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ÖZET 
 

Taşınabilir Yürütülebilir Dosyalarda Yinelenen Sinir Ağlarını Kullanarak Statik 
Kötü Amaçlı Yazılım Algılama 

 
Teknolojideki son gelişmeler ile kötü amaçlı yazılımdan koruma yazılımının ortaya 

çıkmasından bu yana, bu yazılım ya da yazılımları atlatmaya yönelik özel olarak tasarlanmış 
karmaşık kötü amaçlı yazılımlarda bir artış görülmüştür. Bu da daha gelişmiş algılama 
tekniklerine yönelik araştırmalara öncülük etmiştir. Bu çalışmanın temel amacı, taşınabilir 
yürütülebilir dosyaları statik olarak kötü niyetli veya zararsız olarak sınıflandırmak için derin bir 
sinir ağı tasarlamak ve değerlendirmektir.  

Bu amaçla, bilinen kötü niyetli ve zararsız dosyaların taşınabilir yürütülebilir 
dosyalarından çıkarılan verileri içeren Microsoft’un sunduğu Microsoft Malware Classification 
Challenge (BIG 2015) ekinliği için hazırlanan veri seti kullanılmıştır. Python programlama dili 
kullanılarak taşınabilir yürütülebilir dosya örnekleri özellik çıkarımına uygun hale gelecek 
şekilde parçalara ayrılmıştır. Tüm dosyalar sadece işlem kodları kalacak şekilde ayıklanmıştır. 
Kod sekansları içerisinden tekrar eden ve gereksiz olan işlem kodları silinmiş, her bir dosyadan 
gelen kod sekansının büyüklüğü belirli bir boyut ile sınırlandırılmıştır. Bu boyuttan büyük olan 
dosyalar için geri kalan kodlar alınmazken, küçük olanlar içinse eksik kalan kısımlar sıfır 
kullanılarak doldurulmuştur. Oluşturulan sözlük, popüler gözetimsiz ve tahmin temelli doğal dil 
işleme modellerinden Word2Vec kullanılarak vektörel hale getirilmiştir. Word2Vec kullanılırken 
çalışmaya uygunluğu göz önünde bulundurularak Sürekli Kelime Torbası (CBOW) mimarisi 
kullanılmıştır. CBOW modeli uygun görüldükten sonra en iyi sonuçların pencere boyutunun 15 
olduğu çalışmada elde edildiği görülmüştür, bu nedenle pencere boyutu 15 olarak belirlenmiştir. 
Çalışma uzun sekanslar içerdiğinden RNN modelinde hız düşüşü öngörülerek RNN’nin farklı bir 
versiyonu olan LSTM kullanılmıştır.  

LSTM modelinin oldukça az sayıda eğitim turu yapılsa dahi öğrenmeye gayet yüksek 
doğruluk oranları ile başladığını, ardından eğitim turu arttıkça da doğruluk oranının dramatik bir 
şekilde yükseldiği görülmektedir. Beklenildiği gibi 10 eğitim turu sonrasında ise artık model 
doygunluğa eriştiği için performansındaki gelişmeler çok sınırlı kalmıştır. 50 eğitim turu sonrası 
elde edilen en iyi doğruluk değeri ise %95,8 olarak elde edilmiştir. Bulgular, yeni üretilen ya da 
az bilinen kötü amaçlı yazılımların kolaylıkla tespit edilmesi konusunda oldukça önem arz 
etmekte ve virüs imza veri tabanı temelli koruma yazılımları yerine makine öğreniminin 
modellendiği daha gelişmiş kötü amaçlı yazılımdan korunma tekniklerinin tasarımında yol 
gösterici olacaktır. 
 
Anahtar Kelimeler: LSTM, Kötü amaçlı yazılım, RNN, Word2Vec, Virüs. 
 
Danışman: Doç. Dr. Erdinç AVAROĞLU, Mersin Üniversitesi, Bilgisayar Mühendisliği Anabilim 
Dalı, Mersin. 
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ABSTRACT 
 
Static Malware Detection Using Recurrent Neural Networks in Portable Executables 

 
Since the advent of anti-malware software with recent advances in technology, there has 

been an increase in sophisticated malware specifically designed to circumvent them. This led to 
research into more advanced sensing techniques. The main purpose of this study is to design and 
evaluate a deep neural network to statically classify portable executables as malicious or 
harmless. 

For this purpose, the data set prepared for the Microsoft Malware Classification Challenge 
(BIG 2015) event presented by Microsoft, which includes the data extracted from the portable 
executable files of known malicious and harmless files, was used. Examples of portable 
executables using the Python programming language are segmented to be suitable for feature 
extraction. All files have been extracted so that only opcodes remain. Repetitive and unnecessary 
opcodes were deleted from the code sequences, and the size of the code sequence from each file 
was limited to a certain size. For the files larger than this size, the remaining codes are not taken, 
while for the smaller ones, the missing parts are filled with zeros. The created dictionary was 
vectorized using Word2Vec, one of the popular unattended and predictive-based natural 
language processing models. When using Word2Vec, the Continuous Bag of Words (CBOW) 
architecture was used considering its suitability to work. After the CBOW model was approved, it 
was seen that the best results were obtained in the study with a window size of 15, therefore the 
window size was determined as 15. Since the study includes long sequences, a different version 
of RNN, LSTM, was used by predicting a speed decrease in the RNN model. 
 It is seen that the LSTM model starts learning with very high accuracy rates even if a very 
small number of training tours are performed, and then the accuracy rate increases dramatically 
as the training tour increases. As expected, after 10 training rounds, the performance 
improvements were very limited as the model had reached saturation. The best accuracy value 
obtained after 50 training rounds was obtained as 95.8%. The findings are very important in 
easily detecting newly produced or lesser-known malware and will guide the design of more 
advanced anti-malware techniques modeled by machine learning rather than virus signature 
database-based protection software. 
 
Keywords: LSTM, Malware, RNN, Word2Vec, Virus. 
 
Advisor: Assoc. Dr. Erdinç AVAROĞLU, Mersin University, Department of Computer 
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1. GİRİŞ 

 

Kötü amaçlı yazılım algılama kavramı, esas olarak kötü niyetli amaç oluşturmak için 

yürütülebilir dosyaların analiz edilmesiyle ilgili bir konu olarak bilinmektedir. Kötü amaçlı 

yazılımdan koruma yazılımının ortaya çıkmasından bu yana, bu yazılımı atlatmak için özel olarak 

tasarlanmış karmaşık kötü amaçlı yazılımlarda bir artış görülmüştür. Bu da daha gelişmiş 

algılama tekniklerine yönelik araştırmalara öncülük etmiştir. Kötü amaçlı yazılım analizi veya 

kötü amaçlı yazılım tespiti iki şekilde gerçekleştirilebilir: statik veya dinamik olarak. 

Statik Kötü Amaçlı Yazılım Algılama: Statik kötü amaçlı yazılım algılama, bir ikili 

dosyayı yürütmeden analiz etme sürecidir. Bu, dosyanın tamamen yayılmasını ve her bileşenin 

incelenmesini, tersine mühendislik yapmak için bir sökücü kullanılmasını veya akışını incelemek 

için montaj koduna dönüştürülmesini içerebilir [1]. Varsa yazılımın orijinal kaynak koduna da 

genişletilebilir [2]. Bu, genellikle tüm kötü amaçlı yazılımdan koruma yazılımları tarafından 

kullanılan kötü amaçlı yazılımlara karşı ilk savunma hattıdır. 

Statik analiz genellikle bilinmeyen bir dosyayla uğraşırken ilk olarak gerçekleştirilir. İlk 

adım, ana bilgisayarda [3] yüklü antivirüs programı ile dosyayı manuel olarak taramaktır. Dosya 

zaten biliniyorsa, kendi başınıza çözmeye çalışmak için saatler harcamanın bir anlamı yoktur. 

(Öğrenme deneyimi hariç.) Sistem antivirüs programına ek olarak, dosya, 43 farklı antivirüs 

programı kullanarak dosyayı tarayan VirusTotal gibi bir site üzerinden çalıştırılabilir. Aynı 

dosyayla başka birinin karşılaşıp karşılaşmadığını görmek için dosyanın karmasını hesaplamak 

ve çevrimiçi olarak aramak da yararlı olabilir. 

Dize analizi, dosya hakkında ipuçları almanın basit bir yoludur. Komut satırı seçenekleri, 

kullanıcı diyaloğu, şifreler, URL'ler e-posta adresleri, kitaplıklar ve işlev çağrıları gibi dosya 

bilgilerindeki tüm dizeleri listeleyerek bulunabilir [3]. 

