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OZET

E’ TE VERILEN BiR EGRi BOYUNCA SABIT ORTALAMA EGRILIKLI
YUZEY AILESI
Hiisnii COSANOGLU

Ondokuz May1s Universitesi

Lisansiistii Egitim Enstitiisii
Matematik Ana Bilim Dali
Yiiksek Lisans,Ocak/2021

Danisman: Dr. Ogr. Uyesi Ergin BAYRAM

Bu tez calismasinda, 3 boyutlu Oklid uzayinda verilen herhangi bir egriden
gecen ve bu egri boyunca ortalama egriligi sabit olan yiizeyler i¢in yeterli sartlarin
elde edilmesi amaglanmaktadir. Verilen egrinin regiiler oldugu ve her noktasindaki
ivme vektoriinlin sifirdan farkli oldugu kabul edilmistir. Verilen egrinin Frenet
catisinda yer alan teget vektor alani, asli normal vektor alan1 ve binormal vektor alani
ile sapma fonksiyonlar1 adi verilen C' simfindan, iki degiskenli, reel degerli
fonksiyonlar yardimiyla bu egriden gegen yiizeyler parametrik olarak ifade
edilmistir. Egrinin ylizeyler ilizerinde parametre egrisi oldugu kabul edilerek bu
yiizeylerin, verilen egri boyunca ortalama egriligi; egrinin egriligi, burulmasi, sapma
fonksiyonlar1 ve bunlarin kismi tiirevleri cinsinden hesaplanmistir. Verilen egri
boyunca ortalama egriligin sabit olmasi i¢in yeterli sartlar elde edilmistir. Elde edilen
sonuclar1 destekleyecek bazi 6rnekler verilmistir.

Bu tez caligmasi bes boliimden olugmaktadir. Birinci boliim tezin amacina ve
daha once yapilan galigmalara ayrilmistir.

Ikinci boliimde, 3-boyutlu Oklid uzay: ilgili temel tamm ve teoremlere yer
verilmistir.

Ugtincii boliimde, E’ Oklid uzayinda herhangi bir egriden gegen ve bu egriyi
hem parametre egrisi hem de geodezik kabul eden yiizeyler bulmak icin sartlar elde
edilmistir.

Doérdiincii boliim, tezin orijinal kismini olusturmaktadir. Bu béliimde E* Oklid
uzayinda alman herhangi bir egri boyunca ortalama egriligi sabit olan yiizeyler
bulmak i¢in sartlar elde edilmis ve drnekler verilmistir.

Besinci ve son boliimde ise c¢alismada elde edilen sonuglar tartisilarak
yapilabilecek ¢aligmalar {izerinde durulmustur.

Anahtar Sézciikler: Yiizey ailesi, sabit ortalama egrilik, 3-boyutlu Oklid uzay,

Salkowski egrisi, anti-Salkowski egrisi, helis egrileri
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ABSTRACT

SURFACE PENCIL WITH CONSTANT MEAN CURVATURE ALONG A

GIVEN CURVE IN E’
Hiisnii COSANOGLU

Ondokuz Mayis University

Instute of Graduate Studies

Department of Mathematics
Master, January/2021

Supervisor: Asst. Prof. Dr. Ergin BAYRAM

In this thesis, the sufficient conditions are obtained to find surfaces that pass
through any given curve in 3-dimensional Euclidean space and whose mean
curvature is constant along this curve. The given curve is assumed to be regular with
nonvanishing acceleration. For this purpose, firstly, surfaces passing through the
given curve are expressed parametrically with the help of the tangent vector field, the
principal normal vector field and the binormal vector field of the Frenet frame of the
given curve, and the so called marching scale functions which are real valued c!
functions of two variables. The mean curvature of these surfaces along the given
curve was calculated in terms of curvature and torsion of the given curve and,
marching scale functions and their partial derivatives. Sufficient conditions are
obtained to keep the mean curvature constant along the given curve. Some examples
are given.

This study consists of five chapters. In the first chapter, the purpose of the
thesis and the previous studies are explained. In the second part, basic definitions and
theorems related to 3-dimensional Euclidean space are given.

In the third chapter, conditions are obtained for finding surfaces passing
through a given curve in Euclidean space and accepting this curve both as a
parameter curve and a geodesic.

The fourth part constitutes the original part of the thesis. In this section,
conditions are obtained to find surfaces whose mean curvature is constant along a
given curve in Euclidean space.

In the last chapter, the results obtained in the study are discussed and the future
studies are argued.

Keywords: surface family, constant mean curvature, 3-dimensional Euclidean
space, Salkowski curve, anti-Salkowski curve, helix curves
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1. GIRIS

1.1. Tezin Amaci

Bu yiiksek lisans tez calismasinda, 3-boyutlu Oklid uzayinda alinan herhangi
bir egriden gecgen ve bu egri boyunca ortalama egriligi sabit olan yiizeyler elde etmek

icin yeterli sartlarin bulunmasi1 amaglanmaktadir.

Bu amag¢ dogrultusunda, ilk olarak, 3-boyutlu Oklid uzayinda herhangi bir
egriden gegen yiizey denklemi ele alinacak ve egri boyunca ortalama egriligin sabit

olmasi i¢in sapma fonksiyonlarinin saglamasi gereken sartlar elde edilecektir.

1.2. Literatiir Ozeti

Egriler ve ylizeyler diferansiyel geometride uzun yillardir ¢alisilan konulardir.
Bircok bilim adami egriler iizerine ¢alismalar yapmistir. Salkowski (1909) yaptigi
calismada egriligi sabit olan ve burulmasi sabit olmayan egri ailelerini tanmlamigtir.

Bu tiir egriler literatiirde Salkowski egrileri olarak bilinmektedir.

