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ABSTRACT

DUAL REPRESENTATIONS OF QUASICONVEX
COMPOSITIONS WITH APPLICATIONS TO SYSTEMIC RISK

Miicahit Aygiin
M.S. in Industrial Engineering
Advisor: agin Ararat
JULY 2021

The importance of measuring risk in an interconnected financial system has been appreciated
recently, due in part to the global financial crisis. In the literature, systemic risk measures
are generally represented by the composition of a univariate risk measure and an aggrega-
tion function, a function that encodes the structure of the financial network. Having dual
representations for systemic risk measures is helpful in providing economic interpretations
and offering duality-based computational methods. For a univariate risk measure, a key
assumption is that diversification should not increase risk. The mathematical translation of
this assumption was considered as convexity earlier in the history of risk measures. Recently,
quasiconvexity has been considered as a more accurate translation of diversification. For a
single quasiconvex risk measure, dual representations are available in the literature based on
the so-called penalty functions. The use of a quasiconvex risk measure in composition with a
concave aggregation function results in a quasiconvex systemic risk measure, a multivariate

functional on a space of random vectors.

Motivated by the problem of finding dual representations for quasiconvex systemic risk
measures, we study quasiconvex compositions in an abstract infinite-dimensional setting.
We calculate an explicit formula for the penalty function of the composition in terms of
the penalty functions of the ingredient functions. The proof makes use of a nonstandard
minimax inequality (rather than equality as in the standard case) that is available in the
literature. In the last part of the thesis, we apply our results in concrete probabilistic settings
for systemic risk measures, in particular, in the context of the Eisenberg-Noe clearing model.
We also provide novel economic interpretations of the dual representations in these settings.

Keywords: quasiconvex function, composition of functions, minimax inequality, risk measure,

systemic risk, dual representation, penalty function.
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OZET

YARIDISBUKEY BILESKELERIN CIFTES TEMSILLERI VE
SISTEMIK RISK UZERINE UYGULAMALARI

Miicahit Aygiin
Endiistri Miithendisligi, Yiiksek Lisans
Tez Danigmani: Cagin Ararat
TEMMUZ 2021

Birbirine bagl bilegenleri olan bir sistemin riskini 6lgmenin 6nemi, 6zellikle 2008 Ekonomik
Krizi'nden sonra daha iyi anlagilmigtir. Bilimsel yazinda sistemik risk olgiileri, genellikle
bir risk Olciisii ile finansal agin yapisimi o0zetleyen bir yigisma fonksiyonunun bilegkesi olarak
tanimlanmaktadir. Sistemik risk oOlgiileri icin ciftes temsillerin var olmasi, onlar1 hesapla-
mada ve ekonomik anlamda yorumlamada kritik bir oneme sahiptir. Bir risk ol¢iisii i¢in
temel varsayimlardan birisi, gesitlendirmenin riski azaltacagidir. Bu ozelligin matematiksel
kargiligi olarak, risk oOlgiilerinin tartisildigr ilk yillarda digbiikeylik kullanilmaktaydi. Ama
son zamanlarda yaridigbiikeyligin, cesitliligin daha dogru bir matematiksel kargiligi oldugu
diigiiniilmeye baglandi. Tek bir yaridigbiikey risk o6lciisii icin bilimsel yazinda giftes tem-
siller bulunmaktadir, bu temsillerde kullanilan ¢iftes fonksiyonlara ceza fonksiyonu denir.
Yaridigbiikey bir risk olgiistiyle i¢cbtlikey bir yigisim fonksiyonunun bilegkesi ile yaridigbiikey
sistemik risk olgiileri elde edilir; bunlar, uygun bir rassal vektorler uzayinda tanimli, yani
¢okdegiskenli, fonksiyonellerdir.

Bu tezde, digbiikey sistemik risk Olctlilerinden hareketle, digbiikey bilegke fonksiyon-
lar1 soyut ve sonsuz boyutlu bir cercevede calisacagiz. Bilegske fonksiyonun ceza fonksiy-
onunu bilegskeyi olusturan fonksiyonlarin ceza fonksiyonlar: cinsinden hesaplayan bir formiil
kanitlayacagiz. Kanitin temelinde, bilimsel yazinda sik¢a kullanilan enkiigiik-enbiiytik
esitliginin aksine, bilimsel yazinda bulunan ama kullanimi standart olmayan bir enkiigiik-
enbiiyiik esitsizligi yer alacak. Tezin son kismindaysa sonuclarimizi sistemik risk olgiileri i¢in
somut ve olasiliksal cercevelerde uygulayarak ciftes temsiller elde edecegiz. Inceleyecegimiz
sistemler arasinda Eisenberg-Noe modeline gore calisan takas sistemleri de olacak. Ayrica
ciftes temsiller i¢in ekonomik anlamda yorumlarda bulunacagiz.

Anahtar sozciikler: yaridigbiikey fonksiyon, bilegske fonksiyon, enkiiciik-enbiiyiik esitsizligi,
risk olciisti, giftes temsil, ceza fonksiyonu.

v



Acknowledgement

Firstly and foremost I am extremely grateful to my advisor Cagin Ararat for his patience,
guidance and expertise. 1 have learned how to do research, new approaches during this
process. I felt very motivated and had new perspectives after every meeting with him. I
admired his work ethic, teaching style and respectful connection with students since first day

I took a course from him. He will always be a role model throughout my academic career.

I would like to express my gratitude to Elisa Mastrogiacomo and Ozlem Cavus Iyigiin for

being in my committee and their valuable time to read and review this thesis.

I feel very fortunate to have my wife Zeynep in my life. The process for writing a master
thesis might be very stressful, especially during the Covid-19 time for most of the people.
However, I was very peaceful since the first day we get married thanks to her understanding,

endless love and beautiful smile.

I would like to thank my parents Miirtivvet and Yasar, and my brothers Ahmet and Esad
for their love and support for me to do what I want throughout my life. They always provide

facilities for me to be successful and happy.

Thanks for Metin, Haliloglu, Elbi, Burak, Fatih and Siileyman for their valuable friend-

ship. They have always been with me whenever I need them.

Special thanks for Onur, Yasin, Deniz, Emin, Ugur and Keleg for discussing my questions

related to this thesis whenever I ask in addition to their valuable friendship.

I want to thank Selman, Yusuf, Alperen, Merdan, Ahi, Said, Tosun and TDP for social-

izing me during my master.

I acknowledge the financial support provided by TUBITAK, The Scientific and Techno-
logical Research Council of Turkey, under project number 117F438.

Finally, I am grateful to all of my professors in Bilkent University. They have always been

nice, understanding and helpful.



Contents

(1 Introduction|

2 Convex and quasiconvex functions|

[2.3  Dual representations| . . . . . . .. ..o Lo

[3 Naturally quasiconvex vector-valued functions|

[4 Quasiconvex compositions|

4.2 T'wo important special cases| . . . . . . . . . ... ... L.

4.3 Quasiconvex composition on a convex set| . . . . . . .. ...

4.4  Compact cone generators|. . . . . . . . . . . . ...

[4.4.1  Finite-dimensional spaces . . . . . . . ... ... ... ...

[4.4.2  Lebesgue spaces| . . . . . . . ... oo

vi

17

24



CONTENTS

[> Applications to systemic risk measures|

[>.1 Results on general systemic risk measures|. . . . . . . ... ... .. ... ..

[5.2  Eisenberg-Noe model|

6 Appendix]|

[6.1 Proot of some results in Chapter /. . . . . . . ... ... ... ... .....

[6.2  Proots tor Chapter |5

[r__Conclusion|

vii

37

37

48

53

53

64

73



Chapter 1

Introduction

This thesis is concerned with extended real-valued functions of the form f o g, where f and
g are functions defined on some general preordered topological vector spaces. We look for
minimal assumptions on f and ¢ to ensure that their composition f o g is a monotone,
quasiconvex, and lower semicontinuous function. In our main results, we provide novel
duality formulae in which the dual function for f o g is calculated in terms of the same type

of functions for f and g¢.

In the literature, the study of f o g from a duality point of view is not new in the
convex case. For a single function, we have Fenchel-Moreau theorem which provides a dual
representation for a convex lower semicontinuous function in terms of its Legendre-Fenchel
conjugate (Theorem 12.2 in [1]). Then, it is natural to ask how and when we can have a dual
representation for the composition of convex functions. This question has been answered in
the literature, e.g., by Theorem 2.8.10 in [2], Theorem 3 in [3]; see also the more recent work
[4].

As a natural extension of the convex case, we look for dual representations of f o g when
it is guaranteed to be quasiconvex, which seems to be an open problem to the best of our
knowledge. For a single function, the quasiconvex duality theory of [5] provides a suitable
replacement of conjugate functions in convex duality. This is further explored in [6] within
an abstract framework and also in 7}, 8, 9] within the context of risk measures. In line with
[8], the dual functions for quasiconvex duality will be referred to as penalty functions in this

thesis.



Our motivation for studying quasiconvex compositions also comes from financial mathe-

matics, specifically, from the theory of systemic risk measures as we describe briefly next.

Initiated by the seminal work [I0], risk measures have been studied extensively in the
financial mathematics and operations research literature. In the original framework of [10],
coherent risk measures are defined as monotone, convex, translative and positively homoge-
neous functionals defined on a space of real-valued random variables. These random variables
could be used to model the uncertain future worths of investments, and a risk measure as-
signs to each random variable its minimum deterministic capital requirement. Among the
properties of coherent risk measures, monotonicity is a natural requirement which asserts
that the risk of an investment with consistently higher future values should be lower. Con-
verity is related to diversification; under this property, the risk of a mixture (i.e., convex
combination) of two portfolios is not higher than the same type of mixture of the individual
risks. The positive homogeneity property is a scaling property that is relaxed for defining
convez risk measures in [I1]. The translativity property asserts that a deterministic increase
in the value of a portfolio decreases its risk by the same amount. This is indeed the property

that justifies the interpretation of the value of a risk measure as capital requirement.

One might question whether convexity provides the correct encoding of the impact of
diversification on risk. A weaker alternative is quasiconvezity, which bounds the risk of a
mixture only by the maximum of the individual risks, hence the statement “Diversification
does not increase risk.” is reflected properly. Under translativity, convexity is equivalent to
quasiconvexity, which is a weaker condition that is also related to diversification. Hence, the
switch from convexity to quasiconvexity implies working with non-translative functionals in
general. Indeed, the work [§] proposes a minimalist framework for risk measures in which
only monotonicity and quasiconvexity are taken for granted, such functionals are called
quasiconvex risk measures; see also [9]. For the use of quasiconvex risk measures in the

context of financial optimization problems, see [12] [13] [14].

The theory of risk measures outlined above is for univariate (i.e., real-valued) random
variables. In more complex settings such as markets with transaction costs (e.g., [15, [16])
and financial networks with interdependencies (e.g., [17, I8, 19, 20]), it becomes necessary
to evaluate the risks of random vectors. For this thesis, we are particularly interested in
the later situation where the participating financial institutions are subject to correlated

sources of risk, typically affecting the future values of their assets. Hence, the resulting



future values are naturally modeled as correlated random vectors, explaining the multivariate
nature of the problem. At the same time, the institutions form a network through mutual
obligations and the aforementioned uncertainty affects the ability of the institutions to meet
these obligations. Hence, the aim of a systemic risk measure is to quantify the overall risk

associated to the financial network.

In the pioneering work [17], a systemic risk measure R is defined as the composition of a
univariate risk measure p with a so-called aggregation function A: R = p o A. The role of
the aggregation function is to summarize the impact of the random shock vector X, on the
economy (or society) as a scalar random quantity A(X). The definition of A is made precise
by the structure of the network and the accompanying clearing mechanism. For instance, one
can consider a clearing system in the framework of [21] and define the aggregation function
as the total payment made to society as in [20], in which case it is an increasing concave
function. The output of A is further given as input to a convex risk measure p to calculate the
value of R(X). The resulting systemic risk measure R is a monotone convex functional that
is not translative in general. In [20], dual representations for conver systemic risk measures
are studied in detail. The mathematical machinery used in that work is the conjugation

formulae Theorem 2.8.10 in [2] and Theorem 3 in [3] for convex compositions.

When p is only assumed to be a quasiconvex risk measure, the resulting systemic risk
measure R is also quasiconvex. Providing dual representations for this case is the starting
point of this thesis. However, we will first study the problem in greater generality. As stated
at the beginning, we will explore the dual representation of a quasiconvex composition f o g,
where the ingredients f, g are defined on general preordered topological vector spaces. To the
best of our knowledge, the quasiconvex analogues of the conjugation results in [2] and [3] are
not known in the literature. We provide a solution to this problem by proving a formula for
the penalty function of f o g, roughly speaking, in terms of the penalty functions of f and g.
More precisely, apart from the more technical continuity conditions, we will assume that f is
an extended real-valued monotone, quasiconvex function. Since g is a vector-valued function
(in a possibly infinite-dimensional space), choosing the right notion of quasiconvexity requires
extra care. To this end, we will use the notion of natural quasiconvexity, which is introduced
for vector-valued functions in [22] and for set-valued functions in [23]. When ¢ is a monotone,
naturally quasiconcave function, the resulting composition f o g is a monotone, quasiconvex

function.



For the proof of our main duality theorem (Theorem , we need a nonstandard
minimax result since the assumptions of the standard minimax theorem in [24]. We are able
to overcome this issue by using the minimax inequality in [25] (see also [26], 27]), which works
under weaker conditions. With additional arguments that use the properties of the involved
functions, we are able to turn the minimax inequality into an equality. Hence, the proof of

the main theorem makes a novel use of minimax theory.

As a special case of Theorem [4.1.6, we consider convex compositions and recover the

conjugation formula in [2] and [3].

After building the general theory, we go back to our motivating problem on systemic risk
measures. Using a quasiconvex univariate risk measure p and a concave aggregation function
A, we are able to provide a dual representation for the systemic risk measure R = po A in a
probabilistic framework. We also discuss the economic interpretations of the dual variables

and penalty functions in terms of the underlying financial network.

The rest of this thesis is organized as follows. In Chapter 2, we review some basic notions
and results about convex and quasiconvex functions. Chapter |3|is dedicated to some more
technical notions for vector-valued functions: natural quasiconvexity, regular monotonicity
and lower demicontinuity. The main part is Chapter [} where we prove the main theorem
on quasiconvex compositions together with some important special cases. In Chapter [5]
we apply the theory to obtain dual representations for systemic risk measures. Among the
various examples that we study, Eisenberg-Noe model is discussed separately as it has a more
sophisticated aggregation function. Some proofs of the results in Chapter [4] and Chapter
are collected in Chapter [0 the appendix.



Chapter 2

Convex and quasiconvex functions

2.1 Preliminaries

Let us begin with some basic notations and definitions that we use throughout the paper.
We denote by R := R U {+00, —oc} the extended real line. For each n € N := {1,2,...}, we
denote by R" the n-dimensional Euclidean space, by R, the set of all z = (21, ..., z)T €R®
with z; > 0 for each i € {1,...,n}, and by R}, the set of all z € R” with z; > 0 for each
i€{l,...,n}. When n =1, we write Ry = R} and R, = R, .. Let X be a Hausdorff
locally convex topological vector space. We denote by X* its topological dual space endowed
with the weak* topology o(X™*, X'). The bilinear duality mapping on X* x X is denoted by
(-,-). For nonempty sets A, B C X and A € R, we define the sum A+ B ={z+y |z €
A,y € B} and the product AA = {A\z | € A} in the Minkowski sense. When A = {z} for
some x € X, we write x + B = {z} + B.

Throughout this chapter, let f: X — R be a function. Given m € R, the m-sublevel set
of f is defined as
S = {ve x| flx) <m},

The next lemma provides a representation of f via its sublevel sets. It is a known result and
we give its proof for the convenience of the reader. This representation will be useful when

obtaining a dual representation for f.



Lemma 2.1.1. Let x € X. Then, it holds

f(x) =inf{m e R |z € S/} (2.1.1)

Proof. First, suppose that f(x) = 4+00. Then, there is no m € R such that m > f(x).
Hence, inf{m € R | x € S/} = inf() = +00. Next, suppose that f(x) = —oo. Then, we
have —co < m for every m € R so that inf{m € R | 2z € S/} = infR = —oo. Finally,
suppose that f(z) € R. For every m € R such that z € S/, we have f(x) < m by definition.
Therefore, f(z) < inf{m € R | z € S/ }. Since f(x) € R, there exists n € R such that
n < inf{m € R | x € S/ }. Hence, z ¢ S/, which implies that f(z) > n. Taking supremum

over all such n gives
flz)>sup{neR|n<infimeR |z € SL}} =inf{meR|ze S},

which completes the proof. O

The function f is called positively homogeneous if f(Ax) = Af(x) for every A > 0 and
x € X. It is called proper if f(x) > —oo for every z € X and f(x) < +oo for at least
one z € X. The conjugate function or the Legendre-Fenchel transform f*: X* — R of f is
defined by

[ (z*) =sup (¥, 2) — f(x)), z" €A™

reX

As an important special case, we may take f = I4 for some A C X, where 14 is the (convex

analytic) indicator function of A defined by

0 ifx e A,
Ia(x) =
+oo ifz e X\ A

Then, the conjugate function of I, is the support function of A given by

Iy(z") =sup (z*,x), z"€ X" (2.1.2)
z€A

Definition 2.1.2. The function f is called quasiconvex if

f x4+ (1= Ay) <max{f(x), f(y)} (2.1.3)



for every x,y € X and X\ € [0,1]. It is called quasiconcave if (—f) is quasiconver.

