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INSAN GEN YOLAKLARINDA iIKAME MODELLEME
VE MAKINE OGRENMESI KULLANARAK VARYANT ANALIZi

OZET

Son yillarda, genetik kompleks hastaliklarin incelenmesi ve dogru bir sekilde tahmin
edilebilemesi i¢in birden fazla gen verisinin birlestirilmesini igeren kapsamli bir analiz
gerektigi anlagilmistir. Bu kapsamda, Genom Capinda Iliskilendirme Calismalari
ve Poligenik Risk Skorlari, kompleks hastaliklarin genetik temellerini anlamamizda
onemli ilerlemeler saglamisti. Genom Capinda iliskilendirme Calismalari, bircok
bireyin genomlarini analiz ederek belirli hastaliklarla iligkili genetik ayrimlari tanimlar
ve kompleks ozelliklerin genetik yapisina dair fikir sunar. Poligenik Risk Skorlar
ise Genom Capinda Iligkilendirme Calismalari tarafindan tanimlanan bircok genetik
varyantin etkilerini birlestirerek, bireyin belirli bir hastaliga olan genetik yatkinligini
Olcer.

Ayrica, ¢cok boyutlu gen yolaklarini analiz edebilecek ve egitilebilir hale getirecek
giicli matematiksel modeller gelistirilmistir. Makine 6grenmesi ve yapay zeka
alaninda gelistirilen yeni yontemler ise gen yolaklarinin egitimi ve test edilmesi icin
onemli olanaklar sunmaktadir. Bu calismada, birden ¢ok gen tarafindan etki edilen
kalitimsal hastaliklarin belli bir birey i¢in var olup olmadigina karar verecek bir model
gelistirilmigtir. Modeli egitmek ve dogrulugunu test etmek amaciyla iki farkli gen
yolagi kullanilmigtir. Bunlar mTOR ve TGF-f3 gen yolaklaridir. Tezde kullanilan gen
yolaklari, gercek hastaliklara karsilik gelen gen yolaklarinin analizleri sonucunda elde
edilen verilerin kullanimi ile olusturulan yapay gen yolaklaridir. Sirasiyla 31 ve 93
gen iceren bu gen yolaklari, insan verisi kullanilmadigi icin herhangi bir izne ihtiyag
duymadan kullanilabilir durumdadir.

Calismada o©nerilen modelle, gen yolaklar1 Oncelikle 6n isleme adimina tabi
tutulmustur. Bu adim, 6zellik ¢cikartma ve boyut indirgeme olmak iizere iki asamadan
olusmaktadir. Ozellik ¢ikartma asamasinda, her bir gen igin Kaos Oyunu Temsili
metodu uygulanmis ve her bir gen, iki boyutlu bir desen ile ifade edilebilir hale
getirilmigtir. Daha sonra, bu iki boyutlu desenler gen sirasi dikkate alinarak bir Kaos
Oyunu Temsilinin kiibii olusturulmustur. Kaos Oyunu Temsili yontemi, gen verilerini
gorsellestirmek ve analiz etmek icin giiclii bir aractir ve gen yolagi analizi gibi
cesitli uygulamalarda yaygin olarak kullanilmaktadir. Ardindan, Cok Degiskenliligi
Yiikseltilmis Carpimlar Gosterimi teknigi kullanilarak, ti¢ boyutlu olan Kaos Oyunu
Temsili kiibii daha diisiik boyutlu bilesenlere indirgenmistir. Bu bilesenler arasindan
iki boyutlu olanlar secilerek birlestirilmistir.  Ortaya ¢ikan Cok Degiskenliligi
Yiikseltilmis Carpimlar GOsteriminin bilesenleri, tiim bir gen yolagini temsil eden bir
resim olusturmustur. Ikinci olarak boyut indirgeme asamas1 uygulanmistir. Boyut
indirgeme asamasinda, ozellik secme asamasiyla olusturulan ve gen yolagini temsil
eden iki boyutlu resim, Temel Bilesen Analizi yontemi kullanilarak bir vektore
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indirgenmistir. Bu islem sirasinda, temsil resminin her bir satir1 bir girdi gibi
koordinat diizlemine verilerek Temel Bilesen Analizi yontemi uygulanmistir. Bu
yontem sonucunda ortaya ¢ikan Temel Bilesen Analizinin bilesenleri bu verilerin bir
temsili kabul edilmistir. Bu yaklasim sayesinde, iki boyutlu bir resim Temel Bilesen
Analizinin bilesenleri ile ifade edilebilen bir vektore doniistiiriilmiistiir. Vektoriin
temsildeki tutarliligini 6lgmek icin her bilesen secimi i¢in ayr1 ayr testler yapilmistir.

On isleme adimi tamamlandiktan sonra, makine &grenmesi asamasina gecilmistir.
Bu asamada, Destek Vektor Makinesi algoritmasit kullanmilmisti.  Her bir gen
yolagi icin olusturulan vektor, algoritmaya girdi olarak verilmis ve 5-kath Capraz
Dogrulama yontemi ile e8itim ve testler gerceklestirilmistir. 5-kath Capraz Dogrulama
yontemi sayesinde, saglikli ve hasta gruplar1 bagimsiz iki alt gruba ayrilarak
egitim ve test veri setlerinin ayrilmasi saglanmistir. 5-kathi oldugu i¢in bu islem
birbirinden bagimsiz bes farkli sekilde gergeklestirilmisti.  Bu yoOntemle elde
edilen sonuclar, egitim ve test kiimelerinin se¢ciminden kaynakli hatalari1 minimize
etmistir. Elde edilen sonuglar grafiklerle gosterilmis ve analiz edilmigtir. Python ve
MATLAB, calismada cesitli hesaplama tekniklerini ve algoritmalar1 uygulamak i¢in
kullanilmigtir. Python, NumPy, Pandas ve Scikit-learn gibi genis kiitiiphaneleriyle
veri manipiilasyonu, istatistiksel analiz, Kaos Oyunu Temsili yontemi ve makine
O0grenmesi uygulamalar1 i¢in kullamilmigti. ~ MATLAB ise giicli matematiksel
ve gorsellestirme araglariyla karmagik sayisal hesaplamalar ve Cok Degiskenliligi
Yiikseltilmis Carpimlar Gosterimi yonteminin sonuglarinin gorsellestirilmesi ic¢in
kullanilmigtir. Bu iki giiclii programlama ortaminin kombinasyonu, genetik verilerin
etkin bir sekilde islenmesi ve analiz edilmesini saglamis, dogru ve tekrarlanabilir
sonuglar elde edilmesine yardimeci olmustur. Gelistirilen model ile mTOR ve TGF-f
gen yolaklar i¢in sirasiyla %99 ve %90’ iizerinde dogruluk elde edilmistir.

Sonug olarak, Onerilen model, karmasik gen yolaklar1 i¢cin saglam ve tutarli bir
siniflandirma saglamig, genotipe dayali hasta ve saglikli gruplar arasinda ayrim
yapmada umut verici sonuglar elde etmistir. Bu bulgular, genetik hastaliklarin
tahmini ve teshisi acisindan onemli sonuglar igerir. Gelecekte, modelin daha biiyiik
ve cesitli veri setleriyle uygulanmasi, farkli makine 6grenmesi algoritmalarinin
entegrasyonu, modelin performansini daha da artirabilir ve genetik biliminin daha
genis bir alanininda uygulanabilirligini saglayabilir. Bu iyilestirmeler, daha dogru ve
kapsamli modellerin gelistirilmesine katkida bulunabilir, boylece saglik sonuglarini
iyilestirme ve genetik hastaliklar1 anlama konusundaki bilgi birikimimizi artirabilir.
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VARIANT ANALYSIS IN HUMAN GENE NETWORKS
USING SURROGATE MODELLING AND MACHINE LEARNING

SUMMARY

In recent years, Genome-Wide Association Studies and Polygenic Risk Scores have
significantly advanced our understanding of the genetic basis of complex diseases.
Genome-Wide Association Studies analyze the genomes of many individuals to
identify genetic markers linked to specific diseases, providing insights into the genetic
architecture of complex traits. Polygenic Risk Scores aggregate the effects of multiple
genetic variants identified through Genome-Wide Association Studies, offering a
quantitative measure of an individual’s genetic predisposition to a particular disease.
These approaches, combined with powerful mathematical models, have demonstrated
that the analysis and accurate prediction of complex diseases caused by multiple genes
requires a comprehensive approach that integrates multiple gene sequences.

Moreover, these models have been instrumental in uncovering intricate patterns and
relationships that are not apparent through traditional analysis methods. Advances
in machine learning and artificial intelligence have provided new opportunities for
training and testing gene networks. These innovations are critical for the field of
bioinformatics, as they enhance our ability to predict and understand complex genetic
diseases, thereby facilitating the development of personalized medicine and targeted
therapies.

In this thesis, a novel computational model has been developed to predict complex
diseases caused by multiple genes, which is a crucial task in the field of bioinformatics.
The significance of this work lies in its potential to improve early diagnosis and
personalized treatment strategies for patients with genetic predispositions to certain
diseases. The model addresses a critical gap in existing methodologies by integrating
advanced computational techniques to handle the complexity and high dimensionality
of genetic data. In the present study, a model was developed to determine whether an
individual is susceptible to inherited diseases caused by multiple genes. Two distinct
gene networks were used to train and test the proposed model. These gene sequences,
designated mTOR and TGF-f3, were generated using data derived from the analysis
of real disease-associated gene sequences. The mTOR and TGF-f3 gene sequences,
comprising 31 and 93 genes, respectively, do not reflect real data and can be used
without any restrictions. This makes them ideal for experimental and developmental
purposes without ethical concerns.

The proposed model integrates multiple gene sequences and utilizes machine learning
and artificial intelligence techniques to analyze and classify the data. The integration of
these advanced technologies is pivotal for managing the complexity inherent in genetic
data. The approach involves a two-stage pre-processing consisting of feature extraction
and dimension reduction.
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Initially, the Chaos Game Representation method is applied to each gene, which
enables the representation of each gene as a two-dimensional pattern. This method
facilitates the visualization of complex genetic information, making it easier to identify
patterns that may be indicative of disease. The Chaos Game Representation method
is particularly advantageous due to its ability to maintain the spatial relationships of
nucleotides within a sequence, thereby preserving important biological information.
Subsequently, the two-dimensional patterns were concatenated in a sequential manner,
considering the gene order, and a Chaos Game Representation cube was constructed.
The Chaos Game Representation method is a powerful tool for visualizing and
analyzing gene data and has been widely used in various applications, including gene
expression analysis and gene sequence analysis. The Chaos Game Representation
method involves representing each gene as a two-dimensional pattern, where each pixel
in the pattern corresponds to a specific nucleotide in the gene sequence. The resulting
pattern is a compact and informative representation of the gene sequence, which can be
used for further analysis and classification. The Chaos Game Representation method
has several advantages, including its ability to capture non-linear relationships within
the data and its robustness to noise and outliers.

Subsequently, the Enhanced Multivariance Products Representation technique is
employed to reduce the dimensionality of the data, and further feature extraction
tasks resulting in a lower-dimensional representation of the three-dimensional Chaos
Game Representation cube. This step is essential for reducing the complexity of
data and identifying informative features. The Enhanced Multivariance Products
Representation technique is a powerful tool for dimensionality reduction and has
been widely used in various applications, including signal and image processing.
This step is crucial in capturing the relationships within the gene sequences. The
resulting representation was a lower-dimensional signal that captured the essential
features of the original data. Two-dimensional components were selected from
among the components and were combined. The resulting image, constructed using
Enhanced Multivariance Products Representation components, possesses the property
of representing the entire gene sequence.

Principal Component Analysis was then applied to further reduce the dimensionality
of the data, yielding a compact representation of the entire gene sequence. Principal
Component Analysis is a widely used technique for dimensionality reduction and
has been applied in various fields, including bioinformatics, computational biology,
image processing, and signal processing. The Principal Component Analysis method
represents data as a set of principal components, which are orthogonal vectors that
capture the underlying patterns and relationships within the data. The method then
selects the most informative principal components that are used to represent the data
in a lower-dimensional space. The intersection of the Principal Component Analysis
components in the unit circle was accepted as a representation of the data. This
approach enabled the transformation of a 2-dimensional image into a vector, with the
Principal Component Analysis components serving as a compact representation of the
original data. The resulting representation is a compact and informative representation
of the original data that can be used for further analysis and classification. To evaluate
the consistency of vector representation, separate tests were conducted for each
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component selection. This rigorous validation ensures the reliability and robustness
of the feature extraction process.

