T.R.
GEBZE TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

LEARNING TO INPAINT IMAGES UISNG SCENE
CONSTRAINTS

MOHAMED ABBAS HEDJAZI
A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER ENGINEERING

GEBZE
2021

T.R.
GEBZE TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

LEARNING TO INPAINT IMAGES USING
SCENE CONSTRAINTS

MOHAMED ABBAS HEDJAZI
A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER ENGINEERING

THESIS SUPERVISOR
ASSIST. PROF. DR. YAKUP GENC

GEBZE
2021

T.R.
GEBZE TEKNIiK UNIVERSITESI
FEN BILIMLERI ENSTITUSU

SAHNE KISITLAMALARINI
KULLANARAK GORUNTULER
TAMAMLAMA

MOHAMED ABBAS HEDJAZI
DOKTORA TEZIi
BILGIiSAYAR MUHENDISLIGi ANABILiM DALI

DANISMANI
DR. OGR. UYESL YAKUP GENG

GEBZE
2021

GEBZE TEKNIK UNIiVERSITESI DOKTORA JURI ONAY FORMU

GTU Fen Bilimleri Enstitiisii Yoénetim Kurulu’nun [oviii.. [oeiiin.. tarith

Ve [oein.. sayili karartyla olusturulan jiiri tarafindan [evinnn. [....... tarihinde

tez savunma S1navi yapulanooeiiiiiii e ’1n tez caligmast

.. Anabilim Dalinda DOKTORA tezi olarak kabul

edilmistir.

JURI
UYE
(TEZ DANISMANI) : Dr. Ogr. Uyesi Yakup Geng

UYE . Prof. Dr. Yusuf Sinan Akgiil

UYE . Dr. Ogr. Uyesi Ayse Betiil Oktay

UYE : Dog. Dr. Behget Ugur Toreyin

UYE . Prof. Dr. Erchan APTOULA
ONAY

Gebze Teknik Universitesi Fen Bilimleri Enstitiisii Yonetim Kurulu’nun

....... [iccoo.d........ tarthve/......... say1lli karar1.

IMZA/MUHUR

https://www.facebook.com/public/Bet%C3%BCl-Bet%C3%BCl

SUMMARY

Image inpainting fills in the corrupted regions with plausible alternative
contents. Recent GAN-based (Generative Adversarial Networks) inpainting methods
show remarkable improvements over traditional ones. However, they assume the
models implicitly learn the image structure and texture without enforcing constraints
about the scene. Consequently, these models fail to capture object semantics,
synthesize blurry texture details and produce significant artifacts on large masked
regions due to GAN stability problems. Also, they employ large models requiring high
computation time. This thesis proposes four methods to tackle these problems and
complete the missing regions with the correct structure and fine-grained textures. Our
first model exploits segmentation labels and edges to constrain image inpainting and
reconstruct the object boundaries and the image structure. The second method
stabilizes GAN training using four progressive generators and discriminators. To
restore fine-grained detail, we use a texture-based loss function. The third method
proposes a curriculum-style training approach to complete large regions. It increases
the masked region size progressively in training time to stabilize GANs. Our final
approach uses multi-resolution deep network paths to enlarge receptive fields and
ensure low and high-level feature learning. It employs an adaptative weighting
mechanism in the loss functions to focus on images exhibiting large masks and
complex textures in the corrupted regions. We conduct our experiments on public
datasets to validate our proposed methods. Results show that the proposed methods
outperform state-of-the-art algorithms and speed up the inference time. We extend the
experiments to other tasks, such as image outpainting and image blind inpainting.

Keywords: Image inpainting, Constrained learning, Deep learning, Generative

adversarial networks.

OZET

Gorilintii tamamlama teknikleri imgelerin bozuk kisimlarin1 uyumlu alternatif
iceriklerle doldurur. Son zamanlardaki ¢ekismeli iiretken aglar (GAN) tabanli goriintii
tamamlama yontemleri, geleneksel goriintli isleme yaklasimlarina gore kayda deger
gelismeler gostermektedir. Bu teknikler, egitimi yonlendirmek i¢in girdi imge sahne
hakkinda herhangi bir kisitlama kullanmaz. Bdylece elde edilen modeller sahnedeki
nesnelerin semantigini yakalamada zorluk ¢cekmekte ve ozellikle bulanik doku ve
yapisal bozukluklar i¢eren imgeler olusturmaktadir. Ayn1 zamanda modellerin yer ve
zaman karmagsikligi yiiksektir.. Bu tez, bahsedilen sorunlari ¢6zen kademeli dort
yontem Onererek eksik bolgeleri yiiksek sadakatli yapisal ve dokusal imgeler ile
tamamlamaktadir. ilk modelimiz, goriintii tamamlamada kisit i¢in segmentasyon
etiketlerinden ve kenarlardan yararlanir. Bu model nesne sinirlarini ve goriintii yapisini
yeniden olusturmaya yardimci olmaktadir. Ikinci model, dort asamali jeneratorleri ve
diskriminatorleri kullanarak GAN egitimi stabilize etmektedir. Gorlintli ayrintilarin
yakalabilmek i¢in bir yeni bir doku uyum fonksiyonu tasarlanmustir. Ugiincii model,
blyuk bolgeleri tamamlamak icin bir mifredat egitimi yaklasimi Onermektedir.
GAN'lar stabilize etmek i¢in egitim siiresinde maskelenmis bolge boyutunu asamali
olarak artirir. Son modelimiz, lokal odagi genisletmek icin farkli ¢oziiniirliiklii derin
sinir aglarmi kullanir ve ayn1 anda diisiik ve iist diizey 6zellik 6grenimi saglar. Ayrica,
bozuk bolgelerde biiylik maskeler ve karmasik dokular sergileyen goriintiilere
odaklanmak i¢in kayip fonksiyonda uyarlanabilir bir agirlik mekanizmas: kullanir.
Gelistirilen modellerin dogrulanmasi i¢in deneyler popiiler veri kiimeleri izerinde
yapilmistir. Modellerin testi sonucunda en son c¢ikan yontemlerden daha iyi
performans gostermektedir ve daha hizidir. Imge tamamlama islemleri sadece ic
bolgeler i¢in degil ayn1 zamanda dis bolge tamamlama ve kor goriintii i¢ bolge

tamamlama problemlerine de basaril bir sekilde uygulanmaistir.

Anahtar Kelimeler: Gorinti tamamlama, Kisith 6grenme, Derin 6grenme,

Cekismeli Uretici Aglar.

vi

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to:

My advisor Dr. Yakup Geng, for his continuous support, expert advice and
guidance throughout my Ph.D. study. He has supervised me with tremendous
knowledge, valuable criticism and limitless patience. | will always appreciate his
motivation that inspired me a lot.

The thesis jury members Prof. Dr. Yusuf Sinan Akgiil and Dr. Ayse Betiil Oktay
for their time, insightful comments, valuable feedback that improved the thesis quality
and contributions.

The professors of the GTU computer engineering department. | enjoy all their
lectures and benefit from their advice and experience that improved my skills and
expanded my knowledge.

My research colleagues, for their collaboration, discussions, encouragement,
support and social meetings.

The Turkish Scholarships organization (YTB) for the financial support, help and
understanding during my Ph.D. study.

My parents and all the rest of my family, for their unconditional love and

unwavering encouragement.

Vii

TABLE OF CONTENTS

Page

SUMMARY v
OZET Vi
ACKNOWLEDGEMENTS vii
TABLE OF CONTENTS viil
LIST OF ABBREVIATIONS and ACRONYMS X
LIST OF FIGURES Xii
LIST OF TABLES XV
1. INTRODUCTION 1
1.1. Motivations 2

1.2. Contributions 5

1.3. Dissertation Outline 7

2. BACKGROUND 9
2.1. Generative adversarial networks 9

2.2. Image inpainting methods 13

2.3. Quality assessment techniques 16

2.4. Summary 18

3. IMAGE INPAINTING USING SCENE CONSTRAINTS 19
3.1. Introduction 19

3.2. Approach 20

3.3. Experimental evaluation 25

3.4. Results and discussion 26

3.5. Summary 37

4. EFFICIENT TEXTURE-AWARE MULTI-GAN FOR IMAGE INPAINTING 39
4.1. Introduction 39

4.2. Approach 40

4.3. Experimental evaluation 46

4.4. Results and discussion 47

45. Summary 59

viii

5. LEARNING TO INPAINT BY PROGRESSIVELY GROWING THE MASK

REGIONS 60
5.1. Introduction 60
5.2. Approach 62
5.3. Experimental evaluation 65
5.4. Results and discussion 67
5.5. Summary 72
6. IMAGE INPAINTING USING DEEP MULTI-RESOLUTION PATHS AND
ADAPTATIVE LOSS FUNCTIONS 73
6.1. Introduction 73
6.2. Approach 74
6.3. Experimental evaluation 77
6.4. Results and discussions 77
6.5. Summary 81
7. COMPARISON OF THE PROPOSED APPROACHES 82
7.1. Introduction 82
7.2. Places2 dataset 82
7.3. CelebHQ dataset 83
7.4. Computational time comparison 86
7.5. Summary and discussion 86
8. Conclusions 88
8.1. Summary of the contributions 88
8.2. Limitation and future work 89
REFERENCES 91
BIOGRAPHY 99

APPENDICES 100

LIST OF ABBREVIATIONS

Abbreviations Descriptions

AR : Augmented Reality

BRISQUE . Blind/Reference-less Image Spatial Quality Evaluator
CA . Contextual Attention

CAM . Contextual Attention Mechanism
CL : Curriculum Learning

CNN . Convolutional Neural Network
Conv2D : 2D Convolution

CPU . Central Processing Unit

CSA . Coherent Semantic Attention
DFENET . Diffusion Network

DL . Deep learning

DMRP . Deep Multi-resolution Paths
DNN . Deep Neural Network

DR . Diminished Reality

EC . Edge-Connect

ETMG . Efficient Texture-aware multi-GAN
FID . Fréchet Inception Distance

GAN . Generative Adversarial Network
GC . Gated Convolution

GFLOPS . Giga Floating-point Operations
GPU . Graphic Processing Unit

loU . Intersection over Union

IS . Inception Score

LeakyRelLU . Leaky Rectified Linear Unit
LBP . Local Binary Pattern

LSGAN . Least Squares GANs

M : Million

MAE : Mean Absolute Error

ms . Millisecond

MSE . Mean Squared Error

NIQE . Naturalness Image Quality Evaluator

NSGAN
PSNR
RelLU
SC

SF
SSIM

TConv2D
VAE

Non-saturating GAN

Peak Signal-to-Noise Ratio
Rectified Linear Unit

Scene Constraints

Structure-Flow

Structural Similarity Index Measure

Transposed 2D Convolution
Variational Auto-Encoder

xi

Figure No:

1.1: Example of image editing (first row) and object removal (second row).

1.2: Example of artifacts produced by methods that do not enforce any input
constraints.

1.3: Example of a synthesized image with blurry textures.

1.4: Example of structure and color inconsistency due to GAN instability.

2.1: Generative adversarial network architecture.

2.2: lustration of different GAN losses.

2.3: Progressive growing of GANSs architecture.

2.4: Animage-to-image translation architecture.

3.1: The overall architecture of the SC model.

3.2: lllustration of the progressive resizing approach.

3.3: Qualitative comparison of our SC model on MSCOCO.

3.4: Qualitative comparison of our SC model on CelebHQ.

3.5 Intermediate outputs of the SC approach on the CelebHQ and MSCOCO
datasets.

3.6: Predictions from corrupted images vs. predictions from the SC model.

3.7 Successful/failure predictions of the SC model.

3.8: Object removal and image editing using the SC model.

4.1: Architecture of the ETMG model.

4.2: Input and output of the progressive generators.

4.3: Example of 3x3 LBP operator applied on a grayscale image.

4.4: The algorithm of the differentiable LBP layer.

4.5 Qualitative comparison of the ETMG model on Places2.

4.6: Qualitative comparison of the ETMG model on CelebHQ.

4.7: Qualitative ablation studies of the LBP loss on CelebHQ.

4.8: Final prediction of the ETMG model using different dilation factors of the
LBP operator (1 and 4).

4.9: Intermediate predictions of the ETMG model on different resolutions.

LIST OF FIGURES

4.10: Qualitative results of the ETMG model using a rectangular mask.

xii

10
11
12
13
21
24
27
28

32
34
36
37
42
43
44
45
48
49
52

53
55
56

4.11: Scalability of the ETMG approach on several tasks, namely, unseen faces,

4.12:
5.1:
5.2:

5.3:
5.4.

5.5:

5.6:

5.7:

5.8:

5.9:

5.10:

5.11:

5.12:

5.13:

6.1:

6.2:

6.3:

7.1:

71.2:

blind image inpainting and image out-painting.
Object removal and image editing using the ETMG model.

Illustration of the PGM approach.

Overall architecture of the Generator and the Discriminator of the PGM

model.

Different training setups on the PGM model.

Quantitative comparison using MAE of the different training setups of the

PGM model on the MSCOCO.

Quantitative comparison using PSNR of the different training setups of the

PGM model on the MSCOCO.

Quantitative comparison using IS of the different training setups of the

PGM model on the MSCOCO.

Quantitative comparison using FID of the different training setups of the

PGM model on the MSCOCO.

Quantitative comparison using MAE of the different training setups of the

PGM model on the CelebA.

Quantitative comparison using PSNR of the different training setups of the

PGM model on the CelebA.

Quantitative comparison using IS of the different training setups of the

PGM model on the CelebA.

Quantitative comparison using FID of the different training setups of the

PGM model on the CelebA.

Qualitative comparison of the conventional vs. PGM approach using block

mask.

Qualitative comparison of the conventional training vs. PGM using free-

form mask.

The overall architecture of the DMRP model.

Quialitative comparison of the DMPR model on Places2 and CelebHQ.
Qualitative ablation studies of the DMPR model on the CelebHQ.
Qualitative evaluation of the proposed image inpainting approaches on the

Places2 dataset.

Qualitative evaluation of the proposed image inpainting approaches on the

CelebHQ dataset.

Xiii

S7
58
63

64
66

68

68

68

69

69

69

70

70

71

72

75

78

80

83

84

7.3:
1.4:
8.1:
8.2:
8.3:
8.4:
8.5:
8.6:
8.7:

Example 1 of ETMG + SC intermediate results.

Example 2 of ETMG + SC intermediate results.

Exemplar-based image inpainting.

Additional results of the SC model.

The GAN losses of the ETMG generators and discriminators.
Reconstruction and LBP loss of the ETMG model.

Additional qualitative results of the ETMG model on the Places2.

Additional qualitative results of the ETMG model on the CelebHQ.

Additional results of the ETMG + SC model.

Xiv

85
85
90
101
104
105
106
107
108

LIST OF TABLES

Table No:

3.1: Architecture of the SC refinement network.

3.2: Quantitative comparison of the SC model on MSCOCO.

3.3: Quantitative comparison of the SC model on CelebHQ.

3.4: Computational time analysis of the SC model.

3.5: Ablation studies of the SC model on the CelebHQ dataset.

3.6: Edge prediction metrics of the SC model.

3.7: Segmentation labels prediction metrics of the SC model.

4.1: Quantitative comparison of the ETMG on Places2.

4.2 Quantitative comparison of the ETMG model on CelebHQ.

4.3: Computational time comparison of the ETMG model.

4.4 Quantitative ablation studies of the LBP loss on CelebHQ.

4.5: Edge prediction metrics of the ETMG model over CelebHQ and Places2.

4.6: Quantitative evaluation of the ETMG approach on different tasks,
including block-wise masks, blind image inpainting and image out-
painting.

5.1: Quantitative comparison of conventional vs. PGM approach on CelebA.

6.1: Quantitative comparison of the DMPR model on Places2.

6.2: Quantitative comparison of the DMPR model on CelebHQ.

6.3: Quantitative ablation studies of the DMPR model on CelebHQ.

6.4: Computational time comparison of the DMPR model.

7.1: Quantitative evaluation of the proposed image inpainting approaches on
the Places2 dataset.

7.2: Quantitative evaluation of the proposed image inpainting approaches on
the CelebHQ dataset.

7.3: Computational time comparison.

8.1: Architecture of the ETMG discriminator network.

8.2: Architecture of the 32x32 ETMG generator network.

8.3 Architecture of the 64x64 ETMG generator network.

8.4: Architecture of the 128x128 ETMG generator network.

8.5: Architecture of the 256x256 ETMG generator network.

XV

Page

22
29
30
31
33
34
34
50
50
o1
53

56

79
79
80
81

83

84

86
102
102
102
103
103

1. INTRODUCTION

Diminished Reality (DR) is a computer vision field that eliminates, hides and
sees through objects in the real world. In other words, it is the opposite of Augmented
Reality (AR), which inserts virtual objects into the real world to keep the user with
additional knowledge about the scene. In the last decade, DR problems have received
a lot of attention, especially with the recent boom of deep learning methods that
achieve immense success and build a new state-of-the-art in many complex computer
vision problems [1].

Image completion or image inpainting is a DR technique that synthesizes
plausible contents to fill in the missing regions or to remove unwanted objects/artifacts
in an image (Figure 1.1). The estimated pixels should be coherent with the non-
damaged parts (background) to ensure that the new contents are visually realistic and

natural within the scene.

Input Generated GT
PRE™ | 7 H';, =3 S %

Figure 1.1: Example of image editing (first row) and object removal (second row).

Infilling is a fundamental part of human vision. Vertebrate eyes do not cover the
whole visual field due to blind spots where optic nerves leave the eye. This spot does
not contain any photo-receptor cells and does not contribute to the information flow of
the scene. Our brains use the information from the peripheral area, such as texture,
geometry and semantics, to fill in the missing parts [2]. Hence inpainting is easy for
humans since they can understand the image structure representing the scene, even

1

when significant portions are invisible. However, this task is very challenging for a
computer and involves an inverse problem.

To this end, image inpainting has attracted significant interest from computer
vision and pattern recognition communities. It has a wide range of applications,
including image editing [3,4], image restoration [5], object removal [6] and image
compression [7].

Prior approaches in computer vision solve the inpainting problem by extracting
low-level features, matching and pasting nearest-neighbor patches [8][9][10]. These
methods generate promising results in repetitive textures and simple structure scenes.
However, they fail to capture high-level information and usually present critical
failures for images with non-repetitive patterns, such as faces and complex scenes.

Like many computer-vision tasks, image inpainting also took its share with the
rapid advancements in deep learning. It exploits the fast progress of convolution neural
networks (CNNs).

Current learning-based image inpainting methods [11][12][13][1] outperform
traditional ones [8][9][10] both qualitatively and quantitatively using generative
adversarial networks (GANSs) [14]. They demonstrate a powerful tool to fill in the
corrupted image with plausible alternative contents using a generator and a
discriminator network. While the generator strives to synthesis images as close as
possible to ground truth distribution, the discriminator distinguishes the real from

generated ones.

1.1. Motivations

As mentioned previously, GANs-based image inpainting methods
[11][12][15][3] learn high-level features from large-scale datasets to fill in corrupted
regions. They establish a robust mapping between the corrupted and the ground truth
images. However, most of the current approaches suffer from different problems,
which inspire us to solve them in this thesis.

Initially, current methods do not put any constraints on the input and let the
model decide what to generate. They assume that the model can implicitly acquire
information from far spatial regions to synthesis new content. Consequently, most of
them generate significant artifacts leading to distorted structures and non-realistic
texture details [11] (Figure 1.2). These failures especially appear in the boundaries of

the objects where the model usually completes the masked regions using the predicted
dominant background and does not preserve the semantics of the objects [16]. We can
explain this by that most of the GAN-based approaches do not provide additional
information to the model, such as image textures and semantics to constrain the

inpainting problem.

Generated

Figure 1.2: Example of artifacts produced by methods that do not enforce any input
constraints.

Secondly, current GAN-based inpainting methods miss fine-grained textures in
highly structured scenes [3] (Figure 1.3). They assume that image textures are learned
using only reconstruction and adversarial supervision. However, this task is
challenging without additional loss functions that enforce fine-grained textures.
Moreover, all the mentioned methods use encoder-decoder architectures, where the
encoder maps the corrupted image to a latent space, then the decoder reconstructs the
ground truth image. This operation may not restore texture details due to small
receptive fields.

Figure 1.3: Example of a synthesized image with blurry textures.

Third, current methods encounter difficulties generating correct structures and
colors when the image resolution and the masked region grow large [11] (Figure 1.4).
This drawback is mainly due to the training instability of GANs that lead to mode
collapse and over-fitting. In other words, although GANSs fit the inpainting problem
very well, it is challenging to train two networks in a cyclic manner where they
compete against each other for totally different objectives.

Generated

Figure 1.4: Example of structure and color inconsistency due to GAN instability.

Finally, current approaches require expensive computation hardware limiting
many applications in resource-constrained environments. Their high computation cost
is mainly due to the usage of large coarse-to-fine! models [3][17][16][18] and
contextual attention mechanisms (CAM) [19][20]. The first technique applies a multi-
stage training process that optimizes the parameters of two or more networks.

Specifically, while the coarse stages estimate the initial image from the corrupted one,

1 Coarse: initial prediction from the corrupted image. It contains fewer texture details. Fine:
generated by the refinement network that enhances the coarse image to have global consistency and

fine-grained textures.

the refinement stage uses the initially estimated image to generate a final plausible
image. CAM borrows information from the surrounding parts to fill in corrupted
regions. However, it still fails to ensure feature continuities and has high inference
latency [21]. Also, training and inference on high-resolution images exponentially
increase computation and memory resources. Consequently, the batch size becomes
smaller, which decreases the performance of GANs [22].

