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Preface 

 

In 2019, I graduated from the Faculty of Pharmacy, at Ege University. During the last 

year of my study, I completed my finishing thesis at the Department of Pharmaceutical 

Toxicology with my supervisor, Prof. Dr. Hande Gürer Orhan. Afterwards, it became 

clear to me that I wanted to advance in the field of toxicology, by pursuing a doctorate 

degree which was an important step in fulfilling my dream of becoming a scientist. 

As a first-year PhD student, I became involved in the field of Endocrine Toxicology, 

focusing on the obesogenic and endocrine-disrupting properties of two 

antidepressants. In the third year of my PhD, we conducted a collaborative project with 

Ass. Prof. Dr. Jorke Kamstra at the Institute of Risk Assessment Sciences, Utrecht 

University. Further into my studies at Utrecht University, we discovered the 

unexpected effects of these pharmaceuticals on human mesenchymal stem cells, which 

ultimately led my research to progress in a different way and allowed me to appreciate 

unpredictability as one of the beauties of doing science, as the most valuable lessons 

are learned especially when things don’t go as planned. 

Pursuing a PhD was challenging to say the least, and yet it was one of the best decisions 

I have ever made. I learned a lot in this process under the guidance of my supervisors, 

who helped me grow both as a scientist and as a person. 

I am very proud to present to you my doctoral thesis, one of the most precious 

outcomes of my hard work and efforts for the past few years. 

 

  İzmir, 23.06.2024 Deniz Bozdağ 
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Geniş Türkçe Özet 

Yaşamın Erken Dönemlerinde Maruz Kalınan Bazı İlaçların Endokrin Bozucu 

ve Obezojenik Etkilerinin Araştırılması 

Dünya Sağlık Örgütü (DSÖ), aşırı kilo ve obeziteyi, “vücutta anormal ve sağlığı tehdit 

eden düzeyde yağ birikimi” olarak tanımlamaktadır. DSÖ’ye göre obezite dünyada ilk 

10 sağlık riski arasında yer almakta ve dünya genelinde giderek artan bir kitleyi 

etkilemektedir. DSÖ 2016 verilerine göre, dünya genelindeki yetişkinlerin % 39'u (1.9 

milyar kişi) aşırı kilolu ve % 13'ü (650 milyon kişi) obez olarak sınıflandırılmaktadır. 

2019 verilerine göre, 5 yaşın altındaki çocukların 38 milyondan fazlası aşırı kilolu 

veya obez olarak sınıflandırılmaktadır. Obezite prevalansı, 1975-2016 yılları arasında 

dünya genelinde neredeyse üç kat artarak, günümüzde büyük bir endişe kaynağı olarak 

görülmektedir (WHO 2024).  

Obezite tek başına bir hastalık olarak değerlendirilmekle birlikte, tip 2 diyabet ve 

alkole bağımlı olmayan karaciğer yağlanması gibi metabolik bozukluklar, 

kardiyovasküler hastalıklar, bazı kanser türleri ile sıklıkla ilişkilendirilmektedir 

(Casals-Casas and Desvergne 2011). Obezitenin yetişkinler arasında önemli bir sağlık 

sorunu olmasının yanı sıra, son yıllarda daha erken yaşlarda obezite ile birlikte tip 2 

diyabet vakalarında dramatik bir artış görülmektedir. Bu durum, çocukluk dönemi 

obezitesinin de ciddi bir sağlık problemi haline geldiğini göstermektedir ve çocukluk 

döneminde obezitenin önlenmesi, ilerleyen yaşlarda obezite ve metabolik hastalıkların 

gelişimini kontrol etmek için önemli bir adımdır (Darbre 2017). 

Obezitenin temel nedeni bireyde alınan ve harcanan kaloriler arasındaki dengesizlik 

ile birlikte genetik yatkınlık olarak kabul edilmektedir (WHO 2024). Fazla kalorili 

gıdaların aşırı tüketimi ve fiziksel aktivitenin azalması sonucu oluşan enerji 

dengesizliği obezite gelişiminde önemli role sahip olsa da, bu faktörler son yıllarda 

görülen dramatik artışı açıklamada yetersiz kalmakta ve obezite, genetik yapı, yaşam 

tarzı ve çevresel faktörlerin gelişimine katkıda bulunduğu karmaşık bir endokrin-

ilişkili hastalık olarak tanımlanmaktadır (Casals-Casas and Desvergne 2011). Fazla 

beslenme ve egzersiz eksikliği gibi faktörlere ek olarak, kimyasallara artan düzeyde 

maruz kalmanın da obezite vakalarındaki hızlı artışa katkıda bulunduğu 

düşünülmektedir. Kimyasalların endokrin sistem fonksionlarıyla etkileşerek 

istenmeyen etkilere yol açtığı 1990’lı yılların başından beri bilinmektedir. Biyolojik 
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ve fizyolojik fonksiyonlardaki kritik rolü nedeniyle endokrin sistemde oluşacak 

herhangi bir bozukluk, üreme ve metabolizma işlevinde bozukluk, bağışıklık ve sinir 

sistemi fonksiyon bozuklukları ve kanser riskinde artış gibi istenmeyen etkilerle 

sonuçlanmaktadır (Gore et al. 2014). Endokrin bozucu kimyasallar (EB) “endokrin 

sistem fonksiyonlarını değiştirerek, maruz kalan eksiksiz/bozulmamış (intact) 

organizma, gelecek nesiller veya (sub)popülasyonları üzerinde olumsuz sağlık 

etkilerine neden olan kimyasal madde ya da karışımlar” olarak tanımlanmıştır (A. 

Bergman et al. 2012). EB’ler, normal endokrin fonksiyonlar için gerekli olan, 

hormonların sentezini ya da yıkımını değiştirerek, hormon reseptörleri ile etkileşerek 

(agonist/antagonist etki) ya da reseptör ekspresyonu üzerine etki ederek endokrin 

sistem fonksiyonunda değişikliklere neden olmaktadır (Gore et al. 2014). 

2000’li yılların başından itibaren kimyasalların obezite gelişimindeki rolü artan sayıda 

araştırmanın konusu olmuş, bu çalışmalardan elde edilen verilere göre çeşitli 

mekanizmalarla adipoz doku gelişimini ve fonksiyonunu etkileyerek lipit birikimini 

artıran EB’ler “obezojen” olarak adlandırılmıştır (Grün et al. 2006). Obezojenler, 

hayvan modelleriyle kilo alımına neden olduğu gösterilen ve endokrin sistemin kilo 

alımını kontrol eden bileşenleri ile (adipoz doku, beyin, iskelet kası, karaciğer, 

pankreas ve gastrointestinal kanal) etkileşen kimyasallar olarak tanımlanır (A. 

Bergman et al. 2012). Obezojenler adiposit sayısını/boyutunu artırarak, adipoz doku 

gelişimini kontrol eden endokrin yolaklarla etkileşerek, iştah, tokluk ve gıda 

tercihlerini düzenleyen hormonlarla etkileşerek, pankreas, adipoz doku, karaciğer, 

gastrointestinal sistem, beyin ve kaslar gibi endokrin (ve endokrin ilişkili) dokularda 

insülin duyarlılığını ve lipit metabolizmasını değiştirerek obezite gelişimini 

indükleyici etki göstermektedir. Obezojenlere maruz kalım ile kilo artışı ve obezite 

arasındaki ilişki in vitro, in vivo ve epidemiyolojik çalışmalarla kanıtlanmış, prenatal 

maruz kalımın ise yaşamın ilerleyen dönemlerinde obeziteye neden olabileceği öne 

sürülmüştür. Ancak, obezojenlerin etki gösterdiği çeşitli mekanizmalar ve obezite 

gelişimindeki rolü hakkındaki bilgi sınırlıdır ve ileri çalışmalarla aydınlatılması 

gerekmektedir. 

Yağ dokusu temel olarak olgun adiposit hücrelerinden oluşur ve bu hücreler obezite 

ile metabolik sendrom gelişiminde anahtar role sahiptir. Adiposit progenitör hücrelerin 

çeşitli nükleer reseptörlerin etkisi ile olgun adiposit hücrelerini oluşturması 

“adipojenez” olarak tanımlanmaktadır (Janesick and Blumberg 2012). Moleküler 
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düzeyde obezojenlerin çoğu adipojenez sürecinde yol alan nükleer reseptör ailesine 

dahil olan transkripsiyon faktörlerini etkileyerek obezojenik etki gösterir. PPARγ, 

adipojenezde rol alan transkripsiyon faktörleri arasında en kritik role sahiptir. 

Obezojenlerin çoğu, PPARγ aktivasyonu ile adiposit farklılaşmasını ve adipojenik gen 

ekspresyonunu artırarak insanlarda ve hayvanlarda obeziteye neden olmaktadır.  

PPARγ aktivasyonu, obezojenlerin etkilerini gösterdiği birincil mekanizma olmakla 

birlikte, adiposit farklılaşması üzerinde etkili olan başka reseptör sistemleri de vardır 

(Casals-Casas and Desvergne 2011). Hayvan çalışmaları, östrojenik etkili 

obezojenlere prenatal maruz kalımın, yavrularda obezite gelişimini indüklediği ve bu 

etkinin cinsiyete göre değiştiğini göstermiştir. Bu etkilerin östrojen reseptörü (ER) 

aracılığıyla gerçekleştiği düşünülmektedir (Retha R. Newbold et al. 2007). 

Arilhidrokarbon reseptörü (AhR), ligand bağlanması ile aktive olan bir transkripsiyon 

faktörüdür. AhR’nin PPARγ ekspresyonunu inhibe ederek adipojenezi dolaylı olarak 

etkilediği bilinmektedir. Obezojenik aktiviteye sahip bazı obezojenlerin bu 

mekanizmayla adipojenezi indüklediği gösterilmiştir (Casals-Casas and Desvergne 

2011). 

Obezojenlerin çoğu lipofilik yapılarından ötürü adipoz dokuda birikmekte ve 

plasentadan fetüse geçerek adipoz doku gelişimini değiştirmektedir (Darbre 2017). 

Son yıllarda özellikle kimyasallara prenatal maruz kalım ile çocuklarda ileri dönemde 

obezite gelişimi arasındaki ilişkiyi araştıran çalışmaların sayısı artmıştır (Silver and 

Meeker 2015). Bu çalışmalarda yaşamın erken evrelerinde obezojenlere maruz kalım 

ile ileri dönemlerde obezite gelişimi arasında pozitif bir korelasyon gösterilmiştir 

(Diamanti-Kandarakis et al. 2009). Gelişimin erken dönemlerinde obezojenlere maruz 

kalımın adiposit oluşumunu değiştirerek enerji homeostazının bozulmasına ve 

ilerleyen yaşlarda obezite ve diyabet gibi metabolik hastalıkların gelişimine yol 

açabileceği düşünülmektedir. Özellikle organojenez döneminde metabolik süreçler ile 

etkileşen kimyasallara maruz kalımın çocukluk dönemi obezite gelişiminde önemli rol 

oynadığı literatürde bildirilmektedir (La Merrill and Birnbaum 2011). 

Avrupa Birliği, 2020 yılında kimyasalların metabolik süreçler ve adipoz doku 

fonksiyonu üzerindeki etkilerinin taranması ve test edilmesinde kullanılacak in silico, 

in vitro ve in vivo test yöntemlerinin geliştirilmesi için geniş kapsamlı bir çalışma 

başlatmıştır. Bu çalışmanın amacı, obezojenik etkili kimyasalların belirlenmesi için 

valide edilmiş test modellerinin geliştirilerek kimyasalların risk değerlendirmesine 
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katkıda bulunmaktır (Legler et al. 2020). Günümüzde organotinler, bisfenollar, 

ftalatlar gibi birçok endüstriyel/sentetik kimyasalın endokrin bozucu ve obezojenik 

etki potansiyelleri fazla sayıda in vitro, in vivo ve insan çalışmalarıyla net bir şekilde 

ortaya konmuştur. Söz konusu kimyasalların büyük çoğunluğu plasentadan fetüse 

geçerek yaşamın ileri evrelerinde çeşitli hastalıkların görülme riskini artırmaktadır. 

Bununla birlikte yarar/zarar dengesi gözetilerek gebelik sürecinde reçete edilen birçok 

ilacın, anne karnında fetal maruz kalıma bağlı olarak yaşamın ileri evrelerinde ortaya 

çıkabilecek endokrin bozucu ve obezojenik etki potansiyelleri hakkında literatürde 

yeterli veri bulunmamaktadır. 

Selektif serotonin geri alım inhibitörü (SSRI) grubu antidepresanlar, dünya genelinde 

en sık reçete edilen ilaçlar arasındadır. Amerikan Gıda ve İlaç Dairesi’nin (FDA) eski 

gebelik sınıflandırmasında C kategorisinde yer alan ve gebelik sırasında da yarar/zarar 

dengesi gözetilerek reçelenen SSRI’ların maternal ve neonatal güvenliği gittikçe artan 

bir endişe kaynağıdır. SSRI’ların üreme sistemi üzerindeki istenmeyen etkileri 

literatürde birçok araştırmanın konusu olmuştır. Epidemiyolojik çalışmalarda SSRI 

ilaçlardan birini kullananların % 30-60'ında cinsel fonksiyon bozuklukları görüldüğü 

bildirilmiştir (Gregorian Jr et al. 2002). Bir başka epidemiyolojik çalışmada, SSRI 

grubu ilaçları kullanan yetişkin erkeklerde fertilite, testosteron, luteinize edici hormon 

(LH), folikül stimüle edici hormon (FSH) düzeylerinde azalma, prolaktin düzeyinde 

artış gibi hormonal değişiklikler bildirilmiştir (Safarinejad 2008). Bu bulgular, in vitro 

çalışmalarla desteklenmiştir, iki farklı mikrozom temelli in vitro aktivite deneyinde 

SSRI grubu ilaçlardan sitalopram (CIT) ve sertralinin (SER) aromataz enzimini inhibe 

ederek östrojen düzeyini azalttıkları gösterilmiştir (Jacobsen et al. 2015). Erkek 

sıçanlarla gerçekleştirilen in vivo çalışmalarda SER’in testis ve adrenal bezlerde 

steroid hormon üretimini etkilediği (Munkboel et al. 2018), sperm sayı ve 

motilitesinde azalmaya neden olduğu gösterilmiştir (Atli et al. 2017). Ancak 

literatürde CIT’in EB etkilerini araştıran in vivo herhangi bir çalışmaya 

rastlanmamıştır.  

Bununla birlikte, son yıllarda antidepresan kullanımı ile kilo artışı ve obezite 

arasındaki ilişkiyi ortaya koyan çalışmaların sayısı artmaktadır. Epidemiyolojik 

çalışmalarda uzun süreli SSRI tedavisi, hastalarda vücut ağırlığında önemli bir artış ile 

ilişkilendirilmiştir (Arterburn et al. 2016; Blumenthal et al. 2014; Gafoor, Booth, and 

Gulliford 2018). SSRI’lar arasında sıklıkla reçete edilen CIT ve SER’in ise kilo 
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alımına yol açma riskinin yüksek olduğu ortaya konmuştur (Gill et al. 2020). Ancak 

literatürde CIT ve SER’in potansiyel obezojenik etkileri ve bu etkilerin olası 

mekanizmalarının araştırıldığı in vitro veya in vivo bir çalışmaya rastlanmamıştır. 

Bu bilgilerden hareketle, hipotezimiz CIT ve SER’in obezojenik potansiyele sahip 

olduğu, bu etkilerin endokrin-ilişkili mekanizmalarla gerçekleşebileceği ve bununla 

birlikte gebelikte yarar/zarar oranı gözetilerek reçete edilen CIT ve SER’e anne 

karnında maruz kalan kişilerde ileri yaşlarda obezojenik etkilerin ortaya çıkabileceği 

yönündedir. Bu tez çalışması kapsamında, CIT ve SER'in potansiyel obezojenik 

etkileri ve bu etkilerin olası mekanizmalarının in vitro yöntemlerle araştırılması ile 

yukarıda belirtilen hipotezlerimizin test edilmesi hedeflenmiştir. 

Bu hedefler doğrultusunda, ilk olarak ilaçların obezojenik etkileri in vitro adipojenez 

yöntemiyle, insan multipotent mezenkimal kök hücreleri (MKH’ler) ve 3T3-L1 fare 

preadiposit hücreleri kullanılarak araştırılmıştır. In vitro adipojenez yöntemi, 

kimyasalların obezojenik etkisinin belirlenmesinde sıklıkla kullanılan yöntemler 

arasındadır. Adiposit progenitor (3T3-L1) veya multipotent kök hücreler (MKH’ler) 

gibi hücre hatlarının kullanıldığı bu yöntemde, olgun adipositlere farklılaşma hücre içi 

lipit birikimi kantitatif olarak ölçülerek değerlendirilir. In vitro modeller, basitlikleri, 

in vivo yöntemlere kıyasla maliyetlerinin uygunluğu ve yüksek verimli taramaya 

(high-throughput screening) olanak vermeleri nedeniyle tercih edilmektedir. Yaygın 

olarak kullanılan 3T3-L1 hücre hattı iyi karakterize edilmiş olsa da, sonuçların farklı 

kaynaklardan elde edilen hücreler arasında farklılık gösterdiği ve PPARγ 

aktivasyonundan farklı bir mekanizma aracılığıyla etki gösteren obezojenlerin 

belirlenmesinde yetersiz kaldığı bildirilmektedir (Kassotis et al. 2021). Bunun yanı 

sıra, 3T3-L1 hücre hattının adiposit soyuna bağlı olması nedeniyle bu yöntemden 

MKH’lere kıyasla daha sınırlı bilgi elde edilebilmektedir. MKH’ler, multipotent 

kökenlerinden ötürü beyaz, bej ve kahverengi adipositlerin yanı sıra osteoblastlar ve 

kondroblastlar gibi çeşitli hücre tiplerine farklılaşmak üzere programlanabilmektedir. 

Bu özellikleri, adiposit farklılaşmasının yanı sıra hücrelerin adiposit soyuna 

bağlılığının değerlendirilmesine olanak vermektedir (Kassotis et al. 2022). Buna ek 

olarak, çoğu çalışmada iki boyutlu (2D) monolayer kültürler kullanılmaktadır. Ancak 

2D farklılaştırılan adipositler in vivo adipoz dokuyla kıyaslandığında morfoloji, boyut 

ve gen ekspresyonunda önemli farklılıklar gözlenmiştir. Son çalışmalar, üç boyutlu 

(3D) sistemlerin iyileştirilmiş adiposit farklılaşması ve gen ekspresyonu ile in vivo 
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koşulları daha iyi temsil ettiğini göstermektedir (Klingelhutz et al. 2018; Muller et al. 

2019; Shen et al. 2021). Bu nedenle son yıllarda adipojenik etkilerin araştırılmasında 

3D adipojenez modelleri giderek daha fazla tercih edilmektedir. 

Adipojenez deneylerini takiben, olası etki mekanizmaları adipojenik gen ve protein 

ekspresyonu araştırılarak aydınlatılmıştır. Endokrin yolaklarla ilişkili mekanizmalar, 

in vitro reseptör bağlanma ve transaktivasyon yöntemiyle ER, AR, AhR ve peroksizom 

proliferatör ile aktive edilen reseptör (PPAR) eksprese eden haberci hücre hatlarıyla, 

ek olarak hormon-bağımlı proliferasyon ve aromataz enzim aktivitesi ölçümü 

yöntemleriyle araştırılmıştır. 

 

Mezenkimal kök hücrelerle (MKH) gerçekleştirilen in vitro adipojenez deneyi 

Multipotent insan MKH’leri 15 % FBS, 1 % Pen-Strep içeren MEM-α medium (hücre 

ortamı) ile sürdürülmüş, in vitro adipojenez deneyleri pasaj 6’da gerçekleştirilmiştir.  

3D model 

MKH’ler 96 kuyucuklu ULA (ultra low attachment) plakalara ekilmiş ve plakalar 150 

g’de 2 dakika boyunca santrifüj edilmiştir (-2. gün). Hücre ekiminden 2 gün sonra (0. 

gün) sferoid oluşumu mikroskop altında belirlenmiş ve adipojenez, sferoidlere hasar 

vermemek için hücre ortamı hacminin yarısı farklılaşma mediumu (test maddeleri, 0.5 

mM IBMX, 0.1 µM Dex ve 5 µg/mL insulin içeren hücre ortamı) ile değiştirilerek 

indüklenmiştir. Farklılaşma mediumu aynı şekilde (hacmin yarısı değiştirilerek) 3-4 

günde bir tazelenerek deney 14 gün boyunca sürdürülmüştür. 0.5 µM ROSI deneylerde 

pozitif kontrol, 0.1 % DMSO ise taşıyıcı kontrol olarak kullanılmıştır. 

14. günde sferoidler boyanarak (lipit damlacıkları: Nile Red, hücre çekirdeği: Hoechst 

33342) fluoresans mikroskopi görüntüleri alınmış (CellInsight™ CX5 High-Content 

Screening (HCS) Platform, Thermo Scientific) ve CellProfiler yazılımı (v4.2.4) 

kullanılarak analiz edilmiştir (Stirling et al. 2021). Fluoresans şiddetindeki artış, lipit 

birikimi ve adipojenezin kantitatif olarak belirlenmesinde kullanılmıştır.  

DMSO ve ROSI grubuna ait sferoidlerin morfolojileri Hematoksilen & Eozin (H&E) 

boyama ile histolojik analizlerle, ve konfokal mikroskopi ile belirlenmiştir. H&E 

boyama ve konfokal mikroskopi, sferoidlerde herhangi bir nekroz belirtisi olmaksızın 

lipit damlacıklarının homojen bir şekilde dağıldığını göstermiştir. ROSI uygulaması, 
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lipit birikimi ve sferoid boyutunu artırmış, bu etkiyi hücre proliferasyonunda belirgin 

bir artışa neden olmaksızın göstermiştir. 2D monolayer adipositlerin fluoresans 

mikroskopi görüntüleriyle karşılaştırıldığında, 3D sferoidlerde, in vivo yağ dokusuna 

daha benzer bir fenotipte, az sayıda ve daha büyük lipit damlacıklarının oluştuğu 

görülmüştür. Bu fenotip, özellikle ROSI uygulaması ile belirgin şekilde ortaya 

çıkmıştır. Transkriptomik analizler 3D ve 2D modelde ROSI uygulaması sonucu 

metabolik yolakların benzer şekilde etkilendiğini göstermiş, test edilen referans 

obezojenler ile iki modelde de adiposit farklılaşmasının benzer şekilde indüklendiği 

gösterilmiştir. Özetle, 3D modelin SSRI’ların obezojenik etkilerinin araştırılmasında 

uygulanabilirliği kanıtlanmıştır.  

SSRI’lar 3D MKH’lerde lipit birikimini indükleyerek adipojenik etki göstermiş ve bu 

indüksiyon referans bileşik ROSI ile görülen seviyede gözlenmiştir. Benchmark doz 

(BMD) modelleme ile, bu etkinin literatürde belirtilen kararlı-durum plazma 

konsantrasyonları (SSC) aralığında oluştuğu ortaya konmuştur (CIT: 0.12–0.92 µM, 

SER: 0.065–0.65 µM) (Baumann 1996; De Vane, Liston, and Markowitz 2002). 

 

2D model 

MKH’ler 24 kuyucuklu plakalara ekilmiş (-4. gün), dört gün sonra (0. gün) hücrelerde 

adipojenez farklılaşma mediumu ile indüklenmiştir. Deney, 3-4 gün aralıklarla test 

maddelerini içeren farklılaşma ortamı tazelenerek 14 gün boyunca sürdürülmüştür. 

Yöntemin kısmi validasyonu referans bileşik ROSI ile gerçekleştirilmiş, 0.5 µM ROSI 

deneylerde pozitif kontrol, 0.1 % DMSO ise taşıyıcı kontrol olarak kullanılmıştır. 

14 günlük farklılaşma sürecinin sonunda adipositler boyanarak (lipit damlacıkları: 

Nile Red, hücre çekirdeği: Hoechst 33342) fluoresans şiddeti çoklu plaka okuyucuyla 

ölçülmüştür. SER ve CIT ile yapılan deneylerde adiposit farklılaşmasında artış ve lipit 

birikimi ışık mikroskobu ile görüntülenmiş fakat fluoresans plaka okuyucunun bu 

etkileri saptamak için yeterince hassas bir yöntem olmadığı görülmüştür. Bu nedenle 

adipojenezin kantitatif olarak değerlendirilmesi için akış sitometrisi yöntemi 

kullanılmış, bu yöntemle mikroskop altında gözlemlenen etki kantitatif olarak 

ölçülebilmiştir. 

 



X 

 

RNA dizilimi (RNA-sequencing) analizi 

Adipojenez deneylerini takiben, adipojenik etkinin altında yatan mekanizmanın daha 

kapsamlı olarak araştırılması için MKH’lerde RNA dizilimi analiz edilmiştir. Test 

maddeleri, 3D modelde, etki gözlenmeyen en düşük konsantrasyon (NOEC) ve etki 

gözlenen en düşük konsantrasyonda (LOEC) test edilmiş (SER 0.1 ve 1 µM, CIT 1 ve 

10 µM), 0.1 µM ROSI referans bileşik olarak kullanılmıştır. 3D deneyler protokole 

uygun şekilde gerçekleştirilmiş, 14. günde sferoidler toplanarak birleştirilmiş (test 

edilen her grup için n=8-10 sferoid), RNA örnekleri izole edilerek saflaştırılmış ve 

RNA-seq analizi gerçekleştirilmiştir. RNA-seq analizi için birbirinden bağımsız üç 

deney gerçekleştirilmiş, bu şekilde her test grubu için üç bağımsız örneğin analizi 

sağlanmıştır. 

RNA-seq analizi için ilk olarak kalite kontrol analizleri gerçekleştirilmiş ve tüm 

örneklerin analize uygun kalitede olduğu saptanmıştır (Dobin et al. 2013). Bağımsız 

örnekler arasındaki farklılık PCA (principal component analysis plot) grafiği ile ortaya 

konmuştur. Bu grafikte test gruplarına ait örnekler ve kontrol grubu (DMSO) örnekleri 

birbirine yakın yerleşim gösterirken, referans bileşiği (ROSI) grubuna ait örneklerin, 

kontrol grubundan uzakta kümelendiği gözlenmiştir. Test maddelesi uygulaması 

sonucu ekspresyonu anlamlı olarak değişen genler Deseq2 yöntemiyle (Love, Huber, 

and Anders 2014) belirlenmiştir. Etkilenen biyolojik yolaklar bir web bazlı analiz 

uygulaması (WebGestalt) ve KEGG (Kyoto Encyclopedia of Genes and Genomes) 

veri bankası kullanılarak belirlenmiştir (Liao et al. 2019). 

RNA-seq analizi sonucu referans bileşik ROSI ile adipojenez ile ilişkili yolakların 

upregüle olduğu, fakat SER ve CIT uygulamasının tamamen farklı bir profile yol 

açarak metabolik yolakların dowregülasyonuna neden olduğu görülmüştür. Buna ek 

olarak beklenmedik şekilde lizozom ve fosfolipitlerle ilişkili yolakların SER ve CIT 

uygulaması sonucu upregüle olduğu ve bu etkinin doza bağımlı olduğu gözlenmiştir. 

MKH’lerde adipojenik gen ekspresyonu QPCR analiziyle araştırılarak RNA-seq 

analizi bulguları doğrulanmıştır. QPCR analiziyle adipojenezin regülatörleri (PPARg, 

CEBPα), PPAR sinyal yolağında bulunan hedef genler (FABP4, ADIPOQ) ve glukoz 

homeostazı ve insülin sinyalizasyonunda rol alan genler (INSR, IGF1R) incelenmiştir. 

SSRI’lar pozitif kontrol ROSI’ye kıyasla farklı bir ekspresyon profili göstererek 
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adipojenik genlerin downregülasyonuna yol açmıştır. QPCR analizi sonuçları, RNA-

seq bulgularını doğrular niteliktedir. 

 

MKH’lerde lizozom/fosfolipitlerin analizi 

RNA-seq analizi ışığında, ilaçların adipojenez sırasında farklı lipit profilleri 

üzerindeki etkileri Nile Red boyama ile 2D MKH’lerde araştırılmıştır. Ek olarak 

ilaçların adipojenez sırasında lizozomları indükleyici etkisi lizozom-spesifik 

boyamayla (LysoTracker Red) belirlenmiştir. 

MKH’ler 15 % FBS, 1 % Pen-Strep içeren MEM-a medium ile sürdürülmüş, deneyler 

pasaj 6’da, 2D protokolüne göre gerçekleştirilmiş, 14. günde olgun adipositler 

boyanarak (lipit damlacıkları: Nile Red, hücre çekirdeği: Hoechst 33342) fluoresans 

plaka okuyucu (nötral lipitler: Ex/Em 485/590 nm, fosfolipitler: Ex/Em 585/645 nm) 

veya akış sitometrisi kullanılarak analiz edilmiştir. 0.5 µM ROSI ve antiaritmik ajan 

Amiodaron (AMIO, 10 µM) sırasıyla nötral ve fosfolipit indüksiyonu için referans 

bileşik olarak kullanılmıştır. 

Nile Red'in farklı kanallardaki (FITC ve Texas Red) fluoresans mikroskopi 

görüntüleriyle, lipitler arasındaki ayrım ortaya konmuş, yöntemin nötral ve 

fosfolipitlerin analizinde uygulanabilirliği kanıtlanmıştır. CIT ve SER MKH’lerde 

adipojenez sırasında nötral lipit birikimini artırmıştır. Ancak, her iki SSRI ile fosfolipit 

kanalında daha güçlü bir indüksiyon gözlenmiştir. 

