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Bu tezin tasarimi, hazirlanmasi, yiiriitiillmesi, arastirmalarinin yapilmasi ve
bulgularinin analizlerinde bilimsel etige ve akademik kurallara 6zenle riayet
edildigini; bu caliymanin dogrudan birincil iiriinii olmayan bulgularin,
verilerin ve materyallerin bilimsel etige uygun olarak kaynak gosterildigini
ve alint1 yapilan ¢calismalara atfedildigine beyan ederim.
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OZET

OZELBIR LINEER GRUP iCIN YORUNGESEL GRAFLAR
YUKSEK LiSANS TEZi
KUBRA OYMAK
PAMUKKALE UNIVERSITESI FEN BIiLIMLERI ENSTITUSU

MATEMATIK ANABILIiM DALI
(TEZ DANISMANI:PROF. DR. MURAT BESENK)
DENIZLi, AGUSTOS - 2024

Bu c¢alismada SL(3,Z) lineer grubun 6zel bir kongriians alt grubu olan
SL*(3,Z), grubu i¢in sonsuz blogu iizerinde alt yoriingesel graflar incelendi.

Birinci bolimde konuyla ilgili olarak Topolojik Gruplar, Hiperbolik
Geometri, Riemann Yiizeyleri, Mobius Doniistimleri ve Graf Teori ile ilgili genel
kavramlar ve agiklayici 6rnekler verildi.

Ikinci boliimde SL*(3,Z), grubunun alt yériingesel graflarinda kenar olma
sartlar1 ve kendisiyle eslesmis kenar olma durumlari arastirildi. Ayrica alt

yoriingesel graflarin bir devre igermesi i¢in gerek ve yeterli sartlar elde edildi.

ANAHTAR KELIMELER:Yériingesel Graflar, imprimitif Hareket, Yoriinge,
Sabitleyen, Devre



ABSTRACT

ORBITAL GRAPHS FOR A SPECIAL LINEAR GROUP
MSC THESIS
KUBRA OYMAK
PAMUKKALE UNIVERSITY INSTITUTE OF SCIENCE

MATHEMATICS
(SUPERVISOR:PROF. DR. MURAT BESENK)
DENIZLi, AUGUST 2024

In this study suborbital graphs on the infinite block for the
SL*(3,7Z), group, a special congruence subgroup of the SL(3,Z) are investigated.

In the first chapter, about the subject general concepts and revealing
examples dealing with Topological Groups, Hyperbolic Geometry, Riemann
Surfaces, Mobius Transformations and Graph Theory aregiven.

In the second chapter, edge conditions in suborbital graphs of the
congrence subgroup SL*(3,Z), and cases for being self paired edge are
investigated. Also necessary and sufficient conditions for the suborbital graphs to

contain a circuit are obtained.

KEYWORDS: Orbital Graphs, Imprimitive Action, Orbit, Stabilizer, Circuit
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1. GENEL BILGILER

1.1. Topolojik Gruplar

Tanmmm 1.1.1. G # @ herhangi bir kiime olmak iizere *:G X G = G, (g1,92) =
g1 * g2 seklinde tanimlanan her fonksiyona G kiimesi iizerinde bir ikili iglem denir.
Uzerinde en az bir ikili islem tanimlanmis ve bos olmayan bir kiimeye de cebirsel

yapi denir ve (G, *) ikilisi ile gosterilir. (Asar, Arikan 2009).

Tanmm 1.1.2." = " iglemi G # @ kiimesi iizerinde tanimlanmig bir ikili islem olsun.

Asagidaki sartlar saglaniyorsa (G,*) ikilisine bir grup adi verilir:

1) Vx,y€Giginx * y € G(kapalilik 6zelligi)
i) Vx,y,z€ Giginx * (y *z) = (x *y) * z (birlesme 6zelligi)
lii)3e €GoylekiVx €Gigine * x =x * e = x (birim eleman 6zelligi)

iV) Vx € Gigin3x'€ G dyle ki x * x = x* x =e ( ters eleman &zelligi)
Burada x * y yerine kisaca xy yazilacaktir (Asar, Arikan 2009).

Tammm 1.1.3. G bir grup, @ # H < Golsun. Eger H, G iizerinde tanimlanan ikili
isleme gore bir grup ise H ye G nin bir alt grubu denir ve H < G ile gosterilir.
Acitkca H < G ise eg € H dir. Dolayisiyla {e} ve G, G grubunun alt gruplanidir. Bu
alt gruplara agikar alt gruplar adi verilir. Bir grubun asikar gruptan farkli alt

gruplarina ise 0z alt grup denir (Asar, Arikan 2009).

Onerme 1.1.1.G bir grup, ® # H < Golsun. Bu durumda H < G © Vhy,h, €
H i¢in
i) hyh,€H

i) h,”' € H dir (Asar, Arikan 2009).

Onerme 1.1.2. G bir grup, ® # H < G olsun. Buradan H < G © V h;,h, €H
icin hyh, " € H dir (Asar, Arikan 2009).



Tamm 1.1.4. G bir grup ve A ile B ise G grubunun alt gruplar1 olsun. A = gBg™!
olan bir g € G varsa A ile B eslenik alt gruplar denir (Tsuzuku 1982).

Tamim 1.1.5. G bir grup H < G olsun. Ayrica G grubu iizerinde bir " =" bagintisi
a = b(H) © ab '€H olarak tamimlansm. Bu durumda tanimlanan bu baginti bir
denklik bagimtisidir ve bir a elemaninin denklik sinifi @ = {ah:h € H} = aH alt
kiimesidir. aH alt kiimesine a € G elemaninin sol yan sinifi denir. Benzer sekilde bir
b elemaninin denklik siifi b = {hb:h € H} = Hb alt kiimesidir. Hb alt kiimesine

b € G elemanin sag yan sinifi denir (Rose 1988).

Tanim 1.1.6. G bir grup ve H < G olsun. Bu takdirde H < G alt grubuna gore sag
ve sol yan smiflarinin sayisi birbirine esittir. Bu sayiya H alt grubunun G grubu

igcindeki indeksi denir ve | H: G | ile gosterilir (Rose 1988).

Tanim 1.1.7. G bir grup H < G olsun. Eger H alt grubunun G grubundaki biitiin sag
ve sol kiimeleri birbirine esitse, yani Vx € G i¢in xH = Hx oluyorsa H alt grubuna

G grubunun normal alt grubu denir (Keskin 2006).

Teorem 1.1.1. G bir grup ve H < G alt grubu verilsin. Bu durumda asagidaki

ifadeler birbirine denktir:

i) Vg EGve Vh € Higinghg '€ H
ii) Vg € Gigin ghg ' c H

iii) Vg € Gicin ghg™t = H

iV) Vg € Gicin gH = Hg

Tanmim 1.1.8. X # @ verilen herhangi bir kiime ve P(X), X kiimesinin gii¢ kiimesi
olmak {izere T € P(X) olsun. Bu takdirde t ailesine agagidaki sartlar1 saglaniyor ise

X lizerinde bir topoloji ad1 verilir:

i) QPerveX €71
i) VvU,VerticmnUNVeErT

i) HerielicinU; €Etise Uje; Ui ET

Ayrica (X, 7) ikilisine de bir topolojik uzay denir.



Tamm 1.1.9. (G,*) ikilisi bir grup ve ayn1 zamanda bir topolojik uzay olsun. Eger,
VM:GXG—-G,M(g,h)=g=+h
iiym:G - G,m(g) =g*

doniistimleri siirekli ise bu durumda G ye bir topolojik grup denir (Beardon 1983).
Ornek 1.1.1.

1) (R,+) ikilisi bir topolojik gruptur. M ve m doniisiimlerinin siirekli oldugu

kolaylikla gosterilebilir.

i1) N herhangi bir grup olsun. Eger N grubu iizerinde bir ayrik topoloji varsa
bu takdirde N topolojik bir gruptur.

iii) S = {z€C :|z| = 1} kiimesini alalim. Bu kiime iizerinde yapilan
kompleks sayilarin ¢arpma islemine gére bir topolojik olusur yani (S2,-) bir topolojik
gruptur.

Tamm 1.1.10. G topolojik grup ve t herhangi bir topolojik uzay olsun. Eger
& Gxt - 1,89, x) = gx seklinde tamimlanan & doniistimii stirekli ve Vx € T,
Vg1,92 € G igin

i) g1(g2x) = (9192)x

ieEx=x

kosullar1 saglaniyor ise (G, T, §) ligliisiine bir topolojik dontisiim grubu denir. Bu
durumda G topolojik grubuna t iizerinde hareket ediyor veya G topolojik grubu
7 lizerinde bir hareket grubu denir. Kolaylik olmasi agisindan (G, 7, §) yerine kisaca

[G, T ] ile gosterilir (Beardon 1983).

Tanmm 1.1.11.[G, X] topolojik doniisim grubu ve x,y € X olsun. Bu durumda
x~y & 3g € G+ y = gxolarak tanimlanirsa "~" bagintis1 X kiimesi tizerinde bir
denklik baglantisidir. Bu "~ " bagintisinin her bir denklik smifina hareketin
yoriingeleri denir. Ayrica x € X noktasini igeren yoriingeye x noktasinin yoriingesi

denir ve Gx ile gosterilir. Acik olarak Gx = {gx: g € G}dir (Beardon 1983).



Tanmim 1.1.12. G grubu X kiimesi {izerinde hareket etsin ve x,y € X keyfi iki nokta
olsun. Bu takdirde gx = y olacak sekilde g € G varsa G grubuna X kiimesi tizerinde
transitif olarak hareket eder denir (Jones, Singerman 1987).

Tamim 1.1.13. G, X kiimesi tizerinde hareket etsin ve x € X keyfi olsun. Gx = { g €

G: gx = x} x noktasinin G deki sabitleyeni denir (Jones, Singerman 1991).

Onerme 1.1.3. [G, X] bir topolojik doniisiim grubu ve X bir Hausdorff uzay1 olsun.
Bu takdirde Gx={ g € G: gx = x} sabitleyeni G grubunun kapali bir alt grubudur.

Ispat. Oncelikle Gx < G oldugunu gosterelim. Gx < G © Vg1,92€ Gx igin g1,92*€
Gx seklindedir. Buradan Vg1,92€ Gx igin g1x = x, g2 x = x olup g2t x = x ve gigz>
lx =g1(g92 x) =g1x=x=>g1922 € Gx elde edilir. Simdi Gx sabitleyeninin G
grubunun bir kapali alt kiimesi oldugunu gosterelim. x € X keyfi fakat sabit bir nokta
olsun. Bu durumda To : G = X, To(g) = gx doniisiimii stirekli ve X Hausdorff uzay1

oldugundan T3 *({x}) = G,kapalidir. Boylece Gx < G Ve Gxsabitleyeni kapalidir.

Onerme 1.1.4. [G,X] ikilisi bir topolojik doniisiim grubu veyo€ Gx keyfi fakat sabit
bir nokta olsun. Bu durumda K = {g € G: yo = gx} kiimesi G Sabitleyenin bir yan

smifidir.

