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ABSTRACT

DUAL REPRESENTATIONS OF QUASICONVEX
COMPOSITIONS WITH APPLICATIONS TO SYSTEMIC RISK

Mücahit Aygün

M.S. in Industrial Engineering

Advisor: Çağın Ararat

JULY 2021

The importance of measuring risk in an interconnected financial system has been appreciated

recently, due in part to the global financial crisis. In the literature, systemic risk measures

are generally represented by the composition of a univariate risk measure and an aggrega-

tion function, a function that encodes the structure of the financial network. Having dual

representations for systemic risk measures is helpful in providing economic interpretations

and offering duality-based computational methods. For a univariate risk measure, a key

assumption is that diversification should not increase risk. The mathematical translation of

this assumption was considered as convexity earlier in the history of risk measures. Recently,

quasiconvexity has been considered as a more accurate translation of diversification. For a

single quasiconvex risk measure, dual representations are available in the literature based on

the so-called penalty functions. The use of a quasiconvex risk measure in composition with a

concave aggregation function results in a quasiconvex systemic risk measure, a multivariate

functional on a space of random vectors.

Motivated by the problem of finding dual representations for quasiconvex systemic risk

measures, we study quasiconvex compositions in an abstract infinite-dimensional setting.

We calculate an explicit formula for the penalty function of the composition in terms of

the penalty functions of the ingredient functions. The proof makes use of a nonstandard

minimax inequality (rather than equality as in the standard case) that is available in the

literature. In the last part of the thesis, we apply our results in concrete probabilistic settings

for systemic risk measures, in particular, in the context of the Eisenberg-Noe clearing model.

We also provide novel economic interpretations of the dual representations in these settings.

Keywords: quasiconvex function, composition of functions, minimax inequality, risk measure,

systemic risk, dual representation, penalty function.
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ÖZET

YARIDIŞBÜKEY BİLEŞKELERİN ÇİFTEŞ TEMSİLLERİ VE
SİSTEMİK RİSK ÜZERİNE UYGULAMALARI

Mücahit Aygün

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Çağın Ararat

TEMMUZ 2021

Birbirine bağlı bileşenleri olan bir sistemin riskini ölçmenin önemi, özellikle 2008 Ekonomik

Krizi’nden sonra daha iyi anlaşılmıştır. Bilimsel yazında sistemik risk ölçüleri, genellikle

bir risk ölçüsü ile finansal ağın yapısını özetleyen bir yığışma fonksiyonunun bileşkesi olarak

tanımlanmaktadır. Sistemik risk ölçüleri için çifteş temsillerin var olması, onları hesapla-

mada ve ekonomik anlamda yorumlamada kritik bir öneme sahiptir. Bir risk ölçüsü için

temel varsayımlardan birisi, çeşitlendirmenin riski azaltacağıdır. Bu özelliğin matematiksel

karşılığı olarak, risk ölçülerinin tartışıldığı ilk yıllarda dışbükeylik kullanılmaktaydı. Ama

son zamanlarda yarıdışbükeyliğin, çeşitliliğin daha doğru bir matematiksel karşılığı olduğu

düşünülmeye başlandı. Tek bir yarıdışbükey risk ölçüsü için bilimsel yazında çifteş tem-

siller bulunmaktadır, bu temsillerde kullanılan çifteş fonksiyonlara ceza fonksiyonu denir.

Yarıdışbükey bir risk ölçüsüyle içbükey bir yığışım fonksiyonunun bileşkesi ile yarıdışbükey

sistemik risk ölçüleri elde edilir; bunlar, uygun bir rassal vektörler uzayında tanımlı, yani

çokdeğişkenli, fonksiyonellerdir.

Bu tezde, dışbükey sistemik risk ölçülerinden hareketle, dışbükey bileşke fonksiyon-

ları soyut ve sonsuz boyutlu bir çerçevede çalışacağız. Bileşke fonksiyonun ceza fonksiy-

onunu bileşkeyi oluşturan fonksiyonların ceza fonksiyonları cinsinden hesaplayan bir formül

kanıtlayacağız. Kanıtın temelinde, bilimsel yazında sıkça kullanılan enküçük-enbüyük

eşitliğinin aksine, bilimsel yazında bulunan ama kullanımı standart olmayan bir enküçük-

enbüyük eşitsizliği yer alacak. Tezin son kısmındaysa sonuçlarımızı sistemik risk ölçüleri için

somut ve olasılıksal çerçevelerde uygulayarak çifteş temsiller elde edeceğiz. İnceleyeceğimiz

sistemler arasında Eisenberg-Noe modeline göre çalışan takas sistemleri de olacak. Ayrıca

çifteş temsiller için ekonomik anlamda yorumlarda bulunacağız.

Anahtar sözcükler : yarıdışbükey fonksiyon, bileşke fonksiyon, enküçük-enbüyük eşitsizliği,

risk ölçüsü, çifteş temsil, ceza fonksiyonu.
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Chapter 1

Introduction

This thesis is concerned with extended real-valued functions of the form f ◦ g, where f and

g are functions defined on some general preordered topological vector spaces. We look for

minimal assumptions on f and g to ensure that their composition f ◦ g is a monotone,

quasiconvex, and lower semicontinuous function. In our main results, we provide novel

duality formulae in which the dual function for f ◦ g is calculated in terms of the same type

of functions for f and g.

In the literature, the study of f ◦ g from a duality point of view is not new in the

convex case. For a single function, we have Fenchel-Moreau theorem which provides a dual

representation for a convex lower semicontinuous function in terms of its Legendre-Fenchel

conjugate (Theorem 12.2 in [1]). Then, it is natural to ask how and when we can have a dual

representation for the composition of convex functions. This question has been answered in

the literature, e.g., by Theorem 2.8.10 in [2], Theorem 3 in [3]; see also the more recent work

[4].

As a natural extension of the convex case, we look for dual representations of f ◦ g when

it is guaranteed to be quasiconvex, which seems to be an open problem to the best of our

knowledge. For a single function, the quasiconvex duality theory of [5] provides a suitable

replacement of conjugate functions in convex duality. This is further explored in [6] within

an abstract framework and also in [7, 8, 9] within the context of risk measures. In line with

[8], the dual functions for quasiconvex duality will be referred to as penalty functions in this

thesis.
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Our motivation for studying quasiconvex compositions also comes from financial mathe-

matics, specifically, from the theory of systemic risk measures as we describe briefly next.

Initiated by the seminal work [10], risk measures have been studied extensively in the

financial mathematics and operations research literature. In the original framework of [10],

coherent risk measures are defined as monotone, convex, translative and positively homoge-

neous functionals defined on a space of real-valued random variables. These random variables

could be used to model the uncertain future worths of investments, and a risk measure as-

signs to each random variable its minimum deterministic capital requirement. Among the

properties of coherent risk measures, monotonicity is a natural requirement which asserts

that the risk of an investment with consistently higher future values should be lower. Con-

vexity is related to diversification; under this property, the risk of a mixture (i.e., convex

combination) of two portfolios is not higher than the same type of mixture of the individual

risks. The positive homogeneity property is a scaling property that is relaxed for defining

convex risk measures in [11]. The translativity property asserts that a deterministic increase

in the value of a portfolio decreases its risk by the same amount. This is indeed the property

that justifies the interpretation of the value of a risk measure as capital requirement.

One might question whether convexity provides the correct encoding of the impact of

diversification on risk. A weaker alternative is quasiconvexity, which bounds the risk of a

mixture only by the maximum of the individual risks, hence the statement “Diversification

does not increase risk.” is reflected properly. Under translativity, convexity is equivalent to

quasiconvexity, which is a weaker condition that is also related to diversification. Hence, the

switch from convexity to quasiconvexity implies working with non-translative functionals in

general. Indeed, the work [8] proposes a minimalist framework for risk measures in which

only monotonicity and quasiconvexity are taken for granted, such functionals are called

quasiconvex risk measures ; see also [9]. For the use of quasiconvex risk measures in the

context of financial optimization problems, see [12, 13, 14].

The theory of risk measures outlined above is for univariate (i.e., real-valued) random

variables. In more complex settings such as markets with transaction costs (e.g., [15, 16])

and financial networks with interdependencies (e.g., [17, 18, 19, 20]), it becomes necessary

to evaluate the risks of random vectors. For this thesis, we are particularly interested in

the later situation where the participating financial institutions are subject to correlated

sources of risk, typically affecting the future values of their assets. Hence, the resulting
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future values are naturally modeled as correlated random vectors, explaining the multivariate

nature of the problem. At the same time, the institutions form a network through mutual

obligations and the aforementioned uncertainty affects the ability of the institutions to meet

these obligations. Hence, the aim of a systemic risk measure is to quantify the overall risk

associated to the financial network.

In the pioneering work [17], a systemic risk measure R is defined as the composition of a

univariate risk measure ρ with a so-called aggregation function Λ: R = ρ ◦ Λ. The role of

the aggregation function is to summarize the impact of the random shock vector X, on the

economy (or society) as a scalar random quantity Λ(X). The definition of Λ is made precise

by the structure of the network and the accompanying clearing mechanism. For instance, one

can consider a clearing system in the framework of [21] and define the aggregation function

as the total payment made to society as in [20], in which case it is an increasing concave

function. The output of Λ is further given as input to a convex risk measure ρ to calculate the

value of R(X). The resulting systemic risk measure R is a monotone convex functional that

is not translative in general. In [20], dual representations for convex systemic risk measures

are studied in detail. The mathematical machinery used in that work is the conjugation

formulae Theorem 2.8.10 in [2] and Theorem 3 in [3] for convex compositions.

When ρ is only assumed to be a quasiconvex risk measure, the resulting systemic risk

measure R is also quasiconvex. Providing dual representations for this case is the starting

point of this thesis. However, we will first study the problem in greater generality. As stated

at the beginning, we will explore the dual representation of a quasiconvex composition f ◦ g,

where the ingredients f, g are defined on general preordered topological vector spaces. To the

best of our knowledge, the quasiconvex analogues of the conjugation results in [2] and [3] are

not known in the literature. We provide a solution to this problem by proving a formula for

the penalty function of f ◦ g, roughly speaking, in terms of the penalty functions of f and g.

More precisely, apart from the more technical continuity conditions, we will assume that f is

an extended real-valued monotone, quasiconvex function. Since g is a vector-valued function

(in a possibly infinite-dimensional space), choosing the right notion of quasiconvexity requires

extra care. To this end, we will use the notion of natural quasiconvexity, which is introduced

for vector-valued functions in [22] and for set-valued functions in [23]. When g is a monotone,

naturally quasiconcave function, the resulting composition f ◦ g is a monotone, quasiconvex

function.

3



For the proof of our main duality theorem (Theorem 4.1.6), we need a nonstandard

minimax result since the assumptions of the standard minimax theorem in [24]. We are able

to overcome this issue by using the minimax inequality in [25] (see also [26, 27]), which works

under weaker conditions. With additional arguments that use the properties of the involved

functions, we are able to turn the minimax inequality into an equality. Hence, the proof of

the main theorem makes a novel use of minimax theory.

As a special case of Theorem 4.1.6, we consider convex compositions and recover the

conjugation formula in [2] and [3].

After building the general theory, we go back to our motivating problem on systemic risk

measures. Using a quasiconvex univariate risk measure ρ and a concave aggregation function

Λ, we are able to provide a dual representation for the systemic risk measure R = ρ ◦Λ in a

probabilistic framework. We also discuss the economic interpretations of the dual variables

and penalty functions in terms of the underlying financial network.

The rest of this thesis is organized as follows. In Chapter 2, we review some basic notions

and results about convex and quasiconvex functions. Chapter 3 is dedicated to some more

technical notions for vector-valued functions: natural quasiconvexity, regular monotonicity

and lower demicontinuity. The main part is Chapter 4, where we prove the main theorem

on quasiconvex compositions together with some important special cases. In Chapter 5,

we apply the theory to obtain dual representations for systemic risk measures. Among the

various examples that we study, Eisenberg-Noe model is discussed separately as it has a more

sophisticated aggregation function. Some proofs of the results in Chapter 4 and Chapter 5

are collected in Chapter 6, the appendix.
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Chapter 2

Convex and quasiconvex functions

2.1 Preliminaries

Let us begin with some basic notations and definitions that we use throughout the paper.

We denote by R := R ∪ {+∞,−∞} the extended real line. For each n ∈ N := {1, 2, . . .}, we

denote by Rn the n-dimensional Euclidean space, by Rn
+ the set of all z = (z1, . . . , zn)T ∈ Rn

with zi ≥ 0 for each i ∈ {1, . . . , n}, and by Rn
++ the set of all z ∈ Rn with zi > 0 for each

i ∈ {1, . . . , n}. When n = 1, we write R+ = R1
+ and R++ = R1

++. Let X be a Hausdorff

locally convex topological vector space. We denote by X ∗ its topological dual space endowed

with the weak∗ topology σ(X ∗,X ). The bilinear duality mapping on X ∗ × X is denoted by

〈·, ·〉. For nonempty sets A,B ⊆ X and λ ∈ R, we define the sum A + B := {x + y | x ∈
A, y ∈ B} and the product λA := {λx | x ∈ A} in the Minkowski sense. When A = {x} for

some x ∈ X , we write x+B := {x}+B.

Throughout this chapter, let f : X → R be a function. Given m ∈ R, the m-sublevel set

of f is defined as

Sfm := {x ∈ X | f(x) ≤ m} .

The next lemma provides a representation of f via its sublevel sets. It is a known result and

we give its proof for the convenience of the reader. This representation will be useful when

obtaining a dual representation for f .
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Lemma 2.1.1. Let x ∈ X . Then, it holds

f(x) = inf{m ∈ R | x ∈ Sfm}. (2.1.1)

Proof. First, suppose that f(x) = +∞. Then, there is no m ∈ R such that m ≥ f(x).

Hence, inf{m ∈ R | x ∈ Sfm} = inf ∅ = +∞. Next, suppose that f(x) = −∞. Then, we

have −∞ < m for every m ∈ R so that inf{m ∈ R | x ∈ Sfm} = inf R = −∞. Finally,

suppose that f(x) ∈ R. For every m ∈ R such that x ∈ Sfm, we have f(x) ≤ m by definition.

Therefore, f(x) ≤ inf{m ∈ R | x ∈ Sfm}. Since f(x) ∈ R, there exists n ∈ R such that

n < inf{m ∈ R | x ∈ Sfm}. Hence, x /∈ Sfn , which implies that f(x) > n. Taking supremum

over all such n gives

f(x) ≥ sup
{
n ∈ R | n < inf{m ∈ R | x ∈ Sfm}

}
= inf{m ∈ R | x ∈ Sfm},

which completes the proof.

The function f is called positively homogeneous if f(λx) = λf(x) for every λ > 0 and

x ∈ X . It is called proper if f(x) > −∞ for every x ∈ X and f(x) < +∞ for at least

one x ∈ X . The conjugate function or the Legendre-Fenchel transform f ∗ : X ∗ → R of f is

defined by

f ∗(x∗) := sup
x∈X

(〈x∗, x〉 − f(x)) , x∗ ∈ X ∗.

As an important special case, we may take f = IA for some A ⊆ X , where IA is the (convex

analytic) indicator function of A defined by

IA(x) :=

0 if x ∈ A,

+∞ if x ∈ X \ A.

Then, the conjugate function of IA is the support function of A given by

I∗A(x∗) = sup
x∈A
〈x∗, x〉 , x∗ ∈ X ∗. (2.1.2)

Definition 2.1.2. The function f is called quasiconvex if

f (λx+ (1− λ)y) ≤ max{f(x), f(y)} (2.1.3)
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for every x, y ∈ X and λ ∈ [0, 1]. It is called quasiconcave if (−f) is quasiconvex.

Remark 2.1.3. It is well-known that f is a quasiconvex function if and only if its sublevel

set Sfm is convex for every m ∈ R (Sect. 2.1, p. 41 in [2]).

Definition 2.1.4. Let x ∈ X . The function f is called lower semicontinuous at x if

f(x) ≤ lim infi∈I f(xi) whenever (xi)i∈I is a net in X that converges to x. It is called

lower semicontinuous if it is lower semicontinuous at each x ∈ X . It is called upper semi-

continuous (at x) if (−f) is lower semicontinuous (at x).

Remark 2.1.5. It is well-known that f is lower semicontinuous if and only if its sublevel

set Sfm is closed for every m ∈ R (Lemma 2.39 in [28]).

Remark 2.1.6. It is well-known that every proper closed convex subset of a locally con-

vex topological vector space equals the intersection of all closed half spaces that contain

it (Corollary 5.83 in [28]). In view of Remark 2.1.3 and Remark 2.1.5, when f is proper,

lower semicontinuous and quasiconvex, for each m ∈ R, the set Sfm can be written as an

intersection of closed halfspaces.

2.2 The order structure

To be able to handle monotone functions (e.g., in the risk measure applications in Section 5.1

and Section 5.2), we introduce an order structure on X . To that end, let C ⊆ X be a convex

cone and define a relation ≤C on X by

x ≤C y ⇔ y − x ∈ C (2.2.1)

for each x, y ∈ X . It follows that≤C is a vector preorder, that is, x ≤C y implies x+z ≤C y+z

and λx ≤C λy for every x, y, z ∈ X and λ > 0.

Remark 2.2.1. It can be checked that every vector preorder 4 on X can be written as

4=≤C , where C := {x ∈ X | 0 4 x} is a convex cone. Hence, the assumption that C is a

convex cone is not a restriction on the vector preorder of interest.

The elements of C are called positive elements of X . Let us define the (positive) dual cone

of C by

C+ := {x∗ ∈ X ∗ | 〈x∗, x〉 ≥ 0 for all x ∈ C},

7



which is a closed convex cone in X ∗. Then, the cone of strictly positive elements of X is

defined by

C# =
{
x ∈ C | 〈x∗, x〉 > 0 for all x∗ ∈ C+ \ {0}

}
. (2.2.2)

Given π ∈ C#, we may scale the elements of C+ and obtain the closed convex set

C+
π := {x∗ ∈ C+ | 〈x∗, π〉 = 1}.

Remark 2.2.2. When X is finite-dimensional, C# coincides with the interior of C. However,

in the infinite-dimensional setting, we prefer working with C# since the interior of C can be

empty for many important examples including Lebesgue spaces; see Example 2.12 in [29],

for instance.

The next lemma shows that C+ can be recovered from the (much) smaller set C+
π whenever

π ∈ C#.

Lemma 2.2.3. Assume that C# 6= ∅ and let π ∈ C#. Then, we have C+ \ {0} = R++C
+
π .

Proof. Let λ > 0 and x∗ ∈ C+
π . By definition, C+

π ⊆ C+ \ {0} and C+ \ {0} is a cone so

that λx∗ ∈ C+ \ {0}. Hence, R++C
+
π ⊆ C+ \ {0}. Conversely, let x∗ ∈ C+ \ {0}. We have

〈x∗, π〉 > 0. Taking z∗ := x∗

〈x∗,π〉 , we have 〈z∗, π〉 = 1, which implies that z∗ ∈ C+
π . Moreover,

taking λ = 1
〈x∗,π〉 > 0, we have x∗ = λz∗ ∈ R++C

+
π . Hence, C+ \ {0} ⊆ R++C

+
π .

Thanks to the order structure provided by ≤C , we may define the monotonicity of sets

and functions. We say that a set A ⊆ X is monotone if x ≤C y and x ∈ A imply y ∈ A,

for every x, y ∈ X . Similarly, we say that f is a decreasing function (with respect to C) if

x ≤C y implies f(x) ≥ f(y) for every x, y ∈ X ; we say that f is an increasing function (with

respect to C) if it is decreasing with respect to −C.

Remark 2.2.4. It is easy to see that f is decreasing if and only if its sublevel sets are

monotone. Indeed, suppose that f is decreasing, and let m ∈ R, x ∈ Sfm. If x ≤C y for some

y ∈ X , then we have m ≥ f(x) ≥ f(y) so that y ∈ Sfm. Hence, Sfm is monotone. Conversely,

suppose that Sfm is monotone for every m ∈ R, and take x, y ∈ X such that x ≤C y. If

f(x) = +∞, then f(x) ≥ f(y) holds trivially. Assume that f(x) < +∞. Clearly, x ∈ Sfm for

every m ∈ R with m ≥ f(x). Since x ≤C y, y ∈ Sfm and Sfm is monotone, we have y ∈ Sfm,

that is, m ≥ f(y) for every such m. Letting m → f(x) gives f(x) ≥ f(y). Hence, f is

decreasing.
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2.3 Dual representations

In convex analysis, Fenchel-Moreau theorem provides a dual representation for a proper

lower semicontinous convex function f in terms of its conjugate function f ∗:

f(x) = sup
x∗∈X ∗

(〈x∗, x〉 − f ∗(x)) , x ∈ X .

