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Üniversitesi hocalarıma teşekkür ederim.
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i : CGR köşe koordinatları
g(0) : Sıfır-yönlü EMPR bileşeni
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xv



xvi
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İNSAN GEN YOLAKLARINDA İKÂME MODELLEME
VE MAKİNE ÖĞRENMESİ KULLANARAK VARYANT ANALİZİ

ÖZET

Son yıllarda, genetik kompleks hastalıkların incelenmesi ve doğru bir şekilde tahmin
edilebilemesi için birden fazla gen verisinin birleştirilmesini içeren kapsamlı bir analiz
gerektiği anlaşılmıştır. Bu kapsamda, Genom Çapında İlişkilendirme Çalışmaları
ve Poligenik Risk Skorları, kompleks hastalıkların genetik temellerini anlamamızda
önemli ilerlemeler sağlamıştır. Genom Çapında İlişkilendirme Çalışmaları, birçok
bireyin genomlarını analiz ederek belirli hastalıklarla ilişkili genetik ayrımları tanımlar
ve kompleks özelliklerin genetik yapısına dair fikir sunar. Poligenik Risk Skorları
ise Genom Çapında İlişkilendirme Çalışmaları tarafından tanımlanan birçok genetik
varyantın etkilerini birleştirerek, bireyin belirli bir hastalığa olan genetik yatkınlığını
ölçer.

Ayrıca, çok boyutlu gen yolaklarını analiz edebilecek ve eğitilebilir hale getirecek
güçlü matematiksel modeller geliştirilmiştir. Makine öğrenmesi ve yapay zeka
alanında geliştirilen yeni yöntemler ise gen yolaklarının eğitimi ve test edilmesi için
önemli olanaklar sunmaktadır. Bu çalışmada, birden çok gen tarafından etki edilen
kalıtımsal hastalıkların belli bir birey için var olup olmadığına karar verecek bir model
geliştirilmiştir. Modeli eğitmek ve doğruluğunu test etmek amacıyla iki farklı gen
yolağı kullanılmıştır. Bunlar mTOR ve TGF-β gen yolaklarıdır. Tezde kullanılan gen
yolakları, gerçek hastalıklara karşılık gelen gen yolaklarının analizleri sonucunda elde
edilen verilerin kullanımı ile oluşturulan yapay gen yolaklarıdır. Sırasıyla 31 ve 93
gen içeren bu gen yolakları, insan verisi kullanılmadığı için herhangi bir izne ihtiyaç
duymadan kullanılabilir durumdadır.

Çalışmada önerilen modelle, gen yolakları öncelikle ön işleme adımına tabi
tutulmuştur. Bu adım, özellik çıkartma ve boyut indirgeme olmak üzere iki aşamadan
oluşmaktadır. Özellik çıkartma aşamasında, her bir gen için Kaos Oyunu Temsili
metodu uygulanmış ve her bir gen, iki boyutlu bir desen ile ifade edilebilir hale
getirilmiştir. Daha sonra, bu iki boyutlu desenler gen sırası dikkate alınarak bir Kaos
Oyunu Temsilinin kübü oluşturulmuştur. Kaos Oyunu Temsili yöntemi, gen verilerini
görselleştirmek ve analiz etmek için güçlü bir araçtır ve gen yolağı analizi gibi
çeşitli uygulamalarda yaygın olarak kullanılmaktadır. Ardından, Çok Değişkenliliği
Yükseltilmiş Çarpımlar Gösterimi tekniği kullanılarak, üç boyutlu olan Kaos Oyunu
Temsili kübü daha düşük boyutlu bileşenlere indirgenmiştir. Bu bileşenler arasından
iki boyutlu olanlar seçilerek birleştirilmiştir. Ortaya çıkan Çok Değişkenliliği
Yükseltilmiş Çarpımlar Gösteriminin bileşenleri, tüm bir gen yolağını temsil eden bir
resim oluşturmuştur. İkinci olarak boyut indirgeme aşaması uygulanmıştır. Boyut
indirgeme aşamasında, özellik seçme aşamasıyla oluşturulan ve gen yolağını temsil
eden iki boyutlu resim, Temel Bileşen Analizi yöntemi kullanılarak bir vektöre
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indirgenmiştir. Bu işlem sırasında, temsil resminin her bir satırı bir girdi gibi
koordinat düzlemine verilerek Temel Bileşen Analizi yöntemi uygulanmıştır. Bu
yöntem sonucunda ortaya çıkan Temel Bileşen Analizinin bileşenleri bu verilerin bir
temsili kabul edilmiştir. Bu yaklaşım sayesinde, iki boyutlu bir resim Temel Bileşen
Analizinin bileşenleri ile ifade edilebilen bir vektöre dönüştürülmüştür. Vektörün
temsildeki tutarlılığını ölçmek için her bileşen seçimi için ayrı ayrı testler yapılmıştır.

Ön işleme adımı tamamlandıktan sonra, makine öğrenmesi aşamasına geçilmiştir.
Bu aşamada, Destek Vektör Makinesi algoritması kullanılmıştır. Her bir gen
yolağı için oluşturulan vektör, algoritmaya girdi olarak verilmiş ve 5-katlı Çapraz
Doğrulama yöntemi ile eğitim ve testler gerçekleştirilmiştir. 5-katlı Çapraz Doğrulama
yöntemi sayesinde, sağlıklı ve hasta grupları bağımsız iki alt gruba ayrılarak
eğitim ve test veri setlerinin ayrılması sağlanmıştır. 5-katlı olduğu için bu işlem
birbirinden bağımsız beş farklı şekilde gerçekleştirilmiştir. Bu yöntemle elde
edilen sonuçlar, eğitim ve test kümelerinin seçiminden kaynaklı hataları minimize
etmiştir. Elde edilen sonuçlar grafiklerle gösterilmiş ve analiz edilmiştir. Python ve
MATLAB, çalışmada çeşitli hesaplama tekniklerini ve algoritmaları uygulamak için
kullanılmıştır. Python, NumPy, Pandas ve Scikit-learn gibi geniş kütüphaneleriyle
veri manipülasyonu, istatistiksel analiz, Kaos Oyunu Temsili yöntemi ve makine
öğrenmesi uygulamaları için kullanılmıştır. MATLAB ise güçlü matematiksel
ve görselleştirme araçlarıyla karmaşık sayısal hesaplamalar ve Çok Değişkenliliği
Yükseltilmiş Çarpımlar Gösterimi yönteminin sonuçlarının görselleştirilmesi için
kullanılmıştır. Bu iki güçlü programlama ortamının kombinasyonu, genetik verilerin
etkin bir şekilde işlenmesi ve analiz edilmesini sağlamış, doğru ve tekrarlanabilir
sonuçlar elde edilmesine yardımcı olmuştur. Geliştirilen model ile mTOR ve TGF-β
gen yolakları için sırasıyla %99 ve %90’ın üzerinde doğruluk elde edilmiştir.

Sonuç olarak, önerilen model, karmaşık gen yolakları için sağlam ve tutarlı bir
sınıflandırma sağlamış, genotipe dayalı hasta ve sağlıklı gruplar arasında ayrım
yapmada umut verici sonuçlar elde etmiştir. Bu bulgular, genetik hastalıkların
tahmini ve teşhisi açısından önemli sonuçlar içerir. Gelecekte, modelin daha büyük
ve çeşitli veri setleriyle uygulanması, farklı makine öğrenmesi algoritmalarının
entegrasyonu, modelin performansını daha da artırabilir ve genetik biliminin daha
geniş bir alanınında uygulanabilirliğini sağlayabilir. Bu iyileştirmeler, daha doğru ve
kapsamlı modellerin geliştirilmesine katkıda bulunabilir, böylece sağlık sonuçlarını
iyileştirme ve genetik hastalıkları anlama konusundaki bilgi birikimimizi artırabilir.
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VARIANT ANALYSIS IN HUMAN GENE NETWORKS
USING SURROGATE MODELLING AND MACHINE LEARNING

SUMMARY

In recent years, Genome-Wide Association Studies and Polygenic Risk Scores have
significantly advanced our understanding of the genetic basis of complex diseases.
Genome-Wide Association Studies analyze the genomes of many individuals to
identify genetic markers linked to specific diseases, providing insights into the genetic
architecture of complex traits. Polygenic Risk Scores aggregate the effects of multiple
genetic variants identified through Genome-Wide Association Studies, offering a
quantitative measure of an individual’s genetic predisposition to a particular disease.
These approaches, combined with powerful mathematical models, have demonstrated
that the analysis and accurate prediction of complex diseases caused by multiple genes
requires a comprehensive approach that integrates multiple gene sequences.

Moreover, these models have been instrumental in uncovering intricate patterns and
relationships that are not apparent through traditional analysis methods. Advances
in machine learning and artificial intelligence have provided new opportunities for
training and testing gene networks. These innovations are critical for the field of
bioinformatics, as they enhance our ability to predict and understand complex genetic
diseases, thereby facilitating the development of personalized medicine and targeted
therapies.

In this thesis, a novel computational model has been developed to predict complex
diseases caused by multiple genes, which is a crucial task in the field of bioinformatics.
The significance of this work lies in its potential to improve early diagnosis and
personalized treatment strategies for patients with genetic predispositions to certain
diseases. The model addresses a critical gap in existing methodologies by integrating
advanced computational techniques to handle the complexity and high dimensionality
of genetic data. In the present study, a model was developed to determine whether an
individual is susceptible to inherited diseases caused by multiple genes. Two distinct
gene networks were used to train and test the proposed model. These gene sequences,
designated mTOR and TGF-β , were generated using data derived from the analysis
of real disease-associated gene sequences. The mTOR and TGF-β gene sequences,
comprising 31 and 93 genes, respectively, do not reflect real data and can be used
without any restrictions. This makes them ideal for experimental and developmental
purposes without ethical concerns.

The proposed model integrates multiple gene sequences and utilizes machine learning
and artificial intelligence techniques to analyze and classify the data. The integration of
these advanced technologies is pivotal for managing the complexity inherent in genetic
data. The approach involves a two-stage pre-processing consisting of feature extraction
and dimension reduction.
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Initially, the Chaos Game Representation method is applied to each gene, which
enables the representation of each gene as a two-dimensional pattern. This method
facilitates the visualization of complex genetic information, making it easier to identify
patterns that may be indicative of disease. The Chaos Game Representation method
is particularly advantageous due to its ability to maintain the spatial relationships of
nucleotides within a sequence, thereby preserving important biological information.
Subsequently, the two-dimensional patterns were concatenated in a sequential manner,
considering the gene order, and a Chaos Game Representation cube was constructed.
The Chaos Game Representation method is a powerful tool for visualizing and
analyzing gene data and has been widely used in various applications, including gene
expression analysis and gene sequence analysis. The Chaos Game Representation
method involves representing each gene as a two-dimensional pattern, where each pixel
in the pattern corresponds to a specific nucleotide in the gene sequence. The resulting
pattern is a compact and informative representation of the gene sequence, which can be
used for further analysis and classification. The Chaos Game Representation method
has several advantages, including its ability to capture non-linear relationships within
the data and its robustness to noise and outliers.

Subsequently, the Enhanced Multivariance Products Representation technique is
employed to reduce the dimensionality of the data, and further feature extraction
tasks resulting in a lower-dimensional representation of the three-dimensional Chaos
Game Representation cube. This step is essential for reducing the complexity of
data and identifying informative features. The Enhanced Multivariance Products
Representation technique is a powerful tool for dimensionality reduction and has
been widely used in various applications, including signal and image processing.
This step is crucial in capturing the relationships within the gene sequences. The
resulting representation was a lower-dimensional signal that captured the essential
features of the original data. Two-dimensional components were selected from
among the components and were combined. The resulting image, constructed using
Enhanced Multivariance Products Representation components, possesses the property
of representing the entire gene sequence.

Principal Component Analysis was then applied to further reduce the dimensionality
of the data, yielding a compact representation of the entire gene sequence. Principal
Component Analysis is a widely used technique for dimensionality reduction and
has been applied in various fields, including bioinformatics, computational biology,
image processing, and signal processing. The Principal Component Analysis method
represents data as a set of principal components, which are orthogonal vectors that
capture the underlying patterns and relationships within the data. The method then
selects the most informative principal components that are used to represent the data
in a lower-dimensional space. The intersection of the Principal Component Analysis
components in the unit circle was accepted as a representation of the data. This
approach enabled the transformation of a 2-dimensional image into a vector, with the
Principal Component Analysis components serving as a compact representation of the
original data. The resulting representation is a compact and informative representation
of the original data that can be used for further analysis and classification. To evaluate
the consistency of vector representation, separate tests were conducted for each
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component selection. This rigorous validation ensures the reliability and robustness
of the feature extraction process.