Remark 2.1.3. It is well-known that f is a quasiconvex function if and only if its sublevel

set SJ is convex for every m € R (Sect. 2.1, p. 41 in [2]).

Definition 2.1.4. Let x € X. The function f is called lower semicontinuous at x if
f(z) < liminf;e; f(x;) whenever (x;)icr is a net in X that converges to x. It is called
lower semicontinuous if it is lower semicontinuous at each x € X. It is called upper semi-

continuous (at z) if (—f) is lower semicontinuous (at x).

Remark 2.1.5. It is well-known that f is lower semicontinuous if and only if its sublevel

set S is closed for every m € R (Lemma 2.39 in [28]).

Remark 2.1.6. It is well-known that every proper closed convex subset of a locally con-
vex topological vector space equals the intersection of all closed half spaces that contain
it (Corollary 5.83 in [28]). In view of Remark and Remark when f is proper,
lower semicontinuous and quasiconvex, for each m € R, the set S/ can be written as an

intersection of closed halfspaces.

2.2 The order structure

To be able to handle monotone functions (e.g., in the risk measure applications in Section
and Section [5.2)), we introduce an order structure on X. To that end, let C' C X be a convex

cone and define a relation <o on X by
r<cy & y—zxel (2.2.1)

for each z,y € X. It follows that < is a vector preorder, that is, x <o y implies 42z <o y+=z
and A\x <¢ Ay for every z,y,z € X and A > 0.

Remark 2.2.1. It can be checked that every vector preorder < on X can be written as
<=<¢, where C := {z € X | 0 < x} is a convex cone. Hence, the assumption that C is a

convex cone is not a restriction on the vector preorder of interest.

The elements of C' are called positive elements of X. Let us define the (positive) dual cone
of C' by
Ct={a* e X*|(z%2) >0forall z € C},

7



which is a closed convex cone in X*. Then, the cone of strictly positive elements of X is
defined by
C*={zeC|(z",z)>0forall z* € C*\ {0}}. (2.2.2)

Given m € O, we may scale the elements of C™ and obtain the closed convex set
Ct.={a"e€C"|(z*7) =1}

Remark 2.2.2. When X is finite-dimensional, C# coincides with the interior of C'. However,
in the infinite-dimensional setting, we prefer working with C# since the interior of C' can be
empty for many important examples including Lebesgue spaces; see Example 2.12 in [29],

for instance.

The next lemma shows that C can be recovered from the (much) smaller set CF whenever
e C¥.

Lemma 2.2.3. Assume that C% # () and let 71 € C#. Then, we have C*\ {0} =R, ,C.

Proof. Let A > 0 and z* € C;f. By definition, C* C C* \ {0} and C* \ {0} is a cone so
that Az* € CT \ {0}. Hence, R, C C C*\ {0}. Conversely, let * € C*\ {0}. We have

(x*,m) > 0. Taking z* = ﬁ, we have (z*, ) = 1, which implies that z* € C'F. Moreover,
taking A = ﬁ > 0, we have z* = \z* € R, CF. Hence, C*\ {0} CR,,CT. ]

Thanks to the order structure provided by <&, we may define the monotonicity of sets
and functions. We say that a set A C X is monotone if v <o y and x € A imply y € A,
for every z,y € X. Similarly, we say that f is a decreasing function (with respect to C') if
x <¢ yimplies f(z) > f(y) for every z,y € X’; we say that f is an increasing function (with
respect to (') if it is decreasing with respect to —C.

Remark 2.2.4. It is easy to see that f is decreasing if and only if its sublevel sets are
monotone. Indeed, suppose that f is decreasing, and let m € R, x € S/ . If z < y for some
y € X, then we have m > f(x) > f(y) so that y € S/ . Hence, S/, is monotone. Conversely,
suppose that S7 is monotone for every m € R, and take z,y € X such that x <¢ y. If
f(x) = 400, then f(z) > f(y) holds trivially. Assume that f(z) < 4+o0. Clearly, z € S/, for
every m € R with m > f(x). Since z <¢ y, y € S}, and S/, is monotone, we have y € S/,
that is, m > f(y) for every such m. Letting m — f(x) gives f(z) > f(y). Hence, f is

decreasing.



2.3 Dual representations

In convex analysis, Fenchel-Moreau theorem provides a dual representation for a proper

lower semicontinous convex function f in terms of its conjugate function f*:

f(2) = sup ((¢*,2) — f*(x)), =€ X.

T*EX*

One immediate consequence of this theorem is the following lemma; we give its proof for the
convenience of the reader. We will use this lemma in the proof of Proposition [6.1.3], which
is a significant tool for proving Theorem [4.1.6, the main theorem of the paper.

Lemma 2.3.1. Let A C X be a set and B its closed convex hull. Then,

Ii(2*) = sup (", x), "€ X"
zeB

Proof. By Fenchel-Moreau theorem, we have [}* = I since B is the closed convex hull of
A. Then, taking the conjugate functions of both sizes and applying Fenchel-Moreau theorem
once more, we get [} = I’y = Ij;. On the other hand, we have I};(2*) = sup,cp (z*, z) for

every z* € X*. Hence, the result follows. O

For monotone functions, the following refinement of Fenchel-Moreau theorem is possible.

Proposition 2.3.2. Suppose that f is proper, decreasing, convexr and lower semicontinuous.

Then, we have

f(z)= sup ((—x*,z) — f*(—2%)), xze€X. (2.3.1)

z*eC+

Proof. We first prove that f*(z*) = +o0o0 when * ¢ —C*. Note that, in this case, there
exists ¢ € C such that (z*,¢) > 0. Let 29 € dom f and A > 0. Since f is decreasing, we have
f(xo+ Ac) < f(xo) so that (z*,z0+ Ac) — f(xg + Ac) > A {(x*, ¢) + (%, x0) — f(z0). Since
(x*,c) > 0, letting A — oo implies that

f5(x*) > sup ({x*, 2 + Ac) — f(z + Ac)) > +o0.
A0

Hence, f*(z*) = +00. Combining this with Fenchel-Moreau theorem yields (£2.3.1]). O



For a quasiconvex function, a suitable generalization of conjugation is possible by the
so-called minimal penalty function, which is defined in terms of the support function of the

negative of sublevel sets. The precise definition is given next.

Definition 2.3.3. The minimal penalty function oy: X* x R — R associated with f is
defined by
ap(z*,m) = sup (z*,—x), z*€ X", mekR.

xean
Remark 2.3.4. We can extend this definition for m = +o0o and m = —oo and z* # 0
by letting ayf(z*,4+00) == 400 and as(z*, —00) = —oo. These values are consistent with

the original definition. When we look at the case m = 400, we are considering the whole
space {x € X | f(x) < oo} = X in the supremum, which gives that the supremum is +o0.
Similarly, for the case m = —oo, we are considering the supremum over the empty set, which

18 —00.

The next two remarks state some elementary properties of the minimal penalty function

OZf.

Remark 2.3.5. It is clear that the minimal penalty function ay is positively homogeneous
in the first argument, that is, as(Az*, m) = Aa(a*, m) for every 2* € X*, m € R. Moreover,
o is increasing in the second argument. Indeed, taking m;, my € R with m; < msy, we have

571;1 C 571;2 so that ays(z*,my) < ay(z*, me) for every z* € X'*.

Remark 2.3.6. By (2.1.2) and Definition [2.3.3] we have

ap(z®,m) = sup (—z*, 1) = I3 (—2%), 2" € X", meR.
:cean i

We continue with a lemma which serves as a basis for dual representations since it char-

acterizes a set in the primal space X in terms of the elements of the dual space X*.

Lemma 2.3.7. Let A C X be a nonempty, closed, conver and monotone set. Then, for

every x € X, we have

reA & VrreCT\{0}: (z*,—z) <sup(z*, —y).
yeA

Proof. For A = X, the result is clear. Suppose that A # X and let x € A. Clearly,

(z*, —x) <supyeq (v*, —y) for each 2* € C*\ {0}. We prove the converse by contrapositive.

10



To that end, let x € X\ A. Since A is closed and convex, by Hahn-Banach separation
theorem, there exists 2* € X*\ {0} such that

(x*, —z) > sup (", —y) .
yeA

We claim that 2* € C*. To get a contradiction, suppose that z* ¢ Ct so that (z*, —c) > 0
for some ¢ € C. Since C'is a cone, for every A > 0, we have Ac € C'. Now take y € A. Since

A is monotone, we have y + Ac € A and hence,

for every A > 0. Since (z*, —c) > 0, letting A\ — oo, the expression on the right of (2.3.2)
diverges to +o0o but the expression on the left is constant, which yields a contradiction.
Therefore, z* € C* \ {0} and the proof is complete. O

Remark 2.3.8. If f is a decreasing, lower semicontinuous and quasiconvex function, then

the sublevel sets S7  m € R, satisfy the properties in Lemma by Remarks 2.1.5)
2.2.4l Hence, by Definition we have

reS & VareCt\{0}: (z%,—2) <aj(z*,m).

Similarly, if f is an increasing, lower semicontinuous and quasiconvex function, then f is

decreasing with respect to —C' so that
reS & VareC \{0}: (z%, —2) <as(z*,m),

where C~ = —C" = {a* € X* | (a*,2) <0 for all z € C}.

When f is lower semicontinuous and quasiconvex, its dual representation will be stated

in terms of a special pseudoinverse of oy, which we recall in the next definition.

Definition 2.3.9. Let a: CT x R — R be a function. We define its left inverse a~': Ct x
R — R with respect to the second argument by

a (2%, s) =sup {m € R| a(z*,m) < s} = inf {m € R | a(z*,m) > s}, (2.3.3)

for each z* € C* and s € R.
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The following lemma provides simple strong duality results that will be useful in later

calculations.

Lemma 2.3.10. Let a: O xR — R be a function which is increasing in its second argument.

(i) Let r: X* — R be a function and A C X* a nonempty set. Then, we have

inf {m € R |Va* € A: r(z*) < a(z*,m)} = sup a (2%, r(z*)).
z*€A

(ii) Let S be a nonempty set and r: X* x S — R. Then, for every x* € X*, we have

inf {m € R| Vs € S: r(z%,5) < a(z*,m)} = supa'(z*, r(z*, 5)).
seS

Proof. Let us prove (i) first. By the definition of left inverse, the claimed equality is

equivalent to

inf {meR|Vz* € A: r(z*) < a(z*,m)} = sup inf {m € R| r(z*) < a(z*,m)}. (2.3.4)
x*€A

The > part is true by weak duality. For the other side, to get a contradiction, assume that

there exists m € R such that

inf{m e R|Vz" € A: r(z") < ay(z",m)} >m > sup inf {m € R | r(z") < ap(z*,m)}.
r*€A

The first inequality implies that there exists z* € A such that
r(T) > ap(T*,m). (2.3.5)

The second inequality implies that m > inf{m € R | 7(Z*) < ay(2*,m)}. Hence, by the
monotonicity of ay, we must have 7(Z*) < ay(2*,m), which is a contradiction to ({2.3.5).

Hence, (2.3.4)) follows.

We have a similar proof for (ii). Note that the desired equality is equivalent to

inf {meR|VseS:r(zs) <alz,m)} =supinf{m € R | r(z*,s) < a(z*,m)}. (2.3.6)
ses

The > part is true by weak duality. For the other side, to get a contradiction, assume that

12



there exists m € R such that

inf{m e R | Vs € S:r(z",s) <apz*,m)} >m >supinf {m € R|r(z*,s) < as(z*,m)}.
ses

The first inequality implies that there exists a s € S such that
r(z*,8) > ag(z*,m). (2.3.7)

The second inequality implies that m > inf {m € R | r(z*,5) < ay(z*,m)}. Hence, by the

monotonicity of o, we have r(z*,§) < ay(x*,m), a contradiction to (2.3.7). Hence, (2.3.6)
follows. m

We state the dual representation theorem for lower semicontinuous quasiconvex functions,
which is a part of Theorem 3 in [§]. It is formulated in terms of the left inverse of the minimal

penalty function. We provide the proof for completeness.

Theorem 2.3.11. Suppose that f: X — R is a decreasing, lower semicontinuous and qua-

siconvex function. Then, f has the dual representation

fl)= sup of (¢ (a5, —2)), z€EX, (2.3.8)
o*eC+\{0}

where a;l is the left inverse of ay.

Proof. Let x € R. By Lemma [2.1.1) and Remark we have

f(z)=inf{m e R |z € SL} =inf{m e R |Vz* € CT\ {0}: (2%, —2z) < ay(z*,m)}
= sup a]?l (%, (z*, —x)),

z*eC+\{0}

where the last equality is a direct result of Lemma [2.3.10(1i) since ay is increasing by Re-
mark 2.3.5] O

We will generalize Theorem [2.3.11] for the composition of quasiconvex functions in Chap-
ter . In [§], a decreasing quasiconvex function on X is called a risk measure as a general-

ization of convex and coherent risk measures studied in the financial mathematics literature;
see Chapter 4 of [I1], for instance. Hence, Theorem [2.3.11| provides a dual representation
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for a lower semicontinuous (quasiconvex) risk measure. For the current discussion, we keep
using the general terminology of convex analysis and do not use the term risk measure. In
Sections [5.1] and we will focus on applications in systemic risk measures, where we also

introduce the financial background as necessary.

In applications, it might be necessary to consider a function that is defined on some subset
of the vector space X'. The next corollary is for this purpose. To that end, let KX C X be a
monotone convex set such that C' C K. In particular, we have K + C C K. Given a function
g: K — R, we may extend g to X as a function g defined by g(z) = g(z) for z € K, and by
g(x) = 400 for z € X'\ K. Hence, the sublevel sets, minimal penalty function, and algebraic

properties (quasiconvexity, monotonicity, etc.) of g are defined as those of g.

Corollary 2.3.12. Let g: K — R be a quasiconvez, decreasing and lower semicontinuous

(with respect to the relative topology) function. Then, we have

g(r) = sup a ' (z*, (%, ~2)), zek. (2.3.9)
o*eC+\{0}

Proof. Let us define a function g: X — R by
g(x) =inf{m e R |z ecl(S))}, z=e€X.

Note that S, = cl(S%,) for each m € R. Let m € R. Since g is quasiconvex, it follows that
59 is closed and convex. To show that it is also monotone, let = € S9, = cl(S5%,), ¢ € C. Let
U C X be a neighborhood of = + ¢. Since X is a topological vector space, (U — ¢) is an open
set; hence, it is a neighborhood of x. Therefore, (U —¢) N SY #£ 0. Let z € (U —c¢)NSY,
so that z +c € U. On the other hand, since g is decreasing, S, is monotone, which yields
that z + ¢ € S9. It follows that U N SY # (. Since U is an arbitrary neighborhood of
z + ¢, we conclude that x + ¢ € cl(S%) = S, Hence, SJ, is monotone. By Remarks [2.1.3]
2.1.5] 2.2.4] it follows that g is decreasing, lower semicontinuous, and quasiconvex. Using
Theorem [2.3.11} we get

g(zr) = sup oz;l (%, (z", —x)), ze€X. (2.3.10)
2 €CH\{0}
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By definition, SZ, is the closed convex hull of S, for each m € R. Hence, Lemma yields

ag(z*,m) = sup (", —y) = sup (z*, —y) = a,(z*,m), 2" € X", mekR. (2.3.11)
yGSgn yES,

For x € IC, by Lemma [2.1.1], we have
glz)=inf{meR |z eSS} =inf{meR|zeS,NK}. (2.3.12)

We claim that S9 N K = S9,. Indeed, it is clear that S9 N K = cl(S%) NK 2 SY. On the
other hand, since g is lower semicontinuous with respect to the relative topology, we have
S9 = ANK for some closed set A C X. Since S9, C A, we have cl(59) C A. It follows that
cl(S4)NK C ANK = S9,. Hence, the claim follows. Then, yields

gx)=inf{m e R |z € S9} = g(x).

After combining this result with (2.3.10) and (2.3.11]), we obtain (2.3.9). O

When f is a proper lower semicontinuous convex function, two dual representations are
possible: the one provided by Fenchel-Moreau theorem, and the one provided by Theo-
rem [2.3.11| since f is also quasiconvex. To establish the link between the two representa-
tions, we calculate the left inverse of the minimal penalty function in terms of the conjugate

function.