One immediate consequence of this theorem is the following lemma; we give its proof for the

convenience of the reader. We will use this lemma in the proof of Proposition 6.1.3, which

is a significant tool for proving Theorem 4.1.6, the main theorem of the paper.

Lemma 2.3.1. Let A ⊆ X be a set and B its closed convex hull. Then,

I∗A(x∗) = sup
x∈B
〈x∗, x〉 , x∗ ∈ X ∗.

Proof. By Fenchel-Moreau theorem, we have I∗∗A = IB since B is the closed convex hull of

A. Then, taking the conjugate functions of both sizes and applying Fenchel-Moreau theorem

once more, we get I∗A = I∗∗∗A = I∗B. On the other hand, we have I∗B(x∗) = supx∈B 〈x∗, x〉 for

every x∗ ∈ X ∗. Hence, the result follows.

For monotone functions, the following refinement of Fenchel-Moreau theorem is possible.

Proposition 2.3.2. Suppose that f is proper, decreasing, convex and lower semicontinuous.

Then, we have

f(x) = sup
x∗∈C+

(〈−x∗, x〉 − f ∗(−x∗)) , x ∈ X . (2.3.1)

Proof. We first prove that f ∗(x∗) = +∞ when x∗ /∈ −C+. Note that, in this case, there

exists c ∈ C such that 〈x∗, c〉 > 0. Let x0 ∈ dom f and λ > 0. Since f is decreasing, we have

f(x0 + λc) ≤ f(x0) so that 〈x∗, x0 + λc〉 − f(x0 + λc) ≥ λ 〈x∗, c〉 + 〈x∗, x0〉 − f(x0). Since

〈x∗, c〉 > 0, letting λ→∞ implies that

f ∗(x∗) ≥ sup
λ>0

(〈x∗, x+ λc〉 − f(x+ λc)) ≥ +∞.

Hence, f ∗(x∗) = +∞. Combining this with Fenchel-Moreau theorem yields (2.3.1).
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For a quasiconvex function, a suitable generalization of conjugation is possible by the

so-called minimal penalty function, which is defined in terms of the support function of the

negative of sublevel sets. The precise definition is given next.

Definition 2.3.3. The minimal penalty function αf : X ∗ × R → R associated with f is

defined by

αf (x
∗,m) := sup

x∈Sfm

〈x∗,−x〉 , x∗ ∈ X ∗,m ∈ R.

Remark 2.3.4. We can extend this definition for m = +∞ and m = −∞ and x∗ 6= 0

by letting αf (x
∗,+∞) := +∞ and αf (x

∗,−∞) := −∞. These values are consistent with

the original definition. When we look at the case m = +∞, we are considering the whole

space {x ∈ X | f(x) ≤ ∞} = X in the supremum, which gives that the supremum is +∞.

Similarly, for the case m = −∞, we are considering the supremum over the empty set, which

is −∞.

The next two remarks state some elementary properties of the minimal penalty function

αf .

Remark 2.3.5. It is clear that the minimal penalty function αf is positively homogeneous

in the first argument, that is, αf (λx
∗,m) = λαf (x

∗,m) for every x∗ ∈ X ∗, m ∈ R. Moreover,

αf is increasing in the second argument. Indeed, taking m1,m2 ∈ R with m1 ≤ m2, we have

Sfm1
⊆ Sfm2

so that αf (x
∗,m1) ≤ αf (x

∗,m2) for every x∗ ∈ X ∗.

Remark 2.3.6. By (2.1.2) and Definition 2.3.3, we have

αf (x
∗,m) = sup

x∈Sfm

〈−x∗, x〉 = I∗
Sfm

(−x∗), x∗ ∈ X ∗,m ∈ R.

We continue with a lemma which serves as a basis for dual representations since it char-

acterizes a set in the primal space X in terms of the elements of the dual space X ∗.

Lemma 2.3.7. Let A ⊆ X be a nonempty, closed, convex and monotone set. Then, for

every x ∈ X , we have

x ∈ A ⇔ ∀x∗ ∈ C+ \ {0} : 〈x∗,−x〉 ≤ sup
y∈A
〈x∗,−y〉 .

Proof. For A = X , the result is clear. Suppose that A 6= X and let x ∈ A. Clearly,

〈x∗,−x〉 ≤ supy∈A 〈x∗,−y〉 for each x∗ ∈ C+ \{0}. We prove the converse by contrapositive.
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To that end, let x ∈ X \ A. Since A is closed and convex, by Hahn-Banach separation

theorem, there exists x∗ ∈ X ∗ \ {0} such that

〈x∗,−x〉 > sup
y∈A
〈x∗,−y〉 .

We claim that x∗ ∈ C+. To get a contradiction, suppose that x∗ /∈ C+ so that 〈x∗,−c〉 > 0

for some c ∈ C. Since C is a cone, for every λ > 0, we have λc ∈ C. Now take y ∈ A. Since

A is monotone, we have y + λc ∈ A and hence,

〈x∗,−x〉 > 〈x∗,−(y + λc)〉 = 〈x∗,−y〉+ λ 〈x∗,−c〉 (2.3.2)

for every λ > 0. Since 〈x∗,−c〉 > 0, letting λ → ∞, the expression on the right of (2.3.2)

diverges to +∞ but the expression on the left is constant, which yields a contradiction.

Therefore, x∗ ∈ C+ \ {0} and the proof is complete.

Remark 2.3.8. If f is a decreasing, lower semicontinuous and quasiconvex function, then

the sublevel sets Sfm,m ∈ R, satisfy the properties in Lemma 2.3.7 by Remarks 2.1.3, 2.1.5,

2.2.4. Hence, by Definition 2.3.3, we have

x ∈ Sfm ⇔ ∀x∗ ∈ C+ \ {0} : 〈x∗,−x〉 ≤ αf (x∗,m) .

Similarly, if f is an increasing, lower semicontinuous and quasiconvex function, then f is

decreasing with respect to −C so that

x ∈ Sfm ⇔ ∀x∗ ∈ C− \ {0} : 〈x∗,−x〉 ≤ αf (x∗,m) ,

where C− := −C+ = {x∗ ∈ X ∗ | 〈x∗, x〉 ≤ 0 for all x ∈ C}.

When f is lower semicontinuous and quasiconvex, its dual representation will be stated

in terms of a special pseudoinverse of αf , which we recall in the next definition.

Definition 2.3.9. Let α : C+ × R→ R be a function. We define its left inverse α−l : C+ ×
R→ R with respect to the second argument by

α−l(x∗, s) := sup {m ∈ R | α(x∗,m) < s} = inf {m ∈ R | α(x∗,m) ≥ s} , (2.3.3)

for each x∗ ∈ C+ and s ∈ R.
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The following lemma provides simple strong duality results that will be useful in later

calculations.

Lemma 2.3.10. Let α : C+×R→ R be a function which is increasing in its second argument.

(i) Let r : X ∗ → R be a function and A ⊆ X ∗ a nonempty set. Then, we have

inf {m ∈ R | ∀x∗ ∈ A : r(x∗) ≤ α(x∗,m)} = sup
x∗∈A

α−l(x∗, r(x∗)).

(ii) Let S be a nonempty set and r : X ∗ × S → R. Then, for every x∗ ∈ X ∗, we have

inf {m ∈ R | ∀s ∈ S : r(x∗, s) ≤ α(x∗,m)} = sup
s∈S

α−l(x∗, r(x∗, s)).

Proof. Let us prove (i) first. By the definition of left inverse, the claimed equality is

equivalent to

inf {m ∈ R | ∀x∗ ∈ A : r(x∗) ≤ α(x∗,m)} = sup
x∗∈A

inf {m ∈ R | r(x∗) ≤ α(x∗,m)} . (2.3.4)

The ≥ part is true by weak duality. For the other side, to get a contradiction, assume that

there exists m̃ ∈ R such that

inf {m ∈ R | ∀x∗ ∈ A : r(x∗) ≤ αf (x
∗,m)} > m̃ > sup

x∗∈A
inf {m ∈ R | r(x∗) ≤ αf (x

∗,m)} .

The first inequality implies that there exists x̃∗ ∈ A such that

r(x̃∗) > αf (x̃
∗, m̃). (2.3.5)

The second inequality implies that m̃ > inf{m ∈ R | r(x̃∗) ≤ αf (x̃
∗,m)}. Hence, by the

monotonicity of αf , we must have r(x̃∗) ≤ αf (x̃
∗, m̃), which is a contradiction to (2.3.5).

Hence, (2.3.4) follows.

We have a similar proof for (ii). Note that the desired equality is equivalent to

inf {m ∈ R | ∀s ∈ S : r(x∗, s) ≤ α(x∗,m)} = sup
s∈S

inf {m ∈ R | r(x∗, s) ≤ α(x∗,m)} . (2.3.6)

The ≥ part is true by weak duality. For the other side, to get a contradiction, assume that
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there exists m̃ ∈ R such that

inf {m ∈ R | ∀s ∈ S : r(x∗, s) ≤ αf (x
∗,m)} > m̃ > sup

s∈S
inf {m ∈ R | r(x∗, s) ≤ αf (x

∗,m)} .

The first inequality implies that there exists a s̃ ∈ S such that

r(x∗, s̃) > αf (x
∗, m̃). (2.3.7)

The second inequality implies that m̃ > inf {m ∈ R | r(x∗, s̃) ≤ αf (x
∗,m)}. Hence, by the

monotonicity of αf , we have r(x∗, s̃) ≤ αf (x
∗, m̃), a contradiction to (2.3.7). Hence, (2.3.6)

follows.

We state the dual representation theorem for lower semicontinuous quasiconvex functions,

which is a part of Theorem 3 in [8]. It is formulated in terms of the left inverse of the minimal

penalty function. We provide the proof for completeness.

Theorem 2.3.11. Suppose that f : X → R is a decreasing, lower semicontinuous and qua-

siconvex function. Then, f has the dual representation

f(x) = sup
x∗∈C+\{0}

α−lf (x∗, 〈x∗,−x〉) , x ∈ X , (2.3.8)

where α−lf is the left inverse of αf .

Proof. Let x ∈ R. By Lemma 2.1.1 and Remark 2.3.8 we have

f(x) = inf{m ∈ R | x ∈ Sfm} = inf
{
m ∈ R | ∀x∗ ∈ C+ \ {0} : 〈x∗,−x〉 ≤ αf (x

∗,m)
}

= sup
x∗∈C+\{0}

α−lf (x∗, 〈x∗,−x〉) ,

where the last equality is a direct result of Lemma 2.3.10(i) since αf is increasing by Re-

mark 2.3.5.

We will generalize Theorem 2.3.11 for the composition of quasiconvex functions in Chap-

ter 4. In [8], a decreasing quasiconvex function on X is called a risk measure as a general-

ization of convex and coherent risk measures studied in the financial mathematics literature;

see Chapter 4 of [11], for instance. Hence, Theorem 2.3.11 provides a dual representation
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for a lower semicontinuous (quasiconvex) risk measure. For the current discussion, we keep

using the general terminology of convex analysis and do not use the term risk measure. In

Sections 5.1 and 5.2, we will focus on applications in systemic risk measures, where we also

introduce the financial background as necessary.

In applications, it might be necessary to consider a function that is defined on some subset

of the vector space X . The next corollary is for this purpose. To that end, let K ⊆ X be a

monotone convex set such that C ⊆ K. In particular, we have K+C ⊆ K. Given a function

g : K → R, we may extend g to X as a function ḡ defined by ḡ(x) = g(x) for x ∈ K, and by

ḡ(x) = +∞ for x ∈ X \K. Hence, the sublevel sets, minimal penalty function, and algebraic

properties (quasiconvexity, monotonicity, etc.) of g are defined as those of ḡ.

Corollary 2.3.12. Let g : K → R be a quasiconvex, decreasing and lower semicontinuous

(with respect to the relative topology) function. Then, we have

g(x) = sup
x∗∈C+\{0}

α−lg (x∗, 〈x∗,−x〉) , x ∈ K. (2.3.9)

Proof. Let us define a function g̃ : X → R by

g̃(x) := inf{m ∈ R | x ∈ cl(Sgm)}, x ∈ X .

Note that S g̃m = cl(Sgm) for each m ∈ R. Let m ∈ R. Since g is quasiconvex, it follows that

S g̃m is closed and convex. To show that it is also monotone, let x ∈ S g̃m = cl(Sgm), c ∈ C. Let

U ⊆ X be a neighborhood of x+ c. Since X is a topological vector space, (U − c) is an open

set; hence, it is a neighborhood of x. Therefore, (U − c) ∩ Sgm 6= ∅. Let z ∈ (U − c) ∩ Sgm
so that z + c ∈ U . On the other hand, since g is decreasing, Sgm is monotone, which yields

that z + c ∈ Sgm. It follows that U ∩ Sgm 6= ∅. Since U is an arbitrary neighborhood of

x + c, we conclude that x + c ∈ cl(Sgm) = S g̃m. Hence, S g̃m is monotone. By Remarks 2.1.3,

2.1.5, 2.2.4, it follows that g̃ is decreasing, lower semicontinuous, and quasiconvex. Using

Theorem 2.3.11, we get

g̃(x) = sup
x∗∈C+\{0}

α−lg̃ (x∗, 〈x∗,−x〉) , x ∈ X . (2.3.10)
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By definition, S g̃m is the closed convex hull of Sgm for each m ∈ R. Hence, Lemma 2.3.1 yields

αg̃(x
∗,m) = sup

y∈Sg̃m
〈x∗,−y〉 = sup

y∈Sgm
〈x∗,−y〉 = αg(x

∗,m), x∗ ∈ X ∗,m ∈ R. (2.3.11)

For x ∈ K, by Lemma 2.1.1, we have

g̃(x) = inf
{
m ∈ R | x ∈ S g̃m

}
= inf

{
m ∈ R | x ∈ S g̃m ∩ K

}
. (2.3.12)

We claim that S g̃m ∩ K = Sgm. Indeed, it is clear that S g̃m ∩ K = cl(Sgm) ∩ K ⊇ Sgm. On the

other hand, since g is lower semicontinuous with respect to the relative topology, we have

Sgm = A ∩K for some closed set A ⊆ X . Since Sgm ⊆ A, we have cl(Sgm) ⊆ A. It follows that

cl(Sgm) ∩ K ⊆ A ∩ K = Sgm. Hence, the claim follows. Then, (2.3.12) yields

g̃(x) = inf {m ∈ R | x ∈ Sgm} = g(x).

After combining this result with (2.3.10) and (2.3.11), we obtain (2.3.9).

When f is a proper lower semicontinuous convex function, two dual representations are

possible: the one provided by Fenchel-Moreau theorem, and the one provided by Theo-

rem 2.3.11 since f is also quasiconvex. To establish the link between the two representa-

tions, we calculate the left inverse of the minimal penalty function in terms of the conjugate

function.

Proposition 2.3.13. Suppose that f : X → R is convex and lower semicontinuous. If m ∈ R
is such that the strict sublevel set {x ∈ X | f(x) < m} is nonempty, then

αf (x
∗,m) = inf

λ>0

(
λm+ λf ∗

(
−x

∗

λ

))
, x∗ ∈ X ∗. (2.3.13)

Moreover, for the left inverse, we have

α−lf (x∗, s) = sup
γ≥0

(γs− f ∗(−γx∗)) , x∗ ∈ X ∗, s ∈ R. (2.3.14)

Proof. Let x∗ ∈ X ∗ and m ∈ R such that {x ∈ X | f(x) < m} 6= ∅. Note that αf (x
∗,m) =

supx∈Sfm 〈x
∗,−x〉 can be seen as the optimal value of the following convex optimization

problem:

maximize 〈x∗,−x〉 subject to f(x) ≤ m, x ∈ X .
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By supposition, Slater’s condition holds, that is, there exists x0 ∈ X such that f(x0) < m.

Hence, we have strong duality for this problem, that is,

αf (x
∗,m) = inf

λ≥0
sup
x∈X

(〈x∗,−x〉 − λ(f(x)−m)) .

When λ = 0, supx∈X (〈x∗,−x〉 − λ(f(x)−m)) = supx∈X 〈x∗,−x〉 = +∞. Hence, we can

evaluate the infimum over λ > 0. Then,

αf (x
∗,m) = inf

λ>0
sup
x∈X

(〈x∗,−x〉 − λ(f(x)−m))

= inf
λ>0

(
λm+ sup

x∈X
(〈x∗,−x〉 − λf(x))

)
= inf

λ>0

(
λm+ λf ∗

(
−x

∗

λ

))
.

We have proved (2.3.13). For m > infx∈X f(x), the strict sublevel set {x ∈ X | f(x) < m}
is nonempty. Let us define the set F := (infx∈X f(x),+∞). For m < infx∈X f(x), we have

αf (x
∗,m) = −∞. Also, note that infx∈X f(x) = − supx∈X (0 − f(x)) = −f ∗(0). Then, to

prove (2.3.14), for each s ∈ R, we have

α−lf (x∗, s) = inf {m ∈ R | αf (x∗,m) ≥ s}

= inf
m∈F

m ∨ inf

{
m ∈ R | ∀λ > 0: λm+ λf ∗

(
−x

∗

λ

)
≥ s

}
= inf

x∈X
f(x) ∨ inf

{
m ∈ R | ∀λ > 0: m ≥ s

λ
− f ∗

(
−x

∗

λ

)}
= −f ∗(0) ∨ sup

λ>0

(
s

λ
− f ∗

(
−x

∗

λ

))
= −f ∗(0) ∨ sup

γ>0
(γs− f ∗ (−γx∗))

= sup
γ≥0

(γs− f ∗ (−γx∗)) ,

which completes the proof.

Remark 2.3.14. Under the assumptions of Proposition 2.3.13, rewriting the dual represen-

tation in Theorem 2.3.11 using Proposition 2.3.13 and the fact that C+ is a cone gives

f(x) = sup
x∗∈C+\{0}

α−lf (x∗, 〈x∗,−x〉) = sup
x∗∈C+\{0}

sup
γ≥0

(〈γx∗,−x〉 − f ∗(−γx∗))

= sup
x∗∈C+

(〈x∗,−x〉 − f ∗(−x∗)) , x ∈ X .

Hence, in the convex case, the representation in Theorem 2.3.11 reproduces the standard

Fenchel-Moreau-type representation in Proposition 2.3.2.
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Chapter 3

Naturally quasiconvex vector-valued

functions

Throughout this chapter, let X ,Y be Hausdorff locally convex topological vector spaces with

vector preorders ≤C ,≤D, where C ⊆ X and D ⊆ Y are closed convex cones. We denote

by 2Y the power set of Y . Let f : Y → R and g : X → Y be functions. The main focus

of this paper is to provide dual representations for a quasiconvex composite function of the

form f ◦ g. While Chapter 2 provides the background for the study of extended real-valued

function, we dedicate this chapter to the study of vector-valued functions.

We start by recalling some generalized notions of convexity for vector-valued functions.

Definition 3.0.1. Consider the following notions for g : X → Y.

1. g is called D-convex if

g(λx1 + (1− λ)x2) ≤D λg(x1) + (1− λ)g(x2)

for every x1, x2 ∈ X and λ ∈ (0, 1).

2. g is called D-concave if −g is D-convex.

3. g is called D-naturally quasiconvex if, for every x1, x2 ∈ X and λ ∈ [0, 1], there exists
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µ ∈ [0, 1] such that

g(λx1 + (1− λ)x2) ≤D µg(x1) + (1− µ)g(x2).

4. g is called D-naturally quasiconcave if −g is naturally D-quasiconvex.

From Definition 3.0.1, it is clear that D-convexity implies D-natural quasiconvexity. For

real-valued functions with D = R+, D-natural quasiconvexity coincides with quasiconvexity;

see the notes after Definition 2.1 in [23].

For the function g : X → Y , let us consider the scalarization hgy∗(x) : X → R defined by

hgy∗(x) := 〈y∗, g(x)〉 , x ∈ X , (3.0.1)

for each y∗ ∈ D+ \ {0}. The next proposition provides useful characterizations of the

convexity and D-natural quasiconvexity of g in terms of the analogous properties of the

family of scalarizations.

Proposition 3.0.2. We have the following equivalences for g and its scalarizations.

(i) g is D-convex if and only if hgy∗ is quasiconvex for each y∗ ∈ D+ \ {0}.

(ii) The function g is D-naturally quasiconvex if and only if hgy∗ is quasiconvex for every

y∗ ∈ D+ \ {0}.

