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The diagnostic of breast cancer and breast imaging procedures are typically carried
out using a variety of imaging modalities, including mammography, MRI, and Ultrasound.
However, Ultrasound and mammography have limitations. MRI is better than other
procedures. Recent computational approaches, such as the Radiomics applied to image
analysis, have shown remarkable progress for removing diagnostic difficulties. This thesis
analyzed the robustness of breast tumor classification with features extraction (radiomics)
and featureless method (deep learning). It contains two stages: the first stage introduced and
explored radiomics based steps. A total of 111 tumor lesions were used to derive 74 radiomic
features consisting of shape, first-order, and three separate second-order metrics. Four
separate associations of features were used to classify tumor lesions with four different
kernels from support vector machine algorithm. Second-order defined data split showed
better cross-validation performance with highest accuracy of 96.17%, where all feature
combinations data split showed 96.08% accuracy. In the confusion matrix analysis, the SVM-
RBF kernel developed optimal diagnostic efficiency with a maximum test accuracy of
97.06% on two separate combination data group analysis. The second stage developed with
deep learning techniques (InceptionVV3 and CNN-SVM). A total of 2998 images were used
to create the models. In this portion, the CNN-SVM model achieved the highest accuracy,
95.28%, with an AUC of 0.974, where the pre-trained InceptionV3 achieved an AUC of only
0.932. Finally, the obtained result in both stages was discussed together and other related
studies.

Keywords: Breast Tumor Classification, Radiomic Features, Deep Learning.
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Goglis kanserinin teshisi ve gogiis gorlintiileme islemlerinde tipik olarak,
mamografi, MRI ve Ultrason gibi ¢esitli goriintiileme araglar1 kullanilarak
gerceklestirmektedir. Ancak, Ultrason ve mamografinin goriintiilemelerinin sinirlamalari
vardir. MRG ise diger kullanilan yontemlere gore daha iyidir. Goriintii analizine uygulanan
Radiomics gibi son zamanlarin hesaplama yaklasimlart, teshis zorluklarini ortadan kaldirmak
icin dikkate deger bir ilerleme gdstermistir. Bu tez, meme timorii siniflandirmasinin
saglamligini 6zellik ¢ikarma (radyomik) ve 6zelliksiz yontem (derin 6grenme) ile analiz
etmektedir. Tki ana boliimden meydana gelmektedir: ilk boliim, radyomik temelli adimlar
arastirildi ve on uygun uygulamalar gergeklestirilmigti. Goriintii lizerinden, birinci derece ve
ti¢ ayr1 ikinci derece metrikten olusan 74 radyomik 6zelliklerini tiiretebilmek igin toplam 111
timor lezyon goriintiisii kullanilmistir. Destek vektor makine algoritmasindan dort farkl
cekirdek ile tiimor lezyonlarini siniflandirmak igin dort ayri ozellik iliskilendirmesi
kullanilmistir. Tkinci dereceden tammlanms veri boliimleme analizi ile %96,17'lik en yiiksek
dogrulukla daha iyi sonuglar ortaya koymustur. Burada tiim 6zelliklerin kombinasyonlari veri
boliimleme ile de %96,08 dogruluk basarist gostermistir. Karigiklik matrisi analizinde, SVM-
RBF ¢ekirdegi, iki ayr1 kombinasyon veri grubu analizinde maksimum %97.06 dogrulukla
optimum tan1 verimliligini gelistirdi. Tkinci bélimde de ise, derin 6grenme tekniklerinden
InceptionV3 ve CNN-SVM kullanilmistir. Modelleri olusturmak igin toplam 2998 gériintii
kullanmistir. Bu bolimde, CNN-SVM modeli, dnceden egitilmis InceptionV3'in yalnizca
0,932'lik bir AUC elde ettigi, 0,974'liik bir AUC ile en yiiksek dogrulugu %95,28'e ulasmustir.

Anahtar Kelimeler: Meme Tiimérii Siiflandirmasi, Radyomik, Derin Ogrenme



EXTENDED SUMMARY

Breast cancer is the most common type of cancer in women. According to a
report by the American Cancer Society, over 2 million women were diagnosed with
breast cancer in 2018. Although the number of cancer deaths among American
women has increased over the past nine decades, breast cancer was the second
leading cause of death among women from 1930 to 2016, but the death rate has
dropped by 40 percent in the last 40 years. Early detection is responsible for this
drop. The diagnosis of cancer is a highly complex procedure in medical research,
and numerous tests are needed for appropriate diagnosis. Recent advancements in
medical imaging technology, particularly in artificial intelligence-based image
analysis, can significantly help areas of medical practice by providing real-world
difficulties in detecting cancer, evaluating treatment, and tracking disease
progression. The ultimate goal of medical imaging is to see the disease as early as
possible, detect tumors, predict effects on the patient's physical well-being, and
better control.

Typically, diagnostic and imaging operations are performed utilizing a range
of imaging modalities, including mammography, magnetic resonance imaging, and
ultrasound. However, there are drawbacks to both mammography and ultrasonic
imaging methods. Breast MRI offers the highest effectiveness for detecting breast
cancer of any contemporary clinical imaging modality and is crucial in breast
imaging operations. While T1-weighted contrast-enhanced imaging is the
foundation for breast MRI, T2-weighted and diffusion-weighted imaging are utilized
to characterize lesions further. The MR evaluation of breast tumors enables accurate
differentiation of benign from malignant lesions. The approach to customized
medicine naturally leads to quantitative analysis of medical imaging. Advances in
artificial intelligence for the interpretation of massive amounts of figurative data

from various imaging technologies are critical in identifying cancer. Three distinct



significant techniques have been discovered under this paradigm: Radiomics,
Machine Learning, and Deep Learning.

The Radiomics quantitative characteristics extraction method is designed to
get a number of different images from a defined area of interest (ROI). This process
is divided into several stages. At first, the process requires the gathering of image
data. After the preprocessing phases are completed, the images are segmented to
determine the location of the tumor. The ROIs have been found by a semi-automatic
segmentation methodology known as thresholding-based segmentation. A series of
radiological images, initially taken for conventional purposes, is then used to locate
areas of interest (ROIs) and their functionality. Once the ROIs have been found,
radiomics features are retrieved from the ROIs for statistical evaluation. In the last
few years, an increasing number of user-friendly and open-access software is
available to extract radiomics features from medical images. The most prominent
examples include MaZda, PyRadiomics, TexRAD, LIFEx, MIM, ONCOradiomics,
and 3DSlicer. The features, in this case, were extracted by setting up the
PyRadiomics setup.

The computational radiomics properties are most frequently classified as
Shape, First-Order Statistics, Second-Order Statistics, and Higher-Order Statistics.
Shape, First-Order Statistics, and three Second-Order Statistics characteristics
(GLCM, GLDM, and NGTDM) were employed in this analysis to differentiate
between benign and malignant breast lesions. The extracted features are studied
using a variety of statistical models to machine learning methods. Traditionally, the
majority of radiomics research has been conducted using traditional classification
methods such as Bayesian (BY) techniques, Boosting (BST), Decision trees (DT),
Discriminant analysis (DA), or support vector machine (SVM). This thesis employed
the SVM technique to verify classification accuracy using four different kernels
(Linear, RBF, Polynomial, and Sigmoid).

More recently, deep learning has helped many areas enhance their accuracy.

Due to deep learning's success in various medical applications, this work suggested
v



two deep learning-based systems for breast tumor classification. The thesis
implemented convolutional neural networks (CNNs) followed by a support vector
machine-based classifier. Additionally, it examined an InceptionV3 pre-trained
model. In this instance, the dataset was used entirely imbalanced. Thus, a balance
data generator with an up-sampling approach and data augmentation approach was
created in combination to address the issue of data imbalance. The image
preprocessing and segmentation phases were performed using an open-source image
processing application called Fiji (ImageJ). The complete evaluation process was
written and implemented on the Google Colab Cloud platform, designed for Python
code development.

Finally, the radiomics with machine learning and deep learning models were
compared to other state-of-the-art investigations. After studying the literature related
to both processes, the thesis concluded that the research was sufficiently acceptable
in the database that used, and the model strategies was adopted.






GENISLETILMIS OZET

Meme kanseri kadinlarda en sik goriilen kanser tiiriidiir. Amerikan Kanser
Dernegi tarafindan hazirlanan bir rapora gore, 2018'de 2 milyondan fazla kadina
meme kanseri teshisi kondu. Amerikali kadinlar arasinda kanser sebepli 6liimlerin
sayist son doksan yilda artarken, meme kanseri 1930'dan 2016'ya kadar oliim
nedenlerinde ikinci sirada yer aldi. Ancak erken teshis sayesinde 6liim orani son 40
yilda yiizde 40 diistii. Kanser teshisi son derece karmasik bir islemdir ve dogru teshis
icin ¢cok sayida test gereklidir. Tibbi goriintiileme teknolojisinde 6zellikle yapay zeka
tabanli goriintii analizindeki son gelismeler; kanseri tespit etmede, tedaviyi
degerlendirmede ve hastaligin ilerleme siirecinin takibinde zorluklarin iistesinden
gelmeye 6nemli 6l¢iide yardimer olur.

Tipik olarak tan1 ve goriintilleme islemleri, mamografi, manyetik rezonans
goriintiileme ve ultrason dahil olmak {izere bir dizi goriintilleme yontemi kullanilarak
gergeklestirilir. Bununla birlikte, hem mamografi hem de ultrasonik goriintiileme
yontemlerinin dezavantajlart vardir. Meme MRI, herhangi bir cagdas klinik
goriintilleme modalitesinin meme kanserini saptamak i¢in en yiiksek etkinligi sunar
ve bu nedenle meme goriintiileme operasyonlarinda ¢ok onemlidir. T1 agirlikli
kontrastli goriintileme meme MRInin temelini olustururken, lezyonlar1 daha iyi
karakterize etmek i¢in T2 agirlikli ve difiizyon agirlikli goriintiileme kullanilir.
Meme tiimorlerinin MR degerlendirmesi, iyi huylu ve koétii huylu lezyonlarin dogru
bir sekilde ayirt edilmesini saglar. Kisiye 6zel tibbi yaklagim, dogal olarak tibbi
goriintiilemenin nicel analizine yol agar. Cesitli goriintiileme teknolojilerinden elde
edilen biiylik miktarlardaki figiiratif verilerin yorumlanmasi i¢in yapay zekadaki
gelismeler, kanserin tanimlanmasinda kritik 6neme sahiptir. Bu paradigma altinda
Radyomik, Makine Ogrenimi ve Derin Ogrenme dahil olmak iizere {i¢ farkli ana
teknik kesfedilmistir.

