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The diagnostic of breast cancer and breast imaging procedures are typically carried 

out using a variety of imaging modalities, including mammography, MRI, and Ultrasound. 

However, Ultrasound and mammography have limitations. MRI is better than other 

procedures. Recent computational approaches, such as the Radiomics applied to image 

analysis, have shown remarkable progress for removing diagnostic difficulties. This thesis 

analyzed the robustness of breast tumor classification with features extraction (radiomics) 

and featureless method (deep learning). It contains two stages: the first stage introduced and 

explored radiomics based steps. A total of 111 tumor lesions were used to derive 74 radiomic 

features consisting of shape, first-order, and three separate second-order metrics. Four 

separate associations of features were used to classify tumor lesions with four different 

kernels from support vector machine algorithm. Second-order defined data split showed 

better cross-validation performance with highest accuracy of 96.17%, where all feature 

combinations data split showed 96.08% accuracy. In the confusion matrix analysis, the SVM-

RBF kernel developed optimal diagnostic efficiency with a maximum test accuracy of 

97.06% on two separate combination data group analysis. The second stage developed with 

deep learning techniques (InceptionV3 and CNN-SVM). A total of 2998 images were used 

to create the models. In this portion, the CNN-SVM model achieved the highest accuracy, 

95.28%, with an AUC of 0.974, where the pre-trained InceptionV3 achieved an AUC of only 

0.932. Finally, the obtained result in both stages was discussed together and other related 

studies. 
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Göğüs kanserinin teşhisi ve göğüs görüntüleme işlemlerinde tipik olarak, 

mamografi, MRI ve Ultrason gibi çeşitli görüntüleme araçları kullanılarak 

gerçekleştirmektedir. Ancak, Ultrason ve mamografinin görüntülemelerinin sınırlamaları 

vardır. MRG ise diğer kullanılan yöntemlere göre daha iyidir. Görüntü analizine uygulanan 

Radiomics gibi son zamanların hesaplama yaklaşımları, teşhis zorluklarını ortadan kaldırmak 

için dikkate değer bir ilerleme göstermiştir. Bu tez, meme tümörü sınıflandırmasının 

sağlamlığını özellik çıkarma (radyomik) ve özelliksiz yöntem (derin öğrenme) ile analiz 

etmektedir. İki ana bölümden meydana gelmektedir: ilk bölüm, radyomik temelli adımlar 

araştırıldı ve on uygun uygulamalar gerçekleştirilmişti.  Görüntü üzerinden, birinci derece ve 

üç ayrı ikinci derece metrikten oluşan 74 radyomik özelliklerini türetebilmek için toplam 111 

tümör lezyon görüntüsü kullanılmıştır. Destek vektör makine algoritmasından dört farklı 

çekirdek ile tümör lezyonlarını sınıflandırmak için dört ayrı özellik ilişkilendirmesi 

kullanılmıştır. İkinci dereceden tanımlanmış veri bölümleme analizi ile %96,17'lik en yüksek 

doğrulukla daha iyi sonuçlar ortaya koymuştur. Burada tüm özelliklerin kombinasyonları veri 

bölümleme ile de %96,08 doğruluk başarısı göstermiştir. Karışıklık matrisi analizinde, SVM-

RBF çekirdeği, iki ayrı kombinasyon veri grubu analizinde maksimum %97.06 doğrulukla 

optimum tanı verimliliğini geliştirdi. İkinci bölümde de ise, derin öğrenme tekniklerinden 

InceptionV3 ve CNN-SVM kullanılmıştır. Modelleri oluşturmak için toplam 2998 görüntü 

kullanmıştır. Bu bölümde, CNN-SVM modeli, önceden eğitilmiş InceptionV3'ün yalnızca 

0,932'lik bir AUC elde ettiği, 0,974'lük bir AUC ile en yüksek doğruluğu %95,28'e ulaşmıştır.  

 

Anahtar Kelimeler: Meme Tümörü Sınıflandırması, Radyomik, Derin Öğrenme
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EXTENDED SUMMARY 

 

Breast cancer is the most common type of cancer in women. According to a 

report by the American Cancer Society, over 2 million women were diagnosed with 

breast cancer in 2018. Although the number of cancer deaths among American 

women has increased over the past nine decades, breast cancer was the second 

leading cause of death among women from 1930 to 2016, but the death rate has 

dropped by 40 percent in the last 40 years. Early detection is responsible for this 

drop. The diagnosis of cancer is a highly complex procedure in medical research, 

and numerous tests are needed for appropriate diagnosis. Recent advancements in 

medical imaging technology, particularly in artificial intelligence-based image 

analysis, can significantly help areas of medical practice by providing real-world 

difficulties in detecting cancer, evaluating treatment, and tracking disease 

progression. The ultimate goal of medical imaging is to see the disease as early as 

possible, detect tumors, predict effects on the patient's physical well-being, and 

better control. 

Typically, diagnostic and imaging operations are performed utilizing a range 

of imaging modalities, including mammography, magnetic resonance imaging, and 

ultrasound. However, there are drawbacks to both mammography and ultrasonic 

imaging methods. Breast MRI offers the highest effectiveness for detecting breast 

cancer of any contemporary clinical imaging modality and is crucial in breast 

imaging operations. While T1-weighted contrast-enhanced imaging is the 

foundation for breast MRI, T2-weighted and diffusion-weighted imaging are utilized 

to characterize lesions further. The MR evaluation of breast tumors enables accurate 

differentiation of benign from malignant lesions. The approach to customized 

medicine naturally leads to quantitative analysis of medical imaging. Advances in 

artificial intelligence for the interpretation of massive amounts of figurative data 

from various imaging technologies are critical in identifying cancer. Three distinct 
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significant techniques have been discovered under this paradigm: Radiomics, 

Machine Learning, and Deep Learning. 

The Radiomics quantitative characteristics extraction method is designed to 

get a number of different images from a defined area of interest (ROI). This process 

is divided into several stages. At first, the process requires the gathering of image 

data. After the preprocessing phases are completed, the images are segmented to 

determine the location of the tumor. The ROIs have been found by a semi-automatic 

segmentation methodology known as thresholding-based segmentation. A series of 

radiological images, initially taken for conventional purposes, is then used to locate 

areas of interest (ROIs) and their functionality. Once the ROIs have been found, 

radiomics features are retrieved from the ROIs for statistical evaluation. In the last 

few years, an increasing number of user-friendly and open-access software is 

available to extract radiomics features from medical images. The most prominent 

examples include MaZda, PyRadiomics, TexRAD, LIFEx, MIM, ONCOradiomics, 

and 3DSlicer. The features, in this case, were extracted by setting up the 

PyRadiomics setup. 

The computational radiomics properties are most frequently classified as 

Shape, First-Order Statistics, Second-Order Statistics, and Higher-Order Statistics. 

Shape, First-Order Statistics, and three Second-Order Statistics characteristics 

(GLCM, GLDM, and NGTDM) were employed in this analysis to differentiate 

between benign and malignant breast lesions. The extracted features are studied 

using a variety of statistical models to machine learning methods. Traditionally, the 

majority of radiomics research has been conducted using traditional classification 

methods such as Bayesian (BY) techniques, Boosting (BST), Decision trees (DT), 

Discriminant analysis (DA), or support vector machine (SVM). This thesis employed 

the SVM technique to verify classification accuracy using four different kernels 

(Linear, RBF, Polynomial, and Sigmoid). 

More recently, deep learning has helped many areas enhance their accuracy. 

Due to deep learning's success in various medical applications, this work suggested 
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two deep learning-based systems for breast tumor classification. The thesis 

implemented convolutional neural networks (CNNs) followed by a support vector 

machine-based classifier. Additionally, it examined an InceptionV3 pre-trained 

model. In this instance, the dataset was used entirely imbalanced. Thus, a balance 

data generator with an up-sampling approach and data augmentation approach was 

created in combination to address the issue of data imbalance. The image 

preprocessing and segmentation phases were performed using an open-source image 

processing application called Fiji (ImageJ). The complete evaluation process was 

written and implemented on the Google Colab Cloud platform, designed for Python 

code development. 

Finally, the radiomics with machine learning and deep learning models were 

compared to other state-of-the-art investigations. After studying the literature related 

to both processes, the thesis concluded that the research was sufficiently acceptable 

in the database that used, and the model strategies was adopted. 
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GENİŞLETİLMİŞ ÖZET 

 

Meme kanseri kadınlarda en sık görülen kanser türüdür. Amerikan Kanser 

Derneği tarafından hazırlanan bir rapora göre, 2018'de 2 milyondan fazla kadına 

meme kanseri teşhisi kondu. Amerikalı kadınlar arasında kanser sebepli ölümlerin 

sayısı son doksan yılda artarken, meme kanseri 1930'dan 2016'ya kadar ölüm 

nedenlerinde ikinci sırada yer aldı. Ancak erken teşhis sayesinde ölüm oranı son 40 

yılda yüzde 40 düştü. Kanser teşhisi son derece karmaşık bir işlemdir ve doğru teşhis 

için çok sayıda test gereklidir. Tıbbi görüntüleme teknolojisinde özellikle yapay zeka 

tabanlı görüntü analizindeki son gelişmeler; kanseri tespit etmede, tedaviyi 

değerlendirmede ve hastalığın ilerleme sürecinin takibinde zorlukların üstesinden 

gelmeye önemli ölçüde yardımcı olur. 

Tipik olarak tanı ve görüntüleme işlemleri, mamografi, manyetik rezonans 

görüntüleme ve ultrason dahil olmak üzere bir dizi görüntüleme yöntemi kullanılarak 

gerçekleştirilir. Bununla birlikte, hem mamografi hem de ultrasonik görüntüleme 

yöntemlerinin dezavantajları vardır. Meme MRI, herhangi bir çağdaş klinik 

görüntüleme modalitesinin meme kanserini saptamak için en yüksek etkinliği sunar 

ve bu nedenle meme görüntüleme operasyonlarında çok önemlidir. T1 ağırlıklı 

kontrastlı görüntüleme meme MRI'nin temelini oluştururken, lezyonları daha iyi 

karakterize etmek için T2 ağırlıklı ve difüzyon ağırlıklı görüntüleme kullanılır. 

Meme tümörlerinin MR değerlendirmesi, iyi huylu ve kötü huylu lezyonların doğru 

bir şekilde ayırt edilmesini sağlar. Kişiye özel tıbbî yaklaşım, doğal olarak tıbbi 

görüntülemenin nicel analizine yol açar. Çeşitli görüntüleme teknolojilerinden elde 

edilen büyük miktarlardaki figüratif verilerin yorumlanması için yapay zekadaki 

gelişmeler, kanserin tanımlanmasında kritik öneme sahiptir. Bu paradigma altında 

Radyomik, Makine Öğrenimi ve Derin Öğrenme dahil olmak üzere üç farklı ana 

teknik keşfedilmiştir. 

Radiomics nicel karakteristikleri çıkarma yöntemi, tanımlanmış bir ilgi 

alanından (ROI) bir dizi farklı görüntü elde etmek için tasarlanmıştır. Bu süreç birkaç 
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aşamaya ayrılmıştır. İlk başta, süreç görüntü verilerinin toplanmasını gerektirir. Ön 

işleme aşamaları tamamlandıktan sonra, tümörün yerini belirlemek için görüntüler 

segmentlere ayrılır. ROI'ler, eşiklemeye dayalı segmentasyon olarak bilinen yarı 

otomatik bir segmentasyon metodolojisi ile bulunmuştur. Başlangıçta geleneksel 

amaçlarla alınan bir dizi radyolojik görüntü daha sonra ilgi alanlarını (ROI'ler) ve 

bunların işlevselliğini belirlemek için kullanılır. ROI'ler belirlendikten sonra, 

istatistiksel değerlendirme için ROI'lerden radyomik özellikler alınır. Son birkaç 

yılda, tıbbi görüntülerden radyomik özellikleri çıkarmak için artan sayıda kullanıcı 

dostu ve açık erişimli yazılım mevcuttur. En belirgin örnekler MaZda, PyRadiomics, 

TexRAD, LIFEx, MIM,  ONCOradiomics ve 3DSlicer'dir. Bu durumdaki özellikler, 

PyRadiomics kurulumu ayarlanarak çıkarıldı. 

Hesaplamalı radyomik özellikler en sık Şekil, Birinci Dereceden 

İstatistikler, İkinci Dereceden İstatistikler ve Yüksek Dereceden İstatistikler olarak 

sınıflandırılır. İyi huylu ve kötü huylu meme lezyonlarını ayırt etmek için bu analizde 

Şekil, Birinci Derece İstatistik ve üç İkinci Derece İstatistik özelliği (GLCM, GLDM 

ve NGTDM) kullanıldı. Çıkarılan özellikler, makine öğrenimi yöntemlerine yönelik 

çeşitli istatistiksel modeller kullanılarak incelendi. Geleneksel olarak radyomik 

araştırmalarının çoğu, Bayesian (BY) teknikleri, Artırma (BST), Karar ağaçları 

(DT), Diskriminant analizi (DA) veya destek vektör makinesi (SVM) gibi geleneksel 

sınıflandırma yöntemleri kullanılarak yürütüldü. Tezimizde, dört farklı çekirdek 

(Doğrusal, RBF, Polinom ve Sigmoid) kullanarak sınıflandırma doğruluğunu 

ölçmek için SVM tekniğini tekniği kullanıldı. 

Son zamanlarda, derin öğrenme birçok çalışma alanında doğruluğun 

artmasına yardımcı oldu. Derin öğrenmenin çeşitli tıbbi uygulamalardaki başarısı 

nedeniyle, bu tezde meme tümörü sınıflandırması için iki derin öğrenme tabanlı 

sistem önerdik. Evrişimli sinir ağları (CNN'ler) ve ardından bir destek vektörü 

makine tabanlı sınıflandırıcı bu çalışmada kullanıldı. Ek olarak, InceptionV3 adlı 

önceden eğitilmiş bir modeli inceliyoruz. Bu örnekte, veri seti tamamen dengesiz 

kullanılmıştır. Böylece, veri dengesizliği sorununu ele almak için bir yukarı-
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örnekleme yaklaşımı ve veri büyütme yaklaşımına sahip bir denge veri oluşturucu 

bir arada oluşturulmuştur. Görüntü ön işleme ve segmentasyon aşamaları, Fiji 

(Image) adlı açık kaynaklı bir görüntü işleme uygulaması kullanılarak 

gerçekleştirilmiş ve tüm değerlendirme süreci Python ile kod geliştirme için 

tasarlanmış Google Colab platformunda yazılıp uygulanmıştır. 

