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ABSTRACT

In robotics, objects and body parts can be represented in various coordinate frames

to ease computation. In biological systems, body or body part centered coordinate

frames have been proposed as possible reference frames that the brain uses for in-

teracting with the environment. Coordinate transformations are standard tools in

robotics and can facilitate perspective invariant action recognition and action predic-

tion based on observed actions of other agents. Although it is known that human

adults can do explicit coordinate transformations, it is not clear whether this capabil-

ity is used for recognizing and understanding the actions of others. Mirror neurons,

found in the ventral premotor cortex of macaque monkeys, seem to undertake action

understanding in a perspective invariant way, which may rely on lower level percep-

tual mechanisms. To this end, in this paper, we propose a novel reference frame that

is ecologically plausible and can sustain basic action understanding and mirror func-

tion. We demonstrate the potential of this representation by simulation of an upper

body humanoid robot with an action repertoire consisting of push, poke, move-away,

bring-to-mouth, bring-left and bring-right actions. The simulation experiments indi-

cate that the representation is suitable for action recognition and effect prediction in

a perspective invariant way, and thus can be deployed as an artificial mirror system

for robotic applications.
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ÖZETÇE

Robotikte, nesneler ve vücut parçaları, hesaplamayı kolaylaştırmak için çeşitli koor-

dinat sistemlerinde temsil edilebilir. Biyolojik sistemlerde, vücut veya vücut parçası

merkezli koordinat sistemleri, beynin çevre ile etkileşim için kullandığı olası referans

sistemleri olarak önerilmiştir. Koordinat dönüşümleri robotikte standart araçlardır ve

diğer ajanların gözlemlenen eylemlerine dayalı olarak perspektiften bağımsız eylem

tanıma ve eylem tahminini kolaylaştırabilir. Yetişkin insanların kolaylıkla koordi-

nat dönüşümleri yapabildikleri bilinmesine rağmen, bu yeteneğin başkalarının eylem-

lerini tanımak ve anlamak için kullanılıp kullanılmadığı açık değildir. Makak may-

munlarının ventral premotor korteksinde bulunan ayna nöronları, daha düşük seviyeli

algısal mekanizmalara dayanabilen, perspektiften bağımsız bir şekilde eylem anlayışını

üstleniyor gibi görünmektedir. Bu amaçla, bu çalışmada, ekolojik olarak var olabile-

cek olan, temel eylem anlayışını ve ayna nöronu işlevini sürdürebilen yeni bir referans

sistemi öneriyoruz. Bu temsilin potansiyelini, itme, dürtme, uzaklaştırma, ağzına ge-

tirme ve sağa ve sola taşıma eylemlerinden oluşan bir eylem repertuarına sahip bir

üst vücut insansı robotun simülasyonu ile gösteriyoruz. Simülasyon deneyleri, tem-

silin, perspektiften bağımsız bir şekilde eylem tanıma, objeler üzerindeki etki tahmini

için uygun olduğunu ve bu nedenle robotik uygulamalar için yapay bir ayna nöronu

sistemi olarak konuşlandırılabileceğini göstermektedir.
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CHAPTER I

INTRODUCTION

How infants learn to develop the skill to detect equivalence (parity) between their

own action and the observed ones is still an open scientific question [1], which is

interesting not only for biological sciences but also for robotics. One idea proposed

for the development of this skill is that infants first learn how to perform ‘coordinate

transformation’, which is the skill of rotation and translating of a 3D object so as

to predict how it would look from the infant’s own perspective. In robotics this

is a common operation; one can obtain the self-perspective 3D pose of an object

given in any arbitrary coordinate frame by using a straightforward transformation.

Although adult humans seem to have this ability as an explicit skill (usually called

metal rotation) [2], it is unknown how this develops and whether it is directly related

to action understanding. To be concrete, it is unknown whether it is the precursor of

perspective invariant action understanding although often it is accepted as such.

Animals necessarily are aware of the effects of gravity and thus it is reasonable to

postulate that one of the axes they would use to assess action and effect is formed

by the direction of gravity. In fact, it is shown that the monkey brain uses gravity

direction dependent representations of object orientations [3]. For primates who are

equipped with dexterous hand useability, it is critical to monitor moving hands for

error correction in the case of self-execution and for predicting others’ action goals

for appropriate social behavior. This intuition is supported by neurophysiological

findings showing that a special brain area in the superior temporal cortex is evolved

for hand movement detection regardless of the actor [4]. Therefore it makes sense

that the prediction of the effect of an action is defined with respect to the movement
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of the hand.

1.1 Motivation

Combining these two pieces of information, in this thesis we propose a novel reference

frame that is ecologically plausible, and present our results on its viability to sustain

action understanding and mirror neuron function. We call this the Action Reference

Frame or Action Frame (AF) in short. We further propose that predictive learning

can use AF to represent the data generated by self-action and self-observation so that

generalization to others is possible, without rejecting the possibility of parallel pre-

dictive systems that employ other reference frames. To complete the reference frame

definition, it is also necessary to state the origin of the AF. Two main possibilities

exist: either AF is placed on the moving hand or on the object that is the target of

the action. Although, in the multiple object scenarios, the latter might bring ambi-

guity during the initial portions of action, in the current report we took this (latter)

approach due to the more straightforward analysis it allows.

In addition to the biological relevance of this idea, we are interested in imple-

menting an action recognition capability for a self-learning robotic system. To this

end, all of the work is implemented on an upper-body humanoid robot, TOROBO1

simulation, and the processing steps are kept at a feasible level for physical robot

deployment. Also to show that the results obtained are not due to the high fidelity

information available from the simulator, a depth camera-based color-coded object

and hand detection system is integrated into the prediction network. Overall, the

results indicate that the proposed AF based prediction system can undertake action

recognition and effect prediction in a perspective invariant manner. Thus, it may serve

as a mirror neuron system architecture that is amenable to robotic implementation.

1Tokyo Robotics, https://robotics.tokyo/products/torobo/
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1.2 Thesis Outline

The thesis is organized as follows. Chapter 2 gives information about the evidence

found on Mirror Neurons and their possible functions in the monkey and human brains

together with the learning system employed in this work (Artificial Neural Networks

(ANNs)). Chapter 3 briefly describes the previous work in the literature on action

recognition in computer vision and robotics, additionally, computational models of

mirror neurons are given. In Chapter 4, the simulation environment, action designs,

the construction of AF, and learning details are given. Moreover, in Chapter 5, the

results of the first experiments with using only a single object are presented, later in

Chapter 6, we also present the results for multiple objects under two different settings

as the fixed and variable object positions for both EF and AF. Finally, Chapter 7

concludes this thesis with a brief discussion on limitations and future directions.
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CHAPTER II

BACKGROUND

2.1 Mirror Neurons

2.1.1 Introduction

Neurons in the ventral premotor area F5 of macaque monkeys have been found to

be activated during goal directed actions (i.e. grasping, holding, tearing) [5, 6, 7].

Also, as a result of the following research similar neurons have been encountered in

the inferior parietal area (PFG of monkeys) [8, 9]. These are called Mirror Neurons

and they discharge both when an action is executed and the action is observed [6].

In area F5 there are two kinds of visuomotor neurons, these are described as

canonical neurons [10] and mirror neurons. While canonical neurons are sensitive to

the shape and size of three-dimensional objects that one sees [11], mirror neurons

encode the motor acts of goal directed actions [6, 7]. Important information about

these neurons is that they operate as a matching mechanism for grasp types (i.e.

precision, power grasp) on presented objects and observation of mouth and hand

motor acts executing an action. Thus, creating the same activation (the same state

in a sense) on the observer’s brain and allowing them to automatically understand

other’s intentions. Additionally to visual inputs, these neurons are also observed to

be active when the sound of an action related to the action is heard by the monkey(i.e.

cracking sound of a peanut) [12] supporting the hypothesis that these neurons encode

the goal of actions performed by others.

Similar to macaque monkeys mirror neuron regions also have been encountered in

the human brain using brain imaging techniques such as PET, EGG, MEG, fMRI,

etc. [13, 14, 15].
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Moreover, based on this facility of the monkey brain region becoming active both

while executing and observing actions, it has been hypothesized that Mirror Neurons

play an important role in action understanding [16, 17], imitation [18, 19] and the

evolution of language [20, 21].

2.1.2 The Mirror Neuron Circuit in Macaque Brain

The mirror neuron circuitry consists of different sub-regions of the macaque mon-

key. Neurons located in the superior temporal sulcus (STS) in the macaque monkey

brain are responsive to the observation of actions executed by others[2]. STS is con-

nected to the ventral premotor cortex (area F5) and the inferior parietal lobule (IPL),

specifically, anterior intraparietal (AIP) and inferior parietal area (PFG) in IPL (see

Figure 1).

