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ABSTRACT

MATERIAL-TO-SYSTEM ANALYSIS OF LITHIUM - SULFUR AND
LITHIUM - OXYGEN BATTERIES

Developing beyond lithium-ion batteries (LIBs) is critical for fulfilling the high energy
demand of future vehicles. In this respect, lithium-sulfur (Li-S) and lithium-oxygen (Li-O2)
batteries were studied here to understand the effect of cell design and materials on the battery
performance. The studies of Li-S batteries involve three main methods: experimental
characterization, system-level performance modeling, and machine learning (ML). Instead,
only ML models were developed for Li-O; batteries. First, association rule mining (ARM)
was utilized to understand the cell and materials design effects on Li-S battery performance
using the data collected from the literature. For Li-S batteries, the encapsulation material
type was the most important feature, and system-level performances were highly improved
with ionic liquid (IL) electrolytes. Next, polysulfide (PS) solubility in ILs and IL properties
were determined for 36260 ILs using the COnductor-like Screening Model for Realistic
Solvents (COSMO-RS) calculations. 6 ILs were experimentally tested to determine the
solubility ranges of ILs for high-performance Li-S cells. Afterward, extreme gradient
boosting (XGBoost) and ARM were utilized to predict and identify promising ILs and their
features. Imidazolium cations with either borates or bis_imide anion group were the most
promising IL pairs. Encapsulation cathodes were also studied. UiO66/Graphene nanoplatelet
(GNP) composites increased the rate performances of Li-S cells where 50 wt.% UiO66
loading was the optimum for balancing electron transfer and PS chemisorption. Vanadium
and Cobalt-doped ketjen black cathodes increased the system-level performances of Li-S
batteries. ARM was also used for Li-O; battery literature data; metallic cathode ingredients
LaFe oxides, Ni oxides, and electrolyte solvents significantly impact battery performance.
Last, gas solubilities of nearly 30,000 ILs were calculated using COSMO-RS, and random
forest (RF) was used to build predictive models. Anion descriptors were more determinative

of the gas solubilities.
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OZET

LITYUM-SULFUR VE LITYUM-OKSIJEN BATARYALARININ
MALZEMEDEN SISTEME ANALIZI

Lityum-iyon bataryalarindan (LIB) daha iyi kapasite gosterecek batarya gelisimi,
yiiksek enerji talep eden gelecekteki araglar i¢in olduk¢a onemlidir. Bu baglamda, bu
caligmada tasarim parametreleri ve malzeme etkisinin lityum-siilfiir (Li-S) ve lityum-oksijen
(Li-O7) batarya performansi iizerine etkileri incelenmistir. Li-S bataryalar1 li¢ metotla
incelenmistir: elektrokimyasal karakterizasyon, sistem-diizeyi performans modellemesi ve
son olarak makine dgrenmesi. Li-O; bataryalari i¢cinse sadece makine 6grenmesi metotlari
kullanilmustir. Ik olarak, hiicre ve materyal tasarimlarmin Li-S batarya performansimin
iizerine etkileri literatiir verileri ile, birliktelik kurallar1 analizi (ARM) kullanilarak
aciklanmistir. Li-S bataryalar1 i¢in emprenye malzeme tipi en 6nemli faktordiir ve sistem-
diizeyi performans, iyonik siv1 (IL) elektrolitler ile birlikte 6nemli derecede arttirilmisitr. Bir
sonraki kisimda, Li-S bataryalar: icin elektrolit gelistirme amaciyla 36260 IL igin IL’lerin
polisiilfit (PS) ¢oziiniirliikleri COSMO-RS hesaplamalariyla belirlenmistir. 6 iyonik sivi1 i¢in
elektrokimyasal testler yapilmis olup yiiksek performansli Li-S bataryalari i¢in gereken
vizkosite ve ¢dziiniirliik limitleri belirlenmistir. Imidazol katyonlari ile borat veya bis_imid
gruplart en ¢ok umud vaad eden IL c¢iftidir. Emprenye katot malzemeler de calisilmistir.
Elektron iletkenligi ve kimyasal adsorpsiyonu dengelenmis, yari yariya kiitlece oran
gosteren UiO66/Grafen nanoplatelet (GNP) kompozit Li-S hiicrelerinin hiz performansini
arttirmigtir. Vanadyum ve kobalt katkili ketjen siyahi katotlar, diisiik elektrolit-siilfiir (E/S)
orani ve yliksek siilfiir yogunlugunda sistem-diizeyi performansi arttirmistir. ARM, Li-O»
batarya literatiiriinde de kullanilmis ve LaFe ve Ni oksitlerler birlikte, elektrolit ¢dziiciisiiniin
performanst ciddi bir sekilde etkiledigi goriilmiistiir. Son olarak, 30,000 IL i¢in gaz
coziiniirliikleri COSMO-RS kullanilarak hesaplanmis ve rassal orman (RF) ile ongoriicii
modelleler kurulmustur. Anyon tanimlayicilarin gaz ¢oziintirliikleri iistiinde daha etkili

oldugu goriilmiistiir.
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1. INTRODUCTION

Fossil fuels are the most widely used energy sources in today’s activities. The use of
fossil fuels has led to environmental problems and global warming [1,2]. In addition to the
environmental concerns, the limiting reserves of fossil fuels will not meet the growing world
energy demand. Hence, many researchers are working to develop high-efficiency renewable
energy systems that contain energy harvesting and storing units. Wind and solar energy are
commonly used renewable systems that convert natural energy to electricity. Since these
energy sources are intermittent and the energy demand is dependent on the consumer’s

needs, energy should be stored to be released when the production does not meet the demand.

Accounting for 28 % of the world’s total energy consumption, transportation is one of
the major sectors in which the utilization of renewable energy is critical to abandoning fossil
fuels. In this respect, many automobile producers have started to launch the production of
hybrid and electric vehicles to reach the countries’ efforts to diminish carbon dioxide (CO»)
emissions. Currently, LIBs are widely used as energy storage systems in electric vehicles.
However, these batteries are expensive. In addition, with energy densities of 150-300 Wh/kg,
these batteries have limiting capacities to increase the ranges of the vehicles [3]. In this
respect, beyond lithium-ion batteries have drawn attention due to their high theoretical
capacities. Among them, Li-S batteries have gained significant importance in recent years
due to their high theoretical capacity [4]. Li-S batteries are highly promising since they have
the potential to attain much higher gravimetric and volumetric energy densities than LIBs in
the future [5,6]. In addition to Li-S, Li-O2 batteries also gained significant attention as they

offer the highest theoretical specific capacity [7,8].

Although Li-S batteries are very promising to replace the LIBs, there are several
problems that should be solved to enable commercialization. This requires the optimization
of the critical parameters both at the materials and system levels using experimental and
modeling methods as complementary techniques to design high-performing Li-S battery
systems. In this respect, in this thesis, system-level modeling and experimental

characterization, in addition to ML techniques, were used together to conduct a material-to-



system analysis of the Li-S batteries for determining the effect of critical design parameters

and material properties on the cell- and system-level performances of the Li-S batteries.

On the other hand, the high theoretical capacities of Li-O> batteries have not been
achieved yet, mainly due to issues related to the oxygen cathode. The open-to-gas
environment, sluggish reaction kinetics, side reactions, and instability of the electrolytes are
the main problems of Li-O batteries, resulting in poor battery performances [9]. These
problems are even more severe than the issues of Li-S cells, as the experimental studies on
the Li-O> cells are more limited. To overcome these problems, several materials and cell

design parameters were studied in this thesis using ML analysis.

1.1. Li-S Batteries

The basic scheme of a Li-S cell can be seen in Figure 1.1. As seen in the figure, a Li-
S battery contains an anode, a separator, a cathode, and a liquid electrolyte like conventional
batteries. In Li-S batteries, metallic Li anode is used as the anode, whereas the cathode
consists of a conductive matrix, binder, and sulfur as the active material. Most high-capacity
battery systems have Li metal as the anode due to its very high theoretical specific capacity
of 3860 mAh/g Li and low molecular weight of 6.94 g/mol. In addition, it has the highest
standard oxidation potential of 3.04 V, which leads to a high battery power [10]. Moreover,
sulfur is one of the most abundant, non-toxic, and inexpensive elements in nature, and it has
a specific capacity of 1675 mAh/g [6], [11,12]. Hence, it is proposed to be a good cathode
candidate for inexpensive, high-capacity batteries [6], [12].

3860 mAh/g and 1675 mAh/g are the specific capacities of Li and S, respectively. In
addition, the theoretical gravimetric energy density of a Li-S battery is 2600 Wh/kg, which
is almost 6 times higher than LIBs [13]. During discharge, lithium metal is oxidized, and
sulfur is reduced simultaneously in the anode and the cathode, respectively. Oxidized Li ions
transport through the electrolyte from the anode to the cathode to react with the reduced
sulfur. The overall reaction of Li-S batteries producing 2.2 V (vs. Li/ Li*) is given as

16Li* + 8S + 16e~— 8Li,S. (1.1)



Figure 1.1. The basic schematic diagram of a Li-S cell.

A typical discharge profile of a Li-S cell is shown in Figure 1.2, where there are two
plateaus, around 2.4 V and 2.1 V, named the high and low voltage discharge plateaus [14].
Multi-step reactions are taking place in the cathode during discharge. Although the exact
reactions are not identified yet, several attempts have been made to define the highly
complex multi-step reactions taking place during discharge [15—-18]. One of the proposed

reaction scheme depending on the discharge regions are shown in Figure 1.2, and it is defined

as
Li— Lit+e™, (1.2)
1/2 Sg+e - 1/2 S&7, (1.3)
2Lit + S27—> Li,Sg, (1.4)
Li,Sg + 2Li— Li,Sg_,, + Li,S,, (1.5)
2Li,S, + (2n — 4)Li— nLi,S,, (1.6)
Li,S, + (2n — 2)Li— nLi,S, (1.7)
Li,S, + 2Li— Li,S. (1.8)

The equations corresponding the regions are as follows: Equation (1.2) to Equation (1.4) for
Region 1, Equation (1.5) for Region 2, Equation (1.6) to Equation (1.7) for Region 3 and
Equation (1.8) for Region 4 [19]. In general, high-chain PS are formed in the high discharge
plateau, and they are further reduced to short-chain PSs later in the low discharge plateau
with the final discharge product Li>S. A sudden voltage drop is obtained due to the insulating

nature of this discharge product, which results in very slow reaction kinetics [19].
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Figure 1.2. Cell voltage versus capacity graph of a typical Li-S cell.

Although the theoretical capacity of Li-S batteries is high, there are several problems
that limit the usable capacity and cycle life. The complex working mechanisms of sulfur
cathodes are the main reasons for these problems [20]. These challenges can be listed as

follows:

e The insulating nature of both sulfur and LixS results in low sulfur utilization and
requirements of having conductive materials in the cathode. This increases the dead
mass of the cells, which does not contribute to the cell performance. Hence, specially
designed conductive materials with high surface areas and porosities should be utilized
in the sulfur cathodes. There are lots of studies in the literature trying to find the best
structures to load more active material into lower amounts of conductive networks to
increase the energy density of both cells and battery systems [21]. The type and
properties of the conductive material used in these encapsulated sulfur cathodes play
a critical role in battery performance.

e As aforementioned, there are various PSs (Li2Sx, 2<x<8) formed as intermediate
products during discharge. The high-order PSs should be converted to the low-order
PSs and eventually to solid Li2S during discharge. Solid Li.S should be oxidized back
to solid sulfur during charge to have reversible usable capacity. However, PSs are
highly soluble in conventional electrolytes and can shuttle between the cathode and

the anode during cycling. This PS shuttle mechanism leads to anode deterioration,



active material loss, and low Coulombic efficiency [22,23]. There are various
strategies to prevent the shuttle mechanism, such as designing coated separators, three-
dimensional (3-D) conductive networks, and new electrolyte solvents [24].

e There are various products present in the complete discharge and charge states of a Li-
S cell. During discharge, solid elemental sulfur with 2.07 g/cm? density is converted
to Li>S with 1.66 g/cm? density. Due to the density difference, a volume change of up
to 76 % can be observed. This may lead to unstable cathode structures and early
cathode decomposition [25]. In this respect, the type and structure of the conductive
materials are also very important to have stable cathodes [26,27].

e Although Limetal is a desired anode material due to its low standard potential, its high
reactivity causes early cell failure and safety problems. Li metal can react with the
electrolyte, separator, and other cell components. That high reactivity may result in
both Li metal and electrolyte depletion in the cells. To build safer batteries that offer
long-term stability, the design of new electrolyte materials, additives, or protective

layers has been investigated in the literature [28,29].

Although Li-S batteries are very promising in terms of their high theoretical specific
capacity, due to the aforementioned problems, practical system- and cell-level energy
densities are not comparable with the LIBs yet. To enable the commercialization of Li-S
batteries, research should be focused on material research, electrode architecture, and cell
engineering. Hence, materials and cell design parameters such as sulfur content, sulfur
loading, electrode thickness, electrolyte type, electrolyte-to-sulfur ratio, encapsulation

conductive material type, and battery system design should all be considered together [30].

The electrolyte is one of the important components of batteries, where ion transfer
between the anode and the cathode takes place in all electrochemical systems. The
electrolyte should be inert to the other cell components. It should also be stable over the
working voltage window. Due to the complex electrochemical reactions taking place in Li-
S cells, electrolytes of Li-S cells should have additional properties. One of the most
important characteristics is the solubility of the PSs in these electrolytes, as very high
solubilities lead to an increase in the PSM and result in low cell efficiencies [31]. The most

common electrolyte used in Li-S cells is 1,3-dioxalane (DOL):1,2-dimethoxyethane (DME)



(1:1 vol.%) solvents containing lithium bis(trifluoromethane)sulfonimide (LiTFSI) and
lithium nitrate (LiNO3) salts [24]. Tonic liquids have been shown to be promising electrolytes

by preventing the PS shuttle mechanism and increasing working voltage window.

The system- and cell-level performance of Li-S batteries are heavily dependent on the
cathode. One of the main hurdles of the sulfur cathode is the insulating nature of sulfur and
the discharge product Li>S [32]. That leads to a requirement for conductive materials in
addition to sulfur, which results in an increase in the dead weight of the cells. In order to
minimize the dead weight, great research effort has been made to obtain materials with a
large specific surface area. In addition, depending on the conductive materials type, a binder
may also be required in the cathode to increase structural stability [33]. Hence, an efficient

cathode design is crucial for Li-S batteries.

The parameters that will be investigated in this thesis are related to the positive
electrodes and electrolytes of Li-S batteries. Encapsulation material type and sulfur loading,
which are determined to be critical cathode parameters, will be investigated to develop
cathodes that have high sulfur loadings together with high sulfur utilization, which are
crucial to attain high cell- and system-level specific energies. This is only possible if sulfur
is contained in a highly porous and interconnected encapsulation network that allows high
electronic conductivity. Electrolyte-to-sulfur (E/S) ratio and IL type will also be investigated

as the electrolyte parameters to improve both the capacities and efficiencies of Li-S cells.

1.2. Lithium-Oxygen Batteries

Li-air batteries may have the potential to surpass LIBs as they have the highest
theoretical specific capacity among the beyond LIBs. Based on the discharge product Li20»,
the specific energy is around 3500 Wh/kg, offering the highest energy among the metal-air
batteries. Similar to Li-S cells, Li-O> batteries have a pure metallic lithium anode, a porous
separator, an electrolyte, and a porous cathode. One difference is that the cathode active
material is gaseous, as seen in Figure 1.3. Pure lithium metal is typically used as the anode
of lithium-air batteries because it is the lightest metal but yet has the highest oxidation

potential of 3.040 V, providing 3860 mAh/g specific capacity [10]. The high reactivity of



the lithium metal is always a problem in lithium-based batteries. However, lithium metal
becomes more problematic in these batteries due to the gaseous reactants, which may further
deteriorate lithium metal. To protect the anode, the separator should be selected carefully,
blocking the transfer of gases. Currently, due to their low costs and high durability,

polyolefins are used widely as separators in lithium-air cells [34].

f

2

(T

I

I
[

CO;

Figure 1.3. The basic schematic diagram of a Li-air cell.

Generally, liquid electrolytes are used in batteries; solid electrolytes are less common
in the literature. In addition to the standard liquid electrolyte properties, such as chemical
and mechanical durability with low vapor pressure, gas solubilities are also major concerns.
Only dissolved gases can participate in the electrochemical reactions. Hence, it is very
critical to favor high oxygen solubilities with a restriction on the solubilities of the other
gases. According to the literature, non-aqueous electrolytes containing lithium salts are the

typical electrolyte systems of Li-O> batteries [35-37].

Oxygen reduction reactions (ORRs) take place in the cathodes of Li-O2 batteries,
where Li" ions coming from the anode side, electrons supplied through the outer circuit and
dissolved oxygen meet on the surface of a solid network. To enhance the reaction kinetics,
fast electron transfer is very critical. Thus, the cathode network should have high porosity

with high electronic conductivity. Additional catalyst materials like metals are commonly



preferred to further increase the kinetics [38]. Typically, a binder is also added to increase
the structural integrity of the cathodes. Carbon paper may also be utilized as an additional
gas diffusion layer for the homogeneous distribution of oxygen to improve cell performance

[39,40]. ORRs are

0, + Lit + e~— LiO,, (1.9)
2Li0,— Li,0, + 0,, (1.10)
and/or
LiO, + Li* + e~— Li,0,, (1.11)
oxygen evolution reaction (OER) is
Li,0,— 0, + 2Li* + 2e™, (1.12)
where the overall reaction is
2Li + 0,5 Li,0,, (1.13)

with U? is 2.96 V vs. Li/Li*. The reactions of the lithium-oxygen batteries are shown in
Equation (1.9) to Equation (1.13) [41]. As seen from the equations, Li>O; is the end
discharge product of Li-O; batteries.

For a smooth operation of Li-O: batteries the reactions presented in Equation 1.13
should be reversible. In other words, once the Li,O» is deposited on the cathode matrix, it
shoud be easily turned to oxygen and also lithium should be protected. However, this is
generally prevented by several side reactions taking place inside a Li-O2 cells. One of the
main reasons of the side reactions is the impurities like atmospheric gases including nitrogen
(N2), carbon dioxide (CO.) and water (H20). Both N> and H>O gases can react with lithium
anode, leading to loss of lithium material. Meanwhile, CO> tends to react with Li>O, to form
Li,COs, which is more stable and prevent the reversible conversion of Li>O; to oxygen gas

[42]. The possible side reactions are

ALi + 0, + 2C0,~ 2Li,CO5, (1.14)
Li,0 + CO,— Li,COs, (1.15)
2Li,0, + 2C0,~ 2Li,CO5 + 0,, (1.16)
2LiOH + CO0,- Li,CO5 + H,0, (1.17)
2Li + 2H,0- 2LiOH + H,, (1.18)
LiOH + H,0- LiOH. H,0, (1.19)

Li,0, + H,0~ LiOH + H,0,, (1.20)



ALi + 0, + 2H,0- 4LiOH, (1.21)
2Li,0, + 2H,0- 4LiOH + 0,, (1.22)
Li,0, + H,0- LiOOH + LiOH, (1.23)
LiOH + H,0,~ LiOOH + H,0, (1.24)
6Li + Ny~ 2LisN, (1.25)

LisN + 3H,0- 3LiOH + NH,. (1.26)

1.3. Scope of the Current Work

The aim of this thesis is to increase the performance of beyond LIBs, specifically, Li-
S and Li-O; batteries, by conducting a detailed material-to-system analysis. At first, studies
on Li-S batteries were performed. The effect of important design parameters, which are
sulfur loading, electrolyte-to-sulfur (E/S) ratio, and electrolyte and encapsulation material
types, on the cell- and system-level performances of Li-S batteries were investigated. In
order to achieve this goal, experimental (electrochemical characterization) and theoretical
(ML and system-level performance modeling) methods were used as complementary
techniques to connect the material properties to the cell- and system-level performances of
the Li-S batteries. In this respect, the findings of this thesis contribute highly to both the Li-
S battery literature and the industry.

There are many works reported in the literature focusing on reaching the theoretical
capacities (1675 mAh/g) and increasing the cycle lives of Li-S batteries. Although these
performance metrics are very important, the final performance indicators are the system-
level energy density and specific energy of the Li-S battery. However, there are very limited
studies investigating the system-level performance. Hence, by using encapsulated cathodes
and promising electrolyte materials and taking cell design parameters into account, the main
aim of this research is to design a Li-S cell with high specific capacity and cycle life together
with high specific energy and energy density. While doing this, ML techniques were also
used to identify the promising materials and hidden correlations in the literature, where more
than 8000 articles have already been published. From this perspective, this is a highly novel
investigation of the effect of encapsulated cathode properties, electrolyte types, and cell

design parameters on Li-S battery performance using three different techniques.
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The second main topic of this thesis is Li-O» batteries, as they possess much higher
theoretical capacities. However, their development is much more problematic as they
contain an active material in the gas phase, where gas is distributed over an electronically
conductive matrix. The design of the positive electrode is important for smooth oxygen
redox reactions, in other words, to diminish the mass and kinetic resistances. Meanwhile,
the electrolyte must be suitable for oxygen dissolution, it should be stable, and it should have
low vapor pressure. Unfortunately, the experimentation of these batteries is much harder. In
this respect, all the information on the experimental works that have been done already
should be utilized. In addition, computational methods should be used for fast screening of
various materials that are suitable for Li-O; batteries. Hence, ML methods were used for
analyzing the important materials and cell design factors for the development of high-
performance Li-O» batteries in this thesis. Moreover, high-throughput screening of ionic

liquids as the electrolytes of Li-O; batteries was presented.

This thesis consists of chapters listed as Introduction, Literature Survey, Results and
Discussion, and Conclusions and Recommendations. Chapter 2 presents detailed summaries
of the literature for both Li-S and Li-O> batteries and ML studies in battery science, modified
from our review paper published recently in the Journal of Energy Storage [9]. In Chapter
3, the methods and materials utilized in the thesis were explained in detail. In the scope of
this thesis, the Results and Discussion part was divided into two; studies on Li-S and Li-O2
batteries were given in Part 1 and Part 2 of Chapter 4, respectively. Part 1 of Chapter 4
contains 5 sub-sections. In the first sub-section, the effect of materials and design parameters
on Li-S battery performance was analyzed by means of ML by using the literature data, and
it was published in the Chemical Engineering Journal in 2020 [43]. Section 2 contains a
similar ML analysis, but this time, the dataset contains experimental data on Li-S cells
containing IL electrolytes only; this study was published in the International Journal of
Energy Research in 2022 [44]. Section 3 reports the screening of IL electrolytes based on
the viscosities and PS solubilities for Li-S batteries. In addition, ML models were developed
to enable the prediction of these properties for any IL and to find potential ILs for Li-S
batteries. The manuscript detailing these results is in preparation. In Section 4 and Section

5, the effect of different encapsulation materials on the Li-S battery performance was
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investigated. In Section 4, the impact of composite cathodes made of MOF/Graphene
nanoplatelets on Li-S cell performance was experimentally tested. The manuscript
presenting the results in this section is published in Energy Technology journal [45]. Finally,
the effect of vanadium and cobalt-doped ketjen black cathodes and the design parameters on
the Li-S cell- and system-level performances were presented in Section 4.1.5. Part of this
chapter has already been published in the ACS Applied Energy Materials in 2023 [46], and
the second part is published in ChemElectroChem [47]. In Part 2 (section 4.2), ML studies
on the Li-O; batteries were done. In Section 4.2.1, the literature data were collected to
analyze the common trends and to reveal hidden correlations to find favorable materials and
cell design for high capacities; this study was published in the Journal of The
Electrochemical Society in 2021 [48]. Finally, the gas solubilities of the ILs were screened,
and ML models were proposed for identifying promising IL electrolytes for Li-O; batteries.

A manuscript on these results is currently in preparation.
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2. LITERATURE SURVEY

2.1. Li-S Batteries

2.1.1. Effect of Sulfur Loading

Schneider et al. have developed binder-free and free-standing N-doped cathodes with
thicknesses lower than 200 pum. To prepare high sulfur loaded cathodes, a facile hard-
templating method was used in this study. The 3-D structure of carbon developed in this
study has 1.78 ¢cm?/g total pore volume and 80 m?/g surface area. The porous structure
enabled efficient contact between sulfur and the conductive network, even with small
amounts. The cathodes having sulfur loadings in the ranges of 2.5 and 8.5 mg/cm? at 10
pnL/mg E/S ratio and C/20 current rate (C-rate) were investigated. The cycling results showed
that the sulfur utilization decreases linearly with sulfur loading. According to the specific
capacity results, sulfur utilization was 70 % and 20 % for sulfur loadings of 2.5 and 8.5
mg/cm?, respectively. On the other hand, similar areal capacities were obtained for all of the

sulfur loadings [49].

Doan et al. investigated the sulfur loading effect using sulfur-pyrolyzed
polyacrylonitrile composite cathodes doped with Mgo.sNio.4O nanoparticles. Sulfur loadings
were investigated from 0.55 mg/cm? to 5.9 mg/cm?. Cycling results at 0.2 C showed that
good capacity retention is obtained in 70 cycles with sulfur loadings lower than 3.1 mg/cm?.
However, rapid capacity decrease was observed after 50 cycles for higher loadings (>3.1
mg/cm?). This was attributed to the removal of thick cathodes from Al foil current collectors
and more PS formation at high sulfur loadings. Higher PS formation in the same electrolyte
volume triggers the PS shuttle mechanism that leads to low Coulombic efficiency and

capacity fading [50].

Sulfur loading was defined as the areal capacity in the work reported by Sun et al.
Galvanostatic cycling tests were performed using loadings between 0.5 to 7.5 mAh/cm?.
Low sulfur utilization was observed with sulfur loadings higher than 3.0 mAh/cm?2. It was

observed that the conversion of soluble Li>S4 to insoluble discharge product Li2S/Li>S> was
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not efficiently taking place at the low voltage plateau around 2.1 V. This conversion was
recovered after several activation cycles for up to 4.5 mAh/cm? loading, whereas no recovery

is observed with 7 mAh/cm? even after 100 cycles [51].

The problems and the solution strategies regarding the use of high sulfur loadings in
the Li-S battery were reviewed in a recent work by Hu et al.. To sum up, it was emphasized
that high sulfur loading is needed to scale up lab-scale research and enable industrialization.
To have high sulfur loadings, thicker cathodes should be prepared, which results in new
problems in the cathode, electrolyte, and anode. Structural deformations and reduced
diffusion distance are the main problems of having thick cathodes. On the other hand, the
PS shuttle mechanism is triggered with high sulfur loadings, and more Li dendrites are
formed on the anode side. The most efficient method to solve these problems proposed by
the authors is utilizing highly porous encapsulation cathodes and optimizing the amount of
electrolytes compatible with the lithium anodes [52]. This paper also shows the importance
of the three other parameters: effect of encapsulation, E/S ratio, and types and amount of
ionic liquids as electrolytes, and emphasizes the need for a mechanistic study, which should

take all the parameters into account.

2.1.2. Effect of Encapsulation Material

In a review done by Zhang et al., it is stated that the development of encapsulation
materials is very important to develop cathode hosts to mitigate the problems of Li-S
batteries. The cathode hosts, encapsulation materials, in other words, should be
electronically conductive, have a high surface area, high structural stability, and finally, have
PS chemisorption on the surface. So far, various hosts, more specifically carbon-based
materials like graphene and its derivatives, carbon nanotubes (CNT), and metal compounds,
have been developed. Metal-organic frameworks (MOFs) have already been utilized in
energy research due to their high porosities (>0.5 cm®/g) and surface areas (>3000 m?/g).
Although there is some research in the literature, the utilization of MOF materials as sulfur
hosts is limited due to low electrical conductivity. Hence, the MOF composites and MOF-
derived materials are more common in the sulfur cathodes to increase sulfur utilization [53].
Liu et al. used the composite of UiO-66 and carbon nanotubes in the sulfur cathodes to

increase the cycling ability of Li-S batteries. UiO-66/CNT composite with covalently
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bonded sulfur leads to a physical connection of sulfur with its host that prevents sulfur
delocalization and leads to sulfur stabilization. It also fixes PSs at their original state and
reduces the shuttle effect. Hence, the composites of UiO-66/CNT covalently bonded with
sulfur showed good cycling stability even at high current rates. With covalently bonded
sulfur, 80.2% capacity retention was obtained at 2C and ended up at 416 mAh/g after 900
cycles [54].

Another composite was done by Wang et al., where sulfur was integrated with two
carbon sources. One of the carbon sources is the MOF-derived, N-doped, and CoP
nanoparticles having carbon nanoarrays. First, Co-MOF was infiltrated on carbon cloth, and
it was carbonized and phosphorized simultaneously. Afterward, sulfur was added to the
composite by the standard melt-diffusion method. This self-standing composite showed
around 1400 mAh/g initial discharge capacity and decreased to 900 mAh/g after a few cycles
at 2C. After 600 cycles, the cells preserved most of their capacity and ended up with an 800
mAbh/g specific capacity [55].

In another study developed by Wang et al., HKUST-1 MOF was used as the cathode
host for trapping sulfur and reducing sulfur loss due to excess dissolution. This MOF
contains Cu*? open sites that lead to better sulfur confinement. Two sets were prepared: one
where sulfur and MOF were mechanically mixed (HKUST-1/S) and one where they were
heated at 428 K for 24 h in an argon atmosphere (HKUST-15S). The synthesized HKUST-
1 has 1500 m?*/g surface area, which is reduced to 97 m? for HKUST-1>S. The cathodes
have approximately 40 wt.% sulfur with around 0.5 mg/cm? loadings, and the standard
LiTFSI and LiNOs3 containing DOL:DME electrolyte were used. Both samples exhibited
initial discharge capacities of around 1500 mAh/g, which decreased to 500 mAh/g and 350
mAh/g for HKUST-12S and HKUST-1/S after 170 cycles at 0.1C [56].

Zheng et al. developed a Ni-based MOF named Nig(benzene-1,3,5-tribenzoate)s(4,4’-
bipyridyl) that is proposed to have sulfur immobilization capability. The bare surface area
of this composite was calculated as 5243 m?/g, which is enormous, with a blend of
macropores (~2.8 nm) and micropores (~1.4 nm). 60 wt.% sulfur was loaded to these pores
of Ni-MOF by a simple melt-diffusion strategy. It was stated that the PSs were trapped inside
the pores physically, and Ni*" centers interact with the PS base that adheres PSs to the
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cathode surface. The specific capacities were determined at 0.1C with a 1.5 V-3.0 V voltage
window of 689 mAh/g. Although high capacity retention was observed, the initial discharge
capacity is lower than that of the carbon/sulfur composite. The addition of transition oxides

and the alterations in the organic ligand chain was proposed [57].

Heteroatom doping into carbon materials has also been a widely followed strategy in
the literature. The advantages of heteroatom doping are basically active site generation and
an increase in electronic conductivities. Hence, heteroatom doping leads to increased cycling
and rate performances [58]. Huang et al. used nitrogen and phosphorus-doped carbon having
various pore sizes obtained from free-drying and carbonization of egg shells, which were
used as the cathode hosts in Li-S batteries. The initial discharge capacity of this material was
1635 mAh/g for 0.57 mg/cm? loaded cathodes at 0.1C, which ended up 762 mAh/g after 100
cyclesat 0.1 A/g current rate [59]. Wu et al. also used sulfur encapsulated with N, O-codoped
carbon with trimodal pores as the main cathode host. Afterward, this composite was mixed
with acetylene black and polyvinylidene fluoride (PVDF) at a 7:2:1 wt.% ratio, respectively.
This cathode exhibited good cycling stability even at 1C, with only 0.057 % capacity decay
per cycle for 800 cycles.

Yuan et al. investigated the performance of self-standing CNT paper in sulfur
cathodes. Using a facile bottom-up method, cathodes with sulfur loadings higher than 6.3
mg/cm? were fabricated. Both short- and long-range CNTs were employed to provide a
framework for sulfur deposition, long-range conductive network, and intercrossed binder,
respectively. Cycling results of 150 cycles showed 995 mAh/g initial capacity, implying
60% sulfur utilization with 0.20 % capacity decay per cycle with only one layer. The capacity
and sulfur loading were tripled by stacking three layers in the cathodes [60].

There are many works in the literature investigating various types of encapsulation
materials. Many studies utilized graphene oxides together with materials such as metal-
organic frameworks, anthraquinone, amylopectin, and polypyrrole [61-64]. On the other
hand, there are other materials, such as porous carbons and CNT, that were investigated as
encapsulation materials. These materials were used mainly to suppress the PS shuttle

mechanism, increase the electronic conductivity, load a high amount of active material, and
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provide a stable network that can stand large volume changes during discharge and charge

[43].

2.1.3. Effect of E/S Ratio

According to the techno-economic model proposed by Eroglu et al., the system-level
specific energy and energy density of a Li-S battery are highly dependent on the amount of
electrolyte used in these batteries. It was stated that although excess electrolyte is preferred
to increase sulfur utilization and prevent electrolyte depletion and PSM, having too much
electrolyte devastates the specific energy. The pack-level specific energies were found as
100 Wh/kg and 400 Wh/kg for batteries having 10 mL/g and 1 mL/g E/S ratios, respectively
[65]. Urbonaite and Novak found the optimum E/S ratio as 22 mL/g among E/S=13 mL/g
and E/S=43 mL/g for the standard cathodes prepared by mixing 60:30:10 wt.% sulfur,
carbon black and PEO, respectively. In these cells, E/S=43 mL/g showed the poorest cycling
performance. This work suggests that electrolyte parameters, such as the amount and the
additive and salt types, are more effective on the cell performance rather than the electrode

properties [21].

Chu et al. investigated the effect of having a high donor-number salt anion on the
performance of Li-S batteries having lean electrolyte conditions. It was stated that having
too much electrolyte decreases the energy density of the cells. On the other hand, decreasing
electrolyte amount causes limited PS solubility, hence sluggish reaction kinetics, low sulfur
utilization, and unconstraint Li>S deposition and accumulation. These were supposed to be
the main reasons for the increase in cell resistance and early cell failure in lean electrolyte
conditions. According to the study, the PS solubility should be high in cells operating with
a limited amount of electrolyte. The high solubility of PSs in the DOL:DME electrolyte
having 0.4 M LiTFSI and 0.6 M LiNOs3, high NO3 salt anion, enhanced the cell capacity for
E/S=5 mL/g. It was found that the cells have capacities around 1200 mAh/g at 0.1C and
prolonged that capacity even after 100 cycles [43].

Chung and Manthiram (2018) investigated the effect of the E/S ratio on the discharge
capacity using graphene/cotton-carbon cathodes. The cells having 30 mg/cm? sulfur loading

and 60 wt.% sulfur content at E/S ratios of 10, 8, 6, and 5 mL/g were investigated in this
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study. The cells were cycled at both 0.1C and 0.2C. The electrochemical performance
decreased at 0.2C due to low sulfur utilization at low E/S ratios. According to the study, the
E/S ratio should be higher than 7 to prevent the adverse effects of lean electrolyte conditions.
On the other hand, for cathodes having cotton-carbon only, the optimum E/S ratio was found
to be 10 mL/g to have high sulfur utilization. Lower E/S ratios resulted in unstable cycling
performances due to wetting problems of the high porosity cathodes. Hence, E/S ratios
should be determined by considering the cathode parameters [66]. On the other hand, the
cycle stability and sulfur utilization of the cells having different amounts of electrolyte, in
other words, the E/S ratio, at a constant sulfur loading, were studied by Briickner et al.
Vertically-aligned carbon nanotubes were used as the cathode in this study. It was found that
high E/S ratios result in high capacities and cycle lives. On the other hand, the E/S ratio
should be restricted to 4 mL/g to provide high energy density batteries [67].

2.1.4. Effect of Ionic Liquid Type

There are many types of ionic liquids that were investigated as electrolytes in Li-S
batteries in the literature, some of them are listed in Table 2.1. Yuan et al. performed one of
the early studies utilizing room-temperature ionic liquids (RTILs) as electrolytes in Li-S
batteries. Cyclic voltammetry (CV) results showed that the working potential of N-methyl-
N-butyl-piperidinium bis(trifluoromethanesulfonyl)iminde ([PP14]-[TFSI]) was around 5.2
Vt0-0.15 V (vs. Li/Li"). Hence, it is stable for both lithium anodes and sulfur cathodes. Due
to the low PS solubility in the IL, the PS shuttle mechanism was inhibited. The initial
discharge capacity was almost doubled from 600 mAh/g to 1055 mAh/g when RTIL was
used rather than using ethylene carbonate:dimethyl carbonate (EC:DMC) electrolyte with
1.0 M LiPFs. However, the cycling performance was limited [68].

Zhang et al. used solvate ionic liquids in cathodes having porous carbon:sulfur
composites having polyvinyl alcohol (PVA) as a binder with 0.5 mg/cm? sulfur loading and
60 wt.% sulfur content. Both the effect of ionic liquids and their interface with the porous
cathode on cell performance have been investigated in this study. It was found that large
pore size and volume of the conductive matrix are greatly important for the performance of
batteries using IL electrolytes. It was found that the best composite for IL solvents does not

work well for the conventional DOL:DME electrolytes. In addition, lithium(tetraglyme)-
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TFSI ([Li(G4)]-[TFSI]) electrolyte viscosity decreased with the addition of ether, which
increases ionic mobility while suppressing the PS shuttle mechanism. Thus, the capacity

retention of the cells improved from 61.6% to 73.5% [69].

Table 2.1. Literature summary utilizing ionic liquids as electrolytes in Li-S batteries.

Ref. | Encapsulation S wt.% S(i(g);(li:zl)g IL Solvent C Pea(l;i;l;g)c ity
[70] NO 57 0.3 [Li(G3)1]-[TFSI] 0.06 1061
(P13)(TFSI) 0.20 609
[71] Carbon Black 34 NP (P13)(TFSI) 0.10 1386
PMIM(TFSI) 0.10 1178
60 [Li(G3)4][TFES] 0.08 844
(72] Ketjen Black 57 NP [L?(G3)1][TFSI] 0.06 1056
60 [Li(G4)1][TFSI] 0.08 897
60 [Li(G4)1][TFSI)/HFE | 0.08 1000
C4mpyr-TFSI 0.10 688
[73] | Activated Carbon 35 NP C4mpyr-FAP 0.10 439
C4mpyr-Otf 0.10 515
[74] NO 40 NP P1A3TFSI 0.10 1457
[P13][TFSI] 0.08 808
[P13][BETI] 0.08 641
[P14][OT1] 0.08 703
[P13][FSA] 0.08 967
i [DEME]BF4 0.08 891
[75] Ketjen Black 60 0.6
[P14][TFSI] 0.08 642
[P2225][TFSI] 0.08 589
[PP13][TFSI] 0.08 349
[C4dmim][TFSI] 0.08 724
[DEME][TFSI] 0.08 800

NP:Not  provided, P13:N-methyl-N-propylpyrrolidinium, = PMIM:1-methyl-3-propyl  imidazolium,
G3:Triglyme, G4:Tetraglyme, HFE:1,1,2,2— tetrafluoroethyl 2,2,3,3—tetrafluoropropyl ether, C4mpyr:1-butyl-
1-methylpyrrolidinium, FAP:tris(pentafluoroethyl)trifluorophosphate, P1A3: n-Methyl-n-Allylpyrrolidinium,
Otf:trifluoromethanesulfonate , FSA:bis(fluorosulfonyl)amide, BFa:tetrafluoroborate, P14:N-butyl-N-
methylpyrrolidinium, P2225:triethylpentylphosphonium, PP13:N-methyl-N-propyl piperidinium, C4dmim:1-
butyl-2,3-dimethylimidazolium, DEME:N,N-diethyl-N-methyl-N-(2- methoxyethyl)ammonium

Lu et al. used the IL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
([EMIM]-[TFSI]) as a co-solvent in Li-S batteries. The effect of the addition of 25, 50, and
75 vol.% of fluorinated ether to the IL was investigated. The cathodes were prepared using
sulfur and mesoporous carbon (CMK-3) composite with carbon black conductive additive
and PVDF binder. The sulfur content and loading of the cathodes were 55 wt.% and 1.6
mg/cm?, respectively. It was found that there is a synergy between [EMIM]-[TFSI] and
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fluorinated ether where the low solubility of the PSs in the electrolyte is supported by the
prevention of PS dissolution into the electrolyte. Hence, it was found that the specific
capacity of the cells with the IL with 50 vol.% fluorinated ether was 505 mAh/g after 50
cycles. It was suggested that although this result was promising, the vol.% should be further
optimized [76].