Son olarak, makine öğrenimi ve derin öğrenme modellerine sahip radyomik, 

diğer son teknoloji araştırmalarla karşılaştırıldı. Her iki süreçle ilgili literatürü 

inceledikten sonra, kullandığımız veri tabanında ve benimsediğimiz model 

stratejilerinde aramalarımızın yeterince kabul edilebilir olduğu sonucuna varıldı. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

X 

 



 

XI 

ACKNOWLEDGEMENTS 

 

I want to thank Prof. Dr. Ulus ÇEVİK for his support and motivation during 

the academic year and for his approval to be a member of jury. I am very grateful to 

him for his direction, motivation, constructive advice with this thesis.  

I also extend my deepest gratitude to Prof. Turgay İBRİKCİ. I cannot say 

thank you enough for his tremendous support and help. I am very grateful to him for 

his supervision, direction, motivation, constructive advice, and continued faith in me 

with this thesis. I feel motivated and encouraged every time I attend his meeting. 

Without his encouragement and guidance this thesis would not have materialized.  

I want to thank Assoc. Prof.  Dr. Sami ARICA, as well for his consent to be 

a member of the jury.  

I owe extra appreciation to Prof. Semra PAYDAŞ for sharing her knowledge 

and experience on breast cancer.  Also, for supporting me a great deal by sharing the 

original dataset.  

I would like to express my gratitude to Assist. Prof. Dr. Erkut TEKELİ for 

his willingness to participate on the jury as well. 

I want to share my sincere thanks and gratitude to Turkish Government, 

Presidency for Turks Abroad and Related Communities (YTB) and Turkish people 

for giving me this opportunity and for their hospitality.  

Finally, I wish to express my heartfelt thankfulness to my family for their 

patience, encouragement, and continuous moral support. 



 

XII 

CONTENTS              PAGE 

 

ABSTRACT ............................................................................................................... I 

ÖZ ............................................................................................................................ II 

EXTENDED SUMMARY ...................................................................................... III 

GENİŞLETİLMİŞ ÖZET ..................................................................................... VII 

ACKNOWLEDGEMENTS .................................................................................... XI 

CONTENTS .......................................................................................................... XII 

LIST OF TABLES ............................................................................................... XIV 

LIST OF FIGURES ............................................................................................. XVI 

LIST OF ABBREVIATIONS ........................................................................... XVIII 

 INTRODUCTION ................................................................................................ 1 

1.1. Background and Research Motivation ........................................................... 1 

1.2. Objectives of the Thesis ................................................................................ 3 

1.3. Proposed Idea of the Thesis ........................................................................... 3 

1.4. Outline of the Thesis ...................................................................................... 5 

 LITERATURE REVIEW ..................................................................................... 7 

 MATERIAL AND METHODS .......................................................................... 13 

3.1. Data Preparation .......................................................................................... 13 

3.1.1. Patient Population ............................................................................. 13 

3.1.2. Training, Testing Platform and Tools ............................................... 13 

3.1.2.1. Fiji (ImageJ) ............................................................................ 13 

3.1.2.2. Google Colaboratory ............................................................... 14 

3.1.3. MR Imaging ...................................................................................... 15 

3.1.4. Image Segmentation .......................................................................... 16 

3.2. Radiomics Feature Extraction ..................................................................... 17 

3.2.1. Shape Features .................................................................................. 18 

3.2.2. First-order Radiomics ....................................................................... 20 

3.2.3. Second Order Features ...................................................................... 21 



 

XIII 

3.2.3.1. Gray Level Co-occurrence Matrix (GLCM) Features ............. 21 

3.2.3.2. Gray Level Dependence Matrix (GLDM) Features ................. 24 

3.2.3.3. Neighboring Gray Tone Difference Matrix (NGTDM)     

Features .................................................................................... 25 

3.2.4. Implementation of PyRadiomics for Feature Extraction................... 27 

3.3. Analysis Algorithms .................................................................................... 28 

3.3.1. Machine Learning Algorithm ............................................................ 28 

3.3.1.1. Kernels of Support Vector Machine (SVM) ............................ 28 

3.3.2. Deep Learning Techniques ................................................................ 30 

3.3.2.1. Data Augmentation .................................................................. 30 

3.3.2.2. Balanced Data Generator ......................................................... 31 

3.3.2.3. InceptionV3 .............................................................................. 31 

3.3.2.4. CNN-SVM ............................................................................... 32 

3.4. Performance Assessments ........................................................................... 35 

 EXPERIMENTAL RESULTS ............................................................................ 39 

4.1. Radiomics Feature Analysis ........................................................................ 39 

4.1.1. Parameter Optimization for Selecting best value of SVM-kernels .... 44 

4.2. Deep Learning based Analysis .................................................................... 45 

4.2.1. InceptionV3 Results ........................................................................... 46 

4.2.2. CNN-SVM Results ............................................................................ 49 

4.3. Analysis of deep learning models ................................................................ 52 

 DISCUSSIONS ................................................................................................... 53 

 CONCLUSIONS ................................................................................................. 57 

REFERENCES ....................................................................................................... 59 

BIOGRAPHY ......................................................................................................... 71 

 

 



 

XIV 

LIST OF TABLES             PAGE 

 

Table 3.1. MR image series parameters .................................................................. 15 

Table 3.2. Classification of radiomics features ....................................................... 18 

Table 3.3. Mathematical explanation of the features of the shape features ............ 19 

Table 3.4. Mathematical explanation of features of the first order features ........... 20 

Table 3.5. Mathematical explanation of the features of the GLCM ....................... 22 

Table 3.6. Mathematical explanation of the features of the GLDM ....................... 25 

Table 3.7. Mathematical explanation of the features of the NGTDM .................... 26 

Table 4.1. Cross-validation mean accuracy of feature data split with SVM-   

kernels ................................................................................................... 40 

Table 4.2. Parameters range of each SVM kernel to be evaluated.......................... 44 

Table 4.3. Every SVM kernel best results on binary classification ........................ 45 

Table 4.4. Number of parameters of the evaluated models ..................................... 46 

Table 4.5. Evaluation metrics report on InceptionV3 model .................................. 48 

Table 4.6. Evaluation metrics results on CNN-SVM model ................................... 51 

Table 4.7. Confusion metrics parameters of deep learning models ........................ 52 

Table 4.8. Performance results of the deep learning models .................................. 52 

Table 5.1. A comparison with other feature-based machine learning analysis ....... 53 

Table 5.2. Comparison with other deep learning techniques .................................. 54 

 

 

 

 

 

 

 

 

 



 

XV 

 

 

 

 

 



 

XVI 

LIST OF FIGURES           PAGE 

 

Figure 1.1. Number of publications per year in PubMed containing “machine 

learning”, “breast cancer”, “classification” and one of the three 

modality keywords (MRI, mammography, radiomics) from 2016      

to 2021. ................................................................................................ 1 

Figure 1.2. Number of publications per year in PubMed containing “deep 

learning”, “breast cancer”, “classification” and one of the three 

modality keywords (MRI, mammography, radiomics) from 2016       

to 2021. ................................................................................................ 2 

Figure 1.3. A block diagram of proposed work ........................................................ 4 

Figure 3.1. T2 weighted (T2W) image (left) and 7dynamic-Enhanced (7dyn) T1 

High Resolution Isotropic Volume Excitation MR image (right);     

(A, D) original MR images; (B, E) segmented mask images,             

(C, F) Selected ROI ........................................................................... 17 

Figure 3.2. A schematic view of the Inception V3 model architecture  .................. 32 

Figure 3.3. Graphical view of Rectified Linear Unit (ReLU) function................... 33 

Figure 3.4. A detail view of modified CNN-SVM model architecture ................... 34 

Figure 4.1. SVM-Linear Kernels Confusion Matrix Output ................................... 41 

Figure 4.2. SVM-RBF Kernels Confusion Matrix Output ...................................... 41 

Figure 4.3. SVM-Polynomial Kernels Confusion Matrix Output ........................... 43 

Figure 4.4. SVM-Sigmoid Kernels Confusion Matrix Output ................................ 43 

Figure 4.5. Accuracy of Training and Validation Phase of InceptionV3 model ..... 47 

Figure 4.6. Loss Plot of Training and validation Phase of InceptionV3 model ...... 48 

Figure 4.7. ROC-AUC Plot of InceptionV3 with test data ..................................... 49 

Figure 4.8. Accuracy of Training and Validation Phase of CNN-SVM model ...... 50 

Figure 4.9. Loss Plot of Training and Validation Phase of CNN-SVM model ....... 50 

Figure 4.10. ROC-AUC Plot of CNN-SVM with test data ..................................... 51 

file:///E:/Study/Thesis/Main_Writing/Introduction.docx%23_Toc73221305
file:///E:/Study/Thesis/Main_Writing/Introduction.docx%23_Toc73221305
file:///E:/Study/Thesis/Main_Writing/Introduction.docx%23_Toc73221305
file:///E:/Study/Thesis/Main_Writing/Introduction.docx%23_Toc73221305


 

XVII 

 

 

 

 

 

 

 



 

XVIII 

LIST OF ABBREVIATIONS 

 

AI  : Artificial Intelligence 

AT  : Acquisition Time 

AUC  : Area Under Curve 

BCDR-F03 : Breast Cancer Digital Repository 

BI-RADS : Breast Imaging Reporting and Database System score 

CAD  : Computer Aided Design 

CART  : Classification And Regression Trees 

CBIS-DDSM : Enterprise Computer-Based Information System 

CNN  : Convolutional Neural Network 

DBT  : Digital Breast Tomosynthesis 

DCNN  : Deep Convolutional Neural Network 

DDSM  : Digital Database for Screening Mammography 

DICOM : Digital Imaging and Communications in Medicine 

DCE  : Dynamic Contrast Enhanced 

DWI  : Diffusion-Weighted Imaging 

ET  : Repetition Time 

FFDM  : Full Field Digital Mammograms 

FPR  : False Positive Rate 

GLCM  : Gray-Level Co-Occurrence Matrix 

GLDM  : Gray Level Dependence Matrix 

GPU  : Graphics Processing Unit 

GUI  : Graphical User Interface 

GLRLM : Gray Level Run Length Matrix 

IoT  : Internet of Things 



 

XIX 

JPEG  : Joint Photographic Experts Group 

KNN  : k-Nearest Neighbors 

LDA  : Linear Discriminant Analysis 

LSTM  : Long Short-Term Memory 

MIAS  : Mammographic Image Analysis Society 

MLP  : Multi-Layer Perceptron 

MRI  : Magnetic Resonance Imaging 

MVFF  : Multi-View Feature Fusion 

NA  : Number of Average 

NGTDM : Neighborhood Gray-Tone Difference Matrix 

NRRD  : Nearly Raw Raster Data 

OMI-DB : OPTIMUM Mammography Image Database 

PCA  : Principal Component Analysis 

QDA  : Quantitative Descriptive Analysis 

PPPOV : Percent Phase Field of View 

RAM  : Random Access Memory 

RBF  : Radial Basis Function 

ReLU  : Rectified Linear Activation Function 

ResNet  : Residual Network 

ROC  : Receiver Operating Characteristic 

ROI  : Region Of Interest 

STIR  : Short Tau Inversion Recovery 

SVM  : Support Vector Machine 

T2W-TSE : T2 Weighted-Turbo Screen Echo 

T2W-SPAIR : T2 Weighted-Spectral Attenuated Inversion Recovery 

TPR  : True Positive Rate 



 

XX 

TPU  : Tensor Processing Unit 

VOI  : Volume Of Interest 

VGG16 : Visual Geometry Group 

XGBoost : Extreme Gradient Boosting 

 

 

 



1. INTRODUCTION                         Harun-Ur-RASHID 

1 

 INTRODUCTION 

 

1.1. Background and Research Motivation 

Breast cancer is one of the leading causes of female mortality. Breast cancers 

that are diagnosed early have a slightly higher chance of having a favorable clinical 

outcome. Medical imaging has long been recognized as a reliable tool for the early 

detection of cancer and monitoring patients during and after chemotherapy or 

surgery. Artificial intelligence advances in analyzing vast amounts of interpretive 

image data produced by various imaging methods contribute significantly to tumor 

detection. Three fundamental approaches to goal-oriented research can be 

differentiated in this context: radiomics, machine learning, and deep learning. The 

increase in science journals is shown in Figure 1, which shows that the number of 

publications using the radiomics, MRI, and deep learning techniques discussed in 

this study has increased annually since 2016. 

 

 
Figure 1.1. Number of publications per year in PubMed containing “machine 

learning”, “breast cancer”, “classification” and one of the three 

modality keywords (MRI, mammography, radiomics) from 2016 to 

2021. (Queried: April 9, 2021) 
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Figure 1.2. Number of publications per year in PubMed containing “deep learning”, 

“breast cancer”, “classification” and one of the three modality keywords 

(MRI, mammography, radiomics) from 2016 to 2021. (Queried: April 9, 

2021) 

 

Radiomics is a rapidly growing discipline of medical image analysis 

field used to investigate tumor information. In breast cancer classification radiomics 

is a new field. To develop radiomics process it includes different steps. At the 

beginning original DICOM image used for tumor identification. Next steps it 

includes tumor segmentation and feature extraction process. Finally extracted feature 

data are organized and develops a dataset for analysis. 