Figure 1: Simplified illustration of macaque brain and connections of the mirror
neuron circuitry adapted from [27].

Experiments [22] of tracing the connections and activations of macaque monkey

brain using fMRI imaging technique revealed that connects of lower and upper bank

of STS is strong with PFG and AIP respectively. Neurons in STS do not discharge to

5



active movements rather they are sensitive to the actions with definitive means (i.e.

grasping). STS was observed to play an important role in understanding actions by

responding to objects or actions in a view-invariant way [23].

2.1.3 The Mirror Neurons and View Invariance

Generally, mirror neurons are perspective invariant action understanding however

new studies showed that some neurons get activated depending on the perspective.

In one study [24] concerning view-invariant facility of mirror neurons, scientists have

observed are F5 activations of macaque brain while the monkey was subject to observe

action (grasping) carried out by self and another monkey that is self (0 degrees), side

view (90 degrees) and a frontal view (180 degrees), what they found is that most of

the neurons were active during the action which was carried out by self and some

of the neurons were active during the observation of different perspectives (90 and

180 degrees). This may be connected to first learning from self-executed actions and

later gaining the ability to understand others’ actions with the activation of different

regions on the mirror neurons system.

Also, it is hypothesized that low order view-dependent neurons together create

the view independence based on the discovery that STS was found to be responsive

to varying perspectives of the head[25]. Both view-dependent and independent neu-

rons in the ventral premotor cortex (area F5) encode the goals of motor acts. Based

on the previous statement when the bidirectional structure of STS[26] (also see Fig-

ure 1) is taken into account, it is argued that the view-dependent mirror neurons may

play a role in understanding the perspective for observed actions[27]. Furthermore,

it is thought that view-dependent mirror neurons may be beneficial to action under-

standing, by reinforcing the visual signal encoded by STS which is dependent on the

perspective.
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2.2 Coordinate Frames/Representations in the Brain

Besides the existence of mirror neuron mechanism for perspective invariant action

understanding, an additional line of research lends strong support to the proposed

Action Frame concept. Experimental evidence shows that the brain uses multiple

spatial representations and reference frames for action production [28] and location

recognition [29]. These reference frames are used to encode spatial information with

respect to a collection of reference frames, including the egocentric ones such as

head, eyes, hand, and body, as well as the allocentric ones such as the position

of an object in attention. Finally, more specific support to the proposed Action

Frame is provided by the recent findings showing that the gravity direction is well

incorporated in the parietal representation of object orientations [3] suggesting that

reference frames incorporating the gravity direction exist in the brain.

2.3 Learning

2.3.1 Issues in Artificial Neural Networks

The idea of creating an Artificial Neural Network(ANN) similar to the human brain is

theorized in the early 1940s by McCulloch and Pitts[30]. Later, Hebb[31] studied the

relationship between the environment and behavior. He suggested that the repeated

stimulus increased the connectivity of neural pathways. With the increased computa-

tional power Hopfield[32] came up with an associative memory structure similar to the

human brain. With his research, he showed that the usefulness of such systems. The

evolution of ANNs continued with the use of the backpropagation algorithm[33] to

this day and they show that they are useful agents which are applicable to real-world

problems.

Artificial Neural Networks are basically universal function approximators. A sim-

ple conventional ANN consists of layers and can have an arbitrary number of layers.

A layer consists of neurons that are connected to every other neuron in the next layer.
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The first layer of the network is called the input layer and the last layer is called the

output layer. Layers between input and output layers are called hidden layers (see

Figure 2). Increasing the depth of a network increases its learning capabilities, how-

ever, introduces issues to the training process. Networks with many layers are called

deep neural networks.

Figure 2: A simple artificial neural network with three layers.

2.3.1.1 Neuron

A neuron in ANNs inspired by nature (i.e. the human brain) is the smallest member of

an ANN. This artificial neuron is a mathematical function in its essence. Input to an

artificial neuron receives one or more inputs and these could be any arbitrary number,

using smaller numbers (such as [0, 1] or [-1, 1]) found to be work better with the

increased depth of the neural network. The inputs are weighted with their connection,

fed to the neuron, and summed. While training these connections (weights) are

calibrated ever so slightly to minimize the difference between neuron’s output and

target value. Furthermore, artificial neurons also have a bias value that is trainable.

After all weights are summed and bias added neuron’s output goes in to the activation

function sigma (σ(·)) (see equation 1). This calculation forms the output of a neuron
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and is delegated to the next neuron if connected to any.

y = σ(
n∑

i=1

(wi ∗ xi) + b) (1)

2.3.1.2 Activation Functions

Activation functions used in ANNs are non-linear functions that receive a single neu-

ron output. The purpose of using non-linearities at the neuron output is to be able to

stack many neurons one after another (sequential connections). Without non-linear

functions, neural networks are not able to learn complex representations since connec-

tions between neurons become simple multiplication operations and eliminate hidden

layers.

Figure 3: Showing different activation functions.

There are different non-linear functions which are used as activation functions in

neural networks such as the Sigmoid[34], tanh[35], Rectified Linear Units (ReLU)[36],
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Leaky ReLu[37] etc. (see Figure 3 for the functions and Figure 4 for their derivatives).

Among these activation functions, ReLU is widely used in current literature since it is

both computationally faster and allows better gradient flow thru the network relative

to the others. One limitation of ReLU is that when neurons’ output is smaller than

or equal to zero no learning takes place since gradients would also be zero and error

cannot propagate thru the network. Leaky ReLU encounters this issue by allowing

the gradient to flow when the input is smaller or equal to zero with a small slope line.

However, this comes with a computation overhead. In this study, we used ReLU in

our ANN as the choice of the activation function.

Figure 4: Showing the derivative of different activation functions.

2.3.1.3 Gradient Descent

Gradient Descent is an iterative differentiation algorithm to minimize the error (the

distance between the network output and the target) of an artificial neural network.

In each step of the algorithm small steps (determined by the learning rate) are taken
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towards the opposite direction of the calculated gradient. When the algorithm ‘con-

verges’ it reaches a local minimum which minimizes the error. There are different

ways to propagate the error back in the network. One way is to calculate the error

for the whole data set, another, calculate the error for each and every sample in the

data set. However, calculate the error for small parts for the data set (a.k.a. mini-

bathes) found to be work the best. Some issues of the gradient descent algorithm are

caused by choosing an appropriate learning rate, it is not a straightforward process,

and choosing it too small or big may cause the algorithm to stuck in bad local minima.

In order to solve some of the issues caused by choosing an appropriate learning

rate and getting stuck in nonoptimal local minima gradient descent optimization algo-

rithms are created. In this study, we used the A Method for Stochastic Optimization

(ADAM)[38] optimizer which showed its use in many previous studies and learning

tasks.
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CHAPTER III

PREVIOUS WORK

Action recognition is a widely studied area that attracts interest from a wide range of

fields including computer vision and robotics [39, 40], as it facilitates human behavior

analysis [41] and human-robot interaction [42].

3.1 Action Recognition in Computer Vision

In computer vision, action recognition, in particular, pose estimation is a well-studied

topic with approaches including monocular [43] or stereo-vision and depth camera-

based point cloud approaches [44]. These approaches can either be based on manually

designed feature matching with pose search or on gradient-based learning. For ex-

ample, Keskin et al. [45] estimated hand positions with high accuracy using pose

estimators that exploit multi-layered randomized decision forests.

Keeping this in mind, multiple studies of the first person (egocentric) perspective

human action recognition studies have been conducted. In [46] authors used Convo-

lutional Neural Network (CNN) [47] architecture to predict executed actions that are

learned from hand motion cues. Ma et al. [48] also utilized a CNN architecture to

learn scene and hand motion information. Garcia-Hernando et al. [49] used RGB-D

images to train multiple state-of-the-art recurrent neural networks with a large corpus

of video and mo-cap data to recognize different hand actions such as tearing, flipping

and pouring.

Extensive research for action recognition in computer vision presented its use-

fulness for real-world scenarios. However, in these studies, the focus was not to be

biologically relevant instead researchers widely prioritized to extract the most benefit

from the current Machine Learning literature.
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3.2 Action Recognition in Robotics

In some robotic applications, it may be possible to apply state estimation techniques

to map observed behavior into a sequence of state descriptions compatible with the

observer. This allows behavior understanding through estimating the value function

of the demonstrator with the aid of adopting a reinforcement learning framework

as exemplified by Takahashi et al. [50]. In general, in such scenarios, a range of

methods from dynamic time warping (e.g. [51]) to inverse reinforcement learning can

be applied (see [52]). In our work, we consider raw perceptual input and do not

assume the existence of any state estimation capability.

