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Kaslarin hareket bilgisini barindiran yiizeyel elektromiyografi (SEMG)
isaretlerinin siniflandirilmasi, rehabilitasyon amagli sistemlerde dogala yakin bir
caligma diizeni elde etmede kullanilmaktadir. Bu tez ¢alismasinda, iist ekstremite
biceps ve triceps kaslarmin SEMG sinyalleri, bir Derin Ogrenme ydntemi olan
Uzun Kisa Vadeli Bellek (LSTM) yapay sinir agi ile siniflandirilarak dirsek eklem
acist tahmini yapilmigtir. LSTM modeli SEMG isaretinin degisken ortalama
degerini ve tepe kilif degerini kullanarak iyi bir dogruluk elde etmis, basarili ve
etkin bir sekilde dirsek eklemi ag¢1 tahmini yapmistir. Sonuglar, isaretin
Ozniteliklerini kullanan Cok Katmanli Algilayici’'nin (MLP) dirsek eklem ag1
tahmini ile kiyaslanmistir. Tasarlanan LSTM modeli, hesaplama ag¢isindan daha
etkin bir sekilde, MLP kadar yiiksek dogruluk elde ederek dirsek eklemi agi
tahmini yapabilecegini gostermistir.
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Classification of surface electromyography (SEMG) signals, which contain
movement information of muscles, are used to achieve a natural working order in
systems for rehabilitation. In this thesis, SEMG signals of upper extremity biceps
and triceps muscles were classified with Long Short Term Memory (LSTM)
artificial neural network which is a Deep Learning method, in order to estimate
elbow joint angle. LSTM model successfully and effectively made elbow joint
angle estimation by obtaining high accuracy using varying average and peak
envelope value of SEMG. The results are compared with the elbow joint angle
estimation of the Multi-Layer Sensor (MLP) which uses the attributes of the SEMG
signals. The designed LSTM model has shown that it can estimate elbow joint
angle more effectively in terms of calculation, by obtaining accuracy as high as
MLP.

Key Words:  Surface Electromyographic Signals, Artificial Neural Networks,
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GENISLETILMIS OZET

Elektromiyografi kasta olusan fizyolojik siireglere erisip yorumlayabilmeyi
saglayan, giiniimiizde de hastaliklarin tant ve tedavisinde siklikla kullanilan bir
yontemdir. Yiizey elektromiyografisinin, (SEMG) noninvaziv olmasi, buna bagh
olarak insan giivenligini kolay saglayabilmekte ve rehabilitasyona ihtiyag duyan
kigilerin tedavisinde iyi sonuglar verebilmesinden dolayi rehabilitasyon amagl
sistemler i¢in (protez ve ortez kontroliinde) insan-makine is birligini saglamada
kullanima elverigli oldugu goriilmiistiir.

Biyolojik sinir sistemini ve insan beyninin bilgi islemesini taklit eden
yapay sinir aglarinin SEMG’ye dayali kontrollerde kullanilmasi uygundur. Yapay
sinir aglariin veriler arasinda basarili iliskiler kurabilmesi, dogrudan ve kullanish
bir ¢6ziim saglayabilmesi avantajlaridir. Ancak her sistem i¢in her yapay sinir agi
bir ¢6ziim degildir. Sistemdeki verilerin yapisi, problemin tiirii hangi ag
mimarisinin tercih edilmesi gerektigi hakkinda ¢dzlim sunmaktadir.

Onceki calismalar incelendiginde yapay sinir aglarimm kullanilmasinin
yaninda sEMG tabanli bir simiflandirma ya da tahminde basari saglanmasi igin
isaretin Ozniteliklerinin kullanimi da 6nemli bir yer tutmaktadir. Bu teknikte
isaretin kendi ham hali direkt verilmez. Kas isaretinin, yapay sinir agina
verilmeden 6nce zaman veya frekans diizleminde 6znitelik ¢ikarimi yapilmaktadir.
Ogrenme siirecini kolaylastiran bu yontemde, isaretin yapisina ve problemin tiiriine
gore hangi 6zniteliklerin olacagi ve kag 6zniteligin modele verilecegi belirlenerek
girise boyutu azaltilmis veri kiimesi sunulur. Sistemin performansinin basaris1 bu
Ozniteliklerin se¢imi, hangi Ozniteliklerin kullanilacaginin belirlenmesi ve segilen
Ozniteliklerin hazirlanmasi gibi islemlere baglidir. Zaman diizleminde siklikla
kullanilan 6zniteliklerin disinda (RMS, WL, VAR vs.) sEMG isaretinin zaman
diizleminde yalnizca degisken ortalama degerleri ve tepe kilif degerlerinin dirsek
eklem ac¢isimi tahmin etmede kullanilmasi ile ilgili yeterli inceleme bulunmadigi

gorilmiigtiir.
1l



Bu tezde yukarida bahsedilen konuya bir iyilestirme getirilmesi
amaclanmugtir. Biceps, triceps kas isaretlerinin degisken ortalama degerleri ve tepe
kilif degerleri ile basarili bir dirsek eklem agisi tahmini yapilmis ve zaman
diizleminde 3 6zniteligi kullanan Cok Katmanli Algilayict (MLP) ile kiyaslanmasi
sunulmustur. Tahmin icin bir Derin Ogrenme yontemi kullamlmistir. Dogal
sinyalleri i¢eren bir diziden bagka bir diziye tahmin uygulamalarinda, biyolojik
isaretleri islemede bu yontemin kullanildigi goriilmistiir. Buna gore verilerin
ozelliklerini 6grenebilen, hiyerarsik katman yapisi ile verileri degerlendiren ve
direkt tahmin yapmada basarili olan Derin Ogrenme yonteminin LSTM ag1 tercih
edilmistir. Tasarlanan LSTM ag modelinin dogrulugu BIiLSTM modeli ile
kiyaslanmig ve Kas isareti ile ag1 bilgisini iliskilendirmede BiLSTM modelinin daha
basarili oldugu degerlendirilmistir. Isaretin degisken ortalama degerini ve tepe kilif
degerini kullanan BiLSTM sinir aginin a¢1 tahmininin, etkin deger (karekok
ortalama-RMS), dalga formu uzunlugu (WL), ortalama mutlak deger (MAV)
seklinde 3 Ozniteligi girdi olarak alan MLP modeli kadar basariya ulastigi

gOriilmiigtiir.
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1. GIRIS Avybike PIROL

1. GIRIS

Insan viicudunda gesitli elektrofizyolojik isaretler vardir. Bu isaretlerden
Elektromiyogram, bir kas dokusu kasildig1 sirada olusan elektriksel aktiviteyi ifade
eder. (Konrad, 2006) Elektromiyografi, kasin neler yapabildigini sergileyebilmeyi,
kuvvet ile hareket iiretmesini inceleyebilmeyi, cevredeki diinyayla etkilesime
girmesini saglayan ve sayisiz islevi yerine getiren fizyolojik siireclere erisebilmeyi
kolaylagtirmaktadir. Fiziksel rehabilitasyonda, (fizik tedavi / fizyoterapi,
Kinesiterapi, kayropraktik ve ortopedi) irolojide, (inkontinans tedavisi)
biyomekanikte (spor egitimi, hareket analizi, arastirma) ergonomide, (isyerinde
caligmalar, is riski analizi, {irtin tasarimi) Klinikte biyo geri bildirimde, kaslarin
egitilmesi gibi bir¢ok uygulamada yaygin olarak kullanilmaktadir. (De Luca, 2006)
(Alyea, 2010)

Yizeyel EMG (SEMG) isaretleri cilt tizerinden elektrotlar ile alinip
elektronik cihazlarla Glgiilmekte ve analiz edilmektedir. Kas kasilma ve gevseme
dongiisiiniin invaziv olmadan cilt ylizeyinden SEMG ile oOlgiilmesi teknigi,
rehabilitasyon amagli sistemlerde yaygin olarak kullanilmaktadir.

sEMG’ye dayali tahmin veya smiflandirma caligmalarinin bir¢ogunda
tasarlanan sinir agina isaretler dogrudan verilmemektedir. Sinyalin boyutunu
azaltip egitimi kolaylagtirmak ve 6grenme basarisini arttirmak adina hemen hemen
tamaminda Oznitelik ¢ikarimi yapilmaktadir. Elde edilen 6zellik sinyalleri ile yapay
sinir ag1 modelleri bir tahmin sunmaktadir. Egitimi kolaylastirip performansini
arttiran veri boyutu azaltma islemi igin SEMG isaretinin degisken ortalama
degerleri ve tepe kilif degerlerinin kullanilmasi rehabilitasyon amagli cihazlarda ag1,
kuvvet veya tork tahminleri igin segimi iyi yapilmig bir yapay sinir agi ile etkin bir
rol oynamay1 miimkiin kilar.

Literatiirde iist ekstremite SEMG isaretinin degisken ortalama ve tepe kilif
degerlerinin sinir aginda kullanilip bir ag1 tahmini yapabilmesi ile ilgili yeterli

¢alisma bulunmadigr gézlemlenmis ve bu eksige yonelik bir ¢aligma hedeflenmistir.
1



1. GIRIS Avybike PIROL

Geleneksel sinir aglar1 yerine son yillarda SEMG sinyalleri iizerinde iyi bir
performans gosteren (Geng et al., 2018) (Chen et al., 2019) Derin Ogrenme
yontemleri bu alanda umut vadedici goziiktiigiinden biceps ve triceps kaslarindan
alinan sEMG isaretlerinin degisken ortalama degerleri ve tepe kilif degerlerini
kullanan derin 6grenmeli yapay sinir agi ile dirsek ekleminde a¢i kestiriminin
yapilmasi amaglanmigtir. SEMG isareti ile derin 6grenme modelinden elde edilen
sonuclarin basarisini degerlendirmek igin isaretin 6zniteliklerini kullanan farkli bir
tahmin ag1 MLP ile karsilagtirilmas1 hedeflenmistir.

Calisma igin yapilan ag1 diizenegi tasarimi ile omuz ve bilek ekleminin
hareketler sirasinda sabit oldugu, modele dahil edilmedigi, izotonik ve izokinetik
hareketlerden yalnizca biseps ve triceps kaslarinin fleksiyon/ekstansiyon yapmasi
ile sorumlu oldugu varsayilmistir. Ayrica kasta meydana gelebilecek yorulmalar ve
deri direncindeki farkliliklar1 g6z Oniine alarak tez ¢alismasi i¢in elde edilen
isaretler 6zellikle farkl glinlerde kaydedilmistir.

Yapilan tez ¢aligmasi asagidaki boliimleri takip etmektedir:

2.Bo6lim’de literatiirdeki SEMG isaretinin islenmesi ve rehabilitasyon
sistemleri ortez, protez cihazlarindaki kontrol kullanimi ve siniflandirma ile ilgili
calismalara deginilmistir. Hangi yontemlerin kullanildigi, islemin nasil saglandigi
ve sonuglar1 incelenmistir.

3.Boliim’de sEMG isaretinden, bu tez calismasi igin isaretin nasil elde
edildigi ve analizinin nasil yapildigindan bahsedilmistir. Ardindan kayitli bu
isaretler ile ag1 tahmini igin kullamilan Derin Ogrenme yontemi ile Cok Katmanli
Algilayict (MLP) mimarisi sunulmustur. SEMG isaretinin a¢1 tahmini yaptigi 2 ayri
model detayl bir sekilde gosterilmektedir.

4. Bolim’de ise iist ekstremite kaslarindan alinan SEMG isareti ile ag1
tahmini igin tasarlanan iki ayr1 ag modelinin sonuglar1 ve birbiri ile kiyaslamasi yer
almaktadir.

5. Boliim bu tez ¢alismasmin biitiin bir 6zetini ve ¢alismanin daha fazla

nasil gelistirilip iyilestirilebilecegini ifade etmektedir.
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2. ONCEKI CALISMALAR

Rehabilitasyon sistemlerinin tasarimi igin elektromiyogram isaretlerin
incelenmesi giiniimiize kadar etkili sonuglar vermis ve bu sebeple olduk¢a 6nemli
hale gelmistir. Protez ve ortezler icin pozisyon ve kuvvet kestirimi 6énemli bir
calisma alani oldugundan bu oriintii tabanli analizlerde Sekil 2.1°deki gibi bir siireg
takip edilmektedir. Ham SEMG sinyalinden giiriiltii uzaklastirilir 6zellik ¢ikarimi
yapilir. Ardindan sinir aglari ile siniflandirma, tahmin veya kontrol gerceklestirilir.
(Chowdhury ve ark., 2013)

Ozellik

Ham EMG

Sinyali m=) | Onisleme Cikarim

!

HMI ¢ | Kontrolér | €4mm | Sinflandirma

Sekil 2.1. EMG ile Kontrol ve Siniflandirma Sistemlerine Genel Bir Bakis (Nazmi
ve ark., 2016)

SEMG sinyallerini dogrudan sinirsel bir siniflandiriciya sunmanin,
sinyallerin boyutlar1 ve rastgele Ozellikleri nedeniyle pratik olmadigi ifade
edilmistir. Sinyalin, sinyal bilgisini daha kompakt bir sekilde gésterme yetenegine
sahip, azaltilmig bir boyut vektorii ile temsil edilmesi gerekir. Boyle bir vektore
ozellik vektorii denir. Ozellik gikarma, bir dzellik vektdrii olusturmak igin ham
sEMG girdi boyutunun azaltilmasidir. Siniflandirma siirecini basitlestirmek ve
fazla sayida veriyi azaltmak i¢in uygulanir. Dogru 6zelliklerin secilmesi 6nemlidir
¢linkii model smiflandirma sisteminin dogrulugu biiyiikk 6lgiide bu o6zelliklerin

secimine baghdir. (Eroglu & Baysal, 2018) (Nazmi ve ark., 2016) Literatiirdeki
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caligmalarda 3 tiir analiz yapilmaktadir. Zaman diizleminde, frekans diizleminde ve
zaman-frekans diizlemindedir. Yapilan literatiir aragtirmasinda, bu 6zelliklerden
nelerin tercih edildigi ve hangi algoritmalar kullanilarak tahmin ya da simiflandirma
yapildig1 ayrintili sekilde incelenmistir.