The machine learning step was applied after the completion of the pre-processing step.
The model was trained and tested using a Support Vector Machines algorithm with
5-fold cross-validation, which ensured the robustness and reliability of the results.
The 5-fold cross-validation approach involves dividing the data into five folds, where
four folds are used for training and one fold is used for testing. This process was
repeated five times, and the results were averaged to obtain a robust estimate of
the model’s performance. The Support Vector Machines algorithm is a widely used
machine-learning technique that has been applied in various fields, including genetics,
image processing, and text classification. The model was trained using a set of labeled
data, where each sample was associated with a specific class label. The model was
then evaluated using a separate test set that was used to estimate the accuracy of the
model. This methodical approach ensures that the model’s predictions are both reliable
and generalizable, minimizing the risk of overfitting and improving its applicability to
real-world scenarios.

This study utilized Python and MATLAB to execute various computational methods
and algorithms. Python, which offers extensive libraries such as NumPy, Pandas,
and Scikit-learn, was adopted for data manipulation, statistical analysis, Chaos
Game Representation, and machine-learning implementations. MATLAB, known
for its robust mathematical and visualization tools, was employed for complex
numerical computations and the visualization of Enhanced Multivariance Products
Representation results. These two powerful programming environments facilitated the
efficient processing and analysis of genetic data, ensuring accurate and reproducible
outcomes.

The accuracy of the model was evaluated using two gene sequences, mTOR
and TGF-β , that are commonly associated with complex diseases. The results
demonstrated high accuracy rates of 99% and 90%, respectively, indicating that the
proposed model is effective in predicting complex diseases caused by multiple genes.
The high accuracy rates suggest that the model can capture the underlying patterns and
relationships within the gene sequences and accurately distinguish between healthy
and diseased groups based on genotype. The proposed model provides a robust and
consistent classification of complex gene sequences, demonstrating promising results
in the field of genetics.

These findings have significant implications for the prediction and diagnosis of
genetic diseases. By accurately identifying individuals at risk for complex diseases,
healthcare providers can implement targeted prevention and treatment strategies.
This capability is particularly important in the context of precision medicine, where
treatments are tailored to the individual characteristics of each patient. Additionally,
the methodologies developed in this study can be applied to other areas of genetics
research, potentially leading to further advancements in the field. The integration
of machine learning with genetic analysis opens new avenues for understanding the
genetic basis of diseases and developing novel therapeutic approaches. Future work
may involve applying the proposed model to larger and more diverse datasets to
validate its effectiveness and generalizability. Furthermore, integrating additional
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machine learning algorithms and exploring ensemble techniques could further enhance
the model’s performance and applicability to a broader range of genetic conditions.
These improvements could lead to even more accurate and comprehensive models,
ultimately contributing to better healthcare outcomes and advancing our understanding
of genetic diseases.
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1. GİRİŞ

Son yıllarda, biyoinformatikte makine öğrenmesi tekniklerinin uygulanması büyük ilgi

ve popülerlik kazanmıştır. Özellikle gen kaynaklı hastalıkların tespit edilebilmesi,

hastalıklara erken teşhis koyabilmek açısından büyük önem taşımaktadır. Genom

Çapında İlişkilendirme Çalışmaları (Genome-wide Association Studies-GWAS) [1] [2]

[3], kompleks hastalıklar ve durumlarla ilişkili genom varyantlarının belirlenmesinde

kritik bir rol oynamaktadır. Bu çalışmalar, belirli bir özellik veya hastalıkla ilişkili en

önemli gen yolaklarının belirlenmesi için kullanılmaktadır. GWAS, makine öğrenmesi

ve yapay zeka alanındaki birçok yöntem aracılığıyla uygulanmaktadır [4] [5] [6].

Poligenik Risk Skoru (Polygenic Risk Score-PRS) [7], bireyin belirli bir hastalık

veya duruma karşı duyarlılığının genetik profil temelinde öngörülüp görülemeyeceğini

ölçen bir değerdir. Ancak, PRS’nin klinik uygulaması, GWAS çalışmalarının

etnik temeli ve birçok fenotipik özelliğin polijenik doğası gibi faktörler tarafından

sınırlanmaktadır. Bu zorlukları aşmak, PRS’nin doğruluğunu artırmak ve hastalık

riskini öngörmede daha etkili araçlar geliştirmek için yeni stratejiler oluşturulması

gerekmektedir.

Bu çalışma, gen yolaklarına dayalı yüksek boyutlu modelleme kullanarak öğrenilebilir

bir veri modeli oluşturma yöntemi önermektedir. Oluşturulan bu veri modeli

ile makine öğrenmesi için bir yapı oluşturularak makine öğrenmesi algoritması

gerçekleştirilmektedir. Önerilen yöntem sırasıyla öznitelik belirleme, boyut azaltma

ve makine öğrenmesi adımlarını içermektedir.

Öznitelik belirleme için iki yöntem kullanılmaktadır. İlk olarak, hastalığa etki eden gen

şebekesindeki tüm genlere Kaos Oyunu Temsili (Chaos Game Representation-CGR)

[8] yöntemi uygulanmaktadır. Bu yöntem, bir boyutlu gen verisinden iki boyutlu

bir resim oluşturmak için kullanılmaktadır [9]. Oluşturulan her resim, birbirinden

benzersiz olarak gen bilgisini taşımaktadır. Elde edilen iki boyutlu resimler, gen

yolağındaki gen sırasına göre sıralanarak üç boyutlu bir küpe dönüştürülmektedir.
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Bu resimlerin arka arkaya eklenerek oluşturduğu CGR küpü, gen yolağını temsil

eden benzersiz üç boyutlu bir küptür. İkinci olarak, Çok Değişkenliliği Yükseltilmiş

Çarpımlar Gösterimi (Enhanced Multivariance Products Representation-EMPR) [10]

yöntemi kullanılmaktadır. Bu yöntem, çok boyutlu veriler için bir ikame modelleme

yöntemidir. EMPR sonucunda farklı boyutlarda birden fazla bileşen oluşur. Bu

bileşenleri kullanırken mümkün olduğu kadar çok boyutlu ve fazla bileşeni kullanmak,

gerçek veriyi daha etkin ifade edebilme konusunda bize yarar sağlamaktadır.

Öznitelik belirleme adımından sonra, makine öğrenmesi yöntemi daha kompakt ve

eğitilebilir verilere ihtiyaç duyduğundan boyut azaltma adımı gerçekleştirilmektedir.

Bu adımda iki yöntem kullanılmaktadır. İlk olarak, veri dönüştürme yöntemi

kullanılmaktadır. Bu yöntem, kapsayıcı ve ilişkisel bir model oluşturmak için

kullanılmaktadır [11]. Bu yöntemde EMPR’den elde edilen üç adet iki boyutlu

veri, belirli bir sırada birleştirilerek iki boyutlu ilişkisel bir resim oluşturulmaktadır.

Daha sonra, Temel Bileşen Analizi (Principal Component Analysis-PCA) [12] bu iki

boyutlu resmin boyutunu azaltmak için kullanılmaktadır [13]. PCA boyut azaltma

işlemi sonucunda bir gen yolağı tek boyutlu bir vektöre indirgenmiş olur. Vektörün

uzunluğu, PCA sonucunda seçilen ve uç uca eklenen PCA bileşenlerinin sayısına

göre değişkenlik gösterebilir. Makine öğrenmesi adımında bu vektörün her boyutu

incelenecektir.

Tüm ön işleme adımlarını tamamlayıp, bütün gen şebekelerini vektöre dönüştürdükten

sonra, makine öğrenmesi yöntemi uygulanabilir hale gelmektedir. Son adımda,

Destek Vektör Makineleri (Support Vector Machines-SVM) [14] algoritması makine

öğrenmesi yöntemi olarak seçilmiştir. SVM, doğruluk ve yakınsaklık arasında dengeyi

sağlayan popüler bir yaklaşımdır [15]. SVM sonucunda bir gen yolağı, hastalık içerip

içermediğine göre sınıflandırılmaktadır.

Son olarak, modeli test etmek için mTOR [16] ve TGF-β [17] gen yolaklarını

kullanılmıştır. Bu gen yolakları ile makine öğrenmesi adımında 5-katlı Çapraz

Doğrulama (Cross-Validation-CV) [18] yöntemi kullanılarak eğitim ve test yapılmıştır.

mTOR ve TGF-β gen yolakları sırasıyla 31 ve 93 gen içermekte olup, yapılan testler

sonucunda elde edilen maksimum doğruluk oranları sırasıyla %99 ve %90 olmuştur.
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1.1 Tezin Amacı

Modern genetik araştırmalarda, kompleks hastalıkların doğru teşhişinde, birden fazla

gen yolağının bütünleştirilmesi gereken kapsamlı analizlere ihtiyaç duyulmaktadır.

GWAS çalışmaları bu bağlamda önemli bir rol oynamaktadır. Ancak, birden fazla

genin etkileşimi, bir hastalığın başlamasına veya ilerlemesine katkıda bulunabilir.

Bu katkının varlığını tespit edebilmek ve etkili çözümler sunabilmek için karmaşık

analizlere ihtiyaç duyulmaktadır.

Bu tezde, hastalık teşhişinde ilerleme kaydetmek amacıyla kompleks gen yolaklarının

analizinde etkili bir yöntem önerilmektedir. Makine öğrenmesi teknikleri ve gelişmiş

ön-işleme yöntemlerini kullanarak, önerilen yaklaşım, genetik profillere dayanarak

hasta ve sağlıklı bireylerin sınıflandırılmasına yönelik sonuçlar sağlamaktadır. Bu

şekilde, kişiselleştirilmiş sağlık müdahaleleri ve hastalık yönetim stratejilerinin

geliştirilmesine katkıda bulunulması hedeflenmektedir.

1.2 Bilimsel Yazın

Bu bölümde, literatürde önde gelen çalışmaların ayrıntılı bir incelemesi yapılarak, gen

yolaklarının analizi ve makine öğrenmesi tekniklerinin entegrasyonu üzerine yürütülen

araştırmaların genel bir özeti sunulacaktır. Bu literatür taraması, tezin dayandığı temel

bilimsel ve teknik yaklaşımların daha iyi anlaşılmasına yardımcı olacak ve çalışmanın

bilimsel arka planını belirleyerek, biyoenformatik alanındaki mevcut bilgi birikimine

ışık tutacaktır.

“Genome-wide association studies” başlıklı makalede [19], yazarlar tarafından GWAS

çalışmalarının metodolojileri ve etkileri ayrıntılı olarak incelenmiştir. GWAS,

karmaşık özellikler ve hastalıkların genetik temellerini anlamada önemli bir rol

oynamaktadır. Makale, GWAS’ta çalışma tasarımı ve katılımcı işe alım stratejilerinin

önemini vurgulamaktadır. Şeçimlerdeki yanlılıktan kaçınmak için dikkatli bir şekilde

ele alınmaları gerektiğine dikkat çekilmektedir. Örneğin, gönüllü katılımcılarla çalışan

UK Biobank, genel popülasyona göre daha sağlıklı, daha varlıklı ve daha eğitimli

bireylerden oluşmaktadır ve bu durum, seçim yanlılığına yol açmaktadır. Buna

karşın, BioBank Japan gibi hastane bazlı kayıt yapan kuruluşlar, hastalık durumlarına
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dayalı olarak katılımcı kaydetmekte ve daha çeşitli bireylerin örneklerine sahip

olmaktadır. Bu yanlılıkların ele alınması, GWAS sonuçlarının geçerliliğini sağlamak

için kritik öneme sahiptir. Makale ayrıca GWAS’ta kullanılan çeşitli genotiplendirme

yöntemlerini de ele almaktadır. Maliyet etkinliği nedeniyle en yaygın kullanılan

teknik, mikrodizi bazlı genotiplendirmedir. Ancak, tam ekson dizilimi (whole-exome

sequencing-WES) ve tam genom dizilimi (whole-genome sequencing-WGS) gibi yeni

nesil dizilime yöntemleri, genetik varyantların daha kapsamlı bir şekilde kaplanmasını

sağlar. WGS şu anda daha pahalı olsa da, maliyetlerin düşmesiyle birlikte tercih edilen

yöntem haline gelmesi beklenmektedir. Veri işleme ve istatistiksel analiz, GWAS’ın

kritik bileşenleridir ve makalede bu konuya da değinilmektedir. Büyük ölçekli

GWAS verilerini yönetmek için gelişmiş istatistiksel yöntemler ve hesaplama araçları

kullanılmakta, bu da sağlam ve tekrarlanabilir bulgular elde edilmesini sağlamaktadır.