Proposition 2.3.13. Suppose that f: X — R is convex and lower semicontinuous. Ifm € R
is such that the strict sublevel set {x € X | f(x) < m} is nonempty, then

af(a:,m)—g%()\m—i-)\f ( A))’ r* e X”. (2.3.13)
Moreover, for the left inverse, we have
a;l (z*,s) =sup (ys — f*(—yz")), 2" € X", seR. (2.3.14)

~v=0

Proof. Let z* € X* and m € R such that {x € X' | f(z) < m} # 0. Note that ay(z*,m) =
SUP, e gf (x*,—z) can be seen as the optimal value of the following convex optimization
problem:

maximize (z*,—z) subject to f(z) <m, x € X.
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By supposition, Slater’s condition holds, that is, there exists g € X such that f(zg) < m.

Hence, we have strong duality for this problem, that is,

ap(z®,m) = ggig (2", —2) = A(f(z) —m)).

When A = 0, sup,cr ((z*, —z) = A(f(x) —m)) = sup,cy (z*, —x) = +00. Hence, we can

evaluate the infimum over A > 0. Then,

ag(z*,m) = inf sup ((z*, —x) — A(f(z) —m))

A>0 pex
= inf ()\m +sup ({%, —2) — Af(f”))) y ()‘m " & <_%>) |

We have proved (2.3.13). For m > inf,cx f(z), the strict sublevel set {x € X | f(z) < m}
is nonempty. Let us define the set F' := (inf,cy f(x),+00). For m < inf,cx f(z), we have
ag(z*,m) = —oo. Also, note that inf,cx f(z) = —sup,cr(0 — f(z)) = —f*(0). Then, to
prove , for each s € R, we have

oz;l(x*,s) =inf{m € R | af(z*,m) > s}

= infm\/inf{mER|‘v’)\>0: Am 4 A f* (_95_) 25}
meF A

s x*
_;g)f(f(a:)me{meR\V)\>0.m_—)\—f <——>\)}

= vaw (5 -1 (<5) ) = O Vs s - £ (-0

A>0 v>0
=sup (ys — f* (=yz")),
720

which completes the proof. O

Remark 2.3.14. Under the assumptions of Proposition [2.3.13] rewriting the dual represen-
tation in Theorem [2.3.11| using Proposition [2.3.13| and the fact that C'* is a cone gives

fl@)=sup aj'(a*, (a*,—x)) = sup sup({yz*,—z) - f*(—yz"))

z*eC+\{0} x*eC+\{0} v>0
= sup ((z*,—x)— f"(—2")), zeki.
z*eCt

Hence, in the convex case, the representation in Theorem [2.3.11| reproduces the standard

Fenchel-Moreau-type representation in Proposition [2.3.2]
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Chapter 3

Naturally quasiconvex vector-valued

functions

Throughout this chapter, let X', ) be Hausdorff locally convex topological vector spaces with
vector preorders <c,<p, where C' C X and D C ) are closed convex cones. We denote
by 27 the power set of Y. Let f: Y — R and ¢g: X — Y be functions. The main focus
of this paper is to provide dual representations for a quasiconvex composite function of the
form f o g. While Chapter [2 provides the background for the study of extended real-valued

function, we dedicate this chapter to the study of vector-valued functions.

We start by recalling some generalized notions of convexity for vector-valued functions.

Definition 3.0.1. Consider the following notions for g: X — ).

1. g s called D-convex if
g(Az1 + (1= A)z2) <p Ag(@1) + (1 = A)g(z2)

for every x1,z2 € X and A € (0,1).
2. g is called D-concave if —g is D-converz.

3. g is called D-naturally quasiconvex if, for every xy,xo € X and X € [0, 1], there ezists
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p € [0, 1] such that

g1 + (1 = N)wa) <p pg(z1) + (1 — p)g(za).

4. g is called D-naturally quasiconcave if —g is naturally D-quasiconvex.

From Definition [3.0.1] it is clear that D-convexity implies D-natural quasiconvexity. For
real-valued functions with D = R, D-natural quasiconvexity coincides with quasiconvexity;

see the notes after Definition 2.1 in [23].
For the function g: X — Y, let us consider the scalarization hz* (x): X — R defined by
hy () = (y", g(x)), =€&, (3.0.1)

for each y* € DT\ {0}. The next proposition provides useful characterizations of the
convexity and D-natural quasiconvexity of g in terms of the analogous properties of the

family of scalarizations.

Proposition 3.0.2. We have the following equivalences for g and its scalarizations.

(i) g is D-convex if and only if hi. is quasiconver for each y* € DT\ {0}.

(i) The function g is D-naturally quasiconvex if and only if hg* s quasiconver for every
y* € DT\ {0}.

Proof. We prove (i) first. Assume that g is D-convex and take y* € D*\{0}. Let 21,25 € X
and A € (0,1). Then, the D-convexity of g implies that g(Azy + (1 — A)xzg) <p Ag(zq1)+ (1 —
N g(z2), that is; Ag(x1) + (1 — A)g(xe) — g(Axy + (1 — A)xg) € D. Hence,

(", Ag(z1) + (1 = N)g(z2) — g(Ax1 + (1 — A)z2)) > 0.
so that

hye (A1 4 (1= Na2) = (¥, g(Azy + (1 = A)z2))
< (W Ag(@1) + (1= A)g(a)) = M. (1) + (1 = Ay (2).
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Therefore, hg* is convex.

Conversely, assume that hj. is convex for each y* € D* \ {0}. Let x;,zo € & and

A€ (0,1). For each y* € DT\ {0}, since hJ. is convex, we have

(', g(Azy + (1 = N)xo)) = hg*()\xl + (1= N)xo)
<A (1) + (1 = M)A (22) = (y*, Ag(a1) + (1 — A)g(x2)) -

Hence, (y*, Ag(x1) + (1 — N)g(z2) — g(Azy + (1 — XN)xo)) > 0 for every y* € DT \ {0}, that
is, Ag(z1) + (1 — N)g(z2) — g(Az1 + (1 — N)ae) € D, that is,

g7y + (1 = AN)az) <p Ag(z1) + (1 — A)g(x2).
Therefore, g is D-convex, which completes the proof of (i).

Next, we prove (ii). Assume that g is D-naturally quasiconvex. Let y* € DT \ {0} and
consider hg*. Let x1,29 € X and X € [0, 1]. Since g is D-naturally quasiconvex, there exists

w € [0, 1] such that g(Azxy + (1 — N)xg) <p pg(xi) + (1 — p)g(xs). Hence,

Ry (A1 + (1= N)z2) = (y", g(Az1 + (1 = N)z2))
< (y" png(z1) + (1 — p)g(za))
< max{(y", g(z1)) , (", 9(x2)) } = max{hf.(z1), hj.(z2)}.

Therefore, 7. is quasiconvex.

Conversely, assume that hy. is quasiconvex for each y* € D™\ {0}. To get a contradiction,
suppose that g is not D-naturally quasiconvex. Hence, there exist x1, 25 € X and A € [0, 1]
such that

(co({g(1), 9(z2)}) — g(Aw1 + (1 = N)zg)) N D = 0.

Since D is closed and convex, and the (shifted) line segment co({g(x1),g(z2)}) — g(Azy +
(1 — X)z2) is compact and convex, by Hahn-Banach strong separation theorem, there exists
yo € Y*\ {0} such that

inf (yg,d) > sup (5, y) (3.0.2)
deD y€(co({g(%1),9(z2)}) —g(Az1+(1-N)z2))
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Since D is a cone, infyep (y*, d) is either 0 or —oo. However, the term on the right of (3.0.2))

is finite. Hence, we must have infyep (yg, d) = 0 so that y5 € DT as well. Then, using this

information in (3.0.2)) implies
(Yo, ng(a1) + (1 = p)g(x2)) < (yo, g(Az1 + (1 = A)2))

for every u € [0,1]. It follows that

max{(yg, 9(x1)) (Y5, 9(¥2)) } < (Y5, g(Ax1 + (1 — N)x2)),

which contradicts the quasiconvexity of hZS' Hence, g is D-naturally quasiconvex, which

completes the proof of (ii). O

Remark 3.0.3. The equivalent condition in Proposition m(u) is sometimes called x-

quasiconvezity; see, for instance, Definition 2.1 in [23].

If f: Y — R is a decreasing convex function, and ¢g: X — ) is a D-concave function,
then it is easy to check that the composition f o g: X — R is a convex function. The
following proposition provides an analogue of this observation when the resulting composition

is quasiconvex.

Proposition 3.0.4. Suppose that f is quasiconver and decreasing, and g is D-naturally

quasiconcave. Then, fog: X — R is quasiconvex.

Proof. Let z1,25 € X and A € [0,1]. Since ¢ is naturally D-quasiconcave, there exists
w € 10,1] such that pg(z1) + (1 — p)g(xe) <p g(Az; + (1 — N\)x). Using the monotonicity

and quasiconvexity of f, we obtain

flgAzr + (1 = N)zg)) < fpg(xr) + (1 — p)g(x2)) < max{f(g(z1)), f(g(x2))} -

Hence f o g is quasiconvex. [

When f: ) — R is quasiconvex and decreasing, note that Proposition m gives a
sufficient condition on g: X — ) that is weaker than D-convexity so that the composition
f o g is quasiconvex. In the rest of the chapter, we investigate further properties of g that
will help us in obtaining a dual representation for f o g in Chapter @l To that end, we start

by studying monotonicity for the vector-valued case.
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Definition 3.0.5. The function g: X — )Y is called decreasing if 1 <¢ xo implies g(x2) <p
g(x1) for every xy,x9 € X, it is called increasing if x1 <¢ xo implies g(x1) <p g(xa) for

every ry,xs € X.

The preservation of monotonicity under compositions is formulated next.

Proposition 3.0.6. Suppose that f is decreasing and g is increasing. Then, fog is decreas-

mg.

Proof. Let z1,x9 € X such that ; <¢ xs. Since ¢ is increasing, we have g(z1) <p g(z2).

Since f is decreasing, we obtain f(g(z1)) > f(g(x2)). Hence, f o g is decreasing. O]

The next proposition connects the monotonicity of g and that of its scalarizations.

Proposition 3.0.7. Suppose that g is decreasing. Then, h;’* is decreasing for every y* €

D+ \ {0}.

Proof. Let y* € D'\ {0}. Let z1,29 € X such that x; <¢ zy. Since g is decreasing, we
have g(x2) <p g(z1), that is, g(x1) — g(z2) € D. Hence, (y*,g(z1) — g(x2)) > 0, that is,
hj«(x1) > hy.(z3). Therefore, hj. is decreasing. O

In Chapter ] we will also need a notion of strict monotonicity for a vector-valued function.
The next definition gives one that suits our purposes. Recall that C# and D# are the
(convex) cones of strictly positive elements in X' and ), respectively; see . Although
these cones are not closed in general, we define their induced preorders < # and <p# as in
(2.2.1]).

Definition 3.0.8. The function g is called regularly increasing if it is increasing and r1 <c#
xo implies g(x1) <p# g(x2) for every x1,xo € X il is called regularly decreasing if it is

decreasing and x1 <c# xo implies g(x2) <p# g(x1) for every x1,z9 € X.

To be able to employ Definition [3.0.8] we need to work under the following assumption.

Assumption 3.0.9. The cones C* and D¥ are nonempty.
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We proceed with a continuity concept for g, which is defined through its set-valued ex-

tension G: X — 2 given by

Given M C Y, the sets

G'M)={reX |Ga)NnM#0}, GY(M)={reX|Gx) < M}
are called the lower inverse image and upper inverse image of M under G, respectively. It
is easy to check that (GY(M))¢ = GL(M¢) and (G*(M))¢ = GY(M°©).

Definition 3.0.10. The function g is called D-lower demicontinuous if the lower inverse

image G*(M) is open for every open halfspace M C ).

When )Y = R and D = R, note that Definition [3.0.10| coincides with the usual notion of
lower semicontinuity, see Remark

Remark 3.0.11. Note that g is D-lower demicontinuous if and only if the upper inverse
image GU(M ) is closed for every closed halfspace M C ). This follows from the observations
that M is a closed halfspace if and only if M¢ is an open halfspace, and that GY(M) =
(GH(Me))e.

We conclude this chapter by relating the D-lower demicontinuity of g with the upper

semicontinuity of its scalarizations.

Proposition 3.0.12. The function g is D-lower demicontinuous if and only if hg* 1S upper

semicontinuous for every y* € DT\ {0}.

Proof. Let m € R and y* € DT\ {0}. Let us define the sets
Apy ={x e X | hg* () >m}, By = GU(]\/[myy*) ={reX|gx)+ D C My, },
where

My ={y €V |y, y) >m}.

We claim that A,, ,« = B, . First, let € A, ,» and take d € D. Hence, (y*, g(z)) > m
and (y*,d) > 0. Combining these two inequalities, we get (y*,g(z) +d) > m, that is,
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g(z) +d € M, . Since d € D is arbitrary, we have g(z) + D C M,,,+. Hence, z € By, .
Conversely, let € By, ,-. In particular, g(x) € My, -, that is, hj.(z) = (y*,g(z)) > m.

Hence, x € A+, which completes the proof of the claim. By this claim and Remark|3.0.11]
the statement of the proposition follows immediately. n

Let y* € DT\ {0}. In view of Proposition and Proposition [3.0.7, when g is D-
naturally quasiconcave increasing and D-lower demicontinuous, the function —hg* is quasi-
convex, decreasing and lower semicontinuous. In this case, we may apply Theorem [2.3.11
for —hy. to get

—h(z)= sup al, (z

z*eC+\{0} v

The availability of (3.0.3)) will be useful in Chapter 4| when obtaining the dual representation
of a quasiconvex compositions.

Azt —x)), zeX. (3.0.3)
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Chapter 4
Quasiconvex compositions

The aim of this chapter is to establish dual representations for quasiconvex compositions. We
continue working in the framework of Chapter [3| where we have locally convex topological

vector spaces X, ) with respective preorders <¢, <p.

4.1 The main theorem

Let us fix two functions f: ) — R and g: X — Y. To motivate the discussion, we make
the following simple observation: if f is decreasing and quasiconvex, and g is increasing and
D-naturally quasiconcave, then f o g is decreasing and quasiconvex by Proposition [3.0.4] and
Proposition Hence, in view of Theorem [2.3.11] a dual representation for f o g is readily
available once f o g is guaranteed to be lower semicontinuous. This is achieved in the next

proposition by suitable continuity assumptions on f and g.

Proposition 4.1.1. Suppose that [ is decreasing, lower semicontinuous, and quasiconvex;
and that g is increasing, D-lower demicontinuous, and D-naturally quasiconcave. Then,
fog is a decreasing, lower semicontinuous, and quasiconvex function. Moreover, for every

r € X, we have

foglx)= suwp af <y*, sup a~l, <m*,<x*7—x>>)= sup a7l (", (2", —a)).
y*€D+\{0} areCH\{o} ¥ z*eC+\{0}
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Proof. By Proposition and Proposition [3.0.6], f o g is decreasing and quasiconvex. Let

us show that it is also lower semicontinuous. To that end, let m € R. Note that

Sit={reX|foglx) <m}={reX|g(x)eS)}={reX|G)CS;}=G"(S])
(4.1.2)
Here, only the third equality needs a proof. Since f is decreasing, S/ is monotone. Let

r € X with g(z) € S/, and d € D. Since S/, is monotone, we have g(z) +d € SI. As

this is true for every d € D, we have G(x) = g(z) + D C S7. Conversely, let z € X with
G(z) C Sf. Since 0 € D, we have g(x) € g(x) + D = G(z) C S},. These observations verify

the third equality in (4.1.2]).

By Remark we may write Sf, = vem M, where M is the collection of all closed
half spaces M such that Sﬁl C M. Therefore,

GY(ST) :GU< N M) = () G¢Y(Mm).
MeM MeM

Since g is D-lower demicontinuous, GY (M) is closed for each M € M. By (4.1.2)), it follows
that S/°9 = GU(S!) is closed. Therefore, f o g is lower semicontinuous by Remark [3.0.11}

By applying Theorem [2.3.11} we obtain the second dual representation in (4.1.1)) imme-
diately.