Wu et al. prepared an electrolyte using ionic liquids containing two lithium salts for
high-performance  Li-S  batteries. = N-methoxyethyl-N-methylpyrrolidinium  bis
(trifluoromethanesulfonyl)imide ([Pyri201]-[TFSI]) and tri(ethylene glycol)dimethyl ether
(Tri-EGDME) in a mass ratio of 7:3 was determined to be the best candidate to prevent fast
capacity decay and low Coulombic efficiency. [Pyri201]-[TFSI] was preferred due to its
ability to prevent crystallization, and its high conductivity and Li>Sn solubility. Additionally,
Tri-EGDME was used as a co-solvent to improve the electrolyte properties further.
Moreover, binary salts having lithium difluoro(oxalate)borate (LiODFB) and LiTFSI in a
mole ratio of 6:4 further improves the electrolyte properties; they help the formation of a
solid electrolyte interface (SEI) layer on the anode and protect both electrodes by preventing

the PS shuttle mechanism [77].

2.1.5. Modeling Studies of Li-S Batteries

A one-dimensional (1-D) mathematical model was developed by Kumaresan et al. to
determine the underlying reactions resulting in two characteristic discharge plateaus of Li-S
cells. The model was performed for low C-rates, and it was observed that Li" concentration
increases up until 14 hours without any Li* gradient during all stages of discharge. With the
increase in the sulfide concentration, Li* concentration tends to decrease. On the other hand,
at 57.7 hours of discharge, a S~ concentration gradient was observed from the separator to
the cathode, which is attributed to the slower mass transfer rate than the reduction reaction
kinetics. In addition, it was proposed that the shape of the discharge curve is related to the
concentration gradients of all the species present in the cathode during discharge. At first,
solid sulfur present in the cathode starts to dissolve in the electrolyte until it reaches the
solubility limit, and then it is reduced. During the first hour of discharge, sulfur reduces to
SZ~ ,then to SZ~ and S2~, which corresponds to the end of the first discharge plateau. In

the second plateau, the S2~ concentration increases, and Li,S starts to precipitate on the
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carbon surface. The voltage of the proposed reactions coincides with the voltage profile of

the Li-S batteries [78].

Marinescu et al. proposed a zero-dimensional model that predicts the discharge and
charge behavior of Li-S cells. Nernst equation was used to model two electrochemical
reactions by including the Butler-Volmer kinetics. By taking the precipitation/dissolution of
S, into account, the characteristic charge and discharge plateaus of Li-S cells were obtained.
It was found that the precipitation rate does not affect the discharge capacity, whereas
dissolution reaction rate can significantly reduce the charge capacity [79]. Fronczek and
Bessler also used a 1-D model to perform the elementary kinetic modeling and impedance
simulation by taking 5 precipitation/dissolution and 6 electrochemical reactions, including
the Li oxidation, into account. It was assumed that the reactions occur only at the electrolyte-
solid interface, and there are no side or degradation reactions. The discharge voltage profile

was attributed to the variation of the volume fractions of Sg and Li>S [16].

Zhang et al. investigated the effects of electrolyte resistance and precipitation kinetics
on the voltage loss mechanisms. A lumped model was developed by including
electrochemical and precipitation reactions, charge transfer kinetics, and morphology
variations in the model. Electrolyte resistance was found to be at its maximum at the
transition of the discharge plateaus, and higher electrolyte resistance was obtained at higher
current densities. Finally, it was found that activation overpotentials are the second main
reason for high cell resistance in Li-S cells [18]. Al-Mahmoud et al. modeled the PS
concentration gradients in the cathode and the reaction of PSs with the anode to study the
effect of electrolyte volume on the self-discharge behavior of Li-S cells [80]. Furthermore,
Mikhaylik and Akridge and Hofmann et al. quantitatively analyzed the PS shuttle
mechanism to link the self-discharge, charge-discharge efficiency, and specific capacity of

Li-S cells [15], [23].

Erisen et al. modeled the effect of carbon-to-sulfur (C/S) and E/S ratios on the
electrochemical performance of Li-S batteries. This one-dimensional model assumed a
single electrochemical reaction, hence a single kinetic parameter, cathode exchange current
density for each of the two discharge plateaus. Using this single kinetic parameter, cell

voltage at 60 % depth of discharge (DoD) was estimated. It was found that the cell voltage
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increases significantly with increasing C/S or E/S ratios. It was also suggested that the E/S
ratio has a major impact on the kinetic parameter [81]. In another study from the same group,
an electrochemical model taking two electrochemical and two dissolution/precipitation
reactions into account was proposed [82]. The voltage profile was successfully predicted,
including the two discharge plateaus and the voltage dip at the end of the first discharge
plateau. Similar to the previous work, cell voltages significantly improved up to a specific
value of E/S and C/S ratios, after which the increase was less pronounced [81,82].
Abdulkadiroglu et al. improved this model further by offering a novel definition for the
cathode electrochemically active area based on carbon weight fraction and a reference

porosity [83].

Although there are various studies on the electrochemical modeling of Li-S batteries,
modeling efforts focusing on the prediction of system-level performance metrics are more
limited. One of the most important research on material-to-system analysis was performed
by Eroglu et al. In this work, the system-level energy density and specific energy, together
with the battery price, were determined as a function of critical cathode design and cell
parameters. The BatPaC model was taken as the basis to build up the tecno-economic model.
A 1-D electrochemical model was developed using the Butler-Volmer kinetics for the anode
and the Newman and Tobias model for the porous cathode [84]. Based on the cell design,
the sizing of the battery packs was done. The E/S ratio, C/S ratio, excess Li amount, reaction
kinetics, and sulfur loading were determined to be the most important factors affecting the
system-level performance and price of Li-S batteries. According to the results, excess
amounts of Li, electrolyte, and carbon significantly lower the pack-level specific energy and
energy density. Moreover, it was found that the electrode loadings should be higher than 8
mAh/cm? to have both high energy density and low-cost batteries [65]. This model was
further improved in recent years by feeding it with experimental results to investigate the

impact of the E/S ratio [85], C/S ratio [86], and S loading and carbon properties [87].

Emerce and Eroglu performed a modeling study to determine the effect of E/S ratio on
cell- and system-level performances. The cell voltage at 60% DoD was predicted using a 1-
D electrochemical model. Previous works have stated that the E/S ratio has a significant
influence on the cathode specific capacity. Hence, to include this effect in the model, the

experimental studies reported in the literature were used to obtain a linear empirical equation
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that takes the PS solubility limit into account. Using this model, E/S ratios were investigated
in the range of 0-30 mL/g at C/S=0.5 and 0.2C. System-level performance results showed
that the specific energy and energy density of the cells increase up to E/S=10 mL/g, whereas

any further increase in the E/S ratio decreases the system-level performance [88].

Xue et al. emphasized the importance of increasing the volumetric and gravimetric
energy densities of Li-S cells to be commercialized in practical applications and electric
vehicles. Hence, a model that can predict both volumetric and gravimetric energy densities
was proposed, and the effects of various cell variables on them were investigated. The cell
stack was designed as a sandwich-structured model where one cell consists of double-sided
Al and Cu current collectors, a Li anode, a sulfur cathode, and a separator. It was assumed
that the Li metal is non-porous, whereas the porous cathodes contain carbon, sulfur, and 5
wt.% binder. In addition, 70 wt.% sulfur, 10 mg/cm? sulfur loading, 30 % cathode porosity,
and 50 % excess Li amount were assumed for an ideal Li-S configuration. The exact required
amount of electrolyte to fill the pores of the cathodes was used in the ideal cell. According
to the model, in the ideal case, Li-S batteries exhibit 720 Wh/kg, whereas LIBs with nickel-
manganese-cobalt (NMC) metal provide 421 Wh/kg. On the other hand, the ideal volumetric
energy densities were calculated as 1017 and 1300 Wh/L for the Li-S and LIBs, respectively.
High void fraction and inactive carbon amounts in the cathode, and excess Li metal in the
anode were the main reasons for having lower volumetric energy densities. It was proposed
that, in addition to lowering these variables, increasing the sulfur content, loading, and

utilization will be required to have larger volumetric energy densities [32].

McCloskey carried out a modeling study focusing on the gravimetric and volumetric
energy densities of Li-S cells having protected Li anodes. The Coulombic efficiency of cells
can be increased, and the Li dendrite formation can be eliminated by using mechanically
stable and Li ion conductive solid state membranes. The required separator thickness,
minimum required E/S ratio, and cost were calculated for Li-S batteries. It was assumed in
the model that there are not any kinetic or transport limitations. The specific energy was
simply calculated by multiplying the active material loading, utilization, and average cell
voltage divided by the volume or mass of all the cell components. It was found that the
minimum E/S ratio, ideally much less than 11, that can prevent the PS shuttle mechanism

should be used in Li-S batteries to have higher specific energies than LIBs. Finally, the
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maximum thickness and cost of a protective separator were found to be 100 um and $10/m?,

respectively, for the Li metal anodes to be competitive with graphitic anodes [89].

Cleaver et al. showed that only 9% of the Li-S literature has focused on cell
mechanisms and modeling [90]. As mentioned above, most of the modeling work in the
literature is mainly about understanding the reaction and PS shuttle mechanisms, kinetic
determination, effects of resistances on the cell voltages, and capacity fading determination
[15-18]. This shows that the modeling studies compared to the experimental work are still
limited. In the current literature, modeling studies investigating the cell- and system-level

performances using material-to-system modeling of Li-S batteries are scarce.

2.2. Li-O; Batteries

2.2.1. Effect of Oxygen Solubility

Kwak et al. worked on the development of new electrolytes for Li-O> batteries as a
localized high-concentration electrolyte (LHCE) was used. The standard electrolyte
consisted of 1 M lithium trifluoromethanesulfonate (LiTf) in tetracthylene glycol dimethyl
ether abbreviated as G4, while the proposed electrolyte has 0.84 M LiTf with 1,1,2,2-
tetrafluoroethyl ether (OTE) additive salt. The high boiling point and F/H=3 ratio are the
reason for selecting the OTE salt. First, the importance of low viscosity and stability were
emphasized in 1 mAh/cm? capacity limited tests with 0.2 mA/cm? areal density as LHCE
electrolyte preserved the capacity for 50 cycles without any loss in voltages. In addition, the
effect of oxygen solubility was also emphasized as LHCE’s oxygen solubility was doubled
with the addition of OTE. In deep discharge experiments with a cut-off voltage range of 2.4-
5.0 V, only LHCE electrolytes retained the capacity for 25 cycles, whereas, without OTE
additive, the other cells failed even after 2 cycles [91].

In the comprehensive work done by Gittleson, the properties of several electrolytes
were investigated. Both experimental and molecular modeling studies were performed
together, and it was found that oxygen transport is a critical parameter for high-performance
Li-air batteries, and the electrolyte solvent determines oxygen transport. On the other hand,

oxygen solubility is also critical for battery performance. Oxygen solubility depends on the
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presence, types, and amounts of ionic species. The performance tests were performed in a
full cell where carbon gas diffusion layers were used in the cathodes. The highest oxygen
diffusivity and solubility were obtained for dimethyl sulfoxide (DMSO) electrolytes, which

also performed better at high current rates for 1 atm dry air [92].

Xu et al. studied nonaqueous electrolyte properties for lithium/air batteries.
Specifically, electrolyte polarity, oxygen solubility, viscosity, and ionic conductivity were
studied in this work. It was stated that triphase regions should be formed where dissolved
oxygen as active material, electrolyte as Li* ion source, and the positive electrode matrix as
electron matrix meet. There are two routes for oxygen transport through the pores of the
cathode matrix: through electrolytes and through open pores of the matrix, which is several
orders of magnitudes larger than the former. Hence, the solvent polarity that is linked to
electrolyte wetting is proposed to have higher importance than oxygen solubility, contrary

to previous works [93].

Haas et al. discussed the effect of atmospheric gas solubilities in the electrolytes of
lithium-air batteries. The fact that dissolved CO., N2, and O strongly affect the discharge
mechanism and the stability of the cells. The gas solubilities were measured by gas uptake
experiments, whereas the diffusion coefficients were determined by molecular modeling
simulations. The commonly used ether electrolytes, namely di-, tri-, and tetraglymes,
together with DMSO solvents, were used, and their viscosity and surface tension properties
were considered. In addition, the effect of salt presence on the solubilities was also discussed.
The experiments showed that the electrolytes have the highest solubility for CO2 and the
lowest solubility for N2 gas, although the electrolytes have slightly higher O> solubilities. In
addition, direct linear trends were observed for O» and N> solubilities with surface tension

[94].

Monroe investigated the effect of oxygen transport on the cell voltages of metal-air
batteries. The ionic conductivity, electrolyte, and oxygen diffusivity relations were obtained
using Newman’s concentrated-solution theory and Onsager-Stefan-Maxwell transport
equations. Two new properties were defined in this work: the migration coefficient, which

is the relation between ionic and oxygen fluxes, and the cross-diffusion, which shows the
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relation between salt gradients and oxygen flux. It was stated in this work that the oxygen

gradients in metal-air cells have an influence on the nominal voltage [95].

Sergeev et al. studied the effect of both cathode and electrolyte properties on the
lithium-air battery properties using a numerical computational method. Oxygen diffusivity,
discharge product precipitation, and pore filling of the cathodes were taken into
consideration in the model. The positive electrodes were modeled as two neighboring
phases: the electronically conductive porous matrix and electrolyte for ion and oxygen
sources. The pores were assumed to be fully flooded by the electrolyte, and oxygen
solubilities were assumed to be constant. The side reactions and surface passivation by
deposition of insulating discharge product were discarded. Three electrolyte solvents,
namely acetonitrile, DMSO, and DME, and the effect of electrode material densities were
investigated. Fast oxygen diffusivity, stability of the electrolytes, and porous cathodes
having short oxygen diffusion paths were identified as critical to having high-performance

metal-air batteries [96].

2.2.2. Effect of Positive Electrode Materials and Design

The positive electrodes of metal-air batteries suffer from sluggish kinetics, resulting
in ORR/OER overpotentials and mass transfer limitations. Hence, cathode materials that
have intrinsic activities and pore structures are essential to increase round-trip efficiencies,
Coulombic efficiencies, and cycle lives of metal-air batteries. According to the literature,
since aqueous and non-aqueous batteries have different reaction mechanisms, the catalysts
of the air electrodes should be designed according to the electrolyte choice. In non-aqueous
electrolytes, redox reactions involve two electrons where Li20O; is formed as the discharge
product. Carbon materials were excessively used in the literature earlier, but new polar
materials having precious metals or transition metal-oxides are more popular in recent years
due to better OER/ORR kinetics [97]. Gao et al. developed the Co304 electrocatalysts on the
silver support as a yolk-shell structure using a synchronous reduction technique. Active sites
were introduced in the interface of the Ag-Co304 due to the tuning in electronic structure. In
addition, the flower-like Ag structure has high electrical conductivity and a larger surface
area. This cathode showed excellent specific capacity, which is 12,000 mAh/g at 200 mA/g
current rate, dropping to 4700 mAh/g at 800 mA/g currents based on the cathode mass [98].



26

Li and Manthiram investigated the single, decoupled, and mixed air electrode
configurations on the performances of Li-air batteries. In the decoupled configuration,
NiCo0204 nanoflakes on nickel foam and Pt/C composite on carbon-fiber paper were used
separately as the OER and ORR catalyst electrodes, which are switched during charge and
discharge, respectively. In the mixed structure, although two different layers were used, there
is not a switch and the current collectors of the two layers are connected. On the other hand,
the classical way single-layer structure, both NiC0,0O4 and Pt/C, were grown onto a single
carbon-fiber layer. The decoupled electrodes showed better performances, and they had high
stability. Switching between the electrodes prevented the high voltages of the ORR layer,

hence resulted in better stabilities [99].

Peng et al. studied the ratio of Co3O4/Graphene as air electrodes in an aqueous/aprotic
hybrid electrolyte. The composites with 33.7 wt.%, 48.2 wt.%, and 62.5 wt.% of
Co0304/Graphene were synthesized by a facile hydrothermal method. Afterwards, the catalyst
inks were prepared by mixing the composites and PVDF binder in the N-methyl-2-
pyrolidone (NMP) solution, and dropped into carbon clothes. The catalyst loading was set
to around 1 mg/cm?. The moderate Co304 loading was found to be more effective in terms
of homogenous distribution over graphene and better balance on the catalytic versus
electronic conductivity abilities [100]. Azuma et al. utilized lithium bromide as a redox
mediator, which is defined as molecules having redox potentials pretty close to 2.96 V,
which is the OCV of lithium-air batteries. The role of a redox mediator is to enable the
oxidation of the discharge product of Li,O> at lower charging voltages. In this study, the
effect of lithium bromide coating on carbon nanotube electrodes was investigated as the air
electrodes. These electrodes increased the capacity to 4 mAh/cm?, which is almost 2-fold

higher than LIBs and a 3-fold higher cycle life [101].
2.3. Machine Learning for Beyond Li-ion Batteries
This section is part of a review article published by authors A. Kilic, B. Oral, D.

Eroglu, R. Yildirim. The reviewing part was done by A. Kilic and B. Oral together, whereas

the text-mining section of the article was performed by A. Kilic [9].



27

2.3.1. Machine Learning in LIB Research

The rechargeable energy storage materials and systems have been investigated more
extensively in recent years with the increasing use of portable devices and growing demand
to utilize renewable electricity in these devices and transportation. As expected, the
application of ML, which is another increasingly popularized field, in energy storage
systems like LIB [102], flow batteries [103—105], supercapacitors [106], and other
rechargeable batteries such as nickel-metal hydride batteries [107] has been also increased
in the last few years. In this thesis, we extensively used ML techniques for both Li-S and Li-
Os batteries; hence the literature survey on the ML application of rechargeable batteries was

provided in this section.

2.3.1.1. State of Charge and Health Prediction for Li-ion Batteries. Most of the ML works

in literature are related to LIBs, as the already commercialized and extensively used system,
and a significant part of these works are on the real-time data modeling and state of charge
and health prediction to develop better-functioning battery systems in complicated devices
[108—111]; numerous papers, including reviews, on the use of ML to correlate various
features (like voltage, current, temperature, capacity) with state of health (SOH) indicators
(i.e. capacity decrease, internal resistance increase) have been published in recent years
[108], [112]. Various methods such as feedforward artificial neural networks (ANN),
recurrent ANN algorithms, classification and regression algorithms, and probabilistic
algorithms were used for this purpose [113]. Considering that a large number of publications
have covered SOH studies, and we intended to focus on beyond LIBs more, we will not
discuss this subject further; instead, we discuss the material and manufacturing related
works, which are also relevant for beyond LIBs, in more detail below and move to the new

battery technologies.

2.3.1.2. Machine Learning in Li-ion Battery Materials and Manufacturing. The remaining

ML works on LIBs are mostly related to the properties or performance of electrode and
electrolyte materials; as is true for the other fields, ML is very helpful to establish structure-
property-performance relations of materials and to discover new materials with specific
properties. Both experimental and computational (mostly generated by density functional

theory (DFT)) data were used in these works; while some of the data were generated by the
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researchers themselves, the use of data extracted from various material databases has also
become more popular in recent years as these databases provide more accurate data for
increasing number of materials with an easier access and retrieval of data. For example,
Maphanga et al. used deep learning algorithms to estimate the voltage of 4369 DFT-
computed structures acquired from the Material Project [114]; they used linear regression
(LR), support vector machine (SVM), deep neural network (DNN), RF, and k-Nearest
neighbour (kNN) algorithms with 15 features such as crystal lattice type, space group,
volume, etc. Wang et al., on the other hand, showed that, for doped spinel LIB cathodes, the
discharge performance can be predicted, and the influential material properties can be
identified by various ML algorithms (SVM, DNN, decision tree (DT), RF, gradient boosted
tree (GBT), least absolute shrinkage and selection operator (LASSO), and ridge regression
(RR)) [115].

There are also works that involve the characterization of electrodes, such as Li
intercalation to graphite electrodes using ANN [116], the analysis of 3-D tomography
images to investigate the microstructures [117] and deformations [118] of cathode materials,
the classification of microstructures leading to thermal runaways [119], analysis of X-ray
absorption near-edge structure spectra to determine electronic and atomic structures of the
positive electrode [120] and analysis of 3-D image data from electron backscatter diffraction
to determine the intra-particle grain morphologies [121]. Similarly, ML was used to study

the properties of electrolytes [122—124] and to optimize the electrolyte composition [125].

ML has also been used in the manufacturing process of LIBs for analyzing
manufacturing parameters and end-product quality [126—-130]. Kolodziejczyk et al. used
convolutional neural networks and the finite element method to determine the thermal
properties of Li-ion battery packs by analyzing 2000 images [131]. Wu et al. developed ANN
to predict the specific capacity and power using six controllable manufacturing variables
[132]. The optimization of cathode slurries [133] and the determination of the mass load of
electrodes by SVM [134] were also studied in the literature. Some representative works on
ML applications for LIBs are summarized in Table 2.2; we grouped the publications in terms
of cell elements (electrodes represent the works involving both electrodes, while the studies

involving only the negative or the positive electrodes are presented as different classes).
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Battery Obiective Data Source & | ML
Component 1 Number Algorithms
Prediction of voltages of various battery materials DNN, kNN,
[135] MP (DFT), 4369 LR, RF, SVM
Prediction of redox potentials of organic materials DFT. 108 ANN, GBR,
[136] ’ KRR, LASSO
Both Design of new molecular electrode materials with
Electrodes esIg ; DFT, 114 ANN
guessed redox potentials [137]
Prediction of local diffusion barrier [138] DFT, 48 LR, LASSO
Classification of specific MXene chemical formula
and prediction of electrochemical properties [139] DFT, 360 RF
-y . iy o . DT, GBM,
Prediction of discharge capacities of lithium | Experimental, LASSO RF
manganese oxide spinel systems [115] 100 RR, SVM
Prediction of electronic conductivities of spinel Experimental
structures and classification based on conductivity P ’ XGBoost
304
[140]
High- .
Designing the mesoscale porous structures of | throughput ANN . with
. . Bayesian
electrodes [141] physicochemical optimization
model, 2100 P
. ANN, ERT,
N Prediction of cathode crystal system [142] DFT,339 KNN, RF, SVM
Positive Behler—
Electrode Prediction of voltages of various materials [143] DFT, 12 962 Parrinello NN
Design and discovery of new doped lithium nickel- | Experimental, GBM, kNN,
cobalt-manganese (NCM) oxide cathodes [144] 168 KRR, RF, SVM
Prediction of diffusion energy barrier of quantum DFT. 7385 KRR, MLP,
cathode materials for fast charging electrodes [145] ’ SVM
Prediction of Ll—lon insertion voltages of organic DFT, 1001 ANN
electrode materials [146]
Prediction of the 1n1t1a1.capac1t.y, capa.cgy retention Experimental, DT, ERT, MLP,
rate, and amount of residual Li for Ni-rich cathode
. 330 RF, RR, SVM
materials [147]
Prediction of redox potentials of organic redox | Experimental, RF
compounds [148] 6000
Modellng .of the energetics of lithium intercalation DFT, 9189 ANN
into graphite [116]
Development of Li-intercalated metal-organic | XRD image, RF
. frameworks (iMOFs) [149] 2751
Negative - : . : -
Identification of outlier structures and their use in .
Electrode . . . ) MaterialGo
anionic reactions via band-gap structure relations GBR
[150] database, 4000
Prediction of redox potentials of electrolyte additives DFT, 149 GBR, KRR
[151]
Prediction of electrolyte infiltration in porous NMC gl"lojr-no canh MLP
electrodes [122] . graphy
image
Er;;lictlon of redox potentials of electrolyte additives DFT, 149 GPR
Electrolyte Er;zlictlon of coordination energy of electrolytes DFT, 103 LR, GPR
S . Experimental, Bayesian
Optimization of aqueous electrolyte mixtures [125] 251 optimization
Prediction of the refractive index and viscosity of | Various studies,
XGBoost

ionic liquids [152]

5884
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Table 2.2. ML for LIBs. (cont.)

Battery Objective Data Source & Number | ML Algorithms
Component
Separators [Cllggilﬁcatlon of separators to detect defects Surface image, 746 DT

KRR: Kernel ridge regression, ERT: Extreme regression tree, NN: Neural network, MLP: Multilayer
perceptron, GPR: Gaussian process regressor

2.3.2. Machine Learning in Beyond LIBs

As we mentioned above, ML applications in LIB research typically involve the state
of charge and health prediction, material screening, and property or performance
prediction. Since the general structure (anode, cathode, electrode, etc.) of the beyond LIBs
is the same as the LIBs, the ML applications are also similar (except for SOH predictions,
for which the new technologies are not at that stage yet). From another perspective, we can
say that ML studies for the beyond LIBs, as the experimental works in the field, practically
aim to develop solutions to the shortcomings of these batteries such as searching alternatives
for liquid electrolytes, solving problems like dendrite formation in Li metal anodes or the
PSM in sulfur cathodes, or identifying the structural and electrochemical properties required

for good intercalation or conversion kinetics.

2.3.2.1. Search for New Electrodes. Indeed, ML has been widely used for the search of

compatible materials and predictions of their properties for univalent [154—157] and
multivalent [158—160] metal-ion, metal-air [48], [161,162] and Li-S [163—165] batteries. For
example, Joshi et al. developed a web accessible tool to predict the voltages of electrode
materials for sodium-ion (Na-ion) and potassium-ion (K-ion) batteries using ML (DNN,
SVM, and KRR algorithms) [166]; they used a dataset containing 3977 intercalation-based
electrode materials from the Materials Project (MP) [114] and 80 features obtained by
principle component analysis of 237 features (like active metal concentration, crystal lattice
details, space group numbers, and elemental properties). In another example, we used a
dataset with 1660 points constructed from the published works to analyze the factors
affecting the discharge capacity and cycle life of Li-S batteries [43]. Electrolytes (both
liquids and solids) have also been studied extensively to improve the safety and performance
of LIBs [167,168] as well as to identify the best electrolyte alternatives for the new battery
systems [169]. Jeschke et al. classified Li—S battery electrolytes as either salt-in-solvent,
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solvent-in-salt, or solvate IL electrolytes using various classifiers such as k-nearest
neighbors and support vector machines. Additionally, a regression model was trained to
predict the solubility of PSs in these electrolytes. They combined DFT and statistical
mechanics (COSMO-RS) to achieve a quantitative structure-property relationship model for
55 electrolytes containing binary and ternary mixtures of solvents and different Li salts
[170]. The SEI is another topic of interest in the computational approach in next-generation
batteries. For instance, Ishikawa et al. studied the ion transfer at the electrolyte/electrode
interface by creating a predictive model for the coordination energy of five alkali metal ions

(Li, Na, K, Rb, and Cs) to the electrolyte solvent using LR, LASSO, and MLR regression

methods; they used the properties of the cation and the solvent for this purpose.

Table 2.3. ML for beyond LIBs.

h Data Source & | ML
Battery | Subject Number Algorithms
g;;llctlon of the discharge capacity and cycle life Experimental, 1660 ARM
Prediction of the binding energy of sulfur hosts [163] | DFT, 3295 TL
Screening of supported single-atom catalysts via
Li-S investigation of the pattern of PSs adsorption [164] - CGENN
Screening of an AB»-type sulfur host material [165] | DFT, 1320 XGBoost
Classification of different electrolytes and prediction kNN, MLR,
of PS solubility [170] COSMO-RS, 40 NB, RF, SVM
Assessment of the critical materials and cell design .
factors for Li-S batteries using IL electrolytes [171] Experimental ,207 ARM
Prediction of performance based on capacity [48] ARM, DT
Prediction of the solvent effect [162] ANN
Li-air Analysis of pore size distribution [172] RF
Er%lictlon of electrophilicity and nucleophilicity ANN, LASSO
-y . e . DT, GPR,
Prediction of Na-ion diffusion energy barrier [155] KRR, SVM
. o . DT, kNN, RF,
Navion Screening of anodes for sodium-ion batteries [174] SVM
Real-time prediction of battery life and failure [175] g\ljl]\\}[’ MLP,
Prediction of discharge capacity and cycle life[176] DT, RF
Prediction of crystal stability [157] RF
K-ion -y . ERT, KRR,
Prediction of capacity [177] SVM
. Prediction of cathodes with high capacity and high | MP  and  Aflow
Zndon | age [160] (DFT), 13 000 CGCNN
Prediction of average voltage, gravimetric capacity,
Mg-ion volumetric capacity, specific energy, and energy RF
density [178]
Other Prediction of voltages [154] DNN
uni- and
multi- Prediction of electrical property [159] XGBoost
valent
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. Data Source & .
Battery Subject Number ML Algorithms
Other Prediction of average voltages and volume
uni- and | change upon charging and discharging of DNN, KRR, SVR
multi- electrode materials [166]
Valent. Calculations of the coordination energy [179] MLR, LASSO
metal-ion
Conductivity prediction of polymers [180] GBT
Na and Li-based SICON compounds [181] LogR
Conductivity prediction of ternary crystals
GPR
[182]
Condqct1V1ty prediction of Li-ion conducting ANN, RF
ceramics [183]
Classification of the ionic conductivity of
doped LLZO [184] GBT, RE, SVM
Prediction of the Li-ion conductivity and
GPR
phonon-free energy [185]
Prediction of the mechanical properties of Na- GBT
solid state electrolytes [186]
Design of solid—electrolyte-interphase [187] ERT
Solid Calculation of bond valence [188] RF
state Prediction of the mechanical properties of Li- GBT
ion conducting solid-state electrolytes [189]
Discovery of novel Li-ion conducting solid
state electrolyte [190] .
Investigation of manufacturing conditions on
the quality of solid-state electrolytes [191] k-means, SVM
Prediction of ionic conductivity for solid-state GBT, kNN, LogR, RF,
electrolytes [192] SVM
Prediction of activation energy [193] Partial . least  squares
regression
Screening of inorganic solid electrolytes for
suppression of dendrite formation [194] CGCNN
Clustering of Raman map for polymer
composite electrolytes [195] k-means
Investigation of pore formation [196] CNN

CGCNN: Crystal graph convolutional neural network, TL:transfer learning, NB: Naive Bayes, CNN:
convolutional neural network, LogR: Logistic regression

2.3.2.2.

Search for Solid-State Electrolytes. Solid-state electrolytes received special

attention in battery research, including ML applications in all Li batteries [197]. For
example, Ahmad et al. screened inorganic solids (both isotropic and anisotropic interfaces)
based on their ability to suppress the dendrite formation when in contact with the Li metal
anode. They predicted 20 mechanically anisotropic interfaces between the Li metal and four
solid electrolytes; elastic constants of the cubic materials and the shear and bulk moduli of
the crystalline solid electrolyte materials were projected by gradient boosting, KRR and

CGCNN, respectively [194]. In another work, Jo et al. predicted the mechanical properties
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of Na-conducting solid-state electrolytes for 12361 materials from the Material Project
database using GBT [198]. The ML works on the beyond LIBs are summarized in Table 2.3.
The table is organized according to the battery type; this seems to be a more relevant
classification to see the trends in new battery technologies. We list the representative works
related to the solid-state batteries as a separate group in the table, considering that those

works represent a new direction in electrolyte search that may apply to all battery types.
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3. MATERIALS AND METHODS

In this chapter, all the details about the experimental techniques, system-level

performance model, and ML techniques are given in sections 3.1, 3.2, and 3.3, respectively.
3.1. Experimental Work
The experiments were carried out for only Li-S batteries, and their electrochemical

performances were tested. CR2032 coin cell fabrications were carried out for all of the cases.

The summary of the experimental procedure is presented in Figure 3.1.

Material Electrolyte E/S Ratio
Synthesis Selection Selection
Melt Cathod
Diffusion at pu?w}?ineg E Cf;!l :
155 °C for into 2.01 cm? %r{gsgt?gxm
12h Circles
Cathode Doctor :
. ; : Cycling
Blading& :
Mllﬁt&rg in Daryllnngg Experiments

Figure 3.1. The summary of the experimental procedure.
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3.1.1. Chemicals and Materials

All the chemicals used in the experiments are listed in Table 3.1. The material purposes

are also given in the table.

Table 3.1. The materials used in the construction of Li-S cells.

Material Function Source
Carbon Black (Super C65) Cathode conductive material MTI

Sulfur Cathode active material Sigma Aldrich
PVDF Cathode binder MTI

Ketjen Black (EC-6007) Cathode conductive material [Nanografi
INMP Cathode solvent MTI
Aluminum foil (15 pm) Cathode current collector MTI

Copper foil (25 pm) IAnode current collector MTI

Lithium metal foil (170 pm) 'Anode MTI

DOL Electrolyte solvent Sigma Aldrich
DME Electrolyte solvent Sigma Aldrich
LiNOs Electrolyte salt Sigma Aldrich
LiTFSI Electrolyte salt Sigma Aldrich
Polymer film (25 pm) Separator Celgard

1-butyl-3-methyl-imidazolium

hexafluorophosphate ([BMIM]-[PFs])

IL as electrolyte solvent

lolitec (99.5 % purity)

1-butyl-3-methyl-imidazolium

[CF3S0s])

trifluoromethane-sulfonate ([BMIM]-

IL as electrolyte solvent

lolitec (99.5 % purity)

1-butyl-3-methyl-imidazolium

methylsulfate ((BMIM]-[MeSOa])

IL as electrolyte solvent

lolitec (98 % purity)

Tributylmethylammonium

(ITBMAJ-[TFSI))

bis(trifluoromethane)sulfonimide

IL as electrolyte solvent

lolitec (99 % purity)

[DEME]-[TFSI]

IL as electrolyte solvent

lolitec (99 % purity)

[PP14]-[TFSI]

IL as electrolyte solvent

lolitec (99 % purity)

3.1.2.

Experimental Details for Selection of Ionic Liquid Electrolytes for High-

Performing Lithium-Sulfur Batteries: An Experiment-Guided High-Throughput

Machine Learning Analysis

3.1.2.1. Cathode Formation. The composite cathode was prepared using the melt-diffusion

strategy. First, sulfur and carbon black (Timcal Super C65, MTI) were mixed with mortar in

70:30 mass ratios for a few minutes and stayed in a vacuum oven at 155 C for 12 hours.

After the heat treatment, some of the sulfur evaporated and the final sulfur amount of the
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resulting composite was 65.3 wt.%, which is determined by thermal gravimetric analysis
(TGA). The cathode powder was prepared by mixing 70 wt.% of this composite with 20 wt.
% of additional carbon black (C65) and 10 wt.% PVDF and the slurry was obtained using
NMP solvent. The NMP to solid ratio is generally 5 to 6 by mass to obtain honey-like
viscosities after overnight mixing. Using the doctor-blade method, the slurries were pasted
onto aluminum foil and dried overnight. Finally, the cathodes were punched into the
cathodes with 2.01 cm? areas and approximately 2 mg/cm? sulfur loadings and around 80

um thicknesses.

3.1.2.2. Coin Cell Fabrication. After the cathode formation, the rest of the steps were carried

out inside MBraun Labstar Glovebox with oxygen and water levels below 0.5 ppm. To test
the performances of the selected six ionic liquids, two-electrode CR2032 Li-S coin cells
were prepared using pure lithium metal as the anode, a polymeric Celgard separator and the
composite cathode. As the electrolyte, mixed electrolytes containing 25 vol.% IL and 75
vol.% organic solvent were used. All the electrolyte components were directly used without
further treatments. First, the organic electrolyte was prepared by mixing equal volumes of

DOL:DME (1:1 vol.%) solvents containing lithium salts as 1 M LiTFSI and 0.1 M LiNO3.

Table 3.2. The experimental details of Section 4.1.3.

Encapsulation Material Carbon Black (C65)
Encapsulation Condition C65/S (30/70 wt.%) at 155 °C for 12 h in
vacuum
Final Cathode Encapsu?ation C65/S, 70 wt.%
Composite Conductive C65, 20 wt.%
Binder PVDF, 10 wt.%
Final S wt. % 65.3x0.7=45.7 wt.%
Sulfur Loading 1 and 2 (mg/cm?)
Organic DOL:DME containing 1 M LiTFSI and 0.1
M LiNOs
BMIM- PFs
Electrolyte - BMIM-CFSOs
(215L72rvg$;:)_ IL BMIM-Me30
PP14-TFSI
DEME-TFSI
TBMA-TFSI
E/S Ratio 13 mL/g
Current Rate 0.1C and 0.5C
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The ILs were obtained from lolitec company used without further treatment. The
selected ionic liquids were: BMIM cation coupled with PFs, CF3SO3; and MeSO4 anions,
and TFSI anion paired with PP14, DEME and TBMA cations. Hence, 6 ILs were tested
experimentally.13 mL/g E/S ratio was used in all the cells. The cells rested at OCV for 16 h
to stabilize the cells and to properly wet the cathodes. For cycling experiments, the current
was decided according to the selected current rate, in other words, C-rate, which was
calculated using the theoretical capacity of the sulfur. 0.1C is the typically used C-rate, which
is the current for 10 hours of discharge theoretically. So, for 0.1C rate for 1 g sulfur-loaded
cathode, the corresponding current is 167.5 mA. Accordingly, the cells were cycled at a
constant current for at least 100 cycles to observe cycling performances. The experimental

variables were summarized in Table 3.2.

3.1.3. Experimental Details for MOF/Graphene Nanoplatelet Composite Increases

Rate Performance of Lithium-Sulfur Batteries

3.1.3.1. Synthesis of UiO-66/GNP and UiO-66/GNP-S Composites. The metal-organic

framework (UiO-66) presented in Section 4.1.4. was developed by Prof. Sahika Sena
Bayazit. A facile hydrothermal method was used for the synthesis of UiO-66 and UiO-66-
based materials. An equimolar amount of zirconium chloride (ZrCls, Sigma Aldrich, purity
>99.5 %) and terephthalic acid were mixed to synthesize UiO-66. Afterward, graphene
nanoplatelets (GNP, XG Science, purity >99.5 %) were added to the solution. GNP to ZrCl4
amount was set to 9:1, 7:3, and 5:5, and the samples were defined as UG-1, UG-3, and UG-
5, respectively. HCI (Merck Co., 37 %) was added dropwise into the solution, and then the
solution was put into a hydrothermal autoclave. The hydrothermal reaction was placed at
120 °C for 16 h. The as-prepared composites were cooled down and washed with
dimethylformamide (Sigma Aldrich Co. >99.5 %) and ethanol. The final drying was

performed in a vacuum at 60 °C.

The encapsulation of sulfur with these composites was done using the standard melt-
diffusion method, where the composites (UG-1, UG-3, and UG-5) were mixed with sulfur
at a ratio of 30:70 wt.% using a mortar and pestle for five minutes. Finally, the powder was

placed in a vacuum oven at 155 °C for 12 h. UiO-66/GNP/S composites prepared by
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incorporating sulfur into UG-1, UG-3, and UG-5 were named UGS-1, UGS-3, and UGS-5,
respectively. The sulfur contents in UGS-1, UGS-3, and UGS-5 composites are 57.33, 61.15,
and 68.79 wt.%, respectively, determined by elemental analysis (given in Appendix D, in
Table D.1). To compare the results, GNP-S and UiO66-S composites were prepared by the
same strategy, and their sulfur contents are 66.3 wt.% for the former and 49.4 wt.% for the

latter, measured by TGA (Figure D.1).

3.1.3.2. Material Characterization. TGA was performed from room temperature to 500 °C
with a 5 °C heat ramp under a nitrogen atmosphere. In addition, elemental analysis was used
to determine the sulfur content in UG composites using Thermo Scientific Flash 2000.
Scanning electron microscopy (SEM) images were taken using Quanta FEG 250, FEI
Company, Netherlands, to observe the morphology changes. Fourier transform infrared
spectroscopy (FTIR) and X-ray diffraction spectroscopy (XRD) were also applied to UiO-
66/GNP surfaces. The crystal patterns of the composites were determined by XRD with
Rigaku D/Max-2200 diffractometer (Cu Ka radiation with A = 0.15418 nm). FTIR scans
were applied by the KBr method with Bruker Alpha spectrometer. Finally, the surface areas
and the pore sizes of the composites were determined by Brunauer-Emmett-Teller (BET)

analysis using Micromeritics 3Flex Surface Characterization Analyzer.