Özellikle, ayrıntılı klinik ölçümlerin bulunmadığı durumlarda yapay fenotiplerin

kullanılması, daha büyük örneklem büyüklükleri ve daha güçlü analizler yapılmasına

olanak tanımaktadır. Genel olarak, GWAS’ın karmaşık ve çok yönlü doğasını ortaya

koymaktadır. Metodolojik zorlukların üstesinden gelerek ve teknolojik gelişmelerden

yararlanarak, araştırmacılar çeşitli hastalıklar ve özelliklerle ilişkili genetik faktörleri

ortaya çıkarmaya devam edebilirler ve bu da daha kişiselleştirilmiş ve etkili tıbbi

müdahalelerin yolunu açmaktadır.

"Significance of the Estrogen Hormone and Single Nucleotide Polymorphisms

in the Progression of Breast Cancer among Female" başlıklı makalede [20],

östrojen ve genetik varyasyonların meme kanseri gelişimindeki rolü incelenmektedir.

Çalışma, meme kanseri etiyolojisinin karmaşıklığını vurgulamakta ve kanser riski

ve ilerlemesini etkileyen çeşitli genlerin ve polimorfizmlerinin katılımını not

etmektedir. Yazarlar, özellikle östrojen metabolizmasıyla ilişkili genlerdeki tek

nükleotid polimorfizmlerini (Single Nucleotide Polymorphisms-SNP) ve bunların

meme kanseri riskiyle ilişkisini incelemektedir. CYP1A1, CYP1B1 ve COMT gibi

önemli genler belirlenmiş olup, bu genlerin varyantlarının vücutta östrojenin işlenme

şeklini etkileyerek kanser oluşumuna yol açabileceği belirtilmiştir. Çalışma, bu genetik

faktörlerin, özellikle menopoz sonrası kadınlarda, bireysel meme kanseri duyarlılığının

anlaşılmasındaki önemini vurgulamaktadır. Bu araştırma, genetik varyasyonların
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meme kanseri geliştirme riskini önemli ölçüde etkileyebileceğine dair büyüyen kanıtlar

toplamına katkıda bulunur. Kişisel genetik profilleri dikkate alarak hastalığı daha

iyi tahmin etmek ve yönetmek için kanser önleme ve tedavisinde kişiselleştirilmiş

yaklaşımların gerekliliğinin altını çizmektedir. Östrojen ve genetik faktörler arasındaki

etkileşimi araştırarak, bu çalışma meme kanserinin altında yatan mekanizmalara dair

değerli bilgiler sağlar ve terapötik müdahale için potansiyel hedefleri vurgular.

"Responsible use of polygenic risk scores in the clinic: potential benefits, risks

and gaps" başlıklı makalede [21], yazarlar poligenik risk skorlarının (polygenic

risk scores-PRS) kliniklerde kullanımının faydalarını ve zararlarını inceliyorlar.

PRS’lerin hastalık tahminini iyileştirme, tanıları netleştirme ve tedavi planlarını

kişiselleştirme yeteneğini vurguluyorlar. Özellikle koroner arter hastalığı (coronary

artery disease-CAD) ve tip 1 diyabet (T1D) hastalıkları için PRS’ler, genetik bilgiyi

kullanarak hastalık riskini daha erken ve daha doğru tahmin etmeye olanak sağlıyor.

Ayrıca, PRS’ler, yüksek risk altındaki bireyleri belirleyerek nüfus düzeyinde tarama

yaparak sağlık kaynaklarının daha verimli kullanılmasını sağlayabilir. Ancak, makale

PRS uygulamasıyla ilgili birçok risk ve zorluk olduğunu da gündeme getiriyor.

En büyük endişelerden biri, PRS performansının farklı popülasyonlarda doğruluğu

nasıl etkilediğidir. Genetik araştırmaların çoğu avrupa kökenli bireyler üzerinde

yapılmış olduğundan, PRS’lerin diğer popülasyonlarda doğru sonuçlar vermesi

beklenemez. Yazarlar, PRS’lerin klinik uygulamalarda kullanılmasını sağlamak

için sağlam çerçeveler geliştirilmesi gerektiğini vurguluyor. PRS’lerin uzun vadeli

faydaları ve potansiyel zararları hakkında bilgi boşluklarının doldurulması gerektiğini

ve bu konularda yapılan çalışmaların önemini vurguluyorlar.

"Gene essentiality prediction based on chaos game representation and spiking

neural networks" başlıklı makalede [23], Kaos Oyun Temsili (Chaos Game

Representation-CGR) ile Sivri Sinir Ağlarını (Spiking Neural Networks-SNN)

birleştirerek genleri tahmin etmek için yenilikçi bir yaklaşım sunulmaktadır. Bu

çalışma, bir gen üzerinde CGR yönteminin gelişmiş bir metodu olarak Frekans Kaos

Oyun Temsili (Frequency Matrix Chaos Game Representation-FCGR) yöntemini

kullanmakta ve gen özelliklerinin çıkarımı ve sınıflandırılması derin öğrenme

tekniklerini uygulamaktadır. Yazarlar, FCGR görüntülerinden DEG veri tabanında
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bulunan 32 bakteriyi kullanılarak temel ve temel olmayan genleri ayırt edebilmek

için konvolüsyonel SNN’leri kullanmaktadır. Çalışma, SNN’lerin kullanılmasıyla,

geleneksel makine öğrenimi sınıflandırıcılarına kıyasla zorunlu gen tahmininin

doğruluğunun önemli ölçüde artırılabileceğini göstermektedir. Tür içi tahmin

en yüksek 0.90, ortalama 0.78 olarak ölçülmüştür. Türler arası tahmin ise en

yüksek 0.79, ortalama 0.68 doğruluğa ulaşmıştır. Bu sonuçlar, gen yolağı ve

topolojik özellikleri kullanan geleneksel yöntemler yerine SNN gibi bir derin

öğrenme modelinin CGR görüntülerinden ilgili gen özelliklerini çıkarma konusundaki

uygulanabilirliğini göstermektedir. Çalışmanın bulguları, CGR’nin yapay zeka

mimarileriyle entegrasyonunun gen yapısını anlama ve potansiyel tedavi yöntemlerini

belirlemede güçlü bir araç sağlayabileceğini öngörmektedir. Genel olarak,

bioenformatikte makine öğrenimi ve derin öğrenme yaklaşımlarını içeren çalışmalara

katkıda bulunmakta ve genlerin anlaşılmasını geliştirmeyi amaçlayan çalışmalar için

umut verici bir yön sunmaktadır.

"A novel numerical representation for proteins: Three-dimensional Chaos Game

Representation and its Extended Natural Vector" adlı makalede [22], protein dizilerini

temsil etmek için yeni bir yaklaşım ortaya koymuştur. Geliştirdikleri bu yöntem, pro-

teinlerin yapısal ve işlevsel etkinliklerini yakalamak için üç boyutlu uzayda Kaos Oyun

Temsili (Chaos Game Representation-CGR) kullanmaktır. İlk olarak gen yolaklarına

CGR uygulanmış ve dört nükleotidi köşelere yerleştirerek iki boyutlu bir görüntü

oluşturulmuştur. Daha sonra üç boyutta 20 köşeli bir poligon oluşturularak yirmi

farklı amino asitten oluşan proteinler bu köşelere dağıtılmışlardır. Bu yeni üç boyutlu

CGR (3D-CGR), protein dizilerinin yapısal özelliklerinin görselleştirilmesini ve analiz

edilmesini sağlamaktadır. Proteinler için geliştirilen önceki CGR uyarlamaları amino

asitleri farklı sayıda köşeye sahip çokgenlere dağıtmayı içermekteydi. Ancak, bu

yaklaşımdaki uyarlamadaha hassas bir yapı elde etmiştir. Üç boyutlu CGR yaklaşımı,

protein dizilerinin ayrıntılı ve doğru bir temsilini sağlayarak proteinleri analiz etme ve

sınıflandırma yeteneğini önemli ölçüde artırmaktadır. Bu yöntem, yüksek doğrulukla

protein sınıflandırmasını desteklemekle kalmayıp, farklı proteinler arasındaki ilişkiler

hakkında da bilgiler sunarak, biyoenformatik ve hesaplamalı biyoloji alanlarında geniş

uygulama potansiyeline sahip olduğunu göstermektedir.
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"Gene Teams are on the Field: Evaluation of Variants in Gene-Networks Using

High Dimensional Modelling" başlıklı makalede [24], genetik varyantları bağımsız

olarak değerlendirmek yerine bütünsel olarak değerlendirerek kompleks hastalıkları

değerlendirmek için yeni bir yöntem olan Bilişimsel Gen Ağı Analizi (Computational

Gene Network Analysis-CoGNA) önermektedir. Bu yaklaşım, bir boyutlu DNA dizisi

verilerini iki boyutlu desenlere dönüştürmek için Kaos Oyunu Temsili (Chaos Game

Representation-CGR) kullanır, ardından her bir gen ağı için üç boyutlu tensor yapıları

oluşturmak üzere hizalanır. Özellik çıkarımı için Çokdeğişkenliliği Yükseltilmiş

Çarpımlar Gösterimi (Enhanced Multivariance Products Representation-EMPR)

kullanılır ve ardından sınıflandırma için Destek Vektör Makineleri (Support Vector

Machines-SVM) uygulanır. Çalışma, mTOR ve TGF- olmak üzere iki gen ağına

odaklanarak yöntemin etkinliğini göstermek için sentetik veri setlerini kullanır.

Yazarlar, her ağ için kontrol ve hasta örnekleri üreterek, mTOR ve TGF- ağları için

sırasıyla %96’nın ve %99’un üzerinde sınıflandırma doğrulukları elde etmişlerdir.

CGR ve EMPR kullanarak, CoGNA, bir gen ağındaki tüm varyantları aynı anda analiz

edebilen yüksek boyutlu modelleme yaklaşımı sunar. Bu yöntem, böylece daha doğru

tanı araçları sağlamsı ve kişiselleştirilmiş tıpın gelişmesi için gerçek gen ağları verileri

üzerinde uygulanabilir.

"A Principal Component Approach to Improve Association Testing with Polygenic

Risk Scores" başlıklı makalesinde [25], poligenik Risk Skorlarının (Polygenic Risk

Scores-PRS) genetik araştırmalarındaki başarıyı artırmak için yenilikçi bir yöntem

tanıtılmaktadır. Geleneksel PRS oluşturma yöntemleri, optimal parametre ayarlarının

seçilmesini içerir bu seçim hata oranlarını artırabilir. Makalede, bu soruna bir

çözüm olarak Temel Bileşen Analizi (Principal Component Analysis-PCA) kullanması

önerilmektedir. Önerilen PRS–PCA yöntemi, belli parametreler kullanılarak PRS’leri

hesaplamayı, sonuçlar üzerinde PCA uygulayarak ilk ana PC bileşenini kullanmayı

içerir. Bu yaklaşım, PRS’lerdeki maksimum varyasyonu yakalamayı amaçlamaktadır.

Coombes ve arkadaşları, deneyler ve uygulamalar aracılığıyla PRS–PCA yönteminin

hata oranlarını azalttığı ve daha iyi performans gösterdiğini kanıtlamaktadır. Bu

çalışma, PRS’leri kullanarak genetik ilişki çalışmalarının güvenilirliğini artırmak için

sağlam bir yöntem sunmaktadır. PCA sayesinde, yazarlar, istatistiksel açıdan tutarlı
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bir yöntem sunmaktadır. PRS–PCA yaklaşımı, geleneksel yöntemlerin kaçırabileceği

önemli ilişkileri belirlemede başarılı olduğunu göstermiştir. Bu yaklaşımın kapsamlı

değerlendirilmesi ile genetik özelliklerin analizi için standart bir araç haline gelme

potansiyeli vurgulanmaktadır.

"The influence of the support functions on the quality of enhanced multivariance

product representation" başlıklı makalede [10], Yüksek Boyutlu Model Temsili (High

Dimensional Model Representation-HDMR) yöntemine göre bir yaklaşım olarak Çok

Değişkenliliği Yükseltilmiş Çarpımlar Gösterimi (Enhanced Multivariance Products

Representation-EMPR) yöntemi sunulmaktadır. EMPR yöntemi, destek fonksiyonlar

olarak bilinen fonksiyonları kullanarak fonksiyon yaklaşımlarının kalitesini artırmak

amacıyla tasarlanmıştır. Yazarlar, hem EMPR hem de HDMR’nin çok değişkenli

fonksiyonları daha az değişkenli bileşenlere ayırarak işlemlerini basitleştirmeyi

amaçladığını, ancak EMPR’nin bu destek fonksiyonları kullanarak daha yüksek

doğruluk elde ettiğini açıklamaktadır. Makalede, EMPR yönteminin matematiksel

formülleri ve bu formüllerin bileşenlerini belirlemek için kullanılan çeşitli yöntemler

detaylandırılmaktadır. Makalenin sayısal uygulamalar bölümü, EMPR yönteminin

performansının HDMR’ye kıyasla nasıl iyileştiğini gösteren birkaç örnek sunmaktadır.

