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OZET

Integral Denklemlerin Sayisal Céziimleri

Biisra CELEBI

Matematik Anabilim Dali
Matematik Programi

Yiiksek Lisans Tezi

Danisman: Dog. Dr. Sebahat Ebru DAS

Bilindigi gibi niifus artigindan 1s1 dagilimina, elektrik iletiminden genetige kadar
say1siz alanda karsilagtigimiz bir¢ok problem diferansiyel ya da integral denklemler
gibi denklemlerin yardimiyla modellenerek ¢6ziime kavusmaktadir. Kesirli analizin
ortaya ¢ikmasiyla kesirli diferansiyel ve kesirli integral denklemler de bu gruba
katilmistir. Bu tiir problemlerin ¢ogu zaman tam ¢6ziimii olmadigindan ancak
niimerik ¢oziim yontemleri yardimiyla yaklasik olarak ¢oziilebilmektedirler. Bu
tezde, 1yi bilinen kesirli tiirev tanimlarindan olan Caputo kesirli tiireviyle verilen
bir kesirli Fredholm-integro diferansiyel denklem sinifinin yaklagik ¢6ziimii Hermit

Siralama Yontemi yardimiyla elde edilmistir.

Tezin ilk boliimiinde konunun literatiir taramasi, tezin amaci ve hipotezi verilmistir.
Ikinci boliimiinde, tezde kullanilan bazi 6zel fonksiyonlar ve o6zellikleri
tamitilmistir. Ugiincii boliimde, bilinen belli bash kesirli tiirev ve integral kavramlari
ve tarihgeleri hakkinda bilgiler verilmistir. Dordiincii boliimde ise, integral
denklemlerin siniflandirilmasi yapilmistir. Besinci boliimde, Hermit polinomlarinin
ortaya c¢ikisi, farkli ifade edilisleri ve belli bagh 6zellikleri ifade edilmistir. Altinct
boliimde, Hermit Siralama Yontemi tanitilip ayrintili olarak anlatilmigtir. Yedinci

boliimde ise, yontem bazi test problemlerine uygulanarak yaklasik ¢oziimleri elde

Xi



edilmistir. Farkli degerler i¢in ¢ozlimler irdelenmis, bunlarla ilgili tablo ve sekiller

verilmigtir.

Anahtar Kelimeler: Integral denklemler, Hermit polinomu, siralama ydntemi,

kesirli tiirev.
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ABSTRACT

Numerical Solutions of Integral Equations

Biisra CELEBI

Department of Mathematics

Master of Science Thesis

Supervisor: Assoc. Dr. Sebahat Ebru DAS

It is known that many problems we encounter in numerous fields, from population
growth to heat distribution, from electricity transmission to genetics, are solved by
modeling them via such as differential or integral equations. With the arising of
fractional calculus, fractional differential and fractional integral equations also
joined this group. Since most of such problems do not have exact solutions, they
can only be solved approximately using the numerical methods.

In this thesis, the approximate solution of a class of fractional Fredholm-integro
differential equations given by Caputo fractional derivative, one of the well-known
fractional derivative definitions, was obtained with the help of the Hermit
Collocation Method.

In chapter | of the thesis, the literature review of the subject, the aim and hypothesis
of the thesis are given. In chapter Il, some special functions and their properties
which used in the thesis are introduced. In chapter I11, the well known fractional
derivative and integral definitions are given with their history. In chapter 1V,
integral equations are classified. In chapter V, the emergence of Hermit
polynomials, their different expressions and properties are explained. In chapter VI,
Hermit Collocation Method is introduced and explained in detail. In chapter VII,

the method is applied to some test problems and approximate solutions are obtained.
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Solutions for different values are examined and relevant tables and figures are

given.

Keywords: Integral equations, Hermite polynomials, collocation method,

fractional derivative.
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GIRIS

1.1 Literatiir Ozeti

Son yillarda bir¢ok matematikgi ve aragtirmaci kesirli analiz konusunda ¢ok sayida
degerli calismalar yapmislardir. Ornegin, Yousefi, Javadi ve Babolian [1] adli
caligmalarinda kesirli mertebeden Volterra integral denkleminin niimerik ¢6ziimii
tizerinde calismiglardir. Yaklagik ¢6ziim igin Legendre Siralama Yontemini
kullanmislardir. Daha sonrasinda ise memnun edici yakinsama oranlari elde
etmislerdir. [2] ¢alismasinda ise Haotao ve Yanping zayif tekil ¢ekirdekli kesirli
mertebeden Volterra integral denkleminin ¢6ziim yaklasimi igin Chebyshev
tipindeki kesirli mertebeden Lagrange interpolasyon fonksiyonunu baz alinarak
siralama yontemi uygulanmistir. Radmanesha ve Ebadi [3]’te degisken mertebeli
kesirli evrim denklemlerinin ¢6ziimiinde Yerel Dairesel Taban Fonksiyonu
Yontemini (YDTF) kullanmiglardir. Zaman degiskenini ayristirmak i¢in uygun bir
sonlu fark teknigi kullanilarak, denklemi ¢dzmek i¢cin YDTF uygulanmistir. Bu
yontem diger yontemlere gore daha hizli ve etkin sonuglar vermistir. Rashidinia,
Eftekhari ve Maleknejad [4] adli calismasinda iki boyutlu dogrusal olmayan kesirli
Volterra ve Fredholm integral denklemlerinin yaklasik ¢6ziimlerine sayisal bir
yontem sunulmaktadir. Iki degiskenli kaydirilmis Jacobi polinomlarma dayali
olarak kesirli dereceli entegrasyon ve ¢arpimin yeni operasyonel matrisleri tiiretilir.
Elde edilen matrisler, ¢alisma kapsamindaki denklemleri dogrusal veya dogrusal
olmayan cebirsel denklem sistemlerine indirgemek i¢in kullanilir. Daha sonra
ortaya cikan sistemler Newton Y&ntemiyle ¢oziilebilir. Onerilen yontemin hata
siir1 ve yakinsama analizine iligkin tartisma sunulmaktadir. Wang, Liu ve Zhang
[5] calismasinda kesik psi serisi ¢Oziimiinin dogrulugunu ve Abel integral
denklemini ¢6zmek i¢in tekillik ayrimu ile pargali ve kiiresel siralama yontemlerinin
etkinligini dogrulamaktadir. Xu ve Zheng [6]’da ilk olarak Jacobi polinomlarinin
kesirli tiirevi icin analitik formiilleri tiiretilmistir. Genellestirilmis kesirli
operatorler i¢in degisken doniisiim teknigi araciligiyla Spektral Yaklasim Yontemi
Onerilmistir. Genellestirilmis kesirli operatorler icin operasyonel matrisler
tiiretilmis ve farkli kesirli operatorlere sahip diferansiyel ve integral denklemler i¢in

Spektral Siralama Yontemleri Onerilmistir. Son olarak yontem genellestirilmis
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kesirli adi diferansiyel denklem ve Hadamard tipi integral denklemlere uygulanarak
yontemin iistel yakinsamasi dogrulanmustir. [7]’de Yousefi, Javadi ve Babolian,
Legendre-Gauss-Lobatto noktasin1 Kullanarak bir cebirsel denklem sistemi
tirettiler. Bu yontem uygulamalarla gosterildi ve elde edilen sonuglar kesin
¢oziimleriyle karsilastirildi. Elde edilen sayisal sonuglar, 6nerilen yontemin ikinci
tiir kesirli integral denklemler i¢in etkili ve dogru oldugunu gosterildi. Eslahchi,
Dehghanb ve Parvizi [8]’de siralama yontemi kullanilarak dogrusal olmayan kesirli
integral diferansiyel denklemleri ¢O6ziilmiistir. Bu yoOntemin yakinsama ve
kararlilik analizi incelenerek sayisal 6rnekler verilmistir. Sharma, Pandey ve Kumar
[97’da B-operatorleri agisindan tanimlanan bazi genellestirilmis kesirli integral
diferansiyel denklemler (GKIDD) smiflart igin sayisal yaklasim iizerinde
calistlmistir. GKIDD’in dogrusal ve dogrusal olmayan formlar igin siralama
yontemi gelistirilmistir. Legendre polinomlari, yakinsama analizi ile sonlu boyutlu
uzayda ¢Oziime yaklagmak i¢in kullanilir. Elde edilen yaklasik ¢6ziim, 6zel bir
durumda Caputo tiirevleri kullanilarak tanimlanan kesirli integral diferansiyel
denklemin (KIDD) ¢oziimiinii kurtarir. Konvoliisyon tipi ¢ekirdekler iceren
KiDD’ler, bilim ve miihendislik uygulamalarinin cesitli alanlarinda karsimiza
cikmaktadir. Bu nedenle sayisal incelemelerin gerceklestirilmesi igin B-
operatoriindeki cekirdegi degistiren bazi test Orneklerini dikkate almigslardir.
[10]’da Nemati, Lima ve Sedaghat, kesirli gecikmis integral diferansiyel denklem
smifim ¢ozmek i¢in Gauss-Jacobi kareleme formiiliiyle birlestirilmis Legendre
dalgacigina dayali bir siralama yontemi sunmustur. Problem baglangi¢ veya sinir
kosullariyla ele alinmakta ve Caputo kesirli tiirevi kullanilmigtir. [11]’de Taheri,
Javadi ve Babolian, Stokastik kesirli integral diferansiyel denklemleri (SKIDD)
¢ozmek i¢in kaydirilmis Legendre Spektral Siralama Yo6ntemini onermektedir.
Sunulan yontemin temel &zelligi, SKIDD'leri cebirsel denklemler sistemine
indirgemesidir. Boylece problemi Newton Y ontemiyle ¢ozebilir. Ayrica yaklagimin
yakinsama analizi de dikkate alinmaktadir. [12]’de Jebreen ve Dassios, kesirli
Fredholm integral diferansiyel denklemlerine (KFIDD) Dalgacik Siralama
Yontemini kullanarak yaklasik bir ¢6ziim bulmak i¢in algoritma Snermislerdir.
Bunu yapmak igin istenen denklemi esdeger bir dogrusal veya dogrusal olmayan
zay1f tekil Volterra-Fredholm integral denklemine indirgemislerdir. Bu integral
denklemi ¢dzmek i¢in Miintz-Legendre dalgaciklarina deginerek kesirli integral