After finishing the work, the breast cancer classification (benign or 

malignant) will be facilitated, and care will begin early. A comprehensive idea to 

find out the robustness of classification accuracy based on deep learning and 

radiomics will provided.  
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1.2. Objectives of the Thesis 

The principal objectives of this study are to classify the breast tumor classes 

(benign and malignant) using radiomics method and also the deep learning method. 

After that, the classification robustness of above-mentioned method will be analyzed 

briefly.  

 

 To concentrate on the uses of radiomics features in the classification of 

breast tumor lesion. 

 To explore the suitability of radiomics in distinguishing malignant from 

benign breast tumor lesions.  

 To enable comparisons with more established image-based techniques.  

 To compare the classification robustness between radiomics and deep 

learning-based cancer classification.  

 

After completing the proposed work, it is expected that the accuracy of 

diagnoses and therapy responses assessment will be improved. It also increases the 

clinical applicability of artificial intelligence. Classification robustness also ensure 

the best method to classify the breast tumor. This will provide new approaches to 

handling the problems in large data management. 

It believes that radiomics is rapidly moving beyond the realm of specialized 

study and is establishing itself as a translational technology. The purpose of this 

paper is to familiarize a broad audience of practicing clinicians, including 

radiologists, with the practice of radiomics. 

 

1.3. Proposed Idea of the Thesis 

At present days, most of the clinical diagnosis are implemented by smart 

solutions like internet of things (IoT) and artificial intelligence. Therefore, thesis 

shows the ability to use radiomics feature for tumor lesion analysis and also deep 
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learning techniques for cancer class differentiation. This work shows the way to 

develop radiomics process and also the deep learning process and their robustness 

analysis. A block diagram represents the whole idea to develop and implement this 

thesis.  

 
Figure 1.3. A block diagram of proposed work 

 

This work is separated by two different steps. In the first step, ROI is 

selected by segmentation in the selected images from the raw dataset. These ROIs 

are then used to extract tumor features from the original images. Extracted 

information are analyzed with machine learning algorithm for classification 

purposes. This process formed as Feature Based analysis. 
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In the second step, the images in the image dataset are input directly into the 

two different deep learning model. Deep learning analysis automatically extracts 

features so there is no need to save new datasets separately. Again, the extracted 

information is analyzed automatically, that means no separate algorithm is needed. 

This is why this step is called featureless method. 

Therefore, this studies aim is to determine the robustness of cancer 

classification by radiomics features extraction and deep learning with respect to 

variability in semi-automatic breast tumor segmentation on MRI. 

 

1.4. Outline of the Thesis 

Chapter 1 presents an overview of the motivation and problems of the 

present day's research summary about breast cancer classification and the major 

objectives of this thesis. This chapter also contains a summary representation of the 

proposed work. Chapter 2 gives a literature review of related studies with 

similarities, gaps, limitations, and concepts. The datasets that are used in this thesis 

are discussed in Chapter 3. The mathematics of radiomics features, feature 

extraction process, and algorithms for both machine learning and deep learning are 

also represented in Chapter 3. In Chapter 4, the obtained results are mentioned. 

Chapter 5 contains a brief discussion about proposed techniques. Finally, the 

limitation and some advice for how to overcome these limitations are addressed in 

Chapter 6. 
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 LITERATURE REVIEW 

 

In this chapter, its covered most of the recent studies that are related to 

radiomics based breast lesion classification and Magnetic Resonance image 

analyzed deep learning-based classification. It is found that the majority of these 

results may contain some intriguing possibilities that must be checked and compared 

to this dissertation. Though this thesis has analyzed two different methods and 

compared them, so that the related studies of these methods were also presented 

sequentially.   

Over the last few years, a great deal of work has been done on medical image 

processing field where deep learning, and radiomics coming to be two of the most 

common techniques. Radiomics is a relatively new technique that employs a set of 

sophisticated mathematical operations to convert imaging data to a high-dimensional 

feature vector (Aerts et al., 2014; Yip & Aerts, 2016). Many researchers have studied 

the correlation between such features and clinical variables as well as treatment 

outcome and tumor type classification (benign vs. malignant) to identify potential 

mechanisms of radiomics (Keek et al., 2018). Breast cancer has also been the subject 

of extensive studies in radiomics (Conti et al., 2020; Tagliafico et al., 2020). 

Radiomics (Gillies et al., 2016) is an imaging area that is increasingly 

flourishing and advancing in recent years. It can generalize image data and extract 

high-dimensional computational features based on shape, strength, and texture to 

provide information about the tumor phenotype and surroundings (Aerts et al., 2014; 

Kumar et al., 2012). These features are computational results of different image-

processing and data optimization algorithms of the first, second or higher-order 

statistics.  

Radiomic features are intended to extract the distinctive details of benign or 

malignant nature by quantifying various texture properties (Lambin et al., 2012). 

More precisely, first-order features are calculated on a Region of Interest (ROI) or 

Volume of Interest (VOI) utilizing voxel intensity distribution, whereas second-
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order radiomic features (GLCM, GLDM) calculate the perceptual representation in 

texture image of voxel intensity values (Velichko et al., 2020). 

Several researchers applied radiomics methods to identify the different 

forms of cancers using imaging techniques. For example, MRI-based radiomics 

research helps to differentiate subtle distinctions between various tumor phenotypes 

and has been conducted for clinical manifestations of breast and lung tumor type 

(Ardakani et al., 2015; Lang et al., 2019; Nam et al., 2019).  

MRI has several advantages for identifying breast cancer lesions. MRI is 

capable of multi-planar scanning and 3D reconstruction, which allows for a more 

accurate display the different features of a selective lesion like size, shape, breast 

lesions' position (Honda et al., 2016). However, MRI can distinguish benign from 

malignant breast cancer in approximately 72% of cases (Rankin, 2000). Indeed, its 

specificity is restricted by a number of image-quality-related factors including 

magnetic field and gradient power, coil efficiency, contrast agent effectiveness, and 

menstrual cycle (Zhou et al., 2015). 

Kaya et al. (Kaya et al., 2017) used brain MRI to segment the tumor and 

classified it via PCA which resulted in the inexplicit identification of tumor shape 

assisting to the risk of human life. Image sequences involved in classical procedure 

such as T2-weighted, Short-Tau-Inversion-Recovery (STIR), sdyn-eTHRIVE and 

Weighted Diffusion (DW) can satisfactorily be used (Thakran et al., 2018) for this 

purpose.  

Pareckh et al. (V. S. Parekh & Jacobs, 2017) developed a feature map by 

extracting features from Magnetic Resonance (MR) images and analyzed it with the 

IsoSVM model where the classifier expressed 93% sensitivity, 85% specificity and 

91% AUC. Similarly, Bickelhaupt et al. (Bickelhaupt et al., 2017) also collected 

statistical features from Magnetic Resonance (MR) images (DWI-MR and DCE-

MR) and continued by Lasso-supervised methods to classify them. This model has 

helped separate the malignant tumor from benign lesions with an AUC of 84.2% 

(DCE-MRI) and 85.1% (DWI-MR). 



2. LITERATURE REVIEW              Harun-Ur-RASHID 

9 

Whitney et al. (Whitney et al., 2019) have used DCE-MRI-derived radiomic 

features to help distinguish benign lesions from luminal A breast tumors. This 

classification exercise showed how features such as entropy and irregularity proved 

valuable by achieving an AUC rate of 72.9% with a linear discriminant analysis 

(LDA) algorithm. 

Mao et al. (Mao et al., 2019) revealed the characteristics of quantitative 

radiomics coupled with mammographic images and used machine learning 

algorithm to extract features. Using logistic regression on 51 features of radiomics, 

they found 88.6% accuracy, a better outcome than experienced radiologists. 

Recently, researchers proposed that radiomics retrieved features derived 

from two distinct methods of image collection, most likely ultrasound imaging and 

digital breast tomosynthesis (DBT), were successful at differentiating malignant 

from benign lesions (Tagliafico et al., 2018; Q. Zhang et al., 2017). Specifically, 

Zhang et al. (Q. Zhang et al., 2017) used hierarchical clustering to pick seven 

important characteristics and monitored the testing accuracy, sensitivity and 

precision where the results were 88.0%, 85.7%, and 89.3% respectively. Tagliafico 

et al. (Tagliafico et al., 2018) identified three radiomic features (energy, entropy, and 

dissimilarity) that significantly distinguished cancerous from typical breast tissue of 

patients. However, researchers’ findings indicated that these characteristics cannot 

be used in isolation to analyze breast lesion well. They achieved very poor AUC 

56.7%.  

Another study was reported that authors extracted three different features 

and analyzed them with and without making combination. Individual analysis of 

different feature and their combinational analysis model was developed by Park et 

al. (B. E. Park et al., 2016) where support vector machine algorithm were used for 

recognizing a rotator cuff supraspinatus tendon tear. The author considering five (5) 

first order, 52 second-order features (GLCM-40 and GLRLM-12). From the results, 

first order and second order (GLCM and GLRLM) features give 95%, 85%, and 
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100% accuracy, respectively. The association of all features (First order, GLCM and 

GLRLM) achieved highest 100% accuracy.  

In comparison to radiomics, which use pre-defined (manual extraction) 

features, deep convolutional networks learn and retrieve excellent information from 

training data for specific classification tasks. However, a significant barrier to the 

success of deep convolutional networks is a scarcity of sufficiently large datasets 

(Marentakis et al., 2021). The extensive use of deep learning in medical image 

processing and classification has recently emerged as the most widely used AI 

strategy in medical science (Bengio et al., 2013).  

Recently, different academic groups such as the Visual Geometry 

Community and Google researcher used sophisticated deep learning methods to 

design and implement the VGG-16, ResNet, GoogLeNet and so on models (Nahid 

& Kong, 2018). Among these sophisticated modeling methods focused on 

convolutional neural networks (CNNs), which are used to increase the performance 

of breast cancer diagnosis (Toğaçar et al., 2020). Consider the following, Khan et al. 

(S. Khan et al., 2019) analyzed two distinct dataset (public and self-collected) by 

utilizing fine-tuned DCNN architectures VGGNet, GoogleNet, and ResNet-50. They 

categorized the fused features using the average pooling approach and achieved an 

accuracy of 97.67%. Furthermore, Li et al. (Li et al., 2017) developed a procedure 

using 3D CNNs to differentiate between malignant and benign breast tumors. They 

used their own dataset which belongs 143 patients, 66 of whom had benign and 77 

of whom had malignant tumors. The accuracy (Acc), sensitivity (Sens), and 

specificity (Spec) of 3D CNN model were 0.781, 0.744, and 0.823, respectively. But 

their (Li et al., 2017) model accuracy were comparatively low.  

In the same way, Khan et al. (H. N. Khan et al., 2019) analyzed two different 

public dataset DDSM and CBIS-DDSM for the labeling of mammograms. For this 

purpose, they suggested four deep learning architectures (VGG-16, VGG-19, 

GoogLeNet, and ResNet50) based on multi-view feature fusion (MVFF).  They 

found the classification accuracy 96.66% and the AUC 93.4%.  
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Wu et al. (Wu et al., 2020) introduced a pre-trained deep learning model  

(ResNet) for classifying breast cancer screening exams that was trained and tested 

on over 200000 exams (over 1000000 images), with the network pre-trained on 

screening BI-RADS data. When tested on the sampling audience, the described 

model produced an AUC of 89.5% in forecasting the existence of breast cancer. 

A fully automated method for mass detection in Full-Field Digital 

Mammograms (FFDM) using a Faster Region-based Convolutional Neural Network 

(Faster-RCNN) was addressed by Agarwal et al. (Agarwal et al., 2020). First, author 

developed the model by using OMI-DB Database and acquired a True Positive Rate 

(TPR) of 0.93 was obtained with a False Positive Rate (FPR) of 0.78 per image. 

Then, another public dataset INbreast, was tested on same model and obtained a TPR 

of 0.91± 0.06. 

Jiang et al. (Jiang et al., 2017) classified breast tumor lesions in a new-found 

BCDR-F03 dataset with two different deep learning algorithm GoogLeNet and 

AlexNet. They received 88% and 83% AUC, respectively. However, Antropova et 

al. (Natasha Antropova et al., 2018) also achieved a good AUC 85% while 

classifying 703 MRI image data. This was achieved by another deep learning model 

named as long short-term memory network (LSTM).  

Recently, the success of the deep convolutional neural network-based 

method for breast lesion classification was compared to that of radiologists and 

conventional artificial intelligence techniques. A CNN-based ResNet model was 

developed by Truhn et al. (Truhn et al., 2018). The model used for classifying the 

benign and malignant lesion from a private dataset which contains 447 patients with 

787 malignant and 507 benign lesions from MRI image data. Finally, CNN achieved 

an AUC of 0.88, which is superior to that of a radiologist.  

The area of deep learning-based transfer learning has been intensively 

investigated for the task of classifying breast cancers. Song et al. (Spanhol et al., 

2016) offered a GoogLeNet, Inception-v2, and Inception-based CAD scheme for 

classifying three classes: normal, benign, and malignant. In final, fully connected 
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layer was replaced by XGBoost. They worked on a public DDSM dataset and 

original DCNN model achieved an accuracy of 82.84%; however, when the DCNN 

model was fine-tunned with XGBoost the classification accuracy was improved at 

92.8%.  

Mendel et al. (Mendel et al., 2019) used pre-trained VGG-19 and SVM to 

isolate and classify the features of 78 mammogram lesions. The AUC value obtained 

was 81%. According to Ekici et al. (Ekici & Jawzal, 2020), convolutional neural 

networks (CNNs) optimized with the Bayes algorithm also able to identify early 

symptoms of the disease and classifies the breast images as normal or suspected. To 

this end, they used 140 instances of thermal breast images and obtained an 98.95% 

accuracy. The main drawback of Ekici et al. (Ekici & Jawzal, 2020) is the limited 

number of training set. The number of training and testing were very small.  

The deep learning algorithm incorporated significant bias into the final 

classification result, despite the limited size of the dataset. So, different method also 

applied by the researchers to overcome the data lacking problems.  Data 

augmentation techniques were applied by Zhang et al. (X. Zhang et al., 2017). A 

transfer learning based neural network models employed for the classification and 

whole mammography images were inputted. The AUC was found 73%.  

