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ABSTRACT 

 

 

MATERIAL-TO-SYSTEM ANALYSIS OF LITHIUM – SULFUR AND 

LITHIUM – OXYGEN  BATTERIES  
 

 

Developing beyond lithium-ion batteries (LIBs) is critical for fulfilling the high energy 

demand of future vehicles. In this respect, lithium-sulfur (Li-S) and lithium-oxygen (Li-O2) 

batteries were studied here to understand the effect of cell design and materials on the battery 

performance. The studies of Li-S batteries involve three main methods: experimental 

characterization, system-level performance modeling, and machine learning (ML). Instead, 

only ML models were developed for Li-O2 batteries. First, association rule mining (ARM) 

was utilized to understand the cell and materials design effects on Li-S battery performance 

using the data collected from the literature. For Li-S batteries, the encapsulation material 

type was the most important feature, and system-level performances were highly improved 

with ionic liquid (IL) electrolytes. Next, polysulfide (PS) solubility in ILs and IL properties 

were determined for 36260 ILs using the COnductor-like Screening Model for Realistic 

Solvents (COSMO-RS) calculations. 6 ILs were experimentally tested to determine the 

solubility ranges of ILs for high-performance Li-S cells. Afterward, extreme gradient 

boosting (XGBoost) and ARM were utilized to predict and identify promising ILs and their 

features. Imidazolium cations with either borates or bis_imide anion group were the most 

promising IL pairs. Encapsulation cathodes were also studied. UiO66/Graphene nanoplatelet 

(GNP) composites increased the rate performances of Li-S cells where 50 wt.% UiO66 

loading was the optimum for balancing electron transfer and PS chemisorption. Vanadium 

and Cobalt-doped ketjen black cathodes increased the system-level performances of Li-S 

batteries. ARM was also used for Li-O2 battery literature data; metallic cathode ingredients 

LaFe oxides, Ni oxides, and electrolyte solvents significantly impact battery performance. 

Last, gas solubilities of nearly 30,000 ILs were calculated using COSMO-RS, and random 

forest (RF) was used to build predictive models. Anion descriptors were more determinative 

of the gas solubilities.
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ÖZET 

 

 

LİTYUM-SÜLFÜR VE LİTYUM-OKSİJEN BATARYALARININ 

MALZEMEDEN SİSTEME ANALİZİ 

 

 

Lityum-iyon bataryalarından (LIB) daha iyi kapasite gösterecek batarya gelişimi, 

yüksek enerji talep eden gelecekteki araçlar için oldukça önemlidir. Bu bağlamda, bu 

çalışmada tasarım parametreleri ve malzeme etkisinin lityum-sülfür (Li-S) ve lityum-oksijen  

(Li-O2) batarya performansı üzerine etkileri incelenmiştir. Li-S bataryaları üç metotla 

incelenmiştir: elektrokimyasal karakterizasyon, sistem-düzeyi performans modellemesi ve 

son olarak makine öğrenmesi. Li-O2 bataryaları içinse sadece makine öğrenmesi metotları 

kullanılmıştır. İlk olarak, hücre ve materyal tasarımlarının Li-S batarya performansının  

üzerine etkileri literatür verileri ile, birliktelik kuralları analizi (ARM) kullanılarak 

açıklanmıştır. Li-S bataryaları için emprenye malzeme tipi en önemli faktördür ve sistem-

düzeyi performans, iyonik sıvı (IL) elektrolitler ile birlikte önemli derecede arttırılmışıtr. Bir 

sonraki kısımda, Li-S bataryaları için elektrolit geliştirme amacıyla 36260 IL için IL’lerin 

polisülfit (PS) çözünürlükleri COSMO-RS hesaplamalarıyla belirlenmiştir. 6 iyonik sıvı için 

elektrokimyasal testler yapılmış olup yüksek performanslı Li-S bataryaları için gereken 

vizkosite ve çözünürlük limitleri belirlenmiştir. İmidazol katyonları ile borat veya bis_imid 

grupları en çok umud vaad eden IL çiftidir. Emprenye katot malzemeler de çalışılmıştır. 

Elektron iletkenliği ve kimyasal adsorpsiyonu dengelenmiş, yarı yarıya kütlece oran 

gösteren UiO66/Grafen nanoplatelet (GNP) kompozit Li-S hücrelerinin hız performansını 

arttırmıştır. Vanadyum ve kobalt katkılı ketjen siyahı katotlar, düşük elektrolit-sülfür (E/S) 

oranı ve yüksek sülfür yoğunluğunda sistem-düzeyi performansı arttırmıştır. ARM, Li-O2 

batarya literatüründe de kullanılmış ve LaFe ve Ni oksitlerler birlikte, elektrolit çözücüsünün 

performansı ciddi bir şekilde etkilediği görülmüştür. Son olarak, 30,000 IL için gaz 

çözünürlükleri COSMO-RS kullanılarak hesaplanmış ve rassal orman (RF) ile öngörücü 

modelleler kurulmuştur. Anyon tanımlayıcıların gaz çözünürlükleri üstünde daha etkili 

olduğu görülmüştür. 



 

 

vii 

TABLE OF CONTENTS 
 

 

ACKNOWLEDGEMENTS .............................................................................................      iv 

ABSTRACT ....................................................................................................................       v  

ÖZET ...............................................................................................................................     vi  

LIST OF FIGURES .........................................................................................................      x  

LIST OF TABLES ........................................................................................................... xviii  

LIST OF SYMBOLS........................................................................................................    xxi  

LIST OF ACRONYMS/ABBREVIATIONS................................................................... xxiii  

1.    INTRODUCTION .....................................................................................................       1                   

…..1.1.   Li-S Batteries………….....................................................................................      2  

      1.2.   Lithium-Oxygen Batteries…….........................................................................      6 

      1.3.   Scope of the Current Work …………...............................................................       9 

2.   LITERATURE SURVEY...........................................................................................    12  

      2.1.   Li-S Batteries……… ........................................................................................    12 

      2.1.1.   Effect of Sulfur Loading………….........................................................     12 

      2.1.2.  Effect of of Encapsulation Material…...................................................    13  

      2.1.3.  Effect of E/S Ratio………..………........................................................    16  

      2.1.4.  Effect of Ionic Liquid Type……............................................................    17  

      2.1.5.  Modeling Studies of Li-S Batteries……………....................................     19  

      2.2.   Li-O2 Batteries……….......................................................................................     23 

      2.2.1.  Effect of Oxygen Solubility………........................................................    23 

      2.2.2.  Effect of Positive Electrode Materials and Design …............................     25  

      2.3.   Machine Learning for Beyond Li-ion Batteries ……........................................    26 

      2.3.1.  Machine Learning in LIB Research ………...........................................    27 

      2.3.2.  Machine Learning in Beyond LIBs ……………...................................    30  

3.  MATERIALS AND METHODS..............................................................................   34        

…  3.1.    Experimental Work............................................................................................     34                         

      3.1.1.  Chemicals and Materials…………..…………………………………..     35 

      3.1.2.  Experimental Details for Selection of    Ionic   Liquid Electrolytes for     

     High-Performing  Lithium-Sulfur  Batteries:  An Experiment- Guided 

   High-Throughput Machine.  Learning…….…………….….................    35 



 

 

viii 

      3.1.3.  Experimental  Details for  MOF/Graphene     Nanoplatelet Composite                  

Increases    Rate   Performance  of   Lithium-Sulfur Batteries………...    37 

      3.2.   System-Level Performance Model....................................................................     39               

………...3.2.1.  1-D Electrochemical Model....................................................................    40             

………...3.2.2.   System-Level Performance Model Adapted for Li-S Batteries..............    43             

      3.3.   Machine Learning Models………………….....................................................     46 

…. 3.3.1.  Text mining used in bibliometric analysis of beyond LIBs....................    47  

…  3.3.2.  Materials and Methods for Assessment of Critical Materials and  Cell  

                 Design Factors for High Performance Lithium-Sulfur Batteries  using  

                 Machine Learning..................................................................................    47  

…. 3.3.3.  Materials  and  Methods for Assessment  of Ionic Liquid  Electrolytes  

                 for   High  Performance  Lithium-Sulfur   Batteries    using    Machine  

                 Learning.................................................................................................     51  

…. 3.3.4.  Materials and Methods for Selection  of Ionic Liquid Electrolytes  for  

                           High-Performing  Lithium-Sulfur  Batteries:  An Experiment-Guided  

   High-Throughput Machine Learning Analysis......................................     54  

…  3.3.5.  Materials   and   Methods   for   Determining   the   Key Performance  

   Factors in Lithium-Oxygen Batteries Using Machine Learning.............     57  

…. 3.3.6.   Materials    and   Methods    for   Screening   of    Ionic  Liquids    as  

                           Electrolyte   of   Metal-Oxygen   Batteries   using   COSMO-RS   and  

                  Machine Learning.................................................................................      60  

4.    RESULTS AND DISCUSSION.................................................................................     64 

…..4.1.   Li-S Battery Studies...........................................................................................     71 

…  4.1.1.   Assessment   of   Critical   Materials    and   Cell  Design  Factors for  

                           High Performance Lithium-Sulfur Batteries using Machine Learning...     72  

…  4.1.2.   Assessment    of   Ionic   Liquid  Electrolytes  for  High Performance  

   Lithium-Sulfur Batteries using Machine Learning................................     94 

…  4.1.3.   Selection  of Ionic Liquid Electrolytes for High-Performing Lithium- 

                           Sulfur Batteries: An  Experiment-Guided  High-Throughput Machine  

   Learning Analysis.................................................................................    102  

…. 4.1.4.  MOF/Graphene Nanoplatelet Composite Increases Rate  Performance  

  of Lithium-Sulfur Batteries....................................................................    115  

…  4.1.5.  Effect   of.  Atomic   Vanadium-  and Cobalt-Modified Ketjen Black- 



 

 

ix 

  Sulfur Cathode,  Sulfur Loading  and  Electrolyte-to-Sulfur  Ratio  on  

  the System-Level Performances of Li-S Batteries.................................   120  

      4.2.   Li-O2 Battery Studies……………………………............................................   124  

…. 4.2.1.  Determining   the    Key   Performance   Factors   in  Lithium-Oxygen  

   Batteries Using Machine Learning........................................................   124  

…  4.2.2.  Screening  of  Ionic Liquids as Electrolyte of Metal-Oxygen Batteries  

   using COSMO-RS and Machine Learning............................................   137  

5.    CONCLUSIONS .......................................................................................................   147  

      5.1.    Conclusions …………......................................................................................   147  

      5.2.   Recommendations ……...................................................................................  152 

REFERENCES ................................................................................................................   153 

APPENDIX A: SUPPORTING INFORMATION ON SECTION 4.1.1..........................  204 

APPENDIX B: SUPPORTING INFORMATION ON SECTION 4.1.2...........................  209 

APPENDIX C: SUPPORTING INFORMATION ON SECTION 4.1.3..........................  213 

APPENDIX D: SUPPORTING INFORMATION ON SECTION 4.1.4..........................  218 

APPENDIX E: SUPPORTING INFORMATION ON SECTION 4.1.5...........................  220 

APPENDIX F: SUPPORTING INFORMATION ON SECTION 4.2.1...........................   223 

APPENDIX G: SUPPORTING INFORMATION ON SECTION 4.2.2..........................   229 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

x 

LIST OF FIGURES 
 

 

Figure 1.1.    The basic schematic diagram of a Li-S cell………………………………   3 

 

Figure 1.2.    Cell voltage versus capacity graph of a typical Li-S cell…………………   4  

 

Figure 1.3.    The basic schematic diagram of a Li-air cell……………………………..   7 

 

Figure 3.1.    The summary of the experimental procedure……………………………..    34 

 

Figure 3.2.    Summary of the system-level modeling……..…………………………....    40 

 

Figure 3.3.    Summary of the electrochemical modeling for all cell components……..     41 

 

Figure 3.4.    Summary of machine learning steps……………………………………... 46 

 

Figure 3.5.     The distributions of descriptors; molecular weight (a), HOMO (b), LUMO 

(c), CPK area (d), CPK Ovality (e), dipole (f), polarizability (g), zero point 

energy (h), HBA count (i) and HBD count (j), for cations and anions in 

the dataset…………………………………………………………………  55 

 

Figure 4.1.    Total number of publications of each beyond LIBs (a), year vs. publication 

number (b), and research interests (c)…………………………………….  65 

 

Figure 4.2.   Keyword analysis for Na-ion (a), K-ion (b), Zn-ion (c), Li-air (d), Zn-air      

(e), and Li-S (f) batteries, carbon (g) and graphene (h) bigrams…………  68 

 

Figure 4.3.    Relative frequency of keywords in papers related to specific battery types 

versus entire beyond LIBs…………………….………………………….  69 

 

Figure 4.4.   Schematic of the materials and cell design factors in a Li-S cell………....  73 



 

 

xi 

Figure 4.5.   Distribution of  PDCs for liquid electrolyte cells: entire dataset (average 

of PDCs = 966 mAh/g) (a), data subset at 0.1C (average of PDCs = 1004 

mAh/g) (b)………………………………………………………………..  74 

 

Figure 4.6.   Breakdown  of  conductive material type (a), encapsulation material type 

(b), and binder type (c) in dataset for cells with liquid electrolyte…….....     75 

 

Figure 4.7.   Change  of lift  with peak  discharge  capacity for materials and design 

factors in cathode with liquid electrolyte: conductive type (a), conductive 

weight % (b), encapsulation type (c), encapsulation weight % (d), binder 

type (e), sulfur loading (mg/cm2) (f)……………………………………...     86 

 

Figure 4.8.   Change  of  lift  with  PDC  for  materials  and  design factors of liquid 

electrolyte: electrolyte solvent (a), E/S ratio (mL/g) (b), electrolyte salt 

(c), electrolyte additive concentration (M) (d)……………………………  87 

 

Figure 4.9.   Change of  lift  with  cycle  number  for materials and design factors in 

cathode with liquid electrolyte: binder type (a), sulfur loading (mg/cm2) 

(b), conductive type (c), conductive weight % (d), encapsulation type (e), 

encapsulation weight (f)…………………………………………………..                

 

Figure 4.10.  Change of lift with cycle number for materials and design factors of liquid 

electrolyte: electrolyte solvent (a), E/S ratio (mL/g) (b), electrolyte salt 

(c), electrolyte additive concentration (M) (d). …………………………..  93 

 

Figure 4.11.  Comparison of peak discharge capacity (a)  and cyclability of electrolyte 

types (b) in Li-S cells. ……………………………………………………  94 

 

Figure 4.12.  Lift vs. peak discharge capacity of ionic liquids as electrolytes. ………...  97 

 

Figure 4.13. Lift vs. peak discharge capacity of molecular solvents as electrolytes (a) 

and IL/MS vol.% in the electrolyte (b). ………………………………….. 

 

91 

98 



 

 

xii 

Figure 4.14.  Lift  vs. peak  discharge  capacity of  E/S  ratio  for IL (a) and molecular 

solvent (b) electrolytes……………………………....................................  98 

 

Figure 4.15.  Lift vs. peak discharge capacity of sulfur loading (mg/cm2) for IL (a) and 

molecular solvent (b) electrolytes………………………………………...  99 

 

Figure 4.16.  Lift vs. specific energy (Wh/kg) (a) and energy density (Wh/L) (b) of E/S 

ratio for IL electrolytes…………………………………………………...   101 

 

Figure 4.17. Lift vs. specific energy (Wh/kg) (a) and energy density (Wh/L) (b) of  

sulfur loading (mg/cm2) for IL electrolytes……………………………….  

 

Figure 4.18  The    distribution    of    solubility   (a),   ln(viscosity(mPa.s))    (b), 

ln(conductivity(mS/cm)) (c), and melting point(ºC) (d), depending on the 

anion group. ……………………………………………………………...   104 

 

Figure 4.19.  The cycling performances of six ILs tested at 0.1C. …………………….   106 

 

Figure 4.20. Experimental PS solubility plotted against the predicted solubility values 

by COSMO-RS in log scale. The dotted line is the best-fit line. (The 

experimental data was obtained from [75]..………..……………………..   107 

 

Figure 4.21. The 50th cycle capacity of experimental results (mAh/g) together with 

Park et al. results with COSMO-RS results. ……………………………..   108 

 

Figure 4.22. The prediction results for ln(COSMO-RS Solublity (mol/mol)) for train 

(a), test (b) sets and relative importance (c) of the descriptors in the 

determinative power of the model.……………………………………….   110 

 

Figure 4.23.  The   determination  of  suitable ILs with the help of experimental results. 

 

Figure 4.24. ARM results for anion and cation groups independently (a) and anion-

cation pairs (b) for low solubility and viscosity…………………………..   113 

101 

112 



 

 

xiii 

Figure 4.25.  ARM  results for anion descriptors; each point size correlates with 

support.…………………………………………………………………   114 

 

Figure 4.26.  ARM results for cation descriptors; each point size correlates with 

support. …………………………………………………………………  

 

Figure 4.27.    SEM images of UG-3 (a) and UG-5 (b) and BET surface area (à) and 

pore volume (D) measurements (c). ……………………………………  

 

Figure 4.28.   PS  adsorption    capabilities  of  GNP,  UG-1,  UG-3,  and  UG-5, 

respectively..……………………………………………………………   117 

 

Figure 4.29.    For Li-S cells with an S loading of 1 mg/cm2: cycling performance at 

0.1 C (a), rate performance (b), and cycling performance at 0.5 C (c)…. 

 

Figure 4.30.    For Li-S cells with an S loading of 2 mg/cm2: cycling performance (a) 

at 0.1 C, rate performance (b), and cycling performance at 0.5 C (c)….   119 

 

Figure 4.31.     Specific capacities, system-level specific energies, and energy densities 

of KBS and VCKBS cathodes (Group 1: S loading=1.24 mg/cm2, E/S 

ratio=20 mL/g, at 0.1C, Group 2: S loading=2.40 mg/cm2, E/S ratio=13 

mL/g, at 0.2C) for 1st discharge (a)-(c) and for 100th discharge (d)-(f).  

 

Figure 4.32.  Experimentally measured initial discharge capacities (a), predicted 

system-level specific energies for various sulfur loadings and E/S ratios 

(b), and the relation between cell resistance and specific energies for 

sulfur loading = 1.2 mg/cm2 (c)………………………………………...   123 

 

Figure 4.33.    Distribution  of  active  materials  (a)   and  ingredients (b) used in the 

cathode. …………………………………….…………………………..   126 

 

Figure 4.34.     Distribution of binder materials in the cathode………………………...   127 

 

114 

116 

118 

122 



 

 

xiv 

Figure 4.35.     Distribution of electrolyte solvents (a) and salts (b)…………………....  128 

 

Figure 4.36.    Change of lift with changing limits of high discharge capacity for bulk 

cathode materials (a), cathode ingredient materials (b), active material 

loadings (mg/cm2) (c), and active material weight percentages (d) in the 

cathode………………………………………………………………….   131 

 

Figure  4.37.     Change of lift with changing limits of high discharge capacity for binder 

type (a) and gas diffusion layer materials (b) in the cathode…...............   132 

 

Figure 4.38.  Change of lift with changing limits of high discharge capacity for 

electrolyte solvent type (a), salt type (b), the presence of an additive (c), 

and separator type (d)…………………………………………………...   133 

 

Figure  4.39.    Decision tree analysis for Li-O2 batteries..………………………...……  135 

 

Figure   4.40.    Schematic of metal-oxygen cells with IL electrolytes…………………..   138 

 

Figure  4.41.     Distribution   of   melting  points  (a),   viscosities    (b),   melting  points 

(c), and gas solubilities of the whole dataset.………………………......   139 

 

Figure  4.42.    Distribution of gas solubilities for anion groups….……………………   140 

 

Figure  4.43.   ML results on the oxygen solubilities for training (a), test (b) sets with 

importance (c) values, the performance metrics are provided………….   143 

 

Figure  4.44.  The   solubility  values   calculated  from  COSMO-RS  (a)  and  the 

comparison between experimental and gas solubility values (b)……….   146 

 

Figure   A.1.     The training (a) and the testing (b) plots of regression model for achieved 

S wt.% calculation………………………………………………………

  

208 



 

 

xv 

Figure B.1.  The sensitivity analysis for the calculated energy density (Wh/L) 

determined at cathode discharge capacities of 600mAh/g S, 1000 mAh/g 

and 1400 mAh/g using the modified BatPac model……………………   209 

 

Figure B.2.   The sensitivity analysis for the calculated specific energy (Wh/kg) 

determined at cathode discharge capacities of 600mAh/g S, 1000 mAh/g 

and 1400 mAh/g using the modified BatPac model……………………   210 

 

Figure  B.3.     Lift   vs. peak discharge capacity of electrolyte salt (a) and additive (b) 

of molecular solvent…………………………………………………….   210 

 

Figure  B.4.    Lift   vs.  peak   discharge   capacity   of   encapsulation   material  (a), 

conductive additive (b) and binder (c) in the sulfur cathode…………...   211 

 

Figure B.5.   Lift vs. peak discharge capacity of encapsulation material wt.% (a), 

conductive additive wt.%(b) and sulfur wt.% (c) in the sulfur cathode… 

 

Figure  B.6.     Lift vs. peak discharge capacity of anode material (a) and separator (b). 

 

Figure  C.1.      The sigma (σ) profile and corresponding sigma surface of Li2S8 molecule 

obtained from TMOLEX…………………………………….   213 

 

Figure C.2.     The  COSMO-RS   solubility   (mol/mol)   of   ILs   (a)   and  its  log 

transformation for the entire dataset (b)..………………..……………..   213 

 

Figure C.3.    The COSMO-RS calculated log(solubility (mol/mol)) (a), ln(viscosity 

(mPa.s)) (b), ln(conductivity (S/cm)) (c), melting point (ºC) (d) of ILs 

based on cation group…………………………………………………..   213 

 

Figure C.4.     Prediction results of melting point for train (a), test (b) sets and model 

importance (c)…..………………………………………………………   215 

 

211 

212 



 

 

xvi 

Figure  C.5.   Prediction results of ln(viscosity) for train (a), test(b) sets and model 

importance (c).………………………………………………………….   216 

 

Figure  C.6.      Prediction results of ln(conductivity) for train (a), test(b) sets and model 

importance (c)..…………………………………………………………   216 

 

Figure  D.1.     TGA analysis results for GNP (a) and UiO-66 (b)……………………..   218 

 

Figure  D.2.     SEM results for UiO-66 (a) and UG-1 composite (b)………………….   218 

 

Figure  D.3.     XRD patterns of UiO-66, UG-1, UG-3, and UG-5 nanoparticles………  219 

 

Figure D.4.     FTIR plots of UiO-66 and GNP/UiO-66 nanoparticles. UG-1 is chosen 

as the representative composite.………………………………………..   219 

 

Figure  E.1.     Discharge   capacities,   system-level   specific   energies,   and energy 

densities of all the cathodes for the 1st discharge (a)-(b) and 100th 

discharge (c)-(d)………………………………………………………...   221 

 

Figure E.2.      Cycling   performances:  KBS cathodes with S loadings of 0.8 mg/cm2 

(a), 1.2 mg/cm2 (b), and 3 mg/cm2 (c), and VCKBS cathodes with S 

loadings of 0.8 mg/cm2 (d), 1.2 mg/cm2 (e), and 3 mg/cm2 (f) at 0.1 C... 

 

Figure  G.1.     The gas solubilities based on cation groups…........................................   229 

 

Figure G.2.   The   average  of the 5-fold cross-validation R2 value for the gas 

predictions for the whole dataset, shapes represent Ntree……………...   229 

 

Figure G.3.   The average of the 5-fold cross-validation RMSE value for the gas 

predictions for the whole dataset, shapes represent Ntree……………...   229 

 

Figure G.4.     The average of the 5-fold cross-validation R2 and RMSE value for the 

ln(water solubility) predictions for the whole dataset…………………..   230 

221 



 

 

xvii 

Figure G.5.      The average of the 5-fold cross-validation R2 value for ln(viscosity) (a), 

melting point(b) and RMSE value for ln(viscosity) (c), melting point(d) 

for the whole dataset……………………………………………………. 

 

Figure G.6.     ML results on the carbon dioxide solubilities for the train (a), test (b) 

sets with importance (c) values, the performance metrics are provided 

at the bottom…………………………………………………………….

  

Figure G.7.      ML results on the nitrogen solubilities for the train (a), test (b) sets with 

importance (c) values, the performance metrics are provided at the 

bottom………………………………………………………………….

  

Figure G.8.     ML results on the water solubilities in natural logarithm scale for train 

(a), test (b) sets with importance (c) values, the performance metrics are 

provided at the bottom………………………………………………….. 

 

Figure G.9.     ML   results  on  the viscosities at 298 K in mPa.s in natural logarithm 

scale for the train (a), test (b) sets with importance (c) values, the 

performance metrics are provided at the bottom……………………….. 

 

Figure G.10.    ML results on the melting points in ºC in natural logarithm scale for the 

train (a), test (b) sets with importance (c) values, the performance 

metrics are provided at the bottom……………………………………

  

  

230 

230 

231 

231 

232 

232 



 

 

xviii 

LIST OF TABLES 
 

 

Table 2.1.     Literature summary utilizing ionic liquids as electrolytes in Li-S batteries. 18 

 

Table 2.2.     ML for LIBs………………………………………………………………. 29 

 

Table 2.3.     ML for beyond LIBs……………………………………………………… 31 

 

Table 3.1.     The materials used in the construction of Li-S cells……………………... 35 

 

Table 3.2.     The experimental details of Section 4.1.3………………………………... 36 

 

Table 3.3.     The experimental details of Section 4.1.4……………………………....... 39 

 

Table 3.4.     The parameters used in the system-level and electrochemical model…….   44 

 

Table 3.5.    The experimental variables used in Section 4.1.5 fed to the system-level 

model……………………………………………………………………... 

 

Table 3.6.     Categorical and numerical variables (factors) used in the analysis………. 49 

 

Table 3.7.     The variables and levels used in the analysis…………………………….. 52 

 

Table 3.8.   Description of categorical and numerical variables (factors) used in the 

analysis…………………………………………………………………....  58 

 

Table 4.1.    The   summary  of  the  methods  used  in  the  sections in Results and 

Discussion………………………………………………………………... 

 

Table 4.2.   Association rule mining results for cells with liquid electrolyte having 

PDCs of 1000 mAh/g and above…………………………………………. 

 

45 

71 

83 



 

 

xix 

Table 4.3.   Association rule mining results for cells with liquid electrolyte having 

PDCs equal to or higher than 1000 mAh/g and S loadings equal to or 

higher than 5 mg/cm2……………………………………………………..     89 

 

Table 4.4.   Association rule mining results for cells with liquid electrolyte having 

PDCs equal to or higher than 1000 mAh/g and E/S ratios lower than 5 

mL/g……………………………………………………………………… 

 

Table 4.5.     ARM results for PDCs ≥800 mAh/g……………………………………... 96 

 

Table 4.6.     ARM results for specific energies ≥ 60 Wh/kg…………………………..   100 

 

Table 4.7.     The list of cation and anion groups present in the dataset………………...  

 

Table 4.8.     Experimentally tested six ionic liquids…………………………………...   106 

 

Table 4.9.     ARM results for capacity testing group for capacities higher than or equal 

to 3000 mAh/g with count numbers greater than or equal to 5…………..   130 

 

Table A.1.    The details of the database………………………………………………..   204 

 

Table B. 1.    ARM results for energy densities ≥ 60 Wh/L……………………………...   212 

 

Table C.1.    COSMO-RS and experimental solubilities of Li2S8………………………   214 

 

Table C.2.    The cationic and the anionic properties of the selected ionic liquids used 

in Li-S cells………………………………………………………………. 

 

Table C.3.    The hyperparameters used in XGboost analysis…………………..............  215 

 

Table C.4.    ARM results for classification of Li2S8 solubility (top results for anionic 

and     cationic descriptors)…………………............................................. 

 

89 

103 

214 

215 



 

 

xx 

Table D.1.     Elemental analysis results………………………………………………....   218 

 

Table E.1.    The details of the materials investigated in the Section 4.1.5…………….   220 

 

Table E.2.     Li-S cell performance for KBS and VCKBS cathodes…………………....  222 

 

Table F.1.     Confusion Matrix of Decision Tree for Train Data………………………   224 

 

Table F.2.     Confusion Matrix of Decision Tree for Test Data………………………..   225 

 

Table F.3.     ARM results for capacity testing group for capacities higher than or equal 

to 3000 mAh/g……………………………………………………………. 

 

Table F.4.     ARM  results  for  voltage  testing  group  for  capacities  in between 750 

mAh/g and 1000 mAh/g………………………………………………….. 

 

Table F.5.     ARM  results  for  voltage  testing  group  for  capacities  in  between 500 

mAh/g and 750 mAh/g…………………………………………………....   227 

 

Table G.1.    The original 208 descriptors calculated from RDKit library……..……….   233 

 

Table G.2.    The hyperparameters tuned for each gas by 5-fold cross-validation of RF 

modeling………………………………………………………………….   234 

225 

226 



 

 

xxi 

LIST OF SYMBOLS 
 

 

a Cathode electrochemically active area, cm2 /cm3  

Acathode Cathode area, cm2 

Acell Cell area, cm2 

ASI Area-specific impedance, Ω cm2 

ASIcc- Negative current collector ASI, Ω cm2 

ASIcc+ Positive current collector ASI, Ω cm2 

ASIcell Total ASI of the cell, Ω cm2 

ASIne Negative electrode ASI, Ω cm2 

ASIp ASI of the cell at rated power, Ω cm2 

ASIpe Positive electrode ASI, Ω cm2 

ASIsep Separator ASI, Ω cm2 

C Cell capacity, Ah  

cpe Positive electrode capacity mAh/cm3 

E Battery pack energy, kWh  

F Faraday’s constant, C/mol  

I Current density, A/cm2 

Ie Average current density, A/cm2 

io,ne Negative electrode exchange current density, A/cm2 

io,pe Positive electrode exchange current density, A/cm2 

Ip Current density at rated power, A/cm2 

Lpe Positive electrode thickness, cm 

Lpe,max Maximum cathode thickness, cm 

Lsep Separator thickness, cm 

Ncell Number of cells in a pack  

P  Battery pack power, kW  

R Gas constant, J/(mol.K)  

T Temperature, K  

Ubatt Average open-circuit battery voltage, V  

Uocv,p Open-circuit cell voltage, V  



 

 

xxii 

Vcell Cell voltage, V 

Ve Voltage at rated energy, V 

Vp Voltage at rated power, V 

ws Sulfur weight fraction in the cathode 
  
 

a 

 

Transfer coefficient  

b ape,cF/RT 

d β∣I∣Lpe(1/keff +1/seff)  

𝜖 β∣I ∣ Lpe /keff 

e Electrolyte volume fraction in the cathode 

eb Binder volume fraction in the cathode 

ec Carbon volume fraction in the cathode 

edis Discharged volume fraction in the cathode, mAh/cm3 

es S volume fraction in the cathode 

hcc- Negative current collector overpotential, V 

hcc+ Positive current collector overpotential, V 

hcell Total overpotential of the cell, V 

hne Negative electrode overpotential, V 

hpe Positive electrode overpotential, V 

hsep Separator overpotential, V 

q First integration constant for Tafel polarization  

k Positive electrode ionic conductivity, S/cm 

keff Positive electrode effective ionic conductivity, S/cm  

ksep Separator ionic conductivity, S/cm 

ksep,eff Separator effective ionic conductivity, S/cm 

n (l2pe (ape,a +ape,c)ai0,pe F/RT (1/keff +1/seff))1/2 

rc Carbon density, g/cm3 

s Positive electrode electronic condutivity, S/cm 

seff Positive electrode effective electronic conductivity, S/cm 

ψ Second integration constant for Tafel polarization 

 



 

 

xxiii 

LIST OF ACRONYMS/ABBREVIATIONS 
 

 

1-D One-Dimensional 

3-D Three-Dimensional 

ACN Acetonitrile 

AI   Artificial Intelligence 

ANN Artificial Neural Networks 

ARM   Association Rule Mining 

ASI Area Specific Impedence 

AUC  Area Under the Receiver Operating Characteristic Curve 

BatPaC Battery Performance and Cost 

BET Brunauer-Emmett-Teller  

BETA Bis(pentafluoroethanesulfonyl)amide 

BF4 Tetrafluoroborate 

BMIM 1-butyl-3-methyl-imidazolium  

BTC 1,3,5-benzenetricarboxylic acid  

C-rate Current Rate 

C/S Carbon-to-Sulfur 

C4dmim 1-butyl-2,3-dimethylimidazolium 

C4mpyr 1-butyl-1-methylpyrrolidinium  

CGCNN  Crystal Graph Convolutional Neural Networks 

CMC Carboxymethyl Cellulose 

CMK-3 Mesoporous Carbon 

CNF Carbon Nanofiber 

CNN   Convolutional Neural Networks 

CNT Carbon Nanotube 

COSMO-RS COnductor-like Screening Model for Realistic Solvents 

CV Cycling Voltammetry 

DEC Diethyl Carbonate  

DEGDME Diethylene Glycol Dimethyl Ether  

DEME N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium  



 

 

xxiv 

DFT Density Functional Theory 

DMA Dimethylacetamide 

DMC Dimethyl Carbonate 

DMDS Dimethyl Disulfide 

DME 1,2-dimethoxyethane 

DMSO Dimethylsulfoxide 

DNN Deep Neural Network 

DoD Depth of Discharge 

DOL 1,3-Dioxolane 

DT Decision Tree 

E/S Electrolyte-to-Sulfur 

EC Ethylene Carbonate 

EGDME Ethylene Glycol Dimethyl Ether 

EMC Ethyl−Methyl Carbonate  

EMIM 1-ethyl-3-methylimidazolium 

ERT  Extreme Regression Trees 

ETFE Ethyl-1,1,2,2-tetrafluoroethylether 

FSI Bis(fluorosufonyl)imide 

FTIR Fourier Transform Infrared Spectroscopy 

G3 Triglyme 

G4 Tetraglyme 

GBT  Gradient Boosting Trees 

GNP Graphene Nanoplatelet  

GO Graphene Oxide 

GPR  Gaussian Process Regressor 

HCS Hollow Carbon Sphere 

HFE 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether 

HKUST Hong Kong University of Science and Technology 

IL Ionic liquid 

IP Imidazolium-Based Ionic Polymer 

K-ion Potassium-Ion 

kNN  k-Nearest Neighbors 

KRR  Kernel Ridge Regression 



 

 

xxv 

LA Polymer n-Lauryl Acrylate 

LASSO  Least Absolute Shrinkage And Selection Operator 

LATP Li(1 + x + y )AlxTi(2-x)SiyP(3-y)O12  

LHCE Localized High-Concentration Electrolyte 

Li-O2 Lithium-Oxygen  

Li-S Lithium-Sulfur  

Li(G3) Li(triglyme) 

Li(G3)1TFSI Li(triglyme)[bis(trifluoromethanesulfonyl)amide] 

Li(G4) Li(tetraglyme) 

LIB  Li-Ion Battery 

LiFSI Lithium Bis(fluorosulfonyl)imide 

LiODFB Lithium Difluoro(oxalate)borate 

LiPAA Lithium Polyacrylate 

LiTDI Lithium Trifluoromethyl-4,5-Dicyanoimidazole 

LiTf Lithium Trifluoromethanesulfonate (LiCF3SO3) 

LiTFSI Lithium Bis(trifluoromethanesulfonyl)amide 

LogR  Logistic Regression 

LR Linear Regression 

MAE Mean Absolute Error 

MD  Molecular Dynamics 

ML  Machine Learning  

MLP  Multilayer Perceptron  

MLR  Multiple Linear Regression  

MOF Metal Organic Framework 

MS Molecular Solvent 

MWCNT Multiwalled Carbon Nanotube 

Na-ion Sodium-Ion 

NB  Naive Bayes 

NMC Nickel-Manganese-Cobalt 

NMP N-methyl-2-pyrolidone  

NN Neural Network 

NP Not Provided 

OCV Open Cell Voltage 



 

 

xxvi 

OER Oxygen Evolution Reaction 

OMC Ordered Mesoporous Carbon 

ORR Oxygen Reduction Reaction  

OTE 1,1,2,2-tetrafluoroethyl Ether 

P13 N-methyl-n-propylpyrrolidinium 

P14 N-butyl-n-methylpyrrolidinium 

P1A3 N-Methyl-n-Allylpyrrolidinium 

P2225 Triethylpentylphosphonium 

PAA Polyacrylic Acid 

PANI Polyaniline 

PC Propylene Carbonate 

PDADMA-T 
Polydiallyldimethylammonium Having Quaternary Ammonium Cation 

and bis(Trifluoromethane)Sulfonimide 

PDC Peak Discharge Capacity 

PDDA Poly(diallyl dimethylammonium) Chloride 

PEDOT Poly(3,4-ethylenedioxythiophene) 

PEG Polyethylene Glycol 

PEGDME Poly(Ethylene Glycol) Dimethyl Ether 

PEO Poly(ethylene oxide) 

PMIM 1-methyl-3-propylimidazolium 

PP13 N-methyl-n-propylpiperidinium 

PP14 1-butyl-1-methylpiperidinium  

PS Polysulfide 

PSM  Polysulfide Shuttle Mechanisms 

PSS Polystyrene Sulfonate 

PTFE Polytetrafluoroethylene 

PVA Polyvinyl Alcohol 

PVC Polyvinylchloride 

PVDF Polyvinylidene Fluoride 

PVP Polyvinylpyrrolidone 

Pyr1,2O1 N-methoxyethyl-n-methylpyrrolidinium 

Ref. Reference 

RF Random Forest 



 

 

xxvii 

rGO Reduced Graphene Oxide 

RMSE  Root Mean Squared Error 

RR Ridge Regression 

RTIL Room Temperature Ionic Liquid 

SBR Styrene-Butadiene Rubber 

SEI Solid Electrolyte Interface 

SEM Scanning electron microscopy 

SIL Solvate Ionic Liquid 

SOH  State Of Health 

SSE  Solid-State Electrolytes 

SVM  Support Vector Machines 

TBMA Tributylmethylammonium  

TEGDME Tetraethylene Glycol Dimethyl Ether 

TES Triethylsulfonium 

TFSI Bis(trifluoromethanesulfonyl)imide 

TFTFE 1,1,2,2-Tetrafluoroethyl 2,2,2-trifluoroethyl ether 

TGA Thermal Gravimetric Analysis 

TL  Transfer Learning 

TMS Tetramethylene Sulfone  

TMU N,n,n’,n’-tetramethylurea 

Tri-EGDME Triethylene Glycol Dimethyl Ether 

TTE 1,1,2,2-tetrafluoroethyl- 2,2,3,3-tetrafluoropropyl ether 

U0 Standard Potential 

UG UiO66+Graphene Nanoplatelet Composite 

UGS UiO66+Graphene Nanoplatelet+S Composite 

WOS  Web Of Science 

XGBoost Extreme Gradient Boosting 

XRD X-ray Diffraction Spectroscopy 

 

  
 



 

 

1 

1.  INTRODUCTION 
 

          

Fossil fuels are the most widely used energy sources in today’s activities. The use of 

fossil fuels has led to environmental problems and global warming [1,2]. In addition to the 

environmental concerns, the limiting reserves of fossil fuels will not meet the growing world 

energy demand. Hence, many researchers are working to develop high-efficiency renewable 

energy systems that contain energy harvesting and storing units. Wind and solar energy are 

commonly used renewable systems that convert natural energy to electricity. Since these 

energy sources are intermittent and the energy demand is dependent on the consumer’s 

needs, energy should be stored to be released when the production does not meet the demand.  

 

Accounting for 28 % of the world’s total energy consumption, transportation is one of 

the major sectors in which the utilization of renewable energy is critical to abandoning fossil 

fuels. In this respect, many automobile producers have started to launch the production of 

hybrid and electric vehicles to reach the countries’ efforts to diminish carbon dioxide (CO2) 

emissions. Currently, LIBs are widely used as energy storage systems in electric vehicles. 

However, these batteries are expensive. In addition, with energy densities of 150-300 Wh/kg, 

these batteries have limiting capacities to increase the ranges of the vehicles [3]. In this 

respect, beyond lithium-ion batteries have drawn attention due to their high theoretical 

capacities. Among them, Li-S batteries have gained significant importance in recent years 

due to their high theoretical capacity [4]. Li-S batteries are highly promising since they have 

the potential to attain much higher gravimetric and volumetric energy densities than LIBs in 

the future [5,6]. In addition to Li-S, Li-O2 batteries also gained significant attention as they 

offer the highest theoretical specific capacity [7,8].  

 

Although Li-S batteries are very promising to replace the LIBs, there are several 

problems that should be solved to enable commercialization. This requires the optimization 

of the critical parameters both at the materials and system levels using experimental and 

modeling methods as complementary techniques to design high-performing Li-S battery 

systems. In this respect, in this thesis, system-level modeling and experimental 

characterization, in addition to ML techniques, were used together to conduct a material-to-
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system analysis of the Li-S batteries for determining the effect of critical design parameters 

and material properties on the cell- and system-level performances of the Li-S batteries.  

  

On the other hand, the high theoretical capacities of Li-O2 batteries have not been 

achieved yet, mainly due to issues related to the oxygen cathode. The open-to-gas 

environment, sluggish reaction kinetics, side reactions, and instability of the electrolytes are 

the main problems of Li-O2 batteries, resulting in poor battery performances [9]. These 

problems are even more severe than the issues of Li-S cells, as the experimental studies on 

the Li-O2 cells are more limited. To overcome these problems, several materials and cell 

design parameters were studied in this thesis using ML analysis.  

 

1.1.  Li-S Batteries 

 

The basic scheme of a Li-S cell can be seen in Figure 1.1. As seen in the figure, a Li-

S battery contains an anode, a separator, a cathode, and a liquid electrolyte like conventional 

batteries. In Li-S batteries, metallic Li anode is used as the anode, whereas the cathode 

consists of a conductive matrix, binder, and sulfur as the active material. Most high-capacity 

battery systems have Li metal as the anode due to its very high theoretical specific capacity 

of 3860 mAh/g Li and low molecular weight of 6.94 g/mol. In addition, it has the highest 

standard oxidation potential of 3.04 V, which leads to a high battery power [10]. Moreover, 

sulfur is one of the most abundant, non-toxic, and inexpensive elements in nature, and it has 

a specific capacity of 1675 mAh/g [6], [11,12]. Hence, it is proposed to be a good cathode 

candidate for inexpensive, high-capacity batteries [6], [12]. 

 

 3860 mAh/g and 1675 mAh/g are the specific capacities of Li and S, respectively. In 

addition, the theoretical gravimetric energy density of a Li-S battery is 2600 Wh/kg, which 

is almost 6 times higher than LIBs [13]. During discharge, lithium metal is oxidized, and 

sulfur is reduced simultaneously in the anode and the cathode, respectively. Oxidized Li ions 

transport through the electrolyte from the anode to the cathode to react with the reduced 

sulfur. The overall reaction of Li-S batteries producing 2.2 V (vs. Li/ Li+) is given as 

16𝐿𝑖! + 8𝑆	 + 16𝑒" → 	8𝐿𝑖#𝑆. (1.1) 
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Figure 1.1. The basic schematic diagram of a Li-S cell. 
 

A typical discharge profile of a Li-S cell is shown in Figure 1.2, where there are two 

plateaus, around 2.4 V and 2.1 V, named the high and low voltage discharge plateaus [14]. 

Multi-step reactions are taking place in the cathode during discharge. Although the exact 

reactions are not identified yet, several attempts have been made to define the highly 

complex multi-step reactions taking place during discharge [15–18]. One of the proposed 

reaction scheme depending on the discharge regions are shown in Figure 1.2, and it is defined 

as 

𝐿𝑖 → 𝐿𝑖! + 𝑒", (1.2) 
1
20 	𝑆$+	𝑒" → 1

20 𝑆$#", (1.3) 

2𝐿𝑖! + 𝑆$#" → 𝐿𝑖#𝑆$, (1.4) 

𝐿𝑖#𝑆$ + 2𝐿𝑖 → 𝐿𝑖#𝑆$"% + 𝐿𝑖#𝑆%, (1.5) 

2𝐿𝑖#𝑆% + (2𝑛 − 4)𝐿𝑖 → 𝑛𝐿𝑖#𝑆#, (1.6) 

𝐿𝑖#𝑆% + (2𝑛 − 2)𝐿𝑖 → 𝑛𝐿𝑖#𝑆, (1.7) 

𝐿𝑖#𝑆# + 2𝐿𝑖 → 𝐿𝑖#𝑆. (1.8) 

The equations corresponding the regions are as follows: Equation (1.2) to Equation (1.4) for 

Region 1, Equation (1.5) for Region 2, Equation (1.6) to Equation (1.7) for Region 3 and 

Equation (1.8) for Region 4 [19]. In general, high-chain PS are formed in the high discharge 

plateau, and they are further reduced to short-chain PSs later in the low discharge plateau 

with the final discharge product Li2S. A sudden voltage drop is obtained due to the insulating 

nature of this discharge product, which results in very slow reaction kinetics [19]. 
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Figure 1.2. Cell voltage versus capacity graph of a typical Li-S cell. 
 

Although the theoretical capacity of Li-S batteries is high, there are several problems 

that limit the usable capacity and cycle life. The complex working mechanisms of sulfur 

cathodes are the main reasons for these problems [20]. These challenges can be listed as 

follows: 

 

• The insulating nature of both sulfur and Li2S results in low sulfur utilization and 

requirements of having conductive materials in the cathode. This increases the dead 

mass of the cells, which does not contribute to the cell performance. Hence, specially 

designed conductive materials with high surface areas and porosities should be utilized 

in the sulfur cathodes. There are lots of studies in the literature trying to find the best 

structures to load more active material into lower amounts of conductive networks to 

increase the energy density of both cells and battery systems [21]. The type and 

properties of the conductive material used in these encapsulated sulfur cathodes play 

a critical role in battery performance. 

• As aforementioned, there are various PSs (Li2Sx, 2£x£8) formed as intermediate 

products during discharge. The high-order PSs should be converted to the low-order 

PSs and eventually to solid Li2S during discharge. Solid Li2S should be oxidized back 

to solid sulfur during charge to have reversible usable capacity. However, PSs are 

highly soluble in conventional electrolytes and can shuttle between the cathode and 

the anode during cycling. This PS shuttle mechanism leads to anode deterioration, 
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active material loss, and low Coulombic efficiency [22,23]. There are various 

strategies to prevent the shuttle mechanism, such as designing coated separators, three-

dimensional (3-D) conductive networks, and new electrolyte solvents [24]. 

• There are various products present in the complete discharge and charge states of a Li-

S cell. During discharge, solid elemental sulfur with 2.07 g/cm3 density is converted 

to Li2S with 1.66 g/cm3 density. Due to the density difference, a volume change of up 

to 76 % can be observed. This may lead to unstable cathode structures and early 

cathode decomposition [25]. In this respect, the type and structure of the conductive 

materials are also very important to have stable cathodes [26,27]. 