Radiomics nicel karakteristikleri ¢ikarma yontemi, tanimlanmis bir ilgi

alanindan (ROI) bir dizi farkl goriintii elde etmek i¢in tasarlanmistir. Bu siire¢ birkag
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asamaya ayrilmistir. Ilk basta, siireg goriintii verilerinin toplanmasim gerektirir. On
isleme agamalar1 tamamlandiktan sonra, tiimoriin yerini belirlemek i¢in goriintiiler
segmentlere ayrilir. ROI'ler, esiklemeye dayali segmentasyon olarak bilinen yar1
otomatik bir segmentasyon metodolojisi ile bulunmustur. Baglangicta geleneksel
amaglarla alinan bir dizi radyolojik goriintii daha sonra ilgi alanlarin1 (ROI'ler) ve
bunlarin islevselligini belirlemek i¢in kullanilir. ROI'ler belirlendikten sonra,
istatistiksel degerlendirme i¢in ROI'lerden radyomik ozellikler alinir. Son birkag
yilda, tibbi goriintiilerden radyomik 6zellikleri ¢ikarmak igin artan sayida kullanici
dostu ve agik erigimli yazilim mevcuttur. En belirgin 6rnekler MaZda, PyRadiomics,
TexRAD, LIFEx, MIM, ONCOradiomics ve 3DSlicer'dir. Bu durumdaki 6zellikler,
PyRadiomics kurulumu ayarlanarak c¢ikarildi.

Hesaplamali radyomik ozellikler en sik Sekil, Birinci Dereceden
Istatistikler, ikinci Dereceden Istatistikler ve Yiiksek Dereceden Istatistikler olarak
stiflandirilir. Iyi huylu ve kotii huylu meme lezyonlarii ayirt etmek igin bu analizde
Sekil, Birinci Derece Istatistik ve ii¢ Ikinci Derece Istatistik dzelligi (GLCM, GLDM
ve NGTDM) kullanildi. Cikarilan 6zellikler, makine 6grenimi yontemlerine yonelik
cesitli istatistiksel modeller kullanilarak incelendi. Geleneksel olarak radyomik
aragtirmalarinin ¢ogu, Bayesian (BY) teknikleri, Artirma (BST), Karar agaglar
(DT), Diskriminant analizi (DA) veya destek vektor makinesi (SVM) gibi geleneksel
simiflandirma yontemleri kullanilarak yiiriitiildii. Tezimizde, dort farkli ¢ekirdek
(Dogrusal, RBF, Polinom ve Sigmoid) kullanarak smiflandirma dogrulugunu
6lemek i¢in SVM teknigini teknigi kullanildi.

Son zamanlarda, derin Ogrenme bir¢ok calisma alaninda dogrulugun
artmasina yardimci oldu. Derin 6grenmenin gesitli tibbi uygulamalardaki basarisi
nedeniyle, bu tezde meme tiimorii siniflandirmasi igin iki derin 6grenme tabanl
sistem Onerdik. Evrisimli sinir aglar1 (CNN'ler) ve ardindan bir destek vektorii
makine tabanli smiflandirict bu ¢alismada kullanildi. Ek olarak, InceptionV3 adh
onceden egitilmis bir modeli inceliyoruz. Bu 6rnekte, veri seti tamamen dengesiz

kullanilmigtir. Boylece, veri dengesizligi sorununu ele almak i¢in bir yukari-
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ornekleme yaklasimi ve veri biiyiitme yaklasimina sahip bir denge veri olusturucu
bir arada olusturulmustur. Goriintii 6n isleme ve segmentasyon asamalari, Fiji
(Image) adli agik kaynakli bir goriintii isleme uygulamas1 kullanilarak
gerceklestirilmis ve tim degerlendirme siireci Python ile kod gelistirme icin
tasarlanmis Google Colab platformunda yazilip uygulanmustir.

Son olarak, makine 6grenimi ve derin 6grenme modellerine sahip radyomik,
diger son teknoloji arastirmalarla karsilastirildi. Her iki siiregle ilgili literatiirii
inceledikten sonra, kullandigimiz veri tabaninda ve benimsedigimiz model

stratejilerinde aramalarimizin yeterince kabul edilebilir oldugu sonucuna varildi.
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1. INTRODUCTION Harun-Ur-RASHID

1. INTRODUCTION

1.1. Background and Research Motivation

Breast cancer is one of the leading causes of female mortality. Breast cancers
that are diagnosed early have a slightly higher chance of having a favorable clinical
outcome. Medical imaging has long been recognized as a reliable tool for the early
detection of cancer and monitoring patients during and after chemotherapy or
surgery. Artificial intelligence advances in analyzing vast amounts of interpretive
image data produced by various imaging methods contribute significantly to tumor
detection. Three fundamental approaches to goal-oriented research can be
differentiated in this context: radiomics, machine learning, and deep learning. The
increase in science journals is shown in Figure 1, which shows that the number of
publications using the radiomics, MRI, and deep learning techniques discussed in
this study has increased annually since 2016.

Number of Publications
35
30
25
20
15

5
- ] -

2021 2020 2019 2018 2017 2016

= Radiomics MRI Mammaography

Figure 1.1. Number of publications per year in PubMed containing “machine
learning”, “breast cancer”, “classification” and one of the three
modality keywords (MRI, mammography, radiomics) from 2016 to
2021. (Queried: April 9, 2021)
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Number of Publications
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Figure 1.2. Number of publications per year in PubMed containing “deep learning”,

% ¢

“breast cancer”, “classification” and one of the three modality keywords
(MRI, mammography, radiomics) from 2016 to 2021. (Queried: April 9,
2021)

Radiomics is a rapidly growing discipline of medical image analysis
field used to investigate tumor information. In breast cancer classification radiomics
is a new field. To develop radiomics process it includes different steps. At the
beginning original DICOM image used for tumor identification. Next steps it
includes tumor segmentation and feature extraction process. Finally extracted feature
data are organized and develops a dataset for analysis.

After finishing the work, the breast cancer classification (benign or
malignant) will be facilitated, and care will begin early. A comprehensive idea to
find out the robustness of classification accuracy based on deep learning and

radiomics will provided.
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1.2. Objectives of the Thesis

The principal objectives of this study are to classify the breast tumor classes
(benign and malignant) using radiomics method and also the deep learning method.
After that, the classification robustness of above-mentioned method will be analyzed
briefly.

e To concentrate on the uses of radiomics features in the classification of
breast tumor lesion.

e To explore the suitability of radiomics in distinguishing malignant from
benign breast tumor lesions.

e To enable comparisons with more established image-based techniques.

e To compare the classification robustness between radiomics and deep

learning-based cancer classification.

After completing the proposed work, it is expected that the accuracy of
diagnoses and therapy responses assessment will be improved. It also increases the
clinical applicability of artificial intelligence. Classification robustness also ensure
the best method to classify the breast tumor. This will provide new approaches to
handling the problems in large data management.

It believes that radiomics is rapidly moving beyond the realm of specialized
study and is establishing itself as a translational technology. The purpose of this
paper is to familiarize a broad audience of practicing clinicians, including

radiologists, with the practice of radiomics.

1.3. Proposed Idea of the Thesis
At present days, most of the clinical diagnosis are implemented by smart
solutions like internet of things (IoT) and artificial intelligence. Therefore, thesis

shows the ability to use radiomics feature for tumor lesion analysis and also deep

3
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learning techniques for cancer class differentiation. This work shows the way to
develop radiomics process and also the deep learning process and their robustness
analysis. A block diagram represents the whole idea to develop and implement this

MR| image acousiion

Image Segmentaion and RO
selecton

thesis.

Image Pre-Processing

L 4 r

Fealure based metod

(Radiomics) Feaburedess kethod

k4 r
Radiomscs Fealme Exiracisa
(Shape. Frst and Second
arder)

Feabune Exiracton lDE'E'I.'I
leaming Techniqueas)

Model Development (Machine Model Development (Deep
Learning) Learming)

Suppart Vecior Machinge
(Linear, REF, Palynamial, CHN-SWM, Inception3
Sigmeoen Kermed)

Breasi Tumor Classificadon

Figure 1.3. A block diagram of proposed work

This work is separated by two different steps. In the first step, ROI is
selected by segmentation in the selected images from the raw dataset. These ROIls
are then used to extract tumor features from the original images. Extracted
information are analyzed with machine learning algorithm for classification

purposes. This process formed as Feature Based analysis.
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In the second step, the images in the image dataset are input directly into the
two different deep learning model. Deep learning analysis automatically extracts
features so there is no need to save new datasets separately. Again, the extracted
information is analyzed automatically, that means no separate algorithm is needed.
This is why this step is called featureless method.

Therefore, this studies aim is to determine the robustness of cancer
classification by radiomics features extraction and deep learning with respect to

variability in semi-automatic breast tumor segmentation on MRI.

1.4. Outline of the Thesis

Chapter 1 presents an overview of the motivation and problems of the
present day's research summary about breast cancer classification and the major
objectives of this thesis. This chapter also contains a summary representation of the
proposed work. Chapter 2 gives a literature review of related studies with
similarities, gaps, limitations, and concepts. The datasets that are used in this thesis
are discussed in Chapter 3. The mathematics of radiomics features, feature
extraction process, and algorithms for both machine learning and deep learning are
also represented in Chapter 3. In Chapter 4, the obtained results are mentioned.
Chapter 5 contains a brief discussion about proposed techniques. Finally, the
limitation and some advice for how to overcome these limitations are addressed in
Chapter 6.
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2, LITERATURE REVIEW

In this chapter, its covered most of the recent studies that are related to
radiomics based breast lesion classification and Magnetic Resonance image
analyzed deep learning-based classification. It is found that the majority of these
results may contain some intriguing possibilities that must be checked and compared
to this dissertation. Though this thesis has analyzed two different methods and
compared them, so that the related studies of these methods were also presented
sequentially.

Over the last few years, a great deal of work has been done on medical image
processing field where deep learning, and radiomics coming to be two of the most
common technigues. Radiomics is a relatively new technique that employs a set of
sophisticated mathematical operations to convert imaging data to a high-dimensional
feature vector (Aerts etal., 2014; Yip & Aerts, 2016). Many researchers have studied
the correlation between such features and clinical variables as well as treatment
outcome and tumor type classification (benign vs. malignant) to identify potential
mechanisms of radiomics (Keek et al., 2018). Breast cancer has also been the subject
of extensive studies in radiomics (Conti et al., 2020; Tagliafico et al., 2020).

Radiomics (Gillies et al., 2016) is an imaging area that is increasingly
flourishing and advancing in recent years. It can generalize image data and extract
high-dimensional computational features based on shape, strength, and texture to
provide information about the tumor phenotype and surroundings (Aerts et al., 2014;
Kumar et al., 2012). These features are computational results of different image-
processing and data optimization algorithms of the first, second or higher-order
statistics.

Radiomic features are intended to extract the distinctive details of benign or
malignant nature by quantifying various texture properties (Lambin et al., 2012).
More precisely, first-order features are calculated on a Region of Interest (ROI) or

Volume of Interest (VOI) utilizing voxel intensity distribution, whereas second-
7
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order radiomic features (GLCM, GLDM) calculate the perceptual representation in
texture image of voxel intensity values (Velichko et al., 2020).

Several researchers applied radiomics methods to identify the different
forms of cancers using imaging techniques. For example, MRI-based radiomics
research helps to differentiate subtle distinctions between various tumor phenotypes
and has been conducted for clinical manifestations of breast and lung tumor type
(Ardakani et al., 2015; Lang et al., 2019; Nam et al., 2019).

