBSN via multiple bi-

partite graphs according to (U)ser, (L)ocation and (T)ime. In the experiments,

we created six bi-partite graphs (U-U, U-L, U-T, L-U, L-L, L-T) as proposed in

original work, for one month periods. We used the parameter values as reported

in the original work such that d is set as 200, s is 100, ρ is 0.025, and negative

edge count is 5.

• MAGNN [67] is the metapath aggregated graph neural network for heteroge-

neous graph embedding. MAGNN first applies type-specific linear transforma-

tions for node content transformation via intrametapath aggregation and utilizes

intermetapath aggregation to generate node embeddings. In these experiments,

we used eight different metapaths, "U-L-U", "U-F-L-U", "U-T-L-U", "U-E-

L-U" (same as in metapath2vec experiments), and their location counterparts

were "L-U-L", "L-U-F-L", "L-U-T-L", and "L-U-E-L". We set the best values

for the GNN parameters (dropout rate, learning rate, weight decay, etc.) sug-

gested in the paper and used the same value in previous cases for embedding

the dimension parameter d.

The results of the experiments performed on the Brightkite, Foursquare, Gowalla and

Wee Places datasets are given in Figure 4.14, Figure 4.15, Figure 4.16 and Figure

4.17, respectively. The results clearly indicate that SgWalk continuously performs

better than the compared methods in terms of precision, recall, and f-measure metrics.

We believe that the proposed SgWalk considers the distinctive structural characteris-

tics and semantic information by employing friends of users, trusted users, and expert

users in the vicinity, which effectively guarantees the embedding accuracy of LBSN

datasets via heterogeneous network embedding. JLGE has the second-best accuracy

value in the evaluation. However, JUST provides higher recommendation accuracy

than JLGE and PTE on the Brightkite dataset and MAGNN has better results under

high number of recommendation on Foursquare and Gowalla. JLGE, which is not
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(a) Precision

(b) Recall

(c) F-measure

Figure 4.14: Precision, recall and f-measure values of the comparison algorithms for

varying numbers of recommendations with the Brightkite dataset.
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(a) Precision

(b) Recall

(c) F-measure

Figure 4.15: Precision, recall and f-measure values of the comparison algorithms for

varying numbers of recommendations with the Foursquare dataset.
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(a) Precision

(b) Recall

(c) F-measure

Figure 4.16: Precision, recall and f-measure values of the comparison algorithms for

varying numbers of recommendations with the Gowalla dataset.
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(a) Precision

(b) Recall

(c) F-measure

Figure 4.17: Precision, recall and f-measure values of the comparison algorithms for

varying numbers of recommendations with the Wee Places dataset.
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a random walk based approach and designed for location recommendation, on aver-

age, performs better than other random walk based approaches JUST, metapath2vec,

HIN2Vec, and DeepWalk. Among the meta-path based approaches MAGNN, Metap-

ath2vec and HIN2Vec, MAGNN is the best with the help of deep learning techniques

and metapath2vec performs better than HIN2Vec under fewer number of recommen-

dations. On the other hand, HIN2Vec first catches and then beats metapath2vec as

the recommendation count increases. DeepWalk has the lowest accuracy since it is

originally designed for homogeneous graphs.

As a summary, accuracy improvement with respect to the compared methods (in terms

of f-measure under @5 recommendations) across the datasets are given in Table 4.8.

It is observed that SgWalk provides the maximum improvement against DeepWalk

with 102% on average. The minimum improvement is over JLGE with 23% on aver-

age. These results show a strong indication that SgWalk, focusing on spatial context

and generating node embeddings by using subgraphs with respect to spatial context,

can capture the contextual relationships more effectively.

Table 4.8: SgWalk Improvement Percentages in f-Measure @5

DeepWalk PTE Metapath2Vec HIN2Vec JUST JLGE MAGNN

Brightkite 63% 18% 57% 77% 7% 34% 40%

Four Square 105% 16% 39% 72% 95% 21% 34%

Gowalla 45% 21% 55% 28% 34% 23% 23%

Wee Places 197% 50% 77% 61% 102% 15% 71%

Average 102% 26% 57% 60% 60% 23% 42%

The performance of the techniques varies depending on the characteristics of the

dataset used (given in Table 4.2). However, on both datasets, SgWalk attains the

best performance values in all test cases. Hence, we can conclude that the perfor-

mance of SgWalk is not dataset dependent. When we analyze the performance of the

state-of-the-art methods on datasets, we see that DeepWalk, HIN2VEC and MAGNN

perform better on the Foursquare dataset, PTE and metapath2vec perform better on

the Gowalla dataset, JUST and JLGE perform better on the Brightkite and Wee Places

datasets, respectively. This shows the characteristics of the datasets has an effect on
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the methods. The results also show that Check-ins per User value affects the rec-

ommendation accuracy. The recommendation accuracy increases as the number of

Check-ins per User increases. Moreover, when the number of recommendations is

low, accuracy results are more distinctive, but with the increase in the number of

recommendations, all techniques produce similar results.