The machine learning step was applied after the completion of the pre-processing step.
The model was trained and tested using a Support Vector Machines algorithm with
5-fold cross-validation, which ensured the robustness and reliability of the results.
The 5-fold cross-validation approach involves dividing the data into five folds, where
four folds are used for training and one fold is used for testing. This process was
repeated five times, and the results were averaged to obtain a robust estimate of
the model’s performance. The Support Vector Machines algorithm is a widely used
machine-learning technique that has been applied in various fields, including genetics,
image processing, and text classification. The model was trained using a set of labeled
data, where each sample was associated with a specific class label. The model was
then evaluated using a separate test set that was used to estimate the accuracy of the
model. This methodical approach ensures that the model’s predictions are both reliable
and generalizable, minimizing the risk of overfitting and improving its applicability to
real-world scenarios.

This study utilized Python and MATLAB to execute various computational methods
and algorithms. Python, which offers extensive libraries such as NumPy, Pandas,
and Scikit-learn, was adopted for data manipulation, statistical analysis, Chaos
Game Representation, and machine-learning implementations. MATLAB, known
for its robust mathematical and visualization tools, was employed for complex
numerical computations and the visualization of Enhanced Multivariance Products
Representation results. These two powerful programming environments facilitated the
efficient processing and analysis of genetic data, ensuring accurate and reproducible
outcomes.

The accuracy of the model was evaluated using two gene sequences, mTOR
and TGF-f, that are commonly associated with complex diseases. The results
demonstrated high accuracy rates of 99% and 90%, respectively, indicating that the
proposed model is effective in predicting complex diseases caused by multiple genes.
The high accuracy rates suggest that the model can capture the underlying patterns and
relationships within the gene sequences and accurately distinguish between healthy
and diseased groups based on genotype. The proposed model provides a robust and
consistent classification of complex gene sequences, demonstrating promising results
in the field of genetics.

These findings have significant implications for the prediction and diagnosis of
genetic diseases. By accurately identifying individuals at risk for complex diseases,
healthcare providers can implement targeted prevention and treatment strategies.
This capability is particularly important in the context of precision medicine, where
treatments are tailored to the individual characteristics of each patient. Additionally,
the methodologies developed in this study can be applied to other areas of genetics
research, potentially leading to further advancements in the field. The integration
of machine learning with genetic analysis opens new avenues for understanding the
genetic basis of diseases and developing novel therapeutic approaches. Future work
may involve applying the proposed model to larger and more diverse datasets to
validate its effectiveness and generalizability. Furthermore, integrating additional
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machine learning algorithms and exploring ensemble techniques could further enhance
the model’s performance and applicability to a broader range of genetic conditions.
These improvements could lead to even more accurate and comprehensive models,
ultimately contributing to better healthcare outcomes and advancing our understanding
of genetic diseases.
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1. GIRIS

Son yillarda, biyoinformatikte makine 6grenmesi tekniklerinin uygulanmasi biiyiik ilgi
ve popiilerlik kazanmustir. Ozellikle gen kaynakli hastaliklarm tespit edilebilmesi,
hastaliklara erken teshis koyabilmek acisindan bilyiilk 6nem tasimaktadir. Genom
Capinda Iliskilendirme Calismalar1 (Genome-wide Association Studies-GWAS) [1] [2]
[3], kompleks hastaliklar ve durumlarla iligkili genom varyantlarinin belirlenmesinde
kritik bir rol oynamaktadir. Bu caligmalar, belirli bir 6zellik veya hastalikla iligkili en
onemli gen yolaklarinin belirlenmesi i¢in kullanilmaktadir. GWAS, makine 6grenmesi

ve yapay zeka alanindaki bir¢ok yontem aracilifiyla uygulanmaktadir [4] [S] [6].

Poligenik Risk Skoru (Polygenic Risk Score-PRS) [7], bireyin belirli bir hastalik
veya duruma kargst duyarlili§inin genetik profil temelinde 6ngoriiliip goriilemeyecegini
Olcen bir degerdir. Ancak, PRS’nin klinik uygulamasi, GWAS calismalarinin
etnik temeli ve bircok fenotipik 0zelligin polijenik dogasi gibi faktorler tarafindan
sinirlanmaktadir.  Bu zorluklart agsmak, PRS’nin dogrulugunu artirmak ve hastalik
riskini ongdrmede daha etkili araclar gelistirmek i¢in yeni stratejiler olusturulmasi

gerekmektedir.

Bu calisma, gen yolaklarina dayali yiiksek boyutlu modelleme kullanarak 6grenilebilir
bir veri modeli olusturma yontemi Onermektedir. Olusturulan bu veri modeli
ile makine Ogrenmesi i¢in bir yap1 olusturularak makine 6grenmesi algoritmasi
gerceklestirilmektedir. Onerilen yontem sirasiyla dznitelik belirleme, boyut azaltma

ve makine 6grenmesi adimlarini icermektedir.

Oznitelik belirleme i¢in iki yontem kullamlmaktadr. Ilk olarak, hastalia etki eden gen
sebekesindeki tiim genlere Kaos Oyunu Temsili (Chaos Game Representation-CGR)
[8] yontemi uygulanmaktadir. Bu yontem, bir boyutlu gen verisinden iki boyutlu
bir resim olusturmak i¢in kullanilmaktadir [9]. Olusturulan her resim, birbirinden
benzersiz olarak gen bilgisini tasimaktadir. Elde edilen iki boyutlu resimler, gen

yolagindaki gen sirasina gore siralanarak iic boyutlu bir kiipe doniistiiriilmektedir.



Bu resimlerin arka arkaya eklenerek olusturdugu CGR kiipii, gen yolagini temsil
eden benzersiz ii¢ boyutlu bir kiiptiir. ikinci olarak, Cok Degiskenliligi Yiikseltilmis
Carpimlar Gosterimi (Enhanced Multivariance Products Representation-EMPR) [10]
yontemi kullanilmaktadir. Bu yontem, ¢ok boyutlu veriler i¢in bir ikame modelleme
yontemidir. EMPR sonucunda farkli boyutlarda birden fazla bilesen olusur. Bu
bilesenleri kullanirken miimkiin oldugu kadar ¢cok boyutlu ve fazla bileseni kullanmak,

gercek veriyi daha etkin ifade edebilme konusunda bize yarar saglamaktadir.

Oznitelik belirleme adimindan sonra, makine 6grenmesi yontemi daha kompakt ve
egitilebilir verilere ihtiya¢ duydugundan boyut azaltma adimi gerceklestirilmektedir.
Bu adimda iki yontem kullamlmaktadir. Ik olarak, veri doniistirme yontemi
kullanilmaktadir. Bu yontem, kapsayici ve iligkisel bir model olusturmak igin
kullanilmaktadir [11]. Bu yontemde EMPR’den elde edilen ii¢ adet iki boyutlu
veri, belirli bir sirada birlestirilerek iki boyutlu iligkisel bir resim olusturulmaktadir.
Daha sonra, Temel Bilesen Analizi (Principal Component Analysis-PCA) [12] bu iki
boyutlu resmin boyutunu azaltmak i¢in kullanilmaktadir [13]. PCA boyut azaltma
islemi sonucunda bir gen yolagi tek boyutlu bir vektore indirgenmis olur. Vektoriin
uzunlugu, PCA sonucunda secilen ve uc uca eklenen PCA bilesenlerinin sayisina
gore degiskenlik gosterebilir. Makine 6grenmesi adiminda bu vektoriin her boyutu

incelenecektir.

Tiim 6n isleme adimlarin1 tamamlayip, biitiin gen sebekelerini vektore doniistiirdiikten
sonra, makine Ogrenmesi yontemi uygulanabilir hale gelmektedir. Son adimda,
Destek Vektor Makineleri (Support Vector Machines-SVM) [14] algoritmas: makine
0grenmesi yontemi olarak se¢ilmistir. SVM, dogruluk ve yakinsaklik arasinda dengeyi
saglayan popiiler bir yaklasimdir [15]. SVM sonucunda bir gen yolagi, hastalik icerip

icermedigine gore siniflandirilmaktadir.

Son olarak, modeli test etmek i¢in mTOR [16] ve TGF-B [17] gen yolaklarin
kullanilmigtir.  Bu gen yolaklar1 ile makine 68renmesi adiminda 5-kathi Capraz
Dogrulama (Cross-Validation-CV) [18] yontemi kullanilarak egitim ve test yapilmistir.
mTOR ve TGF-f3 gen yolaklar sirasiyla 31 ve 93 gen icermekte olup, yapilan testler

sonucunda elde edilen maksimum dogruluk oranlar: sirastyla %99 ve %90 olmustur.



1.1 Tezin Amaci

Modern genetik aragtirmalarda, kompleks hastaliklarin dogru teshisinde, birden fazla
gen yolaginin biitiinlestirilmesi gereken kapsamli analizlere ihtiya¢ duyulmaktadir.
GWAS caligmalar1 bu baglamda onemli bir rol oynamaktadir. Ancak, birden fazla
genin etkilesimi, bir hastaligin baslamasina veya ilerlemesine katkida bulunabilir.
Bu katkinin varligini tespit edebilmek ve etkili ¢coziimler sunabilmek i¢in karmagik

analizlere ihtiya¢ duyulmaktadir.

Bu tezde, hastalik teshisinde ilerleme kaydetmek amaciyla kompleks gen yolaklarinin
analizinde etkili bir yontem 6nerilmektedir. Makine 6grenmesi teknikleri ve gelismis
On-igleme yontemlerini kullanarak, Onerilen yaklasim, genetik profillere dayanarak
hasta ve saglikli bireylerin siniflandirilmasina yonelik sonuclar saglamaktadir. Bu
sekilde, kisisellestirilmis saglik miidahaleleri ve hastalik yonetim stratejilerinin

geligtirilmesine katkida bulunulmas1 hedeflenmektedir.

1.2 Bilimsel Yazin

Bu boliimde, literatiirde onde gelen ¢alismalarin ayrintili bir incelemesi yapilarak, gen
yolaklarinin analizi ve makine 68renmesi tekniklerinin entegrasyonu iizerine yliriitiilen
arastirmalarin genel bir 6zeti sunulacaktir. Bu literatiir taramasi, tezin dayandig1 temel
bilimsel ve teknik yaklagimlarin daha iyi anlagilmasina yardime1 olacak ve ¢alismanin
bilimsel arka planini belirleyerek, biyoenformatik alanindaki mevcut bilgi birikimine

151k tutacaktir.

“Genome-wide association studies” bagliklt makalede [19], yazarlar tarafindan GWAS
calismalarinin metodolojileri ve etkileri ayrintili olarak incelenmistir.  GWAS,
karmasik ozellikler ve hastaliklarin genetik temellerini anlamada 6nemli bir rol
oynamaktadir. Makale, GWAS’ta calisma tasarimi ve katilimei igse alim stratejilerinin
Oonemini vurgulamaktadir. Secimlerdeki yanlhiliktan kaginmak icin dikkatli bir sekilde
ele alinmalar gerektigine dikkat ¢ekilmektedir. Ornegin, goniillii katilimcilarla ¢alisan
UK Biobank, genel popiilasyona gore daha saglikli, daha varlikli ve daha egitimli
bireylerden olugmaktadir ve bu durum, se¢cim yanliligina yol a¢cmaktadir. Buna

karsin, BioBank Japan gibi hastane bazli kayit yapan kuruluglar, hastalik durumlarina



dayali olarak katilmci kaydetmekte ve daha cesitli bireylerin Oorneklerine sahip
olmaktadir. Bu yanliliklarin ele alinmasi, GWAS sonuglarinin gecerliligini saglamak
icin kritik neme sahiptir. Makale ayrica GWAS’ta kullanilan cesitli genotiplendirme
yontemlerini de ele almaktadir. Maliyet etkinligi nedeniyle en yaygin kullanilan
teknik, mikrodizi bazli genotiplendirmedir. Ancak, tam ekson dizilimi (whole-exome
sequencing-WES) ve tam genom dizilimi (whole-genome sequencing-WGS) gibi yeni
nesil dizilime yontemleri, genetik varyantlarin daha kapsamli bir sekilde kaplanmasini
saglar. WGS su anda daha pahali olsa da, maliyetlerin diismesiyle birlikte tercih edilen
yontem haline gelmesi beklenmektedir. Veri isleme ve istatistiksel analiz, GWAS’1n
kritik bilesenleridir ve makalede bu konuya da deginilmektedir. Biiyiik 6lgekli
GWAS verilerini yonetmek icin gelismis istatistiksel yontemler ve hesaplama araclari
kullanilmakta, bu da saglam ve tekrarlanabilir bulgular elde edilmesini saglamaktadir.
Ozellikle, ayrintili klinik olgiimlerin bulunmadigi durumlarda yapay fenotiplerin
kullanilmasi, daha biiyiik 6rneklem biiyiikliikleri ve daha giiclii analizler yapilmasina
olanak tanimaktadir. Genel olarak, GWAS’1n karmagik ve ¢ok yonlii dogasini ortaya
koymaktadir. Metodolojik zorluklarin iistesinden gelerek ve teknolojik gelismelerden
yararlanarak, arastirmacilar ¢esitli hastaliklar ve ozelliklerle iligkili genetik faktorleri
ortaya ¢ikarmaya devam edebilirler ve bu da daha kisisellestirilmis ve etkili tibbi

miidahalelerin yolunu agmaktadir.