BMD modelleme, SSRI'ların fosfolipitleri daha potent olarak indüklediğini 

doğrulamıştır. Medyan BMD'ler karşılaştırıldığında SER'in nötral lipitlere kıyasla 

fosfolipitleri neredeyse 10 kat daha etkili şekilde indüklediğini görülmüştür. Ek olarak, 

SER ile fosfolipitler üzerindeki etki, bildirilen SSC aralığında (0.065–0.65 µM) 

gözlenmiştir (Baumann 1996; De Vane et al. 2002). CIT, fosfolipit kanalında güçlü 

bir indüksiyon göstermesine rağmen, BMD modelleme bu etkinin nötral lipitlere 

benzer bir düzeyde olduğunu ve SSC aralığının (0.12–0.92 µM) üzerinde olduğunu 

göstermiştir (De Vane et al. 2002). 

Takiben, adipojenez sırasında sırasında lizozomlar üzerindeki etkiler lizozom spesifik 

boyama ile araştırılmıştır. Pozitif kontrol olarak 10 µM AMIO kullanılırken, CIT ve 

SER sırasıyla 10–30 µM ve 3,3–10 µM'de test edilmiştir. Deney 2D protokole uygun 
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gerçekleştirilmiş, 14 günün sonunda adipositler boyanarak LysoTracker şiddeti 

fluoresans plaka okuyucuyla ölçülmüştür (Ex/Em 565/599 nm). SSRI’lar test edilen 

konsantrasyonlarda lizozomları indükleyici etki göstermiş, bu indüksiyonun pozitif 

kontrol AMIO düzeyinde olduğu görülmüştür. 

Son olarak SSRI’ların olgun adipositlerde lipit profili üzerindeki etkileri 

araştırılmıştır. MKH’ler 14 gün boyunca pozitif kontrol ROSI (0.5 µM) ile olgun 

adipositlere farklılaştırılmış, 14 günün sonunda test maddeleri uygulanarak (CIT: 30 

µM, SER: 10 µM) deney 7 gün daha sürdürülmüştür. 21. günün sonunda adipositler 

boyanarak (lipit damlacıkları: Nile Red, hücre çekirdeği: Hoechst 33342), Nile Red 

şiddeti fluoresans plaka okuyucuyla farklı dalga boylarında ölçülmüştür. CIT ve 

SER’in olgun adipositlerde nötral lipit düzeyini etkilemediği, fakat fosfolipitleri 

artırdığı görülmüştür. Bu sonuç, ilaçların fosfolipitleri indükleyici etkisinin olgun 

adipositlerde de geçekleştiğini göstermektedir. 

 

3T3-L1’lerle gerçekleştirilen in vitro adipojenez deneyi 

3T3-L1 hücreleri 10 % FBS ve 1 % Pen-Strep içerek DMEM’de (hücre ortamı) 

sürdürülmüş, in vitro adipojenez deneyleri pasaj 6-10 arasında gerçekleştirilmiştir. 

Yöntemin kısmi validasyonu referans bileşik PPARg agonisti rosiglitazon (ROSI) ile 

gerçekleştirilmiş, 1 µM ROSI deneylerde pozitif kontrol, 0.1 % DMSO ise taşıyıcı 

kontrol olarak kullanılmıştır. 3T3-L1 hücrelerinin farklılaşması 0.5 mM IBMX, 1 µM 

Dex ve 5 µg/mL insulin içeren hücre ortamı (farklılaşma mediumu) ile indüklenmiş, 

deney farklılaşma mediumu her 2 günde bir tazelenerek 8 gün boyunca 

sürdürülmüştür. 8. günün sonunda olgun adipositler Oil Red O ile boyanarak lipit 

birikimi plaka okuyucuyla ve mikroskobik incelemeyle değerlendirilmiştir. 

Adipojenez deneylerini takiben ilaçların adipojenik protein ekspresyonu üzerindeki 

etkileri western blot yöntemiyle araştırılmıştır. Adipojenezin regülatörleri PPARg, 

C/EBPα, pro-adipojenik transkripsiyon faktörü SREBP1 ile PPAR yolağında bulunan 

LPL ve FAS protein miktarları belirlenmiştir. ROSI (1 µM) pozitif kontrol olarak 

kullanılmış, CIT ve SER sırasıyla 30 ve 10 µM konsantrasyonlarında test edilmiştir. 
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Beklendiği üzere ROSI adipojenik protein ekpresyonunu anlamlı şekilde artırmış, en 

güçlü etki adipojenezin ana regülatörü PPARg ve PPARg hedefi LPL üzerinde 

gözlenmiştir.  

SSRI’lar test edilen konsantrasyonlarda lipit birikimini indükleyici etki göstermemiş, 

fakat test edilen konsantrasyonlarda adipojenik protein ekpresyonunu etkiledikleri 

gözlenmiştir. CIT, PPARg ve C/EBPα ekspresyonunu artırırken, SER’in genel olarak 

protein ekspresyonunu inhibe ettiği görülmüştür. 

Oil Red O boyamayla SSRI’larla lipit birikimi üzerinde anlamlı etkiler gözlenmemiş 

olsa da adipojenik protein ekspresyonundaki değişim CIT ve SER’in adipojenez 

üzerinde etkili olduğuna işaret etmektedir. 

 

Adipojenik etki mekanizmasının araştırılması 

Tez çalışması kapsamında ikinci hedefimiz SSRI’ların obezojenik etkilerinin altında 

yatan mekanizmaların in vitro yöntemlerle aydınlatılmasıdır. Obezite gelişiminde rol 

alan birçok hormonal yolak ve mekanizma söz konusudur. Çalışma kapsamında, 

adiposit farklılaşmasında rol alan çeşitli nükleer reseptörler aracılı mekanizmalara 

odaklanılarak, reseptör aracılı etkiler in vitro yöntemlerle araştırılmıştır.  

İlk olarak, in vitro reseptör bağlanma ve transaktivasyon yöntemiyle ilaçların nükleer 

reseptörler üzerindeki agonist/antagonist aktivitesi test edilmiştir. Adipojenezin ana 

regülatörlerinden olan PPARg ve PPARα aracılıklı etkiler, reseptör eksprese eden 

haberci hücre hatları (HG5LN-PPARγ ve HG5LN-PPARα) kullanılarak araştırılmıştır. 

Özetle, hücreler 96 kuyucuklu plakalara ekilerek 24 saat inkübe edilmiştir. 24 saat 

sonunda hücre ortamı, test maddelerini içeren, hormon içermeyen hücre ortamı ile 

değiştirilerek 24 saat inkübe edilmiştir. İnkübasyon süresi sonunda hücrelerde reseptör 

aktivasyonunu takiben artan lusiferaz aktivitesi, luminesans şiddeti ölçülerek 

belirlenmiştir. İlaçların PPARg veya PPARα üzerine agonistik/antagonistik etkileri 

gözlenmemiştir. 

Adiposit farklılaşması üzerinde etkili olduğu gösterilen ER, AR ve AhR (dioksin 

reseptörü -DR- olarak da adlandırılır) üzerindeki agonist/antagonist etkiler aynı 

yöntemle araştırılmıştır. Özetle, hücreler (ER: VM7Luc4E2, AR: T47D-ARE, DR: 

H1G1.1c3) 96 kuyucuklu plakalara ekilerek 48 saat inkübe edilmiştir. 48 saat sonunda 
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hücre ortamı, test maddelerini içeren, hormon içermeyen hücre ortamı ile değiştirilerek 

24 saat inkübe edilmiştir. İnkübasyon süresi sonunda hücrelerde reseptör 

aktivasyonunu sonucu artan lusiferaz/fluoresans aktivitesi, luminesans/fluoresans 

şiddeti ölçülerek belirlenmiştir. İlaçlara ait ER, AR veya DR agonist/antagonist etki 

gözlenmemiştir. 

İlaçların östrojenik etkileri ek olarak östrojen reseptörü pozitif (ER+) MCF7 meme 

kanser hücrelerinin hormon-bağımlı proliferasyonu ve östrojen sentezinde rol alan 

aromataz enzimi üzerindeki etkileri test edilerek belirlenmiştir.  

Hormon-bağımlı proliferasyon deneyinde MCF7 hücreleri 96 kuyucuklu plakalara 

ekilerek 24 saat inkübe edilmiştir. 24 saat sonunda hücre ortamı test maddelerini 

içeren, östradiol varlığında veya östradiolsüz, hormon içermeyen mediumla 

değiştirilmiş, hücreler 144 saat inkübe edilmiştir. İnkübasyon süresinin sonunda hücre 

proliferasyonu sülforodamin B boyama yöntemiyle belirlenmiştir. İlaçlarla 

östradiolsüz ortamda MCF7 proliferasyonunda artış (ER agonistik etki), veya östradiol 

varlığında MCF7 proliferasyonunda azalma (ER antagonist etki) gözlenmemiştir. 

Bulgular, ER bağlanma ve transaktivasyonu deneyinin sonuçlarını doğrular 

niteliktedir. 

İlaçların steroidojenez yolağının son basamağında görev alan ve testosteronun 

östrojene dönüşümünü katalizleyen aromataz enzimi üzerine etkileri, rekombinant 

aromataz enzimi ve enzimin floresans substratı 7-metoksi-4 triflorometil kumarinin 

(MFC) kullanılarak araştırılmıştır. İlaçların aromataz enzimi üzerine etkileri 

fluoresans şiddeti ölçülerek belirlenmiş, CIT ve SER ile test edilen konsantrasyonlarda 

aromataz enzimi üzerinde anlamlı bir etki gözlenmemiştir. 

Özetle, CIT ve SER’in obezojenik etkileri in vitro adipojenez yöntemiyle, 3T3-L1 fare 

preadiposit hücreleri kullanılarak araştırılmıştır. Oil Red O boyamayla SSRI’larla 

3T3-L1 farklılaşmasında anlamlı bir artış gözlenmemiş olsa da western blot analizi 

SSRI’ların test edilen konsantrasyonlarda (CIT: 30 µM, SER: 10 µM) adipojenik 

protein ekspresyonunu etkilediği göstermiştir. Adipojenik protein ekspresyonundaki 

değişim CIT ve SER’in 3T3-L1’lerde adipojenez üzerinde etkili olduğuna işaret 

etmektedir. 

Bulguların yorumlanmasında 3T3-L1 hücre hattının zayıflıklarının göz önünde 

bulundurulması önem taşımaktadır. Adipojenik etkinin belirlenmesinde en yaygın 
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kullanılan hücre hattı olmasına rağmen, 3T3-L1’lerden elde edilen sonuçların 

hücrelerin elde edildiği kaynaklara göre farklılık gösterdiği literatürde bildirilmektedir 

(Kassotis et al. 2021). Bunun yanı sıra, 3T3-L1 hücre hattının adiposit soyuna bağlı 

olması nedeniyle bu yöntem sadece adiposit farklılaşmasının değerlendirilmesinde 

kullanılabilmektedir. Öte yandan, insan MKH’leri multipotent kökenlerinden ötürü 

çeşitli hücre tiplerine farklılaşma özelliğine sahiptir. Bu özellikleri, adiposit 

farklılaşmasının yanı sıra hücrelerin adiposit soyuna bağlılığının değerlendirilmesine 

olanak vermektedir (Kassotis et al. 2022; Legler et al. 2020).  

Bu nedenle, SSRI'ların obezojenik etkilerini daha kapsamlı bir şekilde değerlendirmek 

adına, CIT ve SER’in MKH'lerde adiposit farklılaşması üzerine etkileri 2D ve 3D 

modeller kullanılarak araştırılmıştır. 3D sistemlerin, yaygın olarak kullanılan 2D 

monolayer kültürlere kıyasla iyileştirilmiş adiposit farklılaşması ve gen ekspresyonu 

ile in vivo koşulları daha iyi temsil ettiği literatürde bildirilmektedir (Klingelhutz et al. 

2018; Muller et al. 2019; Shen et al. 2021). Bu nedenle, öncelikle SSRI’ların 

adipojenez üzerindeki etkilerini değerlendirmek için in vivo adipoz dokuyu daha iyi 

temsil eden bir 3D model geliştirilmiştir. Bu 3D modelde, literatürdeki çalışmalardan 

farklı olarak, adiposit progenitör hücreler yerine multipoten MKH’lerin kullanılması 

diğer çalışmalara göre üstünlük sağlamaktadır. 

3D yöntemin optimizasyonu sırasında PPARɣ agonisti ROSI referans bileşik olarak 

kullanılmıştır. Kontrol (DMSO) ve ROSI grubuna ait sferoidlerin morfolojileri H&E 

boyama ile histolojik analizlerle ve konfokal mikroskopi ile belirlenmiştir. 3D 

sistemlerdeki en önemli endişe kaynaklarından biri, sferoidin merkezine doğru azalan 

oksijen difüzyonu nedeniyle hipoksik bir çekirdek oluşmasıdır (Trayhurn, Wang, and 

Wood 2008). H&E boyama ve konfokal mikroskopi, sferoidlerde herhangi bir nekroz 

belirtisi olmaksızın lipit damlacıklarının homojen bir şekilde dağıldığını göstermiştir. 

Bu, literatürdeki sferoid modellerine kıyasla modelimizdeki sınırlı hücre sayısının 

nutrientlerin ve oksijenin hızlı difüzyonuna imkan sağlamasıyla açıklanabilir (Schmitz 

et al. 2021). Ayrıca, ROSI uygulaması lipit birikimi ve sferoid boyutunu artırmış, bu 

etkiyi hücre proliferasyonunda belirgin bir artışa neden olmaksızın göstermiştir. 

Fenotip olarak sferoidlerin 2D adipositlerden farklılık gösterdiği, özellikle ROSI 

grubu sferoidlerde in vivo adipoz dokuya benzerlik gösteren daha az sayıda ve daha 

büyük lipit damlacıklarının oluştuğu görülmüştür.  
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RNA-seq analizi, ROSI uygulaması ile her iki modelde de metabolik yolakların benzer 

şekilde etkilendiğini göstermiştir. 3D modelde insulin ve adipokin sinyalizasyonu ile 

hücre yapılanmasıyla ilgili yolakların daha güçlü etkilendiği görülmüştür. Bunun yanı 

sıra, modeller kıyaslandığında, 3D modelde biyolojik yolakların genel olarak 2D 

modele göre downregüle olduğu görülmüştür. PPAR𝛾 ekspresyonunu ve CEBP𝛽 

aktivasyonunu etkileyerek adiposit farklılaşmasını inhibe ettiği bilinen TGF-beta 

sinyal yolağı da dahil olmak üzere birçok yolak, 3D modelde daha güçlü bir şekilde 

downregüle edilmiştir (Chen et al. 2016). TGF-beta sinyalizasyonundaki güçlü 

inhibisyonun, 3D modelde adipojenezin artan indüksiyonuna yol açabileceği 

düşünülmüştür. RNA-seq bulguları, literatürde bildirilen iyileştirilmiş adiposit 

farklılaşması ve gen ekspresyonunu destekleyerek, 3D modelin adipojenik etkinin test 

edilmesinde daha uygun bir ortam sağladığına işaret etmektedir (Shen et al. 2021). 

3D modelin performansını değerlendirmek için adipojenik potansiyellerine göre 

seçilen bir gup obezojen, paralel 2D ve 3D deneylerde test edilmiştir. Obezojenlerle 

her iki modelde adiposit farklılaşmasında benzer bir indüksiyon gözlemlenmiştir. 

BMD modelleme, adipojenezin test edilmesinde 3D modelin 2D modele benzer 

etkinliğe sahip olduğunu doğrulamış, bu ise yeni 3D modelin kimyasalların adipojenez 

üzerindeki etkilerini değerlendirmede uygulanabilir bir yöntem olduğunu 

kanıtlamıştır. Ancak QPCR analizi, obezojenler ile görülen indüksiyonun altında yatan 

gen ekpresyonu profilinin modeller arasında önemli farklılıklar gösterdiğini ortaya 

konmuştur. Gen ekspresyonundaki bu farklılıklar, 3D modelin PPARγ aktivasyonu 

dışındaki mekanizmalar aracılığıyla etki gösteren obezojenlere daha duyarlı 

olabileceğine ve bu durumun 2D modelde belirgin olmaksızın daha kompleks 3D 

sistemlerde ortaya çıkabileceğine işaret etmektedir. Özetle, 3D model, in vivo adipoz 

dokuya daha benzer bir fenotip ve adipojenik uyarılara karşı artan hassasiyet 

göstermiştir. Bu modeli karakterize etmek için insan adipoz dokusu ile doğrudan bir 

karşılaştırma bir sonraki adım olmasına rağmen, yapılan analizler 3D modelin 

SSRI’ların adipojenez üzerindeki etkilerinin test edilmesinde uygulanabilir olduğunu 

göstermektedir. 

SSRI’lar 3D modelde ilk olarak lipit birikimini indükleyerek adipojenik etki 

göstermiştir. Bu indüksiyon doza bağımlı şekilde ve referans bileşik ROSI ile görülen 

seviyede gözlenmiştir. BMD modelleme ile, bu etkinin literatürde belirtilen SSC 
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değerleri aralığında olduğu ortaya konmuştur (CIT: 0.12–0.92 µM, SER: 0.065–0.65 

µM) (Baumann 1996; De Vane et al. 2002). 

Tez çalışması kapsamında bir diğer hedefimiz SSRI’ların obezojenik etkilerinin 

altında yatan mekanizmaların aydınlatılmasıdır. CIT ve SER’in, adiposit 

farklılaşmasında rol alan çeşitli nükleer reseptörler üzerindeki agonist/antagonist 

aktivitesi in vitro reseptör bağlanma ve transaktivasyon yöntemiyle belirlenmiştir. 

İlaçların adipojenezin ana regülatörü olan PPARg veya PPARα’yı aktive edici etkisi 

gözlenmemiştir. Hayvan çalışmalarında, östrojenik obezojenlere prenatal maruziyetin, 

ER aktivasyonu aracılığıyla, yavrularda obezite gelişimine neden olduğu gösterilmiştir 

(Darbre, 2017; Heindel et al., 2022; Newbold et al., 2007). Ek olarak, dioksin benzeri 

aktiviteye sahip bazı obezojenlerin, PPARγ ekspresyonunu dolaylı olarak değiştirerek 

adipojenezi indüklediği gösterilmiştir (Casals-Casas and Desvergne, 2011). Bu 

bilgilerden yola çıkarak, ilaçların ER, AR ve DR üzerindeki agonist/antagonist 

aktivitesi in vitro reseptör bağlanma ve transaktivasyon deneyleriyle araştırılmıştır. Ek 

olarak ER eksprese eden MCF7 hücrelerinin proliferasyonu ve steroidojenez yolağının 

son basamağında görev alan ve testosteronun östrojene dönüşümünü katalizleyen 

aromataz enzimi üzerine etkileri test edilerek ilaçların östrojenik etkisi 

değerlendirilmiştir. Transaktivasyon deneylerinde ilaçların ER, AR veya DR üzerinde 

agonist/antagonist etkisi gözlenmemiştir. SSRI’lar MCF7 proliferasyonu indükleyici 

(ER agonistik etki), veya östradiol varlığında MCF7 proliferasyonunu inhibe edici (ER 

antagonist etki) etki göstermemiş, ER transaktivasyon deneyinin sonuçları bu şekilde 

desteklenmiştir.  

İlaçların rekombinant aromataz enzimi üzerinde anlamlı bir etkisi gözlenmemiştir. 

SSRI’ların aromataz enzimini inhibe edici etkileri bir çalışmada iki farklı mikrozom 

temelli in vitro yöntem ile gösterilmiştir (Jacobsen et al. 2015). Görülen inhibisyonun 

derecesi iki yöntem arasında değişiklik gösterse de, sonuçlar her iki SSRI'ın da enzim 

üzerinde inhibe edici etkiye sahip olduğunu göstermektedir. Ancak, çalışmada test 

edilen konsantrasyonların geniş bir aralığı kapsadığı, logaritmik aralıklı sekiz 

konsantrasyon seçildiği görülmektedir. Dolayısıyla, bildirilen etkiler bu tez 

çalışmasında test edilen ve fizyolojik konsantrasyon aralığında yer alan 

konsantrasyonlardan daha yüksek konsantrasyonlarda meydana gelmiştir. 

Deneylerimizde SSRI'larla aromataz inhibisyonunun görülmemesi, test edilen 

konsantrasyonlar arasındaki bu farklılıkla açıklanabilir. Bununla beraber, tüm bulgular 
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endokrin modülasyonun dışında bir mekanizmanın adipojenik etkileri tetiklediğine 

işaret etmektedir. 

Adipojenik etkinin altında yatan mekanizmaların aydınlatılması için MKH’lerde RNA 

dizilimi analiz edilmiştir. RNA-seq analizinde SSRI’ların referans bileşik ROSI’ye 

kıyasla neredeyse tamamen farklı bir gen ekspresyonu profiline yol açtığı 

gözlenmiştir. Beklenmedik şekilde, adipojenik genler ve adiposit farklılaşmasında rol 

alan önemli yolakların (PPAR sinyalizasyonu, adipojenez ve lipit metabolizması gibi) 

SSRI uygulaması sonucu downregüle olduğu görülmüştür. CIT ve SER’in 

adipojenezin regülatörleri (PPARg, CEBPα) ve PPAR sinyal yolağında bulunan hedef 

genlerin (FABP4, ADIPOQ) ekspresyonunu inhibe edici etkisi QPCR yöntemiyle de 

gösterilerek RNA-seq bulguları doğrulanmıştır. 

Buna karşın, beklenmedik şekilde fosfolipit sentezi ve lizozomlarla ilişkili yolakların 

SSRI uygulaması sonucu upregüle olduğu ve bu etkinin doza bağımlı olduğu 

gözlenmiştir. RNA-seq analizi ışığında, ilaçların adipojenez sırasında farklı lipit 

profilleri üzerindeki ve lizozomları indükleyici etkileri 2D MKH’lerde ek analizlerle 

araştırılmıştır. Deneyler sonucunda CIT ve SER’in 2D modelde fosfolipitleri ve 

lizozomları indükleyici etkisi gösterilerek RNA-seq bulguları doğrulanmıştır. BMD 

modelleme SSRI’ların fosfolipitleri doza bağımlı ve daha potent şekilde inküklediğini 

göstermiştir. Medyan BMD'ler karşılaştırıldığında SER'in nötral lipitlere kıyasla 

fosfolipitleri neredeyse 10 kat daha etkili şekilde indüklediği görülmüştür. Ek olarak, 

SER’in fosfolipitleri indükleyici etkisinin literatürde bildirilen SSC değerleri 

aralığında (0.065–0.65 µM) olduğu bulunmuştur (De Vane et al. 2002). 

SSRI tedavisi alan hastaların çoğunlukla yetişkinler olduğu göz önünde 

bulundurularak, ilaçların olgun adipositlerde lipit profili üzerindeki etkileri 

araştırılmıştır. CIT ve SER’in olgun adipositlerde nötral lipit düzeyini etkilemediği, 

fakat fosfolipitleri indüklediği görülmüştür. İlaçların fosfolipitleri indükleyici 

etkisinin olgun adipositlerde de gözlenmesi bu ilaçları kullanan hastalarda benzer 

etkilerin görülebileceğine işaret etmektedir. 

 

Sonuç olarak bütün bulgular göz önüne alındığında, verilerimiz CIT ve SER’in 

katyonik amfifilik ilaçlar (KAİ’ler) olarak sınıflandırılan bir grup ilaçla benzer 

olumsuz etkilere yol açtığı şeklinde yorumlanmıştır. KAİ’ler ortak bir kimyasal yapıya 
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sahip olup zayıf bazik özelliklerinden ötürü lizozomlarda akümüle olankimyasallar 

olarak tanımlanabilir. Bu kimyasallar, yapılarında hidrofobik bir fonksiyonel gruba 

bağlı hidrofilik, protonlanabilir bir amin grubu taşımaktadır. Hidrofobik grubunun 

neden olduğu lipofiliteleri sayesinde hücre membranlarından kolaylıkla difüze olan 

KAİ’ler lizozomlar gibi asidik bir organel içine girdiklerinde amin grubunun 

protonlanmasıyla pozitif olarak yüklenmektedir (Kazmi et al., 2013). Pozitif yüklü 

(katyonik) form membranı aşamadığı için lizozomlar içerisinde birikmekte, fosfolipit 

membranlara bağlanarak lizozomal enzimlerin inhibisyonuna yol açmaktadır. 

KAİ’lerin lizozomlarda akümülasyonu, lizozomal fosfolipaz A2 (LPLA2) enziminin 

kompetitif inhibisyonuna yol açar, bunun sonucunda ise fosfolipit yıkımı sekteye 

uğrayarak lizozom içinde fosfolipit birikimi görülür (Hinkovska-Galcheva et al., 

2021). KAİ’lerin bu olumsuz etkisi literatürde hepatosit ve akciğer hücrelerinde 

gösterilmiş, ilaçların bu etkisi ilaçlarla indüklenen fosfolipidozis (DIP) olarak 

tanımlanmıştır (Hinkovska-Galcheva et al., 2021; Reasor et al., 2006). 

CIT ve SER’in fizikokimyasal özellikleri hakkında literatürdeki bilgiler göz önüne 

alındığında (Reasor et al., 2006), çalışmamızın sonuçları ilaçların farklılaşan ve olgun 

adipositlerde lizozomal akümülasyonuna bağlı fosfolipidozise yol açtıklarına işaret 

etmektedir. RNA-seq sonuçlarında SSRI’larla LPLA2 inhibisyonuna dair bir veri 

bulunmamakla birlikte bu, LPLA2 inhibisyonunun moleküler düzeyde gerçekleşmesi 

ve gen ekspresyonundaki değişikliklerden bağımsız olmasıyla açıklanabilir. KAİ’lerin 

3T3-L1 farklılaşması üzerine etkilerinin araştırıldığı bir in vitro çalışmada ilaçların 

lizozomal akümülasyonu ile adipojenez inhibisyonu arasında pozitif bir ilişki 

bildirilmiştir (Kagebeck et al. 2018). Çalışmanın 3T3-L1 farklılaşmasının KAİ’lerin 

lizozomlarda artan birikimi sonucu inhibe edildiğine işaret eden bulguları, 

çalışmamızda SSRI’ların 3T3-L1 ve MKH’ler üzerindeki etkilerini doğrular 

niteliktedir. 3T3-L1 hücreleriyle gerçekleştirilen bir başka in vitro çalışmada, 

KAİ’lerin olgun adipositlerde fosfolipit membranlara bağlanma sonucu lizozomlarda 

akümüle olduğu gösterilmiş (Sanchez Garcia et al. 2018), çalışmamızda MKH’lerle 

yapılan olgun adiposit deneylerinin sonuçlarını doğrulamıştır. Tüm bulgular, CIT ve 

SER’in farklılaşan ve olgun adipositlerde fosfolipit membranlara bağlanarak 

lizozomlarda akümülasyonuna ve buna bağlı fosfolipit birkimini ve lizozomları 

indüklediğine işaret etmektedir. 
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Literatürde lizozomal disfonksiyon temelinde geliştirilen advers sonuç yolağı (adverse 

outcome pathway; AOP) yaklaşımları bulunmaktadır. Bunlar genellikle karaciğer 

toksisitesi üzerine geliştirilmiş olup, AOP144 ve AOP130 bunlara örnek olarak 

verilebilir (AOP144, lizozom disfonksiyonu; AOP130, fosfolipaz inhibisyonu) 

(Kuburic, Gerloff, and Landesmann 2023; Oh, Yoon, and Jegal 2023). Bu AOP’lerde 

bulunan çoğu anahtar olay (key event) çalışmamızın bulguları arasında mevcuttur. 

Lizozomal disfonksiyonun yanı sıra mitokondriyal disfonksiyon bu AOP’lerde ortak 

olarak bulunan bir diğer anahtar olaydır. Çalışmamızda RNA-seq verilerinde oksidatif 

fosforilasyon yolağının SSRI’larla etkilendiği görülmüştür. Bu, mitokondriyal 

fonksiyon üzerinde olası bir etkiye işaret etmektedir. KAİ’lerin hücrede lizozomların 

yanı sıra mitokondride akümüle olarak oksidatif fosforilasyonu inhibe ettiği literatürde 

bildirilmektedir (Fromenty, 2023). Kronik senaryoların test edildiği ileri deneylerle bu 

yolağın yol açabileceği inflamasyon ve hücre ölümü mekanizmalarının araştırılması, 

SSRI’ların advers etkilerinin kapsamının belirlenmesinde aydınlatıcı olacaktır. 

Son olarak, SSRI’ların neden olduğu metabolik yolakların downregülasyonunun 

altında yatan mekanizmanın aydınlatılması için, CIT ve SER’in PPARg üzerindeki 

antagonistik etkileri araştırılmış, fakat ilaçların PPARg antagonisti etkileri 

gözlenmemiştir. Adipojenezin ilk aşamasında PPARγ aktivasyonu membran 

fosfolipitlerinden araşidonik asit salınımıyla ilişkilidir. Sitozolik fosfolipaz A2 

(cPLA2), araşidonik asit mobilizasyonu ve prostaglandin (PG) sentezinde önemli bir 

role sahiptir. Bu PG’lerden PG15d, PPARγ ligandı olarak aktivite göstererek 

adipojenik genlerin ekspresyonunu stimüle eder. Bu bağlamda cPLA2, adipojenezin 

erken aşamalarında proadipojenik bir faktör olarak rol almaktadır. Güncel çalışmalar 

adiposit farklılaşmasında fosfolipaz A2 yolağının önemini vurgulamaktadır (Peña et 

al. 2016). Literatürde bir in vitro çalışmada azitromisinin (KAİ grubu bir antibiyotik 

ajan) membran fosfolipitlerine bağlanmayı ve cPLA2 enziminin inhibisyonunu 

takiben PG sentezinde azalmaya neden olduğu bildirilmiştir (Banjanac et al. 2012). 

