TASINABILIR YURUTULEBILIR DOSYALARDA YINELENEN
SINIR AGLARINI KULLANARAK STATIK KOTU AMACLI
YAZILIM ALGILAMA

YUKSEK LISANS TEZi

MUSA GUL
ORCID ID: 0000-0002-1802-2537

MERSIN UNIVERSITESI
FEN BILIMLERI ENSTITUSU

BILGISAYAR MUHENDISLIGI
ANABILIM DALI

MERSIN
MAYIS- 2021

TASINABILIR YORUTULEBILIR DOSYALARDA YINELENEN
SINIR AGLARINI KULLANARAK STATIK KOTU AMACLI
YAZILIM ALGILAMA

YUKSEK LISANS TEZi

MUSA GUL
ORCID ID: 0000-0002-1802-2537

MERSIN UNIVERSITESI
FEN BILIMLERI ENSTITUSU

BILGISAYAR MUHENDISLIGI
ANABILIM DALI

Danisman
Doc. Dr. Erding AVAROGLU
ORCID ID: 0000-0003-1976-2526

MERSIN
MAYIS - 2021

ii

OZET

Tasinabilir Yiiriitiillebilir Dosyalarda Yinelenen Sinir Aglarim1 Kullanarak Statik
Kotii Amach Yazilim Algilama

Teknolojideki son gelismeler ile kotli amach yazilimdan koruma yaziliminin ortaya
¢ikmasindan bu yana, bu yazilim ya da yazilimlar atlatmaya yonelik 6zel olarak tasarlanmis
karmagsik kotli amagh yazilimlarda bir artis goriilmiistiir. Bu da daha gelismis algilama
tekniklerine yonelik arastirmalara onciliik etmistir. Bu calismanin temel amaci, tasinabilir
yluriitiilebilir dosyalari statik olarak kotii niyetli veya zararsiz olarak siniflandirmak icin derin bir
sinir ag1 tasarlamak ve degerlendirmektir.

Bu amacla, bilinen kotii niyetli ve zararsiz dosyalarin tasinabilir yirttilebilir
dosyalarindan g¢ikarilan verileri iceren Microsoft'un sundugu Microsoft Malware Classification
Challenge (BIG 2015) ekinligi i¢cin hazirlanan veri seti kullanilmistir. Python programlama dili
kullanilarak tasinabilir yiiriitilebilir dosya ornekleri 6zellik cikarimina uygun hale gelecek
sekilde parcalara ayrilmistir. Tiim dosyalar sadece islem kodlar1 kalacak sekilde ayiklanmistir.
Kod sekanslari icerisinden tekrar eden ve gereksiz olan islem kodlari silinmis, her bir dosyadan
gelen kod sekansinin biiytikliigii belirli bir boyut ile sinirlandirilmistir. Bu boyuttan biiyiik olan
dosyalar icin geri kalan kodlar alinmazken, kii¢lik olanlar icinse eksik kalan kisimlar sifir
kullanilarak doldurulmustur. Olusturulan sézliik, popiiler gézetimsiz ve tahmin temelli dogal dil
isleme modellerinden Word2Vec kullanilarak vektorel hale getirilmistir. Word2Vec kullanilirken
calismaya uygunlugu goéz oniinde bulundurularak Siirekli Kelime Torbasi (CBOW) mimarisi
kullanilmistir. CBOW modeli uygun goriildiikten sonra en iyi sonuglarin pencere boyutunun 15
oldugu calismada elde edildigi gériilmiistiir, bu nedenle pencere boyutu 15 olarak belirlenmistir.
Calisma uzun sekanslar icerdiginden RNN modelinde hiz diistisii 6ngoriilerek RNN’nin farkli bir
versiyonu olan LSTM kullanilmistir.

LSTM modelinin oldukca az sayida egitim turu yapilsa dahi 6grenmeye gayet yliksek
dogruluk oranlariile basladigini, ardindan egitim turu arttik¢a da dogruluk oraninin dramatik bir
sekilde yiikseldigi goriilmektedir. Beklenildigi gibi 10 egitim turu sonrasinda ise artik model
doygunluga eristigi i¢cin performansindaki gelismeler ¢ok sinirli kalmistir. 50 egitim turu sonrasi
elde edilen en iyi dogruluk degeri ise %95,8 olarak elde edilmistir. Bulgular, yeni iiretilen ya da
az bilinen kotii amagh yazilimlarin kolaylikla tespit edilmesi konusunda olduk¢a 6nem arz
etmekte ve virlis imza veri tabani temelli koruma yazilimlar1 yerine makine 6greniminin
modellendigi daha gelismis kotii amach yazilimdan korunma tekniklerinin tasariminda yol
gosterici olacaktir.

Anahtar Kelimeler: LSTM, Kotii amacgh yazilim, RNN, Word2Vec, Virts.

Damisman: Dog. Dr. Erding AVAROGLU, Mersin Universitesi, Bilgisayar Miihendisligi Anabilim
Dali, Mersin.

ABSTRACT
Static Malware Detection Using Recurrent Neural Networks in Portable Executables

Since the advent of anti-malware software with recent advances in technology, there has
been an increase in sophisticated malware specifically designed to circumvent them. This led to
research into more advanced sensing techniques. The main purpose of this study is to design and
evaluate a deep neural network to statically classify portable executables as malicious or
harmless.

For this purpose, the data set prepared for the Microsoft Malware Classification Challenge
(BIG 2015) event presented by Microsoft, which includes the data extracted from the portable
executable files of known malicious and harmless files, was used. Examples of portable
executables using the Python programming language are segmented to be suitable for feature
extraction. All files have been extracted so that only opcodes remain. Repetitive and unnecessary
opcodes were deleted from the code sequences, and the size of the code sequence from each file
was limited to a certain size. For the files larger than this size, the remaining codes are not taken,
while for the smaller ones, the missing parts are filled with zeros. The created dictionary was
vectorized using Word2Vec, one of the popular unattended and predictive-based natural
language processing models. When using Word2Vec, the Continuous Bag of Words (CBOW)
architecture was used considering its suitability to work. After the CBOW model was approved, it
was seen that the best results were obtained in the study with a window size of 15, therefore the
window size was determined as 15. Since the study includes long sequences, a different version
of RNN, LSTM, was used by predicting a speed decrease in the RNN model.

Itis seen that the LSTM model starts learning with very high accuracy rates even if a very
small number of training tours are performed, and then the accuracy rate increases dramatically
as the training tour increases. As expected, after 10 training rounds, the performance
improvements were very limited as the model had reached saturation. The best accuracy value
obtained after 50 training rounds was obtained as 95.8%. The findings are very important in
easily detecting newly produced or lesser-known malware and will guide the design of more
advanced anti-malware techniques modeled by machine learning rather than virus signature
database-based protection software.

Keywords: LSTM, Malware, RNN, Word2Vec, Virus.

Advisor: Assoc. Dr. Erding AVAROGLU, Mersin University, Department of Computer
Engineering, Mersin.

vi

TESEKKUR

Bu calismada makine 6grenimi ve yapay sinir aglar1 konusundaki bilgileri ile bana destek
olan Kutluhan KiBRIT ve Ozkan KIRIK biiyiiklerime ve tez hazirlik siirecimde bastan sona bana
destek olup emegini esirgemeyen degerli hocam Dog. Dr. Erding AVAROGLU hocama ayrica tez
sunumuma katilan degerli hocalarim ve jiiri tiyelerim Prof. Dr. Hamza EROL ve Dog. Dr. Taner
TUNCER hocalarima ve son olarak destekleri ile motivasyonumu yiiksek tutan ailem ve esime
sonsuz tesekkiirler.

vii

ICINDEKILER

Sayfa
IC KAPAK i
ONAY ii
ETIK BEYAN iii
OZET iv
ABSTRACT v
TESEKKUR vi
ICINDEKILER vii
TABLOLAR DIZINI viii
SEKILLER DiZiNi ix
KISALTMALAR ve SIMGELER X
1. GIRIS 1
1.1. Amag 3
1.2. Taslak 3
2. KAYNAK ARASTIRMALARI 4
2.1. Statik Kotii Amagli Yazilim Tespiti 5
2.1.1. Farkl K6tii Amacgh Yazilim Tiirleri 5
2.1.1.1. Virts 6
2.1.1.2. Worm(Solucan) 7
2.1.1.3. Bot 7
2.1.1.4. Rootkit 8
2.1.1.5. Backdoor (Arka Kapi) 8
2.1.1.6. Truva at1 8
2.1.2. Imzadan Kaginma 8
2.1.3. Kod Gizleme 9
2.1.4. Yazilhim Paketleme 10
2.2. Koétii Amach Yazilim Algilama i¢in Makine Ogrenimi 10
2.2.1. Ozellik Secimi 12
2.2.2. Glglendirilmis Karar Agaclari ve Yapay Sinir Aglari 12
2.3. Yinelenen Sinir Aglarinin Incelenmesi 13
2.3.1. Yinelenen Sinir Ag1 Mimarileri 14
2.3.2.Yinelenen Sinir Aglarinda Ogrenme 15
2.4. Tasarim Konular ve Teorisi 16
2.4.1. Optimizasyon 16
2.4.2. Ayrik Zaman Sistemleri 17
2.4.3. Bayesian Inan¢ Revizyonu 17
2.4.4. Bilgi Temsili 18
2.4.5. Uzun Vadeli Bagimhiliklar 18
2.5. Uygulamalar 19
2.5.1. Kaotik Yeniden Kazanan Aglar 19
2.5.2. Dil Ogrenimi 20
2.5.3. Sirali1 Otomatik Birlestirme 20
2.5.4. Egitim Sorunlari 21
2.5.5. Adaptif Robot Davranisi 22
2.6. Gelecekteki Yonlendirmeler 22
2.7. Tanisabilir Yiritiilebilir Formatin Tanimlanmasi 22
2.7.1. MS-DOS Kogani 23
2.7.1.1. Ortak Nesne Dosya Formati 24
2.7.1.2. Istege Bagh Bashk 24
2.7.1.3. Boliim Tablosu 27
2.7.1.4. x86 /x64 mimarisi 27

viii

Sayfa

3. MATERYAL ve YONTEM 30
3.1. Veri seti 30
3.2. Yontem 31
3.2.1. Verilerin Hazirlanmasi ve Ozellik Cikarimi 31
3.2.2. Word2Vec 32
3.2.3. Yinelenen Sinir Aglar1 (Recurrent Neural Network) 32
3.2.3.1.LSTM 35
3.2.3.2. Google Colaboratory 37
3.2.3.3. Degerlendirme Olgiitleri 38
4. BULGULAR ve TARTISMA 40
5. SONUCLAR ve ONERILER 43
KAYNAKLAR 44
EKLER (Var ise)

OZGECMIS 50

X

TABLOLAR DiZiNi

Sayfa
Tablo 1. Tekrarlayan sinir ag1 uygulamalarina érnekler 13
Tablo 2. COFF: Yapisi [75] 24
Tablo 3. COFF: Makine Tipleri [75] 25
Tablo 4. COFF: Mevcut Ozellik Isaretleri [75] 26
Tablo 5. Optimal Baslik Sihir Numarasi [75] 26
Tablo 6. Optimal Baslik Parcalari [75] 26
Tablo 7. Zararh yazilim aileleri ve say1 degerleri 30
Tablo 8. Karmasiklik matrisi kullanilarak degerlendirme 38
Tablo 9. Kelime Penceresi Boyutuna gore Siirekli Kelime Torbasi ve Geri Atlama 40
modellerinin sonuclari.
Tablo 10. LSTM modeli i¢in kullanilacak parametreler. 40

Tablo 11. Karmasiklik matrisi sonuglari 42

SEKILLER DIiZiNi

Sayfa
Sekil 1. Tamamen bagl tekrarlayan sinir agina bir 6rnek. 14
Sekil 2. Basit bir tekrarlayan ag drnegi. 15
Sekil 3. PE Dosya Formati 23
Sekil 4. Zararlh yazilim 6rneklerinin dagilimlar 31
Sekil 5. Ramnit adli viriis ailesine ait bir zararl yazilimin assembly komutlarindaki 32
en sik kullanilan 10 islem kodu
Sekil 6. One-hot Encoding 6rnegi 33
Sekil 7. One-hot encoding ile kelime temsili farki 33
Sekil 8. CBOW ve Skip-gram modelleri 34
Sekil 9. Verilerin islenmesini 6zetleyen akis semasi 34
Sekil 10. ileri beslemeli sinir aginin yinelenen sinir agina déniisiimii 35
Sekil 11. Uzun-Kisa Siireli Bellek (LSTM) 36
Sekil 12. Google Colaboratory servisi arayiizii 38
Sekil 13. LSTM modeli farkh egitim turlari ¢alisma sonucu 41
Sekil 14. LSTM modeli farkli test turlari ¢alisma sonucu 41

Xi

KISALTMALAR ve SIMGELER

Kisaltma/Simge Tanim

URL Uniform Resource Locator

HTTP Hyper Text Transfer Protocol

COFF Common Object File Format

API Application Programming Interface
PE Portable Executable

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

Xii

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

1. GiRiS

Kotii amagh yazilim algilama kavrami, esas olarak koétii niyetli amag olusturmak igin
yuritilebilir dosyalarin analiz edilmesiyle ilgili bir konu olarak bilinmektedir. Kotii amach
yazilimdan koruma yaziliminin ortaya ¢ikmasindan bu yana, bu yazilimi atlatmak i¢in 6zel olarak
tasarlanmis karmasik kotii amach yazilimlarda bir artis gortlmistir. Bu da daha gelismis
algilama tekniklerine yonelik arastirmalara onciiliik etmistir. Kotii amagh yazilim analizi veya
kot amacgh yazilim tespiti iki sekilde gerceklestirilebilir: statik veya dinamik olarak.

Statik Kotii Amach Yazilim Algilama: Statik kotii amach yazilim algilama, bir ikili
dosyayl yliriitmeden analiz etme siirecidir. Bu, dosyanin tamamen yayilmasini ve her bilesenin
incelenmesini, tersine miithendislik yapmak icin bir sokiicii kullanilmasini veya akisini incelemek
icin montaj koduna dénistiirtilmesini igerebilir [1]. Varsa yazilimin orijinal kaynak koduna da
genisletilebilir [2]. Bu, genellikle tiim kotli amagh yazilimdan koruma yazilimlar: tarafindan
kullanilan kétii amach yazilimlara karsi ilk savunma hattidir.

Statik analiz genellikle bilinmeyen bir dosyayla ugrasirken ilk olarak gergeklestirilir. i1k
adim, ana bilgisayarda [3] ytikli antiviriis programi ile dosyay1 manuel olarak taramaktir. Dosya
zaten biliniyorsa, kendi basiniza ¢6zmeye c¢alismak icin saatler harcamanin bir anlami yoktur.
(Ogrenme deneyimi haric.) Sistem antiviriis programina ek olarak, dosya, 43 farkli antiviriis
programi kullanarak dosyay: tarayan VirusTotal gibi bir site Uzerinden galistirilabilir. Ayni
dosyayla baska birinin karsilasip karsilasmadigini géormek icin dosyanin karmasini hesaplamak
ve cevrimici olarak aramak da yararli olabilir.

Dize analizi, dosya hakkinda ipuglar1 almanin basit bir yoludur. Komut satir1 segenekleri,
kullanic1 diyalogu, sifreler, URL'ler e-posta adresleri, kitapliklar ve islev ¢agrilar1 gibi dosya
bilgilerindeki tiim dizeleri listeleyerek bulunabilir [3].

Demontaj, statik analizin hayati bir parcasidir. Bir ikiliden derleme talimatlarim alarak,
programin ne yaptigini anlamak i¢in kaynak kodu arastirilabilir. Yine de anlamak icin, (bizim
durumumuzda) x86 ve x86-64 mimarisi ve Windows i¢ bilesenleri hakkinda derin bilgiye sahip
olmak gerekir. Kodun anlasilmasinmi kolaylastirmak igin, kod ¢6zilebilir. Bu sekilde kod, daha
yliksek seviyeli bir dilde temsil edilir. Kod orijinali gibi olmayacak olsa da, kodu inceleyen kisinin
isini kolaylastiracaktir.

Dinamik Kétii Amach Yazilim Algilama: Dinamik koétii amacgh yazilim algilama, koti
amacl bir yazilimi belirlemek icin kotii amach yazilim ¢alisirken davranis analizini kullanir.
Genellikle bu, yiiriitiilebilir dosyanin hedef sisteme herhangi bir zarar vermemesini saglamak i¢in
bir SandBox ortaminda yapilir. Bu analiz bi¢cimi genellikle yogun kaynak gerektirir ve cesitli
sekillerde atlatilabilir. Hata ayiklayicilar kara kutu testi kullanilarak tespit edilemeyen sistem

¢agrilarini veya diger davranis kaliplarini analiz etmek icin de kullanilabilir [4].

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Bu tezin kapsami i¢in sadece statik kotli amagh yazilim tespitine odaklanilmistir.

Makine 6grenimi, matematiksel islevler kullanilarak kolayca belirlenemeyen karmasik
ozelliklere sahip verileri siniflandirmak icin uzun stiredir kullanilmaktadir. Glinlimiizde derin
sinir aglar, veri siniflandirmasi, veri tahmini, gériintii tanima, dogal dil isleme vb. dahil (ancak
bunlarla sinirli olmamak iizere) cesitli farkli uygulamalar icin kullanilmaktadir. Sinir aglarinin bu
¢ok yonliiliigl, bliyiik miktarda verinin mevcut oldugu biiytik veri gibi bir sey i¢cin miikemmeldir,
ancak belirli bir sonuc elde etmek icin islemek hesaplama ac¢isindan pahalhdir.

