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SİMGELER 

ℕ  : Doğal sayılar kümesi 

ℝ  : Reel sayılar kümesi 

𝒒ℕ̅                   : {𝑞𝑛: 𝑛 ∈ ℕ} ∪ {0} 

𝑺                      : [0, 𝑇] ∩ 𝑞ℕ̅ 

𝑺∗                    : (0, 𝑇) ∩ 𝑞ℕ̅ 

𝑳𝟏(𝑺)   : İntegrallenebilen fonksiyonların uzayı 

𝑳𝟏(𝑺∗)   : ‖𝐿‖𝐿1 = ∫ 𝐿(𝑡)𝑑𝑞𝑡
𝑇

0
 normu ile tanımlı bir Banach uzayı 

|𝒖|𝟏                 : 𝑢 = (𝑢1, ⋯ , 𝑢𝑛)
𝑇 ∈ ℝ𝑛 için |𝑢1| + ⋯+ |𝑢𝑛| 

𝑪(𝑺;ℝ𝒏)         : ‖𝑥‖𝐶(𝑆;ℝ𝑛) = max
0≤𝑡≤𝑇

|𝑥(𝑡)|1 alışılmış normu ile tanımlı Banach uzayı 

𝑪𝟏(𝑺;ℝ𝒏)       : ‖𝑥‖𝐶1(𝑆;ℝ𝑛) = ‖𝑥‖𝐶(𝑆;ℝ𝑛) + ‖𝑥
′‖𝐶1(𝑆;ℝ𝑛) normu ile tanımlı Banach        

𝑪[𝒂,𝒃]  : [𝑎, 𝑏] aralığında tanımlı sürekli reel fonksiyonların uzayı  

𝔽  : ℝ reel sayılar veya ℂ kompleks sayılar cismi 

𝑪𝔽(𝓧)  : 𝑓:𝒳 → 𝔽 sürekli fonksiyonlarının uzayı 

𝕋  : Zaman Ölçeği 

𝕋𝟎 : 𝕋 ∪ {0}  

[𝟎, 𝑻]𝕋𝟎 : [0, 𝑇] ∩ 𝕋0 
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LİNEER OLMAYAN BAZI 𝒒-DENKLEM SİSTEMLERİNİN ÇÖZÜMLERİ  

ÖZET 

Bu tez çalışması beş bölümden oluşmaktadır.  

Tez çalışmasının birinci bölümünde önce çalışmanın amacı ve hedefi belirtilmiştir. 

Daha sonra ise tez çalışmasını oluşturan konularla ilgili literatürde yapılan 

çalışmalardan bahsedilmiş ve ayrıca konuların tarihçesi ve neden önemli olduğunu 

vurgulamak amacıyla yapılan çalışmaların literatürdeki yerinin incelenmesi 

yapılmıştır.  

Tez çalışmasının ikinci bölümü dört alt başlıktan oluşmaktadır. Birinci alt başlıkta 

limitsiz hesap olarak bilinen 𝑞-analiz ile ilgili temel tanımlar ve teoremler verilmiştir. 

Ek olarak, bazı yerlerde örnekler ile konu açıklanmaya çalışılmıştır. Bu kavramlar 

çalışmanın ilk orijinal kısmını oluşturan üçüncü bölüm için temel teşkil etmektedir.  

İkinci alt başlıkta 𝑞-analiz’ün bir genelleştirilmesi olan ve bu tez çalışmasının ikinci 

orijinal kısmını oluşturan dördüncü bölüm için ihtiyaç duyulan (𝑝, 𝑞)-analiz ile ilgili 

temel tanım, teorem ve kavramlara yer verilmiştir. (𝑝, 𝑞)-türev tanımı örnek verilerek 

açıklanmıştır. Ayrıca, (𝑝, 𝑞)-analiz de zincir kuralı için herhangi bir genel türev 

olmadığı bir örnekle vurgulanmıştır. Son olarak çalışmanın ikinci orijinal kısmında 

çok sık kullanılacak olan  (𝑝, 𝑞)-integral tanımı ve ilgili bazı temel teoremler 

verilmiştir. 

Üçüncü alt başlıkta tez çalışmasının dördüncü bölümünde karşılaşılacak olan zaman 

ölçeği kavramının tanımı verilmiş ve örneklerle açıklanmıştır.  

Son alt başlıkta, sabit nokta tanımı örneklerle açıklanmış ve daralma dönüşümü 

kavramı tanıtılmıştır. Schaefer sabit nokta teoremi, Krasnoselskii sabit nokta teoremi 

ve Banach sabit nokta teoremi ele alınmıştır. Ayrıca üçüncü bölümde karşılaşılacak 

olan, 𝒦𝑛 kümesi 𝑛. merebeden matrislerin kümesini göstermek üzere, öncelikle 𝒦𝑛
+ 

koniği tanımlanmıştır. 

Çalışmanın üçüncü bölümü tezin ilk orijinal kısmını oluşturmaktadır ve 𝑞-analiz 

üzerinde birinci mertebeden başlangıç değer probleminin çözümlerinin varlığı ve 

tekliği araştırılmaktadır. Schaefer sabit nokta teoremi, Krasnoselskii sabit nokta 

teoremi ve Banach sabit nokta teoremleri kullanılarak üç ana teoremin ispatı 

verilmektedir. 

Çalışmanın dördüncü bölümü tezin ikinci orijinal kısmını oluşturmaktadır ve 𝑞-

analizü’ün bir genelleştirilmesi olan (𝑝, 𝑞)-analiz üzerinde ikinci mertebeden bir 
(𝑝, 𝑞)-fark denkleminin çözümleri farklı metodlarla incelenmiştir. 

Tez çalışmasının beşinci bölümünde elde edilen sonuçlar ve yapılan 

genelleştirilmelere yer verilmiş ve yapılabilecek çalışmalar için öneriler sunulmuştur. 
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THE SOLUTIONS  OF SOME  NONLINEAR  𝒒-DIFFERENCE EQUATIONS 

SYSTEMS  

SUMMARY 

This thesis mainly consists of five chapters. 

The first part of the thesis consists of two subsections. In the first subsection, the 

purpose and focus of the study is stated. In the second subsection, the studies carried 

out in the literature on the subjects that constitute the thesis study are mentioned and 

it is also aimed to examine the place of the studies in the literature in order to 

emphasize the history of the subjects and why they are important. On the other hand, 

this section is intended to be a resource for examining the studies that have been done 

as well as for a better understanding of the studies that can be done. 

The second part of the thesis consists of four subsections. 

In the first subsection, basic definitions and theorems about 𝑞-calculus, known as 

unlimited calculus, are given. Additionally, in some places the subject has been tried 

to be explained with examples. These concepts form the basis for the third chapter, 

which constitutes the first original part of the study. Therefore, in this subsection, 

firstly, the 𝑞-analogue of any natural number 𝑛 and the 𝑞 - analogue of the factorial of 

any natural number 𝑛 are defined and explained with examples. In addition, the 

definitions of the 𝑞-analogues of the exponential function 𝑒𝑡, which will be used 

frequently in the first original part of the work, and some connections between these 

definitions are given. Finally, 𝑞-derivative, 𝑞-integral, and some basic theorems are 

included. 

In the second subsection, it is aimed to include the basic definitions, theorems and 

concepts related to (𝑝, 𝑞)-calculus, which is a generalization of 𝑞-calculus and needed 

for the fourth chapter, which constitutes the second original part of this thesis study. 

Therefore, first of all, the (𝑝, 𝑞)-analogue and (𝑝, 𝑞)-factorial of any natural number 𝑛 

are defined. The definition of (𝑝, 𝑞)-derivative is explained by giving an example. 

Additionally, it is emphasized with an example that there is no general derivation for 

the chain rule in (𝑝, 𝑞)-calculus. Finally, the definition of (𝑝, 𝑞)-integral, which will 

be used frequently in the second original part of the study, and some related basic 

theorems are given. 

In the third subsection, the definition of the concept of time scale, which will be 

encountered in the fourth chapter of the thesis, is given and explained with examples. 

In the last subsection, before talking about fixed point theory, definitions of metric 

space, Cauchy sequence, convergence, completeness, continuity, uniform continuity, 

sequential continuity, equicontinuity, compact set, relatively compact set, normed 

space and Banach space are given. The connection between metric space and normed 

space is emphasized. Fundamental theorems such as the Arzela-Ascoli theorem and 

Lebesgue limited convergence theorem are included. Then, the definition of fixed 

point is explained with examples and the concept of contraction transformation is 
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introduced. Finally, Schaefer fixed point theorem, Krasnoselskii fixed point theorem 

and Banach fixed point theorem are discussed. In addition, the initial condition of the 

initial value problem, which will be defined in the third section, consists of a matrice, 

and the inequality 𝐶 > 0 must be defined if 𝐶 is any matrice. However, unlike two real 

numbers, two matrices cannot be directly compared. Therefore, it is defined the 

following cone in 𝒦𝑛 

𝒦𝑛
+ = {𝐶 = (𝑐𝑖𝑗) ∈ 𝒦𝑛: 𝑐𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅} 

where 𝒦𝑛 is the set of matrices of type 𝑛 × 𝑛. Then, a partial ordering relation is 

defined on this 𝒦𝑛
+ cone consisting of matrices. 

The third part of the study constitutes the first original part of the thesis and 

investigates the existence and uniqueness of solutions to the first-order initial value 

problem on 𝑞-calculus. For this reason, first of all, the problem is defined in q-calculus. 

Then, an auxiliary theorem is proven, stating that the system of equations defined using 

the initial conditions and the properties of the 𝑞-integral is equivalent to the solution 

of a system of integral equations. This equivalent solution is rewritten by constructing 

an appropriate Green's function. 

In the next stage, in order to prove the existence and uniqueness of the solutions of the 

given equation, a 𝑈 operator was defined as 𝑈(𝑥, 𝑦) = (𝑥, 𝑦) and the problem was 

transformed into a fixed point problem. As a result, the proof of three main theorems 

is given using Schaefer fixed point theorem, Krasnoselskii fixed point theorem and 

Banach fixed point theorem. 

The fourth part of the study consists of two subsections and the solutions of a second-

order (𝑝, 𝑞)-difference equation on (𝑝, 𝑞)-calculus, which is a generalization of 𝑞-

calculus, are examined with different methods. 

In the first part of the fourth chapter, it is considered the following second order (𝑝, 𝑞)-
difference equation with non-local and (𝑝, 𝑞)-integral boundary conditions  

{
 
 

 
 𝐷𝑝,𝑞

2 𝑥(𝑡) = 𝜑(𝑡, 𝑥𝜎(𝑞𝑡)),            𝑡 ∈ [0,
𝑇

𝑝2. 𝑞2
]
𝕋0

𝑥(0) = 𝑥0 + 𝑘(𝑥),            𝑥(𝑇) = 𝛿∫𝑥(𝑠)𝑑𝑝,𝑞𝑠

𝑇

0

 

where 𝑥0 ∈ ℝ
𝑛 and 𝑇 ∈ 𝕋 is a fixed constant. Solutions of this second-order (𝑝, 𝑞)-

difference equation are investigated using Banach fixed point theorem and an example 

is given.  

In the second part of the fourth chapter, the equation defined aboveis transformed into 

a second-order (𝑝, 𝑞)-difference equation of the form  

𝐷𝑝,𝑞
2 𝑥(𝑡) + 𝜌(𝑡). 𝑥𝜎(𝑞𝑡) = 0, 

without boundary conditions, by taking the 𝜑 function as 𝜑(𝑡, 𝑥𝜎(𝑞𝑡)) =

−𝜌(𝑡). 𝑥𝜎(𝑞𝑡). Then, the second-order derivative of the 𝑥(𝑡) function and the first 

order derivative of the 𝑥(𝑞𝑡) function are found. An Euler-Cauchy-like (𝑝, 𝑞)-
difference equation is reached as  

𝑞𝑡. 𝜎(𝑡). 𝐷𝑝,𝑞
2 𝑥(𝑡) + 𝑎𝑡. 𝐷𝑝,𝑞𝑥(𝑞𝑡) + 𝑏. 𝑥(𝑞

2𝑡) = 0 
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when the derivatives are substituted. Therefore, the solution metheod of the Euler-

Cauchy-like 𝑞-difference equation is applied to the new equation obtained. 

Additionally, the oscillation of the solutions is examined. Finally, some results 

available in the literature on 𝑞-calculus have been generalized to (𝑝, 𝑞)-calculus. 

In the fifth chapter of the thesis, the results obtained and the generalizations made are 

included and suggestions are presented for further studies. 
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1. GİRİŞ   

 Tezin Amacı  

Quantum Analiz ya da 𝑞-analiz olarak adlandırılan teori matematiğin pek çok alt bilim 

dalında çalışılmıştır. Ayrıca 𝑞-analiz’in bir genellleştirilmesi olan (𝑝, 𝑞)-analiz de son 

zamanlarda pek çok matematikçinin dikkatini çekmiştir ve farklı alanlara 

uygulanmaya başlamıştır. Bu alt alanlardan biri başlangıç değer problemleri ve sınır 

değer problemleridir. Bu konularda çalışmalar yapılmıştır ve yapılmaya devam 

edilmektedir. Ancak bununla birlikte hala çalışılmaya değer pek çok denklem vardır.  

Bu tez çalışmasının temeli 𝑞-analiz ve (𝑝, 𝑞)-analiz de bazı denklemlerin çözümlerinin 

sabit nokta teoremlerini kullanarak varlığını ve tekliğini araştırmaktır ve denklemlerin 

çözümlerinin davranışılarını incelemektir. Ayrıca, literatürde yapılan çalışmaların 𝑞-

analiz ve (𝑝, 𝑞)-analize bir genelleştirilmesi yapılarak literatüre katkı sağlanması 

hedeflenmektedir. 

 Literatür Araştırması 

Doğada ayrık zamanlarda meydana gelen olayları modelleyebilmek için diferensiyel 

denklemlerin ayrık benzeri olan fark denklemlerine matematikçiler ve fizikçiler 

tarafından büyük ilgi duyulmaktadır. Diğer taraftan, quantum calculus  (veya 𝑞-analiz)  

teorisi limitsiz hesap olarak bilinmektedir. Ayrıca 𝑞-türev kullanılarak elde edilen 𝑞-

fark denklemleri de bir çok doğa olaylarının ve problemlerin yaklaşık olarak 

çözülmesine yardım etmektedir. Bu nedenle 𝑞-fark denklemleri matematik, fizik, 

mühendislik bilimlerinde son zamanlarda sık sık çalışılan bir alan olmuştur. 𝑞-analiz 

teorisi ilk olarak Euler tarafından sonsuz serileri incelemek amacıyla başlatılmıştır. 

1910 yılında 𝑞-türev ve 𝑞-integral operatörlerinin tanıtılmasıyla Jackson [1-2] 

tarafından sistemleştirilerek matematiğe kazandırılmıştır. Lineer quantum fark 

denklemlerinin genel teorisi Carmichael [3] tarafından 1912 yılında verilmiştir. Daha 

sonra Mason [3], Adams [5] ve Trjitzinsky [6] gibi pek çok araştırmacı tarafından 

geliştirilmiştir. 𝑞-analiz ile ilgili temel kavram ve methodların genel teorisi ise Kac ve 

Cheung [7] tarafından 2001 yılında not haline getirilmiştir. Ek olarak bir çok 
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araştırmacı tarafından kombinatorik, sayı teorisi, kesirli mertebeden fark denklemleri 

ve dizi uzayları gibi matematiğin pek çok alt bilim dalında 𝑞-analiz çalışılmıştır [8-

11]. 𝑞-analiz üzerinde sınır değer problemleri ve başlangıç değer problemleri sık sık 

incelenmektedir. Örneğin, Ahmad ve Ntouyas [12] lokal olmayan ve integral sınır 

şartları ile bir 𝑞-sınır değer probleminin çözümlerini incelemiştir. Thiramanus ve 

Tariboon [13] üç-noktalı sınır şartları ile lineer olmayan ikinci mertebeden 𝑞-fark 

denkleminin çözümlerinin varlığını ve tekliğini araştırmışlardır. Ma ve Yang [14] 

standart sabit nokta teoremlerini kullanarak çok-noktalı sınır şartları ile lineer olmayan 

ikinci mertebeden çözümlerin varlığını ve tekliğini ele almışlardır. Daha fazla çalışma 

için [15-20] çalışmalarına bakılabilir.  

Son zamanlarda Ngoc ve Long [21] tarafından 

                           {
𝑥(0) = 𝑥0,                                                        

𝑦(0) = ∑ 𝐶𝑗𝑦(𝑇𝑗)
𝑁
𝑗=1 + ∫ 𝐾(𝑡). 𝑦(𝑡)𝑑𝑡

𝑇

0
     

  (1.1) 

çok-noktalı ve integral başlangıç şartları ile birlikte  

                                         {
𝑥′(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑦(𝑡)),   𝑡 ∈ (0, 𝑇),         

𝑦′(𝑡) = ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡)),   𝑡 ∈ (0, 𝑇),         
   

  (1.2) 

 (1.1)-(1.2) sisteminin çözümlerinin varlığı ve tekliği sabit nokta teoremleri 

kullanılarak ispatlandı ve ayrıca pozitif çözümlerin varlığı incelendi.  

Diğer yandan, 𝑞-analiz ile ilgili çalışmaların başlamasıyla birlikte 𝑞 sayısının yanında 

𝑝 sayısı da kullanılarak (𝑝, 𝑞)-analize genelleştirildi. (𝑝, 𝑞)-analiz kavramı ilk olarak 

1991 yılında Chakrabarti ve Jagannathan [22] tarafından quantum cebirlerinde 

incelenmeye başlanmıştır. Bu çalışmadan sonra (𝑝, 𝑞)-analiz teorisi gelişti ve pek çok 

çalışmalar yapıldı. Örneğin, Sadjang [23] polinomlar için (𝑝, 𝑞)-Taylor formüllerini 

verdi ve (𝑝, 𝑞)-analiz için temel teoremi ispatladı. (𝑝, 𝑞)-anlamında denklemlerin 

çözümlerinin davranışı ise Kamsrisuk ve ark. tarafından [24] nolu çalışmada incelendi. 

Gençtürk [25], (𝑝, 𝑞)-analizde bir sınır değer probleminin çözümleri için bazı yeni 

varlık sonuçlarını elde etti. (𝑝, 𝑞)-analiz ile ilgili daha detaylı çalışmalar için [26-32] 

yayınlarına bakılabilir.  

 

Diferensiyel denklemler matematik, fizik, mühendislik gibi bir çok disiplinde 

uygulamalara sahiptir. Bu nedenle denklemlerin çözümleri araştırma konusu olmuştur. 
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Fakat her zaman denklemlerin açık çözümü elde edilememektedir. Bu durum 

araştırmacıları veya bilim insanlarını çözümleri bulmadan çözümlerin varlığını ve 

davranışlarını incelemeye yöneltmiştir. Bu yönelme diferensiyel denklemlerde 

kalitatif teori olarak bilinmektedir. Özellikle aşağıdaki denklemler için karşılaştırma-

tipi salınımlılık ve salınımlı olmama durumu sürekli ve ayrık durumlarda çalışılmıştır.  

Sürekli ve ayrık durumlarda ileri sıçrama operatörü; her 𝑡 ∈ ℝ için, 

𝑥𝜎(𝑡) = 𝑥(𝜎(𝑡)) = 𝑥(𝑡 + 1) 

 her 𝑡 ∈ ℤ için,  

Δ𝑥(𝑡) = 𝑥𝜎(𝑡) − 𝑥(𝑡) 

olmak üzere, sırasıyla 𝑡 ∈ ℝ için 

                                              𝑥′′(𝑡) + 𝜌(𝑡). 𝑥(𝑡) = 0    (1.3) 

  her 𝑡 ∈ ℤ için  

Δ2𝑥(𝑡) + 𝜌(𝑡). 𝑥𝜎(𝑡) = 0 

denklemleri çalışılmıştır. (1.3) denkleminin karşılaştırma tipi salınımlılık kriterleri ilk 

olarak 1836 yılında Sturm [33] tarafından incelenerek, salınımlılık için 𝜌(𝑡) ≥ 𝜌0 > 0 

olduğu ve salınımlı olmadığı durum için 𝜌(𝑡) ≤ 0 olduğu ispatlandı. Ancak bununla 

birlikte Sturm’un çalışmasının önemi Bocher tarafından yapılan [34-35] çalışmalarına 

kadar fark edilmedi. 

Bir diğer iyi bilinen kıyaslama kriteri, Kneser tarafından yapılan [36] nolu çalışmada 

𝑡2. 𝜌(𝑡) ≤
1

4
 iken salınımlı olmama durumu ; bazı 𝜀 > 0 için 𝑡2. 𝜌(𝑡) ≥

1+𝜀

4
  iken 

salınımlı olma durumu ispatlandı. Daha sonra Fite [37] ve Hille [38] Kneser’in 

sonucunu genelleştirdi. Daha fazla çalışmalalar için [39-41] kaynaklarına bakılabilir. 

Buraya kadar salınımlılıkla ilgili bahsedilen çalışmaların temeli, aşağıda ifade edilen 

iki teoreme dayanmaktadır. 

𝑥′′(𝑡) +
𝑏

𝑡.𝜎(𝑡)
. 𝑥𝜎(𝑡) = 0 diferensiyel denkleminin salınımlı olması için gerek ve 

yeter şart 𝑏 >
1

4
  olmasıdır (bkz. [42]). 

Δ2𝑥(𝑡) +
𝑏

𝑡.𝜎(𝑡)
. 𝑥𝜎(𝑡) = 0 fark denkleminin salınımlı olması için gerek ve yeter şart 

𝑏 >
1

4
  olmasıdır  (bkz. [43]). 
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Bohner ve Ünal [44] nolu çalışmada 𝑞-analizde ikinci mertebeden fark denklemlerinin 

çözümlerinin salınımlılığı için bazı kriterler üzerine çalışarak, 𝑞 > 1 ve 𝑡 ∈ 𝕋 =

𝑞ℕ0 = {𝑞𝑘: 𝑘 ∈ ℕ0} olmak üzere  

𝐷𝑞
2𝑥(𝑡) + 𝜌(𝑡). 𝑥𝜎(𝑡) = 0  

denklemini çalışarak, aşağıdaki q- fark teoremini ispatladı. 

