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Kasların hareket bilgisini barındıran yüzeyel elektromiyografi (sEMG) 

iĢaretlerinin sınıflandırılması, rehabilitasyon amaçlı sistemlerde doğala yakın bir 

çalıĢma düzeni elde etmede kullanılmaktadır. Bu tez çalıĢmasında, üst ekstremite 

biceps ve triceps kaslarının sEMG sinyalleri, bir Derin Öğrenme yöntemi olan 

Uzun Kısa Vadeli Bellek (LSTM) yapay sinir ağı ile sınıflandırılarak dirsek eklem 

açısı tahmini yapılmıĢtır. LSTM modeli sEMG iĢaretinin değiĢken ortalama 

değerini ve tepe kılıf değerini kullanarak iyi bir doğruluk elde etmiĢ, baĢarılı ve 

etkin bir Ģekilde dirsek eklemi açı tahmini yapmıĢtır. Sonuçlar, iĢaretin 

özniteliklerini kullanan Çok Katmanlı Algılayıcı’nın (MLP) dirsek eklem açı 

tahmini ile kıyaslanmıĢtır. Tasarlanan LSTM modeli, hesaplama açısından daha 

etkin bir Ģekilde, MLP kadar yüksek doğruluk elde ederek dirsek eklemi açı 

tahmini yapabileceğini göstermiĢtir. 
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 Classification of surface electromyography (sEMG) signals, which contain 

movement information of muscles, are used to achieve a natural working order in 

systems for rehabilitation. In this thesis, sEMG signals of upper extremity biceps 

and triceps muscles were classified with Long Short Term Memory (LSTM) 

artificial neural network which is a Deep Learning method, in order to estimate 

elbow joint angle. LSTM model successfully and effectively made elbow joint 

angle estimation by obtaining high accuracy using varying average and peak 

envelope value of sEMG. The results are compared with the elbow joint angle 

estimation of the Multi-Layer Sensor (MLP) which uses the attributes of the sEMG 

signals. The designed LSTM model has shown that it can estimate elbow joint 

angle more effectively in terms of calculation, by obtaining accuracy as high as 

MLP. 

 

Key Words: Surface Electromyographic Signals, Artificial Neural Networks, 

Feature Extraction, Deep Learning, ,Long-Short Term Memory 
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GENĠġLETĠLMĠġ ÖZET 

 

Elektromiyografi kasta oluĢan fizyolojik süreçlere eriĢip yorumlayabilmeyi 

sağlayan, günümüzde de hastalıkların tanı ve tedavisinde sıklıkla kullanılan bir 

yöntemdir. Yüzey elektromiyografisinin, (sEMG) noninvaziv olması, buna bağlı 

olarak insan güvenliğini kolay sağlayabilmekte ve rehabilitasyona ihtiyaç duyan 

kiĢilerin tedavisinde iyi sonuçlar verebilmesinden dolayı rehabilitasyon amaçlı 

sistemler için (protez ve ortez kontrolünde) insan-makine iĢ birliğini sağlamada 

kullanıma elveriĢli olduğu görülmüĢtür. 

 Biyolojik sinir sistemini ve insan beyninin bilgi iĢlemesini taklit eden 

yapay sinir ağlarının sEMG’ye dayalı kontrollerde kullanılması uygundur. Yapay 

sinir ağlarının veriler arasında baĢarılı iliĢkiler kurabilmesi, doğrudan ve kullanıĢlı 

bir çözüm sağlayabilmesi avantajlarıdır. Ancak her sistem için her yapay sinir ağı 

bir çözüm değildir. Sistemdeki verilerin yapısı, problemin türü hangi ağ 

mimarisinin tercih edilmesi gerektiği hakkında çözüm sunmaktadır.  

Önceki çalıĢmalar incelendiğinde yapay sinir ağlarının kullanılmasının 

yanında sEMG tabanlı bir sınıflandırma ya da tahminde baĢarı sağlanması için 

iĢaretin özniteliklerinin kullanımı da önemli bir yer tutmaktadır. Bu teknikte 

iĢaretin kendi ham hali direkt verilmez. Kas iĢaretinin, yapay sinir ağına 

verilmeden önce zaman veya frekans düzleminde öznitelik çıkarımı yapılmaktadır. 

Öğrenme sürecini kolaylaĢtıran bu yöntemde, iĢaretin yapısına ve problemin türüne 

göre hangi özniteliklerin olacağı ve kaç özniteliğin modele verileceği belirlenerek 

giriĢe boyutu azaltılmıĢ veri kümesi sunulur. Sistemin performansının baĢarısı bu 

özniteliklerin seçimi, hangi özniteliklerin kullanılacağının belirlenmesi ve seçilen 

özniteliklerin hazırlanması gibi iĢlemlere bağlıdır. Zaman düzleminde sıklıkla 

kullanılan özniteliklerin dıĢında (RMS, WL, VAR vs.) sEMG iĢaretinin zaman 

düzleminde yalnızca değiĢken ortalama değerleri ve tepe kılıf değerlerinin dirsek 

eklem açısını tahmin etmede kullanılması ile ilgili yeterli inceleme bulunmadığı 

görülmüĢtür. 



 

IV 

Bu tezde yukarıda bahsedilen konuya bir iyileĢtirme getirilmesi 

amaçlanmıĢtır. Biceps, triceps kas iĢaretlerinin değiĢken ortalama değerleri ve tepe 

kılıf değerleri ile baĢarılı bir dirsek eklem açısı tahmini yapılmıĢ ve zaman 

düzleminde 3 özniteliği kullanan Çok Katmanlı Algılayıcı (MLP) ile kıyaslanması 

sunulmuĢtur. Tahmin için bir Derin Öğrenme yöntemi kullanılmıĢtır. Doğal 

sinyalleri içeren bir diziden baĢka bir diziye tahmin uygulamalarında, biyolojik 

iĢaretleri iĢlemede bu yöntemin kullanıldığı görülmüĢtür. Buna göre verilerin 

özelliklerini öğrenebilen, hiyerarĢik katman yapısı ile verileri değerlendiren ve 

direkt tahmin yapmada baĢarılı olan Derin Öğrenme yönteminin LSTM ağı tercih 

edilmiĢtir. Tasarlanan LSTM ağ modelinin doğruluğu BiLSTM modeli ile 

kıyaslanmıĢ ve kas iĢareti ile açı bilgisini iliĢkilendirmede BiLSTM modelinin daha 

baĢarılı olduğu değerlendirilmiĢtir. ĠĢaretin değiĢken ortalama değerini ve tepe kılıf 

değerini kullanan BiLSTM sinir ağının açı tahmininin, etkin değer (karekök 

ortalama-RMS), dalga formu uzunluğu (WL), ortalama mutlak değer (MAV) 

Ģeklinde 3 özniteliği girdi olarak alan MLP modeli kadar baĢarıya ulaĢtığı 

görülmüĢtür.  
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1. GĠRĠġ                                                                                              Aybike PĠROL 

1 

1. GĠRĠġ 

 

Ġnsan vücudunda çeĢitli elektrofizyolojik iĢaretler vardır. Bu iĢaretlerden 

Elektromiyogram, bir kas dokusu kasıldığı sırada oluĢan elektriksel aktiviteyi ifade 

eder. (Konrad, 2006) Elektromiyografi, kasın neler yapabildiğini sergileyebilmeyi, 

kuvvet ile hareket üretmesini inceleyebilmeyi, çevredeki dünyayla etkileĢime 

girmesini sağlayan ve sayısız iĢlevi yerine getiren fizyolojik süreçlere eriĢebilmeyi 

kolaylaĢtırmaktadır. Fiziksel rehabilitasyonda, (fizik tedavi / fizyoterapi, 

kinesiterapi, kayropraktik ve ortopedi) ürolojide, (inkontinans tedavisi) 

biyomekanikte (spor eğitimi, hareket analizi, araĢtırma) ergonomide, (iĢyerinde 

çalıĢmalar, iĢ riski analizi, ürün tasarımı) klinikte biyo geri bildirimde, kasların 

eğitilmesi gibi birçok uygulamada yaygın olarak kullanılmaktadır. (De Luca, 2006) 

(Alyea, 2010) 

Yüzeyel EMG (sEMG) iĢaretleri cilt üzerinden elektrotlar ile alınıp 

elektronik cihazlarla ölçülmekte ve analiz edilmektedir. Kas kasılma ve gevĢeme 

döngüsünün invaziv olmadan cilt yüzeyinden sEMG ile ölçülmesi tekniği, 

rehabilitasyon amaçlı sistemlerde yaygın olarak kullanılmaktadır.  

sEMG’ye dayalı tahmin veya sınıflandırma çalıĢmalarının birçoğunda 

tasarlanan sinir ağına iĢaretler doğrudan verilmemektedir. Sinyalin boyutunu 

azaltıp eğitimi kolaylaĢtırmak ve öğrenme baĢarısını arttırmak adına hemen hemen 

tamamında öznitelik çıkarımı yapılmaktadır. Elde edilen özellik sinyalleri ile yapay 

sinir ağı modelleri bir tahmin sunmaktadır. Eğitimi kolaylaĢtırıp performansını 

arttıran veri boyutu azaltma iĢlemi için sEMG iĢaretinin değiĢken ortalama 

değerleri ve tepe kılıf değerlerinin kullanılması rehabilitasyon amaçlı cihazlarda açı, 

kuvvet veya tork tahminleri için seçimi iyi yapılmıĢ bir yapay sinir ağı ile etkin bir 

rol oynamayı mümkün kılar. 

Literatürde üst ekstremite sEMG iĢaretinin değiĢken ortalama ve tepe kılıf 

değerlerinin sinir ağında kullanılıp bir açı tahmini yapabilmesi ile ilgili yeterli 

çalıĢma bulunmadığı gözlemlenmiĢ ve bu eksiğe yönelik bir çalıĢma hedeflenmiĢtir. 
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Geleneksel sinir ağları yerine son yıllarda sEMG sinyalleri üzerinde iyi bir 

performans gösteren (Geng et al., 2018) (Chen et al., 2019) Derin Öğrenme 

yöntemleri bu alanda umut vadedici gözüktüğünden biceps ve triceps kaslarından 

alınan sEMG iĢaretlerinin değiĢken ortalama değerleri ve tepe kılıf değerlerini 

kullanan derin öğrenmeli yapay sinir ağı ile dirsek ekleminde açı kestiriminin 

yapılması amaçlanmıĢtır. sEMG iĢareti ile derin öğrenme modelinden elde edilen 

sonuçların baĢarısını değerlendirmek için iĢaretin özniteliklerini kullanan farklı bir 

tahmin ağı MLP ile karĢılaĢtırılması hedeflenmiĢtir.  

ÇalıĢma için yapılan açı düzeneği tasarımı ile omuz ve bilek ekleminin 

hareketler sırasında sabit olduğu, modele dahil edilmediği, izotonik ve izokinetik 

hareketlerden yalnızca biseps ve triceps kaslarının fleksiyon/ekstansiyon yapması 

ile sorumlu olduğu varsayılmıĢtır. Ayrıca kasta meydana gelebilecek yorulmalar ve 

deri direncindeki farklılıkları göz önüne alarak tez çalıĢması için elde edilen 

iĢaretler özellikle farklı günlerde kaydedilmiĢtir. 

Yapılan tez çalıĢması aĢağıdaki bölümleri takip etmektedir: 

2.Bölüm’de literatürdeki sEMG iĢaretinin iĢlenmesi ve rehabilitasyon 

sistemleri ortez, protez cihazlarındaki kontrol kullanımı ve sınıflandırma ile ilgili 

çalıĢmalara değinilmiĢtir. Hangi yöntemlerin kullanıldığı, iĢlemin nasıl sağlandığı 

ve sonuçları incelenmiĢtir. 

3.Bölüm’de sEMG iĢaretinden, bu tez çalıĢması için iĢaretin nasıl elde 

edildiği ve analizinin nasıl yapıldığından bahsedilmiĢtir. Ardından kayıtlı bu 

iĢaretler ile açı tahmini için kullanılan Derin Öğrenme yöntemi ile Çok Katmanlı 

Algılayıcı (MLP) mimarisi sunulmuĢtur. sEMG iĢaretinin açı tahmini yaptığı 2 ayrı 

model detaylı bir Ģekilde gösterilmektedir. 

4. Bölüm’de ise üst ekstremite kaslarından alınan sEMG iĢareti ile açı 

tahmini için tasarlanan iki ayrı ağ modelinin sonuçları ve birbiri ile kıyaslaması yer 

almaktadır. 

5. Bölüm bu tez çalıĢmasının bütün bir özetini ve çalıĢmanın daha fazla 

nasıl geliĢtirilip iyileĢtirilebileceğini ifade etmektedir. 
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2. ÖNCEKĠ ÇALIġMALAR 

 

Rehabilitasyon sistemlerinin tasarımı için elektromiyogram iĢaretlerin 

incelenmesi günümüze kadar etkili sonuçlar vermiĢ ve bu sebeple oldukça önemli 

hale gelmiĢtir. Protez ve ortezler için pozisyon ve kuvvet kestirimi önemli bir 

çalıĢma alanı olduğundan bu örüntü tabanlı analizlerde ġekil 2.1’deki gibi bir süreç 

takip edilmektedir. Ham sEMG sinyalinden gürültü uzaklaĢtırılır özellik çıkarımı 

yapılır. Ardından sinir ağları ile sınıflandırma, tahmin veya kontrol gerçekleĢtirilir. 

(Chowdhury ve ark., 2013) 

 

 
ġekil 2.1. EMG ile Kontrol ve Sınıflandırma Sistemlerine Genel Bir BakıĢ (Nazmi 

ve ark., 2016) 

 

sEMG sinyallerini doğrudan sinirsel bir sınıflandırıcıya sunmanın, 

sinyallerin boyutları ve rastgele özellikleri nedeniyle pratik olmadığı ifade 

edilmiĢtir. Sinyalin, sinyal bilgisini daha kompakt bir Ģekilde gösterme yeteneğine 

sahip, azaltılmıĢ bir boyut vektörü ile temsil edilmesi gerekir. Böyle bir vektöre 

özellik vektörü denir. Özellik çıkarma, bir özellik vektörü oluĢturmak için ham 

sEMG girdi boyutunun azaltılmasıdır. Sınıflandırma sürecini basitleĢtirmek ve 

fazla sayıda veriyi azaltmak için uygulanır. Doğru özelliklerin seçilmesi önemlidir 

çünkü model sınıflandırma sisteminin doğruluğu büyük ölçüde bu özelliklerin 

seçimine bağlıdır. (Eroğlu & Baysal, 2018) (Nazmi ve ark., 2016) Literatürdeki 
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çalıĢmalarda 3 tür analiz yapılmaktadır. Zaman düzleminde, frekans düzleminde ve 

zaman-frekans düzlemindedir. Yapılan literatür araĢtırmasında, bu özelliklerden 

nelerin tercih edildiği ve hangi algoritmalar kullanılarak tahmin ya da sınıflandırma 

yapıldığı ayrıntılı Ģekilde incelenmiĢtir. 