Because of all the mentioned problems, image inpainting remains a challenging
task in the computer vision field. In our Ph.D. thesis, we develop efficient image
inpainting methods to synthesis semantically correct images with fine-grained

textures.

1.2. Contributions

In this thesis, we conduct several studies on designing new network
architectures, adding new constraints, introducing new loss functions and training

approaches. Our contributions can be summarized as follows.

1.2.1. Image inpainting using scenes constraints

Most of the existing methods do not enforce any constraints to guide the image
inpainting task. They either synthesis unrealistic and blurry texture details or fail to
capture object semantics. Furthermore, they employ huge models with inefficient
attention mechanisms. Motivated by these observations, we propose a new end-to-end
generative-based architecture for image inpainting. Specifically, our model exploits
the segmentation label estimations to robustly reconstruct the object boundaries and
avoid blurry or semantically incorrect images. Subsequently, it estimates edges to
recover the image structure details. Instead of predicting the segmentation labels/edges
from the corrupted image, we exploit the coarse image that contains more valuable
global structure data. To the best of our knowledge, our work is among the first to
enforce both structure and texture constraints to restrict the inpainting task and

generate images with realistic texture and correct semantic.

1.2.2. Efficient architecture for image inpainting

As mentioned in the motivations section, recent GAN-based inpainting methods
show remarkable improvements and generate plausible images using multi-stage
networks or CAM. However, these techniques increase the model complexity limiting
their application in low-resource environments. Furthermore, they fail in generating
high-resolution images with realistic texture details due to the GAN stability problem.
Motivated by these observations, we introduce a new deep generative-based multi-
resolution image inpainting framework to speed up the running time and improve
performance. Our approach is composed of four successive efficient generators filling
in four different resolutions. Specifically, the training starts with lower-resolution
images and progressively doubles their size, such that their corresponding generators
can exploit the previously inpainted regions. The latter shows a model stability
improvement since training GANs on low-resolution images proves easier and
converges faster. Another main problem with direct high-resolution image synthesis is
that the discriminator will focus on texture details. Hence, it can easily reject
synthesized images in the early training stages. Our approach drops the refinement
module after the target resolution since it significantly increases the network size. We
remedy the lack of this refinement stage by our proposed progressive training approach
and a texture-based loss function.

1.2.3. New proposed loss functions for image inpainting

One of the challenging problems in image inpainting problems is unrealistic
texture generation that usually leads to blurry and geometrically distorted results. To
ensure fine-grained textures, we adopt an LBP-based (Local-binary-patterns) loss
function to minimize the difference between the generated and the ground truth
textures. LBP is a non-parametric texture descriptor that is widely used in many
computer-vision tasks. During training, we minimize the distance between the ground
truth LBP and the predicted one. In another study of this thesis, we observe that the
images may include different texture complexity and mask sizes. Hence, we propose
a new function that gives different weights for each image in the reconstruction and
the adversarial losses. We enforce the generator to focus on images exhibiting large

masks and complex textures in the corrupted regions.

1.2.4. GAN stabilization techniques

Curriculum learning is a technique that gradually reveals training samples to the
model from the easiest to the most difficult. Inspired by this idea, we propose a
curriculum-style strategy to progressively train an effective generator by growing the
size of the masked regions in the context of image inpainting. In particular, the
proposed method increases the masked region size progressively in training time. The
intuition was that the generator and the discriminator networks solve the inpainting
problem starting from easy to more difficult regions. By easy, we mean small and
corrupted parts with basic structures that can be locally filled without the need for
global object structures. However, large mask regions are troublesome to complete
since they need local and global scene understanding. Incorporating such an approach
in a GAN framework stabilizes the training, provides better color consistencies and
captures object continuities. During test time, the user gives variable mask sizes and
multiple holes at arbitrary locations. In another GAN stabilization technique, we
propose a deep multi-resolution path architecture to robustly complete masked images.
Specifically, we employ a deep network for each scale to increase the receptive field
and recover high-frequency information from several input resolutions. Each path
contains a deep network without downsampling to keep original image details. We
concatenate the feature maps of previous and current network paths to ensure local and

global image consistency.

1.3. Dissertation Outline

We organize the remainder of this thesis as follows. In Chapter 2, we introduce
some core concepts about GANs and their variants. Besides, we review the most
important traditional and deep learning-based image inpainting. We propose the image
inpainting using scene constraints in Chapter 3. Efficient texture-aware multi-GAN for
image inpainting is introduced in Chapter 4. We present the learning to inpaint by
progressively growing the mask regions in Chapter 5 and the image inpainting using
deep multi-resolution paths and adaptative loss functions in Chapter 6. We compare
our proposed approaches against each other and propose a combination of them in

Chapter 7. Finally, Chapter 8 concludes this thesis, discusses the limitations of our

methods and describes future works. The Appendix includes supplementary materials
for Chapter 3, Chapter 4 and Chapter 7.

2. BACKGROUND

This chapter presents an overview of several concepts relevant to GANs within
the context of the image inpainting task. We explore the related GANSs-based
architectures and loss functions in the first section. Traditional and current learning-
based state-of-the-art image inpainting methods are discussed in the second section.
We note that the reader needs to have a basic understanding of computer vision
problems and terminologies. Also, we assume that deep learning techniques, such as
feed-forward, convolutional neural networks, activation functions, optimizers, basic
loss functions and other terminologies are known. We encourage the reader to learn
the fundamentals of deep learning in [23].

2.1. Generative adversarial networks

Learning-based image inpainting methods optimize a deep encoder-decoder
network to reconstruct the input image. The corrupted pixels values can be either zero,
one or the mean pixel value of ImageNet [24]. However, encoder-decoder
architectures produce blurry results and are often proceeded by a post-processing step
[12]. Recently, GANs [14] are a great data distribution modeling technique. They
achieve tremendous success in image synthesis and other complex computer vision
problems, including video generation [25], image-to-image translation [26] and
modulation classification [27]. The remainder of this section presents the most popular
loss functions (NS-GAN [14] and LS-GAN [28]), training approaches (Progressive

GAN) and architectures of GANs (Image-to-image translation).

2.1.1. NS-GANs

Proposed by [14], GAN is an emerging technique for learning complex data
distributions. It consists of two networks competing against each other: the generator
aims to generate real-looking images from a latent distribution (Gaussian). The
discriminator tries to distinguish between real and synthesized images. The networks
optimize different parameters simultaneously to reach their objectives. The generator
learns indirectly from samples by updating its parameters based on the feedback of the

discriminator (Figure 2.1). However, training GANs is very hard due to the

simultaneous optimization of different objectives and parameters. The discriminator
and the generator update their parameters based on the loss functions described in
(2.1) and (2.2), respectively.

Laiscriminator = mDin Ex~[P’r[_log (D (x))]

+ E,no,1) [—log (1 — D(G(z)))]

(2.1)

Lgenerator = mGin EZ~N(O,1) [_log (D (G(Z)))] (2.2)

Where:
e [P, is the real data distribution.
e N(0,1) is the unit Gaussian distribution.
e D is the discriminator network (differentiable) function.

e G is the generator network (differentiable) function.

Real images

[

Fake images

Gaussian distribution Latent vector

Generator

Real

Discriminator

Fake

Sampling

Figure 2.1: Generative adversarial network architecture.

2.1.2. LS-GAN

Despite its improvement in image synthesis over VAESs [29], generated samples
of NS-GAN lack realism. This problem is due to the cross-entropy loss of the
discriminator that leads to vanishing gradients. The latter occurs when the generator
sees synthesized images on the correct side of the decision boundary but are still far
from real data. Figure 2.2 illustrates the behaviors of the loss functions (NS-GAN [14]
and LSGAN [28]), where the decision boundary needs to go across the real distribution

for successful training.

10

+ Fake samgies
Real sanpies
Fake sampies o g &

|- | Least soueres decision bouncary

Figure 2.2: Illustration of different GAN losses.

The cross-entropy loss function gets a small error when updating the generator
using fake samples (magenta-colored) because they are on the correct side of the
decision boundary. In contrast, the LSGAN loss forces the generator to synthesize
samples as close as possible to the decision boundary. The LSGAN loss functions for

the discriminator and the generator update are defined in (2.3) and (2.4):

Ldiscriminator = mDin Ex~]P’r [(D (x) - 1)2] + EZ~N(O,1) [D(G(Z))Z] (2.3)

Lgenerator = mGin Ernop[(D(G(2)) — 1)?] (2.4)

[30] showed that NS-GAN minimizes the Jensen-Shannon divergence between real
and fake data distribution, while the LSGAN minimizes the Pearson divergence.
However, there is no correlation between the loss value and the training convergence,
which means there is no way to know if the training is complete. Also, it suffers from
mode collapse in which the generator ignores most of the variations in the data. A
solution is to balance the generator and the discriminator training giving a lower bound

on the loss to avoid mode collapse and apply some random noise to real images.

2.1.3. Progressive growing of GANs

[22] create a novel network architecture that generates high-resolution images of
good quality with realistic textures. Furthermore, the training time is speed-up and
become stable. The intuition is that synthesized images can be easily identified as fake
by the discriminator. Hence the generator needs to generate samples of fine details,
which is difficult in the early training stages. To approach this problem, they

progressively increase image resolution by smoothly adding more layers to the

11

generator and the discriminator, as illustrated in Figure 2.3. This approach lets the
generator learn the global structure of the image and progressively shift the distribution

to finer details rather than learning everything at once.

G Latent Latent Latent
') ‘
i aa]
| —
i : ——— 1
i e |
| H
s i ')
: i []
; i [1024x1024 |
BE. B. - 8
! | Reals | {Reals . ;Reals
D P P [1024x1024]
i b []
[]
i c————
bl i ————— 1
: : iy | E— |
Pl —1
i —
[a4 | L aa |
Training progresses

Figure 2.3: Progressive growing of GANSs architecture.

2.1.4. Image-to-image translation using GANs

[26] used GANSs in a conditional setting, where the input and the output are from
image domains A and B, respectively. Examples include semantic maps to realistic
photos, map to aerial images, sketch to faces, etc. They employ two loss functions: the
first one is a reconstruction loss which minimizes the distance of the output, and the
ground truth images of domain B using an L1 or L2 loss. The second one is an
adversarial loss, where the discriminator distinguishes real from generated images.
The latter pushes the distribution of the generator to the distribution of domain B. In
other words, the discriminator acts as a customized loss function for the desired task
leading to different results in different translation tasks. Figure 2.4 shows the image-
to-image translation architecture, where the generator (G) takes the image from
domain A and generates an image of domain B. The discriminator (D) takes real and

fake images from domain B.

12

G(x) Y

by .. &g

Figure 2.4: An image-to-image translation architecture.
2.2. Image inpainting methods

Image inpainting approaches in the literature can be principally divided into two
major groups: conventional and learning-based. The former one includes diffusion-
based and patch-based techniques that exploit the information around the masked
region to fill in the corrupted image. The second group predicts the image structure

and texture in an end-to-end manner using generative models.

2.2.1. Conventional image inpainting

[31] jointly interpolates the image gray levels and gradient directions to extend
the isophote lines into the holes of missing data. [32] uses global image statistics like
the histogram of local features to build a distribution, then inpaint the masked regions
by finding the most probable image given the boundary and the distribution. These
approaches manipulate narrow holes with simple textures. However, they generate
visually significant artifacts and noisy patterns for large missing areas.

In contrast, patch-based methods handle relatively significant holes by extracting
low-level features of the uncorrupted regions and searching the closest patches in a
dataset to paste them into the missing pixels [10].

Patch-Match [8] is the first study that finds the approximate nearest neighbor
matches between image patches. This approach has high memory and computation
cost since it iteratively explores all the samples of the dataset. Subsequently, several
methods are proposed to reduce memory usage, speed up the running time and improve
the quality of the synthesized content. [9] generalizes the Patch-Match algorithm using

more nearest neighbors, search across different scales and rotations, and matches many

13

descriptors and distance metrics. After that, image melding [33] integrates image
gradients into the distance metric between patches. Despite the continuous efforts of
the researcher of the computer vision community, patch-based approaches tend to
produce significant artifacts [10]. They show global inconsistencies in complex scenes
where the overlapped objects and non-repetitive patterns appear. We can explain this
by that these methods do not understand the global semantic of the image since it does
look for high-level features across patches. Furthermore, they cannot generate patches,

which are not present in the image.

2.2.2. Deep learning inpainting

Recently deep learning-based (DL) methods have outperformed traditional
methods and generate plausible images using GANSs. These results come as no surprise
since DL methods have improved solutions to many challenging computer vision
tasks, including image-to-image translation [34][26] and object recognition [35]. In
the context of image inpainting, learning-based methods benefit from the fast
improvements of deep neural networks (DNNs) and GANs [14] to learn the image
semantic from large-scale datasets [36][37][38]. These methods directly predict the
missing pixel values using encoder-decoder architectures.

Context encoder [11] is one of the earliest methods that use GANs to complete
rectangular masked regions in an image. However, the generated images of this
approach lack global consistency and show many artifacts around the holes. To address
this limitation, [12] extends it using a global and a local discriminator to ensure general
image coherence and local image consistency. The drawback of this technique is the
need for a post-processing step to guarantee the color coherency around square holes.
It uses Poisson Image blending [39] that increases the usage of computational
resources.

Another category replaces the postprocessing step with a refinement network
that employs the CAM to learn features from image patches surrounding the missing
region [19]. In other words, it explicitly attends to related feature patches at distant
spatial locations to enhance semantic consistency. However, it exhibits blurriness and
does not ensure pixel continuity around rectangular regions. This issue was addressed
by [21] that can handle free form masks by adding a coherent semantic attention layer

to the refinement network. However, this method is time-consuming since it performs

14

complex operations requiring high computational resources. [1] reduces the number of
the parameters using a squeeze-and-excitation [40] residual network in both generator
and discriminator. Besides, it proposes a joint context-awareness loss to generate more
realistic textures. However, it misses fine-grained textures in large corrupted regions.

Other approaches handle irregular masks and address the artifacts problem
without using adversarial learning. [15] uses a stack of partial convolution layers and
mask updating steps to perform image inpainting using an autoencoder without
adversarial learning. The intuition was that regular convolutions treat valid pixel
values and masked values similarly, while partial convolutions are conditioned only
on non-masked pixels. In other words, it employs an automatic mask updating
mechanism of the partial convolution layers that eliminate substituting pixels and use
only valid pixels. This architecture demonstrates the effectiveness of training image
inpainting models on irregularly shaped holes. Yet, it exhibits artifacts leading to
unrealistic textures and structures. [41] achieves competitive results using a fusion
block that generates a flexible alpha composition map to combine corrupted and non-
corrupted pixels. Also, it uses UNet [42] architecture embedded with the proposed
fusion blocks to handle nonharmonic region boundaries. [13] employs global and local
discriminators to build a fusion network that produces semantically coherent images.

Other recent methods apply curriculum learning (CL) techniques [43] to simplify
the image inpainting task and stabilize the training of GANSs. In another strategy, [44]
divides the inpainting task into multiple phases under which each one fills in a part of
the entire curriculum. Another work [38] gradually reconstructs the structure of the
image (edges) with the corresponding visual features.

More recently, many-stage networks have been introduced to solve structure and
texture problems. To reduce the complexity of the image inpainting and obtain realistic
results, [45] utilizes multiple latent codes to describe the high dimensional distribution
of the images. It divides the inpainting task into content inference and style imitation.
[46] preserves the foreground objects in overlapped scenes using three stages: contour
detection, contour completion and image completion. [17] divides the inpainting
problem into two phases. The first one recovers the edges, and the second one uses
that structure information to help the completion network to estimate the final image.
[47][18] use the segmentation labels to guide the structure prediction of the missing
region. [3] uses gated convolution layers in the coarse network and a CAM in the

refinement network to generate the final image. GC is a hard-gating single-channel un-

15

learnable layer multiplied to input feature maps and has a dynamic feature selection
mechanism for each channel and each spatial location. Also, they add edges as an
additional input (a sketch) to the coarse network to give the user the ability to
interactive editing.

We note that all the mentioned methods estimate the additional information from
the corrupted image, which lacks global structure and may include semantically
inconsistent content. Furthermore, they aim to recover the high-frequency information
in the image or preserve the generated object boundaries without input constraints.
[20] is also a coarse-to-fine architecture that uses a refinement generator with multi-
scale discriminators to synthesize smooth images. However, attention layers
significantly increase the computational complexity and speed down the inference
time of [20][3]. Reducing the model size without affecting the quality of the generated
images is desirable. In our thesis, we tackle this problem and build effective image
inpainting methods that ensure fine-grained textures and correct structures.
Meanwhile, the inference time should be reduced by eliminating complex operations

such as CAM and perceptual losses.
2.3. Quality assessment techniques

In this section, we investigate several image quality assessment metrics: Fréchet
Inception Distance (FID), Inception Score (IS), Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM).

2.3.1. Inception Score (IS)

The IS [48] metric measures the quality of the generated images based on their
diversity and quality. The intuition is that when a human examines a photo, he/she
can confidently determine what is in there (saliency). Also, when a human looks at a
set of images would say that it has lots of objects (diversity). The overall equation is
defined in (2.6), where the saliency is expressed by p(y|x), meaning that the
distribution of classes for any individual image should have low entropy. The
diversity is expressed by p(y), meaning that the overall distribution of classes across
the generated images should have high entropy (absence of dominating classes). The

KL divergence (2.5) is a measure of, on average, how different is the score distribution

16

for a generated image from the overall class balance. Higher scores are better,
corresponding to a larger KL-divergence between the two distributions [49].

B . P(i)
KL(P||Q) = ZP(l)log% 25)
IS(X) = exp(Ex[KL(p(y|)||lp(y)]D) (2.6)

2.3.2. Frechet Inception Distance (FID)

The FID [50] metric improves image assessment over the IS score by
comparing the statistics of synthesized to real images. It uses the Fréchet distance

between two multivariate Gaussians as defined in 2.7):

FID = ”.ur = ﬂg”z + Tr(x, + Zg —42 Zng) 2.7)

Where: X ~N(uy, Y.r) and X;~N (g, ¥,o) are the 2048-dimensional activations
of the Inception-v3 ‘pool3’ layer for real and generated samples, respectively. Lower
FID is better, corresponding to more similar real and generated samples as measured

by the distance between the distributions of their activations [49].

2.3.3. PSNR

Peak signal-to-noise ratio (PSNR) is one of the widely used image quality metrics
to evaluate compression and image inpainting methods. It calculates the ratio between
the maximum possible powers of a signal and the power of distorted noise (2.8). If the

reconstructed and the original image match, the score should be high and vice-versa.

2552

PSNR(x,y) = 10 X logo(zerr—5

) 2.8)

2.3.4. SSIM

The Structural Similarity Index (SSIM) quantifies the image quality of the proceed
image based on the ground truth by measuring the perceptual difference between them.
Unlike MSE and PSNR that estimate pixel by pixel errors, SSIM considers the

17

dependencies between pixels based on their spatial locality, which expresses valuable
information about the structure of the objects in scenes. Thus, it becomes one of the
fundamental metrics for many applications, such as compression, deblurring and
inpainting. SSIM is defined in (2.9).

(Zﬂxlly + C1)(20xy + ¢3)

SSIM(x,y) =
(x y) (.ux + Hy + Cl)(o-x + Oy + CZ)

2.9)

2.4. Summary

We devote this chapter to a brief overview of deep learning techniques for image
inpainting. In Section 2.1, we have mainly focused on the GANs architecture and loss
functions, which are essential to understand the rest of the thesis. Extensive
presentation and more details of the field can be found in this excellent book [24]. In
Section 2.2, we have introduced deep learning-based image inpainting, and we explain
the difference between them and traditional methods such as diffusion-based and
patch-based. We discuss the advantages and drawbacks of the presented approaches
and the remaining challenges in the field that will be addressed in Chapter 3, Chapter
4, Chapter 5 and Chapter 6. Although GANSs fit the inpainting problem, they still have
difficulties synthesizing coherent structures and fine-grained textures. In Section 2.3,
we have presented the fundamental metrics to quantify the performance of image

inpainting methods.

18

3. IMAGE INPAINTING USING SCENE
CONSTRAINTS

3.1. Introduction

A robust image inpainting approach should generate images with correct
structure and realistic texture details. Traditional methods extract low-level features
from the valid pixels to match and paste patches [8][9][10]. However, these methods
do not synthesize plausible content in complex scenes where non-repetitive patterns
appear. Furthermore, they have a high computational overhead due to their iterative
nature. On the other hand, early deep convolution learning-based methods capture the
image semantic using GANs that map the corrupted image to a visually realistic one
in an end-to-end manner.

Although learning-based methods achieve plausible results, they suffer from
texture artifacts and structure preservation problems. These failures especially appear
in the boundaries of the objects where the model usually completes the masked regions
using the predicted dominant background and does not preserve the semantics of the
objects [16]. We can explain this by that most of the current methods assume that the
image texture and semantic can be learned implicitly by CNNs without any further
supervision. Therefore, they do not provide any additional information to the model.

Recent GAN-based approaches address these limitations by breaking down the
inpainting problem into two or more stages, and they provide additional information
to the model. [17][3][16] divides the inpainting problem into two tasks. The first one
recovers the edges from the corrupted image, and the second stage estimates the fine
image. However, the edges are not enough to ensure realistic colors and boundaries.
[47] uses the segmentation labels to guide the structure prediction of the missing
regions. Using only this information is not sufficient since one segmentation label can
represent several textures. [46] employs an image contour network to preserve the
foreground objects in overlapped scenes. These approaches still suffer from a lack of
combined high-frequency information in the missing regions.

