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SUMMARY 

 

 
Image inpainting fills in the corrupted regions with plausible alternative 

contents. Recent GAN-based (Generative Adversarial Networks) inpainting methods 

show remarkable improvements over traditional ones. However, they assume the 

models implicitly learn the image structure and texture without enforcing constraints 

about the scene. Consequently, these models fail to capture object semantics, 

synthesize blurry texture details and produce significant artifacts on large masked 

regions due to GAN stability problems. Also, they employ large models requiring high 

computation time. This thesis proposes four methods to tackle these problems and 

complete the missing regions with the correct structure and fine-grained textures. Our 

first model exploits segmentation labels and edges to constrain image inpainting and 

reconstruct the object boundaries and the image structure. The second method 

stabilizes GAN training using four progressive generators and discriminators. To 

restore fine-grained detail, we use a texture-based loss function. The third method 

proposes a curriculum-style training approach to complete large regions. It increases 

the masked region size progressively in training time to stabilize GANs. Our final 

approach uses multi-resolution deep network paths to enlarge receptive fields and 

ensure low and high-level feature learning. It employs an adaptative weighting 

mechanism in the loss functions to focus on images exhibiting large masks and 

complex textures in the corrupted regions. We conduct our experiments on public 

datasets to validate our proposed methods. Results show that the proposed methods 

outperform state-of-the-art algorithms and speed up the inference time. We extend the 

experiments to other tasks, such as image outpainting and image blind inpainting. 

 

 

 

 

 

 

 

Keywords: Image inpainting, Constrained learning, Deep learning, Generative 

adversarial networks. 
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ÖZET 

 

 
Görüntü tamamlama teknikleri imgelerin bozuk kısımlarını uyumlu alternatif 

içeriklerle doldurur. Son zamanlardaki çekişmeli üretken ağlar (GAN) tabanlı görüntü 

tamamlama yöntemleri, geleneksel görüntü işleme yaklaşımlarına göre kayda değer 

gelişmeler göstermektedir. Bu teknikler, eğitimi yönlendirmek için girdi imge sahne 

hakkında herhangi bir kısıtlama kullanmaz. Böylece elde edilen modeller sahnedeki 

nesnelerin semantiğini yakalamada zorluk çekmekte ve özellikle bulanık doku ve 

yapısal bozukluklar içeren imgeler oluşturmaktadır. Aynı zamanda modellerin yer ve 

zaman karmaşıklığı yüksektir.. Bu tez, bahsedilen sorunları çözen kademeli dört 

yöntem önererek eksik bölgeleri yüksek sadakatli yapısal ve dokusal imgeler ile 

tamamlamaktadır. ilk modelimiz, görüntü tamamlamada kısıt için segmentasyon 

etiketlerinden ve kenarlardan yararlanır. Bu model nesne sınırlarını ve görüntü yapısını 

yeniden oluşturmaya yardımcı olmaktadır. İkinci model, dört aşamalı jeneratörleri ve 

diskriminatörleri kullanarak GAN eğitimi stabilize etmektedir. Görüntü ayrıntılarını 

yakalabilmek için bir yeni bir doku uyum fonksiyonu tasarlanmıştır. Üçüncü model, 

büyük bölgeleri tamamlamak için bir müfredat eğitimi yaklaşımı önermektedir. 

GAN'ları stabilize etmek için eğitim süresinde maskelenmiş bölge boyutunu aşamalı 

olarak artırır. Son modelimiz, lokal odağı genişletmek için farklı çözünürlüklü derin 

sinir ağlarını kullanır ve aynı anda düşük ve üst düzey özellik öğrenimi sağlar. Ayrıca, 

bozuk bölgelerde büyük maskeler ve karmaşık dokular sergileyen görüntülere 

odaklanmak için kayıp fonksiyonda uyarlanabilir bir ağırlık mekanizması kullanır. 

Geliştirilen modellerin doğrulanması için deneyler popüler veri kümeleri üzerinde 

yapılmıştır. Modellerin testi sonucunda en son çıkan yöntemlerden daha iyi 

performans göstermektedir ve daha hızıdır. İmge tamamlama işlemleri sadece iç 

bölgeler için değil aynı zamanda dış bölge tamamlama ve kör görüntü iç bölge 

tamamlama problemlerine de başarılı bir şekilde uygulanmıştır. 

 

 

 

 

Anahtar Kelimeler: Görüntü tamamlama, Kısıtlı öğrenme, Derin öğrenme, 

Çekişmeli Üretici Ağlar. 
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1. INTRODUCTION 

Diminished Reality (DR) is a computer vision field that eliminates, hides and 

sees through objects in the real world. In other words, it is the opposite of Augmented 

Reality (AR), which inserts virtual objects into the real world to keep the user with 

additional knowledge about the scene.  In the last decade, DR problems have received 

a lot of attention, especially with the recent boom of deep learning methods that 

achieve immense success and build a new state-of-the-art in many complex computer 

vision problems [1]. 

Image completion or image inpainting is a DR technique that synthesizes 

plausible contents to fill in the missing regions or to remove unwanted objects/artifacts 

in an image (Figure 1.1). The estimated pixels should be coherent with the non-

damaged parts (background) to ensure that the new contents are visually realistic and 

natural within the scene. 

 
 

Figure 1.1: Example of image editing (first row) and object removal (second row). 

Infilling is a fundamental part of human vision. Vertebrate eyes do not cover the 

whole visual field due to blind spots where optic nerves leave the eye. This spot does 

not contain any photo-receptor cells and does not contribute to the information flow of 

the scene. Our brains use the information from the peripheral area, such as texture, 

geometry and semantics, to fill in the missing parts [2].  Hence inpainting is easy for 

humans since they can understand the image structure representing the scene, even 
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when significant portions are invisible. However, this task is very challenging for a 

computer and involves an inverse problem.  

To this end, image inpainting has attracted significant interest from computer 

vision and pattern recognition communities. It has a wide range of applications, 

including image editing [3,4], image restoration [5], object removal [6] and image 

compression [7]. 

Prior approaches in computer vision solve the inpainting problem by extracting 

low-level features, matching and pasting nearest-neighbor patches [8][9][10]. These 

methods generate promising results in repetitive textures and simple structure scenes.  

However, they fail to capture high-level information and usually present critical 

failures for images with non-repetitive patterns, such as faces and complex scenes. 

Like many computer-vision tasks, image inpainting also took its share with the 

rapid advancements in deep learning. It exploits the fast progress of convolution neural 

networks (CNNs).  

Current learning-based image inpainting methods [11][12][13][1] outperform 

traditional ones [8][9][10] both qualitatively and quantitatively using generative 

adversarial networks (GANs) [14]. They demonstrate a powerful tool to fill in the 

corrupted image with plausible alternative contents using a generator and a 

discriminator network. While the generator strives to synthesis images as close as 

possible to ground truth distribution, the discriminator distinguishes the real from 

generated ones. 

1.1. Motivations 

As mentioned previously, GANs-based image inpainting methods 

[11][12][15][3] learn high-level features from large-scale datasets to fill in corrupted 

regions. They establish a robust mapping between the corrupted and the ground truth 

images. However, most of the current approaches suffer from different problems, 

which inspire us to solve them in this thesis. 

Initially, current methods do not put any constraints on the input and let the 

model decide what to generate. They assume that the model can implicitly acquire 

information from far spatial regions to synthesis new content. Consequently, most of 

them generate significant artifacts leading to distorted structures and non-realistic 

texture details [11] (Figure 1.2). These failures especially appear in the boundaries of 
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the objects where the model usually completes the masked regions using the predicted 

dominant background and does not preserve the semantics of the objects [16]. We can 

explain this by that most of the GAN-based approaches do not provide additional 

information to the model, such as image textures and semantics to constrain the 

inpainting problem. 

 
 

Figure 1.2: Example of artifacts produced by methods that do not enforce any input 

constraints. 

Secondly, current GAN-based inpainting methods miss fine-grained textures in 

highly structured scenes [3] (Figure 1.3). They assume that image textures are learned 

using only reconstruction and adversarial supervision. However, this task is 

challenging without additional loss functions that enforce fine-grained textures. 

Moreover, all the mentioned methods use encoder-decoder architectures, where the 

encoder maps the corrupted image to a latent space, then the decoder reconstructs the 

ground truth image. This operation may not restore texture details due to small 

receptive fields. 
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Figure 1.3: Example of a synthesized image with blurry textures. 

Third, current methods encounter difficulties generating correct structures and 

colors when the image resolution and the masked region grow large [11] (Figure 1.4). 

This drawback is mainly due to the training instability of GANs that lead to mode 

collapse and over-fitting. In other words, although GANs fit the inpainting problem 

very well, it is challenging to train two networks in a cyclic manner where they 

compete against each other for totally different objectives. 

 
 

Figure 1.4: Example of structure and color inconsistency due to GAN instability. 

Finally, current approaches require expensive computation hardware limiting 

many applications in resource-constrained environments. Their high computation cost 

is mainly due to the usage of large coarse-to-fine1 models [3][17][16][18] and 

contextual attention mechanisms (CAM) [19][20]. The first technique applies a multi-

stage training process that optimizes the parameters of two or more networks. 

Specifically, while the coarse stages estimate the initial image from the corrupted one, 

 

1 Coarse: initial prediction from the corrupted image. It contains fewer texture details. Fine: 

generated by the refinement network that enhances the coarse image to have global consistency and 

fine-grained textures. 
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the refinement stage uses the initially estimated image to generate a final plausible 

image. CAM borrows information from the surrounding parts to fill in corrupted 

regions. However, it still fails to ensure feature continuities and has high inference 

latency [21]. Also, training and inference on high-resolution images exponentially 

increase computation and memory resources. Consequently, the batch size becomes 

smaller, which decreases the performance of GANs [22].  

Because of all the mentioned problems, image inpainting remains a challenging 

task in the computer vision field. In our Ph.D. thesis, we develop efficient image 

inpainting methods to synthesis semantically correct images with fine-grained 

textures. 

1.2. Contributions  

In this thesis, we conduct several studies on designing new network 

architectures, adding new constraints, introducing new loss functions and training 

approaches. Our contributions can be summarized as follows. 

1.2.1. Image inpainting using scenes constraints 

Most of the existing methods do not enforce any constraints to guide the image 

inpainting task. They either synthesis unrealistic and blurry texture details or fail to 

capture object semantics. Furthermore, they employ huge models with inefficient 

attention mechanisms. Motivated by these observations, we propose a new end-to-end 

generative-based architecture for image inpainting. Specifically, our model exploits 

the segmentation label estimations to robustly reconstruct the object boundaries and 

avoid blurry or semantically incorrect images. Subsequently, it estimates edges to 

recover the image structure details. Instead of predicting the segmentation labels/edges 

from the corrupted image, we exploit the coarse image that contains more valuable 

global structure data. To the best of our knowledge, our work is among the first to 

enforce both structure and texture constraints to restrict the inpainting task and 

generate images with realistic texture and correct semantic. 
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1.2.2. Efficient architecture for image inpainting 

 As mentioned in the motivations section, recent GAN-based inpainting methods 

show remarkable improvements and generate plausible images using multi-stage 

networks or CAM. However, these techniques increase the model complexity limiting 

their application in low-resource environments. Furthermore, they fail in generating 

high-resolution images with realistic texture details due to the GAN stability problem. 

Motivated by these observations, we introduce a new deep generative-based multi-

resolution image inpainting framework to speed up the running time and improve 

performance. Our approach is composed of four successive efficient generators filling 

in four different resolutions. Specifically, the training starts with lower-resolution 

images and progressively doubles their size, such that their corresponding generators 

can exploit the previously inpainted regions. The latter shows a model stability 

improvement since training GANs on low-resolution images proves easier and 

converges faster. Another main problem with direct high-resolution image synthesis is 

that the discriminator will focus on texture details. Hence, it can easily reject 

synthesized images in the early training stages. Our approach drops the refinement 

module after the target resolution since it significantly increases the network size. We 

remedy the lack of this refinement stage by our proposed progressive training approach 

and a texture-based loss function. 

1.2.3. New proposed loss functions for image inpainting 

One of the challenging problems in image inpainting problems is unrealistic 

texture generation that usually leads to blurry and geometrically distorted results. To 

ensure fine-grained textures, we adopt an LBP-based (Local-binary-patterns) loss 

function to minimize the difference between the generated and the ground truth 

textures. LBP is a non-parametric texture descriptor that is widely used in many 

computer-vision tasks. During training, we minimize the distance between the ground 

truth LBP and the predicted one. In another study of this thesis, we observe that the 

images may include different texture complexity and mask sizes. Hence, we propose 

a new function that gives different weights for each image in the reconstruction and 

the adversarial losses. We enforce the generator to focus on images exhibiting large 

masks and complex textures in the corrupted regions. 
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1.2.4. GAN stabilization techniques 

 Curriculum learning is a technique that gradually reveals training samples to the 

model from the easiest to the most difficult. Inspired by this idea, we propose a 

curriculum-style strategy to progressively train an effective generator by growing the 

size of the masked regions in the context of image inpainting. In particular, the 

proposed method increases the masked region size progressively in training time. The 

intuition was that the generator and the discriminator networks solve the inpainting 

problem starting from easy to more difficult regions. By easy, we mean small and 

corrupted parts with basic structures that can be locally filled without the need for 

global object structures. However, large mask regions are troublesome to complete 

since they need local and global scene understanding. Incorporating such an approach 

in a GAN framework stabilizes the training, provides better color consistencies and 

captures object continuities. During test time, the user gives variable mask sizes and 

multiple holes at arbitrary locations. In another GAN stabilization technique, we 

propose a deep multi-resolution path architecture to robustly complete masked images. 

Specifically, we employ a deep network for each scale to increase the receptive field 

and recover high-frequency information from several input resolutions. Each path 

contains a deep network without downsampling to keep original image details. We 

concatenate the feature maps of previous and current network paths to ensure local and 

global image consistency. 

1.3. Dissertation Outline 

We organize the remainder of this thesis as follows.  In Chapter 2, we introduce 

some core concepts about GANs and their variants. Besides, we review the most 

important traditional and deep learning-based image inpainting. We propose the image 

inpainting using scene constraints in Chapter 3. Efficient texture-aware multi-GAN for 

image inpainting is introduced in Chapter 4. We present the learning to inpaint by 

progressively growing the mask regions in Chapter 5 and the image inpainting using 

deep multi-resolution paths and adaptative loss functions in Chapter 6. We compare 

our proposed approaches against each other and propose a combination of them in 

Chapter 7. Finally, Chapter 8 concludes this thesis, discusses the limitations of our 
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methods and describes future works. The Appendix includes supplementary materials 

for Chapter 3, Chapter 4 and Chapter 7. 
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2. BACKGROUND 

This chapter presents an overview of several concepts relevant to GANs within 

the context of the image inpainting task. We explore the related GANs-based 

architectures and loss functions in the first section. Traditional and current learning-

based state-of-the-art image inpainting methods are discussed in the second section. 

We note that the reader needs to have a basic understanding of computer vision 

problems and terminologies. Also, we assume that deep learning techniques, such as 

feed-forward, convolutional neural networks, activation functions, optimizers, basic 

loss functions and other terminologies are known. We encourage the reader to learn 

the fundamentals of deep learning in [23]. 

2.1. Generative adversarial networks 

Learning-based image inpainting methods optimize a deep encoder-decoder 

network to reconstruct the input image. The corrupted pixels values can be either zero, 

one or the mean pixel value of ImageNet [24]. However, encoder-decoder 

architectures produce blurry results and are often proceeded by a post-processing step 

[12]. Recently, GANs [14] are a great data distribution modeling technique. They 

achieve tremendous success in image synthesis and other complex computer vision 

problems, including video generation [25], image-to-image translation [26] and 

modulation classification [27]. The remainder of this section presents the most popular 

loss functions (NS-GAN [14] and LS-GAN [28]), training approaches (Progressive 

GAN) and architectures of GANs (Image-to-image translation). 

2.1.1. NS-GANs 

Proposed by [14], GAN is an emerging technique for learning complex data 

distributions. It consists of two networks competing against each other: the generator 

aims to generate real-looking images from a latent distribution (Gaussian). The 

discriminator tries to distinguish between real and synthesized images. The networks 

optimize different parameters simultaneously to reach their objectives. The generator 

learns indirectly from samples by updating its parameters based on the feedback of the 

discriminator (Figure 2.1). However, training GANs is very hard due to the 
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simultaneous optimization of different objectives and parameters. The discriminator 

and the generator update their parameters based on the loss functions described in 

(2.1) and (2.2), respectively. 

𝐿𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = min
𝐷

𝐸𝑥~ℙ𝑟[−log⁡(𝐷(𝑥))]

+ 𝐸z~ℕ(0,1)⁡[−log⁡(1 − ⁡𝐷(G(z)))] 
(2.1) 

𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 = min
𝐺

𝐸z~ℕ(0,1)⁡[−log⁡(𝐷(G(z)))] (2.2) 

Where: 

• ℙr is the real data distribution. 

• ℕ(0, 1)⁡is the unit Gaussian distribution. 

• D is the discriminator network (differentiable) function.  

• G is the generator network (differentiable) function. 

 
 

Figure 2.1: Generative adversarial network architecture. 

2.1.2. LS-GAN 

Despite its improvement in image synthesis over VAEs [29], generated samples 

of NS-GAN lack realism. This problem is due to the cross-entropy loss of the 

discriminator that leads to vanishing gradients. The latter occurs when the generator 

sees synthesized images on the correct side of the decision boundary but are still far 

from real data. Figure 2.2 illustrates the behaviors of the loss functions (NS-GAN [14] 

and LSGAN [28]), where the decision boundary needs to go across the real distribution 

for successful training. 
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Figure 2.2: Illustration of different GAN losses. 

