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İbrahim Körpeoğlu
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ABSTRACT

TOWARDS DEEPLY INTELLIGENT INTERFACES IN
RELATIONAL DATABASES

Arif Usta

Ph.D. in Computer Engineering

Advisor: Özgür Ulusoy

August 2021

Relational databases is one of the most popular and broadly utilized infrastruc-

tures to store data in a structured fashion. In order to retrieve data, users have

to phrase their information need in Structured Query Language (SQL). SQL is

a powerfully expressive and flexible language, yet one has to know the schema

underlying the database on which the query is issued and to be familiar with SQL

syntax, which is not trivial for casual users. To this end, we propose two different

strategies to provide more intelligent user interfaces to relational databases by

utilizing deep learning techniques. As the first study, we propose a solution for

keyword mapping in Natural Language Interfaces to Databases (NLIDB), which

aims to translate Natural Language Queries (NLQs) to SQL. We define the key-

word mapping problem as a sequence tagging problem, and propose a novel deep

learning based supervised approach that utilizes part-of-speech (POS) tags of

NLQs. Our proposed approach, called DBTagger (DataBase Tagger), is an end-

to-end and schema independent solution. Query recommendation paradigm, a

well-known strategy broadly utilized in Web search engines, is helpful to suggest

queries of expert users to the casual users to help them with their information

need. As the second study, we propose Conquer, a CONtextual QUEry Recom-

mendation algorithm on relational databases exploiting deep learning. First, we

train local embeddings of a database using Graph Convolutional Networks to ex-

tract distributed representations of the tuples in latent space. We represent SQL

queries with a semantic vector by averaging the embeddings of the tuples returned

as a result of the query. We employ cosine similarity over the final representations

of the queries to generate recommendations, as a Witness-Based approach. Our

results show that in classification accuracy of database rows as an indicator for

embedding quality, Conquer outperforms state-of-the-art techniques.

Keywords: Intelligent User Interfaces, Relational Databases, NLIDB, Keyword

Mapping, Deep Learning, Graph Neural Networks, Query Recommendation.
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ÖZET

İLİŞKİSEL VERİ TABANLARINDA DERİN AKILLI
ARAYÜZLER ÜZERİNE

Arif Usta

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Özgür Ulusoy

Ağustos 2021

İlişkisel veri tabanları, yapısal bir şekilde veri depolamayı sağlayan, en popüler ve

yaygın olarak kullanılan alt yapılardan biridir. Veriye erişmek için, kullanıcılar

ulaşmak istedikleri bilgileri Yapılandırılmış Sorgu Dili (SQL) kullanarak uygun

sorgularla ifade etmek zorundadır. SQL oldukça anlatımcı ve esnek bir dildir;

ancak kullanıcının, sorgunun yazıldığı veri tabanının temelinde yatan şemayı

bilmesi ve SQL sözdizimine aşina olması gerekir, ki sıradan kullanıcılar için bu

durum kolay değildir. Bu amaçla, derin öğrenme tekniklerinden yararlanarak

ilişkisel veri tabanlarında kullanılmak üzere daha akıllı kullanıcı arayüzleri yap-

mak için iki farklı strateji önerilmektedir. İlk çalışmamızda, doğal dil sorgu-

larını SQL’e tercüme etmeyi amaçlayan İlişkisel Veri Tabanına Yönelik Doğal Dil

Arayüzleri’nde kullanılan anahtar sözcük eşleme problemi için çözüm sunulmak-

tadır. Anahtar sözcük eşleme, dizi etiketleme problemi olarak ele alınmaktadır.

Doğal dil sorgularının sözcük türlerini de kullanan bu özgün yaklaşım, gözetimli

derin öğrenme kullanmaktadır. DBTagger (Database Tagger) adı verilen bu

yaklaşım, uçtan uca ve şemadan bağımsız bir çözümdür. Web arama motor-

larında yaygın olarak kullanılan ve oldukça bilinen bir strateji olan sorgu tavsiyesi

paradigması, uzman kullanıcıların sorgularını sıradan kullanıcılara tavsiye ederek

bilgiye erişim sürecinde yardım eder. İkinci çalışmamızda, derin öğrenmeden

yararlanarak ilişkisel veri tabanlarında kullanılmak üzere bağlamsal sorgu tavsiye

algoritması, Conquer, sunulmaktadır. İlk olarak, veri tabanı satırlarının gizli uza-

ydaki temsillerini oluşturmak amacıyla Çizge Sinir Ağları kullanılmaktadır. SQL

sorguları, sorgunun sonucunda dönen satırların temsillerinin ortalaması alınarak

semantik vektör ile temsil edilmektedir. Tanık-Temelli bir yaklaşım olarak,

tavsiyeler üretmek için sorguların nihai temsillerinin üzerine kosinüs benzerliği

kullanılmaktadır.

Anahtar sözcükler : İlişkisel Veri Tabanlarında Doğal Dil Arayüzü, Anahtar

Sözcük Etiketleme, Derin Öğrenme, Çizge Sinir Ağları, Sorgu Tavsiye.
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Sengör Altıngövde for monitoring my thesis studies and giving me constructive

feedbacks during our meetings. I would also like to thank Prof. Dr. Fazlı Can and

Asst. Prof. Dr. Engin Demir for kindly accepting to be in my thesis committee.

I would also like to acknowledge TUBİTAK for supporting me financially for
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Chapter 1

Introduction

Amount of processed data has been growing rapidly pertaining to technology,

leading to database systems to have a great deal of importance in today’s world.

Amongst the systems, relational databases are still one of the most popular in-

frastructures to effectively store data in a structured fashion. To extract data out

of a relational database, structured query language (SQL) is used as a standard

tool. Although SQL is a powerfully expressive language, even technically skilled

users have difficulties using SQL. Along with the syntax of SQL, one has to know

the schema underlying the database upon which the query is issued, which further

causes hurdles to use SQL. Consequently, casual users find it even more difficult

to express their information need, which makes SQL less desirable.

To remove this barrier, an ideal solution is to provide a search engine like

interface, such as Google or Bing in databases. One of the reasons why search

engines are popular among casual users in various domains such as e-commerce or

education [1, 2, 3, 4] is that search engines have user friendly interfaces providing

an easy-to-use keyword-based search functionality [5]. Although, keyword-based

search is a simple interaction mechanism between the search engine interface and

the user, such an interface still can be inadequate for certain users to express

their information needs. In order to obviate such inefficacy, researchers have

introduced paradigms such as query recommendation or auto-completion [5] to
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make search interfaces more intelligent to serve the user more conveniently.

Deep Learning is one of the paradigms to employ to further improve user

friendliness and therefore consequently search performance of retrieval systems

in various domains such as biomedical [6], image [7] or education [8]. Although it

is demonstrated to be effective in many tasks, relational databases as a retrieval

system has been overlooked to apply deep learning to enhance search performance

of users. In order to try to obviate lack of such studies, in this thesis we pro-

pose two different solutions exploiting deep learning techniques to help create

intelligent interfaces to relational databases.

1.1 Motivation and Contributions

The first study we propose towards creating intelligent interfaces to relational

databases is in the context of Natural Language Interfaces to Databases (NLIDB).

Natural language is the ideal choice of users when they are expressing their search

needs. Hence, having a natural language query interface is the first step to make

towards providing user friendly environment to the users for their search experi-

ence. Therefore the goal of NLIDB systems is to break barriers mentioned above

between the database and the user to make it possible for even casual users to

employ their natural language to extract information.

To this end, many works have been published recently attacking the research

problem of translation of natural language queries into SQL; such as conventional

pipeline based approaches [9, 10, 11, 12] or end-to-end solutions using encoder-

decoder based deep learning approaches [13, 14, 15, 16, 17]. Neural network based

solutions seem promising in terms of robustness, covering semantic variations of

queries. However, they struggle for queries requiring translation of complex SQL

queries, such as aggregation and nested queries, especially if they include multiple

tables. They also have a huge drawback in that they need many SQL-NL pairs

for training to perform well, which makes conventional pipeline based solutions

still an attractive alternative. [18].
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In the translation pipeline, one of the most important sub-problems is key-

word mapping, as noted in [19] as an open challenge to be addressed in NLIDBs.

Keyword mapping task requires to associate each token or a series of consecu-

tive tokens (e.g., keywords) in the natural language query to a corresponding

database schema element such as table, attribute or value. It is the very first

step of resolving ambiguity for translation. Xu et. al [15] also note that during

the translation of the query, where clause is the most difficult part to generate

which further signifies the task of keyword mapping.

Most of the pipeline-based state-of-the-art works do not provide a novel so-

lution to the problem of keyword mapping, rather they utilize unsupervised ap-

proaches such as simple look-up tables looking for exact matches or pre-defined

synonyms [20, 9]; or they make use of an existing lexical database [10] such as

WordNet [21]; or they exploit domain information to extract an ontology to be

used for the task [11]; or they employ distributed representations of words [12]

such as word2vec [22] to calculate semantic similarity of tokens over database

elements. Although these approaches are effective to some extent, they fail to

solve various challenges yielded by the task of keyword mapping single-handedly.

In order to address the sub-problem of keyword mapping solely, two particu-

lar works have been published recently. In [23], Yavuz et. al. try to improve

translation accuracy by focusing on condition statements in where clause only.

In the study, n-grams of words in the NL query are extracted and queried against

database schema elements such as attribute names. They evaluate their approach

on well known WikiSql dataset [14]. However, the dataset itself is comprised of

databases having only a single table which makes it difficult to assess validity

of their approach in more complex databases. Their methodology of utilizing

n-grams of words in the query to associate possible value is also not efficient,

especially in online scenarios.

Baik et. al. [24] present TEMPLAR, another approach that deals with the

keyword mapping directly along with join-path inference. They exploit query

logs of databases to improve accuracy of mapping. Yet, their approach is not a

standalone solution, requiring an existing NLIDB to generate certain metadata

3



annotations including multi-word entities, conditions, and operators correctly

to be used in mapping. They try to rank similarities between these metadata

annotations coming from NLIDB and candidate query-fragments extracted from

query logs using word2vec [22], which limits the solution to be dependent to a

well performing existing NLIDBs.

In order to address all of the challenges the keyword mapping problem raises we

propose DBTagger, a novel deep sequence tagger architecture used for keyword

mapping in NLIDBs. Our approach is applicable to different database domains

requiring only handful of training query annotations and practical to be deployed

in online scenarios finding tags in just milliseconds. In particular, we make the

following contributions by proposing DBTagger:

• We tackle the keyword mapping problem as a sequence tagging problem and

borrow state-of-the-art deep learning approaches tailored for well-known

NLP tasks.

• We extend the neural structure for sequence tagging, by utilizing multi-task

learning and cross-skip connections to exploit the observation we made in

natural language query logs of databases, that is, schema tags of keywords

are highly correlated with part-of-speech (POS) tags.

• We manually annotate query logs from three publicly available relational

databases, and five different schemas belonging to Spider [25] dataset.

• We evaluate DBTagger, with above-mentioned query logs in two different

setups. First, we compare DBTagger with unsupervised baselines preferred

in state-of-the-art NLIDBs. In the latter, we evaluate DBTagger architec-

ture by comparing with different supervised neural architectures. We report

new state-of-the-art accuracy results for keyword mapping in all datasets.

• We provide comprehensive run time and memory usage analysis over the

existing keyword mapping approaches. Our results show that, DBTagger is

the most efficient and scalable approach for both metrics.

4



While expressing their information need, users may prefer different phrases,

which may depend on their level of expertise and the schema of the underlying

database. In order to pose effective queries in relational databases, users may

need to be familiar with SQL syntax and the domain of the database, which

is not always the case. Users may have little information about the schema

underlying the database or they may not be certain about what to search for.

Therefore, it is vital to have a user friendly interface for retrieval systems such

as relational databases. Although, keyword search provides flexible use of search

expression for users, one may not be able to express his search intent in correct

manner using proper words. Therefore, Query Recommendation, as one of the

well-known paradigms utilized to improve users’ search experience especially in

Web [5], can be handy. In order to address problems mentioned above, as a

second study, we propose a SQL query recommendation algorithm in relational

databases to make the search interface more user friendly.

Although multiple users have the same search intent, they may use different

words to express their intent, which causes ambiguity. Another issue, specifically

valid in relational databases, is that user may not be an expert and not have

enough technical background to express search intent in words. In order to over-

come the issue of lack of ability expressing the information need, most of the

search engines provide query recommendation service to further improve search

experience of users. The main objective behind our approach is to recommend

previous SQL queries to the user given the current SQL query. It aims to find

similar queries that are previously issued by some other users. In order to pro-

vide a recommendation, a similarity function is to be determined between queries

first. After finding those candidate queries, a ranking scheme is applied on those

queries to create final list of suggested queries to the user.

In recent years, neural network based vector representations of textual data

have become the state-of-the-art technique to exploit for solving various NLP

tasks. It is demonstrated by Collobert et. al. [26] that utilizing dense vector

representations in a simple deep learning architecture yields superior results in

several NLP tasks such as named-entity recognition (NER), semantic role la-

beling (SRL) and POS tagging. Distributional hypothesis [27], which assumes
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words appearing in similar contexts tend to have similar meaning, played vi-

tal part in success of learning representations of words. Mikolov et. al. [22]

utilize this assumption to learn word embeddings in an unsupervised fashion

by introducing two different approaches, namely skip-gram and common bag-of-

words (CBOW). In addition to word level representations, character embeddings

[28, 29] and different composition level of words [30] have also been explored

for different downstream NLP tasks such as sentiment classification. Learning

representations of sentences have various application scenarios such as machine

translation, next sentence prediction, and so on. Inspired by the skip-gram ap-

proach, Encoder-Decoder approaches have been utilized in recent works [31, 32]

to learn meaningful representation of the sentences for such tasks.

Though distributed representation of words have been explored in several dif-

ferent setups with different neural architectures and objectives for general text,

there are not many works on learning representations for textual values in a dif-

ferent source such as database. Relational databases is one of the most common

infrastructure to store data (mainly text) in a structured fashion. As noted in

[33], deep learning approaches especially distributed representations can be effec-

tive for multiple problems in database community where a similarity objective is

required to be defined such as entity resolution, query recommendation, or query

clustering.

Inspired from the above observation, we propose Conquer, a recommendation

algorithm that exploits distributed representations trained solely on a relational

database. In our approach, we first train a neural model utilizing graph convolu-

tional networks (GCN) [34] to learn local embeddings for database tuples. After

learning representations, we calculate an aggregated representation for particular

SQL query by using representations of the tuples returned in the resulting set.