Derin katmanlı ağ yapılarının günümüz Ģartlarında rahat bir Ģekilde 

eğitilebilmesi, iyi performans sergileyebilmesi son yıllardaki sEMG’ye dayalı 

Derin Öğrenme yöntemleri ile yapılan çalıĢmaları arttırmıĢtır. Bu geliĢme de göz 

önüne alındığında özellikle Derin Öğrenme ile ilgili son çalıĢmalar ayrıntılı 

incelenmiĢtir. Bunlardan bazıları aĢağıda açıklanmıĢtır: 

Kwon ve arkadaĢı, insan makine iĢbirliği için yaptıkları çalıĢmada yüzey 

elektromiyografisi ile üst ektremite hareket tahmini yapmıĢlardır. Yapay sinir ağı 

kullanarak, sEMG ve eklem açısal hızlarından fleksiyon ve ektensiyon hareketini 

belirlemek için gerçek zamanlı bir tahmin gerçekleĢtirmiĢlerdir. sEMG analizi için 

uygun olan 5 kastan alınan bilgi öniĢlemden geçirilerek sinyalin ortalama mutlak 

değer (MAV) özelliğini kullanmıĢlardır. MAV’ın pencere uzunluğunu 200 olarak 

ayarlamıĢlardır. Dirsek ve omuz eklem açılarını gonyometre ile ölçmüĢler ve açısal 

hızları elde etmek için açıların zamana göre türevini almıĢlardır. Ġleri beslemeli 

YSA modeline girdi olarak sEMG’nin MAV’ı ve açısal hızlar, çıktı olarak eklem 

açıları verilmiĢ ve modelin performansını normalize edilmiĢ ortalama karekök hata 

(NRMSE) ve tahmin-ölçülen değer arasındaki korelasyon katsayısı (CC) ile 

değerlendirmiĢlerdir. NRMSE 0,15’ten küçük, CC 0,9’dan büyük olarak 

hesaplanmıĢ ve temassız koĢullar altında önerilen bu yöntemin kabul edilebilir bir 

performansı olduğu sonucuna varmıĢlardır. Fiziksel temastan sonra geri bildirimin 

modelin performansı için gerekli olan bir unsur olduğunu ifade etmiĢlerdir. (Kwon 

& Kim, 2011) 

Koldan alınan EMG sinyalinin örüntü tabanlı analizinin yapıldığı farklı bir 

çalıĢmada sınıflandırma performansı yüksek ve yaygın kullanıldığı ifade edilen 

ortalama mutlak değer, ortalama mutlak değer eğimi, sıfır geçiĢ tespiti sayısı, dalga 

boyu ve eğim gösterge değiĢikliği zaman düzlemi öznitelikleri ve Özbağlanım 
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Katsayıları (AR) kullanılmıĢtır. 8 denekten 7 farklı el hareketinin EMG iĢaretleri 

ileri beslemeli geri yayılımlı sinir ağına bahsedilen özniteliklerin farklı sayılarda 

giriĢ olarak verilmesi ile eğitimi sağlamıĢlardır. 3 katmandan oluĢturulan sinir 

ağının ikinci katı gizli katmandır ve 40 sinir hücresi, çıkıĢ katmanında ise 3 sinir 

hücresi bulunduğu belirtilmiĢtir. GiriĢi [-1,1] aralığında normalleĢtirmiĢlerdir. 

ÇalıĢmada, AR katsayılarının zaman düzlemi öznitelikleri ile kullanılması, bütün 

durumlarda sınıflandırma baĢarısını artırdığı ifade edilmiĢtir. Zaman düzlemi ve 

zaman frekans düzleminden 7 hareketin sınıflandırma baĢarılarında en iyi sonucu 

veren öznitelik grupları birleĢtirilip oluĢan yeni öznitelik uzayından sınıflandırma 

yapıldığında 7 hareket problemi için baĢarının yaklaĢık %83 olduğu 

görülmektedir.(Guvenc ve ark., 2014) 

Mamikoğlu ve arkadaĢları integrali alınmıĢ bir EMG sinyali kullanarak 

ARIMAX modeli ile fleksiyon ekstansiyon hareketi için eklem açılarını tahmin 

etmiĢlerdir. Üst kol ve bilek ekleminin sabit olduğunu varsayarak 4 denekten 

biceps kas sinyali alınmıĢ, ardından ön iĢlem sonrası mutlak değerinin integrali 

ARIMAX modeline verilmiĢtir. ÇalıĢmanın yaygın EMG iĢleme tekniklerinden 

ortalama %21,85’lik bir artıĢla daha iyi performans sergilediğini ifade etmiĢlerdir. 

(Mamikoglu ve ark., 2016) 

CNN ile RNN mimarisinin kombinasyonu ile üst ekstremite hareket 

tahmini yapan bir model, Xia ve arkadaĢları (2017) tarafından önerilmiĢtir. CNN 

mimari yapısının, değiĢken, düĢük genlikli ve rastgele olan sEMG gibi sinyalleri 

modellemede sergilediği olumlu yaklaĢımından ve RNN mimarisinin sıralı verileri 

iĢlemesindeki avantajından yararlanılmıĢtır. Dirsek ve omuz eklem hareketini 

ihmal eden bilek hareketi ile 3 boyutlu el pozisyonuna odaklanan çalıĢma için 8 

kiĢinin 5 kasından sinyal bilgisi alınmıĢtır. Kayıtlı veri 50ms’lik pencerelere 

ayrılarak açı kaydı ile senkronize edilmiĢ ardından zaman frekans düzlemine 

aktarılarak frekans alanında, ham sinyallerin, her analiz penceresinde Fourier 

dönüĢümüne dayalı olarak doğrusal spektral katsayıları oluĢturulmuĢtur. RCNN 

modelinde eğitim giriĢi için 5 kası temsil eden bu zaman frekans spektrum 
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değerleri kullanılmıĢtır. 3 tane 1D CNN katmanı ve 2 LSTM katmanından oluĢan 

modelde 8 denek için ortalama değer es0as alınmıĢ ve üç eksen boyunca tahmini 

hareket için R
2
 değeri %91,7 olarak ifade edilmiĢtir. RCNN modeli yalnızca CNN 

modeli ile kıyaslanmıĢtır. RCNN'ler için ortalama R
2
 değeri 90,3 bulunmuĢ ve 

CNN'den (%77,6) önemli ölçüde daha yüksek olduğu ifade edilmiĢtir. (Xia ve ark., 

2017) 

Geng, Hu ve arkadaĢları (2018) derin öğrenme yöntemlerinin 

performansından esinlenerek sEMG sinyalleri ile hareket tanımlamak için hibrit bir 

yaklaĢım ile CNN-RNN mimarisini önermiĢlerdir. Önerilen modelin hem mekânsal 

hem de zamansal bilgiyi yakalamayı hedeflediğini belirtmiĢlerdir. Modele verilmek 

üzere 5 kanaldan sinyal alınmıĢ ve bunları RGB görüntüsü ile aynı boyutlara sahip 

(renk kanalı, geniĢlik ve yükseklik) bir sEMG görüntüsüne dönüĢtürmüĢlerdir. Her 

elektrottaki sEMG bilgisi, sEMG görüntülerinin pikseli olarak kabul edilmiĢtir. 2 

evriĢim katmanı, 3 tamamen bağlı (FC) katman ardından 1 LSTM katmanı ile 

FC’ye bağlanmıĢ ve softmax ile sınıflandırma modeli oluĢturularak hareket 

tanımayı sağlamıĢlardır. Sinyalin Ģerit halinde (1x1xsEMGfeature) verildiği 

sınıflandırmanın, yaptıkları diğer görüntü temsil yöntemlerine göre %86,3 

doğrulukla daha iyi performans sergilediği sonucuna ulaĢmıĢlardır. Sadece CNN 

tabanlı modeller ile karĢılaĢtırmıĢ hibrit yaklaĢımın daha iyi performans 

sergilediğini ifade etmiĢlerdir. (Geng ve ark., 2018) 

sEMG iĢaretlerini kullanarak gerçek zamanlı dirsek eklem açı tahmini 

yapan Eroğlu ve Baysal, hesaplamalı sadeliği nedeniyle zaman alanı özellik 

çıkarımını seçerek MLP ve  Genel Regresyon sinir ağı (GRNN) modelinde 

uygulamıĢlardır. Farklı ağırlık ve hızlarda 2 kastan alınan sinyal bilgisi ön iĢlemden 

geçirilerek; sinyalin zaman düzlemi özelliklerini temsil eden ortalama mutlak değer, 

dalga biçim uzunluğu, ortalama karekök öznitelikleri 250 ‘lik örneklere bölerek 

sinir ağına açı tahmini için vermiĢlerdir. Sagital düzlemde açısal yer değiĢtirmeyi 

elektrogoniometre ile almıĢlardır. Dirsek kolu ekleminin gerçek zamanlı tahmini 

için fazla bir gecikme söz konusu olmadığı ifade etmiĢlerdir. ÇıkıĢ katmanı dahil 3 
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gizli katmanı bulunan MLP ağındaki tahmin için 130 derecelik açı aralığında 

ortalama mutlak hata (MAE) %10, GRNN ağ tahmini 135 derecelik açı 

aralığında %11 MAE hesaplamıĢlardır. MLP ve GRNN için doğruluğun sırasıyla 

89.63% ve 88,35% olduğunu belirtmiĢlerdir. (Eroğlu & Baysal, 2018) 

Chen ve arkadaĢları (2019) sEMG iĢaretlerini ve derin öğrenme yöntemini 

kullanarak üst ekstremite eklem açılarının sürekli tahmini için bir model 

önermiĢlerdir. Dokunma ve birleĢik görev hareketi inceleyen çalıĢmada, 7 denekten 

7 kasın sinyal bilgisini almıĢlardır. Açısal hareketi kameralı bir sistem ile elde 

etmiĢlerdir. sEMG sinyalinin veri ön iĢleme ardından tepe kılıf değeri (envelope) 

alınmıĢtır. Hareket verisi ile birlikte anlamlandırabilmek için 10ms’lik pencerelere 

bölmüĢlerdir. Zaman alanındaki analizin sınıflandırmadaki baĢarısına değinerek 4 

zaman özelliğini, kök ortalama kare (RMS), varyans (VAR), ortalama mutlak 

değer (MAV) ve dalga formu uzunluğu (WL) seçmiĢlerdir. Her katmanında 20 

nöron bulunan 3 gizli katmana sahip LSTM ağı ve 4 gizli katmana sahip MLP 

ağındaki sonuçları kıyaslamıĢlardır. Her iki ağın tahmin sonuçlarında RMSE ve R
2
 

7 deneğin ortalaması Ģeklinde verilmiĢ ve sonuçta MLP modelinde 120 sn’lik kayıt 

için R
2
 0,8651 iken, LSTM modeli ile R

2
 0,9449 olarak hesaplamıĢlardır. (Chen ve 

ark., 2019) 

GA Elman sinir ağını kullanan Wang ve arkadaĢları üst ekstremitede 

sürekli eklem açı tahmini yapmıĢlardır. Omuz ve dirsek açısını inceledikleri bu 

çalıĢmada sEMG sinyalinin özel dalgacık paket enerji entropisini (WPEE) 

kullanmıĢlardır.6 sağlıklı denekten alınan 8 kanallı sEMG sinyaline 6 katmanlı 

dalgacık dönüĢümü uygulamıĢlardır. BitiĢik olmayan alt uzayının entropi 

özelliklerini modele vermeyi tercih etmiĢlerdir. Bu özellik, bir veri kümesinin 

düzensizliğinin ölçüsü olarak ifade edilebilen bilgi veya Shannon entropisi olarak 

bilinmektedir. Genetik algoritma ile optimize ettikleri, 4 katmanlı, her katmanında 

20 düğüm bulanan Elman sinir ağı modelinde gizli katmanın çıkıĢını bir sonraki 

giriĢe ekleyen bellek moduna sahip yapısıyla dinamik bilgileri iĢleme yeteneğinin 

güçlendiğini ifade etmiĢlerdir. Sadece omuz hareketinde RMSE 3,4717 ve R2 
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82,83, omuz ve dirseğin sürekli senkron olduğu harekette RMSE 4,1582 ve R2 

81,14 sonuçlarına ulaĢmıĢlardır. (Wang ve ark.,2020) 

RNN’nin türü olan LSTM’yi kullanarak sEMG sinyallerine dayalı diz 

eklemi için sürekli tahmin yapan Ma ve arkadaĢları (2020) RMS ve RMSTAF ‘ı 

kullanan LSTM ağı ile geri yayılım sinir ağını (BPNN) kıyaslamıĢlardır. Bu 

çalıĢma için 5 deneğin 8 kasından alınan sinyal bilgisi iĢlendikten sonra pencere 

geniĢliği 20 olacak Ģekilde zaman düzleminde RMS özniteliğini çıkarmıĢlardır. 

Kaydedilen açı sinyalinin örnekleme frekansının sEMG öznitelik sinyalinin 

örnekleme frekansına uyması için alt örnekleme yapmıĢlardır. Modelde baĢarı elde 

etmek adına açı değerlerini normalize etmiĢlerdir. RMS özellik dizisini giriĢ olarak 

alan 16 giriĢe sahip 100 katmanlı ve her katmanında 200 düğüm bulunan LSTM 

modeli ile tansig ve purelin taransfer fonksiyonu kullanan 3 katmanlı bir BP modeli 

oluĢturmuĢlardır. RMSTAF kullanan LSTM ağının RMSE sonuçlarının, RMS 

kullanan LSTM ve RMS ile RMSTAF kullanan BPNN ağına göre 

sırasıyla %8,57 %46,62, %68,69 oranında azaldığını belirtmiĢlerdir. RMSTAF 

kullanan LSTM modelinin diz ekleminin hareketini tahmin etmede diğerlerinde 

daha iyi performans sergilediği sonucunu elde etmiĢlerdir. (Ma ve ark., 2020) 
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3. MATERYAL VE METOD 

 

3.1. GiriĢ 

Dirsek eklem açı tahmini için bu tez çalıĢmasında geliĢtirilen sisteme genel 

bir bakıĢ Ģekil 3.1‘de verilmiĢtir. Buna göre sEMG iĢaretinin ölçülmesi, açı 

bilgisinin elde edilmesi ve verilerin toplanması iĢlemleri sıralanmaktadır. Burada 

biceps ve triceps kaslarından EMG sinyalleri yüzey elektrotları ile elde edilmesi 

sağlanır. EĢzamanlı olarak açı ölçüm düzeneği ile açı bilgisinin kaydedilmesi 

gerçekleĢtirilir. Ardından veri setleri oluĢturularak sinir ağına verilmek üzere hazır 

hale gelir. Son bileĢen ise bu verilerden tahmin sağlayacak sinir ağı modülüdür. Bu 

modülün yeterince sağlam ve doğru tahmin sağlayabilmesi tasarımın esas 

hedeflerindendir. Tasarlanan derin öğrenme sinir ağının ayrıntılı yapısı ve 

kıyaslandığı MLP sinir ağı mimarisi sonraki bölümlerde detaylı bir Ģekilde 

anlatılmıĢtır. 