While the previously mentioned methods focus on using a single aspect of the
image, we predict both the segmentation labels and the edges to use them as additional
constraints to help the network to generate the correct structure and texture in the final

image. In other words, we use the segmentation labels to guide the generator to

19

complete the boundaries and understand the object classes. Furthermore, we use edges
to provide high-frequency information in structured scenes. Unlike [18][47], we
predict segmentation labels from the coarse image that contains more accurate
structure information than the corrupted image. Furthermore, we use both the coarse
image and segmentation labels to estimate the edges, which is not the case in [17] that
predicts it directly from the corrupted image. Finally, we merge the coarse image, the
estimated segmentation labels, and edges information to generate the fine-grained
image. Experiments demonstrate that dividing the inpainting problem into multiple
stages helps the networks to generate competitive results. To keep a small number of
parameters, we use small networks for all the predictors. To stabilize our model and
reduce the training time, we adopt the curriculum resizing technique [51] to image
inpainting. The training process starts with small resolution images, then gradually
increases the problem difficulty by feeding images with higher resolutions. To the best
of our knowledge, our work is among the first to enforce both structure and texture
constraints to restrict the inpainting task and generate images with realistic texture and

correct semantic. We can summarize our contributions as follows:

e We combine the segmentation labels and the edges to explicitly constrain the
image inpainting task and preserve the object structure and textures.

e We adopt the curriculum resizing technique to the image inpainting task to reduce
the training time.

e We evaluate the proposed method on the MSCOCO [52] and the CelebHQ [53]
datasets. The experiments prove that our model is computationally efficient than
several state-of-the-art methods. Meanwhile, it can generate realistic images and

obtain competitive performance.
3.2. Approach
We propose multi-stage modeling of image inpainting for a specified domain.
Our approach successfully fills in missing parts of an image while estimating the

underlying image constraints such as edges and segmentation labels. These constraints

help in describing the scene semantics.

20

Generator Discriminator

Corrupted image

Jcelpiviivigiinipiiniirig gl
] T 4 , . !
- ot e "
" Segmentation ™ S — L Li;ﬁjj S
Predictor egmentation ~ Refinement —_— 4 %
Fine image 2

Network ;
H Discriminator

| H
E Network
e : J %
. d
~ GT image

~Edge Predictor
Edge

labels

Mask

'/\C ' : Concatenation

Figure 3.1: The overall architecture of the SC model.

3.2.1. Architecture

GAN-based image inpainting methods use a generator and a discriminator to fill
in the missing regions in an image [14]. The generator is composed of four stages
(Figure 3.1). The first one takes as input the corrupted image and the mask, then
outputs a coarse image. The second estimator generates the image segmentation labels
using the coarse image. The latter depicts the visual structure of the missing regions.
Note that the ground truth segmentation labels are required to supervise the task.
Alternatively, if not available, we can use a pretrained segmentation labels estimator.
The third network estimates the edges in the image using the coarse image and the
segmentation labels. Using the latter ones at this stage is intended to simplify the task
for the edge estimator since segment boundaries tend to overlap with image edges. In
the last phase, the refinement network employs the coarse image, the segmentation
labels and edges to generate the final image.

We adopt the well-known UNet [42] architecture in the first three stages. We
divide the number of parameters in each layer by 2 for the coarse image estimator and
by 4 in the segmentation labels and edges estimators. We use a modified refinement
network of [54][3] in the last stage. We set the dilation factors in the middle block to
1, 2, 3 and 4 to avoid the gridding problem. This problem is due to the use of the same
dilation factor for all the successive convolution layers. The latter may cause
discontinuous convolution kernels and inconsistency of local information [54]. We use
dense connections between all the layers to reuse the previous features.

We remove the CAM layer since it increases the floating-point operations due

to the high-resolution tensor matrix multiplications and SoftMax activation functions.

21

Furthermore, it can lead to semantic irrelevance resulting in pixel discontinuity of the
generated regions. We investigate different architectures in the refinement network to
find the best design that reduces the number of parameters without affecting the
inpainting performance. We focus on this step to improve the model efficiency and
decrease the memory resource requirements. We describe the architecture in Table 3.1.
We use the PatchGAN discriminator [26] that outputs a tensor of real and fake values

to criticize different patches in the image.

Table 3.1: Architecture of the SC refinement network.

Block Layer Dim Kernel Stride | Dilation
Conv2D 32 3x3 1 1
Conv2D 64 4 x4 2 1
Encoder Conv2D 128 4 x4 2 1
Conv2D 128 3x3 1 1
Conv2D 128 3x3 1 1
Conv2D 128 3x3 1 1
) Conv2D 128 3x3 1 2
Middle | -0 v2p 128 | 3x3 1 3
Conv2D 128 3%x3 1 4
Conv2D 128 3x3 1 1
Conv2D 128 3x3 1 1
Nearest2D - - - -
Decoder | Conv2D 64 3x%x3 1 1
Nearest2D - - - -
Conv2D 32 3x3 1 1
Conv2D 3 3x3 1 1

3.2.2. Semantic maps and edges as constraints

Most of the GAN-based inpainting methods assume that the network can
implicitly learn the image structure and texture, which is a challenging optimization
problem for neural networks. Recent approaches provide additional information such
as the segmentation labels [47][18] and the edges [3][17] to explicitly guide the
network to generate structurally plausible content with realistic textures. However,
these methods estimate the segmentation labels or edges from the corrupted image,

which seem to wash away most of the information since several details and structures

22

disappear in the missing regions. Different from [47][18], we estimate the
segmentation labels from the coarse image, which contains more semantically correct
content. We estimate the edges from the segmentation labels and the coarse image.
This composition helps edge estimation since the coarse image contains better global
information structures than the corrupted image. Meanwhile, the segmentation labels
identify many fundamental edges in the scenes. Our network exploits all the previous
predictions to synthesis high-quality images with global semantic consistency, smooth

boundaries, and realistic texture details.

3.2.3. Curriculum resizing

Recent inpainting methods use CL techniques to stabilize the GAN training and
reduce the learning difficulty in large holes by progressively growing the mask regions
[55], the image structure [38] and the fine image [56]. However, all the mentioned
methods train the models on high-resolution images, which drastically increases the
training time. Furthermore, training GANs on low-resolution images proves to be
stable [53]. Inspired by this observation, we adopt the curriculum resizing technique
to the image inpainting task to decrease the training time without much effect on the
inpainting performance. Most of the image inpainting training methods employ only
high-resolution images to learn the mapping function between the corrupted image and
ground truth image. In our work, we propose to divide the training into several steps,
such that each one trains the model on a specific resolution. As seen in Figure 3.2, we
assign most of the training time to smaller images to speed up training and reduce the
usage of computational resources. We effectively estimate missing regions by training
on low-resolution images to increase the receptive field of convolution filters.
However, on high-resolution images, the discriminator network can easily distinguish
high-frequency information of ground truth samples from the generated ones leading
to an easy rejection and unstable training. In contrast, low-resolution images do not
contain many details avoiding GAN failure and mode collapse. Since our network is

fully convolutional, we do not have any problem feeding different image sizes.

23

Resolution

: ‘ } 256x256
Po128x128 iRCAIN
64x64 “;ﬂ!
tORRL L L
) i | Time
" 4/10 " 7/710 9/10 10/10°

Figure 3.2: lllustration of the progressive resizing approach.

3.2.4. Loss functions

Let Iy, I, and I, be the ground truths for the image, the mask, the segmentation
labels, and the edge, respectively. Also, let G.(.), Gs(.), G.(.) and G¢(.) be the coarse

image estimator, the segmentation labeler, the edge estimator, and the refinement
network, respectively. The coarse image O., the segmentation labels O, the edges O,

and the fine image Oy are predicted using 3.1), 3.2), 3.3), and 3.4), respectively.

0c = Go(I; X Iy Iy,) 3.1)
0s = Gs(0,) 3.2)

O = Ge (O, 05) 3.3)
Or = G¢(0,, 05, 0,) 3.4)

L1 loss: we measure the error between the ground truth image and the predictions in
(3.5):

Lyec = ”05 - Ig”l + ”05 - Iz”l + ||Oe - Ie“l + ||0f - Iglll (35)

Adversarial loss: we optimize the LSGAN [28] adversarial loss for each resolution as
defined in (3.6).

24

Lgis =E [(D(Ig) - 1)2] + E[D(Of)z]

(3.6)
Laay =E [(D(0f) — 1)?]
Overall loss: we use a weighted sum of the reconstruction and the adversarial. The
choice of hyper-parameters in the loss function plays a significant role in the
improvement of the image inpainting performance. We select the weights empirically
by conducting a set of experiments and changing the hyper-parameters for each loss
component. We give a weight y,4,=0.1, y,-..==1 for the adversarial loss and the

reconstruction loss, respectively. The overall loss is defined in (3.7):

Loverall = Yadv X Ladv + Yrec X Lrec (3-7)

3.3. Experimental evaluation

3.3.1. Datasets and masks

We experiment on two datasets that contain images with their corresponding
segmentation labels. The first one is CelebAMask-HQ [53][57] which has 30K highly
quality faces of size 1024 x 1024 with a large variation in facial characteristics such
as the shape and the color. Its segmentation labels are 19 classes, including facial
associates and components such as skin, nose, eyes, etc. The second dataset is the
MSCOCO [52] that has 118K training images and 5K test images with 80 different
categories. This dataset is very suitable for our case since it contains crowded scenes
with a high change in texture and color. Most of the users of image inpainting
applications interact using arbitrary shapes. Hence, recent deep learning-based
inpainting methods [3][17][47][46] utilize irregular mask sizes to train their models.
We use [58] to train our model, which contains random variable masks covering
diverse parts of the image. In evaluation time, our masks are divided into four
categories covering 10 — 20%, 20 — 30%, 30 — 40% and 40 — 50% of the image.

3.3.2. Implementation details

In this part, we describe in detail our training procedure and hyperparameters

settings. We use Pytorch to implement the proposed method using CUDA v10.1 and

25

CuDNN v7.6.4. We train the model in an end-to-end manner for 50 epochs using a
batch size of 8. It takes three days to converge on a single NVIDIA TITAN X GPU.
For updating weights, we use Adam optimizer [59] with hyperparameters a =
0.5and B = 0.99, respectively. We set the learning rate of the first three stages to 1073
and 10~ *for the refinement stage. Since GANs are very sensitive to high learning rates,
we detach the coarse image, segmentation labels and edge predictions from their
networks. Hence, the backpropagation from the adversarial loss does not affect the
weights in their corresponding networks. After observing an improvement in the
segmentation labels and the edge predictions, we decrease the learning rate of the first
three stages to 10™*, and we attach the coarse, segmentation labels and edge
predictions. [17] shows that the o hyper-parameters in the Canny edge detector have
an important impact on the inpainting performance. We use o = 2 based on their

ablation studies.

3.4. Results and discussion

We qualitatively and quantitatively compare our approach against five recent
image inpainting methods. Contextual Attention (CA) [19] uses a local-patch attention
mechanism in the refinement network to improve the coarse image. Edge Connect
(EC) [17] employs edges as additional information to guide the model to generate
plausible structures. Gated Convolutions (GC) [3] produce promising results since it
uses both the gated convolutions layers and edge information. Structure-flow (SF) [16]
preserves robust structure and texture using edges predictor and appearance flow
generator, respectively. Coherent Semantic Attention (CSA) [21] representing the
semantic relevance between the missing region features. In the CelebAMask-HQ
dataset [53][57], we use the pre-trained models of compared state-of-the-arts, which is
another reason for selecting these approaches. For a fair comparison, we train all the
models for 50 epochs on the MSCOCO [52] dataset. Furthermore, we use the same

masks and test splits in all the experiments.

3.4.1. Qualitative results

To evaluate our method, we report qualitative comparison results on the
MSCOCO dataset [52]. As seen in Figure 3.3, CA [19] generates significant artifacts

26

since it does not predict any additional information to guide the network. GC [3] and
EC [17] can recover the global structures of the image, but they exhibit inconsistencies
between the corrupted and the valid pixels. Despite their promising results, SF [16]
and CSA [21] present color discontinuities in some cases. Our model generates both
meaningful structures and realistic textures for missing regions. We can explain this
by that the estimated segmentation labels contribute significantly to the generation of
correct boundaries. In particular, estimating edges from the coarse image preserves
more structures than estimating them from the corrupted image. Also, the combination
of the two auxiliary information guides the model to synthesis plausible contents. To
further evaluate our approach, we present Figure 3.4 that shows visual comparisons
with the other state-of-the-art methods on the CelebAMask-HQ dataset [53][57]. The
images generated by CA [19] suffer from artifacts and distortions. The performance of
GC [3] is much better since it can synthesis smoother images. However, artifacts still
exist around the borders of the face components (i.e., eyes, mouth, and nose). CSA
[21] and our method show very competitive results and generate more natural images

with fewer artifacts around the boundaries.

Figure 3.3: Qualitative comparison of our SC model on MSCOCO.

27

Figure 3.4: Qualitative comparison of our SC model on CelebHQ.

3.4.2. Quantitative results

It is well known that image inpainting tasks lack accurate evaluation metrics
[19]. Nevertheless, to quantify the performance of the proposed approach, we use
commonly used inpainting metrics, including MAE, SSIM and PSNR following
[17][16]. Furthermore, we investigate some representative blind image quality metrics
that evaluate the generated image without the ground truth. Precisely, they calculate
the no-reference image quality score for an image using the Naturalness Image Quality
Evaluator (NIQE) [60], the distortion Type Classification and Label Transfer (TCLT)
[61] and the Blind/Reference-less Image Spatial Quality Evaluator (BRISQUE) [62].
As seen from Table 3.2, CA [19] performs the worst among the six methods. EC [17]
exhibits better performance than CA in all the metrics. GC [3] and SF [16] achieve
competitive results and very close scores. CSA [21] reports the best score in the
compared state-of-the-art methods. Our approach outperforms all the state-of-the-art
methods on all the metrics, and with different mask sizes (10 — 20%, 20 — 30%,
30 —40% and 40 —50%). We can explain this by the fact that combining
segmentation labels and edges supervise the model to achieve high quantitative
performance. Furthermore, predicting them from the coarse image tends to get a better

28

estimate as opposed to doing the estimation directly from the corrupted image. To

further evaluate our approach, we report a quantitative comparison of the
CelebAMask-HQ dataset [53][57]. Table 3.3 lists the evaluation results for several
mask sizes. Our method compares very well against three existing methods. Similar to
the MSCOCO dataset [52], the lower performance for CA [19] is expected since it

does not use any additional constraints such as boundary edges or object segmentation

labels. The proposed method outperforms GC [3] in all the metrics and has very close

scores to CSA [21] that uses a huge model with complex mechanisms.

Table 3.2: Quantitative comparison of the SC model on MSCOCO.

Mask size | CA EC GC SF CSA SC
10-20% | 0.014 | 0.013 | 0.012 | 0.013 | 0.012 | 0.011
yap- | 20-3% | 0030 | 0022 | 0020 | 0020 | 0,019 | 0.018
30-40% | 0.042 | 0.032 | 0,031 | 0.030 | 0.028 | 0.025
40-50% | 0.068 | 0.052 | 0.050 | 0.048 | 0.045 | 0.041
10-20% | 0.953 | 0.956 | 0.961 | 0.960 | 0.963 | 0.971
oy | 20-30% | 0880 | 0925 | 0.930 | 0933 | 0.937 | 0.948
30-40% | 0.819 | 0.888 | 0.893 | 0.895 | 0.901 | 0.920
40-50% | 0.679 | 0.774 | 0.784 | 0.788 | 0.796 | 0.825
10-20% | 26.63 | 28.72 | 28.82 | 28.90 | 29.12 | 30.38
poyps | 2030% | 23.48 | 26.08 | 2617 | 2624 | 26.43 | 27.61
30-40% | 21.48 | 24.23 | 24.29 | 24.37 | 24.68 | 25.76
40-50% | 18.62 | 2112 | 21.15 | 21.18 | 21.71 | 22.67
10-20% | 583 | 536 | 490 | 487 | 456 | 4.04
Nigs- | 2030% | 605 | 554 | 521 | 517 | 489 | 431
30-40% | 6.44 | 576 | 531 | 533 | 506 | 4.84
40-50% | 6.89 | 645 | 542 | 549 | 534 | 511
10-20% | 2452 | 22.94 | 22.43 | 21.87 | 21.36 | 20.81
ropp— | 2030% | 2586 | 2400 | 2369 | 22.93 | 2247 | 2171
30-40% | 27.03 | 2537 | 26.96 | 24.04 | 23.66 | 22.81
40-50% | 28.61 | 26.82 | 26.33 | 25.87 | 25.19 | 24.31
10-20% | 25.05 | 24.03 | 23.29 | 23.74 | 23.16 | 22.03
| 20-30% | 2535 | 24.66 | 23.78 | 23.87 | 23.07 | 22.81
BRISQUE™ a4 400, | 25.87 | 25.05 | 24.34 | 24.25 | 23.62 | 23.36
40-50% | 2650 | 25.66 | 25.16 | 25.12 | 24.36 | 24.15

29

Table 3.3: Quantitative comparison of the SC model on CelebHQ.

Mask size CA GC CSA SC

10-20% | 0.014 | 0.009 | 0.005 | 0.007

AR~ 20-30% | 0024 | 0014 | 0.011 | 0.012
30-40% | 0.033 | 0.021 | 0.018 | 0.017

40-50% | 0.052 | 0.031 | 0.030 | 0.029

10-20% | 0.953 | 0.982 | 0.983 | 0.986

ssimt 20-30% | 0.918 | 0.968 | 0.973 | 0.975
30-40% | 0.881 | 0.950 | 0.958 | 0.959

40-50% | 0.796 | 0.899 | 0.903 | 0.900

10-20% | 2855 | 32.53 | 33.33 | 33.81

. 20-30% | 2554 | 29.73 | 30.56 | 30.96
30-40% | 23.58 | 27.80 | 28.67 | 28.95

40-50% | 21.03 | 25.05 | 25.41 | 25.85

10-20% | 493 | 476 | 447 | 423

-, 20-30% | 519 | 498 | 465 | 4.47
30-40% | 537 | 502 | 481 | 474

40-50% | 561 | 529 | 498 | 4.94
10-20% | 28.46 | 27.34 | 26.62 | 26.71
4y 20-30% | 30.15 | 28.63 | 27.92 | 27.39
30-40% | 32.22 | 30.42 | 29.36 | 28.10
40-50% | 34.68 | 32.36 | 31.77 | 29.62
10-20% | 2359 | 22.96 | 21.07 | 21.13
| 2030% | 2379 | 2317 | 2166 | 21.70
BRISQUE™ | 34 4005 | 23.00 | 23.75 | 22.21 | 22.18
40-50% | 24.62 | 24.03 | 22.46 | 22.38

3.4.3. Computation time analysis

In addition to the qualitative and the quantitative index (MAE, SSIM, PSNR,
NIQE, TCLT and BRISQUE) analysis, we compare the proposed approach against the
state-of-the-art methods in terms of the number of floating-point operations in
GFLOPS, the model parameters in millions and the computation time both on CPU
and GPU in milliseconds. Note that the CPU is an Intel(R) Core (TM) i7-2600K CPU
@ 3.40 GHz, and the GPU is NVidia Titan X. We can see from Table 3.4 that CA
[19] has the least number of network parameters. However, it shows significantly
inferior performance compared to other state-of-the-art methods (see Table 3.2 and
Table 3.3). Furthermore, our approach presents the least number of floating points and

CPU/GPU time. We can explain this by that our networks do not employ complex

30

mechanisms such as CAM. Although EC [17] inpainting performances are better than
CA, it reports higher network parameters, GFLOPS and running time. Besides, it
presents inferior inpainting performance compared to the other methods. GC [3] and
our model are very competitive in terms of performance and the number of network
parameters. However, our proposed approach reports the shortest running time and
GFLOPS due to the non-use of expensive gated operations. SF [16] has comparable
results, but the proposed method presents a better computational speed than SF, which
has the largest GFLOPS. Despite its promising results, CSA [21] has the highest

network parameters and running time among all the compared models.

Table 3.4: Computational time analysis of the SC model.

Model | GFLOPS | PARAMS (M) | CPU (ms) | GPU (ms)
CA 22.4 2.9M 383 18
EC 122.4 21.5M 704 32
GC 39.6 4.1M 490 27
SF 262.4 92.5M 810 36

CSA | 55.16 132M 972 180
sC 16.4 4M 374 16

3.4.4. Ablation studies

We analyze the impact of each component of our model individually. We
conduct several experiments on the CelebAMask-HQ dataset [53][57] and show

quantitative and qualitative results for each case.

3.4.4.1.Intermediate outputs of the proposed method

We conduct a set of experiments to confirm that the proposed end-to-end deep
generative model can robustly generate the coarse image, the segmentation labels, the
edges and the final (fine) inpainted image for the given corrupted image. We show

examples of all the mentioned predictions in Figure 3.5. We can see that the proposed

31

approach achieves good performance in the CelebAMask-HQ [53][57] and MSCOCO
[52] datasets. Furthermore, the estimated segmentation labels and the edges improve
the coarse image and help to synthesis semantically correct objects with realistic

texture details.

Coarse GT Predicted GT Predicted Refined
Image Segmentation Segmentation Edge Edge Imagg_.

Figure 3.5: Intermediate outputs of the SC approach on the CelebHQ and MSCOCO
datasets.

