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OZET

BAZI INTEGRAL VE INTEGRO-DIiFERANSIYEL DENKLEM
MODELLERINDE HYERS-ULAM KARARLILIK VE HYERS-ULAM-
RASSIAS KARARLILIK

DEMIREL, Sibel
Yiksek Lisans Tezi, Matematik Anabilim Dal1
Danisman: Dog¢. Dr. Osman TUNC
Haziran 2024, 85 sayfa

Bu tez, sekiz bolimden olusmaktadir. Tezin birinci boliimiinde tez konusu ile
ilgili bilgiler verildi. Tezin ikinci boliimiinde tez konusuyla ilgili literatiirde yapilan bazi
caligmalar verildi. Tezin iiglincli boliimiinde tezde kullanilacak materyal ve yontem ve tez
konusu ile ilgili baz1 temel bilgiler verildi. Dérdiincii boliimde lineer olmayan bir integro-
diferansiyel denklem ve integral denklemin Hyers-Ulam kararlilig1 incelendi. Besinci
boliimde, Volterra-integro diferansiyel denkleminin Hyers-Ulam ve Hyers-Ulam-Rassias
kararliligr incelendi. Altincit boliimde, lineer olmayan Volterra-integro diferansiyel
denkleminin Hyers-Ulam ve Hyers-Ulam-Rassias kararliligi incelendi. Tezin yedinci
bolimiinde, lineer olmayan Volterra-integro diferansiyel denkleminin Hyers-Ulam ve
Hyers-Ulam-Rassias kararliligi incelendi. Son boéliimde ise bu tezde yaptigimiz
caligmalara iliskin tartisma ve sonu¢ kismi1 bulunmaktadir.

Anahtar kelimeler: Bielecki metric, Chebyshev metrik, Hyers-Ulam kararlilik,
Hyers-Ulam-Rassias Kararlilik, Integral denklem, Integro-diferansiyel denklem, Picard
operatorii, Sabit nokta teorisi






ABSTRACT

HYERS-ULAM STABILITY AND HYERS-ULAM-RASSIAS STABILITY IN
SOME MODELS OF INTEGRAL AND INTEGRO-DIFFERENTIAL
EQUATIONS

DEMIREL, Sibel
M.Sc. Thesis, Department of Mathematics
Supervisor: Assoc. Prof. Osman TUNC
June 2024, 85 pages

This thesis consists of eight chapters. In the first chapter of the thesis, background
information with regard to the subject of the thesis is given. In Chapter 2 of this thesis,
literature review, i.e. some works related to subject of the thesis are briefly summarized.
In Chapter 3 of the thesis, the materials and methods used in the thesis are noted, and as
basic information, some background definitions, the theorems, a lemma, etc., which are
related to the subject of the thesis, are given. In Chapter 4 of thesis, the Hyers-Ulam
stability of a nonlinear integro-differential equation and an integral equation are
investigated. In Chapter 5 of the thesis, the Hyers-Ulam and Hyers-Ulam-Rassias stability
of a Volterra-integro differential equation with a variable delay is discussed and some
examples are give as applications of the results. In Chapter 6 of the thesis, the Hyers-
Ulam and Hyers-Ulam-Rassias stability of a nonlinear Volterra-integro differential
equation with a variable delay is investigated. In particular cases, examples are provided
for illustrations. In Chapter 7 of the thesis, the Hyers-Ulam and Hyers-Ulam-Rassias
stability of a nonlinear Volterra-integro differential equation are presented. In particular
cases, two examples are presented for illustrations. The last chapter includes the
discussion and conclusion of the work we have done in this thesis.

Keywords: Bielecki metric, Chebyshev metric, Fixed point theory, Hyers-Ulam

stability, Hyers-Ulam-Rassias stability, Integral equation, Integro-differential equation,
Picard operator
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SIMGELER VE KISALTMALAR

Bu ¢alismada kullanilmis baz1 simgeler ve kisaltmalar, agiklamalariyla asagida

sunulmustur.
Simgeler Agciklama
ADD Adi diferansiyel denklem
C Banach uzay1
FDD Fonksiyonel diferansiyel denklem
H-U Hyers-Ulam
H-U-R Hyers-Ulam-Rassias
ID Integral denklem
IDD Integro-diferansiyel denklem
KDD Kismi diferansiyel denklem
N Dogal sayilar

R Reel sayilar






1. GIRIS

Matematik literatiiriinde diferansiyel denklemler ile ilgili arastirmalarin kurucusu
ve Onclisii olarak Isaac Newton bilinmektedir. Sonraki siireclerde, Leibnitz, Bernoulli,
Euler ve Cauchy gibi bir¢ok bilim adami diferansiyel denklemlerin gelistirilmesine ve bu
denklemlerin ¢oziimleri ile ilgili matematiksel yapilarin kurulmasina katki saglamislardir.

Giliniimlizde matematik, miihendislik, fizik, kimya, biyoloji, tip ve ekonomi gibi
birgok uygulama alanina sahip olan ADD’ler, FDD’ler, IDD’ler, ID’ler vb. denklemlerle
ile ilgili calismalar devam etmektedir. Bu ¢alismalar denklemin ¢ézlimlerinin niteliksel
davraniglarinin ve yaklasik degerinin belirlenmesi seklinde siniflandirilabilirler.

Her denklemin c¢oziimleri kolaylikla elde edilemediginden verilen denklemi
¢6zmeden denklemin ¢Oziimlerinin niteliksel davranislarini incelemek miimkiindiir. Bu
baglamda  ¢Ozlimlerin, kararliligini, asimptotik  kararliligini,  kararsizligim
integrallenebilirligini, smirhiligmi, salinimliligi gibi birgok niteliksel davranislar
hakkinda yorum yapilabilmektedir. Belirtilen niteliksel davraniglari incelemek igin
matematik literatiiriinde sabit nokta teoremleri etkin bir sekilde kulanilmaktadir.

1940 yilinda Stanislaw Ulam, Wisconsin Universitesi matematik kuliibiine verdigi

meshur konusmasinda homomorfizmalarin kararlilig ile ilgili olarak “ G, bir grup ve G,
d(.,.) metrigi ile verilmis bir metrik grup olsun. &>0 sayis1 verilsin. Eger bir

h:G, - G, doniisimi VX, yeG, igin

d(h(x, y),h(x)h(y)) <&

esitsizligini sagliyorsa, o zaman her x € G, i¢in d(h(x),H(x))<¢ ile bir H:G, »G,

homomorfizmasi var olacak sekilde bir & >0 sayis1 var midir? “ seklinde bir soru ortaya
atmistir.

Bu problem fonksiyonel denklemlerin kararlilik teorisinin baslangi¢c noktasi
olmustur.

Bu soru, Hyers (1941) tarafindan Banach uzaylar i¢in yanitlanmistir. Ulam’in
probleminin bir genellestirmesi olarak fonksiyonel denklemlerin yerine diferansiyel

denklemlerin kullanilmasiyla birlikte yeni bir ¢alisma alani ortaya ¢ikmistir. Diferansiyel



denklemlerin H-U ve H-U-R kararliligini arastirmak igin sabit nokta metodu ile birlikte
genellestirilmis metrik, Chebyshev normu, Bielecki normu, Picard operatorii vb. temel
araglar olarak kullanilmaktadir. N = ve T ifadesi ise X den N e bir doniisiim olsun.

Bu durumda T (%) = 9 kosulu saglanirsa ¢ €N noktast T doniisiimiiniin bir sabit noktasi

olarak adlandirilir. Matematigin farkli dallarinda, farkli uzaylar tizerinde sabit noktalarin
varlig1 ve tekligi ile ilgili calismalar 6nem kazanmistir. Tam metrik uzaylarda sabit nokta
teoremi ilk kez 1922 yilinda Stefan Banach tarafindan daralma doniisiimii kavrami ile
calistlmistir. Banach daralma prensibi (doniisiimii) adin1 alan teoremin kosullarinin
saglanmasi1 durumunda sabit bir noktanin varlig1 garanti alta almir. Ustelik bu déniisiim
sabit noktanin tekligini ve bulunmasi kuralin1 gosterir. Sabit noktanin bulunmasi igin
Picard’in g¢alismasina bakilabilir (Rus,2009). X ’deki herhangi bir baslangi¢ noktasi
yardimu ile elde edilen Picard iterasyonu T ’nin sabit noktasina yakinsar. Buradan Picard
operatorli kavrami ortaya ¢ikmistir. Kisacasi, tam metrik uzaydan kendisine tanimli her
daralma doniistimii bir Picard operatoriidiir. Bu tez calismasinda ele alinacak denklem
modellerinin H-U ve H-U-R kararlilig1 sabit nokta metodu ve yukarida belirtilen araglar

yardimiyla incelenmektedir.



2. KAYNAK BILDIiRISLERI

Obloza (1993), DcR® ve feC(D, R) olmak tlizere asagidaki birinci

basamaktan
X' = f(t,x),(t,x) e DxR?

lineer diferansiyel denklemini ele ald1 ve bu denklemin H-U kararliliin1 inceledi.

Daha sonradan Alsina ve Ger (1998) tarafindan elde edilen sonuglar, Miura vd.
(2001), Miura (2002) ve Takahasi vd. (2002) gibi arastirmacilar tarafindan géz oniine
alinarak yeni sonuglar elde edildi. Miura vd. (2003), Miura vd. (2004), Jung (2004; 2005;
2006) ve Li ve Huang (2013) ise ¢esitli diferansiyel denklemlerin H-U kararliligini
incelediler.

Jung (2006),

dg Yy
< T90IW =-h(®)

ile verilen birinci mertebeden lineer diferansiyel denkleminin H-U kararliligini inceledi.
Jung (2007),

9(x) :I f (z,9(z))dz

Volterra ID’inin ¢6ziimlerinin tekligini ve H-U-R kararliligini daralma doniisiimii
yardimu ile inceledi.

Castro ve Ramos (2009),(2010),

9(x)= j.f (x,7,9(z))dr



ve f(.)="f (X, T, 19(2'),19(6!(2’))) olmak iizere

9(x)= [f(.)dr

ile verilen sirastyla gecikmesiz ve gecikmeli lineer olmayan Volterra ID tiirlerinin H-U
ve H-U-R kararliliklarini inceledi.
Li ve Hua (2009)

X"+ax+ =0

ile verilen polinom denkleminin H-U kararliligin1 daralma doniistimii yardimi ile inceledi.
Li ve Shen (2009),

3"+ p(x)F+q(x)F=-r(x)
ile verilen asagidaki ikinci mertebeden lineer diferansiyel H-U kararliligini daralma

doniigiimii yardimu ile incelediler.

Li (2010), y e C? [a, b], A >0 olmak lizere ikinci mertebeden

d29
dt?

=1%9

lineer diferansiyel denkleminin H-U kararliligin inceledi.
Li ve Shen (2010), y eC?[a,b], f eC[a,b], a ve B sabitler olmak iizere,

ikinci mertebeden lineer homojen
y'+ay'+py=0

ve lineer homojen olmayan



y'+ay +py=f(x)

diferansiyel denklemlerinin H-U kararliligin1 incelediler.

Gavruta vd. (2011) ise $eC?[a,b], B(x)eC[a,b], olmak iizere,

&9 1 p(x)9=0

dx?

siir deger ve

baslangi¢ deger problemlerinin H-U kararliligini arastirdilar.

Javadian vd. (2011), f,p,qeC [a, b] olmak {izere,

+ p(x)i—f+q(x)9= f(x)

dz9
dx?

diferansiyel denkleminin H-U kararliligini incelediler.

Ghaemi vd. (2012), p,(x)=0 ve Vxel igin py, p,p, f:l >R sirekli

fonksiyonlar olmak iizere sonlu bir aralikta

d*g dg
Po(X) 7+ () + P(X)F==T(X)

diferansiyel denklemin H-U kararliligini ispatladilar.
Castro ve Guerra (2013),



9(x) = 900 +y ([ £t 9, (e (t))dt),

Volterra ID’inin H-U-R Kararliligin1 Banach sabit nokta teoremi yardimi ile gosterdiler.

Janfada ve Sadeghi (2013), G(...) = g(t, x(t)) +L: K(t,s, x(s))ds olmak tizere,

X'(t)=G(...)
IDD’inin ve
x(t) =G(...)

ID’inin H-U kararlihigim yeter kosullar altinda gosterdiler.
Rezai vd. (2013),

seklindeki n. mertebeden bir lineer diferansiyel denkleminin H-U kararliligin1 Laplace

doniisiimii metodu ile incelediler.

Otrocol ve llea (2013), f(..)= f(&x(&),x(g(£))) almmak kaydryla

gecikmeli diferansiyel denkleminin H-U ve H-U-R kararliliklariyla ilgili yeter kosullar
elde ettiler.

Alqifiary ve Jung (2014), Gronwall’s esitsizligini kullanarak

u"+(1+w(t))u=0, u(t,) =u'(t,) =0



baslangi¢ deger probleminin H-U kararliligini ispatladilar.

Xue (2014), @ ve p sabitler olmak iizere
o"+ac'+ pfo=0
o"+ac'+ o = f(x)

bi¢imindeki diferansiyel denklemlerin H-U kararliligini1 yeter kosullar altinda gosterdi.
¢
Abbas ve Benchohra (2015), F(...) = f ({,u(g“))fk((,s)g(s,u(s))ds olmak
0

uzere
u(¢)=F(..)

ID’inin ¢dziimlerinin varligi ve tekligi ile birlikte H-U-R kararliligini da incelemistir.

Choi ve Jung (2015), ikinci mertebeden

0"+ F(X)0'+g(x)d =r(X)

lineer diferansiyel denkleminin genellestirilmis H-U kararliligini incelediler.

Huang vd. (2015), ne N* olmak iizere bir | sonlu aralig: tizerinde
0" =F (5,0,9',...,49(”*1))

formundaki diferansiyel denklemin H-U kararliligi1 Lipschitz sartt ve sabit nokta
teoremi yardimiyla incelediler.

Mortici vd. (2015), homojen olmayan

2
x2¥+axg+,&9= f(x)



Euler diferansiyel denkleminin H-U Kararliligin1 integrasyon yontemini kullanarak

ispatladilar.

Tung ve Biger (2015), F()=F (77,6’,:9(77 —T)) olmak tizere

ile verilen birinci mertebeden sabit gecikmeli diferansiyel denkleminin H-U ve H-U-R

kararliliklarin1 sabit nokta teoremini kullanarak gosterdiler.

Li vd. (2016),

ve

n<“><u)+§enin< N (v)=1(v)

denklemlerinin H-U kararliliklarini sabit nokta teoremi yardimiyla ispatladilar.
Popa ve Pugna (2016),

n-1

x"nVx+ Y axn" (x)= f(x)
=0

seklinde verilen n. mertebeden homojen olmayan Euler lineer diferansiyel denkleminin
genellestirilmis H-U kararliligini incelediler.

Onitsuka ve Shoji (2017), a sifirdan farkli bir reel say1 olmak tizere
X'—ax=0
ile verilen birinci mertebeden lineer diferansiyel denklemin H-U kararlilig: ile ilgili yeter

kosullar elde ettiler.
Castro ve Simoes (2018),



()=t (4,7(4).7(0!(4)),jk(é,f,y(r),y(ﬂ(f))dfj

olmak lzere

Volterra IDD’inin H-U, H-U-R, 0 —H-U kararliliklarini inceledi.

t
Akkouchi (2019) F(..)=F(r,0, [ K(r,s,0(r),6(s)))ds olmak kaydiyla
H

0'(t) = F(...), 6(07)=0,

lineer olmayan ID’inin sabit nokta metodu yardimi ile H-U-R karliligini inceledi.
¢
Castro ve Simoes (2019), f(...) = f (g,z(g),jk(t, r,z(r),z(a(r))dr] olmak

uzere

Volterra IDD’inin H-U ve H-U-R kararliliklarini inceledi.
Kucche ve Shikhare (2019)

(. )—f(a@@ 9(0)) ,Th (0.5.0().0(9(s)))d j

olmak tzere

0(c)=1(.) tel,



O(oc)=¢(o), o€ [—r, 0],

lineer olmayan Volterra IDD’inin Ulam kararliligin1 gosterdiler.