Demontaj, statik analizin hayati bir parçasıdır. Bir ikiliden derleme talimatlarını alarak, 

programın ne yaptığını anlamak için kaynak kodu araştırılabilir. Yine de anlamak için, (bizim 

durumumuzda) x86 ve x86-64 mimarisi ve Windows iç bileşenleri hakkında derin bilgiye sahip 

olmak gerekir. Kodun anlaşılmasını kolaylaştırmak için, kod çözülebilir. Bu şekilde kod, daha 

yüksek seviyeli bir dilde temsil edilir. Kod orijinali gibi olmayacak olsa da, kodu inceleyen kişinin 

işini kolaylaştıracaktır. 

Dinamik Kötü Amaçlı Yazılım Algılama: Dinamik kötü amaçlı yazılım algılama, kötü 

amaçlı bir yazılımı belirlemek için kötü amaçlı yazılım çalışırken davranış analizini kullanır. 

Genellikle bu, yürütülebilir dosyanın hedef sisteme herhangi bir zarar vermemesini sağlamak için 

bir SandBox ortamında yapılır. Bu analiz biçimi genellikle yoğun kaynak gerektirir ve çeşitli 

şekillerde atlatılabilir. Hata ayıklayıcılar kara kutu testi kullanılarak tespit edilemeyen sistem 

çağrılarını veya diğer davranış kalıplarını analiz etmek için de kullanılabilir [4].  
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Bu tezin kapsamı için sadece statik kötü amaçlı yazılım tespitine odaklanılmıştır. 

Makine öğrenimi, matematiksel işlevler kullanılarak kolayca belirlenemeyen karmaşık 

özelliklere sahip verileri sınıflandırmak için uzun süredir kullanılmaktadır. Günümüzde derin 

sinir ağları, veri sınıflandırması, veri tahmini, görüntü tanıma, doğal dil işleme vb. dahil (ancak 

bunlarla sınırlı olmamak üzere) çeşitli farklı uygulamalar için kullanılmaktadır. Sinir ağlarının bu 

çok yönlülüğü, büyük miktarda verinin mevcut olduğu büyük veri gibi bir şey için mükemmeldir, 

ancak belirli bir sonuç elde etmek için işlemek hesaplama açısından pahalıdır. 

Yakın zamana kadar, denetimli öğrenim için etiketli veri kümelerinin bulunmaması, kötü 

amaçlı yazılım tespiti için makine öğrenimi veya derin öğrenmenin kullanımındaki ilerlemeyi 

yavaşlatmıştı. Igor Santos vd. bilinmeyen kötü amaçlı yazılımları tespit etmekte makine 

öğrenimini kullanmak için statik-dinamik yaklaşım olarak OPEM’i önermiştir [5]. Yürütülebilir 

dosyaların demonte edilmesinden elde edilen operasyonel kodları analiz etmeyi ve kötü niyetli 

niyetleri belirlemek için yürütme izlerini analiz etmeyi önermişlerdir. Benzer şekilde, Android 

için DroidDolphin adlı dinamik bir kötü amaçlı yazılım algılama çerçevesi, dinamik kötü amaçlı 

yazılım analizi kullanarak % 86.1 doğruluk elde etmeyi başarmıştır [6]. Her iki yöntem de 

genellikle hesaplama açısından pahalıdır ve etiketli verilerin sınırlı kullanılabilirliğinden 

muzdariptir. 

Dinamik analizi gerçekleştirmenin en basit yolu, numuneyi çalıştırmak ve ne olduğunu 

izlemektir. Yalnızca korumalı alan veya çevrimdışı bir laboratuvar gibi izole bir ortamda 

çalıştırmak önemlidir. Dinamik yaklaşım her zaman statik analiz yapıldıktan sonra 

uygulanmalıdır. Bir kötü amaçlı yazılım örneği çalıştırılırken, izlenmesi gereken birkaç husus 

vardır [3]: 

• Dosya etkinliği 

Kötü amaçlı yazılım, bilgi toplamak, diğer programları başlatmak veya DLL'leri yüklemek 

için dosyaları okuyabilir. Diğer programları değiştirmek için dosyalar yazılabilir veya 

değiştirilebilir. Dosya sistemindeki tüm aktiviteyi kaydetmek için iyi bir araç Diskmon'dur [7]. 

• Süreçler 

İşlemleri kaydetmek için Process Explorer [8] kullanılabilir. Bu araçla, işlemin yüklediği 

tüm dosyalar, kayıt defteri anahtarları ve DLL'ler günlüğe kaydedilir. Ayrıca, süreçler bir ağaç 

yapısında düzenlenir, bu nedenle sürecin herhangi bir yeni işlem doğurup doğurmadığını görmek 

kolaydır. 

• Ağ etkinliği 

Çok sayıda kötü amaçlı yazılım, komut almak ve / veya bilgi göndermek için ağ 

bağlantısını kullandığından, ağ etkinliği izlenmelidir. TCPView [9], hangi bağlantı noktalarının 
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gelen trafiği dinlediğini araştırmak için bir araçtır. Ağ üzerinden gönderilen ve alınan tüm bilgileri 

toplamak için Wireshark [10] kullanılabilir. 

• Kayıt erişimi 

Windows'taki kayıt defteri, işletim sistemi ve yüklü programların birçoğu için 

yapılandırma anahtarlarını içeren bir veritabanıdır. Bir kayıt defteri anahtarının değiştirilmesi, 

sistemin güvenliği üzerinde büyük bir etkiye sahip olabilir. Yine, İşlem Monitörü kayıt 

değişikliklerini izlemek için kullanılabilir. 

Hata ayıklama, dinamik analiz gerçekleştirmenin başka bir yoludur. 

 

1.1. Amaç 

 
Bu tezin temel amacı, taşınabilir yürütülebilir dosyaları statik olarak kötü niyetli veya 

zararsız olarak sınıflandırmak için derin bir sinir ağı tasarlamak ve değerlendirmektir. Bu amaçla, 

bilinen kötü niyetli ve zararsız dosyaların taşınabilir yürütülebilir dosyalarından çıkarılan 

verileri içeren Microsoft’un sunduğu Microsoft Malware Classification Challenge (BIG 2015) 

ekinliği için hazırlanan veri seti kullanılmıştır. Model oluşturulurken kötü amaçlı yazılımın statik 

analizini ele almak için literatürde daha önce önerilen benzer modeller incelenmiştir. 

 

1.2. Taslak 

 

• Bölüm 1, bu tezde kapsanan kavramları tanıtır. 

• Bölüm 2, statik kötü amaçlı yazılım analizi alanlarında yapılan önceki çalışmalardan ve 

kötü amaçlı yazılım tespitinde kullanılan makine öğrenimi yaklaşımlarını inceler. 

• Bölüm 3, önerilen modeli anlamadan önce üzerinde çalışılması gereken taşınabilir 

yürütülebilir dosyaların çeşitli yönlerini açıklar. Modelimiz için kullanılan veri setini ve 

taşınabilir yürütülebilir dosya formatını nasıl ilişkilendirdiğini kısaca kapsar. 

• Bölüm 4, modelimizin uygulanmasında yer alan adımları ve süreçleri, nihai modelin tüm 

yapısıyla birlikte ayrıntılı olarak açıklamaktadır. 

• Bölüm 5'te modelimiz üzerinde yapılan deneyleri ve bunların gerçek dünyadaki 

sonuçlarını tartışıyoruz. Model için kaynak koduna erişim kaynakları ve yapılan tüm 

deneyler bu bölümde yer almaktadır. 

• Bölüm 6, tezin içeriğini, modelini ve bu tezde kapsanmayan araştırma alanlarını 

özetlemektedir. Ayrıca bu tezdeki olası boşluklardan ve bu boşlukları kapatmak için 

yapılabilecek araştırmalardan da bahsediyor. 
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2. KAYNAK ARAŞTIRMALARI 

 

 Bu bölümde, kötü amaçlı yazılım tespiti için makine öğrenimini kullanma konusunda 

yayınlanan çalışmalar incelenmiştir. Bazı uygulamalar bu tezde ele alınanlara benzer, ancak 

kullanılan veri setinin mevcut olmaması veya sonuç elde etmek için özel çerçevelerin kullanılması 

nedeniyle tekrarlanamaz. Ayrıca, dosyaların statik ve dinamik analizini kullanarak diğer 

platformlarda kötü amaçlı yazılım tespiti ile ilgilenen bu alandaki bazı ilgili çalışmalar da 

incelenmiştir. 