Proof. We prove (i) first. Assume that g is D-convex and take y∗ ∈ D+\{0}. Let x1, x2 ∈ X
and λ ∈ (0, 1). Then, the D-convexity of g implies that g(λx1 + (1−λ)x2) ≤D λg(x1) + (1−
λ)g(x2), that is, λg(x1) + (1− λ)g(x2)− g(λx1 + (1− λ)x2) ∈ D. Hence,

〈y∗, λg(x1) + (1− λ)g(x2)− g(λx1 + (1− λ)x2)〉 ≥ 0.

so that

hgy∗(λx1 + (1− λ)x2) = 〈y∗, g(λx1 + (1− λ)x2)〉

≤ 〈y∗, λg(x1) + (1− λ)g(x2)〉 = λhgy∗(x1) + (1− λ)hgy∗(x2).
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Therefore, hgy∗ is convex.

Conversely, assume that hgy∗ is convex for each y∗ ∈ D+ \ {0}. Let x1, x2 ∈ X and

λ ∈ (0, 1). For each y∗ ∈ D+ \ {0}, since hgy∗ is convex, we have

〈y∗, g(λx1 + (1− λ)x2)〉 = hgy∗(λx1 + (1− λ)x2)

≤ λhgy∗(x1) + (1− λ)hgy∗(x2) = 〈y∗, λg(x1) + (1− λ)g(x2)〉 .

Hence, 〈y∗, λg(x1) + (1− λ)g(x2)− g(λx1 + (1− λ)x2)〉 ≥ 0 for every y∗ ∈ D+ \ {0}, that

is, λg(x1) + (1− λ)g(x2)− g(λx1 + (1− λ)x2) ∈ D, that is,

g(λx1 + (1− λ)x2) ≤D λg(x1) + (1− λ)g(x2).

Therefore, g is D-convex, which completes the proof of (i).

Next, we prove (ii). Assume that g is D-naturally quasiconvex. Let y∗ ∈ D+ \ {0} and

consider hgy∗ . Let x1, x2 ∈ X and λ ∈ [0, 1]. Since g is D-naturally quasiconvex, there exists

µ ∈ [0, 1] such that g(λx1 + (1− λ)x2) ≤D µg(x1) + (1− µ)g(x2). Hence,

hgy∗(λx1 + (1− λ)x2) = 〈y∗, g(λx1 + (1− λ)x2)〉

≤ 〈y∗, µg(x1) + (1− µ)g(x2)〉

≤ max{〈y∗, g(x1)〉 , 〈y∗, g(x2)〉} = max{hgy∗(x1), hgy∗(x2)}.

Therefore, hgy∗ is quasiconvex.

Conversely, assume that hgy∗ is quasiconvex for each y∗ ∈ D+\{0}. To get a contradiction,

suppose that g is not D-naturally quasiconvex. Hence, there exist x1, x2 ∈ X and λ ∈ [0, 1]

such that

(co ({g(x1), g(x2)})− g(λx1 + (1− λ)x2)) ∩D = ∅.

Since D is closed and convex, and the (shifted) line segment co({g(x1), g(x2)}) − g(λx1 +

(1− λ)x2) is compact and convex, by Hahn-Banach strong separation theorem, there exists

y∗0 ∈ Y∗ \ {0} such that

inf
d∈D
〈y∗0, d〉 > sup

y∈(co({g(x1),g(x2)})−g(λx1+(1−λ)x2))

〈y∗0, y〉 (3.0.2)
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Since D is a cone, infd∈D 〈y∗, d〉 is either 0 or −∞. However, the term on the right of (3.0.2)

is finite. Hence, we must have infd∈D 〈y∗0, d〉 = 0 so that y∗0 ∈ D+ as well. Then, using this

information in (3.0.2) implies

〈y∗0, µg(x1) + (1− µ)g(x2)〉 < 〈y∗0, g(λx1 + (1− λ)x2)〉

for every µ ∈ [0, 1]. It follows that

max{〈y∗0, g(x1)〉 , 〈y∗0, g(x2)〉} < 〈y∗0, g(λx1 + (1− λ)x2)〉 ,

which contradicts the quasiconvexity of hgy∗0 . Hence, g is D-naturally quasiconvex, which

completes the proof of (ii).

Remark 3.0.3. The equivalent condition in Proposition 3.0.2(ii) is sometimes called ∗-
quasiconvexity ; see, for instance, Definition 2.1 in [23].

If f : Y → R is a decreasing convex function, and g : X → Y is a D-concave function,

then it is easy to check that the composition f ◦ g : X → R is a convex function. The

following proposition provides an analogue of this observation when the resulting composition

is quasiconvex.

Proposition 3.0.4. Suppose that f is quasiconvex and decreasing, and g is D-naturally

quasiconcave. Then, f ◦ g : X → R is quasiconvex.

Proof. Let x1, x2 ∈ X and λ ∈ [0, 1]. Since g is naturally D-quasiconcave, there exists

µ ∈ [0, 1] such that µg(x1) + (1 − µ)g(x2) ≤D g(λx1 + (1 − λ)x2). Using the monotonicity

and quasiconvexity of f , we obtain

f(g(λx1 + (1− λ)x2)) ≤ f(µg(x1) + (1− µ)g(x2)) ≤ max {f(g(x1)), f(g(x2))} .

Hence f ◦ g is quasiconvex.

When f : Y → R is quasiconvex and decreasing, note that Proposition 3.0.4 gives a

sufficient condition on g : X → Y that is weaker than D-convexity so that the composition

f ◦ g is quasiconvex. In the rest of the chapter, we investigate further properties of g that

will help us in obtaining a dual representation for f ◦ g in Chapter 4. To that end, we start

by studying monotonicity for the vector-valued case.
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Definition 3.0.5. The function g : X → Y is called decreasing if x1 ≤C x2 implies g(x2) ≤D
g(x1) for every x1, x2 ∈ X ; it is called increasing if x1 ≤C x2 implies g(x1) ≤D g(x2) for

every x1, x2 ∈ X .

The preservation of monotonicity under compositions is formulated next.

Proposition 3.0.6. Suppose that f is decreasing and g is increasing. Then, f ◦g is decreas-

ing.

Proof. Let x1, x2 ∈ X such that x1 ≤C x2. Since g is increasing, we have g(x1) ≤D g(x2).

Since f is decreasing, we obtain f(g(x1)) ≥ f(g(x2)). Hence, f ◦ g is decreasing.

The next proposition connects the monotonicity of g and that of its scalarizations.

Proposition 3.0.7. Suppose that g is decreasing. Then, hgy∗ is decreasing for every y∗ ∈
D+ \ {0}.

Proof. Let y∗ ∈ D+ \ {0}. Let x1, x2 ∈ X such that x1 ≤C x2. Since g is decreasing, we

have g(x2) ≤D g(x1), that is, g(x1) − g(x2) ∈ D. Hence, 〈y∗, g(x1)− g(x2)〉 ≥ 0, that is,

hgy∗(x1) ≥ hgy∗(x2). Therefore, hgy∗ is decreasing.

In Chapter 4, we will also need a notion of strict monotonicity for a vector-valued function.

The next definition gives one that suits our purposes. Recall that C# and D# are the

(convex) cones of strictly positive elements in X and Y , respectively; see (2.2.2). Although

these cones are not closed in general, we define their induced preorders ≤C# and ≤D# as in

(2.2.1).

Definition 3.0.8. The function g is called regularly increasing if it is increasing and x1 ≤C#

x2 implies g(x1) ≤D# g(x2) for every x1, x2 ∈ X ; it is called regularly decreasing if it is

decreasing and x1 ≤C# x2 implies g(x2) ≤D# g(x1) for every x1, x2 ∈ X .

To be able to employ Definition 3.0.8, we need to work under the following assumption.

Assumption 3.0.9. The cones C# and D# are nonempty.
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We proceed with a continuity concept for g, which is defined through its set-valued ex-

tension G : X → 2Y given by

G(x) := g(x) +D, x ∈ X .

Given M ⊆ Y , the sets

GL(M) := {x ∈ X | G(x) ∩M 6= ∅} , GU(M) := {x ∈ X | G(x) ⊆M}

are called the lower inverse image and upper inverse image of M under G, respectively. It

is easy to check that (GU(M))c = GL(M c) and (GL(M))c = GU(M c).

Definition 3.0.10. The function g is called D-lower demicontinuous if the lower inverse

image GL(M) is open for every open halfspace M ⊆ Y.

When Y = R and D = R+, note that Definition 3.0.10 coincides with the usual notion of

lower semicontinuity, see Remark 2.1.5.

Remark 3.0.11. Note that g is D-lower demicontinuous if and only if the upper inverse

image GU(M) is closed for every closed halfspace M ⊆ Y . This follows from the observations

that M is a closed halfspace if and only if M c is an open halfspace, and that GU(M) =

(GL(M c))c.

We conclude this chapter by relating the D-lower demicontinuity of g with the upper

semicontinuity of its scalarizations.

Proposition 3.0.12. The function g is D-lower demicontinuous if and only if hgy∗ is upper

semicontinuous for every y∗ ∈ D+ \ {0}.

Proof. Let m ∈ R and y∗ ∈ D+ \ {0}. Let us define the sets

Am,y∗ := {x ∈ X | hgy∗(x) ≥ m}, Bm,y∗ := GU(Mm,y∗) = {x ∈ X | g(x) +D ⊆Mm,y∗},

where

Mm,y∗ := {y ∈ Y | 〈y∗, y〉 ≥ m} .

We claim that Am,y∗ = Bm,y∗ . First, let x ∈ Am,y∗ and take d ∈ D. Hence, 〈y∗, g(x)〉 ≥ m

and 〈y∗, d〉 ≥ 0. Combining these two inequalities, we get 〈y∗, g(x) + d〉 ≥ m, that is,
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g(x) + d ∈ Mm,y∗ . Since d ∈ D is arbitrary, we have g(x) + D ⊆ Mm,y∗ . Hence, x ∈ Bm,y∗ .

Conversely, let x ∈ Bm,y∗ . In particular, g(x) ∈ Mm,y∗ , that is, hgy∗(x) = 〈y∗, g(x)〉 ≥ m.

Hence, x ∈ Am,y∗ , which completes the proof of the claim. By this claim and Remark 3.0.11,

the statement of the proposition follows immediately.

Let y∗ ∈ D+ \ {0}. In view of Proposition 3.0.2 and Proposition 3.0.7, when g is D-

naturally quasiconcave increasing and D-lower demicontinuous, the function −hgy∗ is quasi-

convex, decreasing and lower semicontinuous. In this case, we may apply Theorem 2.3.11

for −hgy∗ to get

− hgy∗(x) = sup
x∗∈C+\{0}

α−l−hg
y∗

(x∗, 〈x∗,−x〉), x ∈ X . (3.0.3)

The availability of (3.0.3) will be useful in Chapter 4 when obtaining the dual representation

of a quasiconvex compositions.
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Chapter 4

Quasiconvex compositions

The aim of this chapter is to establish dual representations for quasiconvex compositions. We

continue working in the framework of Chapter 3, where we have locally convex topological

vector spaces X ,Y with respective preorders ≤C ,≤D.

4.1 The main theorem

Let us fix two functions f : Y → R and g : X → Y . To motivate the discussion, we make

the following simple observation: if f is decreasing and quasiconvex, and g is increasing and

D-naturally quasiconcave, then f ◦ g is decreasing and quasiconvex by Proposition 3.0.4 and

Proposition 3.0.6. Hence, in view of Theorem 2.3.11, a dual representation for f ◦g is readily

available once f ◦ g is guaranteed to be lower semicontinuous. This is achieved in the next

proposition by suitable continuity assumptions on f and g.

Proposition 4.1.1. Suppose that f is decreasing, lower semicontinuous, and quasiconvex;

and that g is increasing, D-lower demicontinuous, and D-naturally quasiconcave. Then,

f ◦ g is a decreasing, lower semicontinuous, and quasiconvex function. Moreover, for every

x ∈ X , we have

f ◦ g(x) = sup
y∗∈D+\{0}

α−lf

(
y∗, sup

x∗∈C+\{0}
α−l−hg

y∗
(x∗, 〈x∗,−x〉)

)
= sup

x∗∈C+\{0}
α−lf◦g (x∗, 〈x∗,−x〉) .

(4.1.1)

24



Proof. By Proposition 3.0.4 and Proposition 3.0.6, f ◦ g is decreasing and quasiconvex. Let

us show that it is also lower semicontinuous. To that end, let m ∈ R. Note that

Sf◦gm = {x ∈ X | f ◦ g(x) ≤ m} = {x ∈ X | g(x) ∈ Sfm} = {x ∈ X | G(x) ⊆ Sfm} = GU(Sfm).

(4.1.2)

Here, only the third equality needs a proof. Since f is decreasing, Sfm is monotone. Let

x ∈ X with g(x) ∈ Sfm, and d ∈ D. Since Sfm is monotone, we have g(x) + d ∈ Sfm. As

this is true for every d ∈ D, we have G(x) = g(x) + D ⊆ Sfm. Conversely, let x ∈ X with

G(x) ⊆ Sfm. Since 0 ∈ D, we have g(x) ∈ g(x) +D = G(x) ⊆ Sfm. These observations verify

the third equality in (4.1.2).

By Remark 2.1.6, we may write Sfm =
⋂
M∈MM , where M is the collection of all closed

half spaces M such that Sfm ⊆M . Therefore,

GU(Sfm) = GU

( ⋂
M∈M

M

)
=
⋂

M∈M

GU(M).

Since g is D-lower demicontinuous, GU(M) is closed for each M ∈M. By (4.1.2), it follows

that Sf◦gm = GU(Sfm) is closed. Therefore, f ◦ g is lower semicontinuous by Remark 3.0.11.

By applying Theorem 2.3.11, we obtain the second dual representation in (4.1.1) imme-

diately.

Finally, we show the first equality in (4.1.1). Let x ∈ X . By applying Theorem 2.3.11 for

f at the point g(x), we get

f(g(x)) = sup
y∗∈D+\{0}

α−lf (y∗, 〈y∗,−g(x)〉).

On the other hand, by (3.0.3), we have

〈y∗,−g(x)〉 = −hgy∗(x) = sup
x∗∈C+\{0}

α−l−hg
y∗

(x∗, 〈x∗,−x〉), y∗ ∈ D+ \ {0}.

Combining the last two observations gives the first equality in (4.1.1).

Under the assumptions of Proposition 4.1.1, f ◦g has a dual representation in the sense of

Theorem 2.3.11. We have a a more explicit dual representation for f ◦g in the next theorem.
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Theorem 4.1.2. Suppose that f is decreasing, lower semicontinuous, and quasiconvex; and

that g is increasing, D-lower demicontinuous, and D-naturally quasiconcave. We have

f ◦ g(x) = sup
x∗∈C+\{0}

sup
y∗∈D+\{0}

α−lf

(
y∗, α−l−hg

y∗
(x∗, 〈x∗,−x〉)

)
, x ∈ X .

Proof. By Lemma 2.1.1, Lemma 2.3.7 and Lemma 2.3.10(i), we have

f ◦ g(x) = inf{m ∈ R | g(x) ∈ Sfm} (4.1.3)

= inf
{
m ∈ R | ∀y∗ ∈ D+ \ {0} : 〈y∗,−g(x)〉 ≤ αf (y

∗,m)
}

= sup
y∗∈D+\{0}

inf {m ∈ R | 〈y∗,−g(x)〉 ≤ αf (y
∗,m)} . (4.1.4)

By using (3.0.3) and then applying Lemma 2.3.10(i), we obtain

f ◦ g(x) = sup
y∗∈D+\{0}

inf {m ∈ R | 〈y∗,−g(x)〉 ≤ αf (y
∗,m)}

= sup
y∗∈D+\{0}

inf

{
m ∈ R | sup

x∗∈C+\{0}
α−l−hg

ỹ∗
(x∗, 〈−x∗, x〉) ≤ αf (y

∗,m)

}
= sup

y∗∈D+\{0}
inf
{
m ∈ R | ∀x∗ ∈ C+ \ {0}, α−l−hg

ỹ∗
(x∗, 〈−x∗, x〉) ≤ αf (y

∗,m)
}

= sup
y∗∈D+\{0}

sup
x∗∈C+\{0}

inf
{
m ∈ R | α−l−hg

ỹ∗
(x∗, 〈−x∗, x〉) ≤ αf (y

∗,m)
}

= sup
x∗∈C+\{0}

sup
y∗∈D+\{0}

α−lf

(
y∗, α−l−hg

y∗
(x∗, 〈x∗,−x〉)

)
,

which gives the conclusion of the theorem.

The main problem is to calculate the minimal penalty function αf◦g as well as its left in-

verse α−lf◦g in terms of the same type of functions for f and g (more precisely, the scalarizations

of g). The solution of this problem will be provided by Theorem 4.1.6 and Corollary 4.1.8.

It turns out that these results work under a mild compactness assumption on D+ as we

describe next.

Definition 4.1.3. A set D̄+ ⊆ D+ is called a cone generator for D+ if every y∗ ∈ D+ \ {0}
can be written as y∗ = λȳ∗ for some λ > 0 and ȳ∗ ∈ D̄∗.

It is clear that if D̄+ is a cone generator for D+, then D+ is the conic hull of D̄+.
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Remark 4.1.4. Suppose that D# 6= ∅ and let π ∈ D#. Then, D+
π is a closed convex cone

generator for D+ thanks to Lemma 2.2.3.

In Section 4.4, we will discuss the existence and compactness of cone generators for several

examples that show up frequently in applications. For the theoretical development of this

chapter, we work under the following assumption.

Assumption 4.1.5. There exists a convex and compact cone generator D̄+ for D+.

Next, we state the main theorem of the paper, which provides a formula for the minimal

penalty function of f ◦ g. Its proof is presented separately in Section 6.1. The proof consists

of several auxiliary results together with the use of a minimax inequality in [25] for two

functions. Assumption 4.1.5 will be crucial in applying this inequality.

Theorem 4.1.6. Suppose that Assumption 3.0.9 and Assumption 4.1.5 hold. In addition,

suppose that f is decreasing, lower semicontinuous, and quasiconvex; and that g is regularly

increasing, D-lower demicontinuous, and D-naturally quasiconcave. Then, for every x∗ ∈
C+ \ {0} and m ∈ R, we have

αf◦g(x
∗,m) = inf

y∗∈D+\{0}
α−hg

y∗
(x∗, αf (y

∗,m)) = inf
y∗∈D+

π \{0}
α−hg

y∗
(x∗, αf (y

∗,m)) . (4.1.5)

Remark 4.1.7. It should be noted that D̄+ does not have to be the same as D+
π but the

second equality in (4.1.5) still holds.

The next corollary complements Theorem 4.1.6 by providing a formula for the left inverse

of the minimal penalty funtion of f ◦ g, which is the actual function that shows up in the

dual representation of f ◦ g in Proposition 4.1.1. Its proof is given in Section 6.1.

Corollary 4.1.8. In the setting of Theorem 4.1.6, for every x∗ ∈ C+ \ {0} and s ∈ R, we

have

α−lf◦g(x
∗, s) = sup

y∗∈D+\{0}
α−lf

(
y∗, α−l−hg

y∗
(x∗, s)

)
(4.1.6)

and

f ◦ g(x) = sup
x∗∈C+\{0}

sup
y∗∈D+\{0}

α−lf

(
y∗, α−l−hg

y∗
(x∗, 〈x∗,−x〉)

)
, x ∈ X . (4.1.7)

Remark 4.1.9. The second part Corollary 4.1.8 gives the same result as Theorem 4.1.2. In

Corollary 4.1.8, we use the stronger Theorem 4.1.6.
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4.2 Two important special cases

We consider special cases of the setting in Section 4.1 where at least one of the functions in

the composition is convex/concave. In these cases, it is possible to obtain simplified formulae

for the minimal penalty function of the composition. As before, we work with two functions

f : Y → R and g : X → Y .

We first work on the case where both f and g satisfy a stronger convexity assumption

so that f ◦ g becomes convex. As the next corollary shows, the reduced form of the dual

representation is consistent with the ones available for convex compositions in the literature;

see, for instance, Theorem 2.8.10 in [2] and Theorem 3 in [3].

Corollary 4.2.1. Suppose that f : Y → R is convex, decreasing and lower semicontinuous;

and that g is increasing, D-lower demicontinuous, and D-concave. Then, we have

f ◦ g(x) = sup
x∗∈C+

sup
y∗∈D+

(
〈x∗,−x〉 − (−hgy∗)∗(−x∗)− f ∗(−y∗)

)
, x ∈ X .

Proof. Let x ∈ X . First, let us prove the following scaling property for an arbitrary γ ≥ 0

and x∗ ∈ C+ \ {0}.

γα−l−hg
y∗

(x∗, 〈x∗,−x〉) = α−l−hg
γy∗

(x∗, 〈x∗,−x〉) . (4.2.1)

Let us consider the case γ > 0. By Definition 2.3.9, we have

α−l−hg
γy∗

(x∗, 〈x∗,−x〉) = inf
{
m ∈ R | α−hg

γy∗
(x∗,m) ≥ 〈x∗,−x〉

}
= inf

m ∈ R | sup
z∈Sm

−hg
γy∗

〈x∗,−z〉 ≥ 〈x∗,−x〉

 .