Yakin zamana kadar, denetimli 6grenim icin etiketli veri kiimelerinin bulunmamasi, kotii
amagh yazilim tespiti icin makine 6grenimi veya derin 6grenmenin kullanimindaki ilerlemeyi
yavaglatmisti. Igor Santos vd. bilinmeyen kotii amacgh yazilimlari tespit etmekte makine
6grenimini kullanmak icin statik-dinamik yaklasim olarak OPEM’i 6nermistir [5]. Yiriitilebilir
dosyalarin demonte edilmesinden elde edilen operasyonel kodlar1 analiz etmeyi ve kot niyetli
niyetleri belirlemek icin yiiriitme izlerini analiz etmeyi 6nermislerdir. Benzer sekilde, Android
icin DroidDolphin adli dinamik bir kotii amagh yazilim algilama cergevesi, dinamik kotii amaglh
yazilim analizi kullanarak % 86.1 dogruluk elde etmeyi basarmistir [6]. Her iki yontem de
genellikle hesaplama agisindan pahalidir ve etiketli verilerin sinirhi kullanilabilirliginden
muzdariptir.

Dinamik analizi gerceklestirmenin en basit yolu, numuneyi ¢alistirmak ve ne oldugunu
izlemektir. Yalmizca korumali alan veya g¢evrimdisi bir laboratuvar gibi izole bir ortamda
calistirmak o6nemlidir. Dinamik yaklasim her zaman statik analiz yapildiktan sonra
uygulanmalidir. Bir kot amagh yazilim 6rnegi calistirilirken, izlenmesi gereken birka¢ husus
vardir [3]:

 Dosya etkinligi

Kot amagh yazilim, bilgi toplamak, diger programlari baslatmak veya DLL'leri yiiklemek
icin dosyalar1 okuyabilir. Diger programlar1 degistirmek icin dosyalar yazilabilir veya
degistirilebilir. Dosya sistemindeki tiim aktiviteyi kaydetmek icin iyi bir ara¢ Diskmon'dur [7].

e Sliregler

Islemleri kaydetmek icin Process Explorer [8] kullanilabilir. Bu aracla, islemin yiikledigi
tiim dosyalar, kayit defteri anahtarlar1 ve DLL'ler gilinliige kaydedilir. Ayrica, siirecler bir agac
yapisinda diizenlenir, bu nedenle siirecin herhangi bir yeni islem dogurup dogurmadigini gérmek
kolaydir.

e Ag etkinligi

Cok sayida kotii amacgh yazilim, komut almak ve / veya bilgi géndermek icin ag

baglantisini kullandigindan, ag etkinligi izlenmelidir. TCPView [9], hangi baglanti noktalarinin

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

gelen trafigi dinledigini arastirmak icin bir aractir. Ag lizerinden génderilen ve alinan tiim bilgileri
toplamak icin Wireshark [10] kullanilabilir.

¢ Kayit erisimi

Windows'taki kayit defteri, isletim sistemi ve yiikli programlarin bir¢ogu icin
yapilandirma anahtarlarini iceren bir veritabanidir. Bir kayit defteri anahtarinin degistirilmesi,
sistemin giivenligi lizerinde biiyiik bir etkiye sahip olabilir. Yine, islem Monitérii kayit
degisikliklerini izlemek i¢in kullanilabilir.

Hata ayiklama, dinamik analiz gerceklestirmenin baska bir yoludur.

1.1. Amag

Bu tezin temel amaci, tasinabilir yiiriitiilebilir dosyalar: statik olarak kotii niyetli veya
zararsiz olarak siniflandirmak icin derin bir sinir ag1 tasarlamak ve degerlendirmektir. Bu amacla,
bilinen koti niyetli ve zararsiz dosyalarin tasinabilir yirttiilebilir dosyalarindan g¢ikarilan
verileri iceren Microsoft'un sundugu Microsoft Malware Classification Challenge (BIG 2015)
ekinligi icin hazirlanan veri seti kullanilmistir. Model olusturulurken kotii amagh yazilimin statik

analizini ele almak i¢in literatiirde daha dnce 6nerilen benzer modeller incelenmistir.

1.2. Taslak

e Bolim 1, bu tezde kapsanan kavramlari tanitir.

e Bolim 2, statik kotii amach yazilim analizi alanlarinda yapilan 6nceki ¢alismalardan ve

kot amagh yazilim tespitinde kullanilan makine 6grenimi yaklagimlarini inceler.

e Bolim 3, dnerilen modeli anlamadan once Ulzerinde calisilmasi gereken tasinabilir
yuriitiilebilir dosyalarin cesitli yonlerini aciklar. Modelimiz i¢in kullanilan veri setini ve
tasinabilir yiiriitiilebilir dosya formatini nasil iliskilendirdigini kisaca kapsar.

¢ Bolim 4, modelimizin uygulanmasinda yer alan adimlari ve stirecleri, nihai modelin tiim
yapisiyla birlikte ayrintili olarak agiklamaktadir.

e Bolim 5'te modelimiz tzerinde yapilan deneyleri ve bunlarin gercek diinyadaki
sonuglarin tartisiyoruz. Model i¢in kaynak koduna erisim kaynaklar1 ve yapilan tiim

deneyler bu boliimde yer almaktadir.

e Bolim 6, tezin icerigini, modelini ve bu tezde kapsanmayan arastirma alanlarini
ozetlemektedir. Ayrica bu tezdeki olas1 bosluklardan ve bu bosluklar1 kapatmak i¢in

yapilabilecek arastirmalardan da bahsediyor.

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

2. KAYNAK ARASTIRMALARI

Bu béliimde, kotii amach yazilim tespiti icin makine 6grenimini kullanma konusunda
yayinlanan calismalar incelenmistir. Bazi uygulamalar bu tezde ele alinanlara benzer, ancak
kullanilan veri setinin mevcut olmamasi veya sonug elde etmek icin 6zel cercevelerin kullanilmasi
nedeniyle tekrarlanamaz. Ayrica, dosyalarin statik ve dinamik analizini kullanarak diger
platformlarda kotii amacgh yazilim tespiti ile ilgilenen bu alandaki bazi ilgili ¢calismalar da
incelenmistir.

Klasik imza tabanli yontemlerin iistesinden gelemedigi bilinmeyen kotii amach
yazilimlarla basa ¢ikmak i¢in iki farkli yaklasim gelistirilmistir: anormallik algilayicilar1 ve veri
madenciligi tabanl algilayicilar [11]. Anormallik algilayicilari, zararsiz yazilima dayal bir profil
olusturur ve bir dosya profilden saptiginda siipheli olarak isaretlenir. Veri madenciligi tabanl,
her iki veri kiimesindeki 6zelliklere bakar ve bir dosyay1 bu 6zelliklere gore siniflandirir.

2005 yilinda Li ve arkadaslar1 [12], dosya tiirtinii tanimlamak icin bir dosyanin
normallestirilmis bayt degeri dagiliminin 1 gramlik bir temsilini kullanmay1 6énerdi. Bunun hem
exe, gif, jpg, pdf ve doc dosyalarinda K-Means algoritmasi kullanilirken ortalama %98,9
dogrulukla son derece dogru oldugu kanitlandi. Yu ve arkadaslar1 benzer deneyler yapti [13].
Bilar'dan [14], opcode dagitiminin kétii amach ve zararsiz yazilimlarda farkli oldugunu biliyoruz.
67 kot niyetli ve 20 iyi huylu 6rnekten olusan bir veri kiimesinde, islem kodlarinin yaklasik ticte
biri ayni siklia, licte bir oraninda daha yiiksek ve kotii amacgh yazilimlara karsi iyi huyluya kars:
licte bir oraninda daha diisiik seviyeye sahipti. Ayrica, kotii amach yazilim daha yiiksek oranda
nadir islem kodlart igerir.

Moskovitch ve arkadaslari [15], 30.000'den fazla dosya iceren bir veri kiimesi iizerinde
bayt dizisi n-gram kullanarak bir deney yapti. Dengesizlik sorununu hesaba kattilar: bir sinifin
digerine kiyasla 6nemli ol¢iide daha fazla 6rnegi oldugu. Veri kiimesindeki yalnizca %15 kot
amagh dosyalar ile %99 dogruluk elde ettiler. Yapay sinir aglarinin, karar agaglarinin ve saf
Bayes'in Weka uygulamalar1 kullanildi. N-gramlarin karmasikhigimi azaltmak igin, yalnizca en
tistteki 1.000 baytlik kodlar1 se¢mek icin terim frekansi kullanildi. Bunu yaparak, n = 6'ya kadar
n-gram kullanilabilir. ilging bir sekilde n = 2, muhtemelen zararsiz dosyalara kiyasla kullanilan az
sayida kotii amacli yazilim nedeniyle en iyi sonuglari verdi.

Shankarapani ve arkadaslar1 [16], derleme ve Uygulama Programlama Arayiizii (API)
¢agr dizileri araciligiyla kotii amagh yazilim algilamayi karsilastirarak, islem kodlarinin daha
yliksek dogruluga sahip oldugunu, ancak hesaplama agisindan daha pahali oldugunu kesfettiler.
Ayrica, paketleyicilerin her iki dosya sinifi tarafindan kullanildigini, sifrelemenin ise yalnizca kotii

amagli yazilim tarafindan kullanildigini buldular.

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Santos ve arkadaslar1 [11] asagidaki yontemi kullandi: Dosyalar1 sokmek icin NewBasic
Assembler kullanildi. Ardindan bir islem kodu profili olusturuldu. Bu, kétii niyetli ve zararsiz veri
kiimelerinde farkli islem kodlarinin ka¢ kez kullanildiginin bir listesiydi. Ayrica, islem kodu alaka
diizeyi hesaplandi. Bu, degiskenler arasindaki istatistiksel bagimlilig1 6l¢cmek i¢in karsilikli bilgi
kullanilarak yapildi. Islem kodlar1 n-gram uzunlukta n = 1 ve n = 2 olarak gruplandirldi.
Kullanilan siniflandirma algoritmalar1 karar agaclari, destek vektér makineleri, k-en yakin
komsular ve Bayes aglariydi. Normallestirilmis polinom cekirdegi ve n-gram uzunlugu n = 2 olan
destek vektor makineleri en iyi sonucu verdi (%95,9).

Buldugumuz en son calisma Zolothukin ve arkadaslari [17] tarafindan yapilmistir. Kot
amagh yazilimlari tanimlamak icin yinelemeli destek vektor makinelerine dayali bir kiimeleme
algoritmasi kullandilar. N-gram uzunluk n = 1 ve n = 2 kullanilmistir. Boyut indirgeme yontemi

olarak n = 2 ve ReliefF ile %97 dogruluk elde edilmistir.

2.1. Statik Koétii Amach Yazilim Tespiti

Statik kotii amagh yazilim analiziyle ilgili ¢esitli zorluklar vardir. Bu sorunlarin ¢ogu,
calisma zamani sirasinda dosya bozulmasi, kod gizleme veya sifrelenmis ikili calistirilabilir
dosyalar gibi dinamik koétii amag¢h yazilim analizi kullanilarak c¢o6ziilebilir. Asagida, bu
problemlerden bazilarini ve anlambilimsel analizcilerin bunlar ¢ézmedeki eksiklikleri ortaya
¢ikarilmistir.

Symantec’in son tehdit raporuna gore, 2014 yilinda dnceki yillara gére cok daha fazla kotii
amagli yazilim tespit edildi [18]. Gecen y1l 317 milyondan fazla yeni kotii amaglh yazilim pargasi

olusturuldu, yani her giin yaklasik bir milyon yeni tehdit ortaya cikti.

2.1.1. Farkli Kétii Amach Yazilim Tiirleri

Kot amagh yazilim igin gesitli tanimlar mevcuttur, 6rnegin Skoudis ve digerleri [19]:

Kot amach yazilim, bilgisayarinizda ¢alisan ve sisteminizin bir saldirganin yapmasini
istedigi bir seyi yapmasini saglayan bir dizi talimattir.

Bu tanima gore, bu tezde kullandigimiz gibi calistirilabilir olmas1 gerekmez. Donanima
uygulanabilecegi icin yazilim olmasi bile gerekmez. Tanimin ikinci boliimii cok cesitli senaryolara
atifta bulunabilir. Bir saldirgan, 6rnegin sistemdeki ¢ok sayida degerli dosyay1 silmek gibi,
yalnizca zarar vermek isteyebilir. Veya amag para olabilir, bu nedenle dosyalar sifrelenir ve
kurbandan sifre ¢6zme anahtariicin 6deme yapmasi istenir. Ayrica, bir saldirinin nedeni casusluk
veya kredi karti numaralari gibi bilgilerin ¢calinmasi olabilir.

Benzer ve daha yeni bir tanim Srakew ve digerleri tarafindan saglanmistir:

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Kot amacglh yazilim, bir¢ok yonden sisteme karsi savunmasiz kalabilen kotii amagh kod
veya yazilimdir.

Saka veya vandalizm ic¢in olusturulan en eski kotii amagh yazilim tiirlerinin aksine,
glinimiiziin kotii amagh yazilimlart ¢ok farkl. Artik kotii amach yazilim, biyiik bir yeralt
ekonomisinin bir pargasi ve yeralti kuruluslar1 tarafindan para kazanmak icin ve hiikiimetler
tarafindan casusluk ve saldirilar icin kullanilan bir aracgtir [20].

Cesitli kotli amach yazilim tiirleri mevcuttur. Bilgi paylasimini kolaylastirmak igin kotii
amach yazilimlar kategorize edilmelidir. Bu ayni zamanda, 6rnegin bir sirkette bir giivenlik
ihlalinden sonra "temizlemeyi" kolaylastirir. Bulunan kotii amacgh yazilim bir rootkit ise, solucan
oldugundan farkl prosediirler izlenmelidir. Ne yazik ki, ger¢ek bir endiistri standardi mevcut
degildir [21]. Bilgisayar Antiviriis Arastirmacisi Kurulusu (CARO), kotii amagh yazilimlar icin bir
adlandirma standardi gelistirdi, ancak bu yalnizca genel bir kilavuz gorevi goriiyor. Saticilarin,
viriis, damlalik, truva ati, PWS (Parola ¢alan) ve arka kapi alt kategorilerini iceren standardi
izlemesi gerekmez.

Microsoft'un daha uzun ve daha ayrintili olan kendi listesi vardir. Asagidakilerden [22]
olusur: Adware, Backdoor, Behavior, BrowserModifier, Constructor, DDoS, Dialer, DoS, Exploit,
HackTool, Joke, Misleading, MonitoringTool, Program, PWS, Ransom, RemoteAccess, Rogue,
SettingsModifier, SoftwareBundler , Spammer, Spoofer, Spyware, Tool, Trojan, TrojanClicker,
TrojanDownloader, TrojanDropper, TrojanNotifier, TrojanProxy, TrojanSpy, VirTool, Viriis ve
Solucan.

Daha yiiksek bir ayrim olarak, koétii amagh yazilim iki ana kategoriye ayrilabilir: Virts ve
arka kapilar gibi bir ana bilgisayar programina ihtiya¢ duyan parazitik kotii amach yazilimlar ve
solucanlar ve botlar gibi bagimsiz olarak ¢alisabilen kendi kendine yeten programlar [23] [s. 216].

Ardindan, en ¢ok kullanilan kétii amacli yazilim tiirlerinden bazilarinin aciklamasini izler.

2.1.1.1. Viriis

Bilgisayarlarla ilgili olarak viriis terimi ilk olarak 1987'de Cohen tarafindan tanitildi [24].
Virtis, diger programlari degistirerek [23] [s. 220]. Kendilerini diger programlara baglarlar ve ana
bilgisayar programi yapmasi gerekeni yaparken arka planda c¢alisirlar. Ug béliimden olusur:
Bulasma mekanizmasi, tetikleyici ve yiik. Birincisi, viriisiin "ireme" veya yayillma seklidir.
ikincisi, viriisiin yiikiinii etkinlestirdigi veya teslim ettigi durumdur. Sonuncusu, gerceklestirdigi
koti niyetli faaliyettir.

Birkag tiir virts vardir. Ek olarak, onu dnyiikleme sektorii, dosya ve makro gibi hedeflere

gore siniflandirmak i¢in, viriistin nasil gizlemeye ¢alistigini ayirt edebiliriz [23] [s. 224]:

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

e Sifrelenmis viriis: Bu tiir bir viriisle, viriis kodunun geri kalanini rastgele bir anahtarla
sifreler. Kopyaladiginda, farkli bir anahtar kullanir, boylece arastirmacilar tarafindan sabit bir
model gozlemlenemez.

e Gizli viriis: Ana anahtar, tespit edilmekten saklanmaya calismasidir. Ornegin iyi huylu
bir programla ayni uzunlukta olabilir. G / C rutinlerini kesintiye ugratarak, birisinin diskin kendi
basina kullandigi kismini okudugunu algilayabilir ve ardindan kendisini orijinal, enfekte olmamis
program olarak sunabilir.

e Polimorfik virlis: Bit modellerini degistirerek, viriis her siirim icin farkli imzalar
olusturacaktir. Gizli viriis gibi, amag da tespit edilmekten kacinmaktir.

e Metamorfik viriis: Polimorfik ile aynidir, ancak hem davranis hem de goériiniim degisir.

Bu, yeni sliriimii tespit etmeyi daha da zorlastirir.

2.1.1.2. Worm(Solucan)

Stallings ve digerleri, "bir solucanin kendini kopyalayabilen ve ag baglantilari iizerinden
bilgisayardan bilgisayara kopyalar gonderebilen bir program oldugunu belirtir. Varista solucan
¢ogalmak ve yeniden yayllmak icin etkinlestirilebilir” [23] [s. 231]. Bu genellikle iki yoldan biriyle
yapilir: Bir ag hizmetindeki giivenlik aciklarindan yararlanarak veya e-posta yoluyla [20].
Herhangi bir kaynak olmasa da ifadeyi desteklemek icin, farkli sosyal medya sitelerinin artik
liclincii bir secenek olarak hizmet ettigini varsaymak gtivenli olacaktir.

Bir viriis gibi, solucan li¢ asamadan olusur [23] [s. 231]:

1. Bulasacak diger sistemleri arayin.
2. Uzak sistemle bir baglant1 kurun.
3. Kendini uzaktaki sisteme kopyalayin ve kopyanin yeni sistemde ¢alismasini saglayin.