Derin katmanli ag yapilarinin giiniimiiz sartlarinda rahat bir sekilde
egitilebilmesi, iyi performans sergileyebilmesi son yillardaki sEMG’ye dayali
Derin Ogrenme yontemleri ile yapilan ¢aligmalar1 arttirmistir. Bu gelisme de goz
oniine alindiginda 6zellikle Derin Ogrenme ile ilgili son calismalar ayrintili
incelenmistir. Bunlardan bazilar1 agagida agiklanmastir:

Kwon ve arkadasi, insan makine isbirligi i¢in yaptiklari ¢alismada yiizey
elektromiyografisi ile iist ektremite hareket tahmini yapmislardir. Yapay sinir agi
kullanarak, SEMG ve eklem agisal hizlarindan fleksiyon ve ektensiyon hareketini
belirlemek i¢in ger¢ek zamanli bir tahmin gergeklestirmislerdir. SEMG analizi i¢in
uygun olan 5 kastan alinan bilgi 6nislemden gegirilerek sinyalin ortalama mutlak
deger (MAV) 6zelligini kullanmiglardir. MAV’mn pencere uzunlugunu 200 olarak
ayarlamiglardir. Dirsek ve omuz eklem agilarin1 gonyometre ile 6lgmiisler ve agisal
hizlar1 elde etmek icin agilarin zamana gére tiirevini almislardir. Ileri beslemeli
YSA modeline girdi olarak SEMG’nin MAV’1 ve agisal hizlar, ¢ikti olarak eklem
acilar1 verilmis ve modelin performansini normalize edilmis ortalama karek6k hata
(NRMSE) ve tahmin-olgiilen deger arasindaki korelasyon katsayist (CC) ile
degerlendirmiglerdir. NRMSE 0,15’ten kiigiik, CC 0,9°’dan biiyiik olarak
hesaplanmis ve temassiz kosullar altinda 6nerilen bu yontemin kabul edilebilir bir
performansi oldugu sonucuna varmuslardir. Fiziksel temastan sonra geri bildirimin
modelin performansi i¢in gerekli olan bir unsur oldugunu ifade etmislerdir. (Kwon
& Kim, 2011)

Koldan alinan EMG sinyalinin 6riintii tabanli analizinin yapildig: farkli bir
caligmada siniflandirma performansi yiiksek ve yaygmn kullanildigi ifade edilen
ortalama mutlak deger, ortalama mutlak deger egimi, sifir gecis tespiti sayisi, dalga

boyu ve egim gosterge degisikligi zaman diizlemi oznitelikleri ve Ozbaglanim
4
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Katsayilar1 (AR) kullanilmistir. 8 denekten 7 farkli el hareketinin EMG isaretleri
ileri beslemeli geri yayilimli sinir agina bahsedilen zniteliklerin farkli sayilarda
giris olarak verilmesi ile egitimi saglamislardir. 3 katmandan olusturulan sinir
aginin ikinci kat1 gizli katmandir ve 40 sinir hiicresi, ¢ikis katmaninda ise 3 sinir
hiicresi bulundugu belirtilmistir. Girisi [-1,1] araliginda normallestirmiglerdir.
Calismada, AR katsayilarinin zaman diizlemi 6znitelikleri ile kullanilmasi, biitiin
durumlarda siniflandirma basarisint artirdigr ifade edilmistir. Zaman diizlemi ve
zaman frekans diizleminden 7 hareketin siniflandirma basarilarinda en iyi sonucu
veren Oznitelik gruplart birlestirilip olusan yeni 6znitelik uzayindan siniflandirma
yapildiginda 7 hareket problemi i¢in basarmin yaklasik %83 oldugu
goriilmektedir.(Guvenc ve ark., 2014)

Mamikoglu ve arkadaslari integrali alimmis bir EMG sinyali kullanarak
ARIMAX modeli ile fleksiyon ekstansiyon hareketi i¢in eklem agilarini tahmin
etmislerdir. Ust kol ve bilek ekleminin sabit oldugunu varsayarak 4 denekten
biceps kas sinyali alinmis, ardindan 6n islem sonrasi mutlak degerinin integrali
ARIMAX modeline verilmistir. Caligmanin yaygin EMG isleme tekniklerinden
ortalama %21,85°lik bir artisla daha iyi performans sergiledigini ifade etmislerdir.
(Mamikoglu ve ark., 2016)

CNN ile RNN mimarisinin kombinasyonu ile iist ekstremite hareket
tahmini yapan bir model, Xia ve arkadaslar1 (2017) tarafindan onerilmistir. CNN
mimari yapisinin, degisken, diisiik genlikli ve rastgele olan SEMG gibi sinyalleri
modellemede sergiledigi olumlu yaklagimindan ve RNN mimarisinin sirali verileri
islemesindeki avantajindan yararlanilmistir. Dirsek ve omuz eklem hareketini
ihmal eden bilek hareketi ile 3 boyutlu el pozisyonuna odaklanan ¢alisma i¢in 8
kisinin 5 kasindan sinyal bilgisi alinmistir. Kayith veri 50ms’lik pencerelere
ayrilarak ag¢1 kaydi ile senkronize edilmis ardindan zaman frekans diizlemine
aktarilarak frekans alaninda, ham sinyallerin, her analiz penceresinde Fourier
doniisiimiine dayali olarak dogrusal spektral katsayilar1 olusturulmugtur. RCNN

modelinde egitim girisi i¢in 5 kasi temsil eden bu zaman frekans spektrum
5
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degerleri kullanilmistir. 3 tane 1D CNN katmani ve 2 LSTM katmanindan olusan
modelde 8 denek icin ortalama deger esOas alinmig ve {i¢ eksen boyunca tahmini
hareket i¢in R? degeri %91,7 olarak ifade edilmistir. RCNN modeli yalnizca CNN
modeli ile kiyaslanmigtir. RCNN'ler i¢in ortalama R? degeri 90,3 bulunmus ve
CNN'den (%77,6) 6nemli l¢iide daha yiiksek oldugu ifade edilmistir. (Xia ve ark.,
2017)

Geng, Hu ve arkadaglari (2018) derin 0&grenme yontemlerinin
performansindan esinlenerek sSEMG sinyalleri ile hareket tanimlamak i¢in hibrit bir
yaklasim ile CNN-RNN mimarisini 6nermislerdir. Onerilen modelin hem mekansal
hem de zamansal bilgiyi yakalamay1 hedefledigini belirtmislerdir. Modele verilmek
iizere 5 kanaldan sinyal alinmig ve bunlar1 RGB goriintiisii ile ayni boyutlara sahip
(renk kanali, genislik ve yiikseklik) bir sSEMG goriintiisiine doniistiirmiiglerdir. Her
elektrottaki SEMG bilgisi, SEMG goériintiilerinin pikseli olarak kabul edilmigtir. 2
evrisim katmani, 3 tamamen bagli (FC) katman ardindan 1 LSTM katmani ile
FC’ye baglanmis ve softmax ile smiflandirma modeli olusturularak hareket
tanimay1 saglamiglardir. Sinyalin serit halinde (1xI1xsEMGfeature) verildigi
simiflandirmanin, yaptiklar1 diger goriintli temsil yontemlerine goére %86,3
dogrulukla daha iyi performans sergiledigi sonucuna ulagmslardir. Sadece CNN
tabanli modeller ile Kkargilastirmig hibrit yaklagimin daha iyi performans
sergiledigini ifade etmislerdir. (Geng ve ark., 2018)

sEMG isaretlerini kullanarak ger¢ek zamanli dirsek eklem ag¢i tahmini
yapan Eroglu ve Baysal, hesaplamali sadeligi nedeniyle zaman alani 6zellik
cikarimini secerek MLP ve Genel Regresyon sinir agi (GRNN) modelinde
uygulamiglardir. Farkli agirlik ve hizlarda 2 kastan alinan sinyal bilgisi 6n iglemden
gegirilerek; sinyalin zaman diizlemi 6zelliklerini temsil eden ortalama mutlak deger,
dalga bi¢im uzunlugu, ortalama karekok oznitelikleri 250 ‘lik orneklere bolerek
sinir agina a¢1 tahmini i¢in vermislerdir. Sagital diizlemde agisal yer degistirmeyi
elektrogoniometre ile almislardir. Dirsek kolu ekleminin gergek zamanli tahmini

icin fazla bir gecikme s6z konusu olmadig ifade etmislerdir. Cikis katman1 dahil 3
6
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gizli katmanm bulunan MLP agindaki tahmin i¢in 130 derecelik ac1 araliginda
ortalama mutlak hata (MAE) %10, GRNN ag tahmini 135 derecelik a¢1
araliginda %11 MAE hesaplamiglardir. MLP ve GRNN i¢in dogrulugun sirasiyla
89.63% ve 88,35% oldugunu belirtmislerdir. (Eroglu & Baysal, 2018)

Chen ve arkadaslar1 (2019) SEMG isaretlerini ve derin 6grenme yontemini
kullanarak iist ekstremite eklem acilarinin siirekli tahmini i¢in bir model
onermislerdir. Dokunma ve birlesik gorev hareketi inceleyen ¢alismada, 7 denekten
7 kasin sinyal bilgisini almiglardir. Agisal hareketi kamerali bir sistem ile elde
etmislerdir. SEMG sinyalinin veri 6n isleme ardindan tepe kilif degeri (envelope)
alinmustir. Hareket verisi ile birlikte anlamlandirabilmek i¢in 10ms’lik pencerelere
bolmiislerdir. Zaman alanindaki analizin siniflandirmadaki basarisina deginerek 4
zaman Ozelligini, kok ortalama kare (RMS), varyans (VAR), ortalama mutlak
deger (MAV) ve dalga formu uzunlugu (WL) se¢mislerdir. Her katmaninda 20
noron bulunan 3 gizli katmana sahip LSTM ag1 ve 4 gizli katmana sahip MLP
agindaki sonuglar1 kiyaslanuslardir. Her iki agin tahmin sonuglarinda RMSE ve R?
7 denegin ortalamasi seklinde verilmis ve sonugta MLP modelinde 120 sn’lik kayit
icin R? 0,8651 iken, LSTM modeli ile R? 0,9449 olarak hesaplamislardir. (Chen ve
ark., 2019)

GA Elman sinir agim kullanan Wang ve arkadaglarn {iist ekstremitede
siirekli eklem ag1 tahmini yapmislardir. Omuz ve dirsek agisini inceledikleri bu
calismada sEMG sinyalinin 06zel dalgacik paket enerji entropisini (WPEE)
kullanmiglardir.6 saglikli denekten alinan 8 kanalli SEMG sinyaline 6 katmanl
dalgacik doniisimii uygulamislardir. Bitisik olmayan alt uzaymin entropi
ozelliklerini modele vermeyi tercih etmiglerdir. Bu o6zellik, bir veri kiimesinin
diizensizliginin 6l¢iisii olarak ifade edilebilen bilgi veya Shannon entropisi olarak
bilinmektedir. Genetik algoritma ile optimize ettikleri, 4 katmanli, her katmaninda
20 diigiim bulanan Elman sinir ag1 modelinde gizli katmanin ¢ikisini bir sonraki
girise ekleyen bellek moduna sahip yapisiyla dinamik bilgileri isleme yeteneginin

giiclendigini ifade etmislerdir. Sadece omuz hareketinde RMSE 3,4717 ve R2
7
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82,83, omuz ve dirsegin siirekli senkron oldugu harekette RMSE 4,1582 ve R2
81,14 sonuglarina ulagmiglardir. (Wang ve ark.,2020)

RNN’nin tiirii olan LSTM’yi kullanarak sEMG sinyallerine dayali diz
eklemi i¢in siirekli tahmin yapan Ma ve arkadaslar1 (2020) RMS ve RMSTAF “1
kullanan LSTM ag1 ile geri yayilim sinir agim1 (BPNN) kiyaslamiglardir. Bu
calisma i¢in 5 denegin 8 kasindan alinan sinyal bilgisi islendikten sonra pencere
genisligi 20 olacak sekilde zaman diizleminde RMS 06zniteligini ¢ikarmislardir.
Kaydedilen a¢1 sinyalinin O6rnekleme frekansinin sEMG 6znitelik sinyalinin
ornekleme frekansina uymasi icin alt drnekleme yapmislardir. Modelde basar1 elde
etmek adina ac¢1 degerlerini normalize etmiglerdir. RMS 6zellik dizisini giris olarak
alan 16 girise sahip 100 katmanli ve her katmaninda 200 diigiim bulunan LSTM
modeli ile tansig ve purelin taransfer fonksiyonu kullanan 3 katmanli bir BP modeli
olusturmuslardir. RMSTAF kullanan LSTM agmin RMSE sonuglarinin, RMS
kullanan LSTM ve RMS ile RMSTAF kullanan BPNN agina gore
sirastyla %8,57 %46,62, %68,69 oraninda azaldigini belirtmislerdir. RMSTAF
kullanan LSTM modelinin diz ekleminin hareketini tahmin etmede digerlerinde

daha iyi performans sergiledigi sonucunu elde etmislerdir. (Ma ve ark., 2020)
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3. MATERYAL VE METOD

3.1. Giris

Dirsek eklem a¢1 tahmini i¢in bu tez ¢aligmasinda gelistirilen sisteme genel
bir bakis sekil 3.1°de verilmistir. Buna gére sEMG isaretinin Ol¢iilmesi, aci
bilgisinin elde edilmesi ve verilerin toplanmasi islemleri siralanmaktadir. Burada
biceps ve triceps kaslarindan EMG sinyalleri yiizey elektrotlari ile elde edilmesi
saglanir. Eszamanli olarak a¢i ol¢im diizenegi ile ac¢i bilgisinin kaydedilmesi
gerceklestirilir. Ardindan veri setleri olusturularak sinir agina verilmek iizere hazir
hale gelir. Son bilesen ise bu verilerden tahmin saglayacak sinir ag1 modiiliidiir. Bu
modiiliin yeterince saglam ve dogru tahmin saglayabilmesi tasarimin esas
hedeflerindendir. Tasarlanan derin Ogrenme sinir agmin ayrintili yapist Ve

kiyaslandigt MLP sinir ag1 mimarisi sonraki boliimlerde detayli bir sekilde

anlatilmistir.
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Sekil 3.1. Dirsek Eklem A¢1 Tahmini Blok Diyagrami
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Calisma igin yazilim bir MATLAB paketinde uygulanmigtir. Kullanilan
paket ve veri isleme yazilimi MATLAB R2019a, Intel Core i5 CPU 2.6 GHz’dir.

3.2. EMG Ilsaretinin Fizyolojisi

Canli organizmalardan kaynaklanan her tiirli isaret, biyolojik isaret olarak
kabul edilmekte ve bu isaretler hiicrelerdeki elektriksel aktivite sonucu
olugsmaktadir. Bu aktivite hiicrelerdeki elektrokimyasal olaylardir. Elektriksel
aktivite ve elektrokimyasal olaylari, kas iskelet sistemi merkezi sinir sistemi (CNS)

ile stirekli haberleserek saglamaktadir.