We have the following relations:

z ∈ Sm−hg
γy∗
⇐⇒ 〈γy∗,−g(z)〉 ≤ m ⇐⇒ 〈y∗,−g(z)〉 ≤ m

γ
⇐⇒ z ∈ S

m
γ

−hg
y∗
.
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Therefore, we get

α−l−hg
γy∗

(x∗, 〈x∗,−x〉) = inf

m ∈ R | sup
z∈Sm

−hg
γy∗

〈x∗,−z〉 ≥ 〈x∗,−x〉


= inf

m ∈ R | sup

z∈S
m
γ

−hg
y∗

〈x∗,−z〉 ≥ 〈x∗,−x〉


= γ inf

n ∈ R | sup
z∈Sn

−hg
y∗

〈x∗,−z〉 ≥ 〈x∗,−x〉


= γα−l−hg

y∗
(x∗, 〈x∗,−x〉) ,

where the third equality comes from a change of variable which is m
γ

= n and the last equality

is by Definition 2.3.9. For the case γ = 0, we will prove that α−l−hg
γy∗

(x∗, 〈x∗,−x〉) = 0.

Observe that Sm−hg
γy∗

= {z ∈ X | 〈0, g(z)〉 ≤ m}. Therefore, if m ≥ 0, Sm−hg
γy∗

= X and

Sm−hg
γy∗

= ∅ if m < 0. Therefore, for γ = 0, we have

α−l−hg
γy∗

(x∗, 〈x∗,−x〉) = inf

m ∈ R | sup
z∈Sm

−hg
γy∗

〈x∗,−z〉 ≥ 〈x∗,−x〉


= inf

{
m ≥ 0 | sup

z∈X
〈x∗,−z〉 ≥ 〈x∗,−x〉

}
= 0.

We have proved (4.2.1), now we continue with the main result. By Theorem 4.1.2, we

have

f ◦ g(x) = sup
x∗∈C+\{0}

sup
y∗∈D+\{0}

α−lf

(
y∗, α−l−hg

y∗
(x∗, 〈x∗,−x〉)

)
.

Once we apply the second part of Proposition 2.3.13 to f and use (4.2.1), we get

f ◦ g(x) = sup
x∗∈C+\{0}

sup
y∗∈D+\{0}

sup
γ≥0

(
γα−l−hg

y∗
(x∗, 〈x∗,−x〉)− f ∗(−γy∗)

)
= sup

x∗∈C+\{0}
sup

y∗∈D+\{0}
sup
γ≥0

(
α−l−hg

γy∗
(x∗, 〈x∗,−x〉)− f ∗(−γy∗)

)
= sup

x∗∈C+\{0}
sup
ỹ∗∈D+

(
α−l−hg

ỹ∗
(x∗, 〈x∗,−x〉)− f ∗(−ỹ∗)

)
,

where the last equation comes from the change of variable γy∗ = ỹ∗ since D+ is a cone. Now
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let us apply Proposition 2.3.13 to −hgỹ∗ and obtain

f ◦ g(x) = sup
x∗∈C+\{0}

sup
ỹ∗∈D+

(
α−l−hg

ỹ∗
(x∗, 〈x∗,−x〉)− f ∗(−ỹ∗)

)
= sup

x∗∈C+\{0}
sup
ỹ∗∈D+

(
sup
β≥0

(
β 〈x∗,−x〉 − (−hgỹ∗)∗(−βx∗)

)
− f ∗(−ỹ∗)

)
= sup

ỹ∗∈D+

sup
x∗∈C+\{0}

sup
β≥0

(
〈βx∗,−x〉 − (−hgỹ∗)∗(−βx∗)− f ∗(−ỹ∗)

)
= sup

ỹ∗∈D+

sup
x̃∗∈C+

(
〈x̃∗,−x〉 − (−hgỹ∗)∗(−x̃∗)− f ∗(−ỹ∗)

)
,

where the last equation comes from the change of variable βx∗ = x̃∗ since C+ is a cone.

Next, we work on the case where only one of the functions in the composition has a stronger

convexity assumption. While Corollary 4.2.1 reproduces earlier results in the literature, the

next result is novel to this work to the best of our knowledge. In Section 5.1, we will use

this result to obtain new dual representations for quasiconvex systemic risk measures.

Proposition 4.2.2. Suppose that f is decreasing, lower semicontinuous, and quasiconvex;

and that g is increasing, D-lower demicontinuous, and D-concave. Then, f ◦g is an decreas-

ing, lower semicontinuous, and quasiconvex function; and the following dual representation

holds:

f ◦ g(x) = sup
x∗∈C+\{0}

sup
y∗∈D+\{0}

α−lf

(
y∗, 〈x∗,−x〉 − (−hgy∗)∗(−x∗)

)
, x ∈ X . (4.2.2)

Assume further that g is also regularly increasing and Assumption 4.1.5 holds. The following

results hold.

(i) Let x∗ ∈ C+ \ {0} and m ∈ R such that αf (y
∗,m) ∈ R and S

αf (y∗,m)

−hg
y∗

6= ∅ for all

y∗ ∈ D+ \ {0}. Then,

αf◦g(x
∗,m) = inf

y∗∈D+\{0}

(
(−hgy∗)∗(−x∗) + αf (y

∗,m)
)
.

(ii) For every x∗ ∈ C+ \ {0} and s ∈ R,

α−lf◦g(x
∗, s) = sup

y∗∈D+\{0}
α−lf
(
y∗, (−(−hgy∗)∗(0)) ∨ (s− (−hgy∗)∗(−x∗))

)
.
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Proof. Note that x 7→ 〈y∗,−g(x)〉 is convex and lower semicontinuous by Proposition 3.0.2

and Proposition 3.0.12. Using (4.1.4) in the proof of Theorem 4.1.2 and the Fenchel-Moreau

theorem, we have

f ◦ g(x) = sup
y∗∈D+\{0}

inf {m ∈ R | 〈y∗,−g(x)〉 ≤ αf (y
∗,m)}

= sup
y∗∈D+\{0}

inf

{
m ∈ R | sup

x∗∈C+\{0}

(
〈−x∗, x〉 − (−hgy∗)∗(−x∗)

)
≤ αf (y

∗,m)

}
= sup

y∗∈D+\{0}
sup

x∗∈C+\{0}
inf
{
m ∈ R | 〈−x∗, x〉 − (−hgy∗)∗(−x∗) ≤ αf (y

∗,m)
}

= sup
x∗∈C+\{0}

sup
y∗∈D+\{0}

α−lf

(
y∗, 〈x∗,−x〉 − (−hgy∗)∗(−x∗)

)
,

where the third equality comes from Lemma 2.3.10(ii). Hence, (4.2.2) follows.

From now on, we assume that g is regularly increasing and Assumption 4.1.5 holds. To

prove (i), let x∗ ∈ C+ \ {0} and m ∈ R with S
αf (y∗,m)

−hg
y∗

6= ∅. By Theorem 4.1.6, we have

αf◦g(x
∗,m) = inf

y∗∈D+\{0}
α−hg

y∗
(x∗, αf (y

∗,m)).

Also, take x ∈ Sαf (y∗,m)

−hg
y∗

and let c ∈ C#. Then, there exists d ∈ D# such that g(x + c) =

g(x) + d since g is regularly increasing. Therefore, by using the definition of D#, we get

〈y∗,−g(x+ c)〉 = 〈−y∗, g(x) + d〉 = 〈−y∗, g(x)〉+ 〈−y∗, d〉 < 〈−y∗, g(x)〉 ≤ αf (y
∗,m),

which gives that the strict sublevel set {x ∈ X | −hgy∗(x) < αf (y
∗,m)} is nonempty. Hence,

by Proposition 2.3.13, we have

αf◦g(x
∗,m) = inf

y∗∈D+\{0}
inf
β>0

(
β(−hgy∗)∗

(
−x

∗

β

)
+ βαf (y

∗,m)

)
.

Then, by Theorem 2.3.1 in [2] on the elementary rules of conjugation, we have

αf◦g(x
∗,m) = inf

y∗∈D+\{0}
inf
β>0

(
(−βhgy∗)∗(−x∗) + βαf (y

∗,m)
)
.

By the positive homogeneity of y∗ 7→ αf (y
∗,m) and also that of y∗ 7→ hgy∗(x) for each x ∈ X ,

we get

αf◦g(x
∗,m) = inf

y∗∈D+\{0}
inf
β>0

(
(−hgβy∗)

∗(−x∗) + αf (βy
∗,m)

)
.
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Finally, since D+ is cone, we can make a change of variables and obtain (i).

We prove (ii) next. By Corollary 4.1.8, the second part of Proposition 2.3.13, and the

definition of left inverse, we have

α−lf◦g(x
∗, s) = sup

y∗∈D+\{0}
α−lf

(
y∗, α−l−hg

y∗
(x∗, s)

)
= sup

y∗∈D+\{0}
α−lf

(
y∗, sup

γ≥0

(
γs− (−hgy∗)∗(−γx∗)

))
= sup

y∗∈D+\{0}
inf

{
m ∈ R | sup

γ≥0

(
γs− (−hgy∗)∗(−γx∗)

)
≤ αf (y

∗,m)

}
= sup

y∗∈D+\{0}
sup
γ≥0

inf
{
m ∈ R | γs− (−hgy∗)∗(−γx∗) ≤ αf (y

∗,m)
}
,

where the last equality comes from Lemma 2.3.10(ii). By the conjugation formula, for γ > 0,

we have

(−hgy∗)∗(−γx∗) = sup
x∈X

(〈−γx∗, x〉+ 〈y∗, g(x)〉)

= γ sup
x∈X

(
〈−x∗, x〉+

〈
y∗

γ
, g(x)

〉)
= γ(−hgy∗

γ

)∗(−x∗).

For γ = 0, we have

inf
{
m ∈ R | γs− (−hgy∗)∗(−γx∗) ≤ αf (y

∗,m)
}

= inf
{
m ∈ R | −(−hgy∗)∗(0) ≤ αf (y

∗,m)
}

= α−lf (y∗,−(−hgy∗)∗(0)).
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Therefore, by using the previous two equations and the positive homogeneity of αf , we get

α−lf◦g(x
∗, s)

= sup
y∗∈D+\{0}

sup
γ≥0

inf
{
m ∈ R | γs− (−hgy∗)∗(−γx∗) ≤ αf (y

∗,m)
}

= sup
y∗∈D+\{0}

(
α−lf (y∗,−(−hgy∗)∗(0)) ∨ sup

γ>0
inf

{
m ∈ R | γs− γ(−hgy∗

γ

)∗(−x∗) ≤ αf (y
∗,m)

})
= sup

y∗∈D+\{0}

(
α−lf (y∗,−(−hgy∗)∗(0)) ∨ sup

γ>0
inf

{
m ∈ R | s− (−hgy∗

γ

)∗(−x∗) ≤ αf

(
y∗

γ
,m

)})
= sup

y∗∈D+\{0}
α−lf (y∗,−(−hgy∗)∗(0)) ∨ sup

y∗∈D+\{0},
γ>0

inf

{
m ∈ R | s− (−hgy∗

γ

)∗(−x∗) ≤ αf

(
y∗

γ
,m

)}

= sup
y∗∈D+\{0}

α−lf (y∗,−(−hgy∗)∗(0)) ∨ sup
y∗∈D+\{0}

inf
{
m ∈ R | (s− (−hgy∗)∗(−x∗)) ≤ αf (y

∗,m)
}

= sup
y∗∈D+\{0}

α−lf (y∗,−(−hgy∗)∗(0)) ∨ sup
y∗∈D+\{0}

α−lf

(
y∗, s− (−hgy∗)∗(−x∗)

)
= sup

y∗∈D+\{0}

(
α−lf
(
y∗,−(−hgy∗)∗(0)

)
∨ α−lf

(
y∗, s− (−hgy∗)∗(−x∗)

))
.

By the monotonicity of α−lf , we can also write the last line as

sup
y∗∈D+\{0}

α−lf
(
y∗, (−(−hgy∗)∗(0)) ∨ (s− (−hgy∗)∗(−x∗))

)
,

which completes the proof.

4.3 Quasiconvex composition on a convex set

We turn our attention to the case where the composition is considered on a monotone convex

set K ⊆ X with C ⊆ K, see Corollary 2.3.12, the analogous result for a single function. The

treatment here will be relevant for some applications in Chapter 5.

We work with two functions f : Y → R and g : K → Y . The following results extend

Theorem 4.1.6 and Theorem 4.1.2. Their proofs are given in Section 6.1.

Corollary 4.3.1. Suppose that f is decreasing, lower semicontinuous, and quasiconvex; and

that g is regularly increasing, D-lower demicontinuous (with respect to the relative topology),

and D-naturally quasiconcave. Then, f ◦ g is an decreasing, lower semicontinuous, and
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quasiconvex function. Moreover, for each x∗ ∈ C+ \ {0} and m ∈ R, we have

αf◦g(x
∗,m) = inf

y∗∈D+\{0}
α−hg

y∗
(x∗, αf (y

∗,m)) .

Proposition 4.3.2. Suppose that f is decreasing, lower semicontinuous, and quasiconvex;

and that g is increasing, D-lower demicontinuous (with respect to the relative topology), and

D-naturally quasiconcave. Then, we have

f ◦ g(x) = sup
x∗∈C+\{0}

α−lf◦g (x∗, 〈x∗,−x〉) , x ∈ K, (4.3.1)

and

f ◦ g(x) = sup
x∗∈C+\{0}

sup
y∗∈D+\{0}

α−lf

(
y∗, α−l−hg

y∗
(x∗, 〈x∗,−x〉)

)
, x ∈ K. (4.3.2)

For a more specific case, we have the following proposition.

Proposition 4.3.3. Suppose that f is decreasing, lower semicontinuous, and quasiconvex;

and that g is increasing, D-lower demicontinuous (with respect to the relative topology), and

concave. Then, we have

f ◦ g(x) = sup
x∗∈C+\{0}

sup
y∗∈D+\{0}

α−lf

(
y∗, 〈x∗,−x〉 − (−hgy∗)∗(−x∗)

)
, x ∈ X . (4.3.3)

4.4 Compact cone generators

In this section, we will discuss the existence of compact convex cone generators in some

specific spaces and show that Theorem 4.1.6 is applicable in these spaces. This will justify

the use of our results in the context of systemic risk measures in Section 5.1.

As mentioned in Remark 4.1.4, D+
π is a closed convex generator but it is not always

compact. However, we do not have to restrict ourselves to this generator and can search for

other generators because after guaranteeing the existence of a compact convex cone generator

D̄+, we can still work on D+
π thanks to Equation (4.1.5).
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4.4.1 Finite-dimensional spaces

Let us take Y = Rn with the Euclidean norm ‖·‖, as a natural consequence Y∗ = Rn

with the same norm ‖·‖. Choose a convex cone D and denote the unit ball with B =

{y ∈ Rn : ‖y‖ ≤ 1}. We will show the existence of a compact convex generator for D+ so we

are able to use our main theorem for the case Y = Rn.

Proposition 4.4.1. The set D̄+ := D+∩B is compact and convex, and it is a cone generator

for D+.

Proof. Since D+ and B are closed and convex their intersection will also be closed and

convex. Also, B is compact since it is closed and bounded. By using this fact and D̄+ is a

closed subset of B we have D̄+ is also compact.

Now let us show that D̄+ generates D+. Take an element y∗ ∈ D+ \ {0}. We have
y∗

‖y∗‖ ∈ D
+ since D+ is a cone and

∥∥∥ y∗

‖y∗‖

∥∥∥ = 1 which implies that it is in B and hence in D̄+.

We can write y∗ = ‖y∗‖ y∗

‖y∗‖ where ‖y∗‖ > 0 and y∗

‖y∗‖ ∈ D̄
+; hence, D̄+ is a cone generator

for D+.

4.4.2 Lebesgue spaces

Let (Ω,F ,P) be a probability space, and let p ∈ [1,+∞], n ∈ N. We denote by L0(Rn)

the space of n-dimensional random vectors that are identified up to P-almost sure equality.

We denote by Lp(Rn) the space of all X ∈ L0(Rn) such that ‖X‖p < +∞, where ‖X‖p :=

(E[‖X‖p])1/p for p < +∞ and ‖X‖p := inf{c > 0 | P{‖X‖ ≤ c} = 1} for p = +∞. For

p ∈ {0} ∪ [1,+∞] and a set A ⊆ Rn, we denote by Lp(A) the set of all X ∈ Lp(Rn) such

that P{X ∈ A} = 1.

In this section, we fix p ∈ [1,+∞) and consider the case Y = Lp(Rn), which is equipped

with the norm ‖·‖p and the induced topology. As a consequence, Y∗ = Lq(Rn) with the

norm ‖·‖q and we consider it with weak topology σ(Y∗,Y), where the conjugate exponent

q ∈ (1,+∞] is defined by the relation 1
p

+ 1
q

= 1. Let D ⊆ Y be a closed convex cone and

denote the unit ball in Lq(Rn) by Bn
q = {Y ∗ ∈ Lq(Rn) | ‖Y ∗‖q ≤ 1}. We will show the

existence of a compact convex cone generator for D+ so we are able to use Theorem 4.1.6
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for the case Y = Lp(Rn).

Proposition 4.4.2. The set D̄+ := D+ ∩ Bn
q is a σ(Y∗,Y)-compact convex set and it is a

cone generator for D+.

Proof. Since D+ and Bn
q are closed convex sets, so is their intersection D̄+. Also, Bn

q is

σ(Lq(Rn), Lp(Rn))-compact by Banach-Alaoglu Theorem (Theorem IV.21 in [30]). By using

this fact and that D̄+ is a closed subset of Bq, we conclude that D̄+ is also compact.

Next, we show that D̄+ generates D+. Let Y ∗ ∈ D+ \ {0}. We have Y ∗

‖Y ∗‖q
∈ D+ since

D+ is a cone and
∥∥∥ Y ∗

‖Y ∗‖q

∥∥∥
q

= 1 which implies it is in Bq and hence in D̄+. We can write

Y ∗ = ‖Y ∗‖q
Y ∗

‖Y ∗‖q
, where ‖Y ∗‖q > 0 and Y ∗

‖Y ∗‖q
∈ D̄+. Hence, D̄+ is a cone generator for

D+.

Let us look at the special case n = 1 and take D = Lp(R+) which is the set of all almost

surely positive elements of Lp(R) , then D+ = Lq(R+). Also, we can take π = 1 and get

D+
1
∼= Mq

1(P), the set of all probability measures Q that are absolutely continuous with

respect to P and with Radon-Nikodym derivatives dQ
dP in Lq(R+). Therefore the formula in

Theorem 4.1.6 can be rewritten as

αf◦g(X
∗,m) = inf

Q∈Mq
1(P)

α−hgdQ
dP

(
X∗, αf

(
dQ
dP

,m

))
. (4.4.1)

We can work with any closed convex cone generator after guaranteeing the existence of a

compact convex cone generator since we do not need compactness for the second equation in

Theorem 4.1.6. Therefore, the dual representation in Theorem 4.1.6 can be written in this

way since D+
1 is a closed convex cone generator by Remark 4.1.4.
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Chapter 5

Applications to systemic risk

measures

In this chapter, we will explore the implications of the general theory developed in Chap-

ter 4 for some quasiconvex risk measures for interconnected financial systems. Such risk

measures are referred to as systemic risk measures, which is of recent interest in the financial

mathematics literature. We refer the interested reader to [17], [19], [18], [20].

5.1 Results on general systemic risk measures

Risk measures are used in financial mathematics for calculating capital requirements of

financial positions. There are different theoretical approaches for risk measures, each of

them working with its own set of assumptions. However, the most common elements of a

risk measure are monotonicity and diversification. Monotonicity corresponds to the fact that

if value of an financial asset increases then its risk must decrease. Hence, a risk measure

should be a decreasing function. Diversification means that when we diverse our investment

it should not increase the risk. Some of the literature (e.g. [11]) uses convexity in order to

satisfy this condition but quasiconvexity is more suitable for the concept of diversification.

Also, cash additivity is sometimes used as an assumption for risk measures (e.g. in [10],

[11]). When we are trying to weaken this assumption by cash subadditivity, it is suggested

in [31] that convexity should be replaced with quasiconvexity. Therefore the assumptions in
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our main theorem (Theorem 4.1.6) will not restrict us for the applications in risk measures.