Teorem 1.2.1. 

𝐷𝑞
2𝑥(𝑡) +

𝑏

𝑡. 𝜎(𝑡)
. 𝑥𝜎(𝑡) = 0 

𝑞-fark denkleminin salınımlı olması için gerek ve yeter şart 

𝑏 >
1

(√𝑞 + 1)
2 

olmasıdır.  

 

 

 

 

 

 

 



  

2. TEMEL KAVRAMLAR 

Bu bölüm dört alt başlıktan oluşmaktadır ve bu başlıklarda, 𝑞-analiz, (𝑝, 𝑞)-analiz, 

sabit nokta, konik ve zaman ölçeği ile ilgili temel tanımlar ve özellikler verilmiştir.  

 𝒒-Analiz İle İlgili Temel Kavram ve Bilgiler  

Tanım 2.1.1. [7] Herhangi bir 𝑛 doğal sayısının 𝑞-benzeri  

[𝑛] =
1 − 𝑞𝑛

1 − 𝑞
 

olarak tanımlanır ve “[𝑛]” ile gösterilir. 𝑞 → 1 iken limit alındığında 𝑞-sayıları 

alışılmış anlamda sayılara indirgenir. 

Örnek 2.1.2. 

                                   [1] =
1−𝑞1

1−𝑞
=

1−𝑞

1−𝑞
= 1 

                                   [2] =
1−𝑞2

1−𝑞
=

(1−𝑞)(1+𝑞)

1−𝑞
= 1 + 𝑞 

                                   [3] =
1−𝑞3

1−𝑞
=

(1−𝑞)(1+𝑞+𝑞2)

1−𝑞
= 1 + 𝑞 + 𝑞2 

dir. 

Tanım 2.1.3. [7] 𝑛 doğal sayısının faktöriyelinin 𝑞-benzeri 

[𝑛]! = {
1,                                        𝑛 = 0
[1] × [2] × ⋯× [𝑛],      𝑛 ≥ 1

 

şeklinde tanımlanır.  

Tanım 2.1.4. [7] 𝑒𝑡 üstel fonksiyonunun 𝑞-benzeri 

𝑒𝑞
𝑡 =∑

𝑡𝑛

[𝑛]!
=

1

(1 − (1 − 𝑞)𝑡)𝑞∞

∞

𝑛=0

 

şeklinde tanımlanır. 
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Tanım 2.1.5. [7] 𝑒𝑡 üstel fonksiyonunun bir diğer 𝑞-benzeri aşağıdaki şekilde 

tanımlanır. 

𝐸𝑞
𝑡 = ∑ 𝑞𝑛.(𝑛−1) 2⁄∞

𝑛=0
𝑡𝑛

[𝑛]!
= (1 + (1 − 𝑞)𝑡)𝑞

∞. 

Uyarı 2.1.6. Klasik üstel fonksiyonlar için 𝑒𝑡𝑒𝑠 = 𝑒𝑠𝑒𝑡 iken 𝑞-üstel fonksiyonlar için  

bu eşitlik geçerli değildir Bu eşitlik eğer 𝑠𝑡 = 𝑞𝑡𝑠 ise 𝑒𝑞
𝑡𝑒𝑞

𝑠 = 𝑒𝑞
𝑡+𝑠 dir. Burada 𝑡 ve 

𝑠’nin simetrik olmayan bu değişme ilişkisinden dolayı genellikle 𝑒𝑞
𝑡𝑒𝑞

𝑠 ≠ 𝑒𝑞
𝑠𝑒𝑞
𝑡  dir.  

Ayrıca, 𝑒𝑞
𝑡  üstel fonksiyonu ile 𝐸𝑞

𝑡  üstel fonksiyonu arasında  

𝑒𝑞
𝑡 . 𝐸𝑞

−𝑡 = 1 

eşitliği vardır ve yukarıdaki tanımlardan kolaylıkla 𝑒𝑞
−𝑡. 𝐸𝑞

𝑡 = 1 eşitliği de elde edilir.  

Tanım 2.1.7. [7] (𝑞-türev) Herhangi bir 𝑥 fonksiyonunun 𝑞-türevi 

(𝐷𝑞𝑥)(0) = lim
𝑡→0
(𝐷𝑞𝑥)(𝑡) 

olmak üzere 

(𝐷𝑞𝑥)(𝑡) =
𝑥(𝑡) − 𝑥(𝑞𝑡)

(1 − 𝑞)𝑡
,     𝑡 ≠ 0, 0 < 𝑞 < 1 

şeklinde tanımlanır ve burada lim
𝑞→1−

𝐷𝑞𝑥(𝑡) = 𝑥′(𝑡) dir. 

Uyarı 2.1.8. 𝐷𝑞 türev operatörü lineerdir. Yani 𝑎 ve 𝑏 herhangi bir sabit olmak üzere  

𝐷𝑞(𝑎. 𝑥(𝑡) + 𝑏. 𝑦(𝑡)) = 𝑎𝐷𝑞𝑥(𝑡) + 𝑏𝐷𝑞𝑦(𝑡) 

özelliği vardır. 

Örnek 2.1.9. 𝑛 bir pozitif tamsayı olmak üzere 𝑥(𝑡) = 𝑡𝑛 fonksiyonunun 𝑞-türevi,  

𝐷𝑞𝑥(𝑡) = 𝐷𝑞𝑡
𝑛 =

(𝑞𝑡)𝑛 − 𝑡𝑛

(𝑞 − 1)𝑡
=
𝑞𝑛 − 1

𝑞 − 1
𝑡𝑛−1 = [𝑛]. 𝑡𝑛−1 

dir. 

Tanım 2.1.10. 𝑥, 𝑦 herhangi iki fonksiyon olmak üzere bu iki fonksiyonun çarpımının 

𝑞-türevi, 

                       𝐷𝑞(𝑥(𝑡). 𝑦(𝑡)) = 𝑥(𝑞𝑡)𝐷𝑞𝑥(𝑡) + 𝑦(𝑡)𝐷𝑞𝑦(𝑡)                                   (2.1) 

dir ve 𝑥 ile 𝑦 fonksiyonlarının rolleri değiştirilirse bu durumda eş değer olarak 

çarpımın 𝑞-türevi, 
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                       𝐷𝑞(𝑥(𝑡). 𝑦(𝑡)) = 𝑥(𝑡)𝐷𝑞𝑦(𝑡) + 𝑦(𝑞𝑡)𝐷𝑞𝑥(𝑡)                                 (2.2) 

olur. 

Tanım 2.1.11. Eğer  

𝑦(𝑡).
𝑥(𝑡)

𝑦(𝑡)
= 𝑥(𝑡) 

fonksiyonunun 𝑞-türevi için (2.1) kuralı kullanılırsa 𝑥 ve 𝑦 fonksiyonunun bölümünün 

𝑞-türevi 

𝐷𝑞 (
𝑥(𝑡)

𝑦(𝑡)
) =

𝑦(𝑡)𝐷𝑞𝑥(𝑡) − 𝑥(𝑡)𝐷𝑞𝑦(𝑡)

𝑦(𝑡)𝑦(𝑞𝑡)
 

dir. Eğer (2.2) kuralı kullanılırsa bu durumda bölüm kuralı 

𝐷𝑞 (
𝑥(𝑡)

𝑦(𝑡)
) =

𝑦(𝑞𝑡)𝐷𝑞𝑥(𝑡) − 𝑥(𝑞𝑡)𝐷𝑞𝑦(𝑡)

𝑦(𝑡)𝑦(𝑞𝑡)
 

olur. Formüllerin her ikisi de geçerlidir.  

Uyarı 2.1.12. Klasik analizde 𝑒𝑡 üstel fonksiyonunun türevi kendisine eşittir. Fakat 𝑞-

analizde durum böyle değildir. 𝑒𝑞
𝑡  üstel fonksiyonunun 𝑞-türevi 𝐷𝑞𝑒𝑞

𝑡 = 𝑒𝑞
𝑡  iken 

𝐷𝑞𝐸𝑞
𝑡 = 𝐸𝑞

𝑞𝑡
 olur.  

Tanım 2.1.13. [7] (𝑞-antitürev) Eğer 𝐷𝑞𝑋(𝑡) = 𝑥(𝑡) ise 𝑋(𝑡) fonksiyonuna, 𝑥(𝑡) 

fonksiyonunun 𝑞-antitürevi denir ve 

∫𝑥(𝑡)𝑑𝑞𝑡 

ile gösterilir. 

Tanım 2.1.14. [7] (𝑞-integral) [𝑎, 𝑏] aralığı üzerinde bir 𝑥 fonksiyonunun 𝑞-integrali 

∫𝑥(𝑠)𝑑𝑞𝑠 = ∑(1 − 𝑞)𝑞𝑛[𝑡. 𝑥(𝑡𝑞𝑛) − 𝑎. 𝑥(𝑎𝑞𝑛)]

∞

𝑛=0

𝑡

𝑎

,   𝑡 ∈ [𝑎, 𝑏] 

olarak tanımlanır. 𝑎 = 0 için bu tanım 

∫𝑥(𝑠)𝑑𝑞𝑠 = ∑𝑡. (1 − 𝑞). 𝑞𝑛. 𝑥(𝑡𝑞𝑛)

∞

𝑛=0

𝑡

0
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dir. Bu tanımlardaki integrallerin var olması için eşitliklerin sağ tarafındaki seriler 

yakınsak olmalıdır. 

Not 2.1.15. 𝑎 ∈ [0, 𝑏] ve 𝑥 fonksiyonu [0, 𝑏] aralığı üzerinde tanımlı ise bu durumda 

𝑞-integrali  

∫𝑥(𝑡)𝑑𝑞𝑡 =

𝑏

𝑎

∫𝑥(𝑡)𝑑𝑞𝑡

𝑏

0

−∫𝑥(𝑡)𝑑𝑞𝑡

𝑎

0

 

dir.  

Teorem 2.1.16. [7] (𝑞-Analizin Temel Teoremi) Eğer 𝑋(𝑡) fonksiyonu 𝑥(𝑡) 

fonksiyonunun anti-türevi ve 𝑋(𝑡) fonksiyonu 𝑥 = 0 noktasında sürekli ise bu 

durumda  0 ≤ 𝑎 < 𝑏 ≤ ∞ olmak üzere  

∫𝑥(𝑡)𝑑𝑞𝑡

𝑏

𝑎

= 𝑋(𝑏) − 𝑋(𝑎) 

dır. 

Not 2.1.17. Kısmi 𝑞-integrasyon kuralı  

∫𝑦(𝑡)

𝑠

0

. 𝐷𝑞𝑥(𝑡)𝑑𝑞𝑡 = 𝑦(𝑡). 𝑥(𝑡) |
𝑠
0
− ∫𝐷𝑞𝑦(𝑡). 𝑥(𝑞𝑡)

𝑠

0

𝑑𝑞𝑡 

şeklindedir. 

Not 2.1.18. İntegrasyon sırasının değişimi 

∫∫𝑥(𝑟)𝑑𝑞𝑟 𝑑𝑞𝑠

𝑠

0

𝑡

0

= ∫ ∫𝑥(𝑟)𝑑𝑞𝑠 𝑑𝑞𝑟

𝑠

𝑞𝑟

𝑡

0

. 

dir. 

 (𝒑, 𝒒)-Analiz İle İlgili Yardımcı Teorem ve Bilgiler 

Tanım 2.2.1. [22, 23] Herhangi bir 𝑛 doğal sayısının (𝑝, 𝑞)-benzeri 

[𝑛]𝑝,𝑞 =
𝑝𝑛 − 𝑞𝑛

𝑝 − 𝑞
 

şeklindedir ve [𝑛]𝑝,𝑞 = [𝑛]𝑞,𝑝 dir 
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Örnek 2.2.2. 

                                   [1]𝑝,𝑞 =
𝑝1−𝑞1

𝑝−𝑞
=

𝑝−𝑞

𝑝−𝑞
= 1 

                                   [2]𝑝,𝑞 =
𝑝2−𝑞2

𝑝−𝑞
=

(𝑝−𝑞)(𝑝+𝑞)

𝑝−𝑞
= 𝑝 + 𝑞 

                                   [3]𝑝,𝑞 =
𝑝3−𝑞3

𝑝−𝑞
=

(𝑝−𝑞)(𝑝2+𝑝𝑞+𝑞2)

𝑝−𝑞
= 𝑝2 + 𝑝𝑞 + 𝑞2 

dir. 

Tanım 2.2.3. [22, 23] 𝑛 doğal sayısının faktöriyelinin (𝑝, 𝑞)-benzeri 

[𝑛]𝑝,𝑞! = {
1,                                                       𝑛 = 0
[1]𝑝,𝑞 × [2]𝑝,𝑞 ×⋯× [𝑛]𝑝,𝑞 ,      𝑛 ≥ 1

 

şeklindedir.  

Tanım 2.2.4. [22, 23] Herhangi bir 𝑥 fonksiyonunun (𝑝, 𝑞)-türevi; 𝑥 fonksiyonu       

𝑡 = 0 noktasında diferensiyellenebilir olmak üzere 

(𝐷𝑝,𝑞𝑥)(0) = lim
𝑡→0
(𝐷𝑝,𝑞𝑥)(𝑡) 

(𝐷𝑝,𝑞𝑥)(𝑡) =
𝑥(𝑝𝑡) − 𝑥(𝑞𝑡)

(𝑝 − 𝑞)𝑡
,     𝑡 ≠ 0,  

şeklinde tanımlanır. Burada 𝑝 = 1 olarak alınırsa (𝑝, 𝑞)-türev,  

(𝐷𝑞𝑥)(𝑡) =
𝑥(𝑡) − 𝑥(𝑞𝑡)

(1 − 𝑞)𝑡
 

𝑞-türevine indirgenir.  

Not 2.2.5. Eğer, 𝑞 → 𝑝 = 1 iken limit alınırsa bu durumda (𝑝, 𝑞)-türev alışılmış türeve 

indirgenir. (𝑝, 𝑞)-türev operatörü lineer bir operatördür (bkz. [30]). Yani 𝑎 ve 𝑏 

herhangi iki sabit sayı olmak üzere  

𝐷𝑝,𝑞(𝑎. 𝑥(𝑡) + 𝑏. 𝑦(𝑡)) = 𝑎. 𝐷𝑝,𝑞𝑥(𝑡) + 𝑏. 𝐷𝑝,𝑞𝑦(𝑡) 

dir. 

Not 2.2.6. 𝑥(𝑡) fonksiyonunun ikinci mertebeden (𝑝, 𝑞)-türevi ise  

𝐷𝑝,𝑞
2 𝑥(𝑡) =

(𝐷𝑝,𝑞𝑥)(𝑝𝑡) − (𝐷𝑝,𝑞𝑥)(𝑞𝑡)

(𝑝 − 𝑞)𝑡
=
𝑞. 𝑥(𝑝2𝑡) − (𝑝 + 𝑞). 𝑥(𝑝𝑞𝑡) + 𝑝. 𝑥(𝑞2𝑡)

(𝑝 − 𝑞)2𝑝𝑞𝑡2
 

dir.                                                     
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Örnek 2.2.7. 𝑛 bir pozitif tamsayı olmak üzere 𝑥(𝑡) = 𝑡𝑛 fonksiyonunun (𝑝, 𝑞)-türevi 

𝐷𝑝,𝑞𝑥(𝑡) = 𝐷𝑝,𝑞𝑡
𝑛 =

(𝑝𝑡)𝑛 − (𝑞𝑡)𝑛

(𝑝 − 𝑞)𝑡
=
𝑝𝑛 − 𝑞𝑛

𝑝 − 𝑞
𝑡𝑛−1 = [𝑛]𝑝,𝑞 . 𝑡

𝑛−1 

dir. 

Tanım 2.2.8. 𝑥(𝑡) ve 𝑦(𝑡) herhangi iki fonksiyon olmak üzere bu iki fonksiyonun 

çarpımının (𝑝, 𝑞)-türevleri 

      𝐷𝑝,𝑞(𝑥(𝑡). 𝑦(𝑡)) = 𝑥(𝑝𝑡)𝐷𝑝,𝑞𝑦(𝑡) + 𝑦(𝑞𝑡)𝐷𝑝,𝑞𝑥(𝑡) 

                                  = 𝑦(𝑝𝑡)𝐷𝑝,𝑞𝑥(𝑡) + 𝑥(𝑞𝑡)𝐷𝑝,𝑞𝑦(𝑡) 

dir ve bu iki fonksiyonunun bölümünün (𝑝, 𝑞)-türevleri ise  

𝐷𝑝,𝑞 (
𝑥(𝑡)

𝑦(𝑡)
) =

𝑦(𝑞𝑡)𝐷𝑝,𝑞𝑥(𝑡) − 𝑥(𝑞𝑡)𝐷𝑝,𝑞𝑦(𝑡)

𝑦(𝑝𝑡)𝑦(𝑞𝑡)
 

                        =
𝑦(𝑝𝑡)𝐷𝑝,𝑞𝑥(𝑡) − 𝑥(𝑝𝑡)𝐷𝑝,𝑞𝑦(𝑡)

𝑦(𝑝𝑡)𝑦(𝑞𝑡)
 

olur (bkz. [23]). 

Uyarı 2.2.9. (𝑝, 𝑞)-analizde herhangi bir genel zincir kuralından bahsedilemez. Ancak 

bununla birlikte özel bir durum için zincir kuralı uygulanabilir. 𝑚 ve 𝑛 sabitler olsun. 

𝑦(𝑡) = 𝑚𝑡𝑛 olmak üzere 𝑥(𝑦(𝑡)) fonksiyonunun (𝑝, 𝑞)-türevi 

𝐷𝑝,𝑞(𝑥(𝑦(𝑡)) ) = (𝐷𝑝𝑛,𝑞𝑛𝑥). (𝑦(𝑡)). 𝐷𝑝,𝑞𝑦(𝑡) 

olur (bkz. [30]). 

Örnek 2.2.10. 𝑦(𝑡) = 𝑞𝑡 olsun. Bu durumda zincir kuralının özel durumu 

uygulanabilir. Kurala göre 𝑚 = 𝑞 ve 𝑛 = 1 dir. 𝑥(𝑦(𝑡)) = 𝑥(𝑞𝑡) fonksiyonunun 

(𝑝, 𝑞)-türevi 

𝐷𝑝,𝑞 (𝑥(𝑦(𝑡))) = (𝐷𝑝,𝑞𝑥). (𝑦(𝑡)). 𝐷𝑝,𝑞(𝑦(𝑡))  =
𝑥(𝑝𝑞𝑡)−𝑥(𝑞2𝑡)

(𝑝−𝑞)𝑡
 

olur.             

Tanım 2.2.11. [23] ((𝑝, 𝑞)-integral) 𝑥: [0, 𝑇] → ℝ  (𝑇 > 0) herhangi bir fonksiyon 

olsun. Bu durumda 𝑥(𝑡) fonksiyonunun (𝑝, 𝑞)-integrali eğer  

|
𝑝

𝑞
| < 1 
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ise 

∫𝑥(𝑠)𝑑𝑝,𝑞

𝑡

0

𝑠 = (𝑞 − 𝑝). 𝑡∑
𝑝𝑛

𝑞𝑛+1

∞

𝑛=0

𝑥 (
𝑝𝑛

𝑞𝑛+1
𝑡)   ,        

olur, eğer 

|
𝑝

𝑞
| > 1 

ise 

∫𝑥(𝑠)𝑑𝑝,𝑞

𝑡

0

𝑠 = (𝑝 − 𝑞). 𝑡∑
𝑞𝑛

𝑝𝑛+1

∞

𝑛=0

𝑥 (
𝑞𝑛

𝑝𝑛+1
𝑡)           

şeklinde tanımlanır. 

Teorem 2.2.12.  [23] ((𝑝, 𝑞)-Analizin Temel Teoremi) 𝑥: [0, 𝑇] → ℝ  (𝑇 > 0) sürekli 

bir fonksiyon olsun. Bu durumda 

∫𝐷𝑝,𝑞

𝑡

0

𝑥(𝑠)𝑑𝑝,𝑞𝑠 = 𝑥(𝑡) − 𝑥(0) 

dir. 

Teorem 2.2.13. [25] 𝑥: [0, 𝑇] → ℝ, (𝑇 > 0) bir sürekli fonksiyon olsun. Bu durumda, 

𝑡 ∈ [0, 𝑝2𝑇] için 

∫∫𝑥(𝑟)

𝑠

0

𝑡

0

𝑑𝑝,𝑞𝑟𝑑𝑝,𝑞𝑠 =
1

𝑝
∫(𝑡 − 𝑞𝑠)𝑥 (

𝑠

𝑝
)

𝑡

0

𝑑𝑝,𝑞𝑠 

dir. 

 Zaman Ölçeği  

Zaman ölçeği teorisi sürekli ve ayrık analizi birleştirmek amacıyla ilk olarak 1988 

yılında Stefan Hilger [45] tarafından doktora tezinde tanıtılmıştır. Bu konu hakkındaki 

ilk çalışmalar Hilger [46],  Albach ve Hilger [47] tarafından yapılmıştır. Bu bölümde 

çalışmaya temel teşkil eden bazı tanım ve kavramlar verilecektir. 

Tanım 2.3.1. [45] Bir zaman ölçeği;   ℝ reel sayılar kümesinin  boştan farklı ve kapalı 

alt kümesi olarak tanımlanır  ve genel olarak “𝕋” ile gösterilir. 
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Örnek 2.3.2. Reel sayılar, tam sayılar, doğal sayılar ve negatif olmayan tamsayılar 

yani; sırasıyla ℝ, ℤ, ℕ ve ℕ0 kümeleri zaman ölçeğine örnek olarak verilebilir. Ayrıca 

[0,1] ∪ [2,3], [0,1] ∪ ℕ ve Cantor kümesi gibi kümeler de zaman ölçeğine örnek 

olarak verilebilir. Rasyonel sayılar, irrasyonel sayılar, kompleks sayılar ve (0,1) açık 

aralığı gibi kümeler ise zaman ölçeği olmayan örneklerdir. 