"Significance of the Estrogen Hormone and Single Nucleotide Polymorphisms
in the Progression of Breast Cancer among Female" bashkli makalede [20],
Ostrojen ve genetik varyasyonlarin meme kanseri gelisimindeki rolii incelenmektedir.
Calisma, meme kanseri etiyolojisinin karmagsikliin1 vurgulamakta ve kanser riski
ve ilerlemesini etkileyen c¢esitli genlerin ve polimorfizmlerinin katilimini not
etmektedir.  Yazarlar, 6zellikle Ostrojen metabolizmasiyla iliskili genlerdeki tek
niikleotid polimorfizmlerini (Single Nucleotide Polymorphisms-SNP) ve bunlarin
meme kanseri riskiyle iligkisini incelemektedir. CYP1A1, CYP1IB1 ve COMT gibi
onemli genler belirlenmis olup, bu genlerin varyantlariin viicutta dstrojenin iglenme
seklini etkileyerek kanser olusumuna yol acabilecegi belirtilmigtir. Caligma, bu genetik
faktorlerin, 6zellikle menopoz sonrasi kadinlarda, bireysel meme kanseri duyarliliginin

anlagilmasindaki 6nemini vurgulamaktadir. Bu arastirma, genetik varyasyonlarin



meme kanseri gelistirme riskini 6nemli 6lciide etkileyebilecegine dair biiyiiyen kanitlar
toplamina katkida bulunur. Kisisel genetik profilleri dikkate alarak hastali§i daha
1yl tahmin etmek ve yonetmek i¢in kanser Onleme ve tedavisinde kisisellestirilmig
yaklagimlarin gerekliliginin altin1 cizmektedir. Ostrojen ve genetik faktorler arasindaki
etkilesimi arastirarak, bu ¢alisma meme kanserinin altinda yatan mekanizmalara dair

degerli bilgiler saglar ve terapotik miidahale i¢in potansiyel hedefleri vurgular.

"Responsible use of polygenic risk scores in the clinic: potential benefits, risks
and gaps" baghkli makalede [21], yazarlar poligenik risk skorlarmin (polygenic
risk scores-PRS) kliniklerde kullaniminin faydalarini ve zararlarimi inceliyorlar.
kisisellestirme yetenegini vurguluyorlar. Ozellikle koroner arter hastalig1 (coronary
artery disease-CAD) ve tip 1 diyabet (T1D) hastaliklar1 i¢in PRS’ler, genetik bilgiyi
kullanarak hastalik riskini daha erken ve daha dogru tahmin etmeye olanak sagliyor.
Ayrica, PRS’ler, yiiksek risk altindaki bireyleri belirleyerek niifus diizeyinde tarama
yaparak saglik kaynaklarinin daha verimli kullanilmasini saglayabilir. Ancak, makale
PRS uygulamasiyla ilgili bir¢ok risk ve zorluk oldugunu da giindeme getiriyor.
En biiyiik endiselerden biri, PRS performansinin farkli popiilasyonlarda dogrulugu
nasil etkiledigidir. Genetik aragtirmalarin cogu avrupa kokenli bireyler iizerinde
yapilmis oldugundan, PRS’lerin diger popiilasyonlarda dogru sonuglar vermesi
beklenemez. Yazarlar, PRS’lerin klinik uygulamalarda kullanilmasini saglamak
icin saglam cergeveler gelistirilmesi gerektiini vurguluyor. PRS’lerin uzun vadeli
faydalar1 ve potansiyel zararlar1 hakkinda bilgi bosluklarinin doldurulmasi gerektigini

ve bu konularda yapilan ¢alismalarin 6nemini vurguluyorlar.

"Gene essentiality prediction based on chaos game representation and spiking
neural networks" baslikli makalede [23], Kaos Oyun Temsili (Chaos Game
Representation-CGR) ile Sivri Sinir Aglarim1 (Spiking Neural Networks-SNN)
birlestirerek genleri tahmin etmek ic¢in yenilik¢i bir yaklasim sunulmaktadir. Bu
calisma, bir gen iizerinde CGR yodnteminin gelismis bir metodu olarak Frekans Kaos
Oyun Temsili (Frequency Matrix Chaos Game Representation-FCGR) yOntemini
kullanmakta ve gen Ozelliklerinin ¢ikarimi ve siniflandirilmast derin Ogrenme

tekniklerini uygulamaktadir. Yazarlar, FCGR goriintiilerinden DEG veri tabaninda



bulunan 32 bakteriyi kullanilarak temel ve temel olmayan genleri ayirt edebilmek
icin konvoliisyonel SNN’leri kullanmaktadir. Calisma, SNN’lerin kullanilmasiyla,
geleneksel makine ©Ogrenimi siniflandiricilarina kiyasla zorunlu gen tahmininin
dogrulugunun Onemli Ol¢iide artirilabilecegini gostermektedir.  Tiir i¢i tahmin
en yiiksek 0.90, ortalama 0.78 olarak Olclilmiistiir.  Tiirler arasi tahmin ise en
yiiksek 0.79, ortalama 0.68 dogruluga ulasmistir. Bu sonuclar, gen yolagi ve
topolojik 0zellikleri kullanan geleneksel yontemler yerine SNN gibi bir derin
0grenme modelinin CGR goriintiilerinden ilgili gen 6zelliklerini ¢ikarma konusundaki
uygulanabilirligini gostermektedir.  Calismanin bulgulari, CGR’nin yapay zeka
mimarileriyle entegrasyonunun gen yapisini anlama ve potansiyel tedavi yontemlerini
belirlemede giiclii bir ara¢c saglayabilecegini Ongormektedir. Genel olarak,
bioenformatikte makine 6grenimi ve derin 6grenme yaklagimlarini igeren ¢aligmalara
katkida bulunmakta ve genlerin anlasilmasini gelistirmeyi amaglayan calismalar i¢in

umut verici bir yon sunmaktadir.

"A novel numerical representation for proteins: Three-dimensional Chaos Game
Representation and its Extended Natural Vector" adli makalede [22], protein dizilerini
temsil etmek i¢in yeni bir yaklagim ortaya koymustur. Gelistirdikleri bu yontem, pro-
teinlerin yapisal ve islevsel etkinliklerini yakalamak i¢in li¢ boyutlu uzayda Kaos Oyun
Temsili (Chaos Game Representation-CGR) kullanmaktir. Ilk olarak gen yolaklarina
CGR uygulanmis ve dort niikleotidi koselere yerlestirerek iki boyutlu bir goriintii
olusturulmustur. Daha sonra ii¢ boyutta 20 koseli bir poligon olusturularak yirmi
farkli amino asitten olusan proteinler bu kogelere dagitilmislardir. Bu yeni ii¢ boyutlu
CGR (3D-CGR), protein dizilerinin yapisal dzelliklerinin gorsellestirilmesini ve analiz
edilmesini saglamaktadir. Proteinler i¢in gelistirilen dnceki CGR uyarlamalar amino
asitleri farkli sayida koseye sahip cokgenlere dagitmayi icermekteydi. Ancak, bu
yaklasimdaki uyarlamadaha hassas bir yap1 elde etmistir. U¢ boyutlu CGR yaklasimu,
protein dizilerinin ayrintili ve dogru bir temsilini saglayarak proteinleri analiz etme ve
siniflandirma yetene8ini onemli 6l¢iide artirmaktadir. Bu yontem, yiiksek dogrulukla
protein siniflandirmasini desteklemekle kalmayip, farkli proteinler arasindaki iligkiler
hakkinda da bilgiler sunarak, biyoenformatik ve hesaplamali biyoloji alanlarinda genis

uygulama potansiyeline sahip oldugunu gostermektedir.



"Gene Teams are on the Field: Evaluation of Variants in Gene-Networks Using
High Dimensional Modelling" baslikli makalede [24], genetik varyantlar1 bagimsiz
olarak degerlendirmek yerine biitiinsel olarak degerlendirerek kompleks hastaliklari
degerlendirmek i¢in yeni bir yontem olan Bilisimsel Gen Ag1 Analizi (Computational
Gene Network Analysis-CoGNA) onermektedir. Bu yaklagim, bir boyutlu DNA dizisi
verilerini iki boyutlu desenlere doniistiirmek i¢cin Kaos Oyunu Temsili (Chaos Game
Representation-CGR) kullanir, ardindan her bir gen ag1 icin ii¢ boyutlu tensor yapilari
olusturmak iizere hizalamr. Ozellik ¢ikarim igin Cokdegiskenliligi Yiikseltilmis
Carpimlar Gosterimi (Enhanced Multivariance Products Representation-EMPR)
kullanilir ve ardindan siniflandirma icin Destek Vektor Makineleri (Support Vector
Machines-SVM) uygulanir. Calisma, mTOR ve TGF- olmak iizere iki gen agina
odaklanarak yontemin etkinliini gostermek icin sentetik veri setlerini kullanir.
Yazarlar, her ag i¢in kontrol ve hasta 6rnekleri iireterek, mTOR ve TGF- aglari icin
sirastyla %96’ nin ve %99’un lizerinde siiflandirma dogruluklar elde etmislerdir.
CGR ve EMPR kullanarak, CoGNA, bir gen agindaki tiim varyantlar: ayn1 anda analiz
edebilen yiiksek boyutlu modelleme yaklasimi sunar. Bu yontem, boylece daha dogru
tan1 araglar1 saglamsi ve kisisellestirilmis tipin gelismesi i¢in gercek gen aglari verileri

tizerinde uygulanabilir.

"A Principal Component Approach to Improve Association Testing with Polygenic
Risk Scores" baslikli makalesinde [25], poligenik Risk Skorlarinin (Polygenic Risk
Scores-PRS) genetik arastirmalarindaki basariyr artirmak i¢in yenilik¢i bir yontem
tanitilmaktadir. Geleneksel PRS olusturma yontemleri, optimal parametre ayarlarinin
secilmesini icerir bu se¢im hata oranlarini artirabilir. Makalede, bu soruna bir
cOziim olarak Temel Bilesen Analizi (Principal Component Analysis-PCA) kullanmasi
onerilmektedir. Onerilen PRS—PCA yo6ntemi, belli parametreler kullanilarak PRS’leri
hesaplamay1, sonuglar iizerinde PCA uygulayarak ilk ana PC bilesenini kullanmay1
icerir. Bu yaklasim, PRS’lerdeki maksimum varyasyonu yakalamay1 amaglamaktadir.
Coombes ve arkadaglari, deneyler ve uygulamalar araciligryla PRS-PCA yonteminin
hata oranlarmi azalttif1 ve daha iyi performans gosterdigini kanitlamaktadir. Bu
caligsma, PRS’leri kullanarak genetik iliski ¢aligmalarinin giivenilirligini artirmak icin

saglam bir yontem sunmaktadir. PCA sayesinde, yazarlar, istatistiksel agidan tutarli



bir yontem sunmaktadir. PRS—PCA yaklagimi, geleneksel yontemlerin kagirabilecegi
onemli iligkileri belirlemede basarili oldugunu gostermistir. Bu yaklagimin kapsamli
degerlendirilmesi ile genetik Ozelliklerin analizi icin standart bir ara¢ haline gelme

potansiyeli vurgulanmaktadir.