Egri ve ylizeyler bircok endiistriyel uygulamada kullanilmaktadir. Bu nedenle
yiizey olusturma problemleri, 6zel olarak, verilen bir egriden gecen ve bu egriyi 6zel
egri kabul eden yiizey bulma problemleri bir¢ok bilim insaninin ilgisini ¢cekmektedir.
Wang vd (2004) bu tiir problemi ilk olarak 2004 yilinda ortaya atarak verilen bir
egriden gecen ve bu egriyi ortak geodezik kabul eden yiizeyleri elde etmistir. Kasap
vd (2008) ise Wang vd (2004) tarafindan kullanilan sapma fonksiyonlarini
genellestirerek daha genel bir ortak geodezikli yiizey ailesi elde etmistir. Monterde
(2009) yilinda yaptigi calismada burulmasi sabit olan ve egriligi sabit olmayan
egrileri tanimlamistir. Literatiirde bu egriler Anti-Salkowski egrileri olarak

bilinmektedir.

Li vd (2011) ise ortak egrilik ¢izgili yiizey ailesi i¢in yeterli sartlar1 sunmustur.
Ortak asimptotik egrili yiizey ailesi Bayram vd (2012) tarafindan tanimlanmustir.
Ergiin vd (2014) ise Li vd (2011) tarafindan yapilan ¢aligmay1 3 boyutlu Minkowski
uzayina tasimistir. Bu calismada ise yukaridaki makaleler 1s131nda 3 boyutlu Oklid
uzayinda alinan herhangi bir egriden gecgen ve bu egri boyunca ortalama egriligi sabit

olan yiizeyler bulmak i¢in yeterli sartlar elde edildi.



2. GENEL BIiLGILER

2.1. 3-Boyutlu Oklid Uzayinda Temel Kavramlar

Tammm 2.1.1. E’ te tanimly, reel degerli bir f fonksiyonunun her mertebeden kismi

tirevleri var ve slirekli ise bu fonksiyona diferansiyellenebilirdir veya C~

swnifindandwr denir (O’Neill, 1966).

Tanmm 2.1.2. E’ te bir Vv, tanjant vektorii, biri p baslangi¢ noktasi ve digeri de v

vektor kismi olmak iizere iki noktadan olusur (O’Neill, 1966). p<E’ olmak iizere

baslangic noktast p olan E’ teki tim tanjant vektorlerin kiimesine E® iin p

noktasindaki tanjant uzay denir ve T, (ES) ile gosterilir (O’ Neill, 1966).

Tamm 2.1.3. E’ iin her p noktasina bir V (p) = v, tanjant vektori kargilik getiren V

fonksiyonuna vektor alani denir (O’Neill, 1966).

Tamm 2.1.4. U, U, ve U,, E’ iizerinde

U, (p)=(1.0,0) ,
U, (p)=(0.10),.
U, (p)=(0, 0,1)p

seklinde tanimlanan vektor alanlart olsun. {Ul, U,, U3} vektor alanlari kiimesine E’
in dogal ¢ati alani denir (O’Neill, 1966).

Teorem 2.1.5. V, E’ iizerinde tanimli bir vektor alan1 ve v,,v,,v, de E’ iizerinde
tanimli, reel degerli fonksiyonlar olmak tizere

V=vU +v,U,+v,U,
seklinde tek tiirlii yazilabilir (O Neill, 1966).

Vv,,V,,V, fonksiyonlarma V vektor alaniin Oklid koordinat fonksiyonlar: denir

(O’Neill, 1966).

Tamm 2.1.6. f, E* te reel degerli diferansiyellenebilir bir fonksiyon ve v, €T, (E’)

olmak uzere



v (1= (F(pw))

t=0

degerine f fonksiyonunun V—p tanjant vektorii yontindeki tiirevi denir (O’Neill, 1966).
Teorem 2.1.7. v, =(v,,v,,v;) €T, (Eg) olmak iizere

S of

dir (O’Neill, 1966).

Tamm 2.1.8. Ic R bir agik aralik olmak iizere r:1—E’ diferansiyellenebilir

fonksiyonuna E’ uzayinda bir egri denir (O’Neill, 1966).
Tanm 2.1.9. E’ uzaynda r:1—>E’, r(t)=(r(t).5,(t).5(t)) egrisi verilsin.
vt el igin r(t) € E’ noktasindaki
r'(t) = (r'1 (t),r'2 (t),r'3 (t))r(t)
tanjant vektoriine r egrisinin t noktasindaki Az vektérii denir (O’ Neill, 1966).

Tamm 2.1.10. IJ R birer agik aralik, r:1—E’ bir egri, h:J — Idiferansiyel-

lenebilir bir fonksiyon olsun. B=roh:J—E’ bileske fonksiyonu E’ te bir egridir

ve bu egriye, r egrisinin parametresinin h yardimiyla degistirilmesiyle elde edilen
egri denir. h fonksiyonuna ise r egrisinin bir parametre degisimi denir (O’Neill,

1966).

Tamm 2.1.11. r:1—E’ bir egri olsun. Vtelicin |r|=1 ise r egrisine birim hizh

egri, Vteligin |r'|#0 ise r egrisine regiiler egri denir (O’Neill, 1966).
Tamm 2.1.12. r:1— E’ bir egri olsun. a 1 sabit bir nokta olmak iizere
(6)= ]l (v
ile tanimli s:1— R fonksiyonuna yay uzunlugu fonksiyonu denir (O’Neill, 1966).

5(0)= fIr'(u )

3



sayisina da r egrisinin t=a dan t=b ye olan yay uzunlugu adi verilir (O’Neill,

1966).

Tamm 2.1.13. r:1—>E’ birim hizli bir egri olsun. T=r' ifadesine r egrisinin
birim teget vektor alani, Vsel icin K(s):”T’(s)” ifadesine r egrisinin egrilik
Sfonksiyonu, k«#0 olmak tizere N=T'/« ifadesine r egrisinin asli normal vektor
alani, B=TxN ifadesine r egrisinin binormal vektér alani ve {T,N,B} sistemine
ise Frenet ¢atist denir (O’Neill, 1966).