Klasik imza tabanlı yöntemlerin üstesinden gelemediği bilinmeyen kötü amaçlı 

yazılımlarla başa çıkmak için iki farklı yaklaşım geliştirilmiştir: anormallik algılayıcıları ve veri 

madenciliği tabanlı algılayıcılar [11]. Anormallik algılayıcıları, zararsız yazılıma dayalı bir profil 

oluşturur ve bir dosya profilden saptığında şüpheli olarak işaretlenir. Veri madenciliği tabanlı, 

her iki veri kümesindeki özelliklere bakar ve bir dosyayı bu özelliklere göre sınıflandırır. 

2005 yılında Li ve arkadaşları [12], dosya türünü tanımlamak için bir dosyanın 

normalleştirilmiş bayt değeri dağılımının 1 gramlık bir temsilini kullanmayı önerdi. Bunun hem 

exe, gif, jpg, pdf ve doc dosyalarında K-Means algoritması kullanılırken ortalama %98,9 

doğrulukla son derece doğru olduğu kanıtlandı. Yu ve arkadaşları benzer deneyler yaptı [13]. 

Bilar'dan [14], opcode dağıtımının kötü amaçlı ve zararsız yazılımlarda farklı olduğunu biliyoruz. 

67 kötü niyetli ve 20 iyi huylu örnekten oluşan bir veri kümesinde, işlem kodlarının yaklaşık üçte 

biri aynı sıklığa, üçte bir oranında daha yüksek ve kötü amaçlı yazılımlara karşı iyi huyluya karşı 

üçte bir oranında daha düşük seviyeye sahipti. Ayrıca, kötü amaçlı yazılım daha yüksek oranda 

nadir işlem kodları içerir. 

Moskovitch ve arkadaşları [15], 30.000'den fazla dosya içeren bir veri kümesi üzerinde 

bayt dizisi n-gram kullanarak bir deney yaptı. Dengesizlik sorununu hesaba kattılar: bir sınıfın 

diğerine kıyasla önemli ölçüde daha fazla örneği olduğu. Veri kümesindeki yalnızca %15 kötü 

amaçlı dosyalar ile %99 doğruluk elde ettiler. Yapay sinir ağlarının, karar ağaçlarının ve saf 

Bayes'in Weka uygulamaları kullanıldı. N-gramların karmaşıklığını azaltmak için, yalnızca en 

üstteki 1.000 baytlık kodları seçmek için terim frekansı kullanıldı. Bunu yaparak, n = 6'ya kadar 

n-gram kullanılabilir. İlginç bir şekilde n = 2, muhtemelen zararsız dosyalara kıyasla kullanılan az 

sayıda kötü amaçlı yazılım nedeniyle en iyi sonuçları verdi. 

Shankarapani ve arkadaşları [16], derleme ve Uygulama Programlama Arayüzü (API) 

çağrı dizileri aracılığıyla kötü amaçlı yazılım algılamayı karşılaştırarak, işlem kodlarının daha 

yüksek doğruluğa sahip olduğunu, ancak hesaplama açısından daha pahalı olduğunu keşfettiler. 

Ayrıca, paketleyicilerin her iki dosya sınıfı tarafından kullanıldığını, şifrelemenin ise yalnızca kötü 

amaçlı yazılım tarafından kullanıldığını buldular. 
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Santos ve arkadaşları [11] aşağıdaki yöntemi kullandı: Dosyaları sökmek için NewBasic 

Assembler kullanıldı. Ardından bir işlem kodu profili oluşturuldu. Bu, kötü niyetli ve zararsız veri 

kümelerinde farklı işlem kodlarının kaç kez kullanıldığının bir listesiydi. Ayrıca, işlem kodu alaka 

düzeyi hesaplandı. Bu, değişkenler arasındaki istatistiksel bağımlılığı ölçmek için karşılıklı bilgi 

kullanılarak yapıldı. İşlem kodları n-gram uzunlukta n = 1 ve n = 2 olarak gruplandırıldı. 

Kullanılan sınıflandırma algoritmaları karar ağaçları, destek vektör makineleri, k-en yakın 

komşular ve Bayes ağlarıydı. Normalleştirilmiş polinom çekirdeği ve n-gram uzunluğu n = 2 olan 

destek vektör makineleri en iyi sonucu verdi (%95,9). 

Bulduğumuz en son çalışma Zolothukin ve arkadaşları [17] tarafından yapılmıştır. Kötü 

amaçlı yazılımları tanımlamak için yinelemeli destek vektör makinelerine dayalı bir kümeleme 

algoritması kullandılar. N-gram uzunluk n = 1 ve n = 2 kullanılmıştır. Boyut indirgeme yöntemi 

olarak n = 2 ve ReliefF ile %97 doğruluk elde edilmiştir. 

 

2.1. Statik Kötü Amaçlı Yazılım Tespiti 

  

Statik kötü amaçlı yazılım analiziyle ilgili çeşitli zorluklar vardır. Bu sorunların çoğu, 

çalışma zamanı sırasında dosya bozulması, kod gizleme veya şifrelenmiş ikili çalıştırılabilir 

dosyalar gibi dinamik kötü amaçlı yazılım analizi kullanılarak çözülebilir. Aşağıda, bu 

problemlerden bazılarını ve anlambilimsel analizcilerin bunları çözmedeki eksiklikleri ortaya 

çıkarılmıştır. 

Symantec’in son tehdit raporuna göre, 2014 yılında önceki yıllara göre çok daha fazla kötü 

amaçlı yazılım tespit edildi [18]. Geçen yıl 317 milyondan fazla yeni kötü amaçlı yazılım parçası 

oluşturuldu, yani her gün yaklaşık bir milyon yeni tehdit ortaya çıktı. 

 

2.1.1. Farklı Kötü Amaçlı Yazılım Türleri 

 

Kötü amaçlı yazılım için çeşitli tanımlar mevcuttur, örneğin Skoudis ve diğerleri [19]: 

Kötü amaçlı yazılım, bilgisayarınızda çalışan ve sisteminizin bir saldırganın yapmasını 

istediği bir şeyi yapmasını sağlayan bir dizi talimattır. 

Bu tanıma göre, bu tezde kullandığımız gibi çalıştırılabilir olması gerekmez. Donanıma 

uygulanabileceği için yazılım olması bile gerekmez. Tanımın ikinci bölümü çok çeşitli senaryolara 

atıfta bulunabilir. Bir saldırgan, örneğin sistemdeki çok sayıda değerli dosyayı silmek gibi, 

yalnızca zarar vermek isteyebilir. Veya amaç para olabilir, bu nedenle dosyalar şifrelenir ve 

kurbandan şifre çözme anahtarı için ödeme yapması istenir. Ayrıca, bir saldırının nedeni casusluk 

veya kredi kartı numaraları gibi bilgilerin çalınması olabilir. 

Benzer ve daha yeni bir tanım Srakew ve diğerleri tarafından sağlanmıştır: 
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Kötü amaçlı yazılım, birçok yönden sisteme karşı savunmasız kalabilen kötü amaçlı kod 

veya yazılımdır. 

Şaka veya vandalizm için oluşturulan en eski kötü amaçlı yazılım türlerinin aksine, 

günümüzün kötü amaçlı yazılımları çok farklı. Artık kötü amaçlı yazılım, büyük bir yeraltı 

ekonomisinin bir parçası ve yeraltı kuruluşları tarafından para kazanmak için ve hükümetler 

tarafından casusluk ve saldırılar için kullanılan bir araçtır [20]. 

Çeşitli kötü amaçlı yazılım türleri mevcuttur. Bilgi paylaşımını kolaylaştırmak için kötü 

amaçlı yazılımlar kategorize edilmelidir. Bu aynı zamanda, örneğin bir şirkette bir güvenlik 

ihlalinden sonra "temizlemeyi" kolaylaştırır. Bulunan kötü amaçlı yazılım bir rootkit ise, solucan 

olduğundan farklı prosedürler izlenmelidir. Ne yazık ki, gerçek bir endüstri standardı mevcut 

değildir [21]. Bilgisayar Antivirüs Araştırmacısı Kuruluşu (CARO), kötü amaçlı yazılımlar için bir 

adlandırma standardı geliştirdi, ancak bu yalnızca genel bir kılavuz görevi görüyor. Satıcıların, 

virüs, damlalık, truva atı, PWS (Parola çalan) ve arka kapı alt kategorilerini içeren standardı 

izlemesi gerekmez. 

Microsoft'un daha uzun ve daha ayrıntılı olan kendi listesi vardır. Aşağıdakilerden [22] 

oluşur: Adware, Backdoor, Behavior, BrowserModifier, Constructor, DDoS, Dialer, DoS, Exploit, 

HackTool, Joke, Misleading, MonitoringTool, Program, PWS, Ransom, RemoteAccess, Rogue, 

SettingsModifier, SoftwareBundler , Spammer, Spoofer, Spyware, Tool, Trojan, TrojanClicker, 

TrojanDownloader, TrojanDropper, TrojanNotifier, TrojanProxy, TrojanSpy, VirTool, Virüs ve 

Solucan. 

