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ABSTRACT 

ADAPTIVE BEAMFORMING IN 5G NETWORKS USING DEEP 

REINFORCEMENT LEARNING 

 

Salam Hazim Salman AL-SAMEERLI, 

M.Sc., Electrical and Computer Engineering, Altınbaş University 

Supervisor: Dr. Abdullahi Abdu IBRAHIM 

Date: 08/2021 

Pages: 54 

 

The need for additional bandwidth per each client that is being connected to the mobile 

cellular network and the rapidly growing number of devices being added to these networks, 

the need for additional capacity has increased rapidly in recent years. This demand has 

induced the proposal of a new generation of these networks, which is the fifth generation (5G). 

In this generation, the spectrum of the frequencies that are used to establish links between the 

clients and the base stations is widened to include millimeter waves (mmWaves). With the 

lack of ability of these waves to travel through obstacles and the use of Multiple Input Multiple 

Output (MIMO) technology to increase the capacity of the system, the enormous number of 

antennas in the Base Station (BS) is being used to create beams of these waves and direct 

them towards the best direction that establishes the communications with the designated 

client. Artificial Intelligence (AI) is being used to handle the high complexity of the decision-

making task, which requires processing the input that represents the state of the client in the 

environment and select an antenna to establish the connection. To handle the temporary and 

permanent changes that may occur in the environment, the proposed method uses 

Reinforcement Learning (RL) for the decision making. Then, an antenna is selected based on 

the predicted bandwidths that each antenna may provide and the actual bandwidth is measured 

and used to train the neural network of the RL agent, so that, any changes are taken into 

consideration in future predictions. The results show that the propose method has been able 

to achieve higher bandwidth, compared to the existing Machine Learning (ML) based method, 
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which uses a regression training approach. The results also show that the use of the Gated 

Recurrent Unit has the highest performance, in terms of higher bandwidth, faster adaption and 

lower execution time. 

Keywords:  5G Networks, Reinforcement Learning, Artificial Neural Networks, Deep 

Reinforcement Learning, Beamforming.  

 



viii 

 

ÖZET 

DERIN GÜÇLENDIRMELI ÖĞRENMEYI KULLANAN 5G AĞLARINDA 

UYARLANABILIR HÜZMELEME 

 

AL-SAMEERLI, Salam Hazim Salman  

Yüksek Lisans, Elektrik ve Bilgisayar Mühendisliği, Altınbaş Üniversitesi 

Danışman: Dr. Abdullahi Abdu IBRAHIM 

Date: 08/2021 

Sayfalar: 54 

 

Mobil hücresel ağa bağlanan her istemci için ek bant genişliği ihtiyacı ve bu ağlara hızla artan 

sayıda cihaz eklenmesi, ek kapasite ihtiyacı son yıllarda hızla artmıştır. Bu talep, beşinci nesil 

(5G) olan bu ağların yeni bir neslini önerdi. Bu nesilde, müşteriler ile baz istasyonları arasında 

bağlantı kurmak için kullanılan frekansların spektrumu, milimetre dalgalarını (mmWaves) 

içerecek şekilde genişletilmiştir. Bu dalgaların engellerden geçme yeteneğinin olmaması ve 

sistemin kapasitesini artırmak için Çoklu Giriş Çoklu Çıkış (MIMO) teknolojisinin 

kullanılmasıyla, Baz İstasyonundaki (BS) çok sayıda anten kirişler oluşturmak için 

kullanılıyor. bu dalgaları ortadan kaldırır ve onları belirlenen müşteri ile iletişimi kuran en iyi 

yöne yönlendirir. Müşterinin ortamdaki durumunu temsil eden girdinin işlenmesini ve 

bağlantıyı kurmak için bir anten seçilmesini gerektiren karar verme görevinin yüksek 

karmaşıklığını idare etmek için Yapay Zeka (AI) kullanılıyor. Ortamda meydana gelebilecek 

geçici ve kalıcı değişikliklerin üstesinden gelmek için önerilen yöntem, karar verme için 

Takviye Öğrenmeyi (RL) kullanır. Daha sonra, her bir antenin sağlayabileceği tahmin edilen 

bant genişliklerine dayalı olarak bir anten seçilir ve gerçek bant genişliği ölçülür ve RL 

aracısının sinir ağını eğitmek için kullanılır, böylece herhangi bir değişiklik gelecekteki 

tahminlerde dikkate alınır. Sonuçlar, önerme yönteminin, bir regresyon eğitimi yaklaşımı 

kullanan mevcut Makine Öğrenimi (ML) tabanlı yönteme kıyasla daha yüksek bant 

genişliğine ulaşabildiğini göstermektedir. Sonuçlar ayrıca Geçitli Tekrarlayan Ünite 
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kullanımının daha yüksek bant genişliği, daha hızlı adaptasyon ve daha düşük yürütme süresi 

açısından en yüksek performansa sahip olduğunu göstermektedir.  

Anahtar kelimeler : 5G Ağları, Pekiştirmeli Öğrenme,Yapay Sinir Ağları,  Derin Pekiştirneli 

Öğrenme, Hüzmeleme. 
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1. INTRODUCTION 

With the growing need for more bandwidth per each user of cellular networks, new 

technologies are being designed and implemented to meet the required specifications. 

Recently, the fifth generation of cellular networks (5G) has attracted the attention of many 

researchers to address the challenges imposed by the new approaches that are used to 

eliminate limitations in earlier generations [1, 2]. One of the important features that 5G 

networks rely on to provide the users with more bandwidth is reducing the number of clients 

per each antenna by increasing the number of antennas, i.e. using massive Multiple Input 

Multiple Output (MIMO) [3]. Compared to only a dozen antennas in 4G, recent 5G networks 

can employ up to 100 antennas per each base station [4]. Despite the more bandwidth 

provided for each client, as the bandwidth of the antenna, i.e. port, is shared by a fewer 

number of clients, assigning an antenna for a client is a challenging task [1].  

The use of mmWave in this generation of cellular communications makes it more sensitive 

to obstacles in the environment. Hence, the assignment of the antenna to the client can have 

a significant role in establishing reliable links. In certain situations, the Base Station (BS) 

resorts to the use of surfaces in the environment to reflect the transmitted waves to the client 

[1, 4]. The task of assigning the antenna that communicates with the client is known as 

Beamforming and different techniques are being used to handle such a complex task [5]. The 

complexity of beamforming is inherited from the complexity of the environment that the BS 

is operating in. Accordingly, Artificial Intelligence (AI) techniques are being widely used 

recently to address this problem [6, 7].  

As mentioned earlier, the main aim of a new generation of cellular networks is to increase 

the bandwidth available for each user. This aim is met mainly by the 5G network by 

increasing the frequency of the carrier signal to use the frequencies up to 300GHz, so that, 

more bandwidth can be achieved using the same channel. Accordingly, the wavelength of the 

carrier is reduced to millimeter lengths, i.e. mmWaves, as the wavelength of the signals 

transmitted at 300GHz frequency is 1mm. Despite the additional bandwidth that becomes 

available when such frequencies are used, these waves are more sensitive toward obstacles 

in the environment. To solve this problem, Small Cells (SC) are being distributed in the 
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environment to relay communications with the clients and reduce the effect of the obstacles 

in the environment on the links. 

Another important approach that is used in 5G networks to provide more bandwidth to each 

client is the use of MIMO, in which each BS can be equipped with up to one-hundred ports, 

each is connected to a dedicated antenna. Compared to only a dozen antennas in the 4G 

networks, the use of MIMO can significantly increase the bandwidth available for each client, 

as the number of clients that share the bandwidth of a single port is reduced. However, such 

an increment in the number of antennas declines the use of omnidirectional antennas, which 

is the case in 4G networks, as the interference among these signals becomes a serious issue 

that limits the ability to use such networks. To overcome this problem, beamforming is used 

to control the direction and timing of each packet being transmitted, so that, interference 

among the signals is avoided and the best link with the clients is established. 