Tamm 2.1.14. r:1—E’ birim hizli bir egri olsun. B'=—tN ifadesi ile verilen

r(s), Vs el, fonksiyonuna r egrisinin burulma fonksiyonu denir (O’Neill, 1966).

Teorem 2.1.15. r:1—E’ birim hizli bir egri olsun. r egrisinin egriligi x>0 ve

burulmast t olmak tzere

T'=«xN
N'=—«T+1B
B'=—N

dir (O’Neill, 1966).

Tanimm 2.1.16. «, 7, T, N, B ifadelerine egrinin Frenet elemanlar: denir (O’Neill,

1966).

Teorem 2.1.17. r:1 — E’ regiiler bir egri olsun. Bu durumda

1 n ' n m
Tzni—:, N=BxT, B= 12 e XZ ||, L ’ff ’"f2>
Il e

||rvxrvv

dir (O’Neill, 1966).

Tamm 2.1.18. W, E’ uzayinda bir vektor alam ve v,eT, (E3) olsun.

V,W=W(p+tv) (0)eT,(E’)
tanjant vektoriine W vektor alaninin p noktasinda v vektorii yoniindeki kovaryant

tiirevi denir (O’Neill, 1966).

3
Teorem 2.1.19. W = ZWiUi , B’ uzayinda bir vektor alani ve v, eT, (E3) olsun.

i=1

Bu durumda



VW= iv[wi U.(p)
dir (O’Neill, 1966).
Tamm 2.1.20.

F:E" > E"
p — F(fl (p).f,(p)..... T, (p))
fonksiyonunun f, :E" > R, i=1,2,...,m, koordinat fonksiyonlari diferansiyellenebi-
lir ise F fonksiyonuna doniigiim denir (O’Neill, 1966).
Tamm 2.1.21. F:E" — E™ bir doniisiim olsun.
E:T,(E") > Ty, (E")

y —>E(V)=(%F(p+tv)j

fonksiyonuna F donilisiimiiniin #irev doniisiimii ve bu doniisiime standart bazlara

t=0

gore p noktasinda karsilik gelen matrise F doniisiimiiniin Jacobiyen matrisi denir
(O’Neill, 1966).

Tanim 2.1.22. F:E" - E™ bir doniisim olmak iizere VpeE" i¢in E  tirev
dontisiimii birebir ise F doniisiimiine regiiler doniigiim denir (O’Neill, 1966).

Tamm 2.1.23. DcE® acik bir kime, x:D—E® bir doniisim olsun. Eger x

doniisiimii birebir ve regiiler ise bu doniisiime koordinat sanal yamast denir (O’ Neill,

1966).
Tamm 2.1.24. x:D—E’ bir koordinat sanal yamast olsun. x:D—x(D)
doniisiimii birebir ve orten oldugundan x~' vardir. x™':x(D)— D fonksiyonu

stirekli ise x donlistimiine has sanal yama denir (O’Neill, 1966).

Tamm 2.1.25. McE’ ve p €M olsun. p noktasina uzakligi bir € >0 sayisindan

kiigiik olan x € M noktalarinin kiimesine, p noktasinin M alt kiimesindeki €

komsulugu denir (O’Neill, 1966).



Tanim 2.1.26. M c E’ olmak iizere Vp € M noktasi i¢in goriintiisii p noktasinin M
kiimesindeki bir komsulugunu kapsayacak sekilde M kiimesinde bir x has sanal

yamas1 bulunabiliyorsa M kiimesine E’ te yiizey denir (O’Neill, 1966).

Tamm 2.1.27. x:D — E’ has sanal yamasi igin M = x (D) bir yiizeydir. Bu ylizeye

basit yiizey denir (O’Neill, 1966).

Teorem 2.1.28.
g:BE° >R
(x,y.2) > g(x,y,2)
diferansiyellenebilir bir fonksiyon ve celR olmak lizere

M={(X,y,z)eE3 :g(x,y,z)=c} alt kiimesinin bir yiizey olmasi igin gerekli ve
yeterli kosul VpeM icin Vg(p) #0 olmasidir (O’Neill, 1966). Burada Vg, g
fonksiyonunun diferansiyelidir.

Tanim 2.1.29.

x:D > FE’

(u,v) > x(u,v)
bir koordinat sanal yamas1 olsun. V(uO,VO)GD icin u—>x(u,v0) egrisine X

egrisinin V=V, u-parametre egrisi, v —> X (uo, V) egrisine ise X egrisinin u =u,, v-

parametre egrisi denir (O’Neill, 1966).

Tanim 2.1.30. x:D — E’ bir koordinat sanal yamasi ve (uo, VO) €D olsun.

1) v=v,, u-parametre egrisinin u, noktasindaki hiz vektori x, (uo,vo) ile
gosterilir,
2) u=u,, v-parametre egrisinin v, noktasmdaki hiz vektori x, (uo,vo) ile
gosterilir,
3) x,(uy,v,) ve x, (uy,v,) hiz vektdrlerine x sanal yamasimin (u,,v,) daki kismi
hizlart denir (O’Neill, 1966).

Burada u ve v alt indisleri kismi tiirevleri gostermektedir. Dolayisiyla x, ve Xy;

V(u,,Vv,) €D noktasini x(u,,v,)eE’ noktasindaki bir tanjant vektdr ile esleyen D



iizerinde tanimli fonksiyonlardir. Eger koordinat sanal yamasi Oklid koordinat

fonksiyonlart ile

x(u,v)= (xl (u,v),x2 (u,v),x, (u,v))

seklinde verilmisse, kismi hiz fonksiyonlari;

x = Fu Ko 0%
*\ou ouou )y,

X{%%%]
Clevioviov

dir.
Tamm 2.1.31. McE® bir yiizey olsun. x(D) goriintiisi M yiizeyi iizerinde
bulunan bir x:D — E’ regiiler doniisiimiine M yiizeyi iizerindeki x (D) bolgesinin

bir parametrizasyonu (parametrik gosterimi) denir (O’Neill, 1966).

