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ÖZET 

 

 

İntegral Denklemlerin Sayısal Çözümleri 

Büşra ÇELEBİ 

 

Matematik Anabilim Dalı 

Matematik Programı 

Yüksek Lisans Tezi 

 

Danışman: Doç. Dr. Sebahat Ebru DAŞ 

 

Bilindiği gibi nüfus artışından ısı dağılımına, elektrik iletiminden genetiğe kadar 

sayısız alanda karşılaştığımız birçok problem diferansiyel ya da integral denklemler 

gibi denklemlerin yardımıyla modellenerek çözüme kavuşmaktadır. Kesirli analizin 

ortaya çıkmasıyla kesirli diferansiyel ve kesirli integral denklemler de bu gruba 

katılmıştır. Bu tür problemlerin çoğu zaman tam çözümü olmadığından ancak 

nümerik çözüm yöntemleri yardımıyla yaklaşık olarak çözülebilmektedirler. Bu 

tezde, iyi bilinen kesirli türev tanımlarından olan Caputo kesirli türeviyle verilen 

bir kesirli Fredholm-integro diferansiyel denklem sınıfının yaklaşık çözümü Hermit 

Sıralama Yöntemi yardımıyla elde edilmiştir. 

Tezin ilk bölümünde konunun literatür taraması, tezin amacı ve hipotezi verilmiştir. 

İkinci bölümünde, tezde kullanılan bazı özel fonksiyonlar ve özellikleri 

tanıtılmıştır. Üçüncü bölümde, bilinen belli başlı kesirli türev ve integral kavramları 

ve tarihçeleri hakkında bilgiler verilmiştir. Dördüncü bölümde ise, integral 

denklemlerin sınıflandırılması yapılmıştır. Beşinci bölümde, Hermit polinomlarının 

ortaya çıkışı, farklı ifade edilişleri ve belli başlı özellikleri ifade edilmiştir. Altıncı 

bölümde, Hermit Sıralama Yöntemi tanıtılıp ayrıntılı olarak anlatılmıştır. Yedinci 

bölümde ise, yöntem bazı test problemlerine uygulanarak yaklaşık çözümleri elde 
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edilmiştir. Farklı değerler için çözümler irdelenmiş, bunlarla ilgili tablo ve şekiller 

verilmiştir.  

Anahtar Kelimeler: İntegral denklemler, Hermit polinomu, sıralama yöntemi, 

kesirli türev. 
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ABSTRACT 

 

 
Numerical Solutions of Integral Equations 

Büşra ÇELEBİ 

 

Department of Mathematics 

Master of Science Thesis 

 

Supervisor: Assoc. Dr. Sebahat Ebru DAŞ 

 

It is known that many problems we encounter in numerous fields, from population 

growth to heat distribution, from electricity transmission to genetics, are solved by 

modeling them via such as differential or integral equations. With the arising of 

fractional calculus, fractional differential and fractional integral equations also 

joined this group. Since most of such problems do not have exact solutions, they 

can only be solved approximately using the numerical methods.  

In this thesis, the approximate solution of a class of fractional Fredholm-integro 

differential equations given by Caputo fractional derivative, one of the well-known 

fractional derivative definitions, was obtained with the help of the Hermit 

Collocation Method. 

In chapter I of the thesis, the literature review of the subject, the aim and hypothesis 

of the thesis are given. In chapter II, some special functions and their properties 

which used in the thesis are introduced. In chapter III, the well known fractional 

derivative and integral definitions are given with their history. In chapter IV, 

integral equations are classified. In chapter V, the emergence of Hermit 

polynomials, their different expressions and properties are explained. In chapter VI, 

Hermit Collocation Method is introduced and explained in detail. In chapter VII, 

the method is applied to some test problems and approximate solutions are obtained. 
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Solutions for different values are examined and relevant tables and figures are 

given. 

Keywords: Integral equations, Hermite polynomials, collocation method, 

fractional derivative.  
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1 

GİRİŞ 

1.1 Literatür Özeti  

Son yıllarda birçok matematikçi ve araştırmacı kesirli analiz konusunda çok sayıda 

değerli çalışmalar yapmışlardır. Örneğin, Yousefi, Javadi ve Babolian [1] adlı 

çalışmalarında kesirli mertebeden Volterra integral denkleminin nümerik çözümü 

üzerinde çalışmışlardır. Yaklaşık çözüm için Legendre Sıralama Yöntemini 

kullanmışlardır. Daha sonrasında ise memnun edici yakınsama oranları elde 

etmişlerdir. [2] çalışmasında ise Haotao ve Yanping zayıf tekil çekirdekli kesirli 

mertebeden Volterra integral denkleminin çözüm yaklaşımı için Chebyshev 

tipindeki kesirli mertebeden Lagrange interpolasyon fonksiyonunu baz alınarak 

sıralama yöntemi uygulanmıştır. Radmanesha ve Ebadi [3]’te değişken mertebeli 

kesirli evrim denklemlerinin çözümünde Yerel Dairesel Taban Fonksiyonu 

Yöntemini (YDTF) kullanmışlardır. Zaman değişkenini ayrıştırmak için uygun bir 

sonlu fark tekniği kullanılarak, denklemi çözmek için YDTF uygulanmıştır. Bu 

yöntem diğer yöntemlere göre daha hızlı ve etkin sonuçlar vermiştir. Rashidinia, 

Eftekhari ve Maleknejad [4] adlı çalışmasında iki boyutlu doğrusal olmayan kesirli 

Volterra ve Fredholm integral denklemlerinin yaklaşık çözümlerine sayısal bir 

yöntem sunulmaktadır. İki değişkenli kaydırılmış Jacobi polinomlarına dayalı 

olarak kesirli dereceli entegrasyon ve çarpımın yeni operasyonel matrisleri türetilir. 

Elde edilen matrisler, çalışma kapsamındaki denklemleri doğrusal veya doğrusal 

olmayan cebirsel denklem sistemlerine indirgemek için kullanılır. Daha sonra 

ortaya çıkan sistemler Newton Yöntemiyle çözülebilir. Önerilen yöntemin hata 

sınırı ve yakınsama analizine ilişkin tartışma sunulmaktadır. Wang, Liu ve Zhang 

[5] çalışmasında kesik psi serisi çözümünün doğruluğunu ve Abel integral 

denklemini çözmek için tekillik ayrımı ile parçalı ve küresel sıralama yöntemlerinin 

etkinliğini doğrulamaktadır. Xu ve Zheng [6]’da ilk olarak Jacobi polinomlarının 

kesirli türevi için analitik formülleri türetilmiştir. Genelleştirilmiş kesirli 

operatörler için değişken dönüşüm tekniği aracılığıyla Spektral Yaklaşım Yöntemi 

önerilmiştir. Genelleştirilmiş kesirli operatörler için operasyonel matrisler 

türetilmiş ve farklı kesirli operatörlere sahip diferansiyel ve integral denklemler için 

Spektral Sıralama Yöntemleri önerilmiştir. Son olarak yöntem genelleştirilmiş 
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kesirli adi diferansiyel denklem ve Hadamard tipi integral denklemlere uygulanarak 

yöntemin üstel yakınsaması doğrulanmıştır. [7]’de Yousefi, Javadi ve Babolian, 

Legendre-Gauss-Lobatto noktasını kullanarak bir cebirsel denklem sistemi 

türettiler. Bu yöntem uygulamalarla gösterildi ve elde edilen sonuçlar kesin 

çözümleriyle karşılaştırıldı. Elde edilen sayısal sonuçlar, önerilen yöntemin ikinci 

tür kesirli integral denklemler için etkili ve doğru olduğunu gösterildi. Eslahchi, 

Dehghanb ve Parvizi [8]’de sıralama yöntemi kullanılarak doğrusal olmayan kesirli 

integral diferansiyel denklemleri çözülmüştür. Bu yöntemin yakınsama ve 

kararlılık analizi incelenerek sayısal örnekler verilmiştir. Sharma, Pandey ve Kumar 

[9]’da B-operatörleri açısından tanımlanan bazı genelleştirilmiş kesirli integral 

diferansiyel denklemler (GKİDD) sınıfları için sayısal yaklaşım üzerinde 

çalışılmıştır. GKİDD’in doğrusal ve doğrusal olmayan formları için sıralama 

yöntemi geliştirilmiştir. Legendre polinomları, yakınsama analizi ile sonlu boyutlu 

uzayda çözüme yaklaşmak için kullanılır. Elde edilen yaklaşık çözüm, özel bir 

durumda Caputo türevleri kullanılarak tanımlanan kesirli integral diferansiyel 

denklemin (KİDD) çözümünü kurtarır. Konvolüsyon tipi çekirdekler içeren 

KİDD’ler, bilim ve mühendislik uygulamalarının çeşitli alanlarında karşımıza 

çıkmaktadır. Bu nedenle sayısal incelemelerin gerçekleştirilmesi için B-

operatöründeki çekirdeği değiştiren bazı test örneklerini dikkate almışlardır. 

[10]’da Nemati, Lima ve Sedaghat, kesirli gecikmiş integral diferansiyel denklem 

sınıfını çözmek için Gauss-Jacobi kareleme formülüyle birleştirilmiş Legendre 

dalgacığına dayalı bir sıralama yöntemi sunmuştur. Problem başlangıç veya sınır 

koşullarıyla ele alınmakta ve Caputo kesirli türevi kullanılmıştır. [11]’de Taheri, 

Javadi ve Babolian, Stokastik kesirli integral diferansiyel denklemleri (SKİDD) 

çözmek için kaydırılmış Legendre Spektral Sıralama Yöntemini önermektedir. 

Sunulan yöntemin temel özelliği, SKİDD'leri cebirsel denklemler sistemine 

indirgemesidir. Böylece problemi Newton Yöntemiyle çözebilir. Ayrıca yaklaşımın 

yakınsama analizi de dikkate alınmaktadır. [12]’de Jebreen ve Dassios, kesirli 

Fredholm integral diferansiyel denklemlerine (KFİDD) Dalgacık Sıralama 

Yöntemini kullanarak yaklaşık bir çözüm bulmak için algoritma önermişlerdir. 

Bunu yapmak için istenen denklemi eşdeğer bir doğrusal veya doğrusal olmayan 

zayıf tekil Volterra-Fredholm integral denklemine indirgemişlerdir. Bu integral 

denklemi çözmek için Müntz-Legendre dalgacıklarına değinerek kesirli integral 

operatörü matris olarak temsil edildikten sonra doğrusal olmayan veya doğrusal 
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cebirsel denklemlerden oluşan bir sistem elde etmek için Dalgacık Sıralama 

Yöntemini uygulamışlardır. Ma ve Huang [13]’te genel doğrusal kesirli integral 

diferansiyel denklemlerin sayısal çözümü için bir Spektral Jacobi Sıralama 

Yöntemi önermiş ve analiz etmişlerdir. Denklemin tanımlanan aralıkta bir Volterra 

integral denklemine dönüştürülmesi için gereken bazı fonksiyon ve değişken 

dönüşümleri verilmiştir. Daha sonra sıralama düğümleri olarak Jacobi-Gauss 

noktaları kullanılmış ve integral denklemine yaklaşmak için Jacobi-Gauss kareleme 

formülü kullanılır. Ardından önerilen yöntemin yakınsama sırası sonsuzluk 

normunda incelenmiştir. Son olarak önerilen yöntemin etkinliğini göstermek için 

bazı sayısal sonuçlar verilmiştir. Shi [14]’te zayıf çekirdekli kesirli integral 

diferansiyel denklemlerin sayısal çözümleri için bir spektral yaklaşım önermiş ve 

analiz etmiştir. Denklemler ilk olarak düzgün olmayan çözümlere sahip eşdeğer 

zayıf tekil Volterra integral denklemine dönüştürülür. Çözümün tekilliğini ortadan 

kaldırmak için, bazı uygun dönüşümler sunulur ve ardından elde edilen denklemi 

yaklaşık olarak hesaplamak için Jacobi Spektral Sıralama Yöntemini kullanılır. 

Daha sonra spektral önerilen yöntemin doğruluğu sonsuz normda araştırılmıştır. 

[15]’te Jebreen, kesirli türevlerle zayıf tekil integral diferansiyel denklemleri 

(ZTİDD) çözmek için bir Dalgacık Sıralama Yöntemi sunmuştur. Yaklaşım, 

istenen denklemin ona karşılık gelen Volterra integral denklemine indirgenmesine 

dayanmaktadır. Müntz-Legendre dalgacık dönüşümünü (MLDD) tanıtmış ve bunun 

için kesirli bir entegrasyon işlem matrisi oluşturmuştur. Elde edilen integral 

denklem, sıralama yöntemi ve kesirli entegrasyonun operasyonel matrisi 

kullanılarak doğrusal olmayan cebirsel denklemler sistemine indirgeyip sunulan 

yöntemin hata sınırı araştırılmıştır. Amin, Ahmad, Shah, Hafeez ve Sumelka 

[16]’da doğrusal olmayan Volterra-Fredholm kesirli integro-diferansiyel 

denklemler sınıfı hem teorik hem de hesaplama açısından dikkate alırlar. İlgili 

teorik sonuçlar, sabit nokta yaklaşımı yoluyla bir çözümün varlığına ayrılmıştır. 

Ayrıca, hesaplama açısından Haar dalgacık sıralamasının önerilen metodolojisidir. 

Bu yöntem doğrusal olmayan cebirsel denklem sistemini en aza indirir. Sonuç 

olarak uygulanan Haar yönteminin etkili olduğu ve farklı sıralama noktaları için 

yakınsama oranının kabaca 2'ye eşit olduğu gösterilmiştir. [17]’de Singh ve Mehra, 

Stokastik kesirli integral diferansiyel denklemlerin çözümündeki belirsizliği 

ölçmek için etkili bir sayısal yöntem sunmayı amaçlamıştır. Bu sayısal yöntem, 

Legendre polinomlarına ve bunların deterministik ve stokastik operasyonel 
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entegrasyon matrisine dayanan bir dalgacık sıralama yöntemidir. Son olarak gerçek 

dünya uygulamasına ilişkin olarak bir borsa modeli simüle edilmiş ve sonuçlar 

gösterilmiştir. [18]’de Kumar ve Agrawal bir kesirli diferansiyel denklemler (KDD) 

sınıfı Caputo tipi kesirli türev cinsinden ifade edilir. Bu çalışmada toplam zaman 

bir dizi küçük aralığa bölünmüş ve birbirini takip eden iki aralık arasında 

bilinmeyen fonksiyonlara ikinci dereceden hesaplamalar kullanılarak 

yaklaşılmıştır. Yöntem doğrusal ve doğrusal olmayan iki tür KDD'yi çözmek için 

uygulanır. Paul, L. Mishra ve V. Mishra [19] nolu çalışmalarında hem birinci türden 

hem de ikinci türden kesirli integral denklemleri çözmek için Laguerre ve Touchard 

polinomlarına dayanan iki sayısal yöntem tanıtmışlardır. Kesirli integraller Erdelyi-

Kober anlamında tanımlanmaktadır. Her iki integral denklem de Laguerre ve 

Touchard matrisleri kullanılarak cebirsel bir doğrusal denklem sistemine 

dönüştürülür. [20]’de Sun ve Zhu, değişken mertebeli kesirli integral diferansiyel 

denklem sınıfının çözümü için Chebyshev polinomlarını incelemektir. Chebyshev 

polinomlarının özellikleri dört tür operasyonel matrisiyle birlikte problemi bir 

cebirsel denklem sisteminin çözümüne indirgemek için kullanılır. Cebirsel 

denklemlerin çözülmesiyle sayısal çözümler elde edilir. [21]’de Najafalizadeh ve 

Ezzati, iki boyutlu kesirli integral işlem matrisi oluşturmak ve bunun iki boyutlu 

kesirli integral denklemlerin sayısal çözümünde kullanmıştır. İki boyutlu kesirli 

integral denklemleri bir cebirsel denklem sistemine indirgemek için bu operasyonel 

matrisleri ve iki boyutlu blok darbe fonksiyonlarının özelliklerini kullanmıştır. 

Cebirsel sistem doğrusal veya doğrusal olmayan olabilir. Daha sonra önerilen 

yöntemlerin yakınsaması gösterilir ve hata sınırları bulunur. Önerilen yöntemin 

doğruluğunu, verimliliğini ve hızını göstermek amacıyla doğrusal ve doğrusal 

olmayan örnekler sunulmuştur. Esmaeili, Shamsi ve Dehghan’in [22]’deki 

çalışmasında Caputo türevinin özellikleri, verilen kesirli diferansiyel denklemi 

Volterra integral denklemine indirgemek için kullanılır. Tüm alan birkaç küçük 

alana bölünür ve integral denklemin iki bitişik noktaya yerleştirilmesiyle iki 

bilinmeyenli iki cebirsel denklemden oluşan bir sistem elde edilir. Yöntem doğrusal 

ve doğrusal olmayan kesirli diferansiyel denklemlerin çözümü için uygulanır. 