A packet that is transmitted from a BS in 5G using beamforming may or may not be 

transmitted using the same antenna that is used for the same client in the previous packet, 

even if the position of the client is static. Selecting the antenna that the packet is being 

transmitted at relies on the overall status of the environment, including all clients, obstacles 

and the BS itself. To handle the making of such complex decisions, AI techniques, especially 

Machine Learning (ML), are being used in different approaches. The method used in [8] uses 

ML to provide adaptive beamforming for 5g networks but this method adapts to changes that 

occur only in certain parameters, such as weather conditions. Accordingly, if a change occurs 

in the environment that is not of these parameters, the method fails to adapt it and the quality 

of the services provided to the clients can be affected. Additionally, RL has been used in [9] 

to control the beamforming and has been able to significantly improve the network, compared 

to the use of standard link adaption methods. However, as the agent is pretrained using data 

that represent certain scenarios, this method fails to take into consideration any additional 

factors that can affect its performance, e.g. changes in the positioning or shapes of the 

obstacles in the environment. 

Reinforcement Learning (RL) is one of the techniques that has been widely used in recent 

years to achieve different types of tasks. This type of learning enables the method that is 

employing it to interact with an environment, by executing actions in that environment. Then, 
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by measuring the response of the environment to the executed action at a certain state, the 

RL agent gains the ability to predict that response for each action at a certain state before 

being executed [10]. In summary, the agent requires a function that approximates the 

response of the environment, so that, the actions that return the best responses are selected. 

With their outstanding ability to approximate complex function, Artificial Neural Networks 

(ANNs) are being used by these agents [11, 12].  Reinforcement learning has been used to 

handle the beamforming problem in several studies [8, 9, 13]. However, these studies train 

the neural network to handle a certain environment once. Hence, when any significant 

changes are presented in the environment, the trained neural network becomes obsolete and 

loses the ability to perform the required beamforming. 

1.1. PROBLEM STATEMENT 

The need for additional range of frequencies to handle the rapidly increasing number of 

devices connected to cellular networks. As the frequency spectrum being used in the current 

generation of cellular communications is close to the mmWave range, the 5th generation has 

to include these waves in its spectrum, to allow wider spectrum to provide further devices 

with more bandwidth and satisfy their requirements. With the lack of these waves to pass 

through obstacles, such as walls and trees, communications are established with the clients 

by bouncing these waves on the obstacles available in the environment.  

Another important feature that 5G employs to provide higher bandwidths to the clients is the 

MIMO technology. In these networks the number of antennas can reach up to 100, compared 

to only a dozen in the 4G networks. To avoid interference among the signals transmitted by 

the different antennas in the base station, beamforming is used to create directional beams 

that can be directed at a certain direction, unlike the traditional omnidirectional transmission 

in previous generation of cellular communications.  

1.2. AIM OF THE STUDY 

This study aims to provide a new beamforming coordination method using deep 

reinforcement learning. The aim of the proposed method is to allow automatic learning and 

updating to the state of the environment, so that, the agent can still provide the highest 
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possible bandwidth. Additionally, the proposed method is also required to update its 

performance per each decision it makes, so that, the actual bandwidths achieved by 

establishing communications using the recommended antenna is used to update the 

predictions of the neural network that agent uses. Hence, any future predictions can consider 

the actual values, which allows the proposed method to adapt to any changes in the 

environment. 

1.3. THESIS LAYOUT 

The structure of the remainder of this thesis is described below: 

i. Chapter Two presents a review of the literature related to the topic of the thesis 

and illustrates the methodologies of the methods employed in the proposed 

method. 

ii. Chapter Three describes the proposed method in details, including how the status 

of the client is represented to the neural network and how this network is trained 

and updated during operation. 

iii. Chapter Four illustrates the experiments conducted to evaluate the different types 

of artificial neural networks in the proposed method. 

iv. Chapter Five summarizes the results of the conducted experiments, compares 

them to each other and to the state-of-the-art methods that exist in the literature. 

These comparisons illustrate the benefits of the proposed method and how it can 

be used to improve the performance of the 5G cellular network. 

v. Chapter Six summarizes the conclusions of the current work and directions of 

future work. 
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2. LITERATURE REVIEW 

2.1. REINFORCEMENT LEARNING  

Reinforcement learning uses the concepts of agents, environments, states, actions and 

rewards [14-16]. As shown in Figure 2.1, the environment receives the actions selected by 

the agent and outputs the new state of the agent and the reward. Agents, on the other hand, 

collect the new state and the reward in order to select the next action, which is return produces 

new state and reward from the environment. However, the agent does not have a clue about 

the way the environment returns the next state and the rewards of a certain action. Thus, in 

reinforcement learning, the agent attempts to predict the action that maximizes the rewards 

received from the environment, by approximating the behavior of the environment and how 

it responds to the actions [17]. 

 

Figure 2.1: Illustration of the interaction between the Agent and the Environment in 

reinforcement learning. 

The main components in RL applications are defined as follows: 

i. Agent: Is the component that is responsible of making the appropriate decision, 

depending on the state collected from the environment, to achieve the goal of the 

task assigned to it, such as making a delivery by a drone or navigating a car, 

safely, to the intended destination. 

ii. Action (A): Defines the set of possible actions that an agent can take, so that, the 

agent can predict the reward it gets upon the execution of each action at a certain 

state. For an autonomous vehicle, the possible actions at any state are to 

accelerate, deaccelerate, go left, go right, go straight and do nothing. This set 

represents the simplest actions for the RL agent, where more actions can produce 
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better performance but increases the complexity of the decision-making 

procedure, according to the larger possibilities. 

iii. Discount Factor: To allow the agent to focus on maximizing the overall reward 

rather than emphasizing on the instant one, the maximum reward from the new 

state the agent becomes into when an action is executed is included in the 

computation of the current rewards. However, the reward value of the next state 

is reduced by multiplying it by the discount factor, so that, the effect of the instant 

reward and the overall reward is balanced. For instance, if an autonomous vehicle 

is rewarded based on the instant values only, deacceleration at risky situations is 

not considered by the agent, as it cannot result in the maximum instant reward. 

Including the final rewards in the computations increases the reward expected 

from avoiding accidents, which allow the agent to make the appropriate decisions 

in that manner. Moreover, relying only on the final reward can encourage the 

agent to take some unwanted actions, such as driving off roads, to maximize the 

final reward. Thus, the discount factor must be selected to balance all the 

scenarios and produce the optimal performance from the agent. 

iv. Environment: The domain that the agent is interacting with, by executing the 

actions and collecting the rewards. In autonomous driving, the environment 

represents the street the car is being driven through and the traffic in those streets.  

v. State (S): The description of the current situation of the agent in the environment, 

which can be represented to the agent in different formats. For instance, an 

autonomous driver requires knowledge about the path it is following, its current 

position on that path, the nearest vehicle and obstacles ahead. 

vi. Reward (R): Represents the feedback from the environment for the action 

selected by the agent. Higher rewards values indicate more appropriate actions 

for the current state, while lower values indicate that the correspondent actions 

are less appropriate for the current state. For instances, deaccelerating the vehicle 

may reduce the reward under certain circumstances, such as clear path and low 

speed, but such action can have higher rewards in states that describe an incoming 

vehicle, which can result in an accident. 
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vii. Policy (π): Is the approach employed by the agent to select the action appropriate 

for the current state to maximize the reward. 

viii. Value (V): Under policy π, the long-term reward expected by the agent for the 

current state Vπ(s), considering the discount factor defined for the agent. This 

value allows the agent to avoid being in states that can dramatically reduce the 

long-term reward, even if it maximizes the instant reward. For instance, 

increasing the speed above the speed limit can increase the instant reward, as 

more distance is traveled faster, but considering the possibility of a fine or an 

accident allows the agent to make more reasonable decisions. 

ix. Q-Value (Q): This value defines the overall reward for a certain action at a 

certain state, i.e. Qπ(s, a). The agents rely mainly on this value in making their 

decisions, so that, the action that returns the maximum overall reward.  