3.1.3.3. Cell Preparation and Electrochemical Characterization. The sulfur cathodes were

prepared using the synthesized UGS composites, carbon black (Timcal Super C65, MTI),
and PVDF binder with 70:20:10 weight % ratios mixed in the NMP solvent. The electrode
thicknesses were adjusted using doctor blades, and the cathode slurry was pasted on
aluminum foil (15 pm thick, MTI) to get sulfur loadings of 1 mg/cm? and 2 mg/cm? with a
cathode area of 2.01 cm?. The dried cathode, the polymeric separator (25 um thick, 3.1 cm?
area, MTI), and the pure lithium metal anode (170 pm thick, 2.01 cm? area, MTI) were used
in the preparation of two-electrode CR2032 coin cells. A mixture of DOL:DME (1:1 vol.%)
containing 1 M LiTFSI and 0.1 M LiNO3 was used as the organic electrolyte in all cells.
The E/S ratio was set to 13 mL/g in all experiments. Afterwards, the electrochemical
measurements were performed using these coin cells after resting for 16h at open cell voltage
to stabilize cell voltage and to let the electrolyte perfectly wet the cathodes. The galvanostatic

cycling and rate capability experiments were carried out in battery cyclers (Neware) at 0.1C
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and 0.5C for 1.7-3.0 V voltage window, which are adjusted considering 1675 mAh/g as the
theoretical capacity of sulfur. In addition, the rate capability tests were also employed to see
how the cells perform under high currents and to determine if they can recover their
capacities even after high current rates. Hence, the currents were set to 0.1C, 0.2C, 0.5C, 1C,

0.2C, 0.5C, and 0.1C in sequence for five cycles. The experimental details were given in

Table 3.3.

Table 3.3. The experimental details of Section 4.1.4.

Encapsulation Material UG-1 UG-2 UG-3
Encapsulation Condition UG/S (30/70 wt.%) at 155 °C for 12 h in vacuum
Fiial Encapsulation UGS, 70 wt.%

Cathode Conductive Carbon black (C65), 20 wt.%

Composite, | Binder PVDF, 10 wt.%

Final S wt. % 57.33x0.7=40.1 61.15x0.7=42.8 68.79x0.7=48.2
Sulfur Loading 1 and 2 (mg/cm?)

Electrolyte DOL:DME containing 1 M LiTFSI and 0.1 M LiNOs
E/S Ratio 13 mL/g

Current Rate 0.1C ,0.5C and rate capability

3.1.3.4. Polysulfide Adsorption Test. The adsorption capacities of the prepared composites

were visually detected by the color change of the polysulfide solution. The polysulfide
solution was prepared by mixing a 1:5 molar ratio of Sg and Li2S in DOL:DME (1:1 vol.%)
solution for 24h; the final solution contained 10 mM of Li»Ss. The adsorption abilities were
tested in mixtures containing 20 mL of the polysulfide solution with 10 mg of the prepared
UG-1, UG-3, and UG-5 composites. After continuous stirring for 2 hours, the polysulfide

solutions rested, and the color change was observed.

3.2. System-Level Performance Model

After finishing the experiments and getting the discharge capacities, average voltages,
and cell resistances, system-level performance models were used by following the steps
shown in Figure 3.2. This model is based on the BatPaC model developed by Argonne
National Laboratory for LIBs [199]. BatPaC model developed for LIBs was modified for Li-
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S batteries. Depending on the experimental results, the model calculates the required cell
thicknesses, areas, and specific areal capacities. According to these calculations, every
component in a Li-S pack was determined and sized by the model. Hence, the system-level
performances were calculated as the final outputs of the model using the masses and volumes

of all components in Li-S battery packs.

Chemical & System-Level Cell Design

Properties

> Power and Energy - c
» Voltage ( Number of Cells) ASI=f(l,L) = 0pid
» Physicochemical properties (p, T

o)

Cell Design Parameters Electrochemical

» Sulfur Loading Perfor T
» Encapsulation Materials (Cell capac.lty, voltage P = N.Ip.A.(Up — Ip.ASIp)
» Discharge Capacity and resistance)
» E/S Ratio
Component&Package Sizing
System-Level Performance » BatPac model will be taken as basis
v’ Energy Density (Wh/L) » Thermal management systems will be included
v' Specific Energy (Wh/kg) » All the components in a battery package will be designed

» Package mass and volume will be calculated

Figure 3.2. Summary of the system-level modeling.

The model reported in this section was originally developed by Eroglu et al. and
utilized in this thesis to represent the system-level performances [65]. The model description
reported here was published as an original research article in the International Journal of

Energy Research by authors A. Kilic, Prof. R. Yildirim, Prof. D. Eroglu [44].

3.2.1. 1-D Electrochemical Model

For developing the system-level performance model, first a 1-D electrochemical model
of the Li-S cell predicting the current-voltage relationship for each charge-transfer step was
proposed. This model calculates the cell voltage by taking the anode, porous separator,

cathode, and both positive and negative current collectors into account. This concentration-
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independent, 1-D model calculates the overpotential and area specific impedence (ASI) of

the individual components at a specified degree of discharge as illustrated in Figure 3.3.

The sulfur cathode is assumed to be a porous structure consisting of sulfur, carbon,
binder, and electrolyte. In addition, it was assumed that there is only one reaction taking

place in each discharge plateau as shown
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Figure 3.3. Summary of the electrochemical modeling for all cell components.

For the calculation of the cathode overpotential, the porous electrode model developed
by Newman and Tobias was used [84], where either Tafel or linear kinetics is applied
depending on the current density. For Tafel kinetics, |I| > aiq,eLy, criteria was used and

the overpotential is calculated as
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1 5 € 21 0 261 | 2|116%2 33
npe—[—g( —e)[5+gnsec( —1/))]+Fnsec1/)+ n ( PR (3.3)
whereas the cathode overpotential for Linear kinetics, |I| < aigpeLpe,
Oeff Keff
IXLpe 2+<?ff+ ?ﬁ)COShU
Mpe =" — 1+ _ , (3.4)
eff T Ocsf vsinhv
where the ASI is calculated from
npe
ASIpe = T (35)

The oxidation of lithium takes place in the anode during discharge, and the Butler-

Volmer equation is used to calculate its kinetics as shown

Li® — Lit+ e, (3.6)

. Une aF — Qe F
1= ome |exp (210 ) — exp (—pe=nne )| G7)

T]ne
ASIne — T (38)
Ohm’s law is used to calculate the separator resistance and its overpotential with
Nsep = ASlsep X 1, (3.9)
L
ASlgey = —2—, (3.10)
Ksepefs

The ASI shown in Equation (3.9) and Equation (3.10), is taken as 0.0002 ohm and 0.0005
for negative and positive current collectors, respectively, where the area is 470 cm? for both
and the overpotentails are calculated using
Neew = ASIc_x I, (3.11)
Neew = ASIcox 1. (3.12)

After the total cell overpotential is calculated, cell voltage at constant current density

is determined by

Vcell = Uocv,p — Neells (313)
Necett = MNne + nsep + npe + Nee- + ncc+, (314)
ASl,ey = ASly + ASlgep + ASLy, + ASI_ (3.15)

+ ASI,,,.
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Basically, it is calculated using Equation (3.13) by subtracting the total overpotential,
Equation (3.14), from the thermodynamic cell voltage where total impedance is calculated

by Eqation (3.15).

3.2.2. System-Level Performance Model Adapted for Li-S Batteries

Here, we modified the BatPac model, which was developed by Argonne National
Laboratory for the calculation of the system-level performances of LIBs [65], and for the Li-
S battery systems to estimate the system-level energy density and specific energy [85]. The
1-D electrochemical model described above calculates the area-specific impedance and
overpotential of the cell components; specifically, negative and positive electrodes and their
current collectors together with the separator using the experimental inputs including peak
discharge capacities (PDCs), cathode wt. percentages, E/S ratios, and sulfur loadings. The
cell voltage was determined by subtracting the total overpotential from the open circuit cell
potential of 2.2V. Afterward, the battery pack was designed according to the voltage, energy
and power requirements. The typical values of 80% and 50% of degree of discharges are

determined as the rated power and energy requirements, respectively.

For the system-level calculations, power and energy requirements, denoted as

subscript p and e, were used as shown

P
A = .
cell Ip X V;, % Ncell (3 16)
U
Neew = 55, (3.17)
ocv,p
E
C=——, (3.18)
Ve X Ncell
C
L,, = .
pe Acell X Edis X gs, (3 19)
Vy = 0.8 X Uyey ps (3.20)
Uocvp V
L, = =X |(1-— .
P ASI, Uperp) ) (3.21)
C
I, = (3.22)

Acell X 5
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First, the cell area and the number of cells required for pack power were determined using
the Equation (3.16) and (3.17), respectively. On the other hand, the energy requirements
were used to calculate the cell capacity, Equation (3.18), and thus the cathode thickness,
Equation (3.19). Afterwards, iterations were made to get the rated currents (Equation (3.21))
satisfying the rated voltages (Equation (3.20)). Finally, current at rated energy were

calculated iteratively using the capacity and cell area requirements (Equation (3.22)).

One crucial issue is related to the thickness of the positive electrode calculation, Lye.
It is calculated by the model but practically to have functioning cathodes, it should not

exceed 150 um for the porous cathode. Hence, the cell area was re-calculated using

C
Acenr Lo X Oy’ (3.23)
if the cathode thickness exceeded this maximum electrode thickness.
Table 3.4. The parameters used in the system-level and electrochemical model.
Parameter Value
Open-circuit cell voltage, U,, (V) 2.2
Power, P (kW) 80
Energy, E (kWh) 118
Maximum cathode thickness, Lye max (Um) 150
Average battery open-circuit voltage, Upai (V) 360
Target voltage efficiency at rated power, [V/Uocvp] 0.8
Useable state of charge window, (%) 85
Temperature, T (K) 298
Separator thickness, Lsep, (m) 20
Separator effective ionic conductivity, Keff,sep (S/cm) 6.5x10™*
Cathode transfer coefficient, Opea, Ope,c 0.5
Anode exchange current density, io e (A/cm?) 107
Anode transfer coefficient, e a, One,c 0.5
Cathode electrochemically active area, a (1/cm) A = 650000 cm?/g - p. - &
Cathode effective ionic conductivity, Kerr (S/cm) Kefr =K - £
Cathode effective electronic conductivity, cer (S/cm) Ceff =G * &'~
Cathode exchange current density, iope (A/cm?) 10°°
Cathode electronic conductivity, ¢ (S/cm) 100
Cathode ionic conductivity, k (S/cm) 0.01

The parameters together with their symbols used in the models are given in Table 3.4.

With the calculation of the required cell area and other cell variables, suitable packaging and
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thermal management components were determined. Consequently, the system-level energy
densities and specific energies were calculated by taking all the system variables into
account. Although material properties such as carbon/electrolyte densities and conductivities
are important input variables for the electrochemical model, the system-level performances
were found to be rather insensitive to these factors. In fact, the effect of these material
properties on the energy density and specific energy is implicitly included in the model since
these properties are highly effective on the specific capacities obtained experimentally, and
these capacities are the most determinative variable on the system-level performances.
Hence, their effects on the system-level performance are taken into account with the variance

in the specific capacity value.

The experimental inputs to the system-level model were restricted to the specific
capacity, E/S ratio, sulfur loading as well is the cathode sulfur wt. % and binder wt.%. The
system-level model were used in two sections: Section 4.1.2 and Section 4.1.5. In Section
4.1.2, the model was applied to literature data. However, among 245 cases, only half of them
were providing all of these necessary information whereas the rest did not provide E/S ratios.

On the other hand, in Section 4.1.5, the variables shown in Table 3.5 were used.

Table 3.5. The experimental variables used in Section 4.1.5 fed to the system-level model.

ZqSLZ;IO (Sni(gx/ljrlnnzf deltlon KBS ;/CKB Test Condition
20.1 1.24 - 803 | 1329 Group 1, 0.1C, Ist capacity
13.2 24 f; S 466 | 1201 Group 2, 0.2C, Ist capacity
20.1 1.24 5% |30s | 1249 | Croupl0C 100h
.°é ZJ = capacity
132 24 i E % 142. 1015 Group 2,0.2C, 100th
o > |6 capacity
20 0.8 > = 7 [1117 | 1123 | 0.1C, Ist capacity
13 0.8 S f E 768 | 973 0.1C, 1st capacity
6 0.8 2 % E 241 | 811 0.1C, 1st capacity
20 1.2 5 £ 4 [ 962 | 1285 0.1C, Ist capacity
13 1.2 = u% 8 799 | 1106 0.1C, 1st capacity
6 1.2 § | § 237 | 965 0.1C, Ist capacity
20 3 -°§ Lé % 279 | 1009 0.1C, 1st capacity
13 3 £ 8 a | 219 | 804 0.1C, 1st capacity
6 3 Oz = (93 [711 0.1C, st capacity
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3.3. Machine Learning Models

ML models were applied to get the trends and to reveal the hidden relations between
battery performances with the materials and design parameters of Li-S and Li-O; batteries.
The ML steps were given, including the data gathering, data preparation, model
development, and analysis of the results, as illustrated in Figure 3.4. Data gathering can be
done by collecting literature data as well as using computational modeling or simply using
databases that already utilize these techniques. This depends on data availability and
applicability for the desired purpose. Data preparation is one of the most important steps for
good modeling. On the other hand, the appropriate model depends on the structure and
quality of the data. Hence, in this section, the data preparation method as well as the
modeling techniques were given for each of the sections utilizing these techniques, namely
Sections 4.1.1-3 and Sections 4.2.1-2. In this thesis, a bibliometric analysis was performed
by using simple text mining from the data obtained from Web of Science (WOS) database.
Apart from that, ARM is the main algorithm utilized in this study as ARM basically works
with categorical data; hence it is suitable for the datasets built up in this thesis. ARM gives
the single-factor relations between each features and the desired outputs independently. On
the other hand, DT is used to get heuristic rules for obtaining the target variables where
features are considered altogether to get a rule leading to high class. Finally, the prediction
models were built using XGBoost and RF algoritms; both are ensemble tree models where
multiple trees were built. Trees were built in parallel and in series in RF and XGBoost,
respectively, where the majority of the trees determine the model output whereas trees are
built sequentially where each tree improves the latter and the final output is decided. Hence,
XGBoost is better to reveal complex non-linear relations but it is slower than RF. In this
respect, XGBoost is used in the PS solubility calculations, Section 4.1.3, where only 20
descriptors were used. On the other hand, RF model is used for gas solubility calculations in

Section 4.2.2 where more than 400 variables are present.

Data Data Model Model Result
Collection Preparation Selection [Optimization Analysis

Figure 3.4. Summary of machine learning steps.



47

3.3.1. Text mining used in bibliometric analysis of beyond LIBs

A bibliometric analysis was performed, and the results are given in the beginning of
Section 4, to see the major patterns and trends involving beyond LIB research [9]. First, a
keyword search (with the keyword option) was performed for the articles present in the WOS
on 25 June 2023. Alternative battery names were used; for example, we used keywords like
M-ion batter*, Metal-ion batter™®, Metal ion batter* M-ion cell, Metal-ion cell, and Metal
ion cell for metal-ion batteries (“*” is used to account for both singular and plural use of the
same word). Likewise, for metal-air batteries, both oxygen and air keywords were utilized.
The “Title” option was used as the search criteria to only get the articles in the battery field,
assuming that the battery chemistry will always be on the title. Without applying any
filtering, all the information of the searched results was exported as Excel files to analyze
literature trends. In these Excel files, in addition to the publication information of the articles,
Abstracts, Author Keywords, and Keywords Plus were also listed. Although Abstracts can
also be used in the text mining analysis, to eliminate the complexity of the modeling process,
only the keywords (both author keywords and keywords plus) were used in the text mining
analysis. R Studio environment was used for basic text tidying and word frequency analysis
with the help of stringr, tm, plurize, and tidytext libraries [200]. In the modeling process, the
data was first cleaned using the basics of text mining commands, eliminating stop words and
punctuation, singularization, and handling synonyms. Afterward, the most frequently used
keywords were investigated for all beyond LIBs. First, the focus of articles on essential
elements (anode, cathode, electrolyte, and separator) was analyzed as the keywords; techno-
economic analysis, ML analysis, and other modeling works for the entire battery systems
were represented as modeling studies. Furthermore, two-word bigram analyses, which are
the counts of two-word relations, were also performed for selected words to see the most

frequently followed words.

3.3.2. Materials and Methods for Assessment of Critical Materials and Cell Design

Factors for High Performance Lithium-Sulfur Batteries using Machine Learning

This section is modified from the original research paper published in the Chemical

Engineering Journal by authors A. Kilic, Dr. C. Odabasi, Prof. R. Yildirim, and Prof. D.
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Eroglu [43]. The data gathering, preparation, and result analysis were performed in the scope

of this thesis by A. Kilic, whereas the ARM analysis was performed by C. Odabasi.

3.3.2.1. Constructing Database. The database was constructed by extracting data from the

papers indexed by the WOS database; the papers were decided using relevance search with

¢ 9

all possible ways of written lithium sulfur battery (word, symbols w/o “-”” and so on). Only
the articles published between 01.01.2010-18.07.2018 (search day) were used to represent
the recent developments in the field. Additionally, the data was extracted from only the
experimental research articles; the review articles or other publications were not considered.
At the end, a Li-S database having 1660 experimental data from 353 articles was emerged;
this dataset should sufficiently represent the literature because it is constituted of about 10
% of the research articles appeared in the WOS database within our search time interval. As
given in Section 4.1.1, the data subsets for the Li-S batteries having liquid electrolyte,

catholyte, liquid and solid electrolyte together and solid electrolyte only were analyzed

separately. Table A.1 includes the structure of the database.

Although the theoretical discharge capacity of the Li-S batteries is known to be 1675
mAh/g [201] this capacity could not be attained in most of the works; instead, how much the
experimental results approached to the theoretical capacity is used as a performance
indicator of the cells. Therefore, PDC were used normalized to sulfur mass as one of the
output (performance) variables in our analysis. Additionally, the cycle life of the battery is
also critical for successful commercialization; for instance, a battery should retain 80% of
its initial capacity for at least 1000 cycles [65] to be used in an electric vehicle [202] Hence,
the cycle number were also analyzed and compared, at which the battery preserved more
than 80% of its PDC, as another performance variable. Here it should be emphasized that
energy density and specific energy are also key performance indicators for Li-S batteries.
However, they were not considered in this analysis as output variables since the majority of
the studies in the literature do not report these values. Yet, in order to evaluate the effect of
materials and design factors to achieve high energy density Li-S cells, an additional analysis,
in which Li-S cells only with low E/S ratios (< 5 mL/g) and high S loadings (> 5 mg/cm?)

were considered, was carried out.
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Table 3.6. Categorical and numerical variables (factors) used in the analysis.

(0.02-20 mg/cm?)

Factor Alternatives

Anode Material Li Metal, Modified Li Anode*

Current Collector Al Foil, Carbon Coated Al foil, Carbon, Nickel, Others1*, No
Separator Glass, Polymer, Others2*

Interlayer Yes, No

Sulfur Type Sulfur, Sulfur + Others3*, LixSy, Others4*

S Loading

0-1, 1-3, 3-5, Above 5

Sulfur wt.% (0-100 wt.%)

0-25, 25-50, 50-75, 75-100

S Catholyte Conc. (0-12 M)

0-1, 1-5, Above 6

Conductive Material

Carbon Black, Carbon Black + Others5*, Carbon Black + Structured
Carbonl*, CNT, Others6*, Structured Carbon2*, Structured Carbon3* +
Others7*, No

Carbon wt.% (0-80 wt.%)

0, 0-15, 15-30, Above 30

Encapsulation Material

Activated Carbon, Activated Carbon+Graphene, Carbon Black, Carbon Black
+ CNT/Graphene / Others8* / PANI/ Porous Carbons1*, CNF, CNF + GO /
Others9*, CNT, CNT+GO/GO I Porous Carbons2*
/Graphene/Others10*/Porous Carbons3* /Porous Carbons4*+PANI, GO,

GO+Hollow  Structured  Carbonl*  /Othersl1*/Polypyrrole/Porous
Carbons5*, Graphene, Graphene+ Hollow Structured
Carbon2*/OtherCarbons1*/Others12*/ Polypyrrole/Porous

Carbons6*/Porous Carbons7* +Others13*, Hollow Structured Carbon3*,
Hollow Structured Carbon4*+Others14*/Polypyrrole, No, Other Carbons2*,
Other Carbons3*+Others15*, Others16*, PANI, Polypyrrole, Porous
Carbons8*, Porous Carbons9* +Others17*/PANI/Polypyrrole, Structured
Carbons4*

Encapsulation wt.%
(0-89 wt.%)

0, 0-25, 25-40, Above 40

Electrolyte Solvent

Doping Type Nitrogen, Nitrogen+Others18*, Others19*, No

Binder Type No, PVDF, CMC, Others20, LA, PEO, PTFE, CMC+SBR,
PVDF+Others21*, PEO+Others22*
DOL:DME, DOL:DME:Others23, DOL:TEGDME, EC:DEC,

EC:Others24*, Others25*, TEGDME

Electrolyte Salt LiTF, LiTFSI, LiPFs, Others26*, LiClO4, No
Electrolyte Additive Yes, No
Electrolyte Additive Conc.
0-0.1, 0.1-0.2, 0.2-0.5, Above 5
(0-4.65 M)

Electrolyte/Sulfur Ratio
(0-166 mL/g)

0-5, 5-10, 10-15, 15-30, Above 30

*Detailed descriptions and abbreviations are given in Appendix A. CMC: Carboxymethyl Cellulose,
CNF:Carbon Nanofiber, DEC:Diethyl Carbonate, GO:Graphene Oxide, LA:Polymer n-Lauryl Acrylate,
PANI:Polyaniline, PEO: Polyethylene Oxide, PTFE:Polytetrafluoroethylene SBR:Styrene-Butadiene Rubber,
TEGDME:Tetraethylene Glycol Dimethyl Ether. Slashes show the alternatives for additional materials.

There are various variables (factors) that affect the attained PDC and cycle life of a Li-

S cell; the most important continuous and categorical factors with their ranges (for

continuous factors) or alternatives (for categorical factors), as extracted from the papers, are

shown in Table 3.6. Different names and notations used for the alternatives of discrete

variables were combined into a single clear and comparable statement, while the continuous
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variables were categorized by dividing into intervals because the ML technique we used
required so. The new materials alternatives tested in some of the recent studies were
combined under a single factor named as others because individual number of data points
for these factors were not sufficient to make statistical analysis or compare with the

conventional alternatives; the detailed content of others is given in Appendix A.

The articles, which do not contain sufficient information for the key input or
performance variables, were not used in dataset construction; however, for certain variables
that are not critical, the most commonly used materials were assumed if only that information
is missing. For instance, if there was no specific information, we assumed “Li metal” for the
anode type, “Polymer” as the separator type, “No” for both the conductive additive and
doping types. If not given, the cathode area was assumed as 1.6 cm? for C-rate estimations
and the sulfur loading was taken to be 1 mg/cm? for E/S ratio calculations. If the conductive
materials and sulfur were pretreated to form a composite before they were used in the
cathode preparation, the materials were defined as the “encapsulation materials”, whereas
they were categorized as “conductive materials” if there was no other treatment of the

cathode matrix and sulfur than mechanical mixing.

3.3.2.2. Computational Details. Single factor associations (i.e. relation of performance

variables with individual factors) were analyzed using the ARM method to identify the
factors leading to high PDC or longer cycle life; high performance cell classes were defined,
and the factors required to have a cell in these classes were identified using ARM. Apriori
algorithm was adopted by using arules package [203] of R Studio software [204]. ARM
results were evaluated using three key parameters for this technique: support, confidence

and /ift values of the parameters. These parameters can be calculated from

A&B
Support = ——, (3.24)
N
A&B
Confidence = ——, (3.25)
e (3.26)
Lift = B

S
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Support is defined as the fraction of batteries made using a specific material (factor)
and have defined PDC (in high class) in all data points while confidence is the fraction of
batteries made with that material in all cells in the high PDC class (calculated by Equation
(3.24) and Equation (3.25), respectively). Lift, which is the most important parameter to
evaluate the ARM results, is the fraction of batteries with that material in high PDC class

cells to the fraction of batteries with that materials in total data points, Equation (3.26).

As it will be more apparent in the Section 4.1.1, the lift should be more than one, and
higher lift values indicate that the fraction of that material in high performance cells is higher
than its fraction in the entire database indicating that the use of that material favors high
performance cells. ARM analyses were performed for the PDCs equal to or higher than 1000
mAh/g, 1200 mA/g, 1400 mAh/g and 1600 mAh/g, and the change in lift values was
monitored to determine the significance of the individual factors for high performance. The
same procedure was also applied to investigate the factor effect on cycle life by analyzing
the lift values for the cells retained 80 % of its peak discharge capacity more than 50, 100,
200, 300 and 400 cycles.

3.3.3. Materials and Methods for Assessment of Ionic Liquid Electrolytes for High

Performance Lithium-Sulfur Batteries using Machine Learning

This chapter is an edited version of the original article published in the International
Journal of Energy Research by authors A. Kilic, Prof. R. Yildirim, and Prof. D. Eroglu [44].
The ARM analysis on peak discharge capacity, system-level specific energy, and energy

density was performed in this section as the ML method.

WOS database was used to collect the experimental articles reporting the use of ionic
liquids as their liquid electrolytes in Li-S batteries; the application of ILs in solid electrolytes
or cathode matrices was excluded. After the data collection step, the dataset was
preprocessed to reduce inconsistencies and to select suitable variables (i.e., those widely
reported in the literature and influential on the performance) while the rarely reported
variables such as electrode thicknesses and material properties were not included to have a

statistically reliable result. Similarly, the cells tested at temperatures higher than 30 °C were
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not considered here because those data were significantly different than the ones obtained at
room temperature, yet not in sufficient numbers to show the temperature effects. In the end,
a dataset with 244 data points from 42 articles, including important cell design variables and
materials, was built. The data points in the dataset using only molecular solvents (37 data
points), reported for comparison reasons, are not used in the analysis either. Consequently,
the dataset used in this section was composed of 207 data points; the variables and their

alternatives (levels) are given in Table 3.7.

Table 3.7. The variables and levels used in the analysis.

Factors Levels
C4dmim_TFSI, DEME Othersl, DEME TFSI, EMIM TFSI,
Li(G3) Othersl, Li(G3) TFSI, Li(G4) Othersl, Li(G4) TFSI,
Ionic Liquid P1,201 _TFSI, P13_Othersl, P13 _TFSI, P14 Othersl, P14 TFSI,
2 P1A3 TFSI, P2225 TFSI, PMIM TFSI, PP13_TFSI, PP14 TFSI,
% TES TFSI
s DME, DOL, DOL:DME, Fluorinated Ether, None, Others2
g Molecular Solvent(M ’ ’ ’ ’ ’ ’
- MS) I TEGDME
> IL/MS vol.% <50, 50, >50, 100
£ MS Salt LiTFSI, None, Others3
8 |MS Additive Yes, None
Fa E/S Ratio 0-15.0, 15.0-30.0,>30.0
Conductive Material Acetylene Black, Carbon Black, Ketjen Black, None, Others4
Activated carbon, Carbon Black, Carbon Nanotube, Graphene
Encapsulation Material Oxide, Ketjen Black, Mesoporous carbon, Nano Carbon, None,
. Others5, Porous Carbon
% Binder CMC, None, Others6, PVA, PVDF, SBR/CMC
£ [Sulfur wt.% 0-50, 50-60, >60
> Conductive wt.% 0, <20, 20, >20
-% Encapsulation wt.% 0, 1-20, 20-30, 30-35, >35
<
S Sulfur Loading (mg/cm2) |0-0.1, 1.0-1.5, 1.5-4.0, >4.0
o Anode Li metal, Modified Li anode
(]
g Separator Glass, Polymer

Others1:FSI, Nitrate, trifluoromethanesulfonate, BETA, BF4, tris(pentafluoroethyl)trifluorophosphate,
tricyanomethanide // Fluoriated Ethers: HFE, TFTFE, TTE // Others2: TEGDME:DOL, TMU, DMSO,
ACN, TTE:DOL, DOL:ETFE, Methylisopropylsulfone // Others3: LiFSI, LiBF4, LiPF6, LiiBETA],
LiODFB // Others4: Carbon Nanotube+Ketjenblack, Graphene+Carbon Black // OthersS5:
Graphene+magnesium aluminate, N-doped mesoporous carbon // Others6: LiPAA, PAA, SBR, PAA/PVDF,
PEDOT/PSS, PEO

As seen in Table 3.7, there are 15 important variables in the dataset. Most of these
variables are already categorical by their nature; the originally continuous variables were
also categorized into intervals to be able to be used in the ARM analysis, which requires

categorical data. The range of the intervals is determined according to the distribution of the
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data points to have a statistically significant number of data in each class with the best
representation of the patterns in the literature. The rarely used materials were categorized as
“others” because no rule can be deduced from the results supported by only a few instances.
As it was stated in the Introduction section, due to the insulating nature of sulfur, the
conductive materials should be added into the cathodes. If these materials are chemically
pretreated with sulfur before the cathode formation, they were reported as “Encapsulation
Materials”, while physically treated materials were saved as “Conductive Materials”. As the
performance metric, the peak discharge capacity (PDC) normalized to sulfur amount (mAh/
g §) was chosen because it shows how much of the theoretical capacity of sulfur cathodes is
attained. In addition, the system-level energy density (Wh/L) and specific energy (Wh/kg),
which are more relevant performance indicators in practice, were calculated using the
modified version of the Battery Performance and Cost (BatPaC) model as described in

Section 3.2.

ARM model was used to identify the single factor associations between each variable
and the performance metrics. First of all, the 4igh class was defined by setting a minimum
performance limit, either PDC, specific energy or energy density, and the levels of each
factor, as shown in Table 3.7, that can lead to that high class was analyzed using the ARM
results. ARM model was developed using R Studio software and its apriori algorithm of
arules package [204]. This algorithm provides support, confidence and lift values calculated
from the Equation (3.24) to Equation (3.26) where A shows the count of a specific level of
a factor, and B and N show the number of instances in the high class and the total dataset,
respectively. Support and confidence show the most direct trends in the dataset where the
fraction of a level with high performance in the entire and the high-performance datasets,
respectively, were calculated. On the other hand, more complex patterns can be found using
lift values, which is calculated by the ratio of the confidence to the fraction of that level in
the total dataset [48]; the lift values above one signify positive associations between that
level and high performance since it is more frequently found in the high class subset [205].
Furthermore, higher lift values imply higher probability to have better performances; this
will be more evident in the next section when it is discussed on specific examples. It should
be noted that although cycling performances at high current rates is also important for the

Li-S batteries, this data in the literature for ionic liquid electrolytes are not sufficient to get
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statistically valid conclusions. Hence, this indicates that the IL electrolytes have some
stability problem which should be improved, but this topic is out of the scope of this work.
Because of that, ARM analysis was applied to PDC, energy density and specific energy only.

3.3.4. Materials and Methods for Selection of Ionic Liquid Electrolytes for High-
Performing Lithium-Sulfur Batteries: An Experiment-Guided High-Throughput

Machine Learning Analysis

In this section, the data preparation and ML models for Chapter 4.1.3. is presented; a
manuscript detailing these methods are in preparation by authors A. Kilic, O. Abdelaty, Prof.
D. A. Uzun, Prof. R. Yildirim, and Prof. D. Eroglu. The COSMO-RS calculations, ML
studies and the IL experiments were performed by A. Kilic and presented here. O. Abdelaty
also supported the discussions on ML modeling. Here, the dataset was prepared by using the

COSMO-RS calculations for solubilities and by using PM3 for feature determination.

3.3.4.1. Solubility and Property Calculations. COSMOThermX software was used for the
determination of Li>Ss solubility in ILs at 25 °C using COSMO-RS calculations [206]. The
built-in IL database, COSMObaselL, was used to form the dataset for this study.
COSMOThermX uses the o-profiles calculated using the DFT functional BP and def2-TZVP

level. The dataset comprised 98 anions and 370 cations, which adds up to 36,260 pairs of
ILs. The long chain Li>Sg was used to model the PSs in the system. In accordance with
previous reports about Li>Sg conformation in the solvents [207,208], the linear conformation
of Li2Sg was optimized using B3LYP/def2-TZVP then inputted to TMOLEX (v.4.5.3) to
generate the standard o-profile file (.cosmo file). The sigma profile and the corresponding

surface of the Li»Sg molecule are given in Figure C.1

The IL Screening Module was used to calculate the PS solubility in ILs at 25 °C via
1
Yi©

where C° and y;” are capacity (mol/mol solubility) and activity coefficient of the PS at

c>”

L

(3.27)

infinite dilution, respectively.
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The melting point, viscosity, and electrical conductivity were also calculated at 25 °C
using the IL Properties Module, which also uses the same c-profile files for the ions. The
densities of ILs were calculated using the molecular volume obtained by the COSMO-RS
volume calculations, whereas COSMO-RS enthalpies were used for the melting point
calculations. Finally, the same formula utilizing ionic radius and dielectric energies was used
for the viscosity and electronic conductivity calculations. The implemented correlation

coefficients were naturally different for each calculation.

3.3.4.2. Structural Descriptors for ILs. The structures in the COSMObasell were

reoptimized with Spartan’14 using the PM3 semi-empirical method with the default
convergence criteria. Similar to our previous studies [209,210], ten descriptors were
calculated for each anion and cation separately: Molecular weight (MW in amu), HOMO
and LUMO energies (Enomo, ELumo in eV), CPK-area (in A?) and CPK ovality (O) obtained
from the space-filling model, dipole (n in D), polarizability (m?), vibrational zero point
energy (ZPE in kJ/mol), hydrogen bond donor count (HBD), and hydrogen bond acceptor
count (HBA). Consequently, there are 20 descriptors for each IL pair. The distribution of

ions in terms of these structural descriptors is given in Figure 3.5.
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Figure 3.5. The distributions of descriptors; molecular weight (a), HOMO (b), LUMO (c),
CPK area (d), CPK Ovality (e), dipole (f), polarizability (g), zero point energy (h), HBA

count (i) and HBD count (j), for cations and anions in the dataset.
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3.3.4.3. ML Modeling. Distinct prediction models were trained for each IL property of

interest: the solubility of Li>Ss, melting point, viscosity, and electrical conductivity. Random
sampling was employed to negate the bias towards the majority class. Afterward, the dataset
was partitioned into a training and test set using a 75%-25% split. Given that PS solubility
highly depends on anion type, random assignment of the data entries into each subset was
avoided as it overfitted the ions in the set and performed poorly on new ions (due to the
strong effects of the anions). Therefore, the splitting was done either according to the anion
or the cation groups. In practice, this means that a random 25% fraction of anions/cations in
each anion/cation group was included in the test set, while the remaining ions were used in
the training set. This way, the test set contains new anions/cations not encountered during
training or validation. The same strategy was used for 5-fold cross-validation, where 20% of
the training ions were selected in the validation sets, and the rest were used for training.
Next, the partitioned dataset, along with the respective values of properties calculated by
COSMOThermX, were used to train ML models XGBoost algorithm was used in the
predictions. The hyperparameters were optimized with a grid search according to the
performance criteria of root mean square error (RMSE), which shows the average difference
between the predicted and the COSMO-RS calculated values; hence, the lower it is, the
better the predictions. In addition, the R-squared (R?) value, the proportion of the difference
between the two, ranging between 0 and 1, is also reported [211]. The optimized
hyperparameters for XGBoost are the maximum depth, number of trees, and learning rate
(m) values, which were found to be 3, 225, and 0.1, respectively, for the solubility
predictions. The descriptor importance was calculated with these hyperparameters over the

train set.

After the prediction models were built, the ARM method was utilized to classify the
promising anion and cations together with their descriptors. The classification models were
trained as binary classifiers: class A and class B are the favorable and non-favorable levels
of related properties and solubilities, respectively. The thresholds of these classes were
determined according to the experimental results and the desired characteristics of a battery
electrolyte. In the case of solubility, a threshold value of -0.7 to 0.1 mol/mol in the log scale
was selected as it is comparable to ILs tested in the literature and the performance data

obtained in our research [75]. Similarly, limits for the viscosity, conductivity, and melting
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point classifications were determined as 100 mPa.s, 2 mS/cm, and 0 °C, respectively. In the
ARM analysis, all these four targets were held to see the most promising ILs as electrolytes

of Li-S batteries.

The relationships between the anion/cation groups and their descriptors with the class
A in all four criteria were independently analyzed by a single-factor ARM algorithm. Since
ARM only works for categorical data, HBA and HBD counts were turned into factors, and
the remaining eight numeric descriptors were categorized into ten multiple intervals with a
similar number of data points. The performance metrics, support, confidence, and lift, were
used together to determine the reliability of a rule. Similar to the previous sections, the lift
value was considered the ultimate criterion to assess the association between a descriptor
and the solubility, as long as the rule clears the minimum support and confidence thresholds,
taken as 0.1 % and 3 %, respectively. All the modeling and figure creation was performed

in the R Studio environment.

3.3.5. Materials and Methods for Determining the Key Performance Factors in

Lithium-Oxygen Batteries Using Machine Learning
This chapter includes the Materials and Methods part of the original research paper
published in the Journal of the Electrochemical Society by authors A. Kilic, Prof. R.

Yildirim, and Prof. D. Eroglu [48].

3.3.5.1. Constructing Database. The data were collected from the Web of Science database

using various keywords to cover all the possible representations of Li-O and Li-air batteries.
Experimental research articles were sorted by their relevance, and reviewed starting from
the top; only the papers published after 2010 were considered. 1015 data from 157 papers
were collected, and the dataset was divided into two groups as capacity testing (773 data
points) and voltage testing (242 data points), depending on the aim of the study. In the
capacity testing group, a cell is discharged at a constant current until a cut-off voltage is
attained. On the other hand, for voltage testing group, a cell is discharged until a specific

capacity is reached and cut-off voltage is reported. The ML tools were applied to capacity
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and voltage testing groups independently, where discharge specific capacity and cut-off

voltage were used as the performance indicators, respectively.

Table 3.8. Description of categorical and numerical variables (factors) used in the

analysis.
Factors Alternatives
Anode Li Metal, Modified Li Anode
Separator Glass, Polymeric, Glass+Polymeric, Solid Electrolyte
Reactant Air, Dry Air, Oxygen, Oxygen:Carbon dioxide

Reactant Pressure (atm)

<1,1,>1

Gas Diffusion Layer

Carbon, Carbon cloth, Carbon paper, Graphene, No, Filter
paper

Bulk Cathode Material

Activated carbon, Carbon black, Carbon black+CNT, Carbon
black+Graphene, Carbon black+other carbonsl, CNF, CNT,
Co oxide, Gold, Graphene, Graphene oxide, lonic liquid CNT,
Mn oxide, N-doped carbons, N-doped CNT, Other carbons2,
Othersl1, Porous carbon, rGO, RuOz, Ti composite

Cathode Ingredient

ALOs, ALOs+Ag, ALOs+Pd, Au, Aut+Pd, AuPt composite, Co
oxide, Co oxide+Others2, CosN, CoMn oxide, CuCo oxide,
LaFe oxide, Mn oxide, Mo compound, NiCo0204, NiO+
NiCo0204 microspheres, No, Other oxides, Others3, Pd, Pd
composite, PdO, Perovskite, Pt, Pt+Au, Pt:3Co, Ru, Ru
oxide+Mn oxide, RuO>

Binder Type

No, PVDF, PTFE, PVDF-HFP, Nafion, Others4

Active Material Loading (0.0-26 mg/cm?)

0-0.8,0.8-1.2,1.2-3.0, Above 3

Active Material wt.% (35-100 wt.%)

39-60, 60-80, 80-90, 90-100, 100

Electrolyte Solvent (E Solvent)

DME, DMSO, EC:DEC, EC:DMC, EC:PC, lonic Liquid,
Others5, PC, PC:Others6, Solid E+Liquid E, Solid Electrolyte,
Tetraglyme, Triglyme

Electrolyte Salt (E Salt)

LiCF3S0s, LiClO4, LiTFSI, LiPFs, Others7, No

Electrolyte Additive (E Additive)

Yes, No

CNT: Carbon Nanotube, CNF: Carbon Nanofiber, rGO: Reduced Graphene Oxide, PVDF: Polyvinylidene
Fluoride, PTFE: Polytetrafluoroethylene, PVDF-HFP: Poly(vinylidene fluoride co-hexafluoropropylene)),
DME: Dimethyl Ether, DMSO: Dimethyl Sulfoxide, EC: Ethylene Carbonate, DEC: Diethyl Carbonate, DMC:
Dimethyl Carbonate, PC: Propylene Carbonate. Further information about the materials is given in Appendix

F.

