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ÖZET 

 

BAZI İNTEGRAL VE İNTEGRO-DİFERANSİYEL DENKLEM 

MODELLERİNDE HYERS-ULAM KARARLILIK VE HYERS-ULAM-

RASSIAS KARARLILIK 

 

DEMİREL, Sibel 

Yüksek Lisans Tezi, Matematik Anabilim Dalı 

Danışman: Doç. Dr. Osman TUNÇ 

Haziran 2024, 85 sayfa 

 

Bu tez, sekiz bölümden oluşmaktadır. Tezin birinci bölümünde tez konusu ile 

ilgili bilgiler verildi. Tezin ikinci bölümünde tez konusuyla ilgili literatürde yapılan bazı 

çalışmalar verildi. Tezin üçüncü bölümünde tezde kullanılacak materyal ve yöntem ve tez 

konusu ile ilgili bazı temel bilgiler verildi. Dördüncü bölümde lineer olmayan bir integro-

diferansiyel denklem ve integral denklemin Hyers-Ulam kararlılığı incelendi. Beşinci 

bölümde, Volterra-integro diferansiyel denkleminin Hyers-Ulam ve Hyers-Ulam-Rassias 

kararlılığı incelendi. Altıncı bölümde, lineer olmayan Volterra-integro diferansiyel 

denkleminin Hyers-Ulam ve Hyers-Ulam-Rassias kararlılığı incelendi. Tezin yedinci 

bölümünde, lineer olmayan Volterra-integro diferansiyel denkleminin Hyers-Ulam ve 

Hyers-Ulam-Rassias kararlılığı incelendi. Son bölümde ise bu tezde yaptığımız 

çalışmalara ilişkin tartışma ve sonuç kısmı bulunmaktadır. 

 

Anahtar kelimeler: Bielecki metric, Chebyshev metrik, Hyers-Ulam kararlılık, 

Hyers-Ulam-Rassias kararlılık, İntegral denklem, İntegro-diferansiyel denklem, Picard 

operatörü, Sabit nokta teorisi 
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ABSTRACT 

 

HYERS-ULAM STABILITY AND HYERS-ULAM-RASSIAS STABILITY IN 

SOME MODELS OF INTEGRAL AND INTEGRO-DIFFERENTIAL 

EQUATIONS 

 

DEMİREL, Sibel 

M.Sc. Thesis, Department of Mathematics 

Supervisor: Assoc. Prof. Osman TUNÇ 

June 2024, 85 pages 

 

This thesis consists of eight chapters. In the first chapter of the thesis, background 

information with regard to the subject of the thesis is given. In Chapter 2 of this thesis, 

literature review, i.e. some works related to subject of the thesis are briefly summarized. 

In Chapter 3 of the thesis, the materials and methods used in the thesis are noted, and as 

basic information, some background definitions, the theorems, a lemma, etc., which are 

related to the subject of the thesis, are given. In Chapter 4 of thesis, the Hyers-Ulam 

stability of a nonlinear integro-differential equation and an integral equation are 

investigated. In Chapter 5 of the thesis, the Hyers-Ulam and Hyers-Ulam-Rassias stability 

of a Volterra-integro differential equation with a variable delay is discussed and some 

examples are give as applications of the results. In Chapter 6 of the thesis, the Hyers-

Ulam and Hyers-Ulam-Rassias stability of a nonlinear Volterra-integro differential 

equation with a variable delay is investigated. In particular cases, examples are provided 

for illustrations. In Chapter 7 of the thesis, the Hyers-Ulam and Hyers-Ulam-Rassias 

stability of a nonlinear Volterra-integro differential equation are presented. In particular 

cases, two examples are presented for illustrations. The last chapter includes the 

discussion and conclusion of the work we have done in this thesis. 

 

Keywords: Bielecki metric, Chebyshev metric, Fixed point theory, Hyers-Ulam 

stability, Hyers-Ulam-Rassias stability, Integral equation, Integro-differential equation, 

Picard operator 
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SİMGELER VE KISALTMALAR 

 

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar, açıklamalarıyla aşağıda 

sunulmuştur.  

 

Simgeler Açıklama 

 

  

ADD 

 

FDD 

H-U 

H-U-R 

ID 

IDD 

KDD 

 

 

Adi diferansiyel denklem 

Banach uzayı 

Fonksiyonel diferansiyel denklem 

Hyers-Ulam 

Hyers-Ulam-Rassias 

İntegral denklem 

İntegro-diferansiyel denklem 

Kısmi diferansiyel denklem 

Doğal sayılar 

Reel sayılar 

 

 

  



 

x 
 

  



 

 

 

1. GİRİŞ 

 

 Matematik literatüründe diferansiyel denklemler ile ilgili araştırmaların kurucusu 

ve öncüsü olarak Isaac Newton bilinmektedir. Sonraki süreçlerde, Leibnitz, Bernoulli, 

Euler ve Cauchy gibi birçok bilim adamı diferansiyel denklemlerin geliştirilmesine ve bu 

denklemlerin çözümleri ile ilgili matematiksel yapıların kurulmasına katkı sağlamışlardır. 

 Günümüzde matematik, mühendislik, fizik, kimya, biyoloji, tıp ve ekonomi gibi 

birçok uygulama alanına sahip olan ADD’ler, FDD’ler, IDD’ler, ID’ler vb. denklemlerle 

ile ilgili çalışmalar devam etmektedir. Bu çalışmalar denklemin çözümlerinin niteliksel 

davranışlarının ve yaklaşık değerinin belirlenmesi şeklinde sınıflandırılabilirler. 

 Her denklemin çözümleri kolaylıkla elde edilemediğinden verilen denklemi 

çözmeden denklemin çözümlerinin niteliksel davranışlarını incelemek mümkündür. Bu 

bağlamda çözümlerin, kararlılığını, asimptotik kararlılığını, kararsızlığını 

integrallenebilirliğini, sınırlılığını, salınımlılığı gibi birçok niteliksel davranışlar 

hakkında yorum yapılabilmektedir. Belirtilen niteliksel davranışları incelemek için 

matematik literatüründe sabit nokta teoremleri etkin bir şekilde kulanılmaktadır.  

1940 yılında Stanislaw Ulam, Wisconsin Üniversitesi matematik kulübüne verdiği 

meşhur konuşmasında homomorfizmaların kararlılığı ile ilgili olarak “
1 G  bir grup ve 

2G  

(.,.)d  metriği ile verilmiş bir metrik grup olsun. 0   sayısı verilsin. Eğer bir 

1 2:h G G  dönüşümü 
1,x y G   için 

 

 ( , ), ( ) ( )d h x y h x h y   

 

eşitsizliğini sağlıyorsa, o zaman her 
1x G  için  ( ), ( )d h x H x   ile bir 

1 2:H G G  

homomorfizması var olacak şekilde bir 0   sayısı var mıdır? “ şeklinde bir soru ortaya 

atmıştır. 

Bu problem fonksiyonel denklemlerin kararlılık teorisinin başlangıç noktası 

olmuştur. 

Bu soru, Hyers (1941) tarafından Banach uzayları için yanıtlanmıştır. Ulam’ın 

probleminin bir genelleştirmesi olarak fonksiyonel denklemlerin yerine diferansiyel 

denklemlerin kullanılmasıyla birlikte yeni bir çalışma alanı ortaya çıkmıştır. Diferansiyel 



 

2 
 

denklemlerin H-U ve H-U-R kararlılığını araştırmak için sabit nokta metodu ile birlikte 

genelleştirilmiş metrik, Chebyshev normu, Bielecki normu, Picard operatörü vb. temel 

araçlar olarak kullanılmaktadır.   ve T  ifadesi ise   den  e bir dönüşüm olsun. 

Bu durumda ( )T    koşulu sağlanırsa   noktası T  dönüşümünün bir sabit noktası 

olarak adlandırılır. Matematiğin farklı dallarında, farklı uzaylar üzerinde sabit noktaların 

varlığı ve tekliği ile ilgili çalışmalar önem kazanmıştır. Tam metrik uzaylarda sabit nokta 

teoremi ilk kez 1922 yılında Stefan Banach tarafından daralma dönüşümü kavramı ile 

çalışılmıştır. Banach daralma prensibi (dönüşümü) adını alan teoremin koşullarının 

sağlanması durumunda sabit bir noktanın varlığı garanti altına alınır. Üstelik bu dönüşüm 

sabit noktanın tekliğini ve bulunması kuralını gösterir. Sabit noktanın bulunması için 

Picard’ın çalışmasına bakılabilir (Rus,2009).  ’deki herhangi bir başlangıç noktası 

yardımı ile elde edilen Picard iterasyonu T ’nin sabit noktasına yakınsar. Buradan Picard 

operatörü kavramı ortaya çıkmıştır. Kısacası, tam metrik uzaydan kendisine tanımlı her 

daralma dönüşümü bir Picard operatörüdür. Bu tez çalışmasında ele alınacak denklem 

modellerinin H-U ve H-U-R kararlılığı sabit nokta metodu ve yukarıda belirtilen araçlar 

yardımıyla incelenmektedir. 

 

 

 

 

 

 

 

 

 

  



 

 

 

2. KAYNAK BİLDİRİŞLERİ 

 

Obloza (1993), 2D R  ve  ,f C D R  olmak üzere aşağıdaki birinci 

basamaktan 

 

2( , ), ( , )x f t x t x D R      

 

lineer diferansiyel denklemini ele aldı ve bu denklemin H-U kararlılığını inceledi.  

Daha sonradan Alsina ve Ger (1998) tarafından elde edilen sonuçlar, Miura vd. 

(2001), Miura (2002) ve Takahasi vd. (2002) gibi araştırmacılar tarafından göz önüne 

alınarak yeni sonuçlar elde edildi. Miura vd. (2003), Miura vd. (2004), Jung (2004; 2005; 

2006) ve Li ve Huang (2013) ise çeşitli diferansiyel denklemlerin H-U kararlılığını 

incelediler. 

Jung (2006), 

 

( ) ( ) ( )
d

g t t h t
dt


     

 

ile verilen birinci mertebeden lineer diferansiyel denkleminin H-U kararlılığını inceledi. 

 Jung (2007), 

 

( ) ( , ( ))

x

c

x f d       

 

Volterra ID’inin çözümlerinin tekliğini ve H-U-R kararlılığını daralma dönüşümü 

yardımı ile inceledi. 

Castro ve Ramos (2009),(2010), 

 

  ( , , ( ))   

x

a

x f x d       
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ve    (...) , , ( ),f f x        olmak üzere 

 

  (...)

x

a

x f d    

 

ile verilen sırasıyla gecikmesiz ve gecikmeli lineer olmayan Volterra ID türlerinin H-U 

ve H-U-R kararlılıklarını inceledi. 

Li ve Hua (2009)  

  

0nx x      

 

ile verilen polinom denkleminin H-U kararlılığını daralma dönüşümü yardımı ile inceledi. 

Li ve Shen (2009), 

 

     p x q x r x         

 

ile verilen aşağıdaki ikinci mertebeden lineer diferansiyel H-U kararlılığını daralma 

dönüşümü yardımı ile incelediler.  

Li (2010),  2 , ,y C a b  0   olmak üzere ikinci mertebeden 

 

2
2

2

d

dt


   

 

lineer diferansiyel denkleminin H-U kararlılığını inceledi.  

Li ve Shen (2010),  2 , ,y C a b  [ , ],f C a b    ve   sabitler olmak üzere, 

ikinci mertebeden lineer homojen 

 

0y y y       

 

ve lineer homojen olmayan 
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( )y y y f x       

 

diferansiyel denklemlerinin H-U kararlılığını incelediler.  

Gavruta vd. (2011) ise  2 , ,C a b   ( ) , ,x C a b   olmak üzere, 

 

 
2

2
0

d
x

dx


     

    0a b     

 

sınır değer ve  

 

 
2

2
0

d
x

dx


     

    0a a     

 

başlangıç değer problemlerinin H-U kararlılığını araştırdılar.  

Javadian vd. (2011),  , , ,f p q C a b  olmak üzere, 

 

     
2

2

d d
p x q x f x

dx dx

 
     

 

diferansiyel denkleminin H-U kararlılığını incelediler.  

Ghaemi vd. (2012),  0 0p x   ve x I   için 
0 1 2, , ,p p p  :f I R  sürekli 

fonksiyonlar olmak üzere sonlu bir aralıkta  

 

2

0 1 22
( ) ( ) ( ) ( )

d d
p x p x p x f x

dx dx

 
     

 

diferansiyel denklemin H-U kararlılığını ispatladılar. 

 Castro ve Guerra (2013),  

 



 

6 
 

( ) ( ) ( ( , ( ), ( ( ))) ),

x

a

x g x f t t t dt        

 

Volterra ID’inin H-U-R kararlılığını Banach sabit nokta teoremi yardımı ile gösterdiler. 

Janfada ve Sadeghi (2013), 
0

(...) ( , ( )) ( , , ( ))
t

G g t x t K t s x s ds    olmak üzere, 

 

( ) (...)x t G   

 

IDD’inin ve  

 

( ) (...)x t G  

 

ID’inin H-U kararlılığını yeter koşullar altında gösterdiler.  

 Rezai vd. (2013), 

 

     
1

0

n
n k

k

k

a f t 




   

 

şeklindeki n. mertebeden bir lineer diferansiyel denkleminin H-U kararlılığını Laplace 

dönüşümü metodu ile incelediler. 

 Otrocol ve Ilea (2013),      (...) ,  , f f x x g   alınmak kaydıyla 

 

 ...x f    

 

gecikmeli diferansiyel denkleminin H-U ve H-U-R kararlılıklarıyla ilgili yeter koşullar 

elde ettiler. 

 Alqifiary ve Jung (2014), Gronwall’s eşitsizliğini kullanarak  

 

 1 ( ) 0,u t u    
0 0( ) ( ) 0u t u t   
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başlangıç değer probleminin H-U kararlılığını ispatladılar. 

Xue (2014),   ve   sabitler olmak üzere 

 

0        

 

( )f x       

 

biçimindeki diferansiyel denklemlerin H-U kararlılığını yeter koşullar altında gösterdi. 

 Abbas ve Benchohra (2015),        
0

(...) , , ,F f u k s g s u s ds



    olmak 

üzere 

 

  (...)u F   

 

ID’inin çözümlerinin varlığı ve tekliği ile birlikte H-U-R kararlılığını da incelemiştir. 

 Choi ve Jung (2015), ikinci mertebeden  

 

( ) ( ) ( )f x g x r x       

 

lineer diferansiyel denkleminin genelleştirilmiş H-U kararlılığını incelediler. 

Huang vd. (2015), n N   olmak üzere bir I  sonlu aralığı üzerinde 

 

    1
,  ,  ,  , 

n n
F    

   

 

formundaki diferansiyel denklemin H-U kararlılığını Lipschitz şartı ve sabit nokta 

teoremi yardımıyla incelediler. 