Tanım 2.3.3. [48, 49] 𝑡 ∈ 𝕋 için 𝜎: 𝕋 → 𝕋 ileri sıçrama operatörü , 

𝜎(𝑡) = inf{𝑠 ∈ 𝕋: 𝑠 > 𝑡} 

şeklinde tanımlanır. Bu tanımdan herhangi bir 𝑡 ∈ 𝕋 için 𝜎(𝑡) ≥ 𝑡 olduğu görülür. 

Tanım 2.3.4. [48, 49]  𝑡 ∈ 𝕋 için 𝜌: 𝕋 → 𝕋 geri sıçrama operatörü, 

𝜌(𝑡) = sup{𝑠 ∈ 𝕋: 𝑠 < 𝑡} 

şeklinde tanımlanır. Bu tanımdan herhangi bir 𝑡 ∈ 𝕋 için 𝜌(𝑡) ≤ 𝑡 olduğu görülür. 

Örnek 2.3.5. [48, 49]   

1) 𝑞 > 1 için 𝕋 = 𝑞ℕ0 gözönüne alınırsa,  

𝜎(𝑡) = inf{𝑠 ∈ 𝕋: 𝑠 > 𝑞𝑘} = 𝑞𝑘+1 = 𝑞. 𝑞𝑘 = 𝑞𝑡 

𝜌(𝑡) = sup{𝑠 ∈ 𝕋: 𝑠 < 𝑞𝑘} = 𝑞𝑘−1 = 𝑞−1𝑞𝑘 =
𝑡

𝑞
 

olur. 

2)   0 < 𝑝 < 1 için 𝕋 = 𝑝ℕ0 ∪ {0} gözönüne alınırsa, 

𝜎(𝑡) = inf{𝑠 ∈ 𝕋: 𝑠 > 𝑝𝑘} = 𝑝𝑘−1 = 𝑝−1. 𝑝𝑘 =
𝑡

𝑝
 

𝜌(𝑡) = sup{𝑠 ∈ 𝕋: 𝑠 < 𝑝𝑘} = 𝑝𝑘+1 = 𝑝. 𝑝𝑘 = 𝑝𝑡 

dir. 

Tanım 2.3.6. [48, 49]   𝑥: 𝕋 → ℝ fonksiyonu verildiğinde, herhangi bir 𝑡 ∈ 𝕋 için 

𝑥𝜎: 𝕋 → ℝ ileri sıçrama operatörü 𝑥𝜎 = 𝑥 ∘ 𝜎, 

𝑥𝜎(𝑡) = 𝑥(𝜎(𝑡)) 

olur. 
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 Diğer Temel Kavramlar 

Tanım 2.4.1.  𝒳 ≠ ∅ olsun. 𝑑:𝒳 ×𝒳 → ℝ+ dönüşümü eğer  

d1) 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦 

d2) Her 𝑥, 𝑦 ∈ 𝒳 için 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

d3) Her 𝑥, 𝑦, 𝑧 ∈ 𝒳 için 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

şartlarını sağlıyorsa 𝑑 dönüşümüne 𝒳 üzerinde bir metrik ve (𝒳, 𝑑) ikilisine metrik 

uzay denir. 

Örnek 2.4.2. 𝒳 = ℝ olsun. Her 𝑥, 𝑦 ∈ 𝒳 için 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, ℝ üzerinde bir 

metriktir. Bu metriğe doğal (alışılmış) metrik ya da mutlak değer metriği denir.  

Tanım 2.4.3.[50] 

1) Yakınsaklık: (𝒳, 𝑑) bir metrik uzay, {𝑥𝑛} dizisi 𝒳 de bir dizi ve 𝑥 ∈ 𝒳 olsun. 

Eğer her 𝜀 > 0 için 𝑛 ≥ 𝑛0 olacak şekilde her bir 𝑛 ∈ ℕ için 

𝑑(𝑥𝑛, 𝑥) = |𝑥𝑛 − 𝑥| < 𝜀 

    olacak şekilde bir 𝑛0 ∈ ℕ varsa {𝑥𝑛} dizisine yakınsak dizi denir.  

2) Cauchy Dizisi: (𝒳, 𝑑) bir metrik uzay, {𝑥𝑛} dizisi 𝒳 de bir dizi olsun. Eğer her 

𝜀 > 0 için 𝑛,𝑚 ≥ 𝑛0 olacak şekilde her bir 𝑛,𝑚 ∈ ℕ için 

𝑑(𝑥𝑛, 𝑥𝑚) = |𝑥𝑛 − 𝑥𝑚| < 𝜀 

            olacak şekilde bir 𝑛0 ∈ ℕ varsa {𝑥𝑛} dizisine bir Cauchy dizisi denir.  

3) Tamlık: (𝒳, 𝑑) bir metrik uzay ve 𝒳 uzayındaki her Cauchy dizisi 𝒳 uzayında 

yakınsak ise bu durumda (𝒳, 𝑑) metrik uzayına tam metrik uzay denir. 

Tanım 2.4.4. [51] (𝒳, 𝑑1) ve (𝒴, 𝑑2) iki metrik uzaylar ve 𝑓:𝒳 → 𝒴 şeklinde tanımlı 

bir fonksiyon ve  𝑥 ∈ 𝒳 olsun. 

a) Eğer her 𝜀 > 0 sayısına karşılık, her 𝑦 ∈ 𝒳 için 

𝑑1(𝑥, 𝑦) < 𝛿 ⟹ 𝑑2(𝑓(𝑥), 𝑓(𝑦)) < 𝜀 
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olacak biçimde bir 𝛿 > 0 sayısı ( 𝛿 sayısı hem 𝑥 ∈ 𝒳’e hem de 𝜀’a bağlıdır) 

varsa 𝑓 ye 𝑥 noktasında süreklidir denir. 

b) Eğer 𝑓 fonksiyonu 𝒳’in her noktasında sürekli ise 𝑓 (𝒳 üzerinde) süreklidir 

denir. 

c) Eğer her 𝜀 > 0 sayısına karşılık, her 𝑥, 𝑦 ∈ 𝒳 için 

𝑑1(𝑥, 𝑦) < 𝛿 ⟹ 𝑑2(𝑓(𝑥), 𝑓(𝑦)) < 𝜀 

olacak biçimde bir 𝛿 > 0 sayısı ( 𝛿 sayısı 𝑥, 𝑦 ∈ 𝒳 den bağımsızdır) varsa 𝑓 

ye (𝒳 üzerinde) düzgün süreklidir denir . 

Teorem 2.4.5. [51] (𝒳, 𝑑1) ve (𝒴, 𝑑2) iki metrik uzay, 𝑓:𝒳 → 𝒴  bir fonksiyon olsun. 

𝑓, 𝑥 ∈ 𝒳 noktasında sürekli olması için gerek ve yeter şart (𝒳, 𝑑1) içinde 𝑥𝑛 → 𝑥 

şeklindeki her {𝑥𝑛} dizisi için (𝒴, 𝑑2) içindeki {𝑓(𝑥𝑛)} dizisi 𝑓(𝑥𝑛) → 𝑓(𝑥) olmasıdır. 

Bu teoremdeki süreklilik kavramına dizisel süreklilik denilir. Metrik uzaylarda 

süreklilik ile dizisel süreklilik kavramları denktir. 

Tanım 2.4.6. [51] (𝒳, 𝑑) bir metrik uzay ve 𝑀, 𝐶𝔽(𝒳) in boştan farklı bir alt kümesi 

ve 𝑥0 ∈ 𝒳 olsun. Eğer verilen her bir 𝜀 > 0 ve her 𝑓 ∈ 𝑀 için 𝑑(𝑥, 𝑥0) < 𝛿 iken 

𝑑(𝑓(𝑥), 𝑓(𝑥0)) < 𝜀 olacak şekilde bir 𝛿(𝜀, 𝑥0) > 0 var ise 𝑀, 𝑥0 noktasında 

eşsüreklidir denir. 

Tanım 2.4.7. [52] Bir kümenin her açık örtüsü sonlu bir alt örtüye sahipse kompakttır 

denir. Metrik uzayda her dizi yakınsak bir alt diziye sahipse dizisel kompakttır denir. 

Metrik uzaylarda kompaktlık ile dizisel kompaktlık kavramları denktir.  Sonlu boyutlu 

lineer uzaylarda kompaktlık  kavramı kapalılık ve sınırlılığa karşılık gelir. 

Tanım 2.4.8. [51] (𝒳, 𝑑) bir metrik uzay olsun. Bir 𝑀 ⊂ 𝒳 kümesi verildiğinde 𝑀̅ 

kapanışı kompakt ise M ye relatif (göreceli) kompakt denir. 

Tanım 2.4.9. [53] 𝒳 bir reel (kompleks) vektör uzayı olsun. Eğer ‖∙‖:𝒳 ×𝒳 → ℝ+ 

dönüşümü 

n1) ‖𝑥‖ = 0 ⟺ 𝑥 = 0 

n2) herhangi bir 𝑥 ∈ 𝒳 ve herhangi bir 𝛼 skaleri için ‖𝛼. 𝑥‖ = |𝛼|. ‖𝑥‖       

n3) her 𝑥, 𝑦 ∈ 𝒳 için ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ 
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şartlarını sağlıyorsa bir norm olarak adlandırılır ve (𝒳, ‖∙‖) ikilisine ise normlu 

(lineer) vektör uzayı denir. 

Örnek 2.4.10. [53] (𝒳, ‖∙‖) bir normlu vektör uzayı olsun. 𝑥, 𝑦 ∈ 𝒳 için 

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ 

ile tanımlı 𝑑:𝒳 ×𝒳 → ℝ+ fonksiyonu 𝒳 üzerinde bir metriktir. 

Uyarı 2.4.11. [51, 53] Eğer (𝒳, ‖∙‖) bir normlu vektör uzayında 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ 

ile tanımlı 𝑑 metriğine ‖∙‖ normu tarafından indirgenen (genelleştirilen, üretilen) 

metrik adı verilir.  

Tanım 2.4.12. [51] Tam normlu uzaylara Banach uzayı denir. 

Tanım 2.4.13. [51] (𝒳, 𝑑) bir kompakt metrik uzay ve 𝐶𝔽(𝒳) üzerinde bir metrik, 

𝑥, 𝑦 ∈ 𝐶𝔽(𝒳) için  

𝑑∞(𝑥, 𝑦) = sup{|𝑥(𝑡) − 𝑦(𝑡)|: 𝑡 ∈ 𝒳} 

ile tanımlanır. Bu metrik düzgün (supremum veya uniform) metrik olarak adlandırılır. 

Teorem 2.4.14. [51] (Arzela-Ascoli Teoremi) (𝒳, 𝑑) bir kompakt metrik uzay ve 𝑀, 

(𝐶𝔽(𝒳) , 𝑑∞) tam uzayının kapalı bir alt kümesi olsun. Bu durumda aşağıdakiler 

birbirine denktir. 

a) M kompakttır. 

b) 𝑀 sınırlıdır ve 𝒳 üzerinde eşsüreklidir. 

Teorem 2.4.15. [54] (Arzela) [𝑎, 𝑏] kapalı aralığı üzerinde tanımlı 𝜑 sürekli 

fonksiyonlarının bir Φ ailesinin 𝐶[𝑎,𝑏] de relatif kompakt olması için gerek ve yeter 

şart Φ’nin düzgün sınırlı ve eşsürekli olmasıdır. 

Teorem 2.4.16. [51] (Lebesgue Sınırlı Yakınsaklık Teoremi) 𝐿1(𝑆) içindeki 𝑥𝑛: 𝑆 →

ℝ fonksiyonlarının bir {𝑥𝑛} dizisi verilsin ve 𝑛 → ∞ için 𝑥𝑛(𝑡) → 𝑥(𝑡) (h.h.h) olsun. 

Eğer her 𝑛 ve hemen hemen her 𝑡 için  

𝑥𝑛(𝑡) ≤ 𝑦(𝑡) 
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olacak şekilde bir 𝑦 ∈ 𝐿1(𝑆) fonksiyonu varsa o zaman 𝑛 → ∞ için 𝑆 üzerinde 

∫𝑥𝑛 𝑑𝑚 → ∫𝑥 𝑑𝑚 dir. 

Tanım 2.4.17. [53] 𝒳 ≠ ∅ bir küme ve 𝑇:𝒳 → 𝒳 bir dönüşüm ve 𝑥 ∈ 𝒳 olsun. Eğer  

𝑇(𝑥) = 𝑥 

ise bu eşitliği sağlayan 𝑥 noktasına 𝑇’nin sabit noktası denir. 𝑇’nin tüm sabit 

noktalarının kümesi 𝐹(𝑇) veya 𝐹𝑇 ile gösterilir. 

Örnek 2.4.18. [53] Eğer 𝒳 = ℝ ve 𝑇(𝑥) = 𝑥2 + 5𝑥 + 4 ise  𝐹𝑇 = {−2} dir. 

 Eğer 𝒳 = ℝ ve 𝑇(𝑥) = 𝑥 ise bu durumda 𝐹𝑇 = ℝ dir.  

Eğer 𝒳 = ℝ ve 𝑇(𝑥) = 𝑥 + 2 ise bu durumda 𝐹𝑇 = ∅ dir. 

Tanım 2.4.21. [55] (𝒳, ‖. ‖) bir normlu uzay ve 𝑇:𝒳 → 𝒳 bir dönüşüm olsun. Her 

𝑥, 𝑦 ∈ 𝒳 için  

‖𝑇(𝑥) − 𝑇(𝑦)‖ ≤ 𝑘‖𝑥 − 𝑦‖ 

olacak şekilde bir 0 < 𝑘 < 1 sabiti varsa 𝑇 dönüşümüne daralma dönüşümü denir. 

Teorem 2.4.23. [56] (Schaefer Sabit Nokta Teoremi) 𝒳 bir Banach uzayı, 𝑇:𝒳 → 𝒳 

tamamen (completely) sürekli operatör ve Δ = {𝑡 ∈ 𝒳: 𝑡 = 𝛽. 𝑇(𝑡), 0 < 𝛽 < 1} 

kümesi sınırlı olsun. Bu durumda 𝑇, 𝒳 uzayında bir sabit noktaya sahiptir. 

Teorem 2.4.24. [57] (Krasnoselskii Sabit Nokta Teoremi) 𝑀, bir 𝒳 Banach uzayının 

boştan farklı, sınırlı, kapalı ve konveks bir alt kümesi olsun. Kabul edelimki her 𝑢, 𝑣 ∈

𝑀 için 

𝒱(𝑢) + Γ(𝑣) ∈ 𝑀 

olacak şekilde 𝒱:𝑀 → 𝒳 bir daralma operatörü ve Γ:𝑀 → 𝒳 bir kompakt operatörü 

olsun. Bu durumda 𝒱 + Γ, 𝑀 de bir sabit noktaya sahiptir. 

Teorem 2.4.25. [58] (Banach Sabit Nokta Teoremi) 𝒳 bir Banach uzayı, 𝑇:𝒳 → 𝒳 

bir dönüşüm olsun. Eğer herhangi bir 𝑢, 𝑣 ∈ 𝒳 için  
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‖𝑇(𝑢) − 𝑇(𝑣)‖ ≤ 𝜃‖𝑢 − 𝑣‖ 

olacak şekilde 𝜃 ∈ [0,1) mevcutsa bu durumda 𝑇 dönüşümü 𝒳 uzayında bir tek sabit 

noktaya sahiptir. 

Tanım 2.4.26. [59] 𝐸 bir reel Banach uzayı olsun. 𝐸 nin bir 𝑃 alt kümesi 

i) 𝑃 ≠ ∅, 𝑃 ≠ {0} ve 𝑃 kapalı 

ii) 𝑎, 𝑏 ≥ 0 ve 𝑎, 𝑏 ∈ ℝ olmak üzere her 𝑢, 𝑣 ∈ 𝑃 için 𝑎. 𝑢 + 𝑏. 𝑣 ∈ 𝑃 

iii) Eğer 𝑢 ∈ 𝑃 ve −𝑢 ∈ 𝑃 ise bu durumda 𝑢 = 0 

şartlarını sağlıyorsa P ye bir konik (cone) denir. 

Örnek 2.4.27. ℝ𝑛 = {𝑢 = (𝑢1, ⋯ , 𝑢𝑛)
𝑇: 𝑢𝑖 ∈ ℝ, ∀𝑖 = 1, 𝑛̅̅ ̅̅ ̅}   kümesi  üzerinde,  

ℝ+
𝑛 = {𝑢 = (𝑢1, ⋯ , 𝑢𝑛)

𝑇 ∈ ℝ𝑛: 𝑢𝑖 ≥ 0, ∀𝑖 = 1, 𝑛̅̅ ̅̅ ̅}   kümesi bir koniktir 

ve 

 𝒦𝑛 = {𝐶 = (𝑐𝑖𝑗): 𝐶, 𝑛.mertebeden kare matris, 𝑐𝑖𝑗  ∈  𝔽 } kümesi  üzerinde,  

𝒦𝑛
+ = {𝐶 = (𝑐𝑖𝑗) ∈ 𝒦𝑛: 𝑐𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅}  kümesi bir koniktir.  

Ayrıca 𝑃 koniği ile bir “≤” kısmi sıralama bağıntısı 𝑢 ≤ 𝑣 ⟺ 𝑣 − 𝑢 ∈ 𝑃 şeklinde 

tanımlanır (bkz. [60]).  

Açıklama 2.4.28.  ℝ𝑛 ve 𝒦𝑛 içinde 

∀𝑢, 𝑣 ∈ ℝ𝑛 , 𝑢 ≤ 𝑣 ⟺ 𝑣 − 𝑢 ∈ ℝ+
𝑛  

ve  

∀𝐶,𝐷 ∈ 𝒦𝑛 , 𝐶 ≤ 𝐷 ⟺ 𝐷 − 𝐶 ∈ 𝒦𝑛
+ 

özellikleri birer sıralama bağıntısıdır. Buna göre her bir 𝑢 ∈ ℝ𝑛 için 𝑢 > 0 ⟺ 𝑢 ≥

0  ve  𝑢 ≠ 0 dir ve benzer şekilde her bir 𝐶 ∈ 𝒦𝑛 için 𝐶 > 0 ⟺ 𝐶 ≥ 0  ve  𝐶 ≠ 0 

olur.  

Son olarak (4.13) fark denkleminin çözümlerinin salınımlılığı ile ilgili tanımlar 

aşağıdaki gibidir. 
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Tanım 2.4.29.  

i) Eğer 𝑥(𝑡) = 0 ise bu durumda 𝑡 noktasında (4.13) denkleminin 𝑥(𝑡) 

çözümü bir genelleştirilmiş sıfıra sahiptir denir. Eğer 𝑥(𝑞𝑡). 𝑥𝜎(𝑡) < 0 ise 

bu durumda 𝑥(𝑡) çözümü (𝑞𝑡, 𝜎(𝑡)) aralığında bir genelleştirilmiş sıfıra 

sahiptir denir. 

ii) Eğer [𝑎, 𝑏] aralığında iki (veya daha fazla) genelleştirilmiş sıfır ile (4.13) 

denkleminin aşikar olmayan hiçbir çözümü yoksa, (4.13) denklemi [𝑎, 𝑏] 

aralığı üzerinde non-conjugate (eşlenik değildir) denir. 

iii) Her 𝑎 < 𝑏 için [𝑎, 𝑏] aralığı üzerinde (4.13) denklemi non-conjugate 

olacak şekilde bir 𝑎 ∈ [𝜁,∞] varsa bu durumda (4.13) denkleminin [𝜁,∞] 

aralığı üzerinde non-oscillatory (yani salınımlı olmadığı) olduğu söylenir. 

Diğer durumlarda (4.13) denkleminin [𝜁,∞] aralığı üzerinde salınımlı 

(oscillatory) olduğu anlaşılır. 

iv) Eğer bazı 𝑇 > 0 için [𝑇,∞] aralığı üzerinde 𝑥(𝑞𝑡). 𝑥𝜎(𝑡) > 0 ise (4.13) 

denkleminin bir 𝑥(𝑡) çözümü salınımlı değildir denir. Aksi durumda [𝑇,∞] 

aralığı üzerinde 𝑥(𝑡) çözümü salınımlıdır denilir. 

 

 

 

 

 

 

 

 

 

 

 

 



  

3. LİNEER OLMAYAN 𝒒-FARK DENKLEM SİSTEMLERİNİN ÇÖZÜMLERİ  

  Yardımcı Lemma ve Sonuçlar 

Bu kısımda 

{
𝑥(0) = 𝑥0                                                        

𝑦(0) = ∑ 𝐶𝑗𝑦(𝑇𝑗)
𝑁
𝑗=1 + ∫ 𝐾(𝑡). 𝑦(𝑡)𝑑𝑞𝑡

𝑇

0

                 (3.1) 

 çok noktalı ve 𝑞-başlangıç şartları ile birlikte 

                       {
𝐷𝑞𝑥(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑦(𝑡)),        𝑡 ∈ 𝑆

∗

𝐷𝑞𝑦(𝑡) = ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡)),        𝑡 ∈ 𝑆∗
   (3.2) 

şeklindeki (3.1)-(3.2) lineer olmayan 𝑞-fark denklem sisteminin çözümü 

incelenecektir.  

Bu sistemde 𝑥0 ∈ ℝ
𝑛 bir başlangıç noktası, 𝑗 = 1,⋯ ,𝑁 için 𝐶𝑗 ∈ 𝒦𝑛 ve 0 < 𝑇1 <

⋯ < 𝑇𝑁 = 𝑇, 𝑇 ∈ 𝑞ℕ̅ olacak şekilde sabitler, 𝐾: [0, 𝑇] ∩ 𝑞ℕ̅ → 𝒦𝑛 sürekli fonksiyon 

ve 𝑔, ℎ ∈ 𝐶([0, 𝑇] ∩ 𝑞ℕ̅ ×ℝ𝑛 × ℝ𝑛; ℝ𝑛) sürekli fonksiyonlardır. Ayrıca her bir 𝑛. 

mertebeden 𝐶 = (𝑐𝑖𝑗) ∈ 𝒦𝑛  kare matrisinin normu  

‖𝐶‖1 = sup
0≠𝑢∈ℝ𝑛

|𝐶𝑢|1
|𝑢|1

= max
1≤𝑗≤𝑛

∑|𝑐𝑖𝑗|

𝑛

𝑖=1

 

şeklindedir. 𝜆, 𝛾 ≥ 0 olmak üzere 

𝑔𝛾(𝑡, 𝑥, 𝑦) = 𝑔(𝑡, 𝑥, 𝑦) + 𝛾. 𝑥(𝑞𝑡) 

ve 

ℎ𝜆(𝑡, 𝑥, 𝑦) = ℎ(𝑡, 𝑥, 𝑦) + 𝜆. 𝑦(𝑞𝑡) 

alalım. Ayrıca  
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𝜎𝜆,𝑞 = 𝐼 −∑𝐶𝑗 . 𝐸𝑞
−𝜆𝑇𝑗 −∫𝐾(𝜏)

𝑇

0

𝑁

𝑗=1

. 𝐸𝑞
−𝜆𝜏𝑑𝑞𝜏 

olsun (Bu bölümde kullanılan 𝜎 dördüncü bölümde aynı gösterime sahip olan sıçrama 

operatörü ile aynı değildir). 