For candidate queries, we perform a cosine similarity to find out possible SQL

queries to recommend. In particular we make the following contributions:

• We propose a SQL query recommendation algorithm utilizing a well-known

deep learning technique, graph convolutional networks. To the best of our

knowledge, our study is the first to employ deep learning in SQL query
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recommendation system in relational databases.

• We automatically extract two different graph outputs from a relational

database regarding the database properties to use in training with GCN.

• Compared to another study [35] in which an output graph is extracted from

a relational database, we perform our training in supervised fashion.

• In order to employ training in supervised fashion, we propose a heuristic to

associate each tuple with a target label as an application of self-supervised

learning.

• We train node embeddings of database tuples along with textual values

residing in the database utilizing GCN. Consequently, we learn embeddings

for both tuples and words appearing in those tuples simultaneously.

• In addition to a standalone training with graph neural networks, we propose

a hybrid approach in which we externally train features of node in the graph

by state-of-the-art distributed representation techniques utilized in natural

language processing tasks as an application of transfer learning. We utilize

these externally trained representations for node features in the input graph

which is later trained further with GCN.

• We evaluate our solution in 2 different datasets, in which we outperform

state-of-the-art baselines in the task of classification of database tuples in

both accuracy and F1 metrics.

1.2 Outline

The rest of the thesis is organized as follows. In the next section, we summarize

the related studies in the literature by categorizing them into the fields they fall

into. In Chapter 3, we provide a thorough explanation of current state-of-the-art

distributed representation techniques in deep learning. We give methodology of

our first proposed work, DBTagger, in Chapter 4. Similarly, in Chapter 5, we

give detailed information about our second proposed work, Conquer. Following
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these chapters, we provide experimental results of each proposed work in Chapter

6. We conclude the thesis in Chapter 7 by pointing out potential future works to

be studied.
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Chapter 2

Related Work

2.1 Keyword Mapping in NLIDB

In this section, we cover the related works mainly in two categories. In the

first group, we provide a literature review about recent NLIDB systems and

their keyword mapping approaches in the translation pipeline. In the latter, we

mention the works that use deep learning to solve mainstream sequence tagging

problems, such as part-of-speech (POS) and named-entity recognition (NER) in

NLP.

2.1.1 NLIDBs and Keyword Mapping Approaches

Although the very first effort [36] of providing natural language interface in

databases dates back to multiple decades ago, the popularity of the problem has

increased due to some recent pipeline based systems proposed by the database

community, such as SODA [9], NALIR [10], ATHENA[11] and SQLizer[12].

SODA [9] provides a natural language interface in which users can express their

query intent in keywords. In their proposed system, they use look-up tables,

namely inverted indexes for both base and metadata of the database to match
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query tokens into their respected tags. The main disadvantage of SODA is that

it only expects keywords, which are not enough to express query in certain cases.

NALIR [10] is a parse-based NLIDB system. The system first parses the input

using Standford Parser [37] and extracts dependency tree solely based on it.

In the linguistic parse tree, nodes represents any words or phrases that can be

mapped to SQL instruments. It tries to map keywords into candidate database

schema elements using two different similarity metrics, similarity in meaning and

spelling, respectively. They use Wordnet [21] to evaluate similarity in meaning

(semantic) and use Jaccard Coefficient between q-grams of words/phrases and

candidates. Using a threshold τ , they determine whether the processed schema

element is a candidate. During the mapping, NALIR interacts with the user to

solve ambiguities, which is the strength of the system.

NALIR heavily depends on the user interaction step to resolve ambiguities

during mapping, which dramatically affects translation accuracy. Athena [11] is

another pipeline-based system which uses domain knowledge, ontology, to make

the translation. Given a relational database on a particular domain, Athena needs

ontology of the domain to be extracted first. As a first step, ontology evidence

annotator is used to map keywords in the query to possible ontology elements.

This process is done using inverted index generated on database metadata and

unique values. On top of the inverted index, they also enrich the index with

synonyms and semantic variations of the metadata.

SQLizer [12] uses a semantic parser to extract a query sketch from the natural

language query, and iteratively repairs the sketch until a confidence threshold

is met. Output of the semantic parser includes mapped hints from the natural

language query words as n-grams. This mapping is not a complete mapping;

database elements are not included in the initial sketch, therefore mapping in-

cludes only natural language query tokens. Mapping is updated in each iteration

and completed at the end. One important weakness of these systems is that they

rely on manually defined rules for the translation.

Recently, end-to-end approaches utilizing encoder-decoder based architectures
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[14, 15, 38, 23, 39, 40, 16, 41, 42, 17] in deep learning have become more popular

to deal with the translation problem. In such a setup, the problem becomes a

machine translation where NLQ-SQL pairs are used.

Seq2SQL[14] uses a Bi-LSTM to encode a sequence that contains columns of

the related table, SQL keywords and question. It outputs three different compo-

nents; aggregation classifier, select column pointer, and where clause components.

One of the problems with this approach is that there is only one output for the

select column pointer. The study [14] also provides a dataset called WikiSql to

the research community working on NLIDB problem for evaluation.

WikiSql is comprised of 26, 531 tables and 80, 654 pairs which can be used for

input for the translation problem. However, the dataset includes databases hav-

ing only a single table which simplifies the problem especially for the translation.

SQLNet[15] defines a seq-to-set approach to eliminate reinforcement learning pro-

cess of Seq2SQL. Network outputs a score for each column and a thresholding

is applied to decide which columns will be in the where clause set. The output

structure of SQLNet is similar to Seq2SQL and it has the same weaknesses.

In another study which used WikiSql dataset, Yavuz et al.[23] employ a process

called candidate generation to create keyword mappings to be used in where

clasue in SQL translation specifically. They first create all the n-grams from the

question. Then, using each n-gram they query each column of the given table

to find the matches. Finally they create a mapping set for each column and n-

gram match. The solution proposed is not scalable for bigger databases and not

practical for online usage, since the number of n-grams to be used for mapping

candidates increases with the number of tokens in the query, which makes the

whole process time consuming.

All of the proposed deep learning based methods use pre-trained word embed-

ding vectors for input to the model. Therefore, keyword mapping is implicitly

handled by the model. However, TypeSql [39] tries to enrich input data augment-

ing entity tags by performing similarity check over the database or knowledge

base. They try to embed these tags during training, and feed concatenation of
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both these embeddings and word embeddings into the network as input. Similarly,

[40] tries to find possible constant values in the query by performing similarity

matching.

Due to the limited nature of WikiSql dataset, having a single table for each

database, another important dataset called Spider [25] is provided to the commu-

nity. Consequently, many studies proposed recently [16, 41, 42, 17, 43] have eval-

uated their solutions on the Spider dataset. Different from the others, TaBERT

[43] as a transformer based encoder, makes use of database content to generate

dynamic representations along with contextual encodings to represent database

columns. For a comprehensive survey covering existing solutions in NLIDB, the

reader can refer to [44, 45].

Similar to our work, Baik et al. [24] propose TEMPLAR, to be augmented

on top of existing NLIDB systems to improve keyword mapping and therefore

translation using query logs. It uses the query logs to identify database fragments

that later are to be mapped to query keywords for database value matching. For

matching candidate fragments extracted from query logs, a semantic similarity

model using word2vec [22] is employed. Though, TEMPLAR is not a standalone

mapper, since it requires from a NLIDB system multiple preliminaries to function

properly, including parsed keywords and associated metadata with each keyword,

which are the main challenges yielded by the keyword mapping problem.

TEMPLAR requires the NLIDB system to parse the keywords that may con-

tain multiple words, which is one of the major challenges for keyword mapping.

Therefore, the mapper cannot be plugged into NLIDB pipelines that does not

perform detailed keyword recognition and parsing.

Different from the previous works, DBTagger is an end-to-end keyword map-

per, which does not require any processing or external source of knowledge. Also,

to the best of our knowledge, our work is the first study utilizing deep neural

networks in a supervised learning setup for keyword mapping.
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2.1.2 Deep Learning Solutions for Sequence Tagging in

NLP

In NLP community, neural network architectures have been utilized in many

research problems. As a pioneer in the field, Collobert et al. [46] propose Con-

volutional Neural Networks (CNN) based architecture with CRF layer on top

to deal with the sequence tagging problem. Yao et al. [47] apply LSTM in se-

quence tagging without having CRF as the classification layer. Bi-directional

RNN structure is employed first in a speech recognition problem in [48].

Later, instead of simple RNN networks, bi-directional LSTM is adopted and

employed by Huang et al. [49] in NER problem. They use hand crafted spelling

features for representation of the words in the sentence as the input layer. Follow-

ing that study, Lample et al. [50] propose a similar architecture with the inclusion

of word and character embeddings. They use pre-trained word embeddings along

with character level embeddings to extract input matrix to feed into the network.

They also train character level embeddings during the training utilizing LSTM.

Their study stand as the state-of-the-art in sequence tagging problems in NLP.

Similar to [50], Ma and Hovy [51] propose a neural architecture where character

embeddings is done through CNN instead of LSTM. For a comprehensive survey

discussing the deep learning solutions for research problems in NLP community,

[52] is a great read.

2.2 SQL Query Recommendation in Databases

2.2.1 Distributed Representations in Databases

Recently, distributed representations of words have been utilized in database

problems such as entity resolution [53, 54, 35, 55] and schema matching [56].

Mainly, the works utilizing distributed representations in database community
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fall into two broad categories; in the first group, pre-trained word embeddings

such as word2vec [22], glove [57] or fastText [58] are used in the appropriate

task as an input without any training, whereas the approaches in the second

group train their local database embeddings to exploit the corresponding task to

overcome disadvantages of global pre-trained embeddings.

The first work which tries to integrate word embeddings into the database

field is done by Bordawekar et. al. [59]. They learn word level representations

using word2vec [22] by treating each row as a sentence composing of values, both

textual and numeric. There are couple of drawbacks with this approach. They

learn only word level representations which do not cover plurality of words, typos

or out-of-vocabulary tokens which is a common problem in bigger databases.

Their sentence level composition is bag-of-words approach which does not take

the relational part of the database into account such as connection between pair

of instances. Although they consider these connections through foreign keys by

expanding rows into bigger sentences, window size for similarity context is not

enough to capture similarity between values residing in different tables. They

exploit these representations in SQL-based analytics queries that they named as

cognitive intelligence.

For entity matching task, both [53] and [54] use recurrent neural networks to

train local database embeddings. The biggest difference between the two state-

of-the-art solutions is that [54] also utilizes attention mechanism [60] to improve

training efficacy and therefore representations. In these works, tuples are treated

as sentences in which cell values represent words in these tuples. However, similar

to work [59], these studies also do not take the structral information of a database,

namely relations between tuples from different tables, into account.

Recently, another work [35] is proposed to embed database into semantic space

using graph neural network strategy. Instead of treating tuples of the database

as a sentence, [35] extracts a graph first from the database. The graph is un-

directed and a heterogeneous one, including different type of nodes reflecting

different part of the database. Using the graph structure, the authors try to

exploit the structural and hierarchical property of a database. For each tuple,
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database value (token or keyword) and column, they create a node to generate

the graph. Tuple nodes are then connected to token nodes which are connected

to column nodes. In their extracted graph, there is no edge in between the same

type of nodes, which they call tri-partite graph.

After the generation of the graph, they generate random biased walks over the

graph, similar to the pioneering work DeepWalk [61], to generate sequences of

nodes, which they later treat as sentences on which they perform the training

to learn representation for each node and therefore each tuple, token and col-

umn. After generating the sequence of nodes, they apply training methodology

of word2vec [22] to create a look up table for node representations, in which all of

the instruments mentioned above reside. Since they follow word2vec methodol-

ogy, they train their local embeddings in unsupervised fashion. However, similar

to previous works, this study [35] also fails to capture the relational information

in between tuples from different tables as well.

In this thesis, we propose a local database embedding strategy utilizing graph

neural networks similar to [35]. However, instead of a tri-partite, heterogeneous

graph, our graph is a homogeneous one having more dense connections including

the ones between tuples from different tables. Another major difference is that

instead of a random walk based embedding strategy, we train database embed-

dings in supervised fashion utilizing graph convolutional networks (GCN) [34].

Although we do not have natural labels for our tuples/nodes, we follow the strat-

egy called self-supervised learning to implicitly associate each tuple/node with a

label corresponding to the table it resides in with a novel algorithm we introduce

considering database properties.

2.2.2 Query Recommendation in Databases

In [62], Yates et. al. try to cluster queries issued previously to generate candidate

query sets. When clustering, they use semantic similarity between queries. The

problem with this approach is that they do not consider current context when

determining candidate queries. For that issue, Cao et. al. propose to use query
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sequences to learn patterns to capture context information as well [63]. Although,

for context aware query recommendation, query sequences sound promising, most

of the query sessions include only single query [64], which makes it impossible to

learn previous queries to suggest.

Although query recommendation in web search systems is a well studied prob-

lem [5], its application in relational databases has not been explored thoroughly.

As initial studies, some SQL recommendation systems [65, 66, 67, 68, 69] have

been proposed in relational databases in recent years. Chatzopoulou et. al. [65]

create a recommendation matrix out of past queries of users and the tuples re-

turned from those queries to apply the collaborative filtering technique. After

finding the most probable tuples of high interest to the current user, a similarity

score for each past query of users is calculated regarding these tuples of interest.

The system ranks the queries according to their similarity scores and present

these queries as recommendation to the user. In another similar study [69], the

authors propose a recommendation system which exploits the query the user is-

sued currently in the session and content of the database instead of past queries

of other users.

Following these works, QueRIE [67] and SnipSuggest [66] were proposed in the

context of query recommendation in relational databases. Instead of sql queries or

database tuples to be recommended, both studies preferred to focus on query frag-

ments to employ recommendation system. Their difference lies in the approach

for using similarity objective, that is, QueRIE exploits tuples (witness-based) re-

turned from queries, whereas SnipSuggest utilizes a feature-based approach by

exploring query fragments such as where clauses. Another difference is that,

QueRIE recommends entire queries after finding similar query fragments with

respect to the current query, while SnipSuggest tries to autocomplete the current

prefix of the sql query by finding proper query fragments to append.

Recently, another work [70] was proposed following a different approach named

access area based. In this thesis, we propose a recommendation system utilizing

the witness based approach by focusing on database tuples returned by the query.
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The novelty of our recommendation system is that we employ deep learning to cal-

culate semantic similarity between tuples. To the best of our knowledge, there is

no recommendation system proposed in the literature that makes use of semantic

representations or deep learning in the context of recommendation in relational

databases.
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Chapter 3

Distributed Representations in

Deep Learning

3.1 Word Embeddings

Popularity of word embeddings increased with the development of word2vec al-

gorithm introduced by Mikolov et. al. [22]. Propelling side of their work is that

vectors learned for words reveal compositonality, that is, applying simple algebraic

operations on word vectors yields a result vector close to semantic representation

of the composition of the words.