The cross-entropy loss function gets a small error when updating the generator 

using fake samples (magenta-colored) because they are on the correct side of the 

decision boundary. In contrast, the LSGAN loss forces the generator to synthesize 

samples as close as possible to the decision boundary. The LSGAN loss functions for 

the discriminator and the generator update are defined in (2.3) and (2.4): 

𝐿𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = min
𝐷

𝐸𝑥~ℙ𝑟[(𝐷(𝑥) ⁡− ⁡1)2] + 𝐸z~ℕ(0,1)⁡[𝐷(G(z))
2] (2.3) 

𝐿𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 = min
𝐺

𝐸z~ℕ(0,1)[(𝐷(G(z)) ⁡− ⁡1)2] (2.4) 

[30] showed that NS-GAN minimizes the Jensen-Shannon divergence between real 

and fake data distribution, while the LSGAN minimizes the Pearson divergence. 

However, there is no correlation between the loss value and the training convergence, 

which means there is no way to know if the training is complete. Also, it suffers from 

mode collapse in which the generator ignores most of the variations in the data. A 

solution is to balance the generator and the discriminator training giving a lower bound 

on the loss to avoid mode collapse and apply some random noise to real images. 

2.1.3. Progressive growing of GANs 

[22] create a novel network architecture that generates high-resolution images of 

good quality with realistic textures. Furthermore, the training time is speed-up and 

become stable. The intuition is that synthesized images can be easily identified as fake 

by the discriminator. Hence the generator needs to generate samples of fine details, 

which is difficult in the early training stages. To approach this problem, they 

progressively increase image resolution by smoothly adding more layers to the 
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generator and the discriminator, as illustrated in Figure 2.3. This approach lets the 

generator learn the global structure of the image and progressively shift the distribution 

to finer details rather than learning everything at once. 

 
 

Figure 2.3: Progressive growing of GANs architecture. 

2.1.4. Image-to-image translation using GANs 

[26] used GANs in a conditional setting, where the input and the output are from 

image domains A and B, respectively. Examples include semantic maps to realistic 

photos, map to aerial images, sketch to faces, etc. They employ two loss functions: the 

first one is a reconstruction loss which minimizes the distance of the output, and the 

ground truth images of domain B using an L1 or L2 loss. The second one is an 

adversarial loss, where the discriminator distinguishes real from generated images. 

The latter pushes the distribution of the generator to the distribution of domain B. In 

other words, the discriminator acts as a customized loss function for the desired task 

leading to different results in different translation tasks. Figure 2.4 shows the image-

to-image translation architecture, where the generator (G) takes the image from 

domain A and generates an image of domain B. The discriminator (D) takes real and 

fake images from domain B. 
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Figure 2.4: An image-to-image translation architecture. 

2.2. Image inpainting methods 

Image inpainting approaches in the literature can be principally divided into two 

major groups: conventional and learning-based. The former one includes diffusion-

based and patch-based techniques that exploit the information around the masked 

region to fill in the corrupted image. The second group predicts the image structure 

and texture in an end-to-end manner using generative models. 

2.2.1. Conventional image inpainting 

[31] jointly interpolates the image gray levels and gradient directions to extend 

the isophote lines into the holes of missing data. [32] uses global image statistics like 

the histogram of local features to build a distribution, then inpaint the masked regions 

by finding the most probable image given the boundary and the distribution. These 

approaches manipulate narrow holes with simple textures. However, they generate 

visually significant artifacts and noisy patterns for large missing areas. 

In contrast, patch-based methods handle relatively significant holes by extracting 

low-level features of the uncorrupted regions and searching the closest patches in a 

dataset to paste them into the missing pixels [10].  

Patch-Match [8] is the first study that finds the approximate nearest neighbor 

matches between image patches. This approach has high memory and computation 

cost since it iteratively explores all the samples of the dataset. Subsequently, several 

methods are proposed to reduce memory usage, speed up the running time and improve 

the quality of the synthesized content. [9] generalizes the Patch-Match algorithm using 

more nearest neighbors, search across different scales and rotations, and matches many 
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descriptors and distance metrics. After that, image melding [33] integrates image 

gradients into the distance metric between patches. Despite the continuous efforts of 

the researcher of the computer vision community, patch-based approaches tend to 

produce significant artifacts [10]. They show global inconsistencies in complex scenes 

where the overlapped objects and non-repetitive patterns appear. We can explain this 

by that these methods do not understand the global semantic of the image since it does 

look for high-level features across patches. Furthermore, they cannot generate patches, 

which are not present in the image. 

2.2.2. Deep learning inpainting 

Recently deep learning-based (DL) methods have outperformed traditional 

methods and generate plausible images using GANs. These results come as no surprise 

since DL methods have improved solutions to many challenging computer vision 

tasks, including image-to-image translation [34][26] and object recognition [35]. In 

the context of image inpainting, learning-based methods benefit from the fast 

improvements of deep neural networks (DNNs) and GANs [14] to learn the image 

semantic from large-scale datasets [36][37][38]. These methods directly predict the 

missing pixel values using encoder-decoder architectures. 

Context encoder [11] is one of the earliest methods that use GANs to complete 

rectangular masked regions in an image. However, the generated images of this 

approach lack global consistency and show many artifacts around the holes. To address 

this limitation, [12] extends it using a global and a local discriminator to ensure general 

image coherence and local image consistency. The drawback of this technique is the 

need for a post-processing step to guarantee the color coherency around square holes. 

It uses Poisson Image blending [39] that increases the usage of computational 

resources.   

Another category replaces the postprocessing step with a refinement network 

that employs the CAM to learn features from image patches surrounding the missing 

region [19].  In other words, it explicitly attends to related feature patches at distant 

spatial locations to enhance semantic consistency. However, it exhibits blurriness and 

does not ensure pixel continuity around rectangular regions. This issue was addressed 

by [21] that can handle free form masks by adding a coherent semantic attention layer 

to the refinement network. However, this method is time-consuming since it performs 
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complex operations requiring high computational resources. [1] reduces the number of 

the parameters using a squeeze-and-excitation [40] residual network in both generator 

and discriminator. Besides, it proposes a joint context-awareness loss to generate more 

realistic textures.  However, it misses fine-grained textures in large corrupted regions.  

Other approaches handle irregular masks and address the artifacts problem 

without using adversarial learning. [15] uses a stack of partial convolution layers and 

mask updating steps to perform image inpainting using an autoencoder without 

adversarial learning. The intuition was that regular convolutions treat valid pixel 

values and masked values similarly, while partial convolutions are conditioned only 

on non-masked pixels. In other words, it employs an automatic mask updating 

mechanism of the partial convolution layers that eliminate substituting pixels and use 

only valid pixels. This architecture demonstrates the effectiveness of training image 

inpainting models on irregularly shaped holes. Yet, it exhibits artifacts leading to 

unrealistic textures and structures. [41] achieves competitive results using a fusion 

block that generates a flexible alpha composition map to combine corrupted and non-

corrupted pixels. Also, it uses UNet [42] architecture embedded with the proposed 

fusion blocks to handle nonharmonic region boundaries. [13] employs global and local 

discriminators to build a fusion network that produces semantically coherent images. 

Other recent methods apply curriculum learning (CL) techniques [43] to simplify 

the image inpainting task and stabilize the training of GANs. In another strategy, [44] 

divides the inpainting task into multiple phases under which each one fills in a part of 

the entire curriculum. Another work [38] gradually reconstructs the structure of the 

image (edges) with the corresponding visual features. 

More recently, many-stage networks have been introduced to solve structure and 

texture problems. To reduce the complexity of the image inpainting and obtain realistic 

results, [45] utilizes multiple latent codes to describe the high dimensional distribution 

of the images. It divides the inpainting task into content inference and style imitation. 

[46] preserves the foreground objects in overlapped scenes using three stages: contour 

detection, contour completion and image completion. [17] divides the inpainting 

problem into two phases. The first one recovers the edges, and the second one uses 

that structure information to help the completion network to estimate the final image. 

[47][18] use the segmentation labels to guide the structure prediction of the missing 

region. [3] uses gated convolution layers in the coarse network and a CAM in the 

refinement network to generate the final image. GC is a hard-gating single-channel un-
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learnable layer multiplied to input feature maps and has a dynamic feature selection 

mechanism for each channel and each spatial location. Also, they add edges as an 

additional input (a sketch) to the coarse network to give the user the ability to 

interactive editing. 

We note that all the mentioned methods estimate the additional information from 

the corrupted image, which lacks global structure and may include semantically 

inconsistent content. Furthermore, they aim to recover the high-frequency information 

in the image or preserve the generated object boundaries without input constraints. 

[20] is also a coarse-to-fine architecture that uses a refinement generator with multi-

scale discriminators to synthesize smooth images. However, attention layers 

significantly increase the computational complexity and speed down the inference 

time of  [20][3]. Reducing the model size without affecting the quality of the generated 

images is desirable. In our thesis, we tackle this problem and build effective image 

inpainting methods that ensure fine-grained textures and correct structures. 

Meanwhile, the inference time should be reduced by eliminating complex operations 

such as CAM and perceptual losses. 

2.3. Quality assessment techniques 

In this section, we investigate several image quality assessment metrics: Fréchet 

Inception Distance (FID), Inception Score (IS), Peak Signal-to-Noise Ratio (PSNR) 

and Structural Similarity Index Measure (SSIM). 

2.3.1. Inception Score (IS) 

The IS [48] metric measures the quality of the generated images based on their 

diversity and quality. The intuition is that when a human examines a photo, he/she 

can confidently determine what is in there (saliency). Also, when a human looks at a 

set of images would say that it has lots of objects (diversity). The overall equation is 

defined in (2.6), where the saliency is expressed by p(y|x), meaning that the 

distribution of classes for any individual image should have low entropy. The 

diversity is expressed by p(y), meaning that the overall distribution of classes across 

the generated images should have high entropy (absence of dominating classes). The 

KL divergence (2.5) is a measure of, on average, how different is the score distribution 
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for a generated image from the overall class balance.  Higher scores are better, 

corresponding to a larger KL-divergence between the two distributions [49]. 

𝐾𝐿(𝑃||𝑄) ⁡= ⁡∑𝑃(𝑖)𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)
𝑖

 2.5) 

𝐼𝑆(𝑋) ⁡= ⁡𝑒𝑥𝑝(𝐸𝑥[𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦))]) (2.6) 

2.3.2. Fréchet Inception Distance (FID) 

The FID [50] metric improves image assessment over the IS score by 

comparing the statistics of synthesized to real images. It uses the Fréchet distance 

between two multivariate Gaussians as defined in  2.7): 

𝐹𝐼𝐷⁡ = ⁡ ‖𝜇𝑟 ⁡− ⁡𝜇𝑔‖
2
⁡+ ⁡𝑇𝑟(∑𝑟 ⁡+ ⁡∑𝑔 ⁡− ⁡2√∑𝑟∑𝑔)  2.7) 

Where: Xr~ℕ(μr, ∑r) and Xg~ℕ(μg, ∑g)⁡are the 2048-dimensional activations 

of the Inception-v3 ‘pool3’ layer for real and generated samples, respectively. Lower 

FID is better, corresponding to more similar real and generated samples as measured 

by the distance between the distributions of their activations [49]. 

2.3.3. PSNR 

Peak signal-to-noise ratio (PSNR) is one of the widely used image quality metrics 

to evaluate compression and image inpainting methods. It calculates the ratio between 

the maximum possible powers of a signal and the power of distorted noise (2.8). If the 

reconstructed and the original image match, the score should be high and vice-versa. 

𝑃𝑆𝑁𝑅(𝑥, 𝑦) ⁡= ⁡10⁡ ×⁡ log10(
2552

𝑀𝑆𝐸(𝑥, 𝑦)
) (2.8) 

2.3.4. SSIM 

The Structural Similarity Index (SSIM) quantifies the image quality of the proceed 

image based on the ground truth by measuring the perceptual difference between them. 

Unlike MSE and PSNR that estimate pixel by pixel errors, SSIM considers the 
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dependencies between pixels based on their spatial locality, which expresses valuable 

information about the structure of the objects in scenes. Thus, it becomes one of the 

fundamental metrics for many applications, such as compression, deblurring and 

inpainting. SSIM is defined in (2.9). 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) ⁡= ⁡
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥 + 𝜇𝑦 + 𝑐1)(𝜎𝑥 + 𝜎𝑦 + 𝑐2)
 (2.9) 

2.4. Summary 

We devote this chapter to a brief overview of deep learning techniques for image 

inpainting. In Section 2.1, we have mainly focused on the GANs architecture and loss 

functions, which are essential to understand the rest of the thesis. Extensive 

presentation and more details of the field can be found in this excellent book [24]. In 

Section 2.2, we have introduced deep learning-based image inpainting, and we explain 

the difference between them and traditional methods such as diffusion-based and 

patch-based. We discuss the advantages and drawbacks of the presented approaches 

and the remaining challenges in the field that will be addressed in Chapter 3, Chapter 

4, Chapter 5 and Chapter 6. Although GANs fit the inpainting problem, they still have 

difficulties synthesizing coherent structures and fine-grained textures. In Section 2.3, 

we have presented the fundamental metrics to quantify the performance of image 

inpainting methods. 
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3. IMAGE INPAINTING USING SCENE 

CONSTRAINTS 

3.1. Introduction 

A robust image inpainting approach should generate images with correct 

structure and realistic texture details. Traditional methods extract low-level features 

from the valid pixels to match and paste patches [8][9][10]. However, these methods 

do not synthesize plausible content in complex scenes where non-repetitive patterns 

appear. Furthermore, they have a high computational overhead due to their iterative 

nature. On the other hand, early deep convolution learning-based methods capture the 

image semantic using GANs that map the corrupted image to a visually realistic one 

in an end-to-end manner. 

Although learning-based methods achieve plausible results, they suffer from 

texture artifacts and structure preservation problems. These failures especially appear 

in the boundaries of the objects where the model usually completes the masked regions 

using the predicted dominant background and does not preserve the semantics of the 

objects [16]. We can explain this by that most of the current methods assume that the 

image texture and semantic can be learned implicitly by CNNs without any further 

supervision. Therefore, they do not provide any additional information to the model. 

Recent GAN-based approaches address these limitations by breaking down the 

inpainting problem into two or more stages, and they provide additional information 

to the model. [17][3][16] divides the inpainting problem into two tasks. The first one 

recovers the edges from the corrupted image, and the second stage estimates the fine 

image. However, the edges are not enough to ensure realistic colors and boundaries. 

[47] uses the segmentation labels to guide the structure prediction of the missing 

regions. Using only this information is not sufficient since one segmentation label can 

represent several textures. [46] employs an image contour network to preserve the 

foreground objects in overlapped scenes. These approaches still suffer from a lack of 

combined high-frequency information in the missing regions. 

While the previously mentioned methods focus on using a single aspect of the 

image, we predict both the segmentation labels and the edges to use them as additional 

constraints to help the network to generate the correct structure and texture in the final 

image. In other words, we use the segmentation labels to guide the generator to 
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complete the boundaries and understand the object classes. Furthermore, we use edges 

to provide high-frequency information in structured scenes. Unlike [18][47], we 

predict segmentation labels from the coarse image that contains more accurate 

structure information than the corrupted image. Furthermore, we use both the coarse 

image and segmentation labels to estimate the edges, which is not the case in [17] that 

predicts it directly from the corrupted image. Finally, we merge the coarse image, the 

estimated segmentation labels, and edges information to generate the fine-grained 

image. Experiments demonstrate that dividing the inpainting problem into multiple 

stages helps the networks to generate competitive results. To keep a small number of 

parameters, we use small networks for all the predictors. To stabilize our model and 

reduce the training time, we adopt the curriculum resizing technique [51] to image 

inpainting. The training process starts with small resolution images, then gradually 

increases the problem difficulty by feeding images with higher resolutions. To the best 

of our knowledge, our work is among the first to enforce both structure and texture 

constraints to restrict the inpainting task and generate images with realistic texture and 

correct semantic. We can summarize our contributions as follows: 

• We combine the segmentation labels and the edges to explicitly constrain the 

image inpainting task and preserve the object structure and textures.  

• We adopt the curriculum resizing technique to the image inpainting task to reduce 

the training time. 

• We evaluate the proposed method on the MSCOCO [52] and the CelebHQ [53] 

datasets. The experiments prove that our model is computationally efficient than 

several state-of-the-art methods. Meanwhile, it can generate realistic images and 

obtain competitive performance. 

3.2. Approach 

We propose multi-stage modeling of image inpainting for a specified domain. 

Our approach successfully fills in missing parts of an image while estimating the 

underlying image constraints such as edges and segmentation labels. These constraints 

help in describing the scene semantics. 
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Figure 3.1: The overall architecture of the SC model. 

3.2.1. Architecture  

GAN-based image inpainting methods use a generator and a discriminator to fill 

in the missing regions in an image [14]. The generator is composed of four stages 

(Figure 3.1). The first one takes as input the corrupted image and the mask, then 

outputs a coarse image. The second estimator generates the image segmentation labels 

using the coarse image. The latter depicts the visual structure of the missing regions. 

Note that the ground truth segmentation labels are required to supervise the task. 

Alternatively, if not available, we can use a pretrained segmentation labels estimator. 

The third network estimates the edges in the image using the coarse image and the 

segmentation labels. Using the latter ones at this stage is intended to simplify the task 

for the edge estimator since segment boundaries tend to overlap with image edges. In 

the last phase, the refinement network employs the coarse image, the segmentation 

labels and edges to generate the final image. 