Maicas et al. (Maicas et al., 2017) present a deep reinforcement learning Q-

method for the automatic identification of breast tumor lesions from a dataset 

containing 117 images from DCE-MRI module and authors found sensitivity 80% 

with an operating time 9221s. 
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 MATERIAL AND METHODS 

 

This chapter was covered data preparation, platforms of training and testing, 

image processing tools, Radiomics feature extraction methods mathematical 

expression, machine learning, and deep learning algorithms. Lastly, it represented 

the metrics, which were used to measure the performance of algorithms.  

 

3.1. Data Preparation 

3.1.1. Patient Population 

MR images were collected systematically from number of patients with 

imaging conducted using the identic scanner and image procedure to eliminate 

interscan heterogeneity correlated with variations in imaging ingredient or the 

imaging arrangement. The age range of the patients was 39 to 85 years. Here we 

used data from 35 patients, of whom 10 had benign and 25 had malignant tumors in 

their breasts. A total of 111 tumor locations identified in the images obtained. The 

Department of Oncology at the Cukurova University Hospital and the Department 

of Electrical and Electronics Engineering accepted this systematic research, and 

patient confidentiality was strictly ensured under the committee of ethics rules during 

the whole work. 

 

3.1.2. Training, Testing Platform and Tools 

3.1.2.1. Fiji (ImageJ) 

The images that were obtained using MRI machines were processed in open-

source image analysis application Fiji, which incorporates plugins and macros. 

Fiji combines fully featured libraries with a diverse set of scripting 

languages to rapidly prototype image-processing algorithms. Fiji simplifies the 

process of converting numerical algorithms into ImageJ plugins that can be 

distributed to end users via an incorporated upgrade scheme (Abramoff et al., 2004).  
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It extends its functionality by continuing to support a broad range of programming 

languages (Jython, Python, JavaScript, JRuby, and Bean shell), offering the most 

extensive set of programming tools available on both open-source platforms. These 

languages are not only accessible to those with no prior knowledge of Java, but also 

serve as a useful contrast to the macro language in terms of programming syntax, in 

the case of newcomers being at an adequate level. 

It is cited in over 1000 peer-reviewed works. Fiji supports a huge number of 

various image formats and a big number of pixel-based actions. Additionally, images 

with bit depths larger than 8 or 16 bits per channel are supported. It can also be used 

as an image-conversion tool. Many image formats can be read natively by Fiji, and 

with the help of a plugin, many proprietary formats can be opened.  

 

3.1.2.2. Google Colaboratory  

We used Google Colaboratory, a powerful Python development 

environment. It is a free cloud service built on Jupyter notebooks for developing 

machine and deep learning projects. Colab is also integrated with Google Drive, 

allowing users to share and upload notebook and associated materials to the account. 

Colab provides a runtime optimized for deep learning with unrestricted 

access to a robust GPU/TPU. The only constraint on Colab is that the runtime is 

interrupted after 12 hours of continuous operation. Occasionally, it can disconnect 

after an hour of inactivity. Additionally, we found that Colab comes with 12GB of 

RAM and can be expanded to 25GB during runtime if required. The internet 

connection in Colab is up to 120MB/s. We uploaded the original and mask images 

to Google Drive and then mounted them on Colab. Due to RAM crashes at the data 

augmentation stage, we exercised some restraint when running the codes. Colab 

comes pre-installed with nearly all of the required Python libraries, including 

TensorFlow, Keras, Pandas, Numpy, and Matplotlib.  

 



3. MATERIAL AND METHODS             Harun-Ur-RASHID 

15 

3.1.3. MR Imaging 

The MR imaging was conducted at the Cukurova University Hospital, 

Turkey, prior to a typical imaging procedure containing six different sequences. 

They are T2W-TSE (T2-Weighted Turbo Spin Echo), T2W-SPAIR (T2-Weighted 

Spectral Attenuated Inversion Recovery), STIR (Short Tau Inversion Recovery), 

DWI (Diffusion Weighted Imaging), 7dyn-eTHRIVE (7dynamic-Enhanced T1 High 

Resolution Isotropic Volume Excitation), and sdyn-eTHRIVE (Subtraction of 

Dynamic Enhanced T1 High Resolution Isotropic Volume Excitation). MRI was 

performed on a 3.0T MR scanner (Philips healthcare, Ingenia, 2016, 

Netherlands) with a bore of 70 cm with independent receive channel. The T2W-TSE, 

T2W-SPAIR, STIR and DWI series sequenced images were gathered with a 3mm 

slice thickness, but the sdyn-eTHRIVE and 7dyn-eTHRIVE slice thickness were 

2mm. Table 3.1 contains the above-mentioned sequence parameters such as matrix, 

echo time, number of averages, repetition time, and other values.   

 

Table 3.1. MR image series parameters 
Parameters AT(s) ET (ms) RT (ms) NA Matrix PPFOV 

(mm) 

T2W 152102.86 120 4444 1 350×245 125 

T2W-SPAIR 155013.72 70 4086 2 340×258 121.35 

STIR 153945.20 65 4626 2 248×205 131.96 

DWI 152627.18 93.31 13191 2 155×153 121.21 

Sdyn 153327.76 2.14 4.3161 1 339×338 121.21 

7dyn 153552.06 2.14 4.3161 1 339×338 121.21 

 

A gadolinium-based contrast agent (gadobutrol, Gadovist; Bayer 

Healthcare, Berlin) which are relatively large molecules, can easily extravasate from 

such vessels, and therefore rapidly accumulate breast cancer stroma and was used 

0.1 mmol/kg of body weight by intravenous. 
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3.1.4. Image Segmentation 

All of the patient's MR images were converted from DICOM to NRRD 

format. Additionally, the surrounding areas around the breast region were cropped 

and saved in PNG format for deep learning analysis. 

A semi-automated segmentation method has been used in the breast tumor 

segmentation process. The segmentation stage was conducted to contextualize each 

benign and malignant breast tumor's tumor in fragments of 2D and 3D MR images. 

An experienced radiologist from Cukurova University Hospital worked initially on 

the breast MR images to detect tumors. Figure 3.1  represented a segmented output. 

An open-source dedicated medical image processing program called ImageJ-based 

FIJI (Schindelin et al., 2012) has been used to build the process on breast MR image 

slices. Initially, a new stack has developed for each tumor lesion, distinguishing the 

initial tumor images from the images identified by a radiologist. Each wound-

carrying stack has been transformed into an 8-bit grayscale image. Tumors located 

in these stacks have been controlled by changing the contrast and brightness values 

to represent them better. Different threshold methods are applied to stack images.  

The OTSU threshold technique has shown an appropriate outcome in certain 

situations, and so did the MaxEntorpy. Then the outlier's modification has been 

added to eliminate the noise where the outlier's structure in white and black layers is 

radius = 0.5-2.0 pixels, threshold = 50; A mask has generated by designing these 

phases such that only the tumor area may be correctly found. Then the standard mask 

has transformed into a binary mask. Binary eroding and dilation methods have often 

employed in certain situations to classify the tumor correctly. Median filters have 

been applied to create all masks with a radius value of 1.0-2.0 pixels. The masks 

have been able to establish the exact position and boundaries of the tumor because 

of the overall work. 
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Figure 3.1. T2 weighted (T2W) image (left) and 7dynamic-Enhanced (7dyn) T1 

High Resolution Isotropic Volume Excitation MR image (right); (A, D) 

original MR images; (B, E) segmented mask images, (C, F) Selected 

ROI 

 

3.2. Radiomics Feature Extraction 

Radiomics as a field seeks to derive quantitative, and preferably 

reproducible, information from medical images, which may include complex 

patterns that are difficult to recognize or quantify with the human open eye. 

(Mayerhoefer et al., 2020).  

Semantic and agnostic features can be categorized under Radiomics. (Lewis 

et al., 2021). A brief overview of the various radiomics types mentioned in the Table 

3.2. Semantic features are qualitative characteristics that are commonly used in 

radiology reports, such as the size, shape, position, and necrosis of lesions. Each of 

the agnostic features is described by a sophisticated mathematical method and can 

be classified as morphological or statistical. (Yang et al., 2018).  
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The morphological characteristics of a segmented volume characterize its 

form and physical structure. Additional classifications for statistical features include 

first order, second order, and higher order features. Without taking spatial 

relationships into account, first-order statistical features explain the distribution of 

pixel intensities within VOIs. (Just, 2014).  

 

Table 3.2. Classification of radiomics features 
Main Group Subgroup Name of techniques 

Semantic - Size, shape, location, necrosis 

Agnostic Morphological -First order (diameter, volume) 
-Higher order (Fractional dimension) 

 Statistical -Histogram based first order statistics, (energy, 
mean, kurtosis, skewness, entropy) 
-Second order texture (GLCM, GLDM, GLRLM, 
NGTDM, GLSZM) 
-Higher order (Wavelet, Gabor, Fourier, and 
Laplacian transforms) 

 

According to (Conti et al., 2020), In particular, the second-order statistics 

that are texture features take into account spatial interdependence and co-occurrence 

of information through voxels close to each other. This gray-level co-occurrence 

matrix (GLCM) also alluded to as a gray tone spatial dependency matrix is among 

the second-order features most widely implemented in radiomics studies.  

However, according to (Lewis et al., 2021), numerous texture analysis 

techniques generate hundreds of potential texture properties that can be incorporated 

into radiomics analysis. (Lewis et al., 2021; V. Parekh & Jacobs, 2016). Higher order 

radiomics techniques incorporate filters to obtain characteristics from images. 

 

3.2.1. Shape Features 

Shape description or representation is a significant issue in image analysis 

for object recognition and classification. Shape features are crucial because they 

offer a means of defining an object without relying on its most salient characteristics, 

thus reducing the amount of data stored. 
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Let,  

The number of voxels is 𝑁𝑣 within ROI 

The number of faces (triangles) are 𝑁𝑓 defining the Mesh. 

The volume of the mesh 𝑉 in 𝑚𝑚3 ,  

The surface area of the mesh 𝐴 in 𝑚𝑚2 

 

Table 3.3. Mathematical explanation of the features of the shape features 
Feature  Description  

1. Mesh Volume 𝑀𝑒𝑠ℎ 𝑉𝑜𝑙𝑢𝑚𝑒 = ∑ 𝑉𝑖
𝑁𝑓

𝑖=1
  

where, 𝑉𝑖 =
𝑂𝑎𝑖.(𝑂𝑏𝑖×𝑂𝑐𝑖)

6
 

2. Voxel Volume (𝑉𝑣𝑜𝑥𝑒𝑙) 𝑉𝑣𝑜𝑥𝑒𝑙 = ∑ 𝑉𝑘
𝑁𝑣
𝑘=1   

3. Surface Area 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎, 𝐴 = ∑ 𝐴𝑖
𝑁𝑓

𝑖=1
   

where, 𝐴𝑖 =
1

2
|𝑎𝑖𝑏𝑖 × 𝑎𝑖𝑐𝑖|  

4. Surface to Volume Ratio 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝐴

𝑉
  

5. Sphericity 
𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =

√36𝜋𝑉23

𝐴
  

6. Maximum 3D diameter described as the maximum pairwise Euclidean 
distance between the vertices of the tumor 
surface mesh. Additionally, referred to as Feret 
Diameter. 

7. Maximum 2D diameter 
(Slice) 

described as the maximum pairwise Euclidean 
distance in the row-column plane between tumor 
surface mesh vertices. 

8. Maximum 2D diameter 
(Column) 

described as the maximum pairwise Euclidean 
distance in the row-slice plane between tumor 
surface mesh vertices. 

9. Maximum 2D diameter 
(Row) 

described as the maximum pairwise Euclidean 
distance in the column-slice plane between tumor 
surface mesh vertices. 

10. Major Axis Length major axis=4√λmajor  

11. Minor Axis Length minor axis=4√λminor  

12. Least Axis Length least axis=4√λleast  

13. Elongation 
elongation=√

λminor

λmajor
  

14. Flatness 
flatness=√

λleast

λmajor
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3.2.2. First-order Radiomics  

First-order features (Conti et al., 2020) are obtained from statistical instances 

of the image intensity histogram, such as kurtosis and skewness, which are 

characterized as the measure of the distribution of image voxel values "peakedness' 

and asymmetry around the mean value, respectively (Traverso et al., 2018). 

 

Let, A set of 𝑁𝑝 voxels are 𝑋 included in ROI 

The first order histogram with 𝑁𝑔discrete intensity levels are 𝑃(𝑖), where,  

the number of non-zero bins are 𝑁𝑔, equally spaced from 0 with a width.  