MRI has several advantages for identifying breast cancer lesions. MRI is
capable of multi-planar scanning and 3D reconstruction, which allows for a more
accurate display the different features of a selective lesion like size, shape, breast
lesions' position (Honda et al., 2016). However, MRI can distinguish benign from
malignant breast cancer in approximately 72% of cases (Rankin, 2000). Indeed, its
specificity is restricted by a number of image-quality-related factors including
magnetic field and gradient power, coil efficiency, contrast agent effectiveness, and
menstrual cycle (Zhou et al., 2015).

Kaya et al. (Kaya et al., 2017) used brain MRI to segment the tumor and
classified it via PCA which resulted in the inexplicit identification of tumor shape
assisting to the risk of human life. Image sequences involved in classical procedure
such as T2-weighted, Short-Tau-Inversion-Recovery (STIR), sdyn-eTHRIVE and
Weighted Diffusion (DW) can satisfactorily be used (Thakran et al., 2018) for this
purpose.

Pareckh et al. (V. S. Parekh & Jacobs, 2017) developed a feature map by
extracting features from Magnetic Resonance (MR) images and analyzed it with the
IsoSVM model where the classifier expressed 93% sensitivity, 85% specificity and
91% AUC. Similarly, Bickelhaupt et al. (Bickelhaupt et al., 2017) also collected
statistical features from Magnetic Resonance (MR) images (DWI-MR and DCE-
MR) and continued by Lasso-supervised methods to classify them. This model has
helped separate the malignant tumor from benign lesions with an AUC of 84.2%
(DCE-MRI) and 85.1% (DWI-MR).
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Whitney et al. (Whitney et al., 2019) have used DCE-MRI-derived radiomic
features to help distinguish benign lesions from luminal A breast tumors. This
classification exercise showed how features such as entropy and irregularity proved
valuable by achieving an AUC rate of 72.9% with a linear discriminant analysis
(LDA) algorithm.

Mao et al. (Mao et al., 2019) revealed the characteristics of quantitative
radiomics coupled with mammographic images and used machine learning
algorithm to extract features. Using logistic regression on 51 features of radiomics,
they found 88.6% accuracy, a better outcome than experienced radiologists.

Recently, researchers proposed that radiomics retrieved features derived
from two distinct methods of image collection, most likely ultrasound imaging and
digital breast tomosynthesis (DBT), were successful at differentiating malignant
from benign lesions (Tagliafico et al., 2018; Q. Zhang et al., 2017). Specifically,
Zhang et al. (Q. Zhang et al., 2017) used hierarchical clustering to pick seven
important characteristics and monitored the testing accuracy, sensitivity and
precision where the results were 88.0%, 85.7%, and 89.3% respectively. Tagliafico
etal. (Tagliafico et al., 2018) identified three radiomic features (energy, entropy, and
dissimilarity) that significantly distinguished cancerous from typical breast tissue of
patients. However, researchers’ findings indicated that these characteristics cannot
be used in isolation to analyze breast lesion well. They achieved very poor AUC
56.7%.

Another study was reported that authors extracted three different features
and analyzed them with and without making combination. Individual analysis of
different feature and their combinational analysis model was developed by Park et
al. (B. E. Park et al., 2016) where support vector machine algorithm were used for
recognizing a rotator cuff supraspinatus tendon tear. The author considering five (5)
first order, 52 second-order features (GLCM-40 and GLRLM-12). From the results,
first order and second order (GLCM and GLRLM) features give 95%, 85%, and
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100% accuracy, respectively. The association of all features (First order, GLCM and
GLRLM) achieved highest 100% accuracy.

In comparison to radiomics, which use pre-defined (manual extraction)
features, deep convolutional networks learn and retrieve excellent information from
training data for specific classification tasks. However, a significant barrier to the
success of deep convolutional networks is a scarcity of sufficiently large datasets
(Marentakis et al., 2021). The extensive use of deep learning in medical image
processing and classification has recently emerged as the most widely used Al
strategy in medical science (Bengio et al., 2013).

Recently, different academic groups such as the Visual Geometry
Community and Google researcher used sophisticated deep learning methods to
design and implement the VGG-16, ResNet, GoogLeNet and so on models (Nahid
& Kong, 2018). Among these sophisticated modeling methods focused on
convolutional neural networks (CNNs), which are used to increase the performance
of breast cancer diagnosis (Togagar et al., 2020). Consider the following, Khan et al.
(S. Khan et al., 2019) analyzed two distinct dataset (public and self-collected) by
utilizing fine-tuned DCNN architectures VGGNet, GoogleNet, and ResNet-50. They
categorized the fused features using the average pooling approach and achieved an
accuracy of 97.67%. Furthermore, Li et al. (Li et al., 2017) developed a procedure
using 3D CNNs to differentiate between malignant and benign breast tumors. They
used their own dataset which belongs 143 patients, 66 of whom had benign and 77
of whom had malignant tumors. The accuracy (Acc), sensitivity (Sens), and
specificity (Spec) of 3D CNN model were 0.781, 0.744, and 0.823, respectively. But
their (Li et al., 2017) model accuracy were comparatively low.

In the same way, Khan etal. (H. N. Khan et al., 2019) analyzed two different
public dataset DDSM and CBIS-DDSM for the labeling of mammograms. For this
purpose, they suggested four deep learning architectures (VGG-16, VGG-19,
GoogLeNet, and ResNet50) based on multi-view feature fusion (MVFF). They

found the classification accuracy 96.66% and the AUC 93.4%.
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Wu et al. (Wu et al., 2020) introduced a pre-trained deep learning model
(ResNet) for classifying breast cancer screening exams that was trained and tested
on over 200000 exams (over 1000000 images), with the network pre-trained on
screening BI-RADS data. When tested on the sampling audience, the described
model produced an AUC of 89.5% in forecasting the existence of breast cancer.

A fully automated method for mass detection in Full-Field Digital
Mammaograms (FFDM) using a Faster Region-based Convolutional Neural Network
(Faster-RCNN) was addressed by Agarwal et al. (Agarwal et al., 2020). First, author
developed the model by using OMI-DB Database and acquired a True Positive Rate
(TPR) of 0.93 was obtained with a False Positive Rate (FPR) of 0.78 per image.
Then, another public dataset INbreast, was tested on same model and obtained a TPR
of 0.91+ 0.06.

Jiang et al. (Jiang et al., 2017) classified breast tumor lesions in a new-found
BCDR-F03 dataset with two different deep learning algorithm GoogLeNet and
AlexNet. They received 88% and 83% AUC, respectively. However, Antropova et
al. (Natasha Antropova et al., 2018) also achieved a good AUC 85% while
classifying 703 MRI image data. This was achieved by another deep learning model
named as long short-term memory network (LSTM).

Recently, the success of the deep convolutional neural network-based
method for breast lesion classification was compared to that of radiologists and
conventional artificial intelligence techniques. A CNN-based ResNet model was
developed by Truhn et al. (Truhn et al., 2018). The model used for classifying the
benign and malignant lesion from a private dataset which contains 447 patients with
787 malignant and 507 benign lesions from MRI image data. Finally, CNN achieved
an AUC of 0.88, which is superior to that of a radiologist.

The area of deep learning-based transfer learning has been intensively
investigated for the task of classifying breast cancers. Song et al. (Spanhol et al.,
2016) offered a GoogLeNet, Inception-v2, and Inception-based CAD scheme for

classifying three classes: normal, benign, and malignant. In final, fully connected
11
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layer was replaced by XGBoost. They worked on a public DDSM dataset and
original DCNN model achieved an accuracy of 82.84%; however, when the DCNN
model was fine-tunned with XGBoost the classification accuracy was improved at
92.8%.

Mendel et al. (Mendel et al., 2019) used pre-trained VGG-19 and SVM to
isolate and classify the features of 78 mammogram lesions. The AUC value obtained
was 81%. According to Ekici et al. (Ekici & Jawzal, 2020), convolutional neural
networks (CNNSs) optimized with the Bayes algorithm also able to identify early
symptoms of the disease and classifies the breast images as normal or suspected. To
this end, they used 140 instances of thermal breast images and obtained an 98.95%
accuracy. The main drawback of Ekici et al. (EKici & Jawzal, 2020) is the limited
number of training set. The number of training and testing were very small.

The deep learning algorithm incorporated significant bias into the final
classification result, despite the limited size of the dataset. So, different method also
applied by the researchers to overcome the data lacking problems. Data
augmentation techniques were applied by Zhang et al. (X. Zhang et al., 2017). A
transfer learning based neural network models employed for the classification and
whole mammography images were inputted. The AUC was found 73%.

Maicas et al. (Maicas et al., 2017) present a deep reinforcement learning Q-
method for the automatic identification of breast tumor lesions from a dataset
containing 117 images from DCE-MRI module and authors found sensitivity 80%
with an operating time 9221s.

12
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3. MATERIAL AND METHODS

This chapter was covered data preparation, platforms of training and testing,
image processing tools, Radiomics feature extraction methods mathematical
expression, machine learning, and deep learning algorithms. Lastly, it represented

the metrics, which were used to measure the performance of algorithms.

3.1. Data Preparation
3.1.1. Patient Population

MR images were collected systematically from number of patients with
imaging conducted using the identic scanner and image procedure to eliminate
interscan heterogeneity correlated with variations in imaging ingredient or the
imaging arrangement. The age range of the patients was 39 to 85 years. Here we
used data from 35 patients, of whom 10 had benign and 25 had malignant tumors in
their breasts. A total of 111 tumor locations identified in the images obtained. The
Department of Oncology at the Cukurova University Hospital and the Department
of Electrical and Electronics Engineering accepted this systematic research, and
patient confidentiality was strictly ensured under the committee of ethics rules during
the whole work.

3.1.2. Training, Testing Platform and Tools
3.1.2.1. Fiji (ImageJ)

The images that were obtained using MRI machines were processed in open-
source image analysis application Fiji, which incorporates plugins and macros.

Fiji combines fully featured libraries with a diverse set of scripting
languages to rapidly prototype image-processing algorithms. Fiji simplifies the
process of converting numerical algorithms into ImageJ plugins that can be

distributed to end users via an incorporated upgrade scheme (Abramoff et al., 2004).

13
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It extends its functionality by continuing to support a broad range of programming
languages (Jython, Python, JavaScript, JRuby, and Bean shell), offering the most
extensive set of programming tools available on both open-source platforms. These
languages are not only accessible to those with no prior knowledge of Java, but also
serve as a useful contrast to the macro language in terms of programming syntax, in
the case of newcomers being at an adequate level.

It is cited in over 1000 peer-reviewed works. Fiji supports a huge humber of
various image formats and a big number of pixel-based actions. Additionally, images
with bit depths larger than 8 or 16 bits per channel are supported. It can also be used
as an image-conversion tool. Many image formats can be read natively by Fiji, and

with the help of a plugin, many proprietary formats can be opened.