Mortici vd. (2015), homojen olmayan  

 

 2

2
2 d

x x f x
dx

d

dx


      
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Euler diferansiyel denkleminin H-U kararlılığını integrasyon yöntemini kullanarak 

ispatladılar.  

Tunç ve Biçer (2015),   (.) ,  , F F        olmak üzere  

 

   .F     

 

ile verilen birinci mertebeden sabit gecikmeli diferansiyel denkleminin H-U ve H-U-R 

kararlılıklarını sabit nokta teoremini kullanarak gösterdiler. 

 Li vd. (2016), 

 

       
0

n
n i

n i

i

   






   

ve 

         
0

n
n n i

n i

i

f    






    

 

denklemlerinin H-U kararlılıklarını sabit nokta teoremi yardımıyla ispatladılar.  

 Popa ve Pugna (2016), 

 

       
1

0

n
n jn j

j

j

x x a x x f x 




    

 

şeklinde verilen n. mertebeden homojen olmayan Euler lineer diferansiyel denkleminin 

genelleştirilmiş H-U kararlılığını incelediler. 

 Onitsuka ve Shoji (2017),   sıfırdan farklı bir reel sayı olmak üzere 

 

0  x ax    

 

ile verilen birinci mertebeden lineer diferansiyel denklemin H-U kararlılığı ile ilgili yeter 

koşullar elde ettiler.  

Castro ve Simoes (2018),  
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      (...) , , ( ( )), ( , , ,
a

f f k d



            
 

   
 

  

 

olmak üzere  

 

   ...f     

 

Volterra IDD’inin H-U, H-U-R,   H-U kararlılıklarını inceledi. 

 Akkouchi (2019) 

0

(...) ( , , ( , , ( ), ( )))

t

F F r K r s r s ds  


   olmak kaydıyla  

 

( ) (...),  (0 ) 0,t F       

 

lineer olmayan ID’inin sabit nokta metodu yardımı ile H-U-R karlılığını inceledi. 

Castro ve Simoes (2019),       (...) , , ( , , ,
a

f f k t d



        
 

   
 

  olmak 

üzere  

 

   . ,.  .f      ,y c    

 

Volterra IDD’inin H-U ve H-U-R kararlılıklarını inceledi. 

Kucche ve Shikhare (2019)  

 

    
0

(...) , , ( ) , , , ( ), ( )f f g h s s g s ds



      
 

  
 

  

 

olmak üzere  

 

 ( ) ... ,f   ,t I  
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  ( ) ( ),      ,0 ,r    

 

lineer olmayan Volterra IDD’inin Ulam kararlılığını gösterdiler. 

 Ciplea ve Lungu (2020),       
0 0

, , , ,...

yx

f h x y f s t u s t dsdt    olmak üzere 

 

 , (...)u x y f   

 

ID’inin H-U ve H-U-R kararlılığı Banach sabit nokta teoremi yardımı ile incelediler. 

Vu ve Hoa (2020),    (....) , ( ) , , ( ) ,

t

a

f f t t g t s s ds     olmak üzere 

 

0

( ) (...),  

( )

t f t J

a



 

  



  

 

başlangıç değer probleminin H-U ve H-U-R kararlılığıyla ilgili sonuçlar elde etti.  

 Ege vd. (2021), (...) ( ) ( ) ( , , ( ))
x

a
f f x x t K x t t dt     olmak üzere 

 

( ) (...)x f    

 

singüler çekirdekli Volterra ID’inin H-U kararlılığını sabit nokta metodu yardımı ile inceledi. 

 Graef vd. (2023)

1 2

0

(...) ( , , ( ), ( ( )), ( , , ( ), ( ( )), ( ( ))) )

t

F F x f x f x r H s x s h x s h x s r ds      olarak verilmek 

üzere lineer olmayan sabit çoklu gecikmeli 

 

 3(...) , , ( ( )), ( )) ,
dx

F G x g x g r
d

  

     
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IDD’inin H-U ve H-U-R kararlılığın sonlu kapalı olarak verilen bir aralıkta Banach sabit 

nokta teoremi, Picard operatörü ve Pachpatte eşitsizliği yardımı ile inceledi. 

 Tunç ve Tunç (2023a), 

[1] [ ] [1] [ ](...) ( , ( ),..., ( )) ( , , ( ),..., ( ))

t

m m

a

H F t z t z t H t z z d       olmak üzere 

 

( ) (...)z t H    

 

IDD’inin sabit nokta teoremi yardımı ile çözümlerinin varlığını, tekliğini, H-U ve H-U-

R kararlılıklarını inceledi. 

 Tunç ve Tunç (2023b) 

 

(.) ( , ( ), ( ( ))) ( , ) ( , ( ) ( ( ))) ( )

x

a

f f x y x y x g x h y y t d p x        

 

olmak üzere 

 

( ) (.)y x f   

 

gecikmeli Hammerstein ID’inin H-U ve H-U-R kararlılıklarını sabit nokta teoremi 

yardımı ile araştırdı. 

 Öğrekçi vd. (2023), 
0

(...) ( , ( )) ( , , ( ))

t

R g t x t K t s x s ds    olmak üzere 

 

( ) (...)x t R   

 

Volterra ID’inin H-U ve H-U-R kararlılığını sabit nokta teoremi yardımı ile inceledi. 

 Tunç vd. (2024),     
0

(...) , ( ), ( ) , , , ( ), ( ) ,

t

F f t x t g x t h t x p x d   
 

  
 

   
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   
0

(...) , , ( ), ( ( )) , ( ), ( ( ))

t

R r t x x d q t x t x t      ve  (...) , ( ), ( ( ))Q q t x t x t  olarak 

verilmek üzere 

 

( ) (...) (...) (...)x t F R Q      

 

Volterra IDD’inin ve 

 

( ) (...) (...) (...)x t F R Q     

 

ID’nin H-U ve H-U-R kararlılıklarını sabit nokta metodu yardımıyla incelediler. 

 Benzer biçimde ikinci mertebeden diferansiyel denklemler ve belli formdaki 

fonksiyonel denklemlerin Ulam türünden kararlılıkları için sırasıyla Biçer ve Tunç (2023) 

ve Cadariu ve Radu (2004), Radu (2003) çalışmalarına bakılabilir. 

 Yukarıda verilen bilgiler dikkate alındığında, farklı ADD modelleri, ID’ler, 

IDD’ler, KDD’ler FDD’ler vb. matematiksel modellerin H-U ve H-U-R karalılıklarının 

çok sayıda araştırmacı tarafından incelendiği görülmektedir. Bu denklem modellerinin H-

U ve H-U-R kararlılık davranışlarının Banach sabit nokta teoremi yardımı ile incelendiği 

görülmektedir. Bu incelmeler sırasında tam metrik uzay kavramı, , Gronwall eşitsizliği, 

Chebyshev normu, Bielecki normu vb. kavramların kullanıldığı görülmektedir. 

 

  



 

 

 

3. MATERYAL YÖNTEM, TEMEL TANIM VE TEOREMLER 

 

 Bu tezde belli formdaki çeşitli ID ve IDD’lerin niteliksel davranışları ile ilgili 

literatürde mevcut bulunan kitaplar, bazı makaleler, bilimsel toplantılarda konu ile ilgili 

sunulan bildiriler vb. dokümanlar tezin materyali olarak dikkate alınmaktadır. Yöntem 

olarak ise, Banach sabit nokta teoremi, Bielecki, Chebyshev vb. normlar ve Picard 

operatörü yardımıyla temel eşitsizlikler kullanılarak ele alınan denklemlerin çözümlerinin 

varlığı ve tekliği ve denklemlerin Ulam tipi kararlılıkları incelenmektedir .  

Tanım 3.1 N  bir lineer uzay olsun. . : N   fonksiyonunun x  deki değerini x  

gösterelim. Bu fonksiyon aşağıdaki şartları sağlıyorsa .  ye N  de norm denir: 

(i) 0x   ve 0 0x x    dır; 

(ii) ax a x  dir; 

(iii) x y x y    (Bayraktar, 1987). 

Tanım 3.2 X  boş olmayan bir cümle olsun ve bir :d X X   fonksiyonu aşağıdaki 

şartları sağlarsa d ’ye X  üzerinde bir metrik ve ( , )X d  ikilisine de bir metrik uzay denir.  

(i)  , 0d x y   ancak ve ancak    ;x y   

(ii)   ,x y X   için    , , ;d x y d y x   

(iii)   , ,x y z X   için      , , ,d x z d x y d y z   (Bayraktar, 1987). 

Tanım 3.3 X  boş olmayan bir küme olsun.  : 0,d X X    fonksiyonu aşağıdaki 

şartları sağlıyor ise, bu fonksiyona X  kümesi üzerinde genelleştirilmiş metrik uzay denir: 

(i) ( , ) 0d x y   ancak ve ancak x y ; 

(ii) Her ,x y X  için ( , ) ( , )d x y d y x  ; 

(iii)Her , ,x y z X  için ( , ) ( , ) ( , )d x z d x y d y z   (Castro ve Simoes, 2019) 

Genelleştirilmiş metrik ile bilinen metrik arasındaki tek fark genelleştirilmiş metriğin 

değer kümesinin sonsuzu içermesidir (Jung, 2010). 

Tanım 3.4 (Sabit Nokta) X  boş olmayan bir ve :T X X  bir fonksiyon olsun. Tx x  

eşitliğini sağlayan x X  elemanına T  nin sabit noktası denir (Berinde, 2007). 
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Tanım 3.5 ( , )X d  bir metrik uzay ve :T X X  bir fonksiyonu olsun. Eğer ,x y X   

için ( , ) ( , )d Tx Ty d x y  olacak şekilde bir   pozitif sayısı ( 1)   varsa T  ye bir 

daralma dönüşümü denir (Burton, 1985).  

Teorem 3.1 ( , )X d  bir tam metrik uzay ve :T X X  bir daralma dönüşümü ise, T

dönüşümünün X  uzayında bir sabit noktası vardır ve bu nokta tektir (Burton, 1985). 

Teorem 3.2 ( , )X d  genelleştirilmiş bir tam metrik uzay olsun.   1L   Lipschitz sabiti 

olmak üzere   : X X   dönüşümü kuvvetli bir daralma operatörü olsun. Eğer negatif 

olmayan bir k  tamsayısı var öyle ki her x X  için ( 1)( , ) 1k kd x x    eşitsizliği 

sağlanıyor ise, bu takdirde aşağıdaki şartlar doğrudur: 

(a)  nx  dizisi  ’nın sabit bir *x  noktasına yakınsar; 

(b) *x  noktası,  

 

 * : ( , )kX y X d x y    
 

 

cümlesinde  ’nın bir tek sabit noktasıdır;  

(c) Eğer *y x  ise, * 1
( , ) ( , )

1
d y x d y y

L
 


 dir (Diaz ve Margolits, 1968). 

Tanım 3.6 ( , )X d  bir tam metrik olmak üzere :T X X  e bir daralma fonksiyonu ise 

o zaman 

(i) T  nin bir ve yalnız bir sabit x X  noktası vardır. 

(ii) Herhangi 
0x X  için 0{ }nT x  iterasyon dizisi, T  nin bu sabit noktasına 

yakınsar (Berinde, 2007). 

Teorem 3.3 (Banach Sabit Nokta Teoremi) ( , )X d  bir tam metrik uzay ve :T X X  

bir daralma dönüşümü olsun, yani her ,x y X  için  

 

( , ) ( , )d Tx Ty ad x y  

 

olacak şekilde bir [0,1)   sayısı var olsun. Bu durumda T ’nin bir tek sabit noktası, 

Ta a  olacak şekilde en az bir a X  vardır. (Burton, 1985). 
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Tanım 3.7 ( , )X d  bir metrik uzay ve :A X X  operatörü verilsin. Eğer bir *x X  

sabiti var ve aşağıdaki şartlar sağlanıyor ise, A  operatörüne bir Picard operatörü denir: 

(i)  *

AF x  dır. Burada   :AF x X A x x    cümlesi A ’nın sabit noktalarının 

cümlesidir. 

(ii)   0

n

n N
A x


 dizisi her 

0x X  için *x  sabitine yakınsar (Rus, 2009 ). 

Lemma 3.1 (Gronwall lemması )    , ,X d   sıralı bir metrik uzay ve artan bir Picard 

operatörü *( )A AF x  olsun. Bu takdirde  x X  için ( )x A x  eşitsizliği *

Ax x  

eşitsizliğini ve ( )x A x  eşitsizliği ise *

Ax x  eşitsizliğini gerektirir (Rus, 2009).  

Teorem 3.4 (Pachpatte’s eşitsizliği) ( ), ( )u t f t  ve ( )q t  


 üzerinde tanımlanan negatif 

olmayan sürekli fonksiyonlar ve ( )n t  ise, t   için tanımlı pozitif azalmayan sürekli 

bir fonksiyon olmak üzere 

 

       
0 0

,

t s

u t n t f s u s u d ds 
 

   
 

 
 

 

eşitsizliği sağlansın. Bu durumda her t   için  

 

         
0 0

1 ,

t s

u t n t f s exp f q d ds  
  

    
   
 

 

 

eşitsizliği sağlanır (Pachpatte, 1998). 

Uyarı 3.1  ,x a b  ve  , : ,u v a b   sürekli fonksiyonlar olmak üzere Bielecki metriği  

 

 ,

( ) ( )
( , ) sup

( )x a b

u x v x
d u v

x




 

 

ile tanımlanır. Burada    : , 0,a b    azalmayan sürekli bir fonksiyondur ve ayrıca 

   1 , ,C a b d  tam bir metrik uzaydır (Castro ve Simoes, 2019).  
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Tanım 3.8 Reel veya kompleks değerli  ,a b  aralığında sürekli ve sınırlı f  fonksiyonu 

için 
 ,

( ) max ( )
x a b

f x f x


  şeklinde tanımlanan norma Chebyshev normu denir (Ross 

ve Belford, 1976). 

 

 

 

 

 

 



 

 

 

4. LİNEER OLMAYAN BİR VOLTERRA İNTEGRO-DİFERANSİYEL 

DENKLEM VE İNTEGRAL DENKLEMİN HYERS-ULAM KARARLIĞI 

 

 Bu bölümde Janfada ve Sadeghi (2013) tarafından H-U kararlılığı incelenen lineer 

olmayan bir IDD ve ID kararlılık sonuçları sırasıyla ele alınacaktır. Janfada ve Sadeghi 

(2013) yaptığı çalışmada ilk olarak   

 

( ) (...)x t G   
(4.1) 

 

Volterra IDD’ini göz önüne aldı. Burada    
0

(...) , ( ) , , ( )

t

G g t x t K t s x s ds    olarak 

tanımlanmaktadır. Bu denklemin H-U kararlılığını    0, ,t T  ,T   0,T   aralığında 

sabit nokta metodu yardımıyla inceledi. 

 Aynı çalışmada, Janfada ve Sadeghi (2013)  

 

( ) (...)x t G  
(4.2) 

 

Volterra ID’ini göz önüne aldı. Bu denklemin H-U kararlılığını    0, ,t T  0,T   

aralığında sabit nokta metodu yardımıyla inceledi.  