"The influence of the support functions on the quality of enhanced multivariance
product representation” baglikli makalede [10], Yiiksek Boyutlu Model Temsili (High
Dimensional Model Representation-HDMR) yontemine gore bir yaklagim olarak Cok
Degiskenliligi Yiikseltilmis Carpimlar Gosterimi (Enhanced Multivariance Products
Representation-EMPR) yontemi sunulmaktadir. EMPR yo6ntemi, destek fonksiyonlar
olarak bilinen fonksiyonlar1 kullanarak fonksiyon yaklasimlarinin kalitesini artirmak
amaciyla tasarlanmistir. Yazarlar, hem EMPR hem de HDMR’nin ¢ok degiskenli
fonksiyonlar1 daha az degiskenli bilesenlere ayirarak islemlerini basitlestirmeyi
amacladigini, ancak EMPR’nin bu destek fonksiyonlar1 kullanarak daha yiiksek
dogruluk elde ettigini aciklamaktadir. Makalede, EMPR yOnteminin matematiksel
formiilleri ve bu formiillerin bilesenlerini belirlemek i¢in kullanilan cesitli yontemler
detaylandirilmaktadir. Makalenin sayisal uygulamalar bolimii, EMPR yonteminin
performansinin HDMR’ye kiyasla nasil iyilestigini gosteren birka¢ 6rnek sunmaktadir.
Yazarlar, destek fonksiyonlarin se¢iminin tutarli yaklasimlar elde etmek icin kritik
oldugunu belirterek, gelecekteki calismalarin destek fonksiyonlart se¢cmek icin
optimize edilmis algoritmalar gelistirmeye odaklanabilecegini onermektedirler. Bu
calisma, hesaplamali matematik ve miithendislik alaninda 6nemli olup, yiiksek boyutlu
cok degiskenli fonksiyonlarin neden oldugu hesaplama zorluklariyla baga ¢ikmak icin
giiclii bir yontem sunmaktadir. Ayrica, bilimsel hesaplamalarda daha verimli ve dogru

problem ¢ozme tekniklerine katkida bulunmaktadir.

1.3 Hipotez

Bu tez, kompleks gen yolaklar: icin iki adimli On-igleme yontemi Onererek bir gen
yolaginin hasta veya saglikli olarak basarili bir sekilde siniflandirilmasini saglar. i1k
adim, genlerden CGR yardimiyla essiz resimler elde etmektir. Ardindan, elde edilen bu

resimler kiiplere doniistiiriilerek, EMPR yardimiyla bu kiiplerden daha diisiik boyutlu



veriler olusturulmustur. Bu adim sayesinde, hastaliklarla iligkili genler arasindaki

karmasik iligkileri iceren ¢ok boyutlu verilere ulasilir.

Daha sonra, modelin egitilebilirligini ve hesaplamanin verimliligini artirmak i¢in
boyut indirgeme teknikleri uygulanir. Boyut indirgeme asamasinda PCA yoOntemi

kullanilarak verilerin makine 6grenmesi i¢in uygun hale gelmesi saglanir.

Makine 6grenmesi asamasinda SVM algoritmasi kullanilarak hastaliklt ve saglikli
genlerin sinmiflandirilmasi saglanir.  Bu yaklagimin dogrulugu, mTOR ve TGF-f
hastaliklar: ile iligkili iki gen yolag1 kullanilarak degerlendirilmistir. Coklu gen
yolaklarinin analizinin karmagikligina ragmen, Onerilen yontem, hasta ve saglikh
bireylerin dogru siiflandirilmasinda umut verici sonuglar gostermistir. Bilgisayar
deneyleri aracilifiyla, tez, klinik ortamlarda genotip bilgilerine dayanarak gen

yolaklar1 arasinda ayrim yapma potansiyelini gostermektedir.






2. VERI

Bu boliimde, calismada onerilen algoritmanin dogrulugunu tespit etmek amaciyla
kullanilan veri kiimelerinin ne oldugu ve nasil olusturuldugundan bahsedilecektir.
Bu veri kiimeleri daha 6nce yapilmig olan bir ¢calismada [24] kullanilmis olup, bu

calismada da kullanilmalari i¢in izin alinarak kullanimlar1 saglanmastir.

Bu calismada iki adet gen yolagi kullanilmigtir: bunlar mTOR [16] ve TGF-f [17]
olarak adlandirilan iki gen sebekesidir. Bu gen sebekeleri KEGG [26] veri tabanindan
alimmisti.  Gen yolaklarinin koordinatlarina, NCBI [27] veritabanindaki GRCh37
insan gen veri tabani kullanilarak ulagilmistir. Bu ¢alisma i¢in dogrudan insan genleri
kullanilmamus, insan genlerinin karakteristik 6zellikleri taklit edilerek rastgele yeni
veriler olusturulmus ve bu veriler kullanmilmigtir. Boylece kullanilacak gen verileri

herhangi bir izne ihtiya¢ duyulmadan kullanilabilmistir.

Bu gen verilerinin olusturulmasi i¢in Oncelikle gen yolaklarinin karakteristik
ozelliklerini hasta ve saglikli gen yolaklari icin analiz etmek gerekmistir. Bu iki
grup i¢in yapilan analizlerde ¢ikan sonuglara gore, saglikli olan grubun patojenik
varyantlarinin frekansi, hasta olan grubun patojenik varyantlarinin frekansindan daha
yiiksek olmasina ragmen her iki grup i¢in de polimorfik varyant frekanslarinin ayni
oldugu saptanmugtir. Burada varyant terimi, bir gen igerisindeki niikleotid bazlarinin
beklenilenden farkli olmasini ifade eder. Patojenik varyant ve polimorfik varyant
terimleri ise sirasiyla, hastalia etki eden ve hastaliga etki etmeyen varyantlar1 temsil

eder. Yapilan bu gen karakteri analizine gore yeni yapay genler olusturulabilir.

Genlerin olusturulma asamasinda ilk olarak, her iki grup icin de polimorfik ve
patojenik varyantlarin pozisyonlarini temsil eden iki liste olusturulmustur. Bu listelere
"polimorfik pozisyonlar listesi" ve "patojenik pozisyonlar listesi" adi verilmektedir.
Bu listelerde yer alan her bir tamsayi, belirli ardisik araliklar icinde rastgele olarak
secilmis ve her bir listeye 0zel olarak belirlenmistir. Bu aralik, polimorfik varyantlar

icin 100 olarak secilirken, patojenik varyantlar icin 200 olarak belirlenmistir. Ikinci
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adimda, "polimorfik pozisyonlar listesi" igerisinde yer alan her bir pozisyonun baz
degerleri hem saglikli hem de hasta gen yolaklar1 icin %40 oraninda varyant bazlariyla
degistirilmistir. Bu pozisyonlardaki degisiklikler, patojenik olmayan varyant gruplari
icin her iki grupta da %0.40 minor allel frekans1 [28] olarak kabul edilmistir. Sonraki
adimda, "patojenik pozisyonlar listesi" igerisinde yer alan her bir pozisyonun baz
degerleri, saglikli grup i¢in %25 oraninda, hasta grup icin ise %30 oraninda varyant
bazlariyla degistirilmistir. Yani saglikli grupta %0.25 allel frekans: ve hasta grupta
%0.30 allel frekansi kullanilarak hastalikla iligkili varyantlar degistirilmistir. Tiim bu
adimlardaki minor allel frekansi se¢imi yapilirken kompleks hastaliklardaki frekans

degerleri dikkate alinarak yapilmstir.

Bu calismada oOnerilen yontemin tutarliligini degerlendirmek icin elde edilen ve
ozellikleri yukarida belirtilen bu gen sebekeleri kullanilmistir. Her gen yolagi veri
kiimesine ait saglikli ve hasta gruplar1 egitim ve test i¢in ayr1 ayr1 kullanilmak iizere
iki bagimsiz parcaya boliinerek testler gerceklestirilmistir. Her veri kiimesi i¢in 400
saglikli grup ve 400 hasta grup iceren gen yolag: iiretilmistir. Toplamda mTOR ve
TGF-f icin iiretilmis olan 800’er tane gen yolaklari, sirasiyla 31 ve 93 gene sahip
olarak olusturulmuglardir. Yontemde kullanilmak iizere her bir grup yiiksek oranda
egitim olacak sekilde egitim ve test kiimelerine ayrilarak, egitim kiimesi ile model
egitilmigtir. Egitilen modelin tutarliligini 6l¢mek icin test kiimesi ile gerekli testler

yapilmistir.
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3. YONTEM

Bu boliimde, tezde kullanilan yontemler tanitilmaktadir. Temel amag, genetik verilerin
karmasikligin1 anlamak ve gen oylaklarinin bireyler iizerindeki etkisini arastirmaktir.
Bu amacla, oOnerilen metodlar kullanilmis ve genetik verilerin islenmesinde yeni
bir yaklagim sunulmustur. Bu c¢alismada, genetik verilerin gorsel temsili igin
Kaos Oyunu Temsili (Chaos Game Representation-CGR) yontemi kullanilmis ve
ardindan bu desenler, Cok Degiskenli Yiikseltilmis Carpimlar Gosterimi (Enhanced
Multivariance Products Representation - EMPR) yontemi ile analiz edilmistir. Yiiksek
boyutlu verilerin islenmesi i¢in boyut indirgeme teknigi olarak Temel Bilesen Analizi
(Principal Component Analysis-PCA) uygulanmis ve gen yolaklarini siniflandirmak
icin makine 6grenmesi algoritmasi olarak Destek Vektor Makineleri (Support Vector
Machines-SVM) kullanmilmistir.  Bu yontemler, genetik verilerin analizinde yeni
bir bakis acis1 sunmakta ve gen yolaklarinin bireyler iizerindeki etkisini daha iyi

anlamamiza olanak tanimaktadir.

3.1 Kaos Oyunu Temsili

Kaos Oyunu Temsili (Chaos Game Representation-CGR) [8] algoritmasi, bir boyutlu
verilerin benzersiz iki boyutlu bir temsilini olusturmak i¢in kullanilan bir yontemdir.
CGR’yi kullanmak i¢in elimizdeki bir boyutlu veri dizisi, siirekli olarak ayni bilgilerle
olugsmusg bir veri dizisi olmalidir. Yani CGR, c¢esitliligi sinirhi verilerin bir araya
gelerek uzun bir veri dizisi olusturdugu durumlar i¢in uygundur. Bu durum, yalnizca
dort niikleotid bazi ile olusan tek boyutlu ve cok fazla tekrar iceren bir genin dogal
karakteridir. Bu sebeple, CGR algoritmasini bir gene uygulamak oldukca verimli ve
tutarl1 bir sonug verecektir. Bu yontemde, genin uzunlugu sayesinde olusan her resmin
benzersizligi daha da artacaktir. Secilecek olan diizlemin boyutu, bu uzunluk dikkate

alinarak belirlenmelidir.

CGR algoritmasi agagidaki adimlari igerir:
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1. Diizlemin boyutu secilir. Bu boyut fazla biiyiik olursa veri azinlikta kalir. Fazla

kiiciik olursa essizlik saglanamaz.

2. Diizlemde bir baslangi¢ noktasi secilir. Bu baglangi¢ noktasi diizlemin orta noktasi

olmalidir. Genellikle ilgili diizlemin agirlik merkezi olarak segilir.
3. Diizlemdeki koselerin (dort kdse) hangi veriyi temsil ettigi belirlenir.

4. Tlgili diziden bir baz okunur ve bu bazi temsil eden kose segilir. Bulunulan noktadan
o koseye dogru yar1 yol hareket ettirilir ve isaretlenir. Bu adim matematiksel olarak

su sekilde tanimlanabilir:

1 y
Xi= E(Xi—1+Ci( )

1 3.1
Y= (1 +C)

burada Xy ve Y baslangi¢ noktalari, Cl.(x) ve Ci(y ) kose koordinatlari, ve i iterasyon

sayisidir.

5. Bir onceki adim, her iterasyonda bir baz okuyarak ve son noktay1 o koseye dogru

yar1 yola hareket ettirerek tekrarlanir.

Iterasyon sayis1 arttikca, CGR algoritmasi tarafindan olusturulan desen giderek daha
kompleks ve essiz hale gelir. CGR algoritmasi, 6zellikle DNA dizilerinin iki-boyutlu
temsilini olusturmak icin yararhidir. Burada koseler genellikle dort niikleotid bazina
(A, C, G ve T) karsilik gelir. CGR algoritmasin1 DNA dizilerine uygulayarak, diger
yontemlerle kolayca goriinmeyen desenler ve 6zellikler tespit edilebilir. Boylece CGR,

DNA’nin yapis1 ve fonksiyonunu temsil etmek i¢in giiclii bir aragtir.

Sekil 3.1, dort niikleotid girisiyle 40 x 40 CGR tablosunun olusturulmasini
orneklemektedir. Burada koseler Adenin (0, 0), Guanin (40, 0), Sitozin (0, 40) ve
Timin (40, 40) olarak tanimlanmistir. Giris verileri sirastyla Guanin, Timin, Sitozin
ve Guanin olarak verilmistir. Bir gen resmi olusturmak i¢in biitiin genin niikleotid baz

bilgisi sirasiyla verilerek isaretleme yapilmali ve desenin son hali olusturulmalidir.