Merkezi Sinir Sistemi

] Motor d
Sensor programi i Kas

Sekil 3.2. Insanda Kas Sistemi ve CNS Arasindaki Iletisimin Genel Semas1

Genel olarak 151k ya da ses gibi harici bir fiziksel sinyal, duyusal
sistemlerden biri tarafindan algilanir ve viicuttaki sensorler fiziksel sinyali Merkezi
Sinir Sistemine (CNS) iletilen sinir darbelerine doniistiiriir. Ardindan 6nceki alinan,
depolanan bilgileri karsilastirarak giincel bilgi olusturulur. Kaslardaki kontroliin bu
genel semast Sekil 3.2°de gosterilmistir. Kaslar bu isleyisi CNS’nin sinir hiicreleri
olan motor ndron birimi ile saglamaktadir. (Kooij ve ark.., 2008)

Motor birim, kas kasilma siirecinin sinirsel kontroliinii tanimlayan en
kiiciik islevsel birimdir.  Bir motor tiinitesi motor ndéronun hiicre govdesi,

dendritleri, aksonunun ¢oklu dallar1 ve kas liflerinden olusmaktadir. (Sekil 3.3)

10
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Motor ndronu kas lifinin kasilmasini saglayacak uyarty1 alir ve yapisindaki motor
u¢ plaklarin her biri bir kas lifine baglanarak aktarim saglanir. (Konrad, 2006)
Motor sinir hiicresi iki sekilde yani polarize ve depolarize olarak kas lifine uyar1
gonderir ve kastaki bu uyart1 elektrotlar tarafindan kaydedilir. Bu kayit bir motor

birim aksiyon potansiyeli (MUAP) olarak goriintiilenir.

Motor Unit

Alpha

Motoneuron
Axon
Motor
Muscle endplates
Fibers
( Y & X
( { E— X ‘/ f L\
Exoltation Exoltation
[ 7
{ i

Sekil 3.3. Motor Birimi ve Kas Lifleri ile Baglantis1 (Konrad, 2006)
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Motor Unit Action
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Sekil 3.4. Motor Unitesi Kontrolii ve EMG Sinyali (De Luca, 2006)
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Gozlemlenen sinyalin bilyiikliigiinii ve yogunlugunu etkileyen en onemli
iki mekanizma, MUAP'lerin katilinn ve atesleme hizlaridir. Insan deri katmanlari
filtre etkisine sahip oldugundan MUAP atesleme ve genlik oOzellikleri tespit
edilemez ve kas icinden bunlar incelenir. Ust iiste binen MUAP’larin
algilanmasiyla ham EMG sinyali olusur. (Sekil 3.4) (Konrad, 2006)

MUAP Kkaslardaki liflerde birtakim etkiler olusturarak hareket ve kuvvet
iretilir. Kas liflerinde bulunan miyofibriller sarkomer boliimlerinden olusmaktadir.
Sarkomerde kasilma ve gevseme durumunda birbirine gegen filamenler
bulunmaktadir. (Sekil 3.5) Burada kalin flamenti miyosin inceyi aktin proteini
olusturur. Sarkomerin kuvvet iiretmesi Ca*" yogunluguna gore diizenlenmektedir.
Ca®* etkisi altinda, miyozinin baslar1 ¢apraz kopriiler olusturmak igin aktin
molekiiliiniin troponin bélgelerine baglanir. Miyozin kafas1 daha sonra yaklasik 45 °©
doner: Kuvvet fretilir veya harici bir kuvvetin yoklugunda aktin filamentleri
miyosin lizerinde birbirleri boyunca kayar ve kasilma gerceklesir. (Kooij ve ark..,
2008)

sarcomere

Jcross bridges

Y

myosin

| N Y zline
\—m-line

connecun
Sekil 3.5. Bir Sarkomerin Yapist

CNS ile kaslara bir girdi iretilerek kas kuvveti olusumu saglandiginda, bu
kuvvet ile bulunan bolgedeki eklemde bir moment ve tork olusarak iskelet sistemi

13
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tizerinden hareket gergeklesir. Kas iskelet sisteminin konumu ile ilgili bilgiler duyu
reseptorleri ile aktarilarak CNS’de belirlenen konumla karsilagtirilir ve gerekirse
kasa tekrar telafi amach sinyal gonderilir. Kasin hareketinin hassasiyeti kas
tarafindan CNS’ne gonderilen geri bildirim ile saglanmaktadir. Bu geri bildirimi
spindle, golgi tendon organi gibi kaslarin duyu reseptorleri ile saglanmaktadir.
Kasin uzamasini algilayan, aktif veya pasif sekilde kasta olusan gerilim degisimini
ve tendonlar arasinda bag dokuda yer alan, bir load cell gibi kasa uygulanan

kuvveti algilayan duyu reseptortidiir. (Kooij et al., 2008)

3.3. Kas Kasilma Cesitleri

Merkezi sinir sisteminin, insan hareketinde 6nemli bir yeri olan kaslarda
olusturdugu kiiciikk iyonik potansiyel ve akimlar, kas kasilmasi meydana
getirmektedir. Kas kasilmasi ile ilgili farkli smiflandirmalar mevcut olmasina
karsin temelde 3 tip kas kasilmasi vardir. Bunlar konsantrik, eksantrik ve izometrik
kasilma seklindedir. (Alyea, 2010) Bu kas kasilmalari disinda izotonik ve
izokinetik kasilmalar da literatiirde bulunmaktadir.(Serbest & Eldogan, 2014)

Konsantrik kasilmada kaslarda olusan gerilim, yiikten biiyiikk oldugunda
kaslar kisalmakta ve eklem hareketi saglanmaktadir. Net moment ile eklem ag¢isinin
degisimi ayni yondedir. Bu kasilma tiirlinde kas boyu degistiginden izotonik
kasilma da bu siniflandirmada yer almaktadir. izometrik kasilma ise kasmn boyunda
bir kisalma olusturmayan kasilma tiiriidiir. Kas kisalmaya caligsa dahi gerginligi
yiikten biiylik olmayip yiike esit oldugundan dolay1 hareket saglayamaz ve statik
kasilma olarak da bilinmektedir. Yer ¢ekimine kars1 ayakta dik durabilme en temel
orneklerinden biridir. Eksantrik kasilma tiirlinde kas gerilimi yiikten daha az olur
ve kasin boyunda uzama meydana gelir. Net moment eklem agisinin tersi
yoniindedir. Bu kasilmanin amaci eklem hareketini yavaslatmaktir.(Serbest &
Eldogan, 2014)(Alyea, 2010) Eklem hareket agikligi boyunca kasta maksimum

direng ile kasilma saglayan kasilma tiirii izokinetik kasilmadir. izokinetik kasilma,
14
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hareket hizi sabit olacak sekilde kas kuvvetini arttirir. Bu kasilma tiirii bir cihaz
esliginde yapilmaktadir. (izokinetik dinamometre gibi.)(Sahin, 2010)

Harekete katkisina gore literatiir kaslar1 3 gruba ayirmaktadir. Agonist
kaslar hareketin olugmasini saglarken antagonist kaslar agonist kaslara karsi bir
eklem torku {iireterek stabilize edici bir kuvvet saglamaktadir. Sinerjist kaslar
agonist kaslara destek olarak gorev almakta ve hareketin kontroliine katki
saglamaktadir. Biceps ve triceps kaslarinin fleksiyon ve ekstansiyon hareketleri

agonist ve antagonist harekete verilen drneklerden biridir. (Alyea, 2010)

3.4. EMG lsaretinin Ozellikleri

Elektromiyogram (EMG) kas liflerinde olusan akimin veya elektriksel
potansiyelin 6lgiilmesi ve grafiksel olarak kaydedilmesi yontemidir.(Alyea, 2010)

EMG isaretinin Ozelliklerini bilmek isaretin analiz edilebilmesini
saglamada onemlidir. Merkezi sinir sisteminin dokularda olusturdugu tepkiler
kiiclik iyonik potansiyel ve akimlar kimyasal uyarilara, dokunun islevine ve
durumuna go6re farkli genlik ve frekanslara sahiptir. Genel olarak SEMG
frekanslarmin 20-500 Hz arasinda oldugu yaygin olarak kabul edilmektedir. Yavas
kasilan liflerin 20-90Hz arasinda hizl kasilan liflerin 90-500Hz arasinda frekansa
sahip oldugu belirtilmistir. (Sekil 3.6)

Frekans spektrumunda sinyale ait farkl bilgiler elde edilmektedir. S6yle ki
kas yorgunlugu arttifi zaman atesleme sikligi azalir ancak zaman bolgesinde
toplam genlik sabit kalabilir ve bu sebeple kas yorgunlugu zaman bdlgesinde tespit
edilmeyebilir. Bu durumda kas yorgunlugu igin sekil 3.7°de gosterildigi gibi
ortanca frekans (yesil cubuk) ve ortalama frekans (kirmizi ¢ubuk) onemlidir.
Frekans spektrumundaki tiim degerler siralandiginda bunlar esit 2 ayr1 bdliime
ayiran Ortanca frekanstir. Ortalama frekans tim frekans degerlerin aritmetik
ortalamasidir.(Alyea, 2010)
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EMG sinyalinin stokastik bir yapr gosterdigi ve Gaussian dagilim
fonksiyonu ile tanimlandigi belirtilmistir. EMG sinyalinin genligi 0-10 mV
arasinda degistigi bilinmektedir. (Senli,2007:Tagar 2016’dan)

3.5. sEMG lsaretlerinin Ol¢iilmesi

EMG isareti iki temel sekilde elde edilmektedir. Deri yiizeyine iletken
elemanlarla noninvaziv olarak yerlestirilmesi miimkiin elektrotlar ile veya kas igine
invaziv olarak igne-tel elektrotlarinin yerlestirilmesi  seklindedir.  (Sekil
3.8)(Konrad, 2006)(Alyea, 2010)EMG isaretinin yiizeyel olarak elde edilmesinde
noninvaziv olmasi, c¢alisma ve arastirmalarda insan giivenligini kolay
saglayabilmesi ve yapilan literatiir ¢aligmasinda goriildiigii {izere iyi bir kontrol
performansi sergileyebilmesi igne elektrotlari yerine bu yontemin tercih edilmesini

mumkin kilar.

2 b
Sekil 3.8. EMG Ilsaretinin a) Yiizeyden elde edilmesi i¢in kablo ve tek kullanimlik
elektrot b) Kas i¢i alinmasinda kullanilan tel elektrot (Konrad, 2006)

Konrad (2006), bahsettigi iizere, insan viicudu iyi bir iletkendir ancak
elektriksel iletkenlik doku tipine, kalinligina, sicakliga, kisiden kisiye degisen insan
fizyolojisine gore degismektedir. Bu sebeple EMG sinyali yiizey elektrotlart ile

elde edildiginde bazi faktorlerden etkilenmektedir. Elektrot se¢imi, dokunun
17
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karakteristigi, doku ile elektrot arasindaki iletkenlik, kas lifi ve elektrot arasindaki
uzaklik, kasta meydana gelen elektriksel potansiyelin biiyiikliigii ve crosstalk bu
faktorlerdendir.(Soderberg & Cook, 1984)

Deri altindaki subkutan yag tabakasinin kalinlig1 sinyalin zayiflayarak yani
kiiciik genlikler ile elde edilmesine neden olmaktadir. Dinamik hareket
caligmalarinda ise sinyal kaynagi kas ile tespit bolgesi olarak nitelendirilebilen
elektrotlar arasindaki degisiklikler meydana gelebilmektedir. Ortamdaki harici
cihazlardan kaynaklanan disg giriiltii faktéori EMG sinyal elde edinimini
etkilemektedir.(Konrad, 2006) Crosstalk, yiizeyel elektromiyografide olgiilen kasin
isareti ile ¢evresindeki kas isaretlerin {ist iiste binmesini ifade eden istenmeyen
durumdur. Ozellikle kiigiik kaslarin elektrotlar1, hemen altindaki kas1 degil komsu
kaslarin elektriksel aktivitesini de algiladigindan elektrotlarin yerlestirilme konumu
yiizeyel elektromiyografi 6l¢iimlerinde oldukg¢a 6nemli bir yer tutmaktadir. Bunun
igin bazi standartlar olusturulmustur. SENIAM (kaslarin  non-invaziv
degerlendirilmesi icin ylizey elektromografi) yiizey EMG igin elektrotlarin kas
liflerine paralel ve elektrotlar arasindaki mesafenin 20 mm olmasinin ideal dl¢iim
oldugunu belirtmistir. Buna gore bipolar elektrotlar kiiciik kaslara uygulandig
takdirde elektrotlar arasindaki mesafenin kas lifinin 1/4’linii gegememesi
gerekmektedir.

Biceps kasi i¢in medial akromiyon ile fossa kiibiti arasini 3 esit parcaya
bolerek 2/3’ti yukarida kalacak sekilde elektrot yerlesimi yapilmalidir. Referans
veya toprak olarak bilinen elektrot bilegin gevresine yerlestirilmelidir. Triceps kasi
icin Ol¢lim, akromionun arka kristasi ile olekranon arasindaki noktaya esit
mesafede yerlestirilmelidir. Bu konumlar dikkate alinarak tendon ve motor ug
plakasi etkilerinde olusacak dengesiz 6lglimler en aza indirilmektedir. (Stegeman &
Hermens, 2007) Sekil 3.9 ‘da biceps ve triceps kas Olglimii igin referans alinan

noktalarin gosterimi mevcuttur.
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Sekil 3.9.Kas Olgiimii Icin Referans Alinan Noktalar(Stegeman & Hermens, 2007)

Yiizeyel olgiilen EMG isaretinin elde edilmesinde elektrot se¢imi yani
elektrotlarin yapisi, boyutu Onem arz etmektedir. Elektrotlarin temel islevi
dokudaki potansiyeli en iyi sekilde aktarabilmektir. lyi iletkenligi disinda toksit
olmamasi ve bozulmamasi da istenen 6zelliklerdendir.