Ispat. yo€ Gx oldugundan 3go € G: yo = gox seklindedir. Buradan yola ¢ikarak goGx
= Koldugunu gosterelim.a € goG, keyfi fakat sabit bir nokta olsun. Bu durumda
a= go g1 olacak sekilde g1 € Gx mevcuttur. Ag¢ikca ax = go g1 x= gox = yodir.
Dolayisiyla bu durum a € Koldugunu gosterir. Buradan goGxC Kdir. Simdig € K
alalim. Bu ise gx = yoolur. Béylelikle gx = yo=gox = golgx=x = golg € Gx
olup acik¢a g € goGxelde edilir. Yani K € goGx olur. O halde sonug olarak goGx C
K ve K € goGx oldugundan K = goGx bulunur.

Onerme 1.1.5. [G,X] ikilisi bir topolojik déniisiim grubu olsun. Bu durumda x € X
keyfi sabit bir nokta olmak tizere 7 : G / Gx— Gx, T(gGx) = Gx doniigimil birebir ve

ortendir.

Ispat. Once 7 : G/G, - Gx, 1(gG,) = Gx déniisiimiin birebir oldugunu gosterelim.
Cebirden biliyoruz ki iki yan smif ya c¢akisir ya da ayrik iki kiime bigimindedir.
7(91Gx) = 1(g2Gy) olsun.



Buradan g,x = g,x = g7 g,x = x = g7'g, € G, olup g, € g,G, dir. Bbylece
g2 € 926y ise  g1Gx = g,G, elde edilir. a € Gy vea € Gy, = G, = G, esitligi elde

edilir.

Simdi t doniisiimiiniin 6rten bir donilisiim oldugunu gosterelim. h € G, keyfi olsun.
Bu durumda 3go€G: h=gox dir. 1(g99Gy) = gox =h € G, = goGy €

G /G, olup T doniisiimii ortendir.

Onerme 1.1.6. [G,X] ikilisi bir topolojik doniisiim grubu ve y = gx keyfi bir nokta
olsun. Bu takdirde Gy = gGx g* dir. Yani bir yoriingedeki farkli iki elemanin

sabitleyenleri eslenik alt gruplardir.

Ispat. g, € G, keyfi bir nokta olsun. Bu durumda G, ={g € G: gy = y} seklinde
oldugundan g,y = y dir. Boylece y = gx ifadesinden gogx = gx = g 1gogx = x
olup g7'gog € Gy = gog € gG, elde edilir. Yani g, € gG,g~* olup G, c gG,g™*
dir. Tersine h € gG,g~! olsun. Buradan 3g, € G, : h = ggog~ ' yazlabilir.
Simdi hy ifadesini agalim. hy = ggog~'y = ggox = gx =y = h € G,, bulunur.
Dolayisiyla gG,g~" c G, elde edilir. Sonug olarak G, = gG,g~" dir.

Ornek 1.1.2.

1) G herhangi bir topolojik grup olsun. [G,X] ikilisi Vg € Gve Vx € X igin asagidaki
gibi li¢ degisik sekilde bir topolojik doniisiim grubu olarak tanimlanabilir:

i) gAx = gx (sol gosterim) ii) gAx = xg(sag gosterim)

iii) gx = gxg™ (birlesik gosterim)
2) G herhangi bir topolojik grup ve H < G kapal1 bir alt grup olsun.

1) [G,X] ikilisi hiAg = hg kurali ile bir topolojik doniisiim grubudur.
Ozel olarak G = (C,+) ve H = Z X Zigin [H, G]topolojik doniisiim grubudur.

i) [G,G/H], g1Ag2H ile bir topolojik doniisiim grubudur.



3) CU {w} = C, Riemann kiiresi verilsin. C,, tizerindeki Euclid topolojisi ile
birlikte sonsuzun biitlin komsuluklar1 kompleks diizlemdeki tim kompakt alt

kiimelerin biitiinleyenlerini olustururlar. Fonksiyonlarin bileske islemine gore C,

az+b
uzayindan C, uzayina tamimlanan G = {C;d

|a,b,c,d € Cve ad — bc # 0}

otomorfizmlerin grubudur ve PGL(2,C) ile gosterilir. G iizerindeki topoloji
a,b,c,d € C kompleks sayilar1 ile tanimlanir. ¢ grubunun her bir elemani
(a,b,c,d) € C* olarak gdz 6niine almirsa ve ayrica burada (—a, —b, —c,—d) ile
(a,b,c,d) elemanlar1 birbirleriyle denklestirilirse G tizerinde Ozdeslestirme ile
topoloji tanimlanabilir. Bu durumda i¢in [PGL(2,C),C,] bir topolojik doniisim
grubudur.

Tanim 1.1.14. X # @ herhangi kiime ve S(X) = {f|f:X — X birebir ve orten}
olsun. (5(X),°) islemine gore agik¢a bir gruptur ve bu grubun elemanlarina

permiitasyonlar denir. (S(X),e)grubunun alt gruplarina permiitasyon grubu ad1 verilir

(Neumann 1977).

G grubu X kiimesi iizerinde bir permiitasyon grubu olsun. Bu takdirde G
grubu X tizerinde hareket eder. Gergekten g € G ise bu durumda g: X — X birebir ve
orten bir doniisiimdiir. Boylece gx = g(x) olarak alinirsa buradan acikg¢a goriilebilir
Ki (g1g92)x = g1(g2)x ve 1x = x olur. Dolayisiyla bu harekete G grubunun X kiimesi
tizerindeki dogal hareketi adi verilir. Boylelikle "(G, X) permiitasyon grubu" ifadesi
kullanilir. Ayrica G grubu X kiimesi iizerinde gecisli olarak hareket ediyorsa

"(G, X) transitif permiitasyon grubu" ifadesi kullanilir.

Tamim 1.1.15.n € N dogal sayisi i¢in 1 < a <n ve (a,n) = 1olan tam sayilarin
sayist @(n) ile gosterilir. Bu fonksiyona Euler fonksiyonu adi verilir. Egern =

Py py2psd ... pe’ ise bu takdirde

pn) =n(1- pi) (1- pi)... (1- pi)dir (Jones, Singerman, Wicks 1991).
1 2 N



1.2 Hiperbolik Geometri

Hiperbolik Geometrinin ortaya ¢ikis esasina bakildiginda Euclid’in bes temel

postulatinin besincisine dayandigi goriilmektedir. Bu postulatlar sunlardir:
1) iki noktadan sadece bir dogru geger.

2) Dogru pargalar her iki ucu sonsuza kadar ayni yonde bir dogru boyunca

uzatilabilir.

3) Merkezi ve yarigap verildiginde bir gember ¢izilebilir.

4) Diizlemdeki tiim dik agilar birbirine denktir.

5) Bir dogruya disindaki bir noktadan bir tek paralel dogru gizilebilir.

Ik dort postulat verildigi zaman acik¢a besincisinin asagida verilen paralellik
postulatina denk oldugu kolaylikla goriillmektedir. Besinci postulat deyimi yerine
siklikla paralellik postulati da kullanilmaktadir.

Paralellik Postulati: Diizlemde bir nokta Ve bu noktayr {izerinde
bulundurmayan bir dogru verildigi zaman bu noktadan gegen ve verilen dogruya

paralel tek dogru gecer.

Euclid olmayan geometrilerden biri olan hiperbolik geometri "bir dogruya
disindaki bir noktadan sonsuz ¢oklukta paralel dogru ¢izilebilir" seklindeki paralellik

aksiyomunu kullanir.

Matematikte tasarlanan her geometri kendisine uygun ¢aligma alani olmasi
acisindan modeller seger. Hiperbolik geometride kendisine paralellik aksiyomu
nedeniyle pek c¢ok model edilmistir. Bu modeller arasinda en ¢ok kullanilan

kompleks iist yar1 diizlem modeli ve Poincare daire modelidir.



1.2.1 Hiperbolik Geometrinin Ust Yar1 Diizlem Modeli

Tanmm 1.2.1.1. H = {z € C: Im z > 0} kiimesine st yar1 dizlem denir. (Beardon

1979). Calismamizda hiperbolik geometri igin {ist yar1 diizlem modelini kullanacagiz.

IH

. ] , S
bl : Irl 1 > IR
0,

Sekil 1.2.1. Ust yar1 diizlemde hiperbolik dogrular

Tanmm 1.2.1.2. C kompleks diizlemde R reel eksene dik Euclid dogrularimin H {ist
yar1 diizlemle arakesiti olan yari Euclid dogrularina ve R reel eksene dik Euclid
cemberlerinin H {ist yar1 diizlemle arakesitlerine hiperbolik dogrular denir. Kisaca R
eksenine dik olan cemberlerin H iist yar1 diizlemde kalan yay parcalarina hiperbolik
dogrular denir. Burada reel eksene dik H iist yar1 diizlemde kalan yar1 dogrulari
sonsuz yaricaplt c¢emberler veya merkezi sonsuzda olan c¢emberler olarak

alinmaktadir (Beardon 1979).

Tanmm 1.2.1.3. [1 ve [> iki hiperbolik dogru olsun. Eger I1 N [ = @ ise bu takdirde
[1 ve Iz hiperbolik dogrularina paralel hiperbolik dogrular denir (Beardon 1979).

Sekil 1.2.2. Ust yar1 diizlemde paralel hiperbolik dogrular



Tanmm 1.2.1.4. C,, = C U {oo} genisletilmis kompleks diizlem olmak {iizere n tane
hiperbolik dogru pargasi tarafindan smirlanan ve H st yar1 diizleminin C,,
uzayindaki kapanisinda bulunan bir kapali kiimeye n kenarli hiperbolik bir poligon
adi verilir. Ug kenarli poligonlara hiperbolik iiggen denir. Eger bir hiperbolik
poligonda herhangi iki hiperbolik dogru pargas1 kesisiyorsa bu kesim noktasina kose

denir (Beardon 1979).

az+b
cz+d

Ornek 1.2.1.1. PSL(2,R) ={T:z - la,b,c,d € R,ad —bc = 1} bileske

islemine gore bir gruptur. PSL(2, R) kiimesi R* uzayinin bir alt kiimesi olarak
diisiiniilebilir. Dolayisiyla T:z — % ise agik¢a bu doniisiimiin katsayilart reel
olup a,b,c,d € R* seklindedir. Buradan (a, b, ¢, d)~(—a, —b, —c, —d) almirsa yani
bir 6zdeslik kurulursa bu durumda PSL(2,R) tizerindeki topoloji bir boliim
topolojisi olarak { a,b,c,d € R* :ad — bc = 1}/~ iizerindeki topoloji seklinde
tanimlanabilir. Boylece bu topoloji ile birlikte PSL(2, R) bir topolojik gruptur.
Ayrica Ust yar1 diizlem digiinilirse H={a+ib:ab€eR,b >0} icin
[PSL(2, R), H] ikilisi de bir topolojik doniisiim grubudur.

Yukarida [PSL(2,R), H] ikilisinin bir topolojik doniisiim grubu oldugu ifade edildi.
Buradan PSL(2, R) grubunun herhangi bir elemanin H ist yar1 diizlemi H st yari

diizleme resmettigini gdstermemiz gerekir. Bunun i¢in 6ncelikle bir doniisiim alalim.

z noktas1 H st yari1 diizlemde herhangi bir nokta ve T(z) = % keyfi olsun. O

halde

(az+b)(cZ+d) ac|z|® +adz + bcz + bd
lcz+d|]2 lcz +d|

T(z) =
ifadesi sanal ve reel kisimlara ayrildiginda iist yar1 diizlem i¢in sadece sanal kismi
incelenirse

(ad—bc)y y
lcz+d|2  |cz+d|?