Ayrıca hata analizi de sunulmaktadır. [23]’te Zabidi, Majid, Kilicman ve Rabiei 

kesirli türevlerin Caputo anlamında tanımlandığı kesirli durum için Lagrange 

enterpolasyonu uygulanarak üçüncü dereceden Adam-Bashforth sayısal şeması 

kavramına dayalı olarak türetilmiştir. Ayrıca çalışma, yöntemin kararlılık ve 
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yakınsama analizine ilişkin bir tartışmayı da içermektedir. [24]’te Abdeljawad, 

Agarwal, Karapınar ve Kumari, üç yeni kavram üzerinde durmuştur. Ayrıca, bu 

yeni kavramlar aracılığıyla bazı sabit nokta sonuçları ve belirli türlerdeki doğrusal 

olmayan Volterra-Fredholm integral denklemleri için uygun bir çözüme yönelik 

çalışmaları ve aynı zamanda Caputo tipi doğrusal olmayan kesirli diferansiyel 

denklemin çözümü için formül kullanılarak bir çözüm önerilmektedir. Ma ve 

Huang [25]’te ilk alt aralıkta kullanılan polinom olmayan bir sıralama ile aralığın 

geri kalanında kullanılan kademeli parçalı polinom sıralamasını birleştiren hibrit 

bir sıralama yöntemi kullanılmıştır. Yöntemin yakınsama sırası için teorik bir analiz 

sunulmaktadır. Teorik sonuçları doğrulayan bazı sayısal örnekler verilmiştir. 

Ordokhani ve Rahimi [26] çalışmasında kesirli Volterra integral diferansiyel 

denklemlerinin (KVİDD) sayısal çözümüne yaklaşmak için rasyonelleştirilmiş 

Haar Fonksiyonları Yöntemi (RHFY) uygulanmıştır. RHFY fonksiyonlarının 

özellikleri şunlardır: sunulmuş ve kesirli entegrasyonun işlem matrisi, ürün işlem 

matrisi ile birlikte, KVİDD'lerin hesaplanmasını bir cebirsel denklemler sistemine 

indirgemek için kullanılmıştır. KVİDD'leri çözmek için bu tekniğin kullanılması 

hesaplama süresini azaltmıştır. Wang, Kamran, Jamal ve Li [27]’deki çalışmasında 

amaçları Fredholm tipi integral diferansiyel denklemin çözümünü Atangana-

Baleanu kesirli türeviyle Caputo anlamında yaklaşıklaştırmaktır. Bunun için 

Laplace ve ters Laplace dönüşümüne dayalı bir yöntem üzerinde durmuşlardır. 

Sayısal şemalarında verilen denklem önce Laplace dönüşümü kullanılarak cebirsel 

denkleme dönüştürülmüş ardından indirgenmiş denkleme karmaşık düzlemde 

çözülmüştür. Son olarak verilen problemin çözümü, ters Laplace dönüşümü ile bir 

kontur integrali olarak temsil edilmektedir. Yang ve Hou [28]’de doğrusal ve 

doğrusal olmayan kesirli integral denklemlerin çözümü için Laplace Ayrıştırma 

Yöntemi geliştirilmiştir. Yöntem doğrusal olmayan kesirli integral-diferansiyel 

denkleme dayanmaktadır. Doğrusal olmayan terim, Adomian polinomlarının 

yardımıyla kolaylıkla ele alınmıştır. [29]’da Pedas, Tamme ve Vikerpuur, Caputo 

kesirli türevleri ve integral sınır koşullarını içeren doğrusal kesirli zayıf tekil 

integral-diferansiyel denklemler için bir sınır değer problemleri (SDP) sınıfını ele 

alır. SDP’nin yeniden düzenlenmesiyle elde edilen integral denklemi kullanarak, 

ilk olarak kesin çözümün düzenliliği ve Caputo türevi incelenmiştir. Elde edilen 

düzenlilik özelliklerine dayanarak ve spline sıralama teknikleri ile birlikte uygun 

dönüşümler kullanılarak problemin sayısal çözümü tartışılmıştır. Optimum küresel 
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yakınsama tahminleri türetilir ve özel bir ızgara ve sıralama parametreleri seçimi 

için bir süper yakınsama sonucu verilir. Nemati ve Lima [30]’da zayıf tekil 

çekirdeğe sahip doğrusal olmayan kesirli integral-diferansiyel denklemlerin bir 

sınıfını sayısal olarak çözmek için şapka fonksiyonlarının bir modifikasyonu (ŞFM) 

düşünülmüştür. Problem ikinci türden eşdeğer bir Volterra integral denklemine 

dönüştürülür ve problemi iki değişkenli polinom denklemlerinin çözümüne 

indirgemek için ŞFM'lerin operasyonel matrisleri kullanılır. Roohollahi, 

Ghazanfari ve Akhavan [31] nolu çalışmasında başlangıç değerli kesirli mertebeden 

ve çok mertebeden karma Volterra-Fredholm integro-diferansiyel denkleminin 

çözümü için iki etkili sayısal yaklaşımı tanıtmışlardır. [32]’de Duangpan, 

Boonklurb ve Juytai, Sonlu Entegrasyon Yöntemi ve kesirli entegrasyonun işlemsel 

matrisi kaydırmış, Chebyshev polinomuna dayalı olarak uygulamıştır. Kesirli ve 

klasik integral diferansiyel denklem sistemlerini çözmek için iki sayısal prosedür 

tasarlamak için kullanırlar. Arikoglu ve Özkol [33]’teki çalışmasında yarı analitik 

sayısal bir teknik olan Kesirli Diferansiyel Dönüşüm Yöntemini (KDDY), Volterra 

tipi kesirli integral diferansiyel denklemleri çözecek şekilde genişletmiştir. 

Dejenere çekirdeğe sahip integral terimlerinin dönüşümüne ilişkin daha önce var 

olmayan yeni teoremler kanıtlarıyla birlikte sunmuşlardır. Daha fazlası için [34-61] 

nolu çalışmalara bakabilirsiniz. 

1.2 Tezin Amacı 

Bu çalışmanın amacı aşağıda maddeler halinde verilmiştir. 

➢ Hermit Polinomlarını ve özelliklerini ayrıntılı olarak öğrenmek 

➢ Hermit polinomlarını baz alan Hermit Sıralama Yöntemini anlamak 

➢ Hermit Sıralama Yöntemi yardımıyla bir kesirli Fredholm-integro 

diferansiyel denklem sınıfının yaklaşık çözümünü elde etmek 

➢ Elde edilen çözümleri tüm yönleriyle irdeleyip yorumlamak 

➢ Bu konudaki ileriki çalışmalar için yeni fikirler ortaya koymak  
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1.3 Hipotez 

“İntegral Denklemlerin Sayısal Çözümleri” adlı hipotezimizde, ilk olarak bir 

literatür taraması yapıldıktan sonra Hermit Sıralama Yöntemi tüm özellikleriyle 

incelenecek, daha sonrasında ise bir kesirli Fredholm-integro diferansiyel denklem 

sınıfına uygulanacaktır. MATHEMATICA programı yardımıyla yaklaşık çözümler 

elde edilip hem grafiksel hem de tablosal olarak yorumlanacaktır.   
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2 

ÖZEL FONKSİYONLAR 

Özel fonksiyonlar Matematiğin ve Fiziğin birçok alanında oldukça yaygın olarak 

kullanılmaktadırlar. Özel fonksiyonlar, kesirli türev ve integral tanımlarını daha iyi 

anlamamızda bize faydalı olacaklardır. 

2.1.  Gama Fonksiyonu 

İsviçreli bir Matematikçi olan Leonhard Euler tarafından ortaya konulan Gama 

fonksiyonu, faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel 

sayılar için genelleyen bir fonksiyondur. Birçok özel fonksiyon Gama fonksiyonu 

ile ifade edilebilir.  

Tanım 2.1 Gama Fonksiyonu 

Gama fonksiyonu genelleştirilmiş integral ile  

Г(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0

 ;               𝑥 ∈ ℂ ,        𝑅𝑒(𝑥) > 0             (2.1) 

olarak tanımlanır [35,42]. 

Teorem 2.1  

Gama fonksiyonu aşağıda verilen özellikleri sağlamaktadır: 

a. Г(𝑥 + 1) = 𝑥Г(𝑥) ,          𝑥 ≠ 0,−1,−2, … 

b. Г(𝑥) = (𝑥 − 1)!  ,             𝑥 = 1,2,3, … 

c. Г (
1

2
) = √𝜋 

Teorem 2.1.a’nın yardımıyla aşağıda bazı değerler için Gama fonksiyonunun 

değerleri hesaplanmıştır.  

Г (
1

2
) = √𝜋 = 1.72245                                        

Г (
3

2
) =

1

2
Г (
1

2
) =

√𝜋

2
= 0.886227                   

 Г (
5

2
) =

3

2
Г (
3

2
) =

1.3

22
√𝜋 =

3

4
√𝜋 = 1.32934 
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 Г (
7

2
) =

5

2
Г (
5

2
) =

1.3.5

23
√𝜋 =

15

8
√𝜋 = 3.32335                          

⋮        

Г (𝑛 +
1

2
) =

1.3.5… (2𝑛 − 1)

2𝑛
√𝜋 ,     𝑛 ∈ ℤ+                        (2.2) 

 

Gama fonksiyonunun grafiği ise aşağıda verilmiştir. 

 

 

Şekil 2.1 Gama fonksiyonunun grafiği 

 

2.2. Beta Fonksiyonu 

Beta fonksiyonu matematikte oldukça yaygın olarak kullanılan özel bir 

fonksiyondur ve birçok karmaşık integral Beta fonksiyonu içeren ifadelere 

indirgenebilir. Ayrıca Gama fonksiyonu ile olan ilişkisi de oldukça önemlidir. 

Tanım 2.2 Beta Fonksiyonu 

𝐵(𝑥, 𝑦) = ∫ 𝑡𝑥−1(1 − 𝑡)𝑦−1𝑑𝑡
1

0

 ;          𝑅𝑒(𝑥), 𝑅𝑒(𝑦) > 0        (2.3) 

biçiminde tanımlanan fonksiyondur [35,42]. Beta fonksiyonu sıfır ve negatif tam 

sayılar hariç tüm kompleks sayılarda, Gama fonksiyonunun yardımıyla aşağıdaki 

formül ile genelleştirilebilir: 

𝐵(𝑥, 𝑦) =
Г(𝑥)Г(𝑦)

Г(𝑥 + 𝑦)
 ;          𝑥, 𝑦 ∈ ℝ ,         𝑥 ≠ 0, −1,−2,…   (2.4) 
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Teorem 2.2  

Beta fonksiyonu aşağıda verilen özellikleri sağlamaktadır: 

a. 𝐵(𝑥, 𝑦) = 𝐵(𝑦, 𝑥) 

b. 𝐵(𝑥, 𝑦) = 𝐵(𝑥 + 1, 𝑦) + 𝐵(𝑥, 𝑦 + 1) 

c. 𝐵(𝑥, 𝑦 + 1) =
𝑦

𝑥
𝐵(𝑥 + 1, 𝑦) =

𝑦

𝑥+𝑦
𝐵(𝑥, 𝑦) 

2.3. Mittag-Leffler Fonksiyonu 

İlk olarak İsveçli Matematikçi Gösta Mittag-Leffler tarafından 1903’te tanımlanan 

bu fonksiyon üstel fonksiyonun bir genelleştirilmesidir.  

Tanım 2.3 Mittag-Leffler Fonksiyonu 

Fonksiyon 𝐸𝛼(𝑥) ile ifade edilir ve  

𝐸𝛼(𝑥) = ∑
𝑥𝑘

Г(𝛼𝑘 + 1)
  ,   𝛼 > 0 , 𝑥 ∈ ℂ

∞

𝑘=0

                      (2.5) 

şeklinde tanımlanmıştır [35]. Ayrıca 

𝐸𝛼,𝛽(𝑥) = ∑
𝑥𝑘

Г(𝛼𝑘 + 𝛽)
  ,   𝛼, 𝛽 > 0 , 𝑥 ∈ ℂ

∞

𝑘=0

               (2.6) 

fonksiyonuna Genelleştirilmiş Mittag-Leffler fonksiyonu denir [36]. 
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3 

KESİRLİ İNTEGRAL VE TÜREV 

Bu bölümde öncelikli olarak kesirli türev ve integral kavramlarının tarihsel 

gelişiminden bahsedilmiştir. Daha sonrasında ise, literatürde bilinen bazı temel 

türev ve integral tanımları verilmiştir. 

3.1.  Kesirli Analizin Tarihçesi ve Uygulama Alanları 

Kesirli Analiz, klasik analizin tamsayı olmayan mertebeden integral ve türev 

almanın bir genellemesidir.  

Kesirli operatör kavramı, klasik operatörün gelişimiyle hemen hemen aynı anda 

ortaya çıkmıştır. Kesirli analizin bilinen ilk referansı  
𝑑𝑛𝑓

𝑑𝑥𝑛
 notasyonunun mucidi olan 

Gottfried Wilhelm Leibniz ve Marquis de L'Hospital ile 1695'teki yazışmalarında 

ortaya çıkmıştır. 30 Eylül 1695 tarihli yazışmada Leibniz, L’Hospital’e “Tam sayı 

mertebeden türevin işlevi tam sayı olmayan mertebeden türevin işlevine 

genişletilebilir mi?” sorusunu yönelttiğinde [43] L’Hospital “Öyleyse 1/2 

mertebeden türevin anlamı ne olur?” sorusuyla Leibniz’i yanıtlamıştır (Miller ve 

Ross, 1993). Daha sonra başka bir yazışmasında Leibniz “Bu, bir gün yararlı 

sonuçların çıkacağı bir paradoksa yol açacak.” cevabını vermiştir [41]. Kesirli türev 

kavramının ortaya çıkışı Bernoulli ile Leibniz’in aralarındaki bu yazışmalara 

dayanır. Leibniz'in sorduğu soru ile kesirli türev 300 yılı aşkın bir süredir çok cazip 

bir konu haline gelmiştir ve Euler, Joseph Liouville, Jean-Baptiste Joseph Fourier, 

Niels Henrik Abel, Pierre-Simon de Laplace, Bernhard Riemann, Hermann Weyl, 

Peter Grünwald, A. V. Letnikov gibi birçok önemli matematikçinin ilgisini çekmiş 

ve bu teoriye katkıları olmuştur [44]. 

Kesirli türevlere daha sonra 1772'de Joseph-Louis Lagrange, 1812'de Laplace, 

1819'da Sylvestre-François Lacroix, 1822'de Fourier, 1847'de Riemann, 1859'da 

Judy Green, 1865'te Hjalmar Holmgren, 1867'de Grunwald, 1868'de Letnikov, 

1869'da Nikolay Sonin’i, 1884'te Pierre Alphonse Laurent, 1919'da Hermann Weyl 

gibi birçok matematikçi atıf yapmıştır [39]. 1819 yılında ise Lacroix kesirli türev 

hakkında makale yayınlayan ilk matematikçi olmuştur [45]. 19. yüzyılda kesirli 
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analiz teorisi, büyük matematikçilerin içgörüleri ve dehaları sayesinde bu şekilde 

geliştirilmiştir. 

 

Şekil 3.1 Kesirli analiz alanındaki önde gelen bilim insanlarının zaman çizelgesi 

 

Seksenli yıllarda kesirli analiz, fraktal ve kaos gibi fenomenlerle ve dolayısıyla 

doğrusal olmayan dinamikle ilişkili olarak ortaya çıktı. Son yıllarda, yerel olmayan 

ve uzun hafıza etkilerine sahip karmaşık dinamik sistemlerin modellenmesinde 

popüler bir araç haline geldi [40]. Bilim ve mühendislik camiasında oldukça 

popüler olan bu konunun güzelliği kesirli türevlerin (ve integrallerin) yerel (veya 

nokta) bir özelliği olmamasıdır. Aslında konu doğanın gerçekliğini daha iyi tercüme 

etmektedir. Böylece bu konu bilim ve mühendislik camiasının popüler konusu 
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haline gelmiş, doğayı daha iyi anlamak veya tanımlamak için başka bir boyut 

katmıştır [43].  