• Although Li metal is a desired anode material due to its low standard potential, its high 

reactivity causes early cell failure and safety problems. Li metal can react with the 

electrolyte, separator, and other cell components. That high reactivity may result in 

both Li metal and electrolyte depletion in the cells. To build safer batteries that offer 

long-term stability, the design of new electrolyte materials, additives, or protective 

layers has been investigated in the literature [28,29].  

 

Although Li-S batteries are very promising in terms of their high theoretical specific 

capacity, due to the aforementioned problems, practical system- and cell-level energy 

densities are not comparable with the LIBs yet. To enable the commercialization of Li-S 

batteries, research should be focused on material research, electrode architecture, and cell 

engineering. Hence, materials and cell design parameters such as sulfur content, sulfur 

loading, electrode thickness, electrolyte type, electrolyte-to-sulfur ratio, encapsulation 

conductive material type, and battery system design should all be considered together [30].  

 

The electrolyte is one of the important components of batteries, where ion transfer 

between the anode and the cathode takes place in all electrochemical systems. The 

electrolyte should be inert to the other cell components. It should also be stable over the 

working voltage window. Due to the complex electrochemical reactions taking place in Li-

S cells, electrolytes of Li-S cells should have additional properties. One of the most 

important characteristics is the solubility of the  PSs in these electrolytes, as very high 

solubilities lead to an increase in the PSM and result in low cell efficiencies [31]. The most 

common electrolyte used in Li-S cells is 1,3-dioxalane (DOL):1,2-dimethoxyethane (DME) 
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(1:1 vol.%) solvents containing lithium bis(trifluoromethane)sulfonimide (LiTFSI) and 

lithium nitrate (LiNO3) salts [24]. Ionic liquids have been shown to be promising electrolytes 

by preventing the PS shuttle mechanism and increasing working voltage window. 

 

The system- and cell-level performance of Li-S batteries are heavily dependent on the 

cathode. One of the main hurdles of the sulfur cathode is the insulating nature of sulfur and 

the discharge product Li2S [32]. That leads to a requirement for conductive materials in 

addition to sulfur, which results in an increase in the dead weight of the cells. In order to 

minimize the dead weight, great research effort has been made to obtain materials with a 

large specific surface area. In addition, depending on the conductive materials type, a binder 

may also be required in the cathode to increase structural stability [33]. Hence, an efficient 

cathode design is crucial for Li-S batteries. 

 

The parameters that will be investigated in this thesis are related to the positive 

electrodes and electrolytes of Li-S batteries. Encapsulation material type and sulfur loading, 

which are determined to be critical cathode parameters, will be investigated to develop 

cathodes that have high sulfur loadings together with high sulfur utilization, which are 

crucial to attain high cell- and system-level specific energies. This is only possible if sulfur 

is contained in a highly porous and interconnected encapsulation network that allows high 

electronic conductivity. Electrolyte-to-sulfur (E/S) ratio and IL type will also be investigated 

as the electrolyte parameters to improve both the capacities and efficiencies of Li-S cells.  

 

1.2.  Lithium-Oxygen Batteries 

 

Li-air batteries may have the potential to surpass LIBs as they have the highest 

theoretical specific capacity among the beyond LIBs. Based on the discharge product Li2O2, 

the specific energy is around 3500 Wh/kg, offering the highest energy among the metal-air 

batteries. Similar to Li-S cells, Li-O2 batteries have a pure metallic lithium anode, a porous 

separator, an electrolyte, and a porous cathode. One difference is that the cathode active 

material is gaseous, as seen in Figure 1.3. Pure lithium metal is typically used as the anode 

of lithium-air batteries because it is the lightest metal but yet has the highest oxidation 

potential of 3.040 V, providing 3860 mAh/g specific capacity [10]. The high reactivity of 
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the lithium metal is always a problem in lithium-based batteries. However, lithium metal 

becomes more problematic in these batteries due to the gaseous reactants, which may further 

deteriorate lithium metal. To protect the anode, the separator should be selected carefully, 

blocking the transfer of gases. Currently, due to their low costs and high durability, 

polyolefins are used widely as separators in lithium-air cells [34].  

 

 
 

Figure 1.3. The basic schematic diagram of a Li-air cell. 
 

Generally, liquid electrolytes are used in batteries; solid electrolytes are less common 

in the literature. In addition to the standard liquid electrolyte properties, such as chemical 

and mechanical durability with low vapor pressure, gas solubilities are also major concerns. 

Only dissolved gases can participate in the electrochemical reactions. Hence, it is very 

critical to favor high oxygen solubilities with a restriction on the solubilities of the other 

gases. According to the literature, non-aqueous electrolytes containing lithium salts are the 

typical electrolyte systems of Li-O2 batteries [35–37]. 

 

Oxygen reduction reactions (ORRs) take place in the cathodes of Li-O2 batteries, 

where Li+ ions coming from the anode side, electrons supplied through the outer circuit and 

dissolved oxygen meet on the surface of a solid network. To enhance the reaction kinetics, 

fast electron transfer is very critical. Thus, the cathode network should have high porosity 

with high electronic conductivity. Additional catalyst materials like metals are commonly 
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preferred to further increase the kinetics [38]. Typically, a binder is also added to increase 

the structural integrity of the cathodes. Carbon paper may also be utilized as an additional 

gas diffusion layer for the homogeneous distribution of oxygen to improve cell performance 

[39,40]. ORRs  are 

𝑂# + 𝐿𝑖! + 𝑒" ⟶ 𝐿𝑖𝑂#, (1.9) 

																												2𝐿𝑖𝑂# ⟶ 𝐿𝑖#𝑂# + 𝑂#, (1.10) 

and/or 

											𝐿𝑖𝑂# + 𝐿𝑖! + 𝑒" ⟶ 𝐿𝑖#𝑂#,       (1.11) 

oxygen evolution reaction (OER) is 

											𝐿𝑖#𝑂# ⟶𝑂# + 2𝐿𝑖! + 2𝑒",    (1.12) 

where the overall reaction is 

2𝐿𝑖 + 𝑂# ⇆ 𝐿𝑖#𝑂#,       (1.13) 

with U0 is 2.96 V vs. Li/Li+. The reactions of the lithium-oxygen batteries are shown in 

Equation (1.9) to Equation (1.13) [41]. As seen from the equations, Li2O2 is the end 

discharge product of Li-O2 batteries.  

 

For a smooth operation of Li-O2 batteries the reactions presented in Equation 1.13 

should be reversible. In other words, once the Li2O2 is deposited on the cathode matrix, it 

shoud be easily turned to oxygen and also lithium should be protected. However, this is 

generally prevented by several side reactions taking place inside a Li-O2 cells. One of the 

main reasons of the side reactions is the impurities like atmospheric gases including nitrogen 

(N2), carbon dioxide (CO2) and water (H2O). Both N2 and H2O gases can react with lithium 

anode, leading to loss of lithium material. Meanwhile, CO2 tends to react with Li2O2 to form 

Li2CO3, which is more stable and prevent the reversible conversion of Li2O2 to oxygen gas 

[42]. The possible side reactions are 

4𝐿𝑖 +	𝑂# + 2𝐶𝑂# → 2𝐿𝑖#𝐶𝑂&,   (1.14) 

𝐿𝑖#𝑂 + 𝐶𝑂# → 𝐿𝑖#𝐶𝑂&, (1.15) 

2𝐿𝑖#𝑂# + 2𝐶𝑂# → 2𝐿𝑖#𝐶𝑂& + 𝑂#, (1.16) 

2𝐿𝑖𝑂𝐻 +	𝐶𝑂# → 𝐿𝑖#𝐶𝑂& + 𝐻#𝑂, (1.17) 

2𝐿𝑖 +	2𝐻#𝑂 → 2𝐿𝑖𝑂𝐻 + 𝐻#,   (1.18) 

𝐿𝑖𝑂𝐻 +	𝐻#𝑂 → 𝐿𝑖𝑂𝐻.𝐻#𝑂, (1.19) 

𝐿𝑖#𝑂# + 𝐻#𝑂 → 𝐿𝑖𝑂𝐻 +	𝐻#𝑂#, (1.20) 
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4𝐿𝑖 + 𝑂# + 	2𝐻#𝑂 → 4𝐿𝑖𝑂𝐻, (1.21) 

2𝐿𝑖#𝑂# + 2𝐻#𝑂 → 4𝐿𝑖𝑂𝐻 +	𝑂#, (1.22) 

𝐿𝑖#𝑂# + 𝐻#𝑂 → 𝐿𝑖𝑂𝑂𝐻 + 	𝐿𝑖𝑂𝐻, (1.23) 

𝐿𝑖𝑂𝐻 +	𝐻#𝑂# → 𝐿𝑖𝑂𝑂𝐻 + 𝐻#𝑂, (1.24) 

6𝐿𝑖 +	𝑁# → 2𝐿𝑖&𝑁,    (1.25) 

𝐿𝑖&𝑁 + 	3𝐻#𝑂 → 3𝐿𝑖𝑂𝐻 + 𝑁𝐻&. (1.26) 

 

1.3.  Scope of the Current Work 

 

The aim of this thesis is to increase the performance of beyond LIBs, specifically, Li-

S and Li-O2 batteries, by conducting a detailed material-to-system analysis. At first, studies 

on Li-S batteries were performed. The effect of important design parameters, which are 

sulfur loading, electrolyte-to-sulfur (E/S) ratio, and electrolyte and encapsulation material 

types, on the cell- and system-level performances of Li-S batteries were investigated. In 

order to achieve this goal, experimental (electrochemical characterization) and theoretical 

(ML and system-level performance modeling) methods were used as complementary 

techniques to connect the material properties to the cell- and system-level performances of 

the Li-S batteries. In this respect, the findings of this thesis contribute highly to both the Li-

S battery literature and the industry.  

 

There are many works reported in the literature focusing on reaching the theoretical 

capacities (1675 mAh/g) and increasing the cycle lives of Li-S batteries. Although these 

performance metrics are very important, the final performance indicators are the system-

level energy density and specific energy of the Li-S battery. However, there are very limited 

studies investigating the system-level performance. Hence, by using encapsulated cathodes 

and promising electrolyte materials and taking cell design parameters into account, the main 

aim of this research is to design a Li-S cell with high specific capacity and cycle life together 

with high specific energy and energy density. While doing this, ML techniques were also 

used to identify the promising materials and hidden correlations in the literature, where more 

than 8000 articles have already been published. From this perspective, this is a highly novel 

investigation of the effect of encapsulated cathode properties, electrolyte types, and cell 

design parameters on Li-S battery performance using three different techniques.  
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The second main topic of this thesis is Li-O2 batteries, as they possess much higher 

theoretical capacities. However, their development is much more problematic as they 

contain an active material in the gas phase, where gas is distributed over an electronically 

conductive matrix. The design of the positive electrode is important for smooth oxygen 

redox reactions, in other words, to diminish the mass and kinetic resistances. Meanwhile, 

the electrolyte must be suitable for oxygen dissolution, it should be stable, and it should have 

low vapor pressure. Unfortunately, the experimentation of these batteries is much harder. In 

this respect, all the information on the experimental works that have been done already 

should be utilized. In addition, computational methods should be used for fast screening of 

various materials that are suitable for Li-O2 batteries. Hence, ML methods were used for 

analyzing the important materials and cell design factors for the development of high-

performance Li-O2 batteries in this thesis. Moreover, high-throughput screening of ionic 

liquids as the electrolytes of Li-O2 batteries was presented.   

 

 This thesis consists of chapters listed as Introduction, Literature Survey, Results and 

Discussion, and Conclusions and Recommendations. Chapter 2 presents detailed summaries 

of the literature for both Li-S and Li-O2 batteries and ML studies in battery science, modified 

from our review paper published recently in the Journal of Energy Storage [9]. In Chapter 

3, the methods and materials utilized in the thesis were explained in detail. In the scope of 

this thesis, the Results and Discussion part was divided into two; studies on Li-S and Li-O2 

batteries were given in Part 1 and Part 2 of Chapter 4, respectively. Part 1 of Chapter 4 

contains 5 sub-sections. In the first sub-section, the effect of materials and design parameters 

on Li-S battery performance was analyzed by means of ML by using the literature data, and 

it was published in the Chemical Engineering Journal in 2020 [43]. Section 2 contains a 

similar ML analysis, but this time, the dataset contains experimental data on Li-S cells 

containing IL electrolytes only; this study was published in the International Journal of 

Energy Research in 2022 [44]. Section 3 reports the screening of IL electrolytes based on 

the viscosities and PS solubilities for Li-S batteries. In addition, ML models were developed 

to enable the prediction of these properties for any IL and to find potential ILs for Li-S 

batteries. The manuscript detailing these results is in preparation. In Section 4 and Section 

5, the effect of different encapsulation materials on the Li-S battery performance was 
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investigated. In Section 4, the impact of composite cathodes made of MOF/Graphene 

nanoplatelets on Li-S cell performance was experimentally tested. The manuscript 

presenting the results in this section is published in Energy Technology journal [45]. Finally, 

the effect of vanadium and cobalt-doped ketjen black cathodes and the design parameters on 

the Li-S cell- and system-level performances were presented in Section 4.1.5. Part of this 

chapter has already been published in the ACS Applied Energy Materials in 2023 [46], and 

the second part is published in ChemElectroChem [47]. In Part 2 (section 4.2), ML studies 

on the Li-O2 batteries were done. In Section 4.2.1, the literature data were collected to 

analyze the common trends and to reveal hidden correlations to find favorable materials and 

cell design for high capacities; this study was published in the Journal of The 

Electrochemical Society in 2021 [48]. Finally, the gas solubilities of the ILs were screened, 

and ML models were proposed for identifying promising IL electrolytes for Li-O2 batteries. 

A manuscript on these results is currently in preparation.
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2.  LITERATURE SURVEY 
 

 

2.1.  Li-S Batteries 

 

2.1.1.  Effect of Sulfur Loading 

 

Schneider et al. have developed binder-free and free-standing N-doped cathodes with 

thicknesses lower than 200 µm. To prepare high sulfur loaded cathodes, a facile hard-

templating method was used in this study. The 3-D structure of carbon developed in this 

study has 1.78 cm3/g total pore volume and 80 m2/g surface area. The porous structure 

enabled efficient contact between sulfur and the conductive network, even with small 

amounts. The cathodes having sulfur loadings in the ranges of 2.5 and 8.5 mg/cm2 at 10 

µL/mg E/S ratio and C/20 current rate (C-rate) were investigated. The cycling results showed 

that the sulfur utilization decreases linearly with sulfur loading. According to the specific 

capacity results, sulfur utilization was 70 % and 20 % for sulfur loadings of 2.5 and 8.5 

mg/cm2, respectively. On the other hand, similar areal capacities were obtained for all of the 

sulfur loadings [49].  

 

Doan et al. investigated the sulfur loading effect using sulfur-pyrolyzed 

polyacrylonitrile composite cathodes doped with Mg0.6Ni0.4O nanoparticles. Sulfur loadings 

were investigated from 0.55 mg/cm2 to 5.9 mg/cm2. Cycling results at 0.2 C showed that 

good capacity retention is obtained in 70 cycles with sulfur loadings lower than 3.1 mg/cm2. 

However, rapid capacity decrease was observed after 50 cycles for higher loadings (>3.1 

mg/cm2). This was attributed to the removal of thick cathodes from Al foil current collectors 

and more PS formation at high sulfur loadings. Higher PS formation in the same electrolyte 

volume triggers the PS shuttle mechanism that leads to low Coulombic efficiency and 

capacity fading [50]. 

 

Sulfur loading was defined as the areal capacity in the work reported by Sun et al. 

Galvanostatic cycling tests were performed using loadings between 0.5 to 7.5 mAh/cm2. 

Low sulfur utilization was observed with sulfur loadings higher than 3.0 mAh/cm2. It was 

observed that the conversion of soluble Li2S4 to insoluble discharge product Li2S/Li2S2 was 
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not efficiently taking place at the low voltage plateau around 2.1 V. This conversion was 

recovered after several activation cycles for up to 4.5 mAh/cm2 loading, whereas no recovery 

is observed with 7 mAh/cm2 even after 100 cycles [51]. 

 

The problems and the solution strategies regarding the use of high sulfur loadings in 

the Li-S battery were reviewed in a recent work by Hu et al.. To sum up, it was emphasized 

that high sulfur loading is needed to scale up lab-scale research and enable industrialization. 

To have high sulfur loadings, thicker cathodes should be prepared, which results in new 

problems in the cathode, electrolyte, and anode. Structural deformations and reduced 

diffusion distance are the main problems of having thick cathodes. On the other hand, the 

PS shuttle mechanism is triggered with high sulfur loadings, and more Li dendrites are 

formed on the anode side. The most efficient method to solve these problems proposed by 

the authors is utilizing highly porous encapsulation cathodes and optimizing the amount of 

electrolytes compatible with the lithium anodes [52]. This paper also shows the importance 

of the three other parameters: effect of encapsulation, E/S ratio, and types and amount of 

ionic liquids as electrolytes, and emphasizes the need for a mechanistic study, which should 

take all the parameters into account. 

 

2.1.2.  Effect of Encapsulation Material 

 

In a review done by Zhang et al., it is stated that the development of encapsulation 

materials is very important to develop cathode hosts to mitigate the problems of Li-S 

batteries. The cathode hosts, encapsulation materials, in other words, should be 

electronically conductive, have a high surface area, high structural stability, and finally, have 

PS chemisorption on the surface. So far, various hosts, more specifically carbon-based 

materials like graphene and its derivatives, carbon nanotubes (CNT), and metal compounds, 

have been developed. Metal-organic frameworks (MOFs) have already been utilized in 

energy research due to their high porosities (>0.5 cm3/g) and surface areas (>3000 m2/g). 

Although there is some research in the literature, the utilization of MOF materials as sulfur 

hosts is limited due to low electrical conductivity. Hence, the MOF composites and MOF-

derived materials are more common in the sulfur cathodes to increase sulfur utilization [53]. 

Liu et al. used the composite of UiO-66 and carbon nanotubes in the sulfur cathodes to 

increase the cycling ability of Li-S batteries. UiO-66/CNT composite with covalently 
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bonded sulfur leads to a physical connection of sulfur with its host that prevents sulfur 

delocalization and leads to sulfur stabilization. It also fixes PSs at their original state and 

reduces the shuttle effect. Hence, the composites of UiO-66/CNT covalently bonded with 

sulfur showed good cycling stability even at high current rates. With covalently bonded 

sulfur, 80.2% capacity retention was obtained at 2C and ended up at 416 mAh/g after 900 

cycles [54]. 

 

Another composite was done by Wang et al., where sulfur was integrated with two 

carbon sources. One of the carbon sources is the MOF-derived, N-doped, and CoP 

nanoparticles having carbon nanoarrays. First, Co-MOF was infiltrated on carbon cloth, and 

it was carbonized and phosphorized simultaneously. Afterward, sulfur was added to the 

composite by the standard melt-diffusion method. This self-standing composite showed 

around 1400 mAh/g initial discharge capacity and decreased to 900 mAh/g after a few cycles 

at 2C. After 600 cycles, the cells preserved most of their capacity and ended up with an 800 

mAh/g specific capacity [55]. 

 

In another study developed by Wang et al., HKUST-1 MOF was used as the cathode 

host for trapping sulfur and reducing sulfur loss due to excess dissolution. This MOF 

contains Cu+2 open sites that lead to better sulfur confinement. Two sets were prepared: one 

where sulfur and MOF were mechanically mixed (HKUST-1/S) and one where they were 

heated at 428 K for 24 h in an argon atmosphere (HKUST-1ÉS).  The synthesized HKUST-

1 has 1500 m2/g surface area, which is reduced to 97 m2 for HKUST-1ÉS. The cathodes 

have approximately 40 wt.% sulfur with around 0.5 mg/cm2 loadings, and the standard 

LiTFSI and LiNO3 containing DOL:DME electrolyte were used. Both samples exhibited 

initial discharge capacities of around 1500 mAh/g, which decreased to 500 mAh/g and 350 

mAh/g for HKUST-1ÉS and HKUST-1/S after 170 cycles at 0.1C [56].  

 

Zheng et al. developed a Ni-based MOF named Ni6(benzene-1,3,5-tribenzoate)4(4,4’-

bipyridyl) that is proposed to have sulfur immobilization capability. The bare surface area 

of this composite was calculated as 5243 m2/g, which is enormous, with a blend of 

macropores (~2.8 nm) and micropores (~1.4 nm). 60 wt.% sulfur was loaded to these pores 

of Ni-MOF by a simple melt-diffusion strategy. It was stated that the PSs were trapped inside 

the pores physically, and Ni2+ centers interact with the PS base that adheres PSs to the 
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cathode surface. The specific capacities were determined at 0.1C with a 1.5 V-3.0 V voltage 

window of 689 mAh/g. Although high capacity retention was observed, the initial discharge 

capacity is lower than that of the carbon/sulfur composite. The addition of transition oxides 

and the alterations in the organic ligand chain was proposed [57]. 

 

Heteroatom doping into carbon materials has also been a widely followed strategy in 

the literature. The advantages of heteroatom doping are basically active site generation and 

an increase in electronic conductivities. Hence, heteroatom doping leads to increased cycling 

and rate performances [58]. Huang et al. used nitrogen and phosphorus-doped carbon having 

various pore sizes obtained from free-drying and carbonization of egg shells, which were 

used as the cathode hosts in Li-S batteries. The initial discharge capacity of this material was 

1635 mAh/g for 0.57 mg/cm2 loaded cathodes at 0.1C, which ended up 762 mAh/g after 100 

cycles at 0.1 A/g current rate [59]. Wu et al. also used sulfur encapsulated with N, O-codoped 

carbon with trimodal pores as the main cathode host. Afterward, this composite was mixed 

with acetylene black and polyvinylidene fluoride (PVDF) at a 7:2:1 wt.% ratio, respectively. 

This cathode exhibited good cycling stability even at 1C, with only 0.057 % capacity decay 

per cycle for 800 cycles. 

 

Yuan et al. investigated the performance of self-standing CNT paper in sulfur 

cathodes. Using a facile bottom-up method, cathodes with sulfur loadings higher than 6.3 

mg/cm2 were fabricated. Both short- and long-range CNTs were employed to provide a 

framework for sulfur deposition, long-range conductive network, and intercrossed binder, 

respectively. Cycling results of 150 cycles showed 995 mAh/g initial capacity, implying 

60% sulfur utilization with 0.20 % capacity decay per cycle with only one layer. The capacity 

and sulfur loading were tripled by stacking three layers in the cathodes [60]. 

 

There are many works in the literature investigating various types of encapsulation 

materials. Many studies utilized graphene oxides together with materials such as metal-

organic frameworks, anthraquinone, amylopectin, and polypyrrole [61–64].  On the other 

hand, there are other materials, such as porous carbons and CNT, that were investigated as 

encapsulation materials. These materials were used mainly to suppress the PS shuttle 

mechanism, increase the electronic conductivity, load a high amount of active material, and 
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provide a stable network that can stand large volume changes during discharge and charge 

[43]. 

 

2.1.3.  Effect of E/S Ratio 

 

According to the techno-economic model proposed by Eroglu et al., the system-level 

specific energy and energy density of a Li-S battery are highly dependent on the amount of 

electrolyte used in these batteries. It was stated that although excess electrolyte is preferred 

to increase sulfur utilization and prevent electrolyte depletion and PSM, having too much 

electrolyte devastates the specific energy. The pack-level specific energies were found as 

100 Wh/kg and 400 Wh/kg for batteries having 10 mL/g and 1 mL/g E/S ratios, respectively 

[65]. Urbonaite and Novak found the optimum E/S ratio as 22 mL/g among E/S=13 mL/g 

and E/S=43 mL/g for the standard cathodes prepared by mixing 60:30:10 wt.% sulfur, 

carbon black and PEO, respectively. In these cells, E/S=43 mL/g showed the poorest cycling 

performance. This work suggests that electrolyte parameters, such as the amount and the 

additive and salt types, are more effective on the cell performance rather than the electrode 

properties [21].  

 

Chu et al. investigated the effect of having a high donor-number salt anion on the 

performance of Li-S batteries having lean electrolyte conditions. It was stated that having 

too much electrolyte decreases the energy density of the cells. On the other hand, decreasing 

electrolyte amount causes limited PS solubility, hence sluggish reaction kinetics, low sulfur 

utilization, and unconstraint Li2S deposition and accumulation. These were supposed to be 

the main reasons for the increase in cell resistance and early cell failure in lean electrolyte 

conditions. According to the study, the PS solubility should be high in cells operating with 

a limited amount of electrolyte. The high solubility of PSs in the DOL:DME electrolyte 

having 0.4 M LiTFSI and 0.6 M LiNO3, high NO-3 salt anion, enhanced the cell capacity for 

E/S=5 mL/g. It was found that the cells have capacities around 1200 mAh/g at 0.1C and 

prolonged that capacity even after 100 cycles [43]. 

 

Chung and Manthiram (2018) investigated the effect of the E/S ratio on the discharge 

capacity using graphene/cotton-carbon cathodes. The cells having 30 mg/cm2 sulfur loading 

and 60 wt.% sulfur content at E/S ratios of 10, 8, 6, and 5 mL/g were investigated in this 
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study. The cells were cycled at both 0.1C and 0.2C. The electrochemical performance 

decreased at 0.2C due to low sulfur utilization at low E/S ratios. According to the study, the 

E/S ratio should be higher than 7 to prevent the adverse effects of lean electrolyte conditions. 

On the other hand, for cathodes having cotton-carbon only, the optimum E/S ratio was found 

to be 10 mL/g to have high sulfur utilization. Lower E/S ratios resulted in unstable cycling 

performances due to wetting problems of the high porosity cathodes. Hence, E/S ratios 

should be determined by considering the cathode parameters [66].  On the other hand, the 

cycle stability and sulfur utilization of the cells having different amounts of electrolyte, in 

other words, the E/S ratio, at a constant sulfur loading, were studied by Brückner et al. 

Vertically-aligned carbon nanotubes were used as the cathode in this study. It was found that 

high E/S ratios result in high capacities and cycle lives. On the other hand, the E/S ratio 

should be restricted to 4 mL/g to provide high energy density batteries [67]. 

 

2.1.4.  Effect of Ionic Liquid Type 

 

There are many types of ionic liquids that were investigated as electrolytes in Li-S 

batteries in the literature, some of them are listed in Table 2.1. Yuan et al. performed one of 

the early studies utilizing room-temperature ionic liquids (RTILs) as electrolytes in Li-S 

batteries. Cyclic voltammetry (CV) results showed that the working potential of N-methyl-

N-butyl-piperidinium bis(trifluoromethanesulfonyl)iminde ([PP14]-[TFSI]) was around 5.2 

V to -0.15 V (vs. Li/Li+). Hence, it is stable for both lithium anodes and sulfur cathodes. Due 

to the low PS solubility in the IL, the PS shuttle mechanism was inhibited. The initial 

discharge capacity was almost doubled from 600 mAh/g to 1055 mAh/g when RTIL was 

used rather than using ethylene carbonate:dimethyl carbonate (EC:DMC) electrolyte with 

1.0 M LiPF6. However, the cycling performance was limited [68]. 

 

Zhang et al. used solvate ionic liquids in cathodes having porous carbon:sulfur 

composites having polyvinyl alcohol (PVA) as a binder with 0.5 mg/cm2 sulfur loading and 

60 wt.% sulfur content. Both the effect of ionic liquids and their interface with the porous 

cathode on cell performance have been investigated in this study. It was found that large 

pore size and volume of the conductive matrix are greatly important for the performance of 

batteries using IL electrolytes. It was found that the best composite for IL solvents does not 

work well for the conventional DOL:DME electrolytes. In addition, lithium(tetraglyme)-



 

 

18 

TFSI ([Li(G4)]-[TFSI]) electrolyte viscosity decreased with the addition of ether, which 

increases ionic mobility while suppressing the PS shuttle mechanism. Thus, the capacity 

retention of the cells improved from 61.6% to 73.5% [69].  

 

Table 2.1. Literature summary utilizing ionic liquids as electrolytes in Li-S batteries. 

Ref. Encapsulation S wt.% S Loading  
(mg/cm2) IL Solvent C Peak Capacity 

(mAh/g) 
[70] NO 57 0.3 [Li(G3)1]-[TFSI] 0.06 1061 

[71]  Carbon Black 34 NP 
(P13)(TFSI) 0.20 609 
(P13)(TFSI) 0.10 1386 
PMIM(TFSI) 0.10 1178 

[72] Ketjen Black 

60 

NP 

[Li(G3)4][TFS] 0.08 844 
57 [Li(G3)1][TFSI] 0.06 1056 
60 [Li(G4)1][TFSI] 0.08 897 
60 [Li(G4)1][TFSI]/HFE 0.08 1000 

[73] Activated Carbon 35 NP 
C4mpyr-TFSI 0.10 688 
C4mpyr-FAP 0.10 439 
C4mpyr-Otf 0.10 515 

[74] NO 40 NP P1A3TFSI 0.10 1457 

[75] Ketjen Black 60 0.6 

[P13][TFSI] 0.08 808 
[P13][BETI] 0.08 641 
[P14][OTf] 0.08 703 
[P13][FSA] 0.08 967 
[DEME]BF4 0.08 891 
[P14][TFSI] 0.08 642 

[P2225][TFSI] 0.08 589 
[PP13][TFSI] 0.08 349 

[C4dmim][TFSI] 0.08 724 
[DEME][TFSI] 0.08 800 

 

NP:Not provided, P13:N-methyl-N-propylpyrrolidinium, PMIM:1-methyl-3-propyl imidazolium, 
G3:Triglyme, G4:Tetraglyme, HFE:1,1,2,2– tetrafluoroethyl 2,2,3,3–tetrafluoropropyl ether, C4mpyr:1-butyl-
1-methylpyrrolidinium, FAP:tris(pentafluoroethyl)trifluorophosphate, P1A3: n-Methyl-n-Allylpyrrolidinium, 
Otf:trifluoromethanesulfonate , FSA:bis(fluorosulfonyl)amide, BF4:tetrafluoroborate, P14:N-butyl-N-
methylpyrrolidinium, P2225:triethylpentylphosphonium, PP13:N-methyl-N-propyl piperidinium, C4dmim:1-
butyl-2,3-dimethylimidazolium, DEME:N,N-diethyl-N-methyl-N-(2- methoxyethyl)ammonium 

 

Lu et al. used the IL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([EMIM]-[TFSI]) as a co-solvent in Li-S batteries. The effect of the addition of 25, 50, and 

75 vol.% of fluorinated ether to the IL was investigated. The cathodes were prepared using 

sulfur and mesoporous carbon (CMK-3) composite with carbon black conductive additive 

and PVDF binder. The sulfur content and loading of the cathodes were 55 wt.% and 1.6 

mg/cm2, respectively. It was found that there is a synergy between [EMIM]-[TFSI] and 
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fluorinated ether where the low solubility of the PSs in the electrolyte is supported by the 

prevention of PS dissolution into the electrolyte. Hence, it was found that the specific 

capacity of the cells with the IL with 50 vol.% fluorinated ether was 505 mAh/g after 50 

cycles. It was suggested that although this result was promising, the vol.% should be further 

optimized [76]. 

 

Wu et al.  prepared an electrolyte using ionic liquids containing two lithium salts for 

high-performance Li-S batteries. N-methoxyethyl-N-methylpyrrolidinium bis 

(trifluoromethanesulfonyl)imide ([Pyr1,2O1]-[TFSI]) and tri(ethylene glycol)dimethyl ether 

(Tri-EGDME) in a mass ratio of 7:3 was determined to be the best candidate to prevent fast 

capacity decay and low Coulombic efficiency. [Pyr1,2O1]-[TFSI] was preferred due to its 

ability to prevent crystallization, and its high conductivity and Li2Sm solubility. Additionally, 

Tri-EGDME was used as a co-solvent to improve the electrolyte properties further. 

Moreover, binary salts having lithium difluoro(oxalate)borate (LiODFB) and LiTFSI in a 

mole ratio of 6:4 further improves the electrolyte properties; they help the formation of a 

solid electrolyte interface (SEI) layer on the anode and protect both electrodes by preventing 

the PS shuttle mechanism [77].  

 
2.1.5.  Modeling Studies of Li-S Batteries 

 

A one-dimensional (1-D) mathematical model was developed by Kumaresan et al. to 

determine the underlying reactions resulting in two characteristic discharge plateaus of Li-S 

cells. The model was performed for low C-rates, and it was observed that Li+ concentration 

increases up until 14 hours without any Li+ gradient during all stages of discharge. With the 

increase in the sulfide concentration, Li+ concentration tends to decrease. On the other hand, 

at 57.7 hours of discharge, a	𝑆'#" concentration gradient was observed from the separator to 

the cathode, which is attributed to the slower mass transfer rate than the reduction reaction 

kinetics. In addition, it was proposed that the shape of the discharge curve is related to the 

concentration gradients of all the species present in the cathode during discharge. At first, 

solid sulfur present in the cathode starts to dissolve in the electrolyte until it reaches the 

solubility limit, and then it is reduced. During the first hour of discharge, sulfur reduces to 

𝑆$#"	, then	to	𝑆(#"	and	𝑆'#", which corresponds to the end of the first discharge plateau. In 

the second plateau, the 𝑆##" concentration increases, and Li2S starts to precipitate on the 
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carbon surface. The voltage of the proposed reactions coincides with the voltage profile of 

the Li-S batteries [78]. 

 

Marinescu et al. proposed a zero-dimensional model that predicts the discharge and 

charge behavior of Li-S cells. Nernst equation was used to model two electrochemical 

reactions by including the Butler-Volmer kinetics. By taking the precipitation/dissolution of 

𝑆#" into account, the characteristic charge and discharge plateaus of Li-S cells were obtained. 

It was found that the precipitation rate does not affect the discharge capacity, whereas 

dissolution reaction rate can significantly reduce the charge capacity [79]. Fronczek and 

Bessler also used a 1-D model to perform the elementary kinetic modeling and impedance 

simulation by taking 5 precipitation/dissolution and 6 electrochemical reactions, including 

the Li oxidation, into account. It was assumed that the reactions occur only at the electrolyte-

solid interface, and there are no side or degradation reactions. The discharge voltage profile 

was attributed to the variation of the volume fractions of S8 and Li2S [16].  

 

Zhang et al. investigated the effects of electrolyte resistance and precipitation kinetics 

on the voltage loss mechanisms. A lumped model was developed by including 

electrochemical and precipitation reactions, charge transfer kinetics, and morphology 

variations in the model. Electrolyte resistance was found to be at its maximum at the 

transition of the discharge plateaus, and higher electrolyte resistance was obtained at higher 

current densities. Finally, it was found that activation overpotentials are the second main 

reason for high cell resistance in Li-S cells [18]. Al-Mahmoud et al. modeled the PS 

concentration gradients in the cathode and the reaction of PSs with the anode to study the 

effect of electrolyte volume on the self-discharge behavior of Li-S cells [80]. Furthermore, 

Mikhaylik and Akridge and Hofmann et al. quantitatively analyzed the PS shuttle 

mechanism to link the self-discharge, charge-discharge efficiency, and specific capacity of 

Li-S cells [15], [23].  

 

Erisen et al. modeled the effect of carbon-to-sulfur (C/S) and E/S ratios on the 

electrochemical performance of Li-S batteries. This one-dimensional model assumed a 

single electrochemical reaction, hence a single kinetic parameter, cathode exchange current 

density for each of the two discharge plateaus. Using this single kinetic parameter, cell 

voltage at 60 % depth of discharge (DoD) was estimated. It was found that the cell voltage 
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increases significantly with increasing C/S or E/S ratios. It was also suggested that the E/S 

ratio has a major impact on the kinetic parameter [81]. In another study from the same group, 

an electrochemical model taking two electrochemical and two dissolution/precipitation 

reactions into account was proposed [82]. The voltage profile was successfully predicted, 

including the two discharge plateaus and the voltage dip at the end of the first discharge 

plateau. Similar to the previous work, cell voltages significantly improved up to a specific 

value of E/S and C/S ratios, after which the increase was less pronounced [81,82]. 

Abdulkadiroglu et al.  improved this model further by offering a novel definition for the 

cathode electrochemically active area based on carbon weight fraction and a reference 

porosity [83]. 

 

Although there are various studies on the electrochemical modeling of Li-S batteries, 

modeling efforts focusing on the prediction of system-level performance metrics are more 

limited. One of the most important research on material-to-system analysis was performed 

by Eroglu et al. In this work, the system-level energy density and specific energy, together 

with the battery price, were determined as a function of critical cathode design and cell 

parameters. The BatPaC model was taken as the basis to build up the tecno-economic model. 

A 1-D  electrochemical model was developed using the Butler-Volmer kinetics for the anode 

and the Newman and Tobias model for the porous cathode [84]. Based on the cell design, 

the sizing of the battery packs was done. The E/S ratio, C/S ratio, excess Li amount, reaction 

kinetics, and sulfur loading were determined to be the most important factors affecting the 

system-level performance and price of Li-S batteries. According to the results, excess 

amounts of Li, electrolyte, and carbon significantly lower the pack-level specific energy and 

energy density. Moreover, it was found that the electrode loadings should be higher than 8 

mAh/cm2 to have both high energy density and low-cost batteries [65]. This model was 

further improved in recent years by feeding it with experimental results to investigate the 

impact of the E/S ratio [85], C/S ratio [86], and S loading and carbon properties [87]. 

 

Emerce and Eroglu performed a modeling study to determine the effect of E/S ratio on 

cell- and system-level performances. The cell voltage at 60% DoD was predicted using a 1-

D electrochemical model. Previous works have stated that the E/S ratio has a significant 

influence on the cathode specific capacity. Hence, to include this effect in the model, the 

experimental studies reported in the literature were used to obtain a linear empirical equation 
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that takes the PS solubility limit into account. Using this model, E/S ratios were investigated 

in the range of 0-30 mL/g at C/S=0.5 and 0.2C. System-level performance results showed 

that the specific energy and energy density of the cells increase up to E/S=10 mL/g, whereas 

any further increase in the E/S ratio decreases the system-level performance [88]. 

 

Xue et al. emphasized the importance of increasing the volumetric and gravimetric 

energy densities of Li-S cells to be commercialized in practical applications and electric 

vehicles. Hence, a model that can predict both volumetric and gravimetric energy densities 

was proposed, and the effects of various cell variables on them were investigated. The cell 

stack was designed as a sandwich-structured model where one cell consists of double-sided 

Al and Cu current collectors, a Li anode, a sulfur cathode, and a separator. It was assumed 

that the Li metal is non-porous, whereas the porous cathodes contain carbon, sulfur, and 5 

wt.% binder. In addition, 70 wt.% sulfur, 10 mg/cm2 sulfur loading, 30 % cathode porosity, 

and 50 % excess Li amount were assumed for an ideal Li-S configuration. The exact required 

amount of electrolyte to fill the pores of the cathodes was used in the ideal cell. According 

to the model, in the ideal case, Li-S batteries exhibit 720 Wh/kg, whereas LIBs with nickel-

manganese-cobalt (NMC) metal provide 421 Wh/kg. On the other hand, the ideal volumetric 

energy densities were calculated as 1017 and 1300 Wh/L for the Li-S and LIBs, respectively. 

High void fraction and inactive carbon amounts in the cathode, and excess Li metal in the 

anode were the main reasons for having lower volumetric energy densities. It was proposed 

that, in addition to lowering these variables, increasing the sulfur content, loading, and 

utilization will be required to have larger volumetric energy densities [32].  

 

McCloskey carried out a modeling study focusing on the gravimetric and volumetric 

energy densities of Li-S cells having protected Li anodes. The Coulombic efficiency of cells 

can be increased, and the Li dendrite formation can be eliminated by using mechanically 

stable and Li ion conductive solid state membranes. The required separator thickness, 

minimum required E/S ratio, and cost were calculated for Li-S batteries. It was assumed in 

the model that there are not any kinetic or transport limitations. The specific energy was 

simply calculated by multiplying the active material loading, utilization, and average cell 

voltage divided by the volume or mass of all the cell components. It was found that the 

minimum E/S ratio, ideally much less than 11, that can prevent the PS shuttle mechanism 

should be used in Li-S batteries to have higher specific energies than LIBs. Finally, the 
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maximum thickness and cost of a protective separator were found to be 100 µm and $10/m2, 

respectively, for the Li metal anodes to be competitive with graphitic anodes [89]. 

 

Cleaver et al. showed that only 9% of the Li-S literature has focused on cell 

mechanisms and modeling [90]. As mentioned above, most of the modeling work in the 

literature is mainly about understanding the reaction and PS shuttle mechanisms, kinetic 

determination, effects of resistances on the cell voltages, and capacity fading determination 

[15–18].  This shows that the modeling studies compared to the experimental work are still 

limited. In the current literature, modeling studies investigating the cell- and system-level 

performances using material-to-system modeling of Li-S batteries are scarce.   

 

2.2.  Li-O2 Batteries 

  

2.2.1.  Effect of Oxygen Solubility 

 

Kwak et al. worked on the development of new electrolytes for Li-O2 batteries as a 

localized high-concentration electrolyte (LHCE) was used. The standard electrolyte 

consisted of 1 M lithium trifluoromethanesulfonate (LiTf) in tetraethylene glycol dimethyl 

ether abbreviated as G4, while the proposed electrolyte has 0.84 M LiTf with 1,1,2,2-

tetrafluoroethyl ether (OTE) additive salt. The high boiling point and F/H=3 ratio are the 

reason for selecting the OTE salt. First, the importance of low viscosity and stability were 

emphasized in 1 mAh/cm2 capacity limited tests with 0.2 mA/cm2 areal density as LHCE 

electrolyte preserved the capacity for 50 cycles without any loss in voltages. In addition,  the 

effect of oxygen solubility was also emphasized as LHCE’s oxygen solubility was doubled 

with the addition of OTE. In deep discharge experiments with a cut-off voltage range of 2.4-

5.0 V, only LHCE electrolytes retained the capacity for 25 cycles, whereas, without OTE 

additive, the other cells failed even after 2 cycles [91].  

 

In the comprehensive work done by Gittleson, the properties of several electrolytes 

were investigated. Both experimental and molecular modeling studies were performed 

together, and it was found that oxygen transport is a critical parameter for high-performance 

Li-air batteries, and the electrolyte solvent determines oxygen transport. On the other hand, 

oxygen solubility is also critical for battery performance. Oxygen solubility depends on the 
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presence, types, and amounts of ionic species. The performance tests were performed in a 

full cell where carbon gas diffusion layers were used in the cathodes. The highest oxygen 

diffusivity and solubility were obtained for dimethyl sulfoxide (DMSO) electrolytes, which 

also performed better at high current rates for 1 atm dry air [92]. 

  

Xu et al. studied nonaqueous electrolyte properties for lithium/air batteries. 

Specifically, electrolyte polarity, oxygen solubility, viscosity, and ionic conductivity were 

studied in this work. It was stated that triphase regions should be formed where dissolved 

oxygen as active material, electrolyte as Li+ ion source, and the positive electrode matrix as 

electron matrix meet. There are two routes for oxygen transport through the pores of the 

cathode matrix: through electrolytes and through open pores of the matrix, which is several 

orders of magnitudes larger than the former. Hence, the solvent polarity that is linked to 

electrolyte wetting is proposed to have higher importance than oxygen solubility, contrary 

to previous works [93].  

 

Haas et al. discussed the effect of atmospheric gas solubilities in the electrolytes of 

lithium-air batteries. The fact that dissolved CO2, N2, and O2 strongly affect the discharge 

mechanism and the stability of the cells. The gas solubilities were measured by gas uptake 

experiments, whereas the diffusion coefficients were determined by molecular modeling 

simulations. The commonly used ether electrolytes, namely di-, tri-, and tetraglymes, 

together with DMSO solvents, were used, and their viscosity and surface tension properties 

were considered. In addition, the effect of salt presence on the solubilities was also discussed. 

The experiments showed that the electrolytes have the highest solubility for CO2 and the 

lowest solubility for N2 gas, although the electrolytes have slightly higher O2 solubilities. In 

addition, direct linear trends were observed for O2 and N2 solubilities with surface tension 

[94]. 

 

Monroe investigated the effect of oxygen transport on the cell voltages of metal-air 

batteries. The ionic conductivity, electrolyte, and oxygen diffusivity relations were obtained 

using Newman’s concentrated-solution theory and Onsager-Stefan-Maxwell transport 

equations. Two new properties were defined in this work: the migration coefficient, which 

is the relation between ionic and oxygen fluxes, and the cross-diffusion, which shows the 
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relation between salt gradients and oxygen flux. It was stated in this work that the oxygen 

gradients in metal-air cells have an influence on the nominal voltage [95].    

 

Sergeev et al. studied the effect of both cathode and electrolyte properties on the 

lithium-air battery properties using a numerical computational method. Oxygen diffusivity, 

discharge product precipitation, and pore filling of the cathodes were taken into 

consideration in the model. The positive electrodes were modeled as two neighboring 

phases: the electronically conductive porous matrix and electrolyte for ion and oxygen 

sources. The pores were assumed to be fully flooded by the electrolyte, and oxygen 

solubilities were assumed to be constant. The side reactions and surface passivation by 

deposition of insulating discharge product were discarded.  Three electrolyte solvents, 

namely acetonitrile, DMSO, and DME, and the effect of electrode material densities were 

investigated. Fast oxygen diffusivity, stability of the electrolytes, and porous cathodes 

having short oxygen diffusion paths were identified as critical to having high-performance 

metal-air batteries [96].  

 

2.2.2.  Effect of Positive Electrode Materials and Design 

 

The positive electrodes of metal-air batteries suffer from sluggish kinetics, resulting 

in ORR/OER overpotentials and mass transfer limitations. Hence, cathode materials that 

have intrinsic activities and pore structures are essential to increase round-trip efficiencies, 

Coulombic efficiencies, and cycle lives of metal-air batteries. According to the literature, 

since aqueous and non-aqueous batteries have different reaction mechanisms, the catalysts 

of the air electrodes should be designed according to the electrolyte choice. In non-aqueous 

electrolytes, redox reactions involve two electrons where Li2O2 is formed as the discharge 

product. Carbon materials were excessively used in the literature earlier, but new polar 

materials having precious metals or transition metal-oxides are more popular in recent years 

due to better OER/ORR kinetics [97]. Gao et al. developed the Co3O4 electrocatalysts on the 

silver support as a yolk-shell structure using a synchronous reduction technique. Active sites 

were introduced in the interface of the Ag-Co3O4 due to the tuning in electronic structure. In 

addition, the flower-like Ag structure has high electrical conductivity and a larger surface 

area. This cathode showed excellent specific capacity, which is 12,000 mAh/g at 200 mA/g 

current rate, dropping to 4700 mAh/g at 800 mA/g currents based on the cathode mass [98].  
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Li and Manthiram investigated the single, decoupled, and mixed air electrode 

configurations on the performances of Li-air batteries. In the decoupled configuration, 

NiCo2O4 nanoflakes on nickel foam and Pt/C composite on carbon-fiber paper were used 

separately as the OER and ORR catalyst electrodes, which are switched during charge and 

discharge, respectively. In the mixed structure, although two different layers were used, there 

is not a switch and the current collectors of the two layers are connected. On the other hand,  

the classical way single-layer structure, both NiCo2O4 and Pt/C, were grown onto a single 

carbon-fiber layer. The decoupled electrodes showed better performances, and they had high 

stability. Switching between the electrodes prevented the high voltages of the ORR layer, 

hence resulted in better stabilities [99].  