Daha yüksek bir ayrım olarak, kötü amaçlı yazılım iki ana kategoriye ayrılabilir: Virüs ve 

arka kapılar gibi bir ana bilgisayar programına ihtiyaç duyan parazitik kötü amaçlı yazılımlar ve 

solucanlar ve botlar gibi bağımsız olarak çalışabilen kendi kendine yeten programlar [23] [s. 216]. 

Ardından, en çok kullanılan kötü amaçlı yazılım türlerinden bazılarının açıklamasını izler. 

 

2.1.1.1. Virüs 

 

Bilgisayarlarla ilgili olarak virüs terimi ilk olarak 1987'de Cohen tarafından tanıtıldı [24]. 

Virüs, diğer programları değiştirerek [23] [s. 220]. Kendilerini diğer programlara bağlarlar ve ana 

bilgisayar programı yapması gerekeni yaparken arka planda çalışırlar. Üç bölümden oluşur: 

Bulaşma mekanizması, tetikleyici ve yük. Birincisi, virüsün "üreme" veya yayılma şeklidir. 

İkincisi, virüsün yükünü etkinleştirdiği veya teslim ettiği durumdur. Sonuncusu, gerçekleştirdiği 

kötü niyetli faaliyettir. 

Birkaç tür virüs vardır. Ek olarak, onu önyükleme sektörü, dosya ve makro gibi hedeflere 

göre sınıflandırmak için, virüsün nasıl gizlemeye çalıştığını ayırt edebiliriz [23] [s. 224]: 
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• Şifrelenmiş virüs: Bu tür bir virüsle, virüs kodunun geri kalanını rastgele bir anahtarla 

şifreler. Kopyaladığında, farklı bir anahtar kullanır, böylece araştırmacılar tarafından sabit bir 

model gözlemlenemez. 

• Gizli virüs: Ana anahtar, tespit edilmekten saklanmaya çalışmasıdır. Örneğin iyi huylu 

bir programla aynı uzunlukta olabilir. G / Ç rutinlerini kesintiye uğratarak, birisinin diskin kendi 

başına kullandığı kısmını okuduğunu algılayabilir ve ardından kendisini orijinal, enfekte olmamış 

program olarak sunabilir. 

• Polimorfik virüs: Bit modellerini değiştirerek, virüs her sürüm için farklı imzalar 

oluşturacaktır. Gizli virüs gibi, amaç da tespit edilmekten kaçınmaktır. 

• Metamorfik virüs: Polimorfik ile aynıdır, ancak hem davranış hem de görünüm değişir. 

Bu, yeni sürümü tespit etmeyi daha da zorlaştırır. 

 

2.1.1.2. Worm(Solucan) 

 

Stallings ve diğerleri, "bir solucanın kendini kopyalayabilen ve ağ bağlantıları üzerinden 

bilgisayardan bilgisayara kopyalar gönderebilen bir program olduğunu belirtir. Varışta solucan 

çoğalmak ve yeniden yayılmak için etkinleştirilebilir" [23] [s. 231]. Bu genellikle iki yoldan biriyle 

yapılır: Bir ağ hizmetindeki güvenlik açıklarından yararlanarak veya e-posta yoluyla [20]. 

Herhangi bir kaynak olmasa da ifadeyi desteklemek için, farklı sosyal medya sitelerinin artık 

üçüncü bir seçenek olarak hizmet ettiğini varsaymak güvenli olacaktır. 

Bir virüs gibi, solucan üç aşamadan oluşur [23] [s. 231]: 

1. Bulaşacak diğer sistemleri arayın. 

2. Uzak sistemle bir bağlantı kurun. 

3. Kendini uzaktaki sisteme kopyalayın ve kopyanın yeni sistemde çalışmasını sağlayın. 

Ek olarak, yeni sisteme bulaşmadan önce yeni sisteme bulaşıp bulaşmadığını anlamaya çalışabilir. 

 

2.1.1.3. Bot 

 

Bot, bir bilgisayarı gizlice kontrol eden bir programdır. Robotun kısaltmasıdır ve 

başlangıçta uzaktan erişim truva atı olarak adlandırılmıştır [25]. Enfekte olan bir bilgisayara bot 

veya zombi de denir [26]. Saldırganlar genellikle aynı anda yüzlerce veya binlerce bilgisayara 

virüs bulaştırmayı hedefler. Bu şekilde, tüm virüs bulaşmış bilgisayarlar kontrol edilebilir ve 

koordineli bir şekilde kullanılabilir. Buna botnet [23] [s. 240]. 

Botnet'ler, Komut ve Kontrol sunucuları (C&C) kullanılarak kontrol edilir. İletişim farklı 

protokoller üzerinden geçebilir. Bazıları hem kanallar hem de özel mesajlar yoluyla IRC kullanır, 
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bazıları HTTP kullanır ve yanıt mesajlarını komut olarak yorumlarken, bazıları eşler arası (p2p) 

tabanlı iletişim kullanır [26]. 

Bir kötü amaçlı yazılım yazarının botları kullanmasının birkaç nedeni vardır. En yaygın 

olanları, dağıtılmış hizmet reddi (DDoS) saldırıları, spam gönderme, trafik koklama, keylogging, 

yeni kötü amaçlı yazılım yayma ve reklam yazılımı yükleme [23] [s. 240-241]. Son yıllarda 

botnet'ler bitcoin madenciliği için de kullanıldı [27]. 

 

2.1.1.4. Rootkit 

 

Rootkit, saldırgan yöneticinin sisteme erişmesini sağlayan ve aynı zamanda varlığını 

gizleyen bir dizi programdır. Ad, orijinal olarak Unix / Linux'taki yönetici hesabı kökünden ve bu 

erişim düzeyini sağlayan bir dizi araçtan gelmektedir. Bunlara ps, netstat, ls ve passwd [28] 

dahildir. 

Yönetici ayrıcalıkları nedeniyle, rootkit'lerin algılanması çok zor olabilir. API'lere yapılan 

çağrıları yakalayabilir ve yanıtları değiştirebilirler. Bu şekilde işlem monitörü, dosya listeleri ve 

kayıtlar yanlış bilgileri görüntüleyebilir [23] [s. 242]. 

 

2.1.1.5. Backdoor (Arka Kapı) 

 

Arka kapı, normal güvenlik prosedürlerini atlayan bir programa giden gizli bir yoldur. Bu 

şekilde sisteme yetkisiz erişime izin verir. Özel bir giriş dizisi tarafından tetiklenebilir veya özel 

bir kullanıcı kimliği ile çalıştırılabilir [23] [s. 216]. 

 

2.1.1.6. Truva atı 

 

Truva atı, yararlı veya zararsız görünen, ancak sandığından daha fazlasını yapan bir 

şeydir. Tipik örnekler, kötü amaçlı yazılım taraması yapıyormuş gibi yapan, ancak bunun yerine 

arka planda başka bir şey yapan sahte antivirüs programlarıdır [20]. Adını Yunan mitolojisindeki 

Truva atından almıştır. 

Bu tür kötü amaçlı yazılımların genellikle bir arada olduğu belirtilmelidir. Örneğin, 

saldırıya uğrayan sisteme bir rootkit yüklemek için bir truva atı kullanılabilir. 

 

2.1.2. İmzadan Kaçınma 

 

Tipik olarak, anti-virüs yazılımı, kötü amaçlı yazılımları tespit etmek için imza tabanlı bir 

yöntem kullanır. Kötü amaçlı yazılım yürütülebilir dosyasında bulunan talimatlar, kötü amaçlı 
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yazılımı tanımlayan benzersiz bir imza elde etmek için ayrıştırılır ve bu daha sonra bilinen kötü 

amaçlı yazılım imzalarının büyük bir veritabanıyla karşılaştırılır [29,30]. Bonfante vd. bu 

problemle mücadele etmek için bir kontrol akış grafiği yöntemi önerdi [31]. Yaygın olarak 

kullanılan tüm montaj talimatları için düğümleri olan bir grafik kullandılar ve ardından kötü 

amaçlı yazılımları sınıflandırmak için bu grafiğin küçültülmüş bir sürümünü imza olarak 

kullandılar. Testlerine göre, bu algılama biçimi, grafikler daha büyük olduğunda (daha büyük 

yürütülebilir dosyalar için) daha iyi genel algılama doğruluğu ile sonuçlandı. 

 

2.1.3. Kod Gizleme 

 

Statik kötü amaçlı yazılım analizi, temel olarak anlamsal analiz ve sınıflandırma için 

kaynak kodu analizi açısından incelenmiştir. Moser vd. kodun anlamsal analizden gizlenmesi için 

basitçe opak sabitler kullanarak program kontrol akışını gizlemek için bir yöntem önerdi [32]. 

