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xllers.rmy = lxllees;rny + 1"l ¢1¢s.gny normu ile taniml Banach
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LINEER OLMAYAN BAZI q-DENKLEM SISTEMLERININ COZUMLERI
OZET

Bu tez calismasi bes boliimden olugsmaktadir.

Tez calismasinin birinci boliimiinde 6nce ¢alismanin amaci ve hedefi belirtilmistir.
Daha sonra ise tez caligmasini olusturan konularla ilgili literatiirde yapilan
calismalardan bahsedilmis ve ayrica konularin tarihgesi ve neden 6nemli oldugunu
vurgulamak amaciyla yapilan calismalarin literatiirdeki yerinin incelenmesi
yapilmistir.

Tez caligsmasinin ikinci boliimi dort alt bagliktan olugsmaktadir. Birinci alt baglikta
limitsiz hesap olarak bilinen g-analiz ile ilgili temel tanimlar ve teoremler verilmistir.
Ek olarak, baz1 yerlerde ornekler ile konu agiklanmaya g¢aligilmistir. Bu kavramlar
calismanin ilk orijinal kismini olusturan ii¢lincii boliim i¢in temel teskil etmektedir.

Ikinci alt baslikta g-analiz’iin bir genellestirilmesi olan ve bu tez calismasimin ikinci
orijinal kismini olusturan dordiincii boliim igin ihtiya¢ duyulan (p, g)-analiz ile ilgili
temel tanim, teorem ve kavramlara yer verilmistir. (p, q)-tiirev tanim1 6rnek verilerek
aciklanmustir. Ayrica, (p, q)-analiz de zincir kurali igin herhangi bir genel tiirev
olmadig1 bir 6rnekle vurgulanmistir. Son olarak ¢alismanin ikinci orijinal kisminda
¢ok sik kullanilacak olan (p, q)-integral tanimi ve ilgili baz1 temel teoremler
verilmistir.

Ucgiincii alt baslikta tez calismasimin dordiincii boliimiinde karsilasilacak olan zaman
6lcegi kavraminin tanimi verilmis ve orneklerle agiklanmastir.

Son alt baslikta, sabit nokta tanimi Orneklerle agiklanmis ve daralma dontistimi
kavrami tanitilmistir. Schaefer sabit nokta teoremi, Krasnoselskii sabit nokta teoremi
ve Banach sabit nokta teoremi ele alinmistir. Ayrica liclincii boliimde karsilagilacak
olan, X, kiimesi n. merebeden matrislerin kiimesini gostermek tizere, 6ncelikle ;¥
konigi tanimlanmuigtir.

Calismanin {iglincli boliimii tezin ilk orijinal kismmi olusturmaktadir ve g-analiz
izerinde birinci mertebeden baslangic deger probleminin ¢oziimlerinin varligr ve
tekligi arastirllmaktadir. Schaefer sabit nokta teoremi, Krasnoselskii sabit nokta
teoremi ve Banach sabit nokta teoremleri kullanilarak ii¢ ana teoremin ispati
verilmektedir.

Calismanin dordiincii boliimii tezin ikinci orijinal kismini olusturmaktadir ve g-
analizii’in bir genellestirilmesi olan (p, q)-analiz ilizerinde ikinci mertebeden bir
(p, q)-fark denkleminin ¢oziimleri farkli metodlarla incelenmistir.

Tez calismasinin  besinci  boliimiinde elde edilen sonuglar ve yapilan
genellestirilmelere yer verilmis ve yapilabilecek ¢aligmalar i¢in dneriler sunulmustur.
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THE SOLUTIONS OF SOME NONLINEAR q-DIFFERENCE EQUATIONS
SYSTEMS

SUMMARY

This thesis mainly consists of five chapters.

The first part of the thesis consists of two subsections. In the first subsection, the
purpose and focus of the study is stated. In the second subsection, the studies carried
out in the literature on the subjects that constitute the thesis study are mentioned and
it is also aimed to examine the place of the studies in the literature in order to
emphasize the history of the subjects and why they are important. On the other hand,
this section is intended to be a resource for examining the studies that have been done
as well as for a better understanding of the studies that can be done.

The second part of the thesis consists of four subsections.

In the first subsection, basic definitions and theorems about g-calculus, known as
unlimited calculus, are given. Additionally, in some places the subject has been tried
to be explained with examples. These concepts form the basis for the third chapter,
which constitutes the first original part of the study. Therefore, in this subsection,
firstly, the g-analogue of any natural number n and the q - analogue of the factorial of
any natural number n are defined and explained with examples. In addition, the
definitions of the g-analogues of the exponential function et, which will be used
frequently in the first original part of the work, and some connections between these
definitions are given. Finally, g-derivative, g-integral, and some basic theorems are
included.

In the second subsection, it is aimed to include the basic definitions, theorems and
concepts related to (p, g)-calculus, which is a generalization of g-calculus and needed
for the fourth chapter, which constitutes the second original part of this thesis study.
Therefore, first of all, the (p, g)-analogue and (p, q)-factorial of any natural number n
are defined. The definition of (p, q)-derivative is explained by giving an example.
Additionally, it is emphasized with an example that there is no general derivation for
the chain rule in (p, g)-calculus. Finally, the definition of (p, q)-integral, which will
be used frequently in the second original part of the study, and some related basic
theorems are given.

In the third subsection, the definition of the concept of time scale, which will be
encountered in the fourth chapter of the thesis, is given and explained with examples.
In the last subsection, before talking about fixed point theory, definitions of metric
space, Cauchy sequence, convergence, completeness, continuity, uniform continuity,
sequential continuity, equicontinuity, compact set, relatively compact set, normed
space and Banach space are given. The connection between metric space and normed
space is emphasized. Fundamental theorems such as the Arzela-Ascoli theorem and
Lebesgue limited convergence theorem are included. Then, the definition of fixed
point is explained with examples and the concept of contraction transformation is
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introduced. Finally, Schaefer fixed point theorem, Krasnoselskii fixed point theorem
and Banach fixed point theorem are discussed. In addition, the initial condition of the
initial value problem, which will be defined in the third section, consists of a matrice,
and the inequality C > 0 must be defined if C is any matrice. However, unlike two real
numbers, two matrices cannot be directly compared. Therefore, it is defined the
following cone in X,

Ha ={C = (cij) € Kpicij = 0,Vi,j =1, n}

where X, is the set of matrices of type n X n. Then, a partial ordering relation is
defined on this &} cone consisting of matrices.

The third part of the study constitutes the first original part of the thesis and
investigates the existence and uniqueness of solutions to the first-order initial value
problem on g-calculus. For this reason, first of all, the problem is defined in g-calculus.
Then, an auxiliary theorem is proven, stating that the system of equations defined using
the initial conditions and the properties of the g-integral is equivalent to the solution
of a system of integral equations. This equivalent solution is rewritten by constructing
an appropriate Green's function.

In the next stage, in order to prove the existence and uniqueness of the solutions of the
given equation, a U operator was defined as U(x,y) = (x,y) and the problem was
transformed into a fixed point problem. As a result, the proof of three main theorems
is given using Schaefer fixed point theorem, Krasnoselskii fixed point theorem and
Banach fixed point theorem.

The fourth part of the study consists of two subsections and the solutions of a second-
order (p, q)-difference equation on (p, g)-calculus, which is a generalization of g-
calculus, are examined with different methods.

In the first part of the fourth chapter, it is considered the following second order (p, q)-
difference equation with non-local and (p, g)-integral boundary conditions

T
D2 ,x(t) = o(t, x°(qt)), te [0, ﬁ]
p?.q*l;,

x(0) = xo + k(x), x(T) = Sfx(s)dp_qs
0

where x, € R® and T € T is a fixed constant. Solutions of this second-order (p, q)-
difference equation are investigated using Banach fixed point theorem and an example
is given.

In the second part of the fourth chapter, the equation defined aboveis transformed into
a second-order (p, q)-difference equation of the form

Dj ox(t) + p(t).x°(qt) = 0,

without boundary conditions, by taking the ¢ function as ¢(¢,x%(qt)) =
—p(t).x°(qt). Then, the second-order derivative of the x(t) function and the first
order derivative of the x(qt) function are found. An Euler-Cauchy-like (p,q)-
difference equation is reached as

qt.o(t). D} ,x(t) + at.D, ,x(qt) + b.x(q*t) = 0
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when the derivatives are substituted. Therefore, the solution metheod of the Euler-
Cauchy-like g-difference equation is applied to the new equation obtained.
Additionally, the oscillation of the solutions is examined. Finally, some results
available in the literature on g-calculus have been generalized to (p, q)-calculus.

In the fifth chapter of the thesis, the results obtained and the generalizations made are
included and suggestions are presented for further studies.
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1. GIRIS

1.1. Tezin Amaci

Quantum Analiz ya da g-analiz olarak adlandirilan teori matematigin pek ¢ok alt bilim
dalinda ¢alisilmistir. Ayrica g-analiz’in bir genelllestirilmesi olan (p, g)-analiz de son
zamanlarda pek ¢ok matematik¢inin dikkatini ¢ekmistir ve farkli alanlara
uygulanmaya baglamistir. Bu alt alanlardan biri baslangi¢ deger problemleri ve sinir
deger problemleridir. Bu konularda g¢alismalar yapilmistir ve yapilmaya devam

edilmektedir. Ancak bununla birlikte hala ¢alisilmaya deger pek ¢ok denklem vardir.

Bu tez ¢alismasinin temeli g-analiz ve (p, q)-analiz de baz1 denklemlerin ¢6ziimlerinin
sabit nokta teoremlerini kullanarak varligini ve tekligini arastirmaktir ve denklemlerin
¢cozlimlerinin davranigilarini incelemektir. Ayrica, literatiirde yapilan ¢alismalarin g-
analiz ve (p, q)-analize bir genellestirilmesi yapilarak literatiire katki saglanmasi

hedeflenmektedir.

1.2, Literatiir Arastirmasi

Dogada ayrik zamanlarda meydana gelen olaylar1 modelleyebilmek i¢in diferensiyel
denklemlerin ayrik benzeri olan fark denklemlerine matematikgiler ve fizikgiler
tarafindan biiyiik ilgi duyulmaktadir. Diger taraftan, quantum calculus (veya g-analiz)
teorisi limitsiz hesap olarak bilinmektedir. Ayrica g-tiirev kullanilarak elde edilen g-
fark denklemleri de bir ¢ok doga olaylarnin ve problemlerin yaklasik olarak
¢oziilmesine yardim etmektedir. Bu nedenle g-fark denklemleri matematik, fizik,
miihendislik bilimlerinde son zamanlarda sik sik ¢alisilan bir alan olmustur. g-analiz
teorisi ilk olarak Euler tarafindan sonsuz serileri incelemek amaciyla baslatilmistir.
1910 yilinda g-tiirev ve g-integral operatorlerinin tanitilmasiyla Jackson [1-2]
tarafindan sistemlestirilerek matematige kazandirilmistir. Lineer quantum fark
denklemlerinin genel teorisi Carmichael [3] tarafindan 1912 yilinda verilmistir. Daha
sonra Mason [3], Adams [5] ve Trjitzinsky [6] gibi pek ¢ok aragtirmaci tarafindan
gelistirilmistir. g-analiz ile ilgili temel kavram ve methodlarin genel teorisi ise Kac ve

Cheung [7] tarafindan 2001 yilinda not haline getirilmistir. Ek olarak bir ¢ok



arastirmaci tarafindan kombinatorik, say1 teorisi, kesirli mertebeden fark denklemleri
ve dizi uzaylar1 gibi matematigin pek ¢ok alt bilim dalinda g-analiz ¢alisilmistir [8-
11]. g-analiz tizerinde sinir deger problemleri ve baslangi¢c deger problemleri sik sik
incelenmektedir. Ornegin, Ahmad ve Ntouyas [12] lokal olmayan ve integral siir
sartlar1 ile bir g-sinir deger probleminin ¢oziimlerini incelemistir. Thiramanus ve
Tariboon [13] tlig-noktali siir sartlar1 ile lineer olmayan ikinci mertebeden g-fark
denkleminin ¢6ziimlerinin varligin1 ve tekligini arastirmiglardir. Ma ve Yang [14]
standart sabit nokta teoremlerini kullanarak ¢ok-noktali sinir sartlari ile lineer olmayan
ikinci mertebeden ¢oziimlerin varligini ve tekligini ele almiglardir. Daha fazla calisma

i¢in [15-20] ¢alismalarina bakilabilir.

Son zamanlarda Ngoc ve Long [21] tarafindan

x(O) = xO;
N T (1.1)
y(0) =XV, Gy(T;) + [ K(@®).y(®)dt
cok-noktali ve integral baslangi¢ sartlar ile birlikte
x'(t) = g(t,x(),y()), te(0,T),
y'(t) = h(t, x(0),y(@®), t € (0,T), (1.2)

(1.1)-(1.2) sisteminin ¢oziimlerinin varhi@i ve tekligi sabit nokta teoremleri

kullanilarak ispatlandi ve ayrica pozitif ¢oziimlerin varligi incelendi.

Diger yandan, g-analiz ile ilgili ¢alismalarin baglamasiyla birlikte g sayisinin yaninda
p sayisi da kullanilarak (p, q)-analize genellestirildi. (p, q)-analiz kavrami ilk olarak
1991 yilinda Chakrabarti ve Jagannathan [22] tarafindan quantum cebirlerinde
incelenmeye baglanmistir. Bu ¢alismadan sonra (p, q)-analiz teorisi gelisti ve pek ¢ok
calismalar yapildi. Ornegin, Sadjang [23] polinomlar icin (p, q)-Taylor formiillerini
verdi ve (p, q)-analiz igin temel teoremi ispatladi. (p,q)-anlaminda denklemlerin
¢Ozlimlerinin davranisi ise Kamsrisuk ve ark. tarafindan [24] nolu ¢calismada incelendi.
Gengtiirk [25], (p, q)-analizde bir sinir deger probleminin ¢6ziimleri igin bazi yeni
varlik sonuglarini elde etti. (p, q)-analiz ile ilgili daha detayl ¢alismalar i¢in [26-32]

yayinlarina bakilabilir.