operatorii matris olarak temsil edildikten sonra dogrusal olmayan veya dogrusal
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cebirsel denklemlerden olusan bir sistem elde etmek i¢in Dalgacik Siralama
Yontemini uygulamislardir. Ma ve Huang [13]’te genel dogrusal kesirli integral
diferansiyel denklemlerin sayisal ¢6ziimi igin bir Spektral Jacobi Siralama
Yo6ntemi 6nermis ve analiz etmislerdir. Denklemin tanimlanan aralikta bir Volterra
integral denklemine doniistiiriilmesi igin gereken bazi fonksiyon ve degisken
dontigiimleri verilmistir. Daha sonra siralama diigiimleri olarak Jacobi-Gauss
noktalar1 kullanilmis ve integral denklemine yaklasmak igin Jacobi-Gauss kareleme
formilii kullanilir. Ardindan Onerilen yontemin yakinsama sirasi sonsuzluk
normunda incelenmistir. Son olarak onerilen yontemin etkinligini gostermek i¢in
bazi sayisal sonuglar verilmistir. Shi [14]’te zayif ¢ekirdekli kesirli integral
diferansiyel denklemlerin sayisal ¢ézlimleri i¢in bir spektral yaklasim 6nermis ve
analiz etmistir. Denklemler ilk olarak diizgiin olmayan ¢oziimlere sahip esdeger
zayif tekil Volterra integral denklemine doniistiiriiliir. Coztimiin tekilligini ortadan
kaldirmak i¢in, bazi uygun doniisiimler sunulur ve ardindan elde edilen denklemi
yaklagik olarak hesaplamak icin Jacobi Spektral Siralama Yontemini kullanilir.
Daha sonra spektral 6nerilen yontemin dogrulugu sonsuz normda arastirilmstir.
[15]’te Jebreen, kesirli tirevlerle zayif tekil integral diferansiyel denklemleri
(ZTIDD) ¢6zmek icin bir Dalgacik Siralama Yéntemi sunmustur. Yaklasim,
istenen denklemin ona karsilik gelen Volterra integral denklemine indirgenmesine
dayanmaktadir. Miintz-Legendre dalgacik dontisiimiinii (MLDD) tanitmis ve bunun
icin kesirli bir entegrasyon islem matrisi olusturmustur. Elde edilen integral
denklem, siralama yontemi ve Kkesirli entegrasyonun operasyonel matrisi
kullanilarak dogrusal olmayan cebirsel denklemler sistemine indirgeyip sunulan
yontemin hata sinir1 aragtirtlmigtir. Amin, Ahmad, Shah, Hafeez ve Sumelka
[16]’da dogrusal olmayan Volterra-Fredholm kesirli integro-diferansiyel
denklemler smifi hem teorik hem de hesaplama agisindan dikkate alirlar. Ilgili
teorik sonuglar, sabit nokta yaklasimi yoluyla bir ¢éziimiin varligina ayrilmstir.
Ayrica, hesaplama agisindan Haar dalgacik siralamasiin 6nerilen metodolojisidir.
Bu yontem dogrusal olmayan cebirsel denklem sistemini en aza indirir. Sonug
olarak uygulanan Haar yonteminin etkili oldugu ve farkli siralama noktalar1 igin
yakinsama oraninin kabaca 2'ye esit oldugu gosterilmistir. [17]’de Singh ve Mehra,
Stokastik kesirli integral diferansiyel denklemlerin ¢oziimiindeki belirsizligi
6lgmek i¢in etkili bir sayisal yontem sunmayr amaglamistir. Bu sayisal yontem,

Legendre polinomlarina ve bunlarin deterministik ve stokastik operasyonel
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entegrasyon matrisine dayanan bir dalgacik siralama yontemidir. Son olarak ger¢ek
diinya uygulamasina iligkin olarak bir borsa modeli simiile edilmis ve sonuglar
gosterilmistir. [18]’de Kumar ve Agrawal bir kesirli diferansiyel denklemler (KDD)
smifi Caputo tipi kesirli tiirev cinsinden ifade edilir. Bu ¢alismada toplam zaman
bir dizi kiiciik aralifa boliinmiis ve birbirini takip eden iki aralik arasinda
bilinmeyen fonksiyonlara ikinci dereceden hesaplamalar  kullanilarak
yaklasilmistir. Yontem dogrusal ve dogrusal olmayan iki tiir KDD'yi ¢6zmek icin
uygulanir. Paul, L. Mishra ve V. Mishra [19] nolu ¢alismalarinda hem birinci tiirden
hem de ikinci tlirden kesirli integral denklemleri ¢6zmek i¢in Laguerre ve Touchard
polinomlarina dayanan iki sayisal yontem tanitmislardir. Kesirli integraller Erdelyi-
Kober anlaminda tanimlanmaktadir. Her iki integral denklem de Laguerre ve
Touchard matrisleri kullanilarak cebirsel bir dogrusal denklem sistemine
doniistiirilir. [20]°de Sun ve Zhu, degisken mertebeli kesirli integral diferansiyel
denklem simifinin ¢6ziimii i¢in Chebyshev polinomlarint incelemektir. Chebyshev
polinomlarmin 6zellikleri dort tiir operasyonel matrisiyle birlikte problemi bir
cebirsel denklem sisteminin ¢oziimiine indirgemek i¢in kullanilir. Cebirsel
denklemlerin ¢oziilmesiyle sayisal ¢oziimler elde edilir. [21]’de Najafalizadeh ve
Ezzati, iki boyutlu kesirli integral islem matrisi olusturmak ve bunun iki boyutlu
kesirli integral denklemlerin sayisal ¢dziimiinde kullanmistir. Iki boyutlu kesirli
integral denklemleri bir cebirsel denklem sistemine indirgemek igin bu operasyonel
matrisleri ve iki boyutlu blok darbe fonksiyonlarmin 6zelliklerini kullanmistir.
Cebirsel sistem dogrusal veya dogrusal olmayan olabilir. Daha sonra onerilen
yontemlerin yakinsamasi gosterilir ve hata sinirlart bulunur. Onerilen yéntemin
dogrulugunu, verimliligini ve hizin1 gdstermek amaciyla dogrusal ve dogrusal
olmayan Ornekler sunulmustur. Esmaeili, Shamsi ve Dehghan’in [22]deki
calismasinda Caputo tiirevinin 6zellikleri, verilen kesirli diferansiyel denklemi
Volterra integral denklemine indirgemek i¢in kullanilir. Tiim alan birkag kiigiik
alana bollinlir ve integral denklemin iki bitisik noktaya yerlestirilmesiyle iki
bilinmeyenli iki cebirsel denklemden olusan bir sistem elde edilir. Yontem dogrusal
ve dogrusal olmayan kesirli diferansiyel denklemlerin ¢6ziimii i¢in uygulanir.
Ayrica hata analizi de sunulmaktadir. [23]’te Zabidi, Majid, Kilicman ve Rabiei
kesirli tiirevlerin Caputo anlaminda tanimlandigi kesirli durum i¢in Lagrange
enterpolasyonu uygulanarak tigiincii dereceden Adam-Bashforth sayisal semasi

kavramina dayali olarak tliretilmistir. Ayrica calisma, yontemin kararlilhik ve
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yakinsama analizine iligkin bir tartismay1 da igermektedir. [24]’te Abdeljawad,
Agarwal, Karapmar ve Kumari, ii¢ yeni kavram iizerinde durmustur. Ayrica, bu
yeni kavramlar aracilifiyla bazi sabit nokta sonuglar1 ve belirli tiirlerdeki dogrusal
olmayan Volterra-Fredholm integral denklemleri i¢in uygun bir ¢dziime yonelik
calismalar1 ve aynm1 zamanda Caputo tipi dogrusal olmayan kesirli diferansiyel
denklemin ¢6ziimii i¢in formiil kullanilarak bir ¢6ziim Onerilmektedir. Ma ve
Huang [25]’te ilk alt aralikta kullanilan polinom olmayan bir siralama ile araligin
geri kalaninda kullanilan kademeli pargali polinom siralamasini birlestiren hibrit
bir siralama yontemi kullanilmistir. Yontemin yakinsama sirasi i¢in teorik bir analiz
sunulmaktadir. Teorik sonuglar1 dogrulayan bazi sayisal ornekler verilmistir.
Ordokhani ve Rahimi [26] c¢alismasinda kesirli Volterra integral diferansiyel
denklemlerinin (KVIDD) sayisal ¢oziimiine yaklasmak icin rasyonellestirilmis
Haar Fonksiyonlart Yontemi (RHFY) uygulanmistir. RHFY fonksiyonlarinin
ozellikleri sunlardir: sunulmus ve kesirli entegrasyonun islem matrisi, iiriin islem
matrisi ile birlikte, KVIDD'lerin hesaplanmasini bir cebirsel denklemler sistemine
indirgemek i¢in kullanmilmigtir. KVIDD'leri ¢6zmek icin bu teknigin kullanilmas:
hesaplama siiresini azaltmigtir. Wang, Kamran, Jamal ve Li [27]’deki ¢aligmasinda
amaglar1 Fredholm tipi integral diferansiyel denklemin ¢dziimiinii Atangana-
Baleanu kesirli tiireviyle Caputo anlaminda yaklasiklagtirmaktir. Bunun igin
Laplace ve ters Laplace doniisiimiine dayali bir yontem iizerinde durmuslardir.
Sayisal semalarinda verilen denklem 6nce Laplace doniisiimii kullanilarak cebirsel
denkleme doniistiiriilmiis ardindan indirgenmis denkleme karmasik diizlemde
¢Oziilmiistiir. Son olarak verilen problemin ¢oziimii, ters Laplace doniisiimii ile bir
kontur integrali olarak temsil edilmektedir. Yang ve Hou [28]’de dogrusal ve
dogrusal olmayan kesirli integral denklemlerin ¢6ziimii i¢in Laplace Ayristirma
Yontemi gelistirilmistir. Yontem dogrusal olmayan kesirli integral-diferansiyel
denkleme dayanmaktadir. Dogrusal olmayan terim, Adomian polinomlarinin
yardimiyla kolaylikla ele alinmistir. [29]’da Pedas, Tamme ve Vikerpuur, Caputo
kesirli tlirevleri ve integral sinir kosullarini iceren dogrusal kesirli zayif tekil
integral-diferansiyel denklemler i¢in bir sinir deger problemleri (SDP) sinifini ele
alir. SDP’nin yeniden diizenlenmesiyle elde edilen integral denklemi kullanarak,
ilk olarak kesin ¢dzlimiin diizenliligi ve Caputo tiirevi incelenmistir. Elde edilen
diizenlilik 6zelliklerine dayanarak ve spline siralama teknikleri ile birlikte uygun

dontistimler kullanilarak problemin sayisal ¢o6ziimii tartisilmistir. Optimum kiiresel
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yakinsama tahminleri tiiretilir ve 6zel bir 1zgara ve siralama parametreleri se¢imi
icin bir siiper yakinsama sonucu verilir. Nemati ve Lima [30]’da zayif tekil
¢ekirdege sahip dogrusal olmayan kesirli integral-diferansiyel denklemlerin bir
siifini sayisal olarak ¢ozmek i¢in sapka fonksiyonlarinin bir modifikasyonu (SFM)
diistiniilmiistiir. Problem ikinci tiirden esdeger bir Volterra integral denklemine
donistiiriilir ve problemi iki degiskenli polinom denklemlerinin ¢dzliimiine
indirgemek i¢in SFM'lerin operasyonel matrisleri kullanilir. Roohollahi,
Ghazanfari ve Akhavan [31] nolu ¢alismasinda baslangi¢ degerli kesirli mertebeden
ve ¢ok mertebeden karma Volterra-Fredholm integro-diferansiyel denkleminin
¢oziimii igin iki etkili sayisal yaklagimi tanitmislardir. [32]’de Duangpan,
Boonklurb ve Juytai, Sonlu Entegrasyon Y ontemi ve kesirli entegrasyonun islemsel
matrisi kaydirmig, Chebyshev polinomuna dayali olarak uygulamustir. Kesirli ve
klasik integral diferansiyel denklem sistemlerini ¢6zmek i¢in iki sayisal prosediir
tasarlamak icin kullamirlar. Arikoglu ve Ozkol [33]teki calismasinda yar analitik
say1sal bir teknik olan Kesirli Diferansiyel Doniisiim Yontemini (KDDY), Volterra
tipi kesirli integral diferansiyel denklemleri ¢dzecek sekilde genisletmistir.
Dejenere ¢ekirdege sahip integral terimlerinin doniisiimiine iliskin daha 6nce var
olmayan yeni teoremler kanitlariyla birlikte sunmuslardir. Daha fazlas1 igin [34-61]

nolu ¢alismalara bakabilirsiniz.

1.2 Tezin Amaci

Bu ¢alismanin amaci asagida maddeler halinde verilmistir.

» Hermit Polinomlarin1 ve 6zelliklerini ayrintili olarak 6grenmek

» Hermit polinomlarini baz alan Hermit Siralama Y dntemini anlamak

» Hermit Siralama Yontemi yardimiyla bir kesirli Fredholm-integro

diferansiyel denklem sinifinin yaklasik ¢6ziimiinii elde etmek
» Elde edilen ¢6ziimleri tiim yonleriyle irdeleyip yorumlamak

» Bu konudaki ileriki ¢aligmalar i¢in yeni fikirler ortaya koymak



1.3 Hipotez

“Integral Denklemlerin Sayisal Coziimleri” adli hipotezimizde, ilk olarak bir
literatiir taramasi1 yapildiktan sonra Hermit Siralama Yontemi tim O6zellikleriyle
incelenecek, daha sonrasinda ise bir kesirli Fredholm-integro diferansiyel denklem
sinifina uygulanacaktir. MATHEMATICA programi yardimiyla yaklagik ¢oziimler

elde edilip hem grafiksel hem de tablosal olarak yorumlanacaktir.