Im(T(z)) = >0

oldugu ortaya ¢ikar. Ciinkii z =x + iy € H ise y > 0 dir. Bdylece her bir T €

PSL(2,R) dontisiimii H iist yar1 diizlemi H {ist yar1 diizlem {izerine resmeder.



1.3 Graf Teori

Bir yol haritasinin bir kismin1 ve bir elektrik aginin bir kismini gosteren sekil

1.3.1, sekil 1.3.2 ve sekil 1.3.3 ii inceleyerek baslayalim.

P Q
Sige—
L)
R
T S
Sekil 1.3.1. Bir elektrik ag1 Sekil 1.3.2. Bir kavsakta kesisen yollar

Bu durumlardan herhangi biri sekil 1.3.3’deki gibi noktalar ve ¢izgiler vasitasiyla
sematik P, Q, R, S ve T noktalarina koseler, ¢izgilere kenarlar ve tiim semaya da graf
denir. PS ve QT c¢izgiler kesisimini bir kavsagi ya da iki telin birlesmesine karsilik
gelmedigi bir kose olmadigina dikkat edilir. Bir kosenin derecesi o kdsenin ugta
oldugu kenarlarin sayisidir. Sekil 1.3.2’de bir kavsaktaki kesisen yollarin sayisina

karsilik gelir. Ornegin P kdsesinin derecesi 3’tiir ve Q kdsesinin derecesi 4’tiir.

Sekil 1.3.3. Graf

Tamm 1.3.1. Basit bir G grafi elemanlarina kose adi verilen bostan farkli sonlu bir
V(@) kiimesi ve kenar (veya ¢izgi) ad1 verdigimiz V(G) kiimesinin birbirinden farkli
ikililerinin bir koleksiyonu olan E(G) kiimesinden olusmaktadir. V(G) ve E(G)

kiimelerine sirasiyla G grafinin kdse ve kenar kiimeleri denir (Wilson 2022).
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Bir {v.w} kenar i¢in v ve w koselerine birlestirir denir ve kisaca vw ile gosterilir.
Omegin sekil 1.3.4’teki kose kiimesi V(G) = { u,v,w,z} ve elemanlan

uv, uw, vw ve wz olan E(G) kenar kiimesinden olusan basit bir G grafi temsil edilir.

Sekil 1.3.4. Basit graf

Tamim 1.3.2. Herhangi bir basit grafta verilen bir kose ikilisini birbirine birlestiren
en fazla bir kenar vardir. Basit graflar icin verilen bir¢ok sonug¢ ayni zamanda iki
kose noktasini birlestiren birden fazla kenarlara sahip daha genel yapilar i¢inde
gecerlidir. Bu tiir kenarlara ¢oklu kenarlar denir. Sadece bir kenarin iki ayr1 kdseyi
birlestirmesi gerektigi kisitlamalar1 kaldirilabilir ve ilmeklere bir kenarin bir koseyi
kendisine baglamasina izin verilir. ilmeklere ve coklu kenarlara izin verilmesi
sonucu ile ortaya c¢ikan graflara genel graf ya da graf adi verilir. Sekil 1.3.5te
verilmistir. Her basit graf ayn1 zamanda bir graftir ancak her graf bir basit graf
degildir (Wilson 2022).

Sekil 1.3.5. Genel graf

Tamm 1.3.3. Bir G grafi elemanlar1 kdse olarak adlandirilan bos olmayan sonlu bir
V(G) kiimesi ve kenarlar olarak adlandirilan V(G) kiimesinin elemanlarinin sirasiz
ikililer sonlu bir ailesi E (G) kiimesinden olusur. Burada aile kelimesinin kullanilmasi

coklu kenarlarin varligina izin verilmektedir.
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V(G)’ye G grafinin kose kiimesi ve E(G)’ ye G kiimesinin kenar ailesi ad1 verilir. Bir
{v, w} kenar1 i¢in v ve w Kenarlarin1 birlestirir denir ve yine kisaca vw ile gosterilir.

(Wilson 2022).

Tammm 1.3.4. Eger G, grafinin herhangi iki kosesini birlestiren kenarlarin sayist,
G, grafinin karsilik gelen koselerini birlestiren kenarlarin sayisina esit sekilde birebir
bir esleme varsa G, grafi G, grafina izomorftur denir. Ornegin sekil 1.3.6°daki iki

graf asagida verilen esleme sart1 altinda izomorftur. (Wilson 2022).

uelvomwenxopyeqzor

X y z n q

Sekil 1.3.6. izomorf graflar

Birgok problem i¢in kdselerdeki etiketler gereksizdir ve bunlar kullanilmayacaktir. O
halde eger koseleri etiketlenmis iki grafin koselerini izomorf olacak sekilde
etiketleyebilirsek o zaman bu graflar izomorfturlar. Ornegin sekil 1.3.7°deki graflar
sekil 1.3.6’daki etiketlenmemis halleri izomorf olduklarindan izomorfturlar.Etiketli

ve etiketsiz graflar arasindaki fark saymaya calisildiginda daha belirgin hale gelir.

Sekil 1.3.7. Etiketlenmemis graflar

Tamm 1.3.5. Daha biiytik graflar iki grafi birbiriyle birlestirebiliriz. G, ve G, graflar
onlarin V(G,) ve V(G,) kose kiimeleri ise bunlarin birlesimi olan G; U G, grafi kose
kiimesi V (G,;) U V(G,) ve kenar ailesi E(G,) U E(G,) olan bir graftir. Sekil 1.3.8’de
gosterilmistir. Graf graflarin birlesimi olarak ifade edilemiyorsa baglantili graf, eger

ifade edilebiliyorsa baglantili olmayan graftir denir.
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Acikea herhangi bir baglantili olmayan G grafi her birine G grafinin bir bileseni ad1
verilen baglantili graflarm bir bilesimi olarak yazilabilir. Ug bilesenli bagli olmayan

bir graf sekil 1.3.9’da gosterilmektedir (Wilson 2022).

a X a X

b y b y
G, G, Giu G,

Sekil 1.3.8. G, U G,grafi

Sekil 1.3.9. Ug bilesenli bagli olmayan graf

Tamm 1.3.6. Bir grafin v ve w Koseleri igin onlar1 birlestiren bir vw Kenar1 var ise
bu koselerin komsu oldugu ve vw ile kenar ile bitisik oldugu sdylenir. Ayrica
birbirinden farkli e ve f kenarlarinin ortak bir kdse noktasina sahip olmalari

durumunda bu kenarlarinda komsu oldugu sdylenir (Wilson 2022).

Tamim 1.3.7. Bir v kosesinin derecesi, v ile bitisik olan kenarlarin sayisidir ve der(v)
ile gosterilir; v kosesinin derecesi hesaplanirken genellikle v *deki bir ilmegin
dereceye olan katkis1 2 olarak kabul edilir. Derecesi 0 olan bir kdseye izole kose ve
derecesi 1 olan koseye ise ug-kose denir. Boylelikle sekil 1.3.10°daki her iki grafta
iki adet ug-kose ve ti¢ adet derecesi 2 olan kdseye sahip iken sekil 1.3.11°de verilen
graf bir adet ug-kose, bir adet adet derecesi 3 olan kdse, bir adet derecesi 6 olan kose

ve son olarakta bir adet derecesi 8 olan koseye sahiptir (Wilson 2022).

——

Sekil 1.3.10.Derecesi 2 olan kdseler ve ug koseler
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Sekil 1.3.11. Farkli derecelere sahip koseler ve ug kose

Bir grafin derece dizisi gerektiginde tekrara diiserek artan sirada yazilmis
derecelerden olusur. Ornegin sekil 1.3.10 ve 1.3.11°deki graflarin derece dizileri
(1,1,2,2,2) ve (1,3,6,8) dir.

Teorem 1.3.1. Herhangi bir grafta kose derecelerini tamaminin toplamu gifttir.

Sonug¢ 1.3.1. Herhangi bir grafta tek dereceye sahip koselerin sayisi ¢ifttir. Eger bir H
grafinin koselerinin her biri V(G)’ ye ve kenarlarinin her biri E(G)’ye ait ise 0
zaman H grafina G grafinin bir alt grafi denir. Sekil 1.3.12’deki graf sekil 1.3.13deki
grafin bir alt grafi olmasina ragmen sekil 1.3.14°deki graf herhangi bir liggen
icermediginden bu grafin bir alt grafi degildir.

Sekil 1.3.12. Graftaki koseler

Kenarlar1 ve koseleri silerek bir grafin alt grafin1 elde edebiliriz. Eger e
kenar1 G grafina ait ise G grafindan e Kenarinin silinmesi ile elde edilen graf G — e
ile gosterilir. Daha genel olarak G grafinin kenarlarinin herhangi bir alt kiimesi F
olmak iizere G grafindan F igindeki kenarlarin silinmesi ile elde edilen graf G -

F grafi ile gosterilir.
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Benzer olarak eger v, G’nin bir kosesi ise G’den v kdsesinin ve v ile bitisik olan
biitiin kenarlarin silinmesi ile elde edilen graf G — v ile gosterilir. Daha genel olarak
G i¢indeki koselerin bir kiimesi S olmak {izere G grafindan S igindeki koselerin ve bu
koselerle bitisik olan biitiin kenarlarin silinmesi ile elde edilen graf G — S ile

gosterilir. Sekil 1.3.13’de bir 6rnek gdsterilmistir.

Sekil 1.3.13. G — S grafi

Ayrica G grafindan e kenarinin ¢ikarilmasi ve bu kenarin biiziilmesi ile elde
edilen graf G\e ile gosterilir. Bu kenarin silinmesi ve bu kenarin uglarindaki vve w
koselerini birlesmesi ile olmaktadir. Dolayisiyla yeni olusan kosev ve w ile bitisik

olan biitiin kenarlarla (e hari¢) bitisik durumdadir. Sekil 1.3.14°de gosterilmistir.

Sekil 1.3.14.G\ e grafi

Bu kisimda bazi 6nemli graf tiirlerini inceleyecegiz.

Tamm 1.3.8. Kenar kiimesi bos olan graflar sifir(bos) graflardir. Sifir graflarin her
bir kosesi izole kosedir. nkoseli bos graflar N, ile gosterilir. N, grafi sekil 1.3.15°de

gosterilmektedir (Wilson, J., R., 2022).
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Sekil 1.3.15. N, grafi

Tamim 1.3.9. Birbirinden farkli her bir kose ikilisinin komsu oldugu basit bir graf bir
tam grafdir. n koseli tamgraflar K, ile gosterilir. K, ve Ks graflar1 sekil 1.3.16’da

gosterilmektedir (Wilson 2022).

Sekil 1.3.16. K,ve K graflari

Tanmm 1.3.10. Her bir kdsesinin derecesi 2 olan baglantili graf bir dongiisel graftir. n

koseli dongiisel bir graflar C,, ile gosterilir (Wilson 2022).