Iki tip yiizey elektrotu yaygin olarak kullanilmaktadir. Biri ciltle dogrudan
temasta olan kuru elektrotlardir. Statik elektrot olarak da bilinmektedir. Digeri ise
cilt ve elektrotun metalik kism1 arasinda kimyasal bir arayiiz olarak elektrolitik bir
jel kullanan jellesmis elektrotlardir. Tek kullanimlik sekilde karsimiza ¢ikmaktadir.
(Sekil 3.10) EMG kaydi sirasinda, elektrot ile doku ya da deri arasinda bir
polarizasyon olugsmasit veya kapasitif etkilerin olusup isaretin saglikli
aktarilmasinda problemlere sebep olmamasi icin genellikle bu tip Ag/AgCl kapli
metaller kullanilmaktadir. (Giiven, 2012) Ayrica Ag, Au, AgCl gibi farkli metal ve
bilesikler kullanilabilmektedir. Ag/AgCl elektrotlar Kolay temin edilebilirligi diisiik
giiriiltii ile stabil bir ge¢is saglayabilmelerinden dolay: siklikla tercih edilmektedir.
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Bu elektrot tiirii i¢in iletken alan olan elektrotun ¢ap1 1 cm veya daha kiigiik
olmalidir. Islak jel elektrot veya yapiskan jel elektrot olarak bulunmaktadir.
Elektrot cilt empedansini diisiirmek i¢in ayrica elektrot jeli kullanilabilmektedir.
Elektrotlara bagli kablolarin hareketi sonucu olusabilecek dengesiz Olgiimleri
Onlemek adina sabitleme bantlart kullanilmalidir. (Stegeman & Hermens,
2007)(Day, 2002)(Konrad, 2006)

Sekil 3.10. Ozel EMG Elektrotlarinin Se¢imi (1,2 NORAXON INC.USA) (Konrad,
2006)

Cilt yiizeyini 6l¢iime uygun hale getirmek EMG elde edinimini etkileyen
O6nemli faktorlerden biridir. Amag, cilt ylizeyinde diisiik bir giic empedansi
olusturmak ve direkt olarak elektrot temasi saglayabilmektir. Hareket artefaktlari
olusturabilecek sekilde dinamik bir ¢alisma ile yiizey EMG elde edinimi
durumunda, olusabilecek nemli kosullardan ya da terlemeden dolay1 yiizeydeki kil,
tily ve kirden arindirilmasi gerekmektedir. Bu sayede elektrotlarin deri yiizeyine
daha iyi ve siki yapigmast miimkiin hale gelmektedir. Cilt yilizeyini temizlemede

Konrad 3 farkli yontem belirtmistir. Asindirici ve iletken olan yiizeydeki 6lii deriyi
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ve kiri elimine eden temizleme macunlari kullanmak ydntemlerden biridir.
Siirtinmeden dolayr zarar gelmeyecek sekilde dikkatli bir basing uygulayarak
yiizeyde zimpara kagidi ile birlikte alkol ile temizlemek de bu yontemler
arasindadir. Son olarak yumusak ancak siirtiinmeye izin veren bir havluyla alkollii
temizleme islemi de yeterli bir alternatiftir. Yontem se¢imine ve segilen elektrot
tiirline bakilmaksizin agik kirmizi renge sahip cilt tipi iyi bir empedans hali

sergilemektedir. (Konrad, 2006)

3.6. SEMG Isaretinin Kaydedilmesi

Kas bilgisi kii¢lik genlikli ve diisiik frekansli bir yapiya sahip oldugundan
EMG yoluyla dogru olarak oSlgiilebilmesi igin elektrotlar, amplifikatorler, sinyal
goriintiileme araglar1 kullanilmaktadir. EMG amplifikatorleri yiiksek giris
empedansina ve diferansiyel girise sahiptir. Elektrotlar arasindaki potansiyel
farklar1 tespit etmektedir. Amag, 1) sinyal kaynagi ile kayit cihazi arasinda
izolasyonu saglamak, 2) akim voltaj doniisiimii, 3) voltaj kazanci saglamak, 4)
harici parazitleri ve artefaktlar1 engellemektir. Soyle ki harici giiriiltiller faz
kaymasi olmadan iki elektroda ulagir ve bu sinyaller ortak mod olarak bilinen ayn
genlik ve frekansa sahiptir. Bu yiizden amplifikatorlerin ortak modu engellemek
adina ortak mod bastirma oranlarinin (CMRR) yiiksek olup harici giiriiltiiyii
bastirmasi, elde edilen EMG isaretinin kalitesini énemli Olgiide etkilemektedir.
SENIAM, CMRR degerinin 95 dB ‘den biiyiik olmasinin kaliteli ve giivenilir EMG
elde ediniminde kabul edilebilir deger oldugunu belirtmistir. Ideal olarak bir EMG
amplifikatoriiniin giris empedansi, elektrot-cilt empedansinin en az 10 kati
olmalidir. Yiizey elektrotlar icin empedansin genellikle 1 MQ olmasinin yeterli
oldugu ifade edilmistir. Olgiim sirasinda elektrot empedansimnin ilk basta yiiksek
olabilecegi ve daha sonra cilt — elektrot — elektrolit arasinda bir denge kurulmasinin
ardindan degisebileceginin  bilinmesi Onemlidir. Genellikle elektrotlardan
amplifikatdre baglanti hattinda kapasitif etkileri ortadan kaldirmak igin on

amplifikatér kullanilmaktadir. On amplifikator kablolarin igine veya elektrotlarm
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(aktif elektrotlar igin) tlizerine yerlestirilmektedir.(Konrad, 2006)(Soderberg &
Cook, 1984)

EMG amplifikatdriiniin voltaj kazanci, ¢ikis sinyalinin giris sinyaline orani
olarak tanimlanmaktadir. Amplifikatoriin kazang araligi genellikle 100 ile 10000
arasinda olmaktadir. Bunlar diginda amplifikatoriin frekans cevabi ve bant genisligi
de EMG ol¢iimiinde 6nemlidir. Bant genisligi ylizey EMG’si i¢in 10-1000 Hz’dir.
(Soderberg & Cook, 1984)

SEMG sinyali elde edilirken istenmeyen bilgiler olan artefaktlar daha sonra
uygulanan filtreleme islemi ile elimine edilebilmektedir. 10-20 Hz arasi1 yiiksek
gegiren bir filtre ile 500-1000 Hz aras1 algak geciren filtre uygulanmasinin
sEMG’deki 6nemli frekanslar1 koruyacagi belirtilmistir. (Stegeman & Hermens,
2007)

3.7.BIOPAC MP36 Veri Toplama Sistemi

Elektrik sinyallerini kaydetmek ve kosullandirmak i¢in izole edilmig
giivenli yerlesik evrensel amplifikatorlere sahip MP36 deney seti AcqKnowledge
BSLv4.1 yazilimiyla birlikte ¢alisan bir veri toplama {initesidir. Tranducer, sensor,
prob ve elektrotlar baglanarak hem insanlar hem de hayvanlar iizerinde bir¢cok
farkli 6l¢iim yapabilmekte ve elektriksel sinyaller (EMG, EKG, EEG gibi.) diginda
gorsel, isitsel uyaranlar verebilmektedir. Sinyalleri elektrotlardan ve
doniistliriictilerden alip yazilimi sayesinde bilgisayar ortaminda bu sinyalleri dalga
formu seklinde goriintiilemektedir. Bu islemleri yapabilmesini saglayan dahili bir
mikroislemciye sahiptir. BIOPAC Sistem’in destekledigi, MP veri toplama
birimlerinin 6zelliklerini barindirdig1 platform ve teknik bilgi sayfalarindan alinan

bilgiler 1s181nda MP36 biriminin 6zellikleri asagida siralanmistir.

— Analog cikisi ve 4 kanalli analog girisi bulunmaktadir. Sekil 3.11°de
analog girislerin bulundugu 6n panel gosterilmektedir.

— Kanallart ayn1 anda 6rneklenebilmektedir.
22
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— 24 bit A/D dérnekleme ¢oziiniirliigii mevcuttur.

— 200pV ile 2 V arasinda giris (input) gerilim araligina sahiptir.

— Sinyal giiriiltii oran1 89 dB min ‘den biiyiik ve CMRR minimum 85 dB’dir.

— IR, otomatik ya da kisinin ayarlayabilecegi yazilimsal filtreleme ve 20
kHz alcak geciren, 5 - 0.5 - 0.05 Hz yiiksek geciren donanimsal

filtrelemeye sahiptir.

|
A

BIOPAC Systems, Inc.

W biopac com

Sekil 3.11. MP36 On Panel

Elektrotlar, doniistiiriiciiler MP36 birimine baglanmali, MP36 birimi ise
bilgisayara baglanmalidir. Bu tez ¢alismasinda, MP36 biriminde EMG sinyalinin
kaydi igin baglanti BSL-SS2LB seri port kablo ile saglanirken, agi Ol¢im
diizeneginin baglantis1 9 pinli D-sub konnektor ile yapilmistir. MP36 biriminin
bilgisayara baglantis1 USB kablo ile saglanmigtir. Sekil 3.12°de MP36 birimi, seri
port kablolar ve bu tez c¢aligmasi i¢in yapilan ag1 6l¢iim diizeneginin baglantisi

gosterilmektedir.
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Sekil 3.12. MP 36 Veri Toplama Seti ve Act Ol(;m ﬁzeneg .

3.8. A¢1 Ol¢iim Diizenegi

Bu tezde biceps ve triceps kasilma bilgisi ile es zamanli olarak aci
isaretinin elde edilmesi adina, ac1 6l¢lim diizeneginin ilk olarak SOLIDWORKS
ortaminda tasarim ¢izimi yapilmistir. (Sekil 3.13) Burada kullanilan Jane 3D insan
modeli {icretsiz bulut tabanlt GrabCAD ortamindan alinarak, bu model iizerinde ag1
Ol¢iim diizenegi tasarimi yapilmistir. Daha sonra cizilen yapiya uygun olarak
tasarim Sekil 3.14’te gosterildigi gibi gergeklestirilmistir.

Ag1 Olctim diizenegi sag kol i¢in tasarlanmistir. Dogru ve tutarh dl¢limler
alabilmek adina kestamit malzemenin kullanildig: iist kolda bulunan parga, bir
destek ile omuza sabitlenmistir. Ayn1 sabitleme bilek kismina dogru olan levhaya
da yapilmustir. (Sekil 3.14)
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o

Sekil 3.13.So|idW0rsk Ortaminda A1 Olgiim Diizeneginin Cizimi

Sekil 3.14. A¢1 Ol¢iim Diinei
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Kullanilan yerdeki veriyi elektriksel isarete doniistiiren yapilar sensor
olarak adlandirilmaktadir. Bir referans noktasina gore pozisyonu belirlemek i¢in
pozisyon sensorleri kullanilmakta ve bu sensorler yapilarina gore temaslt ve
temassiz olarak ayrilmaktadir. Temasli pozisyon sensorleri 6l¢iim i¢in fiziksel bir
temas kontagi kullanmaktadir. Temassiz yapida ise manyetik, elektromanyetik
veya elektrik alan araciligiyla Olgiim yapilmaktadir. Temel mantigi, endiiktif
yapida olan bir bobinin siirekli olarak degisen manyetik alan iginde bulundugu
sirada uglarda siirekli bir gerilim olusturmasidir.

Yapilan bu tez ¢aligmasinda ag1 6l¢iimii i¢in Bourns firmasina aitAMS22B
pozisyon sensorii kullanilmustir. (Bourns,2015) Pnématik kontrol valfi konumu geri
bildirimi, uzaktan iletisim anteni konumlandirma, aktiiatér motor konumu geri
bildirimi ve ayak pedali, direksiyon, kaldir, gotiir ve siispansiyon sistemleri gibi
bir¢ok uygulamada kullanilabilmektedir. AMS22B temassiz manyetik 6l¢iim yapan
bir analog doner konum sensoriidiir. VDD besleme gerilimi 5V (+%10), tek analog
cikis 12 bit ¢oziiniirliik, maksimum 500 RPM ozelliklerine sahiptir. Sekil 3.15’te
AMS22B pozisyon sensorii gosterilmistir. Sekil 3.16°da mil donme ag1 derecesine
gore degisen analog voltaj cikis grafigi gorilmektedir. Calismada A tipi

kullanildigindan kalibrasyon isleminde bu egri baz alinmistir.

Sekil 3.15. AMS22b Pozisyon Sensorii (Bourns, 2015)
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VOLTAGE RATIO “A”

0 20 40 60 80 100120140160 180 200 220240 260 280300320340 360
Mechanical Angle (°) CW DIRECTION -»=

Sekil 3.16. Sensoriin Mekanik A¢1 Degisimine Gore Voltaj (Vout) Cikisi (Bourns,
2015)

Ust ve alt kol sabitlemesi ile sensdriin baglantis1 igin kullanilan pargalar
kestamit levha olarak secilmistir. Poliamid grubundan dokiim yolu iiretilen bir
plastik ¢esididir. Asinma dayanmimi yiiksek, iyi yapisma 6zelligi, kolay
islenilebilirliginin yan1 sira mekanik mukavemetinin yiiksek olmasi a¢1 Ol¢iim
diizenegi i¢in tercih edilmesinde oOnemli kriterlerdir. Sekil 3.23’te a¢1 Ol¢iim
diizenegi i¢in kullanilan 10 mm kalinliginda 50 X 170 mm ve 50 x 190 mm

boyutlarinda kestamit levhalar gosterilmektedir.

Sekil 3.17. Kestamit Levhalar
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sEMG sinyal kaydi ile es zamanli ag1 bilgisinin elde edilmesi i¢in ag1
diizenegindeki enkoder,D-sub konnektor ve bir gerilim boliicii ile MP36 iinitesine
baglanmistir. Sekil 3.18’deki 0-180° araliga sahip a1 ¢izelgesi referans alinarak
(180°’den 10 ar 10 ar azalarak ) ac1 voltaj arasindaki 6l¢ekleme kontrol edilmistir.

Enkoderin 3,5 V-1,5 V araligina gére, MP36 tinitesinin CH3 kanali ayarlanmustir.

Sekil 3.18. A¢1 Olgiim Diizenegi MP36 I¢cin Derece Ayarlamasi

Birbiri ile iligkili degiskenleri ilintilendirmek, temelde bir hata teriminin
minimize edilmesi ile gergeklestirilmektedir. Bunun i¢in sik kullanilan
regresyondaki en kiiciik karaler yontemi ile kanal ayarinda voltaj ve ag1 degeri
arasindaki iligki incelenmistir. Lineer bir iligki olusturacak olan y=ax+b denklemi

ile yaklagim yapilmigstir. Buna gore n tane veri i¢in toplam hata:

E*= ¥, (y; — ax; — b)’ (3.1)
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Denklem 3.1°den yola ¢ikarak a ve b bilinmeyeleri i¢in 2 denklem elde
edilir.