3.4.4.2.The effect of segmentation labels

We perform two different experiments to investigate the impact of segmentation
labels. We compare our full model with another version that employs only the
predicted edges to guide the model. Table 3.5 shows that the first configuration yields
higher performance proving that the two constraints explicitly lead the network to learn

better structures and textures.

3.4.4.3.The effect of the edges

We analyze how our predicted edges contribute to the final image. We believe
that the edges help to represent the image structure. To verify this, we also compare
our full model with another version that employs only the segmentation labels to guide
the model. The quantitative comparison in Table 3.5 indicates that the estimated edges
considerably improve the performance of our network. Furthermore, this experiment
proves that the edges are more crucial than the segmentation labels in our inpainting

framework.

32

Table 3.5: Ablation studies of the SC model on the CelebHQ dataset.

Methods MAE~ SSIM* PSNR*
Full 0.0165 0.9554 29.82
Full w/o segmentation 0.0179 0.9511 29.46
Full w/o edge 0.0173 0.9513 29.37
Full w/ CL 0.0169 0.9543 29.64
Full from corrupted 0.0176 0.8835 27.58

3.4.4.4.0ur method vs. prediction from corrupted images

Using segmentation labels and edges to guide inpainting models has been used
in [17][47][18]. However, no approach combines them to supervise the image
inpainting task. Also, all the mentioned methods estimate edges and segmentation
labels from the corrupted image. To prove the limitation of this approach, we compare
it against our proposed method that estimates segmentation labels from the coarse
image. Besides, it predicts the edges from the segmentation labels and the coarse
image. As seen from Table 3.5, estimating edges and segmentation labels from a
corrupted image decrease the performance that proves the effectiveness of the
proposed methods. Also, Figure 3.6 illustrates that the proposed approach can identify
segmentation labels and edges more effectively than estimating them directly from the
corrupted image. Note that columns from left to right represent: the input image, the
prediction from the corrupted image, our method, and the ground truths. Also, rows

from top to down represent the segmentation labels, the edges, and the images.

3.4.4.5.The accuracy of segmentation labels and edges predictions

Since segmentation labels and edge estimations play a significant role in the
proposed method, we report the quantitative results of this part, including accuracy,
precision, recall, F1 score and Intersection over Union (loU). We can see from Table
3.6 and Table 3.7 that the two networks achieve plausible results. It can identify the
edges of the corrupted regions and predict correct segmentation labels in most cases.

Furthermore, as we did previously, we compare the proposed method with the

33

conventional version that estimates the segmentation labels and the edges from the

corrupted images. We can see that this version reports inferior performances in all the

metrics that prove the effectiveness of our prediction approach.

Prediction from
corrupted

Figure 3.6: Predictions from corrupted images vs. predictions from the SC model.

Table 3.6: Edge prediction metrics of the SC model.

Metric From corrupted SC
Accuracy 91.46 97.02
Precision 67.06 88.49
CelebHQ | = pecall 79.38 81.93
F1 72.70 85.08
Accuracy 86.53 94.89
Precision 62.96 84.62
MSCOCO | pecall 77.89 79.04
F1 69.63 81.73

Table 3.7: Segmentation labels prediction metrics of the SC model.

34

Metric From corrupted SC
CelebHQ | Accuracy 84.99 85.09
Precision 71.58 72.10
Recall 86.39 87.55
F1 78.29 79.07
loU 62.72 66.48
MSCOCO | Accuracy 78.03 80.21
Precision 68.12 69.87
Recall 83.04 84.39
F1 74.84 76.44
loU 61.72 63.16

3.4.4.6.Failure cases

Figure 3.7 shows that the performance of our method is highly dependent on the
segmentation labels and edge predictors. We show our successful/failure predictions
in the upper/lower figures, respectively. Specifically, each row represents the masked
image, the ground truth image and the estimated segmentation labels, edges, and the
final image. Note that robust segmentation labels and edge predictions help the model
to generate high-quality images. In contrast, wrong segmentation label predictions can
degrade the performance of our method. In other words, sparse or discontinued
predicted edges generate low-quality images with fewer texture details. These failure
cases especially appear in non-repetitive objects, such as accessories and clothing. This
issue is a potential limitation of our study. However, these unsuccessful cases rarely
occur since the end-to-end optimization of the refinement network involves weights

updating edges, segmentation labels and coarse estimators.

35

Input

GT

Generated

Input

Generated

Figure 3.7: Successful/failure predictions of the SC model.

3.4.4.7.The effect of CL

To show the efficiency of the proposed curriculum resizing approach, we replace
the traditional training procedure that optimizes the parameters of the full model on a
single resolution (256 x 256) with the CL one. While the traditional one takes three
days to converge on a single NVIDIA TITAN X GPU, the CL training takes only one
day. Also, Table 3.5 shows that the CL version has comparable performance to the

common one, which is very suitable for low computational power platforms.

3.4.5. Interactive editing

The proposed method allows interactive drawing of the input masks for object

removal applications. It robustly restores the missing regions with a high relevance

36

with the background. We show some examples of interactive editing in Figure 3.8. We
remove objects with uniform backgrounds (snow and sky) and complex backgrounds
(human skin and hair). In both cases, the generated images illustrate fine-grained

textures and semantic consistency.

GT Input Output

Figure 3.8: Object removal and image editing using the SC model.
3.5. Summary

This chapter proposes a GAN-based image inpainting approach that enforces
input constraints to guide the model. Specifically, we estimate the segmentation labels
and edges to recover consistent object boundaries and coherent structure in the
corrupted regions. We demonstrate that combining these two estimated entities yields
visually appealing images. Our model performs favorably against several state-of-the-

art methods on public datasets. It successfully recovers damaged pixels and removes

37

objects from scenes. The proposed curriculum resizing technique speeds up the

training time without decreasing the performance.

38

4. EFFICIENT TEXTURE-AWARE MULTI-GAN
FOR IMAGE INPAINTING

4.1. Introduction

Most GAN-based inpainting techniques suffer from structure preservation and
unrealistic texture generation problems, which leads to blurry and geometrically
distorted results. To address the issues, most of the current GAN-based inpainting
methods employ coarse-to-fine architectures [3][17][16][18]. Specifically, the coarse
stage predicts the initial image from the corrupted [19][20] or reconstructs the image
structure represented in the edge [17][16], the contour [46] and the segmentation labels
[47][18]. The refinement stage generally uses the predicted coarse image or the
reconstructed information to generate a final plausible image. However, the
performance of the mentioned multi-stage approaches is strongly related to the
contour/edge/segmentation labels prediction stages. Furthermore, they require
expensive computational resources since they optimize the parameters of two or more
networks. Other studies employ the contextual attention mechanism (CAM) to borrow
information from the surrounding parts [19][20]. However, CAM still fails to ensure
feature continuities [21] and requires expensive computational resources. In addition
to coarse-to-fine architecture and CAM, there exists another bottleneck that drastically
increases the model capacity. Namely, training on high-resolution images, which
involves big models with many parameters. Consequently, the training becomes
slower and enforces smaller batch sizes due to computational and memory resource
constraints, which decreases the performances [22].

Motivated by these observations, we introduce a new deep generative-based
multi-resolution image inpainting framework to speed up the running time and restore
fine-grained textures. Our approach is composed of four successive efficient
generators filling in four different resolutions. Specifically, the training starts with
lower-resolution images and progressively doubles their size, such that their
corresponding generators can exploit the previously inpainted images (Figure 4.1).
This technique improves the model stability since training GANs on low-resolution
images proves easier and converges faster [22]. Another main problem with direct
high-resolution image synthesis is that the discriminator will focus on texture details.

Hence, it can easily reject synthesized images in the early training stages. Our

39

approach drops the refinement module after the target resolution since it significantly
increases the network size. We remedy the lack of this refinement stage by our
proposed progressive training approach and a texture-based loss function. The latter
adopts Local-binary-patterns (LBP) [63] to the image inpainting task. LBP is a non-
parametric texture descriptor that is widely used in computer vision tasks [64]. We
minimize the distance between the ground truth LBP and the predicted one to enforce
fine-grained textures in the corrupted regions. Hence, our approach does not require
high computational resources since it neither performs complex operations (CAM) nor
uses the refinement networks. We conduct our qualitative and quantitative experiments
on conventional inpainting datasets Places2 and CelebHQ [53]. The results show that
our efficient model can generate visually appealing images and outperforms current

state-of-the-art methods. Our main contributions are as follows:

e We present a new GAN-based image inpainting architecture that employs efficient
progressive GANSs to improve the performance and speed up the inference time.

e We adopt an LBP-based loss function to constrain the inpainting task and ensure
realistic texture details.

e The experiments on Places2 [22] and CelebHQ [53] datasets exhibit competitive
qualitative and quantitative results against current state-of-the-art methods. We
also show the scalability of the proposed approach to other applications, such as

blind image inpainting and image outpainting.
4.2. Approach

4.2.1. Multi-resolution based inpainting

Training GANSs on high-resolution images is a challenging optimization problem
that involves millions of parameters. [22] produces low-resolution images from a latent
Gaussian vector in the first stage. During training, it progressively adds layers to the
generator and the discriminator to increase the image resolution. However, this
framework is unsuitable for image-to-image translation applications since they require
a high-resolution image as input. We introduce a GAN-based architecture for image
inpainting that includes four progressive generators and discriminators. We train an

encoder-decoder generator on a low-resolution image for many epochs to robustly

40

produce samples with a very close distribution to the original one. As the training
progresses, we use the pretrained generators as the starting point for the successive
higher-resolution generator. The latter exploits the filled-in regions of the previous
lower-resolution images to learn the global image consistency and inpaint correct
structures. In contrast, training GANSs on high-resolution images is hard to stabilize,
which affects the model performance. We can explain this by that, during training, the
discriminator keeps rejecting most of the generated images since the ground truth
image contains fine-grained texture details, which are very difficult for the generator
to produce [22][65].

To the best of our knowledge, the proposed architecture is one of the first studies
that apply progressive generators and discriminators for image inpainting. [20] is a
coarse-to-fine architecture that predicts a high-resolution coarse image and enhances
it using multi-scale discriminators in the refinement stage. The discriminator of each
scale criticizes the output of that resolution size and gives high gradient feedback to
early convolution layers. However, it does not directly exploit the refined images in
lower scales, which may still be a bottleneck for the high-resolution discriminator. The
latter reject the generated samples easily due to high-frequency information. In
contrast, we build our high-resolution prediction on already filled-in predictions in
lower resolutions (Figure 4.1). In this way, the discriminator criticizes reasonable
synthesized images that are close to ground truth samples. The proposed approach
neither uses coarse-to-fine architecture nor an attention mechanism that significantly
increases the model complexity in [20]. Another approach in [41] uses a UNet [42]
architecture embedded with fusion blocks in a multi-scale manner. However, they drop
the adversarial learning and use perceptual and style losses [66] to enforce texture
details. Using only the former losses without adversarial learning can result in
checkerboard artifacts since it is hard to find the best loss weights [15]. In our
approach, we use the adversarial, reconstruction and the proposed LBP loss functions

to enhance the image texture (see Section 4.2.3).

41

O
Y

256x256

Corrupted

Generator @ Concatenate

@ Discriminator @ Upsample

128x128

32x32

Figure 4.1: Architecture of the ETMG model.

4.2.2. Architecture

Using different resolutions with multiple receptive fields helps the network to
learn the global structure of the image. As illustrated in Figure 4.1, the training starts
with 32 x 32 resolution images. We channel-wise concatenate the corrupted image
and the mask to feed them to their specific-resolution generator. We give the output of
the latter and the ground truth images to the PatchGAN [26] discriminator that shifts
the generator distribution to the real one. We use the generator network defined in
Figure 4.2 (a). We train the generator and the discriminator until convergence. During
training, we visualize different quality metrics and loss values. We stop the training
by monitoring the image quality metrics and when the visual quality of the synthesized
images is good enough as input for the succeeding resolution. We use the pre-trained
generator of the 32 x 32 resolution to train the next resolution network (64 x 64). The
network in Figure 4.2 (b) contains three sub-networks where each one takes a specific
input. We feed the concatenation of the corrupted image and the mask to the first sub-
network. We feed the concatenation of the corrupted image and the mask to the first
sub-network. We feed the estimated image of resolution 32 x 32 to the second sub-
network. The last sub-network takes the concatenation of the feature maps produces
by the previous sub-networks to produce the final image (64 x 64). Similarly, we

follow the same approach for the last two resolutions (128 x 128 and 256 X 256),

42

where each generator exploits the previously inpainted images as described in Figure
4.2 (c) and Figure 4.2 (d).

1: Corrupted image + Mask

1: Corrupted image + Mask
@D 2: 32x32 inpainted image
—.._ 3:Feature maps concatenation
1/_\I \\\ o
L \\‘ ©)}

(a) 32x32 generator (b) 64x64 generator

1: Corrupted image + Mask D 1: Corrupted image + Mask
D 2: 64x64 inpainted image A 2; 128x12.8 ln_palnte:d image
1 3: 32x32 inpainted image T z g‘z"‘g‘z‘ ["Pa!“teg image
N 4: Feature maps concatenation . \ : 32x32 inpainted image "
N @ 5: Feature maps concatenation
@] “ V
3

iii

7

P

(c) 128x128 generator {(d) 256x256 generator

Figure 4.2: Input and output of the progressive generators.

4.2.3. LBP operator for texture preservation

LBP [63] is a nonparametric image operator that transforms an image into an
array representing the local structure of the image by comparing each pixel with its
adjacent pixels. LBP is a robust descriptor that can summarize the most important
texture information in an image. Also, it shows computational simplicity and good
performance in many computer vision and image processing applications [64]. An
example of a 3 x 3 LBP operator is shown in Figure 4.3. LBP iterates over each pixel
in a grayscale image to check the values of the surrounding 3 x 3 patch, whether they
are smaller than the center pixel or not. The resulting binary number is converted to a
decimal number and placed in the corresponding position in the LBP image. Early
deep learning-based inpainting methods assume that the image texture and semantic
can be learned automatically by CNNs without further supervision. Recent GAN-
based approaches demonstrate that this task is challenging and require additional
information. [67] employs discriminative modules and class supervision to enforce

fine-grained features. Other GAN-based inpainting approaches add [3] or predict

43

[17][16] edges to ensure realistic textures. However, choosing the correct threshold for
the Canny edge detector [68] that can preserve the image texture for both highly
structured and simple images is difficult in practice. Furthermore, the edges cannot
provide sufficient texture details in many cases, such as the face skin and uniform
backgrounds. Motivated by these observations, we investigate hand-crafted features.
Specifically, we adopt the famous texture operator LBP [63] as a new loss function for
image inpainting to ensure better texture learning as used in [69] for infrared and
visible image fusion and [70] for face recognition. In particular, we minimize the loss
between the LBP of the ground truth and the predicted images using the LBP layer
defined in the algorithm of Figure 4.4. We select the LBP operator since it is robust to
illumination variations and invariance to gray-scale changes. Furthermore, it does not
add parameters to the network, and it is computationally inexpensive. However, LBP
IS a non-differentiable iterative function that cannot be optimized using
backpropagation. To address that, we transform the problem into matrix multiplication
operations using a fixed weight convolution layer. Thus, it does not add learnable
parameters to our full model. We base our implementation on [71]. Note that we only

use the LBP loss in the last resolution (256 x 256), which speeds up the inference

time.
3x3 Patch
10]125] 8
Gray
12| 15) 17
151 2 |15
©
©
Lo
[7]
g
=
==
Binary
to 0j11]0
Insert :
90 decimal 0 1
11011

Figure 4.3: Example of 3x3 LBP operator applied on a grayscale image.

44

Algorithm 1: The LBP layer pseudo-code
Input: Gray-scale image
Output: LBP image
Function LEPLayer:
- Conv = 2D convolution layer.
- Initialize the parameters to: in pannets = 1.
Ot phannels = 5, kernel = 3, stride = 1,
dilation = 1, bias = False.
- Initialize the kernels to zeros.
- Initialize the center of the kemels to -1.
- Initialize the remaining values to 1 in position: 0,
1.2,3, 4 5 6and 7 for each kernel, respectively.
- codes = list of 8 values initialized to 1, 2, 4, 8,
16, 32, 64, 128,
- ReLU = Rectified Linear Unit activation function.
- result = Clonv(input).
- result = Re LU (result).
- result = result * codes.

- result = result.sum(dim = 1).
- result = result /255,
return result

Figure 4.4: The algorithm of the differentiable LBP layer.

4.2.4. Loss functions

Let I,,x, and M, be the ground truth image and the mask where n is the size
of the square image. Also, let G,«,, () be a generator network that generates an image
Onxn Also, let LBP(.) be a differentiable LBP layer. that takes a grayscale image and
outputs the LBP image. The output image for various resolutions can be obtained using
(4.1), (4.2), (4.3) and (4.4):

032><32 = G32><32(I32><32 X M32><32'M32><32) (41)

064><64- = G64-><64-(I64-><64- X M64-><64-' M64-><64-' 032><32) (42)

0128><128 = 6128X128(1128X128 (4 3)
X M128><128' M128><128' 032)(32' 064-><64-) l

0256)(256 = GZS6X256(1256><256 (4 4)
X M256><256' M256><256' 032><32' 064-)(64—' 0128)(128) .

L1 loss: we measure the error between the ground truth image and the predicted image

for each resolution as defined in (4.5).

45

Lyec = ”0n><n - Inxn“l (4-5)

Adversarial loss: we optimize the LSGAN [28] adversarial loss for each resolution as
defined in (4.6).

Lgis =E [(D(Inxn) — 1)2]+ E[D(Onxn)z]

(4.6)
Lagy =E [(O(Inxn) — 1)2]

Texture loss: we use the LBP differentiable layer to calculate the loss between the

ground truth texture and the generated 256 x 256 image texture as defined in (4.7).
Liexture = ”LBP(GraY(Ofine)) - LBP(GraY(Ig)lll 4.7

Overall loss: we use a weighted sum of the reconstruction, the adversarial and the
texture loss. We give a weight y,4,=0.1, ¥Vyec==1 and y;exture==10 for the adversarial
loss, the reconstruction loss and the texture loss, respectively. The overall loss is
defined in (4.8):

Loverall = Yadv X Ladv + Yrec X Lrec + Ytexture X Ltexture (48)

4.3. Experimental evaluation

4.3.1. Datasets and masks

We conduct our experiments using two conventional image inpainting datasets.
The first one is Places2 [72] that has more than 1.8M images and 400 scene categories,
such as bedrooms, streets, etc. Places2 dataset became a popular image inpainting
dataset since it has a vast natural scene variation. We use the original train and test
split for the Places2 dataset. To further enrich our experiments, we evaluate our
method on CelebHQ [53], which has 30K cropped face images with a large pose and
background variations selected from the CelebA dataset [73]. We use the original

training and test split. Since users of image inpainting applications usually want to edit

46

or remove arbitrary shapes in the scenes, we use irregular mask sizes [58] during

training.

4.3.2. Implementation details

In this part, we describe our training procedure and the hyper-parameter settings. We
use Pytorch [74] to implement the proposed method using CUDA v10.1 and cuDNN
v7.6.4. We use Adam optimizer [59] with hyper-parameters « = 0.5 and § = 0.99,
respectively. We set the batch size to 32, and we fix the learning rates to 10~* for the
generators and the discriminators. We use spectral normalization [75] in all the
convolution layers of the discriminator. The details of the architectures are described
in Table 8.1, Table 8.2, Table 8.3, Table 8.4 and Table 8.5 of the Appendix. We freeze
the weights of the previous networks when training the generator and the discriminator

of the current resolution.

4.4. Results and discussion

We compare qualitatively and quantitively our full model against current state-
of-the-art methods, including Contextual Attention (CA) [19], Edge Connect (EC)
[17], Deep Fusion Network (DFNet) [41], Gated Convolution (GC) [3] and Structure
Flow (SF) [16]. We select these approaches for two main reasons: the availability of
the pretrained models that ensure a fair comparison and save both time and
computational resources. The second reason is that they achieve very competitive
results using different approaches. We use the original train and test splits for Places2
[72] and CelebHQ [53] datasets.

4.4.1. Qualitative results

We qualitatively compare our approach with the selected state-of-the-art
methods on two datasets. We zoom in on different parts of the image to show the
difference between the generated images. As seen from Figure 4.5, CA [19] produces
significant artifacts leading to misrepresented structures. EC [17] produces better
results since it estimates edges to recover the global structure of the image, but obvious
visual artifacts still appear in the masked regions. While DFNet [41] generates

plausible and smooth images with global image consistency using their introduced

47

fusion blocks, it still exhibits observable color discrepancies. GC [3] produces realistic
images due to the gated convolution layers and the refinement network, but it can miss
some texture details. SF [16] generates plausible images with fine-grained textures
since it employs two effective stages to preserve both structures and textures,
respectively. However, it suffers from remarkable inconsistencies near the boundaries.
Our method presents competitive results and shows very realistic textures in all the

missing regions.

Figure 4.5: Qualitative comparison of the ETMG model on Places2.

To further demonstrate the effectiveness of the proposed method, we report
qualitative results on the CelebHQ dataset [53]. We can see from Figure 4.6 that the
images produced by CA show visually poor performance. GC generates realistic
images but still shows discordance between the background and the parts of the
corrupted region. SF [16] synthesis smooth faces with realistic textures. However, it
sometimes exhibits color and row discontinuities in the predicted pixels. Our method
presents the most natural faces without using large models or complex mechanisms
such as CAM. The results can be explained by that our approach looks at different
image scales using multiple GANs to ensure visually realistic images with both local
and global structure consistencies. Besides, the proposed LBP-based loss function both
improves and sharpens the texture of the generated parts. Additional results of our
proposed approach in the Appendix section show that our model may synthesize
plausible new contents due to adversarial learning. Also, our qualitative results show

48

that our model enforces close LBP features if the generated contents have resembling
structures to the ground truth or only the color is changed. In contrast, the produced
LBP features are distinct for modified image structures. Note that in both cases, the

LBP-based loss function ensures fine-grained textures.