We adopt the well-known UNet [42] architecture in the first three stages. We 

divide the number of parameters in each layer by 2 for the coarse image estimator and 

by 4 in the segmentation labels and edges estimators. We use a modified refinement 

network of [54][3] in the last stage. We set the dilation factors in the middle block to 

1, 2, 3 and 4 to avoid the gridding problem. This problem is due to the use of the same 

dilation factor for all the successive convolution layers. The latter may cause 

discontinuous convolution kernels and inconsistency of local information [54]. We use 

dense connections between all the layers to reuse the previous features.  

We remove the CAM layer since it increases the floating-point operations due 

to the high-resolution tensor matrix multiplications and SoftMax activation functions. 
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Furthermore, it can lead to semantic irrelevance resulting in pixel discontinuity of the 

generated regions. We investigate different architectures in the refinement network to 

find the best design that reduces the number of parameters without affecting the 

inpainting performance. We focus on this step to improve the model efficiency and 

decrease the memory resource requirements. We describe the architecture in Table 3.1. 

We use the PatchGAN discriminator [26] that outputs a tensor of real and fake values 

to criticize different patches in the image. 

Table 3.1: Architecture of the SC refinement network. 
 

Block Layer Dim Kernel Stride Dilation 

Encoder 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

32 

64 

128 

128 

128 

3 × 3 

4 × 4 

4 × 4 

3 × 3 

3 × 3 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

Middle 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

128 

128 

128 

128 

3 × 3 

3 × 3 

3 × 3 

3 × 3 

1 

1 

1 

1 

1 

2 

3 

4 

Decoder 

Conv2D 

Conv2D 

Nearest2D 

Conv2D 

Nearest2D 

Conv2D 

Conv2D 

128 

128 

- 

64 

- 

32 

3 

3 × 3 

3 × 3 

- 

3 × 3 

- 

3 × 3 

3 × 3 

1 

1 

- 

1 

- 

1 

1 

1 

1 

- 

1 

- 

1 

1 

3.2.2. Semantic maps and edges as constraints  

Most of the GAN-based inpainting methods assume that the network can 

implicitly learn the image structure and texture, which is a challenging optimization 

problem for neural networks.  Recent approaches provide additional information such 

as the segmentation labels [47][18] and the edges [3][17] to explicitly guide the 

network to generate structurally plausible content with realistic textures. However, 

these methods estimate the segmentation labels or edges from the corrupted image, 

which seem to wash away most of the information since several details and structures 



 

23 

disappear in the missing regions. Different from [47][18], we estimate the 

segmentation labels from the coarse image, which contains more semantically correct 

content. We estimate the edges from the segmentation labels and the coarse image. 

This composition helps edge estimation since the coarse image contains better global 

information structures than the corrupted image. Meanwhile, the segmentation labels 

identify many fundamental edges in the scenes. Our network exploits all the previous 

predictions to synthesis high-quality images with global semantic consistency, smooth 

boundaries, and realistic texture details. 

3.2.3. Curriculum resizing 

Recent inpainting methods use CL techniques to stabilize the GAN training and 

reduce the learning difficulty in large holes by progressively growing the mask regions 

[55], the image structure [38] and the fine image [56]. However, all the mentioned 

methods train the models on high-resolution images, which drastically increases the 

training time. Furthermore, training GANs on low-resolution images proves to be 

stable [53]. Inspired by this observation, we adopt the curriculum resizing technique 

to the image inpainting task to decrease the training time without much effect on the 

inpainting performance. Most of the image inpainting training methods employ only 

high-resolution images to learn the mapping function between the corrupted image and 

ground truth image. In our work, we propose to divide the training into several steps, 

such that each one trains the model on a specific resolution. As seen in Figure 3.2, we 

assign most of the training time to smaller images to speed up training and reduce the 

usage of computational resources. We effectively estimate missing regions by training 

on low-resolution images to increase the receptive field of convolution filters. 

However, on high-resolution images, the discriminator network can easily distinguish 

high-frequency information of ground truth samples from the generated ones leading 

to an easy rejection and unstable training. In contrast, low-resolution images do not 

contain many details avoiding GAN failure and mode collapse. Since our network is 

fully convolutional, we do not have any problem feeding different image sizes. 
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Figure 3.2: Illustration of the progressive resizing approach. 

3.2.4. Loss functions 

Let 𝐼𝑔, 𝐼𝑚, and 𝐼𝑒, be the ground truths for the image, the mask, the segmentation 

labels, and the edge, respectively. Also, let 𝐺𝑐(. ), 𝐺𝑠(. ), 𝐺𝑒(. )⁡𝑎𝑛𝑑⁡𝐺𝑓(. )⁡be the coarse 

image estimator, the segmentation labeler, the edge estimator, and the refinement 

network, respectively. The coarse image 𝑂𝑐, the segmentation labels 𝑂𝑠, the edges 𝑂𝑒 

and the fine image 𝑂𝑓 are predicted using 3.1), 3.2), 3.3), and 3.4), respectively. 

𝑂𝑐 = 𝐺𝑐(𝐼𝑔 × 𝐼𝑚,𝐼𝑚,) 3.1) 

𝑂𝑠 = 𝐺𝑠(𝑂𝑐) 3.2) 

𝑂𝑒 = 𝐺𝑒(𝑂𝑐⁡, 𝑂𝑠) 3.3) 

𝑂𝑓 = 𝐺𝑓(𝑂𝑐⁡, 𝑂𝑠, 𝑂𝑒) 3.4) 

L1 loss: we measure the error between the ground truth image and the predictions in 

(3.5) : 

𝐿𝑟𝑒𝑐 = ‖𝑂𝑠 − 𝐼𝑔‖1 +
‖𝑂𝑠 − 𝐼𝑧‖1 + ‖𝑂𝑒 − 𝐼𝑒‖1 + ‖𝑂𝑓 − 𝐼𝑔‖1 (3.5) 

Adversarial loss: we optimize the LSGAN [28] adversarial loss for each resolution as 

defined in (3.6). 
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𝐿𝑑𝑖𝑠 =⁡E [(D(𝐼𝑔) − 1)2] + E[D(𝑂𝑓)
2] 

𝐿𝑎𝑑𝑣 =⁡E [(D(𝑂𝑓) − 1)2] 
(3.6) 

Overall loss: we use a weighted sum of the reconstruction and the adversarial. The 

choice of hyper-parameters in the loss function plays a significant role in the 

improvement of the image inpainting performance. We select the weights empirically 

by conducting a set of experiments and changing the hyper-parameters for each loss 

component. We give a weight 𝛾𝑎𝑑𝑣=0.1, 𝛾𝑟𝑒𝑐==1 for the adversarial loss and the 

reconstruction loss, respectively. The overall loss is defined in (3.7): 

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝛾𝑎𝑑𝑣 × 𝐿𝑎𝑑𝑣 + 𝛾𝑟𝑒𝑐 × 𝐿𝑟𝑒𝑐 (3.7) 
 

3.3. Experimental evaluation 

3.3.1. Datasets and masks 

We experiment on two datasets that contain images with their corresponding 

segmentation labels. The first one is CelebAMask-HQ [53][57] which has 30K highly 

quality faces of size 1024 × 1024 with a large variation in facial characteristics such 

as the shape and the color. Its segmentation labels are 19 classes, including facial 

associates and components such as skin, nose, eyes, etc. The second dataset is the 

MSCOCO [52] that has 118K training images and 5K test images with 80 different 

categories. This dataset is very suitable for our case since it contains crowded scenes 

with a high change in texture and color. Most of the users of image inpainting 

applications interact using arbitrary shapes. Hence, recent deep learning-based 

inpainting methods [3][17][47][46] utilize irregular mask sizes to train their models. 

We use [58] to train our model, which contains random variable masks covering 

diverse parts of the image. In evaluation time, our masks are divided into four 

categories covering 10 − 20%, 20 − 30%, 30 − 40% and 40 − 50%⁡of the image. 

3.3.2. Implementation details 

In this part, we describe in detail our training procedure and hyperparameters 

settings. We use Pytorch to implement the proposed method using CUDA v10.1 and 
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cuDNN v7.6.4. We train the model in an end-to-end manner for 50 epochs using a 

batch size of 8. It takes three days to converge on a single NVIDIA TITAN X GPU. 

For updating weights, we use Adam optimizer [59] with hyperparameters⁡𝛼 =

0.5⁡and⁡𝛽 = 0.99, respectively. We set the learning rate of the first three stages to 10−3  

and 10−4for the refinement stage. Since GANs are very sensitive to high learning rates, 

we detach the coarse image, segmentation labels and edge predictions from their 

networks. Hence, the backpropagation from the adversarial loss does not affect the 

weights in their corresponding networks.  After observing an improvement in the 

segmentation labels and the edge predictions, we decrease the learning rate of the first 

three stages to 10−4, and we attach the coarse, segmentation labels and edge 

predictions. [17] shows that the 𝜎⁡hyper-parameters in the Canny edge detector have 

an important impact on the inpainting performance. We use 𝜎 = 2 based on their 

ablation studies. 

3.4. Results and discussion  

We qualitatively and quantitatively compare our approach against five recent 

image inpainting methods. Contextual Attention (CA) [19] uses a local-patch attention 

mechanism in the refinement network to improve the coarse image. Edge Connect 

(EC) [17] employs edges as additional information to guide the model to generate 

plausible structures. Gated Convolutions (GC) [3] produce promising results since it 

uses both the gated convolutions layers and edge information. Structure-flow (SF) [16] 

preserves robust structure and texture using edges predictor and appearance flow 

generator, respectively. Coherent Semantic Attention (CSA) [21] representing the 

semantic relevance between the missing region features. In the CelebAMask-HQ 

dataset [53][57], we use the pre-trained models of compared state-of-the-arts, which is 

another reason for selecting these approaches. For a fair comparison, we train all the 

models for 50 epochs on the MSCOCO [52] dataset. Furthermore, we use the same 

masks and test splits in all the experiments. 

3.4.1. Qualitative results 

To evaluate our method, we report qualitative comparison results on the 

MSCOCO dataset [52]. As seen in Figure 3.3, CA [19] generates significant artifacts 
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since it does not predict any additional information to guide the network. GC [3] and 

EC [17] can recover the global structures of the image, but they exhibit inconsistencies 

between the corrupted and the valid pixels. Despite their promising results, SF [16] 

and CSA [21] present color discontinuities in some cases. Our model generates both 

meaningful structures and realistic textures for missing regions. We can explain this 

by that the estimated segmentation labels contribute significantly to the generation of 

correct boundaries. In particular, estimating edges from the coarse image preserves 

more structures than estimating them from the corrupted image. Also, the combination 

of the two auxiliary information guides the model to synthesis plausible contents. To 

further evaluate our approach, we present Figure 3.4 that shows visual comparisons 

with the other state-of-the-art methods on the CelebAMask-HQ dataset [53][57]. The 

images generated by CA [19] suffer from artifacts and distortions. The performance of 

GC [3] is much better since it can synthesis smoother images. However, artifacts still 

exist around the borders of the face components (i.e., eyes, mouth, and nose). CSA 

[21] and our method show very competitive results and generate more natural images 

with fewer artifacts around the boundaries. 

 
 

Figure 3.3: Qualitative comparison of our SC model on MSCOCO. 
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Figure 3.4: Qualitative comparison of our SC model on CelebHQ. 

3.4.2. Quantitative results 

It is well known that image inpainting tasks lack accurate evaluation metrics 

[19]. Nevertheless, to quantify the performance of the proposed approach, we use 

commonly used inpainting metrics, including MAE, SSIM and PSNR following 

[17][16]. Furthermore, we investigate some representative blind image quality metrics 

that evaluate the generated image without the ground truth. Precisely, they calculate 

the no-reference image quality score for an image using the Naturalness Image Quality 

Evaluator (NIQE) [60], the distortion Type Classification and Label Transfer (TCLT) 

[61] and the Blind/Reference-less Image Spatial Quality Evaluator (BRISQUE) [62]. 

As seen from Table 3.2, CA [19] performs the worst among the six methods. EC [17] 

exhibits better performance than CA in all the metrics. GC [3] and SF [16] achieve 

competitive results and very close scores. CSA [21] reports the best score in the 

compared state-of-the-art methods. Our approach outperforms all the state-of-the-art 

methods on all the metrics, and with different mask sizes (10 − 20%, 20 − 30%, 

30 − 40% and 40 − 50%). We can explain this by the fact that combining 

segmentation labels and edges supervise the model to achieve high quantitative 

performance. Furthermore, predicting them from the coarse image tends to get a better 
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estimate as opposed to doing the estimation directly from the corrupted image. To 

further evaluate our approach, we report a quantitative comparison of the 

CelebAMask-HQ dataset [53][57]. Table 3.3 lists the evaluation results for several 

mask sizes. Our method compares very well against three existing methods. Similar to 

the MSCOCO dataset [52], the lower performance for CA [19] is expected since it 

does not use any additional constraints such as boundary edges or object segmentation 

labels. The proposed method outperforms GC [3] in all the metrics and has very close 

scores to CSA [21] that uses a huge model with complex mechanisms. 

Table 3.2: Quantitative comparison of the SC model on MSCOCO. 
 

 Mask size CA EC GC SF CSA SC 

𝑀𝐴𝐸− 

10-20% 

20-30% 

30-40% 

40-50% 

0.014 

0.030 

0.042 

0.068 

0.013 

0022 

0.032 

0.052 

0.012 

0.020 

0.031 

0.050 

0.013 

0.020 

0.030 

0.048 

0.012 

0.019 

0.028 

0.045 

0.011 

0.018 

0.025 

0.041 

𝑆𝑆𝐼𝑀+ 

10-20% 

20-30% 

30-40% 

40-50% 

0.953 

0.880 

0.819 

0.679 

0.956 

0.925 

0.888 

0.774 

0.961 

0.930 

0.893 

0.784 

0.960 

0.933 

0.895 

0.788 

0.963 

0.937 

0.901 

0.796 

0.971 

0.948 

0.920 

0.825 

𝑃𝑆𝑁𝑅+ 

10-20% 

20-30% 

30-40% 

40-50% 

26.63 

23.48 

21.48 

18.62 

28.72 

26.08 

24.23 

21.12 

28.82 

26.17 

24.29 

21.15 

28.90 

26.24 

24.37 

21.18 

29.12 

26.43 

24.68 

21.71 

30.38 

27.61 

25.76 

22.67 

𝑁𝐼𝑄𝐸− 

10-20% 

20-30% 

30-40% 

40-50% 

5.83 

6.05 

6.44 

6.89 

5.36 

5.54 

5.76 

6.15 

4.90 

5.21 

5.31 

5.42 

4.87 

5.17 

5.33 

5.49 

4.56 

4.89 

5.06 

5.34 

4.04 

4.31 

4.84 

5.11 

𝑇𝐶𝐿𝑇− 

10-20% 

20-30% 

30-40% 

40-50% 

24.52 

25.86 

27.03 

28.61 

22.94 

24.09 

25.37 

26.82 

22.43 

23.69 

26.96 

26.33 

21.87 

22.93 

24.04 

25.87 

21.36 

22.47 

23.66 

25.19 

20.81 

21.71 

22.81 

24.31 

𝐵𝑅𝐼𝑆𝑄𝑈𝐸− 

10-20% 

20-30% 

30-40% 

40-50% 

25.05 

25.35 

25.87 

26.50 

24.03 

24.66 

25.05 

25.66 

23.29 

23.78 

24.34 

25.16 

23.74 

23.87 

24.25 

25.12 

23.16 

23.07 

23.62 

24.36 

22.03 

22.81 

23.36 

24.15 
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Table 3.3: Quantitative comparison of the SC model on CelebHQ. 
 

 Mask size CA GC CSA SC 

𝑀𝐴𝐸− 

10-20% 

20-30% 

30-40% 

40-50% 

0.014 

0.024 

0.033 

0.052 

0.009 

0014 

0.021 

0.031 

0.005 

0.011 

0.018 

0.030 

0.007 

0.012 

0.017 

0.029 

𝑆𝑆𝐼𝑀+ 

10-20% 

20-30% 

30-40% 

40-50% 

0.953 

0.918 

0.881 

0.796 

0.982 

0.968 

0.950 

0.899 

0.983 

0.973 

0.958 

0.903 

0.986 

0.975 

0.959 

0.900 

𝑃𝑆𝑁𝑅+ 

10-20% 

20-30% 

30-40% 

40-50% 

28.55 

25.54 

23.58 

21.03 

32.53 

29.73 

27.80 

25.05 

33.33 

30.56 

28.67 

25.41 

33.81 

30.96 

28.95 

25.85 

𝑁𝐼𝑄𝐸− 

10-20% 

20-30% 

30-40% 

40-50% 

4.93 

5.19 

5.37 

5.61 

4.76 

4.98 

5.02 

5.29 

4.47 

4.65 

4.81 

4.98 

4.23 

4.47 

4.74 

4.94 

𝑇𝐶𝐿𝑇− 

10-20% 

20-30% 

30-40% 

40-50% 

28.46 

30.15 

32..22 

34.68 

27.34 

28.63 

30.42 

32.36 

26.62 

27.92 

29.36 

31.77 

26.71 

27.39 

28.10 

29.62 

𝐵𝑅𝐼𝑆𝑄𝑈𝐸− 

10-20% 

20-30% 

30-40% 

40-50% 

23.59 

23.79 

23.90 

24.62 

22.96 

23.17 

23.75 

24.03 

21.07 

21.66 

22.21 

22.46 

21.13 

21.70 

22.18 

22.38 

3.4.3. Computation time analysis  

In addition to the qualitative and the quantitative index (MAE, SSIM, PSNR, 

NIQE, TCLT and BRISQUE) analysis, we compare the proposed approach against the 

state-of-the-art methods in terms of the number of floating-point operations in 

GFLOPS, the model parameters in millions and the computation time both on CPU 

and GPU in milliseconds. Note that the CPU is an Intel(R) Core (TM) i7-2600K CPU 

@ 3.40 GHz, and the GPU is NVidia Titan X. We can see from Table 3.4  that CA 

[19] has the least number of network parameters. However, it shows significantly 

inferior performance compared to other state-of-the-art methods (see Table 3.2 and 

Table 3.3). Furthermore, our approach presents the least number of floating points and 

CPU/GPU time. We can explain this by that our networks do not employ complex 
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mechanisms such as CAM. Although EC [17] inpainting performances are better than 

CA, it reports higher network parameters, GFLOPS and running time. Besides, it 

presents inferior inpainting performance compared to the other methods. GC [3] and 

our model are very competitive in terms of performance and the number of network 

parameters. However, our proposed approach reports the shortest running time and 

GFLOPS due to the non-use of expensive gated operations. SF [16] has comparable 

results, but the proposed method presents a better computational speed than SF, which 

has the largest GFLOPS. Despite its promising results, CSA [21] has the highest 

network parameters and running time among all the compared models. 