Tamm 2.1.32. McE’ bir yiizey, x:D—M bir koordinat sanal yamasi ve

f:M—>R bir fonksiyon olsun. f fonksiyonunun f(x) koordinat gdsterimleri

diferansiyellenebilir ise f fonksiyonu diferansiyellenebilirdir denir (O’Neill, 1966).

Tamm 2.1.33. M c E’ bir yiizey ve Ic R agik bir aralik olsun.

r:I->- M
t—r(t)

seklinde verilen diferansiyellenebilir fonksiyona M yiizeyi iizerinde bir egri denir
(O’Neill, 1966).

Tamm 2.1.34. M c E’ bir yiizey ve peM bir nokta olsun. Eger E’ te bir VT)
tanjant vektorii p noktasindan gegen ve M yiizeyi iizerinde bulunan bir egrinin p
noktasindaki hiz vektorii ise V_]; tanjant vektoriine M yiizeyinin bir teget vektorii denir
(O’Neill, 1966).

Tamm 2.1.35. M yiizeyinin bir p noktasindan gecen tiim teget vektorlerinin
kiimesine M yiizeyinin p noktasindaki teget diizlemi denir ve T, (M) ile gosterilir

(O’Neill, 1966).



Tanmm 2.1.36. M c E’ bir yiizey olsun. M nin her p noktasina E’ iin bir Z(p) = g

tanjant vektoriinii karsilik getiren Z fonksiyonuna M yiizeyi iizerinde bir vektor alant

denir (O’Neill, 1966). M iizerindeki teget vektor alanlarmnm kiimesi y(M) ile

gosterilir.

Tanmm 2.1.37. M cE’ bir yiizey ve Z ise bu yiizey iizerinde bir vektdr alani olsun.

Eger bir peM noktasinda Z(p)= 2_1; tanjant vektorii T (M) teget diizlemine dikse

yani Z_I; , M ylizeyinin p noktasindaki tim teget vektorlerine dikse Z—p tanjant
vektoriine M yiizeyinin p noktasindaki normal vektorii veya normali denir. Eger
VpeM icin Z(p) = ZT) M ye dik ise Z vektor alanina ylizeyin normal vektor alan

denir (O’Neill, 1966).
M c E’ bir yiizey ve x:D—M bir koordinat sanal yamasi olsun. x, ve X,
kismi hizlari lineer bagimsiz olup Vp e M noktasinda T, (M) nin bazi oldugundan

x, XX, vektorel ¢arpimi, M ylizeyi iizerinde bir normal vektor alanidir.

3

Tanmm 2.1.38. meR - {0, i?} olmak tizere

r (s) = \/1_:7[— 4(1;;1) sin((1+2n)s)—ﬁsin((l—Zn)s)—%sins,
ﬁcos((l+2n)s)+él(ll%gn)cos((l—Zn)s)—%coss,ﬁcos(Zns)J

dir

seklinde tanimlanan egriye Salkowski egrisi denir. Burada n=
I+m

(Salkowski, 1909).
cos(ns)

J1+m?

{—g,g} araliginda regiilerdir ve x(s)=1 ve t(s)=tan(ns) dir. Frenet elemanlari

Tanim 2.1.39. r(s) Salkowski Egrisi i¢in Hr - (S)H = dir. Dolayisiyla egri

ise



T(s) :—[cos(s)cos(ns)+nsin(s)sin(ns),cos(ns)sins—ncos(s)sin(ns),%sin(ns)j
SINETETS

B(s)= (n sin (s)cos(ns)—cos(s)sin(ns),—ncos(s)cos(ns)—sin(s)sin (ns),gcos(ns)j

m
seklindedir (Salkowski, 1909).

Teorem 2.1.40. a(s) birim hizli, egriligi sifirdan farkli bir egri olmak iizere

r(s)= jfB‘* (u)du olsun. os) ve r(s) nin Frenet elemanlari, sirastyla
{T“, N%, B“, k%, r“} ve {Tr, N', B', «', rr} olmak uzere

T =B*, N =-N*, B'=T% «' =1“, 1 =«” dir Nurkan vd, 2019).
Egrilik negatif olmayacagi i¢in burada ' = ‘r“‘ olmalidur.

Tanim 2.1.41. oc(s) birim hizli, t* =1 olan, egriligi sifirdan farkli bir egri ve

r(s)= IB“ (u)du olsun.

oc(s) = {ﬁ(n(l—4n2 +3cos(2ns))coss +(2n2 +1)sinssin(2ns)),

-
2(4n2 —1)m

(2ns+sin(2ns))j,

(n (1 —4n”* +3cos (2ns))sin S— (2n2 + l)cos S sin (2ns)),

4n

m

J1+m?

egrisidir (Monterde, 2009).

n=

ise k" =1 olup r(s) Salkowski egrisi, a.(s) egrisi de Anti-Salkowski

Tamm 2.1.42. M c E’ bir yiizey ve U ise M nin birim normal vektor alani olsun.

vv,eT (M) igin S(v,)=-D,U seklinde tanimlanan fonksiyona M nin sekil

operatorii denir (Abbena vd, 1998).

Tamim 2.1.43. M yiizeyinin bir v, birim tanjant vektori yoniindeki normal egriligi

k(vp) = <S(vp ),vp> ile tanimlanir (Abbena vd, 1998).
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Tamim 2.1.44. M yilizeyinin p noktasindaki normal egriliklerinin maksimum ve

minimum degerlerine M nin p noktasindaki asli egrilikleri denir ve k .k, ile gosterilir

(Abbena vd, 1998).

Tamim 2.1.45. M c E’ yiizeyinin ortalama egriligi
H:M—->R

p—>H(p) =25 (p)

ile tanmimlanir (Abbena vd, 1998).

k, +k,

Teorem 2.1.46. M c E’ yiizeyinin ortalama egriligi H =

dir (Abbena vd, 1998).