 
ġek l  3.1. Dirsek Eklem Açı Tahmini Blok Diyagramı 
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ÇalıĢma için yazılım bir MATLAB paketinde uygulanmıĢtır. Kullanılan 

paket ve veri iĢleme yazılımı MATLAB R2019a, Intel Core i5 CPU 2.6 GHz’dir. 

 

3.2. EMG ĠĢaretinin Fizyolojisi 

Canlı organizmalardan kaynaklanan her türlü iĢaret, biyolojik iĢaret olarak 

kabul edilmekte ve bu iĢaretler hücrelerdeki elektriksel aktivite sonucu 

oluĢmaktadır. Bu aktivite hücrelerdeki elektrokimyasal olaylardır. Elektriksel 

aktivite ve elektrokimyasal olayları, kas iskelet sistemi merkezi sinir sistemi (CNS) 

ile sürekli haberleĢerek sağlamaktadır. 

 
ġek l  3.2. Ġnsanda Kas Sistemi ve CNS Arasındaki ĠletiĢimin Genel ġeması 

 

Genel olarak ıĢık ya da ses gibi harici bir fiziksel sinyal, duyusal 

sistemlerden biri tarafından algılanır ve vücuttaki sensörler fiziksel sinyali Merkezi 

Sinir Sistemine (CNS) iletilen sinir darbelerine dönüĢtürür. Ardından önceki alınan, 

depolanan bilgileri karĢılaĢtırarak güncel bilgi oluĢturulur. Kaslardaki kontrolün bu 

genel Ģeması ġekil 3.2’de gösterilmiĢtir. Kaslar bu iĢleyiĢi CNS’nin sinir hücreleri 

olan motor nöron birimi ile sağlamaktadır. (Kooij ve ark.., 2008)  

Motor birim, kas kasılma sürecinin sinirsel kontrolünü tanımlayan en 

küçük iĢlevsel birimdir.  Bir motor ünitesi motor nöronun hücre gövdesi, 

dendritleri, aksonunun çoklu dalları ve kas liflerinden oluĢmaktadır. (ġekil 3.3) 
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Motor nöronu kas lifinin kasılmasını sağlayacak uyarıyı alır ve yapısındaki motor 

uç plakların her biri bir kas lifine bağlanarak aktarım sağlanır. (Konrad, 2006) 

Motor sinir hücresi iki Ģekilde yani polarize ve depolarize olarak kas lifine uyarı 

gönderir ve kastaki bu uyartı elektrotlar tarafından kaydedilir. Bu kayıt bir motor 

birim aksiyon potansiyeli (MUAP) olarak görüntülenir. 

 

 
ġek l  3.3. Motor Birimi ve Kas Lifleri ile Bağlantısı (Konrad, 2006) 
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ġek l  3.4. Motor Ünitesi Kontrolü ve EMG Sinyali (De Luca, 2006) 
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Gözlemlenen sinyalin büyüklüğünü ve yoğunluğunu etkileyen en önemli 

iki mekanizma, MUAP'lerin katılımı ve ateĢleme hızlarıdır. Ġnsan deri katmanları 

filtre etkisine sahip olduğundan MUAP ateĢleme ve genlik özellikleri tespit 

edilemez ve kas içinden bunlar incelenir. Üst üste binen MUAP’ların 

algılanmasıyla ham EMG sinyali oluĢur. (ġekil 3.4) (Konrad, 2006) 

MUAP kaslardaki liflerde birtakım etkiler oluĢturarak hareket ve kuvvet 

üretilir. Kas liflerinde bulunan miyofibriller sarkomer bölümlerinden oluĢmaktadır. 

Sarkomerde kasılma ve gevĢeme durumunda birbirine geçen filamenler 

bulunmaktadır. (ġekil 3.5) Burada kalın flamenti miyosin inceyi aktin proteini 

oluĢturur. Sarkomerin kuvvet üretmesi Ca
2+

 yoğunluğuna göre düzenlenmektedir. 

Ca
2+

 etkisi altında, miyozinin baĢları çapraz köprüler oluĢturmak için aktin 

molekülünün troponin bölgelerine bağlanır. Miyozin kafası daha sonra yaklaĢık 45 ° 

döner: Kuvvet üretilir veya harici bir kuvvetin yokluğunda aktin filamentleri 

miyosin üzerinde birbirleri boyunca kayar ve kasılma gerçekleĢir. (Kooij ve ark.., 

2008) 

 
ġek l  3.5. Bir Sarkomerin Yapısı 

 

CNS ile kaslara bir girdi üretilerek kas kuvveti oluĢumu sağlandığında, bu 

kuvvet ile bulunan bölgedeki eklemde bir moment ve tork oluĢarak iskelet sistemi 
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üzerinden hareket gerçekleĢir. Kas iskelet sisteminin konumu ile ilgili bilgiler duyu 

reseptörleri ile aktarılarak CNS’de belirlenen konumla karĢılaĢtırılır ve gerekirse 

kasa tekrar telafi amaçlı sinyal gönderilir. Kasın hareketinin hassasiyeti kas 

tarafından CNS’ne gönderilen geri bildirim ile sağlanmaktadır. Bu geri bildirimi 

spindle, golgi tendon organı gibi kasların duyu reseptörleri ile sağlanmaktadır. 

Kasın uzamasını algılayan, aktif veya pasif Ģekilde kasta oluĢan gerilim değiĢimini 

CNS’ye ileten spindle, kas iğciği olarak da bilinmektedir. Golgi tendon kas lifleri 

ve tendonlar arasında bağ dokuda yer alan, bir load cell gibi kasa uygulanan 

kuvveti algılayan duyu reseptörüdür. (Kooij et al., 2008) 

 

3.3. Kas Kasılma ÇeĢitleri 

Merkezi sinir sisteminin, insan hareketinde önemli bir yeri olan kaslarda 

oluĢturduğu küçük iyonik potansiyel ve akımlar, kas kasılması meydana 

getirmektedir. Kas kasılması ile ilgili farklı sınıflandırmalar mevcut olmasına 

karĢın temelde 3 tip kas kasılması vardır. Bunlar konsantrik, eksantrik ve izometrik 

kasılma Ģeklindedir. (Alyea, 2010) Bu kas kasılmaları dıĢında izotonik ve 

izokinetik kasılmalar da literatürde bulunmaktadır.(Serbest & Eldoğan, 2014) 

Konsantrik kasılmada kaslarda oluĢan gerilim, yükten büyük olduğunda 

kaslar kısalmakta ve eklem hareketi sağlanmaktadır. Net moment ile eklem açısının 

değiĢimi aynı yöndedir. Bu kasılma türünde kas boyu değiĢtiğinden izotonik 

kasılma da bu sınıflandırmada yer almaktadır. Ġzometrik kasılma ise kasın boyunda 

bir kısalma oluĢturmayan kasılma türüdür. Kas kısalmaya çalıĢsa dahi gerginliği 

yükten büyük olmayıp yüke eĢit olduğundan dolayı hareket sağlayamaz ve statik 

kasılma olarak da bilinmektedir. Yer çekimine karĢı ayakta dik durabilme en temel 

örneklerinden biridir. Eksantrik kasılma türünde kas gerilimi yükten daha az olur 

ve kasın boyunda uzama meydana gelir. Net moment eklem açısının tersi 

yönündedir. Bu kasılmanın amacı eklem hareketini yavaĢlatmaktır.(Serbest & 

Eldoğan, 2014)(Alyea, 2010) Eklem hareket açıklığı boyunca kasta maksimum 

direnç ile kasılma sağlayan kasılma türü izokinetik kasılmadır. Ġzokinetik kasılma, 
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hareket hızı sabit olacak Ģekilde kas kuvvetini arttırır. Bu kasılma türü bir cihaz 

eĢliğinde yapılmaktadır. (izokinetik dinamometre gibi.)(ġahin, 2010) 

Harekete katkısına göre literatür kasları 3 gruba ayırmaktadır. Agonist 

kaslar hareketin oluĢmasını sağlarken antagonist kaslar agonist kaslara karĢı bir 

eklem torku üreterek stabilize edici bir kuvvet sağlamaktadır. Sinerjist kaslar 

agonist kaslara destek olarak görev almakta ve hareketin kontrolüne katkı 

sağlamaktadır. Biceps ve triceps kaslarının fleksiyon ve ekstansiyon hareketleri 

agonist ve antagonist harekete verilen örneklerden biridir. (Alyea, 2010) 

 

3.4. EMG ĠĢaretinin Özellikleri 

Elektromiyogram (EMG) kas liflerinde oluĢan akımın veya elektriksel 

potansiyelin ölçülmesi ve grafiksel olarak kaydedilmesi yöntemidir.(Alyea, 2010) 

EMG iĢaretinin özelliklerini bilmek iĢaretin analiz edilebilmesini 

sağlamada önemlidir. Merkezi sinir sisteminin dokularda oluĢturduğu tepkiler 

küçük iyonik potansiyel ve akımlar kimyasal uyarılara, dokunun iĢlevine ve 

durumuna göre farklı genlik ve frekanslara sahiptir. Genel olarak sEMG 

frekanslarının 20-500 Hz arasında olduğu yaygın olarak kabul edilmektedir. YavaĢ 

kasılan liflerin 20-90Hz arasında hızlı kasılan liflerin 90-500Hz arasında frekansa 

sahip olduğu belirtilmiĢtir. (ġekil 3.6) 

Frekans spektrumunda sinyale ait farklı bilgiler elde edilmektedir. ġöyle ki 

kas yorgunluğu arttığı zaman ateĢleme sıklığı azalır ancak zaman bölgesinde 

toplam genlik sabit kalabilir ve bu sebeple kas yorgunluğu zaman bölgesinde tespit 

edilmeyebilir. Bu durumda kas yorgunluğu için Ģekil 3.7’de gösterildiği gibi 

ortanca frekans (yeĢil çubuk) ve ortalama frekans (kırmızı çubuk) önemlidir. 

Frekans spektrumundaki tüm değerler sıralandığında bunları eĢit 2 ayrı bölüme 

ayıran Ortanca frekanstır. Ortalama frekans tüm frekans değerlerin aritmetik 

ortalamasıdır.(Alyea, 2010) 
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ġek l  3.6. EMG Sinyalinin Zaman ve Frekans Düzlemi Gösterimi (Alyea, 2010) 

 

 
ġek l  3.7. Orta ve Ortalama Frekans Spektrumu (Alyea, 2010) 
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EMG sinyalinin stokastik bir yapı gösterdiği ve Gaussian dağılım 

fonksiyonu ile tanımlandığı belirtilmiĢtir. EMG sinyalinin genliği 0-10 mV 

arasında değiĢtiği bilinmektedir. (ġenli,2007:TaĢar 2016’dan)  

 

3.5. sEMG ĠĢaretlerinin Ölçülmesi 

EMG iĢareti iki temel Ģekilde elde edilmektedir. Deri yüzeyine iletken 

elemanlarla noninvaziv olarak yerleĢtirilmesi mümkün elektrotlar ile veya kas içine 

invaziv olarak iğne-tel elektrotlarının yerleĢtirilmesi Ģeklindedir. (ġekil 

3.8)(Konrad, 2006)(Alyea, 2010)EMG iĢaretinin yüzeyel olarak elde edilmesinde 

noninvaziv olması, çalıĢma ve araĢtırmalarda insan güvenliğini kolay 

sağlayabilmesi ve yapılan literatür çalıĢmasında görüldüğü üzere iyi bir kontrol 

performansı sergileyebilmesi iğne elektrotları yerine bu yöntemin tercih edilmesini 

mümkün kılar.   

 

 
ġek l  3.8. EMG ĠĢaretinin a) Yüzeyden elde edilmesi için kablo ve tek kullanımlık 

elektrot b) Kas içi alınmasında kullanılan tel elektrot (Konrad, 2006) 

 

Konrad (2006), bahsettiği üzere, insan vücudu iyi bir iletkendir ancak 

elektriksel iletkenlik doku tipine, kalınlığına, sıcaklığa, kiĢiden kiĢiye değiĢen insan 

fizyolojisine göre değiĢmektedir. Bu sebeple EMG sinyali yüzey elektrotları ile 

elde edildiğinde bazı faktörlerden etkilenmektedir. Elektrot seçimi, dokunun 
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karakteristiği, doku ile elektrot arasındaki iletkenlik, kas lifi ve elektrot arasındaki 

uzaklık, kasta meydana gelen elektriksel potansiyelin büyüklüğü ve crosstalk bu 

faktörlerdendir.(Soderberg & Cook, 1984) 

Deri altındaki subkutan yağ tabakasının kalınlığı sinyalin zayıflayarak yani 

küçük genlikler ile elde edilmesine neden olmaktadır. Dinamik hareket 

çalıĢmalarında ise sinyal kaynağı kas ile tespit bölgesi olarak nitelendirilebilen 

elektrotlar arasındaki değiĢiklikler meydana gelebilmektedir. Ortamdaki harici 

cihazlardan kaynaklanan dıĢ gürültü faktörü EMG sinyal elde edinimini 

etkilemektedir.(Konrad, 2006) Crosstalk, yüzeyel elektromiyografide ölçülen kasın 

iĢareti ile çevresindeki kas iĢaretlerin üst üste binmesini ifade eden istenmeyen 

durumdur. Özellikle küçük kasların elektrotları, hemen altındaki kası değil komĢu 

kasların elektriksel aktivitesini de algıladığından elektrotların yerleĢtirilme konumu 

yüzeyel elektromiyografi ölçümlerinde oldukça önemli bir yer tutmaktadır. Bunun 

için bazı standartlar oluĢturulmuĢtur. SENIAM (kasların non-invaziv 

değerlendirilmesi için yüzey elektromografi) yüzey EMG için elektrotların kas 

liflerine paralel ve elektrotlar arasındaki mesafenin 20 mm olmasının ideal ölçüm 

olduğunu belirtmiĢtir. Buna göre bipolar elektrotlar küçük kaslara uygulandığı 

takdirde elektrotlar arasındaki mesafenin kas lifinin 1/4’ünü geçememesi 

gerekmektedir.  

Biceps kası için medial akromiyon ile fossa kübiti arasını 3 eĢit parçaya 

bölerek 2/3’ü yukarıda kalacak Ģekilde elektrot yerleĢimi yapılmalıdır. Referans 

veya toprak olarak bilinen elektrot bileğin çevresine yerleĢtirilmelidir. Triceps kası 

için ölçüm, akromionun arka kristası ile olekranon arasındaki noktaya eĢit 

mesafede yerleĢtirilmelidir. Bu konumlar dikkate alınarak tendon ve motor uç 

plakası etkilerinde oluĢacak dengesiz ölçümler en aza indirilmektedir. (Stegeman & 

Hermens, 2007) ġekil 3.9 ‘da biceps ve triceps kas ölçümü için referans alınan 

noktaların gösterimi mevcuttur. 
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ġek l  3.9.Kas Ölçümü Ġçin Referans Alınan Noktalar(Stegeman & Hermens, 2007) 

 

Yüzeyel ölçülen EMG iĢaretinin elde edilmesinde elektrot seçimi yani 

elektrotların yapısı, boyutu önem arz etmektedir. Elektrotların temel iĢlevi 

dokudaki potansiyeli en iyi Ģekilde aktarabilmektir. Ġyi iletkenliği dıĢında toksit 

olmaması ve bozulmaması da istenen özelliklerdendir.  