Table 3.4: Computational time analysis of the SC model. 
 

Model GFLOPS PARAMS (M) CPU (ms) GPU (ms) 

CA 22.4 2.9M 383 18 

EC 122.4 21.5M 704 32 

GC 39.6 4.1M 490 27 

SF 262.4 92.5M 810 36 

CSA 55.16 132M 972 180 

SC 16.4 4M 374 16 

3.4.4. Ablation studies 

We analyze the impact of each component of our model individually. We 

conduct several experiments on the CelebAMask-HQ dataset [53][57]  and show 

quantitative and qualitative results for each case. 

3.4.4.1. Intermediate outputs of the proposed method 

We conduct a set of experiments to confirm that the proposed end-to-end deep 

generative model can robustly generate the coarse image, the segmentation labels, the 

edges and the final (fine) inpainted image for the given corrupted image. We show 

examples of all the mentioned predictions in Figure 3.5. We can see that the proposed 
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approach achieves good performance in the CelebAMask-HQ [53][57] and MSCOCO 

[52] datasets. Furthermore, the estimated segmentation labels and the edges improve 

the coarse image and help to synthesis semantically correct objects with realistic 

texture details. 

 
 

Figure 3.5: Intermediate outputs of the SC approach on the CelebHQ and MSCOCO 

datasets. 

3.4.4.2. The effect of segmentation labels 

We perform two different experiments to investigate the impact of segmentation 

labels. We compare our full model with another version that employs only the 

predicted edges to guide the model. Table 3.5 shows that the first configuration yields 

higher performance proving that the two constraints explicitly lead the network to learn 

better structures and textures. 

3.4.4.3. The effect of the edges 

We analyze how our predicted edges contribute to the final image. We believe 

that the edges help to represent the image structure. To verify this, we also compare 

our full model with another version that employs only the segmentation labels to guide 

the model. The quantitative comparison in Table 3.5 indicates that the estimated edges 

considerably improve the performance of our network. Furthermore, this experiment 

proves that the edges are more crucial than the segmentation labels in our inpainting 

framework. 
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Table 3.5: Ablation studies of the SC model on the CelebHQ dataset. 
 

Methods 𝑀𝐴𝐸− 𝑆𝑆𝐼𝑀+ 𝑃𝑆𝑁𝑅+ 

Full 0.0165 0.9554 29.82 

Full w/o segmentation 0.0179 0.9511 29.46 

Full w/o edge 0.0173 0.9513 29.37 

Full w/ CL 0.0169 0.9543 29.64 

Full from corrupted 0.0176 0.8835 27.58 

 

 

3.4.4.4. Our method vs. prediction from corrupted images 

Using segmentation labels and edges to guide inpainting models has been used 

in [17][47][18]. However, no approach combines them to supervise the image 

inpainting task. Also, all the mentioned methods estimate edges and segmentation 

labels from the corrupted image. To prove the limitation of this approach, we compare 

it against our proposed method that estimates segmentation labels from the coarse 

image. Besides, it predicts the edges from the segmentation labels and the coarse 

image. As seen from Table 3.5, estimating edges and segmentation labels from a 

corrupted image decrease the performance that proves the effectiveness of the 

proposed methods. Also, Figure 3.6 illustrates that the proposed approach can identify 

segmentation labels and edges more effectively than estimating them directly from the 

corrupted image. Note that columns from left to right represent: the input image, the 

prediction from the corrupted image, our method, and the ground truths. Also, rows 

from top to down represent the segmentation labels, the edges, and the images. 

3.4.4.5. The accuracy of segmentation labels and edges predictions 

Since segmentation labels and edge estimations play a significant role in the 

proposed method, we report the quantitative results of this part, including accuracy, 

precision, recall, F1 score and Intersection over Union (IoU). We can see from Table 

3.6  and Table 3.7  that the two networks achieve plausible results. It can identify the 

edges of the corrupted regions and predict correct segmentation labels in most cases. 

Furthermore, as we did previously, we compare the proposed method with the 
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conventional version that estimates the segmentation labels and the edges from the 

corrupted images. We can see that this version reports inferior performances in all the 

metrics that prove the effectiveness of our prediction approach. 

 
 

Figure 3.6: Predictions from corrupted images vs. predictions from the SC model. 

Table 3.6: Edge prediction metrics of the SC model. 
 

 Metric From corrupted SC 

CelebHQ 

Accuracy 

Precision 

Recall 

F1 

91.46 

67.06 

79.38 

72.70 

97.02 

88.49 

81.93 

85.08 

MSCOCO 

Accuracy 

Precision 

Recall 

F1 

86.53 

62.96 

77.89 

69.63 

94.89 

84.62 

79.04 

81.73 

Table 3.7: Segmentation labels prediction metrics of the SC model. 
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 Metric From corrupted SC 

CelebHQ Accuracy 

Precision 

Recall 

F1 

IoU 

84.99 

71.58 

86.39 

78.29 

62.72 

85.09 

72.10 

87.55 

79.07 

66.48 

MSCOCO Accuracy 

Precision 

Recall 

F1 

IoU 

78.03 

68.12 

83.04 

74.84 

61.72 

80.21 

69.87 

84.39 

76.44 

63.16 

3.4.4.6. Failure cases 

Figure 3.7 shows that the performance of our method is highly dependent on the 

segmentation labels and edge predictors. We show our successful/failure predictions 

in the upper/lower figures, respectively. Specifically, each row represents the masked 

image, the ground truth image and the estimated segmentation labels, edges, and the 

final image. Note that robust segmentation labels and edge predictions help the model 

to generate high-quality images. In contrast, wrong segmentation label predictions can 

degrade the performance of our method. In other words, sparse or discontinued 

predicted edges generate low-quality images with fewer texture details. These failure 

cases especially appear in non-repetitive objects, such as accessories and clothing. This 

issue is a potential limitation of our study. However, these unsuccessful cases rarely 

occur since the end-to-end optimization of the refinement network involves weights 

updating edges, segmentation labels and coarse estimators. 



 

36 

 
 

Figure 3.7: Successful/failure predictions of the SC model. 

3.4.4.7. The effect of CL 

To show the efficiency of the proposed curriculum resizing approach, we replace 

the traditional training procedure that optimizes the parameters of the full model on a 

single resolution (256 × 256) with the CL one. While the traditional one takes three 

days to converge on a single NVIDIA TITAN X GPU, the CL training takes only one 

day. Also, Table 3.5 shows that the CL version has comparable performance to the 

common one, which is very suitable for low computational power platforms. 

3.4.5. Interactive editing 

The proposed method allows interactive drawing of the input masks for object 

removal applications. It robustly restores the missing regions with a high relevance 
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with the background. We show some examples of interactive editing in Figure 3.8. We 

remove objects with uniform backgrounds (snow and sky) and complex backgrounds 

(human skin and hair). In both cases, the generated images illustrate fine-grained 

textures and semantic consistency. 

 
 

Figure 3.8: Object removal and image editing using the SC model. 

3.5. Summary 

 This chapter proposes a GAN-based image inpainting approach that enforces 

input constraints to guide the model. Specifically, we estimate the segmentation labels 

and edges to recover consistent object boundaries and coherent structure in the 

corrupted regions. We demonstrate that combining these two estimated entities yields 

visually appealing images. Our model performs favorably against several state-of-the-

art methods on public datasets. It successfully recovers damaged pixels and removes 
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objects from scenes. The proposed curriculum resizing technique speeds up the 

training time without decreasing the performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 

4. EFFICIENT TEXTURE-AWARE MULTI-GAN 

FOR IMAGE INPAINTING 

4.1. Introduction 

Most GAN-based inpainting techniques suffer from structure preservation and 

unrealistic texture generation problems, which leads to blurry and geometrically 

distorted results. To address the issues, most of the current GAN-based inpainting 

methods employ coarse-to-fine architectures [3][17][16][18]. Specifically, the coarse 

stage predicts the initial image from the corrupted [19][20] or reconstructs the image 

structure represented in the edge [17][16], the contour [46] and the segmentation labels 

[47][18]. The refinement stage generally uses the predicted coarse image or the 

reconstructed information to generate a final plausible image. However, the 

performance of the mentioned multi-stage approaches is strongly related to the 

contour/edge/segmentation labels prediction stages. Furthermore, they require 

expensive computational resources since they optimize the parameters of two or more 

networks. Other studies employ the contextual attention mechanism (CAM) to borrow 

information from the surrounding parts [19][20]. However, CAM still fails to ensure 

feature continuities [21] and requires expensive computational resources. In addition 

to coarse-to-fine architecture and CAM, there exists another bottleneck that drastically 

increases the model capacity. Namely, training on high-resolution images, which 

involves big models with many parameters. Consequently, the training becomes 

slower and enforces smaller batch sizes due to computational and memory resource 

constraints, which decreases the performances [22].  

Motivated by these observations, we introduce a new deep generative-based 

multi-resolution image inpainting framework to speed up the running time and restore 

fine-grained textures. Our approach is composed of four successive efficient 

generators filling in four different resolutions. Specifically, the training starts with 

lower-resolution images and progressively doubles their size, such that their 

corresponding generators can exploit the previously inpainted images (Figure 4.1). 

This technique improves the model stability since training GANs on low-resolution 

images proves easier and converges faster [22]. Another main problem with direct 

high-resolution image synthesis is that the discriminator will focus on texture details. 

Hence, it can easily reject synthesized images in the early training stages. Our 
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approach drops the refinement module after the target resolution since it significantly 

increases the network size. We remedy the lack of this refinement stage by our 

proposed progressive training approach and a texture-based loss function. The latter 

adopts Local-binary-patterns (LBP) [63] to the image inpainting task. LBP is a non-

parametric texture descriptor that is widely used in computer vision tasks [64]. We 

minimize the distance between the ground truth LBP and the predicted one to enforce 

fine-grained textures in the corrupted regions. Hence, our approach does not require 

high computational resources since it neither performs complex operations (CAM) nor 

uses the refinement networks. We conduct our qualitative and quantitative experiments 

on conventional inpainting datasets Places2 and CelebHQ [53]. The results show that 

our efficient model can generate visually appealing images and outperforms current 

state-of-the-art methods. Our main contributions are as follows: 

• We present a new GAN-based image inpainting architecture that employs efficient 

progressive GANs to improve the performance and speed up the inference time. 

• We adopt an LBP-based loss function to constrain the inpainting task and ensure 

realistic texture details. 

• The experiments on Places2 [22] and CelebHQ [53] datasets exhibit competitive 

qualitative and quantitative results against current state-of-the-art methods. We 

also show the scalability of the proposed approach to other applications, such as 

blind image inpainting and image outpainting. 

4.2. Approach 

4.2.1. Multi-resolution based inpainting 

Training GANs on high-resolution images is a challenging optimization problem 

that involves millions of parameters. [22] produces low-resolution images from a latent 

Gaussian vector in the first stage. During training, it progressively adds layers to the 

generator and the discriminator to increase the image resolution. However, this 

framework is unsuitable for image-to-image translation applications since they require 

a high-resolution image as input. We introduce a GAN-based architecture for image 

inpainting that includes four progressive generators and discriminators. We train an 

encoder-decoder generator on a low-resolution image for many epochs to robustly 
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produce samples with a very close distribution to the original one. As the training 

progresses, we use the pretrained generators as the starting point for the successive 

higher-resolution generator. The latter exploits the filled-in regions of the previous 

lower-resolution images to learn the global image consistency and inpaint correct 

structures. In contrast, training GANs on high-resolution images is hard to stabilize, 

which affects the model performance. We can explain this by that, during training, the 

discriminator keeps rejecting most of the generated images since the ground truth 

image contains fine-grained texture details, which are very difficult for the generator 

to produce [22][65].  

To the best of our knowledge, the proposed architecture is one of the first studies 

that apply progressive generators and discriminators for image inpainting. [20] is a 

coarse-to-fine architecture that predicts a high-resolution coarse image and enhances 

it using multi-scale discriminators in the refinement stage. The discriminator of each 

scale criticizes the output of that resolution size and gives high gradient feedback to 

early convolution layers. However, it does not directly exploit the refined images in 

lower scales, which may still be a bottleneck for the high-resolution discriminator. The 

latter reject the generated samples easily due to high-frequency information. In 

contrast, we build our high-resolution prediction on already filled-in predictions in 

lower resolutions (Figure 4.1). In this way, the discriminator criticizes reasonable 

synthesized images that are close to ground truth samples. The proposed approach 

neither uses coarse-to-fine architecture nor an attention mechanism that significantly 

increases the model complexity in [20]. Another approach in [41] uses a UNet [42] 

architecture embedded with fusion blocks in a multi-scale manner. However, they drop 

the adversarial learning and use perceptual and style losses [66] to enforce texture 

details. Using only the former losses without adversarial learning can result in 

checkerboard artifacts since it is hard to find the best loss weights [15]. In our 

approach, we use the adversarial, reconstruction and the proposed LBP loss functions 

to enhance the image texture (see Section 4.2.3).  
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Figure 4.1: Architecture of the ETMG model. 

4.2.2. Architecture 

Using different resolutions with multiple receptive fields helps the network to 

learn the global structure of the image. As illustrated in Figure 4.1, the training starts 

with 32 × 32 resolution images. We channel-wise concatenate the corrupted image 

and the mask to feed them to their specific-resolution generator. We give the output of 

the latter and the ground truth images to the PatchGAN [26] discriminator that shifts 

the generator distribution to the real one. We use the generator network defined in 

Figure 4.2 (a). We train the generator and the discriminator until convergence. During 

training, we visualize different quality metrics and loss values.  We stop the training 

by monitoring the image quality metrics and when the visual quality of the synthesized 

images is good enough as input for the succeeding resolution.  We use the pre-trained 

generator of the 32 × 32 resolution to train the next resolution network (64 × 64). The 

network in Figure 4.2 (b) contains three sub-networks where each one takes a specific 

input. We feed the concatenation of the corrupted image and the mask to the first sub-

network. We feed the concatenation of the corrupted image and the mask to the first 

sub-network. We feed the estimated image of resolution 32 × 32 to the second sub-

network. The last sub-network takes the concatenation of the feature maps produces 

by the previous sub-networks to produce the final image (64 × 64). Similarly, we 

follow the same approach for the last two resolutions (128 × 128 and 256 × 256), 
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where each generator exploits the previously inpainted images as described in Figure 

4.2 (c) and Figure 4.2 (d). 

 
 

Figure 4.2: Input and output of the progressive generators. 

4.2.3. LBP operator for texture preservation 

LBP [63] is a nonparametric image operator that transforms an image into an 

array representing the local structure of the image by comparing each pixel with its 

adjacent pixels. LBP is a robust descriptor that can summarize the most important 

texture information in an image. Also, it shows computational simplicity and good 

performance in many computer vision and image processing applications [64]. An 

example of a 3 × 3 LBP operator is shown in Figure 4.3. LBP iterates over each pixel 

in a grayscale image to check the values of the surrounding 3 × 3 patch, whether they 

are smaller than the center pixel or not. The resulting binary number is converted to a 

decimal number and placed in the corresponding position in the LBP image. Early 

deep learning-based inpainting methods assume that the image texture and semantic 

can be learned automatically by CNNs without further supervision. Recent GAN-

based approaches demonstrate that this task is challenging and require additional 

information. [67] employs discriminative modules and class supervision to enforce 

fine-grained features. Other GAN-based inpainting approaches add [3] or predict 
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[17][16] edges to ensure realistic textures. However, choosing the correct threshold for 

the Canny edge detector [68] that can preserve the image texture for both highly 

structured and simple images is difficult in practice. Furthermore, the edges cannot 

provide sufficient texture details in many cases, such as the face skin and uniform 

backgrounds. Motivated by these observations, we investigate hand-crafted features. 

Specifically, we adopt the famous texture operator LBP [63] as a new loss function for 

image inpainting to ensure better texture learning as used in [69] for infrared and 

visible image fusion and [70] for face recognition. In particular, we minimize the loss 

between the LBP of the ground truth and the predicted images using the LBP layer 

defined in the algorithm of Figure 4.4. We select the LBP operator since it is robust to 

illumination variations and invariance to gray-scale changes. Furthermore, it does not 

add parameters to the network, and it is computationally inexpensive. However, LBP 

is a non-differentiable iterative function that cannot be optimized using 

backpropagation. To address that, we transform the problem into matrix multiplication 

operations using a fixed weight convolution layer. Thus, it does not add learnable 

parameters to our full model. We base our implementation on [71]. Note that we only 

use the LBP loss in the last resolution (256 × 256), which speeds up the inference 

time. 

 
 

Figure 4.3: Example of 3×3 LBP operator applied on a grayscale image. 
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Figure 4.4: The algorithm of the differentiable LBP layer. 