Reinforcement is based on the Bellman equation, which is proposed by the American 

mathematician Richard Bellman. Using this equation, the reward per each action for a certain 

state can be calculated based on the instant reward and all the rewards collected until the end 

of the episode, which can be terminated as the agent reaches its goal or by performing a 

specified number of actions [18, 19]. This reward is calculated as shown in Equation 2.1. 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾𝑅𝑡+3 + ⋯ |𝑠𝑡 , 𝑎𝑡] (2.1) 

According to this equation, the highest Q value from a certain state, st, can be used to calculate 

the Q value for any action that ends up with the agent in that state, by simply multiplying it 

by the maximum Q value, as shown in Equation 2.2. 

𝑛𝑒𝑤 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (2.2) 

where the learning rate 𝛼 is used to damp the variation in the Q value for the selected action 

in the current state and 𝛾 is the discount factor that controls the balance between the instant 

and long-term rewards. The new Q value is then used to update the function that is used to 

represent the environment, so that, the actual reward from executing the action is produced 

instead of an approximation. This value also assists the computation of the reward values 

expected in previous states, as this value provides the actual reward received from the 

environment. 
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2.2. ARTIFICIAL NEURAL NETWORKS 

Inspired from humans’ brains, computations in ANNs are implemented in units, known as 

artificial neurons, distributed over the network in layers. The inputs of a certain neuron can 

be collected from the external domain or from the outputs of the previous layer’s neurons. 

To calculate the output of a neuron, all collected inputs are weighted, by multiplying each of 

them with a certain value assigned per each input and summed, before being passed through 

a nonlinear function, known as activation function, as shown in Figure 2.2. This nonlinearity 

provides more flexible output that has the ability to detect more complex features. 

Nevertheless, additional value can be added to the inputs of a neuron to provide bias to the 

computations, when needed, known as the bias [20, 21]. 

 

Figure 2.2: Illustration of the computations inside an artificial neuron [20]. 

 

Passing the result of the summation into an activation function provides the neuron with the 

ability of creating nonlinear boundaries for decision making. i.e., if an activation function is 

not included in the computation of the neuron, the only possible boundary that a neuron can 

use to split the tuples in the dataset into classes is a linear boundary, which reduces the ability 

of providing more accurate predictions. Moreover, neurons located deeper in the neural 

network would have the ability of creating more complex boundaries for each class, which 
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also improves the accuracy of the predictions provided by the entire neural network. In 

addition, the use of the bias values within each neuron can assist the creation of these complex 

boundaries by adjusting the locations of each part of the complex boundary, which is created 

by combining boundaries of neurons prior to that neuron. Some of the widely used activation 

functions are the Sigmoid, Hyperbolic Tangent (TanH) and Rectified Linear Unit (ReLU) 

[22], which are shown in Figure 2.3. However, neural networks with ReLU activation 

functions have shown significantly better performance than the other activation functions 

[23, 24]. This non-linearity of the computations allows the output to be calculated from the 

inputs by detecting the required features. However, as the neural network can follow different 

routes to reach a certain output, and as an output can be a result of a single feature of a 

combination of multiple features, these networks are being used as one-way functions to 

generate hash values that can be used to describe an input, whereas the hash value cannot be 

used to retrieve the original input [25-27]. 

 

Figure 2.3: Activation Function for Neurons [23, 28]. 

Regardless of the type of the ANN, each of these networks has two types of computations, 

one executed from the input to the output direction, known as the forward pass, while the 

other is executed in the opposite direction, known as the reverse pass [29]. The forward pass 
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is used to calculate the output of the network, based on its inputs, by calculating the output 

of each layer and use in the computations executed in the second one. In the reverse pass, the 

weights’ values are updated through gradient descent. By measuring the deviation between 

the output of the ANN, from the forward pass, and the intended output values, from the 

dataset, the derivatives of the output to the weights are calculated. Gradient descent is used 

to recognize the position weights’ value must be updated to reduce that error, which is to the 

negative of the gradient decent at that position. Such update allows the neural network to 

produce the intended output from the inputted values, hence, achieve the required task. By 

repeating this process for several iterations, the loss between the output from the forward 

pass and the intended output is reduced using backpropagation, which improves the 

performance of the neural network, until the minimum loss is reached [30, 31]. 

2.2.1. Convolutional Neural Networks 

CNNs contain convolutional layers, which consists of two-dimensional filters that are 

convoluted throughout the input of each neuron. Mathematically, the filter is actually the 

weight values of that neuron, which enable the neuron to detect local two-dimensional 

patterns in the input. The sizes of the filters in a convolutional layer is constant and patterns 

in the input can be detected within the size of the filter. However, by going deeper into the 

neural network, i.e. layers farther from the input layer, each filter detects patterns defined by 

the patterns detected by the previous layer’s filters. This enables the CNN to combine the 

recognized patterns and detect more complex features.  Although the output of a neuron in a 

convolutional layer can have different dimensions from its input, the number of dimensions 

is similar to that in the input, i.e. a neuron processing a two-dimensional input outputs a two-

dimensional array [32, 33].  

During convolution, the number of values that the filter moves per each step is defined as the 

strides, which can have different values for the horizontal and vertical movements. All the 

values within the filter are multiplied with their corresponding weights and processed in the 

neuron, which arranges its outputs according to the arrangement received during the 

convolutions of its filters. Skipping more than one value per each convolution can cause the 

loss of detecting important patterns, which can negatively affect the performance of the CNN, 
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despite the reduction in the size of the neuron’s output, which can simplify the computations 

in following layers. To reduce the size of the output from a neuron without losing important 

information, pooling layers can be placed after a convolutional layer [34].  

A pooling layer also consists of filters that are convoluted throughout its input, which is the 

output of the neuron. However, these filters have a different approach to process the input 

values, as they are not forwarded to a neuron and has no weights. Despite the existence of 

different types of pooling layers, Max-Pooling layer is one of the widely used pooling layers 

that are used to reduce the size of the processed data without losing important information. 

As shown in Figure 2.4, the filter in a max-pooling layer searches for the maximum value 

within its dimensions, and outputs that value to represent that region. By selecting the highest 

value, the most important feature in that region is selected, so that, it is less likely to lose 

important information as in increasing the strides of the filter in the convolutional layer [34]. 

 

Figure 2.4: Output of Max-Pooling filter. 

 

According to the ability of CNNs to consider the position of an input, in addition to its value, 

these networks are being widely employed in NLP. For example, such network can recognize 

that the phrase “does not exist” is equivalent to the word “absent” in a sentence, so that, the 

effect of these two neurons can be similar with respect to the output of the neural network. 

Moreover, when the output required from the neural network is not two-dimensional, which 

is the case in most applications, the output of the last convolutional layer can be flattened and 

fully connected to another one-dimensional layer. Depending on the complexity of the 
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features in the input, more layers can be added to the neural network before the output layer 

[35, 36]. 

2.2.2. Recurrent Neural Network 

Similar to CNNs, recurrent neural networks can handle two-dimensional inputs and output a 

single value per each set of inputs. However, the approach RNNs use to process these inputs 

is different, where the output from a previous input tuple is weighted and appended to the 

inputs collected from the previous layer, or the external domain. As shown in Figure 2.5, 

suppose a weight value f is used to adjust the value of the output from the tuple previous to 

the current tuple positioned at t. During the computations of the output of the neuron at t, the 

output h from t-1 is included after being weighted using f. The output at this t tuple is also 

weighted using f and included with the inputs x of the next tuple at t+1. This process is 

repeated until all the tuples in the input set are processed [37, 38]. 