3.1.2.2. Google Colaboratory

We used Google Colaboratory, a powerful Python development
environment. It is a free cloud service built on Jupyter notebooks for developing
machine and deep learning projects. Colab is also integrated with Google Drive,
allowing users to share and upload notebook and associated materials to the account.

Colab provides a runtime optimized for deep learning with unrestricted
access to a robust GPU/TPU. The only constraint on Colab is that the runtime is
interrupted after 12 hours of continuous operation. Occasionally, it can disconnect
after an hour of inactivity. Additionally, we found that Colab comes with 12GB of
RAM and can be expanded to 25GB during runtime if required. The internet
connection in Colab is up to 120MB/s. We uploaded the original and mask images
to Google Drive and then mounted them on Colab. Due to RAM crashes at the data
augmentation stage, we exercised some restraint when running the codes. Colab
comes pre-installed with nearly all of the required Python libraries, including

TensorFlow, Keras, Pandas, Numpy, and Matplotlib.

14
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3.1.3. MR Imaging

The MR imaging was conducted at the Cukurova University Hospital,
Turkey, prior to a typical imaging procedure containing six different sequences.
They are T2W-TSE (T2-Weighted Turbo Spin Echo), T2W-SPAIR (T2-Weighted
Spectral Attenuated Inversion Recovery), STIR (Short Tau Inversion Recovery),
DWI (Diffusion Weighted Imaging), 7dyn-eTHRIVE (7dynamic-Enhanced T1 High
Resolution Isotropic Volume Excitation), and sdyn-eTHRIVE (Subtraction of
Dynamic Enhanced T1 High Resolution Isotropic Volume Excitation). MRI was
performed on a 3.0T MR scanner (Philips healthcare, Ingenia, 2016,
Netherlands) with a bore of 70 cm with independent receive channel. The T2W-TSE,
T2W-SPAIR, STIR and DWI series sequenced images were gathered with a 3mm
slice thickness, but the sdyn-eTHRIVE and 7dyn-eTHRIVE slice thickness were
2mm. Table 3.1 contains the above-mentioned sequence parameters such as matrix,

echo time, number of averages, repetition time, and other values.

Table 3.1. MR image series parameters

Parameters | AT(S) ET (ms) | RT (ms) | NA | Matrix PPFOV
(mm)

T2W 152102.86 | 120 4444 1 350x245 | 125
T2W-SPAIR | 155013.72 | 70 4086 2 340x258 | 121.35
STIR 153945.20 | 65 4626 2 248%205 | 131.96
DWI 152627.18 | 93.31 13191 2 155x153 | 121.21
Sdyn 153327.76 | 2.14 4.3161 1 339x338 | 121.21
7dyn 153552.06 | 2.14 4.3161 1 339x338 | 121.21

A gadolinium-based contrast agent (gadobutrol, Gadovist; Bayer
Healthcare, Berlin) which are relatively large molecules, can easily extravasate from
such vessels, and therefore rapidly accumulate breast cancer stroma and was used

0.1 mmol/kg of body weight by intravenous.
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3.1.4. Image Segmentation

All of the patient's MR images were converted from DICOM to NRRD
format. Additionally, the surrounding areas around the breast region were cropped
and saved in PNG format for deep learning analysis.

A semi-automated segmentation method has been used in the breast tumor
segmentation process. The segmentation stage was conducted to contextualize each
benign and malignant breast tumor's tumor in fragments of 2D and 3D MR images.
An experienced radiologist from Cukurova University Hospital worked initially on
the breast MR images to detect tumors. Figure 3.1 represented a segmented output.
An open-source dedicated medical image processing program called ImageJ-based
F1J1 (Schindelin et al., 2012) has been used to build the process on breast MR image
slices. Initially, a new stack has developed for each tumor lesion, distinguishing the
initial tumor images from the images identified by a radiologist. Each wound-
carrying stack has been transformed into an 8-bit grayscale image. Tumors located
in these stacks have been controlled by changing the contrast and brightness values
to represent them better. Different threshold methods are applied to stack images.

The OTSU threshold technique has shown an appropriate outcome in certain
situations, and so did the MaxEntorpy. Then the outlier's modification has been
added to eliminate the noise where the outlier's structure in white and black layers is
radius = 0.5-2.0 pixels, threshold = 50; A mask has generated by designing these
phases such that only the tumor area may be correctly found. Then the standard mask
has transformed into a binary mask. Binary eroding and dilation methods have often
employed in certain situations to classify the tumor correctly. Median filters have
been applied to create all masks with a radius value of 1.0-2.0 pixels. The masks
have been able to establish the exact position and boundaries of the tumor because

of the overall work.
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Figure 3.1. T2 weighted (T2W) image (left) and 7dynamic-Enhanced (7dyn) T1
High Resolution Isotropic Volume Excitation MR image (right); (A, D)
original MR images; (B, E) segmented mask images, (C, F) Selected
ROI

3.2. Radiomics Feature Extraction

Radiomics as a field seeks to derive quantitative, and preferably
reproducible, information from medical images, which may include complex
patterns that are difficult to recognize or quantify with the human open eye.
(Mayerhoefer et al., 2020).

Semantic and agnostic features can be categorized under Radiomics. (Lewis
etal., 2021). A brief overview of the various radiomics types mentioned in the Table
3.2. Semantic features are qualitative characteristics that are commonly used in
radiology reports, such as the size, shape, position, and necrosis of lesions. Each of
the agnostic features is described by a sophisticated mathematical method and can

be classified as morphological or statistical. (Yang et al., 2018).
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The morphological characteristics of a segmented volume characterize its
form and physical structure. Additional classifications for statistical features include
first order, second order, and higher order features. Without taking spatial
relationships into account, first-order statistical features explain the distribution of
pixel intensities within VOIs. (Just, 2014).

Table 3.2. Classification of radiomics features

Main Group | Subgroup Name of techniques
Semantic - Size, shape, location, necrosis
Agnostic Morphological | -First order (diameter, volume)
-Higher order (Fractional dimension)
Statistical -Histogram based first order statistics, (energy,

mean, kurtosis, skewness, entropy)

-Second order texture (GLCM, GLDM, GLRLM,
NGTDM, GLSZM)

-Higher order (Wavelet, Gabor, Fourier, and
Laplacian transforms)

According to (Conti et al., 2020), In particular, the second-order statistics
that are texture features take into account spatial interdependence and co-occurrence
of information through voxels close to each other. This gray-level co-occurrence
matrix (GLCM) also alluded to as a gray tone spatial dependency matrix is among
the second-order features most widely implemented in radiomics studies.

However, according to (Lewis et al., 2021), numerous texture analysis
techniques generate hundreds of potential texture properties that can be incorporated
into radiomics analysis. (Lewis et al., 2021; V. Parekh & Jacobs, 2016). Higher order

radiomics techniques incorporate filters to obtain characteristics from images.

3.2.1. Shape Features

Shape description or representation is a significant issue in image analysis
for object recognition and classification. Shape features are crucial because they
offer a means of defining an object without relying on its most salient characteristics,

thus reducing the amount of data stored.
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Let,

The number of voxels is N,, within ROI

The number of faces (triangles) are Ny defining the Mesh.

The volume of the mesh V in mm3 ,

The surface area of the mesh A4 in mm?

Table 3.3. Mathematical explanation of the features of the shape features

Feature Description

1. Mesh Volume Mesh Volume = szf v
i=1

where, v, = 22(0bx0c)

6

2. Voxel Volume (V,pxe1)

I
Vvoxel il Zk:l Vk

3. Surface Area

N
Surface Area, A = Zizfl A;
1
where, 4; = >|a;b; x a;c;|

4. Surface to Volume Ratio

g A
surface to volume ratio = "

5. Sphericity

3\/367TV2

Sphericity = "

6. Maximum 3D diameter

described as the maximum pairwise Euclidean
distance between the vertices of the tumor
surface mesh. Additionally, referred to as Feret
Diameter.

7. Maximum 2D diameter
(Slice)

described as the maximum pairwise Euclidean
distance in the row-column plane between tumor
surface mesh vertices.

8. Maximum 2D diameter
(Column)

described as the maximum pairwise Euclidean
distance in the row-slice plane between tumor
surface mesh vertices.

9. Maximum 2D diameter
(Row)

described as the maximum pairwise Euclidean
distance in the column-slice plane between tumor
surface mesh vertices.

10. Major Axis Length

major axis=4,/Anajor

11. Minor Axis Length

minor axis=4./Aminor

12. Least Axis Length

least axis=4./Acast

13. Elongation

Aminor

elongation=

major

14. Flatness

iy
flathess= |east
)\major
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3.2.2. First-order Radiomics

First-order features (Conti et al., 2020) are obtained from statistical instances
of the image intensity histogram, such as kurtosis and skewness, which are
characterized as the measure of the distribution of image voxel values "peakedness'

and asymmetry around the mean value, respectively (Traverso et al., 2018).

Let, A set of N, voxels are X included in ROI

The first order histogram with N discrete intensity levels are P (i), where,

the number of non-zero bins are Ny, equally spaced from 0 with a width.

P()

The normalized first order histogram is p(i) = —=

@
Np

Table 3.4. Mathematical explanation of features of the first order features

Feature

Description

1. Energy (E)

E= 32 (XM +)?

2. Total Energy (TE) TE = Viyprey Z;Vfl(X(i) +0)?
3. Entropy (Ep) Ep = — 3,2 p()log, (@) + €)
4. Minimum (Min) Min = min(X)
5. 10Percentile The 10th percentile of X
6. 90Percentile The 90th percentile of X
7. Maximum (Max) Max = max(X)
1 N, ;
8. Mean mean = @Zii X(@)
9. Median The ROI exhibits the median gray-level intensity
10. Interquartile Range (IR) IR = P,z — P,
11. Range Range = max(X) — min(X)

12. Mean Absolute Deviation (MAD)

1 N. . =
MAD = N—pzijl|x(l) —X|

13. Robust
(rMAD)

Mean Absolute Deviation

1
N10-90

rMAD =

Nig— . =
Ziif 90|X10—90(l) - X10—90|

14. Root Mean Squared (RMS)

N .
RMS = Nipzijl(x(l) +0)?

15. Skewness

75 SR (D=1

N
( N—;zﬁi’;(x(i)—;?)2>

Skewness = ”—2 =
g

16. Kurtosis (krts)

1 Np . .
X XO-%)
R

T N- 2
" (Grhao-n?)

17. Variance

variance = ;—pzyjl(X(i) - X)?

18. Uniformity

uniformity = Zivfl p()?
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3.2.3. Second Order Features
3.2.3.1. Gray Level Co-occurrence Matrix (GLCM) Features

Haralick and Shanmugam established the GLCM in the 1970s (B. E. Park et
al., 2016), and it is now one of the most widely used statistical methods for obtaining
texture features from images data. The GLCM was used to expose the MR image's
texture features. In the original image, it occurs as a pair of gray-level frequencies.
The grey level co-occurrence matrix (GLCM) (Zwanenburg et al., 2020) is a matrix
that describes the distribution of discretized intensities (grey levels) of neighboring
pixels or voxels in a 3D volume along one of the image directions.