CGR yonteminde secilecek olan degiskenler her uygulama ve problemde farklilik

gosterebilir. Buradaki amag bir boyutlu veri dizisinden egsiz bir desen olusturmaktir.
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CGR - Example - ['G', 'T", 'C', 'G']
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Sekil 3.1 : CGR algoritma 6rnegi

Veri cesitliligi dortten farkli ise farkli kdse sayisi iceren ¢okgenler de kullanilabilir.
CGR goriintii ¢coziiniirliigii, yani CGR diizlemi boyutu, desenin kalitesini etkileyebilir.
CGR diizleminin boyutu ¢ok kii¢iik olursa, noktalar iist {iste binebilir ve desenin
benzersizligini ortadan kaldirabilir. Ote yandan, goriintii boyutu ¢ok biiyiik secilirse,
noktalar arasinda bosluklar olusabilir. Bu durum, CGR deseninin veri temsil
yetenegini azaltir. Bu nedenle, CGR goriintiisii icin optimal ¢oziiniirligii belirlemek,

temsil kalitesini artirmak i¢in zorunludur.

3.2 Cok Degiskenliligi Yiikseltilmis Carpimlar Gosterimi

Cok Degiskenliligi Yiikseltilmis Carpimlar Gosterimi (Enhanced Multivariance
Products Representation-EMPR), kompleks, yiiksek boyutlu verilerin daha basit,
diisiik boyutlu bilesenlerine ayristirilmasi i¢in giiclii bir yontemdir [29]. EMPR, boyut
sayisini azaltarak cok boyutlu verilerin daha verimli analiz edilmesini ve islenmesini
saglar. EMPR, bircok alanda kullanilarak elde edilmis ¢ok boyutlu verilerin daha
diisiik boyutlu olarak temsil edilmesine katkida bulunur. EMPR metodu, N boyutlu
bir veriyi bir boyuttan baglayarak N boyuta kadar olan her boyutta bir ya da birden
fazla veri ile temsil edilmesini saglar. Bu diisiik boyutlardaki verilerin yardimci

veriler ile carpilarak toplanmasi ile ana veri tekrar elde edilebilir. EMPR sonucu elde
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Sekil 3.2 : 3 Boyut icin EMPR Ayristirimi

edilen diisiik boyutlardaki verilere EMPR bilesenleri denir. EMPR bilesenlerinden
yiiksek boyutlu ve daha ¢ok bilesen kullanarak ana verinin temsilini olabildigince
artirmak onemlidir. Bu boliim, ii¢c boyutlu EMPR analizine odaklanacaktir, ancak

formiilasyonlar N boyutlu verilere de kolaylikla genellestirilebilir.

G, boyutu ny X ny x n3 olan 3 boyutlu bir kiip olsun. EMPR formiiliiniin ii¢ boyutlu

uygulamasi asagidaki gibi tanimlanabilir:

3 3 3 3 3
G = g(O) [@ S(r) + Zg(i) ® ®S(”) + Z g(i,j) ® ® S(’) _|_g(17273) (3.2)
— i=1 — ij=1 —
! r#% i]<j r;éi,lj

burada g, g0 ve g(-1), sirastyla sifir-yonli, bir-yonlii ve iki-yonlit EMPR bilesenleri
olarak adlandirilir. ) dis carpim [30] islemini gosterir. s\ ise n, boyutlu, r. destek

vektoridiir.

Sekil 3.2, EMPR fonksiyonunun grafik temsilini gosterir. ~ Sifir-yonlii, bir-yonlii
ve iki-yonliit EMPR bilesenleri sirastyla sifir, bir ve iki boyutlarina sahiplerdir ve
skaler, vektorel ve matris olarak adlandirilirlar. Destek vektorleri, boyutu artirmak
icin ilgili EMPR bilesenleriyle dis carpim yaparak sonuca katki saglar. Ayrica,
EMPR fonksiyonu i¢in esneklik saglar ve dikkatli secilmelidir. Bu se¢im, EMPR

bilesenlerinin temsil edilebilirli§inin uygunlugunu etkiledigi i¢in dnemlidir.

Destek vektorleri hesaplamak icin ¢esitli yontemler bulunmaktadir.  Asagidaki
denklem, G kiipii icin Averaged Directional Support (ADS) olarak bilinen ortalama

yonlii bir hesaplamayr gosterir [29]. Bu makalede, EMPR kullanarak destek
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vektorlerini hesaplamak icin ADS kullanilmistir. ADS kullanarak hesaplanan destek

vektorler asagidaki gibi hesaplanabilir:

ny nj3
1 2) (3
sV =Y Y wiPw Gy,
j=lk=1
@ _yy,,0,0
S7T=Y Y wi w Gig, (3.3)
i=1k=1
() _ 3y, 0,0
i=1j=1
Burada, wlm, wgz) ve w,(f) agirlik vektorleridir. G kiipiinii temsil etmek igin

uygun agirlik vektorlerinin se¢imi kritiktir. Clinkii agirlikli ortalamalar EMPR nin
temel bir bilesenidir. Agirlik vektoriiniin elemanlarinin toplaminin 1’e esit olmasi
istatistiksel bir gerekliliktir. Bu 0zellik, EMPR bilesenlerini hesaplamak ve gerekli
olan hesaplamalar1 kolaylagtirmak i¢in korunmalidir. En temel dagilimda agirliklar
esit dagitilarak bu 6zelligin korunmasi saglanabilir. Asagidaki denklemde agirliklarin
bulundugu boyuta gore esit bir sekilde dagilmasinin formiilize edilmis gosterimi

verilmistir:

ni
W (3.4)

3 _ 1

Wk _n_3

Tiim bu durumlar birlikte hesaplayarak iic-boyutlu bir kiipiin EMPR bilesenlerini birer

birer bulursak, asagidaki denklemler elde edilir.

Sifir-yonlit EMPR bileseni asagidaki gibi hesaplanabilir:

ny np n3
40 — YY Y w,(])wﬁz)w,(f)sgl)Sﬁ-z)S,(f)Gijk (3.5)
i=1 j=1k=1

Ayrica, ii¢ adet bir-yonlii EMPR bileseni asagidaki gibi hesaplanabilir:
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npy nj3

ZZW Wk s] sk)G,-jk—g(O)sil,

j=1lk=

i}iw w s ss)G-~ — o042 3.6
T k k ijk— 8 Jo ( . )

i=

ny np

Z Z w w S; )Gijk—g(o)sz

i=1j= ‘

Benzer sekilde, ii¢ adet iki-yonlii EMPR bileseni asagidaki denklemler ile ifade
edilebilir:

n3
gg;@ .5 w,@s,@a,-k—g<o>s,<l>s;2> g
k=1

N L A

2) (3 1) (3 2) (3
g = 3161540 gl s
Secilecek olan destek ve agirlik vektorlerinin siirlar cercevesinde secilmesine dikkat
edilmelidir. Yanlis secilen destek vektorleri, EMPR bilesenlerinin ana veriyi temsil
etme yetkinligini azaltabilir. Bu tezde uygulanan metod, destek ve agirlik vektorlerinin

secimi konusunda en temel yontemler kullanilarak yapilmistir.

Sonug¢ olarak, ii¢ boyutlu bir veri EMPR uygulanmasi ile bir adet sifir-yonlii, ii¢
adet bir-yonlii, ii¢ adet iki-yonlii ve son olarak bir adet iic-yonlii EMPR bilesenine
doniistiiriilmiis olur. Bu doniisiimde gerekli olan denklemler acikca belirtilmistir. Bu
ozellik sayesinde veri, daha az boyutlu bilesenlerle ifade edilerek analiz edilebilmesi
veya islenebilmesi agisindan bir fayda saglar. Ayni zamanda makine 6grenimi veya

derin 6grenme modellerinde kolayca kullanilabilecek bir yapiya doniistiiriilmiis olur.

3.3 Temel Bilesen Analizi

Temel Bilesen Analizi (Principal Component Analysis-PCA), istatistiksel bir teknik
olarak boyut indirgeme ve veri gorsellestirme icin yaygin olarak kullamilan bir
yontemdir [31]. Temel amaci, muhtemelen iliskili de8iskenlerden olusan bir veri
setini, lineer olarak iligkisiz degiskenler olan ana bilesenlere doniistiirmektir. Bu

bilesenler, verideki maksimum varyansi bulunduran ilk ana bilegsenden baglar. Sonraki
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bilesenler azalan miktarlarda varyansa sahip olarak siralanirlar. PCA teknigi ile boyut

indirgeme yapmak saglam ve seffaf bir yap1 sunar.

PCA boyut indirgemesi i¢in verinin matris verisi olmasi gerekmektedir.  Bu
matris verisi aymt zamanda n-boyutlu vektorlerden olustugu da diisiiniilebilir.
Matrisi olusturan her bir vektor, n boyutta bir noktaya karsilik gelecek sekilde
konumlandirilirsa, ortaya ¢ikan noktalar kiimesini temsil edebilecek yeni bir koordinat
sistemi bulunmas1 amaclanir. Bu yeni sistemin her bir dogrusu PCA bileseni olarak
adlandirlir. PCA analizinde elde edilen bu bilesenler, analizin dogal sonucu sayesinde
veri setini ne kadar temsil ettiklerini de igerir. Bu bilesenlerin her biri icin elde
edilen temsil degerlerinin toplanarak o bilesenlerin toplam temsil degeri elde edilebilir.
Biitiin bilegenlerin toplanmasi ile bulunan toplam temsil degeri, se¢ilen bilesenlerin
toplanmasi ile elde edilen toplamla orantilanirsa, segilen bilesenlerin biitiin veri setine
olan yiizdesel temsil degeri bulunabilir. Bu yiizdesel temsil degeri genelde Dirsek

Yontemi [32] yardimu ile gézlemlenebilir.

PCA analizi sonucunda elde edilen bilesenlerin tek baglarina kullanilmas1 yerine en
yiiksek varyanstan baglanarak birden cok bilesenin se¢ilmesi, yapilacak olan analizin
verimini artirma konusunda énemli bir rol oynar. Kag¢ adet bilesenin secilecegine karar
verme konusunda Dirsek Yontemini incelemek olduk¢a dogru bir yaklagimdir. Dirsek
Yontemi, analizde kullanilmak iizere secilecek olan bilesenlerin toplam yiizdesel
temsiline gore bir grafik olusturur. Bu grafigin egiminin gitgide azaldig1 ve belli bir
bolgeden sonra bir “patika’ gibi ilerledigi gdzlemlenir. Bu ayrimin oldugu bolgeden

bilesen sayis1 se¢imi yapilmasi, Dirsek Yonteminin genel kullanim amacidir.

Matematiksel olarak, PCA, veri matrisinin kovaryans matrisinden ozdeger ve

Ozvektorlerini hesaplamasini igerir.

X, orijinal veri matrisi olsun, burada X, n 6rnek ve p 6zellik iceren n X p matrisidir.

Kovaryans matrisi X, asagidaki gibi hesaplanabilir:

(3.8)
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burada X, X’in ortalama vektoriidiir. X min 6zdeger ve 6zvektorleri asagidaki gibi

hesaplanir:

XV = VA (3.9)

burada V, dzvektorlerin matrisidir ve A, 6zdeger diyagonal matrisidir. Daha sonra,
orijinal veriler Ozvektorlerine projeksiyonu yoluyla carpilirsa ana bilesenler elde

edilebilir:

Y = XV (3.10)

burada Y, ana bilesenlerin matrisidir. En iist siradaki ana bilesen varyansi en yiiksek
olan bilesendir. Bu bilesenden baslanarak yapilan se¢imler, PCA yiiksek boyutlu veri

kiimelerinde en bilgilendirici 6zelliklerin tanimlanmasini saglar ve analizi kolaylastirir.

3.4 Destek Vektor Makineleri

Destek Vektor Makineleri (Support Vector Machines-SVM), cok boyutlu siniflandirma
senaryolarinda kompleks karar sinirlarimi belirlemek i¢in giiclii bir aragti. SVM’ler,
kullanim kolaylig1 ve esnekligi nedeniyle ¢esitli siniflandirma problemlerine ¢6ziim
getirirler. Girdi sayist sinirli olsa bile, dengeli bir tahmin performans: saglarlar [15].
Yiiksek boyutlu durumlarda etkili olan SVM, kompleks veri kiimelerini ele almak
icin giiclii bir aragtir. Ayrica, SVM’ler, yalnizca egitim noktalarinin bir alt kiimesi
olan destek vektorlerini kullanarak tahminlerde bulunur, bu da biiyiik 6l¢cekli makine
O0grenimi uygulamalari i¢in pratik bir secimdir. Ek olarak, SVM’ler, kullanicilarin 6zel
ihtiyaclarina gore farkli cekirdek fonksiyonlar: [33] veya 6zel cekirdek fonksiyonu

belirleme esnekligi sunar.