Literatürde bildirilen KAİ akümülasyonu ve adiposit farklılaşmasının inhibisyonu 

arasındaki pozitif korelasyon, KAİ’lerin PPARγ aktivasyonuyla sonuçlanan 

sinyalizasyon kaskadını inhibe etmesiyle açıklanabilir (Kagebeck et al. 2018). 

SSRI’ların MKH’lerde adipojenezi inhibe edici etkilerinin altında yatan mekanizma 

tam olarak aydınlatılamamakla birlikte, hipotezimiz CIT ve SER’in aynı 
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mekanizmayla etki gösterdiği, buna ek olarak, fosfolipit birikimi ve lizozom 

indüksiyonuna yol açarak adiposit fonksiyonunda bozulmaya neden olduklarıdır. 

Sonuç olarak, 

1) SSRI’ların obezojenik potansiyelinin araştırılmasında kullanılmak üzere 

MKH’lerde geliştirilen yeni 3D modelin, kimyasalların adipojenik etkilerinin 

taranması ve bu etkilerin olası mekanizmalarının aydınlatılmasında başarılı bir 

model olduğu gösterilmiştir. 3D model, adiposit progenitör hücre hatlarının 

kullanıldığı 2D modellere göre, adiposit farklılaşmasının iyileştirilmiş analizi ile 

insanlardaki durumun daha iyi yansıtılmasına olanak vermesi gibi önemli 

avantajlara sahiptir. 

2) Bulgularımız, SSRI’ların adiposit farklılaşması ve olgun adipositlerde lipit 

metabolizması üzerindeki etkilerini kapsamlı olarak ortaya koymaktadır. Bu 

etkilerin, insanlarda bildirilen kararlı-durum plazma konsantrasyonları aralığında 

gözlenmesi, bulguların klinik önemini artırmaktadır. CIT ve SER’in neden olduğu 

fosfolipit ve lizozom homeostazının bozulması ile başlayan reaksiyon zincirinin, 

adiposit farklılaşmasının inhibisyonu ve adiposit fonksiyonun bozulmasıyla 

sonuçlandığı gösterilmiştir. 

3) Çalışmamız, uzun süreli SSRI tedavisinin kilo artışına yol açtığını gösteren 

epidemiyolojik çalışmaların aksine, beklenmedik şekilde ilaçların adipojenezi 

baskılayıcı etkisini kapsamlı gen ekspresyonu analizleriyle ortaya koymuştur. In 

vitro sitemlerde gösterilen bu etkilerin in vivo sistemlerdeki karşılığına ilişkin 

kesin bir yargıya varmak güç olsa da, bulgularımız ilaçların metabolizma 

homeostazı üzerinde olası olumsuz etkilerine işaret etmektedir. 

Tez çalışması kapsamında test edilen SSRI ilaçların adipojenez ve metabolizma 

üzerindeki advers etkilerinin ortaya konmuş olmasının obezite ve metabolik 

hastalıkların kompleks altyapısına sağladıkları katkının anlaşılması için önemli bir 

adım olduğu düşünülmektedir. Çalışmamız, SSRI gurubu antidepresanlar CIT ve 

SER’in yeterince araştırılmamış metabolik etkilerinin ve olası mekanizmalarının 

aydınlatılmasında önemli bir adım olup, ilaçların özellikle gebelik esnasında güvenli 

kullanımının sağlanması için bu etkilerinin ileri in vitro ve in vivo çalışmalarla 

araştırılmasının önemini vurgulamaktadır. 

Anahtar Kelimeler; Sitalopram, sertralin, adipojenez, lizozom, fosfolipit  
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Abstract 

Investigation of endocrine disrupting and obesogenic effects of several 

pharmaceuticals that are exposed in the early stages of life 

Obesity has become a global health crisis, affecting both adults and children 

worldwide. While excessive calorie intake and genetic predisposition are recognized 

as major contributors to obesity, environmental factors, particularly chemicals known 

as 'obesogens', have gained attention for their potential role in this epidemic. Despite 

extensive research on environmental obesogens, the impact of pharmaceuticals, such 

as selective serotonin reuptake inhibitors (SSRIs), on obesity remains poorly 

understood. SSRIs like citalopram (CIT) and sertraline (SER) are widely prescribed, 

even during pregnancy; however, concerns have been raised about their effects on 

weight gain. This study investigated whether CIT and SER interfere with the process 

of adipocyte differentiation, using human mesenchymal stem cells (MSCs) and 3T3-

L1 murine preadipocyte cell line, followed by an assessment of intracellular lipids by 

fluorescence staining and high-throughput/high-content analyses. A novel 3D model 

using MSCs was developed and characterized through transcriptomics analysis to 

improve the human relevance of the assay. Gene and protein expression analyses were 

performed to explore possible mechanisms, and receptor-mediated mechanisms were 

investigated using receptor binding and transactivation assays for various nuclear 

receptors, along with ER-dependent proliferation and cell-free aromatase inhibition 

assays. Alteration of lysosomal pathways revealed by transcriptional profiling was 

subsequently confirmed with functional read-outs in MSCs by an observed increase in 

lysosomes and phospholipids. Our findings suggest lysosomal dysfunction and 

disrupted lipid metabolism in mature adipocytes, leading to excessive lipid 

accumulation. Moreover, important adipogenic processes are inhibited, potentially 

leading to dysfunctional adipocytes, which might have implications for the 

maintenance of a healthy metabolic balance. 

Keywords; Citalopram; sertraline; in vitro; adipogenesis; lysosome; phospholipid 
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1. Introduction 

Obesity, a condition characterized by excessive and unhealthy body weight, has 

evolved into a pandemic that is affecting people all around the world. In 2022, 43 % 

of adults aged 18 years and older were overweight and 16 % were obese, totaling up 

to 2.5 billion and 890 million people, respectively (WHO 2024). Furthermore, by 

2022, 8 % of children and adolescents aged 5 to 19 were obese, totaling 160 million 

worldwide (WHO 2024), a number nearly double Turkey’s entire population ((TÜİK) 

2024). 

Excessive calorie intake and genetic susceptibility are recognized as major factors 

contributing to obesity, yet these alone fail to fully explain this dramatic increase in 

obesity cases. This has led to a closer examination of the impact of environmental 

factors, specifically chemicals, on obesity development (Lustig et al. 2022). The 

"obesogen hypothesis," which emerged in the early 2000s, suggests chemicals can 

influence adipose tissue development and function through various mechanisms, to 

promote obesity (Grün et al. 2006). The obesogen field has grown substantially since 

then, with studies mostly focusing on identifying environmental chemicals acting as 

obesogens and providing a link between unintentional exposures and obesity (Heindel 

et al. 2022). However, despite a large number of pharmaceuticals being linked to 

significant weight gain, our understanding of their contribution to obesity development 

is limited and needs further research. 

Selective serotonin reuptake inhibitors (SSRIs), are used for treating several mood 

disorders, and are among the most used medications worldwide (Serretti and Kato 

2008). Citalopram (CIT) and sertraline (SER), two of the most prescribed SSRIs in 

pregnancy, have been linked to substantial weight gain in patients after long-term 

treatment (Arterburn et al. 2016; Blumenthal et al. 2014; Gafoor et al. 2018; Uguz et 

al. 2015). Additionally, there are reports on altered lipid profiles including increased 

serum triglyceride levels with CIT and total cholesterol levels with SER in female 

patients after 4 months of follow-up (Beyazyüz et al. 2013).  

Although SSRIs are largely considered safe and prescribed to women during 

pregnancy, there is increasing concern related to their maternal and neonatal safety 

(Gill et al. 2020; Molenaar et al. 2020; Pariente et al. 2016). Given that CIT and SER 

are commonly prescribed to pregnant women, with a limited understanding of the 
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mechanisms underlying their metabolic effects, investigating these effects and the 

underlying mechanisms is timely. 

In this context, our hypothesis in this thesis was that these SSRIs, CIT and SER, might 

have obesogenic effects, potentially through an endocrine mechanism. Furthermore, 

given their widespread use during pregnancy, they could potentially promote the 

worldwide increase in obesity. 

The following literature review will first focus on the biology and the contributing 

factors behind obesity and metabolic diseases. Subsequently, it will introduce 

obesogens and their underlying mechanisms, highlighting specific chemicals that are 

classified as obesogens, continuing with various in vitro test methods used in the 

identification of obesogens. Lastly, the review will focus on Selective Serotonin 

Reuptake Inhibitors (SSRIs), their unintentional metabolic effects, and their potential 

role in obesity. The hypothesis of this thesis and the corresponding objectives will be 

presented based on all the reviewed information. 
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2. Literature Review 

2.1.Obesity and Metabolic Diseases 

Obesity is a chronic disease defined as “an excessive accumulation of body fat that can 

impair health” (WHO 2024). Over the last four decades, the incidence of obesity has 

nearly tripled, impacting adults and children all around the world. In 2022, obesity is 

observed in 890 million adults (18 years of age or older) and in 160 million children 

and adolescents (between 5-19 years of age) worldwide (WHO 2024). Now recognized 

as one of the most critical global health issues, obesity is not confined to developed 

countries; it is also a significant concern for developing nations (WHO 2024).  

Besides being a serious health concern itself, obesity also increases the risk of 

metabolic syndrome, metabolic dysfunction-associated steatotic liver disease 

(MASLD), and various cancers (Lustig et al. 2022). Additionally, obesity leads to an 

elevated risk of premature mortality (Koroukian, Dong, and Berger 2019; Mathieu, 

Lemieux, and Després 2010). In 2019, obesity caused an estimated 5 million deaths 

from non-communicable diseases, including cardiovascular disease, stroke, diabetes, 

and various types of cancer, ranking fifth among risk factors related to premature death 

(Fig. 2.1). Interestingly, high blood pressure and high blood sugar are highly associated 

with obesity and part of metabolic syndrome ((NHLBI) 2022), which collectively 

account for another 17 million global deaths in 2019 (Fig. 2.1). 
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Figure 2.1 Estimated number of global deaths attributed to various risk factors. 

Obesity accounting for 8 % (approximately 5 million) of deaths globally (Ritchie and 

Roser 2017).  

 

 

Obesity is typically assessed using the body mass index (BMI). BMI is calculated as 

the ratio of weight in kilograms to the square of height in meters (kg/m2). The World 

Health Organization (WHO) classifies a BMI greater than or equal to 25 as overweight, 

and a BMI exceeding 30 as obesity (WHO 2024). Despite being a widely used tool for 

evaluating obesity in adults of all ages and both sexes, BMI has its limitations. It 

primarily focuses on weight relative to height and lacks information about adiposity, 

a crucial aspect for distinguishing between 'healthy' and 'unhealthy' obesity, which is 

often associated with various metabolic disorders, i.e. metabolic syndrome (Lustig et 

al. 2022). 
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Adipose Tissue 

Serving as the main energy store in the body, adipose tissue is a highly dynamic organ. 

It contains white, brown, and beige adipocytes, immune cells, endothelial cells, and 

fibroblasts (Qian, Tang, and Tang 2021).  

White adipocytes have a high capacity for fat storage, limited vascularization, and few 

mitochondria. Found in fat depots throughout the body, white adipocytes are where 

excess energy is stored as triglycerides. These triglyceride stores are later broken down 

to free fatty acids and used during times of energy deprivation (Lustig et al. 2022). 

Besides acting as an energy depot, white adipose tissue also acts as an endocrine organ, 

secreting adipokines such as adiponectin (the insulin-sensitizing, anti-inflammatory, 

and anti-fibrotic hormone) and leptin, which play roles in regulating metabolism, 

appetite, and insulin sensitivity (Ghaben and Scherer 2019). 

Conversely, brown and beige adipocytes are specialized for energy expenditure 

through thermogenesis. Brown adipocytes have little capacity for fat storage, are 

highly vascularized, and have high numbers of mitochondria. They express high levels 

of uncoupling protein 1 (UCP-1), which uncouples oxidative phosphorylation in the 

mitochondria to produce heat instead of ATP, as a defense against cold or as energy 

expenditure following food intake (Lustig et al. 2022). Beige adipocytes are primarily 

present in subcutaneous adipose tissue. In cases of prolonged cold exposure or 

exercise, white adipocytes can increase their mitochondria number and UCP-1 

expression to become beige adipocytes, which appears to have a positive impact on 

metabolic health (Lustig et al. 2022). Overall, adipose tissue is crucial for energy 

homeostasis and regulating metabolism. 

Adipose tissue development in humans occurs during in utero development and 

throughout childhood (Lustig et al. 2022). White adipocytes formed in early life tends 

to remain stable in adult life if body weight is maintained (Ghaben and Scherer 2019). 

However, excessive energy intake was shown to enhance both adipocyte number and 

size by increasing the maturation of fibroblast-like preadipocytes (Ghaben and Scherer 

2019; Qian et al. 2021). This affects adipocyte function significantly, which in turn 

has a profound impact on metabolic health. Healthy adipose tissue is characterized by 

a high number of smaller white adipocytes, along with normal adiponectin secretion, 

normal response to insulin, functional mitochondria, proper vascularization, and 
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minimal macrophage infiltration. These allow for greater fat storage while adipocyte 

function is maintained, minimizing the risk of metabolic dysfunction (Lustig et al. 

2022). On the other hand, in unhealthy obesity, adipocytes undergo hypertrophic 

expansion, and adiponectin secretion is decreased while leptin secretion is increased. 

Larger adipocytes undergo mechanical and hypoxic stress due to reaching the limit of 

oxygen diffusion and increased contact with neighboring cells. Hypoxia disrupts 

angiogenesis and increases pro-fibrotic gene expression which ultimately leads to 

tissue fibrosis. The heightened stress contributes to inflammation within the adipose 

tissue with elevated secretion of inflammatory cytokines (Halberg et al. 2009). 

Hypertrophy is also leads to increased insulin resistance and higher macrophage 

infiltration, exacerbating inflammation and metabolic disorders such as T2D and 

MASLD (Ghaben and Scherer 2019; Qian et al. 2021). 

 

Adipogenesis 

The precursor of adipocytes in the human body is the mesenchymal stem cell (MSC). 

The differentiation of MSCs into mature adipocytes is called adipogenesis. Various 

nuclear receptors acting as transcription factors regulate this intricate process, by 

directly modulating gene expression upon activation by a ligand (Lustig et al. 2022). 

Adipogenesis is initiated by the commitment of MSCs to the adipogenic lineage. Then, 

the key regulator of adipogenesis, peroxisome proliferator-activated receptor gamma 

(PPARγ), is activated to stimulate terminal differentiation (Ghaben and Scherer 2019). 

Adipogenesis is initiated with an increase in CAAT/enhancer-binding proteins beta 

and delta (CEBPβ and CEBPδ), followed by an increase in PPARγ and CEBP alpha 

(CEBPα). Activated PPARγ stimulates other transcription factors (Fig. 2.2), and forms 

a heterodimer with partner, retinoid X receptor alpha (RXRα), leading to increased 

transcription of adipocyte genes and subsequent adipocyte differentiation (Janesick 

and Blumberg 2012; Lefterova and Lazar 2009; Sarjeant and Stephens 2012). 

Additional pro-adipogenic factors include sterol regulatory element-binding protein 1 

(SREBP1), which induces PPARγ expression to promote adipogenesis. Some 

important PPARγ targets, commonly used as differentiation markers, include 

lipoprotein lipase (LPL), fatty acid synthase (FAS), fatty acid binding protein 4 
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(FABP4), leptin (LEP), and adiponectin (ADIPOQ) (Fig. 2.2) (Kamstra et al. 2014; 

Lefterova and Lazar 2009). 

 

 

 

Figure 2.2 Transcriptional regulation of adipogenesis. CEBP: CAAT/enhancer-

binding protein, SREBP1: Sterol regulatory element-binding protein 1, PPARγ: 

Peroxisome proliferator-activated receptor gamma, RXRα: Retinoid X receptor alpha, 

ADIPOQ: Adiponectin, FABP4: Fatty acid binding protein 4, LPL: Lipoprotein lipase, 

FAS: Fatty acid synthase. 

 

 

Contributing Factors Behind Obesity 

Obesity is explained by the excessive consumption of calories, creating an imbalance 

between intake and expenditure. Excess calories are stored in the adipose tissue, 

leading to weight gain and obesity. Environmental and societal changes further 

exacerbate this imbalance by providing easier access to energy-dense foods and 

promoting sedentary lifestyles (WHO 2024). Genome-wide association studies have 

linked over 300 gene variants to obesity, which explains about 3–5 % of individual 

variation in the development of obesity (Schwartz et al. 2017). The pivotal roles energy 

imbalance and genetics play in promoting obesity cannot be overlooked. Nevertheless, 

they alone fail to fully explain the dramatic increase in obesity rates (Lustig et al. 2022; 
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Schwartz et al. 2017). This has shifted the focus onto environmental factors, especially 

chemicals as the cause of the current obesity pandemic (Figure 2.3). Substantial 

evidence from studies involving both animals and humans suggests environmental 

influences during fetal development can promote the onset of obesity and metabolic 

diseases during childhood and adulthood (Oken and Gillman 2003; Taylor and Poston 

2007). Exposure to chemicals during development can predispose individuals to 

obesity later in life, potentially affecting multiple generations (Lustig et al. 2022). 

 

 

 

Figure 2.3 Contributing factors in the development of obesity. 

 

 

The concept of chemicals’ interference with the endocrine system has been known 

since the beginning of 1990s. The increase in endocrine-related diseases among 

humans and wildlife has led to the discovery of endocrine disrupting chemicals 

(EDCs). They are described as “an exogenous substance or mixture that might 

interfere with the endocrine system, leading to adverse health effects in an intact 

organism, or its progeny, or (sub)populations” (Bashshur, Mandil, & Shannon, 2002). 

These chemicals exhibit various key characteristics, allowing them to influence the 

endocrine system through diverse mechanisms. These mechanisms include binding 

and activating hormone receptors (agonism), binding and blocking receptor activation 

(antagonism), altering receptor expression, interfering with hormonal signaling 

pathways, epigenetic modifications, and altering hormone kinetics (synthesis, 

transport, distribution, and metabolism). By binding and activating hormone receptors, 
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EDCs can replace endogenous hormones. However, for the compounds that interact 

with multiple receptors, their binding exhibits less specificity compared to their natural 

hormone counterparts. Due to this, their effects may lack the specificity observed with 

hormones binding to those same receptors (La Merrill et al. 2020). EDCs exhibit two 

other key characteristics setting them apart from most toxicants. EDCs are often 

effective at lower concentrations. Additionally, like endogenous hormones, they 

produce non-monotonic dose-response curves where effects at low concentrations 

differ from those at higher concentrations (Vandenberg et al. 2012). This response may 

be attributed to their impact on multiple endocrine pathways. At low concentrations, 

they might act as agonists or antagonists; however, at higher concentrations, negative 

feedback loops come into play, altering receptor sensitivity and/or expression, 

diminishing the agonist/antagonist response (Lagarde et al. 2015; Vandenberg et al. 

2012). 

As EDCs’ effects were first discovered in wildlife and mainly on reproduction, studies 

to date mostly looked at the reproductive outcomes of environmental and industrial 

pollutants, through interference with steroid hormones (e.g., estrogens, androgens) (A. 

Bergman et al. 2012; Gore et al. 2014). The research on EDCs has led to 

comprehensive screening strategies and regulations to address their impact on human 

and wildlife health. The European Union (EU) regulates EDCs based on data from 

various guidelines and programs released by the Organization for Economic Co-

operation and Development (OECD), as part of the efforts to standardize and 

harmonize testing methods for the assessment of EDCs (Martyniuk et al. 2022). OECD 

uses a tiered approach to screen chemicals for their potential effects on the estrogen, 

androgen, and thyroid hormone systems, as well as steroidogenesis (referred to as the 

“EATS modalities”). Their approach includes predictive models (e.g., in silico QSARs 

and ADME modeling) to detect substances that can affect the endocrine system, while 

a broad range of in vitro and in vivo assays help associate the chemical to any 

endocrine-related adverse effect ((OECD) 2018). The primary focus of the regulatory 

bodies has been on these EATS pathways. However, there's growing attention on the 

non-EATS pathways like metabolism and weight gain (Martyniuk et al. 2022). After 

the questioning of chemicals’ (especially with endocrine-disrupting properties) impact 

on the global increase in obesity prevalence, the focus on reproduction has shifted 

towards metabolism disruption and obesity. 
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2.2.Obesogens and Mechanisms Underlying Obesogen Action 

The "obesogen hypothesis", which emerged in the early 2000s, proposes that some 

EDCs, later termed obesogens, can influence an individual's predisposition to obesity 

by disrupting the endocrine regulation of calorie intake (appetite, satiety), storage, 

expenditure, and adipose tissue development (Grün et al. 2006). Studies have 

supported this hypothesis, providing evidence on obesogens’ interference with these 

hormonally driven processes, suggesting that exposure to obesogens can promote 

obesity (Casals-Casas and Desvergne 2011; De Cock and Van de Bor 2014; Retha R. 

Newbold et al. 2007). 

Understanding the specific mechanisms through which these chemicals alter metabolic 

processes is essential to establish an irrefutable link between obesogens and obesity. 

Research in the obesogen field has focused on unveiling these mechanisms to identify 

the fundamentals of obesogen action. These include nuclear receptor-mediated effects 

on adipocyte differentiation, epigenetic modifications accounting for intergenerational 

and transgenerational effects, direct effects on certain organs regulating metabolism 

(e.g., liver, adipose tissue, muscles, brain), and indirect mechanisms like inducing 

inflammation and mitochondrial/oxidative stress (Blumberg and Egusquiza 2020; 

Heindel et al. 2022). 

 

Receptor-mediated mechanisms 

Obesogens can act on several nuclear receptors involved in adipose lineage 

commitment and differentiation. The prominent targets are the ligand-activated 

transcription factors, peroxisome proliferator-activated receptors (PPARγ, PPARα, and 

PPARδ), and retinoid X receptor alpha (RXRα, heterodimeric partner of PPARγ). 

Among these, PPARγ and RXRα are vastly expressed in adipose tissue (Lustig et al. 

2022). Liver transcription factors include liver X receptor (LXR), pregnane X receptor 

(PXR), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), and aryl 

hydrocarbon receptor (AhR). These can modulate hepatic lipid metabolism to direct 

lipids to adipose tissue for storage (Lustig et al. 2022). Lastly, systemic hormone 

receptor systems including insulin, estrogen, androgen, glucocorticoid, and thyroid 
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receptors (IR, ER, AR, GR, and TR) modulate energy storage and metabolism (Casals-

Casas and Desvergne 2011; Lustig et al. 2022).  

In this thesis, the focus was on the main target PPARγ, as well as the three receptors 

(AhR, ER, and AR) that were tested to evaluate possible receptor-mediated effects of 

the SSRIs. 

Peroxisome proliferator-activated receptor gamma (PPARγ) 

PPARγ plays a pivotal role in adipocyte differentiation. Adipogenesis involves two 

phases: commitment and terminal differentiation. An increase in PPARγ expression 

marks the transition to the differentiation phase. Endogenous ligands, like fatty acids, 

eicosanoids, prostaglandins, activate PPARγ. Upon activation, PPARγ triggers a 

cascade of effects, such as stimulating transcription factors, and promoting adipogenic 

gene expression, leading to enhanced adipocyte differentiation (Ghaben and Scherer 

2019). It is recognized today that most obesogens activate PPARg in a relatively well-

defined mechanism. There is strong evidence showing that PPARg activation by 

several environmental chemicals promotes obesity, including phthalates, bisphenols, 

flame retardants, organofluorine compounds, and tributyltin (TBT) (Blumberg and 

Egusquiza 2020; Heindel et al. 2022). (Ahmed and Atlas 2016; Cano-Sancho, Smith, 

and La Merrill 2017; Feige et al. 2007; Grün et al. 2006; Kakutani et al. 2018; Watkins 

et al. 2015). Generally, PPARg activation results in less inflammation, normal 

insulin/leptin secretion, therefore there is no accompanying metabolic disturbance 

initially (such as with thiazolidinediones) (Ghaben and Scherer 2019; Qian et al. 2021). 

Partial agonists often have a higher risk of causing a dysfunctional phenotype (Shoucri 

et al. 2018). Although the PPAR pathway is quite well-known, the knowledge on some 

of the other mechanisms is still very limited and can widely vary between chemicals 

(Blumberg and Egusquiza 2020; Heindel et al. 2022). 

Retinoid X receptor alpha (RXRα) 

RXRα forms a heterodimer with PPARγ and functions as a key regulator of 

adipogenesis (Lustig et al. 2022). Activation of RXRα promotes both preadipocyte 

commitment and adipogenic differentiation. Recent studies highlight RXRα’s crucial 

role in adipogenic lineage commitment (Shoucri et al. 2017), while adipocyte 

differentiation induced by RXRα was associated with a distinct adipocyte, compared 
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to the ones induced by PPARγ. RXR-induced adipocytes exhibited decreased glucose 

uptake and adiponectin expression, suggesting a dysfunctional adipocyte that may 

contribute to the risk of obesity and metabolic diseases (Shoucri et al. 2018). 

Aryl hydrocarbon receptor (AhR) 

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, responds 

to environmental signals, particularly increased exposure to chemicals, and triggers 

adaptive responses such as detoxification and immune activation. Another common 

name for AhR is the dioxin receptor (DR), coming from its high affinity for dioxin-

like substances. Unsurprisingly, the liver expresses high levels of AhR, given its role 

in detoxification (Beischlag et al. 2008). AhR signaling plays an important part in 

metabolic deregulation, and studies showed AhR inhibition can prevent and reverse 

obesity (Tanos et al. 2012). Furthermore, AhR has been shown to modulate 

adipogenesis, indirectly through the downregulation of PPARγ expression (Casals-

Casas and Desvergne 2011; Darbre 2017), and the potent AhR ligand, 2,3,7,8-

Tetrachlorodibenzo-p-dioxin (TCDD) has been shown to inhibit adipogenesis in vitro 

in 3T3-L1 preadipocytes (Bastos Sales et al. 2013). 

Estrogen receptor (ER) 

Estrogens exert their effects through the nuclear receptors ERα and ERβ, and G-

protein–coupled membrane receptors. Expression of both membrane and nuclear 

receptors has been shown in human adipose tissue (Hugo et al. 2008). Estrogen 

signaling seems to have diverse effects on adipocyte differentiation, partly depending 

on the receptors involved and the timing of exposure. In postmenopausal women, 

decreased estrogen levels correlate with enhanced adiposity and obesity, a condition 

reversible with hormone therapy (Casals-Casas and Desvergne 2011). Conversely, 

exposure to the synthetic estrogen diethylstilbestrol during development was shown as 

a risk factor for obesity (C. J. Hao et al. 2012; Hatch et al. 2014). Adipogenic effects 

of the estrogenic plasticizer bisphenol A (BPA) have been shown in vitro (Boucher, 

Boudreau, and Atlas 2014; Riu et al. 2011), and in vivo, including transgenerational 

effects such as higher adipose tissue mass in the offspring of mice (Susiarjo et al. 

2015). 
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Androgen receptor (AR) 

Androgens exert their effects through the nuclear AR. Reduced androgen levels and 

anti-androgen treatment have been linked to increased adiposity (Kassotis et al. 2017), 

leading to the general consideration of androgens as anti-obesogenic. However, there 

are notable knowledge gaps regarding AR signaling pathways and their implications 

for obesity, and further research is needed to clarify these effects (Venkatesh et al. 

2022). 

 

Epigenetic mechanisms 

Epigenetics studies the environmental influences that can alter gene expression. 

Although epigenetic modifications occur without changes in the genome itself, they 

are heritable to the following generations, hence termed transgenerational effects. The 

most well-known epigenetic mechanisms include DNA methylation and modification 

of histone proteins surrounding the DNA, e.g., histone methylation (Mohajer et al. 

2021; Stel and Legler 2015). In utero development is a sensitive period for exposure 

to obesogens acting via epigenetic mechanisms, as these changes will likely impact 

future generations. This was shown in transgenerational studies, where exposure to 

obesogens tributyltin (TBT), bisphenol A (BPA), and dichlorodiphenyl-

trichloroethane (DDT) during prenatal development led to a predisposition to obesity 

in non-exposed offspring (Chamorro-García et al. 2013; Skinner et al. 2013; Susiarjo 

et al. 2015). 

 

Other mechanisms 

Energy homeostasis and metabolism, thus body weight, are tightly controlled by the 

interactions between multiple organ systems, including adipose tissue, muscles, liver, 

and brain. Obesogens can act on a number of these organ systems to promote obesity 

(Shoucri et al. 2017). 

Obesogens can promote lipid accumulation in the liver. Increased adiposity contributes 

to insulin resistance and inflammation, promoting MASLD, as well as more severe 
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forms of liver damage (Birkenfeld and Shulman 2014). Obesogens that worsen insulin 

resistance in the liver further exacerbate the risk of MASLD through this mechanism. 

Obesogens can also promote obesity via indirect mechanisms. Most obesogens have 

been shown to disrupt the immune system and mitochondrial functions, leading to 

inflammation, and increased mitochondrial/oxidative stress (Bansal, Henao-Mejia, 

and Simmons 2018). Increased oxidative stress can activate inflammatory pathways 

and exacerbate the risk of metabolic abnormalities such as insulin resistance (Colak 

and Pap 2021). When obesogen exposure leads to chronic systemic inflammation or 

inflammation within organs regulating metabolism, there is a higher risk of metabolic 

disturbance (Ghaben and Scherer 2019; Heindel et al. 2022). 

 

 

2.2.1. Chemicals Classified as Obesogens 

Currently, there are many chemicals and chemical classes suspected or classified as 

obesogens based on consistent evidence, including data from in vitro, mechanistic, and 

animal studies, along with human data linking exposure to adverse metabolic effects 

such as weight gain, higher BMI, and obesity in humans (Heindel et al. 2022).  

