

TAŞINABİLİR YÜRÜTÜLEBİLİR DOSYALARDA YİNELENEN
SİNİR AĞLARINI KULLANARAK STATİK KÖTÜ AMAÇLI

YAZILIM ALGILAMA

YÜKSEK LİSANS TEZİ

MUSA GÜL
ORCID ID: 0000-0002-1802-2537

MERSİN ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ

BİLGİSAYAR MÜHENDİSLİĞİ
ANABİLİM DALI

MERSİN

MAYIS- 2021

ii

TAŞINABİLİR YÜRÜTÜLEBİLİR DOSYALARDA YİNELENEN

SİNİR AĞLARINI KULLANARAK STATİK KÖTÜ AMAÇLI
YAZILIM ALGILAMA

YÜKSEK LİSANS TEZİ

MUSA GÜL
ORCID ID: 0000-0002-1802-2537

MERSİN ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ

BİLGİSAYAR MÜHENDİSLİĞİ
ANABİLİM DALI

Danışman
Doç. Dr. Erdinç AVAROĞLU

ORCID ID: 0000-0003-1976-2526

MERSİN

MAYIS - 2021

v

ÖZET

Taşınabilir Yürütülebilir Dosyalarda Yinelenen Sinir Ağlarını Kullanarak Statik
Kötü Amaçlı Yazılım Algılama

Teknolojideki son gelişmeler ile kötü amaçlı yazılımdan koruma yazılımının ortaya

çıkmasından bu yana, bu yazılım ya da yazılımları atlatmaya yönelik özel olarak tasarlanmış
karmaşık kötü amaçlı yazılımlarda bir artış görülmüştür. Bu da daha gelişmiş algılama
tekniklerine yönelik araştırmalara öncülük etmiştir. Bu çalışmanın temel amacı, taşınabilir
yürütülebilir dosyaları statik olarak kötü niyetli veya zararsız olarak sınıflandırmak için derin bir
sinir ağı tasarlamak ve değerlendirmektir.

Bu amaçla, bilinen kötü niyetli ve zararsız dosyaların taşınabilir yürütülebilir
dosyalarından çıkarılan verileri içeren Microsoft’un sunduğu Microsoft Malware Classification
Challenge (BIG 2015) ekinliği için hazırlanan veri seti kullanılmıştır. Python programlama dili
kullanılarak taşınabilir yürütülebilir dosya örnekleri özellik çıkarımına uygun hale gelecek
şekilde parçalara ayrılmıştır. Tüm dosyalar sadece işlem kodları kalacak şekilde ayıklanmıştır.
Kod sekansları içerisinden tekrar eden ve gereksiz olan işlem kodları silinmiş, her bir dosyadan
gelen kod sekansının büyüklüğü belirli bir boyut ile sınırlandırılmıştır. Bu boyuttan büyük olan
dosyalar için geri kalan kodlar alınmazken, küçük olanlar içinse eksik kalan kısımlar sıfır
kullanılarak doldurulmuştur. Oluşturulan sözlük, popüler gözetimsiz ve tahmin temelli doğal dil
işleme modellerinden Word2Vec kullanılarak vektörel hale getirilmiştir. Word2Vec kullanılırken
çalışmaya uygunluğu göz önünde bulundurularak Sürekli Kelime Torbası (CBOW) mimarisi
kullanılmıştır. CBOW modeli uygun görüldükten sonra en iyi sonuçların pencere boyutunun 15
olduğu çalışmada elde edildiği görülmüştür, bu nedenle pencere boyutu 15 olarak belirlenmiştir.
Çalışma uzun sekanslar içerdiğinden RNN modelinde hız düşüşü öngörülerek RNN’nin farklı bir
versiyonu olan LSTM kullanılmıştır.

LSTM modelinin oldukça az sayıda eğitim turu yapılsa dahi öğrenmeye gayet yüksek
doğruluk oranları ile başladığını, ardından eğitim turu arttıkça da doğruluk oranının dramatik bir
şekilde yükseldiği görülmektedir. Beklenildiği gibi 10 eğitim turu sonrasında ise artık model
doygunluğa eriştiği için performansındaki gelişmeler çok sınırlı kalmıştır. 50 eğitim turu sonrası
elde edilen en iyi doğruluk değeri ise %95,8 olarak elde edilmiştir. Bulgular, yeni üretilen ya da
az bilinen kötü amaçlı yazılımların kolaylıkla tespit edilmesi konusunda oldukça önem arz
etmekte ve virüs imza veri tabanı temelli koruma yazılımları yerine makine öğreniminin
modellendiği daha gelişmiş kötü amaçlı yazılımdan korunma tekniklerinin tasarımında yol
gösterici olacaktır.

Anahtar Kelimeler: LSTM, Kötü amaçlı yazılım, RNN, Word2Vec, Virüs.

Danışman: Doç. Dr. Erdinç AVAROĞLU, Mersin Üniversitesi, Bilgisayar Mühendisliği Anabilim
Dalı, Mersin.

vi

ABSTRACT

Static Malware Detection Using Recurrent Neural Networks in Portable Executables

Since the advent of anti-malware software with recent advances in technology, there has

been an increase in sophisticated malware specifically designed to circumvent them. This led to
research into more advanced sensing techniques. The main purpose of this study is to design and
evaluate a deep neural network to statically classify portable executables as malicious or
harmless.

For this purpose, the data set prepared for the Microsoft Malware Classification Challenge
(BIG 2015) event presented by Microsoft, which includes the data extracted from the portable
executable files of known malicious and harmless files, was used. Examples of portable
executables using the Python programming language are segmented to be suitable for feature
extraction. All files have been extracted so that only opcodes remain. Repetitive and unnecessary
opcodes were deleted from the code sequences, and the size of the code sequence from each file
was limited to a certain size. For the files larger than this size, the remaining codes are not taken,
while for the smaller ones, the missing parts are filled with zeros. The created dictionary was
vectorized using Word2Vec, one of the popular unattended and predictive-based natural
language processing models. When using Word2Vec, the Continuous Bag of Words (CBOW)
architecture was used considering its suitability to work. After the CBOW model was approved, it
was seen that the best results were obtained in the study with a window size of 15, therefore the
window size was determined as 15. Since the study includes long sequences, a different version
of RNN, LSTM, was used by predicting a speed decrease in the RNN model.
 It is seen that the LSTM model starts learning with very high accuracy rates even if a very
small number of training tours are performed, and then the accuracy rate increases dramatically
as the training tour increases. As expected, after 10 training rounds, the performance
improvements were very limited as the model had reached saturation. The best accuracy value
obtained after 50 training rounds was obtained as 95.8%. The findings are very important in
easily detecting newly produced or lesser-known malware and will guide the design of more
advanced anti-malware techniques modeled by machine learning rather than virus signature
database-based protection software.

Keywords: LSTM, Malware, RNN, Word2Vec, Virus.

Advisor: Assoc. Dr. Erdinç AVAROĞLU, Mersin University, Department of Computer
Engineering, Mersin.

vii

TEŞEKKÜR

Bu çalışmada makine öğrenimi ve yapay sinir ağları konusundaki bilgileri ile bana destek

olan Kutluhan KİBRİT ve Özkan KIRIK büyüklerime ve tez hazırlık sürecimde baştan sona bana
destek olup emeğini esirgemeyen değerli hocam Doç. Dr. Erdinç AVAROĞLU hocama ayrıca tez
sunumuma katılan değerli hocalarım ve jüri üyelerim Prof. Dr. Hamza EROL ve Doç. Dr. Taner
TUNCER hocalarıma ve son olarak destekleri ile motivasyonumu yüksek tutan ailem ve eşime
sonsuz teşekkürler.

viii

İÇİNDEKİLER

 Sayfa
İÇ KAPAK i
ONAY ii
ETİK BEYAN iii
ÖZET iv
ABSTRACT v
TEŞEKKÜR vi
İÇİNDEKİLER vii
TABLOLAR DİZİNİ viii
ŞEKİLLER DİZİNİ ix
KISALTMALAR ve SİMGELER x
1. GİRİŞ 1
1.1. Amaç 3
1.2. Taslak 3
2. KAYNAK ARAŞTIRMALARI 4
2.1. Statik Kötü Amaçlı Yazılım Tespiti 5
2.1.1. Farklı Kötü Amaçlı Yazılım Türleri 5
2.1.1.1. Virüs 6
2.1.1.2. Worm(Solucan) 7
2.1.1.3. Bot 7
2.1.1.4. Rootkit 8
2.1.1.5. Backdoor (Arka Kapı) 8
2.1.1.6. Truva atı 8
2.1.2. İmzadan Kaçınma 8
2.1.3. Kod Gizleme 9
2.1.4. Yazılım Paketleme 10
2.2. Kötü Amaçlı Yazılım Algılama için Makine Öğrenimi 10
2.2.1. Özellik Seçimi 12
2.2.2. Güçlendirilmiş Karar Ağaçları ve Yapay Sinir Ağları 12
2.3. Yinelenen Sinir Ağlarının İncelenmesi 13
2.3.1. Yinelenen Sinir Ağı Mimarileri 14
2.3.2. Yinelenen Sinir Ağlarında Öğrenme 15
2.4. Tasarım Konuları ve Teorisi 16
2.4.1. Optimizasyon 16
2.4.2. Ayrık Zaman Sistemleri 17
2.4.3. Bayesian İnanç Revizyonu 17
2.4.4. Bilgi Temsili 18
2.4.5. Uzun Vadeli Bağımlılıklar 18
2.5. Uygulamalar 19
2.5.1. Kaotik Yeniden Kazanan Ağlar 19
2.5.2. Dil Öğrenimi 20
2.5.3. Sıralı Otomatik Birleştirme 20
2.5.4. Eğitim Sorunları 21
2.5.5. Adaptif Robot Davranışı 22
2.6. Gelecekteki Yönlendirmeler 22
2.7. Tanışabilir Yürütülebilir Formatın Tanımlanması 22
2.7.1. MS-DOS Koçanı 23
2.7.1.1. Ortak Nesne Dosya Formatı 24
2.7.1.2. İsteğe Bağlı Başlık 24
2.7.1.3. Bölüm Tablosu 27
2.7.1.4. x86/x64 mimarisi 27

ix

 Sayfa
3. MATERYAL ve YÖNTEM 30
3.1. Veri seti 30
3.2. Yöntem 31
3.2.1. Verilerin Hazırlanması ve Özellik Çıkarımı 31
3.2.2. Word2Vec 32
3.2.3. Yinelenen Sinir Ağları (Recurrent Neural Network) 32
3.2.3.1. LSTM 35
3.2.3.2. Google Colaboratory 37
3.2.3.3. Değerlendirme Ölçütleri 38
4. BULGULAR ve TARTIŞMA 40
5. SONUÇLAR ve ÖNERİLER 43
KAYNAKLAR 44
EKLER (Var ise)
ÖZGEÇMİŞ 50

x

TABLOLAR DİZİNİ

 Sayfa
Tablo 1. Tekrarlayan sinir ağı uygulamalarına örnekler 13
Tablo 2. COFF: Yapısı [75] 24
Tablo 3. COFF: Makine Tipleri [75] 25
Tablo 4. COFF: Mevcut Özellik İşaretleri [75] 26
Tablo 5. Optimal Başlık Sihir Numarası [75] 26
Tablo 6. Optimal Başlık Parçaları [75] 26
Tablo 7. Zararlı yazılım aileleri ve sayı değerleri 30
Tablo 8. Karmaşıklık matrisi kullanılarak değerlendirme 38
Tablo 9. Kelime Penceresi Boyutuna göre Sürekli Kelime Torbası ve Geri Atlama
modellerinin sonuçları.

40

Tablo 10. LSTM modeli için kullanılacak parametreler. 40
Tablo 11. Karmaşıklık matrisi sonuçları 42

xi

ŞEKİLLER DİZİNİ

 Sayfa
Şekil 1. Tamamen bağlı tekrarlayan sinir ağına bir örnek. 14
Şekil 2. Basit bir tekrarlayan ağ örneği. 15
Şekil 3. PE Dosya Formatı 23
Şekil 4. Zararlı yazılım örneklerinin dağılımları 31
Şekil 5. Ramnit adlı virüs ailesine ait bir zararlı yazılımın assembly komutlarındaki
en sık kullanılan 10 işlem kodu

32

Şekil 6. One-hot Encoding örneği 33
Şekil 7. One-hot encoding ile kelime temsili farkı 33
Şekil 8. CBOW ve Skip-gram modelleri 34
Şekil 9. Verilerin işlenmesini özetleyen akış şeması 34
Şekil 10. İleri beslemeli sinir ağının yinelenen sinir ağına dönüşümü 35
Şekil 11. Uzun-Kısa Süreli Bellek (LSTM) 36
Şekil 12. Google Colaboratory servisi arayüzü 38
Şekil 13. LSTM modeli farklı eğitim turları çalışma sonucu 41
Şekil 14. LSTM modeli farklı test turları çalışma sonucu 41

xii

KISALTMALAR ve SİMGELER

Kısaltma/Simge Tanım
URL Uniform Resource Locator
HTTP Hyper Text Transfer Protocol
COFF Common Object File Format
API Application Programming Interface
PE Portable Executable
RNN Recurrent Neural Network
LSTM Long Short-Term Memory

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

1

1. GİRİŞ

Kötü amaçlı yazılım algılama kavramı, esas olarak kötü niyetli amaç oluşturmak için

yürütülebilir dosyaların analiz edilmesiyle ilgili bir konu olarak bilinmektedir. Kötü amaçlı

yazılımdan koruma yazılımının ortaya çıkmasından bu yana, bu yazılımı atlatmak için özel olarak

tasarlanmış karmaşık kötü amaçlı yazılımlarda bir artış görülmüştür. Bu da daha gelişmiş

algılama tekniklerine yönelik araştırmalara öncülük etmiştir. Kötü amaçlı yazılım analizi veya

kötü amaçlı yazılım tespiti iki şekilde gerçekleştirilebilir: statik veya dinamik olarak.

Statik Kötü Amaçlı Yazılım Algılama: Statik kötü amaçlı yazılım algılama, bir ikili

dosyayı yürütmeden analiz etme sürecidir. Bu, dosyanın tamamen yayılmasını ve her bileşenin

incelenmesini, tersine mühendislik yapmak için bir sökücü kullanılmasını veya akışını incelemek

için montaj koduna dönüştürülmesini içerebilir [1]. Varsa yazılımın orijinal kaynak koduna da

genişletilebilir [2]. Bu, genellikle tüm kötü amaçlı yazılımdan koruma yazılımları tarafından

kullanılan kötü amaçlı yazılımlara karşı ilk savunma hattıdır.

Statik analiz genellikle bilinmeyen bir dosyayla uğraşırken ilk olarak gerçekleştirilir. İlk

adım, ana bilgisayarda [3] yüklü antivirüs programı ile dosyayı manuel olarak taramaktır. Dosya

zaten biliniyorsa, kendi başınıza çözmeye çalışmak için saatler harcamanın bir anlamı yoktur.

(Öğrenme deneyimi hariç.) Sistem antivirüs programına ek olarak, dosya, 43 farklı antivirüs

programı kullanarak dosyayı tarayan VirusTotal gibi bir site üzerinden çalıştırılabilir. Aynı

dosyayla başka birinin karşılaşıp karşılaşmadığını görmek için dosyanın karmasını hesaplamak

ve çevrimiçi olarak aramak da yararlı olabilir.

Dize analizi, dosya hakkında ipuçları almanın basit bir yoludur. Komut satırı seçenekleri,

kullanıcı diyaloğu, şifreler, URL'ler e-posta adresleri, kitaplıklar ve işlev çağrıları gibi dosya

bilgilerindeki tüm dizeleri listeleyerek bulunabilir [3].

Demontaj, statik analizin hayati bir parçasıdır. Bir ikiliden derleme talimatlarını alarak,

programın ne yaptığını anlamak için kaynak kodu araştırılabilir. Yine de anlamak için, (bizim

durumumuzda) x86 ve x86-64 mimarisi ve Windows iç bileşenleri hakkında derin bilgiye sahip

olmak gerekir. Kodun anlaşılmasını kolaylaştırmak için, kod çözülebilir. Bu şekilde kod, daha

yüksek seviyeli bir dilde temsil edilir. Kod orijinali gibi olmayacak olsa da, kodu inceleyen kişinin

işini kolaylaştıracaktır.

Dinamik Kötü Amaçlı Yazılım Algılama: Dinamik kötü amaçlı yazılım algılama, kötü

amaçlı bir yazılımı belirlemek için kötü amaçlı yazılım çalışırken davranış analizini kullanır.

Genellikle bu, yürütülebilir dosyanın hedef sisteme herhangi bir zarar vermemesini sağlamak için

bir SandBox ortamında yapılır. Bu analiz biçimi genellikle yoğun kaynak gerektirir ve çeşitli

şekillerde atlatılabilir. Hata ayıklayıcılar kara kutu testi kullanılarak tespit edilemeyen sistem

çağrılarını veya diğer davranış kalıplarını analiz etmek için de kullanılabilir [4].

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

2

Bu tezin kapsamı için sadece statik kötü amaçlı yazılım tespitine odaklanılmıştır.