Ek olarak, yeni sisteme bulasmadan 6nce yeni sisteme bulasip bulasmadigini anlamaya ¢alisabilir.

2.1.1.3. Bot

Bot, bir bilgisayar1 gizlice kontrol eden bir programdir. Robotun kisaltmasidir ve
baslangicta uzaktan erisim truva at1 olarak adlandirilmistir [25]. Enfekte olan bir bilgisayara bot
veya zombi de denir [26]. Saldirganlar genellikle ayni1 anda ylizlerce veya binlerce bilgisayara
viriis bulastirmay1 hedefler. Bu sekilde, tiim viriis bulasmis bilgisayarlar kontrol edilebilir ve
koordineli bir sekilde kullanilabilir. Buna botnet [23] [s. 240].

Botnet'ler, Komut ve Kontrol sunucular1 (C&C) kullanilarak kontrol edilir. iletisim farkl

protokoller tizerinden gegebilir. Bazilar1 hem kanallar hem de 6zel mesajlar yoluyla IRC kullanir,

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

bazilar1 HTTP kullanir ve yanit mesajlarini komut olarak yorumlarken, bazilar esler arasi (p2p)
tabanli iletisim kullanir [26].

Bir kotii amagh yazilim yazarinin botlar1 kullanmasinin birka¢ nedeni vardir. En yaygin
olanlari, dagitilmis hizmet reddi (DDoS) saldirilari, spam gonderme, trafik koklama, keylogging,
yeni kotlii amach yazilim yayma ve reklam yazilimi ylkleme [23] [s. 240-241]. Son yillarda

botnet'ler bitcoin madenciligi icin de kullanildi [27].

2.1.1.4. Rootkit

Rootkit, saldirgan yo6neticinin sisteme erismesini saglayan ve ayni zamanda varligini
gizleyen bir dizi programdir. Ad, orijinal olarak Unix / Linux'taki yonetici hesabi kékiinden ve bu
erisim diizeyini saglayan bir dizi ara¢tan gelmektedir. Bunlara ps, netstat, Is ve passwd [28]
dahildir.

Yonetici ayricaliklar nedeniyle, rootkit'lerin algilanmasi ¢ok zor olabilir. API'lere yapilan
cagrilar1 yakalayabilir ve yanitlar1 degistirebilirler. Bu sekilde islem monitori, dosya listeleri ve

kayitlar yanlis bilgileri goriintiileyebilir [23] [s. 242].

2.1.1.5. Backdoor (Arka Kapi)

Arka kapi, normal giivenlik prosediirlerini atlayan bir programa giden gizli bir yoldur. Bu
sekilde sisteme yetkisiz erisime izin verir. Ozel bir giris dizisi tarafindan tetiklenebilir veya 6zel

bir kullanici kimligi ile calistirilabilir [23] [s. 216].

2.1.1.6. Truva at1

Truva ati, yararh veya zararsiz goriinen, ancak sandigindan daha fazlasini yapan bir
seydir. Tipik 6rnekler, kotii amagh yazilim taramasi yapiyormus gibi yapan, ancak bunun yerine
arka planda bagska bir sey yapan sahte antiviriis programlaridir [20]. Adin1 Yunan mitolojisindeki
Truva atindan almistir.

Bu tiir kotii amagh yazilimlarin genellikle bir arada oldugu belirtilmelidir. Ornegin,

saldiriya ugrayan sisteme bir rootkit yiiklemek i¢in bir truva at1 kullanilabilir.

2.1.2. imzadan Kaginma

Tipik olarak, anti-viriis yazilimi, kotii amagh yazilimlar tespit etmek icin imza tabanlh bir

yontem kullanir. Kétii amach yazilim yiiriitiilebilir dosyasinda bulunan talimatlar, kétii amach

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

yazilimi tanimlayan benzersiz bir imza elde etmek icin ayristirilir ve bu daha sonra bilinen kotii
amagh yazilim imzalarinin biiylik bir veritabaniyla karsilastirilir [29,30]. Bonfante vd. bu
problemle miicadele etmek icin bir kontrol akis grafigi yontemi o6nerdi [31]. Yaygin olarak
kullanilan tim montaj talimatlar icin diigiimleri olan bir grafik kullandilar ve ardindan koti
amagh yazilimlan siniflandirmak icin bu grafigin kiiciiltiilmiis bir silirlimiinii imza olarak
kullandilar. Testlerine gore, bu algilama bicimi, grafikler daha biiyiik oldugunda (daha biiytik

yuriitiilebilir dosyalar i¢in) daha iyi genel algilama dogrulugu ile sonuglandi.

2.1.3. Kod Gizleme

Statik kotii amach yazilim analizi, temel olarak anlamsal analiz ve simiflandirma igin
kaynak kodu analizi agisindan incelenmistir. Moser vd. kodun anlamsal analizden gizlenmesi i¢in
basitce opak sabitler kullanarak program kontrol akisini gizlemek icin bir yontem 6nerdi [32].
Bu, glinlimiizde mevcut olan statik kotii amach yazilim analizi tekniklerindeki énemli bir kusuru
vurgulamaktadir; burada semantik analiz, sabitleri gercek zamanli olarak hesaplamak igin
rastgele bir yaklasim getirilerek yenilebilir. Bahsedilen bu tir bir yontem, degiskenlerin
depolandig adresleri olusturmak i¢in rastgele bir tohum kullanmak veya islemi papatya dizimi
yapmak ve degiskenleri diger adreslerde bulunan adreslerde depolamaktir. Koddaki belirli
sabitlerin degerini belirlemek i¢cin NP-hard algoritmanin tanitimi da bu makalede tartisiimistir.
Ornegin, kodda bir 3SAT problemi uygulamak, bu béliim koduna giris degiskenleri her zaman
statik bir deger dondiiriir (0 diyelim). Bu, programin ¢alisma siiresi sirasinda 3SAT algoritmasina
herhangi bir degisken atandiginda her zaman 0 degeri iiretecegi anlamina gelir. Bunu, kodu
okuyan bir insan tarafindan belirlemek kolay olsa da, anlam bilincine sahip bir analizériin bu
algoritmanin tiim olasi ¢iktilarini belirlemesi ve sonunda bunun ¢iktisinin her zaman 0 oldugunu
belirlemesi ¢ok zordur, ¢iinkii algoritma polinom zamani. Ikili dosyalarda birden ¢ok kez
sifreleme kullanarak kod gizleme ve ardindan sifre ¢6zme icin bir aracin paketlenmesi
Christodorescu ve Jha tarafindan tartisilmistir [33]. Bu tiir bir gizleme biciminin, bellekteki sifresi
¢6zllmiis dosyay: analiz ederek calisma stiresi sirasinda yakalanmasi kolaydir, ancak dosyanin
sifresini ¢6zmeden ve dinamik olarak analiz etmeden dosyanin sifreleme diizeyini belirlemek
zordur.

Preda ve digerleri tarafindan orijinal kotii amagh yazilim kodu ile karmasik hale getirilmis
kot amagh yazilim kodu arasindaki benzerligi 6l¢mek i¢in bir 6lglit 6neren anlambilim tabanl
bir yaklasim oOnerildi [34]. Ayrica, kot amach yaziim koduna, NOP yerlestirmeye, komut
ikamesine ve degisken yeniden adlandirmaya siirekli gizlemenin dahil edilmesini (NP-sabit
hesaplama veya benzer yontemler ekleyerek) saptama yontemlerini tartisti. Ancak, bu

yaklasimin pratik uygulamasi tam olarak gerceklestirilmemistir. Arama grafigi analizi ve

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

tetikleyicilere dayali davranis tanimlama dahil olmak iizere bir¢ok dinamik kétii amaclh yazilim
algilama yontemi vardir [35]. Ancak, bu yontemler hesaplama agisindan pahalidir ve kétii amach
yazilimlarin giivenli bir sekilde yiiriitiilebilecegi ve analiz edilebilecegi bir sanal alan altyapisi

gerektirir.

2.1.4. Yazilim Paketleme

Dosya paketleme, biiyiik yazilimlar kii¢lik, kompakt bir pakette bir araya getirirken
kullanilan yaygin bir tekniktir [30]. Bu tiir paketleme teknikleri genellikle kotii amagh yazilimin
kolay tanimlanmasini potansiyel olarak engelleyebilecek bir tiir sifreleme icerir. PolyPack adi
verilen bu tiir bir arac, paketleyicilerin viriisten ve kotii amach yazilimdan kagmak icin etkili bir
yontem oldugunu kanitlamak icin 6zel olarak tasarlanmistir [36]. Kendilerine saglanan verileri
bagimsiz olarak paketleyen 10 paketleyici saglarlar ve ardindan paketlenmis verileri 10 iyi
bilinen anti-viriis tarayicisi ile tararlar. En iyi sonucu alan paketleyici secilir. Calismalari, bunun

¢ogu viriisten koruma yazilimina karsi kaginma oranlarini 2,58 kat artirdigini ortaya koydu.

2.2. Kétii Amagh Yazilim Algilama i¢in Makine Ogrenimi

Makine 6greniminin daha biiytik veri kiimeleriyle daha iyi performans gosterdigi gercegi
iyi bilinmektedir [37]. Kotii amacgh yazilim siniflandirmasi i¢in makine 6grenimini kullanan ¢esitli
calismalar yayinlanmistir. Dinamik kotii amagh yazilim analizi i¢in sistem cagrilarinin dinamik
analizi [38], kayit defteri erisim izleme [39], gizli Markov model tabanl analiz [40] gibi cesitli
yontemler 6nerilmistir.

Kolter ve Maloof yaklasik 255 milyon farkli n-gram iiretmek icin 4 bayt dizisini
birlestirerek n-gram kullanimini énerdi [41]. Makalesinde, hangi 6zelliklerin alakali oldugunu
belirlemek icin olasilikli bir yaklasimin kullanilmasini 6nerdi ve analiz i¢in ilk 500 n-grami
kullandi. Makale, verilerini analiz etmek icin Naive Bayes, Support Vector Machine (SVM) ve]48
karar agacinin kullanilmasini 6énerdi. Analiz i¢in kullanilan veriler, temel olarak Sourceforge ve
VX Heavens'ten (gercek veriler agiklanmadi), 1971 iyi huylu yiriitiilebilir dosya ve 1651 kotii
amacgh ytriitiilebilir dosya test edildi. Bu arastirmada kullanilan kiiciik 6rneklem seti ve yazarlar
tarafindan kullanilan kesin veri setinin mevcut olmamasi gergegi, daha biiytik veri kiimeleri ile
kullanildiginda bu sonuglarin dogrulugunu tespit etmek zordur. Benzer bir ¢alisma, muhtemelen
biiytlik bir veri kiimesi olan Microsoft Kotii Amacgh Yazilim Siniflandirmasi [42] ile bu yaklagimi
kullanarak Bagga tarafindan yapilmistir [43]. Ancak bu calisma, kétli amach yazilim algilama

sorunu yerine kotli amacgh yazilim siniflandirma sorununa odaklandu.

10

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Adobe Systems Inc. Uriin Olay1 Miidahale Ekibinden Raman, tasinabilir yiiriitiilebilir
dosyalardan [44] en az iliskili yedi 6zelligi cikararak kotii amach yazilimlar: siniflandirmak igin
bir yontem oOnerdi. Cikarilan o6zellikler DebugSize, ImageVersion, I[atRVA, ExportSize,
ResourceSize, VirtualSize, NumberOfSections idi. Deneme icin 100.000 kot amach yiiriitiilebilir
dosya ve 16.000 iyi huylu yirttiilebilir dosya iceren bir veri kiimesi kullanildi. Bu veriler
kullanilarak gesitli modeller test edildi. Test edilen modeller arasinda, J48 karar agaci [45] en iyi
sonuglari elde etti: 0,057'lik bir yanls pozitif orani ile 0,986'lik gercek bir pozitif oran. Ortaya
cikan egitimli model, kot amach yazilim siiflandirmasi icin iicretsiz bir arac¢ olarak yayinlandi,
ancak veri kiimesi herhangi bir sekilde karsilastirmali arastirma yapmak icin yayinlanmadi.
Anderson ve Roth ayrica bu egitimli modeli EMBER veri seti [46] ile test ettiler ve 0,53'liik bir
yanlis pozitif orani ve 0,08'lik bir yanlis negatif orani sergiledigini buldular.

Huang ve Stokes tarafindan 2016 yilinda MtNet adi1 verilen derin sinir aglarini kullanan
dinamik bir kotii amagh yazilim siniflandirma modeli 6nerildi [47]. Bu ¢alisma icin kullanilan veri
kiimesi, 6.5 milyon 6rnek dosya iceren Microsoft Corporation tarafindan saglanmistir. Bu veri
kiimesinden 2,85 milyon koétii niyetli ve 3,65 milyon zararli dosya cikarildi. Temel olarak iki tiir
veriden olusan ¢alisma zamaninda dosya yiritme sirasinda egitim 6zellikleri ¢ikarildi: sistem
islevi cagrilar1 ve bos sonlandirilmis nesneler. Ozellik se¢imi, Manning ve digerleri tarafindan
onerilen karsilikli bilgiler kullanilarak gergeklestirildi. Toplam 50.000 giris 6zelligi elde etmek
icin [48]. Nihai hedef, kotii amach yazilimlari 6nce iyi huylu veya kotii niyetli olarak
siniflandirmak ve ardindan kotii amagh yazilimi bilinen 100 kotii amagh yazilim ailesinden biri
olarak siniflandirmakti. ReLU aktivasyon islevi, daha iyi model performansi icin eklenen ¢ikarma
katmanlar ile birlikte kullanildi. Bu model,% 0,07 'nin altinda yanlis pozitif oranlariyla etkileyici
sonuglar gosterse de, test veri setinin ve test icin kullanilan model kodunun bulunmamasi, bu
sonuglarin yeniden iiretilmesini imkansiz hale getirir.

Yanki durumu ag1 ve yinelenen sinir ag1 tabanl kotii amagh yazilim siniflandiricilary,
Pascanu ve digerleri tarafindan kot amagh yazilimlarin dinamik analizi i¢in test edilmistir [49].
Arastirmalari, kotii amacgh yazilimin dinamik analizi i¢cin sigmoid (lojistik regresyon) aktivasyon
fonksiyonu ile yanki durumu ag1 tabanh tekrarlayan bir modelin kullanimini ortaya koydu. Tam
giris vektorii aciklanmadi, ancak calisma zamani yiiriitme sirasinda dosyalar tarafindan
gerceklestirilen API ¢cagrilarindan tiiretildi. Model, 0,001'lik bir yanlis pozitif oraniyla 0,983'liik
gercek bir pozitif orana ulasti. Yazarlar, bu arastirmada kullanilan veri setinin dahili olarak
saglandigini ve halka agik olmadigini kabul ediyor. Bu arastirmanin amaci, tekrarlayan sinir
aglarinin dinamik kotii amagh yazilim analizi i¢in kullanilabilecegini belirlemekti. Bununla
birlikte, veri setinin mevcut olmamasi ve 6nerilen modeli yeniden tiretmek icin gereken adimlarin
saglanmamasi nedeniyle, bu sonuglar1 dogrulamak ve buna dayali olarak daha fazla arastirma

yapmak zordur.

11

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

2.2.1. Ozellik Secimi

Makine 6grenimi, egitim i¢in kullanilan 6zellik kiimesine cok duyarlhdir. Cesitli calismalar,
makine 6grenimi tabanh kotii amach yazilim siniflandiricilarinin etkili egitimi i¢in faydali olacak
bazi 6zellikler ortaya koymustur. Bu amacla farkli yaklasimlar incelenmistir.

Divandari vd. dosyalardan islem kodu verisinin cikarilmasini ve 6zellik kiimesini [50]
6zetlemek icin bir Markov Blanket yaklagiminin kullanilmasini énerdi. islem kodlarinin kendileri
yuritilebilir dosyalarin 6énemli bir parcasi oldugundan, kotii amach yazilim tespiti i¢in giivenilir
ozellikler olarak kabul edildi [51]. Onerilen model, kétii amagh yazilim simiflandirmast igin Gizli
Markov Modeli (HMM) kullanir.

Saxe ve Berlin tarafindan arastirmalarinda [52] 6nerilen bayt histogram yaklasimi, bir
dosyadan 6zniteliklerin ¢ikarilmasi i¢in bicimden bagimsiz bir yontem getirmistir. Bu yontem,
bayt bilgilerinin bir dosyadan o6zellikler olarak, bu baytlarin gercek islevi hakkinda bilgi
gerektirmeden ayiklanmasina yonelik yenilik¢i bir yaklasimdir. Dosyada kullanilan potansiyel
sifreleme veya sikistirmanin anlasilmasini saglamak icin ikili dosyada bulunan tim bayt
degerlerinin histogramini 2 boyutlu bir bayt-entropi histogramiyla birlikte ¢cikarmay1 6nerir. Bu
yontemi modelimizde baslik ¢ikarma yontemini tamamlamak i¢in kullaniriz, béylece tasinabilir
yuriitiilebilir dosyadaki tiim baytlar1 vektorlestirmek icin gereken yiiksek genel giderler olmadan
ylksek dogruluk elde ederiz.

Weinberger ve digerleri tarafindan 6nerilen 6zellik hashing hile. [53] sik sik alintilanmis
ve makine 6grenimi modelleri icin kullanilmistir. Cogu makine 6grenimi tabanli model i¢in giris
vektori statiktir ve giris boyutuna bagh olarak boyut olarak artirilamaz. Bu nedenle, biiyiik girdi
ozelliklerini, egitim icin daha yonetilebilir olan statik bir boyutta etkin bir sekilde 6zetlemek i¢in
bir yonteme ihtiyacimiz var. Ozellik hashing hilesi, verilerin boyutlulugunu etkili bir sekilde
diistirmek i¢in bir yontem 6nerir, boylece orijinal amaglanan verileri hala yeterince temsil eder,

ancak bir modeli etkili bir sekilde egitmek icin dogrusal ayrilabilir 6zellikler sunar.