Tanım 4.1 ( ) 0t   bir fonksiyon ve ( )x t  sürekli türevlenebilir bir fonksiyon olsun. 

Ayrıca ( )x t  fonksiyonu her    0, ,t T  ,T   0,T   için 

 

( ) (...) ( )x t G t      

 

eşitsizliğini sağlasın. Eğer (4.1) denkleminin bir  y t  çözümü var öyle ki 0C   sabiti 

için 

 

      x t y t C t     
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eşitsizliği sağlanıyor ise, bu takdirde (4.1) denklemine H-U kararlıdır denir. Bu eşitsizlik 

(4.1) ile verilen IDD’inin analitik çözümüyle yaklaşık çözümü arasındaki farkın 

normunun   C t  den küçük kaldığı anlamına gelir (Janfada ve Sadeghi, 2013).  

 Benzer biçimde H-U kararlılık tanımı (4.2) ile verilen Volterra ID’i için de 

verilebilir. 

 

4.1 (4.1) İntegro-Diferansiyel Denkleminin Hyers-Ulam Kararlılığı 

 

 Bu kesimde Janfada ve Sadeghi’nin (2013) çalışmasında ele aldığı ve (4.1) ile 

verilen Volterra IDD’inin H-U kararlılığı incelenecektir.  

 Janfada Sadeghi (2013), çalışmalarında (4.1) Volterra IDD’inin H-U kararlılığı ile 

ilgili yeter koşullar içeren aşağıdaki teoremi ispatladılar.  

Teorem 4.2 X  bir Banach uzayı, 
1 2,  ,  , L L L  ve T  pozitif birer sabit olmak üzere 

 

 1 1 2 20 1L L L L L TL       

 

eşitsizliği sağlansın.    : 0, 0, ,K T T X X     : 0, ,g T X X   ve 

     : 0, 0,T    fonksiyonları sürekli olsun ve bu fonksiyonlar her   0 ,s t T   ve 

  ,x y X  için aşağıdaki şartları sağlasın:  

 

    2,s, ,s ,,K t x K t y L x y     

 

    1, ,g t x g t y L x y    (4.3) 

ve 

 

0
( ) ( ).

t

s ds L t     

 

 Eğer  : 0,f T X  fonksiyonu türevlenebilir ve 
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           
0

0,, , , ,  ,

t

f t g t f t K t s tds Tf s t     
(4.4) 

  

eşitsizliğini sağlar ise, bu takdirde  0,t T   için, bir tek türevlenebilir  0 : 0,f T X  

fonksiyonu vardır öyle ki 

 

       0 0 0

0

,  , , ,

t

f t g t f t K t s f s ds      (4.5) 

ve 

       
 

 '

0 0

1 1 2 2

1
 

1

L
f t f t f t f t t

L L L L L TL



   

   
   

(4.6) 

 

 

dır (Janfada Sadeghi,2013).  

İspat.  

   : : 0, :    türevlenebilirdir M x T X x    

 

cümlesi ve d  metriği ise M M  den  0, ’a aşağıdaki şekilde tanımlansın: 

 

      , 0, : ,  0 .d x y inf C x y x y C t t T           

 
 

 Şimdi ise ( , )M d ’nin genelleştirilmiş bir tam metrik uzay olduğu gösterilecektir. 

Burada tanımlanan metriğin üçgen eşitsizliğini sağladığını ve ( , )M d ’nin ise bir tam 

metrik uzay olduğu ispatlanacaktır. Tersine d  metriğinin üçgen eşitsizliğini 

sağlamadığını kabul edelim. Bu durumda en az bir   , ,x y z M  için, 

 

     , , ,d x y d x z d z y     

 

eşitsizliğinin sağlandığı kabul edilebilir. Bu takdirde,  0  0,t T  noktası vardır öyle ki 
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              0 0 0 0 0, ,  x t y t x t y t d x z d z y t      (4.7) 

 

dır. d  metriğinin tanımı dikkate alındığında, 

 

               0 0 0 0 0 0 0 0x t y t x t y t x t z t x t z t         

       0 0 0 0z t y t z t y t      
 

 

yazılabilir. Bu ise bir çelişkidir. O halde yukarıdaki kabul sağlanmaz. 

Şimdi ( , )M d  uzayının bir tam metrik uzay olduğunu gösterelim. 

 nx , ( , )M d  uzayında bir Cauchy dizisi olsun. d  metriğinin ve Cauchy dizisinin tanımı 

dikkate alındığında,   0,   ,N   , , m n N   0 t    için 

 

 n m n mx x x x t       (4.8) 

 

eşitsizliği yazılabilir. Buna bağlı olarak   fonksiyonu  0,T  kapalı aralığında sürekli 

olduğundan  nx  ve ( )nx t  dizileri  0,T  aralığı üzerinde düzgün yakınsaktır. Bu 

durumda türevlenebilir bir x  fonksiyonu vardır öyle ki  nx  ve ( )nx t  dizileri düzgün 

olarak sırasıyla x  ve x  fonksiyonlarına yakınsar. Böylece x M  olduğu görülür. (4.8) 

eşitsizliğinden, m  için limit alındığında   0,   ,N   , , m n N   

 0,t T   için 

 

 n nx x x x t        

 

elde edilir. Sonuç olarak   0,   ,N   , , m n N   için  ,nd x x   olduğu 

sonucuna varılır. Buna bağlı olarak  ,M d   metrik uzayının bir tam metrik uzay olduğu 

görülür.  

 Şimdi   : M M    operatörünü 
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    
0 0 0

( , ( )) , , ( )
t t t

x t g x d K s x s dsd           (4.9) 

 

olarak tanımlayalım (Janfada ve Sadeghi, 2013).  

 Burada,    operatörünün kuvvetli bir daralma dönüşümü olduğu gösterilecektir. 

Şimdi , ,x y M   0,xyC    ve  , xyd x y C  olsun. Böylece  0,t T   için ( , )d x y  

metriğinin tanımından 

  

 xyx y x y C t        

 

elde edilir. Dolayısıyla (4.3) eşitsizliği dikkate alındığında  

 

        
d

x t y t x t y t
dt

       

   1 2

0

t

L x y L x y d        

       1 2

0 0

t t

L x y d L T x s y s ds        

   1 1 2 2( )  xyL L L L L TL C t      

 

 

yazılabilir. Böylece yukarıdaki işlemler dikkate alındığında 

 

     1 1 2 2,   ,  d x y L L L L L TL d x y         (4.10) 

 

elde edilir. Buna bağlı olarak   operatörü  

 

 1 1 2 20 1L L L L L TL        

 

olmak kaydıyla, kuvvetli bir daralma dönüşümüdür. Öte yandan f M  olduğu açıktır. 

Ayrıca (4.4) eşitsizliği dikkate alındığında 
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         
0

  1

t
d

f f f f t s ds L t
dt

            
 

 

elde edilir. Buna bağlı olarak 

 

 , 1  d f f L       (4.11) 

 

yazılabilir. Diaz ve Margolits (1968)’de bulunan Teorem 3.2’nin (a) şartı dikkate 

alındığında bir tek 

 

 *

0 : ( , )f M y M d f y       

 

sabit noktası vardır öyle ki 
0 0  f f   olur veya eşdeğer olarak  

 

       0 0 0

0 0 0

, , ,

t t t

f t g f d K s f s dsd        
 

 

yazılabilir. Burada 
0f  türevlenebilir ve ,g K  fonksiyonları sürekli olduğundan 

 

   0 0 0
0

( ) , ( ) , , ( )
t

f t g t f t K t s f s ds       

 

elde edilir. O halde Teorem 3.2’ nin (c) şartı ve yukarıdaki bağıntı göz önüne alındığında 

 

 
 

 
 

 
0

1 1 2 2 1 1 2 2

11
,     ,

1 ( ) 1 ( )

L
d f f d f f

L L L L L TL L L L L L TL


  

       
 

 

 

sonucuna varılır. d  metriğinin tanımından, (4.6) eşitsizliğinin  0,t T    için sağlandığı 

sonucuna varılır. 

 Şimdi ise 
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 

 1 1 2 2

1

1 ( )

L

L L L L L TL





   
 

 

 

olarak seçilsin. Ayrıca h  fonksiyonu (4.5), (4.6) bağıntılarını sağlayan başka bir 

türevlenebilir fonksiyon olsun. Bu durumda f M  için ( , )d f h   olmak üzere  

 

       
0

, , ,   

t

h t g t h t K t s h s ds    
(4.12) 

 

bağıntıları sağlanır. 
0f ’ın tekliğini ispatlamak için h  fonksiyonunun  ’nın sabit bir 

noktası ve h M   olduğunu göstermek yeterlidir. 

 (4.12) eşitliği kullanılarak h h   olduğu görülebilir. Şimdi   ( , )d f h    

olduğunu gösterelim. (4. 12) bağıntısı ve   ( , )d f h    eşitsizliğinden  

 

        
d

f t h t f t h t
dt

       

       1 2 1 2

0 0

t t

L f h L f s h s ds T L f h L f s h s ds
 

        
 

    

    1 2 1L L T t    

 

 

elde edilir. O halde    1 2  ,d f h L L T       olduğu görülür. Böylece teoremin ispatı 

tamamlanır. 

 

4.2 (4.2) İntegral Denkleminin Hyers-Ulam Kararlılığı 

 

 Bu kesimde Janfada ve Sadeghi’nin (2013) çalışmasında ele alınan ve (4.2) ile 

verilen Volterra ID’inin H-U kararlılığı incelenecektir.  

 Janfada ve Sadeghi’nin (2013), (4.2) Volterra ID’inin H-U kararlılığı ile ilgili 

yeter koşullar içeren aşağıdaki teoremi ispatladılar. 
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Teorem 4.3 X  bir Banach uzayı olmak üzere, 
1 2,  ,  L L L  ve T  sabitleri için 

 1 20 1L L L    eşitsizliği sağlansın.    [0, ] , ,g C T X X   

   [0, ] [0, ] , ,K C T T X X    ve  [0, ], (0, )C T   fonksiyonları sürekli,   ,x y X   

ve , [0, ]s t T  için 

 

    1, ,g t x g t y L x y     

 

    2, , , ,K t s x K t s y L x y    (4.13) 

ve 

   
0

t

s ds L t    
 

 

eşitsizlikleri sağlansın. Eğer   :[0, ]f T X  sürekli fonksiyonu 

 

        
0

, , , ,  0 ,    

t

f t g t f K t s f s ds t t T      
(4.14) 

 

eşitsizliğini sağlar ise, o zaman bir tek sürekli 
0 :[0, ]f T X   fonksiyonu vardır öyle ki; 

 

0

( , ) ( , , ( )) ( ),  0 ,

t

f g t f K t s f s ds t t T      
 

 

    0 0 0

0

,  , ,     

t

f g t f K t s f s ds    
(4.15) 

ve 

       
1

0 1 21  f t f t L L L t


       (4.16) 

 

dir (Janfada ve Sadeghi, 2013). 
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İspat.    : : 0, :    M x T X x süreklidir   olmak üzere,  d  metriği ise  M M  den

   0, ’a aşağıdaki biçimde tanımlansın: 

 

      , 0, : ,  0 .d x y inf C x y C t t T        

 
 

 Bir önceki teoremde verilen işlemler dikkate alındığında,  ,M d  uzayının 

genelleştirilmiş bir tam metrik uzay olduğu kolaylıkla görülebilir. Ayrıca bir önceki 

teoremde verilen M  uzayı ve   operatörü göz önüne alındığında her ,x y M  için,  

 

   1 2, ( , )d x y L L Ld x y       

 

olduğu kolaylıkla görülebilir. 

  1 20 1L L L    olması nedeniyle  ’nın kuvvetli bir daralma dönüşümü 

olduğu sonucuna varılır. Ayrıca (4.14) bağıntısı kullanıldığında    , 1d f f    elde 

edilir. Böylece Teorem 3.2’den,   operatörünün 

 

  * : : ,  M y M d f y      

 

cümlesinde bir tek 
0f  sabit noktaya sahip olduğu sonucuna varılır. Şimdi ise h  

fonksiyonunun (4.15) ve (4.16) bağıntılarını sağlayan başka bir sürekli fonksiyon olsun. 

Buna bağlı olarak her  f M  için  

 

 
 1 2

1
,

1
d f h

L L L


 
 

 

ve 

    
0

,  , ,  

t

h g t h K t s h s ds    
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elde edilir. h  fonksiyonunun tekliğini göstermek için, bu fonksiyonun   operatörünün 

bir sabit noktası ve *h M  olduğunun gösterilmesi yeterlidir. (4.15) bağıntısı 

kullanılarak h h   yazılabilir. Ayrıca  

 

 
 1 2

1
,

1
d f h

L L L


 
  

 

 

bağıntısı kullanıldığında 

 

   f t h t 
 

 
 1 2

1 2

 
1

L L
t

L L L





 
  

 

elde edilir. Bu bağıntıdan ise    ,d f h    olduğu görülür ve böylece teoremin ispatı 

tamamlanır (Janfada ve Sadeghi, 2013) 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

5. LİNEER OLMAYAN DEĞİŞKEN GECİKMELİ BİR İNTEGRO-

DİFERANSİYEL DENKLEMİ İÇİN HYERS-ULAM VE HYERS-ULAM 

RASSIAS KARARLILIKLARI 

 

 Bu bölümde Castro ve Simoes (2019) tarafından  

 

 ( ) ...y x f   (5.1) 

 

ele alınan Volterra IDD’i için oluşturulan H-U ve H-U-R kararlılık sonuçları ele 

alınacaktır. Burada  (...) , ( ), ( , , ( ), ( ( )))
x

a
f f x y x k x y y d       dır. Ayrıca ,a b ,

 ,x a b ,  bir Banach uzayı,   1 ,y C a b , ( ) ,y a c c  , olmak üzere, 

 , ,f C a b      ve     , , ,k C a b a b     dır. Ayrıca 

    , , ,C a b a b   ise s  gecikme fonksiyonu ve her a b   için ( )   dır.  

 Castro ve Simoes (2019), (5.1) denkleminin H-U ve H-U-R kararlılığını Bielecki 

metriği yardımıyla incelediler.  

 (5.1) Volterra IDD’i için Ulam anlamında kararlılık tanımları aşağıda 

verilmektedir. 

Tanım 5.1 y fonksiyonu 

 

 ( ) ...y x f    ,  ,x a b   (5.2) 

 

eşitsizliğini sağlasın. (5.2) denkleminin bir çözümü var öyle ki 0C   sabiti y  ve 
0y ’dan 

bağımsız olmak üzere, her a x b   için 

 

0( ) ( )y x y x C    

 

eşitsizliği sağlanıyor ise (5.1) denklemi H-U kararlıdır denir. Burada 0   gerçel bir 

sabittir. 