1900’lü yıllardan günümüze kadar kesirli analiz teorisi, daha çok kesirli dinamikler, 

kesirli diferansiyel denklemler ve kesirli geometri dahil olmak üzere uygulamalı 

disipline esas olarak seri bir şekilde gelişti. Bugün ise Kesirli analizin uygulamaları 

oldukça yayılmıştır. Modern disiplinin neredeyse hiçbir disiplininin olmadığını 

söylemek güvenlidir. Genel olarak modern mühendislik ve bilimin neredeyse hiçbir 

disiplininin kesirli analizin araç ve tekniklerinden etkilenmediğini söylemek yanlış 

olmaz. Örnek verecek olursak akustik, viskoelastisite, optik, jeoloji, kimyasal ve 

istatistiksel fizik, kontrol teorisi, robotik, elektrik ve makine mühendisliği, 

biyomühendislik gibi birçok sahada geniş ve verimli uygulamalar bulunabilir.  

3.2. Temel Kesirli İntegral ve Türev Tanımları 

Bu bölümde bilinen en ünlü tam sayı olmayan türev ve integralle alakalı olan 

Riemann-Liouville, Grünwald-Letnikov ve Caputo tanımları verilmiştir. İtalyan 

matematikçi Michele Caputo 1960’lı yıllarda kesirli mertebeden diferansiyel 

denklemleri, tam sayı mertebeden başlangıç koşullarını kullanmak amacıyla 

Riemann-Liouville kesirli türevinin tanımını tekrardan formülüze ederek çözer yani 

o başlangıç koşullarına ihtiyaç duymadan daha çok tercih edilen türev operatörü 

haline dönüştürmüştür [46].  

3.2.1. Riemann-Liouville Kesirli İntegral ve Türevi  

Muhtemelen kesirli analizin gelişimindeki en yararlı ilerleme, G. F. Bernhard 

Riemann tarafından öğrencilik günlerinde yazılan bir makaleden kaynaklanıyordu. 

Ne yazık ki, makale ancak ölümünden sonra 1892’de yayınlandı. 1853’te bir Taylor 

serisini genelleştirmeye çalışan Riemann, belirli bir integral içeren ve tam sayı 

olmayan üslü kuvvet serilerine uygulanabilir farklı bir tanım üretti. Burada 

Riemann-Liouville kesirli analizin çerçevesinde kesirli integralin doğrusal 

operatörleri ve kesirli türevi mevcuttur. Bu operatörler uygulamalı bilimlerde 

çalışan bilim insanlarının erişebileceği bir şekilde Laplace dönüşümü tekniği ile ele 

alınmıştır. 

Tanım 3.1 Riemann-Liouville Kesirli İntegral 

𝑣 negatif olmayan gerçek bir sayı olsun. 𝑓, 𝐽′ = (0,∞) üzerinde parçalı sürekli ve 

𝐽 = [0,∞]’nin herhangi bir sonlu alt aralığında integrallenebilir olsun. O zaman  
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𝐷𝑐 𝑥
−𝑣𝑓(𝑥) =

1

𝛤(𝑥)
∫ (𝑥 − 𝑡)𝑣−1𝑓(𝑡)𝑑𝑡,
𝑥

𝑐

        𝑣 > 0          (3.1) 

’e 𝑓’nin 𝑣. mertebeden Riemann-Liouville Kesirli İntegrali denir [45,61]. 

Tanım 3.2 Riemann-Liouville Kesirli Türevi 

Kesirli türev, kesirli integralin tanımı kullanılarak tanımlanabilir. Bu amaçla  

𝑣 = 𝑛 − 𝑢 olduğunu varsayalım. Burada 0 < 𝑣 < 1 ve 𝑛, 𝑢’dan büyük en küçük 

tam sayıdır. O halde,  

𝐷𝑢𝑓(𝑥) = 𝐷𝑛[𝐷−𝑣𝑓(𝑥)]                                            (3.2) 

 𝑓’nin 𝑢. mertebeden Riemann-Liouville Kesirli Türevi denir [37,45]. 

3.2.2. Grünwald-Letnikov Kesirli Türevi  

Grünwald ve Letkinov bugün de sıklıkla kullanılan başka bir kesirli türev tanımının 

temelini oluşturdu. Liouville’in yaklaşımının kısıtlamalarından rahatsız olan 

Grunwald (1867), başlangıç noktası olarak bir fark bölümünün sınırı olarak bir 

türev tanımını benimsemiştir. Adi türevler için belirli integralinin sonlu bir alt 

limite sahip olarak yorumlanması gerektiğini ve ayrıca ayırt edilebilir bir alt limitin 

görünmediği Liouville tanımının bir alt limit −∞’a karşılık geldiğini gösterdi. (
𝛼
𝑘
) 

genelleştirilmiş binom katsayısıdır. Burada faktöriyeller Euler’in Gama fonksiyonu 

ile değiştirilir. O halde  

𝐷𝑥
𝛼𝑓(𝑥) = 𝑙𝑖𝑚

ℎ→0

(∆ℎ
𝛼𝑓)

ℎ𝛼
(𝑥) = 𝑙𝑖𝑚

ℎ→0

∑ (−1)𝑘 (
𝛼
𝑘
)𝑓(𝑥 − 𝑘ℎ)𝑘=0

ℎ𝛼
,   𝛼 > 0    (3.3) 

olarak adlandırılır [37,47,61]. 

3.2.3. Caputo Kesirli Türevi 

Kesirli analize yapılan en önemli modern katkılar arasında, 1967’de M. Caputo’nun 

tarafından tanıtılan Caputo kesirli türevidir. Caputo’nun yeniden formülüze ettiği 

bu kesirli türevde diferansiyel denklemler çözülürken Riemann-Liouville kesirli 

türevinde kullanılan kesirli mertebeden başlangıç koşullarını tanımlamaya gerek 

yoktur. 𝑛 pozitif bir tam sayı ve 𝑛 − 1 < 𝑅𝑒(𝛼) < 𝑛 olmak üzere, 𝑓(𝑥) 

fonksiyonunun 𝛼. mertebeden klasik Caputo Kesirli Türevi  

𝐷𝑡
𝛼𝑓(𝑥) =

1

Г(𝑛 − 𝛼)
∫ (𝑡 − 𝑠)𝑛−𝛼−1
𝑡

0

(
𝑑

𝑑𝑠
)
𝑛

𝑓(𝑠)𝑑𝑠,              (3.4) 
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dir. Özel olarak eğer   𝑓(𝑥) = (𝑥 − 𝑎)𝛽 ,           𝛼, 𝛽 ≥ 0    ise 

𝐷𝑎
𝛼(𝑥 − 𝑎)𝛽 = {

0 ,    𝛽 ∈ {0,1, … , 𝑛 − 1}   𝑣𝑒    𝛽 < 𝑛

Г(𝛽+1)

Г(𝛽+1−𝛼)
(𝑥 − 𝑎)𝛽−𝛼

     ,    𝛽 ∈ ℕ    𝑣𝑒    𝛽 ≥ 𝑛                     (3.5)

 𝛽 ∉ ℕ    𝑣𝑒    𝛽 > 𝑛 − 1            
  

şeklinde tanımlanmıştır [37,42,47,61]. 

Tablo 3.1 Bazı polinomların Caputo türevleri 

𝛼 = 0.5  için Caputo Türevleri 

Fonksiyon Caputo Türevi 

𝑓(𝑥) = 𝑥   
𝐷0.5𝑥 =

2

√𝜋
𝑥0.5 = 1.1283791671𝑥0.5 

𝑓(𝑥) = 𝑥2 
𝐷0.5𝑥2 =

Г(3)

Г (
5
2)
𝑥1.5 =

8

3√𝜋
𝑥1.5 = 1.50450555613𝑥1.5 

𝑓(𝑥) = 𝑥3   
𝐷0.5𝑥3 =

Г(4)

Г (
7
2)
𝑥2.5 =

16

5√𝜋
𝑥2.5 = 1.80540666735𝑥2.5 

𝑓(𝑥) = 𝑥4   
𝐷0.5𝑥4 =

Г(5)

Г (
9
2)
𝑥3.5 =

128

35√𝜋
𝑥3.5 = 2.06332190555𝑥3.5 

 

 

 

 

 

 

 

 



16 

4 

İNTEGRAL DENKLEMLER 

İntegral denklemler, bilinmeyen bir 𝑢(𝑥) fonksiyonun integral işareti altında 

bulunduğu denklemlerdir. Bu denklemler, teorik ve uygulamalı matematik 

alanlarında kullanılan oldukça güçlü matematiksel bir araçtır. Birçok fiziksel 

problemlerde oldukça geniş uygulamalara sahiptir. Birçok adi ve kısmi diferansiyel 

denklemler başlangıç ya da sınır koşulları altında integral denklemlerin yaklaşık 

çözümü problemlerine dönüştürülebilir. 

İntegral denklemlerin tarihçesine bakacak olursak, ilk olarak İtalyan matematikçi 

olan Niels Henrik Abel 1823 yılında incelediği problemle beraber ilk kez integral 

denklemden bahsetmiştir. Bu problem “Tautochrone Problemi” olarak bilinir ve 

Abel bu problemi kendisine ait olan Abel İntegral Denklemi ile ilişkilendirmiştir. 

Bu problem, ağır bir parçacığın sürtünme olmadan kayarak en alçak konuma kadar 

gittiği yolu ifade eden bir eğrinin belirlenmesi ile ilgilidir. İntegral denklem 

kavramı ilk olarak D.B. REYMOND’un 1888’de yayınladığı çalışmasında ortaya 

atılmıştır. İntegral denklemlerle alakalı daha sonraları Ivan Petrovsky, Francesco 

Tricomi ve William Vernon Lovitt’e ait belgeler mevcuttur. Doğa kanunları 

genellikle diferansiyel denklemler kullanılarak açıklanabilir. Bu nedenle, çevremizi 

incelediğimizde kozmosun bütününde doğru kabul edilen doğa kanunlarının olduğu 

neticesine ulaşılabilir. Görülüyor ki Albert Einstein’ın “Evrenin en anlaşılmaz 

özelliği anlaşılabilir olmasıdır.” sözü daha da anlamlanmıştır. İntegral denklemler 

tüm kozmos üzerinden integral alınmayı icap ettirdiğinden evrenseldir. İntegral 

denklemler nispeten birçok denkleme göre çözüme ulaşılması daha zordur. 

Diferansiyel denklemler ise yalnız başına bir problemi tanımlamak için yeterli 

değildir. Onlara başlangıç ya da sınır koşullarının da eklenmesi gerekir. İntegral 

denklemler ise ilave koşullara ihtiyaç duymadan bir problemin tam tanımını verir. 

Ancak, sınır şartları da kozmosun tamamında onların incelenen alana tesirinin 

dolaylı yoldan denklemlere eklenmesi olarak çıkarıma varılabileceğinden, integral 

ile diferansiyel denklemler arasında benzer bir bağlantı olması da çok açıktır. 

Anlaşılacağı üzere diferansiyel denklemler esasında integral denklemler şeklinde 

de belirtilebilir.   
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Birçok bilim dalındaki problemler birden fazla bilinmeyen fonksiyon içeren 

diferansiyel yada integral denklem yardımıyla ifade edilir. Bu denklemler, özellikle 

parçalılarla, pek çok fizik ve mühendislik alanında karşılaşmaktayız.  Örnek 

verecek olursak, Diferansiyel Denklem Sistemleri: 1988 yılında Elastikiyet teorisi, 

1990’da Dinamik ve yine aynı yılda Akışkanlar mekaniği, 1996’da Devre 

problemleri, Salınım problemleri, 1998’de Kuantum dinamiği gibi alanlarda 

görülmektedir. Bu sistemlerin ta çözümü elde edilemediğinden yaklaşık çözümleri 

için çalışmaların yapılması önem arz etmiştir [48-51]. 

4.1.  İntegral Denklem 

Bilinmeyen bir 𝑢(𝑥) fonksiyonunun bir integral işareti altında bulunduğu denkleme 

İntegral Denklem denir. Bir integral denklem en genel haliyle 

𝑢(𝑥) =  𝑓(𝑥) + 𝜆∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)

                            (4.1) 

Şeklinde ifade edilir. Burada, 𝑔(𝑥) ve ℎ(𝑥) integralin sınırları, 𝜆 sabit bir parametre 

ve 𝐾(𝑥, 𝑡) çekirdek veya integral denkleminin çekirdeği olarak adlandırılan 𝑥 ve 𝑡 

değişkenlerine bağlı bir fonksiyondur. Bilinmeyen 𝑢(𝑥) fonksiyonu integral 

işaretinin altında olabileceği gibi hem içinde hem de dışında görülebilir. Görüldüğü 

gib  𝑓(𝑥),  𝐾(𝑥, 𝑡) fonksiyonları bilinen fonksiyonlardır. İntegral sınırları olan 𝑔(𝑥) 

ve ℎ(𝑥) sabit ya da fonksiyon olabilir.  

𝑢(𝑥) bilinmeyen fonksiyonunun integral işareti altında bulunduğu ve aynı zamanda 

𝑢𝑛(𝑥) türevini de içeren denklemlere İntegro Diferansiyel Denklemi denir. Standart 

bir integro diferansiyel denklemi 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)

                           (4.2) 

şeklindedir [48-51]. 

4.2. İntegral Denklemlerin Sınıflandırılması 

İntegral denklemler farklı özelliklerine göre aşağıdaki gibi sınıflandırılabilir: 
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4.2.1. Lineer ve Lineer Olmayan İntegral Denklemler 

İntegral denklemler lineer ve lineer olmayan integral denklemler olarak iki bölüme 

ayrılır. Eğer 𝑢(𝑥) bilinmeyen fonksiyonu integral işareti altında lineer formda ise, 

yani 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎

                                 (4.3) 

ise Lineer İntegral Denklem; lineer olmayan formda ise, yani 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝜑[𝑥, 𝑡, 𝑢(𝑡)]𝑑𝑡
𝑥

𝑎

                                (4.4) 

ise Lineer Olmayan İntegral Denklem adını alır. Bunların haricinde birden fazla 

değişkeni mevcut olan 

𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + ∫ ∫ 𝐾(𝑥, 𝑦; 𝑡1, 𝑡2)𝑢(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

𝑑

𝑐

 
𝑏

𝑎

    (4.5) 

biçimindeki denklemler de lineer ve lineer olmayan olarak sınıflandırılır. 

4.2.2. Tekil ve Tekil Olmayan İntegral Denklemler 

Bir integral denklemi sınıflandırırken çekirdek fonksiyonunun sürekliliği önem arz 

etmektedir. 𝐾(𝑥, 𝑡) çekirdek fonksiyonu 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏 aralığında sürekli ise integral 

denkleme Tekil Olmayan İntegral Denklem; sürekli değilse Tekil İntegral Denklem 

denir.  Örneğin 0 < 𝛼 < 1 için  

𝑓(𝑥) = ∫
𝑢(𝑡)

(𝑥 − 𝑡)∝

𝑥

0

𝑑𝑡                                         (4.6) 

tekil bir integral denklemdir. Bununla birlikte, integrasyon sınırlarından en az biri 

 ise, denkleme tekil integral denklem denir. Örneğin, 

𝑓(𝑥) = ∫ 𝑒−𝑥𝑡𝑢(𝑡)
∞

𝑎

𝑑𝑡                                       (4.7) 

şeklindeki denklem gösterilebilir [48-51]. 

4.2.3. Homojen ve Homojen Olmayan İntegral Denklemler 

𝑓(𝑥) fonksiyonunun var olup olmadığına göre de integral denklemler 

sınıflandırılabilir. İntegral denklemde 𝑓(𝑥) ≡ 0 ise, denklem homojen integral 

denklem; değilse homojen olmayan integral denklem adını alır. Yani 
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𝑢(𝑥) = ∫ 𝐾(𝑥, 𝑡)
𝑏

𝑎

𝑢(𝑡)𝑑𝑡                                     (4.8) 

homojen bir denklem iken 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)
𝑏

𝑎

𝑢(𝑡)𝑑𝑡                            (4.9) 

homojen olmayan bir denkleme örnektir. 𝑢(𝑥) ≡ 0 olan çözüme Aşikar Çözüm 

denir.  

4.2.4. Volterra ve Fredholm İntegral Denklemleri 

İntegral denklemlerin lineer ve homojen olup olmadıklarına bakılmaksızın, 

integrasyon sınırlarının değişken veya sabit olmalarına göre de sınıflandırmalar 

yapılmaktadır.  

𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)
𝑥

𝑎

𝑢(𝑡)𝑑𝑡 = 0                                 (4.10) 

𝑢(𝑥) = 𝑓(𝑥) +  ∫ 𝐾(𝑥, 𝑡)
𝑥

𝑎

𝑢(𝑡)𝑑𝑡                            (4.11) 

denklemlerine Volterra İntegral Denklemi denir. Bu tip denklemlerde, 

integrasyonun üst sınırında (veya sınırlarından birinde) 𝑥 değişkeni vardır. Eğer 

integrasyonun iki sınırı da sabitlerden oluşuyorsa bu tür denklemlere Fredholm 

İntegral Denklemi denir. Genel olarak 

𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)
𝑏

𝑎

𝑢(𝑡)𝑑𝑡 = 0                                 (4.12) 

ya da  

𝑢(𝑥) = 𝑓(𝑥) +  ∫ 𝐾(𝑥, 𝑡)
𝑏

𝑎

𝑢(𝑡)𝑑𝑡                             (4.13) 

birer Fredholm integral denklemidir. Eğer integral denklem, biri Volterra biri de 

Fredholm integral denklemlerindeki gibi sınırlar içeren iki integral içeriyorsa bu 

tarz denklemlere Volterra-Fredholm İntegral Denklemi denir.  

𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)
𝑏

𝑎

𝑢(𝑡)𝑑𝑡 + 𝛽∫ 𝐾(𝑥, 𝑡)
𝑥

𝑎

𝑢(𝑡)𝑑𝑡 = 0       (4.14) 

ya da 
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𝑢(𝑥) = 𝑓(𝑥) +  ∫ 𝐾(𝑥, 𝑡)
𝑏

𝑎

𝑢(𝑡)𝑑𝑡 + 𝛽∫ 𝐾(𝑥, 𝑡)
𝑥

𝑎

𝑢(𝑡)𝑑𝑡    (4.15) 

birer örnektir [48-51]. 
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5 

HERMİT POLİNOMLARI 

1810 yılında Fransız matematikçi ve gökbilimci Pierre-Simon Laplace tarafından 

tanımlanan Hermit polinomları, farklı bir biçimde 1859'da Pafnuty Chebyshev 

tarafından ayrıntılı olarak incelenmiştir. Daha sonrasında 1864'de Charles 

Hermite'nin adıyla anılmıştır. Yeni bir tanım değildir ama Hermite 1865'teki 

yayınlarında çok boyutlu polinomları tanımlayan ilk kişi olmuştur [52-53]. 

 

Şekil 5.1 Charles Hermite (24 Aralık 1822 - 14 Ocak 1901, Fransa) 

5.1 Hermit Diferansiyel Denklemi 

Günümüzde doğa bilimlerinden mühendisliğe kadar birçok alanda karmaşık 

problemlerle karşılaşırız. Bu problemler genellikle diferansiyel denklemler 

yardımıyla modellenerek çözüme ulaşılmaya çalışılır. Bu modellemelerde çok 

çeşitli denklemler kullanılmaktadır. Bunlardan birisi de matematik ve fizikte 

kullanılan Hermit Diferansiyel Denklemidir. Bu diferansiyel denklem en genel 

haliyle 

𝑦′′ − 2𝑥𝑦′ + 2𝑛𝑦 = 0,   (𝑛 = 0, 1, 2, 3, … )                     (5.1) 
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biçiminde ifade edilir [54-55]. Bu diferansiyel denklemi çözebilmek için kuvvet 

serilerinden yararlanılır. Bunun için öncelikle 𝑦(𝑥) çözüm fonksiyonunu kuvvet 

serisi olarak aşağıdaki gibi yazalım. 

𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 +⋯ = ∑ 𝑎𝑚𝑥
𝑚

∞

𝑚=0

            (5.2) 

Burada 𝑦(𝑥) fonksiyonu bizim denklemimizin çözüm fonksiyonu olduğundan 

dolayı diferansiyel denklemimizi sağlamak zorundadır. Sırasıyla 𝑦′(𝑥) ve 𝑦′′(𝑥) 

türevleri  

𝑦′(𝑥) = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥
2 +⋯ = ∑ 𝑚𝑎𝑚𝑥

𝑚−1

∞

𝑚=1

               (5.3) 

ve 

𝑦′′(𝑥) = 2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥
2 +⋯ = ∑ 𝑚(𝑚 − 1)𝑎𝑚𝑥

𝑚−2

∞

𝑚=2

        (5.4) 

olarak elde edilir. Daha sonrasında (5.2), (5.3) ve (5.4) ifadelerini (5.1) 

denkleminde yerine yazacak olursak 

∑𝑚(𝑚 − 1)𝑎𝑚𝑥
𝑚−2

∞

𝑚=2

− ∑ 2𝑚𝑎𝑚𝑥
𝑚

∞

𝑚=1

+ ∑ 2𝑛𝑎𝑚𝑥
𝑚

∞

𝑚=0

= 0            (5.5) 

elde edilir. Yukarıda görüldüğü gibi ikinci ve üçüncü seri 𝑥𝑚 kuvvetine sahip iken 

ilk serimiz 𝑥𝑚−2 kuvvetine sahiptir. İlk serimizi 𝑚 değeri yerine (𝑚 + 2) alarak 

yeniden düzenlersek 

∑(𝑚+ 2)(𝑚 + 1)𝑎𝑚+2𝑥
𝑚

∞

𝑚=0

− ∑ 2𝑚𝑎𝑚𝑥
𝑚

∞

𝑚=1

+ ∑ 2𝑛𝑎𝑚𝑥
𝑚

∞

𝑚=0

= 0    (5.6) 

elde edilir. Burada amacımız serilerin hepsini tek bir seri toplamı altında yazmak 

olduğundan, serinin indisini 𝑚 = 1 ’den başlayacak şekilde alırsak  

     ∑[(𝑚 + 2)(𝑚 + 1)𝑎𝑚+2

∞

𝑚=1

− (2𝑚−2𝑛)𝑎𝑚]𝑥
𝑚 + 2𝑎2 + 2𝑛𝑎0 = 0     (5.7) 

elde edilir. (5.7) denklemindeki eşitliğin sağ tarafı sıfır olduğundan sol taraftaki 

ifadeleri ayrı ayrı sıfıra eşitlersek 
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𝑎𝑚+2 =
2[𝑚 − 𝑛]

(𝑚 + 2)(𝑚 + 1)
𝑎𝑚   , 𝑚 ≥ 1                   (5.8) 

yineleme bağıntısı ve 

𝑎2 =
−2𝑛

2
𝑎0                                                    (5.9) 

değeri elde edilir. (5.8) yineleme bağıntısını (5.9) eşitliği yardımıyla açacak 

olursak 𝑚’nin çift sayı değerleri için  

➢ 𝑚 = 0 

𝑎2 =
2(−𝑛)

2!
𝑎0 

➢ 𝑚 = 2 

𝑎4 =
2(2 − 𝑛)

4.3
𝑎2 =

22(−𝑛)(2 − 𝑛)

4!
𝑎0 

➢ 𝑚 = 4 

𝑎6 =
2(4 − 𝑛)

6.5
𝑎4 =

23(−𝑛)(2 − 𝑛)(4 − 𝑛)

6!
𝑎0                (5.10) 

elde edilir. Bu şekilde devam edilecek olursa 𝑎2𝑚 terimi 

𝑎2𝑚 =
2𝑚(−𝑛)(2 − 𝑛)… ((2𝑚 − 2) − 𝑛)

(2𝑚)!
𝑎0                    (5.11) 

şeklinde genellenebilir. Aynı şeyi bu sefer 𝑚’nin tek sayı değerleri için yaparsak 

➢ 𝑚 = 1 

𝑎3 =
2(1 − 𝑛)

3!
𝑎1 

➢ 𝑚 = 3 

𝑎5 =
2(3 − 𝑛)

5.4
𝑎3 =

22(1 − 𝑛)(3 − 𝑛)

5!
𝑎1 

➢ 𝑚 = 5 

𝑎7 =
2(5 − 𝑛)

7.6
𝑎5 =

23(1 − 𝑛)(3 − 𝑛)(5 − 𝑛)

7!
𝑎1               (5.12) 

elde edilir. Yine bu şekilde devam edilirse 𝑎2𝑚+1 terimi 
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𝑎2𝑚+1 =
2𝑚(1 − 𝑛)(3 − 𝑛)… ((2𝑚 − 1) − 𝑛)

(2𝑚 + 1)!
𝑎1              (5.13) 

olarak genellenir. Buna göre 𝑦(𝑥) çözüm fonksiyonumuz 

𝑦(𝑥) = 𝑎0 {1 +
2(−𝑛)

2!
𝑥2 +⋯+

2𝑚(−𝑛)(2 − 𝑛)… (2𝑚 − 2 − 𝑛)

(2𝑚)!
𝑥2𝑚 +⋯} 

+𝑎1 {𝑥 +
2(1 − 𝑛)

3!
𝑥3 +⋯+

2𝑚(1 − 𝑛)(3 − 𝑛)… (2𝑚 − 1 − 𝑛)

(2𝑚 + 1)!
𝑥2𝑚+1

+⋯}                                                                                                 (5.14) 

olarak elde edilir. (5.14) denklemini 

𝑦(𝑥) = 𝑎0𝑦1(𝑥) + 𝑎1𝑦2(𝑥)                                 (5.15) 

olarak yeniden ifade edelim. Burada 𝑦1(𝑥) fonksiyonu 𝑥’in çift kuvvetlerine yer 

edinirken 𝑦2(𝑥) fonksiyonu ise 𝑥’in tek kuvvetlerine yer edinir. (5.14) 

denkleminde gözümüze çarpan ilk şey 𝑛 sayısının bir tam sayı olmasıdır. Burada 

ilk olarak 𝑛 sayısını çift olarak kabul edersek 𝑎0’dan başlayan seri 𝑚 = 𝑛 

değerinden sonra 

𝑎𝑛+2 = 𝑎𝑛+4 = ⋯ = 0 

olur. Böylece 𝑦1 bir polinom olurken 𝑦2 sonsuz terimli bir seri olur. Bu sefer 𝑛 

tamsayısını tek kabul edecek olursak 𝑦2’nin çözümü polinom olurken 𝑦1’in çözümü 

sonsuz terimli bir seri olur. Polinom olan ifade edilen kısma Hermit Polinomu denir 

ve 𝐻𝑛 ile gösterilir. Buna göre Hermit diferansiyel denkleminin genel çözümü 

𝑦(𝑥) = 𝑎0𝑢𝑛(𝑥) + 𝑎1𝑣𝑛(𝑥)                                    (5.16) 

olarak yazıldığında 

 𝑛 ç𝑖𝑓𝑡 ⟹ 𝐻𝑛(𝑥) = 𝑢𝑛(𝑥)    

𝑛 𝑡𝑒𝑘 ⟹ 𝐻𝑛(𝑥) = 𝑣𝑛(𝑥)    

şeklinde olur. Hermit polinomları ise 

𝐻𝑛(𝑥) = 𝑎0 {1 −
𝑛

1
.
𝑥

1!

2

+
(𝑛)(𝑛 − 2)

1.3
.
𝑥4

2!
+ ⋯} , (𝑛 ç𝑖𝑓𝑡)   (5.17) 

𝐻𝑛(𝑥) = 𝑎1 {𝑥 −
(𝑛 − 1)

3
.
𝑥

1!

3

+
(𝑛 − 1)(𝑛 − 3)

3.5
.
𝑥5

2!
+ ⋯} , (𝑛 𝑡𝑒𝑘)    (5.18) 
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ifadeleri ile verilir [55]. O halde (5.17) ve (5.18) denklemleri (5.16)’de yerine 

yazılırsa 

   𝑦(𝑥) = 𝑎0 {1 +∑
(−2)𝑗𝑛(𝑛 − 2)… (𝑛 − 2𝑗 + 2)

(2𝑗)!

∞

𝑗=1

. 𝑥2𝑗} 

+𝑎1𝑥 {1 +∑
(−2)𝑗(𝑛 − 1)(𝑛 − 3)… (𝑛 − 2𝑗 + 1)

(2𝑗 + 1)!

∞

𝑗=1

. 𝑥2𝑗+1} (5.19) 

elde edilir.  

Serilerle işlemlere başlamadan önce daha sonrasında bizim için önemli olan 

serilerle ilgili bazı özellikleri verelim: 

Tablo 5.1 Bazı temel seri özellikleri 

Bazı Temel Seri Özellikleri 

1.(i) 

∑∑𝑀(𝑘, 𝑛) =

∞

𝑘=0

∞

𝑛=0

∑∑𝑀(𝑘, 𝑛 − 𝑘)

𝑛

𝑘=0

∞

𝑛=0

 

1.(ii) 

∑∑𝑀(𝑘, 𝑛) =

∞

𝑘=0

∞

𝑛=0

∑∑𝑀(𝑘, 𝑛 − 2𝑘)

⌈
𝑛
2
⌉

𝑘=0

∞

𝑛=0

 

2.(i) 

∑∑𝑁(𝑘, 𝑛) =

𝑛

𝑘=0

∞

𝑛=0

∑∑𝑁(𝑘, 𝑛 + 𝑘)

∞

𝑘=0

∞

𝑛=0

 

2.(ii) 

∑∑𝑁(𝑘, 𝑛) =

⌈
𝑛
2
⌉

𝑘=0

∞

𝑛=0

∑∑𝑁(𝑘, 𝑛 + 2𝑘)

∞

𝑘=0

 

∞

𝑛=0

 

 

➢ 𝑛 çift bir sayı olsun. O halde 

𝑎0 =
(−1)

𝑛
2𝑛!

(
𝑛
2) !

                                            (5.20) 

olur.  (5.19) teki ilk toplamda 2𝑗 = 𝑛 kabul edersek o zaman 𝑥𝑛’in katsayısı 

(−2)(
𝑛
2
) 𝑛(𝑛 − 2)… (𝑛 − 𝑛 + 2)

𝑛!
. 𝑎0                     (5.21) 

olur. Daha sonrasında (5.20) teki 𝑎0 terimini (5.21)’de yerine yazacak olursak 
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(−2)(
𝑛
2
).
𝑛(𝑛 − 2)… (𝑛 − 𝑛 + 2)

𝑛!
.
(−1)

𝑛
2𝑛!

(
𝑛
2) !

                    (5.22) 

elde edilir. (5.22) denkleminde gerekli düzenlemeler yapıldığında pay ve paydada 

bulunan 𝑛! terimleri sadeleşecektir. (
𝑛

2
) üslü ifadeleri tek bir parantez halinde 

toplanırsa (5.22) ifadesi 

(2)(
𝑛
2
).
𝑛(𝑛 − 2)… (𝑛 − 𝑛 + 2)

(
𝑛
2) !

                         (5.23) 

halini alır. Payda aşağıdaki gerekli düzenlemeler yapılınca (5.23) ifadesi 

= (2)(
𝑛
2
).
2
𝑛
2 2 (

𝑛
2 − 1)…

(2)1

(
𝑛
2) !

= (2)(
𝑛
2
).
(2)(

𝑛
2
) (
𝑛
2) !

(
𝑛
2) !

= 2𝑛   (5.24) 

olur. Aynı şekilde 𝑥𝑛−2’in katsayısı, 

(−2)(
𝑛−2
2
).
𝑛(𝑛 − 2)… (𝑛 − 𝑛 + 2 + 2)

(𝑛 − 2)!
.
(−1)

𝑛
2𝑛!

(
𝑛
2) !

            (5.25) 

olur. (5.25) denklemimizi (−1) ile çarpıp bölelim. O halde 

(−2)(
𝑛−2
2
).
𝑛(𝑛 − 2)… (𝑛 − 𝑛 + 2 + 2)

(𝑛 − 2)!
.
(−1)

𝑛
2𝑛!

(
𝑛
2) !

 .
(−1)

(−1)
  

= −2(
𝑛−2
2
).
2(
𝑛−2
2
) 𝑛
2 (
𝑛
2 − 1)…

(2)

(𝑛 − 2)!
.
𝑛(𝑛 − 1)(𝑛 − 2)!

(
𝑛
2) !

  

 =
−2(𝑛−2) (

𝑛
2) ! 𝑛

(𝑛 − 1)

(
𝑛
2) !

=
−2(𝑛−2)𝑛(𝑛 − 1)

(1)!
               (5.26) 

elde edilir. O zaman 𝑦(𝑥) fonksiyonunun en büyük kuvvete sahip 𝑥’i ve katsayısını 

polinom dizilişine göre yazacak olursak 

𝑦(𝑥) = 2𝑛𝑥𝑛 −
𝑛(𝑛 − 1)

(1)!
. 2𝑛−2𝑥𝑛−2 

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

(2)!
. 2𝑛−4𝑥𝑛−4 +⋯+

(−1)
𝑛
2𝑛!