Capacity and voltage of Li-O; cells are dependent on various cell design variables (can

be also labeled as factors or descriptors). Due to the nature of ARM and DT methods, only

the categorical (discrete) variables were used in the analyses; the continuous variables were

discretized to categorical variables by grouping them in terms of intervals [212]. The
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categories (for example specific materials), which are not repeated sufficiently large number
of times to form a group, merged as others, and their contents are given in Appendix F.
Additionally, the articles with too many missing variables were not taken into consideration.
The variables, which were used in analyses, are listed in Table 3.8. Here it should be
mentioned that not all the variables that affect the cell performance, such as the electrode
and gas diffusion layer thicknesses, were typically reported in the literature. Hence, only the
factors that are widely reported in the literature were included in the analyses. Active
material is defined as the total cathode materials excluding the binder, which is taken as a
separate variable. Throughout the dataset, all the capacities were normalized to active
material masses so that they will signify the effect of the type of active materials on

capacities rather than the amount used in the cathodes.

3.3.5.2. Computational Details. R Studio environment was chosen for both data pre-

processing and ML implementations. ARM was used first to determine the effect of
individual factors on the performance by using apriori algorithm of arules package [203].
ARM reveals dominant factors (antecedents) leading to higher capacities (consequences) by
providing the parameters of support, confidence and lift. For practical applications, cycling
stability is also a very important performance criterion for batteries. However, the amount
of cycling data of Li-O, batteries is limited in the literature. Hence, the analysis was
performed only for the initial discharge capacities of the cells in the scope of this work;
cycling performance will be modeled in future studies when the literature becomes more

mature in terms of the cycling data.

Although multi-factor analyses are also possible using ARM, we used decision tree
(DT) because it is more effective and easier to interpret. In order to analyze and compare the
cells manufactured and tested under the same testing conditions, we only considered the
cells that used oxygen at 1 atm as the reactant and were discharged at 0.1-0.5 mAh/cm? for
the DT analysis. For this part, the dataset was divided into three classes based on the
performance levels (as class A, B, and C) to be able to differentiate the conditions for high
performing class from the others. The batteries with capacities higher than or equal to 6000
mAh/g, between 1500-6000 mAh/g and lower than 1500 mAh/g were defined as Class A,

Class B, and Class C, respectively. To prevent class imbalance problem, which creates a bias
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toward the majority class, random sampling was applied to have equal number of data in
each class [212]. However, variables with a small number of datapoints caused a problem
when the dataset was divided into training, validation and testing because some values (for
example, a specific cathode ingredient) appeared only in one or two of the training,
validation or testing sets making the assessment of model fitness unmanageable. To prevent
this, rarely found variables were merged as “others” (given in Appendix F). DT analysis was
performed by using dplyr package of RStudio [213]. In order to prevent any bias, the dataset
was randomly divided into two subsets as 75 % for training and validation, and 25 % for
testing. First, the DT model was built by applying 5-fold cross validation procedure. The
dataset containing 75% of data was further divided into five subsets randomly; the model
constructed using four subsets was tested with the remaining set. This procedure was
repeated five times by assigning different validation sets in each turn, and the model with
the minimum split of 10 and complexity parameter of 0.01 was found to represent the data
best (with the lowest validation error). Then, this model was tested using the testing data

(25% separated first) to assess its accuracy for the classification of the data not seen before.

The determination of the cut-off voltages for restricted capacities is also widely
reported in the literature because high cell voltages are important for the batteries to produce
high power. However, the restricted capacity ranges vary significantly from one paper to
another; therefore, the comparison of factors (for example, materials) would not be fair
unless a specific capacity range was chosen. Consequently, the data generated in two
different capacity intervals of [500, 750] mAh/g and (750, 1000] mAh/g were analyzed as
two separate datasets considering that these intervals have relatively high number of
datapoints as 112 and 130 (total 242 datapoints), respectively. Although DT could not be
applied to these datasets due to small number of data, ARM analyses were conducted to

identify the critical factors resulting in high cell voltages.

3.3.6. Materials and Methods for Screening of Ionic Liquids as Electrolyte of Metal-
Oxygen Batteries using COSMO-RS and Machine Learning

This section includes the Materials and Methods part of the manuscript in preparation,

detailing the results reported in Chapter 4.2.2. The manuscript is entitled Screening of Ionic
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Liquids as Electrolytes of Metal-Oxygen Batteries using COSMO-RS and ML, and the
authors are A. Kilic, A. Uzun, R. Yildirim, and D. Eroglu. Similar to Section 3.3.3, this
section uses COSMO-RS calculations for gas solubility calculations. On the other hand, a

Python-based free library was used to estimate the molecular features.

3.3.6.1.  Solubility and Property Calculations. The COSMOthermX program of

COSMOlogic software with the C30 1602 version was used for solubility and property

calculations of ILs. First, the solubility of oxygen molecule j, in IL i, was calculated using

the lonic Liquids Screening module for 36,260 ILs. The solvent solubility at infinite dilution,

C;j was

(e = ioo, (3.27)
Vi

where y;; is the activity coefficient of i at infinite dilution in j and C;; is the corresponding

solubility value calculated in mol/mol.

Although these results can be used to compare oxygen solubilities qualitatively, they
are orders of magnitude different from the experimental values reported in the literature.
Better estimations can be computed using the Gas Solubility calculations in the Solubility
module, where gas solubilities in ILs are iteratively calculated by varying the mole fraction

of each compound j, x; until the partial pressure of j, p;
P; = P;%¥;, (3.28)
reaches the given pressure value, where p}) and y; are the pure compound partial pressure

and activity coefficient.

For the TFSI anion, the oxygen solubilities were calculated using both methods, and a
perfect linear correlation was obtained. Afterward, the results obtained from the lonic Liquid
Screening module were corrected using this correlation. However, this additional conversion
was only performed for the oxygen solubility for experimental validation; only manual
computing is possible in the Gas Solubility module, and it is a computationally more
expensive method in terms of both time and computing power. Hence, the lonic Liquids

Screening module calculations were used in the rest of the study.
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3.3.6.2. Feature Calculations and Selection. Python’s Rdkit library of Molecular Operating

Environment (MOE) was used for descriptor calculations [214,215]. Rdkit is an open-source
cheminformatics library developed for calculating the materials descriptors using 10 million
compounds encoded by the SMILES codes [216]. The SMILES codes were used to obtain
123 physicochemical properties (2-dimensional) and the fraction of 85 substructures (the
number of benzene or -CO groups) of the ions; 208 variables were calculated for each anion

and cation. The complete list of the descriptors can be found in Appendix G.

Although there are 416 features for a single IL, only the relevant features were used in
the modeling. In this respect, the Boruta algorithm, a random forest-based algorithm
showing feature relevance on the outcome, was used for the feature selection. Boruta adds
the copy of each variable as a shadow variable and compares the Z-score (the difference
between a value and the mean divided by the standard deviation, showing how close a value
is to the sample mean) of the two-sided equality tests for the actual versus shuffled version
of a feature. A feature is found to be unnecessary when the Z-score of the real feature is less
than the shuffled version [217]. As a result of the Boruta analysis, 285 out of 416 features

were selected for developing ML models.

3.3.6.3. Machine Learning Algorithms. The RF algorithm was used to predict the gas

solubilities with the 285 as-selected descriptors. RF is an ensemble-type tree-based method
in which training sets and the features used in the modeling are randomly selected in each
tree. The outcomes of the random forest predictions are averages of the results obtained in
each tree. Since the features and the training sets are randomly selected, the RF algorithm
shows more robust results [218]. The model was performed using the "randomForest" library
of the RStudio environment. The hyperparameters, ntree and nodesize, were optimized using
grid search and 5-fold cross-validation, and the best model was identified using the
validation error. The test dataset was determined first by randomly selecting 25% of the
anions in an anion group with more than four members. Afterward, the remaining data was
further divided into training and validation sets with the criteria of having nearly 20% of
each anion group in the validation set. This process was repeated four times to get five
training and validation sets where modeling was performed on training sets. The model was

validated using validation sets via stratified sampling. The best model was determined
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according to the average of the validation error. This was done to reduce the bias towards
having identical anions in validation and test sets and to prevent overfitting. Finally, the
model was tested on the test set to report the final model performance metrics: root mean
square error (RMSE) showing the error between the predicted and the actual values and R-

squared (R?) giving the fraction of variability captured by the model.
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4. RESULTS AND DISCUSSION

This chapter presents the results and discussion of the studies conducted in the thesis.
First, the results of a bibliometric analysis done for the beyond LIB literature is presented.
24,523 papers obtained from the WOS database, regardless of their research topic, were
analyzed with the help of text mining tools to see the major patterns and trends involving
beyond LIB research. This part is modified from the review article by A. Kilic, B. Oral, D.
Eroglu, and R. Yildirim [9]. A. Kilic conducted the bibliometric analysis presented next.
Figure 4.1a presents the number of appearances of the various beyond LIBs in keyword
search so far, while Figure 4.1b indicates the change of publications frequency with time so
that any increasing (like in Na-ion) and decreasing (like in Li-air) trends could be seen; the
less frequently studied systems are also provided in the figure insets. The specific elements
explored in these publications are also shown in Figure 4.1c for the most commonly studied

beyond LIB systems.

Figure 4.1a suggests that the most widely investigated chemistries are Li-S, Na-ion,
Zn-air, Zn-ion, Li-air, and K-ion in decreasing order. Apart from Li-air batteries, they have
all shown an increasing trend in the past ten years, and Na-ion and Li-S batteries seem to be
at the heart of battery research. Zn-air batteries are the 3™ most commonly investigated
battery system (surprisingly, they have become more popular than Li-air batteries) because
of lower prices, safer operation, and higher availability of materials. Zn- and K-ion batteries

have been studied significantly recently.

Since the anode, cathode, electrolyte, and separator are the four essential elements of
a battery cell, any research is expected to focus on at least one of these (or the overall
performance of the entire cell) because the optimization of materials and design parameters
related to those elements are critical for the commercialization of these beyond LIBs. As is
also apparent in Figure 4.1c, the presence of different battery technologies requires a diverse
focus of attention because the challenges are different for each system due to the variances
in their electrochemistry. For example, the most widely investigated cell section is the anode
for Na-ion and K-ion cells, the cathode for Li-S and Zn-ion batteries, whereas it is the

electrolyte for air batteries. This indicates that typically the development of the cathode is
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critical in conversion chemistries, whereas the anode may be the performance-limiting factor
in intercalation chemistries. The number of studies involving the electrolyte is also
significant for all major battery types, yet it is the most widely used topic for air batteries.

On the other hand, studies working on separators and modeling are very limited in the

literature.
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Figure 4.1. Total number of publications of each beyond LIBs (a), year vs. publication

number (b), and research interests (c).

Next, the most frequently appearing 15 keywords for each beyond LIB using the WOS
were identified without any filtering. The lists of the most frequently appearing keywords
for the six most commonly studied LIB chemistries are presented in Figure 4.2a-Figure 4.2f.
Apart from the typical battery-related words such as anode or cathode, the words graphene
and carbon are also frequently encountered in text mining analysis. Since this result may be
an indicator for the direction of research in material selection, the investigation was further
extended to identify the secondary keywords associated with carbon and graphene by
employing bigram analysis of text mining (Figure 4.2g-Figure 4.2h). Indeed, some

information related to the most frequently used form of materials, treatment procedure, or
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part of the cell involved emerged. For example, as clearly seen in Figure 4.2g, the nanotube
is the most frequently associated keyword with carbon for almost all batteries (second most
frequent after anode in K-ion batteries), while the other forms of carbon also appear in the

list.

As expected, the anode appears at the top of the Na- and K-ion batteries list. The
working mechanisms of Na- and K-ion batteries are very similar to that of LIBs; basically,
reversible intercalation reactions of Na-ion (Na") and K-ion (K*) take place in layered
materials present in both the negative and positive electrodes [219]. Hence, the pore size and
structure of electrode materials should be tailored to accommodate the change in the ion size.
Consequently, the anode is at the top in Figure 4.2a and Figure 4.2b, while the cathode
appears in the lower part of the list; the electrolyte does not even emerge in the top 12.
Carbon and graphene are the most commonly used material-related words in Na-ion and K-
ion batteries. In addition, two-word text mining results show that the carbon is mainly related
to nanotube and anode keywords, and graphene is primarily followed by oxide for Na- and
K-ion batteries, respectively. Indeed, carbon-based anodes, including graphene oxides, are
frequently investigated in univalent metal-ion batteries [219-228]; there are also
comprehensive reviews on polyanionic [229], layered [230], and alloyed materials [231] for
the anodes of Na-ion batteries. The “oxide” keyword is among the top 15 keywords for Na-
ion batteries, showing its popularity for these batteries. P2-Type [232,233], sodium [230],
boron-doped [234] sodium, manganese [235], transition metal and P3/0O3 [236] integrated
layered oxides are investigated for Na-ion batteries. The electrolytes of the Na-ion and K-
ion batteries are similar to those of LIBs, where generally, Na-salts or K-salts containing
organic liquids are used. Hence, a similar methodology can be used to develop the

electrolytes of Na- and K-ion batteries [237].

The working electrode of multivalent batteries should be designed to promote multi-
ion redox reactions [238]. Hence, tailored cathodes are needed; cathode has appeared at the
top of the keyword list for Zn-ion batteries (Figure 4.2¢). Since the charge/size ratios of the
multivalent ions are higher than the univalent ones, larger solvation shells occur for the
multivalent metals in the bulk electrolyte, making these ions more stable. Hence, slow de-
solvation kinetics at the electrolyte-electrode interface and the formation of passivation

layers are major hurdles in these batteries. Plus, the electrochemical stability of the
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electrolytes is low; hence, it is understandable that the new electrolyte compositions for
multivalent chemistries are also investigated extensively [239]. Aqueous electrolytes (as
emerged as aqueous and electrolyte keywords) were investigated and extensively reviewed
for Zn-ion batteries [240-243]. The oxide keyword is more frequently used than the carbon
keyword, and graphene is not listed for Zn-ion batteries; hence, it may represent vanadium
and manganese oxides, which are the most common oxide types for these battery systems
[244-248]. Intercalation cathode materials (among the top 15 keywords) such as polyanions
and carbon-based materials are also studied as working electrodes in the literature

[249,250].

The use of air instead of oxygen is the ultimate aim of metal-air batteries, yet, most of
the works in the literature use pure oxygen to prevent side reactions due to the humidity and
CO: in the air. Even with oxygen, the efficiency, stability, and energy density are limited
mainly due to poor ORRs [48]. The presence of the catalyst, electrocatalyst, and reduction
keywords for Li- and Zn- air (Figure 4.2d and Figure 4.2e¢) batteries indicates the
significance of this problem. The positive electrode of metal-oxygen batteries is mainly
porous carbon substrates where the gaseous reactant is distributed. From kinetic and mass
transport points of view, it is essential to distribute oxygen homogenously over the cathode
surface [251,252]. In addition, catalyst materials are added to the positive electrodes to favor
the ORR kinetics. Oxides [253,254] and carbon-based materials [255,256], including
graphene, are among the common electrocatalysts. Although electrolytes are the key
elements of all kinds of batteries, they should be chosen with extra care for metal-oxygen
batteries because the cathode side is open to a gaseous environment [257-259]. The
electrolyte should have low vapor pressure to prevent its depletion, while the salts and the
solvents making the electrolyte should be electrochemically stable toward the gaseous
chemicals. Plus, to promote fast kinetics, these electrolytes should have high oxygen
solubility and diffusivity. Similar to other beyond Li-ion battery chemistries, aqueous, non-
aqueous, hybrid, and solid-state electrolytes are also possible for metal-oxygen batteries
[260]. Aqueous electrolytes have the advantage of safety, low cost, and high ionic
conductivity compared to non-aqueous electrolytes [261]. Hence, their adaptation to metal-

air batteries is desired [262—264].
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Figure 4.2. Keyword analysis for Na-ion (a), K-ion (b), Zn-ion (¢), Li-air (d), Zn-air (e),
and Li-S (f) batteries, carbon (g) and graphene (h) bigrams.

The PSM is one of the main problems of the Li-S batteries that many researchers try
to decrease the effect of it by using specialized materials in terms of pore size or structure
inside the cathode; the encapsulation of sulfur in specialized carbonous nanostructures in the
cathode aims to improve the battery performance by trapping the PSs (physically or
chemically), increasing the electronic conductivity and accommodating the volume change
due to the conversion of sulfur into Li,S. This is why the keywords cathode, carbon, PS, and

composite are at the top of the keyword list for Li-S batteries (Figure 4.2f). Graphene is also
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widely utilized in sulfur cathodes with the promise of entrapping PSs and increasing
electronic conductivity by providing large surface area and suitable pore structures; the
appearance of composites, nitrogen doping, aerogels, and nanosheets in Figure 4.2h indicate
various parts of research involving the use of graphene for Li-S batteries. The selection and
design of electrolytes is another commonly researched topic on Li-S batteries. The ideal
electrolyte should have moderate and low solubility to long and short-order PSs,
respectively, while showing excellent Li* conductivity [265]. Solid-state electrolytes,
carbonate-based organic electrolytes, and fluorinated solvents are among the new

alternatives to conventional ether-based electrolytes in Li-S batteries [266—268].
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Figure 4.3. Relative frequency of keywords in papers related to specific battery types

versus entire beyond LIBs.

To conclude this part, it can be stated that beyond LIBs mostly emerged as a response
to the shortcomings of LIBs, such as scarcity of materials, performance problems, and safety
concerns; some new solutions lead to new battery designs, while some seem to be relevant
for more than one battery type. In principle, a variety of features, performance measures,
and challenges among the beyond LIBs may require different approaches in ML applications
for each battery type. This is a more serious issue in practice; different research groups
focusing on different battery types create different data build up through the years, making
ML analysis more difficult as it is mainly based on a statistical analysis of a uniform dataset.

Consequently, the analysis and understanding of data structure seem to be especially
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important for ML applications in beyond LIBs. To demonstrate the diversity of concepts and
focuses of attention in beyond LIBs, we performed a keyword search in literature and
analyzed them to identify whether the keywords were repeated more frequently in the
publications related to specific battery types by adapting a method used to analyze the

characters in a novel series, in Figure 4.3 [200].

In Figure 4.3, the percent of specific keywords in all keywords related to a specific
beyond LIB technology is given in the x-axis, while the percent of the same keyword in all
keywords of entire beyond LIB literature is in the y-axis in the logarithmic scale.
Consequently, the keywords with similar frequency of appearance in all battery types appear
near the x=y line, as the fraction in a specific battery type will be the same as the fraction in
the entire beyond LIB literature. A keyword appearing more frequently in papers related to
a specific battery type will have a higher fraction for that type than the entire beyond LIB
literature and appear below the x=y line because x will be higher than y. On the other hand,
keywords appearing less frequently for that battery type will be above the x=y line because
x will be smaller than y. For example, carbon is one of the most widely used keywords
across all battery types and has a similar frequency in Na-ion batteries; hence it is on the top
of the x=y axis. However, reduction is less common in Na-ion batteries (it is on the upper
side of the x=y line), whereas the 44MnO: keyword is more frequently used in Na-ion
batteries than the other battery types (it is on the lower side of the line). Similarly, polysulfide
is one of the most frequently found keywords in Li-S batteries; it is less common in the rest
of the battery types. Differences in the keywords and their frequency of appearance in
literature for a specific battery type are expected because different battery technologies
require different materials and processes. However, the variance seems to be more than that;
some keywords in Figure 4.3 do not seem to be directly associated with the materials or
processes used; they are rather related to the performance and problems, indicating that the
focus of attention and even research direction may also be deviating in different batteries
(probably due to the differences in the problems encountered). The distance of a keyword
from the origin indicates the frequency of that keyword in a specific battery or entire LIB
literature. Although this additional information may enrich the analysis, it should be treated
cautiously; some keywords may appear more frequently not because they are more important

but because they are related to a more frequently studied battery type.
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Table 4.1. The summary of the methods used in the sections in Results and Discussion.

_ System-Level .
Experiment Machine
Performance . Ref.
S Learning
Model
4.1.1. - - + [43]
4.1.2. - + + [44]
.(2 4.1.3. + - + in preperation
4.1.4. + - - [45]
4.1.5. + + - [46,47]
o | 4.2.1. - - + 48
S [48]
a | 422 - - + in preperation

Among the beyond LIB systems discussed above, the focus is on the development of
Li-S and Li-O> batteries in this thesis, and the results are represented in two main sections:
Li-S batteries and Li-O; batteries. The summary of the methods used in the subsequent

sections is given in Table 4.1.

4.1. Li-S Battery Studies

This section includes five different works for the development of Li-S batteries. In
Section 4.1.1., ML techniques were used for the assessment of critical materials and cell
design factors for high-performance Li-S batteries using the literature data. In the subsequent
section, ML tools were applied to the literature data for Li-S batteries with IL electrolytes to
determine the critical factors and materials to increase Li-S cell- and system-level
performances, specifically for IL electrolyte-containing cells. In the next section, the relation
between the PS solubility in the IL, the properties of the IL and battery performance was
examined using experimentation, COSMO-RS calculations, and ML techniques to further
study IL electrolytes. Next, the effect of encapsulation material properties on the
electrochemical performance was evaluated for MOF materials. Likewise, the impact of
encapsulated cathodes on the system-level metrics of Li-S battery was reported for the V-

and Co-doped ketjen black sulfur composite cathode in the following section.
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4.1.1. Assessment of Critical Materials and Cell Design Factors for High Performance

Lithium-Sulfur Batteries using Machine Learning

This section is modified from the original research paper published in the Chemical
Engineering Journal by authors A. Kilic, Dr. C. Odabasi, Prof. R. Yildirim, and Prof. D.
Eroglu [43]. The data gathering, preparation, and results analysis were performed in the

scope of this thesis by A. Kilic, whereas the ARM analysis was performed by C. Odabasi.

In Li-S batteries, as a consequence of the highly complex reaction and degradation
mechanisms, materials and cell design have a critical impact on the performance.
Subsequently, Li-S batteries receive significant research attention. In this section, a
comprehensive analysis on the effect of key factors on the battery performance, namely the
peak discharge capacity and the cycle life, is conducted using ML. Data for 1660 cells from

353 papers in the literature is collected and analyzed via association rule mining.

4.1.1.1. Pre-Analysis of Data. Because of the complexity of reaction and degradation

mechanisms in a Li-S cell, the performance is highly sensitive to a variety of factors as
shown in Figure 4.4. In this section, we pre-analyzed the impact of critical variables on the
Li-S battery performance to understand the structure of the database and the behavior of the

major variables better before starting a more detailed ML analysis.

In Li-S batteries, the discharge current density or the C-rate, which is the current
density normalized against the battery capacity, is a critical factor as it defines the battery
performance through the cell area-specific impedance and the Li anode surface morphology
[65] Cells have different capacities at different C-rates; typically lower discharge capacities
are attained at higher current densities. In Figure 4.5, the comparison of the distribution of
the overall data with the data at a specific C-rate (i.e. 0.1C) is presented. It can be seen in
the figure that both datasets have the normal distribution and the mean of the overall data is
very similar to the mean of the data at 0.1C rate; considering this and the relatively high
number of cases in the overall dataset; hence the overall dataset was used in the analysis to

have statistically more reliable results.
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Figure 4.4. Schematic of the materials and cell design factors in a Li-S cell.

Li metal is one of the best candidates as the anode material for beyond LIBs due to its
lowest possible molecular weight of 6.94 g/mol and highest possible standard oxidation
potential of 3.040 V (vs Ho/H"). Consequently, Li metal has a very high specific capacity of
3860 mAh/g [10]. However, both the high reactivity of the Li metal with the electrolyte and
the dendrite formation in the anode as a result of the changes in surface morphology with
cycling prevent achieving the theoretical capacities in the cell. In the literature, there are
efforts to solve these problems by forming a stable Li and electrolyte interface by utilizing
different electrolyte types, salts and additives. Introducing an interlayer to the anode such as
Al>Os layer or impurities as hard carbon or carbon black to strengthen the Li metal are some
of the other approaches reported in the literature [269-271]. Since the anode material plays

a key role in the battery performance, it is considered a variable in the analysis.
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Figure 4.5. Distribution of PDCs for liquid electrolyte cells: entire dataset (average of
PDCs =966 mAh/g) (a), data subset at 0.1C (average of PDCs = 1004 mAh/g) (b).

Excess Li amount in the anode, or negative-to-positive capacity (N/P) ratio, in other
words, is also an important design variable. Li-S cells typically contain excess amount of Li
in order to prevent the Li depletion in the cell as a result of the side reaction between the
anode and the electrolyte. Subsequently, increasing the amount of excess Li in the cell
enhances the cycling performance [32], [272]. Even though the excess Li amount is a key
variable, the majority of the studies in the literature do not report the anode thickness in the
cell. Consequently, its effect on the battery performance is not considered in this section as

well.

Elemental sulfur, as the active material in the Li-S cathode, has the advantages of high
specific capacity, natural abundance, non-toxicity and low cost [273,274]. During the
discharge of a Li-S cell, the transition from the solid-state sulfur to the soluble high-order
PSs takes place in the high voltage plateau corresponding to a theoretical capacity of 418
mAh/g [275]. The discharge proceeds with the reduction of the PSs in the low voltage
plateau till the formation of the end solid product Li>S. The majority of the studies in the
literature use solid-state sulfur as the cathode active material because of the aforementioned
reasons. However, the low electronic conductivity of the sulfur slows down the kinetics and
thus limits the active material utilization significantly in the cathode [276,277]. Therefore,
studies investigating the soluble PSs and other chemicals, such as CoMoS3.13, as the sulfur
source are also present in the current literature [278-280]. Consequently, sulfur type is also

included in this analysis as a design variable.
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As a consequence of the insulating nature of sulfur and Li»S, Li-S cathodes typically
require the addition of a significant amount of conductive material. Thus, the type of the
conductive material in the cathode is a vital factor for defining the reaction kinetics through
the electronic conductivity and the electrochemically active surface area [13], [281,282] . In
this section, conductive materials are defined as the ones, which are mixed with the active
material directly without any further treatment. As can be seen in Figure 4.6a, most of the
studies in the literature with liquid electrolyte, use carbon black as the conductive material
in the Li-S cathode (74.6 %), whereas 14.7 % does not use any conductive material; however
the majority of the studies that do not use additional conductive material already have

conductive encapsulated S cathodes.
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Figure 4.6. Breakdown of conductive material type (a), encapsulation material type (b),

and binder type (c) in dataset for cells with liquid electrolyte.

Encapsulation strategy in sulfur cathodes has gained significant attention in the last

decade [283,284]. It is a highly successful strategy in preventing the PS shuttle mechanism
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by trapping the soluble PSs, enhancing the electronic conductivity of the sulfur cathode and
accommodating the volume change in the cathode. Encapsulation strategy improves the
sulfur conductive interface and puts extra barriers for the migration of the PSs [285-289].
Indeed, encapsulation cathode materials are among the most widely investigated research
areas in the Li-S battery field. Cleaver et al. [90] report in their review that 64% of the
research articles in the field are on developing novel materials design for the cathode;

consequently, the encapsulation cathode material type is a critical variable.

The conductive materials are incorporated into the cathode either by physically mixing
with the active material or by being treated thermally or chemically in various encapsulation
methods. In this work, cathodes that are prepared by any treatment of the conductive
materials with the sulfur other than physical mixing are defined as encapsulated cathodes
and analyzed in this part. As can be seen in Figure 4.6b, only 28.9 % of the cells with liquid
electrolyte do not use any encapsulation material in the cathode. The most commonly used
encapsulation materials are porous carbons (the details of the alternative materials are given
in the Appendix A), carbon black, graphene and carbon nanotubes, while 32.0 % of the cases
in the database have used different encapsulation materials. Binder type impacts the
performance of the Li-S batteries; it is not only responsible for the contact between the
sulfur, cathode matrix and current collectors, but it is also important to prevent the structural
deformation due to volume change and active materials dissolution. In addition, an ideal

binder should also decrease the PS migration by interacting with the soluble PSs [33].

As can be seen in Figure 4.6c, 89.1 % of the data points have used binder in their
cathodes; the most common binder type is PVDF, with 66.0 % in the dataset. PVDF is
typically preferred due to its high stability and adhesion properties. However, PVDF needs
to be dissolved in NMP solvent, which is toxic and expensive [290]. Therefore, there are
some efforts to replace PVDF as the binder in the sulfur cathode; PEO, PTFE, LA, and
CBC+SBR are some of the other typical binders used in the literature to have more
environmentally friendly and cost-effective batteries. It is apparent in Figure 4.6¢ that 10.9
% of our database does not use any kind of binder. It should be mentioned that the majority

of the binder-free cells again contain encapsulated cathodes.
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15-20 wt.% of the total mass of a Li-S cell stems from the current collectors, which
account for 10-15% of the total cost. Although Al foil is the most widely used cathode
current collector, it is nonporous, and prone to oxidation at high voltages. The electrical
contact between the corroded Al foil and sulfur is significantly low and that increases the
cell resistance considerably. In this context, developing an appropriate current collector is
also important for high cyclability and low cost [291] Recently, 3-D current collectors have
gained significance in Li-S batteries to ensure higher sulfur loadings and areal capacities in
the cathode [292—-295]. Graphene hierarchical networks, free-standing carbon nanofiber and
carbon nanotube papers, and Ni foams are some examples of the newly developed 3-D
current collectors in the Li-S battery literature [293-295]. These 3-D structures enable the
use of thicker cathodes and thus higher areal capacities in the cell due to a superior electronic
conductivity and electrode integration. In addition to favoring much higher sulfur loadings
in the cell, these 3-D current collectors are also effective in accommodating the volume
change in the cathode. As a result, the positive current collector type is considered as a design
variable in the analysis in the following sections. Since there is no emphasis on the
development of novel current collectors in the anode, the negative current collector type is

not taken into account.

In a Li-S cell, the separator plays a key role in preventing the PS shuttle by blocking
the transfer of the PSs to the anode while ensuring high Li-ion conductivity. In addition, the
separator in a Li-S cell should suppress the Li dendrite growth to avert any short circuit in
the cell that may lead to thermal runaway. Subsequently, the separator type has a high impact
on both the cycle life and the capacity retention of a Li-S battery. The most commonly used
separators in the literature are polymer-based [296]. However, studies focusing on the
improvement of the existing separators by coatings or the development of novel separators
are also common in the recent literature [297-299]. Consequently, we treated the separator

type as a variable in our analysis.

Interlayers, either between the anode and the separator or between the separator and
the cathode, have gained significant attention in recent years in Li-S battery research. These
multi-functional interlayer systems are typically carbon- or polymer-based. The interlayer
in the cell can block the diffusion of the PSs preventing the loss of the active material to the

anode and protect the Li metal. In addition, the interlayer improves the electronic



78

conductivity and ensures high contact during cycling, which may be otherwise challenging
due to the volume change in the cathode. As a result, significantly enhanced electrochemical
performances are commonly reported for Li-S cells containing an interlayer [300-302].

Therefore, the presence of an interlayer is considered in this section as a variable.

S loading in the cell, which is controlled by the cathode thickness and the sulfur weight
fraction in the cathode, is another key design parameter that determines the areal specific
capacity of the cell. As the active material loading in the cathode increases, the energy
density of the cell increases remarkably [88]. Despite that, due to the transport limitations in
thicker electrodes, the discharge capacity and cycle life of the cell could be affected
inversely. Previous studies typically report cathodes with S loadings of 1-3 mg/cm? for high
discharge capacity Li-S cells [303,304]. However, in order to surpass the commercial LIBs,
which have active material loadings of 15-20 mg/cm?, Li-S batteries should be designed with
much higher S loadings. For instance, in their techno-economic analysis, Eroglu et al.
conclude that in order to have high energy density Li-S batteries, the S loading in the cathode
should be 7 mg/cm? at least [65]. Similarly, Chung et al. recommend S loadings higher than
6.5 mg/cm? for enhanced system-level performance [6] The average of sulfur loadings in

the cells with liquid electrolytes is 2.4 mg/cm? in the database used in this section.

As previously discussed, Li-S cells typically require a high amount of conductive
material, mostly carbon, because of the low electronic conductivity of the sulfur. Increasing
the carbon ratio enhances the cathode kinetics significantly through increasing the electronic
conductivity and the electrochemically active surface area. Consequently, utilization of the
active material and thus the discharge capacity of the cell increase considerably. However,
after a threshold value, the specific capacity and cell voltage are very similar for cathodes
with different carbon wt%, mainly because the kinetic limitations are not dominant anymore.
On the other hand, increasing carbon wt% intrinsically means decreasing the S wt% or active
material loading in the cathode. Based on the discussion in the previous section, as the S
wt% in the cathode is reduced, the energy density of the Li-S battery decreases in a great
manner. In fact, S wt% higher than 70wt% are typically suggested for high energy density
Li-S batteries, [81], [275], [305,306]. As a consequence of the aforementioned trade-off
between the discharge capacity and the energy density, S wt% is one of the most important

design parameters in a Li-S cell. In this analysis, S wt%, conductive material wt%, and
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encapsulation material wt% are taken as variables, whereas binder wt% is not included as
an independent variable since the total of the S, conductive, and encapsulation materials and
binder weight percentages should sum up to 100%. In the literature, some papers using
encapsulated cathodes gave the targeted S wt% while some others provided the achieved S
wt% (typically measured by TGA after the encapsulation procedure); there are also papers
that reported both. Since only one of these two related variables should be used in the
analyses, a regression model was constructed by C. Odabasi to correlate targeted and
achieved S wt% using the data from the papers providing both, and computed the achieved
S wt% for those provided only the targeted values; then we used achieved S wt% as the
variable in our analysis. The details of regression model used are given in Appendix A; since
S wt.% was also categorized with a 25% interval, the model fitness was quite satisfactory

for our purpose.

As previously discussed, the encapsulation of sulfur in Li-S cathodes is highly
promising in terms of achieving high capacities and cycle lives. The properties of the
conductive host material, such as the pore size, pore shape, and architecture, can be tailored
successfully with the encapsulation strategy. Likewise, the intrinsic properties of the
conductive host material, such as the electronic conductivity, surface chemistry, and
polarization, can be tuned by doping with heteroatoms as N, B, P. Nitrogen doping is the
most commonly investigated doping type by far in the literature. Previous studies discuss
that doping of the conductive host material in encapsulated cathodes enhances the
electrochemical performance of a Li-S battery, mainly through an improvement in the
electronic conductivity and S activity [307-310]. The relationship between doping and the
improvement in the electronic conductivity can be explained by a modification in the
electronic structure of the carbon host; heteroatoms offer extra free electrons for the
conduction band and thus enhance the electronic conductivity of the carbon framework
[310]. Recently, doping with metals as Co, Ni, and metal oxides as TiO2, MnO; has also
gained significance in Li-S batteries [311]. These metal and metal oxide dopants improve
the cycle life remarkably by suppressing the PSM in the cell; this may be explained by the
immobilization of the PSs due to their strong interaction with the dopants. These dopants
may also enhance the battery performance by accelerating the redox reactions in the cathode.

As aresult, the doping material type is taken into consideration in the analysis.
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The complicated sulfur kinetics in the cathode involves multiple redox reactions of PS
intermediates that are soluble in the electrolyte. The transfer of these PSs to the anode is the
main reason of the PSM, as previously mentioned. Consequently, the electrolyte has a major
role in the battery performance because of its impact not only on the reaction kinetics but
also on the PS shuttle rate and parasitic reactions in the anode. For these reasons, the recent
literature focuses on the development of novel electrolytes that have sufficient Li*
conductivity but can suppress the mobility of the PSs and lead to better Coulombic efficiency
in the cycling of the Li metal. Novel organic liquid electrolytes, ionic liquids and solvent-
in-salt electrolytes are some examples of the recent research trends in the electrolyte
development in Li-S batteries [19], [273]. In the literature, the most typical electrolyte
solvent used in a Li-S cell is a mixture of DOL and DME. In this mixture, DME is
responsible for the high PS solubility and fast PS reaction kinetics whereas DME accounts
for forming a stable solid electrolyte interface on the Li anode surface [19]. However,
because of the high solubility and mobility of the PSs in this electrolyte, new electrolyte
solvents that can result in better Li-S batteries with slow PS shuttle rate are investigated in

the literature [312].

In the selection of the Li salt in a Li-S cell, the most critical concern is the chemical
compatibility of the salt with the PSs. The majority of the studies in the literature report the
use of LiTFSI as the Li salt in the electrolyte, mainly due to its good thermal stability and
compatibility. However, there are several studies in the literature investigating the impact of
other salt types on the Li-S battery performance in order to enhance the desired electrolyte
properties [19], [31], [313]. In this section, both the solvent and the salt type were considered
as design variables. On the other hand, the influence of the salt concentration on the battery
performance is not examined since the concentrations used in the literature do not vary

significantly, except in solvent-in-salt electrolytes.

Even though the majority of the literature investigates Li-S cells with a liquid
electrolyte, solid-state Li-S batteries as well as Li-S cells with catholyte have been reported
as promising in the recent literature [314]. Therefore, the electrolyte type (i.e. liquid,
catholyte, solid) is also taken into account in the analysis. However, since the design
parameters are considerably different in these batteries, they are treated and discussed

separately.
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The major additive used in Li-S cells is LiNOs, which is commonly added into the
electrolyte in order to form a passivating surface film on the anode surface. Previous studies
suggest that the addition of LiNOs in the electrolyte enhances the Coulombic efficiency and
cycling performance of the battery in a significant manner due to passivating the anode
surface and preventing the PSM [73], [315]. The concentration of the additive is also critical
[316,317]. In this analysis, the impact of the presence of an additive and its concentration on

the performance is also studied.

The E/S ratio is one of the most critical design parameters in a Li-S cell as it influences
both the electrochemical performance and the system-level energy density of the battery
significantly. The complex reaction and PS shuttle mechanisms in the cathode are highly
sensitive to the E/S ratio through the PS concentration on the electrode surface, which is
directly determined by the electrolyte amount in the cell [81], [88]. Previous studies in the
literature clearly show that increasing the E/S ratio enhances the discharge capacity
considerably by increasing the utilization of the active material. In electrolyte-starved
cathodes, high PS concentrations lead to an elevation in the electrolyte viscosity, which may
restrict the diffusion of Li* and PS. In addition, electrochemical reactions may be inhibited
at low E/S ratios due to the solubility limit of the PSs. These all lead to a drastic decrease in
the discharge capacity in electrolyte-starved cells. On the other hand, a considerable excess
of electrolyte in the cell intensifies the PSM and thus reduces the capacity retention
significantly [318—322]. When the impact of the E/S ratio is investigated in terms of the
system-level performance, all previous materials-to-system analyses conclude that energy
density decreases significantly with increasing electrolyte amount in the cell; E/S ratios
lower than 5 mL/g is required for high energy density Li-S batteries [6], [89]. To sum up, as
a consequence of all these competing forces, the E/S ratio has a key role in the Li-S battery

performance and hence is studied in this section as another variable.

4.1.1.2. Analysis of Peak Discharge Capacity for the Cells with Liquid Electrolyte. First,

Entire Liquid Electrolyte Dataset: In this part, ARM analysis were presented on the dataset
containing cells with liquid electrolyte achieving PDCs equal to or higher than 1000 mAh/g
to determine the important factors for obtaining this capacity. In Table 4.2, ARM results for
this analysis are given; the factors are ranked according to the lift values. As discussed in

the Material and Methods section, the lift shows the probability of a factor appearing in a
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cell with high PDC relative to the total data in the dataset; the lift will be greater than one if
a factor appears in cells with high PDCs more frequently compared to the entire dataset.
Hence, the higher lift values can be used as an indicator for the positive effect of that
particular factor. However, lift is not the only criteria to show the significance of a factor.
Support and confidence are the other two statistical properties that should be taken into
account, as discussed before. The total number of data points obeying the rules stated in each
row in Table 4.2 gives an idea of the statistical significance of the rule in a simpler term,
even though that information already exists in support. Since larger counts show more
reliable rules, the rows were color-coded depending on the number of counts, and only the
rules that were obeyed by at least five cases were discussed. Moreover, if all entries are

koo

coming from the same article, the count was marked with to warn the reader.

The use of carbon as the current collector can be used as an example to better
understand the meaning of support, confidence, and lift values, as well as the interpretation
of Table 4.2. The support, confidence, and lift values for this entry are 0.018, 0.040, and
1.90, respectively, with a count of 27. This indicates that there are 27 cells using carbon as
the current collector and achieving PDCs equal to or higher than 1000 mAh/g. Considering
that we have 1463 cells in the database, the support is 27/1463=0.018. Because there are 669
cells with PDCs equal to or higher than 1000 mAh/g in the entire database, the confidence
is 27/669=0.040. Since a total of 31 cells uses carbon as the current collector (27 of them
has high PDC), the lift is (27/669)/(31/1463)=1.90 meaning that the fraction of the cells
using carbon as the current collector in those with PDCs equal to or higher than 1000 mAh/g
is 1.90 times higher than the fraction of the cells with carbon current collector in the entire
database. We can conclude from this result that the use of carbon as a current collector is

beneficial.