3.3 Computational Mirror Neuron Models

Neuroscience research has shown that primate brains are endowed with multi-modal

neurons (mirror neurons) that become active during the execution of hand actions as

well as during the observation of similar actions when executed by a conspecific or

experimenter [5, 6, 7]. It is generally accepted that the mirror neurons encode goal-

directed actions and play a significant role in the understanding of observed actions

of others’ [53]. However, the underlying mechanisms and representations are still far

from clear [54, 55]. Several mirror neuron models exist in the literature which may

be considered as biologically realistic action recognition models.

As a biologically realistic action recognition model, an approximate brain model

has been proposed by Oztop and Arbib [56]. They presented a system named Mirror

Neuron System1 (MNS1) which models brain areas F5 (mirror neurons) and anterior

intraparietal area (AIP) which are believed to play a crucial role in understanding

possible grasping actions that can be realized. MNS1 approximates brain functions

related to action execution and understanding. They achieve perspective invariance

by defining a ’hand state’ that describes the relation of hand with respect to an

object, which may be considered as a special case (as it focuses only on grasping and
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not other actions) of the proposal pursued in this paper. Finally, an Artificial Neural

Network replaces mirror neurons for learning and predicting actions.

Chaminade et al. [57] employed Hopfield [32] networks which are binary asso-

ciative memory models with the ability to retrieve stored patterns. The underlying

feature of the Hopfield networks is that they are working memory systems that are

inspired by the human brain. In this context, from self-observations, their network

learned and generated associations between visual input and motor commands. When

subjected to visual input gathered from different hands, the system could generate

correct motor commands to imitate the actions. Both of these systems learned from

actions from self-execution and later used the experience they gained to make accurate

predictions on understanding the actions.

Darwood and Loo [58] in their work they propose a computational model that

is capable of imitation through self-exploration based on the associative learning

capability of the Mirror Neuron System. Their model particularly focuses on the

view-invariant facility of Mirror Neurons since they associate the motor acts with

visual input. In their experiment in a simulation environment, they used a humanoid

robot placed in front of a mirror and the robot was able to see outcomes of the motor

acts that it was executed through a camera. Their network first learns to associate

visual input to the motor commands. Later, their model is able to associate motor

commands for observations from other perspectives.

Bonaiuto and Arbib [59] extending upon MNS1[56] based on the desirability metric

they claim that the mirror neurons fire as to the result of actions which are not

intentionally executed. Moreover, the attraction of action with signals from the mirror

neurons may be learned through ‘accidental success’. Additionally, reaching successful

action execution is guided by the signal intensity. Therefore, attraction to an action

and the probability of successfully executing it plays an important role in determining

what to do next.
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Nagai et al. [60] hypothesized that that mirror neurons system develops with the

increasing resolution of visual input in the early development of an infant with regard-

ing the evidence that behavioral and neuronal studies on early visual development

presented. Their computational model trained with starting with low-resolution im-

ages of interactions with the robot and the resolution is increased through the process

to imitate infant development. In the lower resolutions phase, the system interprets

observed and self actions closely similar maybe as the same. Further through develop-

ment (increasing resolution) self actions and actions executed by the others are better

discriminated. In the end, maintained learned associations at early development cre-

ate a basis for associating others’ actions with motor commands and motor commands

with self-observations. However, this work is limited to only hand movements.

Demiris and Johnson[61] inspired by neuroscience developed a system for action

understanding and imitation for robotics. The architecture they come with is able to

learn from both self-generated and observed composite actions in a dual manner.

Metta et al. [62] propose a mirror neuron system for action recognition based on

the hypothesis that the mirror neurons system can emerge by the interaction of an

agent with its environment. Specifically, their model learns to associate the motor

states with the visual representation of the scene from the robot’s perspective (self-

exploration) considering the coupling between object affordances to the action type.

Even though, their model successfully mimics the mirror neuron system it does not

take a different view into account.
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CHAPTER IV

SIMULATION ENVIRONMENT AND METHODS

With the goal of realizing an action recognition system based on the proposed action

frame and assessing its feasibility for perspective invariant recognition, we designed

a robotic simulation setup. The following sections describe this setup and the exper-

iments conducted throughout this study.

4.1 Simulation Environment and Task Setup

We used the Gazebo1 simulator [63] for the dynamic simulation of the TOROBO robot

and Robot Operating System2 (ROS) [64] (Kinetic) robot control architecture for

communicating with the robot. TOROBO is an upper-body humanoid robot that has

bi-manual manipulation capability with 22 degrees of freedom. In this study, we used

only single-hand manipulation and considered a single-object, i.e. a vertically placed

cylinder with a radius of 3cm and height of 13cm for beginning experiments, later we

expanded our experiments to two more objects: a sphere and a horizontally placed

cylinder that the robot can interact with. For modeling the case of action observation

from different perspectives, we assumed that there are virtual observers around the

table that might be observing the actor. The perception of those observers was either

emulated by direct access to the simulator data (using an appropriate homogeneous

transformation matrix to calculate observer viewpoints) or obtained by simulated

depth cameras around the table (see Figure 5). The latter aimed at assessing the

applicability of AF-based action recognition in physical robotic setups. Finally, to

show the generalization ability of the Action Frame we repeat the experiments under

1http://gazebosim.org/
2https://www.ros.org/
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two settings which are fixed and variable object positions. In the fixed object position

setting the object is always placed at the same arbitrary position before the action

starts, in the latter setting the object position is selected randomly in the robot’s

workspace.

Figure 5: Table top simulation environment used is shown.

4.2 Action Repertoire of the Robot

4.2.1 Single-Object Experiments

To test the development of AF-based action recognition capability based on self-

observation, we focused on four predefined parameterized actions. Out of the four,

the two were simple actions of push and poke, and the other two were relatively more

complex actions of move-away and bring-to-mouth. The trajectory and outcome of

each action type were determined by two parameters: the angle of the robot gripper

with respect to the object (action angle) and the location of the object prior to

interaction. The execution trajectories of these actions were assumed to start from a

fixed initial robot configuration.

Given the action type and its parameters, the joint trajectory to be followed by

the robot is constructed and then communicated to the robot through ROS. First,
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Figure 6: Action plan sketches is shown. (A:Push, B: Poke, C: Bring-to-Mouth,
D: Move-Away)
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four Cartesian space via-points are determined in an action-specific way, which are

then converted into joint angles by using the inverse kinematics of the left arm and

torso of the robot. Then the obtained set of joint angles are fitted with cubic splines

to obtain smooth continuous curves for each joint of the robot. Finally, these curves

are sampled at 20 equal intervals and fed to ROS to drive the robot arm and gripper.

For all the actions considered, the robot is assumed to start its action at the same

initial joint configuration determining the first via-point (P0); the second via point

(P1) is determined by the angle parameter, which specifies a point on an imaginary

circle (r=6cm) centered on the object. The next via-point (P2) is taken to be the

center of the object, and the final via-point (P3) is determined according to the action

type as described below.

4.2.1.1 Push and Poke

For these simpler actions, the object is assumed to be at a fixed location in front

of the robot (see Figure 6). The via-points for push and poke are formed by the

initial gripper position (P0), and two symmetrical points (P1, P3) on the imagery

circle centered at the midpoint of the object, which serves also as the middle via-

point (P2). The only difference between the push and poke is that the vertical (z)

coordinates of the P1, P2, and P3 are set differently. The z-coordinate is taken as

6.5cm for the push and 11.5cm for the poke actions. Since the object has a height of

13cm, the push action stably translates the object while the higher contact with the

poke action often knocks over the object. While executing these actions the gripper

is kept fully closed and the side of the gripper is used to form contact with the object.

This facilitates a more robust contact and generates repeatable effects compared to

using the tip of the gripper for establishing contact.
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4.2.1.2 Move-Away and Bring-to-Mouth

For these complex actions, the goals of the actions are taken as specific locations

that the object must be brought. In the case of bring-to-mouth action, the target

of action is a fixed point in the proximity of the facial area of the robot, which

determines the last via-point (P3). Likewise, in the case of move-away action the

P3 is a fixed point which is away from the robot, near the boundary of the workspace

of the robot (see Figure 9). As in the push and poke actions, the first via point

(P1) is determined by the angle parameter of the move-away and bring-to-mouth

actions. Similarly, the second via-point P2 is taken as the mid-point of the object.

To enable grasping and transportation of the object to the desired target location,

the gripper is commanded to enclose when the robot hand reaches P2.

4.2.2 Multi-Object Experiments

As described in the single-object experiments section a vertical sphere is used in the

experiments. In multi-object experiments in addition to the vertical cylinder used,

we added a sphere with a radius of 2.89cm and a horizontal cylinder with a radius

of 2.89cm and a length of 13cm to better analyze the system capabilities against the

different grasping variations and effects that may appear depending on the physical

shape of an object. The vertical cylinder radius is also changed to 2.89cm. This

radius is selected for the robot to make grasping easier of the sphere object kept in

mind and also applied to other objects accordingly (see Figure 7).