Cekirdek fonksiyonlar1 sayesinde elde edilecek olan karar sinirlarinin yapisi
degistirilebilir. Bu ozellik ile veri kiimesi dogrusal olarak ayristirilabilir olsun ya da
olmasin dogru cekirdek fonksiyonu ile saglikli bir ayristirma yapilabilir. Bu yontemin
calisma manti1, orijinal verilerin dogrusal olarak ayristirilabilir olacagi, daha yiiksek

boyutlu bir uzaya c¢ikarilmas ile siniflandirmanin gergeklestirilmesidir. Genel olarak
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kullanilan c¢ekirdek fonksiyonlari; dogrusal, polinom, yaricapsal tabanli fonksiyon
(Radial Basis Function-RBF) ve sigmoid fonksiyondur. Cekirdek fonksiyonunun

secimi, probleme ve verideki 6zelliklerin yapist dikkat alinarak yapilmalidir.

SVM algoritmasinin amaci, farkli veriler arasindaki mesafeyi maksimize ederken
hatalar1 minimize edecek olan optimal bir hiper diizlem bulmaktir. Bu, genellikle
Kuadratik Programlama (Quadratic Programming-QP) [34] problemi c¢oziilerek
gerceklestirilir.  Burada amacg, hiper diizlemi tamimlayan dogrusal esitsizliklerin
belirlenerek bu denklemin en uygun olan minimum ¢6ziimiinii bulmaktir. Bu durum
bir optimizasyon problemi ortaya c¢ikarir. Optimizasyon problemi, dogrusal (linear)
veya ikinci dereceden (quadratic) programlama olarak formiile edilebilir ve cesitli

algoritmalar kullanilarak ¢oziilebilir.

Ornegin dogrusal SVM veriyi iki smifa ayiran en iyi hiper diizlemi bulmay1 amacglar.

Bu dogrusal diizlem asagidaki gibi tanimlanir:

wx+b=0 (3.11)

Burada, w, hiper diizlemin normal vektorii, x, veri noktalari, b, hiper diizlemin kayma
(offset) terimidir. Bu problemdeki hiper diizlemi bulmak icin ¢oziilmesi gereken

optimizayon problemi asagidaki gibi tanimlanir:

1
- 3.12
min - [w] (3.12)

El

Bu optimizasyon, agsagidaki sinirlamalara tabidir:

yiw-xi+b)>1 Vi (3.13)

Burada, x;, i. veriyi, y; ise i. verinin sinifin1 temsil eder. Tanimlanan optimizasyon

problemi coziilerek probleme en uygun olan hiper diizlem bulunmus olur.

Sonug olarak, SVM yonteminin algoritmik ¢oziimleri, verilerin siniflandirilmasi ve

kompleks problemlerin ¢6ziilmesi i¢in dnemli bir aragtir. Dogru parametrelerle secilen
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bir SVM algoritmas1 bircok kompleks problemlerin smiflandirmasini kolaylikla

yapabilir.
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4. UYGULAMA

Bu boliimde, Bolim 3’te anlatilan yontemlerin teze nasil uygulandigi ve bu
uygulamalarin hangi yardimci programlar sayesinde yapildigi anlatilacaktir. Yapilan
islemler sirasiyla kisim kisim agiklanacak ve secilen parametrelerin neden secildigi ile

ilgili aciklamalar yapilacaktir. Uygulama sonuglar1 ise Boliim 5’de incelenecektir.

4.1 Yardimci Programlar

Yiiksek modelde bir bilgisayar analizi yapabilmek i¢in gii¢clii bilgisayar programlarini
kullanmak gerekmektedir. Bu programlar arasinda, veri analizi, makine 6grenmesi
ve yapay zeka gibi yiiksek islem giicii gerektiren islemler icin en popiiler olanlar
MATLAB [35] ve Python [36]’dir. Bu ¢alismada her iki uygulama da belirli amaclarla

kullanilmagtir.

4.1.1 MATLAB

MATLAB, bir veriyi hafizaya kaydederek iizerinde iglem yapmay1 saglayan bir yazilim
programidir. Bu program, kendi dilinde yazilan fonksiyonlar1 ¢alistirarak bilgisayarin

istenilen davranigi sergilemesini saglar.

Mevcut  ¢alismada MATLAB, Kaos Oyunu Temsili (Chaos Game
Representation-CGR) verilerinin okunarak EMPR analizinin yapilmasi ve Cok
Degiskenliligi Yiikseltilmis Carpimlar Gosterimi (Enhanced Multivariance Products
Representation-EMPR) yoOnteminin uygulanarak bilgisayara yazilmasi islemlerinde
kullanilmigtir. Ayrica, EMPR sonuclarinin testleri, gorselleri ve analizleri bu program

aracilifiyla elde edilmistir.

4.1.2 Python

Python yazilim dilinde, biiyiikk veri isleme, makine 68renmesi ve derin OZrenme

gibi giinlimiiziin popiiler konularim1 iceren bircok kiitiiphane bulunmaktadir. Bu
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©9:86:35 -> ReadEmpr function started.

09:06:38 -> ReadEmpr function ended. Elapsed time (sec): 3.700193
-> PreProcess function started.
-> PreProcess function ended. Elapsed time (sec): 1.408878
-> ApplyPCA function started.
-> ApplyPCA function ended. Elapsed time (sec): 172.552795
-> ApplysvC function started.

Max accuracy: 1.8 at 2e

-> ReadEmpr function started.
6 -> ReadEmpr function ended. Elapsed time (sec): 7.687635
6 -> PreProcess function started.
-> PreProcess function ended. Elapsed time (sec): 1.862714
-> ApplyPCA function started.
©9:36 -> ApplyPCA function ended. Elapsed time (sec): 218.845828
©9:36:27 -> ApplysvC function started.
Max accuracy: ©.9087500000000001 at 42
10:00:14 -> ApplySVC function ended. Elapsed time (sec): 1427.377163

o
o
o
o

Sekil 4.2 : Python TGF-f ¢alisma 6rnegi

kiitiiphaneler sayesinde kullanilmak istenilen yontem kolaylikla olusturulabilir ve

uygulanabilir hale getirilebilir.

Yapilan calisma sirasinda ham gen yolaklarinin okunarak CGR desenlerinin
olusturulmasi, EMPR sonucunda elde edilen bilesenlerin okunarak birlestirilmesi,
Temel Bilesen Analizi (Principal Component Analysis-PCA) ve Destek Vektor
Makineleri (Support Vector Machines-SVM) metodunun uygulanmasi Python ile
gerceklestirilmistir. Ek olarak, yontem iizerinde denemesi yapilan diger secenekler,

yontemin testi, analizi ve gorsellestirilmesi de bu program araciligiyla yapilmugtir.

Sekil 4.1 ve Sekil 4.2°de sirastyla, mnTOR ve TGF-f3 i¢in Python kodu iizerinde yapilan

islemler ve her adimin islem siireleri gosterilmistir.

4.2 Onciil Yaklasimlar

Bu kisimda, nihai akisa ulasmadan o©nce denenmis olan yaklagimlar ve bu

yaklagimlarin neden sonug¢ vermedigi tartisilacaktir.

Ik olarak, bir geni temsil edecek olan veri modelini belirleme sorununun ¢oziilmesi
gerekiyordu. Bu sorunu en iyi ¢ozen yoOntemlerden biri olan CGR metodu,
kullanighilik ve verinin biitiinliigiinii koruma acisindan olduk¢a uygun oldugu i¢in
bu yontemin kullanilmasi kararlastirildi. Bir gen yolagim temsil etmek icin her bir
gen ile CGR metodu uygulanarak gen yolagindaki genlerin sirasiyla birlestirilmis

bir kiipiin olusturulmasi saglanmistir. Bu kiipiin tek bagina biitiin bir gen yolaginin
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verisini igerisinde barindirmasinin sagladigi matematiksel kolaylik, bu yontemin

secilmesindeki en temel etken olmustur.

Olusturulan bu ii¢ boyutlu kiipiin analiz edilebilmesi i¢in bir boyut indirgeme yontemi
kullanilmas1 gerekmektedir. Bu yontemi secerken daha once baska problemler i¢in
de kullanilan ve basarili bir yontem olan Yiiksek Boyutlu Model Gosterilimi (High
Dimensional Model Representation-HDMR) [37] metodunun genisletilmis bir hali
olan EMPR [10] [29] metodunun kullanilmasi kararlagtirilmistir. EMPR metodu
sonucunda olusan bilesenlerin se¢imi konusunda bircok deneme yapilmistir. Ilk olarak,
on perspektiften bakilan en biiyiik bilesen se¢ilerek onun iizerinden analizler yapilmus,
daha sonra yan ve iist perspektiften olusan bilesenlerin de analize dahil edilmesinde

fayda oldugu goriilmiistiir.

EMPR metodu kullanildiktan sonra olusan bilesenlerden iki boyutlu olanlarin veriyi
temsil yetene8i daha yiiksek olacagi i¢cin analiz o bilesenlerin {izerine yapilarak
devam edilmistir. Ilk olarak iki boyutlu derin 6grenme metodlarindan Evrisimsel
Sinir Aglar1 (Convolutional Neural Networks-CNN) [38] kullanilmigtir. CNN metodu
cesitli aglarla beraber kullanilarak denenmistir. Karmagik problemlerin ¢oziimii icin
hazirlanan hazir aglardan ResNet [39], VGG-16 [40] ve LeNet [41] gibi kompleks
CNN aglar istenilen sonucu vermedigi gibi daha basit ve az parametreli 6zel ag
yapilar1 tasarlanarak yapilan denemelerde de istenilen sonuglar elde edilememistir.
Bu denemeler esnasinda EMPR bilesenlerinin her biri ayri ayr1 ya da farkh
sekilde birlestirilerek olusturulan resimler denenmis olsa da tutarli bir sonug¢ elde
edilememistir. Bunun sebebi, elimizdeki gen verisinin bir derin 6grenme uygulamasini

egitmek icin yeterli olmamasindan kaynaklanmaktadir.

Bu denemeler sonrasinda derin 6§renmeden vazgecilip makine 6grenmesi yapilmasina
karar verilmistir. Bu baglamda EMPR sonucunda bilesenlerin birlestirilerek elde
edilen iki boyutlu resim ile makine 6grenmesi yapilabilmesi saglanmigtir. Bunu
bagarabilmek icin bu iki boyutlu resmin boyutunun indirgenmesi gerekmektedir. Bu
boyut indirgemede ¢esitli metotlar diisiiniilse de nihai olarak PCA uygulanmasina karar

verilmistir.
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PCA kullanilarak verilerin boyutu azaltmak yerine, PCA bilesenlerini kullanarak
verileri temsil eden bir vektor olusturmak amaclanmistir. Bu yontemi uygularken
EMPR bilesenlerinin bir arada kullanilmasina ya da kullaniminin nasil olmasi
gerektigine karar verilirken her adimda kontroller yapilmistir. Tek bir PCA bileseninin
veriyi temsilde basarisiz oldugu goriildiigii icin birden ¢ok bilesenin ¢ok boyutlarda
kullanilarak temsil edebilmesi amag¢lanmistir. Bu amag¢ dogrultusunda boyut sayisi
cok biiytik ve veri sayisit az oldugu icin SVM kullanimina karar verilmistir. SVM’in
degiskenlerini belirlerken bir cok denem yapilmis ve cekirdek fonksiyonun lineer
olarak secilmesine karar verilmistir. Biitiin sistemin tutarliligin test etmek adina SVM,
5 katli CV kullanilarak test edilmis ve ortaya ¢ikan pozitif sonuglar sayesinde yontemin

tutarlilig1 ispatlanmustir.
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5. SONUCLAR

Bu boliimde, Boliim 2’de bahsedilen veriler ve Boliim 3’de anlatilan yontemler,
Bolim 4’te belirtilen programlarla birlestirilerek biitiinciil sistem olusturulmus,
makine 0grenmesi egitimi gerceklestirilmis ve testler yapilmistir. Yapilan testlerin

sonuclari, resimler, grafikler ve tablolarla agik¢a gosterilmistir.

5.1 Veri Kiimeleri

Boliim 2’°de detaylica bahsedilen genlerin olusturulma isleminden sonra, mTOR ve
TGF-B gen yolaklar icin sirasiyla 31 ve 93 gen igerecek sekilde gen yolaklari
olusturulmustur. Bu gen yolaklarindan, her iki gruptan da 400 adet hastalikli ve 400
adet saglikli olmak iizere toplamda 800 adet gen yolagi meydana getirilmistir. Sonug
olarak, mTOR gen ag1 i¢in 31 er adet gen igeren 400 saglikli ve 400 hastaliklr dizilim,
TGF-B gen ag1 i¢gin ise 93 adet gen igeren 400 saglikli ve 400 hastalikli dizilim elde

edilmistir.