There are mainly two approaches introduced by Mikolov et. al. [22] to define

the context for similar words. These are Skip-Gram and CBOW models. In both

models, border of the similarity context is determined by a pre-defined window

of various sizes tailored for different learning tasks. Depending on the size of the

window, a pair of words is considered to be similar and processed in learning stage.

CBOW model tries to predict the target word using the words surrounding inside

the window, whereas in Skip-Gram model, the network takes the target word as

input and it tries to predict the probabilities for each context word surrounding

the target word. Both approaches for word2vec embedding are depicted in Figure
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Figure 3.1: Neural network architecture for word2vec approaches

3.1.

In their following work [71], Mikolov et. al. address performance issues of

word2vec learning algorithm. They introduce negative sampling to tackle per-

formance issues of, especially, the Skip-Gram approach. Instead of updating all

weights in a gradient, negative sampling tries to reinforce the strength of weights

for a pair of words that are actually in the same context by reducing strength of

weights for words that are not in the context. The approach simply samples a

set of words to be used as negative context. Therefore, structure of the neural

network architecture changes in a sense that the output layer becomes a simple

binary classifier to differentiate positive and negative rather than a multi-class

softmax.

Glove [57] is another word embedding algorithm which is a count-based model.

Count-based co-occurence matrix of words is processed and then factorized to get

word representations. The main drawback of these approaches is the phenomena

known as the out-of-vocabulary (OOV) issue. Especially, in large vocabularies,

it is not feasible to store a vector representation for each possible unique word.

Alternative works have been proposed to deal with the OOV issue such as

ELMo [72] and fastText [58]. ELMo utilizes bi-directional language model with
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Figure 3.2: Neural network architecture of Embeddings from Language Models
(ELMo)

the objective of sentence embedding. With 2 layers on top of each other, final

representation of a word has 3 different inputs, which is shown in detail in Figure

3.2. ELMo representations have mainly 3 core features, which are as follows:

1. The representations are contextual meaning that during learning of word

representations, context words are taken into account.

2. Unlike word2vec, the representations are deep, which indicates that in order

to find out a representation of a word, forward pass (inference step) is done

through neural layers instead of a lookup table.

3. In addition to context words, representations carry information from the

characters inside the word as well, which deals with the OOV issue,

word2vec and glove suffer from.

Similarly, fastText [58] deals with the OOV issue by splitting the words into

character n-grams before learning word representations. Instead of word repre-

sentations, sub-words are trained to produce embeddings, which makes it possible

for even unseen words to have representations using character n-grams.
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3.2 Character Embeddings

Word embeddings are useful to capture synthetic and semantic similarity between

words that can be utilized in various NL tasks. Yet, in certain tasks such as

POS-tagging and NER, intra-word (subword) information can be useful as well.

Many works [73, 74] leverage character embeddings in such NLP tasks. Character

embeddings is not only good for certain NLP tasks, but it is also effective to

capture word level representations both semantically and orthographically [29,

75].

In addition to being effective to capture word representations, character em-

beddings are also beneficiary to deal with unseen words, for which word embed-

ding methods such as word2vec and glove fail to extract a representation. In

terms of memory usage, character embeddings methods are much more efficient

than word embedding methods as well, since they need to store a look up repre-

sentation table for each unique character as opposed to storing each unique word,

which can be in millions depending on the corpus. FastText [58] and ELMo [72]

utilize character level information to extract word level representations, which

consequently solves the OOV issue.

3.3 Sentence Level Representations

In [76], Bengio et. al. learned distributed representations of words using neu-

ral language models which are then compiled into sentence representations using

joint probabilities. Following analogies in [22], Le and Mikolov proposed para-

graph2vec (doc2vec), an extension to word2vec, which captures representation of

any textual data with varying length. They evaluated their sentence represen-

tations in sentiment analysis and information retrieval tasks, and reported that

it yields better results compared to other baselines, both traditional machine

learning and neural network approaches [77].
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Figure 3.3: High level view of sequence to sequence neural network architecture
(Encoder - Decoder)

Convolutional neural networks have been utilized to extract sentence repre-

sentations in many works [78, 79]. An alternative work AdaSent, which is a

hierarchical sentence model, was proposed by Zhao et. al. [80].

Recently, encoder-decoder approaches [31, 81, 32] have been exploited for sen-

tence representations as well. There are two main parts in these seq2seq ar-

chitectures; which are namely Encoder and Decoder. Encoder is responsible of

constructing an intermediate level semantic representation, which later will be

utilized by decoder to apply in a particular task. The high level depiction of

seq2seq architecture is shown in Figure 3.3. For instance, given an input as a

sentence, Encoder outputs a semantic representation for the sentence, which can

be used as an input in another NLP task. This process of using pre-trained

representations in another deep learning task is called transfer learning.

In many natural language processing tasks, sequence to sequence (seq2seq)

network architectures utilizing recurrent neural networks in both encoder and

decoder part of the architecture have been at the core of state-of-the-art solu-

tions including language modelling, text classification, and machine translation.

The seq2seq architecture utilizing RNN in both encoder and decoder parts is il-

lustrated in Figure 3.4. In each time step, Encoder RNNs output a value and a

calculated hidden state for the current time step, hi; given an input wi and hid-

den state coming from previous time step, hi−1. The output values are discarded
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Figure 3.4: Architecture of RNN based Encoder - Decoder solution for machine
translation problem

whereas hidden states are carried over other Encoder RNNs at future time steps.

The hidden state value hi for a time step i is calculated as follows,

hi = F (W hhhi−1 +W hxxi) (3.1)

where hh and hx refers to weights to be trained for hidden states and inputs,

respectively.

Through time steps, RNNs in Encoder encapsulate the information from pre-

vious steps and pass the cumulative hidden state to the next step. Last RNN in

Encoder outputs the intermediate representation of the input sequence to be used

by Decoder RNNs, which is called context vector, C in Figure 3.4. The initial

state of Decoder RNNs are set to this C value and each output at the previous

time step, yi−1, is also given as input along with the current hidden state to

produce output yi.

Although, vanilla RNN are popular among possible choices, for either encoder

or decoder, one can come up with many choices including CNN [79, 29], or other

gates such as LSTM [82] and GRU [83]. When family of RNN networks are

chosen for either one of the parts, they are mostly connected in bi-directional

manner [48], having both forward and backward directions. The family of RNN

networks with bi-directional connections have been shown to be the state-of-the-

art architecture to implement in many NLP tasks.

In [31], Kiros et. al. learn sentence representations in a prediction setup for
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Figure 3.5: High level architecture of sentence representation as a prediction
problem (Skip-Thoughts)

the next and previous sentences given the current one, similar to the skip-gram

approach in [22], which they name their work as Skip-Thoughts. They use RNN-

RNN encoder-decoder pairs with GRU [83] units, which is depicted in Figure 3.5

in a high level view. For training, input is comprised of sentence triplets; which

are the current sentence (xi), the previous sentence (xi−1) and the next sentence

(xi+1). Encoder tries to extract an intermediate representation (zi), which will

be used by both decoders to try to generate (xi−1) and (xi+1), as an analogy to

the skip-gram approach in word2vec [22].

Gan et. al. [81] utilize CNN-LSTM encoder-decoder architecture to model

sentence representations with the bag-of-words approach in encoder part. Similar

to [31], RNN-based encoder-decoder architecture is proposed in [32] with efficient

learning strategy inspired by negative sampling in [71].

3.4 Transformers

Although sequence to sequence architectures utilizing uni or bi-directional recur-

rent neural networks have been shown to be effective in many NLP tasks, there

are limitations of having these encoder-decoder architectures (e.g. Figure 3.4),

especially in a task which requires a long sequential input. Major drawbacks of
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the seq2seq architecture are 2-fold which are as follows:

1. When the input sequence gets longer, it is not effectively possible to ac-

cumulate all the information in Encoder and pass it to the very last step

in Decoder, which makes the neural model to lose significant information

during training.

2. Related to the first problem, having longer sequences causes vanishing gra-

dient problem due to much deeper network required to train input of longer

sizes. Although, LSTM and GRU units are proposed to deal with this

problem, they also cannot solve the problem entirely.

In order to address aforementioned problems in seq2seq neural networks, a

mechanism called attention [60, 84] is introduced. The attention mechanism tries

to exploit hidden state values of Encoder RNNs at previous time steps instead of

a single context vector output by the RNN at last time step by providing those

values directly without applying any non-linear function to the Decoder RNNs. In

other words, in each time step Decoder RNN has access to hidden state values of

entire input sequence in Encoder to utilize during inference. Therefore, Decoder

RNN can focus on certain parts of the input, paying more ”attention”, to generate

a better output.

Although, attention [60] is a great step to solve the problems mentioned above

about the seq2seq architecture, there is still an important limitation about se-

quential RNNs. Due to their nature, these sequential stack of RNNs are not suit-

able for parallelization. Therefore, transformer architecture [85] is introduced by

Vaswani et. al. to tackle all the limitations arising from the seq2seq architecture

for NLP tasks. Instead of recurrent neural networks, the transformer solely de-

pends on attention mechanism, as the name of their study [85] is ”Attention is all

you need”. Different from the attention approaches introduced in [60] and [84],

they also propose a novel attention mechanism called self-attention. The general

architecture of transformer network is illustrated in Figure 3.6.

In Figure 3.6, left side represents Encoder block whereas right side represents
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Figure 3.6: Neural network architecture for transformers

Decoder block, similar to the structure in Figure 3.3. The biggest difference

between Encoder and Decoder is that Decoder has another layer of masked multi-

head attention. The Encoder and Decoder blocks are actually utilized in stacks,

which is given as 6 in the paper [85]. The general flow of information between

these stacks is as follows:

• First encoder block gets token embeddings and after processing through

self-attention and feed forward network layers, it passes the information to

the second block of encoder.
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Figure 3.7: Neural network architecture of self-attention mechanism in transform-
ers

• The last encoder block then passes all the information accumulated to each

decoder blocks (i.e., the arrow in between Encoder and Decoder block in

Figure 3.6, going from the last layer in encoder block to the multi-head

attention layer in decoder block).

As mentioned above, Decoder blocks have 2 attention mechanisms; the first one

is self-attention for target sequence whereas the second one utilizes information

from encoder blocks as well. The architecture of self-attention network is given

in Figure 3.7. Attention, in general, [60] is introduced to tackle the problem

arising in tasks requiring long sequential inputs in seq2seq architectures utilizing

RNNs. In these architectures, RNNs are responsible for inferring the relation

between tokens in the sequential input. However, in transformers, there is no

usage of reccurent neural networks. Therefore, self-attention is introduced to

capture relational information between tokens in the input.

There are 3 different vectors calculated from input to each encoder; which are
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Key (K), Value (V) and Query (Q), as shown in Figure 3.7. These vectors are

also trained during learning phase and updated. The calculation of self-attention

for word wi is as follows:

1. For each word wj, we calculate a dot product in between query vector of

wi, that is qi, and key vector of word wj, that is kj (qi • kj). This value

represents the importance of other words when encoding a particular word.

2. These values are then normalized first by dividing by square root of the

dimension size of key vector and then by applying soft-max activation func-

tion to make sure that sum of these importance scores for each word is

1.

3. Each normalized pair scores are then multiplied by value vectors of words,

vj. This whole process of calculations is illustrated in the left side of Figure

3.7. After multiplication, each score is summed to generate self-attention,

a single vector, for word wi.

Self-attention is calculated for each word in parallel, that is why the process

is also referred to as Multi-Head Attention (e.g., Figure 3.6). After calculating

self-attention for each word, these are concatenated and passed into the linear

transformation layer, as shown in the right side of Figure 3.7.

After the introduction of transformer networks [85], there have been break-

trough studies utilizing transformer networks in NLP tasks such as BERT (Bidi-

rectional Encoder Representations from Transformers) [86] and GPT [87, 88]. Al-

though they both commonly employ transformers, there are differences in their

solutions. The biggest difference is that, BERT only uses blocks of encoders while

GPT employs only blocks of decoders.

BERT [86] also exploits a different objective for training language models called

masked language modelling, in which random tokens among the input sequence

are masked to generate by the model. BERT takes the input as a sequence and

outputs a sequence at once.
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GPT [87] is more similar to conventional language models in terms of being

auto-regressive, which means that GPT iteratively generates one token at a time.

For training, outputs are considered to be shifted version of input sequence of

tokens.

After the success of these pre-trained models in many NLP tasks, there have

been many works introduced by researchers on top of the transform structure

especially, such as XLNet [89], Albert [90], Roberta [91], and DistilBERT [92]

3.5 Graph Neural Networks

Graphs are ubiquitous data structures that can be employed in many problems in

computer science. They are not only effective storing data that exhibits structural

information, they are also beneficial to visualize and therefore to sense charac-

teristics of the data [93]. Because of these properties, they also play key role in

machine learning due to fast evolving deep learning studies in the field. One of

the deep learning applications employed on graph data is called node embeddings,

which seeks to learn a distributed representation for each node in a graph to

reflect structural information. Later, these representations are to be utilized in

many graph related problems such as node classification, edge prediction, and

recommender systems.

Among deep learning studies working with graph data structures, also re-

ferred as Graph Neural Networks (GNN), node embeddings refers to the problem

of encoding nodes into low-dimensional vector space where geometric relations

represent interactions in the original graph [94]. Graph neural networks can be

regarded as an application of a general encoder-decoder framework [95] in which

the encoder tries to extract a low-dimensional vector representation in latent

space whereas the decoder tries to decode structural information out of that rep-

resentation. In addition to these encoder-decoder functions, it is also important

to come up with appropriate similarity objective in between nodes to calculate

the loss and consequently train the model effectively.
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Figure 3.8: Sample random walk on graph and its reflection in latent space

One of the approaches for node embeddings is shallow embedding [95], which

basically tries to extract look up tables (mappings) for both encoder and decoder

functions. Among shallow embedding approaches, some of most popular and

state-of-the-art solutions in GNN problem are DeepWalk [61], LINE [96], and

node2vec [97]. DeepWalk and node2vec first sample a set of fix length random

walks over the graph, an example of which is illustrated in Figure 3.8. Basically,

they generate walks starting from each node and try to estimate co-occurrence

of node pairs processing walks. Ideally, the probability of a node Vj is visited

during a walk which starts at node V i is to be roughly proportional to the angel

in between output embedding vectors Zi and Zj. node2vec differs from DeepWalk

study in the way walks are generated. node2vec has two parameters to control

walks to consider both local neighboring nodes and global communities (e.g.,

breadth vs depth first traversal)

Although these shallow node embedding methods are effective in variously

structured graphs, they have certain drawbacks [95] which can be summarized as

follows.