Ġki tip yüzey elektrotu yaygın olarak kullanılmaktadır. Biri ciltle doğrudan 

temasta olan kuru elektrotlardır. Statik elektrot olarak da bilinmektedir. Diğeri ise 

cilt ve elektrotun metalik kısmı arasında kimyasal bir arayüz olarak elektrolitik bir 

jel kullanan jelleĢmiĢ elektrotlardır. Tek kullanımlık Ģekilde karĢımıza çıkmaktadır. 

(ġekil 3.10) EMG kaydı sırasında, elektrot ile doku ya da deri arasında bir 

polarizasyon oluĢması veya kapasitif etkilerin oluĢup iĢaretin sağlıklı 

aktarılmasında problemlere sebep olmaması için genellikle bu tip Ag/AgCl kaplı 

metaller kullanılmaktadır. (Güven, 2012) Ayrıca Ag, Au, AgCl gibi farklı metal ve 

bileĢikler kullanılabilmektedir. Ag/AgCl elektrotlar kolay temin edilebilirliği düĢük 

gürültü ile stabil bir geçiĢ sağlayabilmelerinden dolayı sıklıkla tercih edilmektedir. 
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Bu elektrot türü için iletken alan olan elektrotun çapı 1 cm veya daha küçük 

olmalıdır. Islak jel elektrot veya yapıĢkan jel elektrot olarak bulunmaktadır. 

Elektrot cilt empedansını düĢürmek için ayrıca elektrot jeli kullanılabilmektedir. 

Elektrotlara bağlı kabloların hareketi sonucu oluĢabilecek dengesiz ölçümleri 

önlemek adına sabitleme bantları kullanılmalıdır. (Stegeman & Hermens, 

2007)(Day, 2002)(Konrad, 2006) 

 

 
ġek l  3.10. Özel EMG Elektrotlarının Seçimi (1,2 NORAXON INC.USA) (Konrad, 

2006) 

 

Cilt yüzeyini ölçüme uygun hale getirmek EMG elde edinimini etkileyen 

önemli faktörlerden biridir. Amaç, cilt yüzeyinde düĢük bir güç empedansı 

oluĢturmak ve direkt olarak elektrot teması sağlayabilmektir. Hareket artefaktları 

oluĢturabilecek Ģekilde dinamik bir çalıĢma ile yüzey EMG elde edinimi 

durumunda, oluĢabilecek nemli koĢullardan ya da terlemeden dolayı yüzeydeki kıl, 

tüy ve kirden arındırılması gerekmektedir. Bu sayede elektrotların deri yüzeyine 

daha iyi ve sıkı yapıĢması mümkün hale gelmektedir. Cilt yüzeyini temizlemede 

Konrad 3 farklı yöntem belirtmiĢtir. AĢındırıcı ve iletken olan yüzeydeki ölü deriyi 
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ve kiri elimine eden temizleme macunları kullanmak yöntemlerden biridir. 

Sürtünmeden dolayı zarar gelmeyecek Ģekilde dikkatli bir basınç uygulayarak 

yüzeyde zımpara kağıdı ile birlikte alkol ile temizlemek de bu yöntemler 

arasındadır. Son olarak yumuĢak ancak sürtünmeye izin veren bir havluyla alkollü 

temizleme iĢlemi de yeterli bir alternatiftir. Yöntem seçimine ve seçilen elektrot 

türüne bakılmaksızın açık kırmızı renge sahip cilt tipi iyi bir empedans hali 

sergilemektedir. (Konrad, 2006) 

 

3.6. sEMG ĠĢaretinin Kaydedilmesi 

Kas bilgisi küçük genlikli ve düĢük frekanslı bir yapıya sahip olduğundan 

EMG yoluyla doğru olarak ölçülebilmesi için elektrotlar, amplifikatörler, sinyal 

görüntüleme araçları kullanılmaktadır. EMG amplifikatörleri yüksek giriĢ 

empedansına ve diferansiyel giriĢe sahiptir. Elektrotlar arasındaki potansiyel 

farkları tespit etmektedir. Amaç, 1) sinyal kaynağı ile kayıt cihazı arasında 

izolasyonu sağlamak, 2) akım voltaj dönüĢümü, 3) voltaj kazancı sağlamak, 4) 

harici parazitleri ve artefaktları engellemektir. ġöyle ki harici gürültüler faz 

kayması olmadan iki elektroda ulaĢır ve bu sinyaller ortak mod olarak bilinen aynı 

genlik ve frekansa sahiptir. Bu yüzden amplifikatörlerin ortak modu engellemek 

adına ortak mod bastırma oranlarının (CMRR) yüksek olup harici gürültüyü 

bastırması, elde edilen EMG iĢaretinin kalitesini önemli ölçüde etkilemektedir. 

SENIAM, CMRR değerinin 95 dB ‘den büyük olmasının kaliteli ve güvenilir EMG 

elde ediniminde kabul edilebilir değer olduğunu belirtmiĢtir. Ġdeal olarak bir EMG 

amplifikatörünün giriĢ empedansı, elektrot-cilt empedansının en az 10 katı 

olmalıdır. Yüzey elektrotlar için empedansın genellikle 1 MΩ olmasının yeterli 

olduğu ifade edilmiĢtir. Ölçüm sırasında elektrot empedansının ilk baĢta yüksek 

olabileceği ve daha sonra cilt – elektrot – elektrolit arasında bir denge kurulmasının 

ardından değiĢebileceğinin bilinmesi önemlidir. Genellikle elektrotlardan 

amplifikatöre bağlantı hattında kapasitif etkileri ortadan kaldırmak için ön 

amplifikatör kullanılmaktadır. Ön amplifikatör kabloların içine veya elektrotların 
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(aktif elektrotlar için) üzerine yerleĢtirilmektedir.(Konrad, 2006)(Soderberg & 

Cook, 1984) 

EMG amplifikatörünün voltaj kazancı, çıkıĢ sinyalinin giriĢ sinyaline oranı 

olarak tanımlanmaktadır. Amplifikatörün kazanç aralığı genellikle 100 ile 10000 

arasında olmaktadır. Bunlar dıĢında amplifikatörün frekans cevabı ve bant geniĢliği 

de EMG ölçümünde önemlidir. Bant geniĢliği yüzey EMG’si için 10-1000 Hz’dir. 

(Soderberg & Cook, 1984) 

sEMG sinyali elde edilirken istenmeyen bilgiler olan artefaktlar daha sonra 

uygulanan filtreleme iĢlemi ile elimine edilebilmektedir. 10-20 Hz arası yüksek 

geçiren bir filtre ile 500-1000 Hz arası alçak geçiren filtre uygulanmasının 

sEMG’deki önemli frekansları koruyacağı belirtilmiĢtir. (Stegeman & Hermens, 

2007) 

 

3.7.BIOPAC MP36 Veri Toplama Sistemi 

Elektrik sinyallerini kaydetmek ve koĢullandırmak için izole edilmiĢ 

güvenli yerleĢik evrensel amplifikatörlere sahip MP36 deney seti AcqKnowledge 

BSLv4.1 yazılımıyla birlikte çalıĢan bir veri toplama ünitesidir. Tranducer, sensör, 

prob ve elektrotlar bağlanarak hem insanlar hem de hayvanlar üzerinde birçok 

farklı ölçüm yapabilmekte ve elektriksel sinyaller (EMG, EKG, EEG gibi.) dıĢında 

görsel, iĢitsel uyaranlar verebilmektedir. Sinyalleri elektrotlardan ve 

dönüĢtürücülerden alıp yazılımı sayesinde bilgisayar ortamında bu sinyalleri dalga 

formu Ģeklinde görüntülemektedir. Bu iĢlemleri yapabilmesini sağlayan dahili bir 

mikroiĢlemciye sahiptir. BIOPAC Sistem’in desteklediği, MP veri toplama 

birimlerinin özelliklerini barındırdığı platform ve teknik bilgi sayfalarından alınan 

bilgiler ıĢığında MP36 biriminin özellikleri aĢağıda sıralanmıĢtır. 

 

 Analog çıkıĢı ve 4 kanallı analog giriĢi bulunmaktadır. ġekil 3.11’de 

analog giriĢlerin bulunduğu ön panel gösterilmektedir. 

 Kanalları aynı anda örneklenebilmektedir. 
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 24 bit A/D örnekleme çözünürlüğü mevcuttur. 

 200µV ile 2 V arasında giriĢ (input) gerilim aralığına sahiptir. 

 Sinyal gürültü oranı 89 dB min ‘den büyük ve CMRR minimum 85 dB’dir. 

 IIR, otomatik ya da kiĢinin ayarlayabileceği yazılımsal filtreleme ve 20 

kHz alçak geçiren, 5 - 0.5 - 0.05 Hz  yüksek geçiren donanımsal 

filtrelemeye sahiptir. 

 

 
ġek l  3.11. MP36 Ön Panel 

 

Elektrotlar, dönüĢtürücüler MP36 birimine bağlanmalı, MP36 birimi ise 

bilgisayara bağlanmalıdır. Bu tez çalıĢmasında, MP36 biriminde EMG sinyalinin 

kaydı için bağlantı BSL-SS2LB seri port kablo ile sağlanırken, açı ölçüm 

düzeneğinin bağlantısı 9 pinli D-sub konnektör ile yapılmıĢtır. MP36 biriminin 

bilgisayara bağlantısı USB kablo ile sağlanmıĢtır. ġekil 3.12’de MP36 birimi, seri 

port kablolar ve bu tez çalıĢması için yapılan açı ölçüm düzeneğinin bağlantısı 

gösterilmektedir. 
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ġek l  3.12. MP 36 Veri Toplama Seti ve Açı Ölçüm Düzeneği 

 

3.8. Açı Ölçüm Düzeneği 

Bu tezde biceps ve triceps kasılma bilgisi ile eĢ zamanlı olarak açı 

iĢaretinin elde edilmesi adına, açı ölçüm düzeneğinin ilk olarak SOLIDWORKS 

ortamında tasarım çizimi yapılmıĢtır. (ġekil 3.13) Burada kullanılan Jane 3D insan 

modeli ücretsiz bulut tabanlı GrabCAD ortamından alınarak, bu model üzerinde açı 

ölçüm düzeneği tasarımı yapılmıĢtır. Daha sonra çizilen yapıya uygun olarak 

tasarımı ġekil 3.14’te gösterildiği gibi gerçekleĢtirilmiĢtir.  

Açı ölçüm düzeneği sağ kol için tasarlanmıĢtır. Doğru ve tutarlı ölçümler 

alabilmek adına kestamit malzemenin kullanıldığı üst kolda bulunan parça, bir 

destek ile omuza sabitlenmiĢtir. Aynı sabitleme bilek kısmına doğru olan levhaya 

da yapılmıĢtır.  (ġekil 3.14) 
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ġek l  3.13.Solidworsk Ortamında Açı Ölçüm Düzeneğinin Çizimi 

 

 
ġek l  3.14. Açı Ölçüm Düzeneği 
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Kullanılan yerdeki veriyi elektriksel iĢarete dönüĢtüren yapılar sensör 

olarak adlandırılmaktadır. Bir referans noktasına göre pozisyonu belirlemek için 

pozisyon sensörleri kullanılmakta ve bu sensörler yapılarına göre temaslı ve 

temassız olarak ayrılmaktadır. Temaslı pozisyon sensörleri ölçüm için fiziksel bir 

temas kontağı kullanmaktadır. Temassız yapıda ise manyetik, elektromanyetik 

veya elektrik alan aracılığıyla ölçüm yapılmaktadır. Temel mantığı, endüktif 

yapıda olan bir bobinin sürekli olarak değiĢen manyetik alan içinde bulunduğu 

sırada uçlarda sürekli bir gerilim oluĢturmasıdır. 

Yapılan bu tez çalıĢmasında açı ölçümü için Bourns firmasına aitAMS22B 

pozisyon sensörü kullanılmıĢtır. (Bourns,2015) Pnömatik kontrol valfi konumu geri 

bildirimi, uzaktan iletiĢim anteni konumlandırma, aktüatör motor konumu geri 

bildirimi ve ayak pedalı, direksiyon, kaldır, götür ve süspansiyon sistemleri gibi 

birçok uygulamada kullanılabilmektedir. AMS22B temassız manyetik ölçüm yapan 

bir analog döner konum sensörüdür. VDD besleme gerilimi 5V (±%10), tek analog 

çıkıĢ 12 bit çözünürlük, maksimum 500 RPM özelliklerine sahiptir. ġekil 3.15’te 

AMS22B pozisyon sensörü gösterilmiĢtir. ġekil 3.16’da mil dönme açı derecesine 

göre değiĢen analog voltaj çıkıĢ grafiği görülmektedir. ÇalıĢmada A tipi 

kullanıldığından kalibrasyon iĢleminde bu eğri baz alınmıĢtır. 

 

 
ġek l  3.15. AMS22b Pozisyon Sensörü (Bourns, 2015) 
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ġek l  3.16. Sensörün Mekanik Açı DeğiĢimine Göre  Voltaj (Vout) ÇıkıĢı (Bourns, 

2015) 

 

Üst ve alt kol sabitlemesi ile sensörün bağlantısı için kullanılan parçalar 

kestamit levha olarak seçilmiĢtir. Poliamid grubundan döküm yolu üretilen bir 

plastik çeĢididir. AĢınma dayanımı yüksek, iyi yapıĢma özelliği, kolay 

iĢlenilebilirliğinin yanı sıra mekanik mukavemetinin yüksek olması açı ölçüm 

düzeneği için tercih edilmesinde önemli kriterlerdir. ġekil 3.23’te açı ölçüm 

düzeneği için kullanılan 10 mm kalınlığında 50 x 170 mm ve 50 x 190 mm 

boyutlarında kestamit levhalar gösterilmektedir. 

 

 
ġek l  3.17. Kestamit Levhalar 
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sEMG sinyal kaydı ile eĢ zamanlı açı bilgisinin elde edilmesi için açı 

düzeneğindeki enkoder,D-sub konnektör ve bir gerilim bölücü ile  MP36 ünitesine 

bağlanmıĢtır. ġekil 3.18’deki 0-180° aralığa sahip açı çizelgesi referans alınarak 

(180°’den 10 ar 10 ar azalarak ) açı voltaj arasındaki ölçekleme kontrol edilmiĢtir. 

Enkoderin 3,5 V-1,5 V aralığına göre, MP36 ünitesinin CH3 kanalı ayarlanmıĢtır.  

 

 
ġek l  3.18. Açı Ölçüm Düzeneği MP36 Ġçin Derece Ayarlaması 

 

Birbiri ile iliĢkili değiĢkenleri ilintilendirmek, temelde bir hata teriminin 

minimize edilmesi ile gerçekleĢtirilmektedir. Bunun için sık kullanılan 

regresyondaki en küçük karaler yöntemi ile kanal ayarında voltaj ve açı değeri 

arasındaki iliĢki incelenmiĢtir. Lineer bir iliĢki oluĢturacak olan y=ax+b denklemi 

ile yaklaĢım yapılmıĢtır. Buna göre n tane veri için toplam hata: 

 

E
2
= ∑           

 
   

2                        
(3.1) 
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Denklem 3.1’den yola çıkarak a ve b bilinmeyeleri için 2 denklem elde 

edilir. 