The dimension of the GLCM is given by the N, x N, form, which denotes
a second order joint probabilities of the image region bordered by the mask. The
mask is described as P(i, j|5,8) where (i, /)" components indicate the number of
instances when two levels of i and j appear in two adjacent pixels in the image and
those pixels are separated by a distance of & pixels along angle 6. The distance §
measured in terms of the infinity norm. In 3D, when § = 1, it provides two neighbors
for each of the 13 angles (26-connectivity); when & = 2, it provides 98 connections
for 49 unique angles.

PyRadiomics currently uses symmetrical GLCM calculations by default.

Let:

An arbitrarily small positive number is € (= 2.2 X 10 — 16)

The co-occurrence matrix for an arbitrary § and 6 is P(i, j)

P(i.j)

The normaliz - rrence matrix i i,j) =
e normalized co-occurrence matrix is p(i, j) SPGD)

The number of discrete intensity levels are N,
The marginal row probabilities are p, (i) = Z?’fl P(, )
The marginal column probabilities are p,, (i) = Z;V:gl P(i,))

The mean gray level intensity of p,. is i, and denoted as u, = Zivjl Py ()i
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The mean gray level intensity of p,, is u, and denoted as u, = Z?’;"l py(DJj
The standard deviation of p, is o, and the standard deviation of p,, is o,,
Prry(K) = 5.8, 509, p(i, ), where i + j = k, and k = 2,3, ....2N,

Py (k) = 300 zj.vjlp(i,j), where |i —j] = k,and k = 0,1,..., N, — 1
HX = — Z?’jl px(Dlog, (p, (i) + €) is the entropy of p,

HY = — Z?’i’l py(Dlogz(py () + €) is the entropy of p,,

HXY = — Z?’jl Z?’jl p(i,)) log,(p(i,j) + €) is the entropy of p(i, )
HXY1 = —%.9 509 p(i, ) loga(px(Dpy () + €)

HXY2 = - %%, Z;V;"l Px (DPy () Loga (02 (Dpy () + €)

Table 3.5. Mathematical explanation of the features of the GLCM

Feature Description
1. Autocorrelation: o tocoulliion = Z’i"jl Z?’gl p(, )ij
2. Joint Average (JA): JA=p, = Z’i"zgl Z?Iflp(i,j)i
3. Cluster Prominence (CP): | cp = 39 3" (i+) — e — uy)4p(i h
i=14j=1 ’
4. Cluster Shade (CS): cS = Zlivfl Z?]fl(i b - — My)3p(i,j)
. Ng <Ng /. | . 2.
5. Cluster Tendency (CT): CT = Zi=gl ijl(l -y — lly) p(i, /)
6. Contrast: contrast = Zjivfl nyl(i —N2p(, )
7. Correlation: _ 509 39 p (i, )ity
correlation = =1 —
ax(D)ay(J)
i . Ng-1
8. Difference Average: DA = Zkio kpy_,, (k)
i . Ng—1
9. Difference Entropy (DE): DE = Zkio Py (()10g; Dy (k) + €)
10. Difference Variance (DV): | py = Z:ﬁ;l(k — DAY?p,_, (k)
i . N N . A\ 2
11. Joint Energy (JE): JE = Ziflzjfl(l’(w))
. . N N, .. PR
12. Joint Entropy (JEp): JEp =%.2, 3.5 p(i, Dlog,(0(ij) + €)
13. Informational Measure of | jpc1 = %
H max{HX,HY
Correlation (IMC1) IMCA assesses the correlation between the
probability distribution of i and j, using joint info
1(x,y):
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16, = 524, 27, p(i.log; (202
= %% 27, (. )) (log, (p(i. /) —
lng (px(i)py (])))

il 208 p U Dlogy () = Tib, 278, p(i Nlog, (4
= —HXY + HXY1

The numerator is defined as HXY — HXY1, and

is therefore < 0. At uniform distribution with
complete dependence, joint info will be equal to
log, (Ng).

Finally, HXY — HXY1 is divided by the maximum
of the 2 marginal entropies, where in the latter
case of complete dependence. it will result in
IMC1 = —1,as HX = HY = I(i,)).

14. Informational Measure of
Correlation (IMC2)

IMC2 = /1 — e—2(HXY2-HXY)

Here, HXY1 = HXY?2 and

that HXY2 — HXY = 0

represents the joint info of the 2 distributions
and the range of

IMC2 = [0,1]

15. Maximal Correlation
Coefficient (MCC):

MCC = \/second largest eigenvalue of Q

. _ vy pKDUK)
QG j) = Zk=om
The Maximal Correlation Coefficient is a
measure of complexity of the texture and
0<MCC=1.
In a flat region, each GLCM matrix has shape
(1,1), resulting in just 1 eigenvalue.
Here, an arbitrary value of 1 is returned.

16. Inverse Difference IDMN = ZNg_l Px—y (k)
Moment Normalized (IDMN): k=0 1+<1’;_§)

g
17. Inverse Difference (ID): D = Zl,jg_l Px—y(K)

=0 1+k

18. Inverse Difference IDN = Z”g—l Px—y(K)
Normalized (IDN): k=0 1+(N—’;)
19. Inverse Variance (V) v = Z:ig_l Px;(};(k) k=0 is avoided.
20. Maximum  Probability | MP = max(p(i, ))
(MP):

21. Sum Average (SA):

2Ng

SA = Zk=2 px+y(k)k

22. Sum Entropy (SE):

2N
SE = Zk:g px+y(k)logz (px+y(k) + E)

23. Sum Squares (SS):

N, N, . ..
§§ = Zifl Zj;ql(l - .ux)zp(l'])
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3.2.3.2. Gray Level Dependence Matrix (GLDM) Features

A Gray Level Dependence Matrix provides a quantitative description of the
quantity of gray level dependencies in an image by quantifying the presence of
dependency levels. A gray level dependency is calculated as the quantity of related
voxels within a specific distance § that are dependent on the core voxel. If |i — j| <
@, j is nominated as dependent gray level on central voxel with respect to gray level
i. P(i,j) describes as dependence matrix, where the (i, j)th component indicates the
voxel number of instances with two levels of i and j voxels in its neighborhood

appears through the image.

Let: the total number of discrete levels of intensity are N,
The total number of discrete dependency sizes are N,
The total number of dependency zones are N, = Z?’jl Z?’jl P(,))

The dependence matrix is P (i, j)

P(i.j)

The normalized dependence matrix is p(i,j) = -
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Table 3.6. Mathematical explanation of the features of the GLDM

Feature Description
1. Small Dependence Emphasis 59 g P)
(SDE) SDE = ===

Z

2. Large Dependence Emphasis

N N P
2 28 PG

(LDE) LDE N,
- - >
3. Gray Level Non-Uniformity (GLN) LN — Ei“i(ﬁyif’(m)
Ny
- - >
4. Dependence Non-Uniformity (DN) o Z?Ldl(zli\’:glp(i’j))
="
5. Dependence  Non-Uniformity Ng(<Ng . .\
: DI DI (9
Normalized (DNN) DNN = #

6. Gray Level Variance (GLV)

N, . oaNge
GLV = 3.2 74 P(i,j)(i — p)?
N . 9 o
where, u = 3,9 %04, ip(i,))

7. Dependence Variance (DV)

N il q
DV =%, 74 P(i, ))( — 1)?
N, . P
where, p =¥, Z?’fljp(l:])

8. Dependence Entropy (DE)

DE = = 3% 5V p(i, Nloga (p(i)) + €)

9. Low Gray Level Emphasis (LGLE)

Ng <Ng P(i,))
g wNa PG.j
i Xjs

LGLE =

Z

10. High Gray Level
(HGLE)

Emphasis

g _ S 50 P2

11. Small Dependence Low Gray
Level Emphasis (SDLGLE)

SDLGLW =

12. Small Dependence High Gray
Level Emphasis (SDHGLE)

The mutual distribution of low
dependency with higher gray-level values
is measured.

13. Large Dependence High Gray

NgNg o 2
DRI HIDE

Level Emphasis (LDHGLE) LDHGLE = "
14. Large Dependence Low Gray E'-V_"l Z’Y_dlp(i:é)iz
Level Emphasis (LDLGLE) LDLGLE = —>=

VA

3.2.3.3. Neighboring Gray Tone Difference Matrix (NGTDM) Features

A Neighboring Gray Tone Difference Matrix evaluates the variance between

a gray value and the average gray value of its immediate neighbors within distance

8. The matrix stores the total of the absolute errors for gray level i. Let X, is a group
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of segmented voxels and xg; (jy, jy. jz) €

Xgy is the gray level of a voxel at position

(jx»jy»Jjz), then the average gray level of the neighborhood is:

A = Ajidy )
= T o2 528 s %g1(x + K fy + Ky, Ji + 2),
where, ky, ky, k, # (0,0,0) and x4, (i + k. jy + ky, jz + k;) € X,
Here, W contains the voxel number in X, neighborhood
Let, n; is the voxel number with gray level i in X,
Total number of voxels are N, , in Xg;
which is equal to ), n; (at least one neighbor with a valid region)
N, , < N, where N,, contains the total number of voxels in the ROI.
The gray level probability is denoted as p; = —
YMi— A4;| forn; #0
0forn; =0

The number of discreet gray levels denoted as N,

gray level i, s; = { the sum of absolute differences

The number of gray levels N, ,, where p; # 0

Table 3.7. Mathematical explanation of the features of the NGTDM

Feature Description
Busyness 5o pisi

Busyness = —-—.——— Where,p; # 0,p; # 0

2,522 wi-ipj|
1
Coarseness | coarseness = 5
Zizlpisi

Complexity | complexity :Niz’fflz Ji- |Mwhere pi #0,p; %0
Contrast 1 Ng

Contrast = ( ,,(ng—1)z Z] N )( oy 2i=15 ) pi #0
Strength N9 59 (pi+p))(i-))?

strength = = 1%; PG where,p; # 0,p; # 0

i= 1
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3.2.4. Implementation of PyRadiomics for Feature Extraction

The extraction of the radiomic features refers to the measurement of features
as an ultimate evaluation phase, where descriptors of features are used to explain the
properties of the grey values inside the ROI/VOI (Zwanenburg et al., 2020). The
radiomic features extraction will eventually be done after image processing and
segmentation. PyRadiomics (Griethuysen et al., 2017) conducted radiomics feature
extraction based on ROIs from the sequence images on each tumour lesion. The
PyRadiomics implementation phases presented here to illustrate the properties of
breast lesions. The following steps are taken to extract the features:

First step: As an input to PyRadiomics, MR images and segmented mask
images (e.g., performed by ImageJ) were loaded. Both input images were converted
to the format of NRRD (nearly raw raster data). The initial handling of MR and mask
images was handled using SimplelTK, which delivers the popularly used open-
source Insight Toolkit (ITK) with a simplified GUI.

Second step: Features on the original image ROl were computed based on
a set of several integrated filters such as Gaussian Laplacian, wavelet, logarithm,
exponential filters. The SimplelTK library was used mainly for filter execution, and
the remaining filters were implemented using NumPy.