 

Peng et al. studied the ratio of Co3O4/Graphene as air electrodes in an aqueous/aprotic 

hybrid electrolyte. The composites with 33.7 wt.%, 48.2 wt.%, and 62.5 wt.% of 

Co3O4/Graphene were synthesized by a facile hydrothermal method. Afterwards, the catalyst 

inks were prepared by mixing the composites and PVDF binder in the N-methyl-2-

pyrolidone (NMP) solution, and dropped into carbon clothes. The catalyst loading was set 

to around 1 mg/cm2. The moderate Co3O4 loading was found to be more effective in terms 

of homogenous distribution over graphene and better balance on the catalytic versus 

electronic conductivity abilities [100]. Azuma et al. utilized lithium bromide as a redox 

mediator, which is defined as molecules having redox potentials pretty close to 2.96 V, 

which is the OCV of lithium-air batteries. The role of a redox mediator is to enable the 

oxidation of the discharge product of Li2O2 at lower charging voltages. In this study, the 

effect of lithium bromide coating on carbon nanotube electrodes was investigated as the air 

electrodes. These electrodes increased the capacity to 4 mAh/cm2, which is almost 2-fold 

higher than LIBs and a 3-fold higher cycle life [101].  

 

2.3.  Machine Learning for Beyond Li-ion Batteries 

 

This section is part of a review article published by authors A. Kilic, B. Oral, D. 

Eroglu, R. Yildirim. The reviewing part was done by A. Kilic and B. Oral together, whereas 

the text-mining section of the article was performed by A. Kilic [9].  
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2.3.1.  Machine Learning in LIB Research 

 

The rechargeable energy storage materials and systems have been investigated more 

extensively in recent years with the increasing use of portable devices and growing demand 

to utilize renewable electricity in these devices and transportation. As expected, the 

application of ML, which is another increasingly popularized field, in energy storage 

systems like LIB [102], flow batteries [103–105], supercapacitors [106],  and other 

rechargeable batteries such as nickel–metal hydride batteries [107] has been also increased 

in the last few years. In this thesis, we extensively used ML techniques for both Li-S and Li-

O2 batteries; hence the literature survey on the ML application of rechargeable batteries was 

provided in this section. 

 

2.3.1.1.  State of Charge and Health Prediction for Li-ion Batteries. Most of the ML works 

in literature are related to LIBs, as the already commercialized and extensively used system, 

and a significant part of these works are on the real-time data modeling and state of charge 

and health prediction to develop better-functioning battery systems in complicated devices 

[108–111]; numerous papers, including reviews, on the use of ML to correlate various 

features (like voltage, current, temperature, capacity) with state of health (SOH) indicators  

(i.e. capacity decrease, internal resistance increase) have been published in recent years  

[108], [112]. Various methods such as feedforward artificial neural networks (ANN), 

recurrent ANN algorithms, classification and regression algorithms, and probabilistic 

algorithms were used for this purpose [113]. Considering that a large number of publications 

have covered SOH studies, and we intended to focus on beyond LIBs more, we will not 

discuss this subject further; instead, we discuss the material and manufacturing related 

works, which are also relevant for beyond LIBs, in more detail below and move to the new 

battery technologies. 

 

2.3.1.2.  Machine Learning in Li-ion Battery Materials and Manufacturing. The remaining 

ML works on LIBs are mostly related to the properties or performance of electrode and 

electrolyte materials; as is true for the other fields, ML is very helpful to establish structure-

property-performance relations of materials and to discover new materials with specific 

properties. Both experimental and computational (mostly generated by density functional 

theory (DFT)) data were used in these works; while some of the data were generated by the 
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researchers themselves, the use of data extracted from various material databases has also 

become more popular in recent years as these databases provide more accurate data for 

increasing number of materials with an easier access and retrieval of data. For example, 

Maphanga et al. used deep learning algorithms to estimate the voltage of 4369 DFT-

computed structures acquired from the Material Project [114]; they used linear regression 

(LR), support vector machine (SVM), deep neural network (DNN), RF, and k-Nearest 

neighbour (kNN) algorithms with 15 features such as crystal lattice type, space group, 

volume, etc. Wang et al., on the other hand, showed that, for doped spinel LIB cathodes, the 

discharge performance can be predicted, and the influential material properties can be 

identified by various ML algorithms (SVM, DNN, decision tree (DT), RF, gradient boosted 

tree (GBT), least absolute shrinkage and selection operator (LASSO), and ridge regression 

(RR)) [115].  

 

There are also works that involve the characterization of electrodes, such as Li 

intercalation to graphite electrodes using ANN [116], the analysis of 3-D tomography 

images to investigate the microstructures [117] and deformations [118] of cathode materials, 

the classification of microstructures leading to thermal runaways [119],  analysis of X-ray 

absorption near-edge structure spectra to determine electronic and atomic structures of the 

positive electrode [120] and analysis of 3-D image data from electron backscatter diffraction 

to determine the intra-particle grain morphologies [121]. Similarly, ML was used to study 

the properties of electrolytes [122–124] and to optimize the electrolyte composition [125].  

 

ML has also been used in the manufacturing process of LIBs for analyzing 

manufacturing parameters and end-product quality [126–130]. Kolodziejczyk et al. used 

convolutional neural networks and the finite element method to determine the thermal 

properties of Li-ion battery packs by analyzing 2000 images [131]. Wu et al. developed ANN 

to predict the specific capacity and power using six controllable manufacturing variables 

[132]. The optimization of cathode slurries [133] and the determination of the mass load of 

electrodes by SVM [134]  were also studied in the literature. Some representative works on 

ML applications for LIBs are summarized in Table 2.2; we grouped the publications in terms 

of cell elements (electrodes represent the works involving both electrodes, while the studies 

involving only the negative or the positive electrodes are presented as different classes).   
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Table 2.2.  ML for LIBs. 
Battery 
Component Objective Data Source & 

Number 
ML 
Algorithms 

Both 
Electrodes 

Prediction of voltages of various battery materials 
[135] MP (DFT), 4369 DNN, kNN, 

LR, RF, SVM 
Prediction of redox potentials of organic materials 
[136] DFT, 108 ANN, GBR, 

KRR, LASSO  
Design of new molecular electrode materials with 
guessed redox potentials [137] DFT, 114 ANN 

Prediction of local diffusion barrier [138] DFT, 48 LR, LASSO 
Classification of specific MXene chemical formula 
and prediction of electrochemical properties [139] DFT, 360 RF 

Positive 
Electrode 

Prediction of discharge capacities of lithium 
manganese oxide spinel systems [115] 

Experimental, 
100 

DT, GBM, 
LASSO, RF, 
RR, SVM 

Prediction of electronic conductivities of spinel 
structures and classification based on conductivity 
[140] 

Experimental, 
304 XGBoost 

Designing the mesoscale porous structures of 
electrodes [141] 

High-
throughput 
physicochemical 
model, 2100 

ANN with 
Bayesian 
optimization 

Prediction of cathode crystal system [142] DFT,339 ANN,  ERT, 
kNN, RF, SVM 

Prediction of voltages of various materials [143] DFT, 12 962 Behler–
Parrinello NN 

Design and discovery of new doped lithium nickel-
cobalt-manganese (NCM) oxide cathodes [144] 

Experimental, 
168 

GBM, kNN, 
KRR, RF, SVM 

Prediction of diffusion energy barrier of quantum 
cathode materials for fast charging electrodes [145] DFT, 7385 KRR, MLP, 

SVM 
Prediction of Li-ion insertion voltages of organic 
electrode materials [146] DFT, 1001 ANN 

Prediction of the initial capacity, capacity retention 
rate, and amount of residual Li for Ni-rich cathode 
materials [147] 

Experimental, 
330 

DT, ERT, MLP, 
RF, RR, SVM 

Prediction of redox potentials of organic redox 
compounds [148] 

Experimental, 
6000 RF 

Negative 
Electrode 

Modeling of the energetics of lithium intercalation 
into graphite [116] DFT, 9189 ANN 

Development of Li-intercalated metal-organic 
frameworks (iMOFs) [149] 

XRD image, 
2751 RF 

Identification of outlier structures and their use in 
anionic reactions via band-gap structure relations 
[150] 

MaterialGo 
database, 4000 GBR 

Prediction of redox potentials of electrolyte additives 
[151] DFT,149 GBR, KRR 

Electrolyte 

Prediction of electrolyte infiltration in porous NMC 
electrodes [122] 

3D-
Tomography 
image 

MLP 

Prediction of redox potentials of electrolyte additives 
[123] DFT, 149 GPR 

Prediction of coordination energy of electrolytes 
[124] DFT, 103 LR, GPR 

Optimization of aqueous electrolyte mixtures [125] Experimental, 
251 

Bayesian 
optimization 

Prediction of the refractive index and viscosity of 
ionic liquids [152] 

Various studies, 
5884 XGBoost 
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Table 2.2.  ML for LIBs. (cont.) 
Battery 
Component Objective Data Source & Number ML Algorithms 

Separators Classification of separators to detect defects 
[153] Surface image, 746 DT 

 

KRR: Kernel ridge regression, ERT: Extreme regression tree, NN: Neural network, MLP: Multilayer 
perceptron, GPR: Gaussian process regressor 

 

2.3.2.  Machine Learning in Beyond LIBs 

 

As we mentioned above, ML applications in LIB research typically involve the state 

of charge and health prediction, material screening, and property or performance 

prediction. Since the general structure (anode, cathode, electrode, etc.) of the beyond LIBs 

is the same as the LIBs, the ML applications are also similar (except for SOH predictions, 

for which the new technologies are not at that stage yet). From another perspective, we can 

say that ML studies for the beyond LIBs, as the experimental works in the field, practically 

aim to develop solutions to the shortcomings of these batteries such as searching alternatives 

for liquid electrolytes, solving problems like dendrite formation in Li metal anodes or the 

PSM in sulfur cathodes, or identifying the structural and electrochemical properties required 

for good intercalation or conversion kinetics.  

 

2.3.2.1.  Search for New Electrodes. Indeed, ML has been widely used for the search of 

compatible materials and predictions of their properties for univalent [154–157] and 

multivalent [158–160] metal-ion, metal-air [48], [161,162] and Li-S [163–165] batteries. For 

example, Joshi et al. developed a web accessible tool to predict the voltages of electrode 

materials for sodium-ion (Na-ion) and potassium-ion (K-ion) batteries using ML (DNN, 

SVM, and KRR algorithms) [166]; they used a dataset containing 3977 intercalation-based 

electrode materials from the Materials Project (MP) [114] and 80 features obtained by 

principle component analysis of 237 features (like active metal concentration, crystal lattice 

details, space group numbers, and elemental properties). In another example, we used a 

dataset with 1660 points constructed from the published works to analyze the factors 

affecting the discharge capacity and cycle life of Li-S batteries [43].  Electrolytes (both 

liquids and solids) have also been studied extensively to improve the safety and performance 

of LIBs [167,168] as well as to identify the best electrolyte alternatives for the new battery 

systems [169]. Jeschke et al. classified Li−S battery electrolytes as either salt-in-solvent, 
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solvent-in-salt, or solvate IL electrolytes using various classifiers such as k-nearest 

neighbors and support vector machines. Additionally, a regression model was trained to 

predict the solubility of PSs in these electrolytes. They combined DFT and statistical 

mechanics (COSMO-RS) to achieve a quantitative structure-property relationship model for 

55 electrolytes containing binary and ternary mixtures of solvents and different Li salts 

[170]. The SEI is another topic of interest in the computational approach in next-generation 

batteries. For instance, Ishikawa et al. studied the ion transfer at the electrolyte/electrode 

interface by creating a predictive model for the coordination energy of five alkali metal ions 

(Li, Na, K, Rb, and Cs) to the electrolyte solvent using LR, LASSO, and MLR regression 

methods;  they used the properties of the cation and the solvent for this purpose.  

 

Table 2.3. ML for beyond LIBs. 

Battery  Subject Data Source & 
Number 

ML 
Algorithms 

Li-S 

Prediction of the discharge capacity and cycle life 
[43] Experimental, 1660 ARM 

Prediction of the binding energy of sulfur hosts [163] DFT, 3295 TL 
Screening of supported single-atom catalysts via 
investigation of the pattern of PSs adsorption [164] DFT, 812 CGCNN 

Screening of an AB2-type sulfur host material [165] DFT, 1320 XGBoost 
Classification of different electrolytes and prediction 
of PS solubility [170] COSMO-RS, 40 kNN, MLR, 

NB, RF, SVM 
Assessment of the critical materials and cell design 
factors for Li-S batteries using IL electrolytes [171] Experimental ,207 ARM 

Li-air 

Prediction of performance based on capacity [48]  ARM, DT 
Prediction of the solvent effect [162]  ANN 
Analysis of pore size distribution [172]  RF 
Prediction of electrophilicity and nucleophilicity 
[173]  ANN, LASSO 

Na-ion 

Prediction of Na-ion diffusion energy barrier [155]  DT, GPR, 
KRR, SVM 

Screening of anodes for sodium-ion batteries [174]  DT, kNN, RF, 
SVM 

Real-time prediction of battery life and failure [175]  CNN, MLP, 
SVM 

Prediction of discharge capacity and cycle life[176]  DT, RF 

K-ion 
Prediction of crystal stability [157]  RF 

Prediction of capacity [177]  ERT, KRR, 
SVM 

Zn-ion Prediction of cathodes with high capacity and high 
voltage [160] 

MP and Aflow 
(DFT), 13 000 CGCNN 

Mg-ion 
Prediction of average voltage, gravimetric capacity, 
volumetric capacity, specific energy, and energy 
density [178] 

 RF 

Other 
uni- and 
multi-
valent 

Prediction of voltages [154]  DNN 

Prediction of electrical property [159]  XGBoost 
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Table 2.3. ML for beyond LIBs. (cont.) 

Battery  Subject Data Source & 
Number ML Algorithms 

Other 
uni- and 
multi-
valent 
metal-ion 

Prediction of average voltages and volume 
change upon charging and discharging of 
electrode materials [166] 

 DNN, KRR, SVR 

Calculations of the coordination energy [179]  MLR, LASSO 

Solid 
state 

Conductivity prediction of polymers [180]  GBT 
Na and Li-based SICON compounds [181]  LogR 
Conductivity prediction of ternary crystals 
[182]  GPR 

Conductivity prediction of Li-ion conducting 
ceramics [183]  ANN, RF 

Classification of the ionic conductivity of 
doped LLZO [184]  GBT,  RF, SVM 

Prediction of the Li-ion conductivity and 
phonon-free energy [185]  GPR 

Prediction of the mechanical properties of Na-
solid state electrolytes [186]  GBT 

Design of solid–electrolyte-interphase [187]  ERT 
Calculation of bond valence [188]  RF 
Prediction of the mechanical properties of Li-
ion conducting solid-state electrolytes [189]  GBT 

Discovery of novel Li-ion conducting solid 
state electrolyte [190]  GBT, RF 

Investigation of manufacturing conditions on 
the quality of solid-state electrolytes [191]  k-means, SVM 

Prediction of ionic conductivity for solid-state 
electrolytes [192]  GBT, kNN, LogR, RF, 

SVM 

Prediction of activation energy [193]  Partial least squares 
regression 

Screening of inorganic solid electrolytes for 
suppression of dendrite formation [194]  CGCNN 

Clustering of Raman map for polymer 
composite electrolytes [195]  k-means 

Investigation of pore formation [196]  CNN 
 

CGCNN: Crystal graph convolutional neural network, TL:transfer learning, NB: Naïve Bayes, CNN: 
convolutional neural network, LogR: Logistic regression 

 

2.3.2.2.  Search for Solid-State Electrolytes. Solid-state electrolytes received special 

attention in battery research, including ML applications in all Li batteries [197]. For 

example, Ahmad et al. screened inorganic solids (both isotropic and anisotropic interfaces) 

based on their ability to suppress the dendrite formation when in contact with the Li metal 

anode. They predicted 20 mechanically anisotropic interfaces between the Li metal and four 

solid electrolytes; elastic constants of the cubic materials and the shear and bulk moduli of 

the crystalline solid electrolyte materials were projected by gradient boosting, KRR and 

CGCNN, respectively  [194]. In another work, Jo et al. predicted the mechanical properties 
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of Na-conducting solid-state electrolytes for 12361 materials from the Material Project 

database using GBT [198]. The ML works on the beyond LIBs are summarized in Table 2.3. 

The table is organized according to the battery type; this seems to be a more relevant 

classification to see the trends in new battery technologies. We list the representative works 

related to the solid-state batteries as a separate group in the table, considering that those 

works represent a new direction in electrolyte search that may apply to all battery types.   
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3.  MATERIALS AND METHODS 
 

 

In this chapter, all the details about the experimental techniques, system-level 

performance model, and ML techniques are given in sections 3.1, 3.2, and 3.3, respectively.  

 

3.1.  Experimental Work  

 

The experiments were carried out for only Li-S batteries, and their electrochemical 

performances were tested. CR2032 coin cell fabrications were carried out for all of the cases. 

The summary of the experimental procedure is presented in Figure 3.1. 

 

 
 

Figure 3.1. The summary of the experimental procedure. 
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3.1.1.  Chemicals and Materials 

  

All the chemicals used in the experiments are listed in Table 3.1. The material purposes 

are also given in the table. 

 

Table 3.1.  The materials used in the construction of Li-S cells. 
Material Function Source 
Carbon Black (Super C65) Cathode conductive material MTI 
Sulfur Cathode active material Sigma Aldrich 
PVDF Cathode binder MTI 
Ketjen Black (EC-600J) Cathode conductive material Nanografi 
NMP Cathode solvent MTI 
Aluminum foil (15 µm) Cathode current collector MTI 
Copper foil (25 µm) Anode current collector MTI 
Lithium metal foil (170 µm) Anode MTI 
DOL Electrolyte solvent Sigma Aldrich 
DME Electrolyte solvent Sigma Aldrich 
LiNO3 Electrolyte salt Sigma Aldrich 
LiTFSI Electrolyte salt Sigma Aldrich 
Polymer film (25 µm) Separator Celgard 
1-butyl-3-methyl-imidazolium 
hexafluorophosphate ([BMIM]-[PF6]) 

IL as electrolyte solvent Iolitec (99.5 % purity) 

1-butyl-3-methyl-imidazolium 
trifluoromethane-sulfonate ([BMIM]-
[CF3SO3]) 

IL as electrolyte solvent Iolitec (99.5 % purity) 

1-butyl-3-methyl-imidazolium 
methylsulfate ([BMIM]-[MeSO4]) 

IL as electrolyte solvent Iolitec (98 % purity) 

Tributylmethylammonium 
bis(trifluoromethane)sulfonimide 
([TBMA]-[TFSI]) 

IL as electrolyte solvent Iolitec (99 % purity) 

[DEME]-[TFSI] IL as electrolyte solvent Iolitec (99 % purity) 
[PP14]-[TFSI] IL as electrolyte solvent Iolitec (99 % purity) 

 

3.1.2.  Experimental Details for Selection of Ionic Liquid Electrolytes for High-

Performing Lithium-Sulfur Batteries: An Experiment-Guided High-Throughput 

Machine Learning Analysis 

 

3.1.2.1.  Cathode Formation. The composite cathode was prepared using the melt-diffusion 

strategy. First, sulfur and carbon black (Timcal Super C65, MTI) were mixed with mortar in 

70:30 mass ratios for a few minutes and stayed in a vacuum oven at 155 ◦C for 12 hours. 

After the heat treatment, some of the sulfur evaporated and the final sulfur amount of the 
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resulting composite was 65.3 wt.%, which is determined by thermal gravimetric analysis 

(TGA). The cathode powder was prepared by mixing 70 wt.% of this composite with 20 wt. 

% of additional carbon black (C65) and 10 wt.% PVDF and the slurry was obtained using 

NMP solvent. The NMP to solid ratio is generally 5 to 6 by mass to obtain honey-like 

viscosities after overnight mixing. Using the doctor-blade method, the slurries were pasted 

onto aluminum foil and dried overnight. Finally, the cathodes were punched into the 

cathodes with  2.01 cm2 areas and  approximately 2 mg/cm2 sulfur loadings and around 80 

µm thicknesses. 

 

3.1.2.2.  Coin Cell Fabrication. After the cathode formation, the rest of the steps were carried 

out inside MBraun Labstar Glovebox with oxygen and water levels below 0.5 ppm. To test 

the performances of the selected six ionic liquids, two-electrode CR2032 Li-S coin cells 

were prepared using pure lithium metal  as the anode, a polymeric Celgard separator and the 

composite cathode. As the electrolyte, mixed electrolytes containing 25 vol.% IL and 75 

vol.% organic solvent were used. All the electrolyte components were directly used without 

further treatments. First, the organic electrolyte was prepared by mixing equal volumes of 

DOL:DME (1:1 vol.%) solvents containing lithium salts as 1 M LiTFSI and 0.1 M LiNO3.  

 

Table 3.2. The experimental details of Section 4.1.3. 
Encapsulation Material Carbon Black (C65) 

Encapsulation Condition C65/S (30/70 wt.%) at 155 °C for 12 h in 
vacuum 

Final Cathode 
Composite 

Encapsulation C65/S, 70 wt.% 
Conductive C65, 20 wt.% 
Binder PVDF, 10 wt.% 

Final S wt. % 65.3 x 0.7 = 45.7 wt.% 
Sulfur Loading  1 and 2 (mg/cm2) 

Electrolyte 
(IL:Organic= 
25:75 vol%) 

Organic 
DOL:DME containing 1 M LiTFSI and 0.1 
M LiNO3 

IL 

BMIM- PF6 
BMIM-CF3SO3 
BMIM-MeSO4 
PP14-TFSI 
DEME-TFSI 
TBMA-TFSI 

E/S Ratio  13 mL/g 
Current Rate 0.1C and 0.5C 
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The ILs were obtained from Iolitec company used without further treatment. The 

selected ionic liquids were: BMIM cation coupled with PF6, CF3SO3 and MeSO4   anions, 

and TFSI anion paired with PP14,  DEME and TBMA cations. Hence, 6 ILs were tested 

experimentally.13 mL/g E/S ratio was used in all the cells. The cells rested at OCV for 16 h 

to stabilize the cells and to properly wet the cathodes. For cycling experiments, the current 

was decided according to the selected current rate, in other words, C-rate, which was 

calculated using the theoretical capacity of the sulfur. 0.1C is the typically used C-rate, which 

is the current for 10 hours of discharge theoretically. So, for 0.1C rate for 1 g sulfur-loaded 

cathode, the corresponding current is 167.5 mA. Accordingly, the cells were cycled at a 

constant current for at least 100 cycles to observe cycling performances. The experimental 

variables were summarized in Table 3.2. 

 

3.1.3.  Experimental Details for MOF/Graphene Nanoplatelet Composite Increases 

Rate Performance of Lithium-Sulfur Batteries 

 

3.1.3.1.  Synthesis of UiO-66/GNP and UiO-66/GNP-S Composites. The metal-organic 

framework (UiO-66) presented in Section 4.1.4. was developed by Prof. Şahika Sena 

Bayazit. A facile hydrothermal method was used for the synthesis of UiO-66 and UiO-66-

based materials. An equimolar amount of zirconium chloride (ZrCl4, Sigma Aldrich, purity 

≥99.5 %) and terephthalic acid were mixed to synthesize UiO-66. Afterward, graphene 

nanoplatelets (GNP, XG Science, purity ≥99.5 %) were added to the solution. GNP to ZrCl4 

amount was set to 9:1, 7:3, and 5:5, and the samples were defined as UG-1, UG-3, and UG-

5, respectively. HCl (Merck Co., 37 %) was added dropwise into the solution, and then the 

solution was put into a hydrothermal autoclave. The hydrothermal reaction was placed at 

120 °C for 16 h. The as-prepared composites were cooled down and washed with 

dimethylformamide (Sigma Aldrich Co. ≥99.5 %) and ethanol. The final drying was 

performed in a vacuum at 60 °C.  

 

The encapsulation of sulfur with these composites was done using the standard melt-

diffusion method, where the composites (UG-1, UG-3, and UG-5) were mixed with sulfur 

at a ratio of 30:70 wt.% using a mortar and pestle for five minutes. Finally, the powder was 

placed in a vacuum oven at 155 ºC for 12 h. UiO-66/GNP/S composites prepared by 
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incorporating sulfur into UG-1, UG-3, and UG-5 were named UGS-1, UGS-3, and UGS-5, 

respectively. The sulfur contents in UGS-1, UGS-3, and UGS-5 composites are 57.33, 61.15, 

and 68.79 wt.%, respectively, determined by elemental analysis (given in Appendix D, in 

Table D.1). To compare the results, GNP-S and UiO66-S composites were prepared by the 

same strategy, and their sulfur contents are 66.3 wt.% for the former and 49.4 wt.% for the 

latter, measured by TGA (Figure D.1).  

 

3.1.3.2.  Material Characterization. TGA was performed from room temperature to 500 °C 

with a 5 °C heat ramp under a nitrogen atmosphere. In addition, elemental analysis was used 

to determine the sulfur content in UG composites using Thermo Scientific Flash 2000. 

Scanning electron microscopy (SEM) images were taken using Quanta FEG 250, FEI 

Company, Netherlands, to observe the morphology changes. Fourier transform infrared 

spectroscopy (FTIR) and X-ray diffraction spectroscopy (XRD) were also applied to UiO-

66/GNP surfaces. The crystal patterns of the composites were determined by XRD with 

Rigaku D/Max-2200 diffractometer (Cu Kα radiation with λ = 0.15418 nm). FTIR scans 

were applied by the KBr method with Bruker Alpha spectrometer. Finally, the surface areas 

and the pore sizes of the composites were determined by Brunauer-Emmett-Teller (BET) 

analysis using Micromeritics 3Flex Surface Characterization Analyzer. 

 

3.1.3.3.  Cell Preparation and Electrochemical Characterization. The sulfur cathodes were 

prepared using the synthesized UGS composites, carbon black (Timcal Super C65, MTI), 

and PVDF binder with 70:20:10 weight % ratios mixed in the NMP solvent. The electrode 

thicknesses were adjusted using doctor blades, and the cathode slurry was pasted on 

aluminum foil (15 µm thick, MTI) to get sulfur loadings of 1 mg/cm2 and 2 mg/cm2 with a 

cathode area of 2.01 cm2. The dried cathode, the polymeric separator (25 µm thick, 3.1 cm2 

area, MTI), and the pure lithium metal anode (170 µm thick, 2.01 cm2 area, MTI) were used 

in the preparation of two-electrode CR2032 coin cells. A mixture of DOL:DME (1:1 vol.%) 

containing 1 M LiTFSI and 0.1 M LiNO3 was used as the organic electrolyte in all cells. 

The E/S ratio was set to 13 mL/g in all experiments. Afterwards, the electrochemical 

measurements were performed using these coin cells after resting for 16h at open cell voltage 

to stabilize cell voltage and to let the electrolyte perfectly wet the cathodes. The galvanostatic 

cycling and rate capability experiments were carried out in battery cyclers (Neware) at 0.1C 
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and 0.5C for 1.7-3.0 V voltage window, which are adjusted considering 1675 mAh/g as the 

theoretical capacity of sulfur. In addition, the rate capability tests were also employed to see 

how the cells perform under high currents and to determine if they can recover their 

capacities even after high current rates. Hence, the currents were set to 0.1C, 0.2C, 0.5C, 1C, 

0.2C, 0.5C, and 0.1C in sequence for five cycles. The experimental details were given in 

Table 3.3. 

 

Table 3.3. The experimental details of Section 4.1.4. 

Encapsulation Material UG-1 UG-2 UG-3 

Encapsulation Condition UG/S (30/70 wt.%) at 155 °C for 12 h in vacuum 

Final 
Cathode 
Composite 

Encapsulation UGS, 70 wt.% 

Conductive Carbon black (C65), 20 wt.% 

Binder PVDF, 10 wt.% 

Final S wt. % 57.33x0.7=40.1 61.15x0.7=42.8 68.79x0.7=48.2 

Sulfur Loading  1 and 2 (mg/cm2) 

Electrolyte DOL:DME containing 1 M LiTFSI and 0.1 M LiNO3 

E/S Ratio  13 mL/g 

Current Rate 0.1C ,0.5C and rate capability 

 

3.1.3.4.  Polysulfide Adsorption Test. The adsorption capacities of the prepared composites 

were visually detected by the color change of the polysulfide solution. The polysulfide 

solution was prepared by mixing a 1:5 molar ratio of S8 and Li2S in DOL:DME (1:1 vol.%) 

solution for 24h; the final solution contained 10 mM of Li2S6. The adsorption abilities were 

tested in mixtures containing 20 mL of the polysulfide solution with 10 mg of the prepared 

UG-1, UG-3, and UG-5 composites. After continuous stirring for 2 hours, the polysulfide 

solutions rested, and the color change was observed. 

 

3.2.  System-Level Performance Model  

 

After finishing the experiments and getting the discharge capacities, average voltages, 

and cell resistances, system-level performance models were used by following the steps 

shown in Figure 3.2. This model is based on the BatPaC model developed by Argonne 

National Laboratory for LIBs [199]. BatPaC model developed for LIBs was modified for Li-
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S batteries. Depending on the experimental results, the model calculates the required cell 

thicknesses, areas, and specific areal capacities. According to these calculations, every 

component in a Li-S pack was determined and sized by the model. Hence, the system-level 

performances were calculated as the final outputs of the model using the masses and volumes 

of all components in Li-S battery packs.  

 

 
 

Figure 3.2. Summary of the system-level modeling. 

 

The model reported in this section was originally developed by Eroglu et al. and 

utilized in this thesis to represent the system-level performances [65]. The model description 

reported here was published as an original research article in the International Journal of 

Energy Research by authors A. Kilic, Prof. R. Yildirim, Prof. D. Eroglu [44].  

 

3.2.1.  1-D Electrochemical Model 

 

For developing the system-level performance model, first a 1-D electrochemical model 

of the Li-S cell predicting the current-voltage relationship for each charge-transfer step was 

proposed. This model calculates the cell voltage by taking the anode, porous separator, 

cathode, and both positive and negative current collectors into account. This concentration-
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independent, 1-D model calculates the overpotential and area specific impedence (ASI) of 

the individual components at a specified degree of discharge as illustrated in Figure 3.3.  

 

The sulfur cathode is assumed to be a porous structure consisting of sulfur, carbon, 

binder, and electrolyte. In addition, it was assumed that there is only one reaction taking 

place in each discharge plateau as shown  
1
4 𝑆$

) + 𝑒" ↔
1
2𝑆'

#", (3.1) 

……… .…
1
4 𝑆'

#" + 𝑒" ↔	
1
2 𝑆

#" +
1
4𝑆#

#".  (3.2) 

 

 
 

Figure 3.3. Summary of the electrochemical modeling for all cell components. 
 

For the calculation of the cathode overpotential, the porous electrode model developed 

by Newman and Tobias was used [84], where either Tafel or linear kinetics is applied 

depending on the current density. For Tafel kinetics, |𝐼| > 𝑎𝑖),+,𝐿+, criteria was used and 

the overpotential is calculated as  
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… .……𝜂+, =
1
𝛽 N
(𝛿 − 𝜖) P

𝜖
𝛿 +

2
𝛿 ln sec

(𝜃 − 𝜓)V +
2𝜖
𝛿 ln sec𝜓 + ln	(

2|𝐼|𝜃#

𝑎 W, (3.3) 

whereas the cathode overpotential for Linear kinetics, |𝐼| < 𝑎𝑖),+,𝐿+,,  

……………𝜂+, =
𝐼 × 𝐿+,

𝜅,-- + 𝜎,--
\1 +

2 + ].!""
/!""

+	 /!""
.!""

^ cosh 𝜐

𝜐 sinh 𝜐 a, 

 

(3.4) 

where the ASI is calculated from 

𝐴𝑆𝐼+, =
𝜂+,
𝐼 . 

(3.5) 

 

The oxidation of lithium takes place in the anode during discharge, and the Butler-

Volmer equation is used to calculate its kinetics as shown  

……… . 𝐿𝑖) 	⟶ 	𝐿𝑖! +	𝑒", (3.6) 

……… . 𝐼 = 	 𝑖0,%, Pexp ]
𝛼%,,1𝐹
𝑅𝑇 𝜂%,^ − exp ]

−𝛼%,,2𝐹
𝑅𝑇 𝜂%,^V, (3.7) 

……………		…𝐴𝑆𝐼%, =
𝜂%,
𝐼 . (3.8) 

Ohm’s law is used to calculate the separator resistance and its overpotential with  

………..𝜂3,+ = 𝐴𝑆𝐼3,+ × 𝐼, (3.9) 

… . 𝐴𝑆𝐼3,+ =
𝐿3,+

𝜅3,+,,--
. (3.10) 

The ASI shown in Equation (3.9) and Equation (3.10), is taken as 0.0002 ohm and 0.0005 

for negative and positive current collectors, respectively, where the area is 470 cm2 for both 

and the overpotentails are calculated using 

……… . 𝜂22" = 𝐴𝑆𝐼22"𝑥	𝐼, (3.11) 

……… . 𝜂22! = 𝐴𝑆𝐼22!𝑥	𝐼. (3.12) 

 

After the total cell overpotential is calculated, cell voltage at constant current density 

is determined by  

……… . . 𝑉2,44 = 𝑈025,+ − 𝜂2,44 , (3.13) 

………………………………𝜂2,44 = 𝜂%, + 𝜂3,+ + 𝜂+, + 𝜂22" + 𝜂22!, (3.14) 

………………………………….𝐴𝑆𝐼2,44 = 𝐴𝑆𝐼%, + 𝐴𝑆𝐼3,+ + 𝐴𝑆𝐼+, + 𝐴𝑆𝐼22" 

……															+ 𝐴𝑆𝐼22!. 

(3.15) 
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Basically, it is calculated using Equation (3.13) by subtracting the total overpotential, 

Equation (3.14), from the thermodynamic cell voltage where total impedance is calculated 

by Eqation (3.15).  

 

3.2.2.  System-Level Performance Model Adapted for Li-S Batteries 

 

Here, we modified the BatPac model, which was developed by Argonne National 

Laboratory for the calculation of the system-level performances of LIBs [65], and for the Li-

S battery systems to estimate the system-level energy density and specific energy [85]. The 

1-D electrochemical model described above calculates the area-specific impedance and 

overpotential of the cell components; specifically, negative and positive electrodes and their 

current collectors together with the separator using the experimental inputs including peak 

discharge capacities (PDCs), cathode wt. percentages, E/S ratios, and sulfur loadings. The 

cell voltage was determined by subtracting the total overpotential from the open circuit cell 

potential of 2.2V. Afterward, the battery pack was designed according to the voltage, energy 

and power requirements. The typical values of 80% and 50% of degree of discharges are 

determined as the rated power and energy requirements, respectively. 

 

For the system-level calculations, power and energy requirements, denoted as 

subscript p and e, were used as shown  

…………𝐴2,44 =
𝑃

𝐼+ × 𝑉+ × 𝑁2,44
, (3.16) 

𝑁2,44 =
𝑈6177
𝑈025,+

, (3.17) 

………𝐶 =
𝐸

𝑉, × 𝑁2,44
, (3.18) 

……………𝐿+, =
𝐶

𝐴2,44 × 𝜀893 × 𝜀3
, (3.19) 

……… . . 𝑉+ = 0.8 × 𝑈025,+, (3.20) 

……………………… . 𝐼+ =
𝑈025,+
𝐴𝑆𝐼+

× p1 − q
𝑉

𝑈025,+
rs, (3.21) 

………𝐼, =
𝐶

𝐴2,44 × 5
. (3.22) 
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First, the cell area and the number of cells required for pack power were determined using 

the Equation (3.16) and (3.17), respectively. On the other hand, the energy requirements 

were used to calculate the cell capacity, Equation (3.18), and thus the cathode thickness, 

Equation (3.19). Afterwards, iterations were made to get the rated currents (Equation (3.21)) 

satisfying the rated voltages (Equation (3.20)). Finally, current at rated energy were 

calculated iteratively using the capacity and cell area requirements (Equation (3.22)). 

 

One crucial issue is related to the thickness of the positive electrode calculation, Lpe. 

It is calculated by the model but practically to have functioning cathodes, it should not 

exceed 150 µm for the porous cathode. Hence, the cell area was re-calculated using 

………… . . 𝐴2,44 =
𝐶

𝐿+,,:1; × 𝑐+,
, (3.23) 

if the cathode thickness exceeded this maximum electrode thickness.  

 

Table 3.4. The parameters used in the system-level and electrochemical model. 
Parameter Value 
Open-circuit cell voltage, Uv,p (V) 2.2 
Power, P (kW) 80 
Energy, E (kWh) 118 
Maximum cathode thickness, Lpe, max (μm)   150 
Average battery open-circuit voltage, Ubatt (V)  360 
Target voltage efficiency at rated power, [V/Uocv,p] 0.8 
Useable state of charge window, (%)  85 
Temperature, T (K) 298 
Separator thickness, Lsep (μm) 20 
Separator effective ionic conductivity, keff,sep (S/cm) 6.5 × 10−4 
Cathode transfer coefficient, αpe,a, αpe,c 0.5 
Anode exchange current density, i0,ne (A/cm2) 10−3 
Anode transfer coefficient, αne,a, αne,c 0.5 
Cathode electrochemically active area, a (1/cm) A = 650000 cm2/g · rc · εc 
Cathode effective ionic conductivity, keff (S/cm) keff =k · ε1.5 
Cathode effective electronic conductivity, σeff (S/cm) σeff = σ · εc

1.5 
Cathode exchange current density, i0,pe (A/cm2) 10−6 
Cathode electronic conductivity, σ (S/cm) 100 
Cathode ionic conductivity, k (S/cm) 0.01 

 

The parameters together with their symbols used in the models are given in Table 3.4. 

With the calculation of the required cell area and other cell variables, suitable packaging and 
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thermal management components were determined. Consequently, the system-level energy 

densities and specific energies were calculated by taking all the system variables into 

account. Although material properties such as carbon/electrolyte densities and conductivities 

are important input variables for the electrochemical model, the system-level performances 

were found to be rather insensitive to these factors. In fact, the effect of these material 

properties on the energy density and specific energy is implicitly included in the model since 

these properties are highly effective on the specific capacities obtained experimentally, and 

these capacities are the most determinative variable on the system-level performances. 

Hence, their effects on the system-level performance are taken into account with the variance 

in the specific capacity value.  

 

The experimental inputs to the system-level model were restricted to the specific 

capacity, E/S ratio, sulfur loading as well is the cathode sulfur wt. % and binder wt.%. The 

system-level model were used in two sections: Section 4.1.2 and Section 4.1.5. In Section 

4.1.2, the model was applied to literature data. However, among 245 cases, only half of them 

were providing all of these necessary information whereas the rest did not provide E/S ratios. 

On the other hand, in Section 4.1.5, the variables shown in Table 3.5 were used.  

 

Table 3.5. The experimental variables used in Section 4.1.5 fed to the system-level model. 
E/S ratio 
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S loading 
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803 1329 Group 1, 0.1C, 1st capacity 
13.2 2.4 466 1201 Group 2, 0.2C, 1st capacity 

20.1 1.24 395 1249 Group 1, 0.1C, 100th 
capacity 

13.2 2.4 
142.
6 1015 

Group 2, 0.2C, 100th 
capacity 

20 0.8 1117 1123 0.1C, 1st capacity 
13 0.8 768 973 0.1C, 1st capacity 
6 0.8 241 811 0.1C, 1st capacity 
20 1.2 962 1285 0.1C, 1st capacity 
13 1.2 799 1106 0.1C, 1st capacity 
6 1.2 237 965 0.1C, 1st capacity 
20 3 279 1009 0.1C, 1st capacity 
13 3 219 804 0.1C, 1st capacity 
6 3 93 711 0.1C, 1st capacity 
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3.3.  Machine Learning Models 

 

ML models were applied to get the trends and to reveal the hidden relations between 

battery performances with the materials and design parameters of Li-S and Li-O2 batteries. 

The ML steps were given, including the data gathering, data preparation, model 

development, and analysis of the results, as illustrated in Figure 3.4. Data gathering can be 

done by collecting literature data as well as using computational modeling or simply using 

databases that already utilize these techniques. This depends on data availability and 

applicability for the desired purpose. Data preparation is one of the most important steps for 

good modeling. On the other hand, the appropriate model depends on the structure and 

quality of the data. Hence, in this section, the data preparation method as well as the 

modeling techniques were given for each of the sections utilizing these techniques, namely 

Sections 4.1.1-3 and Sections 4.2.1-2. In this thesis, a bibliometric analysis was performed 

by using simple text mining from the data obtained from Web of Science (WOS) database. 

Apart from that, ARM is the main algorithm utilized in this study as ARM basically works 

with categorical data; hence it is suitable for the datasets built up in this thesis. ARM gives 

the single-factor relations between each features and the desired outputs independently. On 

the other hand, DT is used to get heuristic rules for obtaining the target variables where 

features are considered altogether to get a rule leading to high class. Finally, the prediction 

models were built using XGBoost and RF algoritms; both are ensemble tree models where 

multiple trees were built. Trees were built in parallel and in series in RF and XGBoost, 

respectively, where the majority of the trees determine the model output whereas trees are 

built sequentially where each tree improves the latter and the final output is decided. Hence, 

XGBoost is better to reveal complex non-linear relations but it is slower than RF. In this 

respect, XGBoost is used in the PS solubility calculations, Section 4.1.3, where only 20 

descriptors were used. On the other hand, RF model is used for gas solubility calculations in 

Section 4.2.2 where more than 400 variables are present. 

 

 
 

Figure 3.4. Summary of machine learning steps. 
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3.3.1.  Text mining used in bibliometric analysis of beyond LIBs 

 

A bibliometric analysis was performed, and the results are given in the beginning of 

Section 4, to see the major patterns and trends involving beyond LIB research [9]. First, a 

keyword search (with the keyword option) was performed for the articles present in the WOS 

on 25 June 2023. Alternative battery names were used; for example, we used keywords like 

M-ion batter*, Metal-ion batter*, Metal ion batter*, M-ion cell, Metal-ion cell, and Metal 

ion cell for metal-ion batteries (“*” is used to account for both singular and plural use of the 

same word). Likewise, for metal-air batteries, both oxygen and air keywords were utilized. 

The “Title” option was used as the search criteria to only get the articles in the battery field, 

assuming that the battery chemistry will always be on the title. Without applying any 

filtering, all the information of the searched results was exported as Excel files to analyze 

literature trends. In these Excel files, in addition to the publication information of the articles, 

Abstracts, Author Keywords, and Keywords Plus were also listed. Although Abstracts can 

also be used in the text mining analysis, to eliminate the complexity of the modeling process, 

only the keywords (both author keywords and keywords plus) were used in the text mining 

analysis. R Studio environment was used for basic text tidying and word frequency analysis 

with the help of stringr, tm, plurize, and tidytext libraries [200]. In the modeling process, the 

data was first cleaned using the basics of text mining commands, eliminating stop words and 

punctuation, singularization, and handling synonyms. Afterward, the most frequently used 

keywords were investigated for all beyond LIBs. First, the focus of articles on essential 

elements (anode, cathode, electrolyte, and separator) was analyzed as the keywords; techno-

economic analysis, ML analysis, and other modeling works for the entire battery systems 

were represented as modeling studies. Furthermore, two-word bigram analyses, which are 

the counts of two-word relations, were also performed for selected words to see the most 

frequently followed words. 

 

3.3.2.  Materials and Methods for Assessment of Critical Materials and Cell Design 

Factors for High Performance Lithium-Sulfur Batteries using Machine Learning 

 

This section is modified from the original research paper published in the Chemical 

Engineering Journal by authors A. Kilic, Dr. Ç. Odabaşı, Prof. R. Yildirim, and Prof. D. 
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Eroglu [43]. The data gathering, preparation, and result analysis were performed in the scope 

of this thesis by A. Kilic, whereas the ARM analysis was performed by Ç. Odabaşı. 

 

3.3.2.1.  Constructing Database. The database was constructed by extracting data from the 

papers indexed by the WOS database; the papers were decided using relevance search with 

all possible ways of written lithium sulfur battery (word, symbols w/o “-” and so on). Only 

the articles published between 01.01.2010-18.07.2018 (search day) were used to represent 

the recent developments in the field. Additionally, the data was extracted from only the 

experimental research articles; the review articles or other publications were not considered. 

At the end, a Li-S database having 1660 experimental data from 353 articles was emerged; 

this dataset should sufficiently represent the literature because it is constituted of about 10 

% of the research articles appeared in the WOS  database within our search time interval. As 

given in Section 4.1.1, the data subsets for the Li-S batteries having liquid electrolyte, 

catholyte, liquid and solid electrolyte together and solid electrolyte only were analyzed 

separately. Table A.1 includes the structure of the database.  

 

Although the theoretical discharge capacity of the Li-S batteries is known to be 1675 

mAh/g [201] this capacity could not be attained in most of the works; instead, how much the 

experimental results approached to the theoretical capacity is used as a performance 

indicator of the cells. Therefore, PDC were used normalized to sulfur mass as one of the 

output (performance) variables in our analysis. Additionally, the cycle life of the battery is 

also critical for successful commercialization; for instance, a battery should retain 80% of 

its initial capacity for at least 1000 cycles [65] to be used in an electric vehicle [202]. Hence, 

the cycle number were also analyzed and compared, at which the battery preserved more 

than 80% of its PDC, as another performance variable. Here it should be emphasized that 

energy density and specific energy are also key performance indicators for Li-S batteries. 