Finally, we show the first equality in (4.1.1). Let x € X. By applying Theorem [2.3.11| for
f at the point g(z), we get

flg(x)) = sup o '(y" (v, —g(x))).
y*eD+\(0}

On the other hand, by (3.0.3]), we have

(¥ —g(@)) = =hy.(x) = sup Ty, (%, (2", —2)), y" € D"\ {0}.

z*eCt\{0} v*
Combining the last two observations gives the first equality in (4.1.1)). m
Under the assumptions of Proposition [4.1.1], f o g has a dual representation in the sense of

Theorem [2.3.11, We have a a more explicit dual representation for fog in the next theorem.
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Theorem 4.1.2. Suppose that f is decreasing, lower semicontinuous, and quasiconvex; and

that g is increasing, D-lower demicontinuous, and D-naturally quasiconcave. We have

fog(x)= sup sup a;l (y*,ajlg (", (x*, —m))), r€eX.
z*€CT\{0} y*eD*\{0} v*

Proof. By Lemma [2.1.1] Lemma and Lemma [2.3.10(1), we have

fog(z)=inf{m e R|g(z) € SL} (4.1.3)
=inf {m e R |¥y" € D"\ {0}: (", —g(2)) < as(y",m)}
— *ESDqup\{o} inf{m e R| (y*, —g(x)) < as(y*,m)}. (4.1.4)

By using (3.0.3) and then applying Lemma [2.3.10|(i), we obtain

foglz)= sup inf{meR|(y", —g(z)) < ay(y*,m)}
y*eD+\{0}

= sup inf{m€R| sup A, (:c‘*,(—x*,x))gaf(y*,m)}

y*eD\{0} z*eCT\{0} v
= sup inf {m eR|Vz* € CT\ {0}, o}, (z* (—a*, 2)) < ozf(y*,m)}
y*€DT\{0} v

= sup sup inf {m eER| cvjlg (x*, (—z*,x)) < af(y*,m)}
y*€DH\{0} z*cC+\{0} 7

- sup sup a;l <y*704:29 (.I*, <l’*, —(L’>)),
z*eCT\{0} y*eD\{0} v

which gives the conclusion of the theorem. O]

The main problem is to calculate the minimal penalty function oy, as well as its left in-
verse oz;cf , 1 terms of the same type of functions for f and g (more precisely, the scalarizations
of g). The solution of this problem will be provided by Theorem and Corollary .
It turns out that these results work under a mild compactness assumption on DT as we

describe next.

Definition 4.1.3. A set D* C D7 is called a cone generator for D¥ if every y* € D\ {0}
can be written as y* = \y* for some X\ > 0 and ij* € D*,

It is clear that if D* is a cone generator for D, then D7 is the conic hull of D*.
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Remark 4.1.4. Suppose that D# # () and let 7 € D¥. Then, D7 is a closed convex cone
generator for D' thanks to Lemma [2.2.3|

In Section [4.4] we will discuss the existence and compactness of cone generators for several
examples that show up frequently in applications. For the theoretical development of this

chapter, we work under the following assumption.

Assumption 4.1.5. There exists a convex and compact cone generator DV for D*.

Next, we state the main theorem of the paper, which provides a formula for the minimal
penalty function of f o g. Its proof is presented separately in Section [6.1L The proof consists
of several auxiliary results together with the use of a minimax inequality in [25] for two

functions. Assumption will be crucial in applying this inequality.

Theorem 4.1.6. Suppose that Assumption and Assumption hold. In addition,
suppose that f is decreasing, lower semicontinuous, and quasiconvex; and that g is reqularly

increasing, D-lower demicontinuous, and D-naturally quasiconcave. Then, for every z* €
CT\ {0} and m € R, we have

Oéf°9<w*7 m) = y*eg‘lf\{o} O‘—hg* (.1'*, af (y*a m)) = y*EiDI}{f\{O} &—hz* (x*7 af(y*a m)) . (415)

Remark 4.1.7. It should be noted that D* does not have to be the same as D} but the
second equality in (4.1.5) still holds.

The next corollary complements Theorem by providing a formula for the left inverse
of the minimal penalty funtion of f o g, which is the actual function that shows up in the

dual representation of f o g in Proposition Its proof is given in Section [6.1

Corollary 4.1.8. In the setting of Theorem[{.1.6, for every z* € CT\ {0} and s € R, we

have

-l * 1 *x -l *
a (x*s) = sup « (y ,a g (x ,s)) (4.1.6)
oo reDi\o) £
and
fog(z)= sup sup a;l (y*,ozjlg (x, (2", —:13))), reX. (4.1.7)
y*

z*€CT\{0} y*eD*T\{0}
Remark 4.1.9. The second part Corollary gives the same result as Theorem [£.1.2] In
Corollary [4.1.8] we use the stronger Theorem [£.1.6]
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4.2 'Two important special cases

We consider special cases of the setting in Section where at least one of the functions in

the composition is convex/concave. In these cases, it is possible to obtain simplified formulae

for the minimal penalty function of the composition. As before, we work with two functions

f:Y—=Randg: X = ).

We first work on the case where both f and g satisfy a stronger convexity assumption

so that f o g becomes convex. As the next corollary shows, the reduced form of the dual

representation is consistent with the ones available for convex compositions in the literature;

see, for instance, Theorem 2.8.10 in [2] and Theorem 3 in [3].

Corollary 4.2.1. Suppose that f: Y — R is convex, decreasing and lower semicontinuous;

and that g is increasing, D-lower demicontinuous, and D-concave. Then, we have

fog(x)= sup sup ((z*,—x) — (=hi.)"(=2*) = f*(=y")), z€X.

z*eCt y*eD+

Proof. Let z € X. First, let us prove the following scaling property for an arbitrary v > 0

and z* € C*\ {0}.
YaTh, (@ (@7 —a)) = aly, (@ (@7, —a)).
Let us consider the case v > 0. By Definition [2.3.9] we have
a”t, (a*, (z*,—x)) = inf {m €ER| apg (x*,m) > (z%, —x>}

=infdmeR| sup (2%, —z2) > (2", —x)
zESThg
¥ *

Y

We have the following relations:

m
z€ 8, <~ (v, —g(2)) <m <= (y*,—g(2)) < 7 «— z €
YY
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Therefore, we get

aty (zF(a",—x))=inf ¢meR| sup (2%, —2)> (2%, —z)
=infcmeR| sup (2%, —2) > (2", —x)

=~vinf<neR| sup (z*, —2)> (z", —x)

- 70[25* (", (z*, —x)),

where the third equality comes from a change of variable which is % = n and the last equality

is by Definition [2.3.9, For the case v = 0, we will prove that a~!, (2*, (z*, —z)) = 0.

—h9 N
Observe that S™, = {z € X[(0,9(2)) <m}. Therefore, if m > 0, S™, = & and

yy*

SMa = () if m < 0. Therefore, for v = 0, we have

aty (2 (a5, —z))=inf ¢meR| sup (2% —2)> (2%, —z)

Y zGSThg
*

= inf {m >0 |sup (z*, —z) > (x¥, —x)} =

zeX

We have proved (4.2.1), now we continue with the main result. By Theorem we

have

fogle)= swp  sup aj'(yaTh, (oG, —a)) ).
a*eC+t\{0} y*eD+\{0} v

Once we apply the second part of Proposition [2.3.13[to f and use (4.2.1]), we get
fogle)= swp  sup sup(yaTh, (o (2", —2) — ['(~"))
z*eC+\{0} y*eDt\{0} v=>0 v

= sup sup sup (ajbg ) (%, (z*, —x)) — f*(—vy*)>
z*€CH\{0} y*eD+\{0} v>0 R

= sup sup (&jﬂ* (x*, (z*, —x)) — f*(—g*)) ,
z*eC+\{0} g*eD+ v

where the last equation comes from the change of variable yy* = ¢* since D™ is a cone. Now
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let us apply Proposition [2.3.13| to —hg* and obtain

fog@) = s swp (a7l (@ (0" ~2) = [(~5"))

x*eCH\{0} g*eD+

~ s s (sup(ﬁ@*,—:v)—(—hZ*)*(—ﬁx*))—f*(—yf*))

a*eCH\{0} *eD+ \ >0

= sup sup sup ((Bz*,—z) — (=h.)"(—Bz") — F(=5)

g*eD+ z*€CH\{0} B>0

= sup sup ((z*,—z) — (=hi )" (=7") — F (=),

g*eD+ i*eC+t

where the last equation comes from the change of variable Sz* = * since C" is a cone. [

Next, we work on the case where only one of the functions in the composition has a stronger
convexity assumption. While Corollary reproduces earlier results in the literature, the
next result is novel to this work to the best of our knowledge. In Section [5.1] we will use

this result to obtain new dual representations for quasiconvex systemic risk measures.

Proposition 4.2.2. Suppose that f is decreasing, lower semicontinuous, and quasiconvex;
and that g is increasing, D-lower demicontinuous, and D-concave. Then, fog is an decreas-

ing, lower semicontinuous, and quasiconver function; and the following dual representation

holds:

fog(x)= sup sup a;l <y*, (¥, —x) — (—h;ﬁ)*(—ﬁ)), reX. (4.2.2)
z*€Ct\{0} y*eDT\{0}

Assume further that g is also reqularly increasing and Assumption[f. 1.5 holds. The following
results hold.

(i) Let z* € CT\ {0} and m € R such that ay(y*,m) € R and Sf;;g,ym) # 0 for all
y* € DT\ {0}. Then, '

ageglatom) = inf (B () oy sm))

(ii) For every x* € Ct\ {0} and s € R,

Apog(™,s) = sup ap' (y, (=(=hy.)"(0)) V (s — (=hy.)"(=2"))).

y*eDT\{0}



Proof. Note that z — (y*, —g(z)) is convex and lower semicontinuous by Proposition [3.0.2]
and Proposition 3.0.12] Using (4.1.4)) in the proof of Theorem and the Fenchel-Moreau

theorem, we have

fog(e)= sup inf{meR[(y" —g(z)) <a;(y",m)}

y*eDT\{0}
= sup inf{meR| sup ((—z% z)— (=h%)(—z")) < ar(y*,m)
y*eDT\{0} z*eCT\{0}

= sup  sup inf{m E€R| (=" z) — (~hj.)"(=2") < oy m)}
y*eDT\{0} z*cC+\{0}

= swp s oty (et —a) = (<hg) (o)),
z*€CT\{0} y*eD+\{0}

where the third equality comes from Lemma [2.3.10|(ii). Hence, (4.2.2)) follows.

From now on, we assume that g is regularly increasing and Assumption holds. To

prove (i), let z* € C*\ {0} and m € R with Sf;;%ym) # (). By Theorem |4.1.6, we have

Oéfog(x*’ m) 5 y*eliDIif\{O} a—hz* (LU*, Oéf<y*7 m))

Also, take x € Sf;;(gy*’m) and let ¢ € C#. Then, there exists d € D# such that g(z + ¢) =
y*
g(z) + d since g is regularly increasing. Therefore, by using the definition of D#, we get

(W', —g(x+c)) = (—y" g9(x) +d) = (—y", g(x)) + (=", d) < {(=y", g(x)) < ay(y*,m),

which gives that the strict sublevel set {x € X' | —hJ.(x) < a,(y*,m)} is nonempty. Hence,
by Proposition [2.3.13, we have

Qfog(x*,m) = inf inf (6(—715*)* (_x_*) —|—ﬁozf(y*,m)> .

y*eD+\{0} B>0 15}

Then, by Theorem 2.3.1 in [2] on the elementary rules of conjugation, we have

* _ : : o g \*¥(__ ¥ *
Qfog (2", m) —y*ebqf\{o}égg(( Bhg ) (=) + Bag(y*,m)) .

By the positive homogeneity of y* — a;(y*,m) and also that of y* — hJ.(z) for each z € X,
we get

* _ : : 19 (% *
Qfog(*,m) —y*e;)rgf\{o}égfo(( RS, ) (=) + ap(By*,m)) .
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Finally, since DT is cone, we can make a change of variables and obtain (i).

We prove (ii) next. By Corollary 4.1.8] the second part of Proposition [2.3.13] and the

definition of left inverse, we have

—1 * —1 * —1 *
Qo (CC 78) = sup «a (y y QY (l’ 78))
oo yepioy £
= sup o (y*, sup (s — (—hi*)*(—w*))>
y*€D\{0} 720
= sup inf {m € R |sup (ys — (—hi.)" (—ya*)) < oy, m)}
yeD+\{0} 720

= sup supinf{m e R |ys— (—hd)*(—yz") < as(y",m)},
y*€DT\{0} v=>0

where the last equality comes from Lemma [2.3.10(ii). By the conjugation formula, for v > 0,

we have

(—hy )" (=yx") = sup ((—y2*, z) + (¥, g(x)))

- 7113 (o2 4 (L)) =t (o)

For v = 0, we have

inf {m € R | ys — (=hy )" (=ya™) < ap(y*,m)} =inf {m e R | —(=hy.)"(0) < ay(y*,m)}
= a7y ~(—h.)" (0)).
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Therefore, by using the previous two equations and the positive homogeneity of o, we get
—1 *
afog(x ,S)

= sup supinf {m ceR | ys — (=hj.)" (—ya2") < af(y*am)}
y*€D+\{0} v=0

= sup (a;l(y*, —(—h.)*(0)) V sup inf {m eR | vs —y(=hi. ) (—z") < ay(y*,m)
y*eDT\{0} >0

—  sup (afl(y*, —(—h2.)*(0)) V sup inf {m ER|s— (=h%)*(—2") < ay (%m)

y*€DH\{0} >0 £l

= sup Oz;l(y*, —(=hy)*(0)) v sup inf {m eR|s—(=h)"(—2") < oy (%,m)
}

y*eD*T\{0} y*eDT\{0},
>0

=  sup oz;l(y*, —(=h8)*(0)) v sup inf{m eR|(s— (=hd.)*(—z")) < ay(y*,m)

y*eDT\{0} y*eDT\{0}

= swp oy () O) Y sup ap (s — (<A (<))
y*eD\{0} y*eDT\{0}

= s (a7 (5, (= k) (O) V oy (" s — (<hg) (=2") ).
y*eDT\{0}

By the monotonicity of oz;l, we can also write the last line as

sup a;'(y*, (=(=hg.)*(0)) V (s = (=h.)"(—2%))),
y*eDT\{0}

which completes the proof. O

4.3 Quasiconvex composition on a convex set

We turn our attention to the case where the composition is considered on a monotone convex
set K C X with C C I, see Corollary [2.3.12] the analogous result for a single function. The

treatment here will be relevant for some applications in Chapter [f

We work with two functions f: Y — R and ¢g: K — ). The following results extend
Theorem and Theorem [£.1.2] Their proofs are given in Section [6.1}

Corollary 4.3.1. Suppose that f is decreasing, lower semicontinuous, and quasiconvex; and
that g is regularly increasing, D-lower demicontinuous (with respect to the relative topology),

and D-naturally quasiconcave. Then, f o g is an decreasing, lower semicontinuous, and
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quasiconvex function. Moreover, for each x* € C*\ {0} and m € R, we have

Qrog(x*,m) = inf «_ x5 ar(y*,m)).
o' m) = nl oy, (@ ag(y”m)
Proposition 4.3.2. Suppose that f is decreasing, lower semicontinuous, and quasiconver;
and that g is increasing, D-lower demicontinuous (with respect to the relative topology), and

D-naturally quasiconcave. Then, we have

fogle)= suwp afl (", —a)), weK, (43.1)
z*eCt\{0}
and
fog(x)= sup sup a;l (y*, a:;g* (x, (2", —.:1:))), x e K. (4.3.2)

z*€CT\{0} y*eDT\{0}

For a more specific case, we have the following proposition.

Proposition 4.3.3. Suppose that f is decreasing, lower semicontinuous, and quasiconvex;
and that g is increasing, D-lower demicontinuous (with respect to the relative topology), and

concave. Then, we have

fog(x)= sup sup a;l <y*, (x*, —x) — (—hg*)*(—x*)), r e X. (4.3.3)
*€C+\{0} y*€D+\{0}

4.4 Compact cone generators

In this section, we will discuss the existence of compact convex cone generators in some
specific spaces and show that Theorem [4.1.6|is applicable in these spaces. This will justify

the use of our results in the context of systemic risk measures in Section [5.1}

As mentioned in Remark DI is a closed convex generator but it is not always
compact. However, we do not have to restrict ourselves to this generator and can search for
other generators because after guaranteeing the existence of a compact convex cone generator
D+, we can still work on D7 thanks to Equation (4.1.5)).
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4.4.1 Finite-dimensional spaces

Let us take J = R™ with the Euclidean norm ||-||, as a natural consequence Y* = R"
with the same norm ||-|]. Choose a convex cone D and denote the unit ball with B =
{y € R" : ||y|| < 1}. We will show the existence of a compact convex generator for D* so we

are able to use our main theorem for the case Y = R".

Proposition 4.4.1. The set DT := DTN B is compact and convex, and it is a cone generator
for D*.

Proof. Since D' and B are closed and convex their intersection will also be closed and
convex. Also, B is compact since it is closed and bounded. By using this fact and D is a

closed subset of B we have D¥ is also compact.

Now let us show that Dt generates D*. Take an element y* € D\ {0}. We have

m € DT since DT is a cone and Hm

‘ = 1 which implies that it is in B and hence in D™
We can write y* = ||y*|| m where ||y*|| > 0 and Hz—” € D*; hence, D* is a cone generator
for Dt. O

4.4.2 Lebesgue spaces

Let (Q, F,P) be a probability space, and let p € [1,4+o00], n € N. We denote by L°(R")
the space of n-dimensional random vectors that are identified up to P-almost sure equality.
We denote by LP(R") the space of all X € L°(R") such that || X||, < +oo, where [|X]|, =
(E[IX||PDYP for p < 400 and | X, = inf{c > 0 | P{||X]| < c} = 1} for p = +oo. For
p € {0} U [1,+0oc] and a set A C R™, we denote by LP(A) the set of all X € LP(R™) such
that P{X € A} = 1.