The focus of this study was on a smaller group of obesogens (summarized here and 

shown in Fig. 2.5), with various mechanisms and substantial evidence on their impact 

on adipocyte differentiation. 

Thiazolidinedione drugs 

Rosiglitazone (ROSI), troglitazone, and pioglitazone, antidiabetic agents belonging to 

the family of thiazolidinediones (TZDs), are originally developed for the treatment of 

T2D. Tailored to increase insulin sensitivity, they act as potent PPARγ agonists. 

Particularly ROSI has been shown to enhance adipocyte differentiation in vitro in 3T3-

L1 cells and in MSCs via PPARγ activation (Grün et al. 2006; Kassotis et al. 2021; 

Legler et al. 2020). Due to its strong affinity for PPARγ, ROSI is commonly used as a 

reference chemical in in vitro adipogenesis assays for its strong adipogenic potential. 

Next to their pharmacological action, TZDs are also associated with weight gain in 

patients (Dutta et al. 2023; Ko, Kim, and Lee 2017; Medici, McClave, and Miller 2015; 
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Wilding 2006). Although the mechanisms by which TZDs cause weight gain include 

fluid retention, decreased sodium excretion, and increased lipid storage (Basu et al. 

2006; Guan et al. 2005; Nesto et al. 2004; Yang and Soodvilai 2008), PPARγ activation 

likely plays a part as well, by increasing the differentiation of precursors into 

adipocytes. 

Organotins 

The well-studied organotin TBT was commonly used in marine paints as an anti-

fouling agent. However, due to its harmful effects on the environment and on human 

health, many countries have implemented regulations to restrict or ban its use in anti-

fouling paints, which led to a global ban in 2008 (Lagadic et al. 2018). Now recognized 

as a prominent obesogen, TBT acts through nanomolar affinity binding to PPARγ and 

RXR, though now it is recognized as a partial agonist on PPARγ (Heindel et al. 2022). 

Its ability to enhance preadipocyte differentiation was shown both in vitro (Chamorro-

García et al. 2013; Grün et al. 2006; Li, Ycaza, and Blumberg 2011) and in vivo 

(Chamorro-García et al. 2013; Chamorro-Garcia et al. 2017). Moreover, in 

transgenerational studies, prenatal TBT exposure was associated with increased 

adiposity in the F1, F2, and F3 descendants of F0 mice exposed during pregnancy 

(Chamorro-García et al. 2013; Chamorro-Garcia et al. 2017). Despite the lack of 

human data, substantial experimental data from both in vitro and in vivo assays 

strongly suggests the obesogenic potential of TBT (Heindel et al. 2022). 

Bisphenols 

Bisphenols are industrial plasticizers used in everyday items like water bottles and 

food containers (Veiga-Lopez et al. 2018). The well-known obesogen bisphenol A 

(BPA) was shown to enhance adipocyte differentiation possibly through PPARγ 

activation (Boucher et al. 2014; Riu et al. 2011). Transgenerational effects upon BPA 

exposure were shown in vivo in mice, via epigenetic mechanisms, including higher 

adipose tissue mass in male offspring, associated with epigenetic changes (Susiarjo et 

al. 2015). A recent meta-analysis identified 12 cross-sectional studies where a 

significant positive association was found between BPA exposure and obesity in adults 

(Ribeiro et al. 2020). 
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Brominated flame retardants 

Brominated flame retardants, initially used for their flame-reducing properties, faced 

restrictions due to environmental and health concerns (Heindel et al. 2022). 

Tetrabromobisphenol A (TBBPA), a member of brominated flame retardants, was 

shown to activate PPARγ (Kakutani et al. 2018), and increase MSC differentiation into 

adipocytes (Riu et al. 2011). 

Organophosphates, replacements of brominated flame retardants, have similar toxicity 

but relatively shorter half-lives (Heindel et al. 2022). The organophosphates triphenyl 

phosphate (TPP) and tri-ortho-cresyl phosphate (TOCP) were shown to increase 

adipocyte differentiation and modulate glucose uptake in vitro in 3T3-L1 cells (Cano-

Sancho, Smith, et al. 2017; Liu et al. 2022). Prenatal and neonatal exposure to TPP in 

mice was shown to increase body weight, fat mass, and hepatic lipid accumulation in 

male offspring (Wang et al. 2018, 2019). 

Despite the limited human data, both former brominated flame retardants, and their 

newer replacements, organophosphate compounds, are suspected obesogens through 

consistent experimental evidence (Heindel et al. 2022). 

Phthalates 

Di(2-ethylhexyl) phthalate (DEHP), an industrial plasticizer is the most well-studied 

member of phthalates. DEHP undergoes rapid conversion to mono(2-ethylhexyl) 

phthalate (MEHP) in the human body, which acts as a potent PPARγ agonist (Veiga-

Lopez et al. 2018). MEHP was shown to induce preadipocyte differentiation in vitro 

in 3T3-L1 cells (Feige et al. 2007), and in vivo, leading to increased body weight and 

visceral fat mass in mice (C. Hao et al. 2012). Phthalate exposure was associated with 

obesity in a recent systematic review and meta-analysis (Ribeiro et al. 2020), and a 

prospective study found a significant link between high phthalate levels in women and 

weight gain (Song et al. 2005). 

Fludioxonil 

The fungicide fludioxonil (FLUD) has been identified as an RXRα agonist, and was 

shown to enhance adipogenesis in vitro in 3T3-L1 preadipocytes and in mouse bone 

marrow derived mesenchymal stem cells (Janesick et al. 2016). A more recent study 
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classified FLUD as a potential PPARγ ligand (Kim et al. 2021). While these findings 

support FLUD’s potential as an obesogen, further investigation is needed to better 

understand its effects on adipogenesis and to establish a causal link between exposure 

and weight gain in humans. 

Organofluorine compounds 

Organofluorine compounds are per- and poly-fluoroalkyl substances (PFAS), a large 

group of chemicals widely used in manufacturing and in everyday consumer products 

for heat protection. Although their use was restricted in some countries following 

concerns about their persistence, bioaccumulation, and potential health effects, they 

are still found in the environment due to their widespread use and persistent nature 

(Schrenk et al. 2020).  

Previous in vitro research has shown PFAS to be activators of PPARs, including 

PPARγ and PPARα (Behr et al. 2020; Evans et al. 2022; Houck et al. 2021; Nielsen et 

al. 2023). Perfluorooctanoic acid (PFOA), was found to enhance lipid accumulation 

and alter the expression of genes associated with adipocyte differentiation and lipid 

metabolism, including PPARγ, in vitro in 3T3-L1 cells (Ma et al. 2018; Watkins et al. 

2015). Beyond PPARα-dependent effects, studies revealed PFOA-induced outcomes 

such as increased body weight and hepatic lipid accumulation in both PPARα knockout 

and wildtype mice (Attema et al. 2022; Das et al. 2017). 

Epidemiological studies supported the obesogenic effects of PFOA. Cross-sectional 

studies reported a positive correlation between PFOA exposure and enhanced 

adiposity and a higher prevalence of overweight and T2D (He et al. 2018; Tian et al. 

2019). However, findings from studies exploring the causal relationship between 

prenatal PFAS exposure and childhood obesity have been inconsistent. Some 

prospective cohort studies have linked higher prenatal PFOA exposure to greater 

weight and adiposity among children (Halldorsson et al. 2012; Lauritzen et al. 2018), 

while a systematic review of 13 cohorts examining prenatal PFAS exposure found a 

positive but non-significant association (Frangione et al. 2024). 

Organochlorines 

Lastly, the infamous insecticide dichlorodiphenyltrichloroethane (DDT), known for its 

disastrous effects on reproduction, is also associated with adverse effects on 
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metabolism. Although DDT is restricted in most countries following concerns about 

its impact on the environment, wildlife, and human health, it is still used as an effective 

agent to control malaria (Å. Bergman et al. 2012). Given its persistent nature, DDT 

and its metabolite p,p’-dichlorodiphenyl-dichloroethylene (p,p’-DDE), which is even 

more lipophilic, can still be found in the environment (Darbre 2017). DDT and p,p’-

DDE were shown to induce adipogenesis in vitro in 3T3-L1 cells, possibly through an 

estrogen-mediated mechanism (Kim et al. 2016; Mangum, Howell, and Chambers 

2015). Prenatal DDT exposure was shown to increase body weight and abdominal 

adiposity in F3 descendants of exposed rats (Skinner et al. 2013). Given the 

widespread use of DDT, it was frequently screened in epidemiological studies, 

including studies of birth cohorts, and prospective studies. A systematic review of 

seven prospective studies found a positive correlation between prenatal p,p’-DDE 

exposure, and adiposity in children (Cano-Sancho, Salmon, and Merrill 2017). 

Conversely, a more recent review of two Belgian cohorts found no association between 

prenatal p,p’-DDE exposure and long-term child growth (Cai et al. 2023). 

 



19 

 

 

Figure 2.4 The battery of obesogens tested in this study. 
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2.2.2. In Vitro Test Methods for Identifying Obesogens 

Given the complex nature of chemical exposure and the multifactorial setting of 

obesity, developing a robust set of testing methods for identifying obesogens is 

challenging. It is important to employ a weight-of-evidence approach when classifying 

a chemical as an obesogen. Inconsistencies between animal studies arise from 

differences in timing and routes of exposures, as well as measured endpoints. 

Similarly, challenges in accurately assessing human exposures along with additional 

confounding factors in epidemiological studies make it more difficult to establish 

causal relationships between chemical exposures and adverse health effects in humans 

(Heindel et al. 2022). Therefore, when evaluating these studies, careful interpretation 

of the data is needed. Furthermore, developing standardized and harmonized in vitro 

testing methods is crucial to move the obesogen field forward.  

In 2019, the European research project GOLIATH started with the overall aim of 

generating an Adverse Outcome Pathway (AOP) for metabolism disruption, as well as 

a new Integrated Approach to Testing and Assessment (IATA) for chemicals that 

interfere with metabolic functions. This integrated approach aims to assess whether a 

chemical can be classified as a metabolism disrupting chemical (or an obesogen), 

based on a weight-of-evidence approach, by using data from literature supplemented 

with data from novel test methods targeting main nuclear receptors, cells, and tissues 

involved in metabolic disruption (Legler et al. 2020). 

Summarized here are the in vitro test methods that were used in this study to evaluate 

the obesogenic effects of the SSRIs. 

 

Receptor binding and transactivation assays 

Metabolism involves a complex interplay of molecular initiating events (MIEs) and 

key events (KEs) between multiple organs and tissues (Legler et al. 2020). Although 

there is no complete AOP on adipogenesis, one of the MIEs is identified as the 

activation of various nuclear receptors (Legler et al. 2020). Receptor binding and 

transactivation assays are widely used, high-throughput screening assays to predict 

nuclear receptor binding and activity in humans. These assays typically involve the 

use of stably transfected cell lines to evaluate whether a substance can activate or 

inhibit nuclear receptors. Cell lines used in these assays (also known as reporter cell 
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lines) are genetically modified to express a responsive luciferase reporter gene plasmid 

to induce luciferase activity upon activation of the receptor by a ligand. For instance, 

MIE screening assays for metabolism have been developed using reporter cell lines 

expressing the ligand-binding domain of human peroxisome proliferator-activated 

receptors PPARα, PPARd, and PPARγ (Seimandi et al. 2005). 

Receptor binding and transactivation assays for the ER and AR are designed to detect 

chemicals that may act as agonists or antagonists. Guidelines for these assays have 

been released by the OECD as part of the efforts to standardize and harmonize testing 

methods for the assessment of EDCs (OECD 2021, 2023). Similar to ER binding and 

transactivation assay, ER-dependent proliferation assay is used to detect ER binding 

activity of chemicals. This assay involves the detection of downstream effects of ER 

activation (in this case, increased cell proliferation) by using hormone-responsive cells 

(e.g., MCF7 (ER +) breast cancer cell line) (Soto et al. 1995). 

 

Enzyme activity assays 

Hormone synthesis is a common target for endocrine and metabolism disrupting 

chemicals. There are several cell-based and cell-free in vitro assays to detect 

chemicals’ effects on the enzymatic production and/or breakdown of natural 

hormones. However, most of these assays are developed and standardized for the 

EATS pathways (see the end of chapter 2.1), and there is still a need for new test 

methods to screen chemicals that can alter non-EATS hormone signaling pathways 

(Martyniuk et al. 2022). 

For instance, steroidogenesis and aromatase enzyme activity assays are widely used 

screening tools to detect substances with suspected estrogenic or androgenic activity. 

Aromatase enzyme (also known as estrogen synthase) is located in the last step of the 

steroidogenesis pathway and is essential for estrogen synthesis. The cell-free 

aromatase inhibition assay uses human recombinant aromatase enzyme and specific 

substrates to measure enzyme inhibition by chemicals (Jacobsen et al. 2015), which is 

used as an indication for antiestrogenic activity. 
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In vitro adipogenesis assays 

As mentioned above, there are ongoing efforts to develop in vitro models targeting key 

tissues for metabolic disruption (e.g., liver, pancreas, skeletal muscle, and adipose 

tissue). Currently, the focus for adipose tissue is on developing human-relevant models 

to test chemicals’ effects on adipocyte differentiation, i.e., adipogenesis assays (Legler 

et al. 2020). The number of available cell models to assess the effects on adipogenesis 

has been increasing over the past decade. The most established methods generally use 

adipogenic progenitor cells, such as the murine preadipocyte cell line 3T3-L1, or 

MSCs isolated from bone marrow or adipose tissue. The cells can be differentiated 

into mature adipocytes in vitro by exposing them to an adipogenic medium containing 

a mixture of differentiation factors. These factors include IBMX, dexamethasone, and 

insulin, which are responsible for the activation of key transcription factors involved 

in adipogenesis such as PPARγ and C/EBPa (Chen et al. 2016; Lustig et al. 2022). 

Generally, an increase in intracellular lipid accumulation is quantified and used as a 

measure for enhanced adipogenesis (Kassotis et al. 2022; Legler et al. 2020).  

Although the 3T3-L1 cell line is robust and well-characterized, it provides limited 

information, as the cells are already committed to become adipocytes. Moreover, its 

ability to detect obesogens acting through a different mechanism than PPARg 

activation differs between sources and lots (Kassotis et al. 2021, 2022). The 

commercial availability of MSCs offers a promising alternative to the conventional 

preadipocyte models. The multipotent nature of MSCs allows the assessment of 

adipocyte lineage commitment, as well as improved evaluation of adipocyte 

differentiation (Kassotis et al. 2022; Legler et al. 2020).  

Additionally, most studies use 2D monolayer cultures. However, 2D-grown 

adipocytes have substantial differences in morphology, size, and transcriptional 

profiles when compared to in vivo adipose tissue (Klingelhutz et al. 2018). Recent 

studies in 3D set-ups have shown 3D adipogenesis models to be more representative 

of in vivo conditions with improved adipocyte differentiation through transcriptional 

profiling (Klingelhutz et al. 2018; Muller et al. 2019; Shen et al. 2021). These studies 

underscore the need for multi-omic profiling (transcriptomics, metabolomics, and 

lipidomics) next to functional readouts in the model for valuable insights into the 

biology of adipocyte differentiation.
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2.3.Selective Serotonin Reuptake Inhibitors (SSRIs) 

Major Depressive Disorder (MDD) is characterized by a persistent state of feeling 

depressed for a minimum of two weeks and patients usually lose interest or pleasure 

in most activities (Barrera, Torres, and Mũoz 2007). Moreover, when MDD is 

accompanied by other medical conditions, it leads to a higher burden of disease, 

diminishing the prognosis of the coexisting medical conditions, prospects for effective 

treatment, and the quality of life (Belmaker and Agam 2008). 

The change towards more isolated lifestyles provided by societal changes has resulted 

in a rise in depression rates, which in turn increases the prescription of antidepressant. 

According to the Centers for Disease Control and Prevention, antidepressants 

consistently rank among the most prescribed medications in the US (Brody and Gu 

2020). However, the profit of such extensive prescription is often debated, especially 

among sensitive populations such as children, adolescents, and pregnant women (Gill 

et al. 2020; Molenaar et al. 2020; Pariente et al. 2016).  

The primary therapeutic indication for antidepressants is the management of MDD. 

Available antidepressants exhibit a diverse range of chemicals, categorized into 

subgroups based on their chemical structure and molecular targets. Among these, 

selective serotonin reuptake inhibitors (SSRIs) represent a group of agents that mainly 

act on the serotonin transporter (SERT). SSRIs are relatively newer drugs, the first 

member fluoxetine was marketed in the US in 1988. Since then, they rapidly became 

the most popular antidepressants in the market due to their high selectivity for the 

SERT while lacking interactions with histamine, acetylcholine, and α-adrenoceptors 

observed with tricyclic antidepressants (TCAs) (Serretti and Kato 2008). 

Currently, there are six SSRIs, and the SSRI class has become one of the most used 

medications worldwide. Members such as fluoxetine, citalopram (CIT), and sertraline 

(SER) (Figure 2.1) are considered to be the first choice of treatment for moderate to 

severe MDD. Beyond MDD, SSRIs find applications in other mood disorders 

including anxiety, post-traumatic stress disorder, obsessive-compulsive disorder, 

panic disorder, and bulimia. (Serretti and Kato 2008). SSRIs’ popularity comes from 

their user-friendly nature, safety in overdose, relative tolerability, ready availability, 

and broad use in multiple conditions. 



24 

 

 

Figure 2.5 Structures of selective serotonin reuptake inhibitors (SSRIs); fluoxetine, 

citalopram, and sertraline. 

 

 

CIT and SER are two of the most precribed SSRIs (Gill et al. 2020). They have a 

lipophilic nature, characterized by the log P values of 3.76, and 5.15 for CIT and SER, 

respectively (Hinkovska-Galcheva et al. 2021). CIT (daily dose 20-60 mg) exhibits 

rapid absorption from the gastrointestinal tract upon oral administration, typically 

reaching maximum plasma concentration (Cmax) within 1–4 hours (Wu et al. 2020). 

Whereas SER (daily dose 20-200 mg), is slowly absorbed, and reaches Cmax within 

4–8 hours (De Vane et al. 2002). In clinical studies, human steady-state plasma 

concentrations (SSC) are reported between 40-300 ng/mL (0.12-0.92 µM) (Baumann 

1996; Gutierrez and Abramowitz 2000; Pollock 2001) for CIT, and 20-200 ng/mL 

(0.065-0.65 µM) (Ronfeld, Tremaine, and Wilner 1997; De Vane et al. 2002), for SER. 

Notably, around 80 % of CIT is bound to plasma proteins, while the ratio for SER is 

between 95-99 %. However, they both exhibit long half-lives, from 25 up to 33 hours, 

attributed to extensive distribution into various organs and tissues, reflected by a large 

volume distribution of 12-16 L/kg, and 20 L/kg for CIT and SER, respectively 

(Baumann 1992; De Vane et al. 2002). Finally, a linear correlation exists between CIT 

and SER within orally administered dose and plasma concentrations at steady state 

(Baumann 1992; De Vane et al. 2002). 

Their advantages aside, CIT and SER’s undesired effects on the reproductive system 

are well-known, including sexual dysfunction, reported in 30-60 % of patients 

undergoing SSRI treatment. Studies report issues like reduced libido or arousal, and 

delayed orgasm. These sexual effects tend to continue as long as the patient is on the 

antidepressant treatment but may improve over time (Gregorian Jr et al. 2002). 

Another epidemiological study highlighted alterations in hormone levels, including 
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decreased testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) 

levels, and increased prolactin hormone levels in adult men receiving SSRI therapy 

(Safarinejad 2008). 

The mechanism underlying these effects is studied both in vitro and in vivo. Aromatase 

(aka. estrogen synthase), is a key enzyme in the process of steroid hormone synthesis 

(steroidogenesis) responsible for estrogen synthesis. SSRIs were shown to inhibit 

aromatase activity in two microsome-based in vitro assays, disrupting steroidogenesis 

in the H295R human adrenocortical adenocarcinoma cell line (Hansen et al. 2017; 

Jacobsen et al. 2015). The estrogenic activity of fluoxetine has been reported both in 

vivo and in vitro (Müller et al. 2012). In a similar in vivo study, SER and escitalopram 

(racemic enantiomer of CIT) did not impact the uterus weight of immature rats, 

suggesting an absence of in vivo estrogenic activity as observed with fluoxetine 

(Montagnini et al. 2013). However, SER has more recently been shown to decrease 

steroidogenesis in the testis and adrenal glands of male rats, concurrently leading to 

reduced sperm count and motility in vivo (Atli et al. 2017; Munkboel et al. 2018). 

Recent evidence suggests a link between long-term SSRI treatment and weight gain in 

adults, including two of the most prescribed SSRIs, CIT and SER (Arterburn et al. 

2016; Blumenthal et al. 2014; Gafoor et al. 2018; Gill et al. 2020; Uguz et al. 2015). 

Studies report an increase in weight with CIT, ranging from 1.69 kg (≥ 4 months 

follow‐up) to 2.68 kg (24 months follow‐up) (Blumenthal et al. 2014; Serretti and 

Mandelli 2010), while SER was associated with a weight increase, following long-

term treatment, ranging from 1.0 kg (9 months follow‐up) to 4.76 kg (24 months 

follow‐up) as(Blumenthal et al. 2014; Serretti and Mandelli 2010). Additionally, there 

are reports on altered lipid profiles such as increased serum triglyceride levels with 

CIT (an average increase of 18.89 mg/dL, p=0.001) and total cholesterol levels with 

SER (an average increase of 3.85 mg/dL, p=0.027) in female patients after 4 months 

follow-up (Beyazyüz et al. 2013) Yet, the mechanism of the metabolic effects of CIT 

and SER are poorly understood, and as these pharmaceuticals might contribute to the 

worldwide increase in obesity, research to these mechanisms is timely. 
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Considering all the reviewed information, the hypothesis of this thesis was that the 

SSRIs, CIT and SER, might have obesogenic effects possibly through an endocrine 

mechanism. Moreover, given their widespread use across diverse populations, 

including pregnant women, these drugs could potentially contribute to the escalating 

trends of obesity and metabolic disorders worldwide. 

In line with our hypothesis, the objectives of this thesis were:  

1) Set up and characterize a 3D model with MSCs to enhance the human relevance 

of the in vitro adipogenesis model. 

2) Investigate the effects of CIT and SER on adipocyte differentiation using human 

MSCs and murine 3T3-L1 cells. 

3) Perform mechanistic analyses to elucidate the mode of action of the SSRIs: 

a. Protein and gene expression analyses: RNA-seq and QPCR analyses in 

MSCs, in both 2D and 3D models. Western blot analysis in 3T3-L1 cells. 

b. Functional analyses in MSCs (2D) including the evaluation of lysosomal 

and phospholipid-inducing effects of the SSRIs. 

c. Evaluation of receptor-mediated effects of SSRIs using responsive cell 

lines for various nuclear receptors and ER-dependent proliferation assay. 

Exploration of SSRIs’ effects on the aromatase enzyme with the cell-free 

aromatase inhibition assay.
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3. Materials and Methods 

3.1.Materials 

3.1.1. Chemicals 

BSA A3912 (Sigma Aldrich, Germany) 

β -ME M6250 (Sigma Aldrich, Germany) 

Cell Culture Lysis Reagent  E1531 (Promega, Leiden, NL) 

CYP19-MFC High-throughput 

Inhibitor Screening Kit 

459520 (Corning, USA) 

High-Capacity cDNA Reverse 

Transcription Kit 

4368814 (Applied Biosystems, USA) 

NucleoSpin RNA QPCR Kit 740955.50 (Macherey-Nagel, Germany) 

RNA Nano LabChip Kit 5067-1511 (Agilent Technologies, Ca, USA) 

iQ™ SYBR® Green Supermix 1708886 (Bio-Rad, NL) 

NaOH S-0899 (Sigma Aldrich, Germany) 

Trypsin (0.25 %)/ EDTA 25200-056 (Gibco, Thermo Fisher Scientific, NL) 

hMSC-BM C-12974 (PromoCell GmbH, Germany) 

MSC Growth Medium 2 C-28009 (PromoCell GmbH, Germany) 

MEMα 22561021 (Gibco, Thermo Fisher Scientific, NL) 

DMEM 41966029 (Gibco, Thermo Fisher Scientific, NL) 

DMEM/F-12 31331028 (Gibco, Thermo Fisher Scientific, NL) 

Phenol red-free DMEM 31053028 (Gibco, Thermo Fisher Scientific, NL) 

Phenol red-free DMEM/F-12 21041025 (Gibco, Thermo Fisher Scientific, NL) 
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FBS 10270106 (Gibco, Thermo Fisher Scientific, NL) 

HEPES 15630056 (Gibco, Thermo Fisher Scientific, NL) 

P/S 15140122 (Gibco, Thermo Fisher Scientific, NL) 

Geneticin (G418) Sulfate AG-CN2-0030 (Bio-connect, USA) 

Puromycin P8833 (Sigma Aldrich, Germany) 

L-Glutamine (200 mM) 25030 (Gibco, Thermo Fisher Scientific, NL) 

Na-Pyr (100 mM) 11360039 (Gibco, Thermo Fisher Scientific, NL) 

MEM-NAA 11140050 (Gibco, Thermo Fisher Scientific, NL) 

IBMX 28822-58-4 (Sigma Aldrich, Germany) 

Dex D4902 (Sigma Aldrich, Germany) 

Insulin 91077C (SAFC, Switzerland) 

PBS BE17-516F (BioWhittaker) 

Coenzyme A C4282 (Sigma Aldrich, Germany) 

EDTA E0255 (Sigma Aldrich, Germany) 

DTT D9779 (Sigma Aldrich, Germany) 

D-Luciferin E1601 (Promega, Leiden, NL) 

(MgCO3)4Mg(OH)2.5H2O 22766-8 (Sigma Aldrich, Germany) 

MgSO4.7H2O 63138 (Sigma Aldrich, Germany) 

Tricine T5816 (Sigma Aldrich, Germany) 

EtOH, Absolute 1.00986 (Sigma Aldrich, Germany) 

Isopropyl alcohol 34863 (Sigma Aldrich, Germany) 
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TCA 27240 (Sigma Aldrich, Germany) 

Acetic acid A6283 (Sigma Aldrich, Germany) 

Tris base T1503 (Sigma Aldrich, Germany) 

Protease Inhibitor Cocktail 635673 (Takara) 

Skim milk powder SKI400.1 (Bioshop, Canada) 

Xylene 28976294 (VWR, The Netherlands) 

Formaldehyde, 37 % 33314 (Alfa Aesar, Thermo Fisher Scientific, NL) 

Eosine Y  E4009 (Merck, Germany) 

Hematoxylin H3136 (Merck, Germany) 

Aluminum potassium sulfate 237086-100G (Merck, Germany) 

Sodium iodate S4007-100G (Merck, Germany) 

DMSO D8418 (Sigma Aldrich, Germany) 

ROSI 122320-73-4 (Sigma Aldrich, Germany) 

SER Y0000828 (Sigma Aldrich, Germany) 

CIT PHR1640 (Sigma Aldrich, Germany) 

AMIO A8423 (Sigma Aldrich, Germany) 

β-E2 E2758 (Sigma Aldrich, Germany) 

TESTO T-1500 (Sigma Aldrich, Germany) 

TBT 1461-22-9 (Sigma Aldrich, Germany) 

TPP 241288 (Sigma Aldrich, Germany) 

PFOA 77262 (Sigma Aldrich, Germany) 
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MEHP 796832 (Sigma Aldrich, Germany) 

DDE 123897 (Sigma Aldrich, Germany) 

TBBPA 11223 (Sigma Aldrich, Germany) 

FLUD 46102 (Sigma Aldrich, Germany) 

ICI 182,780 1047 (Tocris Bioscience, MN, USA) 

FLUT F9397 (Sigma Aldrich, Germany) 

GW7646 10008613 (Cayman Chemical, MI, USA) 

T0070907 2-DXX-89-1 (Toronto Research Chemicals, ON, 

Canada) 

AlamarBlue™ Reagent DAL1025 (Invitrogen, Thermo Fisher Scientific, 

NL) 

Oil Red O O0625 (Sigma Aldrich, Germany) 

Nile Red 72485 (Sigma Aldrich, Germany) 

Bodipy 493/503 D2191(Invitrogen, Thermo Fisher Scientific, NL) 

Hoechst 33342 H3570 (Invitrogen, Thermo Fisher Scientific, 

NL) 

LysoTracker Red DND-99 L7528 (Invitrogen, Thermo Fisher Scientific, NL) 

Sulforhodamine B 341738 (Sigma Aldrich, Germany) 

KP cryocompound K1620 (Immunologic, VWR, NL) 

Entellan mounting medium 1079610500 (Merck, Germany) 
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3.1.2. Instruments 

CO2 incubator 150 i HERACELL  

Brightfield microscope AE20 

Series 

Motic (China) 

Brightfield microscope CKX41SF 

(with camera) 

Olympus Corporation (Japan) 

Plate reader INFINITE M2000 Tecan Austria GmbH 

Cellnsight CX5 High-Content 

screener 

Thermo Fisher Scientific (USA) 

Olympus/Evident Spin IXplore 

SoRa microscope 

Olympus Corporation (Japan) 

Agilent 2100 bioanalyzer Agilent Technologies (USA) 

Centrifuge 
Eppendorf and Beckman Coulter Inc. 