Diferensiyel denklemler matematik, fizik, miihendislik gibi bir ¢ok disiplinde

uygulamalara sahiptir. Bu nedenle denklemlerin ¢6ziimleri aragtirma konusu olmustur.
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Fakat her zaman denklemlerin ag¢ik ¢6ziimii elde edilememektedir. Bu durum
aragtirmacilart veya bilim insanlarin1 ¢éziimleri bulmadan ¢oziimlerin varligini ve
davraniglarint incelemeye yoneltmistir. Bu yonelme diferensiyel denklemlerde
kalitatif teori olarak bilinmektedir. Ozellikle asagidaki denklemler igin karsilastirma-

tipi salinimlilik ve salinimli olmama durumu siirekli ve ayrik durumlarda ¢alisilmistir.
Siirekli ve ayrik durumlarda ileri sigrama operatorii; her t € R igin,
x°(t) = x(a(t)) =x(t+1)
her t € Z igin,
Ax(t) = x7(t) — x(t)

olmak iizere, sirasiyla t € R i¢in

x"(t)+p().x(t) =0 (1.3)

her t € Z igin
A%x(t) + p(t).x°(t) =0

denklemleri ¢alisilmistir. (1.3) denkleminin karsilagtirma tipi salinimlilik kriterleri ilk
olarak 1836 yilinda Sturm [33] tarafindan incelenerek, salinimlilik i¢in p(t) = py > 0
oldugu ve salinimli olmadig1 durum i¢in p(t) < 0 oldugu ispatlandi. Ancak bununla

birlikte Sturm’un ¢alismasinin 6nemi Bocher tarafindan yapilan [34-35] ¢alismalarina

kadar fark edilmedi.

Bir diger iy1 bilinen kiyaslama kriteri, Kneser tarafindan yapilan [36] nolu ¢alismada

t2. p(t) Si iken salinimli olmama durumu ; baz1 € > 0 icin t2. p(t) > % iken

salmimli olma durumu ispatlandi. Daha sonra Fite [37] ve Hille [38] Kneser’in
sonucunu genellestirdi. Daha fazla caligmalalar i¢in [39-41] kaynaklarina bakilabilir.
Buraya kadar salinimlilikla ilgili bahsedilen ¢alismalarin temeli, asagida ifade edilen

iki teoreme dayanmaktadir.

b
t.o(t)’

x"(t) + x?(t) = 0 diferensiyel denkleminin salinimli olmasi igin gerek ve

yeter sart b > % olmasidir (bkz. [42]).

b

2
A“x(t) + et

x?(t) = 0 fark denkleminin salinimli olmasi i¢in gerek ve yeter sart

b > i olmasidir (bkz. [43]).



Bohner ve Unal [44] nolu ¢alismada g-analizde ikinci mertebeden fark denklemlerinin
¢oziimlerinin salinimlilig1 i¢in bazi kriterler lizerine calisarak, g > 1 ve t € T =

qNo = {q*: k € N,} olmak iizere
Dix(t) + p(t).x°(t) = 0
denklemini ¢alisarak, asagidaki q- fark teoremini ispatladi.

Teorem 1.2.1.

DZx(t) + x°(t) =0

t.o(t)’
q-fark denkleminin salinimli olmasi igin gerek ve yeter sart

1

T War)

b

olmasidir.



2. TEMEL KAVRAMLAR

Bu boliim dort alt baslhiktan olusmaktadir ve bu basliklarda, g-analiz, (p, q)-analiz,

sabit nokta, konik ve zaman 6lgegi ile ilgili temel tanimlar ve 6zellikler verilmistir.

2.1. g-Analiz ile ilgili Temel Kavram ve Bilgiler

Tamim 2.1.1. [7] Herhangi bir n dogal sayisinin g-benzeri

olarak tanimlanir ve “[n]” ile gosterilir. ¢ = 1 iken limit alindiginda g-sayilari

alisilmis anlamda sayilara indirgenir.

Ornek 2.1.2.

[1] = 11‘_21 =i=1

2= = = 1

3] =L =Gl g gy g2
dir.

Tamim 2.1.3. [7] n dogal sayisinin faktoriyelinin g-benzeri

I — =
0 =) 2 o ), =1
seklinde tanimlanir.

Tamm 2.1.4. [7] e! iistel fonksiyonunun g-benzeri

RS 1
"’q‘Z[n]!‘<1—<1—q)t>g°

n=0

seklinde tanimlanir.



Tamm 2.1.5. [7] e® iistel fonksiyonunun bir diger g-benzeri asagidaki sekilde

tanimlanir.
E ) n.(n— t 1 1 %)
Cg Zn——O q (n=1)/2 [n]! - ( ( Q)t)q :

Uyan 2.1.6. Klasik iistel fonksiyonlar igin efe’ = eSet iken g-iistel fonksiyonlar i¢in
bu esitlik gegerli degildir Bu esitlik eger st = gts ise efe; = e5** dir. Burada t ve

s’nin simetrik olmayan bu degisme iligkisinden dolay1 genellikle eje; # egeg dir.
Ayrica, e/, iistel fonksiyonu ile Ef iistel fonksiyonu arasinda
el Egt=1
esitligi vardir ve yukaridaki tanimlardan kolaylikla e; £, Ef = 1 esitligi de elde edilir.
Tamim 2.1.7. [7] (g-tiirev) Herhangi bir x fonksiyonunun g-tiirevi
(Dyx)(0) = lti_r)r(}(qu)(t)
olmak lizere

x(t) — x(qt)

(qu)(t) - (1 r q)t ’

t+0,0<g<1
seklinde tanimlanir ve burada liril_ Dgx(t) = x'(t) dir.
q—)

Uyar1 2.1.8. D, tiirev operatdrii lineerdir. Yani a ve b herhangi bir sabit olmak tizere
Dy(a.x(t) + b.y(t)) = aDyx(t) + bDyy(t)
ozelligi vardir.

Ornek 2.1.9. n bir pozitif tamsay1 olmak iizere x(t) = t™ fonksiyonunun g-tiirevi,

(@O)"—t" q"—1
(@q—-Dt q-1

Dyx(t) = Dgt™ = t" 1t = [n].t"?!

dir.
Tanmim 2.1.10. x, y herhangi iki fonksiyon olmak {izere bu iki fonksiyonun ¢arpiminin
q-tiirevi,

Dy(x(8).y(0) = x(qt)Dgx(t) + y() Dy (¢) (21)

dir ve x ile y fonksiyonlarinin rolleri degistirilirse bu durumda es deger olarak

carpimin g-tiirevi,



Dy (x(®).y(®)) = x(O)D,y(t) + y(qt) Dyx(t) (2.2)
olur.

Tanmm 2.1.11. Eger

x(t)
}’(t)-m = x(t)

fonksiyonunun g-tiirevi i¢in (2.1) kurali kullanilirsa x ve y fonksiyonunun boliimiiniin

q-tiirevi

D <x(t)> _ y(&)Dgx(t) — x(t)Dgyy(t)
N\y@® y(®©)y(qt)

dir. Eger (2.2) kurali kullanilirsa bu durumda boliim kurali

D <x(t)> _ ¥(qt)Dyx(t) — x(qt)Day(t)
N\y@®) y(®©y(qt)

olur. Formiillerin her ikisi de gecerlidir.

Uyar 2.1.12. Klasik analizde e* iistel fonksiyonunun tiirevi kendisine esittir. Fakat q-
analizde durum bdyle degildir. e tistel fonksiyonunun g-tiirevi Dgel = el iken
D,EL = EJ* olur.

Tamm 2.1.13. [7] (g-antitiirev) Eger D X (t) = x(t) ise X(t) fonksiyonuna, x(t)

fonksiyonunun g-antitiirevi denir ve

f x(t)d,t
ile gosterilir.

Tanim 2.1.14. [7] (g-integral) [a, b] aralig1 tizerinde bir x fonksiyonunun g-integrali

t

jx(s)dqs = Z(l —q)q"[t.x(tq™) — a.x(aq™)], t € [a,b]
n=0

a
olarak tanimlanir. a = 0 i¢in bu tanim

t o

fx(s)dqs = Z t.(1—-q).q™ x(tq™)

0 n=0



dir. Bu tanimlardaki integrallerin var olmasi i¢in esitliklerin sag tarafindaki seriler

yakinsak olmalidir.

Not 2.1.15. a € [0, b] ve x fonksiyonu [0, b] aralig1 iizerinde tanimli ise bu durumda
q-integrali

b b a

fx(t)dqt =fx(t)dqt—fx(t)dqt

a 0 0
dir.
Teorem 2.1.16. [7] (q-Analizin Temel Teoremi) Eger X(t) fonksiyonu x(t)

fonksiyonunun anti-tirevi ve X(t) fonksiyonu x = 0 noktasinda siirekli ise bu

durumda 0 < a < b < o olmak lizere

b

fx(t)dqt =X() —X(a)

a

dir.

Not 2.1.17. Kismi g-integrasyon kurali

S N

fy(t) Dx(t)dyt = y(£).x(t) |3 —fqu(t).x(qt) dgt
0 0

seklindedir.

Not 2.1.18. Integrasyon sirasinin degisimi

t s t s
ffx(r)dqr dgs = f fx(r)dqs dgr.
00 qr

0

dir.

2.2. (p, q)-Analiz Ile Tlgili Yardimer Teorem ve Bilgiler

Tanmm 2.2.1. [22, 23] Herhangi bir n dogal sayisinin (p, q)-benzeri

seklindedir ve [n], ; = [n]g, dir



Ornek 2.2.2.

=L =21=1
[lpq P-4  p—q
2—q2 _ (p—-+q)
2]p.q p-q p-q pt+q

—g3 (p—q) 2 2
[Blpq = pp_z = (z_-;pq+q ) = p® +pq +q*
dir.
Tamim 2.2.3. [22, 23] n dogal sayisinin faktoriyelinin (p, g)-benzeri

1, n=20
| =
[n]p.q! {[1]p’q X [2]pq XX [nlpe n=1

seklindedir.

Tanim 2.2.4. [22, 23] Herhangi bir x fonksiyonunun (p, q@)-tiirevi; x fonksiyonu

t = 0 noktasinda diferensiyellenebilir olmak iizere
(Dpqx)(0) = lti_r>r(}(Dp,qx)(t)

x(pt) — x(qt)

(Dp)(6) = CRl:

, t#0,

seklinde tanimlanir. Burada p = 1 olarak alinirsa (p, q)-tiirev,

x(t) — x(qt)

(P} = (1-gt

q-tiirevine indirgenir.

Not 2.2.5. Eger, ¢ — p = 1 iken limit alinirsa bu durumda (p, q)-tiirev aligilmis tiireve
indirgenir. (p, q)-tiirev operatorii lineer bir operatordiir (bkz. [30]). Yani a ve b

herhangi iki sabit say1 olmak {izere

Dp‘q(a.x(t) + b.y(t)) = a.D, qx(t) + b.Dy 4y (t)
dir.
Not 2.2.6. x(t) fonksiyonunun ikinci mertebeden (p, g)-tiirevi ise

(Dpqx)(Pt) — (Dpqx)(at) _ q.x(p%0) — (p + 9)-x(pqt) + p.x(g*t)
(»—q)t (» — @)?pqt*?

D x(t) =

dir.



Ornek 2.2.7. n bir pozitif tamsay1 olmak iizere x(t) = t™ fonksiyonunun (p, q)-tiirevi

o)™ —(@)" _p"—q" ,_ .
Dy qx(t) = Dy 4t™ = TR t" ! = [n], . t""

dir.

Tamim 2.2.8. x(t) ve y(t) herhangi iki fonksiyon olmak iizere bu iki fonksiyonun

carpiminin (p, q)-tiirevleri
Dy,q(x(8).y(0)) = x(t)Dp,g¥ () + y(qt) Dy, ¢ x(t)
= y(pt)Dpqx(t) + x(qt) Dy gy (t)
dir ve bu iki fonksiyonunun béliimiiniin (p, q)-tiirevleri ise

S (x(t)> _ Y(qt)Dy,x(t) — x(qt) Dy 4y (t)
PA\y(t) y(pt)y(qt)

= y(pt)Dp,qx(t) r x(pt)Dp,qy(t)
y(pt)y(qt)

olur (bkz. [23]).

Uyari 2.2.9. (p, q)-analizde herhangi bir genel zincir kuralindan bahsedilemez. Ancak
bununla birlikte 6zel bir durum i¢in zincir kurali uygulanabilir. m ve n sabitler olsun.

y(t) = mt™ olmak lizere x(y(t)) fonksiyonunun (p, g)-tiirevi

Dyq(x(y(©) ) = (Dyn gnx). (y(1)). Dp,q¥ (1)
olur (bkz. [30]).
Ornek 2.2.10. y(t) = qt olsun. Bu durumda zincir kuralimin &zel durumu
uygulanabilir. Kurala gore m = q ve n =1 dir. x(y(t)) = x(qt) fonksiyonunun

(p, q)-tiirevi

X (x(y(t))) = (Dpgx)- (y()).Dpqa(y(®) = x(pat)-x(q’t)

(r—q)t
olur.
Tanmm 2.2.11. [23] ((p, g@)-integral) x:[0,T] - R (T > 0) herhangi bir fonksiyon
olsun. Bu durumda x(t) fonksiyonunun (p, q)-integrali eger
% <1
q

10



ise

t

> Pt (P
J‘X(S)dp’qs = (q _p)'tiﬁx<q”+1 t) )

0 n=0

olur, eger
|—| > 1

ise

t

o " q"
| #©)dpas = p=a).e Y e ()

0 n=0

seklinde tanimlanir.

Teorem 2.2.12. [23] ((p, g)-Analizin Temel Teoremi) x:[0,T] - R (T > 0) siirekli
bir fonksiyon olsun. Bu durumda

t

f Dy, q x(s)dy, g5 = x(t) — x(0)
0

dir.
Teorem 2.2.13. [25] x: [0, T] = R, (T > 0) bir siirekli fonksiyon olsun. Bu durumda,
t € [0,p?T] igin
t s t
1 S
f f x(r)dpqrdyqs = —f(t —gs)x (—) dpqS
p p
00 0
dir.

2.3. Zaman Olgegi

Zaman 0lcegi teorisi siirekli ve ayrik analizi birlestirmek amaciyla ilk olarak 1988
yilinda Stefan Hilger [45] tarafindan doktora tezinde tanitilmistir. Bu konu hakkindaki
ilk calismalar Hilger [46], Albach ve Hilger [47] tarafindan yapilmistir. Bu boliimde

calismaya temel teskil eden bazi tanim ve kavramlar verilecektir.

Tamm 2.3.1. [45] Bir zaman 6lgegi; R reel sayilar kiimesinin bostan farkli ve kapali

alt kiimesi olarak tanimlanir ve genel olarak “T” ile gosterilir.