Makine öğrenimi, matematiksel işlevler kullanılarak kolayca belirlenemeyen karmaşık

özelliklere sahip verileri sınıflandırmak için uzun süredir kullanılmaktadır. Günümüzde derin

sinir ağları, veri sınıflandırması, veri tahmini, görüntü tanıma, doğal dil işleme vb. dahil (ancak

bunlarla sınırlı olmamak üzere) çeşitli farklı uygulamalar için kullanılmaktadır. Sinir ağlarının bu

çok yönlülüğü, büyük miktarda verinin mevcut olduğu büyük veri gibi bir şey için mükemmeldir,

ancak belirli bir sonuç elde etmek için işlemek hesaplama açısından pahalıdır.

Yakın zamana kadar, denetimli öğrenim için etiketli veri kümelerinin bulunmaması, kötü

amaçlı yazılım tespiti için makine öğrenimi veya derin öğrenmenin kullanımındaki ilerlemeyi

yavaşlatmıştı. Igor Santos vd. bilinmeyen kötü amaçlı yazılımları tespit etmekte makine

öğrenimini kullanmak için statik-dinamik yaklaşım olarak OPEM’i önermiştir [5]. Yürütülebilir

dosyaların demonte edilmesinden elde edilen operasyonel kodları analiz etmeyi ve kötü niyetli

niyetleri belirlemek için yürütme izlerini analiz etmeyi önermişlerdir. Benzer şekilde, Android

için DroidDolphin adlı dinamik bir kötü amaçlı yazılım algılama çerçevesi, dinamik kötü amaçlı

yazılım analizi kullanarak % 86.1 doğruluk elde etmeyi başarmıştır [6]. Her iki yöntem de

genellikle hesaplama açısından pahalıdır ve etiketli verilerin sınırlı kullanılabilirliğinden

muzdariptir.

Dinamik analizi gerçekleştirmenin en basit yolu, numuneyi çalıştırmak ve ne olduğunu

izlemektir. Yalnızca korumalı alan veya çevrimdışı bir laboratuvar gibi izole bir ortamda

çalıştırmak önemlidir. Dinamik yaklaşım her zaman statik analiz yapıldıktan sonra

uygulanmalıdır. Bir kötü amaçlı yazılım örneği çalıştırılırken, izlenmesi gereken birkaç husus

vardır [3]:

• Dosya etkinliği

Kötü amaçlı yazılım, bilgi toplamak, diğer programları başlatmak veya DLL'leri yüklemek

için dosyaları okuyabilir. Diğer programları değiştirmek için dosyalar yazılabilir veya

değiştirilebilir. Dosya sistemindeki tüm aktiviteyi kaydetmek için iyi bir araç Diskmon'dur [7].

• Süreçler

İşlemleri kaydetmek için Process Explorer [8] kullanılabilir. Bu araçla, işlemin yüklediği

tüm dosyalar, kayıt defteri anahtarları ve DLL'ler günlüğe kaydedilir. Ayrıca, süreçler bir ağaç

yapısında düzenlenir, bu nedenle sürecin herhangi bir yeni işlem doğurup doğurmadığını görmek

kolaydır.

• Ağ etkinliği

Çok sayıda kötü amaçlı yazılım, komut almak ve / veya bilgi göndermek için ağ

bağlantısını kullandığından, ağ etkinliği izlenmelidir. TCPView [9], hangi bağlantı noktalarının

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

3

gelen trafiği dinlediğini araştırmak için bir araçtır. Ağ üzerinden gönderilen ve alınan tüm bilgileri

toplamak için Wireshark [10] kullanılabilir.

• Kayıt erişimi

Windows'taki kayıt defteri, işletim sistemi ve yüklü programların birçoğu için

yapılandırma anahtarlarını içeren bir veritabanıdır. Bir kayıt defteri anahtarının değiştirilmesi,

sistemin güvenliği üzerinde büyük bir etkiye sahip olabilir. Yine, İşlem Monitörü kayıt

değişikliklerini izlemek için kullanılabilir.

Hata ayıklama, dinamik analiz gerçekleştirmenin başka bir yoludur.

1.1. Amaç

Bu tezin temel amacı, taşınabilir yürütülebilir dosyaları statik olarak kötü niyetli veya

zararsız olarak sınıflandırmak için derin bir sinir ağı tasarlamak ve değerlendirmektir. Bu amaçla,

bilinen kötü niyetli ve zararsız dosyaların taşınabilir yürütülebilir dosyalarından çıkarılan

verileri içeren Microsoft’un sunduğu Microsoft Malware Classification Challenge (BIG 2015)

ekinliği için hazırlanan veri seti kullanılmıştır. Model oluşturulurken kötü amaçlı yazılımın statik

analizini ele almak için literatürde daha önce önerilen benzer modeller incelenmiştir.

1.2. Taslak

• Bölüm 1, bu tezde kapsanan kavramları tanıtır.

• Bölüm 2, statik kötü amaçlı yazılım analizi alanlarında yapılan önceki çalışmalardan ve

kötü amaçlı yazılım tespitinde kullanılan makine öğrenimi yaklaşımlarını inceler.

• Bölüm 3, önerilen modeli anlamadan önce üzerinde çalışılması gereken taşınabilir

yürütülebilir dosyaların çeşitli yönlerini açıklar. Modelimiz için kullanılan veri setini ve

taşınabilir yürütülebilir dosya formatını nasıl ilişkilendirdiğini kısaca kapsar.

• Bölüm 4, modelimizin uygulanmasında yer alan adımları ve süreçleri, nihai modelin tüm

yapısıyla birlikte ayrıntılı olarak açıklamaktadır.

• Bölüm 5'te modelimiz üzerinde yapılan deneyleri ve bunların gerçek dünyadaki

sonuçlarını tartışıyoruz. Model için kaynak koduna erişim kaynakları ve yapılan tüm

deneyler bu bölümde yer almaktadır.

• Bölüm 6, tezin içeriğini, modelini ve bu tezde kapsanmayan araştırma alanlarını

özetlemektedir. Ayrıca bu tezdeki olası boşluklardan ve bu boşlukları kapatmak için

yapılabilecek araştırmalardan da bahsediyor.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

4

2. KAYNAK ARAŞTIRMALARI

 Bu bölümde, kötü amaçlı yazılım tespiti için makine öğrenimini kullanma konusunda

yayınlanan çalışmalar incelenmiştir. Bazı uygulamalar bu tezde ele alınanlara benzer, ancak

kullanılan veri setinin mevcut olmaması veya sonuç elde etmek için özel çerçevelerin kullanılması

nedeniyle tekrarlanamaz. Ayrıca, dosyaların statik ve dinamik analizini kullanarak diğer

platformlarda kötü amaçlı yazılım tespiti ile ilgilenen bu alandaki bazı ilgili çalışmalar da

incelenmiştir.

Klasik imza tabanlı yöntemlerin üstesinden gelemediği bilinmeyen kötü amaçlı

yazılımlarla başa çıkmak için iki farklı yaklaşım geliştirilmiştir: anormallik algılayıcıları ve veri

madenciliği tabanlı algılayıcılar [11]. Anormallik algılayıcıları, zararsız yazılıma dayalı bir profil

oluşturur ve bir dosya profilden saptığında şüpheli olarak işaretlenir. Veri madenciliği tabanlı,

her iki veri kümesindeki özelliklere bakar ve bir dosyayı bu özelliklere göre sınıflandırır.

2005 yılında Li ve arkadaşları [12], dosya türünü tanımlamak için bir dosyanın

normalleştirilmiş bayt değeri dağılımının 1 gramlık bir temsilini kullanmayı önerdi. Bunun hem

exe, gif, jpg, pdf ve doc dosyalarında K-Means algoritması kullanılırken ortalama %98,9

doğrulukla son derece doğru olduğu kanıtlandı. Yu ve arkadaşları benzer deneyler yaptı [13].

Bilar'dan [14], opcode dağıtımının kötü amaçlı ve zararsız yazılımlarda farklı olduğunu biliyoruz.

67 kötü niyetli ve 20 iyi huylu örnekten oluşan bir veri kümesinde, işlem kodlarının yaklaşık üçte

biri aynı sıklığa, üçte bir oranında daha yüksek ve kötü amaçlı yazılımlara karşı iyi huyluya karşı

üçte bir oranında daha düşük seviyeye sahipti. Ayrıca, kötü amaçlı yazılım daha yüksek oranda

nadir işlem kodları içerir.

Moskovitch ve arkadaşları [15], 30.000'den fazla dosya içeren bir veri kümesi üzerinde

bayt dizisi n-gram kullanarak bir deney yaptı. Dengesizlik sorununu hesaba kattılar: bir sınıfın

diğerine kıyasla önemli ölçüde daha fazla örneği olduğu. Veri kümesindeki yalnızca %15 kötü

amaçlı dosyalar ile %99 doğruluk elde ettiler. Yapay sinir ağlarının, karar ağaçlarının ve saf

Bayes'in Weka uygulamaları kullanıldı. N-gramların karmaşıklığını azaltmak için, yalnızca en

üstteki 1.000 baytlık kodları seçmek için terim frekansı kullanıldı. Bunu yaparak, n = 6'ya kadar

n-gram kullanılabilir. İlginç bir şekilde n = 2, muhtemelen zararsız dosyalara kıyasla kullanılan az

sayıda kötü amaçlı yazılım nedeniyle en iyi sonuçları verdi.

Shankarapani ve arkadaşları [16], derleme ve Uygulama Programlama Arayüzü (API)

çağrı dizileri aracılığıyla kötü amaçlı yazılım algılamayı karşılaştırarak, işlem kodlarının daha

yüksek doğruluğa sahip olduğunu, ancak hesaplama açısından daha pahalı olduğunu keşfettiler.

Ayrıca, paketleyicilerin her iki dosya sınıfı tarafından kullanıldığını, şifrelemenin ise yalnızca kötü

amaçlı yazılım tarafından kullanıldığını buldular.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

5

Santos ve arkadaşları [11] aşağıdaki yöntemi kullandı: Dosyaları sökmek için NewBasic

Assembler kullanıldı. Ardından bir işlem kodu profili oluşturuldu. Bu, kötü niyetli ve zararsız veri

kümelerinde farklı işlem kodlarının kaç kez kullanıldığının bir listesiydi. Ayrıca, işlem kodu alaka

düzeyi hesaplandı. Bu, değişkenler arasındaki istatistiksel bağımlılığı ölçmek için karşılıklı bilgi

kullanılarak yapıldı. İşlem kodları n-gram uzunlukta n = 1 ve n = 2 olarak gruplandırıldı.

Kullanılan sınıflandırma algoritmaları karar ağaçları, destek vektör makineleri, k-en yakın

komşular ve Bayes ağlarıydı. Normalleştirilmiş polinom çekirdeği ve n-gram uzunluğu n = 2 olan

destek vektör makineleri en iyi sonucu verdi (%95,9).

Bulduğumuz en son çalışma Zolothukin ve arkadaşları [17] tarafından yapılmıştır. Kötü

amaçlı yazılımları tanımlamak için yinelemeli destek vektör makinelerine dayalı bir kümeleme

algoritması kullandılar. N-gram uzunluk n = 1 ve n = 2 kullanılmıştır. Boyut indirgeme yöntemi

olarak n = 2 ve ReliefF ile %97 doğruluk elde edilmiştir.

2.1. Statik Kötü Amaçlı Yazılım Tespiti

Statik kötü amaçlı yazılım analiziyle ilgili çeşitli zorluklar vardır. Bu sorunların çoğu,

çalışma zamanı sırasında dosya bozulması, kod gizleme veya şifrelenmiş ikili çalıştırılabilir

dosyalar gibi dinamik kötü amaçlı yazılım analizi kullanılarak çözülebilir. Aşağıda, bu

problemlerden bazılarını ve anlambilimsel analizcilerin bunları çözmedeki eksiklikleri ortaya

çıkarılmıştır.

Symantec’in son tehdit raporuna göre, 2014 yılında önceki yıllara göre çok daha fazla kötü

amaçlı yazılım tespit edildi [18]. Geçen yıl 317 milyondan fazla yeni kötü amaçlı yazılım parçası

oluşturuldu, yani her gün yaklaşık bir milyon yeni tehdit ortaya çıktı.

2.1.1. Farklı Kötü Amaçlı Yazılım Türleri

Kötü amaçlı yazılım için çeşitli tanımlar mevcuttur, örneğin Skoudis ve diğerleri [19]:

Kötü amaçlı yazılım, bilgisayarınızda çalışan ve sisteminizin bir saldırganın yapmasını

istediği bir şeyi yapmasını sağlayan bir dizi talimattır.

Bu tanıma göre, bu tezde kullandığımız gibi çalıştırılabilir olması gerekmez. Donanıma

uygulanabileceği için yazılım olması bile gerekmez. Tanımın ikinci bölümü çok çeşitli senaryolara

atıfta bulunabilir. Bir saldırgan, örneğin sistemdeki çok sayıda değerli dosyayı silmek gibi,

yalnızca zarar vermek isteyebilir. Veya amaç para olabilir, bu nedenle dosyalar şifrelenir ve

kurbandan şifre çözme anahtarı için ödeme yapması istenir. Ayrıca, bir saldırının nedeni casusluk

veya kredi kartı numaraları gibi bilgilerin çalınması olabilir.

Benzer ve daha yeni bir tanım Srakew ve diğerleri tarafından sağlanmıştır:

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

6

Kötü amaçlı yazılım, birçok yönden sisteme karşı savunmasız kalabilen kötü amaçlı kod

veya yazılımdır.

Şaka veya vandalizm için oluşturulan en eski kötü amaçlı yazılım türlerinin aksine,

günümüzün kötü amaçlı yazılımları çok farklı. Artık kötü amaçlı yazılım, büyük bir yeraltı

ekonomisinin bir parçası ve yeraltı kuruluşları tarafından para kazanmak için ve hükümetler

tarafından casusluk ve saldırılar için kullanılan bir araçtır [20].

Çeşitli kötü amaçlı yazılım türleri mevcuttur. Bilgi paylaşımını kolaylaştırmak için kötü

amaçlı yazılımlar kategorize edilmelidir. Bu aynı zamanda, örneğin bir şirkette bir güvenlik

ihlalinden sonra "temizlemeyi" kolaylaştırır. Bulunan kötü amaçlı yazılım bir rootkit ise, solucan

olduğundan farklı prosedürler izlenmelidir. Ne yazık ki, gerçek bir endüstri standardı mevcut

değildir [21]. Bilgisayar Antivirüs Araştırmacısı Kuruluşu (CARO), kötü amaçlı yazılımlar için bir

adlandırma standardı geliştirdi, ancak bu yalnızca genel bir kılavuz görevi görüyor. Satıcıların,

virüs, damlalık, truva atı, PWS (Parola çalan) ve arka kapı alt kategorilerini içeren standardı

izlemesi gerekmez.

Microsoft'un daha uzun ve daha ayrıntılı olan kendi listesi vardır. Aşağıdakilerden [22]

oluşur: Adware, Backdoor, Behavior, BrowserModifier, Constructor, DDoS, Dialer, DoS, Exploit,

HackTool, Joke, Misleading, MonitoringTool, Program, PWS, Ransom, RemoteAccess, Rogue,

SettingsModifier, SoftwareBundler , Spammer, Spoofer, Spyware, Tool, Trojan, TrojanClicker,

TrojanDownloader, TrojanDropper, TrojanNotifier, TrojanProxy, TrojanSpy, VirTool, Virüs ve

Solucan.

Daha yüksek bir ayrım olarak, kötü amaçlı yazılım iki ana kategoriye ayrılabilir: Virüs ve

arka kapılar gibi bir ana bilgisayar programına ihtiyaç duyan parazitik kötü amaçlı yazılımlar ve

solucanlar ve botlar gibi bağımsız olarak çalışabilen kendi kendine yeten programlar [23] [s. 216].

Ardından, en çok kullanılan kötü amaçlı yazılım türlerinden bazılarının açıklamasını izler.

2.1.1.1. Virüs

Bilgisayarlarla ilgili olarak virüs terimi ilk olarak 1987'de Cohen tarafından tanıtıldı [24].

Virüs, diğer programları değiştirerek [23] [s. 220]. Kendilerini diğer programlara bağlarlar ve ana

bilgisayar programı yapması gerekeni yaparken arka planda çalışırlar. Üç bölümden oluşur:

Bulaşma mekanizması, tetikleyici ve yük. Birincisi, virüsün "üreme" veya yayılma şeklidir.

İkincisi, virüsün yükünü etkinleştirdiği veya teslim ettiği durumdur. Sonuncusu, gerçekleştirdiği

kötü niyetli faaliyettir.

Birkaç tür virüs vardır. Ek olarak, onu önyükleme sektörü, dosya ve makro gibi hedeflere

göre sınıflandırmak için, virüsün nasıl gizlemeye çalıştığını ayırt edebiliriz [23] [s. 224]:

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

7

• Şifrelenmiş virüs: Bu tür bir virüsle, virüs kodunun geri kalanını rastgele bir anahtarla

şifreler. Kopyaladığında, farklı bir anahtar kullanır, böylece araştırmacılar tarafından sabit bir

model gözlemlenemez.

• Gizli virüs: Ana anahtar, tespit edilmekten saklanmaya çalışmasıdır. Örneğin iyi huylu

bir programla aynı uzunlukta olabilir. G / Ç rutinlerini kesintiye uğratarak, birisinin diskin kendi

başına kullandığı kısmını okuduğunu algılayabilir ve ardından kendisini orijinal, enfekte olmamış

program olarak sunabilir.