XYy
Ciplea ve Lungu (2020), f(...) )+ j j f (s,t,u(s,t))dsdt olmak iizere
00

u(x,y)=f(..)

ID’inin H-U ve H-U-R kararlilig1 Banach sabit nokta teoremi yardimu ile incelediler.

Vu ve Hoa (2020), f(....)= f(t,y(t))+jg(t,s,y(s))ds, olmak {izere

{,u'(t) =f(.) teld
1(2) = 14

baslangi¢ deger probleminin H-U ve H-U-R kararliligiyla ilgili sonuglar elde etti.

Ege vd. (2021), f(..) = f (x)+ [ 9(Xx—)K(xt, p(t))dt olmak iizere

p(x) = 1(.)

singiiler ¢ekirdekli Volterra ID’inin H-U kararlihgini sabit nokta metodu yardimu ile inceledi.
Graef vd. (2023)

F(.)=F(ux, f(x), f(x(u-r)), j H (1,5, X(5), h(x(s)), h(x(s —1,)))ds) olarak verilmek

tizere lineer olmayan sabit ¢coklu gecikmeli

dx

4= PG (% 90k, 9 (k1))

10



IDD’inin H-U ve H-U-R kararliligin sonlu kapali olarak verilen bir aralikta Banach sabit
nokta teoremi, Picard operatorii ve Pachpatte esitsizligi yardimi ile inceledi.

Tung ve Tung (2023a),
H(.)=F(t,zM@),..., 2™ (t) + j H(t,z,z2%(7),...,2"™(r))dz olmak iizere
Z’(t)=H(..)

IDD’inin sabit nokta teoremi yardimi ile ¢6ziimlerinin varligini, tekligini, H-U ve H-U-
R kararliliklarini inceledi.
Tung ve Tung (2023b)

F() = 06 Y00, YO [ 90 (e, y(@) y(S(E))dz + p(x)

olmak lizere
y(x)=f()

gecikmeli Hammerstein ID’inin H-U ve H-U-R kararliliklarin1 sabit nokta teoremi

yardimu ile aragtirdi.

t
Ogrekei vd. (2023), R(..) = g(t, X(t)) + [ K(t,,X(s))ds olmak iizere
0

x(t) = R(...)

Volterra ID’inin H-U ve H-U-R kararliligin1 sabit nokta teoremi yardimu ile inceledi.

Tung vd. (2024), F(...) = f[t X(t), g (x(t)) ,jh t,7,X(z), p(x(2)) )z ]

11



R(...)j r(t,z,x(r), ((x(z)))dz+q(t, x(t), 7(x(t))) ve Q(...) =qa(t, x(t), ¥(x(t))) olarak

verilmek iizere

X(t) = F(.)+R(..)+Q(..)
Volterra IDD’inin ve

X(t) = F(..)+R(..) +Q(..)

ID’nin H-U ve H-U-R kararliliklarini sabit nokta metodu yardimiyla incelediler.

Benzer bicimde ikinci mertebeden diferansiyel denklemler ve belli formdaki
fonksiyonel denklemlerin Ulam tiiriinden kararliliklar i¢in sirastyla Biger ve Tung (2023)
ve Cadariu ve Radu (2004), Radu (2003) ¢alismalarina bakilabilir.

Yukarida verilen bilgiler dikkate alindiginda, farkli ADD modelleri, ID’ler,
IDD’ler, KDD’ler FDD’ler vb. matematiksel modellerin H-U ve H-U-R karaliliklarinin
¢ok sayida arastirmaci tarafindan incelendigi goriilmektedir. Bu denklem modellerinin H-
U ve H-U-R kararlilik davraniglarinin Banach sabit nokta teoremi yardimi ile incelendigi
goriilmektedir. Bu incelmeler sirasinda tam metrik uzay kavrami, , Gronwall esitsizligi,

Chebyshev normu, Bielecki normu vb. kavramlarin kullanildigi gériilmektedir.
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3. MATERYAL YONTEM, TEMEL TANIM VE TEOREMLER

Bu tezde belli formdaki ¢esitli ID ve IDD’lerin niteliksel davranislar ile ilgili
literatiirde mevcut bulunan kitaplar, bazi makaleler, bilimsel toplantilarda konu ile ilgili
sunulan bildiriler vb. dokiimanlar tezin materyali olarak dikkate alinmaktadir. Yontem
olarak ise, Banach sabit nokta teoremi, Bielecki, Chebyshev vb. normlar ve Picard
operatori yardimiyla temel esitsizlikler kullanilarak ele alinan denklemlerin ¢6ziimlerinin

varligi ve tekligi ve denklemlerin Ulam tipi kararliliklart incelenmektedir .

Tamm 3.1 N bir lineer uzay olsun. ||:N — R fonksiyonunun x deki degerini |X|
gosterelim. Bu fonksiyon asagidaki sartlari saglyorsa || ye N de norm denir:

(i) [X|=0 ve |[x|=0«< x=0 dur;

() Jax|= ] ir;

(iii) |x+ y||<[)x||+||y| (Bayraktar, 1987).

Tamm 3.2 X bos olmayan bir ciimle olsun ve bir d : X x X — R fonksiyonu agagidaki

sartlar1 saglarsa d ye X tizerinde bir metrik ve (X,d) ikilisine de bir metrik uzay denir.
(i) d(x,y)=0 ancak veancak x=y;
(ii) Vx,ye X i¢in d(x,y)=d(y,x);
(iii)vx,y,ze X i¢in d(x,z)<d(x,y)+d(y,z) (Bayraktar, 1987).
Tanimm 3.3 X bos olmayan bir kiime olsun. d: X x X — [0, +oo] fonksiyonu asagidaki
sartlar1 sagliyor ise, bu fonksiyona X kiimesi lizerinde genellestirilmis metrik uzay denir:
(i) d(x,y)=0 ancak veancakx=1y;
(if) Her x,y e X i¢ind(x,y)=d(y,X) ;
(iii)Her x,y,ze X igin d(X,z) <d(x,y)+d(y,z) (Castro ve Simoes, 2019)
Genellestirilmis metrik ile bilinen metrik arasindaki tek fark genellestirilmis metrigin
deger kiimesinin sonsuzu igermesidir (Jung, 2010).

Tamm 3.4 (Sabit Nokta) X bos olmayan bir ve T : X — X bir fonksiyon olsun. Tx = x

esitligini saglayan X € X elemanina T nin sabit noktast denir (Berinde, 2007).



Tamm 3.5 (X,d) bir metrik uzay ve T : X — X bir fonksiyonu olsun. Eger VX, y e X
icin d(Tx,Ty) <ad(X,y) olacak sekilde bir « pozitif sayis1 (<1) varsa T ye bir
daralma doniisiimii denir (Burton, 1985).

Teorem 3.1 (X,d) bir tam metrik uzay ve T : X — X bir daralma donistiimii ise, T

donilisiimiiniin X uzayinda bir sabit noktasi vardir ve bu nokta tektir (Burton, 1985).

Teorem 3.2 (X,d) genellestirilmis bir tam metrik uzay olsun. L < 1 Lipschitz sabiti
olmak iizere A:X — X donilisiimii kuvvetli bir daralma operatorii olsun. Eger negatif
olmayan bir k tamsayis1 var 6yle ki her xe X igin d(A%*™Px,A*X) <1 esitsizligi
saglaniyor ise, bu takdirde asagidaki sartlar dogrudur:

@) {A”X} dizisi A ’nin sabit bir X" noktasina yakinsar;

(b) X" noktasi,
X" :{ye X :d(AkX,y)<oo}

cimlesinde A ’nin bir tek sabit noktasidir;
(c)Eger yex ise, d(y,x)< ﬁd(Ay, y) dir (Diaz ve Margolits, 1968).

Tamm 3.6 (X,d) bir tam metrik olmak tizere T : X — X e bir daralma fonksiyonu ise

0 zaman

(1) T nin bir ve yalniz bir sabit X € X noktas1 vardir.
(i) Herhangi X, € X igin {T"x,} iterasyon dizisi, T nin bu sabit noktasina
yakinsar (Berinde, 2007).
Teorem 3.3 (Banach Sabit Nokta Teoremi) (X,d) bir tam metrik uzay ve T: X — X

bir daralma doniistimii olsun, yani her X,y € X i¢in

d(Tx, Ty) <ad(x,y)

olacak sekilde bir « €[0,1) sayisi var olsun. Bu durumda T ’nin bir tek sabit noktasi,

Ta =a olacak sekilde en az bir a € X vardir. (Burton, 1985).
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Tamm 3.7 (X,d) bir metrik uzay ve A:X — X operatdrii verilsin. Eger bir X" e X
sabiti var ve asagidaki sartlar saglaniyor ise, A operatdriine bir Picard operatorii denir:

()F, = {X*} dir. Burada F, = {X e X 1A(x)= X} climlesi A’nin sabit noktalarmin
climlesidir.

(ii)(An (XO))neN dizisi her x, € X i¢in X sabitine yakinsar (Rus, 2009 ).

Lemma 3.1 (Gronwall lemmas: ) (X,d,S) sirali bir metrik uzay ve artan bir Picard
operatorii (F, =x",) olsun. Bu takdirde xe X igin x<A(X) esitsizligi X <X,
esitsizligini ve x> A(X) esitsizligi ise x> X, esitsizligini gerektirir (Rus, 2009).
Teorem 3.4 (Pachpatte’s esitsizligi) u(t), f (t) ve q(t) R, iizerinde tanimlanan negatif
olmayan siirekli fonksiyonlar ve n(t) ise, te R, i¢in taniml pozitif azalmayan siirekli

bir fonksiyon olmak tizere

t

u(t)<n(t)+[f (s){u(s)+imdr}d8,

0

esitsizligi saglansin. Bu durumda her te R, i¢in

u(t)< n(t){1+j'f (s)epr|f (r)+q(r)|drjds},

0 0

esitsizligi saglanir (Pachpatte, 1998).

Uyan 3.1 Xe [a, b] ve u,Vv: [a, b] — C siirekli fonksiyonlar olmak iizere Bielecki metrigi

d(u,v) = sup —|U(X)_V(X)|
xe[a,b] G(X)

ile tanimlanir. Burada o': [a,b] - (O,oo) azalmayan siirekli bir fonksiyondur ve ayrica

(Cl ([a, b]) , d) tam bir metrik uzaydir (Castro ve Simoes, 2019).
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Tanmim 3.8 Reel veya kompleks degerli [a, b] araliginda siirekli ve sinirli f fonksiyonu

igin | f ()| = max, i, . | f ()| seklinde tanimlanan norma Chebyshev normu denir (Ross

ve Belford, 1976).
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4. LINEER OLMAYAN BiR VOLTERRA INTEGRO-DIFERANSIYEL
DENKLEM VE INTEGRAL DENKLEMIN HYERS-ULAM KARARLIGI

Bu boliimde Janfada ve Sadeghi (2013) tarafindan H-U Kararlilig1 incelenen lineer
olmayan bir IDD ve ID kararlilik sonuglar sirasiyla ele alinacaktir. Janfada ve Sadeghi

(2013) yaptig1 calismada ilk olarak

t
Volterra IDD’ini géz oniine aldi. Burada G(...):g(t,x(t))+_[K(t,s,x(s))ds olarak

0

tanimlanmaktadir. Bu denklemin H-U kararliligini t e [O,T], TeR, T>0, araliginda

sabit nokta metodu yardimiyla inceledi.

Ayni ¢aligmada, Janfada ve Sadeghi (2013)

Volterra ID’ini g6z oniine aldi. Bu denklemin H-U kararliligint te[O,T], T >0,

araliginda sabit nokta metodu yardimiyla inceledi.

Tamim 4.1 ¢(t) >0 bir fonksiyon ve x(t) siirekli tiirevlenebilir bir fonksiyon olsun.

Ayrica x(t) fonksiyonu her te[O,T], TeR, T >0, i¢in
X)) ~G ()] <4V

esitsizligini saglasin. Eger (4.1) denkleminin bir y(t) ¢dziimii var dyle ki C >0 sabiti

i¢cin

[x(®)=y ()] <C4(t)



esitsizligi saglaniyor ise, bu takdirde (4.1) denklemine H-U kararlidir denir. Bu esitsizlik

(4.1) ile verilen IDD’inin analitik ¢oziimiiyle yaklasik ¢oziimii arasindaki farkin
normunun C¢(t) den kiigiik kaldig1 anlamina gelir (Janfada ve Sadeghi, 2013).

Benzer bi¢imde H-U kararlilik tanimi (4.2) ile verilen Volterra ID’i i¢in de

verilebilir.
4.1 (4.1) Integro-Diferansiyel Denkleminin Hyers-Ulam Kararhhg

Bu kesimde Janfada ve Sadeghi’nin (2013) calismasinda ele aldigi ve (4.1) ile
verilen Volterra IDD’inin H-U kararlilig1 incelenecektir.

Janfada Sadeghi (2013), calismalarinda (4.1) Volterra IDD’inin H-U kararliligi ile

ilgili yeter kosullar igeren asagidaki teoremi ispatladilar.

Teorem 4.2 X bir Banach uzayi, L, L, L,, ve T pozitif birer sabit olmak lizere

O<L+(L+L)L+LTL<1

esitsizligi saglansin. K:[0,T]x[0,T]xX — X, g:[0T]xX =X, ve
¢:[0,T]—(0,) fonksiyonlar: siirekli olsun ve bu fonksiyonlar her 0<s,t<T ve

X,y € X 1i¢in agagidaki sartlart saglasin:

[K (65K (15, )| < L x-.

la(t.x)-g(ty)|<L|x-y] (4.3)

ve
[ #(s)ds <L),

Eger f :[O,T] — X fonksiyonu tiirevlenebilir ve
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fr(t)—g(t, f (t))—_t[K (t,s, f(s))ds

0

S¢(t),t€[0,T], (44)

esitsizligini saglar ise, bu takdirde Vt €[0,T] igin, bir tek tiirevlenebilir f;:[0,T]— X

fonksiyonu vardir dyle ki

t

fo(t)=g(t f, (t))+£K (t,s, fy(s))ds, (4.5)
)= O O~ O i O o)

dir (Janfada Sadeghi,2013).
Ispat.
M ::{x:[O,T] — X :X tUrevIenebiIirdir}

ciimlesi ve d metrigi ise M xM den [0,0] a asagidaki sekilde tanimlansin:
d(x,y)=inf {Ce[0,00]:|x' - y|+|x-y|<Cg(t), 0<t<T}.
Simdi ise (M, d) 'nin genellestirilmis bir tam metrik uzay oldugu gosterilecektir.

Burada tanimlanan metrigin tiggen esitsizligini sagladigini ve (M,d) 'nin ise bir tam

metrik uzay oldugu ispatlanacaktir. Tersine d metriginin t¢gen esitsizligini

saglamadigini kabul edelim. Bu durumda en az bir X,y,ze M ig¢in,
d(x,y)>d(xz)+d(zy)

esitsizliginin saglandig1 kabul edilebilir. Bu takdirde, t, € [O,T] noktasi vardir dyle ki
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¥ (t6) =y (to)]+[%(t) =y (& )] > (d (x. 2) +d (z.y)) (1) (4.7)

dir. d metriginin tanimi dikkate alindiginda,

X' (t) =Y ()] +[ X (t) = Y (t)] > X (ts) = 2" (t, )] +[|x (t5 ) — 2 (1, )|
2'(t,) - y’(t0)||+||z(to)— y(t, )”

+

yazilabilir. Bu ise bir ¢eliskidir. O halde yukaridaki kabul saglanmaz.