(
𝑛
2) !

      (5.27) 
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bulunur. (5.27) denkleminde son terimin 𝑎0 olduğu açıkça gözükmektedir. O zaman 

𝐻𝑛(𝑥) polinomu 

𝐻𝑛(𝑥) = (2𝑥)
𝑛 −

𝑛(𝑛 − 1)

(1)!
. (2𝑥)𝑛−2                                    

+
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

(2)!
. (2𝑥)𝑛−4 +⋯+

(−1)
𝑛
2𝑛!

(
𝑛
2) !

    (5.28) 

şeklindedir. (5.28) denklemini bir seri toplamı olarak daha pratik olarak ifade 

edecek olursak, Hermit polinomu 

𝐻𝑛(𝑥) = ∑(−1)𝑚
𝑛!

(𝑚)! (𝑛 − 2𝑚)!

⌈
𝑛
2
⌉

𝑚=0

(2𝑥)𝑛−2𝑚                 (5.29) 

⌈
𝑛

2
⌉ = {

𝑛

2
 , 𝑛 ç𝑖𝑓𝑡

(𝑛 − 1)

2
, 𝑛 𝑡𝑒𝑘

                                              (5.30) 

şeklinde elde edilir [55,58]. Bu formüle göre, Hermit polinomlarının birkaç terimini 

açık şekilde ifade edecek olursak 

➢ 𝐻0(𝑥) = ∑ (−1)𝑚.
1

(𝑚)!(−2𝑚)!

0
𝑚=0 . (2𝑥)−2𝑚 = (−1)0.

1

0!0!
. (2𝑥)0 = 1 

➢ 𝐻1(𝑥) = ∑ (−1)𝑚.
1

(𝑚)!(1−2𝑚)!

0
𝑚=0 . (2𝑥)1−2𝑚 = (−1)0.

1

0!1!
. (2𝑥)1 = 2𝑥 

➢ 𝐻2(𝑥) = ∑ (−1)𝑚.
2

(𝑚)!(2−2𝑚)!
1
𝑚=0 . (2𝑥)2−2𝑚 = (−1)0.

2

0!2!
. (2𝑥)2 +

(−1)1.
2

1!0!
. (2𝑥)0 = 4𝑥2 − 2 

➢ 𝐻3(𝑥) = ∑ (−1)𝑚.
3!

(𝑚)!(3−2𝑚)!
1
𝑚=0 . (2𝑥)3−2𝑚 = (−1)0.

3!

0!3!
. (2𝑥)3 +

(−1)1.
3!

1!1!
. (2𝑥)1 = 8𝑥3 − 12𝑥 

➢ 𝐻4(𝑥) = ∑ (−1)𝑚.
4!

(𝑚)!(4−2𝑚)!
.2

𝑚=0 (2𝑥)4−2𝑚 = (−1)0.
4!

0!4!
. (2𝑥)4 +

(−1)1.
4!

1!2!
. (2𝑥)2 + (−1)2.

4!

2!0!
. (2𝑥)0 = 16𝑥4 − 48𝑥2 + 12 

➢ 𝐻5(𝑥) = ∑ (−1)𝑚.
5!

(𝑚)!(5−2𝑚)!
.2

𝑚=0 (2𝑥)5−2𝑚 = (−1)0.
5!

0!5!
. (2𝑥)5 +

(−1)1.
5!

1!3!
. (2𝑥)3 + (−1)2.

5!

2!1!
. (2𝑥)1 = 32𝑥5 − 160𝑥3 + 120𝑥 
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➢ 𝐻6(𝑥) = ∑ (−1)𝑚.
6!

(𝑚)!(6−2𝑚)!

3
𝑚=0 . (2𝑥)6−2𝑚 = (−1)0.

6!

0!6!
. (2𝑥)6 +

(−1)1.
6!

1!4!
. (2𝑥)4 + (−1)2.

6!

2!2!
. (2𝑥)2 + (−1)3.

6!

3!0!
. (2𝑥)0 = 64𝑥6 −

480𝑥4 + 720𝑥2 − 120 

➢ 𝐻7(𝑥) = 128𝑥
7 − 1344𝑥5 + 3360𝑥3 − 1680𝑥 

➢ 𝐻8(𝑥) = 256𝑥
8 − 3584𝑥6 + 13440𝑥4 − 13440𝑥2 + 1680 

➢ 𝐻9(𝑥) = 512𝑥
9 − 9216𝑥7 + 48384𝑥5 − 80640𝑥3 + 30240𝑥 

➢ 𝐻10(𝑥) = 1024𝑥
10 − 23040𝑥8 + 161280𝑥6 − 493200𝑥4 +

302400𝑥2 − 30240 

olur [55,58]. 

 

Şekil 5.2 Hermit polinomları grafiği 

 

5.2 Hermit Polinomlarının Bazı Temel Özellikleri 

Burada Hermit polinomlarının farklı formlardaki halleri mevcuttur.     

5.2.1 Üretici Fonksiyon 

Hermit polinomunu farklı bir şekilde ifade edebilmek için üstel fonksiyonun seri 

toplam formülünden yararlanabiliriz. Biliyoruz ki 

𝑒𝑡 =∑
𝑡𝑛

𝑛!

∞

𝑛=0

                                                (5.31) 
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ile ifade edilir. Burda 𝑡 ⟶ 2𝑥𝑡 yazacak olursak 

𝑒2𝑥𝑡 =∑(2𝑥)𝑛
𝑡𝑛

𝑛!

∞

𝑛=0

                                        (5.32) 

elde edilir. Şimdi ise, (5.31) denkleminde 𝑡 ⟶ −𝑡2 alırsak 

𝑒−𝑡
2
=∑(−1)𝑛

𝑡2𝑛

𝑛!

∞

𝑛=0

                                      (5.33) 

bulunur. (5.32) ile (5.33) seri toplamlarını çarpalım. O zaman 

𝑒2𝑥𝑡−𝑡
2
=∑(2𝑥)𝑖

𝑡𝑖

𝑖!

∞

𝑖=0

∑(−1)𝑗
𝑡2𝑗

𝑗!

∞

𝑗=0

=∑∑(−1)𝑗
(2𝑥)𝑖𝑡𝑖+2𝑗

𝑖! 𝑗!

∞

𝑗=0

∞

𝑖=0

  (5.34) 

olur. (5.34) denkleminde bazı temel seri özelliklerinden 1(𝑖𝑖) özelliğini kullanırsak 

𝑒2𝑥𝑡−𝑡
2
=∑∑

(−1)𝑗(2𝑥)𝑖−2𝑗𝑡𝑖

(𝑖 − 2𝑗)! 𝑗!

⌈
𝑗
2
⌉

𝑗=0

∞

𝑖=0

                          (5.35) 

elde edilir. Elde ettiğimiz (5.35) denklemini 𝑖! ile çarpıp bölersek sonuç olarak 

𝑒2𝑥𝑡−𝑡
2
=∑∑

(−1)𝑗(2𝑥)𝑖−2𝑗𝑖!

(𝑖 − 2𝑗)! 𝑗!

⌈
𝑗
2
⌉

𝑗=0

∞

𝑖=0

 
𝑡𝑖

𝑖!
                         (5.36) 

olarak bulunur. (5.36) denkleminin ikinci toplamında (5.29) denklemindeki 

benzerliği kullanacak olursak 

𝑒2𝑥𝑡−𝑡
2
=∑𝐻𝑖(𝑥)

𝑡𝑖

𝑖!

∞

𝑖=0

                                      (5.37) 

olur [56,58]. 

5.2.2 𝑯𝒏(𝒙) için Rekürans Bağlantıları 

▪ 2𝑥𝐻𝑛(𝑥) = 2𝑛𝐻𝑛−1(𝑥) + 𝐻𝑛+1(𝑥) 

Bu bağıntının doğruluğunu göstermek için (5.37) denkleminin 𝑡’ye göre türevini 

alalım. Buna göre, 

𝑒2𝑥𝑡−𝑡
2
(2𝑥 − 2𝑡) = ∑𝑛𝐻𝑛(𝑥)

𝑡𝑛−1

𝑛!

∞

𝑛=1

⟹ 2(𝑥 − 𝑡)∑𝐻𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0
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=∑𝑛𝐻𝑛(𝑥)
𝑡𝑛−1

𝑛!

∞

𝑛=1

                                           (5.38) 

dir. (5.38) denkleminde ikinci toplamın dışındaki 2(𝑥 − 𝑡) katsayısını dağıtalım. 

Buna göre 

2𝑥∑𝐻𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

− 2∑𝐻𝑛(𝑥)
𝑡𝑛+1

𝑛!

∞

𝑛=0

=∑𝑛𝐻𝑛(𝑥)
𝑡𝑛−1

𝑛!

∞

𝑛=1

              (5.39) 

elde edilir. Bu eşitlikteki serileri terimlerine açacak olursak 

2𝑥 {𝐻0(𝑥) + 𝐻1(𝑥)
𝑡

1!
+⋯+ 𝐻𝑛(𝑥)

𝑡𝑛

𝑛!
+ ⋯ }

− 2 {𝐻0(𝑥)
𝑡

0!
+ 𝐻1(𝑥)

𝑡2

1!
+ ⋯+ 𝐻𝑛(𝑥)

𝑡𝑛+1

𝑛!
+ ⋯} 

= {𝐻1(𝑥) + 2𝐻2(𝑥)
𝑡

2!
+ ⋯+ 𝑛𝐻𝑛(𝑥)

𝑡𝑛−1

𝑛!
}                 (5.40) 

olur. Eşitliğin solunda ve sağında bulunan aynı kuvvetli 𝑡 terimlerinin katsayılarını 

birbirlerine eşitleyecek olursak, 

2𝑥𝐻0(𝑥) = 𝐻1(𝑥)  

2𝑥𝐻1(𝑥) = 2𝐻0(𝑥) + 𝐻2(𝑥) 

⋮ 

2𝑥𝐻𝑛(𝑥) = 2𝑛𝐻𝑛−1(𝑥) + 𝐻𝑛+1(𝑥)                 (5.41) 

bağıntısı elde edilmiş olur [56,58]. 

▪ 𝐻𝑛
′ (𝑥) = 2𝑛𝐻𝑛−1(𝑥),    𝑛 ≥ 1 

Bir önceki bölümde elde edilen (5.37) denklemini alalım. Burada verilen 

fonksiyonun 𝑥’e göre türevini alırsak, 

2𝑡𝑒2𝑥𝑡−𝑡
2
=∑𝐻𝑛

′ (𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

                                 (5.42) 

olur. (5.37) denklemini (5.42)’de yerine yazarsak  

2𝑡∑𝐻𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

= ∑𝐻𝑛
′ (𝑥)

𝑡𝑛

𝑛!

∞

𝑛=0

⟹  2∑𝐻𝑛(𝑥)
𝑡𝑛+1

𝑛!

∞

𝑛=0

= ∑𝐻𝑛
′ (𝑥)

𝑡𝑛

𝑛!

∞

𝑛=0

   (5.43) 
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olur. (5.43)’te serileri terimlerine açalım. Buna göre 

2 {𝐻0(𝑥)
𝑡

0!
+ 𝐻1(𝑥)

𝑡2

1!
+ 𝐻2(𝑥)

𝑡3

2!
+ ⋯} 

= {𝐻0
′(𝑥) + 𝐻1

′(𝑥)
𝑡

1!
+ 𝐻2

′(𝑥)
𝑡2

2!
+ ⋯}                            (5.44) 

elde ederiz. Eşitliğin iki tarafındaki aynı kuvvetli 𝑡 terimlerinin katsayılarını 

eşitleyerek  

𝐻1
′(𝑥) = 2𝐻0(𝑥)           

𝐻2
′(𝑥) = 2.2𝐻1(𝑥)        

⋮               

𝐻𝑛
′ (𝑥) = 2𝑛𝐻𝑛−1(𝑥)                                            (5.45) 

elde edilir [58]. 

▪ 𝑥𝐻𝑛
′ (𝑥) = 𝑛𝐻𝑛−1

′ (𝑥) + 𝑛𝐻𝑛(𝑥) 

Öncelikle (5.37) denkleminin 𝑡’ye göre türevini alalım. 

2(𝑥 − 𝑡)𝑒2𝑥𝑡−𝑡
2
= ∑𝑛𝐻𝑛(𝑥)

𝑡𝑛−1

𝑛!

∞

𝑛=1

                         (5.46) 

elde edilir. Şimdi ise (5.37) üretici fonksiyonun 𝑥’e göre türevini alalım. O halde 

2𝑡𝑒2𝑥𝑡−𝑡
2
=∑𝐻𝑛

′ (𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

                                   (5.47) 

elde edilir. (5.46) denklemini 𝑡 ile çarpalım. Buna göre, 

2𝑡(𝑥 − 𝑡)𝑒2𝑥𝑡−𝑡
2
=∑𝑛𝐻𝑛(𝑥)

𝑡𝑛

𝑛!

∞

𝑛=1

                          (5.48) 

elde edilir. (5.47) denklemini (𝑥 − 𝑡) ile çarpalım. 

2𝑡(𝑥 − 𝑡)𝑒2𝑥𝑡−𝑡
2
= (𝑥 − 𝑡)∑𝐻𝑛

′ (𝑥)
𝑡𝑛

𝑛!

∞

𝑛=0

                 (5.49) 

olur. (5.48) denklemi ile (5.49) denklemini taraf tarafa çıkartırsak 
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∑𝑛𝐻𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=1

+∑𝐻𝑛
′ (𝑥)

𝑡𝑛+1

𝑛!
= 𝑥∑𝐻𝑛

′ (𝑥)
𝑡𝑛

𝑛!

∞

𝑛=1

∞

𝑛=0

         (5.50) 

dır. (5.50) denklemindeki ikinci toplam 0’dan başlamaktadır. İkinci toplamda 𝑛 

yerine (𝑛 − 1) yazalım. O zaman 

∑𝑛𝐻𝑛(𝑥)
𝑡𝑛

𝑛!

∞

𝑛=1

+∑𝐻𝑛−1
′ (𝑥)

𝑡𝑛

(𝑛 − 1)!
= 𝑥∑𝐻𝑛

′ (𝑥)
𝑡𝑛

𝑛!

∞

𝑛=1

∞

𝑛=1

   (5.51) 

elde edilir. Serilerde gerekli düzenlemeler yapılırsa 

𝑛𝐻𝑛(𝑥)

𝑛!
+
𝐻𝑛−1
′ (𝑥)

(𝑛 − 1)!
=  
𝑥𝐻𝑛

′ (𝑥)

𝑛!
                            (5.52) 

olur. (5.52) denkleminde gerekli sadeleştirme işlemleri sonucu 

𝑛𝐻𝑛(𝑥)

𝑛(𝑛 − 1)!
+
𝐻𝑛−1
′ (𝑥)

(𝑛 − 1)!
=  

𝑥𝐻𝑛
′ (𝑥)

𝑛(𝑛 − 1)!
                        (5.53) 

𝐻𝑛(𝑥) + 𝐻𝑛−1
′ (𝑥) =  

𝑥𝐻𝑛
′ (𝑥)

𝑛
                            (5.54) 

𝑛𝐻𝑛(𝑥) + 𝑛𝐻𝑛−1
′ (𝑥) =  𝑥𝐻𝑛

′ (𝑥)                          (5.55) 

elde edilir. Böylece bağıntının doğruluğu elde edilmiş olunur [56]. 

5.2.3 Rodriguez Formülü 

𝐻𝑛(𝑥) = (−1)
𝑛𝑒𝑥

2 𝑑𝑛

𝑑𝑥𝑛
(𝑒−𝑥

2
)                          (5.56) 

Hermit polinomu (5.56)’de belirtilen Rodriguez formülü adı verilen bir başka 

formül ile de bulunabilir. (5.56)’in doğruluğunu göstermek için (5.37) denklemini 

kullanalım.  