• Polimorfik virüs: Bit modellerini değiştirerek, virüs her sürüm için farklı imzalar

oluşturacaktır. Gizli virüs gibi, amaç da tespit edilmekten kaçınmaktır.

• Metamorfik virüs: Polimorfik ile aynıdır, ancak hem davranış hem de görünüm değişir.

Bu, yeni sürümü tespit etmeyi daha da zorlaştırır.

2.1.1.2. Worm(Solucan)

Stallings ve diğerleri, "bir solucanın kendini kopyalayabilen ve ağ bağlantıları üzerinden

bilgisayardan bilgisayara kopyalar gönderebilen bir program olduğunu belirtir. Varışta solucan

çoğalmak ve yeniden yayılmak için etkinleştirilebilir" [23] [s. 231]. Bu genellikle iki yoldan biriyle

yapılır: Bir ağ hizmetindeki güvenlik açıklarından yararlanarak veya e-posta yoluyla [20].

Herhangi bir kaynak olmasa da ifadeyi desteklemek için, farklı sosyal medya sitelerinin artık

üçüncü bir seçenek olarak hizmet ettiğini varsaymak güvenli olacaktır.

Bir virüs gibi, solucan üç aşamadan oluşur [23] [s. 231]:

1. Bulaşacak diğer sistemleri arayın.

2. Uzak sistemle bir bağlantı kurun.

3. Kendini uzaktaki sisteme kopyalayın ve kopyanın yeni sistemde çalışmasını sağlayın.

Ek olarak, yeni sisteme bulaşmadan önce yeni sisteme bulaşıp bulaşmadığını anlamaya çalışabilir.

2.1.1.3. Bot

Bot, bir bilgisayarı gizlice kontrol eden bir programdır. Robotun kısaltmasıdır ve

başlangıçta uzaktan erişim truva atı olarak adlandırılmıştır [25]. Enfekte olan bir bilgisayara bot

veya zombi de denir [26]. Saldırganlar genellikle aynı anda yüzlerce veya binlerce bilgisayara

virüs bulaştırmayı hedefler. Bu şekilde, tüm virüs bulaşmış bilgisayarlar kontrol edilebilir ve

koordineli bir şekilde kullanılabilir. Buna botnet [23] [s. 240].

Botnet'ler, Komut ve Kontrol sunucuları (C&C) kullanılarak kontrol edilir. İletişim farklı

protokoller üzerinden geçebilir. Bazıları hem kanallar hem de özel mesajlar yoluyla IRC kullanır,

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

8

bazıları HTTP kullanır ve yanıt mesajlarını komut olarak yorumlarken, bazıları eşler arası (p2p)

tabanlı iletişim kullanır [26].

Bir kötü amaçlı yazılım yazarının botları kullanmasının birkaç nedeni vardır. En yaygın

olanları, dağıtılmış hizmet reddi (DDoS) saldırıları, spam gönderme, trafik koklama, keylogging,

yeni kötü amaçlı yazılım yayma ve reklam yazılımı yükleme [23] [s. 240-241]. Son yıllarda

botnet'ler bitcoin madenciliği için de kullanıldı [27].

2.1.1.4. Rootkit

Rootkit, saldırgan yöneticinin sisteme erişmesini sağlayan ve aynı zamanda varlığını

gizleyen bir dizi programdır. Ad, orijinal olarak Unix / Linux'taki yönetici hesabı kökünden ve bu

erişim düzeyini sağlayan bir dizi araçtan gelmektedir. Bunlara ps, netstat, ls ve passwd [28]

dahildir.

Yönetici ayrıcalıkları nedeniyle, rootkit'lerin algılanması çok zor olabilir. API'lere yapılan

çağrıları yakalayabilir ve yanıtları değiştirebilirler. Bu şekilde işlem monitörü, dosya listeleri ve

kayıtlar yanlış bilgileri görüntüleyebilir [23] [s. 242].

2.1.1.5. Backdoor (Arka Kapı)

Arka kapı, normal güvenlik prosedürlerini atlayan bir programa giden gizli bir yoldur. Bu

şekilde sisteme yetkisiz erişime izin verir. Özel bir giriş dizisi tarafından tetiklenebilir veya özel

bir kullanıcı kimliği ile çalıştırılabilir [23] [s. 216].

2.1.1.6. Truva atı

Truva atı, yararlı veya zararsız görünen, ancak sandığından daha fazlasını yapan bir

şeydir. Tipik örnekler, kötü amaçlı yazılım taraması yapıyormuş gibi yapan, ancak bunun yerine

arka planda başka bir şey yapan sahte antivirüs programlarıdır [20]. Adını Yunan mitolojisindeki

Truva atından almıştır.

Bu tür kötü amaçlı yazılımların genellikle bir arada olduğu belirtilmelidir. Örneğin,

saldırıya uğrayan sisteme bir rootkit yüklemek için bir truva atı kullanılabilir.

2.1.2. İmzadan Kaçınma

Tipik olarak, anti-virüs yazılımı, kötü amaçlı yazılımları tespit etmek için imza tabanlı bir

yöntem kullanır. Kötü amaçlı yazılım yürütülebilir dosyasında bulunan talimatlar, kötü amaçlı

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

9

yazılımı tanımlayan benzersiz bir imza elde etmek için ayrıştırılır ve bu daha sonra bilinen kötü

amaçlı yazılım imzalarının büyük bir veritabanıyla karşılaştırılır [29,30]. Bonfante vd. bu

problemle mücadele etmek için bir kontrol akış grafiği yöntemi önerdi [31]. Yaygın olarak

kullanılan tüm montaj talimatları için düğümleri olan bir grafik kullandılar ve ardından kötü

amaçlı yazılımları sınıflandırmak için bu grafiğin küçültülmüş bir sürümünü imza olarak

kullandılar. Testlerine göre, bu algılama biçimi, grafikler daha büyük olduğunda (daha büyük

yürütülebilir dosyalar için) daha iyi genel algılama doğruluğu ile sonuçlandı.

2.1.3. Kod Gizleme

Statik kötü amaçlı yazılım analizi, temel olarak anlamsal analiz ve sınıflandırma için

kaynak kodu analizi açısından incelenmiştir. Moser vd. kodun anlamsal analizden gizlenmesi için

basitçe opak sabitler kullanarak program kontrol akışını gizlemek için bir yöntem önerdi [32].

Bu, günümüzde mevcut olan statik kötü amaçlı yazılım analizi tekniklerindeki önemli bir kusuru

vurgulamaktadır; burada semantik analiz, sabitleri gerçek zamanlı olarak hesaplamak için

rastgele bir yaklaşım getirilerek yenilebilir. Bahsedilen bu tür bir yöntem, değişkenlerin

depolandığı adresleri oluşturmak için rastgele bir tohum kullanmak veya işlemi papatya dizimi

yapmak ve değişkenleri diğer adreslerde bulunan adreslerde depolamaktır. Koddaki belirli

sabitlerin değerini belirlemek için NP-hard algoritmanın tanıtımı da bu makalede tartışılmıştır.

Örneğin, kodda bir 3SAT problemi uygulamak, bu bölüm koduna giriş değişkenleri her zaman

statik bir değer döndürür (0 diyelim). Bu, programın çalışma süresi sırasında 3SAT algoritmasına

herhangi bir değişken atandığında her zaman 0 değeri üreteceği anlamına gelir. Bunu, kodu

okuyan bir insan tarafından belirlemek kolay olsa da, anlam bilincine sahip bir analizörün bu

algoritmanın tüm olası çıktılarını belirlemesi ve sonunda bunun çıktısının her zaman 0 olduğunu

belirlemesi çok zordur, çünkü algoritma polinom zamanı. İkili dosyalarda birden çok kez

şifreleme kullanarak kod gizleme ve ardından şifre çözme için bir aracın paketlenmesi

Christodorescu ve Jha tarafından tartışılmıştır [33]. Bu tür bir gizleme biçiminin, bellekteki şifresi

çözülmüş dosyayı analiz ederek çalışma süresi sırasında yakalanması kolaydır, ancak dosyanın

şifresini çözmeden ve dinamik olarak analiz etmeden dosyanın şifreleme düzeyini belirlemek

zordur.

Preda ve diğerleri tarafından orijinal kötü amaçlı yazılım kodu ile karmaşık hale getirilmiş

kötü amaçlı yazılım kodu arasındaki benzerliği ölçmek için bir ölçüt öneren anlambilim tabanlı

bir yaklaşım önerildi [34]. Ayrıca, kötü amaçlı yazılım koduna, NOP yerleştirmeye, komut

ikamesine ve değişken yeniden adlandırmaya sürekli gizlemenin dahil edilmesini (NP-sabit

hesaplama veya benzer yöntemler ekleyerek) saptama yöntemlerini tartıştı. Ancak, bu

yaklaşımın pratik uygulaması tam olarak gerçekleştirilmemiştir. Arama grafiği analizi ve

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

10

tetikleyicilere dayalı davranış tanımlama dahil olmak üzere birçok dinamik kötü amaçlı yazılım

algılama yöntemi vardır [35]. Ancak, bu yöntemler hesaplama açısından pahalıdır ve kötü amaçlı

yazılımların güvenli bir şekilde yürütülebileceği ve analiz edilebileceği bir sanal alan altyapısı

gerektirir.

2.1.4. Yazılım Paketleme

Dosya paketleme, büyük yazılımları küçük, kompakt bir pakette bir araya getirirken

kullanılan yaygın bir tekniktir [30]. Bu tür paketleme teknikleri genellikle kötü amaçlı yazılımın

kolay tanımlanmasını potansiyel olarak engelleyebilecek bir tür şifreleme içerir. PolyPack adı

verilen bu tür bir araç, paketleyicilerin virüsten ve kötü amaçlı yazılımdan kaçmak için etkili bir

yöntem olduğunu kanıtlamak için özel olarak tasarlanmıştır [36]. Kendilerine sağlanan verileri

bağımsız olarak paketleyen 10 paketleyici sağlarlar ve ardından paketlenmiş verileri 10 iyi

bilinen anti-virüs tarayıcısı ile tararlar. En iyi sonucu alan paketleyici seçilir. Çalışmaları, bunun

çoğu virüsten koruma yazılımına karşı kaçınma oranlarını 2,58 kat artırdığını ortaya koydu.

2.2. Kötü Amaçlı Yazılım Algılama için Makine Öğrenimi

Makine öğreniminin daha büyük veri kümeleriyle daha iyi performans gösterdiği gerçeği

iyi bilinmektedir [37]. Kötü amaçlı yazılım sınıflandırması için makine öğrenimini kullanan çeşitli

çalışmalar yayınlanmıştır. Dinamik kötü amaçlı yazılım analizi için sistem çağrılarının dinamik

analizi [38], kayıt defteri erişim izleme [39], gizli Markov model tabanlı analiz [40] gibi çeşitli

yöntemler önerilmiştir.

Kolter ve Maloof yaklaşık 255 milyon farklı n-gram üretmek için 4 bayt dizisini

birleştirerek n-gram kullanımını önerdi [41]. Makalesinde, hangi özelliklerin alakalı olduğunu

belirlemek için olasılıklı bir yaklaşımın kullanılmasını önerdi ve analiz için ilk 500 n-gramı

kullandı. Makale, verilerini analiz etmek için Naive Bayes, Support Vector Machine (SVM) ve J48

karar ağacının kullanılmasını önerdi. Analiz için kullanılan veriler, temel olarak Sourceforge ve

VX Heavens'ten (gerçek veriler açıklanmadı), 1971 iyi huylu yürütülebilir dosya ve 1651 kötü

amaçlı yürütülebilir dosya test edildi. Bu araştırmada kullanılan küçük örneklem seti ve yazarlar

tarafından kullanılan kesin veri setinin mevcut olmaması gerçeği, daha büyük veri kümeleri ile

kullanıldığında bu sonuçların doğruluğunu tespit etmek zordur. Benzer bir çalışma, muhtemelen

büyük bir veri kümesi olan Microsoft Kötü Amaçlı Yazılım Sınıflandırması [42] ile bu yaklaşımı

kullanarak Bagga tarafından yapılmıştır [43]. Ancak bu çalışma, kötü amaçlı yazılım algılama

sorunu yerine kötü amaçlı yazılım sınıflandırma sorununa odaklandı.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

11

Adobe Systems Inc. Ürün Olayı Müdahale Ekibinden Raman, taşınabilir yürütülebilir

dosyalardan [44] en az ilişkili yedi özelliği çıkararak kötü amaçlı yazılımları sınıflandırmak için

bir yöntem önerdi. Çıkarılan özellikler DebugSize, ImageVersion, IatRVA, ExportSize,

ResourceSize, VirtualSize, NumberOfSections idi. Deneme için 100.000 kötü amaçlı yürütülebilir

dosya ve 16.000 iyi huylu yürütülebilir dosya içeren bir veri kümesi kullanıldı. Bu veriler

kullanılarak çeşitli modeller test edildi. Test edilen modeller arasında, J48 karar ağacı [45] en iyi

sonuçları elde etti: 0,057'lik bir yanlış pozitif oranı ile 0,986'lık gerçek bir pozitif oran. Ortaya

çıkan eğitimli model, kötü amaçlı yazılım sınıflandırması için ücretsiz bir araç olarak yayınlandı,

ancak veri kümesi herhangi bir şekilde karşılaştırmalı araştırma yapmak için yayınlanmadı.

Anderson ve Roth ayrıca bu eğitimli modeli EMBER veri seti [46] ile test ettiler ve 0,53'lük bir

yanlış pozitif oranı ve 0,08'lik bir yanlış negatif oranı sergilediğini buldular.

Huang ve Stokes tarafından 2016 yılında MtNet adı verilen derin sinir ağlarını kullanan

dinamik bir kötü amaçlı yazılım sınıflandırma modeli önerildi [47]. Bu çalışma için kullanılan veri

kümesi, 6.5 milyon örnek dosya içeren Microsoft Corporation tarafından sağlanmıştır. Bu veri

kümesinden 2,85 milyon kötü niyetli ve 3,65 milyon zararlı dosya çıkarıldı. Temel olarak iki tür

veriden oluşan çalışma zamanında dosya yürütme sırasında eğitim özellikleri çıkarıldı: sistem

işlevi çağrıları ve boş sonlandırılmış nesneler. Özellik seçimi, Manning ve diğerleri tarafından

önerilen karşılıklı bilgiler kullanılarak gerçekleştirildi. Toplam 50.000 giriş özelliği elde etmek

için [48]. Nihai hedef, kötü amaçlı yazılımları önce iyi huylu veya kötü niyetli olarak

sınıflandırmak ve ardından kötü amaçlı yazılımı bilinen 100 kötü amaçlı yazılım ailesinden biri

olarak sınıflandırmaktı. ReLU aktivasyon işlevi, daha iyi model performansı için eklenen çıkarma

katmanları ile birlikte kullanıldı. Bu model,% 0,07'nin altında yanlış pozitif oranlarıyla etkileyici

sonuçlar gösterse de, test veri setinin ve test için kullanılan model kodunun bulunmaması, bu

sonuçların yeniden üretilmesini imkansız hale getirir.

Yankı durumu ağı ve yinelenen sinir ağı tabanlı kötü amaçlı yazılım sınıflandırıcıları,

Pascanu ve diğerleri tarafından kötü amaçlı yazılımların dinamik analizi için test edilmiştir [49].

Araştırmaları, kötü amaçlı yazılımın dinamik analizi için sigmoid (lojistik regresyon) aktivasyon

fonksiyonu ile yankı durumu ağı tabanlı tekrarlayan bir modelin kullanımını ortaya koydu. Tam

giriş vektörü açıklanmadı, ancak çalışma zamanı yürütme sırasında dosyalar tarafından

gerçekleştirilen API çağrılarından türetildi. Model, 0,001'lik bir yanlış pozitif oranıyla 0,983'lük

gerçek bir pozitif orana ulaştı. Yazarlar, bu araştırmada kullanılan veri setinin dahili olarak

sağlandığını ve halka açık olmadığını kabul ediyor. Bu araştırmanın amacı, tekrarlayan sinir

ağlarının dinamik kötü amaçlı yazılım analizi için kullanılabileceğini belirlemekti. Bununla

birlikte, veri setinin mevcut olmaması ve önerilen modeli yeniden üretmek için gereken adımların

sağlanmaması nedeniyle, bu sonuçları doğrulamak ve buna dayalı olarak daha fazla araştırma

yapmak zordur.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

12

2.2.1. Özellik Seçimi

Makine öğrenimi, eğitim için kullanılan özellik kümesine çok duyarlıdır. Çeşitli çalışmalar,

makine öğrenimi tabanlı kötü amaçlı yazılım sınıflandırıcılarının etkili eğitimi için faydalı olacak

bazı özellikler ortaya koymuştur. Bu amaçla farklı yaklaşımlar incelenmiştir.

Divandari vd. dosyalardan işlem kodu verisinin çıkarılmasını ve özellik kümesini [50]

özetlemek için bir Markov Blanket yaklaşımının kullanılmasını önerdi. İşlem kodlarının kendileri

yürütülebilir dosyaların önemli bir parçası olduğundan, kötü amaçlı yazılım tespiti için güvenilir

özellikler olarak kabul edildi [51]. Önerilen model, kötü amaçlı yazılım sınıflandırması için Gizli

Markov Modeli (HMM) kullanır.