11



Ornek 2.3.2. Reel sayilar, tam sayilar, dogal sayilar ve negatif olmayan tamsayilar
yani; sirastyla R, Z, N ve N kiimeleri zaman 6l¢egine drnek olarak verilebilir. Ayrica
[0,1] U [2,3], [0,1] UN ve Cantor kiimesi gibi kiimeler de zaman &lgegine ornek
olarak verilebilir. Rasyonel sayilar, irrasyonel sayilar, kompleks sayilar ve (0,1) agik

aralig1 gibi kiimeler ise zaman 6l¢egi olmayan orneklerdir.
Tamim 2.3.3. [48, 49] t € T ig¢in 0: T — T ileri sigrama operatorti ,
o(t) =inf{s € T:s > t}
seklinde tanimlanir. Bu tanimdan herhangi bir t € T igin o(t) = t oldugu goriiliir.
Tamm 2.3.4. [48,49] t € T i¢in p: T — T geri sigrama operatorii,
p(t) = sup{s € T:s < t}
seklinde tanimlanir. Bu tanimdan herhangi bir t € T igin p(t) < t oldugu goriiliir.
Ornek 2.3.5. [48, 49]
1) q > 1igin T = qNo gbzoniine alinirsa,

o(t) =inf{s € T:s > q¢*} = q** = q.q* = qt

t
p(t) =sup{s e T:s < ¢*} =q* ' =q7q* = p

olur.

2) 0<p<1licinT=pNeu {0} gdzoniine alinirsa,

t
o(t) = inf{s € T:s > p*} = pk~1 =p~L.pk = =
p(t) = sup{s € T:s < p*} = p*** = p.p* = pt

dir.

Tamm 2.3.6. [48, 49] x:T — R fonksiyonu verildiginde, herhangi bir t € T igin

x%: T — Rileri sigrama operatorii x° = x o g,

x°(t) = x(a(t))

olur.
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2.4. Diger Temel Kavramlar

Tamm 2.4.1. X # @olsun. d: X X X —» R* doniisiimii eger
dl)d(x,y)=0=x=y

d2) Her x,y € X i¢in d(x,y) = d(y, x)

d3)Herx,y,z € X i¢ind(x,z) < d(x,y) +d(y,z)

sartlarin1 sagliyorsa d dontisiimiine X tizerinde bir metrik ve (X, d) ikilisine metrik

uzay denir.

Ornek 2.4.2. X = R olsun. Her x,y € X icin d(x,y) = |x — y|, R iizerinde bir

metriktir. Bu metrige dogal (alisilmis) metrik ya da mutlak deger metrigi denir.
Tamm 2.4.3.[50]

1) Yakinsaklik: (X, d) bir metrik uzay, {x,,} dizisi X de bir dizi ve x € X olsun.

Eger her € > 0 icin n > n, olacak sekilde her bir n € N i¢in
d(x,,x) =|x, —x| <&
olacak sekilde bir ny € N varsa {x,,} dizisine yakinsak dizi denir.

2) Cauchy Dizisi: (X, d) bir metrik uzay, {x,,} dizisi X de bir dizi olsun. Eger her
€ > 0 i¢in n,m = n, olacak sekilde her bir n,m € N i¢in

Ad(xn, Xm) = |xp — x| < €
olacak sekilde bir ny € N varsa {x,,} dizisine bir Cauchy dizisi denir.

3) Tamlik: (X, d) bir metrik uzay ve X uzayindaki her Cauchy dizisi X uzayinda

yakinsak ise bu durumda (X, d) metrik uzayina tam metrik uzay denir.

Tamim 2.4.4. [51] (X, d,) ve (Y, d,) iki metrik uzaylar ve f: X - U seklinde tanimli

bir fonksiyon ve x € X olsun.

a) Eger her € > 0 sayisina karsilik, her y € X i¢in
dl(xﬂy) <§f= dZ(f(x)'f(y)) <eg
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olacak bigimde bir § > 0 sayisi ( § sayist hem x € X’e hem de £’a baglidir)
varsa f ye x noktasinda stireklidir denir.
b) Eger f fonksiyonu X’in her noktasinda siirekli ise f (X iizerinde) siireklidir
denir.
c) Eger her € > 0 sayisina karsilik, her x,y € X igin
di(6,y) < 8= dy(fOO, () <
olacak bigimde bir § > 0 sayis1 ( § sayist x,y € X den bagimsizdir) varsa f

ye (X tizerinde) diizgiin siireklidir denir .

Teorem 2.4.5. [51] (X, d,) ve (Y, d,) iki metrik uzay, f: X — Y bir fonksiyon olsun.
f, x € X noktasinda siirekli olmasi igin gerek ve yeter sart (X,d,) iginde x,, = x
seklindeki her {x,,} dizisi i¢in (Y, d,) igindeki {f (x;,,) } dizisi f (x;,) = f(x) olmasidir.
Bu teoremdeki siireklilik kavramina dizisel siireklilik denilir. Metrik uzaylarda

sureklilik ile dizisel siireklilik kavramlar1 denktir.

Tanim 2.4.6. [51] (X, d) bir metrik uzay ve M, Cr(X) in bostan farkli bir alt kiimesi
ve x, € X olsun. Eger verilen her bir € > 0 ve her f € M igin d(x,x,) < & iken
d(f ), f (xo)) < & olacak sekilde bir §(g,x5) >0 var ise M, x, noktasinda

esstireklidir denir.

Tamm 2.4.7. [52] Bir kiimenin her agik ortiisti sonlu bir alt 6rtiiye sahipse kompakttir
denir. Metrik uzayda her dizi yakinsak bir alt diziye sahipse dizisel kompakttir denir.
Metrik uzaylarda kompaktlik ile dizisel kompaktlik kavramlari denktir. Sonlu boyutlu

lineer uzaylarda kompaktlik kavrami kapalilik ve sinirliliga karsilik gelir.

Tamm 2.4.8. [51] (X, d) bir metrik uzay olsun. Bir M c X kiimesi verildiginde M
kapanist kompakt ise M ye relatif (goreceli) kompakt denir.

Tamm 2.4.9. [53] X bir reel (kompleks) vektor uzayi olsun. Eger ||-||: X x X —» R*

doniistimii
n) lx]l=0=x=0
n2) herhangi bir x € X ve herhangi bir a skaleri i¢in ||a. x|| = |a]. ||x]|

n3) her x,y € X i¢in [|x + yIl < [lx|| + |yl
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sartlarin1 sagliyorsa bir norm olarak adlandirihir ve (X, ||+]]) ikilisine ise normlu

(lineer) vektor uzayi denir.

Ornek 2.4.10. [53] (X, |||]) bir normlu vektor uzayi olsun. x,y € X igin
d(x,y) = llx = yll

ile tammli d: X X X —» R* fonksiyonu X {izerinde bir metriktir.

Uyan 2.4.11. [51, 53] Eger (X, ||*]|) bir normlu vektor uzayinda d(x,y) = ||x — y|l
ile tamimli d metrigine ||-|| normu tarafindan indirgenen (genellestirilen, tiretilen)

metrik adi verilir.
Tanmim 2.4.12. [51] Tam normlu uzaylara Banach uzayi denir.

Tamim 2.4.13. [51] (X, d) bir kompakt metrik uzay ve Cp(X) lizerinde bir metrik,
X,y € Cp(X) i¢in

doo (x,y) = sup{|x(t) —y(O)|:t € X}
ile tanimlanir. Bu metrik diizgiin (supremum veya uniform) metrik olarak adlandirilir.

Teorem 2.4.14. [51] (Arzela-Ascoli Teoremi) (X, d) bir kompakt metrik uzay ve M,
(Cp(X),ds) tam uzaymin kapali bir alt kiimesi olsun. Bu durumda asagidakiler

birbirine denktir.

a) M kompakttir.

b) M smirhdir ve X {izerinde essiireklidir.

Teorem 2.4.15. [54] (Arzela) [a,b] kapali arahigi tizerinde tanimli ¢ siirekli
fonksiyonlarmm bir @ ailesinin Cp, ) de relatif kompakt olmasi igin gerek ve yeter

sart ®’nin diizgilin sinirl ve essiirekli olmasidir.

Teorem 2.4.16. [51] (Lebesgue Smirl Yakimsaklik Teoremi) L*(S) i¢indeki x,: S —
R fonksiyonlarinin bir {x,,} dizisi verilsin ve n — oo i¢in x,,(t) = x(t) (h.h.h) olsun.

Eger her n ve hemen hemen her t i¢in

X, () < y(0)
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olacak sekilde bir y € L*(S) fonksiyonu varsa o zaman n — o igin S iizerinde
[x,dm - [ xdmdir.

Tamim 2.4.17. [53] X # @ bir kiime ve T: X' = X bir doniisiim ve x € X olsun. Eger
T(x) =x

ise bu esitligi saglayan x noktasina T’nin sabit noktasi denir. T’nin tiim sabit

noktalarinin kiimesi F (T) veya Fy ile gosterilir.

Ornek 2.4.18. [53] Eger X = Rve T(x) = x2 + 5x + 4 ise Fy = {—2} dir.
Eger X = Rve T(x) = x ise bu durumda F;; = R dir.

Eger X = Rve T(x) = x + 2 ise bu durumda F; = @ dir.

Tamim 2.4.21. [55] (X, ||. ||) bir normlu uzay ve T: X — X bir doniisiim olsun. Her
x,y € X i¢in

IT () =TI < kllx =yl
olacak sekilde bir 0 < k < 1 sabiti varsa T doniistimiine daralma doniisiimii denir.

Teorem 2.4.23. [56] (Schaefer Sabit Nokta Teoremi) X bir Banach uzayi, T: X — X
tamamen (completely) siirekli operator ve A={t€ X:t =L.T(t),0 < < 1}

kiimesi sinirli olsun. Bu durumda T, X uzayinda bir sabit noktaya sahiptir.

Teorem 2.4.24. [57] (Krasnoselskii Sabit Nokta Teoremi) M, bir X’ Banach uzayinin
bostan farkli, sinirl, kapali ve konveks bir alt kiimesi olsun. Kabul edelimki her u, v €

M i¢in
V(u)+T'(v) eM

olacak sekilde V: M — X bir daralma operatorii ve I': M — X bir kompakt operatorii
olsun. Bu durumda V + I', M de bir sabit noktaya sahiptir.

Teorem 2.4.25. [58] (Banach Sabit Nokta Teoremi) X bir Banach uzay1, T: X — X

bir doniisiim olsun. Eger herhangi bir u, v € X igin
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IT(w) =TIl < Ollu —vl|

olacak sekilde 6 € [0,1) mevcutsa bu durumda T doniisiimii X uzayinda bir tek sabit

noktaya sahiptir.
Tanim 2.4.26. [59] E bir reel Banach uzayi olsun. E nin bir P alt kiimesi

i) P # @, P # {0} ve P kapali
i) a,b > 0vea,b € R olmak tlizere her u,v € Pigina.u + b.v € P

i)  Egeru € Pve—ue€ Pisebudurumdau =0
sartlarin1 sagliyorsa P ye bir konik (cone) denir.
Ornek 2.4.27. R™ = {u = (uy,-,u,)":u; € R,Vi = 1,n} kiimesi iizerinde,
R? = {u = (uy,,uy,)T € R%:u; > 0,Vi =1,n} kiimesi bir koniktir
ve
K, = {C = (cl-j): C,n.mertebeden kare matris, ¢;; € F } kiimesi {izerinde,
i ={C = (cij) € Ky:c;; = 0,Vi,j = T,n} kiimesi bir koniktir.

Ayrica P konigi ile bir “<” kismi siralama bagintis1 u < v & v —u € P seklinde

tamimlanir (bkz. [60]).
Aciklama 2.4.28. R" ve X, i¢inde
Vu,vER", usvev—uelRlh
ve
VC,DEX,,C<DeSD-CeX;

Ozellikleri birer siralama bagintisidir. Buna gére her biru e R" icinu > 0 & u >
0 ve u # 0 dir ve benzer sekilde her bir C € K, icin C >0 C=>0ve C#0

olur.

Son olarak (4.13) fark denkleminin ¢oziimlerinin salinimliligr ile ilgili tanimlar
asagidaki gibidir.
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Tanim 2.4.29.

i)

i)

Eger x(t) = 0 ise bu durumda t noktasinda (4.13) denkleminin x(t)
¢oziimil bir genellestirilmis sifira sahiptir denir. Eger x(qt).x°(t) < 0 ise
bu durumda x(t) ¢6ziimii (qt,a(t)) araliginda bir genellestirilmis sifira

sahiptir denir.

Eger [a, b] araliginda iki (veya daha fazla) genellestirilmis sifir ile (4.13)
denkleminin agikar olmayan higbir ¢oziimii yoksa, (4.13) denklemi [a, b]

aralig1 iizerinde non-conjugate (eslenik degildir) denir.

Her a < b igin [a,b] arahigi iizerinde (4.13) denklemi non-conjugate
olacak sekilde bir a € [{, oo] varsa bu durumda (4.13) denkleminin [{, o]
aralig1 tizerinde non-oscillatory (yani salinimli olmadigi) oldugu sdylenir.
Diger durumlarda (4.13) denkleminin [{, o] araligi iizerinde saliimli

(oscillatory) oldugu anlasilir.

Eger bazi T > 0 i¢in [T, oo] aralig1 tizerinde x(qt).x°(t) > 0 ise (4.13)
denkleminin bir x(t) ¢6ziimii salinimli degildir denir. Aksi durumda [T, o]

araligi izerinde x(t) ¢6ziimii salinimhdir denilir.
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3. LINEER OLMAYAN g-FARK DENKLEM SISTEMLERININ COZUMLERI

3.1. Yardimci Lemma ve Sonuclar

Bu kisimda
x(0) =x
{ N r (3.1)
y(0) = X1, Gy(T;) + [ K(0).y(t)dqt
cok noktal1 ve g-baslangic sartlar ile birlikte
{qu(t) =g(t,x(),y(®), teS” (32)
D,y () = h(t,x(t),y(t)), teS”

seklindeki (3.1)-(3.2) lineer olmayan g-fark denklem sisteminin ¢ozimii

incelenecektir.

Bu sistemde x, € R™ bir baslangi¢ noktasi, j = 1,---,N i¢in C; € K;,, ve 0 <T; <
< Ty =T, T € qN olacak sekilde sabitler, K:[0,T] n gV - K, siirekli fonksiyon
ve g, he€C ([O, Tl n qN X R™ x R"; ]R{") stirekli fonksiyonlardir. Ayrica her bir n.

mertebeden C = (cl-j) € X, kare matrisinin normu

|Cu|1
ICll, = sup = max » |

ozuern |Uly  1sjsns
seklindedir. A,y = 0 olmak tizere
gyt x,y) = g(t,x,y) +y.x(qt)
ve

h/l(t' X,y) = h(t' x'y) + Ay(qt)

alalim. Ayrica



N T
Opg =1 _ZCj'E‘T_ATj —fK(T).Eq_/hqu
j=1 0

olsun (Bu béliimde kullanilan o dérdiincti boliimde ayni gosterime sahip olan sigrama

operatdri ile ayni degildir).