In multi-object experiments, we discarded the poke action since the new objects

are not suitable to tip over. Additionally, for push action, even though the push

direction changes the horizontal cylinder is placed as its circle side looking towards

the robot as displayed in the Figure 7. The intention is to observe the effects that may

arise from the physical shape of an object. In this case, even though push action is

applied from different directions, the cylinder generally starts rolling to the right from
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Figure 7: Showing the objects used in the experiments on a white table. Horizontal
cylinder, vertical cylinder and sphere.

the robot’s perspective and follows a direct path. Furthermore, for the actions which

involve grasping, the horizontal cylinder is rotated with the action angle parameter

to make grasping viable. These changes do not apply to the other objects since they

have homogeneous surface areas.

In addition to the previous actions, we added two more grasping actions similar

to the previous ones. These are bring-left and bring-right actions (see Figure 8)

and they are defined similarly to move-away and bring-to-mouth, these actions

again have a previously determined goal positions that the object must be brought.

Moreover, action execution takes place the same way as before. However, in the

multi-object case instead of assigning a random initial position for the object for grasp

actions, this time all of the experiments (for all actions) separated into two categories

as fixed and variable positions. The fixed position for the object in all experiments is

an arbitrarily chosen point in the robot’s workspace and locates directly in front of

the robot. In the variable position case, as in the previous experiments, the point is
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sampled from inside of a circle in the work environment (on the table).

Figure 8: Action plan sketches is shown for newly added actions. (A: Bring-Left,
B: Bring-Right)

4.3 Data Generation and Collection

4.3.1 Single-Object Experiments

As discussed in the previous section each action takes two parameters: action angle

and position of the target object. For the Push and Poke actions, the action angle is

sampled uniformly at random within a range of [-75, -105], and the object position is

taken as a fixed position in front of the robot ([0.47, 0, 1.08]). The angle parameters

for the move-away and bring-to-mouth actions are sampled within the range of

[-35, -110], and the object position parameter is sampled uniformly from the interior

of a circle (r = 7cm) that is parallel to the table and centered at [0.47, 0, 1.08] in

world coordinates.

The simulated robot executed each action in 1000 different settings. While execut-

ing the actions, the robot is commanded through ROS and the desired joint angles are

send to the robot with 10Hz interval ( 16Hz for Push and Poke actions). Data col-

lection is carried out using the same interval, and the final object position is recorded
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after the auction ends. The arm and torso joint angles are also recorded to be able

to recreate the results of the experiments later.

Figure 9: Sample object and gripper trajectories for each action. (A: Push, B:
Poke, C: Bring-to-Mouth, D: Move-Away)

In order to overcome computational limitations in synchronized data collection,

observer experience (i.e. positions with respect to the Egocentric Frame of each

observer) are calculated after the action is completed by using the data of the actor

via appropriate homogeneous coordinate transformations.
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4.3.2 Multi-Object Experiments

In the multi-object experiments, most of the settings used and action parameter

ranges are kept the same in the single-object case, this includes the newly added

actions bring-left and bring-right (see Figure 10). As mentioned in the previous

section, multi-object experiments consist of two categories: fixed and variable position

experiments. In the fixed position experiments, the current object is placed always at

[0.516, 0, 1.08] on the table and directly in front of the robot. In the variable position

experiments, the current object is placed at a position that is randomly sampled

from inside of a circle with a radius of 7cm centered at [0.47, 0, 1.08] similarly in the

single-object case since it has been proven to be a viable workspace for the robot.

Furthermore, the gripper angle is changed to 160 degrees for grasp actions when

the object in question is the sphere or horizontal cylinder. In other words, the gripper

angles are changed to have the tip of the gripper looking downward towards the table.

This eliminates the possibility of collisions that may occur between the gripper and

the table during actions since object heights are small and close to the table. However,

the gripper angle is kept the same for the vertical cylinder as in previous experiments

(single-object) at 90 degrees.

4.4 Object and Hand Localization via Depth Camera

Since we plan to deploy the developed perspective invariant action recognition system

in the real world and explore its possible use cases in robotics as a functional mirror

neuron architecture, we designed a simple color-based perception system so that the

robot can ‘see’ and track the target object and the hand in action. This way, it

would be easier to transfer learning and prediction to the real world. During action

execution in the simulator, we also performed data collection of hand and object

positions by using the emulated Kinect depth cameras. In order to gather this data,

the depth camera outputs are processed with the help of the OpenCV library [65]. For
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Figure 10: Sample object and gripper trajectories for new actions with vertical
cylinder object. (A: Bring-Left, B: Bring-Right)

computational convenience, the processing for object detection is based on 3D color

segmentation. Consequently, the object and the gripper are given distinct colors, red

and green, respectively. Given an image frame for color, filtering is applied using

the ‘inRange’ method of OpenCV which gives a set of points for each color. The

centers of the extracted point clouds are then found by using the ‘findContours’ and

‘moments’ methods.

In order to accelerate the computations, both image and point cloud data are

down-sampled by a factor of 8. One limitation of using object detection in this

fashion is that view-dependent occlusions may create offsets in the point-cloud centers

corresponding to the gripper and the target object.

Finally, since multi-object experiments cameras rotated to look downward to the

table in the simulation environments, after the action execution and the location data

is collected from the depth cameras the error caused by the orientation of the cameras

is corrected computationally with a rotation matrix. Also, the shades are disabled in

the simulator to increase object detectability.
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4.5 Action Coordinate Frame (AF) Construction

The AF is constructed based on the Gravity vector (g) and the velocity vector (v)

pertaining to a hand in action. The velocity vector is in general a function of time

over the action period. In this study, we take the velocity vector of the hand at

the moment when it enters the vicinity, i.e. 20cm proximity of the target object.

The velocity vector is estimated by numerical differentiation, and its projection to

the horizontal plane (vproj) is used for setting up the Action Reference Frame (AF).

Figure 11 shows the AF overlaid on the initial position of the object. In detail, AF

is calculated as follows:

xaxis = vproj/||vproj||

zaxis = −g = [0, 0, 1]

yaxis = xaxis × zaxis

Figure 11: Illustration of the Action Frame (AF). Gravity and hand velocity vectors
are used to construct the AF (red:x-axis; green:y-axis; blue:z-axis).
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4.6 Predictive Learning Network

To model a predictive system that can be trained by self-observation, we formalized

the problem as learning to predict the action-code, action-parameters and the effects

given an object and hand in action.

4.6.1 Single-Object Experiments

In particular, for single-object experiments, the input for the predictive system is

taken as 3D hand positions of 5 consecutive frames represented in either EF or AF.

The output, on the other hand, corresponds to the effect that would be generated, the

action type and action parameters corresponding to the action being observed. Thus,

the size of input to the neural network is 15 (5 positions) and the size of the output

size is 11 (the effect encoded as a 3D offset vector (3), the one-hot action code (4), and

the action parameters encoded with the action angle (1) and the initial position of

the object (3)). The system starts storing hand positions after the hand approaches

to the vicinity of the target object (enters within 20cm range of the object), and after

5 observations are done, the system produces its prediction.

With this input-output specification the prediction system is implemented with a

three layer fully connected Artificial Neural Network (ANN) with 16 neurons in each

layer. We used rectified linear units (Relu) [36] for the network activations. The size

of the network is empirically tuned to be small yet capable of learning the prediction

problem targeted.

The training and testing data is scaled between 0 and 1 using a min-max scaler.

For every experiment the network is trained 4000 epochs with learning rate 1e-3,

batch size of 64 and the same random seed is used in training to exclude randomness.

Finally, A Method for Stochastic Optimization (ADAM)[38] optimizer is used. No

regularization technique is used since the networks could be considered shallow.
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4.6.2 Multi-Object Experiments

In Multi-object experiments network input is extended with one-hot object type code

therefore the input vector size increased to 18. Additionally, the output is increased

with the addition of new actions to 12 (for network structure see Figure 12). Most

of the settings used in the initial experiments are kept the same such as hidden layer

neurons size with 16 neurons, learning rate, batch size, and so on. One change is

however made to the training epoch and increased to 5000. Finally, the ten networks

that are used in the experiments are initialized with the [7, 13, 26, 32, 48, 56, 5, 357,

9, 845] random seeds.

Figure 12: Illustrating Neural Network for Multi-Object Experiments.