Yazarlar, destek fonksiyonların seçiminin tutarlı yaklaşımlar elde etmek için kritik

olduğunu belirterek, gelecekteki çalışmaların destek fonksiyonları seçmek için

optimize edilmiş algoritmalar geliştirmeye odaklanabileceğini önermektedirler. Bu

çalışma, hesaplamalı matematik ve mühendislik alanında önemli olup, yüksek boyutlu

çok değişkenli fonksiyonların neden olduğu hesaplama zorluklarıyla başa çıkmak için

güçlü bir yöntem sunmaktadır. Ayrıca, bilimsel hesaplamalarda daha verimli ve doğru

problem çözme tekniklerine katkıda bulunmaktadır.

1.3 Hipotez

Bu tez, kompleks gen yolakları için iki adımlı ön-işleme yöntemi önererek bir gen

yolağının hasta veya sağlıklı olarak başarılı bir şekilde sınıflandırılmasını sağlar. İlk

adım, genlerden CGR yardımıyla eşsiz resimler elde etmektir. Ardından, elde edilen bu

resimler küplere dönüştürülerek, EMPR yardımıyla bu küplerden daha düşük boyutlu
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veriler oluşturulmuştur. Bu adım sayesinde, hastalıklarla ilişkili genler arasındaki

karmaşık ilişkileri içeren çok boyutlu verilere ulaşılır.

Daha sonra, modelin eğitilebilirliğini ve hesaplamanın verimliliğini artırmak için

boyut indirgeme teknikleri uygulanır. Boyut indirgeme aşamasında PCA yöntemi

kullanılarak verilerin makine öğrenmesi için uygun hale gelmesi sağlanır.

Makine öğrenmesi aşamasında SVM algoritması kullanılarak hastalıklı ve sağlıklı

genlerin sınıflandırılması sağlanır. Bu yaklaşımın doğruluğu, mTOR ve TGF-β

hastalıkları ile ilişkili iki gen yolağı kullanılarak değerlendirilmiştir. Çoklu gen

yolaklarının analizinin karmaşıklığına rağmen, önerilen yöntem, hasta ve sağlıklı

bireylerin doğru sınıflandırılmasında umut verici sonuçlar göstermiştir. Bilgisayar

deneyleri aracılığıyla, tez, klinik ortamlarda genotip bilgilerine dayanarak gen

yolakları arasında ayrım yapma potansiyelini göstermektedir.
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2. VERİ

Bu bölümde, çalışmada önerilen algoritmanın doğruluğunu tespit etmek amacıyla

kullanılan veri kümelerinin ne olduğu ve nasıl oluşturulduğundan bahsedilecektir.

Bu veri kümeleri daha önce yapılmış olan bir çalışmada [24] kullanılmış olup, bu

çalışmada da kullanılmaları için izin alınarak kullanımları sağlanmıştır.

Bu çalışmada iki adet gen yolağı kullanılmıştır: bunlar mTOR [16] ve TGF-β [17]

olarak adlandırılan iki gen şebekesidir. Bu gen şebekeleri KEGG [26] veri tabanından

alınmıştır. Gen yolaklarının koordinatlarına, NCBI [27] veritabanındaki GRCh37

insan gen veri tabanı kullanılarak ulaşılmıştır. Bu çalışma için doğrudan insan genleri

kullanılmamış, insan genlerinin karakteristik özellikleri taklit edilerek rastgele yeni

veriler oluşturulmuş ve bu veriler kullanılmıştır. Böylece kullanılacak gen verileri

herhangi bir izne ihtiyaç duyulmadan kullanılabilmiştir.

Bu gen verilerinin oluşturulması için öncelikle gen yolaklarının karakteristik

özelliklerini hasta ve sağlıklı gen yolakları için analiz etmek gerekmiştir. Bu iki

grup için yapılan analizlerde çıkan sonuçlara göre, sağlıklı olan grubun patojenik

varyantlarının frekansı, hasta olan grubun patojenik varyantlarının frekansından daha

yüksek olmasına rağmen her iki grup için de polimorfik varyant frekanslarının aynı

olduğu saptanmıştır. Burada varyant terimi, bir gen içerisindeki nükleotid bazlarının

beklenilenden farklı olmasını ifade eder. Patojenik varyant ve polimorfik varyant

terimleri ise sırasıyla, hastalığa etki eden ve hastalığa etki etmeyen varyantları temsil

eder. Yapılan bu gen karakteri analizine göre yeni yapay genler oluşturulabilir.

Genlerin oluşturulma aşamasında ilk olarak, her iki grup için de polimorfik ve

patojenik varyantların pozisyonlarını temsil eden iki liste oluşturulmuştur. Bu listelere

"polimorfik pozisyonlar listesi" ve "patojenik pozisyonlar listesi" adı verilmektedir.

Bu listelerde yer alan her bir tamsayı, belirli ardışık aralıklar içinde rastgele olarak

seçilmiş ve her bir listeye özel olarak belirlenmiştir. Bu aralık, polimorfik varyantlar

için 100 olarak seçilirken, patojenik varyantlar için 200 olarak belirlenmiştir. İkinci
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adımda, "polimorfik pozisyonlar listesi" içerisinde yer alan her bir pozisyonun baz

değerleri hem sağlıklı hem de hasta gen yolakları için %40 oranında varyant bazlarıyla

değiştirilmiştir. Bu pozisyonlardaki değişiklikler, patojenik olmayan varyant grupları

için her iki grupta da %0.40 minor allel frekansı [28] olarak kabul edilmiştir. Sonraki

adımda, "patojenik pozisyonlar listesi" içerisinde yer alan her bir pozisyonun baz

değerleri, sağlıklı grup için %25 oranında, hasta grup için ise %30 oranında varyant

bazlarıyla değiştirilmiştir. Yani sağlıklı grupta %0.25 allel frekansı ve hasta grupta

%0.30 allel frekansı kullanılarak hastalıkla ilişkili varyantlar değiştirilmiştir. Tüm bu

adımlardaki minor allel frekansı seçimi yapılırken kompleks hastalıklardaki frekans

değerleri dikkate alınarak yapılmıştır.

Bu çalışmada önerilen yöntemin tutarlılığını değerlendirmek için elde edilen ve

özellikleri yukarıda belirtilen bu gen şebekeleri kullanılmıştır. Her gen yolağı veri

kümesine ait sağlıklı ve hasta grupları eğitim ve test için ayrı ayrı kullanılmak üzere

iki bağımsız parçaya bölünerek testler gerçekleştirilmiştir. Her veri kümesi için 400

sağlıklı grup ve 400 hasta grup içeren gen yolağı üretilmiştir. Toplamda mTOR ve

TGF-β için üretilmiş olan 800’er tane gen yolakları, sırasıyla 31 ve 93 gene sahip

olarak oluşturulmuşlardır. Yöntemde kullanılmak üzere her bir grup yüksek oranda

eğitim olacak şekilde eğitim ve test kümelerine ayrılarak, eğitim kümesi ile model

eğitilmiştir. Eğitilen modelin tutarlılığını ölçmek için test kümesi ile gerekli testler

yapılmıştır.
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3. YÖNTEM

Bu bölümde, tezde kullanılan yöntemler tanıtılmaktadır. Temel amaç, genetik verilerin

karmaşıklığını anlamak ve gen oylaklarının bireyler üzerindeki etkisini araştırmaktır.

Bu amaçla, önerilen metodlar kullanılmış ve genetik verilerin işlenmesinde yeni

bir yaklaşım sunulmuştur. Bu çalışmada, genetik verilerin görsel temsili için

Kaos Oyunu Temsili (Chaos Game Representation-CGR) yöntemi kullanılmış ve

ardından bu desenler, Çok Değişkenli Yükseltilmiş Çarpımlar Gösterimi (Enhanced

Multivariance Products Representation - EMPR) yöntemi ile analiz edilmiştir. Yüksek

boyutlu verilerin işlenmesi için boyut indirgeme tekniği olarak Temel Bileşen Analizi

(Principal Component Analysis-PCA) uygulanmış ve gen yolaklarını sınıflandırmak

için makine öğrenmesi algoritması olarak Destek Vektör Makineleri (Support Vector

Machines-SVM) kullanılmıştır. Bu yöntemler, genetik verilerin analizinde yeni

bir bakış açısı sunmakta ve gen yolaklarının bireyler üzerindeki etkisini daha iyi

anlamamıza olanak tanımaktadır.

3.1 Kaos Oyunu Temsili

Kaos Oyunu Temsili (Chaos Game Representation-CGR) [8] algoritması, bir boyutlu

verilerin benzersiz iki boyutlu bir temsilini oluşturmak için kullanılan bir yöntemdir.

CGR’yi kullanmak için elimizdeki bir boyutlu veri dizisi, sürekli olarak aynı bilgilerle

oluşmuş bir veri dizisi olmalıdır. Yani CGR, çeşitliliği sınırlı verilerin bir araya

gelerek uzun bir veri dizisi oluşturduğu durumlar için uygundur. Bu durum, yalnızca

dört nükleotid bazı ile oluşan tek boyutlu ve çok fazla tekrar içeren bir genin doğal

karakteridir. Bu sebeple, CGR algoritmasını bir gene uygulamak oldukça verimli ve

tutarlı bir sonuç verecektir. Bu yöntemde, genin uzunluğu sayesinde oluşan her resmin

benzersizliği daha da artacaktır. Seçilecek olan düzlemin boyutu, bu uzunluk dikkate

alınarak belirlenmelidir.

CGR algoritması aşağıdaki adımları içerir:
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1. Düzlemin boyutu seçilir. Bu boyut fazla büyük olursa veri azınlıkta kalır. Fazla

küçük olursa eşsizlik sağlanamaz.

2. Düzlemde bir başlangıç noktası seçilir. Bu başlangıç noktası düzlemin orta noktası

olmalıdır. Genellikle ilgili düzlemin ağırlık merkezi olarak seçilir.

3. Düzlemdeki köşelerin (dört köşe) hangi veriyi temsil ettiği belirlenir.

4. İlgili diziden bir baz okunur ve bu bazı temsil eden köşe seçilir. Bulunulan noktadan

o köşeye doğru yarı yol hareket ettirilir ve işaretlenir. Bu adım matematiksel olarak

şu şekilde tanımlanabilir:

Xi =
1
2
(Xi−1 +C(x)

i )

Yi =
1
2
(Yi−1 +C(y)

i )

(3.1)

burada X0 ve Y0 başlangıç noktaları, C(x)
i ve C(y)

i köşe koordinatları, ve i iterasyon

sayısıdır.

5. Bir önceki adım, her iterasyonda bir baz okuyarak ve son noktayı o köşeye doğru

yarı yola hareket ettirerek tekrarlanır.

İterasyon sayısı arttıkça, CGR algoritması tarafından oluşturulan desen giderek daha

kompleks ve eşsiz hale gelir. CGR algoritması, özellikle DNA dizilerinin iki-boyutlu

temsilini oluşturmak için yararlıdır. Burada köşeler genellikle dört nükleotid bazına

(A, C, G ve T) karşılık gelir. CGR algoritmasını DNA dizilerine uygulayarak, diğer

yöntemlerle kolayca görünmeyen desenler ve özellikler tespit edilebilir. Böylece CGR,

DNA’nın yapısı ve fonksiyonunu temsil etmek için güçlü bir araçtır.

Şekil 3.1, dört nükleotid girişiyle 40 × 40 CGR tablosunun oluşturulmasını

örneklemektedir. Burada köşeler Adenin (0, 0), Guanin (40, 0), Sitozin (0, 40) ve

Timin (40, 40) olarak tanımlanmıştır. Giriş verileri sırasıyla Guanin, Timin, Sitozin

ve Guanin olarak verilmiştir. Bir gen resmi oluşturmak için bütün genin nükleotid baz

bilgisi sırasıyla verilerek işaretleme yapılmalı ve desenin son hali oluşturulmalıdır.

CGR yönteminde seçilecek olan değişkenler her uygulama ve problemde farklılık

gösterebilir. Buradaki amaç bir boyutlu veri dizisinden eşsiz bir desen oluşturmaktır.
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Şekil 3.1 : CGR algoritma örneği

Veri çeşitliliği dörtten farklı ise farklı köşe sayısı içeren çokgenler de kullanılabilir.

CGR görüntü çözünürlüğü, yani CGR düzlemi boyutu, desenin kalitesini etkileyebilir.