(3.1)-(3.2) denklem sisteminin (3.3)-integral denklem sisteminin ¢dziimiine denk

oldugunu ifade eden asagidaki Lemmay1 verelim.
Lemma 3.1.1. Kabul edelimki deta, , # 0 olsun. Bu durumda (x,y) € C(S; R") X

C(S; R™) nin (3.1)-(3.2) denklem sisteminin bir ¢dziimii olmasi i¢in gerek ve yeter sart

(X,y) nin asagidaki (3.3) integral denklem sisteminin bir ¢6ziimii olmasidir.

[ x(t) = Eq_yt.xo + fot Eq_yt.e(;yt.gy(s,x(s),y(s))dqs,
y(t) = fot E;*. el . hy(s,x(s),y(s))dys
—1 T

;
FE . 07g [y (Voo Ea™ €° K(@)dqt) Iy (s,%(), ¥())dgs

— = T; —AT;
\ +Eq’1t.a,1;2j=1ij01Eq ’.eés.hl(s,x(s),y(s))dqs.

3.3)

Ispat. (x,y) € C(S;R™) x C(S; R™) (3.1)-(3.2) probleminin bir ¢dziimii olsun.
Acik¢a (x,y) € C1(S; R™) x C1(S; R™) dir ve (x,y), (3.1)-(3.2) problemini saglar.
Her bir A,y = 0 i¢in (3.1) sistemi

{qu(t) +y.x(qt) = g,(t,x,y), tE€S (3.4)

Dyy(t) + . x(qt) = hy(t,x,y), t€S”
seklindeki bir es deger forma doniistiiriilebilir. (3.4) deki denklemler sirasiyla e;/ “ve
e{}s tistel fonksiyonlari ile garpilir ve 0 dan t ye kadar g-integrali alinirsa

x(t) = E;" . xo + fot E;" . e, g,(s5,x(5),y(s))dys (3.5)
ve
y(t) = E;*.y(0) + fot E;*. el . hy(s,x(s),y(s))d,s (3.6)

denklemleri elde edilir. (3.6) denkleminden

T

JK(T).y(T)qu = y(O)JK(T).Eq‘“qu
0

0
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T

+fK(r) fEq"“.eésh,l(s,x(s),y(s))dqs dgT
=y(0) [ K(v).E;¥d,t

T
+f .[_E_At_eélsl((‘[)dq‘[ hl(s,x(s),y(s))dqs
0

qs

ve buradan

N Tj
y(T) y(O)ZC E ZC]f Eq_”j.eés.h,l(s,x(s),y(s))dqs
j=1 o

“MZ

elde edilir. Buna gore

T

N
(0) =ch.y(7j) +f1<(t).y(t)dqt
=1

0

N N Tj
= y(0) z o E;AT’ z f AT eéls. hl(s,x(s),y(s))dqs
j=1 j=1

+y(0) [] K(DE;*d,t

+ foT (quS E;*. els. K(T)dq‘[) (s, x(s), y(s))dys

esitligi elde edilir. Buradan

y(0).[ I - icj E, fK(T) o

j=1

N j
—AT ;
= Z C]f E," . el*. hy(s,x(5),y(s))dgs
0

=1
+ fOT (quS E;*. els. K(T)dq‘[) (s, x(s),y(s))dys

ve dolayisiyla
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N Tj
_ -AT;
y(0) = O'/L;Z C].f E, el (s, x(s),y(s))dgs
j=1 o

1 (T (T
+0M} fo (qu E; lr_eés_K(T)qu).hA(S,x(S),y(S))dq (3.7)
elde edilir. (3.3), (3.4) ve (3.5) esitliklerini kullanarak (x,y) nin (3.1) sistemini
sagladig goriiliir.

Tersine (x,y) € C(S;R™) x C(S; R™), (3.1) sisteminin bir ¢oziimii olsun. Bu
durumda (x,y) € C1(S; R™) x C1(S; R™) oldugu kolayca goriiliir. (x,y), (3.1)-(3.2)
problemini saglar. Boylece Lemma’nin ispati tamamlanir.

Sonug 3.1.2. S = [0, T] olsun. Eger eg, g-iistel fonksiyonunun yerine klasik et iistel
fonksiyonu kullanilirsa ¢ — 1 iken Lemma literatiirdeki klasik Lemma ya indirgenir

(bkz. [21]).

Ayrica Lemma 3.1.1 den Green fonksiyonu yardimiyla y(t) fonksiyonu yeniden

asagidaki gibi yazilabilir.
Sonug 3.1.3. Green fonksiyonu, Lemma 3.1.1 yardimiyla

E;*.els.], 0<s<t<T, t€S
0, 0<s<t<T, te€S

G(ts)—{

+E; M. el allf E;7 K(r)dgt

1E”fc 0<s<T,
+E_At eq O'Aq < kE ATJ G, Ty1<s<Ty, (3.8)
\ E;. CN, Ty.1<S<Ty=T

seklinde tanimlanir. Bu durumda (3.1) deki y(t) fonksiyonu (3.8) in yardimiyla

y(t) = fOT Gy (t,5). ha(s, x(s), y(s))dgs (3.9)

seklinde yazilir.

Uyari 3.1.4. C herhangi bir kare matris olsun. € > 0 olmas1 C~! > 0 olmasin1 garanti
etmez. C,0,, € X, ve C > 0 olsun. Ayrica C terslenebilir bir matris olsun. € > 0
olmasi i¢in gerek ve yeter sart C # 0 ve C — 0 = C € K,/ olmasidir. Buna gore
Ornegin

22



12 1/6]
¢= [ 1/3]”

olsun. Bu durumda

olup €1 > 0 degildir.
Simdi Green fonksiyonu ile ilgili asagidaki Lemma verilebilir.
Lemma 3.1.5. Kabul edelim ki her t € S i¢in K(t) >0 ve herj=1,---,N — 1 igin
C; = 0veCy > 0ve.detoy, # 0olsun. Ayricaheri,j =1,--,n— 1ligind;; >0 ile
a,f(; >0 ve 0/1—"11_ Cy = d;j alalim. Bu durumda her s, t € S igin
E;M. 074 .Cy EgM.els < Gy(t,s) < 054 EgM.ef®

esitsizligi gecerlidir.
Ispat. Green fonksiyonunun tanimi yardimiyla dogrudan hesaplamayla

Ge(t,s) = EgM .oy . Cy. EgM. el (3.10)

elde edilir ve ters esitsizlik ise

T N
—AT:
Ga(t,s) < |1+ 074 JEq"M.K(T)qu+ZCj.Eq T\ B2t el
0 j=1

[1 + Tig- (I —03q)] E;*. el
=0y 0. Egtt.eg* (3.11)

seklinde elde edilir. (3.10) ve (3.11) dan istenilen bulunur.

3.2. Coziimlerin Varhgi ve Tekligi

Bu boliimde (3.1)-(3.2) ile verilen denklem sisteminin ¢éziimlerinin varligi ve tekligi
ispatlanacaktir. Bunu yapabilmek i¢in U(x,y) = (x, y) olacak sekilde bir U operatorii
tanimlanarak (3.1)-(3.2) problemi sabit nokta problemine donstiiriilecektir. Bu

durumda A = C(S; R™) x C(S; R™) uzayi,
Gl = lxlles;rmy + 1Y lleesirmy (3.12)

seklinde tanimlanan norm ile bir Banach uzay1 olur.
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y =41 =0ig¢in

aqzl—z

N
j=1

T
G —fK(T)qu
0

ve Green fonksiyonu

I s<t teSsS _1 (T
Gq(t,s) = {O f<s te S+aq1qul((r)dqr
I( Z;y=1c" OSSST]_,

CN,' TN—l <s STN = T
seklinde elde edilir.

Boylece bir U: A — A operatorii

t

U0 =30 + [ 9(52(5),9())dgs

0
Us (6, ) (1) = [} Gy(t,5).h(s,x(5), ¥(5))dqgs (3.14)
olacak sekilde
U:A > A
(6, y) = (U106 ), Uz (x, )
seklinde taniml1 olsun.

Asagidaki teoremde (3.1)-(3.2) sisteminin ¢dzliimlerinin varligini Schaefer sabit nokta

teoremini kullanarak elde ederiz.

Teorem 3.2.1. U operatorii (3.14) de tanimlandig1 gibi olsun. Asagidaki sartlarin var

oldugunu kabul edelim.

a) Her te€s ve x(t),y(t) € R™ icin |g(t,x(t),y(D)|, < ky1(t) olacak
sekilde bir k, (t) € C(S; R*) fonksiyonu var olsun.

b) Her t €S ve x(t),y(t) € R" igin |h(t,x(t),y(1:))|1 < k,(t) olacak
sekilde bir k, (t) € C(S; R*) fonksiyonu var olsun.

Bu durumda (3.1)-(3.2) problemi S iizerinde en az bir ¢dziime sahiptir.
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Ispat. Teorem dort adimda ispatlanacaktir.

Adim 1: U operatorii stirekli midir? Bunu gosterebilmek igin A da (xi, yi) = (x,y)
olacak sekilde bir yakinsak {(xy,y,)} dizisi alinsin. Lebesgue sinirli yakinsaklik

teoremi ile g ve h fonksiyonlarimnin siirekliligi kullanilarak k — +oco iken

L1a(t %0, 7 (®) = g(£,x(0), y(®)] dgt = 0 (3.15)

ve k —» 4o iken

J; 18t 2 (0, y(£) = h(t,x(8), y(©)) |, dqt = 0 (3.16)
elde edilir. (3.15) ve (3.16) kullanilarak k — +oo iken
|Uy Ceie, i) () — U (o, ) (O
< 19t 2 (), y.®) — g(£,x(), y(©))] dgt - 0 (3.17)
ve k — +oo iken
U2 Cxie, yi) (8) — U (2, ¥) (D)4
< llog I, J5 (e, xie(), i (®) = h(t x(0), y(©))]  dgt = O (3.18)
esitsizliklerine ulasilir. (3.17) ve (3.18) ile U operatoriiniin siirekliligini veren

U (x, yx) — U(x,¥)|l.4 = 0 sonucu ¢ikar. Bu sekilde ilk adim tamamlanir.

Adim 2: U operatorii A daki sinirli kiimeleri A daki siirli kiimelere doniistiiriir mii?
Bunun igin her bir (x,y) € B, = {(x,y) € A:||(x,¥)|l.x < p} ve herhangi bir p > 0

icin ||U(x, ¥)|l4 < w oldugunu gostermek yeterlidir.

(@) ve (b) sartlari ile

sup U3 (6 Y) ()11 < xols + T el (3.19)
ve
sup [U5G6) Ol = [log - T-Weallegsiney (3.20)

esitsizlikleri elde edilir.

(3.19) ve (3.20) kullanilarak

W@l < 1xols + T Ikesllegsme) + llog [l - Wezllogsan) | = @
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sonucuna ulasilir. Bu durumda ikinci adim tamamlanir.
Adim 3: U operatorii sinirli kiimeleri A nin essiirekli kiimelerine doniistiirtir mii?

B, kiimesi adim 2 deki gibi tanimlanan siirlt bir kiime olsun. t,,t, € S ve t; <,

alalim. EK olarak (x,y) € B, olsun. Bu durumda

m@ymg—mmwmmew@Mﬂﬂﬂm%s

< kqlt; — 4] (3.21)

ve

T
U2 (x, ¥)(t2) — Ua(x, y) (E)1 < fle(tz,S) ~ Gq(tps)'l- |h(s,x(s),y(s))|1dqs
0

<klt,—t;] . (3.22)

t; = t, iken (3.21) ve (3.22) esitsizliklerinin sag tarafi sifira yaklasir. Bu sebeple adim
3 tamamlanir. Son olarak adim 1-3 ve Arzela-Ascoli teoremi beraber diistiniildiigiinde

U operatoriiniin tamamen (completely) siirekli oldugu goriiliir.

Adim 4: Baz1 0 < B <1 i¢in A= {(x,y) € A:(x,y) = B.U(x,y)} kiimesi sinirli

mudir?

Kabul edelim ki (x,y) € A olsun. Buna gére baz1 0 < f < 1igin (x,y) = B.U(x,y)
dir. Buradan her bir t € S i¢in

t
x(t) = B.xo + ,B.j 9(s,x(s),y(s))dys
0

ve

y(t) = ,B.f Gq(t, s).h(s,x(s),y(s)) dgs
0

esitlikler yazilabilir. Esitliklerden (a) ve (b) sartlarindan yararlanilarak (adim 2 deki

gibi benzer islemler yapilarak) her bir t € S i¢in
UG )@y < xoly + Tl llogsey

ve
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U ) Ol < [log ||, T- lkallgsiay
esitsizliklerine ulasilir. Son olarak bu esitsizlikler kullanilarak her t € S i¢in

I, Mg < w
olur. Bu nedenle A kiimesi smirlidir.

Boylece Schaefer sabit nokta teoreminin sartlar1 saglanir. Dolayisiyla Schaefer sabit
nokta teoreminin bir sonucu olarak U operatorii bir sabit noktaya sahiptir ve bu sabit
nokta (3.1)-(3.2) probleminin bir ¢6ziimiidiir. O halde (3.1)-(3.2) problemi S tizerinde

bir ¢oziime sahiptir.

Sonug 3.2.2. S = [0,T] olsun. Eger g — 1 iken limit alinirsa, bu durumda problem
(1.1)-(1.2), Schaefer sabit nokta teoreminin bir sonucu olarak en azindan bir ¢dziime

sahiptir.

Aciklama 3.2.3. V,I': A — A operatorleri sirasiyla

t

UG =30 + [ 9(5 (5D, ¥())dgs

0

olmak tizere
VA - A
(x' )’) - (Ul(x' 3’),0)'

ve

T

U,(x,y)(t) = jGq(t,s).h(s,x(s),y(s))dqs

0

olmak tizere
A ->A
(x,) = (0,U,(x,))
seklinde taniml1 olsunlar. Burada agikca U = V + I oldugu goriiliir.

Asagidaki teoremle (3.1)-(3.2) sisteminin ¢6ziimiiniin varligi Krasnoselskii sabit nokta

teoremi kullanilarak elde edilir.