 (3.1)-(3.2) denklem sisteminin (3.3)-integral denklem sisteminin çözümüne denk 

olduğunu ifade eden aşağıdaki Lemmayı verelim. 

Lemma 3.1.1. Kabul edelimki det 𝜎𝜆,𝑞 ≠ 0 olsun. Bu durumda (𝑥, 𝑦) ∈ 𝐶(𝑆;ℝ𝑛) ×

𝐶(𝑆;ℝ𝑛) nin (3.1)-(3.2) denklem sisteminin bir çözümü olması için gerek ve yeter şart 

(x,y) nin aşağıdaki (3.3)  integral denklem sisteminin bir çözümü olmasıdır.  

{
 
 

 
 𝑥(𝑡) = 𝐸𝑞

−𝛾𝑡
. 𝑥0 + ∫ 𝐸𝑞

−𝛾𝑡
. 𝑒𝑞
−𝛾𝑡
. 𝑔𝛾(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠,

𝑡

0

𝑦(𝑡) = ∫ 𝐸𝑞
−𝜆𝑡. 𝑒𝑞

𝜆𝑠𝑡

0
. ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠                       

+𝐸𝑞
−𝜆𝑡. 𝜎𝜆,𝑞

−1 ∫ (∫ 𝐸𝑞
−𝜆𝜏.

𝑇

𝑞𝑠
𝑒𝑞
𝜆𝑠. 𝐾(𝜏)𝑑𝑞𝜏) .

𝑇

0
ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠

+𝐸𝑞
−𝜆𝑡. 𝜎𝜆,𝑞

−1∑ 𝐶𝑗 ∫ 𝐸𝑞
−𝜆𝑇𝑗 . 𝑒𝑞

𝜆𝑠. ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠
𝑇𝑗
0

𝑁
𝑗=1 .

 (3.3) 

İspat.  (𝑥, 𝑦) ∈ 𝐶(𝑆;ℝ𝑛) × 𝐶(𝑆;ℝ𝑛) (3.1)-(3.2) probleminin bir çözümü olsun. 

Açıkça (𝑥, 𝑦) ∈ 𝐶1(𝑆;ℝ𝑛) × 𝐶1(𝑆;ℝ𝑛) dir ve (𝑥, 𝑦), (3.1)-(3.2) problemini sağlar. 

Her bir 𝜆, 𝛾 ≥ 0 için (3.1) sistemi 

{
𝐷𝑞𝑥(𝑡) + 𝛾. 𝑥(𝑞𝑡) = 𝑔𝛾(𝑡, 𝑥, 𝑦),     𝑡 ∈ 𝑆

∗

𝐷𝑞𝑦(𝑡) + 𝜆. 𝑥(𝑞𝑡) = ℎ𝜆(𝑡, 𝑥, 𝑦),     𝑡 ∈ 𝑆
∗    (3.4) 

şeklindeki bir eş değer forma dönüştürülebilir. (3.4) deki denklemler sırasıyla 𝑒𝑞
𝛾𝑡

 ve 

𝑒𝑞
𝜆𝑠 üstel fonksiyonları ile çarpılır ve 0 dan 𝑡 ye kadar 𝑞-integrali alınırsa  

𝑥(𝑡) = 𝐸𝑞
−𝛾𝑡
. 𝑥0 + ∫ 𝐸𝑞

−𝛾𝑡
. 𝑒𝑞
−𝛾𝑠
. 𝑔𝛾(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠

𝑡

0
    (3.5) 

ve  

𝑦(𝑡) = 𝐸𝑞
−𝜆𝑡. 𝑦(0) + ∫ 𝐸𝑞

−𝜆𝑡. 𝑒𝑞
𝜆𝑠𝑡

0
. ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠   (3.6) 

denklemleri elde edilir. (3.6) denkleminden  

∫𝐾(𝜏). 𝑦(𝜏)𝑑𝑞𝜏 = 𝑦(0)∫𝐾(𝜏)

𝑇

0

𝑇

0

. 𝐸𝑞
−𝜆𝜏𝑑𝑞𝜏 
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+∫𝐾(𝜏)(∫𝐸𝑞
−𝜆𝜏.

𝜏

0

𝑒𝑞
𝜆𝑠ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠)

𝑇

0

𝑑𝑞𝜏 

                                      = 𝑦(0) ∫ 𝐾(𝜏)
𝑇

0
. 𝐸𝑞

−𝜆𝜏𝑑𝑞𝜏 

+∫(∫𝐸𝑞
−𝜆𝑡.

𝑇

𝑞𝑠

𝑒𝑞
𝜆𝑠𝐾(𝜏)𝑑𝑞𝜏)

𝑇

0

ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠 

ve buradan 

∑𝐶𝑗 . 𝑦(𝑇𝑗)

𝑁

𝑗=1

− 𝑦(0)∑𝐶𝑗 .

𝑁

𝑗=1

𝐸𝑞
−𝜆𝑇𝑗 =∑𝐶𝑗∫ 𝐸𝑞

−𝜆𝑇𝑗

𝑇𝑗

0

𝑁

𝑗=1

. 𝑒𝑞
𝜆𝑠 . ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠 

elde edilir. Buna göre  

𝑦(0) =∑𝐶𝑗 . 𝑦(𝑇𝑗)

𝑁

𝑗=1

+∫𝐾(𝑡). 𝑦(𝑡)𝑑𝑞𝑡

𝑇

0

 

= 𝑦(0)∑𝐶𝑗 .

𝑁

𝑗=1

𝐸𝑞
−𝜆𝑇𝑗 +∑𝐶𝑗∫ 𝐸𝑞

−𝜆𝑇𝑗

𝑇𝑗

0

𝑁

𝑗=1

. 𝑒𝑞
𝜆𝑠 . ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠 

                           +𝑦(0) ∫ 𝐾(𝜏)𝐸𝑞
−𝜆𝜏𝑑𝑞𝜏

𝑇

0
 

                           +∫ (∫ 𝐸𝑞
−𝜆𝜏. 𝑒𝑞

𝜆𝑠 .
𝑇

𝑞𝑠
𝐾(𝜏)𝑑𝑞𝜏)

𝑇

0
. ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠 

eşitliği elde edilir. Buradan  

𝑦(0). (𝐼 −∑𝐶𝑗 .

𝑁

𝑗=1

𝐸𝑞
−𝜆𝑇𝑗 −∫𝐾(𝜏).

𝑇

0

𝐸𝑞
−𝜆𝜏𝑑𝑞𝜏) 

=∑𝐶𝑗∫ 𝐸𝑞
−𝜆𝑇𝑗

𝑇𝑗

0

𝑁

𝑗=1

. 𝑒𝑞
𝜆𝑠. ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠 

                      +∫ (∫ 𝐸𝑞
−𝜆𝜏. 𝑒𝑞

𝜆𝑠.
𝑇

𝑞𝑠
𝐾(𝜏)𝑑𝑞𝜏)

𝑇

0
. ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠 

ve dolayısıyla 
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𝑦(0) = 𝜎𝜆,𝑞
−1∑𝐶𝑗∫ 𝐸𝑞

−𝜆𝑇𝑗

𝑇𝑗

0

𝑁

𝑗=1

. 𝑒𝑞
𝜆𝑠. ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠 

             +𝜎𝜆,𝑞
−1 ∫ (∫ 𝐸𝑞

−𝜆𝜏. 𝑒𝑞
𝜆𝑠 .

𝑇

𝑞𝑠
𝐾(𝜏)𝑑𝑞𝜏)

𝑇

0
. ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞   (3.7) 

elde edilir. (3.3), (3.4) ve (3.5) eşitliklerini kullanarak (𝑥, 𝑦) nin (3.1) sistemini 

sağladığı görülür. 

Tersine (𝑥, 𝑦) ∈ 𝐶(𝑆;ℝ𝑛) × 𝐶(𝑆;ℝ𝑛), (3.1) sisteminin bir çözümü olsun. Bu 

durumda (𝑥, 𝑦) ∈ 𝐶1(𝑆; ℝ𝑛) × 𝐶1(𝑆;ℝ𝑛) olduğu kolayca görülür. (𝑥, 𝑦), (3.1)-(3.2) 

problemini sağlar. Böylece Lemma’nın ispatı tamamlanır. 

Sonuç 3.1.2. 𝑆 = [0, 𝑇] olsun. Eğer 𝑒𝑞
𝑡 , 𝑞-üstel fonksiyonunun yerine klasik 𝑒𝑡 üstel 

fonksiyonu kullanılırsa 𝑞 → 1 iken Lemma literatürdeki klasik Lemma ya indirgenir 

(bkz. [21]). 

Ayrıca Lemma 3.1.1 den Green fonksiyonu yardımıyla 𝑦(𝑡) fonksiyonu yeniden 

aşağıdaki gibi yazılabilir. 

Sonuç 3.1.3. Green fonksiyonu, Lemma 3.1.1 yardımıyla  

𝐺𝑞(𝑡, 𝑠) = {
𝐸𝑞
−𝜆𝑡. 𝑒𝑞

𝜆𝑠. 𝐼,   0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,   𝑡 ∈ 𝑆

0,                       0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,    𝑡 ∈ 𝑆 
 

    +𝐸𝑞
−𝜆𝑡. 𝑒𝑞

𝜆𝑠. 𝜎𝜆,𝑞
−1 ∫ 𝐸𝑞

−𝜆𝜏. 𝐾(𝜏)𝑑𝑞𝜏
𝑇

𝑞𝑠
 

    +𝐸𝑞
−𝜆𝑡. 𝑒𝑞

𝜆𝑠. 𝜎𝜆,𝑞
−1

{
 
 

 
 ∑ 𝐸𝑞

−𝜆𝑇𝑗 . 𝐶𝑗 ,    
𝑁
𝑗=1 0 ≤ 𝑠 ≤ 𝑇1,

⋮ ⋮

∑ 𝐸𝑞
−𝜆𝑇𝑗 . 𝐶𝑗 ,   

𝑁
𝑗=𝑘 𝑇𝑘−1 ≤ 𝑠 ≤ 𝑇𝑘,

⋮ ⋮
𝐸𝑞
−𝜆𝑇 . 𝐶𝑁 , 𝑇𝑁−1 ≤ 𝑠 ≤ 𝑇𝑁 = 𝑇

   (3.8) 

şeklinde tanımlanır. Bu durumda (3.1) deki 𝑦(𝑡) fonksiyonu (3.8) in yardımıyla  

𝑦(𝑡) = ∫ 𝐺𝑞(𝑡, 𝑠). ℎ𝜆(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠
𝑇

0
   (3.9) 

şeklinde yazılır. 

Uyarı 3.1.4. 𝐶 herhangi bir kare matris olsun. 𝐶 > 0 olması 𝐶−1 > 0 olmasını garanti 

etmez. 𝐶, 02,2 ∈ 𝒦𝑛 ve 𝐶 > 0 olsun. Ayrıca C terslenebilir bir matris olsun. 𝐶 > 0 

olması için gerek ve yeter şart 𝐶 ≠ 0 ve 𝐶 − 0 = 𝐶 ∈ 𝒦𝑛
+ olmasıdır. Buna göre 

örneğin 
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𝐶 = [
1/2 1/6
0 1/3

] > 0 

olsun. Bu durumda  

𝐶−1 = [
2 −1
0 3

] 

olup 𝐶−1 > 0 değildir. 

Şimdi Green fonksiyonu ile ilgili aşağıdaki Lemma verilebilir. 

Lemma 3.1.5. Kabul edelim ki her 𝑡 ∈ 𝑆 için 𝐾(𝑡) ≥ 0 ve her 𝑗 = 1,⋯ ,𝑁 − 1 için 

𝐶𝑗 ≥ 0 ve 𝐶𝑁 > 0 ve. 𝑑𝑒𝑡𝜎𝜆,𝑞 ≠ 0 olsun. Ayrıca her 𝑖, 𝑗 = 1,⋯ , 𝑛 − 1 için 𝑑𝑖𝑗 > 0 ile 

𝜎𝜆,𝑞
−1 > 0 ve 𝜎𝜆,𝑞

−1. 𝐶𝑁 = 𝑑𝑖𝑗 alalım. Bu durumda her 𝑠, 𝑡 ∈ 𝑆 için  

𝐸𝑞
−𝜆𝑇 . 𝜎𝜆,𝑞

−1. 𝐶𝑁 . 𝐸𝑞
−𝜆𝑡. 𝑒𝑞

𝜆𝑠 ≤ 𝐺𝑞(𝑡, 𝑠) ≤ 𝜎𝜆,𝑞
−1. 𝐸𝑞

−𝜆𝑡. 𝑒𝑞
𝜆𝑠 

eşitsizliği geçerlidir. 

İspat. Green fonksiyonunun tanımı yardımıyla doğrudan hesaplamayla 

𝐺𝑞(𝑡, 𝑠) ≥ 𝐸𝑞
−𝜆𝑇 . 𝜎𝜆,𝑞

−1. 𝐶𝑁 . 𝐸𝑞
−𝜆𝑡. 𝑒𝑞

𝜆𝑠               (3.10)        

elde edilir ve ters eşitsizlik ise 

𝐺𝑞(𝑡, 𝑠) ≤ [𝐼 + 𝜎𝜆,𝑞
−1. (∫𝐸𝑞

−𝜆𝜏. 𝐾(𝜏)𝑑𝑞𝜏 +∑𝐶𝑗 .

𝑁

𝑗=1

𝑇

0

𝐸𝑞
−𝜆𝑇𝑗)]𝐸𝑞

−𝜆𝑡. 𝑒𝑞
𝜆𝑠 

= [𝐼 + 𝜎𝜆,𝑞
−1. (𝐼 − 𝜎𝜆,𝑞)]. 𝐸𝑞

−𝜆𝑡. 𝑒𝑞
𝜆𝑠 

= 𝜎𝜆,𝑞
−1. 𝐸𝑞

−𝜆𝑡. 𝑒𝑞
𝜆𝑠                  (3.11) 

şeklinde elde edilir. (3.10) ve (3.11) dan istenilen bulunur. 

 Çözümlerin Varlığı ve Tekliği  

Bu bölümde (3.1)-(3.2) ile verilen denklem sisteminin çözümlerinin varlığı ve tekliği 

ispatlanacaktır. Bunu yapabilmek için 𝑈(𝑥, 𝑦) = (𝑥, 𝑦) olacak şekilde bir 𝑈 operatörü 

tanımlanarak (3.1)-(3.2) problemi sabit nokta problemine dönştürülecektir. Bu 

durumda 𝒜 = 𝐶(𝑆;ℝ𝑛) × 𝐶(𝑆;ℝ𝑛) uzayı, 

‖(𝑥, 𝑦)‖𝒜 = ‖𝑥‖𝐶(𝑆;ℝ𝑛) + ‖𝑦‖𝐶(𝑆;ℝ𝑛)  (3.12) 

şeklinde tanımlanan norm ile bir Banach uzayı olur. 
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𝛾 = 𝜆 = 0 için  

𝜎𝑞 = 𝐼 −∑𝐶𝑗

𝑁

𝑗=1

−∫𝐾(𝜏)𝑑𝑞𝜏

𝑇

0

 

ve Green fonksiyonu 

                                      𝐺𝑞(𝑡, 𝑠) = {
𝐼 𝑠 ≤ 𝑡 𝑡 ∈ 𝑆
0 𝑡 ≤ 𝑠 𝑡 ∈ 𝑆

+ 𝜎𝑞
−1 ∫ 𝐾(𝜏)𝑑𝑞𝜏

𝑇

𝑞𝑠
    

+𝜎𝑞
−1

{
 
 

 
 
∑ 𝐶𝑗
𝑁
𝑗=1 , 0 ≤ 𝑠 ≤ 𝑇1,

⋮ ⋮
∑ 𝐶𝑗
𝑁
𝑗=𝑘 , 𝑇𝑘−1 < 𝑠 ≤ 𝑇𝑘
⋮ ⋮

𝐶𝑁 , 𝑇𝑁−1 < 𝑠 ≤ 𝑇𝑁 = 𝑇

  (3.13) 

şeklinde elde edilir. 

Böylece bir  𝑈:𝒜 → 𝒜 operatörü 

𝑈1(𝑥, 𝑦)(𝑡) = 𝑥0 +∫𝑔(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠

𝑡

0

 

𝑈2(𝑥, 𝑦)(𝑡) = ∫ 𝐺𝑞(𝑡, 𝑠).
𝑇

0
ℎ(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠                  (3.14) 

olacak şekilde  

𝑈:𝒜 → 𝒜 

        (𝑥, 𝑦) → (𝑈1(𝑥, 𝑦), 𝑈2(𝑥, 𝑦)) 

şeklinde tanımlı olsun. 

Aşağıdaki teoremde (3.1)-(3.2) sisteminin çözümlerinin varlığını Schaefer sabit nokta 

teoremini kullanarak elde ederiz. 

Teorem 3.2.1. 𝑈 operatörü (3.14) de tanımlandığı gibi olsun. Aşağıdaki şartların var 

olduğunu kabul edelim. 

a) Her 𝑡 ∈ 𝑆 ve 𝑥(𝑡), 𝑦(𝑡) ∈ ℝ𝑛 için |𝑔(𝑡, 𝑥(𝑡), 𝑦(𝑡))|
1
≤ 𝑘1(𝑡) olacak 

şekilde bir 𝑘1(𝑡) ∈ 𝐶(𝑆;ℝ
+) fonksiyonu var olsun. 

b) Her 𝑡 ∈ 𝑆 ve 𝑥(𝑡), 𝑦(𝑡) ∈ ℝ𝑛 için |ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡))|
1
≤ 𝑘2(𝑡) olacak 

şekilde bir 𝑘2(𝑡) ∈ 𝐶(𝑆;ℝ
+) fonksiyonu var olsun. 

Bu durumda (3.1)-(3.2) problemi 𝑆 üzerinde en az bir çözüme sahiptir. 
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İspat. Teorem dört adımda ispatlanacaktır. 

Adım 1: 𝑈 operatörü sürekli midir? Bunu gösterebilmek için 𝒜 da (𝑥𝑘, 𝑦𝑘) → (𝑥, 𝑦) 

olacak şekilde bir yakınsak {(𝑥𝑘, 𝑦𝑘)} dizisi alınsın. Lebesgue sınırlı yakınsaklık 

teoremi ile 𝑔 ve ℎ fonksiyonlarının sürekliliği kullanılarak 𝑘 → +∞ iken  

∫ |𝑔(𝑡, 𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) − 𝑔(𝑡, 𝑥(𝑡), 𝑦(𝑡))|1𝑑𝑞𝑡 → 0
𝑡

0
  (3.15) 

ve 𝑘 → +∞ iken 

∫ |ℎ(𝑡, 𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) − ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡))|1𝑑𝑞𝑡 → 0
𝑇

0
  (3.16) 

elde edilir. (3.15) ve (3.16) kullanılarak 𝑘 → +∞ iken 

|𝑈1(𝑥𝑘, 𝑦𝑘)(𝑡) − 𝑈1(𝑥, 𝑦)(𝑡)|1 

≤ ∫ |𝑔(𝑡, 𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) − 𝑔(𝑡, 𝑥(𝑡), 𝑦(𝑡))|1𝑑𝑞𝑡 → 0
𝑡

0
   (3.17) 

ve 𝑘 → +∞ iken 

|𝑈2(𝑥𝑘, 𝑦𝑘)(𝑡) − 𝑈2(𝑥, 𝑦)(𝑡)|1 

≤ ‖𝜎𝑞
−1‖

1
∫ |ℎ(𝑡, 𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) − ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡))|1𝑑𝑞𝑡 → 0
𝑇

0
  (3.18) 

eşitsizliklerine ulaşılır. (3.17) ve (3.18) ile 𝑈 operatörünün sürekliliğini veren  

‖𝑈(𝑥𝑘, 𝑦𝑘) − 𝑈(𝑥, 𝑦)‖𝒜 → 0 sonucu çıkar. Bu şekilde ilk adım tamamlanır. 

Adım 2: 𝑈 operatörü 𝒜 daki sınırlı kümeleri 𝒜 daki sınırlı kümelere dönüştürür mü? 

Bunun için her bir (𝑥, 𝑦) ∈ 𝐵𝜌 = {(𝑥, 𝑦) ∈ 𝒜: ‖(𝑥, 𝑦)‖𝒜 ≤ 𝜌} ve herhangi bir 𝜌 > 0 

için ‖𝑈(𝑥, 𝑦)‖𝒜 ≤ 𝜔 olduğunu göstermek yeterlidir. 

(a) ve (b) şartları ile  

𝑠𝑢𝑝
0≤𝑡≤𝑇

|𝑈1(𝑥, 𝑦)(𝑡)|1 ≤ |𝑥0|1 + 𝑇. ‖𝑘1‖𝐶(𝑆;ℝ+)  (3.19)  

ve 

𝑠𝑢𝑝
0≤𝑡≤𝑇

|𝑈2(𝑥, 𝑦)(𝑡)|1 ≤ ‖𝜎𝑞
−1‖

1
. 𝑇. ‖𝑘2‖𝐶(𝑆;ℝ+)  (3.20)  

eşitsizlikleri elde edilir.  

(3.19) ve (3.20) kullanılarak 

‖𝑈(𝑥, 𝑦)‖𝒜 ≤ |𝑥0|1 + 𝑇. [‖𝑘1‖𝐶(𝑆;ℝ+) + ‖𝜎𝑞
−1‖

1
. ‖𝑘2‖𝐶(𝑆;ℝ+)] = 𝜔 
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sonucuna ulaşılır. Bu durumda ikinci adım tamamlanır. 