As can be seen in Table 4.2, most of the high lift entries with statistically sufficient
number of counts are associated with the use of encapsulation materials in the cathode. The
highest lifts are obtained with the specialized encapsulation materials, i.e. structured carbons
such as GO and porous carbon and polymers such as polyaniline. According to the table, the
cells utilizing two different types of encapsulation materials together perform better
compared to a single encapsulation material. Using graphene oxide with porous carbons,

carbon nanotubes with special chemistries or hollow structured carbons lead to higher lift
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values. This clearly shows that the development of structured carbons and special

chemistries as encapsulation materials in the cathode is key to get higher specific capacities.

Table 4.2. Association rule mining results for cells with liquid electrolyte having PDCs of

1000 mAh/g and above.
RHS Support Confidence Lift Count
{Encapsulation=Graphene+Hollow Structured Carbon} 0.00068 0.00149 2.19 1
{Encapsulation=Graphene+Porous Carbons+Others} 0.00068 0.00149 2.19 1
{Encapsulation=GO+Hollow Structured Carbon} 0.00068 0.00149 2.19 1
{Encapsulation=Porous Carbons+Others} 0.00137 0.00299 2.19 2
{Encapsulation=Hollow Structured Carbon+Polypyrrole} 0.00205 0.00448 2.19 3
{Encapsulation=C Black+Porous Carbons} 0.00273 0.00598 2.19 4
{Encapsulation=GO+Porous Carbons} 0.00342 0.00747 2.19 5
{Encapsulation=Porous Carbons+PANT} 0.00478 0.01046 2.19 7
{Encapsulation=C Black+PANTI} 0.00547 0.01196 2.19 8*
{Current_Collector=Carbon} 0.01846 0.04036 1.90 27
{Electrolyte Additive=Others} 0.00615 0.01345 1.79 9
{Encapsulation=Hollow Structured Carbon+Others} 0.00273 0.00598 1.75 4
{Electrolyte_Salt=NO} 0.00273 0.00598 1.75 4
{Seperator=Others } 0.00205 0.00448 1.64 3
{Encapsulation=CNT+Others} 0.01572 0.03438 1.62 23
{Doping=Nitrogen} 0.04033 0.08819 1.54 59
{E_S_Ratio=5--10} 0.04033 0.08819 1.54 59
{Encapsulation=Hollow Structured Carbon} 0.00957 0.02093 1.53 14
{Encapsulation=C Black+Others} 0.00137 0.00299 1.46 2
{Encapsulation=Other Carbons+Others} 0.00684 0.01495 1.46 10
{S_Type=Sulfur+Others} 0.00684 0.01495 1.46 10
{Electrolyte_Salt=Others} 0.00820 0.01794 1.46 12
{C_Type=C Black+Structured carbon} 0.01094 0.02392 1.40 16
{E_S_Ratio=0--5} 0.01162 0.02541 1.38 17
{Binder Type=PTFE} 0.02529 0.03453 1.37 37
{Encapsulation=CNF} 0.01162 0.03576 1.33 17
{Binder Type=LA} 0.01572 0.03699 1.32 23
{Binder_Type=CMC+SBR} 0.01982 0.03822 1.32 29
{Encapsulation=Structured Carbons} 0.00410 0.03945 1.31 6
{Encapsulation=CNF+Others} 0.00410 0.04068 1.31 6
{Interlayer=Yes} 0.10663 0.04191 1.30 156
{Binder_Type=PEO+Others} 0.00889 0.04314 1.29 13
{Electrolyte_Solvent=TEGDME} 0.01435 0.04437 1.28 21
{S_wt=0--25} 0.01572 0.04560 1.26 23
{Binder Type=PVDF+others} 0.00273 0.00598 1.25 4
{Encapsulation=Graphene+Others} 0.01435 0.03139 1.24 21
{Electrolyte_Solvent=Others} 0.02051 0.04484 1.24 30
{Doping=Nitrogen+Others} 0.00615 0.01345 1.23 9
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The table also reports high lift values with reasonably high number of counts for the
use of carbon current collectors, nitrogen doping and the E/S ratios of 0-10 mL/g in the
cathode. As a result, Li-S cells with these factors have higher probability to reach specific
capacities equal to or higher than 1000 mAh/g. The other important factors for achieving
high PDCs are the conductive material type, electrolyte salt type, sulfur type, binder type,
and S weight percentage. In addition, having an interlayer is also beneficial for achieving

PDCs equal to or higher than 1000 mAh/g.

Although the ARM analysis for the cells with PDCs equal to or higher than 1000
mAh/g gives valuable information for the effect of various cell materials and compositions,
this value is still only the 60 % of the theoretical capacity; PDCs should be much higher for
practical applications. For this reason, the ARM analysis were repeated for the cells with
PDCs equal to or higher than 1200 mAh/g, 1400 mAh/g and 1600 mAh/g; this way the
change in lift with increasing PDC could be also monitored to identify the factors that
become more apparent when the desired PDC value is increased. The PDC values were
defined cumulatively; for example, the batteries with PDCs equal to or higher than 1000
mAh/g also cover the batteries having PDCs equal to or higher than 1200 mAh/g, 1400
mAh/g and 1600 mAh/g. The results of such analysis are shown in Figure 4.7, for the
cathode design parameters as the lift versus discharge capacity bubble graphs, where the
bubble size indicates the number of counts obeying that rule (numbers next to the bubbles);
only the cases having a minimum of 10 data points were included in the figures related to
association rule mining results. Figure 4.7a indicates that carbon black, which is the most
common conductive material used, is still the best option since the lift values of all other
options are lower (although the lift for C-black with some structured carbon materials is
higher at low PDCs, this result cannot be generalized because all these data points are
coming from a single article). The amount of conductive material seems to be important, and
15-30 wt.% (intermediate values) is more favorable for high capacity sulfur cathodes (Figure

4.7b).

Thirteen options are present in Figure 4.7c for the effect of encapsulation material
type. Although the graph seems to be complex at first look, the general trends are rather
simple; the most striking conclusion is that encapsulated cathodes are much better for

achieving high PDCs when compared with the no encapsulation case. When the PDC is 1000
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mAbh/g, all the alternatives overlap even though the lowest lift value is still obtained for the
no encapsulation case (represented by the large blue bubble in the figure). Then, the lift
values start to differentiate with increasing PDC. For example, C black is one of the most
commonly used encapsulation materials; however, its lift is around one, showing that it is
not a good material for this purpose. The other materials seem to be better than C black or
no encapsulation in general; especially porous carbons appear to be highly effective with the
lift of 2.44 at 1600 mAh/g. Likewise, the lift of “others”, which is a collection of infrequently
used materials (like polyacrylonitrile and covalent organic frameworks doped with boron
and oxygen), is much higher (2.57) with the count number of 5 (the count was 10 at 1400
mAh/g). Carbon nanotubes (CNT) with some additives also result in high-capacity cathodes;
for instance, CNT with zeolitic ZIF-8 or polyethylenimine may favor capacities over 1400
mAh/g. To sum up, encapsulating sulfur with structured carbons (i.e., CNT, CNF, porous
carbons) or developing novel encapsulation materials (i.e., others, other carbons) are highly
promising pathways to achieve PDCs over 1400 mAh/g. This may be because the structure
and the properties of the encapsulation materials, such as CNT, CNF, porous carbons, etc.,
can be defined and controlled better compared to C black; for instance, structured carbons
typically have higher conductivity and surface area. Therefore, better control of the structure
and more refined properties of carbons (or novel materials) may be significant in the success

of the encapsulation.

Figure 4.7d shows that high fractions of encapsulation materials (more than 40 wt.%)
also improve the cell performance. This may be attributed to the enhanced conductivity and
electrochemically surface area of the sulfur electrode leading to higher sulfur utilization.
Encapsulation fractions less than 40 wt.% does not seem to have the same effect. When the
effect of the binder type on the PDC is considered in Figure 4.7e, it is seen that PVDF, which
is the mostly used binder, has a constant lift value around one for all of the capacity intervals.
On the other hand, PTFE or LA shows promise for attaining high capacity Li-S batteries.
PEO, CMC+SBR, PEO+Others and the other binders that are not listed here are not
favorable when the peak specific capacity is considered as the performance indicator. The
impact of the sulfur loading in the cathode on the PDC is presented in Figure 4.7f. It is
apparent in the figure that the sulfur loading should be smaller than 1 mg/cm? to have peak
capacities higher than 1400 mAh/g; this is due to the improved sulfur utilization at low

loadings as discussed in the previous section.
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Figure 4.7. Change of lift with peak discharge capacity for materials and design factors in
cathode with liquid electrolyte: conductive type (a), conductive weight % (b),
encapsulation type (c), encapsulation weight % (d), binder type (e), sulfur loading

(mg/em?) (D).

Electrolyte materials are also important design factors in a Li-S cell. First, the solvent
material type in the electrolyte was considered. As can be seen in Figure 4.8a, most of the
works in the literature use DOL:DME as the solvent; hence, this material has a lift value of
around one. On the other hand, EC:DEC has a very high lift value of 13.18. Only 20 of 588
data points using DOL:DME achieve PDCs equal to or higher than 1600 mAh/g, while 6 of
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10 EC:DEC cases are still in the dataset at 1600 mAh/g capacity, resulting in this very high
lift value of 13.18. This, together with the high lift result of TEGDME, shows that the
conventional electrolyte solvent can be replaced with new electrolyte solvents to get closer

to the theoretical capacity.
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Figure 4.8. Change of lift with PDC for materials and design factors of liquid electrolyte:
electrolyte solvent (a), E/S ratio (mL/g) (b), electrolyte salt (c), electrolyte additive
concentration (M) (d).

The E/S ratio is another critical factor in our analysis as given in Figure 4.8b. The
impact of E/S ratio on the PDC is obvious in the figure. Even though low or moderate E/S
ratios (0-5 and 5-10 mL/g) are favorable in attaining capacities of 1000 mAh/g S, E/S ratios
higher than 30 mL/g are required to achieve 1600 mAh/g. This clear trend in the figure
confirms that very high E/S ratios are needed in the cell when the cell performance is
evaluated based on the peak discharge capacity. Electrolyte salt type is also considered
together with the electrolyte solvent. As it can be seen in Figure 4.8c, LiPF¢ has a very high

lift value compared to the most commonly used salt LiTFSI; this trend indicates that using
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LiPFs in the electrolyte is favorable for high capacities. On the other hand, the electrolyte
additive, which is mainly LiNO3, does not have any positive effect on the PDC as presented
in Figure 4.8d. On the contrary, the electrolyte with no additive seems to be much better for
high PDC even though LiNO3 improves the cycle life, as it will be discussed in later in this

section.

For Liquid Electrolyte Dataset with E/S Ratio and S Loading Limitations: As

previously discussed, even though the majority of the studies in the literature evaluate the
Li-S cell performance through the peak discharge capacity, the energy density of the cell is
also critical. Since sulfur is the active material in the cathode, high sulfur loadings are desired
for high energy densities. Likewise, the amount of the electrolyte in the cell should be limited
like all the other inactive materials that do not contribute to the cell capacity. In other words,
for high energy density Li-S batteries, the E/S ratio should be low while the sulfur loading
in the cathode is high. Consequently, in order to investigate the effect of factors to achieve
high energy density cells, ARM analysis was also performed for the cells having sulfur
loadings higher than 5 mg/cm? (Table 4.3) and E/S ratio of 0-5 mL/g (Table 4.4) with PDCs
equal to or higher than 1000 mAh/g. Because of the low number of data in the dataset
satisfying both sulfur loading and E/S ratio requirements simultaneously, the analyses for

these two factors were conducted individually.

The most significant result in Table 4.3 is that there should be no conductive additive
or binder in the cathode for high PDCs at high sulfur loadings. In addition, encapsulation
weight percentages should be between 0-25 wt.%. This shows that the development of
binder-free cathodes with efficient encapsulation materials at low amounts is key to have
high performance at high sulfur loadings. ARM analysis, in which E/S ratio is restricted,
also provides valuable information. There are electrolyte starved cells that can achieve peak
discharge capacities > 1000 mAh/g and ARM analysis can be successfully used to
investigate the common materials and cell design factors in these cells. However, because

of the low number of data in the dataset for these low E/S ratios, it is not possible to

differentiate between E/S ratios of 0-5 mL/g.
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Table 4.3. Association rule mining results for cells with liquid electrolyte having PDCs
equal to or higher than 1000 mAh/g and S loadings equal to or higher than 5 mg/cm?.

RHS Support Confidence Lift Count
{Encapsulation=C Black+PANI} 0.00068 0.100 18.29 1
{Encapsulation=Structured Carbons} 0.00068 0.100 14.63 1
{Electrolyte Additive=LiNO3+Others} 0.00068 0.100 13.30 1
{Current_Collector=NO} 0.00137 0.200 8.61 2
{S_Type=LixSy} 0.00205 0.300 6.65 3
{Current_Collector=Others} 0.00137 0.200 5.85 2
{S wt=75--100} 0.00137 0.200 5.23 2
{Binder Type=NO} 0.00342 0.500 4.57 5
{Encapsulation=Graphene} 0.00273 0.400 3.85 4
{C Type=NO} 0.00342 0.500 3.40 5
{C wt=0} 0.00342 0.500 3.40 5
{Encapsulation=CNT} 0.00068 0.100 2.00 1
{Electrolyte Salt=LiTF} 0.00068 0.100 2.00 1
{Encapsulation wt=0--25} 0.00410 0.600 1.94 6
{E_S Ratio=5--10} 0.00068 0.100 1.74 1
{Electrolyte Add Conc=0.2--0.5} 0.00205 0.300 1.73 3
{E_S Ratio=Above 30} 0.00137 0.200 1.72 2
{Encapsulation=Porous Carbons} 0.00137 0.200 1.64 2
{E_S Ratio=15--30} 0.00137 0.200 1.63 2
{Encapsulation wt=Above 40} 0.00068 0.100 1.18 1

It can be seen in Table 4.4 that the electrolyte solvents (i.e. Sulfolane and TMS:TTE)
other than DOL:DME, TEGDME and EC:DEC are highly effective having lift values higher

than 8. This suggests that the development of novel electrolytes may play a critical role in

achieving high discharge capacities in electrolyte starved cells. In addition, using CNT or

carbon black as encapsulation materials may increase the probability of having PDCs equal

to or higher than 1000 mAh/g. Finally, the presence of an interlayer may contribute to the

specific capacity of the Li-S cells with lean electrolyte conditions. These results all indicate

that materials design is necessary to attain high discharge capacities at low E/S ratios in the

cell.

Table 4.4. Association rule mining results for cells with liquid electrolyte having PDCs

equal to or higher than 1000 mAh/g and E/S ratios lower than 5 mL/g.

RHS Support Confidence Lift Count
{Binder Type=PEO+Others} 0.0021 0.1765 11.74 3
{S_Type=Sulfur+Others} 0.0014 0.1176 11.47 2
{C Type=C Black+Structured carbon} 0.0021 0.1765 10.33 3
{Electrolyte Solvent=Others} 0.0034 0.2941 8.12 5
{Binder Type=PEO} 0.0027 0.2353 8.01 4
{Encapsulation=CNT} 0.0034 0.2941 5.89 5
{Current_Collector=Others} 0.0021 0.1765 5.16 3
{Binder Type=CMC+SBR} 0.0014 0.1176 3.59 2
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Table 4.4. Association rule mining results for cells with liquid electrolyte having PDCs
equal to or higher than 1000 mAh/g and E/S ratios lower than 5 mL/g. (cont.)

RHS Support Confidence Lift Count
{Electrolyte Salt=LiTF} 0.0021 0.1765 3.54 3
{C Type=CNT} 0.0014 0.1176 2.97 2
{Encapsulation=C Black} 0.0034 0.2941 2.58 5
{Electrolyte Salt=LiClO04} 0.0007 0.0588 2.46 1
{Electrolyte Solvent=TEGDME} 0.0007 0.0588 2.39 1
{Electrolyte Add Conc=0.2--0.5} 0.0048 04118 2.38 7
{Binder Type=LA} 0.0007 0.0588 2.26 1
{S loading=1--3} 0.0109 0.9412 2.26 16
{Interlayer=Yes} 0.0041 0.3529 1.96 6
{C wt=0--15} 0.0089 0.7647 1.86 13
{Current Collector=C coated Al foil} 0.0034 0.2941 1.80 5
{S wt=75--100} 0.0007 0.0588 1.54 1
{Binder Type=PTFE} 0.0007 0.0588 1.46 1
{S_wt=50--75} 0.0082 0.7059 1.40 12
Encapsulation wt=0} 0.0041 0.3529 1.22 6
{Encapsulation=NO} 0.0041 0.3529 1.22 6
{Electrolyte Add Conc=0--0.1} 0.0027 0.2353 1.14 4

4.1.1.3. Analysis of Cycle Life for the Cells with Liquid Electrolyte. The association rule

mining analysis was also performed for the cycle life by using a similar procedure explained
for the PDC. Here,the cycle life was defined as the number of cycles a cell retains at least
80% of its PDC. The lift values were calculated for the cells that preserved 80% of their peak
capacity for more than 50, 100, 200 and 400 cycles cumulatively (for example 200 cycle
data also contains 400 cycle data), and monitored to understand the effect of individual
factors on the battery cycle life. The results for the entire dataset are presented in Figure 4.9
and Figure 4.10. Since the end goal is to attain high capacity retention at high PDCs, an
additional ARM analysis was also performed for the cycle life of the cells achieving 1000
mAh/g and higher peak capacities only and the results are given in the parenthesis to show

how much of the data comes from the cells with the desired PDCs.

According to Figure 4.9a, the cathodes that do not contain any binder perform better
than the cathodes having PVDF, CMC+SBR or others. However, it should be noted that,
these binder-free cathodes are generally the ones that utilize special encapsulation materials
in which an additional binder is not needed. Therefore, a discussion built on encapsulation
materials rather than the binder type would be more relevant. The sulfur loading, which is a
critical cathode design parameter, has a strong effect on the cycle life (Figure 4.9b). 80 %
capacity retention for more than 300 and 400 cycles seems to be more possible if the sulfur

loading is between 3-5 mg/cm? while higher loadings (above 5 mg/cm?) are better in lower
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cycle numbers. This can be explained that high active material loadings may enhance the
PSM and increase the cell resistance with cycling. As seen in the figure, cells with low sulfur
loadings (0-1 mg/cm?) show limited cycle life despite achieving high PDCs as discussed
above. This, together with the discussion on the energy density, clearly suggests that low S

loaded cathodes are not feasible.
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Figure 4.9. Change of lift with cycle number for materials and design factors in cathode
with liquid electrolyte: binder type (a), sulfur loading (mg/cm?) (b), conductive type (c),

conductive weight % (d), encapsulation type (e), encapsulation weight ().
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The cells with no conductive additive have the highest lift at high cycle life (Figure
4.9¢); this is also apparent in Figure 4.9d that the highest lift was obtained with 0% additive.
However, it should be emphasized that these cells are also the ones with specialized
encapsulation materials. These results suggest that if the encapsulation materials have large
surface area, appropriate pore structure and volume that restrict structural deformations, and
provide high conductivity, additional conductive additives and binders are not necessary.
Then, it can be said that the type and amount of encapsulation material are the most crucial

factors for achieving high capacity retention and thus enhanced cycle life.

When the influence of encapsulation type and amount on the cycle life is considered
in Figure 4.9¢ and Figure 4.9f, respectively, the critical impact of the encapsulation strategy
can be clearly comprehended. Cells prepared without any encapsulation (NO in Figure 4.9¢
and 0% in Figure 4.9f) have the worst cycling performance. Moreover, it is seen that porous
carbons, carbon nanotubes, and less frequently used materials collected in the entry of others
(i.e., polyacrylonitrile, polydopamine) are good options for high cycle life. Graphene
together with various other materials (graphene+others) and other carbons also have high
lift values up to 400 cycles. Furthermore, Figure 4.9f suggests that encapsulation wt.%
higher than 25% (25-40% and 40-100%) is favorable for enhanced cycle life; this result is
consistent with the findings presented above for PDC proposing binder- and conductive-free

cathodes for high-performance cells.

When the electrolyte parameters of the cells are considered in Figure 4.10, the only
conclusive results come from the E/S ratio and electrolyte additive concentration. Better
cyclability is obtained with E/S ratios higher than 30 mL/g while 0.1-0.2 M additive (mostly
LiNOs3) concentration seems to improve the cycle life. The latter result is expected as LiNO3
is known to passivate the anode; however, it is interesting that intermediate concentrations
(0.1-0.2 M) resulted in better cyclability. On the other hand, observing the highest lift values
for the highest E/S ratio range was an unexpected finding since it is frequently discussed in
the literature that too high electrolyte amounts enhance the PSM in the cell and thus reduce

the capacity retention.



93

(a)ZO ©15--30 ®Above3d ©10--15 o5-10 (b)2§ 00.1-02 ©NO ©0-0.1 0.2-05
" » 43(18) 19%)
. O 11(2)
12) 84(29)
3 o . U
& & 1.5
= 1.0 ° - _ J
! 1.0 17
27(15) ' ,
0.5 7(1) ’ 2
2(1)
o 05 | N @]
2 88(24) 41(7 13(1) 3 3 ‘
0.0 0.0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Cycle Number Cycle Number
1.5 1.5
(C) O LiTFSI O LiTF (d) 0 DOL:DME
2(11)
10(4) .
® 9 o U U
£ 1.0 - £ 1.0 U \
- . 12 g
LY
0.5 0.5
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Cycle Number

Cycle Number

Figure 4.10. Change of lift with cycle number for materials and design factors of liquid
electrolyte: electrolyte solvent (a), E/S ratio (mL/g) (b), electrolyte salt (¢), electrolyte
additive concentration (M) (d).

4.1.1.4. Analysis of Peak Discharge Capacity and Cycle Life for the Cells with Other Types

of Electrolyte. Finally, association rule mining was performed for PDC and cycle life of Li-
S cells with catholyte and solid electrolyte. However, the number of data points were too
small to have a detailed discussion as in the case of liquid electrolyte; instead, PDC and cycle
life of three electrolytes were compared in Figure 4.11. The cells with solid electrolyte
perform better in PDC analysis while the catholyte is better for long cycle life. Li
conductivity in all-solid-state Li-S batteries is already comparable with the conventional
electrolytes; hence, they can achieve very high PDCs. However, the interface forming
between the anode and the solid electrolyte with cycling causes high interfacial resistance in

the cell and thus leads to poor cycle life [323]. On the other hand, cells with catholyte achieve
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improved cycling performance, most probably due to reversible and kinetically fast reactions
in the presence of additional PSs in the electrolyte [324]. To conclude, since Li-S cells using
catholyte and all-solid-state electrolyte are relatively recent in the literature, a future ARM

study focusing only on these cells would result in more elaborate conclusions.
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Figure 4.11. Comparison of peak discharge capacity (a) and cyclability of electrolyte types
(b) in Li-S cells.

4.1.2. Assessment of Ionic Liquid Electrolytes for High Performance Lithium-Sulfur

Batteries using Machine Learning

This chapter is an edited version of the original research article published in the
International Journal of Energy Research by authors A. Kilic, Prof. R. Yildirim, and Prof.
D. Eroglu [44].

Although Li-S batteries are very promising in terms of their theoretical specific energy,
their commercialization is severely hindered by the multi-step reaction and various
degradation mechanisms. The PSM is one of the big challenges associated with these
batteries that results in irreversible capacity loss and low efficiencies. To realize the full
potential of the Li-S batteries, the shuttling of PS intermediates between the electrodes
should be prevented. Additionally, to increase the system-level energy density of the Li-S
battery, the dead mass inside the battery pack should be minimized. In this respect, ionic
liquids (IL) are getting increasing attention as they can reduce the PS shuttle mechanism

with their limited PS solubility and their functionality at lean electrolyte conditions. In this
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section of the thesis, a dataset is constructed from the experimental literature data, which
uses ILs as their electrolytes, to analyze the important cell variables and promising ILs for

both high system- and cell-level performances using association rule mining.

4.1.2.1. ARM Results for Peak Discharge Capacity. The lowest capacity limit for the high-

capacity subset was chosen as 800 mAh/g, and its ARM results are given in Table 4.5. This
table was ranked with respect to the lift values as higher lift values present stronger
associations between that factor and the high-class cells, while lift values below 1 imply
negative correlations. Confidence and support are also given together with the count value,
which is the number of cases satisfying the rule, as a more practical measure to see the
significance of the results. Indeed, some of the entries with the highest lift have only a few
cases; hence, they cannot be generalized with high confidence as a rule to follow. The
calculation of support, confidence, and lift can be shown for EMI TFSI as an example to
better understand the results. The total number of data points in the dataset is 207 while only
125 of them have PDCs > 800 mAh/g, high class subset. On the other hand, 7 data points
contain EMI_TFSI in their electrolytes and 6 of them give high performances (count).
Hence, support, confidence and lift values are found as 6/207=0.029, 6/125=0.0480 and
0.0480/(7/207)=1.42, respectively. As seen in the table, the electrolyte parameters,
specifically the IL type, are at the top of the table, indicating that they are very effective for
providing high-capacity Li-S batteries.

The rules or conclusions deduced for the factor effects can be refined further with a
slightly different use of ARM as follows; the lower limits of high performance data can be
set to a different level (such 800 mAh/g to 1000 mAh/g, and so on) and ARM analysis is
performed for each case. Since the number of data will decrease with increasing lower limit
(tighter performance requirement), the lift of a level promoting high performance should
increase because the number of data satisfying this condition, should remain constant or at
least should decrease less than the others. Hence, the increasing trend in the lift can be used
as a further indicator of the positive effect of that level. Therefore, the limits for the high-
capacity class were increased from 800 mAh/g to 1000 mAh/g, 1200 mAh/g and 1400
mAh/g and the trend for the lift of each factor was analyzed separately. The results, as lift
versus capacity limit, are presented in bubble graphs, where the bubble size represents the

number of data points satisfying the conditions. Since the capacities are cumulative (for



Table 4.5. ARM results for PDCs >800 mAh/g.

the bubbles are expected to decrease, while the lift of the promising factor will increase.
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example if a PDC is greater than 1400 mAh/g, it is also greater than 800 mAh/g), the size of

Factors Levels Support | Confidence | Lift Count
IL_Abbreviation DEME Othersl | 0.0048 0.0080 1.66 |1
IL_Abbreviation PMIM_TFSI 0.0048 0.0080 1.66 |1
IL_Abbreviation P1A3 TFSI 0.0097 0.0160 1.66 |2
Encapsulation Material Categorized | Carbon Black 0.0097 0.0160 1.66 |2
Conductive Material Categorized Others4 0.0097 0.0160 1.66 |2
Anode Categorized Modified Li | 0.0145 0.0240 1.66 |3
anode
IL_Abbreviation Li(G3) TFSI 0.0145 0.0240 1.66 |3
Binder Categorized CMC 0.0386 0.0640 147 |8
IL_Abbreviation EMI TFSI 0.0290 0.0480 142 |6
IL_Abbreviation P13 Othersl 0.0290 0.0480 142 |6
E/S Ratio Categorized 0-15.0 0.1111 0.1840 141 |23
Encapsulation Material Categorized | Carbon 0.0821 0.1360 1.41 17
Nanotube
S Loading Cat >4.0 0.0966 0.1600 1.38 |20
IL_Abbreviation Li(G4) TFSI 0.1159 0.1920 132 | 24
IL/Solvent vol.% _Categorized <50 0.1353 0.2240 1.32 | 28
Molecular Solvent Categorized DOL:DME 0.1449 0.2400 1.31 30
ConductiveMaterial Categorized Acetylene black | 0.1256 0.2080 1.30 |26
IL_Abbreviation P13 TFSI 0.0483 0.0800 1.27 |10
Molecular Solvent Categorized Fluorinated 0.0483 0.0800 1.27 |10
ether
Binder Categorized None 0.0435 0.0720 124 |9
Conductive Material Categorized Ketjen Black 0.0435 0.0720 124 |9

Figure 4.12 presents the ARM results showing the effect of IL type on the PDC. The
lift values are very close for all ILs at PDCs > 800 mAh/g, meaning that most of the ILs
work well for this capacity range. However, when the capacity limits are increased,
promising ILs become more apparent as they differentiate with higher lifts. For example,
P13 Othersl, EMI TFSI, and P13 TFSI seem to be much better for PDCs > 1400 mAh/g,
while P1,201 TFSI shows promise for PDCs > 1200 mAh/g. Although P1A3 TFSI has high
lift values, since it has a low count, we cannot deduce a conclusion. On the other hand, there
are many examples of SILs, which have Li(triglyme) or Li(tetraglyme) cations and TFSI or
other various anions in the literature. However, an association between these ionic liquids
and high performance is not observed for PDCs > 1200 mAh/g; the true ionic liquids
performed better in terms of high PDCs. As presented in Table 3.7, there are 19 different

ionic liquids, which are combinations of 14 cation and 2 anion groups in the dataset; 92 %
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of ionic liquids uses TFSI as their anion group and there are only a few studies investigating
the effect of the anion group on the performance [325,326]. The main reason for this
preference is probably the known low PS solubility of TFSI anionic group as compared to
other organic solvents [326]. However, further analysis of the ARM results shows that the
use of different anion groups (BETA, FSI) for P13 cation may be beneficial considering that
the lift is almost tripled with the increasing performance measure (higher limits for the high-
performance class); in other words, the use of the different anionic groups (BETA, FSI)
resulted in high PDCs if P13 was used as the cation. This may be suggesting that the other
anion groups should also be investigated for the other cations in addition to TFSI, which

seems to be a default anion.
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Figure 4.12. Lift vs. peak discharge capacity of ionic liquids as electrolytes.

Rather than using pure IL electrolytes, most of the data points in the dataset uses
additional molecular solvents (MS), which are generally organic solvents with certain salts
[327,328]. In fact, 64% of the data uses these solvents to decrease the viscosity of ILs to
facilitate Li" ion transfer in general. However, Figure 4.13a and Figure 4.13b do not seem
to support this practice; the use of suitable pure IL electrolytes works better as “None” level
has the highest lift at the highest capacity limit. On the other hand, if a MS is needed,
DOL:DME solvent mixture should be used with the condition that IL/MS vol.% should not
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exceed 50 vol.%. It was also found that the addition of various salts, other than LiTFSI,
favors high PDCs, whereas LiNO3 decreases the probability of having high PDCs in IL
electrolytes (Figure B.3).
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Figure 4.13. Lift vs. peak discharge capacity of molecular solvents as electrolytes (a) and

IL/MS vol.% in the electrolyte (b).

In Figure 4.14 and Figure 4.15, the effect of E/S ratio and sulfur loading on the PDC
of Li-S batteries with IL electrolytes are compared with the Li-S cells with molecular solvent
electrolytes using the dataset we created in the previous section [43]. In Figure 4.14a, it is
shown that low E/S ratios are more favorable for reaching higher PDCs in IL electrolytes
(Figure 4.14a); on the other hand, high E/S ratios are needed for high performance for non-
IL electrolytes (Figure 4.14b).
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Figure 4.14. Lift vs. peak discharge capacity of E/S ratio for IL (a) and molecular solvent
(b) electrolytes.

Figure 4.15 indicates that ILs work well with high sulfur loadings, whereas Li-S cells
with molecular solvents fail at high sulfur loadings. Figure 4.14 and Figure 4.15 support that
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the use of IL electrolytes is beneficial in Li-S batteries; high PDCs can be achieved at low
E/S ratios and high S loadings for these cells. These positive improvements may be attributed

to the limited PS solubility with the utilization of the IL electrolytes [329].
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Figure 4.15. Lift vs. peak discharge capacity of sulfur loading (mg/cm?) for IL (a) and

molecular solvent (b) electrolytes

The ARM results of the other variables are given in Appendix B. It is found that the
encapsulation of sulfur cathodes is still desired for high PDCs to further suppress the PSM
and to increase the electronic conductivity (Figure B4.a). Carbon black and activated carbons
should be used as encapsulation materials in the presence of the IL electrolytes. In addition,
graphene/MgAl>O4 and N-doped mesoporous carbon seem to have a positive effect on the

improvement of the Li-S cell performance.

4.1.2.2. ARM Results for System-Level Performance. Although having a high PDC is

important for a Li-S cell, more relevant performance indicators for practical applications of
batteries are system-level gravimetric and volumetric energy densities [65], [32], [330].
Especially, for applications like electric vehicles, the gravimetric energy density of the
battery should be higher than 400 Wh/kg [331]. However, studies that investigate the
system-level performance of Li-S batteries are very limited [332,333]. Hence, in this section
we modified the BatPac model to estimate the system-level energy density and specific
energy of the Li-S batteries using the experimental PDCs and design factors such as the E/S
ratio, sulfur loadings, S/C/binder wt% etc. in the dataset. However, only half of the dataset
reported these variables; hence, the total number of data points decreased from 207 to 102

for this analysis.



Table 4.6. ARM results for specific energies > 60 Wh/kg.
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Factors Levels Support | Confidence |Lift | Count
ConductiveMaterial

Categorized Others4 0.010 0.067 6.80 |1
Binder Categorized CMC 0.059 0.400 4.53 |6
E/S Ratio Categorized 0-15.0 0.137 0.933 3.53 |14
ConductiveMaterial

Categorized None 0.059 0.400 3.40 |6
Encapsulation wt%

Categorized 30-35 0.059 0.400 340 |6
Conductive wt% Categorized 0 0.059 0.400 240 |6
S Loading Cat >4.0 0.049 0.333 227 |5
S wt% Categorized >60 0.088 0.600 2.19 |9
IL_Abbreviation Li(G4) TFSI 0.059 0.400 2.15 |6
Encapsulation Material Categorized Graphene Oxide 0.049 0.333 2.13 |5
Encapsulation Material Categorized Ketjen Black 0.059 0.400 1.94 |6
Encapsulation Material Categorized Mesoporous carbon | 0.029 0.200 1.70 |3
Electrolyte Salt

Categorized None 0.059 0.400 1.70 |6
IL/Solvent_vol.%

Categorized 100 0.059 0.400 1.70 |6
Molecular Solvent

Categorized None 0.059 0.400 1.70 |6
Molecular Solvent Categorized DOL:DME 0.078 0.533 1.60 |8
IL/Solvent vol.% Categorized 50 0.049 0.333 1.55 |5
Electrolyte Additive Categorized Yes 0.049 0.333 148 |5
S Loading Cat 1.5-4.0 0.088 0.600 1.42 19
Conductive wt% Categorized 20 0.049 0.333 1.36 |5
Separator_Categorized Polymer 0.118 0.800 1.36 |12
Encapsulation wt% Categorized 0-20 0.039 0.267 1.30 |4
Binder Categorized Others6 0.029 0.200 1.28 |3
IL_Abbreviation P14 TFSI 0.078 0.533 1.21 |8

Table 4.6 and Table B.1 report the ARM analysis results for Specific Energy > 60

Wh/kg and Energy Density > 60 Wh/L, respectively. As seen in the table, the cell design
parameters are also effective on the system-level performances. Since the IL type is not
appeared frequently in the Table 4.6 and the entire dataset used in the analysis is constructed
with ILs, we may say that cell design variables are more important in terms of system-level
energy density rather than the type of the IL. As supported with the Table 4.6, the dead mass
of the cell should be minimized to provide high energy density Li-S battery systems.
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Figure 4.16. Lift vs. specific energy (Wh/kg) (a) and energy density (Wh/L) (b) of E/S

ratio for IL electrolytes.

On the other hand, one of the highest lifts is obtained with E/S=0-0.15 ml/g and sulfur
loading higher than 4 mg/cm? where we proved ILs are improving PDCs at these conditions.
Hence, we may still conclude that ILs have a critical effect on the improvement of the
system-level performance. In addition, with lift values higher than 1, Li(G4) TFSI and
P14 TFSI are found to be the best options for high system-level performance metrics. In
addition, graphene oxide, ketjen black and mesoporous carbons should be utilized as

encapsulation materials when IL electrolytes are used.
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Figure 4.17. Lift vs. specific energy (Wh/kg) (a) and energy density (Wh/L) (b) of sulfur
loading (mg/cm?) for IL electrolytes.

As seen in Figure 4.16 and Figure 4.17, the estimated energy densities are far below
the requirements for the commercial applications. However, in order to develop some insight
to build relatively high energy density Li-S cells, the ARM analysis was still conducted. The

ARM analysis shows that low E/S ratios and high sulfur loadings are needed to increase the
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energy density and specific energy at the system level for Li-S batteries with an IL
electrolyte; this conclusion is in parallel with the discussions for the Li-S cells using regular

electrolytes [334,335].

4.1.3. Selection of Ionic Liquid Electrolytes for High-Performing Lithium-Sulfur
Batteries: An Experiment-Guided High-Throughput Machine Learning Analysis

A manuscript detailing the results presented in this section is in preparation by authors
A. Kilic, O. Abdelaty, Prof. A. Uzun, Prof. R. Yildirim, and Prof. D. Eroglu. The COSMO-
RS calculations, ML studies and the experiments were performed by A. Kilic and presented

here. O. Abdelaty supported the discussions on ML modeling.

The PSM is one of the most significant challenges of Li-S batteries in achieving high
capacity and cyclability. One way to minimize the shuttle effect is to limit the PS solubilities
in the battery electrolyte. IL are particularly suited as electrolyte solvents because of their
tunable physical and chemical properties. In this chapter, thousands of ILs are screened to
narrow down potentially viable candidates to be used as electrolytes in Li-S batteries. To
that end, COSMO-RS calculations are performed over more than 36000 ILs. An extensive
database containing PS solubilities and other relevant properties is constructed at 25 °C.
First, the effectiveness of the COSMO-RS calculations is experimentally tested with 6 ILs
with a wide range of solubility and viscosity values. After specifying the target limits for
promising ILs using the experimental battery performance data, ML tools are used to predict
and identify the relationship between IL properties and PS solubilities and structural and

molecular descriptors of ILs.

4.1.3.1. Pre-analysis of the Dataset. In this screening section, we aimed to use a dataset

representative of most ILs commonly used and studied, as well as the rare ones in the battery
literature. Hence, our dataset spans several cation groups, including imidazolium,
pyridinium, and ammonium, in addition to anions of different types, including fluorinated,
chlorinated, carboxylates, oxyanions, amino acids, etc., and more commonly investigated
anions in IL electrolytes such as [BF4]", [PFs] and [TFSI]". The complete lists of the cations
and anions groups are given in Table 4.7. The table shows that the most crowded groups are

imidazolium and pyridinium for cations, while amino acids and carboxylates for the anions.
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Table 4.7. The list of cation and anion groups present in the dataset.

Cation Group Cation Count Anion Group Anion Count
Ammonium 49 Amino acid 16
Choline 1 Bis_imide 4
Guanidinium 20 Borate 12
Imidazolium 134 Carboxylate 16
Morpholinium 9 Cyano 3
Others 4 Halo_elemental complexes 7
Phosphonium 28 Halogen 4
Piperidinium 9 Nonmetal oxide 5
Pyrazolium 4 Others 6
Pyridinium 67 Phosphate/ Phosphinate! 9
Pyrrolidinium 19 Sulfate 9
Quinolinium 15 Sulfonate 7
Sulfonium 5

Thiazolium 3

Uronium 3

Total 370 Total 98

! Abbreviated as Phosp./Phosphin.

The COSMO-RS solubility screening results, including solubility, viscosity,
conductivity, and melting points, are shown in Figure 4.18 depending on anion groups,
whereas the distributions on the cation groups are presented in Figure C.3. When these
distributions are compared, solubilities and properties show similar distributions and ranges
regardless of the cation groups. On the other hand, noticeable differences are observed when
anion groups are considered. This clearly indicates anionic effect dominance on the

properties of the ILs.

Figure 4.18a shows that solubility values obtained from the calculations span a wide
scale of many orders of magnitude from 10~ to almost 10%° in mol/mol units. This is expected
primarily when the difference between the solute (Li»Ss) and the solvents (ILs) results in
larger deviations of the activity coefficients. Still, the calculations can compare small and
larger values, but the extreme calculations should be treated cautiously [336,337]. When ILs
with extremely low and high PS solubilities are analyzed, it is seen that some anions give
these abnormal solubility values regardless of the cation types. This may indicate COSMO-
RS's failure to predict the properties of these anions. According to the graph, most amino
acids, carboxylates, halogens, non-metal oxides, and phosphines fall into the extreme
solubility ranges, below 10~ and above 10° mol/mol, and should be treated cautiously. On
the other hand, bis_imide, borate, halo-elemental, and others (the rare ones that do not belong

to any of the anion groups listed) anion groups show reasonable solubility values.
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Figure 4.18. The distribution of solubility (a), In(viscosity(mPa.s)) (b),
In(conductivity(mS/cm)) (c), and melting point(°C) (d), depending on the anion group.