2

OZEL FONKSiYONLAR

Ozel fonksiyonlar Matematigin ve Fizigin bircok alaninda oldukg¢a yaygin olarak
kullanilmaktadirlar. Ozel fonksiyonlar, kesitli tiirev ve integral tanimlarini daha iyi

anlamamizda bize faydal1 olacaklardir.

2.1. Gama Fonksiyonu

Isvigreli bir Matematik¢i olan Leonhard Euler tarafindan ortaya konulan Gama
fonksiyonu, faktoriyel fonksiyonunun karmasik sayilar ve tam say1 olmayan reel
sayilar i¢in genelleyen bir fonksiyondur. Birgok 6zel fonksiyon Gama fonksiyonu

ile ifade edilebilir.
Tamm 2.1 Gama Fonksiyonu

Gama fonksiyonu genellestirilmis integral ile
I'(x) = f t*"le~tdt ; x€C, Re(x)>0 (2.1)
0

olarak tanimlanir [35,42].
Teorem 2.1

Gama fonksiyonu agagida verilen 6zellikleri saglamaktadir:

a. I'x+1)=xI'(x), x#+0-1,-2,..
b. T'(x) =(x-1)!, x =123, ..
o ()= m

Teorem 2.1.a’nin yardimiyla asagida bazi degerler icin Gama fonksiyonunun

degerleri hesaplanmustir.
1
r (E) =+/m = 1.72245

3 1 /1\ =&
r (E) = EF (E) === 0.886227
3
2

3 1.3 3
r(=)==vr=>vr=132934
() T = VT = 13293
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Gama fonksiyonunun grafigi ise asagida verilmistir.

e
| |\/| A
| 1/
| I
| o
4 2 2
Y AT
[V
| |/3\4_
-

Sekil 2.1 Gama fonksiyonunun grafigi

2.2. Beta Fonksiyonu

Beta fonksiyonu matematikte olduk¢a yaygin olarak kullanilan 6zel bir
fonksiyondur ve birgok karmagik integral Beta fonksiyonu igeren ifadelere

indirgenebilir. Ayrica Gama fonksiyonu ile olan iliskisi de olduk¢a 6nemlidir.

Tamm 2.2 Beta Fonksiyonu

B(x,y) = f t*"1(1 — )Y 1dt ; Re(x),Re(y) >0 (2.3)
0

biciminde tanimlanan fonksiyondur [35,42]. Beta fonksiyonu sifir ve negatif tam
sayilar hari¢ tim kompleks sayilarda, Gama fonksiyonunun yardimiyla agagidaki
formtil ile genellestirilebilir:

_TOOr() |

B(x,}’)— l—.(x_l_y) )

X,y ER, x#+0,-1,-2,.. (2.4)



Teorem 2.2

Beta fonksiyonu asagida verilen 6zellikleri saglamaktadir:

a. B(x,y) =B(y,x)

b. B(x,y)=B(x+1,y)+B(x,y+1)

c. Blx,y+1)= %B(x +1,y) = %B(x,y)
2.3. Mittag-Leffler Fonksiyonu

Ilk olarak Isvegli Matematik¢i Gosta Mittag-Leffler tarafindan 1903’te tanimlanan

bu fonksiyon tistel fonksiyonun bir genellestirilmesidir.

Tamim 2.3 Mittag-Leffler Fonksiyonu
Fonksiyon E, (x) ile ifade edilir ve

e K
X
Ea(X)—k_Eom , a>0,x€eC (2.5)

seklinde tanimlanmustir [35]. Ayrica

oo £k
Ea,ﬁ(X):;m ) a,,B>O,xE(C (26)

fonksiyonuna Genellestirilmis Mittag-Leffler fonksiyonu denir [36].
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3

KESIRLI INTEGRAL VE TUREV

Bu boliimde oncelikli olarak kesirli tiirev ve integral kavramlarinin tarihsel
gelisiminden bahsedilmistir. Daha sonrasinda ise, literatiirde bilinen bazi temel

tiirev ve integral tanimlar1 verilmistir.
3.1. Kesirli Analizin Tarihcesi ve Uygulama Alanlar

Kesirli Analiz, klasik analizin tamsay1 olmayan mertebeden integral ve tiirev

almanin bir genellemesidir.

Kesirli operatoér kavrami, klasik operatdriin gelisimiyle hemen hemen ayni anda
. . dn -
ortaya ¢ikmustir. Kesirli analizin bilinen ilk referansi J{L notasyonunun mucidi olan

Gottfried Wilhelm Leibniz ve Marquis de L'Hospital ile 1695'teki yazismalarinda
ortaya ¢ikmistir. 30 Eyliil 1695 tarihli yazismada Leibniz, L’Hospital’e “Tam say1
mertebeden tiirevin islevi tam say1 olmayan mertebeden tiirevin islevine
genisletilebilir mi?” sorusunu yoénelttiginde [43] L’Hospital “Oyleyse 1/2
mertebeden tiirevin anlami ne olur?” sorusuyla Leibniz’i yanitlamistir (Miller ve
Ross, 1993). Daha sonra baska bir yazismasinda Leibniz “Bu, bir giin yararh
sonuglarin ¢ikacagi bir paradoksa yol agacak.” cevabini vermistir [41]. Kesirli tiirev
kavraminin ortaya ¢ikisi Bernoulli ile Leibniz’in aralarindaki bu yazismalara
dayanir. Leibniz'in sordugu soru ile kesirli tiirev 300 y1l1 agkin bir siiredir ¢ok cazip
bir konu haline gelmistir ve Euler, Joseph Liouville, Jean-Baptiste Joseph Fourier,
Niels Henrik Abel, Pierre-Simon de Laplace, Bernhard Riemann, Hermann Weyl,
Peter Griinwald, A. V. Letnikov gibi birgok 6nemli matematikg¢inin ilgisini ¢ekmis

ve bu teoriye katkilar1 olmustur [44].

Kesirli tiirevlere daha sonra 1772'de Joseph-Louis Lagrange, 1812'de Laplace,
1819'da Sylvestre-Frangois Lacroix, 1822'de Fourier, 1847'de Riemann, 1859'da
Judy Green, 1865'te Hjalmar Holmgren, 1867'de Grunwald, 1868'de Letnikov,
1869'da Nikolay Sonin’i, 1884'te Pierre Alphonse Laurent, 1919'da Hermann Weyl
gibi bircok matematik¢i atif yapmustir [39]. 1819 yilinda ise Lacroix kesirli tiirev
hakkinda makale yayimlayan ilk matematik¢i olmustur [45]. 19. yiizyilda kesirli
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analiz teorisi, biiyiik matematikgilerin iggoriileri ve dehalar1 sayesinde bu sekilde

gelistirilmistir.

Gottfried Leibniz, 1646 -1716
Isaac Newton, 1643-1727

1650

‘5{? Guillaume de I'HOpital, 1661- 1704

1700

e Leonhard Euler, 1707-1783
¢ ‘f_ & Joseph-Louis Lagrange, 1736-1813
Joseph Fourier Pierre-Simon Laplace
1768-1830 ¥ 1749-1827
s 1750

Niels Abel, 1802-1829 Q\

Bernhard Riemann -
1826-1866

Anton Grinwald

1838-1920 ﬁ
Aleksey Letnikov &=

1837-1888

Joseph Liouville
1809-1882

Karl Weierstrass
1815-1897

Pavel Nekrasov

1853 1924
Marcel Riesz

1886 1969
Wllllam Feller
1906-1970

1850
Oliver Heavusude

1850- 1925
Magnus Mittag-Leffler
1846-1927

Godfrey Hardy
1877-1947

John Littlewood | .“ S
1885-1977 > Paul Lévy

- 1886-1971

Hermann Wey!|
1885 1955

Sekil 3.1 Kesirli analiz alanindaki 6nde gelen bilim insanlarinin zaman ¢izelgesi

Seksenli yillarda kesirli analiz, fraktal ve kaos gibi fenomenlerle ve dolayisiyla
dogrusal olmayan dinamikle iligkili olarak ortaya ¢ikti. Son yillarda, yerel olmayan
ve uzun hafiza etkilerine sahip karmasik dinamik sistemlerin modellenmesinde
popiiler bir ara¢ haline geldi [40]. Bilim ve miihendislik camiasinda oldukga
popiiler olan bu konunun giizelligi kesirli tiirevlerin (ve integrallerin) yerel (veya
nokta) bir 6zelligi olmamasidir. Aslinda konu doganin gergekligini daha iyi terciime

etmektedir. Boylece bu konu bilim ve miihendislik camiasinin popiiler konusu
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haline gelmis, dogay1 daha iyi anlamak veya tanimlamak i¢in baska bir boyut
katmustir [43].

1900’1 yillardan glintimiize kadar kesirli analiz teorisi, daha ¢ok kesirli dinamikler,
kesirli diferansiyel denklemler ve kesirli geometri dahil olmak tizere uygulamali
disipline esas olarak seri bir sekilde gelisti. Bugiin ise Kesirli analizin uygulamalari
oldukg¢a yayilmistir. Modern disiplinin neredeyse hicbir disiplininin olmadigini
s0ylemek giivenlidir. Genel olarak modern miithendislik ve bilimin neredeyse hi¢bir
disiplininin kesirli analizin ara¢ ve tekniklerinden etkilenmedigini sdylemek yanlis
olmaz. Ornek verecek olursak akustik, viskoelastisite, optik, jeoloji, kimyasal ve
istatistiksel fizik, kontrol teorisi, robotik, elektrik ve makine miihendisligi,

biyomiihendislik gibi birgok sahada genis ve verimli uygulamalar bulunabilir.

3.2. Temel Kesirli integral ve Tiirev Tanimlari

Bu boliimde bilinen en iinlii tam say1 olmayan tiirev ve integralle alakali olan
Riemann-Liouville, Griinwald-Letnikov ve Caputo tamimlar1 verilmistir. italyan
matematik¢i Michele Caputo 1960’1 yillarda Kkesirli mertebeden diferansiyel
denklemleri, tam say1r mertebeden baslangi¢ kosullarini kullanmak amaciyla
Riemann-Liouville kesirli tiirevinin tanimini tekrardan formiiliize ederek ¢ozer yani
o baglangi¢ kosullarina ihtiya¢ duymadan daha ¢ok tercih edilen tiirev operatorii
haline doniistiirmiistiir [46].

3.2.1. Riemann-Liouville Kesirli Integral ve Tiirevi

Muhtemelen kesirli analizin gelisimindeki en yararhi ilerleme, G. F. Bernhard
Riemann tarafindan 6grencilik giinlerinde yazilan bir makaleden kaynaklaniyordu.
Ne yazik ki, makale ancak 6liimiinden sonra 1892°de yayinlandi. 1853°te bir Taylor
serisini genellestirmeye ¢alisan Riemann, belirli bir integral igeren ve tam say1
olmayan {islii kuvvet serilerine uygulanabilir farkli bir tanim iiretti. Burada
Riemann-Liouville kesirli analizin ¢ergevesinde kesirli integralin dogrusal
operatorleri ve kesirli tiirevi mevcuttur. Bu operatorler uygulamali bilimlerde
calisan bilim insanlarinin erisebilecegi bir sekilde Laplace doniisiimii teknigi ile ele

alinmistir.