• These techniques basically try to train a lookup table for encoders. Dur-

ing training, no parameters are shared in between nodes, which might be

problematic especially for big graphs in terms of memory requirement.
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Figure 3.9: Information aggregation by convolution in graph through neighboring
nodes

• They fail to exploit node features that may be available at the time for train-

ing. These features may exhibit significant signals to consider embeddings,

which limits efficacy of the approaches.

• Similar to word embedding approaches that output a lookup table (e.g.,

word2vec or glove), shallow node embedding techniques are transductive,

which means they cannot produce embeddings for the nodes not seen during

training.

In order to address the above limitations, various graph neural network archi-

tectures [34, 98, 99, 100] have been proposed following a paradigm called mes-

sage passing. Message passing refers to a technique which is used as information

aggregation from neighboring nodes during training of node embeddings. This

technique tries to exploit the important features nodes might have during training

to come up with better representations for nodes.

Graph convolutional networks (GCNs) [34] are one of the most popular and

successful works that try to leverage this neighborhood aggregation technique.

An illustration of the neighborhood aggregation technique is provided in Figure

3.9. For a particular node A, GCN processes features of neighboring nodes that

are 2 hops away at most.

In the encoding phase, the initial embeddings of a node is set to node features

if available. Then at each iteration, nodes aggregate embeddings of neighboring
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Figure 3.10: Batch of input graphs for the example graph given in Figure 3.9

nodes to update their embeddings. After accumulating information from neigh-

bors, a non-linear function (e.g., Relu) is applied. For aggregation, GCN uses

weights during combination of the information (i.e., filter), therefore the opera-

tion is named as convolve. The difference between GCN and other architectures

emplying neighboring aggregation lies in the way they perform these aggregation

and combination of the accumulated information with the node information from

the previous layer.

This aggregation operation is done for each node in a single batch, named

as full-batch. For each node, sub-graphs composing neighboring nodes including

the ones that are 2 hops away are extracted as input. Full-batch generation of

the graph given in Figure 3.9 is depicted in Figure 3.10. The nodes with the

same color represents a particular node in the graph given in Figure 3.9. Another

advantage of GCN like approaches is that these aggregations in a single iteration

of a full-batch can be done in parallel.

At the end of the last convolution layer, GCN employs a softmax layer for
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supervised learning with classification objective. In order to calculate the loss,

cross-entropy loss is utilized. More information about graph neural networks;

their architectures, their applications to the specific problems in machine learning

and their advantages/disadvantages can be found in survey papers [95, 101].
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Chapter 4

Keyword Mapping in NLIDB

(DBTagger)

Consider1 the below natural language query examples run on the sample IMDB

movie database shown in Figure 4.1 to better understand the challenges in key-

word mapping problem.

Example NL Query 1. ”What is the writer of The Truman Show?”

Challenge 1. The very first challenge in keyword mapping is to differentiate and

categorize tokens in the query either as database relevant or not. For instance,

some of the words in Example 1 (e.g., ”is”, ”the”, ”of”) are just stop words that

are needed not to be considered as potential mapping target. An ad-hoc solution

is to filter certain words using a pre-defined vocabulary, however such a solution

removes ”The” in Example 1 preceding the actual database value that needs to

be mapped, which will cause the wrong translation.

Challenge 2. Another important challenge is to detect multi-word entities

(mostly database values), ”The Truman Show” in Example 1. The most common

approach is to build look-up tables or indexes on n-grams of database values and

1This chapter is based on the work [102]; Arif Usta, Akifhan Karakayali, and Özgür
Ulusoy. 2021. DBTagger: multi-task learning for keyword mapping in NLIDBs using Bi-
directional recurrent neural networks. Proc. VLDB Endow. 14, 5 (January 2021), 813–821.
DOI:https://doi.org/10.14778/3446095.3446103
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Figure 4.1: ER diagram of a subset of IMDB movie database
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calculate semantic and/or lexical similarity over the candidates. Yet, this is a

costly process for on-the-fly calculations regarding possible n-grams of the qiven

NL query.

Example NL Query 2. ”Find all movies written by Matt Demon.”

Example NL Query 3. ”How many movies are there that are directed by Steven

Spielberg and featuring Matt Demon?”

Challenge 3. Consider the queries given in Examples 2 and 3. In the queries,

tokens (”written” and ”featuring”) referring to database tables are syntactic and

semantic variations of the actual table (”written by” and ”cast”, respectively)

that they mapped to in the database (Figure 4.1). To handle such a challenge,

lexical and semantic similarities of tokens over database elements (table and at-

tributes) can be calculated using a third party database such as WordNet [21].

However, in addition to being a costly process to calculate such similarities on-

line, such a solution cannot cover all possible variations of every map target in

the database schema. Also, similarity calculation approach requires a manually

crafted threshold, τ , to determine how much similarity is sufficient to map to a

particular schema element, which makes it undesirable.

Challenge 4. One of the usages of keyword mapping step is to resolve ambigui-

ties before getting into translation step. In the above examples, ”Matt Demon”

refers to a database value residing in multiple tables (e.g., actor, writer). Actual

mapping of the keyword is determined by the mappings of neighbouring words

surrounding, which implies that query-wise labelling considering coherence rather

than independent labelling can be beneficiary.

Challenge 5. In addition to an effective solution, an ideal keyword mapping

approach must be efficient to be deployed on interfaces where users run queries

online. Mapper should output the result in reasonable time.

In what follows, we summarize how our proposed solution, DBTagger, tackles

each challenge mentioned above:

• DBTagger does not apply any pre-processing or filtering to the original

NLQ to remove or detect non-relevant keywords in terms of mapping, which
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covers the corner cases such as keywords (The Truman Show, shown in the

example in the first challenge) having such possible stop words (i.e., the)

as part. Our neural model differentiates the stop word ”the” and part

of keywords ”the” with the help of Conditional Random Fields (CRF),

since instead of independent classification, CRF utilizes query wise labelling,

which helps the model to detect ”the”s around candidate keywords to be

part of the keyword. Not using any filtering and having CRF for query wise

labelling address the Challenge 1 introduced above.

• Our model utilizes POS Tags of the tokens. We use the encoded represen-

tation of the sentence output from POS layer as input into the Tag Layer,

and similarly output of Tag Layer as input into the Schema(Final) Layer.

Such an architecture helps the model to abstract actual database values and

to make it possible working with schema types to detect multi-word enti-

ties with the help of last layer CRF, without needing look-ups of n-grams

of database values. Such a solution also helps us to detect syntactically or

semantically varied words referring to database tables or columns (i.e., ”fea-

turing” word refers to ”cast” table, in Challenge 3). In the training phase,

such a word is represented with its POS Tag VBG (one of Verb tags) and

type Tag TABLEREF to indicate table presence to the model along with

its word representation carrying semantic of the word. This architecture of

DBTagger addresses both Challenge 2 and 3.

• Similarly, resolving ambiguities of keywords is handled by query wise clas-

sification, thanks to CRF. For instance, VLDB may refer to both Journal

or Conference name in a scholar schema. CRF layer determines final tag

(either Journal.Name or Conference.Name) by considering labels of neigh-

bouring words. If there is another word around VLDB with Journal tag,

the model predicts Journal.Name for such a value, resolving ambiguity au-

tomatically (addressing Challenge 4), which currently state-of-the-art solu-

tions for keyword mapping suffer to deal with.

• DBTagger is a deep neural model, which trains using the query logs of

a particular schema only once, as offline setup. When the NLQ is to be

translated in online, DBTagger just applies inference setup on the learned
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Figure 4.2: Recurrent Neural Network (RNN) architecture

model, which outputs the tags in miliseconds (Challenge 5). Most impor-

tantly, this run time is agnostic to database schema and number of tables,

tuples, columns presenting in the particular schema, which shows that DB-

Tagger is scalable for especially bigger tables.

In the following sections, we first give background information about neural

network structure utilized for sequence tagging problems such as POS tagging and

NER in NLP community. Next, we explain network structure of DBTagger by

pointing out modifications we introduce on top of the state-of-the-art sequence

tagging architecture. Lastly, we discuss how we annotate three different class

labels of tokens to employ training.

4.1 Deep Sequence Tagger Architecture

POS tagging and NER refer to sequence tagging problem in NLP for a particular

sentence to identify parts-of-speech such as noun, verb, adjective and to locate

any entity names such as person, organization, respectively. We argue that these

problems are formally similar to keyword mapping problem in NLIDB.

Recurrent Neural Networks (RNN) are at the core of architectures to handle

such problems, since they are a family of networks that perform well on sequential
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(a) LSTM (b) GRU

Figure 4.3: Architectures of Long-Short Time Memory (LSTM) and Gated Re-
current Units (GRU)

data input such as a sentence. In this particular problem, sequence tagging

(keyword mapping), RNNs are employed to output a sequence of labels for the

original sentence (the query), input as a sequence of words.

In RNN networks, which is depicted in 4.2, the basic goal is to carry past infor-

mation (previous words) to future time steps (future words) to determine values

of inner states and consequently the final output, which makes them preferable

architecture for sequential data. Given xt as input at time step t, calculation of

hidden state ht at time step t is as follows:

ht = f(Uxt +Wht−1) (4.1)

In practice, however, RNN networks suffer from vanishing gradient problem,

therefore the limitation was overcome by modifying the gated units of RNNs;

such as LSTM [82] and GRU[83]. Compared to vanilla RNN, LSTM has forget

gates and GRU comprises of reset and update gates additionally. In terms of

complexity, GRU is simpler than LSTM, yet they perform similar empirically in

many tasks.

We experimented with both structures and we chose GRU due to its better

performance in our experiments. In GRU, Update Gates decide what information

to throw away and what new information to add, whereas Reset Gate is utilized
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Figure 4.4: Architecture of deep sequence tagger neural network

to decide how much past information to forget. The calculation of GRU is as

follows:

z = σ(Uz.xt +Wz.ht−1) (4.2)

r = σ(Ur.xt +Wr.ht−1) (4.3)

zt = tanh(Uz.xt +Ws.(ht−1 • r)) (4.4)

zt = σ(Uzxt +Wzht−1) (4.5)

In sequence tagging problem, in addition to past information we also have

future information as well at a given specific time, t. For a particular word wi,

we know the preceding words (past information) and succeeding words (future

information), which can be further exploited in the particular network architec-

ture called, bi-directional RNN introduced in [48]. Bi-directional RNN has two

sets of networks with different parameters called forward and backward. The

concatenation of the two networks is then fed into the last layer, where the out-

put is determined. This process is demonstrated in the Figure 4.4, named deep

sequence tagger network.
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Sequence tagging is a supervised classification problem where the model tries

to predict the most probable label from the output space. For that purpose,

although conventional softmax classification can be used, conditional random

field (CRF) [103] is preferred. Unlike independent classification by softmax, CRF

tries to predict labels sentence-wise by taking labels of the neighboring words into

consideration as well. This feature of CRF is what makes it an attractive choice

especially in a problem like keyword mapping. CRFs for each class of tags are

appended to uni-directional GRU, depicted in lower part of the Figure 4.5. This

finding is also reported in [50], where authors claim that CRF as the output layer

gives 1.79 more accuracy in NER task. The final outlook of the architecture of

deep sequence tagger is depicted in Figure 4.4.

4.2 DBTagger Architecture

Formally, for a given NL query, input X becomes a series of vectors [x1, x2, ...xn]

where xi represents the ith word in the query. Similarly, output vector Y becomes

[y1, y2, ...yn] where yi represents the label (actual tag) of the yth word in the query.

Input must be in numerical format, which implies that a numerical representation

of words is needed. For that purpose, the word embedding approach is state-

of-the-art in various sequence tagging tasks in NLP [46] before feeding into the

network. So, embedding matrix is extracted for the given query, W ∈ Rnxd, where

n is the number of words in the query and d is the dimension of the embedding

vector for each word.

For the pre-calculated embeddings, there are different techniques to choose

such as word2vec [22], Glove [57], fastText [58] or Elmo [72]. We used fastText[58]

due to it being one of the representation techniques considering sub-word (char-

acter n-grams) as well to deal with the out of vocabulary token problem better.

We consider G to be 2-dimensional scores of output by the uni-directional

GRU with size n× k where k represents the total number of tags. Gi,j refers to

score of the jth tag for the ith word. For a sequence Y and given input X, we
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Figure 4.5: Architecture of DBTagger Network

define tag scores as;

s(X, Y ) =
n∑

i=1

Ayi,yi+1
+

n∑
i=1

Gi,yi (4.6)

where A is a transition matrix in which Ai,j represents the score of a transition

from the ith tag to the jth tag. After finding scores, we define probability of the

sequence Y :

p(Y |X) =
es(X,Y )∑

Ȳ ∈Yx
es(X,Ȳ )

(4.7)
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Figure 4.6: Hard parameter sharing in multi-task learning

where Ȳ refers to any possible tag sequence. During training we maximize the

log-probability of the correct tag sequence and for the inference we simply select

the tag sequence with the maximum score.

In our architecture, we utilize Multi-task learning by introducing two other

related tasks; POS and type levels (shown in Figure 4.5). The reason we apply

multi-task learning is to try to exploit the observation that actual database tags of

the tokens in the query are related to POS tags. Besides, multi-task learning helps

to increase model accuracy and efficiency by making more generalized models with

the help of shared representations between tasks [104].

For multi-task learning in the context of deep learning, there are mainly two

different ways to implement multi-task learning; which are hard or soft parameter

sharing [104]. In the architecture of DBTagger, we utilize hard parameter sharing

technique. It generally refers to having hidden layers shared across all tasks

while also having task specific tasks appended to the hidden layers. The general

architecture implementing hard parameter sharing as a multi-tasking approach

in deep learning tasks is depicted in Figure 4.6.

POS and Type tasks are trained with schema task to improve accuracy of

schema (final) tags. For each task, we define the same loss function, described

above. During backpropagation, we simply combine the losses as follows;
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Ltotal =
3∑

i=1

wi × Li subject to

3∑
i=1

wi = 1

(4.8)

where wi represents the weight of ith task and Li represents the loss calculated

for the ith task similarly.