 

∑           
 
     =0                 (3.2) 

 

∑           
 
   =0                  (3.3) 

 

Denklem 3.2 ve 3.3 ile bağımsız açı değiĢkenleri (x) ile bağımlı voltaj 

değiĢkenleri (y) arasındaki iliĢki denklem 3.4 ile ifade edilir. 

 

y = -0,0146x + 4,4399               (3.4) 

 

Bu denklemin doğrusu hatayı minimize ettiğinden bir eğri uydurmak 

istenirse eğrinin doğruluk ölçütü için  R
2
 kullanılmaktadır. Buna göre R

2 
=0,997’dir. 

YaklaĢım yapılan denklemin grafiği ġekil 3.19’da gösterilmektedir. 

 

 
ġek l  3.19. Açı ve Voltaj Arasındaki ĠliĢki  
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Bu hesaplardan yola çıkarak CH3 kanalı için yapılan ölçekleme değerleri 

çizelge 3.1’de gösterilmektedir.CH3 kanalına 90° ve 180° için karĢılık gelen voltaj 

değerleri girilmiĢ ve BIOPAC’te voltaj bilgisinin açı bilgisi olarak elde edilmesi 

sağlanmıĢtır. 

 

Çizelge 3.1. Açı Bilgisinin Derece Olarak Elde Edilmesi Ġçin Yapılan Ayar 

CH3 Kanalı Input Milivolts Map Value (degree) 

 1 907,33 mV 180 ° 

 2 1607,99 mV 90 ° 

 

3.9. Veri Toplama ve Ölçümler 

Herhangi bir kas problemi olmayan bir denekten sEMG ölçümü biceps ve 

triceps kasından iki çift bipolar yüzey elektrotları yerleĢtirilerek alınmıĢtır. (yaĢı 25, 

ağırlığı 50kg olan bayan) Denekten veriler elde edilirken paraziti engellemek adına 

laboratuvar ortamındaki diğer cihazların kapatılmasına dikkat edilmiĢtir. Sensörler 

ve sensör yerleĢimi hakkında çalıĢmalar yapan, sEMG için sinyal iĢleme 

yöntemleri içeren, eğitim test için bir takım model barındıran, SENIAM (kasların 

non-invaziv değerlendirilmesi için yüzey elektromografi) ölçüm sistemi dikkate 

alınarak ölçümler yapılmıĢtır. (Stegeman & Hermens, 2007) Buna göre ilk olarak 

cilt yüzeyi alkollü bir pamuk ile silinmiĢ ardından jel sürülmüĢ tek kullanımlık 

elektrotlar, SENIAM tarafından önerilen referans noktalara göre yerleĢtirilmiĢtir. 

Kasta meydana gelebilecek yorulmalar ve deri direncindeki farklılıkları da göz 

önüne almak adına ölçümler özellikle farklı günlerde yapılmıĢtır. Deneğin, 

çalıĢmadaki izotonik ve izokinetik 2 kasılma türünü, 24 saatlik aralıklarla flexion 

ve extension hareketini sağlayarak gerçekleĢtirmesi istenmiĢtir. Denek, istenen bu 

hareketleri hiç ağırlık olmadan (serbest el), 0,5 kg ağırlık ve 1 kg ağırlıklar ile 

tekrarlamıĢtır. 

ġekil 3.20’de görülen, sağ kol için tasarlanan EMG ölçüm düzeneğindeki 

sensörün düzenekteki bağlantılar ile deneğin tam dirseğine göre konumlandırılması 
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sağlanmıĢtır. Ardından dik oturması; izokinetik kasılmada flexion ve extension 

hareketini sürekli olarak tekrarlaması; izotonik kasılma da ise flexion ve extension 

hareketlerini bekleme yaparak, kesikli adım adım tekrarlaması istenmiĢtir. 

 

 
ġek l  3.20. Deneğin Ölçüme Hazır Durumu 

 

Ölçümlerin her biri için yaklaĢık 350 sn'lik kayıt alınmıĢtır. Ölçümlerde 

sEMG sinyallerinin alındığı 2 kanal için örnekleme hızı 500Hz, açı bilgisinin 

alındığı diğer kanal için örnekleme hızı 250Hz seçilmiĢtir. ġekil 3.21 ve 

3.22Biopac ortamında izotonik ve izokinetik kasılma türü için birer tane ölçüm 

örneği dirsek eklem açı bilgisi ile beraber gösterilmiĢtir. Yukarıdan aĢağıya biceps, 

triceps kasılması ve bu sırada eĢ zamanlı alınan açı bilgisi sıralanmaktadır. Alınan 

sinyallere Biopac ortamında 20-250Hz ile sınırlayan bant geçiren filtreleme 

uygulanmıĢtır. MATLAB ortamına aktarılırken kayıtlı veride; zaman (dk cinsiden)- 

biceps ile triceps kasılması ve açı bilgisi bulunmaktadır. 
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ġek l  3.21. EMG ĠĢareti ve Dirsek Eklem Açısı (izotonik_yük1_veri1)  
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ġek l  3.22. EMG ĠĢareti ve Dirsek Eklem Açısı (izokinetik_yük1_veri3) 
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3.10. Veri Seti Hazırlanması 

MATLAB ortamına aktarılan ölçümler ile sinir ağına verilmek üzere uygun 

veri setleri oluĢturulmuĢtur. Eğitim ve test için hazırlanan bu veri setleri; 3 izotonik, 

3 izokinetik hareket olan toplam 6 farklı ölçümden farklı aralıklarda örnekler 

alınarak, farklı ağırlık ve kasılma türüne göre rastgele birleĢtirilmiĢtir. 

Çizelge3.2‘de gösterildiği üzere eğitim ve test için kullanılacak verilerin 

hepsi kasılma türü ve ağırlığa göre isimlendirilmiĢtir. Boyutu küçültmek adına 350 

saniyelik her ölçümün tüm değerleri alınmamıĢtır. Kasılmaların net bir Ģekilde 

belirgin analiz edilebilir olduğu örnek aralıkları seçilmiĢtir. (Çizelge 3.2) 

OluĢturulan eğitim ve test verisinin sıralaması ise Çizelge3.3 gösterilmektedir. 

 

Çizelge 3.2. Veri Setlerinin OluĢturulması 

Ölçümler Ağırlık (kg) 
Alınan Örnek 

Aralığı 
Matris Boyutu 

Eğitim İçin Seçilen   310794x4  

izotonik_serbest_el_veri4 0 (110000:161798) (51799x4) 

izotonik_yük0.5_veri1 0,5 (66000:117798) (51799x4) 

izotonik_yük1_veri1 1 (66000:117798) (51799x4) 

izokinetik_serbest_el_veri4 0 (66000:117798) (51799x4) 

izokinetik_yük0.5_veri3 0,5 (66000:117798) (51799x4) 

izokinetik_yük1_veri4 1 (66000:117798) (51799x4) 

Test için Seçilen   222356x4 

izotonik_serbest_el_veri1 0 (7187:138100) (67791x4) 

izotonik_yük0.5_veri1 0,5 (72390:138100) (65711x4) 

izotonik_yük1_veri1 1 (81370:149100) (48924x4) 

izokinetik_serbest_el_veri3 0 (83020:96349) (13330x4) 

izokinetik_yük0.5_veri2 0,5 (83020:96349) (13330x4) 

izokinetik_yük1_veri3 1 (83020:96349) (13330x4) 
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Çizelge 3.3. Eğitim ve Test Verisi Ġçin Ölçümlerin Sıralaması 

Verilerin Sıralanması  

Eğitim Verisi 

izotonik_serbest_el_veri4  

izokinetik_yük1_veri4  

izokinetik_serbest_el_veri4 

izotonik_yük0.5_veri1  

izotonik_yük1_veri1  

izokinetik_yük0.5_veri3 

Test Verisi 

İzokinetik_serbest_el_veri3 

izotonik_yük1_veri1 

izotonik_serbest_el_veri1 

izokinetik_yük0.5_veri2  

izotonik_yük0.5_veri1  

izokinetik_yük1_veri3 

 

3.11. Zaman Düzlemi Öznitelik Çıkarımı 

Zaman düzlemi öznitelikleri için herhangi bir dönüĢüm iĢlemi yapılmadan 

basit ve hızlı hesaplanabilir. (Pinyomark, 2013: Guvenc et al., 2014 ‘ten) (Guvenc 

et al., 2014)Bu nedenle çalıĢma kapsamında literatürde yaygın olarak kullanılan 

yöntemler incelenmiĢ ve ortalama mutlak değer, dalga formu uzunluğu, etkin değer 

olan ortalama karekök, ve varyans tercih edilmiĢtir. 

1) Ortalama Mutlak Değer (MAV-OMD): Her bir pencerenin mutlak 

değerlerinin ortalamasını alınır. Diğer özniteliklerle birlikte kullanıldığında güçlü 

bir ayrıĢtırıcıdır. Denklem 3.5’de MAVk bir k segmentindeki tüm   değerlerini 

ekler ve N değerine bölüp hesaplamaktadır. Burada n penceredeki her bir veriyi, N 
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pencere boyunu ve    ise hesaplanan OMD değerini ifade eder. Kas kontrolü için 

kullanılan yaygın bir özelliktir. (Scott 1967:Guvenc ve ark., 2014’ten) 

 

     
 

 
∑ |  |
 
                               (3.5) 

 

2) Dalga Formu Uzunluğu: Dalga biçiminin zaman segmenti üzerindeki 

kümülatif uzunluğudur. Dalga formunun genliği, sıklığı ve zamanı ile 

iliĢkilidir.(Phinyomark et al., 2016) Pencere boyunca örnekten örneğe genliklerdeki 

artan değiĢimleri ölçer. 

 

   ∑ |       |
   
                               (3.6) 

 

3) Etkin Değer (RMS): Kök ortalama kare değeri, her bir veri noktasının 

karesi alınarak, kareler toplanarak, ardından toplamı gözlem sayısına bölerek ve 

son olarak karekök alınarak hesaplanır. (Hudgins ve ark., 1993:Eroğlu & Baysal, 

2018’den)EMG sinyallerinin iĢlenmesinde sık kullanılan bir değerdir. Sabit kuvvet 

ve yorulmayan kasılma ile ilgilidir. (Phinyomark et al., 2009). 

 

    √
 

 
∑   

  
                                (3.7) 

 

4) Sıfır GeçiĢ Tespiti Sayısı (SGTS): Her bir pencere içerisinde sinyalin 

pozitif bir değerden sıfır değerine ya da negatif bir değerden sıfır değerine ulaĢtığı 

yerlerin tespit edilerek sayılmasıdır. Bu öznitelik ile belirli bir eĢik seviyesi 

üzerindeki sinyallere ait önemli değiĢiklikler sıklığı bilgisi çıkartılır.(Guvenc et al., 

2014) 

 

     ∑                  |       |      
 
                           (3.8) 
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5) Varyans (Var): Sinyalin varyansı, kendisi ile olan iliĢkisidir. Bu değer, 

her bir sinyal bilgisinin birbirinden ne kadar farklı olduğunun bir ölçüsünü verir. 

EMG'nin varyansı (VAR), sEMG sinyalinin gücünü bir özellik olarak kullanır. 

Genel olarak varyans, o değiĢkenin sapmasının karesinin ortalama değeridir. 

Bununla birlikte, EMG sinyalinin ortalaması sıfıra yakındır. Sonuç olarak, 

EMG'nin farklılığı denklem 3.9’teki gibi hesaplanabilir.(Phinyomark et al., 2016) 

 

    
 

   
∑   

  
                    (3.9) 

 

6) Özbağlanım Katsayıları (AR): Çoğu sistem geçmiĢteki çıkıĢlarının, o 

andaki ve geçmiĢteki giriĢlerinin doğrusal kombinasyonları ile modellenebilir. 

Burada en çok kullanılan model AR modelidir. 

 

   ∑          
 
                              (3.10) 

 

Denklem 3.10’da   , sistemin k. ayrık zamandaki kaydedilen iĢaretini, ai 

AR model parametrelerini, p AR modelinin derecesini, ek ise beyaz gürültüyü ifade 

etmektedir.(Karlik et al., 2005) 

 

3.12.Sınıflandırma için Yaygın Kullanılan Sinir Ağları 

3.12.1.Çok Katmanlı Algılayıcı Sinir Ağı 

Biyolojik sinir hücrelerine benzer yapay bir sinir ağında bilgi iĢleme birimi 

olan ve yapay sinir ağlarının temelini oluĢturan nöron modeli ġekil 3.23’teverildiği 

gibidir. 
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ġek l  3.23.Yapay Nöron Modeli Girdi, Ağırlık ve Çıktı Gösterimi(Haykin, 2017) 

 

ġekil 3.10’da yer alan k. nörona ait modelde sinaptik giriĢteki xj, sinaptik 

ağırlık wkj ile çarpılır ve toplanarak genliğini sınırlamak adına aktivasyon 

fonksiyonundan geçirilir. Sonuçta yk çıktısı elde edilir. Bu tıpkı bir biyolojik nöron 

gibi farklı ağırlıklara (dendrit) sahip bir dizi girdinin (sinaps) bir araya toplanması 

(hücre gövdesi) Ģeklindedir. (Haykin, 2017)(Laezza, 2018) Denklem 3.11 ve 3.12 

Ģekildeki yapının matematiksel olarak tanımlanmasını göstermektedir. Denklem 

3.11’de ağırlık ve girdini çarpımının aritmetik toplamı ile uk çıktısı elde edilir.   

 

   ∑      
 
                  (3.11) 

 

                                   (3.12) 

 

Net girdi olarak ifade edilen uk bias değeri ile bir aktivasyon 

fonksiyonundan geçerek denklem 3.12 gibi bir çıktı oluĢturur. Aktivasyon 

fonksiyonu çıktıları verileri anlamlandırabilmek için kullanılan bir yapıdır. 

Genellikle non-lineer fonksiyonlar seçilmektedir.(TaĢar, 2016) Bunun en önemli 
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sebebi lineer bir modele non-lineer bir fonksiyon uygulanırsa YSA’lar için önemli 

bir kavram olan ve değerinin düĢük olması istenen hata oranını azaltmayı, yani 

sistemin türevlenebilir olmasını mümkün kılar. Sigmoid, tanh, relu en çok 

kullanılan aktivasyon fonksiyonlarından bazılarıdır. 

Ġfade edilen yapay sinir nöronlarının birbirine bağlamasıyla oluĢan 

YSA’lar bir giriĢ katmanı ardından gizli katman ve bir çıkıĢ katmanından 

oluĢmaktadır. Girdi olarak verilecek değer kadar nöronu bulanan giriĢ 

katmanındaki girdi verisi bir iĢleme uğramadan gizli katmana aktarılır. Tasarlanan 

modele bağlı olarak birden fazla gizli katman ya da farklı sayıda nöron bulanabilir. 

Gizli katmanda anlamlandırılan bilgi çıkıĢ katmanına iletilerek ağın çıktıları üretilir. 