Input

)

5.4

v
- —

‘ \\llr/({ A
wiN

Figure 4.6: Qualitative comparison of the ETMG model on CelebHQ.

4.4.2. Quantitative results

To quantify the performance of the proposed approach, we use three well-known
assessment metrics, including MAE, PSNR and SSIM following works of [17][16].
To achieve a fair comparison, we use the same masks and test splits of the two datasets.
Table 4.1 lists the evaluation results on the Places2 dataset [72]. We can see that CA
[19] shows the worst performances in the three metrics on different mask sizes. EC
[17] exhibits the best results since it predicts the edges to supervise the image structure
generation. The scores of DFNet [41] and GC [3] are better and very close to each

49

other. SF [16] shows higher performance in SSIM and PSNR scores in large mask
sizes. Our approach achieves competitive results compared to the mentioned state-of-
the-art methods without using lightweight generators. Table 4.2 reports the
quantitative comparison of CelebHQ [53]. Our proposed method outperforms CA,
which shows significantly lower performance. Also, it achieves very comparable
results to GC and SF that have a bigger model.

Table 4.1: Quantitative comparison of the ETMG on Places2.

Mask size CA EC DFNet GC SF ETMG

MAE~ 10-20% | 0.019 | 0.013 | 0.010 | 0.011 | 0.012 | 0.009
20-30% | 0.033 | 0022 | 0.019 | 0.018 | 0.019 | 0.016
30-40% | 0.048 | 0.031 | 0.028 | 0.026 | 0.026 | 0.024
40-50% | 0.075 | 0.053 | 0.045 | 0.045 | 0.044 | 0.042

SSIM™ 10-20% | 0.922 | 0.947 | 0.965 | 0.969 | 0.966 | 0.971
20-30% | 0.861 | 0.913 | 0.936 | 0.942 | 0.944 | 0.946
30-40% | 0.795 | 0.879 | 0.901 | 0.909 | 0.912 | 0.916
40-50% | 0.660 | 0.762 | 0.803 | 0.810 | 0.812 | 0.816

PSNR* 10-20% 26.31 | 27.88 | 29.51 | 30.10 | 30.23 | 30.62
20-30% 22.07 | 2551 | 26.73 | 27.13 | 27.32 | 27.71
30-40% 2091 | 2396 | 24.87 | 25.07 | 2538 | 25.74
40-50% 18.27 | 20.80 | 22.03 | 21.78 | 21.97 | 22.55

Table 4.2: Quantitative comparison of the ETMG model on CelebHQ.

Mask size CA GC SF ETMG

MAE~ 10-20% | 0.014 | 0.009 | 0.011 | 0.006
20-30% | 0.024 | 0014 | 0.015 | 0.010
30-40% | 0.033 | 0.021 | 0.018 | 0.015
40-50% | 0.052 | 0.031 | 0.028 | 0.024

SSIM* | 10-20% | 0.953 | 0.982 | 0.984 | 0.988
20-30% | 0.918 | 0.968 | 0.971 | 0.979
30-40% | 0.881 | 0.950 | 0.950 | 0.967
40-50% | 0.796 | 0.899 | 0.912 | 0.924

PSNR* | 10-20% | 28.55 | 32.53 | 33.26 | 34.64
20-30% | 2554 | 29.73 | 30.42 | 31.79
30-40% | 23.58 | 27.80 | 28.74 | 29.81
40-50% | 21.03 | 25.05 | 25.63 | 26.64

50

4.4.3. Model efficiency

Table 4.3 shows the number of floating-point operations in GFLOPS, model
parameters in millions and the CPU/GPU runtime in milliseconds. For a fair
comparison, we test all the models on the same hardware for 100 iterations to find the
mean inference time. We use an Intel(R) Core (TM) i7-2600K CPU @ 3.40GHz and
an NVIDIA TITAN XP GPU. We can see from Table 4.1 and Table 4.2 that our
proposed method performances are very competitive to SF [16] and GC [3]. But our
model has only 3M parameters and 9.5 (GFLOPS), while SF involves many
parameters (92.5M) and 262.4 (GFLOPS) due to the use of two large networks for the
smooth and refined image prediction. Also, GC has 4.1M parameters and 39.6
(GFLOPS). This result is due to the use of costly CAM layers and gated operations
(sigmoid activation functions) in the refinement network of GC, which augment the
number of network parameters and GFLOPS. Our full model is computationally
efficient than DFNet [41] that has 9.7 (GFLOPS) and 3.3M parameters. EC [17] has
21.5M parameters and a computation cost of 122.5 (GFLOPS) due to two large models
for edge detection and the refinement network for the final prediction. CA [19] has the
smallest number of parameters (2.9M). However, it has a high computation cost (22.4
GFLOPS) than our model since it involves many attention layers. Besides, it shows
the worst performance both in the quantitative and the qualitative comparison.
Concerning the inference time, our model yields the best results, highlighting the

efficiency of the proposed approach.

Table 4.3: Computational time comparison of the ETMG model.

Model | GFLOPS | PARAMS (M) | CPU (ms) | GPU (ms)
CA 22.4 2.9M 383 18
EC 122.4 21.5M 704 32
GC 39.6 4.1M 490 27
SF 262.4 92.5M 810 36

ETMG 95 3M 334 11

51

4.4.4. Ablation study

To further demonstrate the effectiveness of the proposed method and show the
contribution of each part to the entire approach, we conduct a set of additional
experiments. We investigate the effect of LBP loss function and the LBP operator
shape. Also, we compare the proposed LBP-loss function against perceptual loss [66].
We analyze the performances of the four generators, and we evaluate the quality of the
generated textures. Finally, we show the scalability of the proposed approach to other

applications, including image outpainting and blind image inpainting.

4.4.4.1 Effect of the LBP loss

To analyze the contribution of our proposed LBP loss function to the entire
approach, we implement two settings of the model, and we show qualitative and
quantitative results for each version on the CelebHQ dataset [53]. The first employs
only the proposed architecture, while the second adds the LBP loss function to
constrain the prediction. We believe that the LBP can robustly describe image textures
since the filter comparison operations keep the most meaningful pixels. Table 4.4
indicates that the LBP loss improves the performance and correlates very well with the
metrics. Also, we can see from Figure 4.7 that our additional LBP layer restores the
image texture and provide realistic images. Note that images of the first version are
plausible and have semantic consistency, which proves the effectiveness of our

proposed multi-resolution generators.

Corrupted Full w/o
image LBP loss

Predicted LBP

Figure 4.7: Qualitative ablation studies of the LBP loss on CelebHQ.

52

Table 4.4: Quantitative ablation studies of the LBP loss on CelebHQ.

Methods MAE~ | SSIM* | PSNR*
Full 0.014 0.964 30.72
Full w/o LBP loss 0.015 0.957 29.89

Full w/ LBP dilation 4 0.014 0.959 30.15
Full w/ LBP dilation 1 0.015 0.964 30.72
Full w/ Perceptual loss 0.014 0.960 30.17

4.4.4.2.Effect of the LBP operator shape

It is well-known that large convolution filters lead to blurriness when applied in
the last deconvolution layer. Thus, we fix the filter size to 3 X 3, and we investigate
two different LBP dilation factors to show whether they affect the results or not. We
can see from Table 4.4 that using a filter with a dilation factor of 1 achieves better
results than a filter with a dilation of 4 since the latter looks for distant pixels from the

desired region, which causes blurriness as seen in Figure 4.8.

GT Predicted image Predicted image
Dilation 1 Dilation 4

image

Predicted LBP Predicted LBP
GT LBP Dilation 1 Dilation 4

e

Figure 4.8: Final prediction of the ETMG model using different dilation factors of
the LBP operator (1 and 4).

53

4.4.4.3.Perceptual Loss vs. LBP-based loss

To further analyze the impact of the LBP-based loss function, we compare the
proposed approach to a high-level feature loss baseline. Specifically, we drop the LBP
loss and use the same multi-GAN architecture with the perceptual loss [66]. During
training, generated images and ground truth images are fed to a VGG network to
produce the intermediate feature maps in different layers. We observe that the
perceptual loss drastically increases the training time since it compares high-
dimensional feature maps. On the other hand, our approach compares a single LBP
feature map, which speeds up the training. Table 4.6 demonstrates the superiority of

our full model in all the quantitative metrics.

4.4.4.4.Analysis of the four generators

Our approach investigates different receptive fields by optimizing the
parameters of four progressive generators. In particular, the generator of the higher
resolution benefits from the previously inpainted images by the lower ones to learn the
global image structure. To show the image structure improvement, we analyze the
input of the four generators in the two datasets Places2 [72] and CelebHQ [53]. As
seen from Figure 4.9, as the training advances, the quality of the image is improved,
and more meaningful structures (edges and boundaries) appear. Although the images
of lower resolutions are blurry and do not provide sharp texture details, they recover
the global structure of the image, which aids the estimation of damaged pixels of the
next resolution. We can see from Figure 4.9 that 32 x 32 resolutions recover the global
structure of the nose and the eyes. However, the images are still blurry and lack texture
details. As the resolution increases, the network synthesis visually appealing nose and

eyes.

54

Masked GT
image 32x32 64x64 128x128 256x256 image

Figure 4.9: Intermediate predictions of the ETMG model on different resolutions.

4.4.4.5.Analysis of the generated texture quality

To further evaluate our approach performances, we measure the accuracy of the
edge in the corrupted regions for the Places2 [72] and the CelebHQ [53] datasets since
edges robustly express the image structure. We use Canny [68] since it is one of the
famous edge detectors to find edges in the generated and the ground truth images. We
calculate different metrics on the predicted edge of the corrupted regions to show the
percentage of the recovered edges. Table 4.5 shows that our approach can restore most
of the texture details since it achieves high precision, recall, accuracy, and F1 measure

Scores.

Table 4.5: Edge prediction metrics of the ETMG model over CelebHQ and Places2.

Methods Accuracy (%) Precision (%) Recall (%) F1(%)
CelebHQ 99.9 86.2 85.2 85.7
Places?2 934 84.7 84.0 84.3

4.4.4.6.Scalability of the proposed method

To confirm the scalability of the proposed method, we conduct four completing
experiments. Quantitive and qualitative results are shown in Table 4.6, Figure 4.10 and
Figure 4.11. In the first experiment, we train and test it using block-wise masks.
Specifically, we put a single hole region with a rectangular shape at different locations.

Although this experiment is more challenging than the free-form masks, our method

55

shows remarkable relevance between the squared hole and the background on
CelebHQ [53]. Also, it still exhibits visually plausible results on both uniform and non-

uniform backgrounds on the Places2 dataset [72].

Table 4.6: Quantitative evaluation of the ETMG approach on different tasks,
including block-wise masks, blind image inpainting and image out-painting.

Task Metric | Places2 | CelebHQ
MAE~ 0.043 0.025
Block-wise masks SSIM* 0.813 0.907

PSNR* 22.16 26.31

MAE~ 0.031 0.013
Blind inpainting (Free-form mask) | SSIM* 0.889 0.952
PSNR* 24.68 28.72

MAE~ 0.046 0.027
Out-painting SSIM* 0.802 0.886
PSNR* 20.87 24.66

Generated

Figure 4.10: Qualitative results of the ETMG model using a rectangular mask.

56

Generated

Unseen [
Faces

Blind image ” {8
Inpainting

Image
Outpainting

Figure 4.11: Scalability of the ETMG approach on several tasks, namely, unseen
faces, blind image inpainting and image out-painting.

To verify the generalization capability of the proposed method, we test our
pretrained model on images from the internet [76]. Although we run the model on
unseen faces, it performs well in generating visually appealing results with realistic
textures. The third experiment evaluates the approach to blind image inpainting.

During training, we give only the corrupted image without the mask. We obtain

57

promising results, confirming that the proposed approach can be applied to other real-
world applications. Note that the proposed method achieves higher performances in
the image inpainting task since the mask guides the model to distinguish between valid
and missing pixels. In the last experiment, we investigate the image outpainting task
[77]. We mask 1/4 in the left and the right of the image, and we retrain and test our
model on CelebHQ [53] and Places2 [72] datasets. This experiment reports lower
performances compared to all tasks. We can explain this by that image outpainting
includes two challenges: the missing mask channel and having two large separate

corrupted regions.

GT Input Generated

Figure 4.12: Object removal and image editing using the ETMG model.

58

4.4.5. Interactive editing

Our method allows users to remove unwanted objects by interactively drawing
the input masks. At the same time, it can robustly recover the corrupted parts without
artifacts. In both cases, the generated images have realistic texture and global semantic
consistency. We provide some results of the interactive inpainting in Figure 4.12. Our
approach robustly removes the glasses and face accessories around complex textured
objects such as eyes and hair in the CelebHQ [53] dataset. Furthermore, it provides

plausible images on the Places2 [72] dataset that includes crowded scenes.
4.5. Summary

This chapter presents a GAN-based image inpainting approach that addresses
two main problems in the image inpainting field. Namely, decreasing the inference
time and ensuring fine-grained textures in the corrupted regions. To achieve the first
goal, we propose efficient progressive generators and discriminators to stabilize the
training and improve performances. Filling in low-resolution images is less
challenging for GANs due to the small dimensional space. Meanwhile, it guides higher
resolution generators to learn the global structure consistency of the image. To ensure
fine-grained textures, we employ an LBP-based loss function in the final resolution.
Extensive experiments show that our model outperforms state-of-the-art and speeds
up the inference time. Also, we apply the proposed approach to other related tasks,
such as image outpainting and blind inpainting. Results demonstrate the scalability of

our model even with large mask regions.

59

5. LEARNING TO INPAINT BY
PROGRESSIVELY GROWING THE MASK
REGIONS

5.1. Introduction

Recently, generative-based image inpainting methods produce visually plausible
images. However, they still have difficulties generating the correct structures and
colors as the masked region grows large. This drawback is mainly due to the training
stability issues of GANSs. In this study, we address this limitation using a new
curriculum-style training approach. The proposed method increases the masked region
size progressively in training time. During inference, the user gives variable-size
masks at arbitrary locations. Incorporating this technique in GANs stabilizes the
training and provides better inpainting performance.

Deep learning methods [11][12][15][3] applied GANs [14] to fill in masked
regions by learning from large image datasets. They outperform the traditional
inpainting methods [8][9][33] both qualitatively and quantitatively. However, some of
these methods [11] fill in the center of the image, which may fail to inpaint variable
size regions. Furthermore, they suffer from artifacts and need post-processing steps to
correct the resulted image [12]. Therefore, understanding the structure and different
objects in the scene helps to achieve high-quality image completion.

Although GANs fit the inpainting problem very well, they suffer from stability
problems that lead to mode collapse and over-fitting. To address these limitations, [78]
provides architectural guidelines and optimization hyper-parameters that lead to better
synthesis results. Moreover, a multi-stage generation approach introduced in [22]
creates high-quality images by progressively adding layers to the generator and the
discriminator. Furthermore, [53] improves [22] by controlling the visual features of
the image in different scales through the adaptive normalization layer [66]. Some
works addressed the loss functions improving the training stability including,
Wasserstein distance [30], Least Squares [28] and Energy-based GANSs [79].

Another attempt to stabilize the training of GANs is to employ a curriculum
learning (CL) approach [43]. It achieved a lot of success in many tasks, including
natural language processing [80][81], image recognition [82] and generation [44]. CL
Is a setting that gradually reveals training samples to the model from the easiest to the

60

most difficult. Inspired by this idea, we propose a curriculum-style strategy to
progressively train an effective generator by growing the size of the masked regions
in the context of image inpainting. The intuition was that the generator and the
discriminator networks solve the inpainting problem starting from simple to much
harder inpainting regions. By simple, we mean small mask regions with basic
structures that can be inpainted without global object structures. On the other hand,
hard means large mask regions that need a local and global understanding of the scene.

We validate our approach using several models of different architectures and
loss functions. The first one is a customized model that contains two networks: a deep
residual convolutional generator [83] and a multi-scale discriminator. The latter one
criticizes the quality and the relevance of the completed image on different scales. In
the generator, we replace the vanilla convolutions with the gated convolutions
introduced in [3]. They proved that it is a good replacement for vanilla convolutions
in the context of image inpainting. The other methods are two of the state-of-the-art
models [11] and [3]. We conduct two experiments: fixed versus progressively growing
masked regions on the previously stated models. Furthermore, to show the
effectiveness of our approach, we check if a simple reconstruction loss is sufficient to
stabilize the generator for the first training iterations. In another setup, we use a fixed
masked region then gradually increase the adversarial loss weight. We report
qualitative and quantitative results on the MSCOCO [52] and CelebA [73] datasets.
The quantitative metrics include MAE, PSNR, Inception score (IS) [48] and Fréchet

Inception Distance (FID) [50] quality metrics. Our contributions are as follow:

e We propose the progressively growing of the masked regions as a GAN
stabilization technique for image inpainting tasks.

e We compare the usage of fixed versus progressively growing mask regions using
different architectures and loss functions, and we report the qualitative and
quantitative results on two challenging datasets.

e We investigate other training stabilization setups and compare them against our

approach.

61

5.2. Approach

5.2.1. Curriculum learning

Curriculum Learning (CL) is a training approach that gradually reveals data to a
neural network starting from the easiest to the most difficult [43]. It achieved great
success in many tasks, including natural language processing, image recognition and
generation. Unlike the traditional training approach of CNNs that uniformly samples
mini-batches from the data distribution, [84] used CL to order the training samples by
difficulty and creates mini-batches. This approach improves network accuracy and
learning speed. [85] improves the generalization ability by increasing the dropout rate
throughout training. [85] employed CL on GANs such that the discriminator criticizes
difficult samples as training progresses. They augment the dimensionality of the
sample space with additional random variables. This approach makes the task much
difficult for the discriminator and prevents it from being over-confident. In the context
of image inpainting, [86] utilizes a progressive generative network to fill in images
with squared masks. The approach splits the task into different stages, where each one
aims to do a part of the entire curriculum. After that, an LSTM framework chains all
of them. In this study, we propose a curriculum-style strategy to progressively train an
effective generator by growing the size of the masked regions in the context of image
inpainting. The intuition was that the generator and the discriminator networks solve

the inpainting problem from basic to large inpainting regions.

5.2.2. Progressive growing of the mask as a GAN stabilization
technique

GANSs are hard to train due to their nature, which depends on two networks
having two sets of parameters optimized separately. That leads to many problems,
including mode collapse, non-convergence, and vanishing gradients. The inpainting
task is strongly affected by robust adversarial loss functions, stable architectures, and
GAN stabilization techniques. We focus on the last point and propose a simple yet
effective training technique to stabilize the training of GANSs in the context of image
inpainting. The process is as follows: the generator starts by solving a simple problem.
After each k iterations, the corrupted region grows till the region size reaches the half

size of the image, as illustrated in Figure 5.1. By simple, we mean that the mask region

62

contains basic structures (textures) while the hard refers to the mask region has
complicated structures and objects. We claim that, in the beginning, the generator
easily inpaints narrow parts since the adversarial loss is responsible for an easy
problem that is simply a reconstruction in this case. Then, the difficulty of the problem
increases as we grow the width of the mask. Thus, the generator can fill in the half size
of the masked region without much difficulty. That makes the adversarial loss stable
in the successive Kk training iterations. The training process continues this way till a
specified maximum width. We will investigate this claim by reporting the quantitative

results of each k iterations using different mask sizes.

(A) width=2 (B) width=4 (€) width=6

Figure 5.1: lllustration of the PGM approach.

5.2.3. Architectures and Training

To validate our approach, we use different models: our customized model
illustrated in Figure 5.2, CA [19] and the GC [3].

Our customized model: the generator has two subnetworks, an encoder network that
down-samples the size of the input to 1/4 the original size followed by two residual
blocks. We duplicate the number of filters after each gated convolution and residual
block. The decoder network is the reverse order of the encoder. Instead of using
transposed convolutions as generally done in decoders, we use bilinear interpolation
before applying gated convolutions. The last convolution layer outputs an RGB image.
In the discriminator network, we use a multi-scale architecture that contains five
convolution layers. The latter down-samples the feature map size and increases the
number of filters, and the last two convolution layers have the same number of filters.
The discriminator outputs an array of tensors for each image scale. Instead of using
Batch Normalization [87] that causes inference issues when the batch size is small, we

use the Instance Normalization [88] that normalizes each sample independently across

63

spatial locations. Also, it provides visual and appearance invariance, and it is agnostic
to the contrast of the image. The loss functions include the LSGAN loss [28], L1 loss
between the generated and the ground truth image. Finally, we use the Perceptual loss

using a pre-trained VGG network.

The Context-encoder model (CE) optimizes an autoencoder network to produce a
rectangular hole in the center of the image. The discriminator considers the latter as
fake and the center of the ground truth image as real. The training requires two loss

functions: a pixel-wise reconstruction loss and an adversarial loss.

The Free-form inpainting model (GC): the generator has the same architecture as [19]
followed by a refinement network without residual connections. The discriminator is
a Patch-GAN that classifies image patches of size 70 x 70 as real or fake. Thus, there
is no need for a global and local discriminator as in [12]. Furthermore, the networks
do not add any normalization layer. It computes two loss functions: A Hinge loss and

a reconstruction loss. It does not include any perceptual or style loss.