 

Figure 2.5: Computations in an RNN neuron. 

 

According to the ability of RNN’s to include outputs calculated from previous tuples in the 

computations of the current one, this type of neural networks is widely used in timeseries and 

NLP applications. A phrase can be analyzed according to the effect of each word in that 

phrase and its position. For instance, the output of processing a negative word, such as not, 

can be combined with the inputs of the next word, so that, the meaning of that word can be 

inverted. Moreover, errors can be detected by recognizing wrong combinations, when a word 
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following another is in wrong formation, depending on the definition of the suitable form in 

the grammar [39, 40].  

2.2.2.1. Long- Short-Term Memory 

As illustrated in the previous section, the effect of a certain output from the neuron is relative 

to the position of the tuple being inputted to the network, with respect to the one being 

processed in this instance. At instance t, the output from t-1 has more influence on the current 

output than that from t-2. However, in many applications including NLP, such behavior can 

be of significant importance in certain conditions, and of negative influence in other. Thus, a 

more complicated type of RNNs is being used in these applications, where the influence of a 

certain output is adjusted according to its importance in the current computations, rather than 

its position in the series [41].  

To achieve such a task, LSTM networks use gates to control the flow of the values between 

the input and the output. Each gate is controlled using a separate network that accepts inputs 

from certain position. As shown in Figure 2.6, netc is the input network that receives the 

values from the external domain and calculates the outputs depending on its weights. Another 

network netin receives a copy of these inputs in order to control the gate that defines the flow 

of the output from netc, through the input gate value yin. The effect of the previous output is 

adjusted using the forget gate values yϕ, which is controlled using netϕ. This output Sc is 

squashed using an activation function before being adjusted using the values yout
 acquired 

from the output gate, which is controlled using netout that calculates the values of the gate 

using the outputs collected from the previous time instance. As each gate is controlled using 

a different neural network, the weights of each neural network are updated during the training 

of the networks, so that, the appropriate decision is made based on the input values of the 

current time instance and the outputs collected from the previous ones [42]. 
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Figure 2.6: Illustration of the data flow in an LSTM neural network [42]. 

2.2.2.2. Gated Recurrent Units 

To reduce the complexity of the LSTM, Gated Recurrent Unit (GRU) has been proposed to 

avoid the exploding and vanishing gradient problem using lower computations. A GRU 

contains two gates to control the flow of the values through the neuron, which are the reset 

and update gates, as shown in Figure 2.7 [43]. The reset gate controls the effect of the values 

outputted from the previous timestep, depending on the importance of those values in the 

computation for the current input. The update gate controls the effect of the current input on 

the output of the unit, so that, the output can consider both the current and previous values 

depending on the decision made at these gates. Such topology achieves the same 

methodology of the LSTM using fewer computations, as it uses fewer gates. However, the 

qualities of the predictions for both methods are very similar and both methods must be 

evaluated in order to select the appropriate method for the required application [44-46]. 
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Figure 2.7: Gated Recurrent Unit. 

 

2.2.3. Overfitting in Artificial Neural Networks 

One of the main challenges faced by deep neural networks is the phenomenon of overfitting, 

where the predictions are based on specific features in the neural network, which makes these 

predictions very restrict to these features. Thus, any new inputs that may belong to that class 

but do not fire the neurons corresponding to these features are most probably are going be 

wrongfully classifies. To overcome such problem, a predefined ratio of the neurons in a 

hidden layer are randomly dropped per each iteration of the training phase, so that, the neural 

network is forced to find alternative paths to the same prediction and reduce the dependency 

on specific features. This approach is known as Dropout and has shown good improvement 

in the predictions provided by neural networks [47], it is shown in Figure 2.8. 
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Figure 2.8: Illustration of dropout in artificial neural networks [47].  

2.2.4. Training Artificial Neural Networks 

Similar to humans’ brains, where the topology of the biological neural network and the 

conductivities of the synapses define the decisions made by the brain, ANNs also rely of the 

distribution of the neurons and the weights among them to make the required decision. Two 

identical neural networks can be used in completely different task, in which different 

decisions are made, by using different weights values among their neurons. The value of a 

weight between two neurons defines the type of the effect, the output of the neuron in the 

previous layer over the neuron in the next one, as well as the significance of that effect on 

the output of the neuron in the later layer [27, 48]. 

Backpropagation has a key-role in the popularity of neural networks, as the performance of 

these networks is significantly improved when this technique is used to update the value of 

the network’s weights. In order to update the weights of the ANN, backpropagation requires 

three values, as shown in Equation 2.1, which are the rate of change of the network’s output, 

with respect to the loss being updated 
𝜕𝑂

𝜕𝑤
, the error E between the output of the network and 

the one actually required from it and the learning rate L [49]. 

a-Standard Neural Network b-After applying dropout 

Neural Network 
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𝑤̂ = 𝑤 −
𝜕𝑂

𝜕𝑤
× 𝐸 × 𝐿 (2.1) 

Regardless of the type of error function used by the neural network, such as the cross-entropy 

and Mean Squared Error (MSE) functions, these functions calculate a single value that 

represents the difference between the output of the neural network, using the current weights 

values, and the values required from the network. The output of the neural network is 

collected by processing a batch of sample inputs, from the training dataset, using the forward 

pass of the neural network, while the actual outputs are collected directly from the training 

dataset, or by processing the inputs using predefined functions. The calculated error value is 

then used by in the backpropagation. However, as large error values can produce large delta 

values, for weights updates, a learning rate is used to control the delta values in lower ranges. 

This control of the delta values ensures the avoidance of exploding weight values, so that, 

the weights values that produce the minimum error can be discovered [50]. 

By calculating the rate of change of the output error, with respect to the weight values, three 

possible values can be produces [51, 52], which are: 

i. A positive value, which indicate that increasing that weight value increases the error. 

Thus, the weight value must be decreased by the calculate delta value, in order to 

decrease the difference between the outputs of the neural network and the required 

ones. 

ii. A negative value that indicates that the error is decreased by increasing the value of 

that weight. Thus, the current weight value must be increased by the calculated delta 

value, in order to reduce the error value and produce more accurate outputs. 

iii. A zero value, which indicates that no change is required to the current value of the 

weight. 

According to these possible values and by using the formula shown in Equation 2.3, the 

values of the weights in the neural network can be updated in order to reduce the difference 

between the predictions of the neural network and the actual output that is required to achieve 

the task of the ANN. However, according to the need of learning rate, to reduce the delta 

value used to update the weight values, the optimal performance of the neural network, 
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produced by minimizing the error through updating the weights, calculating the optimal 

weights values require multiple iterations, i.e. epochs [53]. 

2.3. DEEP Q-LEARNING 

The use of artificial neural network to approximate the function that defines the environment 

and predict the Q values per each action for a certain state, so that, the agent can select the 

most appropriate action is known as Q-Learning. The aim of this learning approach is to 

provide the neural network with the actual rewards collected from the environment, so that, 

it can predict these rewards in future operations [54]. However, as the neural network does 

not have any knowledge about the environment that the agent is interacting with, the training 

process relies on executing random actions at the beginning of the training [55]. As the neural 

network starts to gain more knowledge about the environment, the decisions of the agent can 

start to be less random and more dependent on the predictions of the neural network. To 

control such behavior, a value is defined to control the randomness in the decisions made by 

the agent. This value is denoted as the epsilon and it normally starts with a high value, i.e. 

more random actions, and reduced as the neural network gains more knowledge about the 

environment [56]. 