Tammm 3.1 Riemann-Liouville Kesirli Integral

v negatif olmayan gergek bir say1 olsun. f, ]’ = (0, ) tizerinde pargali siirekli ve

J = [0, o] nin herhangi bir sonlu alt araliginda integrallenebilir olsun. O zaman
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DV f(x) = fx(x — )" 1f(t)dt, v>0 (3.1

1
I'(x)
’e f’nin v. mertebeden Riemann-Liouville Kesirli Integrali denir [45,61].
Tamm 3.2 Riemann-Liouville Kesirli Tiirevi

Kesirli tiirev, kesirli integralin tanimi1 kullanilarak tanimlanabilir. Bu amagla

v = n — u oldugunu varsayalim. Burada 0 < v < 1 ve n, u’dan biiyiik en kii¢iik
tam sayidir. O halde,

D¥f(x) = D"[D7Vf(x)] (3.2)
f’nin u. mertebeden Riemann-Liouville Kesirli Tiirevi denir [37,45].
3.2.2. Griinwald-Letnikov Kesirli Tiirevi

Griinwald ve Letkinov bugiin de siklikla kullanilan bagka bir kesirli tiirev taniminin
temelini olusturdu. Liouville’in yaklasiminin kisitlamalarindan rahatsiz olan
Grunwald (1867), baslangic noktasi olarak bir fark boliimiiniin sinirt olarak bir
tirev tanimin1 benimsemistir. Adi tiirevler i¢in belirli integralinin sonlu bir alt

limite sahip olarak yorumlanmasi gerektigini ve ayrica ayirt edilebilir bir alt limitin
goriinmedigi Liouville taniminin bir alt limit —oo’a karsilik geldigini gosterdi. (,(l)c:)

genellestirilmis binom katsayisidir. Burada faktoriyeller Euler’in Gama fonksiyonu

ile degistirilir. O halde

(A5f) Se=o(—1D¥ () fCx = keh)

(0 =lim -

Df(x) = ;Li_r)rg , a>0 (3.3)

olarak adlandirilir [37,47,61].
3.2.3. Caputo Kesirli Tiirevi

Kesirli analize yapilan en dnemli modern katkilar arasinda, 1967°de M. Caputo’nun
tarafindan tanitilan Caputo kesirli tiirevidir. Caputo’nun yeniden formiiliize ettigi
bu kesirli tirevde diferansiyel denklemler ¢6ziiliirken Riemann-Liouville kesirli
tirevinde kullanilan kesirli mertebeden baslangi¢ kosullarini tanimlamaya gerek
yoktur. n pozitif bir tam say1 ve n—1 < Re(a) <n olmak iizere, f(x)

fonksiyonunun a. mertebeden klasik Caputo Kesirli Tiirevi

1 t AN
DEFG) = gy | €= () F@ds G
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dir. Ozel olarak eger f(x) = (x — a)?,

D&(x — a)? =1 r@+

0

r(B+1—-a)

(x —a)f=«

a,B =0 Iise

, BE{01,..,n—1} ve B<n
BEN ve B=n (3.5)
BeEN ve B>n—1

)

seklinde tanimlanmustir [37,42,47,61].

Tablo 3.1 Bazi polinomlarin Caputo tiirevleri

a = 0.5 i¢in Caputo Tiirevleri
Fonksiyon Caputo Tiirevi
_ 2
f) =x DOSx = ——x05 = 1.1283791671x%5
Jr
- rQ 8
flx) =% osy2 = I®) a5 8 a5 _ 1 5045055561340
F(E) NG
2
— 3 r(4 16
flx)=x 053 = —(7) x25 = — x25 = 1.80540666735x%5
v@) 5
2
= xt r(s 128
fG) =x posyt = TO) a5 128 55 5 06332190555x%
r (%) 35vVm
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A

INTEGRAL DENKLEMLER

Integral denklemler, bilinmeyen bir u(x) fonksiyonun integral isareti altinda
bulundugu denklemlerdir. Bu denklemler, teorik ve uygulamali matematik
alanlarinda kullanilan olduk¢a giiclii matematiksel bir aractir. Birgok fiziksel
problemlerde oldukga genis uygulamalara sahiptir. Bir¢ok adi ve kismi diferansiyel
denklemler baglangi¢ ya da smir kosullar1 altinda integral denklemlerin yaklagik

¢Ozlimii problemlerine doniistiiriilebilir.

Integral denklemlerin tarihgesine bakacak olursak, ilk olarak Italyan matematikgi
olan Niels Henrik Abel 1823 yilinda inceledigi problemle beraber ilk kez integral
denklemden bahsetmistir. Bu problem “Tautochrone Problemi” olarak bilinir ve
Abel bu problemi kendisine ait olan Abel Integral Denklemi ile iliskilendirmistir.
Bu problem, agir bir pargacigin siirtinme olmadan kayarak en algak konuma kadar
gittigi yolu ifade eden bir egrinin belirlenmesi ile ilgilidir. integral denklem
kavrami ilk olarak D.B. REYMOND’un 1888’de yayinladigi ¢alismasinda ortaya
atilmastir. Integral denklemlerle alakali daha sonralar1 Ivan Petrovsky, Francesco
Tricomi ve William Vernon Lovitt’e ait belgeler mevcuttur. Doga kanunlar
genellikle diferansiyel denklemler kullanilarak agiklanabilir. Bu nedenle, ¢evremizi
inceledigimizde kozmosun biitiiniinde dogru kabul edilen doga kanunlarinin oldugu
neticesine ulasilabilir. Goriilityor ki Albert Einstein’in “Evrenin en anlasilmaz
ozelligi anlagilabilir olmasidir.” sézii daha da anlamlanmustir. integral denklemler
tiim kozmos iizerinden integral alinmayi icap ettirdiginden evrenseldir. Integral
denklemler nispeten bir¢ok denkleme gore ¢oziime ulasilmasi daha zordur.
Diferansiyel denklemler ise yalniz basina bir problemi tanimlamak icin yeterli
degildir. Onlara baslangi¢ ya da siir kosullarinin da eklenmesi gerekir. Integral
denklemler ise ilave kosullara ihtiyag duymadan bir problemin tam tanimini verir.
Ancak, sinir sartlari da kozmosun tamaminda onlarin incelenen alana tesirinin
dolayli yoldan denklemlere eklenmesi olarak ¢ikarima varilabileceginden, integral
ile diferansiyel denklemler arasinda benzer bir baglanti olmasi da ¢ok agiktir.
Anlasilacagi iizere diferansiyel denklemler esasinda integral denklemler seklinde
de belirtilebilir.
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Bir¢ok bilim dalindaki problemler birden fazla bilinmeyen fonksiyon iceren
diferansiyel yada integral denklem yardimiyla ifade edilir. Bu denklemler, 6zellikle
parcalilarla, pek ¢ok fizik ve miihendislik alaninda karsilasmaktayiz. Ornek
verecek olursak, Diferansiyel Denklem Sistemleri: 1988 yilinda Elastikiyet teorisi,
1990°da Dinamik ve yine ayni yilda Akigkanlar mekanigi, 1996’da Devre
problemleri, Salimim problemleri, 1998’de Kuantum dinamigi gibi alanlarda
goriilmektedir. Bu sistemlerin ta ¢oziimii elde edilemediginden yaklasik ¢oziimleri

i¢in ¢alismalarin yapilmasi 6nem arz etmistir [48-51].
4.1. Integral Denklem

Bilinmeyen bir u(x) fonksiyonunun bir integral igareti altinda bulundugu denkleme

Integral Denklem denir. Bir integral denklem en genel haliyle

h(x)
ulx) = f(x)+1 K(x,t)u(t)dt (4.1)
g(x)

Seklinde ifade edilir. Burada, g(x) ve h(x) integralin sinirlari, A sabit bir parametre
ve K (x, t) ¢ekirdek veya integral denkleminin ¢ekirdegi olarak adlandirilan x ve t
degiskenlerine bagli bir fonksiyondur. Bilinmeyen u(x) fonksiyonu integral
isaretinin altinda olabilecegi gibi hem i¢inde hem de disinda gortilebilir. Goriildiigii
gib f(x), K(x,t) fonksiyonlar bilinen fonksiyonlardir. integral sinirlari olan g(x)

ve h(x) sabit ya da fonksiyon olabilir.

u(x) bilinmeyen fonksiyonunun integral isareti altinda bulundugu ve ayn1 zamanda
u™(x) tiirevini de iceren denklemlere /ntegro Diferansiyel Denklemi denir. Standart

bir integro diferansiyel denklemi

h(x)

u(x) = f(x) + /1] K(x, t)u(t)dt (4.2)

g(x)

seklindedir [48-51].
4.2. integral Denklemlerin Simflandirilmasi

Integral denklemler farkli 6zelliklerine gore asagidaki gibi simiflandirilabilir:
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4.2.1. Lineer ve Lineer Olmayan integral Denklemler

Integral denklemler lineer ve lineer olmayan integral denklemler olarak iki boliime
ayrilir. Eger u(x) bilinmeyen fonksiyonu integral isareti altinda lineer formda ise,

yani
ulx) =f(x) + fo(x, u(t)dt (4.3)

ise Lineer Integral Denklem; lineer olmayan formda ise, yani

X

u(x) = f(x) +f olx, t,u(t)]dt (4.4)

ise Lineer Olmayan Integral Denklem adini alir. Bunlarm haricinde birden fazla

degiskeni mevcut olan

b ~d
u(x,y) =f(x,y)+f j- K(x,y;t;, t,)u(ty, ty)dt dt, (4.5)

c

bi¢cimindeki denklemler de lineer ve lineer olmayan olarak siniflandirilir.
4.2.2. Tekil ve Tekil Olmayan Integral Denklemler

Bir integral denklemi siniflandirirken ¢ekirdek fonksiyonunun siirekliligi 6nem arz
etmektedir. K (x, t) gekirdek fonksiyonu a < x,t < b araliginda siirekli ise integral
denkleme Tekil Olmayan Integral Denklem; siirekli degilse Tekil Integral Denklem

denir. Ornegin 0 < a < 1 igin

foo = [, (4.6)
o (x—0)% '

tekil bir integral denklemdir. Bununla birlikte, integrasyon simirlarindan en az biri

o ise, denkleme tekil integral denklem denir. Ornegin,

flx) = fooe"“u(t) dt (4.7)

seklindeki denklem gosterilebilir [48-51].
4.2.3. Homojen ve Homojen Olmayan Integral Denklemler

f(x) fonksiyonunun var olup olmadigina gore de integral denklemler
siniflandirilabilir. Integral denklemde f(x) = 0 ise, denklem homojen integral

denklem; degilse homojen olmayan integral denklem adin1 alir. Yani
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b
u(x) = A f K(x, £) u(t)dt (4.8)

homojen bir denklem iken

b
u(x) = GO + 4 f KCx, ) u(®)dt (4.9)

homojen olmayan bir denkleme ornektir. u(x) = 0 olan ¢oziime Asikar Coziim
denir.

4.2.4. Volterra ve Fredholm Integral Denklemleri

Integral denklemlerin lineer ve homojen olup olmadiklarina bakilmaksizin,
integrasyon siirlariin degisken veya sabit olmalarina gore de siniflandirmalar

yapilmaktadir.

fx) + lfxl((x, Hu(®)dt=0 (4.10)

ulx) =f(x) + }tfo(x, tu(t)de (4.11)

denklemlerine Volterra Integral Denklemi denir. Bu tip denklemlerde,
integrasyonun {ist sinirinda (veya sinirlarindan birinde) x degiskeni vardir. Eger
integrasyonun iki smir1 da sabitlerden olusuyorsa bu tiir denklemlere Fredholm

Integral Denklemi denir. Genel olarak
b
F(x) + zf K(x,t) u(t)dt = 0 (4.12)
a
ya da
b
ulx) = f(x) + ij K(x,t) u(t)dt (4.13)
a

birer Fredholm integral denklemidir. Eger integral denklem, biri Volterra biri de
Fredholm integral denklemlerindeki gibi sinirlar igeren iki integral iceriyorsa bu

tarz denklemlere Volterra-Fredholm Integral Denklemi denir.

b x
flx)+ /If K(x,t) u(t)dt + Bf K(x,t)u(t)ydt =0 (4.14)

ya da
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b X
u(x) = £ + A f KCx, O u()dt + B f KCx, ) u(t)dt (4.15)

birer 6rnektir [48-51].
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5

HERMIT POLINOMLARI

1810 yilinda Fransiz matematik¢i ve gokbilimci Pierre-Simon Laplace tarafindan
tanimlanan Hermit polinomlari, farkli bir bi¢imde 1859'da Pafnuty Chebyshev
tarafindan ayrintili olarak incelenmistir. Daha sonrasinda 1864'de Charles
Hermite'nin adiyla anilmistir. Yeni bir tanim degildir ama Hermite 1865'teki

yayinlarinda ¢ok boyutlu polinomlar tanimlayan ilk kisi olmustur [52-53].