4.4.5 Validity Threats and Limitations

SgWalk is a subgraph-based approach, and subgraphs are determined according to

the check-ins clustered with respect to the spatial information. The size of the created

clusters needs to be relatively small compared with the whole graph for SgWalk in

order to capture the contextual relationships and to execute efficiently. Therefore, the

selected clustering algorithm should generate the clusters from the dataset that allows

small-sized user subgraph construction. We used the density-based algorithm DB-

SCAN to create clusters, and SgWalk has the best result with the four datasets used

in experiments, with minimum 7% improvement over all cases under @5 recommen-

dations. On the other hand, if the method generates large clusters failing to fulfill

small-sized subgraphs construction, possibly due to the density distribution of the

dataset, SgWalk may not capture contextual relationships and perform as expected.

Since clustering is a crucial step in SgWalk, it constitutes a vulnerable point whose

quality can effect the outcome. In the proposed setting, since the challenged prob-

lem is location recommendation for LBSN, the clustering is built on spatial feature

to extract the spatial context. For different settings and different contexts, other fea-

tures of the social network can be user to decompose the full graph into small-sized

subgraphs.

4.5 Statistical Significance Test for Evaluation Results

Statistical significance testing is widely used in the literature to assess the difference

in results of the proposed approaches against the random selection of input. Accord-

ing to recent surveys on information retrieval, the t-test is the most commonly used

method for statistical significance in these studies [82, 83, 84]. The t-test measures
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the difference in performance values between two samples. A p-value quantifies the

probability of the null hypothesis being true as a more extreme value. P-values greater

than a threshold suggest that our observation was unlikely to have been due to chance.

So, we are not rejecting the null hypothesis of evaluation results. By checking the p-

value if it’s below our threshold, we will have evidence against the null hypothesis

of the evaluation result. Two types of t-tests are dependent and independent accord-

ing to the values that are obtained from the same or different environments. In this

work, we evaluated all approaches with the same dataset, so we assessed the statistical

significance of the results with a dependent t-test.

The significance test is applied as follows:

• The f-measure metric is used as the value for investigating the difference of

significance in results

• Our null hypothesis is that there is no difference between our proposed methods

and the other compared approaches.

• A significance level is computed by taking the value of the f-measure with

respect to different recommendation counts in our experiments.

• The significance test is applied to each dataset separately.

• T-test score (t-value) and p value are used for significance determination.

• When the significance level is low, the null hypothesis is rejected and proven

that the proposed approach achieves statistically significant improvements.

We used a Python script to calculate the t-value and p value with the help of the

ttest_rel method from the scipy.stats package.

4.5.1 Significance of TLoRW Results

We assessed the significance of TLoRW under the null hypothesis, as there is no dif-

ference in our proposed TLoRW method and the other compared approaches CDL,

TECF, TrustMF, TrustSVD and CLR. We used the significance level α = .05 and
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found the critical value = 2.571 to determine the significance of the TLoRW results.

The t-test assessment results of TLoRW are given in Table 4.9 and significant values

are marked with * in the table. TLoRW results are significantly different from all

compared approaches in Brightkite and Gowalla datasets and from CDL, TECF and

CLR approaches in all datasets. According to t-test scores, TLoRW results are sta-

tistically significant in 17 of 20 cases covering 85% of the comparison results. This

proves that the null hypothesis is incorrect and that TLoRW has significant improve-

ments.

Table 4.9: t-test assessment results of TLoRW

Brightkite Foursquare Gowalla Wee Places

t-value p value t-value p value t-value p value t-value p value

CDL 6.440* 0.001* 11.476* 0.000* 10.108* 0.000* 7.552* 0.001*

TECF 3.211* 0.024* 6.581* 0.001* 5.675* 0.002* 3.004* 0.030*

TrustMF 3.346* 0.020* 2.161 0.083 7.914* 0.001* 3.736* 0.013*

TrustSVD 3.030* 0.029* 1.332 0.240 16.391* 0.000* 2.512 0.054

CLR 2.844* 0.036* 5.842* 0.002* 8.392* 0.000* 4.671* 0.005*

4.5.2 Significance of SgWalk Results

We assessed the significance of SgWalk the null hypothesis, as there was no difference

in our proposed method SgWalk and the other compared approaches DeepWalk, PTE,

JUST, metapath2vec, HIN2vec, JLGE, MAGNN. We used the significance level α =

.05 and found the critical value = 2.571 to determine the significance of the SgWalk

results. The t-test assessment results of SgWalk is given in Table 4.10 and signifi-

cant values are marked with * in the table. SgWalk results are significantly different

from DeepWalk and HIN2Vec approaches in all datasets. According to t-test scores,