To select between the execution of a random action or based on the outputs of the neural 

network, the epsilon value is compared to a randomly generated value. If the random value 

is less than the epsilon, the action selected by the agent is the action that produces the highest 

reward, based on the predictions of the neural network. Otherwise, the action is selected 

randomly and executed against the environment [57]. In both cases, the reward collected 

from the environment upon the execution of the selected action at the current state is used 

with the maximum Q value predicted by the neural network for the new state the agent 

becomes in, to produce a new Q value that is used to train the neural network [58, 59].  

When the agent finishes an episode, the neural network is trained using the data collected by 

the agent during the episode, i.e. the states, actions and rewards, and the epsilon value is 

reduced by a predefined ration, known as the gamma value. This process is repeated until the 

defined number of training episodes is reached, in which the neural network is expected to 

have gained enough knowledge to produce accurate Q value that can assist the agent to select 
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the optimal action per each state it faces [18, 60]. The ability of the neural networks to provide 

approximations for states that it has never been through, during the training, allows the 

employment of these networks in the Deep Q-Learning (DQN) approach, so that, the agent 

still has approximate Q values to make the appropriate decision. Comparing this approach to 

the use of tables that contains the states and their corresponding Q values shows the benefits 

of the approximated computations, as Q values for states that are included in the Q table can 

be recognized by the agent [61, 62]. Thus, DQN has been widely used in approximating the 

functions of complex environments, such as those faced by autonomous vehicles drivers. 

2.4. ARTIFICIAL INTELLIGENCE AND BEAMFORMING IN 5G NETWORKS 

As mentioned earlier, the main aim of a new generation of cellular networks is to increase 

the bandwidth available for each user. This aim is met mainly by the 5G network by 

increasing the frequency of the carrier signal to use the frequencies up to 300GHz, so that, 

more bandwidth can be achieved using the same channel. Accordingly, the wavelength of the 

carrier is reduced to millimeter lengths, i.e. mmWaves, as the wavelength of the signals 

transmitted at 300GHz frequency is 1mm. Despite the additional bandwidth that becomes 

available when such frequencies are used, these waves are more sensitive toward obstacles 

in the environment. To solve this problem, Small Cells (SC) are being distributed in the 

environment to relay communications with the clients and reduce the effect of the obstacles 

in the environment on the links. 

Another important approach that is used in 5G networks to provide more bandwidth to each 

client is the use of MIMO, in which each BS can be equipped with up to one-hundred ports, 

each is connected to a dedicated antenna. Compared to only a dozen antennas in the 4G 

networks, the use of MIMO can significantly increase the bandwidth available for each client, 

as the number of clients that share the bandwidth of a single port is reduced. However, such 

an increment in the number of antennas declines the use of omnidirectional antennas, which 

is the case in 4G networks, as the interference among these signals becomes a serious issue 

that limits the ability to use such networks. To overcome this problem, beamforming is used 

to control the direction and timing of each packet being transmitted, so that, interference 

among the signals is avoided and the best link with the clients is established. 
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A packet that is transmitted from a BS in 5G using beamforming may or may not be 

transmitted using the same antenna that is used for the same client in the previous packet, 

even if the position of the client is static. Selecting the antenna that the packet is being 

transmitted at relies on the overall status of the environment, including all clients, obstacles 

and the BS itself. To handle the making of such complex decisions, AI techniques, especially 

Machine Learning (ML), are being used in different approaches. The method used in [8] uses 

ML to provide adaptive beamforming for 5g networks but this method adapts to changes that 

occur only in certain parameters, such as weather conditions. Accordingly, if a change occurs 

in the environment that is not of these parameters, the method fails to adapt it and the quality 

of the services provided to the clients can be affected. Additionally, RL has been used in [9] 

to control the beamforming and has been able to significantly improve the network, compared 

to the use of standard link adaption methods. However, as the agent is pretrained using data 

that represent certain scenarios, this method fails to take into consideration any additional 

factors that can affect its performance, e.g., changes in the positioning or shapes of the 

obstacles in the environment. 
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3. METHODOLOGY 

3.1. OVERVIEW 

The proposed method uses a RL agent to govern beamforming in the 5g network by collecting 

information about the client from all base stations in order to select the antenna that is 

expected to maximize the bandwidth between the cellular network and the client. As shown 

in Figure 3.1, when a client requests a connection to the network, the signal between the 

device and each antenna in the network is measured and delivered to a centralized server. 

This server then uses the RL agent to predict the bandwidth at each antenna and use the one 

with the highest expected bandwidth. When the connection is established, the actual 

bandwidth is measured and used to update the neural network, so that, it can handle any 

variations in the environment, without the need to manually update its parameters. 

 

 

Figure 3.1: Overview of the proposed methodology. 
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3.2. DATA COLLECTION AND CLIENT REPRESENTATION 

When an antenna receives a signal from the client, the strength of the signal is measured and 

delivered to the server that is designated for beamforming management. Another piece of 

information is appended to the received signal strength value, which indicates whether that 

antenna has been used by the beamforming coordination server to establish communications 

with that client at that time instance or not. Accordingly, for a system with N BSs and M 

antenna in each BS, a total of 2×N×M values are collected for each packet received from that 

client.  

In addition to the possible variations in the environment, the mobility of the client poses 

another challenge towards the beamforming task, which is represented by the need to predict 

which antenna has the ability to maintain communications with the client based on their 

movement. By considering such scenarios, the proposed method can favor one antenna over 

another, based on the behavior of the client, in terms of movement, and the environment that 

the client is moving in, e.g., the obstacles in that environment. To provide the neural network 

with such representation, historical data is provided, in addition to the data collected from 

the current time instance. Hence, for each antenna selection, the proposed method provides 

the neural network with 100×2×N×M values, which represent the measures collected by all 

the antennas that are in the network for the latest 100 time-instances. 

3.3. ANTENNA SELECTION USING RL 

When a packet is received from the client, the antenna that is designated to reply that packet, 

i.e., establish communications with the client, is selected by passing the data that represent 

the client to the neural network that the RL agent uses to predict the bandwidth of each 

antenna, if selected. The output of the neural network, which represents the normalized 

expected bandwidth for each antenna in each BS, is then used to select an antenna. However, 

to allow the proposed method to maintain exploration during the operation but avoid frequent 

use of antennas with low expected bandwidth, the probability of using an antenna is equal to 

the normalized predicted bandwidth, which is normalized to the maximum bandwidth of the 

antenna. Accordingly, the chances that the proposed method attempt antennas that are 

predicted to have higher bandwidths are significantly higher than antennas that are expected 
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to have lower bandwidths. To achieve such a selection, the proposed method uses the 

approach shown in Figure 3.2, in which the ID of an antenna is repeated t times, which 

represents 100×normalized bandwidth of the antenna. Then, an antenna is selected randomly 

from the generated list. According to this approach, the high frequency of IDs of the antennas 

that are predicted to have high bandwidth increases the chances of selecting such an antenna, 

whereas the absence of the antennas that have not received the packet, i.e., cannot establish 

communications with that client, eliminates the probability of selecting such an antenna, 

which may interrupt the communications with the client. 

Input:  Predictions of the neural network. 

Output: The selected antenna. 

Step1: P ← Predictions of the neural network. //Read the predictions of the neural  

      network. 

Step2: A = [] 

for i in range(Len(P)): //For each antenna in the system. 

 for j in range(100×P[i]+1):  //Repeat for 100×predicted normalized 

      bandwidth. 

  A.append(i)  //Add the antenna ID to the list 

Step3: S ← Select an antenna from A randomly. 

Step4: Return S 

 

Figure 3.2: Antenna selection algorithm. 