The normalized first order histogram is 𝑝(𝑖) =
𝑃(𝑖)

𝑁𝑝
 

 

Table 3.4. Mathematical explanation of features of the first order features 
Feature  Description  

1. Energy (E)  𝐸 =  ∑ (𝑋(𝑖) + 𝑐)2𝑁𝑝

𝑖=1
  

2. Total Energy (TE)  𝑇𝐸 =  𝑉𝑣𝑜𝑥𝑒𝑙 ∑ (𝑋(𝑖) + 𝑐)2𝑁𝑝

𝑖=1
  

3. Entropy (Ep) 𝐸𝑝 =  − ∑ 𝑝(𝑖)𝑙𝑜𝑔2(𝑝(𝑖) + 𝜖)
𝑁𝑔

𝑖=1
  

4. Minimum (Min) Min =  min (𝑋) 

5. 10Percentile The 10th percentile of X 

6. 90Percentile The 90th percentile of X 

7. Maximum (Max) 𝑀𝑎𝑥 = max (𝑋) 

8. Mean 𝑚𝑒𝑎𝑛 =  
1

𝑁𝑝
∑ 𝑋(𝑖)

𝑁𝑝

𝑖=1
  

9. Median The ROI exhibits the median gray-level intensity 

10. Interquartile Range (IR) 𝐼𝑅 =  𝑃75 − 𝑃25  

11. Range 𝑅𝑎𝑛𝑔𝑒 = max(𝑋) − min (𝑋)  

12. Mean Absolute Deviation (MAD) 𝑀𝐴𝐷 =  
1

𝑁𝑝
∑ |𝑋(𝑖) − 𝑋̅|

𝑁𝑝

𝑖=1
  

13. Robust Mean Absolute Deviation 
(rMAD) 

𝑟𝑀𝐴𝐷 =
1

𝑁10−90
∑ |𝑋10−90(𝑖) − 𝑋̅10−90|𝑁10−90

𝑖=1    

14. Root Mean Squared (RMS) 
𝑅𝑀𝑆 =  √

1

𝑁𝑝
∑ (𝑋(𝑖) + 𝑐)2𝑁𝑝

𝑖=1
  

15. Skewness 
Skewness =  

𝜇3

𝜎3 =

1

𝑁𝑝
∑ (𝑋(𝑖)−𝑋̅)3𝑁𝑝

𝑖=1

(√
1

𝑁𝑝
∑ (𝑋(𝑖)−𝑋̅)2𝑁𝑝

𝑖=1
)

3  

16. Kurtosis (krts) 
𝑘𝑟𝑡𝑠 =  

𝜇4

𝜎4 =

1

𝑁𝑝
∑ (𝑋(𝑖)−𝑋̅)4𝑁𝑝

𝑖=1

(
1

𝑁𝑝
∑ (𝑋(𝑖)−𝑋̅)2𝑁𝑝

𝑖=1 )
2  

17. Variance 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁𝑝
∑ (𝑋(𝑖) − 𝑋̅)2𝑁𝑝

𝑖=1
  

18. Uniformity 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = ∑ 𝑝(𝑖)2𝑁𝑔

𝑖=1
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3.2.3. Second Order Features  

3.2.3.1. Gray Level Co-occurrence Matrix (GLCM) Features 

Haralick and Shanmugam established the GLCM in the 1970s (B. E. Park et 

al., 2016), and it is now one of the most widely used statistical methods for obtaining 

texture features from images data. The GLCM was used to expose the MR image's 

texture features. In the original image, it occurs as a pair of gray-level frequencies. 

The grey level co-occurrence matrix (GLCM) (Zwanenburg et al., 2020) is a matrix 

that describes the distribution of discretized intensities (grey levels) of neighboring 

pixels or voxels in a 3D volume along one of the image directions. 

The dimension of the GLCM is given by the 𝑁𝑔 × 𝑁𝑔 form, which denotes 

a second order joint probabilities of the image region bordered by the mask. The 

mask is described as 𝑃(𝑖, 𝑗|𝛿, 𝜃) where (𝑖, 𝑗)𝑡ℎ components indicate the number of 

instances when two levels of 𝑖 and 𝑗 appear in two adjacent pixels in the image and 

those pixels are separated by a distance of 𝛿 pixels along angle 𝜃. The distance 𝛿 

measured in terms of the infinity norm. In 3D, when 𝛿 = 1, it provides two neighbors 

for each of the 13 angles (26-connectivity); when 𝛿 = 2, it provides 98 connections 

for 49 unique angles. 

PyRadiomics currently uses symmetrical GLCM calculations by default. 

Let: 

 

An arbitrarily small positive number is 𝜖 (≈ 2.2 × 10 − 16) 

The co-occurrence matrix for an arbitrary 𝛿 and 𝜃 is 𝑃(𝑖, 𝑗) 

The normalized co-occurrence matrix is 𝑝(𝑖, 𝑗) =
𝑃(𝑖,𝑗)

∑𝑃(𝑖,𝑗)
 

The number of discrete intensity levels are 𝑁𝑔 

The marginal row probabilities are 𝑝𝑥(𝑖) = ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑗=1
 

The marginal column probabilities are 𝑝𝑦(𝑖) = ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑖=1
 

The mean gray level intensity of 𝑝𝑥 is 𝜇𝑥 and denoted as 𝜇𝑥 = ∑ 𝑝𝑥(𝑖)𝑖
𝑁𝑔

𝑖=1
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The mean gray level intensity of 𝑝𝑦 is 𝜇𝑦 and denoted as  𝜇𝑦 = ∑ 𝑝𝑦(𝑗)𝑗
𝑁𝑔

𝑗=1
 

The standard deviation of 𝑝𝑥 is 𝜎𝑥 and the standard deviation of 𝑝𝑦 is 𝜎𝑦 

𝑝𝑥+𝑦(𝑘) = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, where 𝑖 + 𝑗 = 𝑘, and 𝑘 = 2,3, … ,2𝑁𝑔 

𝑝𝑥−𝑦(𝑘) = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, where |𝑖 − 𝑗| = 𝑘, and 𝑘 = 0,1, … , 𝑁𝑔 − 1 

𝐻𝑋 = − ∑ 𝑝𝑥(𝑖)𝑙𝑜𝑔2(𝑝𝑥(𝑖) + 𝜖)
𝑁𝑔

𝑖=1
 is the entropy of 𝑝𝑥 

𝐻𝑌 = − ∑ 𝑝𝑦(𝑖)𝑙𝑜𝑔2(𝑝𝑦(𝑗) + 𝜖)
𝑁𝑔

𝑗=1
 is the entropy of 𝑝𝑦 

𝐻𝑋𝑌 = − ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
𝑙𝑜𝑔2(𝑝(𝑖, 𝑗) + 𝜖) is the entropy of 𝑝(𝑖, 𝑗) 

𝐻𝑋𝑌1 = − ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
𝑙𝑜𝑔2(𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖)  

𝐻𝑋𝑌2 = − ∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
𝑙𝑜𝑔2(𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖)  

 

Table 3.5. Mathematical explanation of the features of the GLCM 
Feature  Description  

1. Autocorrelation:  𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  

2. Joint Average (JA):  𝐽𝐴 = 𝜇𝑥 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  

3. Cluster Prominence (CP):  𝐶𝑃 = ∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
4

𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  

4. Cluster Shade (CS):  𝐶𝑆 = ∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
3

𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  

5. Cluster Tendency (CT):  𝐶𝑇 = ∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
2

𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  

6. Contrast:  𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑ (𝑖 − 𝑗)2𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  

7. Correlation:  
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

∑ ∑ 𝑝(𝑖,𝑗)𝑖𝑗−𝜇𝑥𝜇𝑦
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

𝜎𝑥(𝑖)𝜎𝑦(𝑗)
  

8. Difference Average:  𝐷𝐴 = ∑ 𝑘𝑝𝑥−𝑦(𝑘)
𝑁𝑔−1

𝑘=0   

9. Difference Entropy (DE):  𝐷𝐸 = ∑ 𝑝𝑥−𝑦(𝑘)𝑙𝑜𝑔2(𝑝𝑥−𝑦(𝑘) + 𝜖)
𝑁𝑔−1

𝑘=0   

10. Difference Variance (DV):  𝐷𝑉 = ∑ (𝑘 − 𝐷𝐴)2𝑝𝑥−𝑦(𝑘)
𝑁𝑔−1

𝑘=0   

11. Joint Energy (JE):  𝐽𝐸 = ∑ ∑ (𝑝(𝑖, 𝑗))
2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  

12. Joint Entropy (JEp):  𝐽𝐸𝑝 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔2(𝑝(𝑖, 𝑗) + 𝜖)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
   

13. Informational Measure of 
Correlation (IMC1) 

𝐼𝑀𝐶1 =
𝐻𝑋𝑌−𝐻𝑋𝑌1

𝑚𝑎𝑥{𝐻𝑋,𝐻𝑌}
  

IMCA assesses the correlation between the 
probability distribution of i and j, using joint info 

𝐼(𝑥, 𝑦): 
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𝐼(𝑖, 𝑗) = ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔2 (
𝑝(𝑖,𝑗)

𝑝𝑥(𝑖)𝑝𝑦(𝑗)
)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
   

= ∑ ∑ 𝑝(𝑖, 𝑗)(𝑙𝑜𝑔2(𝑝(𝑖, 𝑗) −
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝑙𝑜𝑔2(𝑝𝑥(𝑖)𝑝𝑦(𝑗)))   

=

∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔2(𝑝(𝑖, 𝑗) −
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔2(𝑝𝑥(𝑖)𝑝𝑦(𝑗))

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  

= −𝐻𝑋𝑌 + 𝐻𝑋𝑌1  
The numerator is defined as 𝐻𝑋𝑌 − 𝐻𝑋𝑌1, and 

is therefore ≤ 0. At uniform distribution with 
complete dependence, joint info will be equal to 

𝑙𝑜𝑔2(𝑁𝑔). 

Finally, 𝐻𝑋𝑌 − 𝐻𝑋𝑌1 is divided by the maximum 
of the 2 marginal entropies, where in the latter 
case of complete dependence. it will result in 
 𝐼𝑀𝐶1 = −1, 𝑎𝑠 𝐻𝑋 = 𝐻𝑌 = 𝐼(𝑖, 𝑗). 

14. Informational Measure of 
Correlation (IMC2) 

𝐼𝑀𝐶2 = √1 − 𝑒−2(𝐻𝑋𝑌2−𝐻𝑋𝑌)  
Here, 𝐻𝑋𝑌1 = 𝐻𝑋𝑌2 and  

that 𝐻𝑋𝑌2 − 𝐻𝑋𝑌 ≥ 0  
represents the joint info of the 2 distributions 
and the range of 
 𝐼𝑀𝐶2 = [0,1] 

15. Maximal Correlation 
Coefficient (MCC):  
 

𝑀𝐶𝐶 = √𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄  

𝑄(𝑖, 𝑗) = ∑
𝑝(𝑖,𝑘)𝑝(𝑗,𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)

𝑁𝑔

𝑘=0   

The Maximal Correlation Coefficient is a 
measure of complexity of the texture and 
0≤MCC≤1. 
In a flat region, each GLCM matrix has shape 
(1,1), resulting in just 1 eigenvalue.  
Here, an arbitrary value of 1 is returned. 

16. Inverse Difference 
Moment Normalized (IDMN):  

𝐼𝐷𝑀𝑁 = ∑
𝑝𝑥−𝑦(𝑘)

1+(
𝑘2

𝑁𝑔
2 )

𝑁𝑔−1

𝑘=0   

17. Inverse Difference (ID):  𝐼𝐷 = ∑
𝑝𝑥−𝑦(𝑘)

1+𝑘

𝑁𝑔−1

𝑘=0   

18. Inverse Difference 
Normalized (IDN):  

𝐼𝐷𝑁 = ∑
𝑝𝑥−𝑦(𝑘)

1+(
𝑘

𝑁𝑔
)

𝑁𝑔−1

𝑘=0   

19. Inverse Variance (IV) 𝐼𝑉 = ∑
𝑝𝑥−𝑦(𝑘)

𝑘2

𝑁𝑔−1

𝑘=0  , k=0 is avoided. 

20. Maximum Probability 
(MP):  

𝑀𝑃 = max (𝑝(𝑖, 𝑗))  

21. Sum Average (SA):  𝑆𝐴 = ∑ 𝑝𝑥+𝑦(𝑘)𝑘
2𝑁𝑔

𝑘=2   

22. Sum Entropy (SE):  𝑆𝐸 = ∑ 𝑝𝑥+𝑦(𝑘)𝑙𝑜𝑔2(𝑝𝑥+𝑦(𝑘) + 𝜖)
2𝑁𝑔

𝑘=2   

23. Sum Squares (SS):  𝑆𝑆 = ∑ ∑ (𝑖 − 𝜇𝑥)2𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
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3.2.3.2. Gray Level Dependence Matrix (GLDM) Features 

A Gray Level Dependence Matrix provides a quantitative description of the 

quantity of gray level dependencies in an image by quantifying the presence of 

dependency levels. A gray level dependency is calculated as the quantity of related 

voxels within a specific distance 𝛿 that are dependent on the core voxel. If |𝑖 − 𝑗| ≤

𝛼, 𝑗 is nominated as dependent gray level on central voxel with respect to gray level 

𝑖. 𝑃(𝑖, 𝑗) describes as dependence matrix, where the (𝑖, 𝑗)𝑡ℎ component indicates the 

voxel number of instances with two levels of 𝑖 and 𝑗 voxels in its neighborhood 

appears through the image. 

 

Let: the total number of discrete levels of intensity are 𝑁𝑔 

The total number of discrete dependency sizes are 𝑁𝑑 

The total number of dependency zones are 𝑁𝑧 = ∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
 

The dependence matrix is 𝑃(𝑖, 𝑗) 

The normalized dependence matrix is 𝑝(𝑖, 𝑗) =
𝑃(𝑖,𝑗)

𝑁𝑧
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Table 3.6. Mathematical explanation of the features of the GLDM 
Feature  Description  

1. Small Dependence Emphasis 
(SDE) 𝑆𝐷𝐸 =

∑ ∑
𝑃(𝑖,𝑗)

𝑖2
𝑁𝑑
𝑗=1

𝑁𝑔
𝑖=1

𝑁𝑧
  

2. Large Dependence Emphasis 
(LDE) 𝐿𝐷𝐸 =

∑ ∑ 𝑃(𝑖,𝑗)𝑗2𝑁𝑑
𝑗=1

𝑁𝑔
𝑖=1

𝑁𝑧
  

3. Gray Level Non-Uniformity (GLN) 
𝐺𝐿𝑁 =

∑ (∑ 𝑃(𝑖,𝑗)
𝑁𝑑
𝑗=1

)
2𝑁𝑔

𝑖=1

𝑁𝑧
  

4. Dependence Non-Uniformity (DN) 

𝐷𝑁 =
∑ (∑ 𝑃(𝑖,𝑗)

𝑁𝑔
𝑖=1

)
2𝑁𝑑

𝑗=1

𝑁𝑧
  

5. Dependence Non-Uniformity 
Normalized (DNN) 𝐷𝑁𝑁 =

∑ (∑ 𝑃(𝑖,𝑗)
𝑁𝑔
𝑖=1

)
2𝑁𝑑

𝑗=1

𝑁𝑧
2   

6. Gray Level Variance (GLV) 𝐺𝐿𝑉 = ∑ ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝜇)2𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
  

where, 𝜇 = ∑ ∑ 𝑖𝑝(𝑖, 𝑗)
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
  

7. Dependence Variance (DV) 𝐷𝑉 = ∑ ∑ 𝑃(𝑖, 𝑗)(𝑗 − 𝜇)2𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
  

where, 𝜇 = ∑ ∑ 𝑗𝑝(𝑖, 𝑗)
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
  

8. Dependence Entropy (DE) 𝐷𝐸 = − ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔2(𝑝(𝑖, 𝑗) + 𝜖)
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
  

9. Low Gray Level Emphasis (LGLE) 
𝐿𝐺𝐿𝐸 =

∑ ∑
𝑃(𝑖,𝑗)

𝑖2
𝑁𝑑
𝑗=1

𝑁𝑔
𝑖=1

𝑁𝑧
  

10. High Gray Level Emphasis 
(HGLE) 𝐻𝐺𝐿𝐸 =

∑ ∑ 𝑃(𝑖,𝑗)𝑖2𝑁𝑑
𝑗=1

𝑁𝑔
𝑖=1

𝑁𝑧
  

11. Small Dependence Low Gray 
Level Emphasis (SDLGLE) 𝑆𝐷𝐿𝐺𝐿𝑊 =

∑ ∑
𝑃(𝑖,𝑗)

𝑖2𝑗2
𝑁𝑑
𝑗=1

𝑁𝑔
𝑖=1

𝑁𝑧
  

12. Small Dependence High Gray 
Level Emphasis (SDHGLE) 

The mutual distribution of low 
dependency with higher gray-level values 
is measured. 