In this section, we fix p € [1,+00) and consider the case ) = LP(R™), which is equipped
with the norm |[|-]|, and the induced topology. As a consequence, }* = L(R") with the
norm |[-||, and we consider it with weak topology o(Y*,Y), where the conjugate exponent
q € (1,400] is defined by the relation % + é = 1. Let D C Y be a closed convex cone and
denote the unit ball in LI(R") by By = {Y* € LY(R") | [[Y*|, < 1}. We will show the

existence of a compact convex cone generator for D so we are able to use Theorem [4.1.6]
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for the case Y = LP(R™).

Proposition 4.4.2. The set D .= Dt N B} is a o(Y*,Y)-compact convex set and it is a

cone generator for DV,

Proof. Since D and By are closed convex sets, so is their intersection DT. Also, By is
o(L4(R™), LP(R™))-compact by Banach-Alaoglu Theorem (Theorem IV.21 in [30]). By using

this fact and that D7 is a closed subset of B,, we conclude that D* is also compact.

Next, we show that Dt generates DT. Let Y* € D\ {0}. We have € D7 since

IIY*II

= 1 which implies it is in B, and hence in D*. We can write

DT is a cone and H”}f—
= V"], > where HY*H > 0 and
D+. -

” H € D*. Hence, DT is a cone generator for

Let us look at the special case n = 1 and take D = LP(R ) which is the set of all almost
surely positive elements of LP(R) , then DT = L9(R,). Also, we can take m = 1 and get
T = M{(P), the set of all probability measures Q that are absolutely continuous with
respect to P and with Radon-Nikodym derivatives %}% in L9(R,). Therefore the formula in

Theorem [4.1.6] can be rewritten as

apog(X*,m) = inf a_ B <X* ay (cjl% )) (4.4.1)

QeMi®) R

We can work with any closed convex cone generator after guaranteeing the existence of a

compact convex cone generator since we do not need compactness for the second equation in
Theorem [£.1.6] Therefore, the dual representation in Theorem can be written in this

way since Dy is a closed convex cone generator by Remark
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Chapter 5

Applications to systemic risk

measures

In this chapter, we will explore the implications of the general theory developed in Chap-
ter [4] for some quasiconvex risk measures for interconnected financial systems. Such risk
measures are referred to as systemic risk measures, which is of recent interest in the financial

mathematics literature. We refer the interested reader to [I7], [19], [I8], [20].

5.1 Results on general systemic risk measures

Risk measures are used in financial mathematics for calculating capital requirements of
financial positions. There are different theoretical approaches for risk measures, each of
them working with its own set of assumptions. However, the most common elements of a
risk measure are monotonicity and diversification. Monotonicity corresponds to the fact that
if value of an financial asset increases then its risk must decrease. Hence, a risk measure
should be a decreasing function. Diversification means that when we diverse our investment
it should not increase the risk. Some of the literature (e.g. [11]) uses convexity in order to
satisfy this condition but quasiconvexity is more suitable for the concept of diversification.
Also, cash additivity is sometimes used as an assumption for risk measures (e.g. in [10],
[T1]). When we are trying to weaken this assumption by cash subadditivity, it is suggested

in [31] that convexity should be replaced with quasiconvexity. Therefore the assumptions in
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our main theorem (Theorem 4.1.6) will not restrict us for the applications in risk measures.

We want to calculate the risk of a financial system so there is also need to define a risk
concept for systems, which are systemic risk measures. In the literature, most of the systemic
risk measures (e.g.[19], [17]) are in the form R(X) = p o A(X), where p is a risk measure
and A is the aggregation function. which will be defined at Definition [5.1.1 We want to
save the properties of monotonicity and diversification in this form; therefore, assuming the
quasiconvexity and monotonicity of the aggregation functions is useful. Regularly increasing
property for the aggregation function can be considered as if the system has a significant
positive change then its value changes significantly too. Also the lower semicontinuity as-
sumption is a mild regularity assumption. Hence, our assumptions in the theorems are not

restrictive for the systemic risk measures.

We will work on the spaces X = LP(R™) and Y = LP(R), where p € [1, +00]. These spaces
are equipped with their norm topologies when p < +o00 and with the weak™ topologies when
p = 4o00. In all cases, we have X* = LI(R"™) and Y* = L9(R), with their weak topologies,
where ¢ € [1,+00| is determined by }—17 + % = 1. We denote by MZ(P) the set of all vectors
S =(Sy,...,S,), where S; is a probability measure on (2, F) that is absolutely continuous
with respect to P and %t € LI(R,) for each i € {1,...,n}. We take C = LP(R") and
D = LP(R,); hence the dual cones are given by C* = LI(R"}) and DT = L¢(R;). With
this choice of D, for the sake of convenience, we will remove D from the terminology; for

instance, we will simply call a function concave if it is D-concave.

Definition 5.1.1. (i) A function p: LP(R) — R is called a quasiconvex risk measure if p

1S quastconver and decreasing.
(i) A function A: LP(R™) — LP(R) is called an aggregation function if it is increasing.

(iii) A function R: LP(R") — R is called a quasiconvex systemic risk measure if
R=poA,

where p is a quasiconvex risk measure and A is an aggregation function.

When we consider the dual representation in Theorem in the systemic risk measure
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context, as long as it satisfies our assumptions, it reads as

R(X)=poAX) = sup sup oz;l (Y*, a:lh,\ (X*,-E [XTX*])> .
X*eLa(R})\{0} Y*€L(Ry)\{0} v
As a generalization of the economic interpretations in [20] for the convex case, we may
interpret the above formula as follows. The aggregation function A calculates the effect of
financial institutions on society, and the risk measure p calculates the risk of society. In this
dual representation, we first consider the lost of the system which is evaluated under X* by
E[—XTX*] and control the plausibility of X* when the condition of society is considered as
Y* via the function a:ﬁlﬁ* !

and take the supremum of them which can be considered as calculating worst case. Now we

. Then we calculate the plausibility of the Y* by the function «,

will focus on more specific conditions and look for more specific interpretations after passing

to the probabilistic settings.

Note that when p is quasiconvex, the systemic risk measure in the form R = po A
is a quasiconvex systemic risk measure whether aggregation function is concave or natural
quasiconcave. Therefore, even when p is quasiconvex and the aggregation function is concave
we will have dual representations for systemic risk measures which are new in the literature

to the best of our knowledge. Now, we will give some examples for this purpose.
First, we start with quasiconvex risk measures of the form
p(Y) =" (E[to (-Y)]), Y eL(R),

where p € [1,+00], and £: R — (—00, o] is a proper lower semicontinuous convex increasing
function, called a loss function. For simplicity, we assume that ¢ is differentiable. Such p is

called the certainty equivalent associated to loss function ¢. It is found in [8] that

QN a0
o (@) =melre (7))

where Q € M, (P), h is the right inverse of the derivative ¢, 8 = 5(Q,m) is the solution of
the equation E [¢ o h o (392)] = ¢*(m) under some integrability and positivity conditions.

Let us provide some specific examples for the loss function ¢ and recall the penalty func-

tions for the corresponding certainty equivalents, already calculated in ([8], Example 8).
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Later, we will combine these choices of ¢ to construct systemic risk measures.

Example 5.1.2. (i) (Quadratic loss function) Let us take p = 2, and £(s) = s%/2 + s for
s > —1 and {(s) = —3 for s < —1. Then for m > —1 we have a, (%,m) = —1, and
for each Q € M?(P) and m < —1, we have

a, (%,m) =(1+m) H% i —1.
Moreover, we have
o <C§% ): sd+1 .
111,
if s > —1 and a;l(‘;%, s) = —oo elsewhere.
(i) (Logarithmic loss function) Let us take p = 1 or p = 400, and ¢(s) = —In(—s) for

s < 0 and /(s) = 400 for s > 0. Then, for each Q € M{(P), we have

d
a, <£,m) = meE[ln(%)], m < 0,

and
o, (Cji% ) = SefE[ln(%)], s < 0.

(iii) (Power loss function) Let us take p = 1 or p = +o0, and fix some v € (0,1). Take
l(s) = ( ) for s < 0 and {(s) = oo for s > 0. Then, for each Q € M (P), we

have 10
m
a, (dTP’m) H ”7 ) m < 0,

o (dQ N ||dQ
Oép dfp,S =S d_]P)

Here, for Y* € L'(R), we use the notation ||[Y*||, = (E[|Y*]"])e for a < 1 as well,

although ||-||, is not a norm in general.

and

< 0.

In addition to certainty equivalent, we also revisit the economic index of riskiness as

another example of a quasiconvex risk measure. Based on the loss function /¢, this risk
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measure is defined by

1
sup{\ > 0| E[lo (=\Y)] < ¢}’

p(Y) =

where ¢y € R is fixed. To make this risk measure well-defined, ¢ is usually assumed to have
the superlinear growth condition lim,_,, ¢(s)/s = oo and p is chosen in accordance with £.

Following the arguments in [§], it can be shown that

@, (le%,m) = Eg {mho (mﬁi%)} , Qe M{(P),meR,

where 8 = B(Q, m) is the solution of the equation E [E oho (mﬁ%)] = ¢p.

The following example is the analogue of Example [5.1.2(ii) for the economic index of

riskiness; see Examples 3 and 9 in [§] for more details.

Example 5.1.3. Let us take p = 1 and ¢y > 0, and consider /(s) = —In(1 — s) for s < 1
and ¢(s) = +oo for s > 1. Then, for each Q € M5°(P), we have

(B nlo (o ()] )

a,’ (%’S) T 1—exp (E [ljl(d]P)} =)’

where exp(z) = e” for z € R.

and

15

These examples of risk measures are taken from [§] which works on lower semicontin-

uous, quasiconvex and monotone risk measures which are exactly same assumptions with

Theorem and Theorem in our study. Therefore, we can directly use these results.

In many applications, the aggregation function A is defined in terms of a deterministic
increasing function A: R* — R via A(X) := A o X, that is,

AX ()W) = AX (W), weQ, (5.1.1)

for every X € LP(R"), which we assume for the rest of this chapter. Here, the implicit
assumption on A is that the resulting function A is a true aggregation function, that is,
A(X) € LP(R) for every X € LP(R™). On the other hand, to ensure lower demicontinuity of
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A, we need to impose sufficient regularity on A. This is done in the following lemma.

Lemma 5.1.4. Let A: R" — R be an increasing function and define A by (5.1.1). Suppose
that A(X) € LP(R) for every X € LP(R"), where p € [1,+00].

(1) Suppose that A is concave and bounded from above. Then, A is concave and lower

demicontinuous.
(ii) Suppose that A is linear. Then, A is linear and lower demicontinuous.

(111) Suppose that A is reqularly increasing with respect to cones R and Ry. Then, A is

reqularly increasing.
Proof. The proof is given in Section [6.2} O

We revisit some simple examples of the deterministic function A from [20]. In each

example, we also calculate the conjugate function ® given by

(") = (—A)*(—2") = sup (A(z) — (2*)"z), 2" €R",

z€R™

for future use. A more sophisticated aggregation function based on a clearing mechanism

will be discussed separately in Section [5.2]

Example 5.1.5. (i) (Total profit-loss model) Take A(z) = S_7_, @, then by ([20],4.1) we

have
0 if ¥ =1,

oo else.
Note that the condition that A(X) € LP(R) for every X € LP(R") is satisfied for every

choice of p € [1, +o0].

(ii) (Total loss model) Take A(x) = —S°" a7, then by ([20],4.2) we have

0 ifxfe|0,1] for every i € {1,...,n},

oo else.

As in the previous example, for every choice of p € [1, +00], we have A(X) € LP(R) for
every X € LP(R") is satisfied.
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iii) (Exponential aggregation model) Take A(z) = — > 7, e %! then by ([20], 4.3) we
=1

have n
®(a") = Y a7 In(x]),
i=1
where In(0) == —oo and 0In(0) := 0 for convention. Note that the condition that

A(X) € LP(R) for every X € LP(R™) is satisfied for p = +o00. We cannot use The-
orem since we can not guarantee the existence of a compact cone generator in
Proposition [£.4.2 However, we can still use the dual representation in Theorem [4.1.2]

Thanks to Lemma [5.1.4] in our applications, we can use each of the aggregation functions

in Example [5.1.5]

Assuming the structure for the aggregation function in (5.1.1), we calculate the penalty
function of a systemic risk measure when the underlying aggregation function is concave and

regularly increasing. For convenience, for each X* € LI(R™), let us define the set
Ty ={Y" € LYR,) |P(X*#40,Y*=0)=0}. (5.1.2)
Similar to , we also define
O(X*):=Ddo X", X*eLIRM). (5.1.3)

Proposition 5.1.6. Let A: R® — R be a concave, reqularly increasing function that is either
bounded from above or linear. Define A by . Suppose that A(X) € LP(R) for every X €
LP(R™), where p € [1,400). Let p be a lower semicontinuous quasiconvex risk measure. Let
X* € LYR"™) and m € R such that the strict sublevel set {X € LP(R") | E[-Y*A(X)] < m}
is nonempty for every Y* € LI(Ry) \ {0}. Then,

X*
apoA(X*,m) = inf (]E {Y*(I) (Y*) 1{y*>0}:| + Oé/,(Y*,m)) .

Y* GTX*

Proof. The proof is given in Section [6.2] O

Next, we aim to rewrite Proposition [5.1.6] in terms of probability measures. By doing
this, we will be able to provide economic interpretations of the dual representation in view

of model uncertainty. Since Df = {Z% | Q € M}(P)} is a closed convex cone generator
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for D* = LR, ), we can write every Y* € LI(R;) \ {0} as Y* = \%2 for some A > 0
and Q € M{(P) by Remark [£.1.4] Similarly every X* € C* = LI(R") can be written as
X*=w-$, wherew € R?\{0}, S = (S,...,S,) € MI(P), and w- L = (0 &L, ..., w, 52).
The interpretation of these dual variables is as follows. In the presence of model uncertainty;,
we consider Q as a probability measure that is assigned to an external entity (e.g., society)
and, for each i € {1,...,n}, S; is a probability measure that is assigned to the internal entity
i (e.g., a bank in the network) with corresponding weight w;. Also, since we consider X*
and Y™ satisfying the condition P(X* # 0,Y* = 0) = 0 in Proposition [5.1.6} it follows from
Lemma 6.3 of [20] that w;S; is a finite measure that is absolutely continuous with respect to
Q, and we can write

wdd - dS

aQ g

# 4Q
where all Radon-Nikodym derivatives are well-defined. Therefore, the formula in Proposi-
tion £.1.6] can be written as

ds 40 w-dS
alw - SdP — e o Eg [\ [ —— ). 1.4
por (w dP m) AS0.0EM (), (AO‘” (dIP’ m) t %o P ( 2dQ )D (5.1.4)

w; S;<KQ

We calculate the total penalty of choosing probability measure S and weight w for the
financial institutions by considering all possibilities of society measure Q. It is computed
as summing the penalty of society being in the alternative model Q and the effect of the
financial institutions on the society, so it has as an additive property when we are calculating

the penalty function.

Proposition 5.1.7. Let A: R® — R be a concave, reqularly increasing function that is either
bounded from above or linear. Define A by (5.1.1)). Suppose that A(X) € LP(R,P) for every

X € LP(R™), where p € [1,+00). Let p be a lower semicontinuous quasiconvex risk measure.

(i) Suppose that A is bounded from above, that is, ®(0) < +oo. Then, we have

ozp_olA(X*, $) = max { sup a;l (Y*, —®(0)E[Y™]),
y+eL? (R)\{0}

X*
—1 * *
sup « Y's—E YD Ly« ,
Y*E’Ilz(* p ( [ <Y*) {Y >O}:|)}
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where Tx« is defined by (5.1.2)). In particular, when we change variables to the proba-

bilistic settings, we get

ds dQ
(.2 s = (L2 g0
O on (w dIP”S) max{@esj\l/ll?(]?) a, <le” 0) ),

sup  a,’ (@ °_E {CI) (_w : dS)})
semiaso © \dPTA AdQ ‘

w;S;<KQ

(11) Suppose that A is unbounded from above, that is, ®(0) = +o00. Then, we have

X*
&;(fA(X*,s) = sup a;l (Y*,s —-E {Y*@ (Y*) 1{y*>0}1) ,

Y*eTxx
and
ot (w o s) = sup  a,’ (Q °_E [@ (w-dS)})
pol dP’ gemi@aso © \dPTX C AQ '
w;S; KQ
Proof. The proof is given in Section [6.2] O

In the next proposition, we give a dual representation for quasiconvex systemic risk mea-
sures. Unlike the previous two propositions, we allow for p = 400 here as we do not rely on

the expression for the penalty function.