4.7 Experiments conducted

4.7.1 Single-Object Experiments

By using self-observation data, we trained two separate networks: one that represents

the data in the Action Frame (AF), and one that uses the Egocentric Frame (EF)

representation. After we ensured that the predictions with self-collected data and

both representations are successful Subsection 5.1.1, we switched our attention to
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contrast the capabilities of AF- and EF-based predictions when they are used to make

predictions of others’ actions Subsection 5.1.2. Note that, in general, an egocentric

reference frame has an origin aligned with the observing agent. However, training

a system with self-observation and then attempting to do prediction based on the

observation of others would create large offsets in hand positions due to the simple

fact that one’s own hand is often much closer than others’ hands. Therefore, to

improve the prediction capability of EF-based prediction, we translated the origin of

EF to the object center, as we did for the case of AF.

Every action is sampled 1000 times as described in the Data Generation and

Collection section. We used an 80/20 train-test split on the data.

The training set includes 800 randomly selected samples from 1000 samples gener-

ated during simulation for every action, therefore the size of the training set is 3200.

The test set has 2400 samples gathered from each observer and the actor (12 observers

in total). The network prediction error is calculated using the mean squared error

(MSE) loss function.

Finally, to test the performance of both EF- and AF-based predictions of others’

actions, we repeated the latter experiment by using the emulated depth camera image.

4.7.2 Multi-Object Experiments

The multi-object experiments are conducted with the same general structure as the

previous experiments. The difference is that since the multi-object experiments have

more combinations, the data set size increased significantly. As keeping the same

train-test split with three objects the training and test set size grew to 12000 and

3000 for each observer (36000 in total) respectively. However, for these experiments,

the first 200 samples were used as the test set and the rest is used for the train set

as opposed to single-object experiments.

The experiments were conducted under two different settings as fixed and variable
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object positions with K-Fold cross-validation with 10 networks, 40 neural networks

are trained in total. The results are presented in Chapter 6.
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CHAPTER V

SINGLE-OBJECT EXPERIMENTS

In this section, we present the predictive learning results based on self-observation

learning by using representations in Egocentric and Action Frames. Then we present

the results showing the generalization ability induced by these reference frames for ob-

servation actions of others. Finally, towards a real-world implementation, we present

the learning and generalization results based on depth camera-based object and hand

perception.

5.1 Experiments with Simulator Provided Location Data

5.1.1 AF and EF based learning of self-generated data

Figure 13 shows the RMSE error for predicted action angle and Euclidean distances

of effect throughout the training process for both AF and EF networks. It is evident

that both networks show a convergent learning regime with the loss approximately

stabilizing towards the final epochs. So we can deduce that the networks designed

are suitable for learning the data derived from our setup.

Figure 13: Test RMSE loss for action angle and effect distance for both networks.
AF is Action Frame and EF is Egocentric Frame losses.
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5.1.2 Observing Others via AF- vs EF-based Prediction System

After training is completed on self-observations, both AF and EF networks are tested

on previously unseen data perceived by the observers. Each observer perceives the

world through its eyes (or cameras), thus the eye-centered/egocentric representation is

dependent on the pose of the observer. Note that in the stage we are considering, each

observer can only learn from their own actions. Therefore, a change in the pose of the

observer considerably affects the prediction capabilities of the observer’s prediction if

it is based on an Egocentric representation. For understanding the actions of others,

additional mechanisms or different representations seem necessary. We took the latter

alternative and proposed the Action Frame. When the actions are seen through the

Action Frame, what the observer and the actor ’see’ is very similar, and indeed in a

noise-free simulation environment, it is identical. In the real world, there would be

perceptual noise, occlusions, and distortions that would create imperfections. The

results in this section show these arguments quantitatively.

Figure 14: Action understanding performance with EF based representations by
using noise-free data. Left: recognition accuracy as a function of viewpoint difference.
Right: Action parameter (angle) prediction accuracy for those actions recognized
correctly. The shades indicate standard deviation.

The leftmost plot in Figure 14 shows the action prediction accuracy of the network

trained with data using the EF representation. As can be seen in the graph, the more
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the observer wanders away from the viewpoint of the actor (i.e.position around the

table), the worse the prediction accuracy gets. This is outcome expected since the

observer has no experience related to the other viewpoints. Still, the generalization

capability of the neural network generates somewhat correct predictions related to

the observed action for neighbor observers (i.e. viewpoints); but, for most of the

actions, the accuracy goes to zero when the observer is for example, directly opposite

from the actor. In the same Figure, the rightmost graphs show the action angle

prediction error for each action as the root-mean-square error (RMSE) with standard

deviation. Similar to the action recognition performance, the further the observer

wanders away from the actor’s perspective, the more the loss increases. Note that,

for error calculation, only the action samples that were correctly predicted were used.

The low angle errors and standard deviation at viewpoints where action recognition

error is high indicate that for those observers only a few actions can be recognized

but when they are recognized their action parameters could be reliably retrieved.

Figure 15: Effect prediction performances with EF and AF based representations.
Left: accuracy based on EF, Right: accuracy based on AF as a function of observer
viewpoint difference. The shades indicate standard deviation.

When the network is trained with AF representations, we get perfect prediction

accuracy since the network is trained with noise-free data and thus the observer

experience is the same as the actor in AF representation. Similarly, the action angle
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error is close to zero. A similar contrast between AF and EF effect prediction can be

seen in Figure 15.

5.2 Experiments with Depth Camera based Location Data

5.2.1 Observing Others via AF- vs EF-based Prediction System using
Depth Camera Input

We conducted the same experiments as the previous section by using object and hand

position data obtained via the Kinect-based perception system. Additionally, we used

splines to replace the missing data points caused by the occlusions. However, this

procedure is not employed in the following experiments since it is concluded that it

actually decreases prediction accuracy (see Chapter 6). Figures 16 and 17 show action

recognition performance for EF and AF based learning respectively. As expected, the

networks trained with the emulated Kinect data show poorer performance compared

to the results obtained by using noise-free data from the simulator.

Figure 16: Action understanding performance with AF based representations for
emulated Kinect data. Left: recognition accuracy as a function of observer viewpoint
difference. Right: action parameter (angle) prediction accuracy for those actions
recognized correctly. The shades indicate standard deviation.

Even though depth-sensing is itself a simulation, there are certain perceptual

biases and occlusions depending on the viewpoint. The results from our experiments

suggest that with non-perfect perception still a high level of perspective invariant
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action recognition capability can be obtained if we use AF-based representations.

This observation is also valid for effect prediction as shown in Figure 18).

It is worth noting that the asymmetric performance drop seen in Figure 16, when

compared with the symmetric performance drop of Figure 14, indicates that the

imperfection in the implemented hand and object perception system manifest itself

differently for each action.

Figure 17: Action understanding performance with EF based representations for
emulated Kinect data. Left: recognition accuracy as a function of observer viewpoint
difference. Right: action parameter (angle) prediction accuracy for those actions
recognized correctly. The shades indicate standard deviation.

Figure 18: Effect prediction performances with EF and AF based representations
for emulated Kinect data. Left: accuracy with EF, Right: accuracy with AF as a
function of viewpoint difference. The shades indicate standard deviation.
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CHAPTER VI

MULTI-OBJECT EXPERIMENTS

In this section similar to the previous section we present the results of self-observation

learning by using representations in Egocentric and Action Frame on multiple objects

(sphere, vertical cylinder, horizontal cylinder) under two settings, namely fixed and

variable objects position settings, and show how the system generalizes using repre-

sentations on EF and AF. The setting determine the object location before the action

starts as described in the Chapter 4. We also present learning and generalization re-

sults based on depth camera based object and hand perception into a step for real

world application. Finally, we analyze the limitations and performance of the depth

perception system. In the Figures 19 to 24, also in 26 and 27 attached at the ap-

pendix, action accuracy, predicted angle and effect root mean square errors (RMSE)

can be seen respectively as three rows, columns correspond to object type (sphere,

vertical cylinder, horizontal cylinder), detailed examination is presented in the later

sections. Each graph shows the mean and standard deviation of ten different trials

in which the networks are initialized with previously selected different random seeds.

One point that should be noted is that while accuracy graphs show the mean and

standard deviation values directly, in the angle and effect prediction error graphs as

previously, prediction errors for only the correctly predicted samples are taken and

results are produced by taking the average over ten networks’ results. To be concrete,

for every point on the graphs (all observers) average of the prediction error and the

standard deviation is calculated and presented in the prediction error graphs.
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6.1 Experiments with Simulator Provided Location Data

6.1.1 Fixed Object Position Setting

In Figure 19, Egocentric Frame network output can be seen with the previously de-

scribed structure. When the action code prediction accuracy is examined one common

item that can be seen is that push action accuracy seems conspicuously high even

though the network is trained with Egocentric Frame representations and tested on

unseen data from different perspectives (translated coordinates). Also compared to

the other actions standard deviation is much smaller. The cause of these observed

results could be due to the simple nature of the push action in addition to the pro-

nounced difference of the gripper trajectory compared to the other actions. Under

these circumstances, a relatively small neural network can correctly classify the ac-

tion code. Another thing to consider is that since one-hot encoding is facilitated the

maximum valued index is accepted as the class id, this can lead to high classification

accuracy even when the network confidence is low, although this is not explicitly

checked and confirmed in this case.