Yis1(vi —ax; — b) x;=0 (3.2)

Yis1(yi —ax; — b)=0 (3.3)

Denklem 3.2 ve 3.3 ile bagimsiz ag1 degiskenleri (x) ile bagimli voltaj
degiskenleri (y) arasindaki iliski denklem 3.4 ile ifade edilir.

y =-0,0146x + 4,4399 (3.4)
Bu denklemin dogrusu hatayr minimize etti§inden bir egri uydurmak

istenirse egrinin dogruluk 6lgiitii icin R? kullanilmaktadir. Buna gére R*=0,997"dir.
Yaklasim yapilan denklemin grafigi Sekil 3.19’da gosterilmektedir.

Voltaj Cikis Grafigi
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Sekil 3.19. A¢1 ve Voltaj Arasindaki Iliski
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Bu hesaplardan yola ¢ikarak CH3 kanali i¢in yapilan 6l¢ekleme degerleri
cizelge 3.1°de gosterilmektedir.CH3 kanalina 90° ve 180° icin karsilik gelen voltaj
degerleri girilmis ve BIOPAC’te voltaj bilgisinin a¢1 bilgisi olarak elde edilmesi

saglanmustir.

Cizelge 3.1. A¢1 Bilgisinin Derece Olarak Elde Edilmesi Igin Yapilan Ayar

CH3 Kanali Input Milivolts Map Value (degree)
1 907,33 mV 180 °
2 1607,99 mV 9 °

3.9. Veri Toplama ve Olgiimler

Herhangi bir kas problemi olmayan bir denekten SEMG 6l¢iimii biceps ve
triceps kasindan iki ¢ift bipolar yiizey elektrotlar1 yerlestirilerek alinmustir. (yasi 25,
agirligi 50kg olan bayan) Denekten veriler elde edilirken paraziti engellemek adina
laboratuvar ortamindaki diger cihazlarin kapatilmasina dikkat edilmistir. Sensorler
ve sensOr yerlesimi hakkinda calismalar yapan, sEMG icin sinyal isleme
yontemleri iceren, egitim test i¢in bir takim model barindiran, SENIAM (kaslarin
non-invaziv degerlendirilmesi icin yiizey elektromografi) 6l¢iim sistemi dikkate
alinarak ol¢timler yapilmustir. (Stegeman & Hermens, 2007) Buna gore ilk olarak
cilt yiizeyi alkollii bir pamuk ile silinmis ardindan jel siiriilmiis tek kullanimlik
elektrotlar, SENIAM tarafindan Onerilen referans noktalara gore yerlestirilmistir.
Kasta meydana gelebilecek yorulmalar ve deri direncindeki farkliliklar1 da goz
oniine almak adina Olglimler o6zellikle farkli giinlerde yapilmistir. Denegin,
calismadaki izotonik ve izokinetik 2 kasilma tiiriinii, 24 saatlik araliklarla flexion
ve extension hareketini saglayarak gerceklestirmesi istenmistir. Denek, istenen bu
hareketleri hi¢ agirlik olmadan (serbest el), 0,5 kg agirlik ve 1 kg agirliklar ile
tekrarlamugtir.

Sekil 3.20’de goriilen, sag kol igin tasarlanan EMG 6l¢tim diizenegindeki

sensoriin diizenekteki baglantilar ile denegin tam dirsegine gore konumlandirilmasi
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saglanmistir. Ardindan dik oturmasi; izokinetik kasilmada flexion ve extension
hareketini siirekli olarak tekrarlamasi; izotonik kasilma da ise flexion ve extension

hareketlerini bekleme yaparak, kesikli adim adim tekrarlamasi istenmistir.

Sekil 3.20. Denegin Olgiime Hazir Durumu

Olgiimlerin her biri i¢in yaklasik 350 sn'lik kayit alinmustir. Olgiimlerde
SEMG sinyallerinin alindigr 2 kanal i¢in 6rnekleme hizi 500Hz, agi bilgisinin
almdig1 diger kanal igin Ornekleme hizi 250Hz segilmistir. Sekil 3.21 ve
3.22Biopac ortaminda izotonik ve izokinetik kasilma tiirii i¢in birer tane 6l¢iim
ornegi dirsek eklem ag1 bilgisi ile beraber gosterilmistir. Yukaridan asagiya biceps,
triceps kasilmasi ve bu sirada es zamanli alinan ag1 bilgisi siralanmaktadir. Alinan
sinyallere Biopac ortaminda 20-250Hz ile sinirlayan bant geciren filtreleme
uygulanmistir. MATLAB ortamina aktarilirken kayith veride; zaman (dk cinsiden)-

biceps ile triceps kasilmasi ve ag1 bilgisi bulunmaktadir.
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Sekil 3.21. EMG Isareti ve Dirsek Eklem Agis1 (izotonik_yiik1 veril)
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3.10. Veri Seti Hazirlanmasi

MATLAB ortamina aktarilan 6lgiimler ile sinir agina verilmek tizere uygun
veri setleri olusturulmustur. Egitim ve test i¢in hazirlanan bu veri setleri; 3 izotonik,
3 izokinetik hareket olan toplam 6 farkli Ol¢iimden farkli araliklarda ornekler
almarak, farkli agirlik ve kasilma tiiriine gore rastgele birlestirilmistir.

Cizelge3.2°de gosterildigi iizere egitim ve test i¢in kullanilacak verilerin
hepsi kasilma tiirii ve agirliga gore isimlendirilmistir. Boyutu kiiciiltmek adina 350
saniyelik her Ol¢limiin tiim degerleri alinmamistir. Kasilmalarin net bir sekilde
belirgin analiz edilebilir oldugu ornek araliklar1 secilmistir. (Cizelge 3.2)

Olusturulan egitim ve test verisinin siralamasi ise Cizelge3.3 gosterilmektedir.

Cizelge 3.2. Veri Setlerinin Olusturulmasi

Olgumler Agirlik (kg) AllngP o4 Matris Boyutu
Arahigi

Egitim igin Secilen 310794x4
izotonik_serbest_el_veri4 0 (110000:161798) (51799x4)
izotonik_yiik0.5_veril 0,5 (66000:117798) (51799x4)
izotonik_yuk1_veril 1 (66000:117798) (51799x4)
izokinetik_serbest_el_veri4 0 (66000:117798) (51799x4)
izokinetik_yuk0.5_veri3 0,5 (66000:117798) (51799x4)
izokinetik_yuk1_veri4 1 (66000:117798) (51799x4)
Test icin Secilen 222356x4
izotonik_serbest_el_veril 0 (7187:138100) (67791x4)
izotonik_yik0.5_veril 0,5 (72390:138100) (65711x4)
izotonik_yuk1_veril 1 (81370:149100) (48924x4)
izokinetik_serbest_el veri3 0 (83020:96349) (13330x4)
izokinetik_yik0.5_veri2 0,5 (83020:96349) (13330x4)
izokinetik_ytk1_veri3 1 (83020:96349) (13330x4)

34



3.MATERYAL VE METOD Aybike PIROL

Cizelge 3.3. Egitim ve Test Verisi I¢in Olciimlerin Siralamasi

Verilerin Siralanmasi

izotonik_serbest_el veri4
izokinetik_yUk1 veri4
izokinetik_serbest_el_veri4
Egitim Verisi ] o )
izotonik_yik0.5_veril
izotonik_yUk1_ veril

izokinetik_yuk0.5_veri3

izokinetik_serbest_el_veri3
izotonik_yuk1_veril

- izotonik_serbest_el_veril
Test Verisi . 4P ]
izokinetik_yuk0.5_veri2
izotonik_yUk0.5_veril

izokinetik_yUk1_veri3

3.11. Zaman Diizlemi Oznitelik Cikarim

Zaman diizlemi 6znitelikleri i¢in herhangi bir doniigiim islemi yapilmadan
basit ve hizli hesaplanabilir. (Pinyomark, 2013: Guvenc et al., 2014 ‘ten) (Guvenc
et al., 2014)Bu nedenle galigma kapsaminda literatiirde yaygin olarak kullanilan
yontemler incelenmis ve ortalama mutlak deger, dalga formu uzunlugu, etkin deger
olan ortalama karekok, ve varyans tercih edilmistir.

1) Ortalama Mutlak Deger (MAV-OMD): Her bir pencerenin mutlak
degerlerinin ortalamasini alinir. Diger 6zniteliklerle birlikte kullanildiginda giiclii
bir ayrigtiricidir. Denklem 3.5°de MAV bir k segmentindeki tiim x,, degerlerini

ekler ve N degerine boliip hesaplamaktadir. Burada n penceredeki her bir veriyi, N
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pencere boyunu ve x,, ise hesaplanan OMD degerini ifade eder. Kas kontrolii i¢in
kullanilan yaygin bir 6zelliktir. (Scott 1967:Guvenc ve ark., 2014’ten)

MAV;. = 3 it ] (3.5)

2) Dalga Formu Uzunlugu: Dalga bi¢iminin zaman segmenti lizerindeki
kiimiilatif uzunlugudur. Dalga formunun genligi, siklig1 ve zamanmi ile
iliskilidir.(Phinyomark et al., 2016) Pencere boyunca 6rnekten 6rnege genliklerdeki

artan degisimleri Olcer.
WL = 3521 %1 = Xnl (3.6)

3) Etkin Deger (RMS): Kok ortalama kare degeri, her bir veri noktasinin
karesi alinarak, kareler toplanarak, ardindan toplami gbzlem sayisina bolerek ve
son olarak karekok alinarak hesaplanir. (Hudgins ve ark., 1993:Eroglu & Baysal,
2018’den)EMG sinyallerinin islenmesinde sik kullanilan bir degerdir. Sabit kuvvet
ve yorulmayan kasilma ile ilgilidir. (Phinyomark et al., 2009).

1
RMS = |~3N_, xZ 3.7)

4) Sifir Gegis Tespiti Sayist (SGTS): Her bir pencere igerisinde sinyalin
pozitif bir degerden sifir degerine ya da negatif bir degerden sifir degerine ulastig
yerlerin tespit edilerek sayilmasidir. Bu oznitelik ile belirli bir esik seviyesi
tizerindeki sinyallere ait 6nemli degisiklikler siklig1 bilgisi ¢ikartilir.(Guvenc et al.,
2014)

SGTS = ¥_1[sgn(=x; X Xp4 )Xy — Xpyq| = thr] (3.8)
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5) Varyans (Var): Sinyalin varyansi, kendisi ile olan iligkisidir. Bu deger,
her bir sinyal bilgisinin birbirinden ne kadar farkli oldugunun bir Sl¢iisiinii verir.
EMG'in varyansi (VAR), sSEMG sinyalinin giiciinii bir 6zellik olarak kullanir.
Genel olarak varyans, o degiskenin sapmasinin karesinin ortalama degeridir.
Bununla birlikte, EMG sinyalinin ortalamasi sifira yakindir. Sonu¢ olarak,

EMG'nin farklilig1 denklem 3.9’teki gibi hesaplanabilir.(Phinyomark et al., 2016)
1
VAR = —— N x,? (3.9)

6) Ozbaglamim Katsayilar1 (AR): Cogu sistem geg¢misteki cikislarinin, o
andaki ve gegmisteki girislerinin dogrusal kombinasyonlar1 ile modellenebilir.

Burada en ¢ok kullanilan model AR modelidir.
Xe =X aixp_q + e (3.10)

Denklem 3.10’da X, sistemin k. ayrik zamandaki kaydedilen isaretini, a;
AR model parametrelerini, p AR modelinin derecesini, ey ise beyaz giiriiltiiyii ifade
etmektedir.(Karlik et al., 2005)

3.12.Smiflandirma icin Yaygin Kullanilan Sinir Aglan
3.12.1.Cok Katmanh Algilayici Sinir A1

Biyolojik sinir hiicrelerine benzer yapay bir sinir aginda bilgi isleme birimi
olan ve yapay sinir aglarinin temelini olusturan néron modeli Sekil 3.23’teverildigi

gibidir.

37



3.MATERYAL VE METOD Aybike PIROL

Bias

Aktivasyon
Fonksiyonu

iki
Girig Q) p—> Cyks

Sinyalleri

Toplama
Baglantisi

Sinaptik
Agirliklar

Sekil 3.23.Yapay Noron Modeli Girdi, Agirlik ve Ciktt Gosterimi(Haykin, 2017)

Sekil 3.10°da yer alan k. ndrona ait modelde sinaptik giristeki x;, sinaptik
agirhk wy; ile carpilir ve toplanarak genligini simirlamak adina aktivasyon
fonksiyonundan gegirilir. Sonugta Yy ¢iktisi elde edilir. Bu tipk: bir biyolojik néron
gibi farkli agirliklara (dendrit) sahip bir dizi girdinin (sinaps) bir araya toplanmasi
(hiicre govdesi) seklindedir. (Haykin, 2017)(Laezza, 2018) Denklem 3.11 ve 3.12
sekildeki yapinin matematiksel olarak tanimlanmasini géstermektedir. Denklem

3.11°de agirlik ve girdini ¢arpiminin aritmetik toplamu ile u ¢iktis1 elde edilir.

U = Xjoq WijX; (3.11)

Output (y,) = & (ug + by) (3.12)

Net girdi olarak ifade edilen ux bias degeri ile bir aktivasyon
fonksiyonundan gecerek denklem 3.12 gibi bir ¢ikt1 olusturur. Aktivasyon
fonksiyonu ¢iktilart verileri anlamlandirabilmek ic¢in kullanilan bir yapidir.

Genellikle non-lineer fonksiyonlar se¢ilmektedir.(Tasar, 2016) Bunun en 6nemli
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sebebi lineer bir modele non-lineer bir fonksiyon uygulanirsa YSA’lar i¢in 6nemli
bir kavram olan ve degerinin diisiik olmasi istenen hata oranini azaltmayi, yani
sistemin tiirevlenebilir olmasimi miimkiin kilar. Sigmoid, tanh, relu en ¢ok
kullanilan aktivasyon fonksiyonlarindan bazilaridir.