2.2.2. Giiclendirilmis Karar Agaclari ve Yapay Sinir Aglar:

Karar agaci uzun siiredir kesfedilmis ve kullanimdadir. Bununla birlikte, karar agaci
modelleri icin gliclendirme yontemindeki son gelismelerle birlikte, performans agisindan yapay
sinir aglarina benzer veya daha iyi olduklarini kanitladilar. Cok sayida degiskenle iyi ayarlanmasi
ve calismasi nispeten daha kolaydir [54]. AdaBoost'un gelisiyle birlikte, karar agaci modellerinin
artirilmasi, ikili siniflandirmadan ¢ok kategorili siniflandirmaya ge¢meyi basardi [55, 56]. By,
yapay sinir aglari icin alternatif olarak gili¢lendirilmis karar agaci tabanli modellerin

kullanilmasini tesvik etti. Bu tezde 6nerdigimiz model, modelimiz i¢cin kullandigimiz ayni veri seti

12

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

icin mevcut bir giiclendirilmis karar agact modeli ile karsilastirilmistir. Caruana ve Niculescu-
Mizil, makalelerinde [57] vektor makinelerinin, gliclendirilmis karar agaclarinin ve sinir aglarinin
cogu senaryoda, varyansin esas olarak hiper parametre ayarlamasiyla sinirli oldugu

karsilastirilabilir performansa sahip oldugunu ortaya koydu.

2.3. Yinelenen Sinir Aglarinin incelenmesi

Tekrarlayan sinir aglari, 1990'larda arastirma ve gelistirmenin 6nemli bir odagi olmustur.
Sirali veya zamanla degisen kaliplar1 6grenmek icin tasarlanmistir. Tekrarlayan bir ag, geri
besleme (kapali dongii) baglantilari olan bir sinir agidir [58]. Ornekler arasinda BAM, Hopfield,
Boltzmann makinesi ve tekrarlayan geri yayilim aglar1 bulunmaktadir [59].

Tekrarlayan sinir ag1 teknikleri cok cesitli problemlere uygulanmistir. 1980'lerin
sonunda, Rumelhart, Hinton ve Williams dahil olmak lizere bircok arastirmaci tarafindan
karakter dizilerini 6grenmek icin basit, kismen tekrarlayan sinir aglar tanitildi [60]. Diger bircok
uygulama, olaylarin zaman dizileri ile dinamik sistemleri iceren problemleri ele almistir.

Tablo 1, yinelenen sinir aglarinin son uygulamalarinin genisligi hakkinda fikir vermek icin
baska ilging érnekler veriyor. Ornegin, sanal gerceklik sistemleri i¢in insan kafasini takip etmenin
dinamikleri arastirihiyor. Finansal verilerin ve elektrik enerjisi talebinin tahmin edilmesi diger
calismalarin nesneleridir. Su kalitesini izlemek ve suyu filtrelemek icin gereken katki maddelerini
en aza indirmek i¢in tekrarlayan sinir aglar1 kullaniliyor. Ve miizik notalarinin zaman dizileri

tekrarlayan sinir aglari ile calisild.

Tablo 1. Tekrarlayan sinir ag1 uygulamalarina 6rnekler.

Topic Authors Reference
Predictive head tracking for virtual Saad, Caudell, and Wunsch, II [Saad, 1999]
reality systems

Wind tiirbine power estimation Li, Wunsch, O'Hair, and [Li, 1999]
Giesselmann

Financial prediction using recurrent Giles, Lawrence, Tsoi [Giles, 1997]

neural networks

Music synthesis method for Chinese Liang, Su, and Lin [Liang, 1999]

plucked-string instruments

Electric load forecasting Costa, Pasero, Piglione, and [Costa, 1999]
Radasanu

Natural water inflows forecasting Coulibaly, Anctil, and Rousselle [Coulibaly, 1999]

13

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

2.3.1.Yinelenen Sinir Ag1 Mimarileri

Mimariler, farkli giris ve ¢ikis katmanlarina sahip ¢ok katmanli ileri beslemeli aglar dahil
olmak lizere, tamamen birbirine bagh (Sekil 1) kismen bagh aglara (Sekil 2) kadar cesitlilik
gosterir. Tamamen bagh aglar, farkli diigiim giris katmanlarina sahip degildir ve her diigiim, diger

tlim diiglimlerden gelen girdiye sahiptir. Diiglimiin kendisine geri bildirim miimkiindtir.

+—>

Sekil 1. Tamamen bagh tekrarlayan sinir agina bir 6rnek.

Karakter dizilerini 6grenmek icin basit, kismen tekrarlayan sinir aglar1 (Sekil 2)
kullanilmistir. ALBaz1 diigiimler ileri besleme yapisinin pargasi olmasina ragmen, diger diigiimler
sirali baglami saglar ve diger diigtimlerden geri bildirim alir. Baglam birimlerinden (C1 ve C2)
alinan agirliklar, drnegin geri yayilim kullanilarak giris birimleri i¢in olanlara benzer sekilde
islenir. Baglam birimleri, Sekil 2 durumunda, ikinci katman birimlerinden zaman gecikmeli geri
bildirim alir. Egitim verileri girdilerden ve bunlarin istenen ardil ¢iktilarindan olusur. Ag, bir
karakter dizisindeki sonraki harfi tahmin etmek ve bir karakter dizisini dogrulamak i¢in
egitilebilir.

Ileri beslemeli ¢ok katmanli sinir aglarina geri bildirim eklemek icin iki temel yol
kullanilabilir. Elman [61] gizli katmandan girdi katmaninin baglam kismina geri bildirim getirdi.
Bu yaklasim, girdi degerlerinin sirasina daha fazla dikkat eder. Jordan tekrarlayan sinir aglari [62]
¢ikt1 katmanindan girdi katmaninin baglam diigiimlerine geri bildirimi kullanir ve ¢ikt1 degerleri

dizisine daha fazla vurgu yapar.

14

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Sekil 2. Basit bir tekrarlayan ag 6rnegi.

2.3.2.Yinelenen Sinir Aglarinda Ogrenme

Ogrenme, sinir aglarinin temel bir yéniidiir ve sinirsel yaklasimi, baslangi¢tan beri yapay
zeKa icin zor bir hedef olan uygulamalar icin bu kadar cekici kilan énemli bir ézelliktir. Ogrenme
algoritmalari uzun zamandir arastirmanin odak noktasi olmustur [63,64].

Hebbian 6grenme ve gradyan kdkenli 6grenme, sinir ag1 tekniklerinin dayandig1 temel
kavramlardir. Gradyan inisinin popiiler bir tezahiirii, Rumelhart [60] ve Werbos [65] tarafindan
sunulan geri-hata yayilimidir. Geri yayillimin uygulanmasi nispeten basit olsa da, pratik
uygulamalarda kullaniminda, yerel minimumda tuzaktan kaginmanin zorlugu da dahil olmak
lizere cesitli sorunlar ortaya cikabilir. Girdi verilerinin zaman gecikmeli giincellemesinden
tekrarlayan sinir aglarinda dinamik islemenin ek karmasikligi, 6grenmeyi temsil etmek icin daha
karmasik algoritmalar gerektirir.

Tekrarlayan sinir aglarinin dinamik olarak islenmesinin avantajini gerceklestirmek i¢in bir
yaklasim, sabit kaliplari isleyen ileri beslemeli aglarin etkinligini gelistirmektir. Arastirmacilar,
gradyan yontemlerinin ve Ozellikle geri yayilim O6grenmenin tekrarlayan sinir aglarina
genisletilebilecegi cesitli semalar gelistirdiler. Werbos, gradyan yontemlerini kullanan bir dizi
statik aglar olarak yinelenen bir sinir aginin zaman evrimini yaklasik olarak tahmin eden zaman
yaklasimi yoluyla geri yayilimi [66] tanitti. Baska bir yaklasim, orijinal dinamik kdle aginin
cekicilerinin programlanmasinda gerekli hesaplamalari gerceklestirmek icin ikinci bir ana, sinir
agini konuslandirir [67]. Arastirilan diger teknikler, Pineda [68], Almeida [69], Williams ve Zipser
[70], Sato [71] ve Pearlmutter [72] 'da bulunabilir. Geri yayilim 6grenimini tekrarlayan aglara

genisletmeye yonelik cesitli girisimler Pearlmutter'da [73] 6zetlenmistir.

15

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

2.4. Tasarim Konulari ve Teorisi

2.4.1. Optimizasyon

Optimizasyon problemlerinin ger¢ek zamanh c¢6ziimlerine sinyal isleme, sistem
tanimlama, filtre tasarimi, fonksiyon yaklasimi ve regresyon analizi dahil olmak {izere bilimsel ve
miihendislik problemlerinde siklikla ihtiyac duyulur ve sinir aglar1 bu amacla genis capta
arastirilmistir. Karar degiskenlerinin ve kisitlamalarinin sayisi genellikle ¢ok biiytiktiir ve biiyiik
Olcekli optimizasyon prosediirleri, dinamik bir sistemin performansini optimize etmek igin
gercek zamanl olarak yapilmasi gerektiginde daha da zordur. Bu tiir uygulamalar icin, klasik
optimizasyon teknikleri, problem boyutlulugu ve hesaplama stiresinin kati gereksinimleri
nedeniyle yeterli olmayabilir. Sinir ag1 yaklasimi, optimizasyon problemlerini, genel amagh dijital
bilgisayarlarda yiiriitiilen en popiiler optimizasyon algoritmalarindan daha biiyiik biiytklik
siralarindaki ¢alisma siirelerinde ¢6zebilir.

Xia ve Wang'in arastirmalari, bu sorunlar icin sinir aglarinin kullanimini incelemekte ve
kiiresel yakinsama ile optimizasyon sinir ag1 modellerini tasarlamak icin birlesik bir yontem
sunmaktadir. Dogrusal ve ikinci dereceden programlamay1 ¢é6zmek ve dogrusal tamamlayici
problemleri ¢6zmek icin siirekli zaman tekrarlayan sinir aglarini tartisirlar ve ardindan ayrik
zamanli sinir aglarina odaklanirlar. Atama sinir aglar1 ayrintil olarak tartisilmis ve sinir aglarinin
calisma 6zelliklerini gostermek i¢in bazi simiilasyon 6rnekleri sunulmustur.

Calismalarinda ilk olarak dogrusal ve ikinci dereceden programlama problemlerini (LP ve
QP) ¢6zmek icin ilk ¢ift sinir aglarini sunar ve dogrusal tamamlayici problemleri (LCP) ¢6zmek
icin sinir agini gelistirmislerdir. Sinir ag1 modellerini tasarlamak i¢cin birlesik bir ydontemi takiben,
boliimiin ilk kismi1 LP ve QP'yi ¢6zmek icin strekli zamanl ilk-ikili tekrarlayan sinir aglarim
ayrintili olarak agiklamaktadir. Calismalarinin ikinci kisminda ise, QP ve LCP i¢in birincil-ikili
ayrik zamanl sinir aglarina odaklanmiglardir.

Optimizasyon icin sinir aglarinin kullaniminda biiyiik ilerleme kaydedilmis olmasina
ragmen, bircok teorik ve pratik problem c¢6ziilmeden kalmistir. Optimizasyon problemleri icin
tekrarlayan sinir aglarinin dinamikleri, tekrarlayan sinir aglarinin pratik problemlere daha fazla
uygulanmasi ve optimizasyon i¢in tekrarlayan sinir aglarinin donanim prototiplemesi tizerine

gelecekteki arastirmalar i¢in alanlar tanimlanmistir.

16

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

2.4.2. Ayrik Zaman Sistemleri

Santos ve Von Zuben, parametreleri ayarlamak icin optimizasyon prosediirlerine dayanan
verimli denetimli 6grenme algoritmalar1 i¢in pratik gereksinimi tartisiyor. Performansi
iyilestirmek i¢in ikinci dereceden bilgiler egitimdeki hatay1 en aza indirmek i¢in diistintilmustiir.

Calismalarinin ilk amaci, bir dizi yinelenen sinir ag1 konfigiirasyonu icin kesin ikinci
dereceden bilgi elde etmenin sistematik yollarini, birinci dereceden bilgi edinme maliyetinden
yalnizca iki kat daha yiiksek bir hesaplama maliyetiyle aciklamaktir. ikinci amag, mevcut ikinci
dereceden bilgileri etkili bir sekilde arastirmak icin kullanilabilen eslenik gradyan algoritmasinin
gelistirilmis bir versiyonunu sunmaktir.

Tekrarlayan bir sinir aginin dinamikleri zaman icinde siirekli veya ayrik olabilir. Bununla
birlikte, dijital hesaplama cihazlarinda stirekli zamanli tekrarlayan bir sinir aginin simiilasyonu,
ayrik zamanh esdeger bir modelin benimsenmesini gerektirir. Uzamsal-zamansal temsil icin
ortaya cikan dogrusal olmayan modeller, dogrusal olmayan fark denklemleri sistemi araciligiyla
bir dijital bilgisayarda dogrudan simdiile edilebilir. Denklemlerin dogasi, benimsenen tekrarlayan
mimarinin tiirine baghdir, ancak daha az sayida parametre ve iligkili denklemlerle bile ¢ok
karmasik davranislara yol acabilir.

Pratik 6nemi olan tekrarlayan sinir aglarinin analizi ve sentezi ¢ok zorlu bir gérevdir ve
egitim siirecinde ikinci dereceden bilgiler dikkate alinmalidir. Cok cesitli tekrarlayan sinir agi
mimarileri icin kesin ikinci dereceden bilgi elde etmek icin diislik maliyetli bir prosediir sunarlar.
Ayrica, mevcut ikinci dereceden bilgileri kesfetmek icin etkili bir sekilde kullanilabilen,
Olceklendirilmis eslenik gradyan algoritmasinin gelistirilmis bir versiyonu olan ¢ok verimli ve
genel bir 6grenme algoritmasi sunarlar. Sabit olanlarin yerine bir dizi uyarlanabilir katsayi
sunarlar ve algoritmanin yeni parametreleri otomatik olarak ayarlanir. Bazi simiilasyon
sonuglarini gosterir ve yorumlarlar.

Bu calismanin yenilikei yonleri, diisiik bir hesaplama maliyetiyle bir dizi farkli tekrarlayan
sinir ag1 mimarileri i¢in kesin ikinci dereceden bilgi elde etmek icin sistematik bir prosediiriin
onerilmesi ve 6lceklendirilmis bir eslenik gradyan algoritmasinin gelistirilmis bir versiyonudur.
Onemli bir husus, kesin ikinci dereceden bilgi verildiginde, 6grenme algoritmasinin, belirli

baglama herhangi bir uyarlama olmaksizin dogrudan uygulanabilmesidir.

2.4.3. Bayesian Inan¢ Revizyonu

Hopfield sinir agi, nesne tanimadan grafik diizlemlestirmeye ve yogunlastirici atamasina
kadar c¢ok sayida optimizasyon problemi icin kullanilmistir. Bununla birlikte, Hopfield enerji

fonksiyonunun ikinci dereceden diizende olmasi, uygulanabilecegi sorunlar1 sinirlar. Bazen,

17

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Hopfield'in ikinci dereceden eneriji islevine indirgenemeyen nesnel islevler, ikinci dereceden bir
enerji islevi ile makul bir sekilde yaklasik olarak tahmin edilebilir. Diger problemler icin, amac
fonksiyonu daha ytiksek seviyeli bir enerji fonksiyonu ile modellenmelidir.

Abdelbar, tekrarlayan sinir aglarini anlatiyor ve seyrek yiiksek sirali aglar icin verimli bir
uygulama veri yapisi sagliyor. Ayrica, bu tiir aglarin Bayesci inang revizyonu icin ve belirsizlik
altinda teshis muhakemesi ve sagduyulu muhakemedeki Onemli problemlerde nasil

kullanilabilecegini aciklar.

2.4.4. Bilgi Temsili

Giles, Omlin ve Thornber calismalarinda bir¢ok uygulama alaninda faydal hale gelen
noro-bulanik sistemleri (yapay sinir aglarinin bulanik mantikla birlesimini) incelemislerdir.
Bununla birlikte, geleneksel néro-bulanik modellerin genellikle baglam ve durum gerektiren
uygulamalar icin (6rnegin, konusma, zaman serisi tahmini ve kontrol) gelismis temsil giiciine
ihtiya¢ duydugunu aciklarlar. Bu uygulamalardan bazilari, sonlu durum otomati olarak kolayca
modellenebilir. Onceden, deterministik sonlu durum otomatinin (DFA), DFA yapisim dogrudan
sinir aginin agirliklarina programlayarak tekrarlayan sinir aglari tarafindan sentezlenebilecegi
veya eslenebilecegi kanitlanmisti. Bu sonuclara dayanarak, bulanik sonlu durum otomatini (FFA)
tekrarlayan sinir aglarina eslemek icin bir sentez yontemi oneriyorlar. Bu esleme, VLSI'de
dogrudan uygulama, yani VLSI sistemlerinde DFA'nin kodlamasinin bir genellemesi olarak
FFA'nin kodlanmasi i¢in uygundur.

Sentez yontemi, FFA'nin tekrarlayan aglarla eslestirilmeden o©nce bir doniisiime
ugramasini gerektirir. Noronlar, FFA durumlarinin bulanik bir temsilini barindirmak igin
zenginlestirilmis bir islevsellikle saglanir. Bu zenginlestirilmis néron islevselligi, FFA'nin bulanik
parametrelerinin dogrudan sinir aginin parametreleri olarak temsil edilmesine de izin verir.

Ayrica, ag agirliginin sonlu degerleri icin insa edilen sinir aglarinin bulanik sonlu durum
dinamiklerinin kararliligini kanitlar ve simiilasyonlar yoluyla kanitlarin ampirik dogrulamasini
saglarlar. Bu, sinirsel ve bulanik sistemler ve otomata modelleri arasindaki cesitli bilgi denkligi

temsillerini kanithyor.
2.4.5. Uzun Vadeli Bagimhliklar
Tekrarlayan sinir aglari icin gradyan-inis 6grenme algoritmalarinin, uzun vadeli

bagimliliklari iceren gorevlerde, yani istenen c¢iktinin gecmiste cok uzak zamanlarda sunulan

girdilere bagl oldugu problemlerde kotii performans gosterdigi bilinmektedir. Lin, Horne, Tino

18

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

ve Giles bunu incelemisler ve giiclii temsil yeteneklerine sahip NARX tekrarlayan sinir aglar1 adi
verilen bir mimari sinif icin uzun vadeli bagimliliklar sorununun azaldigini géstermislerdir.