Third step: A group of shape, first-order statistics feature, and second-order
(GLCM, GLDM, NGTDM) features were derived from input original and segmented
mask images (Zwanenburg et al., 2020). Each feature was indicated by a specific
name containing the filter, the feature classes, and the element's name. The function
extractor module was also developed to describe the extract pipeline and the
connection to the other modules in the platform to increase compatibility.

Finally, the determined characteristics were stored in an ordered database
and released. This dictionary provides additional information on processing,
including library versions, settings, original and masks image information, and filters

(Griethuysen et al., 2017). Pandas data frame was used to pre-visualize the output
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after the function had been extracted. Then, the created features were saved for
analysis in the class-based CSV (Comma-separated values) files.

3.3. Analysis Algorithms
3.3.1. Machine Learning Algorithm

The variety of methods used to analyze radiomic features is huge, ranging
from statistical models (J. E. Park et al., 2019; J. E. Park & Kim, 2018) to machine
learning techniques. To differentiate benign breast lesions from malignant with
radiomics tasks and develop a more effective and reliable prediction model for the

identification of tumor class with Support Vector Machine (SVM) kernels utilized.

3.3.1.1. Kernels of Support Vector Machine (SVM)

A Support Vector Machine (SVM)(Chagas et al., 2020) supervised binary
classifier selects an optimal hyperplane f (w,x) = w - x + b for optimum
margin differentiation of the classes (benign or malignant) in a given dataset with
features x € R™. Essential ingredients of the training samples called support vectors
have optimally calculated this margin. The various kernel functions could be used to
transform vectors to a higher-dimensional space wherein the inputs could be
segregated linearly, as these groups are non-linearly separable. SVM takes into

matter the sign of a function f(x) to categorize an input feature vector, given by:

Final decision function, f(x) =sign(X_, y,0iN(xi,x;) +b) (33.1.1)

where, v = Support vectors with the parameters of a model y.

b = parameter for bias, N(x;,x;) = kernel function

a; = Laplacian coefficients from the concurrent problem of optimization
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Linear Kernel: It is a convenient and widely used mathematical term that
the data can be ordered linearly, where single line is used to divide the class. It is just
the usual dot product,

N(xi,x]-) = xi.xj (31)

Radial basis function: It is one of the most popular kernels used in SVM.

When no previous knowledge of the data exists, it can use.

N(x;,x;) = exp (—y||xl- - xj||2) (3.2)

Polynomial Kernel: The polynomial kernel is a type of kernel function that
is frequently used in support vector machines (SVM). It computes the training
samples in a feature space defined by the initial variables' polynomials, allowing for

non-linear model learning.

N(xl-, xj) = (xiij + 1)d (3.3.1.13)

where, d is the degree of the polynomial, e.g., d = 2 for quadratic.

Sigmoid kernel: Sigmoid Kernel is another name for the Hyperbolic
Tangent Kernel. Due to its origins in neural network theory, this kernel is very

common with support vector machines. (Lin & Lin, n.d.).

N(x;,%;) = tanh (ﬁ (i x; + a)) (3.3.1.1.4)

The sigmoid kernel has two customizable parameters, § and the intercept

constant a.
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The k-fold cross-validation method was used to classify breast cancer using
the SVM classifier. Initially, all the features’ data in the database were randomly
selected and stored in 5-fold form.

The four-fold folding data were used during the SVM training process, and
the remaining fold was asked to check. This method was repeated more than five
times in exchange for completing the SVM classifier training and testing process of
all folds.

3.3.2. Deep Learning Techniques

This proposed framework used two different deep learning models for
transfer learning, as well as the use of an established (trained) model from the
original dataset to train the new dataset. The fully connected dense layer of CNN-
SVM and InceptionV3 model was modified and fine-tuned to fit classification
requirements. The models were optimized using the Adam Optimizer, and the binary
cross-entropy was used to quantify the loss in the InceptionvV3 model. Data
augmentation was applied, and the model has been assessed with the evaluation of
ROC (receiver operating characteristic), AUC (area under curve) curve by
calculating the sensitivity, precision, and F-score. In addition, the ROC-AUC values
of the test data in both models were also measured to indicate further acceptability

of the model's performance.

3.3.2.1. Data Augmentation

The training set is augmented artificially by creating new instances of each
training example, a process referred to as data augmentation. It has a variety of
applications in computer vision, enabling the most significant generalizations,
increasing the number of training instances by classifying in the initial case, and
enabling faster classification. Data augmentation results in a reduction in overfitting

and an improvement in inaccuracy.
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The most widespread method called “On The Fly Data Augmentation”
(Rosebrock, 2019) was applied in this work. It is this method that the Image Data
Generator class implements. In this case, the model does not train on the initial
instance but only on the generated instance, which changes each epoch to allow the
network to generalize better.

In this regard, this process applied on training and validation set except on
testing set. Each image was resized with a fixed size of 128X128, the image rotates

as 10°, height width and zoom ranged at 10%.

3.3.2.2. Balanced Data Generator

It is so difficult to collect a large number of balanced data for deep learning
analysis in real-world problems. Data augmentation techniques are mainly used to
increase the dataset and improve variance to deal with these circumstances.
However, data augmentation does not affect the distribution of labels in the original
dataset, which results that an unbalanced position of the dataset is unchanged in all
cases, and the algorithm will be biased to predict only the most frequent class.

Many techniques are available to overcome this unbalanced data problem on
the evolution of the deep learning model. In this work, the oversampling method was
used, which consists of re-sampling less frequent samples to adjust their amount
compared to predominant samples.

Here, the oversampling module and Keras-based Image Data Generator
module were mixed to balance the dataset, named Balanced Data Generator
(Gualberto, 2020). This technigue has given enough steps per epoch. The number of

samples per class will follow a uniform distribution of batch size.

3.3.2.3. InceptionV3
InceptionV3 is a convolutional neural network that was developed as a

module for GooglLeNet. It specializes in image analysis and object detection. It is
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the third version of Google's Inception family in CNN architecture, which was first
implemented as part of the ImageNet Recognition Challenge.

Input: 299x299x3, Output:8x8x2048

|

8884000,

Convolution Input: Qutput:

299x299x3 8x8x2048
:‘\;i‘:’c:; Final part:8x8x2048 -> 1001
Concat
Dropout
Fully connected
Softmax

Figure 3.2. A schematic view of the Inception V3 model architecture (Szegedy et al.,
2015)

The core concept of the Inception architecture is to calculate an ideal local
sparse configuration in a convolutional neural network, and to then use readily

available dense components to approximate and cover that configuration.

3.3.2.4. CNN-SVM

Convolutional Neural Networks (CNNs) are a form of deep feed-forward
artificial neural networks that are frequently used to solve medical image
classification problems (Agarap, 2019). Convolutional layers, Maximum pooling
layers, drop out or batch normalization, and non-linear activation functions such as
tanh, sigmoid, and ReLu are all components of a CNN network.

An activation function ReLU (Figure 3.3) is used here to incorporate non-
linearities into the model evaluation. The model can only learn line mappings in the

absence of an activation function.
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y=0

52 A 0 1 2 3
Figure 3.3. Graphical view of Rectified Linear Unit (ReLU) function (Liu, 2017)

Compared to the other two functions, ReLU is activated by simply

thresholding matrix values to zero (Equation 3.3.2.4.6) and significantly accelerates

stochastic gradient descent convergence.
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input: [(None, 132, 132, 3}]
InputLayer
output: | [(None, 132, 132, 3)]
input: one, 132, 132, 3
Conv2D P il )
output: | (None, 130, 130, 32)
input: one, 130, 130, 32
MaxPooling2D P o )
output: (None, 65, 65, 32)
y
input: (None, 65, 65, 32)
Dropout
output: | (None, 65, 65, 32)
r
input: one, 65, 65, 32
Conv2D P il )
output: | (None, 63, 63, 32)
F
input: one, 63, 63, 32
MaxPooling2D P o )
output: | (None, 21, 31, 32)
y
input: (None, 31, 31, 32)
Dropout
output: | (None, 31, 31, 32)
input: , 31, 31, 32
Flatten pu (None )
output: (None, 30752)
input: (None, 30752)
Dense
output: (None, 512)
input: (None, 512)
Dropout
output: | (None, 512)
input: (None, 512)
Dense
output: | (None, 256)
input: 256
BatchNormalization P (None, )
output: | (None, 256)
input: (None, 256)
Dropout
output: | (None, 256)
input: (None, 256)
Dense

output: (None, 1)

Figure 3.4. A detail view of modified CNN-SVM model architecture
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f(ho()) = he(x)* = max(0, ho(x)) (3.3.2.45)

In the final dense layer of the CNN, rather than using a SoftMax or sigmoid
function with loss function (binary or categorical), the regularizer L2-SVM is used.
That is, the performance shall be interpreted as follows: y € {—1,+1}, and the loss
is calculated in the following Eq. 8. Adam is then used to determine the weight
parameters.

The regularizer L2-SVM learns value of w by resolving an optimization
problem (Eq. 3.3.2.46).

min%wTW + C Y- max(0,1 — y,(w'x; + b)) (3.3.2.46)
where wTw is the L1 norm (also identified as Manhattan norm), C is the
penalty parameter, y'; is the actual label, and w” x + b is the predictor function.
Equation 3.3.2.47 is identified as L1-SVM, with the traditional hinge loss.
It is distinctive equivalent, L2-SVM (Eq. 3.3.2.48), delivers additional durable
outcomes.

. l 2 P _ T, 2
min—[lwll3 + € £i_; max(0,1 - y,(w'x; + b)) (3.3.2.47)

where ||w]|, is the L2 norm (additionally referred to as Euclidean norm),

with the squared hinge loss.

3.4. Performance Assessments
This is needed to find out the model's accuracy after the training phase by

analysis algorithms. So, the test set was employed to evaluate the model. The test set
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includes samples that have never been seen before by the algorithm. If the model
performs well in predicting, it can be assumed that the model is generalizing well.
Confusion matrix: The efficient classification model is capable of
summarizing the model's effectiveness at classifying examples into distinct
categories. The expected label is identical to the real label on one side of the

confusion matrix. On the other hand, the real label matches the predicted label.

TP: True Positive: Benign correctly identified as Benign
TN:  True Negative: Malignant correctly identified as Malignant
FP: False Positive: Benign incorrectly identified as malignant

FN:  False Negative: Malignant incorrectly identified as Benign

Accuracy: The accuracy based on the confusion matrix is proportional to
positive occurrences accurately and positive occurrences inaccurately and is
inversely comparable to negative occurrences accurately and negative occurrences
inaccurately rates.

TP+TN
(TP+TN+FP+FN)

Accuracy =

Precision: Precision is the ratio of positive occurrences accurately
predicted, divided by sum of positive occurrences and negative occurrences
predicted accurately.

TP
(TP+FP)

Precision =

Recall or Sensitivity or True Positive Rate (TPR): Recall is the ratio of

positive occurrences accurately predicted, divided by positive and negative
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occurrences accurately and incorrectly predicted. The low false negative occurrence

rate is known to be a significant recall.