Teorem 3.2.4. Kabul edelimki asagidaki sartlar saglansin.
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a) 0< fIK@®Ildgt + X [|G]l, < 1 olacak sekilde K € C(S;%,) Ve € €

7C,, olsun.
b) Her (t,x,y),(t,x,y) € S X R" X R" i¢in

19(t,x(®), y(®) = 9t % 7|, < Lg(®)(Ix — %Iy + [y = 711
olacak sekilde bir pozitif L, € L'(S*) fonksiyonu var olsun.
c) Her (t,x,y) € S x R" x R" i¢in
|h(t, x(®),y(®)], < i @O Uxly + y11) + ha (1)
olacak sekilde iki pozitif hy, h, € L1(S*) fonksiyonlar1 var olsun.
Ek olarak
b= gl g + o Ml < 1
olsun. Bu durumda (3.1)-(3.2) problemi en azindan bir ¢dziime sahiptir.
Ispat. Teoremin ispat1 ii¢c adimda yapilacaktir.
Admm 1: Her (x,y), (x,y) € Bg = {(x,y) € A:||[(x,y)]l4 < R} i¢in
V(x,y) +T'(x,y) € By (3.23)

olacak sekilde bir pozitif R > 0 sabiti var midir? Bunu ispatlayabilmek icin
(x,y),(x,y) € Bg olsun. Bu durumda

Ixol1+g- T+l 154 log Il

) (3.24)
olacak sekilde yeterince biiyiik R > 0 se¢imi ile
UG Y < Ixoly + [3]g (s, x(5), y(9)) |, dgs
< ol + [[Lgll,u gy R + 6. (3.25)
ve
U,& ) < [log I, Jy [h(s, (), 7(5))], dqs
< |log Il [MRall sy R + llhallagss ] (3.26)

esitsizlikleri elde edilir. (3.24), (3.25) ve (3.26) esitsizlikleri kullanilarak (3.23) elde

edilir.
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Adim 2: V: A — A operatorii bir daralma operatorii miidiir?

(x,y) ve (x,y) elemanlar1 A uzayinda keyfi iki eleman olsun. Bu durumda V

operatdriiniin tanimindan
t
|U1(x'3’) - UZ()?;)_])II = flg(srx(s)IY(s)) - g(s,f(S),)_/(S))ll qu
0

< Lol 15 162D = @)l (3.27)

elde edilir. ”L9”L < L; < 1oldugundan U;: A - C(S; R™) operatorii bir daralma

1Y)
dontigtimidiir. Dolayisiyla V = (U,0): A - A operatoric  de  bir daralma

doniisimiidiir.
Adim 3: T': By = A operatorii kompakt ve siirekli midir?
[lk olarak U, operatdriiniin siirekli oldugunu gésterelim. Bunun i¢in k — +oo iken

I Ceres yie) = (. ¥)llg = 0

olacak sekilde (x,y) € By ve By kiimesinde {(xy, y;)} dizisi alinsin. Lebesgue simnirlh

yakinsaklik teoremi ve h fonksiyonunun siirekliligi kullanilarak k — +oo iken

J3 18(t 2 (6, y(®) = h(t,2(8), y(©) |, dgt > 0 (3.28)
elde edilir. (3.28) dan k — 400 iken

sup Uz (xp, i) (€) = U (%, y) (O |1

0<t<T
<oz, [ 1100, 760) = R x(@,7(0) ] gt » 0
0

elde edilir. Boylece U, siireklidir.

Simdi U,(Bg) nin goreceli (relatively) kompakt oldugunu gosterelim. h fonksiyonu
stirekli bir fonksiyon oldugundan her t €S ve her (x,y)€ Bg i¢in
|h(t,x(t),y(t))|1 < kg olacak sekilde kr >0 vardir. Bu neddenle U,(Bg),
C(S; R™) de siirhdir. Keyfi (x,y) € By alinarak ve t;,t, € S, t; < t, igin

t2

U2 (x, y)(t1) — Uz (x, ) (E2)]1 = f h(s,x(s),y(s))dqs < kglt; — t;]

tl 1
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elde edilir. Boylece U, (Bg) essiireklidir. Arzela-Ascoli teoreminden U,(Bg) goreceli

(relatively) kompakttir.

Sonug olarak Krasnoselskii sabit nokta teoreminden U =V + I' operatdrii bir sabit

noktaya sahiptir. Boylece ispat tamamlanir.

Sonug¢ 3.2.5. S =[0,T] olsun. Bu durumda Teorem 3.2.4 [21] nolu ¢alismadaki
Teorem 3.5 e indirgenir.

Sonug 3.2.6. Teorem 3.2.4 {in a) sartindan

N

T
fK(T)d T+ Z < f||1<(1:)||1dq1:+i||cj||1 <1
0 j=1

elde edilir. Dolayisiyla o, = I — §5’=1 Ci — fOT K(7) d,T matrisi terslenebilirdir ve

1 1
<
1—||fy K@ dgr + )4 G || 1—f IK®ll; dgt — 20, lG |1,

log ™[I,

esitsizligi gecerlidir.
Teorem 3.2.4 {in daha iyi anlasilmasi igin asagidaki 6rnek verilebilir.
Ornek 3.2.7. g-baslangic deger problemi t € S* i¢in

fDn@=ifﬂamb
Doz (£) = —=Egt1y(B)y,

Dyys(6) = ;j;; a@-cos (5, 0) + 700
Dy, () = 136(E2)2 E;t[y1(®). cos(\y2 (1) + x,(0)],
(xl(O),xz(O)) =x, €ER?, teS*
y1(0) =731 (5) + 331 (D) +3 J, E-yi(®) dgt,
¥2(0) =21 (5) + 372 (5) +372(1)
+Zf0 E;t.y () dqt+1f0 E;t.y,(t)d,t

(3.29)

\
sekilde olsun. Dikkat edilirse (3.29) problemi, n =2 olmak iizere g(t,x,y) =

(gl(tr X, Y): gZ(tl X, _'V))T ve h(tl X, }’) = (hl(tl X, y)l hZ(tl X, Y))T fonkSiyonlarl lgln
(3-4) problemi olur. Burada
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3
gl(t,x;Y) = MEq tlx(t)lll

7
gz(t,x;:)’) = _Eq_tIY(t)Ip

100
1
ha(t,%,y) = ——— Eq* [ (8).cos (V31 (0) + 2(8)
136(E2)
ho(t,2,y) = ——— Eq* [31.(8).cos (Vy,(®) + x,(8)],
136(E2)
veN=2T =T, =T =1veq=dir
Ayrica,
£ X
K(t)=e_g1 1 =1 CZ=0 1
4 4 4 8 16

seklinde olsun. Bu durumda yukaridaki matrislere gore ||K(t)||1, ||Cill1 ve [IC2ll1

normlar1 hesaplandiginda

T
f||1<(t)||1dqt FlC + G0, < 1
0

oldugu goriiliir. O halde a) sart1 elde edilir.

1
136(E2)" " 272(E2)"

Ly(t) =107 ESE hy(t) = max( ).Eq‘t ve h,(t) =0

segilirse,

|9(s,x(s),y(s)) = g(s5,%(s), 7())|, < 107 E". (|x — |1 + |y = Fl1)

ve

1
|h(t,x(t),y(t))|1 < ﬁ-Eq_tdxh +1yl1)

36(£3)
elde edilir. Bu esitsizliklerden b) ve c) sartlar1 saglanir.

Ayrica

1
g EI—fK(t)dqt—Cl—Cz
0
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. Aol [Fo |5 o0
R SntTI0A Y ol FOSY Rl PO
4 4 4 8 16

olup buradan

q _ _lweg® 1_ 1 3
021 8 4 BEZ 8 <0,
q _q_1we® 1_1_ 1 11
0p2 =1 8 8 16_BE§+16>0
dir. Bu durumda
2
[ 8E2 0
| 2 + 3E2 |
Gq_l = 2 2 2 >0
l 16E2(3E2 — 1) 16E2 J
(3E2 +2)(11E2 +2) 11EZ+2

elde edilir. Buna gére normu da

) 8EZ 16E2(3EZ — 1) 16E2
loall, = max |55 + (3E2 + 2)(11E2 + 2) ' 11EZ + 2
q q q a
_ 136(E2)°
~ (3E2+2)(11E2+2)
seklinde olur.
Son olarak

L = gl + Whallscos o,

1 11 1 136(E2)"
=10 = (1-= |+ ——=(1-=). q
2 EZ) " 136(E2)" 2 EZ) (3E2 +2)(11EZ + 2)

_1f_1 -1 1
T2 <1 Eg) [10 + (3E§+2)(11E§+2)] <1

elde edilir.
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Boylece Teorem 3.2.47{in tiim sartlar1 saglanir. Dolayisiyla (3.29) problemi en az bir

¢ozlim sahiptir.

Eger Teorem 3.2.4 teki c) sart1 d) sart1 ile degistirilirse, Banach sabit nokta teoremi

kullanilarak ¢oztimlerin varlig1 ve tekligini ispatlayan asagidaki teorem verilir.
Teorem 3.2.8. a), b) ve asagida verilen d) sartinin saglandigini kabul edelim.
d) Her (t,x,y),(t,x,¥) €S X R" X R" i¢in
|h(tx(®), y(®) = h(t, % 7)|, < La@x = %y + |y = 711)
olacak sekilde bir pozitif L,, € L1(S*) fonksiyonu var olsun.
Ayrica

L= Lgll 2 gy + llog I, Monllizessy < 1 (3.30)

Ll(S*)
oldugunu kabul edelim. Bu durumda (3.1)-(3.2) problemi bir tek ¢6ziime sahiptir.
ispat. g+ Ve h, asagidaki gibi alinsin.

g« = (pslgaélg(t, 0,00l1, h.= ggtaélh(t, 0,0)[;.

Yeterince biiyiik R > 0 asagidaki gibi secilsin.

lxol1+7(g.+h.]lo7 )
1-L

R> (3.31)

Ilk olarak U(BR) € Br oldugu gésterilmelidir. Bunun igin Bp = {(x,y) €
A: || (x,y)l.a < R}olsun. Her t € S ve (x,y) € By igin

t t
UGl < lohs + [19(5,%6), 7)) = 95,000 dgs + [ 195,00l
0 0

< |xol1 + ||Lg||L1(S*).R +9.T (3.32)
T T
U, (x, y)|1 < ||aq"1||1 f|h(s,x(s),y(s)) — h(s, 0,0)|1 dgs + flh(s, 0,0)|1dgs
0 0
< llog*|l,- [NLall2sy- R + B.T] (3.33)

esitsizlikleri elde edilir. (3.32) ve (3.33) esitsizliklerinden yararlanilarak ve (3.31) den

U(Bg) < Bg bulunur. Bu durumda U: B — By operatorii iyi tanimlhidir.
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Simdi U nun bir daralma operatorii oldugu gosterilmelidir. (x, y), (¥, y) € By i¢in
t
U1 (e, y) () = Us (%, ) (O] < f|g(s,x(5),y(5)) — g(s,%(5), ¥(s))|  dgs
0

< gl oy 1 9) = ED)]a (3.34)

ve
U2 (%, ) () = U (%, ) O < ||log I, flh(s,x(S).y(S)) — h(s,%(s),7(s))|,dgs
0

< Jlog [l MLallgsn- 1166 3) = & 9)]l.a (3.35)

esitsizlikleri elde edilir. (3.34), (3.35) ve (3.30) kullanilarak U: B = By operatoriiniin

bir daralma operatdrii oldugu sonucuna varilir.

Bu durumda Banach sabit nokta teoreminin sartlarindan (3.1)-(3.2) probleminin bir

tek ¢ozlimil vardir. Boylece ispat tamamlanir.

Sonug 3.2.9. S = [0, T] olsun. Bu durumda Teorem 3.2.8, ¢ — 1 iken limit alinirsa

[21] nolu ¢alismadaki Teorem 3.1 e indirgenir.
Teorem 3.2.8 nin daha iyi anlasilmasi igin asagidaki 6rnek verilebilir.
Ornek 3.2.10. Asagidaki g-baslangi¢ deger problemi goz oniine alinsin. t € S* igin

(D2, (1) = == Eg*[sin(Jx(8)]y) + tan " (ly(D)].)],
Dgxz(6) = == Eg*[sin(ly(6)],) + tan~2(|x(6)]1)],

— 7 —t
D (O) = 7ot By (O
__ 13 -t
Dya(®) = oo B YOl

< ’ (3.36)
(%1(0),x,(0)) =x, ER?,, tES

1 1 1 1,01
y1(0) =2y (5) +oyi(D) +2 [y Bty (D) dgt,
1 1 1 1 1
¥2(0) = 2y (5) T2 (E) +572(1)
+%f01 EZt.y () dgt +if01Eq_t-J’2(t) dgt

\

olsun. Bu durumda (3.36) problemi n = 2, g(¢t,x,¥) = (g1(t, x,¥),9,(¢, x, y))T ve

h(t, x,y) = (hy(t, x,y), hy (L, x, y))T icin (3.1)-(3.2) seklindedir. Buna gore
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01(6,2,y) = 705 E7 Tsin(Ix(O12) + tan Iy (D 1,)]
62(6,%,y) = == g Tsin(ly(01,) + tan~ (x(Dl)],
hat%,9) = g B (O,
ha(t,%,9) = s B Iy O,

olurveayricaN = 2,T; = %, T,=T=1,q = %olmak tizere K (t), C; ve C, matrisleri

Ornek 3.2.7 deki gibi;

Wz 0 ;0 5 0
€q|= = - = 0 —
4 4 4 8 16
olsun. Bu durumda
j||K(t)||1 dgt + ICills + Gl <1
oldugu asikardir. Diger taraftan L,(t) = 107'E; ¢ ve Lp(t) = .- olarak

136 ( 2)
secilirse 0 zaman

|9(s,x(s),y(s)) = g(s5,%(s), 7())|, < 107 E". (Jx — &1 + |y = 1)

ve

|h(s,x(s),y(s)) — h(s,f(s),)_/(s)ﬂ E;t.(Ix =xl1 + ly = ¥l1)

1
<——.
Yo 136(E2)
esitsizliklerine ulasilir. Boylece b) ve d) sartlar1 saglanir. Ayrica

1
bl =207 (1 55)

1Lyl ! (1 ! )
nllisy =———=\1-%
272(E2)°\  Ed

ve
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. 136(£3)"
log*ll, = 72 >
(3E2 +2)(11E2 + 2)

oldugu i¢in

L =gl aory + Malliscsnllog ™[,

_on-1(4 _ 1 1 1 136(53)2
=20 (1 Eﬁ) + 272(E2)" (1 Eg) "(3EZ+2)(11E2+2)

=1(1—i)[10—1+ - ]<1

2 E} (3EZ+2)(11EZ+2)

elde edilir. Bu durumda Teorem 3.2.8’in tiim sartlar1 saglanir. O halde Banach sabit

nokta teoremine gore (3.36) nin bir tek ¢éziimii vardir.
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4. IKINCI MERTEBEDEN (p, q)-FARK DENKLEMININ COZUMLERI

Bu boliimde, x, € R", Ty = T U {0} ve T € T olmak iizere [0, T |, kiimesi gdz 6niine

alinacaktir.