Another technique we integrate into the neural architecture is skip-connection.

Skip connection is used to introduce extra node connections between different lay-

ers by skipping one or more layers in the architecture. With skip connections, the

model provides an alternative for gradient to back propagation, which eventually

helps in convergence. Also, in a recent work [105], it was shown by experimen-

tal evidence that skip connection helps improving the training by eliminating

singularities.

The technique has become compulsory component in many neural architectures

deployed in computer vision community, such as the famous architectures ResNet

[106] and DenseNet [107]. In the architecture of DBTagger, for each task except

the first one (POS), we additionally feed the output of uni-directional GRU layer

of previous task into CRF layer of the next task (i+ 1th task). With these

connections, we further carry the information of previous tasks to later tasks and

eventually to the final task, schema tagging.

In most applications, skip connections use outputs of preceding layers as in-

put for future layers. The term is also referred as residual connections in the

literature, where residual connection means using an output of a layer by adding

or concatenation into any layer directly, without applying non-linear activation

functions to allow gradients to flow without exploding or vanishing. We use

the output of uni-directional GRU of previous task, without applying any non-

linearity by concatenating with the output of uni-directional GRU of future task

as an implementation of a residual connection. In a different study [108] in which

a deep architecture is utilized, the authors implement both multi-tasking and skip
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Table 4.1: An example natural language query with its associated tags corre-
sponding to each word in three different levels

NL query POS tags Type tags Schema tags

who WP O O
acted VBD TABLEREF cast
John NNP VALUE cast.role
Nash NNP VALUE cast.role

in IN COND cond
the DT O O

movie NNN TABLE movie
A DT VALUE movie.title

Beautiful JJ VALUE movie.title
Mind NN VALUE movie.title

connections, similar to our architecture. They named the particular architecture

as cross-skip connections.

4.3 Annotation Scheme

In our problem formulation, every token (words in the natural language query)

associates three different tags; namely part-of-speech (POS) tag, type tag and

schema tag. In the following subsections, we explain how we extract or annotate

each of them in detail.

4.3.1 POS Tags

To obtain the POS tags of our natural language queries we used the toolkit of

Stanford Natural Language Processing Group named Stanford CoreNLP[109].

We use them as they are output from the toolkit, without doing any further

processing since the reported accuracy for POS Tagger (97%) is sufficient enough.
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4.3.2 Type Tags

In each natural language query, there are keywords (words or consecutive words)

which can be mapped to database schema elements such as table, attribute or

value. We divide this mapping into two levels; type tagging and schema tagging.

Type tags represent the type of the mapped schema element to be used in the

SQL query. In total we have seven different type tags;

• TABLE: NLQs contain nouns which may inhibit direct references to the tables

in the schema, and we tag such nouns with TABLE tag. In the example NL

query given in Table 4.1, noun movie has a type tag as TABLE, which also

supports the intuition that schema labels and pos tags are related.

• TABLEREF: Although the primary sources for table references are nouns,

some verbs contain references to the tables most of which are relation tables.

TABLEREF tag is used to identify such verbs. Revisiting the example given

Table 4.1, the verb acted refers to the table cast, and therefore it is tagged with

TABLEREF to differentiate better the roles of POS tags in the query.

• ATTR: In SQL queries, attributes are mostly used in SELECT, WHERE and

GROUP BY clauses. Natural language queries may contain nouns that can be

mapped to those attributes. We use ATTR tag for tagging such nouns in the

natural language queries.

• ATTRREF: Like TABLEREF tag, ATTRREF tag is used to tag the verbs in

the natural language query that can be mapped to the attributes in the SQL

query.

• VALUE: In NLQs, there are many entity like keywords that need to be mapped

to their corresponding database values. These words are mostly tagged as

Proper noun-NNP such as the keyword John Nash in the example query. In

addition to these tags, it is also likely for a word to have a noun-NN POS tag

with a Value tag corresponding to schema level. In order to handle these cases

having different POS tags, we have Value type tags (e.g., Mind keyword in

the example query is part of a keyword that needs to be mapped as value to
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movie.title). Keywords with Value tags can later be used in the translation to

determine ”where” clauses in SQL.

• COND: After determining which keywords in the query are to be mapped

as values, it is also important to identify the words that imply which type of

conditions to be met for the SQL query. For that purpose, we have the COND

type tag.

• O (OTHER): This type of tag represents words in the query that are not

needed to be mapped to any schema instrument related to the translation

step. Most stop words in the query (e.g., the) fall into this category.

4.3.3 Schema Tag

Schema tags of keywords represent the database mapping that the keyword is

referring to; name of a table, or attribute. Tagging a keyword with a type tag

is important yet incomplete. To find the exact mapping the keyword refers to,

we defined a second level tagging where the output is the name of the tables or

attributes. For each entity table (e.g. movie table in Figure 4.1) and for each non-

PK or non-FK attribute (attributes which have semantics) we define a schema

tag (e.g movie, people, movie.title, etc., referring to Figure 4.1). We complete

possible schema tags by carrying OTHER and COND from type tags. We use

the same schema tag for attributes and values (e.g movie.title), but differentiate

them at the inference step by combining tags from both type tags and schema

tags. If a word is mapped into Value type tag as a result of the model, its schema

tag refers to the attribute in which the value resides.

In order to annotate queries, we annotate each word in the query for three

different levels mentioned above. While POS tags are extracted automatically,

we manually annotate the other two levels. Annotations were done by three

graduate and three undergraduate computer science students who are familiar

with database subject. Although annotation time varies depending on the person,

on the average it took a week to annotate tokens by a single person for two levels
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(type and schema) for a query log with 150 NL questions, which we believe is

practical to apply in many domains.

48



Chapter 5

SQL Query Recommendation in

Databases (Conquer)

In this chapter we present Conquer, CONtextual QUEry Recommendation system

which utilizes distributed representations learned through Graph Convoloution

Networks. We first give detailed information about how we learn local embed-

dings to extract distributed representations for database tuples. Following that

in the next section, we mention how we utilize these representations to generate

a recommendation.

5.1 Embedding Relational Database into Latent

Space Using Graph Neural Networks

A relational database is composed of two main components: namely Entities

and Relations between these entities [110]. Therefore, an ideal representation

of tuples should reflect these components. The tuples residing in the same table

(Entity) having the same values should have similar vector representations. Also,

the tuples residing in different tables which are connected through foreign keys

(Relation) should have similar vector representations.
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Figure 5.1: A sample ER Diagram for Scholar Schema

An example schema of a relational database is shown in Figure 5.1 along with

synthetic instances of a small size for the schema in Figure 5.2. In the given

schema; Author, Paper and Venue are examples for entities whereas Writes is

a relation. After them, come the attributes of these tables such as author id,

venue id, name, paper title, some of which are special in terms of primary and

foreign key constraints (e.g., author id and venue id in Paper table, respectively).

These two sets of instruments are what makes a relational database structured

to efficiently store and retrieve actual values such as AuthorA, PaperC, database

shown in Figure 5.2. Considering the values given in Figure 5.2, the tuples having

p1 and p2 as the value for primary key should be more similar to each other than

the tuple with p3 as primary key due to having the same value as keywords.

Similarly, in author table the tuples with values a1 and a2 should be close to

each other in representation space.

The other component, the relations between the entities, has to be considered

as well when generating distributed representations. Connections through foreign

keys form relation aspect of the relational database. These connections need

to be reflected into embeddings. There are two relations depicted in the ER

diagram in Figure 5.1, which are between Author-Paper and Venue-Paper, which
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Table 5.1: Author Table
author id author name institution
a1 AuthorA UniA
a2 AuthorB UniA
a3 AuthorC UniB

Table 5.2: Paper Table
paper id paper title keywords venue id
p1 PaperA database v1
p2 PaperB database v2
p3 PaperC ML v2

Table 5.3: Venue Table
venue id name year place
v1 VLDB 2020 Tokyo
v2 Sigmod 2019 Amsterdam

Table 5.4: Writes Table
author id paper id
a1 p1
a1 p2
a2 p2
a3 p3

Figure 5.2: Example instances for Scholar Schema

have many-to-many and 1-to-many cardinalities, respectively. Depending on the

cardinality, there are two approaches to represent a relation when converting

them into psychical tables . One is to have a separate table (e.g., Writes) which

includes primary keys of corresponding tables as foreign keys (e.g., Author and

Paper) whereas the other one is to include only the primary key of one table inside

the other as a foreign key (e.g., venue id inside Paper). Note that, separate table

approach is a must for M −M relations, while being optional for 1−M ones.

In an ideal embedding, the tuples from different tables connected through

foreign keys should be close to each other in latent space. For instance, the

pair of tuples a2,p2 and p1,v1 should be close to each other in terms of their

representations. In addition to that, considering relations between the pair of

tuples, a1,a2 and p2,p3 are also more similar to each other than the other tuples

in their tables due to interacting with the same particular tuple, p2 in Writes

and v2 in Paper tables, respectively.
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As mentioned earlier, in this thesis, we utilize graph neural networks to train

local database embeddings. In order to do that, we first need to extract a graph

data out of the database. Regarding the properties mentioned above, we propose

two different graph structures on which we employ deep learning to generate rep-

resentations. In the following subsections, we provide the algorithms we used to

create these two different graphs and mention about deep learning methodologies

we utilize to train embeddings on these graphs.

5.1.1 Classifying Tables as Entity or Relation in

Databases

In our solution, we first need to automatically differentiate (i.e., classify) entity

and relation tables from each other. Because, we will create nodes for each tuple

in an entity table and create edge in between these nodes (i.e., tuples) for a

relation tuple or a foreign key connection in the output graph. The pseudo-code

for this operation is given in Algorithm 1.

We assume that each table in a relational database is an entity table unless it

has the following properties:

• The table has attributes referencing other tables as foreign key.

• The set of attributes as primary key has overlap with the set of attributes

referencing other tables as foreign key.

5.1.2 Tuple-Tuple-Value (TTV) Graph

As the first graph structure, we propose Tuple-Tuple-Value (TTV) graph in which

we store nodes in two different types. First, we store each unique tuple that has

a connection with another tuple in a different table (i.e., through primary-foreign

key connection) as Tuple nodes. This idea of utilizing connections between tuples
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SetTableType (D)
Input : relational database D
Output: list of tables T

T ← getAllTables(D);
foreach table ti ∈ T do

pks← getPKAttributes(ti);
fks← getFKAttributes(ti);
tablesize← length(ti);
if fks is Empty then

ti.type← ”entity”;
break;

if fks = pks then
ti.type← ”relation” ; // in cases for M M relation tables

break;

foreach attribute ai ∈ pks do
if fks contain ai then

ti.type← ”relation” ; // in cases for 1 M relation

tables

break;

end
ti.type← ”entity”;

end
return T ;

Algorithm 1: Differentiate Entity and Relation Tables in a Database

helps us with exploiting the structural information the graph exhibits. However,

the textual information residing in tuples is also important to consider when

generating representations. Therefore, we also create another node type, Value

nodes, for each unique value residing in cells inside tuples. For multi-word values,

we simply split the value into multiple tokens each of which becomes a value node

in the graph.

The edges between tuple nodes are straightforward. We create an edge for

each pair of tuples that has a primary-foreign key relation. For each value node

we create, we also draw an edge between that value node and the tuple node in

which the value resides in. The example TTV graph extracted from the sample

set of instances provided in Figure 5.2 is illustrated in Figure 5.3. Orange nodes

represent tuple while blue ones represent value, which is a unique token in a
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Figure 5.3: Example TTV graph extracted from sample database instances in
Figure 5.2

database value. The labels on the edges between blue and orange nodes are to

show the attribute that value comes from.

5.1.3 Tuple-Tuple (TT) Graph

Similar to the previous one, we propose another graph structure called Tuple-

Tuple (TT) in which we only store edges for connections between tuples through

primary-foreign key relations. As opposed to TTV graph, we do not explicitly

utilize textual information (i.e., value nodes) in this graph, yet since textual

information is also important we try to store textual signals as node features this

time. Instead of a 2-dimensional node features in TTV graph, we first learn node

features offline by another state-of-the-art deep learning methodology by only

utilizing values residing in the tuples.

After learning textual features for tuples, we feed them into graph neural model
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Figure 5.4: Sample TT graph extracted from sample database instances in Figure
5.2

as node features to be used during information propagation among neighbour

nodes. In other words, the textual information of the tuples will be stored as

vectors to help with training during learning in graph convolutional networks.

The example TT graph extracted from the sample set of instances provided in

Figure 5.2 is illustrated in Figure 5.4. The graph in a sense becomes a k-partite

graph, where k refers to the number of entities (i.e., non-relation tables) in the

database. The state-of-the-art deep learning techniques we employ for extracting

textual representations of tuples to be utilized as node features are discussed later

in sub-section 5.1.5.

5.1.4 Node Embeddings with Graph Convolutional Net-

works

After extracting the graph, we utilize graph convolutional networks for node

embeddings as mentioned before. Instead of an unsupervised learning such as

[35], we choose to train embeddings in supervised fashion. In order to train a

machine learning model in a supervised fashion, we need actual target labels to

use during training. For that purpose, we use name of the tables for tuple nodes as

target labels as an application of self supervision. For words, we do not associate
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any target, since a unique token can appear in many tuples from different tables.

Therefore, our training setup can be considered as semi-supervised learning, since

we only use tuple nodes that have actual target labels during training, calculating

the loss and back-propagating it through the layers to update weights.

In graph convolutional networks, there are also node features that can be uti-

lized during the convolve operation among neighbourhood nodes. Since we have 2

different type of nodes, we choose to represent node type as node features. We vec-

torize features in a 2-dimensional vector following the 1-hot encoding approach.

For tuple and value nodes we have [10] and [01] feature vectors, respectively.

Formally, the problem of learning representations of nodes in a graph G =

(V,E) where V and E represent vertices (i.e., nodes) and edges (i.e., connections)

is to learn a function of features on the graph [34]. In a graph neural networks,

the input has the following:

• A feature vector xi for each node i; stored in a matrix X of dimensions

NxD where N represents the number of nodes in the graph and D refers

to the dimension of the feature vector.

• An adjency matrix or list (A) that stores the connections between nodes in

the graph.

After training, the GNN model outputs a matrix Z of dimensions NxF where

F represents the dimension of the node representation. Since the model can have

multiple layers, every network layer can be written as follows

H l+1 = f(H l, A) (5.1)

with H0 = X and HL = Z, L representing the number of network layers. The

graph neural networks basically differ from each other by employing specific f

functions to propagate information through layers. We utilize a simple propaga-

tion rule provided in the original GCN study [34] which is defined as follows
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f(H l, A) = ReLU(AH lW l) (5.2)

where W l represents the weight matrix for the layer l and ReLU is a non-linear

activation function performed on top of the matrix operations.