Sekil 5.1 Charles Hermite (24 Aralik 1822 - 14 Ocak 1901, Fransa)
5.1 Hermit Diferansiyel Denklemi

Gliniimiizde doga bilimlerinden miihendislige kadar bir¢cok alanda karmasik
problemlerle karsilagiriz. Bu problemler genellikle diferansiyel denklemler
yardimiyla modellenerek ¢6ziime ulasilmaya calisilir. Bu modellemelerde ¢ok
cesitli denklemler kullanilmaktadir. Bunlardan birisi de matematik ve fizikte
kullanilan Hermit Diferansiyel Denklemidir. Bu diferansiyel denklem en genel

haliyle

y"—=2xy'"+2ny=0, (n=0,1,2,3,...) (5.1)
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bi¢iminde ifade edilir [54-55]. Bu diferansiyel denklemi ¢6zebilmek igin kuvvet
serilerinden yararlanilir. Bunun igin 6ncelikle y(x) ¢6ziim fonksiyonunu kuvvet

serisi olarak agagidaki gibi yazalim.
y(x) = ag + a;x + azx? + azx3 + - = z A x™ (5.2)

Burada y(x) fonksiyonu bizim denklemimizin ¢6ziim fonksiyonu oldugundan
dolay1 diferansiyel denklemimizi saglamak zorundadir. Sirasiyla y'(x) ve y" (x)

tiirevleri
y'(x) = a; + 2a,x + 3azx? + - = z ma,,x™ 1 (5.3)
m=1
ve
y"(x) = 2a, + 6azx + 12a,x? + - = z m(m — 1a,,x™ 2 (5.4)
m=2

olarak elde edilir. Daha sonrasinda (5.2), (5.3) ve (5.4) ifadelerini (5.1)

denkleminde yerine yazacak olursak

Z m(m — Da,x™ 2 — z 2ma,, x™ + z 2na,,x™ =0 (5.5)
m=2 m=1 m=0

elde edilir. Yukarida goriildiigii gibi ikinci ve tiglinci seri x™ kuvvetine sahip iken
ilk serimiz x™~2 kuvvetine sahiptir. ilk serimizi m degeri yerine (m + 2) alarak

yeniden diizenlersek

Z (m+2)(m+ 1a,,x™ — z 2ma,x™ + z 2na,x™ =0 (5.6)

elde edilir. Burada amacimiz serilerin hepsini tek bir seri toplami altinda yazmak

oldugundan, serinin indisini m = 1 ’den baslayacak sekilde alirsak

z [((m+2)(m+ Dayy, — 2m—2n)ay,|x™ + 2a, + 2na, =0 (5.7)

m=1

elde edilir. (5.7) denklemindeki esitligin sag tarafi sifir oldugundan sol taraftaki

ifadeleri ayr1 ayr sifira esitlersek
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2[m —n]

= , >1 :
2=t pm+nom " (58)
yineleme bagintis1 ve
—2n
a, = 2 a (5.9)

degeri elde edilir. (5.8) yineleme bagintisint (5.9) esitligi yardimiyla agacak

olursak m’nin ¢ift say1 degerleri i¢in

> m=0
2(—n)
2= %
> m=2
2(2—-n) 22(—n)(2 —n)
LVl 41 o

> m=+4

a = 2(46;71)a4 :23(—71)(26—!71)(4—71) 0, (5.10)

elde edilir. Bu sekilde devam edilecek olursa a,,, terimi
_ 2™(—n)(2—n)..(2m—2) —n) . (511)

seklinde genellenebilir. Ayni1 seyi bu sefer m’nin tek say1 degerleri i¢in yaparsak

> m=1
2(1—n)
3= 31 4
» m=3
2(3—-n) 22(1—n)(3—n)
e
» m=5

2(5—n) 22(1-n)B3-n)(5—-n)
=" BT 7! h

(5.12)

elde edilir. Yine bu sekilde devam edilirse a,,,,, terimi
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2™"(1-n)B-n)..(Cm—1) —n)
a

2m+ 1)! ! (513)

Arm+1 =

olarak genellenir. Buna gore y(x) ¢6ziim fonksiyonumuz

y(x) = a {1 + %xz o 2ENE _?z)nlln)!(zm —27) oy }
2(1—n) 2™"(1-n)B3—-—n)..2m—-1-n) it
+a1{X+Tx3+---+ am 1Dl x2mtl
+ } (5.14)
olarak elde edilir. (5.14) denklemini
y(x) = apy:(x) + a;y,(x) (5.15)

olarak yeniden ifade edelim. Burada y; (x) fonksiyonu x’in ¢ift kuvvetlerine yer
edinirken y,(x) fonksiyonu ise x’in tek kuvvetlerine yer edinir. (5.14)
denkleminde goziimiize carpan ilk sey n sayisinin bir tam say1 olmasidir. Burada
ilk olarak n sayisini ¢ift olarak kabul edersek a,’dan baslayan seri m =n

degerinden sonra
Apyz = Apyg = =10

olur. Boylece y; bir polinom olurken y, sonsuz terimli bir seri olur. Bu sefer n
tamsayisini tek kabul edecek olursak y, 'nin ¢6ziimii polinom olurken y; ’in ¢6zimii
sonsuz terimli bir seri olur. Polinom olan ifade edilen kisma Hermit Polinomu denir
ve H, ile gosterilir. Buna gére Hermit diferansiyel denkleminin genel ¢éziimii

y(x) = agun () + a; v, (x) (5.16)
olarak yazildiginda

neift = Hy(x) = up(x)

ntek = H,(x) = v,(x)

seklinde olur. Hermit polinomlari ise

H,(x) = aq {1 _ %%2 + %%+ } (ncift) (5.17)

=

- _ _ 5
(n31).%3+(n 13?.(5n 3).§+---},(ntek) (5.18)

H,(x) = a, {x -
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ifadeleri ile verilir [55]. O halde (5.17) ve (5.18) denklemleri (5.16)’de yerine

yazilirsa
~ o (=2)nn—2) ..(n— 2+2)
y(x) =ag3i1 +JZ=; ol 2
S (-2 (n—-1Dn-3)..(n—2j + D
+a;x{1 +Z T x%*1% (5.19)
elde edilir.

Serilerle islemlere baslamadan once daha sonrasinda bizim ig¢in Onemli olan

serilerle ilgili baz1 6zellikleri verelim:

Tablo 5.1 Baz1 temel seri ozellikleri

Bazi Temel Seri Ozellikleri

» ncift bir say1 olsun. O halde

o (-1)Zn!
O]

olur. (5.19) teki ilk toplamda 2j = n kabul edersek 0 zaman x™’in katsayisi

(5.20)

(_2)(%) nn—2)..(n—n+2)

. . Qg (5.21)

olur. Daha sonrasinda (5.20) teki a, terimini (5.21)’de yerine yazacak olursak
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(_2)(%) nn—-2)..(n—n+2) (—1)%n!
' n! ' (E)l
5)!

elde edilir. (5.22) denkleminde gerekli diizenlemeler yapildiginda pay ve paydada

(5.22)

bulunan n! terimleri sadelesecektir. (E) isli ifadeleri tek bir parantez halinde

toplanirsa (5.22) ifadesi

n -2).(n—- 2
@ 20D )
G

halini alir. Payda asagidaki gerekli diizenlemeler yapilinca (5.23) ifadesi

(5.23)

w222(2-1).. w @@ (D)1
_ (2)(5) 2 ) 2 (Z(n)ll) (2)1 - (2)(7)(2)(71—)('2)' =2" (5.24)
7 H 7 H

olur. Ayn sekilde x in katsayist,

n—Z) nn—-2)..n—n+2+2) (—1)%71!

27 A o

(5.25)

olur. (5.25) denklemimizi (—1) ile ¢arpip bolelim. O halde

A =2 . (n—n+2+2) (—Dzn! (=1)
CINERS R _ (%)' T

n—2
n—Z) Z(T)%(% - 1) - (2) n(n-1Dn-2)!

@B )

~ A (g) In(n—1) 20D —1)
e W

elde edilir. O zaman y(x) fonksiyonunun en biiyiik kuvvete sahip x’i ve katsayisini

(5.26)

polinom dizilisine gore yazacak olursak

nn—1)
(-

2n—2 n-2

y(x) =2™"x" —

nn-Dn-2)n-3)  , .,
@) ST,
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bulunur. (5.27) denkleminde son terimin a,, oldugu agikga goziikkmektedir. O zaman

H,,(x) polinomu

nn—1)

Hy(x) = (200" = =57

(2 )nZ

+n(n —1)(n-2)(n-3) oL T (—1)gn!
2 @

seklindedir. (5.28) denklemini bir seri toplami olarak daha pratik olarak ifade

(5.28)

edecek olursak, Hermit polinomu

2|

n! —om
Hn(x)=mz=0(—1) = @ (5.29)
4 g ,ncift
-t 530
—,

seklinde elde edilir [55,58]. Bu formiile gére, Hermit polinomlarinin birkag terimini

acik sekilde ifade edecek olursak

> Ho(0) = Zheo (- D™ o (20727 = (1) 55 (22)° = 1
1
(m)!(1-2m)!
2
" (m)!(2—-2m)!

L(2x)172m = (-1)9&. (2x)! = 2x

> Hi(x) = 9n=0(_1)m-

L(2x)¥2m = (-1)9%. (2x)2 +

> Hy(x) = 211n=0(_1)m

(=D)L= (2x)° = 4x2 — 2

1'o!

> Hy(x0) = Do~ D™ s (22777 = (=1 (20)% +

(—1)L2 (220! = 8x3 — 12x

11’

> Hy(x) —Zm o(=D™.

4!

(m)I(4—2m)!’

(DL (20)? + (12 2‘,*0' (2x)° = 16x* — 48x% + 12

> Hs(x) = Xhoo(=D™

20+ = (-1)°. - (22)* +

L(22)57m = (=1)°. == (2%)° +

(m )|(5 2m)!’ 0!5!

(- 1)1 1|_3| (2x)3 + (- 1)2 ; (2x)' = 32x5 — 160x3 + 120x
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YV V V V

Ho(0) = Tamo(— D™ ot (220572 = (—1)°. 02 (20° +

(DL (20" + (12 (207 + (13 . (22)° = 64x° —
480x* + 720x% — 120

H,(x) = 128x7 — 1344x5 + 3360x° — 1680x

Hg(x) = 256x® — 3584x° + 13440x* — 13440x2 + 1680
Hy(x) = 512x° — 9216x7 + 48384x> — 80640x3 + 30240x
Hyp(x) = 1024x1° — 23040x8 + 161280x° — 493200x* +

302400x% — 30240

olur [55,58].

200

150

5.2

Sekil 5.2 Hermit polinomlar1 grafigi

Hermit Polinomlarimin Bazi Temel Ozellikleri

Burada Hermit polinomlarinin farkli formlardaki halleri mevcuttur.