We want to calculate the risk of a financial system so there is also need to define a risk

concept for systems, which are systemic risk measures. In the literature, most of the systemic

risk measures (e.g.[19], [17]) are in the form R(X) = ρ ◦ Λ(X), where ρ is a risk measure

and Λ is the aggregation function. which will be defined at Definition 5.1.1. We want to

save the properties of monotonicity and diversification in this form; therefore, assuming the

quasiconvexity and monotonicity of the aggregation functions is useful. Regularly increasing

property for the aggregation function can be considered as if the system has a significant

positive change then its value changes significantly too. Also the lower semicontinuity as-

sumption is a mild regularity assumption. Hence, our assumptions in the theorems are not

restrictive for the systemic risk measures.

We will work on the spaces X = Lp(Rn) and Y = Lp(R), where p ∈ [1,+∞]. These spaces

are equipped with their norm topologies when p < +∞ and with the weak∗ topologies when

p = +∞. In all cases, we have X ∗ = Lq(Rn) and Y∗ = Lq(R), with their weak topologies,

where q ∈ [1,+∞] is determined by 1
p

+ 1
q

= 1. We denote by Mq
n(P) the set of all vectors

S = (S1, . . . ,Sn), where Si is a probability measure on (Ω,F) that is absolutely continuous

with respect to P and dSi
dP ∈ Lq(R+) for each i ∈ {1, . . . , n}. We take C = Lp(Rn

+) and

D = Lp(R+); hence the dual cones are given by C+ = Lq(Rn
+) and D+ = Lq(R+). With

this choice of D, for the sake of convenience, we will remove D from the terminology; for

instance, we will simply call a function concave if it is D-concave.

Definition 5.1.1. (i) A function ρ : Lp(R)→ R is called a quasiconvex risk measure if ρ

is quasiconvex and decreasing.

(ii) A function Λ: Lp(Rn)→ Lp(R) is called an aggregation function if it is increasing.

(iii) A function R : Lp(Rn)→ R is called a quasiconvex systemic risk measure if

R = ρ ◦ Λ,

where ρ is a quasiconvex risk measure and Λ is an aggregation function.

When we consider the dual representation in Theorem 4.1.2 in the systemic risk measure
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context, as long as it satisfies our assumptions, it reads as

R(X) = ρ ◦ Λ(X) = sup
X∗∈Lq(Rn+)\{0}

sup
Y ∗∈Lq(R+)\{0}

α−lρ

(
Y ∗, α−l−hΛ

Y ∗

(
X∗,−E

[
XTX∗

]))
.

As a generalization of the economic interpretations in [20] for the convex case, we may

interpret the above formula as follows. The aggregation function Λ calculates the effect of

financial institutions on society, and the risk measure ρ calculates the risk of society. In this

dual representation, we first consider the lost of the system which is evaluated under X∗ by

E[−XTX∗] and control the plausibility of X∗ when the condition of society is considered as

Y ∗ via the function α−l−hΛ
Y ∗

. Then we calculate the plausibility of the Y ∗ by the function α−lρ

and take the supremum of them which can be considered as calculating worst case. Now we

will focus on more specific conditions and look for more specific interpretations after passing

to the probabilistic settings.

Note that when ρ is quasiconvex, the systemic risk measure in the form R = ρ ◦ Λ

is a quasiconvex systemic risk measure whether aggregation function is concave or natural

quasiconcave. Therefore, even when ρ is quasiconvex and the aggregation function is concave

we will have dual representations for systemic risk measures which are new in the literature

to the best of our knowledge. Now, we will give some examples for this purpose.

First, we start with quasiconvex risk measures of the form

ρ(Y ) = `−1 (E[` ◦ (−Y )]) , Y ∈ Lp(R),

where p ∈ [1,+∞], and ` : R→ (−∞,∞] is a proper lower semicontinuous convex increasing

function, called a loss function. For simplicity, we assume that ` is differentiable. Such ρ is

called the certainty equivalent associated to loss function `. It is found in [8] that

αρ

(
dQ
dP

,m

)
= EQ

[
h ◦
(
β
dQ
dP

)]
,

where Q ∈ M1(P), h is the right inverse of the derivative `
′
, β = β(Q,m) is the solution of

the equation E
[
` ◦ h ◦ (β dQ

dP )
]

= `+(m) under some integrability and positivity conditions.

Let us provide some specific examples for the loss function ` and recall the penalty func-

tions for the corresponding certainty equivalents, already calculated in ([8], Example 8).
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Later, we will combine these choices of ` to construct systemic risk measures.

Example 5.1.2. (i) (Quadratic loss function) Let us take p = 2, and `(s) = s2/2 + s for

s ≥ −1 and `(s) = −1
2

for s < −1. Then for m ≥ −1 we have αρ
(
dQ
dP ,m

)
= −1 , and

for each Q ∈M2
1(P) and m < −1, we have

αρ

(
dQ
dP

,m

)
= (1 +m)

∥∥∥∥dQdP
∥∥∥∥

2

− 1.

Moreover, we have

α−lρ

(
dQ
dP

, s

)
=

s+ 1∥∥dQ
dP

∥∥
2

− 1

if s > −1 and α−lρ (dQ
dP , s) = −∞ elsewhere.

(ii) (Logarithmic loss function) Let us take p = 1 or p = +∞, and `(s) = − ln(−s) for

s < 0 and `(s) = +∞ for s ≥ 0. Then, for each Q ∈Mq
1(P), we have

αρ

(
dQ
dP

,m

)
= meE[ln( dQ

dP )], m < 0,

and

α−lρ

(
dQ
dP

, s

)
= se−E[ln( dQ

dP )], s < 0.

(iii) (Power loss function) Let us take p = 1 or p = +∞, and fix some γ ∈ (0, 1). Take

`(s) = − (−s)1−γ

1−γ for s ≤ 0 and `(s) = ∞ for s > 0. Then, for each Q ∈ M∞
1 (P), we

have

αρ

(
dQ
dP

,m

)
=

m∥∥dQ
dP

∥∥
γ−1
γ

, m < 0,

and

α−lρ

(
dQ
dP

, s

)
= s

∥∥∥∥dQdP
∥∥∥∥
γ−1
γ

, s < 0.

Here, for Y ∗ ∈ L1(R), we use the notation ‖Y ∗‖a := (E[|Y ∗|a]) 1
a for a < 1 as well,

although ‖·‖a is not a norm in general.

In addition to certainty equivalent, we also revisit the economic index of riskiness as

another example of a quasiconvex risk measure. Based on the loss function `, this risk
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measure is defined by

ρ(Y ) =
1

sup{λ > 0 | E[` ◦ (−λY )] ≤ c0}
,

where c0 ∈ R is fixed. To make this risk measure well-defined, ` is usually assumed to have

the superlinear growth condition lims→∞ `(s)/s = ∞ and p is chosen in accordance with `.

Following the arguments in [8], it can be shown that

αρ

(
dQ
dP

,m

)
= EQ

[
mh ◦

(
mβ

dQ
dP

)]
, Q ∈Mq

1(P),m ∈ R,

where β = β(Q,m) is the solution of the equation E
[
` ◦ h ◦ (mβ dQ

dP )
]

= c0.

The following example is the analogue of Example 5.1.2(ii) for the economic index of

riskiness; see Examples 3 and 9 in [8] for more details.

Example 5.1.3. Let us take p = 1 and c0 > 0, and consider `(s) = − ln(1 − s) for s < 1

and `(s) = +∞ for s ≥ 1. Then, for each Q ∈M∞
1 (P), we have

αρ

(
dQ
dP

,m

)
= m

(
1− exp

(
E
[
ln

(
dQ
dP

)]
− c0

))
,

and

α−lρ

(
dQ
dP

, s

)
=

s

1− exp
(
E
[
ln
(
dQ
dP

)]
− c0

) ,
where exp(x) = ex for x ∈ R.

These examples of risk measures are taken from [8] which works on lower semicontin-

uous, quasiconvex and monotone risk measures which are exactly same assumptions with

Theorem 4.1.2 and Theorem 4.1.6 in our study. Therefore, we can directly use these results.

In many applications, the aggregation function Λ is defined in terms of a deterministic

increasing function Λ̃ : Rn → R via Λ(X) := Λ̃ ◦X, that is,

Λ(X(·))(ω) := Λ̃(X(ω)), ω ∈ Ω, (5.1.1)

for every X ∈ Lp(Rn), which we assume for the rest of this chapter. Here, the implicit

assumption on Λ̃ is that the resulting function Λ is a true aggregation function, that is,

Λ(X) ∈ Lp(R) for every X ∈ Lp(Rn). On the other hand, to ensure lower demicontinuity of
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Λ, we need to impose sufficient regularity on Λ̃. This is done in the following lemma.

Lemma 5.1.4. Let Λ̃ : Rn → R be an increasing function and define Λ by (5.1.1). Suppose

that Λ(X) ∈ Lp(R) for every X ∈ Lp(Rn), where p ∈ [1,+∞].

(i) Suppose that Λ̃ is concave and bounded from above. Then, Λ is concave and lower

demicontinuous.

(ii) Suppose that Λ̃ is linear. Then, Λ is linear and lower demicontinuous.

(iii) Suppose that Λ̃ is regularly increasing with respect to cones Rn
+ and R+. Then, Λ is

regularly increasing.

Proof. The proof is given in Section 6.2.

We revisit some simple examples of the deterministic function Λ̃ from [20]. In each

example, we also calculate the conjugate function Φ given by

Φ̃(x∗) := (−Λ̃)∗(−x∗) = sup
x∈Rn

(
Λ(x)− (x∗)Tx

)
, x∗ ∈ Rn,

for future use. A more sophisticated aggregation function based on a clearing mechanism

will be discussed separately in Section 5.2.

Example 5.1.5. (i) (Total profit-loss model) Take Λ̃(x) =
∑n

i=1 xi, then by ([20],4.1) we

have

Φ̃(x∗) =

0 if x∗ = 1,

∞ else.

Note that the condition that Λ(X) ∈ Lp(R) for every X ∈ Lp(Rn) is satisfied for every

choice of p ∈ [1,+∞].

(ii) (Total loss model) Take Λ̃(x) = −
∑n

i=1 x
−
i , then by ([20],4.2) we have

Φ̃(x∗) =

0 if x∗i ∈ [0, 1] for every i ∈ {1, . . . , n},

∞ else.

As in the previous example, for every choice of p ∈ [1,+∞], we have Λ(X) ∈ Lp(R) for

every X ∈ Lp(Rn) is satisfied.
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(iii) (Exponential aggregation model) Take Λ̃(x) = −
∑n

i=1 e
−xi−1, then by ([20], 4.3) we

have

Φ̃(x∗) =
n∑
i=1

x∗i ln(x∗i ),

where ln(0) := −∞ and 0 ln(0) := 0 for convention. Note that the condition that

Λ(X) ∈ Lp(R) for every X ∈ Lp(Rn) is satisfied for p = +∞. We cannot use The-

orem 4.1.6 since we can not guarantee the existence of a compact cone generator in

Proposition 4.4.2. However, we can still use the dual representation in Theorem 4.1.2.

Thanks to Lemma 5.1.4, in our applications, we can use each of the aggregation functions

in Example 5.1.5.

Assuming the structure for the aggregation function in (5.1.1), we calculate the penalty

function of a systemic risk measure when the underlying aggregation function is concave and

regularly increasing. For convenience, for each X∗ ∈ Lq(Rn), let us define the set

TX∗ := {Y ∗ ∈ Lq(R+) | P(X∗ 6= 0, Y ∗ = 0) = 0} . (5.1.2)

Similar to (5.1.1), we also define

Φ(X∗) := Φ̃ ◦X∗, X∗ ∈ Lq(Rn). (5.1.3)

Proposition 5.1.6. Let Λ̃ : Rn → R be a concave, regularly increasing function that is either

bounded from above or linear. Define Λ by (5.1.1). Suppose that Λ(X) ∈ Lp(R) for every X ∈
Lp(Rn), where p ∈ [1,+∞). Let ρ be a lower semicontinuous quasiconvex risk measure. Let

X∗ ∈ Lq(Rn) and m ∈ R such that the strict sublevel set {X ∈ Lp(Rn) | E [−Y ∗Λ(X)] < m}
is nonempty for every Y ∗ ∈ Lq(R+) \ {0}. Then,

αρ◦Λ(X∗,m) = inf
Y ∗∈TX∗

(
E
[
Y ∗Φ

(
X∗

Y ∗

)
1{Y ∗>0}

]
+ αρ(Y

∗,m)

)
.

Proof. The proof is given in Section 6.2.

Next, we aim to rewrite Proposition 5.1.6 in terms of probability measures. By doing

this, we will be able to provide economic interpretations of the dual representation in view

of model uncertainty. Since D+
1 = {dQ

dP | Q ∈ M
q
1(P)} is a closed convex cone generator
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for D+ = Lq(R+), we can write every Y ∗ ∈ Lq(R+) \ {0} as Y ∗ = λdQ
dP for some λ > 0

and Q ∈ Mq
1(P) by Remark 4.1.4. Similarly every X∗ ∈ C+ = Lq(Rn

+) can be written as

X∗ = w· dS
dP , where w ∈ Rn

+\{0}, S = (S1, . . . ,Sn) ∈Mq
n(P), and w· dS

dP := (w1
dS1

dP , . . . , wn
dSn
dP ).

The interpretation of these dual variables is as follows. In the presence of model uncertainty,

we consider Q as a probability measure that is assigned to an external entity (e.g., society)

and, for each i ∈ {1, . . . , n}, Si is a probability measure that is assigned to the internal entity

i (e.g., a bank in the network) with corresponding weight wi. Also, since we consider X∗

and Y ∗ satisfying the condition P(X∗ 6= 0, Y ∗ = 0) = 0 in Proposition 5.1.6, it follows from

Lemma 6.3 of [20] that wiSi is a finite measure that is absolutely continuous with respect to

Q, and we can write
w·dS
dP
dQ
dP

=
w · dS
dQ

,

where all Radon-Nikodym derivatives are well-defined. Therefore, the formula in Proposi-

tion 5.1.6 can be written as

αρ◦Λ

(
w · dS

dP
,m

)
= inf

λ>0,Q∈Mq
1(P),

wiSi�Q

(
λαρ

(
dQ
dP

,m

)
+ EQ

[
λΦ

(
w · dS
λdQ

)])
. (5.1.4)

We calculate the total penalty of choosing probability measure S and weight w for the

financial institutions by considering all possibilities of society measure Q. It is computed

as summing the penalty of society being in the alternative model Q and the effect of the

financial institutions on the society, so it has as an additive property when we are calculating

the penalty function.

Proposition 5.1.7. Let Λ̃ : Rn → R be a concave, regularly increasing function that is either

bounded from above or linear. Define Λ by (5.1.1). Suppose that Λ(X) ∈ Lp(R,P) for every

X ∈ Lp(Rn), where p ∈ [1,+∞). Let ρ be a lower semicontinuous quasiconvex risk measure.

(i) Suppose that Λ̃ is bounded from above, that is, Φ(0) < +∞. Then, we have

α−lρ◦Λ(X∗, s) = max

{
sup

Y ∗∈Lq+(R)\{0}
α−lρ (Y ∗,−Φ(0)E[Y ∗]) ,

sup
Y ∗∈TX∗

α−lρ

(
Y ∗, s− E

[
Y ∗Φ

(
X∗

Y ∗

)
1{Y ∗>0}

])}
,
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where TX∗ is defined by (5.1.2). In particular, when we change variables to the proba-

bilistic settings, we get

α−lρ◦Λ

(
w · dS

dP
, s

)
= max

{
sup

Q∈Mq
1(P)

α−lρ

(
dQ
dP

,−Φ(0)

)
,

sup
Q∈Mq

1(P),λ>0
wiSi�Q

α−lρ

(
dQ
dP

,
s

λ
− EQ

[
Φ

(
w · dS
λdQ

)])}
.

(ii) Suppose that Λ̃ is unbounded from above, that is, Φ(0) = +∞. Then, we have

α−lρ◦Λ(X∗, s) = sup
Y ∗∈TX∗

α−lρ

(
Y ∗, s− E

[
Y ∗Φ

(
X∗

Y ∗

)
1{Y ∗>0}

])
,

and

α−lρ◦Λ

(
w · dS

dP
, s

)
= sup

Q∈Mq
1(P),λ>0

wiSi�Q

α−lρ

(
dQ
dP

,
s

λ
− EQ

[
Φ

(
w · dS
λdQ

)])
.

Proof. The proof is given in Section 6.2.

In the next proposition, we give a dual representation for quasiconvex systemic risk mea-

sures. Unlike the previous two propositions, we allow for p = +∞ here as we do not rely on

the expression for the penalty function.

Proposition 5.1.8. Let Λ̃ : Rn → R be a concave, increasing function that is either bounded

from above or linear. Define Λ by (5.1.1). Suppose that Λ(X) ∈ Lp(R) for every X ∈ Lp(Rn),

where p ∈ [1,+∞]. Let ρ be a lower semicontinuous quasiconvex risk measure. Then, we

have

R(X) = ρ ◦ Λ(X) = sup
w∈Rn+\{0},S∈M

q
n(P)

Q∈Mq
1(P),wiSi�Q

α−lρ

(
dQ
dP

,−EQ

[
Φ

(
w · dS
dQ

)]
− wTES [X]

)
(5.1.5)

for every X ∈ Lp(Rn).

Proof. The proof is given in Section 6.2.
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Now, we are ready to give the implication of Theorem 4.1.6 and Theorem 4.1.2 by com-

bining Examples 5.1.2 and 5.1.3 with Example 5.1.5. Therefore, we will give examples for

the dual representation of the composition for a quasiconvex function and a concave function

which is new in the literature to the best of our knowledge.

Example 5.1.9. (Total profit-loss model with economic index of riskiness) Take Λ̃(x) =∑n
i=1 xi and p ∈ [1,+∞). By (5.1.4), we have the formula

αρ◦Λ

(
w · dS

dP
,m

)
= inf

λ>0,Q∈Mq
1(P),

wiSi�Q

(
λαρ

(
dQ
dP

,m

)
+ EQ

[
λΦ

(
w · dS
λdQ

)])
.

From the calculation in Example 5.1.5(i), we can see that it is enough to consider only the

case where w·dS
λdP = 1 almost surely. Therefore, we get

αρ◦Λ

(
w · dS

dP
,m

)
=

λαρ
(
dQ
dP

)
if w · dS = λdQ1 for some Q ∈Mq

1(P), λ > 0,

∞ else.

In order to give a more specific example, let us take ρ as the economic index of riskiness in

Example 5.1.3 corresponding to the logarithmic loss function with p = 1. In this case, we

obtain

αρ◦Λ

(
w · dS

dP
,m

)
= mλ

(
1− exp

(
E
[
ln

(
dQ
dP

)]
− c0

))
if w · dS = λdQ1 for some Q ∈M∞

1 (P) and λ > 0, and αρ◦Λ(w · dS
dP ,m) = +∞ otherwise.

Example 5.1.10. (i) Let Λ̃(x) =
∑n

i=1 xi be the aggregation function in Example 5.1.5(i)

and p ∈ [1,+∞]. Then, by Proposition 5.1.8 and Example 5.1.5,

ρ ◦ Λ(X) = sup
Q∈Mq

1(P)

α−lρ

(
dQ
dP

,−
n∑
i=1

EQ[Xi]

)
.

In particular, if we take ρ as the certainty equivalent corresponding to the power loss

function (Example 5.1.2(iii)) and p = 1, then by Proposition 5.1.8 and Example 5.1.2,

we get

ρ ◦ Λ(X) = sup
Q∈M∞1 (P)

−
∥∥∥∥dQdP

∥∥∥∥
γ−1
γ

n∑
i=1

EQ[Xi].

(ii) Let us take the total loss model in Example 5.1.5 and p ∈ [1,+∞]. Then we have the
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following dual representation by Proposition 5.1.8

R(X) = ρ ◦ Λ(X) = sup
w∈Rn+\{0},S∈M

q
n(P)

widSi
dP ≤1,

Q∈Mq
1(P),wiSi�Q

α−lρ

(
dQ
dP

,−wTES [X]

)
. (5.1.6)

As a more specific example, take p = 2 and consider the quadratic loss function in

Example 5.1.2(i), which gives that

R(X) = ρ ◦ Λ(X) = sup
w∈Rn+\{0},S∈M2

n(P)
widSi
dP ≤1,wTES[X]<1

Q∈M2
1(P),wiSi�Q

(
−wTES [X] + 1∥∥dQ

dP

∥∥
2

− 1

)
(5.1.7)

(iii) Let us suppose that ρ is the certainty equivalent corresponding to the logarithmic

loss function in Example 5.1.2(ii) with p = +∞. Then, by Proposition 5.1.8 and

Example 5.1.2, we have

ρ ◦ Λ(X) = sup
w∈Rn+\{0},S∈M1

n(P)

Q∈M1
1(P),wiSi�Q

−
EQ

[
Φ
(
w·dS
dQ

)]
+ wTES [X]

eE[ln( dQdP )]
. (5.1.8)

In particular, let us assume that Λ̃ is the exponential aggregation function in Exam-

ple 5.1.3(iii). Then, (5.1.8) simplifies as

ρ ◦ Λ(X) = sup
w∈Rn+\{0},S∈M1

n(P)

Q∈M1
1(P),wiSi�Q

−

∑n
i=1

(
EQ

[
widSi
dQ ln

(
widSi
dQ

)]
+ wiESi [Xi]

)
eE[ln( dQdP )]

.