PS solubility is not the only criterion when selecting electrolytes for Li-S batteries.
Other properties are also essential in the screening process of ILs in search of suitable
electrolytes for Li-S batteries; the melting point, viscosity, and conductivity are all
significant criteria in Li-S cell electrolyte selection to ensure smooth cell operation. This
way, utilization of highly viscous IL electrolytes must be avoided to allow for appreciable
Li* diffusion. 1 M Li salt containing DOL:DME electrolyte has a 1.6 mPa.s viscosity value
and shows sufficient ionic conductivity [338]. In the dataset, the lowest viscosity value
calculated from the COSMO-RS is 9.1 mPa.s, which is almost 5-fold higher than that of
DOL:DME electrolytes and only 25 % of 36,260 ILs have viscosity values below 134 mPa.s.
On the other hand, around 15 % and 7 % of the dataset do not have melting points below 0

°C and In(electronic conductivity) values below 2, respectively.

The anion and cation descriptors have been shown to strongly correlate with target
properties in previous studies, including the solubility of water and C4 hydrocarbons in
various ILs and the physicochemical properties of ILs [209,210]. The descriptors are simple
yet essential structural, electronic, and energetic factors. CPK area and ovality are related to
the geometry of ions calculated based on the space-filling model, which is a crucial indicator
of the area of potential interactions with other ions or the PSs. Naturally, the higher the area
is, the stronger the interactions in the solution are. However, the ovality effect also plays an
important role in the space fitting of ions surrounding the PSs and each other. Dipole and

polarizability represent ions' charge distribution and susceptibility of that distribution to
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deformation when interacting with other molecules. These are highly important in studying
solvation energy and solubility because they directly relate to the interactions during
solvation. The potential for hydrogen bond formation is given by the hydrogen bond donor
(HBD) and acceptor count (HBA) [339]. PSs are all known to be weak bases, in other words,
hydrogen bond acceptors [340]. However, this also indicates the potential for the cation and

anion to be attracted to each other, which will also affect the solubility.

Other important descriptors include electronic and energetic ones, which may affect
the solubility less directly. The values of HOMO and LUMO energies calculated by simple
DFT calculations contain important information related to ion stability, its potential for
electronic interactions, and bond strength. The vibrational Zero-point energy is the lowest
vibrational energy level and determines the flexibility or stiffness of the bonds in the
molecule to stretching and bending. This property describes the flexibility of ions to
structural deformation during the solvation process [341,342]. Finally, the molecular weight
of ions is also useful as it gives information about ion diffusion coefficients, density, and

viscosity, which indirectly affect solubility.

4.1.3.2. 1L Requirements for High-Performance Li-S Batteries. To see if there is a

correlation between PS solubilities and IL properties calculated using the COSMO-RS
method and Li-S battery performance, as hypothesized, six ILs listed in Table 4.8 are tested
experimentally (the experimental details are provided in Appendix C). As seen in the table,
three different cations with [TFSI] and three different anions with [BMIM], 1-butyl-3-
methyl-imidazolium, which are one of the most common anions and cations in the literature,
are used in the experiments. These ILs are commercially available, hence easily accessible,
and have low/high solubility and viscosity values (melting point and electrical conductivity
are only used to confirm the suitable liquid phase of the electrolyte and to ensure no electron
flow through the electrolyte). Hence, four of these ILs are projected to have low solubilities
(PP14-TFSI, DEME-TFSI, TBMA-TFSI, BMIM-PF¢), whereas the other two (BMIM-
CF3S0; and BMIM-MeSO4) have extremely high values. Moreover, ILs with low and high
viscosities also have both high and low solubility cases. Hence, it is possible to identify the
effect of COSMO-RS predicted viscosity and solubility values on the performance of Li-S

batteries.
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Table 4.8. Experimentally tested six ionic liquids.

Cation Anion COSMO-RS COSMO-RS
PS Solubility (mol/mol) Viscosity (mPa.s)

PP14 TESI 0.20 65

DEME TFSI 0.38 54

TBMA TFSI 0.04 107

BMIM PFs 1.29 223

BMIM CF3S03 847 56

BMIM MeSO4 182635 146

The results presented in Figure 4.19 supported the discussion on the importance of low

solubility

but also highlighted the effect of viscosity on the Li-S cell performance. Although

high viscosity may also suppress the PSM by restricting PS movement, it also prevents the

diffusion of Li* ions. In this respect, the ILs of PP14-TFSI and DEME-TFSI with both low

solubility

and viscosity show the best cycling performance. On the other hand, Li-S cells

with ILs (TBMA-TFSI, BMIM-PFe) with low PS solubility but higher viscosity performed
moderately. Finally, BMIM-CF3;SO3; and BMIM-MeSO,4 showed almost zero capacity over

cycling. These ILs are predicted to have high solubility, indicating that even though low

viscosity is required for high performance, low PS solubility is a more critical property. For

instance, BMIM-CF3SO; performs poorly, even though it has low viscosity, proving that

mostly PS solubility determines the performance.
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Figure 4.19. The cycling performances of six ILs tested at 0.1C.



107

The experimental results show that it is possible to use the COSMO-RS predictions
for assessing Li-S battery performances. However, these results are only limited to 6 ILs,
and the validation of COSMO-RS results is still needed. Unfortunately, a sufficiently
comprehensive experimental study to evaluate the predictions made by the COSMO-RS
model is excessively difficult, necessitating a comparison with the available data in the
literature. The few studies regarding solubility had limited scope due to difficulties discussed
previously. Among them, Park et al. reported PS solubilities for various ILs. The
experimentally measured PS solubilities account for a mixture of PSs in the solution due to
disproportionation reactions and the subsequent cascade of PS reactions. This difference is
partially responsible for the departure of predictions of Li>Sg solubility from experimental
measurements of all PSs. Indeed, the measured solubilities are the sum of solubilities of all
PS species with various chain lengths and are provided in terms of total atomic sulfur
concentration. Despite this and other simplifying assumptions, the COSMO-RS model
results showed an excellent correlation with the experimental measurements, as shown in
Figure 4.20. Although there is a significant numerical difference between the COSMO-RS
calculated absolute solubility values and experimental ones, the resulting linear correlation

has an R? score of 0.97, showing the success of our method.

L y=1.637x-1.8479
o R? =0.9784
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CosmoRS Solubility (mol/mol)
[

Figure 4.20. Experimental PS solubility plotted against the predicted solubility values by
COSMO-RS in log scale. The dotted line is the best-fit line. (The experimental data was
obtained from [75].
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Determining the limits for PS solubility for high performance should also be done
according to the COSMO-RS calculated values. Hence, the six experimental results with
Park et al. performance data are used together. When the 50" cycle capacities of this
experimental set are considered, a clear solubility limit for high specific capacity can be
determined, as shown in Figure 4.21. The underlying reason is sluggish reaction kinetics and
sulfur loss from cathode in extremely low and high PS solubilities, respectively [75].
Therefore, determining the solubility limits is very critical to assess whether an IL will
perform well or not as the electrolytes of Li-S batteries. According to Figure 5, the solubility

limit should be between -0.7 to 0.1 mol/mol in log scale.
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Figure 4.21. The 50" cycle capacity of experimental results (mAh/g) together with Park et
al. results with COSMO-RS results.

All these discussions show the importance of solubilities and properties in selecting
suitable ILs for Li-S battery applications and the success of the COSMO-RS calculations.
However, thousands of ILs are present, and many more are possible, and it takes too much
time to experimentally test all the ILs. The COSMO-RS calculations made it possible to
calculate the properties of thousands of ILs using ‘.cosmo” files using special packages like
COSMOthermX. On the other hand, once the dataset is constructed, it is valuable to have
ML methods that can predict IL properties using the IL descriptors calculated from more
conveniently found methods compared to generating .cosmo files and using special
packages. In addition, hidden relations between ILs and their properties can be identified. In

this respect, ML models for predicting PS solubility and the IL properties are developed with
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a dataset consisting of 36260 ILs and 20 IL descriptors, computed from PM3 semi-empirical
calculations, in the search for promising ILs for Li-S battery electrolytes. In addition, using
the limits for high performances obtained from experimental results, the factors leading to

desired properties are obtained.

4.1.3.3.  Solubility and Property Predictions. The ML models are trained to further

understand the trends and heuristics of the solubility correlation with the specified
descriptors and to make predictions for new ILs without using the COSMO-RS software.
The training of the XGBoost model on randomly chosen combinations of anions and cations
performs nearly perfectly with a 5-fold cross-validation R-squared (R?) score of 0.99. It is
essential to note the excessive dependence of the predictions on the anion descriptors and
the fact that randomly splitting the data generally means that the same anions are present in
both training and validation sets. To avoid such overlap, which may lead to the model
“memorizing” the anions instead of learning descriptor correlation, the data was split such
that randomly chosen anions from each anion group are only present in the validation set.
For example, there are 4 bis _imide anions including TFSI in the dataset. Knowing that
anions are more dominant over solubility, once the solubility of TFSI is seen by the model,
it will automatically determine the solubility of IL containing TFSI without paying attention
to the cation types in the validation set. However, restricting TFSI to only train set while
putting bis(fluorosulfonyl)imide (FSI) in validation set, make the model more robust. This
way, the training model learns from similar but not identical anions. The XGBoost model
performance R? score dropped to 0.98 with a root-mean-square-error (RMSE) of 1.4, which
still indicates an excellent performance on the available data and eliminates the risk of bias
due to data overlap. Meanwhile, the RMSE of the test set increases to 3.05, which shows

that the model can capture the PS solubilities in an order of magnitude scale.

These results are somewhat similar to water solubility prediction results [209], in the
sense that the anion properties are more dominant over the solubilities. However, in this
work, the effect of cation properties were also found to be important. This is clear from
Figure 4.22, showing the descriptor importance obtained from the analysis of XGBoost
results. Some cation descriptors, such as the CPK area and dipole, have noticeable
importance. While the anions can still roughly estimate the solubilities, the cations refine

these results. The top 3 descriptors having a dominant effect on PS solubility were electronic
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HUMO-LUMO levels and dipoles of the anions. The HUMO-LUMO levels were also found
to have a significant contribution to ML models on the CO; solubility [343].
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Figure 4.22. The prediction results for In(COSMO-RS Solublity (mol/mol)) for train (a),
test (b) sets and relative importance (c) of the descriptors in the determinative power of the

model.

Literature review indicates that ML techniques have been repeatedly used to predict
different IL properties, including melting point, density, viscosity, ionic conductivity, and
even surface tension [344,345]. Nevertheless, the property prediction models based on our
descriptors were also trained to a high degree of success. Herein, the sampling in the training
of these predictions was also anion-based rather than cation-based, as in the solubility
classifier. This is because the results vary significantly according to the anion groups in these
predictions, and the cation group-based distributions have similar distributions (Figure C.3).
The anion-based sampling also used for melting point, viscosity, and conductivity performed
well with RMSE score values of 19.4, 0.48, and 1.80, respectively. The descriptor

importance plots are given for each property prediction in Appendix C, along with each
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model’s performance metrics. In the prediction of IL properties of the interest, the cationic
properties have found more significance in comparison to solubility predictions. The most
significant cation descriptors were found to be MW, dipole, and HOMO level. In parallel
with our findings, Zheng et al. also found that the alkyl chain lengths of ILs having different
imidazolium cations with [TFSI]" anion, therefore, MW and dipole, considerably affect the
viscosities [346]. Another study found that the anion and cation properties both affect the
final IL properties [347].

4.1.3.4. Identifying Promising ILs for Li-S Batteries using ARM. Lastly, the descriptor-

property and solubility correlations are analyzed using ARM. ARM method needs both
categorical descriptors and outcomes; hence, most descriptors were divided into ten intervals
to see the characteristics of desired ILs, while the HBA and HBD counts were defined as
factors. The limits for both solubility and viscosity values were set according to the
experimental findings reported in Section 4.1.3.2. In this respect, the solubility was
categorized into binary classes, as mentioned before, and the results for low solubility (class
A, the log(solubility)) limits between -0.7 and 0.1 mol/mol as determined from experimental
results reported in Figure 4.21. On the other hand, viscosities lower than 100 mPa.s were
decided to be class A. 100 mPa.s, which is not too rigid a condition for IL viscosity, was
also set to avoid severe Li" ion resistance problems. In addition, since the potential
applications of Li-S batteries include daily applications, in other words they will be prone to
various climate conditions, the melting point of ILs should be low enough so that the cell
remains functional in cold climates. Towards that end, ILs with melting points below 0 [1C
are desired, and fortunately, 86.1% of the dataset satisfies this condition. Finally, the
electronic conductivity limit is taken as 2 mS/cm. This rough estimation allows us to exclude
ILs with considerable electronic conductivity. With these four criteria in place, the number
of potential IL candidates drops to only 650 from 36260 data points. All the selection process

are illustrated in Figure 4.23.

First, associations between anion or cation groups or cation-anion pairs and the desired
properties were investigated. After refining the generated rules using the support and
confidence thresholds, the lift value was used to extract rules with the highest correlation,
and the table was sorted according to the lift values. Although the definitions of support,

confidence, and lift are already provided in the previous sections, one example is provided
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to understand the results better. The dataset used in the ARM analysis contained 36260 total
data, with only 650 of them having class A solubility and property (viscosity, melting point,
and conductivity). On the other hand, there are 1480 ILs having the bis_imide anion group,
and only 194 (count value in Table C4) of them have class A for the four criteria. Hence, the
support, confidence, and lift values are calculated as 194/36260 = 0.005, 194/650 = 0.298,
and (194/650)/(1480/36260) = 7.31, respectively. As seen in Figure 4.24, most rules
satisfying the confidence and support thresholds with the highest three lifts correlate with
the anion group, indicating the trends in anion descriptors are more reliable and
determinative than cation descriptors. These trends can be seen in Figure 4.24a for cation
and anion groups and Figure 4.24b for cation-anion pairs. The bis_imide group is found to
be the most promising one with the highest lift, but borates and “others” groups are also
good candidates for both cases. However, although imidazolium and pyridinium groups have
lower lifts than piperidinium and pyrrolidinium, their synergistic effects are stronger with
the anion groups of borates and bis imides. Specifically, imidazolium borate and
imidazolium_bis imide ILs are around 10 and 5 times more favorable than other ILs for Li-

S batteries, respectively.

Figure 4.23. The determination of suitable ILs with the help of experimental results.

Imidazolium and [TFSI]" are the most common cation and anion in the Li-S literature,
respectively [348]. In addition, it has been found that combining them improves the Li metal
ion morphology and, therefore, increases the cycle life [349]. Given that pyridinium and

imidazolium are similar in the completely delocalized aromatic rings [349], pyridinium is
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the second promising cation group paired with borates. On the other hand, the borate anion
group has 12 anions in total, including [BF4]", which is reported as reactive towards PSs [75].
Fortunately, this anion is not present in the promising IL list. Although no additional articles
use ILs with borate anions, in some studies, borate anions, specifically bisoxalatoborate

[350-352], are used in Li salts, which positively affect the capacities.
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Figure 4.24. ARM results for anion and cation groups independently (a) and anion-cation

pairs (b) for low solubility and viscosity.

Now that the promising groups are identified, we discuss the ARM results on a
descriptor basis to identify the rules ending up with favorable ILs. To better extract the
trends, Figure 4.25 summarizes the ARM results for the anions more concisely. Upon
examining the results, the most pronounced rule concerns the anion HOMO energy value.
In the database, low-lying anion HOMO energies in the range of (-7.5):(-6.7) eV result in a
nearly five times more chance of having low solubility of Li»Sg and viscosity values. This
lift drops significantly to slightly over 2.5 times if the HOMO value dips lower than -7.5
going to -9.9 eV. However, the correlation stands that low HOMO values correlate strongly
with low solubility. A similar yet less strong correlation can be seen for the other properties.
The other rules indicate that desirable anions for low PS solubility and viscosity are more
likely to have moderately low LUMO energy, no HBD sites, relatively high MW but

moderate CPK area, and moderate polarizability.
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Figure 4.25. ARM results for anion descriptors; each point size correlates with support.

Figure 4.26 shows that cation descriptors have clear trends for low solubility and

viscosity; lift values above one are obtained for low values of each descriptor, except HBA,

HBD, and LUMO. It is important to emphasize that these trends imply an increased

likelihood rather than a confident prediction. Can et al. [209] reported similar results about

the dominance of anion descriptors in the ARM analysis when examining the association

between water solubility in ILs and molecular descriptors. However, the importance of each

descriptor differs significantly from the results reported here. That is to be expected because

water and LixSg have different solvation processes. On the contrary, the solubility of

hydrocarbons in imidazolium-based ILs showed a strong correlation with both anion and

cation descriptors [210].
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4.1.4. MOF/Graphene Nanoplatelet Composite Increases Rate Performance of

Lithium-Sulfur Batteries

This section is modified from an original research article with authors A. Kilic, S. S.
Bayazit, and D. Eroglu [45]. The preparation of the cathodes, the development of Li-S cells,
and electrochemical performance tests were performed by A. Kilic, whereas MOF

composites were synthesized by S. S. Bayazit.

The PSM is one of the biggest problems of Li-S batteries, resulting in fast capacity
fading and low Coulombic efficiency. Due to electrostatic interactions, polar materials can
adsorb the PS intermediates on their surfaces, decreasing the PSM effect. These polar
materials should also have high electronic conductivity and surface area to be used in sulfur
cathodes of Li-S batteries. In this respect, metal-organic frameworks (MOF) and their
derivatives have gained significant attention. In this section, UiO-66/Graphene nanoplatelet
(GNP)/sulfur composites are prepared with different MOF/GNP ratios to investigate the

effect of MOF amount on the electrochemical performance of Li-S batteries.

The SEM images of the synthesized UiO-66, UG-1, UG-3, and UG-5 composites are
given in Figure D.2 and Figure 4.27, respectively. As seen in Figure D.2a, UiO-66
nanoparticles have an octahedral crystal structure [353]. According to the scale of the SEM
images, the sizes of UiO-66 nanoparticles are determined to be approximately 20-30 nm in
UiO-66/GNP composites. On the other hand, the sizes of the attached UiO-66 nanoparticles
on the GNP plates, clearly seen as two-dimensional sheets in Figure 4.27a, are measured to
be 32-45 nm. Similar structures and particle sizes are observed for UG-5 in Figure 4.27b. It
can be discussed that the particles are evenly distributed in the composites, especially in UG-

5 (Figure 4.27b).

The surface areas and pore volumes of each composite are measured by the BET
analysis, and the results are presented in Figure 4.27¢. As seen in the figure, the BET area
of GNP is significantly improved by the addition of UiO-66 into the structure, while the pore
volume is reduced considerably. In other words, as pores of GNPs are filled with UiO-66
particles, the surface area of GNP increases remarkably, but the pore volume decreases

simultaneously.
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Figure 4.27. SEM images of UG-3 (a) and UG-5 (b) and BET surface area (¢) and pore

volume (A) measurements (c).

The XRD patterns of UiO-66, UG-1, UG-3, and UG-5 are given in Figure D.3. XRD
patterns of all composites were scanned between 2-60 degrees. The characteristic peaks of
UiO-66 crystals can be seen at 7.46°, 8.66°, and 25.94°; these 20 degrees are compatible
with the literature [354]. As seen in the figure, the patterns of UG-3 and UG-5 composites
are analogous to the UiO-66 nanoparticles. The 26.7° peak associated with GNP is also seen
(which is not seen in the XRD pattern of UiO-66). The intensity of this peak in UG-3 is
higher than in UG-5 since there is 70% GNP in UG-3 and 50% in UG-5. When the XRD
pattern of UG-1 is examined, the intensity of the peaks belonging to UiO-66 is too low to be
noticed; the intensity of the GNP peak prevents the appearance of UiO-66 characteristic
peaks when there is 10% MOF in the composite.

The FTIR plots of UiO-66 and UiO-66/GNP are presented in Figure D.4. The
asymmetric O=C=0 stretching vibrations at 1399 cm™' and symmetric carboxylate groups
at 1576 cm™! are observed in the figure. These peaks belong to the terephthalic acid, the

organic linker in UiO-66. Terephthalic acid has benzene rings as seen at 1507 cm™!. In
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general, the peaks of the UiO-66/GNP composite are compatible with UiO-66. However,
two peaks, -CH- stretching peaks at 2926 and 2855 cm ™!, have disappeared, and the intensity

of the -OH peak at 3432 cm ™! has increased after the composite formation.

PS adsorption tests are also performed to see if MOF addition improves the PS
chemisorption. As seen in Figure 4.28, a significant color change is observed for UG-5, and
a slighter change is observed for UG-3, whereas the rest remains at a similar color to the
blank solution. The solution with UG-5 being almost colorless clearly proves the binding of

the PSs with the MOF-containing composite only if enough MOF is present in the composite

q1818 (3
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Figure 4.28. PS adsorption capabilities of GNP, UG-1, UG-3, and UG-5, respectively.

to capture the PSs effectively.
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Electrochemical characterization tests are performed to determine the effect of
MOF/GNP ratios on the electrochemical performance of Li-S cells. First, the measurements
are performed for a low sulfur loading of 1 mg/cm?. Cycling performances of the UGS
composites, bare UiO66-S, and GNP-S at 0.1C are given in Figure 4.29a. As the figure
shows, apart from the UiO66-S composite, all cells performed similarly. Significantly lower
capacities obtained for the cells with UiO66-S-based cathodes can be attributed to the low
electronic conductivity of the MOF, hindering the electrochemical reactions. This result
indicates that the presence of GNP in the composite is required to achieve high cycling

performance.
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Figure 4.29. For Li-S cells with an S loading of 1 mg/cm?: cycling performance at 0.1 C

(a), rate performance (b), and cycling performance at 0.5 C (c).

The rate performance results in Figure 4.29b show that although MOF/GNP
composites perform similarly at 0.1C and 0.5C, UGS-1 is less successful in retaining its
capacity at higher C-rates. Nevertheless, cells with all three composites show remarkable
rate capability, returning to the original capacities when the cycling rate is returned to 0.1C.
These results are also confirmed by a longer cycling test, conducted at a higher C-rate of
0.5C, given in Figure 4.29c. When the C-rate increases to 0.5C, the composites show slightly
different capacities at the earlier cycles, UGS-3 containing cell, showing the highest

capacities. However, after 200 cycles, all composites end up displaying similar capacities.

The effect of MOF/GNP weight ratio on the cell performance is more apparent when
the sulfur loading is increased to 2 mg/cm?; the results are given in Figure 4.30. The first
striking result is that GNP-S containing Li-S cells, which show similar performance to the
MOF-containing ones at low S loadings in Figure 4.30a, display the worst performance for

higher S-loaded cells, proving the necessity of MOF addition into the composite for
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achieving better cycling performance. Moreover, the UGS-1 cathode performs the worst
among the UiO66/GNP composites in all testing conditions from both the capacity and the
capacity retention perspectives. UGS-3 and UGS-5 lead to better cell performances at higher
sulfur loadings and C-rates. For instance, the UGS-5-containing Li-S cell shows an excellent
rate performance. The PS adsorption ability of UiO-66 can explain this observation. When
the sulfur loading is higher, the adsorption of PSs gains more importance as the PS
concentration in the electrolyte will be higher. Hence, the loading of polar UiO-66 should
be higher to preserve the PSs on the cathode surface, thereby retaining the specific capacity.
This is probably why GNP cathodes fail at capacity retention; a drastic decrease in the
specific capacities is observed after a few cycles. Figure 4.30b and Figure 4.30c show that a
MOF loading of 50 wt.% is needed for 0.5C and 1C rates; however, 30 wt.% also performs
well at 0.5C. Hence, a minimum of 30 wt.% MOF should be added to the composite for

improved performance.
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Figure 4.30. For Li-S cells with an S loading of 2 mg/cm?: cycling performance at 0.1 C

(a), rate performance (b), and cycling performance (c) at 0.5 C.
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4.1.5. Effect of Atomic Vanadium- and Cobalt-Modified Ketjen Black-Sulfur Cathode,
Sulfur Loading and Electrolyte-to-Sulfur Ratio on the System-Level Performances of

Li-S Batteries

This section includes a modified version of the original research paper written by
authors Hira Fazal, Damla Eroglu, Aysegul Kilic, Nazakat Ali, Changyu yan, Zai Jiantao,
Xuefeng Qian [46]. The experimental studies were performed by H. Fazal and the system-
level model application was performed by A. Kilic. It also contains the results of a
proceeding study, which investigates the effect of the E/S ratio and sulfur loading on Li-S
battery performance and system-level properties with the proposed material, where the latter

was also performed by A. Kilic [47].

In this chapter, sulfur was encapsulated with atomic vanadium (V) and cobalt (Co)
modified Ketjen black (VCKBS) to hinder the shuttle mechanism and enhance the redox
kinetics in Li-S batteries. The synthesized composite provided plenty of interfacial active
sites and assured smooth electron transfer, which assisted in attaining the balance of the
enhanced catalytic activity due to Co and the adsorption ability mainly derived from V.
Consequently, the Li-S cells having an optimized composition presented alleviated shuttle
effect, enhanced sulfur utilization and conversion efficiency, and showed stable cycling
performance and an outstanding rate performance with an initial capacity of 1329 mAh/g,
which was maintained as 1249 mAh/g after 100 cycles. Due to impressive experimental
specific capacities, the system-level specific energies and energy densities were also
predicted for the 1%t and 100" discharges. In the following study, we investigated the effect
of cathode material by preparing two different cathodes: by encapsulating sulfur (S) with
pure Ketjen black (KBS) and with VCKBS. In addition to the cathode material, the influence
of crucial cell design parameters, namely the electrolyte-to-sulfur (E/S) ratio and sulfur
loading, on the battery performance was also compared. A system-level performance model

was used to estimate the system-level specific energies and energy densities.

4.1.5.1. Effect of Cathode Material on System-Level Performance of Li-S Batteries.

Insufficient electrolyte amounts or low electrolyte-to-sulfur ratios (E/S ratios) often lead to
inadequate wetting of the electrode surface and continuous depletion of the electrolyte

throughout the discharge-charge cycle, resulting in decreased capacity and low cycle life of
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the Li-S battery. Conversely, excessive amounts of electrolyte result in a substantial increase
in the overall weight/volume of the cell, thereby causing a reduction in the
gravimetric/volumetric energy densities [85]. Similarly, S loading in the cathode controls
the battery performance through discharge capacity, cycling performance, and system-level
metrics. Moderate S loadings enhance the discharge capacity and cycle life, while high
loadings are essential to improve the battery’s energy density [86]. Consequently, to reach
high performance, all other than the active materials should be minimized in the cell along
with maximized specific capacity and cycle life. Hence, two groups of Li-S cells (Group 1:
E/S ratio=20 mL/g, S loading=1.24 mg/cm? cycled at 0.1C, Group 2: E/S ratio=13 mL/g and
S loading= 2.4 mg/cm? cycled at 0.2C) are compared to see the impact of the newly
developed material on the energies of the Li-S cells and packs. To assess the cell- and
system-level energy densities and specific energies of the Li-S batteries developed with the
materials presented here, a modified version of the BatPaC model [199] developed by
Argonne National Laboratory, is used with the experimental inputs, including capacity based
on sulfur mass, the E/S ratio and sulfur loading. The summary of the model is given in
Section 3.2 where the underlying equations and parameters of the model can be seen in
detail. Battery pack system parameters, the number of modules, module configurations, and
cell numbers in each module are assumed to be similar to a Li-ion battery pack. In contrast,
a 1-dimensional, concentration-independent electrochemical model was implemented to
determine the cell's voltage-current relationship. This model can estimate cell- and system-
level energy densities (Wh/L) and specific energies (Wh/kg) as a function of materials
properties and cell design parameters. The system-level specific energies and energy
densities, given in Figure 4.31, are predicted using the experimental capacities for both the

1t and 100™ discharge for Groups 1 and 2.

Energy densities of all cathodes for the 1%t and 100™ discharges are presented in Figure
E.1. The superiority of VCKBS cathodes is already shown for both groups when the specific
discharge capacities are compared; the percent increase of the initial discharge capacities by
the introduction of VCKBS cathodes is 66 % and 158 % for Groups 1 and 2, respectively
(Figure 4.31a). As seen in Figure 4.31 VCKBS cathodes significantly improve the system-
level specific energies and energy densities as well. For instance, when the system-level
metrics based on the initial capacities are compared in Figure 4.31b and Figure 4.31c,

significant improvements are obtained, prominently for predicted specific energies. Since
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VCKBS cathodes retain their capacity with cycling, when the 100" discharge capacities
(Figure 4.31d) are used in the calculations, the percent increase in the specific energies and
energy densities is more substantial than the ones based on the 1% discharge capacity. For
instance, introducing VCKBS cathodes lead to 353% and 1342% improvement in the
specific energies and 203% and 568% improvement in the energy densities for Groups 1 and
2, respectively (Figure 4.31e and Figure 4.31f). It is apparent that the enhancement in the
system-level performance metrics is more prominent at the higher S loading and the lower
E/S ratio (Group 2). This indicates that VCKBS cathodes synthesized in a facile manner
would be advantageous for higher sulfur loadings at electrolyte-depleted cells; this is further

investigated in the next section.
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Figure 4.31. Specific capacities, system-level specific energies, and energy densities of
KBS and VCKBS cathodes (Group 1: S loading=1.24 mg/cm?, E/S ratio=20 mL/g, at 0.1C,
Group 2: S loading=2.40 mg/cm?, E/S ratio=13 mL/g, at 0.2C) for 1 discharge (a)-(c) and

for 100" discharge (d)-(f).

4.1.5.2. Effect of E/S Ratio and S Loading on the System-Level Performance of Li-S

Batteries with VCKBS and KBS Cathodes. Previous studies [355-357] often discuss optimal

values for the S loading and the E/S ratio in a battery, maximizing the discharge capacity of
the Li-S batteries. The cycling performance of Li-S cells with KBS or VCKBS cathodes
(Table E.2) with E/S ratios= 6, 13, and 20 mL/g and S loadings of 0.8, 1.2, and 3 mg/cm?
are compared in Figure E.2. For both cathodes, E/S ratio=6 mL/g and S loading=3 mg/cm?
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result in the poorest cell performance, which may be explained by the high internal resistance

at lower E/S ratios and higher S loadings in the cell.
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Figure 4.32. Experimentally measured initial discharge capacities (a), predicted system-
level specific energies for various sulfur loadings and E/S ratios (b), and the relation

between cell resistance and specific energies for sulfur loading = 1.2 mg/cm? (¢).

Although high cell-level specific capacities and cycling performances are essential,
system-level specific energy is a more viable performance metric for assessing the
commercialization of Li-S batteries [358,359].A modified BatPaC model was used to
estimate the system-level performance metrics with the experimentally obtained specific
capacities, S loadings, and E/S ratios. Figure 4.32a shows a decreasing trend in specific
capacity for lower E/S ratios and higher S loadings for KBS cathodes. In contrast, maximum
capacity is obtained with an S loading= 1.2 mg/cm? for VCKBS cathodes. In contrast,
corresponding system-level specific energies of Li-S cells containing VCKBS cathodes
show an opposite trend to the specific capacity. Lowering the E/S ratio drastically increases
the specific energies, with the highest specific energy obtained with a moderate S loading.
In contrast, in Li-S batteries with KBS cathodes, the decrease in the specific capacity with
decreasing E/S ratio and increasing S loading is too high, and the reduction in the cells' dead
mass does not compensate for obtaining higher specific energies. Finally, Figure 4.32c
summarizes the superiority of the VCKBS cathodes over KBS ones, presenting the higher
specific energies obtained for these novel cathodes, especially at low E/S ratios. To sum up,
tailoring cathode properties is critical for improved battery performance. The co-doping of
Co and V elements boosts the catalytic ability of Co and the absorption ability of V
simultaneously. The effect strengthens the intrinsic ability of the active sites. Thus, active

sites in the modified KB can accommodate higher S loadings in the cathode. Moreover, since
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cathode kinetics for the PS transfer are enhanced, lower E/S ratios and higher S loadings can

be tolerated.

4.2. Li-O; Battery Studies

4.2.1. Determining the Key Performance Factors in Lithium-Oxygen Batteries Using

Machine Learning

This part is modified from the original research paper published in the Journal of the

Electrochemical Society by authors A. Kilic, Prof. R. Yildirim, and Prof. D. Eroglu [48].

Lithium-oxygen (Li-O2) batteries are among the most prominent alternative battery
chemistries to lithium-ion batteries with their high theoretical capacities. However, attaining
their high theoretical capacity is difficult due to the poor cell design and insufficient cell
materials. In this section, ML algorithms are used to determine the effective cell design

factors and the most promising materials for reaching high discharge capacities and voltages.

4.2.1.1. Pre-Analysis of Data. Before presenting the results of the ML algorithms, the effect

of materials- and cell-design factors are analyzed in this section using simple descriptive
statistics to see the basic trends in the dataset. As mentioned in Introduction, Li-O batteries
are severely affected by the side reactions and degradation mechanisms. Hence, the
utilization of specialized materials and designs are essential for reaching high capacity Li-

O» batteries; in this section, the main materials groups covered in the dataset were discussed.

Having the highest standard oxidation potential of 3.040 V and the lowest molecular
weight, Li metal is a promising anode material, which provides a specific capacity of 3860
mAh/g [10]. The main disadvantage of a Li anode is the high reactivity of the lithium metal.
The reaction of lithium with oxygen and water, and the formation of lithium dendrites as a
result of its interactions with the electrolyte are the major challenges that cause low
Coulombic efficiency and poor cycling performance [360]. To protect the lithium anode and
to prevent the formation of dendrites, special surface treatments or coatings are employed in
the literature [361-363]. Since the stability of the lithium anode is essential for improved

battery performance, anode material is taken into consideration in the analysis. “Modified

© The Electrochemical Society. Reproduced with permission. All rights reserved.
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Li anode” category is defined if there is any additional treatment or material employed on
the lithium metal. Only 46 datapoints are in the Modified Li anode category, whereas 969

datapoints use pure lithium metal.

The conventional separators used in the batteries are porous structures with pore sizes
of hundreds of nanometers. Polyolefins are accepted as the ideal separators for the LIBs,
which provide high stability with low cost. However, post lithium-ion technologies need
further improvement in the separator materials to achieve durability in the harsh working
conditions [34]. Li-O2 batteries use pure oxygen or air as the reactant in the cathodes. Due
to safety and efficiency reasons, reaching of these gaseous reactants to the Li anode should
be prevented [364]. With this respect, separator type is taken as one of the variables in this
analysis. In the dataset used in this section, 59 % of the data uses glass separator, whereas
23 % uses polymeric separator; various separator materials are employed in the remaining

cells.

One of the main advantages of the Li-O; batteries is that they do not require to store
the active material inside the cell. Li-O2 batteries can operate with either pure oxygen or air
taken from outside. Although oxygen is used in most of the cases in the dataset, probably
the use of air will be preferred in future because it will be more practical and safer. Yet, if
the oxygen is supplied from air, impurities like H>O and CO> can also penetrate into the cells
and cause side reactions both in the cathode and the anode, and consequently, may result in
cell failure and safety problems [365]. These problems and the underlying mechanisms are
analyzed in the literature to some extent. However, the majority of the studies use pure
oxygen as the reactant to eliminate the possible side reactions in lab-scale Li-O; cells; indeed,
the percentages of the use of oxygen and air in the dataset are 80.2 % and 9.5 % (remaining
9.0 % is dry air and 1.4 % is O2:CO2 mixture), respectively. Finally, to further simplify the

process 91 % of the data use 1 atm as the reacting pressure.

In this section, cathode support is defined as the “bulk cathode material”, which
generally provides electrochemically active surface area in the cathode, whereas a common
name ‘“‘cathode ingredient” is given for the additional materials, which typically show
catalytic activity. Since the active material is gaseous in Li-O: batteries, it should spread

homogenously over the positive electrode and be reduced with the upcoming electrons from
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the anode. In this respect, a solid network is provided in the cathode by using porous
materials with high surface area and electronic conductivity. Moreover, this network should
be stable enough against the electrolyte and the operating conditions of these batteries [366,
367]. In some papers, additional metals or metal oxides are used in the cathodes for catalytic
purposes. It is reported in the literature that electrocatalysts strongly determine the power
density and cyclability of the battery by affecting the oxygen reaction mechanisms [38].
Hence, these two variables are included in the analysis. The distributions of bulk cathode
and ingredient materials in our dataset are shown in Figure 4.33; as it is seen, carbon black
is used in more than half of the dataset as the bulk cathode material, which is followed by
CNT and graphene. On the other hand, 60.2 % of the dataset does not use any additional
materials in their cathodes. Among the cathode ingredients, Mn oxides and Co oxides are

the most preferred materials.

1.5%1.5% 1.3%

(b) 18% 1.8%
T

51.3%

1.2% 0.9%

= Carbon black = CNT «NO  Ma oxide - Cooxide
= Graphene Activated carbon P ki Oth Pt

= Porous carbon = Mn oxide erovskite o crs «Pt

= Other carbons « Carbon black+other carbons ~ ® Ru oxide+Mn oxide = RuO2 » NiCo204
=rGO = Co oxide «Pd « LaFe oxide «Ru

» N-doped carbons = Others " Au

Figure 4.33. Distribution of active materials (a) and ingredients (b) used in the cathode.

The stability of a Li-O; battery also depends on the binder used in the cathode.
Conventional binders such as PVDF may react with super oxides to give by-products since
they are present on the surface of the cathode rather than in the bulk [368]. These by-products
eventually react with metal oxides leading to the formation of LiOH, which may accumulate
in the cells [369—371]. Hence, choosing a stable binder is critical for improved cycling
behavior of Li-O» batteries. Figure 4.34 shows that 37% of the data in our dataset uses PVDF

as a binder, whereas 20 % does not use any binder in the cell.
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Figure 4.34. Distribution of binder materials in the cathode.

As stated in the above, a typical cathode consists of a bulk cathode material, an
ingredient and a binder in a Li-O; battery. Although using a binder in the cathode improves
the structural integrity and the physical stability of the cathode, it also increases the dead
mass of the cell. Moreover, using too much binder can decrease the porosity of the cathode
[372]. Hence, the ratio of the active material to the binder should be optimized to provide
high surface area for the electrochemical reactions while achieving high cathode stability.
Similarly, sufficient active material loadings should be supplied to the cells for high
electronic conductivity and active surface area [373]. In order to examine this critical
connection, both active material loadings and percentages in the cathode are taken into
consideration in our analysis. In this section, the gas diffusion layer is defined as the
additional porous medium, which is typically carbon paper that is placed in between the
cathode and the current collector. Since efficient and homogeneous diffusion of oxygen into
the cathode is crucial for enhanced performance, the use of a gas diffusion layer in the cell
improves the cell performance [39,40]. Therefore, the effect of gas diffusion layer on the

battery performance is also investigated here.

The electrolyte system plays a key role in Li-O> batteries for enhanced capacities.
Since these batteries are exposed to oxygen environments, several criteria such as low vapor
pressure of solvents, high electrochemical stability of salts and solvents in the presence of
oxygen, high dielectric constants and high oxygen solubility and diffusivity should be met

for an electrolyte system to be considered as promising [374]. Hence, selecting an ideal



128

electrolyte is important for achieving high cycling stability and rate capability in Li-O>

batteries.

Depending on the electrolyte selected, Li-O batteries can be divided into four as
aqueous, non-aqueous, solid state and hybrid. There is a vast difference between these
batteries in terms of stability, oxygen solubility and diffusivity. The literature mainly
consists of cells with non-aqueous solvents since these electrolytes perform better than the
others in terms of the aforementioned characteristics [35-37]. Figure 4.35a shows that
tetraglyme, DMSO and DME are the most widely used electrolyte solvents in the literature.
Electrolyte salts are also determinative of the final oxygen solubility, electrolyte viscosity
and wettability [375,376]. Figure 4.35b presents the distribution of salts used in the
electrolytes in this dataset; LiTFSI is the most commonly used electrolyte salt. In addition,
some papers use additional salts or redox mediators to increase the stability of electrolytes
[377,378]. These are all included in the electrolyte additive group. However only the
presence of the additives is taken into account (6.7% of data contains an additive) in the
analyses; specific types of the additives are not considered due to their large variety with

rarc appearance.
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Figure 4.35. Distribution of electrolyte solvents (a) and salts (b).