However, they were not considered in this analysis as output variables since the majority of 

the studies in the literature do not report these values. Yet, in order to evaluate the effect of 

materials and design factors to achieve high energy density Li-S cells, an additional analysis, 

in which Li-S cells only with low E/S ratios (≤ 5 mL/g) and high S loadings (≥ 5 mg/cm2) 

were considered, was carried out. 
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Table 3.6. Categorical and numerical variables (factors) used in the analysis. 
Factor Alternatives 

Anode Material Li Metal, Modified Li Anode* 
Current Collector Al Foil, Carbon Coated Al foil, Carbon, Nickel, Others1*, No 
Separator Glass, Polymer, Others2* 
Interlayer Yes, No 
Sulfur Type Sulfur, Sulfur + Others3*, LixSy, Others4* 
S Loading  
(0.02-20 mg/cm2) 0-1, 1-3, 3-5, Above 5 

Sulfur wt.% (0-100 wt.%) 0-25, 25-50, 50-75, 75-100 
S Catholyte Conc. (0-12 M) 0-1, 1-5, Above 6 

Conductive Material 
Carbon Black, Carbon Black + Others5*, Carbon Black + Structured 
Carbon1*, CNT, Others6*, Structured Carbon2*, Structured Carbon3* + 
Others7*, No 

Carbon wt.% (0-80 wt.%) 0, 0-15, 15-30, Above 30 

Encapsulation Material 

Activated Carbon, Activated Carbon+Graphene, Carbon Black, Carbon Black 
+ CNT/Graphene / Others8* / PANI/ Porous Carbons1*, CNF, CNF + GO / 
Others9*, CNT, CNT+GO/GO + Porous Carbons2* 
/Graphene/Others10*/Porous Carbons3* /Porous Carbons4*+PANI, GO, 
GO+Hollow Structured Carbon1* /Others11*/Polypyrrole/Porous 
Carbons5*, Graphene, Graphene+ Hollow Structured 
Carbon2*/OtherCarbons1*/Others12*/ Polypyrrole/Porous 
Carbons6*/Porous Carbons7* +Others13*, Hollow Structured Carbon3*, 
Hollow Structured Carbon4*+Others14*/Polypyrrole, No, Other Carbons2*, 
Other Carbons3*+Others15*, Others16*, PANI, Polypyrrole, Porous 
Carbons8*, Porous Carbons9* +Others17*/PANI/Polypyrrole, Structured 
Carbons4* 

Encapsulation wt.%  
(0-89 wt.%) 0, 0-25, 25-40, Above 40 

Doping Type Nitrogen, Nitrogen+Others18*, Others19*, No 

Binder Type No, PVDF, CMC, Others20, LA, PEO, PTFE, CMC+SBR, 
PVDF+Others21*, PEO+Others22* 

Electrolyte Solvent DOL:DME, DOL:DME:Others23, DOL:TEGDME, EC:DEC,  
EC:Others24*, Others25*, TEGDME 

Electrolyte Salt LiTF, LiTFSI, LiPF6, Others26*, LiClO4, No 
Electrolyte Additive Yes, No 
Electrolyte Additive Conc.  

(0-4.65 M) 
0-0.1, 0.1-0.2, 0.2-0.5, Above 5 

Electrolyte/Sulfur Ratio  

(0-166 mL/g) 0-5, 5-10, 10-15, 15-30, Above 30 

 

*Detailed descriptions and abbreviations are given in Appendix A. CMC: Carboxymethyl Cellulose, 
CNF:Carbon Nanofiber, DEC:Diethyl Carbonate, GO:Graphene Oxide, LA:Polymer n-Lauryl Acrylate, 
PANI:Polyaniline, PEO: Polyethylene Oxide, PTFE:Polytetrafluoroethylene SBR:Styrene-Butadiene Rubber, 
TEGDME:Tetraethylene Glycol Dimethyl Ether. Slashes show the alternatives for additional materials.  

 

There are various variables (factors) that affect the attained PDC and cycle life of a Li-

S cell; the most important continuous and categorical factors with their ranges (for 

continuous factors) or alternatives (for categorical factors), as extracted from the papers, are 

shown in Table 3.6. Different names and notations used for the alternatives of discrete 

variables were combined into a single clear and comparable statement, while the continuous 
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variables were categorized by dividing into intervals because the ML technique we used 

required so. The new materials alternatives tested in some of the recent studies were 

combined under a single factor named as others because individual number of data points 

for these factors were not sufficient to make statistical analysis or compare with the 

conventional alternatives; the detailed content of others is given in Appendix A.  

 

The articles, which do not contain sufficient information for the key input or 

performance variables, were not used in dataset construction; however, for certain variables 

that are not critical, the most commonly used materials were assumed if only that information 

is missing. For instance, if there was no specific information, we assumed “Li metal” for the 

anode type, “Polymer” as the separator type, “No” for both the conductive additive and 

doping types. If not given, the cathode area was assumed as 1.6 cm2 for C-rate estimations 

and the sulfur loading was taken to be 1 mg/cm2 for E/S ratio calculations. If the conductive 

materials and sulfur were pretreated to form a composite before they were used in the 

cathode preparation, the materials were defined as the “encapsulation materials”, whereas 

they were categorized as “conductive materials” if there was no other treatment of the 

cathode matrix and sulfur than mechanical mixing.  

 

3.3.2.2.  Computational Details. Single factor associations (i.e. relation of performance 

variables with individual factors) were analyzed using the ARM method to identify the 

factors leading to high PDC or longer cycle life; high performance cell classes were defined, 

and the factors required to have a cell in these classes were identified using ARM. Apriori 

algorithm was adopted by using arules package [203] of R Studio software [204]. ARM 

results were evaluated using three key parameters for this technique: support, confidence 

and lift values of the parameters. These parameters can be calculated from  

……… . . 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =
𝐴&𝐵
𝑁 , (3.24) 

…… . 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝐴&𝐵
𝐵 , (3.25) 

…………… . . 𝐿𝑖𝑓𝑡 =
<&>
>
<
?

. 
(3.26) 
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Support is defined as the fraction of batteries made using a specific material (factor) 

and have defined PDC (in high class) in all data points while confidence is the fraction of 

batteries made with that material in all cells in the high PDC class (calculated by Equation 

(3.24) and Equation (3.25), respectively). Lift, which is the most important parameter to 

evaluate the ARM results, is the fraction of batteries with that material in high PDC class 

cells to the fraction of batteries with that materials in total data points, Equation (3.26). 

 

As it will be more apparent in the Section 4.1.1, the lift should be more than one, and 

higher lift values indicate that the fraction of that material in high performance cells is higher 

than its fraction in the entire database indicating that the use of that material favors high 

performance cells. ARM analyses were performed for the PDCs equal to or higher than 1000 

mAh/g, 1200 mA/g, 1400 mAh/g and 1600 mAh/g, and the change in lift values was 

monitored to determine the significance of the individual factors for high performance. The 

same procedure was also applied to investigate the factor effect on cycle life by analyzing 

the lift values for the cells retained 80 % of its peak discharge capacity more than 50, 100, 

200, 300 and 400 cycles. 

 

3.3.3.  Materials and Methods for Assessment of Ionic Liquid Electrolytes for High 

Performance Lithium-Sulfur Batteries using Machine Learning 

 

This chapter is an edited version of the original article published in the International 

Journal of Energy Research by authors A. Kilic, Prof. R. Yildirim, and Prof. D. Eroglu [44]. 

The ARM analysis on peak discharge capacity, system-level specific energy, and energy 

density was performed in this section as the ML method. 

 

WOS database was used to collect the experimental articles reporting the use of ionic 

liquids as their liquid electrolytes in Li-S batteries; the application of ILs in solid electrolytes 

or cathode matrices was excluded. After the data collection step, the dataset was 

preprocessed to reduce inconsistencies and to select suitable variables (i.e., those widely 

reported in the literature and influential on the performance) while the rarely reported 

variables such as electrode thicknesses and material properties were not included to have a 

statistically reliable result. Similarly, the cells tested at temperatures higher than 30 °C were 
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not considered here because those data were significantly different than the ones obtained at 

room temperature, yet not in sufficient numbers to show the temperature effects. In the end, 

a dataset with 244 data points from 42 articles, including important cell design variables and 

materials, was built. The data points in the dataset using only molecular solvents (37 data 

points), reported for comparison reasons, are not used in the analysis either. Consequently, 

the dataset used in this section was composed of 207 data points; the variables and their 

alternatives (levels) are given in Table 3.7.  

 

Table 3.7. The variables and levels used in the analysis. 
 Factors Levels 

El
ec

tro
ly

te
 V

ar
ia

bl
es

 Ionic Liquid 

C4dmim_TFSI, DEME_Others1, DEME_TFSI, EMIM_TFSI, 
Li(G3)_Others1, Li(G3)_TFSI, Li(G4)_Others1, Li(G4)_TFSI, 
P1,2O1_TFSI, P13_Others1, P13_TFSI, P14_Others1, P14_TFSI, 
P1A3_TFSI, P2225_TFSI, PMIM_TFSI, PP13_TFSI, PP14_TFSI, 
TES_TFSI 

Molecular Solvent(MS) DME, DOL, DOL:DME, Fluorinated Ether, None, Others2, 
TEGDME 

IL/MS vol.% <50, 50, >50, 100 
MS Salt LiTFSI, None, Others3 
MS Additive Yes, None 
E/S Ratio 0-15.0, 15.0-30.0, >30.0 

Ca
th

od
e 

V
ar

ia
bl

es
 

Conductive Material Acetylene Black, Carbon Black, Ketjen Black, None, Others4 

Encapsulation Material 
Activated carbon, Carbon Black, Carbon Nanotube, Graphene 
Oxide, Ketjen Black, Mesoporous carbon, Nano Carbon, None, 
Others5, Porous Carbon 

Binder CMC, None, Others6, PVA, PVDF, SBR/CMC 
Sulfur wt.% 0-50, 50-60, >60 
Conductive wt.% 0, <20, 20, >20 
Encapsulation wt.% 0, 1-20, 20-30, 30-35, >35 

Sulfur Loading (mg/cm2) 0-0.1, 1.0-1.5, 1.5-4.0, >4.0 

O
th

er
s Anode Li metal, Modified Li anode 

Separator Glass, Polymer 
 

Others1:FSI, Nitrate, trifluoromethanesulfonate, BETA, BF4, tris(pentafluoroethyl)trifluorophosphate, 
tricyanomethanide // Fluoriated Ethers: HFE, TFTFE, TTE // Others2: TEGDME:DOL, TMU, DMSO, 
ACN, TTE:DOL, DOL:ETFE, Methylisopropylsulfone // Others3: LiFSI, LiBF4, LiPF6, Li[BETA], 
LiODFB // Others4: Carbon Nanotube+Ketjenblack, Graphene+Carbon Black // Others5: 
Graphene+magnesium aluminate, N-doped mesoporous carbon // Others6: LiPAA, PAA, SBR, PAA/PVDF, 
PEDOT/PSS, PEO 

 

As seen in Table 3.7, there are 15 important variables in the dataset. Most of these 

variables are already categorical by their nature; the originally continuous variables were 

also categorized into intervals to be able to be used in the ARM analysis, which requires 

categorical data. The range of the intervals is determined according to the distribution of the 
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data points to have a statistically significant number of data in each class with the best 

representation of the patterns in the literature. The rarely used materials were categorized as 

“others” because no rule can be deduced from the results supported by only a few instances. 

As it was stated in the Introduction section, due to the insulating nature of sulfur, the 

conductive materials should be added into the cathodes. If these materials are chemically 

pretreated with sulfur before the cathode formation, they were reported as “Encapsulation 

Materials”, while physically treated materials were saved as “Conductive Materials”. As the 

performance metric, the peak discharge capacity (PDC) normalized to sulfur amount (mAh/ 

g S) was chosen because it shows how much of the theoretical capacity of sulfur cathodes is 

attained. In addition, the system-level energy density (Wh/L) and specific energy (Wh/kg), 

which are more relevant performance indicators in practice, were calculated using the 

modified version of the Battery Performance and Cost (BatPaC) model as described in 

Section 3.2. 

 

ARM model was used to identify the single factor associations between each variable 

and the performance metrics. First of all, the high class was defined by setting a minimum 

performance limit, either PDC, specific energy or energy density, and the levels of each 

factor, as shown in Table 3.7, that can lead to that high class was analyzed using the ARM 

results. ARM model was developed using R Studio software and its apriori algorithm of 

arules package [204]. This algorithm provides support, confidence and lift values calculated 

from the Equation (3.24) to Equation (3.26) where A shows the count of a specific level of 

a factor, and B and N show the number of instances in the high class and the total dataset, 

respectively. Support and confidence show the most direct trends in the dataset where the 

fraction of a level with high performance in the entire and the high-performance datasets, 

respectively, were calculated. On the other hand, more complex patterns can be found using 

lift values, which is calculated by the ratio of the confidence to the fraction of that level in 

the total dataset  [48]; the lift values above one signify positive associations between that 

level and high performance since it is more frequently found in the high class subset [205]. 

Furthermore, higher lift values imply higher probability to have better performances; this 

will be more evident in the next section when it is discussed on specific examples. It should 

be noted that although cycling performances at high current rates is also important for the 

Li-S batteries, this data in the literature for ionic liquid electrolytes are not sufficient to get 
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statistically valid conclusions. Hence, this indicates that the IL electrolytes have some 

stability problem which should be improved, but this topic is out of the scope of this work. 

Because of that, ARM analysis was applied to PDC, energy density and specific energy only.  

 

3.3.4.  Materials and Methods for Selection of Ionic Liquid Electrolytes for High-

Performing Lithium-Sulfur Batteries: An Experiment-Guided High-Throughput 

Machine Learning Analysis 

 

In this section, the data preparation and ML models for Chapter 4.1.3. is presented; a 

manuscript detailing these methods are in preparation by authors A. Kilic, O. Abdelaty, Prof. 

D. A. Uzun, Prof. R. Yildirim, and Prof. D. Eroglu. The COSMO-RS calculations, ML 

studies and the IL experiments were performed by A. Kilic and presented here. O. Abdelaty 

also supported the discussions on ML modeling. Here, the dataset was prepared by using the 

COSMO-RS calculations for solubilities and by using PM3 for feature determination. 

 

3.3.4.1.  Solubility and Property Calculations. COSMOThermX software was used for the 

determination of Li2S8 solubility in ILs at 25 ºC using COSMO-RS calculations [206]. The 

built-in IL database, COSMObaseIL, was used to form the dataset for this study. 

COSMOThermX uses the σ-profiles calculated using the DFT functional BP and def2-TZVP 

level. The dataset comprised 98 anions and 370 cations, which adds up to 36,260 pairs of 

ILs. The long chain Li2S8 was used to model the PSs in the system. In accordance with 

previous reports about Li2S8 conformation in the solvents [207,208], the linear conformation 

of Li2S8 was optimized using B3LYP/def2-TZVP then inputted to TMOLEX (v.4.5.3) to 

generate the standard σ-profile file (.cosmo file). The sigma profile and the corresponding 

surface of the Li2S8 molecule are given in Figure C.1 

 

The IL Screening Module was used to calculate the PS solubility in ILs at 25 °C via  

𝐶9@ =
1
𝛾9@

 (3.27) 

where 𝐶9@ and 𝛾9@ are capacity (mol/mol solubility) and activity coefficient of the PS at 

infinite dilution, respectively. 
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The melting point, viscosity, and electrical conductivity were also calculated at 25 °C 

using the IL Properties Module, which also uses the same σ-profile files for the ions. The 

densities of ILs were calculated using the molecular volume obtained by the COSMO-RS 

volume calculations, whereas COSMO-RS enthalpies were used for the melting point 

calculations. Finally, the same formula utilizing ionic radius and dielectric energies was used 

for the viscosity and electronic conductivity calculations. The implemented correlation 

coefficients were naturally different for each calculation. 

 

3.3.4.2.  Structural Descriptors for ILs. The structures in the COSMObaseIL were 

reoptimized with Spartan’14 using the PM3 semi-empirical method with the default 

convergence criteria. Similar to our previous studies [209,210], ten descriptors were 

calculated for each anion and cation separately: Molecular weight  (MW in amu), HOMO 

and LUMO energies (EHOMO, ELUMO in eV), CPK-area (in Å2) and CPK ovality (O) obtained 

from the space-filling model, dipole (μ in D), polarizability (m3), vibrational zero point 

energy (ZPE in kJ/mol), hydrogen bond donor count (HBD), and hydrogen bond acceptor 

count (HBA). Consequently, there are 20 descriptors for each IL pair. The distribution of 

ions in terms of these structural descriptors is given in Figure 3.5. 

 

 
 

Figure 3.5. The distributions of descriptors; molecular weight (a), HOMO (b), LUMO (c), 

CPK area (d), CPK Ovality (e), dipole (f), polarizability (g), zero point energy (h), HBA 

count (i) and HBD count (j), for cations and anions in the dataset. 
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3.3.4.3.  ML Modeling. Distinct prediction models were trained for each IL property of 

interest: the solubility of Li2S8, melting point, viscosity, and electrical conductivity. Random 

sampling was employed to negate the bias towards the majority class. Afterward, the dataset 

was partitioned into a training and test set using a 75%-25% split. Given that PS solubility 

highly depends on anion type, random assignment of the data entries into each subset was 

avoided as it overfitted the ions in the set and performed poorly on new ions (due to the 

strong effects of the anions). Therefore, the splitting was done either according to the anion 

or the cation groups. In practice, this means that a random 25% fraction of anions/cations in 

each anion/cation group was included in the test set, while the remaining ions were used in 

the training set. This way, the test set contains new anions/cations not encountered during 

training or validation. The same strategy was used for 5-fold cross-validation, where 20% of 

the training ions were selected in the validation sets, and the rest were used for training. 

Next, the partitioned dataset, along with the respective values of properties calculated by 

COSMOThermX, were used to train ML models XGBoost algorithm was used in the 

predictions. The hyperparameters were optimized with a grid search according to the 

performance criteria of root mean square error (RMSE), which shows the average difference 

between the predicted and the COSMO-RS calculated values; hence, the lower it is, the 

better the predictions. In addition, the R-squared (R2) value, the proportion of the difference 

between the two, ranging between 0 and 1, is also reported [211]. The optimized 

hyperparameters for XGBoost are the maximum depth, number of trees, and learning rate 

(η) values, which were found to be 3, 225, and 0.1, respectively, for the solubility 

predictions. The descriptor importance was calculated with these hyperparameters over the 

train set.  

 

After the prediction models were built, the ARM method was utilized to classify the 

promising anion and cations together with their descriptors. The classification models were 

trained as binary classifiers: class A and class B are the favorable and non-favorable levels 

of related properties and solubilities, respectively. The thresholds of these classes were 

determined according to the experimental results and the desired characteristics of a battery 

electrolyte. In the case of solubility, a threshold value of -0.7 to 0.1 mol/mol in the log scale 

was selected as it is comparable to ILs tested in the literature and the performance data 

obtained in our research [75]. Similarly, limits for the viscosity, conductivity, and melting 
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point classifications were determined as 100 mPa.s, 2 mS/cm, and 0 ºC, respectively. In the 

ARM analysis, all these four targets were held to see the most promising ILs as electrolytes 

of Li-S batteries.  

 

The relationships between the anion/cation groups and their descriptors with the class 

A in all four criteria were independently analyzed by a single-factor ARM algorithm. Since 

ARM only works for categorical data, HBA and HBD counts were turned into factors, and 

the remaining eight numeric descriptors were categorized into ten multiple intervals with a 

similar number of data points. The performance metrics, support, confidence, and lift, were 

used together to determine the reliability of a rule. Similar to the previous sections, the lift 

value was considered the ultimate criterion to assess the association between a descriptor 

and the solubility, as long as the rule clears the minimum support and confidence thresholds, 

taken as 0.1 % and 3 %, respectively. All the modeling and figure creation was performed 

in the R Studio environment. 

 

3.3.5.  Materials and Methods for Determining the Key Performance Factors in 

Lithium-Oxygen Batteries Using Machine Learning 

 

This chapter includes the Materials and Methods part of the original research paper 

published in the Journal of the Electrochemical Society by authors A. Kilic, Prof. R. 

Yildirim, and Prof. D. Eroglu [48].  

 

3.3.5.1. Constructing Database. The data were collected from the Web of Science database 

using various keywords to cover all the possible representations of Li-O2 and Li-air batteries. 

Experimental research articles were sorted by their relevance, and reviewed starting from 

the top; only the papers published after 2010 were considered. 1015 data from 157 papers 

were collected, and the dataset was divided into two groups as capacity testing (773 data 

points) and voltage testing (242 data points), depending on the aim of the study. In the 

capacity testing group, a cell is discharged at a constant current until a cut-off voltage is 

attained. On the other hand, for voltage testing group, a cell is discharged until a specific 

capacity is reached and cut-off voltage is reported. The ML tools were applied to capacity 
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and voltage testing groups independently, where discharge specific capacity and cut-off 

voltage were used as the performance indicators, respectively.  

 

Table 3.8. Description of categorical and numerical variables (factors) used in the 
analysis. 

Factors Alternatives 

Anode Li Metal, Modified Li Anode 
Separator Glass, Polymeric, Glass+Polymeric, Solid Electrolyte 

Reactant Air, Dry Air, Oxygen, Oxygen:Carbon dioxide 
Reactant Pressure (atm) <1, 1, >1 

Gas Diffusion Layer Carbon, Carbon cloth, Carbon paper, Graphene, No, Filter 
paper 

Bulk Cathode Material 

Activated carbon, Carbon black, Carbon black+CNT, Carbon 
black+Graphene, Carbon black+other carbons1, CNF, CNT, 
Co oxide, Gold, Graphene, Graphene oxide, Ionic liquid CNT, 
Mn oxide, N-doped carbons, N-doped CNT, Other carbons2, 
Others1, Porous carbon, rGO, RuO2, Ti composite 

Cathode Ingredient 

Al2O3, Al2O3+Ag, Al2O3+Pd, Au, Au+Pd, AuPt composite, Co 
oxide, Co oxide+Others2, Co4N, CoMn oxide, CuCo oxide, 
LaFe oxide, Mn oxide, Mo compound, NiCo2O4, NiO+ 
NiCo2O4 microspheres, No, Other oxides, Others3, Pd, Pd 
composite, PdO, Perovskite, Pt, Pt+Au, Pt3Co, Ru, Ru 
oxide+Mn oxide, RuO2 

Binder Type No, PVDF, PTFE, PVDF-HFP, Nafion, Others4 

Active Material Loading (0.0-26 mg/cm2) 0-0.8, 0.8-1.2, 1.2-3.0, Above 3 

Active Material wt.% (35-100 wt.%) 39-60, 60-80, 80-90, 90-100, 100 

Electrolyte Solvent (E Solvent) 
DME, DMSO, EC:DEC, EC:DMC, EC:PC, Ionic Liquid, 
Others5, PC, PC:Others6, Solid E+Liquid E, Solid Electrolyte, 
Tetraglyme, Triglyme 

Electrolyte Salt (E Salt) LiCF3SO3, LiClO4, LiTFSI, LiPF6, Others7, No 

Electrolyte Additive (E Additive) Yes, No 
 

CNT: Carbon Nanotube, CNF: Carbon Nanofiber, rGO: Reduced Graphene Oxide, PVDF: Polyvinylidene 
Fluoride, PTFE: Polytetrafluoroethylene, PVDF-HFP: Poly(vinylidene fluoride co-hexafluoropropylene)), 
DME: Dimethyl Ether, DMSO: Dimethyl Sulfoxide,  EC: Ethylene Carbonate, DEC: Diethyl Carbonate, DMC: 
Dimethyl Carbonate, PC: Propylene Carbonate. Further information about the materials is given in Appendix 
F. 

 

Capacity and voltage of Li-O2 cells are dependent on various cell design variables (can 

be also labeled as factors or descriptors). Due to the nature of ARM and DT methods, only 

the categorical (discrete) variables were used in the analyses; the continuous variables were 

discretized to categorical variables by grouping them in terms of intervals [212]. The 
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categories (for example specific materials), which are not repeated sufficiently large number 

of times to form a group, merged as others, and their contents are given in Appendix F. 

Additionally, the articles with too many missing variables were not taken into consideration. 

The variables, which were used in analyses, are listed in Table 3.8. Here it should be 

mentioned that not all the variables that affect the cell performance, such as the electrode 

and gas diffusion layer thicknesses, were typically reported in the literature. Hence, only the 

factors that are widely reported in the literature were included in the analyses. Active 

material is defined as the total cathode materials excluding the binder, which is taken as a 

separate variable. Throughout the dataset, all the capacities were normalized to active 

material masses so that they will signify the effect of the type of active materials on 

capacities rather than the amount used in the cathodes.  

 

3.3.5.2. Computational Details. R Studio environment was chosen for both data pre-

processing and ML implementations. ARM was used first to determine the effect of 

individual factors on the performance by using apriori algorithm of arules package [203]. 

ARM reveals dominant factors (antecedents) leading to higher capacities (consequences) by 

providing the parameters of support, confidence and lift. For practical applications, cycling 

stability is also a very important performance criterion for batteries. However, the amount 

of cycling data of Li-O2 batteries is limited in the literature. Hence, the analysis was 

performed only for the initial discharge capacities of the cells in the scope of this work; 

cycling performance will be modeled in future studies when the literature becomes more 

mature in terms of the cycling data. 

 

Although multi-factor analyses are also possible using ARM, we used decision tree 

(DT) because it is more effective and easier to interpret. In order to analyze and compare the 

cells manufactured and tested under the same testing conditions, we only considered the 

cells that used oxygen at 1 atm as the reactant and were discharged at 0.1-0.5 mAh/cm2 for 

the DT analysis. For this part, the dataset was divided into three classes based on the 

performance levels (as class A, B, and C) to be able to differentiate the conditions for high 

performing class from the others. The batteries with capacities higher than or equal to 6000 

mAh/g, between 1500-6000 mAh/g and lower than 1500 mAh/g were defined as Class A, 

Class B, and Class C, respectively. To prevent class imbalance problem, which creates a bias 
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toward the majority class, random sampling was applied to have equal number of data in 

each class [212]. However, variables with a small number of datapoints caused a problem 

when the dataset was divided into training, validation and testing because some values (for 

example, a specific cathode ingredient) appeared only in one or two of the training, 

validation or testing sets making the assessment of model fitness unmanageable. To prevent 

this, rarely found variables were merged as “others” (given in Appendix F). DT analysis was 

performed by using dplyr package of RStudio [213]. In order to prevent any bias, the dataset 

was randomly divided into two subsets as 75 % for training and validation, and 25 % for 

testing. First, the DT model was built by applying 5-fold cross validation procedure. The 

dataset containing 75% of data was further divided into five subsets randomly; the model 

constructed using four subsets was tested with the remaining set. This procedure was 

repeated five times by assigning different validation sets in each turn, and the model with 

the minimum split of 10 and complexity parameter of 0.01 was found to represent the data 

best (with the lowest validation error). Then, this model was tested using the testing data 

(25% separated first) to assess its accuracy for the classification of the data not seen before.  

 

The determination of the cut-off voltages for restricted capacities is also widely 

reported in the literature because high cell voltages are important for the batteries to produce 

high power. However, the restricted capacity ranges vary significantly from one paper to 

another; therefore, the comparison of factors (for example, materials) would not be fair 

unless a specific capacity range was chosen. Consequently, the data generated in two 

different capacity intervals of [500, 750] mAh/g and (750, 1000] mAh/g were analyzed as 

two separate datasets considering that these intervals have relatively high number of 

datapoints as 112 and 130 (total 242 datapoints), respectively.  Although DT could not be 

applied to these datasets due to small number of data, ARM analyses were conducted to 

identify the critical factors resulting in high cell voltages. 

 

3.3.6.  Materials and Methods for Screening of Ionic Liquids as Electrolyte of Metal-

Oxygen Batteries using COSMO-RS and Machine Learning 

 

This section includes the Materials and Methods part of the manuscript in preparation, 

detailing the results reported in Chapter 4.2.2. The manuscript is entitled Screening of Ionic 
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Liquids as Electrolytes of Metal-Oxygen Batteries using COSMO-RS and ML, and the  

authors are A. Kilic, A. Uzun, R. Yildirim, and D. Eroglu. Similar to Section 3.3.3, this 

section uses COSMO-RS calculations for gas solubility calculations. On the other hand, a 

Python-based free library was used to estimate the molecular features. 

 

3.3.6.1.  Solubility and Property Calculations. The COSMOthermX program of 

COSMOlogic software with the C30_1602 version was used for solubility and property 

calculations of ILs. First, the solubility of oxygen molecule j, in IL i, was calculated using 

the Ionic Liquids Screening module for 36,260 ILs. The solvent solubility at infinite dilution, 

𝐶9,A@ was  

																															𝐶9,A@ =
1
𝛾9,A@
, (3.27) 

where 𝛾9,A@  is the activity coefficient of i at infinite dilution in j and 𝐶9,A@ is the corresponding 

solubility value calculated in mol/mol.  

 

Although these results can be used to compare oxygen solubilities qualitatively, they 

are orders of magnitude different from the experimental values reported in the literature. 

Better estimations can be computed using the Gas Solubility calculations in the Solubility 

module, where gas solubilities in ILs are iteratively calculated by varying the mole fraction 

of each compound j, xj until the partial pressure of j, pj  

																										𝑝A = 𝑝A)𝑥A𝛾A , (3.28) 

reaches the given pressure value, where 𝑝A) and 𝛾A are the pure compound partial pressure 

and activity coefficient. 

 

For the TFSI anion, the oxygen solubilities were calculated using both methods, and a 

perfect linear correlation was obtained. Afterward, the results obtained from the Ionic Liquid 

Screening module were corrected using this correlation. However, this additional conversion 

was only performed for the oxygen solubility for experimental validation; only manual 

computing is possible in the Gas Solubility module, and it is a computationally more 

expensive method in terms of both time and computing power. Hence, the Ionic Liquids 

Screening module calculations were used in the rest of the study. 
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3.3.6.2.  Feature Calculations and Selection. Python’s Rdkit library of Molecular Operating 

Environment (MOE) was used for descriptor calculations [214,215]. Rdkit is an open-source 

cheminformatics library developed for calculating the materials descriptors using 10 million 

compounds encoded by the SMILES codes [216]. The SMILES codes were used to obtain 

123 physicochemical properties (2-dimensional) and the fraction of 85 substructures (the 

number of benzene or -CO  groups) of the ions; 208 variables were calculated for each anion 

and cation. The complete list of the descriptors can be found in Appendix G.  

 

Although there are 416 features for a single IL, only the relevant features were used in 

the modeling. In this respect, the Boruta algorithm, a random forest-based algorithm 

showing feature relevance on the outcome, was used for the feature selection. Boruta adds 

the copy of each variable as a shadow variable and compares the Z-score (the difference 

between a value and the mean divided by the standard deviation, showing how close a value 

is to the sample mean) of the two-sided equality tests for the actual versus shuffled version 

of a feature. A feature is found to be unnecessary when the Z-score of the real feature is less 

than the shuffled version [217]. As a result of the Boruta analysis, 285 out of 416 features 

were selected for developing ML models. 

 

3.3.6.3.  Machine Learning Algorithms. The RF algorithm was used to predict the gas 

solubilities with the 285 as-selected descriptors. RF is an ensemble-type tree-based method 

in which training sets and the features used in the modeling are randomly selected in each 

tree. The outcomes of the random forest predictions are averages of the results obtained in 

each tree. Since the features and the training sets are randomly selected, the RF algorithm 

shows more robust results [218]. The model was performed using the "randomForest" library 

of the RStudio environment. The hyperparameters, ntree and nodesize, were optimized using 

grid search and 5-fold cross-validation, and the best model was identified using the 

validation error. The test dataset was determined first by randomly selecting 25% of the 

anions in an anion group with more than four members. Afterward, the remaining data was 

further divided into training and validation sets with the criteria of having nearly 20% of 

each anion group in the validation set. This process was repeated four times to get five 

training and validation sets where modeling was performed on training sets. The model was 

validated using validation sets via stratified sampling. The best model was determined 
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according to the average of the validation error. This was done to reduce the bias towards 

having identical anions in validation and test sets and to prevent overfitting. Finally, the 

model was tested on the test set to report the final model performance metrics: root mean 

square error (RMSE) showing the error between the predicted and the actual values and R-

squared (R2) giving the fraction of variability captured by the model.  
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4.  RESULTS AND DISCUSSION 
 

 

This chapter presents the results and discussion of the studies conducted in the thesis. 

First, the results of a bibliometric analysis done for the beyond LIB literature is presented. 

24,523 papers obtained from the WOS database, regardless of their research topic, were 

analyzed with the help of text mining tools to see the major patterns and trends involving 

beyond LIB research. This part is modified from the review article by A. Kilic, B. Oral, D. 

Eroglu, and R. Yildirim [9]. A. Kilic conducted the bibliometric analysis presented next. 

Figure 4.1a presents the number of appearances of the various beyond LIBs in keyword 

search so far, while Figure 4.1b indicates the change of publications frequency with time so 

that any increasing (like in Na-ion) and decreasing (like in Li-air) trends could be seen; the 

less frequently studied systems are also provided in the figure insets. The specific elements 

explored in these publications are also shown in Figure 4.1c for the most commonly studied 

beyond LIB systems.  

 

Figure 4.1a suggests that the most widely investigated chemistries are Li-S, Na-ion, 

Zn-air, Zn-ion, Li-air, and K-ion in decreasing order. Apart from Li-air batteries, they have 

all shown an increasing trend in the past ten years, and Na-ion and Li-S batteries seem to be 

at the heart of battery research. Zn-air batteries are the 3rd most commonly investigated 

battery system (surprisingly, they have become more popular than Li-air batteries) because 

of lower prices, safer operation, and higher availability of materials. Zn- and K-ion batteries 

have been studied significantly recently.  

 

Since the anode, cathode, electrolyte, and separator are the four essential elements of 

a battery cell, any research is expected to focus on at least one of these (or the overall 

performance of the entire cell) because the optimization of materials and design parameters 

related to those elements are critical for the commercialization of these beyond LIBs. As is 

also apparent in Figure 4.1c, the presence of different battery technologies requires a diverse 

focus of attention because the challenges are different for each system due to the variances 

in their electrochemistry. For example, the most widely investigated cell section is the anode 

for Na-ion and K-ion cells, the cathode for Li-S and Zn-ion batteries, whereas it is the 

electrolyte for air batteries. This indicates that typically the development of the cathode is 
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critical in conversion chemistries, whereas the anode may be the performance-limiting factor 

in intercalation chemistries. The number of studies involving the electrolyte is also 

significant for all major battery types, yet it is the most widely used topic for air batteries. 

On the other hand, studies working on separators and modeling are very limited in the 

literature.   

 

 
 

Figure 4.1. Total number of publications of each beyond LIBs (a), year vs. publication 

number (b), and research interests (c). 

 
Next, the most frequently appearing 15 keywords for each beyond LIB using the WOS 

were identified without any filtering. The lists of the most frequently appearing keywords 

for the six most commonly studied LIB chemistries are presented in Figure 4.2a-Figure 4.2f. 

Apart from the typical battery-related words such as anode or cathode, the words graphene 

and carbon are also frequently encountered in text mining analysis. Since this result may be 

an indicator for the direction of research in material selection, the investigation was further 

extended to identify the secondary keywords associated with carbon and graphene by 

employing bigram analysis of text mining (Figure 4.2g-Figure 4.2h). Indeed, some 

information related to the most frequently used form of materials, treatment procedure, or 
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part of the cell involved emerged. For example, as clearly seen in Figure 4.2g, the nanotube 

is the most frequently associated keyword with carbon for almost all batteries (second most 

frequent after anode in K-ion batteries), while the other forms of carbon also appear in the 

list.  

 

As expected, the anode appears at the top of the Na- and K-ion batteries list. The 

working mechanisms of Na- and K-ion batteries are very similar to that of LIBs; basically, 

reversible intercalation reactions of Na-ion (Na+) and K-ion (K+) take place in layered 

materials present in both the negative and positive electrodes [219]. Hence, the pore size and 

structure of electrode materials should be tailored to accommodate the change in the ion size. 

Consequently, the anode is at the top in Figure 4.2a and Figure 4.2b, while the cathode 

appears in the lower part of the list; the electrolyte does not even emerge in the top 12. 

Carbon and graphene are the most commonly used material-related words in Na-ion and K-

ion batteries. In addition, two-word text mining results show that the carbon is mainly related 

to nanotube and anode keywords, and graphene is primarily followed by oxide for Na- and 

K-ion batteries, respectively. Indeed, carbon-based anodes, including graphene oxides, are 

frequently investigated in univalent metal-ion batteries [219–228]; there are also 

comprehensive reviews on polyanionic [229], layered [230], and alloyed materials [231] for 

the anodes of Na-ion batteries. The “oxide” keyword is among the top 15 keywords for Na-

ion batteries, showing its popularity for these batteries. P2-Type [232,233], sodium [230], 

boron-doped [234] sodium, manganese [235], transition metal and P3/O3 [236] integrated 

layered oxides are investigated for Na-ion batteries. The electrolytes of the Na-ion and K-

ion batteries are similar to those of LIBs, where generally, Na-salts or K-salts containing 

organic liquids are used. Hence, a similar methodology can be used to develop the 

electrolytes of Na- and K-ion batteries [237].  

 

The working electrode of multivalent batteries should be designed to promote multi-

ion redox reactions [238]. Hence, tailored cathodes are needed; cathode has appeared at the 

top of the keyword list for Zn-ion batteries (Figure 4.2c). Since the charge/size ratios of the 

multivalent ions are higher than the univalent ones, larger solvation shells occur for the 

multivalent metals in the bulk electrolyte, making these ions more stable. Hence, slow de-

solvation kinetics at the electrolyte-electrode interface and the formation of passivation 

layers are major hurdles in these batteries. Plus, the electrochemical stability of the 
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electrolytes is low; hence, it is understandable that the new electrolyte compositions for 

multivalent chemistries are also investigated extensively [239]. Aqueous electrolytes (as 

emerged as aqueous and electrolyte keywords) were investigated and extensively reviewed 

for Zn-ion batteries [240–243]. The oxide keyword is more frequently used than the carbon 

keyword, and graphene is not listed for Zn-ion batteries; hence, it may represent vanadium 

and manganese oxides, which are the most common oxide types for these battery systems 

[244–248].  Intercalation cathode materials (among the top 15 keywords) such as polyanions 

and carbon-based materials are also studied as working electrodes in the literature 

[249,250]. 

 

The use of air instead of oxygen is the ultimate aim of metal-air batteries, yet, most of 

the works in the literature use pure oxygen to prevent side reactions due to the humidity and 

CO2 in the air. Even with oxygen, the efficiency, stability, and energy density are limited 

mainly due to poor ORRs [48]. The presence of the catalyst, electrocatalyst, and reduction 

keywords for Li- and Zn- air (Figure 4.2d and Figure 4.2e) batteries indicates the 

significance of this problem. The positive electrode of metal-oxygen batteries is mainly 

porous carbon substrates where the gaseous reactant is distributed. From kinetic and mass 

transport points of view, it is essential to distribute oxygen homogenously over the cathode 

surface [251,252].  In addition, catalyst materials are added to the positive electrodes to favor 

the ORR kinetics. Oxides [253,254] and carbon-based materials [255,256], including 

graphene, are among the common electrocatalysts. Although electrolytes are the key 

elements of all kinds of batteries, they should be chosen with extra care for metal-oxygen 

batteries because the cathode side is open to a gaseous environment [257-259]. The 

electrolyte should have low vapor pressure to prevent its depletion, while the salts and the 

solvents making the electrolyte should be electrochemically stable toward the gaseous 

chemicals. Plus, to promote fast kinetics, these electrolytes should have high oxygen 

solubility and diffusivity. Similar to other beyond Li-ion battery chemistries, aqueous, non-

aqueous, hybrid, and solid-state electrolytes are also possible for metal-oxygen batteries 

[260]. Aqueous electrolytes have the advantage of safety, low cost, and high ionic 

conductivity compared to non-aqueous electrolytes [261]. Hence, their adaptation to metal-

air batteries is desired [262–264]. 
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Figure 4.2. Keyword analysis for Na-ion (a), K-ion (b), Zn-ion (c), Li-air (d), Zn-air (e), 

and Li-S (f) batteries, carbon (g) and graphene (h) bigrams. 

 

The PSM is one of the main problems of the Li-S batteries that many researchers try 

to decrease the effect of it by using specialized materials in terms of pore size or structure 

inside the cathode; the encapsulation of sulfur in specialized carbonous nanostructures in the 

cathode aims to improve the battery performance by trapping the PSs (physically or 

chemically), increasing the electronic conductivity and accommodating the volume change 

due to the conversion of sulfur into Li2S. This is why the keywords cathode, carbon, PS, and 

composite are at the top of the keyword list for Li-S batteries (Figure 4.2f). Graphene is also 
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widely utilized in sulfur cathodes with the promise of entrapping PSs and increasing 

electronic conductivity by providing large surface area and suitable pore structures; the 

appearance of composites, nitrogen doping, aerogels, and nanosheets in Figure 4.2h indicate 

various parts of research involving the use of graphene for Li-S batteries. The selection and 

design of electrolytes is another commonly researched topic on Li-S batteries. The ideal 

electrolyte should have moderate and low solubility to long and short-order PSs, 

respectively, while showing excellent Li+ conductivity [265].  Solid-state electrolytes, 

carbonate-based organic electrolytes, and fluorinated solvents are among the new 

alternatives to conventional ether-based electrolytes in Li-S batteries [266–268].  

 

 
 

Figure 4.3. Relative frequency of keywords in papers related to specific battery types 

versus entire beyond LIBs. 

 

To conclude this part, it can be stated that beyond LIBs mostly emerged as a response 

to the shortcomings of LIBs, such as scarcity of materials, performance problems, and safety 

concerns; some new solutions lead to new battery designs, while some seem to be relevant 

for more than one battery type. In principle, a variety of features, performance measures, 

and challenges among the beyond LIBs may require different approaches in ML applications 

for each battery type. This is a more serious issue in practice; different research groups 

focusing on different battery types create different data build up through the years, making 

ML analysis more difficult as it is mainly based on a statistical analysis of a uniform dataset. 

Consequently, the analysis and understanding of data structure seem to be especially 
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important for ML applications in beyond LIBs. To demonstrate the diversity of concepts and 

focuses of attention in beyond LIBs, we performed a keyword search in literature and 

analyzed them to identify whether the keywords were repeated more frequently in the 

publications related to specific battery types by adapting a method used to analyze the 

characters in a novel series, in Figure 4.3 [200].  

 

In Figure 4.3, the percent of specific keywords in all keywords related to a specific 

beyond LIB technology is given in the x-axis, while the percent of the same keyword in all 

keywords of entire beyond LIB literature is in the y-axis in the logarithmic scale. 

Consequently, the keywords with similar frequency of appearance in all battery types appear 

near the x=y line, as the fraction in a specific battery type will be the same as the fraction in 

the entire beyond LIB literature. A keyword appearing more frequently in papers related to 

a specific battery type will have a higher fraction for that type than the entire beyond LIB 

literature and appear below the x=y line because x will be higher than y. On the other hand, 

keywords appearing less frequently for that battery type will be above the x=y line because 

x will be smaller than y. For example, carbon is one of the most widely used keywords 

across all battery types and has a similar frequency in Na-ion batteries; hence it is on the top 

of the x=y axis. However, reduction is less common in Na-ion batteries (it is on the upper 

side of the x=y line), whereas the 44MnO2 keyword is more frequently used in Na-ion 

batteries than the other battery types (it is on the lower side of the line). Similarly, polysulfide 

is one of the most frequently found keywords in Li-S batteries; it is less common in the rest 

of the battery types. Differences in the keywords and their frequency of appearance in 

literature for a specific battery type are expected because different battery technologies 

require different materials and processes. However, the variance seems to be more than that; 

some keywords in Figure 4.3 do not seem to be directly associated with the materials or 

processes used; they are rather related to the performance and problems, indicating that the 

focus of attention and even research direction may also be deviating in different batteries 

(probably due to the differences in the problems encountered). The distance of a keyword 

from the origin indicates the frequency of that keyword in a specific battery or entire LIB 

literature. Although this additional information may enrich the analysis, it should be treated 

cautiously; some keywords may appear more frequently not because they are more important 

but because they are related to a more frequently studied battery type.  
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Table 4.1. The summary of the methods used in the sections in Results and Discussion. 
  

Experiment

s 

System-Level  

Performance 

Model 

Machine 

Learning 
Ref. 

Li
-S

 

4.1.1. - - + [43] 

4.1.2. - + + [44] 

4.1.3. + - + in preperation 

4.1.4. + - - [45] 

4.1.5. + + - [46,47]  

Li
-O

2 4.2.1. - - + [48] 

4.2.2. - - + in preperation 

 

Among the beyond LIB systems discussed above, the focus is on the development of 

Li-S and Li-O2 batteries in this thesis, and the results are represented in two main sections: 

Li-S batteries and Li-O2 batteries. The summary of the methods used in the subsequent 

sections is given in Table 4.1.  

 

4.1.  Li-S Battery Studies 

 

This section includes five different works for the development of Li-S batteries. In 

Section 4.1.1., ML techniques were used for the assessment of critical materials and cell 

design factors for high-performance Li-S batteries using the literature data. In the subsequent 

section, ML tools were applied to the literature data for Li-S batteries with IL electrolytes to 

determine the critical factors and materials to increase Li-S cell- and system-level 

performances, specifically for IL electrolyte-containing cells. In the next section, the relation 

between the PS solubility in the IL, the properties of the IL and battery performance was 

examined using experimentation, COSMO-RS calculations, and ML techniques to further 

study IL electrolytes. Next, the effect of encapsulation material properties on the 

electrochemical performance was evaluated for MOF materials. Likewise, the impact of 

encapsulated cathodes on the system-level metrics of Li-S battery was reported for the V- 

and Co-doped ketjen black sulfur composite cathode in the following section.  
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4.1.1.  Assessment of Critical Materials and Cell Design Factors for High Performance 

Lithium-Sulfur Batteries using Machine Learning 

 

This section is modified from the original research paper published in the Chemical 

Engineering Journal by authors A. Kilic, Dr. Ç. Odabaşı, Prof. R. Yildirim, and Prof. D. 

Eroglu [43]. The data gathering, preparation, and results analysis were performed in the 

scope of this thesis by A. Kilic, whereas the ARM analysis was performed by Ç. Odabaşı. 

 

In Li-S batteries, as a consequence of the highly complex reaction and degradation 

mechanisms, materials and cell design have a critical impact on the performance. 

Subsequently, Li-S batteries receive significant research attention. In this section, a 

comprehensive analysis on the effect of key factors on the battery performance, namely the 

peak discharge capacity and the cycle life, is conducted using ML. Data for 1660 cells from 

353 papers in the literature is collected and analyzed via association rule mining.  

 

4.1.1.1.  Pre-Analysis of Data. Because of the complexity of reaction and degradation 

mechanisms in a Li-S cell, the performance is highly sensitive to a variety of factors as 

shown in Figure 4.4. In this section, we pre-analyzed the impact of critical variables on the 

Li-S battery performance to understand the structure of the database and the behavior of the 

major variables better before starting a more detailed ML analysis. 

 

In Li-S batteries, the discharge current density or the C-rate, which is the current 

density normalized against the battery capacity, is a critical factor as it defines the battery 

performance through the cell area-specific impedance and the Li anode surface morphology 

[65]. Cells have different capacities at different C-rates; typically lower discharge capacities 

are attained at higher current densities. In Figure 4.5, the comparison of the distribution of 

the overall data with the data at a specific C-rate (i.e. 0.1C) is presented. It can be seen in 

the figure that both datasets have the normal distribution and the mean of the overall data is 

very similar to the mean of the data at 0.1C rate; considering this and the relatively high 

number of cases in the overall dataset; hence the overall dataset was used in the analysis to 

have statistically more reliable results. 

 



 

 

73 

 
 

Figure 4.4. Schematic of the materials and cell design factors in a Li-S cell. 