Tanım 5.2 y  fonksiyonu 
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 ( ) ... ( )y x f x   ,  ,x a b    

 

eşitsizliğini sağlasın. (5.1) denkleminin bir çözümü var öyle ki,   negatif olmayan bir 

fonksiyon ve 0C   sabiti y  ve 
0y  dan bağımsız olmak üzere, her a x b   için 

 

0( ) ( ) ( )y x y x C x    

 

eşitsizliği sağlanıyor ise (5.1) Volterra IDD’i H-U-R kararlıdır denir. 

 

5.1 Sonlu Aralıkta (5.1) Denklemi için Hyers-Ulam-Rassias Kararlılık 

  

Bu kesimde Castro ve Simoes (2019) tarafından (5.1) IDD’inin H-U-R kararlılığı 

için verilen sonuç ele alınacaktır.  

 Castro ve Simoes (2019), H-U-R kararlılığı ile ilgili aşağıdaki teoremi ispatladı. 

Teorem 5.1 Her a t b   için     , , , ,C a b a b   ( )t t   olmak üzere, bir gecikme 

fonksiyonu ve    : , 0,a b    azalmayan sürekli bir fonksiyon olsun. Ayrıca bir 

 0,1   sayısı vardır öyle ki her  ,x a b  için 

 

( ) ( )
x

a
d x      

 

eşitsizliği sağlansın. İlave olarak   , ,f C a b    sürekli bir fonksiyon ve bu 

fonksiyon 0M   olmak üzere  

 

   
 

1
, , , ,

M
f x u g f x v h

u v g h


 
  

  

 

Lipschitz şartını sağlasın. Bununla birlikte    : , ,k a b a b     çekirdeği ise 

0L   olmak üzere 
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   
 

1
, , , ( ( )) , , , ( ( ))

( ( )) ( ( ))

L
k x t u u t k x t v v t

u t v t
 

 


 


  

 

Lipschitz şartını sağlasın. Eğer  1( , )y C a b  fonksiyonu 

 

 ... ( )y f x  , a x b    

 

eşitsizliğini sağlar ve  

 

 2 1M L     

 

ise, bu takdirde bir  1

0 ( , )y C a b  fonksiyonu vardır öyle ki 

 

  0 0 0 0, , , , , ( ( ))
x

a
y f x y k x y y d         

 

ve her a x b   için 

 

 0 2
( )

1
y y x

M L




 
 

 
 (5.3) 

 

eşitsizliği sağlanır. Bu durumda (5.1) IDD’i H-U-R kararlıdır (Castro ve Simoes (2019). 

İspat.  

 ( ) ...y x f    

 

IDD’ini yeniden göz önüne alalım. Bu denklem a  dan x  e integrallendiğinde, 

( ) , ,y a c c   başlangıç koşulu kullanıldığında  
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 ( ) ...
x

a
y x c f ds     

 

elde edilir. Burada   (...) , ( ), , , ( ), ( ( ))
s

a
f f s y s k s y y d       dır. 

 Her a x b   ve  1( , )u C a b  için T  operatörü ise   1 ,C a b  den kendisine 

tanımlı olmak üzere,   

 

   ( ) ....
x

a
Tu x c f ds    (5.4) 

 

şeklinde tanımlansın Ayrıca u  fonksiyonu sürekli olduğundan Tu  operatörü de 

süreklidir. 

 Yukarıda verilen (5.4) operatörü yeniden göz önüne alındığında, kolaylıkla  

 

0( )( ) ( )( )Tu x Tu x  ....
x

a
f ds   

0

....
x

a
f ds  

0

.... 0
x

x
f ds    

 

elde edilir. Buna bağlı olarak 
0x x  iken  

 

0( )( ) ( )( ) 0Tu x Tu x    

 

elde edilir. 

 Şimdi ise mevcut koşullar altında T  operatörünün Bielecki metriğine göre 

kuvvetli bir daralma dönüşümü olduğu gösterilecektir. Yukarıda verilen metrik, operatör 

ve koşullar kullanıldığında ,  u v  kapalı bir aralıkta sürekli türevlenebilir fonksiyonlar 

olmak üzere,  

 

1( , ) sup ( ) ( )(.) ( )(.)d Tu Tv x Tu Tv      

1sup ( ) ( ) ( )
x

a
M x u s v s ds   

    
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   
1

sup , , ( ), ( ( )) , , ( ), ( ( ))
( )

x s

a a
M k s u u k s v v d ds

x
        


       

   , ,

( ) ( ) 1
sup sup ( )

( ) ( )

x

as a b x a b

u s v s
M s ds

s x


  


   

   , ,

( ) ( ) 1
sup sup ( )

( ) ( )

x s

a aa b x a b

u v
ML d ds

x

 
  

   


    

 2 ( , )M L d u v    

 

elde edilir.  2 1M L    olması nedeniyle T  operatörünün bir daralma dönüşümü 

olduğu sonucuna varılır.  

 Şimdi (5.1) IDD’inin H-U-R kararlılığına ait ispatı tamamlamak için Banach 

daralma dönüşümü kullanılacaktır. 

 

     
1

2

0, 1 ,d y y M L d Ty y 


   
 

  

 

eşitsizliğini elde ederiz. 

 d  metriğinin tanımı ve yukarıdaki veriler dikkate alındığında  

 

 
 

1
1 2

0
,

sup ( ) 1
x a b

x y y M L   






        
  

 

bulunur. Buna bağlı olarak da (5.3) eşitsizliği, yani  

 

 
1

2

0 ( ) 1y y x M L  


    
 

  

 

sonucuna varılır. Dolaysıyla,  ispat tamamlanır.  

 

5.2 Sonlu Aralıkda (5.1) Denklemi için Hyers-Ulam Kararlılık  

 

 Bu kesimde, Castro ve Simoes (2019) tarafından (5.1) IDD’inin H-U kararlılığı  
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için verilen sonuç ele alınacaktır.  

 Castro ve Simoes (2019) (5.1) denkleminin H-U kararlılığı ile ilgili aşağıdaki 

teoremi ispatladı. 

Teorem 5.2 Her  ,t a b  için ( )t t   olmak üzere   ise   1 ,C a b  den kendisine 

sürekli bir gecikme fonksiyonu ve    : , 0,a b    azalmayan sürekli bir fonksiyon ve 

 0,1   olmak üzere her  ,x a b  için 

 

( ) ( )
x

a
d x      

 

eşitsizliğinin sağlandığını varsayalım. Ayrıca  : ,f a b     fonksiyonu sürekli 

ve bu fonksiyonun, 0M   olmak üzere, 

 

   
 

1
, , , ,

u v g h
f x u g f x v h

M 

  
     

 

Lipshitz şartını sağladığını ve    : , ,k a b a b      sürekli çekirdek fonksiyonun 

ise, 0L   olmak üzere,  

 

   
 

1
, , , ( ( )) , , , ( ( ))

( ( )) ( ( ))

L
k x t u u t k x t v v t

u t v t
 

 


 


 
 

 

Lipschitz şartını sağladığını kabul edelim. 

 Eğer  1( , )y C a b  ve 0   ve  2 1M L    olmak üzere  

 

  , , , , ( ) ( ( )) ,
x

a
y f x y k x y y d        a x b   (5.5) 

 

eşitsizliği sağlanır ise, bu takdirde tek bir  1

0 ( , )y C a b  fonksiyonu vardır öyle ki 
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  0 0 0 0, , , , ( ), ( ( ))
x

a
y f x y k x t y t y t dt     

 

ve her a x b   için 

 

 
1

2

0

( ) ( )
1

( )

b a b
y y M L

a


  



 
    
 

 (5.6) 

 

eşitsizliği sağlanır. Burada  1

0 ( , )y C a b  fonksiyonu (5.1) denkleminin bir çözümüdür. 

 Yukarıda verilen bilgiler dikkate alındığında verilen teoremdeki şartların 

sağlanması durumunda (5.1) IDD’i H-U kararlı olur (Castro ve Simoes, 2019). 

 Bu teoremin ispatlaması için Castro ve Simoes (2019)  

T  dönüşümü   1 ,C a b den kendisine olmak üzere her a x b   ve   1 ,u C a b  için  

 

    ( ) , ( ), , , ( ), ( ( ))
x s

a a
Tu x c f s u s k s u u d ds         (5.7) 

 

operatörünü tanımladı. Burada  2 1M L    koşulu dikkate alınıp Bielecki metriği ve 

Banach sabit nokta teoremi kullanılarak (5.7) operatörünün bir daralma dönüşümü olduğu 

kolaylıkla gösterilebilir. Gerçekten (5.5) eşitsizliğinden her a x b  için 

 

  ( ) , ( ), , , ( ), ( ( ))
x

a
y x f x y x k x y y d           (5.8) 

 

yazılabilir. (5.8) eşitsizliği integrallendiğinde  

 

  , ( ), , , ( ), ( ( ))
x s x

a a a
y c f s y s k s y y d ds d              

 

elde edilir. Buna bağlı olarak her a x b  için 
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1
( )( )

( )
y Ty x

b a




 


   

 

sonucuna varılır. Bu eşitsizliğin sonucu olarak Teorem 5.2 deki ispat yöntemi izlenerek 

kolaylıkla (5.6) eşitsizliği elde edilebilir (Castro ve Simoes,2019). 

 

5.3 Sonsuz Aralıkda (5.1) Denklemi için Hyers-Ulam-Rassias Kararlılık 

 

 Bu kesimde, Castro ve Simoes (2019) tarafından (5.1) IDD’inin H-U kararlılığıyla 

ilgili olarak sonsuz aralıkta elde edilen sonuç verilecektir. Castro ve Simoes (2019) 

,a b  olmak üzere  ,a b  sonlu aralığının yerine  ,a   sonsuz aralığı üzerinde aşağıda 

verilen IDD’inin H-U-R kararlılığını incelediler. Castro ve Simoes (2019) 

 

  , , , , ( ), ( ( ))
x

a
y f x y k x y y d       , ( )y a c   (5.9) 

 

başlangıç değer problemini yeniden göz önüne aldı. Burada   1 ,y C a   ve  ,x a   

olarak verilmek üzere,  : ,f a      ve    : , ,k a a       sürekli 

fonksiyonlar ve her  ,a    için ( )    olmak üzere    : , ,a a     fonksiyonu 

sürekli gecikme fonksiyonudur. Ayrıca her , 0    için  : , ( , )a     sürekli 

azalmayan bir fonksiyon olmak üzere   
1

,
b

aC   ise sınırlı türevlenebilir fonksiyonların 

uzayı ve bu uzayla ilgili metrik 

 

 

1

,

( , ) sup ( ) ( ) ( )b
x a

d u v x u x v x 

 

     
 

 

şeklinde tanımlanmaktadır. 

 Şimdi Castro ve Simoes (2019) konuyla ilgili olarak aşağıdaki teoremi ispatladı. 
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Teorem 5.3 Her ( )t t   olmak üzere her  ,t a   için    : , ,a a     sürekli bir 

gecikme fonksiyonu, her , 0    için  : , ( , )a     azalmayan sürekli bir 

fonksiyon,  0,1   olmak üzere her  ,x a   için  

 

( ) ( )
x

a
d x      

 

eşitsizliği ve  : ,f a      sürekli fonksiyonu, 0M   olmak üzere 

 

 
1

( , , ) ( , , )
( )

M
f x u g f x v h

u v g x h


 
  

 
 

 

Lipshitz şartını sağlasın. İlave olarak    : , ,k a a       çekirdek fonksiyonu 

sürekli olsun öyle ki herhangi sınırlı ve sürekli bir z  fonksiyonu için

( , , ( ), ( ( )))
x

a
k x z z d      integrali sınırlı ve sürekli bir fonksiyon, 0L   olmak üzere k  

çekirdeği  

 

1
( , , , ( )) ( , , , ( ))

( ) ( )

L
k x t u u k x t v v

u v
 

 


 
   

 
 

 

Lipshitz şartını sağlasın. Eğer   
1

,
b

y aC   fonksiyonu 

 

  , , , , ( ), ( ( )) ( )
x

a
y f x y k x y y d x       ,  ,x a    

 

eşitsizliğini sağlar ve  

 

 2 1M L     

 

ise, bu takdirde bir tek   
1

0 ,
b

y aC   fonksiyonu vardır öyle ki 
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  0 0 0 0, , , , ( ), ( ( ))
x

a
y f x y k x y y d        (5.10) 

 

ve her  ,x a   için 

 

 
1

2

0( ) ( ) 1 ( )y x y x M L x   


    
   (5.11) 

 

eşitsizliği sağlanır. 

 Bu sonuç ise yukarıdaki şartlar altında (5.9) denkleminin H-U-R kararlı olduğu 

anlamına gelir (Castro ve Simoes (2019).  

İspat. Her n  için  ,nI a a n   aralığını tanımlayalım. Teorem 5.1. den dolayı bir 

tek sınırlı ve türevlenebilir 0, :n ny I   fonksiyonu vardır öyle ki her 
nx I  için 

 

  0. 0, 0, 0,, ( ), , , ( ), ( ( ))
x s

n n n n
a a

y c f s y s k s y y d ds          (5.12) 

ve 

 
1

2

0, 1 ( )ny y M L x   


    
 

   

 

bağıntıları sağlanır. 0,ny  fonksiyonu tek olduğundan, eğer 
nx I  ise, bu takdirde 

 

0, 0, 1 0, 2n n ny y y     (5.13) 

 

yazılabilir.  

 Herhangi bir  ,x a   için, ( )n x   olmak üzere,  ( ) min : nn x n x I    

ve  0 : ,y a    fonksiyonu  

 

0 0, ( )n xy y   (5.14) 

 

olarak tanımlansın. 
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 Herhangi bir  1 ,x a   için 
1 1( )n n x  olsun. Bu takdirde 

11 1nx I   ve bir 0   

vardır, buna bağlı olarak da her  1 1,x x x     için 
10 0, 1( ) ( )ny x y x  yazılabilir. 

Teorem 5.1.’den bilindiği üzere 
10, 1ny   fonksiyonu 

1x  noktasında süreklidir. Buna bağlı 

olarak 
0y  fonksiyonu da bu noktada süreklidir. 

 Şimdi 
0y  fonksiyonunun 

 

  0 0 0 0( ) , ( ), , , ( ), ( ( ))
x s

a a
y x c f s y s k s y y d ds           

 

ID’ini ve (5.11) eşitsizliğini sağladığı doğrulanacaktır. 

  ,x a   için ( )n xx I  olacak şekilde bir ( )n x  fonksiyonunu göz önüne alalım. 

(5.12) ve (5.14) bağıntıları dikkate alındığında  

 

0 0, ( )( ) ( )n xy x y x   

  0 0 0, ( ), , , ( ), ( ( ))
x s

a a
c f s y s k s y y d ds         

(5.15) 

 

yazılabilir. 

 Herhangi bir ( )n xI   için ( ) ( )n n x   olduğu bilinmektedir. Ayrıca (5.13) 

bağıntısından 0 0, ( ) 0, ( )( ) ( ) ( )n n xy y y     olduğu görülebilir. Buna bağlı olarak (5.15) 

eşitliği sağlanır.  