Simdi (M, d) uzaymin bir tam metrik uzay oldugunu gosterelim.
{Xn} , (M, d) uzayinda bir Cauchy dizisi olsun. d metriginin ve Cauchy dizisinin tanimi

dikkate alindiginda, Ve >0, 3N, eN, vmn>N_, 0<t<oo i¢in

=Xl =% | < £6(t) (4.8)

esitsizligi yazilabilir. Buna bagli olarak ¢ fonksiyonu [O,T] kapali araliginda siirekli
oldugundan {x,} ve x/(t) dizileri [O,T] araligi lzerinde diizgiin yakinsaktir. Bu

durumda tiirevlenebilir bir X fonksiyonu vardir dyle ki {Xn} ve x (t) dizileri diizgiin

olarak sirastyla X ve X' fonksiyonlarina yakinsar. Boylece X € M oldugu goriiliir. (4.8)

esitsizliinden, M-—oo i¢in limit alindiginda Ve&>0, 3N, eN, Vmn=N_

vt e[O,T] icin
1% =X +[x, = x| < e (t)

elde edilir. Sonu¢ olarak Ve&>0, IN_eN, vmn>N_, i¢in d (Xn,X) <¢ oldugu
sonucuna varilir. Buna bagl olarak (M : d) metrik uzayinin bir tam metrik uzay oldugu
goriiliir.

Simdi A:M — M operatoriinii
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A(x(t) = [ 9z x@)dz + [ [ K (z,5,x(5))dsd (4.9)

olarak tanimlayalim (Janfada ve Sadeghi, 2013).

Burada, A operatoriiniin kuvvetli bir daralma dontisiimii oldugu gosterilecektir.
Simdi x,yeM, C, e[O,oo] ve d (X, y)SCXy olsun. Boylece Vt e[O,T] icin d(x,y)

metriginin tanimindan

[ =yll+x=yl<C,é(t)

elde edilir. Dolayisiyla (4.3) esitsizligi dikkate alindiginda

< (ax()-ay(0)

ps(t)-a ()
Sl ele) - (o)

+L1_j:||x(r)—y(r)||dr+ LZT.:[”x(S)—y(S)”ds

<(L+(L+L)L+LTL)C, ¢(1)
yazilabilir. Boylece yukaridaki islemler dikkate alindiginda
d (A%, AY) <[ +(L+ L)L+ LTL]d(x,y) (4.10)
elde edilir. Buna bagli olarak A operatorii
O<L+(L+ L2)L+ LTL<1

olmak kaydiyla, kuvvetli bir daralma déniisiimiidiir. Ote yandan f e M oldugu aciktir.

Ayrica (4.4) esitsizligi dikkate alindiginda
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t

+||Af - f||s¢(t)+j¢(s)ds:(1+ L)g(t)

0

d
—(Af - f
Hdt( )

elde edilir. Buna bagh olarak

yazilabilir. Diaz ve Margolits (1968)’de bulunan Teorem 3.2’nin (a) sart1 dikkate
alindiginda bir tek

foeM ={yeM :d(Af,y) <o}

sabit noktas1 vardir dyle ki Af, = f, olur veya esdeger olarak

f, (t) = jg (T, f, (T))dr+':[j;K (T, s, f, (S))dsdr

0

yazilabilir. Burada f tiirevlenebilir ve g,K fonksiyonlar siirekli oldugundan

t
f/t) =gt fo(t))+_[0 K(t,s, fy(s))ds
elde edilir. O halde Teorem 3.2’ nin (c¢) sart1 ve yukaridaki bagint1 goz oniine alindiginda

1 (1+L)
R = e W I w R e R (e T E

sonucuna vartlir. d metriginin tanimindan, (4.6) esitsizliginin Vt € [O,T] icin saglandigi

sonucuna varilir.

Simdi ise
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(1+L)
0=
1-(L +(L + L)L+ LTL)

olarak secilsin. Ayrica h fonksiyonu (4.5), (4.6) bagntilarin1 saglayan baska bir

tiirevlenebilir fonksiyon olsun. Bu durumda f € M igin d(f,h) <& olmak iizere

t

h'(t)=g(t,h(t))+ [K(t;s,h(s))ds (4.12)
0
bagintilart saglanir. f;’in tekligini ispatlamak icin h fonksiyonunun A ’nin sabit bir

noktasi ve he M "™ oldugunu géstermek yeterlidir.
(4.12) esitligi kullanilarak Ah=h oldugu gorilebilir. Simdi d(Af,h) <

oldugunu gosterelim. (4. 12) bagintisi ve d(Af,h) <8 esitsizliginden

+[Af (1) =h(0)]

I (a1 ) -n(e)
<L|f —h||+sz;Hf (s)—h(s)”ds+T[L1||f —h||+L2in (s)—h(s)”ds)

<(L+L)(1+T)84(1)

elde edilir. O halde d(Af,h)<(L, +L,T )68 < oldugu gdriiliir. Bdylece teoremin ispati

tamamlanir.
4.2 (4.2) integral Denkleminin Hyers-Ulam Kararhhig

Bu kesimde Janfada ve Sadeghi’nin (2013) ¢alismasinda ele alinan ve (4.2) ile
verilen Volterra ID’inin H-U kararlilig1 incelenecektir.

Janfada ve Sadeghi’nin (2013), (4.2) Volterra ID’inin H-U kararlilig: ile ilgili

yeter kosullar i¢eren asagidaki teoremi ispatladilar.
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Teorem 4.3 X bir Banach uzayr olmak tizere, L, L, L, ve T sabitleri i¢in
0< ( L, + Lz) L<1 esitsizligi saglansin. geC ([O,T]x X, X ),
KeC ([O,T] x[0,T]x X, X ), ve ¢peC ([O,T], (0, oo)) fonksiyonlar siirekli, Vx,ye X

ve s,t €[0,T] icin
lo(tx)-g(ty)|<Llx-yl

[K (ts.x) =K (t.s.y)|<L[x-y] (4.13)

ve

t

I¢(s)ds£ Lo(t)

0

esitsizlikleri saglansin. Eger f :[0,T]— X siirekli fonksiyonu

<¢(t), 0<t<T, (4.14)

Hf (t)—o(t, f)—j;K (t.s, f(s))ds

esitsizligini saglar ise, o zaman bir tek siirekli f,:[0,T]— X fonksiyonu vardir dyle ki;

Hf —g(t, f)—jK(t,s, f(s))ds| < (1), 0<t<T,

t

f,=0(t, f0)+fK (t.s, fy(s))ds (4.15)

0

ve

[f ()~ fo ()] <[1-(L+L)L] #(t) (4.16)

dir (Janfada ve Sadeghi, 2013).
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Ispat. M ::{X:[O,T]—>X :XsUreindir} olmak iizere, d metrigi ise M xM den

[0, OO] ’a asagidaki bigimde tanimlansin:
d(x,y)=inf {C e[0,0]:[x—y|<Cg(t), O<t ST}.

Bir onceki teoremde verilen islemler dikkate alindiginda, (M,d) uzaymm

genellestirilmis bir tam metrik uzay oldugu kolaylikla goriilebilir. Ayrica bir onceki

teoremde verilen M uzayi ve A operatorii g6z oniine alindiginda her x,y e M igin,

d(Ax,Ay)<(L +L,)Ld(x,y)

oldugu kolaylikla goriilebilir.

0<(L +L,)L<1 olmasi nedeniyle A ’nin kuvvetli bir daralma ddniisiimii
oldugu sonucuna varilir. Ayrica (4.14) bagmtist kullamldiginda d (Af, f)<l<oo elde

edilir. Boylece Teorem 3.2°den, A operat6riiniin
M™:={yeM :d(Af,y)<w

ciimlesinde bir tek f, sabit noktaya sahip oldugu sonucuna vartlir. Simdi ise h

fonksiyonunun (4.15) ve (4.16) bagintilarin1 saglayan baska bir siirekli fonksiyon olsun.

Buna bagli olarak her f e M i¢in

d(f’h)<—1—(L1+LZ)L

ve

h=g (t,h)+IK (t,s,h(s))ds
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elde edilir. h fonksiyonunun tekligini gostermek i¢in, bu fonksiyonun A operatoriiniin
bir sabit noktas1 ve heM’ oldugunun gosterilmesi yeterlidir. (4.15) bagintisi
kullanilarak Ah =h yazilabilir. Ayrica

1
d(f,h)<———
(<ot
bagintis1 kullanildiginda
L+L,
s )-n(o] ==

elde edilir. Bu bagintidan ise d (Af,h) <o oldugu goriiliir ve bdylece teoremin ispati

tamamlanir (Janfada ve Sadeghi, 2013)
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5. LINEER OLMAYAN DEGIiSKEN GECIKMELi BiR INTEGRO-
DIFERANSIYEL DENKLEMI iCiN HYERS-ULAM VE HYERS-ULAM
RASSIAS KARARLILIKLARI

Bu boliimde Castro ve Simoes (2019) tarafindan
y(x)="f(.) (5.1)

ele alinan Volterra IDD’i i¢in olusturulan H-U ve H-U-R kararlilik sonuclar ele

alinacaktir. Burada f(...)=f (X, y(X),I:k(X,r, y(7), y(a(r)))dz’) dir. Ayrica a,beR,

Xe[a,b], C bir Banach uzayi, yeCl([a,b]), y(@)=c,ceR, olmak iizere,
f eC[[a,b]x(Cx(C,C] ve k eC([a,b]x[a,b]x(Cx(C,(C) dir. Ayrica

a eC([a,b],[a,b]) ise s gecikme fonksiyonu ve her a<z <b i¢in a(r) <7 dur.

Castro ve Simoes (2019), (5.1) denkleminin H-U ve H-U-R kararliligin1 Bielecki
metrigi yardimiyla incelediler.

(5.1) Volterra IDD’1t i¢in Ulam anlaminda kararhilik tanimlar1 asagida
verilmektedir.

Tamm 5.1 Yyfonksiyonu
ly'()-f(..)|<0, xe[a,b] (5.2)

esitsizligini saglasin. (5.2) denkleminin bir ¢6ziimii var 6yle ki C >0 sabiti y ve y,’dan

bagimsiz olmak tizere, her a < X <b igin
[y(x) - Yo(x)| <CO

esitsizligi saglaniyor ise (5.1) denklemi H-U kararlidir denir. Burada @ >0 gergel bir
sabittir.

Tamm 5.2 y fonksiyonu



Y () - f(..)<o(x), Xe [a,b]

esitsizligini saglasin. (5.1) denkleminin bir ¢oziimii var 6yle ki, o negatif olmayan bir

fonksiyon ve C >0 sabiti y ve y, dan bagimsiz olmak iizere, her a< X<b i¢in

|Y(X) = Yo (¥)| < Ca(x)

esitsizligi saglaniyor ise (5.1) Volterra IDD’1 H-U-R kararlidir denir.
5.1 Sonlu Aralikta (5.1) Denklemi i¢cin Hyers-Ulam-Rassias Kararhhk

Bu kesimde Castro ve Simoes (2019) tarafindan (5.1) IDD’inin H-U-R kararlilig
icin verilen sonug ele alinacaktir.

Castro ve Simoes (2019), H-U-R kararlilig1 ile ilgili asagidaki teoremi ispatladi.

Teorem 5.1 Her a<t<b i¢in o eC([a,b],[a,b]), a(t)<t olmak iizere, bir gecikme
fonksiyonu ve O':[a,b]—>(0,oo) azalmayan stirekli bir fonksiyon olsun. Ayrica bir

B €[0,1) sayist vardir 8yle ki her x €[a,b] i¢in

J: o(r)dr < fo(X)

esitsizligi saglansin. ilave olarak f eC([a,b]x(Cx(C,(C) siirekli bir fonksiyon ve bu

fonksiyon M >0 olmak lizere

M
(lu=v|+|g-h])"

| (xu,9)-f(xv,h)<

Lipschitz sartin1 saglasin. Bununla birlikte k:[a,b]x[a,b]x@x@%@ cekirdegi ise

L > 0 olmak tizere
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L
(Ju(e®) —v(a®)])”

kK (xt,u,u(a(t)) -k (x.tv,v(a(®)) <

Lipschitz sartin1 saglasin. Eger y € Cl([a, b]) fonksiyonu
ly'—f(.)|<o(x), a<x<b
esitsizligini saglar ve
M(B+LB%)<1

ise, bu takdirde bir y, e C* ([a, b]) fonksiyonu vardir 6yle ki

R AR CEIMACTNLY

ve her a<x<b igin

_ g
Y y°|S1—M (B+Lp?

) o(x) (5. 3)
esitsizligi saglanir. Bu durumda (5.1) IDD’i H-U-R kararhidir (Castro ve Simoes (2019).
Ispat.

y(x)="f(..)

IDD’ini yeniden goz Oniline alalim. Bu denklem a dan X e integrallendiginde,

y(a) =c, c e R, baslangi¢ kosulu kullanildiginda
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y(x) = CJrLX f(..)ds

elde edilir. Burada f(...)= f(s, y(s),I:k(s,r, y(7), y(a(r)))dr) dir.

Her a<x<b ve ueC'([a,b]) igin T operatorii ise C*([a,b]) den kendisine

tanimli olmak tizere,

(Tu))=c+[ f(...)ds (5.4)

seklinde tanimlansin Ayrica U fonksiyonu siirekli oldugundan Tu operatorii de
stireklidir.

Yukarida verilen (5.4) operatdrii yeniden goz oniine alindiginda, kolaylikla

|(Tu)(x) = (Tu)(%,)| =

[ 8 (s [ 1 (....)ds‘ -

[ (....)ds‘ -0
elde edilir. Buna bagli olarak x — X, iken

|(Tu)(X) = (Tu)(%,)| >0

elde edilir.
Simdi ise mevcut kosullar altinda T operatoriiniin Bielecki metrigine gore
kuvvetli bir daralma doniisiimii oldugu gosterilecektir. Yukarida verilen metrik, operator

ve kosullar kullanildiginda U, V kapali bir aralikta siirekli tiirevlenebilir fonksiyonlar

olmak tizere,

d(Tu,Tv) =sup| o () [(Tu)() - (Tv)()] ]

<M sup[al(x) [ues) —v(s)|ds}
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+mﬂwp;%aﬁﬁjw(&au@)ma@»)4d&rw&xWa@»NPT“

<M sSup |U(S) _V(S)| Sup ! .[
sefa,b] O'(S) xe[a,b] G(X)

+ML sup |U(T)_V(T)| sup ! jxra(r)drds
refab]  0(7)  xdap]o(X)72da

<M (B+Lp)d(u,v)

"o (s)ds

a

elde edilir. M ( [+ Lﬂz) <1 olmasi nedeniyle T operatoriiniin bir daralma dontigiimii

oldugu sonucuna varilir.
Simdi (5.1) IDD’inin H-U-R kararliligina ait ispati tamamlamak i¢in Banach

daralma doniisiimii kullanilacaktir.

d(y.y,)<[1-M(5+L5%)] d(Ty.y)

esitsizligini elde ederiz.

d metriginin tanim1 ve yukaridaki veriler dikkate alindiginda
-1
SPE][U_l(X)|y_ Yol ] < ,6’[1— M(B+Lp’ )]
bulunur. Buna bagli olarak da (5.3) esitsizligi, yani

-1
V= Yol € fo ()| 1-M (B+LF) |
sonucuna varilir. Dolaysiyla, ispat tamamlanir.

5.2 Sonlu Aralikda (5.1) Denklemi i¢in Hyers-Ulam Kararhhk

Bu kesimde, Castro ve Simoes (2019) tarafindan (5.1) IDD’inin H-U kararlilig
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icin verilen sonug ele alinacaktir.
Castro ve Simoes (2019) (5.1) denkleminin H-U kararlilig: ile ilgili asagidaki

teoremi ispatladi.