∑𝐻𝑛(𝑥)
𝑡𝑛

𝑛!
= 𝑒−(𝑡

2−2𝑥𝑡+𝑥2−𝑥2) = 𝑒𝑥
2−(𝑥−𝑡)2

∞

𝑛=0

 

𝐻0(𝑥) + 𝐻1(𝑥)
𝑡

1!
+ ⋯+ 𝐻𝑛(𝑥)

𝑡𝑛

𝑛!
+ ⋯ = 𝑒𝑥

2
𝑒−(𝑥−𝑡)

2
= 𝑓(𝑥, 𝑡)   (5.57) 

olur. (5.57) eşitliğinin 𝑛 kez 𝑡’ye göre türevini alalım. O zaman 

𝐻𝑛(𝑥) + 𝐻𝑛+1(𝑥)𝑡 + ⋯ = 𝑒𝑥
2
[
𝜕𝑛

𝜕𝑡𝑛
(𝑒−(𝑥−𝑡)

2
)]                 (5.58) 
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elde ederiz. (5.58)’te kısmi türev operatörü ile belirtilen bölge için (𝑥 − 𝑡) = 𝑢 

değişken dönüşümü yapalım. Buna göre, 

𝜕

𝜕𝑡
=
𝜕

𝜕𝑢

𝜕𝑢

𝜕𝑡
=
𝜕

𝜕𝑢
(−1) = −

𝜕

𝜕𝑢
                               (5.59) 

ifadesini elde ederiz. (2.59)’de yapılan işleme devam edilirse 

𝜕𝑛

𝜕𝑡𝑛
= (−1)

𝜕𝑛

𝜕𝑢𝑛
                                             (5.60) 

elde ederiz. (5.58) denkleminde (5.60) değişken dönüşümü de yaparak yerine 

yazalım.  

𝐻𝑛(𝑥) + 𝐻𝑛+1(𝑥)(𝑥 − 𝑢) + ⋯ = 𝑒𝑥
2
[(−1)𝑛

𝜕𝑛

𝜕𝑢𝑛
 (𝑒−𝑢

2
)]          (5.61) 

dır. Böylece 𝑡 = 0 için 𝑥 = 𝑢 olacaktır. Şimdi (5.58) denklemini düzenleyelim. 

𝐻𝑛(𝑥) = 𝑒
𝑥2 [(−1)𝑛

𝜕𝑛

𝜕𝑢𝑛
 (𝑒−𝑢

2
)]                              (5.62) 

Böylece  

𝐻𝑛(𝑥) = 𝑒
𝑥2 [(−1)𝑛

𝜕𝑛

𝜕𝑥𝑛
 (𝑒−𝑥

2
)]                             (5.63) 

elde edilir [57]. 

5.2.4 Ortogonallik 

Hermit polinomları 𝑒−𝑥
2
 ağırlık fonksiyonuna göre (−∞,∞) aralığında birbirine 

diktir.  

Hermit polinomlarının bu ortogonallik özelliği  

∫ 𝑒−𝑥
2
𝐻𝑛(𝑥)𝐻𝑚(𝑥)𝑑𝑥 = 2

𝑛𝑛! √𝜋𝛿𝑚𝑛 
∞

−∞

                       (5.64) 

şeklinde gösterilir. Burada ki 𝛿𝑚𝑛 ile ifade edilen  

𝛿𝑚𝑛 = {
1   ,    𝑚 = 𝑛
0   ,    𝑚 ≠ 𝑛

                                                  (5.65) 

Kronecker Deltası’dır. (5.56) de ifade edilen Rodriguez formülü (5.64) integrali 

ile  
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∫ 𝑒−𝑥
2
𝐻𝑛(𝑥)𝐻𝑚(𝑥)𝑑𝑥 = 

∞

−∞

(−1)𝑛∫
𝑑𝑛𝑒−𝑥

2

𝑑𝑥𝑛
𝐻𝑚(𝑥)𝑑𝑥 

∞

−∞

     (5.66) 

şeklinde yazılabilir. Burada 𝑛 > 𝑚 olduğu düşünülür ve 𝑛 defa kısmi integrasyonu 

alınırsa integralin sıfıra eşit olduğu gösterilmiş olur. Aynı durum 𝑚 > 𝑛 için 

uygulandığında (5.64) integralinde 𝐻𝑚(𝑥) yerine onun Rodriguez formülü 

yazılarak 𝑚 defa kısmi integrasyonu alınırsa integralin tekrar sıfıra eşit olduğu 

gösterilmiş olur. Bu sebeple 𝑚 ≠ 𝑛 olduğu durumda (5.64) integrali sıfıra eşittir. 

Şimdi 𝑚 = 𝑛 durumunu inceleyecek olursak (5.64) eşitliğindeki integralde (5.56) 

Rodriguez formülü kullanılırsa  

∫ 𝑒−𝑥
2
𝐻𝑛(𝑥)𝐻𝑛(𝑥)𝑑𝑥 = 

∞

−∞

(−1)𝑛∫
𝑑𝑛𝑒−𝑥

2

𝑑𝑥𝑛
𝐻𝑛(𝑥)𝑑𝑥 

∞

−∞

    (5.67) 

elde edilir.  Bu (5.67) eşitliğinin sağ tarafındaki integrale 𝑛 defa kısmi integrasyon 

uygulanırsa 

∫ 𝑒−𝑥
2
𝐻𝑛
2(𝑥)𝑑𝑥 = 

∞

−∞

∫ 𝑒−𝑥
2 𝑑𝑛𝐻𝑛(𝑥)

𝑑𝑥𝑛
𝑑𝑥 

∞

−∞

       (5.68) 

bulunur. (5.29) eşitliğinin her iki yanının 𝑛 kez 𝑥’e göre türevini alınırsa 

𝑑𝑛𝐻𝑛(𝑥)

𝑑𝑥𝑛
= 2𝑛𝑛!                                      (5.69) 

elde edilir.  Bu (5.69) eşitliğinin (5.68) de kullanılmasıyla  

∫ 𝑒−𝑥
2
𝐻𝑛
2(𝑥)𝑑𝑥 = 

∞

−∞

2𝑛𝑛!∫ 𝑒−𝑥
2
𝑑𝑥 

∞

−∞

              (5.70) 

elde edilir. (5.70) denklemindeki eşitliğin sağ tarafındaki integral Gamma 

fonksiyonunun  

∫ 𝑒−𝑥
2
𝑑𝑥 =

∞

−∞
√𝜋                                         (5.71) 

özelliğinden yararlanılarak tekrar düzenlenirse   

∫ 𝑒−𝑥
2
𝐻𝑛
2(𝑥)𝑑𝑥 = 

∞

−∞

2𝑛𝑛! √𝜋                           (5.72) 

Hermit polinomlarının normu elde edilmiş olur [58]. 

 



35 

6 

HERMİT SIRALAMA YÖNTEMİ 

Bu çalışmada 

∑𝑁𝑘(𝑥)𝑦
(𝑘)(𝑥)

𝑚

𝑘=0

+𝑀(𝑥)𝑦𝛼(𝑥) = 𝑔(𝑥) + 𝜆∫𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡

𝑏

𝑎

               (6.1) 

kesirli mertebeden Fredholm-integro diferansiyel denklemini   

𝑦𝑗(𝑐) = 𝜇𝑗   ,   𝑗 = 0,… ,𝑚 − 1                                 (6.2) 

başlangıç koşulları altında inceleyeceğiz. Burada 𝑦(𝑥) bilinmeyen fonksiyon; 

𝑀(𝑥), 𝑁𝑘(𝑥), 𝑔(𝑥), [𝑎, 𝑏]’de sürekli birer fonksiyon; 𝐾(𝑥, 𝑡) ayrılabilir çekirdek 

fonksiyonu ve 0 < 𝛼 ≤ 1’dir. Kolaylık olması açısından denklemimizi  

𝐷(𝑥) + 𝐷𝛼(𝑥) = 𝑔(𝑥) + 𝜆𝐼(𝑥)                               (6.3) 

olarak ifade edelim. Burada   

    𝐷(𝑥) = ∑𝑁𝑘(𝑥)𝑦
(𝑘)(𝑥)

𝑚

𝑘=0

 

  𝐷𝛼(𝑥) = 𝑀(𝑥)𝑦𝛼(𝑥)  

     𝐼(𝑥) = ∫𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡   

𝑏

𝑎

                                     (6.4) 

şeklindedir. Problemimizin çözümünde Hermit polinomları baz alınarak 

MATHEMATICA programı kullanımıyla yaklaşık çözüm hesaplaması yapacağız. 

6.1 𝑫(𝒙) Matris Gösterimi 

Yaklaşık çözümümüzü kesilmiş Hermit serisi olarak 

𝑦(𝑥) = ∑𝑎𝑛𝐻𝑛(𝑥)

𝑁

𝑛=0

                                          (6.5) 

olarak kabul edelim. Burada 𝑎𝑛’ler (𝑛 = 0,… ,𝑁) Hermit polinomlarının 

katsayıları ve  𝑁 pozitif bir tam sayıdır. (6.4) denkleminin ilk ifadesinde bulunan  

𝑦(𝑥)’i matris formunda yazacak olursak  

[𝑦(𝑥)] = [𝐻0(𝑥)𝐻1(𝑥)…  𝐻𝑁(𝑥)][[𝑎0 𝑎1  …  𝑎𝑁]]
𝑇
= 𝐻(𝑥)𝐴       (6.6) 
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elde edilir.  

𝑥𝑖 = 𝑎 +
𝑏 − 𝑎

𝑁
𝑖      ,      (𝑖 = 0, 1, 2, … , 𝑁)                (6.7) 

sıralama noktalarını (6.6) denkleminde yerine yazarsak, denklem 

[𝑦(𝑥𝑖)] = 𝐻(𝑥𝑖)𝐴         ,      𝑖 = 0, 1, 2, … ,𝑁              (6.8) 

şekline gelir. Daha açık yazılacak olursa 

[

𝑦(𝑥0)

𝑦(𝑥1)
⋮

𝑦(𝑥𝑁)

] = [

𝐻0(𝑥0) 𝐻1(𝑥0) … 𝐻𝑁(𝑥0)

𝐻0(𝑥1) 𝐻1(𝑥1) … 𝐻𝑁(𝑥1)
⋮

𝐻0(𝑥𝑁)
⋮

𝐻1(𝑥𝑁)
⋱ ⋮

… 𝐻𝑁(𝑥𝑁)

] [

𝑎0
𝑎1
⋮
𝑎𝑁

]         (6.9) 

olur. Daha önceden (5.29) denkleminde tanımlanan Hermit polinomlarının 

özelliğini kullanarak Hermit polinomları 𝑁’nin tek ve çift değerlerine göre 

aşağıdaki gibi matris formuna dönüştürülebilir [38]. 

𝑁 = 𝑡𝑒𝑘 ise  

[
 
 
 
 
𝐻0(𝑥)

𝐻1(𝑥)
⋮

𝐻𝑁−1(𝑥)

𝐻𝑁(𝑥) ]
 
 
 
 

=

[
 
 
 
 
 
 
 

20

0
⋮

0
21

⋮

…      0   0 
…      0   0 
⋱      ⋮    ⋮ 

(−1)
(
𝑁−5

2
) 20

0!

(𝑁−1)!

(
𝑁−1

2
)!

0      …     0  2𝑁−1

0 (−1)(
𝑁−1

2
) 21

1!

𝑁!

(
𝑁−1

2
)!
  …    0    2𝑁

]
 
 
 
 
 
 
 

⏟                                    

𝐹

[
 
 
 
 
1
𝑥
⋮

𝑥𝑁−1

𝑥𝑁 ]
 
 
 
 

  

𝑁 = ç𝑖𝑓𝑡 ise  

[
 
 
 
 
𝐻0(𝑥)

𝐻1(𝑥)
⋮

𝐻𝑁−1(𝑥)

𝐻𝑁(𝑥) ]
 
 
 
 

=

[
 
 
 
 
 
 
 

20

0
⋮

0
21

⋮

… 0 0
… 0 0
⋱ ⋮ ⋮

0 (−1)(
𝑁−2

2
) 21

1!

(𝑁−1)!

(
𝑁−2

2
)!
    … 0 2𝑁−1

(−1)(
𝑁−4

2
) 20

0!

𝑁!

(
𝑁

2
)!

0 … 0 2𝑁
]
 
 
 
 
 
 
 

⏟                                

𝐹

[
 
 
 
 
1
𝑥
⋮

𝑥𝑁−1

𝑥𝑁 ]
 
 
 
 

(6.10)       

O zaman 

𝐻𝑇(𝑥) = 𝐹𝑋𝑇(𝑥) ⟹ 𝐻(𝑥) = 𝑋(𝑥)𝐹𝑇                           (6.11) 

olur. 𝑋(𝑘)(𝑥) matrisi 
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𝑋(𝑘)(𝑥) = [(𝑥0)(𝑘) (𝑥1)(𝑘) … (𝑥𝑁)(𝑘)]                 (6.12) 

olarak tanımlanır. Örneğin 

▪ 𝑘 = 0 için 

𝑋(𝑥) = [𝑥0 𝑥1 … 𝑥𝑁] 

▪ 𝑘 = 1 için 

𝑋(1)(𝑥) = [(𝑥0)(1) (𝑥1)(1) … (𝑥𝑁)(1)] 

olur. Diğer bir deyişle 

𝑋(1)(𝑥) =

[
 
 
 
 
 
0
1
0

0
0
2

… 0 0
… 0 0
… 0 0

⋮ ⋮ ⋱ ⋮  ⋮

0 0  … 𝑁 0]
 
 
 
 
 

⏟          

 

𝐵

[
 
 
 
 
𝑥0

𝑥1

𝑥2

⋮
𝑥𝑁]
 
 
 
 

⏟

[𝑋(0)(𝑥)]
𝑇

=

[
 
 
 
 
 
(𝑥0)(1)

(𝑥1)(1)

(𝑥2)(1)

⋮
(𝑥𝑁)(1)]

 
 
 
 
 

⏟      

[𝑋(1)(𝑥)]
𝑇

               (6.13) 

olur [59-60]. Yani 

[𝑋(1)(𝑥)]
𝑇
= 𝐵[𝑋(0)(𝑥)]

𝑇
⟹ 𝑋(1)(𝑥) = 𝑋(0)(𝑥)𝐵𝑇              (6.14) 

dir. Benzer şekilde 

𝑋(2)(𝑥) = 𝑋(1)(𝑥)𝐵𝑇 = 𝑋(𝑥)(𝐵𝑇)2                                 (6.15) 

ve genel haliyle  

𝑋(𝑘)(𝑥) = 𝑋(𝑥)(𝐵𝑇)𝑘                                             (6.16) 

olarak yazılabilir. (6.6) denkleminde ifade edilen matris formunun 𝑘. türevini 

alırsak, 

𝑦(𝑘)(𝑥) = 𝐻(𝑘)𝐴                                                 (6.17) 

elde edilir (6.11)’dan yararlanarak (6.17) denklemi  

𝑦(𝑘)(𝑥) = 𝑋(𝑥)(𝐵𝑇)𝑘 𝐹𝑇𝐴                                  (6.18) 

halini alır. En son olarak sıralama noktaları (6.4) denklemindeki 𝐷(𝑥)’de yerine 

yazılırsa 

𝐷(𝑥𝑖) = ∑𝑁𝑘(𝑥𝑖)𝑦
(𝑘)

𝑚

𝑘=0

(𝑥𝑖) ,       𝑖 = 0, 1, 2, … ,𝑁              (6.19) 
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haline gelir. Burada  

[

𝑁𝑘(𝑥0) 0

0 𝑁𝑘(𝑥1)
…     0
…     0

⋮           ⋮
0           0

      ⋱ ⋮
     … 𝑁𝑘(𝑥𝑁)

]

⏟                    
𝑁𝑘

[
 
 
 
 
 
𝑦(𝑘)(𝑥0)

𝑦(𝑘)(𝑥1)

⋮
𝑦(𝑘)(𝑥𝑁)]

 
 
 
 
 

⏟      
𝑦(𝑘)

                (6.20) 

elde ederiz. Diğer bir deyişle 

𝐷(𝑥) = ∑𝑁𝑘𝑦
(𝑘)

𝑚

𝑘=0

                                             (6.21) 

matris halini alır. Şimdi ise (6.18) denkleminde 𝑥 = 𝑥𝑖 yazacak olursak 

𝑦(𝑘)(𝑥𝑖) = 𝑋(𝑥𝑖)(𝐵
𝑇)𝑘𝐹𝑇𝐴                                   (6.22) 

olur. O halde 

[
 
 
 
𝑦(𝑘)(𝑥0)

𝑦(𝑘)(𝑥1)
⋮

𝑦(𝑘)(𝑥𝑁)]
 
 
 

⏟      

𝑦(𝑘)

=
[

𝑋(𝑥0)

𝑋(𝑥1)
⋮

𝑋(𝑥𝑁)

]

⏟    

𝑋

[𝐵𝑇]𝑘𝐹𝑇𝐴                            (6.23) 

olur. Buradaki 𝑋 matrisi 

𝑋 = [

𝑋(𝑥0)

𝑋(𝑥1)
⋮

𝑋(𝑥𝑁)