Saxe ve Berlin tarafından araştırmalarında [52] önerilen bayt histogram yaklaşımı, bir

dosyadan özniteliklerin çıkarılması için biçimden bağımsız bir yöntem getirmiştir. Bu yöntem,

bayt bilgilerinin bir dosyadan özellikler olarak, bu baytların gerçek işlevi hakkında bilgi

gerektirmeden ayıklanmasına yönelik yenilikçi bir yaklaşımdır. Dosyada kullanılan potansiyel

şifreleme veya sıkıştırmanın anlaşılmasını sağlamak için ikili dosyada bulunan tüm bayt

değerlerinin histogramını 2 boyutlu bir bayt-entropi histogramıyla birlikte çıkarmayı önerir. Bu

yöntemi modelimizde başlık çıkarma yöntemini tamamlamak için kullanırız, böylece taşınabilir

yürütülebilir dosyadaki tüm baytları vektörleştirmek için gereken yüksek genel giderler olmadan

yüksek doğruluk elde ederiz.

Weinberger ve diğerleri tarafından önerilen özellik hashing hile. [53] sık sık alıntılanmış

ve makine öğrenimi modelleri için kullanılmıştır. Çoğu makine öğrenimi tabanlı model için giriş

vektörü statiktir ve giriş boyutuna bağlı olarak boyut olarak artırılamaz. Bu nedenle, büyük girdi

özelliklerini, eğitim için daha yönetilebilir olan statik bir boyutta etkin bir şekilde özetlemek için

bir yönteme ihtiyacımız var. Özellik hashing hilesi, verilerin boyutluluğunu etkili bir şekilde

düşürmek için bir yöntem önerir, böylece orijinal amaçlanan verileri hala yeterince temsil eder,

ancak bir modeli etkili bir şekilde eğitmek için doğrusal ayrılabilir özellikler sunar.

2.2.2. Güçlendirilmiş Karar Ağaçları ve Yapay Sinir Ağları

Karar ağacı uzun süredir keşfedilmiş ve kullanımdadır. Bununla birlikte, karar ağacı

modelleri için güçlendirme yöntemindeki son gelişmelerle birlikte, performans açısından yapay

sinir ağlarına benzer veya daha iyi olduklarını kanıtladılar. Çok sayıda değişkenle iyi ayarlanması

ve çalışması nispeten daha kolaydır [54]. AdaBoost'un gelişiyle birlikte, karar ağacı modellerinin

artırılması, ikili sınıflandırmadan çok kategorili sınıflandırmaya geçmeyi başardı [55, 56]. Bu,

yapay sinir ağları için alternatif olarak güçlendirilmiş karar ağacı tabanlı modellerin

kullanılmasını teşvik etti. Bu tezde önerdiğimiz model, modelimiz için kullandığımız aynı veri seti

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

13

için mevcut bir güçlendirilmiş karar ağacı modeli ile karşılaştırılmıştır. Caruana ve Niculescu-

Mizil, makalelerinde [57] vektör makinelerinin, güçlendirilmiş karar ağaçlarının ve sinir ağlarının

çoğu senaryoda, varyansın esas olarak hiper parametre ayarlamasıyla sınırlı olduğu

karşılaştırılabilir performansa sahip olduğunu ortaya koydu.

2.3. Yinelenen Sinir Ağlarının İncelenmesi

Tekrarlayan sinir ağları, 1990'larda araştırma ve geliştirmenin önemli bir odağı olmuştur.

Sıralı veya zamanla değişen kalıpları öğrenmek için tasarlanmıştır. Tekrarlayan bir ağ, geri

besleme (kapalı döngü) bağlantıları olan bir sinir ağıdır [58]. Örnekler arasında BAM, Hopfield,

Boltzmann makinesi ve tekrarlayan geri yayılım ağları bulunmaktadır [59].

Tekrarlayan sinir ağı teknikleri çok çeşitli problemlere uygulanmıştır. 1980'lerin

sonunda, Rumelhart, Hinton ve Williams dahil olmak üzere birçok araştırmacı tarafından

karakter dizilerini öğrenmek için basit, kısmen tekrarlayan sinir ağları tanıtıldı [60]. Diğer birçok

uygulama, olayların zaman dizileri ile dinamik sistemleri içeren problemleri ele almıştır.

Tablo 1, yinelenen sinir ağlarının son uygulamalarının genişliği hakkında fikir vermek için

başka ilginç örnekler veriyor. Örneğin, sanal gerçeklik sistemleri için insan kafasını takip etmenin

dinamikleri araştırılıyor. Finansal verilerin ve elektrik enerjisi talebinin tahmin edilmesi diğer

çalışmaların nesneleridir. Su kalitesini izlemek ve suyu filtrelemek için gereken katkı maddelerini

en aza indirmek için tekrarlayan sinir ağları kullanılıyor. Ve müzik notalarının zaman dizileri

tekrarlayan sinir ağları ile çalışıldı.

Tablo 1. Tekrarlayan sinir ağı uygulamalarına örnekler.

Topic Authors Reference
Predictive head tracking for virtual
reality systems

Saad, Caudell, and Wunsch, II [Saad, 1999]

Wind türbine power estimation Li, Wunsch, O'Hair, and
Giesselmann

[Li, 1999]

Financial prediction using recurrent
neural networks

Giles, Lawrence, Tsoi [Giles, 1997]

Music synthesis method for Chinese
plucked-string instruments

Liang, Su, and Lin [Liang, 1999]

Electric load forecasting Costa, Pasero, Piglione, and
Radasanu

[Costa, 1999]

Natural water inflows forecasting Coulibaly, Anctil, and Rousselle [Coulibaly, 1999]

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

14

2.3.1. Yinelenen Sinir Ağı Mimarileri

Mimariler, farklı giriş ve çıkış katmanlarına sahip çok katmanlı ileri beslemeli ağlar dahil

olmak üzere, tamamen birbirine bağlı (Şekil 1) kısmen bağlı ağlara (Şekil 2) kadar çeşitlilik

gösterir. Tamamen bağlı ağlar, farklı düğüm giriş katmanlarına sahip değildir ve her düğüm, diğer

tüm düğümlerden gelen girdiye sahiptir. Düğümün kendisine geri bildirim mümkündür.

 Şekil 1. Tamamen bağlı tekrarlayan sinir ağına bir örnek.

Karakter dizilerini öğrenmek için basit, kısmen tekrarlayan sinir ağları (Şekil 2)

kullanılmıştır. ALBazı düğümler ileri besleme yapısının parçası olmasına rağmen, diğer düğümler

sıralı bağlamı sağlar ve diğer düğümlerden geri bildirim alır. Bağlam birimlerinden (C1 ve C2)

alınan ağırlıklar, örneğin geri yayılım kullanılarak giriş birimleri için olanlara benzer şekilde

işlenir. Bağlam birimleri, Şekil 2 durumunda, ikinci katman birimlerinden zaman gecikmeli geri

bildirim alır. Eğitim verileri girdilerden ve bunların istenen ardıl çıktılarından oluşur. Ağ, bir

karakter dizisindeki sonraki harfi tahmin etmek ve bir karakter dizisini doğrulamak için

eğitilebilir.

İleri beslemeli çok katmanlı sinir ağlarına geri bildirim eklemek için iki temel yol

kullanılabilir. Elman [61] gizli katmandan girdi katmanının bağlam kısmına geri bildirim getirdi.

Bu yaklaşım, girdi değerlerinin sırasına daha fazla dikkat eder. Jordan tekrarlayan sinir ağları [62]

çıktı katmanından girdi katmanının bağlam düğümlerine geri bildirimi kullanır ve çıktı değerleri

dizisine daha fazla vurgu yapar.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

15

 Şekil 2. Basit bir tekrarlayan ağ örneği.

2.3.2. Yinelenen Sinir Ağlarında Öğrenme

Öğrenme, sinir ağlarının temel bir yönüdür ve sinirsel yaklaşımı, başlangıçtan beri yapay

zekâ için zor bir hedef olan uygulamalar için bu kadar çekici kılan önemli bir özelliktir. Öğrenme

algoritmaları uzun zamandır araştırmanın odak noktası olmuştur [63,64].

Hebbian öğrenme ve gradyan kökenli öğrenme, sinir ağı tekniklerinin dayandığı temel

kavramlardır. Gradyan inişinin popüler bir tezahürü, Rumelhart [60] ve Werbos [65] tarafından

sunulan geri-hata yayılımıdır. Geri yayılımın uygulanması nispeten basit olsa da, pratik

uygulamalarda kullanımında, yerel minimumda tuzaktan kaçınmanın zorluğu da dahil olmak

üzere çeşitli sorunlar ortaya çıkabilir. Girdi verilerinin zaman gecikmeli güncellemesinden

tekrarlayan sinir ağlarında dinamik işlemenin ek karmaşıklığı, öğrenmeyi temsil etmek için daha

karmaşık algoritmalar gerektirir.

Tekrarlayan sinir ağlarının dinamik olarak işlenmesinin avantajını gerçekleştirmek için bir

yaklaşım, sabit kalıpları işleyen ileri beslemeli ağların etkinliğini geliştirmektir. Araştırmacılar,

gradyan yöntemlerinin ve özellikle geri yayılım öğrenmenin tekrarlayan sinir ağlarına

genişletilebileceği çeşitli şemalar geliştirdiler. Werbos, gradyan yöntemlerini kullanan bir dizi

statik ağlar olarak yinelenen bir sinir ağının zaman evrimini yaklaşık olarak tahmin eden zaman

yaklaşımı yoluyla geri yayılımı [66] tanıttı. Başka bir yaklaşım, orijinal dinamik köle ağının

çekicilerinin programlanmasında gerekli hesaplamaları gerçekleştirmek için ikinci bir ana, sinir

ağını konuşlandırır [67]. Araştırılan diğer teknikler, Pineda [68], Almeida [69], Williams ve Zipser

[70], Sato [71] ve Pearlmutter [72] 'da bulunabilir. Geri yayılım öğrenimini tekrarlayan ağlara

genişletmeye yönelik çeşitli girişimler Pearlmutter'da [73] özetlenmiştir.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

16

2.4. Tasarım Konuları ve Teorisi

2.4.1. Optimizasyon

Optimizasyon problemlerinin gerçek zamanlı çözümlerine sinyal işleme, sistem

tanımlama, filtre tasarımı, fonksiyon yaklaşımı ve regresyon analizi dahil olmak üzere bilimsel ve

mühendislik problemlerinde sıklıkla ihtiyaç duyulur ve sinir ağları bu amaçla geniş çapta

araştırılmıştır. Karar değişkenlerinin ve kısıtlamalarının sayısı genellikle çok büyüktür ve büyük

ölçekli optimizasyon prosedürleri, dinamik bir sistemin performansını optimize etmek için

gerçek zamanlı olarak yapılması gerektiğinde daha da zordur. Bu tür uygulamalar için, klasik

optimizasyon teknikleri, problem boyutluluğu ve hesaplama süresinin katı gereksinimleri

nedeniyle yeterli olmayabilir. Sinir ağı yaklaşımı, optimizasyon problemlerini, genel amaçlı dijital

bilgisayarlarda yürütülen en popüler optimizasyon algoritmalarından daha büyük büyüklük

sıralarındaki çalışma sürelerinde çözebilir.

Xia ve Wang'ın araştırmaları, bu sorunlar için sinir ağlarının kullanımını incelemekte ve

küresel yakınsama ile optimizasyon sinir ağı modellerini tasarlamak için birleşik bir yöntem

sunmaktadır. Doğrusal ve ikinci dereceden programlamayı çözmek ve doğrusal tamamlayıcı

problemleri çözmek için sürekli zaman tekrarlayan sinir ağlarını tartışırlar ve ardından ayrık

zamanlı sinir ağlarına odaklanırlar. Atama sinir ağları ayrıntılı olarak tartışılmış ve sinir ağlarının

çalışma özelliklerini göstermek için bazı simülasyon örnekleri sunulmuştur.

Çalışmalarında ilk olarak doğrusal ve ikinci dereceden programlama problemlerini (LP ve

QP) çözmek için ilk çift sinir ağlarını sunar ve doğrusal tamamlayıcı problemleri (LCP) çözmek

için sinir ağını geliştirmişlerdir. Sinir ağı modellerini tasarlamak için birleşik bir yöntemi takiben,

bölümün ilk kısmı LP ve QP'yi çözmek için sürekli zamanlı ilk-ikili tekrarlayan sinir ağlarını

ayrıntılı olarak açıklamaktadır. Çalışmalarının ikinci kısmında ise, QP ve LCP için birincil-ikili

ayrık zamanlı sinir ağlarına odaklanmışlardır.

Optimizasyon için sinir ağlarının kullanımında büyük ilerleme kaydedilmiş olmasına

rağmen, birçok teorik ve pratik problem çözülmeden kalmıştır. Optimizasyon problemleri için

tekrarlayan sinir ağlarının dinamikleri, tekrarlayan sinir ağlarının pratik problemlere daha fazla

uygulanması ve optimizasyon için tekrarlayan sinir ağlarının donanım prototiplemesi üzerine

gelecekteki araştırmalar için alanlar tanımlanmıştır.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

17

2.4.2. Ayrık Zaman Sistemleri

Santos ve Von Zuben, parametreleri ayarlamak için optimizasyon prosedürlerine dayanan

verimli denetimli öğrenme algoritmaları için pratik gereksinimi tartışıyor. Performansı

iyileştirmek için ikinci dereceden bilgiler eğitimdeki hatayı en aza indirmek için düşünülmüştür.

Çalışmalarının ilk amacı, bir dizi yinelenen sinir ağı konfigürasyonu için kesin ikinci

dereceden bilgi elde etmenin sistematik yollarını, birinci dereceden bilgi edinme maliyetinden

yalnızca iki kat daha yüksek bir hesaplama maliyetiyle açıklamaktır. İkinci amaç, mevcut ikinci

dereceden bilgileri etkili bir şekilde araştırmak için kullanılabilen eşlenik gradyan algoritmasının

geliştirilmiş bir versiyonunu sunmaktır.

Tekrarlayan bir sinir ağının dinamikleri zaman içinde sürekli veya ayrık olabilir. Bununla

birlikte, dijital hesaplama cihazlarında sürekli zamanlı tekrarlayan bir sinir ağının simülasyonu,

ayrık zamanlı eşdeğer bir modelin benimsenmesini gerektirir. Uzamsal-zamansal temsil için

ortaya çıkan doğrusal olmayan modeller, doğrusal olmayan fark denklemleri sistemi aracılığıyla

bir dijital bilgisayarda doğrudan simüle edilebilir. Denklemlerin doğası, benimsenen tekrarlayan

mimarinin türüne bağlıdır, ancak daha az sayıda parametre ve ilişkili denklemlerle bile çok

karmaşık davranışlara yol açabilir.

Pratik önemi olan tekrarlayan sinir ağlarının analizi ve sentezi çok zorlu bir görevdir ve

eğitim sürecinde ikinci dereceden bilgiler dikkate alınmalıdır. Çok çeşitli tekrarlayan sinir ağı

mimarileri için kesin ikinci dereceden bilgi elde etmek için düşük maliyetli bir prosedür sunarlar.

Ayrıca, mevcut ikinci dereceden bilgileri keşfetmek için etkili bir şekilde kullanılabilen,

ölçeklendirilmiş eşlenik gradyan algoritmasının geliştirilmiş bir versiyonu olan çok verimli ve

genel bir öğrenme algoritması sunarlar. Sabit olanların yerine bir dizi uyarlanabilir katsayı

sunarlar ve algoritmanın yeni parametreleri otomatik olarak ayarlanır. Bazı simülasyon

sonuçlarını gösterir ve yorumlarlar.

Bu çalışmanın yenilikçi yönleri, düşük bir hesaplama maliyetiyle bir dizi farklı tekrarlayan

sinir ağı mimarileri için kesin ikinci dereceden bilgi elde etmek için sistematik bir prosedürün

önerilmesi ve ölçeklendirilmiş bir eşlenik gradyan algoritmasının geliştirilmiş bir versiyonudur.

Önemli bir husus, kesin ikinci dereceden bilgi verildiğinde, öğrenme algoritmasının, belirli

bağlama herhangi bir uyarlama olmaksızın doğrudan uygulanabilmesidir.

2.4.3. Bayesian İnanç Revizyonu

Hopfield sinir ağı, nesne tanımadan grafik düzlemleştirmeye ve yoğunlaştırıcı atamasına

kadar çok sayıda optimizasyon problemi için kullanılmıştır. Bununla birlikte, Hopfield enerji

fonksiyonunun ikinci dereceden düzende olması, uygulanabileceği sorunları sınırlar. Bazen,

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

18

Hopfield’ın ikinci dereceden enerji işlevine indirgenemeyen nesnel işlevler, ikinci dereceden bir

enerji işlevi ile makul bir şekilde yaklaşık olarak tahmin edilebilir. Diğer problemler için, amaç

fonksiyonu daha yüksek seviyeli bir enerji fonksiyonu ile modellenmelidir.

Abdelbar, tekrarlayan sinir ağlarını anlatıyor ve seyrek yüksek sıralı ağlar için verimli bir

uygulama veri yapısı sağlıyor. Ayrıca, bu tür ağların Bayesçi inanç revizyonu için ve belirsizlik

altında teşhis muhakemesi ve sağduyulu muhakemedeki önemli problemlerde nasıl

kullanılabileceğini açıklar.