Tanmm 1.3.11. C,, grafinin bir kenarinin silinmesi ile elde edilen graf n koseli yol

grafidir. P, ile gosterilir (Wilson 2022).

Tammm 1.3.12. C,,_; grafindaki her bir kdsenin yeni bir v kdsesine baglanmasi ile
elde edilen graf tekerlek graftir. W, ile gosterilir. Cg, Pg ve Wegraflar sekil 1.3.17°de
gosterilmistir (Wilson 2022).

Sekil 1.3.17. C5, Pg ve Wy graflan
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Tanmim 1.3.13. Biitiin kdseleri ayn1 dereceye sahip olan bir graf diizenli bir graftir.
Eger her bir kosesinin derecesi r kadar ise 0 zaman graf r-diizenli ya da r dereceden
diizenli graftir. Sifir graf derecesi O olan diizenli graf, dongiisel graf derecesi 2 olan

diizenli graf ve tam graf derecesi n — 1 olan diizenli graftir (Wilson 2022).

Tamm 1.3.14. 3. dereceden diizenli olan kiibik graflar 6zel 6neme sahiptir. Bir kiibik

graf 6rnegi sekil 1.3.18’de gosterilen Petersen grafidir (Wilson 2022).

Sekil 1.3.18. Petersen grafi

Tammm 1.3.15. Bir G grafinin kose kiimesi G ’nin her bir kenar1 A’daki bir kose
ile B’deki bir koseyi birlestirecek sekilde iki ayrik kiime olan A ve B kiimelerine
ayrilabiliyorsa G grafi iki parcali bir graftir denir. Sekil 1.3.19°da verilmistir. Iki
parcali bir graf koseleri her bir kenarin bir siyah koseyi sagdaki bir beyaz koseye
birlestirecek sekilde koseleri siyah ve beyaz renge boyanabilen bir graftir. A ve B
kiimelerini 6zellikle belirtmek istersek G = G (4, B) olarak yazilir (Wilson 2022).

Sekil 1.3.19. iki parcali graf

Bir tam iki pargali graf A kiimesindeki bir kosenin B kiimesindeki her bir
koseye sadece bir kenar ile baglandig: iki parcali bir graftir. r tane siyah koseli ve s

tane beyaz koseli tam iki pargali graf K, ; ile gosterilir.
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K3, K3, K33Ve K, 3 graflan sekil 1.3.20°de gosterilmektedir. K, ¢ grafinnr + s

adet koseye ve rs adet kenara sahip oldugu kontrol edilebilir.

X460 W

Sekil 1.3.20. K; 3, K>3, K33 Ve K, 3 graflar

Tanmim 1.3.16. Yonlendirilmis ya da yonlii D grafi elemanlart koseler olarak
adlandirilan bostan farkli sonlu bir V(D) kiimesi ve yaylar ya da yonlendirilmis
kenarlar olarak adlandirilan V(D) kiimesinin elemanlarinin sirali ikililerinin sonlu
bir A(D) ailesinden olusmaktadir. V(D) ’ye kose kiimesi ve A(D)’ye yay ailesi
denir. (v,w) yay1 kisaca vw Olarak gosterilir. Sekil 1.3.21°de V(D) kose kiimesi
{u,v,w,z} ve A(D) ailesi ise uv, vv, vw, wv, wu, zw yaylarindan olusmustur. Yay1
olusturan koselerin sirasi bir ok ile gosterilerek yapilmistir. D yonli graf ise D’den
oklar1 kaldirarak yani vw formundaki her yaya karsilik gelen bir kenar vw ile
degistirilerek elde edilen graf D grafinin alta yatan grafidir. Sekil 1.3.22°de
gosterilmigtir (Wilson 2022).

Sekil 1.3.21.Y6nlendirilmis graf Sekil 1.3.22.Alta yatan graf

Tammm 1.3.17. G grafi i¢indeki yiirliyiis, ardisik kenarlarin birbirinin komsusu ya da
aynist oldugu vyv;,v1v,,...,Vim_1Vm, Ya davy = v; = -+ = v, kenarlarin sonlu bir
dizisidir. Yiriyls vy, vy, ..., Vy, koOselerinin dizisini belirler. v, ve v, koselerine

sirastyla yiirliylisiin baslangi¢ ve bitis kosesi denir ve vy’dan v, ye bir yiirliylistiir.

18



Bir yiiriiylis i¢indeki kenarlarin sayisina o yiiriiylisiin uzunlugu denir (Wilson 2022).

Ornegin sekil 1.3.23’de

VoW Xx -y 2z z-— Yy — wbiryirliylstiir.

Sekil 1.3.23. Yiirtiytis

Biitiin kenarlar1 birbirinden farkli olan bir yliriiylise iz denir. Eger kdoseleride
birbirinden farkli ise bu ize bir yol denir. Bir yiiriiyiis, yol veya iz eger vy = vy, ise
kapalidir ve en az bir yola dongii denir. Ornegin,

Vow-o x-Sy zozZ - xbiriz,

v->w-x—y- zbiryol,

Vo Ww-Xx—>Yy—z—x — vbir kapali iz,

vV > w — x = y - v bir dongidiir.

Bir ilmek uzunlugu 1 olan bir dongii ve bir ¢ift ¢oklu kenar, uzunlugu 2 olan
bir dongtidiir.

Vo>oW-D2X—2VD

gibi 3 uzunlugundaki bir dongii ise bir liggendir.

Sekil 1.3.24. Baglantil1 graf Sekill.3.25. Baglantisiz graf

Teorem 1.3.2. Bir G grafinin iki pargali olmasi igin gerek ve yeter sart G nin biitiin
dongiilerinin uzunlugunun ¢ift olmasidir.
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1.4 Genel Mobius Grubu

Tamm1.4.1. PGL(2,C) = {M:Co, > Coo| M(2) =**2:a,b,¢,d € C,ad — bc # 0)

cz+d’

kiimesi bileske islemine gore gruptur buna genel Mobius grubu denir (Jones,

Singerman 1987).

Sonug¢ 1.4.1. Burada ad — bc # 0 ifadesi yerine ad — bc = 1 alinabilir.

ZIZ Mobius doniisiimiinii keyfi alalim. ad — bc #

ispat:a,b,c,d € Cicin M(z) =

0 olduguna gore A € C {(0,0)} olacak sekilde . - secilirse;

vad—b

a b
__az+b _ Aaz+b)_Aaz+Ab _ Jaa-be? | Vad-be
M(z) = d

cz+d  A(cz+d) Acz+id & 4
vad-bc vad-bc
elde edilir. Bu doniisiimiin determinanti;
a d b c ad — bc

Vad —bcvad —bc vad—bcvad —bec ad—bc

olur. Dolayisiyla Mobius doniisiimiiniin taniminda olan ad — bc # 0 yerine ad —

bc = 1 alinabilir.

z+a, z#
0 Z = o0

)

Tamm 1.4.2.a € C olmak iizere M:C,, » C,, , M(2) = { olarak

tanimlanan M(z) doniisiimiine Gteleme dontisimii adi verilir (Jones, Singerman

1987).

i , 2+ o
Tanmm 1.4.3.M:C,, - C ,{g L z=o0 tanimlanan M (z) doniisiimiine tersleme
w0, z=0

dontigiimii denir. Agik¢a bu doniisiim homeomorfizmadir (Jones, Singerman 1987).

Tamm 1.4.4. a € Colmak tizere M:C,, — C, ,

az , Z+ ©

M(z) = {Oo J olarak tanimlanan M(z) doOniisiimiine ¢arpim

)

dontistimii ad1 verilir (Jones, Singerman 1987).
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az+b

Teorem 1.4.1. Her M € PGL(2,C) olan M(z) = —; Mobius doniisiimii dteleme,

tersleme ve carpim doniisiimlerinin bileskesi olarak ya2111r (Jones, Singerman 1987).

az+b

Ispat: Once ¢ =0 olsun. Bu durumda M(z) =

a b
—=-z+- Ve ad — bc #
0 oldugundan ad # 0 olur. Buradan M, = EZ ve M, =z + % olarak alinirsa, M(z) =

(My o M) (2) = M, (%z) =2z+2 elde edilir. Eger ¢ # 0 ise bu takdirde M, (2) =

z +% , My(2) =2z +% , Mi(z) ==, M,(2) = dz olarak alinirsa agik¢a M =

M; o M, o M5 o M, bileskeleri seklmdedm Gerc;ekten,

M(z) = (My oMy o MyoMy(z) = (My o Myo My) (2 +5) = (M o M@(%) =

bc—ad 1 bc—ad ¢ a bc—ad a_ az+b da
M, — | = —+-= += elde edilir. Ayrica z = ——
cz2 448 c2 cz+d ¢ c(cz+d) cz c

c

olmak tizere M (_Td) = oo olur. Gergekten,
-d
M(z) = (MyoMyo MsoMy)(z) = (MyoMye Ms °M2)(T)

= (My oMy o M3)(0)
= (M; o M,)(00) = M; () = o0
elde edilir. Boylece z € C, igin M = M; o My o M3 o M, dir.

Teorem 1.4.2. z,,z,,253 € C,, li¢ farkli sabit nokta olsun. Bu takdirde T'(z;) = 0,

T(zy) =1 ve T(z3)= o olacak sekilde tek bir Mobius donilisimii vardir. Bu

déniisim T (2) = %Zzze’; seklindedir (Schoeneberg 1974).
3 2

Teorem 14.3. z;,z,,2z3 € C, seklinde li¢ farkli noktayr wy, w,, w3 € Cq, gibi li¢

farkli noktaya resmeden bir tek Mdbius doniisiimii vardir (Schoeneberg 1974).

az+b

Sonu¢ 1.4.2 PSL(2,R) = {M:C,, —>(COO|M()— ad —bc =1,a,b,c,d € R}

kiimesi katsayilari reel olup PGL(2, C) grubunun bir alt grubudur.
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az+b

ad —bc =1,a,b,c,d € R olmak

Tanim 1.4.5. M € PSL(2,R) ve M(z) = ,
cz+d

tizere M(z) = z denklemini saglayan noktalara M dontisiimiiniin sabit noktalar1

denir. Dolayisiyla M(z) # 1(z) olmak iizere % =z esitliginden cz? +

(d — a)z — b = 0 denklemi elde edilir. Buradaki M doniisiimiiniin en fazla iki sabit

noktasi vardir. Bu noktalar:
A=(d—a)?>+4bc = d? + a? — 2ad + 4bc = d? + a* — 2(ad — bc) + 2bc
=d?+a*?—-2+4+2bc=d*+a*—-2+2(ad—1)=d? +a?+ 2ad — 4

= (a + d)? — 4 olmak iizere

(a-D+J@+dZ—4 (a-d)+la+d}? -4
a 2c p 2c

Z1,2

olur. Boylece ii¢ durum s6z konusudur:

I.  |a+d|=2ise M doniisimiiniin tek bir sabit noktas1 vardir ve bu sabit
nokta oo veya bir reel sayidir.
Il. |a+d|>2ise M dontisimiiniin farkli iki reel say1r olan iki sabit

noktas1 vardir.
. |a+d| <2ise M doniisiimiiniin iki kompleks eslenik sabit noktasi
vardir (Schoeneberg 1974).