Bu, günümüzde mevcut olan statik kötü amaçlı yazılım analizi tekniklerindeki önemli bir kusuru 

vurgulamaktadır; burada semantik analiz, sabitleri gerçek zamanlı olarak hesaplamak için 

rastgele bir yaklaşım getirilerek yenilebilir. Bahsedilen bu tür bir yöntem, değişkenlerin 

depolandığı adresleri oluşturmak için rastgele bir tohum kullanmak veya işlemi papatya dizimi 

yapmak ve değişkenleri diğer adreslerde bulunan adreslerde depolamaktır. Koddaki belirli 

sabitlerin değerini belirlemek için NP-hard algoritmanın tanıtımı da bu makalede tartışılmıştır. 

Örneğin, kodda bir 3SAT problemi uygulamak, bu bölüm koduna giriş değişkenleri her zaman 

statik bir değer döndürür (0 diyelim). Bu, programın çalışma süresi sırasında 3SAT algoritmasına 

herhangi bir değişken atandığında her zaman 0 değeri üreteceği anlamına gelir. Bunu, kodu 

okuyan bir insan tarafından belirlemek kolay olsa da, anlam bilincine sahip bir analizörün bu 

algoritmanın tüm olası çıktılarını belirlemesi ve sonunda bunun çıktısının her zaman 0 olduğunu 

belirlemesi çok zordur, çünkü algoritma polinom zamanı. İkili dosyalarda birden çok kez 

şifreleme kullanarak kod gizleme ve ardından şifre çözme için bir aracın paketlenmesi 

Christodorescu ve Jha tarafından tartışılmıştır [33]. Bu tür bir gizleme biçiminin, bellekteki şifresi 

çözülmüş dosyayı analiz ederek çalışma süresi sırasında yakalanması kolaydır, ancak dosyanın 

şifresini çözmeden ve dinamik olarak analiz etmeden dosyanın şifreleme düzeyini belirlemek 

zordur. 

Preda ve diğerleri tarafından orijinal kötü amaçlı yazılım kodu ile karmaşık hale getirilmiş 

kötü amaçlı yazılım kodu arasındaki benzerliği ölçmek için bir ölçüt öneren anlambilim tabanlı 

bir yaklaşım önerildi [34]. Ayrıca, kötü amaçlı yazılım koduna, NOP yerleştirmeye, komut 

ikamesine ve değişken yeniden adlandırmaya sürekli gizlemenin dahil edilmesini (NP-sabit 

hesaplama veya benzer yöntemler ekleyerek) saptama yöntemlerini tartıştı. Ancak, bu 

yaklaşımın pratik uygulaması tam olarak gerçekleştirilmemiştir. Arama grafiği analizi ve 
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tetikleyicilere dayalı davranış tanımlama dahil olmak üzere birçok dinamik kötü amaçlı yazılım 

algılama yöntemi vardır [35]. Ancak, bu yöntemler hesaplama açısından pahalıdır ve kötü amaçlı 

yazılımların güvenli bir şekilde yürütülebileceği ve analiz edilebileceği bir sanal alan altyapısı 

gerektirir. 

 

2.1.4. Yazılım Paketleme 

 

Dosya paketleme, büyük yazılımları küçük, kompakt bir pakette bir araya getirirken 

kullanılan yaygın bir tekniktir [30]. Bu tür paketleme teknikleri genellikle kötü amaçlı yazılımın 

kolay tanımlanmasını potansiyel olarak engelleyebilecek bir tür şifreleme içerir. PolyPack adı 

verilen bu tür bir araç, paketleyicilerin virüsten ve kötü amaçlı yazılımdan kaçmak için etkili bir 

yöntem olduğunu kanıtlamak için özel olarak tasarlanmıştır [36]. Kendilerine sağlanan verileri 

bağımsız olarak paketleyen 10 paketleyici sağlarlar ve ardından paketlenmiş verileri 10 iyi 

bilinen anti-virüs tarayıcısı ile tararlar. En iyi sonucu alan paketleyici seçilir. Çalışmaları, bunun 

çoğu virüsten koruma yazılımına karşı kaçınma oranlarını 2,58 kat artırdığını ortaya koydu. 

 

2.2. Kötü Amaçlı Yazılım Algılama için Makine Öğrenimi 

 

Makine öğreniminin daha büyük veri kümeleriyle daha iyi performans gösterdiği gerçeği 

iyi bilinmektedir [37]. Kötü amaçlı yazılım sınıflandırması için makine öğrenimini kullanan çeşitli 

çalışmalar yayınlanmıştır. Dinamik kötü amaçlı yazılım analizi için sistem çağrılarının dinamik 

analizi [38], kayıt defteri erişim izleme [39], gizli Markov model tabanlı analiz [40] gibi çeşitli 

yöntemler önerilmiştir. 

Kolter ve Maloof yaklaşık 255 milyon farklı n-gram üretmek için 4 bayt dizisini 

birleştirerek n-gram kullanımını önerdi [41]. Makalesinde, hangi özelliklerin alakalı olduğunu 

belirlemek için olasılıklı bir yaklaşımın kullanılmasını önerdi ve analiz için ilk 500 n-gramı 

kullandı. Makale, verilerini analiz etmek için Naive Bayes, Support Vector Machine (SVM) ve J48 

karar ağacının kullanılmasını önerdi. Analiz için kullanılan veriler, temel olarak Sourceforge ve 

VX Heavens'ten (gerçek veriler açıklanmadı), 1971 iyi huylu yürütülebilir dosya ve 1651 kötü 

amaçlı yürütülebilir dosya test edildi. Bu araştırmada kullanılan küçük örneklem seti ve yazarlar 

tarafından kullanılan kesin veri setinin mevcut olmaması gerçeği, daha büyük veri kümeleri ile 

kullanıldığında bu sonuçların doğruluğunu tespit etmek zordur. Benzer bir çalışma, muhtemelen 

büyük bir veri kümesi olan Microsoft Kötü Amaçlı Yazılım Sınıflandırması [42] ile bu yaklaşımı 

kullanarak Bagga tarafından yapılmıştır [43]. Ancak bu çalışma, kötü amaçlı yazılım algılama 

sorunu yerine kötü amaçlı yazılım sınıflandırma sorununa odaklandı. 
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Adobe Systems Inc. Ürün Olayı Müdahale Ekibinden Raman, taşınabilir yürütülebilir 

dosyalardan [44] en az ilişkili yedi özelliği çıkararak kötü amaçlı yazılımları sınıflandırmak için 

bir yöntem önerdi. Çıkarılan özellikler DebugSize, ImageVersion, IatRVA, ExportSize, 

ResourceSize, VirtualSize, NumberOfSections idi. Deneme için 100.000 kötü amaçlı yürütülebilir 

dosya ve 16.000 iyi huylu yürütülebilir dosya içeren bir veri kümesi kullanıldı. Bu veriler 

kullanılarak çeşitli modeller test edildi. Test edilen modeller arasında, J48 karar ağacı [45] en iyi 

sonuçları elde etti: 0,057'lik bir yanlış pozitif oranı ile 0,986'lık gerçek bir pozitif oran. Ortaya 

çıkan eğitimli model, kötü amaçlı yazılım sınıflandırması için ücretsiz bir araç olarak yayınlandı, 

ancak veri kümesi herhangi bir şekilde karşılaştırmalı araştırma yapmak için yayınlanmadı. 

Anderson ve Roth ayrıca bu eğitimli modeli EMBER veri seti [46] ile test ettiler ve 0,53'lük bir 

yanlış pozitif oranı ve 0,08'lik bir yanlış negatif oranı sergilediğini buldular. 

Huang ve Stokes tarafından 2016 yılında MtNet adı verilen derin sinir ağlarını kullanan 

dinamik bir kötü amaçlı yazılım sınıflandırma modeli önerildi [47]. Bu çalışma için kullanılan veri 

kümesi, 6.5 milyon örnek dosya içeren Microsoft Corporation tarafından sağlanmıştır. Bu veri 

kümesinden 2,85 milyon kötü niyetli ve 3,65 milyon zararlı dosya çıkarıldı. Temel olarak iki tür 

veriden oluşan çalışma zamanında dosya yürütme sırasında eğitim özellikleri çıkarıldı: sistem 

işlevi çağrıları ve boş sonlandırılmış nesneler. Özellik seçimi, Manning ve diğerleri tarafından 

önerilen karşılıklı bilgiler kullanılarak gerçekleştirildi. Toplam 50.000 giriş özelliği elde etmek 

için [48]. Nihai hedef, kötü amaçlı yazılımları önce iyi huylu veya kötü niyetli olarak 

sınıflandırmak ve ardından kötü amaçlı yazılımı bilinen 100 kötü amaçlı yazılım ailesinden biri 

olarak sınıflandırmaktı. ReLU aktivasyon işlevi, daha iyi model performansı için eklenen çıkarma 

katmanları ile birlikte kullanıldı. Bu model,% 0,07'nin altında yanlış pozitif oranlarıyla etkileyici 

sonuçlar gösterse de, test veri setinin ve test için kullanılan model kodunun bulunmaması, bu 

sonuçların yeniden üretilmesini imkansız hale getirir. 