(Germany) 

CFX96 Real-Time System Bio-Rad Laboratories (NL) 

Flow hood WALDNER mc6 

Flow cabinet The Baker Company 

Flow cytometer Accuri C6 BD Biosciences (NL) 

Fluorescence microscope Olympus Corporation (Japan) 



32 

 

Freezer (-20°C) Bosch 

Luminometer LUMIstar Optima (BMG Labtech) 

NanoDrop Thermo Fischer Scientific (USA) 

Western Blot & Gel Imager Fusion FX7 

pH meter Metrohm (Germany) 

Pipettors Gilson and Thermo Fischer Scientific (USA) 

Refrigerator (+4°C) Indesit 

Scale Mettler Instrumenten (Germany) 

Water purifier Milli-Q 

Water bath 
Gesellschaft für Labortechnik mbH 

(Germany) 

3.1.3. Softwares 

C6 Software v1.0.264.21 BD Accuri (NL) 

GraphPad Prism v9.0 GraphPad (CA, USA) 

Tecan i-control v3.9.1.0 Tecan Austria GmbH  

CellProfiler v4.2.4 Broad Institute, Massachusetts Institute of 

Technology (MA, USA) 
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ImageJ v2.3.0/1.53q National Institutes of Health (MD, USA) 

SeqMonk v1.41 Babraham institute (UK) 

Cytoscape v3.9.1 with ClueGO (v 

2.5.9) and CluePedia (v 1.5.9) 

plugins 

National Institute of General Medical Sciences 

(USA) 

 

3.1.4. Cell Lines 

3T3-L1 CL173 (ATCC) 

hMSC-BM C-12974 (PromoCell GmbH. Germany) 

VM7Luc4E2 (ER-Luc) Kindly provided by Dr. Jorke Kamstra, Utrecht 

University, NL 

T47D-ARE (AR-Luc) Kindly provided by Dr. Jorke Kamstra, Utrecht 

University, NL 

H1G1.1c3 (DR-GFP) Kindly provided by Dr. Jorke Kamstra, Utrecht 

University, NL 

HG5LN-PPARγ (PPARγ-Luc) Kindly provided by Patrick Balaguer, DR2 

INSERM, FR 

HG5LN-PPARα (PPARα-Luc) Kindly provided by Patrick Balaguer, DR2 

INSERM, FR 
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3.1.5. Preparation of the Solutions Used in In Vitro Assays 

3.1.5.1.Stock Solutions for Test Chemicals 

Stock solutions for test and reference chemicals were prepared in DMSO at 1000x 

higher concentrations than test concentrations and stored at -20°C. For the exposures, 

stocks were diluted 1:1000 in the medium of the cell line used in the assay, reducing 

the final DMSO concentration to 0.1 % to avoid cytotoxicity. 

3.1.5.2.Stock Solutions for Compounds in Differentiation Medium 

IBMX, Dex, and insulin were used to induce adipocyte differentiation, for both 3T3-

L1 cells and MSCs.  

10 mM Dex stock was prepared in DMSO, and 10.6 mg/mL insulin solution was 

prepared in 0.02 N HCl. Dex and insulin stocks were aliquoted and stored at -20 °C 

prior to exposures. 0.1 M IBMX solution in 0.5 N KOH was prepared fresh on the first 

exposure day of each experiment. 

3.1.5.3.Fixation and Staining Solutions for the Differentiation Assays 

For fixating both 3T3-L1 cells and MSCs, a 3.7 % formaldehyde solution was prepared 

by diluting 37 % formaldehyde 1:10 in PBS. Fixation and staining steps were done at 

room temperature (unless indicated differently). 

For the staining of 3T3-L1 cells, 5 % (w/v) Oil Red O stock was prepared in isopropyl 

alcohol and stored at -20 °C. Prior to staining Oil Red O stock was diluted 6:10 in 

distilled water. 

For the staining of MSCs, 1 mg/mL Nile Red and 1 mg/mL Bodipy stock was prepared 

in DMSO and stored at -20 °C. Hoechst 33342 solution (10 mg/mL) was purchased 

from Thermo Fischer and stored at 4 °C. Prior to staining Nile Red or Bodipy was 

diluted 1:1000, and Hoechst 1:10000 in PBS (in the same staining solution). 1 mM 

LysoTracker stock was stored at -20 °C and diluted 1:10000 in culture medium for live 

staining. 

3.1.5.4.Solutions for Hematoxylin & Eosin Staining 

Hematoxylin solution was prepared by dissolving 0.2 g Hematoxylin and 10 g 

aluminum potassium sulfate in 200 mL distilled water. After Hematoxylin was 
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completely dissolved, 40 mg sodium iodate and 4 mL acetic acid were added to the 

solution. Subsequently, the solution was heated up to just before boiling temperature 

and allowed to cool before filtering. The Hematoxylin solution was stored away from 

light at room temperature until further use. 

Eosin Y solution was prepared by dissolving 0.5 g Eosin Y in 50 mL distilled water. 

Subsequently, 20 mL of filtered Eosin Y stock solution and 10 drops of acetic acid 

were added to 150 mL of 80 % EtOH. Eosin Y solution was stored away from light at 

room temperature until further use. 

3.1.5.5.Luciferase Solution for the ER-Luc and AR-Luc Assays 

Luciferase solution was prepared by dissolving Tricine (final conc. 20 mM); 130 mg 

(MgCO3)4Mg(OH)2.5H2O; 165 mg MgSO4.7H2O; EDTA (final conc. 0.1 mM); DTT 

(final conc. 33.3 mM) in approximately 200 mL Milli-Q water in the water bath. After 

these compounds were dissolved, the solution was cooled down to room temperature, 

50 mg Coenzyme A; 37.4 mg D-Luciferin; and 80.2 mg ATP were added, and the final 

volume was adjusted to 250 mL with MiliQ water. Aliquots of 50 mL were stored at -

80 oC, in aluminum foil-covered glass bottles until further use. 

3.1.5.6.Alamar Blue Solution for Cytotoxicity Assay 

For the cytotoxicity assay, Alamar Blue Reagent was diluted to 5 % v/v in PBS (e.g., 

5 mL Alamar Blue was added to 95 mL PBS). The solution was prepared fresh for all 

experiments in the desired amount and used non-sterile. 

3.1.5.7.Solutions for Sulforhodamine B Assay 

10 % (w/v) TCA solution was prepared in distilled water for the fixation of MCF-7 

cells. % 1 (v/v) acidic acid solution was prepared in distilled water. 4 mg/mL 

Sulforhodamine B solution was prepared in 1 % acidic acid and stored at room 

temperature. 10 mM tris base solution was prepared in distilled water, and pH was 

adjusted to 10.7 using 1 M NaOH, prior to use. 
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3.2.Methods 

3.2.1. Adipogenesis Assays 

3.2.1.1. Human Mesenchymal Stem Cell (MSC) Model 

Cell Culture and Differentiation 

Multipotent human MSCs isolated from the bone marrow of a 61-year-old Caucasian 

male donor were purchased from PromoCell (Germany) at passage 2 and expanded in 

the recommended media (MSC growth medium 2 with 10 % Supplement Mix 

(PromoCell)) according to manufacturer’s instructions. Cells were subcultured once 

after thawing at 70−80 % confluency (passage 3), and frozen in MSC growth medium 

2 containing 5 % DMSO (passage 4).  

For all experiments, a new batch of MSCs was thawn and maintained in MEMα 

supplemented with 15 % FBS, 1 % P/S, and 2 % HEPES (culture medium) in 75 cm2 

cell culture flasks in a humidified incubator at 37 °C and 5 % CO2. Cells were 

subcultured once after thawing at 70−80 % confluency (passage 5). After aspirating 

the culture medium, cells were washed with prewarmed PBS and detached with 

trypsin-EDTA. Trypsin was deactivated with 6 mL culture medium. Cells were spun 

down at 800 rpm for 5 min, resuspended, and transferred into a 75 cm2 flask at a density 

of 2–3x104 cells. All experiments were performed at passage 6. MSCs were 

differentiated into mature adipocytes in 3D and 2D, using similar protocols but with 

adjustments for the different models. 

 

3D Model 

MSCs were seeded at a density of 5x103 cells per well in 0.2 mL culture medium in 

the inner wells of 96 well ultra-low attachment (ULA) plates (Corning® 7007) (outer 

rows were filled with PBS). After seeding, ULA plates were centrifuged at 150 g for 

2 min and incubated for 2 days at 37 °C and 5 % CO2 for spheroid formation. Spheroid 

formation was confirmed under the microscope 2 days after seeding, differentiation 

was induced by replacing half of the medium (0.1 mL) with 2x differentiation medium, 

consisting of culture medium supplemented with 1 mM IBMX, 0.2 µM Dex, and 10 

µg/mL insulin (Table 3.1). Fresh IBMX stock was prepared on the first exposure day 
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for each experiment, Dex and insulin were used from stock solutions prepared in 

advance.  

Differentiation medium was prepared 2x concentrated for the initial exposure, 

followed by refreshments with 1x differentiation medium. Half of the medium was 

refreshed subsequently with 1x differentiation medium (culture medium supplemented 

with 0.5 mM IBMX, 0.1 µM Dex, and 5 µg/mL insulin) every 3 to 4 days (after initial 

exposure) (Fig. 3.1.a). 

 

Table 3.1 Concentrations of the different compounds in differentiation medium. 

Name Stock conc. Final conc. (1x) Final conc. (2x) 
Dex 10 mM in DMSO 0.1 µM 0.2 µM 
Insulin 10.6 mg/mL in 0.02 N HCl 5 µg/mL 10 µg/mL 
IBMX 0.1 M in 0.5 N KOH 0.5 mM 1 mM 

 

2D Model 

MSCs were seeded at a density of 25x103 cells per well in 1 mL culture medium in 24 

well plates (Greiner Bio-One) and incubated for 4 days at 37 °C and 5 % CO2. 

Adipocyte differentiation was induced at 100 % confluency, 4 days after seeding, by 

replacing the entire culture medium with 1x differentiation medium (culture medium 

supplemented with 0.5 mM IBMX, 0.1 µM Dex, and 5 µg/mL insulin) (Table 3.1). 

Differentiation medium with the assigned exposures was refreshed subsequently every 

3 to 4 days for 14 days (after initial exposure) (Fig. 3.1.b). 

DMSO (0.1 %) was used as vehicle control for all adipogenesis experiments. ROSI at 

0.5 µM was used as positive control in 2D and 3D, as well as inducing MSC 

differentiation for the 2D mature adipocyte experiments. Cells were exposed to 6 up 

to 8 concentrations of SER and CIT in a range around reported SSCs. 20-200 ng/mL 

(0.065-0.65 µM) (Gupta and Dziurdzy 1994; Ronfeld et al. 1997; De Vane et al. 2002), 

and 40-300 ng/mL (0.12-0.92 µM) (Baumann 1996; Dufour et al. 1987; Gutierrez and 

Abramowitz 2000; Rochat et al. 1998) for SER and CIT, respectively. During method 

development of the 3D model, a battery of obesogens was tested in parallel 

experiments in 2D and 3D. The selection was based on the known adipogenic activity 

of the chemicals. ROSI and TBT were tested from 6 up to 9 concentrations (ROSI: 
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0.0001–0.5 µM, and TBT: 0.00001–0.3 µM), while the obesogens BPA, TBBPA, 

FLUD, PFOA, MEHP, TOCP, TPP, and p,p’-DDE were tested at 4 concentrations 

(3.75, 7.5, 15, and 30 µM). 

3 independent experiments were performed for all adipogenesis assays (2D and 3D), 

each experiment consisted of a maximum of 6 (3D) or 3 (2D) plate replicates. 

 

 

 

Figure 3.1 Schematic representation of human mesenchymal stem cell (MSC) 

differentiation under (a) 3D, and (b) 2D conditions. The first exposure, day 0 (D0), 

indicates the beginning and re-exposures indicate medium refreshments with the 

assigned exposures. 

For the mature adipocyte experiments the 2D model was used with adjustments to the 

protocol. MSCs were differentiated in 2D, as previously described, with 0.5 µM ROSI 

for 12 days. On day 12, differentiation medium was replaced with culture medium 
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containing only 5 µg/mL insulin (insulin medium) and incubated for 2 days. After 2 

days, insulin medium was refreshed and mature adipocytes were exposed to the SSRIs, 

SER at 10 µM and CIT at 30 µM. SSRI exposure was repeated after 3 days. 

Subsequently, fixated cells were stained for analysis on day 21 (after initial exposure) 

(Fig. 3.2). 

Differences in methodologies for the experimental setup for 3D, 2D and the mature 

adipocyte assays are summarized in Table 3.2. 

 

 

 

Figure 3.2 Schematic representation of the mature adipocyte assay. First exposure, 

day 0 (D0), indicates the beginning and re-exposures (D3, D7, and D10) indicate 

medium refreshments with 0.5 µM rosiglitazone (ROSI). D12 shows medium 

refreshment with culture medium containing only 5 µg/mL insulin, and re-exposures 

(D14 and D17) indicate medium refreshments with 10 µM sertraline (SER) and 30 µM 

citalopram (CIT). 
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Table 3.2 Differences in methodologies for MSC differentiation in 3D, 2D and the mature adipocyte assays. 

 3D 2D 2D Mature adipocytes 

Cell culture plates 
96 well ultra-low attachment 
(ULA, Corning) 

24 well (Greiner Bio-One) 24 well (Greiner Bio-One) 

Cell density per well 5x103 25x103 25x103 
Seeding volume (mL) 0.2 1 1 
Time between seeding 
and first exposure 

2 days 4 days 4 days 

Differentiation medium 
conc. (for the first 
exposure) 

2x 1x 1x 

Total amount of 
exposures 

5 4 6 

Re-exposure procedure 
Replacement of 50 % 
medium, every 3 to 4 days 

Replacement of the entire 
medium, every 3 to 4 days 

Replacement of the entire 
medium, every 3 to 4 days 

Reference chemical ROSI (0.5 µM) ROSI (0.5 µM) ROSI (0.5 µM) 
Assay duration 14 days 14 days 21 days 

Analysis method 
High-throughput imaging 
RNA-seq 
QPCR 

Fluorescence plate reader 
Flow cytometry 
RNA-seq 
QPCR 

Fluorescence 
plate reader 
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Assessment of Adipocyte Differentiation 

After differentiation, cells were fixated and stained (except for flow cytometry 

analysis) with Nile Red and Hoechst, for intracellular lipids and cell nuclei, 

respectively. Nile Red signal was measured and quantified using different analysis 

methods (Table 3.3). An increase in Nile Red intensity was used as a measure for 

enhanced adipocyte differentiation. 

Cytotoxicity was determined via visual inspections and in some cases, Hoechst 

staining, since due to heterogeneity of the cell population cytotoxicity assays were not 

possible. 

For the measurement of 3D spheroids, 50 % medium was removed from the wells at 

every step, therefore 2x concentrated solutions were prepared for the fixation and 

staining (Table 3.3). Cells were fixated with 7.4 % formaldehyde (37 %) solution in 

PBS for 30-min, rinsed 2 times with 0.1 mL PBS (again by removal of 50 % fluid for 

the washing steps) and subsequently stained for intracellular lipids with 1 µg/mL Nile 

Red and 5 µg/mL Hoechst for 1.5h, the given concentrations are the final 

concentrations in the well. After staining, cells were rinsed 2 times with PBS and left 

with 0.2 mL PBS per well. Images were taken with a high-content microscope 

(CellInsight™ CX5 High-Content Screening (HCS) Platform (Thermo Scientific) of 

each spheroid at 10x magnification. Nile Red was imaged in the FITC channel (Ex 

482/35, Em 536/40) and Hoechst in the DAPI channel (Ex 377/50, Em 447/60) and 

analyzed using CellProfiler software (v4.2.4) (Stirling et al. 2021)  

For the measurement of 2D adipocytes, Nile Red fluorescence was either measured by 

a plate reader or via flow cytometry. A similar fixation and staining procedure was 

performed for the fluorescence plate reader, but by refreshment of the entire medium 

at every step, therefore preparing 1x concentrated solutions in PBS (Table 3.3). Cells 

were first fixed with 3.7 % formaldehyde solution in PBS for 30-min, rinsed 2 times 

with 0.5 mL PBS, and subsequently stained with 10 µg/mL Nile Red and 0.5 µg/mL 

Hoechst for 1.5h. After staining, cells were rinsed 2 times with 0.5 mL PBS and left 

with 1 mL PBS per well. Nile Red was measured at Ex/Em 485/590 nm for neutral 

lipids, Ex/Em 585/645 nm for phospholipids, and Hoechst at Ex/Em 355/460 nm for 

cell nuclei with a plate reader (Tecan, Infinite M2000). 
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Table 3.3 Fixation and staining concentrations for 2D and 3D. 

 3D 2D 
Fixation (30-min) Final conc. in PBS (2x) Final conc. in PBS (1x) 
Formaldehyde 7.4 % 3.7 % 
Staining (1.5h) 
Nile Red 1 µg/mL 10 µg/mL 
Hoechst 5 µg/mL 0.5 µg/mL 

 

For flow cytometry analysis, the exposure medium was aspirated and cells were rinsed 

with 0.5 mL PBS, and trypsinized (0.25 mL) for 10-min. After cell detachment was 

confirmed under the microscope, 0.75 mL freshly prepared buffer (Milli-Q water 

containing 1 % BSA, 2 mM EDTA, and 0.025 µg/mL Nile Red) was added to each 

well, cells were resuspended by pipetting up and down, and incubated for at least 10-

min. Half of the plate was measured at a time, cells were resuspended again to prevent 

clogging of the machine. Neutral and phospholipid accumulation was assessed using 

the Accuri C6 flow cytometer (BD Biosciences, NL). Analysis was performed by using 

the positive control ROSI as a basis for the gating strategy. The first gating (P1) was 

for separating cells from debris, based on SSC-A (side scatter-area)/FSC-A (forward 

scatter-area). Cells were further sorted according to lipid profiles (P2) based on Nile 

Red intensity, optical filters FL2 (Em 585/40) and FL3 (Em > 670) were used for 

neutral and phospholipids, respectively. 

Brightfield and Fluorescence Microscopy 

Brightfield microscopy on H&E-stained sections of spheroids was used to examine the 

morphology of 3D spheroids. Spheroids were fixed as described above. For 

cryosectioning, spheroids that were exposed to DMSO and ROSI (n = 6) were 

transferred from the 96 well plate to microcentrifuge tubes. Excess PBS was removed 

and 0.2 µL KP cryocompound was added to the tube. A cryomold was prepared by 

freezing two layers of clear colored KP cryocompound at -20°C and the KP 

cryocompound containing spheroids was transferred to the cryomold. A new layer of 

yellow-colored KP cryocompound was added on top to embed the spheroid. Leica 

CM3050s cryostat was used to cut 10 µm slices of the spheroids. The slices were dried 

overnight on SuperFrost Plus, Adhesion Slides. For H&E staining, slides were 

incubated in distilled water for 30s; hematoxylin solution for 2-min; eosin solution for 
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10s and rinsed with 95 % ethanol for 30s. Followed by two-times 30s incubation in 

absolute EtOH and 2-min incubation in xylene. All slides were cover slipped with 

Entellan mounting medium and dried overnight. Pictures were taken with the Olympus 

BX60 WF microscope under 20x magnification. 

For fluorescence imaging, stained adipocytes from 2D and 3D assays (see above) were 

used. Hoechst was imaged in the DAPI channel (Ex 377/50, Em 447/60), Nile Red 

was imaged in the FITC channel (Ex 482/35, Em 536/40) for neutral lipids, and Texas 

Red channel for phospholipids (2D). 3D spheroids were imaged with 

Olympus/Evident Spin IXplore SoRa microscope under 20x magnification. 2D 

adipocytes were imaged with Leica DM IL LED microscope using LAS X software, 

under 20x magnification. 

Assessment of Lysosomes 

SSRIs’ effects on lysosomes during differentiation were studied using a cell-

permeable fluorescent dye that stains acidic compartments, LysoTracker Red DND-

99. Amiodarone (AMIO), a broad-spectrum antiarrhythmic drug and a known inducer 

of phospholipidosis (Reasor et al. 2006), was used for inducing phospholipids and 

lysosomes. 3 independent experiments were performed for lysosome assessment, with 

3 plate replicates. 

For the experiments, MSCs were differentiated in 2D as previously described. After 

14 days of differentiation, cells were live stained with 100 nM LysoTracker Red for 

lysosome assessment, 10 µg/mL Bodipy 493/503 for neutral lipids, and 0.5 µg/mL 

Hoechst for cell nuclei. The staining solution was prepared in culture medium, 

according to the manufacturer’s instructions, cells were incubated for 1.5h at 37 °C 

and 5 % CO2. After staining, cells were rinsed 2 times with 0.5 mL PBS and left with 

1 mL PBS per well. LysoTracker Red signal was measured using a fluorescence plate 

reader (Tecan, Infinite M2000) at Ex/Em 565/599 nm, Bodipy at Ex/Em 486/526 nm, 

and Hoechst at Ex/Em 355/460 nm (Table 3.4). 
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Table 3.4 Staining concentrations for MSCs (2D). 

Fluorescent dye Final conc. in PBS  Ex/Em (nm) 
Nile Red (neutral lipids) 

10 µg/mL 
485/590 

Nile Red (phospholipids) 585/645 
Bodipy 493/503 10 µg/mL 486/526 
LysoTracker 100 nM 565/599 
Hoechst 0.5 µg/mL 355/460 

Ex/Em: Excitation/emission wavelengths for the fluorescence plate reader. 

 

RNA-sequencing 

RNA-sequencing (RNA-seq) was performed in 2D and 3D differentiated MSCs to 

compare transcriptional profiles of the two models, as well as to clarify the mechanism 

behind SSRIs’ effects. To compare the two models, cells were treated with either 

control (0.1 % DMSO) or positive control (0.1 µM ROSI) in parallel 2D and 3D 

protocols. For the assessment of SSRIs, CIT and SER were tested at their NOEC and 

LOEC in the 3D model (CIT: 1, 10 µM, SER: 0.1, 1 µM). 3 independent experiments 

were performed for both 2D and 3D, with one extra control for 3D. 

Following the adipogenesis assays, total RNA was isolated and purified using the 

NucleoSpin® RNA extraction kit, according to the manufacturer’s instructions, from 

one confluent well of a 24 well plate or 10−20 spheroids pooled together for 2D and 

3D, respectively. RNA integrity number (RIN) was determined with Agilent 2100 

Bioanalyzer using RNA Nano LabChip Kit. All samples were found to be of 

acceptable quality for sequencing (RIN > 9.0) and sent to Novogene (UK) for 

sequencing by poly-A capture, library preparation, and analysis on the Illumina 

Novaseq using 150bp paired end sequencing. Raw fastq files were adapter trimmed 

using trim_galore (v0.4.5, Babraham Institute, UK) under standard parameters. STAR 

aligner (v2.5.4 b) was used to align and map sequences to the homo sapiens genome 

(GRCh38_v102; https:// www.ensembl.org) (Dobin et al. 2013). After alignment, the 

generated BAM files were loaded to SeqMonk (v1.41, Babraham Institute) and 

mRNAs were quantified using the built-in mRNA seq pipeline. Data quality plots were 

generated, and all data was found to be of acceptable quality (Fig. 3.3.a-b). The 

clustering of samples based on model and treatment is shown in Fig. 3.3.c. 

Normalization of the read counts and differential expression was conducted using the 
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Deseq2 method (Love et al. 2014). Normalized counts for all genes for the different 

treatments were clustered using ClustVis and visualized using a PCA plot (Metsalu 

and Vilo 2015). The RNA-seq data has been deposited in NCBI's Gene Expression 

Omnibus (Edgar, Domrachev, and Lash 2002) and is accessible through GEO Series 

accession number GSE242103 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE242103). 

For GSEA, DEGs were scored based on their p-value and shrunken log2 fold changes 

(log(p-value) x –log2(FC)). The scored genes were loaded to Webgestalt 

(www.webgestalt.org), and GSEA was performed using the KEGG pathway and GO 

databases. GSEA parameters were adjusted to only include pathways containing a 

minimum of 5 and a maximum of 200 genes per pathway. The enrichment statistic (p) 

was set to 0 and the FDR threshold to 1 to obtain the full pathway lists. Subsequently, 

pathways were selected based on FDR values where at least one of the individual 

treatments exhibited a significant change (FDR < 0.05). For 2D vs 3D model 

comparisons, pathways that were significantly altered with ROSI treatment were used. 

NES were used for a more accurate comparison of the enriched pathways with 

different gene numbers (Xie, Jauhari, and Mora 2021). Heatmaps with NES of 

significantly altered pathways were generated using ClustVis in which at least one 

condition was significantly affected. Row centering and row scaling were disabled to 

visualize true NES scores. Functional networks were constructed in Cytoscape (v 

3.9.1) using the ClueGO (v 2.5.9) and CluePedia (v 1.5.9) plugins (Bindea et al. 2009). 

Significant KEGG and GO pathways of each condition were imported to perform a 

Preselected Functions analysis using the KEGG and GO biological processes 

ontologies (v 16-05-2023). GO term fusion was enabled to prevent duplicate pathways. 

For further exploration of the RNA-seq data, DEGs were selected for either one of the 

treatments in 3D (n=3848) and clustered using the k-means method (Cluster 3.0) 

(Koch et al. 2018). Silhouette score was used to determine the optimal number of 

clusters and evaluate the quality of clustering. DEG lists of clusters were imported to 

Webgestalt for ORA with KEGG pathways, using the complete gene list as a reference 

set (the rest of the parameters were kept the same). Representative pathways and 

DEGs, based on significance (FDR), were selected from each cluster and presented as 

a heatmap using GraphPad (v9.0). 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=%20GSE242103
http://www.webgestalt.org/
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Figure 3.3 RNA quality plots. (a) RNA QC plot. Sequences shown on different 

features of the human genome. (b) Cumulative distribution plot. The distribution of 

log2 RPM values is shown from low to highly expressed genes in all samples. (c) PCA 

analysis of all measured genes, showing the first and second PC based on correlation 

clustering. Control: DMSO, ROSI: Rosiglitazone, CIT: Citalopram, SER: Sertraline. 

 

 

QPCR Analysis 

Expression of selected adipogenic genes was evaluated by QPCR analysis to confirm 

the results of RNA-seq. To investigate the differences in gene expression, cells were 

differentiated with vehicle control 0.1 % DMSO, positive control ROSI (0.1 µM), TBT 

(0.01 nM), and the obesogens BPA, TBBPA, FLUD, PFOA, MEHP, TOCP, TPP, and 

p,p’-DDE (15 µM) in parallel via 2D or 3D protocols. All exposures were repeated in 

3 independent experiments. 

For the assessment of SSRIs, CIT and SER were tested at their NOEC and LOEC in 

the 3D model (CIT: 1, 10 µM, SER: 0.1, 1 µM). Exposures were repeated in 2 

independent experiments. 

Following the adipogenesis assays, RNA isolation and purification was performed as 

previously described. RNA amount of 2D samples was measured using Nanodrop-

2000 Spectrophotometer (NanoDrop Technologies, DE, USA). Equal amounts of 

RNA were converted into cDNA with the high-capacity cDNA RT kit (Applied 

Biosystems, Grand Island, NY) according to the manufacturer’s recommendations. 

The cDNA was diluted 10-times with sterile water. For 3D, RNA was directly 

converted into cDNA due to low amounts of RNA (below the detection limit of 

Nanodrop), and diluted 5x. For 3D, RNA yield was qualitatively assessed by checking 

the Cq value of Beta Actin during QPCR. 

QPCR analysis was performed on a CFX96 (Bio-Rad Laboratories, NL) in technical 

duplicates for each sample in a reaction volume of 10 μL with 5 µL iQ™ SYBR® 

Green Supermix, 250 nM of forward and reverse primers, 2.5 µL of diluted cDNA, 

and nuclease-free water. QPCR protocol was 3-min denaturation at 95°C, followed by 

40 cycles of 15s at 95°C and 45s at 60°C. After the run a melting curve was generated 
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from 65 to 95 °C (Table 3.5). All primers have been tested for efficiency (by serial 

dilutions) and specificity (by melting curve). After testing various reference genes 

(Primer sequences for reference genes and genes of interest are provided in Table 3.6), 

Beta Actin and Nono were selected to calculate normalized gene expression using the 

∆∆Cq method. Differential gene expression was calculated as log2 fold changes 

compared to vehicle control. Data was clustered and presented as a heatmap using 

ClustVis (Metsalu and Vilo 2015) with rows and columns clustered using Euclidean 

distance and Ward linkage. 

 

Table 3.5 QPCR protocol. 

Setting Temperature (°C) Duration 

Step 1 (denaturation) 95 3 min 

Step 2 95 15 sec 

Step 3 60 45 sec 

Step 4 (repetitions of 

steps 2 & 3) 
 40 min 

Step 5 (melting curve) 
65 to 95 in steps  

of 0.5 °C 
5 sec per step 
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Table 3.6 Primer sequences for QPCR analysis. 

Name Gene Species Forward Primer Reverse Primer 
PPAR gamma PPARg Human GCGATTCCTTCACTGATAC TCAAAGGAGTGGGAGTGGTC 
CEBP alpha CEBPa Human TATAGGCTGGGCTTCCCCTT AGCTTTCTGGTGTGACTCGG 
Fatty acid binding 
protein 4 FABP4 Human AAACTGGTGGTGGAATGCGT GCGAACTTCAGTCCAGGTCA 

Adiponectin ADIPOQ Human TCCATACCAGAGGGGCTCAG GAGTCGTGGTTTCCTGGTCA 
Insulin receptor INSR Human GGCGATATGGTGATGAGGAGC CTGTCACGTAGAAATAGGTGGGT 
Insulin-like growth 
factor 1 receptor 

IGF1R Human ACGAGTGGAGAAATCTGCGG ATGTGGAGGTAGCCCTCGAT 

Beta actin Bactin Human GAGCACAGAGCCTCGCC TCATCATCCATGGTGAGCTGG 
Nono Nono Human TCGGTAGAGGAGAAGTCGAGG CTCTGCATTTTTGCACCCTCA 
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3.2.1.2. 3T3-L1 Preadipocyte Model 

Cell Culture and Differentiation 

3T3-L1 mouse fibroblast cell line was purchased from (ATCC), expanded in DMEM 

supplemented with 10 % FBS and 1 % P/S in 75 cm2 cell culture flasks in a humidified 

incubator at 37 °C and 5 % CO2. Cells were subcultured upon reaching 70−80 % 

confluency. After aspirating the culture medium, cells were washed with prewarmed 

PBS and detached with trypsin-EDTA. Trypsin was deactivated with 6 mL culture 

medium. Cells were spun down at 800 rpm for 5 min, resuspended, and 3 mL cell 

suspension was transferred onto 12 mL culture medium (1:5) in a 75 cm2 flask. All 

experiments were performed up to passage 10 for optimal differentiation capacity 

(Kassotis et al. 2021). 