Geri beslemeli bir ağda ağırlık değerlerinin güncellenmesi için çıktılar tekrar ağa 

gönderilir. (TaĢar, 2016) 

Temelde 3 farklı YSA mimarisi mevcuttur. Bunlar; tek katmanlı ileri 

beslemeli ağ, çok katmanlı ileri beslemeli ağ ve tekrarlayan ağdır. Buradaki 

tekrarlayan sinir ağları 3.7.1’de ayrıntılı ifade edilmiĢtir. Tek katmanlı ağlar, giriĢ 

katmanında hesaplama yapılmadığından bu katmanın sayılmadığı giriĢ doğrudan 

bir çıkıĢ nöron katmanına bağlıdır. (Haykin, 2017) 

Çok katmanlı ileri beslemeli bir sinir ağında giriĢ sinyalleri çıkıĢa 

verilmeden önce bir veya daha fazla gizli katmandaki nöronlardan aktarılarak ağın 

çıktısı elde edilir. GiriĢ sinyalleri ilk gizli katmana uygulandıktan sonra elde edilen 

sonuçlar çıkıĢ olan son katmanın giriĢleridir. ġekil 3.11’de gösterildiği gibi ağın 

her katmanındaki nöronların giriĢleri bir önceki katmanın çıkıĢ sinyalini 

almaktadır.(Haykin, 2017) Çok Katmanlı Algılayıcı (MLP) ileri beslemeli yapay 

sinir ağlarının bir sınıfıdır. MLP ağları en az 3 düğüm katmanından oluĢmaktadır. 

ġekil 3.24’teki gibi MLP giriĢ düğümleri hariç diğer katmanları aktivasyon 

fonksiyonu kullanmaktadır. 
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ġek l  3.24.Gizli Katmana Sahip Ġleri Beslemeli Bir Ağ 

 

Geri beslemeli yapay sinir ağlarında (GBYSA) ise bir hücrenin çıktısı hem 

kendinden sonra gelen hücrenin katmanına hem de kendinden önceki katmanda ya 

da kendi katmanında bulunan diğer bir hücreye girdi olarak verilebilir. Bu yapı 

GBYSA’na doğrusal olmayan bir dinamik kazandırmaktadır. GBYSA’da 

nöronların bağlanıĢ Ģekillerinin YSA’nın farklı davranıĢ ve yapılar kazanmasını 

sağladığı ifade edilmiĢtir. (TaĢar, 2016) Amaç ağdaki ağırlıkların her birini 

güncellemek ve bu sayede gerçek çıktının hedef çıktıya daha yakın olmasına neden 

olmasını sağlamaktır. MLP sinir ağında eğitim için geri yayılım kullanılmaktadır.  
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ġek l  3.25.Hata Sinyallerinin Geri Yayılmasıyla Sinyal AkıĢ Grafiği 

 

Genel olarak ġekil 3.25 ‘de j. Nöron tarafında üretilen fonksiyon 

sinyallerinin (     (n)) sonuçları geri yayılım ile ağırlığın toplam hataya etkisi 

bulunur ve ağırlık güncellemesi yapılır. (Haykin, 2017) 

 

3.12.2.Derin Öğrenme Yöntemi 

Geleneksel sEMG tabanlı örüntü sınıflandırmada anlamlı girdi verisi 

oluĢturabilmek ve sınıflandırma yapan bir sinir ağını tasarlamak önemli 

aĢamalardandır. Geleneksel makine öğrenme algoritmaları yerine derin öğrenme 

teknikleri bu çalıĢmada sEMG sinyalinden dirsek eklem açı tahmini için 

kullanılmıĢtır. sEMG sinyalinin sıralı doğasından dolayı uzamsal bilgilerini 

yakalayabilen ve öğrenmede baĢarılı olan derin öğrenme tekniği tekrarlayan sinir 

ağı BiLSTM tasarlanmıĢtır. Tasarlanan derin öğrenme yöntemine genel bakıĢ 

aĢağıdaki baĢlıklarda sunulmuĢtur. 
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3.12.3. Tekrarlayan Sinir Ağları 

Tekrarlayan veya Yinelenen Sinir Ağı (RNN), 1986 yılında David 

Rumelhart'ın çalıĢmalarına dayanan bir derin öğrenme sınıfıdır. (Pedrycz & Chen, 

2020) RNN genel olarak birimler arasındaki bağlantıların yönlendirilmiĢ bir döngü 

oluĢturduğu, derin öğrenmede yaygın olarak kullanılan bir yapay sinir ağı sınıfıdır. 

Ġleri beslemeli sinir ağlarının aksine, RNN’ler giriĢ belleğini girdilerin rastgele 

dizilerini iĢlemek için kullanabilmektedir. (ġeker et al., 2017) Sistemde geri döngü 

bildirimleri bulunan RNN, sıralı verileri iĢlemede, zamana bağlı, belirli bir sırayla 

giden ya da çok değiĢkenli dizi tahmini gibi bir diziden baĢka bir diziye tahmin 

problemlerinde, giriĢ ve çıkıĢ arasındaki iliĢkiyi kurabilmektedir. Veri noktaları 

arasında bağımsızlık sağlayan standart sinir ağlarının aksine, RNN'ler veriler 

arasındaki sıralı ve zaman bağımlılıklarını etkin bir Ģekilde yakalar. Bu nedenle, 

video analizi, görüntü altyazısı, doğal dil iĢleme (NLP) ve müzik analizi gibi 

problemlerde bir çözüm olmaktadır. (Pedrycz & Chen, 2020) 

RNN ile ilgili en tanımlayıcı özelliklerden biri parametre paylaĢımıdır. 

Parametre paylaĢımı olmadan, bir model, bir dizideki her veri noktasını temsil 

etmek için benzersiz parametreler tahsis eder ve bu nedenle, değiĢken uzunluk 

dizileri hakkında çıkarımlar yapamaz. Bu kısıtlamanın yanı sıra RNN giriĢteki 

veriyi bir önceki çıktı bilgisi ile iliĢkilendirerek sınıflandırma ya da tahmin yapar. 

Bir önceki çıktı ile iliĢkilendirilmesi short time memory kavramı ile ifade edilmiĢtir 

ve bu durum çıktının bir sonraki katman için hafızada saklı kalmasını 

sağlamaktadır. (DATAI Team, 2020) ġekil 3.26’da RNN topolojik yapısı 

gösterilmektedir. 
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ġek l  3.26. RNN Ağ Yapısı 

 

RNN'ler genellikle geleneksel çok katmanlı ağ mimarisini, bitiĢik 

düğümleri veya zaman adımlarını bağlayan döngülerin eklenmesiyle artırır. Bu 

döngüler, yakın geçmiĢten veri noktalarına göre eldeki mevcut veri noktasının 

özelliklerini değerlendirmek için kullanılan ağın dahili belleğini oluĢturur. GiriĢler 

ile çıkıĢlar ve kayıp arasındaki eĢlemeleri göstermek için bir hesaplama grafiği 

kullanılır. Grafiğin bir olaylar zinciri halinde açılması, ağ içindeki parametre 

paylaĢımının net bir resmini sağlar. Yineleme iliĢkileri için genelleĢtirilmiĢ bir 

denklem ile ifade edilirse denklem3.13’daki gibidir: 

 

                             (3.13) 

 

Burada s
t
, t-1 ile gösterilen bir önceki zaman adımına bağlı olan sistemin 

durumunu göstermektedir. Bu denklem biraz daha ayrıntılı ifade edilirse: 
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  =f (    ),                  (3.14) 

 

Denklem 3.14’da yer alan    Ģimdiki durumu temsil etmek için 

kullanılmıĢtır ve    belirli bir zaman örneğinden gelen girdiyi belirtmektedir.    

'nin önemi, t'ye kadar olan geçmiĢ girdi dizisinin görevle ilgili yönlerinin bir 

temsili olmasıdır. (ġekil 3.27) Burada her düğüm bir zaman örneğiyle 

iliĢkilendirilmiĢtir. (Pedrycz & Chen, 2020) 

RNN, veriler arasındaki sıralı bağımlılıkları parametre paylaĢımıyla etkin bir 

Ģekilde yakalamaktadır. GiriĢteki her veri grubunu ayrı ele almaz. Yakın 

geçmiĢteki veri noktalarına göre mevcut veri noktasının özelliklerini 

değerlendirerek bir bellek oluĢturur ve bu Ģekilde çıkarım yapar. (Pedrycz & Chen, 

2020) 

 

 
ġek l  3.27.RNN için KatlanmamıĢ Bir Hesaplama Grafiği 

 

RNN mimarilerinin bazı önemli eksikleri bulunmaktadır. Teorik olarak 

RNN yapıları, bilgileri uzun süre hatırlayabilir ancak pratikte bu her zaman geçerli 

değildir. Özellikle kaybolan gradyana eğilimli yapıdadır. Referanslar arasındaki 

boĢluk küçük kalırsa, RNN bilgi bitlerine atıfta bulunmak için iyi çalıĢır. RNN'nin 

zarar görmeye baĢladığı nokta, referans verilen veriler arasındaki boĢluğun artması 
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ve RNN'nin bu veriler arasında her zaman bağlantı kuramamasıdır. Uzun Kısa 

Süreli Bellek (LSTM) bu sorunları gidermek için önerilen geleneksel RNN 

mimarisinin varyantıdır. LSTM mimarisi, kaybolan gradyana karĢı koymak için 

sabit birim ağırlıklara sahip tekrarlayan kenarları kullanmaktadır.(Pedrycz & Chen, 

2020) 

 

3.12.4. LSTM Ağ Yapısı 

Uzun Kısa Vadeli Bellek (LSTM), rastgele aralıklarla değerleri hatırlayan 

en yaygın RNN mimarisidir. Ġlk olarak 1997 yılında Hochreiter ve Schmidhuber 

tarafından tanıtılmıĢtır. Geleneksel RNN'lerin sıkıntıya düĢtüğü uzun vadeli 

bağımlılık sorunundan kaçınarak gradyen kaybolma problemini çözümleyerek 

tahminler yapmak için iyi çalıĢtığı ifade edilmiĢtir.(Pedrycz & Chen, 2020) 

Kaybolan gradyan problemi, gradyan iniĢi, geri yayılımla birlikte bir 

optimizasyon algoritması olarak kullanıldığında ortaya çıkmaktadır. (Hochreiter, 

1997:Pedrycz & Chen, 2020’den) Bağımlılıklar arasında boĢluk boyutları arttıkça, 

hata gradyanları katlanarak yok olur ve bir ağın eğitiminin çok yavaĢ olmasına, 

hatta bazen öğrenememesine neden olabilmektedir. Bunun için sık kullanılan 

optimizasyonlardan Stokastik gradyan iniĢinde, gradyan, zincir kuralı ile geri 

yayılım kullanılarak gradyan, ağırlıklara göre kayıp fonksiyonunun kısmi türeviyle 

hesaplanır. Stokastik gradyan iniĢini kullanarak, ağın parametrelerini optimize 

etmek için yalnızca bir eğitim örneği kullanılır ve ağı eğitme süresini önemli 

ölçüde azaltır.(Pedrycz & Chen, 2020) 
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ġek l  3.28. RNN Zincir Yapısı 

 

Ağdaki parametrelerde yapılan güncellemeler zincir kuralı kullanılarak 

uygulanır. Zincir kuralıyla, gradyanlar, ağın önüne doğru ilerledikçe, her 

düğümden alınan ağırlığa göre maliyet fonksiyonunun türevinin ürünü olarak 

hesaplanır. Gradyan daha sonra iĢlevlerin ağırlıklarını önceki düğümlerden 

güncellemek için kullanılır. Katmanlar arasındaki zaman bağımlılığı arttıkça, 

ağırlığa iliĢkin "gözden kaybolan" küçük düzeltmeler nedeniyle ağırlıklar yalnızca 

marjinal olarak güncellenir. (ġekil 3.28) Eğer gradyan birden küçük değere sahipse, 

gradyan, ağın geri yayılmasıyla üssel olarak küçük hale gelir; öğrenme ile 

çarpıldıklarında oranları daha da küçülür. Ağırlıklar eğitim için bir ağ kurarken 

baĢlangıçta rastgele bir sayıya ayarlandığından, baĢlangıçta daha büyük kayıplara 

sahip olma eğilimindedirler, bu da ağırlıklar yalnızca marjinal olarak 

ayarlandığından, kaybolan gradyan problemi sorununu birleĢtirir. LSTM hücre 

yapısı ve kapılarıyla bu sorunu çözer. (Pedrycz & Chen, 2020) 

LSTM, önceki durumlardan bilgi alarak uzun girdi dizilerini öğrenip 

hatırlayabilen bir yapıya sahiptir. LSTM mimarisi kritik bileĢenleri olan giriĢ, 
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unutma, çıkıĢ kapılarına, bellek hücresine ve aktivasyon fonksiyonlarına sahiptir. 

(Chen et al., 2019) LSTM'in farklı varyasyonları vardır, ancak hepsi ağırlıklı olarak 

bu bilinen üç kapıyı içermektedir. Bellek hücresinin içeriği giriĢ kapıları tarafından 

modüle edilir ve kapıları unutur. Bu kapıların her ikisinin de kapalı olduğunu 

varsayarsak, hafıza hücresinin içeriği bir zaman adımı ve sonraki arasında 

değiĢmeden kalacaktır. GeçiĢ yapısı, bilginin birçok zaman adımında tutulmasına 

izin verir ve sonuç olarak gradyanların birçok zaman adımı boyunca akmasına izin 

verir. Bir LSTM ağının katlanmamıĢ grafiği, bir katmandan diğerine geçen 

verilerin, doğrusal etkileĢimler ile giriĢ ve unutma kapıları kullanılarak her 

katmandan geçerken biraz değiĢtirildiği bir konveyör bandı olarak düĢünülebildiği 

belirtilmiĢtir. (Pedrycz & Chen, 2020) 

 
ġek l  3.29.Bir LSTM Biriminin Kapıları 
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ġekil3.29 bir LSTM gizli katman yapısı gösterilmektedir. Burada      bir 

önceki katmandan gelen çıktı bilgisidir.     giriĢ verisi ile birlikte hafıza yoluna 

(        ) ve diğer tüm kapılara bağlanmaktadır. Unutma kapısı, bilgiyi hücre 

durumundan çıkarmaktan sorumludur ve amacı, hangi bilginin artık yararlı 

olmadığını ve unutulabileceğini belirlemektir. ġimdiki giriĢ olan      ‘yi ve önceki 

hafıza hücresinden gelen gizli durum       olan 2 girdiyi almaktadır. GiriĢler 

ağırlık matrisleriyle çarpılır ve bir sapma eklenir. Bundan sonra bir sigmoid iĢlevi 

uygulanır; sigmoid iĢlevi, hangi değerlerin tutulacağına ve hangilerinin atılacağına 

karar vermekten sorumludur. Bu iĢlev 0 ile 1 arasında değerlere sahip bir vektör 

çıkarmaktadır. 0, unutma geçidinin bilgiyi tamamen unutmak istediğini belirtirken, 

1 çıkıĢı, unutma geçidinin tüm bilgi parçasını hatırlamak istediğini göstermektedir. 