2.4.4. Bilgi Temsili

Giles, Omlin ve Thornber çalışmalarında birçok uygulama alanında faydalı hale gelen

nöro-bulanık sistemleri (yapay sinir ağlarının bulanık mantıkla birleşimini) incelemişlerdir.

Bununla birlikte, geleneksel nöro-bulanık modellerin genellikle bağlam ve durum gerektiren

uygulamalar için (örneğin, konuşma, zaman serisi tahmini ve kontrol) gelişmiş temsil gücüne

ihtiyaç duyduğunu açıklarlar. Bu uygulamalardan bazıları, sonlu durum otomatı olarak kolayca

modellenebilir. Önceden, deterministik sonlu durum otomatının (DFA), DFA yapısını doğrudan

sinir ağının ağırlıklarına programlayarak tekrarlayan sinir ağları tarafından sentezlenebileceği

veya eşlenebileceği kanıtlanmıştı. Bu sonuçlara dayanarak, bulanık sonlu durum otomatını (FFA)

tekrarlayan sinir ağlarına eşlemek için bir sentez yöntemi öneriyorlar. Bu eşleme, VLSI'de

doğrudan uygulama, yani VLSI sistemlerinde DFA'nın kodlamasının bir genellemesi olarak

FFA'nın kodlanması için uygundur.

Sentez yöntemi, FFA'nın tekrarlayan ağlarla eşleştirilmeden önce bir dönüşüme

uğramasını gerektirir. Nöronlar, FFA durumlarının bulanık bir temsilini barındırmak için

zenginleştirilmiş bir işlevsellikle sağlanır. Bu zenginleştirilmiş nöron işlevselliği, FFA'nın bulanık

parametrelerinin doğrudan sinir ağının parametreleri olarak temsil edilmesine de izin verir.

Ayrıca, ağ ağırlığının sonlu değerleri için inşa edilen sinir ağlarının bulanık sonlu durum

dinamiklerinin kararlılığını kanıtlar ve simülasyonlar yoluyla kanıtların ampirik doğrulamasını

sağlarlar. Bu, sinirsel ve bulanık sistemler ve otomata modelleri arasındaki çeşitli bilgi denkliği

temsillerini kanıtlıyor.

2.4.5. Uzun Vadeli Bağımlılıklar

Tekrarlayan sinir ağları için gradyan-iniş öğrenme algoritmalarının, uzun vadeli

bağımlılıkları içeren görevlerde, yani istenen çıktının geçmişte çok uzak zamanlarda sunulan

girdilere bağlı olduğu problemlerde kötü performans gösterdiği bilinmektedir. Lin, Horne, Tino

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

19

ve Giles bunu incelemişler ve güçlü temsil yeteneklerine sahip NARX tekrarlayan sinir ağları adı

verilen bir mimari sınıf için uzun vadeli bağımlılıklar sorununun azaldığını göstermişlerdir.

Daha önce gradyan-iniş öğrenmenin NARX ağlarında, gramatik çıkarım ve doğrusal

olmayan sistem tanımlama dahil olmak üzere problemlerde "gizli durumlara" sahip tekrarlayan

sinir ağlarından daha etkili olabileceğini bildirdiler. Tipik olarak ağ çok daha hızlı yakınsar ve

diğer ağlardan daha iyi genelleştirir ve bu bölüm aynı türden sonuçları gösterir.

NARX ağlarının bilgileri geleneksel tekrarlayan sinir ağlarından iki ila üç kat daha uzun

süre saklayabildiğini gösteren bazı deneysel sonuçları da sunuyorlar. NARX ağlarının uzun vadeli

bağımlılık sorununu aşmamasına rağmen, uzun vadeli bağımlılık problemlerinde performansı

büyük ölçüde artırabileceklerini gösteriyorlar. Bilgiyi sağlam bir şekilde tutmanın ne anlama

geldiğine ilişkin bazı varsayımları ayrıntılı olarak açıklarlar ve bu varsayımları gevşetmek için

olası yollar önerirler.

2.5. Uygulamalar

Bu başlık altında, tekrarlayan sinir ağlarının ilginç modifikasyonlarına ve uygulamalarına

bakılmıştır. Yörüngeler, kontrol sistemleri, robotik ve dil öğrenimiyle ilgili problemler, kaotik

sistemlerde tekrarlayan sinir ağlarının ilginç bir kullanımı ile birlikte dahil edilmiştir.

2.5.1. Kaotik Yeniden Kazanan Ağlar

Dayhoff, Palmadesso ve Richards, kaotik sistemler için tekrarlayan sinir ağlarının

kullanımına ilişkin çalışmaları yapmışlardır. Dinamik sinir ağları, sonlu durum salınımları, sınır

döngüleri ve kaotik davranış gibi çok çeşitli salınımlar yapabilirler. Mümkün olan farklı

salınımlar, kendi kendini sürdüren muazzam bir aktivite paternleri repertuvarı yaratır. Bu

repertuar çok ilgi çekicidir çünkü salınımlar ve değişen aktivite modelleri potansiyel olarak

hesaplama amaçlı ve fiziksel olayları modellemek için kullanılabilir.

Bir dış model bir uyarıcı olarak kullanıldığında kaotik bir ağda gözlemlenen eğilimleri

araştırıyorlar. Model uyaranı, tek katmanlı tekrarlayan bir ağdaki tüm nöronlara sabit bir harici

girdidir. Uyaranın gücü, uyarılmış salınımların karmaşıklığında değişiklikler ve eğilimler üretmek

için çeşitlidir. Daha güçlü uyaranlar, daha basit ve daha az çeşitli salınımları uyandırabilir.

Gürültüye karşı direnç, gürültülü uyaranlar aynı veya benzer salınımları uyandırdığında ortaya

çıkar. Daha güçlü uyaranlar gürültüye karşı daha dayanıklı olabilir. Bu gözlemlerin her birinin

örneklerini gösterirler. Bir model-salınım haritası sonunda model tanıma ve diğer hesaplama

amaçları için kullanılabilir. Böyle bir paradigmada, dış model uyarıcısı, bir model ilişkilendirme

problemine yanıt olarak ağdan okunan bir salınımı çağrıştırır. Bu tür bir hesaplama

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

20

paradigmasının çok katmanlı statik ileri beslemeli bir ağdan daha yüksek desen kapasitesi ve

sınır esnekliği potansiyeline sahip olduğuna dair kanıtlar sunarlar.

2.5.2. Dil Öğrenimi

Kremer, dilbilgisi indüksiyonu veya dil öğrenimi ile tekrarlayan sinir ağları arasındaki

ilişkiyi inceler ve resmi dil öğrenmenin anlaşılmasının tekrarlayan sinir ağlarının tasarlanmasına

ve uygulanmasına nasıl yardımcı olabileceğini sorar. Bu sorunun cevabı dört ders şeklinde gelir:

(1) RNN'leri eğitmek zordur, (2) arama alanını azaltmak öğrenmeyi hızlandırabilir veya mümkün

kılabilir, (3) arama alanını sipariş etmek öğrenmeyi hızlandırabilir ve (4) eğitim verilerinizi

sipariş etmek yardımcı olur. Bu bölüm, zamanla değişen girdilerle sunulan ve zamanın çeşitli

noktalarında çıktıları işlemek için tasarlanmış dinamik tekrarlayan sinir ağlarıyla ilgilidir. Bu

durumda, ağın çalışması, bir girdi dizisini bir çıktı değerine veya değerler dizisine eşleyen bir

işlevle tanımlanabilir ve girdilerin geçerli değerlerden oluşan ayrı bir alfabeden seçildiği ve çıktı

değerlerinin ayrı ayrı düştüğü soruna uygulanır. kategoriler. Her bir öğenin bir girdi alfabesinden

seçildiği girdi dizileriyle başa çıkma sorunu da biçimsel bir dil sorunu olarak değerlendirilebilir.

Bu çalışma, bir giriş dilinin alt kümelerini sınıflandırmak için tekrarlayan sinir ağlarını kullanıyor

ve dil öğrenimi için etkili teknikleri ortaya koyuyor.

2.5.3. Sıralı Otomatik Birleştirme

Bağlantıcı Doğal Dil İşleme (NLP) üzerine artan araştırmalara rağmen, uygun dilsel

temsillerin geliştirilmesi gibi bir dizi sorunun çözülmesi gerekiyor. Doğal dil, altta yatan

hiyerarşik yapıya ve ardışık dış görünüme sahip dinamik bir sistemdir ve yeterli bir hiyerarşik

sistematik dilsel temsil yöntemine ihtiyaç duyar. Elman [61] tarafından Jordan Yinelenen Ağlar

[62] ve Basit Yinelenen Ağlar (SRN) gibi küresel bellek yinelenen sinir ağlarının geliştirilmesi, bu

küresel sistemdeki sıralı girdilerinin temsillerini kademeli olarak oluşturan modellerin

geliştirilmesini teşvik etti.

Stoianov, karmaşık sıralı verilerin statik dağıtılmış temsillerinden oluşan hiyerarşik bir

sistem oluşturmak ve işlemek için tasarlanmış yeni bir bağlantısal mimari sunuyor. Giriş dizisinin

karmaşık statik temsillerini oluşturma fikrini takip eder, ancak her girdi dizisi için benzersiz

temsiller oluşturarak bu statik gösterimleri orijinal biçimlerinde yeniden üretmek üzere

genişletilmiştir. Model, Tekrarlayan Otomatik İlişki Ağları (RAN'lar) adı verilen sıralı otomatik

ilişkilendirme modüllerinden oluşur. Bu modüllerin her biri, girdi dizilerini yeniden üretmeyi

öğrenir ve bir yan etki olarak dizilerin statik dağıtılmış temsillerini geliştirir. İstenirse, bu

modüller statik gösterimleri orijinal sıralı biçimlerine açarlar. Sıralı olarak temsil edilen

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

21

hiyerarşik girdi verilerini işlemeye yönelik eksiksiz mimari, bir dizi RAN'dan oluşur. Bu kademeli

şemadaki en düşük seviyeden herhangi birinden bir RAN modülünün girdi jetonları, daha düşük

seviyeden RAN modülünün ürettiği statik temsillerdir. En düşük seviye RAN modülünün giriş

verileri dış dünyadan algılanır. En düşük seviyeden bir modülün çıktısı bir efektör ile

ilişkilendirilebilir. Daha sonra, RAN gizli katmanına ayarlanmış bir statik temsil verildiğinde, bu

efektör, paket açma işlemi sırasında sırayla komutları alacaktır.

RAN, doğal dillerin dinamiklerine uyan tekrarlayan bir sinir ağıdır ve RAN'lar, dizilerin

temsillerini üretir ve bunları sıralı biçimlerine geri döndürerek yorumlar. Bir RAN dizisi olan

daha genişletilmiş mimari, doğal dillerdeki hiyerarşiye benzer. Ayrıca, temsili bir eğitim ortamı

verildiğinde, bu mimari, dağıtılmış temsilleri sistematik bir şekilde geliştirme kapasitesine

sahiptir. RAN'ların bir sistematiklik açıklaması sağladığını ve bu nedenle RAN ve RAN

kademesinin, ürettikleri dağıtılmış temsillerin kapsamlı bir şekilde dönüştürüldüğü ve

ilişkilendirildiği daha küresel bir bilişsel modele katılabileceğini savunuyor.

Bu çalışmada dinamik verilerdeki hiyerarşi tartışmasını içerir ve hecelerin temsillerini

geliştirmek için küçük bir RAN örneği sunulmuştur. Model, hiyerarşik olarak yapılandırılmış

dizilerin temsillerini geliştirme sorununu çözse de özellikle otonom bir bilişsel model geliştirmek

için bazı sorular açık kalmaktadır. Yine de önerilen model, bağlantısal modellemede önemli bir

adım olabilir.

2.5.4. Eğitim Sorunları

Tekrarlayan sinir ağlarının önemli bir uygulaması, belirli gerekli zaman ilişkileri olan

olayların iyi örnekleri olan yörüngeleri içeren dinamik sistemlerin modellenmesidir. Tipik test

durumları, dairenin ve sekiz şeklinin ünlü doğrusal olmayan ve otonom dinamik sistemleridir.

Tekrarlayan ağları eğitmedeki zorluk, genellikle verimsiz eğitimle sonuçlanabilecek tahminlerin

kullanılmasıyla sonuçlanır. Sundareshan, Wong ve Condarcure çalışmalarında gradyan

değerlendirmeleri gerektirmeyen iki alternatif öğrenme prosedürünü açıklamaktadır. Sürekli

yörüngeler üretmek için karmaşık bir uzay-zamansal öğrenme görevini kullanarak iki

algoritmanın performansını gösterirler. Uygulamada önemli avantajlar gösterirler.

İki farklı yaklaşımı tanımlarlar. Biri otomatik öğrenme teorisindeki kavramları kullanır,

diğeri ise klasik simpleks optimizasyon yaklaşımına dayanır. Eğitimli bir sinir ağı tarafından uzay-

zamansal sinyal üretimi görevi ile bu yaklaşımların eğitim verimliliğini gösterirler. Bu görevin

karmaşıklığı, tekrarlayan sinir ağlarının zamansal dinamiklere yaklaşma konusundaki benzersiz

yeteneğini ortaya koyuyor.

Hagner, Hassoun ve Watta tek katmanlı tamamen tekrarlayan ağlar ve harici yinelemeli

çok katmanlı ağlar dahil olmak üzere farklı ağ mimarilerini ve öğrenme kurallarını

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

22

karşılaştırmışlardır: artımlı gradyan inişi, eşlenik gradyan inişi ve genişletilmiş Kalman filtresinin

üç versiyonu. Daire yörüngesinin, sekiz şeklindeki yörünge zor olduğu halde nispeten kolay

öğrenildiği gösterilmiştir. Bu dahili ve harici olarak tekrarlayan otonom sistemlerin sinir ağı

yaklaşımlarının kalitatif ve kantitatif bir analizini verirler.

2.5.5. Adaptif Robot Davranışı

Ziemke, robot kontrolü ve öğrenimi için tekrarlayan sinir ağlarının kullanımını tartışıyor

ve bunun bilişsel bilim, yapay zekâ ve robot kontrol sistemleri mühendisliği dahil olmak üzere

farklı araştırma alanlarıyla olan ilişkisini araştırıyor. Şimdiye kadar robotlarda nadiren kullanılan

ikinci dereceden RNN'ler özellikle ayrıntılı olarak tartışılmış ve uyarlanabilir robot davranışını

gerçekleştirme kapasiteleri gösterilmiş ve deneysel olarak analiz edilmiştir.

2.6. Gelecekteki Yönlendirmeler

 Bu çalışma, tekrarlayan sinir ağlarına olan ilginin genişliğini ve derinliğini temsil ediyor

ve devam eden araştırmalar için çeşitli yönlere işaret ediyor. Bölümler hem yeni hem de

geliştirilmiş algoritmaları ve tasarım tekniklerini ve ayrıca yeni uygulamaları ele almaktadır.

Konular dil işleme, kaotik ve gerçek zamanlı sistemler, optimizasyon, yörünge problemleri,

filtreleme ve kontrol ve robotik davranış ile ilgilidir.

Tekrarlayan sinir ağlarında yapılan araştırmalar, 1980'lerin sonlarında önemli temel

çalışmalara dayanarak, esas olarak 1990'larda gerçekleştirildi. Önümüzdeki on yıl, teori ve

tasarımda önemli gelişmelerin yanı sıra önemli pratik sorunların yaratıcı çözümü için daha birçok

uygulama üretmelidir. Tekrarlayan sinir ağlarının yaygın olarak uygulanması, araştırma ve

geliştirmeye daha fazla ilgi uyandırmalı ve daha fazla teorik ve tasarım sorusu doğurmalıdır.

Hibrit sistemlere olan ilginin devam etmesi, tekrarlayan sinir ağlarının yeni ve daha güçlü

kullanımlarıyla sonuçlanmalıdır.

2.7. Taşınabilir Yürütülebilir Formatın Tanımlanması

 Taşınabilir yürütülebilir (PE) biçimi (Şekil 3), Microsoft tarafından Windows NT 3.1

işletim sistemiyle tanıtıldı. Başlangıcından bu yana, onu Windows'un daha yeni sürümlerine dahil

etmek için çeşitli iyileştirmeler gördü. Unix, Windows PE formatına benzer ELF formatını kullanır.

Bu tezin kapsamı, Unix tabanlı işletim sistemlerinde çalışan kötü amaçlı yazılımlar için

mevcut veriler sınırlı olduğundan, Windows çalıştırılabilir dosyalarıyla sınırlıdır. Ancak, PE

dosyalarında bulunan COFF başlığı hem Unix hem de Windows ortamları için ortaktır [74].

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

23

Önerdiğimiz model, dosyanın kötü niyetli mi yoksa zararsız mı olduğunu belirlemek için PE

dosyalarından çıkarılan özellikleri analiz eder. Bu bölüm PE dosyalarından elde edilebilecek

bilgileri açıklamaktadır.

2.7.1. MS-DOS Koçanı

 Bu saplama, dosya bir MS-DOS ortamında her yürütüldüğünde yürütülür. Tek amacı,

dosyanın MS-DOS ortamında çalıştırılamayacağını belirten bir mesaj yazdırmaktır. MS-DOS

Stub'dan sonra eklenen bir imza, dosyanın PE biçiminde olduğunu gösterir. [75]

Şekil 3. PE Dosya Formatı [85]

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

24

2.7.1.1. Ortak Nesne Dosya Formatı

 Ortak Nesne Dosyası Biçimi (COFF) başlığı, MS-DOS Koçanının hemen ardından bulunur.