4.1. Ikinci Dereceden (p, q)-Fark Denkleminin Céziimlerinin Varhg ve Tekligi

Dordiincti bolimiin bu kisminda,

Diox() = p(cx°(@),  tefo] (41)

x(0) = xo + k(x), X(T) = & [} x(5)dyq5

seklindeki ikinci mertebeden (p. g)-fark denkleminin ¢oztiimlerinin varligi ve tekligi

incelenecektir. Burada & # 0 herhangi bir says, 6.T #p +q ve ¢ € C([0,T]y, X

R; R) fonksiyonu [0, ﬁ] tizerinde (p. q)-diferensiyellenebilir bir fonksiyondur.
aly,

X = C([O, T]TO;IR{) uzayi,

lx(@®Il = sup{lx(©)]: ¢ € [0, T]y,}
normu ile tanimli tiim siirekli reel fonksiyonlarin uzayii gosterecektir. Ayrica
k:X - R
herhangi bir siirli fonksiyondur.

Lemma4.1.1.n € X ve n(t) = —¢(t,x(qt)) olsun. Bu durumda

D2 x(t) +1(t) = 0, telo—]
’ PR, (4.2)

x(0) = x, + k(x), x(T) = & [] x(5)dpqs

ile verilen sinir deger problemi

(T+t.(8.T—1))—65.T?]
T.(p+q—6.T)

2(©) = (10 + k(0) L2

t.(p+q) T s 1t s
T.p.(p+q-6.T) J-0 (T N qs)n (;) dp’qs N ;fo (t N qs)n (;) dp'qS



__8t(p*-q?*) (T 2 s
Tp3.(p+q-6.7) Jo (Ts —qs*)n (pz) dp,qS

(p, q)-integral denklemine denktir.

ispat. (4.2) deki ilk denkleme (p, q)-integrali uygulanisa, t € [0, ﬁ] icin
ay,

Dy x(t) = Dy gx(0) — [T 1(s)dp g5 (4.3)

elde edilir. (4.3) denklemine tekrar (p, q)-integral uygulanirsa t € [0, Ty, igin

x(t) = xg + t. Dy gx(0) — %fot(t —qs)n (%) dpqS (4.4)

elde edilir. Islemlerde kolaylik saglamas1 amaciyla elde edilen (4.4) denkleminde

x(0) = ¢o Ve D, ;x(0) = ¢, alinirsa bu durumda

1 ot s
x(t) =cy+ ¢t — ;fo (t —qs)n (;) dpqS (4.5)
elde edilir. (4.5) denkleminde t = 0 yazilirsa
x(0) =cy = x¢ + k(x) (4.6)

olur ve (4.6) denklemi (4.5) de yerine koyulursa
1t s
x(t) =xo +k(x) +ci.t — ;fo (t —qs)n (;) dpqS 4.7)

elde edilir. ikinci sinir sart1 kullanilirsa, bu durumda

T T

1 ) 1
6=z (—xo —k(x)) + TJ x(s)dpqs + HJ(T —as)m (%) 4paS
5 0

olarak bulunur. Elde edilen ¢4, (4.7) de yerine yazilirsa

T T
T—t o.t

x(t) = (xo + k(x)) (T) + Tf x(s)dpqs + rtpf(T —qs).m (%) dpqS
0 0

1t
_;fo (t —gs).n (%) dpqS (4.8)
esitligine ulasilir. Eger (4.8)’in her iki tarafinin integrali alinirsa

T T.(p+q—-1)
fo x(s)dp,qs = (xO + k(x))pfq#

T T S
+ oy fo (T —qs).n (;) dpqS
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P (Temo o2y (S
p3(p+q—8.T)f0 (T's —as )-U(pz)dp,qs (4.9)

bulunur. Son olarak elde edilen (4.9) esitligi (4.8) de yerine yazilirsa

[(p +CI)-(T+ t.(6.T — 1)) —5.T2]
T.p+q—6.T)

x(t) = (xo + k(x)).

t.(p+q) T s 1t s
+ mfo (T —qs)n (;) dpqS — ;fo (t—qs)n (;) dp,qS

__8t(p*-q?*) (T 2 s
Tp3.(p+q-8.7) Jo (Ts —qs™)n (pz) dp,qS

olur. Béylece istenilen sonuca ulasilir. Ispat tamamlanur.

Agciklama 4.1.2. Bir F: X - X operatorii asagidaki sekilde tanimlansin:

[0 +). (T +¢6.(6.T— 1) - 6.T]
T.(p+q—46.T)

(Fx) (&) = (xo + k(x)).

t.(p+q) T
o (pra—bT) Jo (T - qs)¢(s,x(qs))dp qs

L1t~ g9 (5, %(q9))dp s

M]OT(TS —qs?)e (s,x (%)) dp,qS- (4.10)

N T.p3.(p+q—65.T)

Bu durumda Lemma 4.1.1 kullanilirsa (4.1) denkleminin bir ¢6ziime sahip olmasi igin
gerek ve yeter sart F operatdriiniin bir sabit noktaya sahip olmasidir. Islemlerde

kolaylik saglanmasi amaciyla ¥ sabiti

_ (T.[(p+q+1).|6]+T] T_2 73.|6].(p—q)
lIJ_{ lp+q-8.7| +p+q p-|p+q—5.T|.(p2+pq+q2)} (4.11)

olarak alinsin. Simdi Banach sabit nokta teoremine dayanan asagidaki varlik ve teklik

sonucunu verelim.

Teorem 4.1.3. ¢: [O, #]To X R — R siirekli fonksiyon ve asagidaki sartlar mevcut
olsun.
(ALl) Vt € [o,quz]To ve x(£), y(t) € R icin
lo(tx(®) — o(t,y®)| < Ly 1x(®) = y(©)
dir.
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(A2) Vx,y e X i¢in |k(x) —k()| <L,.|[x—y| olacak sekilde k:X — R

fonksiyonu var olsun.
(A3) L = maks{L,, L,} ve ¥ sabiti (4.11) deki gibi ve L. W < 1 dir.
Bu durumda (4.1) ile verilen problemin bir tek ¢oziimii vardir.

Ispat. Oncelikle (4.1) ile verilen problem, F operatorii (4.10) daki gibi olmak iizere
Fx = x olacak sekilde bir sabit nokta problemine doniisiir. Bu durumda kabul

edelimki
{| (t0)|t6[0—] }——M
sup 1 |e(t,0)]: ,
pZ. g2 ) 1

sup{|x, + k(X)|:k € X} =M,
ve
maks{M;,M,} = M
olsun. Ayrica

R> M. ¥
T 1-LY

esitsizligini saglayan bir R sabiti segilsin. Bu durumda
Qr ={x € X:||x|]| <R}

olmak tizere F(Qr) < Qp oldugu gosterilmelidir. Herhangi bir x € Qj i¢in

|[(p+q).(T+t(6.T—1))—5T2]

|Fx|| < M,. sup T ora—5T)

te[o,T]r,

_Tora)
t o ppraoT] tE[SOquT |f (T — gs). (Ly. ||l +M1)dpqs|

+:. smaLf@—q@<u|uu+Mo¢m4
P teloT

161.7.(p%—q?)

_ 2
T.p3.|p+q—5.T] tESup |f (Ts — gs*). (Ly. |lx]] +M1)dpqs|

T.((p+qg+1).|6|+T T?
S@R+M% [ +4+1).181 + 7]
lp+q—6.T| p+q
73.16].(p—q) }
p.lp+q-8.T|.(p%+pq+q?)
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<(L.R+M).¥
<R
elde edilir. Dolayisiyla F(Qg) € Qp dir. Ayrica F operatoriiniin bir daralma

operatdrii oldugu gosterilmelidir. Herhang bir x,y € X ve Vt € [0, Ty, igin

[0+ ). (T + (5.7 - 1) - 6T7]
IFx = Fyll < b (k(x) — k) R

S [y (T = 49). [0(5,%(49)) = (5, ¥(49))]dpas

—%fot(t —gs). [(p(s,x(qs)) - @(S.Y(qs))]dp,qs

8.t.(p?~q?) 2 s
P s = o (52 () =0 (5 (2))| e

(p+q+1).16|.T
T2 T3.158].(p—q)
+Lq-lx — yll { lp+q-o.T] + p+q p.|p+q—5.T|.(p2+pq+q2)}
< LW lx—yll

elde edilir. L. W < 1 oldugu i¢in F bir daralma operatoriidiir.
Banach sabit nokta teoremi kullanilirsa ispat tamamlanir.

Ornek 4.1.4. (p, q)-sinir deger problemi asagidaki gibi olsun.

D} x(t) =

¢ T
Py 105 tan~1 x%(qt) + t. e, te [O,—p2 2]
To

(4.12)
x(0) = 2 + —x(t), xX(T) = 6 [} x(s)dp g,

AyrlcaT=243,5=1,p=3,q=2,L=L1=L2=1Lve

05

4t

QD(t, x"(qt)) = mtal’l

Lxo(gqt) + t.et
olsun. Bu durumda (4.12) problemi, (4.1) probleminin formundadir. L; = 1—;5 icin

lo(t,x(6)) — o(t,y(®)| < —=¢ Itan™ x(t) — tan™ y(¢)|

o 105

[x(©) — y(©)]

105
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esitsiziligi elde edildigi i¢in (A1) sart1 saglanir. Benzer olarak (A2) sart1 i¢in L, = 1—(1)5
ile

|k(x) = k()| < L. llx =yl
oldugu aciktir. (4.11) esitliginden

W 60507 N 59049 N 14348907
~ 238 5 13566

~ 13121,742

elde edilir. Bu nedenle
LY¥Y=0131<1

olur. Sonug ¢ikar.

4.2. Ikinci Dereceden (p, q)-Fark Denkleminin Céziimlerinin Salimimhhg

Eger (4.1) denkleminde

o(t,x7(qt)) = —p(®). x° (qt)
olarak alinirsa bu durumdap > q > lilet € T i¢in

Djox() + p().x%(qt) = 0 (4.13)
seklinde bir ikinci mertebeden (p, q)-fark denklemi elde edilir. Bu denklemde p(t)

fonksiyonu asagidaki gibidir:

P = q.t.o(t)

Ornek 2.2.9 dan x(gt) fonksiyonunun (p, q)-tiirevi kullanilirsa t € T i¢in
x°(qt) = x(a(qt)) = x(pqt) = x(q°t) + (p — q)t. Dy 4x(qt) (4.14)

esitligi elde edilir. Eger (4.14) esitligi (4.13) denkleminde yerine yazilirsa bu durumda

S—a(§—1)+bq(§—1)2¢0 (4.15)

ve b€ R i¢in a = b(p — q) olmak tizere (4.13) denklemi

qt.o(t). Dj 4x(t) + at. D, 4x(qt) + b.x(q*t) = 0 (4.16)
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seklinde yeniden yazilabilir. Burada dikkat edilirse (4.16) denkleminin [44] de verilen
Euler-Cauchy gq-fark denklemine benzedigi goriilmektedir. Bu nedenle (4.16)

denklemi, Euler-Cauchy-benzeri (p, q)-fark denklemi olarak adlandirilacaktir.

Not 2.2.5 ve Uyari 2.2.8 kullanilarak (4.14) deki denklemde

[G+1)-a(G-1)]

p=Yy——— — (4.17)
ve
e =12 [(22) “pg|(2-1) 4.18
=7*|(57) —a| (G- 1) (4.18)
olmak tizere ayrica (4.17) ve (4.18) deki esitliklere ek olarak
(a—1) (E 4 1)
p=v|1- 1
2
ve
2
2 _p—_2|2_ (P _ p_
pr—t=y [q a(2-1)+bq (2 1)] (4.19)
dir. Bu durumda (4.14) denklemi,
x(p*t) = 2p - x(pqt) + (p? = £) 5 x(q%t) = 0 (4.20)

olur.

Lemma 4.2.1. p ve ¢ sabitleri (4.17) ve (4.18) deki gibi olsun. y = A1°8» 9 alalim.
Ayrica (4.15) in mevcut oldugunu kabul edelim. Eger

A2 =2p1+p2—2£=0 (4.21)
ise bu durumda (4.16) denkleminin ¢oziimii t € T i¢in
x(t) = 208 7
seklindedir.
Ispat.
x(pt) = A1o8pa@D) — jlogyp+logpat — j1+logyat — ))10gpat — jy(¢)
ve
x(qt) = 1198 a(at) = logpa+logyat — jlogya+logy at — jlogpa logpat — 1 x(¢)
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oldugu i¢in
x(pt) = Alogp a(ppt) — jlogpp?+logyqt — j23logpqt — A2x(t)
x(pqt) = Ax(qt) = A8 9x(t) = yAx(t)
x(q*t) = yx(qt) = y*x()

esitlikleri elde edilir. Bu esitlikler kullanilarak x = x, olmak {izere
2 1 2 1 2 2 2
x(p*t) — Zp;x(pqt) + (p? - l’)ﬁx(q t) = (22— 2pA+ (p* —0)x(t) =0

elde edilir. Boylece istenilen sonuca ulagilir.
Burada A # 0 oldugu i¢in x; (t)
x1(6) = 21°80 41 = [(sgn )IAI]'E> % = (sgn 1)'°8» 9|08 4"
= (sgn 1)/°e 74(gr) o1
olarak yazilabilir.
Simdi £ sabitinin degerine bagli olarak (4.16) denkleminin genel ¢6ziimii verilebilir.
Teorem 4.2.2. p ve ¢ sabitleri (4.17) ve (4.18) deki gibi olsun ve (4.15) esitligi var
olsun. Budurumdac;, c, € R olmak iizere (4.16) denkleminin genel ¢6zliimii asagidaki
gibidir.
i) M=p+Veved,=p—+2 igineger £ > 0ise
x(t) = ¢, 1,082 9" + ¢, 1,080 9,
i) A =picineger £ = 0 ise
x(t) = (cyInt + cy)A o8 at,
i) A=p+iVv—= igineger £ <0 ise

Re 1
cos(@ — 0.1og, q) = W

olmak iizere
x(t) = (c1 cos(8.log, q t) + c, sin(6.log,, q t))|A|"08» 9

dir.
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Ispat. (i) £ > 0 iken A; ve 1, , (4.21) denkleminin ¢6ziimleri oldugu igin Lemma

4.2.1den x;, ve x;, degerleri (4.16) denkleminin ¢6ziimleridir.