Adım 3: 𝑈 operatörü sınırlı kümeleri 𝒜 nın eşsürekli kümelerine dönüştürür mü?  

𝐵𝜌 kümesi adım 2 deki gibi tanımlanan sınırlı bir küme olsun. 𝑡1, 𝑡2 ∈ 𝑆 ve 𝑡1 < 𝑡2 

alalım. Ek olarak (𝑥, 𝑦) ∈ 𝐵𝜌 olsun. Bu durumda  

|𝑈1(𝑥, 𝑦)(𝑡2) − 𝑈1(𝑥, 𝑦)(𝑡1)|1 ≤ ∫|𝑔(𝑠, 𝑥(𝑠), 𝑦(𝑠))|
1

𝑡2

𝑡1

𝑑𝑞𝑠 

 ≤ 𝑘1|𝑡2 − 𝑡1|   (3.21) 

ve  

|𝑈2(𝑥, 𝑦)(𝑡2) − 𝑈2(𝑥, 𝑦)(𝑡1)|1 ≤ ∫|𝐺𝑞(𝑡2, 𝑠) − 𝐺𝑞(𝑡1, 𝑠)|1. |ℎ(𝑠, 𝑥
(𝑠), 𝑦(𝑠))|

1
𝑑𝑞𝑠

𝑇

0

 

≤ 𝑘2|𝑡2 − 𝑡1| .               (3.22) 

𝑡1 → 𝑡2 iken (3.21) ve (3.22) eşitsizliklerinin sağ tarafı sıfıra yaklaşır. Bu sebeple adım 

3 tamamlanır. Son olarak adım 1-3 ve Arzela-Ascoli teoremi beraber düşünüldüğünde 

𝑈 operatörünün tamamen (completely) sürekli olduğu görülür. 

Adım 4: Bazı 0 < 𝛽 < 1 için ∆= {(𝑥, 𝑦) ∈ 𝒜: (𝑥, 𝑦) = 𝛽. 𝑈(𝑥, 𝑦)} kümesi sınırlı 

mıdır? 

Kabul edelim ki (𝑥, 𝑦) ∈ 𝒜 olsun. Buna göre bazı 0 < 𝛽 < 1 için (𝑥, 𝑦) = 𝛽. 𝑈(𝑥, 𝑦) 

dir. Buradan her bir 𝑡 ∈ 𝑆 için  

𝑥(𝑡) = 𝛽. 𝑥0 + 𝛽.∫ 𝑔(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠
𝑡

0

 

ve  

𝑦(𝑡) = 𝛽.∫𝐺𝑞(𝑡, 𝑠). ℎ(𝑠, 𝑥(𝑠), 𝑦(𝑠))

𝑇

0

𝑑𝑞𝑠 

eşitlikler yazılabilir. Eşitliklerden (a) ve (b) şartlarından yararlanılarak (adım 2 deki 

gibi benzer işlemler yapılarak) her bir 𝑡 ∈ 𝑆 için 

|𝑈1(𝑥, 𝑦)(𝑡)|1 ≤ |𝑥0|1 + 𝑇. ‖𝑘1‖𝐶(𝑆;ℝ+) 

ve  
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|𝑈2(𝑥, 𝑦)(𝑡)|1 ≤ ‖𝜎𝑞
−1‖

1
. 𝑇. ‖𝑘2‖𝐶(𝑆;ℝ+) 

eşitsizliklerine ulaşılır. Son olarak bu eşitsizlikler kullanılarak her 𝑡 ∈ 𝑆 için 

‖(𝑥, 𝑦)‖𝒜 ≤ 𝜔 

olur. Bu nedenle ∆ kümesi sınırlıdır.  

Böylece Schaefer sabit nokta teoreminin şartları sağlanır.  Dolayısıyla Schaefer sabit 

nokta teoreminin bir sonucu olarak 𝑈 operatörü bir sabit noktaya sahiptir ve bu sabit 

nokta (3.1)-(3.2) probleminin bir çözümüdür. O halde (3.1)-(3.2) problemi 𝑆 üzerinde 

bir çözüme sahiptir. 

Sonuç 3.2.2. 𝑆 = [0, 𝑇] olsun. Eğer 𝑞 → 1 iken limit alınırsa, bu durumda problem 

(1.1)-(1.2), Schaefer sabit nokta teoreminin bir sonucu olarak en azından bir çözüme 

sahiptir.  

Açıklama 3.2.3.  𝒱, Γ:𝒜 → 𝒜 operatörleri sırasıyla 

𝑈1(𝑥, 𝑦)(𝑡) = 𝑥0 +∫𝑔(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠

𝑡

0

 

olmak üzere  

𝒱:𝒜 → 𝒜 

(𝑥, 𝑦) → (𝑈1(𝑥, 𝑦), 0), 

ve 

𝑈2(𝑥, 𝑦)(𝑡) = ∫𝐺𝑞(𝑡, 𝑠). ℎ(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠

𝑇

0

 

olmak üzere 

Γ:𝒜 → 𝒜 

(𝑥, 𝑦) → (0, 𝑈2(𝑥, 𝑦)) 

şeklinde tanımlı olsunlar. Burada açıkça 𝑈 = 𝒱 + Γ olduğu görülür. 

Aşağıdaki teoremle (3.1)-(3.2) sisteminin çözümünün varlığı Krasnoselskii sabit nokta 

teoremi kullanılarak elde edilir.  

Teorem 3.2.4. Kabul edelimki aşağıdaki şartlar sağlansın. 
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a) 0 < ∫ ‖𝐾(𝑡)‖1
𝑇

0
𝑑𝑞𝑡 + ∑ ‖𝐶𝑗‖1

𝑁
𝑗=1 < 1 olacak şekilde 𝐾 ∈ 𝐶(𝑆;𝒦𝑛) ve 𝐶𝑗 ∈

𝒦𝑛 olsun. 

b) Her (𝑡, 𝑥, 𝑦), (𝑡, 𝑥̅, 𝑦̅) ∈ 𝑆 × ℝ𝑛 × ℝ𝑛 için  

|𝑔(𝑡, 𝑥(𝑡), 𝑦(𝑡)) − 𝑔(𝑡, 𝑥̅, 𝑦̅)|
1
≤ 𝐿𝑔(𝑡)(|𝑥 − 𝑥̅|1 + |𝑦 − 𝑦̅|1) 

olacak şekilde bir pozitif 𝐿𝑔 ∈ 𝐿
1(𝑆∗) fonksiyonu var olsun. 

c) Her (𝑡, 𝑥, 𝑦) ∈ 𝑆 × ℝ𝑛 ×ℝ𝑛 için  

|ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡))|
1
≤ ℎ1(𝑡)(|𝑥|1 + |𝑦|1) + ℎ2(𝑡) 

      olacak şekilde iki pozitif ℎ1, ℎ2 ∈ 𝐿
1(𝑆∗) fonksiyonları var olsun. 

Ek olarak  

𝐿1 = ‖𝐿𝑔‖𝐿1(𝑆∗) + ‖𝜎𝑞
−1‖

1
‖ℎ1‖𝐿1(𝑆∗) < 1 

olsun. Bu durumda (3.1)-(3.2) problemi en azından bir çözüme sahiptir. 

İspat. Teoremin ispatı üç adımda yapılacaktır. 

Adım 1: Her (𝑥, 𝑦), (𝑥̅, 𝑦̅) ∈ 𝐵𝑅 = {(𝑥, 𝑦) ∈ 𝒜: ‖(𝑥, 𝑦)‖𝒜 ≤ 𝑅} için  

𝒱(𝑥, 𝑦) + Γ(𝑥̅, 𝑦̅) ∈ 𝐵𝑅    (3.23) 

olacak şekilde bir pozitif 𝑅 > 0 sabiti var mıdır? Bunu ispatlayabilmek için 

(𝑥, 𝑦), (𝑥̅, 𝑦̅) ∈ 𝐵𝑅 olsun. Bu durumda  

𝑅 >
|𝑥0|1+𝑔∗𝑇+‖ℎ2‖𝐿1(𝑆∗)‖𝜎𝑞

−1‖
1

(1−𝐿1)
               (3.24) 

olacak şekilde yeterince büyük 𝑅 > 0 seçimi ile 

                          |𝑈1(𝑥, 𝑦)|1 ≤ |𝑥0|1 + ∫ |𝑔(𝑠, 𝑥(𝑠), 𝑦(𝑠))|1
𝑡

0
𝑑𝑞𝑠 

                                            ≤ |𝑥0|1 + ‖𝐿𝑔‖𝐿1(𝑆∗). 𝑅 + 𝑔∗𝑇                          (3.25) 

ve 

          |𝑈2(𝑥̅, 𝑦̅)|1 ≤ ‖𝜎𝑞
−1‖

1
∫ |ℎ(𝑠, 𝑥̅(𝑠), 𝑦̅(𝑠))|

1

𝑇

0
𝑑𝑞𝑠 

≤ ‖𝜎𝑞
−1‖

1
[‖ℎ1‖𝐿1(𝑆∗). 𝑅 + ‖ℎ2‖𝐿1(𝑆∗)]              (3.26) 

eşitsizlikleri elde edilir. (3.24), (3.25) ve (3.26) eşitsizlikleri kullanılarak (3.23) elde 

edilir. 
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Adım 2: 𝒱:𝒜 → 𝒜 operatörü bir daralma operatörü müdür? 

(𝑥, 𝑦) ve (𝑥̅, 𝑦̅) elemanları 𝒜 uzayında keyfi iki eleman olsun. Bu durumda 𝒱 

operatörünün tanımından 

|𝑈1(𝑥, 𝑦) − 𝑈2(𝑥̅, 𝑦̅)|1 ≤ ∫|𝑔(𝑠, 𝑥(𝑠), 𝑦(𝑠)) − 𝑔(𝑠, 𝑥̅(𝑠), 𝑦̅(𝑠))|
1

𝑡

0

𝑑𝑞𝑠 

≤ ‖𝐿𝑔‖𝐿1(𝑆∗)
‖(𝑥, 𝑦) − (𝑥̅, 𝑦̅)‖𝒜  (3.27) 

elde edilir. ‖𝐿𝑔‖𝐿1(𝑆∗) ≤ 𝐿1 < 1 olduğundan 𝑈1:𝒜 → 𝐶(𝑆;ℝ𝑛) operatörü bir daralma 

dönüşümüdür. Dolayısıyla 𝒱 = (𝑈1, 0):𝒜 → 𝒜 operatörü de bir daralma 

dönüşümüdür. 

Adım 3: Γ:𝐵𝑅 → 𝒜 operatörü kompakt ve sürekli midir?  

İlk olarak 𝑈2 operatörünün sürekli olduğunu gösterelim. Bunun için 𝑘 → +∞ iken  

‖(𝑥𝑘, 𝑦𝑘) − (𝑥, 𝑦)‖𝒜 → 0 

olacak şekilde (𝑥, 𝑦) ∈ 𝐵𝑅 ve 𝐵𝑅 kümesinde {(𝑥𝑘, 𝑦𝑘)} dizisi alınsın. Lebesgue sınırlı 

yakınsaklık teoremi ve ℎ fonksiyonunun sürekliliği kullanılarak 𝑘 → +∞ iken 

∫ |ℎ(𝑡, 𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) − ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡))|1𝑑𝑞𝑡 → 0
𝑇

0
                (3.28) 

elde edilir. (3.28) dan 𝑘 → +∞ iken 

𝑠𝑢𝑝
0≤𝑡≤𝑇

|𝑈2(𝑥𝑘, 𝑦𝑘)(𝑡) − 𝑈2(𝑥, 𝑦)(𝑡)|1 

≤ ‖𝜎𝑞
−1‖

1
∫|ℎ(𝑡, 𝑥𝑘(𝑡), 𝑦𝑘(𝑡)) − ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡))|1𝑑𝑞𝑡 → 0

𝑇

0

 

elde edilir. Böylece 𝑈2 süreklidir. 

Şimdi 𝑈2(𝐵𝑅) nin göreceli (relatively) kompakt olduğunu gösterelim. ℎ fonksiyonu 

sürekli bir fonksiyon olduğundan her 𝑡 ∈ 𝑆 ve her (𝑥, 𝑦) ∈ 𝐵𝑅 için 

|ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡))|
1
≤ 𝑘𝑅 olacak şekilde 𝑘𝑅 > 0 vardır. Bu neddenle 𝑈2(𝐵𝑅),   

𝐶(𝑆;ℝ𝑛) de sınırlıdır. Keyfi  (𝑥, 𝑦) ∈ 𝐵𝑅 alınarak ve 𝑡1, 𝑡2 ∈ 𝑆, 𝑡1 < 𝑡2 için  

|𝑈2(𝑥, 𝑦)(𝑡1) − 𝑈2(𝑥, 𝑦)(𝑡2)|1 = |∫ ℎ(𝑠, 𝑥(𝑠), 𝑦(𝑠))𝑑𝑞𝑠

𝑡2

𝑡1

|

1

≤ 𝑘𝑅|𝑡1 − 𝑡2| 
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elde edilir. Böylece 𝑈2(𝐵𝑅) eşsüreklidir. Arzela-Ascoli teoreminden  𝑈2(𝐵𝑅) göreceli 

(relatively) kompakttır.  

Sonuç olarak Krasnoselskii sabit nokta teoreminden 𝑈 = 𝒱 + Γ operatörü bir sabit 

noktaya sahiptir. Böylece ispat tamamlanır.   

Sonuç 3.2.5. 𝑆 = [0, 𝑇] olsun. Bu durumda Teorem 3.2.4 [21] nolu çalışmadaki 

Teorem 3.5 e indirgenir. 

Sonuç 3.2.6. Teorem 3.2.4 ün a) şartından 

‖∫𝐾(𝜏)

𝑇

0

𝑑𝑞𝜏 +∑𝐶𝑗

𝑁

𝑗=1

‖

1

≤ ∫‖𝐾(𝑡)‖1

𝑇

0

𝑑𝑞𝑡 +∑‖𝐶𝑗‖1

𝑁

𝑗=1

< 1 

elde edilir. Dolayısıyla 𝜎𝑞 = 𝐼 − ∑ 𝐶𝑗
𝑁
𝑗=1 − ∫ 𝐾(𝜏)

𝑇

0
𝑑𝑞𝜏 matrisi terslenebilirdir ve  

‖𝜎𝑞
−1‖

1
≤

1

1 − ‖∫ 𝐾(𝜏)
𝑇

0
𝑑𝑞𝜏 + ∑ 𝐶𝑗

𝑁
𝑗=1 ‖

1

≤
1

1 − ∫ ‖𝐾(𝑡)‖1
𝑇

0
𝑑𝑞𝑡 − ∑ ‖𝐶𝑗‖1

𝑁
𝑗=1

 

eşitsizliği geçerlidir. 

Teorem 3.2.4 ün daha iyi anlaşılması için aşağıdaki örnek verilebilir. 

Örnek 3.2.7. 𝑞-başlangıç değer problemi 𝑡 ∈ 𝑆∗ için 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝐷𝑞𝑥1(𝑡) =

3

100
𝐸𝑞
−𝑡|𝑥(𝑡)|1,                                                         

𝐷𝑞𝑥2(𝑡) =
7

100
𝐸𝑞
−𝑡|𝑦(𝑡)|1,                                                         

𝐷𝑞𝑦1(𝑡) =
1

136(𝐸𝑞
2)
2 𝐸𝑞

−𝑡 [𝑥1(𝑡). cos (√𝑦1(𝑡)) + 𝑦2(𝑡)],        

𝐷𝑞𝑦2(𝑡) =
1

136(𝐸𝑞
2)
2 𝐸𝑞

−𝑡[𝑦1(𝑡). cos(√𝑦2(𝑡)) + 𝑥2(𝑡)],       

(𝑥1(0), 𝑥2(0))
𝑇
= 𝑥0 ∈ ℝ

2,        𝑡 ∈ 𝑆∗                                   

𝑦1(0) =
1

4
𝑦1 (

1

2
) +

1

8
𝑦1(1) +

1

2
∫ 𝐸𝑞

−𝑡. 𝑦1(𝑡)
1

0
𝑑𝑞𝑡,              

𝑦2(0) =
1

4
𝑦1 (

1

2
) +

1

8
𝑦2 (

1

2
) +

1

8
𝑦2(1)                                     

+
1

4
∫ 𝐸𝑞

−𝑡. 𝑦1(𝑡)
1

0
𝑑𝑞𝑡 +

1

4
∫ 𝐸𝑞

−𝑡. 𝑦2(𝑡)
1

0
𝑑𝑞𝑡

                                        

  (3.29) 

şekilde olsun. Dikkat edilirse (3.29) problemi, 𝑛 = 2 olmak üzere 𝑔(𝑡, 𝑥, 𝑦) =

(𝑔1(𝑡, 𝑥, 𝑦), 𝑔2(𝑡, 𝑥, 𝑦))
𝑇
 ve ℎ(𝑡, 𝑥, 𝑦) = (ℎ1(𝑡, 𝑥, 𝑦), ℎ2(𝑡, 𝑥, 𝑦))

𝑇
 fonksiyonları için 

(3-4) problemi olur. Burada 
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𝑔1(𝑡, 𝑥, 𝑦) =
3

100
𝐸𝑞
−𝑡|𝑥(𝑡)|1, 

𝑔2(𝑡, 𝑥, 𝑦) =
7

100
𝐸𝑞
−𝑡|𝑦(𝑡)|1, 

ℎ1(𝑡, 𝑥, 𝑦) =
1

136(𝐸𝑞2)
2 𝐸𝑞

−𝑡 [𝑥1(𝑡). cos (√𝑦1(𝑡)) + 𝑦2(𝑡)], 

ℎ2(𝑡, 𝑥, 𝑦) =
1

136(𝐸𝑞2)
2 𝐸𝑞

−𝑡 [𝑦1(𝑡). cos (√𝑦2(𝑡)) + 𝑥2(𝑡)], 

ve 𝑁 = 2, 𝑇1 =
1

2
, 𝑇2 = 𝑇 = 1 ve 𝑞 =

1

2
 dir. 

Ayrıca, 

𝐾(𝑡) =
1

𝑒𝑞
𝑡 [

1

2
0

1

4

1

4

]  𝐶1 = [

1

4
0

1

4

1

8

]     𝐶2 = [

1

8
0

0
1

16

] 

şeklinde olsun. Bu durumda yukarıdaki matrislere göre ‖𝐾(𝑡)‖1, ‖𝐶1‖1 ve ‖𝐶2‖1 

normları hesaplandığında  

∫‖𝐾(𝑡)‖1

𝑇

0

𝑑𝑞𝑡 + ‖𝐶1‖1 + ‖𝐶2‖1 < 1 

olduğu görülür. O halde a) şartı elde edilir. 

𝐿𝑔(𝑡) = 10
−1𝐸𝑞

−𝑡, ℎ1(𝑡) = max(
1

136(𝐸𝑞
2)
2 ,

1

272(𝐸𝑞
2)
2) . 𝐸𝑞

−𝑡 ve ℎ2(𝑡) = 0 

seçilirse, 

|𝑔(𝑠, 𝑥(𝑠), 𝑦(𝑠)) − 𝑔(𝑠, 𝑥̅(𝑠), 𝑦̅(𝑠))|
1
≤ 10−1𝐸𝑞

−𝑡. (|𝑥 − 𝑥̅|1 + |𝑦 − 𝑦̅|1) 

ve 

|ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡))|
1
≤

1

136(𝐸𝑞2)
2 . 𝐸𝑞

−𝑡(|𝑥|1 + |𝑦|1) 

elde edilir. Bu eşitsizliklerden b) ve c) şartları sağlanır.  

Ayrıca 

𝜎𝑞 ≡ 𝐼 − ∫𝐾(𝑡)𝑑𝑞𝑡 − 𝐶1 − 𝐶2

1

0
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                                   = 𝐼 −
1

2
(1 − 𝑒𝑞

−2) [

1

2
0

1

4

1

4

] − [

1

4
0

1

4

1

8

] − [

1

8
0

0
1

16

] 

                                                 = [
𝜎11
𝑞 0

𝜎21
𝑞 𝜎22

𝑞 ]      

olup buradan 

𝜎11
𝑞 = 1 −

1 − 𝑒𝑞
−2

4
−
1

4
−
1

8
=

1

4𝐸𝑞2
+
3

8
> 0, 

                                 𝜎21
𝑞 = −

1−𝑒𝑞
−2

8
−
1

4
=

1

8𝐸𝑞
2 −

3

8
< 0,      

                                 𝜎22
𝑞 = 1 −

1−𝑒𝑞
−2

8
−
1

8
−

1

16
=

1

8𝐸𝑞
2 +

11

16
> 0 

dır. Bu durumda  

𝜎𝑞
−1 =

[
 
 
 
 

8𝐸𝑞
2

2 + 3𝐸𝑞2
0

16𝐸𝑞
2(3𝐸𝑞

2 − 1)

(3𝐸𝑞2 + 2)(11𝐸𝑞2 + 2)

16𝐸𝑞
2

11𝐸𝑞2 + 2]
 
 
 
 

> 0 

elde edilir. Buna göre normu da 

‖𝜎𝑞
−1‖

1
= max {

8𝐸𝑞
2

2 + 3𝐸𝑞2
+

16𝐸𝑞
2(3𝐸𝑞

2 − 1)

(3𝐸𝑞2 + 2)(11𝐸𝑞2 + 2)
,
16𝐸𝑞

2

11𝐸𝑞2 + 2
} 

                               =
136(𝐸𝑞

2)
2

(3𝐸𝑞
2+2)(11𝐸𝑞

2+2)
 

şeklinde olur. 

Son olarak 

       𝐿1 = ‖𝐿𝑔‖𝐿1(𝑆∗) +
‖ℎ1‖𝐿1(𝑆∗)‖𝜎𝑞

−1‖
1
 

= 10−1
1

2
(1 −

1

𝐸𝑞2
) +

1

136(𝐸𝑞2)
2

1

2
(1 −

1

𝐸𝑞2
) .