In our model, we employ 2 layer convolution, which means that during prop-

agation we process all the neighboring nodes that are up to 2 hops away. On

top of the last layer, we append a Softmax layer to normalize probabilities for

target classes for classification. For training, we use cross-entropy loss which is

evaluated as follows

L = −
∑
l∈YL

K∑
k=1

Yl,klnZl,k (5.3)

where YL represents the set of node indices used in training along with their

target labels, and Zl,k refers to the output representation for a particular node li

on which soft-max activation is applied for class (i.e., entity) k.

5.1.5 Hybrid Approach: Combining Graph Neural Net-

works with External Deep Learning Techniques

In this thesis, we propose two different graph structures, namely TTV and TT.

Although TTV graph has textual information integrated into the graph through

value nodes and their respective edges, TT graph only has edges between tuples

storing neither node nor edge that corresponds to text in the database. In order

to compensate it, we propose a hybrid approach which learns textual features of

graph nodes externally through another deep learning methodology.

In order to train textual features of the graph nodes, we treat each tuple

as a sentence and handle the problem of learning distributed representation as

sentence embedding (see Chapter 3). Each tuple is converted to a sentence in
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Entity Table Entity Tuple Label Sentence

Author
a1 AuthorA UniA
a2 AuthorB UniA
a3 AuthorC UniB

Paper
p1 PaperA database
p2 PaperB database
p3 PaperC ML

Venue
v1 VLDB 2020 Tokyo
v2 Sigmod 2019 Amsterdam

Table 5.5: Sample tuple sentences used for textual deep learning for node features

which values of corresponding attributes are appended to each other to form the

sentence. While processing the values of the tuples, we discard NULL values and

the values for foreign key attributes which are already processed in their respective

referenced attribute used as primary key. Example sentences extracted from the

sample database provided in Figure 5.2 are provided in Table 5.5.

In what follows, we list the state-of-the-art deep learning techniques we employ

to learn tuple representations externally and summarize their characteristics:

• word2vec: As the first technique, we apply the well known word2vec [22]

with SkipGram approach. After extracting the sentences we train the neural

model from scratch solely on the set of database tuples. After training is

done, for each sentence (i.e., tuple), we look at embeddings for each word

(i.e., token of a database value) and calculate average of the embeddings of

all words inside the sentence to generate a single vector.

• doc2vec: We apply doc2vec [30] as another technique to train sentence

representations directly from the sentences generated. doc2vec can be con-

sidered as an extension to the word2vec in a sense that, during training

another input token is fed into embeddding lookup to accompany token

embeddings, which eventually will represent the original sentence.

• fastText: Both of the above two studies are similar to each other in the

way that they train to learn mapping functions for each token or sentence

appearing in the training corpus. Therefore, they fail to generate embed-

dings for not-seen (i.e., OOV) tokens. In order to address that, fastText [58]
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tries to exploit sub-word (e.g., character n-grams) information and therefore

can generate an embedding for a variable length text, which is applicable

to generate sentence embeddings. Similar to the previous studies, we train

the model from scratch on database sentences only.

• BERT: Transformers [85] are state-of-the art architectures employed in

many NLP tasks to encode textual input. One of the most popular studies

utilizing transformer architecture is BERT [86]. Using a language modelling

objective, BERT encodes a given textual input (e.g., word or sentence),

which can be later used in another deep learning as an application of transfer

learning. In this thesis, we exercise pre-trained BERT models trained on

large corpus to generate tuple embeddings. Unlike the previous methods,

we do not train the neural model from scratch using our database tuple

for BERT. We just simply generate embeddings by applying a forward pass

(i.e., inference step) on encoder of the pre-trained model.

• USE: Similar to the previous methodology, we also adapt another trans-

former structure which can generate sentence embeddings, named Universal

Sentence Encoder (USE) [111]. For training, USE employs multi-task learn-

ing on 3 different tasks including both unsupervised next and previous sen-

tence prediction similar to SkipThougt [31], an input response task which

tries to answer an input query with an answer among possible candidates,

and supervised natural language inference problem which is a classification

problem of a hypothesis between pair or premises.

5.2 SQL Query Recommendation Based on Tu-

ple Representations

In order to generate query recommendations, one needs to define a similarity

score between SQL queries. This leads to the question of finding a representation

for a single query to perform similarity between queries. As noted in [70], there

are mainly 3 different approaches that construct these representations, which are
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as follows:

1. The first one is feature-based approach, which focuses on the query structure

such as the tables in from clause or predicates in where clause to create

representation for a query.

2. Another approach is called witness-based, which basically tries to represent

a query in terms of the witnesses (i.e., database tuples) returned in result

set of the query.

3. The other approach is access area-based which tries to estimate user’s in-

terest in the data space to represent a query.

In this thesis, we follow a witness-based approach focusing on the tuples re-

turned as a result of a query issue. Assume that the result set of tuples T is

returned for a query q. T can have as many as n tuples as a result. Representa-

tion of a query Zq is a d dimensional vector in latent space. In order to calculate

Zq, we use representations of tuples t ∈ T . The calculation of Zq is as follows;

Zq =
n∑

i=1

Zti (5.4)

where Zti represents embeddings for tuple ti in result set T for query q. Each

tuple embeddings are extracted offline after training the neural model, as ex-

plained in the previous sections. Since we have embeddings for each tuple and

therefore representation for each query, we store each query and its representa-

tion as a pair, < q, Zq > to serve most similar queries to the current query as a

recommendation.

In Figure 5.5, the flowchart of the recommendation algorithm, Conquer, is

illustrated. In order to serve recommendations, we store two different look-up

tables; the first one is query representations and the second one is tuple repre-

sentations. Assume that there are k number of queries issued by the users in

the past. For each query, we store its representation, a d dimensional vector,
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Figure 5.5: Flowchart diagram of the recommendation algorithm, Conquer

therefore the first look-up table is of dimensions k x d. For the tuple embeddings,

we store a look-up table with dimensions r x d, where r represents the number of

tuples residing in entity tables, and again d represents the number of dimensions

in the representation vector. We do not store representations for tuples that are

in relation tables whose only purpose is to store the connection between actual

tuples in entity tables. You can refer to Section 5.1.1 for further details of how

we differentiate entity and relation tables.

After the user issues the query q, first the returned tuples T are retrieved

from the database. Assume that T has n number of tuples. In Figure 5.5,

the highlighted rows in the look-up table with green color represent the tuples

returned. For each returned tuple ti, we find its corresponding embedding from

the look-up table (depicted at the right side of Figure 5.5). We then calculate

the representation of query Zq by averaging all the embeddings for tuples ti ∈ T
(see Equation 5.4).

After finding Zq, we perform a cosine similarity between vectors Zq and Zqi ,
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corresponding to the user query q and a past query qi from query logs respectively,

using the look-up table for query representations. Cosine similarity is a measure of

similarity function heavily utilized in information retrieval for finding similarities

between pairs of textual inputs [112]. Using the cosine similarity, the similarity

value between queries q and qi is calculated as follows;

Sim(q, qi) =
Zq • Zqi

‖Zq‖‖Zqi‖
(5.5)

where ‖Zq‖ is the length of the vector Zq = (z1, z2, ..., zd). The cosine similarity

basically measures the angle between the vectors, and if the two vectors are close

to each other in latent space, the angle gets closer to 0, hence the similarity value

becomes closer to 1. After finding the similarity value between queries q and qi

where i = 1, 2, ...k, we lastly rank the queries according to their similarity values

in descending order and serve the user as recommendations.
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Chapter 6

Experimental Evaluation

6.1 Keyword Mapping in NLIDB

6.1.1 Datasets

In our experiments we used yelp, imdb [12], and mas [10] datasets which are heav-

ily used in many NLIDB related works by the database community [10, 11, 12, 24].

In addition to these datasets, we also used different schemas from the Spider

dataset [25]; which are academic, college, hr, imdb, and yelp. Spider is comprised

of approximately 200 schemas from different domains, however, there are only

handful (around 10) of schemas with more than 100 NL questions. Number of

questions is important for our deep learning based solution, since it requires cer-

tain number of training data to effectively train. Each schema we picked from the

Spider dataset is among the schemas with most number of NL questions, having

over 100 queries to work with.

Another limitation of the Spider dataset is that, most of the schemas hav-

ing enough number of query logs do not have representative number of rows

present. For instance, there are no database rows available for academic, yelp,
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Table 6.1: Statistics of the public relational databases used for keyword mapping
problem in NLIDBs

Database

Properties (#) imdb mas yelp

entity tables 6 7 2
relation tables 11 5 5
total tables 17 12 7
total attributes 55 28 38
nonPK-FK attributes 14 7 16
total tags 31 19 20
queries 131 599 128
tokens in queries 1250 4483 1234

Table 6.2: Statistics of the schemas used from the Spider dataset for keyword
mapping problem in NLIDBs

Spider

Properties (#) academic college hr imdb yelp

entity tables 7 5 6 6 2
relation tables 8 2 1 11 5
total tables 15 7 7 17 7
total attributes 42 43 35 55 38
nonPK-FK attributes 18 29 21 14 16
total tags 26 36 30 31 20
queries 181 164 124 109 110
tokens in queries 2127 2130 2099 1012 1035

imdb schemas (in Spider), which makes them not applicable for experiments es-

pecially for unsupervised approaches that make use of database content such as

NALIR or word2vec. In addition to that, college and hr schemas have only around

100 rows, which are not enough to make fair comparison or analysis. Therefore,

due to the lack of sufficient database values (many schemas do not have database

rows or have few number of rows), we used the Spider dataset only on supervised

setup.

The statistics about each public dataset for which annotation is done is shown

in Table 6.1. Similarly, statistics for schemas for which annotation is done in the

Spider dataset are provided in Table 6.2. In Table 6.1 and 6.2 (referring to Figure
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Table 6.3: Accuracy results of neural models with different task weights for fine
tuning

Database

Model task weights yelp imdb scholar
pos type schema

Single Task 0.0 0.0 1.0 0.9577 0.9061 0.9424

2-Channel Task

0.0 0.1 0.9 0.9500 0.9183 0.9557
0.0 0.2 0.8 0.9423 0.9265 0.9457
0.0 0.3 0.7 0.9500 0.9346 0.9502

0.1 0.0 0.9 0.9576 0.8979 0.9502
0.2 0.0 0.8 0.9576 0.8979 0.9413
0.3 0.0 0.7 0.9538 0.9102 0.9457

3-Channel Task

0.33 0.33 0.33 0.9538 0.9020 0.9491

0.1 0.3 0.6 0.9615 0.9183 0.9413
0.05 0.2 0.75 0.9500 0.9388 0.9435
0.05 0.15 0.8 0.9576 0.9142 0.9558

4.1), entity tables refer to main tables (i.e., Movie), relation tables refer to hub

tables that store connections between entity tables (i.e., cast, written by), nonPK-

FK attributes refer to attributes in any table that is neither PK nor FK (i.e.,

gender in People table), and finally total tags refer to unique number of taggings

extracted from that particular schema depending on the above mentioned values.

Final schema tags of a particular database are determined by composing table

names and name of the nonPK-FK attributes in addition to COND and OTHER.

In the last two rows of the both Tables 6.1 and 6.2, we show annotated number of

NL questions, referred to as queries, and the number of total words inside these

queries, referred to as tokens.

6.1.2 Experimental Setup

We first split the datasets into train-validation sets with 5− 1 ratio, respectively

to be used for tuning task weights.

After determining the optimum values for training the model, the last part of
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Table 6.4: F1 results of neural models with different task weights for fine tuning

Database

Model task weights yelp imdb scholar
pos type schema

Single Task 0.0 0.0 1.0 0.9132 0.8169 0.9120

2-Channel Task

0.0 0.1 0.9 0.9209 0.8504 0.9222
0.0 0.2 0.8 0.9132 0.8476 0.9148
0.0 0.3 0.7 0.9174 0.8720 0.9234

0.1 0.0 0.9 0.9082 0.7942 0.9165
0.2 0.0 0.8 0.9223 0.8207 0.8997
0.3 0.0 0.7 0.9041 0.8212 0.9105

3-Channel Task

0.33 0.33 0.33 0.9090 0.8246 0.9200

0.1 0.3 0.6 0.9358 0.8279 0.9126
0.05 0.2 0.75 0.9181 0.8815 0.9095
0.05 0.15 0.8 0.9132 0.8356 0.9288

parameter tuning is performed to identify optimal weights for each task. In order

to understand the impact of each task for training, we analyzed performance of

the models having different weight values for all datasets.

We train our deep neural models using the backpropagation algorithm with

two different optimizers, namely Adadelta [113] and Nadam [114]. We start the

training with Adadelta and continue it with Nadam. We found that using two

different optimizers resulted better in our problem. For both shared and unshared

bi-directional GRUs, we use 100 units and apply dropout [115] with the value of

0.5 including recurrent inner states as well. For training, the batch-size is set to

32 for all datasets.

Parameter values chosen are similar to that reported in the study [50] (the

state-of-the-art NER solution utilizing deep neural networks), such as the dropout

and batch size values. We measure the performance of each neural model by

applying cross validation with 6-folds. All the results reported are the average

test scores of 6-folds. During inference, we discard POS and Type task results

and only use Schema (final) tasks to measure scores.
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Table 6.5: Accuracy scores of unsupervised baselines for relation and non-relation
matching

Database

Baseline imdb mas yelp

tf-idf 0.594-0.051 0.734-0.084 0.659-0.557
NALIR 0.574-0.103 0.742-0.476 0.661-0.188
word2vec 0.625-0.093 0.275-0.379 0.677-0.269
TaBERT NA-0.251 NA-0.094 NA-0.114

DBTagger 0.908-0.861 0.964-0.950 0.947-0.923

Tables 6.3 and 6.4 present the results in accuracy and f1 scores, respectively.

We included the F1 metric as well, because it is highly preferred to be used

in similar multi-class classification problems, such as POS tagging and NER in

NLP. The first entry in the table represents the single task where only schema

tag (actual label) is used in training. 2-Channel Task represents models learned

only on two tags, either pos or type tag in addition to schema tag. 3-Channel

Task finally presents models trained utilizing all three tags as proposed.