Tamm 1.4.6. M(2) = C::Z ad —bc = 1,a,b,c,d € R olsun. Bu durumda
)] la + d| = 2 ise M doniisiimiine parabolik doniistim,

1)) la + d| > 2 ise M doniisiimiine hiperbolik doniisiim,
) |a+d|l <2 ise M donistimiine eliptik donlisim adi verilir
(Schoeneberg 1974).

Sonug 1.4.3. PSL(2,R) doniisiim grubu

)] H iist yar1 diizlemi H iist yar1 diizlem tizerine,
) Geodezikleri yine geodeziklere,

I11)  Cemberleri cemberlere resmederler.
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Tanim 1.4.7. A < PSL(2, R) alt grubu olmak tizere U N A = {I} sartin1 saglayan bir
U komsulugu varsa A alt grubuna PSL(2,R) grubunun bir ayrik alt grubu denir
(Shimura 1971).

Tamm 1.4.8. X baglantili bir Hausdorff topolojik uzay1 olsun. U € X acgik alt kiimesi
ve : U —» V c C homeomorfizmasindan meydana gelen (U, {) ikilisine X kiimesinin

bir koordinat komsulugu ad1 verilir (Beardon 1983).

Tanim 1.4.9. X baglantili bir Hausdorff topolojik uzayr olsun. U; € X,U, C
X olmak iizere eger {; {5 1:{,(U; NU,) = {3 (U NU,) doniisiimii analitik ise
(U1, ¢1) ve (U,, {3) koordinat komsuluklarina uyumludur denir (Beardon 1983).

Tamim 1.4.10. Herhangi bir baglantili Hausdorff topolojik uzayma bir kompleks
yapiyla birlikte bir Riemann yiizeyi adi verilir (Jones, Singerman 1987).

Acgikca baglantili bir Hausdorff uzaymin her noktasinin bir komsulugu
R? kompleks uzaymin acik alt kiimesine homeomorf oldugundan bir Riemann
ylizeyi olusturur. Benzer sekilde eliptik eleman icermeyen keyfi A ayrik alt grubu
PSL(2,R) grubunun bir alt grubu olarak H {ist yar1 diizlem iizerinde hareket eder ve
boliim topolojisi ile meydana gelen boliim uzayi yine bir Riemann yiizeyidir. Ayrica
H st yar1 diizlemdeki kompleks yapi eger H/ 4 Ylzeyine transfer edilirse bir
Riemann yiizeyi elde edilir. Sonug olarak A eliptik eleman igeriyorsa bir Riemann
ylizeyidir, ancak bu durumda H-— H/ )\ izdisimi dallanmistir. Fakat olusan yiizey
kompakt degildir. Kompaktligi saglamak i¢in H ist yari dizlem yerine HU {co}

alinir.

Teorem 1.4.4. Her basit yapili Riemann ylizeyi asagidakilerden birine konform

olarak esdegerdir:

I. C, Riemann kiiresi
I1. Ckompleks diizlem

I11. M ist yan diizlem

Bu Riemann yiizeylerinin otomorfizm gruplari asagidaki gibidir ((Jones, Singerman
1987).
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Teorem 1.4.5.

l. Aut(C,) = PSL(2,C)
Il. Aut(C) ={z—>az+b:a,b € C,a # 0}
1. Aut(H) = PSL(2,R) (Jones, Singerman 1987).

Tamm 1.4.11. A bir ayrik alt grup olsun. r € Q = Q U {0} rasyonel noktas1 keyfi
verildiginde y(r) = r olacak sekilde bir y € A parabolik eleman1 varsa, bu noktaya
A ayrik alt grubunun bir parabolik noktasi veya cusp noktasit adi verilir (Jones,
Singerman 1987).

Teorem 1.4.6. {T:z —» 222
cz+d

la,b,c,d €Z ve ad —bc =1} kimesi PSL(2,R)

grubunun bir alt grubudur (Jones, Singerman 1987).
Onerme 1.4.1.
i) PSL(2,R) grubu H st yar1 diizleminde gegisli olarak hareket eder.

i) PSL(2, R) grubu R, genisletilmis reel eksen lizerinde ikili transitiftir.

a b

ispat. i.a>0 icin ai+b €H keyfi olmak iizere, M(z) = “ olarak
N

tanimlayalim. M € PSL(2,R) oldugu agiktir. M(i) = ai + b olur. Dolayisiyla i
noktasimin yoriingesi biitiin H st yar1 dizleme esittir. PSL(2, R) grubunun H

uzerindeki hareketi transitiftir.

ii. a,b € Rvea > b olsun. K(z) = golacak sekilde doniisiim tanimlayalim. K €

¥4 a

PSL(2,R) oldugu agiktir. Ciinkii normallestirme islemi yapilirsa K(z) = @?

a—b_ a-b

olur. Boylece K doniisiimii (a, b) ¢iftini (0,0) ¢iftine resmeder. Ayrica z — —i

dontigiimii PSL(2, R) grubunun elemanidir ve (0, o) giftini (oo, 0) giftine resmeder.
z—>z+b donisimi de PSL(2,R) grubunun elemamidir ve (0,00) ikilisini
(b, )ikilisine resmeder. Buradan (0, ) ikilisinin yoriingesi PSL(2,R) grubunun
hareketi altinda a,b € R, a # b olmak tizere (a,b) ikililerinden meydana gelir.

Dolayisiyla PSL(2, R)grubu R, genisletilmis reel eksen tizerinde ikili transitiftir.
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2. YAPILAN CALISMALAR

2.1. Modiiler Grup

az+b
cz+d

Tanmm 2.1.1. T={T|T:C, » Cy, T(2) = ,a,b,c,d €Z ve ad — bc = 1}

grubuna Modiiler grup denir.

Katsayilar reel say1 olan PSL(2, R) grubunun iizerinde en ¢ok calisilan alt
grubu olan Modiiler grubunu g6z oniine alalim. Modiiler grup ayrica PSL(2,Z) ile

gosterilir. Bu grup asagidaki gibi 2 X 2 lik tam sayilar matrisiyle de temsil edilebilir:

_(a b _
L—(C d),detL—l

Dolayisiyla L ve - L matrisleri aynit doniisiimi temsil ettiginden s6z konusu
olan L matrisi negatifi ile es alinir. Ciinkii gruptaki bileske islemiyle matrislerdeki
carpma islemi arasinda bag vardir. Boylece matris ve doniisiim arasinda ayrim

yapmaya gerek yoktur.

Teorem 2.1.1.T = PSL(2,Z) Modiiler grubu T? = S3 = I bagmtis1 ile verilen

_(0 1 _(0 -1 . T
T = (_ 1 0) vesS = ( 1 1 ) matris elemanlar tarafindan iiretilir. Agikca

[' = (T, S) dir. Burada I birim doniisiimdiir.

Simdi Modiiler grubun sabit noktalarini inceleyelim. PSL(2,Z) grubunun

parabolik nokta kiimesi genisletilmis rasyonel say1lar kiimesi olan Q dir. Gergekten;

A € PSL(2,Z) olmak tizere A elemaninin sabit noktalar Z:Z =z

- 2_ — 2_
denkleminden  z,, = d)ivz(cam) L d)i“zl:“'d' * seklindedir.  Parabolik

dontisimde |a+d| =2 oldugundan 2z = az—c dir. Buradan a,b,c,d €Z

QU

a—

€ Q oldugu agiktir.

oldugundan z =
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2.2. PSL(2,7) Modiiler Grubunun@Q Uzerindeki Hareketi
x,y € Zve (x,y) = 1 olmak iizere Q = Q U {o0} kiimesinden alinan her bir
eleman % indirgenmis kesri olarak yazilabilir. Dolayisiyla g = :—; oldugundan

verilen bu gosterim tek tiirlii degildir. Sonsuz ifadesi co = % = %1 seklinde temsil

edilecektir.

PSL(2,Z)grubunun Q iizerindeki hareketi (Ccl Z) : g - (Z;C:Z; seklindedir.

Burada A € PSL(2,Z) olmak iizere;

x ax+by —-x —-ax—by
x az+b Y ax+by -x a_;+b v —ax—-by _ ax+by
Al=) = x = oxtdy — ve Al—) = =X = Tox—dy — =
y c;+d - cx+dy -y c:;+d o —-cx—dy cx+dy

oldugundan A (3) =4 (:—i) dir. Buradan PSL(2, Z) Modiiler grubunun Q iizerindeki

hareketinin 1yi tanimli oldugu sdylenebilir.

x+by
x+dy

(x,y) =1vead — bc =1 alinirsa seklindeki kesir indirgenmis

ax+by

. indirgenmis formda olmasin.

formdadir. Gostermek i¢in aksini varsayalim. C;Cm
Boylece nlax + by ve n|cx + dy olacak sekilde n € Z tam sayis1 vardir. k,l €
Z tam sayilar1 igin ax + by = kn ve cx + dy = In yazilabilir. Esitligin birincisi d ile
ve ikincisi - b ile carpilirsa adx + bdy = knd ve - bcx — bdy = —bln esitlikleri

elde edilir. Esitlikler taraf tarafa toplanirsa (ad — bc)x = (kd — bl)n bulunur.

d—bc=1
Buradan, (ad — bc)x = (kd — bl)n ——— x = (kd — bl)n elde edilir. Verilen

esitliklerde birinci esitlik - ¢ ile ve ikinci esitlik a ile ¢arpilirsa - acx — bcy = —knc

ve acx + ady = aln elde edilir. Bu esitlikler taraf tarafa toplanirsa;

(ad — bc)y = (al — ck)n % y = (al — ck)n

elde edilir. Boylece son esitliklerden n|x ve n|y oldugu goriiliir. Bu ise ¢eliskidir. Bu

celiski (ax + by, cx + dy) = n > 1 oldugunu kabul etmemizden kaynaklidir.

Yani (ax + by,cx + dy) = 1 dir.
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Teorem 2.2.1. I' = PSL(2,Z) Modiiler grubunun genisletilmis rasyonel sayilar
kiimesindeki grup hareketi gecislidir.

a a

Ispat.v =, w == € Q keyfi iki eleman olsun. Bu takdirde A = (Z) =-olan 4 €
PSL(2,Z) gosterilmelidir. Her v = % elemanmin  ['() = {g(a):g €T}
yoriingesinde oldugunu géstermemiz yeterlidir. Ciinkii k(c0) = bgve [(0) = 2 olan
k,1 € PSL(2,T) elemanlar1 mevcut ise L = Lk~ tile L (%) = g dir. v = % € Q olsun.
Bu durumda (a, b) = 1 oldugundan 3x,y € Z 6yle ki ax — by = 1 dir. Boylece g =
(Z ;) € PSL(2,Z) elde edilir. Ayrica (Z x)(é) = (Z) oldugundan g (o) =%
dir. Dolaylslyla%elemam sonsuzun yoriingesindedir. Modiiler grubun genisletilmis

rasyonel sayilar kiimesindeki hareketi ge¢islidir.

Teorem 2.2.2. Q genisletilmis rasyonel sayilar kiimesinin herhangi bir noktasmin

sabitleyeni sonsuz devirli bir gruptur.