521

Hermit polinomunu farkli bir sekilde ifade edebilmek i¢in iistel fonksiyonun seri

Uretici Fonksiyon

toplam formiiliinden yararlanabiliriz. Biliyoruz ki

o
t?’l

et= ) — (5.31)

n!
n=0
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ile ifade edilir. Burda t — 2xt yazacak olursak

(o] tTI,
e?Xt = Z(Zx)"m (5.32)
n=0 '
elde edilir. Simdi ise, (5.31) denkleminde t — —t? alirsak
2 ® t2n
et? = Z(—nn— (5.33)
n!
n=0

bulunur. (5.32) ile (5.33) seri toplamlarini ¢arpalim. O zaman

i e 420 * 2 (2x)iti+2)
ert—t2 — Z(Zx)l '_lz(_l)] — = Z Z(_l)J —( _)' - (5.34)
L i! = b4 = i!j!
olur. (5.34) denkleminde bazi temel seri 6zelliklerinden 1(ii) 6zelligini kullanirsak
4]
NN D@
ettt = i (5.35)
L L (@ =2zt
=0 j=0

elde edilir. Elde ettigimiz (5.35) denklemini i! ile ¢arpip bélersek sonug olarak

o (—1)/ (200l ¢
o 2xt—t? :Z ( ) ( _) : — (5.36)
_ (-2t il
olarak bulunur. (5.36) denkleminin ikinci toplaminda (5.29) denklemindeki

benzerligi kullanacak olursak
p2xt—t? _ Z (O (5.37)
i=0 '

olur [56,58].

5.2.2 H,(x) i¢cin Rekiirans Baglantilari
= 2xHp(x) = 2nH,_1(x) + Hpy1(x)

Bu bagintinin dogrulugunu gostermek igin (5.37) denkleminin t’ye gore tiirevini
alalim. Buna gore,

[00] [00]

ert—tZ(Zx —2t) = Z nH, (x) :l_' = 2(x —t) Z Hn(x):l—r:

n=1 n=0
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s n-1

= Z nH, (x) tT (5.38)

n=1

dir. (5.38) denkleminde ikinci toplamin disindaki 2(x — t) katsayisin1 dagitalim.

Buna gore
tn—l
2x Z H, (x) Z iy () — (5.39)
elde edilir. Bu esitlikteki serileri terimlerine acacak olursak
t t"
2x {Ho(x) FH GO+ o B0+ }
t2 n+1
—Z{Ho(x) +H1(x)—+ o Hy () —- }
t tn—l
= {Hl(x) + 2H,(x) o + o+ nH,(x) # } (5.40)

olur. Esitligin solunda ve saginda bulunan ayn1 kuvvetli ¢t terimlerinin katsayilarini

birbirlerine esitleyecek olursak,
2xHo(x) = Hy (x)

2xH;(x) = 2Hy(x) + H,(x)

2xH,(x) = 2nH,_1(x) + Hy,1(x) (5.41)
bagintisi elde edilmis olur [56,58].
» H)(x)=2nH,_;(x), n=>1

Bir Onceki boliimde elde edilen (5.37) denklemini alalim. Burada verilen

fonksiyonun x’e gore tiirevini alirsak,

te2xt—t? — Z HA() — (5.42)
n=0 )

olur. (5.37) denklemini (5.42)’de yerine yazarsak
ZtZH(x) ZH'(x)—=> ZZH(x) ZH’(x)— (5.43)
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olur. (5.43)’te serileri terimlerine agalim. Buna goére

t t2 ¢3
2 {HO(X)a'i' Hl(X)F + HZ(X)Z-*_ }

t t?
= {H(',(x) +H{(x)F+ Hé(x)5+ } (5.44)
elde ederiz. Esitligin iki tarafindaki ayni kuvvetli t terimlerinin katsayilarim
esitleyerek
Hi(x) = 2H,(x)

Hj(x) = 2.2H, (x)

H, (x) = 2nH,,_,(x) (5.45)
elde edilir [58].
" xHp(x) = nHy_4(x) + nHy,(x)

Oncelikle (5.37) denkleminin t’ye gore tiirevini alalim.

2(x — t)e?*t-t? = Z nH. () (5.46)
n n! '
n=1

elde edilir. Simdi ise (5.37) tiretici fonksiyonun x’e gore tiirevini alalim. O halde
RN t"

2te2xt-t? — Z HAG) = (5.47)
n=0 '

elde edilir. (5.46) denklemini t ile ¢arpalim. Buna gore,

[ee)
n

2t(x — £)e2Xt—t" = Z an(x)% (5.48)

n=1

elde edilir. (5.47) denklemini (x — t) ile ¢arpalim.
. C tn
2t(x — et = (x — 1) Z HA() — (5.49)
n=0 |

olur. (5.48) denklemi ile (5.49) denklemini taraf tarafa ¢ikartirsak
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(o) (o8]

ZnH (x) Z (x)— (5.50)

n=1 n=1

dir. (5.50) denklemindeki ikinci toplam 0’dan baslamaktadir. Ikinci toplamda n
yerine (n — 1) yazalim. O zaman

o

ZnH (x) +ZH’ 1(x) —xZH (x)— (5.51)

n=1
elde edilir. Serilerde gerekli diizenlemeler yapilirsa

N () | Hyy () _ xHi(x)

n! (n—1!  nl (5:52)
olur. (5.52) denkleminde gerekli sadelestirme islemleri sonucu
nH, (x H,_,(x xH), (x
W) Hay() _ xHy() 559
nn—1)! (n-1) nnh-1)!
xHy, (x
Ho ) + Hyy () = &) (5.54)
nH,(x) + nH;_,(x) = xH;(x) (5.55)
elde edilir. Boylece bagintinin dogrulugu elde edilmis olunur [56].
5.2.3 Rodriguez Formiilii
H,(x) = (-1)"e* ( - (5.56)

Hermit polinomu (5.56)’de belirtilen Rodriguez formiilii ad1 verilen bir baska
formiil ile de bulunabilir. (5.56)’in dogrulugunu gostermek igin (5.37) denklemini

kullanalim.

_ — ,—(t?-2xt+x?-x%) _ x?—(x-1)?
E H,(x) S =e e

n

Ho(x) + Hl(x)% +oet Hn(x)% + o= e e~ @0’ = f(x,t) (5.57)

olur. (5.57) esitliginin n kez t’ye gore tiirevini alalim. O zaman

H, (x) + Hyp oy (OE + - = e [% (e-<x-t>2)] (5.58)
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elde ederiz. (5.58) 'te kismi tiirev operatorii ile belirtilen bolge igin (x —t) = u

degisken donlisiimii yapalim. Buna gore,

9 _00m_0 . O (5.59)
ot odudt OJu Ju
ifadesini elde ederiz. (2.59)’de yapilan isleme devam edilirse
am am

elde ederiz. (5.58) denkleminde (5.60) degisken doniisiimii de yaparak yerine

yazalim.

2 an 2
H, () + oy ()Gt — 1) + - = €% [(—1)71@ (e )] (5.61)

dir. Boylece t = 0 igin x = u olacaktir. Simdi (5.58) denklemini diizenleyelim.

. an 2
H, (x) = e* [(—1)71% et )] (5.62)

Boylece

an
H, (x) = e*° [(—1)11% (e"‘z)] (5.63)

elde edilir [57].

5.2.4 Ortogonallik

2

Hermit polinomlar1 e™" agirlik fonksiyonuna gore (—oo, c0) araliginda birbirine

diktir.

Hermit polinomlarinin bu ortogonallik 6zelligi
f e~ H, (x)H,, (x)dx = 2"n! VI8, (5.64)
seklinde gosterilir. Burada ki &,,,, ile ifade edilen

(5.65)

5mn={1 , m=n

0, m#*n

Kronecker Deltasi’dir. (5.56) de ifade edilen Rodriguez formiilii (5.64) integrali

ile
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o gn,—x?

dx™

fooe_szn(x)Hm(x)dx = (—1)”f H,,(x)dx (5.66)

— 00

seklinde yazilabilir. Burada n > m oldugu diisiiniiliir ve n defa kismi integrasyonu
alinirsa integralin sifira esit oldugu gdsterilmis olur. Ayni durum m > n i¢in
uygulandiginda (5.64) integralinde H,,(x) yerine onun Rodriguez formiili
yazilarak m defa kismi integrasyonu alinirsa integralin tekrar sifira esit oldugu

gosterilmis olur. Bu sebeple m # n oldugu durumda (5.64) integrali sifira esittir.

Simdi m = n durumunu inceleyecek olursak (5.64) esitligindeki integralde (5.56)
Rodriguez formiili kullanilirsa

0 gn,—x?

j " e Hy () Hy (x)dx = (—1)" j —— Hu()dx  (5.67)

elde edilir. Bu (5.67) esitliginin sag tarafindaki integrale n defa kismi integrasyon

uygulanirsa

«© 2 2 zdnH X
f e Hrzl(x)dxzf e #n()dx (5.68)

bulunur. (5.29) esitliginin her iki yaninin n kez x’e gore tiirevini alinirsa

d"Hy(x)

=2l (5.69)

elde edilir. Bu (5.69) esitliginin (5.68) de kullanilmasiyla

[ee]

J e * H2(x)dx = Z”n!J e dx (5.70)

— 00

elde edilir. (5.70) denklemindeki esitligin sag tarafindaki integral Gamma

fonksiyonunun
fooe‘xzdx =+ (5.71)
ozelliginden yararlanilarak tekrar diizenlenirse
foo e H2(x)dx = 2"nl\Vw (5.72)

Hermit polinomlarinin normu elde edilmis olur [58].
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6

HERMIT SIRALAMA YONTEMI

Bu ¢alismada

m b
> NGy ®I0) + MOy ) = 9 + A [ K oy@de (6D
k=0 a

kesirli mertebeden Fredholm-integro diferansiyel denklemini
yi©)=u , j=0,..m—-1 (6.2)
baslangic kosullar1 altinda inceleyecegiz. Burada y(x) bilinmeyen fonksiyon;

M(x), Ni(x), g(x), [a, b]’de siirekli birer fonksiyon; K (x, t) ayrilabilir ¢ekirdek

fonksiyonu ve 0 < a < 1’dir. Kolaylik olmasi agisindan denklemimizi
D(x) + D%(x) = g(x) + Al(x) (6.3)

olarak ifade edelim. Burada

D@ = ) M@y®
k=0

D%(x) = M(x)y“(x) (6.4)
b

I(x) = jK(x, t)y(t)dt

a

seklindedir. Problemimizin ¢oziimiinde Hermit polinomlar1 baz alinarak

MATHEMATICA programi kullanimiyla yaklasik ¢6ziim hesaplamasi1 yapacagiz.
6.1 D(x) Matris Gosterimi

Yaklasik ¢oziimiimiizii kesilmis Hermit serisi olarak

N

YD) = ) anlin(@) (65)

n=0

olarak kabul edelim. Burada a,’ler (n=0,..,N) Hermit polinomlarinin
katsayilari ve N pozitif bir tam sayidir. (6.4) denkleminin ilk ifadesinde bulunan

y(x)’i matris formunda yazacak olursak

[y ()] = [HoGOHy (x) ... Hy@)][lao ay ... ay]]’ = HA  (6.6)
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elde edilir.

b—a ]
xX;=a+ N i , ((=012..,N) (6.7)

siralama noktalarini (6.6) denkleminde yerine yazarsak, denklem
[yx)l=Hx)A , i=012..,N (6.8)

sekline gelir. Daha acik yazilacak olursa

y(xo) Ho(xo) Hy(xo) ... Hpy(xo)][%
3’(251) — Ho(:x1) H1(:x1) .-HN:(xl) ail (6.9)
y(xy) Ho(xy) Hy(xy) .. Hy(ep)llan

olur. Daha onceden (5.29) denkleminde tanimlanan Hermit polinomlarinin
ozelligini kullanarak Hermit polinomlar1 N’nin tek ve c¢ift degerlerine gore

asagidaki gibi matris formuna doniistiiriilebilir [38].