We can see that addition of the other tasks (pos and type) improves keyword

mapping performance of the models. Regarding 2-Channel Task models on imdb

dataset, we observe an improvement especially when we utilize type tag (i.e., the

third entry). On the contrary, we see that pos tags are more useful than type tags

to improve performance on the yelp dataset. We also see consistent improvement

on each dataset when we add another task as the second on top of the single task

model during training, which supports the idea of utilizing multi-task learning in

this problem.

For models trained on multiple tasks, we used 0.1− 0.2− 0.7 as tuned weights

for POS, Type and Schema tasks, respectively. We chose the aforementioned task

weights, because they perform well for all schemas in both metrics, accuracy and

F1.
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6.1.3 Comparison with Unsupervised Baselines

We implemented the unsupervised approaches utilized in the state-of-the art

NLIDB works for the keyword mapping task as baselines to compare with DB-

Tagger. We implemented 3 different unsupervised approaches which are utilized

in state-of-the-art NLIDBs in the database community. We implemented sql

querying over database column approaches (regex and full text search), which

is preferred in NALIR [10]. We implemented a well known tf-idf baseline for

exact matching by constructing an inverted index over unique database values

present, as in the work ATHENA [11]. We also implemented a semantic simi-

larity matching approach in which pre-defined word embeddings are used. This

approach is exercised by Sqlizer [12]. In addition to these unsupervised conven-

tional solutions, we also implemented TaBERT [43], a neural network solution

to compare with our proposed solution. TaBERT is also one of the more recent

works published by the NLP community working on the NLIDB problem.

- tf-idf: Similar to ATHENA [11], for each unique value present in the

database, we first create an exact matching index, and then perform tf-

idf for tokens in the NLQ. In case of matches to multiple columns, the

column with the biggest tf value is chosen as matching. In order to handle

multi word keywords, we use n-grams of tokens up to n = 3. For relation

matching, we used lexical similarity based on the Edit Distance algorithm.

- NALIR: NALIR [10] uses WordNet, a lexical database in which synonyms

are stored for relation matching. They calculate similarity for tokens present

in the NLQ over WordNet, and determine a matching if similarity is bigger

than a manually defined threshold. For non-relation matching, for each

token present in the NLQ, it utilizes regex or full text search queries over

each database column whose type is text. In case of matches to multi-

ple columns, the column which returns more rows as a result is chosen as

matching. For fast retrieval, we limit the number of rows returned from the

query to 2000, as in the implementation of NALIR.
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- word2vec: For each unique value present in the database, cosine similar-

ity over tokens in the NLQ is applied to find mappings using pre-defined

wor2vec embeddings. The matching with the highest similarity over a cer-

tain threshold is chosen.

- TaBERT: TaBert [43] is a transformer based encoder which generates dy-

namic word representations (unlike word2vec) using database content. The

approach also generates column encoding for a given table, which makes it

an applicable keyword mapper for non-relation matching by performing co-

sine similarity over both encodings. For a particular token, matching with

maximum similarity over a certain threshold is chosen.

We categorize the keyword mapping task as relation matching and non-relation

matching. The former mapping refers to matching for table or column names and

the latter refers to matching for database values. For fair comparison, we do not

apply any pre or post processing over the NL queries or use external source of

knowledge, such as a keyword parser or metadata extractor. Results are shown

in Table 6.5. Each pair of scores represents token wise accuracy for relation and

non-relation matching. For TaBERT, we only report for non-relation matching,

because the approach is not applicable for relation matching.

DBTagger outperforms unsupervised baselines in each dataset significantly, by

up to 31% and 65% compared to best counterpart for relation and non-relation

matching, respectively. For relation matching, results of all approaches are sim-

ilar to each other except the word2vec method for the mas dataset. The main

reason for such poor performance is that the mas dataset has column names such

as venueName for which word2vec cannot produce word representations, which

radically reduces chances of semantic matching.

tf-idf gives promising results on the yelp dataset, whereas it fails on the imdb

and mas datasets for non-relation matching. This behavior is due to presence of

ambiguous values (the same database value in multiple columns) and not being

able to find a match for values having more than three words. For the imdb

dataset, none of the baselines performs well for non-relation matching. The imdb
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dataset has entity like values that are comprised of multiple words such as movie

names, which makes it impossible for semantic matching approaches to generate

meaningful representations to perform similarity. NALIR’s approach of querying

over database has difficulties for the imdb and yelp datasets since the approach

does not solve ambiguities without user interaction.

TaBERT is a recent work that can be applied in many downstream tasks

in NLIDB problem, since it generates dynamic encodings for natural language

utterances considering the database content as well, which then can be used as

input to the various neural models. It is a transformer (BERT) based neural

architecture which is trained in an unsupervised fashion. For a given natural

language query, it makes a one pass over a particular table to find out most

relevant rows (content snapshot) to the given query by using exact matches over

n-grams. After finding the most relevant rows, these rows are appended into

input to feed the transformer for training. Finally, the model outputs encodings

for both the NL utterances and the database columns (called context encoding).

In keyword mapping problem, we used these encodings to perform similarity to

find a candidate matching over database columns. TaBERT performs poorly for

all datasets, which we believe is due to couple of reasons as follows:

• TaBERT has its own tokenizer which is based on BERT base. The tok-

enizer tries to deal with tokens which are out of vocabulary by breaking

the token into sub-words that have representations. This approach might

be useful for a language model, but it is problematic in keyword mapping

setup, since the values present in the databases are domain specific, which

are likely to not occur in the general corpus data used to train such trans-

formers. Also, databases such as imdb, have many entity like values such

as ”Eternal Sunshine of the Spotless Mind” which is comprised of several

words. Such keywords appearing in the natural language query are there-

fore divided by the tokenizer into pieces, which eventually leads to unrelated

word representations and therefore non-predictive similarity calculation.

• The other limitation is using cosine similarity. Such an approach requires

a manually defined threshold which is not easy to come up with. When
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we decrease the similarity threshold, we increase our chances to find a true

positive, however the model becomes prone to generate false positives as

well for keywords that are not related to database elements such as stop

words, sql specific words (i.e., return, find, minimum, etc.).

We argue that unsupervised baselines may perform reasonable for relation-

matching, whereas they fail to answer the challenges raised by non-relation match-

ing. This is due to ambiguity present in the imdb database such as having values

that occur in multiple tables (i.e., ”Matt Damon”) and domain specific values that

are not covered in word embeddings (such as word2vec and TaBERT) trained on

general corpus data.

6.1.4 Translation Accuracy

The ultimate goal of DBTagger is not to produce tags for POS or Type tasks.

We use these tasks to utilize multi task learning to further enhance accuracy of

schema (final) tags. During inference, we discard outputs for POS and Type tasks

and are only interested in the schema tags. One of the works studied by database

community for keyword mapping problem in NLIDB is TEMPLAR [24]. We be-

lieve comparison with Templar in terms of translation improvement is not fair,

since TEMPLAR is not a standalone keyword mapper but rather an enhancer

over an existing NLIDB, which is why we believe they reported the improve-

ment over mapping and translation on their experiments. The biggest difference

between TEMPLAR and DBTagger is that, TEMPLAR requires multiple prelim-

inaries to perform enhancement using query logs unlike our solution. DBTagger

additionally outputs schema tags for relation matching such as table and column

names, which are not covered in TEMPLAR.

On the other hand, we carried out an experiment to further prove efficacy

of predicted tags output by DBTagger. We implemented a simple translation

pipeline, similar to methodology in TEMPLAR [24]. The pipeline generates join

paths for SQL translation using shortest length path over schema graph to cover
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Table 6.6: Comparison of Pipeline utilizing tags output by DBTagger with state-
of-the-art translation solutions

Database

NLIDB System imdb mas yelp

NALIR 0.383 0.330 0.472
TEMPLAR (on NALIR) 0.500 0.402 0.528

DBTagger Pipeline 0.564 0.551 0.461

all the mappings output by DBTagger. We count inaccurate, if the algorithm

cannot output a joining path. We compare our pipeline with a state-of-the-art

system, NALIR[10], and TEMPLAR[24], which is an enhancer over an existing

NLIDB system.

We excluded the Pipeline baseline in TEMPLAR [24] study, since authors

hand-parsed the keywords and the associated metadata to perform enhancement.

These two preliminaries are the most important challenges yielded by the keyword

mapping problem. Parsing keywords require detecting multi-word entities. For a

particular parsed keyword, associated metadata includes matched database col-

umn along with the sql predicate (i.e., select, where). They assume that given a

natural language query, Pipeline system outputs this pair correctly for this base-

line. Then, TEMPLAR performs semantic similarity between these pairs with

candidate query fragments extracted from query logs to find mappings. These

two important challenges are addressed in DBTagger implicitly during training

without any external interference. In fact, the authors of [24] state that their

scope of the paper is different than ours such that they focus on utilizing query

logs to enhance mapping for non-relation matching and translation, and therefore

in order to ensure effective experimental setup they provide hand parsed keywords

and metadata into Pipeline not to deal with any parser-related performance issues

outside the scope of their work.

The results are presented in Table 6.6. The pipeline over DBTagger tags out-

performs both systems in imdb and mas datesets, up to 66% and 37% compared to

NALIR and TEMPLAR, respectively. For queries which do not include nested or

group by constraints such as simple select-join queries, our pipeline produces 67%,
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77% and 53% translation accuracy for imdb, mas and yelp datasets, respectively.

Considering the simplicity of the translation algorithm, results demonstrate the

efficacy of predicted outputs of DBTagger.

6.1.5 Impact of DBTagger Architecture

In this experimental setup, we perform keyword mapping in a supervised fashion

with different neural network architectures along with a non-Deep Learning (DL)

baseline to evaluate architectural decisions.

- CRF: As a non-DL baseline, we use vanilla CRF. Semantic word represen-

tations of the NLQ are fed as input to the model.

- ST Uni: We create a two layer stack of uni-directional GRUs, followed by

CRF as the classification layer. This model is trained on only a single task,

schema tags.

- ST Bi: Different than the previous architecture, we use bi-directional

GRUs instead of uni-directional GRUs. Classification is done on the CRF

layer.

- MT Seq: In this model, training is performed on all three tasks. However,

each task is trained separately. The predicted tag of the previous task is

fed into the next task. To do that, 1-hot vector representations of predicted

tags are concatenated with semantic word representations. We stack a bi-

directional GRU with a uni-directional GRU to encode the sentence and

feed the output vector to the CRF layer.

- DBTagger: This model represents the DBTagger architecture where all

tasks are used during training concurrently. DBTagger also has cross-skip

connections between tasks as depicted in Figure 4.5.
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Table 6.7: Performance of Neural Models with Different Architectures in
accuracy-F1 metrics for public databases

Database

Model yelp imdb mas

CRF 0.934-0.890 0.907-0.850 0.955-0.932
ST Uni 0.939-0.883 0.905-0.805 0.961-0.938
ST Bi 0.947-0.908 0.917-0.832 0.964-0.941
MT Seq 0.938-0.886 0.921-0.853 0.964-0.943
DBTagger 0.968-0.938 0.935-0.878 0.965-0.941

Table 6.8: Performance of Neural Models with Different Architectures in
accuracy-F1 metrics for schemas in the Spider dataset

Spider

Model academic hr college imdb yelp

CRF 0.974-0.956 0.881-0.748 0.878-0.721 0.866-0.821 0.880-0.827
ST Uni 0.962-0.945 0.844-0.642 0.854-0.692 0.848-0.751 0.865-0.803
ST Bi 0.966-0.952 0.877-0.689 0.872-0.720 0.882-0.811 0.891-0.841
MT Seq 0.964-0.952 0.835-0.685 0.886-0.714 0.896-0.837 0.895-0.838
DBTagger 0.965-0.954 0.861-0.735 0.904-0.761 0.898-0.855 0.897-0.854

For all the models, the same hyper parameters are used for fair comparison

during training, as explained in Section 6.1.2. The results are shown in Tables

6.7 and 6.8. Each pair of scores represents the accuracy and F1 measures, re-

spectively. DBTagger performs better than the other supervised architectures

for six different datasets in accuracy and in terms of F1. Especially for the yelp

and college datasets the performance improvement is remarkable, which is up to

around 4.5% and 5%, respectively. Vanilla CRF performs well among all (best in

two datasets), which signifies its role in the architecture for the sequence tagging

problem. ST Bi performs better than ST Uni in all datasets, which shows the

positive impact of bi-directional GRUs. Compared to single task models, multi

task models perform better for all datasets. Except the mas dataset for the F1

metric, DBTagger produces better tags compared to the other multi task model,

MT Seq, in which tasks are trained separately.
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Figure 6.1: Run time comparison of DBTagger with unsupervised state-of-the-art
keyword mapping approaches

6.1.6 Efficiency Analysis

Efficiency is one of the most important properties of a good keyword mapper to

be deployable in online interfaces. Therefore, run time performance of keyword

mapping approaches mentioned in Section 3.3 is also evaluated.

- NALIR: We analyze both querying over database column approaches used

in NALIR[10], named as q regex and q ftext, which use like and match

against operators, respectively. The match against operator queries over

database columns to perform mapping. NALIR [10] prefers this approach

for bigger tables with more than 2000 rows. Downside of this approach is

the requirement to create full text indexes on each database column with

text type. Both query based approaches are used in NALIR [10].
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Figure 6.2: Memory usage comparison of DBTagger with unsupervised state-of-
the-art keyword mapping approaches

- tf-idf : Similar to ATHENA [11], we created an exact matching index, us-

ing inverted index named as inv index, beforehand to avoid querying over

database. Inverted index stores each unique value present in the database

along with their frequency in each candidate collection (i.e., database

columns).

- word2vec: Many works such as Sqlizer [12] make use of pre-trained word

embeddings to find mappings, which requires keeping the model in the

memory to perform similarities.

- tabert on: TaBert requires database content (content snapshot) to gener-

ate encodings for both NL tokens and columns. We call this setup tabert

online, where the model generates the content snapshot to perform mapping

when the query comes.

- tabert off : We also use TaBert in offline setup. For each table, database

content is generated beforehand to perform encodings. In this setup, we
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keep the content in the memory to serve the query faster.

We measured the time elapsed for a single query to extract tags and the mem-

ory consumption needed to perform mapping for each approach. We also run

each experiment with different number of row values to capture the impact of the

database size. Figures 6.1 and 6.2 present run time and memory usage analysis of

keyword mappers, respectively. DBTagger outputs the tags faster than any other

baseline and it is scalable to much bigger databases. However, q regex, q ftext,

tabert on and word2vec do not seem applicable for bigger tables having more

than 10000 rows. The tf-idf technique has nice balance between run-time and

memory usage, but it is limited in terms of effectiveness (Table 6.5). tabert-off

performs the tagging in a reasonable time, yet it requires huge memory consump-

tion especially for bigger tables. Although, query over database approaches do

not occupy memory too much compared to other approaches, they fail to perform

in reasonable time when number of rows in the database gets bigger than 1000.