Daha 6nce gradyan-inis 6grenmenin NARX aglarinda, gramatik ¢ikarim ve dogrusal
olmayan sistem tanimlama dahil olmak iizere problemlerde "gizli durumlara" sahip tekrarlayan
sinir aglarindan daha etkili olabilecegini bildirdiler. Tipik olarak ag ¢ok daha hizli yakinsar ve
diger aglardan daha iyi genellestirir ve bu boliim ayni tiirden sonuglari gosterir.

NARX aglarinin bilgileri geleneksel tekrarlayan sinir aglarindan iki ila ti¢ kat daha uzun
stire saklayabildigini gdsteren bazi deneysel sonuglari da sunuyorlar. NARX aglarinin uzun vadeli
bagimlilik sorununu agsmamasina ragmen, uzun vadeli bagimlilik problemlerinde performansi
biiylik 6l¢lide artirabileceklerini gdsteriyorlar. Bilgiyi saglam bir sekilde tutmanin ne anlama
geldigine iliskin baz1 varsayimlar1 ayrintili olarak aciklarlar ve bu varsayimlar gevsetmek icin

olasi yollar 6nerirler.

2.5. Uygulamalar

Bu baslik altinda, tekrarlayan sinir aglarinin ilging modifikasyonlarina ve uygulamalarina
bakilmistir. Yoriingeler, kontrol sistemleri, robotik ve dil 6grenimiyle ilgili problemler, kaotik

sistemlerde tekrarlayan sinir aglarinin ilging bir kullanimi ile birlikte dahil edilmistir.

2.5.1. Kaotik Yeniden Kazanan Aglar

Dayhoff, Palmadesso ve Richards, kaotik sistemler i¢in tekrarlayan sinir aglarinin
kullanimina iliskin calismalar1 yapmislardir. Dinamik sinir aglari, sonlu durum salimimlari, sinir
dongiileri ve kaotik davramis gibi ¢ok cesitli salimimlar yapabilirler. Mimkiin olan farkl
salimimlar, kendi kendini siirdiiren muazzam bir aktivite paternleri repertuvari yaratir. Bu
repertuar ¢ok ilgi cekicidir ¢linkii salimmmlar ve degisen aktivite modelleri potansiyel olarak
hesaplama amach ve fiziksel olaylari modellemek i¢in kullanilabilir.

Bir dis model bir uyarici olarak kullanildiginda kaotik bir agda gozlemlenen egilimleri
arastiriyorlar. Model uyarani, tek katmanl tekrarlayan bir agdaki tiim néronlara sabit bir harici
girdidir. Uyaranin giicti, uyarilmis salinimlarin karmasikliginda degisiklikler ve egilimler iiretmek
icin cesitlidir. Daha giiclii uyaranlar, daha basit ve daha az c¢esitli salinimlar1 uyandirabilir.
Gurtltiye karsi direng, giirtltiilii uyaranlar ayni veya benzer salinimlar1 uyandirdiginda ortaya
cikar. Daha giiclii uyaranlar giiriiltiilye karsi daha dayanikl olabilir. Bu gézlemlerin her birinin
orneklerini gosterirler. Bir model-salinim haritas1 sonunda model tanima ve diger hesaplama
amaglari i¢in kullanilabilir. Béyle bir paradigmada, dis model uyaricisi, bir model iliskilendirme

problemine yanit olarak agdan okunan bir salinnmi c¢agristirir. Bu tiir bir hesaplama

19

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

paradigmasinin ¢ok katmanl statik ileri beslemeli bir agdan daha yliksek desen kapasitesi ve

sinir esnekligi potansiyeline sahip olduguna dair kanitlar sunarlar.

2.5.2. Dil Ogrenimi

Kremer, dilbilgisi indiiksiyonu veya dil 6grenimi ile tekrarlayan sinir aglari arasindaki
iliskiyi inceler ve resmi dil 6grenmenin anlasilmasinin tekrarlayan sinir aglarinin tasarlanmasina
ve uygulanmasina nasil yardimeci olabilecegini sorar. Bu sorunun cevabi dort ders seklinde gelir:
(1) RNN'leri egitmek zordur, (2) arama alanini azaltmak 6grenmeyi hizlandirabilir veya miimkiin
kilabilir, (3) arama alanini siparis etmek 6grenmeyi hizlandirabilir ve (4) egitim verilerinizi
siparis etmek yardimci olur. Bu béliim, zamanla degisen girdilerle sunulan ve zamanin ¢esitli
noktalarinda ciktilari islemek icin tasarlanmis dinamik tekrarlayan sinir aglariyla ilgilidir. Bu
durumda, agin ¢alismasi, bir girdi dizisini bir ¢cikti1 degerine veya degerler dizisine esleyen bir
islevle tanimlanabilir ve girdilerin gecerli degerlerden olusan ayri bir alfabeden secildigi ve cikti
degerlerinin ayr1 ayri diistiigii soruna uygulanir. kategoriler. Her bir 68enin bir girdi alfabesinden
secildigi girdi dizileriyle basa ¢cikma sorunu da bicimsel bir dil sorunu olarak degerlendirilebilir.
Bu calisma, bir giris dilinin alt kiimelerini siniflandirmak i¢in tekrarlayan sinir aglarini kullaniyor

ve dil 6grenimi icin etkili teknikleri ortaya koyuyor.

2.5.3. Siral1 Otomatik Birlestirme

Baglantic1 Dogal Dil Isleme (NLP) iizerine artan aragtirmalara ragmen, uygun dilsel
temsillerin gelistirilmesi gibi bir dizi sorunun c¢o6ziilmesi gerekiyor. Dogal dil, altta yatan
hiyerarsik yapiya ve ardisik dis goriiniime sahip dinamik bir sistemdir ve yeterli bir hiyerarsik
sistematik dilsel temsil yontemine ihtiya¢ duyar. Elman [61] tarafindan Jordan Yinelenen Aglar
[62] ve Basit Yinelenen Aglar (SRN) gibi kiiresel bellek yinelenen sinir aglarinin gelistirilmesi, bu
kiresel sistemdeki sirali girdilerinin temsillerini kademeli olarak olusturan modellerin
gelistirilmesini tesvik etti.

Stoianov, karmasik sirali verilerin statik dagitilmis temsillerinden olusan hiyerarsik bir
sistem olusturmak ve islemek icin tasarlanmis yeni bir baglantisal mimari sunuyor. Giris dizisinin
karmasik statik temsillerini olusturma fikrini takip eder, ancak her girdi dizisi i¢in benzersiz
temsiller olusturarak bu statik gosterimleri orijinal bicimlerinde yeniden iiretmek {iizere
genisletilmistir. Model, Tekrarlayan Otomatik Iliski Aglar1 (RAN'lar) ad1 verilen sirali otomatik
iliskilendirme modiillerinden olusur. Bu modiillerin her biri, girdi dizilerini yeniden iiretmeyi
ogrenir ve bir yan etki olarak dizilerin statik dagitilmis temsillerini gelistirir. istenirse, bu

modiiller statik gosterimleri orijinal sirali bicimlerine agarlar. Sirali olarak temsil edilen

20

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

hiyerarsik girdi verilerini islemeye yonelik eksiksiz mimari, bir dizi RAN'dan olusur. Bu kademeli
semadaki en diisiik seviyeden herhangi birinden bir RAN modiiliiniin girdi jetonlari, daha diisiik
seviyeden RAN modiiliiniin iirettigi statik temsillerdir. En diisiik seviye RAN modiiliiniin giris
verileri dis diinyadan algilanir. En diisiik seviyeden bir modiiliin ¢iktis1 bir efektor ile
iliskilendirilebilir. Daha sonra, RAN gizli katmanina ayarlanmis bir statik temsil verildiginde, bu
efektor, paket agma islemi sirasinda sirayla komutlari alacaktir.

RAN, dogal dillerin dinamiklerine uyan tekrarlayan bir sinir agidir ve RAN'lar, dizilerin
temsillerini iiretir ve bunlar1 sirali bicimlerine geri dondiirerek yorumlar. Bir RAN dizisi olan
daha genisletilmis mimari, dogal dillerdeki hiyerarsiye benzer. Ayrica, temsili bir egitim ortami
verildiginde, bu mimari, dagitilmis temsilleri sistematik bir sekilde gelistirme kapasitesine
sahiptir. RAN'larin bir sistematiklik agiklamasi sagladigini ve bu nedenle RAN ve RAN
kademesinin, trettikleri dagitilmis temsillerin kapsamli bir sekilde dontstirildigi ve
iliskilendirildigi daha kiiresel bir bilissel modele katilabilecegini savunuyor.

Bu calismada dinamik verilerdeki hiyerarsi tartismasini igerir ve hecelerin temsillerini
gelistirmek icin kiiciik bir RAN 6rnegi sunulmustur. Model, hiyerarsik olarak yapilandirilmis
dizilerin temsillerini gelistirme sorununu ¢ézse de 6zellikle otonom bir bilissel model gelistirmek
icin bazi sorular acik kalmaktadir. Yine de dnerilen model, baglantisal modellemede 6nemli bir

adim olabilir.

2.5.4. Egitim Sorunlari

Tekrarlayan sinir aglarinin 6énemli bir uygulamasi, belirli gerekli zaman iliskileri olan
olaylarin iyi 6rnekleri olan yoriingeleri iceren dinamik sistemlerin modellenmesidir. Tipik test
durumlari, dairenin ve sekiz seklinin tinlii dogrusal olmayan ve otonom dinamik sistemleridir.
Tekrarlayan aglar egitmedeki zorluk, genellikle verimsiz egitimle sonuglanabilecek tahminlerin
kullanilmasiyla sonuglanir. Sundareshan, Wong ve Condarcure calismalarinda gradyan
degerlendirmeleri gerektirmeyen iki alternatif 6grenme prosediiriinii agiklamaktadir. Siirekli
yoriingeler tretmek icin karmasik bir uzay-zamansal 6grenme gorevini kullanarak iki
algoritmanin performansini gosterirler. Uygulamada 6nemli avantajlar gosterirler.

Iki farkl yaklasimi tanimlarlar. Biri otomatik égrenme teorisindeki kavramlar1 kullanir,
digeri ise klasik simpleks optimizasyon yaklasimina dayanir. Egitimli bir sinir ag1 tarafindan uzay-
zamansal sinyal Uretimi gorevi ile bu yaklasimlarin egitim verimliligini gosterirler. Bu gorevin
karmasikligy, tekrarlayan sinir aglarinin zamansal dinamiklere yaklasma konusundaki benzersiz
yetenegini ortaya koyuyor.

Hagner, Hassoun ve Watta tek katmanli tamamen tekrarlayan aglar ve harici yinelemeli

¢ok katmanli aglar dahil olmak iizere farklhi ag mimarilerini ve O6grenme kurallarini

21

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

karsilastirmislardir: artimli gradyan inisi, eslenik gradyan inisi ve genisletilmis Kalman filtresinin
lic versiyonu. Daire yoriingesinin, sekiz seklindeki yoriinge zor oldugu halde nispeten kolay
Ogrenildigi gosterilmistir. Bu dahili ve harici olarak tekrarlayan otonom sistemlerin sinir ag1

yaklasimlarinin Kkalitatif ve kantitatif bir analizini verirler.

2.5.5. Adaptif Robot Davranisi

Ziemke, robot kontroli ve 6grenimi icin tekrarlayan sinir aglarinin kullanimini tartisiyor
ve bunun biligsel bilim, yapay zeka ve robot kontrol sistemleri mithendisligi dahil olmak {izere
farkli arastirma alanlariyla olan iliskisini arastiriyor. Simdiye kadar robotlarda nadiren kullanilan
ikinci dereceden RNN'ler 6zellikle ayrintili olarak tartisiimis ve uyarlanabilir robot davranisini

gerceklestirme kapasiteleri gosterilmis ve deneysel olarak analiz edilmistir.

2.6. Gelecekteki Yonlendirmeler

Bu ¢alisma, tekrarlayan sinir aglarina olan ilginin genisligini ve derinligini temsil ediyor
ve devam eden arastirmalar icin cesitli yonlere isaret ediyor. Boliimler hem yeni hem de
gelistirilmis algoritmalar1 ve tasarim tekniklerini ve ayrica yeni uygulamalar: ele almaktadir.
Konular dil isleme, kaotik ve gercek zamanl sistemler, optimizasyon, yoriinge problemleri,
filtreleme ve kontrol ve robotik davranis ile ilgilidir.

Tekrarlayan sinir aglarinda yapilan arastirmalar, 1980'lerin sonlarinda énemli temel
calismalara dayanarak, esas olarak 1990'larda gerceklestirildi. Oniimiizdeki on y1l, teori ve
tasarimda 6nemli gelismelerin yani sira 6nemli pratik sorunlarin yaratici ¢6ztimii icin daha birgok
uygulama iiretmelidir. Tekrarlayan sinir aglarinin yaygin olarak uygulanmasi, arastirma ve
gelistirmeye daha fazla ilgi uyandirmali ve daha fazla teorik ve tasarim sorusu dogurmalidir.
Hibrit sistemlere olan ilginin devam etmesi, tekrarlayan sinir aglarinin yeni ve daha giicli

kullanimlariyla sonuglanmalidir.

2.7. Tasmabilir Yiriitiilebilir Formatin Tanimlanmasi

Tasnabilir yiiritiilebilir (PE) bicimi (Sekil 3), Microsoft tarafindan Windows NT 3.1
isletim sistemiyle tanitildi. Baslangicindan bu yana, onu Windows'un daha yeni siiriimlerine dahil
etmek icin cesitli iyilestirmeler gérdii. Unix, Windows PE formatina benzer ELF formatini kullanir.

Bu tezin kapsami, Unix tabanl isletim sistemlerinde ¢alisan kotii amagh yazilimlar igin
mevcut veriler sinirli oldugundan, Windows c¢alistirilabilir dosyalariyla sinirhidir. Ancak, PE

dosyalarinda bulunan COFF basligi hem Unix hem de Windows ortamlar igin ortaktir [74].

22

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Onerdigimiz model, dosyanin kotii niyetli mi yoksa zararsiz m1 oldugunu belirlemek i¢in PE

dosyalarindan ¢ikarilan 6zellikleri analiz eder. Bu boliim PE dosyalarindan elde edilebilecek

bilgileri agiklamaktadir.

2.7.1. MS-DOS Kogani

Bu saplama, dosya bir MS-DOS ortaminda her yiriitiildiigiinde ytriitiiliir. Tek amaci,

dosyanin MS-DOS ortaminda ¢alistirllamayacagini belirten bir mesaj yazdirmaktir. MS-DOS

Stub'dan sonra eklenen bir imza, dosyanin PE bigiminde oldugunu gosterir. [75]

oxeeee
oxeee8
0x0010
0x0018
0x0020
oxeez8
0x0030
0x0038
0x6048
0x0048
oxeese
0x0658
0x0068
0x0068
0x0070

64 bit

signature 8x50450000

#Number0fSections

TimeDateStamp Pvintw'v_om‘h.;lmhle
Numberofsynbolrable Sizeofoptionalisader | Characteristics
(deprecatod)

Header

Standad
COFF
Fields

Windows
Specific
Fields

majis | e | M ot) ot
sizeofInitializedpata sizeofuninitializedpata
AddressOfEntryPoint Baseof Code
1A =
Baseofpata
P ImageBase
sectionAlignment FileAlignment
Srietirsie | iveemarsion ek et
majorsubsysten winorsibsysten Win3zVersionvalue
Versian Version (zeros tilied)
sizeofImage sizeofHeaders
. chzlc?m , Subsystem Dplicharacteristics
v
sizeof Ve
LoaderFlags
o w:ﬂ) # Numberof
Exw;!"!]’lbh SizeOfExportTable
t
lupo(r_ "T)Ihll SizeofImportTable
mnu(r_‘:zhhl-l SizeOfResourceTable
£ sizeofexceptionTable
oertificat sizeofcer
okt sizeof ionTable
Debu !
apug sizeofDebug
Ar ecturepata A ebata
GlobalPtr
AL 00 o0 00 00
11.5(::!:1! sizeofTLsTable
Imdon::_’;in'flhh sizeofLoadConfigTable
uung:g:nort sizeofBoundImport
PRI SizeofImportAddressTable
AL 30 sizeofpelayImportDescriptor
CLRR:
£ Size0fCLRRuNt ineteater
o0 o0 o0 o0 00 o0 00 00
Name
virtualsize virea (min) ress
sizeofRawbata Pointer
nter nter s
MunberofL

Sekil 3. PE Dosya Formati [85]

Optional
Header

Data
Directories

Section
Table

23

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

2.7.1.1. Ortak Nesne Dosya Formati

Ortak Nesne Dosyasi Bicimi (COFF) basligi, MS-DOS Kog¢aninin hemen ardindan bulunur.
COFF Bashgi yapisi Tablo 2'de tammlanmustir. COFF bashgindaki Makine alani ve Ozellikler alan
icin tiim olas1 degerler sirasiyla Tablo 3 ve Tablo 4'te tanimlanmistir. Dosya yalnizca makine alani

tizerinde ytriitiilecek hedef makineyle eslesirse bir makinede yiiriitiilebilir.

Tablo 2. COFF: Yapisi [75]

Offset Size Field Description

0 2 Machine Identifies the target machine that the executable can
run on. Refer to Table 3.2

2 2 NumberOfSections Size of the section table. (follows the header table)

4 4 TimeDateStamp Date of Creation. Represented as seconds after
January 1, 1970.

8 4 PointerToSymbolTable File offset of COFF symbol table. 0 for no table.

12 4 NumberOfSymbols Number of entries in the symbol table.