Proposition 5.1.8. Let A: R" — R be a concave, increasing function that is either bounded
from above or linear. Define A by (5.1.1]). Suppose that A(X) € LP(R) for every X € LP(R™),

where p € [1,+00]|. Let p be a lower semicontinuous quasiconvex risk measure. Then, we

have
d -dS
R(X) =poA(X) = sup a,! (LQ, —Eg [cp (w—ﬂ — w'Eg [X]) (5.1.5)
weRT\ {0} SEML(P) dP dQ
QeM{(P),w;S;<Q
for every X € LP(R™).
Proof. The proof is given in Section [6.2 O]
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Now, we are ready to give the implication of Theorem and Theorem by com-
bining Examples [5.1.2] and [5.1.3| with Example |5.1.5. Therefore, we will give examples for

the dual representation of the composition for a quasiconvex function and a concave function

which is new in the literature to the best of our knowledge.

Example 5.1.9. (Total profit-loss model with economic index of riskiness) Take A(x) =
Yor xiand p € [1,+00). By (5.1.4), we have the formula

ds dQ w - dS
o lw-m) = wf (A, (Z2 Eg |A® .
et (w P m) A>o,«$?w<n»>,( " (dIP m) " Q{ ( AdQ )D

LIASTESS

From the calculation in Example [5.1.5(1), we can see that it is enough to consider only the

case where “j\'T‘liﬂf = 1 almost surely. Therefore, we get

( ds ) Aoy, (%) if w-dS = AdQ1 for some Q € M{(P),\ > 0,
Qpop | W

- —_— s m P
dP 00 else.

In order to give a more specific example, let us take p as the economic index of riskiness in

Example [5.1.3| corresponding to the logarithmic loss function with p = 1. In this case, we

(o ) oo o ()] )

if w-dS = AdQ1 for some Q € MP(P) and A > 0, and apop (w

obtain

ds _ -
- %5»m) = +oo otherwise.

Example 5.1.10. (i) Let A(z) = 3", #; be the aggregation function in Example|5.1.5(i)
and p € [1,+o0]. Then, by Proposition and Example [5.1.5]

poA(X)= sup a,’ (%,—ZEQ[)Q]) .

QeMi(P)

In particular, if we take p as the certainty equivalent corresponding to the power loss
function (Example [5.1.2iii)) and p = 1, then by Proposition and Example [5.1.2]

we get

dQ
poA(X)= sup -— H—
%) Qemse@) || dP

. > EqlXi).
= i=1

(ii) Let us take the total loss model in Example and p € [1,+00]. Then we have the
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following dual representation by Proposition [5.1.8

d
R(X) =poA(X) = sup a,’ (%, —w'Fg [X]) : (5.1.6)
weR?\{0},Se M (P)
widSiSL

P
QeM(P),w;S;<Q

As a more specific example, take p = 2 and consider the quadratic loss function in
Example [5.1.2](i), which gives that

—wTEs [X]+1
R(X)=poAX)= sup ( v dSQ[ |+ - 1) (5.1.7)
w§;1§i\{0}7S€Mi(P) H P ”2

Lot <1,w'Eg[X]<1
QeMZ(P),wS; <Q

(iii) Let us suppose that p is the certainty equivalent corresponding to the logarithmic
loss function in Example [5.1.2(ii) with p = +o00. Then, by Proposition and

Example [5.1.2) we have

poA(X) = sup — « . (5.1.8)

weR?\{0},Se M (P) Eln()]
QeM}(P),w;S;<Q

Eq @ (%%)] + w'Es [X]

In particular, let us assume that A is the exponential aggregation function in Exam-

ple [5.1.3(iii). Then, (5.1.8)) simplifies as

o w2 (Balm ()] s ()

dQ
weR? \{0},Se ML (P) Eln(3)]

By looking at the Equation ([5.1.8]), we can make some interpretations. We are calculating
the effect of X on the financial institutions by Eg[X] and arrange their importance level by

changing the weights w. We calculate some concept of divergence of the system model S to
w-dS
dQ
in the numerator we are calculating the risk of choosing the weights w and the condition of

the alternative model of society Q by Eq[®(*52)]. Hence if we also consider the minus sign,

financial institutions S when we are in the alternative model Q for the society. Then, we
should look for to what extend this calculation under this alternative model has impact on

us. Therefore, if an alternative model is more realistic which means if it is closer to the actual
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probability measure P, then it should affect us more. The denominator En()) calculates
the distance of alternative model to our real probability measure P so the denominator
handles the adjustment issues. Briefly, if an alternative model Q is more realistic than
the denominator will be a small number, therefore the calculation under this model in the
numerator will have more impact on our risk measure. By taking the supremum over all
models, weights and society measures we are looking for the worst case in order to calculate
our systemic risk measure. It should also be noted that our interpretation is valid for the other

risk functions in Examples [5.1.2[ and [5.1.3| since we can look from the same perspective, the

denominator is always a method for calculating the distance between the alternative model

Q and the real model P and the numerator is somehow risk under the this alternative model.

5.2 Eisenberg-Noe model

In the real-world applications, our aggregation function might not be defined on the whole
space but rather a smaller subset. In this section, we will discuss the Eisenberg-Noe clearing
model for which the aggregation function is of the form A: LP(R%}) — LP(R) induced by
a deterministic function A: R} — R via (.1.1). Before describing this model in detail, as
a preparation, we first prove a slightly different version of Proposition using the cone
LP(R%). In this section, we will define @ via ([5.1.3), where

O(z*) = sup (A(z) — (#")T2), 2" € R™

z€R™
Proposition 5.2.1. Letp : LP(R) — R be a lower semicontinuous, quasiconvez risk measure;
and A R? — R a concave, reqularly increasing function that is bounded from above. More-
over, suppose that the strict sublevel set {X € LP(R?) | E[-Y*A(X)] < m} is nonempty for
every Y* € LY(Ry) \ {0}. Then, for every X* € L(RY) and m € R,

Qpop(X*,m) =0A  inf (ap(Y*,mHIE[Y*‘I’(;(:)D

Y*eL1(Ryq)

Proof. The proof is given in Section [6.2] O

Proposition 5.2.2. Letp : LP(R) — R be a lower semicontinuous, quasiconves risk measure,

and A: R — R a concave, increasing function that is either bounded from above or linear.
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Suppose that A(X) € LP(R) for every X € LP(R™). Then for every X € L% (R™), we have

poA(X)=  sup sup o’ (Y*, ~E [(X*)TX +Y*® (‘;/()D :

X*eLI(RY)\{0} Y*ELI(Ry 1)
Proof. The proof is given in Section (6.2 O]

As in Section , we may switch to probability measures by writing X* = w - % and

YV* = A2 where w € R7\ {0}, A > 0, Q € M{(P), and S € MZ(P). Again, by [20, Lemma
6.3], we have w;S; < Q if Y* € LY(R,,P). By using the same arguments in the proof of

Proposition [5.1.7, we will have

d -dS
poA(X)= sup )’ (%, —Eq {@ <wd )} —w'Rg [X]) : (5.2.1)
weRT\{0},SE M (P) Q
QEM'{(]P’),wiSi«@

Next, we review the clearing model in [21], which takes into account the liabilities between
the members of the financial network, hence the structure of the network. In this model,
financial institutions are considered as nodes and their liabilities are considered as arcs in
a graph. More precisely, let NV = {0,1,...,n} denote the nodes, where nodes 1,...,n
typically represent the banks and special node 0 represents society. For each 7,7 € N, let
¢;; > 0 denote the nominal liability of member ¢ to member j. Naturally, we assume no
self-liabilities, that is, £; = 0 for each 7 € N; and society has no liabilities to banks, that is,
lo; = 0 for every © € N. We also assume that every bank has nonzero liability to society,
that is, £;o > 0 for every i € A"\ {0}. Then, the relative liability of member i to member j
is defined by

Qjj = @,
i
where p; == Z?:o ¢;; is the total liability of member ¢. Finally, let z € R’} denote a possible

realization of the uncertain value of the assets of the banks. A clearing payment vector

p(z) € R™ is defined as a solution of the following fixed point problem:

pi(z) = min {ﬁi, Zaﬂpj(:v)} for i € N\ {0}.

j=1

Clearly, every clearing payment vector p = p(z) is a feasible solution for the following linear
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programming problem.

max E:Zzla“ﬂ%
st opi <@+ 0 agp; fori=1,...n, (5.2.2)

pi €[0,p;] fori=1,... n.

It is shown in Lemma 4 of [2I] that every optimal solution of this problem is a clearing
payment vector for our system. In addition to this, it is shown in [21] that for any z € R’}
the above linear problem is feasible, and hence it has an optimal solution. Denote the
optimal value of this problem by A(z). It should be noted that A(z) € Ry since ap > 0
by definition and p; € [0, p;]. A calculates the effect of the realized values of the assets on
society. Therefore, A can be considered as an aggregation function. Let us take D = LP (Ry)
and Dt = L(R,), then A is concave and increasing as it is stated in Sect. 4.4 of [20]. It is
bounded by Z?:l a;op; SO we can use Lemma m

Let us calculate the corresponding conjugate function: for every z* € R, using ([5.2.2)),

we have

d(z*) = sup (—xTx* + A(m))

xGRi
n n
_ 3 *
= sup a;op; —  inf T
0<p<p \ @20 =]
= x>p—ATp "=
n § n +
= sup. E (azopi - (%)(pz - E CLjin) >
0<p<p i=1 j=1

Then, by applying Proposition [5.2.2] we have

X*
poA(X)=  sup o (Y*,—E {XTX*+Y*<1>( )D
X*eLI(R?)\{0} Y

Y*eLI(Ry)

We can pass to the probabilistic setting by using (5.2.1]) as follows:

poA(X) = w o7t (fl%, _Eg [cp (w . @)} WS [X]) .

weRR\{0},SEM3,
QeEM(P),w;S; <Q
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As a more specific example, if we use the certainty equivalent that corresponds to the loga-
rithmic loss function (see Example|5.1.2((ii)) for the case p = 1, then the dual representation

simplifies as

poA(X) = sup Zn(L2]] . (5.2.3)
weR?\{0} SE M (P) Eln(
QeEM (P),w;S; <Q

In order to interpret (5.2.3]), we first look at the explicit expression for ® with the help of
Theorem 14.60 in [32]:

e B -xfan;

= sup Eq
peLl([0,p]) ;

S o0 (o= S0

O<p<p
P, e (P, Z P )+
Qiol3 — wi_ i Qji L
0 dQ p Jit g

Consider bank i € {1,...,n}. The term a;,P; represents the gain of society that comes from
bank i after Clearlng, and (P; — Z L a;;P;)T corresponds to the net gain of the bank 1,
which is then multiplied by the weight w;3g dSZ of bank ¢ relative to society. Thus, we obtain

the “relative net gain” of society by calculatmg the difference between the gain of society

and weighted net gain of banks after the clearing. Observe that if w; Z%
net gain of bank ¢ will have less negative impact on the relative net gain of society. We are
calculating the supremum over the clearing vectors so we are trying to maximize the relative

net gain of the society.

To interpret the dual representation in (5.2.3]), we are calculating the effect of a random
shock on the system with weights by —w'Eg[X] and sum it with the “relative net loss”
of society by —Eg[®(w jg)]. In the denominator, as in the previous case (5.1.8), we are
calculating the distance between the probability measure QQ of the society and the actual
probability measure P. When the incompatibility between the society and system gets
bigger which means the distance between the probability measure S of the system and
the probability measure QQ of the society increases, then the relative net loss of society will
increase too. In the denominator, we are looking at the plausibility of the probability measure
of the society. If the probability measure QQ of the society is more realistic which means if it

is closer to the real probability measure P, the denominator will be small so the effect of the
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numerator will be much more in more realistic cases. Briefly, if the incompatibility between
the system and society is high then relative loss will be higher in this case, and the model for
the society is more realistic this will be considered more seriously in our dual representation

and we will calculate the worst-case by taking the supremum.
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Chapter 6

Appendix

In this chapter, we will give some definitions and propositions which will lead us to the proof

our important results in Chapter 4 and Chapter [6]

6.1 Proof of some results in Chapter

The main purpose of this section is to prove Theorem [4.1.6] As a preparation for the proof,
we will establish a sequence of technical results. In particular, these results will ensure that

we may apply the minimax inequality in [25].

We work in the setting of Chapter : we consider two functions f: Y — Rand g: X — ).
We also suppose that Assumption holds, that is, DT is a convex and compact cone
generator for DT. Given m € R and y* € DT, let us define the sets

Ay ={r e X | (y", —g(z)) < as(y",m)},
Ar ={z e X |y, —g(x)) <as(y",m)}.

Clearly, A C A™. Also, observe that AT is actually the sublevel set of —h?.; see (3.0.1)).

y*
Therefore, when the function g is D-naturally quasiconcave, increasing and D-lower demicon-

tinuous, the set A7} is a closed, convex and monotone set by Propositions|3.0.2}[3.0.7] 3.0.12]

We give the precise relationship between the sets 151;“ and A7% in the following proposition.
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Proposition 6.1.1. Suppose that Assumption[3.0.9 holds. In addition, suppose that g: X —
Y is D-naturally quasiconcave, reqularly increasing and D-lower demicontinuous; and let
m € R, y* € DT\ {0}. Then,

Al = cl AJL = clconv A7L. (6.1.1)

Proof. If A7t = (), then the result is obvious. Let us assume that A7. # () and prove that

AZZ is the closure of 12121. Since leﬁ - A;’i and AZ’; is closed, we have cl lei - A’y’i.

Now let us take z € AJ%, and fix some c € C# and A > 0. It is clear that A\c € C* since
C# is a cone. Moreover, since g is regularly increasing, we have g(x + Ac) — g(z) € D#. In

particular, since y* € DT\ {0}, we have (y*, g(z + A\c¢) — g(x)) > 0. Therefore,

W, —g(x+ Ae)) = (y", —g(x)) — (y", g(x + Ac) — g(7))
< ap(y",m) — (¥, g(x + Ac) — g(z)) < ap(y",m).

Hence, = + Ac € 12121 The net (z 4+ Ac)rso C fl’y” converges to x as A\ — 0, which implies
that x € cl leL Hence, A7} C cl fl? and the first equality in (6.1.1]).

Finally, since A7 is convex, we have

A;’i = conv (cl[lym*) Cel (convflgi) - AZl.

Hence, the second equality in (6.1.1)) follows as well. ]

Remark 6.1.2. Let m € R, y* € D™\ {0}. Hence, we may write y* = Ag* for some A > 0
and §* € D*. Then, it is easy to see that

xeAZ”i = xeAgi

for each z € X. Hence, A7\ = A7

Next, for each m € R and z* € CF, we define two auxiliary functions K7, K™ : X x Dt —
R by
Ka:n}*(x7y*) = <l’*, —l’> - IA;’i (ZE), Ka:n}*(x7y*) = <l’*, —l’> — Ljim (ZE),

y*

for each (z,y*) € X x D*. The next proposition shows the relation between these two
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functions.

Proposition 6.1.3. Let m € R and z* € C*. Suppose that g is D-naturally quasiconcave,

reqularly increasing and D-lower demicontinuous. Then, for each y* € DV, we have

sup K71t (w,y") = sup K7 (z, y").
TeEX reX

Proof. Let y* € D*. By definition, we have

sup f(;l (x,y") = sup ( (—x*, x) — ]AT* (m)) =TI%, (—x%).

A’"g(
TEX TeX y

Moreover, by Lemma [2.3.1] and Proposition [6.1.1], we have

I5, (—2%) = sup (—2", 7).
v* a:EA;'i

Similar to (6.1.2)), we also have

sup K32 (2,y") = sup (—a",z).
zeX wGA;’;

Combining these, we obtain the desired result.

(6.1.2)

We will use a minimax theorem in the proof of Theorem so we need to show the

properties of these functions and the connection of these functions to our problem. Lets

start with the properties of these functions.

Proposition 6.1.4. Let m € R and z* € C*. Suppose that g is D-naturally quasiconcave.

The following properties hold.

(i) Suppose further that g is D-lower demicontinuous. Then, K@% is concave and upper

semicontinuous in its first argument, and quasiconvex in its second argument.

(i1) The function K is concave in its first argument, and quasiconvex and lower semicon-

tinuous in its second argument.

Proof. We prove (i) first. Let y* € DT. Since Ay is a closed convex set, [ Am s a lower
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semicontinuous convex function. Hence, z — K (z,y*) is an upper semicontinuous concave

function.

Next, let us fix z € X. We claim that y* — Lm (x) is a quasiconvex function. Indeed,
let yi,y5 € DT and A € [0,1]. Since D" is convex, Ayj + (1 — N)ys € D, If z € A or

T € Aymg, then we have

min{]A;qk(x),]AZm*(m)} =0 < Iym (x)

Ayl +(1=2)y3
by the definiton of indicator function. On the other hand, suppose that = ¢ A;’?f and x ¢ A;’%.