GiriĢ kapısı ise 2 adımlı bir süreci içermektedir. Hücre durumuna hangi yeni 

bilgilerin ekleneceğine karar vermekten sorumludur. Unutma geçidine benzer 

Ģekilde,        ve     'ye bir sigmoid iĢlevi uygulanır. Bir hiperbolik tanjant 

fonksiyonu, -1 ile 1 arasında değiĢen tüm olası değerlerin bir vektörünü 

oluĢturmaktadır. Bu vektör, hücre durumuna eklenebilecek aday değerleri gösterir. 

Son olarak çıkıĢ kapısı, 3 adımlı bir iĢlemde çıktı olarak hücre durumundan yararlı 

bilgileri seçer. Ġlk adımda, hücre durumuna hiperbolik bir teğet iĢlevi uygulanır ve -

1'den 1'e kadar ölçeklenmiĢ değerlere sahip bir vektör oluĢturulur. Adım 2,      ile 

     ve sigmoid iĢlevini kullanmaktır. Son adımda, adım 2'deki düzenleyici filtre 

adım 1'deki vektörle çarpılarak bir sonraki hücreye bir çıktı ve gizli durum 

üretilir.(Pedrycz & Chen, 2020) Ağ, LSTM'yi kullanarak herhangi bir uzun vadeli 

bağımlılığı en aza indirebilir ve 1000 adımı aĢan veri referanslarındaki boĢlukları 

kapatabilir.(attention-dikkat mekanizması ile) (Hochreiter ve ekibi, 2018:Pedrycz 

& Chen, 2020’den)Önceki bilgi hafızada tutulduğu için bu ağ yapısı uzun vadeli 

öğrenme sağlamaktadır. Kaybolan gradyan problemini çözümlemeyi birimdeki 

tanh fonksiyonu mümkün kılmaktadır. Bu sayede güncellenen verileri 
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anlamlandırabilmek için değiĢimin türevi sıfıra uzun bir süre yaklaĢmaz ve geri 

yayılım sağlanarak öğrenme sürdürülür. 

 

)hUyW(f f1tftfgt  
             (3.15) 

 

                                    (3.16) 

 

)hUyW(O o1oitogt  
              (3.17) 

 

                                                    (3.18) 

 

                                                   (3.19) 

 

ġekil 3.29’daki LSTM biriminin kapıları ve bu kapılara ait ağırlık 

matrisleri denklem 3.15-3.19 arasında gösterildiği gibi bir iliĢkiye sahiptir. Bir 

LSTM katmanında it t. zamanındaki giriĢi, ft unutma kapısını, ct hafıza kapısını, ht 

bir sonraki birime aktarılacak çıktı bilgisini ifade etmektedir. W, U ve βkatmandaki 

kapılara bağlı ağırlık matrisi ve bias değerleridir.  

 

3.12.5.BiLSTM Ağ Yapısı 

BiLSTM fikri, sekans verilerini iki ayrı gizli katmanla hem ileri hem de 

geri yönde iĢleyen çift yönlü (bidirectional) RNN'den gelmektedir. (Schuster & 

Paliwal, 1997) GiriĢ dizisinin tüm zaman adımlarının mevcut olduğu problemlerde, 

Çift Yönlü LSTM'ler giriĢ dizisinde bir LSTM yerine iki tane çalıĢtırmaktadır. 

Birincisi olduğu gibi giriĢ dizisi üzerinde ve ikincisi giriĢ dizisinin ters bir kopyası 

üzerindedir. Bu, ağa ek bağlam sağlayabilir ve sorunla ilgili daha hızlı ve hatta 

daha eksiksiz öğrenmeyi mümkün kılabilmektedir. (Graves ve ekibi, 2003) Fonem 

sınıflandırması (Graves ve ekibi 2003) ve konuĢma tanıma (Graves ve ekibi 2013: 
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Cui ve diğerleri, 2018’den) gibi birçok alanda çift yönlü ağların tek yönlü ağlardan 

önemli ölçüde daha iyi olduğu kanıtlanmıĢtır. BiLSTM'ler iki gizli katmanı aynı 

çıktı katmanına bağlamaktadır. (Graves ve ekibi, 2003) Bir ileri LSTM katmanı ve 

bir geri LSTM katmanı içeren katlanmamıĢ (unfolded) bir BiLSTM katmanının 

yapısı ġekil 3.30'da gösterilmiĢtir. Ġleri katman çıktı dizisine ait olan  ⃗ , T-n 

zamanından T-1 zamanına kadar pozitif sıralı girdiler kullanarak yinelemeli olarak 

hesaplanmaktadır. Aynı Ģekilde geriye doğru katmandaki çıktı dizisi  ⃗⃖ içinde T-n 

ile T-1 arasındaki ters giriĢler kullanılarak hesaplanmaktadır. Hem ileri hem de geri 

katman çıktıları standart LSTM güncelleme denklemleri ile hesaplanır. (Denklem 

3.15–3.19) BiLSTM katmanı, her bir öğenin denklem 3.20 kullanılarak 

hesaplandığı bir çıktı vektörü olan, YT ‘yi oluĢturmaktadır. Buradaki σ, iki çıktı 

dizisini birleĢtirmek için kullanıldığı ifade edilmiĢtir. LSTM katmanına benzer 

Ģekilde, bir BiLSTM katmanının son çıktısı,                 bir vektörle 

temsil edilebilir. Buradaki son terim hız tahmini alınırken bir sonraki yineleme için 

tahmin edilen hızdır.(Cui et al., 2018) 

 

 yt= σ ( ⃗ ,  ⃗⃖ )                                                              (3.20) 

 



3.MATERYAL VE METOD                                                                            Aybike PĠROL 

51 

 
ġek l  3.30. Çift Yönlü LSTM Mimarisinin 3 ArdıĢık Adımı (Cui et al., 2018) 

 

3.13. Tasarlanan MLP Modeli 

Dirsek ekleminin açı tahmini için model, MathWorks tarafından geliĢtirilen 

MATLAB 2019a paketinde oluĢturulmuĢ ve testi yapılmıĢtır.Zaman düzleminin 

sınıflandırma ve tahmindeki baĢarılı etkileri göz önüne alınarak açı tahmini için 

MLP ağına 4 zaman özelliği (RMS, MAV, WL, VAR) ve varyans hariç 3 zaman 

özelliği verilmiĢtir. DeğiĢik öznitelik sayıları ve gizli katmanlarındaki farklı nöron 

sayıları olan ağlar oluĢturulmuĢtur. 

Bu zaman özellikleri daha önceki Bölüm 3.11.’de ifade edilmiĢtir. 

Levenberg Marquardt metodu kullanılarak MATLAB’da MLP ağı 

oluĢturulmuĢtur. Açı tahmini için çıkıĢ katmanı dahil 3 gizli katmanlı ve 

katmanlarda sırasıyla 11 ve 5 nöron olan, 6 giriĢli ve 1 çıkıĢ katmanına sahip MLP 

ağı tasarlanmıĢtır. (ġekil 3.31) Aktivasyon fonksiyonu ilk katmanda tansig 

sonrakilerde pureline olarak seçilmiĢtir. Hedef ve minimum gradyen 10
-5
, öğrenme 

oranı 0,003 olarak belirlenmiĢtir. 1000 epoch ile eğitim tamamlanmıĢtır. 
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ġek l  3.31.Dirsek Eklem Açısı Tahmini Ġçin OluĢturulan MLP Ağı 

 

Sinir ağlarına verilmek üzere oluĢturulan eğitim verisi 280 örneğe 

bölünmüĢ ve ardından sEMG iĢaretinin 3 zaman özellik vektörü elde edilmiĢtir. Bu 

3 zaman özelliği de biceps ve triceps iĢaretleri için ayrı ayrı oluĢturulmuĢtur. ġekil 

3.32’de, biceps ve triceps kas iĢaretlerinin ortalama mutlak değeri (MAV), dalga 

formu uzunluğu (WL) ve ortalama karekök (RMS) değerlerinin grafikleri 

gösterilmiĢtir. 4 özellikli iĢaret verisi ise ġekil 3.33 ve 34’te gösterilmektedir. ġekil 

3.33 biceps iĢaretini ve iĢarete ait 4 zaman özelliği olan ortalama mutlak değer 

(MAV), dalga formu uzunluğu (WL), ortalama karekök (RMS) ve varyans (VAR) 

grafiklerinden oluĢmaktadır. ġekil 3.34’te triceps iĢaretinin ve bu 4 zaman 

özelliğinin grafikleri gösterilmektedir.  Burada iĢaretin ve özellik vektörlerinin 

tümü değil, tümünü temsil eden bir kısmı gösterilmiĢtir. 
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ġek l  3.32. MLP Eğitim Verisinin 3 Öznitelik Grafiği 
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ġek l  3.33. MLP Eğitim Verisinin Biceps ĠĢareti ve 4 Farklı Özniteliğinin Grafiği 
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ġek l  3.34. MLP Eğitim Verisinin Triceps ĠĢareti ve 4 Farklı Özniteliğinin Grafiği 
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Eğitim verisindeki açı bilgisi modelde hedef olarak tanımlanmıĢtır. Kas 

iĢaretleri ile eĢzamanlı alınan açı bilgisi MLP ağ modeline radyan cinsinden 

verilmiĢtir. ġekil 3.35’te hedef eklem açısının bir kısmının grafiği gösterilmektedir. 

 

 
ġek l  3.35. MLP Hedef Eklem Açı ĠĢareti 
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ġek l  3.36. MLP Regresyon Grafiği 

 

Ağın eğitimini doğrulamak için ağ çıktıları ve hedefler arasındaki iliĢkiyi 

gösteren regresyon grafiği, Ģekil 3.36’da gösterilmiĢtir. Bu grafiğe göre kesikli 

çizgi, en iyi sonucu temsil ederken düz mavi çizgi ağın tahmin ettiği çıktıları ve 

hedefler arasındaki en uygun doğrusal regresyon çizgisini ifade etmektedir. ġekil 

3.37’de MLP ağının eğitim performans grafiği gösterilmiĢtir. Bu grafiğe göre 

modelin 1000 eğitim dönemi (epoch) boyunca ortalama kare hatası 0.036031’dir. 
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ġek l  3.37. MLP Eğitiminin Performans Grafiği 
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3.14. Tasarlanan Derin Öğrenme BiLSTM Modeli 

 Tasarlanan modeli eğitmek üzere ilk olarak hazırlanan eğitim verisi cross 

validation tekniği ile %70 eğitim %30 doğrulama (validation) verisi olarak 

bölünmüĢtür. Çapraz doğrulama olarak bilinen bu yöntem bir algoritmanın eğitim 

görmediği yeni veri kümeleri üzerinde tahminlerde bulunma performansını 

değerlendirmek için kullanılmaktadır. Bu tekniğin en yaygın kullanılanlarından bir 

olan holdout ile bölünme sağlanmıĢtır. Holdout verileri rastgele olarak eğitim ve 

doğrulama için belirtilen oranın tam olarak iki alt grubuna böler. ġekil 3.38’de 

eğitim veri grafiği ve ġekil 3.39’da doğrulama veri grafiği gösterilmektedir. 

Sırasıyla biceps ve triceps iĢaretleri ile eklem açısı yer almaktadır. 
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ġek l  3.38. LSTM Ağ Modeli Ġçin Eğitim Verisi 
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ġek l  3.39. LSTM Ağ Modeli Ġçin Doğrulama Verisi 
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Eğitim ve doğrulama verileri 280 örneğe bölünmüĢ ve tasarlanan modele 

girdi olarak verilmek üzere biceps ve triceps iĢareti hazır hale getirilmiĢtir. ġekil 

3.40’ta hedef eklem açısı grafiği gösterilmektedir. Farklı kasılma türleri ve 

ağırlıkların iĢaretleri birleĢtirildiğinden grafiğin ilk kısmındaki açı bilgisi izokinetik 

kasılma türünü, sonlara doğru olan açı bilgisi ise izotonik kasılmayı ifade 

etmektedir. Açı sinyalinin istatistiksel olarak kas iĢaretleriyle iliĢkilendirilebilmesi 

ve hesaplamalar yapılabilmesi adına normalize edildikten sonra modele verilmiĢtir. 

ġekil 3.39’da normalize edilmiĢ hedef eklem açısı gösterilmektedir. Grafikteki 

iĢaretler sırasıyla izokinetik ve izotonik kasılmayı takip etmektedir. Normalizasyon 

iĢlemi denklem 3.21’deki gibi minmax normalizasyon ile yapılmıĢtır. Açı bilgisi, 

eğitmek amaçlı hedef olarak kullanılmıĢtır. Model test edilirken açı bilgisi 

kullanılmaz yalnızca sEMG iĢaret bilgisinin değiĢken ortalama değerleri ve tepe 

kılıf değerleri verilerek tahmini çıktı elde edilmektedir. 

 
ġek l  3.40. Normalize EdilmiĢ Hedef Eklem Açısı 
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                           (3.21) 

 

Akhundov ve ekibinin EMG ile sınıflandırmada yaptığı çalıĢmada 

sinyallerin pozitif tepe kılıf değerlerini almasına benzer Ģekilde, (Akhundov et al., 

2019) giriĢ için sEMG sinyallerinin pozitif-negatif tepe kılıf değeri çıkarılmıĢtır. 

(ġekil 3.41) Salınan bir sinyalin uç ana hatlarını gösteren bu değerler ile sEMG 

sinyallerinin değiĢken ortalama değerleri bir dizi olarak bu çalıĢma için oluĢturulan 

BiLSTM modeline giriĢ sinyali olarak verilmiĢtir. (ġekil 3.42) 
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ġek l  3.41. LSTM Eğitim Verisinin GiriĢ Sinyalleri Ortalamasının Tepe Kılıf 

Değerleri 
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ġek l  3.42. Dirsek Eklem Açısı Tahmini Ġçin OluĢturulan LSTM Ağ 

Konfigürasyonu 
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Verilerden öğrenen bir model tasarlanırken kullanılan algoritma ya da bazı 

parametreler uygulamayı veya problemi modele uyarlamak adına tasarlayan kiĢi 

tarafından belirlenmektedir. Buna göre dirsek eklem açı tahmini için tasarlanan 

model 6 giriĢli, 3 BiLSTM katmanından oluĢmakta ve katmanlarda sırasıyla 400-

300-400 gizli birim bulunmaktadır. AĢırı uyumu gidermek için ilk iki 

katmanda %50’lik bir dropout iĢlemi yapılmıĢtır. Her katmandan sonra RELU 

aktivasyon fonksiyonu eklenmiĢtir. Tamamen bağlı katman (FCL) ardından 

regresyon katmanına bağlanarak model bir açı tahmini yapmaktadır. ġekil 3.43’te 

oluĢturulan ağ mimarisi ve genel katman Ģeması ayrıntılı olarak gösterilmektedir. 
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ġek l  3.43. Derin Öğrenme BiLSTM Ağ Mimarisi Katmanları (MATLAB) 
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3.15. Derin Ağ Modeli Optimizasyonu ve Hiperparametreler 

Tasarlanan modelde katmanlar esas iĢi yapan iskelet kısımdır. Ancak 

eğitim sırasında modeli uygulamaya göre revize eden önemli bir kısım 

parametreler vardır. Hiperparametre olarak adlandırılan bu yapılar veri setine göre 

değiĢiklik gösterirler. Buna göre her eğitim döneminde (epoch) eğitim ve 

doğrulama verileri shuffle seçeneği ile karıĢtırılmıĢtır. Her 15 epoch’ta bir 

güncellenen Öğrenme oranı ilk olarak 0.01 belirlenmiĢtir. Mini grup boyutu 

(minibatchsize) 128, düzenleĢtirme faktörü (L2 regulatization) 0.000002, gradyan 

eĢiği (GradientThreshold) 0.0005 ve epoch sayısı 100 olarak ayarlanmıĢtır. 

