

İSTANBUL TEKNİK ÜNİVERSİTESİ  LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

TEMMUZ 2022

FONKSİYONEL GÜVENLİK KAPSAMINDA ELEKTRİK MOTORU

TAKVİYELİ DİREKSİYON SİSTEMİNİN MODEL TABANLI YAZILIMININ

GELİŞTİRİLMESİ

Cengiz AYDIN

Makine Mühendisliği Anabilim Dalı

Otomotiv Programı

TEMMUZ 2022

İSTANBUL TEKNİK ÜNİVERSİTESİ  LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

FONKSİYONEL GÜVENLİK KAPSAMINDA ELEKTRİK MOTORU

TAKVİYELİ DİREKSİYON SİSTEMİNİN MODEL TABANLI YAZILIMININ

GELİŞTİRİLMESİ

YÜKSEK LİSANS TEZİ

Cengiz AYDIN

(503181703)

Makine Mühendisliği Anabilim Dalı

Otomotiv Programı

Tez Danışmanı: Dr. Öğr. Üyesi Osman Taha ŞEN

iii

Tez Danışmanı : Dr. Öğr. Üyesi. Osman Taha ŞEN

 İstanbul Teknik Üniversitesi

Jüri Üyeleri : Prof. Dr. Özgen Akalın

İstanbul Teknik Üniversitesi

Doç. Dr. Tarkan Sandalcı

Yıldız Teknik Üniversitesi

İTÜ, Lisansüstü Eğitim Enstitüsü’nün 503181703 numaralı Yüksek Lisans / Doktora

Öğrencisi Cengiz AYDIN, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine

getirdikten sonra hazırladığı “FONKSİYONEL GÜVENLİK KAPSAMINDA

ELEKTRİK MOTORU TAKVİYELİ DİREKSİYON SİSTEMİNİN MODEL

TABANLI YAZILIMININ GELİŞTİRİLMESİ” başlıklı tezini aşağıda imzaları olan

jüri önünde başarı ile sunmuştur.

Teslim Tarihi : 03 Haziran 2022

Savunma Tarihi : 04 Temmuz 2022

iv

v

Eşime,

vi

vii

ÖNSÖZ

Otomotiv endüstrüsi insan hayatındaki hareketliliğin önemli bir kısmını sağlayarak

refah düzeyine doğrudan katkı vermektedir. Ancak ulaşılan yüksek hızlarla birlikte

yaşanan kazalarda bir o kadar ölümcül olmaktadır. Bu nedenle sektör, trafik

kurallarından, üretim standartlarına kadar bir çok yasal yükümlülükle iç içe girmiştir.

Bu tez kapsamında otomotiv elektrik/elektronik sistemlerinin güvenliği ele alınarak,

ISO 26262 Kara Araçları Fonksiyonel Güvenlik Standardı incelenmiş ve örnek bir

çalışma ile pekiştirilmiştir.

Bu çalışmada bana destek olan tez danışmanım Dr. Öğr. Üyesi Osman Taha Şen’e ve

katkı sağlayan tüm arkadaşlarıma teşekkür ederim.

Ayrıca manevi desteğini her an hissettiğim aileme ve eşime teşekkür ederim.

Haziran 2022 Cengiz Aydın

 Yazılım Geliştirme Mühendisi

viii

ix

İÇİNDEKİLER

Sayfa

ÖNSÖZ .. vii
İÇİNDEKİLER ... ix
KISALTMALAR .. xi

ÇİZELGE LİSTESİ .. xiii

ŞEKİL LİSTESİ ... xv

ÖZET ... xvii
SUMMARY ... xix
1. GİRİŞ .. 1

1.1 Motivasyon ... 1

1.2 Araştırma Sorunsalı .. 2
2. LİTERATÜR ARAŞTIRMASI .. 3

2.1 ISO 26262 Kara Araçlarında Fonksiyonel Güvenlik Standardı 3
2.2 AUTOSAR ... 4
2.3 E-Gas .. 6

2.4 MISRA C .. 8
2.5 Referans araştırmalar .. 10

3. KONSEPT ... 13

3.1 Elektrik Takviyeli Direksiyon Sistemi (EPS: Electric Power Steering) 13

3.2 Sözlük ... 14
3.3 Konsept Fazı ... 15

3.3.1 Öğe tanımı ... 15
3.3.2 Tehlike analizi ve risk değerlendirmesi (HARA) 16
3.3.3 Fonksiyonel güvenlik konsepti ... 21

3.4 Sistem Seviyesinde Ürün Geliştirme .. 26
3.4.1 Teknik güvenlik konsepti .. 26

3.4.1.1 Güvenlik mekanizmaları .. 27

3.4.1.2 Teknik güvenlik gereksinimlerinin atanması 27
3.4.1.3 Doğrulama .. 28

3.5 Yazılım Seviyesinde Ürün Geliştirme .. 31

3.5.1 Yazılım gereksinimleri .. 32

3.5.2 Yazılım mimarisi ... 33
3.5.3 Yazılım birim tasarımı .. 35
3.5.4 Yazılım birim doğrulama .. 36

4. UYGULAMA .. 41
4.1 3 Katmanlı Denetleme Mekanizması ... 41

4.2 Yazılım gereksinimlerinin belirlenmesi ... 43
4.3 Yazılım Mimarisinin Belirlenmesi ... 55
4.4 Yazılım Birim Tasarımı ... 59
4.5 Yazılım Birim Doğrulama .. 64
4.6 Simülasyon ... 69

x

5. SONUÇ VE ÖNERİLER ... 73

KAYNAKLAR .. 75

EKLER .. 79
ÖZGEÇMİŞ .. 85

xi

KISALTMALAR

ASIC : Application Specific Integrated Circuit (Uygulamaya Özel Tümleşik

Devre)

ASIL : Automotive Safety Integrity Level (Otomotiv Güvenliği Bütünlük

Seviyesi)

AUTOSAR : AUTomotive Open System ARchitecture (Otomotiv Açık Sistem

Mimarisi)

CPU : Central Process Unit (Merkezi İşlem Birimi)

E/E : Elektrik/Elektronik

EKÜ : Elektronik Kontrol Ünitesi

EMC : Electromagnetic Compatibility (Elektromanyetik Uyumluluk)

EMI : Electromagnetic Interference (Elektromanyetik Girişim)

ESD : Electrostatic Discharge (Elektrostatik Boşalma)

FTTI : Fault Tolerant Time Interval (Hataya Dayanıklı Zaman Aralığı)

HARA : Hazard Analysis and Risk Assesment (Tehlike Analizi ve Risk

Değerlendirmesi)

ISO : International Organization for Standardization (Uluslararası

Standartlar Teşkilatı)

MC/DC : Modified Condition/Decision Coverage (Değiştirilmiş Koşul/Karar

Kapsamı)

NHTSA : National Highway Traffic Safety Administration (Ulusal Karayolu

Trafiği Güvenliği İdaresi)

PMSM : Permanent Magnet Synchronous Motor (Sabit Mıknatıslı Senkron

Motor)

RTE : Real Time Environment (Gerçek Zamanlı Ortam)

SAE : Society of Automotive Engineers (Otomotiv Mühendisleri Birliği)

SBC : System Basis Chip (Sitem Tabanlı Çip)

QM : Quality Management (Kalite Yönetimi)

https://tureng.com/tr/turkce-ingilizce/s%C3%BCrekli%20(kal%C4%B1c%C4%B1)%20m%C4%B1knat%C4%B1sl%C4%B1%20senkron%20motor
https://tureng.com/tr/turkce-ingilizce/s%C3%BCrekli%20(kal%C4%B1c%C4%B1)%20m%C4%B1knat%C4%B1sl%C4%B1%20senkron%20motor

xii

xiii

ÇİZELGE LİSTESİ

Sayfa

Çizelge 2.1 : Yazılım birimi tasaımı ve uygulaması için tasarım ilkeleri [8] 9
Çizelge 4.1 : EPS güvenlik gereksinimleri. ... 44

Çizelge 4.2 : Yazılım gereksinimleri grup 1 .. 49
Çizelge 4.3 : Yazılım gereksinimleri grup 2. ... 52
Çizelge 4.4 : Yazılım gereksinimleri grup 3. ... 53
Çizelge 4.5 : Yazılım gereksinimleri grup 4. ... 54

xiv

xv

ŞEKİL LİSTESİ

Sayfa

Şekil 2.1 : ISO 26262 standardı içeriği [8]. ... 4
Şekil 2.2 : AUTOSAR katılımcılarının dağılımı [9]. ... 5
Şekil 2.3 : AUTOSAR katmanlı yazılım mimarisi [9]. .. 6

Şekil 2.4 : E-Gas 3 katmanlı denetim konsepti [10]. ... 7

Şekil 3.1 : ISO 26262 standardı içeriğinde incelenecek kısımlar [8]. 13

Şekil 3.2 : Komponent diyagramı üzerinde sistem sınırlarının gösterimi [12]. 16
Şekil 3.3 : Direksiyon sistemi sensörleri [12]. ... 23
Şekil 3.4 : Sistem seviyedinde ürün geliştirme süreci [8]. .. 26
Şekil 3.5 : Yazılım seviyesinde V döngü süreci [8]. ... 31

Şekil 4.1 : Lockstep 3 katmanlı denetleme konsepti genel görünümü [13]............... 42
Şekil 4.2 : Fazlalıklı işlemci kullanımıyla yazılım karşılaştırması [8]. 42

Şekil 4.3 : EPS’de kullanılan sensörler ve yerleşimleri [14]. 47
Şekil 4.4 : Tork-açı sensör (TAS-Torque-Angle Sensor) modülü [14]. 47
Şekil 4.5 : Veri akış diyagramı (Data flow diagram)... 55

Şekil 4.6 : Sekans diyagramı örneği 1. .. 56
Şekil 4.7 : Sekans diyagramı örneği 2. .. 57

Şekil 4.8 : Sekans diyagramı örneği 3. .. 57

Şekil 4.9 : Sekans diyagramı örneği 4. .. 58

Şekil 4.10 : Durum makinesi diyagramı (State machine). ... 58
Şekil 4.11 : AUTOSAR kütüphanesi. .. 59

Şekil 4.12 : Gereksinim yönetimi aracı arayüzü. ... 60
Şekil 4.13 : Gereksinim - model bağlantısı gösterimi. .. 61
Şekil 4.14 : Modelleme standardı kontrolleri. ... 62

Şekil 4.15 : Güçlü veri tipi kontrolü uyarısıın model seviyesinde gösterimi. 62
Şekil 4.16 : Simulink standart modelleme şartnamesi. .. 63
Şekil 4.17 : Simulink modelleme seviyesindeki MISRA C şartnamesi. 63

Şekil 4.18 : Otomatik üretilen kod ve model ilişkisi. .. 64
Şekil 4.19 : Statik kod analizi hata örneği. .. 66

Şekil 4.20 : Statik kod analizi hatasının model seviyesinde tespiti. 66
Şekil 4.21 : Sıfıra bölünme hatası için model seviyesinde çözüm önerisi................. 67

Şekil 4.22 : Başarılı tamamlanan statik kod analizi örneği. 67
Şekil 4.23 : Test koşum ortamı örneği. .. 68
Şekil 4.24 : MC/DC testi giriş ve çıkış sinyalleri. ... 68

Şekil 4.25 : Geliştirme sürecinde MC/DC kapsama testi. ... 69
Şekil 4.26 : Tamamlanmış MC/DC kapsama testi. ... 69

Şekil 4.27 : EPS simülasyon modeli. ... 70
Şekil 4.28 : 2. seviye görüntüleme fonksiyonlarının simülasyon modeli. 70
Şekil 4.29 : Simülasyon test senaryosu sinyalleri. ... 71
Şekil 4.30 : Simülasyon test sonuçları. .. 72
Şekil 4.31 : EPS tork sinyalleri .. 72
Şekil A.1 : Üst seviye kontrol modelinin ekran görüntüsü .. 80

xvi

Şekil A.2 : RedundancyCtrl modeli ekran görüntüsü .. 80

Şekil A.3 : RedundancySafetyMech1 sinyalinin hesabı .. 80

Şekil A.4 : RedundancySafetyMech2 sinyalinin hesabı .. 81
Şekil A.5 : RationalityCtrl modeli ekran görüntüsü .. 81
Şekil A.6 : Pozisyon sensörü sinyalinin hesabı ... 81
Şekil A.7 : Tork sensörü sinyalinin hesabı .. 82
Şekil A.8 : RationalitySafetyMech1 sinyalinin hesabı .. 82

Şekil A.9 : StateMachine modeli ekran görüntüsü .. 82
Şekil A.10 : Durum makinesi ekran görüntüsü .. 83
Şekil A.11 : Sarı ikaz ışığı hesabı .. 83
Şekil A.12 : Kırmızı ikaz ışığı hesabı .. 83
Şekil A.13 : Elektrik motoru deaktivasyon sinyali hesabı ... 83

xvii

FONKSİYONEL GÜVENLİK KAPSAMINDA ELEKTRİK MOTORU

TAKVİYELİ DİREKSİYON SİSTEMİNİN MODEL TABANLI

YAZILIMININ GELİŞTİRİLMESİ

ÖZET

Karayolları ulaşımında yaşanan kazalar nedeniyle her yıl yüz binlerce kişi hayatını

kaybetmekte, sakat kalmakta veya ağır yaralanmalar geçirmektedir. Bu nedenle

otomotiv üreticileri geliştirdikleri teknolojilerle insan hayatını koruyucu önlemler

almayı hedef haline getirmektedir. Ayrıca markalaşma açısında da güvenilir olarak

anılan markaların değeri ve prestiji diğer üreticilere göre oldukça yüksektir. Bu

kapsamda elektronik kontrol ünitelerinin otomotiv sektöründe kullanımının artmasıyla

birlikte pek çok elektronik güvenlik sistemi hayatımıza girmiştir.

Peki bu hayatlarımızı emanet ettiğimiz elektrik elektronik sistemlerin güvenliğinden

nasıl emin olabiliriz? İhtiyacımız olduğunda bu sistemler sağlıklı bir biçimde

fonksiyonlarını yerine getirebilecek mi? Bu şüpheler sadece elektronik güvenlik

sistemleri için değil tüm elektronik kontrol üniteleri için geçerlidir. Amacı hayatımızı

kolaylaştırmak olan bir elektronik kontrol ünitesindeki bir arızanın hayatımızı

tehlikeye atmayacağından nasıl emin olabiliriz? Bu tehlikelere karşı hiçbir önlem

almadan bu sistemleri kullanmak oldukça risklidir. Tabi ki de tüm riskleri ortadan

kaldırmak mümkün değildir ancak bu sistemleri tasarlayan mühendislerden iyi bir risk

yönetimi yaparak güvenli sistemler meydana getirilmesi beklenir. Risk ettiğimiz şey

insan hayatı olduğunda, risk yönetimini standartlaştırmak kaçınılmaz olmaktadır. İşte

bu nedenle 2011 yılında ISO 26262 – Kara Araçları Fonksiyonel Güvenlik Standardı

hayatımıza girdi.

Bu çalışmada, otomotiv sektöründe çalışarak veya akademide yayınlar yaparak sektöre

katkı yapanlar için ISO 26262 – Kara Araçları Fonksiyonel Güvenlik Standardı

hakkında bilinmesi gerekenleri özetlemek, süreç hakkında bilgiler paylaşmak ve

sektörel kabul görmüş yaklaşımları incelemektir.

Tezin literatür taraması sürecinde sadece ISO 26262 – Kara Araçları Fonksiyonel

Güvenlik Standardı ile ilgili yapılan çalışmaları referans vermekle yetinilmemiş,

sektörel olarak kabul edilen mimari ve konseptler de incelenmiştir.

Uygulama kısmında bir konsept oluşturabilmek için referans bir elektronik kontrol

sistemine ihtiyaç duyuldu. Bunun için popüler elektronik kontrol sistemlerinden EPS

(Electric Power Steering) seçildi ve sistem hakkında temel bilgiler paylaşıldı.

Yeterli temellerin oluşmasıyla detay tasarım konularına giriş yapıldı. Konsept

aşamasında ve fonksiyonel güvenlik mühendisliğini ilgilendiren kısımlarda NHTSA

(National Highway Traffic Safety Administration) tarafından yayınlanan “Functional

Safety Assesment of a Generic Electric Power Steering System with Active Steering

and Four-Wheel Steering Features” çalışması referans alınarak alıntılar yapıldı.

Potansiyel tehlikeler ve riskler tanımlandı. HARA (Hazard Analysis and Risk

xviii

Assesment süreci açıklanarak ASIL’ler (Automative Safety Integrity Level)

tanımlandı.

Konsept belirlendikten sonra, sistem seviyesinde fonksiyonel güvenlik

gereksinimlerini sağlayacak teknik yaklaşımlardan bahsedilerek güvenlik

mekanizmalarına kısaca değinildi. Güvenlik mekanizmalarının sistem seviyesinde

doğrulanması için standart tarafından önerilen yöntemler açıklandı. Sistem seviyesi

sadece yazılım geliştirme sürecine geliştirilecek fonksiyonları tanımlamakla değil aynı

zamanda sistem entegrasyonu ve kabul testleri süreçlerinde de aktif rol almaktadır. Bu

nedenle geliştirilen yazılımın, performans, tutarlılık, zamanlama, arayüz

entegrasyonu, yetkinlik ve sağlanlık gibi kriterleri test ederken standart tarafından

önerilen yöntemler incelendi.

Yazılım geliştirme sürecinde, iş akış organizasyonunun belirlendiği V-Döngüsüne

değinildi. Modelleme ve yazılım geliştirme sürecinin bütünlüğünün önemi

vurgulanarak seçilen geliştirme methodları için şartnamelerin belirlenmesinin sisteme

katacağı değerler vurgulandı.

Yazılım test sürecinde MiL (Model in the Loop), SiL (Software in the Loop), PiL

(Processor in the Loop), HiL (Hardware in the Loop), Gerçek donanımla test gibi farklı

test ortamlarında yapılan testlerin farklılıkları geliştirme sürecine katkıları açıklandı.

Uygulama bölümünde, EPS sistemi direksiyon sensör modülü için yazılım

gereksinimleri belirlendi. Mimari tasarım hakkında bilgi vermek adına Data Flow

Diagram, Sequence Diagrams ve State Machine Diagramları paylaşıldı. Yazılım birim

tasarım bölümünde Model Based Software Design teknikleri kullanılarak geliştirme

süreci açıklandı. Yazılım birim doğrulama bölümünde statik kod analizi, dinamik

testler, test koşum ortamları, kapsama analizleri gibi teknikler gösterildi

Model seviyesinde doğrulama yapabilmek için simülasyon ortamı oluşturuldu.

Sistemin test edilebilmesi için EPS sistemi MATLAB/Simulink Simscape aracı

kullanılarak modellendi ve kontrol algoritmaları sisteme entegre edildi. Farklı

kullanım senaryoları için test senaryoları olışturuldu ve sistem sonuçları paylaşıldı.

Son olarak elde edilen çıktılar değerlendirilerek gelecek çalışmalar için fikirler verildi.

Elektrik/Elektronik sistemlerde fonksiyonel güvenlik kopseptinin gelişmekte

olduğuna vurgu yapılarak çalışma tamamlandı.

xix

MODEL-BASED SOFTWARE DEVELOPMENT OF ELECTRIC MOTOR

ASSISTED STEERING SYSTEM WITHIN THE SCOPE OF FUNCTIONAL

SAFETY

SUMMARY

Every year, hundreds of thousands of people lose their lives, become permanently

disabled or suffer serious injuries due to accidents in road transportation. For this

reason, automotive manufacturers aim to take protective measures for human life with

the technology which they have developed. In addition, the prestige of the brands that

are known safe and reliable in terms of marketing are quite high compared to other

manufacturers. In this context, with the increasing use of electronic control units in the

automotive sector, many electronic safety systems have entered our lives. Systems

such as ABS (Anti-Lock Braking System), EPS (Electronic Stability Program), Airbag

can be given as examples of these developments.

So how can we be sure of the safety of the electrical and electronic systems to which

we entrust our lives? Will these systems be able to function properly when we need

them? These doubts are valid not only for electronic safety systems but also for all

electronic control units. How can we be sure that a malfunction in an electronic control

unit whose purpose is to make our life easier will not endanger our lives? It is quite

risky to use these systems without taking any precautions against these dangers. Of

course, it is not possible to eliminate all risks, but engineers who design these systems

are expected to create safe systems by making good risk management. When what we

risk is human life, it is inevitable to standardize risk management. That's why in 2011,

ISO 26262 – Road Vehicles Functional Safety Standard came into our lives.

In this study, for those who contribute to the sector by working in the automotive sector

or making publications in the academy, to summarize what should be known about the

ISO 26262 - Rand Vehicles Functional Safety Standard, to share information about the

process and to examine the accepted approaches industrially.

During the literature review process of the thesis, not only the studies on ISO 26262 –

Land Vehicles Functional Safety Standard were given as reference, but also the

architecture and concepts accepted as industry were examined.

As a result of the research, AUTOSAR (Automotive Open System Architecture),

where almost all automotive manufacturers meet on a common ground, was examined.

In the thesis, the relationship between ISO 26262 and AUTOSAR was mentioned. In

this section, it was decided to focus on the application level rather than examining the

fundamentals of basic software design in depth.

Another important topic Standardized E-Gas Monitoring Concept for Gasoline and

Diesel Engine Control Units is mentioned. Although the E-Gas monitoring concept

was prepared for electronic control units used in diesel and gasoline engines, it was

mentioned that since the concept is based on solid foundations, it can also form a basis

for different systems designed.

To create a concept in the application part, a reference electronic control system was

needed. For this, EPS (Electric Power Steering), one of the popular electronic control

systems, was selected and basic information about the system was shared.

xx

The basis of the study is established with standards, architecture and concepts. In

addition to these, necessary information was shared in the vocabulary section so that

technical terms related to the standard do not cause confusion.