Teorem 5.2 Her te[a,b] igin a(t) <t olmak iizere o ise C'([a,b]) den kendisine
stirekli bir gecikme fonksiyonu ve o : [a, b] - (O, oo) azalmayan siirekli bir fonksiyon ve

Pe [0,1) olmak iizere her x €[a,b] i¢in

J: o(7)dr < fo(X)

esitsizliginin saglandigin1 varsayalim. Ayrica f :[a,b]x(Cx(C — C fonksiyonu siirekli

ve bu fonksiyonun, M >0 olmak tizere,

(ju—v|+|g—h])
M~

|f(xu,9)—f(xv,h)<
Lipshitz sartin1 sagladigini ve K : [a, b] X [a, b] xCxC — C stirekli ¢ekirdek fonksiyonun

ise, L >0 olmak tizere,

L
(Ju(e®) —v(e())]) "

[k (xt,u,u(a(t)) -k (x.tv,v(a()) <

Lipschitz sartin1 sagladigini kabul edelim.

Eger y€C'([a,b]) ve >0 ve M (B+LpB%)<1 olmak iizere

<@, a<x<b (5.5)

y'—f (X, Y, LX k(xz, y(r)y(a(r)))df)

esitsizligi saglanir ise, bu takdirde tek bir Y, € Cl([a, b]) fonksiyonu vardir 6yle ki
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Vo = (% Yor [k (48, Yo 0, yol®))

ve her a<x<b i¢in

T (b—a)o(b
|y—yo|3[1—M(ﬂ+Lﬂ )} %‘9 (5.6)

esitsizligi saglanir. Burada Y, € C'([a,b]) fonksiyonu (5.1) denkleminin bir ¢8ziimiidiir.

Yukarida verilen bilgiler dikkate alindiginda verilen teoremdeki sartlarin
saglanmasi durumunda (5.1) IDD’i H-U kararli olur (Castro ve Simoes, 2019).

Bu teoremin ispatlamasi i¢in Castro ve Simoes (2019)

T doniisiimii C*([a,b]) den kendisine olmak iizere her a< x<b ve ueC'([a,b]) igin

(Tu)y=c+ [t (s,u(s),Lsk(s,r,u(r),u(a(r)))dr)ds 5.7)

operatoriinii tanimladi. Burada M ( p+Lp 2) <1 kosulu dikkate alinip Bielecki metrigi ve

Banach sabit nokta teoremi kullanilarak (5.7) operatoriiniin bir daralma doniistimii oldugu

kolaylikla gosterilebilir. Gergekten (5.5) esitsizliginden her a < x <bigin
_o<y(X)- 1 (x, y0o. [ k(x 7 y(), y(a(r)))dr) <6 5.9)

yazilabilir. (5.8) esitsizligi integrallendiginde

‘y—c— I 1 (565 [ k(s 7.y yeop)ar s

< J: odr

elde edilir. Buna bagli olarak hera < x <big¢in
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0

|y =(Ty)(x)| < TEE

sonucuna vartlir. Bu esitsizligin sonucu olarak Teorem 5.2 deki ispat yontemi izlenerek

kolaylikla (5.6) esitsizligi elde edilebilir (Castro ve Simoes,2019).
5.3 Sonsuz Aralikda (5.1) Denklemi i¢cin Hyers-Ulam-Rassias Kararhhk

Bu kesimde, Castro ve Simoes (2019) tarafindan (5.1) IDD’inin H-U kararliligiyla

ilgili olarak sonsuz aralikta elde edilen sonug¢ verilecektir. Castro ve Simoes (2019)

a,beR olmak iizere [a, b] sonlu araliginin yerine [a, 00) sonsuz arali81 lizerinde agagida

verilen IDD’inin H-U-R kararliligini incelediler. Castro ve Simoes (2019)
yot (x, y. [ k(%7 y(), y(a(r)))dr), y@=c<R 5.9

baslangi¢ deger problemini yeniden goz dniine aldi. Burada y € C* ([a, oo)) ve xe|a, o)
olarak verilmek iizere, f:[a,00)xCxC—C ve k:[a,00)x[a,0)xCxC—C siirekli
fonksiyonlar ve her z €[a,®) i¢in a(r) <7 olmak iizere & :[a,%0)—>[a,0) fonksiyonu
stirekli gecikme fonksiyonudur. Ayrica her &, >0 igin G:[a,OO)—>(8,a)) stirekli

azalmayan bir fonksiyon olmak iizere C t ([a, oo)) ise sinirli tiirevlenebilir fonksiyonlarin

uzay1 ve bu uzayla ilgili metrik

d, (u,v) = sup [ o™ () |u(x)-v(x)|]

Xe[a,oo)

seklinde tanimlanmaktadir.

Simdi Castro ve Simoes (2019) konuyla ilgili olarak asagidaki teoremi ispatladi.
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Teorem 5.3 Her «(t) <t olmak iizere her te[a,oo) igin a:[a,oo)—>[a,00) stirekli bir
gecikme fonksiyonu, her &,@>0 igin G:[a,oo)—>(8,a)) azalmayan siirekli bir

fonksiyon, B e [0,1) olmak iizere her X € [a,oo) icin

J: o(7)dr < fo(X)

esitsizligi ve f: [a, OO)X CxC — C siirekli fonksiyonu, M >0 olmak iizere

M
(ju=v|+g(x)—h|)”

|f(x,u,g)—f(xv,h)<

Lipshitz sartin1 saglasin. ilave olarak K: [a, 00) X [a, oo) xCxC — C ¢ekirdek fonksiyonu

sirekli olsun 0Oyle ki herhangi siirli ve siirekli bir z fonksiyonu igin
IX k(x,7,2(7), z(a(7)))d7 integrali sinirh ve siirekli bir fonksiyon, L >0 olmak tizere k

cekirdegi

L

k(x,t,u,u(a)) —k(x,t,v,v(a))| < —~
[Ju(@ - v(e]

1 -
Lipshitz sartin1 saglasin. Eger y € Cb([a, oo)) fonksiyonu

y' - f (x, y. [ k(%7 y(), y(a(r)))dz')

<o(x), xe[a,»)

esitsizligini saglar ve

M(B+LB%)<1

ise, bu takdirde bir tek y, € Ci([a, oo)) fonksiyonu vardir 6yle ki
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Vo= 1 (%Yo [, K (67 Yo () Vo) )7 (5.10)

ve her X €[a,) igin
YOO~y (9| < A[1-M (B +LA)] o0 (5.11)

esitsizligi saglanir.
Bu sonug ise yukaridaki sartlar altinda (5.9) denkleminin H-U-R kararli oldugu

anlamina gelir (Castro ve Simoes (2019).

Ispat. Her neN igin | = [a,a+ n] araligini tanimlayalim. Teorem 5.1. den dolay1 bir

tek siirh ve tiirevlenebilir y, i 1, — C fonksiyonu vardir dyle ki her X e | i¢in

Yan =+ [ £ (Y009, [ K (5172 Yo (0 You (e(e)) de s (5.12)
ve

<pl1-M(p+L5)] o

‘ y- yo,n
bagintilar1 saglanir. y, . fonksiyonu tek oldugundan, eger x € | ise, bu takdirde

Yon = Yonua = Yons2 =" (5.13)

yazilabilir.
Herhangi bir X e [a,oo) icin, n(x) e N olmak tizere, n(x)=min {n eN:xe In}

ve Y, :[a,00) = C fonksiyonu

yO = yo,n(x) (514)

olarak tanimlansin.
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Herhangi bir x, €[a,) i¢in n, =n(x) olsun. Bu takdirde x, €1, ve bir £>0

n+1
vardir, buna bagh olarak da her xe(x —&,X%+¢) igin Y,(X)=Y,, ,(X) yazilabilir.
Teorem 5.1.’den bilindigi iizere Y, ,,, fonksiyonu x noktasinda siireklidir. Buna bagli
olarak y, fonksiyonu da bu noktada siireklidir.

Simdi y, fonksiyonunun

o0 =+ [/ 1 (5.95(5) [ k(5,7 Yo(e) Yola(e) de s

ID’ini ve (5.11) esitsizligini sagladigi dogrulanacaktir.
Xe [a,oo) igin xe 1, olacak sekilde bir n(x) fonksiyonunu goz 6niine alalim.

(5.12) ve (5.14) bagntilar1 dikkate alindiginda

yO (X) = yO,n(x) (X)

—c+[ f (s, Yo (). [ K (5.7, v (2), yo(a(f)))dr)ds (5.15)

yazilabilir.

Herhangi bir zel, ,, i¢in n(zr) <n(x) oldugu bilinmektedir. Ayrica (5.13)
bagintisindan Y, (7) = Yq (1) (7) = Yo (7) oldugu goriilebilir. Buna bagli olarak (5.15)
esitligi saglanir.

(5.11), (5.12) ve (5.14) bagntilarinin saglandigini ispatlamak i¢in her X € [a,oo)

i¢cin

<p[1-M(p+L5Y)] o)

1Y = Yol =|Y = Yoneo

kolaylikla elde edilebilir.

Bu bagmti ise teoremde istenen sonugtur. Simdi ise Y, m tekligini gosterelim.

Her X e [a, oo) icin (5.10) ve (5.11) denklemlerini saglayan sinirl ve tiirevlenebilir bagka
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bir 'y, fonksiyonunu géz 6niine alalim. Herhangi bir n(x)eN igin 1, lzerinde

n(x

¢ozlimiin tekliginden dolay1 = Yony €lde edilir ve her xel ., icin yl‘I

yo\ln(x) o)

fonksiyonu (5.10) ve (5.11) bagintilarin1 saglar. Boylece

Yo(X) = Yift.oo (x) = Vi ) =v,(x)

elde edilir. Dolayisiyla teoremin ispati tamamlanir.
(5.1) IDD’inin 6zel durumlarinda yukarida verilen teoremlerin sartlarinin

saglandigina dair 6rnekler verilecektir (Castro ve Simoes,.2019).

Ornek 5.1 y: [0, é} — R tiirevlenebilir bir fonksiyon olmak tizere asagidaki IDD’ini

g0z Online alalim:

x(1+2x)y(r)) 2
=1+2 , 0<x<—
y'=l+2x- y+_[0 exp[—7(x—1)] y’ G (5.16)
a2 ) y : 2 2
Ayrica O O’E —(0,0) olmak iizere o(x) =3e* fonksiyonunu ve a: O,g - O’E

olmak tizere a(x)=x siirekli gecikme fonksiyonunu ele alalim. Simdi Teorem 5.1.‘in

kosularinin saglandigin1 gdsterelim.
i r=["3e7dr _3 X = xe|0,=
L o(r)d jo 3e'dr < —e* = fo(x), 5

ﬂ:%, o(X) = 3e*

oldugu goriiliir. Ayrica, (5.16) denklemi ile (5.1) denklemi karsilastirildiginda

f: [O, é} xCxC — C siirekli bir fonksiyon olmak tizere

38



f(xy,9())=1+2x-y+g()

yazilabilir. Buna bagli olarak her x [O, é} icin

£ (xu(),90)) - f (xv(),hQ)|<|u()-v()]+]g()-h()]

esitsizligi saglanir. Boylece Teorem 5.1°de M sabiti M =1 olarak almabilir.

Ilave olarak k: {0, %} x {0, %} xC — C ¢ekirdeginin ise

X(1+2x)y

k(x.t,y, y(a(-)):m

2
ile verildigi ve siirekli oldugu gériiliir. Buna bagli olarak t e [0, X] ve Xe [O’E} icin

[k (xt,u,u(@())) -k (x.tv,v(a()) < %eﬁ lu(a () —v(a()

yazilabilir. Teorem 5.1°deki veriler dikkate alindiginda

L:Ee%
25

ve

1 9
M(ﬁ+Lﬂ2):E+%e25<1

olarak elde edilir.

2

yaklasik ¢dziim olarak alinabilir. Ote yandan, x e {0, %} i¢cin

eX
X) =
y(X) 03
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= |37 +3714x| < o(X)

V'~ (%, [Tk (x 7y, y(a(e) ) de |

elde edilir. Bu sonuglar ise yukarida verilen (5.16) IDD’inin H-U-R kararli oldugunu
gosterir.

Yukaridaki islemlere ilave olarak s6z konusu kararlilik sonucu yaklasik ¢6ziim ve
analitik ¢dzlim dikkate alinarak da gosterilebilir. Gergekten y,(X) = ¥ fonksiyonunun

(5.16) denkleminin bir ¢oziimii oldugu kolaylikla goriilebilir. Buna bagl olarak her

X e [O,%} icin gercek c¢oziimle yaklasik ¢oziim arasindaki farkin mutlak degeri

alindiginda
e 2 3e* Jij
y(X) = Yo(X)| =|———€" | < = o (x)
| o) 0.3 1_3?{% 1-M (B +LA%)
25

elde edilir. Boylece (5.16) IDD’inin H-U-R kararli oldugu sonucuna varilir (Castro ve
Simoes, 2019).

Ornek 5.2 Simdiise y: [O,l] — R tiirevlenebilir bir fonksiyon olmak iizere her X € [0,1]

i¢in
V() =(-2x-4)e? +5y()+e [ (-~ y(a(e) dr 5.17)

IDD’mini g6z 6niine alalim (Castro ve Simoes, 2019 ).

(5.17) denkleminin H-U kararli oldugunu gésterelim. o :[0,1] —(0,%0) olmak

lizere o(X) =1.1e"" siirekli fonksiyonunu ve «: [0,1] —)[0,%} olmak lizere a(X) =§

stirekli gecikme fonksiyonunu ele alalim. a(x) < x oldugu agiktir. Ayrica g = % icin

o(x) =1.1e" olmak iizere o(x)=1.1e" fonksiyonunun integrali alindiginda
g
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joxl.lelo’dr < %ewx =fo(x), Xe [0,1]

esitsizligi saglanir.

Ayrica f :[0,1]xCxC — C fonksiyonu ise

X

f (% y(x),9(x))=(-2x—4)e? +5y(x) +e2g(x)
ile verilmektedir ve bu fonksiyon stireklidir. Ayrica bu fonksiyon her X € [0,1] icin
£ (xu,9)—f(xv,h)<5(Ju-v|+|g-h]|)

Lipschitz sartin1 saglar.
Siirekli k :[0,1]x[0,1]xC — C gekirdegi

y(a(®)

k(x.t,y, y(a(t)) = (%

ile tanimlanir. Her t € [0, X] ve her x e [0,1] icin ¢ekirdek fonksiyonu
k(% t,u,u(e(®) -k (x,t,v, v(a(®))| < \u (2-1t)—v(2-1t)\
esitsizligini saglar. Burada L =1 olarak alinabilir. Boylece M (8 + Lg?) = ;—é <1 elde

edilir.

Eger yaklasik ¢6ziim y(x) = %ex olarak secilirse, bu takdirde her X [0,1] icin

y'— f (X, y,f:k (x,7,y(z), y(a(r)))dr)
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elde ederiz. Burada € =0.1 olarak alinmaktadir. Dolayisiyla Teorem 5.2.’nin tiim sartlari

saglanir ve (5.17) IDD’inin H-U kararli oldugu sonucuna varilir.

lave olarak y,(x)=e* fonksiyonunun (5.17) IDD’inin bir ¢dziimii oldugu

gosterilebilir. Her X [0,1] icin gergek ¢oziim ve yaklasik ¢oziim dikkate alinarak

(b-2a)o(b)
[1-M(B+Lp") |o(a)

100 2
Y= Yo|= 59 ©XP0) —exp(x)| < - exp(10x) =

esitsizligi saglanir. Boylece (5.17) denkleminin H-U kararli oldugu goriiliir (Castro ve
Simoes, 2019).
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6. LINEER OLMAYAN (6.1) DEGISKEN GECIKMELi iINTEGRO-
DIFERANSIYEL DENKLEMI ICIN HYERS-ULAM-RASSIAS
KARARLILIK

Kucche ve Shikhare (2019) asagida verilen lineer olmayan degisken gecikmeli

X'(t)= f(), tel, (6.1)
X(t) =¢(t), -r <t <0 (6.2)

lineer olmayan degisken gecikmeli Volterra IDD’ini ele aldi. Burada
t

f(.)="f [t, X, x(g ())Jh (t, s, X(S),x(g (s)))ds} ve ¢eC ([—r, 0], R) baslangic
0

fonksiyonudur. Kucche ve Shikhare (2019) yaptig1 ¢alismada Pachpatte esitsizligi, Picard

operatorii, ve Gronwall lemmasini kullanarak bu denklemin H-U-R kararliligini inceledi

ve 0zel durumlarda bazi uygulamalar verdi. Simdi s6z konusu ¢alismanin sonuglarini

vermeden Once hazirlik bilgileri niteligindeki asagidaki tanimlar1 verelim.