Teorem 2.1.47. P c E’ bir yiizey olsun. P(s,t) yiizeyinin ortalama egriligi

P 2
$s?27s? Tt st? T s27t S

H(S,t)= st : o so ot (S,t)

2( e[ (PR )

det(P,,P,P)|P| —2det(P,,P,,P)(P,P,)+det(P,,P,P)

dir (Abbena vd, 1998).
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3. MATERYAL YONTEM

Bu boélimde Wang vd (2004) tarafindan yapilan ‘‘Parametric representation of

a surface pencil with a common spatial geodesic’’ adl1 ¢calismaya yer verilmistir.

0 O
Sekil 3.1: r(s)egrisi ve bu egriden gegen P(s,t) yiizey ailesi

r(s),L,<s<L,, 3 boyutlu Oklid uzayinda s yay parametreli (||r’(s)|| =1,
L, <s<L,) bir egri olsun. Bu ¢alisma boyunca kullanilacak egrilerin egrilikleri
stfirdan farkli olarak alinacaktir. Aksi takdirde egri bir dogru olur. r (s) egrisi
r"(s)#0 olan regiiler bir egri oldugundan egri boyunca {T(s), N(s),B(s)} Frenet
catis1 tanimlidir.

u(s,t),v(s,t) vew(s,t) fonksiyonlart C' sinifindan fonksiyonlar olmak
iizere r(s) egrisinden gegen parametrik yiizeyler

P(s,t)=r(s)+u(s,t)T(s)+v(s,t)N(s)+w(s,t)B(s), 3.1)

L, <s<L,, T, <t<L, ile verilir.

r(s) egrisini hem parametre egrisi hem de geodezik egri olarak kabul eden
P(s,t) yiizeyi igin kosullar1 bulmak istiyoruz.

r(s) egrisinin P(s,t) yiizeyi iizerinde parametre egrisi olmasi i¢in yeterli

kosul
u(s,ty)=v(s,ty)=w(s,ty) =0, (3.2)



L, <s<L,, olacak sekilde 3t, €[T,, T,] bulunmasidur.

r(s) egrisinin P(s,t) yiizeyi iizerinde geodezik egri olmasi igin gerekli ve
yeterli kosul P(s, t) yiizeyinin normali ile r(s) egrisinin asli normalinin paralel
olmasidir.

P (s,0) =(1+u, —x(s) v(s,0)) T(s) +((s)u(s, ) + v, —t(s) w(s, ) )N(s)

+ (’E(S) v(s,t)+w, )B(s)
ve
P, =uT(s)+ v ,N(s)+w B(s)

olmak iizere P = P(s, t) yiizeyinin normal vektor alani

A~

n(s,t)=P xP,
dir.

Tiirev formiilleri g6z oniine alinirsa yilizeyin normal vektor alani
o, (s,t):(VS(s,t)+K(s)u(s,t)—r(s)w(s,t))w[(s,t)
(x(5) v(5.0) #w, (5.0)) ¥, (5.0).
(=) (s.0)u,(5.1)
(1+u, (s, t)=x(s) v(s.t) )WI(S,t
( ( s)v(s,t )Vt S, t
(w0 e <>u<s,t> (s)w(s )) (5.0

T(s)v(s, t)+w

¢ (s.t) = ;
(|)3(s,t)

1+u

olmak tizere
ﬁ(s,t) =, (s, ) T(8)+d, (5, ) N(s)+ 5 (s,t) B(s)
olarak elde edilir. Boylece t =t, i¢cin u(s,to) =v(s, to) =w (s, to) =0,L,<s<L,

oldugundan

olmak tlizere

~

n(s,ty)=0,(s,t,)T(s)+b, (.t )N(s)+b;(s.t,)B(s)

olur.
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Egrinin yiizey iizerinde geodezik olmasi i¢in gerek yeter kosulun ﬁ(s, t) [| N(s)

oldugunu biliyoruz. Buradan

s,t,)#=0
[t .
0, (8.t)) =5 (s.t,)=0
elde edilir. Ayrica (3.2) den
u(s,to)=V(s,t0)=w(s,t0)=0, L, <s<L,
Olup tiirev tanimindan
u, (s.1,) = lim 2O ZUG L), 020
h—0 h h—0 h
v, (5.1,) = lim YO L) TVE L) e 020 (3.4)
’ h—0 h h—0 h
w, (5.t,) = lim PSRt 7 W)y, 020
h—0 h h—0 |

dir. (3.4) den elde edilenler (3.3) te yerine yazilirsa egrinin yiizey lizerinde geodezik

olmast i¢in yeterli sart

{wt(s, t,) #0 3.5

v, (s,t,) =0

olmasidir.
Teorem 3.1. Egriligi sifirdan farkli, birim hizli r(s) egrisinin (3.1) yiizey ailesi

{izerinde hem parametre egrisi hem de geodezik olmast igin yeterli kosul
u(s,ty)=v(s,ty)=w(s,t;)=v,(s,t,)=0= w (s,t,),
L, <s<L,, t, €[T,,T,], (t, =sabit) olmasidir.
Daha iyi bir analiz igin u(s,t),v(s,t) ve w(s,t) sapma fonksiyonlarini tek

degiskenli iki fonksiyonun ¢arpimi olarak

u(s,t)=1(s)U(t),

V(s,t)=m S)V(t), 3.6)

L <s<L,, T,<t<T,, seklinde ele alalim. Burada I(s), m(s), n(s), U(t), V(t) ve

W(t) fonksiyonlar1 C' sinifindan fonksiyonlardir.
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Teorem 3.2. Sapma fonksiyonlar1 (3.6) daki gibi secilirse egriligi sifirdan farkl,

birim hizli r(s) egrisinin (3.1) yiizey ailesi iizerinde hem parametre egrisi hem de
geodezik olmasi i¢in yeterli kosul

U(t,) = V(t,) = W(t,) =0
W, (to) #0#n(s)
V,(t,)=0v m(s)=0

olmasidir.
Ispat: Egriligi sifirdan farkli, birim hizli r (s) egrisi verilsin ve sapma fonksiyonlari
(3.6) daki gibi segilsin. (3.2) denkleminden r(s) egrisinin P(s,t) yiizeyi iizerinde
parametre egrisi olmasi1 i¢in yeterli kosul

U(t,)=V(t,)=W(t,)=0

olarak bulunur.