3.4. STRUCTURE OF THE RL NEURAL NETWORK 

In order to predict the normalized bandwidth of each antenna, a neural network is 

implemented for the RL agent in the proposed method, which is responsible for selecting the 

antenna. The implemented neural network, shown in Figure 3.3, consists of three hidden 

layers, in addition to the input and output layers. The first two hidden layers are followed by 

dropout layers, whereas the third one is not followed by a dropout layer to avoid affecting 

the values in the output layer. All hidden layers use ReLU activation function, whereas the 
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output layer uses Sigmoid function, as this function limits the output to the interval [0, 1], 

which represents the normalized bandwidth value. The input layer is set to handle 

100×2×N×M, as described in Section 3.2, whereas the output layer contains only N×M 

neurons, as each neuron represents the normalized bandwidth that is predicted to be achieved 

by the corresponding antenna if used to establish communications with the client. 

 

 

Figure 3.3: Structure of the neural networks implemented for the RL agent. 

Different types of neurons are evaluated in the proposed method, in order to recognize the 

one that is suitable for the beamform coordination application. The selected types are either 

CNN or RNN neurons, according to their ability to handle multi-dimensional inputs. 

According to this ability, these neurons can predict the behavior of the client and the antenna 

suitable for that behavior by processing the historical information collected from the different 

antennas. Eventually, the outputs of the neural network are used to select the suitable antenna, 

based on the approach described in Section 3.3. 

3.5. TRAINING THE NEURAL NETWORK 

One of the most important features of the proposed method is its ability to adopt to the 

changes that may occur in the environment by simply measuring the actual bandwidth that is 
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achieved between the network and the client, when established using the selected antenna. 

This feature is inherited from the use of RL in the proposed method, in which the predictions 

of the neural network are updated in realtime. Such updates allow the proposed method to 

accommodate to any changes that may occur in the environment, combined with the antenna 

selection approach based on the probability of achieving high bandwidth. To update the 

neural network, the predictions of the network are collected. Then, the actual bandwidth is 

calculated for the antenna, as shown in Equation 3.1. This value is then normalized and placed 

at the output correspondent to the antenna that is actually selected to establish the 

communications. Hence, if any changes occur to the bandwidth, according to any changing 

variables in the environment, the neural network is updated automatically, which allows it to 

recognize better alternatives to the selected antenna to maintain high bandwidths. 

𝑅 = 𝑃𝐷𝑅 ×
𝑏

𝐵
 

 

(3.1) 

where, 

R is the calculated reward value, based on the packet delivery rate (PDR) and the actual 

bandwidth b to the bandwidth of the antenna B. 
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4. EXPERIMENTAL RESULTS 

In order to evaluate the performance of the proposed method, the environment simulated by 

Alkhateeb et al. [13], which is available at [63]. As shown in Figure 4.1, this setup simulates 

a mobile client in a vehicle moving among four base stations. Then, a bus interrupts the 

environment, which requires changes in the beamforming decisions made by the decision-

making method. The proposed method is implemented using Python programming language 

[64], where the Tensorflow library [65] is used to implement, train and use the neural network 

employed by the RL agent. All experiments are conducted using an Intel Core i7 processor 

running at 2.4 GHz with 16 GB of Random Access Memory (RAM). Additionally, the 

computer also contains an Nvidia Graphical Processing Unit (GPU), which has the ability to 

parallelize and accelerate the computations of the Tensorflow library, which are required to 

train the neural networks and compute their outputs during runtime. 



27 

 

. 

 

Figure 4.1: Illustration of the simulated scenario. (a) The vehicle with the moving client. (b) The 

grid covered by the four base stations. (c) A bus interrupting the environment. 

4.1. EXPERIMENT A – USING CNN 

In this experiment, convolutional neurons are used in the model described in Section 3.4, 

where each neuron uses a 2×2 filters and followed by a 2×2 max-pooling layer to reduce the 

dimensionality of the array forwarded to the following layer. As shown in Figure 4.2, the 

(a) 

(b) 

(c) 
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proposed method using CNN has been able to achieve high bandwidth rates, compared to the 

maximum bandwidth that the antenna can achieve. The proposed method in this experiment 

has been able to the learn the correct assignment that can increase the bandwidth of the 

established link, by choosing the suitable antenna. These results validate the ability of using 

RL and CNN to address the beamform coordination online, i.e., without the need to collect 

any prior data. Hence, the proposed method can also update its performance when any 

permanent changes are proposed to the environment, as the actual bandwidth achieved is 

used to train the neural network and update its predictions, which in return updates the 

decisions made for antenna assignment. Moreover, the ability to use an antenna with a 

competitive bandwidth has accelerated the learning process, as multiple antennas are 

evaluated until the best one is recognized based on the conditions of the environment and the 

client. 

 

Figure 4.2: Bandwidth achieved by the CNN without interruption. 

Additionally, the proposed antenna selection method has shown the ability to improve the 

decision by trying competitive antennas when the communications are interrupted, as shown 

in Figure 4.3. This update is a result of updating the predictions of the neural network to 

reduce the bandwidth of the selected antenna, as its actual bandwidth is reduced. Hence, the 
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antenna, with a similar or better predicted bandwidth, compared to the antenna being 

currently used is selected for to maintain communications and bandwidth. Moreover, these 

results also illustrate the ability of the proposed method to rapidly adopt to any changes in 

the environment, illustrated by its ability to increase the bandwidth when the bus has 

interrupted the communications. In addition to the achievable bandwidth, the use of the CNN 

in the proposed method has consumed an average of 0.31µs per each prediction, which is 

measured as a representation of the complexity of the model. 

 

Figure 4.3: Performance of the proposed method using CNN neural network with the bus 

interrupting the environment. 

4.2. EXPERIMENT B – USING RNN 

In this experiment, two typos of RNN are evaluated, which are the LSTM and GRU. As 

shown in Figure 4.4, the GRU has been able to achieve higher bandwidth, with slightly faster 

learning, illustrated by its ability to improve the bandwidth faster. Additionally, the LSTM 

network has shown fluctuations in the achieved bandwidth, which indicates that it has 

outputted similar predictions for antennas that have achieve lower actual bandwidth, 

compared to the predicted bandwidth. Despite the reduction in the bandwidth at such 

conditions, these fluctuations and their return to high bandwidths illustrate the ability of the 
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proposed method to rectify any errors in the predictions and adopt to any changes in the 

environment.  

 

Figure 4.4: Bandwidth achieved by the RNNs without interruption. 

The faster learning of the GRU is a result of its lower complexity, compared to the LSTM, 

which is also the reason behind providing faster predictions, with only 0.28µs, compared to 



31 

 

0.42µs required by the LSTM. The longer time required by the LSTM is a result of using 

more computations in its structure to govern the flow of the data, which despite the ability to 

the GPU to parallelize these computations, still affect the execution time. 

 

Figure 4.5: Bandwidth achieved by the RNN models with the bus interrupting the environment. 
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5. DISCUSSION 

The summary of the results collected from the conducted experiments, shown in Figure 5.1, 

show that the GRU has achieved the highest bandwidth among the evaluated neural network 

units. Combined with the lower execution time achieved by the GRU, shown in Figure 5.2, 

the results show that this unit is most suitable for beamforming coordination. This 

performance is according to the ability of GRU units to efficiently consider historical data, 

compared to the more complex computations required by the LSTM, which requires 

additional execution time, and the limited ability of CNN to consider only the values that are 

in the same filter. Additionally, the comparison shown in Figure 5.1 illustrate the 

improvement achieved by using RL instead of regression approach, by achieving higher 

bandwidth using CNN, which is also used by the regression-based method proposed by 

Alkhateeb et al. [13].  

 

Figure 5.1: Comparison of the bandwidths achieved by the different neural networks in the 

proposed method. 
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Figure 5.2: Illustration of the average prediction time required by the neural networks in the 

proposed method. 