When we consider the other actions, the results create a bell shape, as expected

the action code prediction accuracy decreases when the perspective difference in de-

grees increases (moving away from the actor’s perspective) and at 0 degrees (actor’s

perspective) since the network has converged successfully the action code correctly

predicted for every sample in the test set. However, results show a high standard

deviation, especially with the increasing perspective difference. This is because a mi-

nority of the networks are able to correctly identify the action code for observers even

though they are away from the actor’s view that is why the standard deviation has

an increasing trend while the perspective difference degree increases. This trend is

especially evident for bring-right action for the objects sphere and vertical cylinder.

We believe that the low complexity of the feature space plays a part in these results.

To be concrete, under the current circumstances actions which include grasping starts
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and ends at the predetermined locations. Even though the action angle parameter

changes the gripper trajectory cubic spline that is used at the action execution step

takes its shape according to the end location and indicates which action is taking

place. This lowers feature space to changing only a single parameter and depending

on the network initialization some times the neural network is able to converge to a

point that is successful to classify action codes even though input to the network from

a different perspective. One additional note is that clean simulator data is also taking

a part in this case since action space is sparse and relatively easy to solve/classify.

With the change of perspective difference, the more an observer moves further

away from the actor’s perspective the more error increases as expected from the

representations in EF. However, we see the error goes down with the increase in

perspective change, that is because graphs display the error for only test samples

with their action codes predicted correctly, that is why after around 90 degrees the

error goes back down and the network is able to predict the action angle correctly

and for the small sample group whose action code predicted correctly, the networks

predict with high confidence. The push action being the only case differentiating

from the others. We again see similar behavior to angle prediction of other actions

with the decreasing prediction error even though the action code accuracy is high for

push action. However, this time the networks’ confidence is low indicated by the

high standard deviation.

In the third row in Figure 19, we see a similar result with angle prediction error

for the effect prediction error, at the center (actor’s view) the error is almost zero,

with the perspective change the error gradually increases. One striking difference at

the first glance is that instead of going down again the error converges to some point.

Additionally, the push action effect error curve follows a similar path to what other

actions’ errors draw. This behavior may be caused by the higher dimensions of the

feature space of the effect compared to the action angle parameter since effects are
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denoted by 3D position change vectors whereas the action parameters are scalar.

In Figure 26 attached at the appendix, we can observe the result for action frame

for fixed object position. Under the current setup (with clean simulator data), when

the network is able to converge to a minimum (trained) since representations in AF

are the same for all observers the networks’ prediction results show minimum error

for all observers. Moreover, we see that for all actions action prediction accuracy is

%100. Consequently, action angle parameter and effect prediction errors are minimal.

That is to say that all observers perceive the action as if they are executing the action

and since all observers are accepted as they have the self-learned experience of action

execution this invokes mirror neuron functionality by using the Action Frame and a

neural network (creating the same state in their brain/network).

Finally, we do not observe any significant changes in the results for different object

types under the current setup.

6.1.2 Variable Object Position Setting

One variation added to the multi-object experiments is variable object position de-

scribed in Chapter 4. In Figure 20, we see the result of these experiments with variable

object positions. Compared to the fixed object position experiments, the action code

accuracy declines more steeply and it is evident that the standard deviation is higher.

Expectedly, since the Egocentric Frame is also placed on the object (but with the

observer’s orientation who is perceiving the action) it performs similar to fixed object

position experiments. We observe the increasing standard deviation effect also in the

angle parameter prediction error, however, it is not a dramatic increase. As in the

case of effect prediction error, it seems to be the least affected by the variable object

position. The most prominent change is observed in vertical cylinder’s bring-left

and bring-right actions.

In Figure 27 attached at the appendix, results of variable object position setting
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experiment is presented. The results show a high correlation with its counterpart

(the fixed object positiın setting) action accuracy showing the same performance and

the only difference being the small increases in the prediction errors.

6.2 Experiments with Depth Camera based Location Data

The same experiment data is also gathered thru Microsoft Kinect cameras placed into

the simulation environment to be able to move the simulation setup to the real world

and robot later. In this section, we present the results of the same experiments carried

on the data which the Kinect cameras gathered and discuss the effects/limitations of

realizing such a system.

6.2.1 Fixed Object Position Setting

In Figure 21, compared to the Figures 19 and 20 we see the most prominent changes

in push action accuracy and overall standard deviation on all of the action accuracy

performance of the networks. Obtaining the current object and the gripper positions

thru Kinect cameras adds a small error since our object detection system gives out the

object position as the closest point to the depth sensor which the camera is able to see.

This error added on top of the difference created by changing the perspective results

for push action accuracy to follow a more similar path to other action accuracies

and therefore behave more naturally and expected. The second thing to consider is

occlusion that may happen throughout the action execution, this is more explicit for

the smaller/shorter objects such as sphere and horizontal cylinder. Prominently, the

observer at -30 degrees suffers from these occlusions.

The action angle prediction error differs from the previous examples especially

for push action, we again see closer behavior to other actions similar to the action

accuracy results. However, the most drastic changes are the error spikes at -30 degrees.

These are caused by the occlusions (the camera is unable to detect the object in the

scene). This issue does not arise in the vertical cylinder case since it is taller than
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other objects and can be detected even if the object is behind the arm or the gripper.

The effect prediction error unlike the other results is not consistent among the

three object types. For example, the error spikes originated from the occlusions still

present for sphere and horizontal cylinder objects. Additionally, for push and bring-

left actions of sphere displays similar error spikes for -90 and -60 degrees respectively

with no trace of occlusions took place in other graphs for these particular observer

positions. This may be caused from the small size of the sphere object As in the case

of vertical cylinder high accuracy of bring-right action reflects as an upside-down

bell shape at the effect prediction error as expected. Lastly, other than the error

spikes on the error at -30 degrees, horizontal cylinder results fall parallel to its action

accuracy and the angle prediction error results.

In Figure 22, compared to its counterpart (experiment with simulator provided

data) how the error produced by the object detection system is affecting the predic-

tions can be better observed in the middle graph (vertical cylinder) since the object

is always seen by the cameras and not subjected to the occlusions thanks to its size.

Moreover, performance issues discussed above and caused by the occlusions are better

identified with sphere and horizontal cylinder results (additional issues related to the

object detection system will be disclosed in Section 6.2.3). For these two objects, we

see a significant drop in the accuracy and an increase in prediction error at -30 degrees

throughout the results. Another common drop is seen at 60 degrees, interestingly it

seems not to be caused by the occlusions but rather related to the other issues which

will be discussed later.

Furthermore, even though the prediction error is increased compared to the previ-

ous experiment with the simulator provided data, compared to the Egocentric Frame

observers which are equipped with the Action Frame can successfully understand the

action and its possible effects on the environment.
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6.2.2 Variable Object Position Setting

In Figure 23, we see similar results to fixed object position setting experiment. The

subtle differences are as follows, action accuracies are improved ever so slightly in the

variable object position setting in addition to having wider bell shapes and curves

are also smoother. For prediction error results only small decreases are observed,

however, smoother curves are also valid. These results are caused by the variable

position setting being more resilient to occlusions since cameras are able to pick

the object image majority of the time. This gives the networks enough intuition to

generalize over action space.

In Figure 24, the Action Frame for variable object position setting and depth

camera based location data results is presented. The results show high similarity

with its counterpart (the fixed object position setting of the same experiment). An

overall small improvement can be observed based on the added resilience mentioned

above. Even so, we see a significant drop in accuracy for the sphere object at -90

degrees. Our analysis showed that this is again caused by the occlusions take place

depending on the small size of the sphere object.
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6.2.3 Limitations of Using Depth Cameras

In this section, we discuss the limitations and issues of the current depth percep-

tion system that we employed in our experiments. Unlike the data provided by the

simulator (center of the object), in its current form, the depth perception system

returns the closest point’s position on the object or the gripper that the camera sees

as their position. This creates a bias for every observer differently since the closest

point of the object or the gripper changes with perspective. Therefore, the precision

of distance perception may change with position changes. Additionally, since every

observer is represented with a Kinect camera in the simulation environment, using 12

Kinect cameras introduces computational complexity to the system. As mentioned

in Chapter 4, images perceived by cameras sampled down with a factor of 8 to de-

crease the computational complexity. This may be a cause for more detection errors

and decreased precision. However, further examination is not conducted about this

subject. Moreover, occlusions that take place during the action cause the object and

the gripper not able to be detected by the cameras (see Figure 25).