Conv:64,7,1 Generator

i Conv:128,3,2
o Conv:256,3,2
--(ov 1231(1231CQV 512,31 Conv: 5 12.3,1"“"-‘-
|

J \ "r'
Encoder Decoder

Gated
Convolution

Discriminator
Conv:64,3,2

PN ResNet Block
Restiet Hlod Conv:128,3,2

-CD IZ-“ 512,3,2 ColeM!Z Conv:1,2.1

Real

Figure 5.2: Overall architecture of the Generator and the Discriminator of the PGM
model.

64

5.3. Experimental evaluation

5.3.1. Datasets

We experiment on challenging image datasets used in several computer vision
tasks. The MSCOCO [52] dataset contains cluttered scenes with color and structure
variations. The CelebA [73] dataset contains cropped faces that have fewer structure
changes. We train on 200k and 82k training images defined in CelebA and MSCOCO,
respectively. We test the performance on 10000 random validation images for the
CelebA dataset and 5000 test images for the MSCOCO dataset.

5.3.2. Implementation details

We show the impact of our proposed training approach on the customized and
state-of-the-art models [11][3]. As mentioned previously, we compare the fixed versus
progressive mask size approach for all the models on the MSCOCO [52] and CelebA
[73] datasets. Furthermore, to prove/disprove the correctness of the proposed method,
we compare it with two other training strategies, as shown in Figure 5.2. The generator
and the discriminator networks of the customized model use the Adam optimizer with
a learning rate of 0.0002 and a batch size of 4. For [11] and [3], we keep the same
hyper-parameters used in the original work. We train all the models for 1M iterations.
Furthermore, we increase the mask size and the adversarial weight after 100k
iterations. For a fair comparison, we fix the randomness seed while training the models
to make sure that we give the same input (same masked regions) and the same order
of the images to the models.

5.3.3. Experimental setups

Our main experimental setup is to investigate the fixed size masks versus the
PGM approach. We use constant weights for both the reconstruction and the
adversarial loss. To prove/disprove our claim, we explore the setups illustrated in

Figure 5.3.

e We use the reconstruction and the adversarial losses during the whole training

(first row).

65

e We train the model for half of the training time using the reconstruction loss.
We use the adversarial loss and the reconstruction loss for the rest of the
training, (second row).

e We use the reconstruction loss using a fixed weight. We linearly increase the
weight of the adversarial loss after each k iterations (third row).

e Our PGM method progressively increases the mask size after each k iterations.

The reconstruction and the adversarial losses remain fixed (fourth row).

| Reconstruction loss | + ‘ Adversarial loss |
End Time

| Reconstruction loss | + ‘ Adversarial loss |
End/2 End Time
| wil | | w2 | | w3 } Adversarial weights
k E3 ! 3k | | aic foem End [» Time

|Z| |E| Mask sizes

| k Zk I 3k 4|(| End Time

Figure 5.3: Different training setups on the PGM model.

5.3.4. Comparison plan

Unlike the state-of-the-art models that show their superiority, we aim to confirm
the impact of our proposed training scheme (Progressive growing) and the two setups
described above. We compare our customized model against CE [11] and GC [3]. To
adapt our training approach to the CE model, we train using a small rectangle in the
middle of the image. Then progressively increase the rectangle size to reach the half
size of the image. [3] adds the sketch as an additional input to the model. To ensure a
fair comparison, we only input the image and the mask. We test on the MSCOCO [52]
and CelebA [73] datasets for the different setups on our customized model and [3].
We report the quantitative comparison using MAE, PSNR, IS, and FID. Furthermore,
we show the output of our customized model versus [11] on different training schemes

in the qualitative comparison. Since the CE model input is a fixed central mask in the

66

middle of the image, we do not compare it against the other models. Thus, we only
report the qualitative and quantitative results of the different setups against each other.
We do not perform any post-processing step for all the models. Due to hardware
restrictions, we use images of resolution 128 x 128 in both datasets. We implement
the models using Pytorch v1.1.0, CUDA v10.0, CUDNN v7.5.1, and the hardware
GPU is NVIDIA GTX 1080 Ti. The training takes roughly five days per experiment.

5.4. Results and discussion

5.4.1. Quantitative evaluation

We experiment using image inpainting evaluation metrics including MAE,
PSNR, IS and FID to quantify the performance of the training approaches. We
calculate the MAE and PSNR using the output of the model and the ground truth
images. We use the InceptionV3 model pretrained on the ImageNet dataset [24] to
calculate the IS and FID scores. We see that our progressive growing approach
improves the performance (MAE, PSNR, and FID) of all the models in the MSCOCO
(Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7) [52] and CelebA (Figure 5.8, Figure
5.9, Figure 5.10 and Figure 5.11) [73] datasets. Meanwhile, the results of the other
three setups are not deterministic since they outperform each other depending on the
model and the dataset. The IS metric is based on the classification probabilities.
Therefore, it does not give a stable performance quantification on the CelebA dataset
since the latter one contains only one class (faces). As claimed previously, to prove
the effectiveness of our training approach, we experiment using different mask sizes.
Our method outperforms the other setups on the two datasets in most cases. To apply
our curriculum learning training approach to free-form mask models, we must control
the width, height, orientation and number of masks in the images. On the other hand,
applying it on [11] is easier since we can control the size of the masked regions
(rectangular mask shapes). However, the performance of this model is still low
compared to the other models due to its local consistency nature and the use of the
standard convolution layers. Although our customized model has a larger number of
parameters than [3], the latter outperforms it in all the training approaches in the
MSCOCO and CelebA datasets (Table 5.1). This result can be explained by the usage

of a refinement network in [3].

67

Context encoders
4

35
3
25
2
1,5
1
05
0

8 16 24 32 40 48 56 64

EFixed = Half-Rec mWeight Increase ® Growing

Custom
1,8
1,6

1,2

1

0,8

0,6

o I" I
II|“|

10 12 14 16

mFixed mHalf-Rec mWeight Increase m Growing

1,4
1,2
1
0,38
06
0,4
0,2
o 1NN

o Fixed

GC

10 12 14 16

Half-Rec m Weight Increase B Growing

Figure 5.4: Quantitative comparison using MAE of the different training setups of
the PGM model on the MSCOCO.

Context encoders
12

=

0

0 | ‘h ‘|l ||| ‘|| ‘h ‘|I ‘h ‘|

16 24 32 40 48 56 64

IS

N

M Fixed mHalf-Rec ® Weight Increase M Growing

Custom

20
18

14

1e
12
2

10 12 14 16

-

ON& O

W Fixed » Half-Rec ® Weight Increase M Growing

25

20

-
“w

=
o

[

M Fixed

GC

o ‘ “l “| “l “‘ ‘|| “‘ “l “

10 12 14 16

Half-Rec ® Weight Increase M Growing

Figure 5.5: Quantitative comparison using PSNR of the different training setups of
the PGM model on the MSCOCO.

Context encoders
12

10

8
6
4
2
0
8

16 24 32 40 48 56 64

M Fixed " Half-Rec 1 Weight Increase M Growing

Custom

10 12 14 16

m Fixed w Half-Rec m Weight Increase m Growing

18,5
18
17,5
17
16,5
16
15,5
15
14,5
14
13,5

2

M Fixed | Half-Rec 1 Weight Increase M Growing

GC

10 12 14 16

Figure 5.6: Quantitative comparison using IS of the different training setups of the

PGM model on the MSCOCO.

68

Context encoders Custom GC
60 14 9
8
50 12
7
40 1o 6
8 5
30
6 4
20 3
4
2
. II|||I | |I||
o ||
16 24 32 40 48 56 64 10 12 14 16 10 12 14 16
HFixed " Half-Rec ™ Weight Increase ™ Growing mFixed © Half-Rec ™ Weight Increase ™ Growing ® Fixed © Half-Rec ™ Weight Increase ™ Growing

Figure 5.7: Quantitative comparison using FID of the different training setups of the
PGM model on the MSCOCO.

Context encoders Custom GC
3 16 1
14
25
. 12 0,8
2 1 0,6
0,8
15 0,6 0,4
1 04 | 0,2
o2 I| |I |I
05 P | Il I o B nI Il
0 10 12 14 16 10 12 14 16
16 24 32 40 48 56 64 Fixed Half-Rec Fixed Half-Rec
W Fixed 1 Half-Rec W Weight Increase W Growing = Weight Increase » Growing = Weight Increase ™ Growing

Figure 5.8: Quantitative comparison using MAE of the different training setups of
the PGM model on the CelebA.

Context encoders Custom GC
11,5 20 25
11 15 20
10,5 15
10
10 10
9 0 o
8 16 24 32 40 48 56 64 2 10 12 14 16 10 12 14 16
m Fixed = Half-Rec = Weight Increase m Growing mFixed = Half-Rec m Weight Increase m Growing m Fixed © Half-Rec w Weight increase m Growing

Figure 5.9: Quantitative comparison using PSNR of the different training setups of
the PGM model on the CelebA.

69

3,9

3,8

wow e
w o

w
>

3,3

Context encoders

M Fixed ' Half-Rec = Weight Increase B Growing

38
3,75

, 3,7 37
g 3,65
’ 3,65
3,6
3,
3,55
35 3,55
3,45 3,
34 3,45

8 16 24 32 40 48 56 64

M Fixed © Half-Rec @ Weight Increase W Growing

Custom
3,8
3,75

o

wn

2 4 6 8 10 12 14 16

GC

2 4 6 8 10 12 14 16

M Fixed | Half-Rec = Weight Increase M Growing

Figure 5.10: Quantitative comparison using IS of the different training setups of the
PGM model on the CelebA.

25

20

[
w

=
o

0]

0

Context encoders

8 16 24 32 40 48 56 64

m Fixed = Half-Rec = Weight Increase m Growing

O HEH N WAV O N ® Y

I|.I|.||.‘
2 4 6

mFixed © Half-Rec m Weight Increase w Growing

Custom

8 10 12 14 16

1,5

1

il
| Ll

2 4 6 8 10 12 14 16

GC

mFixed © Half-Rec w Weight Increase m Growing

Figure 5.11: Quantitative comparison using FID of the different training setups of the
PGM model on the CelebA.

Table 5.1: Quantitative comparison of conventional vs. PGM approach on CelebA.

Metric Fixed | Growing
MAE (CE) 2.479 1.92
MAE (Custom) 1.450 0.98
MAE (GC) 0.849 0.74
PSNR (CE) 10.10 11.21
PSNR (Custom) | 11.90 12.85
PSNR (GC) 13.31 13.78
IS (CE) 3.67 3.77
IS (Custom) 3.57 3.59
IS (GC) 3.68 3.64
FID (CE) 14.88 13.26
FID (Custom) 8.44 3.03
FID (GC) 2.44 2.11

70

5.4.2. Qualitative evaluation

We compare the fixed and the progressive growing training approach using our
customized model and GC [3] on the MSCOCO [52] and CelebA [73] datasets. As
seen from Figure 5.12, the custom model does not generate visually realistic images
on the fixed setup. Our proposed training approach improves it to complete the missing
parts more robustly, but it still generates artifacts compared with [3]. The latter can
generate smooth and plausible images without our training approach. However,
blurriness appears when we increase the mask size. On the other hand, applying the
progressive growing approach to [3] composes a stable model that produces fewer
artifacts. CE [11] uses a rectangular shape mask in the center of the image. For this
reason, we compare only the fixed versus growing training approaches. Figure 5.13
shows that although applying our approach to that model does not give plausible and
natural images, it improves the results of the original model by removing the artifacts

around the rectangular mask.

CE Fixed CE Growing

Figure 5.12: Qualitative comparison of the conventional vs. PGM approach using
block mask.

71

Custom Fixed Custom Growing Gated Fixed Gated Growing

Figure 5.13: Qualitative comparison of the conventional training vs. PGM
using free-form mask.

5.5. Summary

This chapter proposes a GAN-stabilization technique in the context of image
inpainting. To generate the correct structures and colors in large holes, we employ
curriculum-style training by progressively growing the masked regions. Incorporating
such an approach in GANSs stabilizes the training since the generators and
discriminators gradually solve the problem. Results show that this technique provides
better color consistencies and captures object continuities. Also, it improves the

performance of several state-of-the-art methods on public datasets.

72

6. IMAGE INPAINTING USING DEEP MULTI-
RESOLUTION PATHS AND ADAPTATIVE LOSS
FUNCTIONS

6.1. Introduction

Learning-based approaches exploit the fast progress of CNNs and GANSs [14] to
learn high-level features from large-scale datasets. They establish a robust mapping
between the corrupted and the ground truth images. Early GAN-based methods assume
that the model can implicitly acquire information from far spatial regions. However,
most of these methods generate visually significant artifacts leading to distorted
structures and non-realistic texture details [11]. Recent studies work around these
problems by dividing the inpainting problem into multiple stages, such that the first
one predicts the image structure, including edges [17], segmentation maps [18] and
contour [46]. The last stage exploits the reconstructed information to guide the
completion task and obtain more realistic images. However, these architectures
significantly increase model size, complexity and inference time. Furthermore, the
performance is related to the prediction stage that requires extra supervision (ground
truth data). Other approaches exploit information near corrupted regions to predict the
missing pixels using the context attention layer [19]. All the mentioned methods use
encoder-decoder architectures, such that the encoder maps the corrupted image to a
latent space, and the decoder reconstructs the ground truth image. This operation may
not restore texture details due to small receptive fields. [12] addresses this problem
using dilated convolution layers. However, it results in gridding problems [54] since
it leaves pixels near the center pixel non-exploited by the convolution filters.
[41][15][89] employ a UNet-based [42] hierarchical network to avoid information
loss. However, each scale is given to few convolution layers, which limits the learning
of high and low-level features. In this work, we propose a deep multi-resolution path
architecture to robustly complete masked images. Specifically, we employ a deep
network for each scale to increase the receptive field and recover high-frequency
information from several input resolutions. Each path contains many ResNet layers
[83] without downsampling to keep original image details. We concatenate the feature
maps of previous and current network paths to ensure local and global image

consistency. Moreover, we observe that the images may include different texture

73

complexity and mask sizes. Hence we propose a new function that gives different
weights for each image in the reconstruction and the adversarial losses to recover fine-
grained textures. In particular, we eforce the generator to focus on images exhibiting
large masks and complex textures in the corrupted regions. To validate the proposed
approach, we conduct our experiments on two standard datasets Places2 [72] and
CelebHQ [53]. Quantitative and qualitative results demonstrate that our method
generates realistic images with coherent global semantic structure and fine-grained
textures. Furthermore, it shows superior performance against the state-of-the-art. We

summarize our contributions as follow:

e We introduce a new GAN-based image inpainting framework that exploits multi-
resolution paths to enlarge receptive fields and improve performance.

e We propose a new training approach that employs a weighted loss function to
enforce fine-grained texture details.

e The proposed method generates visually appealing images and outperforms state-
of-the-art without using additional information or post-processing.

6.2. Approach

Previous image inpainting methods employ an encoder-decoder architecture

where the input and the output are high-resolution images. The encoder down-samples
the feature maps to 1/4 of the image resolution then applies a series of residual

convolution layers [83]. However, due to the small receptive field at this resolution,
convolution layers cannot capture information about distant patches in the image. We
overcome this problem using different corrupted image resolutions fed to deep
network paths (Figure 6.1). Specifically, having a deep network path on the 32 x 32
image increases the receptive field to cover all the patches in the image without the
need for down-sampling or computationally expensive attention layers [19][3][89]. In
other words, we do not miss high and low-frequency information of the original image
since we do not use any stride-convolution layers neither on low-resolution images nor

on high-resolution ones.

74

GT

3%

Predicted

Laao(Real, fake)

Figure 6.1: The overall architecture of the DMRP model.

6.2.1. Architecture

Our generator has four network paths where each one takes a corrupted image
of size n X n and feeds it to a sequence of convolution and ResNet [83] blocks. We
use the nearest neighbor up-sampling to increase the resolution of the 32 x 32
network path to match the output of the 64 X 64 resolution path. These two feature
maps are concatenated and fed to convolution and upsampling layers to learn high-
level features. We repeat the same procedure for the 128 x 128 and 256 x 256
resolutions to output the inpainted image. We give the latter and the ground truth image
to a PatchGAN discriminator [26] that criticizes the different image patches.

6.2.2. Adaptative weighted loss

Loss functions of the previous image inpainting approaches give the same
importance for all images regardless of texture complexity and the mask size. Thus,
during back-propagation, the parameters of the generator are updated equivalently for
all the samples. Giving the same weight for all the images makes the network biased
towards easy examples. By easy, we mean images with small holes and simple texture
details. In our method, we assign high weights to corrupted images with complex
textures and large masks. We extract the edges from the ground truth image using the
Canny edge detector [68]. We define the texture complexity by calculating the ratio
between the number of edges and the image size (ones and zeros in the corrupted
region). Finally, we normalize the weights in the [0, 1] interval based on the largest
mask in the dataset (training masks). We refer to our adaptative weighting function as
AdaWV (.).

75

6.2.3. Loss functions

Let T,M,I and O be the ground truth, mask, corrupted and generated images,
respectively. Let N be the number of images in the batch. We resize T and M to match
different input sizes n X n, namely: 32 X 32, 64 X 64, 128 x 128 and 256 X 256.
The input G, «, is the channel-wise concatenation of I,,,,, and M, ,, we define the

generator in (6.1):

0= G(C32><321 C64><64- C128><128' CZS6><256) (61)

Reconstruction loss: we use the L1 loss between T and O to reconstruct the image
using (6.2):

N
Lyee =) AdaW (T, M) IIT; = 01l 62)

=1

Adversarial loss: we use the RaLSGAN loss as defined in [90] using (6.3) and (6.4)
for the discriminator and the generator, respectively:

La = Exy-pm~s |(AdaW (e, m) x D(x;)

— EfoQ[AdaW(xf,m) x D(xf) — 1)2]

(6.3)
+ EfoQ_mNS[(AdaW(xf, m) X D(xf)
— E,, p[AdaW (x,,m) x D(x,) + 1)?]
Lagy = Ex,~pm~s [(Adaw(xr: m) X D(x,)
— By -qlAdaW (xy,m) x D(x;) + 1)?] 6

+ Exygme~s[(AdaW (x7,m) x D (x;)
— E,, p[AdaW (x,,m) x D(x,) — 1)?]

Where: AdaW (.) is the proposed weighting function. P,Q and S are the
distributions of real, generated and mask images, respectively. D(.) is the

discriminator network.

76

Overall loss: as defined in (6.5), we update the weights of the generator by summing
up the losses in (6.2) and (6.3).

Loveran = 0.01 X Lggy, + Lyec (6-5)

6.3. Experimental evaluation

We conduct our experiments using two public datasets Places2 [72] and
CelebHQ [53]. Places2 dataset is commonly used for image inpainting since it contains
1.8M images and over 400 different scenes. The CelebHQ dataset includes 30K highly
structured faces with high pose and background variations. We use the original train
and test split for the two datasets. We employ free-form masks from [58], which
automatically generate multiple holes with random shapes and sizes at different
locations. In evaluation time, we divide the masks into four categories covering 10 —
20%, 20 — 30%, 30 — 40% and 40 — 50 of the image. We use Pytorch v1.6 [74] to
implement the proposed method using CUDA v10.1 and cuDNN v7.6.4. We use Adam
[59] optimizer with hyperparameters 51 = 0.5 and 2 = 0.99, respectively. We set
the batch size to 32, and we fix the learning rates to 10~* the generator and the

discriminator.

6.4. Results and discussions

6.4.1. Qualitative results

We qualitatively compare the proposed method against the mentioned state-of-
the-art methods, namely Contextual Attention (CA) [19], Deep Fusion Network
(DFNet) [41], Gated Convolution (GC) [3] and Structure Flow (SF) [16] in Figure 6.2.
CA shows poor performances in the two datasets since significant visual artifacts
appear, leading to mispresented structures and wrong boundaries. DFNet can capture
a coherent global semantic, but artifacts still exist, especially on the CelebHQ dataset
[53]. GC and SF generate smooth images with realistic textures. However, they still
exhibit color discrepancies and row discontinuities in the predicted pixels. Our

approach generates visually appealing images with meaningful structures and realistic

77

textures in the Places2 dataset [72]. Besides, it shows the most natural faces in the
CelebHQ dataset with a high relevance between the holes and the background.

Figure 6.2: Qualitative comparison of the DMPR model on Places2 and CelebHQ.

6.4.2. Quantitative results

To quantify the performance of the proposed approach, we use three well-known
assessment metrics following [16][17], including MAE, PSNR and SSIM. We report
the evaluation results on Places2 [72] and CelebHQ [53] datasets in Table 6.1 and
Table 6.2, respectively. We can see that our model performs favorably against all the

compared state-of-the-art algorithms in all the metrics.

78

Table 6.1: Quantitative comparison of the DMPR model on Places2.

Mask size CA EC DFNet GC SF DMPR

10-20% 0.019 | 0.013 | 0.010 | 0.011 | 0.012 0.010

MAE- 20-30% 0.033 | 0022 0.019 | 0.018 | 0.019 0.017
30-40% 0.048 | 0.031 | 0.028 | 0.026 | 0.026 0.025

40-50% 0.075 | 0.053 | 0.045 | 0.045 | 0.044 | 0.042

10-20% 0.922 | 0.947 | 0.965 | 0.969 | 0.966 0.970

SSIM* 20-30% 0.861 | 0.913 | 0.936 | 0.942 | 0.944 | 0.946
30-40% 0.795 | 0.879 | 0.901 | 0.909 | 0.912 0.914

40-50% 0.660 | 0.762 | 0.803 | 0.810 | 0.812 0.814

10-20% 26.31 | 27.88 | 29.51 | 30.10 | 30.23 30.55

PSNR* 20-30% 22.07 | 25,51 | 26.73 | 27.13 | 27.32 27.68
30-40% 2091 | 2396 | 24.87 | 25.07 | 25.38 25.49

40-50% 18.27 | 20.80 | 22.03 | 21.78 | 21.97 22.42

Table 6.2: Quantitative comparison of the DMPR model on CelebHQ.