5.2 Deneyler

Bu boliimde iki adimdan bahsedilecektir. Birinci adim olan 6n isleme asamasinda,
gen yolaklarinin makine 6grenmesine uygun hale getirilmesi i¢in gerekli yontemler
uygulanacaktir. Ikinci adimda ise, gen yolaklar1 egitim ve test gruplarina ayrilarak

makine 6grenmesi gerceklestirilecektir.

5.2.1 On Iisleme Adim

Bu adimda yapilan her islem, hem hasta hem de saglikli olan tiim gen yolaklarina
uygulanacaktir. On isleme adimi, tiim verilerin aym algoritma ile islenerek makine

ogrenmesi icin yapisal olarak ayni hale getirilmesini gerektirir.
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Sekil 5.1 : CGR algoritmasi ile olugturulan mTOR yolagina ait bir gen deseninin
ornegi
Ik olarak, olusturulan genlerin her biri i¢in CGR algoritmasi spesifik parametrelerle
uygulanmigtir. CGR boyutu 400 x 400 olarak ayarlanmis ve baslangic noktas1 (200,
200) olarak secilmistir. Niikleotid bazlar1 Adenin, Guanin, Sitozin ve Timin sirastyla
(0, 0), (400, 0), (0, 400) ve (400, 400) koordinatlarinda bulunan koseleri temsil edecek
sekilde ayarlanmistir. Bu sayede her bir gen icin, bir boyutlu gen verisinden iki boyutlu
bir goriintii olusturulmustur. Sekil 5.1, mTOR yolagindan alinin tek bir gen icin CGR

deseninin bir 6rnegini géstermektedir.

Sekil 5.1, bir gen i¢in ¢izilmis CGR desenini gostermektedir. Beyaz noktalarin her
biri bir niikleotid bazina denk gelecek sekilde isaretlenmis olan noktalardir. Beyaz
noktalarin yogunlugu, genin uzunluguna bagh olarak degiskenlik gosterebilir ancak

her genin bu desenle olusturuldugu gozlemlenmistir.

CGR yontemi kullanilarak olusturulan desenler, her bir gen icin uygulanir. Sonucta,
mTOR igin 31 adet, TGF-f i¢in 93 adet CGR deseni elde edilmistir. Bu desenler,
EMPR adiminda kullanilmak iizere her bir gen sirasina gore arka arkaya dizilerek ii¢
boyutlu bir kiip haline getirilir. Sekil 5.2, bir gen ag1 icin CGR kiipiiniin olusumuna

dair bir ornek gostermektedir.
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Sekil 5.2 : Bir gen ag1 icin CGR kiipiiniin olusturulmasi

Sekil 5.2, bir gen agi i¢in olusturulmus CGR kiipi 6rnegini gostermektedir. Bu
kiiptin uzunlugu ve genisligi, CGR deseninin secilmis olan boyutuna karsilik gelirken,
derinligi o gen aginda bulunan genlerin sayisina karsilik gelir. mTOR gen ag1 icin bu

degerler 400 x 400 x 31 iken, TGF-f i¢in 400 x 400 x 93 olarak belirlenmistir.

CGR kiipii olusturulduktan sonra, bu ti¢ boyutlu kiipe EMPR yontemi uygulanir. Bu
sayede, kiipii etkili bir sekilde temsil eden daha diisiik boyutlarda veriler elde edilmesi
amaglanir. Boliim 3’te de bahsedildigi gibi, EMPR metodu uygulanirken yardime1
vektorler icin Ortalama Yon Destegi (Averaged Directional Support-ADS) yontemini
kullanilirken, agirlik vektorlerini hesaplarken temel esit dagilim hesaplamasi kullanilir.
Uc boyuta uygulanan EMPR sonucunda ortaya cikan bir adet sifir-yonlii, ii¢
adet bir-yonlii, iic adet iki-yonlii ve bir adet iic-yonlii bilesenden maksimum
temsili saglayabilmek adina miimkiin oldugu kadar ¢ok bilesen kullanilmasina 6nem

verilmistir.

Bu sebeple iki-yonlii olan ii¢ adet bilesen birlestirilerek iki boyutlu kompakt bir resim
elde edilir. Elde edilen resim ornekleri, mTOR ve TGF-f icin sirasiyla Sekil 5.3’de

gosterilmisgtir.
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(a) mTOR (b) TGF-$

Sekil 5.3 : Gen yolaklari i¢in elde edilen iki boyutlu 6z nitelik

Sekil 5.3 ile ornekleri gosterilen resimler, bir gen aginin CGR kiipiine doniistiiriilmesi

ve o kiiptin EMPR yo6ntemi ile iki-yonlil ii¢ adet bilesene ayrilarak bu bilesenlerin

birlestirilmesiyle olusturulmustur. Bu birlesim, EMPR bilesenlerinden sirasiyla g(1’3),

1,2) (2,3)

g( bilesenlerinin transpoz (devrik) hallerinin alt alta eklenmesiyle elde

edilmistir. g<1’2) bileseni CGR kiipiiniin 400x400 olan perspektifinden bir goriintii

ve g

oldugu i¢in 400 x 400 boyutlarinda bir bilesen olustururken, g3 ve g(23) bilesenleri
CGR Kkiipiiniin yan ve iist perspektiflerinden olusturulan bilesenler oldugundan 400 x n
boyutlarinda bilesenler olustururlar. Burada n, gen agindaki gen sayisini ifade eder.
Sonug olarak, olusturulan her bir iki boyutlu resim bir gen agini iistten, yandan ve
onden perspektiflerle temsil etmektedir. Sekil 5.3(a), mTOR gen ag1 icin olusturulan
resmi, Sekil 5.3(b) ise TGF-f gen ag1 i¢in olusturulan resmi gostermektedir. mTOR
icin olugturulan resimde n degeri 31 iken, TGF-f i¢in olusturulan resimde n degeri
93’tiir. Her bir gen ag1 i¢in olusturulan bu resimler, mTOR ve TGF-f sirasiyla
400 x 462 ve 400 x 586 boyutlarina sahip olmustur.

EMPR yontemi ve bilesenlerin birlestirilmesi sonrasinda elde edilen iki boyutlu res-
imlerin, makine 6grenmesi i¢in daha basit ve d8renilebilir bir yapiya doniistiiriilmesi

gerekmektedir. Bu sorunu ¢6zmek adina, gen aginin temsilini saglayan bu iki boyutlu
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Sekil 5.4 : PCA baglaminda uygulanan dirsek metodu analizi

resimler boyut indirgeme yontemleri ile sikistirilarak makine 6grenmesine uygun hale
getirilmigtir. Bu amaci karsilamak icin PCA analizi kullanmilmisti. PCA analizi
icin iki boyutlu resimleri sanki bir veri matrisiymis gibi diisiinmek gerekmektedir.
Veri matrisindeki her bir siitun bir 6zellige, her bir satir ise girdi sayisina karsilik
gelmektedir. Her bir satirin bir girdi vektoriine karsilik geldigi diisiiniiliirse, her girdi
satirin uzunlugu kadar olan boyutta bir noktaya karsilik gelmektedir. Bu boyut ise
CGR deseninin boyutu olan 400°diir. Bu yaklasimla, her resim icin satir sayis1 kadar
girdi ve 400 boyutta bir o kadar da nokta oldugu sdylenebilir. Elde edilen bu noktalar
kiimesi, PCA yontemi kullanilarak boyut indirgemesi yapilabilir. PCA analizi, bir grup
verinin en ¢ok etki eden boyutlarla temsil edilmesini saglar. Bu analiz ayn1 zamanda
temsil etti3i bu boyutun diger boyutlara oranla veriye ne kadar katki sagladigin1 da
gosterir. Bu sayede hangi boyutlar segecegimize karar verirken en fazla temsil edilen

boyutlardan baglamak miimkiin olur.

PCA algoritmasi, EMPR bilegenleri ile olusturulan resime uygulandiktan sonra
400 adet PCA bileseni elde edilir. Bu 400 adet bilesenin veriye olan katkilarini
gozlemlemek i¢in Dirsek Yontemi kullanilabilir. Dirsek Yontemi, Sekil 5.4 {izerinde

mTOR ve TGF-f i¢in ayri ayr1 gézlemlenebilir.

Sekil 5.4 ile gosterilen grafik, PCA bilesenlerinin toplam veriyi temsil etmedeki

yiizdesini gostermektedir. Bu gosterim, aslinda 400 boyutta olan verilerin %85’ini,
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mTOR ig¢in yaklasik 40 bilesen, TGF- i¢in ise yaklasik 35 bilesen kullanarak temsil

edebildigimiz anlamina gelir.

Bu calismada, elde edilen biitiin noktalarin boyutunun azaltilmas1 yerine, dogrudan
PCA bilesenlerinin kullanilmasi tercih edilmistir. Bu sayede, 400 boyutta olusturulan
cok sayida nokta tek bir noktaya doniistiiriilmiis olur. Boylelikle, elde edilen EMPR
bilesenlerinin olusturdugu resim tek bir noktaya indirgenmis olur. Daha sonra, bu
noktanin tek basina temsilinin yetersiz oldugu goriilerek, diger PCA bilesenlerinin de
katkisinin saglanmasi adina varyansi en yiiksek PCA bilesenleri vektorel olarak uc
uca eklenerek yiiksek boyutta bir vektor elde edilmistir. Elde edilen noktanin boyutu,
CGR deseninin boyutu ile se¢ilen PCA bilesen sayisinin ¢carpimina esit olmustur. Elde
edilen bu noktanin etkisini gézlemleyebilmek adina, PCA bilesen sayis1 1’den 50’ye

kadar arttirilarak her bilesen sayisi ile makine 6grenmesi adimi gergeklestirilmistir.

5.2.2 Makine Ogrenmesi

Bu adimda, hasta veya saglikli olan her bir gen ag:1 i¢in elde edilmis olan yiiksek
boyuttaki nokta SVM algoritmasi kullamlarak ayristirilmaya ¢aligilmustir. i1k olarak
Capraz Dogrulama yontemi uygulanarak her bir veri seti %80 egitim, %20 test olacak
sekilde ayrilmistir. Bu ayrim sonucu 400 hasta ve 400 saglikli olan veri seti, egitim
icin 320 hasta ve 320 saglikli, test icin ise 80 hasta ve 80 saglikli olacak sekilde
ayristirtlmistir. Bu ayristirma her seferinde rastgele olarak tekrar edilmistir. Yapilan
her analizde bu igslem 5 kere tekrarlanarak 5-kath ¢apraz dogrulama yapilmistir. Sonug
olarak, her PCA bileseni icin 5 kere, toplamda 250 kere farkli egitim ve test veri setleri
secilerek SVM algoritmasi uygulanmis ve bu uygulamalardan elde edilen dogruluk

degerleri bir grafige aktarilmigtir. Dogruluk hesab1 agagidaki gibi tanimlanir:

Dogru tahmin sayis1

Dogruluk = x 100 5.1

Test ornekleri sayisi

Bu kapsamli analiz sonucunda elde edilen dogruluk degerleri, Onerilen sistemin
hastalik belirlemedeki etkinligini degerlendirmek i¢in dnemli bir ol¢iidiir. Elde edilen
sonugclar, her bir gen yolagi i¢in ayr1 ayr1 incelenmis ve de8erlendirilmesi yapilmistir.

Uygulanan yontemin genel akis semasi1 Sekil 5.5°de gosterilmektedir.
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5.3 Sayisal Sonuclar

Secilen her PCA bilegeni i¢in yapilan bu yontem ile ¢ekirdek fonksiyonu lineer olan
bir SVM algoritmasi1 calistirtlarak her denemede dogruluk hesabi yapilmistir. Bu
hesabin sonucunda olusan grafik, Sekil 5.6 ve Sekil 5.7 ile gosterilmistir. Bu grafikte
bulunan gri alanlar, capraz dogrulama sonuglarindan elde edilen dogruluk deperlerinin
minimum ve maksimum araligim1 verirken, kirmizi ¢izgi ise ortalama degerlerini
gostermektedir. Her bir PCA bilesen se¢imi i¢in uygulanan c¢apraz dogrulama
yonteminde, veriler ayn1 oranda hasta ve saglikli gen yolag: icerecek sekilde 5 esit
parcaya boliinmiis ve her deneme de 4 parcgasi egitim, 1 parcgasi test olacak sekilde
dogruluk sonucu ¢ikarilmistir. Bu islem, her seferinde farkli pargalar test i¢in segilerek
5 kez yapilmustir. Boylece toplam 50 PCA bileseni i¢in 250 kere dogruluk hesabi

yapilmugtir.