SgWalk results are statistically significant in 21 of 28 test cases covering 75% of the

comparison results. This proves that the null hypothesis is incorrect and that SgWalk

has significant improvements.
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Table 4.10: t-test Assessment Results of SgWalk

Brightkite Gowalla Four Square Wee Places

t-value p-value t-value p-value t-value p-value t-value p-value

DeepWalk 7.041* 0.001* 7.992* 0.000* 7.769* 0.001* 23.021* 0.000*

PTE 2.074 0.093 2.807* 0.038* 2.647* 0.046* 6.150* 0.002*

JUST 1.728 0.145 8.724* 0.000* 4.19* 0.009* 8.270* 0.000*

metapath2Vec 8.334* 0.000* 2.100 0.090 1.912 0.114 5.674* 0.002*

HIN2Vec 4.443* 0.007* 5.242* 0.003* 2.817* 0.037* 6.071* 0.002*

JLGE 2.799* 0.038* 3.488* 0.017* 3.965* 0.011* 2.269 0.073

MAGNN 2.781* 0.039* 1.776 0.136 1.541 0.184 5.083* 0.004*
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CHAPTER 5

CONCLUSIONS

The data collected from LBSNs contain rich information that constitutes a basis for

building location recommendation systems. In this work, we aim to develop a rec-

ommendation system from LBSNs according to the user’s current context to sug-

gest locations. We represent the LBSN data by an undirected and unweighted graph

model, which includes nodes from different contexts and relationships of these nodes.

Based on the LBSN graph model, we introduce two novel context-aware location rec-

ommendation techniques, TLoRW and SgWalk, to generate accurate recommendation

lists.

First, TLoRW is a trust-aware location recommendation technique and utilizes the

trustworthiness values of users. There are two significant contributions: the trust

metric for users in LBSNs and a trust-aware algorithm that improves the accuracy of

location recommendations. For trust prediction, most of the approaches in the liter-

ature find/fill missing trust data depending on the transitivity of the trust relation. In

our method, the trustworthiness of users is computed from two trust features, namely,

objectivity and consistency, regardless of the trustor or trustee data. Furthermore, in

trust-availed datasets, trust data are provided in binary format, i.e., yes or no, due to

privacy concerns, but in our method, numerical values can be calculated.

TLoRW experiments also reveal that recommendation accuracy is improved by uti-

lizing trust and expert notions together. In the proposed recommendation system, we

construct an undirected graph to model an LBSN that consists of users and locations.

The graph is enriched with expert users, trusted users, and their popular locations in

addition to regular users and locations. By applying a random walk on the generated

user-specific graph, we rank the locations based on visit counts.
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We evaluate our recommendation technique, TLoRW, by comparing it with the state-

of-the-art methods on well-known datasets filtered for New York City. The experi-

ments show that our proposed algorithm, TLoRW, brings minimum 5% improvement

for location recommendation accuracy in terms of f-measure@5. The analysis on the

results shows that the improvement by TLoRW is statistically significant (α = .05)

for 85% of the test cases. The results indicate that the trust score is useful in location

recommendation when combined with other notions of friends and experts in LBSNs.

For the rest of the compared techniques, their performances change with the dataset

accordingly, but they perform better when the average check-ins per user are higher.

The proposed trust method in TLoRW is also quite suitable for the methods, which

depends on explicit trust data as trust-aware recommendation systems [13, 16, 19, 21,

22]. With our work’s contribution, these methods can operate on the dataset when

there are no explicit trust data in the dataset. For the cold start cases (when a user

has (i) very few friends or no friends at all, (ii) very few check-ins or no check-in

at all), integrating the experts in the vicinity, as well as trusted users, can improve

recommendation accuracy.

The second proposed algorithm, SgWalk includes a user subgraph-based graph em-

bedding technique for location recommendation, which utilizes the user subgraphs

instead of bipartite subgraphs proposed in the literature, and does not depend on meta-

paths for random walk generation. The constructed user subgraph considers a wide

range of information sources, including personal, social, spatial, and trustworthiness

contexts, to generate a better recommendation list. The SgWalk technique follows

four steps: (1) user subgraph construction, (2) random walk sequence generation, (3)

learning graph embeddings, and (4) location recommendation list creation to explore

the proximity between users and locations to provide recommendations.

Few research efforts exist in the literature that employ subgraphs in the embedding

process for recommending locations to users. In these works, graphs are decomposed

along with relationships or metapaths. SgWalk introduces a new subgraph creation

process that decomposes the graphs according to the geographical attributes of the

nodes, such that location nodes in the user’s vicinity and user nodes (friend, expert,

trusted) visit these locations. With this idea, we can model user preferences too.
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Furthermore, the count of the nodes in the user subgraph is much fewer than the

number of nodes in the bipartite graphs, which allows improved computation time.