4.2.4. Loss functions 

Let 𝐼𝑛×𝑛  and 𝑀𝑛×𝑛be the ground truth image and the mask where 𝑛 is the size 

of the square image. Also, let 𝐺𝑛×𝑛() be a generator network that generates an image 

𝑂𝑛×𝑛 Also, let 𝐿𝐵𝑃(. ) be a differentiable LBP layer. that takes a grayscale image and 

outputs the LBP image. The output image for various resolutions can be obtained using 

(4.1), (4.2), (4.3) and (4.4): 

𝑂32×32 = 𝐺32×32(𝐼32×32 ×𝑀32×32, 𝑀32×32) (4.1) 

𝑂64×64 = 𝐺64×64(𝐼64×64 ×𝑀64×64, 𝑀64×64, 𝑂32×32) (4.2) 

𝑂128×128 = 𝐺128×128(𝐼128×128

×𝑀128×128, 𝑀128×128, 𝑂32×32, 𝑂64×64) 
(4.3) 

𝑂256×256 = 𝐺256×256(𝐼256×256

×𝑀256×256, 𝑀256×256, 𝑂32×32, 𝑂64×64, 𝑂128×128) 
(4.4) 

L1 loss: we measure the error between the ground truth image and the predicted image 

for each resolution as defined in (4.5). 
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𝐿𝑟𝑒𝑐 = ‖𝑂𝑛×𝑛 − 𝐼𝑛×𝑛‖1 (4.5) 

Adversarial loss: we optimize the LSGAN [28] adversarial loss for each resolution as 

defined in (4.6). 

𝐿𝑑𝑖𝑠 =E [(D(𝐼𝑛×𝑛) − 1)2]+ E[D(𝑂𝑛×𝑛)
2] 

𝐿𝑎𝑑𝑣 =E [(O(𝐼𝑛×𝑛) − 1)2] 
(4.6) 

Texture loss: we use the LBP differentiable layer to calculate the loss between the 

ground truth texture and the generated 256 × 256 image texture as defined in (4.7). 

𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 = ‖LBP(Gray(𝑂𝑓𝑖𝑛𝑒)) − LBP(Gray(𝐼𝑔)‖1 (4.7) 

Overall loss: we use a weighted sum of the reconstruction, the adversarial and the 

texture loss. We give a weight 𝛾𝑎𝑑𝑣=0.1, 𝛾𝑟𝑒𝑐==1 and 𝛾𝑡𝑒𝑥𝑡𝑢𝑟𝑒==10 for the adversarial 

loss, the reconstruction loss and the texture loss, respectively. The overall loss is 

defined in (4.8): 

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝛾𝑎𝑑𝑣 × 𝐿𝑎𝑑𝑣 + 𝛾𝑟𝑒𝑐 × 𝐿𝑟𝑒𝑐 + 𝛾𝑡𝑒𝑥𝑡𝑢𝑟𝑒⁡ × 𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 (4.8) 

4.3. Experimental evaluation 

4.3.1. Datasets and masks 

We conduct our experiments using two conventional image inpainting datasets. 

The first one is Places2 [72] that has more than 1.8M images and 400 scene categories, 

such as bedrooms, streets, etc. Places2 dataset became a popular image inpainting 

dataset since it has a vast natural scene variation. We use the original train and test 

split for the Places2 dataset. To further enrich our experiments, we evaluate our 

method on CelebHQ [53], which has 30K cropped face images with a large pose and 

background variations selected from the CelebA dataset [73]. We use the original 

training and test split. Since users of image inpainting applications usually want to edit 
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or remove arbitrary shapes in the scenes, we use irregular mask sizes [58] during 

training.  

4.3.2. Implementation details 

In this part, we describe our training procedure and the hyper-parameter settings. We 

use Pytorch [74] to implement the proposed method using CUDA v10.1 and cuDNN 

v7.6.4. We use Adam optimizer [59] with hyper-parameters 𝛼 = 0.5⁡and⁡𝛽 = 0.99, 

respectively. We set the batch size to 32, and we fix the learning rates to 10−4⁡for the 

generators and the discriminators. We use spectral normalization [75] in all the 

convolution layers of the discriminator. The details of the architectures are described 

in Table 8.1, Table 8.2, Table 8.3, Table 8.4 and Table 8.5 of the Appendix. We freeze 

the weights of the previous networks when training the generator and the discriminator 

of the current resolution. 

4.4. Results and discussion 

We compare qualitatively and quantitively our full model against current state-

of-the-art methods, including Contextual Attention (CA) [19], Edge Connect (EC) 

[17], Deep Fusion Network (DFNet) [41], Gated Convolution (GC) [3] and Structure 

Flow (SF) [16]. We select these approaches for two main reasons: the availability of 

the pretrained models that ensure a fair comparison and save both time and 

computational resources. The second reason is that they achieve very competitive 

results using different approaches. We use the original train and test splits for Places2 

[72] and CelebHQ [53] datasets. 

4.4.1. Qualitative results 

We qualitatively compare our approach with the selected state-of-the-art 

methods on two datasets. We zoom in on different parts of the image to show the 

difference between the generated images. As seen from Figure 4.5, CA [19] produces 

significant artifacts leading to misrepresented structures. EC [17] produces better 

results since it estimates edges to recover the global structure of the image, but obvious 

visual artifacts still appear in the masked regions. While DFNet [41] generates 

plausible and smooth images with global image consistency using their introduced 
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fusion blocks, it still exhibits observable color discrepancies. GC [3] produces realistic 

images due to the gated convolution layers and the refinement network, but it can miss 

some texture details. SF [16] generates plausible images with fine-grained textures 

since it employs two effective stages to preserve both structures and textures, 

respectively. However, it suffers from remarkable inconsistencies near the boundaries. 

Our method presents competitive results and shows very realistic textures in all the 

missing regions. 

 
 

Figure 4.5: Qualitative comparison of the ETMG model on Places2. 

To further demonstrate the effectiveness of the proposed method, we report 

qualitative results on the CelebHQ dataset [53]. We can see from Figure 4.6 that the 

images produced by CA show visually poor performance. GC generates realistic 

images but still shows discordance between the background and the parts of the 

corrupted region. SF [16] synthesis smooth faces with realistic textures. However, it 

sometimes exhibits color and row discontinuities in the predicted pixels. Our method 

presents the most natural faces without using large models or complex mechanisms 

such as CAM. The results can be explained by that our approach looks at different 

image scales using multiple GANs to ensure visually realistic images with both local 

and global structure consistencies. Besides, the proposed LBP-based loss function both 

improves and sharpens the texture of the generated parts. Additional results of our 

proposed approach in the Appendix section show that our model may synthesize 

plausible new contents due to adversarial learning. Also, our qualitative results show 
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that our model enforces close LBP features if the generated contents have resembling 

structures to the ground truth or only the color is changed. In contrast, the produced 

LBP features are distinct for modified image structures. Note that in both cases, the 

LBP-based loss function ensures fine-grained textures. 

 
 

Figure 4.6: Qualitative comparison of the ETMG model on CelebHQ. 

4.4.2. Quantitative results 

To quantify the performance of the proposed approach, we use three well-known 

assessment metrics, including MAE, PSNR and SSIM following works of [17][16]. 

To achieve a fair comparison, we use the same masks and test splits of the two datasets. 

Table 4.1 lists the evaluation results on the Places2 dataset [72]. We can see that CA  

[19] shows the worst performances in the three metrics on different mask sizes. EC 

[17] exhibits the best results since it predicts the edges to supervise the image structure 

generation. The scores of DFNet [41] and GC [3] are better and very close to each 
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other.  SF [16] shows higher performance in SSIM and PSNR scores in large mask 

sizes. Our approach achieves competitive results compared to the mentioned state-of-

the-art methods without using lightweight generators. Table 4.2 reports the 

quantitative comparison of CelebHQ [53]. Our proposed method outperforms CA, 

which shows significantly lower performance. Also, it achieves very comparable 

results to GC and SF that have a bigger model. 

Table 4.1: Quantitative comparison of the ETMG on Places2. 
 

 Mask size CA EC DFNet GC SF ETMG 

𝑀𝐴𝐸− 10-20% 

20-30% 

30-40% 

40-50% 

0.019 

0.033 

0.048 

0.075 

0.013 

0022 

0.031 

0.053 

0.010 

0.019 

0.028 

0.045 

0.011 

0.018 

0.026 

0.045 

0.012 

0.019 

0.026 

0.044 

0.009 

0.016 

0.024 

0.042 

𝑆𝑆𝐼𝑀+ 10-20% 

20-30% 

30-40% 

40-50% 

0.922 

0.861 

0.795 

0.660 

0.947 

0.913 

0.879 

0.762 

0.965 

0.936 

0.901 

0.803 

0.969 

0.942 

0.909 

0.810 

0.966 

0.944 

0.912 

0.812 

0.971 

0.946 

0.916 

0.816 

𝑃𝑆𝑁𝑅+ 10-20% 

20-30% 

30-40% 

40-50% 

26.31 

22.07 

20.91 

18.27 

27.88 

25.51 

23.96 

20.80 

29.51 

26.73 

24.87 

22.03 

30.10 

27.13 

25.07 

21.78 

30.23 

27.32 

25.38 

21.97 

30.62 

27.71 

25.74 

22.55 

Table 4.2: Quantitative comparison of the ETMG model on CelebHQ. 
 

 Mask size CA GC SF ETMG 

𝑀𝐴𝐸− 10-20% 

20-30% 

30-40% 

40-50% 

0.014 

0.024 

0.033 

0.052 

0.009 

0014 

0.021 

0.031 

0.011 

0.015 

0.018 

0.028 

0.006 

0.010 

0.015 

0.024 

𝑆𝑆𝐼𝑀+ 10-20% 

20-30% 

30-40% 

40-50% 

0.953 

0.918 

0.881 

0.796 

0.982 

0.968 

0.950 

0.899 

0.984 

0.971 

0.950 

0.912 

0.988 

0.979 

0.967 

0.924 

𝑃𝑆𝑁𝑅+ 10-20% 

20-30% 

30-40% 

40-50% 

28.55 

25.54 

23.58 

21.03 

32.53 

29.73 

27.80 

25.05 

33.26 

30.42 

28.74 

25.63 

34.64 

31.79 

29.81 

26.64 
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4.4.3. Model efficiency 

Table 4.3 shows the number of floating-point operations in GFLOPS, model 

parameters in millions and the CPU/GPU runtime in milliseconds. For a fair 

comparison, we test all the models on the same hardware for 100 iterations to find the 

mean inference time. We use an Intel(R) Core (TM) i7-2600K CPU @ 3.40GHz and 

an NVIDIA TITAN XP GPU. We can see from Table 4.1 and Table 4.2 that our 

proposed method performances are very competitive to SF [16] and GC [3]. But our 

model has only 3M parameters and 9.5 (GFLOPS), while SF involves many 

parameters (92.5M) and 262.4 (GFLOPS) due to the use of two large networks for the 

smooth and refined image prediction. Also, GC has 4.1M parameters and 39.6 

(GFLOPS). This result is due to the use of costly CAM layers and gated operations 

(sigmoid activation functions) in the refinement network of GC, which augment the 

number of network parameters and GFLOPS. Our full model is computationally 

efficient than DFNet [41] that has 9.7 (GFLOPS) and 3.3M parameters. EC [17] has 

21.5M parameters and a computation cost of 122.5 (GFLOPS) due to two large models 

for edge detection and the refinement network for the final prediction. CA [19] has the 

smallest number of parameters (2.9M). However, it has a high computation cost (22.4 

GFLOPS) than our model since it involves many attention layers. Besides, it shows 

the worst performance both in the quantitative and the qualitative comparison. 

Concerning the inference time, our model yields the best results, highlighting the 

efficiency of the proposed approach. 

Table 4.3: Computational time comparison of the ETMG model. 
 

Model GFLOPS PARAMS (M) CPU (ms) GPU (ms) 

CA 22.4 2.9M 383 18 

EC 122.4 21.5M 704 32 

GC 39.6 4.1M 490 27 

SF 262.4 92.5M 810 36 

ETMG 9.5 3M 334 11 
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4.4.4. Ablation study 

To further demonstrate the effectiveness of the proposed method and show the 

contribution of each part to the entire approach, we conduct a set of additional 

experiments. We investigate the effect of LBP loss function and the LBP operator 

shape. Also, we compare the proposed LBP-loss function against perceptual loss [66]. 

We analyze the performances of the four generators, and we evaluate the quality of the 

generated textures. Finally, we show the scalability of the proposed approach to other 

applications, including image outpainting and blind image inpainting. 

4.4.4.1. Effect of the LBP loss 

To analyze the contribution of our proposed LBP loss function to the entire 

approach, we implement two settings of the model, and we show qualitative and 

quantitative results for each version on the CelebHQ dataset [53]. The first employs 

only the proposed architecture, while the second adds the LBP loss function to 

constrain the prediction. We believe that the LBP can robustly describe image textures 

since the filter comparison operations keep the most meaningful pixels. Table 4.4 

indicates that the LBP loss improves the performance and correlates very well with the 

metrics. Also, we can see from Figure 4.7 that our additional LBP layer restores the 

image texture and provide realistic images. Note that images of the first version are 

plausible and have semantic consistency, which proves the effectiveness of our 

proposed multi-resolution generators. 

 
 

Figure 4.7: Qualitative ablation studies of the LBP loss on CelebHQ. 
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Table 4.4: Quantitative ablation studies of the LBP loss on CelebHQ. 
 

Methods 𝑀𝐴𝐸− 𝑆𝑆𝐼𝑀+ 𝑃𝑆𝑁𝑅+ 

Full 0.014 0.964 30.72 

Full w/o LBP loss 0.015 0.957 29.89 

Full w/ LBP dilation 4 0.014 0.959 30.15 

Full w/ LBP dilation 1 0.015 0.964 30.72 

Full w/ Perceptual loss 0.014 0.960 30.17 

4.4.4.2. Effect of the LBP operator shape 

It is well-known that large convolution filters lead to blurriness when applied in 

the last deconvolution layer. Thus, we fix the filter size to 3 × 3, and we investigate 

two different LBP dilation factors to show whether they affect the results or not. We 

can see from Table 4.4 that using a filter with a dilation factor of 1 achieves better 

results than a filter with a dilation of 4 since the latter looks for distant pixels from the 

desired region, which causes blurriness as seen in Figure 4.8. 

 
 

Figure 4.8: Final prediction of the ETMG model using different dilation factors of 

the LBP operator (1 and 4). 
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4.4.4.3. Perceptual Loss vs. LBP-based loss 

To further analyze the impact of the LBP-based loss function, we compare the 

proposed approach to a high-level feature loss baseline. Specifically, we drop the LBP 

loss and use the same multi-GAN architecture with the perceptual loss  [66]. During 

training, generated images and ground truth images are fed to a VGG network to 

produce the intermediate feature maps in different layers. We observe that the 

perceptual loss drastically increases the training time since it compares high-

dimensional feature maps. On the other hand, our approach compares a single LBP 

feature map, which speeds up the training. Table 4.6 demonstrates the superiority of 

our full model in all the quantitative metrics. 

4.4.4.4. Analysis of the four generators 

Our approach investigates different receptive fields by optimizing the 

parameters of four progressive generators. In particular, the generator of the higher 

resolution benefits from the previously inpainted images by the lower ones to learn the 

global image structure. To show the image structure improvement, we analyze the 

input of the four generators in the two datasets Places2 [72] and CelebHQ [53]. As 

seen from Figure 4.9, as the training advances, the quality of the image is improved, 

and more meaningful structures (edges and boundaries) appear. Although the images 

of lower resolutions are blurry and do not provide sharp texture details, they recover 

the global structure of the image, which aids the estimation of damaged pixels of the 

next resolution. We can see from Figure 4.9 that 32 × 32 resolutions recover the global 

structure of the nose and the eyes. However, the images are still blurry and lack texture 

details. As the resolution increases, the network synthesis visually appealing nose and 

eyes. 
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Figure 4.9: Intermediate predictions of the ETMG model on different resolutions. 

4.4.4.5. Analysis of the generated texture quality 

To further evaluate our approach performances, we measure the accuracy of the 

edge in the corrupted regions for the Places2 [72] and the CelebHQ [53] datasets since 

edges robustly express the image structure. We use Canny [68] since it is one of the 

famous edge detectors to find edges in the generated and the ground truth images. We 

calculate different metrics on the predicted edge of the corrupted regions to show the 

percentage of the recovered edges. Table 4.5 shows that our approach can restore most 

of the texture details since it achieves high precision, recall, accuracy, and F1 measure 

scores. 

Table 4.5: Edge prediction metrics of the ETMG model over CelebHQ and Places2. 
 

Methods Accuracy (%) Precision (%) Recall (%) F1(%) 

CelebHQ 99.9 86.2 85.2 85.7 

Places2 93.4 84.7 84.0 84.3 

4.4.4.6. Scalability of the proposed method 

To confirm the scalability of the proposed method, we conduct four completing 

experiments. Quantitive and qualitative results are shown in Table 4.6, Figure 4.10 and 

Figure 4.11. In the first experiment, we train and test it using block-wise masks. 

Specifically, we put a single hole region with a rectangular shape at different locations. 

Although this experiment is more challenging than the free-form masks, our method 
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shows remarkable relevance between the squared hole and the background on 

CelebHQ [53]. Also, it still exhibits visually plausible results on both uniform and non-

uniform backgrounds on the Places2 dataset [72]. 

Table 4.6: Quantitative evaluation of the ETMG approach on different tasks, 

including block-wise masks, blind image inpainting and image out-painting. 
 