Ispat. Q genisletilmis rasyonel sayilar kiimesinin herhangi iki elemaninin

sabitleyenleri PSL(2,Z) grubunda eslenik olduklarmdan sonsuzun sabitleyeni olan

['w grubunu g6z Oniine almak yeterlidir. 'y, = {((1) l;) :b € Z} = ((é D) dir.

Gergekten; L = (CCL Z

(Z Z)((l))=((1)):>(Z)=((1)):>a=1VEC=Odlr ve ayrica (? Z)EFOOC

PSL(2,Z) oldugundan ad — bc = 1dir.1.d —b.0 =1 = d = 1 dir.

) € I',, olsun. Buradan L(o) = oo olur. Ciinki,

_(1 b . _{(1 b\. :
O halde L = (0 1) ,b € Z formundadir. Boylece ', = {(O 1) :b € Z} dir.
Sonug olarak I'y, grubu ((1) 1) eleman ile iiretilen sonsuz devirli bir gruptur.

Dolayisiyla Q da herhangi bir noktanin sabitleyeni sonsuz devirli bir grup olur.
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2.3 PSL(2,Z) Modiiler Grubun Kongriians Alt Gruplari

Tamim 2.3.1. n pozitif bir tam say1 olmak tizere ' Modiiler grubun 6nemli bir alt

grubu  olan F(n)z{(‘cl Z

grubuna temel kongriians alt grubu adi verilir. I' Modiiler grubunun I'(n) temel

) €Ella=d=1(modn),b=c= O(modn)} alt

kongriians alt grubunuigeren herhangi bir alt grubuna ise kongriians alt grubu denir.

Uzerinde en ¢ok calisilan bazi kongriians alt gruplari asagidaki gibidir:

I(n)= {(? Z) €l|a=d=1(modn),c = O(modn)}
Mm) = {(Z Z) €l|a=d= 1(modn),b = O(modn)}

Fo(n) = {(Ccl Z) €El|c= O(modn)}

Mm) = {(Ccl Z) €Er|,b= O(modn)}

) = {(Ccl Z) ET|b=c= O(modn)}

seklindedir. Bu gruplar arasindaki iliski ise ['(n) <T;(n) <TY(n) <
[y(n) <T ve I'(n) <T'(n) <TY(n) < I'’(n) < T bigimindedir. Ayrica I'(n) <

['dir . Dolayisiyla I'(n), T'y(n),T;(n) gruplarinin da normal alt grubu olur. Ayrica

I'1(n) < T'y(n) dir. Buna gore indeksler n > 2 igin;

1
IT: To(m)| =) =n 1+-)
pin p

2 1
rrei=ym=5]| a-5
pln

3 1
rrel =y =5 a-5
pln

dir.

28



2.4 Impirimitif Hareket

Tamm 2.4.1. G, 2 kiimesi tizerinde bir transitif hareket grubu ise bu durumda (G, 2 )

ikilisine bir transitif permiitasyon grubu denir.

Tanmm 2.4.2. (G, ) ikilisi bir transitif permiitasyon grubu ve = (2 kiimesi iizerinde
bir denklik bagintisi olsun. Eger a,f € 2 i¢in @ = f oldugunda , Vg € G i¢in
g(a@) = g(B) oluyorsa = denklik bagintisina {2 kiimesi iizerinde G invaryant denklik
bagintis1 denir. Ayrica = denklik bagintisinin denklik siniflarina ise blok denir. a’y1

iceren blok [a] ile gosterilir.
Bu tanima gore agikea;
i) Ozdeslik Bagmntis1 : "Va,b € 2 i¢cina ~ f © a = B"
ii) Evrensel Bagint1 : "Va,b € 2 i¢ina = "

bagmtilart G invaryant denklik bagintilaridir. Bu bagmtilara asikar bagintilar
denir. Eger 2 lizerinde 6zdeslik bagintisindan ve evrensel bagintidan farkli bir
G invaryant denklik bagintis1 varsa G grubunun (2 {izerindeki hareketine impirimitif
hareket, sadece 12 tizerinde 6zdeslik bagintisi ve evrensel bagint1 varsa bu durumda

olusan grup hareketine primitif hareket denir.

Onerme 2.4.1. (G, Q) bir transitif permiitasyon grubu olsun. Bu durumda, (G, )
primitiftir & Va € 2 i¢in G, = {g € G: ga = a} sabitleyeni G grubunun bir

maksimal alt grubudur.

Onerme 2.4.2. (G, ) bir transitif permiitasyon grubu olsun. Bu takdirde (G, )
grubu impirimitiftir & 3a € Qve H < G 6yleki G, = H = G dir.
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2.5 Alt Yoriingesel Graflar

(G, ) ikilisi bir transitif permiitasyon grubu olsun. G grubu Kkartezyen
carpim olan 2 X 2 = N? kiimesi iizerinde g: (a,b) — (g(a),g(b)) ile hareket
eder. Bu hareketin yoriingelerine G grubunun alt yoriingeleri denir ve (a, b) giftini
iceren alt yoriinge O(a,b) ile gosterilir. O(a, b) alt yoringesinden bir G(a, b) alt

yoriingesel grafin1 asagidaki gibi elde edebiliriz:
1) Grafin koseleri 2 kiimesinin elemanlaridir.

ii) (y,6) € 0(a, b)ise bu durumda y dan § ya yonlendirilmis bir kenar vardir

denir ve y — § ile gosterilir.

Acik olarak O(a, b) ile O(b, a) alt yoriingeleri ya esittir ya da ayriktir. Eger ayrik
iseler G(a,b) alt yoriingesel grafi G(b,a) alt yoriingesel grafinin sadece ters
yonlendirilmis hali olur. Boylece G(a, b) ile G(b, a) eslesmis yoriingesel graflar adi
verilir. Bu alt yorilingeler eger esit ise G(a,b) = G(b, a) alt yoriingesel grafi ¢ift
tarafli yonlendirilmis kenarlardan meydana gelir. Bu durumda kendisiyle eslesmistir
denir. Burada n > 0 igin v = ve (1,n) = 1 bigimindedir. 0(c0,v) = 0 (%%) alt

yoriingesini kisaca O (u, n) ile ve bu alt yoriingeye karsilik gelen alt yoriingesel grafi

ise G(u,n) = Gy, , ile gosterilir.

Tamm 2.5.1. Bir grafta m > 3 olmak {izere v,,v,,...,1,, farkli késeler igin v; —
Vy —...— Yy, = Vq 1se bu durumda bu koselerin olusturdugu yapiya yonlendirilmis
devre denir. Ozel olarak, m = 3ise v; » v, - v3 = v, bir iicgen devre, m = 2 ise
v; = v, = vy kendisi ile eslesmis kenar denir. Higbir devre icermeyen grafa orman

denir.

" [ ] (2] [

Sekil 2.5.1. Devreler ve kendisiyle eslesmis kenar
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Onerme 2.5.1. (G, ) transitif permiitasyon grubu icin G bir alt yoriingesel graf

olsun. Bu takdirde,
1) G grubu G grafinin otomorfizmalarinin bir grubu olarak hareket eder.
i1) G grubu G grafinin kdseleri tizerinden transitif olarak hareket eder.

Iii) G kendisiyle eslesmis bir graf ise bu durumda G grubu G grafinin ardisik

koselerinin sirali giftleri tizerinde transitif olarak hareket eder.
IV) G grafinin kenarlari lizerinde transitif olarak hareket eder.
Ispat.

i) g €G olmak iizere fg:G(a,b) > G(a,b) , fg(x -y)=gx)-g0)
dontligiimiiniin bir otomorfizma oldugu gosterilirse G grubu Galt yoriingesel grafinin

otomorfizmalarinin bir grubu olarak hareket ettigi gosterilir.

x>y, u->vEe€ G(ab) kenarlar1 i¢cin f;(x - y) = fy(u—>v) olsun. g(x) -
g =g@w) - g(w) dir. G grup oldugundan Ig 1€ G oyle ki glg(x) —»
g lg) =g lg(w) » g lg(v) elde edilir. Dolayisiyla x - y = u — v dir. Yani
f4 birebirdir.

Her x -» y € G(a, b) kenar igin g~(x) - g~*(y) € G(a,b) kenar1 vardir dyle ki
fo(g7 () > g7 ) =9(97'®)) > g(g7'®)) =x >y dir. Boylece f

dontisimi 6rtendir.

x = y kenar1 G(a, b) alt yoriingesel grafinda bir kenar olsun. (x,y) € O(a, b) dir.
0(a,b) ={g(a,b): g € G}oldugundan Ih € G 6yle ki (x,y) = h(a,b) dir. Diger
yandan g € G olmak iizere g(x,y) = g(h(a, b)) = gh(a, b) ve boylece gh(a,b) =
g(x,v) = (gx),g(y)) elde edilir. Yani g(x) - g(y)G(a, b) grafinda bir kenardr.

fg dontistimii yap1 koruyan bir dontigimdiir.
i) (G, 2 ) ciftinin bir gegisli permiitasyon grubu oldugu goriiliir.

iii) G(a, b) grafi kendisi ile eslesmis olsun. O(a, b) = O(b, a)dur.
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x ile y ardisik koseler olsun. (x,y) veya (y,x) € O(a, b) dir. Dolayisiyla x ile y ve
u ile v ardisik koseler ise (x,y) € O(a,b) ve (u,v) € O(a,b) oldugunu kabul
edebiliriz. Buradan O(a,b) = {g(x,y):g € G} oldugundan 3g,,g, € G Oyle ki
(x,y) = g1(a,b) ve (u,v) = g,(a, b) seklindedir. Sonug olarak g, ~1(x,y) = (a, b)
olur. A¢ik¢a (u,v) = g,9, " *(x,y) ve G grup oldugundan dolay1 h = g,g, g € G
elde edilir. Boylece G grubu G(a, b) alt yoriingesel grafinin ardisik koseleri lizerinde
gecisli olarak hareket eder.

iV)x >y vea—=b, G(a,b) alt yoriingesel grafinda keyfi iki kenar olsun.
Bu durumda (x,y) € O(a,b) ve (u,v) € 0(a,b) oldugundan S;(a,b) = (x,y) ve
S,(a,b) = (u,v) olacak sekilde S;,S, € G vardir. Boylelikle S;~'(x,y) =
S, "(u, v) elde edilir. Buradan S,(S;(x,¥)) = (w,v) sonucuna ulasilir. Boylece G

grubu G(a, b) alt yoriingesel grafinin kenarlari tizerinde gegisli olarak hareket eder.
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2.6 SL*(3,7) Lineer Grubunun Z Uzerinde Hareketi

(Z x T) U {0} kiimesini Z ile tanimlayalim. SL(3, Z) ile Kat sayilari tam say1,
determinant1 1 olan biitiin matrislerin grubunu gosterelim. Bu SL(3,Z) grubuna 6zel

lineer grup denir. Yani,

a b c
SL(3,Z) = {A = (d e f) ta,b,c,d,e f,g,h1E€Zve detA = 0} carpma
g h 1

islemine gore bir gruptur. Ayrica

a b 0
SL*(3,Z) = {(c d 0) ta,b,c,d €Z, ad —bc = 1} grubu SL(3,Z) grubunun
0 0 1

bir alt grubudur. Yani SL*(3,Z) < SL(3,Z)dir. PSL(3,Z) = SL(3,Z)/{%I} dir.