13. Large Dependence High Gray 
Level Emphasis (LDHGLE) 𝐿𝐷𝐻𝐺𝐿𝐸 =

∑ ∑ 𝑃(𝑖,𝑗)𝑖2𝑗2𝑁𝑑
𝑗=1

𝑁𝑔
𝑖=1

𝑁𝑧
  

14. Large Dependence Low Gray 
Level Emphasis (LDLGLE) 𝐿𝐷𝐿𝐺𝐿𝐸 =

∑ ∑
𝑃(𝑖,𝑗)𝑖2

𝑖2
𝑁𝑑
𝑗=1

𝑁𝑔
𝑖=1

𝑁𝑧
  

 

3.2.3.3. Neighboring Gray Tone Difference Matrix (NGTDM) Features 

A Neighboring Gray Tone Difference Matrix evaluates the variance between 

a gray value and the average gray value of its immediate neighbors within distance 

𝛿. The matrix stores the total of the absolute errors for gray level 𝑖. Let 𝑋𝑔𝑙 is a group 



3. MATERIAL AND METHODS             Harun-Ur-RASHID 

26 

of segmented voxels and 𝑥𝑔𝑙(𝑗𝑥, 𝑗𝑦, 𝑗𝑧) ∈ 𝑋𝑔𝑙 is the gray level of a voxel at position 

(𝑗𝑥 , 𝑗𝑦, 𝑗𝑧), then the average gray level of the neighborhood is:  

 

𝐴̅𝑖 = 𝐴̅(𝑗𝑥 , 𝑗𝑦, 𝑗𝑧) 

=
1

𝑊
∑ ∑ ∑ 𝑥𝑔𝑙(𝑗𝑥 + 𝑘𝑥, 𝑗𝑦 + 𝑘𝑦, 𝑗𝑧 + 𝑘𝑧),𝛿

𝑘𝑧=−𝛿  𝛿
𝑘𝑦=−𝛿

𝛿
𝑘𝑥=−𝛿   

where, 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 ≠ (0,0,0) and 𝑥𝑔𝑙(𝑗𝑥 + 𝑘𝑥, 𝑗𝑦 + 𝑘𝑦, 𝑗𝑧 + 𝑘𝑧) ∈ 𝑋𝑔𝑙 

Here, 𝑊 contains the voxel number in 𝑋𝑔𝑙 neighborhood   

Let, 𝑛𝑖 is the voxel number with gray level 𝑖 in 𝑋𝑔𝑙 

Total number of voxels are 𝑁𝑣,𝑝 in 𝑋𝑔𝑙  

which is equal to ∑ 𝑛𝑖 (at least one neighbor with a valid region) 

𝑁𝑣,𝑝 ≤ 𝑁𝑝 where 𝑁𝑝 contains the total number of voxels in the ROI. 

The gray level probability is denoted as 𝑝𝑖 =
𝑛𝑖

𝑁𝑣
  

gray level 𝑖, 𝑠𝑖 = {
∑ |𝑖 − 𝐴̅𝑖| 𝑓𝑜𝑟

𝑛𝑖 𝑛𝑖 ≠ 0

0 𝑓𝑜𝑟 𝑛𝑖 = 0
 the sum of absolute differences 

The number of discreet gray levels denoted as 𝑁𝑔 

The number of gray levels 𝑁𝑔,𝑝 where 𝑝𝑖 ≠ 0 

 

Table 3.7. Mathematical explanation of the features of the NGTDM 
Feature  Description  

Busyness 
𝐵𝑢𝑠𝑦𝑛𝑒𝑠𝑠 =

∑ 𝑝𝑖𝑠𝑖
𝑁𝑔
𝑖=1

∑ ∑ |𝑖𝑝𝑖−𝑗𝑝𝑗|
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 where,𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

Coarseness 𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =
1

∑ 𝑝𝑖𝑠𝑖
𝑁𝑔
𝑖=1

  

Complexity 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
1

𝑁𝑣,𝑝
∑ ∑ |𝑖 − 𝑗|

𝑝𝑖𝑠𝑖+𝑝𝑗𝑠𝑗

𝑝𝑖+𝑝𝑗

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
where,𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

Contrast 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = (
1

𝑁𝑔.𝑝(𝑁𝑔.𝑝−1)
∑ ∑ 𝑝𝑖𝑝𝑗(𝑖 − 𝑗)2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
) (

1

𝑁𝑣,𝑝
∑ 𝑠𝑖

𝑁𝑔

𝑖=1
) , 𝑝𝑖 ≠ 0 

Strength 
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =

∑ ∑ (𝑝𝑖+𝑝𝑗)(𝑖−𝑗)2𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

∑ 𝑠𝑖
𝑁𝑔
𝑖=1

 where,𝑝𝑖 ≠ 0, 𝑝𝑗 ≠ 0 

 

 



3. MATERIAL AND METHODS             Harun-Ur-RASHID 

27 

3.2.4. Implementation of PyRadiomics for Feature Extraction 

The extraction of the radiomic features refers to the measurement of features 

as an ultimate evaluation phase, where descriptors of features are used to explain the 

properties of the grey values inside the ROI/VOI (Zwanenburg et al., 2020). The 

radiomic features extraction will eventually be done after image processing and 

segmentation. PyRadiomics (Griethuysen et al., 2017) conducted radiomics feature 

extraction based on ROIs from the sequence images on each tumour lesion. The 

PyRadiomics implementation phases presented here to illustrate the properties of 

breast lesions. The following steps are taken to extract the features:  

First step: As an input to PyRadiomics, MR images and segmented mask 

images (e.g., performed by ImageJ) were loaded. Both input images were converted 

to the format of NRRD (nearly raw raster data). The initial handling of MR and mask 

images was handled using SimpleITK, which delivers the popularly used open-

source Insight Toolkit (ITK) with a simplified GUI.  

Second step: Features on the original image ROI were computed based on 

a set of several integrated filters such as Gaussian Laplacian, wavelet, logarithm, 

exponential filters. The SimpleITK library was used mainly for filter execution, and 

the remaining filters were implemented using NumPy. 

Third step: A group of shape, first-order statistics feature, and second-order 

(GLCM, GLDM, NGTDM) features were derived from input original and segmented 

mask images (Zwanenburg et al., 2020). Each feature was indicated by a specific 

name containing the filter, the feature classes, and the element's name. The function 

extractor module was also developed to describe the extract pipeline and the 

connection to the other modules in the platform to increase compatibility. 

Finally, the determined characteristics were stored in an ordered database 

and released. This dictionary provides additional information on processing, 

including library versions, settings, original and masks image information, and filters 

(Griethuysen et al., 2017). Pandas data frame was used to pre-visualize the output 
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after the function had been extracted. Then, the created features were saved for 

analysis in the class-based CSV (Comma-separated values) files. 

 

3.3. Analysis Algorithms 

3.3.1. Machine Learning Algorithm 

The variety of methods used to analyze radiomic features is huge, ranging 

from statistical models (J. E. Park et al., 2019; J. E. Park & Kim, 2018) to machine 

learning techniques. To differentiate benign breast lesions from malignant with 

radiomics tasks and develop a more effective and reliable prediction model for the 

identification of tumor class with Support Vector Machine (SVM) kernels utilized.  

 

3.3.1.1. Kernels of Support Vector Machine (SVM)  

A Support Vector Machine (SVM)(Chagas et al., 2020) supervised binary 

classifier selects an optimal hyperplane 𝑓 (𝑤, 𝑥)  =  𝑤 ·  𝑥 +  𝑏 for optimum 

margin differentiation of the classes (benign or malignant) in a given dataset with 

features 𝑥 ∈ ℝ𝑚. Essential ingredients of the training samples called support vectors 

have optimally calculated this margin. The various kernel functions could be used to 

transform vectors to a higher-dimensional space wherein the inputs could be 

segregated linearly, as these groups are non-linearly separable. SVM takes into 

matter the sign of a function f(x) to categorize an input feature vector, given by: 

 

 Final decision function, f(x) =sign(∑ y
i
αiN(xi,xj)

v
i=1 +b) (3.3.1.1) 

 

where, v = Support vectors with the parameters of a model y
i
  

 

b = parameter for bias,  N(xi,xj) = kernel function  

αi = Laplacian coefficients from the concurrent problem of optimization 
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Linear Kernel: It is a convenient and widely used mathematical term that 

the data can be ordered linearly, where single line is used to divide the class. It is just 

the usual dot product, 

 

 𝑁(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖. 𝑥𝑗 (3..1) 

 

Radial basis function: It is one of the most popular kernels used in SVM. 

When no previous knowledge of the data exists, it can use. 

 

 𝑁(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) (3.2) 

 

Polynomial Kernel: The polynomial kernel is a type of kernel function that 

is frequently used in support vector machines (SVM). It computes the training 

samples in a feature space defined by the initial variables' polynomials, allowing for 

non-linear model learning. 

 

 𝑁(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 1)

𝑑
 (3.3.1.13) 

 

where, 𝑑 is the degree of the polynomial, e.g., 𝑑 = 2 for quadratic. 

 

Sigmoid kernel: Sigmoid Kernel is another name for the Hyperbolic 

Tangent Kernel. Due to its origins in neural network theory, this kernel is very 

common with support vector machines. (Lin & Lin, n.d.). 

 

 𝑁(𝑥𝑖 , 𝑥𝑗) = 𝑡𝑎𝑛ℎ (𝛽(𝑥𝑖
𝑇𝑥𝑗 + 𝑎)) 

     

(3.3.1.1.4) 

 

The sigmoid kernel has two customizable parameters, 𝛽 and the intercept 

constant a. 
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The k-fold cross-validation method was used to classify breast cancer using 

the SVM classifier. Initially, all the features’ data in the database were randomly 

selected and stored in 5-fold form.   

The four-fold folding data were used during the SVM training process, and 

the remaining fold was asked to check. This method was repeated more than five 

times in exchange for completing the SVM classifier training and testing process of 

all folds. 

 

3.3.2. Deep Learning Techniques 

This proposed framework used two different deep learning models for 

transfer learning, as well as the use of an established (trained) model from the 

original dataset to train the new dataset. The fully connected dense layer of CNN-

SVM and InceptionV3 model was modified and fine-tuned to fit classification 

requirements. The models were optimized using the Adam Optimizer, and the binary 

cross-entropy was used to quantify the loss in the InceptionV3 model. Data 

augmentation was applied, and the model has been assessed with the evaluation of 

ROC (receiver operating characteristic), AUC (area under curve) curve by 

calculating the sensitivity, precision, and F-score. In addition, the ROC-AUC values 

of the test data in both models were also measured to indicate further acceptability 

of the model's performance. 

 

3.3.2.1. Data Augmentation  

The training set is augmented artificially by creating new instances of each 

training example, a process referred to as data augmentation. It has a variety of 

applications in computer vision, enabling the most significant generalizations, 

increasing the number of training instances by classifying in the initial case, and 

enabling faster classification. Data augmentation results in a reduction in overfitting 

and an improvement in inaccuracy. 
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The most widespread method called “On The Fly Data Augmentation” 

(Rosebrock, 2019) was applied in this work. It is this method that the Image Data 

Generator class implements. In this case, the model does not train on the initial 

instance but only on the generated instance, which changes each epoch to allow the 

network to generalize better. 

In this regard, this process applied on training and validation set except on 

testing set. Each image was resized with a fixed size of 128X128, the image rotates 

as 10°, height width and zoom ranged at 10%.  

 

3.3.2.2. Balanced Data Generator 

It is so difficult to collect a large number of balanced data for deep learning 

analysis in real-world problems. Data augmentation techniques are mainly used to 

increase the dataset and improve variance to deal with these circumstances. 

However, data augmentation does not affect the distribution of labels in the original 

dataset, which results that an unbalanced position of the dataset is unchanged in all 

cases, and the algorithm will be biased to predict only the most frequent class.  

Many techniques are available to overcome this unbalanced data problem on 

the evolution of the deep learning model. In this work, the oversampling method was 

used, which consists of re-sampling less frequent samples to adjust their amount 

compared to predominant samples.  

Here, the oversampling module and Keras-based Image Data Generator 

module were mixed to balance the dataset, named Balanced Data Generator 

(Gualberto, 2020). This technique has given enough steps per epoch. The number of 

samples per class will follow a uniform distribution of batch size.  