Yankı durumu ağı ve yinelenen sinir ağı tabanlı kötü amaçlı yazılım sınıflandırıcıları, 

Pascanu ve diğerleri tarafından kötü amaçlı yazılımların dinamik analizi için test edilmiştir [49]. 

Araştırmaları, kötü amaçlı yazılımın dinamik analizi için sigmoid (lojistik regresyon) aktivasyon 

fonksiyonu ile yankı durumu ağı tabanlı tekrarlayan bir modelin kullanımını ortaya koydu. Tam 

giriş vektörü açıklanmadı, ancak çalışma zamanı yürütme sırasında dosyalar tarafından 

gerçekleştirilen API çağrılarından türetildi. Model, 0,001'lik bir yanlış pozitif oranıyla 0,983'lük 

gerçek bir pozitif orana ulaştı. Yazarlar, bu araştırmada kullanılan veri setinin dahili olarak 

sağlandığını ve halka açık olmadığını kabul ediyor. Bu araştırmanın amacı, tekrarlayan sinir 

ağlarının dinamik kötü amaçlı yazılım analizi için kullanılabileceğini belirlemekti. Bununla 

birlikte, veri setinin mevcut olmaması ve önerilen modeli yeniden üretmek için gereken adımların 

sağlanmaması nedeniyle, bu sonuçları doğrulamak ve buna dayalı olarak daha fazla araştırma 

yapmak zordur. 
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2.2.1. Özellik Seçimi 

 

Makine öğrenimi, eğitim için kullanılan özellik kümesine çok duyarlıdır. Çeşitli çalışmalar, 

makine öğrenimi tabanlı kötü amaçlı yazılım sınıflandırıcılarının etkili eğitimi için faydalı olacak 

bazı özellikler ortaya koymuştur. Bu amaçla farklı yaklaşımlar incelenmiştir.  

Divandari vd. dosyalardan işlem kodu verisinin çıkarılmasını ve özellik kümesini [50] 

özetlemek için bir Markov Blanket yaklaşımının kullanılmasını önerdi. İşlem kodlarının kendileri 

yürütülebilir dosyaların önemli bir parçası olduğundan, kötü amaçlı yazılım tespiti için güvenilir 

özellikler olarak kabul edildi [51]. Önerilen model, kötü amaçlı yazılım sınıflandırması için Gizli 

Markov Modeli (HMM) kullanır. 

Saxe ve Berlin tarafından araştırmalarında [52] önerilen bayt histogram yaklaşımı, bir 

dosyadan özniteliklerin çıkarılması için biçimden bağımsız bir yöntem getirmiştir. Bu yöntem, 

bayt bilgilerinin bir dosyadan özellikler olarak, bu baytların gerçek işlevi hakkında bilgi 

gerektirmeden ayıklanmasına yönelik yenilikçi bir yaklaşımdır. Dosyada kullanılan potansiyel 

şifreleme veya sıkıştırmanın anlaşılmasını sağlamak için ikili dosyada bulunan tüm bayt 

değerlerinin histogramını 2 boyutlu bir bayt-entropi histogramıyla birlikte çıkarmayı önerir. Bu 

yöntemi modelimizde başlık çıkarma yöntemini tamamlamak için kullanırız, böylece taşınabilir 

yürütülebilir dosyadaki tüm baytları vektörleştirmek için gereken yüksek genel giderler olmadan 

yüksek doğruluk elde ederiz. 

Weinberger ve diğerleri tarafından önerilen özellik hashing hile. [53] sık sık alıntılanmış 

ve makine öğrenimi modelleri için kullanılmıştır. Çoğu makine öğrenimi tabanlı model için giriş 

vektörü statiktir ve giriş boyutuna bağlı olarak boyut olarak artırılamaz. Bu nedenle, büyük girdi 

özelliklerini, eğitim için daha yönetilebilir olan statik bir boyutta etkin bir şekilde özetlemek için 

bir yönteme ihtiyacımız var. Özellik hashing hilesi, verilerin boyutluluğunu etkili bir şekilde 

düşürmek için bir yöntem önerir, böylece orijinal amaçlanan verileri hala yeterince temsil eder, 

ancak bir modeli etkili bir şekilde eğitmek için doğrusal ayrılabilir özellikler sunar. 

 

2.2.2. Güçlendirilmiş Karar Ağaçları ve Yapay Sinir Ağları 

 

Karar ağacı uzun süredir keşfedilmiş ve kullanımdadır. Bununla birlikte, karar ağacı 

modelleri için güçlendirme yöntemindeki son gelişmelerle birlikte, performans açısından yapay 

sinir ağlarına benzer veya daha iyi olduklarını kanıtladılar. Çok sayıda değişkenle iyi ayarlanması 

ve çalışması nispeten daha kolaydır [54]. AdaBoost'un gelişiyle birlikte, karar ağacı modellerinin 

artırılması, ikili sınıflandırmadan çok kategorili sınıflandırmaya geçmeyi başardı [55, 56]. Bu, 

yapay sinir ağları için alternatif olarak güçlendirilmiş karar ağacı tabanlı modellerin 

kullanılmasını teşvik etti. Bu tezde önerdiğimiz model, modelimiz için kullandığımız aynı veri seti 
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için mevcut bir güçlendirilmiş karar ağacı modeli ile karşılaştırılmıştır. Caruana ve Niculescu-

Mizil, makalelerinde [57] vektör makinelerinin, güçlendirilmiş karar ağaçlarının ve sinir ağlarının 

çoğu senaryoda, varyansın esas olarak hiper parametre ayarlamasıyla sınırlı olduğu 

karşılaştırılabilir performansa sahip olduğunu ortaya koydu. 

 

2.3. Yinelenen Sinir Ağlarının İncelenmesi 

 

Tekrarlayan sinir ağları, 1990'larda araştırma ve geliştirmenin önemli bir odağı olmuştur. 

Sıralı veya zamanla değişen kalıpları öğrenmek için tasarlanmıştır. Tekrarlayan bir ağ, geri 

besleme (kapalı döngü) bağlantıları olan bir sinir ağıdır [58]. Örnekler arasında BAM, Hopfield, 

Boltzmann makinesi ve tekrarlayan geri yayılım ağları bulunmaktadır [59]. 

Tekrarlayan sinir ağı teknikleri çok çeşitli problemlere uygulanmıştır. 1980'lerin 

sonunda, Rumelhart, Hinton ve Williams dahil olmak üzere birçok araştırmacı tarafından 

karakter dizilerini öğrenmek için basit, kısmen tekrarlayan sinir ağları tanıtıldı [60]. Diğer birçok 

uygulama, olayların zaman dizileri ile dinamik sistemleri içeren problemleri ele almıştır. 

Tablo 1, yinelenen sinir ağlarının son uygulamalarının genişliği hakkında fikir vermek için 

başka ilginç örnekler veriyor. Örneğin, sanal gerçeklik sistemleri için insan kafasını takip etmenin 

dinamikleri araştırılıyor. Finansal verilerin ve elektrik enerjisi talebinin tahmin edilmesi diğer 

çalışmaların nesneleridir. Su kalitesini izlemek ve suyu filtrelemek için gereken katkı maddelerini 

en aza indirmek için tekrarlayan sinir ağları kullanılıyor. Ve müzik notalarının zaman dizileri 

tekrarlayan sinir ağları ile çalışıldı. 

 

Tablo 1. Tekrarlayan sinir ağı uygulamalarına örnekler. 