We evaluate the SgWalk technique by comparing it with the state-of-the-art methods

on well-known datasets filtered for New York City. The experiments show that our

proposed algorithm, SgWalk, provides the highest accuracy against compared meth-

ods for majority of test cases, and the results indicate that our method brings minimum

23% improvement for location recommendation accuracy in terms of f-measure@5.

The analysis on the results reveal that the obtained improvement by SgWalk is statis-

tically significant (α = .05) for 75% of the test cases. The experimental results show

a strong indication that SgWalk, focusing on spatial context and generating node em-

beddings by using subgraphs with respect to spatial context, can capture the contex-

tual relationships more effectively, and hence it provides more accurate personalized

and contextual location recommendations.

As s future work, other user features can be considered, such as user activity, com-

petence, honesty, satisfaction, and centrality, to formulate trust scores depending on

the domain. For example, for a movie dataset, such subgraphs can be constructed by

using genre (with sub-genres) feature, if a variety of genres are provided within the

dataset. Moreover, new trust modeling or uncertainty-aware trust relationships can

be studied to improve recommendation accuracy. Additionally, user-based subgraph

generation can be applied in different domains, such as movie and author databases,

to recommend movies to users and authors for topics. Additionally, the effects of

temporal context nodes in the user subgraph can be studied within the scope of LB-

SNs.
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APPENDIX A

DATA SOURCES FOR CHARTS

Table A.1: Distribution of user count according to number of friends for Figure 4.1

Brightkite Four Square Gowalla Wee Places

Number of

Friends

User

Count

Number of

Friends

User

Count

Number of

Friends

User

Count

Number of

Friends

User

Count

0 495 0 3276 0 1528 0 452

1 534 1 1397 1 1242 1 720

2 361 2 535 2 647 2 547

3 214 3 281 3 406 3 395

4 123 4 163 4 269 4 269

5 89 5 92 5 147 5 247

6 76 6 79 6 138 6 181

7 67 7 54 7 122 7 159

8 50 8 50 8 92 8 128

9 43 9 33 9 57 9 100

10 28 10 22 10 73 10 86

11 26 11 24 11 45 11 70

12 25 12 17 12 35 12 70

13 11 13 17 13 21 13 60

14 14 14 7 14 23 14 57

15 7 15 15 15 17 15 42

16 14 16 9 16 16 16 27

17 14 17 11 17 19 17 30

18 12 18 7 18 16 18 21

19 5 19 1 19 12 19 24

20 7 20 3 20 14 20 23

21 8 21 3 21 11 21 23
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Table A.1 Continued from previous page

Brightkite Four Square Gowalla Wee Places

Number of User Number of User Number of User Number of User

Friends Count Friends Count Friends Count Friends Count

22 5 22 1 22 4 22 15

23 3 23 2 23 10 23 18

24 4 24 5 24 5 24 21

25 4 25 2 25 10 25 12

26 2 26 4 26 4 26 10

27 4 27 1 27 7 27 8

28 4 29 2 28 9 28 12

29 2 30 2 29 4 29 7

30 4 31 2 30 6 30 8

31 2 32 3 31 5 31 8

33 1 34 1 32 7 32 2

34 1 36 2 33 6 33 7

35 2 37 2 34 3 34 12

36 2 39 1 35 2 35 8

37 1 40 1 36 1 36 6

38 2 44 1 37 1 37 6

40 1 50 2 38 1 38 6

47 1 66 1 39 3 39 4

48 1 176 1 40 4 40 3

53 1 41 2 41 2

56 1 43 2 42 4

74 1 44 2 43 2

76 1 45 2 44 4

104 1 47 1 45 3

122 1 48 2 46 4

133 1 49 1 47 2

50 5 48 1

51 2 49 1

53 3 50 6

55 1 51 3

56 1 52 5

59 1 54 2

61 2 55 1
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Table A.1 Continued from previous page

Brightkite Four Square Gowalla Wee Places

Number of User Number of User Number of User Number of User

Friends Count Friends Count Friends Count Friends Count

63 2 56 1

64 1 57 1

66 1 59 3

68 1 60 1

69 1 62 4

80 1 63 2

81 1 64 2

83 1 65 2

88 1 68 1

89 2 69 1

90 2 72 1

95 1 77 1

99 1 80 1

101 1 81 1

108 1 87 1

110 2 88 1

121 1 93 1

130 1 95 1

136 1 97 1

143 1 100 1

144 1 103 1

160 1 106 1

320 1 107 1

111 1

113 1

132 1

140 1

169 1

174 1

219 1

266 1
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Table A.2: f-measure values for varying number of friend groups for Figure 4.2