 

Li metal is one of the best candidates as the anode material for beyond LIBs due to its 

lowest possible molecular weight of 6.94 g/mol and highest possible standard oxidation 

potential of 3.040 V (vs H2/H+). Consequently, Li metal has a very high specific capacity of 

3860 mAh/g [10]. However, both the high reactivity of the Li metal with the electrolyte and 

the dendrite formation in the anode as a result of the changes in surface morphology with 

cycling prevent achieving the theoretical capacities in the cell. In the literature, there are 

efforts to solve these problems by forming a stable Li and electrolyte interface by utilizing 

different electrolyte types, salts and additives. Introducing an interlayer to the anode such as 

Al2O3 layer or impurities as hard carbon or carbon black to strengthen the Li metal are some 

of the other approaches reported in the literature [269–271]. Since the anode material plays 

a key role in the battery performance, it is considered a variable in the analysis.  
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Figure 4.5. Distribution of PDCs for liquid electrolyte cells: entire dataset (average of 

PDCs = 966 mAh/g) (a), data subset at 0.1C (average of PDCs = 1004 mAh/g) (b). 

 

Excess Li amount in the anode, or negative-to-positive capacity (N/P) ratio, in other 

words, is also an important design variable. Li-S cells typically contain excess amount of Li 

in order to prevent the Li depletion in the cell as a result of the side reaction between the 

anode and the electrolyte. Subsequently, increasing the amount of excess Li in the cell 

enhances the cycling performance [32], [272]. Even though the excess Li amount is a key 

variable, the majority of the studies in the literature do not report the anode thickness in the 

cell. Consequently, its effect on the battery performance is not considered in this section as 

well. 

 

Elemental sulfur, as the active material in the Li-S cathode, has the advantages of high 

specific capacity, natural abundance, non-toxicity and low cost [273,274]. During the 

discharge of a Li-S cell, the transition from the solid-state sulfur to the soluble high-order 

PSs takes place in the high voltage plateau corresponding to a theoretical capacity of 418 

mAh/g [275]. The discharge proceeds with the reduction of the PSs in the low voltage 

plateau till the formation of the end solid product Li2S. The majority of the studies in the 

literature use solid-state sulfur as the cathode active material because of the aforementioned 

reasons. However, the low electronic conductivity of the sulfur slows down the kinetics and 

thus limits the active material utilization significantly in the cathode [276,277]. Therefore, 

studies investigating the soluble PSs and other chemicals, such as CoMoS3.13, as the sulfur 

source are also present in the current literature [278–280]. Consequently, sulfur type is also 

included in this analysis as a design variable. 
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As a consequence of the insulating nature of sulfur and Li2S, Li-S cathodes typically 

require the addition of a significant amount of conductive material. Thus, the type of the 

conductive material in the cathode is a vital factor for defining the reaction kinetics through 

the electronic conductivity and the electrochemically active surface area [13], [281,282] . In 

this section, conductive materials are defined as the ones, which are mixed with the active 

material directly without any further treatment. As can be seen in Figure 4.6a, most of the 

studies in the literature with liquid electrolyte, use carbon black as the conductive material 

in the Li-S cathode (74.6 %), whereas 14.7 % does not use any conductive material; however 

the majority of the studies that do not use additional conductive material already have 

conductive encapsulated S cathodes. 

 

 
 

Figure 4.6. Breakdown of conductive material type (a), encapsulation material type (b), 

and binder type (c) in dataset for cells with liquid electrolyte. 

 

Encapsulation strategy in sulfur cathodes has gained significant attention in the last 

decade [283,284]. It is a highly successful strategy in preventing the PS shuttle mechanism 
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by trapping the soluble PSs, enhancing the electronic conductivity of the sulfur cathode and 

accommodating the volume change in the cathode. Encapsulation strategy improves the 

sulfur conductive interface and puts extra barriers for the migration of the PSs [285–289]. 

Indeed, encapsulation cathode materials are among the most widely investigated research 

areas in the Li-S battery field. Cleaver et al. [90] report in their review that 64% of the 

research articles in the field are on developing novel materials design for the cathode; 

consequently, the encapsulation cathode material type is a critical variable.  

 

The conductive materials are incorporated into the cathode either by physically mixing 

with the active material or by being treated thermally or chemically in various encapsulation 

methods. In this work, cathodes that are prepared by any treatment of the conductive 

materials with the sulfur other than physical mixing are defined as encapsulated cathodes 

and analyzed in this part. As can be seen in Figure 4.6b, only 28.9 % of the cells with liquid 

electrolyte do not use any encapsulation material in the cathode. The most commonly used 

encapsulation materials are porous carbons (the details of the alternative materials are given 

in the Appendix A), carbon black, graphene and carbon nanotubes, while 32.0 % of the cases 

in the database have used different encapsulation materials. Binder type impacts the 

performance of the Li-S batteries; it is not only responsible for the contact between the 

sulfur, cathode matrix and current collectors, but it is also important to prevent the structural 

deformation due to volume change and active materials dissolution. In addition, an ideal 

binder should also decrease the PS migration by interacting with the soluble PSs [33]. 

 

As can be seen in Figure 4.6c, 89.1 % of the data points have used binder in their 

cathodes; the most common binder type is PVDF, with 66.0 % in the dataset. PVDF is 

typically preferred due to its high stability and adhesion properties. However, PVDF needs 

to be dissolved in NMP solvent, which is toxic and expensive [290]. Therefore, there are 

some efforts to replace PVDF as the binder in the sulfur cathode; PEO, PTFE, LA, and 

CBC+SBR are some of the other typical binders used in the literature to have more 

environmentally friendly and cost-effective batteries. It is apparent in Figure 4.6c that 10.9 

% of our database does not use any kind of binder. It should be mentioned that the majority 

of the binder-free cells again contain encapsulated cathodes.   
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15-20 wt.% of the total mass of a Li-S cell stems from the current collectors, which 

account for 10-15% of the total cost. Although Al foil is the most widely used cathode 

current collector, it is nonporous, and prone to oxidation at high voltages. The electrical 

contact between the corroded Al foil and sulfur is significantly low and that increases the 

cell resistance considerably. In this context, developing an appropriate current collector is 

also important for high cyclability and low cost [291]. Recently, 3-D current collectors have 

gained significance in Li-S batteries to ensure higher sulfur loadings and areal capacities in 

the cathode [292–295]. Graphene hierarchical networks, free-standing carbon nanofiber and 

carbon nanotube papers, and Ni foams are some examples of the newly developed 3-D 

current collectors in the Li-S battery literature [293–295]. These 3-D structures enable the 

use of thicker cathodes and thus higher areal capacities in the cell due to a superior electronic 

conductivity and electrode integration. In addition to favoring much higher sulfur loadings 

in the cell, these 3-D current collectors are also effective in accommodating the volume 

change in the cathode. As a result, the positive current collector type is considered as a design 

variable in the analysis in the following sections. Since there is no emphasis on the 

development of novel current collectors in the anode, the negative current collector type is 

not taken into account. 

 

In a Li-S cell, the separator plays a key role in preventing the PS shuttle by blocking 

the transfer of the PSs to the anode while ensuring high Li-ion conductivity. In addition, the 

separator in a Li-S cell should suppress the Li dendrite growth to avert any short circuit in 

the cell that may lead to thermal runaway. Subsequently, the separator type has a high impact 

on both the cycle life and the capacity retention of a Li-S battery. The most commonly used 

separators in the literature are polymer-based [296]. However, studies focusing on the 

improvement of the existing separators by coatings or the development of novel separators 

are also common in the recent literature [297–299]. Consequently, we treated the separator 

type as a variable in our analysis. 

 

Interlayers, either between the anode and the separator or between the separator and 

the cathode, have gained significant attention in recent years in Li-S battery research. These 

multi-functional interlayer systems are typically carbon- or polymer-based. The interlayer 

in the cell can block the diffusion of the PSs preventing the loss of the active material to the 

anode and protect the Li metal. In addition, the interlayer improves the electronic 
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conductivity and ensures high contact during cycling, which may be otherwise challenging 

due to the volume change in the cathode. As a result, significantly enhanced electrochemical 

performances are commonly reported for Li-S cells containing an interlayer [300–302]. 

Therefore, the presence of an interlayer is considered in this section as a variable.  

 

S loading in the cell, which is controlled by the cathode thickness and the sulfur weight 

fraction in the cathode, is another key design parameter that determines the areal specific 

capacity of the cell. As the active material loading in the cathode increases, the energy 

density of the cell increases remarkably [88]. Despite that, due to the transport limitations in 

thicker electrodes, the discharge capacity and cycle life of the cell could be affected 

inversely. Previous studies typically report cathodes with S loadings of 1-3 mg/cm2 for high 

discharge capacity Li-S cells [303,304]. However, in order to surpass the commercial LIBs, 

which have active material loadings of 15-20 mg/cm2, Li-S batteries should be designed with 

much higher S loadings. For instance, in their techno-economic analysis, Eroglu et al. 

conclude that in order to have high energy density Li-S batteries, the S loading in the cathode 

should be 7 mg/cm2 at least [65]. Similarly, Chung et al. recommend S loadings higher than 

6.5 mg/cm2 for enhanced system-level performance [6]. The average of sulfur loadings in 

the cells with liquid electrolytes is 2.4 mg/cm2 in the database used in this section. 

 

As previously discussed, Li-S cells typically require a high amount of conductive 

material, mostly carbon, because of the low electronic conductivity of the sulfur. Increasing 

the carbon ratio enhances the cathode kinetics significantly through increasing the electronic 

conductivity and the electrochemically active surface area. Consequently, utilization of the 

active material and thus the discharge capacity of the cell increase considerably. However, 

after a threshold value, the specific capacity and cell voltage are very similar for cathodes 

with different carbon wt%, mainly because the kinetic limitations are not dominant anymore. 

On the other hand, increasing carbon wt% intrinsically means decreasing the S wt% or active 

material loading in the cathode. Based on the discussion in the previous section, as the S 

wt% in the cathode is reduced, the energy density of the Li-S battery decreases in a great 

manner. In fact, S wt% higher than 70wt% are typically suggested for high energy density 

Li-S batteries, [81], [275], [305,306]. As a consequence of the aforementioned trade-off 

between the discharge capacity and the energy density, S wt% is one of the most important 

design parameters in a Li-S cell. In this analysis, S wt%, conductive material wt%, and 
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encapsulation material wt% are taken as variables, whereas binder wt% is not included as 

an independent variable since the total of the S, conductive, and encapsulation materials and 

binder weight percentages should sum up to 100%. In the literature, some papers using 

encapsulated cathodes gave the targeted S wt% while some others provided the achieved S 

wt% (typically measured by TGA after the encapsulation procedure); there are also papers 

that reported both. Since only one of these two related variables should be used in the 

analyses, a regression model was constructed by Ç. Odabaşı to correlate targeted and 

achieved S wt% using the data from the papers providing both, and computed the achieved 

S wt% for those provided only the targeted values; then we used achieved S wt% as the 

variable in our analysis. The details of regression model used are given in Appendix A; since 

S wt.% was also categorized with a 25% interval, the model fitness was quite satisfactory 

for our purpose. 

 

As previously discussed, the encapsulation of sulfur in Li-S cathodes is highly 

promising in terms of achieving high capacities and cycle lives. The properties of the 

conductive host material, such as the pore size, pore shape, and architecture, can be tailored 

successfully with the encapsulation strategy. Likewise, the intrinsic properties of the 

conductive host material, such as the electronic conductivity, surface chemistry, and 

polarization, can be tuned by doping with heteroatoms as N, B, P. Nitrogen doping is the 

most commonly investigated doping type by far in the literature. Previous studies discuss 

that doping of the conductive host material in encapsulated cathodes enhances the 

electrochemical performance of a Li-S battery, mainly through an improvement in the 

electronic conductivity and S activity [307–310]. The relationship between doping and the 

improvement in the electronic conductivity can be explained by a modification in the 

electronic structure of the carbon host; heteroatoms offer extra free electrons for the 

conduction band and thus enhance the electronic conductivity of the carbon framework 

[310]. Recently, doping with metals as Co, Ni, and metal oxides as TiO2, MnO2 has also 

gained significance in Li-S batteries [311]. These metal and metal oxide dopants improve 

the cycle life remarkably by suppressing the PSM in the cell; this may be explained by the 

immobilization of the PSs due to their strong interaction with the dopants. These dopants 

may also enhance the battery performance by accelerating the redox reactions in the cathode. 

As a result, the doping material type is taken into consideration in the analysis. 
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The complicated sulfur kinetics in the cathode involves multiple redox reactions of PS 

intermediates that are soluble in the electrolyte. The transfer of these PSs to the anode is the 

main reason of the PSM, as previously mentioned. Consequently, the electrolyte has a major 

role in the battery performance because of its impact not only on the reaction kinetics but 

also on the PS shuttle rate and parasitic reactions in the anode. For these reasons, the recent 

literature focuses on the development of novel electrolytes that have sufficient Li+ 

conductivity but can suppress the mobility of the PSs and lead to better Coulombic efficiency 

in the cycling of the Li metal. Novel organic liquid electrolytes, ionic liquids and solvent-

in-salt electrolytes are some examples of the recent research trends in the electrolyte 

development in Li-S batteries [19], [273]. In the literature, the most typical electrolyte 

solvent used in a Li-S cell is a mixture of DOL and DME. In this mixture, DME is 

responsible for the high PS solubility and fast PS reaction kinetics whereas DME accounts 

for forming a stable solid electrolyte interface on the Li anode surface [19]. However, 

because of the high solubility and mobility of the PSs in this electrolyte, new electrolyte 

solvents that can result in better Li-S batteries with slow PS shuttle rate are investigated in 

the literature [312]. 

 

In the selection of the Li salt in a Li-S cell, the most critical concern is the chemical 

compatibility of the salt with the PSs. The majority of the studies in the literature report the 

use of LiTFSI as the Li salt in the electrolyte, mainly due to its good thermal stability and 

compatibility. However, there are several studies in the literature investigating the impact of 

other salt types on the Li-S battery performance in order to enhance the desired electrolyte 

properties [19], [31], [313]. In this section, both the solvent and the salt type were considered 

as design variables. On the other hand, the influence of the salt concentration on the battery 

performance is not examined since the concentrations used in the literature do not vary 

significantly, except in solvent-in-salt electrolytes. 

 

Even though the majority of the literature investigates Li-S cells with a liquid 

electrolyte, solid-state Li-S batteries as well as Li-S cells with catholyte have been reported 

as promising in the recent literature [314]. Therefore, the electrolyte type (i.e. liquid, 

catholyte, solid) is also taken into account in the analysis. However, since the design 

parameters are considerably different in these batteries, they are treated and discussed 

separately. 
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The major additive used in Li-S cells is LiNO3, which is commonly added into the 

electrolyte in order to form a passivating surface film on the anode surface. Previous studies 

suggest that the addition of LiNO3 in the electrolyte enhances the Coulombic efficiency and 

cycling performance of the battery in a significant manner due to passivating the anode 

surface and preventing the PSM [73], [315]. The concentration of the additive is also critical 

[316,317]. In this analysis, the impact of the presence of an additive and its concentration on 

the performance is also studied. 

 

The E/S ratio is one of the most critical design parameters in a Li-S cell as it influences 

both the electrochemical performance and the system-level energy density of the battery 

significantly. The complex reaction and PS shuttle mechanisms in the cathode are highly 

sensitive to the E/S ratio through the PS concentration on the electrode surface, which is 

directly determined by the electrolyte amount in the cell [81], [88]. Previous studies in the 

literature clearly show that increasing the E/S ratio enhances the discharge capacity 

considerably by increasing the utilization of the active material. In electrolyte-starved 

cathodes, high PS concentrations lead to an elevation in the electrolyte viscosity, which may 

restrict the diffusion of Li+ and PS. In addition, electrochemical reactions may be inhibited 

at low E/S ratios due to the solubility limit of the PSs. These all lead to a drastic decrease in 

the discharge capacity in electrolyte-starved cells. On the other hand, a considerable excess 

of electrolyte in the cell intensifies the PSM  and thus reduces the capacity retention 

significantly [318–322]. When the impact of the E/S ratio is investigated in terms of the 

system-level performance, all previous materials-to-system analyses conclude that energy 

density decreases significantly with increasing electrolyte amount in the cell; E/S ratios 

lower than 5 mL/g is required for high energy density Li-S batteries [6], [89]. To sum up, as 

a consequence of all these competing forces, the E/S ratio has a key role in the Li-S battery 

performance and hence is studied in this section as another variable. 

 

4.1.1.2.  Analysis of Peak Discharge Capacity for the Cells with Liquid Electrolyte. First,  

Entire Liquid Electrolyte Dataset: In this part, ARM analysis were presented on the dataset 

containing cells with liquid electrolyte achieving PDCs equal to or higher than 1000 mAh/g 

to determine the important factors for obtaining this capacity. In Table 4.2, ARM results for 

this analysis are given; the factors are ranked according to the lift values. As discussed in 

the Material and Methods section, the lift shows the probability of a factor appearing in a 
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cell with high PDC relative to the total data in the dataset; the lift will be greater than one if 

a factor appears in cells with high PDCs more frequently compared to the entire dataset. 

Hence, the higher lift values can be used as an indicator for the positive effect of that 

particular factor. However, lift is not the only criteria to show the significance of a factor. 

Support and confidence are the other two statistical properties that should be taken into 

account, as discussed before. The total number of data points obeying the rules stated in each 

row in Table 4.2 gives an idea of the statistical significance of the rule in a simpler term, 

even though that information already exists in support. Since larger counts show more 

reliable rules, the rows were color-coded depending on the number of counts, and only the 

rules that were obeyed by at least five cases were discussed. Moreover, if all entries are 

coming from the same article, the count was marked with “*” to warn the reader.  

 

The use of carbon as the current collector can be used as an example to better 

understand the meaning of support, confidence, and lift values, as well as the interpretation 

of  Table 4.2. The support, confidence, and lift values for this entry are 0.018, 0.040, and 

1.90, respectively, with a count of 27. This indicates that there are 27 cells using carbon as 

the current collector and achieving PDCs equal to or higher than 1000 mAh/g. Considering 

that we have 1463 cells in the database, the support is 27/1463=0.018. Because there are 669 

cells with PDCs equal to or higher than 1000 mAh/g in the entire database, the confidence 

is 27/669=0.040. Since a total of 31 cells uses carbon as the current collector (27 of them 

has high PDC), the lift is (27/669)/(31/1463)=1.90 meaning that the fraction of the cells 

using carbon as the current collector in those with PDCs equal to or higher than 1000 mAh/g 

is 1.90 times higher than the fraction of the cells with carbon current collector in the entire 

database. We can conclude from this result that the use of carbon as a current collector is 

beneficial.  

 

As can be seen in Table 4.2, most of the high lift entries with statistically sufficient 

number of counts are associated with the use of encapsulation materials in the cathode. The 

highest lifts are obtained with the specialized encapsulation materials, i.e. structured carbons 

such as GO and porous carbon and polymers such as polyaniline. According to the table, the 

cells utilizing two different types of encapsulation materials together perform better 

compared to a single encapsulation material. Using graphene oxide with porous carbons, 

carbon nanotubes with special chemistries or hollow structured carbons lead to higher lift 
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values. This clearly shows that the development of structured carbons and special 

chemistries as encapsulation materials in the cathode is key to get higher specific capacities.  

 

Table 4.2. Association rule mining results for cells with liquid electrolyte having PDCs of 
1000 mAh/g and above. 

RHS Support Confidence Lift Count 

{Encapsulation=Graphene+Hollow Structured Carbon} 0.00068 0.00149 2.19 1 

{Encapsulation=Graphene+Porous Carbons+Others} 0.00068 0.00149 2.19 1 

{Encapsulation=GO+Hollow Structured Carbon} 0.00068 0.00149 2.19 1 

{Encapsulation=Porous Carbons+Others} 0.00137 0.00299 2.19 2 

{Encapsulation=Hollow Structured Carbon+Polypyrrole} 0.00205 0.00448 2.19 3 

{Encapsulation=C Black+Porous Carbons} 0.00273 0.00598 2.19 4 

{Encapsulation=GO+Porous Carbons} 0.00342 0.00747 2.19 5 

{Encapsulation=Porous Carbons+PANI} 0.00478 0.01046 2.19 7* 

{Encapsulation=C Black+PANI} 0.00547 0.01196 2.19 8* 

{Current_Collector=Carbon} 0.01846 0.04036 1.90 27 

{Electrolyte_Additive=Others} 0.00615 0.01345 1.79 9 

{Encapsulation=Hollow Structured Carbon+Others} 0.00273 0.00598 1.75 4 

{Electrolyte_Salt=NO} 0.00273 0.00598 1.75 4 

{Seperator=Others} 0.00205 0.00448 1.64 3 

{Encapsulation=CNT+Others} 0.01572 0.03438 1.62 23 

{Doping=Nitrogen} 0.04033 0.08819 1.54 59 

{E_S_Ratio=5--10} 0.04033 0.08819 1.54 59 

{Encapsulation=Hollow Structured Carbon} 0.00957 0.02093 1.53 14 

{Encapsulation=C Black+Others} 0.00137 0.00299 1.46 2 

{Encapsulation=Other Carbons+Others} 0.00684 0.01495 1.46 10 

{S_Type=Sulfur+Others} 0.00684 0.01495 1.46 10 

{Electrolyte_Salt=Others} 0.00820 0.01794 1.46 12 

{C_Type=C Black+Structured carbon} 0.01094 0.02392 1.40 16 

{E_S_Ratio=0--5} 0.01162 0.02541 1.38 17 

{Binder_Type=PTFE} 0.02529 0.03453 1.37 37 

{Encapsulation=CNF} 0.01162 0.03576 1.33 17 

{Binder_Type=LA} 0.01572 0.03699 1.32 23 

{Binder_Type=CMC+SBR} 0.01982 0.03822 1.32 29 

{Encapsulation=Structured Carbons} 0.00410 0.03945 1.31 6 

{Encapsulation=CNF+Others} 0.00410 0.04068 1.31 6 

{Interlayer=Yes} 0.10663 0.04191 1.30 156 

{Binder_Type=PEO+Others} 0.00889 0.04314 1.29 13 

{Electrolyte_Solvent=TEGDME} 0.01435 0.04437 1.28 21 

{S_wt=0--25} 0.01572 0.04560 1.26 23 

{Binder_Type=PVDF+others} 0.00273 0.00598 1.25 4 

{Encapsulation=Graphene+Others} 0.01435 0.03139 1.24 21 

{Electrolyte_Solvent=Others} 0.02051 0.04484 1.24 30 

{Doping=Nitrogen+Others} 0.00615 0.01345 1.23 9 
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The table also reports high lift values with reasonably high number of counts for the 

use of carbon current collectors, nitrogen doping and the E/S ratios of 0-10 mL/g in the 

cathode. As a result, Li-S cells with these factors have higher probability to reach specific 

capacities equal to or higher than 1000 mAh/g. The other important factors for achieving 

high PDCs are the conductive material type, electrolyte salt type, sulfur type, binder type, 

and S weight percentage. In addition, having an interlayer is also beneficial for achieving 

PDCs equal to or higher than 1000 mAh/g. 

 

Although the ARM analysis for the cells with PDCs equal to or higher than 1000 

mAh/g gives valuable information for the effect of various cell materials and compositions, 

this value is still only the 60 % of the theoretical capacity; PDCs should be much higher for 

practical applications. For this reason, the ARM analysis were repeated for the cells with 

PDCs equal to or higher than 1200 mAh/g, 1400 mAh/g and 1600 mAh/g; this way the 

change in lift with increasing PDC could be also monitored to identify the factors that 

become more apparent when the desired PDC value is increased. The PDC values were 

defined cumulatively; for example, the batteries with PDCs equal to or higher than 1000 

mAh/g also cover the batteries having PDCs equal to or higher than 1200 mAh/g, 1400 

mAh/g  and 1600 mAh/g. The results of such analysis are shown in Figure 4.7, for the 

cathode design parameters as the lift versus discharge capacity bubble graphs, where the 

bubble size indicates the number of counts obeying that rule (numbers next to the bubbles);  

only the cases having a minimum of 10 data points were included in the figures related to 

association rule mining results. Figure 4.7a indicates that carbon black, which is the most 

common conductive material used, is still the best option since the lift values of all other 

options are lower (although the lift for C-black with some structured carbon materials is 

higher at low PDCs, this result cannot be generalized because all these data points are 

coming from a single article). The amount of conductive material seems to be important, and 

15-30 wt.% (intermediate values) is more favorable for high capacity sulfur cathodes (Figure 

4.7b).  

 

Thirteen options are present in Figure 4.7c for the effect of encapsulation material 

type. Although the graph seems to be complex at first look, the general trends are rather 

simple; the most striking conclusion is that encapsulated cathodes are much better for 

achieving high PDCs when compared with the no encapsulation case. When the PDC is 1000 
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mAh/g, all the alternatives overlap even though the lowest lift value is still obtained for the 

no encapsulation case  (represented by the large blue bubble in the figure). Then, the lift 

values start to differentiate with increasing PDC. For example, C black is one of the most 

commonly used encapsulation materials; however, its lift is around one, showing that it is 

not a good material for this purpose. The other materials seem to be better than C black or 

no encapsulation in general; especially porous carbons appear to be highly effective with the 

lift of 2.44 at 1600 mAh/g. Likewise, the lift of “others”, which is a collection of infrequently 

used materials (like polyacrylonitrile and covalent organic frameworks doped with boron 

and oxygen), is much higher (2.57) with the count number of 5 (the count was 10 at 1400 

mAh/g). Carbon nanotubes (CNT) with some additives also result in high-capacity cathodes; 

for instance, CNT with zeolitic ZIF-8 or polyethylenimine may favor capacities over 1400 

mAh/g. To sum up, encapsulating sulfur with structured carbons (i.e., CNT, CNF, porous 

carbons) or developing novel encapsulation materials (i.e., others, other carbons) are highly 

promising pathways to achieve PDCs over 1400 mAh/g. This may be because the structure 

and the properties of the encapsulation materials, such as CNT, CNF, porous carbons, etc., 

can be defined and controlled better compared to C black; for instance, structured carbons 

typically have higher conductivity and surface area. Therefore, better control of the structure 

and more refined properties of carbons (or novel materials) may be significant in the success 

of the encapsulation.  

 

Figure 4.7d shows that high fractions of encapsulation materials (more than 40 wt.%) 

also improve the cell performance. This may be attributed to the enhanced conductivity and 

electrochemically surface area of the sulfur electrode leading to higher sulfur utilization. 

Encapsulation fractions less than 40 wt.% does not seem to have the same effect. When the 

effect of the binder type on the PDC is considered in Figure 4.7e, it is seen that PVDF, which 

is the mostly used binder, has a constant lift value around one for all of the capacity intervals. 

On the other hand, PTFE or LA shows promise for attaining high capacity Li-S batteries. 

PEO, CMC+SBR, PEO+Others and the other binders that are not listed here are not 

favorable when the peak specific capacity is considered as the performance indicator. The 

impact of the sulfur loading in the cathode on the PDC is presented in Figure 4.7f. It is 

apparent in the figure that the sulfur loading should be smaller than 1 mg/cm2 to have peak 

capacities higher than 1400 mAh/g; this is due to the improved sulfur utilization at low 

loadings as discussed in the previous section. 
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Figure 4.7. Change of lift with peak discharge capacity for materials and design factors in 

cathode with liquid electrolyte: conductive type (a), conductive weight % (b), 

encapsulation type (c), encapsulation weight % (d), binder type (e), sulfur loading 

(mg/cm2) (f). 

 

Electrolyte materials are also important design factors in a Li-S cell. First, the solvent 

material type in the electrolyte was considered. As can be seen in Figure 4.8a, most of the 

works in the literature use DOL:DME as the solvent; hence, this material has a lift value of 

around one. On the other hand, EC:DEC has a very high lift value of 13.18. Only 20 of 588 

data points using DOL:DME achieve PDCs equal to or higher than 1600 mAh/g, while 6 of 
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10 EC:DEC cases are still in the dataset at 1600 mAh/g capacity, resulting in this very high 

lift value of 13.18. This, together with the high lift result of TEGDME, shows that the 

conventional electrolyte solvent can be replaced with new electrolyte solvents to get closer 

to the theoretical capacity. 

 

 
 

Figure 4.8. Change of lift with PDC for materials and design factors of liquid electrolyte: 

electrolyte solvent (a), E/S ratio (mL/g) (b), electrolyte salt (c), electrolyte additive 

concentration (M) (d). 

 

The E/S ratio is another critical factor in our analysis as given in Figure 4.8b. The 

impact of E/S ratio on the PDC is obvious in the figure. Even though low or moderate E/S 

ratios (0-5 and 5-10 mL/g) are favorable in attaining capacities of 1000 mAh/g S, E/S ratios 

higher than 30 mL/g are required to achieve 1600 mAh/g. This clear trend in the figure 

confirms that very high E/S ratios are needed in the cell when the cell performance is 

evaluated based on the peak discharge capacity. Electrolyte salt type is also considered 

together with the electrolyte solvent. As it can be seen in Figure 4.8c, LiPF6 has a very high 

lift value compared to the most commonly used salt LiTFSI; this trend indicates that using 
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LiPF6 in the electrolyte is favorable for high capacities. On the other hand, the electrolyte 

additive, which is mainly LiNO3, does not have any positive effect on the PDC as presented 

in Figure 4.8d. On the contrary, the electrolyte with no additive seems to be much better for 

high PDC even though LiNO3 improves the cycle life, as it will be discussed in later in this 

section. 

 

For Liquid Electrolyte Dataset with E/S Ratio and S Loading Limitations: As 

previously discussed, even though the majority of the studies in the literature evaluate the 

Li-S cell performance through the peak discharge capacity, the energy density of the cell is 

also critical. Since sulfur is the active material in the cathode, high sulfur loadings are desired 

for high energy densities. Likewise, the amount of the electrolyte in the cell should be limited 

like all the other inactive materials that do not contribute to the cell capacity. In other words, 

for high energy density Li-S batteries, the E/S ratio should be low while the sulfur loading 

in the cathode is high. Consequently, in order to investigate the effect of factors to achieve 

high energy density cells, ARM analysis was also performed for the cells having sulfur 

loadings higher than 5 mg/cm2 (Table 4.3) and E/S ratio of 0-5 mL/g (Table 4.4) with PDCs 

equal to or higher than 1000 mAh/g. Because of the low number of data in the dataset 

satisfying both sulfur loading and E/S ratio requirements simultaneously, the analyses for 

these two factors were conducted individually.  

 

The most significant result in Table 4.3 is that there should be no conductive additive 

or binder in the cathode for high PDCs at high sulfur loadings. In addition, encapsulation 

weight percentages should be between 0-25 wt.%. This shows that the development of 

binder-free cathodes with efficient encapsulation materials at low amounts is key to have 

high performance at high sulfur loadings. ARM analysis, in which E/S ratio is restricted, 

also provides valuable information. There are electrolyte starved cells that can achieve peak 

discharge capacities ≥ 1000 mAh/g and ARM analysis can be successfully used to 

investigate the common materials and cell design factors in these cells. However, because 

of the low number of data in the dataset for these low E/S ratios, it is not possible to 

differentiate between E/S ratios of 0-5 mL/g. 
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Table 4.3. Association rule mining results for cells with liquid electrolyte having PDCs 
equal to or higher than 1000 mAh/g and S loadings equal to or higher than 5 mg/cm2. 

RHS Support Confidence Lift Count 

{Encapsulation=C Black+PANI} 0.00068 0.100 18.29 1 
{Encapsulation=Structured Carbons} 0.00068 0.100 14.63 1 
{Electrolyte_Additive=LiNO3+Others} 0.00068 0.100 13.30 1 
{Current_Collector=NO} 0.00137 0.200 8.61 2 
{S_Type=LixSy} 0.00205 0.300 6.65 3 
{Current_Collector=Others} 0.00137 0.200 5.85 2 
{S_wt=75--100} 0.00137 0.200 5.23 2 
{Binder_Type=NO} 0.00342 0.500 4.57 5 
{Encapsulation=Graphene} 0.00273 0.400 3.85 4 
{C_Type=NO} 0.00342 0.500 3.40 5 
{C_wt=0} 0.00342 0.500 3.40 5 
{Encapsulation=CNT} 0.00068 0.100 2.00 1 
{Electrolyte_Salt=LiTF} 0.00068 0.100 2.00 1 
{Encapsulation_wt=0--25} 0.00410 0.600 1.94 6 
{E_S_Ratio=5--10} 0.00068 0.100 1.74 1 
{Electrolyte_Add_Conc=0.2--0.5} 0.00205 0.300 1.73 3 
{E_S_Ratio=Above 30} 0.00137 0.200 1.72 2 
{Encapsulation=Porous Carbons} 0.00137 0.200 1.64 2 
{E_S_Ratio=15--30} 0.00137 0.200 1.63 2 
{Encapsulation_wt=Above 40} 0.00068 0.100 1.18 1 

 

It can be seen in Table 4.4 that the electrolyte solvents (i.e. Sulfolane and TMS:TTE) 

other than DOL:DME, TEGDME and EC:DEC are highly effective having lift values higher 

than 8. This suggests that the development of novel electrolytes may play a critical role in 

achieving high discharge capacities in electrolyte starved cells. In addition, using CNT or 

carbon black as encapsulation materials may increase the probability of having PDCs equal 

to or higher than 1000 mAh/g. Finally, the presence of an interlayer may contribute to the 

specific capacity of the Li-S cells with lean electrolyte conditions. These results all indicate 

that materials design is necessary to attain high discharge capacities at low E/S ratios in the 

cell. 

 

Table 4.4. Association rule mining results for cells with liquid electrolyte having PDCs 
equal to or higher than 1000 mAh/g and E/S ratios lower than 5 mL/g. 

RHS Support Confidence Lift Count 
{Binder_Type=PEO+Others} 0.0021 0.1765 11.74 3 
{S_Type=Sulfur+Others} 0.0014 0.1176 11.47 2 
{C_Type=C Black+Structured carbon} 0.0021 0.1765 10.33 3 
{Electrolyte_Solvent=Others} 0.0034 0.2941 8.12 5 
{Binder_Type=PEO} 0.0027 0.2353 8.01 4 
{Encapsulation=CNT} 0.0034 0.2941 5.89 5 
{Current_Collector=Others} 0.0021 0.1765 5.16 3 
{Binder_Type=CMC+SBR} 0.0014 0.1176 3.59 2 
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Table 4.4. Association rule mining results for cells with liquid electrolyte having PDCs 
equal to or higher than 1000 mAh/g and E/S ratios lower than 5 mL/g. (cont.) 

RHS Support Confidence Lift Count 
{Electrolyte_Salt=LiTF} 0.0021 0.1765 3.54 3 
{C_Type=CNT} 0.0014 0.1176 2.97 2 
{Encapsulation=C Black} 0.0034 0.2941 2.58 5 
{Electrolyte_Salt=LiClO4} 0.0007 0.0588 2.46 1 
{Electrolyte_Solvent=TEGDME} 0.0007 0.0588 2.39 1 
{Electrolyte_Add_Conc=0.2--0.5} 0.0048 0.4118 2.38 7 
{Binder_Type=LA} 0.0007 0.0588 2.26 1 
{S_loading=1--3} 0.0109 0.9412 2.26 16 
{Interlayer=Yes} 0.0041 0.3529 1.96 6 
{C_wt=0--15} 0.0089 0.7647 1.86 13 
{Current_Collector=C coated Al foil} 0.0034 0.2941 1.80 5 
{S_wt=75--100} 0.0007 0.0588 1.54 1 
{Binder_Type=PTFE} 0.0007 0.0588 1.46 1 
{S_wt=50--75} 0.0082 0.7059 1.40 12 
Encapsulation_wt=0} 0.0041 0.3529 1.22 6 
{Encapsulation=NO} 0.0041 0.3529 1.22 6 
{Electrolyte_Add_Conc=0--0.1} 0.0027 0.2353 1.14 4 

 

4.1.1.3.  Analysis of Cycle Life for the Cells with Liquid Electrolyte. The association rule 

mining analysis was also performed for the cycle life by using a similar procedure explained 

for the PDC. Here,the cycle life was defined as the number of cycles a cell retains at least 

80% of its PDC. The lift values were calculated for the cells that preserved 80% of their peak 

capacity for more than 50, 100, 200 and 400 cycles cumulatively (for example 200 cycle 

data also contains 400 cycle data), and monitored to understand the effect of individual 

factors on the battery cycle life. The results for the entire dataset are presented in Figure 4.9 

and Figure 4.10. Since the end goal is to attain high capacity retention at high PDCs, an 

additional ARM analysis was also performed for the cycle life of the cells achieving 1000 

mAh/g and higher peak capacities only and the results are given in the parenthesis to show 

how much of the data comes from the cells with the desired PDCs.  

 

According to Figure 4.9a, the cathodes that do not contain any binder perform better 

than the cathodes having PVDF, CMC+SBR or others. However, it should be noted that, 

these binder-free cathodes are generally the ones that utilize special encapsulation materials 

in which an additional binder is not needed. Therefore, a discussion built on encapsulation 

materials rather than the binder type would be more relevant. The sulfur loading, which is a 

critical cathode design parameter, has a strong effect on the cycle life (Figure 4.9b). 80 % 

capacity retention for more than 300 and 400 cycles seems to be more possible if the sulfur 

loading is between 3-5 mg/cm2 while higher loadings (above 5 mg/cm2) are better in lower 
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cycle numbers. This can be explained that high active material loadings may enhance the 

PSM and increase the cell resistance with cycling. As seen in the figure, cells with low sulfur 

loadings (0-1 mg/cm2) show limited cycle life despite achieving high PDCs as discussed 

above. This, together with the discussion on the energy density, clearly suggests that low S 

loaded cathodes are not feasible.  

 

 
 

Figure 4.9. Change of lift with cycle number for materials and design factors in cathode 

with liquid electrolyte: binder type (a), sulfur loading (mg/cm2) (b), conductive type (c), 

conductive weight % (d), encapsulation type (e), encapsulation weight (f). 
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The cells with no conductive additive have the highest lift at high cycle life (Figure 

4.9c); this is also apparent in Figure 4.9d that the highest lift was obtained with 0% additive. 

However, it should be emphasized that these cells are also the ones with specialized 

encapsulation materials. These results suggest that if the encapsulation materials have large 

surface area, appropriate pore structure and volume that restrict structural deformations, and 

provide high conductivity, additional conductive additives and binders are not necessary. 

Then, it can be said that the type and amount of encapsulation material are the most crucial 

factors for achieving high capacity retention and thus enhanced cycle life.  

 

When the influence of encapsulation type and amount on the cycle life is considered 

in Figure 4.9e and Figure 4.9f, respectively, the critical impact of the encapsulation strategy 

can be clearly comprehended. Cells prepared without any encapsulation (NO in Figure 4.9e 

and 0% in Figure 4.9f) have the worst cycling performance. Moreover, it is seen that porous 

carbons, carbon nanotubes, and less frequently used materials collected in the entry of others 

(i.e., polyacrylonitrile, polydopamine) are good options for high cycle life. Graphene 

together with various other materials (graphene+others) and other carbons also have high 

lift values up to 400 cycles. Furthermore, Figure 4.9f suggests that encapsulation wt.% 

higher than 25% (25-40% and 40-100%) is favorable for enhanced cycle life; this result is 

consistent with the findings presented above for PDC proposing binder- and conductive-free 

cathodes for high-performance cells. 

 

When the electrolyte parameters of the cells are considered in Figure 4.10, the only 

conclusive results come from the E/S ratio and electrolyte additive concentration. Better 

cyclability is obtained with E/S ratios higher than 30 mL/g while 0.1-0.2 M additive (mostly 

LiNO3) concentration seems to improve the cycle life. The latter result is expected as LiNO3 

is known to passivate the anode; however, it is interesting that intermediate concentrations 

(0.1-0.2 M) resulted in better cyclability. On the other hand, observing the highest lift values 

for the highest E/S ratio range was an unexpected finding since it is frequently discussed in 

the literature that too high electrolyte amounts enhance the PSM in the cell and thus reduce 

the capacity retention. 
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Figure 4.10. Change of lift with cycle number for materials and design factors of liquid 

electrolyte: electrolyte solvent (a), E/S ratio (mL/g) (b), electrolyte salt (c), electrolyte 

additive concentration (M) (d). 

 

4.1.1.4.  Analysis of Peak Discharge Capacity and Cycle Life for the Cells with Other Types 

of Electrolyte. Finally, association rule mining was performed for PDC and cycle life of Li-

S cells with catholyte and solid electrolyte. However, the number of data points were too 

small to have a detailed discussion as in the case of liquid electrolyte; instead, PDC and cycle 

life of three electrolytes were compared in Figure 4.11. The cells with solid electrolyte 

perform better in PDC analysis while the catholyte is better for long cycle life. Li 

conductivity in all-solid-state Li-S batteries is already comparable with the conventional 

electrolytes; hence, they can achieve very high PDCs. However, the interface forming 

between the anode and the solid electrolyte with cycling causes high interfacial resistance in 

the cell and thus leads to poor cycle life [323]. On the other hand, cells with catholyte achieve 



 

 

94 

improved cycling performance, most probably due to reversible and kinetically fast reactions 

in the presence of additional PSs in the electrolyte [324]. To conclude, since Li-S cells using 

catholyte and all-solid-state electrolyte are relatively recent in the literature, a future ARM 

study focusing only on these cells would result in more elaborate conclusions. 

 

 
 
Figure 4.11. Comparison of peak discharge capacity (a)  and cyclability of electrolyte types 

(b) in Li-S cells. 

 

4.1.2.  Assessment of Ionic Liquid Electrolytes for High Performance Lithium-Sulfur 

Batteries using Machine Learning 

 

This chapter is an edited version of the original research article published in the 

International Journal of Energy Research by authors A. Kilic, Prof. R. Yildirim, and Prof. 

D. Eroglu [44].  

  

Although Li-S batteries are very promising in terms of their theoretical specific energy, 

their commercialization is severely hindered by the multi-step reaction and various 

degradation mechanisms. The PSM is one of the big challenges associated with these 

batteries that results in irreversible capacity loss and low efficiencies. To realize the full 

potential of the Li-S batteries, the shuttling of PS intermediates between the electrodes 

should be prevented. Additionally, to increase the system-level energy density of the Li-S 

battery, the dead mass inside the battery pack should be minimized. In this respect, ionic 

liquids (IL) are getting increasing attention as they can reduce the PS shuttle mechanism 

with their limited PS solubility and their functionality at lean electrolyte conditions. In this 
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section of the thesis, a dataset is constructed from the experimental literature data, which 

uses ILs as their electrolytes, to analyze the important cell variables and promising ILs for 

both high system- and cell-level performances using association rule mining.  

 

4.1.2.1.  ARM Results for Peak Discharge Capacity. The lowest capacity limit for the high-

capacity subset was chosen as 800 mAh/g, and its ARM results are given in Table 4.5. This 

table was ranked with respect to the lift values as higher lift values present stronger 

associations between that factor and the high-class cells, while lift values below 1 imply 

negative correlations. Confidence and support are also given together with the count value, 

which is the number of cases satisfying the rule, as a more practical measure to see the 

significance of the results. Indeed, some of the entries with the highest lift have only a few 

cases; hence, they cannot be generalized with high confidence as a rule to follow. The 

calculation of support, confidence, and lift can be shown for EMI_TFSI as an example to 

better understand the results. The total number of data points in the dataset is 207 while only 

125 of them have PDCs ≥ 800 mAh/g, high class subset. On the other hand, 7 data points 

contain EMI_TFSI in their electrolytes and 6 of them give high performances (count). 

Hence, support, confidence and lift values are found as 6/207=0.029, 6/125=0.0480 and 

0.0480/(7/207)=1.42, respectively. As seen in the table, the electrolyte parameters, 

specifically the IL type, are at the top of the table, indicating that they are very effective for 

providing high-capacity Li-S batteries.  

 

The rules or conclusions deduced for the factor effects can be refined further with a 

slightly different use of ARM as follows; the lower limits of high performance data can be 

set to a different level (such 800 mAh/g to 1000 mAh/g, and so on) and ARM analysis is 

performed for each case. Since the number of data will decrease with increasing lower limit 

(tighter performance requirement), the lift of a level promoting high performance should 

increase because the number of data satisfying this condition, should remain constant or at 

least should decrease less than the others. Hence, the increasing trend in the lift can be used 

as a further indicator of the positive effect of that level. Therefore, the limits for the high-

capacity class were increased from 800 mAh/g to 1000 mAh/g, 1200 mAh/g and 1400 

mAh/g and the trend for the lift of each factor was analyzed separately. The results, as lift 

versus capacity limit, are presented in  bubble graphs, where the bubble size represents the 

number of data points satisfying the conditions. Since the capacities are cumulative (for 
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example if a PDC is greater than 1400 mAh/g, it is also greater than 800 mAh/g), the size of 

the bubbles are expected to decrease, while the lift of the promising factor will increase.  

 

Table 4.5. ARM results for PDCs ≥800 mAh/g. 
Factors Levels Support Confidence Lift Count 
IL_Abbreviation DEME_Others1 0.0048 0.0080 1.66 1 
IL_Abbreviation PMIM_TFSI 0.0048 0.0080 1.66 1 
IL_Abbreviation P1A3_TFSI 0.0097 0.0160 1.66 2 
Encapsulation_Material_Categorized Carbon Black 0.0097 0.0160 1.66 2 
Conductive_Material_Categorized Others4 0.0097 0.0160 1.66 2 
Anode_Categorized Modified Li 

anode 
0.0145 0.0240 1.66 3 

IL_Abbreviation Li(G3)_TFSI 0.0145 0.0240 1.66 3 
Binder_Categorized CMC 0.0386 0.0640 1.47 8 
IL_Abbreviation EMI_TFSI 0.0290 0.0480 1.42 6 
IL_Abbreviation P13_Others1 0.0290 0.0480 1.42 6 
E/S_Ratio_Categorized 0-15.0 0.1111 0.1840 1.41 23 
Encapsulation_Material_Categorized Carbon 

Nanotube 
0.0821 0.1360 1.41 17 

S_Loading_Cat >4.0 0.0966 0.1600 1.38 20 
IL_Abbreviation Li(G4)_TFSI 0.1159 0.1920 1.32 24 
IL/Solvent_vol.%_Categorized <50 0.1353 0.2240 1.32 28 
Molecular_Solvent_Categorized DOL:DME 0.1449 0.2400 1.31 30 
Conductive_Material_Categorized Acetylene black 0.1256 0.2080 1.30 26 
IL_Abbreviation P13_TFSI 0.0483 0.0800 1.27 10 
Molecular_Solvent_Categorized Fluorinated 

ether 
0.0483 0.0800 1.27 10 

Binder_Categorized None 0.0435 0.0720 1.24 9 
Conductive_Material_Categorized Ketjen Black 0.0435 0.0720 1.24 9 

 

Figure 4.12  presents the ARM results showing the effect of IL type on the PDC. The 

lift values are very close for all ILs at PDCs ≥ 800 mAh/g, meaning that most of the ILs 

work well for this capacity range. However, when the capacity limits are increased, 

promising ILs become more apparent as they differentiate with higher lifts. For example, 

P13_Others1, EMI_TFSI, and P13_TFSI seem to be much better for PDCs ≥ 1400 mAh/g, 

while P1,201_TFSI shows promise for PDCs ≥ 1200 mAh/g. Although P1A3_TFSI has high 

lift values, since it has a low count, we cannot deduce a conclusion. On the other hand, there 

are many examples of SILs, which have Li(triglyme) or Li(tetraglyme) cations and TFSI or 

other various anions in the literature. However, an association between these ionic liquids 

and high performance is not observed for PDCs ≥ 1200 mAh/g; the true ionic liquids 

performed better in terms of high PDCs.  As presented in Table 3.7, there are 19 different 

ionic liquids, which are combinations of 14 cation and 2 anion groups in the dataset; 92 % 
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of ionic liquids uses TFSI as their anion group and there are only a few studies investigating 

the effect of the anion group on the performance [325,326]. The main reason for this 

preference is probably the known low PS solubility of TFSI anionic group as compared to 

other organic solvents [326]. However, further analysis of the ARM results shows that the 

use of different anion groups (BETA, FSI) for P13 cation may be beneficial considering that 

the lift is almost tripled with the increasing performance measure (higher limits for the high-

performance class); in other words, the use of the different anionic groups (BETA, FSI) 

resulted in high PDCs if P13 was used as the cation. This may be suggesting that the other 

anion groups should also be investigated for the other cations in addition to TFSI, which 

seems to be a default anion. 