TP
Recall TS

F-Score: F1-score is the weighted average value of precision and recall. It
is usually more beneficial than accuracy, mostly when the dataset classes is
unbalanced.

2xRecallxPrecision
F-score =————
(Recall + Precision

ROC (Receiver operating characteristic): An ROC curve is a graphical
plot used to demonstrate the ability of a binary class classification system to
differentiate between two categories as its distinction threshold is varied. The ROC
curve illustrates the trade-off between sensitivity (TPR) and specificity (1 — FPR).
Classifiers that mean better results result in curves that are closer to the top-left
corner. The closer the curve approaches the 45-degree diagonal of the ROC space,

the less accurate the measurement.
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4, EXPERIMENTAL RESULTS

The main task of this thesis is to use radiomics and deep learning methods
to classify breast tumor lesions by handling magnetic resonance imaging (MRI)
image data. Radiomics is an emerging field in healthcare, especially in tumor
analysis. The main objectives of this works were to check out the classification
robustness by using two popular and reliable methods radiomics and deep learning.

Same performance analysis matrices are developed to utilize these models.

4.1. Radiomics Feature Analysis

Investigations have been done on the original MR image dataset, which had
been obtained at the Department of Medical Oncology and Department of
Radiology, Cukurova University Hospital in Turkey.

At the evaluation phase, 70% of the data is used to train the model. In the
beginning, second-order features with different matrices, namely co-occurrence
matrix, dependence matrix, and difference matrix, were given to SVM-kernel based
model, and classification accuracies were calculated.

Later, shape with second order and shape with first-order features have been
analyzed. Finally, the shape, first-order, and second-order feature combined dataset
has been analyzed with SVM kernels. The 5-fold mean accuracy result of cross-
validation is shown in Table 4.1. In every combination of data split, the SVM-linear
kernel in the cross-validation model evaluation stage has shown the highest
accuracy.

In 5-fold cross-validation, the original sample is randomly partitioned into
five equal-sized groups. One group was removed from the five groups as a hold-out
set, and the remaining groups used the training data. The SVM model then fit on the
training data and evaluated on the hold-out set. This procedure is five times so that

all groups have served exactly one as the hold-out set.
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Table 4.1. Cross-validation mean accuracy of feature data split with SVM-kernels

Kernel GLCM  + | Shape + | First order | Shape+ First
GLDM + | GLCM + |+ GLCM + | order + GLCM +
NGTDM GLDM + | GLDM + | GLDM + NGTDM
(%) NGTDM (%) | NGTDM (%) | (%)

Linear 96.17 96.17 96.08 96.08

RBF 94.92 94.92 94.92 93.67

Polynomial 91.00 91.00 91.00 90.92

Sigmoid 89.75 89.75 89.83 85.83

Two combinations of features data split have shown the highest 5-fold mean
accuracy of 96.17% on SVM-linear kernel analysis. All the feature data split
performed similar mean accuracy at SVM-RBF kernel-based model development
except a combination of all features split. The polynomial kernel showed 91% mean
accuracy with all splits. The worst result found in SVM-Sigmoid based analysis.

The SVM-kernel approach's overall findings are summarized in Figure 4.1,
Figure 4.2, Figure 4.3 and Figure 4.4, which illustrated the proposed approach's
performance against previously described matrices.

Figure 4.1 showed that, combine second order features (GLCM, GLDM,
NGTDM) split and shape with second order data split performed the same accuracy,
which means that the shape features did not have any impacts for getting 88.24%
accuracy. When the first-order features combined with second order features, the
model performance increased. Meanwhile, the highest accuracy was found on all
feature combination splits and provided 94.12% test accuracy on the SVM-linear

kernel.
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Figure 4.2. SVM-RBF Kernels Confusion Matrix Output

In SVM-RBF kernel analysis, second order features combination and first

with second order features combination achieved 91.18% accuracy. That means the

4



4. EXPERIMENTAL RESULTS Harun-Ur-RASHID

combination of first-order features did not enough influence for getting this output.
Another features data split shape, second order, and all features combination
provided highest 97.06% accuracy. This analysis aims to understand that the
combination of shape and second order feature data split is enough to get the
maximum performance of the SVM-RBF model. The all-features combination
analysis on the SVM-RBF kernel is not efficient.

The lowest performance was found in the combined data group of the first
order and 2nd Order features. However, if we look from the beginning, it can be seen
that the highest accuracy of 91.18% was found in Group-1. Since then, the accuracy
has not increased even after adding the shape feature separately to the 2nd order
feature. The same accuracy has been found by adding all the features together. This
means that combining the second order feature with the shape or the 1st order feature
does not affect its model performance analysis. On the other hand, the performance
of polynomial kernels (Figure 1.3) is not better than the two types of kernels
mentioned earlier.

At this stage, the SVM-sigmoid kernel (Figure 1.4) analysis shows that the
first three feature combinations exhibit the same accuracy. That is, maximum
accuracy is found in second order feature analysis. Later, by adding shape and first-
order feature with the 2nd order feature and analyzing it separately, the model
performance did not increase. On the contrary, in the combined analysis of all the
features, the accuracy has decreased compared to the past. This means that the
maximum accuracy is only available in the 2nd order feature, so other features do
not play any role in this kernel analysis. At the same time, it is found with certainty
that, compared to the polynomial kernel with the other three kernels, it is showing

the lowest accuracy.
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Figure 4.3. SVM-Polynomial Kernels Confusion Matrix Output
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Figure 4.4. SVM-Sigmoid Kernels Confusion Matrix Output

To conclude the evaluation metrics analysis, in kernel-based feature
analysis, the SVM-RBF kernel has achieved the highest accuracy, 97.06%, in
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second-order features and the combined analysis of all features. However, since the
highest results were obtained in a single analysis of the 2nd order features, the shape,
first-order feature is of no importance in obtaining maximum results. That is, shape,
first-order features can be ignored in SVM-RBF kernel analysis. Finally, It can say
that the second order feature combinational analysis with the SVM-RBF model is
best for radiomics to feature generated breast tumor classification and the obtained

result also ensured that this data split is perfectly separable radially.

4.1.1. Parameter Optimization for Selecting best value of SVM-kernels
Parameter optimization helps to select the best model configuration to
ensure the highest accuracy. Choosing the best parameter values in SVM-kernels, a
well-known method Grid Search CV was used which is somewhat tricky due to some
ambiguous results from the model. Three main variables of kernel function were
tested on our SVM-kernels framework. These variables are ‘C’, ‘gamma’ and
‘degree’. In a default value of ‘C’ and ‘gamma’ is 1 where C is denoted as
regularization parameter. The parameter 'C' also compromising the classification
accuracy for scalability. This parameter corrects the over-reliance on simplicity.

Larger values of the parameter of 'degrees’ appear to overfit the results.

Table 4.2. Parameters range of each SVM kernel to be evaluated

Kernels Parameter value

Linear 'C": [0.0001, 0.001, 0.01, 1.0, 10.0, 100.0, 1000.0]

RBF 'C": [0.0001, 0.001, 0.01, 1.0, 10.0, 100.0, 1000.0],
‘gamma’: [0.0001, 0.001, 0.1, 1, 2]

Polynomial 'C'. [0.0001, 0.001, 0.01, 1.0, 10.0, 100.0, 1000.0],

‘gamma’: [0.0001, 0.001, 0.1, 1, 2],

‘degree’: [1, 2, 3, 4, 5]

Sigmoid 'C": [0.0001, 0.001, 0.01, 1.0, 10.0, 100.0, 1000.0],
‘gamma’: [0.0001, 0.001, 0.1, 1, 2]

The identical value of cross-validation K-Fold was applied to evaluate the
SVM. Table 4.2 represents the set of parameters with four SVM kernels.
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Table 4.3. Every SVM kernel best results on binary classification

Data Kernel Parameter Mean
Accuracy
GLCM + GLDM + | Linear ‘C:1.0 96.17%
NGTDM RBF ‘C’: 100, ‘gamma’: 0.001 97.42%
Polynomial | ‘C*: 1, ‘degree’: 1, gamma’: 1 96.17%
Sigmoid ‘C’: 1000, ‘gamma’: 0.001 96.17%
Shape + GLCM + | Linear ‘C:1.0 96.17%
GLDM + NGTDM RBF ‘C’: 100, ‘gamma’: 0.001 97.42%
Polynomial | ‘C’: 1, ‘degree’: 1, ‘gamma’: 0.1 | 97.42%
Sigmoid ‘C’: 100, ‘gamma’: 0.001 97.42%
First order + GLCM | Linear ‘C:1.0 96.08%
+ GLDM + NGTDM | RBF ‘C’: 100, ‘gamma’: 0.001 97.42%
Polynomial | ‘C’ 1, ‘degree’: 1, ‘gamma’: 2 96.08%
Sigmoid ‘C’: 100, ‘gamma’: 0.001 97.42%
Shape+ First order | Linear ‘C:1.0 96.08%
+ GLCM + GLDM + | RBF ‘C’: 100, ‘gamma’: 0.001 97.42%
NGTDM Polynomial | ‘C”: 1, ‘degree’: 1, ‘gamma’ 0.1 | 96.08%
Sigmoid ‘C’: 1000, ‘gamma’: 0.001 96.08%

The bold values show the higher results that were obtained in the analysis,
for SVM-kernels.

Table 4.3 showed the best configurations of three parameters of proposed
four kernels at each data group. The configuration was formed using accuracy as the
metric for optimization. Notably, the RBF kernel achieves the best results, implies
that the feature space is radially separable. Here, all kernels had similar scores,
proving the robustness of the radiomics feature depends on classification analysis
with the SVM model.

4.2. Deep Learning based Analysis

Two deep learning technigues were chosen for comparison, according to
their performances. A total of 2998 individual images were used for analyzing the
deep learning models. For training purposes, 2098 were selected where validation

and testing images contained at 540 and 360, respectively. All images were resized
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as 128x128, and benign lesions contained images defined as 0 class, and malignant
lesions contained images defined as 1 class.

The proposed models also outperformed compared to other researchers’
analysis with much fewer parameters, as summarized in Table 4.4

As the primary outcome, CNN-SVM obtained perfect accuracy with almost
two times fewer parameters than the other pre-trained InceptionVV3 deep learning

architectures.

Table 4.4. Number of parameters of the evaluated models

Models Total Parameters
InceptionV3 21,810,977
CNN-SVM 14,888,865

4.2.1. InceptionV3 Results

InceptionV3 is the third generation of the Inception family of convolutional
neural network architectures. It is being fine-tuned so that it can distinguish between
two classes rather than 1000. Additionally, the model is composed of symmetric and
asymmetric building blocks, such as convolutions, average pooling, max pooling,
concatenation, dropouts, and fully connected dense layers. The Batch normalization
process is widely used in the model and is applied to activation inputs. Since the

classification is binary class, the loss was computed using the Sigmoid function.
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Figure 4.5. Accuracy of Training and Validation Phase of InceptionVV3 model

The accuracies of the InceptionV3 model's training and validation phases
are depicted in Figure 4.5. Both accuracy levels started at 60% during the early stages
of the epoch. At the end of the 20-epoch count, the model achieved nearly 85%
accuracy. After 60 epochs, the machine is capable of achieving greater than 90%
accuracy. The model reached the highest degree of accuracy, which is close to 90%,
throughout approximately 70-100 epochs.