With the formation of sufficient foundations, detailed design issues were introduced.

In the concept phase and in the parts related to functional safety engineering,

quotations were made with reference to the "Functional Safety Assessment of a

Generic Electric Power Steering System with Active Steering and Four-Wheel

Steering Features" published by NHTSA (National Highway Traffic Safety

Administration). In the item definition section, the boundaries of the EPS system are

drawn and the components with which it interacts are determined. Potential hazards

and risks have been identified. HARA (Hazard Analysis and Risk Assessment) process

was explained and ASILs (Automotive Safety Integrity Level) were defined.

Functional Safety Concept was created, and safe situations were determined. In order

not to disperse the subject during the implementation process, functional safety

requirements were listed by examining only the steering system sensors signals instead

of examining a whole complex system.

After the concept was determined, technical approaches that would provide functional

safety requirements at the system level were mentioned, and safety mechanisms were

briefly mentioned. The methods recommended by the standard for system-level

verification of safety mechanisms are explained. The system level not only defines the

functions to be developed into the software development process, but also takes an

active role in system integration and acceptance testing processes. For this reason,

while testing the criteria such as performance, consistency, timing, interface

integration, competence and reliability of the developed software, the methods

recommended by the standard were mentioned.

During the software development process, the V-Cycle used to explain the workflow

organization was mentioned. Emphasizing the importance of the integrity of the

modeling and software development process, attention was drawn to the value that

determining the specifications for the selected development methods would add to the

system. In the steps of the software development process, specification of software

safety requirements, software architectural design, software unit design and

implementation, software unit verification, software integration and verification,

testing of the embedded software, the approaches recommended by the standard are

listed and comments are made.

During the software testing process, the differences of the tests made in different test

environments such as MiL (Model in the Loop), SiL (Software in the Loop), PiL

(Processor in the Loop), HiL (Hardware in the Loop), testing with real hardware, and

their contribution to the development process were explained.

In the application section, the selected safety requirement set for the EPS steering

system input signals was examined and the appropriate sensor module was determined.

The technical information documents of the selected sensors are shared in the

appendix. Necessary software requirements for security mechanisms have been

determined. The software architecture that will provide the determined software

requirements and concept was evaluated. Data Flow Diagram, Sequence Diagrams and

State Machine Diagrams were shared to provide information about architectural

design.

In the software unit design section, the development process was explained using

Model Based Software Design techniques. Information was given about the

xxi

specifications and coding standard controls applied for Model Based Software Design.

Automatic code generation and relationships between model and code and traceability

processes are shown.

In the software unit validation section, techniques such as static code analysis, dynamic

tests, test run environments, coverage analyzes were demonstrated. An example error

and solution suggestion were shared while performing static code analysis. Coverage

analysis was made for a sample state machine and dynamic test environment was

created in this process.

A simulation environment was created to validate at the model level. In order to test

the system, the EPS system was modeled using the MATLAB/Simulink Simscape tool

and control algorithms were integrated into the system. Test scenarios were created for

different use-case scenarios and system results were shared.

Finally, the obtained outputs were evaluated and ideas for future studies were given.

The study was concluded by emphasizing that the functional safety concept in

electrical/electronic systems is developing.

1

1. GİRİŞ

1.1 Motivasyon

Günümüzde, premium bir otomobil, 2000’den fazla fonksiyonu gerçekleştirebilmek

için birden fazla veri yolu ile birbirine bağlanan 70’e kadar EKÜ’yü içermektedir [1].

Toplamda yaklaşık 100 milyon satır kod ile premium segment araçlar, modern savaş

uçakları ve ticari uçaklardan daha fazla yazılım kodu taşımaktadır [2]. Sistemlerin

sayısı ve karmaşıklığı arttıkça, birçok gömülü sistemin güvenlik, fonksiyonellik,

yaşam döngüsü, işletme açısından gereksinimleri artmakta ve yüksek düzeyde

güvenilirlik ve sağlamlık talep edilmeye devam edilmektedir [3]. Yaklaşık 15 yıl

öncesine kadar gömülü sistemler temel olarak, elektromanyetik uyumluluk, elektrik

testleri, çevresel şart testleri ve saha testleri olmak üzere 4 temel test türü ile

doğrulanmaktaydı [4]. Ancak bu testlerde sistematik hataların tespiti, rastgele oluşan

donanımsal arızaların risk değerlendirmeleri bir standarda bağlı olarak

yönetilmiyordu. 2011 yılında ISO 26262 – Kara Araçları Fonksiyonel Güvenlik

Standardının ilk versiyonunun yayınlanmasıyla bu kavramlar otomotiv elektroniğine

girdi. Standart ile ürün geliştirme sürecindeki dokümantasyon arttırılarak paydaşlar

arasındaki süreç takip edilebilir hale getirilerek iletişim güçlendirildi. Standard ürün

yaşam döngüsü ve ürün geliştirme süreci için bir çerçeve çizmektedir. Bu tezin

motivasyonu, ISO 26262 – Kara Araçları Fonksiyonel Güvenlik Standardı ile sektörel

olarak kabul edilen tasarım mimarileri ile ilişkilerini göstererek farkındalık

yaratmaktır.

2020 yılında otomotivdeki elektronik bileşenler toplam araç maliyetinin yaklaşık

%35’ini oluşturuyordu. Teknolojideki gelişmelerle birlikte otomotiv elektronik

bileşenlerinin 2030 yılına kadar toplam araç maliyetinin yaklaşık %50’sini oluşturması

beklenmektedir [5]. Böylesine büyük bir maliyet kaleminde yapılacak iyileştirmenin

etkisinin de büyük olacağından, otomotiv üreticileri elektronik komponent geliştirme

sürecini geliştirecek yöntemler aramaktadır. Yazılım geliştirme sürecinde model

tabanlı tekniklerin popülerliği her geçen gün artmaktadır. Hemen hemen her

mühendislik disiplininde, sistem karmaşıklığını yönetmek için modeller

2

kullanılmaktadır [3]. Model tabanlı yazılım geliştirme, paydaşlar arasındaki

anlaşılırlığı ve iletişimi geliştirir [6]. Modeller koddan soyutlanmış daha üst bir

seviyeden bir bakış açısı sağlayarak farklı disiplinlerden çalışanların yazılım

geliştirme sürecine daha aktif katkı verebilmesini sağlamaktadır. Model tabanlı ve

nesne yönelimli programlama tekniklerinin ana motivasyonu, yeni uygulamaların

geleneksel yaklaşımlardan çok daha az çabayla, sadece mevcut parçaları birleştirerek

oluşturulabilmesidir [7].

Bunlara ek olarak model tabanlı yazılım geliştirme araçları model seviyesinde test ve

simülasyon ortamları sağlayarak hataların erken tespitine olanak sağlar ve ürün

geliştirme sürecindeki dokümantasyonları otomatize edecek ara yüzler sağlayarak

verimliliği arttırmaktadır.

Tüm bu nedenlerle tezin uygulama bölümünde model tabanlı yazılım geliştirme aracı

MATLAB Simulink kullanıldı.

1.2 Araştırma Sorunsalı

Tezin amacı, örnek olarak seçilmiş otomotiv gömülü sistemi için geliştirme sürecinde

uygulanabilecek standartlar ve konseptler hakkında bilgileri aktarmaktır. Çalışma

içerisinde değinilecek ve cevaplanacak sorular aşağıda listelenmiştir.

- 2011 yürürlüğe giren ISO 26262 Kara Araçları Fonksiyonel Güvenlik

Standardı nedir ve günümüz otomotiv elektroniğine etkileri nelerdir?

- ISO 26262 Kara Araçları Fonksiyonel Güvenlik Standardına uygun ürün

geliştirme süreci nasıl bir organizasyon gerektirir?

- 26262 Kara Araçları Fonksiyonel Güvenlik Standardının sektörel bazda kabul

görmüş mimari ve konspetlere etkileri nelerdir?

- Model tabanlı yazılım geliştirme tekniğinin, geleneksel yazılım geliştirme

methodlarına göre avantajları ve dezavantajları nelerdir?

- 26262 Kara Araçları Fonksiyonel Güvenlik Standardının, geleneksel

prototipten ürüne geliştirme süreci üzerine etkileri nelerdir?

Bu soruları daha iyi açıklayabilmek için bölüm 2’de literatürde bulunan bilgiler

paylaşıldı, bölüm 3’te süreç ve konsept detaylı bir şekilde anlatıldı. Son olarak

bölüm 4’te örnek bir çalışma seçilmiş ve uygulama örneği yapıldı.

3

2. LİTERATÜR ARAŞTIRMASI

Bu bölümde literatürde bulunan, fonksiyonel güvenlik standartları, kullanılan

mimariler, programlama dilleri, araçlar ve teknolojiler hakkında bilgi verilecektir.

Tezin uygulama bölümünde sıkça bahsedilecek bu konular hakkında temel bilginin

sağlanması amaçlanmıştır. Bunlara ek olarak, referans alınan çalışmalardan da

bahsedilecektir.

2.1 ISO 26262 Kara Araçlarında Fonksiyonel Güvenlik Standardı

Uluslararası Standardizasyon Örgütü (ISO) tarafından ilk baskısı 2011 yılında

yayınlanan ISO 26262 – Functional Safety – Road Vehicles standardı, maksimum brüt

ağırlığı 3500 kg olan seri üretim binek otomobillerde kullanılan elektrikli ve/veya

elektronik E/E sistemlerin fonksiyonel güvenliğine yönelik uluslararası bir standarttır.

2018 yılında revize edilerek mopedler hariç bütün karayolu araçlarını kapsayacak

şekilde kapsamı genişletildi. Şekil 2.1’de ISO 26262 standardının içerdiği konular

paylaşıldı.

Araçlarda kullanımı artan E/E sistemler ve komplex yazılımlar teknolojik karmaşıklığı

beraberinde getirmiştir. Sistematik ve rastgele donanım arızalarından kaynaklanan

risklerin değerlendirmesi ve önlemlerin alınması fonksiyonel güvenlik kapsamında ele

alınmaktadır. ISO 26262 kara araçlarında fonksiyonel güvenlik standart serisi, seri

üretim araçların yaşam döngüsü boyunca uygulanması gereken süreçler ve minimum

gereksinimleri belirleyerek oluşacak riskleri azaltmayı amaçlamaktadır.

ISO 26262'nin Hedefleri:

-Otomotiv güvenlik yaşam döngüsü için bir referans sağlamak ve yaşam döngüsü

aşamalarında gerçekleşrtirilecek geliştirme, üretim, işletim, servis ve hizmetten

çıkartma gibi faaliyetleri desteklemek,

-Risk sınıflarının (Automotive Safety Integrity Level , ASIL) belirlenmesi için

otomotive özgü risk tabanlı bir yaklaşım sağlamak,

-Makul olmayan risklerden kaçınmak için ASIL seviyelerine bağlı olarak minimum

gereksinimleri belirlemek,

https://en.wikipedia.org/wiki/Automotive_Safety_Integrity_Level

4

-Tüm geliştirme süreçleri (yönetim, tasarım, devreye alma, doğrulama ve sağlama)

için gereksinimleri sağlamak,

-Müşteri ve tedarikçiler arasındaki gereksinimleri sağlamaktır.

Şekil 2.1 : ISO 26262 standardı içeriği [8].

Sonuç olarak ISO 26262 Fonksiyonel Güvenlik standardının temel amacı riski en aza

indirmektir. Bunu sağlamak için düzenli olarak fonksiyonel güvenlik kapsamında

oluşturulan çıktılar değerlendirilmekte ve teftiş edilmektedir. Sistematik ve rastgele

donanım hataları meydana geldiğinde sistemin güvenli durumlarda kalarak,

diyagnostik oluşturması ve fonksiyonları monitör ederek hataları tolere etmesi

beklenir.

2.2 AUTOSAR

AUTomotive Open System Architecture (AUTOSAR), 2003 yılında BMW, Robert

Bosch GmbH, Continental AG, Daimler AG, Siemens VDO ve Volkswagen ile

başlayan, daha sonrasında Ford Motor Company, Groupe PSA, Toyota ve General

Motors’un da katılımıyla çekirdek ortakların bir araya gelerek otomotiv sektöründe

kullanılan elektronik kontrol ünitelerinde açık ve standartlaştırılmış bir yazılım

5

mimarisi oluşturmayı hedefleyen bir ortaklıktır. AUTOSAR’ın kurulumunda yer almış

ve farklı şekillerde görev almış firmalrın yıllara göre dağılımı Şekil 2.2’de paylaşıldı.

Şekil 2.2 : AUTOSAR katılımcılarının dağılımı [9].

Teknik açıdan bakıldığında, standardın motivasyonu aşağıdaki maddelerce

özetlenebilir:

- Artan fonksiyonalite ile E/E sistemlerin karmaşıklığını yönetebilmek.

- Ürün modifikasyonu, iyileştirme ve güncellemelerindeki esnekliği arttırmak.

- Üretim hattında veya sonrasında çözümlerin ölçeklenebilirliğini1 arttırmak

- E/E sistemlerin kalite ve güvenilirliğini arttırmak.

- Erken tasarım aşamalarında hataların tespit edilebilmesini sağlar.

AUTOSAR mimarisi 5 katmana ayrılır. Her katman bir üst seviyeye geçildikçe

yazılımın soyutlanma seviyesini arttırarak AUTOSAR arayüzleri üzerinden haberleşir.

Bu katmanların birbiri ile etkileşimini gösteren mimari Şekil 2.3’de görülmektedir.

Microdenetleyici Soyutlama Katmanı: Bu katman mikrodenetleyiciye doğrudan

erişimi olan sürücüleri (Driver) içerir. Microdenetleyiciye bağımlıdır. Temel amacı üst

katmanları mikrodenetleyiciden bağımsızlaştırmaktır.

EKÜ Soyutlama Katmanı: Bu katman çevre birimlerin (peripheral) CPU’ya nasıl

bağlandığını soyutlayan yazılım modülleri olan işyeliyicileri (handler) içerir. Bunun

haricinde AUTOSAR’da standartlaşmamış enjektör sürücü gibi harici cihazların

sürücüleri de bu katmanda yer alır.

1 Büyüyen, gelişen, artan isteklere yanıt vermesi gereken bir sistemin, çalışmanın, işlemin veya

yazılımın bu isteklere cevap verme, yönetme ve sorunlarla başa çıkmak yeteneğidir.

6

Servisler Katmanı: Servis katmanı uygulama ve diğer yazılımlar için gerekli işletim

sistemi, ağ iletişimi, hafıza yönetimi, tanı servisleri gibi temel yazılım modüllerini

içermektedir.

AUTOSAR Çalıştırma Ortamı: Bu katman uygulama katmanı ile temel yazılım

katmanı arasındaki köprüdür. Bu köprü sayesinde uygulama katmanı ve temel

yazılımların yanı sıra uygulama katmanındaki farklı komponentler de veri alışverişi

yapabilmektedir.

Uygulama katmanı: Geliştirilen yazılımın bulunduğu katmandır. Tamamen

donanımdan soyutlanmıştır.

Şekil 2.3 : AUTOSAR katmanlı yazılım mimarisi [9].

“AUTOSAR Katmanlı yazılım mimarisiyle bir otomobilde ya da bir EKÜ’de

kullanılacak yazılım, donanımdan (EKÜ’den) bağımsız bir şekilde geliştirilebilir ve

başka projelere aktarılabilir. Bunun yanında iletişim, hata tanımlama gibi alt yapısal

ve tüm otomotiv üreticilerinin ortak kullandığı yazılımlar, standart yazılım pakedi

olarak yazılım üreticileri tarafından temin edilir, otomotiv üreticileri ve yan sanayi

tedarikçileri ise sadece bu yazılım paketlerini belirli masaüstü programlarını

kullanarak yapılandırır. (Configuration)”

Ortaklığın mottosu “Cooperate on standards, compete on implementation”

(Standartlarda işbirliği, uygulamada rekabet) ‘tir. Temel geliştirmelerde ortak

çalışarak yüksek standartları yakalayabilmekte ve enerjilerini uygulama alanında

yapacakları inovatif gelişmelere harcamaktadırlar.

2.3 E-Gas

Otomotiv sektöründeki yüksek standartlar ve elektronik kontrol ünitelerinin birbirine

entegre bir araç ağı içerisinde çalışmasından dolayı yüksek izlenebilirliği gereksinim

7

haline getirdi. Bir grup Alman otomotiv üreticileri bu ortak problemi çözmede bir

markalaşma farkı görmemesi üzerine bu konu üzerinde birlikte çalışmaya başladı.

Böylelikle standartlaştırılmış bir motor kontrol ünitesi izlenebilirlik konseptini

geliştirdiler. BMW AG, Daimler AG, Volkswagen AG, Porsche AG ve AUDI AG’nin

bir araya gelmesiyle kurulan ortaklık 97 yılında bu standardın ilk versiyonunu

yayınladı. 2013’te yayınlanan 5.5 sürümünden itibaren E-GAS konsepti ISO 26262’ye

uyumlu hale gelmiştir.

EGAS konsepti motor kontrol üniteleri için geliştirilmiş olsa da izlenebilirlik konsepti

diğer uygulamalara da adapte edilebilmektedir. İzlenebilirlik konsepti 3 seviyeden

oluşmaktadır. Bu seviyelerin hafızadaki yerleri ve kullandıkları hafıza alanları

birbirinden ayrı olmalı ve alt seviyeler üst seviyelerin alanlarına erişememelidir.

Mimarinin katmanlar arasındaki etkileşimi Şekil 2.4’de paylaşıldı.

Şekil 2.4 : E-Gas 3 katmanlı denetim konsepti [10].

Birinci seviye fonksiyon seviyesidir. Bu seviyede motor kontrol fonksiyonları,

komponent denetleme, ve diyagnostik oluşması halinde gerekli sistem tepkilerini

vermektedir.

İkinci seviye fonksiyon denetleme seviyesidir. İkinci seviye, belirlenen giriş ve çıkış

sinyallerini izleyerek mantıksal işlemlerle birinci seviyeyi denetler. Birinci seviyedeki

hatayı tespit ettiğinde sistem reaksiyonlarını tetikler.

8

Üçüncü seviye kontrolör denetleme seviyesidir. Mikrodenetleyicinin doğru çalıştığını

sistematik olarak test eden bağımsız bir ASIC (application specific integrated circuit)

veya başka bir kontrolör kullanılmaktadır. Kullanılan bağımsız entegre veya kontrolör,

mikrodenetleyiciye belirli zaman aralıklarında sorular sorar ve cevaplarını bekler.

Eğer mikrodenetleyici beklenilen cevabı veremezse belirlenen sistem reaksiyonları

uygulanır. Bunun haricinde ikinci seviye program akışı da bu seviyede

denetlenmektedir. Son olarak ikinci ve üçüncü seviye tarafından kullanılan tüm çevre

birimlerin initializasyonu ve periyodik diagnostik kontrollerini gerçekleştirir.

Otomotiv elektroniğinde artan karışıklığı sistematik bir şekilde ele alabilmek için,

fonksiyonel güvenliği, fonksiyonaliteden bağımsız korumalı bir katmanda ele almak

avantaj sağlamaktadır. Birinci katmanda oluşan bir hatanın, ikinci katmanda da

meydana gelmesi düşük bir olasılıktır. Bu nedenle, risk olasılığını azaltmak için

katmanlı yapılar kullanmak oldukça önemlidir. Bu yaklaşım tüm otomotiv

sistemlerinde kullanılmaya elverişli bir yaklaşımdır.

2.4 MISRA C

MISRA C, Motor Industry Software Reliability Association (MISRA) tarafından

geliştirilen C dilinde otomotiv sektörü yazılım geliştiricileri için hazırlanmış bir

şartnamedir. Her ne kadar otomotiv hedeflenerek geliştirilse de, havacılık,

telekomünikasyon, tıbbi cihazlar, savunma sanayii gibi bir çok sektör tarafından da

kabul görmüştür. ISO 26262-6:2018 bölüm 6 yazılım seviyesinde ürün geliştirme

bölümünde kodlama ve modelleme şartname gereksinimleri açıklandığı bölümde

MISRA C referans şartname olarak paylaşılmış ve kullanılması durumunda Çizelge

2.1’de paylaşılan gereksinimlerin büyük bir bölümünün sağlanacağı ifade edilmiştir.

9

Çizelge 2.1 : Yazılım birimi tasarımı ve uygulaması için tasarım ilkeleri [8]

Yöntem ASIL

A

ASIL

B

ASIL

C

ASIL

D

Alt programlarda ve fonksiyonlarda tek giriş ve tek çıkış noktası ++ ++ ++ ++

Oluşturulma sırasında online testler yapılsa dahi dinamik obje ve değişkenlerin kullanılmaması + ++ ++ ++

Değişkenlerin başlangıç durumlarının belirlenmesi ++ ++ ++ ++

Değişken isimlerinin çoklu kullanılmaması ++ ++ ++ ++

Global değişkenlerin kullanımından kaçınılması, kullanılması durumunda gerekçelendirilmesi + + ++ ++

İşaretçi kullanımının kısıtlanması + ++ ++ ++

İstemsiz veri tipi dönüştürülmemesi + ++ ++ ++

Gizli veri akışı ve kontrol akışının olmaması + ++ ++ ++

Koşulsuz atlamaların olmaması ++ ++ ++ ++

Özyinelemelerin olmaması + + ++ ++

10

Ayrıca AUTOSAR 4.3 Genel Yazılım Spesifikasyonu(Link verilebilir kaynaklara

eklenecek), BSW Modülü uygulaması C dilinde yazılmışsa, MISRA C:2012

Standardına uygun olmasını gerektirir.