Dataset Group R3 R5 R8 R10 R15 R20

Brightkite

[0-0] 22.27 17.04 13.10 10.20 8.07 5.84

[1-1] 24.49 18.86 14.41 12.71 8.79 6.82

[2-3] 28.92 21.21 15.78 13.54 9.87 7.73

[4-6] 30.67 22.74 16.79 14.14 9.90 7.86

[7-10] 32.31 24.26 17.82 15.13 10.82 8.31

[11-350] 31.11 22.90 17.76 14.98 10.84 8.57

Four Square

[0-0] 10.89 8.20 6.65 5.50 4.74 3.72

[1-1] 11.13 9.84 7.87 6.63 5.63 4.05

[2-3] 11.96 9.13 8.27 7.07 6.05 4.10

[4-6] 12.96 10.26 8.82 7.53 6.49 4.52

[7-10] 13.51 11.35 9.04 7.68 6.88 4.76

[11-350] 12.64 10.05 8.70 7.47 6.41 4.45

Gowalla

[0-0] 11.43 9.23 6.90 5.93 4.40 3.53

[1-1] 13.07 10.45 7.77 6.70 5.06 4.08

[2-3] 16.51 13.03 9.99 8.67 6.59 5.38

[4-6] 18.43 14.60 11.31 9.90 7.48 6.03

[7-10] 18.58 14.87 11.62 10.13 7.76 6.38

[11-350] 17.05 13.51 10.40 9.01 6.98 5.73

Wee Places

[0-0] 7.86 6.08 4.97 4.59 3.98 3.59

[1-1] 8.75 7.29 6.21 5.73 5.02 4.53

[2-3] 10.31 9.06 7.73 7.11 6.18 5.60

[4-6] 11.24 9.70 8.34 7.76 6.73 5.99

[7-10] 12.76 10.72 9.50 8.73 7.39 6.53

[11-350] 16.50 13.91 11.66 10.70 8.97 7.75
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Table A.3: Performance values of top n% expert vs trusted user for Figure 4.3

Trustable User from Top

Dataset Expert Users from Top 0% 2% 3% 5% 7% 10%

Brightkite

0% 37.79 40.68 40.85 41.63 42.33 42.03

2% 38.88 41.17 41.68 42.25 43.23 43.32

3% 38.95 41.30 42.78 43.11 43.30 43.47

5% 39.08 41.62 43.19 43.87 43.56 43.46

7% 39.62 41.79 42.54 43.45 43.82 43.44

10% 39.36 41.61 41.77 42.38 43.58 43.16

Four Square

0% 23.36 24.64 25.06 25.17 25.30 25.17

2% 24.41 24.87 25.15 25.50 25.50 25.61

3% 24.32 25.09 25.82 25.75 25.73 25.82

5% 24.32 25.49 25.76 26.12 26.06 25.77

7% 24.52 25.67 25.77 26.06 25.82 25.69

10% 24.75 25.52 25.63 25.71 25.64 25.64

Gowalla

0% 26.32 27.95 28.50 28.80 29.00 29.16

2% 28.00 28.82 29.11 29.18 29.32 29.40

3% 28.40 29.14 29.38 29.51 29.44 29.53

5% 28.55 29.26 29.57 29.64 29.60 29.61

7% 28.60 29.44 29.54 29.61 29.60 29.57

10% 28.70 29.55 29.62 29.61 29.63 29.58

Wee Places

0% 12.02 12.58 12.81 12.82 12.92 12.98

2% 12.19 13.22 13.28 13.44 13.45 13.41

3% 12.33 13.41 13.57 13.57 13.58 13.53

5% 12.54 13.50 13.59 13.68 13.63 13.58

7% 12.62 13.47 13.57 13.62 13.62 13.57

10% 12.78 13.45 13.54 13.57 13.58 13.57
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Table A.4: Performance values of Brightkite dataset for Figure 4.4