O, (s,to) :(szt —V[WS)(S,tO),
0, (s.ty) = (—(1—us)wt +utws)(s,t0),
0, (s,to):((1+us)vt —Vsut)(s,to),

olmak tlizere

n(s,ty) =, (5.6 )T(s)+ b, (5.t )N(s) + 5 (s,t, ) B(s)

oldugundan geodeziklik kosulu

{4)2 (s,t,)#0

o, (S’to) =0, (S’to) =0

dir. Secilen sapma fonksiyonlari i¢in

o, (s.t,) =0,

b, (S’ to) = —n(s)Wl (tO)

0, (s,t,) =m(s)V, (t,)
dir.
O halde r(s) egrisinin geodezik olmasi i¢in yeterli kosul

m(s)V, (t,)=0 ve —n(s)W,(t,) =0

olmasidir.

Buradan
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m(s)=0 veya V,(t,)=0
n(s)#=0 ve W,(t,)=0

olur ve ispat tamamlanir.
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4. BULGULAR VE TARTISMA

4.1. E’te Verilen Bir Egri Boyunca Sabit Ortalama Egrilikli Yiizey Ailesi

Wang vd (2004) tarafindan yapilan c¢alisma g6z oniine alinarak, Li vd (2011)
ortak egrilik ¢izgili ylizey ailesini tanimlayarak verilen bir egriden gecen ve bu egriyi
ortak egrilik ¢izgisi kabul eden yiizeyler i¢in yeterli kosullar1 elde etmistir. Bayram
vd (2012) verilen bir egriyi ortak asimptotik egri kabul eden yiizeyler i¢in sartlar

vermistir.

Tezin orijinal kismi olan bu béliimde ise E* Oklid uzayinda verilen bir egriden

gecen ve bu egri boyunca ortalama egriligi sabit olan yiizeyler i¢in yeterli sartlar elde

edilecektir. r(s), E* Oklid uzayinda «(s) egrilikli, t(s) burulmal, regiiler bir egri

olsun. Ayrica, her s igin r"(s)#0 oldugunu kabul edelim. {T(s).N(s).B(s)}, r(s)

egrisinin Frenet catist olmak iizere bu egriden gegen yiizeyler parametrik olarak
P(5.0) =1(5)+ u (s, ) T(5)+ (s )N(s) + w(s. ) B(5), @

L <s<L,, T, <t<T,, seklinde ifade edilir.

r(s) egrisinin P(s,t) yiizeyi iizerinde parametre egrisi olmast igin yeterli kosul

u(s,ty)=v(s,ty)=w(s,t,)=0,L, <s<L, 4.2)
olacak sekilde 3t, €[T,,T,] bulunmasidir.

P (s, t) yiizeyinin ortalama egriligi

P 2
ss? 7 sY Tt St? T s27t s

H(s,t): . . 2‘ 2 S ) 5 t2 T s2 Tt (S,t) (4.3)
2( LR (B2 )

det(P,,P,,P)|P| —2det(P,,P,,P)(P,P,)+det(P,,P,P)

dir (Abbena vd, 1998).

r(s) egrisinden gecen P(S, t) yiizeyinin bu egri boyunca ortalama egriligini bulmak
icin gerekli olan agagidaki hesaplamalar1 yapalim.

P =r'+uT+uT'+v N+VvN'+wB+wB'

P =(A+u -Avi)T+(Aux+v, -Awt)N+(Avi+w, )B

P =uT+v N+wB



P.(s,t,) =AT

P (s,t,) =A'T+A*kN

P(s,t)=uT+v N+wB

P,=P,=u T+uT+v N+vN'+w B+wB'

P =P, =(u, —Akv )T +(Axu, +v,—Atw, )N+(Atv, +w,)B

P, (s,t)=u,T+v,N+w B

A Ak 0
det(P,P,P)=[L 0 0|=-A'xw,
u v \%%

t t t

u,—AKvV, Aku +V, —ATW, ATV, +W,
det(P,,P,P)= A 0 0

st?7s? Tt

t Vt Wt

det(P,.P,.P)=-A[ w, (Axu, +v, —Atw )—v, (Av, +w )]

st?

un Vll th
det(P,,P,P)=lA 0 O |=-A(v,W, —VW,)
u v, W

t t t

P =u+vi+w? [P =2 (P,P)=hu

t
Yukaridaki hesaplamalar (4.3) denkleminde yerine yazilirsa r (s) egrisinden gecen
P (s, t) yiizeyinin bu egri boyunca ortalama egriligi

H(s,t,)= (—klcwl (ul2 +v+ Wt2)+ 2u, | w, (A, +v, =dew,)-v, (Av, +w, ) ]
1
27\,(Vt2 +W,

4.4)

_k(vnwt —V[wn)) 2)% (s,to)

olarak elde edilir.

Teorem 4.1.1. (4.1) ile verilen P(s,t) yiizeyinin r(s) egrisi boyunca ortalama
egriliginin sabit olmas: i¢in yeterli kosul L <s<L,, T <t<T,, t,e [TI,TZ],
olmak tizere asagidaki sartlardan birinin saglanmasidir.