3T3-L1 cells were seeded at a density of 25x103 cells per well in 1 mL culture medium 

in 24 well plates (Greiner Bio-One) and incubated for 3 days at 37 °C and 5 % CO2. 

Adipocyte differentiation was induced at 100 % confluency, 3 days after seeding, by 

replacing the entire culture medium with differentiation medium (culture medium 

supplemented with 0.5 mM IBMX, 1 µM Dex, and 5 µg/mL insulin) with test 

chemicals. After a 2-day incubation period, the differentiation medium was replaced 

with culture medium supplemented with only 5 µg/mL insulin (insulin medium), and 

the assigned exposures. The insulin medium with the assigned exposures was 

refreshed subsequently every two days for 6 days (day 8 after initial exposure) (Fig. 

3.4). 
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Figure 3.4 Schematic representation of 3T3-L1 differentiation. First exposure, day 0 

(D0), indicates the beginning and re-exposures indicate medium refreshments with the 

assigned exposures. 

 

 

0.1 % DMSO was used as vehicle control, and ROSI at 1 µM as positive control for 

all adipogenesis assays. Cells were exposed to 6 up to 8 concentrations of SER and 

CIT in a range around reported steady-state plasma concentrations (SSCs). 20-200 

ng/mL (0.065-0.65 µM) (Gupta and Dziurdzy 1994; Ronfeld et al. 1997; De Vane et 

al. 2002), and 40-300 ng/mL (0.12-0.92 µM) (Baumann 1996; Dufour et al. 1987; 

Gutierrez and Abramowitz 2000; Rochat et al. 1998) for SER and CIT, respectively. 

Assessment of Adipocyte Differentiation 

After differentiation, cells were first fixated with 0.5 mL of 3.7 % formaldehyde (37 

%) for 15 min, and rinsed with 0.5 mL PBS. Subsequently, intracellular lipids were 

stained with 200 µL Oil Red O for 30 min. After staining, cells were rinsed with 

distilled water and imaged under a microscope under 4X magnification. Oil Red O 

absorbance was measured by a plate reader (Thermo Scientific VarioScan) at 518 nm. 

An increase in Oil Red O intensity was used as a measure for enhanced adipocyte 

differentiation. 

Cytotoxicity was determined via visual inspections since due to the heterogeneity of 

the cell population cytotoxicity assays were not possible. 

Western Blot Analysis 

The expressions of selected adipogenic proteins (PPARγ, C/EBPα, SREBP1, LPL, and 

FAS) were investigated by western blot analysis. DMSO (0.1 %) was used as vehicle 

control, ROSI at 1 µM as positive control, while CIT and SER were tested at 30 and 
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10 µM, respectively. 3 independent experiments were performed for western blot 

analysis. 

Following the adipogenesis assays, the exposure medium was aspirated, cells were 

rinsed with 0.5 mL PBS and trypsinized (0.5 mL). After cell detachment was 

confirmed under the microscope cells from each confluent well of a 24-well plate were 

collected in separate Eppendrof tubes and centrifuged at 2400 g at 4 ºC for 5 min. Cell 

pellet was suspended by pipetting up and down in 80 µL lysis buffer and subsequently 

lysed with an ultrasonic homogenizer. The homogenate was centrifuged at 18000 g at 

4 ºC for 10 min and the supernatant was collected separately from each tube. The total 

protein concentration of the samples was calculated, 15 µg protein homogenates were 

diluted with loading buffer (leameli buffer) and denaturated at 95ºC for 5 min. Samples 

were loaded on a 20 % SDS polyacrylamide gel (3.76 mL 1 M tris base (ph 8.8), 4 mL 

30 % acrylamide, 50 µL 20 % SDS, 50 µL 10 % APS, 5µL TEMED was added to 2.2 

mL distilled water, making the total volume 10 mL (for two gels)). After 

electrophoresis, proteins on the gel were transferred onto the PVDF membrane and 

blocked for 1h with 5 % non-fat skim milk in TBS-T. Membranes were left to incubate 

with primary antibodies overnight at 4 ºC. The next day, membranes were washed 4 

times with TBS-T and incubated with goat-anti-rabbit/mouse IgG-HRP conjugate 

(Proteintech) for 45 min. Protein bands on membranes were visualized by 

chemiluminescence ECL substrate using Fusion FX7 instrument. Protein bands were 

normalized to Beta Actin bands using Image J software and protein expression was 

calculated as log2 fold changes and presented as a heatmap using GraphPad Prism 

(v9.0). 

 

3.2.2. Receptor Binding and Transactivation Assays 

PPARγ-Luc Assay 

HG5LN-PPARγ cell line was used for the PPARγ-Luc assay. HG5LN-PPARγ cell line 

was created by the stable transfection of HeLa cell line (epithelial cells isolated from 

the cervical adenocarcinoma of a 31-year-old female patient) with a responsive 

luciferase reporter gene plasmid (pGAL4-GR- puro) to induce luciferase activity upon 

activation of PPARs by a ligand (Seimandi et al. 2005). 
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PPARγ-Luc cells were maintained in DMEM/F-12 medium supplemented with 10 % 

FBS, 1 % P/S, G418 (final conc. 1 mg/mL) and Puromycin (final conc. 0.5 µg/mL) 

(culture medium) in 75 cm2 cell culture flasks in a humidified incubator at 37 °C and 

5 % CO2. 

Cells were subcultured upon reaching 80-90 % confluency, every 3 to 4 days. After 

aspirating the culture medium, cells were washed with prewarmed PBS and detached 

with trypsin-EDTA. Trypsin was deactivated with 6 mL culture medium. Cells were 

spun down at 800 rpm for 5 min, resuspended, and transferred into a 75 cm2 flask at a 

density of 2.5-3.5x106 cells.  

Cells were used up to passage 50 for the assays. 3 independent experiments were 

performed for all reporter assays (agonism and antagonism), each experiment 

consisted of 3 plate replicates. SSRIs were tested at 7 concentrations (SER: 0.01–10 

µM and CIT: 0.04–30 µM) to obtain efficient concentration-response curves. 

HG5LN-PPARγ cells were seeded at a density of 5x104 cells per well in 150 μL culture 

medium in white opaque 96-well plates (655083, Greiner Bio-One) and left to attach 

for 24h at 37 °C and 5 % CO2. After 24h, medium was replaced with 200 μL assay 

medium (phenol red-free DMEM/F-12 supplemented with 5 % DCC FBS, 1 % P/S) 

containing vehicle control (0.1 % DMSO) or test chemicals in the absence or presence 

of reference agonist, ROSI. EC50 of the reference agonist was determined as 10 nM 

in the agonism assay and was used to activate the receptor in the antagonism assay. 

After 24h incubation (37 °C and 5 % CO2), the medium was replaced with 50 µL 

luminescence medium (assay medium containing 0.3 mM D-luciferin (3 %)) per well. 

After 20-min incubation (room temperature) luciferase activity was measured in intact 

cells using a luminometer (LUMIstar Optima, BMG Labtech). Agonist activities are 

calculated as a percentage of the maximal luciferase activity induced by ROSI. 

Antagonist activities are calculated as a percentage of the luciferase activity induced 

by 10 nM ROSI. 

PPARα-Luc Assay 

HG5LN-PPARα cell line was used for the PPARα-Luc assay. HG5LN-PPARα cell 

line was created by the stable transfection of HeLa cell line (epithelial cells isolated 

from the cervical adenocarcinoma of a 31-year-old female patient) with a responsive 
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luciferase reporter gene plasmid (pGAL4-GR- puro) to induce luciferase activity upon 

activation of PPARs by a ligand (Seimandi et al. 2005). 

PPARα-Luc cells were maintained in DMEM/F-12 medium supplemented with 10 % 

FBS, 1 % P/S, G418 (final conc. 1 mg/mL) and Puromycin (final conc. 0.5 µg/mL) 

(culture medium) in 75 cm2 cell culture flasks in a humidified incubator at 37 °C and 

5 % CO2. 

Cells were subcultured upon reaching 80-90 % confluency, every 3 to 4 days. After 

aspirating the culture medium, cells were washed with prewarmed PBS and detached 

with trypsin-EDTA. Trypsin was deactivated with 6 mL culture medium. Cells were 

spun down at 800 rpm for 5 min, resuspended, and transferred into a 75 cm2 flask at a 

density of 2.5-3.5x106 cells.  

Cells were used up to passage 50 for the assays. 3 independent experiments were 

performed for all reporter assays (agonism and antagonism), each experiment 

consisted of 3 plate replicates. SSRIs were tested at 7 concentrations (SER: 0.01–10 

µM and CIT: 0.04–30 µM) to obtain efficient concentration-response curves. 

HG5LN-PPARα cells were seeded at a density of 5x104 cells per well in 150 μL culture 

medium in white opaque 96-well plates (655083, Greiner Bio-One) and left to attach 

for 24h at 37 °C and 5 % CO2. After 24h, the medium was replaced with 200 μL assay 

medium (assay medium composition was the same as the PPARγ-Luc assay, see 

above) containing vehicle control (0.1 % DMSO) or test chemicals in the absence or 

presence of reference agonist, GW7647. EC50 of the reference agonist was determined 

as 31.7 nM in the agonism assay and was used to activate the receptor in the 

antagonism assay. 

After 24h incubation (37 °C and 5 % CO2), the medium was replaced with 50 µL 

luminescence medium (assay medium containing 0.3 mM D-luciferin (3 %)) per well. 

After 20-min incubation (room temperature) luciferase activity was measured in intact 

cells using a luminometer (LUMIstar Optima, BMG Labtech). Agonist activities are 

calculated as a percentage of the maximal luciferase activity induced by GW7647. 

Antagonist activities are calculated as a percentage of the luciferase activity induced 

by 31.7 nM GW7647. Fig. 3.5 shows the schematic representation of the PPAR𝛾-Luc 

and PPAR𝛼-Luc assays. 
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Figure 3.5 Schematic representation of the PPAR𝛾-Luc and PPAR𝛼-Luc assays. 

PPAR: Peroxisome proliferator-activated receptor, ROSI: Rosiglitazone. 

 

 

DR-GFP Assay 

H1G1.1c3 mouse hepatoma cell line was created by stable transfection of mouse 

hepatoma (Hepa1c1c7) cells with the AhR-EGFP reporter plasmid pGreen 1, to 

produce a fluorescent protein (GFP) upon activation of the AhR by a ligand (Nagy et 

al. 2002). Another widely used term for the AhR is the dioxin receptor (DR) because 

of its well-known affinity for dioxin compounds. Thereby, this assay will be referred 

to as the DR-GFP assay, and the term DR will be employed from this point onward in 

this thesis to prevent confusion for the reader. 

H1G1.1c3 cells were maintained in DMEM supplemented with 10 % FBS and 1 % 

P/S (culture medium) in 75 cm2 tissue culture flasks in a humidified incubator at 37 

°C and 5 % CO2.  

Cells were subcultured upon reaching 80-90 % confluency, every 3 to 4 days. After 

aspirating the culture medium, cells were washed with prewarmed PBS and detached 

with trypsin-EDTA. Trypsin was deactivated with 6 mL culture medium. Cells were 

spun down at 800 rpm for 5 min, resuspended, and transferred into a 75 cm2 flask at a 

density of 2.5-3.5x106 cells. 

Cells were used up to passage 30 for the assays. 3 independent experiments were 

performed for all reporter assays (agonism and antagonism), each experiment 

consisted of 3 plate replicates. SSRIs were tested at 7 concentrations (SER: 0.01–10 

µM and CIT: 0.04–30 µM) to obtain efficient concentration-response curves. 
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For the DR-GFP assay H1G1.1c3 cells were seeded at a density of 3x104 cells per well 

in 100 μL culture medium in the inner wells of transparent 96-well plates (Greiner Bio-

One) and the outer wells were filled with PBS. Cells were left to attach for 24h at 37°C 

and 5 % CO2. After 24h, medium was replaced with 200 μL culture medium containing 

vehicle control (0.1 % DMSO) or test chemicals in the absence or presence of reference 

agonist, TCDD. EC50 of the reference agonist was determined as 37 pM in the 

agonism assay, and was used to activate the receptor in the antagonism assay. 

After 6h and 24h incubation with test chemicals, the fluorescence signal was measured 

at Ex/Em 485/530 nm with a plate reader (Tecan, Infinite M2000) in intact cells 

without the removal of the medium. Agonist activities are calculated as percentages of 

the maximum fluorescence signal induced by TCDD. Antagonist activities are 

calculated as percentages of the fluorescence signal induced by 37 pM TCDD. 

ER-Luc Assay  

VM7Luc4E2 cell line was used for the ER-Luc assay. Cells were derived from the 

solid primary tissue from a patient with Stage III, very poorly differentiated ovarian 

adenocarcinoma and stably transfected with an estrogen-responsive luciferase reporter 

gene plasmid (pGudLuc7ERE) to produce luciferase activity upon activation of the 

ER by a ligand (Rogers and Denison 2000). 

VM7Luc4E2 cells were maintained in DMEM supplemented with 10 % FBS and 1 % 

P/S (culture medium) in 75 cm2 tissue culture flasks in a humidified incubator at 37 

°C and 5 % CO2.  

Cells were subcultured upon reaching 80-90 % confluency, every 3 to 4 days. After 

aspirating the culture medium, cells were washed with prewarmed PBS and detached 

with trypsin-EDTA. Trypsin was deactivated with 6 mL culture medium. Cells were 

spun down at 800 rpm for 5 min, resuspended, and transferred into a 75 cm2 flask at a 

density of 2.5-3.5x106 cells.  

Cells were used up to passage 30 for the assays. 3 independent experiments were 

performed for all reporter assays (agonism and antagonism), each experiment 

consisted of 3 plate replicates. SSRIs were tested at 7 concentrations (SER: 0.01–10 

µM and CIT: 0.04–30 µM) to obtain efficient concentration-response curves. 
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Prior to ER-Luc assay, the culture medium of VM7Luc4E2 cells was replaced with 

assay medium and maintained for one medium change (four days) before seeding for 

the experiments. The assay medium consisted of phenol red-free DMEM 

supplemented with 10 % DCC FBS, 1 % P/S, 1 % L-Glutamine (stock conc. 200 mM) 

and 1 % Na-pyr (stock conc. 100 mM).  

Cells were seeded at a density of 4x104 cells per well in 200 μL assay medium in the 

inner wells of transparent 96-well plates (Greiner Bio-One) and the outer wells were 

filled with PBS. Cells were left to attach for 48h at 37 °C and 5 % CO2. After 48h, the 

medium was replaced with 200 μL assay medium containing vehicle control (0.1 % 

DMSO) or test chemicals in the absence or presence of reference agonist, b-E2. EC50 

of the reference agonist was determined as 3 pM in the agonism assay and was used to 

activate the receptor in the antagonism assay.

After 24h incubation with test chemicals, the medium was removed, cells were washed 

with 200 µL PBS and subsequently lysed with 25 µL cell culture lysis reagent for 30 

min on a plate shaker, at room temperature. Luciferase activity was measured using a 

luminometer (LUMIstar Optima, BMG Labtech) by the addition of 100 µL luciferase 

solution directly to each well prior to measurement, followed by 100 µL 0.2 M NaOH 

injection to stop luminescence, preventing interference with the subsequent well. 

Agonist activities are calculated as percentages of the maximum luciferase activity 

induced by b-E2. Antagonist activities are calculated as percentages of the luciferase 

activity induced by 3 pM b-E2. 

AR-Luc Assay 

T47D-ARE cell line was used for the AR-Luc assay. Cells were isolated from a pleural 

effusion obtained from a 54-year-old female patient with infiltrating ductal carcinoma 

of the breast and stably transfected with an androgen-responsive luciferase reporter 

gene plasmid (pGudLuc7ARE) to produce luciferase activity upon activation of the 

AR by a ligand (Blankvoort et al. 2001). 

T47D-ARE cells were maintained in DMEM supplemented with 10 % FBS and 1 % 

P/S (culture medium) in 75 cm2 tissue culture flasks in a humidified incubator at 37 

°C and 5 % CO2. 
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Cells were subcultured upon reaching 80-90 % confluency, every 3 to 4 days. After 

aspirating the culture medium, cells were washed with prewarmed PBS and detached 

with trypsin-EDTA. Trypsin was deactivated with 6 mL culture medium. Cells were 

spun down at 800 rpm for 5 min, resuspended, and transferred into a 75 cm2 flask at a 

density of 2.5-3.5x106 cells.  

Cells were used up to passage 30 for the assays. 3 independent experiments were 

performed for all reporter assays (agonism and antagonism), each experiment 

consisted of 3 plate replicates. SSRIs were tested at 7 concentrations (SER: 0.01–10 

µM and CIT: 0.04–30 µM) to obtain efficient concentration-response curves. 

Similar to ER-Luc assay, culture medium of T47D-ARE cells was replaced with assay 

medium prior to AR-Luc assay and maintained for one medium change (four days) 

before seeding for the experiments. Assay medium composition was the same as the 

ER-Luc assay (see above).  

Cells were seeded at a density of 4x104 cells per well in 200 μL assay medium in the 

inner wells of transparent 96-well plates (Greiner Bio-One) and the outer wells were 

filled with PBS. Cells were left to attatch for 48h at 37°C and 5 % CO2. After 48h, 

medium was replaced with 200 μL assay medium containing vehicle control (0.1 % 

DMSO) or test chemicals in the absence or presence of reference agonist, TESTO. 

EC50 of the reference agonist was determined as 20 nM in the agonism assay and was 

used to activate the receptor in the antagonism assay. 

After 24h incubation with test chemicals, medium was removed, cells were washed 

with 200 µL PBS and subsequently lysed with 25 µL cell culture lysis reagent for 30 

min on a plate shaker, at room temperature. Luciferase activity was measured using a 

luminometer (LUMIstar Optima, BMG Labtech) by the addition of 100 µL luciferase 

solution directly to each well prior to measurement, followed by 100 µL 0.2 M NaOH 

injection to stop luminescence, preventing interference with the subsequent well. 

Agonist activities are calculated as percentages of the maximum luciferase activity 

induced by TESTO. Antagonist activities are calculated as percentages of the 

luciferase activity induced by 20 nM TESTO. Schematic representation of the DR-

GFP, ER-Luc, and AR-Luc assays are shown in Fig. 3.6.a-b. 
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Figure 3.6 Schematic representation of (a) DR-GFP, (b) ER-Luc and AR-Luc assays. 

 

 

Alamar Blue Assay 

To detect true antagonistic responses of test chemicals that are not due to cytotoxicity, 

cell viability was determined for the reporter cells (ER-Luc, AR-Luc, DR-GFP, 

PPARγ-Luc and PPARα-Luc) via the Alamar Blue assay. Cells were seeded and 

exposed to test chemicals in the same manner. 24h after exposures cells were washed 

with 200 µL PBS and 100 µL Alamar Blue solution (5 % v/v in PBS) was added to 

each well. Plates were incubated for 45 min at 37 °C and 5 % CO2, followed by 

measurement at Ex/Em 540/590 nm with a fluorescence plate reader (Tecan, Infinite 

M2000). Metabolic reduction of the resazurin dye to resorufin in live cells was used 

as a measure of cell viability (Fig. 3.7). 
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Figure 3.7 Principle of Alamar Blue assay. Metabolic reduction of resazurin dye in 

viable cells.

3.2.3. ER-dependent Proliferation Assay 

MCF-7 is a hormone-dependent human breast cancer cell line, expressing estrogen 

receptor (ER +) which makes it responsive to estrogens. Therefore, a valuable tool for 

assessing the estrogenic/anti-estrogenic activity of chemicals (Soto et al. 1995). MCF-

7 cells were maintained in DMEM supplemented with 10 % FBS and 1 % P/S in a 

humidified atmosphere at 37 °C, 5 % CO2 and passaged upon reaching approximately 

80 % confluency. After aspirating the culture medium, cells were washed with 

prewarmed PBS and detached with trypsin-EDTA. Trypsin was deactivated with 6 mL 

culture medium. Cells were spun down at 800 rpm for 5 min, resuspended, and 3 mL 

cell suspension was transferred onto 12 mL culture medium (1:5) in a 75 cm2 flask. 

Experiments were performed up to passage 40. 3 independent experiments were 

performed for both proliferative and antiproliferative activity, each experiment 

consisted of 4 plate replicates. SSRIs were tested at 8 concentrations (0.001–33 µM) 

to obtain efficient dose-response curves. 

For the proliferation assays MCF-7 cells were seeded at a density of 6x103 cells per 

well in 100 µL culture medium in transparent 96-well plates (Greiner Bio-One). Cells 

were left to attach for 48h at 37 °C and 5 % CO2. After 48h, medium was replaced 

with 200 μL assay medium (phenol red-free DMEM supplemented with 10 % DCC 

FBS, 1 % P/S, 1 % MEM-NAA, 1 % Na-pyr) with vehicle control (0.5 % DMSO) or 

the test chemicals in the absence or presence of reference agonist, β-estradiol (b-E2) 

(Fig. 3.8). 
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After 144h incubation with test chemicals, cell proliferation was evaluated with 

sulforhodamine B (SRB) assay (Vichai and Kirtikara 2006). Medium was aspirated, 

and cells were fixed with 100 µL 10 % TCA solution at 4 °C for 30 min and stained 

with 100 µL SRB solution. Excess dye was washed off with 1 % acetic acid and plates 

were left to dry at room temperature for 24h. After 24h, stained cells were solubilized 

with 10 mM tris base solution (pH 10.7), the absorbance was measured at 492 nm on 

a plate reader (Themo Scientific Varioscan). Activities are calculated as percentages 

of the induction with 1 nM b-E2. Cytotoxicity was evaluated via visual inspections. 

 

 

 

Figure 3.8 Schematic representation of the estrogen receptor (ER)-proliferation assay 

with MCF-7 cells. 𝛽-E2: 𝛽-Estradiol. 

 

 

3.2.4. Aromatase Inhibition Assay 

Aromatase inhibitory activity was evaluated by CYP19/MFC High-throughput 

Screening kit (Corning), according to the manufacturer’s instructions. Acetonitrile 

(ACN) was used as vehicle control, and ketoconazole (KET) at 40 µM as reference 

compound. SSRIs were tested at 8 concentrations (0.015–33 µM) to obtain efficient 

concentration-response curves. 

The cell-free assay relies on the aromatase (CYP19) catalyzed reduction of 7-methoxy-

4-trifluoromethyl coumarin (MFC) to its fluorescent metabolite 7-hydroxy-4-

trifluoromethyl coumarin (HFC) (Fig. 3.9). After incubation of test chemicals with 
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human recombinant CYP19 and MFC, fluorescence signal was measured at Ex/Em 

409/530 nm with a fluorescence plate reader (Thermo Scientific VarioScan). A 

decrease in fluorescence intensity was used as a measure for CYP19 inhibition. Results 

are expressed as percent fluorescence compared to vehicle control, ACN. 

 

 

 

Figure 3.9 Aromatase (CYP19) catalyzed reduction of 7-methoxy-4-trifluoromethyl 

coumarin (MFC) to its fluorescent metabolite, 7-hydroxy-4-trifluoromethyl coumarin 

(HFC). 

 

 

3.2.5. Data Analysis 

In adipogenesis assays, intracellular lipid accumulation was quantified by fluorescence 

staining, and the intensities for the different stains (see methods) were corrected for 

cell number (Hoechst intensity, when applicable) and expressed as fold change. In 

reporter cell line and ER-dependent proliferation assays, results are expressed as 

percentages of maximum luciferase or fluorescence activity induced by the reference 

chemical. Aromatase inhibitory activities are expressed as percent fluorescence 

compared to vehicle control (ACN). 

Data from independent experiments are analyzed in GraphPad (v9.0) by two-way 

ANOVA with treatment and experiment number as independent variables. No main 

effect or interaction effect was found for replicate experiments. Subsequently, data is 

averaged over the independent experiments and used for statistical analysis using 

GraphPad (v9.0) with one-way ANOVA, employing Dunnett’s multiple comparisons 

test, after the Shapiro-Wilk tests for normal distribution analysis (GraphPad (v9.0)). 
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Benchmark Dose Modelling 

Data from MSC experiments were used for benchmark dose (BMD) modeling via 

PROAST Web (v70.1, RIVM, NL) (Hardy et al. 2017). Nile Red intensity, as fold 

change and averaged over the independent experiments, were put in as continuous 

summary data with standard deviation as dispersion measure. The standard 5 % change 

was considered not sufficient, therefore critical effect size (CES) was set at 20 % 

(Norgren et al. 2022), corresponding to a 1.2-fold induction compared to control. Two 

different families of models were fit to the data (exponential and Hill), Akaike 

Information Criterion (AIC) was set to two, and model averaging was not employed. 

The resulting confidence intervals were expressed in terms of BMDL and BMDU, the 

lower and upper bound of the 90 % confidence interval, respectively. 
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4. Results 

4.1.Assessment of Adipocyte Differentiation 

4.1.1. Human Mesenchymal Stem Cell (MSC) Model 

For a comprehensive assessment of SSRIs’ adipogenic potential, the effects on 

adipocyte differentiation were investigated by using MSCs in 2D and 3D models. 

MSCs provide important advantages in the assessment of obesogens, such as improved 

assessment of adipocyte commitment and differentiation (Kassotis et al. 2022; Legler 

et al. 2020). 

 

4.1.1.1.Optimization and Applicability of the 3D Adipogenesis Model 

One of the main objectives of this thesis was to set up and characterize a human-

relevant in vitro 3D adipogenesis model, as 3D models are reported to be more 

physiologically relevant compared to conventional 2D models in recent studies 

(Klingelhutz et al. 2018; Shen et al. 2021). 

 

Optimization of 3D Assay Conditions 

First, the 3D assay conditions were optimized for optimal spheroid growth and 

differentiation. 5000 cells per spheroid was determined to be optimal for spheroid 

formation and growth, with positive control ROSI showing higher differentiation 

compared to lower seeding densities of 1000 or 2500 cells per spheroid (Fig. 4.1.a). 

Additionally, spheroid morphology was more stable with 5000 cells compared to the 

lower seeding densities. After optimizing seeding density, different concentrations of 

insulin (0.05, 0.5, 5 µg/mL) in the differentiation medium were tested to achieve 

optimal differentiation. The lowest basal differentiation (differentiation with vehicle 

control, DMSO) was obtained at 5 µg/mL insulin, which led to a higher induction with 

positive control, ROSI (Fig. 4.1.b). Despite higher differentiation with medium which 

contained lower insulin, 5 µg/mL insulin was determined to be optimal for 3D 

differentiation, making the assay more adept at distinguishing potential adipogenic 

effects. 
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Figure 4.1 Growth and differentiation of 3D spheroids with (a) seeding densities of 

1000, 2500, and 5000 cells/well, and (b) insulin concentrations of 0.05, 0.5, and 5 

µg/mL. Spheroids were differentiated with control (0.1 % DMSO) or positive control 

0.5 µM rosiglitazone (ROSI). Bars represent averages of 6 to 8 spheroids per 

condition, error bars indicate standard deviation (GraphPad Prism, v9.0). 
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Morphology of 3D Spheroids 

After optimization, the morphology of control (DMSO) and ROSI spheroids were 

compared by H&E staining and confocal imaging, including the examination of lipid 

droplet distribution and possible signs of necrosis in the inner core of the spheroid.  

ROSI treatment increased the size of the spheroids in terms of lipid accumulation but 

did not affect Hoechst staining (Fig. 4.2), indicating no substantial increase in cell 

proliferation. H&E staining and confocal microscopy confirmed an even distribution 

of lipid droplets throughout the spheroid without any sign of cell death in the core (Fig. 

4.3.a-d). 

In 2D, fluorescence microscopy confirmed increased lipid accumulation with ROSI 

treatment (Fig. 4.3.e-f). When comparing 3D spheroids with 2D monolayer 

adipocytes, fewer and larger lipid droplets appear, compared to 2D, indicating a 

phenotype more similar to in vivo adipose tissue, especially visible with ROSI 

treatments. 

 

 

 

Figure 4.2 Effect of 0.5 µM Rosiglitazone (ROSI) on cell proliferation (3D) as fold 

change (FC) to control (DMSO). Bars represent averages of 6 to 8 spheroids per 

condition, error bars indicate standard deviation (GraphPad Prism, v9.0). 
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Figure 4.3 Morphology of 3D spheroids. Brightfield microscopy images of 3D 

spheroids treated with (a) control (DMSO) and (b) positive control rosiglitazone 

(ROSI) (0.5 µM). Staining: Hematoxylin & Eosin. Confocal microscopy images of 3D 

spheroids after (c) control and (d) positive control treatment. Staining: Nile Red (lipid 

droplets −red) and Hoechst (cell nuclei −cyan). Fluorescence microscopy images of 

2D adipocytes after (e) control and (f) positive control treatment. Staining: Nile Red 

(lipid droplets −red) and Hoechst (cell nuclei −cyan). All images were taken under 20x 

magnification, scale bar: 200 µm. 
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Performance of the Models 

Following optimization, a battery of obesogens (see Chapter 2.2.1, Fig. 2.5) were 

tested in parallel experiments in 2D and 3D to assess the performance of the 3D model. 