 

 
 

Figure 4.12. Lift vs. peak discharge capacity of ionic liquids as electrolytes. 

 

Rather than using pure IL electrolytes, most of the data points in the dataset uses 

additional molecular solvents (MS), which are generally organic solvents with certain salts 

[327,328]. In fact, 64% of the data uses these solvents to decrease the viscosity of ILs to 

facilitate Li+ ion transfer in general. However, Figure 4.13a and Figure 4.13b do not seem 

to support this practice; the use of suitable pure IL electrolytes works better as “None” level 

has the highest lift at the highest capacity limit. On the other hand, if a MS is needed, 

DOL:DME solvent mixture should be used with the condition that IL/MS vol.% should not 
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exceed 50 vol.%. It was also found that the addition of various salts, other than LiTFSI, 

favors high PDCs, whereas LiNO3 decreases the probability of having high PDCs in IL 

electrolytes (Figure B.3).  

 

 
 

Figure 4.13. Lift vs. peak discharge capacity of molecular solvents as electrolytes (a) and 

IL/MS vol.% in the electrolyte (b). 

 

In Figure 4.14 and Figure 4.15, the effect of E/S ratio and sulfur loading on the PDC 

of Li-S batteries with IL electrolytes are compared with the Li-S cells with molecular solvent 

electrolytes using the dataset we created in the previous section [43]. In Figure 4.14a, it is 

shown that low E/S ratios are more favorable for reaching higher PDCs in IL electrolytes 

(Figure 4.14a); on the other hand, high E/S ratios are needed for high performance for non-

IL electrolytes (Figure 4.14b). 

 

 
 
Figure 4.14. Lift vs. peak discharge capacity of E/S ratio for IL (a) and molecular solvent 

(b) electrolytes. 

 

Figure 4.15 indicates that ILs work well with high sulfur loadings, whereas Li-S cells 

with molecular solvents fail at high sulfur loadings. Figure 4.14 and Figure 4.15 support that 

(a) (b) 

(a) (b) 
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the use of IL electrolytes is beneficial in Li-S batteries; high PDCs can be achieved at low 

E/S ratios and high S loadings for these cells. These positive improvements may be attributed 

to the limited PS solubility with the utilization of the IL electrolytes [329]. 

 

 
 

Figure 4.15. Lift vs. peak discharge capacity of sulfur loading (mg/cm2) for IL (a) and 

molecular solvent (b) electrolytes 

 

The ARM results of the other variables are given in Appendix B. It is found that the 

encapsulation of sulfur cathodes is still desired for high PDCs to further suppress the PSM 

and to increase the electronic conductivity (Figure B4.a). Carbon black and activated carbons 

should be used as encapsulation materials in the presence of the IL electrolytes. In addition, 

graphene/MgAl2O4 and N-doped mesoporous carbon seem to have a positive effect on the 

improvement of the Li-S cell performance.  

 

4.1.2.2.  ARM Results for System-Level Performance. Although having a high PDC is 

important for a Li-S cell, more relevant performance indicators for practical applications of 

batteries are system-level gravimetric and volumetric energy densities [65], [32], [330]. 

Especially, for applications like electric vehicles, the gravimetric energy density of the 

battery should be higher than 400 Wh/kg [331]. However, studies that investigate the 

system-level performance of Li-S batteries are very limited [332,333]. Hence, in this section 

we modified the BatPac model to estimate the system-level energy density and specific 

energy of the Li-S batteries using the experimental PDCs and design factors such as the E/S 

ratio, sulfur loadings, S/C/binder wt% etc. in the dataset. However, only half of the dataset 

reported these variables; hence, the total number of data points decreased from 207 to 102 

for this analysis. 
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Table 4.6. ARM results for specific energies ≥ 60 Wh/kg. 

Factors Levels Support Confidence Lift Count 
Conductive_Material_ 
Categorized Others4 0.010 0.067 6.80 1 
Binder_Categorized CMC 0.059 0.400 4.53 6 
E/S_Ratio_Categorized 0-15.0 0.137 0.933 3.53 14 
Conductive_Material_ 
Categorized None 0.059 0.400 3.40 6 
Encapsulation_wt%_ 
Categorized 30-35 0.059 0.400 3.40 6 
Conductive_wt%_Categorized 0 0.059 0.400 2.40 6 
S_Loading_Cat >4.0 0.049 0.333 2.27 5 
S_wt%_Categorized >60 0.088 0.600 2.19 9 
IL_Abbreviation Li(G4)_TFSI 0.059 0.400 2.15 6 
Encapsulation_Material_ Categorized Graphene Oxide 0.049 0.333 2.13 5 
Encapsulation_Material_ Categorized Ketjen Black 0.059 0.400 1.94 6 
Encapsulation_Material_ Categorized Mesoporous carbon 0.029 0.200 1.70 3 
Electrolyte_Salt_ 
Categorized None 0.059 0.400 1.70 6 
IL/Solvent_vol.%_ 
Categorized 100 0.059 0.400 1.70 6 
Molecular_Solvent_ 
Categorized None 0.059 0.400 1.70 6 
Molecular_Solvent_Categorized DOL:DME 0.078 0.533 1.60 8 
IL/Solvent_vol.%_Categorized 50 0.049 0.333 1.55 5 
Electrolyte_Additive_Categorized Yes 0.049 0.333 1.48 5 
S_Loading_Cat 1.5-4.0 0.088 0.600 1.42 9 
Conductive_wt%_Categorized 20 0.049 0.333 1.36 5 
Separator_Categorized Polymer 0.118 0.800 1.36 12 
Encapsulation_wt%_Categorized 0-20 0.039 0.267 1.30 4 
Binder_Categorized Others6 0.029 0.200 1.28 3 
IL_Abbreviation P14_TFSI 0.078 0.533 1.21 8 

	
Table 4.6 and Table B.1 report the ARM analysis results for Specific Energy ≥ 60 

Wh/kg and Energy Density ≥ 60 Wh/L, respectively. As seen in the table, the cell design 

parameters are also effective on the system-level performances. Since the IL type is not 

appeared frequently in the Table 4.6 and the entire dataset used in the analysis is constructed 

with ILs, we may say that cell design variables are more important in terms of system-level 

energy density rather than the type of the IL. As supported with the Table 4.6, the dead mass 

of the cell should be minimized to provide high energy density Li-S battery systems.  
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Figure 4.16. Lift vs. specific energy (Wh/kg) (a) and energy density (Wh/L) (b) of E/S 

ratio for IL electrolytes. 

 

On the other hand, one of the highest lifts is obtained with E/S=0-0.15 ml/g and sulfur 

loading higher than 4 mg/cm2 where we proved ILs are improving PDCs at these conditions. 

Hence, we may still conclude that ILs have a critical effect on the improvement of the 

system-level performance.  In addition, with lift values higher than 1, Li(G4)_TFSI and 

P14_TFSI are found to be the best options for high system-level performance metrics. In 

addition, graphene oxide, ketjen black and mesoporous carbons should be utilized as 

encapsulation materials when IL electrolytes are used. 

 

 
 

Figure 4.17. Lift vs. specific energy (Wh/kg) (a) and energy density (Wh/L) (b) of sulfur 

loading (mg/cm2) for IL electrolytes. 

 

As seen in Figure 4.16 and Figure 4.17, the estimated energy densities are far below 

the requirements for the commercial applications. However, in order to develop some insight 

to build relatively high energy density Li-S cells, the ARM analysis was still conducted. The 

ARM analysis shows that low E/S ratios and high sulfur loadings are needed to increase the 
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energy density and specific energy at the system level for Li-S batteries with an IL 

electrolyte; this conclusion is in parallel with the discussions for the Li-S cells using regular 

electrolytes [334,335].   

 

4.1.3.  Selection of Ionic Liquid Electrolytes for High-Performing Lithium-Sulfur 

Batteries: An Experiment-Guided High-Throughput Machine Learning Analysis  

 

A manuscript detailing the results presented in this section is in preparation by authors 

A. Kilic, O. Abdelaty, Prof. A. Uzun, Prof. R. Yildirim, and Prof. D. Eroglu. The COSMO-

RS calculations, ML studies and the experiments were performed by A. Kilic and presented 

here. O. Abdelaty supported the discussions on ML modeling.  

 

The PSM is one of the most significant challenges of Li-S batteries in achieving high 

capacity and cyclability. One way to minimize the shuttle effect is to limit the PS solubilities 

in the battery electrolyte. IL are particularly suited as electrolyte solvents because of their 

tunable physical and chemical properties. In this chapter, thousands of ILs are screened to 

narrow down potentially viable candidates to be used as electrolytes in Li-S batteries. To 

that end, COSMO-RS calculations are performed over more than 36000 ILs. An extensive 

database containing PS solubilities and other relevant properties is constructed at 25 °C. 

First, the effectiveness of the COSMO-RS calculations is experimentally tested with 6 ILs 

with a wide range of solubility and viscosity values. After specifying the target limits for 

promising ILs using the experimental battery performance data, ML tools are used to predict 

and identify the relationship between IL properties and PS solubilities and structural and 

molecular descriptors of ILs.  

 

4.1.3.1.  Pre-analysis of the Dataset. In this screening section, we aimed to use a dataset 

representative of most ILs commonly used and studied, as well as the rare ones in the battery 

literature. Hence, our dataset spans several cation groups, including imidazolium, 

pyridinium, and ammonium, in addition to anions of different types, including fluorinated, 

chlorinated, carboxylates, oxyanions, amino acids, etc., and more commonly investigated 

anions in IL electrolytes such as [BF4]-, [PF6]- and [TFSI]-. The complete lists of the cations 

and anions groups are given in Table 4.7. The table shows that the most crowded groups are 

imidazolium and pyridinium for cations, while amino acids and carboxylates for the anions.  
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Table 4.7. The list of cation and anion groups present in the dataset. 
Cation Group Cation Count Anion Group Anion Count 
Ammonium 49 Amino acid 16 
Choline 1 Bis_imide 4 
Guanidinium 20 Borate 12 
Imidazolium 134 Carboxylate 16 
Morpholinium 9 Cyano 3 
Others 4 Halo_elemental_complexes 7 
Phosphonium 28 Halogen 4 
Piperidinium 9 Nonmetal oxide 5 
Pyrazolium 4 Others 6 
Pyridinium 67 Phosphate/ Phosphinate1 9 
Pyrrolidinium 19 Sulfate 9 
Quinolinium 15 Sulfonate 7 
Sulfonium 5   
Thiazolium 3   
Uronium 3   

Total 370 Total 98 
 

1Abbreviated as Phosp./Phosphin. 

 

The COSMO-RS solubility screening results, including solubility, viscosity, 

conductivity, and melting points, are shown in Figure 4.18 depending on anion groups, 

whereas the distributions on the cation groups are presented in Figure C.3. When these 

distributions are compared, solubilities and properties show similar distributions and ranges 

regardless of the cation groups. On the other hand, noticeable differences are observed when 

anion groups are considered. This clearly indicates anionic effect dominance on the 

properties of the ILs.  

 

Figure 4.18a shows that solubility values obtained from the calculations span a wide 

scale of many orders of magnitude from 10-9 to almost 1020 in mol/mol units. This is expected 

primarily when the difference between the solute (Li2S8) and the solvents (ILs) results in 

larger deviations of the activity coefficients. Still, the calculations can compare small and 

larger values, but the extreme calculations should be treated cautiously [336,337]. When ILs 

with extremely low and high PS solubilities are analyzed, it is seen that some anions give 

these abnormal solubility values regardless of the cation types. This may indicate COSMO-

RS's failure to predict the properties of these anions. According to the graph, most amino 

acids, carboxylates, halogens, non-metal oxides, and phosphines fall into the extreme 

solubility ranges, below 10-3 and above 103 mol/mol, and should be treated cautiously. On 

the other hand, bis_imide, borate, halo-elemental, and others (the rare ones that do not belong 

to any of the anion groups listed) anion groups show reasonable solubility values.  
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Figure 4.18. The distribution of solubility (a), ln(viscosity(mPa.s)) (b), 

ln(conductivity(mS/cm)) (c), and melting point(°C) (d), depending on the anion group. 

 

PS solubility is not the only criterion when selecting electrolytes for Li-S batteries. 

Other properties are also essential in the screening process of ILs in search of suitable 

electrolytes for Li-S batteries; the melting point, viscosity, and conductivity are all 

significant criteria in Li-S cell electrolyte selection to ensure smooth cell operation.  This 

way, utilization of highly viscous IL electrolytes must be avoided to allow for appreciable 

Li+ diffusion. 1 M Li salt containing DOL:DME electrolyte has a 1.6 mPa.s viscosity value 

and shows sufficient ionic conductivity [338]. In the dataset, the lowest viscosity value 

calculated from the COSMO-RS is 9.1 mPa.s, which is almost 5-fold higher than that of 

DOL:DME electrolytes and only 25 % of 36,260 ILs have viscosity values below 134 mPa.s.  

On the other hand, around 15 % and 7 % of the dataset do not have melting points below 0 

°C and ln(electronic conductivity) values below 2, respectively. 

 

The anion and cation descriptors have been shown to strongly correlate with target 

properties in previous studies, including the solubility of water and C4 hydrocarbons in 

various ILs and the physicochemical properties of ILs [209,210]. The descriptors are simple 

yet essential structural, electronic, and energetic factors. CPK area and ovality are related to 

the geometry of ions calculated based on the space-filling model, which is a crucial indicator 

of the area of potential interactions with other ions or the PSs. Naturally, the higher the area 

is, the stronger the interactions in the solution are. However, the ovality effect also plays an 

important role in the space fitting of ions surrounding the PSs and each other. Dipole and 

polarizability represent ions' charge distribution and susceptibility of that distribution to 
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deformation when interacting with other molecules. These are highly important in studying 

solvation energy and solubility because they directly relate to the interactions during 

solvation. The potential for hydrogen bond formation is given by the hydrogen bond donor 

(HBD) and acceptor count (HBA) [339]. PSs are all known to be weak bases, in other words, 

hydrogen bond acceptors [340]. However, this also indicates the potential for the cation and 

anion to be attracted to each other, which will also affect the solubility.   

 

Other important descriptors include electronic and energetic ones, which may affect 

the solubility less directly. The values of HOMO and LUMO energies calculated by simple 

DFT calculations contain important information related to ion stability, its potential for 

electronic interactions, and bond strength. The vibrational Zero-point energy is the lowest 

vibrational energy level and determines the flexibility or stiffness of the bonds in the 

molecule to stretching and bending. This property describes the flexibility of ions to 

structural deformation during the solvation process [341,342]. Finally, the molecular weight 

of ions is also useful as it gives information about ion diffusion coefficients, density, and 

viscosity, which indirectly affect solubility. 

 

4.1.3.2.  IL Requirements for High-Performance Li-S Batteries. To see if there is a 

correlation between PS solubilities and IL properties calculated using the COSMO-RS 

method and Li-S battery performance, as hypothesized, six ILs listed in Table 4.8 are tested 

experimentally (the experimental details are provided in Appendix C). As seen in the table, 

three different cations with [TFSI]- and three different anions with [BMIM]+, 1-butyl-3-

methyl-imidazolium, which are one of the most common anions and cations in the literature, 

are used in the experiments. These ILs are commercially available, hence easily accessible, 

and have low/high solubility and viscosity values (melting point and electrical conductivity 

are only used to confirm the suitable liquid phase of the electrolyte and to ensure no electron 

flow through the electrolyte). Hence, four of these ILs are projected to have low solubilities 

(PP14-TFSI, DEME-TFSI, TBMA-TFSI, BMIM-PF6), whereas the other two (BMIM-

CF3SO3 and BMIM-MeSO4) have extremely high values. Moreover, ILs with low and high 

viscosities also have both high and low solubility cases. Hence, it is possible to identify the 

effect of COSMO-RS predicted viscosity and solubility values on the performance of Li-S 

batteries. 
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Table 4.8. Experimentally tested six ionic liquids. 
Cation Anion COSMO-RS  

PS Solubility (mol/mol) 
COSMO-RS 
Viscosity (mPa.s) 

PP14 TFSI 0.20 65 

DEME TFSI 0.38 54 

TBMA TFSI 0.04 107 

BMIM PF6 1.29 223 

BMIM CF3SO3 847 56 

BMIM MeSO4 182635 146 

 

The results presented in Figure 4.19 supported the discussion on the importance of low 

solubility but also highlighted the effect of viscosity on the Li-S cell performance. Although 

high viscosity may also suppress the PSM by restricting PS movement, it also prevents the 

diffusion of Li+ ions. In this respect, the ILs of PP14-TFSI and DEME-TFSI with both low 

solubility and viscosity show the best cycling performance. On the other hand, Li-S cells 

with ILs (TBMA-TFSI, BMIM-PF6) with low PS solubility but higher viscosity performed 

moderately. Finally, BMIM-CF3SO3 and BMIM-MeSO4 showed almost zero capacity over 

cycling. These ILs are predicted to have high solubility, indicating that even though low 

viscosity is required for high performance, low PS solubility is a more critical property. For 

instance, BMIM-CF3SO3 performs poorly, even though it has low viscosity, proving that 

mostly PS solubility determines the performance.  

 

 
 

Figure 4.19. The cycling performances of six ILs tested at 0.1C. 
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The experimental results show that it is possible to use the COSMO-RS predictions 

for assessing Li-S battery performances. However, these results are only limited to 6 ILs, 

and the validation of COSMO-RS results is still needed. Unfortunately, a sufficiently 

comprehensive experimental study to evaluate the predictions made by the COSMO-RS 

model is excessively difficult, necessitating a comparison with the available data in the 

literature. The few studies regarding solubility had limited scope due to difficulties discussed 

previously. Among them, Park et al. reported PS solubilities for various ILs. The 

experimentally measured PS solubilities account for a mixture of PSs in the solution due to 

disproportionation reactions and the subsequent cascade of PS reactions. This difference is 

partially responsible for the departure of predictions of Li2S8 solubility from experimental 

measurements of all PSs. Indeed, the measured solubilities are the sum of solubilities of all 

PS species with various chain lengths and are provided in terms of total atomic sulfur 

concentration. Despite this and other simplifying assumptions, the COSMO-RS model 

results showed an excellent correlation with the experimental measurements, as shown in 

Figure 4.20. Although there is a significant numerical difference between the COSMO-RS 

calculated absolute solubility values and experimental ones, the resulting linear correlation 

has an R2 score of 0.97, showing the success of our method.  

 

 
 

Figure 4.20. Experimental PS solubility plotted against the predicted solubility values by 

COSMO-RS in log scale. The dotted line is the best-fit line. (The experimental data was 

obtained from [75]. 
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Determining the limits for PS solubility for high performance should also be done 

according to the COSMO-RS calculated values. Hence, the six experimental results with 

Park et al.  performance data are used together. When the 50th cycle capacities of this 

experimental set are considered, a clear solubility limit for high specific capacity can be 

determined, as shown in Figure 4.21. The underlying reason is sluggish reaction kinetics and 

sulfur loss from cathode in extremely low and high PS solubilities, respectively [75]. 

Therefore, determining the solubility limits is very critical to assess whether an IL will 

perform well or not as the electrolytes of Li-S batteries. According to Figure 5, the solubility 

limit should be between -0.7 to 0.1 mol/mol in log scale.  

 

 
 

Figure 4.21. The 50th cycle capacity of experimental results (mAh/g) together with Park et 

al. results with COSMO-RS results. 

 

All these discussions show the importance of solubilities and properties in selecting 

suitable ILs for Li-S battery applications and the success of the COSMO-RS calculations. 

However, thousands of ILs are present, and many more are possible, and it takes too much 

time to experimentally test all the ILs. The COSMO-RS calculations made it possible to 

calculate the properties of thousands of ILs using ‘.cosmo” files using special packages like  

COSMOthermX. On the other hand, once the dataset is constructed, it is valuable to have 

ML methods that can predict IL properties using the IL descriptors calculated from more 

conveniently found methods compared to generating .cosmo files and using special 

packages. In addition, hidden relations between ILs and their properties can be identified. In 

this respect, ML models for predicting PS solubility and the IL properties are developed with 
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a dataset consisting of 36260 ILs and 20 IL descriptors, computed from PM3 semi-empirical 

calculations, in the search for promising ILs for Li-S battery electrolytes. In addition, using 

the limits for high performances obtained from experimental results, the factors leading to 

desired properties are obtained. 

 

4.1.3.3.  Solubility and Property Predictions. The ML models are trained to further 

understand the trends and heuristics of the solubility correlation with the specified 

descriptors and to make predictions for new ILs without using the COSMO-RS software. 

The training of the XGBoost model on randomly chosen combinations of anions and cations 

performs nearly perfectly with a 5-fold cross-validation R-squared (R2) score of 0.99. It is 

essential to note the excessive dependence of the predictions on the anion descriptors and 

the fact that randomly splitting the data generally means that the same anions are present in 

both training and validation sets. To avoid such overlap, which may lead to the model 

“memorizing” the anions instead of learning descriptor correlation, the data was split such 

that randomly chosen anions from each anion group are only present in the validation set. 

For example, there are 4 bis_imide anions including TFSI in the dataset. Knowing that 

anions are more dominant over solubility, once the solubility of TFSI is seen by the model, 

it will automatically determine the solubility of IL containing TFSI without paying attention 

to the cation types in the validation set. However, restricting TFSI to only train set while 

putting bis(fluorosulfonyl)imide (FSI) in validation set, make the model more robust. This 

way, the training model learns from similar but not identical anions. The XGBoost model 

performance R2 score dropped to 0.98 with a root-mean-square-error (RMSE) of 1.4, which 

still indicates an excellent performance on the available data and eliminates the risk of bias 

due to data overlap. Meanwhile, the RMSE of the test set increases to 3.05, which shows 

that the model can capture the PS solubilities in an order of magnitude scale.  

 

These results are somewhat similar to water solubility prediction results [209], in the 

sense that the anion properties are more dominant over the solubilities. However, in this 

work, the effect of cation properties were also found to be important. This is clear from 

Figure 4.22, showing the descriptor importance obtained from the analysis of XGBoost 

results. Some cation descriptors, such as the CPK area and dipole, have noticeable 

importance. While the anions can still roughly estimate the solubilities, the cations refine 

these results. The top 3 descriptors having a dominant effect on PS solubility were electronic 
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HUMO-LUMO levels and dipoles of the anions. The HUMO-LUMO levels were also found 

to have a significant contribution to ML models on the CO2 solubility [343].   

 

 
 

Figure 4.22. The prediction results for ln(COSMO-RS Solublity (mol/mol)) for train (a), 

test (b) sets and relative importance (c) of the descriptors in the determinative power of the 

model. 

 

Literature review indicates that ML techniques have been repeatedly used to predict 

different IL properties, including melting point, density, viscosity, ionic conductivity, and 

even surface tension [344,345]. Nevertheless, the property prediction models based on our 

descriptors were also trained to a high degree of success. Herein, the sampling in the training 

of these predictions was also anion-based rather than cation-based, as in the solubility 

classifier. This is because the results vary significantly according to the anion groups in these 

predictions, and the cation group-based distributions have similar distributions (Figure C.3). 

The anion-based sampling also used for melting point, viscosity, and conductivity performed 

well with RMSE score values of 19.4, 0.48, and 1.80, respectively. The descriptor 

importance plots are given for each property prediction in Appendix C, along with each 
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model’s performance metrics. In the prediction of IL properties of the interest, the cationic 

properties have found more significance in comparison to solubility predictions. The most 

significant cation descriptors were found to be MW, dipole, and HOMO level. In parallel 

with our findings, Zheng et al. also found that the alkyl chain lengths of ILs having different 

imidazolium cations with [TFSI]-  anion, therefore, MW and dipole, considerably affect the 

viscosities [346]. Another study found that the anion and cation properties both affect the 

final IL properties [347]. 

 

4.1.3.4.  Identifying Promising ILs for Li-S Batteries using ARM. Lastly, the descriptor-

property and solubility correlations are analyzed using ARM. ARM method needs both 

categorical descriptors and outcomes; hence, most descriptors were divided into ten intervals 

to see the characteristics of desired ILs, while the HBA and HBD counts were defined as 

factors. The limits for both solubility and viscosity values were set according to the 

experimental findings reported in Section 4.1.3.2. In this respect, the solubility was 

categorized into binary classes, as mentioned before, and the results for low solubility (class 

A, the log(solubility)) limits between -0.7 and 0.1 mol/mol as determined from experimental 

results reported in Figure 4.21. On the other hand, viscosities lower than 100 mPa.s were 

decided to be class A. 100 mPa.s, which is not too rigid a condition for IL viscosity, was 

also set to avoid severe Li+ ion resistance problems. In addition, since the potential 

applications of Li-S batteries include daily applications, in other words they will be prone to 

various climate conditions, the melting point of ILs should be low enough so that the cell 

remains functional in cold climates. Towards that end, ILs with melting points below 0 �C 

are desired, and fortunately, 86.1% of the dataset satisfies this condition. Finally, the 

electronic conductivity limit is taken as 2 mS/cm. This rough estimation allows us to exclude 

ILs with considerable electronic conductivity. With these four criteria in place, the number 

of potential IL candidates drops to only 650 from 36260 data points. All the selection process 

are illustrated in Figure 4.23. 

 

First, associations between anion or cation groups or cation-anion pairs and the desired 

properties were investigated. After refining the generated rules using the support and 

confidence thresholds, the lift value was used to extract rules with the highest correlation, 

and the table was sorted according to the lift values. Although the definitions of support, 

confidence, and lift are already provided in the previous sections, one example is provided 



 

 

112 

to understand the results better. The dataset used in the ARM analysis contained 36260 total 

data, with only 650 of them having class A solubility and property (viscosity, melting point, 

and conductivity). On the other hand, there are 1480 ILs having the bis_imide anion group, 

and only 194 (count value in Table C4) of them have class A for the four criteria. Hence, the 

support, confidence, and lift values are calculated as 194/36260 = 0.005, 194/650 = 0.298, 

and (194/650)/(1480/36260) = 7.31, respectively. As seen in Figure 4.24, most rules 

satisfying the confidence and support thresholds with the highest three lifts correlate with 

the anion group, indicating the trends in anion descriptors are more reliable and 

determinative than cation descriptors. These trends can be seen in Figure 4.24a for cation 

and anion groups and Figure 4.24b for cation-anion pairs. The bis_imide group is found to 

be the most promising one with the highest lift, but borates and “others” groups are also 

good candidates for both cases. However, although imidazolium and pyridinium groups have 

lower lifts than piperidinium and pyrrolidinium, their synergistic effects are stronger with 

the anion groups of borates and bis_imides. Specifically, imidazolium_borate and 

imidazolium_bis_imide ILs are around 10 and 5 times more favorable than other ILs for Li-

S batteries, respectively. 

 

 
 

Figure 4.23. The determination of suitable ILs with the help of experimental results. 

 

Imidazolium and [TFSI]- are the most common cation and anion in the Li-S literature, 

respectively [348]. In addition, it has been found that combining them improves the Li metal 

ion morphology and, therefore, increases the cycle life [349]. Given that pyridinium and 

imidazolium are similar in the completely delocalized aromatic rings [349], pyridinium is 
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the second promising cation group paired with borates. On the other hand, the borate anion 

group has 12 anions in total, including [BF4]-, which is reported as reactive towards PSs [75]. 

Fortunately, this anion is not present in the promising IL list. Although no additional articles 

use ILs with borate anions, in some studies, borate anions, specifically bisoxalatoborate 

[350–352], are used in Li salts, which positively affect the capacities.  

 

 
 

Figure 4.24. ARM results for anion and cation groups independently (a) and anion-cation 

pairs (b) for low solubility and viscosity. 

 

Now that the promising groups are identified, we discuss the ARM results on a 

descriptor basis to identify the rules ending up with favorable ILs. To better extract the 

trends, Figure 4.25 summarizes the ARM results for the anions more concisely. Upon 

examining the results, the most pronounced rule concerns the anion HOMO energy value. 

In the database, low-lying anion HOMO energies in the range of (-7.5):(-6.7) eV result in a 

nearly five times more chance of having low solubility of Li2S8 and viscosity values. This 

lift drops significantly to slightly over 2.5 times if the HOMO value dips lower than -7.5 

going to -9.9 eV. However, the correlation stands that low HOMO values correlate strongly 

with low solubility. A similar yet less strong correlation can be seen for the other properties. 

The other rules indicate that desirable anions for low PS solubility and viscosity are more 

likely to have moderately low LUMO energy, no HBD sites, relatively high MW but 

moderate CPK area, and moderate polarizability.  
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Figure 4.25. ARM results for anion descriptors; each point size correlates with support. 

 

Figure 4.26 shows that cation descriptors have clear trends for low solubility and 

viscosity; lift values above one are obtained for low values of each descriptor, except HBA, 

HBD, and LUMO. It is important to emphasize that these trends imply an increased 

likelihood rather than a confident prediction. Can et al. [209] reported similar results about 

the dominance of anion descriptors in the ARM analysis when examining the association 

between water solubility in ILs and molecular descriptors. However, the importance of each 

descriptor differs significantly from the results reported here. That is to be expected because 

water and Li2S8 have different solvation processes. On the contrary, the solubility of 

hydrocarbons in imidazolium-based ILs showed a strong correlation with both anion and 

cation descriptors [210]. 

 

 
 

Figure 4.26. ARM results for cation descriptors; each point size correlates with support. 
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4.1.4.  MOF/Graphene Nanoplatelet Composite Increases Rate Performance of 

Lithium-Sulfur Batteries 

 

This section is modified from an original research article with authors A. Kilic, Ş. S. 

Bayazit, and D. Eroglu [45]. The preparation of the cathodes, the development of Li-S cells, 

and electrochemical performance tests were performed by A. Kilic, whereas MOF 

composites were synthesized by Ş. S. Bayazit. 

 

The PSM is one of the biggest problems of Li-S batteries, resulting in fast capacity 

fading and low Coulombic efficiency. Due to electrostatic interactions, polar materials can 

adsorb the PS intermediates on their surfaces, decreasing the PSM effect. These polar 

materials should also have high electronic conductivity and surface area to be used in sulfur 

cathodes of Li-S batteries. In this respect, metal-organic frameworks (MOF) and their 

derivatives have gained significant attention. In this section, UiO-66/Graphene nanoplatelet 

(GNP)/sulfur composites are prepared with different MOF/GNP ratios to investigate the 

effect of MOF amount on the electrochemical performance of Li-S batteries.  

 

 The SEM images of the synthesized UiO-66, UG-1, UG-3, and UG-5 composites are 

given in Figure D.2 and Figure 4.27, respectively. As seen in Figure D.2a, UiO-66 

nanoparticles have an octahedral crystal structure [353]. According to the scale of the SEM 

images, the sizes of UiO-66 nanoparticles are determined to be approximately 20-30 nm in 

UiO-66/GNP composites. On the other hand, the sizes of the attached UiO-66 nanoparticles 

on the GNP plates, clearly seen as two-dimensional sheets in Figure 4.27a, are measured to 

be 32-45 nm. Similar structures and particle sizes are observed for UG-5 in Figure 4.27b. It 

can be discussed that the particles are evenly distributed in the composites, especially in UG-

5 (Figure 4.27b).  

 

The surface areas and pore volumes of each composite are measured by the BET 

analysis, and the results are presented in Figure 4.27c. As seen in the figure, the BET area 

of GNP is significantly improved by the addition of UiO-66 into the structure, while the pore 

volume is reduced considerably. In other words, as pores of GNPs are filled with UiO-66 

particles, the surface area of GNP increases remarkably, but the pore volume decreases 

simultaneously.  
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Figure 4.27. SEM images of UG-3 (a) and UG-5 (b) and BET surface area (à) and pore 

volume (D) measurements (c). 

  

         The XRD patterns of UiO-66, UG-1, UG-3, and UG-5 are given in Figure D.3. XRD 

patterns of all composites were scanned between 2-60 degrees. The characteristic peaks of 

UiO-66 crystals can be seen at 7.46°, 8.66°, and 25.94°; these 2θ degrees are compatible 

with the literature [354]. As seen in the figure, the patterns of UG-3 and UG-5 composites 

are analogous to the UiO-66 nanoparticles. The 26.7° peak associated with GNP is also seen 

(which is not seen in the XRD pattern of UiO-66). The intensity of this peak in UG-3 is 

higher than in UG-5 since there is 70% GNP in UG-3 and 50% in UG-5. When the XRD 

pattern of UG-1 is examined, the intensity of the peaks belonging to UiO-66 is too low to be 

noticed; the intensity of the GNP peak prevents the appearance of UiO-66 characteristic 

peaks when there is 10% MOF in the composite.  

 

 The FTIR plots of UiO-66 and UiO-66/GNP are presented in Figure D.4. The 

asymmetric O=C=O stretching vibrations at 1399 cm−1 and symmetric carboxylate groups 

at 1576 cm−1 are observed in the figure. These peaks belong to the terephthalic acid, the 

organic linker in UiO-66. Terephthalic acid has benzene rings as seen at 1507 cm−1. In 
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general, the peaks of the UiO-66/GNP composite are compatible with UiO-66. However, 

two peaks, -CH- stretching peaks at 2926 and 2855 cm−1, have disappeared, and the intensity 

of the -OH peak at 3432 cm−1 has increased after the composite formation. 

 

PS adsorption tests are also performed to see if MOF addition improves the PS 

chemisorption. As seen in Figure 4.28, a significant color change is observed for UG-5, and 

a slighter change is observed for UG-3, whereas the rest remains at a similar color to the 

blank solution. The solution with UG-5 being almost colorless clearly proves the binding of 

the PSs with the MOF-containing composite only if enough MOF is present in the composite 

to capture the PSs effectively.  

 

 
 

Figure 4.28. PS adsorption capabilities of GNP, UG-1, UG-3, and UG-5, respectively. 

 

Electrochemical characterization tests are performed to determine the effect of 

MOF/GNP ratios on the electrochemical performance of Li-S cells. First, the measurements 

are performed for a low sulfur loading of 1 mg/cm2. Cycling performances of the UGS 

composites, bare UiO66-S, and GNP-S at 0.1C are given in Figure 4.29a. As the figure 

shows, apart from the UiO66-S composite, all cells performed similarly. Significantly lower 

capacities obtained for the cells with UiO66-S-based cathodes can be attributed to the low 

electronic conductivity of the MOF, hindering the electrochemical reactions. This result 

indicates that the presence of GNP in the composite is required to achieve high cycling 

performance. 
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Figure 4.29. For Li-S cells with an S loading of 1 mg/cm2: cycling performance at 0.1 C 

(a), rate performance (b), and cycling performance at 0.5 C (c). 

 

The rate performance results in Figure 4.29b show that although MOF/GNP 

composites perform similarly at 0.1C and 0.5C, UGS-1 is less successful in retaining its 

capacity at higher C-rates. Nevertheless, cells with all three composites show remarkable 

rate capability, returning to the original capacities when the cycling rate is returned to 0.1C. 

These results are also confirmed by a longer cycling test, conducted at a higher C-rate of 

0.5C, given in Figure 4.29c. When the C-rate increases to 0.5C, the composites show slightly 

different capacities at the earlier cycles, UGS-3 containing cell, showing the highest 

capacities. However, after 200 cycles, all composites end up displaying similar capacities.  

 

The effect of MOF/GNP weight ratio on the cell performance is more apparent when 

the sulfur loading is increased to 2 mg/cm2; the results are given in Figure 4.30. The first 

striking result is that GNP-S containing Li-S cells, which show similar performance to the 

MOF-containing ones at low S loadings in Figure 4.30a, display the worst performance for 

higher S-loaded cells, proving the necessity of MOF addition into the composite for 
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achieving better cycling performance. Moreover, the UGS-1 cathode performs the worst 

among the UiO66/GNP composites in all testing conditions from both the capacity and the 

capacity retention perspectives. UGS-3 and UGS-5 lead to better cell performances at higher 

sulfur loadings and C-rates. For instance, the UGS-5-containing Li-S cell shows an excellent 

rate performance. The PS adsorption ability of UiO-66 can explain this observation. When 

the sulfur loading is higher, the adsorption of PSs gains more importance as the PS 

concentration in the electrolyte will be higher. Hence, the loading of polar UiO-66 should 

be higher to preserve the PSs on the cathode surface, thereby retaining the specific capacity. 

This is probably why GNP cathodes fail at capacity retention; a drastic decrease in the 

specific capacities is observed after a few cycles. Figure 4.30b and Figure 4.30c show that a 

MOF loading of 50 wt.% is needed for 0.5C and 1C rates; however, 30 wt.% also performs 

well at 0.5C. Hence, a minimum of 30 wt.% MOF should be added to the composite for 

improved performance. 

 

 
 

Figure 4.30. For Li-S cells with an S loading of 2 mg/cm2: cycling performance at 0.1 C 

(a), rate performance (b), and cycling performance (c) at 0.5 C. 



 

 

120 

4.1.5.  Effect of Atomic Vanadium- and Cobalt-Modified Ketjen Black-Sulfur Cathode, 

Sulfur Loading and Electrolyte-to-Sulfur Ratio on the System-Level Performances of 

Li-S Batteries 

 

This section includes a modified version of the original research paper written by 

authors Hira Fazal, Damla Eroglu, Aysegul Kilic, Nazakat Ali, Changyu yan, Zai Jiantao, 

Xuefeng Qian [46]. The experimental studies were performed by H. Fazal and the system-

level model application was performed by A. Kilic. It also contains the results of a 

proceeding study, which investigates the effect of the E/S ratio and sulfur loading on Li-S 

battery performance and system-level properties with the proposed material, where the latter 

was also performed by A. Kilic [47]. 

 

In this chapter, sulfur was encapsulated with atomic vanadium (V) and cobalt (Co) 

modified Ketjen black (VCKBS) to hinder the shuttle mechanism and enhance the redox 

kinetics in Li-S batteries. The synthesized composite provided plenty of interfacial active 

sites and assured smooth electron transfer, which assisted in attaining the balance of the 

enhanced catalytic activity due to Co and the adsorption ability mainly derived from V. 

Consequently, the Li-S cells having an optimized composition presented alleviated shuttle 

effect, enhanced sulfur utilization and conversion efficiency, and showed stable cycling 

performance and an outstanding rate performance with an initial capacity of 1329 mAh/g, 

which was maintained as 1249 mAh/g after 100 cycles. Due to impressive experimental 

specific capacities, the system-level specific energies and energy densities were also 

predicted for the 1st and 100th discharges. In the following study, we investigated the effect 

of cathode material by preparing two different cathodes: by encapsulating sulfur (S) with 

pure Ketjen black (KBS) and with VCKBS. In addition to the cathode material, the influence 

of crucial cell design parameters, namely the electrolyte-to-sulfur (E/S) ratio and sulfur 

loading, on the battery performance was also compared. A system-level performance model 

was used to estimate the system-level specific energies and energy densities. 

  

4.1.5.1.  Effect of Cathode Material on System-Level Performance of Li-S Batteries. 

Insufficient electrolyte amounts or low electrolyte-to-sulfur ratios (E/S ratios) often lead to 

inadequate wetting of the electrode surface and continuous depletion of the electrolyte 

throughout the discharge-charge cycle, resulting in decreased capacity and low cycle life of 



 

 

121 

the Li-S battery. Conversely, excessive amounts of electrolyte result in a substantial increase 

in the overall weight/volume of the cell, thereby causing a reduction in the 

gravimetric/volumetric energy densities [85]. Similarly, S loading in the cathode controls 

the battery performance through discharge capacity, cycling performance, and system-level 

metrics. Moderate S loadings enhance the discharge capacity and cycle life, while high 

loadings are essential to improve the battery’s energy density [86]. Consequently, to reach 

high performance, all other than the active materials should be minimized in the cell along 

with maximized specific capacity and cycle life. Hence, two groups of Li-S cells (Group 1: 

E/S ratio=20 mL/g, S loading=1.24 mg/cm2 cycled at 0.1C, Group 2: E/S ratio=13 mL/g and 

S loading= 2.4 mg/cm2 cycled at 0.2C) are compared to see the impact of the newly 

developed material on the energies of the Li-S cells and packs. To assess the cell- and 

system-level energy densities and specific energies of the Li-S batteries developed with the 

materials presented here, a modified version of the BatPaC model [199] developed by 

Argonne National Laboratory, is used with the experimental inputs, including capacity based 

on sulfur mass, the E/S ratio and sulfur loading. The summary of the model is given in 

Section 3.2 where the underlying equations and parameters of the model can be seen in 

detail. Battery pack system parameters, the number of modules, module configurations, and 

cell numbers in each module are assumed to be similar to a Li-ion battery pack. In contrast, 

a 1-dimensional, concentration-independent electrochemical model was implemented to 

determine the cell's voltage-current relationship. This model can estimate cell- and system-

level energy densities (Wh/L) and specific energies (Wh/kg) as a function of materials 

properties and cell design parameters. The system-level specific energies and energy 

densities, given in Figure 4.31, are predicted using the experimental capacities for both the 

1st and 100th discharge for Groups 1 and 2.  

 

Energy densities of all cathodes for the 1st and 100th discharges are presented in Figure 

E.1. The superiority of VCKBS cathodes is already shown for both groups when the specific 

discharge capacities are compared; the percent increase of the initial discharge capacities by 

the introduction of VCKBS cathodes is 66 % and 158 % for Groups 1 and 2, respectively 

(Figure 4.31a). As seen in Figure 4.31 VCKBS cathodes significantly improve the system-

level specific energies and energy densities as well. For instance, when the system-level 

metrics based on the initial capacities are compared in Figure 4.31b and Figure 4.31c, 

significant improvements are obtained, prominently for predicted specific energies. Since 
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VCKBS cathodes retain their capacity with cycling, when the 100th discharge capacities 

(Figure 4.31d) are used in the calculations, the percent increase in the specific energies and 

energy densities is more substantial than the ones based on the 1st discharge capacity. For 

instance, introducing VCKBS cathodes lead to 353% and 1342% improvement in the 

specific energies and 203% and 568% improvement in the energy densities for Groups 1 and 

2, respectively (Figure 4.31e and Figure 4.31f). It is apparent that the enhancement in the 

system-level performance metrics is more prominent at the higher S loading and the lower 

E/S ratio (Group 2). This indicates that VCKBS cathodes synthesized in a facile manner 

would be advantageous for higher sulfur loadings at electrolyte-depleted cells; this is further 

investigated in the next section. 

 

 
 

Figure 4.31. Specific capacities, system-level specific energies, and energy densities of 

KBS and VCKBS cathodes (Group 1: S loading=1.24 mg/cm2, E/S ratio=20 mL/g, at 0.1C, 

Group 2: S loading=2.40 mg/cm2, E/S ratio=13 mL/g, at 0.2C) for 1st discharge (a)-(c) and 

for 100th discharge (d)-(f). 

 

4.1.5.2.  Effect of E/S Ratio and S Loading on the System-Level Performance of Li-S 

Batteries with VCKBS and KBS Cathodes. Previous studies [355–357] often discuss optimal 

values for the S loading and the E/S ratio in a battery, maximizing the discharge capacity of 

the Li-S batteries. The cycling performance of Li-S cells with  KBS or VCKBS cathodes 

(Table E.2) with E/S ratios= 6, 13, and 20 mL/g and S loadings of 0.8, 1.2, and 3 mg/cm2 

are compared in Figure E.2. For both cathodes, E/S ratio=6 mL/g and S loading=3 mg/cm2 
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result in the poorest cell performance, which may be explained by the high internal resistance 

at lower E/S ratios and higher S loadings in the cell.  

 

 
 

Figure 4.32. Experimentally measured initial discharge capacities (a), predicted system-

level specific energies for various sulfur loadings and E/S ratios (b), and the relation 

between cell resistance and specific energies for sulfur loading = 1.2 mg/cm2 (c). 

 

Although high cell-level specific capacities and cycling performances are essential, 

system-level specific energy is a more viable performance metric for assessing the 

commercialization of Li-S batteries [358,359].A modified BatPaC model was used to 

estimate the system-level performance metrics with the experimentally obtained specific 

capacities, S loadings, and E/S ratios. Figure 4.32a shows a decreasing trend in specific 

capacity for lower E/S ratios and higher S loadings for KBS cathodes. In contrast, maximum 

capacity is obtained with an S loading= 1.2 mg/cm2 for VCKBS cathodes. In contrast, 

corresponding system-level specific energies of Li-S cells containing VCKBS  cathodes 

show an opposite trend to the specific capacity. Lowering the E/S ratio drastically increases 

the specific energies, with the highest specific energy obtained with a moderate S loading. 

In contrast, in Li-S batteries with KBS cathodes, the decrease in the specific capacity with 

decreasing E/S ratio and increasing S loading is too high, and the reduction in the cells' dead 

mass does not compensate for obtaining higher specific energies. Finally, Figure 4.32c 

summarizes the superiority of the VCKBS cathodes over KBS ones, presenting the higher 

specific energies obtained for these novel cathodes, especially at low E/S ratios. To sum up, 

tailoring cathode properties is critical for improved battery performance. The co-doping of 

Co and V elements boosts the catalytic ability of Co and the absorption ability of V 

simultaneously. The effect strengthens the intrinsic ability of the active sites. Thus, active 

sites in the modified KB can accommodate higher S loadings in the cathode. Moreover, since 
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cathode kinetics for the PS transfer are enhanced, lower E/S ratios and higher S loadings can 

be tolerated. 