Volatility is moderate but has fluctuated around 86+5%. As shown in Figure
4.6, as the validation loss decreased, the training loss decreased as well. With the

training loss reaching zero, it is possible to reduce the validation loss significantly.
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Figure 4.6. Loss Plot of Training and validation Phase of InceptionVV3 model

Table 4.5 also contains information about the validation's accuracy. The

testing accuracy was 95.28%, according to the assessment metrics review. The

precision values were 99.05%, indicating a high level of classification accuracy for

the benign class. The InceptionV3 had a high F1 score, which established a more

accurate classification on this image dataset.

Table 4.5. Evaluation metrics report on InceptionV3 model

Technique Validation Overall Test | Precision | Recall F1 Score
Accuracy Accuracy
InceptionV3 | 91.96% 95.28% 99.05% 95.73% | 97.36%
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Figure 4.7. ROC-AUC Plot of InceptionV3 with test data

The AUC area of the InceptionV3 model was 0.932, indicating that the

model performed well in distinguishing tumor class from the test dataset.

4.2.2. CNN-SVM Results

The CNN-SVM model designed with two convolutional layers, two
Maximum Pooling layers, one Flatten layer, three Dense layers, and dropout in all
layers. In a fully connected dense layer, batch normalization is also implemented
with L2-SVM at the end. The entire architecture of the CNN - SVM model is shown
in Figure 3.4.

The accuracy of training and validation phase and loss curve are shown in
Figure 4.8 and Figure 4.9, respectively. Figure 4.10 represents the ROC-AUC score
according to the testing data. According to Figure 4.8, the training and validation
phase began at the accuracy of 50% on first initial epochs. After 20 epochs, the
accuracies increased by an average of 80%. Between 70 and 100 epochs, the

accuracies exhibited almost constant values.
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Figure 4.8. Accuracy of Training and Validation Phase of CNN-SVM model
Though training and validation accuracies vary slightly, overall accuracies

remain between 93-98%. Simultaneously, the training and validation losses

decreased represents at Figure 4.9, and the losses in the last 30 epochs were found to

be near 0.1%.
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Figure 4.9. Loss Plot of Training and Validation Phase of CNN-SVM model
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Table 4.6. Evaluation metrics results on CNN-SVM model

Model Validation Overall Test | Precision | Recall F1 Score
Accuracy Accuracy
CNN-SVM 98.83% 95.28% 100% 94.82% | 97.34%

As a result of this research, it was discovered that test accuracy was 95.28%,

which is equivalent to the results found in the InceptionV3 model. The CNN-SVM

model had 100% precision, which was an excellent classifier for the positive class,
reflecting the benign class in this task. Additionally, the CNN-SVM model obtained

a high F1 score, suggesting that the model correctly detected the tumor lesion even

though the dataset was unbalanced.
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Figure 4.10. ROC-AUC Plot of CNN-SVM with test data

Finally, the CNN-SVM model achieved the highest AUC value of 0.974,
showed in Figure 4.10, indicating the model's highest degree of efficiency in reliably

distinguishing benign and malignant classes.
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4.3. Analysis of deep learning models

A comparison between two deep learning techniques has been utilized to
classify breast cancer with the analysis of evaluation metrics. Table 4.7 and Table
4.8 shows the results of deep learning methods. Though the dataset is unbalanced,
random up sampling with data augmentation techniques were applied to overcome
the imbalance problem. In the testing stage, the original images were tested; those

images are not used before in training and validation steps.

Table 4.7. Confusion metrics parameters of deep learning models

Models True Positive | False Positive | False Negative | True Negative
InceptionV3 | 29 3 14 314
CNN-SVM 32 0 17 311

A total of 100 epochs were monitored while developing the model. By using
callbacks in Keras, the validation accuracy was controlled. It is a monitoring system
to control the model development process by looking at accuracy and loss. In this
case, after 70 epochs, almost stable results were found. The batch size was 32 in the
data augmentation and model developing phase because a big batch size would lead
to poor generalization and lower test accuracy. It is found that the CNN-SVM model
showed the highest validation accuracy with 98.83%, where InceptionV3 showed
91.96%. Area Under Curve (AUC) found 97.4% for the CNN-SVM model,

representing the best efficient model.

Table 4.8. Performance results of the deep learning models

Models Validation | Test Precision | Recall | F1 AUC
Accuracy Accuracy Score

InceptionV3 | 91.96% 95.28% 99.05% 95.73% | 97.36% | 0.932

CNN-SVM 98.83% 95.28% 100% 94.82% | 97.34% | 0.974
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5. DISCUSSIONS

Many computational methods have been described in the context of breast
lesion classification, each of which incorporated a diverse set of features (textural
features, morphological features, etc.). In this work, shape, first, and second order
contained GLCM, GLDM, NGTDM features, and their combination was used in
breast tumor classification. High accuracy was achieved with all metrics to classify
the benign and malignant classes of breast cancer with a SVM algorithm.

The proposed radiomics feature analyzed solution was compared to five
well-known state-of-the-art methods, the outcomes of which are presented in Table
5.1. As shown in Table 5.1, the proposed method achieves a higher rate of
classification accuracy than other strategies. Additionally, Table 5.1 demonstrates
that the accuracy of the methods described in (Spanhol et al., 2016; Sayed &
Hassanien, 2017; Al-Salihy & Ibrikci, 2017; Carvalho et al., 2020; Khan et al., 2021)
is 80-85%, 92.99%, 88-97%, 95%, 96.3% respectively, while the proposed method
obtained 97.06% accuracy, indicating the proposed method's prominence in
comparison to other techniques.

Table 5.1. A comparison with other feature-based machine learning analysis

Authors Attributes Algorithms Accuracy

(Spanhol et al., 2016) Texture features K-NN, QDA, | 80-85%
SVM

(Sayed & Hassanien, | NS, MFO Decision tree | 92.99%

2017) -CART

(Al-Salihy & lbrikci, 2017) | Various Decision 88-97%
Tree

(Carvalho et al., 2020) Texture features MLP, 95%
XGBoost,
SVM

(S. U. Khan et al., 2021) | GLCM SVM 96.3%

Proposed method Shape, GLCM, GLDM, | Four SVM- | 97.06%

NGTDM Kernel
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Based on achieved results from radiomics feature analysis, it can be
concluded with confidence that this new approach of machine learning-based
combinational analysis of radiomics features from magnetic resonance images can
effectively differentiate the breast tumors.

Finally, as seen in Table 5.2, the proposed deep learning strategies were
contrasted to applicable state-of-the-art frameworks to demonstrate their efficacy.
The findings indicate that the proposed techniques outperform other deep learning
techniques.

When compared to the performance of various deep convolutional neural
network architectures, it was clear that the proposed techniques achieved excellent
results. (Hepsag et al., 2017 & Tan et al., 2017) gained 68% and 85.85% accuracy,
respectively, while using a public dataset with CNN architectures.

Table 5.2. Comparison with other deep learning techniques

Authors Dataset Algorithms Accuracy | AUC
(Hepsag et al., 2017) | MIAS DCNN 68.00% -
(Tan et al., 2017) MIAS CNN 85.85% -
(Natalia Antropova | Private AlexNet 0.91
et al., 2017)
(Zheng et al., 2018) CNN, LSTM 84.7% -
(Jiang et al., 2017) BCDR-F03 | GooglLeNet, AlexNet 0.88
(Hadad et al., 2017) | Private VGG, Transfer | 93%
Learning
(Truhn et al., 2018) Private ResNet 0.88
(Ragab et al., 2019) | CBIS- DCNN-AlexNet, SVM | 87.20% 0.94
DDSM
(S. Khanetal., 2019) | Microscopic | VGG, GoogLeNet, | 97.67% -
Images ResNet
(Song et al., 2020) DDSM GooglLeNet, 92.80% -
InceptionV2,
XGBoost
Proposed Work Private CNN-SVM 95.28% 0.974
dataset InceptionV3 0.932

An AUC of 91% and 88% achieved by (Natalia Antropova et al., 2017, Jiang
et al., 2017 & Truhn et al., 2018), respectively, using the AlexNet deep learning
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architecture where (Truhn et al., 2018) used a ResNet pre-trained model. However,
they validated their methods using a variety of different datasets. (Hadad et al., 2017
& Zheng et al., 2018) classified the tumor using the VGG and CNN models,
respectively, and achieved an acceptable level of accuracy.

Additionally, in 2020, (Song et al., 2020) extracted and categorized in-depth
features from GoogLeNet and InceptionV2 using the XGBoost classifier, achieving
a 92.80% accuracy. Similarly, there was a minor discrepancy in the accuracy
obtained by this method and the work performed by (S. Khan et al., 2019). They
incorporated VGG, GoogLeNet, and ResNet DCNN's in-depth features from
microscopic samples.

According to the above analysis, the results obtained in the deep learning
analysis showed that deep learning models had given high performance in this task
with all kinds of evaluation metrics and ROC-AUC values. On the other hand, Table
5.2 mentioned studied in the private dataset where researchers used a few images to
develop their models. Several others chose ROC-AUC instead and obtained low
performance.

By analyzing radiomics feature-based and feature-less (deep learning)
results, it can be expressed that the proposed combinational analysis of radiomics
features is excellent for breast tumor classification and can be efficiently executed

for tumor diagnosis.
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6. CONCLUSIONS

Breast cancer is the second most common form of cancer in females after
lung cancer. Early detection has significantly increased the survival rate of breast
cancer. Thus, automatic detection can be used to provide the required solutions in
this area. The explosive growth of radiomics and deep learning-based medical image
analysis makes it possible to extract the features and take full advantage of big data
for early detection and enrich cancer diagnostics.

This work provided an overview of radiomics feature extraction and their
machine learning-based analysis without feature extracting based deep learning
analysis for breast tumor classification. It is structured around the dataset, model
design, and evaluation of the models.

According to the previous researcher's study, radiomics features with
distinct metrics were studied separately, with very few studies focusing on their
combinational analysis. Apart from the deep learning-based review, another
significant problem is the lack of an image dataset.

In this study, a combined application of various radiomics features with
statistical features was investigated. Support Vector Machines with four different
kernels demonstrated exceptional results. This analysis suggested an accurate and
feasible method for classifying benign and malignant tumors using the proposed
classification scheme based on radiomics features. It performs astonishingly well
when several features were combined into a classification scheme. The application
of the algorithm described in this thesis can increase tumor classification accuracy
and decrease misdiagnoses.

To make this analysis more credible, appropriate, and accurate, we will
collect additional images and compile a large image dataset. We will investigate how
to build these models in future work so that clinical data and derived feature data can
be combined. Additionally, we will assist in determining the tumor type, which is

critical for initiating early diagnosis. We hope that the collaboration with different
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researchers such as radiologists, biomedical, and informatics researchers to advance
the fields of radiomics that are both depends on feature-based and feature-less (deep
learning).
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