By looking at the Equation (5.1.8), we can make some interpretations. We are calculating

the effect of X on the financial institutions by ES [X] and arrange their importance level by

changing the weights w. We calculate some concept of divergence of the system model S to

the alternative model of society Q by EQ[Φ(w·dS
dQ )]. Hence if we also consider the minus sign,

in the numerator we are calculating the risk of choosing the weights w and the condition of

financial institutions S when we are in the alternative model Q for the society. Then, we

should look for to what extend this calculation under this alternative model has impact on

us. Therefore, if an alternative model is more realistic which means if it is closer to the actual
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probability measure P, then it should affect us more. The denominator eE[ln( dQ
dP )] calculates

the distance of alternative model to our real probability measure P so the denominator

handles the adjustment issues. Briefly, if an alternative model Q is more realistic than

the denominator will be a small number, therefore the calculation under this model in the

numerator will have more impact on our risk measure. By taking the supremum over all

models, weights and society measures we are looking for the worst case in order to calculate

our systemic risk measure. It should also be noted that our interpretation is valid for the other

risk functions in Examples 5.1.2 and 5.1.3 since we can look from the same perspective, the

denominator is always a method for calculating the distance between the alternative model

Q and the real model P and the numerator is somehow risk under the this alternative model.

5.2 Eisenberg-Noe model

In the real-world applications, our aggregation function might not be defined on the whole

space but rather a smaller subset. In this section, we will discuss the Eisenberg-Noe clearing

model for which the aggregation function is of the form Λ: Lp(Rn
+) → Lp(R) induced by

a deterministic function Λ̃ : Rn
+ → R via (5.1.1). Before describing this model in detail, as

a preparation, we first prove a slightly different version of Proposition 5.1.6 using the cone

Lp(Rn
+). In this section, we will define Φ via (5.1.3), where

Φ̃(x∗) = sup
x∈Rn+

(Λ(x)− (x∗)Tx), x∗ ∈ Rn.

Proposition 5.2.1. Let ρ : Lp(R)→ R be a lower semicontinuous, quasiconvex risk measure;

and Λ̃ : Rn
+ → R a concave, regularly increasing function that is bounded from above. More-

over, suppose that the strict sublevel set
{
X ∈ Lp(Rn

+) | E [−Y ∗Λ(X)] < m
}

is nonempty for

every Y ∗ ∈ Lq(R+) \ {0}. Then, for every X∗ ∈ Lq(Rn
+) and m ∈ R,

αρ◦Λ(X∗,m) = 0 ∧ inf
Y ∗∈Lq(R++)

(
αρ (Y ∗,m) + E

[
Y ∗Φ

(
X∗

Y ∗

)])

Proof. The proof is given in Section 6.2.

Proposition 5.2.2. Let ρ : Lp(R)→ R be a lower semicontinuous, quasiconvex risk measure,

and Λ̃ : Rn → R a concave, increasing function that is either bounded from above or linear.
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Suppose that Λ(X) ∈ Lp(R) for every X ∈ Lp(Rn). Then for every X ∈ Lp+(Rn), we have

ρ ◦ Λ(X) = sup
X∗∈Lq(Rn+)\{0}

sup
Y ∗∈Lq(R++)

α−lρ

(
Y ∗,−E

[
(X∗)TX + Y ∗Φ

(
X∗

Y ∗

)])
.

Proof. The proof is given in Section 6.2.

As in Section 5.1, we may switch to probability measures by writing X∗ = w · dS
dP and

Y ∗ = λdQ
dP , where w ∈ Rn

+ \ {0}, λ > 0, Q ∈Mq
1(P), and S ∈Mq

n(P). Again, by [20, Lemma

6.3], we have wiSi � Q if Y ∗ ∈ Lq(R++,P). By using the same arguments in the proof of

Proposition 5.1.7, we will have

ρ ◦ Λ(X) = sup
w∈Rn+\{0},S∈M

q
n(P)

Q∈Mq
1(P),wiSi�Q

α−lρ

(
dQ
dP

,−EQ

[
Φ

(
w · dS
dQ

)]
− wTES [X]

)
. (5.2.1)

Next, we review the clearing model in [21], which takes into account the liabilities between

the members of the financial network, hence the structure of the network. In this model,

financial institutions are considered as nodes and their liabilities are considered as arcs in

a graph. More precisely, let N = {0, 1, . . . , n} denote the nodes, where nodes 1, . . . , n

typically represent the banks and special node 0 represents society. For each i, j ∈ N , let

`ij ≥ 0 denote the nominal liability of member i to member j. Naturally, we assume no

self-liabilities, that is, `ii = 0 for each i ∈ N ; and society has no liabilities to banks, that is,

`0i = 0 for every i ∈ N . We also assume that every bank has nonzero liability to society,

that is, `i0 > 0 for every i ∈ N \ {0}. Then, the relative liability of member i to member j

is defined by

aij :=
`ij
p̄i
,

where p̄i :=
∑n

j=0 `ij is the total liability of member i. Finally, let x ∈ Rn
+ denote a possible

realization of the uncertain value of the assets of the banks. A clearing payment vector

p(x) ∈ Rn is defined as a solution of the following fixed point problem:

pi(x) = min

{
p̄i,

n∑
j=1

ajipj(x)

}
for i ∈ N \ {0}.

Clearly, every clearing payment vector p = p(x) is a feasible solution for the following linear
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programming problem.

max
∑n

i=1 ai0pi

s.t. pi ≤ xi +
∑n

j=1 ajipj for i = 1, . . . , n,

pi ∈ [0, p̄i] for i = 1, . . . , n.

(5.2.2)

It is shown in Lemma 4 of [21] that every optimal solution of this problem is a clearing

payment vector for our system. In addition to this, it is shown in [21] that for any x ∈ Rn
+

the above linear problem is feasible, and hence it has an optimal solution. Denote the

optimal value of this problem by Λ̃(x). It should be noted that Λ̃(x) ∈ R+ since ai0 > 0

by definition and pi ∈ [0, p̄i]. Λ̃ calculates the effect of the realized values of the assets on

society. Therefore, Λ̃ can be considered as an aggregation function. Let us take D = Lp(R+)

and D+ = Lq(R+), then Λ̃ is concave and increasing as it is stated in Sect. 4.4 of [20]. It is

bounded by
∑n

i=1 ai0p̄i so we can use Lemma 5.1.4.

Let us calculate the corresponding conjugate function: for every x∗ ∈ Rn
+, using (5.2.2),

we have

Φ̃(x∗) = sup
x∈Rn+

(
−xTx∗ + Λ̃(x)

)

= sup
0≤p≤p̄

 n∑
i=1

ai0pi − inf
x≥0

x≥p−ATp

n∑
i=1

x∗ixi


= sup

0≤p≤p̄

n∑
i=1

(
ai0pi − (x∗i )

(
pi −

n∑
j=1

ajipj

)+)
.

Then, by applying Proposition 5.2.2, we have

ρ ◦ Λ(X) = sup
X∗∈Lq(Rn+)\{0}
Y ∗∈Lq(R++)

α−lρ

(
Y ∗,−E

[
XTX∗ + Y ∗Φ

(
X∗

Y ∗

)])
.

We can pass to the probabilistic setting by using (5.2.1) as follows:

ρ ◦ Λ(X) = sup
w∈Rn+\{0},S∈M

q
n(P)

Q∈Mq
1(P),wiSi�Q

α−lρ

(
dQ
dP

,−EQ

[
Φ

(
w · dS

dQ

)]
− wTES [X]

)
.
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As a more specific example, if we use the certainty equivalent that corresponds to the loga-

rithmic loss function (see Example 5.1.2(ii)) for the case p = 1, then the dual representation

simplifies as

ρ ◦ Λ(X) = sup
w∈Rn+\{0},S∈M∞n (P)

Q∈M∞1 (P),wiSi�Q

−EQ

[
Φ
(
w · dS

dQ

)]
− wTES [X]

eE[ln( dQdP )]
. (5.2.3)

In order to interpret (5.2.3), we first look at the explicit expression for Φ with the help of

Theorem 14.60 in [32]:

EQ

[
Φ

(
w · dS

dQ

)]
= EQ

[
sup

0≤p≤p̄

n∑
i=1

(
ai0pi − wi

dSi
dQ

(
pi −

n∑
j=1

ajipj

)+)]

= sup
P∈L1([0,p̄])

n∑
i=1

EQ

[
ai0Pi − wi

dSi
dQ

(
Pi −

n∑
j=1

ajiPj

)+
]
.

Consider bank i ∈ {1, . . . , n}. The term ai0Pi represents the gain of society that comes from

bank i after clearing, and (Pi −
∑n

j=1 ajiPj)
+ corresponds to the net gain of the bank i,

which is then multiplied by the weight wi
dSi
dQ of bank i relative to society. Thus, we obtain

the “relative net gain” of society by calculating the difference between the gain of society

and weighted net gain of banks after the clearing. Observe that if wi
dSi
dQ is small, then the

net gain of bank i will have less negative impact on the relative net gain of society. We are

calculating the supremum over the clearing vectors so we are trying to maximize the relative

net gain of the society.

To interpret the dual representation in (5.2.3), we are calculating the effect of a random

shock on the system with weights by −wTES[X] and sum it with the “relative net loss”

of society by −EQ[Φ(w · dS
dQ)]. In the denominator, as in the previous case (5.1.8), we are

calculating the distance between the probability measure Q of the society and the actual

probability measure P. When the incompatibility between the society and system gets

bigger which means the distance between the probability measure S of the system and

the probability measure Q of the society increases, then the relative net loss of society will

increase too. In the denominator, we are looking at the plausibility of the probability measure

of the society. If the probability measure Q of the society is more realistic which means if it

is closer to the real probability measure P, the denominator will be small so the effect of the
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numerator will be much more in more realistic cases. Briefly, if the incompatibility between

the system and society is high then relative loss will be higher in this case, and the model for

the society is more realistic this will be considered more seriously in our dual representation

and we will calculate the worst-case by taking the supremum.
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Chapter 6

Appendix

In this chapter, we will give some definitions and propositions which will lead us to the proof

our important results in Chapter 4 and Chapter 6.

6.1 Proof of some results in Chapter 4

The main purpose of this section is to prove Theorem 4.1.6. As a preparation for the proof,

we will establish a sequence of technical results. In particular, these results will ensure that

we may apply the minimax inequality in [25].

We work in the setting of Chapter 4: we consider two functions f : Y → R and g : X → Y .

We also suppose that Assumption 4.1.5 holds, that is, D̄+ is a convex and compact cone

generator for D+. Given m ∈ R and y∗ ∈ D+, let us define the sets

Amy∗ := {x ∈ X | 〈y∗,−g(x)〉 ≤ αf (y
∗,m)} ,

Ãmy∗ := {x ∈ X | 〈y∗,−g(x)〉 < αf (y
∗,m)} .

Clearly, Ãmy∗ ⊆ Amy∗ . Also, observe that Amy∗ is actually the sublevel set of −hgy∗ ; see (3.0.1).

Therefore, when the function g is D-naturally quasiconcave, increasing and D-lower demicon-

tinuous, the set Amy∗ is a closed, convex and monotone set by Propositions 3.0.2, 3.0.7, 3.0.12.

We give the precise relationship between the sets Ãmy∗ and Amy∗ in the following proposition.
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Proposition 6.1.1. Suppose that Assumption 3.0.9 holds. In addition, suppose that g : X →
Y is D-naturally quasiconcave, regularly increasing and D-lower demicontinuous; and let

m ∈ R, y∗ ∈ D+ \ {0}. Then,

Amy∗ = cl Ãmy∗ = cl conv Ãmy∗ . (6.1.1)

Proof. If Amy∗ = ∅, then the result is obvious. Let us assume that Amy∗ 6= ∅ and prove that

Amy∗ is the closure of Ãmy∗ . Since Ãmy∗ ⊆ Amy∗ and Amy∗ is closed, we have cl Ãmy∗ ⊆ Amy∗ .

Now let us take x ∈ Amy∗ , and fix some c ∈ C# and λ > 0. It is clear that λc ∈ C# since

C# is a cone. Moreover, since g is regularly increasing, we have g(x + λc)− g(x) ∈ D#. In

particular, since y∗ ∈ D+ \ {0}, we have 〈y∗, g(x+ λc)− g(x)〉 > 0. Therefore,

〈y∗,−g(x+ λc)〉 = 〈y∗,−g(x)〉 − 〈y∗, g(x+ λc)− g(x)〉

≤ αf (y
∗,m)− 〈y∗, g(x+ λc)− g(x)〉 < αf (y

∗,m).

Hence, x + λc ∈ Ãmy∗ . The net (x + λc)λ>0 ⊆ Ãmy∗ converges to x as λ → 0, which implies

that x ∈ cl Ãmy∗ . Hence, Amy∗ ⊆ cl Ãmy∗ and the first equality in (6.1.1).

Finally, since Amy∗ is convex, we have

Amy∗ = conv
(

cl Ãmy∗
)
⊆ cl

(
conv Ãmy∗

)
⊆ Amy∗ .

Hence, the second equality in (6.1.1) follows as well.

Remark 6.1.2. Let m ∈ R, y∗ ∈ D+ \ {0}. Hence, we may write y∗ = λȳ∗ for some λ > 0

and ȳ∗ ∈ D̄+. Then, it is easy to see that

x ∈ Amy∗ ⇔ x ∈ Amȳ∗

for each x ∈ X . Hence, Amy∗ = Amȳ∗ .

Next, for each m ∈ R and x∗ ∈ C+, we define two auxiliary functions Km
x∗ , K̃

m
x∗ : X×D̄+ →

R by

Km
x∗(x, y

∗) = 〈x∗,−x〉 − IAm
y∗

(x), K̃m
x∗(x, y

∗) = 〈x∗,−x〉 − IÃm
y∗

(x),

for each (x, y∗) ∈ X × D̄+. The next proposition shows the relation between these two
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functions.

Proposition 6.1.3. Let m ∈ R and x∗ ∈ C+. Suppose that g is D-naturally quasiconcave,

regularly increasing and D-lower demicontinuous. Then, for each y∗ ∈ D̄+, we have

sup
x∈X

K̃m
x∗(x, y

∗) = sup
x∈X

Km
x∗(x, y

∗).

Proof. Let y∗ ∈ D̄+. By definition, we have

sup
x∈X

K̃m
x∗(x, y

∗) = sup
x∈X

(
〈−x∗, x〉 − IÃm

y∗
(x)
)

= I∗
Ãm
y∗

(−x∗). (6.1.2)

Moreover, by Lemma 2.3.1 and Proposition 6.1.1, we have

I∗
Ãm
y∗

(−x∗) = sup
x∈Am

y∗

〈−x∗, x〉 .

Similar to (6.1.2), we also have

sup
x∈X

Km
x∗(x, y

∗) = sup
x∈Am

y∗

〈−x∗, x〉 .

Combining these, we obtain the desired result.

We will use a minimax theorem in the proof of Theorem 4.1.6 so we need to show the

properties of these functions and the connection of these functions to our problem. Lets

start with the properties of these functions.

Proposition 6.1.4. Let m ∈ R and x∗ ∈ C+. Suppose that g is D-naturally quasiconcave.

The following properties hold.

(i) Suppose further that g is D-lower demicontinuous. Then, Km
x∗ is concave and upper

semicontinuous in its first argument, and quasiconvex in its second argument.

(ii) The function K̃m
x∗ is concave in its first argument, and quasiconvex and lower semicon-

tinuous in its second argument.

Proof. We prove (i) first. Let y∗ ∈ D̄+. Since Amy∗ is a closed convex set, IAm
y∗

is a lower
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semicontinuous convex function. Hence, x 7→ Km
x∗(x, y

∗) is an upper semicontinuous concave

function.

Next, let us fix x ∈ X . We claim that y∗ 7→ IAm
y∗

(x) is a quasiconvex function. Indeed,

let y∗1, y
∗
2 ∈ D̄+ and λ ∈ [0, 1]. Since D̄+ is convex, λy∗1 + (1 − λ)y∗2 ∈ D+

cg. If x ∈ Amy∗1 or

x ∈ Amy∗2 , then we have

min
{
IAm

y∗1
(x), IAm

y∗2
(x)
}

= 0 ≤ IAm
λy∗1+(1−λ)y∗2

(x)

by the definiton of indicator function. On the other hand, suppose that x /∈ Amy∗1 and x /∈ Amy∗2 .

Then, 〈y∗1,−g(x)〉 > αf (y
∗
1,m) and 〈y∗2,−g(x)〉 > αf (y

∗
2,m). Hence,

〈λy∗1 + (1− λ)y∗2,−g(x)〉 > λαf (y
∗
1,m) + (1− λ)αf (y

∗
2,m)

= λ sup
y∈Sfm

〈y∗1,−y〉+ (1− λ) sup
y∈Sfm

〈y∗2,−y〉

≥ sup
y∈Sfm

〈λy∗1 + (1− λ)y∗2,−y〉 = αf (λy
∗
1 + (1− λ)y∗2,m).

Therefore, x /∈ Amλy∗1+(1−λ)y∗2
so that

min
{
IAm

y∗1
(x), IAm

y∗2
(x)
}
≤ +∞ = IAm

λy∗1+(1−λ)y∗2
(x).

It follows that y∗ 7→ IAm
y∗

(x) is quasiconvex, hence so is y∗ 7→ Km
x∗(x, y

∗).

Next, we prove (ii). Let y∗ ∈ D̄+. We claim that Ãmy∗ is a convex set. Indeed, let

x1, x2 ∈ Ãmy∗ and λ ∈ [0, 1]. Since −hgy∗ is quasiconvex, we have

−hgy∗(λx1 + (1− λ)x2) ≤ max
{
− hgy∗(x1),−hgy∗(x2)

}
< αf (y

∗,m),

which implies that λx1 + (1− λ)x2 ∈ Ãmy∗ . Hence, the claim follows. It follows that IÃm
y∗

is a

convex function and x 7→ K̃m
x∗(x, y

∗) is a concave function.

Let us fix x ∈ X . We show that y∗ 7→ IÃm
y∗

(x) is quasiconvex. Let y∗1, y
∗
2 ∈ D̄+ and

λ ∈ [0, 1]. Since D̄+ is convex λy∗1 + (1− λ)y∗2 ∈ D̄+. If x ∈ Ãmy∗1 or x ∈ Ãmy∗2 , then we have

min
{
IÃm

y∗1
(x), IÃm

y∗2
(x)
}

= 0 ≤ IÃm
λy∗1+(1−λ)y∗2

(x).
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Suppose that x /∈ Ãmy∗1 and x /∈ Ãmy∗2 . Hence, 〈y∗1,−g(x)〉 ≥ αf (y
∗
1,m), 〈y∗2,−g(x)〉 ≥ αf (y

∗
2,m),

and

〈λy∗1 + (1− λ)y∗2,−g(x)〉 ≥ λαf (y
∗
1,m) + (1− λ)αf (y

∗
2,m)

= λ sup
y∈Sfm

〈y∗1,−y〉+ (1− λ) sup
y∈Sfm

〈y∗2,−y〉

≥ sup
y∈Sfm

〈λy∗1 + (1− λ)y∗2,−y〉 = αf (λy
∗
1 + (1− λ)y∗2,m),

which implies x /∈ Ãmλy∗1+(1−λ)y∗2
. Hence,

min
{
IÃm

y∗1
(x), IÃm

y∗2
(x)
}
≤ +∞ = IÃm

λy∗1+(1−λ)y∗2
(x),

which completes the proof of quasiconvexity. It follows that y∗ 7→ K̃m
x∗(x, y

∗) is quasiconvex.

Finally, to prove lower semicontinuity, let us define the set

Em
x =

{
y∗ ∈ D̄+ | 〈y∗,−g(x)〉 < αf (y

∗,m)
}
.

Note that

Em
x =

{
y∗ ∈ D̄+ | 〈y∗,−g(x)〉 < sup

y∈Sfm

〈y∗,−y〉
}

=
{
y∗ ∈ D̄+ | 0 < sup

y∈Sfm

〈y∗,−y + g(x)〉
}
.