Metric Rec Count CDL TECF TrustMF TrustSVD CLR TLoRW

precision 3 23.44444 25.21111 23.78 24.33 25.93333 29.14815

precision 5 17.82667 21.17333 19.63 20.36 20.56 21.48889

precision 8 13.39167 15.08611 15.08 15.68 15.85 16.73611

precision 10 11.64667 13.16889 13.16 13.76 13.56 14.47778

precision 15 8.84 10.02222 10.84 11.03 10.21333 10.94815

precision 20 7.226667 8.107778 8.49 8.51 8.026667 8.166667

recall 3 31.01117 33.78837 30.88 31.34 33.56261 38.94112

recall 5 35.70093 40.83321 34.04 34.58 42.18291 43.87477

recall 8 40.61157 45.86978 36.81 37.21 49.09932 49.92055

recall 10 43.32837 49.33645 39.16 39.94 51.67857 52.52931

recall 15 48.34711 53.5 42.24 42.82 55.85805 58.95833

recall 20 52.14045 56.9835 45.76 46.36 57.91246 60.65842

f-measure 3 26.7021 28.87627 26.86888 27.39365 29.25881 33.34039

f-measure 5 23.77946 27.88658 24.90051 25.62973 27.64553 28.84845

f-measure 8 20.14163 22.70483 21.39506 22.06288 23.96405 25.06804

f-measure 10 18.35855 20.78882 19.69976 20.46832 21.48304 22.69932

f-measure 15 14.94702 16.88193 17.25251 17.54149 17.26911 18.46709

f-measure 20 12.69395 14.19574 14.32267 14.3803 14.09919 14.39525
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Table A.5: Perfomance values of Four Square dataset for Figure 4.5

Metric Rec Count CDL TECF TrustMF TrustSVD CLR TLoRW

precision 3 13.84788 14.21332 12.965 13.22 14.16985 16.5392

precision 5 11.6504 11.93308 11.55 12.43 11.9336 12.85277

precision 8 9.115286 9.749522 10.55 10.98 9.800291 10.39245

precision 10 8.03889 8.929063 10.2 10.26 8.352986 9.589866

precision 15 6.31375 7.354685 8.345325 8.366 7.036191 7.979924

precision 20 5.281641 6.394742 7.435984 7.58 5.689918 7.206979

recall 3 19.92941 20.26094 22.40355 23.23 19.46209 22.29094

recall 5 23.14163 24.28 24.45 25.92 24.67 26.12007

recall 8 26.55077 28.36 26.05464 26.63 30.45881 31.3279

recall 10 28.3826 33.42 27.85 28.12 33.02223 34.85273

recall 15 32.23497 37.9 31.15 31.82 35.9234 40.9131

recall 20 35.45712 41.35 33.54 33.96 38.19799 44.25595

f-measure 3 16.34116 16.70668 16.42488 16.85051 16.39958 18.98908

f-measure 5 15.49834 16.00169 15.68875 16.80238 16.08596 17.22817

f-measure 8 13.57133 14.51062 15.01867 15.54892 14.8292 15.60742

f-measure 10 12.52912 14.09284 14.93141 15.03446 13.33331 15.04111

f-measure 15 10.55929 12.31884 13.16393 13.2487 11.76752 13.35501

f-measure 20 9.193789 11.07651 12.17313 12.39368 9.904479 12.3954
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Table A.6: Perfomance values of Gowalla dataset for Figure 4.6

Metric Rec Count CDL TECF TrustMF TrustSVD CLR TLoRW

precision 3 14.83981 16.03981 15.83323 16.80398 15.17804 17.40249

precision 5 11.91343 12.41343 13.05762 13.67938 11.9325 14.03669

precision 8 9.403889 9.920389 10.48634 10.77574 9.569516 11.05787

precision 10 8.34336 8.78336 9.161543 9.340924 8.110785 9.644529

precision 15 6.563463 7.03463 7.549821 7.610858 6.940572 7.782311

precision 20 5.518342 6.051834 6.09112 6.170652 5.67058 6.357053

recall 3 20.17086 22.18 23.95545 23.43968 22.70831 23.93852

recall 5 24.56284 24.25 29.37029 29.16288 25.72572 29.67638

recall 8 29.09762 27.78 33.69121 34.5716 28.70431 35.53715

recall 10 31.50488 31.37 36.09272 37.11392 31.4027 38.04201

recall 15 35.89216 37.78 40.72884 41.039 37.95437 44.04197

recall 20 39.48709 44.28 43.84947 43.41048 40.57644 47.55565

f-measure 3 17.09946 18.61668 19.06533 19.57476 18.19482 20.15383

f-measure 5 16.04482 16.42103 18.07801 18.62321 16.30306 19.05874

f-measure 8 14.21403 14.61992 15.99443 16.43028 14.35374 16.86727

f-measure 10 13.19288 13.72408 14.61365 14.92539 12.89183 15.38788

f-measure 15 11.09756 11.86078 12.73836 12.84041 11.73518 13.22732

f-measure 20 9.68342 10.64834 10.6964 10.80536 9.950563 11.21494
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Table A.7: Perfomance values of Wee Places dataset for Figure 4.7