4.2.1.2. Discharge Capacity Analysis with ARM. The ARM results, in which the factor

categories (antecedents) leading to capacities equal to or higher than 3000 mAh/g
(consequents) with descending order in terms of lift, are presented in Table 4.9. By

definition, lift values higher than one signify that the corresponding categories have higher
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probabilities to provide the desired capacities than that of entire dataset. However, there
should also be sufficient number of data points for statistical significance; hence, the other
parameters (support, confidence and count) are also important. Additionally, we provide the
number of data points obeying the rule in each row as count in the last column. Only the
rows (i.e. factor categories) having more than five data points are presented and discussed
here for the statistically significant conclusions; the complete results of ARM analysis are
given in Table F.3 for the readers who are also interested in less frequently employed
materials with high lifts as the new but potentially promising materials appear so. Moreover,

ek

the categories are marked by in the table if all data is extracted from a single article to

warn the reader for the possibility of experimental bias.

In Table 4.9, it is shown that the highest lift with a sufficient count number is obtained
for the cathode ingredients and bulk cathode materials. Among them, LaFe oxide can be
given as an example to better understand the table. In our dataset, there are 8 LaFe oxide
datapoints, which provide capacities higher than or equal to 3000 mAh/g. The total number
of datapoints used in this analysis is 773, and only 269 of those provide high capacities. The
support is 8/773 =0.0103 (i.e. the number of cases that use LaFe oxide and have high
capacities divided by the total number of datapoints in capacity testing set); the confidence
is 8/269=0.0297 (i.e. the number of datapoints using LaFe oxide and have high capacities
divided by the total number of high capacity data in capacity testing group). Since the total
number of datapoints using LaFe oxide as the ingredient is 10 in the entire data set, the lift
can be calculated as (8/269)/(10/773) leading to the value of 2.30. From the formula
presented, it can be easily seen that the fraction of the cells using LaFe oxide in the high
capacity data is 2.30 times higher than the fraction of the cases with LaFe oxide in the entire
dataset. Here, a lift value of one indicates the lack of a correlation between two variables
(i.e. the use of a factor versus capacity), while values higher than one indicate a positive
correlation (higher the lift, stronger the correlation is). On the other hand, lift values between
one and zero imply negative correlations. Consequently, lift indicates the possible positive
correlations and the strength of the correlation, while support (how much of the total data
supports the rule) and confidence (how much of the cases containing that input variable

supports the rule) reveal the reliability of the rule.
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Table 4.9. ARM results for capacity testing group for capacities higher than or equal to

3000 mAh/g with count numbers greater than or equal to 5.

Descriptors Support | Confidence | Lift | Count
{Bulk Cathode Categorized=N-doped carbons} 0.0078 0.0223 28716
{Ingredient Categorized=NiO+NiCo0204 microspheres } 0.0091 0.0260 2.87 | T*
{Ingredient Categorized=LaFe oxide} 0.0103 0.0297 2.30 | 8*
{Salt E Categorized=Others} 0.0259 0.0743 1.98 | 20
{Bulk Cathode Categorized=Graphene} 0.0556 0.1599 1.96 | 43
{Ingredient Categorized=Perovskite} 0.0246 0.0706 1.88 | 19
{E Solvent Categorized=Triglyme} 0.0466 0.1338 1.88 | 36
{Bulk Cathode Categorized=Graphene oxide} 0.0091 0.0260 1.83 | 7
{E Solvent Categorized=DMSO} 0.0530 0.1524 1.79 | 41
{Bulk Cathode Categorized=Porous carbon} 0.0233 0.0669 1.78 | 18
{Reactant Categorized=Others} 0.0103 0.0297 1.77 | 8
{Gas_Diffusion Layer Categorized=Carbon paper} 0.1164 0.3346 1.71 | 90
{Bulk Cathode Categorized=Carbon black+other carbons} | 0.0129 0.0372 1.69 | 10
{Ingredient Categorized=Others} 0.0103 0.0297 1.64 | 8
{Salt E Categorized=NO} 0.0103 0.0297 1.53 | 8
{Active_Material Loading Categorized=[0.8-1.2)} 0.0802 0.2305 1.50 | 62
{Bulk Cathode Categorized=N-doped CNT} 0.0078 0.0223 1.44 | 6*
{E Solvent Categorized=Tetraglyme} 0.1889 0.5428 1.41 | 146
{Active_Material Loading Categorized=(0-0.8)} 0.1100 0.3160 1.30 | 85
{Bulk Cathode Categorized=rGO} 0.0116 | 0.0335 129 | 9
{Binder Categorized=PVDF} 0.1617 0.4647 1.28 | 125

The ARM results show that the selection of the cathode material is the most
determining factor on the capacities of the Li-O» batteries. The use of special oxide materials
such as LaFe oxide, Ni oxide or perovskite as cathode ingredients and N-doped carbons,
graphene and graphene oxide as bulk cathode materials have led to high capacities. The
choice of DMSO or triglyme as the electrolyte with specialized salts seems to be also
beneficial. To refine the rules for high capacities better, the ARM analysis is also performed
by defining additional (stricter) limits for high capacity class (A) as equal to or higher than
5000 mAh/g, 7000 mAh/g and 10000 mAh/g. Since these definitions are cumulative (i.e.
equal to or higher than 5000 mAh/g class also contains 7000 mAh/g and 10000 mAh/g
classes), the total number of datapoints is decreasing with the increasing limits; hence, the

increase of lift for a factor category indicates that the number of high capacity data having
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that factor decreases less than the total number of datapoints. This may be used as a further
indicator (in addition to the results in Table 4.9) for the potential benefit of that factor
category. The results are presented as the high capacity class limits versus the lift in Figure

4.36, where the bubble size demonstrates the count (number of datapoints obeying that rule).
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Figure 4.36. Change of lift with changing limits of high discharge capacity for bulk
cathode materials (a), cathode ingredient materials (b), active material loadings (mg/cm?)

(c), and active material weight percentages (d) in the cathode.

As seen in Figure 4.36a, carbon black is one of the most widely used bulk cathode
material in Li-O, batteries; however, having a lift around one that does not change with
increasing capacity limits, shows that other (likely new) cathode materials may be leading
to higher capacities. Indeed, there are eleven options other than carbon black, and among
them, N-doped carbons, graphene, graphene oxide and porous carbons seem to be working
better. Since, the IL CNT category comes from a single article, its effect cannot be
generalized at this stage even though this material also seems to be promising. The results
of the analysis show that combined use of carbon black with other carbon structures such as

graphene or CNT also provide capacities higher than 3000 mAh/g. However, this increase
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could not be attained with increasing class limits, as it is evident from the decrease of the lift

values even lower than that of carbon black alone in Figure 4.36a.

Although the majority of the papers did not use additional cathode ingredients, the
ones that did cannot be ignored because such additives seem to have significant effects on
the capacities as it is shown in Figure 4.36b. Mn oxide and Co oxide are the most widely
used cathode ingredients (as shown in Figure 4.33) However, other oxides seem to provide
better performances (different oxides mixed with Co oxides also improve the capacity). For
example, LaFe oxides, Ni oxides and Ru are the most promising cathode ingredient

materials.
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Figure 4.37. Change of lift with changing limits of high discharge capacity for binder type

(a) and gas diffusion layer materials (b) in the cathode.

As stated in the pre-Analysis section, active materials are defined in this study as the
bulk cathode support and the ingredient. The binder is not considered as an active material
in the cathode; it is treated separately as discussed later. Although sufficient amount of active
material is important to provide enough surface area for the oxidation and reduction
mechanisms and the precipitation of the discharge product Li2O., apparently, there is a limit
for this. Figure 4.36c shows that the active material loadings should be no more than 1.2
mg/cm?; the probability to have low capacities seems to increase at higher loadings. This
may be due to limited oxygen transport and increased oxygen gradient in thick cathodes; the
limited active material utilization at high cathode loadings may result in low capacities [379].
Figure 4.36d presents that the cathode should contain a binder for high performance

batteries. On the other hand, the use of an excess amount of binder can also lead to low
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performance; to achieve high capacities, binder weight percentage should be around 10-20
% (i.e. active material should be around 80-90 %). PVDF, which is the most widely used
binder in the literature, seems to have a decreasing lift with increasing capacity limits,
whereas PTFE shows a continuously increasing trend suggesting its effectiveness (Figure
4.37a). PVDF-HFP, Nafion and the other binder materials, which are not presented here, do
not have positive effects on the capacity. Finally, it can be stated that the use of an additional
carbon paper next to the current collector as the gas diffusion layer improves the battery

capacity (Figure 4.37b).
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Figure 4.38. Change of lift with changing limits of high discharge capacity for electrolyte
solvent type (a), salt type (b), the presence of an additive (c), and separator type (d).

Another important component of the Li-O; batteries is the electrolyte, which consists
of the solvent, salt, and additives. Since non-aqueous batteries are more common and
therefore constitute the entire dataset used in the analysis, their comparison with aqueous
solvents is not possible here. However, the electrolyte ingredients could still be compared
with each other. As seen in Figure 4.38a, DMSO is by far the best candidate for obtaining
high capacities providing lift values more than 3.5 at a capacity target of 10000 mAh/g;
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hence, it can be used to replace the conventional electrolyte, tetraglyme, which has lift values
slightly higher than one. The other alternatives are not effective as seen in Figure 4.38a. The
ARM results suggest the use of LiClO4 and some other alternative salts (including LiTFSA,
LiTFI and Li[NTf2]) instead of more commonly used LiTFSI, LiCF3SO3 and LiPFs (Figure
4.38b). When an electrolyte salt is not used, obtaining capacities higher than 3000 mAh/g
does not seem possible. The addition of electrolyte additives into the electrolyte also
improves the specific capacities as expected because they are generally redox mediators,
which decrease the parasitic reactions in the cell (Figure 4.38c). Finally, the glass separator

seems to be a better option compared to the polymeric alternatives (Figure 4.38d).

4.2.1.3. DT Analysis for Combined Factor Effect. ARM, as implemented in the previous

section, is helpful to see the individual effects of the individual factors; however, these
factors, for example materials, will be employed together as combinations (i.e. as the
electrolyte solvent and salt together). Hence, it is also important to investigate and
understand their best combinations to improve the battery performance. In this respect, the
DT analysis was used to generate heuristic rules for the selection of these combinations for
the Li-O: batteries with higher capacities. As stated in the Materials and Methods section,
the dataset was divided into three classes according to the specific capacities as Class A, B
and C for high (>6000 mAh/g), intermediate (6000-1500 mAh/g) and low (<1500 mAh/g)
capacities, respectively. As also mentioned in computational details, we restrict our DT
analysis to the data obtained for cells discharged at 0.1-0.5 mg/cm? and uses oxygen at 1 atm

as the reactant.

The optimum tree structure is given in Figure 4.39. The overall classification accuracy
for training is 78%, which is an acceptable value, indicating that the tree correctly classifies
78 % of the total data. The recall for individual classes (fraction of data in class X that was
correctly classified as class X) are given in the confusion table in Appendix F together with
the class precisions (fraction of actual class X cases in the data that were classified as class
X). For example, recall of class A is 74%, while its precision is 88 %; both are relatively
high for reliable generalizations. Likewise, the recall and precision of class C are 89% and
75%, respectively while the recall and precision of class B are 73% and 72%, respectively.
The DT model was also tested using the testing data that was not used during the model

construction; the overall testing accuracy was 76 %, which is quite good. Similarly, the
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testing recall and precision of class A (83% and 77 %, respectively) and class C (79% and
77 %, respectively) are also quite satisfactory. Relatively low recall and precision for class
B (both are 65%) are expected due to the leaks from both sides; however, this should not be
a problem because one usually wants to know the rules for high (to know what to do) or low

(to know what to avoid) performances, not the intermediate.
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Figure 4.39. Decision tree analysis for Li-O; batteries.

Since we use DT to deduce heuristic rules for high performance, the high precision of
class A is important because it indicates whether apparently favorable set of variables is
indeed favorable for class A performance (requiring high precision). Failure to identify one
good set of variables may not harm if we find another one to work on (as contrary to the fact

that labeling an unfavorable set as favorable will lead to wrong actions). Hence, the heuristic
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rules for class A, especially the ones those derived from the terminal nodes having large

number of cases with high purity in class A, as explained below, should be reliable.

The numbers at the bottom of each node in Figure 4.39 indicate the fraction of total
data obeying the conditions stated so far in that branch, while the fractions in the middle line
show the fractions of class A, B, and C (from left to right). The letter and the color represent
the dominant class in each node for visualization. Naturally, the top node contains 100 % of
data with almost equal fractions of classes, and the total number of data in the nodes
decreases with each split, while the fraction of one class increases (purification). The
division criteria used by the tree from the top node to a terminal node in a branch can be
considered as a heuristic rule to have similar results to those in that terminal node. To have
a reliable rule or heuristics, the number of cases in a terminal node should be sufficiently

large and the purity of the node (i.e. fraction of one class) should be as high as possible.

The first division is based on the electrolyte solvent; the data with DME, DMSO,
Others, tetraglyme and triglyme are sent to the left while the other electrolyte solvents are
sent to the right (the data in Class A will likely to be purified in the left nodes while the Class
C will be mostly on the right). After the first node, the DT uses the bulk cathode materials
showing that the presence of CNT, Co oxide, graphene, N-doped CNT, others and porous
carbon lead to Node 4 on the left containing 46% of data with 59% purity in A. This node is
further purified into the first terminal (Node 14) by selecting first PVDF and PTFE and then
PTFE as binder. This is the most important rule obtained from this tree since both the node
size (14 percent of total data) and purity (94%) in class A are sufficiently high to generalize
the decision criteria used to reach this node. The remaining data in this branch is divided
more using LiTFSI as the electrolyte salt. This rule resulted in Node 22, which still has a
reasonably high purity (90%) close to that of the first terminal node (Node 14); hence, this
can be also used as another heuristic rule. The conditions leading to the rightmost terminal
node (Node 7) may also be used for not to do because it contains 13 % of data with 100%
purity in the low capacity class (class C). The results in this node indicate that the use of
carbonate electrolytes such as PC, EC:DEC and EC:DMC with PTFE or nafion as binders
results in very low capacities; hence, the combination of these materials should be avoided

in Li-O» batteries.
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The aim here was to develop heuristic rules for high capacity batteries, and the tree is
quite successful for this; however, some additional information can also be extracted related
to the relative importance of the individual factors by inspecting their utilization frequencies
during the construction of the tree. Although it is not an absolute rule, the most frequently
used variables (especially if they are used close to the top node) should be relatively more
influential for the capacity. Indeed, electrolyte solvent, bulk cathode material and gas
diffusion layer are the most influential three variables for this tree; these variables were also

found to have high lifts in the ARM analysis (Table 4.9) as expected.

4.2.1.4. Cut-Off Voltage Analysis with ARM. ARM analysis is also performed for the cut-

off voltage dataset to determine the important factors for achieving voltages higher than 2.75
V. The results for capacity range of 750-1000 mAh/g and 500-750 mAh/g are presented in
Table F.4 and Table F.5, respectively, in Appendix F; the same factors were found to be
significant in both cases even though their exact orders slightly changed. This dataset
contains less number of data (242 points) compared to discharge capacity dataset (773
points) discussed in the previous section; hence, counts in ARM for the factors are much
lower (meaning that the reliability is also lower). However, the performance of various
alternative materials can still be compared. For instance, the bulk cathode materials and
ingredients seem to be the most effective factors on the cell voltage with their high lift values
(this was also the case for the capacity testing group). In addition, PTFE as a binder, DMSO
as an electrolyte solvent and 0-0.8 mg/cm? active material loading can lead to enhanced cell

performance of Li-O; batteries.

4.2.2. Screening of Ionic Liquids as Electrolyte of Metal-Oxygen Batteries using
COSMO-RS and Machine Learning

Designing an efficient electrolyte system is critical for commercializing metal-air
batteries where ionic conductivity and gas solubilities, especially oxygen, are the primary
concerns. Among various alternatives, due to their safe nature and tailorable properties, ionic
liquids (ILs) have the potential to be used as electrolytes of metal-air batteries. Since many
ILs are possible, assessing their gas solubilities before using them in batteries is essential.
This section focuses on building ML models for predicting the gas solubilities of ionic

liquids (ILs) and screening promising candidates for metal-air battery electrolytes.
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COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) method, using the
COSMOThermX program, is utilized first for quick screening of gas solubilities, including
oxygen, water, nitrogen, and carbon dioxide, in addition to physical properties of ILs. The
structural descriptors and molecular fingerprints, calculated using RDKit, an open-source

cheminformatics software, are used to build predictive models for gas solubilities.

4.2.2.1. Importance of Gas Solubilities on Metal-Air Cells. Figure 4.40 shows a metal-air
cell structure during discharge and presents the electrolyte's role; here, an IL electrolyte with
an anion-cation pair is illustrated. First, atmospheric gas is distributed over the cathode by
passing through a gas diffusion layer and dissolving in the electrolyte solution. Meanwhile,
metal ions (M™) coming from the negative electrode through the electrolyte medium and
dissolved oxygen react with the help of a catalyst on the surface of the positive electrode
with the electrons supplied through the outer circuit. Oxygen only participates in the
electrochemical reactions if dissolved in the electrolyte, providing reversible capacity gain.
Hence, high electrolyte oxygen solubility is critical for metal-air batteries [380]. In contrast,
low solubility to the other atmospheric gases, including carbon dioxide, nitrogen, and water,
is necessary to prevent side reactions in the metal-air battery cathode. It is stated in the
literature that CO; and H>O in the air may cause side reactions where LiOH and Li2CO3; are
produced, and when the concentration of these side products increases, the cell suffers from
high over-potential and short cycle life. N2 solubility should also be restricted to preserve
the stability of the solid-electrolyte interphase layer in the anode; the lithium anode may

deteriorate in the presence of nitrogen [94].

Electrocatalyst

particle

Figure 4.40. Schematic of metal-oxygen cells with IL electrolytes.
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4.2.2.2. Description of the Dataset. The IL dataset presented in this section includes the

results for the cation-anion pairs obtained from the combination of 370 anions and 84 cations
in the COSMOthermX program. In addition to gas (oxygen, carbon dioxide, water, and
nitrogen) solubilities, the dataset includes previously calculated in Section 4.1.3, viscosity,
melting point, and electronic conductivity values. The distributions of the selected properties
and gas solubilities are given in Figure 4.41. The viscous nature of the ILs is visible in Figure
4.41a, as the scale goes up to e'° and the mean is around e’ mPa.s. On the other hand, luckily,
the melting points of these ILs are low, meaning lower than 0 °C, which is essential for stable
liquid electrolytes in metal-air batteries. When the gas solubilities are considered, it is
observed that all gases except water have similar solubilities, although CO> has slightly
higher values among the selected atmospheric gases. This is why suppressing CO: solubility
is essential even though CO; partial pressure is low in ambient air. On the other hand, the
water solubility spans large intervals from 102 mol/mol to 10* mol/mol. Hence, extra caution

must be exercised according to the water solubility values.
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Figure 4.41. Distribution of melting points (a), viscosities (b), melting points (c), and gas

solubilities of the whole dataset.
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To further extend the analysis, the gas solubility distributions of atmospheric gases for
oxygen and other gases based on anion groups are given in Figure 4.42. In parallel to Figure
4.41c, similar solubility distributions are obtained for all three gases except water; most
solubilities lie in the range of 0.1-10 mol/mol, whereas extreme values are obtained in both
low and high ends for water solubility. Halo elemental complex, cyano, borates, and
bis_imide groups have the lowest water solubilities; however, halo_elemental complex is
found to be less suitable for metal-air batteries due to higher nitrogen solubility and
bis_imide as the most suitable one with the most increased oxygen solubility. On the other
hand, the solubility values based on cation groups are given in Figure G.1; the highest
oxygen solubilities are obtained for guanidinium, phosphonium, and quinolinium cation
groups, respectively. Another noticeable trend is that guanidinium and phosphonium groups
have larger solubility values for all gases with larger spread values than the others. Although
high oxygen solubility is advantageous for these ILs, high solubilities for other gases may
also be problematic. On the other hand, the figure shows that the cation groups do not affect
water solubility, as no peaks and no significant trends were observed. Although these results
are valuable, no solid conclusions for the most promising anion and cation groups are
obtained, showing the need for calculation/prediction of individual ILs. Hence, a low-cost
method is provided in this work by building RF models using features calculated by the

RDK:it free chemical informatics library.
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Figure 4.42. Distribution of gas solubilities for anion groups.
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RF models were built to predict the gas solubilities using molecular and structural
descriptors. The chemical structure is the first consideration when the properties of a
molecule are discussed. The qualitative discussions on the system are defined as a structure-
activity relationship (SAR) and depend on scientists’ experiences and interpretabilities.
Because of this variability, the need for numerical representation of the chemical structures,
even in the year 1991, was identified. Quantitative structure-activity relationships (QSAR)
or structure-property relationships (QSPR) are defined as necessary for representing a
molecule [381]. Hence, the molecules were represented using several indexes. In this
respect, the RDKit library is developed to provide enough quantitative information on the
molecules using only the SMILES, Simplified Molecular Input Line Entry System, codes of
molecules. Various indexes are essential since it is impossible to represent a molecule with
a single index showing atom and bond types and shapes of molecules. For example, the
alkanes can be modeled with total atom count, but it is not essential for complex molecules
with many heteroatoms. In the case of ILs, large and bulky molecules containing various
atoms and bonding types are present, and many more molecules can be synthesized [381].

Hence, various indexed should be used to account for differences in the IL molecules.

In this respect, the RDKit library provides adequate sets of descriptors, specifically,
125 structural descriptors and multiple topological/electronic indexes utilizing several
published works in addition to 85 variables showing the frequency of the fragments in a
molecule. The complete list of the descriptors is given inTable G.1. Hall and Kier developed
several indexes and features in our context, using a molecular connectivity approach where
both topological and electronic characters (explicitly) of atoms or molecules are taken into
consideration[381]. These are Chi for structural attributes, Kappa for molecular shapes, and
the HallKierAlpha index for atom type information. Labute also reported important
descriptors in the RDKkit library. There are 35 descriptors calculated by Labute[382], which
are LabuteASA (1), PEOE VSAx (1<x<14), SMR VSAy (1<x<10), SlogP VSAz
(1<x<£12). LabuteASA shows the van der Waals surface area (VSA) of molecules and is also
used in calculating latter descriptors. The rest of the three descriptors are calculated for
specific ranges on the properties determined over a database where the interval is equally
populated. PEOE(sum of partial equalization of orbital theory) VSA, SMR(sum of
molecular refractivity) VSA, and SlogP(sum of the log of partition of octanol/water) VSA

were used to quantify the effects of hydrophilicity, polarizability and finally electrostatic
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interactions. It is stated that there is no correlation between these three sets of descriptors,
and several molecular properties are successfully calculated by using only their descriptors.
Morgan fingerprint (FpDensityMorganx, 1<<x<3) is a way of representing the chemical
structure of a molecule by a two-dimensional vector containing only 0 and 1’s where 1 is
attributed to specific structural features [383]. Apart from these works, other topological
indexes such as Balaban]J [384], BertzCT [385], and Ipc [386] values are reported in the
RDAKit library. All these topological indexes aim to represent the molecular structure, but
their basis of the calculations is different. The best and most relevant kinds of indexes depend

on the dataset itself.

The original dataset has 416 for a single IL, making the dataset relatively large.
However, working with such a large dataset is disadvantageous given the long computational
time and low performance. It is stated in the literature that the optimal set of features should
be determined before the ML modeling to prevent these shortcomings. The optimum set of
features changes according to the structure of the dataset [387]. Hence, Boruta analysis was
performed to reduce non-relevant features or features with no information. Most of the
removed features were related to the number of fragments in the molecules as most contain
only 0’s; only nine cationic and eight anionic features are related to other indexes. Hence,

the features used in the modeling were reduced to 285.

4.2.2.3. Machine Learning Analysis. This work uses RF to predict gas solubilities of ILs

calculated at 25 °C. Firstly, the dataset is divided into train and test sets as 75% and 25% of
the total data with a restriction of different anions in these sets. Modeling is performed using
a grid search with 5-fold cross-validation on the train set using the stratified sampling
explained in the Materials and Methods section in the validation set; optimum
hyperparameters are determined according to validation RMSE. After that, the testing set is
used to judge the model's ability to make predictions, and the resulting solutions are shown
in Figure 4.43. The optimized hyperparameters of oxygen models are 3 for the maximum
depth and 10 for the number of trees. The final model is based on these hyperparameters
built for training and test sets. The RF model is found to be quite successful not only for
training but also for test sets. In Figure 4.43, the model's estimation accuracy for the testing
set is satisfactory, with R?> and RMSE of 0.95 and 0.34, respectively (0.997 and 0.106 for

the training set). It is expected to see better fits on the training set since the model is built on
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these data; however, the model does not see the anions present in the test set when it learns

from the data.
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Figure 4.43. ML results on the oxygen solubilities for training (a), test (b) sets with

importance (c) values, the performance metrics are provided.

Variable importance analysis is also performed to see the effect of descriptors on the
oxygen solubility predictions. Both anion and cation features are present in the importance
plot, showing the influence of both parts on the final IL properties, Figure 4.43c. The most
important feature was the Ipc value of the cations of ILs. Ipc is the information obtained
from characteristic polynomials of a molecule [215]. It is a topological feature reported to
be effective in representing the branching [386]. The effect of cation branching was already
investigated experimentally in the literature for carbon dioxide solubility in ILs, and it was
found that branched cations illustrated as sponge-like structures are determinative in ILs
solubility due to favorable interactions of the branched section [388]. Hence, it is expected

to have the Ipc value as the top descriptor for gas solubility predictions. The other visible
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descriptors are VSA Estate, Chi values, molecular weights (MolWt), Kappa values,
SMR_VSAS, and finally, Morgan fingerprints. Indeed, Morgan fingerprints are used in the
ML predictions on ILs properties like refractive indexes and viscosities.[389] In another
work, carbon dioxide solubilities [390] of ILs were wellpredicted by using only Morgan
fingerprints that represent the ILs successfully. The Kappal values showing the sphericity
of anions are found to be necessary. The lower Kappal values are attributed to high
sphericity, and when the molecule is linear, the Kappa value equals the number of atoms.
Hence, the structure can also be characterized by the Kappa values, which are essential in
modeling. Finally, among 10 SMR_VSA values presented as features, only the moderately
polarizable cations value of C_ SMR_VSAS affects the model significantly.

Similar analyses were performed for carbon dioxide, nitrogen, and water solubilities
using the hyperparameters in Table G.2. However, as seen in Figure 4.42c, the scale of water
solubility is too large. Hence, the model is performed on the logarithmic scale rather than
the actual value. The RMSE of these tree models are 0.32 mol/mol, 0.37 mol/mol, and 0.79
mol/mol, as represented in Figure G.6, Figure G.7, and Figure G.8 for carbon dioxide,
nitrogen, and log(water) solubilities, respectively. The performances of the predictions are
quite similar to each other except for water. The most significant deviation between the
predicted and the real value was obtained for saccharinate anion, which belongs to the Others
family of anions, meaning that the structure is unique in the dataset. However, compared to
other gases, water solubilities are less widely reported, but experiments have proved that the
anionic effect is dominant in the final water solubilities [391]. Anionic properties were also
found to be more critical in the water solubility reported in our previous study, with 20
descriptors calculated by PM3 semi-empirical models [209]. In parallel, our importance plot
in Figure G.8. ML results on the water solubilities in natural logarithm scale for train (a),
test (b) sets with importance (c) values, the performance metrics are provided at the bottom
also supports this discussion with the anionic descriptors on top. The anionic effect is less
pronounced for other gases as both anionic and cationic structural and electronic properties
are found to be necessary, as well as the molecular weights as they show the complexity of
the anion and cation structures. Finally, prediction models are performed for the viscosity
and melting points of ILs with the provided descriptor set. The models are quite successful
for most of the dataset except glutamate and borate anions. When their features are analyzed,

it is seen that these anions have very dissimilar features leading to similar properties. Hence,
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the model is limited in accounting for this difference and cannot accurately predict these two

anions' properties.

To sum up, the descriptors obtained from the RDKit library can be used to build ML
models to predict the gas solubilities and the physical properties of ILs. These predictions
can be used to assess the suitability of an IL for metal-air batteries as multiple concerns are
considered. The ideal IL electrolyte should have high oxygen solubility, low solubility of
the other gases, and low melting point and viscosity. For the restriction of melting point and
In(viscosity) lower than 0 °C and 6 mPa.s and oxygen solubilities higher than 2 mol/mol,
only 19% of ILs satisfy these criteria. Hence, this dataset and models can be used as first-

initial guesses when synthesizing new ILs.

4.2.2.4. Validation of COSMO-RS Solubilities with Literature. Although the ML models

perform well with gas solubilities calculated by the COSMO-RS method, experimental
validation of the computed gas solubilities is still needed. The validation of water [209] and
carbon dioxide [392,393] solubilities with the COSMO-RS method was already performed
in the literature. In contrast, it was not completed for nitrogen solubilities due to a lack of
experimental data. Hence, the validation of oxygen solubility was performed in this work.
As explained in the Materials and Method section, there are two methods in the
COSMOThermX software to compute the solubilities: gas solubility and IL screening
modules. In both ways, the solubilities are initially reported in the mol/mol unit, but they are
converted to mM using densities and molecular weights calculated by COSMO-RS. Figure
4.44a gives the oxygen solubilities obtained from the gas solubility module vs. the IL module
for ILs having the [TFSI]" anion. As seen from the figure, the results obtained in these two
approaches are an order of magnitude different. However, a perfect linear fit can be obtained
where experimentally reported oxygen solubilities are close to the ones calculated using the
gas solubility module (Figure 4.44b). Hence, the results obtained in the IL screening module
are further improved using the correlation equation presented in Figure 4.44a. However,
some deviations are still observed. This is expected because, unfortunately, the experimental
methods, techniques, and even equipment calibration change in every research group. For
instance, for 1-butyl-1-methyl-pyrrolidinium [TFSI]" (P13-TFSI), the experimentally
measured oxygen solubility changes from 0.73 to 13.6 mM where the COSMO-RS predicts
an oxygen solubility of 8.8 mM. Still, the calculated solubility is in the experimentally
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reported range. This problem also shows the importance of having a single and reliable

method to screen thousands of ILs in terms of gas solubilities for comparative analysis.
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Figure 4.44. The solubility values calculated from COSMO-RS (a) and the comparison

between experimental and gas solubility values (b).



147

5. CONCLUSION

5.1. Conclusions

This thesis aims to increase the performances of Li-S and Li-O; batteries by
discovering the most promising materials and determining optimum cell parameters. In this
respect, galvostatic cycling, system-level modeling, and machine learning are the main
techniques used in this study. In the first 5 sections, Li-S batteries were studied using all
three methods, whereas only ML tools were used in Li-O; battery studies, described in the

following two sections. The conclusions of each study are given in this section.

In Section 4.1.1, a dataset having 1660 data from 353 papers in the literature were
collected to analyze the effect of critical materials and cell design parameters on the Li-S
battery performance using ML. Association rule mining analysis was conducted to determine
the single factor effects. The impact of critical factors on both peak discharge capacity and
cycle life of a Li-S cell has been discussed; these effects are highly prominent especially for
cells achieving peak discharge capacities of 1400 mAh/g and higher and cycle numbers of

200 and higher. The most important conclusions of this section are summarized below:

e Cells with encapsulated cathodes perform significantly better both in terms of the PDC
and the cycle life of the battery, importantly for the electrolyte-starved cathodes
(E/S<5mL/g). Structured carbons (i.e. porous carbons, CNT) and specialized new
materials are highly promising encapsulation materials. High amounts of
encapsulation material in the cathode (above 40%) are typically favorable.

e Binder type has a considerable impact on the PDC; PTFE and LA are promising
materials for enhanced performance. However, binder- and conductive-free
encapsulated cathodes are essential for enhanced cycling performance.

e Electrolyte materials are critical for improved PDCs, especially at low E/S ratios.
EC:DEC or TEGDME as the solvent and LiPFs as the salt perform superiorly
compared to the conventional electrolytes. The impact of the electrolyte materials on

the cycling performance is less pronounced.
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e Even though low S loadings in the cathode (0-1 mg/cm?) are beneficial for high PDCs,
higher S loaded cathodes perform better in terms of the cycle life and the energy
density.

e Cells with carbon current collectors or interlayers can achieve higher PDCs,
particularly at low E/S ratios.

e Cells achieve PDCs higher than 1400 mAh/g and cycle numbers more than 200
predominantly at very high E/S ratios (above 30 mL/g).

e All-solid-state Li-S batteries are promising in terms of attaining high PDCs while cells

with catholyte perform better in terms of cyclability.

To sum up, materials design, specifically design of encapsulation materials and
electrolyte, are critical both for high capacities and enhanced cycle life. The most promising
pathways forward are the development of encapsulated cathodes that do not require
additional binder and conductive material and the design of novel electrolytes that could
succeed at low E/S ratios. In addition to proposing favorable pathways for high performance
Li-S batteries, this comprehensive analysis also proves that ML is a highly valuable tool,
especially for such highly complex systems. To conclude, this analysis confirms that the
biggest challenge Li-S batteries face today in competing with the Li-ion technology is to
achieve and retain high discharge capacities at high active materials loadings and low

electrolyte amounts in the cell.

In Section 4.2.2., 207 data collected from 42 experimental articles were analyzed,
which use ILs as their liquid electrolytes, to identify the patterns and hidden relations
between the cell variables and both system- and cell-level performances of Li-S batteries
using ARM. It was found that IL materials are very important in terms of achieving high
PDCs, energy densities and specific energies. This study also showed the importance of IL
electrolytes for Li-S batteries with their effectiveness at lean electrolyte conditions and high

sulfur loadings.

In section 4.1.3, a large-scale screening of ILs was conducted in search of potential IL
electrolytes with low PS solubility to limit the shuttle effect and low viscosity, electronic
conductivity, and melting point for application as liquid electrolytes of Li-S batteries. The

screening was performed using a COSMO-RS model on the COSMObaselL dataset of over
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36000 ion pairs to produce rough estimations of the solubility of Li>Sg as the model PS and
IL properties. The predictive model developed by XGBoost algorithm was quite successful
indicating that the solubility can be easily predicted for new ILs. Ten descriptors were also
analyzed for each anion and cation along with the solubility estimations using association
rule mining to find valuable correlations between solubility and property and IL structural
properties; solubility limits, which were use as selection criterion for high performance, were
determined experimentally. The results showed that the anion descriptors correlate more
strongly with PS solubility than the cation descriptors. The ML models showed significant
overfitting when exposed to the same anions in both training and test sets. This further
provides evidence of the strong correlation between the COSMO-RS-predicted PS
solubility/property and anions descriptors. The feature importance analysis also showed that
anion descriptors are leading in solubility prediction, with anion LUMO and HUMO
energies, dipole, and CPK area being the most important. A comparison with some limited
results in the literature showed reasonable agreement. Although calculating the descriptors
is comparable in terms of computational cost to the COSMO-RS solubility calculation, the
model requires the generation of .cosmo files and the use of COSMO thermodynamic
software. In contrast, these descriptors are more readily available and easier to set up on a
larger scale. In addition, experiments show optimum solubility and viscosity ranges for high-
performing Li-S batteries, whereas melting point and conductivity are only used to ensure
the appropriateness of the liquid ILs as the electrolytes. Hence, according to the results,
imidazolium and pyridinium were the most suitable cations, whereas borates and bis_imides
were determined to be the anion choices for high-performing Li-S batteries. To conclude,
this section offers not only ML models that can be easily utilized to identify promising IL
electrolytes for Li-S batteries by an original integrated methodology coupling high-
throughput COSMO-RS and DFT calculations and experimental characterization but also a

better understanding of the structure-solubility-performance relation for IL electrolytes.

In Section 4.1.4, UiO-66-based graphene nanoplatelet composites with three different
MOF/GNP ratios (UGS-1, UGS-3, and UGS-5 corresponding to MOF/GNP ratios of 10:90,
30:70, and 50:50 wt.%, respectively) were prepared and used as the conductive
encapsulation network for Li-S battery cathodes. A facile strategy is followed in the cathode
preparation step. Although no significant performance improvement is observed with the

addition of UiO-66 into the composite for a sulfur loading of 1 mg/cm?, for higher sulfur
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loadings (2 mg/cm?) and current densities, MOF addition is critical for the reversibility of
electrochemical reactions and sulfur utilization. For instance, Li-S cells with UGS-5
presented superior rate capability due to the superior surface area and PS adsorption ability
of the UG-5 composite. Hence, it can be concluded that the synergistic effect between GNP

and MOF favors high-performance Li-S batteries even at high C-rates and sulfur loadings.

In Section 4.1.5, the system-level performance modeling of Li-S batteries with a novel
VCKBS composite cathode was done. Li-S cells with VCKBS cathodes exhibited excellent
cycling and rate performances with an initial capacity of 1329 mAh g ! at 0.1 C. Even under
a higher S loading (2.4 mg cm?), significant capacity retention of 85 % was accomplished
after 200 cycles at 0.2 C. Due to impressive experimental specific capacities, the system-
level specific energies and energy densities were predicted for both the 1% and 100%
discharges. Compared to KBS, VCKBS cathodes showed 1342% and 568% improvement
in the system-level specific energies and energy densities for the 100" discharge,
respectively. In both cases, the VCKBS cathode significantly improves system-level
performances. In addition, the E/S ratio, S loading, and cathode material characteristics
significantly affect the system-level metrics. It was found that VCBKS cathodes with lower
E/S ratios excel at specific energies. In pursuing a low-cost Li-S battery with superior energy
density and specific energy, the investigation of the VCKBS cathodes at higher sulfur

loadings and lower E/S ratios will be critical.

In Section 4.2.1, a dataset containing 1015 experimental data on Li-O> batteries was
used for ML analysis to identify the most prominent materials and cell design factors
combinations for high performance Li-O; batteries. ARM and DT were used throughout the

study; the factors found to be leading to high cell performance are summarized below:

¢ Bulk cathode materials, cathode ingredients and electrolyte solvents are found as the
most important variables for both high discharge capacities and voltages.

e N-doped carbons, graphene and porous carbons seem to be better options as bulk
cathode materials.

e LaFe oxides, Nioxides and Ru are shown to be good candidates as cathode ingredients.

e The discharge capacities are negatively affected by the active material loadings higher

than 1.2 mg/cm?.
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e Cells with PTFE, DMSO, and LiClO4 as the binder, electrolyte solvent and salt,
respectively, provide high discharge capacities.

e The use of some electrolyte solvents (DME, DMSO, tetraglyme and triglyme) without
a salt or with salts like LiClO4 likely result in capacities higher than or equal to 3000
mAh/g with high probability.

e Mo containing compounds and Ru as ingredients, and N-doped carbons as bulk

cathode materials seem to be good for high cell voltages.

Identifying the important correlations between the input and output variables (via
ARM), and developing heuristic rules involving more than one variable (via DT) using the
data reported in the literature may help to refine the experience gained in the field and make
significant contributions to the future works. However, this approach has an important
limitation: all the models and conclusions drawn are valid within the limits of the dataset
(i.e. data gained from the past studies reported in the literature); hence, it cannot suggest any
completely new material types or combinations. To do that, the material characteristics
should be also included in the analysis, and significant properties contributing to the battery
performance should be identified for the search of new materials or material combinations

having similar properties.