136(𝐸𝑞
2)
2

(3𝐸𝑞2 + 2)(11𝐸𝑞2 + 2)
 

             =
1

2
(1 −

1

𝐸𝑞
2) [10

−1 +
1

(3𝐸𝑞
2+2)(11𝐸𝑞

2+2)
] < 1 

elde edilir.  
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Böylece Teorem 3.2.4’ün tüm şartları sağlanır. Dolayısıyla (3.29) problemi en az bir 

çözüm sahiptir. 

Eğer Teorem 3.2.4 teki c) şartı d) şartı ile değiştirilirse, Banach sabit nokta teoremi 

kullanılarak çözümlerin varlığı ve tekliğini ispatlayan aşağıdaki teorem verilir.  

Teorem 3.2.8. a), b) ve aşağıda verilen d) şartının sağlandığını kabul edelim. 

d) Her (𝑡, 𝑥, 𝑦), (𝑡, 𝑥̅, 𝑦̅) ∈ 𝑆 × ℝ𝑛 × ℝ𝑛 için 

|ℎ(𝑡, 𝑥(𝑡), 𝑦(𝑡)) − ℎ(𝑡, 𝑥̅, 𝑦̅)|
1
≤ 𝐿ℎ(𝑡)(|𝑥 − 𝑥̅|1 + |𝑦 − 𝑦̅|1) 

olacak şekilde bir pozitif 𝐿ℎ ∈ 𝐿
1(𝑆∗) fonksiyonu var olsun. 

Ayrıca 

𝐿 = ‖𝐿𝑔‖𝐿1(𝑆∗) + ‖𝜎𝑞
−1‖

1
. ‖𝐿ℎ‖𝐿1(𝑆∗) < 1               (3.30) 

olduğunu kabul edelim. Bu durumda (3.1)-(3.2) problemi bir tek çözüme sahiptir. 

İspat.   𝑔∗ ve ℎ∗ aşağıdaki gibi alınsın. 

𝑔∗ = max
0≤𝑡≤𝑇

|𝑔(𝑡, 0,0)|1,       ℎ∗ = max
0≤𝑡≤𝑇

|ℎ(𝑡, 0,0)|1. 

Yeterince büyük 𝑅 > 0 aşağıdaki gibi seçilsin. 

𝑅 >
|𝑥0|1+𝑇(𝑔∗+ℎ∗‖𝜎𝑞

−1‖
1
)

1−𝐿
                                 (3.31) 

İlk olarak 𝑈(𝐵𝑅) ⊂ 𝐵𝑅 olduğu gösterilmelidir. Bunun için 𝐵𝑅 = {(𝑥, 𝑦) ∈

𝒜: ‖(𝑥, 𝑦)‖𝒜 ≤ 𝑅} olsun. Her 𝑡 ∈ 𝑆 ve (𝑥, 𝑦) ∈ 𝐵𝑅 için  

|𝑈1(𝑥, 𝑦)|1 ≤ |𝑥0|1 +∫|𝑔(𝑠, 𝑥(𝑠), 𝑦(𝑠)) − 𝑔(𝑠, 0,0)|1𝑑𝑞𝑠 + ∫
|𝑔(𝑠, 0,0)|1𝑑𝑞𝑠

𝑡

0

𝑡

0

 

                        ≤ |𝑥0|1 + ‖𝐿𝑔‖𝐿1(𝑆∗). 𝑅 + 𝑔∗𝑇                                                        (3.32) 

|𝑈2(𝑥, 𝑦)|1 ≤ ‖𝜎𝑞
−1‖

1
[∫|ℎ(𝑠, 𝑥(𝑠), 𝑦(𝑠)) − ℎ(𝑠, 0,0)|

1

𝑇

0

𝑑𝑞𝑠 + ∫|ℎ(𝑠, 0,0)|1𝑑𝑞𝑠

𝑇

0

] 

                      ≤ ‖𝜎𝑞
−1‖

1
. [‖𝐿ℎ‖𝐿1(𝑆∗). 𝑅 + ℎ∗𝑇]                                 (3.33) 

eşitsizlikleri elde edilir. (3.32) ve (3.33) eşitsizliklerinden yararlanılarak ve (3.31) den  

𝑈(𝐵𝑅) ⊂ 𝐵𝑅 bulunur. Bu durumda 𝑈:𝐵𝑅 → 𝐵𝑅 operatörü iyi tanımlıdır.  
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Şimdi 𝑈 nun bir daralma operatörü olduğu gösterilmelidir. (𝑥, 𝑦), (𝑥̅, 𝑦̅) ∈ 𝐵𝑅 için 

|𝑈1(𝑥, 𝑦)(𝑡) − 𝑈1(𝑥̅, 𝑦̅)(𝑡)|1 ≤ ∫|𝑔(𝑠, 𝑥(𝑠), 𝑦(𝑠)) − 𝑔(𝑠, 𝑥̅(𝑠), 𝑦̅(𝑠))|
1
𝑑𝑞𝑠

𝑡

0

 

                                                       ≤ ‖𝐿𝑔‖𝐿1(𝑆∗).
‖(𝑥, 𝑦) − (𝑥̅, 𝑦̅)‖𝒜              (3.34) 

ve 

|𝑈2(𝑥, 𝑦)(𝑡) − 𝑈2(𝑥̅, 𝑦̅)(𝑡)|1 ≤ ‖𝜎𝑞
−1‖

1
∫|ℎ(𝑠, 𝑥(𝑠), 𝑦(𝑠)) − ℎ(𝑠, 𝑥̅(𝑠), 𝑦̅(𝑠))|

1
𝑑𝑞𝑠

𝑇

0

 

                                                 ≤ ‖𝜎𝑞
−1‖

1
. ‖𝐿ℎ‖𝐿1(𝑆∗). ‖(𝑥, 𝑦) − (𝑥̅, 𝑦̅)‖𝒜               (3.35) 

eşitsizlikleri elde edilir. (3.34), (3.35) ve (3.30) kullanılarak 𝑈:𝐵𝑅 → 𝐵𝑅 operatörünün 

bir daralma operatörü olduğu sonucuna varılır.  

Bu durumda Banach sabit nokta teoreminin şartlarından  (3.1)-(3.2) probleminin bir 

tek çözümü vardır. Böylece ispat tamamlanır. 

Sonuç 3.2.9. 𝑆 = [0, 𝑇] olsun. Bu durumda Teorem 3.2.8, 𝑞 → 1 iken limit alınırsa 

[21] nolu çalışmadaki Teorem 3.1 e indirgenir. 

Teorem 3.2.8 nin daha iyi anlaşılması için aşağıdaki örnek verilebilir. 

Örnek 3.2.10. Aşağıdaki 𝑞-başlangıç değer problemi göz önüne alınsın. 𝑡 ∈ 𝑆∗ için 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐷𝑞𝑥1(𝑡) =

6

100
𝐸𝑞
−𝑡[sin(|𝑥(𝑡)|1) + tan

−1(|𝑦(𝑡)|1)],                                        

𝐷𝑞𝑥2(𝑡) =
4

100
𝐸𝑞
−𝑡[sin(|𝑦(𝑡)|1) + tan

−1(|𝑥(𝑡)|1)],                                       

𝐷𝑞𝑦1(𝑡) =
7

2720(𝐸𝑞
2)
2 𝐸𝑞

−𝑡|𝑥(𝑡)|1,                                                                           

𝐷𝑞𝑦2(𝑡) =
13

2720(𝐸𝑞
2)
2 𝐸𝑞

−𝑡|𝑦(𝑡)|1,                                                                           

(𝑥1(0), 𝑥2(0))
𝑇
= 𝑥0 ∈ ℝ

2,        𝑡 ∈ 𝑆∗                                                               

𝑦1(0) =
1

4
𝑦1 (

1

2
) +

1

8
𝑦1(1) +

1

2
∫ 𝐸𝑞

−𝑡. 𝑦1(𝑡)
1

0
𝑑𝑞𝑡,                                            

𝑦2(0) =
1

4
𝑦1 (

1

2
) +

1

8
𝑦2 (

1

2
) +

1

8
𝑦2(1)                                                                 

+
1

4
∫ 𝐸𝑞

−𝑡. 𝑦1(𝑡)
1

0
𝑑𝑞𝑡 +

1

4
∫ 𝐸𝑞

−𝑡. 𝑦2(𝑡)
1

0
𝑑𝑞𝑡                        

                                        

      (3.36) 

olsun. Bu durumda (3.36) problemi 𝑛 = 2, 𝑔(𝑡, 𝑥, 𝑦) = (𝑔1(𝑡, 𝑥, 𝑦), 𝑔2(𝑡, 𝑥, 𝑦))
𝑇
 ve 

ℎ(𝑡, 𝑥, 𝑦) = (ℎ1(𝑡, 𝑥, 𝑦), ℎ2(𝑡, 𝑥, 𝑦))
𝑇
 için (3.1)-(3.2) şeklindedir. Buna göre 
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𝑔1(𝑡, 𝑥, 𝑦) =
6

100
𝐸𝑞
−𝑡[sin(|𝑥(𝑡)|1) + tan

−1(|𝑦(𝑡)|1)], 

𝑔2(𝑡, 𝑥, 𝑦) =
4

100
𝐸𝑞
−𝑡[sin(|𝑦(𝑡)|1) + tan

−1(|𝑥(𝑡)|1)], 

                         ℎ1(𝑡, 𝑥, 𝑦) =
7

2720(𝐸𝑞
2)
2 𝐸𝑞

−𝑡|𝑥(𝑡)|1, 

                         ℎ2(𝑡, 𝑥, 𝑦) =
13

2720(𝐸𝑞
2)
2 𝐸𝑞

−𝑡|𝑦(𝑡)|1, 

olur ve ayrıca 𝑁 = 2, 𝑇1 =
1

2
, 𝑇2 = 𝑇 = 1, 𝑞 =

1

2
 olmak üzere 𝐾(𝑡), 𝐶1 ve 𝐶2 matrisleri 

Örnek 3.2.7 deki gibi; 

𝐾(𝑡) =
1

𝑒𝑞
𝑡 [

1

2
0

1

4

1

4

]  𝐶1 = [

1

4
0

1

4

1

8

]     𝐶2 = [

1

8
0

0
1

16

] 

olsun. Bu durumda  

∫‖𝐾(𝑡)‖1

𝑇

0

𝑑𝑞𝑡 + ‖𝐶1‖1 + ‖𝐶2‖1 < 1 

olduğu aşikardır. Diğer taraftan 𝐿𝑔(𝑡) = 10−1𝐸𝑞
−𝑡 ve 𝐿ℎ(𝑡) =

1

136(𝐸𝑞
2)
2 𝐸𝑞

−𝑡 olarak 

seçilirse o zaman   

|𝑔(𝑠, 𝑥(𝑠), 𝑦(𝑠)) − 𝑔(𝑠, 𝑥̅(𝑠), 𝑦̅(𝑠))|
1
≤ 10−1𝐸𝑞

−𝑡. (|𝑥 − 𝑥̅|1 + |𝑦 − 𝑦̅|1) 

ve  

|ℎ(𝑠, 𝑥(𝑠), 𝑦(𝑠)) − ℎ(𝑠, 𝑥̅(𝑠), 𝑦̅(𝑠))|
1
≤

1

136(𝐸𝑞2)
2 . 𝐸𝑞

−𝑡. (|𝑥 − 𝑥̅|1 + |𝑦 − 𝑦̅|1) 

eşitsizliklerine ulaşılır. Böylece b) ve d) şartları sağlanır. Ayrıca 

‖𝐿𝑔‖𝐿1(𝑆∗) = 20
−1 (1 −

1

𝐸𝑞2
), 

‖𝐿ℎ‖𝐿1(𝑆∗) =
1

272(𝐸𝑞2)
2 (1 −

1

𝐸𝑞2
) 

ve 
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‖𝜎𝑞
−1‖

1
=

136(𝐸𝑞
2)
2

(3𝐸𝑞2 + 2)(11𝐸𝑞2 + 2)
 

olduğu için  

𝐿 = ‖𝐿𝑔‖𝐿1(𝑆∗) +
‖𝐿ℎ‖𝐿1(𝑆∗)‖𝜎𝑞

−1‖
1
 

                                           = 20−1 (1 −
1

𝐸𝑞
2) +

1

272(𝐸𝑞
2)
2 (1 −

1

𝐸𝑞
2) .

136(𝐸𝑞
2)
2

(3𝐸𝑞
2+2)(11𝐸𝑞

2+2)
 

                                           =
1

2
(1 −

1

𝐸𝑞
2) [10

−1 +
1

(3𝐸𝑞
2+2)(11𝐸𝑞

2+2)
] < 1 

elde edilir. Bu durumda Teorem 3.2.8’in tüm şartları sağlanır. O halde Banach sabit 

nokta teoremine göre (3.36) nın bir tek çözümü vardır. 

 

 

 



  

4. İKİNCİ MERTEBEDEN (𝒑, 𝒒)-FARK DENKLEMİNİN ÇÖZÜMLERİ  

Bu bölümde, 𝑥0 ∈ ℝ
𝑛, 𝕋0 = 𝕋 ∪ {0} ve 𝑇 ∈ 𝕋 olmak üzere [0, 𝑇]𝕋0 kümesi göz önüne 

alınacaktır.  

 İkinci Dereceden (𝒑, 𝒒)-Fark Denkleminin Çözümlerinin Varlığı ve Tekliği 

Dördüncü bölümün bu kısmında,  

                           {
𝐷𝑝,𝑞
2 𝑥(𝑡) = 𝜑(𝑡, 𝑥𝜎(𝑞𝑡)),            𝑡 ∈ [0,

𝑇

𝑝2.𝑞2
]
𝕋0

𝑥(0) = 𝑥0 + 𝑘(𝑥),            𝑥(𝑇) = 𝛿 ∫ 𝑥(𝑠)𝑑𝑝,𝑞𝑠
𝑇

0

   (4.1) 

şeklindeki ikinci mertebeden (𝑝. 𝑞)-fark denkleminin çözümlerinin varlığı ve tekliği 

incelenecektir. Burada 𝛿 ≠ 0 herhangi bir sayı, 𝛿. 𝑇 ≠ 𝑝 + 𝑞 ve 𝜑 ∈ 𝐶([0, 𝑇]𝕋0 ×

ℝ;ℝ) fonksiyonu [0,
𝑇

𝑝.𝑞
]
𝕋0

 üzerinde (𝑝. 𝑞)-diferensiyellenebilir bir fonksiyondur.  

𝒳 = 𝐶([0, 𝑇]𝕋0; ℝ)  uzayı;  

‖𝑥(𝑡)‖ = sup{|𝑥(𝑡)|: 𝑡 ∈ [0, 𝑇]𝕋0} 

normu ile tanımlı tüm sürekli reel fonksiyonların uzayını gösterecektir. Ayrıca 

𝑘:𝒳 → ℝ 

herhangi bir sınırlı fonksiyondur.  

Lemma 4.1.1. 𝜂 ∈ 𝒳 ve 𝜂(𝑡) = −𝜑(𝑡, 𝑥𝜎(𝑞𝑡)) olsun. Bu durumda  

{
𝐷𝑝,𝑞
2 𝑥(𝑡) + 𝜂(𝑡) = 0,                       𝑡 ∈ [0,

𝑇

𝑝2.𝑞2
]
𝕋0

𝑥(0) = 𝑥0 + 𝑘(𝑥),            𝑥(𝑇) = 𝛿 ∫ 𝑥(𝑠)𝑑𝑝,𝑞𝑠
𝑇

0

                               (4.2) 

ile verilen sınır değer problemi  

𝑥(𝑡) = (𝑥0 + 𝑘(𝑥)).
[(𝑝 + 𝑞). (𝑇 + 𝑡. (𝛿. 𝑇 − 1)) − 𝛿. 𝑇2]

𝑇. (𝑝 + 𝑞 − 𝛿. 𝑇)
 

            +
𝑡.(𝑝+𝑞)

𝑇.𝑝.(𝑝+𝑞−𝛿.𝑇)
∫ (𝑇 − 𝑞𝑠)𝜂 (

𝑠

𝑝
)𝑑𝑝,𝑞𝑠

𝑇

0
−

1

𝑝
∫ (𝑡 − 𝑞𝑠)𝜂 (

𝑠

𝑝
)𝑑𝑝,𝑞𝑠

𝑡

0
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            −
𝛿.𝑡.(𝑝2−𝑞2)

𝑇.𝑝3.(𝑝+𝑞−𝛿.𝑇)
∫ (𝑇𝑠 − 𝑞𝑠2)𝜂 (

𝑠

𝑝2
) 𝑑𝑝,𝑞𝑠

𝑇

0
 

(𝑝, 𝑞)-integral denklemine denktir. 

İspat. (4.2) deki ilk denkleme (𝑝, 𝑞)-integrali uygulanırsa, 𝑡 ∈ [0,
𝑇

𝑝.𝑞
]
𝕋0

 için 

𝐷𝑝,𝑞𝑥(𝑡) = 𝐷𝑝,𝑞𝑥(0) − ∫ 𝜂(𝑠)𝑑𝑝,𝑞𝑠
𝑡

0
   (4.3) 

elde edilir. (4.3) denklemine tekrar (𝑝, 𝑞)-integral uygulanırsa 𝑡 ∈ [0, 𝑇]𝕋0 için 

                        𝑥(𝑡) = 𝑥0 + 𝑡. 𝐷𝑝,𝑞𝑥(0) −
1

𝑝
∫ (𝑡 − 𝑞𝑠)𝜂 (

𝑠

𝑝
)𝑑𝑝,𝑞𝑠

𝑡

0
  (4.4) 

elde edilir. İşlemlerde kolaylık sağlaması amacıyla elde edilen (4.4) denkleminde   

𝑥(0) = 𝑐0 ve 𝐷𝑝,𝑞𝑥(0) = 𝑐1 alınırsa bu durumda  

                    𝑥(𝑡) = 𝑐0 + 𝑐1. t −
1

𝑝
∫ (𝑡 − 𝑞𝑠)𝜂 (

𝑠

𝑝
) 𝑑𝑝,𝑞𝑠

𝑡

0
                              (4.5) 

elde edilir. (4.5)  denkleminde 𝑡 = 0 yazılırsa  

𝑥(0) = 𝑐0 = 𝑥0 + 𝑘(𝑥)   (4.6) 

olur ve (4.6) denklemi (4.5) de yerine koyulursa  

            𝑥(𝑡) = 𝑥0 + 𝑘(𝑥) + 𝑐1. t −
1

𝑝
∫ (𝑡 − 𝑞𝑠)𝜂 (

𝑠

𝑝
)𝑑𝑝,𝑞𝑠

𝑡

0
                 (4.7) 

elde edilir. İkinci sınır şartı kullanılırsa, bu durumda  

𝑐1 =
1

𝑇
(−𝑥0 − 𝑘(𝑥)) +

𝛿

𝑇
∫𝑥(𝑠)𝑑𝑝,𝑞𝑠

𝑇

0

+
1

𝑇. 𝑝
∫(𝑇 − 𝑞𝑠). 𝜂 (

𝑠

𝑝
) 𝑑𝑝,𝑞𝑠

𝑇

0

 

olarak bulunur. Elde edilen 𝑐1, (4.7) de yerine yazılırsa  

𝑥(𝑡) = (𝑥0 + 𝑘(𝑥)) (
𝑇 − 𝑡

𝑇
) +

𝛿. 𝑡

𝑇
∫𝑥(𝑠)𝑑𝑝,𝑞𝑠

𝑇

0

+
𝑡

𝑇. 𝑝
∫(𝑇 − 𝑞𝑠). 𝜂 (

𝑠

𝑝
) 𝑑𝑝,𝑞𝑠

𝑇

0

 

                   −
1

𝑝
∫ (𝑡 − 𝑞𝑠). 𝜂 (

𝑠

𝑝
)𝑑𝑝,𝑞𝑠

𝑡

0
     (4.8) 

eşitliğine ulaşılır. Eğer (4.8)’in her iki tarafının integrali alınırsa  

             ∫ 𝑥(𝑠)𝑑𝑝,𝑞𝑠
𝑇

0
= (𝑥0 + 𝑘(𝑥))

𝑇.(𝑝+𝑞−1)

𝑝+𝑞−𝛿.𝑇
 

                                       +
𝑇

𝑝(𝑝+𝑞−𝛿.𝑇)
∫ (𝑇 − 𝑞𝑠). 𝜂 (

𝑠

𝑝
)𝑑𝑝,𝑞𝑠

𝑇

0
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                                       −
𝑝2−𝑞2

𝑝3(𝑝+𝑞−𝛿.𝑇)
∫ (𝑇𝑠 − 𝑞𝑠2). 𝜂 (

𝑠

𝑝2
)𝑑𝑝,𝑞𝑠

𝑇

0
                                 (4.9) 

bulunur. Son olarak elde edilen (4.9) eşitliği (4.8) de yerine yazılırsa 

𝑥(𝑡) = (𝑥0 + 𝑘(𝑥)).
[(𝑝 + 𝑞). (𝑇 + 𝑡. (𝛿. 𝑇 − 1)) − 𝛿. 𝑇2]

𝑇. (𝑝 + 𝑞 − 𝛿. 𝑇)
 

            +
𝑡.(𝑝+𝑞)

𝑇.𝑝.(𝑝+𝑞−𝛿.𝑇)
∫ (𝑇 − 𝑞𝑠)𝜂 (

𝑠

𝑝
)𝑑𝑝,𝑞𝑠

𝑇

0
−

1

𝑝
∫ (𝑡 − 𝑞𝑠)𝜂 (

𝑠

𝑝
)𝑑𝑝,𝑞𝑠

𝑡

0
 

            −
𝛿.𝑡.(𝑝2−𝑞2)

𝑇.𝑝3.(𝑝+𝑞−𝛿.𝑇)
∫ (𝑇𝑠 − 𝑞𝑠2)𝜂 (

𝑠

𝑝2
) 𝑑𝑝,𝑞𝑠

𝑇

0
 

olur. Böylece istenilen sonuca ulaşılır. İspat tamamlanır. 