Bu calismada SL(3,Z) grubunun Z kiimesi iizerindeki hareketini géz oniine
alacagiz. Yani permiitasyon gruplarindan esinlenerek hesaplama yapilacaktir. Ve

hiperbolik geometrik kullanarak elde edilen graflar ¢izilmeye galisilacaktir.

X

Z kiimesinin herhangi bir eleman1 <y> olarak temsil edilsin. Burada x,y € Z
0

1 -1
dir. Ayrica sonsuzuda <O> = ( 0) olarak gosterebiliriz. 7 kiimesi iizerinde
0 0

SL*(3,Z) hareketi su sekilde tanimlayalim:

a b 0 X ax + by
(c d O) : <y> - (cx + dy) dir.
0 0 1 0 0

Teorem.2.6.1. SL*(3, Z) grubunun Z kiimesi iizerindeki hareketi transitiftir.

a
Ispat. Sonsuzu iceren yoriingenin Z oldugunu gostermek yeterlidir. (b) € Z ise bu
0

durumda aa—bB =1 saglayan «,f €Z elemanlart mevcuttur. Buradan

a p 0 1 a
<b a O) . (0) = <b) esitligine ulasilabilir.
0 0 1 0 0
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Simdi « € 2 i¢in G, < H < G oldugunda G — invaryant denklik bagmtist
asikar durumlarindan farkli olur. Transitiflikten dolay1 G grubunun her elemani g €
G icin g(a) formundadir. Boylece (2 iizerindeki G — invaryant denklik bagintisi
agikar olmayan bir bagintidir. Dolayisiyla g, g’ € G olmak iizere g(a) = g'(a) ©
g' € gH bagmtisi G — invaryant denklik bagintisidir. Burada G = SL*(3,Z) ve 2 =
Z kiimesi secilecektir. Ayrica G, = SL*(3,Z) alinacaktir.

Teorem 2.6.2. SL*(3,Z) grubu i¢in sonsuzun sabitleyeni
1 2 0
SL'(3,Z)s, =310 1 O0|:AEZ
0 0 1

kimesidir.

Ispat.Z kiimesinde bir noktanin sabitleyeni sonsuz devirli gruptur. Transitif hareket
oldugundan herhangi iki noktanin sabitleyeni birbirine esleniktir. Bu ylizden
SL*(3,Z) grubunda sonsuzun sabitleyenine bakmak yeterlidir. Simdi T € SL*(3,7Z)

olmak tizere T'(00) = oo esitligine bakalim.

a b 0 1 1
T(o)=|c d 0[.|0]=(0] esitliginden a=1, c=0 olup det T=1

0 0 1 0 0
oldugundan ad — bc =1 denkleminden d =1 bulunur. Dolayisiyla b = 1 € Z
1 1 0
seklindedir. Boylece T=|0 1 0] dir. Yani SL*(3,Z) grubunda sonsuzun
0 0 1
1 1 0
sabitleyeni ({0 1 0 |) elemani tarafindan iiretilen kiimedir.
0 0 1

SL*(3,Z)y = {T € SL*(3,Z)|c = 0( mod n),n € Z} grubu SL*(3,7Z)

grubunun kongriians alt grubudur.
Acikca goriilmektedir ki

SL*(3,Z)s < SL*(3,Z)¢ < SL*(3,Z) dir. Simdi SL*(3,Z) grubu ile Z iizerine

indirgenen bir ~ denklik bagintisini inceleyelim.
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TN /X r 19 0 x x9 0
<S>,<y> eZ keyfi alalim. T; = (s So O), T, = (y Yo O) olmak tzere
0 0 0 0 1 0 0 1

r x
T,, T, € SL*(3,Z) dir. T;() = (s) ve T,(o0) = <y> oldugu goriilir. Burada
0 0

Z iizerindeki SL*(3,Z), invaryant denklik bagintisina bakalim. T; () = T,() <
T, 'T, € SL*(3,Z), dir. Gergekten

—So 19 O\/x x9 O oY — SoX ToVo — X0Sg O
T, 'T,=s —-r 0 y yo 0)=1| sx—ry SXg—71y9 O

0 0 1/\N0 0 1 0 0 1

oldugundan T, 'T, € SL*(3,Z), oldugu goriiliir. Yani

r x
<s> Y <y> & ry — sx = 0(mod n) dir.
0 0

Buradaki blok sayist Y (n) = |SL*(3,Z): SL*(3,Z),| dur.

Teorem 2.6.3. |SL*(3,Z): SL*(3,Z)o| = n[lpn(1 +%) indeksidir. Burada p|n ’yi

bolen asal sayilardir.

Ispat. Genel olarak denklik smiflarimin = sayis1 =, altinda ¥(n) =
|SL*(3,Z): SL*(3,Z),] ile verilir. Y(n)¢arpimli bir fonksiyondur. n = Im, ([,m) =
lalalim. Buradan v =, w © v =; w ve v =, w dir. Yani denklik siniflarinin sayisi

Y(m) =PD).(m) dir. Ayrica n - n[[,,(1+ %) fonksiyonuda ¢arpimsaldir.

Teoremi kanitlamak i¢in n’nin bir asal p sayisinin kuvveti oldugunu gostermek

r
yeterlidir. Eger v = (s) € Z alinirsa boylece modn ye gére goriilebilir ki i € Z,, j €
0

T 1 r 1
Z,, olmak {lizere (s) A <l> veya <S> Ry ( j) dir. Boylece 2n siniflar1 farklidir.
0 0 0 0

Euler fonksiyonu olan ¢(n) = n.(1 —%) g6z Oniine alindiginda farkli smiflarin

sayisi 2n — ¢p(n) =n. (1 + %)oldugu bulunur. Sonug olarak
Y(n) = ISL'(3,2): SL'(3, o] = n[Tpn(1 +) dir.
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2.7 SL*(3,Z) Lineer Grubunun Z Uzerindeki Yoriingesel Graflari

Teorem 2.7.1.7,s,x,y € Z* olmak iizere bu durumda asagidakilerden biri

gerceklesir:

r X —r —X
)] (s) - <y> veya (—s) - (—y) olacak sekilde G, , de bir kenar
0 0 0 0

vardir & x = —ur(mod n), y = —us(modn) ve ry — sx = —n,

r —X —-Tr X
) (s) - <—y> veya (—s) - <y> olacak sekilde G, , de bir kenar
0 0 0 0

vardir & x = ur(mod n), y = us(modn) ve ry — sx = n,

—-r —X r X
1) ( s ) - < y >veya (—s) - (—y) olacak sekilde G, ,, de bir kenar
0 0 0 0

vardir © x = —ur(mod n), y = —us(mod n) ve ry — sx = n,

—r X r —Xx
V) ( S ) - <—y> veya (—s) - < y ) olacak sekilde G, ,, de bir kenar
0 0 0 0

vardir & x = ur(mod n), y = us(mod n) ve ry — sx = —n dir.

Ispat. r,s,x,y € Z*olsun. Varsayalim ki ;

T X r X
<s> - (y) Gy nde bir kenar olsun bu durumda <s> <y> € 0y, dir. Boylece
0 0

1 r X
SL*(3,Z)’de bir T eleman1 vardir 6yle ki T, ( 0 ) ciftini (s), (y)
0

-1 r X
ciftine gonderir. Yani T( 0 > = ( > ve T< ) <y> dir. Gergekten
0 0 0

a b 0
T = <c d 0) € SL* (3, Z) keyfi olsun. Bu durumda
0 0 1
-1 —a r u au + bn x
T( 0 > = (—C) = <S>VeT (n) = (cu + dn) = <y> dir.
0 0 0 0 0 0
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a b 0 -1 r a b 0 u X —a
Buradan (c d 0) ( 0 ) = <S> ve (c d 0> . (11) = <3’> <—C>
0 0 1 0 0 0 0 1 0 0 0
r au + bn X a b 0 -1 u O
<s> ve <cu + dn) = (y) dir.  Bdylece (c d 0> ( 0 n 0) =
0 0 0 0 0 1 0 0 1

r x 0
<S y 0) yazilir. Her iki taraftan da determinant alirsak ry — sx = —n olur.
0 0 1

Boylece x = —ur(mod n), y = —us(mod n) ve ry — sx = —n elde edilir. au +

bn=x=>x=b—-ur= x=—-ur(modn).cu+dn=y=>y=dn—us= y=
—us(mod n).
Tersine varsayalim ki x = —ur(mod n),y = —us(modn) very —sx = —n

olsun. Bu durumda 3b,d € Z dyle ki x = —ur + bn,y = —us +dn olur. a =
—r ve ¢ =—s almirsa x =au+bn ve y=cu+dn olur. Buradan vyola

a b 0\ /-1 u 0 r x 0
cikarak| ¢ d 0.l 0 n O0)=|s vy O) esitligini yazabiliriz. Yine ry —

0 0 1 0 0 1 0 0 1

a b 0
sx = —n oldugundan ve ad —bc =1 oldugunu bildigimizden (c d 0) €
0 0 1

r X —-r —X
SL*(3,Z) dir. Boylelikle <S> - <y> kenar1 G, ,, grafindadur. (—s) - <—y) icinde
0 0 0 0

benzer sekilde gosterilebilir. Yine I, Ill, IV durumlart igin ayni yontemle ispat

yapilabilir.

Teorem 2.7.2. Gy , kendisiyle eslesmistir & u® + 1 = 0(modn).

X
Ispat. G, ,, kendisiyle eslesmis oldugunu varsayalim. Eger oo — <y) bir kenar varsa
0
X u
bu takdirde <y> — 00 olmak zorundadir. Yukaridaki teoremden <n> -
0 0

L r
0 | kenarindan 1 = —u? (mod n) kongrilans denklemi elde edilir. Ciinkii <s> -
0 0

x
<y> i¢in x = —ur(mod n) idi. r = u alirsak x = 1 igin 1 = —u?(mod n) dir.
0
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Tersine u? + 1 = 0 (mod n) alalhm. 3b € Z dyle ki u? + 1 = bn.

u —b 0 u u
Buradan T =|n —u 0 | alinirsa bu durumda T(o) = (n) , T (n) = o0
0 0 1 0 0

u —b 0 1 Uu U
olup, det T=1 dir. Yani, T()= (n —u 0>.<0> = <n> ve T<n> =
0O 0 1 0 0 0

u —b 0\ su u? — bn 1
n —u 0 <n> =|un—un|=/|0]=ocoolur. Boylece G,, grafi kendisiyle
0 0 1 0 0 0

r X
eslesmistir. Eger (s ) - <y> Gy n de bir kenarsa bu durumda yukaridaki teoremden
0 0

r X
ry —sx =n yazilabilir. Bdylece <S> ~ <y> dir. Gy, grafinin baglantil
0 0

~ " bagintis1 i¢in tek bir blok olusturur. Sayisi ise (n)

bilesenlerinin her bir '

kadardur.
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2.8. Alt Graf

Her bir G, ,, , Y(n) tane alt grafin birlesimidir. Her bir alt grafin koseleri tek
bir bloktan olusur. Bu bloklar =~ denklik bagintisiyla belirlenir. SL*(3, Z), 7Z tizerinde

transitif olarak hareket ettiginden bu bloklar transitif olarak permiite olur. Boylece alt
graflarin hepsi birbirine izomorftur. Simdi G, ,, grafinin bir alt grafi olan F, ,, grafim
alalm. F, , grafi koseleri sonsuz blogu lizerinde olan graftir. Sonsuz blogu ise

sOyledir:

-1 X
[oo]: = [ 0 ] = {(y) | x,y EZ vey = O(modn)}
0

Boylece G, ,, grafi Y(n) tane F, ,, grafnin ayrik birlesimlerinden olusur.

r X
Teorem 2.8.1.1,s,x,y € Z*ve(s) , (y) € [oo]. Bu takdirde,

0 0
(-Dir (—1)ix
1)  Funerafinda( (—1)is | = | (—1)iy | bir kenardir &
0 0

x = —ur(modn) very —sx = —n. Buradai = 0 veyai = 1 dir.