Task Metric Places2 CelebHQ 

Block-wise masks 

𝑀𝐴𝐸− 

𝑆𝑆𝐼𝑀+ 

𝑃𝑆𝑁𝑅+ 

0.043 

0.813 

22.16 

0.025 

0.907 

26.31 

Blind inpainting (Free-form mask) 

𝑀𝐴𝐸− 

𝑆𝑆𝐼𝑀+ 

𝑃𝑆𝑁𝑅+ 

0.031 

0.889 

24.68 

0.013 

0.952 

28.72 

Out-painting 

𝑀𝐴𝐸− 

𝑆𝑆𝐼𝑀+ 

𝑃𝑆𝑁𝑅+ 

0.046 

0.802 

20.87 

0.027 

0.886 

24.66 

 
 

 
 

Figure 4.10: Qualitative results of the ETMG model using a rectangular mask. 



 

57 

 
 

Figure 4.11: Scalability of the ETMG approach on several tasks, namely, unseen 

faces, blind image inpainting and image out-painting. 

To verify the generalization capability of the proposed method, we test our 

pretrained model on images from the internet [76]. Although we run the model on 

unseen faces, it performs well in generating visually appealing results with realistic 

textures. The third experiment evaluates the approach to blind image inpainting. 

During training, we give only the corrupted image without the mask. We obtain 
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promising results, confirming that the proposed approach can be applied to other real-

world applications. Note that the proposed method achieves higher performances in 

the image inpainting task since the mask guides the model to distinguish between valid 

and missing pixels. In the last experiment, we investigate the image outpainting task 

[77]. We mask 1/4 in the left and the right of the image, and we retrain and test our 

model on CelebHQ [53] and Places2 [72] datasets. This experiment reports lower 

performances compared to all tasks. We can explain this by that image outpainting 

includes two challenges: the missing mask channel and having two large separate 

corrupted regions. 

 
 

Figure 4.12: Object removal and image editing using the ETMG model. 
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4.4.5. Interactive editing 

Our method allows users to remove unwanted objects by interactively drawing 

the input masks. At the same time, it can robustly recover the corrupted parts without 

artifacts. In both cases, the generated images have realistic texture and global semantic 

consistency. We provide some results of the interactive inpainting in Figure 4.12. Our 

approach robustly removes the glasses and face accessories around complex textured 

objects such as eyes and hair in the CelebHQ [53] dataset. Furthermore, it provides 

plausible images on the Places2 [72] dataset that includes crowded scenes. 

4.5. Summary 

This chapter presents a GAN-based image inpainting approach that addresses 

two main problems in the image inpainting field. Namely, decreasing the inference 

time and ensuring fine-grained textures in the corrupted regions. To achieve the first 

goal, we propose efficient progressive generators and discriminators to stabilize the 

training and improve performances. Filling in low-resolution images is less 

challenging for GANs due to the small dimensional space. Meanwhile, it guides higher 

resolution generators to learn the global structure consistency of the image. To ensure 

fine-grained textures, we employ an LBP-based loss function in the final resolution. 

Extensive experiments show that our model outperforms state-of-the-art and speeds 

up the inference time. Also, we apply the proposed approach to other related tasks, 

such as image outpainting and blind inpainting. Results demonstrate the scalability of 

our model even with large mask regions.  
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5. LEARNING TO INPAINT BY 

PROGRESSIVELY GROWING THE MASK 

REGIONS 

5.1. Introduction 

Recently, generative-based image inpainting methods produce visually plausible 

images. However, they still have difficulties generating the correct structures and 

colors as the masked region grows large. This drawback is mainly due to the training 

stability issues of GANs. In this study, we address this limitation using a new 

curriculum-style training approach. The proposed method increases the masked region 

size progressively in training time. During inference, the user gives variable-size 

masks at arbitrary locations. Incorporating this technique in GANs stabilizes the 

training and provides better inpainting performance. 

Deep learning methods [11][12][15][3] applied GANs [14] to fill in masked 

regions by learning from large image datasets. They outperform the traditional 

inpainting methods [8][9][33] both qualitatively and quantitatively. However, some of 

these methods [11] fill in the center of the image, which may fail to inpaint variable 

size regions. Furthermore, they suffer from artifacts and need post-processing steps to 

correct the resulted image [12]. Therefore, understanding the structure and different 

objects in the scene helps to achieve high-quality image completion.  

Although GANs fit the inpainting problem very well, they suffer from stability 

problems that lead to mode collapse and over-fitting. To address these limitations, [78] 

provides architectural guidelines and optimization hyper-parameters that lead to better 

synthesis results. Moreover, a multi-stage generation approach introduced in [22] 

creates high-quality images by progressively adding layers to the generator and the 

discriminator. Furthermore, [53] improves [22] by controlling the visual features of 

the image in different scales through the adaptive normalization layer [66]. Some 

works addressed the loss functions improving the training stability including, 

Wasserstein distance [30], Least Squares [28] and Energy-based GANs [79]. 

Another attempt to stabilize the training of GANs is to employ a curriculum 

learning (CL) approach [43]. It achieved a lot of success in many tasks, including 

natural language processing [80][81], image recognition [82]  and generation [44]. CL 

is a setting that gradually reveals training samples to the model from the easiest to the 
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most difficult. Inspired by this idea, we propose a curriculum-style strategy to 

progressively train an effective generator by growing the size of the masked regions 

in the context of image inpainting. The intuition was that the generator and the 

discriminator networks solve the inpainting problem starting from simple to much 

harder inpainting regions. By simple, we mean small mask regions with basic 

structures that can be inpainted without global object structures. On the other hand, 

hard means large mask regions that need a local and global understanding of the scene. 

We validate our approach using several models of different architectures and 

loss functions. The first one is a customized model that contains two networks: a deep 

residual convolutional generator [83] and a multi-scale discriminator. The latter one 

criticizes the quality and the relevance of the completed image on different scales. In 

the generator, we replace the vanilla convolutions with the gated convolutions 

introduced in [3]. They proved that it is a good replacement for vanilla convolutions 

in the context of image inpainting. The other methods are two of the state-of-the-art 

models [11] and [3]. We conduct two experiments: fixed versus progressively growing 

masked regions on the previously stated models. Furthermore, to show the 

effectiveness of our approach, we check if a simple reconstruction loss is sufficient to 

stabilize the generator for the first training iterations. In another setup, we use a fixed 

masked region then gradually increase the adversarial loss weight. We report 

qualitative and quantitative results on the MSCOCO [52] and CelebA [73] datasets. 

The quantitative metrics include MAE, PSNR, Inception score (IS) [48] and Fréchet 

Inception Distance (FID) [50] quality metrics. Our contributions are as follow: 

• We propose the progressively growing of the masked regions as a GAN 

stabilization technique for image inpainting tasks. 

• We compare the usage of fixed versus progressively growing mask regions using 

different architectures and loss functions, and we report the qualitative and 

quantitative results on two challenging datasets. 

• We investigate other training stabilization setups and compare them against our 

approach. 
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5.2. Approach 

5.2.1. Curriculum learning 

Curriculum Learning (CL) is a training approach that gradually reveals data to a 

neural network starting from the easiest to the most difficult [43]. It achieved great 

success in many tasks, including natural language processing, image recognition and 

generation. Unlike the traditional training approach of CNNs that uniformly samples 

mini-batches from the data distribution, [84] used CL to order the training samples by 

difficulty and creates mini-batches. This approach improves network accuracy and 

learning speed. [85] improves the generalization ability by increasing the dropout rate 

throughout training. [85] employed CL on GANs such that the discriminator criticizes 

difficult samples as training progresses. They augment the dimensionality of the 

sample space with additional random variables. This approach makes the task much 

difficult for the discriminator and prevents it from being over-confident. In the context 

of image inpainting, [86] utilizes a progressive generative network to fill in images 

with squared masks. The approach splits the task into different stages, where each one 

aims to do a part of the entire curriculum. After that, an LSTM framework chains all 

of them. In this study, we propose a curriculum-style strategy to progressively train an 

effective generator by growing the size of the masked regions in the context of image 

inpainting. The intuition was that the generator and the discriminator networks solve 

the inpainting problem from basic to large inpainting regions. 

5.2.2. Progressive growing of the mask as a GAN stabilization 

technique 

GANs are hard to train due to their nature, which depends on two networks 

having two sets of parameters optimized separately. That leads to many problems, 

including mode collapse, non-convergence, and vanishing gradients. The inpainting 

task is strongly affected by robust adversarial loss functions, stable architectures, and 

GAN stabilization techniques. We focus on the last point and propose a simple yet 

effective training technique to stabilize the training of GANs in the context of image 

inpainting. The process is as follows: the generator starts by solving a simple problem. 

After each k iterations, the corrupted region grows till the region size reaches the half 

size of the image, as illustrated in Figure 5.1. By simple, we mean that the mask region 
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contains basic structures (textures) while the hard refers to the mask region has 

complicated structures and objects. We claim that, in the beginning, the generator 

easily inpaints narrow parts since the adversarial loss is responsible for an easy 

problem that is simply a reconstruction in this case. Then, the difficulty of the problem 

increases as we grow the width of the mask. Thus, the generator can fill in the half size 

of the masked region without much difficulty. That makes the adversarial loss stable 

in the successive k training iterations. The training process continues this way till a 

specified maximum width. We will investigate this claim by reporting the quantitative 

results of each k iterations using different mask sizes. 

 
 

Figure 5.1: Illustration of the PGM approach. 

5.2.3. Architectures and Training 

To validate our approach, we use different models: our customized model 

illustrated in Figure 5.2, CA [19] and the GC [3]. 

Our customized model: the generator has two subnetworks, an encoder network that 

down-samples the size of the input to 1/4 the original size followed by two residual 

blocks. We duplicate the number of filters after each gated convolution and residual 

block. The decoder network is the reverse order of the encoder. Instead of using 

transposed convolutions as generally done in decoders, we use bilinear interpolation 

before applying gated convolutions. The last convolution layer outputs an RGB image. 

In the discriminator network, we use a multi-scale architecture that contains five 

convolution layers. The latter down-samples the feature map size and increases the 

number of filters, and the last two convolution layers have the same number of filters. 

The discriminator outputs an array of tensors for each image scale. Instead of using 

Batch Normalization [87] that causes inference issues when the batch size is small, we 

use the Instance Normalization [88] that normalizes each sample independently across 



 

64 

spatial locations. Also, it provides visual and appearance invariance, and it is agnostic 

to the contrast of the image. The loss functions include the LSGAN loss [28], L1 loss 

between the generated and the ground truth image. Finally, we use the Perceptual loss 

using a pre-trained VGG network. 

The Context-encoder model (CE) optimizes an autoencoder network to produce a 

rectangular hole in the center of the image. The discriminator considers the latter as 

fake and the center of the ground truth image as real. The training requires two loss 

functions: a pixel-wise reconstruction loss and an adversarial loss. 

The Free-form inpainting model (GC): the generator has the same architecture as [19] 

followed by a refinement network without residual connections. The discriminator is 

a Patch-GAN that classifies image patches of size 70 × 70 as real or fake. Thus, there 

is no need for a global and local discriminator as in [12]. Furthermore, the networks 

do not add any normalization layer. It computes two loss functions: A Hinge loss and 

a reconstruction loss. It does not include any perceptual or style loss. 

 
 

Figure 5.2: Overall architecture of the Generator and the Discriminator of the PGM 

model. 
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5.3. Experimental evaluation 

5.3.1. Datasets 

We experiment on challenging image datasets used in several computer vision 

tasks. The MSCOCO [52] dataset contains cluttered scenes with color and structure 

variations. The CelebA [73] dataset contains cropped faces that have fewer structure 

changes. We train on 200k and 82k training images defined in CelebA and MSCOCO, 

respectively. We test the performance on 10000 random validation images for the 

CelebA dataset and 5000 test images for the MSCOCO dataset. 

5.3.2. Implementation details 

We show the impact of our proposed training approach on the customized and 

state-of-the-art models [11][3]. As mentioned previously, we compare the fixed versus 

progressive mask size approach for all the models on the MSCOCO [52] and CelebA 

[73] datasets. Furthermore, to prove/disprove the correctness of the proposed method, 

we compare it with two other training strategies, as shown in Figure 5.2. The generator 

and the discriminator networks of the customized model use the Adam optimizer with 

a learning rate of 0.0002 and a batch size of 4. For [11] and [3], we keep the same 

hyper-parameters used in the original work. We train all the models for 1M iterations. 

Furthermore, we increase the mask size and the adversarial weight after 100k 

iterations. For a fair comparison, we fix the randomness seed while training the models 

to make sure that we give the same input (same masked regions) and the same order 

of the images to the models. 

5.3.3. Experimental setups 

Our main experimental setup is to investigate the fixed size masks versus the 

PGM approach. We use constant weights for both the reconstruction and the 

adversarial loss. To prove/disprove our claim, we explore the setups illustrated in 

Figure 5.3.  

• We use the reconstruction and the adversarial losses during the whole training 

(first row).  
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• We train the model for half of the training time using the reconstruction loss. 

We use the adversarial loss and the reconstruction loss for the rest of the 

training, (second row).  

• We use the reconstruction loss using a fixed weight. We linearly increase the 

weight of the adversarial loss after each k iterations (third row).  

• Our PGM method progressively increases the mask size after each k iterations. 

The reconstruction and the adversarial losses remain fixed (fourth row). 

 
 

Figure 5.3: Different training setups on the PGM model. 

5.3.4. Comparison plan 

Unlike the state-of-the-art models that show their superiority, we aim to confirm 

the impact of our proposed training scheme (Progressive growing) and the two setups 

described above. We compare our customized model against CE [11] and GC [3]. To 

adapt our training approach to the CE model, we train using a small rectangle in the 

middle of the image. Then progressively increase the rectangle size to reach the half 

size of the image.  [3] adds the sketch as an additional input to the model. To ensure a 

fair comparison, we only input the image and the mask. We test on the MSCOCO [52] 

and CelebA [73] datasets for the different setups on our customized model and [3].  

We report the quantitative comparison using MAE, PSNR, IS, and FID. Furthermore, 

we show the output of our customized model versus [11] on different training schemes 

in the qualitative comparison. Since the CE model input is a fixed central mask in the 
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middle of the image, we do not compare it against the other models. Thus, we only 

report the qualitative and quantitative results of the different setups against each other. 

We do not perform any post-processing step for all the models. Due to hardware 

restrictions, we use images of resolution 128 × 128 in both datasets. We implement 

the models using Pytorch v1.1.0, CUDA v10.0, CUDNN v7.5.1, and the hardware 

GPU is NVIDIA GTX 1080 Ti. The training takes roughly five days per experiment. 

5.4. Results and discussion 

5.4.1. Quantitative evaluation  

 We experiment using image inpainting evaluation metrics including MAE, 

PSNR, IS and FID to quantify the performance of the training approaches. We 

calculate the MAE and PSNR using the output of the model and the ground truth 

images. We use the InceptionV3 model pretrained on the ImageNet dataset [24] to 

calculate the IS and FID scores. We see that our progressive growing approach 

improves the performance (MAE, PSNR, and FID) of all the models in the MSCOCO 

(Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7) [52] and CelebA (Figure 5.8, Figure 

5.9, Figure 5.10 and Figure 5.11) [73] datasets. Meanwhile, the results of the other 

three setups are not deterministic since they outperform each other depending on the 

model and the dataset. The IS metric is based on the classification probabilities. 

Therefore, it does not give a stable performance quantification on the CelebA dataset 

since the latter one contains only one class (faces). As claimed previously, to prove 

the effectiveness of our training approach, we experiment using different mask sizes. 

Our method outperforms the other setups on the two datasets in most cases. To apply 

our curriculum learning training approach to free-form mask models, we must control 

the width, height, orientation and number of masks in the images. On the other hand, 

applying it on [11] is easier since we can control the size of the masked regions 

(rectangular mask shapes). However, the performance of this model is still low 

compared to the other models due to its local consistency nature and the use of the 

standard convolution layers. Although our customized model has a larger number of 

parameters than [3], the latter outperforms it in all the training approaches in the 

MSCOCO and CelebA datasets (Table 5.1). This result can be explained by the usage 

of a refinement network in [3]. 
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Figure 5.4: Quantitative comparison using MAE of the different training setups of 

the PGM model on the MSCOCO. 

 
 

Figure 5.5: Quantitative comparison using PSNR of the different training setups of 

the PGM model on the MSCOCO. 

 
 

Figure 5.6: Quantitative comparison using IS of the different training setups of the 

PGM model on the MSCOCO. 
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Figure 5.7: Quantitative comparison using FID of the different training setups of the 

PGM model on the MSCOCO. 

 
 

Figure 5.8: Quantitative comparison using MAE of the different training setups of 

the PGM model on the CelebA. 

 
 

Figure 5.9: Quantitative comparison using PSNR of the different training setups of 

the PGM model on the CelebA. 
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Figure 5.10: Quantitative comparison using IS of the different training setups of the 

PGM model on the CelebA. 

 
 

Figure 5.11: Quantitative comparison using FID of the different training setups of the 

PGM model on the CelebA. 

Table 5.1: Quantitative comparison of conventional vs. PGM approach on CelebA. 
 