Ifade edilen yapay sinir noronlarinin birbirine baglamasiyla olusan
YSA’lar bir giris katmani ardindan gizli katman ve bir ¢ikis katmanindan
olugmaktadir. Girdi olarak verilecek deger kadar ndronu bulanan giris
katmanindaki girdi verisi bir isleme ugramadan gizli katmana aktarilir. Tasarlanan
modele bagli olarak birden fazla gizli katman ya da farkli sayida néron bulanabilir.
Gizli katmanda anlamlandirilan bilgi ¢ikis katmanina iletilerek agin ¢iktilar iiretilir.
Geri beslemeli bir agda agirlik degerlerinin gilincellenmesi icin ¢iktilar tekrar aga
gonderilir. (Tasar, 2016)

Temelde 3 farkli YSA mimarisi mevcuttur. Bunlar; tek katmanli ileri
beslemeli ag, ¢ok katmanli ileri beslemeli ag ve tekrarlayan agdir. Buradaki
tekrarlayan sinir aglar1 3.7.1°de ayrintili ifade edilmistir. Tek katmanli aglar, giris
katmaninda hesaplama yapilmadigindan bu katmanin sayilmadigi giris dogrudan
bir ¢ikis noron katmanina baglidir. (Haykin, 2017)

Cok katmanli ileri beslemeli bir sinir aginda giris sinyalleri ¢ikisa
verilmeden Once bir veya daha fazla gizli katmandaki néronlardan aktarilarak agin
ciktist elde edilir. Girig sinyalleri ilk gizli katmana uygulandiktan sonra elde edilen
sonuglar ¢ikis olan son katmanin girisleridir. Sekil 3.11°de gosterildigi gibi agin
her katmanindaki noronlarin girigleri bir 6nceki katmanin ¢ikis sinyalini
almaktadir.(Haykin, 2017) Cok Katmanli Algilayict (MLP) ileri beslemeli yapay
sinir aglarimin bir sinifidir. MLP aglar en az 3 diigiim katmanindan olugmaktadir.
Sekil 3.24’teki gibi MLP giris diigiimleri hari¢ diger katmanlar1 aktivasyon
fonksiyonu kullanmaktadir.

39



3.MATERYAL VE METOD Aybike PIROL

o, \
'V%O %
2R
X A
o
\

Kaynak Diiglimler Gizli Katman Noronlan  Cikig Katmani Noronlari
Sekil 3.24.Gizli Katmana Sahip Ileri Beslemeli Bir Ag

Giris Katmani

Geri beslemeli yapay sinir aglarinda (GBYSA) ise bir hiicrenin ¢iktis1 hem
kendinden sonra gelen hiicrenin katmanina hem de kendinden 6nceki katmanda ya
da kendi katmaninda bulunan diger bir hiicreye girdi olarak verilebilir. Bu yap1
GBYSA’na dogrusal olmayan bir dinamik kazandirmaktadir. GBYSA’da
noronlarin baglanis sekillerinin YSA’nin farkli davranig ve yapilar kazanmasini
sagladigi ifade edilmistir. (Tasar, 2016) Amag¢ agdaki agirliklarin her birini
giincellemek ve bu sayede gercek ciktinin hedef ¢iktiya daha yakin olmasina neden

olmasini saglamaktir. MLP sinir aginda egitim i¢in geri yayilim kullanilmaktadir.
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¢©1'(v1(n))
. O ey (n)

o' (Vi (n))
= QO ex(n)

Omi' V(M) i

= Oe ml (n)

S (n)
Sekil 3.25.Hata Sinyallerinin Geri Yayilmasiyla Sinyal Akis Grafigi

Genel olarak Sekil 3.25 ‘de j. Noron tarafinda iretilen fonksiyon
sinyallerinin (v;_,;(n)) sonuglart geri yayilim ile agirligin toplam hataya etkisi

bulunur ve agirlik giincellemesi yapilir. (Haykin, 2017)

3.12.2.Derin Ogrenme Yontemi

Geleneksel sEMG tabanli oriintli siniflandirmada anlamli girdi verisi
olusturabilmek ve siniflandirma yapan bir sinir agim tasarlamak Onemli
asamalardandir. Geleneksel makine O6grenme algoritmalar1 yerine derin 6grenme
teknikleri bu calismada SEMG sinyalinden dirsek eklem ag¢1 tahmini i¢in
kullanilmistir. SEMG sinyalinin sirali dogasindan dolayr uzamsal bilgilerini
yakalayabilen ve 6grenmede basarili olan derin 6grenme teknigi tekrarlayan sinir
agt BiLSTM tasarlanmigtir. Tasarlanan derin 6grenme yontemine genel bakis

asagidaki basliklarda sunulmustur.
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3.12.3. Tekrarlayan Sinir Aglar:

Tekrarlayan veya Yinelenen Sinir Agi (RNN), 1986 yilinda David
Rumelhart'in ¢alismalarina dayanan bir derin 6grenme sinifidir. (Pedrycz & Chen,
2020) RNN genel olarak birimler arasindaki baglantilarin yoénlendirilmis bir dongi
olusturdugu, derin 6grenmede yaygin olarak kullanilan bir yapay sinir ag1 sinifidir.
fleri beslemeli sinir aglarmin aksine, RNN’ler giris bellegini girdilerin rastgele
dizilerini islemek i¢in kullanabilmektedir. (Seker et al., 2017) Sistemde geri dongii
bildirimleri bulunan RNN, sirali verileri islemede, zamana bagli, belirli bir sirayla
giden ya da ¢ok degiskenli dizi tahmini gibi bir diziden baska bir diziye tahmin
problemlerinde, giris ve ¢ikis arasindaki iliskiyi kurabilmektedir. Veri noktalari
arasinda bagimsizlik saglayan standart sinir aglarinin aksine, RNN'ler veriler
arasindaki sirali ve zaman bagimliliklarini etkin bir sekilde yakalar. Bu nedenle,
video analizi, goriintii altyazisi, dogal dil isleme (NLP) ve miizik analizi gibi
problemlerde bir ¢6ziim olmaktadir. (Pedrycz & Chen, 2020)

RNN ile ilgili en tanimlayic1 6zelliklerden biri parametre paylasimidir.
Parametre paylasimi olmadan, bir model, bir dizideki her veri noktasini temsil
etmek icin benzersiz parametreler tahsis eder ve bu nedenle, degisken uzunluk
dizileri hakkinda ¢ikarimlar yapamaz. Bu kisitlamanin yani sira RNN giristeki
veriyi bir dnceki ¢ikt1 bilgisi ile iligskilendirerek siniflandirma ya da tahmin yapar.
Bir onceki ¢ikt1 ile iligkilendirilmesi short time memory kavramu ile ifade edilmistir
ve bu durum ¢iktinin bir sonraki katman i¢in hafizada sakli kalmasini
saglamaktadir. (DATAI Team, 2020) Sekil 3.26’da RNN topolojik yapist

gosterilmektedir.
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Sekil 3.26. RNN Ag Yapisi

RNN'ler genellikle geleneksel ¢ok katmanli a§ mimarisini, bitisik
diiglimleri veya zaman adimlarin1 baglayan dongiilerin eklenmesiyle artirir. Bu
dongiiler, yakin gecmisten veri noktalarma gore eldeki mevcut veri noktasinin
ozelliklerini degerlendirmek i¢in kullanilan agin dahili bellegini olusturur. Girigler
ile ¢ikiglar ve kayip arasindaki eslemeleri gostermek igin bir hesaplama grafigi
kullanilir. Grafigin bir olaylar zinciri halinde agilmasi, ag igindeki parametre
paylasiminin net bir resmini saglar. Yineleme iligkileri i¢in genellestirilmis bir

denklem ile ifade edilirse denklem3.13’daki gibidir:

s®O = f(st-1) (3.13)

Burada s', t-1 ile gosterilen bir énceki zaman adimina bagli olan sistemin

durumunu gostermektedir. Bu denklem biraz daha ayrintili ifade edilirse:
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ht=f (Rt=1)xt (3.14)

Denklem 3.14’da yer alan h' simdiki durumu temsil etmek igin
kullanilmistir ve x¢ belirli bir zaman 6rneginden gelen girdiyi belirtmektedir. ht
'nin 6nemi, t'ye kadar olan ge¢cmis girdi dizisinin gorevle ilgili yonlerinin bir
temsili olmasidir. (Sekil 3.27) Burada her digim bir zaman Ornegiyle
iliskilendirilmistir. (Pedrycz & Chen, 2020)

RNN, veriler arasindaki sirali bagimliliklar1 parametre paylagimiyla etkin bir
sekilde yakalamaktadir. Giristeki her veri grubunu ayri ele almaz. Yakin
gegmisteki  veri noktalarina gore mevcut veri noktasmin Gzelliklerini
degerlendirerek bir bellek olusturur ve bu sekilde ¢ikarim yapar. (Pedrycz & Chen,
2020)

Sekil 3.27.RNN i¢in Katlanmamis Bir Hesaplama Grafigi

RNN mimarilerinin baz1 6nemli eksikleri bulunmaktadir. Teorik olarak
RNN yapilari, bilgileri uzun siire hatirlayabilir ancak pratikte bu her zaman gegerli
degildir. Ozellikle kaybolan gradyana egilimli yapidadir. Referanslar arasindaki
bosluk kiigiik kalirsa, RNN bilgi bitlerine atifta bulunmak ig¢in iyi ¢aligir. RNN'nin

zarar gormeye basladig1 nokta, referans verilen veriler arasindaki boglugun artmasi

44



3.MATERYAL VE METOD Aybike PIROL

ve RNN'nin bu veriler arasinda her zaman baglanti kuramamasidir. Uzun Kisa
Stireli Bellek (LSTM) bu sorunlari gidermek igin Onerilen geleneksel RNN
mimarisinin varyantidir. LSTM mimarisi, kaybolan gradyana karsi koymak igin
sabit birim agirliklara sahip tekrarlayan kenarlari kullanmaktadir.(Pedrycz & Chen,
2020)

3.12.4. LSTM Ag Yapisi

Uzun Kisa Vadeli Bellek (LSTM), rastgele araliklarla degerleri hatirlayan
en yaygimn RNN mimarisidir. Ik olarak 1997 yilinda Hochreiter ve Schmidhuber
tarafindan tanmtilmigtir. Geleneksel RNN'lerin sikintiya diistiigli uzun vadeli
bagimlilik sorunundan kaginarak gradyen kaybolma problemini ¢oziimleyerek
tahminler yapmak i¢in iyi ¢alistig1 ifade edilmistir.(Pedrycz & Chen, 2020)

Kaybolan gradyan problemi, gradyan inisi, geri yayilimla birlikte bir
optimizasyon algoritmasi olarak kullanildiginda ortaya ¢ikmaktadir. (Hochreiter,
1997:Pedrycz & Chen, 2020’den) Bagimliliklar arasinda bosluk boyutlar1 arttikca,
hata gradyanlar1 katlanarak yok olur ve bir agin egitiminin ¢ok yavas olmasina,
hatta bazen 6grenememesine neden olabilmektedir. Bunun igin sik kullanilan
optimizasyonlardan Stokastik gradyan inisinde, gradyan, zincir kurali ile geri
yayilim kullanilarak gradyan, agirliklara gore kayip fonksiyonunun kismi tiireviyle
hesaplanir. Stokastik gradyan inisini kullanarak, agin parametrelerini optimize
etmek icin yalnizca bir egitim Ornegi kullanilir ve ag1 egitme siiresini onemli

Ol¢iide azaltir.(Pedrycz & Chen, 2020)
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Sekil 3.28. RNN Zincir Yapisi

Agdaki parametrelerde yapilan giincellemeler zincir kurali kullanilarak
uygulanir. Zincir kuraliyla, gradyanlar, agin Oniine dogru ilerledik¢e, her
diigimden alinan agirliga gore maliyet fonksiyonunun tiirevinin iriinii olarak
hesaplanir. Gradyan daha sonra iglevlerin agirliklarint Onceki diigiimlerden
giincellemek i¢in kullanilir. Katmanlar arasindaki zaman bagimlilig1 arttikca,
agirhiga iliskin "gozden kaybolan" kii¢lik diizeltmeler nedeniyle agirliklar yalnizca
marjinal olarak gilincellenir. (Sekil 3.28) Eger gradyan birden kii¢iik degere sahipse,
gradyan, agin geri yayilmasiyla {iissel olarak kiigiikk hale gelir; 6grenme ile
carpildiklarinda oranlar1 daha da kiiciiliir. Agirliklar egitim i¢in bir ag kurarken
baslangicta rastgele bir sayiya ayarlandigindan, baslangicta daha biiyiik kayiplara
sahip olma egilimindedirler, bu da agirhiklar yalnizca marjinal olarak
ayarlandigindan, kaybolan gradyan problemi sorununu birlestirir. LSTM hiicre
yapist ve kapilariyla bu sorunu ¢ozer. (Pedrycz & Chen, 2020)

LSTM, onceki durumlardan bilgi alarak uzun girdi dizilerini 6grenip
hatirlayabilen bir yapiya sahiptir. LSTM mimarisi kritik bilegsenleri olan giris,
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unutma, ¢ikis kapilarina, bellek hiicresine ve aktivasyon fonksiyonlarina sahiptir.
(Chen et al., 2019) LSTM'in farkli varyasyonlar1 vardir, ancak hepsi agirlikli olarak
bu bilinen ti¢ kapiy1 icermektedir. Bellek hiicresinin igerigi giris kapilari tarafindan
modiile edilir ve kapilari unutur. Bu kapilarin her ikisinin de kapali oldugunu
varsayarsak, hafiza hiicresinin icerigi bir zaman adimi ve sonraki arasinda
degismeden kalacaktir. Gegis yapisi, bilginin bir¢ok zaman adiminda tutulmasina
izin verir ve sonug olarak gradyanlarin birgok zaman adimi boyunca akmasina izin
verir. Bir LSTM agmin katlanmamus grafigi, bir katmandan digerine gecen
verilerin, dogrusal etkilesimler ile giris ve unutma kapilar1 kullanilarak her
katmandan gecerken biraz degistirildigi bir konveyor bandi olarak diisiiniilebildigi

belirtilmistir. (Pedrycz & Chen, 2020)