CGR düzleminin boyutu çok küçük olursa, noktalar üst üste binebilir ve desenin

benzersizliğini ortadan kaldırabilir. Öte yandan, görüntü boyutu çok büyük seçilirse,

noktalar arasında boşluklar oluşabilir. Bu durum, CGR deseninin veri temsil

yeteneğini azaltır. Bu nedenle, CGR görüntüsü için optimal çözünürlüğü belirlemek,

temsil kalitesini artırmak için zorunludur.

3.2 Çok Değişkenliliği Yükseltilmiş Çarpımlar Gösterimi

Çok Değişkenliliği Yükseltilmiş Çarpımlar Gösterimi (Enhanced Multivariance

Products Representation-EMPR), kompleks, yüksek boyutlu verilerin daha basit,

düşük boyutlu bileşenlerine ayrıştırılması için güçlü bir yöntemdir [29]. EMPR, boyut

sayısını azaltarak çok boyutlu verilerin daha verimli analiz edilmesini ve işlenmesini

sağlar. EMPR, birçok alanda kullanılarak elde edilmiş çok boyutlu verilerin daha

düşük boyutlu olarak temsil edilmesine katkıda bulunur. EMPR metodu, N boyutlu

bir veriyi bir boyuttan başlayarak N boyuta kadar olan her boyutta bir ya da birden

fazla veri ile temsil edilmesini sağlar. Bu düşük boyutlardaki verilerin yardımcı

veriler ile çarpılarak toplanması ile ana veri tekrar elde edilebilir. EMPR sonucu elde
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Şekil 3.2 : 3 Boyut için EMPR Ayrıştırımı

edilen düşük boyutlardaki verilere EMPR bileşenleri denir. EMPR bileşenlerinden

yüksek boyutlu ve daha çok bileşen kullanarak ana verinin temsilini olabildiğince

artırmak önemlidir. Bu bölüm, üç boyutlu EMPR analizine odaklanacaktır, ancak

formülasyonlar N boyutlu verilere de kolaylıkla genelleştirilebilir.

G, boyutu n1 × n2 × n3 olan 3 boyutlu bir küp olsun. EMPR formülünün üç boyutlu

uygulaması aşağıdaki gibi tanımlanabilir:

G = g(0)
[

3⊗
r=1

s(r)
]
+

3

∑
i=1

g(i)⊗

 3⊗
r=1
r ̸=i

s(r)

+
3

∑
i, j=1
i< j

g(i, j)⊗

 3⊗
r=1

r ̸=i, j

s(r)

+g(1,2,3) (3.2)

burada g(0), g(i) ve g(i, j), sırasıyla sıfır-yönlü, bir-yönlü ve iki-yönlü EMPR bileşenleri

olarak adlandırılır.
⊗

dış çarpım [30] işlemini gösterir. s(r) ise nr boyutlu, r. destek

vektörüdür.

Şekil 3.2, EMPR fonksiyonunun grafik temsilini gösterir. Sıfır-yönlü, bir-yönlü

ve iki-yönlü EMPR bileşenleri sırasıyla sıfır, bir ve iki boyutlarına sahiplerdir ve

skaler, vektörel ve matris olarak adlandırılırlar. Destek vektörleri, boyutu artırmak

için ilgili EMPR bileşenleriyle dış çarpım yaparak sonuca katkı sağlar. Ayrıca,

EMPR fonksiyonu için esneklik sağlar ve dikkatli seçilmelidir. Bu seçim, EMPR

bileşenlerinin temsil edilebilirliğinin uygunluğunu etkilediği için önemlidir.

Destek vektörleri hesaplamak için çeşitli yöntemler bulunmaktadır. Aşağıdaki

denklem, G küpü için Averaged Directional Support (ADS) olarak bilinen ortalama

yönlü bir hesaplamayı gösterir [29]. Bu makalede, EMPR kullanarak destek
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vektörlerini hesaplamak için ADS kullanılmıştır. ADS kullanarak hesaplanan destek

vektörler aşağıdaki gibi hesaplanabilir:

S(1)i =
n2

∑
j=1

n3

∑
k=1

w(2)
j w(3)

k Gi jk,

S(2)i =
n1

∑
i=1

n3

∑
k=1

w(1)
i w(3)

k Gi jk,

S(3)i =
n1

∑
i=1

n2

∑
j=1

w(1)
i w(2)

j Gi jk

(3.3)

Burada, w(1)
i , w(2)

j ve w(3)
k ağırlık vektörleridir. G küpünü temsil etmek için

uygun ağırlık vektörlerinin seçimi kritiktir. Çünkü ağırlıklı ortalamalar EMPR’nin

temel bir bileşenidir. Ağırlık vektörünün elemanlarının toplamının 1’e eşit olması

istatistiksel bir gerekliliktir. Bu özellik, EMPR bileşenlerini hesaplamak ve gerekli

olan hesaplamaları kolaylaştırmak için korunmalıdır. En temel dağılımda ağırlıklar

eşit dağıtılarak bu özelliğin korunması sağlanabilir. Aşağıdaki denklemde ağırlıkların

bulunduğu boyuta göre eşit bir şekilde dağılmasının formülize edilmiş gösterimi

verilmiştir:

w(1)
i =

1
n1

,

w(2)
j =

1
n2

,

w(3)
k =

1
n3

(3.4)

Tüm bu durumları birlikte hesaplayarak üç-boyutlu bir küpün EMPR bileşenlerini birer

birer bulursak, aşağıdaki denklemler elde edilir.

Sıfır-yönlü EMPR bileşeni aşağıdaki gibi hesaplanabilir:

g(0) =
n1

∑
i=1

n2

∑
j=1

n3

∑
k=1

w(1)
i w(2)

j w(3)
k s(1)i s(2)j s(3)k Gi jk (3.5)

Ayrıca, üç adet bir-yönlü EMPR bileşeni aşağıdaki gibi hesaplanabilir:
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g(1)i =
n2

∑
j=1

n3

∑
k=1

w(2)
j w(3)

k s(2)j s(3)k Gi jk −g(0)s1
i ,

g(2)j =
n1

∑
i=1

n3

∑
k=1

w(1)
i w(3)

k s(1)i s(3)k Gi jk −g(0)s2
j ,

g(3)k =
n1

∑
i=1

n2

∑
j=1

w(1)
i w(2)

j s(1)i s(2)j Gi jk −g(0)s3
k

(3.6)

Benzer şekilde, üç adet iki-yönlü EMPR bileşeni aşağıdaki denklemler ile ifade

edilebilir:

g(1,2)i j =
n3

∑
k=1

w(3)
k s(3)k Gi jk −g(0)s(1)i s(2)j −g(1)i s(2)j − s(1)i g(2)j ,

g(1,3)ik =
n2

∑
j=1

w(2)
j s(2)j Gi jk −g(0)s(1)i s(3)k −g(1)i s(3)k − s(1)i g(3)k ,

g(2,3)jk =
n1

∑
i=1

w(1)
i s(1)i Gi jk −g(0)s(2)j s(3)k −g(1)i s(3)k − s(2)j g(3)k

(3.7)

Seçilecek olan destek ve ağırlık vektörlerinin sınırlar çerçevesinde seçilmesine dikkat

edilmelidir. Yanlış seçilen destek vektörleri, EMPR bileşenlerinin ana veriyi temsil

etme yetkinliğini azaltabilir. Bu tezde uygulanan metod, destek ve ağırlık vektörlerinin

seçimi konusunda en temel yöntemler kullanılarak yapılmıştır.

Sonuç olarak, üç boyutlu bir veri EMPR uygulanması ile bir adet sıfır-yönlü, üç

adet bir-yönlü, üç adet iki-yönlü ve son olarak bir adet üç-yönlü EMPR bileşenine

dönüştürülmüş olur. Bu dönüşümde gerekli olan denklemler açıkça belirtilmiştir. Bu

özellik sayesinde veri, daha az boyutlu bileşenlerle ifade edilerek analiz edilebilmesi

veya işlenebilmesi açısından bir fayda sağlar. Aynı zamanda makine öğrenimi veya

derin öğrenme modellerinde kolayca kullanılabilecek bir yapıya dönüştürülmüş olur.

3.3 Temel Bileşen Analizi

Temel Bileşen Analizi (Principal Component Analysis-PCA), istatistiksel bir teknik

olarak boyut indirgeme ve veri görselleştirme için yaygın olarak kullanılan bir

yöntemdir [31]. Temel amacı, muhtemelen ilişkili değişkenlerden oluşan bir veri

setini, lineer olarak ilişkisiz değişkenler olan ana bileşenlere dönüştürmektir. Bu

bileşenler, verideki maksimum varyansı bulunduran ilk ana bileşenden başlar. Sonraki
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bileşenler azalan miktarlarda varyansa sahip olarak sıralanırlar. PCA tekniği ile boyut

indirgeme yapmak sağlam ve şeffaf bir yapı sunar.

PCA boyut indirgemesi için verinin matris verisi olması gerekmektedir. Bu

matris verisi aynı zamanda n-boyutlu vektörlerden oluştuğu da düşünülebilir.

Matrisi oluşturan her bir vektör, n boyutta bir noktaya karşılık gelecek şekilde

konumlandırılırsa, ortaya çıkan noktalar kümesini temsil edebilecek yeni bir koordinat

sistemi bulunması amaçlanır. Bu yeni sistemin her bir doğrusu PCA bileşeni olarak

adlandırılır. PCA analizinde elde edilen bu bileşenler, analizin doğal sonucu sayesinde

veri setini ne kadar temsil ettiklerini de içerir. Bu bileşenlerin her biri için elde

edilen temsil değerlerinin toplanarak o bileşenlerin toplam temsil değeri elde edilebilir.

Bütün bileşenlerin toplanması ile bulunan toplam temsil değeri, seçilen bileşenlerin

toplanması ile elde edilen toplamla orantılanırsa, seçilen bileşenlerin bütün veri setine

olan yüzdesel temsil değeri bulunabilir. Bu yüzdesel temsil değeri genelde Dirsek

Yöntemi [32] yardımı ile gözlemlenebilir.

PCA analizi sonucunda elde edilen bileşenlerin tek başlarına kullanılması yerine en

yüksek varyanstan başlanarak birden çok bileşenin seçilmesi, yapılacak olan analizin

verimini artırma konusunda önemli bir rol oynar. Kaç adet bileşenin seçileceğine karar

verme konusunda Dirsek Yöntemini incelemek oldukça doğru bir yaklaşımdır. Dirsek

Yöntemi, analizde kullanılmak üzere seçilecek olan bileşenlerin toplam yüzdesel

temsiline göre bir grafik oluşturur. Bu grafiğin eğiminin gitgide azaldığı ve belli bir

bölgeden sonra bir ’patika’ gibi ilerlediği gözlemlenir. Bu ayrımın olduğu bölgeden

bileşen sayısı seçimi yapılması, Dirsek Yönteminin genel kullanım amacıdır.

Matematiksel olarak, PCA, veri matrisinin kovaryans matrisinden özdeğer ve

özvektörlerini hesaplamasını içerir.

X, orijinal veri matrisi olsun, burada X, n örnek ve p özellik içeren n× p matrisidir.

Kovaryans matrisi Σ, aşağıdaki gibi hesaplanabilir:

Σ =
(X − X̄)(X − X̄)

T

(n−1)
(3.8)
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burada X̄ , X’in ortalama vektörüdür. Σ’nın özdeğer ve özvektörleri aşağıdaki gibi

hesaplanır:

ΣV = V Λ (3.9)

burada V , özvektörlerin matrisidir ve Λ, özdeğer diyagonal matrisidir. Daha sonra,

orijinal veriler özvektörlerine projeksiyonu yoluyla çarpılırsa ana bileşenler elde

edilebilir:

Y = XV (3.10)

burada Y, ana bileşenlerin matrisidir. En üst sıradaki ana bileşen varyansı en yüksek

olan bileşendir. Bu bileşenden başlanarak yapılan seçimler, PCA yüksek boyutlu veri

kümelerinde en bilgilendirici özelliklerin tanımlanmasını sağlar ve analizi kolaylaştırır.

3.4 Destek Vektör Makineleri

Destek Vektör Makineleri (Support Vector Machines-SVM), çok boyutlu sınıflandırma

senaryolarında kompleks karar sınırlarını belirlemek için güçlü bir araçtır. SVM’ler,

kullanım kolaylığı ve esnekliği nedeniyle çeşitli sınıflandırma problemlerine çözüm

getirirler. Girdi sayısı sınırlı olsa bile, dengeli bir tahmin performansı sağlarlar [15].