The selection was based on known adipogenic activity of the chemicals and BMD 

modeling was employed to compare the adipogenic potencies of the different models. 

Obesogens exhibited similar effects on adipogenesis in both 2D and 3D models, 

confirmed by BMD modeling, which showed no significant difference in adipogenic 

potencies of the models. ROSI, TBT, BPA, TBBPA, FLUD, MEHP, TOCP, and TPP 

induced adipogenesis in both models, indicating the novel 3D model is suitable for 

assessing potential effects of chemicals on adipogenesis. 

A similar induction was observed with ROSI on adipogenesis in both models (Fig. 

4.4.a). While with TBT the results were more variable between the different models 

with a lower response in the 3D (Fig. 4.4.b). Both FLUD and TOCP induced 

adipogenesis in both models at 15 and 30 μM, as potently as the positive control, ROSI 

(Fig. 4.4.c-d). Similarly, TPP and TBBPA exposure induced adipogenesis at 15 and 

30 µM, however, the effect was less compared to the other obesogens, and the 

induction was slightly higher in 2D (Fig. 4.4.e-f). BPA and MEHP only caused a slight 

induction at the highest tested dose of 30 µM in both models (Fig. 4.4.g-h),whereas 

PFOA or p,p’-DDE exposure did not induce any effects in either model and were 

excluded from BMD modeling (Fig. 4.4.i-j). BMDs for these MDCs largely 

overlapped, indicating the comparability in adipogenic potencies of the two models 

(Fig. 4.4.k). 
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Figure 4.4 Results of the battery of obesogens. Increase in neutral lipids during 

differentiation with (a) Rosiglitazone (ROSI); (b) Tributyltin (TBT); (c) Fludioxonil 

(FLUD); (d) Tri-ortho-cresyl phosphate (TOCP); (e) Triphenyl phosphate (TPP); (f) 

Tetrabromobisphenol A (TTBPA); (g) Bisphenol A (BPA); (h) Mono(2-ethylhexyl) 

phthalate (MEHP); (i) Dichlorodiphenyl-dichloroethylene (ppDDE/ p,p’-DDE) and (j) 

Perfluorooctanoic acid (PFOA) as fold change (FC) compared to control (DMSO). 

Bars represent averages of 3 independent experiments and error bars indicate standard 

deviation. (k) Benchmark dose (BMD) modeling of the obesogens for the different 

models. Boxes indicate 90% confidence intervals (BMDL-BMDU), and the lines 

represent median BMDs. * p < 0.05; ** p < 0.005 *** p < 0.0005; **** p < 0.0001 

(GraphPad Prism (v9.0). 

 

 

Transcriptional Profiling of the Models 

The 3D model was further characterized, by performing parallel RNA-seq analysis in 

the 2D and 3D model and comparing the transcriptional profiles of cells treated with 

either control (0.1 % DMSO) or positive control (0.1 µM ROSI). 

Differential Gene Expression Analysis 

Differential gene expression analysis was performed, and the different treatments 

within the models (2D control vs. 2D ROSI and 3D control vs. 3D ROSI) were 

compared to assess the difference in potency and sensitivity to adipogenic pathways 

between the two models. Subsequently, to better assess the differences between the 

models regardless of the treatment, comparisons were made within the same treatment 

(2D control vs 3D control and 2D ROSI vs 3D ROSI).  

Initial clustering of the data was done with a principal component analysis (PCA) plot 

based on the different models and treatments. PC1 axis shows the data is mostly 

clustered based on the model (47.3 %), with 2D data presented on the left and 3D data 

presented on the right side of the plot. PC2 axis shows additional clustering of the data 

based on the treatment (17.2 %). For both models, ROSI treatment showed separate 

clustering in the same direction compared to the control indicating a similar 

transcriptional profile (Figure 4.5.a). 
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Further exploration in DEGs revealed a 50 % overlap (2082) between the two models 

after differentiation with ROSI (Figure 4.5.b). 22 % (915) being exclusive for 2D 

ROSI, and 27 % (1121) exclusive for 3D ROSI. When looking at the two models 

within the same treatment the overlap ratio goes up to 61 % (4467), highlighting the 

similar expression profiles of the different models (Figure 4.5.b). 12 % (879) was 

differentially expressed only in the 3D model compared to the 2D during 

differentiation with ROSI, and 26 % (1915) was only differentially expressed during 

control treatment. 

 

 

 

Figure 4.5 Differential gene expression analysis. (a) Normalized reads per million of 

measured genes, presented in a PCA plot for the different treatment samples− 2D 

control (DMSO), 2D rosiglitazone (ROSI), 3D control, and 3D ROSI. Ellipses 

represent the 95% confidence intervals. (b) Venn diagram representation of 

overlapping differentially expressed genes (DEGs) across different treatments (FDR < 

0.05). 
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Gene Set Enrichment and Pathway Analysis 

DEGs were scored based on significance and change in expression and used for gene 

set enrichment analysis (GSEA) via the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Gene Ontology (GO Biological terms (GO Bio)) databases.  

Pathways with a false discovery ratio below 5 % (FDR<0.05) were considered 

significant, revealing 75 upregulated and 54 downregulated KEGG pathways for the 

2D ROSI treatment, as well as 65 upregulated and 80 downregulated GO Bio 

pathways. For the 3D ROSI treatment, the analysis revealed 70 upregulated and 44 

downregulated KEGG pathways, along with 52 upregulated and 82 downregulated 

GO Bio pathways. 

Most of the pathways were altered similarly during adipocyte differentiation with 

ROSI in both models. Adipogenic pathways essential for adipocyte differentiation, 

such as PPAR signaling, were upregulated; while pathways inhibiting adipogenesis, 

such as Wnt signaling and TGF−beta signaling, were downregulated. Notably, the 

oxidative phosphorylation pathway showed the strongest upregulation (Fig. 4.6.a). 

The comparison of the different models within treatments revealed most pathways 

were downregulated in 3D compared to 2D, including metabolic pathways. 

Interestingly, the fatty acid metabolism pathway was upregulated in 3D compared to 

2D, however only with the control treatment. Surprisingly, pathways related to cell 

interactions, such as extracellular matrix (ECM)−receptor interaction and focal 

adhesion, were found downregulated in 3D with both control and ROSI treatment, 

however many collagens were among the highest upregulated genes in the 3D model, 

indicating differences in structural integrity between both models (Fig. 4.6.b). 
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Figure 4.6 Results of pathway analysis. Annotated heatmap of altered Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways highlighted based on 

significant down (blue) or upregulation (red) for at least one of the conditions (FDR < 

0.05). (a) Rosiglitazone (ROSI) treatment compared to control conditions in 2D (left) 

and 3D (right), (b) within control (left) and ROSI (right) treatments in the same model. 

Pathways are ordered based on Normalized Enrichment Scores (NES), with row 

centering and row scaling disabled to visualize true NES scores.
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Assessment of Adipogenic Gene Expression 

To further clarify the underlying gene expression profiles between the two models, the 

expressions of selected adipocyte genes were investigated via QPCR analysis, 

following exposure to a broader class of obesogens (see previous chapter on assay 

performance). Selection of genes was based on their different roles in the process of 

adipogenesis, including regulators of adipogenesis (PPARγ, CEBPα, and RXRα), 

PPARγ targets (LPL, FABP4, ADIPOQ, and FSP27), and genes involved in glucose 

homeostasis via insulin signaling (INSR and IGF1R). 

ROSI was tested at 0.1 µM, and TBT at 0.01 µM, while the obesogens were tested at 

15 µM in parallel 2D 3D experiments. 

Despite showing similar effects on lipid accumulation, gene expression revealed 

distinct trancriptomic profiles with the obesogens. Notably, exposures in the 2D model 

revealed mainly upregulation, while the same treatment in 3D led to downregulation 

(Fig. 4.7). Treatment with some of the obesogens revealed a reversed gene expression 

profile under 2D and 3D conditions. Clustering of TOCP, BPA, and TBT clearly shows 

the difference in expression profiles, with 3D treatments, presented on the right side 

of the heatmap, leading to stronger downregulation compared to 2D. Remarkably, 

TOCP treatment in 3D caused the strongest downregulation of ADIPOQ, and 

upregulation of INSR and IGFR1, genes involved in insulin and adipocytokine 

signaling. These effects were not apparent in 2D, indicating mechanisms of actions 

other than PPARγ activation might be undetected in the 2D model, but become evident 

under more complex 3D conditions. 

Conversely, ROSI and FLUD treatments can be seen clustering together on the left 

side of the heatmap, leading to upregulation of PPARγ and its’ targets with comparable 

expression profiles in both models. Notably, with ROSI treatment there is a stronger 

upregulation in the 2D model compared to 3D, while FLUD treatment led to a stronger 

upregulation in 3D than 2D. 
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Figure 4.7 Heatmap representation of adipocyte gene expression via QPCR analysis. 

Peroxisome proliferator-activated receptor gamma (PPARγ), CAAT/enhancer-binding 

protein alpha (CEBPα), retinoid X receptor alpha (RXRα), lipoprotein lipase (LPL), 

fatty acid binding protein 4 (FABP4), adiponectin (ADIPOQ), fat-specific protein 27 

(FSP27), insulin receptor (INSR), and insulin-like growth factor 1 receptor (IGF1R). 

Color scale based on log2 normalized expression values calculated via the ∆∆Cq 

method (red– higher, blue– lower expression). Chemicals were tested at 15 µM, 

Rosiglitazone (ROSI) was used as positive control at 0.1 µM. Rows and columns 

clustered using Euclidean distance and Ward linkage (ClustVis). 
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4.1.1.2.Assessment of the Adipogenic Potential of SSRIs 

Starting first with the fully characterized 3D model, the adipogenic potential of CIT 

and SER was investigated. Where an increase in neutral lipids, an indicator of 

enhanced adipogenesis, was observed with both SSRIs (Fig. 4.8.a-b). The induction 

was comparable to positive control, ROSI at 0.5 µM. BMD analysis revealed lower 

and upper thresholds (BMDL-BMDU) of 1.32-3.27 µM for CIT, and 0.35-0.87 µM 

for SER, for a 1.2-fold induction, confirming the SSRIs’ effect on adipogenesis was 

observed close to their reported SSCs (0.12-0.92 µM for CIT and 0.065-0.65 µM for 

SER) (Baumann 1996; De Vane et al. 2002). 

 

 

 

Figure 4.8 Effects on 3D spheroids. The increase in neutral lipids during 

differentiation with (a) Citalopram (CIT), and (b) Sertraline (SER) as fold change (FC) 

compared to control (DMSO). ROSI: Rosiglitazone (0.5 µM). Bars represent averages 

of 3 independent experiments and error bars indicate standard deviation. *** p < 

0.0005; **** p < 0.0001 (GraphPad Prism, v9.0). 

 

 

SSRIs’ Effects on the Transcriptome 

To clarify the mechanisms of action of the SSRIs, transcriptional profiling was 

performed on cells treated with control (0.1 % DMSO), positive control (0.1 µM 

ROSI) or CIT and SER in the 3D model by RNA-seq. CIT was tested at 1 µM (NOEL) 

and 10 µM (LOEL), SER was tested at 0.1 µM (NOEL) and 1 µM (LOEL). 
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Differential Gene Expression Analysis 

For the SSRIs, differential gene expression analysis revealed a single DEG for SER 

0.1 µM “insulin like growth factor-2”, which was downregulated, and 134 genes for 

SER 1 µM, of which 63 % (85) were downregulated. CIT treatments mainly resulted 

in upregulation, 71 % (45) of 63 genes were upregulated for CIT 1 µM, and 57 % (783) 

of 1355 genes were upregulated for CIT 10 µM. A total of 23 genes were found 

overlapping between SER 1 µM and CIT treatments (Fig. 4.9.a). Among these, there 

were some associated with adipogenesis or lipid metabolism including adiponectin, 

lipoprotein lipase, and fatty acid binding protein 4 (ADIPOQ, LPL, FABP4 

respectively). Surprisingly, these were downregulated with all the treatments (Fig. 

4.9.b). 

 

 

 

Figure 4.9 Differential gene expression analysis. (a) Venn diagram representation of 

overlapping differentially expressed genes (DEGs) (FDR < 0.05) for SER (0.1 and 1 

µM) and CIT (1 and 10 µM). (b) Heatmap with normalized counts of 23 overlapping 

DEGs among 1 µM SER and CIT (1 and 10 µM) treatments. 
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Gene Set Enrichment and Pathway Analysis 

Following ranking of genes based on their significance and fold change (see 

Methods), GSEA analysis revealed a generally reversed gene expression profile 

compared to the positive control, ROSI (Fig. 4.10.a). Metabolic pathways such as 

PPAR signaling, non-alcoholic fatty liver disease (NAFLD) and lipid metabolism 

were found consistently downregulated, in a concentration dependent manner, with 

the SSRI treatments (Fig. 4.10.a), in the functional network of SER and CIT these 

pathways can be seen clustering together (Fig. 4.10.b). Notably, the lysosome 

pathway was upregulated by all treatments (Fig. 4.10.c), and this effect was significant 

for SER 1 µM and both CIT concentrations (FDR<0.05) (Fig. 4.10.c). 
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Figure 4.10 Pathway analysis. (a) Annotated heatmap with normalized enrichment 

scores (NES) of altered Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways after Rosiglitazone (ROSI 0.1 µM), Citalopram (CIT 1 and 10 µM), and 

Sertraline (SER 0.1 and 1 µM) treatments in 3D. Pathways that are down (blue) or 

upregulated (red) significantly for at least one of the conditions are shown 

(FDR<0.05). Functional network of SER and CIT of (b) down, and (c) upregulated 

KEGG and Gene ontology (GO Biological terms (GO Bio) pathways (FDR<0.05). 

Colors of the circles represent different treatments. Sizes represent significance and 

are dependent on the smallest FDR value if more than one treatment is significant. 
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K-means Clustering and Pathway Analysis 

Further analyses on the RNA-seq data was performed for an in-depth assessment of 

the differences in gene expression profiles between ROSI and the SSRIs. Fig. 4.11.a 

shows the distribution of all genes for each replicate sample, clearly showing the 

separation between ROSI and SSRI treatments. 3848 genes were significantly 

affected by at least one of the treatments (FDR<0.05) and separated into 3 clusters 

using k-means clustering. Quality of the clustering was confirmed by silhouette 

scoring, and an over representation analysis (ORA) was performed by using the genes 

within the clusters, and focusing on KEGG pathways. First two clusters both contain 

metabolic pathways that are upregulated by ROSI and downregulated consistently by 

SSRI treatments. First cluster consists of 1646 DEGs, leading to 128 enriched 

pathways. Among these are oxidative phosphorylation and NAFLD pathways, with 

higher enrichment ratios and lowest FDR values compared to other pathways (Fig. 

4.11.b). The second cluster is representing adipocyte differentiation with pathways 

such as PPAR signaling, regulation of lipolysis in adipocytes and other metabolic 

pathways (Fig. 4.11.b). It consists of 172 mapped genes and 66 enriched pathways in 

total. The final cluster has the highest number of enriched pathways, with 196 

pathways from 750 mapped genes, and contains genes consistently upregulated by 

SSRIs and downregulated by ROSI, among which the lysosome pathway as one of 

the most significant pathways (Fig. 4.11.b). 

In Fig. 4.11.c violin plots of the representative pathways from each cluster are shown. 

The upregulation of PPAR signaling pathway following ROSI treatment is much 

stronger, as expected. Among the top transcripts upregulated by ROSI are many well-

characterized gene targets of PPARg, including FABP4, ADIPOQ, LPL, PLIN4 

(perilipin 4), PLIN5 (perilipin 5), and PCK1 (phosphorenol-pyruvate carboxykinase 

1) (Fig. 4.11.c). Whereas these are downregulated by the SSRI treatments, in a 

concentration dependent manner (Fig. 4.11.d). For the lysosome pathway cathepsins 

(CTS), a family of lysosomal proteases, are among the highest upregulated genes with 

the SSRIs treatments, especially with CIT at 10 µM, while being downregulated by 

ROSI (Fig. 4.11.d). 
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Figure 4.11 K-means clustering and pathway analysis. (a) Normalized counts of all 

genes for each replicate sample (Control (DMSO), Rosiglitazone (ROSI), Citalopram 

(CIT 1¬–10 µM), and Sertraline (SER 0.1–1 µM)), presented as principal component 

analysis (PCA) plot (ClustVis). Ellipses represent the 95 % confidence intervals. (b) 
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Annotated pathways with higher enrichment ratio (ER) and significance (n=number of 

genes per cluster). Scale bar shows the number of overlapping genes between mapped 

input and gene set. NAFLD: Non-alcoholic fatty liver disease; PPAR: Peroxisome 

proliferator-activated receptor; PGs: Proteoglycans; FDR: False Discovery Rate. (c) 

Plots of median-adjusted normalized counts of the genes within representative 

pathways (n=overlap between mapped input and gene set), dashed lines set at median 

values of control treatment. (d) Heatmap with median-adjusted normalized counts of 

20 representative genes from each pathway (GraphPad Prism, v9.0). 

 

 

SSRIs’ Effects on Adipogenic Gene Expression 

To confirm the findings of RNA-seq analysis, QPCR analysis on selected adipocyte 

genes was performed (see previous chapter on adipogenic gene expression with the 

battery of obesogens). 

A similar expression profile was observed with the SSRIs, confirming the results of 

the RNA-seq. Genes from the PPAR signaling pathway including PPARg, CEBPa, 

FABP4, and ADIPOQ were found downregulated after SSRI treatments, contrary to 

ROSI, where a strong induction was observed (Fig. 4.15). Notably, genes involved in 

insulin signaling, INSR and IGF1R, were slightly upregulated by the SSRIs, with the 

exception of SER at the lowest tested concentration (0.1 µM) (Fig. 4.12). 
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Figure 4.12 Expression of selected adipocyte genes in 3D spheroids after 

Rosiglitazone (ROSI 0.1 µM), Citalopram (CIT 1–10 µM) and Sertraline (SER 0.1–1 

µM) treatments. Color scale based on log2 normalized expression values (orange 

representing higher and blue representing lower expression) (GraphPad Prism, v9.0). 

FABP4: Fatty acid binding protein 4, PPARg: Peroxisome proliferator-activated 

receptor gamma, ADIPOQ: Adiponectin, CEBPa: CAAT/enhancer-binding protein 

alpha, INSR Insulin receptor, IGF1R: Insulin-like growth factor 1 receptor. 

 

 

SSRIs’ Effects on Phospholipids and Lysosomes 

The unexpected results of the RNA-seq were followed-up by further experiments with 

functional readouts in the 2D model for a complete understanding of SSRIs’ effects on 

adipogenesis. 

During MSC Differentiation 

Starting with the SSRIs’ effects on different lipid profiles during and after adipocyte 

differentiation, the 2D model was employed followed by flow cytometry analysis. 

Both neutral and phospholipids were quantified by measuring Nile Red intensity in 

two different channels (see methods). Fluorescence microscopy image of Nile Red in 

the green- and red-fluorescent channels (Fig. 4.13.a) shows the separation between 

lipids, proving the method’s applicability in quantifying both neutral and 

phospholipids.  



84 

 

As expected, CIT and SER both increased neutral lipids in 2D MSCs during 

differentiation (Fig. 4.13.b-d). However, a much stronger induction was observed in 

the phospholipid channel with both SSRIs (Fig. 4.13.c-e). BMD modeling confirmed 

that SSRIs had a stronger effect on phospholipids. By comparing BMDs, we observed 

that SER induced phospholipids at nearly 10 times lower concentrations than neutral 

lipids (Table 4.1). 

 

 

 

Table 4.1 Benchmark dose (BMD) for a 20 % increase in neutral (NL) and 

phospholipids (PL) with SSRIs, including 90 % confidence intervals (BMDL-BMDU) 

and median BMDs (BMDMED). 

  BMDL (µM) BMDU (µM) BMDMED (µM) 

SER 
NL 
PL 

1.89 
0.26 

6.35 
0.66 

4.12 
0.46 

CIT 
NL 
PL 

1.12 
1.39 

4.80 
3.15 

2.96 
2.27 

 

Furthermore, the effect on phospholipids with SER was observed in a range around 

reported SSCs (0.065–0.65 µM) (De Vane et al. 2002). Although CIT showed a strong 

induction in the phospholipid channel, BMD analyses revealed a similar range 

compared to neutral lipids and above reported SSCs. Notably, the confidence interval 

of the BMD of phospholipids was lower compared to neutral lipids, indicating a more 

accurate estimate of the BMD. 
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Figure 4.13 (a) Fluorescence microscopy image of 2D adipocytes stained with Nile 

Red and Hoechst (merged). Split channels showing cell nuclei (DAPI channel– cyan), 

neutral lipids (NL) (FITC channel–red), and phospholipids (PL) (Texas Red channel–

green), respectively. Scale bar: 200 µm. The increase in (b) neutral– and (c) 

phospholipids during differentiation with Citalopram (CIT). The increase in (d) 

neutral– and (e) phospholipids during differentiation with Sertraline (SER). Results 

presented as fold change (FC) compared to control (DMSO). Bars represent averages 

of 2 independent experiments and error bars indicate standard deviation. * p < 0.05; 

** p < 0.005 *** p < 0.0005; **** p < 0.0001 (GraphPad Prism, v9.0). 
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Next, the SSRIs’ effects on lysosomes during differentiation was studied via 

LysoTracker Red staining. Amiodarone (AMIO) at 10 µM was used as positive 

control, while CIT and SER were tested at 10–30 µM and 3.3–10 µM, respectively. 

Here, a strong inducing effect on lysosomes was observed with both CIT and SER 

(Fig. 4.14.a). SSRIs at the tested concentrations led to an induction as high as the 

positive control. Neutral lipids were assessed by Bodipy staining, where the induction 

was minimal, moreover, a slight decrease was observed with SER at 10 µM (Fig. 

4.14.b). 

 

 

 

 

Figure 4.14 Increase in (a) lysosomes and (b) neutral lipids in 2D MSCs during 

differentiation with citalopram (CIT 10–30 µM), and sertraline (SER 3.3–10 µM). 

Presented as fold change (FC) compared to control (DMSO). Bars represent averages 

of 3 independent experiments and error bars indicate standard deviation. ROSI: 

Rosiglitazone (0.5 µM), AMIO: Amiodarone (10 µM). * p < 0.05; ** p < 0.005 *** p 

< 0.0005; **** p < 0.0001 (GraphPad Prism, v9.0). 
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Mature Adipocytes 

As the patients receiving SSRI treatment are mostly adults, additional experiments 

were performed on mature adipocytes to study the effects on MSCs after 

differentiation to see if SSRIs would exert the same effect, changing the lipid profile 

from neutral lipids to phospholipids. A slight increase in neutral lipids was observed 

with only SER at 10 µM after differentiation (Fig. 4.15.a). However, phospholipid 

levels increased, suggesting SSRIs can also increase phospholipid accumulation in 

mature adipocytes (Fig. 4.15.b). 

 

 

 

Figure 4.15 Effects on mature adipocytes. Increase in (a) neutral and (b) phospholipids 

by citalopram (CIT 30 µM), sertraline (SER 10 µM), and amiodarone (AMIO 10 µM), 

presented as fold change (FC) compared to control. Bars represent averages of 3 

independent experiments and error bars indicate standard deviation. * p < 0.05; ** p < 

0.005 *** p < 0.0005 (GraphPad Prism, v9.0). 

 

 

 

 

 



88 

 

4.1.2. 3T3-L1 Preadipocyte Model 

To study the effects of SSRIs using the 3T3-L1 cell line, the performance of the model 

was first determined by using reference compounds, prototypical PPARg ligand, ROSI 

and the well-studied obesogen TBT. As part of partial validation studies, ROSI and 

TBT were tested at 3 concentrations (ROSI: 0.25, 0.5, 1 µM, TBT: 0.025, 0.05, 0.1 

µM).  

A significant increase in lipid accumulation was observed with TBT, and at the highest 

tested concentration of ROSI (1 µM), compared to control (DMSO) (Fig. 4.16.a). 

Brightfield microscopy confirmed the increase in lipid accumulation and the number 

of adipocytes with both ROSI (1 µM) and TBT (0.1 µM) (Fig. 4.16.b). 

 

 

 

Figure 4.16 (a) Increase in neutral lipids measured with rosiglitazone (ROSI) and 

tributyltin (TBT), as fold change (FC) compared to control (DMSO). Bars represent 

averages of 3 independent experiments and error bars indicate standard deviation. * p 

< 0.05; ** p < 0.005 *** p < 0.0005 (GraphPad Prism (v9.0). (b) Brightfield 

microscopy images of Oil Red O-stained adipocytes following differentiation with 

reference compounds (4x magnification). 
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4.1.2.1.Assessment of the Adipogenic Potential of SSRIs 

SSRIs’ effects on 3T3-L1 differentiation was evaluated via brightfield microscopy 

(Fig. 4.17.a) and Oil Red O staining. An increase in neutral lipids was not observed 

with CIT at the tested concentrations (Fig. 4.17.b). Notably, a slight decrease was 

observed with SER that seemed to be concentration dependent, yet these effects were 

found non-significant compared to vehicle control (Fig. 4.17.b). 

 

 

Figure 4.17 (a) Brightfield microscopy images of Oil Red O-stained adipocytes 

following differentiation with citalopram (CIT) and sertraline (SER) (4x 

magnification). (b) Changes in neutral lipids with CIT and SER, as fold change (FC) 

compared to control (DMSO). Bars represent averages of 3 independent experiments 

and error bars indicate standard deviation. ROSI: Rosiglitazone. **** p < 0.0001 

(GraphPad Prism (v9.0).  
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SSRIs’ Effects on Adipogenic Protein Expression 

To further investigate the effects of SSRIs on 3T3-L1 cells during differentiation, 

expression of selected adipogenic proteins (PPARγ, C/EBPα, SREBP1, LPL, and 

FAS) was evaluated with western blot anaylsis. ROSI at 1 µM was used as positive 

control, while CIT and SER were tested at 30 and 10 µM, respectively. Protein 

expression was normalized to the reference protein band (beta-actin) and the change 

in expression was calculated as log2 fold change over control (0.1 % DMSO). 

ROSI treatment increased adipogenic protein expression up to different extent (Fig. 

4.18). As expected, a strong induction was observed for PPARγ, as well as its 

downstream target, LPL. CEBPα, SREBP1, and FAS were also induced, although to a 

lesser extent.  

CIT was found to slightly induce PPARɣ and CEBPα levels (Fig. 4.18). Conversely, 

SER led to an overall decrease in adipogenic protein expression (Fig. 4.18), these 

changes align with the decrease in lipid accumulation observed with SER (Fig.4.17.b). 

Overall, altered expression of key adipogenic proteins suggests potential impact on 

adipogenesis by the SSRIs. 

 

 



91 

 

 

Figure 4.18 Effects of citalopram (CIT) and sertraline (SER) on adipogenic protein 

expression. Color scale based on log2 normalized expression values compared to 

control (DMSO) (GraphPad Prism (v9.0). PPARg: Peroxisome proliferator-activated 

receptor gamma, CEBPa: CAAT/enhancer-binding protein alpha, SREBP1: Sterol 

regulatory element-binding protein 1, LPL: Lipoprotein lipase, FAS: Fatty acid 

synthase. 

 

 

4.2.Assessment of Other Possible Mechanisms of the SSRIs 

To investigate whether there are other mechanisms underlying SSRIs’ effects, reporter 

cell lines were used for various nuclear receptors. Nuclear receptor-mediated activities 

were investigated for the PPARs (PPARγ and PPARa), ER, AR, and DR via receptor 

binding and transactivation assays. To further evaluate estrogenic effects, ER-

dependent cell proliferation and cell-free aromatase inhibition assays were performed. 

 

4.2.1. Receptor Binding and Transactivation Assays 

A total of 10 endpoints were assessed by the reporter cell assays, including agonist and 

antagonist activity. A summary showing the endpoints and SSRIs’ activities can be 

seen in Table 4.2. PPAR-mediated activity was not observed with CIT or SER at the 



92 

 

tested concentrations, indicating a different mechanism of action than binding to PPAR 

behind enhanced adipogenesis with SSRIs. Similarly, agonist or antagonist activity 

was not observed for either ER, AR or DR with the SSRIs at the tested concentrations, 

indicating a different mechanism of action than ER, AR, or DR activation behind their 

adipogenic effects. 

 

Table 4.2 Summary of the reporter cell assays. 

 CIT-Ago CIT-Anta SER-Ago SER-Anta 
PPARg - - - - 
PPARa - - - - 
ER - - - - 
AR - - - - 
DR - - - - 

 

Concentration-response curves were generated with reference chemicals in the 

agonism and antagonism assays (Fig. 4.19.a-j). Half maximal effective concentrations 

(EC50) determined in the agonism assays were used to activate the receptor in the 

antagonism assays (Table 4.3). 

Cell viability was determined via mitochondrial activity (Alamar Blue assay). SER at 

30 µM was found to be cytotoxic for both ER-Luc and AR-Luc cells (data not shown), 

therefore used at the highest concentration of 10 µM for the following experiments. 

CIT did not decrease cell viability at the highest tested concentration of 30 µM. 

 

Table 4.3 Reference compounds used in the reporter cell assays. 