 (5.11), (5.12) ve (5.14) bağıntılarının sağlandığını ispatlamak için her  ,x a   

için  

 

 
1

2

0 0, ( ) 1 ( )n xy y y y M L x   


      
 

  

 

kolaylıkla elde edilebilir.  

 Bu bağıntı ise teoremde istenen sonuçtur. Simdi ise 
0y ’ın tekliğini gösterelim. 

Her  ,x a   için (5.10) ve (5.11) denklemlerini sağlayan sınırlı ve türevlenebilir başka 
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bir 
1y  fonksiyonunu göz önüne alalım. Herhangi bir ( )n x   için ( )n xI  üzerinde 

çözümün tekliğinden dolayı 
( )

0, ( )0 n x
n xI

y y  elde edilir ve her ( )n xx I  için 
( )1 n xI

y  

fonksiyonu (5.10) ve (5.11) bağıntılarını sağlar. Böylece 

 

( ) ( )
0 10 1
( ) ( ) ( ) ( )

n x n xI I
y x y x y x y x    

 

 

elde edilir. Dolayısıyla teoremin ispatı tamamlanır. 

  (5.1) IDD’inin özel durumlarında yukarıda verilen teoremlerin şartlarının 

sağlandığına dair örnekler verilecektir (Castro ve Simoes,.2019). 

Örnek 5.1 
2

: 0,
5

y
 

 
 

 türevlenebilir bir fonksiyon olmak üzere aşağıdaki IDD’ini 

göz önüne alalım: 

 

 

 0

(1 2 ) ( )
1 2 ,

exp ( )

x x x y
y x y d

x




 


    

   
2

0 .
5

x   (5.16) 

 

Ayrıca  
2

: 0, 0,
5


 

  
 

 olmak üzere ( ) 3 xx e   fonksiyonunu ve 
2 2

: 0, 0,
5 5


   

   
   

 

olmak üzere ( )x x   sürekli gecikme fonksiyonunu ele alalım. Şimdi Teorem 5.1.‘in 

koşularının sağlandığını gösterelim.  

 

0

3
( ) 3 ( ),

2

x x
x

a
d e d e x       

2
0,

5
x

 
 
 

 

 

1

2
  , ( ) 3 xx e   

 

olduğu görülür. Ayrıca, (5.16) denklemi ile (5.1) denklemi karşılaştırıldığında 

2
: 0,

5
f
 

   
 

 sürekli bir fonksiyon olmak üzere 
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 , , (.) 1 2 (.)f x y g x y g     

 

yazılabilir. Buna bağlı olarak her 
2

0,
5

x
 

 
 

 için  

 

   , (.), (.) , (.), (.) (.) (.) (.) (.)f x u g f x v h u v g h      

 

eşitsizliği sağlanır. Böylece Teorem 5.1’de M  sabiti 1M   olarak alınabilir.  

 İlave olarak 
2 2

: 0, 0,
5 5

k
   

     
   

 çekirdeğinin ise  

 

 
 
(1 2 )

, , , ( (.)
exp ( )

x x y
k x t y y

t x t





 
 

 

 

ile verildiği ve sürekli olduğu görülür. Buna bağlı olarak  0,t x  ve 
2

0,
5

x
 

 
 

 için  

 

   
1

25
18

, , , ( (.)) , , , ( (.)) ( (.)) ( (.))
25

k x t u u k x t v v e u v        

 

yazılabilir. Teorem 5.1’deki veriler dikkate alındığında  

 

1

25
18

25
L e   

ve  

1

2 25
1 9

( ) 1
2 50

M L e       

 

olarak elde edilir. 

 

2

( )
0.3

xe
y x   yaklaşık çözüm olarak alınabilir. Öte yandan, 

2
0,

5
x

 
 
 

 için  
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   1 1, , , , ( ), ( ( )) 3 .7 3 .14 ( )
x

a
y f x y k x y y d x x            

 

 

elde edilir. Bu sonuçlar ise yukarıda verilen (5.16) IDD’inin H-U-R kararlı olduğunu 

gösterir.  

 Yukarıdaki işlemlere ilave olarak söz konusu kararlılık sonucu yaklaşık çözüm ve 

analitik çözüm dikkate alınarak da gösterilebilir. Gerçekten 
2

0( ) xy x e  fonksiyonunun 

(5.16) denkleminin bir çözümü olduğu kolaylıkla görülebilir. Buna bağlı olarak her 

2
0,

5
x

 
 
 

 için gerçek çözümle yaklaşık çözüm arasındaki farkın mutlak değeri 

alındığında  

 

2

2

0 1 2

25

3
( ) ( ) ( )

0.3 1 ( )9
1

25

x x
xe e

y x y x e x
M L

e




 
    

 


 
 

 

elde edilir. Böylece (5.16) IDD’inin H-U-R kararlı olduğu sonucuna varılır (Castro ve 

Simoes, 2019). 

Örnek 5.2 Şimdi ise  : 0,1y    türevlenebilir bir fonksiyon olmak üzere her  0,1x  

için  

 

   2 2

0
( ) 2 4 5 ( ) ( ) ( ( ))

x x
x

y x x e y x e x y d           (5.17) 

 

IDD’mini göz önüne alalım (Castro ve Simoes, 2019 ).  

 (5.17) denkleminin H-U kararlı olduğunu gösterelim.    : 0,1 0,    olmak 

üzere 10( ) 1.1 xx e   sürekli fonksiyonunu ve  
1

: 0,1 0,
2


 

  
 

 olmak üzere ( )
2

x
x   

sürekli gecikme fonksiyonunu ele alalım. ( )x x   olduğu açıktır. Ayrıca 
1

10
   için 

10( ) 1.1 xx e   olmak üzere 10( ) 1.1 xx e   fonksiyonunun integrali alındığında 
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10 10

0

1.1
1.1 ( ),

10

x
xe d e x      0,1x   

 

eşitsizliği sağlanır. 

 Ayrıca  : 0,1f     fonksiyonu ise 

 

    2 2, ( ), ( ) 2 4 5 ( ) ( )
x x

f x y x g x x e y x e g x        

 

ile verilmektedir ve bu fonksiyon süreklidir. Ayrıca bu fonksiyon her  0,1x  için  

 

     , , , , 5f x u g f x v h u v g h       

 

Lipschitz şartını sağlar. 

 Sürekli    : 0,1 0,1k     çekirdeği  

 

1

( ( ))
( , , , ( ( )))

( )

y t
k x t y y t

t x








   

 

ile tanımlanır. Her  0,t x  ve her  0,1x  için çekirdek fonksiyonu 

 

       1 1, , , ( ( )) , , , ( ( )) 2 2k x t u u t k x t v v t u t v t         

 

eşitsizliğini sağlar. Burada 1L   olarak alınabilir. Böylece 2 11
( ) 1

20
M L     elde 

edilir.  

 Eğer yaklaşık çözüm 
100

( )
99

xy x e olarak seçilirse, bu takdirde her  0,1x  için  

 

   2
2 4

, , , , ( ), ( ( ))
99 99

x
x

a
y f x y k x y y d x x e     

 
      

 
  

 



 

42 
 

 

elde ederiz. Burada 0.1   olarak alınmaktadır. Dolayısıyla Teorem 5.2.’nin tüm şartları 

sağlanır ve (5.17) IDD’inin H-U kararlı olduğu sonucuna varılır. 

 İlave olarak 0 ( ) xy x e  fonksiyonunun (5.17) IDD’inin bir çözümü olduğu 

gösterilebilir. Her  0,1x  için gerçek çözüm ve yaklaşık çözüm dikkate alınarak  

 

0 2

100 2 ( ) ( )
exp( ) exp( ) exp(10 )

99 9 1 ( ) ( )

b a b
y y x x x

M L a




  


    

   

 
 

 

eşitsizliği sağlanır. Böylece (5.17) denkleminin H-U kararlı olduğu görülür (Castro ve 

Simoes, 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

6. LİNEER OLMAYAN (6.1) DEĞİŞKEN GECİKMELİ İNTEGRO-

DİFERANSİYEL DENKLEMİ İÇİN HYERS-ULAM-RASSIAS 

KARARLILIK 

 

 Kucche ve Shikhare (2019) aşağıda verilen lineer olmayan değişken gecikmeli  

 

   ... ,   , x t f t I   (6.1) 

 

( ) ( ),x t t 0r t    (6.2) 

 

lineer olmayan değişken gecikmeli Volterra IDD’ini ele aldı. Burada

        
0

(...) , , , , , ,.

t

f f t x x g h t s x s x g s ds
 

  
 

  ve     ,0 ,C r    başlangıç 

fonksiyonudur. Kucche ve Shikhare (2019) yaptığı çalışmada Pachpatte eşitsizliği, Picard 

operatörü, ve Gronwall lemmasını kullanarak bu denklemin H-U-R kararlılığını inceledi 

ve özel durumlarda bazı uygulamalar verdi. Şimdi söz konusu çalışmanın sonuçlarını 

vermeden önce hazırlık bilgileri niteliğindeki aşağıdaki tanımları verelim. 

Tanım 6.1 ([ , ], ) ([0, ], )x C r b C b    olmak üzere (6.1) ve (6.2) denklemlerini 

sağlayan x  fonksiyonuna (6.1), (6.2) başlangıç değer probleminin çözümü denir. 

 Şimdi ise 0   sayısı ve pozitif azalmayan sürekli bir   fonksiyonu verilmek 

üzere aşağıdaki eşitsizlikler sağlansın: 

 

 ... ,    , y f t I    (6.3) 

 

   ... ,    , y f t t I    (6.4) 

 

   ... ,     y f t t I    (6.5) 

 

Burada           
0

... , , . , , , ,

t

f f t y y g h t s y s y g s ds
 

  
 

  olarak alınmaktadır(Kucche 

ve Shakhare, 2019). 
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Tanım 6.2 Eğer bir 0C   sabiti var öyle ki her   0   ve (6.3) eşitsizliğinin her bir 

([ , ], )y C r b   çözümü için (6.1) denkleminin bir ([ , ], )x C r b  çözümü var öyle 

ki her r t b    için 

 

y x C    

 

eşitsizliği sağlanıyor ise, bu takdirde (6.1) denklemine H-U kararlıdır denir (Kucche ve 

Shakhare, 2019). 

Tanım 6.3 Eğer bir      , ,  0 0,f fC     fonksiyonu var öyle ki (6.3) 

eşitsizliğinin her bir ([ , ], )y C r b   çözümü için (6.1) denkleminin bir

([ , ], )x C r b   çözümü var ve her  ,t r b   için  

 

 fy x      

 

eşitsizliği sağlanıyor ise, bu takdirde (6.1) denklemine genelleştirilmiş H-U kararlıdır 

denir (Kucche ve Shakhare, 2019). 

Tanım 6.4 Eğer bir   0C   sabiti var öyle ki her 0   ve (6.5) eşitsizliğinin her bir 

([ , ], )y C r b   çözümü için (6.1) denkleminin bir ([ , ], )x C r b   çözümü vardır ve 

her r t b    için  

 

( )y x C t    

 

eşitsizliği sağlanıyor ise, bu takdirde (6.1) denklemi pozitif azalmayan sürekli 

   : ,r b    fonksiyonuna göre H-U-R kararlıdır denir (Kucche ve Shakhare, 2019). 

Tanım 6.5 Eğer bir   0C   sabiti var öyle ki (6.4) eşitsizliğinin her bir ([ , ], )y C r b   

çözümü için (6.1) denkleminin bir ([ , ], )x C r b   çözümü var ve her r t b    için  

 

( )y x C t    
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eşitsizliği sağlanıyor ise, bu takdirde (6.1) denklemine pozitif azalmayan sürekli 

   : ,r b    fonksiyonuna göre genelleştirilmiş H-U-R kararlıdır denir (Kucche ve 

Shakhare, 2019). 

Uyarı 6.1 Eğer sadece y  ’ye bağlı bir  ,yq C I  fonksiyonu var öyle ki aşağıdaki 

şartlar sağlanıyor ise, bu takdirde ( , )y C I  fonksiyonu (6.3) eşitsizliğinin bir çözümü 

olur: 

 

 (i) ( ) , ;yq t t I    

 (ii)  ... , .yy f q t I     

 

Benzer ifadeler (6.4) ve (6.5) eşitsizlikleri için de geçerlidir (Kucche ve Shakhare, 2019). 

Uyarı 6.2 Eğer ( , )y C I  fonksiyonu (6.3) eşitsizliğini sağlıyorsa, y  fonksiyonu 

aşağıdaki eşitsizliğinin de bir çözümüdür: 

 

   
0

...0 , .

t

y y f ds t t I     (6.6) 

 

Gerçekten ( , )y C I  fonksiyonu (6.3) eşitsizliğini sağlıyor ise, o zaman Uyarı 6.1'e 

göre 

 

      ,...          yy t f q t t I      

 

yazılabilir. Buna bağlı olarak bu denklem için integral hesaplandığında  

 

     
0

...0

t

y t y f ds  
0

( ) ,

t

yq s t t I    
 

 

elde edilir (Kucche ve Shakhare, 2019). 

 (6.4) ve (6.5) eşitsizlikleri için de benzer sonuçlar elde edilebilir.  
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6.1 Sonlu Aralıkta (6.1) Volterra-Integro Diferansiyel Denkleminin Hyers-Ulam-

Rassias Kararlılığı 
 

 (6.1) denklemi için aşağıdaki şartların sağlandığını kabul edelim.  

(H1) 3([0, ] , ),f C b       2  0, 0, , ,h C b b        0, , ,g C b r b   ve her 

t I  için   ( )g t t  dır.  

Ayrıca ,  0f hL L   sabitleri vardır öyle ki her   , ,    , , ( 1,2,3),i it s I u v i    için  

 

   
 

1 3 1 3 1

1 1 3 3

,  ,..., ,  ,.., ;
...

fL
f t u u f t v v

u v u v


 
   

 
 

 

   
 

1 2 1 2 1

1 1 2 2

,  , , , ,  , , , hL
h t s u u h t s v v

u v u v


 
  

 
 

 

dır. 

(H2)  : ,r b    pozitif, azalmayan ve sürekli bir fonksiyon ve 0   olmak üzere 

her  0,t b  için  

 

   
0

 

t

s ds t    
 

 

eşitsizliği sağlanır. 

Teorem 6.1 (6.1) denklemindeki 𝑓 ve ℎ fonksiyonlarının (H1) ve (H2) şartlarını 

sağladığını kabul edelim. Bu takdirde 2 1f hbL L b   olmak üzere aşağıdaki sonuçlar 

doğrudur. 

(i) (6.1), (6.2) başlangıç değer problemi bir tek      , ,  0, , x C r b C b     

çözümüne sahiptir.  

(ii) (6.1) denklemi,   fonksiyonuna göre H-U-R kararlıdır (Kucche ve Shakhare, 2019).  

İspat. 