Metric Fixed Growing 

MAE (CE) 

MAE (Custom) 

MAE (GC) 

2.479 

1.450 

0.849 

1.92 

0.98 

0.74 

PSNR (CE) 

PSNR (Custom) 

PSNR (GC) 

10.10 

11.90 

13.31 

11.21 

12.85 

13.78 

IS (CE) 

IS (Custom) 

IS (GC) 

3.67 

3.57 

3.68 

3.77 

3.59 

3.64 

FID (CE) 

FID (Custom) 

FID (GC) 

14.88 

8.44 

2.44 

13.26 

3.03 

2.11 
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5.4.2. Qualitative evaluation 

We compare the fixed and the progressive growing training approach using our 

customized model and GC [3] on the MSCOCO [52] and CelebA [73] datasets. As 

seen from Figure 5.12, the custom model does not generate visually realistic images 

on the fixed setup. Our proposed training approach improves it to complete the missing 

parts more robustly, but it still generates artifacts compared with [3]. The latter can 

generate smooth and plausible images without our training approach. However, 

blurriness appears when we increase the mask size. On the other hand, applying the 

progressive growing approach to [3] composes a stable model that produces fewer 

artifacts. CE [11] uses a rectangular shape mask in the center of the image. For this 

reason, we compare only the fixed versus growing training approaches. Figure 5.13 

shows that although applying our approach to that model does not give plausible and 

natural images, it improves the results of the original model by removing the artifacts 

around the rectangular mask. 

 
 

Figure 5.12: Qualitative comparison of the conventional vs. PGM approach using 

block mask. 
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Figure 5.13: Qualitative comparison of the conventional training vs. PGM 

using free-form mask. 

5.5. Summary 

This chapter proposes a GAN-stabilization technique in the context of image 

inpainting. To generate the correct structures and colors in large holes, we employ 

curriculum-style training by progressively growing the masked regions. Incorporating 

such an approach in GANs stabilizes the training since the generators and 

discriminators gradually solve the problem. Results show that this technique provides 

better color consistencies and captures object continuities. Also, it improves the 

performance of several state-of-the-art methods on public datasets. 

 

 

 

 

 

 

 

 

 

 



 

73 

6. IMAGE INPAINTING USING DEEP MULTI-

RESOLUTION PATHS AND ADAPTATIVE LOSS 

FUNCTIONS 

6.1. Introduction 

Learning-based approaches exploit the fast progress of CNNs and GANs [14] to 

learn high-level features from large-scale datasets. They establish a robust mapping 

between the corrupted and the ground truth images. Early GAN-based methods assume 

that the model can implicitly acquire information from far spatial regions. However, 

most of these methods generate visually significant artifacts leading to distorted 

structures and non-realistic texture details [11]. Recent studies work around these 

problems by dividing the inpainting problem into multiple stages, such that the first 

one predicts the image structure, including edges [17], segmentation maps [18] and 

contour [46]. The last stage exploits the reconstructed information to guide the 

completion task and obtain more realistic images. However, these architectures 

significantly increase model size, complexity and inference time. Furthermore, the 

performance is related to the prediction stage that requires extra supervision (ground 

truth data). Other approaches exploit information near corrupted regions to predict the 

missing pixels using the context attention layer [19]. All the mentioned methods use 

encoder-decoder architectures, such that the encoder maps the corrupted image to a 

latent space, and the decoder reconstructs the ground truth image. This operation may 

not restore texture details due to small receptive fields. [12] addresses this problem 

using dilated convolution layers. However, it results in gridding problems [54] since 

it leaves pixels near the center pixel non-exploited by the convolution filters. 

[41][15][89] employ a UNet-based [42] hierarchical network to avoid information 

loss. However, each scale is given to few convolution layers, which limits the learning 

of high and low-level features. In this work, we propose a deep multi-resolution path 

architecture to robustly complete masked images. Specifically, we employ a deep 

network for each scale to increase the receptive field and recover high-frequency 

information from several input resolutions. Each path contains many ResNet layers 

[83] without downsampling to keep original image details. We concatenate the feature 

maps of previous and current network paths to ensure local and global image 

consistency. Moreover, we observe that the images may include different texture 
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complexity and mask sizes. Hence we propose a new function that gives different 

weights for each image in the reconstruction and the adversarial losses to recover fine-

grained textures. In particular, we eforce the generator to focus on images exhibiting 

large masks and complex textures in the corrupted regions. To validate the proposed 

approach, we conduct our experiments on two standard datasets Places2 [72] and 

CelebHQ [53]. Quantitative and qualitative results demonstrate that our method 

generates realistic images with coherent global semantic structure and fine-grained 

textures. Furthermore, it shows superior performance against the state-of-the-art. We 

summarize our contributions as follow: 

• We introduce a new GAN-based image inpainting framework that exploits multi-

resolution paths to enlarge receptive fields and improve performance.  

• We propose a new training approach that employs a weighted loss function to 

enforce fine-grained texture details. 

• The proposed method generates visually appealing images and outperforms state-

of-the-art without using additional information or post-processing. 

6.2. Approach 

Previous image inpainting methods employ an encoder-decoder architecture 

where the input and the output are high-resolution images. The encoder down-samples 

the feature maps to 1 4⁄  of the image resolution then applies a series of residual 

convolution layers [83]. However, due to the small receptive field at this resolution, 

convolution layers cannot capture information about distant patches in the image. We 

overcome this problem using different corrupted image resolutions fed to deep 

network paths (Figure 6.1). Specifically, having a deep network path on the 32 × 32 

image increases the receptive field to cover all the patches in the image without the 

need for down-sampling or computationally expensive attention layers [19][3][89].  In 

other words, we do not miss high and low-frequency information of the original image 

since we do not use any stride-convolution layers neither on low-resolution images nor 

on high-resolution ones. 
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Figure 6.1: The overall architecture of the DMRP model. 

6.2.1. Architecture 

Our generator has four network paths where each one takes a corrupted image 

of size 𝑛 × 𝑛 and feeds it to a sequence of convolution and ResNet [83] blocks. We 

use the nearest neighbor up-sampling to increase the resolution of the 32⁡ × ⁡32 

network path to match the output of the 64⁡ × ⁡64 resolution path. These two feature 

maps are concatenated and fed to convolution and upsampling layers to learn high-

level features. We repeat the same procedure for the 128⁡ × ⁡128⁡and 256⁡ × ⁡256 

resolutions to output the inpainted image. We give the latter and the ground truth image 

to a PatchGAN discriminator [26] that criticizes the different image patches. 

6.2.2. Adaptative weighted loss 

Loss functions of the previous image inpainting approaches give the same 

importance for all images regardless of texture complexity and the mask size. Thus, 

during back-propagation, the parameters of the generator are updated equivalently for 

all the samples. Giving the same weight for all the images makes the network biased 

towards easy examples. By easy, we mean images with small holes and simple texture 

details. In our method, we assign high weights to corrupted images with complex 

textures and large masks. We extract the edges from the ground truth image using the 

Canny edge detector [68]. We define the texture complexity by calculating the ratio 

between the number of edges and the image size (ones and zeros in the corrupted 

region). Finally, we normalize the weights in the [0, 1] interval based on the largest 

mask in the dataset (training masks). We refer to our adaptative weighting function as 

𝐴𝑑𝑎𝑊(. ). 
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6.2.3. Loss functions 

Let 𝑇,𝑀, 𝐼 and⁡𝑂 be the ground truth, mask, corrupted and generated images, 

respectively. Let 𝑁 be the number of images in the batch. We resize 𝑇 and⁡𝑀 to match 

different input sizes 𝑛⁡ × ⁡𝑛, namely: 32 × 32, 64 × 64, 128 × 128 and 256 × 256. 

The input 𝐶𝑛×𝑛 is the channel-wise concatenation of 𝐼𝑛×𝑛 and 𝑀𝑛×𝑛, we define the 

generator in (6.1): 

𝑂 = 𝐺(𝐶32×32, 𝐶64×64⁡𝐶128×128, 𝐶256×256) (6.1) 

Reconstruction loss: we use the L1 loss between T and O to reconstruct the image 

using (6.2):  

𝐿𝑟𝑒𝑐 =∑𝐴𝑑𝑎𝑊(𝑇𝑖, 𝑀𝑖)

𝑁

𝑖=1

‖𝑇𝑖 − 𝑂𝑖‖1 (6.2) 

Adversarial loss: we use the RaLSGAN loss as defined in [90] using (6.3) and (6.4) 

for the discriminator and the generator, respectively: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿𝑑 = 𝐸𝑥𝑟~𝑃,𝑚~𝑆 [(𝐴𝑑𝑎𝑊(𝑥𝑟 , 𝑚) × 𝐷(𝑥𝑟)

− 𝐸𝑥𝑓~𝑄[𝐴𝑑𝑎𝑊(𝑥𝑓 , 𝑚) × 𝐷(𝑥𝑓) − 1)2]

+ 𝐸𝑥𝑓~𝑄,𝑚~𝑆[(𝐴𝑑𝑎𝑊(𝑥𝑓 , 𝑚) × 𝐷(𝑥𝑓)

− 𝐸𝑥𝑟~𝑃[𝐴𝑑𝑎𝑊(𝑥𝑟 , 𝑚) × 𝐷(𝑥𝑟) + 1)2] 

(6.3) 

𝐿𝑎𝑑𝑣 = 𝐸𝑥𝑟~𝑃,𝑚~𝑆 [(𝐴𝑑𝑎𝑊(𝑥𝑟 , 𝑚) × 𝐷(𝑥𝑟)

− 𝐸𝑥𝑓~𝑄[𝐴𝑑𝑎𝑊(𝑥𝑓 , 𝑚) × 𝐷(𝑥𝑓) + 1)2]

+ 𝐸𝑥𝑓~𝑄,𝑚~𝑆[(𝐴𝑑𝑎𝑊(𝑥𝑓 , 𝑚) × 𝐷(𝑥𝑓)

− 𝐸𝑥𝑟~𝑃[𝐴𝑑𝑎𝑊(𝑥𝑟 , 𝑚) × 𝐷(𝑥𝑟) − 1)2] 

(6.4) 

Where: 𝐴𝑑𝑎𝑊(. ) is the proposed weighting function. 𝑃, 𝑄 and 𝑆 are the 

distributions of real, generated and mask images, respectively. 𝐷(. ) is the 

discriminator network.  
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Overall loss: as defined in (6.5), we update the weights of the generator by summing 

up the losses in (6.2) and (6.3). 

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 0.01 × 𝐿𝑎𝑑𝑣 + 𝐿𝑟𝑒𝑐 (6.5) 

6.3. Experimental evaluation 

We conduct our experiments using two public datasets Places2 [72] and 

CelebHQ [53]. Places2 dataset is commonly used for image inpainting since it contains 

1.8M images and over 400 different scenes. The CelebHQ dataset includes 30K highly 

structured faces with high pose and background variations. We use the original train 

and test split for the two datasets. We employ free-form masks from [58], which 

automatically generate multiple holes with random shapes and sizes at different 

locations. In evaluation time, we divide the masks into four categories covering 10 −

20%, 20 − 30%, 30 − 40% and 40 − 50 of the image. We use Pytorch v1.6 [74] to 

implement the proposed method using CUDA v10.1 and cuDNN v7.6.4. We use Adam 

[59] optimizer with hyperparameters 𝛽1⁡ = ⁡0.5⁡𝑎𝑛𝑑⁡𝛽2⁡ = ⁡0.99, respectively. We set 

the batch size to 32, and we fix the learning rates to 10−4⁡the generator and the 

discriminator. 

6.4. Results and discussions 

6.4.1. Qualitative results 

We qualitatively compare the proposed method against the mentioned state-of-

the-art methods, namely Contextual Attention (CA) [19], Deep Fusion Network 

(DFNet) [41], Gated Convolution (GC) [3] and Structure Flow (SF) [16] in Figure 6.2. 

CA shows poor performances in the two datasets since significant visual artifacts 

appear, leading to mispresented structures and wrong boundaries. DFNet can capture 

a coherent global semantic, but artifacts still exist, especially on the CelebHQ dataset 

[53]. GC and SF generate smooth images with realistic textures. However, they still 

exhibit color discrepancies and row discontinuities in the predicted pixels. Our 

approach generates visually appealing images with meaningful structures and realistic 
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textures in the Places2 dataset [72]. Besides, it shows the most natural faces in the 

CelebHQ dataset with a high relevance between the holes and the background. 

 
 

Figure 6.2: Qualitative comparison of the DMPR model on Places2 and CelebHQ. 

6.4.2. Quantitative results 

To quantify the performance of the proposed approach, we use three well-known 

assessment metrics following [16][17], including MAE, PSNR and SSIM. We report 

the evaluation results on Places2 [72] and CelebHQ [53] datasets in Table 6.1 and 

Table 6.2, respectively. We can see that our model performs favorably against all the 

compared state-of-the-art algorithms in all the metrics.  
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Table 6.1: Quantitative comparison of the DMPR model on Places2. 
 

 Mask size CA EC DFNet GC SF DMPR 

𝑀𝐴𝐸− 

10-20% 

20-30% 

30-40% 

40-50% 

0.019 

0.033 

0.048 

0.075 

0.013 

0022 

0.031 

0.053 

0.010 

0.019 

0.028 

0.045 

0.011 

0.018 

0.026 

0.045 

0.012 

0.019 

0.026 

0.044 

0.010 

0.017 

0.025 

0.042 

𝑆𝑆𝐼𝑀+ 

10-20% 

20-30% 

30-40% 

40-50% 

0.922 

0.861 

0.795 

0.660 

0.947 

0.913 

0.879 

0.762 

0.965 

0.936 

0.901 

0.803 

0.969 

0.942 

0.909 

0.810 

0.966 

0.944 

0.912 

0.812 

0.970 

0.946 

0.914 

0.814 

𝑃𝑆𝑁𝑅+ 

10-20% 

20-30% 

30-40% 

40-50% 

26.31 

22.07 

20.91 

18.27 

27.88 

25.51 

23.96 

20.80 

29.51 

26.73 

24.87 

22.03 

30.10 

27.13 

25.07 

21.78 

30.23 

27.32 

25.38 

21.97 

30.55 

27.68 

25.49 

22.42 

Table 6.2: Quantitative comparison of the DMPR model on CelebHQ. 
 

 Mask size CA GC SF DMPR 

𝑀𝐴𝐸− 

10-20% 

20-30% 

30-40% 

40-50% 

0.014 

0.024 

0.033 

0.052 

0.009 

0014 

0.021 

0.031 

0.011 

0.015 

0.018 

0.028 

0.008 

0.012 

0.016 

0.026 

𝑆𝑆𝐼𝑀+ 

10-20% 

20-30% 

30-40% 

40-50% 

0.953 

0.918 

0.881 

0.796 

0.982 

0.968 

0.950 

0.899 

0.984 

0.971 

0.950 

0.912 

0.985 

0.976 

0.962 

0.919 

𝑃𝑆𝑁𝑅+ 

10-20% 

20-30% 

30-40% 

40-50% 

28.55 

25.54 

23.58 

21.03 

32.53 

29.73 

27.80 

25.05 

33.26 

30.42 

28.74 

25.63 

34.32 

31.19 

29.56 

26.48 

6.4.3. Ablation study 

We conduct a set of experiments on the CelebHQ [53] dataset to investigate the 

impact of each component. To evaluate our deep multi-resolution path architecture, 

we compare it against a UNet-based generator. In other experiments, we progressively 

remove one path from the entire framework. Table 6.3 shows that the proposed 

architecture outperforms the UNet-based generators since it involves larger receptive 

fields. Furthermore, combining several learning paths improves quantitative results 
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and generates visually appealing images Figure 6.3. To investigate the impact of the 

proposed weighting function, we remove it from the loss function and retrain the model 

using the traditional reconstruction and adversarial losses. Results validate the 

proposed weighting function that presents more realistic texture details and high-

quality images in Figure 6.2 and higher scores in Table 6.3. 

Table 6.3: Quantitative ablation studies of the DMPR model on CelebHQ. 
 

Methods 𝑀𝐴𝐸− 𝑆𝑆𝐼𝑀+ 𝑃𝑆𝑁𝑅+ 

Full 0.015 0.960 30.38 

Full w/o 32 path 0.021 0.945 28.85 

Full w/o 32 and.64 paths 0.025 0.918 26.44 

Full w/o 32,64 and 128 paths 0.032 0.881 24.17 

Full w/o AdaW 0.016 0.955 30.15 

UNet-based generator 0.022 0.939 28.67 

 
 

 
 

Figure 6.3: Qualitative ablation studies of the DMPR model on the CelebHQ. 
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6.4.4. Model efficiency 

We show the efficiency of our DMPR model against CA, GC, and SF in terms of 

the number of floating points, the number of parameters, and the runtime on both GPU 

and CPU (Table 6.4). We can see that our model is very comparable to CA. However, 

the latter reports inferior performance and exhibits high floating points due to the 

CAM. GC and SF are less efficient and show a large inference time. 

Table 6.4: Computational time comparison of the DMPR  model. 
 

Model GFLOPS PARAMS (M) CPU (ms) GPU (ms) 

CA 22.4 2.9M 383 18 

GC 39.6 4.1M 490 27 

SF 262.4 92.5M 810 36 

DMPR 18.2 4.6M 390 18 

6.5. Summary 

This chapter presents GAN-based image inpainting that fills in the corrupted 

regions with fine-grained textures and coherent structures. To achieve this aim, we use 

multi-resolution deep network paths to enlarge receptive fields and ensure low and 

high-level feature learning. Besides, we employ an adaptative weighting mechanism 

in the loss functions to focus on images exhibiting large masks and complex textures 

in the corrupted regions. Experimental results show the superiority of the proposed 

approach compared against several state-of-the-art methods. 
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7. COMPARISON OF THE PROPOSED 

APPROACHES 

7.1. Introduction 

In this chapter, we conduct extensive experiments to compare our three proposed 

GAN-based image inpainting approaches SC, ETMG and DMP. We report qualitative 

and qualitative results on two public datasets, namely CelebHQ and Places2. 

Additionally, we use the proposed PGM technique as a GAN stabilization technique 

to improve the performance of the mentioned methods. Note that we use the same data 

splits, and we train the models for the same number of epochs to ensure a fair 

comparison. 