Açıklama 4.1.2. Bir ℱ:𝒳 → 𝒳 operatörü aşağıdaki şekilde tanımlansın:  

(ℱ𝑥)(𝑡) = (𝑥0 + 𝑘(𝑥)).
[(𝑝 + 𝑞). (𝑇 + 𝑡. (𝛿. 𝑇 − 1)) − 𝛿. 𝑇2]

𝑇. (𝑝 + 𝑞 − 𝛿. 𝑇)
 

                  +
𝑡.(𝑝+𝑞)

𝑇.𝑝.(𝑝+𝑞−𝛿.𝑇)
∫ (𝑇 − 𝑞𝑠)𝜑(𝑠, 𝑥(𝑞𝑠))𝑑𝑝,𝑞𝑠
𝑇

0
 

                  −
1

𝑝
∫ (𝑡 − 𝑞𝑠)𝜑(𝑠, 𝑥(𝑞𝑠))𝑑𝑝,𝑞𝑠
𝑡

0
         

                  −
𝛿.𝑡.(𝑝2−𝑞2)

𝑇.𝑝3.(𝑝+𝑞−𝛿.𝑇)
∫ (𝑇𝑠 − 𝑞𝑠2)𝜑 (𝑠, 𝑥 (

𝑞𝑠

𝑝
)) 𝑑𝑝,𝑞𝑠

𝑇

0
.               (4.10) 

Bu durumda Lemma 4.1.1 kullanılırsa  (4.1) denkleminin bir çözüme sahip olması için 

gerek ve yeter şart ℱ operatörünün bir sabit noktaya sahip olmasıdır. İşlemlerde 

kolaylık sağlanması amacıyla Ψ sabiti 

Ψ = {
𝑇.[(𝑝+𝑞+1).|𝛿|+𝑇]

|𝑝+𝑞−𝛿.𝑇|
+

𝑇2

𝑝+𝑞
+

𝑇3.|𝛿|.(𝑝−𝑞)

𝑝.|𝑝+𝑞−𝛿.𝑇|.(𝑝2+𝑝𝑞+𝑞2)
}               (4.11) 

olarak alınsın. Şimdi Banach sabit nokta teoremine dayanan aşağıdaki varlık ve teklik 

sonucunu verelim. 

Teorem 4.1.3. 𝜑: [0,
𝑇

𝑝2.𝑞2
]
𝕋0

× ℝ → ℝ sürekli fonksiyon ve aşağıdaki şartlar mevcut 

olsun. 

(A1) ∀𝑡 ∈ [0,
𝑇

𝑝2.𝑞2
]
𝕋0

 ve 𝑥(𝑡), 𝑦(𝑡) ∈ ℝ için  

|𝜑(𝑡, 𝑥(𝑡)) − 𝜑(𝑡, 𝑦(𝑡))| ≤ 𝐿1. |𝑥(𝑡) − 𝑦(𝑡)| 

dir. 
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(A2) ∀𝑥, 𝑦 ∈ 𝒳 için |𝑘(𝑥) − 𝑘(𝑦)| ≤ 𝐿2. ‖𝑥 − 𝑦‖ olacak şekilde 𝑘:𝒳 → ℝ 

fonksiyonu var olsun. 

(A3) 𝐿 = maks{𝐿1, 𝐿2} ve Ψ sabiti (4.11) deki gibi ve  𝐿.Ψ < 1 dir.  

Bu durumda (4.1) ile verilen problemin bir tek çözümü vardır. 

İspat. Öncelikle (4.1) ile verilen problem,  ℱ operatörü (4.10) daki gibi olmak üzere 

ℱ𝑥 = 𝑥 olacak şekilde bir sabit nokta problemine dönüşür. Bu durumda kabul 

edelimki  

sup {|𝜑(𝑡, 0)|: 𝑡 ∈ [0,
𝑇

𝑝2. 𝑞2
]
𝕋0

} = 𝑀1 

sup{|𝑥0 + 𝑘(𝑥)|: 𝑘 ∈ 𝒳} = 𝑀2 

ve 

maks{𝑀1, 𝑀2} = 𝑀 

olsun. Ayrıca  

𝑅 ≥
𝑀.Ψ

1 − 𝐿.Ψ
 

eşitsizliğini sağlayan bir 𝑅 sabiti seçilsin. Bu durumda  

Ω𝑅 = {𝑥 ∈ 𝒳: ‖𝑥‖ ≤ 𝑅} 

olmak üzere ℱ(Ω𝑅) ⊂ Ω𝑅 olduğu gösterilmelidir. Herhangi bir 𝑥 ∈ Ω𝑅 için 

 ‖ℱ𝑥‖ ≤ 𝑀2. sup
𝑡∈[0,𝑇]𝕋0

|
[(𝑝+𝑞).(𝑇+𝑡(𝛿.𝑇−1))−𝛿𝑇2]

𝑇.(𝑝+𝑞−𝛿.𝑇)
| 

              +
𝑇.(𝑝+𝑞)

𝑇.𝑝.|𝑝+𝑞−𝛿.𝑇|
. sup
𝑡∈[0,𝑇]𝕋0

|∫ (𝑇 − 𝑞𝑠). (𝐿1. ‖𝑥‖ + 𝑀1)𝑑𝑝,𝑞𝑠
𝑇

0
| 

              +
1

𝑝
. sup
𝑡∈[0,𝑇]𝕋0

|∫ (𝑡 − 𝑞𝑠). (𝐿1. ‖𝑥‖ + 𝑀1)𝑑𝑝,𝑞𝑠
𝑡

0
| 

              +
|𝛿|.𝑇.(𝑝2−𝑞2)

𝑇.𝑝3.|𝑝+𝑞−𝛿.𝑇|
. sup
𝑡∈[0,𝑇]𝕋0

|∫ (𝑇𝑠 − 𝑞𝑠2). (𝐿1. ‖𝑥‖ + 𝑀1)𝑑𝑝,𝑞𝑠
𝑇

0
| 

≤ (𝐿. 𝑅 + 𝑀) {
𝑇. [(𝑝 + 𝑞 + 1). |𝛿| + 𝑇]

|𝑝 + 𝑞 − 𝛿. 𝑇|
+

𝑇2

𝑝 + 𝑞
 

                                 +
𝑇3.|𝛿|.(𝑝−𝑞)

𝑝.|𝑝+𝑞−𝛿.𝑇|.(𝑝2+𝑝𝑞+𝑞2)
} 
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                             ≤ (𝐿. 𝑅 + 𝑀).Ψ 

                             ≤ 𝑅 

elde edilir. Dolayısıyla ℱ(Ω𝑅) ⊂ Ω𝑅 dir. Ayrıca  ℱ operatörünün bir daralma 

operatörü olduğu gösterilmelidir. Herhang bir 𝑥, 𝑦 ∈ 𝒳 ve ∀𝑡 ∈ [0, 𝑇]𝕋0 için  

‖ℱ𝑥 − ℱ𝑦‖ ≤ sup
𝑡∈[0,𝑇]𝕋0

|(𝑘(𝑥) − 𝑘(𝑦))
[(𝑝 + 𝑞). (𝑇 + 𝑡(𝛿. 𝑇 − 1)) − 𝛿𝑇2]

𝑇. (𝑝 + 𝑞 − 𝛿. 𝑇)
 

                        +
𝑡.(𝑝+𝑞)

𝑇.𝑝.(𝑝+𝑞−𝛿.𝑇)
. ∫ (𝑇 − 𝑞𝑠). [𝜑(𝑠, 𝑥(𝑞𝑠)) − 𝜑(𝑠, 𝑦(𝑞𝑠))]𝑑𝑝,𝑞𝑠
𝑇

0
 

                        −
1

𝑝
∫ (𝑡 − 𝑞𝑠). [𝜑(𝑠, 𝑥(𝑞𝑠)) − 𝜑(𝑠, 𝑦(𝑞𝑠))]𝑑𝑝,𝑞𝑠
𝑡

0
 

                        −
𝛿.𝑡.(𝑝2−𝑞2)

𝑇.𝑝3.(𝑝+𝑞−𝛿.𝑇)
∫ (𝑇𝑠 − 𝑞𝑠2). [𝜑 (𝑠, 𝑥 (

𝑞𝑠

𝑝
)) − 𝜑(𝑠, 𝑦 (

𝑞𝑠

𝑝
))]

𝑇

0
𝑑𝑝,𝑞𝑠| 

                    ≤ 𝐿2. ‖𝑥 − 𝑦‖
(𝑝+𝑞+1).|𝛿|.𝑇

|𝑝+𝑞−𝛿.𝑇|
 

                       +𝐿1. ‖𝑥 − 𝑦‖ {
𝑇2

|𝑝+𝑞−𝛿.𝑇|
+

𝑇2

𝑝+𝑞
+

𝑇3.|𝛿|.(𝑝−𝑞)

𝑝.|𝑝+𝑞−𝛿.𝑇|.(𝑝2+𝑝𝑞+𝑞2)
}  

                    ≤ 𝐿.Ψ. ‖𝑥 − 𝑦‖ 

elde edilir. 𝐿.Ψ < 1 olduğu için ℱ bir daralma operatörüdür.  

Banach sabit nokta teoremi kullanılırsa ispat tamamlanır. 

Örnek 4.1.4. (𝑝, 𝑞)-sınır değer problemi aşağıdaki gibi olsun. 

                {
𝐷𝑝,𝑞
2 𝑥(𝑡) =

4𝑡

27×105
tan−1 𝑥𝜎(𝑞𝑡) + 𝑡. 𝑒𝑡,           𝑡 ∈ [0,

𝑇

𝑝2.𝑞2
]
𝕋0

𝑥(0) = 2 +
1

105
𝑥(𝑡),                                      𝑥(𝑇) = 𝛿 ∫ 𝑥(𝑠)𝑑𝑝,𝑞𝑠,

𝑇

0

     (4.12) 

Ayrıca 𝑇 = 243, 𝛿 = 1, 𝑝 = 3, 𝑞 = 2, 𝐿 = 𝐿1 = 𝐿2 =
1

105
 ve 

𝜑(𝑡, 𝑥𝜎(𝑞𝑡)) =
4𝑡

27 × 105
tan−1 𝑥𝜎(𝑞𝑡) + 𝑡. 𝑒𝑡   

olsun. Bu durumda (4.12) problemi, (4.1) probleminin formundadır.  𝐿1 =
1

105
 için  

|𝜑(𝑡, 𝑥(𝑡)) − 𝜑(𝑡, 𝑦(𝑡))| ≤
1

105
|tan−1 𝑥(𝑡) − tan−1 𝑦(𝑡)| 

                                                               ≤
1

105
|𝑥(𝑡) − 𝑦(𝑡)| 
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eşitsiziliği elde edildiği için (A1) şartı sağlanır. Benzer olarak (A2) şartı için 𝐿2 =
1

105
 

ile   

|𝑘(𝑥) − 𝑘(𝑦)| ≤ 𝐿2. ‖𝑥 − 𝑦‖ 

olduğu açıktır. (4.11) eşitliğinden  

Ψ =
60507

238
+
59049

5
+
14348907

13566
≈ 13121,742 

elde edilir. Bu nedenle  

𝐿.Ψ ≈ 0,131 < 1 

 olur. Sonuç çıkar. 

 İkinci Dereceden (𝒑, 𝒒)-Fark Denkleminin Çözümlerinin Salınımlılığı  

Eğer (4.1) denkleminde  

𝜑(𝑡, 𝑥𝜎(𝑞𝑡)) = −𝜌(𝑡). 𝑥𝜎(𝑞𝑡) 

olarak alınırsa bu durumda 𝑝 > 𝑞 > 1 ile 𝑡 ∈ 𝕋 için  

𝐷𝑝,𝑞
2 𝑥(𝑡) + 𝜌(𝑡). 𝑥𝜎(𝑞𝑡) = 0               (4.13) 

şeklinde bir ikinci mertebeden (𝑝, 𝑞)-fark denklemi elde edilir. Bu denklemde 𝜌(𝑡) 

fonksiyonu  aşağıdaki gibidir: 

𝜌(𝑡) =
𝑏

𝑞. 𝑡. 𝜎(𝑡)
. 

 Örnek 2.2.9 dan 𝑥(𝑞𝑡) fonksiyonunun (𝑝, 𝑞)-türevi kullanılırsa 𝑡 ∈ 𝕋 için 

𝑥𝜎(𝑞𝑡) = 𝑥(𝜎(𝑞𝑡)) = 𝑥(𝑝𝑞𝑡) = 𝑥(𝑞2𝑡) + (𝑝 − 𝑞)𝑡. 𝐷𝑝,𝑞𝑥(𝑞𝑡)                    (4.14) 

eşitliği elde edilir. Eğer (4.14) eşitliği (4.13) denkleminde yerine yazılırsa bu durumda 

                                           
𝑝

𝑞
− 𝑎 (

𝑝

𝑞
− 1) + 𝑏𝑞 (

𝑝

𝑞
− 1)

2

≠ 0               (4.15) 

ve b∈ ℝ için 𝑎 = 𝑏(𝑝 − 𝑞) olmak üzere (4.13) denklemi  

𝑞𝑡. 𝜎(𝑡). 𝐷𝑝,𝑞
2 𝑥(𝑡) + 𝑎𝑡. 𝐷𝑝,𝑞𝑥(𝑞𝑡) + 𝑏. 𝑥(𝑞

2𝑡) = 0                         (4.16) 
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şeklinde yeniden yazılabilir. Burada dikkat edilirse (4.16) denkleminin [44] de verilen 

Euler-Cauchy 𝑞-fark denklemine benzediği görülmektedir. Bu nedenle (4.16) 

denklemi, Euler-Cauchy-benzeri (𝑝, 𝑞)-fark denklemi olarak adlandırılacaktır.  

Not 2.2.5 ve Uyarı 2.2.8 kullanılarak (4.14) deki denklemde 

𝜌 = 𝛾
[(
𝑝

𝑞
+1)−𝑎(

𝑝

𝑞
−1)]

2
               (4.17) 

ve  

                                                     ℓ = 𝛾2 [(
𝑎−1

2
)
2

− 𝑏𝑞] (
𝑝

𝑞
− 1)

2

              (4.18) 

olmak üzere ayrıca (4.17) ve (4.18) deki eşitliklere ek olarak 

𝜌 = 𝛾 [1 −
(𝑎 − 1) (

𝑝
𝑞 − 1)

2
] 

ve  

                             𝜌2 − ℓ = 𝛾2 [
𝑝

𝑞
− 𝑎 (

𝑝

𝑞
− 1) + 𝑏𝑞 (

𝑝

𝑞
− 1)

2

]                           (4.19) 

dir. Bu durumda (4.14) denklemi, 

                                  𝑥(𝑝2𝑡) − 2𝜌
1

𝛾
𝑥(𝑝𝑞𝑡) + (𝜌2 − ℓ)

1

𝛾2
𝑥(𝑞2𝑡) = 0              (4.20) 

olur. 

Lemma 4.2.1. 𝜌 ve ℓ sabitleri (4.17) ve (4.18) deki gibi olsun. 𝛾 = 𝜆log𝑝 𝑞 alalım. 

Ayrıca (4.15) in mevcut olduğunu kabul edelim. Eğer 

                                                 𝜆2 − 2𝜌𝜆 + 𝜌2 − ℓ = 0               (4.21) 

ise bu durumda (4.16) denkleminin çözümü 𝑡 ∈ 𝕋 için  

𝑥𝜆(𝑡) = 𝜆
log𝑝 𝑞𝑡 

şeklindedir. 

İspat.  

𝑥(𝑝𝑡) = 𝜆log𝑝 𝑞(𝑝𝑡) = 𝜆log𝑝𝑝+log𝑝 𝑞𝑡 = 𝜆1+log𝑝 𝑞𝑡 = 𝜆𝜆log𝑝 𝑞𝑡 = 𝜆𝑥(𝑡) 

ve 

𝑥(𝑞𝑡) = 𝜆log𝑝 𝑞(𝑞𝑡) = 𝜆log𝑝 𝑞+log𝑝 𝑞𝑡 = 𝜆log𝑝 𝑞+log𝑝 𝑞𝑡 = 𝜆log𝑝 𝑞𝜆log𝑝 𝑞𝑡 = 𝛾𝑥(𝑡) 
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olduğu için  

𝑥(𝑝2𝑡) = 𝜆log𝑝 𝑞(𝑝𝑝𝑡) = 𝜆log𝑝𝑝
2+log𝑝 𝑞𝑡 = 𝜆2𝜆log𝑝 𝑞𝑡 = 𝜆2𝑥(𝑡) 

                  𝑥(𝑝𝑞𝑡) = 𝜆𝑥(𝑞𝑡) = 𝜆𝜆log𝑝 𝑞𝑥(𝑡) = 𝛾𝜆𝑥(𝑡) 

                  𝑥(𝑞2𝑡) = 𝛾𝑥(𝑞𝑡) = 𝛾2𝑥(𝑡) 

eşitlikleri elde edilir. Bu eşitlikler kullanılarak 𝑥 = 𝑥𝜆 olmak üzere 

𝑥(𝑝2𝑡) − 2𝜌
1

𝛾
𝑥(𝑝𝑞𝑡) + (𝜌2 − ℓ)

1

𝛾2
𝑥(𝑞2𝑡) = (𝜆2 − 2𝜌𝜆 + (𝜌2 − ℓ))𝑥(𝑡) = 0 

elde edilir. Böylece istenilen sonuca ulaşılır. 

Burada 𝜆 ≠ 0 olduğu için 𝑥𝜆(𝑡)  

𝑥𝜆(𝑡) = 𝜆log𝑝 𝑞𝑡 = [(sgn 𝜆)|𝜆|]log𝑝 𝑞𝑡 = (sgn 𝜆)log𝑝 𝑞𝑡|𝜆|log𝑝 𝑞𝑡 

                                             = (sgn 𝜆)log𝑝 𝑞𝑡(𝑞𝑡)log𝑝|𝜆| 

olarak yazılabilir. 

Şimdi ℓ sabitinin değerine bağlı olarak (4.16) denkleminin genel çözümü verilebilir. 

Teorem 4.2.2. 𝜌 ve ℓ sabitleri (4.17) ve (4.18) deki gibi olsun ve (4.15) eşitliği var 

olsun. Bu durumda 𝑐1, 𝑐2 ∈ ℝ olmak üzere (4.16) denkleminin genel çözümü aşağıdaki 

gibidir. 

i) 𝜆1 = 𝜌 + √ℓ ve 𝜆2 = 𝜌 − √ℓ   için eğer ℓ > 0 ise  

𝑥(𝑡) = 𝑐1𝜆1
log𝑝 𝑞𝑡 + 𝑐2𝜆2

log𝑝 𝑞𝑡. 

ii) 𝜆 = 𝜌 için eğer ℓ = 0 ise  

𝑥(𝑡) = (𝑐1 ln 𝑡 + 𝑐2)𝜆
log𝑝 𝑞𝑡. 

iii) 𝜆 = 𝜌 + 𝑖√−ℓ   için eğer ℓ < 0 ise 

cos(𝜃 − 𝜃. log𝑝 𝑞) =
Re 𝜆

|𝜆|
 

olmak üzere  

𝑥(𝑡) = (𝑐1 cos(𝜃. log𝑝 𝑞 𝑡) + 𝑐2 sin(𝜃. log𝑝 𝑞 𝑡))|𝜆|
log𝑝 𝑞𝑡 

dir. 
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İspat. (i)  ℓ > 0 iken 𝜆1 ve 𝜆2 , (4.21) denkleminin çözümleri olduğu için Lemma 

4.2.1 den 𝑥𝜆1 ve 𝑥𝜆2 değerleri (4.16) denkleminin çözümleridir. 

(ii) Eğer ℓ = 0 ise Lemma 4.2.1 den dolayı (4.16) denkleminin çözümü 𝑥𝜆 dır. Burada 

𝑥(𝑡) = 𝑥𝜆(𝑡) olarak tanımlanırsa bu durumda 

              𝑥(𝑝𝑡) = 𝜆[𝜆log𝑝 𝑞𝑡 ln 𝑝 + 𝜆log𝑝 𝑞𝑡 ln 𝑡] = 𝜆[𝑥(𝑡) + 𝑥𝜆(𝑡) ln 𝑝] 

              𝑥(𝑞𝑡) = 𝜆log𝑝 𝑞𝑞𝑡[ln 𝑡 + ln 𝑞] = 𝛾𝑥𝜆(𝑡)[ln 𝑡 + ln 𝑞] = 𝛾[𝑥(𝑡) + 𝑥𝜆(𝑡) ln 𝑞] 

            𝑥(𝑝𝑞𝑡) = 𝑥(𝑝(𝑞𝑡)) = 𝜆[𝑥(𝑞𝑡) + 𝑥𝜆(𝑞𝑡) ln 𝑝] = 𝜆𝛾[𝑥(𝑡) + 𝑥𝜆(𝑡) ln 𝑝𝑞] 

eşitlikleri elde edilir ve bu eşitlikler kullanılırsa  

 𝑥(𝑝2𝑡) − 2𝜌
1

𝛾
𝑥(𝑝𝑞𝑡) + (𝜌2 − ℓ)

1

𝛾2
𝑥(𝑞2𝑡) 

   = 𝑥(𝑝2𝑡) − 2𝜌
1

𝛾
𝑥(𝑝𝑞𝑡) + 𝜌2

1

𝛾2
𝑥(𝑞2𝑡) 

   = 𝜆2[𝑥(𝑡) + 2𝑥𝜆(𝑡) ln 𝑝] − 2𝜌
1

𝛾
𝜆𝛾[𝑥(𝑡) + 𝑥𝜆(𝑡) ln 𝑝𝑞] 

      +𝜌2
1

𝛾2
𝛾2[𝑥(𝑡) + 2𝑥𝜆(𝑡) ln 𝑞] 

   = (𝜆2 − 2𝜌𝜆 + 𝜌2)𝑥(𝑡) + [2𝜆2 − 2𝜌𝜆]𝑥𝜆(𝑡) ln 𝑝 − 2𝜌𝜆𝑥𝜆(𝑡) ln 𝑞 + 2𝜌
2𝑥𝜆(𝑡) ln 𝑞 

   = (𝜆2 − 2𝜌𝜆 + 𝜌2)𝑥(𝑡) + 2(𝜆 − 𝜌)𝑥𝜆(𝑡)[𝜆 ln 𝑝 − 𝜌 ln 𝑞] 

   = 0 

olduğu görülür. 𝑥’in (4.16) denklemini sağladığı görülür. 