MISRA C’nin her bir şartname maddesi zorunlu, gerekli ve tavsiye olarak

sınıflandırmıştır. Zorunlu maddelere her zaman uyulmalıdır. Gerekli maddelere

uyulmalı ancak herhangi bir nedenden dolayı uyulamaması durumunda deviasyon

dokümanına eklenmeli ve yazılım mühendisinin sistemin güvenliğini göz önünde

bulundurduğuna ve kuraldan sapmanın olumsuz bir etkisi olmayacağına dair kanıt

sunulmalıdır. Tavsiye sınıfındaki maddeler iyi uygulama teknikleri olarak kabul edilir

ve standart uyumluluğu bakımından daha az resmidir.

İster C dilinde yazılmış olsun ister otomatik kod oluşturma yöntemleri ile elde edilsin

MISRA C standardına uygun kod geliştirmek;

- Derleyici farklılıklarından oluşabilecek hatalardan kaçınmayı

- Hata yapmaya meyilli fonksiyonları ve yapıları kullanmaktan kaçınmayı

- Sürdürülebilir ve debug edilebilir kod oluşturmayı

- Karmaşıklığı sınırlandırmayı sağlamaktadır.

2.5 Referans araştırmalar

Bu bölümde, literatür araştırması sırasında tez konusu ile ilgili dikkat çekici olan

araştırmalar konu başlıklarına göre kısaca açıklanacaktır. Bu çalışmalar tezin

yazılması için elde edilen bilgi birikimine referans oluşturmaktadır.

Kirovskii ve Gorelov (2019) tarafından yapılan sürücü yardımcı sistemlerinin

güvenliği hakkında yaptıkları çalışmada, elektronik sistemlerin güvenliği konusunda

araştırmacılar için kafa karışıklıklarına neden olabilecek kavramların arasındaki

farkları açıklamaktadır. Fonksiyonel güvenlik (ISO 26262 – Functional Safety), siber

güvenlik (SAE J3061 - Cybersecurity) ve amaçlanan işlevselliğin güvenliği (ISO PAS

21448 – Safety of the Intended Functionality) birbiri ile ilişkili ancak farklı

standartlardır. Fonksiyonel güvenlik sistemin iç arızalarına, siber güvenlik sistemi

kötüye kullanmak için bilinçli yapılan dış etkenlere, amaçlanan işlevsel güvenlik ise

çevresel ve kasıtlı olmayan yapılan dış müdahalelere karşı alınan önlemlerle

sağlanmaktadır.

11

Knopf (2019) tarafından yapılan hibrit-elektrikli araçların otonom sürüş fonksiyonları

için sistem güvenlik analizlerini konu alan çalışmasında, Tehlike Analizi ve Risk

Değerlendirmesinde (HARA – Hazard Analysis and Risk Assesment) kullanılan

teknikleri açıklayarak ve uygulama örnekleri yaparak kavranmasını sağlamaktadır. Ön

Tehlike Tahlili (PHA – Preliminary Hazard Analysis), Tasarım Hata Türleri ve Etkileri

Analizi (DFMEA – Design Failure Mode and Effects Analysis), Sistem Elemanı Arıza

Analizi (SEFA – System Element Fault Analysis), Sistem Teorik Süreç Analizi (STPA

– System Theoretic Process Analysis), Tehlike ve İşletilebilirlik (HazOp – Hazard and

Operability) gibi yöntemler kullanılarak otomotiv güvenliği bütünlük seviyelerinin

(ASIL – Automotive Safety Integrity Levels) belirlenmesinde kullanılmaktadır.

Gnaniah (2019) çalışmasında Knopf’tan farklı olarak Hata Ağacı Analizi (FTA –

Failure Tree Analysis) tekniği ve iterarif HARA süreçlerine değinmektedir.

Tikar ve Ansari (2021) tarafından yapılan çalışmada EPS sistemi için fonksiyonel

güvenlik standardına uyumluğunu ele alarak bir konsept çalışma yaparak sürecin

tamamını açıklamaktadır. EPS sistemi için yapılan çok daha kapsamlı fonksiyonel

güvenlik değerlendirmeleri literatürde bulunmasına ve bu çalışmanın gereksinim

setlerinin çok kısıtlı olmasına rağmen ISO 26262 Fonksiyonel Güvenlik Standardının

sürecini açıklamaktadır.

Paulsen (2021) tarafından benzinli ve dizel motor elektronik kontrol üniteleri için

standartlaştırılmış E-Gas denetleme konseptinin (E-Gas monitoring concept) medikal

cihazlarda kullanımı ile ilgili yaptığı çalışmada otomotiv sektöründe kabul görmüş bir

yapının farklı uygulamalarda da kullanılabileceğini önermektedir. Bu yaklaşımla E-

Gas konseptini referans alan denetleme yapıları farklı otomotiv kontrol sistemlerinde

de kullanılarak standartlaşma sağlanabilecektir. Nagabhushan ve Nadibail (2019)

tarafından yapılan çalışmada otonom ağır vasıta araçların hareket kontrolü için

denetleme konseptlerinin tasarımına değinilmiştir. Bu çalışmada da E-Gas denetleme

konseptinde açıklanan 3 katmanlı denetleme mimarisi temel alınmaktadır.

Selic (2012) uygulamada model tabanlı yöntemlerin benimsenmesine ilişkin farklı

perspektiflerden görüşlerini açıkladığı çalışmasında model tabanlı yaklaşımların

yazılım geliştiricilerin üretkenliğini ve kalitesini arttırdığından bahsetmektedir. Ancak

model tabanlı geliştirme tekniklerinin potansiyeline hala ulaşmadığını bununla birlikte

geleneksel yöntemlerle uzmanların yetkinliğine dayanan geliştirme tekniklerinin

günümüz ihtiyaçlarını karşılamaktan uzak olduğunu dile getirmektedir.

12

Broy, Kirstan, Krcmar, Schätz ve Zimmermann (2011) model tabanlı tasarımın

otomotiv endüstrinde gömülü sistem yazılımı gelişme sürecine faydalarını

değerlendirdikleri çalışmalarında model tabanlı geliştirmenin önemli maliyet tasarrufu

sağlayabileceğini ancak bunun ancak amacına yönelik iyi seçilmiş bir araç ve rol

paylaşımları ile mümkün olacağını belirtmektedir.

Conrad (2012) çalışmasında ISO 26262 fonksiyonel güvenlik standardının amaç ve

gereksinimlerinin model tabanlı geliştirilen yazılımlar için de geçerli olduğunu ve

oluşturulacak standart bir süreç ve taslakların hazırlanmasının gerekliliklerinden

bahsetmektedir. Daha önce de bahsedildiği gibi amaca uygun model tabanlı yazılım

aracı seçmenin önemi bir kez daha görülmüş oldu. Seçilen araç sürecin

dokümantasyonunu ve otomasyonunu destekleyici özelliklere sahip olması verimliliği

arttıracaktır.

Holtmann, Meyer ve Meyer (2011) çalışmasında sistematik bir model tabanlı

geliştirme süreci hakkında yaklaşımlarını paylaşmaktadır. Otomotiv sektöründe

kullanılan Automotive SPICE (Automotive Software Process Improvement and

Capability dEtermination) standardı örnek bir geliştirme süreci tanımlar. Ancak bu

süreçte kullanılacak dil hakkında bir bilgi vermez sadece sürece odaklanır. Çalışmayı

gerçekleştiren araştırmacılar önerilen yöntemin model tabanlı geliştirme için referans

bir Automotive SPICE modeli olarak tanımlamaktadır.

Liliegard ve Nilsson (2014) çalışmasında model tabanlı test sürecini

değerlendirmektedir. Model tabanlı geliştirme yaklaşımının faydalarını ve

eksikliklerini açıklayarak yazılım test sürecine hangi durumlarda katkı sağlayacağını

açıklamaktadır. Araştırmacılar gereksinimleri kategorilere ayırarak incelemelerini

detaylandırmıştır.

Hiremath ve Isha (2019) çalışmasında Sabit Mıknatıslı Senkron Motorlu (PMSM –

Permanent Magnet Synchronous Motor) EPS sisteminin modellenme ve

simülasyonunu gerçekleştirmektedir.

Bu tez kapsamında EPS sisteminin doğrula işlemi simülasyon ortamında yapılması

hedeflenmektedir. Bu nedenle Hiremath ve Isha’nın modeli çalışma kapsamında

modellenecek fiziksel sistem için bir referans oluşturacaktır.

13

3. KONSEPT

ISO 26262 ürün yaşam döngüsünün tamamını içeren birçok disiplini ilgilendiren geniş

kapsamlı bir standart olmasından dolayı standardın tamamı bu tez kapsamında

incelenmeyecektir. Bu tez kapsamında emniyet kritik model tabanlı yazılım geliştirme

süreci incelenecek ve model tabanlı yazılım geliştirme sürecini etkileyen diğer süreçler

hakkında genel bilgilendirmeler yapılacaktır. Süreci iyileştirmek için sürecin doğru bir

şekilde anlaşılması büyük önem taşımaktadır. Bu başlık altında tezin uygulama

bölümünde kullanılacak bilgiler hakkında bir temel oluşturmaktır. Şekil 3.1’de tez

kapsamında incelenecek bölümler renklendirildi. Sarı renkler bilgi vermek amacıyla

değinilen bölümleri gösterirken, kırmızı renkli bölüm detaylı incelenecek olup

uygulama bölümünde verilen örneklerde yazılım seviyesinde olacaktır.

Şekil 3.1 : ISO 26262 standardı içeriğinde incelenecek kısımlar [8].

3.1 Elektrik Takviyeli Direksiyon Sistemi (EPS: Electric Power Steering)

Direksiyon sistemi, kullanılan aracın sürücü tarafından belirlenen yörüngede hareket

edebilmesini sağlayarak geçmişten günümüze otomotiv sektörünün temel yapı

taşlarından birisi olmuştur. İlk araçların kullanılmasıyla hayatımıza giren direksiyon

sistemi yıllar içerisinde önemli gelişmeler geçirmiştir. Takviyeli direksiyon

14

sistemlerinin gelişmesi ile sürücüye hem ergonomik bir kullanıma sahip olmuş ve

aracın kontrol edilebilirliği iyileştirilmiştir. Takviyeli direksiyon sistemleri kronolojik

olarak Hydraulic Power Assisted Steering (HPAS), Electro-hydraulic Power Steering

(EHPS), Electric Power Steering (EPS) yıllar içerisinde sektördeki yerlerini

almışlardır. Tezin uygulama kısmında EPS sistemi ele alınmıştır.

EPS sistemler elektronik olarak programlanabilir olmasıyla şasi ve süspansiyon

sistemleri geliştiren mühendislere daha geniş bir tasarım alanı oluşturmasının yanında

sürekli çalışan bir pompaya ihtiyaç duymaması nedeniyle yakıt ekonomisi ve emisyon

iyileştirmelerini de beraberinde getirmiştir. Seri üretim bir araçta ilk defa 1988 yılında

Suziki Cervo[11] modelinde uygulanmıştır. Ancak ilk yıllarda yavaş hızlarda

tehlikeden kaçınma hareketleri sırasında elektrik motorunun doğal olmayan davranışı

nedeniyle diğer otomotiv üreticileri tarafından benimsenmesi zaman aldı. Özellikle

son yıllarda EPS sistemi otonom sürüşün temel teknolojilerinden birisi olarak

hayatımızda yerini almıştır.

EPS sistemi arızası durumunda takviye gücü ortadan kalkmakta ve sürücünün yoğun

eforu gerekmektedir. Buna rağmen mekanik bağlantı nedeniyle kontrol edilebilirlik

tamamen kaybolmamaktadır. Sürüş sırasında beklenmedik şekilde takviye gücünün

ortadan kalkması yüksek hızlarda ölümcül kazalara neden olabileceğinden dolayı

emniyet kritik parçalardan sayılmaktadır. Tüm bu bilgiler ışığında EPS sisteminin

tezin konseptine uygun olduğu görülmektedir.

3.2 Sözlük

Bu bölümün amacı, tez içerisinde kullanılan teknik terim ve tanımların okuyucu için

açıklık kazandırmasıdır. Bu bölüm içerisinde ISO 26262-1 Vocabulary bölümünde

açıklanan terimlerden alıntılar ve açıklamalar bulunmaktadır.

Fonksiyonel güvenlik: E/E sistemlerin arızalı davranışından kaynaklanan tehlikeler

nedeniyle oluşan riskin makul seviyede tutulması durumudur.

Tehlike analizi ve risk değerlendirmesi: Tehlike olaylarını tanımlama ve kategorize

etmek ve makul olmayan risklerden kaçınmak için ilgili güvenlik hedeflerini ve

ASIL’leri belirleme yöntemidir.

15

ASIL: Makul olmayan bir riskten kaçınmak için uygulanacak öğenin veya unsurun

gerekli ISO 26262 gereksinimlerini ve güvenlik önlemlerini belirten dört seviyeden

biridir. D en katı ve A en az katı seviyeyi temsil eder.

Yazılım mimarisi: Yazılımı oluşturan yapı taşlarının, sınırlarını ve arayüzlerini

tanımlamaya olanak vererek, bu yapı taşlarına ilgili gereksinim atamalarının

yapılmasına olanak veren yapının temsilidir.

Hata toleransı zaman aralığı: Bir komponentte arıza meydana gelmesinden sonra olası

tehlikeli olayın meydana gelmesine kadar olan minimum zaman aralığıdır.

Fazlalıklı kullanım: Gerekli bir işlevi yerine getirmek veya bilgiyi temsil etymek için

yeterli olacak araçların çoklu kullanımıdır.

3.3 Konsept Fazı

ISO 26262 Fonksiyonel güvenlik standardı 3. bölümü konsept aşamasını içermektedir.

Bu bölümde fonksiyonel güvenlik standardı kapsamında geliştirilecek ürünün tanımı

yapılarak hangi amaca hizmet edeceği, hangi elektronik komponentlerle etkileşime

gireceği vb. konular ele alınarak sınır şartları belirlenmektedir.

Karayolları aracında kullanılacak komponentin güvenli olma durumu konsept

aşamasında belirlenen sınır şartları çerçevesinde belirlenmektedir. Standardın özünde,

geliştirilen yazılım kendi tanımlaması içerisinde hatasız olmalıdır. Güvenli yazılım

geliştirmek için, güvenlik kültürü ve geliştirilen ürün hakkında uzmanlık kilit

unsurdur.

 Konsept aşamasının çıktıları;

- Öğe tanımı

- Tehlike analizi ve risk değerlendirmesi

- Fonksiyonel güvenlik konseptidir.

3.3.1 Öğe tanımı

Öğe tanımı bölümünde geliştirilen komponentin fonksiyonalitesini, sürücü, çevre

şartları, diğer elektronik komponentler ile bağımlılık ve etkileşimleri açıklanmalıdır.

Referans alınan komponent diyagramını Şekil 3.2’de paylaşıldı. Böylelikle gelecek

aktivitelerde tutarlı ve kapsamlı bir değerlendirme yapmak mümkün olacaktır.

16

Öğe tanımı bölümünde ilk olarak bakılması gereken kaynaklar yasal gereksinimler,

ulusal ve uluslararası standardlardır. Bu araştırma sonunda temel gereksinimler

belirlenir. Yasal gereksinimler belirlendikten sonra geliştirilen teknolojinin araç

seviyesinde sağlayacağı fonksiyonlar ve operasyonel modlar belirlenmelidir.

Fonksiyonlar için performans, kalite ve fonksiyonalitenin sağlanacağı şartlar(çevresel

şartlar vb.) belirlenerek gereksinimler oluşturulmalıdır. Ayrıca bu fonksiyonların araç

üzerinde bulunan diğer sistemler üzerine etkileri detaylıca incelenmeli ve oluşabilecek

potansiyel hataların hangi sistemleri etkileyeceği açıkça belirtilmelidir. Buna ek olarak

etkileşim içerinde bulunduğu sistemler ve geliştirme aşamasında ele alınan sistemin

sınır şartları açık olmalıdır. Bir başka önemli konu ise algılayıcı ve eyleyicilerin

kapasiteleri sistemin fonksiyonlarını yerine getirebilecek şartlarda belirlenmesi için

gereksinimler oluşturulmalıdır.

Şekil 3.2 : Komponent diyagramı üzerinde sistem sınırlarının gösterimi [12].

3.3.2 Tehlike analizi ve risk değerlendirmesi (HARA)

Tehlike analizi ve risk değerlendirmesi, elektronik sistemin tamamının veya bir

kısmında meydana gelen arıza sebebiyle güvenlik hedeflerinin sağlanmasına neden

17

olacak tehlikelerin belirlenmesi ve sınıflandırılmasıdır. Belirlenen tehlikelerin

sınıflandırılması, güvenlik hedeflerinin ihlali durumunda meydana gelecek kayıpların

büyüklüğüne göre belirlenmektedir. Değerlendirmenin rasyonel ve tutarlı bir şekilde

yapılabilmesi için ISO 26262 Kara Araçları Fonksiyonel Güvenlik Standard’ında

ASIL (Automotive Safety Integrity Level) sevileri açıkça belirlenmiştir. ASIL; şiddet

(Severity), maruz kalma (Exposure), kontrol edilebilirlik (Controllability)

parametrelerine bağlı olarak hesaplanmaktadır.

İlk olarak kazaya sebebiyet verebilecek tehlikelerin açıkça belirlenmesi

gerekmektedir. Electric Power Steering sisteminde meydana gelebilecek tehlikeli

durumlara örnek olarak, istemsizce aracın yanal hareketi veya yetersiz araç yanal

hareketi verilebilir. Bu tehlike durumlarını rasyonel bir şekilde değerlendirmek için

aracın operasyonel durumunun çerçevesi çizilmesi gerekmektedir. Oluşan tehlike,

aracın sürüş şartlarına bağlı olarak farklı sonuçların meydana gelmesine sebebiyet

verebilmektedir. EPS sistemindeki bir hata nedeniyle fonksiyonalitesinin devre dışı

kalması sonucu oluşan tehlikenin büyüklüğü yol şartlarına veya manevra durumuna

göre değişiklik gösterebilmektedir. EPS sisteminin iyi yol koşullarında, manevra

halinde değilken devre dışı kalması ile, karlı bir havada yanal bir manevra yaparken

devre dışı kalması arasında farklı sonuçlar meydana gelecektir. Bu nedenle risk

değerlendirmesi yapılırken operasyonel durum, seyir hızı, trafik yoğunluğu, görüş

mesafesi, yaya yoğunluğu, kara yolu tipi, yol koşulları ve sürüş manevrası gibi

değişkenlere bağlı olarak incelenmelidir. Her sürüş senaryosu kendi içerisinde

değerlendirilmelidir. Bu çalışmada değerlendirilen operasyonel durumlar ve çevresel

şartlar Çizelge 3.1’de paylaşıldı.

18

Çizelge 3.1 : Operasyonel durumlar ve çevresel şartlar listesi [12].

Operasyonel Durumlar ve Çevresel Şartlar

Araç Hızı

Çok yüksek hız (130km/s < V)

Yüksek hız (100km/s < V <

130km/s)

Orta hız (40km/s < V < 100km/s)

Düşük hız (V < 40km/s)

Durağan (V = 0km/s)

Trafik
Yoğun

Seyrek

Görüş Mesafesi
Düşük

Yüksek

Yaya Mevcudiyeti

Yok sayılabilir

Seyrek

Yoğun

Yol Tipi

Park alanı

Şehiriçi

Şehirlerarası

Yol Durumu
Kaygan

İyi

Sürüş Manevrası

Düz yolda ilerleme

Harekete başlangıç

Geri yönde ilerleme

Trafikte duruş kalkış

Rampaya giriş ve çıkış

Tehlikeler ve operasyonel şartlar belirlendikten sonra risk değerlendirmesi

yapabilmek mümkündür. Bu değerlendirmenin yapılması sırasında fonksiyonel

güvenlik mühendislerine rasyonel ve tutarlı bir değerlendirme yapabilmesi için

çerçeve çizilmiştir. Değerlendirme yapan mühendisler kazanın şiddeti, gerçekleşme

olasılığı ve tehlike anında kontrol edilebilirliğini birer parametre olarak ele almaktadır.

Bu parametrelerin seviyeleri Çizelge 3.2, Çizelge 3.3, Çizelge 3.4’te verilmektedir.

Şiddet (Severity): Meydana gelen kaza sonucu oluşabilecek kayıpların

büyüklüğü ele alınarak yapılan bir değerlendirmedir. Kaza sonucu oluşacak kayıpların

büyüklüğüne göre S0 S1 S2 S3 seviyeleri arasından bir seçim yapılmaktadır.

Çizelge 3.2 : Şiddet seviyeleri [8].

 S0 S1 S2 S3

Açıklama
Yaralanmasız Hafif

yaralanma

Ağır

yaralanma

Ölümcül

yaralanma

19

Bu seviyeler arasından uygun olanı seçebilmek için AIS (Abbreviated Injury Scale),

ISS (Injury Severity Score) gibi değerlendirme yöntemleri kullanılmaktadır.

 Maruz Kalma (Exposure): ISO 26262 Kara Araçları Fonksiyonel Güvenlik

Standard’ına göre maruz kalma, analiz edilen arıza moduyla tehlikeli olabilecek

operasyonel durumun çakışması durumudur. Maruz kalma olasılığı RxT formülü ile

hesaplanabilir. Burada ürünün yaşam döngüsü boyunca operasyonel durumun oluşma

oranıdır. T ise, arızanın algılanmadığı süredir. Bu çalışmada hedef pazardan alınacak

istatiksel veriler kullanılabilmektedir.

Çizelge 3.3 : Maruz kalma seviyeleri [8].

 E0 E1 E2 E3 E4

Açıklama
İhmal

edilebilir

Çok düşük

ihtimal

Düşük

ihtimal

Orta

ihtimal

Yüksek

ihtimal

 Kontrol Edilebilirlik: ISO 26262 Kara Araçları Fonksiyonel Güvenlik

Standard’ına göre kontrol edilebilirliği, muhtemelen dış önlemlerin desteğiyle, ilgili

kişilerin zamanında tepkileri yoluyla belirli bir zarar veya hasarı önleme yeteneğidir.