Topic Authors Reference 
Predictive head tracking for virtual 
reality systems 

Saad, Caudell, and Wunsch, II [Saad, 1999] 

Wind türbine power estimation Li, Wunsch, O'Hair, and 
Giesselmann 

[Li, 1999] 

Financial prediction using recurrent 
neural networks 

Giles, Lawrence, Tsoi [Giles, 1997] 

Music synthesis method for Chinese 
plucked-string instruments 

Liang, Su, and Lin [Liang, 1999] 

Electric load forecasting Costa, Pasero, Piglione, and 
Radasanu 

[Costa, 1999] 

Natural water inflows forecasting Coulibaly, Anctil, and Rousselle [Coulibaly, 1999] 
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2.3.1. Yinelenen Sinir Ağı Mimarileri 

 

Mimariler, farklı giriş ve çıkış katmanlarına sahip çok katmanlı ileri beslemeli ağlar dahil 

olmak üzere, tamamen birbirine bağlı (Şekil 1) kısmen bağlı ağlara (Şekil 2) kadar çeşitlilik 

gösterir. Tamamen bağlı ağlar, farklı düğüm giriş katmanlarına sahip değildir ve her düğüm, diğer 

tüm düğümlerden gelen girdiye sahiptir. Düğümün kendisine geri bildirim mümkündür. 

 

 

 

 

 

 

 

 

 

 

  Şekil 1. Tamamen bağlı tekrarlayan sinir ağına bir örnek. 

 

Karakter dizilerini öğrenmek için basit, kısmen tekrarlayan sinir ağları (Şekil 2) 

kullanılmıştır. ALBazı düğümler ileri besleme yapısının parçası olmasına rağmen, diğer düğümler 

sıralı bağlamı sağlar ve diğer düğümlerden geri bildirim alır. Bağlam birimlerinden (C1 ve C2) 

alınan ağırlıklar, örneğin geri yayılım kullanılarak giriş birimleri için olanlara benzer şekilde 

işlenir. Bağlam birimleri, Şekil 2 durumunda, ikinci katman birimlerinden zaman gecikmeli geri 

bildirim alır. Eğitim verileri girdilerden ve bunların istenen ardıl çıktılarından oluşur. Ağ, bir 

karakter dizisindeki sonraki harfi tahmin etmek ve bir karakter dizisini doğrulamak için 

eğitilebilir. 

İleri beslemeli çok katmanlı sinir ağlarına geri bildirim eklemek için iki temel yol 

kullanılabilir. Elman [61] gizli katmandan girdi katmanının bağlam kısmına geri bildirim getirdi. 

Bu yaklaşım, girdi değerlerinin sırasına daha fazla dikkat eder. Jordan tekrarlayan sinir ağları [62] 

çıktı katmanından girdi katmanının bağlam düğümlerine geri bildirimi kullanır ve çıktı değerleri 

dizisine daha fazla vurgu yapar.  
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     Şekil 2. Basit bir tekrarlayan ağ örneği. 

 

2.3.2. Yinelenen Sinir Ağlarında Öğrenme 

 

Öğrenme, sinir ağlarının temel bir yönüdür ve sinirsel yaklaşımı, başlangıçtan beri yapay 

zekâ için zor bir hedef olan uygulamalar için bu kadar çekici kılan önemli bir özelliktir. Öğrenme 

algoritmaları uzun zamandır araştırmanın odak noktası olmuştur [63,64]. 

Hebbian öğrenme ve gradyan kökenli öğrenme, sinir ağı tekniklerinin dayandığı temel 

kavramlardır. Gradyan inişinin popüler bir tezahürü, Rumelhart [60] ve Werbos [65] tarafından 

sunulan geri-hata yayılımıdır. Geri yayılımın uygulanması nispeten basit olsa da, pratik 

uygulamalarda kullanımında, yerel minimumda tuzaktan kaçınmanın zorluğu da dahil olmak 

üzere çeşitli sorunlar ortaya çıkabilir. Girdi verilerinin zaman gecikmeli güncellemesinden 

tekrarlayan sinir ağlarında dinamik işlemenin ek karmaşıklığı, öğrenmeyi temsil etmek için daha 

karmaşık algoritmalar gerektirir. 

Tekrarlayan sinir ağlarının dinamik olarak işlenmesinin avantajını gerçekleştirmek için bir 

yaklaşım, sabit kalıpları işleyen ileri beslemeli ağların etkinliğini geliştirmektir. Araştırmacılar, 

gradyan yöntemlerinin ve özellikle geri yayılım öğrenmenin tekrarlayan sinir ağlarına 

genişletilebileceği çeşitli şemalar geliştirdiler. Werbos, gradyan yöntemlerini kullanan bir dizi 

statik ağlar olarak yinelenen bir sinir ağının zaman evrimini yaklaşık olarak tahmin eden zaman 

yaklaşımı yoluyla geri yayılımı [66] tanıttı. Başka bir yaklaşım, orijinal dinamik köle ağının 

çekicilerinin programlanmasında gerekli hesaplamaları gerçekleştirmek için ikinci bir ana, sinir 

ağını konuşlandırır [67]. Araştırılan diğer teknikler, Pineda [68], Almeida [69], Williams ve Zipser 

[70], Sato [71] ve Pearlmutter [72] 'da bulunabilir. Geri yayılım öğrenimini tekrarlayan ağlara 

genişletmeye yönelik çeşitli girişimler Pearlmutter'da [73] özetlenmiştir. 
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2.4. Tasarım Konuları ve Teorisi 

 

2.4.1. Optimizasyon 

 

Optimizasyon problemlerinin gerçek zamanlı çözümlerine sinyal işleme, sistem 

tanımlama, filtre tasarımı, fonksiyon yaklaşımı ve regresyon analizi dahil olmak üzere bilimsel ve 

mühendislik problemlerinde sıklıkla ihtiyaç duyulur ve sinir ağları bu amaçla geniş çapta 

araştırılmıştır. Karar değişkenlerinin ve kısıtlamalarının sayısı genellikle çok büyüktür ve büyük 

ölçekli optimizasyon prosedürleri, dinamik bir sistemin performansını optimize etmek için 

gerçek zamanlı olarak yapılması gerektiğinde daha da zordur. Bu tür uygulamalar için, klasik 

optimizasyon teknikleri, problem boyutluluğu ve hesaplama süresinin katı gereksinimleri 

nedeniyle yeterli olmayabilir. Sinir ağı yaklaşımı, optimizasyon problemlerini, genel amaçlı dijital 

bilgisayarlarda yürütülen en popüler optimizasyon algoritmalarından daha büyük büyüklük 

sıralarındaki çalışma sürelerinde çözebilir. 

Xia ve Wang'ın araştırmaları, bu sorunlar için sinir ağlarının kullanımını incelemekte ve 

küresel yakınsama ile optimizasyon sinir ağı modellerini tasarlamak için birleşik bir yöntem 

sunmaktadır. Doğrusal ve ikinci dereceden programlamayı çözmek ve doğrusal tamamlayıcı 

problemleri çözmek için sürekli zaman tekrarlayan sinir ağlarını tartışırlar ve ardından ayrık 

zamanlı sinir ağlarına odaklanırlar. Atama sinir ağları ayrıntılı olarak tartışılmış ve sinir ağlarının 

çalışma özelliklerini göstermek için bazı simülasyon örnekleri sunulmuştur. 

Çalışmalarında ilk olarak doğrusal ve ikinci dereceden programlama problemlerini (LP ve 

QP) çözmek için ilk çift sinir ağlarını sunar ve doğrusal tamamlayıcı problemleri (LCP) çözmek 

için sinir ağını geliştirmişlerdir. Sinir ağı modellerini tasarlamak için birleşik bir yöntemi takiben, 

bölümün ilk kısmı LP ve QP'yi çözmek için sürekli zamanlı ilk-ikili tekrarlayan sinir ağlarını 

ayrıntılı olarak açıklamaktadır. Çalışmalarının ikinci kısmında ise, QP ve LCP için birincil-ikili 

ayrık zamanlı sinir ağlarına odaklanmışlardır.  

Optimizasyon için sinir ağlarının kullanımında büyük ilerleme kaydedilmiş olmasına 

rağmen, birçok teorik ve pratik problem çözülmeden kalmıştır. Optimizasyon problemleri için 

tekrarlayan sinir ağlarının dinamikleri, tekrarlayan sinir ağlarının pratik problemlere daha fazla 

uygulanması ve optimizasyon için tekrarlayan sinir ağlarının donanım prototiplemesi üzerine 

gelecekteki araştırmalar için alanlar tanımlanmıştır. 
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2.4.2. Ayrık Zaman Sistemleri 

 

Santos ve Von Zuben, parametreleri ayarlamak için optimizasyon prosedürlerine dayanan 

verimli denetimli öğrenme algoritmaları için pratik gereksinimi tartışıyor. Performansı 

iyileştirmek için ikinci dereceden bilgiler eğitimdeki hatayı en aza indirmek için düşünülmüştür.  

Çalışmalarının ilk amacı, bir dizi yinelenen sinir ağı konfigürasyonu için kesin ikinci 

dereceden bilgi elde etmenin sistematik yollarını, birinci dereceden bilgi edinme maliyetinden 

yalnızca iki kat daha yüksek bir hesaplama maliyetiyle açıklamaktır. İkinci amaç, mevcut ikinci 

dereceden bilgileri etkili bir şekilde araştırmak için kullanılabilen eşlenik gradyan algoritmasının 

geliştirilmiş bir versiyonunu sunmaktır. 