(i) (H1) şartı göz önüne alındığında, (6.1) denkleminin  0, t  aralığında integral 

alındığında (6.1), (6.2) başlangıç değer problemi aşağıdaki probleme  
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     
0

..0 ,  .   ,

t

x t f ds t I    
 

 

     ,    ,0x t t t r     
 

 

 

eşdeğer olur. 

   , , X C r b   Banach uzayını ve .
C

 Chebyshev normunu göz önüne alalım. 

Ayrıca :fB X X  operatörünü 

 

      
0

...0 ,    ,

t

fB x t f ds t I    
 

 

      ,    ,0fB x t t t r     

 

şeklinde tanımlayalım. 

 Şimdi daralma dönüşümü yardımıyla 𝐵𝑓 operatörünün sabit bir noktaya sahip 

olduğunu gösterelim.  

 

            0,  , , ,  , [ ,0]f fB x t B y t t t x y C r b t           (6.7) 

 

olduğu açıktır. Ayrıca t I   için, 

 

     f fB x t B y t  

 
0 0

  2 2 2   

t s

h fC Cf C hL x y L x y d ds bL L b x y
 

       
 

   
(6.8) 

 

eşitsizliği elde edilir. (6.7) ve (6.8) ifadeleri dikkate alındığında, 
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       ,2f f f h CC
B x B y bL L b x y       , , ,  ,x y C r b    

 

yazılabilir.  2 1f hbL L b   olduğundan, fB  operatörü X  tam uzayında bir daralma 

dönüşümüdür. Bu nedenle Banach daralma dönüşümüne göre fB  operatörü sabit bir 

 * : ,x r b   noktasına sahiptir ve bu sabit nokta ise (6.1), (6.2) probleminin bir 

çözümüdür. 

(ii) ([ , ], ) ([0, ], )y C r b C b    fonksiyonu (6.5) eşitsizliğinin bir çözümü olsun. 

([ , ], ) ([0, ], )x C r b C b    olmak üzere, 𝑥 fonksiyonu ise 

 

   ... ,  x t f t I    

 

       ,    ,0  , x t y t t r     

 

probleminin bir çözümü olsun. Burada

        
0

(...) , , , , , ,

t

f f t x x g t h t s x s x g s ds
 

  
 

  olarak tanımlanmaktadır. Buna bağlı 

olarak da  

 

     
0

..0 ,  .    

t

x t y f ds t I    
(6.9) 

 

     ,    ,0  ,x t y t t r    (6.10) 

 

kolaylıkla yazılabilir. 

 Eğer ([ , ], ) ([0, ], )y C r b C b    fonksiyonu (6.5) eşitsizliğini sağlıyorsa, o 

zaman (H2) şartı ve Uyarı 6.1 ve 6.2 kullanılarak, 

 

     
0

...0

t

y t y f ds    
(6.11) 
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   
0

,                     

t

s ds t t I     

 

elde edilir. Öte yandan    ,0t r   için     0y t x t   olduğu açıktır. Buradan,   t I   

için (H2) şartı, (6.9) ID’i ve (6.11) kullanıldığında, 

 

   
0

0 ...

t

y x y y f ds       

   
0

...0

t

y y f ds     

0 0

, , ( (.)), ( , , ( ), ( ( )))

t s

f s y y g h s y y g d   
 

  
 

    

0

, , ( (.)), ( , , ( ), ( ( )))

s

f s x x g h s x x g d ds   
 

  
 

   

           
0

t

ft L y s x s y g s x g s        

         
0

s

hL y x y g x g d ds        






   

(6.12) 

 

bakılabilir. Bu takdirde (6.12) ifadesine göre        : , ,  , ,   A C r b C r b     olmak 

üzere A  operatörü  

 

    0, ,0 ,A u t t r     

 

                
0 0

, 0,

t s

f hA u t t L u s u g s L u u g d td bs   
 

       
 

   
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şeklinde tanımlanabilir. Şimdi ise A 'nın bir Picard operatörü olduğunu gösterelim. Bu 

amaçla, her  ,0t r   için      . 0.A u A v   olmak üzere   , , ,u v C r b     

için (H1) şartı kullanıldığında t I   için, 

 

     A u t A v t  

 
0 0

2 2 2

t s

f h f hC C C
L u v L u v d ds bL L b u v

 
       

 
   

 

 

elde edilir. Böylece,   , , ,u v C r b     için  

 

     2f h CC
A u A v bL L b u v     

 

sonucuna varılır.  2 1f hbL L b   olması nedeniyle A  dönüşümü   , ,C r b 

uzayında bir daralma dönüşümüdür. Banach daralma dönüşümü kullanarak, A 'nın bir 

Picard operatörü ve  *

AF u  olduğu sonucuna varılır. Ayrıca t I  için, 

 

       * * * * *

0 0

.

t s

f hu L u u g L u u g d ds   
 

       
 
   

 

yazılabilir. 
*,u  I  aralığı üzerinde artandır ve *( ) 0u    dır. Bu nedenle ( )g t t  ve t I  

için     * *u g t u t  olur. Dolayısıyla, 

 

       * * *

0 0

2

t s

f hu t t L u s L u d ds  
 

   
 

   

 

elde edilir. Buna bağlı olarak, Pachpatte eşitsizliğini kullanıldığında 
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 *

0 0

1 2 2

t s

f f hu t L exp L L d ds 
  

      
   
   

      1  1 2 exp 2 1 2f f h f ht L L L b L L


      

(6.13) 

 

eşitsizliğini elde ederiz. 

 

    11 2 exp 2 1 2f f h f hC L L L b L L 


      

 

olsun. (6.13) eşitsizliğinden,  ,t r b   için  

 

   *  u t C t    

 

elde edilir.      u t y t x t   için (6.12) eşitsizliğinden    ( )u t A u t  sonucuna varılır. 

Böylece   , ,  ,  u C r b      ( )u t A u t  ve  *

AF u  olmak üzere   , , C r b   

den   , , C r b   ye tanımlı A  operatörünün artan bir Picard operatörü olduğunu 

ispatlandı. 

 Dolayısıyla, soyut Gronwall lemmasını uygulayarak, *( ) ( ),u t u t   ,t r b   elde 

ederiz. Buna bağlı olarak da her  ,t r b   için  

 

  ( )y x C t   (6.14) 

 

eşitsizliği sağlanır. Böylece (6.1) denklemi   fonksiyonuna göre H-U-R kararlıdır. Teorem 

6.1 ispatlanmış olur. 

Sonuç 6.1 (6.1) denklemindeki f  ve h  fonksiyonları (H1) ve (H2) şartının da sağlandığını 

kabul edelim. Eğer  2 1f hbL L b   ise, bu takdirde (6.1), (6.2) problemi bir tek çözüme 

sahiptir ve (6.1) denklemi   fonksiyonuna göre genelleştirilmiş H- U-R kararlıdır (Kucche 

ve Shikhare, 2019). 
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İspat. Teorem 6.1'in ispatındaki (6.14) eşitsizliğinde 1   alınırsa, r t b    için  

 

  ( )y x C t    

 

elde edilir. Bu eşitsizlik ise (6.1) denkleminin   fonksiyonuna göre genelleştirilmiş H-

U-R kararlı olduğunu gösterir. 

 Ayrıca Teorem 6.1'in ispatı dikkate alınarak, benzer işlemler kullanılarak, (6.1) 

denkleminin H-U kararlılığı da ispatlanabilir. 

 Her  ,t r b   olmak üzere ( ) 1t   için (H2) şartının geçerli olduğu göz önüne 

alınarak, Teorem 6.1 için aşağıdaki sonuç yazılabilir.  

Sonuç 6.2 (6.1) denklemindeki f  ve h  fonksiyonları (H1) şartını sağlasın. Eğer 

 2 1f hbL L b   ise, o zaman (6.1), (6.2) probleminin bir tek çözümü vardır ve (6.1) 

denklemi H-U kararlıdır (Kucche ve Shikhare, 2019). 

İspat. Her  ,t r b   için Teorem 6.1'in ispatındaki (6.13) eşitsizliğinde ( ) 1t   alınırsa, 

  ( ) ( )y t x t C   elde edilir. Buna bağlı olarak (6.1) denkleminin H-U kararlı olduğu 

sonucuna varılır (Kucche ve Shikhare, 2019). 

Sonuç 6.3 (6.1) denklemindeki f  ve h  fonksiyonları (H1) şartını sağlasın. 

 2 1f hbL L b   ise, o zaman (6.1), (6.2) probleminin bir tek çözümü vardır ve (6.1) 

denklemi genelleştirilmiş H-U kararlıdır (Kucche ve Shikhare, 2019). 

İspat. Eğer Sonuç 6.2 de    f C    alınır ise, ispat tamamlanır (Kucche ve Shikhare, 

2019). 

 

6.2 Bazı Özel Durumlar 

 

 Bu kesimde, (6.1), (6.2) probleminin bazı önemli özel durumları ele alınmaktadır 

(Kucche ve Shikhare, 2019).   0r   olsun ve  1 ,g t t r      0,t b  olarak tanımlansın. 

Bu durumda (6.1), (6.2) probleminin özel bir hali olan aşağıdaki problem elde edilir;  
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   1 ... ,  0x t f t b    (6.15) 

 

    ,    0 .x t t r t     (6.16) 

 

Burada       1 1 1

0

(...) , , , , , ,

t

f f t x x t r h t s x s x s r ds
 

   
 

  ile tanımlanmaktadır. İhtiyaç 

duyulduğunda x  yerine y  de alınabilmektedir. Aşağıdaki eşitsizliği göz önüne alalım; 

 

       1 ... ,  0, .y t f t t b      

 

 Burada, ,   ve   ifadeleri yukarıda tanımlanmaktadır. Teorem 6.1' in bir 

uygulaması olarak, (6.15), (6.16) problemi için aşağıdaki teorem verilmektedir. 

Teorem 6.2 Aşağıdaki şartların sağlandığını kabul edelim: 

(A1) 

(i) 3

1 ([0, ] , ),f C b       2

1 0, 0, , ,h C b b        1 0, , ,g C b r b    

ve 
1( )g t t  dir. 

(ii)
1 1

  ,  0f hL L   sabitleri vardır öyle ki her    1 1,     0, ,  ,  , 1,2,3t s b u v i     

 

   
 

1

1 1 3 1 1 3 1

1 1 3 3

,  ,..., ,  ,..., ,
...

fL
f t u u f t v v

u v u v


 
   

 
 

 

   
 

1

1 1 2 1 1 2 1

1 1 2 2

,  , , , ,  , , ,
hL

h t s u u h t s v v
u v u v


 

  

 
 

 

dır. 

(A2) 0   ve  : ,r b    pozitif azalmayan sürekli bir fonksiyon olmak üzere  

 

 0,t b  için    
0

 

t

s ds t    
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eşitsizliği sağlanır. 

(A3) 
1 2

2 1f hbL L b   dir. 

O zaman (6.15), (6.16) problemi bir tek        , , 0, ,x C r b C b    çözümüne 

sahiptir ve (6.15) denklemi   fonksiyonuna göre H-U-R kararlıdır. (6.1), (6.2) 

probleminin bir diğer özel durumu    2

2 ,  0,1g t t t I    alınarak aşağıdaki başlangıç 

değer problemi elde edilir:  

 

     2 , ... 0,1 , x t f t I    (6.17) 

 

     ,    ,0  . x t t t r    (6.18) 

 

 Ayrıca, 

 

       2 .. ,  0,1. ,y t f t t      

 

eşitsizliğini göz önüne alalım. Burada , ,  ,    yukarıda tanımlanmıştır ve 

      2 2

2 2 2

0

(...) , , , , , ,

t

f f t x x t h t s x s x s ds
 

  
 

  veya x yerine y  de alınabilmektedir. 

Teorem 6.1'in bir uygulaması olarak, (6.17), (6.18) problemi için aşağıdaki teorem 

verilebilir. 

Teorem 6.3 Aşağıdaki şartların sağlandığını kabul edelim: 

(B1)   3

2 0,1 , ,f C      2

2 0,1 0,1 ,h C    ve     2 0,1 , ,1g C r    

olmak üzere  2g t t  dir. 

 
2 2
,  0f hL L   sabitleri vardır öyle ki bütün   1 1,     0,1 ,  ,  ( 1,2,3)t s u v i    için 

 

   
 

2

2 1 3 2 1 3 1

1 1 3 3

,  ,..., ,  ,.., ;
...

fL
f t u u f t v v

u v u v


 
   
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   
 

2

2 1 2 2 1 2 1

1 1 2 2

,  , , , ,  , , ,
hL

h t s u u h t s v v
u v u v


 

  

 
 

 

dır. 

(B2) 0   ve  : ,1r    pozitif azalmayan sürekli bir fonksiyon olmak üzere  

 

 0,1t  için    
0

 

t

s ds t     

 

eşitsizliği sağlanır. 

 (B3) 
2 2

2 1f hL L   dir. 

O halde (6.17), (6.18) başlangıç değer probleminin        ,1 , 0,1 ,x C r C     

olacak şekilde bir tek x  çözümü vardır ve (6.17) denklemi   fonksiyonuna göre H-U-

R kararlıdır (Kucche ve Shakhare, 2019). 

 Benzer biçimde (6.15) ve (6.17) denklemleri için diğer Ulam tipi kararlılık 

sonuçları, Bölüm 6.1'deki ilgili sonuçlar kullanılarak elde edilebilir. 

 Bu kesimde, Bölüm 6.1'de elde edilen sonuçların özel durumlarda uygulamalarını 

göstermek için aşağıdaki örnekler verilecektir.  

Örnek 6.1 Aşağıdaki lineer olmayan gecikmeli Volterra IDD’ini göz önüne alalım; 

 

 
       cos cos(3

1
140 140 70

t x t t x g tx t
x t      

        
0

1
sin( sin ,

2
0 ,

0
,

0
5

7

t
t

x x g s ds ts    

(6.19) 

 

   0,  1,0 .x t t    (6.20) 

 

(6.19) denklemi (6.1) denklemi ile karşılaştıralım. 1( ) 2 ,  [0,5]g t t t   dir. ( )g t t , 

 0,5t  olduğu açıkça görülmektedir. 
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(i)    : 0,5 0,5h      fonksiyonu ise 

 

         , , , (. ) sin( ) sin( ) ,  , 0,5
70

t
h t s x x g x s x g s t s       

 

olarak elde edilir. Bu durumda, h  fonksiyonu her  , 0,5t s  ve 
1 2 1 2, , ,x x y y   için, 

       2 2 1 1 2 2 1 1 2 2

5
, ,..., , ,..., sin sin sin sin

70 70

t
h t s x h t s y x y x y x y x y           

Lipschitz şartını sağlar. 