Kontrol edilebilirlik, sürücünün aracın kontrolünü elinde tutma, yeniden kazanma

olasılığının veya çevredekilerin tehlikeden kaçınmasına katkıda bulunabilme

olasılığıdır. Bu değerlendirme için örnek bir tablo ISO 26262-3 ek B B.6 tablosunda

bulunmaktadır.

Çizelge 3.4 : Kontrol edilebilirlik seviyeleri [8].

 C0 C1 C2 C3

Açıklama

Genel olarak

kontrol

edilebilir

Basitçe

kontrol

edilebilir

Normalde

kontrol

edilebilir

Zor kontrol edilebilir

veya kontrol

edilemez

Çizelge 3.5’e göre, yukarıda bahsi geçen risk değerlendirme sürecinde kullanılan

parametrelere bağlı olarak her bir tehlikeli olay için ASIL seviyesi belirlenmelidir.

20

Çizelge 3.5 : ASIL belirleme çizelgesi [8].

Önem

Sınıfı

Maruz Kalma Sınıfı Kontrol Edilebilirlik Sınıfı

C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

Standart tarafından tanımlanan ASIL A, ASIL B, ASIL C ve ASIL D olmak üzere 4

adet ASIL seviyesi bulunmaktadır. ASIL A en düşük ASIL D en yüksek güvenlik

bütünlüğü seviyesidir. QM (Quality Management) olarak tanımlanan tehlikeler bir

güvenlik gereksinimi gerektirmez.

Çizelge 3.6’da belirlenen operasyonel durum için ASIL seviyelerinin nasıl

belirlendiğine dair bir örnek paylaşılmıştır. Bu örnek NHTSA (National Highway

Traffic Safety Administration) tarafından 2018 yılında yayınlanan jenerik bir EPS’nin

fonksiyonel güvenlik değerlendirmesinden alınmıştır. Aynı çalışma için EPS

sisteminin farklı tehlikeler için ASIL seviyeleri Çizelge 3.7’de paylaşıldı.

Çizelge 3.6 : ASIL belirleme örneği [12].

Araç seviyesinde tehlike Potansiyel yetersiz araç yanal hareketi

Operasyonel durum
Yoğun trafiğe sahip, iyi görüş mesafesinde ve iyi yol

koşullarında, kırsal yollarda orta hızda sürüş durumu

Potansiyel kaza

senaryosu

Yoldaki başka bir araca veya bir nesneye çarpılması

ASIL değerlendirilmesi

Önem

S3

Başka bir araç ile çarpışma sonucu

önden veya yanal darbe sonucu yolcu

bölmesinde deformasyon oluşması.

Maruz

kalma E4

Belirtilen sürüş senaryosu sıklıkla

meydana gelmektedir. (Aracın yaşam

döngüsünün %10’undan fazlasıdır.)

Kontrol

edilebili

rlik
C2

Bu durum aracın düşük hızı ve bir

dereceye kadar direksiyonun

kullanılabilirliği nedeniyle normalde

kontrol edilebilirdir.

Atanan ASIL seviyesi C

21

Çizelge 3.7 : NHTSA’ya göre belirlenen tehlikeler ve ASIL atamaları [12].

 Tehlike ASIL

H1 Potansiyel istenmeyen araç yanal hareketi D

H2 Potansiyel yetersiz araç yanal hareketi C

H3 Potansiyel direksiyon desteği kaybı B

H4
Artan arka tekerlek sürtünmesi nedeniyle sürücünün

komutlarına potansiyel olarak azaltılmış tepki verme
A

3.3.3 Fonksiyonel güvenlik konsepti

Fonksiyonel güvenlik konseptinin amacı güvenlik hedeflerine ulaşabilmek adına

fonksiyonel güvenlik gereksinimlerinin oluşturulmasıdır. Güvenlik gereksinimleri

oluşturulurken;

- Güvenlik hedeflerine uygun olarak fonksiyonel ve kısıtlanmış

fonksiyonların davranışlarının belirlenmesi

- Güvenlik hedeflerine uygun olarak ilgili hataların zamanında tespiti ve

kontrolü ile ilgili kısıtlamaların belirlenmesi

- Komponent, sürücü veya harici önlemler tarafından oluşan hataların

hedeflenen toleranslar içerisinde tespiti ve önlenme stratejilerinin

belirlenmesi

- Fonksiyonel güvenlik gereksinimlerinin mimari tasarıma veya harici

önlemlere tahsis etmek

- Fonksiyonel güvenlik konseptini doğrulamak ve doğrulama kriterlerini

belirlemektir

NHTSA tarafından yapılan çalışmadan jenerik bir EPS’nin güvenlik hedefleri Çizelge

3.8’deki gibidir.

Çizelge 3.8 : Güvenlik hedefleri [12].

 Güvenlik Hedefleri ASIL

SG 1
EPS sistemi, tüm araç koşullarında herhangi bir yönde

istenmeden kendi kendine dümenlemeyi önlemelidir.
D

SG 2 EPS sistemi, tüm araç çalışma koşullarında doğru seviyede

direksiyon desteği sağlamalıdır.
C

SG 3 EPS sistemi, tüm araç çalışma koşullarında istenmeyen

direksiyon desteği kaybını önlemelidir.
B

SG 4 EPS sistemi, tüm araç çalışma koşullarında arka tekerlek

sürüklenmesini önlemelidir.
A

22

Fonksiyonel güvenlik gereksinimleri belirlenirken aşağıdaki stratejiler

değerlendirilmelidir.

- Hatadan kaçınma

- Arıza tespiti, arıza kontrolü ve oluşan hataların sonuçları

- Güvenli duruma geçiş stratejileri

- Hata toleransları

- Arıza durumunda işlevselliğin bozulması ve bunun sürücü ikazları ile

ilişkisi

- Riske maruz kalma süresini kabul edilebilir bir süreye indirmek için

gereken sürücü ikazlarının tepki sürelerinin belirlenmesi

- Kontrol edilebilirliği arttırmak için gerekli sürücü uyarılarının belirlenmesi

- Kontrol edilebilirliği arttırmak için ihtiyaç duyulan sürücü ikazlarının

zamanlama gereksinimlerinin nasıl karşılanacağı ve hataya dayanıklı

zaman aralığının nasıl karşılanacağının belirlenmesi

- Birden fazla kontrol talebinin aynı anda uygun olmayan şekilde

uygulanması durumunda tehlikenin önlenmesi ve azaltılması

ISO 26262 fonksiyonel güvenlik kapsamında makul olmayan bir risk ile

karşılaşıldığında güvenli bir durum tanımlaması yapılması gerekmektedir. Güvenli

durum, tüm fonksiyonalitenin aktif olduğu, fonksiyonalitenin kısıtlandığı güvenli

çalıştırma modu veya fonksiyonalitenin tamamen devre dışı kalması olabilir. Bu

güvenli durumlar arasındaki geçiş stratejileri teknik güvenlik konseptinde daha detaylı

incelenecektir.

EPS, direksiyon sistemi sensörleri, servo motor, haberleşme sistemi, arayüz sistemi

gibi birçok donanımsal sistemin bir arada çalışması ile işlevini yerine getirmektedir.

Fonksiyonel güvenlik kapsamında rastgele donanım ve sistematik hatalardan

kaçınmak için yazılacak gereksinimler her bir sistem özelinde ele alınabilir. Tez

kapsamında bütün sistemlerin ele alınması yerine, yöntem üzerine odaklanabilmek

adına direksiyon sistemi sensör sinyalleri incelenecektir. Bu nedenle direksiyon

sistemi sensörleri Şekil 3.3’te paylaşdı.

23

Şekil 3.3 : Direksiyon sistemi sensörleri [12].

Araç seviyesinde fonksiyonel güvenlik sistemlerinin ortak kullandığı sensörler veya

bu sensörden alınan verilerin başka bir elektronik kontrol ünitesi ile paylaşılması

durumunda değerlendirmeler sistemin risk değerlendirmesi birlikte

değerlendirilmelidir. Örnek olarak, fren pedal sensörünün hem ABS (Anti-Lock

Braking System) hem de içten yanmalı motor elektronik kontrol ünitesi cruise control

fonksiyonunda kullanılması buna örnek verilebilir. Bu çalışmada kullanılan sensörler

sadece EPS sistemi kapsamında değerlendirilmiştir. Değerlendirme sonucunda

NHTSA’nın belirlediği minimum gereksinimler Çizelge 3.9’da paylaşıldı.

24

Çizelge 3.9 : Direksiyon sensörleri fonksiyonel güvenlik gereksinimleri [12].

Gereksinim

Numarası

Güvenlik

Hedefi

ASIL

Seviyesi

Güvenlik

Gereksinimleri

2.1 1,2,3,4 No ASIL Sürücünün girdisinden kaynaklanan direksiyon simidi torku, aracın kullanılabilir ömrü

boyunca tüm çalışma koşullarında burulma çubuğunda tutarlı bir burulma oluşturmalıdır. (Bu

gereksinim ISO 26262 kapsamında değildir ancak standarda uyumluluk incelemesinin bir

parçası olacaktır.)

2.2 1,2,3 B, C, D Direksiyon simidi tork sensörü, direksiyon milindeki burulmayı ölçmek içindir. Sensör

ölçümünün doğruluğu ve geçerliliği sağlayacak yetkinliğe sahip olmalıdır.

2.3 1,2,3 B, C, D Tork sensörünün burulma çubuğunun bükülmesini bir elektrik sinyaline dönüştürme yöntemi

doğrulanmalıdır.

2.4 1,2,3,4 A, B, C, D EPS sistemi açıkken tork sensörü giriş voltajı, yüksek ve düşük voltaj limitleri kontrol

edilmelidir. Giriş voltajının aralık dışında olması durumunda EPS sistemi DSB ms içerisinde

Güvenli Durum 3’ geçmelidir.

2.5 1,2,3,4 A, B, C, D Tork sensörü tarafından yapılan tork ölçümü, EPS kontrol modülüne iletilmeli ve geçerlilik,

doğruluk ve rasyonellik açısından kalifiye olmalıdır.

2.6 1,2,3,4 A, B, C, D Tork sensörü verileri sürekli olarak izlenecek ve EPS sistemi, sürücüye yalnızca tork sensörü

verileri EPS kontrol modülü tarafından doğru şekilde okunduğunda güç desteği sağlanmalıdır.

2.8 1,2,3,4 A, B, C, D Tork sensörü çıkış sinyali, izleme devresindeki bir tork sensörü veri analiz ünitesi tarafından

analiz edilmelidir.

2.9 1,2,3,4 A, B, C, D Tork sensörünün sağlığı ve verilerin makullüğü, çalışan tüm araç koşullarında izlenmeli ve

onaylanmalıdır.

2.10 1,2,3,4 A, B, C, D Güvenlik hedefini ihlal eden bir arıza durumunda, tork sensörü arızayı EPS kontrol modülüne

iletmelidir.

2.11 1,2,3 QM, A, B Tork sensörü, elektromanyetik uyumluluk EMC/EMI, ESD, kontaminasyon, tek olay etkileri

ve diğer çevresel koşullardan kaynaklanan güvenlik ile ilgili arızalar için tanımlamaya sahip

olmalıdır.

25

Gereksinim

Numarası

Güvenlik

Hedefi

ASIL

Seviyesi

Güvenlik

Gereksinimleri

2.12 1,2,3,4 No ASIL Bir güvenlik hedefinin ihlaline yol açan tüm tek noktalı tork sensörü donanım arızaları, arıza

tespit aralığı içerisinde tespit edilmeli ve FTTI içerinde azaltılmalıdır. Bir arıza durumunda

sistem ilgili güvenlik durumuna geçecektir.

2.13 2 A Direksiyon simidi açı sensörü, direksiyon simidi girişinden kaynaklanan direksiyon simidi

açısını ölçmek içindir ve ölçüm metodu kalifiye olmalıdır.

2.14 2 A Direksiyon açısının elektriksel dönüşüm yöntemine göre doğrulanmalıdır.

2.15 2 A Direksiyon simidi açı sensörü tarafından yapılan açı ölçümü, EPS kontrol modülüne

iletilmelidir.

2.16 2 A Güvenlik Hedefi 2’yi ihlal edebilecek gizli hataları azaltmak için açı sensörü verileri düzenli

aralıklarla kontrol edilmelidir.

2.17 2 A Güvenlik Hedefi 2’yi ihlal eden bir arıza durumunda, direksiyon simidi açı sensörü, arızayı

EPS kontrol modülüne iletmelidir.

2.18 2 A Açı sensörü, EMC/EMI, ESD, kontaminasyon, tek olay etkileri ve diğer çevresel koşullardan

kaynaklanan güvenlikle ilgili arızaları teşhis etmelidir.

2.19 2 A Güvenlik hedefi 2’nin ihlaline neden olabilecek tüm tek nokta direksiyon açı sensörü donanım

arızaları, arıza tespit aralığı içerisinde tespit edilmeli ve FTTI içerisinde azaltılmalıdır. Arıza

durumunda sistem sarı ışıklı sürücü ikaz uyarısı vermelidir.

26

3.4 Sistem Seviyesinde Ürün Geliştirme

Sistem seviyesinde uygulanması gereken aktiviteler Şekil 3.4’te verilmiştir. Teknik

güvenlik konsepti, teknik güvenlik gereksinimleri ile sistem mimari tasarımından

türetilmektedir. Teknik güvenlik gereksinimleri, sistem elementlerine veya spesifik

teknolojilere atanmaktadır.

Teknik güvenlik konsepti geliştirildikten sonra yazılım ve donanım seviyesinde ürün

geliştirme süreçleri gerçekleştirilir. Geliştirilen yazılım ve donanımın sistem

entegrasyonu yapılarak güvenlik hedeflerine ulaşıp ulaşılmadığı test edilir.

Şekil 3.4 : Sistem seviyedinde ürün geliştirme süreci [8].

3.4.1 Teknik güvenlik konsepti

Teknik güvenlik konseptinin amaçları;

- Teknik güvenlik gereksinimlerinin uygulanabilmesi için gerekli olan

sistem elemanlarının ve arayüzlerin işlevselliği, bağımlılıkları,

kısıtlamaları, ve özelliklerin belirlenmesi

- Sistem elemanları ve arayüzlerinde uygulanacak güvenlik

mekanizmalarının teknik güvenlik gerekliliklerini belirlemek.

- Üretme, işletme, servis, hizmetten çıkarma sırasında sistemin ve

elemanların güvenliğine ilişkin gereklilikleri belirlemek.

- Teknik güvenlik gereksinimlerinin sistem düzeyinde işlevsel güvenliği

sağlamaya uygun olduğunu ve işlevsel güvenlik gereksinimleriyle tutarlı

olduğunu doğrulamak.

27

- Güvenlik gerekliliklerini karşılayan ve güvenlikle ilgili olmayan

gerekliliklerle çelişmeyen bir sistem mimari tasarımı ve teknik güvenlik

konsepti geliştirmek

- Üretim ve servis için hataları önlemek amacıyla sistem mimari tasarımını

analiz etmek ve gerekli güvenlikle ilgili özel karakteristikleri belirlemek

- Sistem mimari tasarımının ve teknik güvenlik konseptinin ilgili ASIL’e

göre güvenlik gereksinimlerini karşılamaya uygun olduğunu

doğrulamaktır.

3.4.1.1 Güvenlik mekanizmaları

Teknik güvenlik mekanizmaları sistemin kendisinin veya etkileşime girdiği çevre

elemanların hatalarını tespit ederek, fonksiyonel güvenlik gereksinimlerini ihlal

edebilecek durumları önlemek ve etkisini azaltması beklenen yapılardır. Güvenlik

mekanizmaları sistemi tanımlanan güvenli halde bulumasını sağlayacak veya hatalar

oluştuğunda tehlikenin şiddetini ve arıza altındaki sistemin kontrol edilebilirliğini

arttırmak için belirlenen sürede ilgili güvenli durumlar arasındaki geçişi sağlayarak

gerekli kısıtlamaları uygulamak ve kullanıcıyı uyarmaktır.

Sadece rastgele donanımsal arızalar gizli hatalar (latent fault) çerçevesinde kabul

edilebilir. Bunu önlemek adına açılış, kapanış sekanslarında ve periyodik olarak valf,

lamba gibi elemanların düzgün çalıştığına dair testlerden geçmesi beklenir. Testlerin

sıklığı, HARA’da yapılan değerlendirmelere göre arızanın sebebiyet vereceği

potansiyel kazanın şiddeti, arıza oluştuğunda kontrol edilebilirliği ne kadar etkilediği

ve arızanın oluşma olasılığı göz önünde bulundurularak belirlenir.

Bu çalışmada kullanılacak 2 güvenli durum yeterli görüldü.

Güvenli durum 1: Direksiyon yardımı düşük hızlarda kullanılabilir, ancak yüksek

hızlarda devre dışı bırakılır.

Güvenli durum 2: Tüm direksiyon yardımı devre dışı.

3.4.1.2 Teknik güvenlik gereksinimlerinin atanması

Teknik güvenlik gereksinimleri, bir donanım (uygulama özel tümleşik devreler,

kompleks algılayıcıların korumalı yapıları, proje özelinde geliştirilen devreler vb.)

veya yazılım (uygulama ve temel seviyedeki yazılımlar, standartlaşmış protokoller

vb.) ile sağlanabilir. Bu gereksinimlerin hangi teknik yapılar tarafından karşılanacağı

28

belirlenmeli ve ileride paralel yürütülecek yazılım ve donanım seviyesinde ürün

geliştirme adımlarına atamaların yapılması beklenir.

3.4.1.3 Doğrulama

Teknik güvenlik gereksinimlerinin, doğruluğu, bütünlüğü ve tutarlılığı

doğrulanmalıdır. Doğrulama sürecinde fonksiyonel güvenlik standardı tarafından

önerilen yöntemler Çizelge 3.10 ve Çizelge 3.11’de paylaşılmıştır.

Çizelge 3.10 : Sistem seviyesinde doğrulama yöntemleri [8].

Yöntem ASIL

A

ASIL

B

ASIL

C

ASIL

D

1a Denetim + ++ ++ ++

1b Gidiş yolu inceleme ++ + 0 0

2a Simülasyon + + ++ ++

2b Sistem prototipleme ve araç üstü testleri + + ++ ++

3 Sistem mimari tasarım analizi Çizelge 3.11’e bakınız.

Çizelge 3.11 : Sistem seviyesinde doğrulama yöntemleri [8].

Yöntem ASIL

A

ASIL

B

ASIL

C

ASIL

D

1a Tümdengelim analizi 0 + ++ ++

1b Tümevarım analizi ++ ++ ++ ++

Donanım ve yazılım seviyesindeki geliştirme süreçleri tamamlandıktan sonra

geliştirilen teknolojilerin sistem seviyesinde doğrulanması gerekmektedir. Doğrulama

işlemi belirlenen test senaryolarının bir seri test sürecine tabi tutulmasıyla

gerçekleştirilir. Test senaryoları farklı perspektiflerden ele alınarak oluşturulabilir.

Fonksiyonel güvenlik standardı tarafından önerilen yöntemlerin listesi Çizelge 3.12’de

paylaşılmıştır.

29

Çizelge 3.12 : Entegrasyon testleri için test senaryosu oluşturma methodları [8].

Yöntem
ASIL ASIL ASIL ASIL

A B C D

1a Gereksinim analizi ++ ++ ++ ++

1b İç ve dış arayüzlerin analizi + ++ ++ ++

1c

Yazılım donanım entegrasyonu için

denklik sınıflarının oluşturulması ve

analizi

+ + ++ ++

1d Sınır değerlerinin analizi + + ++ ++

1e Bilgi ve tecrübeye dayalı hata tahmini + + ++ ++

1f Fonksiyon bağımlılık analizi + + ++ ++

1g
Ortak limit koşullarının, sekansların ve

bağımlı arıza kaynaklarının analizi
+ + ++ ++

1h
Çevresel koşulların ve operasyonel

kullanım durumlarının analizi
+ ++ ++ ++

1i Saha deneyimine bağlı analiz + ++ ++ ++

Test senaryolarını oluşturmak için farklı yöntemler olduğu gibi yapılan testler de kendi

arasında farklı hedef gruplarına göre ayrılmaktadır. Teknik güvenlik gereksinimlerinin

doğru uygulanması, doğru performans, tutarlılık ve zamanlama hedeflerine ulaşılması,

arayüzlerin tutarlı ve doğru şekilde çalışması, geliştirilen güvenlik mekanizmalarının

etkinliği ve dayanıklılığı (donanım ve yazılım seviyesinde robustness) gibi konular

farklı test kriterleri oluşturmaktadır. Çizelge 3.13’te gereksinim, Çizelge 3.14’de

performans, tutarlılık ve zamanlama, Çizelge 3.15’te arayüz, Çizelge 3.16’da güvenlik

mekanizmaları yetkinlik, Çizelge 3.17’de sağlamlık testleri olmak üzere donanım

yazılım entegrasyonu seviyesinde fonksiyonel güvenlik standardı tarafından önerilen

test yöntemleri paylaşılmıştır.

30

Çizelge 3.13 : Gereksinimlerin doğru uygulanma testleri [8].

Yöntem ASIL

A

ASIL

B

ASIL

C

ASIL

D

1a Gereksinime dayalı test ++ ++ ++ ++

1b Hata enjeksiyon testi + ++ ++ ++

1c Bitişik test + + ++ ++

Çizelge 3.14 : Performans, tutarlılık ve zamanlama test yöntemleri [8].

Yöntem ASIL

A

ASIL

B

ASIL

C

ASIL

D

1a Bitişik test + + ++ ++

1b Performans testi + ++ ++ ++

Çizelge 3.15 : Arayüz test yöntemleri [8].