(i) u (s,ty)=v (s,t) =0=u(s,ty)=v(s,ty) =w(s,ty) =w,(s,t,) =w, (s,t,), t(s)=sbt,

17



(i
(iii) u[(s to) v (s,t) =w, (s, ty) =0 =u(s,t
(i
(v

Ispat:
(i) Bir r(s) egrisi verilsin. (4.2) denkleminden r(s) egrisinin P(s,t) yiizeyi
iizerinde parametre egrisi olmast igin yeterli kosul
u(s,ty)=v(s,t,)=w(s,t,)=0
olmasidir. Ayrica u,(s,t))=v,(s,t,) #0= w,(s,t,) = w,(s.t,) olarak aliirsa (4.4)

denklemi

“20(s)7(s)u (s, t) v (5 to)
Bt == om0

denklemine doniigiir. O halde, egri boyunca ortalama egriliin sabit olmas1 igin

T (s) =sbt olmalidir. Anti-Salkowski egrileri buna 6rnektir.

(ii) Bir r(s) egrisi verilsin. (4.2) denkleminden r(s) egrisinin P(s,t) yiizeyi
lizerinde parametre egrisi olmasi igin yeterli kosul

u(s,to) = V(S,t0)= w(s,to) =0
olmasidir. Ayrica u, (s, to) =W, (s, to) #0=v, (s, to) =V, (s, to) olarak alinirsa (4.4)
denklemi

o) 2 m)f)n(f()s,to)(s’t“)(‘{(s)_r(s)) )

denklemine doniigiir. O halde, egri boyunca ortalama egriliin sabit olmas1 igin
T (s) =sbt olmalidir. Anti-Salkowski egrileri buna 6rnektir.
(iii) Bir r(s) egrisi verilsin. (4.2) denkleminden r(s) egrisinin P(s, t) yiizeyi
izerinde parametre egrisi olmasi igin yeterli kosul

u(s,ty)=v(s,t,)=w(s,t,)=0

olmasidir. Ayrica u, (s, to) =V, (s, to) =w, (s, to) # 0 olarak almirsa (3.4) denklemi
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=3h(s)k(s)w, (s, t))+2h(s)w’ (s,to)(K(s)—r(s))— 2nh(s)w . (s.t,)T(8)
4x/§?»(s)wt3 (s.ty)

H(s,t,) =

—((s)+41(s))
42

H(s,t,)=

denklemine doniigiir. O halde, egri boyunca ortalama egriligin sabit olmasi igin

Kk(s)+4 t(s)=sbt olmaldir. Helis egrileri buna drnektir.

(iv) u(s.ty)=v(s,t;)=w(s,t;)=u,(s,t,)=0

alinirsa P, (s, to) 1P (s, to) olur ve ortalama egrilik fonksiyonu

H(S’ tO) - (K(S)Wt (Vt2 +Wt2)+(vttwt _Vtwtt)) _1 (4.5)

)% (s.t,)

2(Vt2 +w’

sekline doniistir.
v (s,t)) #0=w (s,t;) =w,(s.t,) (4.5) te yerine yazilirsa H(s,t,)=0=sbt olur.
—(s)

(v)  vi(sity)=w(s,t,)#0 (4.5) te yerine yazilirsa H(s,to)zﬁ olur.

Ortalama egriligin sabit olmasi i¢in K(S) =sbt olmalidir. Salkowski egrileri buna

Ornektir.

Ornek 4.1.2. 1(s)= {cos(% s}sin (% s}%sj, ~2<s<2 helis egrisi verilsin.

Bu

egrinin Frenet ¢atisi

T(s) = {—%sin(%s],gco{ﬁs}ﬁs}
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Eger sapma fonksiyonlari u(s,t)=t, v(s,t)=t, w(s,t)=t, se[-2,2],te[-2,2]

olarak secilirse r(s) egrisinden gegen ylizeyin denklemi

P, (s,t) :[cos[%s}—tcos(%s}sin(%s}—tsin(%s}%s+«/§t}

olur (Sekil 4.1).

t,=0 i¢in u (s,t))=v,(s,t,)=w (s,t,)#0=u(s,t,)=v(s,t;)=w(s,t,) dir.
Yani (4.2) den r(s) egrisi P, (s,t) yiizeyinin bir parametre egrisidir.

u (s,ty) = v (s:t) =w, (s, t) #0=u(s,ty)=v(s,t,)=w(s,t,)  ifadeleri  (4.4)

denkleminde yerine yazilirsa P, (s,t) yiizeyinin r(s) egrisi boyunca ortalama egriligi

H(s,to)=M olarak elde edilir. K(s)=r(s)=% oldugundan P, (s,t)

a2

yiizeyinin r(s) egrisi boyunca ortalama egriligi sabittir.

Sekil 4.1: r(s) helis egrisi ve bu egri boyunca ortalama egriligi sabit P; (s,t) ylizeyi.
Ornek 4.1.3.

(S) \/_ 10 . (54'\/_} (\/_0+10J. (5 \/_Sj——sns
! J_ 2018510 5 40-810 )5 2
Ji0-10 (5+\/_J (\/_0+10j {5—\/1_05}1

cos —COSS,
40+ 810 5 40-8+10 5 2

3 (4o
ZCOS ?s ,

—2<s <2, egrisi verilsin. Bu egrinin Frenet catisi
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T(s):[—cosscos(\/_ J—ﬂsmssm[ms)
10 10 )
. Jio ) V1o (Y10 ) 3vio . (Vio
—sinscos| == +Wcosssm TR
N(s):[%sin(s),——cos(s),—l—}
(BB
(s)= 0 cos 0 $ |sin(s)—cosssin 0 s |,

J10 Jio ) (V10 ) 3o (1o
—WCOSSCOS WS —SimsSsSsin 10 S Cos S

" 10 10

dir. Eger sapma fonksiyonlari
u(s,t)=0, v(s,t)=t, w(s,t)=t, se[-2,2],te[-2,2] olarak segilirse r(s)

egrisinden gegen ylizeyin denklemi

P, (s,t)= V10-10 5+\/Es - —\/EJFIO sin - \/_s ——sins
2 J_ 2048410 | 5 40-8/10 5 2
+t[@sin( 8)+—— (\/E ]sm —cosssin @sB
10 10 10 )

J10-10 [5+\/E]£\/_+1oj L }
J_40+8J_0 5 40-810 TR

V10 J10
+ —Tcos(s)—ﬁcosscos —s —sinssin

3 3 (@5]+{—m+3mcos[msDJ
5

—=—CO0S
J10 4 10 10 10
olur (Sekil 4.2). t, =0 i¢in

v (s,t)=w, (s.t)) =1#0=u (s, t,)=u(s,ty)=v(s,t,) =w(s,t,) dir. Yani (4.2)

denkleminden r (s) egrisi P, (s, t) yiizeyinin bir parametre egrisidir.