16 2 SizeOfOptionalHeader Size of the optional header (required for executables)

18 2 Characteristics Indicates the attributes of the file. Refer to Table 3.3.

2.7.1.2 istege Bagh Bashk

Yiiriitiilebilir dosyalar (resimler) olarak kabul edilen dosyalarin ek bir istege bagh bashgi
vardir. Bu bagslik, calistirilabilir dosyalarin yirttilmesinden sorumlu olan isletim sisteminde
bulunan yiikleyiciye bilgi saglar. Bu baslik ¢alistirilabilir dosyalar i¢in gerekli olsa da, nesne
dosyalarinda da mevcut olabilir. Nesne dosyalarindaki istege bagli basliklar, dosya boyutunu

artirmak disinda hi¢cbir amaca hizmet etmez.

Istege bagh bashgin boyutu, COFF bashgindaki SizeOfOptionalHeader alaninda
tanimlanir. Tablo 5'te gosterildigi gibi, istege bagh baslikta bulunan sihirli bir sayi, yliriitiilebilir
dosyanin PE32 mi yoksa PE32 + mi1 oldugunu belirler.

E32 + yiritilebilir dosyalar1 64 bit bellek adres alanina izin verir, ancak boyut olarak 2
gigabayttan fazla olamaz. Istege bagh baslik, Tablo 6’da tanimlanan 3 ana béliime ayrilmistir.
Istege bagh baghktaki standart alanlar, her COFF uygulamasi (Windows ve Unix) icin
tanimlanmistir. Bu béliimde yer alan bilgilerin bir 6zeti asagidadir:
¢ Dosyanin normal bir calistirilabilir (0x10B), bir ROM goériintiisii (0x107) veya bir PE32 +
calistirilabilir (0x20B) oldugunu gosteren sihirli say1.

* Bu PE dosyasi icin kullanilacak baglayici stiriimdi.

24

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Tablo 3. COFF: Makine Tipleri [75]

Constant Value Description
IMAGE_FILE_MACHINE_UNKNOWN 0x0 Applicable to any machine
IMAGE_FILE_MACHINE_AM33 0x1d3 Matsushita AM33
IMAGE_FILE_MACHINE_AMD64 0x8664 X64
IMAGE_FILE_MACHINE_ARM 0x1c0 ARM little endian
IMAGE_FILE_MACHINE_ARM64 Oxaa64 ARM64 little endian
IMAGE_FILE_MACHINE_ARMNT Ox1c4 ARM Thumb-2 little endian
IMAGE_FILE_MACHINE_EBC Oxebc EFlbyte code
IMAGE_FILE_MACHINE_I386 Ox14c Intel 386 or equivalent
IMAGE_FILE_MACHINE_IA64 0x200 Intel Itanium processor family
IMAGE FILE MACHINE M32R 0x9041 Mitsubishi M32R little endian
IMAGE_FILE_MACHINE_MIPS16 0x266 MIPS16
IMAGE_FILE_MACHINE_MIPSFPU 0x366 MIPS with FPU
IMAGE_FILE_MACHINE_MIPSFPU16 0x466 MIPS16 with FPU
IMAGE_FILE_MACHINE_POWERPC 0x1f0 Power PC little endian
IMAGE_FILE_MACHINE_POWERPCFP 0x1f1 Power PC with floating point support
IMAGE_FILE_MACHINE_R400 0x166 MIPS little endian
IMAGE_FILE_MACHINE_RISCV32 0x5032 RISC-V 32-bit address space
IMAGE_FILE_MACHINE_RISCV64 0x5064 RISC-V 64-bit address space
IMAGE_FILE_MACHINE_RISCV128 0x5128 RISC-V 128-bit address space
IMAGE_FILE_MACHINE_SH3 0x1a2 Hitachi SH3
IMAGE_FILE_MACHINE_SH3DSP 0x1a3 Hitachi SH3 DSP
IMAGE_FILE_MACHINE_SH4 0x1a6 Hitachi SH4
IMAGE_FILE_MACHINE_SH5 0x1a8 Hitachi SP5
IMAGE_FILE_MACHINE_THUMB 0x1c2 Thumb
IMAGE_FILE_MACHINE_WCEMIPSV2 0x169 MIPS little-endian WCE v2

25

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Tablo 4. COFF: Mevcut Ozellik Isaretleri [75]

Flag Value
IMAGE_FILE_RELOCS_STRIPPED 0x0001 The file must be loaded at its preferred
base address because it does not allow
base relocation.
IMAGE_FILE_EXECUTABLE_IMAGE 0x0002 Set for valid files. Linker error if this is
not set.
IMAGE_FILE_LINE_NUMS_STRIPPED 0x0004 Deprecated. Set to zero.
IMAGE_FILE_LOCAL_SYMS_STRIPPED 0x0008 Deprecated. Set to zero.
IMAGE_FILE_FILE_AGRESSIVE_WS_TRIM 0x0010 Obsolete for Windows 2000 and
later. Set to zero.
IMAGE_FILE_LARGE_ADDRESS_AWARE 0x0020 Capable of handling addresses

more than 2GB.
0x0040 Reserved.

IMAGE_FILE_BYTES_RESERVED_LO 0x0080 Little Endian. Deprecated. Set to zero.
IMAGE_FILE_32BIT_MACHINE 0x0100 Machine uses 32-bit architecture.
IMAGE_FILE_DEBUG_STRIPPED 0x0200 File does not have debug infor- mation.

IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP 0x0400 Copy the image to memory if itis on
removable media.

IMAGE_FILE_NET_RUN_FROM_SWAP 0x0800 Copy the image to memory if it
is on network media.

IMAGE_FILE_SYSTEM 0x1000 System File

IMAGE_FILE_DLL 0x2000 DLL File. Cannot be executed.

IMAGE_FILE_SYSTEM_ONLY 0x4000 Only support uniprocessor ma-
chine.

IMAGE_FILE_BYTES_RESERVED HI 0x8000 Big Endian. Deprecated. Set to
zero.

Tablo 5. Optimal Baslik Sihir Numarasi [75]

Magic number PE format
0x10b PE32
0x20b PE32+

Tablo 6. Optimal Baslik Parcalari [75]

Offset Size Header part Description

(PE32/PE32+) (PE32/PE32+)

0 28/24 Standard fields Common for Windows and Unix COFF
implementations

28/24 68/88 Windows-spesific Defines Windows spesific features.

fields

96/112 Variable Data directories Address and size of special tables used by

0S.

26

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

¢ Kod boliimiiniin boyutu. Kod béliimii, dosya yiiriitiildiiglinde c¢alistirilacak gergek yazilimi
iceren bir PE dosyasinin metin boliimiinii ifade eder. Dosya icinde bu tiir birden ¢ok kod boliimii
olabilir, bu durumda baslik alani, birlestirilmis tiim kod bdliimlerinin toplam boyutunu
gosterecektir. Kod boliimleri, bir PE dosyasinin .text b6liimii olarak da adlandirilir.

¢ Dosyada bulunan baslatilmis ve baslatilmamis verilerin boyutu. Bu ayni zamanda bir PE
dosyasinin .data boliimii olarak da adlandirilir.

¢ Dosyanin giris noktasinin adresi. PE dosyasi bellege yiiklendiginde komut isaretgisinin

baslayacagi yer burasidir. [75]

Windows'a 6zgii alanlar, 6zellikle Windows ortamlari icin gerekli olan belirli bilgileri
icerir. Isletim sistemi siiriimiinii, goriintii siirimiinii (6rnegin Word siiriim 8.0), basliklarin
boyutunu, goériuntiiniin boyutunu, DLL o6zelliklerini, yiikleyici bayraklarini, veri dizininin
uzunlugunu, veri dizininin kendisini ve saglama toplamimi igerir. Goriintiiniin boyutu,
goriintiiniin ¢alismasi icin isletim sistemi tarafindan ne kadar adres alani ayrilmasi gerektigini
belirler. [74]

Veri dizinleri, Windows igin gerekli olan dizinlerin adresini ve boyutunu verir. Buna,
bunlarla sinirl olmamak tzere, ice / disa aktarma tablolari, kaynak tablosu, istisna tablosu vb.

Dahildir. [75]

2.7.1.3. Boliim Tablosu

PE dosyasindaki her boéliim, boyutu 40 bayt olan bir béliim baslig icerir. Bu, béliimiin
adiny, sanal boyutunu, satir sayisini ve cesitli isaretcileri (¢izgiler, ham veriler, yer degistirmeler,
vb.) Tanimlar [75].

Yukarida agiklanan béliimlerin yani sira, PE dosyasi yazilimin galistirilabilir kodunu
icerir. Dosyaya bagl olarak dahil edilebilecek birkag¢ baska béliim vardir, ancak bu tezin kapsami

disindadir.

2.7.1.4.x86 /x64 mimarisi

Temel montaj kodunu anlamak i¢in asina olunmasi gereken birka¢ husus vardir. Bunlar
yazmaclar, veri tiirleri, komut seti ve Windows temelleridir.
Mimaride sekiz genel amacgh kayit (GPR) vardir. Kayitlar1 ve normalde ne i¢in kullanildiklarini
listeleriz:

EAX - Aritmetik islemler.

27

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

EBX - Veri isaretgisi.
ECX - Dongiilerde sayacg.
EDX - Dizi / bellek islemlerinde kaynak.
EDI - Dizi / bellek islemlerinde hedef.
ESI - Akis islemlerinde kaynaga yonelik isaretgi.
EBP - Temel cerceve isaretcisi. Bu, y181n icindeki karelere isaret eder. Cerceveler, islevler icin
verileri depolar.
ESP - Y181n isaretgisi. By, islem y1gininin tepesine isaret eder.
Veri tiirleri
Yaygin veri tiirleri
 Bayt - 8 bit, 6rnegin AL, BL ve CL'de saklanir.
* Word - 16 bit, 6rnegin AX, BX ve CX'te saklanir.
o Cift kelime - 32 bit, 6rnegin EAX, EBX ve ECX'te saklanir.
Dort s6zciik de kullanilabilir. 64 bit elde etmek icin iki kaydi birlestirerek olusturulurlar.
Komut seti
Veriler bes sekilde tasinabilir ve depolanabilir. Kaydetmek i¢cin hemen, hemen bellege,
kayittan kayida tasinabilir, kayit ve bellek arasinda hareket ettirilebilir ve bellekten bellege
tasinabilir. Verileri tasirken, sozdizimi bir islem kodu, hedef ve bir kaynak islenenden olusur.
Aritmetik islemler kullanilarak gerceklestirilir.
¢ ADD - belirli bir deger ekler.
¢ SUB - belirli bir degeri ¢ikarir.
¢ INC - 1 ekler.
e Aralik - 1'i ¢ikarir.
Ve bir dizi mantiksal talimat:
¢ AND - ve verilen bir deger.
* OR - veya belirli bir deger.
¢ XOR - belirli bir degeri xors.
¢ NOT - belirli bir degerdeki bitleri ters ¢evirir.
Y1g1n da belirtilmelidir. Yigin, push ve pop'u destekleyen son giren ilk ¢ikar veri yapisidir.
Itme, y1ginin en iistiine bir sey koyar ve pop yiginin iistiinden bir sey cikarir. ESP tarafindan isaret
edilen bitisik bir hafiza bolgesidir ve asag1 dogru biiyiir.
Akis kontrolii s6z konusu oldugunda, if / else, switch / case ve while / for gibi iist diizey
yapilar:
¢ CMP - Birini digerinden ¢ikararak iki islenen karsilastirir
¢ TEST - Aralarinda AND kullanarak iki islenen karsilastirir
» JMP - ESP'yi belirli bir adresle giinceller

28

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

« JCC - Bir dizi atlama komutu

* EFLAGS

29

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

3. MATERYAL VE YONTEM
3.1. Veri seti

Yinelenen sinir aglar1 genellikle zaman serisi ya da sekans halinde ilerleyen veriler icin
kullanilan bir yapay sinir ag1 yontemidir. Veri setinin kaliteli olmasi 6zellikle bu tarz ¢alismalarda
olduk¢a 6nemlidir ve titizlikle davranilmahdir. Bu yiizden en ¢ok saldirilan isletim sistemi olan
Windows seg¢ilmis ve yine derli toplu kaliteli bir veri seti olmasi dolayisiyla Microsoft'un sundugu
ve Microsoft Malware Classification Challenge (BIG 2015) ekinligi icin hazirlanan veri seti
kullanilmistir [76].

Windows isletim sistemi icin ele alinacak tasinabilir ylirtitiilebilir dosya formatindaki
zararli yazilimlarin bu yontemle islenebilmesi icin ham verinin islenmesi gerekmektedir. Bu
ylzden de zararsiz olmayan tasinabilir yirtilebilir dosyalarin makine dili kodlarina
doniistiriilme islemi IDA Pro adlhi program kullanilarak gerceklestirilmistir. Zararli olan
yazilimlar hali hazirda Microsoft tarafindan doniistiirtilmiis haliyle veri setinde sunuldugu i¢in bu
isleme tabi tutulmamistir. Buradan elde edilen islem kodu sekanslarinda oriintii aranarak zararh
yazilim tespit edilmeye calisilacaktir. Yaklasik 500 GB boyutundaki veri seti sikistirilarak boyutu
kiciiltiilmiis ve test ile egitim verileri ayrilmistir. Veri setinde 9 farkli viriis ailesinden 10868 adet
.bytes dosyasi, 10868 adet de .asm dosyas1 olmak tizere 21.736 adet dosya bulunmaktadir. Her
bir zararli yazilimin kimlik numarasi, 20 karakterlik 6zet degeri, sinifi ve bu 9 aileyi temsil eden

bir say1 degeri bulunmaktadir. Bu zararl yazilim aileleri ve say1 degerleri tablodaki gibidir:

Tablo 7. Zararli yazilim aileleri ve say1 degerleri

Aile

Ramnit
Lollipop
Kelihos_ver3
Vundo

Simda

Tracur
Kelihos_verl
Obfuscator.ACY
Gatak

7]
)
-
%)

O ONOUTL D WN -

Her bir statik yirutiilebilir zararli yazilimin ham verileri, ikili dosyalarin onaltilik
sistemde gosterimi ile tasinabilir yiriitilebilir basligl verilmeden hazirlanmistir. Ayrica
glinliikleri iceren meta veri bildirimleri (fonksiyon cagrilari vs.) de bu veri setinde ikili sekilde

bulunmaktadir.

30

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Veri setinde bulunan 9 aileden ka¢ adet 6rnek olduguna baktigimiz zaman asagidaki grafik

ortaya ¢ikmistir.

Zararh Yazihm Orneklerinin Dagilimlari

3500
3000
2500
2000
1500
1000
=
, . O
qﬁsﬁb \ﬁgéq d@ﬁaﬁ -xﬁtp o« Aﬁgﬁ; ¢¢f£$ 4§%j‘ &
5 o i
¥ ¥ dab:’

Sekil 4. Zararli yazilim érneklerinin dagilimlari

Sekil 4’e bakildiginda 6zellikle Ramnit, Lollipop ve Kelihos_ver3 tiiriinden zararli yazilim
tiiri 6rnek sayisinin diger tiirlere gore oldukca fazla oldugu ve bu da veri setinde bir sinif
dengesizligi olusturdugu gozlemlenmektedir. Bu nedenle Simda adl viriis ailesinden 42 adet
bulunmasindan 6ttri tiim ailelerden 42 adet rastgele 6rnek secilmistir.

Uzerinde calisilacak veri seti hazirlanirken toplamda 378 adet zararh yazilim, 125 adet
ise zararli olmayan yazilim o6rnegi kullanilmistir. Zararli olmayan yazilimlar tasinabilir

ylritilebilir formatta Windows iizerinde ¢alisabilen rastgele dosyalardan secilmistir.

3.2. Yontem

Kullanilacak veri seti secilirken yinelenen sinir aglarinin kullanilabilirligine dikkat
edilmistir. Veri seti zararli yazilimlarin islem kodu sekanslar1 seklinde diizenlendikten sonra
yinelenen sinir aglarinin kullanimina uygun hale getirilmistir. Bu bagslik altinda veri setini

hazirlamak icin yapilan tiim islemler ve kullanilan platformlar anlatilacaktir.

3.2.1. Verilerin Hazirlanmasi ve Ozellik Cikarim

Ozellik ¢ikarimi ériintii tanima asamalarindan biridir ve siniflandirma isleminin kalitesini
belirlemede dogrudan etkilidir. Python programlama dili kullanilarak tasinabilir yiriitilebilir

dosya ornekleri 6zellik cikarimina uygun hale gelecek sekilde parcgalara ayrilmistir. Tiim dosyalar

31

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

sadece islem kodlar1 kalacak sekilde ayiklanmis ve bu ayiklama isleminin dogrulugunu saglamak
amaciyla da Intel ve AMD islemcilerin kullanma kilavuzlarindaki referans listesi kullanilmistir
[77]. Elde edilen bu pargalar metin dizisine doniistiiriilerek islem kodu sekanslar1 referans seti
ile eslestirilmis ve boylece assembly dosyasindan elde edilecek gereksiz kodlar elenmistir.

Kod sekanslarina bakildiginda assembly dosyalar igerisinde bulunan islem kodlarinin
tekrar eden kisimlara sahip oldugu, API ¢agr isimlerini icerdigi ve her dosyanin birbirinden
bagimsiz biiyiikliiklere sahip oldugu goriilmiistiir. Bu nedenle bu kod sekanslari igerisinden
tekrar eden ve gereksiz olan islem kodlar silinmis, her bir dosyadan gelen kod sekansinin
biiyiikliigii belirli bir boyut ile sinirlandirilmistir. Bu boyuttan biiyiik olan dosyalar icin geri kalan
kodlar alinmazken, kii¢lik olanlar iginse eksik kalan kisimlar sifir kullanilarak doldurulmustur.
Bunun en biiyiik sebebi makine 6grenme algoritmalari i¢in verilecek verinin boyutunun diizenli

olmasidir.

push

imul

Sekil 5. Ramnit adli viriis ailesine ait bir zararli yazilimin assembly komutlarindaki en sik

kullanilan 10 islem kodu

Sekil 5’te veri seti icerisindeki Ramnit ailesine ait bir zararli yazilim icerisinde en ¢ok
kullanilan 10 adet islem koduna ait kullanim frekansi grafigi verilmistir. Genellikle “mov” ve
“push” komutlarinin olduk¢a sik kullanmildig1 goériilmiistiir. Bazi islem kodlar1 ise oldukca az
kullanima sahiptir. Frekans belirleme islemi tiim veri setindeki assembly dosyalarina
uygulanarak cok az kullanilan islem kodlari elenmis ve veri setinin boyutu kiigiiltiilerek islem hizi

artirilmaya calisilmis ve daha dogru sonuglar elde etmek amacglanmistir.