Metric Rec Count CDL TECF TrustMF TrustSVD CLR TLoRW

precision 3 8.547156 8.593953 8.310664 8.533503 8.414844 8.620467

precision 5 7.652833 7.728532 7.743823 7.886553 7.605611 8.046115

precision 8 6.93129 7.097506 6.76053 6.77079 6.810264 7.124168

precision 10 6.559325 6.530575 6.212545 6.320996 6.515223 6.504916

precision 15 5.836634 5.741031 5.832295 5.854642 5.769388 5.664447

precision 20 5.139521 5.183682 5.186971 5.20987 5.260548 5.077704

recall 3 10.10451 10.36486 10.53375 11.01532 10.85912 11.49425

recall 5 11.24039 11.50989 11.45792 12.20905 11.42945 12.67551

recall 8 12.49079 12.8529 13.42846 13.84971 12.74987 14.33472

recall 10 13.07183 14.65202 14.69015 14.79098 13.56752 15.0942

recall 15 14.08544 16.09044 15.79333 16.59662 14.54308 17.5949

recall 20 15.05779 17.61588 17.40425 17.7271 16.14729 19.91789

f-measure 3 9.260814 9.396698 9.291077 9.616872 9.481994 9.852072

f-measure 5 9.105998 9.247594 9.241671 9.582923 9.133455 9.843688

f-measure 8 8.915346 9.145031 8.993368 9.095171 8.878261 9.518009

f-measure 10 8.735337 9.034409 8.732197 8.856937 8.803122 9.091715

f-measure 15 8.253314 8.46262 8.518723 8.655841 8.261396 8.569921

f-measure 20 7.66338 8.010252 7.992073 8.053016 7.935747 8.092398
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Table A.8: Effect of changing window values for Figure 4.8, Figure 4.9, Figure 4.10

and Figure 4.11

Dataset Precision Recall f-measure Window

Brightkite

2.78 2.98 2.88 1

26.65 28.64 27.61 2

21.09 22.67 21.85 3

22.40 24.08 23.21 4

18.28 19.65 18.94 5

19.38 20.82 20.08 6

16.63 17.87 17.23 7

17.75 19.08 18.39 8

Four Square

0.30 0.24 0.27 1

13.61 11.04 12.19 2

8.88 7.20 7.95 3

9.89 8.02 8.86 4

7.04 5.71 6.30 5

7.92 6.42 7.09 6

6.16 5.00 5.52 7

7.03 5.70 6.29 8

Gowalla

0.50 0.51 0.51 1

10.51 10.85 10.68 2

8.73 9.02 8.87 3

8.74 9.03 8.88 4

7.45 7.70 7.57 5

7.39 7.64 7.51 6

6.59 6.81 6.70 7

6.57 6.78 6.68 8

Wee Places

0.93 0.48 0.63 1

11.15 5.69 7.53 2

8.00 4.04 5.37 3

7.70 3.93 5.20 4

5.21 2.66 3.52 5

4.65 2.37 3.14 6

3.45 1.76 2.33 7

3.04 1.55 2.05 8
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Table A.9: Perfomance values of Brightkite dataset for Figure 4.14

Metric Rec Count DeepWalk PTE metapath2Vec HIN2Vec JUST JLGE MAGNN SgWalk

precision

3 18.20 24.18 16.20 17.41 27.51 21.42 22.44 31.15

5 13.67 19.42 11.37 12.86 20.69 16.60 16.29 22.22

8 9.83 15.18 8.85 10.53 15.09 13.03 13.26 15.54

10 8.25 13.13 8.13 8.83 12.70 11.76 10.85 12.90

15 5.91 9.43 5.43 7.23 9.10 8.40 8.89 9.02

20 4.53 7.15 4.11 5.42 7.03 6.58 6.84 6.92

recall

3 11.74 17.17 17.59 10.67 17.74 13.82 13.46 20.09

5 14.69 19.69 20.58 13.14 22.23 17.84 16.50 23.88

8 16.90 23.42 25.62 17.22 25.96 22.40 21.02 26.73

10 17.74 24.72 29.42 18.04 27.30 25.29 21.98 27.73

15 19.05 25.54 29.49 22.16 29.34 27.10 28.56 29.07

20 19.48 25.93 29.78 22.16 30.21 28.27 28.07 29.75

f-measure

3 14.27 20.08 16.87 13.23 21.57 16.80 16.83 24.42

5 14.16 19.55 14.65 13.00 21.43 17.20 16.40 23.02

8 12.43 18.42 13.16 13.07 19.08 16.47 16.26 19.65

10 11.26 17.15 12.74 11.86 17.33 16.06 14.53 17.61

15 9.02 13.78 9.17 10.90 13.89 12.83 13.55 13.77

20 7.35 11.21 7.22 8.71 11.41 10.67 11.00 11.23
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Table A.10: Perfomance values of Four Square dataset for Figure 4.15