Yöntem ASIL

A

ASIL

B

ASIL

C

ASIL

D

1a Dış ara yüz testi + ++ ++ ++

1b İç ara yüz testi + ++ ++ ++

1c Ara yüz tutarlılık kontrolü + ++ ++ ++

Çizelge 3.16 : Güvenlik mekanizmalarının yetkinlik tetsleri [8].

Yöntem ASIL

A

ASIL

B

ASIL

C

ASIL

D

1a Hata enjeksiyon testi + + ++ ++

1b Hata tahminine dayalı test + + ++ ++

Çizelge 3.17 : Sağlamlık test yöntemleri [8].

Yöntem ASIL

A

ASIL

B

ASIL

C

ASIL

D

1a Kaynak kullanım testi + + + ++

1b Stres testi + + + ++

Yukarıdaki yöntemlerin yazılım donanım entegrasyon testi sürecinde yapılacak testler

için verildiğine dikkat edilmelidir. Bunlara ek olarak sistem entegrasyon ve araç

entegrasyon seviyeleri için de standart içinde kapsamlı bilgi verilmiştir. Çalışmanın

amacı fonksiyonel güvenlik standardı hakkında genel bir fikir vermek ve farkındalık

yaratmak olduğundan, tekrara düşmemek adına sadece yazılım donanım entegrasyon

seviyesindeki tablolar paylaşıldı.

Belirlenen test yöntemleri için doğrulama planı ve doğrulama yöntemlerinin

açıklandığı entegrasyon ve test stratejisi oluşturulmalıdır. Test strateji dokümanında

ele alınan testler raporlanmalı ve paylaşılmalıdır.

31

3.5 Yazılım Seviyesinde Ürün Geliştirme

Bu bölümün amacı yazılım geliştirme sürecinde uygun yöntem ve ortamın

sağlanmasıdır. Yazılım geliştirme süreci sistem seviyesinden yazılım ekibine atanan

teknik güvenlik gereksinimlerini yazılım seviyesinde değerlendirerek geliştirme

sürecini başlatır. Geliştirdiği yazılımın sistem seviyesindeki entegrasyon testlerine

destek vererek sürecini tamamlar. Geliştirme sürecinde donanım ekibi ile iletişim

sürecin sağlıklı yürütülebilmesi için kilit unsurdur. Bu süreci desteklemesi için

donanım-yazılım arayüz dokümanı bir gerekliliktir. Sürecin genel akışını gösteren

diyagram Şekil 3.5’te paylaşılmıştır.

Şekil 3.5 : Yazılım seviyesinde V döngü süreci [8].

Geliştirme sürecinde kullanılacak yazılım dili, programlar amacına uygun seçilmeli,

modülerlik, soyutlama ve encapsulation (veri ve işlemi bir arada içeren bağımsız

modüller yaratma) desteklenmelidir. Proje genelinde yazılımın bütünlüğünün

sağlanması, okunabilirliği arttırmak gibi amaçlar gözetilerek yönergeler

hazırlanmalıdır. Şartname hazırlama kriterleri Çizelge 3.18’de paylaşıldı.

32

Çizelge 3.18 : Modelleme ve kodlama şartnamelerinde kapsanacak konular [8].

Yöntem
ASIL ASIL ASIL ASIL

A B C D

1a Düşük karmaşıklığın sağlanması ++ ++ ++ ++

1b Dil alt kümelerinin kullanımı ++ ++ ++ ++

1c Strong typing2 sağlanması ++ ++ ++ ++

1d
Defansif uygulama tekniklerinin

kullanılması
+ + ++ ++

1e
Güvenilir tasarım ilkelerinin

kullanımı
+ + ++ ++

1f
Belirsizliğe yer vermeyen

grafiksel gösterimlerin kullanımı
+ ++ ++ ++

1g Stil kılavuzlarının kullanımı + ++ ++ ++

1h
İsimlendirme kurallarının

uygulanması
++ ++ ++ ++

1i Koşut zamanlılığa dikkat etmek + + + +

3.5.1 Yazılım gereksinimleri

Teknik güvenlik gereksinimleri ve sistem mimari tasarımına göre, fonksiyonel

güvenliği sağlayacak yazılım için gereksinimler tanımlanır.

Yazılım gereksinimleri aşağıdaki karakteristik özellikleri taşımalıdır.

• Kesin, belirsizliğe yer vermeyen

• Anlaşılabilir

• Tekil

• Kendi içinde tutarlı

• Uygulanabilir

• Doğrulanabilir

• Gerekli (bir amaca hizmet için, yazılımsal karşılığı olan)

• Uygulamadan bağımsız. (Sadece neyin gerekli ve yeterli olduğu

belirtilmeli, uygulamayı kısıtlamamalıdır.

• Eksiksiz. (Müşteri gereksinimlerini tamamen karşılamalıdır.)

• Uygun olma. (Yasal veya endüstriyel standartları ihlal etmeyecek şekilde

olmalıdır.)

2 1c konusunun amacı, dilin doğasında bulunmayan güçlü yazım ilkelerini empoze etmektir

33

Yazılım gereksinimlerinin yukarıdaki özelliklerinin sağlanması için yazılırken doğal

dil (natural language) kullanılmalı ve Çizelge 3.19’da paylaşılan tablodaki

gereksinimlere dikkat edilmelidir.

Çizelge 3.19 : Güvenlik gereksinim belirlenmede kullanılabilecek notasyonlar [8].

Yöntem
ASIL ASIL ASIL ASIL

A B C D

1a
Gereksinim yazımında resmi

olmayan3 gösterimler kullanmak
++ ++ + +

1b
Gereksinim yazımında yarı resmi
4gösterimler kullanmak

+ + ++ ++

1c
Gereksinim yazımında resmi

gösterimler kullanmak
+ + + +

Yazılım gereksinimleri güvenlik yaşam döngüsü boyunca başka bir gereksinimle

karışmaması için her bir gereksinim eşsiz olmalıdır. Bu birçok farklı şekilde

başarılabilir. Gelişmiş ticari gereksinim yönetimi araçları kullanılarak veya yazılım

gereksinimi yazma yönergesi ile sağlanabilir.

Yazılım gereksiniminin durum bilgisi (taslak, kabul edildi, incelendi vb.) ve ASIL

bilgisi gibi öznitelikleriyle birlikte saklanmalıdır.

3.5.2 Yazılım mimarisi

Yazılım mimarisinin amacı, tüm yazılım komponentleri arasındaki etkileşimi

tanımlamaktır. Bu yazılımın statik hem de dinamik yapısını kapsamaktadır. Yazılım

mimarisi geliştirirken kullanılacak notasyon, anlaşılır tutarlı, basit, doğrulanabilir

olma gibi özellikleri karşılaması beklenir. Standardda önerilen yöntemler Çizelge

3.20’de paylaşıldı.

3 Daha yüksek seviyeli güvenlik gereksinimleri (ör. güvenlik hedefleri, işlevsel ve teknik güvenlik

gereksinimleri) için doğal dil ve diğer resmi olmayan gösterim türleri en uygun biçimlerdir
4 Yarı resmi gösterim, denklemler, grafikler, diyagramlar, akış şemaları, zamanlama diyagramları ve

diğer birçok gösterim biçimi (örneğin UML® ve SysML™) gibi matematiksel veya grafik öğelerle

desteklenen doğal dili kullanarak gereksinimleri formüle eder. Örnekler, modele dayalı teknikleri ve

doğal dilde gereksinim cümleleri için şablonları ve kontrollü kelimeleri uygulama içerir.

Kesin donanım ve yazılım davranışlarının ve yeteneklerinin belirlenebildiği daha düşük seviyeli

güvenlik gereksinimleri için, daha fazla netlik nedeniyle yarı resmi gösterimler daha uygundur. Ancak

burada bile yarı formal tekniklerin her gereksinim için kullanılması mümkün veya gerekli olmayabilir.

34

Çizelge 3.20 : Yazılım mimarisi belirlemede kullanılabilecek notasyonlar [8].

Yöntem ASIL

A

ASIL

B

ASIL

C

ASIL

D

1a Doğal dil ++ ++ ++ ++

1b Resmi gösterim ++ ++ + +

1c Yarı resmi gösterim + + ++ ++

1d Resmi olmayan gösterim + + + +

Mimari yazılım gereksinimlerinin sağlanacağı birimler arasında iki yönlü takip

edilebilirliği sağlamalıdır. Tasarlanan her bir birim en az bir yazılım gereksinimi ile

eşleşmelidir. Ayrıca tüm yazılım gereksinimleri ilişkili olduğu yazılım birimlerine

atanarak tam kapsama sağlanmalıdır.

Fonksiyonel güvenlik standardına göre Çizelge 3.21’de paylaşılan tablodaki tasarım

ilkeleri dikkate alınarak tasarım yapılmalıdır.

Çizelge 3.21 : Mimari tasarım ilkeleri [8].

Yöntem
ASIL ASIL ASIL ASIL

A B C D

1a
Yazılım bileşenlerinin uygun hiyerarşik

yapısı
++ ++ ++ ++

1b
Yazılım bileşenlerinin kısıtlı büyüklüğü

ve karmaşıklığı
++ ++ ++ ++

1c Arayüzlerin büyüklüğünün sınırlanması + + + ++

1d Her yazılım bileşeninin güçlü uyumu + ++ ++ ++

1e
Yazılım bileşenleri arasındaki

bağlantının esnekliği
+ ++ ++ ++

1f Uygun zamanlama planlaması ++ ++ ++ ++

1g Interruptların5 kısıtlı kullanımı + + + ++

1h
Yazılım bileşenlerinin uygun uzamsal

izolasyonu
+ + + ++

1i Paylaşılan kaynakların uygun yönetimi ++ ++ ++ ++

Mimari elemanlarının statik tasarımı, hiyerarşik yapı, veri türü ve özellikleri, yazılım

komponentleri ve gömülü yazılım ile arayüzleri, evrensel değişkenleri (global

variables) içermektedir. Diğer yandan dinamik tasarım ise, kodun mantıksal bir

çerçevede akması, verilerin işlenmesi, evrensel değişkenler üzerinden akan verilerin

zamanlaması ve zamansal kısıtlamaları açıklar.

5 Kesme (interrupt) işlemi, bilgisayarın merkezi işlem biriminin hiç hesapta olmayan bir
olayın etkisiyle, normal olarak yapmakta olduğu işi bırakarak, kesmenin gösterdiği olaya
geçici olarak yönelmesi için kullanılır.

35

Yazılım gereksinimde genel olarak belirlenen hata tespiti ve hata düzeltme

gereksinimlerinin sağlanması için geçerliliği kabul görmüş yöntemler bulunmaktadır.

Bu kapsamda hata tespiti için kullanılabilecek güvenlik mekanizmalarına örnekler

verilmiştir.

• Giriş-Çıkış verilerinin aralık kontrolleri (Range check)

• Mantıklılık kontrolü (Plausibility check)

• Veri hatalarının tespiti (Detection of data errors)

• ASIC (Uygulamaya Özel Tümleşik Devre) veya bekçi köpeği (Watchdog)

vazifesi gören başka bir yazılım ile mantıksal ve zamansal denetleme

• Yürütülen programın zamansal denetlenmesi

• Tasarımda çeşitli yedeklilik (Redundancy)

• Ortak hafızada paylaşılan kaynaklara erişimin donanımsal veya yazılımsal

denetlemelerin uygulanması

Hata düzeltme için ise aşağıdaki yöntemler kullanılabilir.

• Güvenli duruma erişmek için devre dışı bırakma

• Statik kurtarma mekanizmaları (hata sonrası uygun bir şekilde güvenli duruma

geçme mekanizmalarını kapsar.)

• Hatanın ani olumsuz etkilerini aza indirmek için yavaşlatılmış bozulma sağlama

• Homojen yedeklilik (Homogenous redundancy)

• Çeşitli yedeklilik (Diverse redundancy)

• Hata düzeltme algoritmaları

• Güvenlik ile ilgili kullanılan kaynaklara yazılım ve donanım erişim izinleri

3.5.3 Yazılım birim tasarımı

Bu bölüm yazılım mimarisinde tanımlanan birimlerin kodunun yazıldığı adımdır.

Mimari referans alınarak kodlama standartlarına ve yönergelere uygun şekilde kod

geliştirilir. Yazılan kod, önceki tasarım adımlarıyla tutarlı, kolay anlaşılabilir,

sürdürülebilir ve doğrulanabilir olmalıdır. Karmaşıklıktan uzak, basit parçalara

bölünmüş şekilde kod geliştirmek hem mikrodenetleyicinin kaynaklarını hem de

mühendislik kaynaklarının optimize edilmesine yardımcı olur. Çizelge 3.22’de verilen

tasarım kriterlerinin büyük bir kısmı MISRA C kurallarına uygun kod geliştirilmesi ile

sağlanmaktadır.

36

Çizelge 3.22 : Yazılım birim tasarım ve uygulama ilkeleri [8].

Yöntem
ASIL ASIL ASIL ASIL

A B C D

1a
Alt programlarda ve fonksiyonlarda tek

giriş ve tek çıkış noktası
++ ++ ++ ++

1b

Oluşturulma sırasında online testler

yapılsa dahi dinamik obje ve

değişkenlerin kullanılmaması

+ ++ ++ ++

1c
Değişkenlerin başlangıç durumlarının

belirlenmesi
+ + ++ ++

1d
Değişken isimlerinin çoklu

kullanılmaması
+ + ++ ++

1e

Global değişkenlerin kullanımından

kaçınılması, kullanılması durumunda

gerekçelendirilmesi

+ + ++ ++

1f İşaretçi kullanımının kısıtlanması + + ++ ++

1g İstemsiz veri tipi dönüştürülmemesi + + ++ ++

1h
Gizli veri akışı ve kontrol akışının

olmaması
+ ++ ++ ++

1i Koşulsuz atlamaların olmaması + ++ ++ ++

1j Özyinelemelerin olmaması + ++ ++ ++

3.5.4 Yazılım birim doğrulama

Bu aşamada testler yapılarak geliştirilen kodun, yazılım gereksinimlerini ihlal etmeden

beklenen fonksiyonu gerçekleştirmesi beklenir. Bunun için bir doğrulama planına

ihtiyaç vardır. Doğrulama planı oluşturulurken uygulanacak yöntem veya yöntemlerin

yeterliliği, kodun karmaşıklığı, eğer bu çalışma var olan bir sistemin iyileştirilmesi

adına yapılıyorsa geçmiş deneyimler ve doğrulama sürecinde kullanılan yöntemlerin

olgunluğuna bağlı olarak belirlenir. Bu kapsamda kabul görmüş yöntemlerin listesi

Çizelge 3.23’te paylaşılmıştır.

37

Çizelge 3.23 : Yazılım birim doğrulama yöntemleri [8].

Yöntem
ASIL ASIL ASIL ASIL

A B C D

1a Walk-through6 ++ + 0 0

1b Pair programming7 + + + +

1c Denetim + ++ ++ ++

1d Yarı resmi doğrulama + + ++ ++

1e Resmi doğrulama 0 0 + +

1f Kontrol akış analizi + + ++ ++

1g Veri akış analizi + + ++ ++

1h Statik kod analizi ++ ++ ++ ++

1i Soyut yoruma bağlı statik analiz + + + +

1j Gereksinime bağlı test ++ ++ ++ ++

1k Arayüz testi ++ ++ ++ ++

1l Hata enjeksiyon testi + + + ++

1m Kaynak kullanım değerlendirmesi + + + ++

1n

Model ve kod arasında arka arkaya

karşılaştırma testi (Eğer model tabanlı

yazılım geliştiriliyorsa)

+ + ++ ++

İdeal bir test ortamında, test edilecek yazılıma bir girdi seti verilerek sonuçlar alınır.

Bu sonuçların gereksinimleri ihlal etmemesi durumunda doğrulama süreci başarıyla

tamamlanır. Testin amacına göre farklı girdi setleri oluşturulur. Bu girdi setlerine test

senaryoları da denilir. Test senaryoları oluşturulurken Çizelge 3.24’teki yöntemler

kullanılabilir.

Çizelge 3.24 : Yazılım birim doğrulama için test senaryosu oluştuma yöntemleri [8].

Yöntem
ASIL ASIL ASIL ASIL

A B C D

1a Gereksinim analizi ++ ++ ++ ++

1b
Eşdeğerlik sınıflarının oluşturulması ve

analizi
+ ++ ++ ++

1c Sınır değerlerinin analizi + ++ ++ ++

1d Bilgi ve deneyime dayalı hata tahmini + + + +

Yapılan testler sonucu hiçbir gereksinim ihlali elde etmemiş olunabilir, ancak bu

sistemin hatasız olduğu anlamına gelmeyebilir. Test edilen yazılımın ne kadarının

kapsandığını ölçmenin yöntemleri vardır. Bu yöntemler Çizelge 3.25’te verilmiştir.

6 Geliştirilen kodun, ekip içerisinde baştan sona akışının açıklanması, gösterimi süreci işlemine verilen

isimdir.
7 İki yazılım gelişricinin bir bilgisayarda çalışmasıdır. Çalışanlardan biri yazılımı geliştirirken diğer

yazılımcının diğer yazılımcıyı denetleme ve yönlendirmesi işlemidir.

38

Çizelge 3.25 : Yapısal kapsama metrikleri [8].

Yöntem
ASIL ASIL ASIL ASIL

A B C D

1a Statement coverage8 ++ ++ + +

1b Branch coverage9 + ++ ++ ++

1c
 MC/DC (Modified condition/decision

coverage)10
+ + + ++

Doğrulama süreci benzer yöntemlerin farklı seviyelerde tekrarlanmasından

oluştuğundan yazılım entegrasyon ve gömülü yazılım test süreçleri detaylı

açıklanmaması uygun görüldü.

Testlerin hangi yöntemlerle yapıldığı kadar test ortamının da süreçte önemli bir yeri

vardır. Test ortamı bir model, C kodu, geliştirme kiti veya gerçek donanımla

sağlanıyor olabilir.

MiL (Model in the Loop): Model tabanlı geliştirme araçları yazılım geliştirme

mühendislerine kendi arayüzlerinde C kodu oluşturmadan fonksiyonları

modellemesine olanak sağlamaktadır. Daha sonrasında model kullanılarak C kodu

üretilebilmektedir. Geliştirme model seviyesindeyken model tabanlı geliştirme

araçları sağladıkları simülasyon ortamında geliştiricilere test yapabilme imkânı

sağlamaktadır. Bu seviyede yapılan testler MiL olarak adlandırılmaktadır. Model ve

kod arasında arka arkaya karşılaştırma testi (back-to-back comparison test between

model and code) model ve otomatik kod üretimi sonrasında oluşabilecek farklılıkların

tespiti için yapılır böylelikle modelleme ve kod arasındaki ilişki analiz edilebilir.

Burada dikkat edilmesi gereken durum finalde kullanılacak mikrodenetleyici için

derleme yapılarak bu testin yapılması daha doğru olacaktır. Bunun nedeni derlenen

kodun komut kümesindeki farklılıktan dolayı tepkilerde değişiklikler meydana

gelebilme ihtimalidir.

SiL (Software in the Loop): Otomatik kod üretimi veya geleneksel yöntemlerle elde

edilen C kodunun bilgisayarda işletilerek test yapılmasına verilen isimdir.

8 Statement coverage, tüm ifadelerin kaynak kodda en az bir kez yürütülmesini içeren bir beyaz kutu

test tekniğidir.
9 Branch coverage, bir kod tabanındaki tüm dalların testler tarafından uygulanıp uygulanmadığını

gösteren bir ölçümdür. Bir "dal", bir karar ifadesinden sonra kodun alabileceği olası yürütme

yollarından biridir.
10 Modified condition/decision coverage (MC/DC), son derece kritik sistemleri test etmek için yazılım

testlerinde kullanılan bir yöntemdir. MC/DC, diğer koşulları sabit tutarken her koşulun tüm olası

durumlarının test edilmesini gerektirir.

39

PiL (Processor in the Loop): C kodunun projede kullanılacak işlemciye sahip bir

geliştirme kiti için derlenerek geliştirme kitinde çalıştırılması ile yapılan testtir.

HiL (Hardware in the Loop): C kodunun, gerçek zamanlı işlem yürütebilen bir

simülatör yardımı ile gerçek fiziksel bağlantılar ile çalıştırılmasıdır. Burada

haberleşme arayüzlerin analizi yapılabilmektedir. Bu aşamaya kadar yapılan işlemler

için zaman bir kısıt değilken bu test ile gerçek zamanlı tepkiler izlenebilir olmaktadır.

Gerçek donanım: Donanım tasarım süreci içerisinde ilk prototipin üretilmesinden

sonra, gerçek donanım kullanılarak yapılan testlerdir. Eğer sistematik olarak ilerlenmiş

ise hataların temel kaynağı donanım devrelerinden kaynaklanacaktır.

Test süreçlerin adım adım sistematik olarak ilerlemesindeki temel amaç her bir

seviyenin ayrı ayrı doğrulanması sebebiyle hata ayıklama sürecinin sadeleştirilmesidir.

İlk testin doğrudan gerçek donanım üzerinde yapılması durumunda anormal tepkilerin

kaynağının bulunması zor ve zaman alıcı olacaktır. Ayrıca yazılım geliştirme ve

donanım tasarım faaliyetleri paralel yürütülen süreçler olduğu unutulmamalıdır.

Testlerin başlanması için bir prototipi beklemek ciddi zaman kaybına sebebiyet

verecektir.