Yüksek boyutlu durumlarda etkili olan SVM, kompleks veri kümelerini ele almak

için güçlü bir araçtır. Ayrıca, SVM’ler, yalnızca eğitim noktalarının bir alt kümesi

olan destek vektörlerini kullanarak tahminlerde bulunur, bu da büyük ölçekli makine

öğrenimi uygulamaları için pratik bir seçimdir. Ek olarak, SVM’ler, kullanıcıların özel

ihtiyaçlarına göre farklı çekirdek fonksiyonları [33] veya özel çekirdek fonksiyonu

belirleme esnekliği sunar.

Çekirdek fonksiyonları sayesinde elde edilecek olan karar sınırlarının yapısı

değiştirilebilir. Bu özellik ile veri kümesi doğrusal olarak ayrıştırılabilir olsun ya da

olmasın doğru çekirdek fonksiyonu ile sağlıklı bir ayrıştırma yapılabilir. Bu yöntemin

çalışma mantığı, orijinal verilerin doğrusal olarak ayrıştırılabilir olacağı, daha yüksek

boyutlu bir uzaya çıkarılması ile sınıflandırmanın gerçekleştirilmesidir. Genel olarak
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kullanılan çekirdek fonksiyonları; doğrusal, polinom, yarıçapsal tabanlı fonksiyon

(Radial Basis Function-RBF) ve sigmoid fonksiyondur. Çekirdek fonksiyonunun

seçimi, probleme ve verideki özelliklerin yapısı dikkat alınarak yapılmalıdır.

SVM algoritmasının amacı, farklı veriler arasındaki mesafeyi maksimize ederken

hataları minimize edecek olan optimal bir hiper düzlem bulmaktır. Bu, genellikle

Kuadratik Programlama (Quadratic Programming-QP) [34] problemi çözülerek

gerçekleştirilir. Burada amaç, hiper düzlemi tanımlayan doğrusal eşitsizliklerin

belirlenerek bu denklemin en uygun olan minimum çözümünü bulmaktır. Bu durum

bir optimizasyon problemi ortaya çıkarır. Optimizasyon problemi, doğrusal (linear)

veya ikinci dereceden (quadratic) programlama olarak formüle edilebilir ve çeşitli

algoritmalar kullanılarak çözülebilir.

Örneğin doğrusal SVM veriyi iki sınıfa ayıran en iyi hiper düzlemi bulmayı amaçlar.

Bu doğrusal düzlem aşağıdaki gibi tanımlanır:

wx+b = 0 (3.11)

Burada, w, hiper düzlemin normal vektörü, x, veri noktaları, b, hiper düzlemin kayma

(offset) terimidir. Bu problemdeki hiper düzlemi bulmak için çözülmesi gereken

optimizayon problemi aşağıdaki gibi tanımlanır:

min
w,b

1
2
∥w∥2 (3.12)

Bu optimizasyon, aşağıdaki sınırlamalara tabidir:

yi(w · xi +b)≥ 1 ∀i (3.13)

Burada, xi, i. veriyi, yi ise i. verinin sınıfını temsil eder. Tanımlanan optimizasyon

problemi çözülerek probleme en uygun olan hiper düzlem bulunmuş olur.

Sonuç olarak, SVM yönteminin algoritmik çözümleri, verilerin sınıflandırılması ve

kompleks problemlerin çözülmesi için önemli bir araçtır. Doğru parametrelerle seçilen
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bir SVM algoritması birçok kompleks problemlerin sınıflandırmasını kolaylıkla

yapabilir.
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4. UYGULAMA

Bu bölümde, Bölüm 3’te anlatılan yöntemlerin teze nasıl uygulandığı ve bu

uygulamaların hangi yardımcı programlar sayesinde yapıldığı anlatılacaktır. Yapılan

işlemler sırasıyla kısım kısım açıklanacak ve seçilen parametrelerin neden seçildiği ile

ilgili açıklamalar yapılacaktır. Uygulama sonuçları ise Bölüm 5’de incelenecektir.

4.1 Yardımcı Programlar

Yüksek modelde bir bilgisayar analizi yapabilmek için güçlü bilgisayar programlarını

kullanmak gerekmektedir. Bu programlar arasında, veri analizi, makine öğrenmesi

ve yapay zeka gibi yüksek işlem gücü gerektiren işlemler için en popüler olanları

MATLAB [35] ve Python [36]’dır. Bu çalışmada her iki uygulama da belirli amaçlarla

kullanılmıştır.

4.1.1 MATLAB

MATLAB, bir veriyi hafızaya kaydederek üzerinde işlem yapmayı sağlayan bir yazılım

programıdır. Bu program, kendi dilinde yazılan fonksiyonları çalıştırarak bilgisayarın

istenilen davranışı sergilemesini sağlar.

Mevcut çalışmada MATLAB, Kaos Oyunu Temsili (Chaos Game

Representation-CGR) verilerinin okunarak EMPR analizinin yapılması ve Çok

Değişkenliliği Yükseltilmiş Çarpımlar Gösterimi (Enhanced Multivariance Products

Representation-EMPR) yönteminin uygulanarak bilgisayara yazılması işlemlerinde

kullanılmıştır. Ayrıca, EMPR sonuçlarının testleri, görselleri ve analizleri bu program

aracılığıyla elde edilmiştir.

4.1.2 Python

Python yazılım dilinde, büyük veri işleme, makine öğrenmesi ve derin öğrenme

gibi günümüzün popüler konularını içeren birçok kütüphane bulunmaktadır. Bu
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Şekil 4.1 : Python mTOR çalışma örneği

Şekil 4.2 : Python TGF-β çalışma örneği

kütüphaneler sayesinde kullanılmak istenilen yöntem kolaylıkla oluşturulabilir ve

uygulanabilir hale getirilebilir.

Yapılan çalışma sırasında ham gen yolaklarının okunarak CGR desenlerinin

oluşturulması, EMPR sonucunda elde edilen bileşenlerin okunarak birleştirilmesi,

Temel Bileşen Analizi (Principal Component Analysis-PCA) ve Destek Vektör

Makineleri (Support Vector Machines-SVM) metodunun uygulanması Python ile

gerçekleştirilmiştir. Ek olarak, yöntem üzerinde denemesi yapılan diğer seçenekler,

yöntemin testi, analizi ve görselleştirilmesi de bu program aracılığıyla yapılmıştır.

Şekil 4.1 ve Şekil 4.2’de sırasıyla, mTOR ve TGF-β için Python kodu üzerinde yapılan

işlemler ve her adımın işlem süreleri gösterilmiştir.

4.2 Öncül Yaklaşımlar

Bu kısımda, nihai akışa ulaşmadan önce denenmiş olan yaklaşımlar ve bu

yaklaşımların neden sonuç vermediği tartışılacaktır.

İlk olarak, bir geni temsil edecek olan veri modelini belirleme sorununun çözülmesi

gerekiyordu. Bu sorunu en iyi çözen yöntemlerden biri olan CGR metodu,

kullanışlılık ve verinin bütünlüğünü koruma açısından oldukça uygun olduğu için

bu yöntemin kullanılması kararlaştırıldı. Bir gen yolağını temsil etmek için her bir

gen ile CGR metodu uygulanarak gen yolağındaki genlerin sırasıyla birleştirilmiş

bir küpün oluşturulması sağlanmıştır. Bu küpün tek başına bütün bir gen yolağının
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verisini içerisinde barındırmasının sağladığı matematiksel kolaylık, bu yöntemin

seçilmesindeki en temel etken olmuştur.

Oluşturulan bu üç boyutlu küpün analiz edilebilmesi için bir boyut indirgeme yöntemi

kullanılması gerekmektedir. Bu yöntemi seçerken daha önce başka problemler için

de kullanılan ve başarılı bir yöntem olan Yüksek Boyutlu Model Gösterilimi (High

Dimensional Model Representation-HDMR) [37] metodunun genişletilmiş bir hali

olan EMPR [10] [29] metodunun kullanılması kararlaştırılmıştır. EMPR metodu

sonucunda oluşan bileşenlerin seçimi konusunda birçok deneme yapılmıştır. İlk olarak,

ön perspektiften bakılan en büyük bileşen seçilerek onun üzerinden analizler yapılmış,

daha sonra yan ve üst perspektiften oluşan bileşenlerin de analize dahil edilmesinde

fayda olduğu görülmüştür.

EMPR metodu kullanıldıktan sonra oluşan bileşenlerden iki boyutlu olanların veriyi

temsil yeteneği daha yüksek olacağı için analiz o bileşenlerin üzerine yapılarak

devam edilmiştir. İlk olarak iki boyutlu derin öğrenme metodlarından Evrişimsel

Sinir Ağları (Convolutional Neural Networks-CNN) [38] kullanılmıştır. CNN metodu

çeşitli ağlarla beraber kullanılarak denenmiştir. Karmaşık problemlerin çözümü için

hazırlanan hazır ağlardan ResNet [39], VGG-16 [40] ve LeNet [41] gibi kompleks

CNN ağları istenilen sonucu vermediği gibi daha basit ve az parametreli özel ağ

yapıları tasarlanarak yapılan denemelerde de istenilen sonuçlar elde edilememiştir.

Bu denemeler esnasında EMPR bileşenlerinin her biri ayrı ayrı ya da farklı

şekilde birleştirilerek oluşturulan resimler denenmiş olsa da tutarlı bir sonuç elde

edilememiştir. Bunun sebebi, elimizdeki gen verisinin bir derin öğrenme uygulamasını

eğitmek için yeterli olmamasından kaynaklanmaktadır.

Bu denemeler sonrasında derin öğrenmeden vazgeçilip makine öğrenmesi yapılmasına

karar verilmiştir. Bu bağlamda EMPR sonucunda bileşenlerin birleştirilerek elde

edilen iki boyutlu resim ile makine öğrenmesi yapılabilmesi sağlanmıştır. Bunu

başarabilmek için bu iki boyutlu resmin boyutunun indirgenmesi gerekmektedir. Bu

boyut indirgemede çeşitli metotlar düşünülse de nihai olarak PCA uygulanmasına karar

verilmiştir.
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PCA kullanılarak verilerin boyutu azaltmak yerine, PCA bileşenlerini kullanarak

verileri temsil eden bir vektör oluşturmak amaçlanmıştır. Bu yöntemi uygularken

EMPR bileşenlerinin bir arada kullanılmasına ya da kullanımının nasıl olması

gerektiğine karar verilirken her adımda kontroller yapılmıştır. Tek bir PCA bileşeninin

veriyi temsilde başarısız olduğu görüldüğü için birden çok bileşenin çok boyutlarda

kullanılarak temsil edebilmesi amaçlanmıştır. Bu amaç doğrultusunda boyut sayısı

çok büyük ve veri sayısı az olduğu için SVM kullanımına karar verilmiştir. SVM’in

değişkenlerini belirlerken bir çok denem yapılmış ve çekirdek fonksiyonun lineer

olarak seçilmesine karar verilmiştir. Bütün sistemin tutarlılığını test etmek adına SVM,

5 katlı CV kullanılarak test edilmiş ve ortaya çıkan pozitif sonuçlar sayesinde yöntemin

tutarlılığı ispatlanmıştır.
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5. SONUÇLAR

Bu bölümde, Bölüm 2’de bahsedilen veriler ve Bölüm 3’de anlatılan yöntemler,

Bölüm 4’te belirtilen programlarla birleştirilerek bütüncül sistem oluşturulmuş,

makine öğrenmesi eğitimi gerçekleştirilmiş ve testler yapılmıştır. Yapılan testlerin

sonuçları, resimler, grafikler ve tablolarla açıkça gösterilmiştir.

5.1 Veri Kümeleri

Bölüm 2’de detaylıca bahsedilen genlerin oluşturulma işleminden sonra, mTOR ve

TGF-β gen yolakları için sırasıyla 31 ve 93 gen içerecek şekilde gen yolakları

oluşturulmuştur. Bu gen yolaklarından, her iki gruptan da 400 adet hastalıklı ve 400

adet sağlıklı olmak üzere toplamda 800 adet gen yolağı meydana getirilmiştir. Sonuç

olarak, mTOR gen ağı için 31’er adet gen içeren 400 sağlıklı ve 400 hastalıklı dizilim,

TGF-β gen ağı için ise 93 adet gen içeren 400 sağlıklı ve 400 hastalıklı dizilim elde

edilmiştir.

5.2 Deneyler

Bu bölümde iki adımdan bahsedilecektir. Birinci adım olan ön işleme aşamasında,

gen yolaklarının makine öğrenmesine uygun hale getirilmesi için gerekli yöntemler

uygulanacaktır. İkinci adımda ise, gen yolakları eğitim ve test gruplarına ayrılarak

makine öğrenmesi gerçekleştirilecektir.