(if) Eger £ = 0 ise Lemma 4.2.1 den dolay1 (4.16) denkleminin ¢6ziimii x; dir. Burada

x(t) = x;(t) olarak tanimlanirsa bu durumda
x(pt) = A[A'°8 ¥ Inp + A8 Int]| = A[x(t) + x,(t) In p]
x(qt) = 21°8099Int + Inq] = yx;(t)[Int + Inq] = y[x(t) + x;,(¢t) Inq]
x(pqt) = x(p(qt)) = Alx(qt) + x2(qt) Inp] = Ay[x(t) + () Inpq]
esitlikleri elde edilir ve bu esitlikler kullanilirsa
x(p*t) = 2p - x(pqt) + (p? — £) 5 x(q%0)
=x(p’t) - 2p§x(pqt) + p? y%x(qzt)

= 22[x(t) + 2x,(0) Inp] = 2p- Ay [x(6) + 1,(8) In pg]

+0? 5y [x(0) + 225() Inq]
= (A2 = 2pA + pP)x(t) + [24%2 — 2pA]x; () Inp — 2pAx; () In g + 2p2x,(t) Ing
= (* = 2pA+ p*)x(t) + 2(2 — p)x(O)[AInp — pIngq]
=0
oldugu goriiliir. x’in (4.16) denklemini sagladigi goriiliir.

(iii) Son olarak kabul edelimki # < 0 olsun. 6 € (0, ) olmak tizere

Re 4
cos(H — 0log, q) = W € (—1,1)

olsun. Ayrica
u(t) = cos(6 log,, qt)
v(t) = sin(@ log,, qt)
olmak tizere
x(t) = x (). u(t)

ve
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y(t) = x3 (). v(¢)

olsun. Trigonometrik fonksiyonlarla ilgili formiiller ve u(t), v(t) fonksiyonlari

kullanilarak
u(t) = u(pt) cos 6 +v(pt) sin o
v(t) = v(pt) cos O —u(pt)sinb
elde edilir ve bu yeni elde edilen fonksiyonlar tekrar kullanilarak u(t) igin
u(p?t) = u(pqt) [cos 0. cos(@. log,, q) +sinf. sin(G. log, q)]
+v(pqt) [cos 0. sin(@. log,, q) —sinf. cos(@. log, q)]
u(q?t) = u(pqt) [cos 0. cos(@. log,, q) +sinf. sin(@. log, q)]
—v(pqt) [cos 0. sin(@. log, q) —sinf. cos(@. log, q)]
ve v(t) i¢in
v(p?t) = v(pqt) [sin 0. sin(@. log,, q) + cos 6. cos(@. log,, q)]
+u(pqt) [sin 0. cos(@. log, q) —cos 8. sin(@. log,, q)]
v(q?t) = v(pqt) [sin 0. sin(H. log, q) + cos 6. cos(@. log, q)]

—u(pqt) [sin 0. cos(H. log, q) — cos 6. sin(G. log, q)]

elde edilir. Bu durumda

2 1 2 1 2
x(p“t) — Zp;X(pqt) +(p* - f)ﬁx(q t)
= x(p*t) — —ZP%X(PQU + Illzy%x(qzt)
= |22 23 (O up?t) — 2p|Alx5 () + 1A12x) 3 (Dulg®t)
= 2|/’l|x|,1|(t)u(pqt)[IAI(cos 6. cos(@. log,, q) +sinf. sin(@. log, q)) — p]

= 112 (Ou(pg®)[12] cos(6 — 81og,, q) — p]
=0
elde edilir ve benzer islemler yapilarak
Y0 = 205 y(pa0) + (57 = (D)
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= |Alx; (O v(pqt)[|A] cos(8 — 8log, q) — p]
= 0.

Boylece x(t) ve y(t), degerleri (4.16) denklemini saglar. Ispati tamamlayabilmek icin
x ve y ¢oztimlerinin lineer bagimsiz olduklari gosterilmelidir. Bunun i¢in (p, q)-analiz

i¢in Wronskian tanimi

W(x,y) = x(Dp,qy) — ¥(Dp,qX)

seklindedir ve bu tanim kullanilarak her iki ¢6ziim i¢in (p — q).t. W (x, y), sirasiyla
2> 0igin [2v% — (p +V8) 7 + (p = v2) 1] (o2 - yomot,

£ =0 igin p?'°8» 9 [pInp — Inq p'°&r 1],

ve

£ < 0igin (p? — £)21°8p 4| (p? — £) sin @ — (p? — £)'°8» U sin(0.log, q)]

elde edilir. Tim durumlar diigiiniildiiglinde Wronskian larin sifirdan farkli oldugu
goriiliir. Boylece yukarida bahsedilen {i¢ durumdan her biri ¢oziimlerin temel kiimesini

olusturur.

Son olarak, t, € T i¢in

{Dﬁqu(t) + p(t).s%(qt) =0
s(to) = S0, Dpgs(ty) =3

ile verilen baslangi¢ deger probleminin s(t) ¢ozimii

So-Dp,qy(to) — y(to)- 3o x(to). 8o — So- Dp qx(to)
et Ot T W)

s(t) = y(6)

olarak kolayca ifade edilebilir.

Uyari 4.2.3. Bu teorem, [44] nolu ¢alimadaki Teorem 4’1 (p, g)-analize genellestirir.

Yani Teorem 4.2.2, p — 1 iken literatiirdeki g-versiyonuna indirgenmektedir.
Teorem 4.2.4. (Sturm-type separation theorem)

(4.13) denkleminin bir ¢6ziimii salinimli degildir (veya salinimlidir) gerek ve yeter sart

(4.13) denkleminin her ¢6zliimii salinimli degildir (veya salinimlidir).

Ispat. Teoremi ispatlayabilmek igin x(t) ¢oziimiiniin (4.13) denkleminin salmiml

olmayan bir ¢6ziimii oldugunu kabul edelim. Bu durumda tanimdan dolay1 baz1 T > 0
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i¢in [T, oo] aralig: tizerinde x(qt).x?(t) > 0 dir. Diger taraftan y(t) ¢6ziimii (4.13)
denkleminin herhangi bir ¢6ziimii olsun. Ayrica x(t) ve y(t) c¢ozimleri lineer

bagimsiz olsun. D, , (%) # 0 dir. Bu durumda y(t)/x(t) kesin olarak monotondur

ve bu nedenle tek isarate sahiptir. Boylece

y(qt).y?(t) (y(qt)) <y"(t))
x(qt).x (1)~ \x(qt) ) \x?(®)

pozitiftir ve buradan y(qt).y°(t) > 0 olur. Bu ise y(t) ¢oziimiiniin de saliniml

olmadigini gosterir. Boylece ispat tamamlanur.

Teorem 4.2.5.

b
Dg'qX(t) + q.t.—xa(qt) =0

o(t)
sekilde tanimlanan ikinci mertebeden (p, q)-fark denkleminin salinimli olmasi igin
gerek ve yeter sart

1

P> &
(Vp ++a)

olmasidir.

Ispat. Teoremi ispatlayabilmek icin teoremin ifadesindeki denklem

b

2
Dj qx(t) + -

x(pqt) =0 (4.22)
sekilde yeniden yazilabilir. Eger (4.14) denklemi kullanilirsa (4.22) denkleminden
pqt?. D} ,x(t) + b(p — Q)tD, 4x(qt) + b.x(q*t) = 0 (4.23)

olarak Euler-Cauchy benzeri (p, q)-fark denklemi elde edilir. Dikkat edilirse (4.23)
denklemi a = b(p — q) ve b € R olmak iizere (4.16) denklemi seklindedir. Diger
taraftan (4.17) ve (4.18) esitlikleri kullanilarak p sabiti

(Ern)-alt-n)] _ [pea-baCs-o)]
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(2-1)°
=y[_ s_ . q(b——w_l@z) (4.24)

olur ve £ sabiti ise

- [ -

2 (g_l)z

4

[b?(p — q)* — 2b(p — q) + 1 — 4bq]

=y [b2(p — 9)* — 2b(p + q) + 1]

2
) (s_l) [bz _ bZ(IH‘CI) + 1 ]
v -0  (p-q)?

2.2 (5_1

2
e el (R |

olarak elde edilir.

Simdi (4.22) denkleminin salinimlilig1 ispatlanabilir. Bunu yapabilmek i¢in Teorem

4.2.2 ve elde edilen ¢ sabitinden yararlanilacaktir.

Eger £ = 0 ise bu durumda b € R sayisi ya

1
W)

olur ya da

1

)

olur. Eger b =1/ (\/5 + \/5)2 ise bu durumda (4.24) esitliklerinden

pP=Y P
q

elde edilir. Teorem 4.2.2 (ii) ile birlikte (4.23) denkleminin iki ¢oziimii
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ve

logy qt
y\/% .lntz\/ﬁ.lnt

salimimli degildir ve bu nedenle (4.23) denklemi salinimli degildir.

Egerb =1/(p —/q)" ise bu durumda (4.24) esitligi kullanilarak

p=-v P
q

olur ve bu sefer Teorem 4.2.2 (ii) den (4.23) denkleminin iki ¢6ziimii

logy qt

r)/ \/g = (—Dler 9t gt

ve

logp qt

—y\/% Int = (D)8 [qt.Int

salinimlidir ve bu nedenle (4.23) denklemi salinimlidir.

Eger £ > 0 ise bu durumda b € R sayis1 ya
1
b<——m
(Vp +a)
ya da
1

h>——"
(VP —+a)

olur.
Egerb < 1/({/p + ﬁ)z ise bu durumda (4.24) den
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p
p>y |-
ﬁ

olur ve Teorem 4.2.2 (i) sikk1 diistiniildiigiinde (4.23) denkleminin

(0 +2)*" = (qoyomo+ D

¢Oziimii salinimli degildir ve bu nedenle (4.23) deklemi salinimli degildir.

Eger b > 1/(\/p — ﬁ)z ise bu durumda (4.24) den

p
<-y|=
p j;

elde edilir ve Teorem 4.2.2 (i) sikki diistiniildiigiinde (4.23) denkleminin

(p B \/?)logp at _ (—1)l°gp qt(qt)logp(\/?—p)
¢Oziimii salinimlidir ve dolayisiyla (4.23) denklemi salinimlidir.

Eger £ < 0 ise bu durumda b € R sayisi igin

&N F %
Wr+yD)  (p-Va)

esitsizligi gecerlidir. Teorem 4.2.2 (iii) sikkindan (4.23) denkleminin

(\/a)logplll cos(G. log, qt)

ve

(Ja8) "™ sin(8.10g, qt)
seklindeki iki ¢6ziimii salinimlidir. Bu durumda p € (—y\/p /q,vJp/ q),

|Al = yy/p/q ve

cos (6(1 ~log, ) = —== [(g +1)—ba (G- 1)2]

Yvp/q 2\/p/q

olmak iizere (4.23) denklemi salinimlidir.

Yukarida bahsedilen tiim durumlar birlikte diisiiniildiiglinde (4.23) denklemi ve

dolayistyla (4.22) denkleminin salinimli olmasi i¢in gerek ve yeter sart
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1
b>———
(Vp +a)
olmasidir. Boylece ispat tamamlanir.

Uyar1 4.2.6. Teorem 4.2.7, p — 1 iken Teorem 1.2.1’e indirgenir. Ayrica p — 1 ve

q — 1 iken [42] deki siirekli duruma indirgenir ve siirekli durumda 1/4 olan sabitin
(p, q)-analiz de 1/(\/5 + \/5)2 oldugu goriiliir.
Teorem 4.2.7. ((p, g)-Kneser Teoremi)
i) Eger
limsup{q.t.a(t).p(t)} < ;2
toen (Vp +a)
ise bu durumda (4.13) denklemi pNo iizerinde salmiml degildir.
i) Eger
liminf{q.t.a(t).p(t)} >;2
oo (Vp ++/a)
ise bu durumda (4.13) denklemi pNo {izerinde salinimlidir.
Ispat. i) sikkini ispatlayabilmek icin (4.22) denkleminin
1

S W)

icin salinimli olmadigmin ispatlanmasi yeterlidir. ii) sikkinin ispati i¢in ise (4.22)

denkleminin
1

" vy

icin salimimli oldugunun gosterilmesi gerekir. Bu durumlar ise tekrar Teorem 4.2.5’in

ispatindan ¢ikarilabilir.
Uyar1 4.2.8. Teorem 4.2.7, p — 1 iken [44] nolu ¢alismadaki Teorem 6 ya indirgenir.

Ayrica g-analizte 1/(1 + \/5)2 olan sabitin, (p, q)-analizte 1/(\/p + \/E)Z oldugu

gortlir.
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5. SONUC VE ONERILER

Bu tezin ilk orijinal kisminda; birinci mertebeden bir baslangi¢ deger problemi gok
noktali ve integral sinir sartlar1 ile birlikte g-analizde tanimlandi ve ¢6ziimlerinin
varliginin ve tekliginin arastirilabilmesi i¢in uygun bir Green fonksiyonu olusturuldu.
Scahaefer sabit nokta teoremi, Krasnoselskii sabit nokta teoremi ve Banach sabit nokta
teoremleri kullanilarak denklemin ¢6ziimlerinin varlig1 ve tekligi arastirildi. Ayrica
bazi niimerik 6rnekler sunuldu. Elde edilen sonuclar literatiirdeki mevcut sonuglarin
genellestirilmesidir. ¢ - 1 oldugunda (3.1)-(3.2) sistemi (1.1)-(1.2) sistemine

indirgenir.

Tez ¢alismasinin ikinci orijinal kisminda 6ncelikle integral sinir sartlari ile tanimlanan
ikinci mertebeden bir (p, g)-fark denkleminin ¢oztimlerinin varlig1 ve tekligi Banach
sabit nokta teoremi kullanilarak ispatlandi. Ayrica niimerik bir 6rnek verildi. Daha
sonra Dg,qx(t) + p(t).x°(qt) = 0 denklemi ele alindi. Bu denklem p(t) fonksiyonun
se¢iminden dolay1 yeniden diizenlendiginde bir Euler-Cauchy benzeri (p,q) -denklemi
olur. Elde edilen ¢6ziimlerin salinimlilig1 arastirildi. (p, g)-Kneser teoremi ve (p,q)-
Sturm teoremi ile salinimlilikla ilgili bazi sonuglar bulundu. Boylece literatiirdeki

mevcut sonuclar genellestirildi.
Diger yandan, siirekli ve ayrik (bkz. [42, 43]) durumlarda 1/4 olan sabitin (p, q)-

analizde 1/(\/p + ﬁ)z oldugu goriildii. Ayrica p — 1 iken Teorem 4.2.5. , Teorem

1.2.1 e indirgenir. Benzer olarak p - 1 = q iken Teorem 4.2.7. ‘nin [42] nolu

calismadaki stirekli durumuna indirgenir.