40

41

4. UYGULAMA

Bu bölümde konsept kısmındaki bilgiler ışığında direksiyon sistemi sinyalleri özelinde

geliştirme adımları uygulanacaktır. İlk olarak 3 katmanlı denetleme mekanizması

çerçevesinde projenin nasıl ele alınacağı açıklanacaktır. Bu adımda teknik güvenlik

konsepti de açıklanmış olacaktır. Sonrasında fonksiyonel güvenlik gereksinimlerinden

yazılım gereksinimleri türetilecektir. Yazılım gereksinimleri ve teknik güvenlik

konsepti referansında yazılım mimarisi belirlenecektir. Uygulama örneği olacak

fonksiyonlar geliştirilecek ve fonksiyonlar için birim doğrulamaları yapılarak

uygulama bölümü tamamlanacaktır.

4.1 3 Katmanlı Denetleme Mekanizması

3 Katmanlı denetleme konsepti, EGAS siteminin izleme seviyeleridir. Fonksiyonel

güvenlik süreçlerinin daha iyi organize edilebilmesi için süreci 3 seviyeye ayırır.

• 1.Seviye: İşlevselliğin bulunduğu katmandır. EPS sistemi özelinde, sensör

bilgileri ile hesaplanacak yardımcı kuvvetin büyüklüğünün hesaplandığı ve

kontrol algoritmaları kullanılarak elektrik motorunu süren ve takviye kuvvetin

uygulanmasını sağlayan seviyedir. Bu seviye fonksiyonel güvenlik standardı

kapsamında ASIL seviyesi QM olarak ele alınır. Bu nedenle bu seviye için

güvenlik mekanizmalarından bahsetmek mümkün değildir.

• 2.Seviye: İşlev denetleme katmanıdır. 1. Seviye tarafından hesaplanan gerekli

değerleri izleyerek anormal durumlar değerlendirilir. Sistematik ve rastgele

donanımsal arızalar denetlenir, anormal sistem çıktıları karşısında güvenli

durumlara FTTI (Fault tolerant time interval) olarak adlandırılan hata toleranslı

zaman aralığında geçiş sağlanır.

• 3.Seviye: Kontrolör denetleme katmanıdır. Bu katman kontrolörün yazılım

donanımda uygulanabilirliğini denetlemektedir. Bu seviye iki yapıdan

oluşmaktadır. İlki mikro denetleyicinin donanım hata yönetim modülleri

(Örnek olarak Memory Protection Unit, Cyclic Redundancy Check vb.)

tarafından sağlanır. İkinci yapı ise denetleyici modül tarafından

sağlanmaktadır. İşlevselliği sağlayan mikrodenetleyiciye sistematik sorular

sorarak yürütülen programın doğruluğunu denetleyen ek bir modüldür.

42

Denetleyici modül SBC (System Basis Chip) ASIC (Application Specific

Integrated Circuit) veya basit bir mikro denetleyici kullanılarak sağlanabilir.

Bu seviyelerin hafıza alanları ve birbiri ile etkileşime geçmesi kısıtlanmıştır.

Birbirinden bağımsız denetleme mekanizmalarının olması rastgele veya sistematik

hatalara karşı bağışıklığı arttırmaktadır. Mimarinin katmanlarını açıklayan genel

görünümü Şekil 4.1’de paylaşıldı.

Şekil 4.1 : Lockstep 3 katmanlı denetleme konsepti genel görünümü [13].

Çift çekirdekli Lockstep’e sahip 3 katmanlı denetleme konseptinin genel görünümü

Şekil 4.2’de verilmektedir.

Şekil 4.2 : Fazlalıklı işlemci kullanımıyla yazılım karşılaştırması [8].

Çift çekirdekli Lockstep’e sahip işlemciler, karşılıklı olarak veri alışverişinde bulunur.

Her birimde verilerin karşılaştırılması yapılarak tespit edilen farklılıklar arıza mesajı

oluşturur. Bir işlem için beklenen zamanlama ve gerçek zamanlama arasındaki fark

43

jitter olarak tanımlanır. İşlemcilerde oluşabilecek jitter, haberleşme gecikmeleri vb.

etkilerden korunmak için lockstep yapısı kullanılır.

4.2 Yazılım gereksinimlerinin belirlenmesi

NHTSA (National Highway Traffic Safety Administration) tarafından EPS sistemi

geliştirilme aşamasında destek sağlamak amacıyla yayınlanan “Functional Safety

Assessment Of a Generic Electric Power Steering System With Active Steering and

Four-Wheel Steering Features” çalışmasından alınan güvenlik gereksinimleri

incelendi. Çalışmanın amacı süreci açıklamak olduğu için referans çalışmanın sadece

direksiyon sistemi sinyallerini ilgilendiren gereksinimler Çizelge 4.1’de listelendi.

44

Çizelge 4.1 : EPS güvenlik gereksinimleri.

Yazılım

Gereksinim

Numarası

Güvenlik

Hedefi
ASIL Güvenlik Gereksinimi

1.15 1, 2 C, D Yedekli elemanlar kullanılıyorsa, bunlar ortak arızalara karşı doğrulanmalıdır.

1.16 1, 2 C, D
Yedekli eleman kullanılır ve bunlardan birisinde arıza oluşursa, EPS sistemi FTTI zamanı içerisinde

güvenli durum 1*’e geçmeli ve sarı renkli sürücü uyarısı verilmelidir.

1.17 1, 2 C, D

Yedekli eleman kullanılır ve bunların hepsinde arıza oluşursa veya tek eleman kullanılır ve

arızalanırsa, EPS sistemi FTTI zamanı içerisinde güvenli durum 2*’e geçmeli ve kırmızı renkli

sürücü uyarısı verilmelidir.

2.2 1, 2, 3
B, C,

D

Direksiyon sistemi tork sensörü, direksiyon simidine uygulanan kuvvete karşılık burulma

çubuğunun dönmesini ölçmek içindir. Bu değerin doğruluğu ve geçerliliğini sağlayacak nitelikte

olmalıdır.

2.3 1, 2, 3
B, C,

D
Tork sensörünün ölçümünün elektriksel sinyale dönüştürme yöntemi doğrulanmalıdır.

2.4 1, 2, 3, 4
A, B,

C, D

Tork sensörü, yüksek ve alçak voltaj değerleri EPS sistemi aktifken denetlenmeli ve arıza

durumunda güvenli durum 2*’e DSB ms içerisinde geçilmelidir.

45

Yazılım

Gereksinim

Numarası

Güvenlik

Hedefi
ASIL Güvenlik Gereksinimi

2.5 1, 2, 3, 4
A, B,

C, D

Tork sensörü tarafından yapılan ölçüm, EPS kontrol modülüne iletilerek, geçerlilik, doğruluk ve

rasyonellik açısından kalifiye olacaktır.

2.6 1, 2, 3, 4
A, B,

C, D

Tork sensörü verileri sürekli olarak incelenecek, sadece tork verisi EPS kontrol modülü tarafından

doğru bir şekilde alındığında güç desteği sağlanacaktır.

2.8 1, 2, 3, 4
A, B,

C, D
Tork sensörü çıktısı, izleme devresindeki veri analiz ünitesi tarafından analiz edilecektir.

2.9 1, 2 C, D Tork sensörünün sağlığı tüm çalışma koşullarında denetlenmeli ve doğrulanmalıdır.

2.10 1, 2, 3, 4
A, B,

C, D
Tork sensöründe güvenlik hedefini ihlal eden bir hatada EPS sistemine bilgi verilecektir.

2.11 1, 2, 3
QM,

A, B

Tork sensörü, elektromanyetik uyumluluk EMC/EMI, ESD, kontaminasyon, tek olay etkileri ve

çevresel koşullardan kaynaklanan arızalar ile ilgili arıza teşhisine sahip olmalıdır.

2.13 2 A
Direksiyon simidi açı sensörü, direksiyon simidi girişinden kaynaklanan açı değişimini ölçmek

içindir ve bu ölçümü yapabilecek nitelikte olmalıdır.

2.14 2 A Direksiyon simidi açı sensörü ölçümünün elektriksel sinyale dönüştürme yöntemi doğrulanmalıdır.

46

Yazılım

Gereksinim

Numarası

Güvenlik

Hedefi
ASIL Güvenlik Gereksinimi

2.15 2 A Direksiyon simidi açı sensörü tarafından yapılan açı ölçümü, EPS kontrol modülüne iletilmelidir.

2.16 2 A
Güvenlik hedefi 2’yi ihlal edebilecek gizli hataları önlemek için açı sensörü verileri düzenli

aralıklarla kontrol edilmelidir.

2.17 2 A
Güvenlik hedefi 2'yi ihlal eden bir arıza durumunda, direksiyon simidi açı sensörü, arızayı EPS

kontrol modülüne iletecektir.

2.18 2 A
Direksiyon simidi açı sensörü, elektromanyetik uyumluluk EMC/EMI, ESD, kontaminasyon, tek

olay etkileri ve çevresel koşullardan kaynaklanan arızalar ile ilgili arıza teşhisine sahip olmalıdır.

2.19 2 A

Güvenlik hedefi 2'nin ihlaline yol açan tüm tek nokta direksiyon açı sensörü donanım arızaları,

arıza tespit aralığı içinde tespit edilecek ve FTTI içinde azaltılacaktır. Arıza durumunda sistem sarı

ışıklı sürücü uyarısı verecektir.

47

Sektördeki yarı iletken ve sensör üreticileri otomotiv uygulamalarına özel kendi

donanımsal çözümlerini sunmaktadır. Infenion Technologies AG, ISO 26262 Kara

Araçları Fonksiyonel Güvenlik standardına uygun çözümler üretmektedir. Bu

çalışmada kullanılan konfigürsyon, Infenion Technologies AG EPS çözümü referans

alınmış ve sensör yerleşimleri Şekil 4.3’te paylaşılmıştır.

Şekil 4.3 : EPS’de kullanılan sensörler ve yerleşimleri [14].

Özellikle, SPC arayüzü, birleşik Tork-Açı-Sensörü (TAS) modüllerinde bir bus hattı

üzerinde açı sensör(ler)inin ve lineer Hall sensör(ler)inin bağlanmasına izin verir. Ayrı

tork sensörü ve açı sensörü modüllerine sahip geleneksel tasarımlarla

karşılaştırıldığında, bu konfigürasyon kablolama maliyetini düşürür ve modül

alanından tasarruf sağlar. TAS modülünün şematik gösterimi Şekil 4.4’te

paylaşılmıştır.

Şekil 4.4 : Tork-açı sensör (TAS-Torque-Angle Sensor) modülü [14].

48

Yukarıda listelenen güvenlik gereksinim maddeleri incelenerek yazılım gereksinimleri

türetildi.

1.15 güvenlik gereksiniminde fazlalık eleman kullanımı durumunda ortak arızalardan

kaçınılması gerektiği belirtildi. Yedekli eleman kullanmak, elemanın arızası

durumunda sistemin güvenli durumda kalması için fayda sağlar. Yüksek hızla sürüşte

iken tork sensöründe bir arıza meydana gelmesi durumunda EPS fonksiyonları devre

dışı kalmasına sebebiyet vereceğinden yedekli sensör kullanmak sistem güvenliği için

tercih edildi.

Aşağıda listelenen durumlar ortak arızaya sebebiyet vermektedir.

• Aynı tasarım tekniğini kullanmak

• Aynı donanımı kullanmak

• Aynı yazılımı kullanmak

• Aynı arayüze sahip eleman kullanmak

• Aynı çevresel koşullara elemanları yerleştirmek

Bu gereksinim seçilen ISO 26262 standardına uyumlu bir topoloji ve donanım

seçildiği için gereksinim donanım ve temel yazılım seviyesinde karşılanmaktadır.

AUTOSAR mimarisine uygun tasarım yapıldığı için donanım temel yazılım

seviyesinde soyutlanarak uygulama katmanına sensör sağlık durumu iletilmelidir.

Uygulama seviyesinde sensör arıza bilgisini alabilmek için arayüz bilgilerine ihtiyaç

vardır.

Aşağıda 1.15, 1.16, 1.17 fonksiyonel güvenlik gereksinimlerinden Çizelge 4.2’deki

yazılım gereksinimleri türetilmiştir.

49

Çizelge 4.2 : Yazılım gereksinimleri grup 1

Yazılım

Gereksinim

Numarası

Yazılım Gereksinimi ASIL Durum

1.1

1. direksiyon simidi pozisyon sensörü sağlık durumu bilgisi “SteeringPosSens1HealthStatus”

değişkeni ile uygulama seviyesine 1ms aralıklarla paylaşılmalıdır.

SteeringPosSens1HealthStatus = 1 direksiyon pozisyon sensörü 1 HEALTY

SteeringPosSens1HealthStatus = 0 direksiyon pozisyon sensörü 1 UNHEALTY

D Taslak

1.2

2. direksiyon simidi pozisyon sensörü sağlık durumu bilgisi “SteeringPosSens2HealthStatus”

değişkeni ile uygulama seviyesine 1ms aralıklarla paylaşılmalıdır.

SteeringPosSens2HealthStatus = 1 direksiyon pozisyon sensörü 2 HealthStatus_T.HEALTY

SteeringPosSens2HealthStatus = 0 direksiyon pozisyon sensörü 2 HealthStatus_T.UNHEALTY

D Taslak

1.3

1. direksiyon simidi tork sensörü sağlık durumu bilgisi “SteeringTorqSens1HealthStatus”

değişkeni ile uygulama seviyesine 1ms aralıklarla paylaşılmalıdır.

SteeringTorqSens1HealthStatus = 1 direksiyon tork sensörü 1 HealthStatus_T.HEALTY

SteeringTorqSens1HealthStatus = 0 direksiyon tork sensörü 1 HealthStatus_T.UNHEALTY

D Taslak

1.4

2. direksiyon simidi tork sensörü sağlık durumu bilgisi “SteeringTorqSens2HealthStatus”

değişkeni ile uygulama seviyesine 1ms aralıklarla paylaşılmalıdır.

SteeringTorqSens2HealthStatus = 1 direksiyon tork sensörü 2 HealthStatus_T.HEALTY

SteeringTorqSens2HealthStatus = 0 direksiyon tork sensörü 2 HealthStatus_T.UNHEALTY

D Taslak

50

Yazılım

Gereksinim

Numarası

Yazılım Gereksinimi ASIL Durum

1.5

“SteeringPosSens1HealthStatus” ve “SteeringPosSens2HealthStatus” sinyallerinden sadece birinin

sağlıksız olması durumunda

RedundancySafetyMech1 = SafetyMech_T.ACTIVE olmalıdır.

D Taslak

1.6

“SteeringPosSens1HealthStatus” ve “SteeringPosSens2HealthStatus” sinyallerinden ikisinin biden

sağlıksız olması durumunda

RedundancySafetyMech2 = SafetyMech_T.ACTIVE olmalıdır.

D Taslak

1.7

“SteeringPosSens1HealthStatus” ve “SteeringPosSens2HealthStatus” sinyallerinden ikisinin biden

sağlıklı olması durumunda

RedundancySafetyMech1 = SafetyMech_T.INACTIVE ve

RedundancySafetyMech2 = SafetyMech_T.INACTIVE olmalıdır.

D Taslak

1.8

“SteeringTorqSens1HealthStatus” ve “SteeringTorqSens2HealthStatus” sinyallerinden sadece

birinin sağlıksız olması durumunda

RedundancySafetyMech1 = SafetyMech_T.ACTIVE olmalıdır.

D Taslak

1.9

“SteeringTorqSens1HealthStatus” ve “SteeringTorqSens2HealthStatus” sinyallerinden ikisinin

biden sağlıksız olması durumunda

RedundancySafetyMech2 = SafetyMech_T.ACTIVE olmalıdır.

D Taslak

1.10

“SteeringTorqSens1HealthStatus” ve “SteeringTorqSens2HealthStatus” sinyallerinden ikisinin

biden sağlıklı olması durumunda

RedundancySafetyMech1 = SafetyMech_T.INACTIVE ve

RedundancySafetyMech2 = SafetyMech_T.INACTIVE olmalıdır.

D Taslak

51

2.2 ve 2.13 güvenlik gereksinimleri ölçüm yönteminin niteliği ile ilgili, 2.3 ve 2.14

ölçümün elektriksel sinyale dönüştürülme methoduyla ilgili olduğu görülmüştür. Bu

gereksinimler seçilen donanımın yetkinliği ile ilgili olup yazılım seviyesinde bir

gereksinim ile ilişkili değildir. 2.4 güvenlik gereksinimi ise beklenilen değerler dışında

yüksek veya alçak voltajın okunması gibi kontroller güvenilirlik kontrolü (plausibility

check) kapsamında değerlendirilir. Ancak seçilen sensör doğrudan bir voltaj çıkışı

değil kendi iç denetimlerinden geçirdiği veriyi haberleşme protokolüne uygun bir

şekilde iletmektedir. Detay için ekte paylaşılan sensör teknik dokümanı incelenebilir.

2.6 güvenlik gereksiniminde veri iletişiminin sağlıklı olması ile ilgilidir. Haberleşme

protokolünün sağlıklı bir şekilde sağlanamaması durumunda temel yazılım

seviyesinde sensör arızası olarak değerlendirilir. Bu bilgi uygulama seviyesine sensör

sağlık bilgisi ile aktarılabilir.

2.8 güvenlik gereksinimi sensörün donanımsal veya yazılım seviyesinde veri

analizinin yapılmasından bahsetmektedir. TLE 4998 sensörü bunu donanımsal olarak

sağlamaktadır.

2.9, 2.10, 2.11 güvenlik gereksinimleri verinin sağlıklı iletilmesi için yapılan

denetimlere yöneliktir. Çevre şartlarından etkilenmesi durumlarının denetlenmesi ve

hata sinyallerinin oluşturulması ile ilgilidir. Çevresel şartlar sıcaklık, elektromanyetik

etkilere karşı sensörün bağışıklığı ve hata denetimiyle ilgilir. Bunlar donanımsal olarak

sensörün tümleşik devresi tarafından yapılmaktadır. Sensör standartlaştırılmış SAE

J2716 tarafından belirlenmiş “Single Edge Nibble Transmission” protokolüne uygun

olarak ilgili hataları oluşturmaktadır. Bu çalışmada yazılımın uygulama seviyesi

gereksinimleri belirleneceği ve bu işlemlerin temel yazılım seviyesinde donanım

soyutlama sağlanacağından dolayı bu gereksinimler sensör sağlığı için atanan

değişkenlerin işlendiği temel yazılım katmanına atanmalıdır.

2.15 gereksiniminde direksiyon simidi pozisyon sensörünün EPS kontrol modülüne

iletilmesi belirtilmiştir. Buna benzer bir gereksinimin direksiyon simidi tork sensörü

bilgileri için de gereklidir. 2.16 gereksinimde gizli hataların etkisini azaltmak için

belirli aralıklarla direksiyon simidi pozisyon sensörünün verilerinin belirli aralıklarla

denetlenmesini istemektedir. Bu güvenlik gereksinimlerini sağlayabilmek için hata

tolerans zaman aralığını aşmayacak şekilde örnekleme yapılarak, güvenlik

mekanizmalarının çıktılarına debounce (elektrik akımındaki küçük dalgalanmaları

52

kaldırma) algoritması uygulanması ile sağlanabilir. Çizelge 4.3’deki gereksinimler bu

değerlendirmeler sonucunda yazılmıştır.

Çizelge 4.3 : Yazılım gereksinimleri grup 2.

Yazılım

Gereksinim

Numarası

Yazılım Gereksinimi ASIL Durum

1.11

1. direksiyon simidi pozisyon sensörü değeri

“SteeringPosSens1” 1 ms aralıklarla uygulama

seviyesi ile paylaşılmalıdır.

A Taslak

1.12

2. direksiyon simidi pozisyon sensörü değeri

“SteeringPosSens2” 1 ms aralıklarla uygulama

seviyesi ile paylaşılmalıdır.

A Taslak

1.13

1. direksiyon simidi tork sensörü değeri

“SteeringTorkSens1” 1 ms aralıklarla uygulama

seviyesi ile paylaşılmalıdır.

D Taslak

1.14

2. direksiyon simidi tork sensörü değeri

“SteeringTorkSens2” 1 ms aralıklarla uygulama

seviyesi ile paylaşılmalıdır.

D Taslak

1.15
“RedundancySafetyMech1” sinyaline debounce

algoritması uygulanmalıdır.
D Taslak

1.16
“RedundancySafetyMech2” sinyaline debounce

algoritması uygulanmalıdır.
D Taslak

1.17
“RationalitySafetyMech1” sinyaline debounce

algoritması uygulanmalıdır.
D Taslak

2.17 ve 2.18 güvenlik gereksinimleri donanımsal arıza sinyalleri tarafından

sağlanmaktadır. İlgili sinyaller işlenerek temel yazılım geliştirme seviyesinde sensör

arızası sinyalleri ile uygulama seviyesine aktarılabilir. Bu yöntem ile uygulama

seviyesi ve donanım seviyesi temel yazılım katmanı kullanılarak soyutlanmıştır.

2.19 güvenlik gereksinimi tek nokta hatası (single point fault) ile ilişkilidir. Tek nokta

hatası, bir elemanın arızası sonucu bütün sistemin işlevselliğini bozan hatalar olarak

nitelendirilir. Direksiyon simidi pozisyon sensörü fazlalıklı kullanımı, farklı sensör

berleme hatlarına sahip şekilde ve farklı fiziksel konumlara yerleştirilmesiyle bu

gereksinim sağlanır.

2.5 güvenlik gereksinimi, sensörden alınan bilginin rasyonel denetimlerden geçmesini

kapsar. Bunun için farklı sinyaller arasında mantıksal bir ilişki kurmayı gerektirir.

Buna örnek olarak birbirinden bağımsız olarak ölçülen iki sensör değeri

karşılaştırıldığında mantıksal bir tolerans aralığında birbiri ile tutarlı olmalıdır. Bu

kapsamda tork sensörü ve pozisyon sensörleri de mantıksal denetimlerden

53

geçirilebilir. Şekil 4.4’te paylaşılan yazılım gereksinimleri mantıksal denetimleri

kapsayıcı şekilde yazıldı.