(-D'r (—1)x
) F,n grafinda| (—1)is | = | (=1)/y | bir kenardir &
0 0

x =ur(modn)very —sx =n.Buradai=0,j=1veyai =1,j = 0 dir.

(—D'r (—D'x
I11)  F,, grafinda (-1)/s | = | (=1)7y | bir kenardir &
0 0

x=-ur(modn) very—sx=n. Buradai=1,j=0veyai=0,j=1
dir.
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(—Dr (-1)/x
V) E, ,, grafinda (-1)/s | 2| (-1)!y | bir kenardir &
0 0

x=ur(modn)very —sx = —n.Buradai=1,j=0veyai =0,j = 1dir.
F, », grafinin bir otomorfizmi sonsuz blogundaki kenarlar1 kenarlara resmeder.
Ispat. Teorem 2.7.1 ispatina benzer sekilde yapilir.

Teorem 2.8.2. SL*(3,Z), grubuF, ,, grafinin kenar ve koselerini transitif olarak

permiite eder.

Ispat. Varsayalim ki u, v € [oo] olsun. SL*(3,Z), Z iizerinde transitif olarak hareket
ettiginden g(u) = v olacak sekilde g € SL*(3,Z) vardir. u = o ve = SL*(3,Z)
invaryant denklik bagintis1 oldugundan g(u) = g(oo) olur. Yani v = g(oo) olur.
Boylece v = g() oldugundan g € SL*(3,Z), dir. Simdi kenarlarin transitifligini

gosterelim. Varsayalim ki v,w € [oo], ki, k, € [0] ve v—>w,ky > k, € F,

u
olsun. Buradan (v,w), (kq,k;) € O(co, (n)) dir. Boylece S,T € SL*(3,Z),
0
u u
icin, S(0) =v, S <n> =w, T(w©) =k, T <n> = k, olacak seckilde doniisiimler
0 0

vardir. Dolayisiyla S,T € SL*(3,Z), dir. Ciinkii S(o0),T () € [oo] dur. Ustelik
TS™1(v) = ky ve TS~ (w) = k, dir. Yani TS~ € SL*(3,Z), dur.

Teorem 2.8.3. F, , yonlendirilmis tiggenler igerir & u® + u + 1 = 0(modn).

ispat. E, ;, yonlendirilmis bir tiggen igerdigini varsayalim. Transitif hareketten dolay1

u Xo u
yonlendirilmis tliggeni sOyle alabiliriz. oo — <n> - <yon> — 00 . (n) -
0 0 0

Xo
<y0n> kenarindan uy, — x, = —1 ve x, = —u?(modn) denklemi elde edilir.
0

Xg 1
<y0n> - (0) kenarindan y, = 1 elde edilir. Boylece x, = u + 1 dir. Sonug¢ olarak
0 0

u? + u + 1 = 0(modn) elde edilir.
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Tersine u? +u+ 1 =0 (mod n) saglansmn. Kenar sartlar1 veren teorem
kullanildiginda o0 — v; - v, — oo devresi F, , grafinda bir yoénlendirilmis {iggen

devredir.

Sonuc¢ 2.8.1. Asagidaki verilen doniisiimler I'g(n) grubunun elemanlaridir:

_ ul+u+1 u?+u+1
¢1=<u n ), ¢2=<u n >,
n —-u-—1 -n —-u-—1

_ u?+u+1 _ _ u?+u+1
-n u+1 n u+1

ve burada u?+u+1=0 (modn) olup bu elemanlar 3. mertebeden eliptik

elemandir. Ayrica

u?4u+1
P1=\n —u-1 o) detoi=1
0 0 1

Dontistimii yardimiyla kolaylikla goriilebilir ki,

()0 -5 )(5)-0

dir. Agik¢a —1 < i < 4 olmak iizere ¢; doniisiimleri graftaki devreler ile gruptaki

eliptik elemanlar arasinda birebir iligki kurar.

Ornek 2.8.1.n = 3,u = lolsun. Bu takdirde F; ; de sekiz tane iiggen devre vardir

ve bunlar asagidaki sekildedirler:

(3)-G-0)-(2)
(3)-0-G)-(2)
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dir.

Sekil 2.8.1. F; zgrafi

Ornek 2.8.2.n =2,u = 1olsun.u? + u+ 1 = 0(modn) gegerli olmadig: igin F; ,

de tiggen devre yoktur. Ama F; , de 2-gen vardir. Bunlar ise

()G C) ()63
()G () ()-(3)-(5)
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Sekil 2.8.2. F; , grafi
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3. SONUC VE ONERILER

Bu ¢alismada SL(3,Z) grubunun kongriians alt grubu olan SL*(3,Z),grubu
incelenmistir. Goriildii ki bu kongriians alt grubu sadece 2. ve 3. mertebeden eliptik
elemanlar icermesinden dolayr alt ydriingesel grafinda ikigen ve {liggen devreler
bulunmustur. Burada kullanilan alt yoriingesel graflar aslinda daha once caligilmig
olan ve literatiirde mevcut olan simge probleminin ¢6ziimii i¢in ¢ok Onemli bir
yontemdir. Aslinda bu konu ile ilgili yapilan ¢aligmalarda amacg graflardaki kapali
devreler ile ayrik gruplardaki iiretici eliptik elemanlarin mertebeleri arasindaki bag
iligkisi yardimiyla simge problemini ¢dzmektir. Bu tez ¢alismasi da kismen bu

probleme yoneliktir. Yapilan ¢alismada elde edilen sonuglar asagida verilmistir:

e SL*(3,Z) kongrilans alt grubunun Z kiimesi iizerindeki hareketinin
transitifoldugu Teorem 2.6.1. de gosterildi.

® G, alt yoriingesel grafinda kenar olma sartlar1 Teorem 2.7.1. ile elde edildi.

® Gy, alt yoriingesel grafinin kendisiyle eslesmis graf olabilmesi i¢in gerek ve
yeter sart Teorem 2.7.2. de verildi.

e F,,alt yoriingesel grafinda kenar olma sartlar1 Teorem 2.8.1. ile verildi.

e SL'(3,Z), kongrians alt grubunun Teorem 2.8.2. ifadesinde F,, grafinin
koselerini ve kenarlarini transitif olarak permiite ettigi gosterildi.

e F,, alt yoriingesel grafinin yonlendirilmis ticgen devre icermesi igin gerek

ve yeter sart Teorem 2.8.3. te bulundu.

Yapilan ¢alismada da goriildiigii lizere impirimitif hareketin durumunu segilen
SL*(3,Z), kongriians alt grubu belirlemektedir. Dolayisiyla bu grup yerine farkli bir
grup alinarak impirimitif hareketin olusturacagi yeni durumlar incelenebilir. Boylece
grup secimindeki farkliliklar graflardaki devrelerin tipini degistirebilir veya farkh
kongriians denklemleri ortaya ¢ikabilir. Elde edilen kongriians denklemleri sayilar
teorisi agisindan da Onemli olabilir. Ayrica bulunan tiim sonuglarin geometrik

gorselleri i¢in ylizey dosemeleri acisindan da degerlendirilebilir.

44



4. KAYNAKLAR

Akbas, M., “On Suborbital Graphs For The Modular Group”, Bull. London
Math. Soc. 33, 647-652, (2001).

Akbas, M., Singerman D. “The Signature of The Normalizer of I,(N)”,
Turkish Journal of Math., Tiibitak, 20, 379-387, (1996).

Asar, A. O., Arikan A., Cebir, Ankara : Eflatun Yayinevi (2009).

Beardon, A. F., The Geometry of Discrete Groups, Springer Verlag, New
York, (1983).

Besenk, M., “Suborbital Graphs For a Special Subgroup of The SL(3,Z)”,
Filomat 30:3, 593-602, (2016).

Biggs, N. L., White A. T., Permutation Groups and Combinatorial
Structures, London Math. Soc. Lecture Notes 33, Cambridge University
Pres, Cambridge, (1979).

Biiyiikkose, S., Kaya Gok G.,Graf Teoriye Giris , Nobel Akademik
Yayncilik, Mayis, (2018).

Cevirici Demirbas, G., Alt Yoriingesel Graflar, Yiksek Lisans Tezi,
Pamukkale Universitesi, Denizli, (2020).

Giiler, B.O., Besenk M., Deger A.H. and Kader S., “Elliptic Elements and
Statistics” Vol. 40, No 2, 203-210, (2011).

Jones G. A., Singerman D. , ComplexFunctions an Algebraic and
GeometricViewpoint, Cambridge University Press, Cambridge, (1987).

Jones, G. A., Singerman D. and Wicks K., “The Modular Group and
Generalized Farey Graphs”, London Math. Soc. Lecture Notes, CUP,
Cambridge, 160, 316-318, (1991).

Keskin, R., “Suborbital Graphs for The Normalizer of I;(m)”, Europan
Juornal of Combinatorics, Vol 27, No 2, 193-206, (2006).

Lehner, J., Newman M., Weierstrass Points of I;(N) , Annals of
Mathematics Vol 79, No 2, March 360-368 , (1964).

45



Neumann, P.M., FinitePermutation Groups, Edge-Coloured Graphs
andMatrices, Topics in Group Theory and Computation, Academic Press,
London, (1977).

Newman, M., The Normalizer of Certain Modular Subgroups, Can. J. Math
8, 29-31, (1956).

Ogg, A. P., Modular Functions, Proceedings of Symposia in Pure
Mathematics, Vol 37, (1980).

Rose, H. E., A Course in Number Theory, Oxford UniversityPress, Oxford,
(1988).

Schoeneberg, B., Elliptic Modular Functions, SpringerVerlag, Berlin,
(1974).

Shimura, G., Introductionto The Arithmetic Theory of AutomorphicFunctions
Princeton Univ. Press, (1971).

Sims, C. C., “Graphs and FinitePermutation Groups”, Math Z., 95, 76-86,
(1967).

Singerman, D., “Subgroups of Fuchsian Groups and FinitePermutation
Groups”, Bull. London Math. Soc. 2, 319-323, (1970).

Tsuzuku, T., Finite Groups and FiniteGeometries, Cambridge University
Pres, Cambridge, (1982).

Wilson, J. R., IntroductiontoGraph Theory, PearsonEducation Limited,
Edinburg, (2022).

46