COFF Başlığı yapısı Tablo 2'de tanımlanmıştır. COFF başlığındaki Makine alanı ve Özellikler alanı

için tüm olası değerler sırasıyla Tablo 3 ve Tablo 4'te tanımlanmıştır. Dosya yalnızca makine alanı

üzerinde yürütülecek hedef makineyle eşleşirse bir makinede yürütülebilir.

Tablo 2. COFF: Yapısı [75]

Offset Size Field Description
0 2 Machine Identifies the target machine that the executable can

run on. Refer to Table 3.2
2 2 NumberOfSections Size of the section table. (follows the header table)
4 4 TimeDateStamp Date of Creation. Represented as seconds after

January 1, 1970.
8 4 PointerToSymbolTable File offset of COFF symbol table. 0 for no table.
12 4 NumberOfSymbols Number of entries in the symbol table.
16 2 SizeOfOptionalHeader Size of the optional header (required for executables)
18 2 Characteristics Indicates the attributes of the file. Refer to Table 3.3.

2.7.1.2 İsteğe Bağlı Başlık

Yürütülebilir dosyalar (resimler) olarak kabul edilen dosyaların ek bir isteğe bağlı başlığı

vardır. Bu başlık, çalıştırılabilir dosyaların yürütülmesinden sorumlu olan işletim sisteminde

bulunan yükleyiciye bilgi sağlar. Bu başlık çalıştırılabilir dosyalar için gerekli olsa da, nesne

dosyalarında da mevcut olabilir. Nesne dosyalarındaki isteğe bağlı başlıklar, dosya boyutunu

artırmak dışında hiçbir amaca hizmet etmez.

İsteğe bağlı başlığın boyutu, COFF başlığındaki SizeOfOptionalHeader alanında

tanımlanır. Tablo 5'te gösterildiği gibi, isteğe bağlı başlıkta bulunan sihirli bir sayı, yürütülebilir

dosyanın PE32 mi yoksa PE32 + mı olduğunu belirler.

E32 + yürütülebilir dosyaları 64 bit bellek adres alanına izin verir, ancak boyut olarak 2

gigabayttan fazla olamaz. İsteğe bağlı başlık, Tablo 6’da tanımlanan 3 ana bölüme ayrılmıştır.

İsteğe bağlı başlıktaki standart alanlar, her COFF uygulaması (Windows ve Unix) için

tanımlanmıştır. Bu bölümde yer alan bilgilerin bir özeti aşağıdadır:

• Dosyanın normal bir çalıştırılabilir (0x10B), bir ROM görüntüsü (0x107) veya bir PE32 +

çalıştırılabilir (0x20B) olduğunu gösteren sihirli sayı.

• Bu PE dosyası için kullanılacak bağlayıcı sürümü.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

25

Tablo 3. COFF: Makine Tipleri [75]

Constant Value Description

IMAGE_FILE_MACHINE_UNKNOWN 0x0 Applicable to any machine

IMAGE_FILE_MACHINE_AM33 0x1d3 Matsushita AM33

IMAGE_FILE_MACHINE_AMD64 0x8664 X64

IMAGE_FILE_MACHINE_ARM 0x1c0 ARM little endian

IMAGE_FILE_MACHINE_ARM64 0xaa64 ARM64 little endian

IMAGE_FILE_MACHINE_ARMNT 0x1c4 ARM Thumb-2 little endian

IMAGE_FILE_MACHINE_EBC 0xebc EFI byte code

IMAGE_FILE_MACHINE_I386 0x14c Intel 386 or equivalent

IMAGE_FILE_MACHINE_IA64 0x200 Intel Itanium processor family

IMAGE_FILE_MACHINE_M32R 0x9041 Mitsubishi M32R little endian

IMAGE_FILE_MACHINE_MIPS16 0x266 MIPS16

IMAGE_FILE_MACHINE_MIPSFPU 0x366 MIPS with FPU

IMAGE_FILE_MACHINE_MIPSFPU16 0x466 MIPS16 with FPU

IMAGE_FILE_MACHINE_POWERPC 0x1f0 Power PC little endian

IMAGE_FILE_MACHINE_POWERPCFP 0x1f1 Power PC with floating point support

IMAGE_FILE_MACHINE_R400 0x166 MIPS little endian

IMAGE_FILE_MACHINE_RISCV32 0x5032 RISC-V 32-bit address space

IMAGE_FILE_MACHINE_RISCV64 0x5064 RISC-V 64-bit address space

IMAGE_FILE_MACHINE_RISCV128 0x5128 RISC-V 128-bit address space

IMAGE_FILE_MACHINE_SH3 0x1a2 Hitachi SH3

IMAGE_FILE_MACHINE_SH3DSP 0x1a3 Hitachi SH3 DSP

IMAGE_FILE_MACHINE_SH4 0x1a6 Hitachi SH4

IMAGE_FILE_MACHINE_SH5 0x1a8 Hitachi SP5

IMAGE_FILE_MACHINE_THUMB 0x1c2 Thumb

IMAGE_FILE_MACHINE_WCEMIPSV2 0x169 MIPS little-endian WCE v2

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

26

Tablo 4. COFF: Mevcut Özellik İşaretleri [75]

Flag Value
IMAGE_FILE_RELOCS_STRIPPED 0x0001 The file must be loaded at its preferred

base address because it does not allow
base relocation.

IMAGE_FILE_EXECUTABLE_IMAGE 0x0002 Set for valid files. Linker error if this is
not set.

IMAGE_FILE_LINE_NUMS_STRIPPED 0x0004 Deprecated. Set to zero.
IMAGE_FILE_LOCAL_SYMS_STRIPPED 0x0008 Deprecated. Set to zero.
IMAGE_FILE_FILE_AGRESSIVE_WS_TRIM 0x0010 Obsolete for Windows 2000 and

later. Set to zero.
IMAGE_FILE_LARGE_ADDRESS_AWARE 0x0020 Capable of handling addresses

more than 2GB.
 0x0040 Reserved.
IMAGE_FILE_BYTES_RESERVED_LO 0x0080 Little Endian. Deprecated. Set to zero.
IMAGE_FILE_32BIT_MACHINE 0x0100 Machine uses 32-bit architecture.
IMAGE_FILE_DEBUG_STRIPPED 0x0200 File does not have debug infor- mation.
IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP 0x0400 Copy the image to memory if it is on

removable media.
IMAGE_FILE_NET_RUN_FROM_SWAP 0x0800 Copy the image to memory if it

is on network media.
IMAGE_FILE_SYSTEM 0x1000 System File
IMAGE_FILE_DLL 0x2000 DLL File. Cannot be executed.
IMAGE_FILE_SYSTEM_ONLY 0x4000 Only support uniprocessor ma-

chine.
IMAGE_FILE_BYTES_RESERVED_HI 0x8000 Big Endian. Deprecated. Set to

zero.

Tablo 5. Optimal Başlık Sihir Numarası [75]

Magic number PE format
0x10b PE32
0x20b PE32+

Tablo 6. Optimal Başlık Parçaları [75]

Offset
(PE32/PE32+)

Size
(PE32/PE32+)

Header part Description

0 28/24 Standard fields Common for Windows and Unix COFF
implementations

28/24 68/88 Windows-spesific
fields

Defines Windows spesific features.

96/112 Variable Data directories Address and size of special tables used by
OS.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

27

• Kod bölümünün boyutu. Kod bölümü, dosya yürütüldüğünde çalıştırılacak gerçek yazılımı

içeren bir PE dosyasının metin bölümünü ifade eder. Dosya içinde bu tür birden çok kod bölümü

olabilir, bu durumda başlık alanı, birleştirilmiş tüm kod bölümlerinin toplam boyutunu

gösterecektir. Kod bölümleri, bir PE dosyasının .text bölümü olarak da adlandırılır.

• Dosyada bulunan başlatılmış ve başlatılmamış verilerin boyutu. Bu aynı zamanda bir PE

dosyasının .data bölümü olarak da adlandırılır.

• Dosyanın giriş noktasının adresi. PE dosyası belleğe yüklendiğinde komut işaretçisinin

başlayacağı yer burasıdır. [75]

Windows'a özgü alanlar, özellikle Windows ortamları için gerekli olan belirli bilgileri

içerir. İşletim sistemi sürümünü, görüntü sürümünü (örneğin Word sürüm 8.0), başlıkların

boyutunu, görüntünün boyutunu, DLL özelliklerini, yükleyici bayraklarını, veri dizininin

uzunluğunu, veri dizininin kendisini ve sağlama toplamını içerir. Görüntünün boyutu,

görüntünün çalışması için işletim sistemi tarafından ne kadar adres alanı ayrılması gerektiğini

belirler. [74]

Veri dizinleri, Windows için gerekli olan dizinlerin adresini ve boyutunu verir. Buna,

bunlarla sınırlı olmamak üzere, içe / dışa aktarma tabloları, kaynak tablosu, istisna tablosu vb.

Dahildir. [75]

2.7.1.3. Bölüm Tablosu

PE dosyasındaki her bölüm, boyutu 40 bayt olan bir bölüm başlığı içerir. Bu, bölümün

adını, sanal boyutunu, satır sayısını ve çeşitli işaretçileri (çizgiler, ham veriler, yer değiştirmeler,

vb.) Tanımlar [75].

Yukarıda açıklanan bölümlerin yanı sıra, PE dosyası yazılımın çalıştırılabilir kodunu

içerir. Dosyaya bağlı olarak dahil edilebilecek birkaç başka bölüm vardır, ancak bu tezin kapsamı

dışındadır.

2.7.1.4. x86/x64 mimarisi

Temel montaj kodunu anlamak için aşina olunması gereken birkaç husus vardır. Bunlar

yazmaçlar, veri türleri, komut seti ve Windows temelleridir.

Mimaride sekiz genel amaçlı kayıt (GPR) vardır. Kayıtları ve normalde ne için kullanıldıklarını

listeleriz:

EAX - Aritmetik işlemler.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

28

EBX - Veri işaretçisi.

ECX - Döngülerde sayaç.

EDX - Dizi / bellek işlemlerinde kaynak.

EDI - Dizi / bellek işlemlerinde hedef.

ESI - Akış işlemlerinde kaynağa yönelik işaretçi.

EBP - Temel çerçeve işaretçisi. Bu, yığın içindeki karelere işaret eder. Çerçeveler, işlevler için

verileri depolar.

ESP - Yığın işaretçisi. Bu, işlem yığınının tepesine işaret eder.

Veri türleri

Yaygın veri türleri

• Bayt - 8 bit, örneğin AL, BL ve CL'de saklanır.

• Word - 16 bit, örneğin AX, BX ve CX'te saklanır.

• Çift kelime - 32 bit, örneğin EAX, EBX ve ECX'te saklanır.

Dört sözcük de kullanılabilir. 64 bit elde etmek için iki kaydı birleştirerek oluşturulurlar.

Komut seti

Veriler beş şekilde taşınabilir ve depolanabilir. Kaydetmek için hemen, hemen belleğe,

kayıttan kayıda taşınabilir, kayıt ve bellek arasında hareket ettirilebilir ve bellekten belleğe

taşınabilir. Verileri taşırken, sözdizimi bir işlem kodu, hedef ve bir kaynak işlenenden oluşur.

Aritmetik işlemler kullanılarak gerçekleştirilir.

• ADD - belirli bir değer ekler.

• SUB - belirli bir değeri çıkarır.

• INC - 1 ekler.

• Aralık - 1'i çıkarır.

Ve bir dizi mantıksal talimat:

• AND - ve verilen bir değer.

• OR - veya belirli bir değer.

• XOR - belirli bir değeri xors.

• NOT - belirli bir değerdeki bitleri ters çevirir.

Yığın da belirtilmelidir. Yığın, push ve pop'u destekleyen son giren ilk çıkar veri yapısıdır.

İtme, yığının en üstüne bir şey koyar ve pop yığının üstünden bir şey çıkarır. ESP tarafından işaret

edilen bitişik bir hafıza bölgesidir ve aşağı doğru büyür.

Akış kontrolü söz konusu olduğunda, if / else, switch / case ve while / for gibi üst düzey

yapılar:

• CMP - Birini diğerinden çıkararak iki işlenen karşılaştırır

• TEST - Aralarında AND kullanarak iki işlenen karşılaştırır

• JMP - ESP'yi belirli bir adresle günceller

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

29

• JCC - Bir dizi atlama komutu

• EFLAGS

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

30

3. MATERYAL VE YÖNTEM

3.1. Veri seti

Yinelenen sinir ağları genellikle zaman serisi ya da sekans halinde ilerleyen veriler için

kullanılan bir yapay sinir ağı yöntemidir. Veri setinin kaliteli olması özellikle bu tarz çalışmalarda

oldukça önemlidir ve titizlikle davranılmalıdır. Bu yüzden en çok saldırılan işletim sistemi olan

Windows seçilmiş ve yine derli toplu kaliteli bir veri seti olması dolayısıyla Microsoft’un sunduğu

ve Microsoft Malware Classification Challenge (BIG 2015) ekinliği için hazırlanan veri seti

kullanılmıştır [76].

Windows işletim sistemi için ele alınacak taşınabilir yürütülebilir dosya formatındaki

zararlı yazılımların bu yöntemle işlenebilmesi için ham verinin işlenmesi gerekmektedir. Bu

yüzden de zararsız olmayan taşınabilir yürütülebilir dosyaların makine dili kodlarına

dönüştürülme işlemi IDA Pro adlı program kullanılarak gerçekleştirilmiştir. Zararlı olan

yazılımlar hali hazırda Microsoft tarafından dönüştürülmüş haliyle veri setinde sunulduğu için bu

işleme tabi tutulmamıştır. Buradan elde edilen işlem kodu sekanslarında örüntü aranarak zararlı

yazılım tespit edilmeye çalışılacaktır. Yaklaşık 500 GB boyutundaki veri seti sıkıştırılarak boyutu

küçültülmüş ve test ile eğitim verileri ayrılmıştır. Veri setinde 9 farklı virüs ailesinden 10868 adet

.bytes dosyası, 10868 adet de .asm dosyası olmak üzere 21.736 adet dosya bulunmaktadır. Her

bir zararlı yazılımın kimlik numarası, 20 karakterlik özet değeri, sınıfı ve bu 9 aileyi temsil eden

bir sayı değeri bulunmaktadır. Bu zararlı yazılım aileleri ve sayı değerleri tablodaki gibidir:

Tablo 7. Zararlı yazılım aileleri ve sayı değerleri

Sıra Aile
1 Ramnit
2 Lollipop
3 Kelihos_ver3
4 Vundo
5 Simda
6 Tracur
7 Kelihos_ver1
8 Obfuscator.ACY
9 Gatak

Her bir statik yürütülebilir zararlı yazılımın ham verileri, ikili dosyaların onaltılık

sistemde gösterimi ile taşınabilir yürütülebilir başlığı verilmeden hazırlanmıştır. Ayrıca

günlükleri içeren meta veri bildirimleri (fonksiyon çağrıları vs.) de bu veri setinde ikili şekilde

bulunmaktadır.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

31

Veri setinde bulunan 9 aileden kaç adet örnek olduğuna baktığımız zaman aşağıdaki grafik

ortaya çıkmıştır.

Şekil 4. Zararlı yazılım örneklerinin dağılımları

Şekil 4’e bakıldığında özellikle Ramnit, Lollipop ve Kelihos_ver3 türünden zararlı yazılım

türü örnek sayısının diğer türlere göre oldukça fazla olduğu ve bu da veri setinde bir sınıf

dengesizliği oluşturduğu gözlemlenmektedir. Bu nedenle Simda adlı virüs ailesinden 42 adet

bulunmasından ötürü tüm ailelerden 42 adet rastgele örnek seçilmiştir.

Üzerinde çalışılacak veri seti hazırlanırken toplamda 378 adet zararlı yazılım, 125 adet

ise zararlı olmayan yazılım örneği kullanılmıştır. Zararlı olmayan yazılımlar taşınabilir

yürütülebilir formatta Windows üzerinde çalışabilen rastgele dosyalardan seçilmiştir.

3.2. Yöntem

Kullanılacak veri seti seçilirken yinelenen sinir ağlarının kullanılabilirliğine dikkat

edilmiştir. Veri seti zararlı yazılımların işlem kodu sekansları şeklinde düzenlendikten sonra

yinelenen sinir ağlarının kullanımına uygun hale getirilmiştir. Bu başlık altında veri setini

hazırlamak için yapılan tüm işlemler ve kullanılan platformlar anlatılacaktır.

3.2.1. Verilerin Hazırlanması ve Özellik Çıkarımı

Özellik çıkarımı örüntü tanıma aşamalarından biridir ve sınıflandırma işleminin kalitesini

belirlemede doğrudan etkilidir. Python programlama dili kullanılarak taşınabilir yürütülebilir

dosya örnekleri özellik çıkarımına uygun hale gelecek şekilde parçalara ayrılmıştır. Tüm dosyalar

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

32

sadece işlem kodları kalacak şekilde ayıklanmış ve bu ayıklama işleminin doğruluğunu sağlamak

amacıyla da Intel ve AMD işlemcilerin kullanma kılavuzlarındaki referans listesi kullanılmıştır

[77]. Elde edilen bu parçalar metin dizisine dönüştürülerek işlem kodu sekansları referans seti

ile eşleştirilmiş ve böylece assembly dosyasından elde edilecek gereksiz kodlar elenmiştir.