(ii)  : 0,5f      fonksiyonu ise  

 

        
0

, , , , , , )

t

f t x x g t h t s x s x g s ds
 
 
 

  

       
     

0

cos cos(3 1
1 sin( sin

140 140 70 20 70

tt x t t x g tx t t
x s x g s ds      

   

       
      

0

cos cos(3 1
1 , , , ( ) ,  0,5

140 140 70 20

tt x t t x g tx t
h t s x s x g s ds t        

 

 

olur. Buna bağlı olarak, her  , 0,5t s  ve 
1 2 3 1 2 3, , , , ,x x x y y y   için kolaylıkla  

 

   1 3 1 3, ,..., , ,...,f t x x f t y y   

1 1 1 1 2 2 3 3

3 1
cos cos cos cos

140 140 70 20

t t
x y x y x y x y

 
        
 

  
 

 

elde edilir. İlave olarak, herhangi bir ,x y  ve x y  için, ortalama değer teoremi 

kullanıldığında  

 

cos cos
sin cos cos

x y
p x y x y

x y


     


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olacak şekilde bir p  vardır öyle ki x p y   dır. Böylece, 

 

   1 3 1 3, ,..., , ,...,f t x x f t y y   

1 1 1 1 2 2 3 3

5 3 5 1

140 140 70 20
x y x y x y x y

 
        
 

  

 1 1 2 2 3 3

5

70
x y x y x y        

 

 

elde edilir. 

 Dolayısıyla, yukarıda verilen f  ve h  fonksiyonları, 
5 5

,  ,  5
70 70

f hL L b    

olmak üzere, (H1) şartını sağlar. Ayrıca,

 
5 5

2 5 2 5 0.84183673 1
70 70

f hbL bL
 

     
 

 olduğu açıktır. Bu nedenle, Sonuç 

6.2'ye göre, (6.19), (6.20) problemi  1,5  aralığı üzerinde tek bir çözüme sahiptir ve 

(6.19) denklemi  0,5  aralığı üzerinde H-U kararlıdır. Benzer biçimde, H-U-R ve 

genelleştirilmiş H-U kararlılık türleri de (6.19) denklemi için gösterilebilir. 

 Öte yandan, 

 

 
 
 

,   0,5

  0,   1,0   

t t
x t

t

 
 

 
  (6.21) 

 

fonksiyonu (6.19), (6.20) probleminin tek çözümüdür. Gerçekten,  0,5t  için   ,x t t  

  12 , g t t  olmak üzere, 

 

       
     

0

cos cos(3 1
1 sin( sin

140 140 70 20 70

tt x t t x g tx t t
x s x g s ds     

     
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 
 

0

cos
cos 3 12

1 sin( ) sin 1
140 140 70 140 2

t

t
t

t t t s
t s ds x t

 
              

 



  

 

bağıntısını sağladığı açıktır.  

 Şimdi ise,   , 
2

t
g t    0,5t  olmak üzere (6.19) denkleminin H-U kararlılığı 

incelenecektir. 0   ve ( )y t  aşağıda verilen eşitsizliklerin çözümleri olmak üzere, 

problemin ( )x t  çözümü yardımıyla inceleme yapılacaktır. 

(i) 0.7   ve  
 

 
1

,   0,5
2

0,   1,0

t
t

y t

t




 
  

 olsun. Buradan  0,5t  için, 

 

 
       1 11'

1

cos cos(3
(1

140 140 70

t y t t y g ty t
y t       

 
       1 11'

1

cos cos(3
(1

140 140 70

t y t t y g ty t
y t       

0

cos cos3
1 12 421 sin( ) sin 0.667499
2 140 140 70 140 2 4

t

t ttt t
s s

t ds

   
                 

  
    

 

 

 

elde edilir. (6.19), (6.20) probleminin (6.21) ile verilen ( )x t  çözümü ve 4C   sabiti için,  

 

1

1 2 2.5 ,y x t t C       0,5t   

ve 

1 0,y x    1,0t     

 

dır. Böylece    1 ,y t x t C    1,5t   elde edilir.  

(ii)  1,5t   olmak üzere  2 0y t   ve 1.2   olsun. Buradan  0,5t  için 
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 
       2 22'

2

cos cos(3
1

140 140 70

t y t t y g ty t
y t


   



  

     2 2

0

1
sin( ) sin

20 70

t
t

y s y g s ds 
 


 


  

 
       2 22'

2

cos cos(3
1

140 140 70

t y t t y g ty t
y t       

     2 2

0

1
sin( ) sin

20 70

t
t

y s y g s ds  
    

155
1 1.2

140 70 140

t t
       

 

 

elde edilir. (6.19) (6.20) probleminin (6.21) ile verilen ( )x t  çözümü ve 6C   sabiti için 

 0,5t  olmak üzere    2 0 5y t x t t C      dir. Ayrıca,  1,0t   olmak üzere 

   2 0y t x t C    yazılabilir. Bu nedenle  2 0,y t    1,5t   ve 1.2  ’ye karşılık 

gelen (6.19) (6.20) probleminin (6.21) ile verilen ( )x t  çözümü ve 6C   sabiti için 

   2 ,y t x t C   1,5t   dir.  

(iii) Benzer biçimde 1.5   ve  
 

 
3

,   0,5
10

0,   1,0

t
t

y t

t




 
  

 için 

 

    33 3
3

cos(cos 3
(1

140 140 70

t y g tt y y
y       

     3 3

0

1
sin( ) sin )

20 70

t
t

y s y g s ds  
    

    33' 3
3

cos(cos 3
1

140 140 70

t y g tt y y
y       

     3 3

0

1
sin( ) sin ) 1.0557

20 70

t
t

y s y g s ds     
   
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olduğu görülür. (6.19), (6.20) probleminin (6.21) ile verilen ( )x t  çözümü ve 3C   sabiti 

için,    3 4.5 ,y t x t C     1,5t   elde edilir.  

(iv)   10   ve  
 
 

2

4

,   0,5

0,   1,0

t t
y t

t

 
 

 
 alalım. Buradan  0,5t  için, 

 

 
       4 44'

4

cos cos(3
(1

140 140 70

t y t t y g ty t
y t       

     4 4

0

1
sin( ) sin )

20 70

t
t

y s y g s ds  
    

 
       4 44'

4

cos cos(3
1

140 140 70

t y t t y g ty t
y t      

     4 4

0

1
sin( ) sin )

20 70

t
t

y s y g s ds   
 

  

 

 

dır. Ayrıca, (6.19), (6.20) probleminin (6.21) ile verilen ( )x t  çözümü ve 2C   sabiti için, 

   4 20 ,y t x t C     1,5t   dir. 

(v) Son olarak 77   ve  
 
 

3

5

,   0,5

0,   1,0

t t
y t

t

 
 

 
 alalım. 

 

 
       5 55'

5

cos cos(3
(1

140 140 70

t y t t y g ty t
y t       

     5 5

0

1
sin( ) sin )

20 70

t
t

y s y g s ds  
   

 
       5 55'

5

cos cos(3
1

140 140 70

t y t t y g ty t
y t      

     5 5

0

1
sin( ) sin )

20 70

t
t

y s y g s ds   
 

  
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elde edilir. (6.19), (6.20) probleminin (6.21) ile verilen ( )x t  çözümü ve 2C   sabiti için, 

   5 120 ,y t x t C     1,5t   dir. O halde (i)-(v) deki seçimler için (6.19) 

denklemi H-U kararlıdır. 

Uyarı 6.3 ( )y t  fonksiyonu 

 

 
       cos cos(3

(1
140 140 70

t y t t y g ty t
y t      

     
0

1
sin( ) sin )

20 70
,

t
t

y s y g s ds   



  

 

 

eşitsizliğin bir çözümü ve ( )x t , (6.19), (6.20) başlangıç değer probleminin bir tam çözümü 

ise, bu takdirde  1,5 ,t      y t x t C   eşitsizliğinden 0   için    y t x t  

olduğu sonucuna varılır (Kucche ve Shikhare, 2019). 

Örnek 6.2. Aşağıdaki gecikmeli Volterra integral diferansiyel denklemini göz önüne 

alalım; 

 

       
17 1 1

sin cos(
30 60 15

x t x t x g t     

      
0

1 1
cos sin ,

12 10

t

x s x g s ds  
    0,t   

(6.22) 

 

 0,   1,0 .x t    (6.23) 

 

Burada   14 ,g t t t   0, )t   dır. 

 (6.22) denklemi (6.1) denklemi ile karşılaştıralım.  

(i)   2:  0, ) 0, )h       olmak üzere, 

 

           
1

, , , cos sin ,  , 0, ) ,  
0

.
1

h t s x x g x s x g s t s t s     
 
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elde edilir. Bu durumda her , 0, )t s   ve 
1 2 1 2, , ,x x y y   için 

 

     2 2 1 1 2 2

1
, ,..., , ,..., cos cos sin sin

10
h t s x h t s y x y x y      

 1 1 2 2

1

10
x y x y     

 

 

Lipschitz şartı sağlanır.  

 (ii)  3:  0, )f     olmak üzere, 

 

              
0

17 1 1 1
sin cos( cos sin

30 60 15 12
...

t

f x t x g t x s x g s ds     
   

 

 

yazılabilir. O halde herhangi bir , 0, )t s   ve 
1 3 1 3,..., , ,...,x x y y   için 

 

   1 3 1 3 1 1 2 2

1 1
, ,..., , ,..., sin sin cos cos

60 15
f t x x h t y y x y x y       

 1 1 2 2 3 3

1

12
x y x y x y        

 

 

olduğu görülür. Yukarıda tanımlanan f  ve h  fonksiyonları, 
1

12
fL   ve 

1

10
hL   için 

(H1) ve (H2) şartlarını sağlar. Ayrıca,  

 

 


 

,   0, )
2

0,   1,0

t
t

x t

t


 

 
  

   

 

fonksiyonunun (6.22), (6.23) başlangıç değer probleminin çözümü olduğu kolaylıkla 

görülebilir. Şimdi ise 
1

2
   ve 
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 


 

,   0, )
2

0,   1,0

t
t

y t

t


 

 
  

  

 

olarak alınsın. Buna bağlı olarak her 0, )t   için, 

 

            
0

17 1 1 1 1
sin cos( cos sin

30 60 15 12 10
( )

t

y t y g t y s y g s dsy t     
 

   


 


  

0

1 17 1 1 1 19
sin cos cos sin

3 30 60 3 15 12 120 3 12 120

t
t t s s

ds 
        

             
       


 

   

 

 

elde edilir. Dolayısıyla (6.22) denkleminin herhangi bir ( )x t  çözümü için  

 

       
3 3

t t
x t y t x t x t       

 

yazılabilir. t      x t y t   sonucuna varılır. Bu nedenle (6.22) denklemi 

0, )I    aralığında H-U kararlı değildir (Kucche ve Shikhare, 2019). 
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7. (7.1) LİNEER OLMAYAN VOLTERRA İNTEGRO-DİFERANSİYEL 

DENKLEMİ İÇİN HYERS-ULAM VE HYERS-ULAM-RASSIAS KARALILIK 

 

 Huang ve Li (2016)  

 

    (.) , , ,
t

a
f f t u g t s u s ds    olmak üzere aşağıdaki başlangıç değer problemini 

ele aldı: 

 

 

  0

(.),      

.

u t f t J

u a u

 







 (7.1) 

 

Burada  ,J a b  olmak üzere, f  ve g  sürekli fonksiyonlardır. Şimdi, bazı H-U kararlılık 

türlerinin tanımları verilecektir. 

 İlk olarak   0,   , )(C J   ve    .t   olsun. 

 

       . , , ,

t

a

f t v t g t s v s ds    
 

 

olmak üzere, aşağıdaki eşitsizlikleri göz önüne alalım: 

 

     ,. v     ,t J  (7.2) 

ve 

   .      ,v t   .t J  (7.3) 

 

Tanım 7.1 Eğer bir 0fK   sabiti var öyle ki herbir 0   ve (7.2) nin herbir  1  ,v C J  

çözümü için (7.1) in bir u  çözümü vardır öyle ki  

 

         fv t u t K     

 

oluyor ise, bu takdirde (7.1) problemi H-U kararlıdır denir (Vu ve Hoa 2020). 
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Tanım 7.2 Eğer bir 0fC   sabiti var öyle ki herbir 0   ve (7.3)’ün herbir 

 1  ,v C J  çözümü için (7.1) in bir u  çözümü vardır öyle ki  

 

         ( )fv t u t C t    

 

eşitsizliğini sağlıyor ise, bu takdirde (7.1) problemi,  ,C J  ’ye göre H-U-R 

kararlıdır. 

 

7.1 (7.1) Lineer Olmayan Volterra İntegro-Diferansiyel Denklemi için Hyers-Ulam-

Kararlılık 

 

 Bu kesimde, ardışık yaklaşım yöntemini kullanarak, (7.1) için, H-U kararlılığı 

verilecektir. 

Uyarı 7.1 Eğer v  fonksiyonu (7.2)' nin bir çözümü ise J  aralığı üzerinde sürekli bir 

( )t  fonksiyonu vardır öyle ki  δ   t   ve      .v t t   sağlanır. 

:f J    ve :g J J    sürekli fonksiyonlar olmak üzere aşağıdaki 

şartların sağlandığını kabul edelim. 

(H1) 
1 2,L L  pozitif sabitleri var öyle ki her  ,t s J J   ve 

1 2w ,    w   için aşağıdaki 

eşitsizlikler sağlanır: 

 

   1 2 1 1 2, , ,f t w f t w L w w     

 

   1 2 2 1 2, , , , .g t s w g t s w L w w     

 

(H2)  ,C J   olsun. Pozitif bir 0 C   sabiti vardır öyle ki 

 

1

1
, 

k
k C

kC
b a







 1,k   ve 

1
0 1

L

c
   olmak kaydıyla her t J  için 
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   
t

a

s ds C t   
 

 

eşitsizliği sağlanır (Huang ve Li, 2016). 

Teorem 7.1 f  ve g  fonksiyonları (H1) şartını sağlasın. Bu takdirde herbir 0   için 

eğer v   fonksiyonu (7.2) eşitsizliğini sağlarsa, 
0 0u v  olmak üzere, (7.1) denkleminin 

bir tek u  çözümü vardır öyle ki bu çözüm 

 

   
1

1

b
u v

exp b a L




 
   

 
 

 

eşitsizliğini sağlar (Huang ve Li, 2016). 