Figure 25: Illustrating two consecutive time steps where the gripper and the object
are unable to be detected respectively because of the occlusions.
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Furthermore, later in the development of the system (after the multi-object ex-

periments), some issues with the simulation or ROS are caught. When action videos

are examined it seems sudden jumps occurring. Even though the reason behind this

issue is currently unknown, the effect it creates on the results is estimated as mini-

mal. One reason for this is that, in its current form, the Action Frame only requires

the object’s first and last positions. However, the network requires five consecutive

gripper positions to make predictions. When the target’s position information is un-

able to be retrieved it is accepted as at the origin (0, 0, 0). Therefore, the action

code prediction accuracy suffers from missing positional information as can be seen

in Figure 22 under Subsection 6.2.1.

Table 1: Mean distance perception error of depth cameras with standard deviation in
euclidean space(3D) for the robot gripper in the sphere experiments under the fixed
setting.

Persp-
ective
Differ-
ence

Push Bring-To-
Mouth

Move-Away Bring-Left Bring-Right

-180° 1.03± 0.06 7.23± 19.97 0.81± 0.22 0.97± 0.11 0.95± 0.11
-150° 0.88± 0.1 0.79± 0.07 0.69± 0.15 0.79± 0.07 0.91± 0.15
-120° 0.76± 0.15 0.66± 0.06 0.61± 0.11 0.67± 0.09 0.85± 0.21
-90° 0.7± 0.17 0.56± 0.09 0.55± 0.1 0.61± 0.08 0.78± 0.21
-60° 0.7± 0.17 2.27± 11.56 1.98± 10.46 4.78± 17.71 2.39± 11.25
-30° 0.78± 0.17 28.76± 37.49 33.17± 37.6 13.26± 28.67 19.98± 33.78
0° 0.88± 0.12 0.91± 5.63 0.55± 0.1 0.63± 0.06 0.6± 0.07
30° 1.0± 0.06 0.57± 0.23 0.64± 0.15 0.74± 0.09 0.66± 0.14
60° 1.12± 0.07 0.7± 0.28 0.75± 0.23 0.91± 0.14 0.77± 0.22
90° 1.21± 0.13 0.84± 0.3 0.87± 0.28 1.08± 0.2 0.86± 0.29
120° 1.23± 0.15 0.96± 0.27 0.92± 0.31 1.16± 0.21 0.94± 0.29
150° 1.17± 0.11 5.4± 16.65 0.9± 0.28 1.12± 0.17 0.97± 0.21
180° 1.03± 0.06 7.23± 19.97 0.81± 0.22 0.97± 0.11 0.95± 0.11

The resulting position distance errors added to the system by these factors can be

seen in Table 1 and 2 for the gripper and the sphere respectively under fixed object

setting (For error tables related to the other object see Appendix C). The distance

error is calculated by taking the mean and standard deviation of the difference of the

simulator provided data and the data provided by the depth perception for all time
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steps of all samples. We choose 5 meters to replace the missing values (because of the

occlusions) since we believe it could be a long distance considering all experiments

occur on a table in a small area.

Table 2: Mean distance perception error of depth cameras with standard deviation
in euclidean space(3D) for the sphere object under the fixed setting.

Persp-
ective
Differ-
ence

Push Bring-To-
Mouth

Move-Away Bring-Left Bring-Right

-180° 1.18± 0.03 1.15± 0.07 1.03± 0.18 1.21± 0.04 1.19± 0.04
-150° 1.16± 0.03 1.18± 2.46 1.0± 0.19 1.12± 0.05 1.23± 0.12
-120° 1.14± 1.16 1.47± 6.12 1.27± 5.06 2.37± 10.37 1.76± 6.55
-90° 8.03± 22.42 9.18± 24.38 10.33± 25.79 31.58± 39.75 9.74± 24.69
-60° 8.56± 23.4 11.0± 26.76 18.57± 33.11 44.23± 40.47 14.44± 29.88
-30° 0.91± 0.53 44.68± 39.82 22.11± 34.68 24.99± 36.62 45.28± 40.61
0° 0.9± 0.02 0.72± 0.21 0.8± 0.12 0.87± 0.04 2.32± 10.8
30° 0.91± 0.02 0.75± 1.08 0.81± 0.11 0.92± 0.02 1.81± 8.87
60° 0.96± 0.03 0.82± 1.11 0.85± 0.13 1.02± 0.09 1.57± 7.29
90° 1.01± 0.03 0.89± 0.5 0.91± 0.13 1.14± 0.17 0.94± 0.11
120° 1.08± 0.04 1.02± 0.67 0.97± 0.15 1.22± 0.18 1.02± 0.11
150° 1.14± 0.03 1.16± 1.85 1.01± 0.17 1.24± 0.13 1.26± 0.46
180° 1.18± 0.03 1.15± 0.07 1.03± 0.18 1.21± 0.04 1.19± 0.04

As can be seen in the Table 1 and 2, at certain angles the distance error increases.

It can been seen that high distance error is common for -30 and -60 degrees in both

tables. This explains the error spikes on the same offset on Figures 21 and 22.

Essentially, for the bring-to-mouth action of sphere we see a drop in the accuracy

at -180 and -150, when table 1 is observed, we see increased distance error for exact

offset degrees.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

Mirror neurons found in the ventral premotor cortex of the primate brain encode

goal directed actions in a multi-modal way, discharging both during the observation

and execution of similar actions [5]. Most of these neurons show perspective invariant

responses, thereby forming a basis for perspective invariant action understanding [66].

Although it is accepted that the brain employs several reference frames for interacting

with the environment [3, 67], it is not clear whether the mirror neuron system is linked

to a representation that uses a particular reference frame.

In this study, we proposed ’Action Frame’ (AF) which is an ecologically and

biologically plausible reference frame that represents action predictions and effects

with respect to the gravity and the approach direction of a manipulator, i.e. hand.

AF facilitates the development and learning of perspective invariant action recognition

based on self-observation. Since primates are endowed with special neural circuits for

visually processing hands [68] and representing gravity [3], AF may form the basis

for mirror neuron system development.

To show the efficacy of AF in action understanding, firstly, we conducted experi-

ments in a simulation environment with a humanoid robot equipped with the actions

of push, poke, bring-to-mouth and move-away with a single-object (a vertically

placed cylinder). Later, we expanded our experiments by adding two more objects (a

sphere and a horizontally placed cylinder), also changed poke action with two differ-

ent actions bring-left and bring-right. We conducted these experiments under two

different settings as fixed and variable object positions to assess the AF performance

also for different initial object positions and robot states.
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In these experiments, we trained a prediction network based on the robot self-

observation of executed actions by using either AF or EF based representations.

Then, the network was asked to make predictions for observations from different

perspectives. As expected, the prediction system based on EF gave a declining per-

formance as the viewing angle deviates from the self-action view. In contrast, with

AF, observed actions, their parameters, and the effect that would be generated could

be accurately predicted. To verify that the results obtained were not simply due to

the noise-free simulator data, similar experiments were conducted by using emulated

depth-cameras to serve as the ’eyes’ of the actor and the observers. Thus, the training

and testing results were subject to the imperfections of the proof-of-concept visual

processing employed. Although the results were affected by the imperfections, the

capability of the perspective invariant action recognition system stayed at an accept-

able level. This suggests that (1) The mirror neuron system may be the result of the

development of a predictive system based on such a reference frame, and (2) the de-

velopment of a predictive capability based on self-observation can be readily realized

as part of a real robotic system.

From a neural network training perspective, the success of AF over EF is not

really surprising as AF creates inputs that are similar (identical in the simulation

environment). However it is critical to see the effect of perceptual noise and occlusions

during real-world settings. Thus, our study not only computationally showed that

AF type representation is powerful enough to sustain a mirror-like system but also

showed the viability of its implementation on a robotic system.