] =

[
 
 
 1
1

𝑥0 ⋯
𝑥1 ⋯

𝑥0
𝑁

𝑥1
𝑁

⋮ ⋮ ⋱ ⋮
1 𝑥𝑁 ⋯ 𝑥𝑁

𝑁]
 
 
 
                            (6.24) 

şeklinde yazılır. O zaman 

𝑦(𝑘) = 𝑋(𝐵𝑇)𝑘𝐹𝑇𝐴                                           (6.25) 

olarak tanımlanır. Böylece 

𝐷 =∑𝑁𝑘𝑋(𝐵
𝑇)𝑘𝐹𝑇𝐴

𝑚

𝑘=0

                                      (6.26) 

temel matris denklemi elde edilir.   
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6.2 𝑫𝜶(𝒙) Matris Gösterimi  

(6.6)’da belirttiğimiz eşitliğin 𝛼 türevini Caputo kesirli türev tanımına göre alacak 

olursak 

𝑦(𝛼)(𝑥) = 𝐻(𝛼)𝐴                                                 (6.27) 

olur. 𝐻(𝑥)’ler birer polinom olduklarından (3.5)’de verilen Caputo kesirli türev 

tanımı yardımıyla 

𝑦(𝛼)(𝑥) = 𝑥−𝛼𝑋(𝑥)Ω𝐹𝑇𝐴                                        (6.28) 

olur. Burada  

                  Ω =

[
 
 
 
 
 

0                0            0 
Г(𝛼 + 1)          0            0 

 
…     0             0                0
…       0             0                  0

         
0                

Г(2𝛼+1)

Г(𝛼+1)
      0      

⋮          ⋮   ⋮     

…       0             0                  0
⋱       ⋮              ⋮                  ⋮

      0                   0             0  …        0    
Г(𝑁𝛼+1)

Г((𝑁−1)𝛼+1)
         0]

 
 
 
 
 

        (6.29) 

dir. Sıralama noktaları (6.4) denklemindeki 𝐷𝛼(𝑥)’ te yerine yazılırsa 

𝐷𝛼(𝑥𝑖) = 𝑀(𝑥𝑖)𝑥𝑖
−𝛼𝑋(𝑥𝑖)Ω𝐹

𝑇𝐴                          (6.30) 

olur. Matris formunda yazılacak olursa 

𝐷𝛼(𝑥) = 𝑀𝑋−𝛼𝑋Ω𝐹𝑇𝐴                                    (6.31) 

elde edilir. (6.31)’de verilen  

𝑋−𝛼 = [

𝑥0
−𝛼

0

0
𝑥1
−𝛼

⋯      0
⋯      0

0 0 ⋱       0
0 0    ⋯ 𝑥𝑁

−𝛼

]                         (6.32) 

’dir. 

6.3 𝑰(𝒙) Matris Gösterimi  

Bu bölümde (6.4) denklemindeki 𝐼(𝑥) integral kısmını matris formunda yazmaya 

çalışacağız. 𝐾(𝑥, 𝑡) çekirdek fonksiyonunu kesilmiş Hermit serisi yardımıyla 

açacak olursak  

𝐾(𝑥, 𝑡) = ∑∑𝑘𝑚𝑛𝐻𝑚(𝑥)𝐻𝑛(𝑡)

𝑁

𝑛=0

𝑁

𝑚=0

                        (6.40) 

ve kesilmiş Taylor serisi ise [62]’de  
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𝐾𝑡(𝑥, 𝑡) = ∑ ∑𝑘𝑚𝑛
𝑡 𝑥𝑚𝑡𝑛

𝑁

𝑛=0

𝑁

𝑚=0

                                   (6.41) 

olarak tanımlanmıştır. Burada  

𝑘𝑚𝑛
𝑡 =

1

𝑚! 𝑛!

𝜕𝑚+𝑛𝐾(0,0)

𝜕𝑥𝑚𝜕𝑡𝑛
    ,   𝑚, 𝑛 = 0,1, … ,𝑁        (6.42) 

dir. 𝐾𝑡(𝑥, 𝑡) Taylor serisi ise 

[𝐾𝑡(𝑥, 𝑡) ] = 𝑋(𝑥)𝐾𝑡𝑋
𝑇(𝑡)                                  (6.43) 

olarak ifade edilir [63]. (6.43) denklemi yardımıyla (6.40) denklemini  

[𝐾(𝑥, 𝑡) ] = 𝐻(𝑥)𝐾𝐻𝑇(𝑡)                                    (6.44) 

matris formunda yazabiliriz. (6.43) ve (6.44) denklemlerini birbirlerine eşitleyecek 

olursak  

[𝐾(𝑥, 𝑡) ] = 𝐻(𝑥)𝐾𝐻𝑇(𝑡) = 𝑋(𝑥)𝐾𝑡𝑋
𝑇(𝑡)             (6.45) 

elde ederiz. Bu eşitlikte sırasıyla  

𝐻(𝑥) = [𝐻0(𝑥)  𝐻1(𝑥) …  𝐻𝑁(𝑥)]                        (6.46) 

𝐾 = [𝑘𝑚𝑛]          𝑚, 𝑛 = 0,… , 𝑁                         (6.47) 

𝑋(𝑥) = [1   𝑥   𝑥2   …    𝑥𝑁]                             (6.48) 

𝐾𝑡 = [𝑘𝑚𝑛
𝑡 ]            𝑚, 𝑛 = 0,… , 𝑁                         (6.49) 

olarak verilmiştir. (6.11) denklemindeki Hermit ifadesini (6.45) denkleminde 

yerine yazarsak 

𝑋(𝑥)𝐹𝑇𝐾𝐹𝑋𝑇(𝑡) = 𝑋(𝑥)𝐾𝑡𝑋
𝑇(𝑡)                     (6.50) 

ifadesini elde etmiş oluruz. Bu ifade en sade şekliyle 

𝐾𝑡  =  𝐹
𝑇𝐾𝐹                                             (6.51) 

olur. K ifadesini elde etmek için eşitliği önce soldan (𝐹𝑇)−1 ve sonrasında ise 

sağdan (𝐹)−1 ile çarpacak olursak  

𝐾 = (𝐹𝑇)−1𝐾𝑡 (𝐹)
−1                                   (6.52) 

şeklinde bulunur. Buradan 𝐾(𝑥, 𝑡) çekirdek fonksiyonunun Hermit ve Taylor 

katsayıları arasındaki ilişki rahatlıkla görülebilmektedir. 

(6.4)’deki 𝐼(𝑥) integral kısmında (6.6) ve (6.52) denklemleri yerlerine yazılırsa 

[𝐼(𝑥)] =  ∫𝐻(𝑥)𝐾𝐻𝑇(𝑡)𝐻(𝑡)𝐴𝑑𝑡

𝑏

𝑎

                         

=  𝐻(𝑥)𝐾 {∫𝐻𝑇(𝑡)𝐻(𝑡)𝑑𝑡

𝑏

𝑎

}𝐴      

                         =  𝐻(𝑥)𝐾ΘA                                                    (6.53)
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olur. (6.53) denklemindeki Θ ifadesi (6.11) denklemi yardımıyla  

Θ = ∫𝐹𝑋𝑇(𝑡)𝑋(𝑡)𝐹𝑇𝑑𝑡                                     

𝑏

𝑎

= 𝐹 {∫𝑋𝑇(𝑡)𝑋(𝑡)𝑑𝑡

𝑏

𝑎

}

⏟            
Θ𝐹

𝐹𝑇                           

          = 𝐹Θ𝐹𝐹
𝑇                                                        (6.54)

 

’dir. O halde son haliyle 

[𝐼(𝑥)] = 𝑋(𝑥)𝐹𝑇𝐾ΘA                                           (6.55) 

olur. Şimdi sıralama noktalarımızı matrislerde yerine yazarsak 

[𝐼(𝑥𝑖)] = 𝑋(𝑥𝑖)𝐹
𝑇𝐾ΘA                                         (6.56) 

yani 

𝐼 = 𝑋𝐹𝑇𝐾ΘA                                                   (6.56) 

olur. Burada  

𝐼 = [

𝐼(𝑥0)

𝐼(𝑥1)
⋮

𝐼(𝑥𝑁)

]     ve     𝑋 = [

𝑋(𝑥0)

𝑋(𝑥1)
⋮

𝑋(𝑥𝑁)

]                                   (6.57) 

şeklindedir. 

6.4 Başlangıç Koşullarının Matris Gösterimi 

Bölüm 5.2.2’deki ikinci özellikten yararlanacak olursak 

𝐻1
′(𝑥) = 2.1. 𝐻0(𝑥)     

𝐻2
′(𝑥) = 2.2. 𝐻1(𝑥)     

𝐻3
′(𝑥) = 2.3. 𝐻2(𝑥)     

… 

𝐻𝑛
′ (𝑥) = 2𝑛𝐻𝑛−1(𝑥)                                            (6.58) 

olacaktır. Bunları matris formunda yazacak olursak 

𝐻′(𝑥) = [𝐻0′(𝑥)   𝐻1′(𝑥)…  𝐻𝑁′(𝑥)] 

∆=

[
 
 
 
 
0 0 0
2 0 0
0 4 0

    
… 0
… 0
… 0

⋮ ⋮ ⋮
0 0 0

  
⋱ 0
2𝑛 0]

 
 
 
 

                                            (6.59) 

olmak üzere  

𝐻′(𝑥) = 𝐻(𝑥)∆𝑇                                             (6.60) 
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olur. Aynı bağıntı yardımıyla  

𝐷𝑗𝐻(𝑥) = 𝐻(𝑥)𝑀𝑗, 𝑗 = 0,1, … , 𝑛 − 1             (6.61) 

O zaman  

𝑦𝑗(𝑐) = 𝐻(𝑐)𝑀𝑗⏟    
𝑈𝑗

  

olmak üzere 

𝑈𝑗𝐴 = 𝜇𝑗      ,     𝑗 = 0,… ,𝑚 − 1                         (6.62) 

elde edilir. 

6.5 Yöntemin Matris Formunun Elde Edilmesi 

Sırasıyla (6.1)-(6.4) bölümlerinde elde edilen matrisleri problemimizde yerine 

yazacak olursak  

[𝑁𝑘𝑋(𝐵
𝑇)𝑘 𝐹𝑇 +𝑀𝑋−𝛼𝑋Ω𝐹𝑇 − 𝜆𝑋𝐹𝑇𝐾Θ]⏟                          

𝑊

𝐴 = 𝐺            (6.59) 

şeklinde (𝑁 + 1) × (𝑁 + 1) cebirsel denklem sistemi elde edilir. Denklem sistemi 

daha sade olarak 

𝑊𝐴 = 𝐺                                                   (6.60) 

olarak ifade edilebilir. Daha açık olarak  

[𝑊; 𝐺] =  

[
 
 
 
  
       𝑤00                    𝑤01       …
        𝑤10                     𝑤11      …
        ⋮                        ⋮       ⋱

𝑤0𝑁     ;  𝑔(𝑥0)
𝑤1𝑁     ;  𝑔(𝑥1)
⋮     ; ⋮

         𝑤(𝑁−1)0             𝑤(𝑁−1)1  …
   𝑤𝑁0         𝑤𝑁1  …

𝑤(𝑁−1)𝑁 ; 𝑔(𝑥𝑁−1)

𝑤𝑁𝑁 ; 𝑔(𝑥𝑁) ]
 
 
 
 

   (6.61)    

ile belirtilen arttırılmış matrisi yazabiliriz. Bölüm (6.2)’de verilen başlangıç 

koşullarına dönecek olursak,  

 

   
𝑈𝑗𝐴 = 𝜇𝑗  ya da    [𝑈𝑗  ; 𝜇𝑗]          

𝑈𝑗 = [𝑢𝑗0 𝑢𝑗1   … 𝑢𝑗𝑁] , 𝑗 = 0,1, … ,𝑚 − 1
            (6.62)  

olur.Yani 

[𝑈𝑗 ; 𝜇𝑗] =

[
 
 
 
  
     𝑢00                      𝑢01             …
     𝑢10                      𝑢11             …
      ⋮                      ⋮             ⋱

𝑢0𝑁      ; 𝜇0
𝑢1𝑁      ; 𝜇1
⋮      ; ⋮

    𝑢(𝑚−2)0            𝑢(𝑚−2)1      …
      𝑢(𝑚−1)0             𝑢(𝑚−1)1      …   

𝑢(𝑚−2)𝑁 ; 𝜇𝑚−2
𝑢(𝑚−1)𝑁 ; 𝜇𝑚−1]

 
 
 
 

   (6.63) 

olur. Şimdi ise (6.61) matris formunda son 𝑚 satır silinip yerine (6.63) yazılırsa 



43 

[𝑊̃; 𝐺̃] =

[
 
 
 
 
 
 
 
 
 
     𝑤00                𝑤00             …

     𝑤10                 𝑤11             …

   ⋮              ⋮             ⋮

            

𝑤0𝑁          ;     𝑔(𝑥0)

𝑤1𝑁          ;     𝑔(𝑥1)
  ⋮          ; ⋮

𝑤(𝑁−1−𝑚)0 𝑤(𝑁−1−𝑚)1        …

𝑤(𝑁−𝑚)0 𝑤(𝑁−𝑚)1        …

𝑢00    𝑢01        …
    

          𝑤(𝑁−1−𝑚)𝑁 ; 𝑔(𝑥𝑁−1−𝑚)

      𝑤(𝑁−𝑚)𝑁 ; 𝑔(𝑥𝑁−𝑚) 
     𝑢0𝑁 ;     𝜇0          

     𝑢10        𝑢11        …

⋮      ⋮        ⋮

  𝑢(𝑚−1)1           𝑢(𝑚−1)2        …
            

𝑢1𝑁         ;  𝜇1 
⋮         ;    ⋮ 

𝑢(𝑚−1)𝑁  ;     𝜇𝑚−1 ]
 
 
 
 
 
 
 
 
 

 (6.64) 

artırılmış matrisi elde edilir. Buna göre 

𝑊̃𝐴 = 𝐺̃                                                   (6.65) 

dir. Eğer 𝑟𝑎𝑛𝑘𝑊̃ = 𝑟𝑎𝑛𝑘[𝑊̃; 𝐺̃] = (𝑁 + 1) ise; yani  |𝑊̃| ≠ 0 ise o zaman çözüm 

𝐴 = (𝑊̃)
−1
𝐺̃ = [𝑎0 𝑎1 … 𝑎𝑁]𝑇                        (6.66) 

olarak elde edilir. 
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7 

SONUÇ 

Bu bölümde Hermit sıralama yöntemini bazı test problemlerine uygulayarak 

yaklaşık çözümlerimizi MATHEMATICA programı yardımıyla elde etmeye 

çalışacağız. 

Örnek 1.   

𝑦′′(𝑥) − 2𝑥𝑦′(𝑥) + 𝑦(𝑥) + 𝑦0.5(𝑥) = 𝑔(𝑥) + ∫𝑥𝑡𝑦(𝑡)𝑑𝑡

1

0

        (7.1) 

kesirli mertebeden Fredholm-integro denkleminin yaklaşık çözümünü 𝑦(0) = 1, 

 𝑦′(0) = −2  başlangıç koşulları altında bulunuz. 

Problemimizde görüldüğü gibi 𝛼 = 0.5, 𝑁0(𝑥) = 1,  𝑁1(𝑥) = −2𝑥, 𝑁2(𝑥) = 1, 

𝑀(𝑥) = 1, 𝑔(𝑥) = −9𝑥2 +
6

Г(2.5)
𝑥1.5 + 1.41667𝑥 −

2

Г(1.5)
𝑥0.5 + 7, 𝜆 = 1 ve 

çekirdek fonksiyonu 𝐾(𝑥, 𝑡) = 𝑥𝑡  (0 ≤ 𝑥, 𝑡 ≤ 1) olarak verilmiştir. 