İspat. Her 0   için v  fonksiyonu (7.2) eşitsizliğini sağlar ise, bu takdirde Uyarı 7.1 

dikkate alındığında, J  aralığı üzerinde sürekli bir  t  fonksiyonu vardır öyle ki 

 δ  t     ve      .v t t   sağlanır. Buna bağlı olarak ( )v t  fonksiyonu 

 

     0 .

t t

a a

v t v ds s ds     
(7.4) 

 

ID’ini sağlar. Burada 

 

       ,. , ,

t t s

a a a

ds f s v s g s v d ds  
 

  
 

    
 

 

dir. Bir  
0n n

u


 dizisini 
0( ) ( )u t v t  ve n N  olmak üzere  
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   0 1

t

n n

a

u t v dss    
(7.5) 

 

şeklinde tanımlansın. Burada 

 

       1 1 1, , ,

t t s

n n n

a a a

s ds f s u s g s u d ds    

 
  

 
    

 

 

dır. (7.4) ve (7.5) den 1n   için  

 

 
1 0 1

,  u u t J
t a




   


 
(7.6) 

 

elde edilir. 1,2,3, ,n    için (H1) şartı kullanıldığında  

 

1n nu u   

       1 1

t t s

n n n n

a a a

L u s u s ds L u r u r drds 
            

 

 

elde edilir. Burada  1 2,L max L L  dir. Özel olarak 1n   için ve (7.6)’dan 

 

   
2 3

2 1
2! 3!

t a t a
u u L

  
   

 
 

  

 

elde ederiz. Ayrıca 2n   için  

 

   
       

2 3 2 3

2 2

3 2  
2! 3! 2! 3!

t

a

t s

a a

s a s a r a r a
u t u t L ds L drds 

      
       

   
   

     
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   
3 5

23 ...
3! 5!

t a t a
L
  

   
 
 

  

 

olur. 4n   için  

 

   

 

2 1

1

1  
! 2 1 !

n n

n

n n

t a t a
u u nL

n n








  
   

 
 

  (7.7) 

 

bulunur. Bu durumda (7.7) eşitsizliği aşağıdaki şekilde yazılabilir: 

 

   

 

1

1  
1 !

n

n n

t a L t a
u u

n






 
  


  

   

    

1

1
1 1 2 2 2 1

n
t a t a

n n n n n

  
  

     
 

  

 
  
 

     

 

 

 

1 2 1

    1
1 ! 1! 2! ! 1 !

n n n
L t a t a t a t a t a

b
n n n



      
     

  
 

  

  
 

 

1

  exp .
1 !

n

L t a
b t a

n





 


  

 

 

Buradan 

 

  
   

1

1

1
    

1 ! exp

n

n n

L t a
u u b

n a t







 

 
 (7.8) 

 

olduğunu kabul edelim. Bu kabul yardımıyla aşağıdaki eşitsizlik yazılabilir. 

 

  
 1

1
     ,  . 

1 ! exp( )

n

n n

L t a
u u b t J

n a t



   

 
  

 

Buna bağlı olarak da yukarıdaki eşitsizliğin 0n   dan  sonsuza toplamı alındığında  
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     
  

1

0 0

  exp  
!

n

n n

n n

L t a
u t u t b b a

n


 



 


     (7.9) 

 

eşitsizliği elde edilir. (7.9) eşitsizliğinde eşitsizliğin sağındaki seri   exp L t a  

fonksiyonuna yakınsak olduğundan, her 0    için 
0 1

0

  n n

n

u u u






    serisinin de düzgün 

yakınsak olduğu sonucuna varırız. 

 

 
1

0

1
     

exp( )
n n

n

L
u u b

a b









 


  (7.10) 

 

elde edilir. 

 

0 1

0

n n

n

u u u u






    (7.11) 

 

ifadesini ele alalım. Dolayısıyla 

 

0 1

0

j

j n n

n

u u u u



    (7.12) 

 

ifadesi (7.11) serisinin j  .kısmı olur. (7.11) ve (7.12) ifadelerinden 

 

lim 0j
j

u u


     

 

elde ederiz.  t J   için     u t u t  alalım. Burada dizinin limitinin 

 

 0 , 

t

a

u v s ds     t J   
(7.13) 
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denkleminin bir çözümü olduğu görülür. Ayrıca 

 

       ,. , ,

t

a

f t u t g t s u s ds    
 

 

dir. (7.5), (7.13) ve (H1) şartından 

 

           0 1(. .)

t t t

j j

a a a

u t v ds u t u t s ds ds         

       1 .

t

j j

a

u t u t s ds     

       1...    

t s

j j

a a

u t u t L u r u r drds      

(7.14) 

 

ifadesini elde ederiz. (7.11) ve (7.12) birleştirildiğinde 

 

1

1

 j n n

n j

u u u u




 

    
 

 

yazılabilir. Burada (7.9) eşitsizliği göz önüne alındığında  

 

     
  

1

    exp   
!

n

j

n j

L t a
u t u t b b a

n




 


      t J   (7.15) 

 

elde edilir. Dolayısıyla (7.14) ve (7.15) eşitsizliklerinden aşağıdaki sonuca varılır.  

 

   0  

t

a

u t v s ds    

 

(7.16) 
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    

 

 

 

1 2

1

1 1

.
! 1 ! 2 !

n n n

b a n

n j n j

L t a t a t a
be L

n n n


 
 

 

   

    
    

     

   

 

 n   limit alınırsa sağ taraftaki serinin yakınsak olduğu görülür. Bu nedenle  

 

   0 0,   t J

t

a

u t v s ds       

 

sonucuna varılır. Buradan 

 

   0 ,     

t

a

u t v s ds t J     (7.17) 

 

eşitliği elde edilir ki bu da (7.1) in bir çözümüdür. Ek olarak (7.10) dan  

 

 1
       

exp( )

L
u v b

a b



 


  

 

ifadesi elde edilir. Problemin (7.1) çözümünün tekliğini göstermek için,  ˆ tu 'nin (7.1)' 

in formuna sahip başka bir çözümü olduğunu kabul edelim. 

 

   0
ˆˆ ,   .

t

a

u t v s ds t J     

Burada 

      ˆ ˆ. , ,ˆ ,

t

a

f t u g t s u s ds     

 

dir. (H1) şartını kullanarak  
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      ,    

t t s

a a a

t L s ds L r drds t J         

 

eşitsizliği elde edilir. Burada      ˆ: tt u t u    dir. Daha sonra Gronwall lemması 

uygulanırsa J  üzerinde    0t   bulunur. Öyleyse    tˆu t u  dir ve teoremin ispatı 

tamamlanır Oguntuase(2001). 

 

7.2 (7.1) Lineer Olmayan Volterra İntegro-Diferansiyel Denklemi için Hyers-

Ulam-Rassias Kararlılık 

 

 Bu kesimde bir önceki kesimdeki işlemlerin benzeri kullanılarak (7.1) 

denklemini H-U-R kararlılığı incelenecektir.  

Uyarı 7.2 Eğer 𝑣 fonksiyonu (7.3) 'ün bir çözümü ise, bu takdirde, J  aralığı üzerinde 

sürekli bir ( )t  fonksiyonu vardır, öyle ki ( ) ( )t t   ve ( ) (.) ( )v t P t    dır, 

 

( ) (.) ( )v t P t   ,   0  , 
0 0u v , .t J   

 

Teorem 7.2. (H1) ve (H2) şartları sağlansın. Eğer, her   0  için, v  fonksiyonu (7.3) 'ü 

sağlarsa, 
0 0u v  olmak üzere (7.1)'in tek bir u  çözümü vardır ve bu çözüm   t J   için 

aşağıdaki eşitsizliği sağlar;  

 

      
1 1

1ˆ 1 .u u t b a CL C 
 

      (7.18) 

 

İspat. Her   0   için v  fonksiyonu (7.3) 'ü sağlasın. Bu takdirde yukarıda verilen uyarı 

dikkate alındığında, J  üzerinde tanımlı sürekli bir ( )t  fonksiyonu vardır öyle ki  

 

  ( )t t    

ve 
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( ) (.) ( )v t P t     

 

dır. Bu durumda v  fonksiyonu 

 

     0    .

t t

a a

t u P ds s ds      
(7.19) 

 

ile verilen ID’i sağlar. Burada  

 

       ,. , ,

t t s

a a a

P ds f s v s g s v d ds  
 

  
 

    

 

ile verilmektedir. Teorem 7.1'in ispatına benzer şekilde, 
0 ( ) tu t v    ,t J   olmak 

üzere (7.5) 'te verilen bağıntı ve (H2) şartı gözönüne alındığında dizisini yeniden ele 

alalım. 

 Bu dizi, (H2) şartı ve (7.19) bağıntısı gözönüne alındığında 1n   için  

 

 1 0 εCψ ,  u u t t J     

 

ifadesi elde edilir. Benzer biçimde 1, 2,...n   için ve (H1) şartı kullanıldığında  

 

       1 1 1 ,

t t

n n n n n n

a a

u u L u s u s ds u r u s drds  

 
     

 
   

 

 

ifadesi elde edilir. Burada  1 2,L max L L  dir. Özel durumda 1n   alındığında 

yukarıdaki bağıntıdan  

 

           2 3

2 1 ,  

t t s

a a a

u t u t LC s ds LC r drds L C C t t J              
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bulunur ve dolayısıyla 2n    için  

 

               2 3 4 5

3 2 2 1 2 1  3

t t s

a a a

u t u t L u s u s ds L u r u r drds L C C C t            

 

bulunur. 4n   için         
0

, , , , , , (.)

t

f t x x g t h t s x s x g s ds f
 

 
 

  alındığında 

 

    ,   ,.  x t f t I   (7.20) 

 

kolaylıkla elde edilir. Benzer işlemler sürdürüldüğünde, (H2) şartı ile (7.7) eşitsizliği dikkate 

alındığında  

 

1n nu u       
1

11
  , 

1

n
nC

b a CL t
C

 


 
   

 
     t J    

 

elde edilir. Buna bağlı olarak 

 

       
1 11

1   1 1 ,     
nn

n nu u b a C C CL t 
 

         t J   (7.21) 

 

 şartı sağlanır ise tümevarım yöntemiyle  

 

       
12

1   1 1 ,   
nn

n nu u b a C C CL t t J 


           

 

elde edilir. Her iki tarafın 0’dan  ’a toplamı alınır ise  
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        
1

1

0 0

1   
n

n n

n n

u t u b a C CL t 
 





 

        (7.22) 

 

yazılabilir. (H2) şartı ve 0 1CL   şartları göz önüne alındığında  n   limit alınır ise 

 
0

1

1

n

n

CL
CL








  yakınsaması elde edilir. Buna bağlı olarak her 0   için 

     0 1

0

n n

n

u t u t u t






   serisi J  aralığı üzerinde düzgün yakınsaktır ve 

 

      
1

1

0

1 1 , n n

n

u u b a C CL t 








          t J   (7.23) 

 

elde edilir. Teorem 7.1 deki yöntem izlendiğinde, ( )u t  fonksiyonunun (7.1) 

denklemininin bir çözümü olduğu kolaylıkla gösterilebilir ve bu çözüm  

 

0  ( ) ( )

t

a

u t v P s ds    
 

ile verilir. Sonuç olarak  

 

      
1

1 1 ,u v b a C CL t 


          ,t J    

 

eşitsizliği sağlanır. Bu takdirde (7.1) denkleminin H-U-R kararlı olduğu sonucuna varılır 

(Huang ve Li, 2016). Şimdi ise, sonuçlarımızı açıklamak için iki basit örnek 

sunulmuştur. 

Örnek 7.1 Aşağıdaki başlangıç değer problemini ele alalı: 

 

 

 
0

1 ,   0 1,
 

0 1.

t
du

v s ds t
dt

u


   


 

   

 

(7.24) 

Burada   1,v t    0 1t    için   

 



 

77 
 

   
0

1     2

t

v t v s ds     
 

 

eşitsizliği sağlanır.  

Şimdi    0 0 1u t u   olsun. Teorem 7.1'deki gibi ardışık yaklaşım yöntemini 

kullanarak, (7.24) denkleminin çözümü için aşağıdaki yaklaşımlar elde edilir:  

 

 0  1,u t    

 

 
2

1 1  
2!

t
u t t     

 

 Bu takdirde  
2

1
2!

t
u t t    ifadesi (7.24) denkleminin bir çözümüdür. Ayrıca, 

 

3

2
v u    

 

eşitsizliği sağlanır.  

Şimdi ise  

 

 
4

* 1 ...
4!

t
u t t      

 

fonksiyonu (7.24) 'in bir çözümü olarak tanımlayalım. Buna bağlı olarak 

 

* 17

24
v u    

 

elde edilir. Bu nedenle bu son eşitsizlik,  *u t  fonksiyonunun ( )u t  çözümüne daha iyi 

bir yaklaşım çözümü olduğu görülür (Huang ve Li, 2016). 
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Örnek 7.2  0,1t  olmak üzere, aşağıdaki IDD’ini göz önüne alalım: 

 

   
1

0

( ) 1 .  

t
du

u t u s u s ds
dt



      (7.25) 

 

(7.25) denklemi ile başlangıçta verilen denklem karşılaştırıldığında 

 

   
1

, , 1g t s u u u

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olduğu görülür. Buna bağlı olarak  

 

   1 2 1 2, ,f t w f t w w w     

ve  

     1 2 1 2, , , ,g t s w s g t s w s w w     

 

elde edilir. Böylece, Teorem 7.1’nin şartlarının sağladığı görülür. Dolayısıyla, (7.25) 

denklemi  0,1  aralığı üzerinde bir tek çözüme sahip olur.  

Ayrıca, eğer v  fonksiyonu 
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1

0
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t

v t v t v s v s ds 


         

 

eşitsizliğini sağlar ise, Teorem 7.1 dikkate alındığında (7.25) denklemin bir u  çözümü 

vardır ve bu çözüm 

 

 
1

exp 2
,   u v

 
   0,1t    

 

eşitsizliğini sağlar. Böylece (7.25) denklemi H-U kararlıdır (Huang ve Li, 2016). 

 



 

 

 

8. TARTIŞMA VE SONUÇ 

 

Bu tezde literatürdeki dört farklı çalışmada ID’ler ve IDD’lerin çözümlerinin 

varlığı, tekliği ve söz konusu denklemlerin Ulam tipi karalılıkları ile elde edilen sonuçlar 

ve bu kavramlar ile ilgili verilen örnekler araştırmacıların dikkatlerine sunuldu. Burada 

ele alınan IDD’lerin bazıları değişken gecikmeli ve bazıları ise gecikmesizdir. Yapılan 

incelmelerde Banach daralma prensibi, ardışık yaklaşıklar yöntemi ve metrik kavramının 

sonuçları elde etmede etkin bir biçimde kullanıldığı izlendi. Ele alınan ID’ler ve IDD’lere 

ait niteliksel sonuçların ispatlanması için denklemlerin tipine bağlı olarak uygun 

operatörler tanımlandığı, daha sonra ise uygun metrik, norm tanımları, Pachpatte 

eşitsizliği, Picard operatörü, Gronwall eşitsizliği vb. kavramlar kullanılarak vb. amaca 

yönelik olarak uygun sonuçlar elde edildiği izlenildi. Tezdeki teoremlerin şartlarının, 

ispatlarda genelde Banach daralma prensibi kullanılması nedeni ile, ele alınan 

denklemlerdeki fonksiyonların Lipschitz şartını sağlayacak şekilde inşa edildiği gözlendi. 

Araştırmacılara yeni problem olarak tezdeki denklemlerin vektör ve kesir mertebeli 

formlarının çözümlerinin varlığı, tekliği ve Ulam karalılıklarının çalışabileceğini 

önermekteyiz. 
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