Vv, (s, to) =w, (s, to) =1 ifadeleri (4.5) denkleminde yerine yazilirsa H(s, tO) = _K(S)

olur.
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k(s)=1 oldugundan r(s) egrisi Salkowski egrisi olup P,(s,} yiizeyinin r(s)

egrisi boyunca ortalama egriligi sabittir.

Sekil 4.2: r(s) Salkowski egrisi ve bu egri boyunca ortalama egriligi sabit P, (s,t) yiizeyi.

Ornek 4.1.4.

—J1o( 1 (3 ( 2 j 6 [ 2 j
r(s)=| ——| —=| =+3cos| —=s coss+—51n331 —
4 J10\ 5 10 10

-J1o[ 1 (3 ( 2 j 6 [ 2 j
— | —| =+3cos| —s s1ns——003331 —3
4 10( 5 10 10

ol o)

—1<s <1, egrisi verilsin. Bu egrinin Frenet ¢atisi

T(s)= (@cos {@ stin (s)—cosssin (@ SJ
10 10 10 )

Jio Jio ) (410 ) 3vio . (V1o
—WCOSSCOS WS —SimsSsin S, COoS S

10 10 10
3410 . 34/10 V10
N(s)= (_TSIH(S)’TCOS(S)’W}

B(s)= {—cosscos(%s]——smsm

0,40

—sinscos| —s
&

)
¢

10 3710 . (10
s |, sin S
10 10 10

cosssin
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dir. Eger sapma fonksiyonlart u(s,t)=t, v(s,t)=t, w(s,t)=0, se[-L1],te[-L1]

olarak segilirse r(s) egrisinden gegen yiizeyin denklemi

T e ER R P S
+{@cos[@s}in(s)—cosssin(msj+—3msin(s)],
10 10

10 10
ﬂ L E+3cos(isj sins—écosssinﬂisj
4 |J10\5 Ji0 5 Jio

J10 Jio ) . (V10 ) 3410
+t —WCOSSCOS WS —SsSmsSsimm| ——S +—COS(S) .

10 10
EYENMES NENEaRy

Olur (Sekil 4.3). t, =0 i¢in

72]

u (s,t,)=v,(8,t)) #0=w,(s,t))=u(s,ty) = v(s,t,) =w(s,t,) dur. Yani (4.2)
denkleminden r(s) egrisi P, (s,t) yiizeyinin bir parametre egrisidir.
u,(s,ty)=Vv,(s,t,) =1lifadeleri (4.5) denkleminde yerine yazilirsa

—2u,v{At(s)
2]

t

H(s,t,)= =—1(s) olur.

‘c(s)=1 oldugundan r(s) egrisi anti-Salkowski egrisi olup P3(s,t) ylizeyinin r(s)

egrisi boyunca ortalama egriligi sabittir.

Sekil 4.3: r(s) anti-Salkowski egrisi ve bu egri boyunca ortalama egriligi sabit P; (s,t) ylizeyi.
Ayni1 egri i¢in sapma fonksiyonlar1 u (S, t) =t, V(s, t) =0, w (s, t) =t,
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S€ [—1,1],t € [—1, 1] olarak segilirse r(s) egrisinden gegen yiizeyin denklemi

o) 0 i 2eacn{ g omss Ssmsn 2

{5 (o o )
10 10 10 10 10
S )

+ t[@ cosS s(sin [@ s] —COoS [@SJ] —sins (sinLESJ +cos (@SJD
10 10 10 10 10 ’

__9[LS+sin(i DH 3@cos[m5]+3msm(msj
410 10 J10 10 10 10 10

2]

olur (Sekil 4.4). t, =0 icin

u, (s,t))=w,(8,t,) £0=v,(s,t,) =u(s,t,) = v(s,t,) =w(s,t,) dir. Yani(4.2) den
r(s) egrisi P, (s,t) yiizeyinin bir parametre egrisidir.

u,(s,ty) =w,(s.t,) =1 ifadeleri (4.5) denkleminde yerine yazilirsa

—2u wAt(s
H(s1,) = o)

t

=—1(s) olur.

‘E(S) =1 oldugundan P, (s,t) yiizeyinin r(s) egrisi boyunca ortalama egriligi

sabittir.

Sekil 4.4: r(s) anti-Salkowski egrisi ve bu egri boyunca ortalama egriligi sabit P, (s,t) yiizeyi.
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5. SONUC VE ONERILER

Bu calismada 3 boyutlu Oklid uzayinda alinan herhangi bir egriden gegen ve
bu egri boyunca ortalama egriligi sabit olan yilizeyler bulmak i¢in yeterli sartlar elde
edildi. Elde edilen bazi sartlar i¢in verilen egrinin helis, Salkowski veya anti-
Salkowski egrisi olmasi gerekmektedir. Bunu yani sira, verilen keyfi bir egriden
gecen ve bu egri boyunca ortalama egriligi sabit olan yiizeyler i¢in de yeterli sartlar
verilmistir.

Bu calisma 15181nda, verilen herhangi bir egriden gegen ve her noktasinda sabit
ortalama egrilige sahip yiizeyler bulma problemi ele alinabilir. Bu ¢alismaya benzer

sekilde, farkl uzaylarda yeterli sartlar arastirilabilir.
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