Problemimizin tam çözümü 𝑦(𝑥) = 3𝑥2 − 2𝑥 + 1’dir. Biz 𝑁 = 4 için yaklaşık 

çözümünü elde etmeye çalışacağız. 𝑁 = 4 için Hermit sıralama noktalarımız 

sırasıyla  𝑥0 = 0,  𝑥1 = 0.25, 𝑥2 = 0.5, 𝑥3 = 0.75 ve 𝑥4 = 1’dir. Çözümümüzü 

Hermit polinomu formunda  

𝑦(𝑥) = ∑𝑎𝑛𝐻𝑛(𝑥)

4

𝑛=0

                                         (7.2) 

olarak kabul edelim. Bölüm 6.2’deki tanımlamalara göre (7.1) denkleminin matris 

formu 

{∑𝑁𝑘𝑋(𝐵
𝑇)𝑘𝐹𝑇 +

2

𝑘=0

𝑀𝑋−0.5𝑋𝛺𝐹𝑇 − 𝜆𝑋𝐹𝑇𝐾Θ}𝐴 = 𝐺            (7.3) 

olur. Daha açık haliyle ifade edecek olursak 
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{𝑁2𝑋(𝐵
𝑇)2𝐹𝑇 + 𝑁1𝑋(𝐵

𝑇)𝐹𝑇 + 𝑁0𝑋𝐹
𝑇 +𝑀𝑋−0.5𝑋𝛺𝐹𝑇 − 𝜆𝑋𝐹𝑇𝐾Θ}⏟                                            

𝑊

𝐴 = 𝐺 

𝑊𝐴 = 𝐺 ⇒ [𝑊;𝐺] 

olur. α = 0.5 için matrislerimiz 

𝑁0 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0
0
0

0
0
0

1
0
0

0
1
0

0
0
1]
 
 
 
 

, 𝑁1 =

[
 
 
 
 
−0.0002 0 0
0  −0.50015 0
0  0  −1.0001

            
0           0
0           0
0           0

         0                0                 0
        0               0                 0

     
    −1.5001      0
          0     −2

  ]
 
 
 
 

 

𝑁2 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0
0
0

0
0
0

1
0
0

0
1
0

0
0
1]
 
 
 
 

 ,   𝐹𝑇 =

[
 
 
 
 
    1   0 −2    0     12 
    0   2    0 −12    0  

    
0
0
0

  
0
0
0

   
4
0
0
   

0
8
0
  
−48 
  0
  16 ]

 
 
 
 

 

𝐵𝑇 =

[
 
 
 
 
0 1 0 0 0
0 0 2 0 0
0
0
0

0
0
0

0
0
0

3
0
0

0
4
0]
 
 
 
 

 ,   𝐺 =

[
 
 
 
 
6.97758
6.22733
5.45811
3.97762
1.67343]

 
 
 
 

                                                                       

𝑋 =

[
 
 
 
 
   1  0 0
   1     0.250075         0.0625375
   1   0.50005    0.25005

           
0           0

0.0156391              0.00391094
0.125038              0.0622525 

    1      0.750025        0.562538           
    1            1             1          

  
 0.421917                0.316448  

  1                  1  
    ]
 
 
 
 

 

𝑋0.5 =

[
 
 
 
 
𝑥−0.5 0 0        0        0
0 𝑥−0.5 0        0        0
0
0
0

0
0
0

𝑥−0.5

0 
0 

0
𝑥−0.5

0

0
0

𝑥−0.5]
 
 
 
 

                                                                    

𝛺 =

[
 
 
 
 
  0      0                  0
  0      1.12838          0      

0             0
0             0

  0
  0

           0           1.50451
      0                   0

  0       0                   0

0
1.80541

0
0

0 2.06332]
 
 
 
 

, 𝐾 =

[
 
 
 
 
 
0 0 0 0 0

0
1

4
0 0 0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0]
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𝑄 =

[
 
 
 
 
   0.9999                1           −0.666467    

1           1.33333              0            
 
     −4       −0.8012   

        −4.8          −6.66667  
−0.666467
−4              

0               1.86627
−4.8           1.33333     

−0.8012       −6.66667    −11.6547   
    
 1.33333
 18.7429

    
−11.6547

16
16          106.601

 

]
 
 
 
 

 

olur. 𝑦(0) = 1 ve 𝑦′(0) = −2 başlangıç koşulları için sırasıyla 

[𝑢0 ;  𝜇0] = [1 0 −2 0 12 ; 1] 

  [𝑢1 ;  𝜇1] = [0 2 0 −12 0 ; −2] 

elde edilir. Matrislerimizi ve başlangıç koşullarımızı (7.3) cebirsel denklem 

sisteminde yerlerine yazarsak,  

[𝑊̃; 𝐺̃] =

[
 
 
 
 
0.99995 0.0223009 6.00001 −0.129165 −839997     ; 6.97758
0.874963 0.461682 6.00214     8.65952  −71.3647      ; 6.22733
0.749975

1
0

0.262382
0
2

5.12741
−2
0

   
19.1804

0
−12

  
−27.9363

12
0

     ;
     ;
     ;

5.45811
1
−2   ]

 
 
 
 

 

artırılmış matrisini elde ederiz. Sistemin çözümünden  

𝐴 = [2.5 −1 0.75 1.11022 × 10−16 3.46945 × 10−17]𝑇 

sonucu elde edilir. 𝑁 = 2, 4 ve 6 için elde edilen yaklaşık çözümlerle tam çözümün 

karşılaştırması ve mutlak hata değerleri Tablo 7.1’de verilmiştir. 𝑁 = 4 için 

yaklaşık ve tam çözüm grafikleri ise Şekil 7.1’de gösterilmiştir. 

Tablo 7.1 𝑁 = 2, 4 ve 6 için yaklaşık ve tam çözümün karşılaştırması ve mutlak 

hata değerleri 

x Tam Çözüm 

Hermit 

Sıralama 

Yöntemi 

 𝑁 = 2 

Mutlak Hata 

E(Xi) 

Hermit 

Sıralama 

Yöntemi 

 𝑁 = 4 

Mutlak Hata 

E(xi) 

Hermit 

Sıralama 

Yöntemi  

𝑁 = 6 

Mutlak Hata 

E(Xi) 

0 1 1 2.2204.10-16 1 2.2204.10-16 1 0 

0.1 0.83 0.83 2.2204.10-16 0.83 2.2204.10-16 0.83 0 

0.2 0.72 0.72 1.1102.10-16 0.72 2.2204.10-16 0.72 0 

0.3 0.67 0.67 0 0.67 3.3306.10-16 0.67 0 

0.4 0.68 0.68 1.1102.10-16 0.68 2.2204.10-16 0.68 1.1102.10-16 

0.5 0.75 0.75 1.1102.10-16 0.75 2.2204.10-17 0.75 0 

0.6 0.88 0.88 2.2204.10-16 0.88 2.2204.10-18 0.88 0 
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Tablo 7.1 𝑁 = 2, 4 ve 6 için yaklaşık ve tam çözümün karşılaştırması ve mutlak 

hata değerleri (devamı) 

0.7 1.07 1.07 2.2204.10-16 1.07 0 1.07 0 

0.8 1.32 1.32 4.4408.10-16 1.32 0 1.32 0 

0.9 1.63 1.63 6.6613.10-16 1.63 0 1.63 0 

1 2 2 8.8817.10-16 2 4.4408.10-16 2 0 

 

 

Şekil 7.1 𝑁 = 4 için yaklaşık ve tam çözüm grafikleri 

 

Örnek 2.   

𝑦′′(𝑥) + 𝑥𝑦(𝑥) + 𝑦0.2(𝑥) = 𝑔(𝑥) + ∫𝑥𝑡𝑦(𝑡)𝑑𝑡

1

0

                    (7.4) 

kesirli mertebeden Fredholm-integro diferansiyel denklemini 𝑦(0) = 2, 𝑦′(0) = 1 

başlangıç koşulları altında inceleyiniz.  

Burada 𝛼 = 0.2 ,  𝑁0(𝑥) = 𝑥 , 𝑁1(𝑥) = 0,  𝑁2(𝑥) = 1, 𝑀(𝑥) = 1, 𝑔(𝑥) =

−6𝑥2 +
3

Г(2.5)
𝑥1.5 + 2.41667𝑥 −

1

Г(1.5)
𝑥0.5 − 3 , 𝜆 = 1 ve çekirdek fonksiyonu 

ise 𝐾(𝑥, 𝑡) = 𝑥𝑡 (0 ≤ 𝑥, 𝑡 ≤ 1) olarak verilmiştir. Problemimizin tam çözümü 

𝑦(𝑥) = 𝑒𝑡 + 1’dir. Biz  𝑁 = 4 için, farklı α değerleri alarak yaklaşık çözümlerini 

inceleyeceğiz. 𝑁 = 4 için Hermit sıralama noktalarımız 𝑥0 = 0, 𝑥1 = 0.25, 𝑥2 =
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0.5, 𝑥3 = 0.75, 𝑥3 = 0.75 ve 𝑥4 = 1’dir. Çözümümüzü Hermit polinomu 

formunda  

𝑦(𝑥) = ∑𝑎𝑛𝐻𝑛(𝑥)

4

𝑛=0

                                         (7.5) 

olarak kabul edelim. Bölüm 6.2’deki tanımlamalara göre (7.5) denkleminin matris 

formu 

{∑𝑁𝑘𝑋(𝐵
𝑇)𝑘𝐹𝑇 +

2

𝑘=0

𝑀𝑋−0.2𝑋𝛺𝐹𝑇 − 𝜆𝑋𝐹𝑇𝐾Θ}𝐴 = 𝐺            (7.6) 

olur. Daha açık haliyle ifade edecek olursak 

{𝑁2𝑋(𝐵
𝑇)2𝐹𝑇 + 𝑁1𝑋(𝐵

𝑇)𝐹𝑇 + 𝑁0𝑋𝐹
𝑇 +𝑀𝑋−0.2𝑋𝛺𝐹𝑇 − 𝜆𝑋𝐹𝑇𝐾Θ}⏟                                            

𝑊

𝐴 = 𝐺 

𝑊𝐴 = 𝐺 ⇒ [𝑊;𝐺] 

olur. α = 0.2 için matrislerimiz 

𝑁0 =

[
 
 
 
 
0 0  0      0    0
0 0.25  0      0    0
0
0
0

0
0
0

0.5
0
0

0
0.75
0

0
0
1]
 
 
 
 

 ,  𝑁2 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0
0
0

0
0
0

1
0
0

0
1
0

0
0
1]
 
 
 
 

                                         

𝐹𝑇 =

[
 
 
 
 
    1   0  −2    0      12  
    0   2    0 −12    0   

    
0
0
0

  
0
0
0

   
4
0
0
    

0
8
0
  
−48 
  0
  16 ]

 
 
 
 

,  𝐵𝑇 =

[
 
 
 
 
0 1 0 0 0
0 0 2 0 0
0
0
0

0
0
0

0
0
0

3
0
0

0
4
0]
 
 
 
 

                                  

𝑋 =

[
 
 
 
 
   1  0 0
   1     0.250075         0.0625375
   1   0.50005     0.25005

           
0           0

0.0156391              0.00391094
0.125038              0.0622525 

        1      0.750025        0.562538         
        1            1             1          

  
   0.421917                0.316448     
  1                  1  

    ]
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𝑋0.2 =

[
 
 
 
 
𝑥−0.2 0 0        0        0
0 𝑥−0.2 0        0        0
0
0
0

0
0
0

𝑥−0.2

0 
0 

0
𝑥−0.2

0

0
0

𝑥−0.2]
 
 
 
 

 ,   𝐺 =

[
 
 
 
 

1
2.0002
3.2703
4.99172
7.33823]

 
 
 
 

                                  

𝛺 =

[
 
 
 
 
  0      0                  0
  0      1.07367        0      

0             0
0             0

  0
  0

           0           1.19297
      0                   0

  0       0                   0

0
1.27818

0
0

0 1.34545]
 
 
 
 

 , 𝐾 =

[
 
 
 
 
 
0 0 0 0 0

0
1

4
0 0 0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0]
 
 
 
 
 

 

𝑄 =

[
 
 
 
 

   1                    1           −0.666667
   1        1.33333       0   

 
        −4        −0.8  
       −4.8       −6.66667

−0.666667
       −4           

  0             1.86627    
−4.8           1.33333      

−0.8    −6.66667    −11.6571        
      
 1.33333
 18.7429

−11.6571
16

    16 106.616

 

]
 
 
 
 

 

matrislerimiz elde edilir. 𝑦(0) = 2 ve 𝑦′(0) = 1 başlangıç koşulları için 

[𝑢0 ;  𝜇0] = [1 0 −2 0 12 ; 2] 

[𝑢1 ;  𝜇1] = [0 2 0 −12 0 ; 1] 

elde edilir. Matrislerimizi ve başlangıç koşullarımızı (7.6) cebirsel denklem 

sisteminde yerlerine yazarak,  

[𝑊̃; 𝐺̃] =

[
 
 
 
 
1 1.3562. 10−11         6          −8.0908. 10−11     −84             ;       3       

0.875 1.04169 6.64353       5.68567            −78.7156        ; 3.60112
0.75
1
0

1.899996
0
2

8.37036
−2   
0

   
   14.2683

  0
−12

        
    −60.2351

 12
 0

     ;
     ;
     ;

4.37047
2
1 ]

 
 
 
 

 

artırılmış matrisini elde ederiz. Sistemin çözümünden  

𝐴 = [2.29032 0.62186 0.165321 0.02031 0.00336009]𝑇 

sonucu elde edilir. 𝑁 = 2, 4 ve 6 için elde edilen yaklaşık çözümlerle tam çözümün 

karşılaştırması ve mutlak hata değerleri Tablo 7.2’de verilmiştir. Ayrıca 𝑁 = 4 için 

yaklaşık ve tam çözüm grafikleri ise Şekil 7.2’de gösterilmiştir. 
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Tablo 7.2 𝑁 = 2, 4 ve 6 için yaklaşık çözümlerle tam çözümün karşılaştırması ve 

mutlak hata değerleri 

x Tam Çözüm 

Hermit 

Sıralama 

Yöntemi   

𝑁 = 2 

Mutlak Hata 

E(Xi) 

Hermit 

Sıralama 

Yöntemi   

𝑁 = 4 

Mutlak Hata 

E(xi) 

Hermit 

Sıralama 

Yöntemi   

𝑁 = 6 

Mutlak Hata 

E(Xi) 

0 2 2 0 2 4.4408.10-16 2 4.4408.10-16 

0.1 2.10517 2.105 1.7091.10-4 2.10517 3.0793.10-6 2.10517 1.7687.10-8 

0.2 2.2214 2.22 1.4027.10-3 2.22139 1.7030.10-5 2.2214 6.8426.10-8 

0.3 2.34986 2.345 4.8588.10-3 2.34982 3.6789.10-5 2.34986 1.1046.10-7 

0.4 2.49182 2.48 1.1824.10-2 2.49177 5.0584.10-5 2.49182 1.4368.10-7 

0.5 2.64872 2.625 2.3721.10-2 2.64867 5.2798.10-5 2.64872 1.9166.10-7 

0.6 2.82212 2.78 4.2118.10-2 2.82206 5.8193.10-5 2.82212 2.351.10-7 

0.7 3.01375 2.945 6.8752.10-2 3.01364 1.1762.10-4 3.01375 2.3874.10-7 

0.8 3.22554 3.12 1.0554.10-1 3.22521 3.3540.10-4 3.22554 4.2921.10-7 

0.9 3.4596 3.305 1.5460.10-1 3.45871 8.8850.10-4 3.4596 1.9975.10-6 

1 3.71828 3.5 2.1828.10-1 3.71623 2.0477.10-3 3.71827 8.4187.10-6 

 

Tablo 7.3 𝑁 = 4’te 𝛼 = 0.2 , 0.4 , 0.6 ve 0.8 için yaklaşık çözümlerle tam 

çözümün karşılaştırması 

x Tam Çözüm 

Hermit 

Sıralama 

Yöntemi 

 𝑁 = 4 

𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8 

0 2 2 2 2 2 2 

0.1 2.10517 2.10517 2.10517 2.10517 2.10517 2.10517 

0.2 2.2214 2.22139 2.22139 2.22139 2.22139 2.22139 

0.3 2.34986 2.34982 2.34982 2.34982 2.34982 2.34982 

0.4 2.49182 2.49177 2.49177 2.49178 2.49178 2.49178 

0.5 2.64872 2.64867 2.64867 2.64867 2.64867 2.64868 

0.6 2.82212 2.82206 2.82206 2.82206 2.82207 2.82207 

0.7 3.01375 3.01364 3.01364 3.01364 3.01364 3.01365 

0.8 3.22554 3.22521 3.22521 3.22521 3.22521 3.22521 

0.9 3.4596 3.45871 3.45871 3.45872 3.45872 3.45871 

1 3.71828 3.71623 3.71623 3.71623 3.71623 3.71622 
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Şekil 7.2 𝑁 = 2 için yaklaşık ve tam çözüm grafikleri 

 

 

 

Şekil 7.3 𝑁 = 4 için yaklaşık ve tam çözüm grafikleri 
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         Şekil 7.4 𝑁 = 2 ve 𝛼 = 0.2 için yaklaşık ve tam çözüm grafikleri 

 

 

 

Şekil 7.5 𝑁 = 4 𝑣𝑒 𝛼 = 0.2 için yaklaşık ve tam çözüm grafikleri 
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