Kod sekanslarına bakıldığında assembly dosyaları içerisinde bulunan işlem kodlarının

tekrar eden kısımlara sahip olduğu, API çağrı isimlerini içerdiği ve her dosyanın birbirinden

bağımsız büyüklüklere sahip olduğu görülmüştür. Bu nedenle bu kod sekansları içerisinden

tekrar eden ve gereksiz olan işlem kodları silinmiş, her bir dosyadan gelen kod sekansının

büyüklüğü belirli bir boyut ile sınırlandırılmıştır. Bu boyuttan büyük olan dosyalar için geri kalan

kodlar alınmazken, küçük olanlar içinse eksik kalan kısımlar sıfır kullanılarak doldurulmuştur.

Bunun en büyük sebebi makine öğrenme algoritmaları için verilecek verinin boyutunun düzenli

olmasıdır.

Şekil 5. Ramnit adlı virüs ailesine ait bir zararlı yazılımın assembly komutlarındaki en sık

kullanılan 10 işlem kodu

Şekil 5’te veri seti içerisindeki Ramnit ailesine ait bir zararlı yazılım içerisinde en çok

kullanılan 10 adet işlem koduna ait kullanım frekansı grafiği verilmiştir. Genellikle “mov” ve

“push” komutlarının oldukça sık kullanıldığı görülmüştür. Bazı işlem kodları ise oldukça az

kullanıma sahiptir. Frekans belirleme işlemi tüm veri setindeki assembly dosyalarına

uygulanarak çok az kullanılan işlem kodları elenmiş ve veri setinin boyutu küçültülerek işlem hızı

artırılmaya çalışılmış ve daha doğru sonuçlar elde etmek amaçlanmıştır.

3.2.2. Word2Vec

Yinelenen sinir ağları, yapısı gereği metin dizilerini yorumlayamazken sadece sayısal

değerleri girdi alabilir. Bu yüzden de işlem kodu sekansları metin olarak değil, sayısal vektörler

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

33

olarak ifade edilmelidir. Bunu yapmak için kullanılan en basit yöntemlerden biri “one-hot

encoding” yöntemidir. Bu yöntem genellikle makine öğrenmesi algoritmalarında çalıştırılmak

üzere hazırlanan verinin kategorik değişkenler içermesi durumunda bu değişkenleri ikili olarak

temsil ederken kullanılır.

Şekil 6. One-hot Encoding örneği

One-hot encoding öncelikle kullanılacak sözlüğün boyutunda boş bir vektör yaratır.

Burada sözlük olarak bahsedilen şey aslında her bir kategorik değişkeni içeren bir kümedir ve bu

kümedeki veriler sütunlara yerleştirilir. Ardından verinin kullanıldığı yerde 1 kullanılmadığı

yerde 0 olarak vektörü doldurur [78]. Ancak bu yöntemin bazı dezavantajları bulunmaktadır.

Bunlardan ilki tüm işlem kodlarını aynı vektörle ifade etmektir ki bir işlem kodu eğer

diğer bir işlem koduyla ilişkili ise one-hot encoding bunu tespit edemez. İkincisi ise her bir veri

için uzun bir vektör oluşacağından hesaplama süresi artacaktır. Bu yüzden de daha iyi bir temsil

yöntemi olarak Word2Vec kullanılmıştır.

Şekil 7. One-hot encoding ile kelime temsili farkı

Kelime temsili (word embedding) dil modelleme yöntemlerinden biri olup girdi olarak

aldığı metinleri her bir sözcüğün arasındaki mesafeyi de dikkate alarak temsil uzayında yüksek

boyutlu sayısal vektörlere dönüştürür. Bu çalışmada popüler gözetimsiz ve tahmin temelli doğal

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

34

dil işleme modellerinden Word2Vec kullanılmıştır [79]. Bu yöntemin en büyük avantajı, vektör

uzayında temsil edilen her bir kelimenin birbirlerine olan benzerliğini kosinüs benzerliği denilen

hesaplama ile matematiksel olarak tespit edebilmesidir. Bu model çıktı olarak bir tüm kelime

vektörlerini barındıran bir kelime haznesi verir. Word2Vec uygulamaları sadece doğal dil işleme

alanında değil genetik, müzik listesi, beğeniler, sosyal medya grafları gibi birçok alanda da

kullanılmaktadır.

Şekil 8. CBOW ve Skip-gram modelleri

Word2Vec çıktı olarak verdiği kelime haznesini kullanarak farklı şekillerde yorumlamalar

yapabilir. Bir kelimenin hangi bağlama ait olduğunu ya da bir bağlama ait en olası kelimeleri

tahminleyebilir. Genellikle Word2Vec 2 farklı mimari içerir:

• Sürekli Kelime Torbası Modeli (Contextual Bag-of-Words - CBOW): Bu model metin

içerisindeki her bir cümleyi girdi olarak alıp daha sonrasında bir sözcüğün bu bağlamla

alakalı olup olmadığını tahmin etmeye çalışır.

• Gram Atlama (Skip-Gram - SG): Bu model ise tam tersi olarak bir kelimeyi kullanarak

bu kelimenin bağlı bulunduğu bağlama ait kelimeleri tahmin eder.

Şekil 9. Verilerin işlenmesini özetleyen akış şeması

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

35

Şekil 9.’da verilerin işlenip hazırlanmasına dair geçen sürecin bir görsel akış şeması

verilmiştir. Vektörel gösterim elde edildikten sonra LSTM modeline girdi olarak verilmiştir.

3.2.3. Yinelenen Sinir Ağları (Recurrent Neural Network)

Yinelemeli sinir ağı ya da RNN, ileri beslemeli sinir ağlarının içerisinde hafıza barındıran

versiyonu olarak tanımlanabilir. Aslında diğer sinir ağları gibi her bir girdi için aynı fonksiyonu

kullanarak bir çıktı üretir ancak bu çıktı bir sonraki aşamanın girdisi olarak verilir. Çıktı

hesaplandıktan sonra kopyalanır ve yinelenen ağa geri verilir. Ancak girdilerin tümünün

birbirinden bağımsız olduğu diğer ileri beslemeli sinir ağlarının aksine bir hafıza barındırarak

girdileri sekanslar halinde işler. Bu yapısından ötürü genellikle el yazması tespiti, ses tanıma gibi

alanlarda sıklıkla kullanılırlar [80].

 Şekil 10.’da ileri beslemeli bir sinir ağının nasıl yinelemeni bir sinir ağına dönüştürüldüğü

gösterilmektedir.

Şekil 10. İleri beslemeli sinir ağının yinelenen sinir ağına dönüşümü

RNN modeli birbirine bağlı sekanslar için yapısı itibariyle oldukça kullanışlıdır. Herhangi

bir girdi uzunluğu ile kullanılabilir. Modelin kendi büyüklüğü girdi büyüklüğü ile doğru orantılı

bir şekilde artmaz, ancak geçmiş veri sayısı arttıkça işlem hızı da etkilenir. Bu yüzden RNN ağını

eğitmek zordur ve bazı aktivasyon fonksiyonları uzun sekansları işlemeye uygun değildir [81]. Bu

nedenle tez çalışmasında RNN’in farklı bir versiyon olan LSTM modeli kullanılacaktır.

3.2.3.1. LSTM

Sınıflandırma işlemi için yinelenen sinir ağları modeli kullanılmıştır. Kullanılacak veri seti

oldukça uzun sekanslar içerdiğinden bu tip ağlarda sıklıkla görülen kaybolan gradyan problemine

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

36

yani uzun sekanslar içeren derin ağlarda türevlerin sıfıra yaklaşması problemine (vanishing

gradient) yol açabilir. Bu yüzden de buna bir çözüm olarak önerilen ve yinelenen sinir ağlarının

farklı bir versiyonu olan LSTM (kısa ve uzun süreli hafıza) modeli kullanılmıştır. Bu modelin

klasik yinelenen sinir ağlarından farkı hem kısa hem de uzun süreli hafızaya sahip olmasıdır. Bu

hafızanın oluşmasını sağlayan da LSTM modelinde bulunan farklı kapılardır. LSTM modellerinde

4 farklı birim bulunur: girdi kapısı, çıktı kapısı, unut kapısı ve hücre durumu. Hücre durumu

verinin geçmişini tutan hafıza kısmıdır ve diğer LSTM hücrelerine güncel veri sağlamakla

görevlidir. Girdi kapısı ise gelen verileri 0 ve 1 arasındaki değerlere normalize ederek

güncellenmesi gereken değerlere karar veren birimdir. Unut kapısı hafızadan veri atma işlemini

gerçekleştirir. Çıktı kapısı ise hiperbolik tanjant fonksiyonu kullanarak işleme giren veri ile

güncel hücre durumundan hangi verinin seçileceğine karar veren birimdir [82].

Şekil 11. Uzun-Kısa Süreli Bellek (LSTM)

İşlem kodu sekansları metin şeklinde olduğundan öncelikle bu verilerin işlenebilmesi için

nümerik şekilde ifade edilmesi gerekmektedir. Farklı işlem kodu değerleri için farklı sayılar

belirlenerek ve bunları bir sözlük olarak depolayarak bu dönüştürme işlemi gerçekleşmiştir.

Daha sonra bu sekanslar yinelenen sinir ağları kullanılarak sınıflandırma işlemine geçilmiştir.

Hazırlanan model işlem kodunda şüpheli bulduğu sekansları ve örüntüleri tespit edip öğrenerek

kararlar vermeye çalışacaktır. Bunun için ise verinin %10’u test için, %90’ı ise öğretim aşaması

için ayrılmıştır. Yinelenen sinir ağının çıktısı bize taşınabilir yürütülebilir dosyanın yararlı mı

zararlı mı olduğuna karar verecektir.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

37

LSTM modeli oluşturulurken nöron sayısı 128, seyreltme değeri olarak da 0.2

belirlenmiştir. Nöron sayısının fazla olması genellikle işlem hızını düşürmekle beraber daha iyi

sonuçlar verir. Ancak belirli bir doğruluk oranına ulaşmış bir modelin nöron sayısını artırmak

doğruluk oranını artırmamakla beraber sadece performansın düşmesine neden olacaktır. Bu

yüzden nöron sayısı için 128 kullanılması uygun bulunmuştur. Seyreltme oranı ise LSTM

içerisindeki nöronlara belirli oranda gürültü eklenerek aşırı uyum gösterme problemini ortadan

kaldırma amaçlı kullanılan bir parametredir. Yine nöron sayısında olduğu gibi eğitim tur sayısı

arttıkça çok küçük ölçeklerde performans etkileneceğinden tüm bu parametrelerle LSTM ağı

farklı eğitim turları ile eğitilerek performansın artık değişmediği sayıda bırakılacaktır.

3.2.3.2. Google Colaboratory

Google Colaboratory ya da kısa adıyla Colab, Google’ın sunduğu bulut hizmetlerinden biri

olup derin öğrenme algoritmalarını kullanmak için gerekli tüm altyapıya sahip ve tarayıcı

üzerinden kullanılabilen ücretsiz bir platformdur. Hiçbir kurulum gerektirmeden Python

programlama dili geliştirme ortamlarından Jupyter Notebook [https://jupyter.org/] servisinin

kullanımına imkân tanır. Colab hizmeti ile kullanıcılara bir Linux sanal makinesi atanır ve bu

makine üzerinde derin öğrenme algoritmalarının Python kütüphaneleri Keras, Tensorflow,

PyTorch gibi oldukça sık kullanılan kütüphaneler bulunur [83].

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

38

Şekil 12. Google Colaboratory servisi arayüzü

Yapılan tüm çalışmalar Google’ın bulut depolama servisi Google Drive kullanılarak

kaydedilebilir. Ayrıca Github gibi platformlardan da proje aktarımı yapılabilir.

İşlem gücü olarak da oldukça iyi performanslı bir makine sunan Colab, NvidiaK80, T4, P4 ve P100

gibi birçok güçlü grafik kartının gücünden yararlanmaya olanak tanır [84].

3.2.3.3. Değerlendirme Ölçütleri

Yapılacak olan sınıflandırma zararlı yazılım olup olmamasına dair olduğundan bu bir ikili

sınıflandırma problemidir. Bu yüzden sonuçlar değerlendirilirken karmaşıklık matrisi

kullanılarak bir tabloda sınıflandırılmıştır.

Tablo 8. Karmaşıklık matrisi kullanılarak değerlendirme

 Gerçek Veriler

 Zararlı Zararsız

Tahmin Edilen
Veriler

Zararlı Doğru Pozitif (DP) Yanlış Pozitif (YP)

Zararsız Yanlış Negatif (YN)
Doğru Negatif

(DN)

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

39

Karmaşıklık matrisinde kullanılan değerlere bakacak olursak:

• Doğru Pozitif (DP): Modelin bir örneği zararlı yazılım olarak tahmin etmesi ve o örneğin

gerçekten de zararlı yazılım olması durumunu temsil eder.

• Doğru Negatif (DN): Modelin bir örneği zararsız yazılım olarak tahmin etmesi ve o örneğin

gerçekten de zararsız yazılım olması durumunu temsil eder.

• Yanlış Pozitif (YP): Modelin bir örneği zararlı yazılım olarak tahmin etmesi ancak o

örneğin zararsız yazılım olması durumunu temsil eder.

• Yanlış Negatif (YN): Modelin bir örneği zararsız yazılım olarak tahmin etmesi ancak o

örneğin zararlı yazılım olması durumunu temsil eder.

Bu tablodaki veriler kullanılarak doğruluk, kesinlik ve duyarlılık değerleri aşağıdaki

formüllere göre hesaplanmış, sonuçlara bakılarak da modelin performansı değerlendirilmiştir.

• Doğruluk: Doğru sınıflandırmaların göreceli sıklığını ifade eder ve doğru tahminlerin tüm

veri setine oranı ile hesaplanır. Genellikle basit ve yeterli olmasından ötürü performans

değerlendirmelerinde sıkça kullanılır. Ancak veri setinde sınıf dengesizliği varsa bu değer

performansı net olarak yansıtmayabilir.

Doğruluk = (DP + DN) / (DP + DN + YP + YN)

• Duyarlılık: Doğru olarak sınıflandırılması gereken işlemlerin ne kadarının doğru olarak

tahmin edildiğini gösteren bir orandır.

Duyarlılık = DP / (DP + YN)

• Kesinlik: Doğru sınıflandırılmış pozitif örneklerin göreceli sıklığını ifade eder. Kesinlik

değeri doğru sınıflandırmaların oranını gösterir. Düşük bir keskinlik değeri veri setindeki

sınıf dengesizliğine işaret olabilir.

Kesinlik = DP / (DP + YP)

Modelin ne kadar iyi çalıştığını yüksek doğruluk değerinden, yüksek duyarlılıktan ve

yüksek kesinlik değerlerinden anlamak mümkün olacağından bu değerler incelenmiştir.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

40

4. BULGULAR VE TARTIŞMA

BIG2015 veri seti bir önceki başlıkta anlatıldığı üzere makine öğrenme algoritmalarında

kullanılacak üzere yeniden düzenlenip birtakım işlemler sonucu hazır hale gelmiştir.

Yapılan çalışmalarda genellikle Python programlama dili kullanılmış olup, yapay zeka

uygulamalarını çalıştırmak için sağladığı ücretsiz altyapısı ve hazır kütüphanelerinin

bulunmasından ötürü yüksek işlem gücü de sağlayan Google Colaboratory hizmeti kullanılmıştır.

Word2Vec modelinden bahsederken değinilen Geri Atlama ve Sürekli Kelime Torbası

modellerinin farklı pencere boyutlarında nasıl sonuçlar verdiği ve bu Word2Vec modellerinden

hangisinin zararlı yazılım tespit ederken daha iyi sonuçlar vereceğine dair testler yapılmıştır.

Genel itibariyle CBOW modeli, Skip-gram modeline göre daha iyi sonuçlar vermiştir. Ayrıca

CBOW modeli uygun görüldükten sonra Tablo 9. incelendiği takdirde en iyi sonuçların pencere

boyutunun 15 olduğu çalışmada elde edildiği görülmektedir. Bu yüzden pencere boyutu olarak

da 15 belirlenmiştir.

Tablo 9. Kelime Penceresi Boyutuna göre Sürekli Kelime Torbası ve Geri Atlama modellerinin

sonuçları.

 Sürekli Kelime Torbası Geri Atlama

5 94.21 94.01

10 94.23 94.22

15 94.80 94.43

20 94.65 94.50

35 94.02 94.00

Word2Vec için gerekli parametrelere karar verildikten sonra LSTM modeli için

kullanılacak parametreler belirlenmiştir. Bu parametreler ve değerleri Tablo 10.’daki gibidir.