Then, (yf, —g(x)) > ay(yf,m) and (43, —g(x)) > ay(ys, m). Hence,

(A7 + (1= Nys, —g(x)) > Ay (yr,m) + (1 — Ny (ys,m)
= A sup (y;, —y) + (1 = A) sup (v, —y)

yest, yest,
> sup (Ayi + (1= Nz, —y) = ap(Ayi + (1= Nys, m).
yesh,
Therefore, x ¢ AN (1-a)y; SO that
IIliIl {IAZ% (ZL’), IA.Z;* (13)} S +00 = IAK;IHPA)L@ (1,‘)

It follows that y* — Iym (x) is quasiconvex, hence so is y* — K (z, y*).

Next, we prove (ii). Let y* € D*. We claim that flgﬁt is a convex set. Indeed, let

x1,To € 121;” and A € [0,1]. Since —hJ. is quasiconvex, we have
—h‘z*()\xl + (1= Nag) < max{ — hz*(xl), —hg*(:@)} < ar(y*,m),

which implies that A\x; 4+ (1 — \)zy € fl;” Hence, the claim follows. It follows that I ;. is a

convex function and x — K% (z,y*) is a concave function.

Let us fix z € X. We show that y* + [;. (z) is quasiconvex. Let y},y5 € D' and
_ v ~ ~
A € [0,1]. Since D is convex Ayj + (1 — A)ys € D*. If z € At or x € AJ, then we have

min{]~21(x),_fg%(a7)} =0<1; (x).

T AyT+(1=N)y3
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Suppose that z ¢ Aﬁ and x ¢ Ame Hence, (y1, —g(z)) > as(yf,m), (y5, —g(x)) > as(y5, m),

and

(A7 + (1= Nys, —g(x)) > Mas(yr,m) + (1 = Nag(ys,m)

= Asup (yy,—y) + (1 = A) sup (y5, —y)

yes, yeSs,
> sup (Ayy + (1= Nys, —y) = ay( Ay + (1 = Nyz, m),
YESim

which implies z ¢ A;”yﬁ(l_/\)y;. Hence,

min {1 jm (), Lim (z)} < 400 = Ljn (x),

i Ayl +(1-2)y3

which completes the proof of quasiconvexity. It follows that y* — K ™ (z,y*) is quasiconvex.

Finally, to prove lower semicontinuity, let us define the set

El={y* € D" | (y*,—g(z)) < ay(y*,m)}.

Note that

E™ = {y* € DT | (y*, —g(x)) < sup {y*, —y) } = {y* e D0 < sup (¥, —y + g(x)) }
yesa yESf;

Since the supremum of a family of affine functions is lower semicontinuous, it follows that
E™ is open. On the other hand, for each y* € D%, it is clear that y* € E™ if and only if
T € flzl, that is, Izm (¥) = Igp(y*). So we actually have

Y

Ki(w,y") = (27, =) = Lin (2) = (2", —2) = Ipp (y"). (6.1.3)

Y

Since E7" is open, the function Igm is upper semicontinuous. By (6.1.3)), y* f(;ﬂ (x,y*) is

lower semicontinuous. O

Now, we will show the connection of these functions to the our problem.

Proposition 6.1.5. Suppose that f is decreasing, lower semicontinuous and quasicon-

vex, and that g is D-naturally quasiconcave and D-lower demicontinuous. Then, for each
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(z*,m) € C* xR,
Qpog(z®,m) =sup inf Ki(x,y").
reX y*EDT

Proof. Let (z*,m) € C* xR. Since f is decreasing, lower semicontinuous and quasiconvex,
by Remarks [2.3.8 and [6.1.2] we have

Oéfog(l’*,m) = sup <ZL’*,—[E> = Sup{<l’*, —I’> | g(fL’) < Sv{w LS X}

xESTfnog
= sup {(z*, —x) | Vy" € DF\{0}: (v, —g(x)) < ay(y*,m)}
T€
=sup {(z*, —z) | Vy" € D*: (y", —g(x)) < ay(y*,m)} = sup (z*, —x),
rzeX reB™
where
B™ = () Ap.
y*eD+
Hence,

sup (z%, —x) = sup ((z*, —x) — Ipm(z)) = sup inf ((2*, —2)—Iam (v)) =sup inf K7(z,y").
reB™ zeX zeX y*eDT Y reX y*€DT

Therefore, the result follows. O

Proposition 6.1.6. Let (x*,m) € C* x R. Then, we have

inf o (25, ap(y",m)) = inf a_ (2%, ap(y*,m)) = inf sup K7 (z,y*). (6.1.4
ot @ he. (27, ap(y", m)) nf a ne. (27, ap(y", m)) inf sup w(z,y7). (6.1.4)

Proof. Let 3* € D*. Clearly, we have

sup K% (z,9") = sup((z*, —x) — IA;;; (x)) = sup (z*,—z).

reX TEX xeAgi
Hence,
inf  a_p (25, 0¢(y",m)) = inf sup{{(z*,—2) | —hZ(x) < ar/(§",m
i a agm) = sup{(e',—a) | @) < a5 m0)}

= inf sup{{z*,—x L —g(x)) < ai(yt,m
it sup{(a”—a) | 5 —g(o) < ag(am)

= inf sup (z*,—x) = inf sup K7 (x,y"),
y*€D+\{0}xeA%< ! FeD (0} e ” =)
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which completes the proof of the second equality in (6.1.4). On the other hand, given
y* € DT\ {0}, we may write y* = A\y* for some A > 0 and * € D*, and we have

a_ps (2%, ap(y”,m)) = sup (¢", —x) = sup (2%, —x) = a_ps (2%, a;(5", m))

xEAZ; :EEA%’;
by Remark [6.1.2, Hence, the first equality in (6.1.4)) follows. O

From this point on, we work under Assumption , that is, we assume that D7t is
compact while DI is not necessarily compact. In particular, Proposition can be applied
to both. With the tools developed above, we are ready to prove the main theorem of the
paper. For the completeness of this thesis, we give the statements of the minimax inequality

in [25] and the well-known minimax equality in [24].

Theorem 6.1.7 (Sion 1958). Let U,V be nonempty convex sets of two topological vector
spaces, and consider a function f: U x V — R. Suppose that f is quasiconcave and upper
semicontinuous in its first argument, and quasiconvex and lower semicontinuous in its second

argument. Moreover, suppose that one of U,V is a compact set. Then, we have

inf — sup inf .
Inf sup f(u,v) sup inf f(u,v)

Since the lower semicontinuity of the function K% is missing, it seems that we are not able
to use Sion’s minimax theorem in our setting. However, the following minimax inequality

will be useful in our proof.

Theorem 6.1.8 (Liu 1978). In the setting of Theorem consider two functions f, f: Ux
VY — R satisfying the following conditions:

e [ is upper semicontinuous in its first argument and quasiconvex in its second argument,

e f is quasiconcave in its first argument and lower semicontinuous in its second arqgu-

ment,
o f(u,v) < f(u,v) forallueUd andv eV,

e U is compact.
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Then, we have

inf sup f(u,v) < sup mf f(u,v).
u€U yey veY U

With the help of the above minimax inequality, we are ready to complete the proof of

Theorem [4.1.6]

Proof of Theorem [A1.6l Let 2* € C* \ {0} and m € R. For each y* € DT, since
lel C AL, we have [zm () > Iam () and hence

K (w,y*) < Kt (2,y") (6.1.5)

for every x € X. By Proposition K. is upper semicontinuous and concave in its
first variable, and quasiconvex in its second variable; K ! is concave in its first variable,
and quasiconvex and lower semicontinuous in its second variable. These properties, together
with , and the convexity and compactness of DT, are sufficient to apply the minimax
inequality of [25] (see also Theorem 3.1 in [27] and Corollary 11 in [26]) to the functions
Km

x*)

K;Ci. Consequently, we obtain

inf sup K™ (z,y*) <sup inf K™ (z,y*). (6.1.6)

y*eDt gex zeX y*eDT

By Proposition [6.1.3] we have

sup K71 (w,y") = sup K7 (z, y").
TEX reX

Hence, 6f) yields

inf sup K7 (z,y") <sup inf Ki(z,y").
y*€Dt zex zeX y*eDT

However, the reverse inequality already holds by weak duality. Therefore, we get

inf sup KM (z,y*) =sup inf K (z,y").
y €Dt pex reX y*eDt
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Finally, by Propositions [6.1.5| and [6.1.6] we have

fog(x*,m) =sup inf KZ(z,y") = inf sup Ki(z,y")

zeX y*EDT y*eDt gex
_ : * * _ : * *
= b o (g m) = inf o (@ ag(y” m).

Finally, by Remark and Proposition applied to D, we have
Qfog(@®,m) = inf a_ps, (", ay (yr,m)),

yreDF ™

which completes the proof. ]

Proof of Corollary [4.1.8 Let 2* € C* \ {0} and s € R. Following the definition of left
inverse and using Theorem we have

a;ig(x*,s) =inf {m € R | ayoy(z",m) > s}

= inf {m eR
y*€DT\{0}

inf O_ps, (x*;af(y*am)) > S}

— inf {m ER|Vy € DT\ {0}: aLps (v, ap(y’,m)) > s} .

We claim that the following minimax equality holds:

inf{m eR|Vy € DT\ {0}: QAps, (z%, ay(y",m)) > 5}

= sup inf {m eR|a_po (2% af(y*,m)) > 3} . (6.1.7)
y*eDT\{0} !

The > part of this inequality holds as a weak duality property. Next, we show the < part.

To get a contradiction, suppose that there exists m € R such that

inf {m eR|Vy* € D"\ {0}: Q_pg, (", ap(y",m)) > 3}

>m > sup inf {m eR|a_po (2% ar(y*,m)) > 5} . (6.1.8)
y*eD\{0} !

The first inequality in (6.1.8]) implies the existence of g* € DT \ {0} satisfying

a_pg, (", ap(g*,m)) < s. (6.1.9)
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On the other hand, the second inequality in implies that
m > inf {m eR| a_pg, (", ap (g, m)) > s} :
Hence, there exists my- < m such that
a_p, (", o (g, my+)) > s. (6.1.10)

Since «y is increasing in the second argument by Remark [2.3.5] we have a(g*,m) >
ar(y*, my-). Hence, by (6.1.10), the monotonicity of a_pg, and ((6.1.9), we obtain

s < oy (@7, ap (U, my)) < g (27, ap(5",m)) <5,
Y Yy
which is a contradiction. Hence, (6.1.7)) follows so that

a;(fg(:v*, s)= sup inf {m ER| a_ps, (", ar(y*,m)) > s}. (6.1.11)
y*eD+\{0}

Let y* € D'\ {0}. We claim that

inf {m eR|a_po (2% ap(y",m)) > s} = inf {m eR|ar(y*,m) > ajlg (x*,s)}.
(6.1.12)
For each m € R, by the definition of left inverse,

a_pg, (", ap(y",m)) >s = ap(y",m)> ajlg (x*, s).

y*

Hence, the > part of (6.1.12]) follows. Next, we prove that < part. To get a contradiction,
suppose that

inf {m €ER| a_pg, (z*, ap(y*,m)) > s} > m > inf {m eR|as(y*,m) > O‘:ZZ* (x*, s)}
for some m € R. By the first inequality, we have

a_ps, (", ap(y",m)) < s;
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and by the second inequality together with the monotonicity of ay, we have

ap(y*,m) > a:lhg () s).

y*
Hence, by the monotonicity of av_s_,
Y

l

.
s<a_p (25,07,
Y y*

(@7, 5)) < a_ps (27, a5 (y",1m)) <'s,

a contradiction. Therefore, (6.1.12)) follows.

Combining (6.1.11)) and (6.1.12]) gives

*

aj?ig(x*,s) = sup inf {m eR | ar(y*,m) > ajbg* (x ,s)}
y*ED+\{0} y

= sSup a;l<y*7 a:iﬂ* ($*, 8))7
y*eD*\{0} .

which proves (4.1.6). By combining this with Proposition and using the monotonicity
of g, we obtain (4.1.7)). O

Finally, we outline the proofs of the results in Section Recall that we work with a
monotone convex set L C X with C' C K, and we consider two functions f: ) — R and
g: K — Y. Let 2* € C* and m € R. Similar to the constructions for the case K = ) above,

we define the sets

A ={re K|y —g(2)) <asly',m)}, AR ={z e K|y, —g(x)) <as(y",m)}

for each y* € D, and the functions K™, K™ : K x DT — R by

T*)

Kgi ([E,y*) = <ZL‘*, —:L‘> - IAZL (ZE), KI*(Z‘,y*) = <I*7 —$> - IA% (ZL‘)

Yy

After giving these definitions, by using same arguments we can adapt Propositions [6.1.1]

6.1.3] [6.1.4] [6.1.5] and [6.1.6, and Remark for the following corollary.

Proof of Corollary |4.3.1] This result follows by the same arguments as in the proof of
Theorem 4.1.6] O
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Proof of Proposition [4.3.2] The proof of (4.3.1) follows the same arguments as the proof
of Proposition 4.1.1] Here, we use Corollary [2.3.12] instead of Theorem [2.3.11} The proof of

(4.3.2)) follows by the same arguments as in Theorem 4.1.2] O
Proof of Proposition [4.3.3] Proof of Proposition is valid for this result. O

6.2 Proofs for Chapter

Proof of Lemma [5.1.4. To prove that A is lower demicontinuous, by Remark [3.0.11], we
need to prove that AV(M) = {X € LP(R") | A(X) + LP(R,) C M} is closed for every closed
halfspace M ={Y € LP(R) | E[Y*Y] > 0}, where Y* € LI(R).

We first claim that if A(X) + LE(R) € M = {Y € LP(R) | E[Y*Y] > 0} for some X €
LP(R™), then Y* € L%(R,). To see this, note that E[Y*(A(X)+d)] > 0 if and only if
E[Y*d] > —E[Y*A(X)] for every d € L (R). Assume that E[Y*d] < 0 for some d € LP(R;).
Since LP(R,) is a cone, for every A > 0, we have A\d € LP(Ry). Also, AE[Y*d] — —o0
as A — 0. However, AE[Y*d] is bounded by —E[Y*A(X)], hence we get a contradiction.
Therefore, E[Y*d] > 0 for all d € LP(R, ), which implies that Y* € LY(R). This completes
the proof of the claim.

In view of the claim, let us take M = {Y € L?(R) | E[Y*Y] > 0} for some Y* € LY(R,).
We aim to show that {X € LP(R") | A(X) + LP(R,) C M} is closed. Note that

(X € IP(R") | A(X) + LP(R,) C M} = {X € L*(R") | E[Y*A(X)] > 0} .

Let us first consider case (i), where A is concave and bounded from above. Thanks to
concavity, the set {X € LP(R") | E[Y*A(X)] > 0} is convex.

Suppose that p < +o0o. Take a sequence (X*)pey in {X € LP(R™) | E[Y*A(X)] > 0} that
converges to some X € LP (R") strongly. Hence, there exists a subsequence (X*),cy that

converges to X almost surely. By the continuity of A, and then reverse Fatou’s lemma, we
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get

E[Y*A(X)] =E[Y*Ao X]=F |[YV* lim A o X*

{—00
> limsup E[Y*A o X*] = limsup E[Y*A(X*)] > 0.  (6.2.1)
{—00 l—o0
Hence, X € {X € LP(R") | E[Y*A(X)] > 0} and this set is closed. Note that we can
use reverse Fatou’s lemma in the above calculation since A is bounded from above so that
(Y*A(X*))4en is bounded from above.

Suppose that p = +00. To prove weak® closedness, let > 0. By Krein-Smulian theorem,
it is enough to prove that {X € L*(R") | E[Y*A(X)] > 0, || X|| < r} is closed in L*(R™).
Let (X*)zen be a sequence in this set that converges to some X € L'(R") strongly in L'(R™).
Hence, we may find a subsequence (X*),cy that converges to X almost surely. Repeating
the argument in (6.2.1]), we see that E[Y*A(X)] > 0. On the other hand, we have || X*|| < r
for all £ € N with probability one. Hence, || X|| < r with probability one so that || X||s < -
It follows that X € {X € L®(R") | E[Y*A(X)] > 0, || X||, < r}, proving the closedness of
this set in L'(R").

Next we consider case (ii), where A and hence A are linear. In particular, there exists
a € R™ such that /NX(x) = a'x for every x € R". Suppose that p < +00. Let us take a net
(X*¥)rer in {X € LP(R") | E[Y*A(X)] > 0} that converges to some X € LP(R") weakly,

where [ is an arbitrary index set. By linearity and weak convergence, we have
E[Y*A(X)] = E[y*A o X] = E[(Y*0)"X] = Im E[(*0) X" > 0,
€

so that X € {X € LP(R") | E[Y*A(X)] > 0}, and this set is weakly closed, hence it is also

strongly closed. The case p = 400 can be treated by Krein-Smulian theorem as above.