N = tek ise
20 0 0 O
0 21 0 O
R I TR 5)20(% - 0 o 2l ¥
L e [‘
HN(X) 0 ( 1)( ) (N 1) 0 ZN N
F
N =giftise
20 0 0 O
0 21 . 0 0
Hy(x) : : TR 1
e o )z w0 2 T o)
Hy_1(x) 20 NI ’ x0T
Hy (x) ( 1)(_ ()' 0 . 0 2N xN
F
O zaman
HT(x) = FXT(x) = H(x) = X(x)FT (6.11)

olur. X (x) matrisi
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XO) = [x9)®  @H® | (NH®)] (6.12)

olarak tanimlanir. Ornegin

=k =0icin
X)) =[x x' . &V
=k =1igin
XO@ =[xH® H® L W]
olur. Diger bir deyisle
oo ol %]
XD (x) = it A I[x;JI - ‘(xzs)m (6.13)
B O [xow]"
olur [59-60]. Yani
[XD@)]" = B[x©@)]" = XD (x) = XO(x)BT (6.14)
dir. Benzer sekilde
X@(x) = XD ()BT = X(x)(BT)? (6.15)
ve genel haliyle
X®(x) = X(x)(BT)¥ (6.16)

olarak yazilabilir. (6.6) denkleminde ifade edilen matris formunun k. tirevini

alirsak,
y®(x) = HWA (6.17)
elde edilir (6.11)’dan yararlanarak (6.17) denklemi
y®(x) = X(x)(BTk FTA (6.18)

halini alir. En son olarak siralama noktalar1 (6.4) denklemindeki D (x)’de yerine

yazilirsa

m
D) = ) NeCedy® (x),  i=0,1,2,..,N (6.19)
k=0
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haline gelir. Burada

(k)(x )
Ny (xo) 0 0 Y 0
0 Ni(x) ... 0 ¥ (x,) (6.20)
0 o o mowll
N ly(k)(xN)J
NG
elde ederiz. Diger bir deyisle
m
D(x) = Z N,y ® (6.21)
k=0

matris halini alir. Simdi ise (6.18) denkleminde x = x; yazacak olursak
y® () = X(x)(BTKFTA (6.22)
olur. O halde

[y(k) (x0) ] X(xg)

ARIC] B D'(E)
: =| i |[BT]*FTA (6.23)
y(k) (xn) X (xn)
y ) X
olur. Buradaki X matrisi
X(xo) 1 X - X"
X e N
x= ||| B (6.24)
X(XN) 1 xN ves xNN
seklinde yazilir. O zaman
olarak tanimlanir. Béylece
m
D = z N X(BTY¥FTA (6.26)
k=0

temel matris denklemi elde edilir.
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6.2 D%(x) Matris Gosterimi

(6.6)’da belirttigimiz esitligin a tirevini Caputo kesirli tiirev tanimina gore alacak

olursak
y@(x) = H®4 (6.27)

olur. H(x)’ler birer polinom olduklarindan (3.5)’de verilen Caputo kesirli tiirev

tanim1 yardimiyla

y@(x) = x %X (x)QFTA (6.28)
olur. Burada
0 0 0o .. 0 0 0
[(a+1) 0 0 0
ra+1)
a=| O T@n 0 o0 y ol (6.29)
0 0 0 0 I(Na+1) 0

r((N-1)a+1)
dir. Siralama noktalar1 (6.4) denklemindeki D% (x)’ te yerine yazilirsa
D“(xl-) . M(xl-)xi_“X(xl-)QFTA (630)

olur. Matris formunda yazilacak olursa

D%(x) = MX “XQFTA (6.31)
elde edilir. (6.31)’de verilen
X0 % 0_ 0
xe=| 0 ’ 8 (6.32)
0 0 Xy ¢

dir.
6.3 I(x) Matris Gosterimi

Bu boliimde (6.4) denklemindeki (x) integral kismint matris formunda yazmaya
calisacagiz. K(x,t) cekirdek fonksiyonunu kesilmis Hermit serisi yardimiyla

acgacak olursak
N N

KD = D" Ko Hn COH (0) (6.40)
0

m=0n=

ve kesilmis Taylor serisi ise [62]’de
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N N
K,(x, t) = Z Z kL xmen (6.41)

m=0n=0
olarak tanimlanmistir. Burada
1 0™t"K(0,0)

ki =
M minl 9xmotn

, mn=0,1,..,N (6.42)

dir. K;(x, t) Taylor serisi ise

[K:(x,£) ] = X(O)KXT(¢) (6.43)
olarak ifade edilir [63]. (6.43) denklemi yardimiyla (6.40) denklemini
[K(x,t) ] = H(x)KHT (t) (6.44)
matris formunda yazabiliriz. (6.43) ve (6.44) denklemlerini birbirlerine esitleyecek
olursak
[K(x,t) ] = Hx)KHT(t) = X(x)K.XT (t) (6.45)
elde ederiz. Bu esitlikte sirasiyla
H(x) = [Ho(x) Hi(x) ... Hy(x)] (6.46)
K = [kl mn=0,..,N (6.47)
X)) =[1 x x? .. xV] (6.48)
K; = [kb.,] mn=0,.. N (6.49)

olarak verilmistir. (6.11) denklemindeki Hermit ifadesini (6.45) denkleminde
yerine yazarsak
X(@)FTKFXT(t) = X(x)KXT(¢t) (6.50)
ifadesini elde etmis oluruz. Bu ifade en sade sekliyle
K, = FTKF (6.51)
olur. K ifadesini elde etmek igin esitligi 6nce soldan (FT)~! ve sonrasinda ise
sagdan (F)~1ile ¢arpacak olursak
K=F"1K, (F)™! (6.52)
seklinde bulunur. Buradan K(x,t) ¢ekirdek fonksiyonunun Hermit ve Taylor
katsayilar1 arasindaki iligki rahatlikla goriilebilmektedir.

(6.4)’deki I(x) integral kisminda (6.6) ve (6.52) denklemleri yerlerine yazilirsa
b

[1(x)] = f HQOKHT () H(t)Adt

a
b

= Hx)K fHT(t)H(t)dt A

a

= H(x)KOA (6.53)
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olur. (6.53) denklemindeki © ifadesi (6.11) denklemi yardimiyla

b
0= fFXT(t)X(t)FTdt

a
b

_F f XT(OX(6)dt b FT

a

OF
= F@FFT

’dir. O halde son haliyle

[I(x)] = X(x)FTKOA
olur. Simdi siralama noktalarimizi matrislerde yerine yazarsak

[1(x)] = X(x;)FTKOA

yani
I = XFTKGA
olur. Burada
1(x0) X(xo)
| = 1(9'51) ve X= X(?ﬁ)
I(xp) X (xn)
seklindedir.

6.4 Baslangi¢c Kosullarinin Matris Gosterimi
Boliim 5.2.2°deki ikinci 6zellikten yararlanacak olursak
H{(x) = 2.1.Hy(x)
Hj(x) = 2.2.H;(x)
H3(x) = 2.3.H,(x)

Hp(x) = 2nHp_,(x)
olacaktir. Bunlar1 matris formunda yazacak olursak
H'(x) = [Ho'(x) Hy'(x) ... Hy'(x)]
0 0 O 0
2 0 0 .. 0
A= 4 0 .. 0
N ¢
0 0 02n O
olmak tizere

H'(x) = H(x)AT
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olur. Ayni bagint1 yardimiyla
D/H(x) =H(x)M’/, j=01,..,n—1 (6.61)
O zaman
¥ (e) = H(c)M/

Uj
olmak tizere
UA=p; , j=0,.,m—1 (6.62)
elde edilir.
6.5 Yontemin Matris Formunun Elde Edilmesi
Sirastyla (6.1)-(6.4) boliimlerinde elde edilen matrisleri problemimizde yerine
yazacak olursak

[N, X(BT)* FT + MX~*XQFT — AXFTKO]A =G (6.59)
w

seklinde (N + 1) x (N + 1) cebirsel denklem sistemi elde edilir. Denklem sistemi

daha sade olarak
WA =G (6.60)

olarak ifade edilebilir. Daha agik olarak

Woo Wo1 Won ;o g(xo)
Wio W11 Win ;o g(x1)
[(W;G] = : : : ; : (6.61)
W(N-1)0 Wn-11 - Ww-on 5 9(Xn-1)
Who W1 WNN ;o g(xy)

ile belirtilen arttirllmig matrisi yazabiliriz. Bolim (6.2)’de verilen baslangig

kosullarina dénecek olursak,

Uid = pjyada [U;;u]

(6.62)
Uj = [ujO Ujp ujN], j=01,..m-1
olur.Yani
oo Uo Uon 5 Ho
U1o Uy Uiy N
[0 5 5] = : : g s ;o (6.63)
Uam-2)0 U(m-2)1 o Um-2)N 5 Hm-2
u(m—l)O u(m—l)l u(m—l)N 5 Mm—1

olur. Simdi ise (6.61) matris formunda son m satir silinip yerine (6.63) yazilirsa
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Woo Woo Won ; g(xo)
Wio W11 Win ) g(xl)
o W(n-1-m)o W(W-1-m)1 W(N-1-m)N g(xN—l—m)
[W; G] =| W-m)o W(N-m)1 wivemy 5 90iyim) (6.64)
Uqp Uqq Uiy ; Uy
| U(m-1)1 U(m-1)2 UGp—DN Hip—1

artirilmis matrisi elde edilir. Buna gore
WA=G (6.65)
dir. Bger rankW = rank[W; G| = (N + 1) ise; yani |[W| # 0 ise 0 zaman ¢oziim
A=W)'G=[a, a - ] (6.66)

olarak elde edilir.
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7

SONUC

Bu boliimde Hermit siralama ydntemini bazi test problemlerine uygulayarak
yaklasik ¢oziimlerimizi MATHEMATICA programi yardimiyla elde etmeye

calisacagiz.

Ornek 1.

1

Y () = 2xy' () +y(x) + ¥y () = g(x) + thy(t)dt (7.1)
0

kesirli mertebeden Fredholm-integro denkleminin yaklasik ¢6ziimiini y(0) = 1,

y'(0) = —2 baslangi¢ kosullar1 altinda bulunuz.

Problemimizde goriildiigii gibi @ = 0.5, Ny(x) =1, N;(x) = —2x, N,(x) =1,

— — _Qy2 4% .15 __2 .05 _
Mx)=1, g(x)=-9 +F(2_5)x + 1.41667x s ® +7, A=1 ve

cekirdek  fonksiyonu  K(x,t) =xt (0<x,t<1) olarak verilmistir.
Problemimizin tam ¢oziimii y(x) = 3x? — 2x + 1’dir. Biz N = 4 i¢in yaklagik
¢Oziimiinii elde etmeye calisacagiz. N = 4 i¢in Hermit siralama noktalarimiz
sirastyla xo = 0, x; = 0.25, x, = 0.5, x3 = 0.75 ve x4, = 1’dir. Coziimiimiizii

Hermit polinomu formunda

4

YD) = ) anlin(@) (7:2)

n=0

olarak kabul edelim. Boliim 6.2’deki tanimlamalara gore (7.1) denkleminin matris

formu

2
{Z N X(BT)KFT + MX~95XQFT — AXFTKG}A =G (7.3)
k=0

olur. Daha agik haliyle ifade edecek olursak
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{N,X(BT)?FT + NyX(BT)FT + NoXFT + MX %°XQFT — AXFTKO}A =G

w

WA =G = [W;G]

olur. a = 0.5 i¢in matrislerimiz

1 0
0 1
Ny=|0 0
0 0
0 0
[1 0
|0 1
N,=|0 O
0 0
0 0
[0 1
|0 0
BT =0 0
{0 0
0 0
1
1
X=| 1
1
1
0
0
Xos5=] 0
0
0
0
0
N=10
0
0