Sekil 5.6 ve Sekil 5.7 ile gosterilen grafikleri yorumladigimizda, kullanilan bilesen
sayist arttik¢a dogrulukta dramatik bir artis gozlemlendigini soylemek miimkiindiir.
Ozellikle, 31 gen iceren mTOR veri setinde %99’a ulasan maksimum dogruluk elde
edilirken, 93 gen iceren TGF-f veri setinde %90’ iizerinde bir dogruluk elde

edilmistir.

Tablo 5.1 ve Tablo 5.2’de ilk 40 bilesen i¢in bulunan her CV sonuglar1 ayrintili
bir sekilde tek tek yazilmistir. Bu tablo incelendiginde mTOR’un 10 bilesenden,

TGF-f’nin ise 35 bilesenden sonra %90 dogrulugun tizerine ¢iktig1 goriilmektedir.

Elde edilen sonuglar, gen aglarinin ayrim giiciinii degerlendirmek ve potansiyel

biyomedikal uygulamalara 1s1k tutmak adina 6nemli bir adimdir.
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Cizelge 5.1 : mTOR icin ilk 40 bilesende yapilan ¢apraz dogrulama sonuglari

CVv-1 CV-2 CV-3 CV4 CV-5

1 050 050 1.00 050 0.50
2 050 050 050 050 0.50
3 050 050 050 050 0.50
4 050 050 088 049 0.50
5 050 050 095 049 0.50
6 050 050 093 049 0.50
7 050 050 093 049 0.50
8§ 050 053 098 049 0.50
9 078 063 080 0.82 0.79
10 090 085 088 0.88 0.89
11 098 094 095 094 0.96
12 098 098 096 095 098
13 098 1.00 097 098 0.99
14 099 1.00 098 098 1.00
I5 099 1.00 099 098 1.00
16 099 1.00 1.00 1.00 1.00
17 1.00 1.00 1.00 099 0.99
18 1.00 1.00 1.00 099 0.99
19 1.00 099 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00
21 1.00 1.00 1.00 1.00 1.00
22 1.00 1.00 1.00 1.00 1.00
23 1.00 1.00 1.00 1.00 1.00
24 1.00 100 1.00 1.00 1.00
25 1.00 1.00 1.00 1.00 1.00
26 1.00 1.00 1.00 1.00 1.00
27 1.00 1.00 1.00 1.00 1.00
28 1.00 1.00 0.99 1.00 1.00
29 1.00 1.00 099 1.00 1.00
30 1.00 1.00 099 1.00 0.99
31 1.00 1.00 0.99 1.00 0.99
32 1.00 1.00 1.00 1.00 0.99
33 099 1.00 1.00 1.00 1.00
34 099 1.00 1.00 1.00 0.99
35 1.00 1.00 098 1.00 1.00
36 099 1.00 098 099 0.99
37 098 1.00 1.00 099 0.98
38 098 1.00 1.00 099 0.98
39 098 1.00 098 099 0.98
40 097 1.00 098 1.00 0.98
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Cizelge 5.2 : TGF-f icin ilk 40 bilesende yapilan ¢apraz dogrulama sonuglari

CV-1 CV-2 CV-3 CV-4 CV-5
053 049 050 054 048
0.53 049 050 054 048
048 048 050 053 0.53
048 048 050 053 0.53
048 048 048 053 045
048 048 048 053 045
048 048 048 053 045
048 048 048 053 045
9 048 048 048 053 045
10 048 048 048 0.53 045
11 048 048 048 053 045
12 048 048 048 053 045
13 048 048 048 053 045
14 048 048 049 053 045
15 048 049 056 053 045
16 048 050 058 053 045
17 048 051 059 053 053
18 049 055 0.61 054 0.59
19 055 061 067 063 0.62
20 057 063 0.67 0.65 0.62
21 073 065 074 0.78 0.68
22 073 067 071 0.80 0.73
23 076 069 0.70 0.76 0.73
24 077 069 0.73 079 0.75
25 079 071 077 0.78 0.74
26 080 075 076 079 0.74
27 080 075 0.77 0.78 0.80
28 080 076 080 0.80 0.80
29 080 076 0.83 0.83 0.76
30 082 0.77 085 0.87 0.77
31 085 0.78 0.86 0.86 0.76
32 085 0.81 0.88 091 0.80
33 088 084 088 090 0.82
34 086 081 0.87 088 0.87
35 089 082 090 090 0.85
36 089 082 092 090 0.85
37 090 081 091 088 0.88
33 090 084 093 091 0.90
39 089 085 092 092 0091
40 087 085 093 092 091

0O\ LN W~
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6. TARTISMA

6.1 Cahsmanmn Onemi

Bilgi ¢aginda biyoenformatik alaninda yapilan cogu caba, gen aglarimi belirlemeye
yonelik olmustur [5] [6] [42]. Ancak, bu aglarin davramig baglaminda yapilan
incelemeleri hdld az ve yetersizdir, ¢iinkii gen verisini islemek teknik agidan zor
ve mesakkatlidir.  Ayrica, yeni diinyada gelistirilen derin 0grenme yOntemlerini
kullanabilmek i¢in ¢ok sayida veri gerekmesi, bu verilere erisimin giigliigii ve bu
verilerin kullanimindaki zorluk, bu alanda yeni calismalarin yapilmasini daha da

zorlagstirmaktadir.

GWAS caligsmalari, 6nemli gen varyantlarini tespit etmede bazi fenotipler i¢in 6nemli
caligmalardir. Bu caligmalar sayesinde varyantlar1 bireyler arasinda karsilastirmak ve
kisisel hastalik egilimini tespit etmek miimkiin hale gelmistir. Bir bireyin genetik
yonden fiziksel ya da zihinsel bir hastalifim tespit etmek acgisindan bu yontemler
oldukga etkilidir. Bu hastaliklarin varligi PRS degerlerine bakilarak ol¢iilebiliyordu.
Ancak, bir hastalifin tespitinde kullanilan PRS degeri, kompleks gen yolaklarinin
etki ettigi hastaliklar karsisinda tutarli sonuglar vermiyordu [43] [44]. PRS hesabinin
yapilabilmesi i¢in her varyantin gen iizerindeki etkisinin bilinmesi gerekmektedir.
Fakat, bu hesab1 bir gen icin bile yapmak zor iken, birden ¢ok gen agisindan
degerlendirmek ¢ok daha zordur. Bu nedenle, son zamanlarda yeni yaklagimlara

ihtiya¢ duyulmaktadir.

Bu sorunu ¢6zmek igin, bir gen yolagindaki tiim varyantlar birlikte analiz ederek
olusturulan yiiksek boyutlu modelleme tabanl bir yontem 6nerildi. Bu yaklagimda, bir
gen yolagindaki herhangi iki gen arasindaki herhangi bir etkilesimin verisel karsiligin
alabilece8imiz bir yap1 sunuldu. Her bir genin uzunlugu birbirinden farkli oldugu icin
bu problemi ortadan kaldiran CGR yoOntemi ile biitiin genleri esit boyutlarda temsil

eden desenler ortaya ¢ikarildi. Bu desenler genin dizilimine gore siralanarak bir kiip
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olusturuldu. Bu sayede her bir gen yolagi i¢in bir kiip olussturulmus oldu. Olusturulan
bu kiip EMPR yontemiyle ii¢ acidan perspektiflerle temsil edilen iki boyutlu bir resme
doniistiiriildii. Bu doniisiim sonucunda elde ettigimiz resim, biitiin gen yolagindaki
verilerin bir 6zeti haline getirildi. Bu resim bir veri dizisi gibi diisiiniilerek PCA analizi
yapild1 ve bu analizden c¢ikan bilesenler cok boyutta birlestirilerek resmi bir vektore

indirgemis oldu.

Indirgenmis bu vektoriin gen yolagim dogru temsil ettigini 6lcmek adina her bir bilesen
icin 5-katli capraz dogrulama yontemi ile SVM makine 6grenme metodunu kullandik.
Bu kullanim, 400 saglikli ve 400 hasta olmak iizere 800 gen yolag: ile yapilmustir.
Aldigimiz maksimum dogruluk sonuglari, 31 genli mTOR i¢in %99 olurken, 93 genli
TGF-f i¢cin %90 olmustur.

Yaklasimimizin en 6nemli 6zellidi, ¢esitli boyutlardaki verileri isleme kabiliyetidir.
Sundugumuz yaklasim, gen yolaklarinin uzunlugu ve her bir gendeki niikleotid
sayisindan bagimsiz olarak ¢aligir. Tiim gen yolaklar i¢in kolayca uygulanabilir bir
algoritmadir. Ayrica, PRS analizlerine kiyasla hangi varyantlarin gen ile ne kadar
iligkili oldugunu onceden bilmeye gerek yoktur. Yalnizca varyanta etki eden gen

yolaginmi bilmek yeterlidir.

Aragtirmalar arasinda, gen yolaklarini varyantlarin gene olan etkisinden bagimsiz
olarak kullanarak analiz yapabilen yaklagimimiz orijinal bir yaklagimdir.  Bu
calismadaki gozlemler ve sonuclar, gen tabanli multifaktoriyel kosullara karsi
bireylerin bedensel egilimini belirlemek i¢in bir tan1 araci olabilecegini de

gostermektedir.

6.2 Sonuc¢

Bu tez calismasinda, genetik verilerin analiz edilmesi ve hastaliklarin tahmin edilmesi
amaciyla makine 6grenmesi tekniklerinin uygulanmasi ele alinmistir. Ozellikle mTOR
ve TGF-f gen yolaklari iizerine odaklanilarak yapilan ¢alismada, iki farkli gen aginin

olusturulmasi ve analiz edilmesi hedeflenmistir.

Oncelikle, veri kiimeleri olusturulmus ve her iki gen yolagi icin saglikli ve hastalikli

bireylere ait gen dizilimleri belirlenmistir. CGR ve EMPR kullamilarak bu gen
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yolaklar1 iki boyutlu 6z niteliklere doniistiiriilmiistir.  Bu yontemler, genetik
verilerin karmagikligin1 daha iyi anlamamizi ve gen yolaklarinin daha kolay analiz
edebilmemizi saglamistir. Calismada kullanilan makine 6grenmesi algoritmalarindan
biri olan SVM, gen yolaklarinin siniflandirilmasi igin etkili bir sekilde uygulanmugtir.
5-kath ¢apraz dogrulama yontemi ile yapilan testlerde, mTOR gen ag1 i¢in %99,
TGF-fB gen agi icin ise %90’ 1n tizerinde dogruluk elde edilmistir. Bu yiiksek dogruluk
oranlari, gelistirilen modelin genetik hastaliklarin tahmini ve teshisinde umut verici

sonuglar sundugunu gostermektedir.

Elde edilen bu sonuglar, genetik verilerin daha genis bir veri seti iizerinde test
edilmesi ve farkli fenotiplerle iligkilendirilmesi halinde, genetik analizlerin klinik
uygulamalarda kullanimini artirabilecegini ve daha kapsamli bir anlayis saglayabile-
cegini gostermektedir. Ayrica, bu ¢alisma, genetik varyantlarin fenotipler iizerindeki
etkisini daha derinlemesine inceleyerek, genetik hastaliklarin anlagilmasina ve

kisisellestirilmis tip uygulamalarinin gelistirilmesine dnemli katkilarda bulunmustur.

Genetik verilerin karmagikligin1 anlama ve genetik varyantlarin fenotipler iizerindeki
etkisini aragtirmak igin yiiksek boyutlu modellemenin kapsamli bir sekilde kul-
lanilmasi, tezdeki gozlemler ve sonuglar 1s18inda oldukca makul ve giivenilir
goriinmektedir. Elde edilen olumlu sonuglar, Onerilen metodolojinin etkinligini
ve giivenilirligini saglamlastirmistir. Bu bulgular, genetik verilerin karmagikligini
daha iyi anlamamizi ve genetik varyantlarin fenotipler iizerindeki etkisini daha
derinlemesine incelememizi saglayarak, ilerleyen arastirmalara olanak tanimaktadir.
Bu yontemlerin daha genis bir genetik veri seti lizerinde test edilmesi ve farkli
fenotiplerle iliskilendirilmesi, genetik analizlerin klinik uygulamalarda kullanimim

artirabilir ve daha kapsamli bir anlayis saglayabilir.

Bu tez calismasinin sonucunda, genetik verilerin analizi ve hastalik tahmini konu-
larinda 6nemli bir ilerleme saglanmis olup, genetik biliminin klinik uygulamalarda
kullanimin1 artiracak yeni yontemlerin gelistirilmesine yonelik onemli bir adim

atilmigtir.
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