5.2.1 Ön İşleme Adımı

Bu adımda yapılan her işlem, hem hasta hem de sağlıklı olan tüm gen yolaklarına

uygulanacaktır. Ön işleme adımı, tüm verilerin aynı algoritma ile işlenerek makine

öğrenmesi için yapısal olarak aynı hale getirilmesini gerektirir.
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Şekil 5.1 : CGR algoritması ile oluşturulan mTOR yolağına ait bir gen deseninin
örneği

İlk olarak, oluşturulan genlerin her biri için CGR algoritması spesifik parametrelerle

uygulanmıştır. CGR boyutu 400× 400 olarak ayarlanmış ve başlangıç noktası (200,

200) olarak seçilmiştir. Nükleotid bazları Adenin, Guanin, Sitozin ve Timin sırasıyla

(0, 0), (400, 0), (0, 400) ve (400, 400) koordinatlarında bulunan köşeleri temsil edecek

şekilde ayarlanmıştır. Bu sayede her bir gen için, bir boyutlu gen verisinden iki boyutlu

bir görüntü oluşturulmuştur. Şekil 5.1, mTOR yolağından alının tek bir gen için CGR

deseninin bir örneğini göstermektedir.

Şekil 5.1, bir gen için çizilmiş CGR desenini göstermektedir. Beyaz noktaların her

biri bir nükleotid bazına denk gelecek şekilde işaretlenmiş olan noktalardır. Beyaz

noktaların yoğunluğu, genin uzunluğuna bağlı olarak değişkenlik gösterebilir ancak

her genin bu desenle oluşturulduğu gözlemlenmiştir.

CGR yöntemi kullanılarak oluşturulan desenler, her bir gen için uygulanır. Sonuçta,

mTOR için 31 adet, TGF-β için 93 adet CGR deseni elde edilmiştir. Bu desenler,

EMPR adımında kullanılmak üzere her bir gen sırasına göre arka arkaya dizilerek üç

boyutlu bir küp haline getirilir. Şekil 5.2, bir gen ağı için CGR küpünün oluşumuna

dair bir örnek göstermektedir.
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Şekil 5.2 : Bir gen ağı için CGR küpünün oluşturulması

Şekil 5.2, bir gen ağı için oluşturulmuş CGR küpü örneğini göstermektedir. Bu

küpün uzunluğu ve genişliği, CGR deseninin seçilmiş olan boyutuna karşılık gelirken,

derinliği o gen ağında bulunan genlerin sayısına karşılık gelir. mTOR gen ağı için bu

değerler 400×400×31 iken, TGF-β için 400×400×93 olarak belirlenmiştir.

CGR küpü oluşturulduktan sonra, bu üç boyutlu küpe EMPR yöntemi uygulanır. Bu

sayede, küpü etkili bir şekilde temsil eden daha düşük boyutlarda veriler elde edilmesi

amaçlanır. Bölüm 3’te de bahsedildiği gibi, EMPR metodu uygulanırken yardımcı

vektörler için Ortalama Yön Desteği (Averaged Directional Support-ADS) yöntemini

kullanılırken, ağırlık vektörlerini hesaplarken temel eşit dağılım hesaplaması kullanılır.

Üç boyuta uygulanan EMPR sonucunda ortaya çıkan bir adet sıfır-yönlü, üç

adet bir-yönlü, üç adet iki-yönlü ve bir adet üç-yönlü bileşenden maksimum

temsili sağlayabilmek adına mümkün olduğu kadar çok bileşen kullanılmasına önem

verilmiştir.

Bu sebeple iki-yönlü olan üç adet bileşen birleştirilerek iki boyutlu kompakt bir resim

elde edilir. Elde edilen resim örnekleri, mTOR ve TGF-β için sırasıyla Şekil 5.3’de

gösterilmiştir.
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(a) mTOR (b) TGF-β

Şekil 5.3 : Gen yolakları için elde edilen iki boyutlu öz nitelik

Şekil 5.3 ile örnekleri gösterilen resimler, bir gen ağının CGR küpüne dönüştürülmesi

ve o küpün EMPR yöntemi ile iki-yönlü üç adet bileşene ayrılarak bu bileşenlerin

birleştirilmesiyle oluşturulmuştur. Bu birleşim, EMPR bileşenlerinden sırasıyla g(1,3),

g(1,2) ve g(2,3) bileşenlerinin transpoz (devrik) hallerinin alt alta eklenmesiyle elde

edilmiştir. g(1,2) bileşeni CGR küpünün 400x400 olan perspektifinden bir görüntü

olduğu için 400×400 boyutlarında bir bileşen oluştururken, g(1,3) ve g(2,3) bileşenleri

CGR küpünün yan ve üst perspektiflerinden oluşturulan bileşenler olduğundan 400×n

boyutlarında bileşenler oluştururlar. Burada n, gen ağındaki gen sayısını ifade eder.

Sonuç olarak, oluşturulan her bir iki boyutlu resim bir gen ağını üstten, yandan ve

önden perspektiflerle temsil etmektedir. Şekil 5.3(a), mTOR gen ağı için oluşturulan

resmi, Şekil 5.3(b) ise TGF-β gen ağı için oluşturulan resmi göstermektedir. mTOR

için oluşturulan resimde n değeri 31 iken, TGF-β için oluşturulan resimde n değeri

93’tür. Her bir gen ağı için oluşturulan bu resimler, mTOR ve TGF-β sırasıyla

400×462 ve 400×586 boyutlarına sahip olmuştur.

EMPR yöntemi ve bileşenlerin birleştirilmesi sonrasında elde edilen iki boyutlu res-

imlerin, makine öğrenmesi için daha basit ve öğrenilebilir bir yapıya dönüştürülmesi

gerekmektedir. Bu sorunu çözmek adına, gen ağının temsilini sağlayan bu iki boyutlu
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(a) mTOR (b) TGF-β

Şekil 5.4 : PCA bağlamında uygulanan dirsek metodu analizi

resimler boyut indirgeme yöntemleri ile sıkıştırılarak makine öğrenmesine uygun hale

getirilmiştir. Bu amacı karşılamak için PCA analizi kullanılmıştır. PCA analizi

için iki boyutlu resimleri sanki bir veri matrisiymiş gibi düşünmek gerekmektedir.

Veri matrisindeki her bir sütun bir özelliğe, her bir satır ise girdi sayısına karşılık

gelmektedir. Her bir satırın bir girdi vektörüne karşılık geldiği düşünülürse, her girdi

satırın uzunluğu kadar olan boyutta bir noktaya karşılık gelmektedir. Bu boyut ise

CGR deseninin boyutu olan 400’dür. Bu yaklaşımla, her resim için satır sayısı kadar

girdi ve 400 boyutta bir o kadar da nokta olduğu söylenebilir. Elde edilen bu noktalar

kümesi, PCA yöntemi kullanılarak boyut indirgemesi yapılabilir. PCA analizi, bir grup

verinin en çok etki eden boyutlarla temsil edilmesini sağlar. Bu analiz aynı zamanda

temsil ettiği bu boyutun diğer boyutlara oranla veriye ne kadar katkı sağladığını da

gösterir. Bu sayede hangi boyutları seçeceğimize karar verirken en fazla temsil edilen

boyutlardan başlamak mümkün olur.

PCA algoritması, EMPR bileşenleri ile oluşturulan resime uygulandıktan sonra

400 adet PCA bileşeni elde edilir. Bu 400 adet bileşenin veriye olan katkılarını

gözlemlemek için Dirsek Yöntemi kullanılabilir. Dirsek Yöntemi, Şekil 5.4 üzerinde

mTOR ve TGF-β için ayrı ayrı gözlemlenebilir.

Şekil 5.4 ile gösterilen grafik, PCA bileşenlerinin toplam veriyi temsil etmedeki

yüzdesini göstermektedir. Bu gösterim, aslında 400 boyutta olan verilerin %85’ini,
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mTOR için yaklaşık 40 bileşen, TGF-β için ise yaklaşık 35 bileşen kullanarak temsil

edebildiğimiz anlamına gelir.

Bu çalışmada, elde edilen bütün noktaların boyutunun azaltılması yerine, doğrudan

PCA bileşenlerinin kullanılması tercih edilmiştir. Bu sayede, 400 boyutta oluşturulan

çok sayıda nokta tek bir noktaya dönüştürülmüş olur. Böylelikle, elde edilen EMPR

bileşenlerinin oluşturduğu resim tek bir noktaya indirgenmiş olur. Daha sonra, bu

noktanın tek başına temsilinin yetersiz olduğu görülerek, diğer PCA bileşenlerinin de

katkısının sağlanması adına varyansı en yüksek PCA bileşenleri vektörel olarak uc

uca eklenerek yüksek boyutta bir vektör elde edilmiştir. Elde edilen noktanın boyutu,

CGR deseninin boyutu ile seçilen PCA bileşen sayısının çarpımına eşit olmuştur. Elde

edilen bu noktanın etkisini gözlemleyebilmek adına, PCA bileşen sayısı 1’den 50’ye

kadar arttırılarak her bileşen sayısı ile makine öğrenmesi adımı gerçekleştirilmiştir.

5.2.2 Makine Öğrenmesi

Bu adımda, hasta veya sağlıklı olan her bir gen ağı için elde edilmiş olan yüksek

boyuttaki nokta SVM algoritması kullanılarak ayrıştırılmaya çalışılmıştır. İlk olarak

Çapraz Doğrulama yöntemi uygulanarak her bir veri seti %80 eğitim, %20 test olacak

şekilde ayrılmıştır. Bu ayrım sonucu 400 hasta ve 400 sağlıklı olan veri seti, eğitim

için 320 hasta ve 320 sağlıklı, test için ise 80 hasta ve 80 sağlıklı olacak şekilde

ayrıştırılmıştır. Bu ayrıştırma her seferinde rastgele olarak tekrar edilmiştir. Yapılan

her analizde bu işlem 5 kere tekrarlanarak 5-katlı çapraz doğrulama yapılmıştır. Sonuç

olarak, her PCA bileşeni için 5 kere, toplamda 250 kere farklı eğitim ve test veri setleri

seçilerek SVM algoritması uygulanmış ve bu uygulamalardan elde edilen doğruluk

değerleri bir grafiğe aktarılmıştır. Doğruluk hesabı aşağıdaki gibi tanımlanır:

Doğruluk =
Doğru tahmin sayısı
Test örnekleri sayısı

×100 (5.1)

Bu kapsamlı analiz sonucunda elde edilen doğruluk değerleri, önerilen sistemin

hastalık belirlemedeki etkinliğini değerlendirmek için önemli bir ölçüdür. Elde edilen

sonuçlar, her bir gen yolağı için ayrı ayrı incelenmiş ve değerlendirilmesi yapılmıştır.

Uygulanan yöntemin genel akış şeması Şekil 5.5’de gösterilmektedir.
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Şekil 5.5 : Akış Şeması
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5.3 Sayısal Sonuçlar

Seçilen her PCA bileşeni için yapılan bu yöntem ile çekirdek fonksiyonu lineer olan

bir SVM algoritması çalıştırılarak her denemede doğruluk hesabı yapılmıştır. Bu

hesabın sonucunda oluşan grafik, Şekil 5.6 ve Şekil 5.7 ile gösterilmiştir. Bu grafikte

bulunan gri alanlar, çapraz doğrulama sonuçlarından elde edilen doğruluk deperlerinin

minimum ve maksimum aralığını verirken, kırmızı çizgi ise ortalama değerlerini

göstermektedir. Her bir PCA bileşen seçimi için uygulanan çapraz doğrulama

yönteminde, veriler aynı oranda hasta ve sağlıklı gen yolağı içerecek şekilde 5 eşit

parçaya bölünmüş ve her deneme de 4 parçası eğitim, 1 parçası test olacak şekilde

doğruluk sonucu çıkarılmıştır. Bu işlem, her seferinde farklı parçalar test için seçilerek

5 kez yapılmıştır. Böylece toplam 50 PCA bileşeni için 250 kere doğruluk hesabı

yapılmıştır.

Şekil 5.6 ve Şekil 5.7 ile gösterilen grafikleri yorumladığımızda, kullanılan bileşen

sayısı arttıkça doğrulukta dramatik bir artış gözlemlendiğini söylemek mümkündür.

Özellikle, 31 gen içeren mTOR veri setinde %99’a ulaşan maksimum doğruluk elde

edilirken, 93 gen içeren TGF-β veri setinde %90’ın üzerinde bir doğruluk elde

edilmiştir.

Tablo 5.1 ve Tablo 5.2’de ilk 40 bileşen için bulunan her CV sonuçları ayrıntılı

bir şekilde tek tek yazılmıştır. Bu tablo incelendiğinde mTOR’un 10 bileşenden,

TGF-β ’nın ise 35 bileşenden sonra %90 doğruluğun üzerine çıktığı görülmektedir.