Tanmm 6.1 x e C([-r,b],R)~C'([0,b], R) olmak iizere (6.1) ve (6.2) denklemlerini

saglayan x fonksiyonuna (6.1), (6.2) baslangi¢ deger probleminin ¢6ziimi denir.

Simdi ise ¢ >0 sayis1 ve pozitif azalmayan siirekli bir ¥ fonksiyonu verilmek

tizere agagidaki esitsizlikler saglansin:

|y'— f (...)|£5, tel, (6.3)
y’—f(...)|£1,//(t), tel, (6.4)
|y’— f ()|S ey (t), tel (6.5)

t

Burada f(...)= f(t, Y, y(g(.)),jh(t,s, y(s), y(g(s)))ds] olarak almmaktadir(Kucche

0

ve Shakhare, 2019).



Tamim 6.2 Eger bir C>0 sabiti var 6yle ki her £ >0 ve (6.3) esitsizliginin her bir
y € C'([-r,b],R) ¢bzlimii i¢in (6.1) denkleminin bir x e C'([-r,b], R) ¢6zlimii var Oyle

Ki her —r <t <b i¢in
ly-x|<Ce

esitsizligi saglaniyor ise, bu takdirde (6.1) denklemine H-U kararhidir denir (Kucche ve
Shakhare, 2019).

Tanmm 6.3 Eger bir 6, eC(R“RJ, 0, (O):O, fonksiyonu var Oyle ki (6.3)
esitsizliginin her bir yeC'([-r,b],R) ¢6ziimii i¢in (6.1) denkleminin bir

X e C'([-r,b],R) ¢bziimii var ve her t [—r, b] icin

y-x<6,(¢)

esitsizligi saglaniyor ise, bu takdirde (6.1) denklemine genellestirilmis H-U kararlidir
denir (Kucche ve Shakhare, 2019).

Tamim 6.4 Eger bir C,/, >0 sabiti var 6yle ki her £ >0 ve (6.5) esitsizliginin her bir

y € C'([-r,b], R) ¢Oziimii i¢in (6.1) denkleminin bir x e C'([-r,b], R) ¢6ziimii vardir ve

her —r <t <b i¢in
ly-X/<C,ew(t)

esitsizligi saglaniyor ise, bu takdirde (6.1) denklemi pozitif azalmayan siirekli

1/ [—r, b] — R, fonksiyonuna gore H-U-R kararlidir denir (Kucche ve Shakhare, 2019).
Tanmim 6.5 Eger bir C, >0 sabiti var dyle ki (6.4) esitsizliginin her bir y e C'([-r,b], R)

¢6ziimi i¢in (6.1) denkleminin bir x e C'([-r,b],R) ¢6ziimii var ve her —r <t <b igin

ly=x/<C,w(t)
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esitsizligi saglaniyor ise, bu takdirde (6.1) denklemine pozitif azalmayan siirekli

17 [—r, b] — R, fonksiyonuna gore genellestirilmis H-U-R kararlidir denir (Kucche ve

Shakhare, 2019).
Uyan 6.1 Eger sadece y ’ye bagl bir q, € C(I ,R) fonksiyonu var dyle ki asagidaki

sartlar saglaniyor ise, bu takdirde y € C'(l,R) fonksiyonu (6.3) esitsizliginin bir ¢oziimii

olur:

(i) |a,®)|<e tel;
(i) y'=f(..)+q,, tel.
Benzer ifadeler (6.4) ve (6.5) esitsizlikleri i¢in de gegerlidir (Kucche ve Shakhare, 2019).

Uyan 6.2 Eger yeC'(lI,R) fonksiyonu (6.3) esitsizligini sagliyorsa, y fonksiyonu

asagidaki esitsizliginin de bir ¢oziimiidiir:

Sé‘t, tel. (66)

‘y— y(O)—jf (...)ds

0

Gergekten y e C'(I1,IR) fonksiyonu (6.3) esitsizligini sagliyor ise, o zaman Uyar1 6.1'e

gore
y'(t)=f(.)+q,(t), tel

yazilabilir. Buna bagli olarak bu denklem i¢in integral hesaplandiginda

t

f(...)ds =ﬂqy(s)‘£gt, tel

0

y(t)-y(0)-

O )

elde edilir (Kucche ve Shakhare, 2019).
(6.4) ve (6.5) esitsizlikleri i¢in de benzer sonuglar elde edilebilir.
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6.1 Sonlu Aralikta (6.1) Volterra-Integro Diferansiyel Denkleminin Hyers-Ulam-
Rassias Kararhhg:

(6.1) denklemi i¢in asagidaki sartlarin saglandigini kabul edelim.
(H1) feC([0,b]xR*R), heC([0,b]x[0,b]xR*R), geC([0,b].[-rb]) ve her
tel i¢in g(t) <t dir.

Ayrica L, L, >0 sabitleri vardir 6yle ki her t,sel, u,v, e R, (i=12,3), i¢in

L

(|ul —Vy |+t |ug —v3|)_l ’

|f (t,uy,...,uy)— f (t,vl,..,v3)|s

L,

(|u1_V1|+|u2 _\’2|)71

I (t,s,uy,u,,)—h(t,5,v,,v,,)| <

dir.

(H2) v : [—I’, b] — R, pozitif, azalmayan ve siirekli bir fonksiyon ve A >0 olmak iizere

her t e [O,b] icin

esitsizligi saglanir.

Teorem 6.1 (6.1) denklemindeki f ve h fonksiyonlarinin (H1) ve (H2) sartlarini
sagladigint kabul edelim. Bu takdirde bL, |2+ th| <1 olmak iizere asagidaki sonuglar
dogrudur.

(i) (6.1), (6.2) baslangig deger problemi bir tek XxeC([-r,b],R)nC’([0,b],R)
¢Ozlimiine sahiptir.

(ii) (6.1) denklemi, ¥ fonksiyonuna gore H-U-R kararlidir (Kucche ve Shakhare, 2019).
Ispat.

(i) (H1) sarti gbéz Oniine alindiginda, (6.1) denkleminin [O,t] araliginda integral

alindiginda (6.1), (6.2) baslangic deger problemi asagidaki probleme
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x(t)=¢(t), te[-r,0]

esdeger olur.

X=C ([—r, b] ,]R) Banach uzayimi ve |||| - Chebyshev normunu goz oniine alalim.

Ayrica B; : X — X operatoriinii

seklinde tanimlayalim.

Simdi daralma dontigiimii yardimiyla By operatoriiniin sabit bir noktaya sahip

oldugunu gosterelim.
[B; (x)(t)=B; (¥)(t) =[¢(t) -4 (1) =0, x,yeC([-r.b].R),te[-7,0] 6.7)
oldugu agiktir. Ayrica Vt el igin,

[B: (3)(6) =B (y)(1)

t : 6.8)
< ILf {2||x— Y. +2th X =yl dr}ds <bL, (2+L,b)[x-y].
0 0

esitsizligi elde edilir. (6.7) ve (6.8) ifadeleri dikkate alindiginda,
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|B: (%)= B, ()|, <bL; (2+Lb)[x~-V].. X yeC([-r,b].R),

yazilabilir. bL (2+L,b)<1 oldugundan, B, operatérii X tam uzayinda bir daralma
dontisiimiidiir. Bu nedenle Banach daralma doniisiimiine gore B, operatdrii sabit bir
X :[-r,b] > R noktasmna sahiptir ve bu sabit nokta ise (6.1), (6.2) probleminin bir
¢Ozimiudiir.

(ii) y e C([-r,b],R)nC'([0,b],R) fonksiyonu (6.5) esitsizliginin bir ¢6ziimii olsun.

x e C([-r,b],R) nC([0,b],R) olmak iizere, x fonksiyonu ise

X(t)="f(.)tel

x(t)=y(t), te[-r,0],

probleminin bir ¢6ziimii olsun. Burada

t

f(.)="f [t, X, X(g (t)) , Jh (t, s, x(s), x(g (s)))ds] olarak tanimlanmaktadir. Buna bagh

0

olarak da
x(t)= y(0)+_[f (.)ds, tel (6.9)

x(t)=y(t), te[-r,0], (6.10)

kolaylikla yazilabilir.
Eger yeC([-r,b],R) nC([0,b],R) fonksiyonu (6.5) esitsizligini sagliyorsa, 0
zaman (H2) sart1 ve Uyar1 6.1 ve 6.2 kullanilarak,

y(t)—y<o>—§f<--->ds (6.11)

48



elde edilir. Ote yandan t € [—r, 0] icin |y(t) — X(t)| =0 oldugu agiktir. Buradan, Vvt e |

icin (H2) sart1, (6.9) ID’i ve (6.11) kullanildiginda,

ly—X :‘y—y(o)—_:[f (...)ds

t

y—y(O)—jf (...)ds

0

<

t

+f

0

f [S, Y, ¥(9()), [h(s,z, y(2), Y(g(f)))dr]

(6.12)

—f [s, X, X(9()), i h(s, 7, x(z),x(g(z)))d rj ds

t

< g/w(t)+ij {|y(5)—x(5)|+‘y(9 (s))-x(g (S))‘

0

+iLh [[y(2)=x(2) +|y(9 (7)) -x(g (T))Hdr}ds

bakilabilir. Bu takdirde (6.12) ifadesine gore A:C([-r,b],R,)—C([-r,b],R,) olmak

tizere A operatori

A(u)(t)=0, te[-r,0],

A(u)(t) =ty (t)+L, j'{u(s)+u(g (s))+ th.l:U(T)-i-U(g (r))}dr}ds,t e[0,b]

0
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seklinde tanimlanabilir. Simdi ise A 'nin bir Picard operatorii oldugunu gosterelim. Bu
amagla, her te [—r,O] icin |A(u)(.)— A(V)()| =0 olmak iizere Yu,ve C([—r,b],I&)

i¢cin (H1) sart1 kullanildiginda Vt € | igin,

[Au)(®) =AW (1)

t S
<JL, {2||u —V] +2[ L Ju-v], dr}ds <bL, (2+Lb)[u-v],
0 0
elde edilir. Boylece, Vu,veC ([—r, b], R+) icin
||A(u) - A(v)||C <bL, (2+Lb)u-v.

sonucuna varihr. bL; (2+ th)Sl olmasi nedeniyle A doniisiimii C([—r,b],[&)

uzayinda bir daralma doniisiimiidiir. Banach daralma doniisiimii kullanarak, A 'nin bir

Picard operatorii ve F, = {u*} oldugu sonucuna varilir. Ayrica t € | igin,
t S

u =ely+L, _[{u* +u"(g(.)+ th[u*(r)+u*(g (r))]dr}ds
0 0

yazilabilir. U*, | aralig1 iizerinde artandir ve (U’)' >0 dir. Bu nedenle g(t)<t ve tel

icin U (g (t)) <u’ (t) olur. Dolayisiyla,

t

u(t)< g/lw(t)+I2Lf {u*(s)+iLhu*(r)drde

0 0

elde edilir. Buna bagli olarak, Pachpatte esitsizligini kullanildiginda
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u” < gﬂ,w(t){l+‘i‘2Lfexp U[sz + Lh]dr] ds:l
i i (6.13)
Sg)u//(t){l+ 2L, (exp(2L, +L, )o-1)(2L, +L, )1}

esitsizligini elde ederiz.

C, = 1{1+ 2L, (exp(2L, + L, )b-1) (2L, + 1, )l}

olsun. (6.13) esitsizliginden, t € [r,b] i¢in
u'(t)<C, ey (t)

elde edilir.u(t) = |y(t) — x(t)| icin (6.12) esitsizliginden U (t) < A(u)(t) sonucuna varilir.
Boylece u eC([—r,b],R+), U(I)S A(u)(t) ve F, ={u*} olmak iizere C([—r,b],]R+)
den C([—r,b],R+) ye tanimli A operatoriiniin artan bir Picard operatorii oldugunu

ispatlandi.

Dolayisiyla, soyut Gronwall lemmasini uygulayarak, u(t) <u’(t), te [—I’, b] elde

ederiz. Buna bagli olarak da her t e [-r,b] i¢in

ly-X<C,ep(t) (6.14)

esitsizligi saglanir. Boylece (6.1) denklemi ¢ fonksiyonuna gére H-U-R kararlidir. Teorem

6.1 ispatlanmis olur.

Sonug 6.1 (6.1) denklemindeki f ve h fonksiyonlari (H1) ve (H2) sartinin da saglandigini

kabul edelim. Eger bL, (2+ th) <1 ise, bu takdirde (6.1), (6.2) problemi bir tek ¢oziime

sahiptir ve (6.1) denklemi y fonksiyonuna gore genellestirilmis H- U-R kararlidir (Kucche

ve Shikhare, 2019).
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Ispat. Teorem 6.1'in ispatindaki (6.14) esitsizliginde & =1 alinirsa, —r <t <b igin
ly-X/<C,w(t)

elde edilir. Bu esitsizlik ise (6.1) denkleminin y fonksiyonuna gore genellestirilmis H-

U-R kararli oldugunu gosterir.
Ayrica Teorem 6.1'in ispat1 dikkate alinarak, benzer islemler kullanilarak, (6.1)

denkleminin H-U kararlilig1 da ispatlanabilir.
Her t e [—r, b] olmak tizere w(t) =1 i¢in (H2) sartinin gegerli oldugu goz oniine

alinarak, Teorem 6.1 i¢in asagidaki sonug yazilabilir.

Sonu¢ 6.2 (6.1) denklemindeki f ve h fonksiyonlari (H1) sartini saglasin. Eger
bL, (2+ th) <1 ise, 0 zaman (6.1), (6.2) probleminin bir tek ¢dziimii vardir ve (6.1)
denklemi H-U kararhidir (Kucche ve Shikhare, 2019).

Ispat. Her t e [—r, b] icin Teorem 6.1'in ispatindaki (6.13) esitsizliginde w (t) =1 alinirsa,
|y(t) — X(t)| <C,¢ elde edilir. Buna bagl olarak (6.1) denkleminin H-U kararli oldugu

sonucuna varilir (Kucche ve Shikhare, 2019).

Sonu¢ 6.3 (6.1) denklemindeki f ve h fonksiyonlari (H1) sartin1 saglasin.

bL, (2+ th) <1 ise, 0 zaman (6.1), (6.2) probleminin bir tek ¢oziimii vardir ve (6.1)
denklemi genellestirilmis H-U kararlidir (Kucche ve Shikhare, 2019).

Ispat. Eger Sonug 6.2 de 0, (8) =Ce¢ alinrr ise, ispat tamamlanir (Kucche ve Shikhare,

2019).

6.2 Baz1 Ozel Durumlar

Bu kesimde, (6.1), (6.2) probleminin bazi 6nemli 6zel durumlar ele alinmaktadir

(Kucche ve Shikhare, 2019). r >0 olsunve g,(t)=t-r, te [O,b] olarak tanimlansin.