Burada baĢarılı bir eğitim sağlamak adına optimizasyon kavramı da önemli 

bir yer tutmaktadır. Derin Öğrenme modellerinde çıktı ve hedef değer arasındaki 

fark olan hatanın minimum olması hedeflenmektedir. Bu amaçla optimizasyon için 

gradyen iniĢini esas alan teknikler kullanılmaktadır. (Kurt, 2018)Bu tekniklerden 

Adaptif Momentum Optimizer (ADAM) tasarlanan modelde kullanılmıĢtır. ADAM, 

RMSProp gibi öğrenme katsayısını eğimin değerine göre güncellemenin yanı sıra 

momentum değiĢikliklerini de ön bellekte saklayarak ağırlıklarda güncelleme 

sağlamaktadır. (Kurt, 2018) Bu sayede ağırlıkları güncellerken yerel minimuma 

takılmadan türevlenebilmesini yani modelin öğrenebilmesini sağlar.  
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4. BULGULAR VE TARTIġMA 

 

Bu bölümde Derin Öğrenme ve Çok Katmanlı Algılayıcı sinir ağı ile 

tasarlanan modellerin performansı sunulmuĢtur. Bunun için ilk olarak hazırlanan 

test verisinin grafikleri gösterilmiĢ ardından modelin açı tahmin grafikleri 

verilmiĢtir. Grafikler tüm sonuçların yerine sonuç gruplarını temsil etmektedir.  

 

4.1. Çok Katmanlı Algılayıcı Modeli Dirsek Eklem Açı Tahmini Deneysel 

Sonuçları 

Dirsek ekleminin açı tahmini için model, MathWorks tarafından geliĢtirilen 

MATLAB 2019a paketinde oluĢturulmuĢ ve testi yapılmıĢtır. Zaman düzleminin 

sınıflandırma ve tahmindeki baĢarılı etkileri göz önüne alınarak açı tahmini için 

MLP ağına 4 zaman özelliği (RMS, MAV, WL, VAR) ve varyans hariç 3 zaman 

özelliği verilmiĢtir. DeğiĢik öznitelik sayıları ve gizli katmanlarındaki farklı nöron 

sayıları olan ağlar oluĢturulmuĢtur. ġekil 4.1’de biceps kasının sEMG iĢareti ve 3 

zaman alanı özniteliği (MAV, WL, RMS) çizilmiĢtir. ġekil 4.2’de triceps kasının 

sEMG iĢareti ve 3 zaman alanı özniteliğinin (MAV, WL, RMS) grafiği 

gösterilmektedir.  



4.BULGULAR VE TARTIġMA                                                                     Aybike PĠROL 

70 

 
ġek l  4.1. MLP Test Verisinin Biceps ĠĢareti ve Öznitelik Grafiği 
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ġek l  4.2. MLP Test Verisinin Triceps ĠĢareti ve Öznitelik Grafiği 
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ġek l  4.3. Dirsek Eklem Test Açı Verisi ve MLP Ağının Tahmin Grafiği -1 
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ġek l  4.4. Dirsek Eklem Test Açı Verisi ve MLP Ağının Tahmin Grafiği -2 
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ġek l  4.5. Dirsek Eklem Test Açı Verisi ve MLP Ağının Tahmin Grafiği -3 
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ġek l  4.6. Dirsek Eklem Test Açı Verisi ve MLP Ağının Tahmin Grafiği -4 

  



4.BULGULAR VE TARTIġMA                                                                     Aybike PĠROL 

76 

ġekil 4.3, 4.4, 4.5 ve 4.6 eğitilen MLP ağının test açısını tahmin etme 

grafiğidir. ġekil 4.3’teki grafiğin ilk kısımları serbest el ile yapılan izokinetik 

hareketi temsil eder ve ġekil 4.5 serbest el ile yapılan izotonik hareketi, 0,5 kg 

ağırlık ile yapılan izokinetik ve izotonik hareketi göstermektedir. ġekillerde 

bulunan grafiklerin hepsinde bu kasılma türlerinin farklı ağırlıkları ve modelin 

bunları tahmin etmesi mevcuttur. Çizelge 4.1’deki 3 ile 4 zaman özniteliği ve gizli 

katmanlı MLP modellerinin performans sonuçları gösterilmektedir. 

 

Ç zelge  4.1. MLP Ağ Sonuçları 

MLP 

Lr 0.003 Epoch 1000 Test Verisi İçin 

Öznitelik Sayısı Nöron -Katman Sayısı MAPE RMSE Doğruluk % 

3 (rms,mav,wl) 11-5 0,091 15,12 90,9 

4 (rms,mav,wl.var) 11-5 0,095 15,36 90,5 

3 (rms,mav,wl) 11-11-8 0,1018 19,2 89,8 

4 (rms,mav,wl.var) 11-11-8 0,0991 17,6 90,09 

 

4.2. Derin Öğrenme Modeli ile Dirsek Eklem Açı Tahmini Deneysel Sonuçları 

Dirsek eklem tahmini için MATLAB 2019a paketinde tasarlanan derin 

öğrenme BiLSTM ağı eğitimi sonrasında test verisi ile tahmini açı değerleri 

bulunmuĢtur. MLP ağına sunulan test verisi kıyaslama için Derin öğrenme ağına da 

sunulmuĢtur. ġekil 4.7’de test verisi gösterilmiĢtir. Grafikte sırasıyla biceps, triceps, 

dirsek eklem açısı gösterilmektedir. MLP ağındaki gibi test verisinin VAR, RMS, 

WL özellikleri verilmemiĢ iĢaretin 280 örneğe bölünerek değiĢken ortalama 

değerleri ve tepe kılıf değerleri verilmiĢtir. Grafikteki dirsek eklem açısı test 

sürecinde verilmez. Yalnızca biceps ve triceps iĢaretlerinin değiĢken ortalama 

değerleri (ġekil 4.8) ve tepe kılıf değerleri verilerek ağın tahmini bu dirsek eklem 

test açısı ile kıyaslanır. ġekil 4.9’da biceps ve triceps iĢaretinin tepe kılıf değerleri 

gösterilmiĢtir. Grafikte alt ve üst tepe değerleri ayrı ayrı çizilmiĢtir. 
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Sinyallerin değiĢken ortalama değerlerini ve tepe kılıf değerlerini giriĢ alan 

Derin Öğrenme modelinin açı tahmini ġekil 4.10’da gösterilmiĢtir. Bu grafik 

normalize edilmiĢ çıktıları sunmaktadır. Kırmızı çizgi üst ekstremite dirsek eklemi 

test açısının normalize edilmiĢ hali iken, yeĢil çizgi BiLSTM modelin tahmin ettiği 

normalize açı değerleridir. Denormalize edildikten sonraki tahmin grafiği ise Ģekil 

4.11, 4.12 ve 4.13’de gösterilmiĢtir. Bu grafikler farklı kasılma türü ve ağırlığına 

göre birleĢtirilen iĢaretlerin tahminlerini göstermektedir. ġekil 4.11’deki grafiğin 

ilk kısımları serbest el ile yapılan izokinetik hareketi temsil eder ve devamı 1 kg 

ağırlık ile yapılan izotonik hareketi göstermektedir. ġekil 4.12 ve 13’te bu kasılma 

türlerinin farklı ağırlıklar ile olduğu ve modelin bunları tahmin ettiği grafikler 

sunulmuĢtur. 
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ġek l  4.7. LSTM Ġçin Test Verisi ĠĢaretleri 
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ġek l  4.8. LSTM Test Verisi GiriĢ Sinyalleri Ortalaması ve Normalize Hedef Açısı 
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ġek l  4.9. LSTM Test Verisi için DeğiĢken Ortalamanın Tepe Kılıf Değerleri- GiriĢ 

Sinyalleri 
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ġek l  4.10. Normalize Test Verisi ve Derin Öğrenme Modelinin (LSTM) Tahmin 

Grafiği 
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ġek l  4.11.Test Açısı ve Derin Öğrenme Modelinin Tahmini -1 
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ġek l  4.12. Test Açısı ve Derin Öğrenme Modelinin Tahmini -2 
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ġek l  4.13. Test Açısı ve Derin Öğrenme Modelinin Tahmini -3 
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Çizelge4.2’de önerilen BiLSTM ağı ile LSTM ağının performans sonuçları 

gösterilmektedir. Burada verinin bölünme oranı, gizli katman sayısı her iki ağ 

içinde aynı seçilmiĢtir. Çizelge 4.3’te ise katman sayısına göre doğruluk sonuçları 

gösterilmiĢtir. Model 2’den farklı olarak Model 6, 4 katmanlı her katmanında 300 

gizli birim bulunan ağ yapısına sahiptir.  

 

Ç zelge  4.2. LSTM ve BiLSTM Ağ Performansı 

Derin Öğrenme 

 Test RMSE Test MAPE Test Mae  Doğruluk (%) 

Model 2 (BiLSTM) 15,4 0,1005 11,3 89,95 

Model 3 (LSTM) 19,5 0.137 15,7 86.3 

 

Ç zelge  4.3. Katman Sayısına Göre BiLSTM Ağının Sonuçları 

Derin Öğrenme (BiLSTM) 

 Katman Sayısı Test Verisi RMSE Doğruluk (%) 

Model 2 3 15,4 89,95 

Model 6 4 17,9 87,5 

 

Çizelge 4.4 önerilen modelin eğitim sürecinde baĢarıyı arttırmak adına 

yapılan veri bölünmesi oranlarının kıyaslanmasını göstermektedir. 

 

Ç zelge  4.4.Üç Katmanlı BiLSTM Ağında Farklı Bölünme Oranına Göre Sonuçlar 

Derin Öğrenme (BiLSTM) 

 Bölünme Oranı (%) Test Verisi RMSE Doğruluk (%) 

Model 2 70-30 15,4 89,95 

Model 2 80-20 19,4 88,02 
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Ç zelge  4.5.Üç Katmanlı BiLSTM Ağında Farklı Dropout Sonuçları 

Derin Öğrenme (BiLSTM) 

 Dropout Test Verisi RMSE Doğruluk (%) 

Model 2 Yok 19,4 86,71 

Model 2 %20 17,5 88,37 

Model 2 %50 15,4 89,95 

 

Son olarak MLP ve BiLSTM ağlarının kıyaslamalı açı tahminleri gerçek 

ölçüm test açısı ile ġekil 4.14, 4.15, 4.16ve 4.17’de verilmiĢtir. 
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ġek l  4.14. Test Verisi ve Farklı Sinir Ağlarının Tahmin Kıyaslama Grafiği -1 
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ġek l  4.15. Test Verisi ve Farklı Sinir Ağlarının Tahmin Kıyaslama Grafiği -2 
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ġek l  4.16. Test Verisi ve Farklı Sinir Ağlarının Tahmin Kıyaslama Grafiği -3 
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5. SONUÇLAR VE ÖNERĠLER 

 

Bu çalıĢma, rehabilitasyon amaçlı sistemlerde noninvaziv sEMG kullanan 

yapay sinir ağları ile açı tahmini yapmak ve sonuçlarını değerlendirmek için 

yapılmıĢtır. 2000’li yıllardan bu yana özellikle görüntü iĢlemede popüler hale gelen 

Derin Öğrenme mimarisinin, üst ekstremitede dirsek eklem açı tahminini, sinyalin 

değiĢken ortalama değerleri ve tepe kılıf değerleri ile yapabilmesi hedeflenmiĢtir. 

Bu amaçla, bir diziden baĢka bir diziye tahmin gibi sıralı verileri iĢleme 

avantajından dolayı RNN ‘nin bir varyantı olan BiLSTM mimarisi ile bir model 

tasarlanmıĢtır. Geleneksel sinir ağlarından Çok Katmanlı Algılayıcı (MLP) ile 

kıyaslanması yapılmıĢtır. 

RNN tabanlı BiLSTM sinir ağı ile tasarlanan modelin, yaklaĢık 122 

derecelik dirsek eklem açı aralığına göre ortalama mutlak hatası (MAE) %9,23 

iken doğruluğu 89,95% olarak hesaplanmıĢtır. Eğitim datasının %80-20 

yerine %70-30 olarak bölünmesi daha baĢarılı sonuç vermiĢtir. AĢırı öğrenmeyi 

önlemek için kullanılan dropout katmanı modele %50 olarak eklenmesi sonuçları 

olumlu etkilemiĢtir. Çizelge 4.2’deki modellerin her ikisi, izokinetik hareketi 

tahmin etmede izotonik hareketi tahmin etmeye göre daha düĢük baĢarı 

göstermiĢtir. 

MLP ile tasarlanan modelin yaklaĢık 122 derecelik dirsek eklem açı 

aralığına göre ortalama mutlak hatası (MAE) %8,6 ve %90,9 doğruluğa ulaĢtığı 

hesaplanmıĢtır. Buna göre açı tahmini için oluĢturulan diğer modellerden daha 

yüksek doğruluk elde etmiĢtir. (Çizelge 4.1) 

DüĢük genlikli ve rastgele iĢaretler olan EMG sinyalinin öznitelikleri ve 

hangi özniteliklerin verildiği yapay sinir ağının tahmini için önem arz ettiği ve 

farklı günlerde alınan kas bilgisinin gerçek insan hareketlerinde gerçekçi tahmin 

edilmesinde önemli bir rol oynadığı görülmektedir. 

Derin öğrenme yapılarındaki optimizasyon ayarının modelin 

performansında önemli bir ölçüt olduğu görülmüĢtür. Optimizasyon ayarları ile 



5.SONUÇLAR VE ÖNERĠLER                                                                       Aybike PĠROL 

92 

ağın doğruluğunu ve sağlamlığını arttırabileceği ve derin öğrenme mimarisinin 

sEMG sinyalleri için bir çözüm olabileceği söylenebilir. 

Özetle, üst ekstremitede yapılan açı tahmin çalıĢmalarına göre 3 öznitelik 

kullanan geleneksel sinir ağı MLP kadar, sinyalin değiĢken ortalama değerini ve 

tepe kılıf değerini kullanan RNN mimarisi de iyi doğruluğa ulaĢmıĢtır. Bu sonuçlar 

neticesinde derin öğrenme yönteminin ilerde bir üst ekstremite rehabilitasyon 

sisteminde hareket kontrolü için daha az özellik kullanarak baĢarılı bir kullanım 

potansiyeli oluĢturacağı açıktır. Özellikle tasarlanan yapının doğruluğunu ve 

sağlamlığını arttırmak adına CNN-LSTM gibi hibrit bir yaklaĢımın ilerde 

çalıĢılması bu alana katkı sağlayacaktır. 
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