 

3.3.2.3. InceptionV3  

InceptionV3 is a convolutional neural network that was developed as a 

module for GoogLeNet. It specializes in image analysis and object detection. It is 
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the third version of Google's Inception family in CNN architecture, which was first 

implemented as part of the ImageNet Recognition Challenge. 

 

 
Figure 3.2. A schematic view of the Inception V3 model architecture (Szegedy et al., 

2015) 

 

The core concept of the Inception architecture is to calculate an ideal local 

sparse configuration in a convolutional neural network, and to then use readily 

available dense components to approximate and cover that configuration. 

 

3.3.2.4. CNN-SVM 

Convolutional Neural Networks (CNNs) are a form of deep feed-forward 

artificial neural networks that are frequently used to solve medical image 

classification problems (Agarap, 2019). Convolutional layers, Maximum pooling 

layers, drop out or batch normalization, and non-linear activation functions such as 

tanh, sigmoid, and ReLu are all components of a CNN network. 

An activation function ReLU (Figure 3.3) is used here to incorporate non-

linearities into the model evaluation. The model can only learn line mappings in the 

absence of an activation function. 
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Figure 3.3. Graphical view of Rectified Linear Unit (ReLU) function (Liu, 2017) 

 

Compared to the other two functions, ReLU is activated by simply 

thresholding matrix values to zero (Equation 3.3.2.4.6) and significantly accelerates 

stochastic gradient descent convergence. 
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Figure 3.4. A detail view of modified CNN-SVM model architecture 
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 𝑓(ℎ𝜃(𝑥)) = ℎ𝜃(𝑥)+ = max(0, ℎ𝜃(𝑥))  
        

(3.3.2.45) 

 

In the final dense layer of the CNN, rather than using a SoftMax or sigmoid 

function with loss function (binary or categorical), the regularizer L2-SVM is used.  

That is, the performance shall be interpreted as follows: 𝑦 ∈  {−1, +1}, and the loss 

is calculated in the following Eq. 8. Adam is then used to determine the weight 

parameters.  

The regularizer L2-SVM learns value of 𝑤 by resolving an optimization 

problem (Eq. 3.3.2.46). 

 

 min
1

𝑝
𝑤𝑇𝑤 + 𝐶 ∑ max (0,1 − 𝑦𝑖́(𝑤𝑇𝑥𝑖 + 𝑏))𝑃

𝑖=1   
         

(3.3.2.46) 

 

where 𝑤𝑇𝑤 is the L1 norm (also identified as Manhattan norm), C is the 

penalty parameter,  𝑦′𝑖 is the actual label, and 𝑤𝑇𝑥 + 𝑏 is the predictor function. 

Equation 3.3.2.47 is identified as L1-SVM, with the traditional hinge loss. 

It is distinctive equivalent, L2-SVM (Eq. 3.3.2.48), delivers additional durable 

outcomes.  

 

 min
1

𝑝
‖𝑤‖2

2 + 𝐶 ∑ max (0,1 − 𝑦𝑖́(𝑤𝑇𝑥𝑖 + 𝑏))
2𝑃

𝑖=1   
         

(3.3.2.47) 

 

where ‖𝑤‖2 is the L2 norm (additionally referred to as Euclidean norm), 

with the squared hinge loss.  

 

3.4. Performance Assessments 

This is needed to find out the model's accuracy after the training phase by 

analysis algorithms. So, the test set was employed to evaluate the model. The test set 
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includes samples that have never been seen before by the algorithm. If the model 

performs well in predicting, it can be assumed that the model is generalizing well.  

Confusion matrix: The efficient classification model is capable of 

summarizing the model's effectiveness at classifying examples into distinct 

categories. The expected label is identical to the real label on one side of the 

confusion matrix. On the other hand, the real label matches the predicted label. 

 

TP: True Positive: Benign correctly identified as Benign 

TN: True Negative: Malignant correctly identified as Malignant 

FP: False Positive: Benign incorrectly identified as malignant 

FN: False Negative: Malignant incorrectly identified as Benign 

 

Accuracy: The accuracy based on the confusion matrix is proportional to 

positive occurrences accurately and positive occurrences inaccurately and is 

inversely comparable to negative occurrences accurately and negative occurrences 

inaccurately rates.  

 

Accuracy =
TP+TN

(TP+TN+FP+FN)
  

 

Precision: Precision is the ratio of positive occurrences accurately 

predicted, divided by sum of  positive occurrences and negative occurrences 

predicted accurately. 

 

Precision =
TP

(TP+FP)
  

 

Recall or Sensitivity or True Positive Rate (TPR): Recall is the ratio of 

positive occurrences accurately predicted, divided by positive and negative 
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occurrences accurately and incorrectly predicted. The low false negative occurrence 

rate is known to be a significant recall.  

Recall =
TP

(TP+FN)
  

 

F-Score: F1-score is the weighted average value of precision and recall. It 

is usually more beneficial than accuracy, mostly when the dataset classes is 

unbalanced. 

 

F-score =
2×Recall×Precision

(Recall + Precision
   

ROC (Receiver operating characteristic): An ROC curve is a graphical 

plot used to demonstrate the ability of a binary class classification system to 

differentiate between two categories as its distinction threshold is varied. The ROC 

curve illustrates the trade-off between sensitivity (TPR) and specificity (1 – FPR). 

Classifiers that mean better results result in curves that are closer to the top-left 

corner. The closer the curve approaches the 45-degree diagonal of the ROC space, 

the less accurate the measurement.  
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 EXPERIMENTAL RESULTS 

 

The main task of this thesis is to use radiomics and deep learning methods 

to classify breast tumor lesions by handling magnetic resonance imaging (MRI) 

image data. Radiomics is an emerging field in healthcare, especially in tumor 

analysis. The main objectives of this works were to check out the classification 

robustness by using two popular and reliable methods radiomics and deep learning. 

Same performance analysis matrices are developed to utilize these models. 

 

4.1. Radiomics Feature Analysis 

Investigations have been done on the original MR image dataset, which had 

been obtained at the Department of Medical Oncology and Department of 

Radiology, Cukurova University Hospital in Turkey. 

At the evaluation phase, 70% of the data is used to train the model. In the 

beginning, second-order features with different matrices, namely co-occurrence 

matrix, dependence matrix, and difference matrix, were given to SVM-kernel based 

model, and classification accuracies were calculated.  

Later, shape with second order and shape with first-order features have been 

analyzed. Finally, the shape, first-order, and second-order feature combined dataset 

has been analyzed with SVM kernels. The 5-fold mean accuracy result of cross-

validation is shown in Table 4.1. In every combination of data split, the SVM-linear 

kernel in the cross-validation model evaluation stage has shown the highest 

accuracy.   

In 5-fold cross-validation, the original sample is randomly partitioned into 

five equal-sized groups. One group was removed from the five groups as a hold-out 

set, and the remaining groups used the training data. The SVM model then fit on the 

training data and evaluated on the hold-out set. This procedure is five times so that 

all groups have served exactly one as the hold-out set. 
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Table 4.1. Cross-validation mean accuracy of feature data split with SVM-kernels 
Kernel GLCM + 

GLDM + 
NGTDM  
(%) 

Shape + 
GLCM + 
GLDM + 
NGTDM (%) 

First order 
+ GLCM + 
GLDM + 
NGTDM (%) 

Shape+ First 
order + GLCM + 
GLDM + NGTDM 
(%) 

Linear 96.17 96.17 96.08 96.08 

RBF 94.92 94.92 94.92 93.67 

Polynomial 91.00 91.00 91.00 90.92 

Sigmoid 89.75 89.75 89.83 85.83 

 

Two combinations of features data split have shown the highest 5-fold mean 

accuracy of 96.17% on SVM-linear kernel analysis. All the feature data split 

performed similar mean accuracy at SVM-RBF kernel-based model development 

except a combination of all features split. The polynomial kernel showed 91% mean 

accuracy with all splits. The worst result found in SVM-Sigmoid based analysis. 

The SVM-kernel approach's overall findings are summarized in Figure 4.1, 

Figure 4.2, Figure 4.3 and Figure 4.4, which illustrated the proposed approach's 

performance against previously described matrices.  

Figure 4.1 showed that, combine second order features (GLCM, GLDM, 

NGTDM) split and shape with second order data split performed the same accuracy, 

which means that the shape features did not have any impacts for getting 88.24% 

accuracy. When the first-order features combined with second order features, the 

model performance increased. Meanwhile, the highest accuracy was found on all 

feature combination splits and provided 94.12% test accuracy on the SVM-linear 

kernel. 
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Figure 4.1. SVM-Linear Kernels Confusion Matrix Output 

 

 
Figure 4.2. SVM-RBF Kernels Confusion Matrix Output 

 

In SVM-RBF kernel analysis, second order features combination and first 

with second order features combination achieved 91.18% accuracy. That means the 
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combination of first-order features did not enough influence for getting this output. 

Another features data split shape, second order, and all features combination 

provided highest 97.06% accuracy. This analysis aims to understand that the 

combination of shape and second order feature data split is enough to get the 

maximum performance of the SVM-RBF model. The all-features combination 

analysis on the SVM-RBF kernel is not efficient. 

The lowest performance was found in the combined data group of the first 

order and 2nd Order features. However, if we look from the beginning, it can be seen 

that the highest accuracy of 91.18% was found in Group-1. Since then, the accuracy 

has not increased even after adding the shape feature separately to the 2nd order 

feature. The same accuracy has been found by adding all the features together. This 

means that combining the second order feature with the shape or the 1st order feature 

does not affect its model performance analysis. On the other hand, the performance 

of polynomial kernels (Figure 1.3) is not better than the two types of kernels 

mentioned earlier. 

At this stage, the SVM-sigmoid kernel (Figure 1.4) analysis shows that the 

first three feature combinations exhibit the same accuracy. That is, maximum 

accuracy is found in second order feature analysis. Later, by adding shape and first-

order feature with the 2nd order feature and analyzing it separately, the model 

performance did not increase. On the contrary, in the combined analysis of all the 

features, the accuracy has decreased compared to the past. This means that the 

maximum accuracy is only available in the 2nd order feature, so other features do 

not play any role in this kernel analysis. At the same time, it is found with certainty 

that, compared to the polynomial kernel with the other three kernels, it is showing 

the lowest accuracy. 
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Figure 4.3. SVM-Polynomial Kernels Confusion Matrix Output 

 

 
Figure 4.4. SVM-Sigmoid Kernels Confusion Matrix Output 

 

To conclude the evaluation metrics analysis, in kernel-based feature 

analysis, the SVM-RBF kernel has achieved the highest accuracy, 97.06%, in 
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second-order features and the combined analysis of all features. However, since the 

highest results were obtained in a single analysis of the 2nd order features, the shape, 

first-order feature is of no importance in obtaining maximum results. That is, shape, 

first-order features can be ignored in SVM-RBF kernel analysis. Finally, It can say 

that the second order feature combinational analysis with the SVM-RBF model is 

best for radiomics to feature generated breast tumor classification and the obtained 

result also ensured that this data split is perfectly separable radially.  

 

4.1.1. Parameter Optimization for Selecting best value of SVM-kernels 

Parameter optimization helps to select the best model configuration to 

ensure the highest accuracy. Choosing the best parameter values in SVM-kernels, a 

well-known method Grid Search CV was used which is somewhat tricky due to some 

ambiguous results from the model. Three main variables of kernel function were 

tested on our SVM-kernels framework. These variables are ‘C’, ‘gamma’ and 

‘degree’. In a default value of ‘C’ and ‘gamma’ is 1 where C is denoted as 

regularization parameter. The parameter 'C' also compromising the classification 

accuracy for scalability. This parameter corrects the over-reliance on simplicity. 

Larger values of the parameter of 'degrees' appear to overfit the results. 

 

Table 4.2. Parameters range of each SVM kernel to be evaluated 
Kernels Parameter value 

Linear  'C': [0.0001, 0.001, 0.01, 1.0, 10.0, 100.0, 1000.0] 

RBF 'C': [0.0001, 0.001, 0.01, 1.0, 10.0, 100.0, 1000.0], 
 'gamma': [0.0001, 0.001, 0.1, 1, 2] 

Polynomial 'C': [0.0001, 0.001, 0.01, 1.0, 10.0, 100.0, 1000.0], 
'gamma': [0.0001, 0.001, 0.1, 1, 2],  
'degree': [1, 2, 3, 4, 5] 

Sigmoid 'C': [0.0001, 0.001, 0.01, 1.0, 10.0, 100.0, 1000.0], 
 'gamma': [0.0001, 0.001, 0.1, 1, 2] 

 

The identical value of cross-validation K-Fold was applied to evaluate the 

SVM. Table 4.2 represents the set of parameters with four SVM kernels. 
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Table 4.3. Every SVM kernel best results on binary classification 
Data Kernel Parameter Mean 

Accuracy 

GLCM + GLDM + 

NGTDM 

 

Linear ‘C’: 1.0 96.17% 

RBF ‘C’: 100, ‘gamma’: 0.001 97.42% 

Polynomial ‘C’: 1, ‘degree’: 1, ’gamma’: 1 96.17% 

Sigmoid ‘C’: 1000, ‘gamma’: 0.001 96.17% 

Shape + GLCM + 

GLDM + NGTDM 

 

Linear ‘C’: 1.0 96.17% 

RBF ‘C’: 100, ‘gamma’: 0.001 97.42% 

Polynomial ‘C’: 1, ‘degree’: 1, ’gamma’: 0.1 97.42% 

Sigmoid ‘C’: 100, ‘gamma’: 0.001 97.42% 

First order + GLCM 

+ GLDM + NGTDM 

 

Linear ‘C’: 1.0 96.08% 

RBF ‘C’: 100, ‘gamma’: 0.001 97.42% 

Polynomial ‘C’: 1, ‘degree’: 1, ’gamma’: 2 96.08% 

Sigmoid ‘C’: 100, ‘gamma’: 0.001 97.42% 

Shape+ First order 

+ GLCM + GLDM + 

NGTDM 

Linear ‘C’: 1.0 96.08% 

RBF ‘C’: 100, ‘gamma’: 0.001 97.42% 

Polynomial ‘C’: 1, ‘degree’: 1, ’gamma’: 0.1 96.08% 

Sigmoid ‘C’: 1000, ‘gamma’: 0.001 96.08% 

 

The bold values show the higher results that were obtained in the analysis, 

for SVM-kernels. 