Bu durumda (6.1), (6.2) probleminin 6zel bir hali olan asagidaki problem elde edilir;
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X'(t): fl(),OStSb (6.15)

x(t)=¢(t), -r<t<o0. (6.16)

t
Burada f(..)=f, [t, X, X(t— r),jh1 (t,s,x(s),x(s— r))dsj ile tanimlanmaktadir. Ihtiyag
0

duyuldugunda X yerine y de alinabilmektedir. Asagidaki esitsizligi gdz Oniine alalim;

ly'(t)- f.(..)|<ew(t).t[0,b].

Burada, &, ¥ ve ¢ ifadeleri yukarida tanimlanmaktadir. Teorem 6.1' in bir
uygulamasi olarak, (6.15), (6.16) problemi i¢in asagidaki teorem verilmektedir.
Teorem 6.2 Asagidaki sartlarin saglandigini kabul edelim:
(A1)
(i) f, e C([0,b]xR*,R), h, C([0,b]x[0,b]xR* R), g, C([0,b].,[-r,b])
ve g,(t) <t dir.

(i) Lfl,th > 0 sabitleri vardir dyle ki her t,Se[O,b], u,v, eR, (i =1,2,3)

L
|, (t Uy, Ug) = F (6,0 V)| < b -,
(Juy =V, |+ +us —vy))

L,

(|u1 —Vy|+|u, _V2|)7l

(15,0, U) R (65,4,v,,)| <

dir.

(A2) 1>0 ve y: [—I’, b] — R, porzitif azalmayan siirekli bir fonksiyon olmak iizere

te[0,b] igin j}//(S)dS <Ay (1)
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esitsizligi saglanir.

(A3) bL, |2+L,,b| <1 dir.

O zaman (6.15), (6.16) problemi bir tek x eC([-r,b],R)nC’([0,b],R) g¢dziimiine
sahiptir ve (6.15) denklemi y fonksiyonuna gore H-U-R kararhidir. (6.1), (6.2)
probleminin bir diger 6zel durumu ¢, (t) =t’tel = [0,1] alinarak asagidaki baslangic

deger problemi elde edilir:

X(t)=f,(-)tel =[01], (6.17)

X(t)=¢(t), te[-r,0]. (6.18)

Ayrica,

y’(t)— 4 ()| < gl//(t),t IS [0,1],

esitsizligini gbz Oniline alalim. Burada ,&, V¥, ¢ yukarida tanimlanmistir ve

f,(.)=f, (t,x,x(tz),jhz (t,s,x(s),x(sz))dsJ veya X yerine y de alinabilmektedir.

0
Teorem 6.1'in bir uygulamasi olarak, (6.17), (6.18) problemi i¢in asagidaki teorem
verilebilir.

Teorem 6.3 Asagidaki sartlarin saglandigini kabul edelim:
(B1) f, eC([0.1]xR% R), h, «C([0,1]x[0,1]xR* R) ve g, € C([0,1],[-r,1])
olmak iizere g, (t)<t dir.

sz , Lhz > 0 sabitleri vardir 6yle ki biitiin t, Se[O,l],ul,V1 eR(1=12,3) i¢in

L

2

|, (tUy, e Ug) — £, (6 Vg, v5)| < —
(Juy =V |+ Uy — V)
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L,

(Juy = vy | +|u, —v2|)71

|h2 (tvsvuliuz’)_hz (t’s’vl’VZ’)| =

dir.

(B2) >0 ve v [—I’,l] — R, pozitif azalmayan siirekli bir fonksiyon olmak iizere
t
te[0,1] igin [y (s)ds <Ay (1)
0

esitsizligi saglanir.

(B3) Ly, [2+L, <1 dir.

O halde (6.17), (6.18) baslangi¢c deger probleminin XeC([—r,l],R)mC’([O,l],R)

olacak sekilde bir tek X ¢dziimi vardir ve (6.17) denklemi y fonksiyonuna gére H-U-
R kararlidir (Kucche ve Shakhare, 2019).

Benzer bicimde (6.15) ve (6.17) denklemleri i¢in diger Ulam tipi kararlilik
sonuglari, Bolim 6.1'deki ilgili sonuglar kullanilarak elde edilebilir.

Bu kesimde, Boliim 6.1'de elde edilen sonuglarin 6zel durumlarda uygulamalarini
gostermek i¢in asagidaki 6rnekler verilecektir.

Ornek 6.1 Asagidaki lineer olmayan gecikmeli Volterra IDD’ini goz oniine alalim;

¢(t)= +tcos(x(t)) 3x(1) +tcos(x(g (1))
140 140 70

+2—10-:[%{sin(x(s)—sin(x(g (s)))} ds, t[0,5],

(6.19)

X(t):O,t E[—l,O]. (6.20)

(6.19) denklemi (6.1) denklemi ile karsilastiralim. g(t) =27't, t €[0,5] dir. g(t) <t,

t €[0,5] oldugu agikca goriilmektedir.
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(i)h:[0,5]x[0,5]xRxR — R fonksiyonu ise

h(t,s,x,x(g(.)))= %[sin(x(s)) —sin(x(g (s)))],t, s[0,5]

olarak elde edilir. Bu durumda, h fonksiyonu her t,5€[0,5] ve x,,x,,Y,,y, € R igin,

t (. . . . 5
n(t,s,...%,)=h(t,s,....y,)|< 7—0{|smx1 —siny, |+ [sinx, —siny, |} < 7—0{|x1 =Yy + % = Y|}
Lipschitz sartin1 saglar.

(i) f:[0,5]xRxRxR—R fonksiyonu ise

(t xx(g(t)), I (t s,x(s),x(g(s))))dsj

tcos(x(t)) 3x(t) tcos(x g(t)

=1+ Lol 12l j [sm(x(s sin(x(g(s)))]ds
:l+tcoi£:(;(t))_3])-(4(é)+tcos(>7<gg (t))+2—:L()jh(t,s,x(s),x(g(s)))ds,t6[0,5]

0

olur. Buna bagl olarak, her {,S e [0,5] Ve X, X%, %, Y, Y, Ys € R icin kolaylikla

1
{140|cosx1 Cos Y|+ 140|x1 y1|} |cosx2—cosy2|+%|x3—y3|

elde edilir. ilave olarak, herhangi bir X,y e R ve x<y igin, ortalama deger teoremi

kullanildiginda

COSX—COS Yy

= —sin p = |cosx—cos y| <[x - |
X=y
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olacak sekilde bir p vardir 6yle ki x < p <y dir. Boylece,

(X0 X)) = T (6 Yy V)|

<{ Sl ol b Sl -l
140 1140 o ( LR L

5
S%{|X1_y1|+|xz _y2|+|X3_Y3|}

elde edilir.
Dolayisiyla, yukarida verilen f ve h fonksiyonlari, L, = 7—50, L, =—,b=5
olmak iizere, (H1) sartini saglar. Ayrica,

bL, (2+bL,)= 5%{2 -+ %5} =0.84183673 <1 oldugu agiktir. Bu nedenle, Sonug

6.2'ye gore, (6.19), (6.20) problemi [—1,5] araligi iizerinde tek bir ¢oziime sahiptir ve

(6.19) denklemi [0, 5] aralig1 tizerinde H-U kararlidir. Benzer bi¢imde, H-U-R ve

genellestirilmis H-U kararlilik tiirleri de (6.19) denklemi i¢in gosterilebilir.
Ote yandan,

,te!0,5
X(t):{ Ot, tte[[—l,g] (6.21)

fonksiyonu (6.19), (6.20) probleminin tek ¢éziimiidiir. Gergekten, t €[0,5] i¢in x(t) =t,

g (t) =27, olmak iizere,

1, 0) 30 to0000), L s -sn( a0 5)
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t
tCOS() t
=1+tcos(t)_ 3t N 2 +1iojt[sin(s)_sin(§ﬂds:1:x'(t)

140 140 70 )

bagintisini sagladigi agiktir.

Simdi ise, g(t) :%, te [0,5] olmak iizere (6.19) denkleminin H-U kararlilig

incelenecektir. £>0 ve y(t) asagida verilen esitsizliklerin ¢6ziimleri olmak tizere,

problemin x(t) ¢6ziimii yardimiyla inceleme yapilacaktir.

te[O,S]

t
() &=07vey(t)=12"
O,te[—l,O]

olsun. Buradan t €[0,5] igin,

. tcos(y,(t)) 3y, (t) teos(y,(g(t)
% (1)-0r 1(40 - i4g)+ 7(5 |

tcos(y, (t)) 3y() R cos(y, (9 (t))
140 140 70

t t t
tcos(j 3 tcos()
< %_1_ 2 2 4 1

- t
+ - - It sin(i)—sin(ij ds|<0.667499
140 140 70 140 2 4

y, (t)-(@+

elde edilir. (6.19), (6.20) probleminin (6.21) ile verilen x(t) ¢6ziimii ve C =4 sabiti igin,

|V, -X|=[2"t-t|<25<Ce, te[0,5]
ve

ly,—X|=0, te[-1,0]

dir. Bdylece |y, (t)—x(t)| < Ce, te[-1,5] elde edilir.

(ii) t €[-15] olmak iizere Yy, (t)=0 ve £=1.2 olsun. Buradan t €[0,5] i¢in
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" (t)_(“tcos(yz (t) 3y, (t)+tcos(y2(g(t))

140 140 70

i()jJ.L()[S|n(y2 N- 3|n(y2(g( )))]dsJ
" (t)_l_tcos(yz (1)) L3 (t) _tcos(yz(g(t))

140 140 70

t

1 - -
ol gl 5D -siny: o5

0

155 —<l12=¢
140

ot
140 70

elde edilir. (6.19) (6.20) probleminin (6.21) ile verilen x(t) ¢6ziimii ve C =6 sabiti i¢in
te [0, 5] olmak iizere |y2 (t)- X(t)| = |O—t| <5< Cg¢ dir. Ayrica, te [—1, O] olmak iizere

|y2 (t)—X(t)| =0< Ce¢ yazilabilir. Bunedenle y, (t)=0, te[-15] vee =1.2 "ye karsilik
gelen (6.19) (6.20) probleminin (6.21) ile verilen x(t) ¢6ziimii ve C=6 sabiti i¢in
|y2 (t)—x(t)| <Ce, te[-15] dir.

t
—,1t€]0,5
(ii1) Benzer bicimde £ =1.5 ve y3( ) = {10 © [ ] icin

0, te[-10]

yi—(1+ tCOS(y3) 3y, +tCOS(Y3(g (t))
140 140 70

j; [sm(y3 )S'n(yg(g(S)))]ds)

1_tcos(y3) L3 _tcos(ys(g(t))
140 140 70

Y3

t

— [ [sin(y, () -sin{ (g (s))) ]

0

<1.0557<¢
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oldugu goriiliir. (6.19), (6.20) probleminin (6.21) ile verilen x(t) ¢6ziimii ve C =3 sabiti
igin, |y, (t)—x(t)|<4.5=Ce, te[-15] elde edilir.

t?, te[0,5]

0, te[-L0] alalim. Buradan t e [0,5] icin,

(iv) =10 ve vy, (t)={

. (t)_(1+tcos(y4 (1) 3y.(t) +tcos(y4(g(t))

140 140 70

ioilo[sm(w N-sin(v.(g(s))) |ds)

y (t)_l_tcoS(y4(t))+3y4(t)_tcos(y4(g(t))
' 140 140 70

t

l 4 .
— | %[sm(w(s))—sm(y‘;(g(S)))}dS)

0

<&

dir. Ayrica, (6.19), (6.20) probleminin (6.21) ile verilen x(t) ¢6ziimii ve C =2 sabiti i¢in,
|y, (t)—x(t)|<20=Cs, te[-15] dir.

t*, te[0,5]
0,te[-10]

(v) Son olarak £ =77 ve y(t)= { alalim.

. tcos(ys(t)) 3ys(t) tcos(ys(g(t)
¥a (1) - 1(40 - I4E))+ 7cf |

Ao

. (t)_l_tCOS(Y5 (1)) L 3% (t)_tcos(ys(g(t))

140 140 70

t

1 . .
_2_0-[7L0[S|n(y5 (s))—sin (ys (9 (S))ﬂ ds)

0

<&
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elde edilir. (6.19), (6.20) probleminin (6.21) ile verilen x(t) ¢oziimii ve C =2 sabiti igin,
Vs ()= x(t)|<120<Ce, te[-15] dir. O halde (i)-(v) deki segimler igin (6.19)

denklemi H-U kararlidir.
Uyan 6.3 y(t) fonksiyonu

tcos(y(t)) 3y(y) +tcos(y(g (1))

(t)-@
y(H)-a~ 140 140 70

<e,

1 . -
+2—O£7io[sm(y(3))—8'n(y(9 (S)))}ds)

esitsizligin bir ¢6ztiimii ve x(t) , (6.19), (6.20) baslangi¢ deger probleminin bir tam ¢dziimii
ise, bu takdirde te[-15], |y(t)—x(t)|<Ce esitsizliginden & —0 igin y(t)— x(t)

oldugu sonucuna varilir (Kucche ve Shikhare, 2019).
Ornek 6.2. Asagidaki gecikmeli Volterra integral diferansiyel denklemini goz oniine

alalim;
t (6.22)

x=0,t E[—l, 0] (623)

Burada g(t)=4"t<t, te[0,o0) dur.

(6.22) denklemi (6.1) denklemi ile karsilastiralim.
(i) h:[0,20)x[0,00)x R* > R olmak iizere,

h(t,s,x,x(g(.))):%[cos(x(s)ﬁsin(x(g(s)))]t,s e[0,0),t>s
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elde edilir. Bu durumda her t,5 €[0,0) ve x,%,,Y,,y, €R igin

|h(t,s,..., x,)=h(t,s,.... ¥, )| < %ﬂcosx1 — €08 y,| +[sin x, —sin y2|}
si{|x1— Yal [, — y2|}
10

Lipschitz sart1 saglanir.

(ii) Z[O, 0)xR® - R olmak iizere,

f(.)= %+6—1Osin(x(t))—%cos(x(g (t))—éj[cos(x(s))min(x(g (s)))]ds

0

yazilabilir. O halde herhangi bir t,S € [0, ©) ve Xiseos Xy Ypooony Y3 € R i¢In

iy . 1
(6% X5 ) =D (t, Yyroens V3| sa|sm X, —Sin yl|+E|cos X, —COS Y, |

1
SE{|X1_y1|+|xz —y2|+|X3—y3|}

oldugu gorilir. Yukarida tanimlanan f ve h fonksiyonlari, L, =5 ve L, :% igin

(H1) ve (H2) sartlarini saglar. Ayrica,

X(t)z %,te[o,oo)
O,tE[—l,O]

fonksiyonunun (6.22), (6.23) baslangic deger probleminin ¢oziimii oldugu kolaylikla

gériilebilir. Simdi ise & >% ve
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t
y(t)= E, te[O,oo)
0,te[-10]

olarak alinsin. Buna bagli olarak her t e [0, ) icin,

v'(t)—(%+6—2sin<y<t>)—§cos<y(g<t>)—$i %[cos(y(s))win(y(g<s)))]ds}
%—%—G—losin(%jjtécos(é%% ; {cos(§j+sin(%ﬂ ds

elde edilir. Dolayisiyla (6.22) denkleminin herhangi bir x(t) ¢oziimii igin

19
<—<eg
120

yazilabilir. t —> o0 |X(t)—y(t)|—>oo sonucuna varilir. Bu nedenle (6.22) denklemi

| = [0, o) araliginda H-U kararl degildir (Kucche ve Shikhare, 2019).
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7. (7.1) LINEER OLMAYAN VOLTERRA INTEGRO-DIFERANSIYEL
DENKLEMI ICIN HYERS-ULAM VE HYERS-ULAM-RASSIAS KARALILIK

Huang ve Li (2016)

t
a

f()="1 (t, u) +j g (t, s,u (S)) ds olmak iizere asagidaki baslangi¢ deger problemini

ele aldi:

(7.1)

Burada J = [a,b] olmak lizere, f ve g siirekli fonksiyonlardir. Simdi, baz1 H-U kararlilik

turlerinin tanimlar verilecektir.