SO RO O

0 0 —0.0002 0 0
0 0 0 —0.50015 0
0 Of,N, = 0 0 —1.0001
1 0 0 0 0
0 1 0 0 0

0 0 0 1 0 -2 o0 12

0 0 O | o0 2 0 —-12 0

1 0 0], FT=] 0 0 4 0 -—48

0 1 0‘ l 0 0 0 8 0

0 0 1 0 0 0 0 16

0 0 0 6.97758

2 0 O 6.22733

0 3 0|, G=]545811

0 0 4‘ 3.97762

0 00 1.67343

0 0 0

0.250075 0.0625375 0.0156391

0.50005 0.25005 0.125038

0.750025 0.562538 0.421917

1 1 1
0 0 0 0
x % 0 0 0
O x—O.S 0 O
0 0 x % 0
0 0 0 x—O.S
0 0 0 0

1.12838 0 0 0
0 1.50451 0 0o | K=
0 0 1.80541 0
0 0 0 2.06332
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0.00391094

0.0622525
0.316448

S o oOoONRrO

SO o O O

S oo O O

S O OO
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0.9999 1 —0.666467 —4 —0.8012

1 1.33333 0 —4.8 —6.66667

Q =| —0.666467 0 1.86627 1.33333 —11.6547
l —4 —4.8 1.33333 18.7429 16 J

—0.8012 —6.66667 —11.6547 16 106.601

olur. y(0) = 1 ve y'(0) = —2 baslangi¢ kosullari i¢in sirasiyla

[ug; wol =1 0 -2 0 12 ; 1]

[up; ;=00 2 0 —-12 0 ; -2]

elde edilir. Matrislerimizi ve baslangi¢ kosullarimizi (7.3) cebirsel denklem

sisteminde yerlerine yazarsak,

0.99995  0.0223009 6.00001 —0.129165 —839997  ; 6.97758
0.874963 0461682 6.00214  8.65952 —713647 ; 6.22733
[W;G] =10.749975 0262382 5.12741 19.1804 —27.9363  ; 545811
1 0 -2 0 12 ; 1
0 2 0 —12 0 ;=2

artirllmig matrisini elde ederiz. Sistemin ¢6zliimiinden

A=[25 -1 0.75 1.11022x 1016 3.46945 x 10~17]"

sonucu elde edilir. N = 2,4 ve 6 i¢in elde edilen yaklasik ¢6ziimlerle tam ¢oziimiin
karsilastirmas1 ve mutlak hata degerleri Tablo 7.1’de verilmistir. N =4 igin

yaklasik ve tam ¢oziim grafikleri ise Sekil 7.1°de gosterilmistir.

Tablo 7.1 N = 2,4 ve 6 i¢in yaklasik ve tam ¢oziimiin Karsilastirmasi ve mutlak

hata degerleri

Hermit Hermit Hermit

X Tam Coziim Slfalama} Mutlak _Hata Slfalama.l Mutlak_Hata Slralama} Mutlak Hata
Yontemi E(Xi) Yontemi E(xi) Yontemi E(Xi)
N=2 N =14 N=6

0 1 1 2.2204.10°%6 1 2.2204.10°%6 1 0

0.1 0.83 0.83 2.2204.10°%6 0.83 2.2204.10°%6 0.83 0

0.2 0.72 0.72 1.1102.1016 0.72 2.2204.10°16 0.72 0

0.3 0.67 0.67 0 0.67 3.3306.10°%6 0.67 0

0.4 0.68 0.68 1.1102.106 0.68 2.2204.10°16 0.68 1.1102.10°6

0.5 0.75 0.75 1.1102.1016 0.75 2.2204.10°% 0.75 0

0.6 0.88 0.88 2.2204.10°%6 0.88 2.2204.10°%8 0.88 0
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Tablo 7.1 N = 2,4 ve 6 i¢in yaklagik ve tam ¢ozlimiin Karsilastirmasi ve mutlak

hata degerleri (devami)

0.7 1.07 1.07 2.2204.10°16 1.07 0 1.07 0
0.8 1.32 1.32 4.4408.10°16 1.32 0 1.32 0
0.9 1.63 1.63 6.6613.1016 1.63 0 1.63 0
1 2 2 8.8817.10°16 2 4.4408.1016 2 0
20"
— Hermite
06 08 10
Sekil 7.1 N = 4 i¢in yaklasik ve tam ¢6ziim grafikleri
Ornek 2.

1

Y () + xy(x) + y°2(x) = g(x) + f xty(D)dt (7.4)
0

kesirli mertebeden Fredholm-integro diferansiyel denklemini y(0) = 2,y'(0) =1

baslangi¢ kosullar altinda inceleyiniz.

Burada @ =0.2, Ny(x)=x, N;(x) =0, N,(x)=1, M(x)=1, glx)=

—6x% + ——x15 4 2.41667x —

05 _ _ . .
r(2.5) ras) ¥ 3, A=1ve cekirdek fonksiyonu

ise K(x,t) =xt (0 <x,t <1) olarak verilmistir. Problemimizin tam ¢6ziimii
y(x) = et + 1°dir. Biz N = 4 i¢in, farkli o degerleri alarak yaklasik ¢dziimlerini

inceleyecegiz. N = 4 i¢in Hermit siralama noktalarimiz x5 = 0, x; = 0.25, x, =

47



0.5, x3=0.75, x3=0.75 ve x, = 1’dir. Coziimiimiizi Hermit polinomu

formunda
Y() = ) anHa(¥) (7.5)

n=0

olarak kabul edelim. Boliim 6.2°deki tanimlamalara gore (7.5) denkleminin matris

formu

2
{Z N X(BTXFT + MX~°2XQFT — AXFTK(E)}A =G (7.6)
k=0

olur. Daha acik haliyle ifade edecek olursak

{N,X(BT)2FT + N,X(BT)FT + NoXFT + MX 92XQFT — AXFTKO}A = G
w

WA =G = [W;G]

olur. a = 0.2 i¢in matrislerimiz

0 0 0 0 O 10000
0 025 0 0 O 0100 0
Ny=|0 0 05 0 Of N,=[0 0 1 0 0
0 0 0 075 0 000 10
o 0 0 0 1 0000 1
1 0 -2 0 12 01000
0 2 0 —-12 0 00200
FT= 0 0 4 o0 -48|,BT=[0 0 0 3 0
O 0 0 8 0 000 0 4
O 0 0 0 16 00000
1 0 0 0 0
1 0.250075 0.0625375 0.0156391 0.00391094
X=| 1 050005 0.25005 0.125038 0.0622525
1 0.750025 0.562538 0.421917 0.316448
1 1 1 1 1
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x°2 0 0 0 0 1
0 x %2 0 0 2.0002
Xo2=] 0 0 x% 0 o |, 6=|32703
0 0 0 x%2 0 4.99172
0 0 0 0 x 02 7.33823
0 0 0 0 0 0 (1) 000
0= (()) 1'%7367 1190297 8 8 K= 03000
0 0 0 127818 0 8 8 8 8 8
0 0 0 0 1.34545
000 0 O
[ 1 1 —0.666667 —4 —0.8
1 1.33333 0 —4.38 —6.66667
Q=|—O.666667 0 1.86627 1.33333 —11.6571|
[ —4 —4.8 1.33333 18.7429 16
—0.8 —6.66667 —11.6571 16 106.616

matrislerimiz elde edilir. y(0) = 2 ve y'(0) = 1 baglangi¢ kosullar1 i¢in

[ug; ol =01 0 -2 0 12 ; 2]

[ug; =0 2 0 —-12 0 ; 1]

elde edilir. Matrislerimizi ve baslangi¢ kosullarimizi (7.6) cebirsel denklem

sisteminde yerlerine yazarak,

1 1.3562.1071 6 ~8.0908.10711 -84 ; 3
_|0875  1.04169  6.64353  5.68567 —78.7156 ; 3.60112
[W;G] =075  1.899996  8.37036 14.2683 —60.2351  ; 4.37047

1 0 -2 0 12 ; 2

0 2 0 ~12 0 ; 1

artirilmis matrisini elde ederiz. Sistemin ¢oziimiinden

A =[2.29032 0.62186 0.165321 0.02031 0.00336009]"

sonucu elde edilir. N = 2,4 ve 6 igin elde edilen yaklasik ¢oziimlerle tam ¢6ziimiin
karsilastirmasi ve mutlak hata degerleri Tablo 7.2’de verilmistir. Ayrica N = 4 i¢in

yaklasik ve tam ¢Oziim grafikleri ise Sekil 7.2°de gosterilmistir.
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Tablo 7.2 N = 2,4 ve 6 i¢in yaklasik ¢oziimlerle tam ¢6zliimiin Karsilastirmasi ve

mutlak hata degerleri

Hermit Hermit Hermit
X Tam Céziim Sl{alama} Mutlak .Hata Slfalama.l Mutlak_Hata Slfalamg Mutlak Hata
Yontemi E(Xi) Y ontemi E(xi) Yontemi E(Xi)
N=2 N=4 N=6
0 2 2 0 2 4.4408.10-16 2 4.4408.10°¢
0.1 2.10517 2.105 1.7091.10 2.10517 3.0793.10°® 2.10517 1.7687.10°®
0.2 2.2214 2.22 1.4027.10°3 2.22139 1.7030.10° 2.2214 6.8426.108
0.3 2.34986 2.345 4.8588.103 2.34982 3.6789.10°° 2.34986 1.1046.107
0.4 2.49182 248 1.1824.102 2.49177 5.0584.10° 2.49182 1.4368.107
0.5 2.64872 2.625 2.3721.10%2 2.64867 5.2798.10°° 2.64872 1.9166.107
0.6 2.82212 2.78 4.2118.102 2.82206 5.8193.10° 2.82212 2.351.107
0.7 3.01375 2.945 6.8752.102 3.01364 1.1762.10* 3.01375 2.3874.107
0.8 3.22554 3.12 1.0554.10! 3.22521 3.3540.10* 3.22554 4.2921.107
0.9 3.4596 3.305 1.5460.10! 3.45871 8.8850.10* 3.4596 1.9975.10°®
1 3.71828 3.5 2.1828.10* 3.71623 2.0477.10°3 3.71827 8.4187.10°
Tablo 7.3 N =4’te « = 0.2,0.4,0.6 ve 0.8 igin yaklasik ¢oziimlerle tam
¢Oziimiin Karsilastirmasi
Hermit
X Tam Céziim f;giltae‘;? — 02 @ =04 @=06 a=08
N=4

0 2 2 2 2 2 2

0.1 2.10517 2.10517 2.10517 2.10517 2.10517 2.10517

0.2 2.2214 2.22139 2.22139 2.22139 2.22139 2.22139

0.3 2.34986 2.34982 2.34982 2.34982 2.34982 2.34982

0.4 2.49182 2.49177 2.49177 2.49178 2.49178 2.49178

0.5 2.64872 2.64867 2.64867 2.64867 2.64867 2.64868

0.6 2.82212 2.82206 2.82206 2.82206 2.82207 2.82207

0.7 3.01375 3.01364 3.01364 3.01364 3.01364 3.01365

0.8 3.22554 3.22521 3.22521 3.22521 3.22521 3.22521

0.9 3.4596 3.45871 3.45871 3.45872 3.45872 3.45871

1 3.71828 3.71623 3.71623 3.71623 3.71623 3.71622
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Hermite

0.4 0.6 0.8 1.0

Sekil 7.2 N = 2 i¢in yaklasik ve tam ¢6ziim grafikleri

1.0 4
09
0.8

0.7F

06"

Hermite

1.0

Sekil 7.3 N = 4 i¢in yaklasik ve tam ¢oziim grafikleri
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35+ B

3.0 P

—_— Hermite

0.4 0.6 0.8 1.0

- Exact

Sekil 7.4 N = 2 ve o = 0.2 i¢in yaklasik ve tam ¢oziim grafikleri

3.5

3.0"

0.4 0.6 0.8 1.0

Sekil 7.5 N = 4 ve a = 0.2 i¢in yaklasik ve tam ¢6ziim grafikleri
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