For (iii), let us first observe that (LP(R7))# = LP(R" ) and (LP(R}))# = LP(Ryy).
Now take X, X € LP(R") with X <j»

X(w) <gn, X (w). Since A is regularly increasing, we have

R7 ) X. Hence, for almost every w € 2, we have

AX)(w) = AX () < AX () = AX)(w)

for almost every w € Q. Therefore, A(X) <r»®,,) A(X). So A is regularly increasing. [
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Proof of Proposition . Let Y* € LR, )\ {0}. Since we have D-concavity, finding
the penalty function is a concave maximization problem. Moreover, since the strict sublevel

set is nonempty, Slater’s condition holds. Hence, we can use strong duality and obtain

Oppy (X m) = sup {E[~(X XTI E[-YAX)] < m}

=inf sup (E[—(X*)TX]—AE[-Y*A(X)] + Am)

A>0 xerp(Rn)
=inf sup (E[—(X*)"X +AY*A(X)] + Am)

A>0 XELP(R'"')

— inf (]E {sup (~(x)Ta+ AY*A(:C))] + Am) ,

A>0 xeRn

where the second equality comes from strong duality (we can ignore the case A\ = 0 as it
produces an objective value of +00) and the fourth equality follows by Theorem 14.60 in
[32].

Note that for every * € R" and y* € R, , we have

0 itz*=0,9"=0,
sup (—z"z* 4+ Ay"A(z)) = oo if 2 £ 0,y* = 0, (6.2.2)
zeR?
Ayt (;y’;) if y* > 0.
Therefore,
) 00 if Y* ¢ Ty,

infyoo (E [AY*® (35) Liyesoy] +Am)  if Y* € T,
and by Theorem [4.1.6}

aPOA(X 7m) = Y*EL%_D(FI‘%)\{O} - 80 (X » Qp (Y 7m)) :

By combining this equality with (6.2.3)), it follows that

X*
Qpop(X*,m) = inf inf (E l)\Y*@ (/\Y*) 1{y*>0}:| + Aa,,(Y*,m)) :

Y*ETxx A>0
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Then, since T'x« is a cone and «,, is positively homogeneous, we get

Y*eTx«

Qpop (X, m) = inf (]E {Y*CD (ii:) 1{y*>0}:| + ozp(Y*,m)) ,
as desired. O
Proof of Proposition . By Corollary and Proposition [2.3.13] we have
a;OlA(X*,s) = sup apl (Y*, th s))

Y*eLa(Ry)\{0}

= a,' (Y* sup (ys — (— h?*)*<_7x*)))

Y*eLq(R+ \{0} 7>0
= sup inf {m eR | a,(Y*,m) > sup (ys — (—hé*)*(—fyX*))}
y+eLa(R:)\{0} 70
= sup sup a; (Y*,vs — (=h$.)*(—yX™)) , (6.2.4)

Y*eLa(Ry)\{0} v>0
where the last equality comes from Lemma [2.3.10, Let us calculate the second argument of

oz;l for bounded case ®(0) < +oo. For v =0, by using Theorem 14.60 in [32], we have

—(—=h$)*(0) = — sup E[Y*A(Z)] = -E [Sup Y*A(z)} = —®(0)E[Y"].

ZeLpr(R™) zER®

Here, the last equality follows by the following simple observation: for every y* € R,

0 if y* = 0,
sup y*A(z) =
Z€R™ y*®(0) else.

For v > 0, by Theorem 14.60 in [32], we get

(=h$ )" (= X*) = sup (-E[Z'X* | +E[Y*AZ)]) =E |sup (—72"X* + Y*A(2))

ZeLpr(Rm™) zERM

Using the calculation in (6.2.2)), it follows that

o0 if Y* ¢ Ty,

(=hy)"(=7X") = .
' E[Y'® () 1yyesgy] i Y™ € Txe.
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Since " is increasing in the second argument, we can ignore the case Y* ¢ T'x-, since the

p
second argument of a;l will be —oo in ([6.2.4). By the positive homogeneity of a,, for v > 0,

we have

X* Y+ Y= X*
Oz;l (Y*,’}/S —F |:Y*Q) (ny* ) 1{Y*>O}:|) = Og;l ( 5 , S —E |: ” b (VY* ) 1{y*>0}:|) .

By combining all the findings, we get

Oép_olA(X*,S)

= sup  supa,’ (Y, ys — (—hy. ) (—XY))
Y *eLa(R4)\{0} 720

Y g X
= sup o (Y, —®(0)E[Y*]) vV sup oz;l (—, s—E {—CID (7 ) 1{y*>0}])
/y

>0
X*
= sup oz;l (Y*, —®(0)E[Y™]) V sup ozp_l (Y*, s—E [Y*CI) < *> 1{Y*>O}:|> ;
Y*eL(Ry)\{0} Y*ETxx Y

where the last equation comes from the fact that Tx- is a cone. Now we can pass to the
probabilistic setting. For the left side, make the change of variable Y* = )\% where A > 0
and Q € M{(P). By using the positive homogeneity of a,, we have

o, (Y, —D(0)E[Y"]) = o' <AZ% ~20OE [AZ%D

=a (fl%, —d(0)E {fl%]) =a,! (2%, —(I)(O)) :

which gives

I . _ (dQ
sup apl (Y*, —®(0)E[Y*]) = sup apl (ﬁ’ —@(O)) .
Y*eLa(Ry)\{0} QeMi(P)

For the other part, we can make the change of variables X* = w - % and Y* = )\z% as before

and get

X* dQ s w-dS
sup o' (Y*,S—E {Y*@ ( )1 x D: su ol (—,——E [QJ ( )D
N ve ) )T s VP x T T\

w; S; KQ
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Finally, we have
. dsS
Qpop | W ﬁ’ S| =

_, (dQ L, (dQ s w-dS

l l

max sup « ,—@0), sup « ( ,— — K [CI)( )}) .
{@eM'{(P) P (dP © Qemi®aso . \dPTA v AdQ

w;S;KQ
For the unbounded case ®(0) = 400, we can ignore the first term above by the monotonicity

of a;l. m

Proof of Proposition [5.1.8. By Proposition 4.2.2] we have the following

R(X)=poA(X) = sup sup ot (Y, -E[XTX*] - (—h$ ) (=X7)).

X*eLa(R})\{0} Y*eLa(R+)\{0}

We will calculate the second argument of a;l. By Theorem 14.60 in [32], we get

(—hp ) (—X") = sup (-E[ZTX*]+E[Y*A(Z)]) =E {sup <—ZTX* + Y*]\(z))} :

ZeLpr(Rm™) zER™

By the calculation in (6.2.2)), we have

0 ifY* ¢ Ty,
E [Y*(I) (X*) 1{y*>0}] if Y* € Txx.

Y *

(=hy)"(—=X") =

Since o' is increasing in the second argument, we can ignore the case Y* ¢ Ty~ since the

P
second argument will be —oo. Therefore, we have

X*
R(X)= sup sup af (Y*,—E [XTX}—E{Y*@(Y*>1{Y*>O}D.

X*€La(R?) Y*ETx

We can make the change of variables X* = w - % and Y* = )\% as before and we get

X*
R(X)= sup sup o' (Y*,—E [XTX]—E[Y*¢(Y*>1{Y*>O}D

X*€La(R?) Y* €Ty

_, (dQ [ (w . dS)]

I T

= sup o' | —,—FEqg | D —w' Es[X] ),
weRT\{0}SEML(P) <dP b dQ

QeMi(P),w;S;<Q
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after using the positive homogeneity of a, and writing w instead of ¥. O]

Proof of Proposition [5.2.1. Since we have concavity, finding the penalty function will
be a concave maximization problem. Since Slater’s condition holds, we can use the strong

duality:.

s,y (X7,m) = sup {E[-X"X*] |E[-Y*A(X)] < m}

XeLr(RT)

=inf sup (E[-XTX"+AY*A(X)] + Im)
A20 XerLr(R?)

= ;\I;%E sup (—xTX* + AY*A(z) + )\m> :

z€RY

where last equality is by Theorem 14.60 in [32]. For A = 0, by using the fact that X* €
LA(R"), we reach

sup  (E[-XTX*"+A\Y*A(X)] +Adm) = sup E[-XTX"]=0

XeLP(RT) XeLP(RT)

On the other hand, by the calculation in (|6.2.2)), we have

QU ph,) (X*,m)=0A /1\r>1g ()\m +E [1{Y*>0})\Y o ()\Y*)]) :

and by Corollary [4.3.1], we obtain

QpoA (X*> m) = Y*GL}(I]%RE)\{U} O‘/(—hA*) (X*> Qp (Y*7 m))

X*
=  inf  OAinf Aa, (Y E |1y o \Y*®
yreL(ka)\ {0} i20( @ (Y m) { =0 (AY)D

X*
_ nf v E |11y Y *®
O ettt <Oé”( ) { =0 (Y)D ’

where last line follows since « is positively homogeneous in the first component and L(R )

1S a cone.

Next, let us fix some arbitrary n € N and take
Yn = 1— ﬁ Y 1{Y*>0} -+ ﬁl{y*zo} € L (R++).
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Then, we have

_ _ X
inf Y* E | lisean Y O [ =
Y*Eg}(ﬂhﬂ (Oép ( 7m) * [ =0} (Y* )}>

X*

= sup —E[YY]|+E
Yest,

Liys>0y sup (—X*Tx -+ Y,ff\(x))]

z€RY

1

1 1 X*
S (1 - E) @, (Y*l{y*>0}, m) + EOép (1{y*:0},m) + (1 — —) E [1{y*>0}y*¢ < >:|

n Y+
. X"
1{1{Y*:0}>0}]‘{Y*:0}CI) (1* )] )
fre=0)

where the last equality comes from the fact that supremum of affine functions is convex and

1
+-E
n

indicator function of a convex set is a convex function. These inequalities are valid for every
n € N, hence by sending n to oo, we get

i _ X*
inf Y* E|[1livean YO | =
Y*Gg}(R++) (Oép ( 7m) * [ =0} (Y*>}>

X+
S ), (Y*l{y*>0}, m) + E |:1{y*>0}Y>k¢) (Y* )}

X*

where last equality is trivial since it is the set where Y* = 0 and does not affect the expec-

tation. Since this inequality true for every Y* € L(R,) \ {0}, by taking infimum we will
have the following

X*
inf v E|1ryea V*®
yeei (%( ,m) + { {y+>0 (Y)D
< inf (Y*,m)+E |1 v (X
1mn (0 m * .
= yeera@onfoy \ °0 >0} Y

Also since LY(R, ;) C LY(Ry) \ {0}, the reverse inequality holds as well, hence we obtain

X*
inf Y™ E|liycsnY*®
veti ) (%< ™)+ {{Y >0 (Y)D

— Y*GL;&E)\{O} <Oép (Y*,m)+E |:1{Y*>0}Y P (Y*)}) ; (6.2.5)
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as desired. O

Proof of Proposition [5.2.2, By Proposition 4.3.3[ we have

R(X)=poA(X)=  sup sup o, (V¥ —E[XTX"] — (=h3.)"(—X")) .

X*eLa(R})\{0} Y*eL(R+)\{0}

We will calculate the second argument. By using Theorem 14.60 in [32], we get

(—hp ) (—X") = sup (-E[ZTX]+E[Y*A(Z)]) =E

ZeLr(R7)

sup <—ZTX* + Y*[X(z))

1
Z€RY

By (6:22), we have

(=R (-X*) =E [1{Y*>O}Y*cb <§)} :

Now, let us look for the following term by using Lemma [2.3.10}

X*
sup ! <Y*, ~E[XTX*] -E [1{Y*>O}Y*cb <Y)D

Y*eLa(R1)\{0}

X*
— s inf {m ER[a,(Y,m) > —E [XTX] - E {1{”0}}/*@ (Y)] }
)\{0}

Y*eLa(Ry
* X* T v *
= sup inf gm e R | a,(Y*,m) +E [1{y+sq YO . E—E[X X}
YL (R4)\{0} Y

— inf {m ER| VY € LI(Ry)\ {0}: a,(Y*,m) + E [1{Y*>0}Y*<I> <§)] > —E [XTX*}}

= inf {m ER| inf (oz,,(Y*,m) +E |:1{y*>0}y*(1) (;(* >}> > —E [XTX*] }

Y*eLa(Ry)\{0}

X*
= inf {m €R| inf (ap (Y*,m)+E [1{Y*>O}Y*¢> (Y>D > -E [XTX*}}

Y*eLi(Ry4)

X*
= sup inf {m ER|a,(Y*,m)>-E[X'X*] —-E {1{y*>O}Y*<I> ( )] }

Y*eLd(Ryq) Y
-1 * T vx* * X"
= sup «a, |V, -E [X X } —E [1yyesy Y@ . .
Y*eLd(Ry ) Y
Here, we use (6.2.5) in the fifth equality and Lemma [2.3.10|in the sixth equality. O
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Chapter 7

Conclusion

In this thesis, we give a dual representation for the composition of quasiconvex functions
and apply this representation to systemic risk measures. We have the well-known Fenchel-
Moreau theorem for the dual representation of a convex function. For the composition of
convex functions, a dual represenation is shown in Theorem 2.8.10 of [2] and in Theorem 3 of
[3]. For a single quasiconvex function, a dual representation is provided by Theorem 3 of [g].
The next question is to figure out the dual representation of the composition of quasiconvex

functions and we give answer for this question in this thesis.

In Chapter [2| we focus on the dual representation of an extended real-valued quasiconvex
function. Firstly, we define the quasiconvexity, monotonicity and lower semicontinuity con-
cepts for a function and mention the properties of its sublevel sets in Section we briefly
define the order concept for vectors in Section since we work on topological vector spaces.
In Section [2.3] we define the minimal penalty function which will be used in the dual rep-
resentation. We have shown the relation between the sublevel sets and the penalty function
by using a separation argument in Remark [2.3.8 'We have shown the dual representation
for quasiconvex functions in Theorem , which is also a part of Theorem 3 in [§], by
using the left inverse of the penalty function and using the characterization in Remark [2.3.8]
Then, we look at the case where the function is defined on a convex set but not on the whole
space in Corollary [2.3.12] Finally, we have shown the relation between the minimal penalty
function and the Fenchel conjugate in [2.3.13
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In Chapter [3, we generalize the concepts of monotonicity, quasiconvexity and semicontinu-
ity for vector-valued functions. We show the relation between the vector-valued function and
its scalarizations in terms of these concepts. We also define a notion of strictly monotonicity

for vector-valued functions, we call a function with this property regularly increasing.

Section is the main part of this thesis. We give the dual representation result in
this section. First, in Proposition [1.1.1] we have shown that Theorem [2.3.11] can be ap-
plied to the composition of two quasiconvex functions. Then, in Theorem [4.1.2| we give a
dual representation for the composition of two quasiconvex functions with a set of desirable
properties, namely, the extended real-valued function is decreasing, quasiconvex and lower
semicontinuous; the vector-valued function is increasing, naturally quasiconcave and lower
demicontinuous. The real problem is whether we can get an explicit formula for the penalty
function of the composition. We answer this question by Theorem [4.1.6] the main theorem
of this thesis, which works under the additional assumptions that the vector-valued function
is regularly increasing and a compact cone generator exists for the dual of the ordering cone.
The compactness condition is a necessary for the application of the minimax result in [25],
which is usual in minimax-type results. Also, Theorem [4.1.6] states that after we guarantee
the existence of a compact cone generator, we can switch to an arbitrary cone generator
which does not have to be compact. This result is useful in the applications in Chapter
since, for instance, we can work on M (P), which is not compact, thanks to this property.
In Corollary [4.1.8] we show that the implication of Theorem [£.1.6] on the left inverse of the
minimal penalty function of the composition and get the same dual representation with the
Theorem In Section [4.2] we first look at the case where two functions are convex and
get a consistent result with the dual representations in the literature such as Theorem 2.8.10
in [2]. Then, we look at the case where only the vector-valued function is convex in Propo-
sition [£.2.2] This result is important since when the real-valued function is quasiconvex and
the vector-valued function is convex, the composition is still a quasiconvex composition so
this representation is new in the literature to the best of our knowledge. We also use this
type of composition in our applications. We give the same type of results for functions that
are defined on convex sets in Section [£.3] Finally, we discuss the existence of compact cone
generators in concrete settings in Section Relevant to the applications on systemic risk,

we pay attention to the case of LP spaces.

In Chapter B, we work on systemic risk measures for the application of Theorem [4.1.6]

In the literature (e.g., in [17]), the basic construction of a systemic risk measures is the
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composition of an aggregation function and a risk measure. Hence, Theorem is imme-
diately relevant for obtaining dual representations for systemic risk measures. We review
some well-known quasiconvex risk measures and their penalty functions in Example [5.1.2
and Example[5.1.3] Then, we adapt Proposition to the probabilistic setting in Proposi-
tion|5.1.6] Proposition [5.1.7|and Proposition [5.1.8] Finally, in Section[5.2, we apply the main
result to the Eisenberg-Noe model, a prominent example of a clearing system. Chapter [0]
has the proofs of some results in Section 4.1 and Chapter [5]

To sum up, in this thesis, we give a dual representation result for the composition of
quasiconvex functions. We give its applications on systemic risk measures. For the future
work, these dual representation results can be applied to improve the modeling capacity in
different fields. For instance, using dual representations, new computational methods can

be developed for quasiconvex programming problems.
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