Metric Rec Count DeepWalk PTE metapath2Vec HIN2Vec JUST JLGE MAGNN SgWalk

precision

3 5.27 10.07 8.09 6.41 5.88 10.65 8.52 12.24

5 4.52 8.33 6.97 5.54 4.76 8.13 7.23 9.28

8 3.54 5.95 5.93 4.77 3.54 6.04 6.13 6.68

10 3.10 5.36 5.29 4.23 3.06 5.19 5.48 5.61

15 2.24 3.97 4.09 2.94 2.24 3.87 4.30 3.94

20 1.73 3.06 3.23 2.24 1.77 3.06 3.35 3.02

recall

3 2.56 4.53 3.64 2.97 2.86 4.66 3.83 5.96

5 3.66 6.25 5.22 4.28 3.86 5.93 5.42 7.52

8 4.59 7.13 7.12 5.89 4.60 7.06 7.35 8.66

10 5.03 8.04 7.93 6.54 4.96 7.57 8.20 9.10

15 5.46 8.92 9.21 6.82 5.45 8.46 8.96 9.60

20 5.61 9.17 9.69 6.92 5.75 8.94 9.75 9.81

f-measure

3 3.45 6.25 5.02 4.06 3.85 6.49 5.28 8.01

5 4.05 7.14 5.97 4.83 4.26 6.86 6.19 8.31

8 4.00 6.49 6.47 5.27 4.00 6.51 6.69 7.54

10 3.84 6.43 6.35 5.14 3.78 6.16 6.57 6.94

15 3.18 5.49 5.66 4.11 3.18 5.31 5.81 5.59

20 2.64 4.58 4.84 3.38 2.71 4.56 4.98 4.62
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Table A.11: Perfomance values of Gowalla dataset for Figure 4.16

Metric Rec Count DeepWalk PTE metapath2Vec HIN2Vec JUST JLGE MAGNN SgWalk

precision

3 9.67 12.71 8.34 11.79 10.56 12.19 10.75 14.62

5 7.36 9.21 7.20 8.72 7.95 9.05 9.12 10.67

8 5.37 7.02 6.98 6.68 6.00 6.88 7.29 7.52

10 4.47 6.09 5.89 5.91 5.10 5.52 6.24 6.26

15 3.13 4.35 4.55 4.29 3.89 3.98 4.39 4.41

20 2.38 3.44 3.57 3.40 3.06 3.29 3.50 3.38

recall

3 5.99 7.22 4.74 6.69 6.54 6.92 5.98 9.06

5 7.60 8.71 6.81 8.25 8.22 8.56 8.56 11.02

8 8.86 10.62 10.57 10.10 9.90 10.41 12.90 12.42

10 9.22 11.53 11.15 11.18 10.54 10.44 12.59 12.92

15 9.70 12.34 12.92 12.18 12.04 11.31 12.95 13.65

20 9.83 13.02 13.49 12.88 12.63 12.46 13.70 13.97

f-measure

3 7.40 9.21 6.04 8.54 8.08 8.82 7.68 11.19

5 7.48 8.95 7.00 8.48 8.08 8.80 8.83 10.84

8 6.68 8.45 8.41 8.04 7.47 8.28 9.31 9.37

10 6.02 7.97 7.71 7.73 6.88 7.22 8.35 8.43

15 4.73 6.43 6.73 6.35 5.88 5.89 6.56 6.67

20 3.83 5.44 5.64 5.38 4.92 5.21 5.58 5.44
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Table A.12: Perfomance values of Wee Places dataset for Figure 4.17

Metric Rec Count DeepWalk PTE metapath2Vec HIN2Vec JUST JLGE MAGNN SgWalk

precision

3 4.51 10.32 7.87 9.74 5.92 12.60 8.29 12.71

5 3.64 7.81 6.63 7.27 5.33 9.38 6.88 10.15

8 2.86 6.47 5.49 6.14 4.43 8.15 5.68 8.35

10 2.49 5.71 5.27 5.45 4.40 7.02 5.46 7.19

15 1.96 4.65 4.50 4.62 3.53 5.35 4.74 5.43

20 1.61 4.05 3.85 3.95 3.12 4.33 3.99 4.34

recall

3 1.38 2.79 2.13 2.63 1.81 3.86 2.24 4.50

5 1.86 3.52 2.99 3.28 2.72 4.78 3.10 5.69

8 2.33 4.66 3.96 4.43 3.62 6.65 4.09 6.82

10 2.54 5.15 4.75 4.91 4.49 7.17 4.92 7.34

15 2.99 6.29 6.09 6.25 5.40 8.19 6.41 8.31

20 3.29 7.30 6.95 7.13 6.36 8.83 7.20 8.86

f-measure

3 2.11 4.39 3.35 4.15 2.78 5.91 3.52 6.65

5 2.46 4.85 4.12 4.52 3.60 6.34 4.27 7.29

8 2.57 5.42 4.60 5.14 3.98 7.33 4.75 7.51

10 2.52 5.41 5.00 5.17 4.44 7.10 5.18 7.26

15 2.37 5.35 5.18 5.31 4.27 6.47 5.45 6.57

20 2.16 5.21 4.96 5.09 4.19 5.81 5.14 5.83
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