 PPARg-Luc PPARa-Luc ER-Luc AR-Luc DR-GFP 
Agonist ROSI GW7647 b-Estradiol Testosterone TCDD 
EC50 10 nM 31.7 nM 3 pM 20 nM 37 pM 
Antagonist T0070907 TBT ICI 182,780 FLUT PCB-128 

EC50: Half maximal effective concentrations. 
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Figure 4.19 (a-j) Concentration−response curves of reference compounds for the 

reporter cell assays. PPARg, PPARa: Peroxisome proliferator-activated receptors 

gamma and alpha, ROSI: Rosiglitazone, TBT: Tributyltin, ER: Estrogen receptor, E2: 

β-Estradiol, AR: Androgen receptor, TESTO: Testosterone, FLUT: Flutamide, DR: 

Dioxin receptor, TCDD: 2,3,7,8-tetrachlorodibenzo-p-dioxin, PCB-128: 2,3,4,2',3',4'-

Hexachlorobiphenyl. (GraphPad Prism, v9.0). 

 

 

4.2.2. ER-dependent Proliferation Assay 

To confirm the lack of ER-mediated activity by the SSRIs, the proliferation of the ER 

(+) MCF7 cell line was investigated. In the assay, chemicals with estrogenic activity 

activate the ER, subsequently enhancing MCF-7 proliferation, while antiestrogenic 

compounds inhibit the proliferation in the presence of estradiol (Silva, Scholze, and 

Kortenkamp 2007). 

SSRIs did not increase MCF-7 cell proliferation (Fig. 4.20.a-b), nor decrease cell 

proliferation induced by 1 nM E2 (Fig. 4.20.c-d), indicating no agonistic or 

antagonistic activity on ER, confirming the results of reporter cell line experiments. 

Notably, SER decreased MCF-7 proliferation significantly at 11 and 33 µM (Fig 

4.20.b-d). However, this decrease was due to cytotoxicity (determined via visual 

inspections) rather than antiestrogenic activity. 
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Figure 4.20 Effects on MCF-7 cell proliferation with (a) citalopram (CIT), and (b) 

sertraline (SER), determined via sulforhodamine B assay. Decrease in estrogen-

induced MCF-7 proliferation with (c) CIT, and (d) SER. Bars represent means and 

error bars indicate standard deviations of 3 independent experiments. E2: β-Estradiol 

(1 nM). *** p < 0.0005; **** p < 0.0001 (GraphPad Prism, v9.0). 
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4.2.3. Aromatase Inhibition Assay 

Aromatase inhibitory activity of the SSRIs was evaluated by the CYP19/MFC High-

throughput Screening kit (Corning). CIT did not inhibit aromatase activity at the tested 

concentrations (Fig. 4.21.a), while SER showed aromatase inhibitory effects only at 

33 µM (Fig. 4.21.b). Significant activity was not observed around reported SSCs by 

either of the SSRIs. 

 

 

 

Figure 4.21 Aromatase inhibitory effects of citalopram (CIT) and sertraline (SER) 

evaluated by CYP19/MFC High-Throughput Screening kit. Results expressed as % 

fluorescence compared to vehicle control, acetonitrile (ACN). Bars represent means 

and error bars indicate standard deviations of triplicate measurements. KET: 

Ketoconazole (40 µM). * p < 0.05; ** p < 0.005 *** p < 0.0005; **** p < 0.0001 

(GraphPad Prism, v9.0). 
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5. Discussion 

In this thesis, the adipogenic potential of two commonly used SSRIs was investigated 

utilizing cell models to study adipocyte formation and nuclear receptor activation. This 

research is key, as these pharmaceuticals are associated with weight gain and could be 

potential contributors to the global increase in obesity. In this study, in vitro 

adipogenesis assays were used as a model for excessive body fat accumulation that is 

associated with obesity, and crucial mechanisms involved in adipocyte differentiation, 

such as activation of nuclear receptors like PPARγ, as well as several endocrine 

receptors were investigated. Results pointed toward disruption of adipocyte function 

rather than increased adipogenesis, which is an important outcome that should be 

followed up with further studies. 

This discussion will first address the methodological strengths and weaknesses, 

focusing on the cell models for adipogenesis, methods to assess adipocyte 

differentiation, and the relevance of the tested concentrations in the cell model. Then, 

the obtained results will be discussed in the broader context of adipose tissue biology 

and function. Subsequently, the impact of this research on the scientific field will be 

discussed, before proposing recommendations for future research perspectives. 

 

5.1.Methodological Strengths and Weaknesses 

5.1.1. Cell Models for Adipogenesis 

There are several well-established cell models used to assess the effects on 

adipogenesis. These include MSCs or adipocyte progenitor cells, such as the murine 

3T3-L1 cell line, that can be differentiated into mature adipocytes in vitro by exposing 

them to an adipogenic cocktail (Chen et al. 2016; Lustig et al. 2022). The well-

characterized murine 3T3-L1 cell line remains the most frequently used cell model for 

adipogenesis in obesogen-related studies. However, it is important to note its 

limitations. Their sourcing can be unreliable, which contributes to the variability of 

results among different laboratories (Kassotis et al. 2021, 2022). Moreover, 3T3-L1 

cells only allows the assessment of adipocyte differentiation, as these are adipogenic 

progenitor cells that are already committed to the adipogenic lineage. On the other 

hand, MSCs isolated from bone marrow remain multipotent, allowing for the 



98 

 

assessment of adipocyte lineage commitment in addition to adipocyte differentiation. 

As MSCs can be obtained from human donors, donor-to-donor differences contribute 

to the high variance seen among different batches of cells. Nevertheless, the results 

with them can be better translated to humans which provides an important advantage 

over non-human cell lines in eliminating problems arising from interspecies 

differences (Kassotis et al. 2022; Legler et al. 2020). 

Studies utilizing these cell models mostly rely on 2D monolayer cultures for their 

simplicity and cost-effectiveness (Legler et al. 2020). However, there are significant 

differences in morphology, size, and transcriptional profiles when comparing 2D-

grown adipocytes to in vivo adipose tissue (Klingelhutz et al. 2018). Recently, 3D 

spheroid models have been developed to improve adipogenic testing, and studies with 

murine and human preadipocytes have shown 3D adipogenesis models to be more 

representative of in vivo conditions with improved differentiation and gene expression 

(Klingelhutz et al. 2018; Muller et al. 2019; Shen et al. 2021). Although these spheroid 

models show great improvements over conventional 2D models, they were all 

developed by using adipocyte progenitor cells.  

In our study, MSCs were employed in a 3D set-up with the purpose of improving the 

model even further by enhancing both human relevance and model applicability. First, 

the seeding density and differentiation conditions were optimized for the 3D model. 

5000 cells per spheroid were found to be optimal for spheroid growth and 

differentiation, an amount also used in other studies (Shen et al. 2021). One of the 

main concerns in 3D cell models is the formation of a hypoxic core, due to decreased 

oxygen diffusion towards the center of the spheroid (Trayhurn et al. 2008). However, 

both histological analyses using Hematoxylin & Eosin (H&E) staining and confocal 

imaging confirmed an even distribution of lipid droplets throughout the spheroid 

without any sign of a necrotic core. Likely, the limited number of cells allowing rapid 

diffusion of nutrients and oxygen aided in this observation, compared to previous 

studies with higher cell numbers (Schmitz et al. 2021). 

To characterize the 3D model, the prototypical PPARɣ agonist ROSI was used to 

compare 3D spheroids to 2D-grown adipocytes for differences in phenotype and 

transcriptional profiles. Differences between the 2D and 3D models were found based 

on lipid droplet phenotype and morphology, as well as on the transcriptome. Spheroids 

exposed to ROSI differed from 2D adipocytes in phenotype following differentiation, 
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forming fewer and larger lipid droplets that more closely resemble in vivo adipose 

tissue. This was also shown in multiple publications, as well as transcriptomic profiles 

that resemble the human situation better than the 2D models (Klingelhutz et al. 2018; 

Shen et al. 2021).  

Novel omic technologies have enabled a more in-depth investigation of the complex 

transcriptomic profile of in vitro differentiated adipocytes. RNA-seq in 2D and 3D 

models followed by pathway analysis revealed quite comparable results, showing 

metabolic pathways were affected similarly after ROSI treatment in both models. 

Notably, more pathways related to insulin and adipocytokine signaling and structural 

integrity were found altered in the 3D model. Within the same treatment, most 

pathways were downregulated in 3D compared to 2D, except the ribosome pathway, 

which was strongly upregulated in the 3D model, as shown in a recent study (Shen et 

al. 2021). The TGF-beta signaling pathway, known to inhibit adipogenesis by reducing 

PPAR𝛾 expression and CEBP𝛽 activation (Chen et al. 2016), was strongly 

downregulated in the 3D model. This stronger inhibition in 3D might lead to increased 

adipogenesis, by providing a more suitable setting for the induction of adipogenic 

genes, as shown in a previous study (Shen et al. 2021). 

Next, a set of obesogens were tested in parallel experiments and the 2D and 3D 

responses were compared to assess the performance of the 3D model. A similar 

response with the obesogens was observed between the two models, however gene 

expression generated unexpected results. QPCR analysis revealed significant 

differences in gene expression profiles between the different models. ROSI and other 

suspected PPARγ agonists led to similar expression of adipogenic genes in both 

models, whereas the differences were more pronounced between the models for the 

obesogens acting through other mechanisms. These differences might indicate that the 

3D model is more sensitive to obesogens acting via mechanisms other than PPARγ 

activation, which may be concealed in the 2D model but apparent in the more complex 

3D context.  

Overall, the 3D model showed a more similar phenotype to adipose tissue and 

transcriptional profiles indicate a different response to adipogenic stimuli than 2D, 

supporting the findings of previous publications (Klingelhutz et al. 2018; Shen et al. 

2021). The benchmark dose (BMD) approach confirmed that the adipogenic potencies 
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of the models were comparable, indicating the novel 3D model’s applicability for 

screening chemicals’ effects on adipogenesis. 

 

5.1.2. Methods to Assess Adipocyte Differentiation 

Increased lipid storage within cells is often used as a measure of enhanced 

adipogenesis in cell models. A variety of lipid stains were developed to characterize 

the effects of chemicals on lipid accumulation including Oil Red O, Nile Red, and 

Bodipy 493/503. Oil Red O and Bodipy can be used to stain neutral lipids, whereas 

Nile Red has an affinity for both neutral and phospholipids and can be used to detect 

both (Fam, Klymchenko, and Collot 2018). 

Multiple staining procedures were used in MSCs for the screening of SSRIs (see 

methods). After Nile Red staining, green-fluorescent signal was measured for neutral 

lipids by using a fluorescence plate reader and by high-throughput imaging for the 2D 

and 3D models, respectively. High-throughput imaging was found to be an efficient 

method to analyze 3D spheroids. However, plate reader analysis for the 2D model 

proved to be challenging due to the different phenotypes of lipid droplets induced by 

the SSRIs. When 2D adipocytes were inspected under a fluorescence microscope, it 

was apparent that positive control ROSI had bigger adipocytes with bigger lipid 

droplets, compared to CIT and SER which seemed to have adipocytes that were 

smaller in size and filled with smaller lipid droplets. While the increase in lipid 

droplets within cells could be observed by fluorescence microscopy, it was difficult to 

quantitatively measure this effect with the plate reader. Flow cytometry analysis 

showed higher sensitivity, thus we were able to quantitatively measure the induction 

of adipogenesis and better determine the obesogenic potential of CIT and SER. 

Moreover, Nile Red staining allowed for the assessment of different lipids (by 

measuring green- and red-fluorescent signals for neutral and phospholipids, 

respectively) which aided in the analyses of different lipid profiles induced by the 

SSRIs in follow-up experiments. 

In the additional MSCs experiments (2D), Bodipy staining was used in combination 

with LysoTracker Red to assess the effects on neutral lipids and lysosomes during 

adipocyte differentiation. Bodipy was selected due to the lack of interference between 

its green-fluorescent signal and the red-fluorescent signal produced by LysoTracker. 
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Additionally, Bodipy can be used for live staining which was needed for our 

experiments as LysoTracker stains require live staining to detect and trace lysosomes. 

Using the plate reader, we were able to quantitatively measure the effects on neutral 

lipids and lysosomes. On the other hand, fluorescence imaging was more difficult due 

to Bodipy’s high background signal and limited photostability. 

In the 3T3-L1 experiments, Oil Red O, a lipid-soluble diazolic dye that is selective for 

neutral lipids, was used. A disadvantage of Oil Red O staining over Nile Red and 

Bodipy is its poor solubility, thus an extra step of dissolution of the dye in isopropyl 

alcohol is needed prior to plate reader analysis. Although the cells are fixed, the use of 

such invasive solvents could cause the disruption of lipid droplets within the cells, 

which could potentially lead to the wrong estimation of lipid accumulation and 

adipocyte differentiation.  

Overall, Nile Red staining followed by high-throughput imaging (3D) or flow 

cytometry analysis (2D) were proven to be the best methods for our experimental 

needs. Bodipy staining could also be a valuable tool depending on the experimental 

setup, for its compatibility with other dyes. In future studies, the use of high content 

imaging with Nile Red staining would be beneficial in the 2D model, as it would also 

allow for the assessment of lipid droplet phenotype and distribution. 

 

5.1.3. Relevance of Tested Concentrations 

The effects observed in our study are remarkably close to the steady-state 

concentrations observed in clinical studies. These concentrations represent the total 

concentration of the drug in plasma, which includes both the protein-bound and 

unbound (free) fractions. Notably, around 80 % of CIT is bound to plasma proteins, 

while the ratio for SER is between 95-99 % (DeVane 1999; Pollock 2001). They are 

both distributed extensively into various organs and tissues in the body, reflected by 

a large distribution volume (Baumann 1992; De Vane et al. 2002), and due to their 

lipophilic nature, they can be expected to reach higher concentrations in the adipose 

tissue. A recent publication on a physiologically based pharmacokinetic model for 

CIT estimates that levels in adipose tissue might be more than three times higher than 

in plasma (Wu et al. 2020). In short, despite the high protein binding of these 
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compounds, in vitro concentrations at which the effects were observed reflect the 

levels seen in humans. 

It is plausible that drugs binding to plasma proteins might also bind to proteins present 

in the FBS, thus lowering their availability in the cell model. Because our system 

includes proteins from FBS, we cannot precisely know the availability of SSRIs to the 

MSCs. It's challenging to precisely determine the concentration of the unbound 

fraction of the drug in the cell model, as we lack knowledge of the chemicals’ kinetics 

in this system and the extent of binding to FBS proteins may differ from that in 

plasma. Analytical measurement of such chemicals within cells would give the right 

figures on what is actually taken up by the cells. In this study, as the unbound fraction 

might be less than the nominal concentrations added to the system, there is a 

possibility that BMD values might be an underestimation. 

All in all, there is an uncertainty in exposure levels of the bioavailable fraction, and 

further research into the model, including chemical analysis of such pharmaceuticals 

in the in vitro system, is warranted for in vitro to in vivo extrapolation. Additionally, 

reducing the FBS concentration in cell culture medium or optimizing serum-free 

conditions in future studies could potentially counter this shortcoming of the model. 

 

5.2.General Discussion of the Results 

The results presented here aid in the elucidation of the adipogenic potential and the 

underlying mechanisms of the SSRIs. The effects on adipocyte differentiation were 

studied by using human MSCs and the murine 3T3-L1 cell line, mainly focusing on 

MSCs for a comprehensive assessment, and looking into possible mechanisms 

involved in adipocyte differentiation. 

While assessing the adipogenic potential of CIT and SER, initially, an increase in lipid 

accumulation was observed in MSCs, an indication of enhanced adipogenesis. This 

effect was observed in a concentration-dependent manner, and using the BMD 

approach, points of departure were found to overlap with reported SSCs (SER: 0.065-

0.65 µM, and CIT: 0.12-0.92 µM) (Baumann 1996; De Vane et al. 2002). Fluorescence 

and confocal microscopy of 2D MSCs showed a distinct phenotype of small lipid 
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droplets with the SSRIs compared to ROSI, which led us to question whether this could 

be induced by a different mode of action.  

There are multiple mechanisms through which chemicals can induce adipocyte 

differentiation. This study focused on the mechanisms involving key nuclear receptors 

regulating adipogenesis, to elucidate the underlying mechanism behind SSRIs’ effects. 

First, the agonistic activity on PPARg, the key regulator of adipogenesis, and PPARa 

was explored by using receptor binding and transactivation assays. However, agonistic 

activity was not observed with CIT and SER, on either PPARg or PPARa.  

In animal studies prenatal exposure to estrogenic obesogens has been shown to 

promote the development of obesity in the offspring, possibly occurring through 

estrogen receptor activation (Darbre, 2017; Heindel et al., 2022; Newbold et al., 2007), 

whereas reduced androgen levels and anti-androgenic therapy has been associated with 

decreased adiposity (Kassotis et al. 2017). Additionally, some obesogens with dioxin-

like activity have been shown to induce adipogenesis via indirectly altering PPARg 

expression (Casals-Casas and Desvergne, 2011). Therefore, the estrogenic, 

androgenic, and dioxin-like effects were explored by using receptor binding and 

transactivation assays for the ER, AR, and DR, along with ER-dependent proliferation 

and cell-free aromatase inhibition (the enzyme responsible for estrogen synthesis) 

assays. Our results revealed SSRIs’ modulatory effects on adipogenesis were not due 

to estrogenic, androgenic, or dioxin-like activity, nor significant aromatase inhibitory 

activity. CIT and SER were previously shown to inhibit aromatase activity in two 

microsome-based in vitro assays (Jacobsen et al. 2015). Although the extent of 

inhibition varied between the two assays, the results indicate an influence on the 

enzyme by both SSRIs. Notably, the concentrations tested in that study covered a wide 

range. Therefore, the reported effects occurred at higher concentrations than those 

tested in this study, with reported IC50 values of 55.8 and 90.6 µM for CIT and SER, 

respectively. This difference in concentration levels might explain the absence of 

aromatase inhibition with the SSRIs in our experiments. Nevertheless, our results 

indicate a mechanism beyond endocrine modulation driving the adipogenic effects. 

RNA-seq revealed a distinct gene expression profile in 3D after SSRI treatments 

compared to positive control, ROSI. To our surprise, key adipogenic genes and 

important pathways related to adipocyte differentiation (such as PPAR signaling, 
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adipogenesis, and fatty acid metabolism) were found downregulated compared to 

vehicle control (DMSO). This is supported by the QPCR analysis, where key 

regulators of adipogenesis PPARg and CEBPa, and genes involved in PPAR signaling 

FABP4 and ADIPOQ, were found downregulated by the SSRI treatments. 

These findings were repeated in the additional 3T3-L1 experiments, by an observed 

decrease in adipogenic protein expression, especially with SER. Conversely, CIT was 

found to slightly induce PPARɣ and CEBPα protein levels, yet the lack of increase in 

lipid accumulation suggests this was not sufficient to induce adipocyte differentiation. 

Nevertheless, altered expression of key adipogenic proteins by the SSRIs indicates 

their potential impact on adipocyte development and function. 

When the RNA-seq data was examined for other pathways affected by the SSRI 

treatments, pathways related to phospholipids and lysosomes were found upregulated 

by all exposures. Phagosome, and phospholipase D, other pathways that can be related 

to lysosome function, were significantly affected by CIT at the highest concentration 

(10 µM). These findings were confirmed with additional experiments in 2D MSCs by 

specific staining, where an induction was observed for both phospholipids and 

lysosomes. Interestingly, in these experiments, the induction in phospholipids was 

higher compared to neutral lipids in the same model, showing even lower BMD levels 

as with neutral lipids. Moreover, for SER the induction in phospholipids was observed 

in the range of reported SSCs.  

Next, additional experiments were performed on mature adipocytes to follow up on 

these effects. The effects of CIT and SER on neutral lipids and phospholipids after 

differentiation were studied, to see whether the SSRIs would change the lipid profile 

from neutral lipids to phospholipids. As expected, there was no significant effect on 

neutral lipids by the SSRI treatments after differentiation. However, phospholipid 

levels increased, implying the effects of SSRIs are also apparent in mature adipocytes. 

This could have clinical implications, as the patients receiving antidepressant 

treatment are mostly adults. 

All our findings together led us to the conclusion that these SSRIs lead to a common 

adverse effect of a group of chemicals, commonly known as cationic amphiphilic 

drugs (CADs). These chemicals are known to accumulate within lysosomes due to 

their weak basic properties. CIT and SER share the chemical structure of CADs which 
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features a protonable amine group attached to a lipophilic component. This lipophilic 

nature allows the unprotonated neutral form to pass through cellular membranes. 

However, upon reaching an acidic environment, such as lysosomes, the amine group 

is protonated and the positively charged form is no longer able to pass through the 

membrane. Consequently, the compound becomes “trapped” and accumulates within 

the lysosomes (Kazmi et al., 2013). Lysosomal trapping via this mechanism results in 

extensive binding to phospholipid membranes and the inhibition of lysosomal 

enzymes, specifically lysosomal phospholipase A2 (LPLA2). Located on the 

lysosomal membrane, LPLA2 is mainly involved in the degradation of lysosomal 

phospholipids (Hinkovska-Galcheva et al., 2021). Lysosomal accumulation of CADs 

can result in competitive inhibition of LPLA2, leading to excessive accumulation of 

lysosomal phospholipids, a process known as drug-induced phospholipidosis. This 

phenomenon is mainly shown in vivo, with lung and liver being common targets, 

ultimately leading to pulmonary or liver fibrosis (Hinkovska-Galcheva et al., 2021; 

Reasor et al., 2006).  

Considering the existing knowledge on the physiochemical properties of CIT and SER 

(Reasor et al. 2006), and that both SSRIs were reported to inhibit LPLA2 with a 

reported IC50 of 8.6 and 19.5 µM, respectively (Hinkovska-Galcheva et al. 2021), our 

results strongly point towards their lysosomal accumulation in maturing adipocytes, 

inhibiting LPLA2 to promote phospholipid accumulation. The current gene expression 

data does not show a difference in LPLA2 expression after SSRI treatments. However, 

this is not surprising as the inhibition of LPLA2 occurs through a molecular 

mechanism that is not regulated by gene expression.  

A recent study tested the effects of some CADs (not including CIT or SER, but 

including amiodarone and another SSRI, fluoxetine) on 3T3-L1 cells and reported a 

positive correlation between lysosomal accumulation of CADs and decreased 

adipocyte differentiation (Kagebeck et al. 2018). They concluded that high 

accumulation of CADs in lysosomes leads to lysosomal dysfunction and the inhibition 

of autophagy, the process of lysosomal degradation of intracellular components like 

damaged organelles or proteins (Cabrera-Reyes et al. 2021), which in turn inhibits 

adipocyte differentiation. Their findings align with our results of SSRIs’ inhibitory 

effects on adipogenesis in MSCs and 3T3-L1 cells. 
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Another study with the 3T3-L1 cell line showed high accumulation of CADs in mature 

adipocytes (after differentiation) via binding to phospholipid membranes (Sanchez 

Garcia et al. 2018), which confirms the results of our experiments with MSCs in the 

mature adipocyte setup. This suggests that CADs binding to phospholipid membranes, 

which is a fundamental step in lysosomal accumulation shown across various cell 

types, is likely occurring in differentiating and mature adipocytes. 

Finally, the downregulation of many adipocyte-related pathways made us hypothesize 

whether SSRIs were antagonists for PPARg. However, additional experiments on the 

PPARg reporter using an antagonist set-up did not show any effect. The process of 

PPARγ activation during the initial step of adipogenesis involves the release of 

arachidonic acid from membrane phospholipids. Cytosolic phospholipase A2 (cPLA2) 

is a critical enzyme in arachidonic acid mobilization and subsequent prostaglandin 

(PG) production. Specifically, PG15d acts as an endogenous ligand for PPARγ, 

initiating the expression of adipogenic genes. In this context, cPLA2 acts as a 

proadipogenic factor in early adipocyte differentiation. Recent studies emphasized the 

importance of the phospholipase A2 pathway in adipocyte differentiation (Peña et al. 

2016). In previous studies, azithromycin, a known CAD, was shown to inhibit PG 

synthesis, likely due to high binding to the phospholipid membrane and subsequent 

disruption of cPLA2 activity (Banjanac et al. 2012). It is likely that the positive 

correlation between CAD accumulation and the inhibition of adipocyte differentiation 

could be a result of the inhibition of the signaling cascade leading to PPARγ activation 

(Kagebeck et al. 2018). Although, we do not know exactly how these SSRIs are able 

to suppress adipogenesis in MSCs, our hypothesis is that the same mechanism could 

be underlying this effect, along with increased production of phospholipids and a 

balance towards lysosome formation, leading to less functional adipocytes. 

 

5.3.Impact of Research for the Scientific Field and Future Perspectives 

Currently, the efforts in the obesogen field are focused on developing new human-

relevant models to identify potential obesogens (Kassotis et al. 2022; Legler et al. 

2020). The novel 3D model we employed for the assessment of SSRIs offers a robust 

platform for assessing adipogenesis and screening obesogens. Our results with the 3D 

model demonstrate its ability to reveal novel mechanisms involved in obesogen action, 
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otherwise not observed in 2D. Although a direct comparison to human adipose tissue 

in terms of transcriptional profiles would be the next step to characterize this model, 

all our analyses indicate it a suitable model for assessing the effects of potential 

obesogens on adipogenesis. In future studies, the model could be further improved by 

the inclusion of additional cell lines found in adipose tissue, such as macrophages and 

endothelial cells, which would enhance physiological relevance and shed light on the 

interplay between metabolic organs and immune responses. Nevertheless, the 3D 

model holds promise in replacing conventional 2D methods with preadipocyte cell 

lines, moving obesogen research even further by answering the need for better and 

more human-relevant testing methods. 

The current approach in the obesogen field is to assess whether a chemical can be 

classified as an obesogen, by using a weight-of-evidence approach. For this approach, 

it is crucial to identify molecular initiating events and key events to generate an 

Adverse Outcome Pathway (AOP) for metabolism disruption (Legler et al. 2020). 

Although there is no complete AOP for metabolism disruption or obesity, this study 

indicates lysosomal disruption as a key event for drug-induced adipocyte dysfunction 

and paves the way for future research directions. Furthermore, AOPs have been 

developed around lysosomal disruption for liver toxicity (AOP144, lysosome 

dysfunction; AOP130, phospholipase inhibition) (Kuburic et al. 2023; Oh et al. 2023), 

in which many key events are present in our data. Apart from lysosome formation, 

mitochondrial dysfunction is a common key event in both AOPs, similarly, 

mitochondria function (Oxidative Phosphorylation) was also predicted to be affected 

in our RNA-seq dataset. CADs are also known to accumulate in mitochondria, causing 

increased proton transfer across the inner mitochondrial membrane towards the matrix, 

which in turn disrupts electron transfer crucial for ATP synthesis (Fromenty, 2023). 

Future research with chronic exposure experiments might give insights into the further 

progression of this pathway leading to inflammation and cell death, which would be 

an important step in developing an AOP for metabolism disruption with these 

pharmaceuticals. 

Our assessment of CIT and SER strongly points toward their ability to disrupt 

important adipogenic processes in vitro and pave the way for future research 

directions. To our knowledge, there are no reported effects on adipogenesis from in 

vivo studies following CIT or SER exposure. Future studies in more complex animal 
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models should focus on the (developmental) effects of CIT and SER, specifically 

related to metabolism and associated endpoints such as dyslipidemia, inflammation, 

and fibrosis in adipose tissue, as well as mechanistic experiments into the role of 

LPLA2 in adipocytes. 

Given the common use of CIT and SER during pregnancy, it is important to explore 

whether these effects extend into later stages of life due to exposure during fetal 

development. Epidemiological studies to date mainly focus on fetal and neonatal 

outcomes of prenatal SSRI exposure (Fitton et al. 2020; Lebin and Novick 2022). 

Because of the lack of longitudinal studies exploring metabolic outcomes, our 

knowledge of the risks of maternal SSRI use related to obesity and metabolism is 

limited. Exploration of these areas by long-term studies that follow up children after 

birth and throughout childhood, or even into adulthood should be the focus of future 

epidemiological studies. Such studies would enhance our understanding of the 

relationship between prenatal exposures and potential health outcomes in children, 

contributing to future safety assessments of SSRIs. 
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6. Conclusion 

The rise in obesity calls for the exploration of chemicals’ influence, including 

pharmaceuticals, on adipose tissue development and function to promote obesity. The 

growing fetus can also be exposed to these obesogens through the placenta, which 

increases obesity and related metabolic disease risk in adulthood. Antidepressants, 

particularly SSRIs, stand out among the diverse range of pharmaceuticals for their high 

prescription rates, despite substantial evidence pointing towards their potential impact 

on metabolism and weight gain. Considering their common use during pregnancy, 

these effects might extend into the later stages of life due to exposure during fetal 

development. 

This thesis increases our understanding of how CIT and SER affect the process of 

adipocyte differentiation and provides valuable insights into the mechanisms behind 

their action. Our findings reveal the profound impact of CIT and SER on lipid 

metabolism within differentiating and mature adipocytes in the range of reported 

steady-state plasma concentrations. Contrary to existing epidemiological studies that 

associate long-term treatment with these compounds with weight gain, our results 

paradoxically unveil a counterintuitive suppression of adipogenesis on the basis of 

gene expression. Transcriptomic profiling proved to be a valuable tool in discovering 

undetected mechanisms, in combination with whole transcriptomics and functional 

analyses in MSCs, we were able to pinpoint the mode of action of these SSRIs, 

surprisingly pointing towards the formation of lysosomes and increased phospholipids 

instead of neutral lipids, indicating the formation of dysfunctional adipocytes. 

In conclusion, our data strongly suggest potential implications for the maintenance of 

a physiologically balanced metabolism. Although the systemic consequence of these 

effects is complex and difficult to predict, our results are an important step in further 

evaluating the safety of these SSRIs on endpoints that have not been studied 

extensively. The results of this comprehensive research offer valuable insights into 

SSRIs’ potential impact on adipogenesis and their part in the complex landscape of 

obesity. Thereby, underscore the need for heightened caution when employing these 

pharmaceuticals, particularly during pregnancy. 
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