3.2.2. Word2Vec

Yinelenen sinir aglari, yapisi geregi metin dizilerini yorumlayamazken sadece sayisal

degerleri girdi alabilir. Bu yiizden de islem kodu sekanslar1 metin olarak degil, sayisal vektorler

32

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

olarak ifade edilmelidir. Bunu yapmak i¢in kullanilan en basit yontemlerden biri “one-hot
encoding” yontemidir. Bu yontem genellikle makine 6grenmesi algoritmalarinda calistirilmak
tizere hazirlanan verinin kategorik degiskenler icermesi durumunda bu degiskenleri ikili olarak

temsil ederken kullanilir.

m Sari Yesil Kirmizi Mavi

Sarn 1 0 0 0
Yesil > 0 1 0 0
Kirmizi 0 0 1 0
Mavi 0 0 0 1
Sari 1 0 0 0

Sekil 6. One-hot Encoding 6rnegi

One-hot encoding oncelikle kullanilacak sozliigiin boyutunda bos bir vektor yaratir.
Burada sozliik olarak bahsedilen sey aslinda her bir kategorik degiskeni iceren bir kiimedir ve bu
kiimedeki veriler siitunlara yerlestirilir. Ardindan verinin kullanildig1 yerde 1 kullanilmadigi
yerde 0 olarak vektorii doldurur [78]. Ancak bu yontemin bazi dezavantajlar1 bulunmaktadir.

Bunlardan ilki tiim islem kodlarini aym vektorle ifade etmektir ki bir islem kodu eger
diger bir islem koduyla iliskili ise one-hot encoding bunu tespit edemez. ikincisi ise her bir veri
icin uzun bir vektor olusacagindan hesaplama stiresi artacaktir. Bu yiizden de daha iyi bir temsil

yontemi olarak Word2Vec kullanilmistir.

One-hot Gosterimi Kelime Temsili Gosterimi
r F 3
sari
& san
yesil
. yesil
mavi
mavi

Sekil 7. One-hot encoding ile kelime temsili fark:

Kelime temsili (word embedding) dil modelleme yontemlerinden biri olup girdi olarak
aldig1 metinleri her bir s6zciligiin arasindaki mesafeyi de dikkate alarak temsil uzayinda yiiksek

boyutlu sayisal vektorlere dontistiriir. Bu ¢alismada popiiler gozetimsiz ve tahmin temelli dogal

33

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

dil isleme modellerinden Word2Vec kullanilmistir [79]. Bu yontemin en biiyiik avantaji, vektor
uzayinda temsil edilen her bir kelimenin birbirlerine olan benzerligini kosiniis benzerligi denilen
hesaplama ile matematiksel olarak tespit edebilmesidir. Bu model c¢ikt1 olarak bir tiim kelime
vektorlerini barindiran bir kelime haznesi verir. Word2Vec uygulamalari sadece dogal dil isleme

alaninda degil genetik, miizik listesi, begeniler, sosyal medya graflar1 gibi bircok alanda da

kullanilmaktadir.
Girdi Projeksiyon Ciktu Girdi Projeksiyon Cikti
W,, /} W,
W, W, »>
w7/ w.
w.[]

CBOW Skip-gram

Sekil 8. CBOW ve Skip-gram modelleri

Word2Vec ¢ikt1 olarak verdigi kelime haznesini kullanarak farkli sekillerde yorumlamalar
yapabilir. Bir kelimenin hangi baglama ait oldugunu ya da bir baglama ait en olas1 kelimeleri
tahminleyebilir. Genellikle Word2Vec 2 farkli mimari icerir:

o Siirekli Kelime Torbasi Modeli (Contextual Bag-of-Words - CBOW): Bu model metin
icerisindeki her bir climleyi girdi olarak alip daha sonrasinda bir sézciigiin bu baglamla
alakali olup olmadigini tahmin etmeye calisir.

e Gram Atlama (SKip-Gram - SG): Bu model ise tam tersi olarak bir kelimeyi kullanarak

bu kelimenin bagh bulundugu baglama ait kelimeleri tahmin eder.

Micrasoft Veri Seti

Zararl Olmayan /

Yazihim Crnekleri

makine kodu listesi | Makine Kodu Word2Vec | verilerin Viektéirel
Sekanslarn Gosterimi

Y
b

Sekil 9. Verilerin islenmesini 6zetleyen akis semasi

34

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Sekil 9.da verilerin islenip hazirlanmasina dair gecen siirecin bir gorsel akis semasi

verilmistir. Vektorel gosterim elde edildikten sonra LSTM modeline girdi olarak verilmistir.
3.2.3.Yinelenen Sinir Aglar1 (Recurrent Neural Network)

Yinelemeli sinir ag1 ya da RNN, ileri beslemeli sinir aglarinin icerisinde hafiza barindiran
versiyonu olarak tanimlanabilir. Aslinda diger sinir aglar1 gibi her bir girdi i¢cin ayn1 fonksiyonu
kullanarak bir ¢ikti iiretir ancak bu c¢ikti bir sonraki asamanin girdisi olarak verilir. Cikti
hesaplandiktan sonra kopyalanir ve yinelenen aga geri verilir. Ancak girdilerin tiimiiniin
birbirinden bagimsiz oldugu diger ileri beslemeli sinir aglarinin aksine bir hafiza barindirarak
girdileri sekanslar halinde isler. Bu yapisindan 6tiirii genellikle el yazmasi tespiti, ses tanima gibi
alanlarda siklikla kullanilirlar [80].

Sekil 10.’da ileri beslemeli bir sinir aginin nasil yinelemeni bir sinir agina déntstiirildigi

gosterilmektedir.

©

A
- o
o
ileri Beslemeli Sinir Ag Yinelenen Sinir Agi

Sekil 10. ileri beslemeli sinir aginin yinelenen sinir agina déniisiimii

RNN modeli birbirine bagl sekanslar icin yapusi itibariyle oldukg¢a kullanighdir. Herhangi
bir girdi uzunlugu ile kullanilabilir. Modelin kendi biiyiikligi girdi biiytikligi ile dogru orantili
bir sekilde artmaz, ancak ge¢mis veri sayisi arttik¢a islem hizi da etkilenir. Bu yiizden RNN agini
egitmek zordur ve bazi aktivasyon fonksiyonlari uzun sekanslari islemeye uygun degildir [81]. Bu

nedenle tez ¢calismasinda RNN’in farkl bir versiyon olan LSTM modeli kullanilacaktir.

3.2.3.1.LSTM

Siniflandirma islemi icin yinelenen sinir aglar1 modeli kullanilmistir. Kullanilacak veri seti

oldukea uzun sekanslar icerdiginden bu tip aglarda siklikla goriilen kaybolan gradyan problemine

35

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

yani uzun sekanslar iceren derin aglarda tiirevlerin sifira yaklasmasi problemine (vanishing
gradient) yol acabilir. Bu yilizden de buna bir ¢6zlim olarak dnerilen ve yinelenen sinir aglarinin
farkli bir versiyonu olan LSTM (kisa ve uzun siireli hafiza) modeli kullanilmistir. Bu modelin
klasik yinelenen sinir aglarindan farki hem kisa hem de uzun siireli hafizaya sahip olmasidir. Bu
hafizanin olusmasini saglayan da LSTM modelinde bulunan farkh kapilardir. LSTM modellerinde
4 farklh birim bulunur: girdi kapisi, ¢ikt1 kapisi, unut kapisi ve hiicre durumu. Hiicre durumu
verinin gecmisini tutan hafiza kismidir ve diger LSTM hiicrelerine gilincel veri saglamakla
gorevlidir. Girdi kapisi ise gelen verileri 0 ve 1 arasindaki degerlere normalize ederek
glincellenmesi gereken degerlere karar veren birimdir. Unut kapisi hafizadan veri atma islemini
gerceklestirir. Cikt1 kapisi ise hiperbolik tanjant fonksiyonu kullanarak isleme giren veri ile

glincel hiicre durumundan hangi verinin seg¢ilecegine karar veren birimdir [82].

hiicre durumu

- - -

I)

X ’ "_r..
“ |

girdi kapisi cikti kapisi

Uzun - Kisa Sureli Bellek (LSTM)

® 7

ug uca
vektor ekleme

Sekil 11. Uzun-Kisa Siireli Bellek (LSTM)

lojistik fonksiyon hiperbolik tanjant skaler carpim skaler toplam

Islem kodu sekanslar1 metin seklinde oldugundan éncelikle bu verilerin islenebilmesi igin
niimerik sekilde ifade edilmesi gerekmektedir. Farkli islem kodu degerleri i¢in farkl sayilar
belirlenerek ve bunlar bir so6zliik olarak depolayarak bu doniistiirme islemi gerceklesmistir.
Daha sonra bu sekanslar yinelenen sinir aglar1 kullanilarak siniflandirma islemine gecilmistir.
Hazirlanan model islem kodunda siipheli buldugu sekanslari ve oriintiileri tespit edip 6grenerek
kararlar vermeye calisacaktir. Bunun i¢in ise verinin %10’u test i¢in, %901 ise 6gretim asamasi
icin ayrilmistir. Yinelenen sinir aginin ¢iktis1 bize tasinabilir yiiriitiilebilir dosyanin yararl mi

zararl m1 olduguna karar verecektir.

36

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

LSTM modeli olusturulurken noéron sayisi 128, seyreltme degeri olarak da 0.2
belirlenmistir. Néron sayisinin fazla olmasi genellikle islem hizin1 diisiirmekle beraber daha iyi
sonuglar verir. Ancak belirli bir dogruluk oranina ulasmis bir modelin néron sayisini artirmak
dogruluk oranini artirmamakla beraber sadece performansin diismesine neden olacaktir. Bu
ylzden noron sayisi i¢cin 128 kullanilmasi uygun bulunmustur. Seyreltme orani ise LSTM
icerisindeki noronlara belirli oranda giiriiltii eklenerek asir1 uyum gosterme problemini ortadan
kaldirma amacl kullanilan bir parametredir. Yine néron sayisinda oldugu gibi egitim tur sayisi
arttikca ¢ok kiiclik dlgeklerde performans etkileneceginden tiim bu parametrelerle LSTM agi

farkl egitim turlari ile egitilerek performansin artik degismedigi sayida birakilacaktir.

3.2.3.2. Google Colaboratory

Google Colaboratory ya da kisa adiyla Colab, Google’in sundugu bulut hizmetlerinden biri
olup derin 6grenme algoritmalarim1 kullanmak icin gerekli tiim altyapiya sahip ve tarayici
lizerinden kullanilabilen iicretsiz bir platformdur. Hicbir kurulum gerektirmeden Python
programlama dili gelistirme ortamlarindan Jupyter Notebook [https://jupyter.org/] servisinin
kullanimina imkan tanir. Colab hizmeti ile kullanicilara bir Linux sanal makinesi atanir ve bu
makine lzerinde derin dgrenme algoritmalarinin Python kiitiiphaneleri Keras, Tensorflow,

PyTorch gibi oldukea sik kullanilan kiitiiphaneler bulunur [83].

37

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

~0 M getinstructionsFromAsm.ipynb v¢ B voum 2% Payjias €3
- e
Dosya Diizenle Goster Ekle Calismazamam Araclar Yardim

+ Kod + Metin «+« Baglamyor - e

* v o B0 LR

o
©
J

‘mi

om colle
th open('@/
data_set

lit it - data_set.split()
16
11
12 Counter = Counter(split_it)
13
14
15
16 most_occur = Counter.most_common{18)
17
18

("push’, 59876)
[(‘'mov®, 2@6781), (push’, 59876), ('std", 56258), ('mul’, 389@9), (imul®, 36387), ("cld’, 33365), ('call’,

Sekil 12. Google Colaboratory servisi arayiizii

Yapilan tiim calismalar Google’in bulut depolama servisi Google Drive kullanilarak
kaydedilebilir. Ayrica Github gibi platformlardan da proje aktarimi yapilabilir.
islem giicii olarak da oldukga iyi performansh bir makine sunan Colab, NvidiaK80, T4, P4 ve P100

gibi bircok gii¢lii grafik kartinin giiclinden yararlanmaya olanak tanir [84].
3.2.3.3. Degerlendirme Olgiitleri

Yapilacak olan siiflandirma zararli yazilim olup olmamasina dair oldugundan bu bir ikili
siiflandirma problemidir. Bu yilizden sonuclar degerlendirilirken karmasiklik matrisi

kullanilarak bir tabloda siniflandirilmistir.

Tablo 8. Karmasiklik matrisi kullanilarak degerlendirme

Gergek Veriler
Zararh Zararsiz
Zararh Dogru Pozitif (DP) Yanlis Pozitif (YP)
Tahmin Edilen
Veriler 5 _
Zararsiz Yanlis Negatif (YN) Dogl‘(l;)ll\\llt)egatlf

38

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Karmasiklik matrisinde kullanilan degerlere bakacak olursak:

Dogru Pozitif (DP): Modelin bir 6érnegi zararli yazilim olarak tahmin etmesi ve o 6rnegin
gercekten de zararl yazilim olmasi durumunu temsil eder.

Dogru Negatif (DN): Modelin bir 6rnegi zararsiz yazilim olarak tahmin etmesi ve o 6rnegin
gercekten de zararsiz yazilim olmasi durumunu temsil eder.

Yanlis Pozitif (YP): Modelin bir 6rnegi zararli yazilim olarak tahmin etmesi ancak o
Ornegin zararsiz yazilim olmasi durumunu temsil eder.

Yanlis Negatif (YN): Modelin bir 6érnegi zararsiz yazilim olarak tahmin etmesi ancak o

Ornegin zararl yazilim olmasi durumunu temsil eder.

Bu tablodaki veriler kullanilarak dogruluk, kesinlik ve duyarlilik degerleri asagidaki

formiillere gore hesaplanmis, sonuglara bakilarak da modelin performansi degerlendirilmistir.

Dogruluk: Dogru siniflandirmalarin géreceli sikligini ifade eder ve dogru tahminlerin tiim
veri setine orani ile hesaplanir. Genellikle basit ve yeterli olmasindan 6tiirii performans
degerlendirmelerinde sik¢a kullanilir. Ancak veri setinde sinif dengesizligi varsa bu deger
performansi net olarak yansitmayabilir.

Dogruluk = (DP + DN) / (DP + DN + YP + YN)

Duyarlilik: Dogru olarak siniflandirilmasi gereken islemlerin ne kadarinin dogru olarak
tahmin edildigini gdsteren bir orandir.

Duyarlilik = DP / (DP + YN)

Kesinlik: Dogru siniflandirilmis pozitif 6rneklerin goreceli sikhigini ifade eder. Kesinlik
degeri dogru siniflandirmalarin oranini gosterir. Disiik bir keskinlik degeri veri setindeki
sinif dengesizligine isaret olabilir.

Kesinlik = DP / (DP + YP)

Modelin ne kadar iyi ¢alistigini yliksek dogruluk degerinden, yiiksek duyarhliktan ve

yliksek kesinlik degerlerinden anlamak miimkiin olacagindan bu degerler incelenmistir.

39

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

4. BULGULAR VE TARTISMA

BIG2015 veri seti bir dnceki baslikta anlatildig1 {izere makine 6grenme algoritmalarinda
kullanilacak tizere yeniden diizenlenip birtakim islemler sonucu hazir hale gelmistir.
Yapilan c¢alismalarda genellikle Python programlama dili kullanilmis olup, yapay zeka
uygulamalarim1 ¢alistirmak icin sagladigi tcretsiz altyapisi ve hazir kiitiiphanelerinin
bulunmasindan 6tiirii yiiksek islem giicii de saglayan Google Colaboratory hizmeti kullanilmistir.

Word2Vec modelinden bahsederken deginilen Geri Atlama ve Stirekli Kelime Torbasi
modellerinin farkl pencere boyutlarinda nasil sonuclar verdigi ve bu Word2Vec modellerinden
hangisinin zararl yazilim tespit ederken daha iyi sonuglar verecegine dair testler yapilmistir.
Genel itibariyle CBOW modeli, Skip-gram modeline gore daha iyi sonuglar vermistir. Ayrica
CBOW modeli uygun goriildiikten sonra Tablo 9. incelendigi takdirde en iyi sonuglarin pencere
boyutunun 15 oldugu ¢alismada elde edildigi goriilmektedir. Bu yiizden pencere boyutu olarak

da 15 belirlenmistir.

Tablo 9. Kelime Penceresi Boyutuna gore Siirekli Kelime Torbasi ve Geri Atlama modellerinin

sonuglari.
Siirekli Kelime Torbasi Geri Atlama
5 94.21 94.01
10 94.23 94.22
15 94.80 94.43
20 94.65 94.50
35 94.02 94.00

Word2Vec i¢in gerekli parametrelere karar verildikten sonra LSTM modeli i¢cin

kullanilacak parametreler belirlenmistir. Bu parametreler ve degerleri Tablo 10.’daki gibidir.

Tablo 10. LSTM modeli i¢in kullanilacak parametreler

Parametre Deger
max sequence length 600
batch size 64
embedding size 300
learning rate le-3
dropout rate 0.2
number of layers 2

hidden layer neuron 128

Parametrelere deginecek olursak;

40

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

max sequence length: Maksimum opcode sekansi

batch size: Modelin her bir iterasyonda girdi olarak alacag1 6rnek sayisi

embedding size: islem kodu sekanslarinin vektér olarak ifade edildigi temsil uzayinin

boyutu

learning rate: Modelin optimizasyon i¢in ayarladig1 6grenme orani

dropout rate: Seyreltme orani

number of layers: Sinir agindaki katman sayisi

hidden layer neuron: LSTM nin gizli katmanlarindaki ndron sayisi

LSTM modeli farkli egitim ve test turlari sonuglari Sekil13. ve Sekil 14." te verilmistir.