7.2. Places2 dataset 

In the first experiment, we report qualitative and quantitative comparisons of our 

proposed image inpainting approaches on the Places2 dataset. Furthermore, we 

employ our PGM as a GAN stabilization technique on DMPR and ETMG models. 

Specifically, we progressively increase the masked regions during training time from 

simple masks to much harder ones. We can see from Figure 7.1 that all the models 

generate smooth images with global image consistency and realistic texture details. 

Besides, they report competitive quantitative results without using large models or 

complex mechanisms such as CAM and perceptual losses. Also, Table 7.1 shows that 

the PGM technique improves the performances in DMPR and ETMG models in all the 

metrics that prove the effectiveness of curriculum learning in the context of image 

inpainting. Note that we did not report the experimental results of the SC model on the 

Places2 dataset because the latter does not include the segmentation labels, which are 

necessary to supervise the training. 
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Table 7.1: Quantitative evaluation of the proposed image inpainting approaches on 

the Places2 dataset. 
 

Metric DMPR DMPR+PGM ETMG ETMG+PGM 

𝑀𝐴𝐸− 0.023 0.021 0.019 0.018 

𝑆𝑆𝐼𝑀+ 0.908 0.912 0.917 0.919 

𝑃𝑆𝑁𝑅+ 26.13 26.62 26.67 26.74 

 
 

 
 

Figure 7.1: Qualitative evaluation of the proposed image inpainting approaches on 

the Places2 dataset. 

7.3. CelebHQ dataset 

In the second experiment, we report qualitative comparisons of our proposed 

image inpainting approaches on the CelebHQ dataset. We can see from Figure 7.2 and 

Table 7.2 that the ETMG model performs favorably compared with SC and DMPR. It 

generates the most natural faces with a high relevance between the masked regions 

and the background. Meanwhile, it reports superior quantitative performance in all the 

metrics. We can explain this by that the ETMG approach looks at different image 

scales using multiple efficient generators to ensure visually realistic images with both 

local and global structure consistencies. Also, the proposed LBP-based loss constrains 

better than segmentation labels and edges that cannot provide sufficient texture details 

in many cases, such as the face skin and uniform background. In other words, 

minimizing the loss between the LBP of the ground truth and the estimated images 
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ensures fine-grained textures. Note that SC and DMPR models also exhibit 

competitive performance. 

Table 7.2: Quantitative evaluation of the proposed image inpainting approaches on 

the CelebHQ dataset. 
 

Metric DMPR SC ETMG ETMG+SC 

𝑀𝐴𝐸− 0.015 0.016 0.013 0.010 

𝑆𝑆𝐼𝑀+ 0.960 0.955 0.964 0.971 

𝑃𝑆𝑁𝑅+ 29.88 26.89 30.72 31.19 

 
 

 
 

Figure 7.2: Qualitative evaluation of the proposed image inpainting approaches on 

the CelebHQ dataset. 

 In the last experiment, we combine the ETMG and the SC approaches on the 

CelebHQ dataset. Specifically, we estimate the coarse image and the segmentation 

labels for all the resolutions of the ETMG architecture. The progressive growing 

generators and discriminators stabilize GANs training and recover coherent structures. 

Meanwhile, the segmentation labels guide the generator of each resolution to estimate 

semantically meaningful images. Unlike the SC approach, we do not estimate edges, 

and we compensate them with the proposed LBP-based loss function that recovers 

more fine-grained textures. We can see from Figure 7.2 that our new composed 

approach yields more favorable results compared to all the individual methods. Also, 

the quantitative results in Table 7.2 show remarkable improvement over SC and 
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ETMG models. We note that we show the intermediate results of all the resolutions by 

providing the estimated images and their corresponding segmentation labels (Figure 

7.3 and Figure 7.4). 

 

 

Figure 7.3: Example 1 of ETMG + SC intermediate results. 

 

 

Figure 7.4: Example 2 of ETMG + SC intermediate results. 
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7.4. Computational time comparison 

To compare the efficiency of our proposed image inpainting approaches, we 

report the number of floating-point operations, parameters and the runtime on CPU 

and GPU of our models on an Intel(R) Core (TM) i7-2600K CPU @ 3.40GHz and an 

NVidia Titan XP GPU. Table 7.3 shows that the ETMG model yields the lowest 

inference time. The reason is that for low-resolution images, a small generator is 

sufficient to model the data distribution. As the image resolution increase, we need 

fewer parameters since the global structure of the image is already filled in, and the 

next generator only focuses on restoring the details. Hence, the total number of 

floating-point operations remains smaller. In contrast, SC and DMPR directly handle 

high-resolution images. Consequently, their models need to have enough parameters 

to synthesis large regions in a nonprogressive way. We note that the combined 

approach is also efficient. However, it exhibits a higher number of parameters due to 

the additional segmentation label estimation decoders. 

Table 7.3: Computational time comparison. 
 

Model GFLOPS PARAMS (M) CPU (ms) GPU (ms) 

SC 16.4 4M 374 16 

DMPR 18.2 4.6M 390 18 

ETMG 9.5 3M 334 11 

ETMG+SC 10.2 3.8M 362 14 

7.5. Summary and discussion 

This chapter presents extensive experiments to compare the proposed image 

inpainting architectures, loss functions, and GANs stabilization techniques. 

Qualitative and quantitative results show that the combination of the SC and the 

ETMG yields the most effective model that synthesis visually appealing images with 

realistic texture details. Meanwhile, the ETMG is computationally efficient than all 

the proposed approaches. Also, the PGM technique improves the performance of the 

DMPR and the ETMG methods. Note that our four methods synthesize visually 
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appealing images with fine-grained textures on large corrupted regions. Meanwhile, 

all of them are computationally efficient than most of the state-of-the-art approaches. 

Also, we show the generalization of the ETMG method on images, which does not 

exist in the training or the validation set. Besides, we demonstrate the scalability of 

our approach on other related tasks such as image outpainting and blind image 

inpainting. In these tasks, we do not provide the mask that helps the model to focus on 

corrupted regions. Although these tasks are more challenging than the conventional 

image inpainting task, our ETMG approach still synthesizes realistic results. We test 

this method on block-wise masks, which are very difficult to complete, especially in 

the mask boundaries. Results show that the generated images have global and local 

consistencies and do not exhibit artifacts around the mask. 
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8. Conclusions 

This chapter concludes the thesis and summarizes our main contributions by 

recalling the principal solved problems, the proposed approaches, and the obtained 

results. Then, it discusses the limitations of the proposed methods and suggests the 

possibilities for future research. 

8.1. Summary of the contributions 

In this thesis, we present four image inpainting methods that have been proposed 

to solve the following problems: 

• Enforcing constraints about the input to explicitly guide the model to synthesize 

plausible contents. 

• Reconstruct object boundaries and avoid blurry or semantically incorrect images. 

• Enforce fine-grained textures for complex scenes and non-repetitive patterns. 

• Speed up the inference time by removing inefficient attention mechanisms and 

replace them with efficient architectures. 

• Generate visually appealing structures and texture as the masked region grows 

large. 

 

To achieve the mentioned goals, we have started our research by designing 

several approaches such that each one focuses on addressing a specific problem.  

The first study proposes a new end-to-end deep generative model for recovering 

the corrupted parts of a given image. Our multi-stage image inpainting method jointly 

estimates segmentation labels and object boundary edges from the coarse image. We 

demonstrate that combining these two estimated entities can represent the image 

structure and semantic information yielding realistic textures in the recovered image. 

Besides, we show that predicting this auxiliary information from the corrupted image 

decreases the inpainting performance. 

The second method introduces an effective and efficient end-to-end GAN-based 

framework for image inpainting. Our approach employs progressive efficient 

generators to stabilize the training and improve the performances. We fill in different 

image sizes, such that the generators of higher-resolution profit from the previously 

inpainted regions. Moreover, we demonstrate that the proposed LBP-based loss 
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function constrains image inpainting and enforces texture details. We report 

quantitative and qualitative comparisons on public datasets. Experimental results show 

that the proposed approach generates realistic images with global structure consistency 

and fine-grained textures. Also, it outperforms state-of-the-art methods and 

significantly speeds up the computational time. Furthermore, it shows promising 

results for other related applications, such as image outpainting and blind inpainting.  

The third method proposes a new curriculum-style training for image inpainting 

by progressively growing the masked regions. Experiments show that our model 

generates realistic and plausible images, even with large mask regions. Furthermore, 

it improves several inpainting models quantitatively, including the state-of-the-art for 

a wide variety of regular and irregular masks on several datasets.  

The last study proposes a new generative-based approach for image inpainting. 

Combining the features from different scales and using deep network paths enlarge 

receptive fields and capture more relevant information. Our proposed weighting 

mechanism in loss functions improves the performance by focusing on complex 

textures in corrupted regions. Experiments show that our model restores fine-grained 

textures and achieves competitive performances against the state-of-the-art. 

8.2. Limitation and future work 

The results obtained during this thesis are globally promising and encouraging. 

However, this section discusses the limitation of the designed approaches and gives a 

clue about the possible solutions to overcome them. Also, we suggest directions for 

future research that are not explored in our study. 

Our approaches do not add any uncertainty to the output, meaning that the model 

is fully deterministic and works as a one-to-one mapping function. Instead, a future 

model can add a latent variable from a pre-defined distribution to produce a one-to-

many mapping. The latter can give a user control over the output to choose different 

results based on his/her preferences.  

Another alternative is to learn from examplar images in the dataset, where the 

model is given many samples to decide the output in test time (Figure 8.1). 

Specifically, the first phase trains a shared encoder-decoder model to reconstruct 

unmasked images in the training set. The second phase involves another encoder-

decoder architecture, which takes the concatenation (through a pooling operation) of 
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the masked image and the latent vectors of the pretrained shared encoder then a 

decoder network reconstructs the original image. During test time, we extract all the 

latent vectors of the training set before loading the model. Therefore, inference time 

remains efficient since the latent vectors reside in the memory. 

 

 

Figure 8.1: Exemplar-based image inpainting. 

As future work, we also suggest employing the ETMG architecture to other 

image-to-image translation tasks, such as image denoising and image deblurring. The 

model can be extended to learn distributions in lower-resolution images and then 

proceed to higher resolutions. 
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APPENDICES 

Appendix A: publications within the scope of the thesis study 

• Learning to Inpaint by Progressively Growing the Mask Regions, in The IEEE 

International Conference on Computer Vision Preregistration workshop (ICCV 

2019). 

• Image Inpainting using Scene Constraints, in the Journal of Signal Processing 

Image Communication (2020).  

• Efficient Texture-aware Multi-GAN for Image Inpainting, in the Journal of 

Knowledge-based Systems (2021). 

• Image Inpainting using Deep Multi-resolution Paths and Adaptative Loss 

Functions, Accepted in The IEEE International Conference on Image Processing 

(ICIP 2021). 

 

Appendix B: additional results of SC 

We show additional results of the SC model on the CelebHQ dataset (Figure 8.2). 

We show the corrupted, the estimated and the ground truth segmentation labels/edges, 

the output and the ground truth images. 

Appendix C: architecture and additional results of ETMG 

The architecture of discriminators: Table 8.1 shows the architecture of the 

PatchGAN discriminator [26] where:⁡𝑛 = 24⁡for the 32 × 32 and the⁡64 × 64 

discriminators, and 𝑛 = 48 for the 128 × 128 and the 256 × 256 discriminators. We 

use a slope of 0.2 in LeakyReLU. We use Spectral Normalization [75] in the 

convolution layers where: bias=False. We initialize the weights using a Gaussian 

distribution with 𝑔𝑎𝑖𝑛 = 0.02.  
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Figure 8.2: Additional results of the SC model. 

The architecture of generators: for all the generators defined in Table 8.2, Table 8.3, 

Table 8.4 and Table 8.5 we use the same weight initialization method used in the 

discriminator. TConv2D refers to the ConvTranspose2d layer in Pytorch [74]. The 

Gray function is defined as follows:⁡𝐺𝑟𝑎𝑦(𝑟, 𝑔, 𝑏) ⁡= ⁡0.299⁡ × ⁡𝑟⁡ + ⁡0.587⁡ × ⁡𝑔⁡ +

⁡0.110 × ⁡𝑏 where⁡𝑟, 𝑔, and 𝑏⁡are the red, green and blue colors, respectively. 
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Table 8.1: Architecture of the ETMG discriminator network. 
 

Layer Dim Kernel Stride Padding Activation 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

n 

𝑛 × 2 

𝑛 × 4 

1 

4 × 4 

4 × 4 

4 × 4 

4 × 4 

2 

2 

2 

1 

1 

1 

1 

1 

LeakyReLU 

LeakyReLU 

LeakyReLU 

LeakyReLU 

Table 8.2: Architecture of the 32×32 ETMG generator network. 
 

Layer Dim Kernel Stride Padding Activation 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

TConvt2D 

TConv2D 

Conv2D 

24 

48 

48 

96 

96 

96 

96 

96 

48 

24 

3 

3 × 3 

4 × 4 

4 × 4 

3 × 3 

3 × 3 

3 × 3 

3 × 3 

3 × 3 

4 × 4 

4 × 4 

3 × 3 

1 

2 

2 

1 

1 

1 

1 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

Tanh 

Table 8.3: Architecture of the 64×64 ETMG generator network. 
 

Block Layer Dim Kernel Stride Padding Activation 

1 

Conv2D 

Conv2D 

Conv2D 

24 

48 

48 

3 × 3 

4 × 4 

4 × 4 

1 

2 

2 

1 

1 

1 

ReLU 

ReLU 

ReLU 

2 

Conv2D 

Conv2D 

Conv2D 

24 

48 

48 

3 × 3 

4 × 4 

3 × 3 

1 

2 

1 

1 

1 

1 

ReLU 

ReLU 

ReLU 

3 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

TConvt2D 

TConv2D 

Conv2D 

96 

96 

96 

96 

96 

48 

24 

3 

3 × 3 

3 × 3 

3 × 3 

3 × 3 

3 × 3 

4 × 4 

4 × 4 

3 × 3 

1 

1 

1 

1 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

Tanh 
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Table 8.4: Architecture of the 128×128 ETMG generator network. 
 

Block Layer Dim Kernel Stride Padding Activation 

1 

Conv2D 

Conv2D 

Conv2D 

24 

48 

48 

3 × 3 

4 × 4 

4 × 4 

1 

2 

2 

1 

1 

1 

ReLU 

ReLU 

ReLU 

2 

Conv2D 

Conv2D 

Conv2D 

24 

48 

48 

3 × 3 

4 × 4 

3 × 3 

1 

2 

1 

1 

1 

1 

ReLU 

ReLU 

ReLU 

3 

Conv2D 

Conv2D 

Conv2D 

24 

48 

48 

3 × 3 

3 × 3 

3 × 3 

1 

2 

1 

1 

1 

1 

ReLU 

ReLU 

ReLU 

4 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

TConvt2D 

TConv2D 

Conv2D 

96 

96 

96 

96 

96 

48 

24 

3 

3 × 3 

3 × 3 

3 × 3 

3 × 3 

3 × 3 

4 × 4 

4 × 4 

3 × 3 

1 

1 

1 

1 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

Tanh 

Table 8.5: Architecture of the 256×256 ETMG generator network. 
 

Block Layer Dim Kernel Stride Padding Activation 

1 

Conv2D 

Conv2D 

Conv2D 

24 

48 

48 

3 × 3 

4 × 4 

4 × 4 

1 

2 

2 

1 

1 

1 

ReLU 

ReLU 

ReLU 

2 

Conv2D 

Conv2D 

Conv2D 

24 

48 

48 

3 × 3 

4 × 4 

3 × 3 

1 

2 

1 

1 

1 

1 

ReLU 

ReLU 

ReLU 

3 

Conv2D 

Conv2D 

Conv2D 

24 

48 

48 

3 × 3 

3 × 3 

3 × 3 

1 

2 

1 

1 

1 

1 

ReLU 

ReLU 

ReLU 

4 

Conv2D 

Conv2D 

Conv2D 

24 

48 

48 

3 × 3 

3 × 3 

3 × 3 

1 

2 

1 

1 

1 

1 

ReLU 

ReLU 

ReLU 

5 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

Conv2D 

TConvt2D 

TConv2D 

Conv2D 

96 

96 

96 

96 

96 

48 

24 

3 

3 × 3 

3 × 3 

3 × 3 

3 × 3 

3 × 3 

4 × 4 

4 × 4 

3 × 3 

1 

1 

1 

1 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

ReLU 

Tanh 
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Learning curves: we show the training curves of our four generators and 

discriminators. The loss curves show a stable training that reflects the visual quality of 

the generated images. Figure 8.3 shows the loss values of the generators and the 

discriminators. In Figure 8.4 we show the reconstruction loss values. During training, 

we use masks that cover 30 − 40% of the image. The successful exploitation of 

previously inpainted low-resolution images leads to fast convergence. 

 
 

Figure 8.3: The GAN losses of the ETMG generators and discriminators. 
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Figure 8.4: Reconstruction and LBP loss of the ETMG model. 

Additional results: we show additional results of the ETMG model on Places2 (Figure 

8.5) and CelebHQ (Figure 8.6). We show the corrupted, the output, the ground truth 

images. Also, we show the output and the ground truth LBP images. 
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Figure 8.5: Additional qualitative results of the ETMG model on the Places2. 
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Figure 8.6: Additional qualitative results of the ETMG model on the CelebHQ. 
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Appendix D: additional results of ETMG + SC 

We show additional results of the ETMG + SC model on CelebHQ (Figure 8.7). 

We show the corrupted, the estimated and the ground truth segmentation labels, the 

output and the ground truth images. 

 

 

Figure 8.7: Additional results of the ETMG + SC model. 