X

Sekil 3.29.Bir LSTM Biriminin Kapilari

47



3.MATERYAL VE METOD Aybike PIROL

Sekil3.29 bir LSTM gizli katman yapist gosterilmektedir. Burada h,_4 bir
onceki katmandan gelen ¢ikt1 bilgisidir. x;, giris verisi ile birlikte hafiza yoluna
(Ci—1 — Cp) ve diger tiim kapilara baglanmaktadir. Unutma kapisi, bilgiyi hiicre
durumundan ¢ikarmaktan sorumludur ve amaci, hangi bilginin artik yararh
olmadigini ve unutulabilecegini belirlemektir. Simdiki giris olan x ) ‘yi ve énceki
hafiza hiicresinden gelen gizli durum hg_qyolan 2 girdiyi almaktadir. Girisler
agirlik matrisleriyle ¢arpilir ve bir sapma eklenir. Bundan sonra bir sigmoid islevi
uygulanir; sigmoid islevi, hangi degerlerin tutulacagina ve hangilerinin atilacagina
karar vermekten sorumludur. Bu iglev 0 ile 1 arasinda degerlere sahip bir vektor
cikarmaktadir. 0, unutma gecidinin bilgiyi tamamen unutmak istedigini belirtirken,
1 ¢ikisi, unutma gegidinin tiim bilgi pargasimi hatirlamak istedigini gostermektedir.
Giris kapist ise 2 adimli bir siireci icermektedir. Hiicre durumuna hangi yeni
bilgilerin eklenecegine karar vermekten sorumludur. Unutma gecidine benzer
sekilde, h(;_1) Ve x()'ye bir sigmoid islevi uygulanir. Bir hiperbolik tanjant
fonksiyonu, -1 ile 1 arasinda degisen tiim olasi degerlerin bir vektoriinii
olusturmaktadir. Bu vektor, hiicre durumuna eklenebilecek aday degerleri gosterir.
Son olarak ¢ikis kapisi, 3 adimli bir islemde ¢ikt1 olarak hiicre durumundan yararl
bilgileri secer. Ik adimda, hiicre durumuna hiperbolik bir teget islevi uygulanir ve -
1'den 1'e kadar dlgeklenmis degerlere sahip bir vektor olusturulur. Adim 2,h(;_y)ile
X(r) Ve sigmoid iglevini kullanmaktir. Son adimda, adim 2'deki diizenleyici filtre
adim 1'deki vektdrle carpilarak bir sonraki hiicreye bir ¢ikti ve gizli durum
tiretilir.(Pedrycz & Chen, 2020) Ag, LSTM'yi kullanarak herhangi bir uzun vadeli
bagimlilig1 en aza indirebilir ve 1000 adimi asan veri referanslarindaki bogluklari
kapatabilir.(attention-dikkat mekanizmasi ile) (Hochreiter ve ekibi, 2018:Pedrycz
& Chen, 2020°den)Onceki bilgi hafizada tutuldugu igin bu ag yapist uzun vadeli
O0grenme saglamaktadir. Kaybolan gradyan problemini ¢oziimlemeyi birimdeki

tanh fonksiyonu miimkiin kilmaktadir. Bu sayede glincellenen verileri
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anlamlandirabilmek i¢in degisimin tiirevi sifira uzun bir siire yaklagsmaz ve geri

yayilim saglanarak 6grenme siirdiirtiliir.

f, =0,(W,y, +U;h_, +B;) (3.15)
iy = og(Wiye + Uihe—q + By) (3.16)
O,=0,(Wy, +Uh, , +B,)) (3.17)
h; = 0; 0 o, (cp) (3.18)
Ct = feooeq + ig 0o Weye + Uihe—1+ Bc) (3.19)

Sekil 3.29’daki LSTM biriminin kapilar1 ve bu kapilara ait agirlik
matrisleri denklem 3.15-3.19 arasinda gosterildigi gibi bir iliskiye sahiptir. Bir
LSTM katmaninda i; t. zamanindaki girisi, f;unutma kapisini, c;hafiza kapisini, h;
bir sonraki birime aktarilacak ¢ikt1 bilgisini ifade etmektedir. W, U ve Bkatmandaki

kapilara bagl agirlik matrisi ve bias degerleridir.

3.12.5.BiLSTM Ag Yapisi

BILSTM fikri, sekans verilerini iki ayri gizli katmanla hem ileri hem de
geri yonde isleyen ¢ift yonlii (bidirectional) RNN'den gelmektedir. (Schuster &
Paliwal, 1997) Giris dizisinin tiim zaman adimlarinin mevcut oldugu problemlerde,
Cift Yonlii LSTM'ler giris dizisinde bir LSTM yerine iki tane calistirmaktadir.
Birincisi oldugu gibi giris dizisi lizerinde ve ikincisi giris dizisinin ters bir kopyasi
iizerindedir. Bu, aga ek baglam saglayabilir ve sorunla ilgili daha hizli ve hatta
daha eksiksiz 6grenmeyi miimkiin kilabilmektedir. (Graves ve ekibi, 2003) Fonem
smiflandirmasi (Graves ve ekibi 2003) ve konugma tanima (Graves ve ekibi 2013:
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Cui ve digerleri, 2018’den) gibi bir¢ok alanda ¢ift yonlii aglarin tek yonli aglardan
onemli Olgiide daha iyi oldugu kanitlanmistir. BILSTM'ler iki gizli katmani ayni
cikt1 katmanina baglamaktadir. (Graves ve ekibi, 2003) Bir ileri LSTM katmani ve
bir geri LSTM katmani igeren katlanmamis (unfolded) bir BILSTM katmaninin

yapist Sekil 3.30'da gosterilmistir. Ileri katman cikt1 dizisine ait olan h, T-n

zamanindan T-1 zamanina kadar pozitif sirali girdiler kullanarak yinelemeli olarak

hesaplanmaktadir. Ayni sekilde geriye dogru katmandaki ¢ikti dizisi h icinde T-n
ile T-1 arasindaki ters girisler kullanilarak hesaplanmaktadir. Hem ileri hem de geri
katman ¢iktilar1 standart LSTM giincelleme denklemleri ile hesaplanir. (Denklem
3.15-3.19) BILSTM katmani, her bir 0genin denklem 3.20 kullanilarak
hesaplandigi bir ¢ikt1 vektorii olan, Yt ‘yi olusturmaktadir. Buradaki o, iki ¢ikti
dizisini birlestirmek icin kullanildig1 ifade edilmistir. LSTM katmanina benzer
sekilde, bir BILSTM katmanmnin son ¢iktisi, Y = [yy_p, ..., Y7—1] bir vektorle
temsil edilebilir. Buradaki son terim hiz tahmini alinirken bir sonraki yineleme igin
tahmin edilen hizdir.(Cui et al., 2018)

y=o (b h) (3.20)
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'™
' LSTM —_—

T Forward
\ LSTM \

Backward

\.

Sekil 3.30. Cift Yonlii LSTM Mimarisinin 3 Ardisik Adimi (Cui et al., 2018)

3.13. Tasarlanan MLP Modeli

Dirsek ekleminin ag¢1 tahmini i¢in model, MathWorks tarafindan gelistirilen
MATLAB 2019a paketinde olusturulmus ve testi yapilmistir.Zaman diizleminin
siniflandirma ve tahmindeki basarili etkileri gz Oniine alinarak agi tahmini igin
MLP agina 4 zaman 6zelligi (RMS, MAV, WL, VAR) ve varyans hari¢ 3 zaman
ozelligi verilmistir. Degisik 6znitelik sayilar1 ve gizli katmanlarindaki farkli néron
sayilari olan aglar olusturulmustur.

Bu zaman 6zellikleri daha 6nceki Boliim 3.11.°de ifade edilmistir.

Levenberg Marquardt metodu kullanilarak MATLAB’da MLP agi
olusturulmugtur. Ag¢i tahmini i¢in ¢ikis katmani dahil 3 gizli katmanhi ve
katmanlarda sirasiyla 11 ve 5 noron olan, 6 girisli ve 1 ¢ikig katmanina sahip MLP
ag1 tasarlanmigtir. (Sekil 3.31) Aktivasyon fonksiyonu ilk katmanda tansig
sonrakilerde pureline olarak secilmistir. Hedef ve minimum gradyen 107, grenme

orani 0,003 olarak belirlenmistir. 1000 epoch ile egitim tamamlanmustir.
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Sekil 3.31.Dirsek Eklem Agist Tahmini I¢in Olusturulan MLP A1

Sinir aglarina verilmek {izere olusturulan egitim verisi 280 Ornege
boliinmiis ve ardindan sSEMG isaretinin 3 zaman Ozellik vektorii elde edilmistir. Bu
3 zaman Ozelligi de biceps ve triceps isaretleri i¢in ayr1 ayr1 olusturulmustur. Sekil
3.32’de, biceps ve triceps kas isaretlerinin ortalama mutlak degeri (MAV), dalga
formu uzunlugu (WL) ve ortalama karekok (RMS) degerlerinin grafikleri
gosterilmistir. 4 6zellikli isaret verisi ise Sekil 3.33 ve 34’te gosterilmektedir. Sekil
3.33 biceps isaretini ve isarete ait 4 zaman Ozelligi olan ortalama mutlak deger
(MAV), dalga formu uzunlugu (WL), ortalama karekok (RMS) ve varyans (VAR)
grafiklerinden olusmaktadir. Sekil 3.34’te triceps isaretinin ve bu 4 zaman
ozelliginin grafikleri gosterilmektedir. Burada isaretin ve 6zellik vektorlerinin

tiimii degil, tiimiinii temsil eden bir kismi1 gdsterilmistir.
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Sekil 3.32. MLP Egitim Verisinin 3 Oznitelik Grafigi

53



3.MATERYAL VE METOD Aybike PIROL

14000
250
250
250
250

10000
|
WWMMW
150
T
|
150

Biceps lgareti

4000 6000 8000
Biceps MAV Ozniteligi
M\/\M‘/\/\M\A

100

Biceps WL Ozniteligi
T

100

Biceps RMS Ozniteligi

Biceps VAR Ozniteligi

I
|
100

o 1
[>] 3
< <

I
ANNAANA
I
IMNANNNMAAANAMM
I

1
L v
=}

0.1

|
=

1
005

0

20
002~
001~

Sekil 3.33. MLP Egitim Verisinin Biceps Isareti ve 4 Farkli Ozniteliginin Grafigi
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Egitim verisindeki a¢1 bilgisi modelde hedef olarak tanmimlanmistir. Kas
isaretleri ile eszamanli aliman ag1 bilgisi MLP ag modeline radyan cinsinden

verilmistir. Sekil 3.35’te hedef eklem agisinin bir kisminin grafigi gosterilmektedir.
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Sekil 3.35. MLP Hedef Eklem Ac1 Isareti
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Qutput ~= 0.91*Target + 0.21

Sekil 3.36. MLP Regresyon Grafigi

Agin egitimini dogrulamak i¢in ag ¢iktilar1 ve hedefler arasindaki iligkiyi
gOsteren regresyon grafigi, sekil 3.36’da gosterilmistir. Bu grafige gore kesikli
¢izgi, en iyi sonucu temsil ederken diiz mavi ¢izgi agin tahmin ettigi c¢iktilar1 ve
hedefler arasindaki en uygun dogrusal regresyon ¢izgisini ifade etmektedir. Sekil
3.37’de MLP agmin egitim performans grafigi gosterilmistir. Bu grafige gore
modelin 1000 egitim donemi (epoch) boyunca ortalama kare hatasi 0.036031 dir.
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3.14. Tasarlanan Derin Ogrenme BiLSTM Modeli

Tasarlanan modeli egitmek {izere ilk olarak hazirlanan egitim verisi cross
validation teknigi ile %70 egitim %30 dogrulama (validation) verisi olarak
boliinmiistiir. Capraz dogrulama olarak bilinen bu yontem bir algoritmanin egitim
gormedigi yeni veri kiimeleri iizerinde tahminlerde bulunma performansini
degerlendirmek i¢in kullanilmaktadir. Bu teknigin en yaygin kullanilanlarindan bir
olan holdout ile bolinme saglanmistir. Holdout verileri rastgele olarak egitim ve
dogrulama icin belirtilen oranin tam olarak iki alt grubuna béler. Sekil 3.38’de
egitim veri grafigi ve Sekil 3.39°da dogrulama veri grafigi gosterilmektedir.

Sirastyla biceps ve triceps isaretleri ile eklem agis1 yer almaktadir.
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Sekil 3.38. LSTM Ag Modeli igin Egitim Verisi
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Egitim ve dogrulama verileri 280 6rnege boliinmiis ve tasarlanan modele
girdi olarak verilmek iizere biceps ve triceps isareti hazir hale getirilmistir. Sekil
3.40’ta hedef eklem agis1 grafigi gosterilmektedir. Farkli kasilma tiirleri ve
agirliklarin isaretleri birlestirildiginden grafigin ilk kismindaki a¢1 bilgisi izokinetik
kasilma tiiriinii, sonlara dogru olan aci bilgisi ise izotonik kasilmayi ifade
etmektedir. A¢1 sinyalinin istatistiksel olarak kas isaretleriyle iliskilendirilebilmesi
ve hesaplamalar yapilabilmesi adina normalize edildikten sonra modele verilmistir.
Sekil 3.39’da normalize edilmis hedef eklem acist gosterilmektedir. Grafikteki
isaretler sirasiyla izokinetik ve izotonik kasilmayi takip etmektedir. Normalizasyon
islemi denklem 3.21°deki gibi minmax normalizasyon ile yapilmstir. A¢1 bilgisi,
egitmek amacli hedef olarak kullanilmistir. Model test edilirken ag1 bilgisi
kullanilmaz yalnizca SEMG isaret bilgisinin degisken ortalama degerleri ve tepe

kilif degerleri verilerek tahmini ¢ikt1 elde edilmektedir.
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Sekil 3.40. Normalize Edilmis Hedef Eklem Agis1
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_ X-min(X) (3_21)

Xnorm max(X)—min(X)

Akhundov ve ekibinin EMG ile siniflandirmada yaptigi c¢alismada
sinyallerin pozitif tepe kilif degerlerini almasina benzer sekilde, (Akhundov et al.,
2019) giris i¢cin SEMG sinyallerinin pozitif-negatif tepe kilif degeri ¢ikarilmustir.
(Sekil 3.41) Salinan bir sinyalin u¢ ana hatlarin1 gosteren bu degerler ile SEMG
sinyallerinin degisken ortalama degerleri bir dizi olarak bu ¢aligma i¢in olusturulan
BiLSTM modeline giris sinyali olarak verilmistir. (Sekil 3.42)
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Tahmini dirsek
eklem agisi

Gizli Katman Cikis Katmani
3. BiLstm Katmani

2. Bilstm Katmani

1. BiLstm Katmani

Girig Katmani

SEMG
(Biceps ve Triceps)

Sekil 3.42. Dirsek Eklem Acist Tahmini I¢in Olusturulan LSTM Ag
Konfigiirasyonu
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Verilerden 6grenen bir model tasarlanirken kullanilan algoritma ya da bazi
parametreler uygulamayi veya problemi modele uyarlamak adina tasarlayan kisi
tarafindan belirlenmektedir. Buna gore dirsek eklem ag¢i tahmini i¢in tasarlanan
model 6 girisli, 3 BILSTM katmanindan olusmakta ve katmanlarda sirasiyla 400-
300-400 gizli birim bulunmaktadir. Asirt uyumu gidermek igin ilk iki
katmanda %50’lik bir dropout islemi yapilmistir. Her katmandan sonra RELU
aktivasyon fonksiyonu eklenmistir. Tamamen bagli katman (FCL) ardindan
regresyon katmanina baglanarak model bir a¢1 tahmini yapmaktadir. Sekil 3.43’te

olusturulan ag mimarisi ve genel katman semas1 ayrintili olarak gosterilmektedir.
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Sekil 3.43. Derin Ogrenme BiLSTM Ag Mimarisi Katmanlari (MATLAB)
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3.15. Derin Ag Modeli Optimizasyonu ve Hiperparametreler

Tasarlanan modelde katmanlar esas isi yapan iskelet kisimdir. Ancak
egitim sirasinda modeli uygulamaya gore revize eden Onemli bir kisim
parametreler vardir. Hiperparametre olarak adlandirilan bu yapilar veri setine gore
degisiklik gosterirler. Buna gore her egitim doneminde (epoch) egitim ve
dogrulama verileri shuffle secenegi ile karistirilmistir. Her 15 epoch’ta bir
giincellenen Ogrenme orami ilk olarak 0.01 belirlenmistir. Mini grup boyutu
(minibatchsize) 128, diizenlestirme faktorii (L2 regulatization) 0.000002, gradyan
esigi (GradientThreshold) 0.0005 ve epoch sayisi 100 olarak ayarlanmustir.