In addition to the higher bandwidth achieved by the proposed method, the proposed antenna 

selection method has allowed the method to adopt faster than the method proposed by 

Alkhateeb et al. [13], as the best antenna is selected by attempting several competitive 

antennas that are predicted to achieve the highest bandwidth. As shown in Figure 5.3, the 

method proposed by Alkhateeb et al. [13] has almost linear improvement, based on the 

behavior of the regression approach. Alternatively, the proposed method has shown faster 

adoption to the changes and faster reach to high bandwidths as it uses several antennas with 

similar predicted bandwidth and emphasizes the one that achieves higher bandwidth than the 

others.  
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Figure 5.3: Comparison of the achieved bandwidths when the bus interrupts computations. 

Another important behavior that is shown by the proposed method during the evaluation is 

its ability to maintain previous knowledge in future decisions. This behavior is illustrated in 

Figure 5.4 by the green and red horizontal lines, which mark the bandwidth of the network 

when the bus leaves and returns for the second time. These bandwidths are larger than the 

ones achieved by the network at the same conditions in the previous time, which illustrates 

the ability of making use of the decisions made in similar previous scenarios.  
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Figure 5.4: Illustration of the ability of the proposed method to make use of previous knowledge to 
improve communications. 
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6. CONCLUSION 

With the rapidly growing number of devices accessing cellular mobile networks and the 

increasing demand on bandwidth by each of these devices, the existing generation of these 

networks has not been able to satisfy these requirements. For the next generation of networks, 

the range of the frequency must be extended beyond the mmWave range, which imposes the 

need to handle the challenges presented by the lack of ability of these waves to travel through 

obstacles, such as walls and trees. Combined with the use of MIMO technology and the 

significantly higher number of antennas to handle the larger number of the clients and reduce 

the loading per each antenna, beamforming is being used to direct the wave via the best route 

to reach the client. 

With the high complexity required to make the appropriate decision on which antenna to use 

to establish communications with the client, recent techniques have resorted to the use of 

different AI methods. However, the use of classification and regression approaches does not 

allow the methods to adapt to changes in the environment, unless new training data are 

collected and used to train the ML method. Hence, a new method is proposed in this study to 

handle beamforming in 5G networks using RL. The use of this approach allows the proposed 

method to reevaluate its decisions regarding the selected antennas. This method measures the 

actual bandwidth achieved by the selected antenna and use the measured value to update the 

neural networks that is used to predict the bandwidth of each antenna in the environment.  

The proposed method has been able to improve the bandwidth of the network by improving 

the bandwidth provided to the client, compared to existing method that relies on regression 

approach for the training of the neural network. Additionally, several types of neural 

networks are evaluated in this study, in which the results show that the GRU has achieved 

the best performance, with the highest bandwidth for the client and the least execution time 

per each prediction. Moreover, the results show that the proposed method has been able to 

reach higher bandwidths faster than existing methods, according to the antenna selection 

method proposed in this study. This method allows the beamforming coordination to select 

competitive antennas that have competitive bandwidths and update their actual bandwidth, 

which allows more accurate decision making. 
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In future work, the ability of the proposed method to handle an enormous number of clients 

is going to be evaluated. Despite the ability of RL to handle such complex decisions, the 

interference among the beams can affect the bandwidth of each client. Hence, this evaluation 

must be conducted and compared to the results of the experiments conducted in this study, 

in order to evaluate the ability of applying the proposed method is such environments. 

  



38 

 

REFERENCES 

[1] M. Giordani, M. Mezzavilla, and M. Zorzi, "Initial access in 5G mmWave cellular 

networks," IEEE Communications Magazine, vol. 54, pp. 40-47, 2016. 

[2] S. A. Busari, S. Mumtaz, S. Al-Rubaye, and J. Rodriguez, "5G millimeter-wave 

mobile broadband: Performance and challenges," IEEE Communications Magazine, vol. 56, 

pp. 137-143, 2018. 

[3] X. Liu, Q. Zhang, W. Chen, H. Feng, L. Chen, F. M. Ghannouchi, et al., "Beam-

oriented digital predistortion for 5G massive MIMO hybrid beamforming transmitters," IEEE 

Transactions on Microwave Theory and Techniques, vol. 66, pp. 3419-3432, 2018. 

[4] A. Nordrum and K. Clark, "Everything you need to know about 5G," IEEE Spectrum, 

vol. 27, 2017. 

[5] B. Yang, Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, "Digital beamforming-

based massive MIMO transceiver for 5G millimeter-wave communications," IEEE 

Transactions on Microwave Theory and Techniques, vol. 66, pp. 3403-3418, 2018. 

[6] T. Maksymyuk, J. Gazda, O. Yaremko, and D. Nevinskiy, "Deep learning based 

massive MIMO beamforming for 5G mobile network," in 2018 IEEE 4th International 

Symposium on Wireless Systems within the International Conferences on Intelligent Data 

Acquisition and Advanced Computing Systems (IDAACS-SWS), 2018, pp. 241-244. 

[7] M. L. Memon, M. K. Maheshwari, N. Saxena, A. Roy, and D. R. Shin, "Artificial 

intelligence-based discontinuous reception for energy saving in 5G networks," Electronics, 

vol. 8, p. 778, 2019. 

[8] C. Liu and H. J. Helgert, "An Improved Adaptive Beamforming-based Machine 

Learning Method for Positioning in Massive MIMO Systems," International Journal 

On Advances in Internet Technology, vol. 6, pp. 1-12, 2020. 



39 

 

[9] F. B. Mismar, B. L. Evans, and A. Alkhateeb, "Deep reinforcement learning for 5g 

networks: Joint beamforming, power control, and interference coordination," IEEE 

Transactions on Communications, vol. 68, pp. 1581-1592, 2019. 

[10] J. Fu, K. Luo, and S. Levine, "Learning robust rewards with adversarial inverse 

reinforcement learning," arXiv preprint arXiv:1710.11248, 2017. 

[11] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, "Deep 

reinforcement learning: A brief survey," IEEE Signal Processing Magazine, vol. 34, 

pp. 26-38, 2017. 

[12] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, "A brief survey 

of deep reinforcement learning," arXiv preprint arXiv:1708.05866, 2017. 

[13] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, "Deep learning 

coordinated beamforming for highly-mobile millimeter wave systems," IEEE Access, 

vol. 6, pp. 37328-37348, 2018. 

[14] M. L. Littman, "Markov games as a framework for multi-agent reinforcement 

learning," in Machine Learning Proceedings 1994, ed: Elsevier, 1994, pp. 157-163. 

[15] M. Tan, "Multi-agent reinforcement learning: Independent vs. cooperative agents," 

in Proceedings of the tenth international conference on machine learning, 1993, pp. 

330-337. 

[16] C. J. Watkins and P. Dayan, "Q-learning," Machine learning, vol. 8, pp. 279-292, 

1992. 

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, et al., 

"Playing atari with deep reinforcement learning," arXiv preprint arXiv:1312.5602, 

2013. 



40 

 

[18] H. Van Hasselt, A. Guez, and D. Silver, "Deep reinforcement learning with double q-

learning," in Thirtieth AAAI Conference on Artificial Intelligence, 2016. 

[19] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, et al., "Deep q-

learning from demonstrations," in Thirty-Second AAAI Conference on Artificial 

Intelligence, 2018. 

[20] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha, 

"Backpropagation for energy-efficient neuromorphic computing," in Advances in 

Neural Information Processing Systems, 2015, pp. 1117-1125. 

[21] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, "On the number of linear regions 

of deep neural networks," in Advances in neural information processing systems, 

2014, pp. 2924-2932. 

[22] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, "Regularization of neural 

networks using dropconnect," in International Conference on Machine Learning, 

2013, pp. 1058-1066. 