Çizelge 4.4 : Yazılım gereksinimleri grup 3.

Yazılım

Gereksinim

Numarası

Yazılım Gereksinimi ASIL Durum

1.18

Direksiyon simidi tork sensörü

“SteeringTorqSensValue” değeri sağlıklı

“SteeringTorqSens1Value” ve

“SteeringTorqSens2Value” değerlerinin ortalaması

ile hesaplanmalıdır.

Eğer değerlerden biri sağlıklı değil ise sağlıklı

olan değer kabul edilmeli, ikisi de sağlıksız ise

varsayılan “STEERING_TORQ_DEF_VAL”

değeri kabul edilmelidir.

D Taslak

1.19

Direksiyon simidi pozisyon sensörü

“SteeringPosSensValue” değeri sağlıklı

“SteeringPosSens1Value” ve

“SteeringPosSens2Value” değerlerinin ortalaması

ile hesaplanmalıdır.

Eğer değerlerden biri sağlıklı değil ise sağlıklı

olan değer kabul edilmeli, ikisi de sağlıksız ise

varsayılan “STEERING_POS_DEF_VAL” değeri

kabul edilmelidir.

A Taslak

1.20

“SteeringPosSensValue” merkezi pozisyona DSB

tolerans değerinden daha yakın iken

“SteeringTorqSensValue” değeri DSB tolerans

değerinden büyük olması durumunda

RationalitySafetyMech1 =

SafetyMech_T.ACTIVE,

küçük olması durumunda

RationalitySafetyMech1 =

SafetyMech_T.INACTIVE olmalıdır.

D Taslak

1.21

“SteeringTorqSensValue” merkezi pozisyona DSB

tolerans değerinden daha yakın iken

“SteeringPosSensValue” değeri DSB tolerans

değerinden büyük olması durumunda

RationalitySafetyMech1 =

SafetyMech_T.ACTIVE,

küçük olması durumunda

RationalitySafetyMech1 =

SafetyMech_T.INACTIVE olmalıdır.

D Taslak

Bu bölüme kadar yazılan yazılım gereksinimleri güvenlik mekanizmalarının nasıl

hesaplanacağı açıklandı. Bundan sonra oluşturulan güvenlik mekanizmalarına göre

hata tolerans zaman aralığında güvenli durumlara geçme stratejisinin belirlendiği state

54

machine (durum makinesi) açıklanacaktır. Tanımlanan RedundancySafetyMech1,

RedundancySafetyMech2 ve RationalitySafetyMech1 güvenlik mekanizmalarının

gerçekleşmesi durumunda geçiş şartlarına bağlı olarak güvenli durum 1 ve güvenli

durum 2 kararları alınacak ve bu durumlarda alınacak reaksiyonlar tanımlanacaktır.

Bu kapsamda Çizelge 4.5’teki gereksinimler yazıldı.

Çizelge 4.5 : Yazılım gereksinimleri grup 4.

Yazılım

Gereksinim

Numarası

Yazılım Gereksinimi ASIL Durum

1.22

Başlangıç durumu “DefSST” olmalıdır.

Bu durumda;

SafeState1 = SafeState_T.INACTIVE

SafeState2 = SafeState_T.INACTIVE olmalıdır.

D Taslak

1.23

RedundancySafetyMech2 =

SafetyMech_T.ACTIVE olduğunda “SST2”

durumuna geçilmelidir.

Bu durumda;

SafeState2 = SafeState_T.ACTIVE olmalıdır.

D Taslak

1.24

RedundancySafetyMech1 =

SafetyMech_T.ACTIVE veya

RationalitySafetyMech1 = SafetyMech_T.ACTIVE

olduğunda “SST1” durumuna geçilmelidir.

Bu durumda;

SafeState1 = SafeState_T.WARNING olmalıdır.

D Taslak

1.25

SST1 durumunda VehicleSpeed değeri

EPSSpeedLimit değerini geçmeden,

RedundancySafetyMech1 =

SafetyMech_T.INACTIVE ve

RationalitySafetyMech1 =

SafetyMech_T.INACTIVE olduğunda

DefSTT durmuna geçilmelidir.

Bu durumda;

SafeState1 = SafeState_T.INACTIVE olmalıdır.

D Taslak

1.26

“SafeState1” durumunda iken VehicleSpeed değeri

EPSSpeedLimit değerini geçmesi durumunda

SafeState1 = SafeState_T.ACTIVE olmalı ve

sistem kapatılana kadar kalıcı olmalıdır.

D Taslak

Tanımlanan gereksinimler mimari tasarım sürecinin referanslarını oluşturacaktır.

55

4.3 Yazılım Mimarisinin Belirlenmesi

Yazılım mimarisi, yazılım elemanlarının birbiri ile etkileşimlerini ve hiyerarşik

yapılarını açıklayarak sistemin organizasyonunu tasvir eder. Komponentler arasındaki

veri akışını sağlayan arayüzler gibi statik yönler ve kod akışı ve zamansal işlemler gibi

dinamik yönler farklı diyagramlarla açıklanır.

Yazılım mimarisi geliştirilirken, microdenetleyicinin sahip olduğu kabiliyetlere ve

hata denetleme mekanizmalarına hâkim olmak fonksiyonel güvenliği sağlamak içi

önemlidir. Pratikte donanımsal güvenlik mekanizmaları, uygulama katmanından

soyutlanmaktadır. Bunun temelinde geliştirilen uygulamaların donanımdan bağımsız

hale getirilerek farklı uygulama ve donanımlarda kullanılabilirliğini arttırarak yeniden

geliştirme masraflarından kaçınmaktır. Bu nedenle temel yazılım katmanı olarak

adlandırılan katmanda zorunlu olmamakla birlikte sektörel seviyede kabul gören

AUTOSAR mimarisi kullanılarak ortak bir taban oluşturuldu. Mikrodenetleyici

üreticileri de bu yaklaşıma adaptasyon sağlamış MCAL(Microcontroller Abstraction

Layer) fonksiyonlarını üreticiler ile paylaşılmaktadır. Bu nedenle temel yazılım

katmanı genel olarak farklı üreticiler olmasına rağmen birbiri ile benzerlik gösterir. Bu

nedenle, farklılığı yaratan bölüm uygulama seviyesindeki mimarilerden kaynaklanır.

Bu çalışmada da uygulama seviyesini açıklayıcı diyagramlar paylaşıldı.

İlk olarak, komponentler arası veri akışını açıklayıcı Veri Akış Diyagramı (Data Flow

Diagram) Şekil 4.5’te paylaşıldı.

Şekil 4.5 : Veri akış diyagramı (Data flow diagram).

Bu diagram ile temel yazılım seviyesinden okunan ve yazılan verilerin akışı ve

komponentler arasındaki etkileşim belirlenmiştir. Gelişmiş mimari tasarım araçlarında

56

arayüz daha fazla bilgiyi destekleyecek şekilde tasarlanmıştır. Sinyallerin veri tipleri

gibi ek bilgileri de içerir. Bu bilgiler kullanılarak komponentlerin giriş ve çıkış

sinyalleri tanımlanır.

Bir başka destekleyici diyagram ise sekans diyagramlarıdır (Sequance Diagram).

Sekans diyagramları ile çağırılacak fonksiyonlar ve bu fonksiyonların yapacağı

işlemlerin yazılım birimlerine kırılımı yapılır. Yazılım birimlerine ilgili yazılım

gereksinimleri atanır. Yazılım gereksinimlerinin mimari seviyede iki yönlü takibinin

yapılması için profesyonel yazılımlardan destek alınır. Aşağıda RedundancyCtrl

komponentinin sekans diyagramları paylaşıldı.

Şekil 4.6’daki sekans diyagramı 1 milisaniyelik periyodik görev süresinde bir çağırılan

RedundancyCtrl1ms fonksiyonu olduğunu, bu fonksiyonda kullanılan giriş

sinyallerinin RTE’den okunduğunu sonrasında fonksiyonun görevini yerine

getirdiğini, son olarak da fonksiyon çıkış sinyallerinin RTE ile paylaşıldığı

anlaşılmaktadır.

Şekil 4.6 : Sekans diyagramı örneği 1.

Şekil 4.7’deki sekans diyagramında RedundancyCtrl1ms fonksiyonunun “Acquire

inputs from RTE” bölümünün içeriği gösterilerek giriş sinyalleri açıklanmaktadır.

Giriş sinyallerinin RTE’den okunuş sırası ve veri tipi bilgileri paylaşılmaktadır.

57

Şekil 4.7 : Sekans diyagramı örneği 2.

Şekil 4.8’deki sekans diyagramında RedundancyCtrl1ms fonksiyonunun

“RedundancyCtrl execution” bölümünde yürütülecek yazılım birimleri

tanımlanmaktadır. Eğer bir yazılım mimari tasarım programı kullanılıyor ve

gereksinim yönetimini destekliyorsa, yürütülecek yazılım birimlerine yazılım

gereksinimleri atanarak iki yönlü takip edilebilirlik sağlanır. Örnek olarak paylaşılan

fonksiyon RedSafetyMech1Calc ve RedSafetyMech2Calc yazılım birimlerinden

oluşmaktadır.

Şekil 4.8 : Sekans diyagramı örneği 3.

Şekil 4.9’da paylaşılan sekans ile hesaplanan değerlerin RTE’e yazılma sekanksı

paylaşılmaktadır.

58

Şekil 4.9’da paylaşılan sekans diyagramında, ilk sekans diyagramında gösterilen

“Provide outputs” kısmının detayları gösterilmektedir. Bu diyagramda

RedundancyCtrl fonksiyonu içerisinde hesaplanan değerlerin RTE’a yazılma sırası ve

veri tipi bilgileri açıklanmaktadır.

Şekil 4.9 : Sekans diyagramı örneği 4.

Sekans diyagramları kodun dinamik yapısını açıklamak için kullanılır. Böylelikle

geliştirilen fonksiyonun yazılım birimlerine kırılımı yaplmaktadır. Yazılım

birimlerinin, yazılım gereksinimleri ile ilişkileri ve yazılım birimlerinin yürütülme

sırası açıklanmaktadır. Bu bilgiler detay tasarım kısmında kodun geliştirilmesi

sürecinde kullanılacaktır.

Durum makineleri, sistem mod yönetimi ve arıza yönetimi gibi karmaşık sistemleri

açıklamak için kullanılan etkili bir yöntemdir. Durumlar arasında geçişler belirlenen

koşullara göre sağlanır ve durum bilgisine göre reaksiyonlar yürütülür. Şekil 4.10’da

güvenlik mekanizmalarının yürütüldüğü StateMachine fonksiyonunun durum

makinesini paylaşıldı.

Şekil 4.10 : Durum makinesi diyagramı (State machine).

59

Otomotiv elektronik kontrol sistemlerini geliştirmek geniş bir ekip ve iş birliği

gerektirir. Komponentler geliştirilirken ekip içi iletişimi yüksek tutmak ve geliştirme

sürecinde referans alınacak bir mimari tasarıma sahip olmak tüm ekibin uyum

içerisinde çalışmasını sağlamaktadır. Mimari tasarım kapsamında paylaşılan

diyagramlar ve bilgiler ile fonksiyon detay tasarım süreci için bir çerçeve çizmektedir.

4.4 Yazılım Birim Tasarımı

Bu bölümde yazılım geliştirme sürecinde dikkat edilmesi gereken noktalara

değinilerek uygulama örnekleri paylaşılacaktır. Konu akışını bölmemek adına detay

tasarımlar Ek A’da paylaşıldı.

Yazılım gereksinimleri ve yazılım mimarisi, yazılım birim tasarımı sürecinde

yapılacak geliştirmeler için bir çerçeve çizerek belirsizlikleri ortadan kaldırmaktadır.

İlk olarak geliştirilecek fonksiyonun statik yönleri tanımlanarak sürece başlanır. Daha

önce mimari tasarım bölümünde paylaşılan veri akış diyagramı incelendiğinde

runnable (RTE tarafından tetiklenebilen, komponent tarafından sağlanan bir sıra

işlemler dizisir.) ve RTE arayüzleri Şekil 4.11’de açıkça görülmektedir.

Şekil 4.11 : AUTOSAR kütüphanesi.

AUTOSAR tanımlamaları yapıldıktan sonra yazılım birimleri arasındaki sinyal ve

parametre tanımlamaları yapılır. Kullanılan sinyallerin yazılım birimleri arasındaki

ilişkileri sekans diyagramları referans alınarak oluşturulur. Son olarak yazılım

60

birimlerinin yerine getirmekle sorumlu oldukları fonksiyonlar yazılım

gereksinimlerini sağlayacak şekilde geliştirilir. İyi bir yazılım geliştirmenin temelinde

ihtiyaçların açıkça belirlenmesi ve bu ihtiyaçlar ve kısıtlamalar çerçevesinde yazılım

gereksinimlerinin belirlenmesi yatar. Kafa karışıklığına neden olmayan anlaşılabilir

açık gereksinimler kod kalitesini arttırır ve ileride hata düzeltme süreçlerini kısaltır.

Günümüzde otomotiv sektöründe modern bir araçta ortalama 100 milyon satır kod

bulunmaktadır. [notepad] Böylesine karmaşık bir sistemde gereksinimlerin takibi

oldukça zorlaşmaktadır. Bunun için iki yönlü takip edilebilirliği arttırmak için,

gereksinim, mimari, model seviyesinde tasarım, C kodu ve test süreçlerinde mümkün

olduğunca takip edilebilirliği arttıracak araçlar kullanılması bir gereklilik haline

gelmektedir. Uygulama bölümünde lisans problemleri nedeniyle profesyonel

gereksinim yönetim modülleri ve mimari tasarım programında örnek

paylaşılamamaktadır. Buna rağmen yazılım birim tasarımı sürecinde kullanılan model

tabanlı yazılım geliştirme aracında bir uygulama yapılarak genel yapı hakkında bilgi

verilmektedir.

Yazılım gereksinimlerinin belirlenmesi sürecinde açıklanan gereksinimler bir Excel

formatında toplandı. Toplanan gereksinimler programa yüklenerek ilgili yazılım

birimlerine atandı.Bu gereksinimler Şekil 4.12’de görüldüğü üzere MATLAB

ortamına aktarıldı. Böylelikle model seviyesinde yapılan bir işlemin dayandığı

gereksinim kontrol edilmek istendiğinde veya gereksinimler incelenirken, yapılan

işlemin kod seviyesinde nasıl uygulandığı incelenmek istediğinde kolayca ulaşılabilir

ve raporlanabilir.

Şekil 4.12 : Gereksinim yönetimi aracı arayüzü.

61

Şekil 4.13 : Gereksinim - model bağlantısı gösterimi.

Şekil 4.13’te gereksinimlerin model ile ilişkilendirilmesi görsel olarak paylaşıldı.

Yazılım geliştirme sürecinde farklı yazılım geliştiricilerin kod kalitelerinde standardı

yakalayabilmek için ve proje bütününde tutarlılığı ve okunabilirliği sağlayabilmek

adına şartnameler belirlenir. Model tabanlı yazılım geliştirme sürecinde kullanılan

programın standart şartnameleri kullanılmalı veya kurum içi standartlar

oluşturulmalıdır. Firmaların oluşturduğu modelleme şartnameleri ve süreçleri fikri

mülkiyet haklarından dolayı paylaşılamamaktadır. Bunun yerine kullanılan MATLAB

Simulink programı tarafından müşterilerine kendi şartnamelerinin temellerini

oluşturması adına paylaşılan standart kontroller Şekil 4.14’te paylaşıldı. Örnek olarak

RationalityCtrl modelinde sinyalin limitleme işlemi yapılırken uyarı alındı. Alınan

uyarı Şekil 4.14’te görülmekte ve Şekil 4.15’te model seviyesinde karşılık geldiği yer

verilmektedir.

62

Şekil 4.14 : Modelleme standardı kontrolleri.

Örnekteki uyarı incelendiğinde birbirinden farklı veri tipleri arasında ilişki operatörü

(relational operator) kullanımından kaynaklandığı görüldü. İlişki operatörleri iki değer

arasında karşılaştırma işlemlerinde kullanılan bir operatördür. Farklı veri tipleri

arasında yapılan karşılaştırmalar kullanılan derleyici seviyesinde farklı tepkilere neden

olabilmektedir. Geliştirilen uygulamanın her işlemci ve derleyicide farklılığa

sebebiyet vermemesi için güçlü veri tipi (strong data typing) sağlanmalıdır. Aşağıdaki

şekilde görüldüğü üzere single veri tipine sahip bir veri double veri tipi ile

sınırlandırılırken ilişki operatörü kullanımına sebebiyet vermektedir.

Şekil 4.15 : Güçlü veri tipi kontrolü uyarısıın model seviyesinde gösterimi.

Problemin çözümü için SteerPosSens1Value sinyali ve STERRPOS_LIM limit

değerleri aynı veri tipinde tanımlanmıştır ve yapılan kontroller ile doğrulanmıştır.

Şekil 4.16’da paylaşılan görselde kontrollerin tamamının başarılı bir şekilde geçtiği

görülmektedir.

63

Şekil 4.16 : Simulink standart modelleme şartnamesi.

Modelleme seviyesindeki kontrollere ek olarak, otomatik kod üretimi sürecinde

standardın sağlanması için de bir sıra kontrol gerekmektedir. Kullanılan program

otomatik kod üretirken kullanılan dil için seçilen standarda uygun bir şekilde çıktı

verebilmesi bu kontrollere bağlıdır. Şekil 4.17’de model seviyesinden MISRA C

standardına uygun C kodu üretilebilmesi için model seviyesinde uyulması gereken

kurallar paylaşıldı. Şekilde görüldüğü üzere RationalityCtrl fonksiyonu için yapılan

kontroller başarılı şekilde geçildi.

Şekil 4.17 : Simulink modelleme seviyesindeki MISRA C şartnamesi.

64

Gerekli kontroller sağlandıktan sonra modelden otomatik kod üretilir. Şekil 4.18’de

üretilen kod ile model arasındaki takip edilebilirlik süreci gösterilmektedir. Model ve

kod arasındaki ilişkiler gözlemlenerek üretilen kodun istenilen gereklilikleri

karşılayıp karşılamayacağı denetlenir. Otomatik kod üretimi süreci kullanılan program

özelinde uzmanlık gerektirir. Gelişen teknoloji ile optimizasyon ayarları ve

konfigürasyonlara bağlı olarak kendi iç dinamikleri kavranmalıdır. Yetkinliğe

ulaşıldıktan sonra üretilen kod dönüşüm süreci manipüle edilerek istenilen yapıda kod

üretilebilmektedir. Otomatik kod üretiminin avantajlarından birisi ise verilen

argümanlara bağlı olarak tutarlı kod üretimidir. Bir diğer önemli nokta ise kullanılan

donanımın sahip olduğu işlemci ve mimariye yönelik kod üretimi süreçlerini

desteklemeleridir. Bir yazılım geliştiricinin yıllar boyunca kazanacağı deneyim,

geliştiricinin bir işlemci mimarisine adaptasyonunu sağlayacaktır. Ancak farklı

projelerde ihtiyaçlara göre farklı mimarilere göre optimize edilmiş kod yazabilmek ve

bunu tutarlı bir şekilde devam ettirebilmek oldukça zordur. Bu nedenle uzun vadede

otomatik kod üretimi sürecine uyum sağlamak faydalıdır.

Şekil 4.18 : Otomatik üretilen kod ve model ilişkisi.

4.5 Yazılım Birim Doğrulama

Yazılım birim doğrulama sürecinde amaç, yazılım birimlerinin gereksinimlerle tutarlı

bir şekilde tasarlandığını bir sıra testten geçirerek doğrulamaktır. Yazılım birim

testlerinde hangi doğrulama yöntemlerinin kullanılacağı test doğrulama planında

belirlenir. Doğrulama yöntemleri daha önceki bölümlerde detaylı şekilde paylaşıldı.

Her yazılım birim doğrulama tekniği kendi içinde farklı odaklara sahiptir. Bu nedenle

65

mümkün olduğunca kodu farklı testlerden geçirerek ileride tespit edilecek hataların

önüne geçmektir. Daha yüksek seviyelerdeki testlerde bu hataların tespit edilmesi

durumunda kod güncellemeleri ve yeniden tüm test süreçlerini yeniden uygulamak

gerekmektedir.

Yapılan testlerde kodun gereksinimler tarafından belirlenen işlevi yerine getirdiğinin

kanıtı olacak doğrulama kriterleri belirlenmelidir. Yapılan testler boyunca kod hiçbir

doğrulama kriteri ihlal edilmeden çalışması durumunda doğrulama sürecinin başarılı

bir şekilde tamamlandığı kabul edilerek raporlar oluşturulur.

Test planı geliştirilirken ürün geliştirmenin bir süreç olduğu ve testler sonucunda bir

hata bulunması sonucunda döngülerin tekrar edeceği ve benzer testlerin yeniden

yapılması gerekeceği dikkate alınmalıdır. Hata düzeltme, performans iyileştirme gibi

kodda yapılan değişikliklerden sonra kodun davranışında farklılıklar meydana

gelebileceği kabul edilerek regresyon testleri yapılır. Regresyon testlerinin amacı

fonksiyonun kritik alanlarının yapılan değişiklikler sonrasında da aynı çalıştığının

doğrulanması için yapılır. Detaylı test süreçlerine başlamadan önce regresyon

testlerinde büyük bir hatanın olup olmadığı doğrulandıktan sonra diğer süreçleri

başlatmak zaman kazanılmasını sağlar.

Uygulama bölümünde, kod işlemci üzerinde çalıştırılmadan denetlemeler ve gözden

geçirmelerle yapılan testler yerine uygulamalı örneklere odaklanılacaktır.

İlk olarak, statik kod analizi örneği paylaşılacaktır. Statik kod analizi, program

yürütülerek yapılan dinamik analizlerin aksine, herhangi bir yürütme işlemi

yapılmadan kaynak kodunda bulunan hataların ve standartlara uygunluğunu test etmek

için bir bilgisayar programı tarafından yürütülen testtir.