 

4.2.  Li-O2 Battery Studies 

 

4.2.1.  Determining the Key Performance Factors in Lithium-Oxygen Batteries Using 

Machine Learning 

 

This part is modified from the original research paper published in the Journal of the 

Electrochemical Society by authors A. Kilic, Prof. R. Yildirim, and Prof. D. Eroglu [48].  

 

Lithium-oxygen (Li-O2) batteries are among the most prominent alternative battery 

chemistries to lithium-ion batteries with their high theoretical capacities. However, attaining 

their high theoretical capacity is difficult due to the poor cell design and insufficient cell 

materials. In this section, ML algorithms are used to determine the effective cell design 

factors and the most promising materials for reaching high discharge capacities and voltages.   

 

4.2.1.1.  Pre-Analysis of Data. Before presenting the results of the ML algorithms, the effect 

of materials- and cell-design factors are analyzed in this section using simple descriptive 

statistics to see the basic trends in the dataset. As mentioned in Introduction, Li-O2 batteries 

are severely affected by the side reactions and degradation mechanisms. Hence, the 

utilization of specialized materials and designs are essential for reaching high capacity Li-

O2 batteries; in this section, the main materials groups covered in the dataset were discussed. 

 

Having the highest standard oxidation potential of 3.040 V and the lowest molecular 

weight, Li metal is a promising anode material, which provides a specific capacity of 3860 

mAh/g [10]. The main disadvantage of a Li anode is the high reactivity of the lithium metal. 

The reaction of lithium with oxygen and water, and the formation of lithium dendrites as a 

result of its interactions with the electrolyte are the major challenges that cause low 

Coulombic efficiency and poor cycling performance [360]. To protect the lithium anode and 

to prevent the formation of dendrites, special surface treatments or coatings are employed in 

the literature [361–363]. Since the stability of the lithium anode is essential for improved 

battery performance, anode material is taken into consideration in the analysis. “Modified 
1© The Electrochemical Society.  Reproduced with permission.  All rights reserved. 
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Li anode” category is defined if there is any additional treatment or material employed on 

the lithium metal. Only 46 datapoints are in the Modified Li anode category, whereas 969 

datapoints use pure lithium metal. 

 

The conventional separators used in the batteries are porous structures with pore sizes 

of hundreds of nanometers. Polyolefins are accepted as the ideal separators for the LIBs, 

which provide high stability with low cost. However, post lithium-ion technologies need 

further improvement in the separator materials to achieve durability in the harsh working 

conditions [34]. Li-O2 batteries use pure oxygen or air as the reactant in the cathodes. Due 

to safety and efficiency reasons, reaching of these gaseous reactants to the Li anode should 

be prevented [364]. With this respect, separator type is taken as one of the variables in this 

analysis. In the dataset used in this section, 59 % of the data uses glass separator, whereas 

23 % uses polymeric separator; various separator materials are employed in the remaining 

cells.  

 

One of the main advantages of the Li-O2 batteries is that they do not require to store 

the active material inside the cell. Li-O2 batteries can operate with either pure oxygen or air 

taken from outside. Although oxygen is used in most of the cases in the dataset, probably 

the use of air will be preferred in future because it will be more practical and safer. Yet, if 

the oxygen is supplied from air, impurities like H2O and CO2 can also penetrate into the cells 

and cause side reactions both in the cathode and the anode, and consequently, may result in 

cell failure and safety problems [365]. These problems and the underlying mechanisms are 

analyzed in the literature to some extent. However, the majority of the studies use pure 

oxygen as the reactant to eliminate the possible side reactions in lab-scale Li-O2 cells; indeed, 

the percentages of the use of oxygen and air in the dataset are 80.2 % and 9.5 % (remaining 

9.0 % is dry air and 1.4 % is O2:CO2 mixture), respectively. Finally, to further simplify the 

process 91 % of the data use 1 atm as the reacting pressure. 

 

In this section, cathode support is defined as the “bulk cathode material”, which 

generally provides electrochemically active surface area in the cathode, whereas a common 

name “cathode ingredient” is given for the additional materials, which typically show 

catalytic activity. Since the active material is gaseous in Li-O2 batteries, it should spread 

homogenously over the positive electrode and be reduced with the upcoming electrons from 
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the anode. In this respect, a solid network is provided in the cathode by using porous 

materials with high surface area and electronic conductivity. Moreover, this network should 

be stable enough against the electrolyte and the operating conditions of these batteries [366, 

367]. In some papers, additional metals or metal oxides are used in the cathodes for catalytic 

purposes. It is reported in the literature that electrocatalysts strongly determine the power 

density and cyclability of the battery by affecting the oxygen reaction mechanisms [38]. 

Hence, these two variables are included in the analysis. The distributions of bulk cathode 

and ingredient materials in our dataset are shown in Figure 4.33;  as it is seen, carbon black 

is used in more than half of the dataset as the bulk cathode material, which is followed by 

CNT and graphene. On the other hand, 60.2 % of the dataset does not use any additional 

materials in their cathodes. Among the cathode ingredients, Mn oxides and Co oxides are 

the most preferred materials. 

 

 
 

Figure 4.33. Distribution of active materials (a) and ingredients (b) used in the cathode. 

 

The stability of a Li-O2 battery also depends on the binder used in the cathode.  

Conventional binders such as PVDF may react with super oxides to give by-products since 

they are present on the surface of the cathode rather than in the bulk [368]. These by-products 

eventually react with metal oxides leading to the formation of LiOH, which may accumulate 

in the cells [369–371]. Hence, choosing a stable binder is critical for improved cycling 

behavior of Li-O2 batteries. Figure 4.34 shows that 37% of the data in our dataset uses PVDF 

as a binder, whereas 20 % does not use any binder in the cell. 
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Figure 4.34. Distribution of binder materials in the cathode. 
 

As stated in the above, a typical cathode consists of a bulk cathode material, an 

ingredient and a binder in a Li-O2 battery. Although using a binder in the cathode improves 

the structural integrity and the physical stability of the cathode, it also increases the dead 

mass of the cell. Moreover, using too much binder can decrease the porosity of the cathode 

[372]. Hence, the ratio of the active material to the binder should be optimized to provide 

high surface area for the electrochemical reactions while achieving high cathode stability. 

Similarly, sufficient active material loadings should be supplied to the cells for high 

electronic conductivity and active surface area [373]. In order to examine this critical 

connection, both active material loadings and percentages in the cathode are taken into 

consideration in our analysis. In this section, the gas diffusion layer is defined as the 

additional porous medium, which is typically carbon paper that is placed in between the 

cathode and the current collector. Since efficient and homogeneous diffusion of oxygen into 

the cathode is crucial for enhanced performance, the use of a gas diffusion layer in the cell 

improves the cell performance [39,40]. Therefore, the effect of gas diffusion layer on the 

battery performance is also investigated here. 

 

The electrolyte system plays a key role in Li-O2 batteries for enhanced capacities. 

Since these batteries are exposed to oxygen environments, several criteria such as low vapor 

pressure of solvents, high electrochemical stability of salts and solvents in the presence of 

oxygen, high dielectric constants and high oxygen solubility and diffusivity should be met 

for an electrolyte system to be considered as promising [374]. Hence, selecting an ideal 
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electrolyte is important for achieving high cycling stability and rate capability in Li-O2 

batteries.  

 

Depending on the electrolyte selected, Li-O2 batteries can be divided into four as 

aqueous, non-aqueous, solid state and hybrid. There is a vast difference between these 

batteries in terms of stability, oxygen solubility and diffusivity. The literature mainly 

consists of cells with non-aqueous solvents since these electrolytes perform better than the 

others in terms of the aforementioned characteristics [35–37]. Figure 4.35a shows that 

tetraglyme, DMSO and DME are the most widely used electrolyte solvents in the literature. 

Electrolyte salts are also determinative of the final oxygen solubility, electrolyte viscosity 

and wettability [375,376]. Figure 4.35b presents the distribution of salts used in the 

electrolytes in this dataset; LiTFSI is the most commonly used electrolyte salt. In addition, 

some papers use additional salts or redox mediators to increase the stability of electrolytes 

[377,378]. These are all included in the electrolyte additive group. However only the 

presence of the additives is taken into account (6.7% of data contains an additive) in the 

analyses; specific types of the additives are not considered due to their large variety with 

rare appearance.   

 

 
 

Figure 4.35. Distribution of electrolyte solvents (a) and salts (b). 

 

4.2.1.2.  Discharge Capacity Analysis with ARM. The ARM results, in which the factor 

categories (antecedents) leading to capacities equal to or higher than 3000 mAh/g 

(consequents) with descending order in terms of lift, are presented in Table 4.9. By 

definition, lift values higher than one signify that the corresponding categories have higher 
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probabilities to provide the desired capacities than that of entire dataset. However, there 

should also be sufficient number of data points for statistical significance; hence, the other 

parameters (support, confidence and count) are also important. Additionally, we provide the 

number of data points obeying the rule in each row as count in the last column. Only the 

rows (i.e. factor categories) having more than five data points are presented and discussed 

here for the statistically significant conclusions; the complete results of ARM analysis are 

given in Table F.3 for the readers who are also interested in less frequently employed 

materials with high lifts as the new but potentially promising materials appear so. Moreover, 

the categories are marked by “*” in the table if all data is extracted from a single article to 

warn the reader for the possibility of experimental bias.  

 

In Table 4.9, it is shown that the highest lift with a sufficient count number is obtained 

for the cathode ingredients and bulk cathode materials. Among them, LaFe oxide can be 

given as an example to better understand the table. In our dataset, there are 8 LaFe oxide 

datapoints, which provide capacities higher than or equal to 3000 mAh/g. The total number 

of datapoints used in this analysis is 773, and only 269 of those provide high capacities. The 

support is 8/773 =0.0103 (i.e. the number of cases that use LaFe oxide and have high 

capacities divided by the total number of datapoints in capacity testing set); the confidence 

is 8/269=0.0297 (i.e. the number of datapoints using LaFe oxide and have high capacities 

divided by the total number of high capacity data in capacity testing group). Since the total 

number of datapoints using LaFe oxide as the ingredient is 10 in the entire data set, the lift 

can be calculated as (8/269)/(10/773) leading to the value of 2.30. From the formula 

presented, it can be easily seen that the fraction of the cells using LaFe oxide in the high 

capacity data is 2.30 times higher than the fraction of the cases with LaFe oxide in the entire 

dataset. Here, a lift value of one indicates the lack of a correlation between two variables 

(i.e. the use of a factor versus capacity), while values higher than one indicate a positive 

correlation (higher the lift, stronger the correlation is). On the other hand, lift values between 

one and zero imply negative correlations. Consequently, lift indicates the possible positive 

correlations and the strength of the correlation, while support (how much of the total data 

supports the rule) and confidence (how much of the cases containing that input variable 

supports the rule) reveal the reliability of the rule.   
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Table 4.9. ARM results for capacity testing group for capacities higher than or equal to 

3000 mAh/g with count numbers greater than or equal to 5. 
Descriptors Support Confidence Lift Count 

{Bulk_Cathode_Categorized=N-doped carbons} 0.0078 0.0223 2.87 6 

{Ingredient_Categorized=NiO+NiCo2O4 microspheres } 0.0091 0.0260 2.87 7* 

{Ingredient_Categorized=LaFe oxide} 0.0103 0.0297 2.30 8* 

{Salt_E_Categorized=Others} 0.0259 0.0743 1.98 20 

{Bulk_Cathode_Categorized=Graphene} 0.0556 0.1599 1.96 43 

{Ingredient_Categorized=Perovskite} 0.0246 0.0706 1.88 19 

{E_Solvent_Categorized=Triglyme} 0.0466 0.1338 1.88 36 

{Bulk_Cathode_Categorized=Graphene oxide} 0.0091 0.0260 1.83 7 

{E_Solvent_Categorized=DMSO} 0.0530 0.1524 1.79 41 

{Bulk_Cathode_Categorized=Porous carbon} 0.0233 0.0669 1.78 18 

{Reactant_Categorized=Others} 0.0103 0.0297 1.77 8 

{Gas_Diffusion_Layer_Categorized=Carbon paper} 0.1164 0.3346 1.71 90 

{Bulk_Cathode_Categorized=Carbon black+other carbons} 0.0129 0.0372 1.69 10 

{Ingredient_Categorized=Others} 0.0103 0.0297 1.64 8 

{Salt_E_Categorized=NO} 0.0103 0.0297 1.53 8 

{Active_Material_Loading_Categorized=[0.8-1.2)} 0.0802 0.2305 1.50 62 

{Bulk_Cathode_Categorized=N-doped CNT} 0.0078 0.0223 1.44 6* 

{E_Solvent_Categorized=Tetraglyme} 0.1889 0.5428 1.41 146 

{Active_Material_Loading_Categorized=(0-0.8)} 0.1100 0.3160 1.30 85 

{Bulk_Cathode_Categorized=rGO} 0.0116 0.0335 1.29 9 

{Binder_Categorized=PVDF} 0.1617 0.4647 1.28 125 

 

The ARM results show that the selection of the cathode material is the most 

determining factor on the capacities of the Li-O2 batteries. The use of special oxide materials 

such as LaFe oxide, Ni oxide or perovskite as cathode ingredients and N-doped carbons, 

graphene and graphene oxide as bulk cathode materials have led to high capacities. The 

choice of DMSO or triglyme as the electrolyte with specialized salts seems to be also 

beneficial. To refine the rules for high capacities better, the ARM analysis is also performed 

by defining additional (stricter) limits for high capacity class (A) as equal to or higher than 

5000 mAh/g, 7000 mAh/g and 10000 mAh/g. Since these definitions are cumulative (i.e. 

equal to or higher than 5000 mAh/g class also contains 7000 mAh/g and 10000 mAh/g 

classes), the total number of datapoints is decreasing with the increasing limits; hence, the 

increase of lift for a factor category indicates that the number of high capacity data having 
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that factor decreases less than the total number of datapoints. This may be used as a further 

indicator (in addition to the results in Table 4.9) for the potential benefit of that factor 

category. The results are presented as the high capacity class limits versus the lift in Figure 

4.36, where the bubble size demonstrates the count (number of datapoints obeying that rule). 

 

 
 

Figure 4.36. Change of lift with changing limits of high discharge capacity for bulk 

cathode materials (a), cathode ingredient materials (b), active material loadings (mg/cm2) 

(c), and active material weight percentages (d) in the cathode. 

 

As seen in Figure 4.36a, carbon black is one of the most widely used bulk cathode 

material in Li-O2 batteries; however, having a lift around one that does not change with 

increasing capacity limits, shows that other (likely new) cathode materials may be leading 

to higher capacities. Indeed, there are eleven options other than carbon black, and among 

them, N-doped carbons, graphene, graphene oxide and porous carbons seem to be working 

better. Since, the IL CNT category comes from a single article, its effect cannot be 

generalized at this stage even though this material also seems to be promising. The results 

of the analysis show that combined use of carbon black with other carbon structures such as 

graphene or CNT also provide capacities higher than 3000 mAh/g. However, this increase 
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could not be attained with increasing class limits, as it is evident from the decrease of the lift 

values even lower than that of carbon black alone in Figure 4.36a. 

 

Although the majority of the papers did not use additional cathode ingredients, the 

ones that did cannot be ignored because such additives seem to have significant effects on 

the capacities as it is shown in Figure 4.36b. Mn oxide and Co oxide are the most widely 

used cathode ingredients (as shown in Figure 4.33) However, other oxides seem to provide 

better performances (different oxides mixed with Co oxides also improve the capacity). For 

example, LaFe oxides, Ni oxides and Ru are the most promising cathode ingredient 

materials. 

 

 
 
Figure 4.37. Change of lift with changing limits of high discharge capacity for binder type 

(a) and gas diffusion layer materials (b) in the cathode. 

 

As stated in the pre-Analysis section, active materials are defined in this study as the 

bulk cathode support and the ingredient. The binder is not considered as an active material 

in the cathode; it is treated separately as discussed later. Although sufficient amount of active 

material is important to provide enough surface area for the oxidation and reduction 

mechanisms and the precipitation of the discharge product Li2O2, apparently, there is a limit 

for this. Figure 4.36c shows that the active material loadings should be no more than 1.2 

mg/cm2; the probability to have low capacities seems to increase at higher loadings. This 

may be due to limited oxygen transport and increased oxygen gradient in thick cathodes; the 

limited active material utilization at high cathode loadings may result in low capacities [379]. 

Figure 4.36d presents that the cathode should contain a binder for high performance 

batteries. On the other hand, the use of an excess amount of binder can also lead to low 
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performance; to achieve high capacities, binder weight percentage should be around 10-20 

% (i.e. active material should be around 80-90 %). PVDF, which is the most widely used 

binder in the literature, seems to have a decreasing lift with increasing capacity limits, 

whereas PTFE shows a continuously increasing trend suggesting its effectiveness (Figure 

4.37a). PVDF-HFP, Nafion and the other binder materials, which are not presented here, do 

not have positive effects on the capacity. Finally, it can be stated that the use of an additional 

carbon paper next to the current collector as the gas diffusion layer improves the battery 

capacity (Figure 4.37b). 

 

 
 

Figure 4.38. Change of lift with changing limits of high discharge capacity for electrolyte 

solvent type (a), salt type (b), the presence of an additive (c), and separator type (d). 

 

Another important component of the Li-O2 batteries is the electrolyte, which consists 

of the solvent, salt, and additives. Since non-aqueous batteries are more common and 

therefore constitute the entire dataset used in the analysis, their comparison with aqueous 

solvents is not possible here. However, the electrolyte ingredients could still be compared 

with each other. As seen in Figure 4.38a, DMSO is by far the best candidate for obtaining 

high capacities providing lift values more than 3.5 at a capacity target of 10000 mAh/g; 
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hence, it can be used to replace the conventional electrolyte, tetraglyme, which has lift values 

slightly higher than one. The other alternatives are not effective as seen in Figure 4.38a. The 

ARM results suggest the use of LiClO4 and some other alternative salts (including LiTFSA, 

LiTFI and Li[NTf2]) instead of more commonly used LiTFSI, LiCF3SO3 and LiPF6 (Figure 

4.38b). When an electrolyte salt is not used, obtaining capacities higher than 3000 mAh/g 

does not seem possible. The addition of electrolyte additives into the electrolyte also 

improves the specific capacities as expected because they are generally redox mediators, 

which decrease the parasitic reactions in the cell (Figure 4.38c). Finally, the glass separator 

seems to be a better option compared to the polymeric alternatives (Figure 4.38d).   

 

4.2.1.3.  DT Analysis for Combined Factor Effect. ARM, as implemented in the previous 

section, is helpful to see the individual effects of the individual factors; however, these 

factors, for example materials, will be employed together as combinations (i.e. as the 

electrolyte solvent and salt together). Hence, it is also important to investigate and 

understand their best combinations to improve the battery performance. In this respect, the 

DT analysis was used to generate heuristic rules for the selection of these combinations for 

the Li-O2 batteries with higher capacities. As stated in the Materials and Methods section, 

the dataset was divided into three classes according to the specific capacities as Class A, B 

and C for high (≥6000 mAh/g), intermediate (6000-1500 mAh/g) and low (<1500 mAh/g) 

capacities, respectively. As also mentioned in computational details, we restrict our DT 

analysis to the data obtained for cells discharged at 0.1-0.5 mg/cm2 and uses oxygen at 1 atm 

as the reactant. 

 

The optimum tree structure is given in Figure 4.39. The overall classification accuracy 

for training is 78%, which is an acceptable value, indicating that the tree correctly classifies 

78 % of the total data. The recall for individual classes (fraction of data in class X that was 

correctly classified as class X) are given in the confusion table in Appendix F together with 

the class precisions (fraction of actual class X cases in the data that were classified as class 

X). For example, recall of class A is 74%, while its precision is 88 %; both are relatively 

high for reliable generalizations. Likewise, the recall and precision of class C are 89% and 

75%, respectively while the recall and precision of class B are 73% and 72%, respectively. 

The DT model was also tested using the testing data that was not used during the model 

construction; the overall testing accuracy was 76 %, which is quite good. Similarly, the 
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testing recall and precision of class A (83% and 77 %, respectively) and class C (79% and 

77 %, respectively) are also quite satisfactory. Relatively low recall and precision for class 

B (both are 65%) are expected due to the leaks from both sides; however, this should not be 

a problem because one usually wants to know the rules for high (to know what to do) or low 

(to know what to avoid) performances, not the intermediate.  

 

 
 

Figure 4.39. Decision tree analysis for Li-O2 batteries. 

 

Since we use DT to deduce heuristic rules for high performance, the high precision of 

class A is important because it indicates whether apparently favorable set of variables is 

indeed favorable for class A performance (requiring high precision). Failure to identify one 

good set of variables may not harm if we find another one to work on (as contrary to the fact 

that labeling an unfavorable set as favorable will lead to wrong actions). Hence, the heuristic 
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rules for class A, especially the ones those derived from the terminal nodes having large 

number of cases with high purity in class A, as explained below, should be reliable.   

 

The numbers at the bottom of each node in Figure 4.39 indicate the fraction of total 

data obeying the conditions stated so far in that branch, while the fractions in the middle line 

show the fractions of class A, B, and C (from left to right). The letter and the color represent 

the dominant class in each node for visualization. Naturally, the top node contains 100 % of 

data with almost equal fractions of classes, and the total number of data in the nodes 

decreases with each split, while the fraction of one class increases (purification). The 

division criteria used by the tree from the top node to a terminal node in a branch can be 

considered as a heuristic rule to have similar results to those in that terminal node. To have 

a reliable rule or heuristics, the number of cases in a terminal node should be sufficiently 

large and the purity of the node (i.e. fraction of one class) should be as high as possible.  

 

The first division is based on the electrolyte solvent; the data with DME, DMSO, 

Others, tetraglyme and triglyme are sent to the left while the other electrolyte solvents are 

sent to the right (the data in Class A will likely to be purified in the left nodes while the Class 

C will be mostly on the right). After the first node, the DT uses the bulk cathode materials 

showing that the presence of CNT, Co oxide, graphene, N-doped CNT, others and porous 

carbon lead to Node 4 on the left containing 46% of data with 59% purity in A. This node is 

further purified into the first terminal (Node 14) by selecting first PVDF and PTFE and then 

PTFE as binder. This is the most important rule obtained from this tree since both the node 

size (14 percent of total data) and purity (94%) in class A are sufficiently high to generalize 

the decision criteria used to reach this node. The remaining data in this branch is divided 

more using LiTFSI as the electrolyte salt. This rule resulted in Node 22, which still has a 

reasonably high purity (90%) close to that of the first terminal node (Node 14); hence, this 

can be also used as another heuristic rule. The conditions leading to the rightmost terminal 

node (Node 7) may also be used for not to do because it contains 13 % of data with 100% 

purity in the low capacity class (class C). The results in this node indicate that the use of 

carbonate electrolytes such as PC, EC:DEC and EC:DMC with PTFE or nafion as binders 

results in very low capacities; hence, the combination of these materials should be avoided 

in Li-O2 batteries.   
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The aim here was to develop heuristic rules for high capacity batteries, and the tree is 

quite successful for this; however, some additional information can also be extracted related 

to the relative importance of the individual factors by inspecting their utilization frequencies 

during the construction of the tree. Although it is not an absolute rule, the most frequently 

used variables (especially if they are used close to the top node) should be relatively more 

influential for the capacity. Indeed, electrolyte solvent, bulk cathode material and gas 

diffusion layer are the most influential three variables for this tree; these variables were also 

found to have high lifts in the ARM analysis (Table 4.9) as expected.  

 

4.2.1.4.  Cut-Off Voltage Analysis with ARM. ARM analysis is also performed for the cut-

off voltage dataset to determine the important factors for achieving voltages higher than 2.75 

V. The results for capacity range of 750-1000 mAh/g and 500-750 mAh/g are presented in 

Table F.4 and Table F.5, respectively, in Appendix F; the same factors were found to be 

significant in both cases even though their exact orders slightly changed. This dataset 

contains less number of data (242 points) compared to discharge capacity dataset (773 

points) discussed in the previous section; hence, counts in ARM for the factors are much 

lower (meaning that the reliability is also lower). However, the performance of various 

alternative materials can still be compared. For instance, the bulk cathode materials and 

ingredients seem to be the most effective factors on the cell voltage with their high lift values 

(this was also the case for the capacity testing group). In addition, PTFE as a binder, DMSO 

as an electrolyte solvent and 0-0.8 mg/cm2 active material loading can lead to enhanced cell 

performance of Li-O2 batteries.  

 

4.2.2.  Screening of Ionic Liquids as Electrolyte of Metal-Oxygen Batteries using 

COSMO-RS and Machine Learning 

 

Designing an efficient electrolyte system is critical for commercializing metal-air 

batteries where ionic conductivity and gas solubilities, especially oxygen, are the primary 

concerns. Among various alternatives, due to their safe nature and tailorable properties, ionic 

liquids (ILs) have the potential to be used as electrolytes of metal-air batteries. Since many 

ILs are possible, assessing their gas solubilities before using them in batteries is essential. 

This section focuses on building ML models for predicting the gas solubilities of ionic 

liquids (ILs) and screening promising candidates for metal-air battery electrolytes. 
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COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) method, using the 

COSMOThermX program, is utilized first for quick screening of gas solubilities, including 

oxygen, water, nitrogen, and carbon dioxide, in addition to physical properties of ILs. The 

structural descriptors and molecular fingerprints, calculated using RDKit, an open-source 

cheminformatics software, are used to build predictive models for gas solubilities.  

 

4.2.2.1.  Importance of Gas Solubilities on Metal-Air Cells. Figure 4.40 shows a metal-air 

cell structure during discharge and presents the electrolyte's role; here, an IL electrolyte with 

an anion-cation pair is illustrated. First, atmospheric gas is distributed over the cathode by 

passing through a gas diffusion layer and dissolving in the electrolyte solution. Meanwhile, 

metal ions (M+n) coming from the negative electrode through the electrolyte medium and 

dissolved oxygen react with the help of a catalyst on the surface of the positive electrode 

with the electrons supplied through the outer circuit. Oxygen only participates in the 

electrochemical reactions if dissolved in the electrolyte, providing reversible capacity gain. 

Hence, high electrolyte oxygen solubility is critical for metal-air batteries [380]. In contrast, 

low solubility to the other atmospheric gases, including carbon dioxide, nitrogen, and water, 

is necessary to prevent side reactions in the metal-air battery cathode. It is stated in the 

literature that CO2 and H2O in the air may cause side reactions where LiOH and Li2CO3 are 

produced, and when the concentration of these side products increases, the cell suffers from 

high over-potential and short cycle life. N2 solubility should also be restricted to preserve 

the stability of the solid-electrolyte interphase layer in the anode; the lithium anode may 

deteriorate in the presence of nitrogen [94].  

 
 

Figure 4.40. Schematic of metal-oxygen cells with IL electrolytes. 
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4.2.2.2.  Description of the Dataset. The IL dataset presented in this section includes the 

results for the cation-anion pairs obtained from the combination of 370 anions and 84 cations 

in the COSMOthermX program. In addition to gas (oxygen, carbon dioxide, water, and 

nitrogen) solubilities, the dataset includes previously calculated in Section 4.1.3, viscosity, 

melting point, and electronic conductivity values. The distributions of the selected properties 

and gas solubilities are given in Figure 4.41. The viscous nature of the ILs is visible in Figure 

4.41a, as the scale goes up to e15 and the mean is around e7 mPa.s. On the other hand, luckily, 

the melting points of these ILs are low, meaning lower than 0 °C, which is essential for stable 

liquid electrolytes in metal-air batteries. When the gas solubilities are considered, it is 

observed that all gases except water have similar solubilities, although CO2 has slightly 

higher values among the selected atmospheric gases. This is why suppressing CO2 solubility 

is essential even though CO2 partial pressure is low in ambient air. On the other hand, the 

water solubility spans large intervals from 10-2 mol/mol to 104 mol/mol. Hence, extra caution 

must be exercised according to the water solubility values. 

 

 
 

Figure 4.41. Distribution of melting points (a), viscosities (b), melting points (c), and gas 

solubilities of the whole dataset. 
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To further extend the analysis, the gas solubility distributions of atmospheric gases for 

oxygen and other gases based on anion groups are given in Figure 4.42. In parallel to Figure 

4.41c, similar solubility distributions are obtained for all three gases except water; most 

solubilities lie in the range of 0.1-10 mol/mol, whereas extreme values are obtained in both 

low and high ends for water solubility. Halo_elemental_complex, cyano, borates, and 

bis_imide groups have the lowest water solubilities; however, halo_elemental_complex is 

found to be less suitable for metal-air batteries due to higher nitrogen solubility and 

bis_imide as the most suitable one with the most increased oxygen solubility. On the other 

hand, the solubility values based on cation groups are given in Figure G.1; the highest 

oxygen solubilities are obtained for guanidinium, phosphonium, and quinolinium cation 

groups, respectively. Another noticeable trend is that guanidinium and phosphonium groups 

have larger solubility values for all gases with larger spread values than the others. Although 

high oxygen solubility is advantageous for these ILs, high solubilities for other gases may 

also be problematic. On the other hand, the figure shows that the cation groups do not affect 

water solubility, as no peaks and no significant trends were observed. Although these results 

are valuable, no solid conclusions for the most promising anion and cation groups are 

obtained, showing the need for calculation/prediction of individual ILs. Hence, a low-cost 

method is provided in this work by building RF models using features calculated by the 

RDKit free chemical informatics library. 

 

 
 

Figure 4.42. Distribution of gas solubilities for anion groups. 
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RF models were built to predict the gas solubilities using molecular and structural 

descriptors. The chemical structure is the first consideration when the properties of a 

molecule are discussed. The qualitative discussions on the system are defined as a structure-

activity relationship (SAR) and depend on scientists’ experiences and interpretabilities. 

Because of this variability, the need for numerical representation of the chemical structures, 

even in the year 1991, was identified. Quantitative structure-activity relationships (QSAR) 

or structure-property relationships (QSPR) are defined as necessary for representing a 

molecule [381]. Hence, the molecules were represented using several indexes. In this 

respect, the RDKit library is developed to provide enough quantitative information on the 

molecules using only the SMILES, Simplified Molecular Input Line Entry System, codes of 

molecules. Various indexes are essential since it is impossible to represent a molecule with 

a single index showing atom and bond types and shapes of molecules. For example, the 

alkanes can be modeled with total atom count, but it is not essential for complex molecules 

with many heteroatoms. In the case of ILs, large and bulky molecules containing various 

atoms and bonding types are present, and many more molecules can be synthesized [381]. 

Hence, various indexed should be used to account for differences in the IL molecules. 

 

In this respect, the RDKit library provides adequate sets of descriptors, specifically, 

125 structural descriptors and multiple topological/electronic indexes utilizing several 

published works in addition to 85 variables showing the frequency of the fragments in a 

molecule. The complete list of the descriptors is given inTable G.1.  Hall and Kier developed 

several indexes and features in our context, using a molecular connectivity approach where 

both topological and electronic characters (explicitly) of atoms or molecules are taken into 

consideration[381]. These are Chi for structural attributes, Kappa for molecular shapes, and 

the HallKierAlpha index for atom type information. Labute  also reported important 

descriptors in the RDkit library. There are 35 descriptors calculated by Labute[382], which 

are LabuteASA (1), PEOE_VSAx (1£x£14), SMR_VSAy (1£x£10), SlogP_VSAz 

(1£x£12). LabuteASA shows the van der Waals surface area (VSA) of molecules and is also 

used in calculating latter descriptors. The rest of the three descriptors are calculated for 

specific ranges on the properties determined over a database where the interval is equally 

populated. PEOE(sum of partial equalization of orbital theory)_VSA, SMR(sum of 

molecular refractivity)_VSA, and SlogP(sum of the log of partition of octanol/water)_VSA 

were used to quantify the effects of hydrophilicity, polarizability and finally electrostatic 
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interactions. It is stated that there is no correlation between these three sets of descriptors, 

and several molecular properties are successfully calculated by using only their descriptors. 

Morgan fingerprint (FpDensityMorganx, 1≤£x£3) is a way of representing the chemical 

structure of a molecule by a two-dimensional vector containing only 0 and 1’s where 1 is 

attributed to specific structural features [383]. Apart from these works, other topological 

indexes such as BalabanJ [384], BertzCT [385], and Ipc [386] values are reported in the 

RDKit library. All these topological indexes aim to represent the molecular structure, but 

their basis of the calculations is different. The best and most relevant kinds of indexes depend 

on the dataset itself.  

 

The original dataset has 416 for a single IL, making the dataset relatively large. 

However, working with such a large dataset is disadvantageous given the long computational 

time and low performance. It is stated in the literature that the optimal set of features should 

be determined before the ML modeling to prevent these shortcomings. The optimum set of 

features changes according to the structure of the dataset [387]. Hence, Boruta analysis was 

performed to reduce non-relevant features or features with no information. Most of the 

removed features were related to the number of fragments in the molecules as most contain 

only 0’s; only nine cationic and eight anionic features are related to other indexes. Hence, 

the features used in the modeling were reduced to 285. 

 

4.2.2.3.  Machine Learning Analysis. This work uses RF to predict gas solubilities of ILs 

calculated at 25 °C. Firstly, the dataset is divided into train and test sets as 75% and 25% of 

the total data with a restriction of different anions in these sets. Modeling is performed using 

a grid search with 5-fold cross-validation on the train set using the stratified sampling 

explained in the Materials and Methods section in the validation set; optimum 

hyperparameters are determined according to validation RMSE. After that, the testing set is 

used to judge the model's ability to make predictions, and the resulting solutions are shown 

in Figure 4.43. The optimized hyperparameters of oxygen models are 3 for the maximum 

depth and 10 for the number of trees. The final model is based on these hyperparameters 

built for training and test sets. The RF model is found to be quite successful not only for 

training but also for test sets. In Figure 4.43, the model's estimation accuracy for the testing 

set is satisfactory, with R2 and RMSE of 0.95 and 0.34, respectively (0.997 and 0.106 for 

the training set). It is expected to see better fits on the training set since the model is built on 
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these data; however, the model does not see the anions present in the test set when it learns 

from the data.  

 

 
 

Figure 4.43. ML results on the oxygen solubilities for training (a), test (b) sets with 

importance (c) values, the performance metrics are provided. 

 

Variable importance analysis is also performed to see the effect of descriptors on the 

oxygen solubility predictions.  Both anion and cation features are present in the importance 

plot, showing the influence of both parts on the final IL properties, Figure 4.43c. The most 

important feature was the Ipc value of the cations of ILs. Ipc is the information obtained 

from characteristic polynomials of a molecule [215]. It is a topological feature reported to 

be effective in representing the branching [386]. The effect of cation branching was already 

investigated experimentally in the literature for carbon dioxide solubility in ILs, and it was 

found that branched cations illustrated as sponge-like structures are determinative in ILs 

solubility due to favorable interactions of the branched section [388]. Hence, it is expected 

to have the Ipc value as the top descriptor for gas solubility predictions. The other visible 
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descriptors are VSA_Estate, Chi values, molecular weights (MolWt), Kappa values, 

SMR_VSA5, and finally, Morgan fingerprints. Indeed, Morgan fingerprints are used in the 

ML predictions on ILs properties like refractive indexes and viscosities.[389] In another 

work,  carbon dioxide solubilities [390] of ILs were  wellpredicted  by using only Morgan 

fingerprints that represent the ILs successfully. The Kappa1 values showing the sphericity 

of anions are found to be necessary. The lower Kappa1 values are attributed to high 

sphericity, and when the molecule is linear, the Kappa value equals the number of atoms. 

Hence, the structure can also be characterized by the Kappa values, which are essential in 

modeling. Finally, among 10 SMR_VSA values presented as features, only the moderately 

polarizable cations value of C_SMR_VSA5 affects the model significantly.  

 

Similar analyses were performed for carbon dioxide, nitrogen, and water solubilities 

using the hyperparameters in Table G.2. However, as seen in Figure 4.42c, the scale of water 

solubility is too large. Hence, the model is performed on the logarithmic scale rather than 

the actual value. The RMSE of these tree models are 0.32 mol/mol, 0.37 mol/mol, and 0.79 

mol/mol, as represented in Figure G.6, Figure G.7, and Figure G.8 for carbon dioxide, 

nitrogen, and log(water) solubilities, respectively. The performances of the predictions are 

quite similar to each other except for water. The most significant deviation between the 

predicted and the real value was obtained for saccharinate anion, which belongs to the Others 

family of anions, meaning that the structure is unique in the dataset. However, compared to 

other gases, water solubilities are less widely reported, but experiments have proved that the 

anionic effect is dominant in the final water solubilities [391]. Anionic properties were also 

found to be more critical in the water solubility reported in our previous study, with 20 

descriptors calculated by PM3 semi-empirical models [209]. In parallel, our importance plot 

in Figure G.8. ML results on the water solubilities in natural logarithm scale for train (a), 

test (b) sets with importance (c) values, the performance metrics are provided at the bottom 

also supports this discussion with the anionic descriptors on top. The anionic effect is less 

pronounced for other gases as both anionic and cationic structural and electronic properties 

are found to be necessary, as well as the molecular weights as they show the complexity of 

the anion and cation structures. Finally, prediction models are performed for the viscosity 

and melting points of ILs with the provided descriptor set. The models are quite successful 

for most of the dataset except glutamate and borate anions. When their features are analyzed, 

it is seen that these anions have very dissimilar features leading to similar properties. Hence, 
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the model is limited in accounting for this difference and cannot accurately predict these two 

anions' properties. 

 

To sum up, the descriptors obtained from the RDKit library can be used to build ML 

models to predict the gas solubilities and the physical properties of ILs. These predictions 

can be used to assess the suitability of an IL for metal-air batteries as multiple concerns are 

considered. The ideal IL electrolyte should have high oxygen solubility, low solubility of 

the other gases, and low melting point and viscosity. For the restriction of melting point and 

ln(viscosity) lower than 0 ºC and 6 mPa.s and oxygen solubilities higher than 2 mol/mol, 

only 19% of ILs satisfy these criteria. Hence, this dataset and models can be used as first-

initial guesses when synthesizing new ILs. 

 

4.2.2.4.  Validation of COSMO-RS Solubilities with Literature. Although the ML models 

perform well with gas solubilities calculated by the COSMO-RS method, experimental 

validation of the computed gas solubilities is still needed. The validation of water [209] and 

carbon dioxide [392,393] solubilities with the COSMO-RS method was already performed 

in the literature. In contrast, it was not completed for nitrogen solubilities due to a lack of 

experimental data. Hence, the validation of oxygen solubility was performed in this work. 

As explained in the Materials and Method section, there are two methods in the 

COSMOThermX software to compute the solubilities: gas solubility and IL screening 

modules. In both ways, the solubilities are initially reported in the mol/mol unit, but they are 

converted to mM using densities and molecular weights calculated by COSMO-RS. Figure 

4.44a gives the oxygen solubilities obtained from the gas solubility module vs. the IL module 

for ILs having the [TFSI]+ anion. As seen from the figure, the results obtained in these two 

approaches are an order of magnitude different. However, a perfect linear fit can be obtained 

where experimentally reported oxygen solubilities are close to the ones calculated using the 

gas solubility module (Figure 4.44b). Hence, the results obtained in the IL screening module 

are further improved using the correlation equation presented in Figure 4.44a. However, 

some deviations are still observed. This is expected because, unfortunately, the experimental 

methods, techniques, and even equipment calibration change in every research group. For 

instance, for 1-butyl-1-methyl-pyrrolidinium [TFSI]+ (P13-TFSI), the experimentally 

measured oxygen solubility changes from 0.73 to 13.6 mM where the COSMO-RS predicts 

an oxygen solubility of 8.8 mM. Still, the calculated solubility is in the experimentally 
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reported range. This problem also shows the importance of having a single and reliable 

method to screen thousands of ILs in terms of gas solubilities for comparative analysis. 

 

 
 

Figure 4.44. The solubility values calculated from COSMO-RS (a) and the comparison 

between experimental and gas solubility values (b).
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5.  CONCLUSION 
 

 

5.1.  Conclusions 

  

This thesis aims to increase the performances of Li-S and Li-O2 batteries by 

discovering the most promising materials and determining optimum cell parameters. In this 

respect, galvostatic cycling, system-level modeling, and machine learning are the main 

techniques used in this study. In the first 5 sections, Li-S batteries were studied using all 

three methods, whereas only ML tools were used in Li-O2 battery studies, described in the 

following two sections. The conclusions of each study are given in this section. 

 

In Section 4.1.1, a dataset having 1660 data from 353 papers in the literature were 

collected to analyze the effect of critical materials and cell design parameters on the Li-S 

battery performance using ML. Association rule mining analysis was conducted to determine 

the single factor effects. The impact of critical factors on both peak discharge capacity and 

cycle life of a Li-S cell has been discussed; these effects are highly prominent especially for 

cells achieving peak discharge capacities of 1400 mAh/g and higher and cycle numbers of 

200 and higher. The most important conclusions of this section are summarized below:  

 

• Cells with encapsulated cathodes perform significantly better both in terms of the PDC 

and the cycle life of the battery, importantly for the electrolyte-starved cathodes 

(E/S<5mL/g). Structured carbons (i.e. porous carbons, CNT) and specialized new 

materials are highly promising encapsulation materials. High amounts of 

encapsulation material in the cathode (above 40%) are typically favorable.  

• Binder type has a considerable impact on the PDC; PTFE and LA are promising 

materials for enhanced performance. However, binder- and conductive-free 

encapsulated cathodes are essential for enhanced cycling performance. 

• Electrolyte materials are critical for improved PDCs, especially at low E/S ratios. 

EC:DEC or TEGDME as the solvent and LiPF6 as the salt perform superiorly 

compared to the conventional electrolytes. The impact of the electrolyte materials on 

the cycling performance is less pronounced.  
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• Even though low S loadings in the cathode (0-1 mg/cm2) are beneficial for high PDCs, 

higher S loaded cathodes perform better in terms of the cycle life and the energy 

density. 

• Cells with carbon current collectors or interlayers can achieve higher PDCs, 

particularly at low E/S ratios. 

• Cells achieve PDCs higher than 1400 mAh/g and cycle numbers more than 200 

predominantly at very high E/S ratios (above 30 mL/g). 

• All-solid-state Li-S batteries are promising in terms of attaining high PDCs while cells 

with catholyte perform better in terms of cyclability.  

 

To sum up, materials design, specifically design of encapsulation materials and 

electrolyte, are critical both for high capacities and enhanced cycle life. The most promising 

pathways forward are the development of encapsulated cathodes that do not require 

additional binder and conductive material and the design of novel electrolytes that could 

succeed at low E/S ratios. In addition to proposing favorable pathways for high performance 

Li-S batteries, this comprehensive analysis also proves that ML is a highly valuable tool, 

especially for such highly complex systems. To conclude, this analysis confirms that the 

biggest challenge Li-S batteries face today in competing with the Li-ion technology is to 

achieve and retain high discharge capacities at high active materials loadings and low 

electrolyte amounts in the cell.  

 

In Section 4.2.2., 207 data collected from 42 experimental articles were analyzed, 

which use ILs as their liquid electrolytes, to identify the patterns and hidden relations 

between the cell variables and both system- and cell-level performances of Li-S batteries 

using ARM. It was found that IL materials are very important in terms of achieving high 

PDCs, energy densities and specific energies. This study also showed the importance of IL 

electrolytes for Li-S batteries with their effectiveness at lean electrolyte conditions and high 

sulfur loadings. 

 

In section 4.1.3, a large-scale screening of ILs was conducted in search of potential IL 

electrolytes with low PS solubility to limit the shuttle effect and low viscosity, electronic 

conductivity, and melting point for application as liquid electrolytes of Li-S batteries. The 

screening was performed using a COSMO-RS model on the COSMObaseIL dataset of over 
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36000 ion pairs to produce rough estimations of the solubility of Li2S8 as the model PS and 

IL properties. The predictive model developed by XGBoost algorithm was quite successful 

indicating that the solubility can be easily predicted for new ILs. Ten descriptors were also 

analyzed for each anion and cation along with the solubility estimations using association 

rule mining to find valuable correlations between solubility and property and IL structural 

properties; solubility limits, which were use as selection criterion for high performance, were 

determined experimentally. The results showed that the anion descriptors correlate more 

strongly with PS solubility than the cation descriptors. The ML models showed significant 

overfitting when exposed to the same anions in both training and test sets. This further 

provides evidence of the strong correlation between the COSMO-RS-predicted PS 

solubility/property and anions descriptors. The feature importance analysis also showed that 

anion descriptors are leading in solubility prediction, with anion LUMO and HUMO 

energies, dipole, and CPK area being the most important. A comparison with some limited 

results in the literature showed reasonable agreement. Although calculating the descriptors 

is comparable in terms of computational cost to the COSMO-RS solubility calculation, the 

model requires the generation of .cosmo files and the use of COSMO thermodynamic 

software. In contrast, these descriptors are more readily available and easier to set up on a 

larger scale. In addition, experiments show optimum solubility and viscosity ranges for high-

performing Li-S batteries, whereas melting point and conductivity are only used to ensure 

the appropriateness of the liquid ILs as the electrolytes. Hence, according to the results, 

imidazolium and pyridinium were the most suitable cations, whereas borates and bis_imides 

were determined to be the anion choices for high-performing Li-S batteries. To conclude, 

this section offers not only ML models that can be easily utilized to identify promising IL 

electrolytes for Li-S batteries by an original integrated methodology coupling high-

throughput COSMO-RS and DFT calculations and experimental characterization but also a 

better understanding of the structure-solubility-performance relation for IL electrolytes. 

 

In Section 4.1.4, UiO-66-based graphene nanoplatelet composites with three different 

MOF/GNP ratios (UGS-1, UGS-3, and UGS-5 corresponding to MOF/GNP ratios of 10:90, 

30:70, and 50:50 wt.%, respectively) were prepared and used as the conductive 

encapsulation network for Li-S battery cathodes. A facile strategy is followed in the cathode 

preparation step. Although no significant performance improvement is observed with the 

addition of UiO-66 into the composite for a sulfur loading of 1 mg/cm2, for higher sulfur 
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loadings (2 mg/cm2) and current densities, MOF addition is critical for the reversibility of 

electrochemical reactions and sulfur utilization. For instance, Li-S cells with UGS-5 

presented superior rate capability due to the superior surface area and PS adsorption ability 

of the UG-5 composite. Hence, it can be concluded that the synergistic effect between GNP 

and MOF favors high-performance Li-S batteries even at high C-rates and sulfur loadings. 

 

In Section 4.1.5, the system-level performance modeling of Li-S batteries with a novel 

VCKBS composite cathode was done. Li-S cells with VCKBS cathodes exhibited excellent 

cycling and rate performances with an initial capacity of 1329 mAh g−1 at 0.1 C. Even under 

a higher S loading (2.4 mg cm−2), significant capacity retention of 85 % was accomplished 

after 200 cycles at 0.2 C. Due to impressive experimental specific capacities, the system-

level specific energies and energy densities were predicted for both the 1st and 100th 

discharges. Compared to KBS, VCKBS cathodes showed 1342% and 568% improvement 

in the system-level specific energies and energy densities for the 100th discharge, 

respectively. In both cases, the VCKBS cathode significantly improves system-level 

performances. In addition, the E/S ratio, S loading, and cathode material characteristics 

significantly affect the system-level metrics. It was found that VCBKS cathodes with lower 

E/S ratios excel at specific energies. In pursuing a low-cost Li-S battery with superior energy 

density and specific energy, the investigation of the VCKBS cathodes at higher sulfur 

loadings and lower E/S ratios will be critical.  