(iii) Son olarak kabul edelimki ℓ < 0 olsun. 𝜃 ∈ (0, 𝜋) olmak üzere  

cos(𝜃 − 𝜃 log𝑝 𝑞) =
Re 𝜆

|𝜆|
∈ (−1,1) 

olsun. Ayrıca  

𝑢(𝑡) = cos(𝜃 log𝑝 𝑞𝑡) 

𝑣(𝑡) = sin(𝜃 log𝑝 𝑞𝑡) 

olmak üzere  

𝑥(𝑡) = 𝑥|𝜆|(𝑡). 𝑢(𝑡) 

ve 
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𝑦(𝑡) = 𝑥|𝜆|(𝑡). 𝑣(𝑡) 

olsun. Trigonometrik fonksiyonlarla ilgili formüller ve 𝑢(𝑡), 𝑣(𝑡) fonksiyonları 

kullanılarak  

𝑢(𝑡) = 𝑢(𝑝𝑡) cos 𝜃 +𝑣(𝑝𝑡) sin 𝜃 

𝑣(𝑡) = 𝑣(𝑝𝑡) cos 𝜃 −𝑢(𝑝𝑡) sin 𝜃 

elde edilir ve bu yeni elde edilen fonksiyonlar tekrar kullanılarak 𝑢(𝑡) için 

𝑢(𝑝2𝑡) = 𝑢(𝑝𝑞𝑡)[cos 𝜃 . cos(𝜃. log𝑝 𝑞) + sin 𝜃 . sin(𝜃. log𝑝 𝑞)] 

                                 +𝑣(𝑝𝑞𝑡)[cos 𝜃 . sin(𝜃. log𝑝 𝑞) − sin 𝜃 . cos(𝜃. log𝑝 𝑞)] 

𝑢(𝑞2𝑡) = 𝑢(𝑝𝑞𝑡)[cos 𝜃 . cos(𝜃. log𝑝 𝑞) + sin 𝜃 . sin(𝜃. log𝑝 𝑞)] 

                                 −𝑣(𝑝𝑞𝑡)[cos 𝜃 . sin(𝜃. log𝑝 𝑞) − sin 𝜃 . cos(𝜃. log𝑝 𝑞)] 

ve 𝑣(𝑡) için  

𝑣(𝑝2𝑡) = 𝑣(𝑝𝑞𝑡)[sin 𝜃 . sin(𝜃. log𝑝 𝑞) + cos 𝜃 . cos(𝜃. log𝑝 𝑞)] 

                                 +𝑢(𝑝𝑞𝑡)[sin 𝜃 . cos(𝜃. log𝑝 𝑞) − cos 𝜃. sin(𝜃. log𝑝 𝑞)] 

𝑣(𝑞2𝑡) = 𝑣(𝑝𝑞𝑡)[sin 𝜃 . sin(𝜃. log𝑝 𝑞) + cos 𝜃 . cos(𝜃. log𝑝 𝑞)] 

                                 −𝑢(𝑝𝑞𝑡)[sin 𝜃 . cos(𝜃. log𝑝 𝑞) − cos 𝜃 . sin(𝜃. log𝑝 𝑞)] 

elde edilir.  Bu durumda  

𝑥(𝑝2𝑡) − 2𝜌
1

𝛾
𝑥(𝑝𝑞𝑡) + (𝜌2 − ℓ)

1

𝛾2
𝑥(𝑞2𝑡) 

       = 𝑥(𝑝2𝑡) − −2𝜌
1

𝛾
𝑥(𝑝𝑞𝑡) + |𝜆|2

1

𝛾2
𝑥(𝑞2𝑡) 

       = |𝜆|2. 𝑥|𝜆|(𝑡)𝑢(𝑝
2𝑡) − 2𝜌|𝜆|𝑥|𝜆|(𝑡) + |𝜆|

2𝑥|𝜆|(𝑡)𝑢(𝑞
2𝑡) 

= 2|𝜆|𝑥|𝜆|(𝑡)𝑢(𝑝𝑞𝑡)[|𝜆|(cos 𝜃 . cos(𝜃. log𝑝 𝑞) + sin 𝜃 . sin(𝜃. log𝑝 𝑞)) − 𝜌] 

       = |𝜆|𝑥|𝜆|(𝑡)𝑢(𝑝𝑞𝑡)[|𝜆| cos(𝜃 − 𝜃 log𝑝 𝑞) − 𝜌] 

       = 0 

elde edilir ve benzer işlemler yapılarak  

𝑦(𝑝2𝑡) − 2𝜌
1

𝛾
𝑦(𝑝𝑞𝑡) + (𝜌2 − ℓ)

1

𝛾2
𝑦(𝑞2𝑡) 
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                                             = |𝜆|𝑥|𝜆|(𝑡)𝑣(𝑝𝑞𝑡)[|𝜆| cos(𝜃 − 𝜃 log𝑝 𝑞) − 𝜌] 

                                             = 0. 

Böylece 𝑥(𝑡) ve 𝑦(𝑡), değerleri (4.16) denklemini sağlar. İspatı tamamlayabilmek için 

𝑥 ve 𝑦 çözümlerinin lineer bağımsız oldukları gösterilmelidir. Bunun için (𝑝, 𝑞)-analiz 

için Wronskian tanımı  

𝑊(𝑥, 𝑦) = 𝑥(𝐷𝑝,𝑞𝑦) − 𝑦(𝐷𝑝,𝑞𝑥) 

şeklindedir ve bu tanım kullanılarak her iki çözüm için (𝑝 − 𝑞). 𝑡.𝑊(𝑥, 𝑦), sırasıyla 

ℓ > 0 için [2√ℓ − (𝜌 + √ℓ)
log𝑝 𝑞

+ (𝜌 − √ℓ)
log𝑝 𝑞

] (𝜌2 − ℓ)log𝑝 𝑞𝑡, 

ℓ = 0 için 𝜌2 log𝑝 𝑞𝑡[𝜌 ln 𝑝 − ln 𝑞 𝜌log𝑝 𝑞], 

ve 

ℓ < 0 için (𝜌2 − ℓ)2 log𝑝 𝑞𝑡[(𝜌2 − ℓ) sin 𝜃 − (𝜌2 − ℓ)log𝑝 𝑞 sin(𝜃. log𝑝 𝑞)] 

elde edilir.  Tüm durumlar düşünüldüğünde Wronskian ların sıfırdan farklı olduğu 

görülür. Böylece yukarıda bahsedilen üç durumdan her biri çözümlerin temel kümesini 

oluşturur. 

Son olarak, 𝑡0 ∈ 𝕋 için  

{
𝐷𝑝,𝑞
2 𝑠(𝑡) + 𝜌(𝑡). 𝑠𝜎(𝑞𝑡) = 0

𝑠(𝑡0) = 𝑠0,     𝐷𝑝,𝑞𝑠(𝑡0) = 𝑠̃0
 

ile verilen başlangıç değer probleminin 𝑠(𝑡) çözümü 

𝑠(𝑡) =
𝑠0. 𝐷𝑝,𝑞𝑦(𝑡0) − 𝑦(𝑡0). 𝑠̃0

𝑊(𝑥, 𝑦)(𝑡0)
𝑥(𝑡) +

𝑥(𝑡0). 𝑠̃0 − 𝑠0. 𝐷𝑝,𝑞𝑥(𝑡0)

𝑊(𝑥, 𝑦)(𝑡0)
𝑦(𝑡) 

olarak kolayca ifade edilebilir. 

Uyarı 4.2.3. Bu teorem, [44] nolu çalımadaki Teorem 4’ü  (𝑝, 𝑞)-analize genelleştirir. 

Yani Teorem 4.2.2, 𝑝 → 1 iken literatürdeki  𝑞-versiyonuna indirgenmektedir. 

Teorem 4.2.4. (Sturm-type separation theorem) 

(4.13) denkleminin bir çözümü salınımlı değildir (veya salınımlıdır) gerek ve yeter şart 

(4.13) denkleminin her çözümü salınımlı değildir (veya salınımlıdır). 

İspat. Teoremi ispatlayabilmek için 𝑥(𝑡) çözümünün (4.13) denkleminin salınımlı 

olmayan bir çözümü olduğunu kabul edelim. Bu durumda tanımdan dolayı bazı 𝑇 > 0 
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için [𝑇,∞] aralığı üzerinde 𝑥(𝑞𝑡). 𝑥𝜎(𝑡) > 0 dır. Diğer taraftan 𝑦(𝑡) çözümü (4.13) 

denkleminin herhangi bir çözümü olsun. Ayrıca 𝑥(𝑡) ve 𝑦(𝑡) çözümleri lineer 

bağımsız olsun. 𝐷𝑝,𝑞 (
𝑦(𝑡)

𝑥(𝑡)
) ≠ 0 dır. Bu durumda 𝑦(𝑡) 𝑥(𝑡)⁄  kesin olarak monotondur 

ve bu nedenle tek işarate sahiptir. Böylece  

𝑦(𝑞𝑡). 𝑦𝜎(𝑡)

𝑥(𝑞𝑡). 𝑥𝜎(𝑡)
= (

𝑦(𝑞𝑡)

𝑥(𝑞𝑡)
) . (

𝑦𝜎(𝑡)

𝑥𝜎(𝑡)
) 

pozitiftir ve buradan 𝑦(𝑞𝑡). 𝑦𝜎(𝑡) > 0 olur. Bu ise 𝑦(𝑡) çözümünün de salınımlı 

olmadığını gösterir. Böylece ispat tamamlanır. 

Teorem 4.2.5.   

𝐷𝑝,𝑞
2 𝑥(𝑡) +

𝑏

𝑞. 𝑡. 𝜎(𝑡)
𝑥𝜎(𝑞𝑡) = 0 

şekilde tanımlanan ikinci mertebeden (𝑝, 𝑞)-fark denkleminin salınımlı olması için 

gerek ve yeter şart  

𝑏 >
1

(√𝑝 + √𝑞)
2 

olmasıdır. 

İspat. Teoremi ispatlayabilmek için teoremin ifadesindeki denklem  

                                           𝐷𝑝,𝑞
2 𝑥(𝑡) +

𝑏

𝑝𝑞𝑡2
𝑥(𝑝𝑞𝑡) = 0                                                    (4.22) 

şekilde yeniden yazılabilir. Eğer (4.14) denklemi kullanılırsa (4.22) denkleminden  

                    𝑝𝑞𝑡2. 𝐷𝑝,𝑞
2 𝑥(𝑡) + 𝑏(𝑝 − 𝑞)𝑡𝐷𝑝,𝑞𝑥(𝑞𝑡) + 𝑏. 𝑥(𝑞

2𝑡) = 0                     (4.23) 

olarak Euler-Cauchy benzeri (𝑝, 𝑞)-fark denklemi elde edilir. Dikkat edilirse (4.23) 

denklemi 𝑎 = 𝑏(𝑝 − 𝑞) ve 𝑏 ∈ ℝ olmak üzere (4.16) denklemi şeklindedir. Diğer 

taraftan (4.17) ve (4.18) eşitlikleri kullanılarak 𝜌 sabiti  

                             𝜌 = 𝛾
[(
𝑝

𝑞
+1)−𝑎(

𝑝

𝑞
−1)]

2
= 𝛾

[
𝑝

𝑞
+1−𝑏𝑞(

𝑝

𝑞
−1)

2
]

2
 

                                = 𝛾 [√
𝑝

𝑞
−
(
𝑝

𝑞
−1)

2

2
𝑞 (𝑏 −

1

(√𝑝+√𝑞)2
)] 
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                                = 𝛾 [−√
𝑝

𝑞
−
(
𝑝

𝑞
−1)

2

2
𝑞 (𝑏 −

1

(√𝑝−√𝑞)2
)]                                     (4.24) 

olur ve ℓ sabiti ise 

ℓ = 𝛾2 (
𝑝

𝑞
− 1)

2

[(
𝑎 − 1

2
)
2

− 𝑏𝑞] 

                                            = 𝛾2
(
𝑝

𝑞
−1)

2

4
[𝑏2(𝑝 − 𝑞)2 − 2𝑏(𝑝 − 𝑞) + 1 − 4𝑏𝑞] 

= 𝛾2
(
𝑝
𝑞 − 1)

2

4
[𝑏2(𝑝 − 𝑞)2 − 2𝑏(𝑝 + 𝑞) + 1] 

                               = 𝛾2𝑞2
(
𝑝

𝑞
−1)

2

4
[𝑏2 − 𝑏

2(𝑝+𝑞)

(𝑝−𝑞)2
+

1

(𝑝−𝑞)2
] 

                               = 𝛾2𝑞2
(
𝑝

𝑞
−1)

2

4
[𝑏 −

1

(√𝑝+√𝑞)2
] [𝑏 −

1

(√𝑝−√𝑞)2
] 

olarak elde edilir.  

Şimdi (4.22) denkleminin salınımlılığı ispatlanabilir. Bunu yapabilmek için Teorem 

4.2.2 ve elde edilen ℓ sabitinden yararlanılacaktır. 

Eğer ℓ = 0 ise bu durumda 𝑏 ∈ ℝ sayısı ya 

𝑏 =
1

(√𝑝 + √𝑞)
2 

olur ya da  

𝑏 =
1

(√𝑝 − √𝑞)
2 

olur. Eğer 𝑏 = 1 (√𝑝 + √𝑞)
2

⁄  ise bu durumda (4.24) eşitliklerinden  

𝜌 = 𝛾√
𝑝

𝑞
 

elde edilir. Teorem 4.2.2 (ii) ile birlikte (4.23) denkleminin iki çözümü  
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(𝛾√
𝑝

𝑞
)

log𝑝 𝑞𝑡

= √𝑞𝑡 

ve  

(𝛾√
𝑝

𝑞
)

log𝑝 𝑞𝑡

. ln 𝑡 = √𝑞𝑡. ln 𝑡 

salınımlı değildir ve bu nedenle (4.23) denklemi salınımlı değildir. 

Eğer 𝑏 = 1 (√𝑝 − √𝑞)
2

⁄  ise bu durumda (4.24) eşitliği kullanılarak 

𝜌 = −𝛾√
𝑝

𝑞
 

olur ve bu sefer Teorem 4.2.2 (ii) den (4.23) denkleminin iki çözümü 

   

(−𝛾√
𝑝

𝑞
)

log𝑝 𝑞𝑡

= (−1)log𝑝 𝑞𝑡√𝑞𝑡 

ve 

(−𝛾√
𝑝

𝑞
)

log𝑝 𝑞𝑡

. ln 𝑡 = (−1)log𝑝 𝑞𝑡√𝑞𝑡. ln 𝑡 

salınımlıdır ve bu nedenle (4.23) denklemi salınımlıdır. 

Eğer ℓ > 0 ise bu durumda 𝑏 ∈ ℝ sayısı ya 

𝑏 <
1

(√𝑝 + √𝑞)
2 

ya da  

𝑏 >
1

(√𝑝 − √𝑞)
2 

olur.  

Eğer 𝑏 < 1 (√𝑝 + √𝑞)
2

⁄  ise  bu durumda (4.24) den  
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𝜌 > 𝛾√
𝑝

𝑞
 

olur ve Teorem 4.2.2 (i) şıkkı düşünüldüğünde (4.23) denkleminin 

(𝜌 + √ℓ)
log𝑝 𝑞𝑡

= (𝑞𝑡)log𝑝(𝜌+√ℓ) 

çözümü salınımlı değildir ve bu nedenle (4.23) deklemi salınımlı değildir.  

Eğer 𝑏 > 1 (√𝑝 − √𝑞)
2

⁄  ise bu durumda (4.24) den  

𝜌 < −𝛾√
𝑝

𝑞
 

elde edilir ve Teorem 4.2.2 (i) şıkkı düşünüldüğünde (4.23) denkleminin 

(𝜌 − √ℓ)
log𝑝 𝑞𝑡

= (−1)log𝑝 𝑞𝑡(𝑞𝑡)log𝑝(√ℓ−𝜌) 

çözümü salınımlıdır ve dolayısıyla (4.23) denklemi salınımlıdır. 

Eğer ℓ < 0 ise bu durumda 𝑏 ∈ ℝ sayısı için 

1

(√𝑝 + √𝑞)
2 < 𝑏 <

1

(√𝑝 − √𝑞)
2 

eşitsizliği geçerlidir. Teorem 4.2.2 (iii) şıkkından (4.23) denkleminin  

(√𝑞𝑡)
log𝑝|𝜆|

cos(𝜃. log𝑝 𝑞𝑡) 

ve  

(√𝑞𝑡)
log𝑝|𝜆|

sin(𝜃. log𝑝 𝑞𝑡) 

şeklindeki iki çözümü salınımlıdır. Bu durumda 𝜌 ∈ (−𝛾√𝑝 𝑞⁄ , 𝛾√𝑝 𝑞⁄ ), 

 |𝜆| = 𝛾√𝑝 𝑞⁄  ve  

cos (𝜃(1 − log𝑝 𝑞)) =
𝜌

𝛾√𝑝 𝑞⁄
=
[(
𝑝
𝑞 + 1) − 𝑏𝑞 (

𝑝
𝑞 − 1)

2

]

2√𝑝 𝑞⁄
 

olmak üzere (4.23) denklemi salınımlıdır. 

Yukarıda bahsedilen tüm durumlar birlikte düşünüldüğünde (4.23) denklemi ve 

dolayısıyla (4.22) denkleminin salınımlı olması için gerek ve yeter şart  
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𝑏 >
1

(√𝑝 + √𝑞)
2 

olmasıdır. Böylece ispat tamamlanır. 

Uyarı 4.2.6.  Teorem 4.2.7, 𝑝 → 1 iken Teorem 1.2.1’e indirgenir. Ayrıca 𝑝 → 1 ve 

𝑞 → 1 iken [42] deki sürekli duruma indirgenir ve sürekli durumda 1 4⁄  olan sabitin 

(𝑝, 𝑞)-analiz de 1 (√𝑝 + √𝑞)
2

⁄  olduğu görülür. 

Teorem 4.2.7. ((𝑝, 𝑞)-Kneser Teoremi) 

i) Eğer  

𝑙𝑖𝑚𝑠𝑢𝑝{𝑞. 𝑡. 𝜎(𝑡). 𝜌(𝑡)} <
𝑡→∞

1

(√𝑝 + √𝑞)
2 

ise bu durumda (4.13) denklemi 𝑝ℕ0 üzerinde salınımlı değildir. 

ii) Eğer 

𝑙𝑖𝑚𝑖𝑛𝑓{𝑞. 𝑡. 𝜎(𝑡). 𝜌(𝑡)} >
𝑡→∞

1

(√𝑝 + √𝑞)
2 

ise bu durumda (4.13) denklemi 𝑝ℕ0 üzerinde salınımlıdır. 

İspat. i) şıkkını ispatlayabilmek için (4.22) denkleminin  

𝑏 <
1

(√𝑝 + √𝑞)
2 

için salınımlı olmadığının ispatlanması yeterlidir. ii) şıkkının ispatı için ise (4.22) 

denkleminin 

𝑏 >
1

(√𝑝 + √𝑞)
2 

için salınımlı olduğunun gösterilmesi gerekir. Bu durumlar ise tekrar Teorem 4.2.5’in 

ispatından çıkarılabilir.  

Uyarı 4.2.8. Teorem 4.2.7, 𝑝 → 1 iken [44] nolu çalışmadaki Teorem 6 ya indirgenir. 

Ayrıca 𝑞-analizte 1 (1 + √𝑞)
2

⁄  olan sabitin, (𝑝, 𝑞)-analizte 1 (√𝑝 + √𝑞)
2

⁄  olduğu 

görülür. 



  

5. SONUÇ VE ÖNERİLER 

Bu tezin ilk orijinal kısmında; birinci mertebeden bir başlangıç değer problemi çok 

noktalı ve integral sınır şartları ile birlikte 𝑞-analizde tanımlandı ve çözümlerinin 

varlığının ve tekliğinin araştırılabilmesi için uygun bir Green fonksiyonu oluşturuldu. 

Scahaefer sabit nokta teoremi, Krasnoselskii sabit nokta teoremi ve Banach sabit nokta 

teoremleri kullanılarak denklemin çözümlerinin varlığı ve tekliği araştırıldı. Ayrıca 

bazı nümerik örnekler sunuldu. Elde edilen sonuçlar literatürdeki mevcut sonuçların 

genelleştirilmesidir. 𝑞 → 1 olduğunda (3.1)-(3.2) sistemi (1.1)-(1.2) sistemine 

indirgenir. 

Tez çalışmasının ikinci orijinal kısmında öncelikle integral sınır şartları ile tanımlanan 

ikinci mertebeden bir (𝑝, 𝑞)-fark denkleminin çözümlerinin varlığı ve tekliği Banach 

sabit nokta teoremi kullanılarak ispatlandı. Ayrıca nümerik bir örnek verildi. Daha 

sonra 𝐷𝑝,𝑞
2 𝑥(𝑡) + 𝜌(𝑡). 𝑥𝜎(𝑞𝑡) = 0 denklemi ele alındı. Bu denklem 𝜌(𝑡) fonksiyonun 

seçiminden dolayı yeniden düzenlendiğinde bir Euler-Cauchy benzeri (p,q) -denklemi 

olur. Elde edilen çözümlerin salınımlılığı araştırıldı. (𝑝, 𝑞)-Kneser teoremi ve (p,q)-

Sturm teoremi ile salınımlılıkla ilgili bazı sonuçlar bulundu.  Böylece literatürdeki 

mevcut sonuçlar genelleştirildi.  

Diğer yandan, sürekli ve ayrık (bkz. [42, 43]) durumlarda 1 4⁄  olan sabitin (𝑝, 𝑞)-

analizde 1 (√𝑝 + √𝑞)
2

⁄  olduğu görüldü. Ayrıca 𝑝 → 1 iken Teorem 4.2.5. ,Teorem 

1.2.1 e indirgenir. Benzer olarak 𝑝 → 1 = 𝑞 iken Teorem 4.2.7. ‘nin [42] nolu 

çalışmadaki sürekli durumuna indirgenir.  

(𝑝, 𝑞)-analiz ve 𝑞-analizte çalışılabilecek pek çok denklem ve konu vardır. Dolayısıyla 

bu tez çalışması gelecekte bu konuda yapılabilecek çalışmalara kaynak teşkil etmesi 

ümit edilmektedir. 
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