[23] B. Xu, N. Wang, T. Chen, and M. Li, "Empirical evaluation of rectified activations 

in convolutional network," arXiv preprint arXiv:1505.00853, 2015. 

[24] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: towards real-time object 

detection with region proposal networks," IEEE transactions on pattern analysis and 

machine intelligence, vol. 39, pp. 1137-1149, 2017. 

[25] M. Turčaník and M. Javurek, "Hash function generation by neural network," in 2016 

New Trends in Signal Processing (NTSP), 2016, pp. 1-5. 

[26] M. Turčaník, "Hash function generation based on neural networks and chaotic maps," 

in 2017 Communication and Information Technologies (KIT), 2017, pp. 1-5. 



41 

 

[27] N. Abdoun, S. El Assad, R. Assaf, O. Déforges, M. Khalil, and S. Belghith, "Design 

and implementation of robust Keyed Hash functions based on Chaotic Neural 

Network," 2018. 

[28] B. Karlik and A. V. Olgac, "Performance analysis of various activation functions in 

generalized MLP architectures of neural networks," International Journal of 

Artificial Intelligence and Expert Systems, vol. 1, pp. 111-122, 2011. 

[29] D. Maclaurin, D. Duvenaud, and R. Adams, "Gradient-based hyperparameter 

optimization through reversible learning," in International Conference on Machine 

Learning, 2015, pp. 2113-2122. 

[30] J. H. Lee, T. Delbruck, and M. Pfeiffer, "Training deep spiking neural networks using 

backpropagation," Frontiers in neuroscience, vol. 10, p. 508, 2016. 

[31] K. B. Nahato, K. N. Harichandran, and K. Arputharaj, "Knowledge mining from 

clinical datasets using rough sets and backpropagation neural network," 

Computational and mathematical methods in medicine, vol. 2015, 2015. 

[32] B. Kayalibay, G. Jensen, and P. van der Smagt, "CNN-based segmentation of medical 

imaging data," arXiv preprint arXiv:1701.03056, 2017. 

[33] Y. Lu, S.-C. Zhu, and Y. N. Wu, "Learning frame models using cnn filters," arXiv 

preprint arXiv:1509.08379, 2015. 

[34] G. Tolias, R. Sicre, and H. Jégou, "Particular object retrieval with integral max-

pooling of CNN activations," arXiv preprint arXiv:1511.05879, 2015. 

[35] J. Xu, W. Peng, T. Guanhua, X. Bo, Z. Jun, W. Fangyuan, et al., "Short text clustering 

via convolutional neural networks," 2015. 



42 

 

[36] D. Chen, J. Bolton, and C. D. Manning, "A thorough examination of the cnn/daily 

mail reading comprehension task," arXiv preprint arXiv:1606.02858, 2016. 

[37] W. Zaremba, I. Sutskever, and O. Vinyals, "Recurrent neural network regularization," 

arXiv preprint arXiv:1409.2329, 2014. 

[38] I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to sequence learning with neural 

networks," in Advances in neural information processing systems, 2014, pp. 3104-

3112. 

[39] P. Liu, X. Qiu, and X. Huang, "Recurrent neural network for text classification with 

multi-task learning," arXiv preprint arXiv:1605.05101, 2016. 

[40] A. Kuncoro, M. Ballesteros, L. Kong, C. Dyer, G. Neubig, and N. A. Smith, "What 

do recurrent neural network grammars learn about syntax?," arXiv preprint 

arXiv:1611.05774, 2016. 

[41] H. Sak, A. Senior, and F. Beaufays, "Long short-term memory recurrent neural 

network architectures for large scale acoustic modeling," in Fifteenth annual 

conference of the international speech communication association, 2014. 

[42] F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual 

prediction with LSTM," 1999. 

[43] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, 

et al., "Learning phrase representations using RNN encoder-decoder for statistical 

machine translation," arXiv preprint arXiv:1406.1078, 2014. 

[44] R. Fu, Z. Zhang, and L. Li, "Using LSTM and GRU neural network methods for 

traffic flow prediction," in 2016 31st Youth Academic Annual Conference of Chinese 

Association of Automation (YAC), 2016, pp. 324-328. 



43 

 

[45] B. Athiwaratkun and J. W. Stokes, "Malware classification with LSTM and GRU 

language models and a character-level CNN," in 2017 IEEE International Conference 

on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 2482-2486. 

[46] R. Dey and F. M. Salemt, "Gate-variants of gated recurrent unit (GRU) neural 

networks," in 2017 IEEE 60th International Midwest Symposium on Circuits and 

Systems (MWSCAS), 2017, pp. 1597-1600. 

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 

"Dropout: a simple way to prevent neural networks from overfitting," The journal of 

machine learning research, vol. 15, pp. 1929-1958, 2014. 

[48] I. K. Sethi and A. K. Jain, Artificial neural networks and statistical pattern 

recognition: old and new connections vol. 11: Elsevier, 2014. 

[49] R. Hecht-Nielsen, "Theory of the backpropagation neural network," in Neural 

networks for perception, ed: Elsevier, 1992, pp. 65-93. 

[50] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, et al., 

"Evolving deep neural networks," in Artificial Intelligence in the Age of Neural 

Networks and Brain Computing, ed: Elsevier, 2019, pp. 293-312. 

[51] M. Cilimkovic, "Neural networks and back propagation algorithm," Institute of 

Technology Blanchardstown, Blanchardstown Road North Dublin, vol. 15, 2015. 

[52] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, p. 436, 2015. 

[53] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural networks, 

vol. 61, pp. 85-117, 2015. 



44 

 

[54] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, et al., 

"Human-level control through deep reinforcement learning," Nature, vol. 518, p. 529, 

2015. 

[55] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, "Action-conditional video 

prediction using deep networks in atari games," in Advances in neural information 

processing systems, 2015, pp. 2863-2871. 

[56] Y. Chen and E. Kulla, "A Deep Q-Network with Experience Optimization (DQN-

EO) for Atari’s Space Invaders," in Workshops of the International Conference on 

Advanced Information Networking and Applications, 2019, pp. 351-361. 

[57] S. Yoon and K.-J. Kim, "Deep Q networks for visual fighting game AI," in 2017 IEEE 

Conference on Computational Intelligence and Games (CIG), 2017, pp. 306-308. 

[58] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training 

of deep networks," in Advances in neural information processing systems, 2007, pp. 

153-160. 

[59] A. HUSSEIN, O. UÇAN, and O. BAYAT, "Centralized Reinforcement Learning for 

the Internet of Things Devices," AURUM Journal of Engineering Systems and 

Architecture, vol. Submitted, 2019. 

[60] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, "Learning to communicate 

with deep multi-agent reinforcement learning," in Advances in Neural Information 

Processing Systems, 2016, pp. 2137-2145. 

[61] A. Pritzel, B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D. Hassabis, et al., "Neural 

episodic control," in Proceedings of the 34th International Conference on Machine 

Learning-Volume 70, 2017, pp. 2827-2836. 



45 

 

[62] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, "Deep exploration via 

bootstrapped DQN," in Advances in neural information processing systems, 2016, pp. 

4026-4034. 

[63] S. A. A. Alkhateeb, P. Varkey, Y. Li, Q. Qu and D. Tujkovic. (2018). Available: 

https://www.deepmimo.net/ 

[64] M. F. Sanner, "Python: a programming language for software integration and 

development," J Mol Graph Model, vol. 17, pp. 57-61, 1999. 

[65] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, et al., "Tensorflow: A 

system for large-scale machine learning," in 12th {USENIX} symposium on operating 

systems design and implementation ({OSDI} 16), 2016, pp. 265-283. 

 

 

https://www.deepmimo.net/