 

In Section 4.2.1, a dataset containing 1015 experimental data on Li-O2 batteries was 

used for ML analysis to identify the most prominent materials and cell design factors 

combinations for high performance Li-O2 batteries. ARM and DT were used throughout the 

study; the factors found to be leading to high cell performance are summarized below: 

 

• Bulk cathode materials, cathode ingredients and electrolyte solvents are found as the 

most important variables for both high discharge capacities and voltages. 

• N-doped carbons, graphene and porous carbons seem to be better options as bulk 

cathode materials. 

• LaFe oxides, Ni oxides and Ru are shown to be good candidates as cathode ingredients. 

• The discharge capacities are negatively affected by the active material loadings higher 

than 1.2 mg/cm2.  
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• Cells with PTFE, DMSO, and LiClO4 as the binder, electrolyte solvent and salt, 

respectively, provide high discharge capacities. 

• The use of some electrolyte solvents (DME, DMSO, tetraglyme and triglyme) without 

a salt or with salts like LiClO4 likely result in capacities higher than or equal to 3000 

mAh/g with high probability. 

• Mo containing compounds and Ru as ingredients, and N-doped carbons as bulk 

cathode materials seem to be good for high cell voltages. 

 

Identifying the important correlations between the input and output variables (via 

ARM), and developing heuristic rules involving more than one variable (via DT) using the 

data reported in the literature may help to refine the experience gained in the field and make 

significant contributions to the future works. However, this approach has an important 

limitation: all the models and conclusions drawn are valid within the limits of the dataset 

(i.e. data gained from the past studies reported in the literature); hence, it cannot suggest any 

completely new material types or combinations. To do that, the material characteristics 

should be also included in the analysis, and significant properties contributing to the battery 

performance should be identified for the search of new materials or material combinations 

having similar properties.  

 

In the section 4.2.2., COSMO-RS calculations were used for fast screening of ILs 

regarding gas solubilities and physical properties to assess if they are suitable as electrolytes 

of metal-air batteries. The calculations were performed for a dataset of around 30,000 ILs at 

25 ºC.  Afterward, this dataset was further utilized in an ML algorithm for building predictive 

models using the structural and electronic features of anions and cations obtained from free 

software using only the SMILES codes. ML models with low RMSE scores proved that 

these features are sufficient to represent the IL's properties and solubilities; hence, structure-

property relations can be drawn. It was found that both cationic and anionic features 

influence the gas solubilities other than water. On the other hand, cationic properties have a 

slight effect on the water solubilities, where anion structures roughly determine the 

magnitude of the solubilities. It was found that only 19% of ILs are suitable with the 

restrictions of melting point and ln(viscosity) lower than 0 ºC and 6 mPa.s and oxygen 

solubilities higher than 2 mol/mol. 
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5.2.  Recommendations 

 

In this thesis, a comprehensive material-to-system analysis was conducted for Li-S and 

Li-O2 batteries by applying an integrated research methodology involving experimental 

characterization, system-level performance modeling, and ML. These studies can be 

extended in the future by the following recommendations:  

 

• The development of better and more comprehensive battery material databases 

• Using better text-mining methods to analyze the trends and results in the literature in 

a more effective way 

• Developing electrochemical models that take material properties into account 
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APPENDIX A: SUPPORTING INFORMATION ON SECTION 4.1.1 
 

 

The additional information on Section 4.1.1 is given in this section. First, the details 

of the database is given in Table A.1 and than the details of the alternative materials are 

listed. 

 

Table A.1. The details of the database. 

Dataset Number of Data Number of Publications 
Cells using liquid electrolyte 1463 303 
Cells using catholyte 142 33 
Cells using liquid + solid electrolyte 33 10 
Cells using solid electrolyte 22 7 
Total 1660 353 

 

Details of the alternative materials are as follows: 

 

• Hollow Structured Carbon1&2: Hollow Carbon Foam 

• Hollow Structured Carbon3: Acetylene Black Nano Hollow Carbon, Double Shelled 

HCS, HCS, Hollow Carbon Foam, Hollow Carbon Nanospheres, Hollow Carbon 

Spheres, Hollow Porous Carbon, Hollow Porous Carbon Bowl, Hollow Porous Carbon 

Sphere, Mesoporous Carbon Hollow Spheres, Mesoporous HCS, Multi-Shelled 

Hollow Carbon Nanosphere, Porous Hollow Carbon Nanocapsule Monoliths 

• Hollow Structured Carbon4: Hollow Carbon Nanospheres, Multi-Shelled Hollow 

Carbon Nanosphere 

• Modified Li anode: Hard Carbon+Carbon Black+PVDF+Polymer Separator+Li 

Metal, Li Metal+ Al2NO3 Layer, Li Metal+Glass Fiber Layer, Li 

Metal+Hydroquinol+rGO, Li&In Alloys, Lithiated Si/SiOx Nanosphere, 

Nanostructured Li Contained in Fibrous Li7B6 Matrix, Prelithiated Ge, Stabilized Li 

Powder, Stabilized Li Powder+Hard Carbon+PVDF, Graphite Powder+Super 

P+PVDF+Polymer Separator+Li, Prelithiated Graphite 

• Others1: Graphite Coated Al Foil, Cu Foil+CNT Sheets, Graphene Layer, Graphene, 

Cu Foil, Gas Diffusion Layer, Stainless Steel, Copper, Carbon Coated Ti Foil, Au-

Coated Stainless-Steel 
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• Others2: Graphene Oxide, HKUST-1, LATP Glass-Ceramic, Vermiculite 

• Others3: TiS2, CoS2, LiTFSI, FeS2 

• Others4: TiS2, CoS2, CoMoS3.13 

• Others5: CNT+IP, TiN, PTFE, Silica Etched Carbon, MWCNT+Polypyrrole, Silica, 

Ammonium Bicarbonate, HKUST-1, Nano MgO, Teflonized Carbon Black, ZIF-8, 

MnO2, Carbon Polysulfide Polymer, Carbon Polysulfide Polymer+Graphene 

• Others6: Conductive Agent 

• Others7: MoC+MoOx, Phosphorene Nanosheets, Silicon Carbide Whisker Foam, 

Vanadium Nitride, Vanadium Oxide, HKUST-1, TiO2 

• Others8: Amylopectin, Diatomite 

• Others9: GO, CaCl2, InCl3, MgCl2, WS2 

• Others10: 1,3-diisopropenylbenzen copolymer, Ni, Polyethylenimine, Zeolitic ZIF-8, 

ZIF-8, HKUST-1, MOF-5˚ 

• Others11: 2-ethylimidazole MOF, Amylopectin, Anthraquinone, Imidazole MOF, 

Metal Organic Framework 

• Others12: TiO2, Nano MnS, Hollow MoO2 Sphere, MnO2, PDDA, SiO2, Ti3C2Tx, 

ZrO2, ZrO2, VO2 nanobelts 

• Others13: Polydopamine 

• Others14: Trithiocyanuric Acid, PVP 

• Others15: Nano Co, Nano CoS2, Si/SiO2 

• Others16: 3-D Diamond-Cage Porous Polymer Frameworks, Co3S4 Nanotubes, Core–

Shell Structured Spoly(Sodium P-Styrenesulfonate) , Covalent Organic Frameworks, 

Crosslinked Polystyrene, Hollow NiCo2O4 Micrutubes, LiFePO4, LiV3O8, Metal 

Cotton, MnO2, PEG+ MnO2, Poly(Divinyl Benzene), Polyacrylonitrile, 

Polydopamine, Porous Aromatic Framework, Porous Organic Polymer, Porous 

Triazine-Based Frameworks, Porous Trithiocyanuric Acid Crystals , Prussian Blue, 

Sepiolite, Silica, SiO2, SnO2 Nanocomposites, Ti3C2Tx, Ti4O7 Nanoparticles, Ti4O7 

Nanorods, TiO2, TiO2 Spheres With Mesopores, ZIF-8,  α-Mno2 Nanowires 

• Others17: PEDOT+Poly(styrene sulfonate), + SiO2 

• Others18: Boron, Sulfur, Cobalt 

• Others19: TiO2, Iodine, Diatomite, CeO2, Cobalt Oxyhydroxide, Mo4O11, Boron, 

NbS2, Si/SiO2, Boron+Oxygen, Fluorine, Dodecyl Benzene Sulfonic Acid, MnO2 



 

 

206 

• Others20: PVP, Sodium Alginate, PDADMA-T, PEG, Polypyrrole+Polyurethane 

nanocomposite, Beta-Cyclodextrin, LA133+ SBR, Alginic Acid Sodium Salt, 

Polyvinyl alcohol, Poly(acrylonitrile-methyl methacrylate), Kynar, Gum Arabic, 

Thiokol, Fluoropolymer, Na Alginate, Gelatin, PVC, Cation Aqueous Polyurethane 

Resin, Poly(vinylidene difluoride-co-chlorotrifluoroethylene), Poly(vinylidene 

difluoride-tri- fluoroethylene), Poly(acrylic acid) 

• Others21: Hexa-fluoropropene, Polyethylenimine(PEI) 

• Others22: PVP, Kynar 

• Others23: DMDS, CS2, PYR14TFSI 

• Others24: DMC, DMC:DEC, EMC, EMC:DEC 

• Others25: Li(G3)1TFSA, ACN:TTE, Carbonate:DMC, DEGDME, Diglyme, DMA, 

DME, DOL:CHF2CF2CH2OCF2CF2H, DOL:DMC, DOL:EGDME, DOL:PEGDME, 

EC:DMC(anode) &Tetrahydrofuran(cathode), Methyl Isopropyl Sulfone, N-methyl-

N-propylpyrrolidine+bisTFSI, PEGDME, 1-methyl-3-propyl imidazolium+ TFSI, 

Sulfolane, Sulfonate, TEGDME(anode side)+DMA(cathode side), TMS:TTE, 

Tri(ethylene glycol)-substituted trimethylsilane, TTE:DOL 

• Others26: LiFSI, LiFSI+LiTFSI, LiPF6(anode), LiTDI, LiTFSI+LiTDI 

• Other Carbons1: Amorphous Carbon Shell 

• Other Carbons2: Carbon Felt, Carbon Hybrid Spheres, Carbon Microspheres, Carbon 

Nanoflakes, Carbon Nanoparticles, Carbon Nanospheres, Carbon Polyhedrons, 

Carbon Slice, Layered Carbon, Meso Carbon Micro Beads, Mesocarbon 

Microbeads(Graphite), Microcrystalline Graphite Minerals, Nanostructured Carbon, 

Non-Layered Carbons, Solid Carbon Spheres, Yolk–Shell Carbon Nanospheres 

Microporous Shell, Mesoporous Core 

• Other Carbons3: Carbon Polyhedrons, Carbon Hydrid Spheres 

• Porous Carbons1: Porous Carbon 

• Porous Carbons2: CMK-3 

• Porous Carbons3: CMK-3, Porous Carbons, Porous Carbons Nanospheres 

• Porous Carbons4: Porous Carbon Nanospheres  

• Porous Carbons5: Mesoporous Carbon, Porous Carbon 

• Porous Carbons6: Double Wrapped Porous Carbon, Porous Carbon, Hierarchically 

Porous Carbon, Mesoporous Carbon 



 

 

207 

• Porous Carbons7: Double Wrapped Porous Carbon 

• Porous carbons8: CMK-3, Hierarchical Porous Carbon , Hierarchically Pore 

Structured Carbon, Meso Carbon Micro Beads, Mesophase Micro Bead Carbon, 

Mesoporous Carbon, Micro-Macro Porous Carbon, Microporous Carbon Polyhedrons, 

Microspherical Mesoporous Carbon, Nanoporous Carbon , Nanoporous Carbon 

Beads, Ordered Porous Carbon, Peapodlike Mesoporous Carbon, Porous Carbon, 

Porous Carbon Nanosheets, Porous Rattle-Type Carbon Sphere, Spherical Ordered 

Mesoporous Carbon, Ultramicroporous Carbon 

• Porous Carbons9: CMK-3, Spherical Ordered Mesoporous Carbon, Mesoporous 

Carbon, Peapodlike Mesoporous Carbon 

• Structured Carbon1: CNF, rGO, Nitrogen-Doped Porous Hollow Carbon Sphere, 

Graphitized Carbon Nanofibers, Graphite, Graphene, CNT 

• Structured Carbon2: Vapor Given Carbon Fiber, rGO, Carbon Cloth, Carbon 

Nanofiber, Carbon Sponge, CNF, Cotton-Carbon, Graphene, GO, Graphene+Cotton-

Carbon, Graphite, Graphitized Carbon Black, OMC 

• Structured Carbon3: Carbon Fiber Foam, CNF, Graphene, CNT 

• Structured Carbons4: Activated Carbon Aerogels, Activated CNT, Activated 

Nanoporous Carbon Beads, Monolithic Carbon, Microporous Activated Carbon Fibers 

 

Sulfur weight percent estimation was also done. The regression model is performed by 

analyzing 241 data points in which sulfur is melt diffused into conductive medium at a 

specific temperature and duration. Other encapsulation methods are not used in the analysis 

since they induce significantly different conditions. According to the analysis, the achieved 

S wt.%’s can be calculated with  

𝑆	𝑤𝑡.%	𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑

= 34.3202 − 0.1568	𝑥	𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 0.2211𝑥	𝑇𝑖𝑚𝑒

+ 0.856	𝑥	𝑆	𝑤𝑡.%	𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑, 

Equation (A.1). In this analysis 10 fold cross validation is performed. The data was randomly 

divided into 10 groups; nine groups were used for model building while the remaining group 

of data was used for testing the model. This procedure was repeated 10 times with different 

testing groups to make sure that the model is valid in entire data interval. The training and 

testing RMSE values were found to be 5.38 and 6.34 respectively; they are quite small 

(A.1) 
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considering that we categorized S wt.% within 25 % intervals. The training and testing plots 

for measured versus predicted S wt.% (achieved) are given in the Figure A.1. 

 

 
 

Figure A.1. The training (a) and the testing (b) plots of regression model for achieved S 

wt.% calculation. 
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APPENDIX B: SUPPORTING INFORMATION ON SECTION 4.1.2 
 

 

Here, the additional figures and tables are given in this section.  

 

 
 

Figure B.1.  The sensitivity analysis for the calculated energy density (Wh/L) determined 

at cathode discharge capacities of 600mAh/g S, 1000 mAh/g and 1400 mAh/g using the 

modified BatPac model. 
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Figure B.2. The sensitivity analysis for the calculated specific energy (Wh/kg) determined 

at cathode discharge capacities of 600mAh/g S, 1000 mAh/g and 1400 mAh/g using the 

modified BatPac model. 

 

 
 

Figure B.3. Lift vs. peak discharge capacity of electrolyte salt (a) and additive (b) of 

molecular solvent. 
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Figure B.4. Lift vs. peak discharge capacity of encapsulation material (a), conductive 

additive (b) and binder (c) in the sulfur cathode. 

 

 
 
Figure B.5. Lift vs. peak discharge capacity of encapsulation material wt.% (a), conductive 

additive wt.%(b) and sulfur wt.% (c) in the sulfur cathode. 
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Figure B.6. Lift vs. peak discharge capacity of anode material (a) and separator (b). 

 

Table B. 1. ARM results for energy densities ≥ 60 Wh/L. 
Factors Levels Support Confidence Lift Count 

Conductive_Material_Categorized Others4 0.010 0.050 5.10 1 

Binder_Categorized CMC 0.069 0.350 3.97 7 

E/S_Ratio_Categorized 0-15.0 0.186 0.950 3.59 19 

S_Loading_Cat >4.0 0.088 0.450 3.06 9 

Conductive_Material_Categorized None 0.069 0.350 2.98 7 

Encapsulation_wt%_Categorized 30-35 0.069 0.350 2.98 7 

Molecular_Solvent_Categorized TEGDME 0.049 0.250 2.83 5 

Encapsulation_Material_Categorized Carbon Nanotube 0.049 0.250 2.55 5 

IL_Abbreviation P1,2O1_TFSI 0.049 0.250 2.55 5 

S_wt%_Categorized 0-50 0.049 0.250 2.32 5 

Conductive_wt%_Categorized 0 0.069 0.350 2.10 7 

IL_Abbreviation Li(G4)_TFSI 0.069 0.350 1.88 7 

Conductive_wt%_Categorized 20 0.088 0.450 1.84 9 

S_wt%_Categorized >60 0.098 0.500 1.82 10 

Encapsulation_Material_Categorized Ketjen Black 0.069 0.350 1.70 7 

Encapsulation_Material_Categorized Graphene Oxide 0.049 0.250 1.59 5 

Encapsulation_wt%_Categorized >35 0.049 0.250 1.59 5 

Electrolyte_Salt_Categorized None 0.069 0.350 1.49 7 

IL/Solvent_vol.%_Categorized 100 0.069 0.350 1.49 7 

Molecular_Solvent_Categorized No 0.069 0.350 1.49 7 

Separator_Categorized Polymer 0.167 0.850 1.45 17 

Encapsulation_Material_Categorized Mesoporous carbon 0.029 0.150 1.28 3 

Conductive_Material_Categorized Acetylene black 0.049 0.250 1.21 5 

Molecular_Solvent_Categorized DOL:DME 0.078 0.400 1.20 8 
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APPENDIX C: SUPPORTING INFORMATION ON SECTION 4.1.3 
 

 

The additional information about the dataset  obtained from COSMO-RS calculations 

are given in this section. In addition, prediction results of IL properties are also presented. 

 

 
 

Figure C.1. The sigma (σ) profile and corresponding sigma surface of Li2S8 molecule 

obtained from TMOLEX. 

 

 
 

Figure C.2. The COSMO-RS solubility (mol/mol) of ILs (a) and its log transformation for 

the entire dataset (b). 

 

 
 

Figure C.3. The COSMO-RS calculated log(solubility (mol/mol)) (a), ln(viscosity (mPa.s)) 

(b), ln(conductivity (S/cm)) (c), melting point (°C) (d), of ILs based on cation group. 

(a) (b) 
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Table C.1. COSMO-RS and experimental solubilities of Li2S8. 

Abbreviation Cosmo-RS 
Li2S8(mol/mol) log(CosmoRS Li2S8) Park et al. log(Park et 

al. Li2S8) 
P13_TFSI 0.43 -0.36 10.68 1.03 

P13_BETA 0.11 -0.97 2.45 0.39 

P13_FSA 0.04 -1.44 1.58 0.20 

P14_TFSI 0.25 -0.60 8.86 0.95 

PP13_TFSI 0.34 -0.47 5.98 0.78 

C4DMIM_TFSI 0.36 -0.44 5.43 0.73 

DEME_TFSI 0.38 -0.42 7.69 0.89 

P2225_TFSI 0.09 -1.05 4.16 0.62 

P14_OTF 1357.63 3.13 957.50 2.98 
 

BETA: bis(pentafluoroethylsulfonyl)amide, C4dmim: 1-butyl-2,3-dimethyli-imidazolium, DEME:N,N-
diethyl-N-methyl-N-(2-methoxyethyl)-ammonium, FSI: bis(fluorosulfonyl)imide, OTF: trifluoromethane-
sulfonate, P13:1-methyl-1-propyl-pyrrolidinium, P14: 1-butyl-1-methyl-pyrrolidinium, P2225: triethyl-pentyl-
phosphonium, PP13:1-methyl-1-propyl-piperidinium, TFSI: bis(trifluoromethane)sulfonimide 
 
Table C.2. The cationic and the anionic properties of the selected ionic liquids used in Li-S 

cells. 

 Abb. 
Mol.
Wt 
(amu) 

E.HO
MO 
(eV) 

E.L
UM
O 
(eV
) 

Dipol
e 
(deby
e) 

CPK 
Area
(Å) 

CP
K 
Oval
ity 

Pola
riza
bilit
y 

HB
D 
Co
unt 

HB
A 
Co
unt 

ZPE 
(kJ.
mol) 

C
at

io
n 

PP14 156.3 -14.9 -4.2 3.8 219.3 1.3 55.2 0.0 1.0 799.2 

DEME 90.1 -10.6 2.5 0.0 136.3 1.3 47.0 0.0 2.0 359.7 

TBMA 200.4 -14.7 -4.2 2.4 295.4 1.5 60.6 0.0 1.0 1073.
6 

BMIM 125.2 -14.6 -5.0 7.9 202.8 1.4 53.2 0.0 2.0 572.3 

A
ni

on
 

TFSI 280.1 -7.2 2.1 0.0 208.4 1.5 52.2 0.0 7.0 132.5 

PF6 145.0 -9.1 5.4 0.0 100.4 1.2 43.9 0.0 0.0 37.2 
CF3SO
3 149.1 -6.4 4.8 2.4 117.9 1.2 45.8 0.0 4.0 64.6 

MeSO4 111.1 -6.1 6.3 7.7 109.8 1.2 45.0 0.0 5.0 131.4 
 

BMIM: 1-butyl-3-methyl-imidazolium, CF3SO3: trifluoromethane-sulfonate, DEME: N,N-diethyl-N-methyl-
N-(2-methoxyethyl)ammonium, MeSO4: methylsulfate, PF6: hexafluorophosphate, PP14: 1-butyl-1-
methylpiperidinium, TBMA: tributylmethylammonium, TFSI: bis(trifluoromethane)sulfonimide 
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Table C.3. The hyperparameters used in Xgboost analysis. 

Models Max_depth Nrounds Eta 

Solubility 3 225 0.1 

ln(viscosity) 4 150 0.1 

ln(conductivity) 3 250 0.1 

Melting point 4 300 0.1 
 

The other factors were ser as gamma=1, subsample = 1, min_child_weight = 1, colsample_bytree = 0.8 

 

 
 

Figure C.4. Prediction results of melting point for train (a), test (b) sets and model 

importance (c). 
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Figure C.5. Prediction results of ln(viscosity) for train (a), test(b) sets and model 

importance (c). 

 

 
 

Figure C.6. Prediction results of ln(conductivity) for train (a), test(b) sets and model 

importance (c). 
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Table C.4. ARM results for classification of Li2S8 solubility (top results for anionic and 

cationic descriptors)* 

RHS** Support Confidence Lift Count 
Anion_group=Bis_imide 0.005 0.298 7.31 194 
Anion_group=Borate 0.009 0.502 4.10 326 
Anion_group=Others 0.002 0.103 1.68 67 
Cation_group=Piperidinium 0.001 0.038 1.58 25 
Cation_group=Pyrrolidinium 0.001 0.080 1.56 52 
Cation_group=Morpholinium 0.001 0.034 1.39 22 
Anion_group=Halo_elemental_complexes 0.002 0.092 1.29 60 
Cation_group=Quinolinium 0.001 0.051 1.25 33 
Cation_group=Pyridinium 0.004 0.209 1.16 136 
Cation_group=Ammonium 0.003 0.140 1.06 91 
Cation_group=Imidazolium 0.006 0.358 0.99 233 
Cation_group=Guanidinium 0.001 0.032 0.60 21 
 

*The rules satisfying the ~3% confidence and ~0.1% support thresholds are shown. 
**RHS:Right hand side of the condition {Solubility=A, Viscosity=A, Melting point=A, Conductivity=A} 
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APPENDIX D: SUPPORTING INFORMATION ON SECTION 4.1.4 
 

 

The material characterization results for elemental analysis, TGA results, SEM 

images, XRD and FTIR patterns are given in Figure D.1-Figure D.2, respectively. 

  

Table D.1. Elemental analysis results. 

Sample %N %C %H %S 

UG-5 0.31 24.54 0.56 57.33 

UG-3 0.29 29.32 0.34 61.15 

UG-1 0.44 9.24 0.22 68.79 

 

 
 

Figure D.1. TGA analysis results for GNP (a) and UiO-66 (b). 

 

 
 

Figure D.2. SEM results for UiO-66 (a) and UG-1 composite (b). 
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Figure D.3. XRD Patterns of UiO-66, UG-1, UG-3, and UG-5 nanoparticles. 

 

 
 

Figure D.4. FTIR plots of UiO-66 and GNP/UiO-66 nanoparticles. UG-1 is chosen as the 

representative composite. 
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APPENDIX E: SUPPORTING INFORMATION ON SECTION 4.1.5 
 

 

The experimentally tested material contents and the cell design parameters are given 

in Table E.1. Afterwards, the system-level performances are given in Figure E.1, for the 

conditions listed in the table. The cycling performances and the details are given in Figure 

E.2 and Table E.2, respectively. 

 

Table E.1. The details of the materials investigated in the Section 4.1.5. 

Sample Details Co V S wt.% S Load E/S 

CKBS Co* Co:KB precursor ratio (1:1 
wt.%) + - 70 1.24 20 

CKBS Co** Co:KB precursor ratio (1:1.5 
wt.%) + - 70 1.24 20 

CKBS Co*** Co:KB precursor ratio (1:2 
wt.%) + - 70 1.24 20 

KBS (Group 1) - - - 70 1.24 20 

VCKBS (Group 1) Co:KB precursor ratio (1:1.5 
wt.%), 1.23x10-4 mol V + + 70 1.24 20 

VCKBS a Co:KB precursor ratio (1:1.5 
wt.%), 8.24x10-5 mol V + + 70 1.24 20 

VCKBS b Co:KB precursor ratio (1:1.5 
wt.%), 1.6x10-4 mol V + + 70 1.24 20 

VKBS Co:KB precursor ratio (1:1.5 
wt.%), 1.23x10-4 mol V - + 70 1.24 20 

VCKBS 50 Co:KB precursor ratio (1:1.5 
wt.%), 1.23x10-4 mol V + + 50 1.24 20 

VCKBS 60 Co:KB precursor ratio (1:1.5 
wt.%), 1.23x10-4 mol V + + 60 1.24 20 

VCKBS 80 Co:KB precursor ratio (1:1.5 
wt.%), 1.23x10-4 mol V + + 80 1.24 20 

VCKBS- Group 2 Co:KB precursor ratio (1:1.5 
wt.%), 1.23x10-4 mol V + + 70 2.4 2.4 

KBS-Group 2 - - - 70 2.4 2.4 
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Figure E.1. Discharge capacities, system-level specific energies, and energy densities of all 

the cathodes for the 1st discharge (a)-(b) and 100th discharge (c)-(d). 

 

 
 

Figure E.2. Cycling performances: KBS cathodes with S loadings of 0.8 mg/cm2 (a), 1.2 

mg/cm2 (b), and 3 mg/cm2 (c), and VCKBS cathodes with S loadings of 0.8 mg/cm2 (d), 

1.2 mg/cm2 (e), and 3 mg/cm2 (f) at 0.1 C.

(a) (b) (c) 

(d) (e) (f) 
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Table E.2. Li-S cell performance for KBS and VCKBS cathodes. 
 

 

 

 

E/S ratio 

[mL/g] 

S loading 

[mg/cm2] 

Initial discharge capacity 

KBS VCKBS 

20 0.8 1117 1123 

13 0.8 768 973 

6 0.8 241 811 

20 1.2 962 1285 

13 1.2 799 1106 

6 1.2 237 965  

20 3 279 1009 

13 3 219 804 

6 3 93 711 

Cathode contains 10 wt% PVDF binder and 45 wt% sulfur. 

Electrolyte is 1 M LiTFSI and 0.1 M LiNO3 in DOL: DME 

(1: 1 vol%). 
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APPENDIX F: SUPPORTING INFORMATION ON SECTION 4.2.1 
 

 

Contents of common labels used for rarely used materials are as follows: 

 

• Modified Li anode: LiFePO4 + PTFE +Super P, Li metal+polymer buffer layer, Li 

metal+LTAP layer, Li metal+(Al2O3+PVDF-HFP) layer, Li metal+(Li2CO3+Carbon) 

layer and pretreated Li metals with chemicals  

• Other carbons1: 3-D ordered mesoporous/macroporous carbon sphere arrays, Vapor 

grown carbon fiber, Carbon spheres, Ordered mesoporous carbon nanofiber arrays 

• Other carbons2: Hollow spherical carbon, Pd-modified hollow spherical carbon, 

Carbon cloth, Carbon nanocube, Graphitized carbon foam, High surface area carbon, 

Inverse opal carbon, 13C enriched amorphous carbon, Diamond like carbon (DLC), 

Carbon nanoballs, Glassy carbon, Graphitized carbon black 

• Others1: NiO, MoS2 Nanoflakes, Pt Nanoparticles, C3N4, S doped graphene 

nanosheets, B4C nanoparticles, Sb-Doped Tin Oxide, Sb-Doped Tin Oxide Supported 

Ru Nanoparticles, O and N doped Carbon NanoWeb, Mo2C, β Silicon carbide, 

GO+CNT 

• Others2:Polydopamine 

• Others3:PbRO, CuFe, C3N4, Core-shelled Fe/Fe3O4, Nanocrystalline Pyrochlore 

Catalyst, Mesoporous Lead Ruthenate, Mp pyrochlore, Polyimide, Fe-N-C Catalyst 

Nanoparticles, Pt3Co, PEDOT+PSS (poly(3,4-ethylenedioxythiophene) polystyrene 

sulfonate) 

• Others4: Ni, Teflon PTFE, Teflonized acetylene black, Teflon polytetrafluoroethylene 

30B fluoropolymer resin, Teflon, Dry teflon, PTFE coated teflonized acetylene black, 

An ionomer, LITHion binder, Lithiated carbon 

• Others5: 1,3-dioxolane, 2-methyltetrahydrofuran (2-Me-THF), Dimethylformamide, 

Diglyme 

• Monoglyme, Ethylene carbonate:Propylene carbonate:1,2-dimethoxyethane, Triethyl 

phosphate (TEPa), Di(ethyleneglycol) di-n-butyl ether (i.e. butyl diglyme, BDG), 

Ethylene carbonate: dimethyl carbonate:ethylmethyl carbonate (EC:DMC:EMC) , 
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Diethyl ether:Triglyme, Tetraethylene glycol dimethyl ether (TEGDME):Propylene 

carbonate (PC), 2,3-Dimethyl-2,3-dimethoxybutan 

• Others6: Tris(2,2,2-trifluoroethyl) phosphate (TFP), 1,2-dimethoxyethane(DM), 1,2-

dimethoxyethane (DME), Tris(2,2,2-trifluoroethyl) phosphite (TTFP), 2,2,2-

trifluoroethyl)phosphite(TTFP), DME:Ethyl nonafluoro butylether(MFE), 1,2-

dimethoxyethane (DME):TTFP, Diethyl carbonate (DEC), EC:DM, Tetrahydrofuran 

THF 

• Others7: LiClO4 (only in anode), Li[NTf2], LiNO3, LiBF4, Lithium 

trifluoromethanesulfonyl (LiTFS), Lithium bis(trifluoromethansulfonyl)amide 

(LiTFSA), Lithium trifluoromethanesulfonate (LiTf) 

 

The assumptions used in decision tree analysis are listed below: 

 

• The data containing solid electrolyte was not included to the analysis.  

• The bulk cathode materials of Ti composite, N-doped carbons and CNF were collected 

in one group as “Others” while “Carbon black+ CNT” and “Carbon black+ Graphene” 

labeled as “Carbon Black+Other Carbons”. Finally, “rGO” was included in 

“Graphene” group. The data containing gold was not included in the analysis.  

• The cathode ingredients Pt3Co, Ru and Co4N were included in “Pt”, “RuO2” and “Co 

oxide” classes, respectively. “CoMn oxide”, “Perovskite”, “NiCo2O4” and “LaFe 

oxide”  were included in “Others”. The data containing “Pt+Au”, “Au+Pd”, Au, Pd 

and PdO were not used. 

• EC:PC and “Ionic Liquids” were labeled as “Others” in electrolyte solvent variable. 

• PVDF-HFP and “Others” classes for the binder were not used in the analysis. 

 

Table F.1. Confusion Matrix of Decision Tree for Train Data. 
 A B C Recall 

A 64 14 8 0.74 
B 9 53 11 0.73 
C 0 7 58 0.89 

Precision 0.88 0.72 0.75  
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Table F.2. Confusion Matrix of Decision Tree for Test Data. 
 A B C Recall 

A 20 4 0 0.83 
B 6 17 3 0.65 
C 0 5 19 0.79 

Precision 0.77 0.65 0.86  
 

Table F.3. ARM results for capacity testing group for capacities higher than or equal to 
3000 mAh/g. 

Descriptors Support Confidence Lift Count 

{Bulk_Cathode_Categorized=N-doped carbons} 0.0078 0.0223 2.87 6 

{Ingredient_Categorized=Co4N} 0.0013 0.0037 2.87 1 

{Ingredient_Categorized=CoMn oxide} 0.0052 0.0149 2.87 4 

{Ingredient_Categorized=Mo compound} 0.0013 0.0037 2.87 1 

{Ingredient_Categorized=NiO+NiCo2O4 microspheres } 0.0091 0.0260 2.87 7* 

{Ingredient_Categorized=Other oxides} 0.0052 0.0149 2.87 4 

{Ingredient_Categorized=Pt3Co} 0.0013 0.0037 2.87 1 

{Bulk_Cathode_Categorized=Ionic liquid CNT} 0.0052 0.0149 2.30 4 

{Ingredient_Categorized=Co oxide+Others} 0.0052 0.0149 2.30 4 

{Ingredient_Categorized=LaFe oxide} 0.0103 0.0297 2.30 8* 

{Ingredient_Categorized=Ru} 0.0052 0.0149 2.30 4 

{Gas_Diffusion_Layer_Categorized=Others} 0.0039 0.0112 2.16 3 

{Salt_E_Categorized=Others} 0.0259 0.0743 1.98 20 

{Bulk_Cathode_Categorized=Graphene} 0.0556 0.1599 1.96 43 

{Ingredient_Categorized=Perovskite} 0.0246 0.0706 1.88 19 

{E_Solvent_Categorized=Triglyme} 0.0466 0.1338 1.88 36 

{Bulk_Cathode_Categorized=Graphene oxide} 0.0091 0.0260 1.83 7 

{Separator_Categorized=Solid Electrolyte} 0.0065 0.0186 1.80 5 

{E_Solvent_Categorized=DMSO} 0.0530 0.1524 1.79 41 

{Bulk_Cathode_Categorized=Porous carbon} 0.0233 0.0669 1.78 18 

{Reactant_Categorized=Others} 0.0103 0.0297 1.77 8 

{E_Solvent_Categorized=Solid Electrolyte} 0.0039 0.0112 1.72 3 

{Gas_Diffusion_Layer_Categorized=Carbon paper} 0.1164 0.3346 1.71 90 

{Bulk_Cathode_Categorized=Carbon black+other carbons} 0.0129 0.0372 1.69 10 

{Ingredient_Categorized=Others} 0.0103 0.0297 1.64 8 

{Salt_E_Categorized=NO} 0.0103 0.0297 1.53 8 

{Active_Material_Loading_Categorized=[0.8-1.2)} 0.0802 0.2305 1.50 62 

{Bulk_Cathode_Categorized=Carbon black+CNT} 0.0065 0.0186 1.44 5* 
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Table F.3. ARM results for capacity testing group for capacities higher than or equal to 

3000 mAh/g. (cont.) 

Descriptors Support Confidence Lift Count 

{Bulk_Cathode_Categorized=CNF} 0.0052 0.0149 1.44 4 

{Bulk_Cathode_Categorized=N-doped CNT} 0.0078 0.0223 1.44 6* 

{Gas_Diffusion_Layer_Categorized=Carbon cloth} 0.0039 0.0112 1.44 3 

{E_Solvent_Categorized=Tetraglyme} 0.1889 0.5428 1.41 146 

{Active_Material_Loading_Categorized=(0-0.8)} 0.1100 0.3160 1.30 85 

{Bulk_Cathode_Categorized=rGO} 0.0116 0.0335 1.29 9 

{Binder_Categorized=PVDF} 0.1617 0.4647 1.28 125 

  

Table F.4. ARM results for voltage testing group for capacities in between 750 mAh/g and 

1000 mAh/g. 

Descriptors Support Confidence Lift Count 

{Active_Material_Percentage_Categorized=20--60} 0.008 0.033 4.33 1 

{Bulk_Cathode_Categorized=Graphene oxide} 0.008 0.033 4.33 1 

{Bulk_Cathode_Categorized=Other carbons} 0.015 0.067 4.33 2* 

{Ingredient_Categorized=Mo compound} 0.023 0.100 4.33 3 

{Reactant_Categorized=Others} 0.008 0.033 4.33 1 

{Ingredient_Categorized=Ru oxide+Mn oxide} 0.054 0.233 3.37 7* 

{Bulk_Cathode_Categorized=N-doped carbons} 0.038 0.167 3.10 5 

{Ingredient_Categorized=Co4N} 0.015 0.067 2.89 2* 

{Bulk_Cathode_Categorized=CNF} 0.023 0.100 2.60 3* 

{Ingredient_Categorized=Ru} 0.023 0.100 2.60 3 

{E_Solvent_Categorized=Ionic Liquid} 0.038 0.167 2.17 5* 

{E_Solvent_Categorized=PC} 0.008 0.033 2.17 1 

{E_Solvent_Categorized=Solid E+Liquid E} 0.008 0.033 2.17 1 

{E_Solvent_Categorized=DMSO} 0.038 0.167 1.97 5 

{Binder_Categorized=PTFE} 0.085 0.367 1.83 11 

{E_Solvent_Categorized=DME} 0.015 0.067 1.44 2 

{Reactant_Categorized=Dry Air} 0.008 0.033 1.44 1 

{Active_Material_Percentage_Categorized=100} 0.100 0.433 1.41 13 

{Binder_Categorized=NO} 0.100 0.433 1.41 13 

{Anode_Categorized=Modified Li anode} 0.046 0.200 1.37 6 

{Separator_Categorized=Glass+polymeric} 0.023 0.100 1.30 3* 
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Table F.4. ARM results for voltage testing group for capacities in between 750 mAh/g and 

1000 mAh/g. (cont.) 

Descriptors Support Confidence Lift Count 

{Bulk_Cathode_Categorized=Graphene} 0.031 0.133 1.24 4 

{Active_Material_Loading_Categorized=(0-0.8)} 0.108 0.467 1.24 14 

 

Table F.5. ARM results for voltage testing group for capacities in between 500 mAh/g and 

750 mAh/g. 

Descriptors Support Confidence Lift Count 

{Binder_Categorized=Others} 0.018 0.091 5.09 2* 

{Bulk_Cathode_Categorized=N-doped carbons} 0.018 0.091 5.09 2 

{E_Solvent_Categorized=EC:DMC} 0.009 0.045 5.09 1 

{E_Solvent_Categorized=PC} 0.009 0.045 5.09 1 

{E_Solvent_Categorized=Solid E+Liquid E} 0.018 0.091 5.09 2* 

{Salt_E_Categorized=Others} 0.018 0.091 5.09 2* 

{Separator_Categorized=Solid E} 0.018 0.091 5.09 2* 

{Ingredient_Categorized=Mo compound} 0.027 0.136 3.82 3* 

{Reactant_Categorized=Air} 0.027 0.136 3.82 3 

{Bulk_Cathode_Categorized=Graphene} 0.054 0.273 3.05 6 

{Bulk_Cathode_Categorized=Others} 0.036 0.182 2.91 4 

{E_Solvent_Categorized=Ionic Liquid} 0.018 0.091 2.55 2 

{Ingredient_Categorized=Perovskite} 0.009 0.045 2.55 1 

{Ingredient_Categorized=Ru} 0.009 0.045 2.55 1 

{E_Solvent_Categorized=DMSO} 0.027 0.136 2.18 3* 

{Bulk_Cathode_Categorized=CNT} 0.045 0.227 1.96 5 

{Salt_E_Categorized=LiClO4} 0.036 0.182 1.85 4 

{Binder_Categorized=NO} 0.045 0.227 1.82 5 

{Active_Material_Percentage_Categorized=100} 0.045 0.227 1.70 5 

{Salt_E_Categorized=LiCF3SO3} 0.063 0.318 1.55 7 

{Ingredient_Categorized=Mn oxide} 0.036 0.182 1.36 4 

{Binder_Categorized=PTFE} 0.080 0.409 1.35 9 

{Active_Material_Percentage_Categorized=80--90} 0.107 0.545 1.27 12 

{Reactant_Categorized=Dry Air} 0.009 0.045 1.27 1 
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Table F.5. ARM results for voltage testing group for capacities in between 500 mAh/g and 

750 mAh/g. (cont.) 

Descriptors Support Confidence Lift Count 

{Salt_E_Categorized=LiPF6} 0.009 0.045 1.27 1 

{Separator_Categorized=Glass+polymeric} 0.009 0.045 1.27 1 

{Separator_Categorized=Polymeric} 0.018 0.091 1.27 2 

{Ingredient_Categorized=NO} 0.107 0.545 1.25 12 

{Active_Material_Loading_Categorized=(0-0.8)} 0.063 0.318 1.23 7 
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APPENDIX G: SUPPORTING INFORMATION ON SECTION 4.2.2 
 

 

The details for IL screening study of the Li-O2 batteries are given in this section. 

 

 
 

Figure G.1. The gas solubilities based on cation groups. 

 

 
 

Figure G.2. The average of the 5-fold cross-validation R2 value for the gas 

predictions for the whole dataset, shapes represent Ntree. 

  

 
 

Figure G.3. The average of the 5-fold cross-validation RMSE value for the gas predictions 

for the whole dataset, shapes represent Ntree. 
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Figure G.4. The average of the 5-fold cross-validation R2 and RMSE value for the ln(water 

solubility) predictions for the whole dataset. 

 

 
 

Figure G.5. The average of the 5-fold cross-validation R2 value for ln(viscosity) (a), 

melting point(b) and RMSE value for ln(viscosity) (c), melting point(d) for the whole 

dataset. 

 

 
 

Figure G.6. ML results on the carbon dioxide solubilities for the train (a), test (b) sets with 

importance (c) values, the performance metrics are provided at the bottom. 
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Figure G.7. ML results on the nitrogen solubilities for the train (a), test (b) sets with 

importance (c) values, the performance metrics are provided at the bottom. 

 

 
 

Figure G.8. ML results on the water solubilities in natural logarithm scale for train (a), test 

(b) sets with importance (c) values, the performance metrics are provided at the bottom. 
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Figure G.9. ML results on the viscosities at 298 K in mPa.s in natural logarithm scale for 

the train (a), test (b) sets with importance (c) values, the performance metrics are provided 

at the bottom. 

 

 
 

Figure G.10. ML results on the melting points in ºC in natural logarithm scale for the train 

(a), test (b) sets with importance (c) values, the performance metrics are provided at the 

bottom. 
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Table G.1. The original 208 descriptors calculated from RDKit library [215]. 

Feature Names Feature Descriptions No Ref. 

MolWt MolWt (average molecular weights), HeavyAtomMolWt (excluding 
Hydrogens), ExactMolWt (exact molecular weights) 3 - 

Compositional 

FractionCSP3(fraction of C atoms that are SP3 hybridized), 
NHOHCount (# of NHs and OHs), HeavyAtomCount, NOCount, 
NumAliphaticCarbocycles, NumAliphaticHeterocycles, 
NumAliphaticRings, NumAromaticCarbocycles, 
NumAromaticHeterocycles, NumAromaticRings, NumHAcceptors, 
NumHDonors, NumHeteroatoms, NumRotatableBonds, 
NumSaturatedCarbocycles, NumSaturatedHeterocycles, 
NumSaturatedRings, RingCount, NumValenceElectrons, 
NumRadicalElectrons 

20 - 

fr_fagments the number of specific fractions, for example: phenol group 85 - 

HallKierAlpha Hall&Kier alpha value, the atom identification in the molecular shape: 
the sum of relative atomic radii of atoms concerning C(sp3) atoms 1 [381] 

Kappa1 - Kappa3 
First, Second and Third order shape attributes for one, two and three 
bond fragments where 1=cyclicity, 2=starcity-linearity likeliness, 
3=centrality of branching 

3  

Chi0-Chi1, The sum of connectivity terms calculated by the number of skeletal 
neighbors; 0 for vertex, 1 for edges, >2 for larger subgraphs 2  

Chi0n - Chi4n 
The sum of connectivity terms calculated by the number of valence and 
core electrons; 0 for vertex(atoms), 1 for edges(bonds), >2 for larger 
subgraphs 

5  

Chi0v - Chi4v 
The sum of connectivity terms calculated by the number of valence 
electrons excluding the number of hydrogens; 0 for vertex(atoms), 1 for 
edges(bonds), >2 for larger subgraphs 

5  

LabuteASA Labute's Approximate Surface Area 1 [382] 

PEOE_VSA1 - 
PEOE_VSA14 

Gasteiger 22 (PEOE) method of 
 calculating partial charges, which is based on the iterative 
 equalization of atomic orbital electronegativities and surface area 
contributions 

14  

SMR_VSA1 - 
SMR_VSA10 Molar refractivitycontributions and surface area contributions 10  

SlogP_VSA1 - 
SlogP_VSA12 LogP(octanol/water; lipophilicity index) contributions and surface area 12  

EState_VSA1 - 
EState_VSA11 

Electronic state contributions and surface area contributions, with 
specified intervals 11  

VSA_EState1 - 
VSA_EState10 

Electronic state contributions and surface area contributions, with 
different specified intervals 10  

BCUT2D_PHI-
BCUT2D_PLOW 

P is the parameters specifically Molecular weight (MW), Gasteiger 
charge (CHG), Crippen logP and molar refractivity (MR) 8 [394] 

TPSA Topological polar surface area, difference between the reference is only 
N and O atom contributions are included 1 [395] 

BalabanJ Topological index showing the complexity 1 [384] 

BertzCT Topological index meant to quantify "complexity" of molecules 1 [385] 

Ipc Topological index effective in branching 1 [386] 

FpDensityMorgan- 
FpDensityMorgan3 Topological index about the structure-radius 1,2 and 3 3 [383] 
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Table G.1. The original 208 descriptors calculated from RDKit library [215]. (cont.) 

MolLogP, 
MolMR 

LogP(octanol/water; lipophilicity index), MolMR:molecular 
refractivity, molecular sum of each atom taking atomic type 
into account 

2 [396] 

qed Drug-likeliness by taking molecular weight, logP, 
topological polar surface area and some others into account 1 [397] 

EstateIndex & 
Partial_charge 

Max, Min, MaxAbs, MinAbs versions, 
Estate:Electrotopological State: Include both topological 
and electronic factors such as polarity and charge 

8 [381] 

 

Table G.2. The hyperparameters tuned for each gas by 5-fold cross-validation of RF 
modeling. 

Gas Maximum Depth Ntree 

Carbon Dioxide 3 30 

Nitrogen 3 20 

Oxygen 3 10 

Water 3 20 

ln(viscosity) 3 10 

Melting Point 3 10 

 