[k olarak ¢>0, yw eC(J,R,) ve P(t)zP(.) olsun.

t

P()= f(t,v(t))+fg(t,s,v(s))ds

a

olmak iizere, asagidaki esitsizlikleri gz oniine alalim:

|v'—73(.)|£5, teld, (7.2)

ve

V'_p(,)|gg://(t), teld. (7.3)

Tamm 7.1 Eger bir K, > 0 sabiti var 6yle ki herbir £ >0 ve (7.2) nin herbir ve C* (J , ]R)

¢6ziimi i¢in (7.1) in bir U ¢6ziimii vardir 6yle ki
v(t) —u(t)|<K,e

oluyor ise, bu takdirde (7.1) problemi H-U kararlidir denir (Vu ve Hoa 2020).



Tanmm 7.2 Eger bir C, >0 sabiti var Oyle ki herbir £>0 ve (7.3)’lin herbir

veC (J : ]R) ¢Oziimii i¢in (7.1) in bir u ¢oziimi vardir dyle ki

V(1) ~u(t)|<C,ew )

esitsizligini saghiyor ise, bu takdirde (7.1) problemi, EC(J,R+)’ye gore H-U-R

kararhidir.

7.1 (7.1) Lineer Olmayan Volterra Integro-Diferansiyel Denklemi icin Hyers-Ulam-
Kararhhk

Bu kesimde, ardisik yaklasim yontemini kullanarak, (7.1) i¢in, H-U kararlilig1

verilecektir.

Uyan 7.1 Eger v fonksiyonu (7.2)' nin bir ¢oziimii ise J araligi iizerinde siirekli bir

o(t) fonksiyonu vardir dyle ki |5 (t) | <gveV (t) = 73() + 5(t) saglanir.

f:IxR—>R ve g:IJxJxR—>R siirekli fonksiyonlar olmak {iizere asagidaki

sartlarin saglandigin1 kabul edelim.

(H1) L, L, pozitif sabitleri var &yle ki her (t,5)€JxJ ve w,, w, e R i¢in asagidaki

esitsizlikler saglanir:

|f(t,wl)— f (t’Wz)|S L1|W1_W2|’

|9 (ts,w)—g(t,s,w, )| < Ly|w —w,|.

(H2) w e C(J,]R+) olsun. Pozitif bir C >0 sabiti vardir dyle ki

ckt
(b-a)

kCk <

1

vk >1 ve 0< —El <1 olmak kaydiyla her t € J igin
c
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Iw(s)ds <Cy (t)

a

esitsizligi saglanir (Huang ve Li, 2016).
Teorem 7.1 f ve { fonksiyonlar1 (H1) sartin1 saglasin. Bu takdirde herbir ¢ > 0 igin
eger vV fonksiyonu (7.2) esitsizligini saglarsa, U, =V, olmak iizere, (7.1) denkleminin

bir tek U ¢6ziimii vardir dyle ki bu ¢oziim

&b

[exp((b——a)(l+—L))]4

u-v|<

esitsizligini saglar (Huang ve Li, 2016).

Ispat. Her & >0 igin v fonksiyonu (7.2) esitsizligini saglar ise, bu takdirde Uyar1 7.1

dikkate alindiginda, J araligi iizerinde siirekli bir o (t) fonksiyonu vardir dyle ki

5(t)|<e ve V'(t)=P(.)+5(t) saglanir. Buna bagli olarak v(t) fonksiyonu

t t

v(t):v0+_|'73(.)ds+15(s)ds (7.4)

a

ID’ini saglar. Burada

IP(.)ds = JI f (s,v(s))+j'g (s, z',v(z'))dr} ds

a

dir. Bir (un)nZO dizisini u,(t) =v(t) ve ne N olmak iizere
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u, () =V, +[B,(s)ds (7.5)

seklinde tanimlansin. Burada

_I’Pnl(s)ds = J{f (s,uH(s))+jg (S,T,unl(‘[))df:| ds

a a

dir. (7.4) ve (7.5) den n=1 igin

&
1

|u, —u,| < vteld

(7.6)

elde edilir. n=1,2,3,..., i¢in (H1) sart1 kullanildiginda

Uy =,

n+l

<L

[

U, (1) =, (r)|]drds

D e

u, (s)—unfl(s)|]ds+ Lﬁ[

elde edilir. Burada L=max{L,,L,} dir. Ozel olarak n =1 igin ve (7.6)’dan

2! 3!

|u, u1|<,9L[(ta)2 +(ta)3J

elde ederiz. Ayrica n =2 igin
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3! oS!

<3sl? {(t—a)s ot (t—a)sJ

olur. n>4 i¢in

o (t _a)n (t _a)2n+l
|Un—Un71|S€nL [ ol +...+ (2n+1)| (77)

bulunur. Bu durumda (7.7) esitsizligi asagidaki sekilde yazilabilir:

g(t—a)L(t—a)"fl.

(n-1)!
[l+@+...+ (t_a)nﬂ J

n+1 (n+1)(n+2)...2n(2n+1)

|u, —u,y|<

TS RS NS Bt

TR TR (n)! +(n+1)!

Buradan

(7.8)

oldugunu kabul edelim. Bu kabul yardimiyla asagidaki esitsizlik yazilabilir.

JL(t-a) 1

(n-1)!' exp(a-t) vted.

Buna bagli olarak da yukaridaki esitsizligin N =0 dan sonsuza toplami alindiginda
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0

D |up (8)—u, (1) Sgbexp(b_a)iw

n=0 n=0 n!

(7.9)

esitsizligi elde edilir. (7.9) esitsizliginde esitsizligin sagindaki seri exp(L(t—a))

fonksiyonuna yakinsak oldugundan, her & >0 icin u, + Z |u,,; —u,| serisinin de diizgiin

n=0
yakinsak oldugu sonucuna variriz.
TN L+L) 7.10
S exp(a-b) (7.10)
elde edilir.
0=ty + Uy = (7.11)
ifadesini ele alalim. Dolayisiyla
i
Uj=Uy+ > [Upy —Uy| (7.12)
n=0
ifadesi (7.11) serisinin j .kismi olur. (7.11) ve (7.12) ifadelerinden
lim|T-u;|=0
Jo®
elde ederiz. Vte J igin U(t)=0(t) alalim. Burada dizinin limitinin
t
u:v0+IP(s)ds, Vtel (7.13)
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denkleminin bir ¢dziimii oldugu goriiliir. Ayrica

t

P()=f (t,u(t))+jg (t.s,u(s))ds

a

dir. (7.5), (7.13) ve (H1) sartindan

u(t)- v—_[P( a(t)—(u;(t)- IP (s)ds)— jP()ds

<[@(t)-u; (V)] + [P (s)-P()]ds (7.14)

ts
<[a (t)=u; () +-+ L[ [Ju; o (r)—u(r)|drds
ifadesini elde ederiz. (7.11) ve (7.12) birlestirildiginde

‘U_UJ‘S z |un+1_un|

n=j+1

yazilabilir. Burada (7.9) esitsizligi goz 6niine alindiginda

T(t)—u; (1) <eb exp(b-a) i M vtel (7.15)

n=j+1

elde edilir. Dolayisiyla (7.14) ve (7.15) esitsizliklerinden asagidaki sonuca varilir.

u(t)—vo—_[P(s)ds

a

(7.16)
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< cheb—2 N (L(t_a))n S (t—a)n+1 (t_a)n+2
< sbe [nZ et 2t ((n+1)! T }]

=j+l n=j+1

N — oo limit alinirsa sag taraftaki serinin yakinsak oldugu goriliir. Bu nedenle

<0, Vtel

u(t)—v, —_IP(s)ds

sonucuna varilir. Buradan

t

u(t)=v0+IP(s)ds, Vtel (7.17)

a

esitligi elde edilir ki bu da (7.1) in bir ¢oziimidiir. Ek olarak (7.10) dan

(1+L)

u—v|<eb ———L_
exp(a—b)

ifadesi elde edilir. Problemin (7.1) ¢ozliimiiniin tekligini gostermek igin, U(t) 'nin (7.1)'

in formuna sahip bagka bir ¢6ziimii oldugunu kabul edelim.

Burada

dir. (H1) sartim1 kullanarak
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t

7(t)< Ljy(s)ds+ Lﬁy(r)drds, Viel

a

esitsizligi elde edilir. Burada y(t) :=|u (t)—l](t)| dir. Daha sonra Gronwall lemmasi

uygulanirsa J {izerinde ;/(t) =0 bulunur. Oyleyse U (t) =0 (t) dir ve teoremin ispati

tamamlanir Oguntuase(2001).

7.2 (7.1) Lineer Olmayan Volterra Integro-Diferansiyel Denklemi icin Hyers-

Ulam-Rassias Kararhhik

Bu kesimde bir Onceki kesimdeki islemlerin benzeri kullanilarak (7.1)
denklemini H-U-R kararlilig1 incelenecektir.

Uyan 7.2 Eger v fonksiyonu (7.3) 'iin bir ¢oziimii ise, bu takdirde, J araligi iizerinde

stirekli bir &(t) fonksiyonu vardir, 6yle ki |§(t)| <ep(t) ve VI(t)=P()+&(t) dir,
V({E)=P()+&(t),e>0,u,=V,, tel.

Teorem 7.2. (H1) ve (H2) sartlar1 saglansin. Eger, her ¢ > Qigin, v fonksiyonu (7.3) i

saglarsa, U, =V, olmak iizere (7.1)'in tek bir u ¢dziimii vardir ve bu ¢dziim VteJ i¢in

asagidaki esitsizligi saglar;

u—d|<w(t)e(b-a)(1-CL) (1-C)". (7.18)

Ispat. Her £>0 icin v fonksiyonu (7.3) ‘i saglasin. Bu takdirde yukarida verilen uyari

dikkate alindiginda, J iizerinde tanimli siirekli bir £(t) fonksiyonu vardir Gyle ki

El<ev®

ve
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V({t)=P()+<()

dir. Bu durumda v fonksiyonu

v t):u0+jP(.)ds+J§(s)ds (7.19)

ile verilen ID’i saglar. Burada

_E'P(.)ds = jif (s,v(s))+jg (S,T,V(z’))dz}ds

a

ile verilmektedir. Teorem 7.1'in ispatina benzer sekilde, u,(t) =v, VteJ, olmak

tizere (7.5) 'te verilen bagint1 ve (H2) sart1 gozoniine alindiginda dizisini yeniden ele

alalim.

Bu dizi, (H2) sart1 ve (7.19) bagmtis1 gozoniine alindiginda n =1 igin

|u, —up| <eCy(t), ted

ifadesi elde edilir. Benzer bicimde n =1, 2,... i¢cin ve (H1) sart1 kullanildiginda

. u|<Lj[

(s)-u,_

(1) -0, e

ifadesi elde edilir. Burada L =max{L,,L,} dir. Ozel durumda n =1 alindiginda
yukaridaki bagintidan

Ju, (t)—u, (t) <g|_cjy/ ds+gLC”1// )drds =£L(C*+C®)y (t), vted
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bulunur ve dolayisiyla n=2 igin
t ts
Jus (1) =, (1) < L[|u, (s)—uy (s)|ds+L[[u, (r)—u, (r)|drds < 3L (C*+C* +C® )y (t)

t

bulunur. n>4 icin f(t,x,x(g(t)),_[h(t,s,x(s),x(g(s)))dsjz f () alindiginda

X(t)=1() tel, (7.20)

kolaylikla elde edilir. Benzer islemler stirdiiriildiiglinde, (H2) sart1 ile (7.7) esitsizligi dikkate

alindiginda

1_Cn+l
1-C

U, = | Sg(b—a)( j(CL)Hy/(t), vtel

elde edilir. Buna bagl olarak

lu, —u,,|<e(b-a)(1-C"*)(1-C) " (CL) "y (t), Vteld (7.21)

n

sart1 saglanir ise tlimevarim yontemiyle

lUps —U,|<(b-a)(1-C™?)(1-C) *(CL)"w (t), Vte

n+1

elde edilir. Her iki tarafin 0’dan o ’a toplam1 alinir ise
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o)y (cL (7.22)

n=0 n=0

yazilabilir. (H2) sart1 ve 0<CL <1 sartlar1 g6z 6niine alindiginda n— oo limit alinir ise

> (cLy’ e% yakinsamas: elde edilir. Buna bagli olarak her &>0 igin
n=0

- §:|un+1 (t)-u, (t)| serisi J aralig1 izerinde diizgiin yakinsaktir ve

> lups U, <2(b-a)[(1-C)(A-CL)] p (1), Vtel (7.23)

elde edilir. Teorem 7.1 deki yontem izlendiginde, u(t) fonksiyonunun (7.1)

denklemininin bir ¢6ziimii oldugu kolaylikla gosterilebilir ve bu ¢6ziim

u(t)—-v, = j P(s)ds
ile verilir. Sonug olarak
u—vj<e(b-a)[(1-C)(1-CL)| w(t), Vted,
esitsizligi saglanir. Bu takdirde (7.1) denkleminin H-U-R kararli oldugu sonucuna varilir
(Huang ve Li, 2016). Simdi ise, sonuglarimizi ag¢iklamak i¢in iki basit Ornek

sunulmustur.

Ornek 7.1 Asagidaki baslangig deger problemini ele alali:

u(0)=1. (7.24)

Burada v(t)=1, Vv 0<t<1 i¢in
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esitsizligi saglanir.
Simdi u, (t) = u(O) =1 olsun. Teorem 7.1'deki gibi ardisik yaklagim yontemini

kullanarak, (7.24) denkleminin ¢6ziimii i¢in asagidaki yaklasimlar elde edilir:

Bu takdirde u (t) =1+t+ 2 ifadesi (7.24) denkleminin bir ¢oziimiidiir. Ayrica,

|v—u|£§
2

esitsizligi saglanir.

Simdi ise

4

u*(t)=1+t+...+%

fonksiyonu (7.24) 'in bir ¢oziimii olarak tanimlayalim. Buna baglh olarak

17

‘v—u* <
24

elde edilir. Bu nedenle bu son esitsizlik, U (t) fonksiyonunun u(t) ¢oziimiine daha iyi

bir yaklagim ¢6ziimii oldugu goriiliir (Huang ve Li, 2016).
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Ornek 7.2 te [0,1] olmak {izere, asagidaki IDD’ini g6z 6niine alalim:

du _
dt

t

u(t)+‘fu(s)[1+u(s)]7l ds. (7.25)
0

(7.25) denklemi ile baslangigta verilen denklem karsilastirildiginda

g(t,s,u)=ufl+ u]_1

oldugu goriiliir. Buna bagli olarak

| (tw,)— f (tw,)| =|w, —w,|
ve

‘g(t,s,wl(s))—g(t,s,wz(s))‘g|wl—w2|
elde edilir. Boylece, Teorem 7.1’nin sartlarinin sagladigi goriiliir. Dolayisiyla, (7.25)

denklemi [0,1] aralig1 iizerinde bir tek ¢ézlime sahip olur.