 

Table 4.3 showed the best configurations of three parameters of proposed 

four kernels at each data group. The configuration was formed using accuracy as the 

metric for optimization. Notably, the RBF kernel achieves the best results, implies 

that the feature space is radially separable. Here, all kernels had similar scores, 

proving the robustness of the radiomics feature depends on classification analysis 

with the SVM model. 

 

4.2. Deep Learning based Analysis 

Two deep learning techniques were chosen for comparison, according to 

their performances. A total of 2998 individual images were used for analyzing the 

deep learning models. For training purposes, 2098 were selected where validation 

and testing images contained at 540 and 360, respectively. All images were resized 



4. EXPERIMENTAL RESULTS             Harun-Ur-RASHID 

46 

as 128×128, and benign lesions contained images defined as 0 class, and malignant 

lesions contained images defined as 1 class.  

The proposed models also outperformed compared to other researchers’ 

analysis with much fewer parameters, as summarized in Table 4.4 

As the primary outcome, CNN-SVM obtained perfect accuracy with almost 

two times fewer parameters than the other pre-trained InceptionV3 deep learning 

architectures. 

 

Table 4.4. Number of parameters of the evaluated models 
Models Total Parameters 

InceptionV3 21,810,977 

CNN-SVM 14,888,865 

 

4.2.1. InceptionV3 Results 

InceptionV3 is the third generation of the Inception family of convolutional 

neural network architectures. It is being fine-tuned so that it can distinguish between 

two classes rather than 1000. Additionally, the model is composed of symmetric and 

asymmetric building blocks, such as convolutions, average pooling, max pooling, 

concatenation, dropouts, and fully connected dense layers. The Batch normalization 

process is widely used in the model and is applied to activation inputs. Since the 

classification is binary class, the loss was computed using the Sigmoid function. 
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Figure 4.5. Accuracy of Training and Validation Phase of InceptionV3 model 

 

The accuracies of the InceptionV3 model's training and validation phases 

are depicted in Figure 4.5. Both accuracy levels started at 60% during the early stages 

of the epoch. At the end of the 20-epoch count, the model achieved nearly 85% 

accuracy. After 60 epochs, the machine is capable of achieving greater than 90% 

accuracy. The model reached the highest degree of accuracy, which is close to 90%, 

throughout approximately 70-100 epochs. 

Volatility is moderate but has fluctuated around 86±5%. As shown in Figure 

4.6, as the validation loss decreased, the training loss decreased as well. With the 

training loss reaching zero, it is possible to reduce the validation loss significantly. 
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Figure 4.6. Loss Plot of Training and validation Phase of InceptionV3 model 

 

Table 4.5 also contains information about the validation's accuracy. The 

testing accuracy was 95.28%, according to the assessment metrics review. The 

precision values were 99.05%, indicating a high level of classification accuracy for 

the benign class. The InceptionV3 had a high F1 score, which established a more 

accurate classification on this image dataset. 

 

Table 4.5. Evaluation metrics report on InceptionV3 model 
Technique Validation 

Accuracy 
Overall Test 
Accuracy 

Precision Recall F1 Score 

InceptionV3 91.96% 95.28% 99.05% 95.73% 97.36% 
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Figure 4.7. ROC-AUC Plot of InceptionV3 with test data 

 

The AUC area of the InceptionV3 model was 0.932, indicating that the 

model performed well in distinguishing tumor class from the test dataset. 

 

4.2.2. CNN-SVM Results 

The CNN-SVM model designed with two convolutional layers, two 

Maximum Pooling layers, one Flatten layer, three Dense layers, and dropout in all 

layers. In a fully connected dense layer, batch normalization is also implemented 

with L2-SVM at the end. The entire architecture of the CNN - SVM model is shown 

in Figure 3.4.  

The accuracy of training and validation phase and loss curve are shown in 

Figure 4.8 and Figure 4.9, respectively. Figure 4.10 represents the ROC-AUC score 

according to the testing data. According to Figure 4.8, the training and validation 

phase began at the accuracy of 50% on first initial epochs. After 20 epochs, the 

accuracies increased by an average of 80%. Between 70 and 100 epochs, the 

accuracies exhibited almost constant values. 
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Figure 4.8. Accuracy of Training and Validation Phase of CNN-SVM model 

 

Though training and validation accuracies vary slightly, overall accuracies 

remain between 93-98%. Simultaneously, the training and validation losses 

decreased represents at Figure 4.9, and the losses in the last 30 epochs were found to 

be near 0.1%.  

 

 
Figure 4.9. Loss Plot of Training and Validation Phase of CNN-SVM model 
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Table 4.6. Evaluation metrics results on CNN-SVM model 
Model Validation 

Accuracy 
Overall Test 
Accuracy 

Precision Recall F1 Score 

CNN-SVM 98.83% 95.28% 100% 94.82% 97.34% 

 

As a result of this research, it was discovered that test accuracy was 95.28%, 

which is equivalent to the results found in the InceptionV3 model. The CNN-SVM 

model had 100% precision, which was an excellent classifier for the positive class, 

reflecting the benign class in this task. Additionally, the CNN-SVM model obtained 

a high F1 score, suggesting that the model correctly detected the tumor lesion even 

though the dataset was unbalanced. 

 

 
Figure 4.10. ROC-AUC Plot of CNN-SVM with test data 

 

Finally, the CNN-SVM model achieved the highest AUC value of 0.974, 

showed in Figure 4.10, indicating the model's highest degree of efficiency in reliably 

distinguishing benign and malignant classes.  
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4.3. Analysis of deep learning models 

A comparison between two deep learning techniques has been utilized to 

classify breast cancer with the analysis of evaluation metrics. Table 4.7 and Table 

4.8 shows the results of deep learning methods. Though the dataset is unbalanced, 

random up sampling with data augmentation techniques were applied to overcome 

the imbalance problem. In the testing stage, the original images were tested; those 

images are not used before in training and validation steps. 

 

Table 4.7. Confusion metrics parameters of deep learning models 
Models True Positive False Positive False Negative True Negative 

InceptionV3 29 3 14 314 

CNN-SVM 32 0 17 311 

 

A total of 100 epochs were monitored while developing the model. By using 

callbacks in Keras, the validation accuracy was controlled. It is a monitoring system 

to control the model development process by looking at accuracy and loss. In this 

case, after 70 epochs, almost stable results were found. The batch size was 32 in the 

data augmentation and model developing phase because a big batch size would lead 

to poor generalization and lower test accuracy.  It is found that the CNN-SVM model 

showed the highest validation accuracy with 98.83%, where InceptionV3 showed 

91.96%. Area Under Curve (AUC) found 97.4% for the CNN-SVM model, 

representing the best efficient model.  

 

Table 4.8. Performance results of the deep learning models 
Models Validation 

Accuracy 
Test 
Accuracy 

Precision Recall F1 
Score 

AUC 

InceptionV3 91.96% 95.28% 99.05% 95.73% 97.36% 0.932 

CNN-SVM 98.83% 95.28% 100% 94.82% 97.34% 0.974 
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 DISCUSSIONS 

 

Many computational methods have been described in the context of breast 

lesion classification, each of which incorporated a diverse set of features (textural 

features, morphological features, etc.). In this work, shape, first, and second order 

contained GLCM, GLDM, NGTDM features, and their combination was used in 

breast tumor classification. High accuracy was achieved with all metrics to classify 

the benign and malignant classes of breast cancer with a SVM algorithm.  

The proposed radiomics feature analyzed solution was compared to five 

well-known state-of-the-art methods, the outcomes of which are presented in Table 

5.1. As shown in Table 5.1, the proposed method achieves a higher rate of 

classification accuracy than other strategies. Additionally, Table 5.1 demonstrates 

that the accuracy of the methods described in (Spanhol et al., 2016; Sayed & 

Hassanien, 2017; Al-Salihy & Ibrikci, 2017; Carvalho et al., 2020; Khan et al., 2021) 

is 80–85%, 92.99%, 88-97%, 95%, 96.3% respectively, while the proposed method 

obtained 97.06% accuracy, indicating the proposed method's prominence in 

comparison to other techniques.  

 

Table 5.1. A comparison with other feature-based machine learning analysis 
Authors Attributes Algorithms Accuracy 

(Spanhol et al., 2016) Texture features K-NN, QDA, 
SVM 

80-85% 

(Sayed & Hassanien, 
2017) 

NS, MFO Decision tree 
-CART 

92.99% 

(Al-Salihy & Ibrikci, 2017) Various Decision 
Tree 

88-97% 

(Carvalho et al., 2020) Texture features MLP, 
XGBoost, 
SVM 

95% 

(S. U. Khan et al., 2021) GLCM SVM 96.3% 

Proposed method Shape, GLCM, GLDM, 
NGTDM 

Four SVM-
Kernel  

97.06% 
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Based on achieved results from radiomics feature analysis, it can be 

concluded with confidence that this new approach of machine learning-based 

combinational analysis of radiomics features from magnetic resonance images can 

effectively differentiate the breast tumors. 

Finally, as seen in Table 5.2, the proposed deep learning strategies were 

contrasted to applicable state-of-the-art frameworks to demonstrate their efficacy. 

The findings indicate that the proposed techniques outperform other deep learning 

techniques.  

When compared to the performance of various deep convolutional neural 

network architectures, it was clear that the proposed techniques achieved excellent 

results. (Hepsağ et al., 2017 & Tan et al., 2017) gained 68% and 85.85% accuracy, 

respectively, while using a public dataset with CNN architectures. 

 

Table 5.2. Comparison with other deep learning techniques 
Authors Dataset Algorithms Accuracy  AUC 

(Hepsağ et al., 2017) MIAS DCNN 68.00% - 

(Tan et al., 2017) MIAS CNN  85.85% - 

(Natalia Antropova 
et al., 2017) 

Private  AlexNet  0.91 

(Zheng et al., 2018)  CNN, LSTM 84.7% - 

(Jiang et al., 2017) BCDR-F03 GoogLeNet, AlexNet  0.88 

(Hadad et al., 2017) Private VGG, Transfer 
Learning 

93%  

(Truhn et al., 2018) Private  ResNet  0.88 

(Ragab et al., 2019) CBIS-
DDSM 

DCNN-AlexNet, SVM 87.20% 0.94 

(S. Khan et al., 2019) Microscopic 
Images 

VGG, GoogLeNet, 
ResNet 

97.67% - 

(Song et al., 2020) DDSM GoogLeNet, 
InceptionV2, 
XGBoost 

92.80% - 

Proposed Work Private 
dataset 

CNN-SVM 
InceptionV3 

95.28% 0.974 
0.932 

 

An AUC of 91% and 88% achieved by (Natalia Antropova et al., 2017, Jiang 

et al., 2017 & Truhn et al., 2018), respectively, using the AlexNet deep learning 
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architecture where (Truhn et al., 2018) used a ResNet pre-trained model. However, 

they validated their methods using a variety of different datasets. (Hadad et al., 2017 

& Zheng et al., 2018) classified the tumor using the VGG and CNN models, 

respectively, and achieved an acceptable level of accuracy. 

Additionally, in 2020, (Song et al., 2020) extracted and categorized in-depth 

features from GoogLeNet and InceptionV2 using the XGBoost classifier, achieving 

a 92.80% accuracy. Similarly, there was a minor discrepancy in the accuracy 

obtained by this method and the work performed by (S. Khan et al., 2019). They 

incorporated VGG, GoogLeNet, and ResNet DCNN's in-depth features from 

microscopic samples. 

According to the above analysis, the results obtained in the deep learning 

analysis showed that deep learning models had given high performance in this task 

with all kinds of evaluation metrics and ROC-AUC values. On the other hand, Table 

5.2 mentioned studied in the private dataset where researchers used a few images to 

develop their models. Several others chose ROC-AUC instead and obtained low 

performance.  

By analyzing radiomics feature-based and feature-less (deep learning) 

results, it can be expressed that the proposed combinational analysis of radiomics 

features is excellent for breast tumor classification and can be efficiently executed 

for tumor diagnosis.  
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 CONCLUSIONS 

 

Breast cancer is the second most common form of cancer in females after 

lung cancer. Early detection has significantly increased the survival rate of breast 

cancer. Thus, automatic detection can be used to provide the required solutions in 

this area. The explosive growth of radiomics and deep learning-based medical image 

analysis makes it possible to extract the features and take full advantage of big data 

for early detection and enrich cancer diagnostics. 

This work provided an overview of radiomics feature extraction and their 

machine learning-based analysis without feature extracting based deep learning 

analysis for breast tumor classification. It is structured around the dataset, model 

design, and evaluation of the models. 

According to the previous researcher's study, radiomics features with 

distinct metrics were studied separately, with very few studies focusing on their 

combinational analysis. Apart from the deep learning-based review, another 

significant problem is the lack of an image dataset. 

In this study, a combined application of various radiomics features with 

statistical features was investigated. Support Vector Machines with four different 

kernels demonstrated exceptional results. This analysis suggested an accurate and 

feasible method for classifying benign and malignant tumors using the proposed 

classification scheme based on radiomics features. It performs astonishingly well 

when several features were combined into a classification scheme. The application 

of the algorithm described in this thesis can increase tumor classification accuracy 

and decrease misdiagnoses. 

To make this analysis more credible, appropriate, and accurate, we will 

collect additional images and compile a large image dataset. We will investigate how 

to build these models in future work so that clinical data and derived feature data can 

be combined. Additionally, we will assist in determining the tumor type, which is 

critical for initiating early diagnosis. We hope that the collaboration with different 
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researchers such as radiologists, biomedical, and informatics researchers to advance 

the fields of radiomics that are both depends on feature-based and feature-less (deep 

learning). 
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