Şekil 4.19’da statik kod analizinde bulunan sıfıra bölünme hatası tespit edildi. IEEE

754 floating point aritmetik standardına göre float veri tipinde yapılan sıfıra bölünme

işlemleri inf veya -inf sonuçlarını vermektedir. Ancak bu durum uygulamada

beklenmedik hatalara sebebiyet verebilmektedir. MISRA C Directive 4.1 “Run-time

failures shall be minimized” maddesi kapsamında sıfıra bölünme işleminden

kaçınılması gerektiği belirtilmektedir.

66

Şekil 4.19 : Statik kod analizi hata örneği.

Kullanılan programın iki yönlü takip edilebilirliği sağlaması bu gibi durumlarda

oldukça faydalıdır. İlgili kod satırına gidilerek model seviyesindeki hata kaynağına

ulaşılabilmektedir. Şekil 4.20’de koddaki hatanın model seviyesinde ilişkili olduğu

işlem gösterilmektedir.

Şekil 4.20 : Statik kod analizi hatasının model seviyesinde tespiti.

Yapılan kontroller sonucunda Sens1ValSum sinyalinin HealthStatusSum sinyaline

bölünmesi durumundan kaynaklandığı fark edildi. Bunu önlemek için farklı savunma

amaçlı algoritmalar (defensive algorithms) kullanılabilir. Örnek bir yaklaşım Şekil

4.21’de paylaşıldı.

67

Şekil 4.21 : Sıfıra bölünme hatası için model seviyesinde çözüm önerisi.

Bölüm işleminde kullanılan, bölen sinyal sınırlandırılarak sıfıra bölünme durumu

ortadan kaldırılmış, bölenin sıfır olması durumunda da varsayılan değer koşulla

sağlanmıştır. Böylelikle sıfıra bölünmeden kaynaklanacak hataların önüne geçilmiştir.

Yapılan değişiklikler sonucu yürütülen statik kod analizi sonucu Şekil 4.22’de

görülmektedir.

Şekil 4.22 : Başarılı tamamlanan statik kod analizi örneği.

Statik kod analizinde çalışma-zamanı kontrollerine (run-time check), kodlama

standartları ve proje özelinde belirlenen kod metriklerine uyumluluk da kontrol

edilebilmektedir.

Dinamik davranışların test edilmesi sürecine de bir örnek vermek adına StateMachine

fonksiyonu içinde kullanılan durum makinesi yazılım birimi için Değiştirilmiş

Koşul/Karar Kapsamı (MC/DC – Modified Condition/Desicion Coverage) testi

paylaşıldı.

Testin yürütülebilmesi için bir test koşumunun yapılacağı ortamı (test harness)

oluşturulmalıdır. Test senaryoları üretmenin ve sonuçları görüntülemenin kullanılan

programa göre farklı yöntemler kullanılabilir. Örnek bir test ortamı Şekil 4.23’te

paylaşıldı.

68

Şekil 4.23 : Test koşum ortamı örneği.

MC/DC, diğer koşulları sabit tutarken her koşulun tüm olası durumların test edilmesini

gerektiren bir kapsama testidir. Ayrıca bireysel bir koşuldaki değişikliğin sonucu

değiştirdiği gösterilmelidir. MC/DC gerekliliklerini yerine getirmek aşağıdaki koşullar

sağlanmalıdır;

- Programın her çıkış ve giriş noktası, test durumlarından en az birinde

yürütülmeli

- Her karar, olası tüm sonuçlar için test edilmeli

- Bir karardaki her koşul, tüm olası durumlar için test edilmeli

- Soncu bağımsız olarak değiştirmek için her bir koşul gösterilmeli

Şekil 4.24’te oluşturulan bir test senaryosunun sinyalleri ve bu sinyallere karşı sistem

cevapları görülmektedir. Bu örnekte, görüntüleme amacıyla oluşturulan güvenlik

mekanizma sinyalleri ve araç hızı bilgisine bağlı olarak güvenli durum geçişleri

incelenmektedir.

Şekil 4.24 : MC/DC testi giriş ve çıkış sinyalleri.

69

Yürütülen test senaryosu sonucunda durumlar arasında koşullara bağlı olarak geçişler

sağlandı ve buna bağlı durumlar incelenebilir. Sağlanmayan koşullar için farklı test

sonuçları oluşturularak tam kapsama sağlanabilir. Kapsama testinde tam kapsamaya

oluşmak fonksiyonun doğru çalıştığı anlamına gelmez, kapsama sonuçlarına göre

sonuçlar incelenmeli veya doğrulama kriterlerine göre değerlendirilmelidir. MC/DC

testi ASIL D seviyesi yazılım birimleri için şiddetle tavsiye edilmektedir. Kapsama

testi sonuçları Şekil 4.25 ve Şekil 4.26’da paylaşıldı.

Şekil 4.25 : Geliştirme sürecinde MC/DC kapsama testi.

Şekil 4.26 : Tamamlanmış MC/DC kapsama testi.

4.6 Simülasyon

Simülasyon modellemek, gerçek dünyadaki sorunları dijital ortama aktararak güvenli

ve verimli bir şekilde çözmemizi sağlar. Kolayca doğrulama yapmak, birimler arası

iletişim ve anlaşılabilirliği arttıran önemli bir analiz yöntemidir. Farklı disiplinler

arasında simülasyon modellemek, karmaşık sistemler hakkında bilgi sahibi olunmasını

sağlayarak çözüm sürecini iyileştirir.

Yazılım birimi tarafından geliştirilen fonksiyonların sistem seviyesine aktarılmasında

maliyetli düzenekler kurulmadan önce başvurulması gereken bir yöntemdir. Sistemsel

bir hatayı erken fark etmek, kurulan düzeneğin modifikasyonundan kaynaklanacak

70

maliyetleri düşürür. Bu nedenle geliştirilen güvenlik fonksiyonlarını denemek

amacıyla simülasyon modeli oluşturuldu. Oluşturulan modelin üst seviyeden alınmış

bir görseli Şekil 4.27’de paylaşıldı.

Şekil 4.27 : EPS simülasyon modeli.

Kurulan simülasyon modelinde, MATLAB/Simulink Simscape aracı kullanılarak

fiziksel sistemler modellenmiştir. Sistemde fiziksel olarak direksiyon mili, burulma

mili gibi direksiyon sistemini elemanları ve Kalıcı Mıknatıslı Senkron Motor (PMSM

– Permanent Magnet Synchronous Motor) kullanılmıştır. Burulma mili üzerinden

alınan pozisyon ve tork değerlerine bağlı olarak PMSM sürücü direksiyon miline

uygulanan kuvveti yükseltmektedir.

Bu simülasyonun yapılmasının amacı fonksiyonel güvenlik fonksiyonlarının görevini

beklenilen şekilde yerine getirebildiğini doğrulamaktır. 3 katmanlı denetleme

mekanizmasında bahsedildiği gibi 2.seviye fonksiyonlar incelenecektir. RTE

katmanını modelleyebilmek adına fonksiyonların çağrılarını (function call) üreten bir

durum makinesi kullanıldı. Oluşturulan model Şekil 4.28’de paylaşıldı.

Şekil 4.28 : 2. seviye görüntüleme fonksiyonlarının simülasyon modeli.

71

Sistem farklı test senaryolarında çalıştırıldı ve doğrulandı. Süreci açıklamak adına

örnek bir test senaryosu ve sistem tepkileri paylaşıldı.

Örnek test senaryosunda, fazlalıklı pozisyon sensörü kullanımında sensörlerin farklı

zamanlarda donanımsal arızalara maruz kalması ve iki sensörde birden donanımsal

arıza olması durumları incelendi. Şekil 4.29’daki görsel ile sistemde kullanılan

sensörlerin durum bilgileri paylaşıldı.

Şekil 4.29 : Simülasyon test senaryosu sinyalleri.

Sensör durum bilgilerine bağlı olarak inceleme yapıldığında beklenen sonuçlar,

pozisyon sensörlerinin sadece birisinde arıza olduğu durumlarda sarı ikaz ikonu için

sinyal üretilmesi, iki sensörün arıza yaptığı durumlarda sistemin kalıcı hata üreterek

PMSM sürücüsünü devredışı bırakmasıdır. Bir sensörün arıza verdiği durumda araç

hızı limit değeri aşmadığından sadece ikaz verecek PMSM sürücüsü devredışı

kalmayacaktır. Sistem tepkilerinden beklenilen sonuçların alındığı Şekil 4.30’da

görülmektedir.

72

Şekil 4.30 : Simülasyon test sonuçları.

Sistem cevaplarının modellenen sisteme etkilerini incelemek için sürücünün

direksiyon sistemine uyguladığı tork, PMSM motorunun sağladığı güç yardımı ve

direksiyon sistemine uygulanan toplam tork değerleri ile Şekil 4.31’dekigrafik

oluşturuldu. PMSM sürücüsü devre dışı bırakma sinyali oluştuktan sonra PMSM

motorundan elde edilen gelen dönme momentin kesildiği ve sadece sürücünün

uyguladığı torkun sistemde kaldığı görülmektedir.

Şekil 4.31 : EPS tork sinyalleri

73

5. SONUÇ VE ÖNERİLER

Bu çalışmada elektronik sistemlerin otomotiv endüstrisinde artan kullanımıyla birlikte

gün geçtikçe önemi artan elektronik sistemlerin güvenliği üzerinde durarak ISO 26262

Kara Araçları Fonksiyonel Güvenlik standardının önemine vurgu yapıldı. Fonksiyonel

güvenlik standardının, otomotiv sektörünün büyük paydaşlarının ortak çalışması ile

neredeyse sektörel standartlar haline gelmiş AUTOSAR, E-Gas gibi mimarilere

etkileri incelendi. Bu çalışma otomotiv elektroniği ve güvenliği hakkında bilgi sahibi

olmak isteyen araştırmacılar ve sektöre yeni adım atan kişiler için kullanılan

standartlar, süreçler ve teknik terimler hakkında bilgi vermeyi amaçlamaktadır.

İlk olarak, uygulamada kullanılacak hedef bir elektronik kontrol sistemi seçildi.

Uygulama sürecinde konu takibini kolaylaştırmak amacıyla seçilen sistemin temel

çalışma prensipleri hakkında bilgiler paylaşıldı.

Daha sonrasında yönetimsel konuları tezin kapsamı dışında bırakarak, Amerikan

Ulusal Otoyol Trafik Güvenliği İdaresi (NHTSA - National Highway Traffic Safety

Administration) taradından genel EPS sistemleri için yayınlanan fonksiyonel güvenlik

değerlendirmesi referans alınarak, tehlike analizi ve risk değerlendirmesi, fonksiyonel

güvenlik konsepti, teknik güvenlik konsepti gibi kritik konular açıklandı.

Bunun üstüne, sistem ve yazılım geliştirme süreçlerini açıklamak için, sektörde

oldukça popüler olan V-Döngüsü hakkında bilgiler verildi. Verilen bilgiler

doğrultusunda uygulama örnekleri gerçekleştirildi.

Tüm bunlara ek olarak model tabanlı yazılım geliştirme ve otomaik kod dönüşümü

gibi güncel teknolojiler hakkında bilgiler sunuldu.

Son olarak, gelecek çalışmalara değinilecek olursa, özellikle insan kontrolünü

tamamen ortadan kaldıracak otonom sürüş sistemlerindeki gelişmeler fonksiyonel

güvenlik standartlarının gelişmesini destekleyeceği öngörülmektedir. Kara araçları

fonksiyonel güvenlik standardının ilk versiyonunun yayınlama yılı 2011 olduğundan,

yayınlanan tezler oldukça güncel tarihli ve bu kadar kapsamlı bir konu için nicelik

olarak yetersizdir. Gereksinim yönetimi, uygulama seviyesinde mimari yaklaşımlar

kendi başına tez konusu olabilecek derinliktedir. Standardın hala gelişmekte ve sektör

ihtiyacının yüksek olduğu düşünüldüğünde yapılacak akademik araştırmalar hem

74

standardın geliştirilmesine hem de konudaki uzman açığının giderilmesini

sağlayacaktır.

75

KAYNAKLAR

[1] Broy, M. (2006). Challenges in automotive software engineering, in: Proceedings

of the 28th International Conference on Software Engineering. pp. 33-

42

[2] Charette, R. N. (2009). This Car Runs on Code.

https://spectrum.ieee.org/this-car-runs-on-code

[3] Shorky, M. ve Hinchey, M. (2009). Model-Based Verification of Embedded

Software. IEEE Computer. 42. 53-59. 10.1109/MC.2009.125.

[4] Bringmann, E. ve Kramer, A. (2008). Model-Based Testing of Automotive

Systems. 485-493. 10.1109/ICST.2008.45.

[5] Grand View Research. (2019). Automotive Electronics Market Size, Share &

Trends Analysis Report By Component (Electronic Control Unit,

Sensors, Current Carrying Devices), By Application, By Sales Channel,

By Region, And Segment Forecasts, 2021 - 2028 (Rapor No: 978-1-

68038-357-7)

[6] Broy, M., Kristan, S., Krcmar, H. & Schätz, Bernhard (2011). What is the

Benefit of a Model-Based Design of Embedded Software Systems in

the Car Industry?. doi: 10.4018/978-1-4666-4301-7.ch017.

[7] C. Bunse, H. Gross and C. Peper, (2007). "Applying a Model-based Approach

for Embedded System Development," 33rd EUROMICRO Conference

on Software Engineering and Advanced Applications 2007, pp. 121-

128, doi: 10.1109/EUROMICRO.2007.18.

[8] ISO (2018). ISO 26262 - Road Vehicles – Functional

[9] AUTOSAR (2022). Partnership History of AUTOSAR.

https://www.autosar.org/about/history/

[10] Grosmann, M., Hirz, M. & Fabian, J. (2016). Efficient application of multi-

core processors as substitute of the E-Gas (Etc) monitoring concept.

913-918. doi: 10.1109/SAI.2016.7556089

[11] Nakayama, T. & Suda, E. (1994). The Present And Future Of Electric Power

Steering International Journal of Vehicle Design, Volume 15, Issue

3/4/5, 1994, p. 243-54.

[12] Becker, C., Nasser, A., Attioui, F., Arthur, D., Moy, A., & Brewer, J. (2018).

Functional safety assessment of a generic electric power steering

system with active steering and four-wheel steering features (Report

No. DOT HS 812 575). Washington, DC: National Highway Traffic

Safety Administration.

76

[13] EGAS Workgroup (2015). “Standardized E-Gas Monitoring Concept for

Gasoline and Diesel Engine Control Units.” Version 6.0.

https://nanopdf.com/download/standardized-e-gas-monitoring-

concept-for-gasoline-and_pdf

[14] Infenion (2015). Sensor Solutions for Automotive, Industrial and Consumer

Applications.

 https://www.infineon.com/dgdl/Infineon-

Sensor_Solutions_for_Automotive_Industrial_and+Customer_Appl_B

R-2015.pdf?fileId=5546d4614937379a01495212845c039f

[15] Peter K. (2012). The Automotive Standard ISO 26262, the Innovative Driver for

Enhanced Safety Assessment & Technology for Motor Cars, Procedia

Engineering, Volume 45, Pages 2-10, ISSN 1877-7058

[16] Piper, T. (2015). Assessing and Enhancing Functional Safety Mechanisms for

Safety-Critical Software Systems. (Doktora tezi). Darmstadt,

Technische Universität.

[17] Layal, V. (2016). Analysis and Specification of an AUTOSAR based ECU in

compliance withISO 26262 Functional Safety Standard.

[18] Stolte, T., Bagschik, G. & Maurer, M. (2016). Safety goals and functional safety

requirements for actuation systems of automated vehicles. IEEE 19th

International Conference on Intelligent Transportation Systems (ITSC),

2016, pp. 2191-2198, doi: 10.1109/ITSC.2016.7795910.

[19] Kristian, B. & Heisel, M. & Frese, T. & Hatebur, D. (2013). A structured and

model-based hazard analysis and risk assessment method for

automotive systems. 2013 IEEE 24th International Symposium on

Software Reliability Engineering, ISSRE 2013. 238-247.

10.1109/ISSRE.2013.6698923.

[20] Menzel, T., Bagschik, G. & Maurer, M. (2018). Scenarios for Development,

Test and Validation of Automated Vehicles.

10.1109/IVS.2018.8500406.

[21] Knopf, M. D. (2019). Comprehensive concept-phase system safety analysis for

hybrid-electric vehicles utilizing automated driving functions.

Department of Mechanical Engineering, Colorado State University.

[22] Kirovskii, O., & Gorelov, V. (2019). Driver assistance systems: analysis, tests

and the safety case. ISO 26262 and ISO PAS 21448. IOP Conference

Series: Materials Science and Engineering.

[23] Petrescu, L. & Cazacu, E. & Petrescu, M. (2019). Failure Mode and Effect

Analysis in Automotive Industry: A Case Study. The Scientific Bulletin

of Electrical Engineering Faculty. 19. 10-15. 10.1515/sbeef-2019-0014.

[24] Chaari, M. (2015). Formalization and Model-Driven Support of Functional

Safety. (Doktora tezi). Technische Universität München.

https://nanopdf.com/download/standardized-e-gas-monitoring-concept-for-gasoline-and_pdf
https://nanopdf.com/download/standardized-e-gas-monitoring-concept-for-gasoline-and_pdf
https://www.infineon.com/dgdl/Infineon-Sensor_Solutions_for_Automotive_Industrial_and+Customer_Appl_BR-2015.pdf?fileId=5546d4614937379a01495212845c039f
https://www.infineon.com/dgdl/Infineon-Sensor_Solutions_for_Automotive_Industrial_and+Customer_Appl_BR-2015.pdf?fileId=5546d4614937379a01495212845c039f
https://www.infineon.com/dgdl/Infineon-Sensor_Solutions_for_Automotive_Industrial_and+Customer_Appl_BR-2015.pdf?fileId=5546d4614937379a01495212845c039f

77

[25] Gnaniah, R. (2019). Functional Safety Assessment for Advanced Driver

Assistance System. (Yüksek Lisans Tezi). Politecnico di Torino.

[26] Hoxha, Y. & Tarıq, M. (2020). Development toolchain for Vehicle

Electrification. (Yüksek Lisans Tezi). Politecnico di Torino.

[27] Tikar, S.S. & Ansari, A., “Compliance of ISO 26262 Safety Standard for Electric

Power Steering System,” SAE Technical Paper 2021-26-0025, 2021,

doi:10.4271/2021-26-0025.

[28] Paulsen, B., Henn, S., Männel, G. & Rostalski, P. (2021). Functional Safety

Concept EGAS for Medical Devices. Current Directions in Biomedical

Engineering. 7. 739-742. 10.1515/cdbme-2021-2189.

[29] Nagabhushan, S. & Nadibail, A. (2019). Design of monitoring concepts for

motion control of autonomous heavy vehicles. (Yüksek Lisans Tezi).

Chalmers University of Technology.

[30] Selic, B. (2012). What will it take? A view on adoption of model-based methods

in practice. Software & Systems Modeling. 11. 10.1007/s10270-012-

0261-0.

[31] Conrad, M. (2012). Artifact-Centric Compliance Demonstration for ISO 26262

Projects Using Model-Based Design. GI-Jahrestagung.

[32] Holtmann, J., Meyer, J. & Meyer, M. (2011). A Seamless Model-Based

Development Process for Automotive Systems. 79-88.

[33] Liliegard, M. & Nilsson, V. (2014). Model-Based Testing with Simulink Design

Verifier. (Yüksek Lisans Tezi). Chalmers University of Technology.

[34] Hiremath, R. & Isha, T.B. (2019). Modelling and simulation of electric power

steering system using permanent magnet synchronous motor. IOP

Conference Series: Materials Science and Engineering. 561. 012124.

10.1088/1757-899X/561/1/012124.

78

79

EKLER

EK A: Kontrol Modelleri

80

EK A

Şekil A.1 : Üst seviye kontrol modelinin ekran görüntüsü

Şekil A.2 : RedundancyCtrl modeli ekran görüntüsü

Şekil A.3 : RedundancySafetyMech1 sinyalinin hesabı

81

Şekil A.4 : RedundancySafetyMech2 sinyalinin hesabı

Şekil A.5 : RationalityCtrl modeli ekran görüntüsü

Şekil A.6 : Pozisyon sensörü sinyalinin hesabı

82

Şekil A.7 : Tork sensörü sinyalinin hesabı

Şekil A.8 : RationalitySafetyMech1 sinyalinin hesabı

Şekil A.9 : StateMachine modeli ekran görüntüsü

83

Şekil A.10 : Durum makinesi ekran görüntüsü

Şekil A.11 : Sarı ikaz ışığı hesabı

Şekil A.12 : Kırmızı ikaz ışığı hesabı

Şekil A.13 : Elektrik motoru deaktivasyon sinyali hesabı

84

85

ÖZGEÇMİŞ

Ad-Soyad : Cengiz Aydın

Doğum Tarihi ve Yeri : 24.06.1993 - Bursa

E-posta : cengizaydin7@gmail.com

ÖĞRENİM DURUMU:

• Lisans : 2017, Yıldız Teknik Üniversitesi, Makine Fakülte, Makine

Mühendisliği

MESLEKİ DENEYİM VE ÖDÜLLER:

• 2019-2021 yılları arasında Tümosan Motor ve Traktör A.Ş’de Kontrol Sistemleri

Mühendisi olarak çalıştı.

• 2021 yılından itibaren Eldor Elektronik ve Plastik Mlz. Ürt. ve Tic. Ltd. Şti.’de

Yazılım Geliştirme Mühendisi olarak çalışmaya başladı.

DİĞER YAYINLAR, SUNUMLAR VE PATENTLER:

uluhatun
Rectangle