Since the supremum of a family of affine functions is lower semicontinuous, it follows that

Em
x is open. On the other hand, for each y∗ ∈ D̄+, it is clear that y∗ ∈ Em

x if and only if

x ∈ Ãmy∗ , that is, IÃm
y∗

(x) = IEmx (y∗). So we actually have

K̃m
x∗(x, y

∗) = 〈x∗,−x〉 − IÃm
y∗

(x) = 〈x∗,−x〉 − IEmx (y∗). (6.1.3)

Since Em
x is open, the function IEmx is upper semicontinuous. By (6.1.3), y∗ 7→ K̃m

x∗(x, y
∗) is

lower semicontinuous.

Now, we will show the connection of these functions to the our problem.

Proposition 6.1.5. Suppose that f is decreasing, lower semicontinuous and quasicon-

vex, and that g is D-naturally quasiconcave and D-lower demicontinuous. Then, for each
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(x∗,m) ∈ C+ × R,

αf◦g(x
∗,m) = sup

x∈X
inf

y∗∈D̄+
Km
x∗(x, y

∗).

Proof. Let (x∗,m) ∈ C+×R. Since f is decreasing, lower semicontinuous and quasiconvex,

by Remarks 2.3.8 and 6.1.2, we have

αf◦g(x
∗,m) = sup

x∈Sf◦gm

〈x∗,−x〉 = sup{〈x∗,−x〉 | g(x) ∈ Sfm, x ∈ X}

= sup
x∈X

{
〈x∗,−x〉 | ∀y∗ ∈ D+ \ {0} : 〈y∗,−g(x)〉 ≤ αf (y

∗,m)
}

= sup
x∈X

{
〈x∗,−x〉 | ∀y∗ ∈ D̄+ : 〈y∗,−g(x)〉 ≤ αf (y

∗,m)
}

= sup
x∈Bm

〈x∗,−x〉 ,

where

Bm :=
⋂

y∗∈D̄+

Amy∗ .

Hence,

sup
x∈Bm

〈x∗,−x〉 = sup
x∈X

(〈x∗,−x〉 − IBm(x)) = sup
x∈X

inf
y∗∈D̄+

(〈x∗,−x〉−IAm
y∗

(x)) = sup
x∈X

inf
y∗∈D̄+

Km
x∗(x, y

∗).

Therefore, the result follows.

Proposition 6.1.6. Let (x∗,m) ∈ C+ × R. Then, we have

inf
y∗∈D+\{0}

α−hg
y∗

(x∗, αf (y
∗,m)) = inf

y∗∈D̄+
α−hg

y∗
(x∗, αf (y

∗,m)) = inf
y∗∈D̄+

sup
x∈X

Km
x∗(x, y

∗). (6.1.4)

Proof. Let ȳ∗ ∈ D̄+. Clearly, we have

sup
x∈X

Km
x∗(x, ȳ

∗) = sup
x∈X

(〈x∗,−x〉 − IAm
ȳ∗

(x)) = sup
x∈Am

ȳ∗

〈x∗,−x〉 .

Hence,

inf
ȳ∗∈D̄+\{0}

α−hg
ȳ∗

(x∗, αf (ȳ
∗,m)) = inf

ȳ∗∈D+\{0}
sup
x∈X
{〈x∗,−x〉 | −hgȳ∗(x) ≤ αf (ȳ

∗,m)}

= inf
ȳ∗∈D+\{0}

sup
x∈X
{〈x∗,−x〉 | 〈ȳ∗,−g(x)〉 ≤ αf (ȳ

∗,m)}

= inf
ȳ∗∈D+\{0}

sup
x∈Am

ȳ∗

〈x∗,−x〉 = inf
ȳ∗∈D+\{0}

sup
x∈X

Km
x∗(x, ȳ

∗),
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which completes the proof of the second equality in (6.1.4). On the other hand, given

y∗ ∈ D+ \ {0}, we may write y∗ = λȳ∗ for some λ > 0 and ȳ∗ ∈ D̄+, and we have

α−hg
y∗

(x∗, αf (y
∗,m)) = sup

x∈Am
y∗

〈x∗,−x〉 = sup
x∈Am

ȳ∗

〈x∗,−x〉 = α−hg
ȳ∗

(x∗, αf (ȳ
∗,m))

by Remark 6.1.2. Hence, the first equality in (6.1.4) follows.

From this point on, we work under Assumption 4.1.5, that is, we assume that D̄+ is

compact while D+
π is not necessarily compact. In particular, Proposition 6.1.6 can be applied

to both. With the tools developed above, we are ready to prove the main theorem of the

paper. For the completeness of this thesis, we give the statements of the minimax inequality

in [25] and the well-known minimax equality in [24].

Theorem 6.1.7 (Sion 1958). Let U ,V be nonempty convex sets of two topological vector

spaces, and consider a function f : U × V → R. Suppose that f is quasiconcave and upper

semicontinuous in its first argument, and quasiconvex and lower semicontinuous in its second

argument. Moreover, suppose that one of U ,V is a compact set. Then, we have

inf
u∈U

sup
v∈V

f(u, v) = sup
v∈V

inf
u∈U

f(u, v).

Since the lower semicontinuity of the function Km
x∗ is missing, it seems that we are not able

to use Sion’s minimax theorem in our setting. However, the following minimax inequality

will be useful in our proof.

Theorem 6.1.8 (Liu 1978). In the setting of Theorem 6.1.7, consider two functions f, f̃ : U×
V → R satisfying the following conditions:

• f is upper semicontinuous in its first argument and quasiconvex in its second argument,

• f̃ is quasiconcave in its first argument and lower semicontinuous in its second argu-

ment,

• f̃(u, v) ≤ f(u, v) for all u ∈ U and v ∈ V,

• U is compact.
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Then, we have

inf
u∈U

sup
v∈V

f̃(u, v) ≤ sup
v∈V

inf
u∈U

f(u, v).

With the help of the above minimax inequality, we are ready to complete the proof of

Theorem 4.1.6.

Proof of Theorem 4.1.6. Let x∗ ∈ C+ \ {0} and m ∈ R. For each y∗ ∈ D̄+, since

Ãmy∗ ⊆ Amy∗ , we have IÃm
y∗

(x) ≥ IAm
y∗

(x) and hence

K̃m
x∗(x, y

∗) ≤ Km
x∗(x, y

∗) (6.1.5)

for every x ∈ X . By Proposition 6.1.4, Km
x∗ is upper semicontinuous and concave in its

first variable, and quasiconvex in its second variable; K̃m
x∗ is concave in its first variable,

and quasiconvex and lower semicontinuous in its second variable. These properties, together

with (6.1.5), and the convexity and compactness of D̄+, are sufficient to apply the minimax

inequality of [25] (see also Theorem 3.1 in [27] and Corollary 11 in [26]) to the functions

Km
x∗ , K̃

m
x∗ . Consequently, we obtain

inf
y∗∈D̄+

sup
x∈X

K̃m
x∗(x, y

∗) ≤ sup
x∈X

inf
y∗∈D̄+

Km
x∗(x, y

∗). (6.1.6)

By Proposition 6.1.3, we have

sup
x∈X

K̃m
x∗(x, y

∗) = sup
x∈X

Km
x∗(x, y

∗).

Hence, (6.1.6) yields

inf
y∗∈D̄+

sup
x∈X

Km
x∗(x, y

∗) ≤ sup
x∈X

inf
y∗∈D̄+

Km
x∗(x, y

∗).

However, the reverse inequality already holds by weak duality. Therefore, we get

inf
y∗∈D̄+

sup
x∈X

Km
x∗(x, y

∗) = sup
x∈X

inf
y∗∈D̄+

Km
x∗(x, y

∗).
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Finally, by Propositions 6.1.5 and 6.1.6, we have

αf◦g(x
∗,m) = sup

x∈X
inf

y∗∈D̄+
Km
x∗(x, y

∗) = inf
y∗∈D̄+

sup
x∈X

Km
x∗(x, y

∗)

= inf
y∗∈D+\{0}

α−hg
y∗

(x∗, αf (y
∗,m)) = inf

y∗∈D̄+
α−hg

y∗
(x∗, αf (y

∗,m)).

Finally, by Remark 4.1.4 and Proposition 6.1.6 applied to D+
π , we have

αf◦g(x
∗,m) = inf

y∗π∈D
+
π

α−hg
y∗π

(x∗, αf (y∗π,m)) ,

which completes the proof.

Proof of Corollary 4.1.8. Let x∗ ∈ C+ \ {0} and s ∈ R. Following the definition of left

inverse and using Theorem 4.1.6, we have

α−lf◦g(x
∗, s) = inf {m ∈ R | αf◦g(x∗,m) ≥ s}

= inf

{
m ∈ R | inf

y∗∈D+\{0}
α−hg

y∗
(x∗, αf (y

∗,m)) ≥ s

}
= inf

{
m ∈ R | ∀y∗ ∈ D+ \ {0} : α−hg

y∗
(x∗, αf (y

∗,m)) ≥ s
}
.

We claim that the following minimax equality holds:

inf
{
m ∈ R | ∀y∗ ∈ D+ \ {0} : α−hg

y∗
(x∗, αf (y

∗,m)) ≥ s
}

= sup
y∗∈D+\{0}

inf
{
m ∈ R | α−hg

y∗
(x∗, αf (y

∗,m)) ≥ s
}
. (6.1.7)

The ≥ part of this inequality holds as a weak duality property. Next, we show the ≤ part.

To get a contradiction, suppose that there exists m̄ ∈ R such that

inf
{
m ∈ R | ∀y∗ ∈ D+ \ {0} : α−hg

y∗
(x∗, αf (y

∗,m)) ≥ s
}

> m̄ > sup
y∗∈D+\{0}

inf
{
m ∈ R | α−hg

y∗
(x∗, αf (y

∗,m)) ≥ s
}
. (6.1.8)

The first inequality in (6.1.8) implies the existence of ȳ∗ ∈ D+ \ {0} satisfying

α−hg
ȳ∗

(x∗, αf (ȳ
∗, m̄)) < s. (6.1.9)
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On the other hand, the second inequality in (6.1.8) implies that

m̄ > inf
{
m ∈ R | α−hg

ȳ∗
(x∗, αf (ȳ

∗,m)) ≥ s
}
.

Hence, there exists mȳ∗ < m̄ such that

α−hg
ȳ∗

(x∗, αf (ȳ
∗,mȳ∗)) ≥ s. (6.1.10)

Since αf is increasing in the second argument by Remark 2.3.5, we have αf (ȳ
∗, m̄) ≥

αf (ȳ
∗,mȳ∗). Hence, by (6.1.10), the monotonicity of α−hg

ȳ∗
, and (6.1.9), we obtain

s ≤ α−hg
ȳ∗

(x∗, αf (ȳ
∗,mȳ∗)) ≤ α−hg

ȳ∗
(x∗, αf (ȳ

∗, m̄)) < s,

which is a contradiction. Hence, (6.1.7) follows so that

α−lf◦g(x
∗, s) = sup

y∗∈D+\{0}
inf
{
m ∈ R | α−hg

y∗
(x∗, αf (y

∗,m)) ≥ s
}
. (6.1.11)

Let y∗ ∈ D+ \ {0}. We claim that

inf
{
m ∈ R | α−hg

y∗
(x∗, αf (y

∗,m)) ≥ s
}

= inf
{
m ∈ R | αf (y∗,m) ≥ α−l−hg

y∗
(x∗, s)

}
.

(6.1.12)

For each m ∈ R, by the definition of left inverse,

α−hg
y∗

(x∗, αf (y
∗,m)) ≥ s ⇒ αf (y

∗,m) ≥ α−l−hg
y∗

(x∗, s).

Hence, the ≥ part of (6.1.12) follows. Next, we prove that ≤ part. To get a contradiction,

suppose that

inf
{
m ∈ R | α−hg

y∗
(x∗, αf (y

∗,m)) ≥ s
}
> m̃ > inf

{
m ∈ R | αf (y∗,m) ≥ α−l−hg

y∗
(x∗, s)

}
for some m̃ ∈ R. By the first inequality, we have

α−hg
y∗

(x∗, αf (y
∗, m̃)) < s;
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and by the second inequality together with the monotonicity of αf , we have

αf (y
∗, m̃) ≥ α−l−hg

y∗
(x∗, s).

Hence, by the monotonicity of α−hg
y∗

,

s ≤ α−hg
y∗

(x∗, α−l−hg
y∗

(x∗, s)) ≤ α−hg
y∗

(x∗, αf (y
∗, m̃)) < s,

a contradiction. Therefore, (6.1.12) follows.

Combining (6.1.11) and (6.1.12) gives

α−lf◦g(x
∗, s) = sup

y∗∈D+\{0}
inf
{
m ∈ R | αf (y∗,m) ≥ α−l−hg

y∗
(x∗, s)

}
= sup

y∗∈D+\{0}
α−lf (y∗, α−l−hg

y∗
(x∗, s)),

which proves (4.1.6). By combining this with Proposition 4.1.1 and using the monotonicity

of g, we obtain (4.1.7).

Finally, we outline the proofs of the results in Section 4.3. Recall that we work with a

monotone convex set K ⊆ X with C ⊆ K, and we consider two functions f : Y → R and

g : K → Y . Let x∗ ∈ C+ and m ∈ R. Similar to the constructions for the case K = Y above,

we define the sets

Am
y∗ = {x ∈ K | 〈y∗,−g(x)〉 ≤ αf (y

∗,m)} , Ãm
y∗ = {x ∈ K | 〈y∗,−g(x)〉 < αf (y

∗,m)}

for each y∗ ∈ D+, and the functions Km
x∗ ,Km

x∗ : K × D̄+ → R by

Km
x∗(x, y

∗) = 〈x∗,−x〉 − IAm
y∗

(x), K̃x∗(x, y
∗) = 〈x∗,−x〉 − IÃm

y∗
(x).

After giving these definitions, by using same arguments we can adapt Propositions 6.1.1,

6.1.3, 6.1.4, 6.1.5 and 6.1.6, and Remark 6.1.2 for the following corollary.

Proof of Corollary 4.3.1. This result follows by the same arguments as in the proof of

Theorem 4.1.6.
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Proof of Proposition 4.3.2. The proof of (4.3.1) follows the same arguments as the proof

of Proposition 4.1.1. Here, we use Corollary 2.3.12 instead of Theorem 2.3.11. The proof of

(4.3.2) follows by the same arguments as in Theorem 4.1.2.

Proof of Proposition 4.3.3. Proof of Proposition 4.2.2 is valid for this result.

6.2 Proofs for Chapter 5

Proof of Lemma 5.1.4. To prove that Λ is lower demicontinuous, by Remark 3.0.11, we

need to prove that ΛU(M) = {X ∈ Lp(Rn) | Λ(X) +Lp(R+) ⊆M} is closed for every closed

halfspace M = {Y ∈ Lp(R) | E [Y ∗Y ] ≥ 0}, where Y ∗ ∈ Lq(R).

We first claim that if Λ(X) + Lp+(R) ⊆ M = {Y ∈ Lp(R) | E [Y ∗Y ] ≥ 0} for some X ∈
Lp(Rn), then Y ∗ ∈ Lq(R+). To see this, note that E [Y ∗(Λ(X) + d)] ≥ 0 if and only if

E[Y ∗d] ≥ −E[Y ∗Λ(X)] for every d ∈ Lp+(R). Assume that E[Y ∗d] < 0 for some d ∈ Lp(R+).

Since Lp(R+) is a cone, for every λ > 0, we have λd ∈ Lp(R+). Also, λE[Y ∗d] → −∞
as λ → 0. However, λE[Y ∗d] is bounded by −E[Y ∗Λ(X)], hence we get a contradiction.

Therefore, E[Y ∗d] ≥ 0 for all d ∈ Lp(R+), which implies that Y ∗ ∈ Lq(R+). This completes

the proof of the claim.

In view of the claim, let us take M = {Y ∈ Lp(R) | E [Y ∗Y ] ≥ 0} for some Y ∗ ∈ Lq(R+).

We aim to show that {X ∈ Lp(Rn) | Λ(X) + Lp(R+) ⊆M} is closed. Note that

{X ∈ Lp(Rn) | Λ(X) + Lp(R+) ⊆M} = {X ∈ Lp(Rn) | E [Y ∗Λ(X)] ≥ 0} .

Let us first consider case (i), where Λ̃ is concave and bounded from above. Thanks to

concavity, the set {X ∈ Lp(Rn) | E[Y ∗Λ̃(X)] ≥ 0} is convex.

Suppose that p < +∞. Take a sequence (Xk)k∈N in {X ∈ Lp(Rn) | E [Y ∗Λ(X)] ≥ 0} that

converges to some X̃ ∈ Lp(Rn) strongly. Hence, there exists a subsequence (Xk`)`∈N that

converges to X̃ almost surely. By the continuity of Λ̃, and then reverse Fatou’s lemma, we
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get

E[Y ∗Λ(X̃)] = E[Y ∗Λ̃ ◦ X̃] = E
[
Y ∗ lim

`→∞
Λ̃ ◦Xk`

]
≥ lim sup

`→∞
E[Y ∗Λ̃ ◦Xk` ] = lim sup

`→∞
E[Y ∗Λ(Xk`)] ≥ 0. (6.2.1)

Hence, X̃ ∈ {X ∈ Lp(Rn) | E [Y ∗Λ(X)] ≥ 0} and this set is closed. Note that we can

use reverse Fatou’s lemma in the above calculation since Λ̃ is bounded from above so that

(Y ∗Λ(Xk`))`∈N is bounded from above.

Suppose that p = +∞. To prove weak∗ closedness, let r > 0. By Krein-Šmulian theorem,

it is enough to prove that {X ∈ L∞(Rn) | E [Y ∗Λ(X)] ≥ 0, ‖X‖∞ ≤ r} is closed in L1(Rn).

Let (Xk)k∈N be a sequence in this set that converges to some X̃ ∈ L1(Rn) strongly in L1(Rn).

Hence, we may find a subsequence (Xk`)`∈N that converges to X̃ almost surely. Repeating

the argument in (6.2.1), we see that E[Y ∗Λ(X̃)] ≥ 0. On the other hand, we have ‖Xk`‖ ≤ r

for all ` ∈ N with probability one. Hence, ‖X̃‖ ≤ r with probability one so that ‖X̃‖∞ ≤ r.

It follows that X̃ ∈ {X ∈ L∞(Rn) | E [Y ∗Λ(X)] ≥ 0, ‖X‖∞ ≤ r}, proving the closedness of

this set in L1(Rn).

Next we consider case (ii), where Λ̃ and hence Λ are linear. In particular, there exists

a ∈ Rn such that Λ̃(x) = aTx for every x ∈ Rn. Suppose that p < +∞. Let us take a net

(Xk)k∈I in {X ∈ Lp(Rn) | E [Y ∗Λ(X)] ≥ 0} that converges to some X̃ ∈ Lp(Rn) weakly,

where I is an arbitrary index set. By linearity and weak convergence, we have

E[Y ∗Λ(X̃)] = E[Y ∗Λ̃ ◦ X̃] = E[(Y ∗a)TX̃] = lim
k∈I

E[(Y ∗a)TXk] ≥ 0,

so that X̃ ∈ {X ∈ Lp(Rn) | E [Y ∗Λ(X)] ≥ 0}, and this set is weakly closed, hence it is also

strongly closed. The case p = +∞ can be treated by Krein-Šmulian theorem as above.

For (iii), let us first observe that (Lp(Rn
+))# = Lp(Rn

++) and (Lp(R+))# = Lp(R++).

Now take X, X̄ ∈ Lp(Rn) with X ≤Lp(Rn++) X̄. Hence, for almost every ω ∈ Ω, we have

X(ω) ≤Rn++
X̄(ω). Since Λ̃ is regularly increasing, we have

Λ(X)(ω) = Λ̃(X(ω)) < Λ̃(X̄(ω)) = Λ(X̄)(ω)

for almost every ω ∈ Ω. Therefore, Λ(X) ≤Lp(R++) Λ(X̄). So Λ is regularly increasing.
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Proof of Proposition 5.1.6 . Let Y ∗ ∈ Lq(R+) \ {0}. Since we have D-concavity, finding

the penalty function is a concave maximization problem. Moreover, since the strict sublevel

set is nonempty, Slater’s condition holds. Hence, we can use strong duality and obtain

α(−hΛ
Y ∗ )(X

∗,m) = sup
X∈Lp(Rn)

{
E
[
−(X∗)TX

]
| E [−Y ∗Λ(X)] ≤ m

}
= inf

λ>0
sup

X∈Lp(Rn)

(
E
[
−(X∗)TX

]
− λE [−Y ∗Λ(X)] + λm

)
= inf

λ>0
sup

X∈Lp(Rn)

(
E
[
−(X∗)TX + λY ∗Λ(X)

]
+ λm

)
= inf

λ>0

(
E
[

sup
x∈Rn

(
−(X∗)Tx+ λY ∗Λ̃(x)

)]
+ λm

)
,

where the second equality comes from strong duality (we can ignore the case λ = 0 as it

produces an objective value of +∞) and the fourth equality follows by Theorem 14.60 in

[32].