Tablo 10. LSTM modeli için kullanılacak parametreler

Parametre Değer
max sequence length 600
batch size 64
embedding size 300
learning rate 1e-3
dropout rate 0.2
number of layers 2
hidden layer neuron 128

Parametrelere değinecek olursak;

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

41

• max sequence length: Maksimum opcode sekansı

• batch size: Modelin her bir iterasyonda girdi olarak alacağı örnek sayısı

• embedding size: İşlem kodu sekanslarının vektör olarak ifade edildiği temsil uzayının

boyutu

• learning rate: Modelin optimizasyon için ayarladığı öğrenme oranı

• dropout rate: Seyreltme oranı

• number of layers: Sinir ağındaki katman sayısı

• hidden layer neuron: LSTM’nin gizli katmanlarındaki nöron sayısı

LSTM modeli farklı eğitim ve test turları sonuçları Şekil13. ve Şekil 14.’ te verilmiştir.

Şekil 13. LSTM modeli farklı eğitim turları çalışma sonucu

Şekil 14. LSTM modeli farklı test turları çalışma sonucu

Test Turu

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

42

Çıkan sonuçlar incelendiğinde LSTM modelinin oldukça az sayıda eğitim turu yapılsa dahi

öğrenmeye gayet yüksek doğruluk oranları ile başladığını, ardından eğitim turu arttıkça da

doğruluk oranının dramatik bir şekilde yükseldiği görülmektedir. Beklenildiği gibi 10 eğitim turu

sonrasında ise artık model doygunluğa eriştiği için performansındaki gelişmeler çok sınırlı

kalmıştır. 50 eğitim turu sonrası elde edilen en iyi doğruluk değeri ise %95,8 olarak elde

edilmiştir. Testler sonucunda elde edilen sayısal sonuç verileri Karmaşıklık matrisine

yerleştirilmiştir. Sonuçlar Tablo 11’de gösterilmiştir.

Tablo 11. Karmaşıklık matrisi sonuçları

n=378
 Gerçek Veriler
 Zararlı Zararsız

Tahmin
Edilen
Veriler

Zararlı 362 16

Zararsız 15 110

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

43

5. SONUÇLAR VE ÖNERİLER

Bu çalışmada farklı özellik çıkarma yöntemleriyle desteklenerek taşınabilir yürütülebilir

zararlı yazılımların tespiti için LSTM hücreleri kullanılarak güçlendirilen yinelenen sinir ağları

kullanılmıştır. Sonuçlar göstermiştir ki zararlı yazılım tespiti derin öğrenme algoritmaları ile

yapılabilmektedir ve sonuçların geliştirilmesi için de farklı katmanlar eklenmesi faydalıdır.

LSTM’nin oldukça iyi sonuçlar verdiği görülmekle beraber büyük boyutlu dosyalarda uzun işlem

kodu sekanslarının oluşmasının performansa etki ettiği görülmüştür. Veri seti tümü ile çalışmaya

dahil edilmesi yerine periyotlar halinde temin edilerek, çalışmanın zaman sekanslarına

bölünerek yapılabileceği görülmüştür.

Tekrar eden işlem kodu sayısının fazla olması da özellik çıkarma işleminin daha da

özelleştirilip geliştirilmesi gerektiğini göstermektedir. Kullanılan veri seti Microsoft tarafından

2015 yılında yayınlandığından daha yeni veri setleri oluşturup sürekli güncellenen zararlı

yazılımlara karşı daha iyi bir model geliştirilebilir. Ayrıca işlem kodları programa ait davranışı

genel biçimde gayet iyi bir şekilde gösterse de işlenen (operand) kısmı da bu davranışı

betimlemede hassas bilgiler içerebilir. Bu yüzden ilerleyen çalışmalarda işlenen kısmı da veri

çıkarma işlemine dahil edilerek daha güçlü bir model elde edilmeye çalışılacaktır.

Veri seti içerisinden LSTM modeline uygun olacak şekilde her virüs ailesinden simetrik

sayıda zararlı yazılım örneği almak yerine her virüs ailesinden asimetrik sayıda zararlı yazılımın

seçilerek sonuçlara etkisi araştırılabilir.

İlerleyen çalışmalarda LSTM modelinden farklı olarak Google’ın önerdiği BERT modeli

kullanılarak daha farklı özellik çıkarma yöntemlerinin de kombinasyonları ile daha güçlü bir

model çıkarılması hedeflenmektedir. Çıkarılmaya çalışılacak olan modelde zararlı yazılımların

oluşturacağı tahribatlar da tahmin edilmeye çalışılacaktır. Ayrıca yinelenen sinir ağlarının yanı

sıra ikili verilerin sınıflandırılması ya da verilerin elde edilmesi aşamasında yinelenen sinir ağları

dışında farklı derin öğrenme metotları da modele dahil edilip derinleşmiş ve daha özelleşmiş bir

model oluşturulması hedeflenmektedir.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

44

KAYNAKLAR

[1]. M. Sikorski and A. Honig. Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software. No Starch Press, 2012.

[2]. Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on
automated dynamic malware-analysis techniques and tools. ACM computing surveys (CSUR),
44(2):6, 2012.

[3]. Skoudis, E. 2004. Malware: Fighting malicious code. Prentice Hall Professional.

[4]. Dilshan Keragala. Detecting malware and sandbox evasion techniques. SANS Insti- tute
InfoSec Reading Room, 16, 2016.

[5]. Igor Santos, Jaime Devesa, Felix Brezo, Javier Nieves, and Pablo Garcia Bringas. Opem: A
static-dynamic approach for machine-learning-based malware detection. In International Joint
Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions, pages 271–280. Springer, 2013.

[6]. Wen-Chieh Wu and Shih-Hao Hung. Droiddolphin: A dynamic android malware detection
framework using big data and machine learning. In Proceedings of the 2014 Conference on
Research in Adaptive and Convergent Systems, RACS ’14, pages 247–252, New York, NY, USA,
2014. ACM.

[7]. Microsoft Technet. Accessed may 2015. Diskmon for windows v2.01. https://technet.
microsoft.com/en-us/sysinternals/bb896646.

[8]. Microsoft Technet. Accessed may 2015. Process explorer v16.05. https://technet.
microsoft.com/en-us/sysinternals/bb896653.

[9]. Microsoft Technet. Accessed may 2015. Tcpview v3.05. https://technet.microsoft. com/en-
us/sysinternals/bb897437.

[10]. Wireshark Foundation. Accessed may 2015. Wireshark homepage. https://www.
wireshark.org/.

[11]. Santos, I., Brezo, F., Ugarte-Pedrero, X., & Bringas, P. 2013. Opcode sequences as
representation of executables for data-mining-based unknown malware detection. Information
Sciences.

[12]. Li, W.-J., Wang, K., Stolfo, S., & Herzog, B. 2005. Fileprints: Identifying file types by n-gram
analysis. Proceedings of the 2005 IEE Workshop on Assurance and Security.

[13]. Yu, S., Zhou, S., Liu, L., & Yang, R. 2010. Malware variants identification based on byte
frequency. Second international conference on networks security, wireless communications and
trusted computing.

[14]. Bilar, D. 2007. Opcodes as predictor for malware. Int. J. Electronic Security and Digital
Forensics, Vol 1, No. 2.

[15]. Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S., & Elovici, Y. 2008.
Unknown malcode detection using opcode representation. Springer-Verlag Berlin Heidelberg.

[16]. Shankarapani, M. & Ramamoorthy, S. 2010. Malware detection using assembly and api call
sequences. Springer-Verlag France.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

45

[17]. Zolotukhin, M. & Hamalainen, T. 2014. Detection of zero-day malware based on the
analysis of opcode sequences. The 11th Annual IEEE SSNC - Security, Privacy and Content
Protection.

[18]. Symantec. Accessed april 2015. 2014 internet security threat report, volume 19.
http://www.symantec.com/content/en/us/enterprise/other_resources/ b-
istr_main_report_v19_21291018.en-us.pdf.

[19]. Skoudis, E. & Zeltser, L. 2010. Malware: Fighting malicious code.

[20]. LeDoux, C. & Lakhoita, A. 2015. Malware and machine learning. Intelligent Methods for
Cyber Warfare.

[21]. Dube, T., Raines, R., Peterson, B., Bauer, K., & Rogers, S. 2010. An investigation of malware
type classification. Proceeding of the 5th International Conference Information Warfare and
Security.

[22]. Microsoft Malware Protection Center. Accessed may 2015. Naming malware. http://www.
microsoft.com/security/portal/mmpc/shared/malwarenaming.aspx.

[23]. Stallings, W. & Brown, L. 2008. Computer security principle and practise. Pearson
Education.

[24]. Cohen, F. 1987. Computer viruses: theory and experiments. Computers and security.

[25]. McLaughlin, L. 2004. Bot software spreads, causes new worries. IEEE Computer Society,
5(6).

[26]. Goebel, J. & Holz, T. 2007. Rishi: Identify bot contaminated hosts by irc nickname
evaluation.

[27]. Plohmann, D. & Gerhards-Padilla, E. 2012. Case study of the miner botnet. International
Conference on Cyber Confl ict, 4.

[28]. McAfee. 2006. Rootkits, part 1 of 3: The growing threat. Whitepaper.

[29]. Ammar AE Elhadi, Mohd A Maarof, and Ahmed H Osman. Malware detection based on
hybrid signature behaviour application programming interface call graph. American Journal of
Applied Sciences, 9(3):283, 2012.

[30]. Philip OKane, Sakir Sezer, and Kieran McLaughlin. Obfuscation: The hidden mal- ware.
IEEE Security & Privacy, 9(5):41–47, 2011.

[31]. Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. Control flow graphs as
malware signatures. In International workshop on the Theory of Computer Viruses, 2007.

[32]. Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for malware
detection. In Twenty-Third Annual Computer Security Applications Con- ference (ACSAC 2007),
pages 421–430. IEEE, 2007.
[33]. Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect mali- cious
patterns. Technical report, WISCONSIN UNIV-MADISON DEPT OF COM- PUTER SCIENCES, 2006.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

46

[34]. Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya Debray. A semantics-
based approach to malware detection. ACM SIGPLAN Notices, 42(1):377– 388, 2007.

[35]. David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and Heng Yin.
Automatically identifying trigger-based behavior in malware. In Botnet Detection, pages 65–88.
Springer, 2008.

[36]. Jon Oberheide, Michael Bailey, and Farnam Jahanian. Polypack: an automated online
packing service for optimal antivirus evasion. In Proceedings of the 3rd USENIX conference on
Offensive technologies, pages 9–9. USENIX Association, 2009.

[37]. Michele Banko and Eric Brill. Scaling to very very large corpora for natural lan- guage
disambiguation. In Proceedings of the 39th annual meeting on association for computational
linguistics, pages 26–33. Association for Computational Linguistics, 2001.

[38]. Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. Deep learn- ing for
classification of malware system call sequences. In Australasian Joint Confer- ence on Artificial
Intelligence, pages 137–149. Springer, 2016.

[39]. Katherine Heller, Krysta Svore, Angelos D Keromytis, and Salvatore Stolfo. One class
support vector machines for detecting anomalous windows registry accesses. In ICDM
Workshop on Data Mining for Computer Security, 2003.

[40]. Srilatha Attaluri, Scott McGhee, and Mark Stamp. Profile hidden markov models and
metamorphic virus detection. Journal in computer virology, 5(2):151–169, 2009.

[41]. Jeremy Z Kolter and Marcus A Maloof. Learning to detect malicious executables in the wild.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 470–478. ACM, 2004.

[42]. Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ahmadi.
Microsoft malware classification challenge. arXiv preprint arXiv:1802.10135, 2018.

[43]. Naman Bagga. Measuring the effectiveness of generic malware models. Master’s
thesis, San Jose State University, 2017.

[44]. Karthik Raman et al. Selecting features to classify malware. InfoSec Southwest, 2012, 2012.

[45]. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo, CA, 1993.

[46]. Hyrum S Anderson and Phil Roth. Ember: an open dataset for training static pe
malware machine learning models. arXiv preprint arXiv:1804.04637, 2018.

[47.] Wenyi Huang and Jack W Stokes. Mtnet: a multi-task neural network for dynamic malware
classification. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 399–418. Springer, 2016.

[48]. Christopher Manning, Prabhakar Raghavan, and Hinrich Schu ̈tze. Introduction to
information retrieval. Natural Language Engineering, 16(1):100–103, 2010.

[49]. Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil Thomas.
Malware classification with recurrent networks. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1916–1920. IEEE, 2015.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

47

[50]. Hamid Divandari, Bassir Pechaz, and Majid Vafaie Jahan. Malware detection us- ing markov
blanket based on opcode sequences. In 2015 International Congress on Technology,
Communication and Knowledge (ICTCK), pages 564–569. IEEE, 2015.

[51]. Daniel Bilar. Opcodes as predictor for malware. International Journal of Electronic Security
and Digital Forensics, 1(2):156–168, 2007.

[52]. Joshua Saxe and Konstantin Berlin. Deep neural network based malware detection using
two dimensional binary program features. In 2015 10th International Confer- ence on Malicious
and Unwanted Software (MALWARE), pages 11–20. IEEE, 2015.

[53]. Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex Smola.
Feature hashing for large scale multitask learning. arXiv preprint arXiv:0902.2206, 2009.

[54]. Byron P Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGre- gor. Boosted
decision trees as an alternative to artificial neural networks for parti- cle identification. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 543(2-3):577–584, 2005.

[55]. Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics and its
Interface, 2(3):349–360, 2009.

[56]. Robert E Schapire. The boosting approach to machine learning: An overview. In Nonlinear
estimation and classification, pages 149–171. Springer, 2003.

[57]. Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd international conference on Machine learning,
pages 161–168. ACM, 2006.

[58]. Fausett, L., Fundamentals of Neural Networks, Prentice Hall, Englewood Cliffs, NJ, 1994.

[59]. Hecht-Nielsen, R., Neurocomputing, Addison-Wesley, Reading, PA, 1990.

[60]. Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning internal representations by
error propagation, in Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Rumelhart, D. E. and McClelland, J. L., Eds., MIT Press, Cambridge, 45, 1986.

[61]. Elman, J. L., Finding structure in time, Cognitive Science, 14, 179, 1990.

[62]. Jordan, M., Generic constraints on underspecified target trajectories, Proceedings of the
International Joint Conference on Neural Networks, I, 217, 1989.

[63]. Nilsson, N. J., Learning Machines: Foundations of Trainable Pattern Classifying Systems,
McGraw-Hill, New York, 1965.

[64]. Mendel, J. M. and Fu, K. S., Eds., Adaptive, Learning and Pattern Recognition Systems,
Academic, New York, 1970.

[65]. Werbos, P., The Roots of Backpropagation: From Ordered Derivatives to Neural Networks
and Political Forecasting, Wiley, New York, 1993.

[66]. Werbos, P., Backpropagation through time: what it does and how to do it, Proceedings of
the IEEE, 78, 1550, 1990.

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

48

[67]. Lapedes, A. and Farber, R., Programming a massively parallel computation universal
system: static behavior, in Neural Networks for Computing, Denker, J. S., Ed., AIP Conference
Proceedings, 151, 283, 1986.

[68]. Pineda, F. J., Generalization of backpropagation in recurrent neural networks, Physical
Review Letters, 59 (19), 2229, 1987.

[69]. Almeida, L. B., A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment, Proceedings of the IEEE 1st Annual International Conference on
Neural Networks, San Diego, 609, 1987.

[70]. Williams, R. and Zipser, D., A learning algorithm for continually running fully recurrent
neural networks, Neural Computation, 1, 270, 1989.

[71]. Sato, M., A real time running algorithm for recurrent neural networks, Biological
Cybernetics, 62, 237, 1990.

[72]. Pearlmutter, B., Learning state space trajectories in recurrent neural networks, Neural
Computation, 1, 263, 1989.

[73]. Pearlmutter, B., Gradient calculations for dynamic recurrent neural networks: A survey,
IEEE Transactions on Neural Networks, 6, 1212, 1995.

[74]. Randy Kath. The portable executable file format from top to bottom. MSDN Library,
Microsoft Corporation, 1993.

[75]. Windows Dev Center. Pe format - windows applications, Mar 2019. https://docs.
microsoft.com/en-us/windows/desktop/debug/pe-format.

[76]. [R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Microsoft malware
classification challenge,” arXiv preprint arXiv:1802.10135, 2018.].

[77]. x86asm.net. Accessed may 2015. X86 opcode and instruction reference. http://ref.
x86asm.net/coder-abc.html

[78]. Potdar, Kedar & Pardawala, Taher & Pai, Chinmay. (2017). A Comparative Study of
Categorical Variable Encoding Techniques for Neural Network Classifiers. International Journal
of Computer Applications. 175. 7-9.

[79]. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations
in vector space In: International Conference on Learning Representations 2013, Scottsdale.

[80]. Lipton, 2015 Z.C. Lipton A critical review of recurrent neural networks for sequence
learning

[81]. Bengio, Simard, Frasconi, 1994 Learning long-term dependencies with gradient descent is
difficult IEEE Trans Neural Netw, 5 (2) (1994), pp. 157-166.

[82]. Sepp Hochreiter Neural Computation , Long-Short Term Memory, 1997
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory.

https://www.researchgate.net/publication/13853244_Long_Short-term_Memory

Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021

49

[83]. Bisong E (2019) Google colaboratory In: Building Machine Learning and Deep Learning
Models on Google Cloud Platform: A Comprehensive Guide for Beginners, 59–64.. Apress,
Berkeley, CA..

[84]. Colaboratory https://research.google.com/colaboratory/faq.html.

[85]. Wikimedia Commons. Portable executable 32 bit structure in svg fixed, 2016.
https://commons.wikimedia.org/wiki/File:Portable Executable 32 bit Structure in SVG
fixed.svg.

https://research.google.com/colaboratory/faq.html