Mask size CA GC SF DMPR
10-20% 0.014 | 0.009 | 0.011 | 0.008
MAE- 20-30% 0.024 | 0014 | 0.015 | 0.012
30-40% 0.033 | 0.021 | 0.018 | 0.016
40-50% 0.052 | 0.031 | 0.028 | 0.026
10-20% 0.953 | 0.982 | 0.984 | 0.985
SSIM* 20-30% 0.918 | 0.968 | 0.971 | 0.976
30-40% 0.881 | 0.950 | 0.950 | 0.962
40-50% 0.796 | 0.899 | 0.912 | 0.919
10-20% 2855 | 32.53 | 33.26 | 34.32
PSNR* 20-30% 2554 | 29.73 | 30.42 | 31.19
30-40% 2358 | 27.80 | 28.74 | 29.56
40-50% 21.03 | 25.05 | 25.63 | 26.48

6.4.3. Ablation study

We conduct a set of experiments on the CelebHQ [53] dataset to investigate the
impact of each component. To evaluate our deep multi-resolution path architecture,
we compare it against a UNet-based generator. In other experiments, we progressively
remove one path from the entire framework. Table 6.3 shows that the proposed
architecture outperforms the UNet-based generators since it involves larger receptive

fields. Furthermore, combining several learning paths improves quantitative results

79

and generates visually appealing images Figure 6.3. To investigate the impact of the
proposed weighting function, we remove it from the loss function and retrain the model
using the traditional reconstruction and adversarial losses. Results validate the
proposed weighting function that presents more realistic texture details and high-

quality images in Figure 6.2 and higher scores in Table 6.3.

Table 6.3: Quantitative ablation studies of the DMPR model on CelebHQ.

Methods MAE~ SSIM* PSNR*
Full 0.015 0.960 30.38
Full w/o 32 path 0.021 0.945 28.85
Full w/o 32 and.64 paths 0.025 0.918 26.44
Full w/o 32,64 and 128 paths 0.032 0.881 24.17
Full w/o Adaw 0.016 0.955 30.15
UNet-based generator 0.022 0.939 28.67

Figure 6.3: Qualitative ablation studies of the DMPR model on the CelebHQ.

80

6.4.4. Model efficiency

We show the efficiency of our DMPR model against CA, GC, and SF in terms of
the number of floating points, the number of parameters, and the runtime on both GPU
and CPU (Table 6.4). We can see that our model is very comparable to CA. However,
the latter reports inferior performance and exhibits high floating points due to the

CAM. GC and SF are less efficient and show a large inference time.

Table 6.4: Computational time comparison of the DMPR model.

Model | GFLOPS | PARAMS (M) | CPU (ms) | GPU (ms)
CA 22.4 2.9M 383 18
GC 39.6 4.1M 490 27
SF 262.4 92.5M 810 36

DMPR | 182 4.6M 390 18

6.5. Summary

This chapter presents GAN-based image inpainting that fills in the corrupted
regions with fine-grained textures and coherent structures. To achieve this aim, we use
multi-resolution deep network paths to enlarge receptive fields and ensure low and
high-level feature learning. Besides, we employ an adaptative weighting mechanism
in the loss functions to focus on images exhibiting large masks and complex textures
in the corrupted regions. Experimental results show the superiority of the proposed

approach compared against several state-of-the-art methods.

81

/. COMPARISON OF THE PROPOSED
APPROACHES

7.1. Introduction

In this chapter, we conduct extensive experiments to compare our three proposed
GAN-based image inpainting approaches SC, ETMG and DMP. We report qualitative
and qualitative results on two public datasets, namely CelebHQ and Places2.
Additionally, we use the proposed PGM technique as a GAN stabilization technique
to improve the performance of the mentioned methods. Note that we use the same data
splits, and we train the models for the same number of epochs to ensure a fair

comparison.

7.2. Places2 dataset

In the first experiment, we report qualitative and quantitative comparisons of our
proposed image inpainting approaches on the Places2 dataset. Furthermore, we
employ our PGM as a GAN stabilization technique on DMPR and ETMG maodels.
Specifically, we progressively increase the masked regions during training time from
simple masks to much harder ones. We can see from Figure 7.1 that all the models
generate smooth images with global image consistency and realistic texture details.
Besides, they report competitive quantitative results without using large models or
complex mechanisms such as CAM and perceptual losses. Also, Table 7.1 shows that
the PGM technique improves the performances in DMPR and ETMG models in all the
metrics that prove the effectiveness of curriculum learning in the context of image
inpainting. Note that we did not report the experimental results of the SC model on the
Places2 dataset because the latter does not include the segmentation labels, which are
necessary to supervise the training.

82

Table 7.1: Quantitative evaluation of the proposed image inpainting approaches on
the Places2 dataset.

Metric | DMPR | DMPR+PGM | ETMG | ETMG+PGM

MAE~ 0.023 0.021 0.019 0.018
SSIM* 0.908 0.912 0.917 0.919
PSNR* | 26.13 26.62 26.67 26.74

DMPR+PGM ETMG+PGM

Figure 7.1: Qualitative evaluation of the proposed image inpainting approaches on
the Places2 dataset.

7.3. CelebHQ dataset

In the second experiment, we report qualitative comparisons of our proposed
image inpainting approaches on the CelebHQ dataset. We can see from Figure 7.2 and
Table 7.2 that the ETMG model performs favorably compared with SC and DMPR. It
generates the most natural faces with a high relevance between the masked regions
and the background. Meanwhile, it reports superior quantitative performance in all the
metrics. We can explain this by that the ETMG approach looks at different image
scales using multiple efficient generators to ensure visually realistic images with both
local and global structure consistencies. Also, the proposed LBP-based loss constrains
better than segmentation labels and edges that cannot provide sufficient texture details
in many cases, such as the face skin and uniform background. In other words,

minimizing the loss between the LBP of the ground truth and the estimated images

83

ensures fine-grained textures. Note that SC and DMPR models also exhibit

competitive performance.

Table 7.2: Quantitative evaluation of the proposed image inpainting approaches on
the CelebHQ dataset.

Metric | DMPR SC ETMG | ETMG+SC

MAE~ 0.015 | 0.016 | 0.013 0.010

SSIM™ 0.960 | 0.955 | 0.964 0.971

PSNR* | 29.88 | 26.89 | 30.72 31.19

Figure 7.2: Qualitative evaluation of the proposed image inpainting approaches on
the CelebHQ dataset.

In the last experiment, we combine the ETMG and the SC approaches on the
CelebHQ dataset. Specifically, we estimate the coarse image and the segmentation
labels for all the resolutions of the ETMG architecture. The progressive growing
generators and discriminators stabilize GANSs training and recover coherent structures.
Meanwhile, the segmentation labels guide the generator of each resolution to estimate
semantically meaningful images. Unlike the SC approach, we do not estimate edges,
and we compensate them with the proposed LBP-based loss function that recovers
more fine-grained textures. We can see from Figure 7.2 that our new composed
approach yields more favorable results compared to all the individual methods. Also,

the quantitative results in Table 7.2 show remarkable improvement over SC and

84

ETMG models. We note that we show the intermediate results of all the resolutions by
providing the estimated images and their corresponding segmentation labels (Figure
7.3 and Figure 7.4).

Estimated
Segmentation Segmentatlon ETMG+SC

256x256 TR '?‘ e
TN ,- "

128x128

64x64

32x32

Figure 7.3: Example 1 of ETMG + SC intermediate results.

Estimated GT
Input Segmentation Segmentation ETMG+SC GT

256x256

128x128

Figure 7.4: Example 2 of ETMG + SC intermediate results.

85

7.4. Computational time comparison

To compare the efficiency of our proposed image inpainting approaches, we
report the number of floating-point operations, parameters and the runtime on CPU
and GPU of our models on an Intel(R) Core (TM) i7-2600K CPU @ 3.40GHz and an
NVidia Titan XP GPU. Table 7.3 shows that the ETMG model yields the lowest
inference time. The reason is that for low-resolution images, a small generator is
sufficient to model the data distribution. As the image resolution increase, we need
fewer parameters since the global structure of the image is already filled in, and the
next generator only focuses on restoring the details. Hence, the total number of
floating-point operations remains smaller. In contrast, SC and DMPR directly handle
high-resolution images. Consequently, their models need to have enough parameters
to synthesis large regions in a nonprogressive way. We note that the combined
approach is also efficient. However, it exhibits a higher number of parameters due to

the additional segmentation label estimation decoders.

Table 7.3: Computational time comparison.

Model | GFLOPS | PARAMS (M) | CPU (ms) | GPU (ms)
e 16.4 4M 374 16
DMPR 18.2 4.6M 390 18
ETMG 95 3M 334 11
ETMG+SC | 10.2 3.8M 362 14

7.5. Summary and discussion

This chapter presents extensive experiments to compare the proposed image
inpainting architectures, loss functions, and GANs stabilization techniques.
Qualitative and quantitative results show that the combination of the SC and the
ETMG yields the most effective model that synthesis visually appealing images with
realistic texture details. Meanwhile, the ETMG is computationally efficient than all
the proposed approaches. Also, the PGM technique improves the performance of the

DMPR and the ETMG methods. Note that our four methods synthesize visually

86

appealing images with fine-grained textures on large corrupted regions. Meanwhile,
all of them are computationally efficient than most of the state-of-the-art approaches.
Also, we show the generalization of the ETMG method on images, which does not
exist in the training or the validation set. Besides, we demonstrate the scalability of
our approach on other related tasks such as image outpainting and blind image
inpainting. In these tasks, we do not provide the mask that helps the model to focus on
corrupted regions. Although these tasks are more challenging than the conventional
image inpainting task, our ETMG approach still synthesizes realistic results. We test
this method on block-wise masks, which are very difficult to complete, especially in
the mask boundaries. Results show that the generated images have global and local

consistencies and do not exhibit artifacts around the mask.

87

8. Conclusions

This chapter concludes the thesis and summarizes our main contributions by
recalling the principal solved problems, the proposed approaches, and the obtained
results. Then, it discusses the limitations of the proposed methods and suggests the

possibilities for future research.
8.1. Summary of the contributions

In this thesis, we present four image inpainting methods that have been proposed

to solve the following problems:

e Enforcing constraints about the input to explicitly guide the model to synthesize
plausible contents.

e Reconstruct object boundaries and avoid blurry or semantically incorrect images.

e Enforce fine-grained textures for complex scenes and non-repetitive patterns.

e Speed up the inference time by removing inefficient attention mechanisms and
replace them with efficient architectures.

e Generate visually appealing structures and texture as the masked region grows

large.

To achieve the mentioned goals, we have started our research by designing
several approaches such that each one focuses on addressing a specific problem.

The first study proposes a new end-to-end deep generative model for recovering
the corrupted parts of a given image. Our multi-stage image inpainting method jointly
estimates segmentation labels and object boundary edges from the coarse image. We
demonstrate that combining these two estimated entities can represent the image
structure and semantic information yielding realistic textures in the recovered image.
Besides, we show that predicting this auxiliary information from the corrupted image
decreases the inpainting performance.

The second method introduces an effective and efficient end-to-end GAN-based
framework for image inpainting. Our approach employs progressive efficient
generators to stabilize the training and improve the performances. We fill in different
image sizes, such that the generators of higher-resolution profit from the previously

inpainted regions. Moreover, we demonstrate that the proposed LBP-based loss

88

function constrains image inpainting and enforces texture details. We report
quantitative and qualitative comparisons on public datasets. Experimental results show
that the proposed approach generates realistic images with global structure consistency
and fine-grained textures. Also, it outperforms state-of-the-art methods and
significantly speeds up the computational time. Furthermore, it shows promising
results for other related applications, such as image outpainting and blind inpainting.

The third method proposes a new curriculum-style training for image inpainting
by progressively growing the masked regions. Experiments show that our model
generates realistic and plausible images, even with large mask regions. Furthermore,
it improves several inpainting models quantitatively, including the state-of-the-art for
a wide variety of regular and irregular masks on several datasets.

The last study proposes a new generative-based approach for image inpainting.
Combining the features from different scales and using deep network paths enlarge
receptive fields and capture more relevant information. Our proposed weighting
mechanism in loss functions improves the performance by focusing on complex
textures in corrupted regions. Experiments show that our model restores fine-grained

textures and achieves competitive performances against the state-of-the-art.

8.2. Limitation and future work

The results obtained during this thesis are globally promising and encouraging.
However, this section discusses the limitation of the designed approaches and gives a
clue about the possible solutions to overcome them. Also, we suggest directions for
future research that are not explored in our study.

Our approaches do not add any uncertainty to the output, meaning that the model
is fully deterministic and works as a one-to-one mapping function. Instead, a future
model can add a latent variable from a pre-defined distribution to produce a one-to-
many mapping. The latter can give a user control over the output to choose different
results based on his/her preferences.

Another alternative is to learn from examplar images in the dataset, where the
model is given many samples to decide the output in test time (Figure 8.1).
Specifically, the first phase trains a shared encoder-decoder model to reconstruct
unmasked images in the training set. The second phase involves another encoder-

decoder architecture, which takes the concatenation (through a pooling operation) of

89

the masked image and the latent vectors of the pretrained shared encoder then a

decoder network reconstructs the original image. During test time, we extract all the

latent vectors of the training set before loading the model. Therefore, inference time

remains efficient since the latent vectors reside in the memory.

OFFLINE

Pretrained Shared
Encoder

Pretrained Shared oM
Encoder -

Pretrained Shared

Encoder

Masked

) Masked Encoder
image

Pooling

. Decoder
operation

Generated
image

High frequency details

Figure 8.1: Exemplar-based image inpainting.

As future work, we also suggest employing the ETMG architecture to other

image-to-image translation tasks, such as image denoising and image deblurring. The

model can be extended to learn distributions in lower-resolution images and then

proceed to higher resolutions.

90

REFERENCES

[1] Chen Y., Liu L., Tao J., Xia R., Zhang Q., Yang K., Xiong J., Chen X., (2021),
“The improved image inpainting algorithm via encoder and similarity constraint”,
Visual Computer, 37 (7), 1691-1705.

[2] Anstis S., (2010), “Visual filling-in”, Current Biology, 20 (16), 664-666.

[3] Yul., Lin Z., Yang J., Shen X., Lu X., Huang T., (2019), “Free-form image
inpainting with gated convolution”, International Conference on Computer
Vision, 44704479, Seoul, Korea, 27 October-2 November.

[4] Gui Y., Zeng G., (2020), “Joint learning of visual and spatial features for edit
propagation from a single image”, Visual Computer, 36 (3), 469-482.

[5] Yamauchi H., Haber J., Seidel H. P., (2003), “Image restoration using
multiresolution texture synthesis and image inpainting”, International
Conference on Computer Graphics, 120-125, Tokyo, Japan, 9-11 July.

[6] Kawai N., Sato T., Yokoya N., (2016), “Diminished Reality Based on Image
Inpainting Considering Background Geometry”, |EEE Transactions on
Visualization and Computer Graphics, 22 (3), 1236-1247.

[7] Gao Y., Cheung G., Maugey T., Frossard P., Liang J., (2016), “Encoder-driven
inpainting strategy in multiview video compression”, IEEE Transactions on
Image Processing, 25 (1), 134-149.

[8] Barnes C., Shechtman E., Finkelstein A., Goldman D. B., (2009), “PatchMatch”,
ACM SIGGRAPH, 28 (3), 1.

[9] Barnes C., Shechtman E., Goldman D. B., Finkelstein A., (2010), “The
generalized PatchMatch correspondence algorithm”, European Conference on
Computer Vision, 29-43, Crete, Greece, 5-11 September.

[10] He K., Sun J., (2014), “Image completion approaches using the statistics of
similar patches”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36 (12), 2423-2435.

[11] Pathak D., Krahenbuhl P., Donahue J., Darrell T., Efros A. A., (2016), “Context
Encoders: Feature Learning by Inpainting”, International Conference on
Computer Vision and Pattern Recognition, 2536-2544, Las Vegas, NV, USA, 26
June-1 July.

[12] lizuka S., Simo-Serra E., Ishikawa H., (2017), “Globally and locally consistent
image completion”, ACM Transactions on Graphics, 36 (4), 1-14.

91

[13] Chen Y., Zhang H., Liu L., Chen X., Zhang Q., Yang K., XiaR., XieJ., (2021),
“Research on image Inpainting algorithm of improved GAN based on two-
discriminations networks”, Applied Intelligence, 51 (6), 3460-3474.

[14] Goodfellow I. J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S.,
Courville A., Bengio Y., (2014), “Generative adversarial nets”, International
Conference on Neural Information Processing Systems, 2672—2680, Montreal,
Canada, 8-13 December.

[15] LiuG.,RedaF. A., Shih K. J., Wang T. C., Tao A., Catanzaro B., (2018), “Image
Inpainting for Irregular Holes Using Partial Convolutions”, European Conference
on Computer Vision, 85-100, Munich, Germany, 8-14 September.

[16] Ren Y., Yu X., Zhang R., Li T. H., Liu S., Li G., (2019), “Structureflow: Image
inpainting via structure-aware appearance flow”, International Conference on
Computer Vision, 181-190, Seoul, Korea, 27 October-2 November.

[17] Nazeri K., Ng E., Joseph T., Qureshi F., Ebrahimi M., (2019), “Edgeconnect:
Structure-guided image inpainting using edge prediction”, International
Conference on Computer Vision Workshops, 3265-3274, Seoul, Korea, 27
October-2 November.

[18] Li A., QilJ., Zhang R., Kotagiri R., (2019), “Boosted GAN with Semantically
Interpretable Information for Image Inpainting”, International Joint Conference
on Neural Networks, Budapest, Hungary, 1-8, 14-19 July.

[19] Yul.,, Lin Z., Yang J., Shen X., Lu X., Huang T. S., (2018), “Generative Image
Inpainting with Contextual Attention”, International Conference on Computer
Vision and Pattern Recognition, 5505-5514, Salt Lake City, Utah, USA, 19 - 21
June.

[20] Shao M., Zhang W., Zuo W., Meng D., (2020), “Multi-scale generative
adversarial inpainting network based on cross-layer attention transfer
mechanism”, Knowledge-Based Systems, 196, 105778.

[21] Liu H., Jiang B., Xiao Y., Yang C., (2019), “Coherent semantic attention for
image inpainting”, International Conference on Computer Vision, 41694178,
Seoul, Korea, 27 October-2 November.

[22] Karras T., Aila T., Laine S., Lehtinen J., (2018), “Progressive Growing of GANs
for improved quality, stability, and variation”, International Conference on
Learning Representations, 0-0, Vancouver, Canada, 30 Apr-3 May.

[23] Goodfellow I., Bengio Y., Courville A., Bengio Y., (2016), “Deep learning”,

92

Issue 2, MIT Press Cambridge.

[24] Jia Deng, Wei Dong, Socher R., Li-Jia Li, Kai Li, Li Fei-Fei, (2009), “ImageNet:
A large-scale hierarchical image database”, International Conference on
Computer Vision and Pattern Recognition, 248-255, Miami, FL, USA, 20-25
June.

[25] Tulyakov S., Liu M. Y., Yang X., KautzJ., (2018), “MoCoGAN: Decomposing
Motion and Content for Video Generation”, International Conference on
Computer Vision and Pattern Recognition, 1526-1535, Salt Lake City, Utah,
USA, 19-21 June.

[26] Isola P., Zhu J. Y., Zhou T., Efros A. A., (2017), “Image-to-image translation
with conditional adversarial networks”, International Conference on Computer
Vision and Pattern Recognition, 5967-5976, Honolulu, Hawaii, USA, 22-25 July.

[27] Tu Y., Lin Y., Wang J., Kim J. U., (2018), “Semi-supervised learning with
generative adversarial networks on digital signal modulation classification”,
Computers, Materials and Continua, 55 (2), 243-254.

[28] Mao X., Li Q., Xie H., Lau R. Y. K., Wang Z., Smolley S. P., (2017), “Least
Squares Generative Adversarial Networks”, International Conference on
Computer Vision, 2794-2802, Venice, Italy, 22-29 October.

[29] Kingma D. P., Welling M., (2014), “Auto-encoding variational Bayes”,
International Conference on Learning Representations, 2014.

[30] Arjovsky M., Chintala S., Bottou L., (2017), “Wasserstein GAN”, International
Conference on Machine Learning, 214-223, Sydney, Australia, 7-9 August.

[31] Bertalmio M., Sapiro G., Caselles V., Ballester C., (2000), “Image inpainting”,
International Conference on Computer Graphics and Interactive Techniques,
417-424, New Orleans, Louisiana, USA, July.

[32] Ballester C., Bertalmio M., Caselles V., Sapiro G., Verdera J., (2001), “Filling-
in by joint interpolation of vector fields and gray levels”, IEEE Transactions on
Image Processing, 10 (8), 1200-1211.

[33] Darabi S., Shechtman E., Barnes C., Dan B Goldman, Sen P., (2012), “Image
melding: Combining inconsistent images using patch-based synthesis”, ACM
Transactions on Graphics, 31 (4), 1-10.