Burada basaril1 bir egitim saglamak adina optimizasyon kavrami da 6nemli
bir yer tutmaktadir. Derin Ogrenme modellerinde ¢ikt1 ve hedef deger arasindaki
fark olan hatanin minimum olmasi1 hedeflenmektedir. Bu amagla optimizasyon i¢in
gradyen inigini esas alan teknikler kullanilmaktadir. (Kurt, 2018)Bu tekniklerden
Adaptif Momentum Optimizer (ADAM) tasarlanan modelde kullanilmigtir. ADAM,
RMSProp gibi 6grenme katsayisini egimin degerine gore giincellemenin yani sira
momentum degisikliklerini de On bellekte saklayarak agirliklarda giincelleme
saglamaktadir. (Kurt, 2018) Bu sayede agirliklar1 glincellerken yerel minimuma

takilmadan tiirevlenebilmesini yani modelin 6grenebilmesini saglar.
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4. BULGULAR VE TARTISMA

Bu boliimde Derin Ogrenme ve Cok Katmanli Algilayict sinir agi ile
tasarlanan modellerin performansi: sunulmustur. Bunun i¢in ilk olarak hazirlanan
test verisinin grafikleri gosterilmis ardindan modelin ag¢1 tahmin grafikleri

verilmistir. Grafikler tiim sonuglarin yerine sonug gruplarini temsil etmektedir.

4.1. Cok Katmanh Algilayici Modeli Dirsek Eklem A¢1 Tahmini Deneysel
Sonuclari

Dirsek ekleminin a¢1 tahmini i¢cin model, MathWorks tarafindan gelistirilen
MATLAB 2019a paketinde olusturulmus ve testi yapilmistir. Zaman diizleminin
siniflandirma ve tahmindeki basarili etkileri gz oniine alinarak ag¢i tahmini icin
MLP agma 4 zaman 6zelligi (RMS, MAV, WL, VAR) ve varyans hari¢ 3 zaman
ozelligi verilmigtir. Degisik oznitelik sayilar1 ve gizli katmanlarindaki farkli néron
sayilari olan aglar olusturulmustur. Sekil 4.1°de biceps kasinin SEMG isareti ve 3
zaman alani Ozniteligi (MAV, WL, RMS) ¢izilmistir. Sekil 4.2°de triceps kasinin
sEMG isareti ve 3 zaman alam Ozniteliginin (MAV, WL, RMS) grafigi

gosterilmektedir.
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Sekil 4.3. Dirsek Eklem Test A¢1 Verisi ve MLP Aginin Tahmin Grafigi -1
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Sekil 4.5. Dirsek Eklem Test Ag1 Verisi ve MLP Aginin Tahmin Grafigi -3
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Sekil 4.3, 4.4, 4.5 ve 4.6 egitilen MLP agmin test agisin1 tahmin etme
grafigidir. Sekil 4.3’teki grafigin ilk kisimlar1 serbest el ile yapilan izokinetik
hareketi temsil eder ve Sekil 4.5 serbest el ile yapilan izotonik hareketi, 0,5 kg
agirhik ile yapilan izokinetik ve izotonik hareketi gdstermektedir. Sekillerde
bulunan grafiklerin hepsinde bu kasilma tiirlerinin farkli agirliklar1 ve modelin
bunlar1 tahmin etmesi mevcuttur. Cizelge 4.1’deki 3 ile 4 zaman 6zniteligi ve gizli

katmanli MLP modellerinin performans sonuglart gésterilmektedir.

Cizelge 4.1. MLP Ag Sonuglari

MLP
Lr 0.003 Epoch 1000 Test Verisi igin
Oznitelik Sayisi Noron -Katman Sayisi | MAPE RMSE Dogruluk %
3 (rms,mav,wl) 11-5 0,091 15,12 90,9
4 (rms,mav,wl.var) 11-5 0,095 15,36 90,5
3 (rms,mav,wl) 11-11-8 0,1018 19,2 89,8
4 (rms,mav,wl.var) 11-11-8 0,0991 17,6 90,09

4.2. Derin Ogrenme Modeli ile Dirsek Eklem Aci Tahmini Deneysel Sonuclar
Dirsek eklem tahmini icin MATLAB 2019a paketinde tasarlanan derin
O6grenme BILSTM ag1 egitimi sonrasinda test verisi ile tahmini ag1 degerleri
bulunmustur. MLP agina sunulan test verisi kiyaslama i¢in Derin 6grenme agina da
sunulmustur. Sekil 4.7’de test verisi gosterilmistir. Grafikte sirasiyla biceps, triceps,
dirsek eklem acisi gosterilmektedir. MLP agindaki gibi test verisinin VAR, RMS,
WL o6zellikleri verilmemis isaretin 280 Ornege boliinerek degisken ortalama
degerleri ve tepe kilif degerleri verilmistir. Grafikteki dirsek eklem agisi test
stirecinde verilmez. Yalnizca biceps ve triceps isaretlerinin degisken ortalama
degerleri (Sekil 4.8) ve tepe kilif degerleri verilerek agin tahmini bu dirsek eklem
test agisi ile kiyaslanir. Sekil 4.9°da biceps ve triceps isaretinin tepe kilif degerleri

gosterilmistir. Grafikte alt ve {ist tepe degerleri ayr1 ayn ¢izilmistir.
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Sinyallerin degisken ortalama degerlerini ve tepe kilif degerlerini giris alan
Derin Ogrenme modelinin a¢1 tahmini Sekil 4.10°da gosterilmistir. Bu grafik
normalize edilmis ¢iktilari sunmaktadir. Kirmiz1 ¢izgi iist ekstremite dirsek eklemi
test agisinin normalize edilmis hali iken, yesil ¢izgi BILSTM modelin tahmin ettigi
normalize ag1 degerleridir. Denormalize edildikten sonraki tahmin grafigi ise sekil
4.11, 4.12 ve 4.13’de gosterilmistir. Bu grafikler farkli kasilma tiirii ve agirligina
gore birlestirilen isaretlerin tahminlerini gostermektedir. Sekil 4.11°deki grafigin
ilk kisimlar1 serbest el ile yapilan izokinetik hareketi temsil eder ve devami 1 kg
agirlik ile yapilan izotonik hareketi gostermektedir. Sekil 4.12 ve 13’te bu kasilma
tiirlerinin farkli agirliklar ile oldugu ve modelin bunlar1 tahmin ettigi grafikler

sunulmustur.
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Sekil 4.11.Test Acis1 ve Derin Ogrenme Modelinin Tahmini -1

82



4.BULGULAR VE TARTISMA Aybike PIROL

—— et T T l
- - 3
{Ts]
e
|45, ——— = | §
H——— - 3
-

Aci Tahmini

Ik]_h ) . | |
(=3 o o o o 3
<« © = o~ o
— ~ — ~ ~

Sekil 4.12. Test Agis1 ve Derin Ogrenme Modelinin Tahmini -2
83



4.BULGULAR VE TARTISMA Aybike PIROL

ﬁ
r
|

Agl Tahmini

180

160 -

1o

120

100 |
80

Sekil 4.13. Test Agis1 ve Derin Ogrenme Modelinin Tahmini -3
84



4.BULGULAR VE TARTISMA

Avybike PIROL

Cizelge4.2’de onerilen BiLSTM agi ile LSTM aginin performans sonuglari

gosterilmektedir. Burada verinin boliinme orani, gizli katman sayist her iki ag

icinde ayn1 se¢ilmistir. Cizelge 4.3’te ise katman sayisina gore dogruluk sonuglari

gosterilmistir. Model 2°den farkli olarak Model 6, 4 katmanli her katmaninda 300

gizli birim bulunan ag yapisina sahiptir.

Cizelge 4.2. LSTM ve BiLSTM Ag Performansi

Derin Ogrenme

Test RMSE | Test MAPE Test Mae | Dogruluk (%)
Model 2 (BiLSTM) | 15,4 0,1005 11,3 89,95
Model 3 (LSTM) 19,5 0.137 15,7 86.3

Cizelge 4.3. Katman Sayisina Gére BiLSTM Aginin Sonuglar

Derin Ogrenme (BiLSTM)

Katman Sayisi

Test Verisi RMSE

Dogruluk (%)

Model 2

3

15,4

89,95

Model 6

4

17,9

87,5

Cizelge 4.4 onerilen modelin egitim siirecinde basariy1 arttirmak adina

yapilan veri boliinmesi oranlarinin kiyaslanmasini gostermektedir.

Cizelge 4.4.U¢ Katmanli BILSTM Aginda Farkli Béliinme Oranina Gore Sonuglar

Derin Ogrenme (BiLSTM)

Bolinme Orani (%)

Test Verisi RMSE

Dogruluk (%)

Model 2

70-30

15,4

89,95

Model 2

80-20

19,4

88,02
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Cizelge 4.5.U¢ Katmanli BILSTM Aginda Farkli Dropout Sonuglari

Derin Ogrenme (BiLSTM)
Dropout Test Verisi RMSE Dogruluk (%)
Model 2 Yok 194 86,71
Model 2 %20 17,5 88,37
Model 2 %50 15,4 89,95

Son olarak MLP ve BiLSTM aglarinin kiyaslamali ac1 tahminleri gercek
Olclim test agisi ile Sekil 4.14, 4.15, 4.16ve 4.17°de verilmistir.
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Agl Tahmini

Sekil 4.14. Test Verisi ve Farkli Sinir Aglarinin Tahmin Kiyaslama Grafigi -1
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5. SONUCLAR VE ONERILER

Bu caligma, rehabilitasyon amagh sistemlerde noninvaziv SEMG kullanan
yapay sinir aglar1 ile a¢i tahmini yapmak ve sonuclarini degerlendirmek icin
yapilmistir. 2000’1i yillardan bu yana 6zellikle goriintii islemede popiiler hale gelen
Derin Ogrenme mimarisinin, iist ekstremitede dirsek eklem ac1 tahminini, sinyalin
degisken ortalama degerleri ve tepe kilif degerleri ile yapabilmesi hedeflenmistir.
Bu amagla, bir diziden baska bir diziye tahmin gibi sirali verileri isleme
avantajindan dolayr RNN ‘nin bir varyanti olan BiLSTM mimarisi ile bir model
tasarlanmistir. Geleneksel sinir aglarindan Cok Katmanli Algilayict (MLP) ile
kiyaslanmasi yapilmstir.

RNN tabanli BiLSTM sinir ag1 ile tasarlanan modelin, yaklasik 122
derecelik dirsek eklem ag1 araligina gore ortalama mutlak hatas1 (MAE) %9,23
iken dogrulugu 89,95% olarak hesaplanmigtir. Egitim datasinin  %80-20
yerine %70-30 olarak boliinmesi daha basarili sonu¢ vermistir. Asir1 6grenmeyi
onlemek icin kullanilan dropout katmani modele %50 olarak eklenmesi sonuglari
olumlu etkilemistir. Cizelge 4.2°deki modellerin her ikisi, izokinetik hareketi
tahmin etmede izotonik hareketi tahmin etmeye gore daha diisiik basari
gostermistir.

MLP ile tasarlanan modelin yaklagik 122 derecelik dirsek eklem agi
araligina gore ortalama mutlak hatast (MAE) %8,6 ve %90,9 dogruluga ulastig
hesaplanmigtir. Buna gore a¢1 tahmini igin olusturulan diger modellerden daha
yiiksek dogruluk elde etmistir. (Cizelge 4.1)

Diisiik genlikli ve rastgele isaretler olan EMG sinyalinin Oznitelikleri ve
hangi 6zniteliklerin verildigi yapay sinir aginin tahmini i¢in 6nem arz ettigi ve
farkli giinlerde alinan kas bilgisinin gerg¢ek insan hareketlerinde gergeke¢i tahmin
edilmesinde 6nemli bir rol oynadigi goriilmektedir.

Derin  6grenme  yapilarindaki  optimizasyon ayarmin  modelin

performansinda 6nemli bir 6l¢iit oldugu goriilmistiir. Optimizasyon ayarlan ile
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agm dogrulugunu ve saglamligini arttirabilecegi ve derin 6grenme mimarisinin
sEMG sinyalleri i¢in bir ¢dzlim olabilecegi sdylenebilir.

Ozetle, iist ekstremitede yapilan ag1 tahmin calismalarma gore 3 dznitelik
kullanan geleneksel sinir agt MLP kadar, sinyalin degisken ortalama degerini ve
tepe kilif degerini kullanan RNN mimarisi de iyi dogruluga ulagmistir. Bu sonuglar
neticesinde derin 6grenme yoOnteminin ilerde bir iist ekstremite rehabilitasyon
sisteminde hareket kontrolii i¢cin daha az 6zellik kullanarak basarili bir kullanim
potansiyeli olusturacagi aciktir. Ozellikle tasarlanan yapmin dogrulugunu ve
saglamligin1 arttirmak adina CNN-LSTM gibi hibrit bir yaklasimin ilerde

calisilmasi bu alana katki saglayacaktir.
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OZGECMIS

Ilk ve orta 6grenimini Tuncay Kiigiikdzer Ilkdgretim Okulu’nda, lise
ogrenimini Elazig Lisesi'nde tamamladi. Cukurova Universitesi Biyomedikal
Miihendisligi’ni 2012-2017 yillarinda bitirdi. Cukurova Universitesi’nin ayni
boliimiinde 2017°de tezli yiksek lisansa basladi. Bir buguk yil uyku ve solunum

cihazlari lizerine calisan ICE Medikal’de teknik servis sorumlusu olarak calistr.
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