100

80

&0

40

Dogruluk (%)

20

100%

80%

60%

40%

Dogruluk (%)

20%

0%

10 15 20 25 30 35 40 45 50

Egitim Turu

Sekil 13. LSTM modeli farkl egitim turlari ¢calisma sonucu

—— Train_Word2VecTCN
~—= Valid_Word2VecTCN
——— Train_Word2VecLSTM
- == Valid_Word2VecLSTM

10 20 30 40 50
Test Turu

Sekil 14. LSTM modeli farkl test turlari ¢alisma sonucu

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

Cikan sonuclar incelendiginde LSTM modelinin oldukca az sayida egitim turu yapilsa dahi
o0grenmeye gayet yiiksek dogruluk oranlarn ile basladigini, ardindan egitim turu arttikca da
dogruluk oraninin dramatik bir sekilde ytikseldigi goriilmektedir. Beklenildigi gibi 10 egitim turu
sonrasinda ise artik model doygunluga eristigi icin performansindaki gelismeler ¢cok sinirl
kalmistir. 50 egitim turu sonrasi elde edilen en iyi dogruluk degeri ise %95,8 olarak elde
edilmistir. Testler sonucunda elde edilen sayisal sonuc¢ verileri Karmasiklik matrisine

yerlestirilmistir. Sonuclar Tablo 11’'de gésterilmistir.

Tablo 11. Karmasiklik matrisi sonuglari

n=378 Gercek Veriler
Zararh Zararsiz
Tahmin Zararh 362 16
Edilen
Veriler Zararsiz 15 110

42

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

5. SONUCLAR VE ONERILER

Bu calismada farkli 6zellik cikarma yontemleriyle desteklenerek tasinabilir yiiriitilebilir
zararli yazilimlarin tespiti icin LSTM hiticreleri kullanilarak gii¢clendirilen yinelenen sinir aglari
kullanilmistir. Sonuglar géstermistir ki zararl yazilim tespiti derin 6grenme algoritmalar ile
yapilabilmektedir ve sonuglarin gelistirilmesi icin de farkli katmanlar eklenmesi faydahdir.
LSTM’nin oldukga iyi sonuclar verdigi goriilmekle beraber biiylik boyutlu dosyalarda uzun islem
kodu sekanslarinin olusmasinin performansa etki ettigi gériilmiistiir. Veri seti tiimii ile calismaya
dahil edilmesi yerine periyotlar halinde temin edilerek, calismanin zaman sekanslarina
boliinerek yapilabilecegi gériilmiistiir.

Tekrar eden islem kodu sayisinin fazla olmasi da 6zellik cikarma isleminin daha da
ozellestirilip gelistirilmesi gerektigini gostermektedir. Kullanilan veri seti Microsoft tarafindan
2015 yilinda yayinlandigindan daha yeni veri setleri olusturup siirekli giincellenen zararh
yazilimlara karsi daha iyi bir model gelistirilebilir. Ayrica islem kodlar1 programa ait davranisi
genel bicimde gayet iyi bir sekilde gosterse de islenen (operand) kismi da bu davranisi
betimlemede hassas bilgiler icerebilir. Bu ylizden ilerleyen calismalarda islenen kismi da veri
¢ikarma islemine dahil edilerek daha gii¢lti bir model elde edilmeye calisilacaktir.

Veri seti icerisinden LSTM modeline uygun olacak sekilde her viriis ailesinden simetrik
sayida zararl yazilim 6érnegi almak yerine her virus ailesinden asimetrik sayida zararl yazilimin
secilerek sonuclara etkisi arastirilabilir.

llerleyen calismalarda LSTM modelinden farkh olarak Google’'in énerdigi BERT modeli
kullanilarak daha farkl 6zellik ¢ikarma yontemlerinin de kombinasyonlar ile daha giiclii bir
model ¢ikarilmasi hedeflenmektedir. Cikarilmaya calisilacak olan modelde zararli yazilimlarin
olusturacag tahribatlar da tahmin edilmeye ¢alisilacaktir. Ayrica yinelenen sinir aglarinin yani
sira ikili verilerin siniflandirilmasi ya da verilerin elde edilmesi asamasinda yinelenen sinir aglari
disinda farkl derin 6grenme metotlar1 da modele dahil edilip derinlesmis ve daha 6zellesmis bir

model olusturulmasi hedeflenmektedir.

43

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

KAYNAKLAR

[1]. M. Sikorski and A. Honig. Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software. No Starch Press, 2012.

[2]. Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on
automated dynamic malware-analysis techniques and tools. ACM computing surveys (CSUR),
44(2):6,2012.

[3]. Skoudis, E. 2004. Malware: Fighting malicious code. Prentice Hall Professional.

[4]. Dilshan Keragala. Detecting malware and sandbox evasion techniques. SANS Insti- tute
InfoSec Reading Room, 16, 2016.

[5]. Igor Santos, Jaime Devesa, Felix Brezo, Javier Nieves, and Pablo Garcia Bringas. Opem: A
static-dynamic approach for machine-learning-based malware detection. In International Joint
Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions, pages 271-280. Springer, 2013.

[6]. Wen-Chieh Wu and Shih-Hao Hung. Droiddolphin: A dynamic android malware detection
framework using big data and machine learning. In Proceedings of the 2014 Conference on
Research in Adaptive and Convergent Systems, RACS "14, pages 247-252, New York, NY, USA,
2014. ACM.

[7]. Microsoft Technet. Accessed may 2015. Diskmon for windows v2.01. https://technet.
microsoft.com/en-us/sysinternals/bb896646.

[8]. Microsoft Technet. Accessed may 2015. Process explorer v16.05. https://technet.
microsoft.com/en-us/sysinternals/bb896653.

[9]. Microsoft Technet. Accessed may 2015. Tcpview v3.05. https://technet.microsoft. com/en-
us/sysinternals/bb897437.

[10]. Wireshark Foundation. Accessed may 2015. Wireshark homepage. https://www.
wireshark.org/.

[11]. Santos, I, Brezo, F., Ugarte-Pedrero, X., & Bringas, P. 2013. Opcode sequences as
representation of executables for data-mining-based unknown malware detection. Information
Sciences.

[12]. Li, W.-]., Wang, K, Stolfo, S., & Herzog, B. 2005. Fileprints: Identifying file types by n-gram
analysis. Proceedings of the 2005 IEE Workshop on Assurance and Security.

[13]. Yu, S, Zhou, S, Liu, L., & Yang, R. 2010. Malware variants identification based on byte
frequency. Second international conference on networks security, wireless communications and

trusted computing.

[14]. Bilar, D. 2007. Opcodes as predictor for malware. Int. J. Electronic Security and Digital
Forensics, Vol 1, No. 2.

[15]. Moskovitch, R, Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S., & Elovici, Y. 2008.
Unknown malcode detection using opcode representation. Springer-Verlag Berlin Heidelberg.

[16]. Shankarapani, M. & Ramamoorthy, S. 2010. Malware detection using assembly and api call
sequences. Springer-Verlag France.

44

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

[17]. Zolotukhin, M. & Hamalainen, T. 2014. Detection of zero-day malware based on the
analysis of opcode sequences. The 11th Annual IEEE SSNC - Security, Privacy and Content
Protection.

[18]. Symantec. Accessed april 2015. 2014 internet security threat report, volume 19.
http://www.symantec.com/content/en/us/enterprise/other_resources/ b-
istr_main_report_v19_21291018.en-us.pdf.

[19]. Skoudis, E. & Zeltser, L. 2010. Malware: Fighting malicious code.

[20]. LeDoux, C. & Lakhoita, A. 2015. Malware and machine learning. Intelligent Methods for
Cyber Warfare.

[21]. Dube, T., Raines, R., Peterson, B., Bauer, K., & Rogers, S. 2010. An investigation of malware
type classification. Proceeding of the 5th International Conference Information Warfare and
Security.

[22]. Microsoft Malware Protection Center. Accessed may 2015. Naming malware. http://www.
microsoft.com/security/portal/mmpc/shared /malwarenaming.aspx.

[23]. Stallings, W. & Brown, L. 2008. Computer security principle and practise. Pearson
Education.

[24]. Cohen, F. 1987. Computer viruses: theory and experiments. Computers and security.

[25]. McLaughlin, L. 2004. Bot software spreads, causes new worries. IEEE Computer Society,
5(6).

[26]. Goebel, J. & Holz, T. 2007. Rishi: Identify bot contaminated hosts by irc nickname
evaluation.

[27]. Plohmann, D. & Gerhards-Padilla, E. 2012. Case study of the miner botnet. International
Conference on Cyber Confl ict, 4.

[28]. McAfee. 2006. Rootkits, part 1 of 3: The growing threat. Whitepaper.

[29]. Ammar AE Elhadi, Mohd A Maarof, and Ahmed H Osman. Malware detection based on
hybrid signature behaviour application programming interface call graph. American Journal of
Applied Sciences, 9(3):283, 2012.

[30]. Philip OKane, Sakir Sezer, and Kieran McLaughlin. Obfuscation: The hidden mal- ware.
IEEE Security & Privacy, 9(5):41-47, 2011.

[31]. Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. Control flow graphs as
malware signatures. In International workshop on the Theory of Computer Viruses, 2007.

[32]. Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for malware
detection. In Twenty-Third Annual Computer Security Applications Con- ference (ACSAC 2007),
pages 421-430. IEEE, 2007.

[33]. Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect mali- cious
patterns. Technical report, WISCONSIN UNIV-MADISON DEPT OF COM- PUTER SCIENCES, 2006.

45

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

[34]. Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya Debray. A semantics-
based approach to malware detection. ACM SIGPLAN Notices, 42(1):377- 388, 2007.

[35]. David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and Heng Yin.
Automatically identifying trigger-based behavior in malware. In Botnet Detection, pages 65-88.
Springer, 2008.

[36].Jon Oberheide, Michael Bailey, and Farnam Jahanian. Polypack: an automated online
packing service for optimal antivirus evasion. In Proceedings of the 3rd USENIX conference on
Offensive technologies, pages 9-9. USENIX Association, 2009.

[37]. Michele Banko and Eric Brill. Scaling to very very large corpora for natural lan- guage
disambiguation. In Proceedings of the 39th annual meeting on association for computational
linguistics, pages 26-33. Association for Computational Linguistics, 2001.

[38]. Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. Deep learn- ing for
classification of malware system call sequences. In Australasian Joint Confer- ence on Artificial
Intelligence, pages 137-149. Springer, 2016.

[39]. Katherine Heller, Krysta Svore, Angelos D Keromytis, and Salvatore Stolfo. One class
support vector machines for detecting anomalous windows registry accesses. In ICDM
Workshop on Data Mining for Computer Security, 2003.

[40]. Srilatha Attaluri, Scott McGhee, and Mark Stamp. Profile hidden markov models and
metamorphic virus detection. Journal in computer virology, 5(2):151-169, 2009.

[41]. Jeremy Z Kolter and Marcus A Maloof. Learning to detect malicious executables in the wild.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 470-478. ACM, 2004.

[42]. Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ahmadi.
Microsoft malware classification challenge. arXiv preprint arXiv:1802.10135, 2018.

[43]. Naman Bagga. Measuring the effectiveness of generic malware models. Master’s
thesis, San Jose State University, 2017.

[44]. Karthik Raman et al. Selecting features to classify malware. InfoSec Southwest, 2012, 2012.

[45]. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo, CA, 1993.

[46]. Hyrum S Anderson and Phil Roth. Ember: an open dataset for training static pe
malware machine learning models. arXiv preprint arXiv:1804.04637, 2018.

[47.] Wenyi Huang and Jack W Stokes. Mtnet: a multi-task neural network for dynamic malware
classification. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 399-418. Springer, 2016.

[48]. Christopher Manning, Prabhakar Raghavan, and Hinrich Schu'tze. Introduction to
information retrieval. Natural Language Engineering, 16(1):100-103, 2010.

[49]. Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil Thomas.
Malware classification with recurrent networks. In 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 1916-1920. I[EEE, 2015.

46

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

[50]. Hamid Divandari, Bassir Pechaz, and Majid Vafaie Jahan. Malware detection us- ing markov
blanket based on opcode sequences. In 2015 International Congress on Technology,
Communication and Knowledge (ICTCK), pages 564-569. IEEE, 2015.

[51]. Daniel Bilar. Opcodes as predictor for malware. International Journal of Electronic Security
and Digital Forensics, 1(2):156-168, 2007.

[52]. Joshua Saxe and Konstantin Berlin. Deep neural network based malware detection using
two dimensional binary program features. In 2015 10th International Confer- ence on Malicious
and Unwanted Software (MALWARE), pages 11-20. IEEE, 2015.

[53]. Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex Smola.
Feature hashing for large scale multitask learning. arXiv preprint arXiv:0902.2206, 2009.

[54]. Byron P Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, lon Stancu, and Gordon McGre- gor. Boosted
decision trees as an alternative to artificial neural networks for parti- cle identification. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 543(2-3):577-584, 2005.

[55]. Trevor Hastie, Saharon Rosset,]Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics and its
Interface, 2(3):349-360, 2009.

[56]. Robert E Schapire. The boosting approach to machine learning: An overview. In Nonlinear
estimation and classification, pages 149-171. Springer, 2003.

[57]. Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd international conference on Machine learning,
pages 161-168. ACM, 2006.

[58]. Fausett, L., Fundamentals of Neural Networks, Prentice Hall, Englewood Cliffs, NJ, 1994.
[59]. Hecht-Nielsen, R., Neurocomputing, Addison-Wesley, Reading, PA, 1990.

[60]. Rumelhart, D. E,, Hinton, G. E., and Williams, R.]., Learning internal representations by
error propagation, in Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Rumelhart, D. E. and McClelland, J. L., Eds., MIT Press, Cambridge, 45, 1986.

[61]. Elman,]. L., Finding structure in time, Cognitive Science, 14, 179, 1990.

[62]. Jordan, M., Generic constraints on underspecified target trajectories, Proceedings of the
International Joint Conference on Neural Networks, I, 217, 1989.

[63]. Nilsson, N.], Learning Machines: Foundations of Trainable Pattern Classifying Systems,
McGraw-Hill, New York, 1965.

[64]. Mendel,]. M. and Fu, K. S, Eds., Adaptive, Learning and Pattern Recognition Systems,
Academic, New York, 1970.

[65]. Werbos, P., The Roots of Backpropagation: From Ordered Derivatives to Neural Networks
and Political Forecasting, Wiley, New York, 1993.

[66]. Werbos, P., Backpropagation through time: what it does and how to do it, Proceedings of
the IEEE, 78, 1550, 1990.

47

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

[67]. Lapedes, A. and Farber, R., Programming a massively parallel computation universal
system: static behavior, in Neural Networks for Computing, Denker, J. S., Ed., AIP Conference
Proceedings, 151, 283, 1986.

[68]. Pineda, F.]., Generalization of backpropagation in recurrent neural networks, Physical
Review Letters, 59 (19), 2229, 1987.

[69]. Almeida, L. B., A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment, Proceedings of the IEEE 1st Annual International Conference on
Neural Networks, San Diego, 609, 1987.

[70]. Williams, R. and Zipser, D., A learning algorithm for continually running fully recurrent
neural networks, Neural Computation, 1, 270, 1989.

[71]. Sato, M., A real time running algorithm for recurrent neural networks, Biological
Cybernetics, 62, 237, 1990.

[72]. Pearlmutter, B., Learning state space trajectories in recurrent neural networks, Neural
Computation, 1, 263, 1989.

[73]. Pearlmutter, B., Gradient calculations for dynamic recurrent neural networks: A survey,
IEEE Transactions on Neural Networks, 6, 1212, 1995.

[74]. Randy Kath. The portable executable file format from top to bottom. MSDN Library,
Microsoft Corporation, 1993.

[75]. Windows Dev Center. Pe format - windows applications, Mar 2019. https://docs.
microsoft.com/en-us/windows/desktop/debug/pe-format.

[76]. [R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Microsoft malware
classification challenge,” arXiv preprint arXiv:1802.10135, 2018.].

[77]. xB6asm.net. Accessed may 2015. X86 opcode and instruction reference. http://ref.
x86asm.net/coder-abc.html

[78]. Potdar, Kedar & Pardawala, Taher & Pai, Chinmay. (2017). A Comparative Study of

Categorical Variable Encoding Techniques for Neural Network Classifiers. International Journal

of Computer Applications. 175. 7-9.

[79]. Mikolov T, Chen K, Corrado G, Dean] (2013) Efficient estimation of word representations

in vector space In: International Conference on Learning Representations 2013, Scottsdale.

[80]. Lipton, 2015 Z.C. Lipton A critical review of recurrent neural networks for sequence
learning

[81]. Bengio, Simard, Frasconi, 1994 Learning long-term dependencies with gradient descent is

difficult IEEE Trans Neural Netw, 5 (2) (1994), pp. 157-166.

[82]. Sepp Hochreiter Neural Computation, Long-Short Term Memory, 1997
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory.

48

https://www.researchgate.net/publication/13853244_Long_Short-term_Memory

Musa Giil, Yiikksek Lisans Tezi, Fen Bilimleri Enstitiisii, Mersin Universitesi, 2021

[83]. Bisong E (2019) Google colaboratory In: Building Machine Learning and Deep Learning
Models on Google Cloud Platform: A Comprehensive Guide for Beginners, 59-64.. Apress,
Berkeley, CA..

[84]. Colaboratory https://research.google.com/colaboratory/fag.html.

[85]. Wikimedia Commons. Portable executable 32 bit structure in svg fixed, 2016.

https://commons.wikimedia.org/wiki/File:Portable Executable 32 bit Structure in SVG
fixed.svg.

49

https://research.google.com/colaboratory/faq.html