Note that for every x∗ ∈ Rn and y∗ ∈ R+, we have

sup
x∈Rn

(−xTx∗ + λy∗Λ̃(x)) =


0 if x∗ = 0, y∗ = 0,

∞ if x∗ 6= 0, y∗ = 0,

λy∗Φ̃
(
x∗

λy∗

)
if y∗ > 0.

(6.2.2)

Therefore,

α(−hΛ
Y ∗ )(X

∗,m) =

∞ if Y ∗ /∈ TX∗ ,

infλ>0

(
E
[
λY ∗Φ

(
X∗

λY ∗

)
1{Y ∗>0}

]
+ λm

)
if Y ∗ ∈ TX∗ ,

(6.2.3)

and by Theorem 4.1.6,

αρ◦Λ(X∗,m) = inf
Y ∗∈Lq+(R)\{0}

α(−hΛ
Y ∗ ) (X∗, αρ (Y ∗,m)) .

By combining this equality with (6.2.3), it follows that

αρ◦Λ(X∗,m) = inf
Y ∗∈TX∗

inf
λ>0

(
E
[
λY ∗Φ

(
X∗

λY ∗

)
1{Y ∗>0}

]
+ λαρ(Y

∗,m)

)
.
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Then, since TX∗ is a cone and αρ is positively homogeneous, we get

αρ◦Λ(X∗,m) = inf
Y ∗∈TX∗

(
E
[
Y ∗Φ

(
X∗

Y ∗

)
1{Y ∗>0}

]
+ αρ(Y

∗,m)

)
,

as desired.

Proof of Proposition 5.1.7 . By Corollary 4.1.8 and Proposition 2.3.13, we have

α−lρ◦Λ(X∗, s) = sup
Y ∗∈Lq(R+)\{0}

α−lρ

(
Y ∗, α−l−hΛ

Y ∗
(X∗, s)

)
= sup

Y ∗∈Lq(R+)\{0}
α−lρ

(
Y ∗, sup

γ≥0

(
γs− (−hΛ

Y ∗)
∗(−γX∗)

))
= sup

Y ∗∈Lq(R+)\{0}
inf

{
m ∈ R | αρ(Y ∗,m) ≥ sup

γ≥0

(
γs− (−hΛ

Y ∗)
∗(−γX∗)

)}
= sup

Y ∗∈Lq(R+)\{0}
sup
γ≥0

α−lρ
(
Y ∗, γs− (−hΛ

Y ∗)
∗(−γX∗)

)
, (6.2.4)

where the last equality comes from Lemma 2.3.10. Let us calculate the second argument of

α−lρ for bounded case Φ(0) < +∞. For γ = 0, by using Theorem 14.60 in [32], we have

−(−hΛ
Y ∗)
∗(0) = − sup

Z∈Lp(Rn)

E [Y ∗Λ(Z)] = −E
[

sup
z∈Rn

Y ∗Λ(z)

]
= −Φ(0)E[Y ∗].

Here, the last equality follows by the following simple observation: for every y∗ ∈ R+,

sup
z∈Rn

y∗Λ(z) =

0 if y∗ = 0,

y∗Φ(0) else.

For γ > 0, by Theorem 14.60 in [32], we get

(−hΛ
Y ∗)
∗(−γX∗) = sup

Z∈Lp(Rn)

(
−E

[
γZTX∗

]
+ E [Y ∗Λ(Z)]

)
= E

[
sup
z∈Rn

(
−γzTX∗ + Y ∗Λ(z)

)]
.

Using the calculation in (6.2.2), it follows that

(−hΛ
Y ∗)
∗(−γX∗) =

∞ if Y ∗ /∈ TX∗ ,

E
[
Y ∗Φ

(
γX∗

Y ∗

)
1{Y ∗>0}

]
if Y ∗ ∈ TX∗ .

67



Since α−lρ is increasing in the second argument, we can ignore the case Y ∗ /∈ TX∗ , since the

second argument of α−lρ will be −∞ in (6.2.4). By the positive homogeneity of αρ, for γ > 0,

we have

α−lρ

(
Y ∗, γs− E

[
Y ∗Φ

(
γX∗

Y ∗

)
1{Y ∗>0}

])
= α−lρ

(
Y ∗

γ
, s− E

[
Y ∗

γ
Φ

(
γX∗

Y ∗

)
1{Y ∗>0}

])
.

By combining all the findings, we get

α−lρ◦Λ(X∗, s)

= sup
Y ∗∈Lq(R+)\{0}

sup
γ≥0

α−lρ
(
Y ∗, γs− (−hΛ

Y ∗)
∗(−γX∗)

)
= sup

Y ∗∈Lq(R+)\{0}
α−lρ (Y ∗,−Φ(0)E[Y ∗]) ∨ sup

Y ∗∈TX∗ ,
γ>0

α−lρ

(
Y ∗

γ
, s− E

[
Y ∗

γ
Φ

(
γX∗

Y ∗

)
1{Y ∗>0}

])

= sup
Y ∗∈Lq(R+)\{0}

α−lρ (Y ∗,−Φ(0)E[Y ∗]) ∨ sup
Y ∗∈TX∗

α−lρ

(
Y ∗, s− E

[
Y ∗Φ

(
X∗

Y ∗

)
1{Y ∗>0}

])
,

where the last equation comes from the fact that TX∗ is a cone. Now we can pass to the

probabilistic setting. For the left side, make the change of variable Y ∗ = λdQ
dP where λ > 0

and Q ∈Mq
1(P). By using the positive homogeneity of αρ, we have

α−lρ (Y ∗,−Φ(0)E[Y ∗]) = α−lρ

(
λ
dQ
dP

,−Φ(0)E
[
λ
dQ
dP

])
= α−lρ

(
dQ
dP

,−Φ(0)E
[
dQ
dP

])
= α−lρ

(
dQ
dP

,−Φ(0)

)
,

which gives

sup
Y ∗∈Lq(R+)\{0}

α−lρ (Y ∗,−Φ(0)E[Y ∗]) = sup
Q∈Mq

1(P)

α−lρ

(
dQ
dP

,−Φ(0)

)
.

For the other part, we can make the change of variables X∗ = w · dS
dP and Y ∗ = λdQ

dP as before

and get

sup
Y ∗∈TX∗

α−lρ

(
Y ∗, s− E

[
Y ∗Φ

(
X∗

Y ∗

)
1{Y ∗>0}

])
= sup

Q∈Mq
1(P),λ>0

wiSi�Q

α−lρ

(
dQ
dP

,
s

λ
− EQ

[
Φ

(
w · dS
λdQ

)])
.
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Finally, we have

α−lρ◦Λ

(
w · dS

dP
, s

)
=

max

{
sup

Q∈Mq
1(P)

α−lρ

(
dQ
dP

,−Φ(0)

)
, sup
Q∈Mq

1(P),λ>0
wiSi�Q

α−lρ

(
dQ
dP

,
s

λ
− EQ

[
Φ

(
w · dS
λdQ

)])}
.

For the unbounded case Φ(0) = +∞, we can ignore the first term above by the monotonicity

of α−lρ .

Proof of Proposition 5.1.8. By Proposition 4.2.2, we have the following

R(X) = ρ ◦ Λ(X) = sup
X∗∈Lq(Rn+)\{0}

sup
Y ∗∈Lq(R+)\{0}

α−lρ
(
Y ∗,−E

[
XTX∗

]
− (−hΛ

Y ∗)
∗(−X∗)

)
.

We will calculate the second argument of α−lρ . By Theorem 14.60 in [32], we get

(−hΛ
Y ∗)
∗(−X∗) = sup

Z∈Lp(Rn)

(
−E

[
ZTX∗

]
+ E [Y ∗Λ(Z)]

)
= E

[
sup
z∈Rn

(
−zTX∗ + Y ∗Λ̃(z)

)]
.

By the calculation in (6.2.2), we have

(−hΛ
Y ∗)
∗(−X∗) =

∞ if Y ∗ /∈ TX∗ ,

E
[
Y ∗Φ

(
X∗

Y ∗

)
1{Y ∗>0}

]
if Y ∗ ∈ TX∗ .

Since α−lρ is increasing in the second argument, we can ignore the case Y ∗ /∈ TX∗ since the

second argument will be −∞. Therefore, we have

R(X) = sup
X∗∈Lq(Rn+)

sup
Y ∗∈TX∗

α−lρ

(
Y ∗,−E

[
XTX

]
− E

[
Y ∗Φ

(
X∗

Y ∗

)
1{Y ∗>0}

])
.

We can make the change of variables X∗ = w · dS
dP and Y ∗ = λdQ

dP as before and we get

R(X) = sup
X∗∈Lq(Rn+)

sup
Y ∗∈TX∗

α−lρ

(
Y ∗,−E

[
XTX

]
− E

[
Y ∗Φ

(
X∗

Y ∗

)
1{Y ∗>0}

])
= sup

w∈Rn+\{0},S∈M
q
n(P)

Q∈Mq
1(P),wiSi�Q

α−lρ

(
dQ
dP

,−EQ

[
Φ

(
w · dS
dQ

)]
− wTES [X]

)
,
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after using the positive homogeneity of αρ and writing w instead of w
λ

.

Proof of Proposition 5.2.1. Since we have concavity, finding the penalty function will

be a concave maximization problem. Since Slater’s condition holds, we can use the strong

duality.

α(−hΛ
Y ∗ ) (X∗,m) = sup

X∈Lp(Rn+)

{
E
[
−XTX∗

]
| E [−Y ∗Λ(X)] ≤ m

}
= inf

λ≥0
sup

X∈Lp(Rn+)

(
E
[
−XTX∗ + λY ∗Λ(X)

]
+ λm

)
= inf

λ≥0
E

[
sup
x∈Rn+

(
−xTX∗ + λY ∗Λ̃(x) + λm

)]
,

where last equality is by Theorem 14.60 in [32]. For λ = 0, by using the fact that X∗ ∈
Lq(Rn

+), we reach

sup
X∈Lp(Rn+)

(
E
[
−XTX∗ + λY ∗Λ(X)

]
+ λm

)
= sup

X∈Lp(Rn+)

E
[
−XTX∗

]
= 0.

On the other hand, by the calculation in (6.2.2), we have

α(−hΛ
Y ∗ ) (X∗,m) = 0 ∧ inf

λ>0

(
λm+ E

[
1{Y ∗>0}λY

∗Φ

(
X∗

λY ∗

)])
,

and by Corollary 4.3.1, we obtain

αρ◦Λ (X∗,m) = inf
Y ∗∈Lq(R+)\{0}

α(−hΛ
Y ∗ ) (X∗, αρ (Y ∗,m))

= inf
Y ∗∈Lq(R+)\{0}

0 ∧ inf
λ>0

(
λαρ (Y ∗,m) + E

[
1{Y ∗>0}λY

∗Φ

(
X∗

λY ∗

)])
= 0 ∧ inf

Y ∗∈Lq(R+)\{0}

(
αρ (Y ∗,m) + E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)])
,

where last line follows since α is positively homogeneous in the first component and Lq(R+)

is a cone.

Next, let us fix some arbitrary n ∈ N and take

Y ∗n :=

(
1− 1

n

)
Y ∗1{Y ∗>0} +

1

n
1{Y ∗=0} ∈ Lq(R++).
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Then, we have

inf
Ȳ ∗∈Lq(R++)

(
αρ
(
Ȳ ∗,m

)
+ E

[
1{Ȳ ∗>0}Ȳ

∗Φ

(
X∗

Ȳ ∗

)])
≤ αρ (Y ∗n ,m) + E

[
1{Y ∗n>0}Y

∗
nΦ

(
X∗

Y ∗n

)]
= sup

Y ∈Sρm
−E [Y Y ∗n ] + E

[
1{Y ∗n>0} sup

x∈Rn+

(
−X∗Tx+ Y ∗n Λ̃(x)

)]

≤
(

1− 1

n

)
αρ
(
Y ∗1{Y ∗>0},m

)
+

1

n
αρ
(
1{Y ∗=0},m

)
+

(
1− 1

n

)
E
[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)]
+

1

n
E

[
1{1{Y ∗=0}>0}1

∗
{Y ∗=0}Φ

(
X∗

1∗{Y ∗=0}

)]
,

where the last equality comes from the fact that supremum of affine functions is convex and

indicator function of a convex set is a convex function. These inequalities are valid for every

n ∈ N, hence by sending n to ∞, we get

inf
Ȳ ∗∈Lq(R++)

(
αρ
(
Ȳ ∗,m

)
+ E

[
1{Ȳ ∗>0}Ȳ

∗Φ

(
X∗

Ȳ ∗

)])
≤ αρ

(
Y ∗1{Y ∗>0},m

)
+ E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)]
= αρ (Y ∗,m) + E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)]
,

where last equality is trivial since it is the set where Y ∗ = 0 and does not affect the expec-

tation. Since this inequality true for every Y ∗ ∈ Lq(R+) \ {0}, by taking infimum we will

have the following

inf
Y ∗∈Lq(R++)

(
αρ (Y ∗,m) + E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)])
≤ inf

Y ∗∈Lq(R+)\{0}

(
αρ (Y ∗,m) + E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)])
.

Also since Lq(R++) ⊆ Lq(R+) \ {0}, the reverse inequality holds as well, hence we obtain

inf
Y ∗∈Lq(R++)

(
αρ (Y ∗,m) + E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)])
= inf

Y ∗∈Lq(R+)\{0}

(
αρ (Y ∗,m) + E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)])
, (6.2.5)
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as desired.

Proof of Proposition 5.2.2. By Proposition 4.3.3 we have

R(X) = ρ ◦ Λ(X) = sup
X∗∈Lq(Rn+)\{0}

sup
Y ∗∈Lq(R+)\{0}

α−lρ
(
Y ∗,−E

[
XTX∗

]
− (−hΛ

Y ∗)
∗(−X∗)

)
.

We will calculate the second argument. By using Theorem 14.60 in [32], we get

(−hΛ
Y ∗)
∗(−X∗) = sup

Z∈Lp(Rn+)

(
−E

[
ZTX∗

]
+ E [Y ∗Λ(Z)]

)
= E

[
sup
z∈Rn+

(
−zTX∗ + Y ∗Λ̃(z)

)]
.

By (6.2.2), we have

(−hΛ
Y ∗)
∗(−X∗) = E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)]
.

Now, let us look for the following term by using Lemma 2.3.10:

sup
Y ∗∈Lq(R+)\{0}

α−lρ

(
Y ∗,−E

[
XTX∗

]
− E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)])
= sup

Y ∗∈Lq(R+)\{0}
inf

{
m ∈ R | αρ(Y ∗,m) ≥ −E

[
XTX∗

]
− E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)]}
= sup

Y ∗∈Lq(R+)\{0}
inf

{
m ∈ R | αρ(Y ∗,m) + E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)]
≥ −E

[
XTX∗

]}
= inf

{
m ∈ R | ∀Y ∗ ∈ Lq(R+) \ {0} : αρ(Y

∗,m) + E
[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)]
≥ −E

[
XTX∗

]}
= inf

{
m ∈ R | inf

Y ∗∈Lq(R+)\{0}

(
αρ(Y

∗,m) + E
[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)])
≥ −E

[
XTX∗

]}
= inf

{
m ∈ R | inf

Y ∗∈Lq(R++)

(
αρ (Y ∗,m) + E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)])
≥ −E

[
XTX∗

]}
= sup

Y ∗∈Lq(R++)

inf

{
m ∈ R | αρ(Y ∗,m) ≥ −E

[
XTX∗

]
− E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)]}
= sup

Y ∗∈Lq(R++)

α−lρ

(
Y ∗,−E

[
XTX∗

]
− E

[
1{Y ∗>0}Y

∗Φ

(
X∗

Y ∗

)])
.

Here, we use (6.2.5) in the fifth equality and Lemma 2.3.10 in the sixth equality.
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Chapter 7

Conclusion

In this thesis, we give a dual representation for the composition of quasiconvex functions

and apply this representation to systemic risk measures. We have the well-known Fenchel-

Moreau theorem for the dual representation of a convex function. For the composition of

convex functions, a dual represenation is shown in Theorem 2.8.10 of [2] and in Theorem 3 of

[3]. For a single quasiconvex function, a dual representation is provided by Theorem 3 of [8].

The next question is to figure out the dual representation of the composition of quasiconvex

functions and we give answer for this question in this thesis.

In Chapter 2, we focus on the dual representation of an extended real-valued quasiconvex

function. Firstly, we define the quasiconvexity, monotonicity and lower semicontinuity con-

cepts for a function and mention the properties of its sublevel sets in Section 2.1, we briefly

define the order concept for vectors in Section 2.2 since we work on topological vector spaces.

In Section 2.3, we define the minimal penalty function which will be used in the dual rep-

resentation. We have shown the relation between the sublevel sets and the penalty function

by using a separation argument in Remark 2.3.8. We have shown the dual representation

for quasiconvex functions in Theorem 2.3.11, which is also a part of Theorem 3 in [8], by

using the left inverse of the penalty function and using the characterization in Remark 2.3.8.

Then, we look at the case where the function is defined on a convex set but not on the whole

space in Corollary 2.3.12. Finally, we have shown the relation between the minimal penalty

function and the Fenchel conjugate in 2.3.13.
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In Chapter 3, we generalize the concepts of monotonicity, quasiconvexity and semicontinu-

ity for vector-valued functions. We show the relation between the vector-valued function and

its scalarizations in terms of these concepts. We also define a notion of strictly monotonicity

for vector-valued functions, we call a function with this property regularly increasing.

Section 4.1 is the main part of this thesis. We give the dual representation result in

this section. First, in Proposition 4.1.1, we have shown that Theorem 2.3.11 can be ap-

plied to the composition of two quasiconvex functions. Then, in Theorem 4.1.2, we give a

dual representation for the composition of two quasiconvex functions with a set of desirable

properties, namely, the extended real-valued function is decreasing, quasiconvex and lower

semicontinuous; the vector-valued function is increasing, naturally quasiconcave and lower

demicontinuous. The real problem is whether we can get an explicit formula for the penalty

function of the composition. We answer this question by Theorem 4.1.6, the main theorem

of this thesis, which works under the additional assumptions that the vector-valued function

is regularly increasing and a compact cone generator exists for the dual of the ordering cone.

The compactness condition is a necessary for the application of the minimax result in [25],

which is usual in minimax-type results. Also, Theorem 4.1.6 states that after we guarantee

the existence of a compact cone generator, we can switch to an arbitrary cone generator

which does not have to be compact. This result is useful in the applications in Chapter 5

since, for instance, we can work on Mq
1(P), which is not compact, thanks to this property.

In Corollary 4.1.8, we show that the implication of Theorem 4.1.6 on the left inverse of the

minimal penalty function of the composition and get the same dual representation with the

Theorem 4.1.2. In Section 4.2, we first look at the case where two functions are convex and

get a consistent result with the dual representations in the literature such as Theorem 2.8.10

in [2]. Then, we look at the case where only the vector-valued function is convex in Propo-

sition 4.2.2. This result is important since when the real-valued function is quasiconvex and

the vector-valued function is convex, the composition is still a quasiconvex composition so

this representation is new in the literature to the best of our knowledge. We also use this

type of composition in our applications. We give the same type of results for functions that

are defined on convex sets in Section 4.3. Finally, we discuss the existence of compact cone

generators in concrete settings in Section 4.4. Relevant to the applications on systemic risk,

we pay attention to the case of Lp spaces.

In Chapter 5, we work on systemic risk measures for the application of Theorem 4.1.6.

In the literature (e.g., in [17]), the basic construction of a systemic risk measures is the
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composition of an aggregation function and a risk measure. Hence, Theorem 4.1.6 is imme-

diately relevant for obtaining dual representations for systemic risk measures. We review

some well-known quasiconvex risk measures and their penalty functions in Example 5.1.2

and Example 5.1.3. Then, we adapt Proposition 4.2.2 to the probabilistic setting in Proposi-

tion 5.1.6, Proposition 5.1.7 and Proposition 5.1.8. Finally, in Section 5.2, we apply the main

result to the Eisenberg-Noe model, a prominent example of a clearing system. Chapter 6

has the proofs of some results in Section 4.1 and Chapter 5.

To sum up, in this thesis, we give a dual representation result for the composition of

quasiconvex functions. We give its applications on systemic risk measures. For the future

work, these dual representation results can be applied to improve the modeling capacity in

different fields. For instance, using dual representations, new computational methods can

be developed for quasiconvex programming problems.

75



Bibliography

[1] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.
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