Elde edilen sonuçlar, gen ağlarının ayrım gücünü değerlendirmek ve potansiyel

biyomedikal uygulamalara ışık tutmak adına önemli bir adımdır.
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Çizelge 5.1 : mTOR için ilk 40 bileşende yapılan çapraz doğrulama sonuçları

CV-1 CV-2 CV-3 CV-4 CV-5
1 0.50 0.50 1.00 0.50 0.50
2 0.50 0.50 0.50 0.50 0.50
3 0.50 0.50 0.50 0.50 0.50
4 0.50 0.50 0.88 0.49 0.50
5 0.50 0.50 0.95 0.49 0.50
6 0.50 0.50 0.93 0.49 0.50
7 0.50 0.50 0.93 0.49 0.50
8 0.50 0.53 0.98 0.49 0.50
9 0.78 0.63 0.80 0.82 0.79
10 0.90 0.85 0.88 0.88 0.89
11 0.98 0.94 0.95 0.94 0.96
12 0.98 0.98 0.96 0.95 0.98
13 0.98 1.00 0.97 0.98 0.99
14 0.99 1.00 0.98 0.98 1.00
15 0.99 1.00 0.99 0.98 1.00
16 0.99 1.00 1.00 1.00 1.00
17 1.00 1.00 1.00 0.99 0.99
18 1.00 1.00 1.00 0.99 0.99
19 1.00 0.99 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00
21 1.00 1.00 1.00 1.00 1.00
22 1.00 1.00 1.00 1.00 1.00
23 1.00 1.00 1.00 1.00 1.00
24 1.00 1.00 1.00 1.00 1.00
25 1.00 1.00 1.00 1.00 1.00
26 1.00 1.00 1.00 1.00 1.00
27 1.00 1.00 1.00 1.00 1.00
28 1.00 1.00 0.99 1.00 1.00
29 1.00 1.00 0.99 1.00 1.00
30 1.00 1.00 0.99 1.00 0.99
31 1.00 1.00 0.99 1.00 0.99
32 1.00 1.00 1.00 1.00 0.99
33 0.99 1.00 1.00 1.00 1.00
34 0.99 1.00 1.00 1.00 0.99
35 1.00 1.00 0.98 1.00 1.00
36 0.99 1.00 0.98 0.99 0.99
37 0.98 1.00 1.00 0.99 0.98
38 0.98 1.00 1.00 0.99 0.98
39 0.98 1.00 0.98 0.99 0.98
40 0.97 1.00 0.98 1.00 0.98
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Çizelge 5.2 : TGF-β için ilk 40 bileşende yapılan çapraz doğrulama sonuçları

CV-1 CV-2 CV-3 CV-4 CV-5
1 0.53 0.49 0.50 0.54 0.48
2 0.53 0.49 0.50 0.54 0.48
3 0.48 0.48 0.50 0.53 0.53
4 0.48 0.48 0.50 0.53 0.53
5 0.48 0.48 0.48 0.53 0.45
6 0.48 0.48 0.48 0.53 0.45
7 0.48 0.48 0.48 0.53 0.45
8 0.48 0.48 0.48 0.53 0.45
9 0.48 0.48 0.48 0.53 0.45
10 0.48 0.48 0.48 0.53 0.45
11 0.48 0.48 0.48 0.53 0.45
12 0.48 0.48 0.48 0.53 0.45
13 0.48 0.48 0.48 0.53 0.45
14 0.48 0.48 0.49 0.53 0.45
15 0.48 0.49 0.56 0.53 0.45
16 0.48 0.50 0.58 0.53 0.45
17 0.48 0.51 0.59 0.53 0.53
18 0.49 0.55 0.61 0.54 0.59
19 0.55 0.61 0.67 0.63 0.62
20 0.57 0.63 0.67 0.65 0.62
21 0.73 0.65 0.74 0.78 0.68
22 0.73 0.67 0.71 0.80 0.73
23 0.76 0.69 0.70 0.76 0.73
24 0.77 0.69 0.73 0.79 0.75
25 0.79 0.71 0.77 0.78 0.74
26 0.80 0.75 0.76 0.79 0.74
27 0.80 0.75 0.77 0.78 0.80
28 0.80 0.76 0.80 0.80 0.80
29 0.80 0.76 0.83 0.83 0.76
30 0.82 0.77 0.85 0.87 0.77
31 0.85 0.78 0.86 0.86 0.76
32 0.85 0.81 0.88 0.91 0.80
33 0.88 0.84 0.88 0.90 0.82
34 0.86 0.81 0.87 0.88 0.87
35 0.89 0.82 0.90 0.90 0.85
36 0.89 0.82 0.92 0.90 0.85
37 0.90 0.81 0.91 0.88 0.88
38 0.90 0.84 0.93 0.91 0.90
39 0.89 0.85 0.92 0.92 0.91
40 0.87 0.85 0.93 0.92 0.91
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6. TARTIŞMA

6.1 Çalışmanın Önemi

Bilgi çağında biyoenformatik alanında yapılan çoğu çaba, gen ağlarını belirlemeye

yönelik olmuştur [5] [6] [42]. Ancak, bu ağların davranış bağlamında yapılan

incelemeleri hâlâ az ve yetersizdir, çünkü gen verisini işlemek teknik açıdan zor

ve meşakkatlidir. Ayrıca, yeni dünyada geliştirilen derin öğrenme yöntemlerini

kullanabilmek için çok sayıda veri gerekmesi, bu verilere erişimin güçlüğü ve bu

verilerin kullanımındaki zorluk, bu alanda yeni çalışmaların yapılmasını daha da

zorlaştırmaktadır.

GWAS çalışmaları, önemli gen varyantlarını tespit etmede bazı fenotipler için önemli

çalışmalardır. Bu çalışmalar sayesinde varyantları bireyler arasında karşılaştırmak ve

kişisel hastalık eğilimini tespit etmek mümkün hale gelmiştir. Bir bireyin genetik

yönden fiziksel ya da zihinsel bir hastalığını tespit etmek açısından bu yöntemler

oldukça etkilidir. Bu hastalıkların varlığı PRS değerlerine bakılarak ölçülebiliyordu.

Ancak, bir hastalığın tespitinde kullanılan PRS değeri, kompleks gen yolaklarının

etki ettiği hastalıklar karşısında tutarlı sonuçlar vermiyordu [43] [44]. PRS hesabının

yapılabilmesi için her varyantın gen üzerindeki etkisinin bilinmesi gerekmektedir.

Fakat, bu hesabı bir gen için bile yapmak zor iken, birden çok gen açısından

değerlendirmek çok daha zordur. Bu nedenle, son zamanlarda yeni yaklaşımlara

ihtiyaç duyulmaktadır.

Bu sorunu çözmek için, bir gen yolağındaki tüm varyantları birlikte analiz ederek

oluşturulan yüksek boyutlu modelleme tabanlı bir yöntem önerildi. Bu yaklaşımda, bir

gen yolağındaki herhangi iki gen arasındaki herhangi bir etkileşimin verisel karşılığını

alabileceğimiz bir yapı sunuldu. Her bir genin uzunluğu birbirinden farklı olduğu için

bu problemi ortadan kaldıran CGR yöntemi ile bütün genleri eşit boyutlarda temsil

eden desenler ortaya çıkarıldı. Bu desenler genin dizilimine göre sıralanarak bir küp
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oluşturuldu. Bu sayede her bir gen yolağı için bir küp oluşşturulmuş oldu. Oluşturulan

bu küp EMPR yöntemiyle üç açıdan perspektiflerle temsil edilen iki boyutlu bir resme

dönüştürüldü. Bu dönüşüm sonucunda elde ettiğimiz resim, bütün gen yolağındaki

verilerin bir özeti haline getirildi. Bu resim bir veri dizisi gibi düşünülerek PCA analizi

yapıldı ve bu analizden çıkan bileşenler çok boyutta birleştirilerek resmi bir vektöre

indirgemiş oldu.

İndirgenmiş bu vektörün gen yolağını doğru temsil ettiğini ölçmek adına her bir bileşen

için 5-katlı çapraz doğrulama yöntemi ile SVM makine öğrenme metodunu kullandık.

Bu kullanım, 400 sağlıklı ve 400 hasta olmak üzere 800 gen yolağı ile yapılmıştır.

Aldığımız maksimum doğruluk sonuçları, 31 genli mTOR için %99 olurken, 93 genli

TGF-β için %90 olmuştur.

Yaklaşımımızın en önemli özelliği, çeşitli boyutlardaki verileri işleme kabiliyetidir.

Sunduğumuz yaklaşım, gen yolaklarının uzunluğu ve her bir gendeki nükleotid

sayısından bağımsız olarak çalışır. Tüm gen yolakları için kolayca uygulanabilir bir

algoritmadır. Ayrıca, PRS analizlerine kıyasla hangi varyantların gen ile ne kadar

ilişkili olduğunu önceden bilmeye gerek yoktur. Yalnızca varyanta etki eden gen

yolağını bilmek yeterlidir.

Araştırmalar arasında, gen yolaklarını varyantların gene olan etkisinden bağımsız

olarak kullanarak analiz yapabilen yaklaşımımız orijinal bir yaklaşımdır. Bu

çalışmadaki gözlemler ve sonuçlar, gen tabanlı multifaktöriyel koşullara karşı

bireylerin bedensel eğilimini belirlemek için bir tanı aracı olabileceğini de

göstermektedir.

6.2 Sonuç

Bu tez çalışmasında, genetik verilerin analiz edilmesi ve hastalıkların tahmin edilmesi

amacıyla makine öğrenmesi tekniklerinin uygulanması ele alınmıştır. Özellikle mTOR

ve TGF-β gen yolakları üzerine odaklanılarak yapılan çalışmada, iki farklı gen ağının

oluşturulması ve analiz edilmesi hedeflenmiştir.

Öncelikle, veri kümeleri oluşturulmuş ve her iki gen yolağı için sağlıklı ve hastalıklı

bireylere ait gen dizilimleri belirlenmiştir. CGR ve EMPR kullanılarak bu gen

40



yolakları iki boyutlu öz niteliklere dönüştürülmüştür. Bu yöntemler, genetik

verilerin karmaşıklığını daha iyi anlamamızı ve gen yolaklarının daha kolay analiz

edebilmemizi sağlamıştır. Çalışmada kullanılan makine öğrenmesi algoritmalarından

biri olan SVM, gen yolaklarının sınıflandırılması için etkili bir şekilde uygulanmıştır.

5-katlı çapraz doğrulama yöntemi ile yapılan testlerde, mTOR gen ağı için %99,

TGF-β gen ağı için ise %90’ın üzerinde doğruluk elde edilmiştir. Bu yüksek doğruluk

oranları, geliştirilen modelin genetik hastalıkların tahmini ve teşhisinde umut verici

sonuçlar sunduğunu göstermektedir.

Elde edilen bu sonuçlar, genetik verilerin daha geniş bir veri seti üzerinde test

edilmesi ve farklı fenotiplerle ilişkilendirilmesi halinde, genetik analizlerin klinik

uygulamalarda kullanımını artırabileceğini ve daha kapsamlı bir anlayış sağlayabile-

ceğini göstermektedir. Ayrıca, bu çalışma, genetik varyantların fenotipler üzerindeki

etkisini daha derinlemesine inceleyerek, genetik hastalıkların anlaşılmasına ve

kişiselleştirilmiş tıp uygulamalarının geliştirilmesine önemli katkılarda bulunmuştur.

Genetik verilerin karmaşıklığını anlama ve genetik varyantların fenotipler üzerindeki

etkisini araştırmak için yüksek boyutlu modellemenin kapsamlı bir şekilde kul-

lanılması, tezdeki gözlemler ve sonuçlar ışığında oldukça makul ve güvenilir

görünmektedir. Elde edilen olumlu sonuçlar, önerilen metodolojinin etkinliğini

ve güvenilirliğini sağlamlaştırmıştır. Bu bulgular, genetik verilerin karmaşıklığını

daha iyi anlamamızı ve genetik varyantların fenotipler üzerindeki etkisini daha

derinlemesine incelememizi sağlayarak, ilerleyen araştırmalara olanak tanımaktadır.

Bu yöntemlerin daha geniş bir genetik veri seti üzerinde test edilmesi ve farklı

fenotiplerle ilişkilendirilmesi, genetik analizlerin klinik uygulamalarda kullanımını

artırabilir ve daha kapsamlı bir anlayış sağlayabilir.

Bu tez çalışmasının sonucunda, genetik verilerin analizi ve hastalık tahmini konu-

larında önemli bir ilerleme sağlanmış olup, genetik biliminin klinik uygulamalarda

kullanımını artıracak yeni yöntemlerin geliştirilmesine yönelik önemli bir adım

atılmıştır.
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