[34] Zhu J. Y., Park T., Isola P., Efros A. A., (2017), “Unpaired Image-to-Image
Translation Using Cycle-Consistent Adversarial Networks”, International
Conference on Computer Vision, 2223-2232, Venice, Italy, 22-29 October.

93

[35] Huang, Gao and Liu, Zhuang and VVan Der Maaten, Laurens and Weinberger K.
Q., (2017), “Densely connected convolutional networks”, International
Conference on Computer Vision and Pattern Recognition, 4700-4708, Honolulu,
Hawaii, USA, 22-25 July.

[36] Zeng Y., Ful., Chao H., Guo B., (2019), “Learning pyramid-context encoder
network for high-quality image inpainting”, International Conference on
Computer Vision and Pattern Recognition, 1486-1494, Long Beach, CA, USA,
16-20 June.

[37] LilJ., Wang N., Zhang L., Du B., Tao D., (2020), “Recurrent feature reasoning
for image inpainting”, International Conference on Computer Vision and Pattern
Recognition, 7760-7768, Virtual, 16-18 June.

[38] LilJ., He F., Zhang L., Du B., Tao D., (2019), “Progressive reconstruction of
visual structure for image inpainting”, International Conference on Computer
Vision, 5962-5971, Seoul, Korea, 27 October-2 November.

[39] Di Martino J. M., Facciolo G., Meinhardt-Llopis E., Pérez P., Gangnet M., Blake
A., (2003), “Poisson Image Editing”, Image Processing On Line, 5 (3), 313-318.

[40] Hu J, Shen L., Sun G., (2018), “Squeeze-and-excitation networks”,
International Conference on Computer Vision and Pattern Recognition, 7132-
7141, Salt Lake City, Utah, USA, 19 - 21 June.

[41] Hong X., Xiong P., Ji R., Fan H., (2019), “Deep fusion network for image
completion”, ACM International Conference on Multimedia, 2033-2042, Nice,
France, 21-25 October.

[42] Ronneberger O., Fischer P., Brox T., (2015), “U-net: Convolutional networks
for biomedical image segmentation”, International Conference on Medical Image
Computing and Computer-Assisted Intervention, 234-241, Munich, Germany, 5-
9 October.

[43] Bengio Y., Louradour J., Collobert R., Weston J., (2009), “Curriculum learning”,
Annual International Conference on Machine Learning, 41-48, Montreal,
Quebec, Canada, 14-18 June.

[44] Zhang H., Hu Z., Luo C., Zuo W., Wang M., (2018), “Semantic image inpainting
with progressive generative networks”, ACM international conference on
Multimedia, 1939-1947, New York, NY, USA, 22-26 October.

[45] Xiao J., Liao L., Liu Q., Hu R., (2019), “CISI-net: Explicit latent content

inference and imitated style rendering for image inpainting”, Proceedings of the

94

AAAI Conference on Artificial Intelligence, 33(01), 354-362.

[46] XiongW., YuJ.,LinZ., Yang J., Lu X., Barnes C., Luo J., (2019), “Foreground-
aware image inpainting”, International Conference on Computer Vision and
Pattern Recognition, 5840-5848, Long Beach, CA, USA, 16-20 June.

[47] Song Y., Yang C., Shen Y., Wang P., Huang Q., Jay Kuo C. C., (2019), “SPG-
Net: Segmentation prediction and guidance network for image inpainting”,
British Machine Vision Conference, 0-0, Newcastle, UK, 3-6 September.

[48] Gulrajani 1., Ahmed F., Arjovsky M., Dumoulin V., Courville A., (2017),
“Improved training of Wasserstein gan”, Advances in Neural Information
Processing Systems, 5768-5778, Long Beach, CA, USA, 4-9 December.

[49] Web 1, (2018), https://nealjean.com/ml/frechet-inception-distance/, (access
time: 20/02/2020).

[50] Heusel M., Ramsauer H., Unterthiner T., Nessler B., Hochreiter S., (2017),
“GANs trained by a two time-scale update rule converge to a local Nash

equilibrium”, Advances in Neural Information Processing Systems, 6627-6638,
Long Beach, CA, USA, 4-9 December.

[51] Web 2, (2020), https://cedrickchee.qgitbook.io/knowledge/courses/fast.ai/deep-
learning-part-2-cutting-edge-deep-learning-for-coders/2018-edition/lesson-14-

image-segmentation, (access time: 20/02/2020).
[52] Lin T. Y., Maire M., Belongie S., Hays J., Perona P., Ramanan D., Dollar P.,
Zitnick C. L., (2014), “Microsoft COCO: Common objects in context”, European

Conference on Computer Vision, 740-755, Zurich, Switzerland, 6-12 September.

[53] Karras T., Laine S., Aila T., (2019), “A style-based generator architecture for
generative adversarial networks”, International Conference on Computer Vision
and Pattern Recognition, 4401-4410, Long Beach, CA, USA, 16-20 June.

[54] Fang Y., LiY., Tu X, Tan T., Wang X., (2020), “Face completion with Hybrid
Dilated Convolution”, Signal Processing: Image Communication, 80, 115664.

[55] Hedjazi M. A., Genc Y., (2019), “Learning to inpaint by progressively growing
the mask regions”, International Conference on Computer Vision Workshops, 0—
0, Seoul, Korea, 27 October-2 November.

[56] Kwon Y., Kim S., Yoo D., Yoon S. E., (2019), “Coarse-to-fine clothing image
generation with progressively constructed conditional GaN”, International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and

Applications, 83-90, Prague, Czech Republic, 25-27 February.

95

[57] Lee C. H., Liu Z., Wu L., Luo P., (2020), “MaskGAN: Towards Diverse and
Interactive Facial Image Manipulation”, International Conference on Computer
Vision and Pattern Recognition, 5549-5558, Virtual, 16-18 June.

[58] Web 3, (2018), https://github.com/karfly/qd-imd, (access time: 29/10/2020).

[59] Kingma D. P., Bal. L., (2015), “Adam: A method for stochastic optimization”,

International Conference for Learning Representations, 0-0, Banff, Canada, 14-
16 April.

[60] Mittal A., Soundararajan R., Bovik A. C., (2013), “Making a “completely blind”
image quality analyzer”, IEEE Signal Processing Letters, 20 (3), 209-212.

[61] Wu Q., Li H., Meng F., Ngan K. N., Luo B., Huang C., Zeng B., (2016), “Blind
image quality assessment based on multichannel feature fusion and label
transfer”, IEEE Transactions on Circuits and Systems for Video Technology, 26
(3), 425-440.

[62] Sun T., Zhu X., Pan J. S., Wen J., Meng F., (2015), “No-reference image quality
assessment in spatial domain”, Advances in Intelligent Systems and Computing,
329 (12), 381-388.

[63] Chen L., Wang Y. H., Wang Y. D., Huang D., (2009), “Face recognition with
statistical local binary patterns”, International Conference on Machine Learning
and Cybernetics, 2433-2439, Baoding, China, 12-15 July.

[64] Ahonen T., Hadid A., Pietik&inen M., (2006), “Face description with local binary
patterns: Application to face recognition”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28 (12), 2037-2041.

[65] Odena A., Olah C., Shlens J., (2017), “Conditional image synthesis with
auxiliary classifier gans”, International Conference on Machine Learning, 2642-
2651, Sydney, Australia, 6-11 August.

[66] Johnson J., Alahi A., Fei-Fei L., (2016), “Perceptual losses for real-time style
transfer and super-resolution”, European Conference on Computer Vision, 694—
711, Amsterdam, Netherlands, 11-14 October.

[67] Zheng Z., Yang X., Yu Z., Zheng L., Yang Y., Kautz J., (2019), “Joint
discriminative and generative learning for person re-identification”, International
Conference on Computer Vision and Pattern Recognition, 2138-2147, Long
Beach, CA, USA, 16-20 June.

[68] Canny J., (1986), “A Computational Approach to Edge Detection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (6), 679—

96

698.

[69] Xu D., Wang Y., Xu S., Zhu K., Zhang N., Zhang X., (2020), “Infrared and
visible image fusion with a generative adversarial network and a residual
network”, Applied Sciences (Switzerland), 10 (2), 103144.

[70] Juefei-Xu F., Savvides M., (2014), “Weight-Optimal Local Binary Patterns”,
European Conference on Computer Vision Workshops, 148-159, Zurich,
Switzerland, 6-12 September.

[71] Web 4, (2016), https://devanginiblog.wordpress.com/2016/06/03/local-binary-
patterns-Ibp/, (access time 10/03/2020).

[72] Zhou B., Lapedriza A., Khosla A., Oliva A., Torralba A., (2018), “Places: A 10
Million Image Database for Scene Recognition”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40 (6), 1452-1464.

[73] Liu Z., Luo P., Wang X., Tang X., (2018), “Deep Learning Face Attributes in

the Wild”, International Conference on Computer Vision, 3730-3738, Santiago,
Chile, 13-16 December.

[74] Paszke A., Gross S., Chintala S., Chanan G., Yang E., (2017), Automatic
differentiation in PyTorch, Advances in Neural Information Processing Systems,
0-0, Long Beach, CA, USA, 4-9 December.

[75] Miyato T., Kataoka T., Koyama M., Yoshida Y., (2018), “Spectral normalization
for generative adversarial networks”, ArXiv Preprint ArXiv: 1802.05957.

[76] Huang Z., Zheng Z., Yan C., Xie H., Sun Y., Wang J., Zhang J., (2020), “Real-
world automatic makeup via identity preservation makeup net”, International
Joint Conference on Artificial Intelligence, 652-658, Yokohama, Japan, 7-15
January.

[77] Yang Z., Dong J., Liu P., Yang Y., Yan S., (2019), “Very long natural scenery
image prediction by outpainting”, International Conference on Computer Vision
Workshops, 10561-10570, Seoul, Korea, 27 October-2 November.

[78] Radford A., Metz L., Chintala S., (2016), “Unsupervised representation learning
with deep convolutional generative adversarial networks”, International
Conference on Learning Representations, 97-108, Shanghai, China, 13-15
September.

[79] Zhao J., Mathieu M., LeCun Y., (2016), “Energy-based generative adversarial
network”, ArXiv Preprint ArXiv:1609.03126.

[80] Kocmi T., Bojar O., (2017), “Curriculum Learning and Minibatch Bucketing in

97

Neural Machine Translation”, ArXiv Preprint ArXiv:1707.09533.

[81] Platanios E. A., Stretcu O., Neubig G., Poczos B., Mitchell T. M., (2019),
“Competence-based curriculum learning for neural machine translation”,
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 1162-1172, Minneapolis, MN,
USA, 2-7 June.

[82] Sarafianos N., Giannakopoulos T., Nikou C., Kakadiaris I. A., (2017),
“Curriculum learning for multi-task classification of visual attributes”,
International Conference on Computer Vision Workshops, 2608-2615, Venice,
Italy, 22-29 October.

[83] He K., Zhang X., Ren S., Sun J., (2016), “Deep residual learning for image
recognition”, International Conference on Computer Vision and Pattern
Recognition, 770-778, Las Vegas, NV, USA, 26 June-1 July.

[84] Weinshall D., Cohen G., Amir D., (2018), “Curriculum learning by transfer
learning: Theory and experiments with deep networks”, International Conference
on Machine Learning, 5238-5246, Stockholm, Sweden, 18-24 July.

[85] Sharma R., Barratt S., Ermon S., Pande V., (2018), “Improved Training with
Curriculum GANs”, ArXiv Preprint ArXiv:1807.09295.

[86] Yeh R. A., Chen C., Yian Lim T., Schwing A. G., Hasegawa-Johnson M., Do
M. N,, (2017), “Semantic image inpainting with deep generative models”,
International Conference on Computer Vision and Pattern Recognition, 5485-
5493, Honolulu, Hawaii, USA, 22-25 July.

[87] Ioffe S., Szegedy C., (2015), “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”, International Conference on
Machine Learning, 448-456, Lille, France, 6-11 July.

[88] Ulyanov D., Vedaldi A., Lempitsky V., (2016), “Instance Normalization: The
Missing Ingredient for Fast Stylization”, ArXiv Preprint ArXiv:1607.08022.

[89] Zhang J., Tang S., Zhang X., Li Y., Zhang R., (2020), “Ahff-Net: Adaptive
Hierarchical Feature Fusion Network for Image Inpainting”, International
Conference on Image Processing, 478-482, UAE, 25-28 October.

[90] Jolicoeur-Martineau A., (2019), “The relativistic discriminator: A key element
missing from standard GaN”, arXiv preprint ArXiv:1807.00734.

98

BIOGRAPHY

Mohamed Abbas Hedjazi received his B.Sc. and M.s degrees in Computer
Engineering from the University of Batna in 2013 and 2015, respectively. He is
currently pursuing his Ph.D. degree in Gebze Technical University, Institute of Natural
and Applied Sciences, the program of Computer Engineering. His research interests

are in the areas of image processing, computer vision, and deep learning.

99

APPENDICES

Appendix A: publications within the scope of the thesis study

e Learning to Inpaint by Progressively Growing the Mask Regions, in The IEEE
International Conference on Computer Vision Preregistration workshop (ICCV
2019).

e Image Inpainting using Scene Constraints, in the Journal of Signal Processing
Image Communication (2020).

e Efficient Texture-aware Multi-GAN for Image Inpainting, in the Journal of
Knowledge-based Systems (2021).

e Image Inpainting using Deep Multi-resolution Paths and Adaptative Loss
Functions, Accepted in The IEEE International Conference on Image Processing
(ICIP 2021).

Appendix B: additional results of SC

We show additional results of the SC model on the CelebHQ dataset (Figure 8.2).
We show the corrupted, the estimated and the ground truth segmentation labels/edges,

the output and the ground truth images.

Appendix C: architecture and additional results of ETMG

The architecture of discriminators: Table 8.1 shows the architecture of the
PatchGAN discriminator [26] where: n = 24 for the 32 x 32 and the 64 X 64
discriminators, and n = 48 for the 128 x 128 and the 256 x 256 discriminators. We
use a slope of 0.2 in LeakyReLU. We use Spectral Normalization [75] in the
convolution layers where: bias=False. We initialize the weights using a Gaussian

distribution with gain = 0.02.

100

Estimated GT Estimated GT
Input Segmentation Segmentation Edges Edges SC GT

Figure 8.2: Additional results of the SC model.

The architecture of generators: for all the generators defined in Table 8.2, Table 8.3,
Table 8.4 and Table 8.5 we use the same weight initialization method used in the
discriminator. TConv2D refers to the ConvTranspose2d layer in Pytorch [74]. The
Gray function is defined as follows: Gray(r,g,b) = 0.299 X r + 0.587 X g +

0.110 x b wherer, g, and b are the red, green and blue colors, respectively.

101

Table 8.1: Architecture of the ETMG discriminator network.

Layer Dim Kernel Stride | Padding Activation
Conv2D n 4 x4 2 1 LeakyReLU
Conv2D | nx?2 4 x4 2 1 LeakyReLU
Conv2D | nx 4 4 x4 2 1 LeakyReLU
Conv2D 1 4 x4 1 1 LeakyRelL U

Table 8.2: Architecture of the 32x32 ETMG generator network.

Layer Dim | Kernel | Stride | Padding | Activation
Conv2D 24 3x3 1 1 ReLU
Conv2D 48 4 x4 2 1 ReLU
Conv2D 48 4 X4 2 1 RelLU
Conv2D 96 3%x3 1 1 RelLU
Conv2D 96 3X3 1 1 ReLU
Conv2D 96 3x3 1 1 RelLU
Conv2D 96 3X%X3 1 1 RelLU
Conv2D 96 3x3 1 1 ReLU

TConvt2D 48 4 x4 2 1 ReLU
TConv2D 24 4 X 4 2 1 RelLU
Conv2D 3 3% 3 1 1 Tanh

Table 8.3: Architecture of the 64x64 ETMG generator network.

Block Layer Dim | Kernel | Stride | Padding | Activation

Conv2D 24 3%3 1 1 ReLU

1 Conv2D 48 4 x4 2 1 ReLU
Conv2D 48 4x4 2 1 ReLU
Conv2D 24 3x3 1 1 ReLU

2 Conv2D 48 4 x4 2 1 ReLU
Conv2D 48 3%x3 1 1 RelLLU
Conv2D 96 3x%x3 1 1 ReLU
Conv2D 96 3%x3 1 1 RelLLU
Conv2D 96 3%x3 1 1 RelLLU
Conv2D 96 3x3 1 1 ReLU

3 Conv2D | 96 | 3x3 1 1 ReLU
TConvt2D 48 4% 4 2 1 RelLLU
TConv2D 24 4 X 4 2 1 ReLU
Conv2D 3 3%x3 1 1 Tanh

102

Table 8.4: Architecture of the 128x128 ETMG generator network.

Block Layer Dim | Kernel | Stride | Padding | Activation

Conv2D 24 3x3 1 1 ReLU

1 Conv2D 48 4x4 2 1 RelLU
Conv2D 48 4 x4 2 1 RelLU
Conv2D 24 3x3 1 1 ReLU

2 Conv2D 48 4 x4 2 1 RelLU
Conv2D 48 3x3 1 1 ReLU
Conv2D 24 3x3 1 1 RelLU

3 Conv2D 48 3x3 2 1 RelLU
Conv2D 48 3x3 1 1 ReLU
Conv2D 96 3x3 1 1 ReLU
Conv2D 96 3x3 1 1 RelLU
Conv2D 96 3x3 1 1 ReLU

4 Conv2D 96 3xX3 1 1 ReLU
Conv2D 96 3x3 1 1 RelLU
TConvt2D 48 4 x4 2 1 RelLU
TConv2D 24 4 x4 2 1 ReLU
Conv2D 3 3%x3 1 1 Tanh

Table 8.5: Architecture of the 256x256 ETMG generator network.

Block Layer Dim | Kernel | Stride | Padding | Activation

Conv2D 24 3X3 1 1 ReLU

1 Conv2D 48 4 x4 2 1 RelLU
Conv2D 48 4 x4 2 1 RelLU
Conv2D 24 3X3 1 1 ReLU

2 Conv2D 48 4 x4 2 1 RelLU
Conv2D 48 3X%X3 1 1 RelLU
Conv2D 24 3X3 1 1 ReLU

3 Conv2D 48 3X%X3 2 1 RelLU
Conv2D 48 3X%X3 1 1 RelLU
Conv2D 24 3X%X3 1 1 RelLU

4 Conv2D 48 3X%X3 2 1 RelLU
Conv2D 48 3x3 1 1 ReLU
Conv2D 96 3x3 1 1 ReLU
Conv2D 96 3X3 1 1 RelLLU
Conv2D 96 3xX3 1 1 ReLU

5 Conv2D 96 3X%X3 1 1 RelLLU
Conv2D 96 3x3 1 1 ReLU
TConvt2D 48 4 x4 2 1 ReLU
TConv2D 24 4 x4 2 1 RelLLU
Conv2D 3 3x3 1 1 Tanh

103

Learning curves: we show the training curves of our four generators and

discriminators. The loss curves show a stable training that reflects the visual quality of

the generated images. Figure 8.3 shows the loss values of the generators and the

discriminators. In Figure 8.4 we show the reconstruction loss values. During training,

we use masks that cover 30 —40% of the image. The successful exploitation of

previously inpainted low-resolution images leads to fast convergence.

@ 32x32 Discriminator loss
. 32x32 Generator loss

Loss
0.29

L

0 100k 200k 300k 400k Iterations

@ 128x128 Discriminator loss
) 128x128 Generator loss

Loss
0.305

0.295
0.285
0.275

0.265

0.255

0 100k 200k 300k 400k 500k Iterations

() 64x64 Discriminator loss
@ 64x64 Generator loss

Loss |
0.285 '
0.275

0.265

0.255

0.245 ’
300k

0 100k 200k

() 256x256 Discriminator loss
@ 256x256 Generator loss

Loss

0.34
0.32

0.3
0.28

0.26

0 40k 80k 120k 160k 200k 240k

Iterations

Iterations

Figure 8.3: The GAN losses of the ETMG generators and discriminators.

104

Loss 32x32 reconstruction loss Loss 64x64 reconstruction loss
0.1
0.09 0.06
0.07 \
0.04
0.05 B o~ R
e — \5.**_
0.01
-0.01 0
0 100k 200k 300k 400k Iterations 0 100k 200k 300k Iterations
Loss 128x128 reconstruction loss Loss 256x256 reconstruction loss
\
0.05 0.04 \
o0 0.03 -
0.03 \\
0.02 ~—
0.02
0.01 0.01
01— 0
0 100k 200k 300k 400k 500k Iterations 0 40k 80k 120k 160k 200k 240k Iterations
Loss 256x256 texture loss
0.18 \
0.176
0.172
0.168
260k 280k 300k 320k 340k 360k 380k Iterations

Figure 8.4: Reconstruction and LBP loss of the ETMG model.

Additional results: we show additional results of the ETMG model on Places2 (Figure
8.5) and CelebHQ (Figure 8.6). We show the corrupted, the output, the ground truth

images. Also, we show the output and the ground truth LBP images.

105

Figure 8.5: Additional qualitative results of the ETMG model on the Places2.

106

Figure 8.6: Additional qualitative results of the ETMG model on the CelebHQ.

107

Appendix D: additional results of ETMG + SC

We show additional results of the ETMG + SC model on CelebHQ (Figure 8.7).
We show the corrupted, the estimated and the ground truth segmentation labels, the

output and the ground truth images.

Estimated GT
Input Segmentation Segmentation ETMG+SC GT

Figure 8.7: Additional results of the ETMG + SC model.

108