6.2 SQL Query Recommendation in Databases

6.2.1 Datasets

In our experiments, we used 2 different datasets; which are namely geography [116]

and college schema from Spider [25] dataset. These datasets have been utilized

widely in many research studies in the database community [20, 25, 39]. Statistics

of the datasets used in the experiments are provided in Table 6.9. Tuple nodes

and word nodes represent the number of nodes for entity tuples in the database

and the tokens residing inside these tuples, respectively in the graph. Note that

word nodes are utilized only in the TTV graph structure. Last column of the

table represents the number of entity tables, which refer to actual target classes

used for nodes in supervised learning for the node classification problem.
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Table 6.9: Statistics of the public datasets used for the query recommendation
algorithm

Dataset tuple nodes word nodes total nodes total edges entity tables

geography 704 1193 1846 4825 6
college 2420 4327 6747 49046 8

6.2.2 Experimental Setup

For supervised classification of nodes, we first need to split the datasets into

train-test splits for which we used 1 − 9 ratio, respectively. For training, we

further split the test split into validation and test sets with 1 − 1 ratio. Similar

to the parameters provided in the original GCN paper [34], we constructed graph

neural network with 2 layers whose unit sizes are determined as 64 and 32. For

both layers, we used Relu activation function on the units. We apply dropout

to the input features for each layer with 0.5 as value. We train our GCN model

with back-propagation algorithm with Adam [117] optimizer on the categorical

cross-entropy loss with a learning rate of 0.001. For the classification, we append

a dense layer along with a softmax layer to produce class probabilities. Overall

architecture of the GCN model is schematically illustrated in Figure 6.3.

In order to implement the GCN model, we use a public framework called

Stellar Graph to train graph neural networks on graph data. Stellar Graph uses

a well-known high level API named Keras with tensorflow as back-end. In order

to implement the other baselines which train sentence embeddings for database

tuples to be utilized in the hybrid approach with TT graph (see Section 5.1.5

for further details), we use Gensim framework for conventional word embeddings

which are word2vec, doc2vec and fasttext. For BERT implementation, we use

a public repository implementing a state-of-the-art study [118] and for USE we

implement embeddings using their pre-trained models available at tensorflow-hub,

an official public repository where the authors of the studies working on language

models publish their pre-trained model for other researchers.
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Figure 6.3: Graph Convolutional Network Model Architecture

6.2.3 Tuple Classification

As the first experiment, we try to determine how effective tuple embeddings are

for tuple classification with target labels indicating their tables they appear in,

similar to study [119]. We evaluate both graph structures we propose, TT and

TTV (i.e., tuple-tuple and tuple-tuple-value graphs, respectively) in the classifi-

cation of tuples. For node features in TT graph, as explained in Section 5.1.5, we

implement 4 different baselines which are word2vec, doc2vec, fastText, and USE.

For the first 3 methods, we first train the embeddings on the database tuples (see

Section 5.1.5 for details about how to extract tuple sentences out of the database)

from scratch. For the latter, that is based on transformer architecture [85], we

simply load the pre-trained model from tensorflow-hub to encode tuple sentences

into vector representations.

For the baselines, we calculate the accuracy and F1 metrics using Logistic

Regression classifier, similar to classification setup in [119]. In order to make fair

comparison with proposed graph structures, we used the same ratio, 1 − 9, and

employ 10 fold cross validation. Reported results for both metrics are average

scores across all folds. For word2vec, doc2vec and fastText, the models are trained
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on 100 epochs, after which the gaining is observed to be minimal.

In what follows, we give details about the parameters chosen for the baselines

mentioned for node feature extraction:

• word2vec: We use skip-gram approach of the word2vec model. As a win-

dow size, we use 3 to determine neighbouring tokens for a target word.

For dimension of the embeddings, we employ 500 to make it close to the

dimension USE extracts for fair comparison.

• doc2vec: Similar to the parameters mentioned above, we apply doc2vec

with the PV-BOW (distributed bag of words) approach.

• fastText: Window and dimenson parameters are determined as with the

previous baselines. For training, we employ the CBOW (continous bag of

words) approach. For character n-grams, minimum and maximum n-gram

characters (i.e., sub-words) are determined to be 3 and 6, respectively.

• USE: As we mentioned earlier, we do not train a model for this baseline,

we simply encode tuples utilizing a pre-trained model made available by the

authors. We choose a model that produces embeddings in 512 dimensions.

After extracting tuple representations for the aforementioned approaches, we

employ logistic regression to classify tuples, similar to the work presented in [119].

We later utilize these embeddings as node features in the graph convolutional

network (gcn) model for TT graphs. All the results for 3 different setups (i.e.,

baselines, TT and TTV graphs) in 2 datasets are shown in Table 6.10. For

each dataset, we report results in accuracy and F1 metrics, which are broadly

preferred in a multi-class classification problem [119]. In the Table 6.10, baselines

and TT graphs are combined into rows, since in TT graph setup we utilize initial

embeddings extracted by a particular baseline as node features, which is indicated

by +gcn.

In the geography and college datasets, the best performing models are our
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Table 6.10: Accuracy-F1 results of tuple classification using tuple embeddings for
datasets along with baselines

Dataset geography college
accuracy f1 accuracy f1

word2vec 0.5591 0.1513 0.9309 0.4007
+ gcn (TT) 0.5710 0.5244 0.9541 0.9617

doc2vec 0.5539 0.1500 0.8652 0.2770
+ gcn (TT) 0.5647 0.5128 0.8641 0.8870

fastText 0.5482 0.1180 0.9006 0.3017
+ gcn (TT) 0.5931 0.5231 0.9376 0.9598

USE 0.5708 0.1936 0.9022 0.3540
+ gcn (TT) 0.6418 0.6496 0.9513 0.9630

gcn (TTV) 0.8810 0.7455 0.9513 0.9374

proposed graphs; which are TTV and TT respectively. While the baselines per-

form close to our proposed solutions in the college dataset, they perform poorly

in the geography dataset for which the TTV approach outperforms counterparts

by up to 60% and 570% in accuracy and F1 metrics, respectively. The baselines

perform poorly in both datasets in terms of the F1 metric, which is especially im-

portant in setups where class distribution is not balanced. The class distribution

of database tuples is naturally not balanced, which further signifies the results in

the F1 metric for the models.

Another important observation is that, for all baselines, TT graph models

enhance the baseline embeddings for the classification problem for both datasets,

which highlights the efficacy of graph usage for database tuples. The improvement

in the F1 metric is much higher up to 220% (i.e., compared to the doc2vec baseline

for the college dataset).

The reason why there is a performance difference between the datasets is we

believe 2-folds. The geography dataset is more ambiguous such that multiple val-

ues occur in multiple tables which limits efficacy of the baselines and consequently

the TT models, which depend on textual representations of the tuples. However,

TTV model outperfoms the best baseline + TT model by 37% in the geography

dataset, which shows that it is better to resolve ambiguities. The other reason
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why models perform better for the college dataset is that the number of tuples is

higher than that in the geography dataset (Table 6.9).

6.2.4 t-SNE Visualization of Database Tuples

Another indicator of quality of the embeddings ouput from deep learning models

is visualization of the embeddings in latent space. Since, embeddings are high

dimensional, a dimensionality reduction technique is applied before visualization

such as t-SNE. Similar to the work [119], in this experimental setup we report t-

SNE visualizations of the embeddings of the approaches mentioned in the previous

section. Ideally embeddings of the tuples with the same target labels (i.e., tables

in the databases) should be plotted close to each other while being separated

from the other tuples with different target labels.

t-SNE plots of embeddings for each approach are depicted in Figures 6.4 and

6.5 for the geography and college datasets, respectively. It can be seen from

Figure 6.4 that baseline approaches cannot differentiate tuples from each other

effectively, while TT graph models on top of them performs better separating the

tuples from each other in terms of the tables they reside in.

Reflecting the accuracy and F1 results provided in Table 6.10, both graph mod-

els, TT and TTV, produce embeddings which are visually well enough separated

from each other to represent their target labels in a group. However, although the

separation is evident, embeddings from baseline approaches are worse compared

to both graph models in terms of visualization.

6.2.5 Generated Recommendations

After extracting embeddings for tuples, we utilize these embeddings in a recom-

mendation task. First, we find the tuples retrieved for a particular query and

calculate query representation by averaging embeddings of tuples returned. For
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(a) Baseline (b) Baseline + TT (c) TTV

Figure 6.4: tSNE visualization of the models in the geography dataset. For each
baseline, plots are depicted side-by-side. From top to bottom, each row of plots
represents word2vec, doc2vec, fastText, and USE baselines, respectively
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(a) Baseline (b) Baseline + TT (c) TTV

Figure 6.5: tSNE visualization of the models in the college dataset. For each
baseline, plots are depicted side-by-side. From top to bottom, each row of plots
represents word2vec, doc2vec, fastText, and USE baselines, respectively
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this experiments, we again use geography and college datasets. For the embed-

dings, we perform experiments using TTV graph model for convenience. For

geography and college datasets, we use 480 and 60 queries, respectively. In our

experiments, we only process queries that do not include join operations.

First, we visualize the queries in the latent space using t-SNE dimensionality

reduction technique along with all the accessed tuples from entire query logs

processed. The visualizations for geography and college datasets are depicted

in Figures 6.6 and 6.7, respectively. It is evident from the figures that queries

are placed close to tuples retrieved in latent space, which shows that semantic

representation of queries using tuple embeddings is promising to represent a query.

Compared to college dataset, queries are distributed evenly in the latent space

following the tuples retrieved.

In addition to visualizations of the queries, we also provide example pairs

of most similar queries in both datasets in Table 6.11. Although there is still

room for improvement in terms of query recommendations, it is evident from the

examples that, embeddings are effective to capture query similarities.
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Figure 6.6: Visualization of the queries along with accessed tuples for geography
dataset

Figure 6.7: Visualization of the queries along with accessed tuples for college
dataset
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Table 6.11: Example pairs of most similar queries from both datasets

geography

SELECT traverse FROM river
WHERE river name = ”ohio”

SELECT COUNT ( river name )
FROM river WHERE river name
= ”colorado”

SELECT border FROM bor-
der info WHERE state name =
”kentucky”

SELECT border FROM bor-
der info WHERE state name IN
( SELECT traverse FROM river
WHERE river name = ”missis-
sippi” )

SELECT population FROM city
WHERE city name = ”seattle”
AND state name = ”washington”

SELECT state name FROM city
WHERE population = ( SE-
LECT MAX ( population )
FROM city WHERE state name
= ”montana” ) AND state name
= ”montana”

college

SELECT count(*) FROM class-
room WHERE building != ”Lam-
berton”

SELECT DISTINCT building
FROM classroom WHERE ca-
pacity > 50

SELECT dept name , build-
ing FROM department WHERE
budget > (SELECT avg(budget)
FROM department)

SELECT sum(budget) FROM
department WHERE dept name
= ”Marketing” OR dept name =
”Finance”

SELECT name FROM student
WHERE dept name = ”History”
ORDER BY tot cred

SELECT name FROM instructor
WHERE dept name = ”Comp.
Sci.”
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Chapter 7

Conclusion

As the first work of this thesis, we present DBTagger, a keyword mapper to be

used in translation pipelines in NLIDB systems. DBTagger is a standalone system

which does not require any processing or external knowledge such as parser or

metadata preliminaries. Inspired by sequence tagging architectures used for well

known problems such as part-of-speech (POS) in the NLP community, DBTagger

utilizes a deep neural architecture based on bi-directional Gated Recurrent Units

(GRUs). We try to exploit the observation that POS tags of keywords are related

to schema tags by applying multi-task learning in our architecture. In addition to

multiple tasks on which training is done, we also made use of the skip-connection

technique, well known especially in architectures used in computer vision.

DBTagger provides the best accuracy results on three publicly available

databases and five schemas in the Spider dataset, producing keyword tags with

92.4% accuracy on the average over all the datasets within 3 milliseconds, which

is up to 10000 times faster than unsupervised approaches. Our results also show

that DBTagger is scalable to large databases containing millions of rows.

We believe that DBTagger can be applied in existing NLIDB systems as the

first step to improve translation, especially in pipeline-based systems. For deep

learning based approaches, DBTagger can be utilized to be augmented on neural
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network to enrich input query before feeding into network. DBTagger trains

keyword mapper in a supervised fashion, which naturally depends on the quality

of training data in terms of distribution of target labels. In addition to that,

although it does not require heavy labor work to annotate training data, a handful

of queries (i.e., more than 100 queries) is required, which can be stated as the

limitations of the proposed solution.

As the second study, we propose Conquer, a contextual query recommendation

algorithm utilizing graph neural networks for local embeddings of database tuples.

In order to train representations, we extract two graph structures, Tuple-Tuple

(TT) and Tuple-Tuple-Value (TTV), from a relational database. We employ node

classification in the graphs to embed nodes (i.e., tuples of the database) into latent

space. We follow a paradigm called self-supervised learning to associate database

tuples with targets to train embeddings in supervised fashion. We introduce an

algorithm to differentiate entity and relation tables from each other where entity

tables are utilized as target labels in the training.

For comparison, we implement 4 different state-of-the-art baselines in NLP

community to extract embeddings based on sentences. We evaluated our pro-

posed graph learning approaches, TT and TTV, in 2 different datasets. Our re-

sults indicate that our graph models trained using graph convolutional networks

outperform all baselines in both datasets by up to 60% and 570% in accuracy

and F1 metrics, respectively. In addition to that, TT graph structure further

improves embeddings extracted by the baseline approaches for both datasets,

which indicates that our hypothesis that relational data can be exploited better

in a graph holds. t-SNE visualizations of the output embeddings highlight that

TTV is better to differentiate tuples from each other according to their tables.

Query recommendations based on embeddings extracted by TTV graph are also

promising, showing that semantic representation of the tuples is a good indicator

for query similarity.

As a future work, we plan to integrate queries directly into the graph by in-

troducing extra nodes and edges representing connections between the queries

and the tuples retrieved by them. In addition to that, we hope to introduce
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another objective other than table names as target labels to better extract tuple

representations tailored for the recommendation task. Due to lack of publicly

available datasets for recommendation task in databases, we plan to annotate

queries available in the databases in terms of relevancy to better evaluate perfor-

mance of Conquer. Quality of the recommended queries depends on availability of

such queries in the log, which can be considered as the limitation of our approach.
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