In the section 4.2.2., COSMO-RS calculations were used for fast screening of ILs
regarding gas solubilities and physical properties to assess if they are suitable as electrolytes
of metal-air batteries. The calculations were performed for a dataset of around 30,000 ILs at
25 °C. Afterward, this dataset was further utilized in an ML algorithm for building predictive
models using the structural and electronic features of anions and cations obtained from free
software using only the SMILES codes. ML models with low RMSE scores proved that
these features are sufficient to represent the IL's properties and solubilities; hence, structure-
property relations can be drawn. It was found that both cationic and anionic features
influence the gas solubilities other than water. On the other hand, cationic properties have a
slight effect on the water solubilities, where anion structures roughly determine the
magnitude of the solubilities. It was found that only 19% of ILs are suitable with the
restrictions of melting point and In(viscosity) lower than 0 °C and 6 mPa.s and oxygen

solubilities higher than 2 mol/mol.
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5.2. Recommendations

In this thesis, a comprehensive material-to-system analysis was conducted for Li-S and
Li-O; batteries by applying an integrated research methodology involving experimental
characterization, system-level performance modeling, and ML. These studies can be

extended in the future by the following recommendations:

e The development of better and more comprehensive battery material databases
e Using better text-mining methods to analyze the trends and results in the literature in
a more effective way

e Developing electrochemical models that take material properties into account
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APPENDIX A: SUPPORTING INFORMATION ON SECTION 4.1.1

The additional information on Section 4.1.1 is given in this section. First, the details

of the database is given in Table A.1 and than the details of the alternative materials are

listed.
Table A.1. The details of the database.
Dataset Number of Data Number of Publications
Cells using liquid electrolyte 1463 303
Cells using catholyte 142 33
Cells using liquid + solid electrolyte | 33 10
Cells using solid electrolyte 22 7
Total 1660 353

Details of the alternative materials are as follows:

Hollow Structured Carbon1&2: Hollow Carbon Foam

Hollow Structured Carbon3: Acetylene Black Nano Hollow Carbon, Double Shelled
HCS, HCS, Hollow Carbon Foam, Hollow Carbon Nanospheres, Hollow Carbon
Spheres, Hollow Porous Carbon, Hollow Porous Carbon Bowl, Hollow Porous Carbon
Sphere, Mesoporous Carbon Hollow Spheres, Mesoporous HCS, Multi-Shelled
Hollow Carbon Nanosphere, Porous Hollow Carbon Nanocapsule Monoliths

Hollow Structured Carbon4: Hollow Carbon Nanospheres, Multi-Shelled Hollow
Carbon Nanosphere

Modified Li anode: Hard Carbont+Carbon Black+PVDF+Polymer Separator+Li
Metal, Li Metal+ AlLNOs; Layer, Li Metal+Glass Fiber Layer, Li
Metal+Hydroquinol+rGO, Li&In Alloys, Lithiated Si/SiOx  Nanosphere,
Nanostructured Li Contained in Fibrous Li7Bes Matrix, Prelithiated Ge, Stabilized Li
Powder, Stabilized Li Powder+Hard Carbon+PVDF, Graphite Powder+Super
P+PVDF+Polymer Separator+Li, Prelithiated Graphite

Others1: Graphite Coated Al Foil, Cu Foil+CNT Sheets, Graphene Layer, Graphene,
Cu Foil, Gas Diffusion Layer, Stainless Steel, Copper, Carbon Coated Ti Foil, Au-
Coated Stainless-Steel
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Others2: Graphene Oxide, HKUST-1, LATP Glass-Ceramic, Vermiculite

Others3: TiS2, CoS,, LiTFSI, FeS»

Others4: TiS2, CoS2, CoMo0S3.13

Others5: CNT+IP, TiN, PTFE, Silica Etched Carbon, MWCNT+Polypyrrole, Silica,
Ammonium Bicarbonate, HKUST-1, Nano MgO, Teflonized Carbon Black, ZIF-8§,
MnQO,, Carbon Polysulfide Polymer, Carbon Polysulfide Polymer+Graphene
Others6: Conductive Agent

Others7: MoC+MoOy, Phosphorene Nanosheets, Silicon Carbide Whisker Foam,
Vanadium Nitride, Vanadium Oxide, HKUST-1, TiO»

Others8: Amylopectin, Diatomite

Others9: GO, CaCly, InCl3, MgCla, WS>

Others10: 1,3-diisopropenylbenzen copolymer, Ni, Polyethylenimine, Zeolitic ZIF-8,
ZIF-8, HKUST-1, MOF-5°

Others11: 2-ethylimidazole MOF, Amylopectin, Anthraquinone, Imidazole MOF,
Metal Organic Framework

Others12: TiO2, Nano MnS, Hollow MoO> Sphere, MnO,, PDDA, SiO, Ti3C,Tx,
710>, ZrO3, VO3 nanobelts

Others13: Polydopamine

Others14: Trithiocyanuric Acid, PVP

Others15: Nano Co, Nano CoS;, Si/SiO>

Others16: 3-D Diamond-Cage Porous Polymer Frameworks, Co3Ss Nanotubes, Core—
Shell Structured Spoly(Sodium P-Styrenesulfonate) , Covalent Organic Frameworks,
Crosslinked Polystyrene, Hollow NiC0204 Micrutubes, LiFePOs, LiV3Og, Metal
Cotton, MnO;, PEG+ MnO,, Poly(Divinyl Benzene), Polyacrylonitrile,
Polydopamine, Porous Aromatic Framework, Porous Organic Polymer, Porous
Triazine-Based Frameworks, Porous Trithiocyanuric Acid Crystals , Prussian Blue,
Sepiolite, Silica, SiO2, SnO> Nanocomposites, TizCoTx, Ti4O7 Nanoparticles, TisO7
Nanorods, TiO, TiO> Spheres With Mesopores, ZIF-8, a-Mno2 Nanowires
Others17: PEDOT+Poly(styrene sulfonate), + SiO»

Others18: Boron, Sulfur, Cobalt

Others19: TiO,, lodine, Diatomite, CeO,, Cobalt Oxyhydroxide, Mo4O11, Boron,
NbS;, Si/Si0,, Boron+Oxygen, Fluorine, Dodecyl Benzene Sulfonic Acid, MnO»



206

e Others20: PVP, Sodium Alginate, PDADMA-T, PEG, Polypyrrole+Polyurethane
nanocomposite, Beta-Cyclodextrin, LA133+ SBR, Alginic Acid Sodium Salt,
Polyvinyl alcohol, Poly(acrylonitrile-methyl methacrylate), Kynar, Gum Arabic,
Thiokol, Fluoropolymer, Na Alginate, Gelatin, PVC, Cation Aqueous Polyurethane
Resin, Poly(vinylidene difluoride-co-chlorotrifluoroethylene), Poly(vinylidene
difluoride-tri- fluoroethylene), Poly(acrylic acid)

e Others21: Hexa-fluoropropene, Polyethylenimine(PEI)

e Others22: PVP, Kynar

e Others23: DMDS, CS,, PYR4TFSI

e Others24: DMC, DMC:DEC, EMC, EMC:DEC

e Others25: Li(G3)TFSA, ACN:TTE, Carbonate:DMC, DEGDME, Diglyme, DMA,
DME, DOL:CHF.CF.CH,0OCF,CF;H, DOL:DMC, DOL:EGDME, DOL:PEGDME,
EC:DMC(anode) &Tetrahydrofuran(cathode), Methyl Isopropyl Sulfone, N-methyl-
N-propylpyrrolidine+bisTFSI, PEGDME, 1-methyl-3-propyl imidazolium+ TFSI,
Sulfolane, Sulfonate, TEGDME(anode side)*DMA(cathode side), TMS:TTE,
Tri(ethylene glycol)-substituted trimethylsilane, TTE:DOL

e Others26: LiFSI, LiFSI+LiTFSI, LiPF6(anode), LiTDI, LiTFSI+LiTDI

e Other Carbonsl: Amorphous Carbon Shell

e Other Carbons2: Carbon Felt, Carbon Hybrid Spheres, Carbon Microspheres, Carbon
Nanoflakes, Carbon Nanoparticles, Carbon Nanospheres, Carbon Polyhedrons,
Carbon Slice, Layered Carbon, Meso Carbon Micro Beads, Mesocarbon
Microbeads(Graphite), Microcrystalline Graphite Minerals, Nanostructured Carbon,
Non-Layered Carbons, Solid Carbon Spheres, Yolk—Shell Carbon Nanospheres
Microporous Shell, Mesoporous Core

e Other Carbons3: Carbon Polyhedrons, Carbon Hydrid Spheres

e Porous Carbonsl: Porous Carbon

e Porous Carbons2: CMK-3

e Porous Carbons3: CMK-3, Porous Carbons, Porous Carbons Nanospheres

e Porous Carbons4: Porous Carbon Nanospheres

e Porous Carbons5: Mesoporous Carbon, Porous Carbon

e Porous Carbons6: Double Wrapped Porous Carbon, Porous Carbon, Hierarchically

Porous Carbon, Mesoporous Carbon
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e Porous Carbons7: Double Wrapped Porous Carbon

e Porous carbons8: CMK-3, Hierarchical Porous Carbon , Hierarchically Pore
Structured Carbon, Meso Carbon Micro Beads, Mesophase Micro Bead Carbon,
Mesoporous Carbon, Micro-Macro Porous Carbon, Microporous Carbon Polyhedrons,
Microspherical Mesoporous Carbon, Nanoporous Carbon , Nanoporous Carbon
Beads, Ordered Porous Carbon, Peapodlike Mesoporous Carbon, Porous Carbon,
Porous Carbon Nanosheets, Porous Rattle-Type Carbon Sphere, Spherical Ordered
Mesoporous Carbon, Ultramicroporous Carbon

e Porous Carbons9: CMK-3, Spherical Ordered Mesoporous Carbon, Mesoporous
Carbon, Peapodlike Mesoporous Carbon

e Structured Carbonl: CNF, rGO, Nitrogen-Doped Porous Hollow Carbon Sphere,
Graphitized Carbon Nanofibers, Graphite, Graphene, CNT

e Structured Carbon2: Vapor Given Carbon Fiber, rGO, Carbon Cloth, Carbon
Nanofiber, Carbon Sponge, CNF, Cotton-Carbon, Graphene, GO, Graphene+Cotton-
Carbon, Graphite, Graphitized Carbon Black, OMC

e Structured Carbon3: Carbon Fiber Foam, CNF, Graphene, CNT

e Structured Carbons4: Activated Carbon Aerogels, Activated CNT, Activated

Nanoporous Carbon Beads, Monolithic Carbon, Microporous Activated Carbon Fibers

Sulfur weight percent estimation was also done. The regression model is performed by
analyzing 241 data points in which sulfur is melt diffused into conductive medium at a
specific temperature and duration. Other encapsulation methods are not used in the analysis
since they induce significantly different conditions. According to the analysis, the achieved
S wt.%’s can be calculated with
S wt. % Achieved
= 34.3202 — 0.1568 x Temperature — 0.2211x Time (A1)
+ 0.856 x S wt.% Targeted,
Equation (A.1). In this analysis 10 fold cross validation is performed. The data was randomly
divided into 10 groups; nine groups were used for model building while the remaining group
of data was used for testing the model. This procedure was repeated 10 times with different
testing groups to make sure that the model is valid in entire data interval. The training and

testing RMSE values were found to be 5.38 and 6.34 respectively; they are quite small
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considering that we categorized S wt.% within 25 % intervals. The training and testing plots

for measured versus predicted S wt.% (achieved) are given in the Figure A.1.
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Figure A.1. The training (a) and the testing (b) plots of regression model for achieved S

wt.% calculation.
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APPENDIX B: SUPPORTING INFORMATION ON SECTION 4.1.2

Here, the additional figures and tables are given in this section.
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Figure B.1. The sensitivity analysis for the calculated energy density (Wh/L) determined
at cathode discharge capacities of 600mAh/g S, 1000 mAh/g and 1400 mAh/g using the
modified BatPac model.
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Figure B.2. The sensitivity analysis for the calculated specific energy (Wh/kg) determined
at cathode discharge capacities of 600mAh/g S, 1000 mAh/g and 1400 mAh/g using the
modified BatPac model.
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Figure B.3. Lift vs. peak discharge capacity of electrolyte salt (a) and additive (b) of

molecular solvent.
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Figure B.4. Lift vs. peak discharge capacity of encapsulation material (a), conductive

additive (b) and binder (c) in the sulfur cathode.
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Figure B.5. Lift vs. peak discharge capacity of encapsulation material wt.% (a), conductive

additive wt.%(b) and sulfur wt.% (c) in the sulfur cathode.
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Figure B.6. Lift vs. peak discharge capacity of anode material (a) and separator (b).

Table B. 1. ARM results for energy densities > 60 Wh/L.

Factors Levels Support | Confidence | Lift | Count

Conductive_Material Categorized Others4 0.010 0.050 5.10 1
Binder Categorized CMC 0.069 0.350 3.97 7
E/S Ratio Categorized 0-15.0 0.186 0.950 3.59 19
S Loading_Cat >4.0 0.088 0.450 3.06 9
Conductive Material Categorized None 0.069 0.350 2.98 7
Encapsulation wt% Categorized 30-35 0.069 0.350 2.98 7
Molecular Solvent Categorized TEGDME 0.049 0.250 2.83 5
Encapsulation Material Categorized | Carbon Nanotube 0.049 0.250 2.55 5
IL_Abbreviation P1,201 TFSI 0.049 0.250 2.55 5
S wt%_Categorized 0-50 0.049 0.250 2.32 5
Conductive wt%_Categorized 0 0.069 0.350 2.10 7
IL_Abbreviation Li(G4)_TFSI 0.069 0.350 1.88 7
Conductive wt%_Categorized 20 0.088 0.450 1.84 9
S wt%_Categorized >60 0.098 0.500 1.82 10
Encapsulation Material Categorized | Ketjen Black 0.069 0.350 1.70 7
Encapsulation Material Categorized | Graphene Oxide 0.049 0.250 1.59 5
Encapsulation wt% Categorized >35 0.049 0.250 1.59 5
Electrolyte Salt Categorized None 0.069 0.350 1.49 7
IL/Solvent vol.% Categorized 100 0.069 0.350 1.49 7
Molecular Solvent Categorized No 0.069 0.350 1.49 7
Separator Categorized Polymer 0.167 0.850 1.45 17
Encapsulation Material Categorized | Mesoporous carbon | 0.029 0.150 1.28 3
Conductive Material Categorized Acetylene black 0.049 0.250 1.21 5
Molecular Solvent Categorized DOL:DME 0.078 0.400 1.20 8
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APPENDIX C: SUPPORTING INFORMATION ON SECTION 4.1.3

The additional information about the dataset obtained from COSMO-RS calculations

are given in this section. In addition, prediction results of IL properties are also presented

20
15
~
)
2 30
5 1 —
0

-0.04 0.03 -0.02 -0.01 o

o [e/A?]

0.01

Figure C.1. The sigma (o) profile and corresponding sigma surface of Li2Ss molecule

obtained from TMOLEX.
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Figure C.2. The COSMO-RS solubility (mol/mol) of ILs (a) and its log transformation for
the entire dataset (b).
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Figure C.3. The COSMO-RS calculated log(solubility (mol/mol)) (a), In(viscosity (mPa.s))
(b), In(conductivity (S/cm)) (¢), melting point (°C) (d), of ILs based on cation group
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Table C.1. COSMO-RS and experimental solubilities of Li>Ss.

Abbreviation Eéssrré(()ri{osl /mol) log(CosmoRS Li2S8) | Park et al. L?gg;rskg) ct
P13 TFSI 0.43 -0.36 10.68 1.03
P13 BETA 0.11 -0.97 245 0.39
P13 FSA 0.04 -1.44 1.58 0.20
P14 TFSI 0.25 -0.60 8.86 0.95
PP13 TFSI 0.34 -0.47 5.98 0.78
C4ADMIM_TFSI | 0.36 -0.44 5.43 0.73
DEME TFSI 0.38 -0.42 7.69 0.89
P2225 TFSI 0.09 -1.05 4.16 0.62
P14 OTF 1357.63 3.13 957.50 2.98

BETA: bis(pentafluoroethylsulfonyl)amide, C4dmim: 1-butyl-2,3-dimethyli-imidazolium, DEME:N,N-
diethyl-N-methyl-N-(2-methoxyethyl)-ammonium, FSI: bis(fluorosulfonyl)imide, OTF: trifluoromethane-
sulfonate, P13:1-methyl-1-propyl-pyrrolidinium, P14: 1-butyl-1-methyl-pyrrolidinium, P2225: triethyl-pentyl-
phosphonium, PP13:1-methyl-1-propyl-piperidinium, TFSI: bis(trifluoromethane)sulfonimide

Table C.2. The cationic and the anionic properties of the selected ionic liquids used in Li-S

cells.
E.L | binol CP |Pola |HB | HB
Mol. |EHO |UM | POl cpk K lrie |lp | A |ZPE
Abb. Wt IMO 1O | qopy | AT | gyar | bilit | Co | Co | &
(amu) | (eV) | (eV YA |; mol)

) e) ity y unt | unt

PP14 156.3 |-149 |-42 |38 2193 | 1.3 552 (0.0 |1.0 [799.2

DEME | 90.1 -10.6 |25 0.0 136.3 | 1.3 |47.0 0.0 |2.0 [359.7

1073.
6

BMIM | 1252 |-14.6 |-5.0 |79 202.8 |14 |532 (0.0 [2.0 |5723

TBMA | 2004 |-147 |42 |24 2954 | 1.5 60.6 | 0.0 |1.0

Cation

TFSI | 280.1 |-7.2 2.1 |0.0 2084 | 1.5 |522 (0.0 |7.0 |1325

PF¢ 145.0 |-9.1 54 10.0 1004 | 1.2 439 |00 |00 |372
CF3;SO

3

MeSOq4 | 111.1 | -6.1 63 | 7.7 109.8 | 1.2 |45.0 | 0.0 |50 |1314

149.1 | -6.4 48 |24 1179 | 1.2 458 | 0.0 |4.0 |64.6

Anio

BMIM: 1-butyl-3-methyl-imidazolium, CF3SO3: trifluoromethane-sulfonate, DEME: N,N-diethyl-N-methyl-
N-(2-methoxyethyl)ammonium, MeSO4: methylsulfate, PF6: hexafluorophosphate, PP14: 1-butyl-1-
methylpiperidinium, TBMA: tributylmethylammonium, TFSI: bis(trifluoromethane)sulfonimide



Table C.3. The hyperparameters used in Xgboost analysis.
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Models Max_depth Nrounds Eta
Solubility 3 225 0.1
In(viscosity) 4 150 0.1
In(conductivity) 3 250 0.1
Melting point 4 300 0.1

The other factors were ser as gamma=1, subsample = 1, min_child weight = 1, colsample bytree = 0.8
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Figure C.4. Prediction results of melting point for train (a), test (b) sets and model

importance (c).
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Table C.4. ARM results for classification of Li>Ss solubility (top results for anionic and

cationic descriptors)*

RHS** Support |Confidence |Lift Count
Anion_group=Bis_imide 0.005 0.298 7.31 194
Anion_group=Borate 0.009 0.502 4.10 326
Anion_group=Others 0.002 0.103 1.68 |67
Cation group=Piperidinium 0.001 0.038 1.58 25
Cation_group=Pyrrolidinium 0.001 0.080 1.56 |52
Cation_group=Morpholinium 0.001 0.034 1.39 |22
Anion_group=Halo elemental complexes [0.002 0.092 1.29 |60
Cation group=Quinolinium 0.001 0.051 1.25 33
Cation group=Pyridinium 0.004 0.209 1.16 136
Cation group=Ammonium 0.003 0.140 1.06 91
Cation_group=Imidazolium 0.006 0.358 099 233
Cation_group=Guanidinium 0.001 0.032 0.60 21

*The rules satisfying the ~3% confidence and ~0.1% support thresholds are shown.
**RHS:Right hand side of the condition {Solubility=A, Viscosity=A, Melting point=A, Conductivity=A}
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APPENDIX D: SUPPORTING INFORMATION ON SECTION 4.1.4

The material characterization results for elemental analysis, TGA results, SEM

images, XRD and FTIR patterns are given in Figure D.1-Figure D.2, respectively.

Table D.1. Elemental analysis results.

Sample %N %C %H %S
UG-5 0.31 24.54 0.56 57.33
UG-3 0.29 29.32 0.34 61.15
UG-1 0.44 9.24 0.22 68.79
(a) Sulfur —GNP-S —Pure GNP (b) Sulfur ==Ui0B6 ——Ui066/S
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Figure D.1. TGA analysis results for GNP (a) and UiO-66 (b).

Figure D.2. SEM results for UiO-66 (a) and UG-1 composite (b).
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Figure D.3. XRD Patterns of UiO-66, UG-1, UG-3, and UG-5 nanoparticles.
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Figure D.4. FTIR plots of UiO-66 and GNP/UiO-66 nanoparticles. UG-1 is chosen as the

representative composite.
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APPENDIX E: SUPPORTING INFORMATION ON SECTION 4.1.5

The experimentally tested material contents and the cell design parameters are given
in Table E.1. Afterwards, the system-level performances are given in Figure E.1, for the
conditions listed in the table. The cycling performances and the details are given in Figure

E.2 and Table E.2, respectively.

Table E.1. The details of the materials investigated in the Section 4.1.5.

Sample Details Co | V| Swt% S Load E/S
CKBS Co* Svct).:ol/g?.precursorratio (1:1 i _ 170 124 20
CKBS Co** Svigz;Bprecursorratio(lzl.S r ~ 170 124 20
CKBS Co*** Svig/i;Bprecursorratio (1:2 n - 170 124 20
KBS (Group 1) - - - 170 1.24 20
vokBs @owpt) | SHRpEmematts L e
vekas. Cokppmmmemiot1s o ol e |
VCKBS b ch‘t’;f? f%e;%i";ﬁﬁ\‘;(“j + |+ 170 1.24 20
vis Cokppmmamiot1s | fulo e |
vokas o Cokppmmamiot1s |y o lso e |
voKas Cokppmmamiolt1s o ol e |
vokns o Comprmamariot1s |l e |
vokes Gz | (Rpmmematts L ae
KBS-Group 2 - - - |70 2.4 2.4
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Figure E.1. Discharge capacities, system-level specific energies, and energy densities of all

the cathodes for the 1% discharge (a)-(b) and 100" discharge (c)-(d).
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Figure E.2. Cycling performances: KBS cathodes with S loadings of 0.8 mg/cm? (a), 1.2
mg/cm? (b), and 3 mg/cm? (¢), and VCKBS cathodes with S loadings of 0.8 mg/cm? (d),
1.2 mg/cm? (e), and 3 mg/cm? (f) at 0.1 C.



Table E.2. Li-S cell performance for KBS and VCKBS cathodes.

E/S ratio | S loading | Initial discharge capacity
[mL/g] [mg/cm?]
KBS VCKBS

20 0.8 1117 1123

13 0.8 768 973

6 0.8 241 811

20 1.2 962 1285

13 1.2 799 1106

6 1.2 237 965

20 3 279 1009

13 3 219 804

6 3 93 711
Cathode contains 10 wt% PVDF binder and 45 wt% sulfur.
Electrolyte is 1 M LiTFSI and 0.1 M LiNOj; in DOL: DME
(1: 1 vol%).
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APPENDIX F: SUPPORTING INFORMATION ON SECTION 4.2.1

Contents of common labels used for rarely used materials are as follows:

e Modified Li anode: LiFePO4 + PTFE +Super P, Li metal+polymer buffer layer, Li
metal+LTAP layer, Li metal+(Al.O3+PVDF-HFP) layer, Li metal+(Li2CO3+Carbon)
layer and pretreated Li metals with chemicals

e Other carbonsl: 3-D ordered mesoporous/macroporous carbon sphere arrays, Vapor
grown carbon fiber, Carbon spheres, Ordered mesoporous carbon nanofiber arrays

e Other carbons2: Hollow spherical carbon, Pd-modified hollow spherical carbon,
Carbon cloth, Carbon nanocube, Graphitized carbon foam, High surface area carbon,
Inverse opal carbon, '3C enriched amorphous carbon, Diamond like carbon (DLC),
Carbon nanoballs, Glassy carbon, Graphitized carbon black

e Othersl: NiO, MoS> Nanoflakes, Pt Nanoparticles, C3Ns4, S doped graphene
nanosheets, B4C nanoparticles, Sb-Doped Tin Oxide, Sb-Doped Tin Oxide Supported
Ru Nanoparticles, O and N doped Carbon NanoWeb, Mo,C, B Silicon carbide,
GO+CNT

e Others2:Polydopamine

e Others3:PbRO, CuFe, C3N4, Core-shelled Fe/Fe3Os4, Nanocrystalline Pyrochlore
Catalyst, Mesoporous Lead Ruthenate, Mp pyrochlore, Polyimide, Fe-N-C Catalyst
Nanoparticles, Pt3Co, PEDOT+PSS (poly(3,4-ethylenedioxythiophene) polystyrene
sulfonate)

e Others4: Ni, Teflon PTFE, Teflonized acetylene black, Teflon polytetrafluoroethylene
30B fluoropolymer resin, Teflon, Dry teflon, PTFE coated teflonized acetylene black,
An ionomer, LITHion binder, Lithiated carbon

e Others5: 1,3-dioxolane, 2-methyltetrahydrofuran (2-Me-THF), Dimethylformamide,
Diglyme

e Monoglyme, Ethylene carbonate:Propylene carbonate:1,2-dimethoxyethane, Triethyl
phosphate (TEPa), Di(ethyleneglycol) di-n-butyl ether (i.e. butyl diglyme, BDG),
Ethylene carbonate: dimethyl carbonate:ethylmethyl carbonate (EC:DMC:EMC) ,
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Diethyl ether:Triglyme, Tetraethylene glycol dimethyl ether (TEGDME):Propylene
carbonate (PC), 2,3-Dimethyl-2,3-dimethoxybutan

Others6: Tris(2,2,2-trifluoroethyl) phosphate (TFP), 1,2-dimethoxyethane(DM), 1,2-
dimethoxyethane (DME), Tris(2,2,2-trifluoroethyl) phosphite (TTFP), 2,2,2-
trifluoroethyl)phosphite(TTFP), DME:Ethyl nonafluoro butylether(MFE), 1,2-
dimethoxyethane (DME): TTFP, Diethyl carbonate (DEC), EC:DM, Tetrahydrofuran
THF

Others7: LiClO4 (only in anode), Li[NTf2], LiNOs;, LiBF4, Lithium
trifluoromethanesulfonyl (LiTFS), Lithium bis(trifluoromethansulfonyl)amide

(LiTFSA), Lithium trifluoromethanesulfonate (LiTf)

The assumptions used in decision tree analysis are listed below:

The data containing solid electrolyte was not included to the analysis.

The bulk cathode materials of Ti composite, N-doped carbons and CNF were collected
in one group as “Others” while “Carbon black+ CNT” and “Carbon black+ Graphene”
labeled as “Carbon Black+Other Carbons”. Finally, “rGO” was included in
“Graphene” group. The data containing gold was not included in the analysis.

The cathode ingredients Pt3Co, Ru and CosN were included in “Pt”, “RuO,” and “Co
oxide” classes, respectively. “CoMn oxide”, “Perovskite”, “NiC0204” and “LaFe
oxide” were included in “Others”. The data containing “Pt+Au”, “Au+Pd”, Au, Pd
and PdO were not used.

EC:PC and “Ionic Liquids” were labeled as “Others” in electrolyte solvent variable.

PVDF-HFP and “Others” classes for the binder were not used in the analysis.

Table F.1. Confusion Matrix of Decision Tree for Train Data.

A B C Recall
A 64 14 8 0.74
B 9 53 11 0.73
C 0 7 58 0.89
Precision 0.88 0.72 0.75




Table F.2. Confusion Matrix of Decision Tree for Test Data.

A B C Recall
A 20 4 0 0.83
B 6 17 3 0.65
C 0 5 19 0.79
Precision 0.77 0.65 0.86
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Table F.3. ARM results for capacity testing group for capacities higher than or equal to

3000 mAh/g.

Descriptors Support | Confidence | Lift | Count
{Bulk Cathode Categorized=N-doped carbons} 0.0078 0.0223 2.87 |6
{Ingredient Categorized=Co4N} 0.0013 0.0037 287 | 1
{Ingredient Categorized=CoMn oxide} 0.0052 0.0149 2.87 | 4
{Ingredient Categorized=Mo compound} 0.0013 0.0037 287 |1
{Ingredient Categorized=NiO+NiCo0204 microspheres } 0.0091 0.0260 2.87 | T*
{Ingredient Categorized=Other oxides} 0.0052 0.0149 2.87 | 4
{Ingredient Categorized=Pt3Co} 0.0013 0.0037 287 |1
{Bulk Cathode Categorized=Ionic liquid CNT} 0.0052 0.0149 230 | 4
{Ingredient Categorized=Co oxide+Others} 0.0052 0.0149 230 | 4
{Ingredient Categorized=LaFe oxide} 0.0103 0.0297 2.30 | 8*
{Ingredient Categorized=Ru} 0.0052 0.0149 230 | 4
{Gas_Diffusion Layer Categorized=Others} 0.0039 0.0112 2.16 | 3
{Salt E Categorized=Others} 0.0259 0.0743 1.98 | 20
{Bulk Cathode Categorized=Graphene} 0.0556 0.1599 1.96 | 43
{Ingredient Categorized=Perovskite} 0.0246 0.0706 1.88 | 19
{E Solvent Categorized=Triglyme} 0.0466 0.1338 1.88 | 36
{Bulk Cathode Categorized=Graphene oxide} 0.0091 0.0260 1.83 |7
{Separator Categorized=Solid Electrolyte} 0.0065 0.0186 1.80 | 5
{E Solvent Categorized=DMSO} 0.0530 0.1524 1.79 | 41
{Bulk Cathode Categorized=Porous carbon} 0.0233 0.0669 1.78 | 18
{Reactant Categorized=Others} 0.0103 0.0297 1.77 | 8
{E Solvent Categorized=Solid Electrolyte} 0.0039 0.0112 1.72 | 3
{Gas_Diffusion Layer Categorized=Carbon paper} 0.1164 0.3346 1.71 | 90
{Bulk Cathode Categorized=Carbon black+other carbons} 0.0129 0.0372 1.69 | 10
{Ingredient Categorized=Others} 0.0103 0.0297 1.64 | 8
{Salt E Categorized=NO} 0.0103 0.0297 1.53 | 8
{Active_Material Loading Categorized=[0.8-1.2)} 0.0802 0.2305 1.50 | 62
{Bulk Cathode Categorized=Carbon black+CNT} 0.0065 0.0186 1.44 | 5*
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Table F.3. ARM results for capacity testing group for capacities higher than or equal to
3000 mAh/g. (cont.)

Descriptors Support | Confidence | Lift | Count
{Bulk Cathode Categorized=CNF} 0.0052 0.0149 1.44 | 4
{Bulk Cathode Categorized=N-doped CNT} 0.0078 0.0223 1.44 | 6*
{Gas_Diffusion Layer Categorized=Carbon cloth} 0.0039 0.0112 1.44 | 3
{E_Solvent Categorized=Tetraglyme} 0.1889 0.5428 1.41 | 146
{Active_Material Loading Categorized=(0-0.8)} 0.1100 0.3160 1.30 | 85
{Bulk Cathode Categorized=rGO} 0.0116 0.0335 1.29 | 9
{Binder Categorized=PVDF} 0.1617 0.4647 1.28 | 125

Table F.4. ARM results for voltage testing group for capacities in between 750 mAh/g and

1000 mAh/g.

Descriptors Support | Confidence | Lift Count
{Active_Material Percentage Categorized=20--60} | 0.008 0.033 4.33 1
{Bulk Cathode Categorized=Graphene oxide} 0.008 0.033 4.33 1
{Bulk Cathode Categorized=Other carbons} 0.015 0.067 4.33 2%
{Ingredient Categorized=Mo compound} 0.023 0.100 4.33 3
{Reactant_Categorized=Others} 0.008 0.033 4.33 1
{Ingredient Categorized=Ru oxide+Mn oxide} 0.054 0.233 3.37 7*
{Bulk Cathode Categorized=N-doped carbons} 0.038 0.167 3.10 5
{Ingredient Categorized=Co4N} 0.015 0.067 2.89 2%
{Bulk Cathode Categorized=CNF} 0.023 0.100 2.60 3*
{Ingredient Categorized=Ru} 0.023 0.100 2.60 3
{E_Solvent Categorized=Ionic Liquid} 0.038 0.167 2.17 5%
{E_Solvent Categorized=PC} 0.008 0.033 2.17 1
{E_Solvent Categorized=Solid E+Liquid E} 0.008 0.033 2.17 1
{E_Solvent Categorized=DMSO} 0.038 0.167 1.97 5
{Binder Categorized=PTFE} 0.085 0.367 1.83 11
{E_Solvent Categorized=DME} 0.015 0.067 1.44 2
{Reactant_Categorized=Dry Air} 0.008 0.033 1.44 1
{Active_Material Percentage Categorized=100} 0.100 0.433 1.41 13
{Binder Categorized=NO} 0.100 0.433 1.41 13
{Anode_Categorized=Modified Li anode} 0.046 0.200 1.37 6
{Separator_Categorized=Glass+polymeric} 0.023 0.100 1.30 3*
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Table F.4. ARM results for voltage testing group for capacities in between 750 mAh/g and
1000 mAh/g. (cont.)

Descriptors Support | Confidence | Lift Count
{Bulk Cathode Categorized=Graphene} 0.031 0.133 1.24 4
{Active_Material Loading Categorized=(0-0.8)} 0.108 0.467 1.24 14

Table F.5. ARM results for voltage testing group for capacities in between 500 mAh/g and

750 mAh/g.

Descriptors Support Confidence | Lift | Count
{Binder Categorized=Others} 0.018 0.091 5.09 | 2%
{Bulk Cathode Categorized=N-doped carbons} 0.018 0.091 5.09 |2
{E_Solvent Categorized=EC:DMC} 0.009 0.045 509 |1
{E_Solvent Categorized=PC} 0.009 0.045 509 |1
{E_Solvent Categorized=Solid E+Liquid E} 0.018 0.091 5.09 | 2%
{Salt_ E Categorized=Others} 0.018 0.091 5.09 | 2%
{Separator_Categorized=Solid E} 0.018 0.091 5.09 | 2%
{Ingredient Categorized=Mo compound} 0.027 0.136 3.82 | 3%
{Reactant_Categorized=Air} 0.027 0.136 382 |3
{Bulk Cathode Categorized=Graphene} 0.054 0.273 305 |6
{Bulk Cathode Categorized=Others} 0.036 0.182 291 | 4
{E_Solvent Categorized=Ionic Liquid} 0.018 0.091 25512
{Ingredient Categorized=Perovskite} 0.009 0.045 255 |1
{Ingredient Categorized=Ru} 0.009 0.045 255 |1
{E_Solvent Categorized=DMSO} 0.027 0.136 2.18 | 3*
{Bulk Cathode Categorized=CNT} 0.045 0.227 1.96 |5
{Salt_E Categorized=LiClO4} 0.036 0.182 1.85 | 4
{Binder Categorized=NO} 0.045 0.227 1.82 |5
{Active_Material Percentage Categorized=100} 0.045 0.227 1.70 | 5
{Salt E Categorized=LiCF3SO3} 0.063 0.318 1.55 |7
{Ingredient_Categorized=Mn oxide} 0.036 0.182 1.36 | 4
{Binder Categorized=PTFE} 0.080 0.409 1.35 |19
{Active_Material Percentage Categorized=80--90} | 0.107 0.545 1.27 | 12
{Reactant_Categorized=Dry Air} 0.009 0.045 1.27 |1
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Table F.5. ARM results for voltage testing group for capacities in between 500 mAh/g and
750 mAh/g. (cont.)

Descriptors Support Confidence | Lift | Count
{Salt E Categorized=LiPF6} 0.009 0.045 1.27 |1
{Separator Categorized=Glass+polymeric} 0.009 0.045 1.27 |1
{Separator Categorized=Polymeric} 0.018 0.091 1.27 |2
{Ingredient_Categorized=NO} 0.107 0.545 1.25 | 12
{Active_Material Loading Categorized=(0-0.8)} | 0.063 0.318 1.23 |7




229

APPENDIX G: SUPPORTING INFORMATION ON SECTION 4.2.2

The details for IL screening study of the Li-O; batteries are given in this section.
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Figure G.1. The gas solubilities based on cation groups.
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Figure G.2. The average of the 5-fold cross-validation R? value for the gas
predictions for the whole dataset, shapes represent Ntree.
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Figure G.3. The average of the 5-fold cross-validation RMSE value for the gas predictions

for the whole dataset, shapes represent Ntree.
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Figure G.4. The average of the 5-fold cross-validation R? and RMSE value for the In(water
solubility) predictions for the whole dataset.
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Figure G.5. The average of the 5-fold cross-validation R? value for In(viscosity) (a),

melting point(b) and RMSE value for In(viscosity) (c), melting point(d) for the whole

dataset.
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Figure G.6. ML results on the carbon dioxide solubilities for the train (a), test (b) sets with

importance (c) values, the performance metrics are provided at the bottom.
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importance (c¢) values, the performance metrics are provided at the bottom.
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Figure G.8. ML results on the water solubilities in natural logarithm scale for train (a), test

(b) sets with importance (c) values, the performance metrics are provided at the bottom.
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Figure G.9. ML results on the viscosities at 298 K in mPa.s in natural logarithm scale for

the train (a), test (b) sets with importance (c) values, the performance metrics are provided

at the bottom.
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Table G.1. The original 208 descriptors calculated from RDKit library [215].
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Feature Names Feature Descriptions No | Ref.

MolWit MolWt (average molecular weights), HeavyAtomMolWt (excluding 3 i
Hydrogens), ExactMolWt (exact molecular weights)
FractionCSP3(fraction of C atoms that are SP3 hybridized),
NHOHCount (# of NHs and OHs), HeavyAtomCount, NOCount,
NumAliphaticCarbocycles, NumAliphaticHeterocycles,
NumAliphaticRings, NumAromaticCarbocycles,

Compositional NumAromaticHeterocycles, NumAromaticRings, NumHAcceptors, | 20 | -
NumHDonors, NumHeteroatoms, NumRotatableBonds,
NumSaturatedCarbocycles, NumSaturatedHeterocycles,
NumSaturatedRings, RingCount, NumValenceElectrons,
NumRadicalElectrons

fr fagments the number of specific fractions, for example: phenol group 85 | -

. Hall&Kier alpha value, the atom identification in the molecular shape:

i the sum of relative atomic radii of atoms concerning C(sp3) atoms ! [381]
First, Second and Third order shape attributes for one, two and three

Kappal - Kappa3 bond fragments where l=cyclicity, 2=starcity-linearity likeliness, | 3
3=centrality of branching

ChiO-Chil The sum of connectivity terms calculated by the number of skeletal 5

’ neighbors; 0 for vertex, 1 for edges, >2 for larger subgraphs

The sum of connectivity terms calculated by the number of valence and

ChiOn - Chi4n core electrons; 0 for vertex(atoms), 1 for edges(bonds), >2 for larger | 5
subgraphs
The sum of connectivity terms calculated by the number of valence

ChiOv - Chidv electrons excluding the number of hydrogens; 0 for vertex(atoms), 1 for | 5
edges(bonds), >2 for larger subgraphs

LabuteASA Labute's Approximate Surface Area 1 [382]
Gasteiger 22 (PEOE) method of

PEOE VSAl - | calculating partial charges, which is based on the iterative 14

PEOE VSA14 equalization of atomic orbital electronegativities and surface area
contributions

SMR VSAI1 - . o o

SMR_VSA10 Molar refractivitycontributions and surface area contributions 10

SlogP VSA1 - oy o o

SlogP VSAI2 LogP(octanol/water; lipophilicity index) contributions and surface area | 12

EState VSAL1 - | Electronic state contributions and surface area contributions, with 1

EState VSA1l specified intervals

VSA EStatel - | Electronic state contributions and surface area contributions, with 10

VSA EStatel0 different specified intervals

BCUT2D PHI- P is the parameters specifically Molecular weight (MW), Gasteiger ] [394]

BCUT2D PLOW | charge (CHG), Crippen logP and molar refractivity (MR)

TPSA Topological polar surface area, difference between the reference is only 1 [395]
N and O atom contributions are included

BalabanJ Topological index showing the complexity 1 [384]

BertzCT Topological index meant to quantify "complexity" of molecules 1 [385]

Ipc Topological index effective in branching 1 [386]

FpDensityMorgan- Topological index about the structure-radius 1,2 and 3 3 [383]

FpDensityMorgan3




Table G.1. The original 208 descriptors calculated from RDKit library [215]. (cont.)
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LogP(octanol/water; lipophilicity index), MoIMR:molecular

MolLogP, refractivity, molecular sum of each atom taking atomic type [396]

MolMR .
nto account
Drug-likeliness by taking molecular weight, logP,

ged . - [397]
topological polar surface area and some others into account
EstateIndex & Max, Min, MaxAbs, MinAbs versions,

Estate:Electrotopological State: Include both topological [381]

Partial charge

and electronic factors such as polarity and charge

Table G.2. The hyperparameters tuned for each gas by 5-fold cross-validation of RF

modeling.
Gas Maximum Depth | Ntree
Carbon Dioxide 30
Nitrogen 3 20
Oxygen 3 10
Water 3 20
In(viscosity) 3 10
Melting Point 3 10