Future work includes realizing the current experiment setup with a real robot and

conducting the experiments presented in this thesis to show that robots can self-learn

to recognize/understand human actions. To give the robot a general action recog-

nition capability, the robot must be equipped with a richer action repertoire with
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dexterous manipulation capability. The visual acuity and thus recognition perfor-

mance of the robot can be improved by employing state-of-the-art object detection

and tracking methods such YOLO [69], instead of the color coded visual processing

used in this thesis. Finally, a more fundamental approach to the problem considered

in this thesis would be to investigate the emergence of Action Frame-like representa-

tions through end-to-end learning, rather than manually defining it. To this end, a

straightforward approach would be to take a fixed action repertoire as in this thesis

and implement the neural network as an encoder-decoder network where the bottle-

neck layer may be expected to form latent representations corresponding to objects

and their spatial properties. Furthermore, a more elaborate approach can realize such

an end-to-end learning in an action (reinforcement) learning setup where the output

of the deep neural network represents action policy or action parameters.
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APPENDIX A

THE ACTION FRAME RESULTS WITH SIMULATOR

PROVIDED DATA

Figure 26: The Action Frame under Fixed Object Position Setting showing action
accuracy, angle prediction error and effect prediction error respectively as rows and
for the objects as columns averaged over ten networks for simulator provided location
data.
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Figure 27: The Action Frame under Variable Object Position Setting showing action
accuracy, angle prediction error and effect prediction error respectively as rows and
for the objects as columns averaged over ten networks for simulator provided location
data.
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APPENDIX B

SAMPLE ACTION SEQUENCES

Figure 28: The Push action from actor’s perspective at 0 degrees with vertical
cylinder object under fixed position setting.
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Figure 29: The Push action from observer’s perspective at 90 degrees with vertical
cylinder object under fixed position setting.
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Figure 30: The Move-Away action from actor’s perspective at 0 degrees with
vertical cylinder object under fixed position setting.
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Figure 31: The Move-Away action from observer’s perspective at 90 degrees with
vertical cylinder object under fixed position setting.
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APPENDIX C

DEPTH PERCEPTION ERROR TABLES

Table 3: Mean distance perception error of depth cameras with standard deviation
in euclidean space(3D) for the robot gripper in the horizontal cylinder experiments
under the fixed setting.

Persp-
ective
Differ-
ence

Push Bring-To-
Mouth

Move-Away Bring-Left Bring-Right

-180° 1.03± 0.06 7.28± 20.05 0.82± 0.22 0.95± 0.11 0.94± 0.11
-150° 0.88± 0.1 0.79± 0.07 0.7± 0.15 0.78± 0.08 0.89± 0.13
-120° 0.76± 0.15 0.66± 0.06 0.61± 0.11 0.66± 0.09 0.83± 0.2
-90° 0.7± 0.18 0.56± 0.09 0.56± 0.1 0.6± 0.09 0.76± 0.19
-60° 0.7± 0.18 2.11± 11.04 2.39± 11.81 5.45± 19.01 2.22± 10.72
-30° 0.79± 0.18 28.27± 37.34 30.94± 37.22 13.69± 29.06 19.12± 33.24
0° 0.88± 0.12 0.96± 5.94 0.56± 0.11 0.61± 0.06 0.59± 0.08
30° 1.0± 0.06 0.57± 0.23 0.66± 0.16 0.73± 0.09 0.65± 0.16
60° 1.2± 0.17 0.71± 0.28 0.77± 0.24 0.9± 0.14 0.76± 0.24
90° 1.21± 0.14 0.84± 0.3 0.89± 0.29 1.07± 0.2 0.85± 0.31
120° 1.23± 0.16 0.96± 0.27 0.95± 0.32 1.15± 0.21 0.93± 0.31
150° 1.16± 0.12 5.4± 16.65 0.92± 0.28 1.1± 0.17 0.96± 0.23
180° 1.03± 0.06 7.28± 20.05 0.82± 0.22 0.95± 0.11 0.94± 0.11
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Table 4: Mean distance perception error of depth cameras with standard deviation in
euclidean space(3D) for the horizontal cylinder experiments under the fixed setting.

Persp-
ective
Differ-
ence

Push Bring-To-
Mouth

Move-Away Bring-Left Bring-Right

-180° 1.18± 0.02 1.2± 1.99 1.07± 1.28 1.19± 0.07 1.19± 0.03
-150° 1.17± 0.04 1.18± 2.25 1.07± 1.75 1.11± 0.07 1.24± 0.13
-120° 1.13± 0.06 1.12± 2.92 1.05± 1.77 1.04± 0.12 1.23± 0.18
-90° 1.32± 4.71 1.39± 6.37 1.19± 4.92 1.1± 3.6 1.21± 2.98
-60° 2.3± 10.17 3.15± 13.66 4.22± 16.15 4.42± 16.53 3.03± 12.64
-30° 0.9± 0.03 9.11± 24.43 0.88± 1.87 0.86± 0.09 12.73± 28.72
0° 0.89± 0.03 0.78± 2.21 0.85± 1.78 0.86± 0.06 0.86± 0.06
30° 0.9± 0.02 0.85± 3.03 0.86± 1.76 0.91± 0.02 0.85± 0.09
60° 0.97± 0.05 0.86± 2.14 0.91± 1.89 0.99± 0.08 0.9± 0.11
90° 1.0± 0.04 0.88± 0.51 0.95± 1.72 1.11± 0.15 0.92± 0.13
120° 1.08± 0.04 1.02± 1.43 0.97± 0.16 1.2± 0.16 1.05± 0.26
150° 1.14± 0.02 1.21± 2.74 1.07± 1.71 1.23± 0.1 1.11± 0.13
180° 1.18± 0.02 1.2± 1.99 1.07± 1.28 1.19± 0.07 1.19± 0.03

Table 5: Mean distance perception error of depth cameras with standard deviation in
euclidean space(3D) for the robot gripper in the vertical cylinder experiments under
the fixed setting.

Persp-
ective
Differ-
ence

Push Bring-To-
Mouth

Move-Away Bring-Left Bring-Right

-180° 1.02± 0.06 1.1± 0.08 0.98± 0.18 1.13± 0.06 1.12± 0.06
-150° 0.88± 0.09 0.93± 0.04 0.84± 0.12 0.93± 0.04 1.05± 0.15
-120° 0.76± 0.15 0.78± 0.04 0.74± 0.09 0.79± 0.07 0.97± 0.22
-90° 0.7± 0.17 0.68± 0.08 0.68± 0.08 8.42± 24.37 0.89± 0.21
-60° 0.7± 0.17 0.63± 0.11 0.66± 0.07 12.02± 28.3 0.84± 0.19
-30° 0.79± 0.17 0.6± 0.13 0.65± 0.06 0.7± 0.04 0.75± 0.08
0° 0.88± 0.12 0.63± 0.16 0.7± 0.07 0.75± 0.03 0.75± 0.03
30° 0.99± 0.05 0.73± 0.21 0.81± 0.11 0.9± 0.05 0.81± 0.11
60° 1.12± 0.07 0.89± 0.25 0.95± 0.18 1.11± 0.11 0.95± 0.18
90° 1.21± 0.13 1.06± 0.24 1.09± 0.23 1.31± 0.18 1.04± 0.26
120° 1.23± 0.15 1.19± 0.2 1.15± 0.25 1.4± 0.19 1.13± 0.25
150° 1.16± 0.11 1.2± 0.14 1.11± 0.24 1.32± 0.14 1.16± 0.16
180° 1.02± 0.06 1.1± 0.08 0.98± 0.18 1.13± 0.06 1.12± 0.06
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Table 6: Mean distance perception error of depth cameras with standard deviation
in euclidean space(3D) for the vertical cylinder experiments under the fixed setting.

Persp-
ective
Differ-
ence

Push Bring-To-
Mouth

Move-Away Bring-Left Bring-Right

-180° 1.1± 0.03 1.11± 0.06 0.99± 0.14 1.15± 0.06 1.15± 0.05
-150° 1.09± 0.03 1.07± 0.04 0.97± 0.14 1.06± 0.04 1.2± 0.15
-120° 1.04± 0.05 0.98± 0.05 0.94± 0.12 0.97± 0.09 1.21± 0.23
-90° 0.98± 0.06 0.87± 0.1 0.87± 0.1 0.88± 0.1 1.12± 0.22
-60° 0.91± 0.06 0.76± 0.14 0.81± 0.08 0.83± 0.08 0.99± 0.15
-30° 0.85± 0.04 0.71± 0.16 0.77± 0.08 0.8± 0.06 0.88± 0.06
0° 0.83± 0.02 0.69± 0.17 0.75± 0.08 0.81± 0.03 0.81± 0.02
30° 0.85± 0.02 0.71± 0.18 0.77± 0.09 1.8± 8.18 0.8± 0.06
60° 0.88± 0.03 0.77± 0.15 0.81± 0.1 0.96± 0.12 3.91± 15.54
90° 0.95± 0.04 0.86± 0.12 0.87± 0.11 1.09± 0.18 0.88± 0.1
120° 1.02± 0.05 0.98± 0.49 0.94± 0.13 1.18± 0.19 0.96± 0.1
150° 1.08± 0.04 1.08± 0.04 0.98± 0.14 1.2± 0.14 1.06± 0.05
180° 1.1± 0.03 1.11± 0.06 0.99± 0.14 1.15± 0.06 1.15± 0.05
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