(p, q)-analiz ve g-analizte caligilabilecek pek ¢ok denklem ve konu vardir. Dolayisiyla
bu tez calismasi gelecekte bu konuda yapilabilecek ¢alismalara kaynak teskil etmesi

umit edilmektedir.






KAYNAKLAR

[1]
[2]
[3]

[4]

[5]
[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

Jackson, F. H. (1910). On g-difference integrals. The Quarterly Journal of
Pure and Applied Mathematics, 41, 193-203.

Jackson, F. H. (1910). g-difference equations. American Journal of
Mathematics, 32(4), 305-314.

Carmichael, R. D. (1912). The general theory of Linear g-difference
equations. The American Journal of Mathematics, 34(2), 147-168.

Mason, T. E. (1915). On properties of the solutions of linear g-difference
equations with the entire function coefficients. American Journal of
Mathematics, 439-444.

Adams, C. R. (1929). On the linear ordinary g-difference equation. Annals of
Mathematics, 30, 195-205.

Trjitzinsky, W. J. (1933). Analytic theory of linear g-difference equations.
Acta Mathematica, 62(1), 167-226.

Kac V. and Cheung, P. (2002). Quantum Calculus. Springer. New York.

Floreanini, R. and Vinet, L. (1996). g-gamma and g-beta functions in
quantum algebra representation theory. Journal of Computational and
Applied Mathematics, 68, 57-68.

Vogel, M. (2010). An introduction to the theory of numbers (6th Edition).
Contemporary Physics. 51(3), 283.

Agarwal, R. P., Ahmad, B., Hutami, A., Alsaedi, A. (2023). Existence results
for nonlinear multiterm impulsive fractional g-integro-difference equations
with nonlocal boundary conditions. American Institute of Mathematical
Sciences, 8(8), 19313-19333. doi: 10.3934/math.2023985

Yaying, T., Kara, M.I., Hazarika, B., Kara, E. E. (2023). A study on g-
analogue of Catalan sequence spaces. Filomat, 37(3), 839-850.
https://doi.org/10.2298/FIL2303839Y

Ahmad, B. and Ntouyas, S.K. (2014). Boundary value problems for g-
difference equations and inclusions with non-local and integral boundary
conditions. Mathematical Modelling Analysis, 19(5), 647-663.

Thiramanus, P. and Tariboon, J. (2014). Nonlinear second-order g-difference
equations with three-point boundary conditions. Computational and Applied
Mathematics, 33(2), 385-397.

Ma, J. and Yang, J. (2011). Existence of solutions for multi-point boundary
value problem of fractional g-difference equation. Electronic Journal of
Qualitative Theory of Differential Equations, 2011(92), 1-10.
https://doi.org/10.14232/ejqtde.2011.1.92



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Ahmad, B. and Nieto, J. J. (2012). On nonlocal boundary value problems
of nonlinear g-difference equations. Advances Difference Equations,
2012(81), 1-10. https://doi.org/10.1186/1687-1847-2012-81

Ahmad, B. Alsaedi, A., Ntouyas, S.K. (2012). A study of second-order g-
difference equations with boundary conditions. Advances Differerence
Equations, 2012(35), 1-10. https://doi.org/10.1186/1687-1847-2012-35

Guo, C. Guo, J., Kang, S., Li, H. (2020). Existence and uniqueness of positive
solution for nonlinear fractional g-difference equation with integral
boundary conditions. Journal of Applied Analysis and Computation, 10(1),
153-164. https://doi.org/10.11948/20190055

Zhuang, H., Liu, W. (2017). Existence results for a second-order g-difference
equation with only integral conditions. UPB. Scientific Bulletin, series A:
Applied Mathematics and Physics, 79(4), 221-234.

Saengngammongkhol, T., Kaewwisetkul, B., Sitthiwirattham, T. (2015).
Existence results for nonlinear second-order g-difference equations with g-
integral boundary conditions. Differantial Equations and Application, 7(3),
303-311. doi.org/10.7153/dea-07-17

Wang, J., Yu, C., Guo, Y. (2015). Positive solutions for a class of singular
boundary value problems with fractional g-difference equations. Journal of
Applied Math, 2015(763786), 1-8. https://doi.org/10.1155/2015/418569

Ngoc, L. T. P. and Long, N. T. (2023). Existence and multiplicity for positive
solutions of a system of first order differential equations with multipoint and
integral boundary conditions. Turkish Journal of Mathematics, 47(1), 159-
184. 10.55730/1300-0098.3352

Chakrabarti, R. and Jagannathan, R. (1991). A (p, q)-oscillator realization of
two-parameter quantum algebras. Journal of Physics A Mathematical and
General, 24, 711-718.

Sadjang, P. N. (2018). On the fundamental theorem of (p, q)-calculus and
some (p,q)-Taylor formulas. Results in Mathematics, 73, 39.
https://doi.org/10.1007/s00025-018-0783-z

Kamsrisuk, N., Promsakon, C., Ntouyas, S. K., Tariboon, J. (2018). Nonlocal
boundary value problems for (p,q)-difference equations,  Differential
Equations and Application, 10(2), 183-195. dx.doi.org/10.7153/dea-2018-
10-11

Gengtiirk, 1. (2022). Boundary value problems for a second-order (p,q)-
difference equation with integral conditions. Turkish. Journal of
Mathematics, 46(2), 499-515. https://doi.org/10.3906/mat-2106-90

Araci, S., Duran, U., Acikgoz, M., Srivastava, H. M. (2016). A certain (p, q)-
derivative operator and associated divided differences. Journal of
Inequalities and Applications, 301, 1-7. https://doi.org/10.1186/s13660- 016-
1240-8

Hounkonnou, M. N. and Kyemba, J. D. B. (2013). R(p, q)-calculus:
differentiation and integration. SUT Journal of Mathematics, 49(2), 145— 167.

56


https://doi.org/10.1186/s13660-

[28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]

[36]

[37]

[38]
[39]
[40]
[41]

[42]

[43]

Mursaleen, M., Nasiruzzaman, M., Khan, A., Ansari, K. J. (2016). Some
approximation results on Bleimann-Butzer-Hahn operators defined by
(p, q)-integers. Filomat, 30(3), 639-648.
https://doi.org/10.2298/FIL1603639M

Promsakon, C., Kamsrisuk, N., Ntouyas, S. K., Tariboon, J. (2018). On the
second-order quantum (p, q)-difference equations with separated boundary
conditions, Advances in Mathematical Physics, 2018( 9089865), 1-9.
https://doi.org/10.1155/2018/9089865

Duran, U., Acikgoz, M., Araci, S. (2018). A study on some new results arising
from (p, g)-calculus. Preprints.

Soontharanon, J. and Sitthiwirattham, T. (2021). On sequential fractional
Caputo (p, g)-integrodifference equations via three-point fractional
Riemann-Liouville (p, q)-difference boundary condition. American Institute
of Mathematical Sciences, 7(1), 704-722. doi: 10.3934/math.2022044

Basarir, M. and Turan, N. (2024). The solutions of some equations in (p, q)-
calculus, Konuralp Journal of Mathematics, 12(1), 21-27.

Sturm, C. (1836). Mémoire sur les équations différentielles linéaires du
second ordre. Journal de Mathématiques Pures et Appliquées, 1, 106—186.

Bocher, M. (1898). The theorems of oscillation of Sturm and Klein.
Bulletin of the American Mathematical Society, 4, 295-313.

Bocher, M. (1901). Non-oscillatory linear differential equations of the
second order. Bulletin of the American Mathematical Society, 7, 333-340.

Kneser, A. (1893). Untersuchungen tiber die reellen Nullstellen der
Integrale linearer Differentialgleichungen. Mathematische Annalen, 42, 409—
435.

Fite, W. B. (1918). Concerning the zeros of the solutions of certain
differential equations. Transactions of the American Mathematical Society,
19, 341-352.

Hille, E. (1948). Non-oscillation theorems, Transactions of the American
Mathematical Society, 64, 234-252.

Wintner, A. (1957). On the comparison theorem of Kneser-Hille.
Mathematica Scandinavica, 5, 255-260.

Hartman, P. (1952). On non-oscillatory linear differential equations of second
order. American Journal of Mathematics, 74, 389—400.

Moore, R. A. (1955). The behavior of solutions of a linear differential
equation of second order. Pacific Journal of Mathematics, 5, 125-145.

Li, H. J. (1955). Oscillation criteria for second order linear differential
equations. Journal of Mathematical Analysis and Applications, 194, 217—
234.

Bohner, M. and Saker, S. H. (2004). Oscillation of second order nonlinear
dynamic equations on time scales. Rocky Mountain Journal of Mathematics,
34, 1239-1254.

57



[44]
[45]
[46]

[47]

[48]
[49]

[50]
[51]
[52]
[53]

[54]
[55]
[56]
[57]

[58]

[59]

[60]

Bohner, M. and Unal, M. (2005). Kneser’s theorem in g-calculus. Journal of
Physics A Mathematical and General, 38, 6729-6739.

Hilger, S. (1988). Ein Mapkettenkalkiil mit Anwendung auf
Zentrumsmannigfaltigkeiten. [PhD thesis], Universitit Wiirzburg.

Hilger, S. (1990). Analysis on measure chains-a unified approach to
continuous and discrete calculus. Results in Mathematics, 18(1-2), 18-56.

Aulbach, B. and Hilger, S. (1990). Linear dynamic processes with
inhomogeneous time scale. In Nonlinear Dynamics and Quantum Dynamical
Systems (pp. 9-20). Akademie-Verlag, Berlin.

Bohner, M. and Georgiev, S.G. (2016). Multivariable Dynamic Calculus on
Time Scales. (1nd ed.). Springer.

Bohner, M. and Peterson, A. (2001). Dynamic Equations on Time Scales.
Boston. Birkhauser.

Lipschutz, S. (1965). General topology. Schaum’s Outlines.
Soykan, Y. (2016). Fonksiyonel Analiz. (3. Baski) Nobel Yayinlari.
Morris, S.A. (2005). Topology without tears. University of Ballarat.

Berinde, V. (1912). Iterative Approximation of Fixed Points. Lecture Notes
in Mathematics, Springer.

Kolmogorov, A. N. ve Fomin, S. V. (1975). Introductory Real Analysis.
Dover Publications.

Ciesielski, K. (2007). On Stefan Banach and some of his results. Banach
Journal of Mathematical Analysis, 1(1), 1-10.

Schaefer, H. (1955). Uber die methode der a priori-schranken.
Mathematische Annalen, 129, 415-416.

Zeidler, E. (1986). Nonlinear Functional Analysis and Its Applications.
Springer, New York.

Banach, S. (1922). Sur les operations dans les emsembles abstraits et leurs
applications aux equations integrals. Fundamenta Mathematicae. 3, 133-
181.

Aliprantice, C. D. and Tourky, R. (2007). Cones and Duality. American
Mathematical Society, USA.

Deimling, K. (1985). Nonlinear Functional Analysis. Springer, USA.

58



OZGECMIS

Ad-Soyad : Nihan TURAN

OGRENIM DURUMU:

. Lisans : 2015, Sakarya Universitesi, Fen Edebiyat Fakiiltesi,
Matematik

« Yiikseklisans : 2018, Diizce Universitesi, Matematik Anabilim Dali

MESLEKIi DENEYIM VE ODULLER:

2015-2016 yillar1 arasinda Geyve Halk Egitim Merkezi Ortadgretim-Matematik
Ogretmenligi.

2016 yilinda Sakarya Bilim ve Sanat Merkezi Matematik Ogretmenligi.

2022- ... Istanbul Beykent Universitesi, Matematik Boliimii, Arastirma Gorevlisi.

TEZDEN TURETILEN ESERLER:

Turan, N., Basarir, M., Sahin, A., 2024. On the Solutions of a Non-Linear System
of g-Difference Equation. Boundary Value Problems, (Basim asamasinda).

Turan, N., Basarir, M., Sahin, A., 2024. On the Solutions of the Second-Order
(p, q)-Difference Equation With an Application to the Fixed-Point Theory.
American Institute of Mathematical Sciences (AIMS) Mathematics, 9(5), 10679-
10697.

Turan, N., Basarir, M., (2024, 11-13, Mayis). A Study On the Solutions of the g-
Initial Value Problem With Fixed Point Theory. 7 th. International Antalya
Scientific Research and Innovative Studies Congress, Antalya, Tirkiye (Tam
Metin Bildiri).

Turan, N., Basarir, M., (2023, 8-9, Subat). Solution of the Second-Order (p, q)-
Difference Equation and Oscillation of Solutions. 3. International Istanbul
Scientific Research Congress, Istanbul, Tiirkiye (Tam Metin Bildiri).



Turan, N., Basarir, M., (2023, 4-8, Eyliil). g-Diferensiyel Denklem Sisteminin
Integral Sinir Sartlari ile Coziimlerinin Varhig1 ve Tekligi. 35. Ulusal Matematik
Sempozyumu (TMD),Edirne, Tiirkiye (Ozet Bildiri).

DiGER ESERLER:

Turan, N., Basarir, M., 2024. On the Solutions of Some Equations in (p,q)-
Calculus. Konuralp Journal of Mathematics, 12(1), 21-27.

Turan, N., Basarir, M., (2023, 19-21, Subat). The Solutions of Motions, Laplace
and Bernoulli’s Equations in (p,q)-Calculus. 9 th. International Zeugma
Conference on Scientific Research, Gaziantep, Tiirkiye (Tam Metin Bildiri).

Turan, N., Basarir, M., (2022, 11-12 Aralik). On the Solutions of Some Equations
In Post Quantum Calculus. 3. International Cappodocia Scientific Research
Congress, Nevsehir, Tiirkiye (Ozet Bildiri).

Turan, N., Basarir, M., 2019. A Note On Quasi-Statistical Convergence of Order
a in Rectangular Cone Metric Space. Konuralp Journal of Mathematics, 7(1), 91-
96.

Turan, N., Basarir, M., 2019. A Note On A/ -Statistical Convergence of the
Function Defined Time Scale. AIP Conference Proceedings, 2183, 040017.

Turan, N., Basarir, M., (2019, 4-8 Eyliil). A Note On A-Statistical Convergence
of the Function Defined Time Scale. Third International Conference of
Mathematical Sciences, istanbul, Tiirkiye (Ozet Bildiri).

60