Ayrica, eger v fonksiyonu
t -1
v'(t)—v(t)—jv(s)[1+v(s):| ds|<e
0

esitsizligini saglar ise, Teorem 7.1 dikkate alindiginda (7.25) denklemin bir u ¢oziimi

vardir ve bu ¢oziim

u—v <22 gicpog
&

esitsizligini saglar. Boylece (7.25) denklemi H-U kararlidir (Huang ve Li, 2016).
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8. TARTISMA VE SONUC

Bu tezde literatiirdeki dort farkli ¢calismada ID’ler ve IDD’lerin ¢6ziimlerinin
varligi, tekligi ve s6z konusu denklemlerin Ulam tipi karaliliklari ile elde edilen sonuglar
ve bu kavramlar ile ilgili verilen drnekler arastirmacilarin dikkatlerine sunuldu. Burada
ele alman IDD’lerin bazilar1 degisken gecikmeli ve bazilar ise gecikmesizdir. Yapilan
incelmelerde Banach daralma prensibi, ardisik yaklasiklar yontemi ve metrik kavraminin
sonuglari elde etmede etkin bir bigimde kullanildigi izlendi. Ele alinan ID’ler ve IDD’lere
ait niteliksel sonuglarin ispatlanmasi i¢in denklemlerin tipine bagli olarak uygun
operatorler tanimlandigi, daha sonra ise uygun metrik, norm tanimlari, Pachpatte
esitsizligi, Picard operatorii, Gronwall esitsizligi vb. kavramlar kullanilarak vb. amaca
yonelik olarak uygun sonuglar elde edildigi izlenildi. Tezdeki teoremlerin sartlarinin,
ispatlarda genelde Banach daralma prensibi kullanilmasi nedeni ile, ele alinan
denklemlerdeki fonksiyonlarin Lipschitz sartini saglayacak sekilde insa edildigi gézlendi.
Arastirmacilara yeni problem olarak tezdeki denklemlerin vektér ve kesir mertebeli
formlarinin ¢oziimlerinin varlig, tekligi ve Ulam karaliliklarinin c¢alisabilecegini

onermekteyiz.






KAYNAKLAR

Abbas, S., Benchohra, M. (2015). Existence and Ulam stability results for quadratic
integral equations. Lib. Math., 35(2), 83-93.

Akkouchi, M. (2019). On the Hyers-Ulam-Rassias stability of a nonlinear integral
equation. Appl. Sci., 21, 1-10.

Alqifiary, Q. H., Jung, S.M. (2014). On the Hyers-Ulam stability of differential equations
of second order. Abstract and Applied Analysis, 1-8.

Bayraktar, M. (1987). Fonksiyonel analiz. Erzurum: Atatiirk Universitesi Fen Edebiyat
Fakiiltesi Matematik Boliimii.

Biger, E., Tung, C. (2023). On the Hyers-Ulam stability of second order noncanonical
equations with deviating argument. TWMS J. Pure Appl. Math., 14(2),151-161.

Berinde, V. (2007). Iterative approximation of fixed points (2. ed.). Springer: Berlin

Burton, T.A. (1985). Stability and periodic solutions of ordinary and functional
differential equations. Academic Press Inc: Orlando, FL.

Cadariu, L., Radu, V. (2004). A Hyers-Ulam-Rassias stability theorem for a quartic
functional equation. Automat. Comput. Appl. Math., 13(1), 31-39.

Castro, L. P., Ramos, A. (2009). Hyers-Ulam-Rassias stability for a class of nonlinear
Volterra integral equations. Banach J. Math. Anal., 3(1), 36-43.

Castro, L. P., Ramos, A. (2010). Hyers-Ulam and Hyers-Ulam-Rassias stability of
Volterra integral equations with delay. Integral methods in science and
engineering (Vol.1, pp. 85-94). Birkhauser Boston Ltd: Boston, MA.

Castro, L. P., Guerra, R. C. (2013). Hyers-Ulam-Rassias stability of Volterra integral
equations within weighted spaces. Lib. Math., 33(2), 21-35.

Castro, L. P., Simodes, A. M. (2018). Hyers-Ulam-Rassias stability of nonlinear integral
equations through the Bielecki metric. Math. Methods Appl. Sci., 41(17), 7367-
7383.

Castro, L. P., Simdes, A. M. (2019). Hyers-Ulam and Hyers-Ulam-Rassias stability for a
class of integro-differential equations. Mathematical methods in engineering (Vol.
23, pp. 81-94). Springer: Cham.

Choi, G., Jung, S.M. (2015). Invariance of Hyers-Ulam stability of linear differential
equations and its applications. Advances in Difference Equations., 2015, 1-14.

Ciplea, S. A., Lungu, N. (2020). Ulam stability of Volterra integral equation on a
generalized metric space. Stud. Univ. Babes-Bolyai Math, 65(2), 303-308.

Diaz. J., Margolits, B., (1968). A fixed point theorem of the alternative for contractions
on a generalized complete metric space, Bulletin of the American Mathematical
Society. 74, 305-309.

Ege, O.,Ayadi,S., Park, C. (2021). Ulam-Hyers stabilities of a differential equation and a
weakly singular Volterra integral equation. Journal of Inequalities and
Applications, 1-12.

Gavruta, P., Jung, S.M., Li, Y. (2011). Hyers-Ulam stability for second-order linear
differential equations with boundary conditions. Electron. J. Differential
Equations, 1-5.

Ghaemi, M., B., Gordji, M. E., Alizadeh, B., Park, C. (2012). Hyers-Ulam stability of
exact second-order linear differential equations. Adv. Difference Equ., 1-7.

Graef, J. R., Tung, C., Sengiin, M., Tung, O. (2023). The stability of nonlinear delay
integro-differential equations in the sense of Hyers-Ulam. Nonauton. Dyn. Syst.,
10(1), 1-12


https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=1055625
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=357926
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=5616
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=600907
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=735129
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=6402
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=600907
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=738138
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=1124875
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=357926
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=7474
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=843863
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=116980
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=7436
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/publications.html?pg1=ISSI&s1=441437
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=1056394
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=1168687
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=627732
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=7468
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=7468
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=72050
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=357926
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=332281
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=4526
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=4526
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=664163
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=748018
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=724568
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=627732
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=7474

Huang, J., Jung, S.M., Li, Y. (2015). On Hyers-Ulam stability of nonlinear differential
equations. Bull. Korean Math. Soc., 52(2), 685-697.

Huang, J., Li, Y. (2016). Hyers—Ulam stability of delay differential equations of first
order, Math. Nachr., 289(1), 60-66.

Hyers, D.H. (1941). On the Stability of the Linear Functional Equation. Proc. Natl.Acad.
Sci., U.S.A,, 27, 222-224.

Janfada, M. Sadeghi, Gh. (2013). Stability of the Volterra integro differential equation.
Folia Mathematica, 18(1), 11-20.

Javadian, A., Sorouri, E., Kim, G. H., Gordji, M. E. (2011). Generalized Hyers-Ulam
stability of the second-order linear differential equations. Journal of Applied
Mathematics, 1-10.

Jung, S.M. (2004). Hyers-Ulam stability of linear differential equations of first order.
Appl. Math. Lett. 17(10), 1135-1140.

Jung, S.M. (2005). Hyers-Ulam stability of linear differential equations of first order. I11.
J. Math. Anal. Appl., 311(1), 139-146.

Jung, S.M. (2006). Hyers-Ulam stability of linear differential equations of first order.
Appl. Math. Lett, 19(9), 854-858.

Jung, S.M. (2007). A fixed point approach to the stability of a VVolterra integral equation.
Fixed Point Theory Appl., 1-9.

Jung, S.M (2010). A fixed point approach to the stability of differential equations
y'=F(x,y). Bull. Malays. Math. Sci. Soc. (2), 33(1), 47-56.

Kucche, K. D., Shikhare, P. U. (2019). Ulam stabilities for nonlinear Volterra delay
integro-differential equations. Izv. Nats. Akad. Nauk Armenii Mat., 54 (5), 27-43

Li, Y., Hua, L. (2009). Hyers-Ulam stability of a polynomial equation. Banach J. Math.
Anal., 3(2), 86-90.

Li, Y., Shen, Y. (2009). Hyers-Ulam stability of nonhomogeneous linear differential
equations of second order. International Journal of Mathematics and Mathematical
Sciences, 1-7.

Li, Y. (2010). Hyers-Ulam stability of linear differential equations y”=A’y. Thai

J.Math., 8(2), 215-219.

Li, Y., Shen, Y. (2010). Hyers-Ulam stability of linear differential equations of second
order. Appl. Math. Lett., 23(3), 306-309.

Li, Y., Huang, J. (2013). Hyers -Ulam stability of linear second-order differential
equations in complex Banach spaces. Electron. J. Differential Equations, 184, 1-7.

Li, T., Zada, A., Faisal, S. (2016). Hyers-Ulam stability of nth order linear differential

equations. J. Nonlinear Sci. Appl., 9(5), 2070-2075.

Miura, T., Takahasi, S.E, Choda, H. (2001). On the Hyers-Ulam stability of real
continuous function valued differentiable map. Tokyo J. Math., 24, 467-476.
Miura, T., Takahasi, S.E. (2002). On the Hyers-Ulam stability of a differentiable map.

Sci. Math. Jpn., 55(1), 17-24.

Miura, T., Miyajima, S., Takahasi, S.E. (2003). Hyers-Ulam stability of linear differential
operator with constant coefficients. Math. Nachr., 258, 90-96.

Miura, T., Miyajima, S., Takahasi, S.E. (2003). A characterization of Hyers-Ulam
stability of first order linear differential operators, J. Math. Anal. Appl., 286(1),
136-146.

Miura, T., Jung, S.M, Takahasi, S.E. (2004). Hyers-Ulam-Rassias stability of the Banach
space valued linear differential equations y'=Ay. J. Korean Math. Soc. 41(6), 995-
1005.

82


https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=1036818
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=357926
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=332281
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=2051
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=331307
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=923772
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=959250
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=368092
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=748018
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=357926
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=3502
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=928715
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=1273012
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=4775
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=818916
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=6402
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=6402
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=332281
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=6011
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=6011
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=332281
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=883896
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=3502
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=278213
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=332281
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=1036818
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=4526
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=838188
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=843909
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=1153452
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=6737
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/publications.html?pg1=ISSI&s1=340325

Mortici, C., Rassias, T. M., Jung, S.M. (2015). The inhomogeneous Euler equation and
its Hyers-Ulam stability. Appl. Math. Lett., 40, 23-28.

Obloza, M. (1993). Hyers stability of the linear differential equation. Rocznik Nauk.-
Dydakt. Prace Mat., 13, 259-270.

Oguntuase, J. A. (2001). On an inequality of Gronwall. JIPAM J. Inequal. Pure Appl.
Math. 2(1), 1-6.

Onitsuka, M., Shoji, T. (2017). Hyers-Ulam stability of first-order homogeneous linear
differential equations with a real-valued coefficient. Applied Mathematics Letters
An International Journal of Rapid Publication, 63, 102-108.

Otrocol, D., llea, V. (2013). Ulam stability for a delay differential equation. Central
European Journal of Mathematics, 11(7), 1296-1303.

Ogrekei, S., Basci, Y., Misir, A. (2023). A fixed point method for stability of nonlinear
Volterra integral equations in the sense of Ulam. Math. Methods Appl. Sci., 46(8),
8437-8444.

Pachpatte, B.G. (1998). Inequalities for differential and integral equations. Academic
Press, Inc: San Diego, CA.

Popa, D., Pugna, G. (2016). Hyers-Ulam stability of Euler's differential equation. Results
Math., 69 (3-4), 317-325.

Radu, V. (2003). The fixed point alternative and the stability of functional equations.
Fixed Point Theory, 4(1), 91-96.

Rezaei, H., Jung, S. M., Rassias, T. M. (2013). Laplace transform and Hyers -Ulam
stability of linear differential equations. J. Math. Anal. Appl., 403(1), 244-251.

Ross, M. D., Belford, G. G. (1976). Characterization of best Chebyshev approximations
with prescribed norm. J. Approximation Theory, 16(4), 315-328.

Rus, 1. (2009). Gronwall lemmas: ten open problems, Sci. Math. Jpn., 70(2), 221-228.

Takahasi, S. E., Miura, T., Miyajima, S. (2002). On the Hyers-Ulam stability of the
Banach space-valued differential equation y’=Ay. Bull. Korean Math. Soc., 39(2),
309-315.

Tung, C., Biger, E. (2015). Hyers-Ulam-Rassias stability for a first order functional
differential equation. J. Math. Fundam. Sci., 47(2), 143-153.

Tung, O.Tung, C. (2023,a). Ulam stabilities of nonlinear iterative integro-differential
equations. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 117(3), 1-
18.

Tung O, Tung C. (2023,b). On Ulam Stabilities of Delay Hammerstein Integral Equation.
Symmetry, 15(9), 1736.

Tung, O., Tung, C. (2024). G. Petrusel, and J.-C. Yao, On the Ulam stabilities of nonlinear
integral equations and integro-differential equations. Mathematical Methods in the
Applied Sciences, 47(6), 4014-4028.

Vu, H., Hoa, N. V. (2020). Ulam-Hyers stability for a nonlinear Volterra
integro differential equation. Hacet. J. Math. Stat., 49(4), 1261-1269.

Xue, J. (2014). Hyers-Ulam stability of linear differential equations of second order with
constant coefficient. Ital. J. Pure Appl. Math., 32, 419-424.

83


https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=634820
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=145150
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=357926
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=3502
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=327179
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=4734
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=4734
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=785594
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=1177674
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/publications.html?pg1=ISSI&s1=345599
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=770965
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=702895
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=312163
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=352173
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=1161539
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=5773
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=5773
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=342405
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=744495
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=357926
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=145150
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=3591
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=311136
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=361672
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=1062306
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=8256
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=334051
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=975418
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=969662
https://mathscinet.ams.org/mathscinet/search/journaldoc.html?id=5898
https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=446911
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/author.html?mrauthid=1077290
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/journaldoc.html?id=5282
https://cf112afec971763b56e79b8cf0ef464fe28d4881.vetisonline.com/mathscinet/search/publications.html?pg1=ISSI&s1=325178




Kisisel Bilgiler
Adi1 Soyadi

Egitim Bilgileri
Lisans
Universite
Fakiilte

Boliim
Mezuniyet Y1ili

0Z GECMIS

Sibel DEMIREL

Siileyman Demirel Universitesi
Fen Edebiyat Fakiiltesi
Matematik Boliimii

2002






VAN YUZUNCU YIL UNIiVERSITESI
FEN BILIMLERI ENSTITUSU
LISANSUSTU TEZ ORIiJINALLIK RAPORU

Tarih 02/07/2024

Tez Baghgi: BAZI INTEGRAL VE INTEGRO DIFERANSIYEL DENKLEM
MODELLERINDE HYERS-ULAM VE HYERS-ULAM-RASSIAS KARARLILIK

Yukarida bashig belirtilen tez calismamin, kapak sayfasi, giris, ana boliimler ve
sonug boliimlerinden olusan toplam 77 (yetmis yedi) sayfalik kismina iligkin,
01/07/2024 tarihinde tez danismanim tarafindan Turnitin adli intihal tespit
programindan asagida belirtilen filtrelemeler uygulanarak alinmis olan orijinallik
raporuna gore tezimin benzerlik orani %20 (yiizde yirmi) dir.

Uygulanan filtreler asagida verilmistir:

- Kabul ve onay sayfasi haric,

- Tesekkiir haric,

- Igindekiler harig,

- Simge ve kisaltmalar harig,

- Gereg ve yontemler harig,

- Kaynakga harig,

- Alintilar harig,

- Tezden ¢ikan yayinlar haric,

- 7 kelimeden daha az ortiisme igeren metin kisimlari hari¢ (Limit match size to 7
words)

Van Yiiziincii Y1l Universitesi Lisansiistii Tez Orijinallik Raporu Alinmasi ve
Kullanilmasina Iligkin Yénergeyi inceledim ve bu ydnergede belirtilen azami
benzerlik oranlarina gore tez ¢alismamin herhangi bir intihal igermedigini; aksinin
tespit edilecegi muhtemel durumda dogabilecek her tiirlii hukuki sorumlulugu kabul
ettigimi ve yukarida vermis oldugum bilgilerin dogru oldugunu beyan ederim.

Geregini bilgilerinize arz ederim
Tarih ve Imza

Ad1 Soyadr: Sibel DEMIREL

Ogrenci No: 21910001152

Anabilim Dali: Matematik Anabilim Dali

Programi: Yiiksek Lisans

Statiisii: (X) Yiiksek lisans ( ) Doktora

DANISMAN ENSTITU ONAYI
UYGUNDUR UYGUNDUR