Tekrarlayan bir sinir ağının dinamikleri zaman içinde sürekli veya ayrık olabilir. Bununla 

birlikte, dijital hesaplama cihazlarında sürekli zamanlı tekrarlayan bir sinir ağının simülasyonu, 

ayrık zamanlı eşdeğer bir modelin benimsenmesini gerektirir. Uzamsal-zamansal temsil için 

ortaya çıkan doğrusal olmayan modeller, doğrusal olmayan fark denklemleri sistemi aracılığıyla 

bir dijital bilgisayarda doğrudan simüle edilebilir. Denklemlerin doğası, benimsenen tekrarlayan 

mimarinin türüne bağlıdır, ancak daha az sayıda parametre ve ilişkili denklemlerle bile çok 

karmaşık davranışlara yol açabilir. 

Pratik önemi olan tekrarlayan sinir ağlarının analizi ve sentezi çok zorlu bir görevdir ve 

eğitim sürecinde ikinci dereceden bilgiler dikkate alınmalıdır. Çok çeşitli tekrarlayan sinir ağı 

mimarileri için kesin ikinci dereceden bilgi elde etmek için düşük maliyetli bir prosedür sunarlar. 

Ayrıca, mevcut ikinci dereceden bilgileri keşfetmek için etkili bir şekilde kullanılabilen, 

ölçeklendirilmiş eşlenik gradyan algoritmasının geliştirilmiş bir versiyonu olan çok verimli ve 

genel bir öğrenme algoritması sunarlar. Sabit olanların yerine bir dizi uyarlanabilir katsayı 

sunarlar ve algoritmanın yeni parametreleri otomatik olarak ayarlanır. Bazı simülasyon 

sonuçlarını gösterir ve yorumlarlar. 

Bu çalışmanın yenilikçi yönleri, düşük bir hesaplama maliyetiyle bir dizi farklı tekrarlayan 

sinir ağı mimarileri için kesin ikinci dereceden bilgi elde etmek için sistematik bir prosedürün 

önerilmesi ve ölçeklendirilmiş bir eşlenik gradyan algoritmasının geliştirilmiş bir versiyonudur. 

Önemli bir husus, kesin ikinci dereceden bilgi verildiğinde, öğrenme algoritmasının, belirli 

bağlama herhangi bir uyarlama olmaksızın doğrudan uygulanabilmesidir. 

 

2.4.3. Bayesian İnanç Revizyonu 

 

Hopfield sinir ağı, nesne tanımadan grafik düzlemleştirmeye ve yoğunlaştırıcı atamasına 

kadar çok sayıda optimizasyon problemi için kullanılmıştır. Bununla birlikte, Hopfield enerji 

fonksiyonunun ikinci dereceden düzende olması, uygulanabileceği sorunları sınırlar. Bazen, 
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Hopfield’ın ikinci dereceden enerji işlevine indirgenemeyen nesnel işlevler, ikinci dereceden bir 

enerji işlevi ile makul bir şekilde yaklaşık olarak tahmin edilebilir. Diğer problemler için, amaç 

fonksiyonu daha yüksek seviyeli bir enerji fonksiyonu ile modellenmelidir. 

Abdelbar, tekrarlayan sinir ağlarını anlatıyor ve seyrek yüksek sıralı ağlar için verimli bir 

uygulama veri yapısı sağlıyor. Ayrıca, bu tür ağların Bayesçi inanç revizyonu için ve belirsizlik 

altında teşhis muhakemesi ve sağduyulu muhakemedeki önemli problemlerde nasıl 

kullanılabileceğini açıklar. 

 

2.4.4. Bilgi Temsili 

 

Giles, Omlin ve Thornber çalışmalarında birçok uygulama alanında faydalı hale gelen 

nöro-bulanık sistemleri (yapay sinir ağlarının bulanık mantıkla birleşimini) incelemişlerdir. 

Bununla birlikte, geleneksel nöro-bulanık modellerin genellikle bağlam ve durum gerektiren 

uygulamalar için (örneğin, konuşma, zaman serisi tahmini ve kontrol) gelişmiş temsil gücüne 

ihtiyaç duyduğunu açıklarlar. Bu uygulamalardan bazıları, sonlu durum otomatı olarak kolayca 

modellenebilir. Önceden, deterministik sonlu durum otomatının (DFA), DFA yapısını doğrudan 

sinir ağının ağırlıklarına programlayarak tekrarlayan sinir ağları tarafından sentezlenebileceği 

veya eşlenebileceği kanıtlanmıştı. Bu sonuçlara dayanarak, bulanık sonlu durum otomatını (FFA) 

tekrarlayan sinir ağlarına eşlemek için bir sentez yöntemi öneriyorlar. Bu eşleme, VLSI'de 

doğrudan uygulama, yani VLSI sistemlerinde DFA'nın kodlamasının bir genellemesi olarak 

FFA'nın kodlanması için uygundur. 

Sentez yöntemi, FFA'nın tekrarlayan ağlarla eşleştirilmeden önce bir dönüşüme 

uğramasını gerektirir. Nöronlar, FFA durumlarının bulanık bir temsilini barındırmak için 

zenginleştirilmiş bir işlevsellikle sağlanır. Bu zenginleştirilmiş nöron işlevselliği, FFA'nın bulanık 

parametrelerinin doğrudan sinir ağının parametreleri olarak temsil edilmesine de izin verir. 

Ayrıca, ağ ağırlığının sonlu değerleri için inşa edilen sinir ağlarının bulanık sonlu durum 

dinamiklerinin kararlılığını kanıtlar ve simülasyonlar yoluyla kanıtların ampirik doğrulamasını 

sağlarlar. Bu, sinirsel ve bulanık sistemler ve otomata modelleri arasındaki çeşitli bilgi denkliği 

temsillerini kanıtlıyor. 

 

2.4.5. Uzun Vadeli Bağımlılıklar 

 

Tekrarlayan sinir ağları için gradyan-iniş öğrenme algoritmalarının, uzun vadeli 

bağımlılıkları içeren görevlerde, yani istenen çıktının geçmişte çok uzak zamanlarda sunulan 

girdilere bağlı olduğu problemlerde kötü performans gösterdiği bilinmektedir. Lin, Horne, Tino 
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ve Giles bunu incelemişler ve güçlü temsil yeteneklerine sahip NARX tekrarlayan sinir ağları adı 

verilen bir mimari sınıf için uzun vadeli bağımlılıklar sorununun azaldığını göstermişlerdir. 

Daha önce gradyan-iniş öğrenmenin NARX ağlarında, gramatik çıkarım ve doğrusal 

olmayan sistem tanımlama dahil olmak üzere problemlerde "gizli durumlara" sahip tekrarlayan 

sinir ağlarından daha etkili olabileceğini bildirdiler. Tipik olarak ağ çok daha hızlı yakınsar ve 

diğer ağlardan daha iyi genelleştirir ve bu bölüm aynı türden sonuçları gösterir. 

NARX ağlarının bilgileri geleneksel tekrarlayan sinir ağlarından iki ila üç kat daha uzun 

süre saklayabildiğini gösteren bazı deneysel sonuçları da sunuyorlar. NARX ağlarının uzun vadeli 

bağımlılık sorununu aşmamasına rağmen, uzun vadeli bağımlılık problemlerinde performansı 

büyük ölçüde artırabileceklerini gösteriyorlar. Bilgiyi sağlam bir şekilde tutmanın ne anlama 

geldiğine ilişkin bazı varsayımları ayrıntılı olarak açıklarlar ve bu varsayımları gevşetmek için 

olası yollar önerirler. 

 

2.5. Uygulamalar 

 

Bu başlık altında, tekrarlayan sinir ağlarının ilginç modifikasyonlarına ve uygulamalarına 

bakılmıştır. Yörüngeler, kontrol sistemleri, robotik ve dil öğrenimiyle ilgili problemler, kaotik 

sistemlerde tekrarlayan sinir ağlarının ilginç bir kullanımı ile birlikte dahil edilmiştir. 

 

2.5.1. Kaotik Yeniden Kazanan Ağlar 

 

Dayhoff, Palmadesso ve Richards, kaotik sistemler için tekrarlayan sinir ağlarının 

kullanımına ilişkin çalışmaları yapmışlardır. Dinamik sinir ağları, sonlu durum salınımları, sınır 

döngüleri ve kaotik davranış gibi çok çeşitli salınımlar yapabilirler. Mümkün olan farklı 

salınımlar, kendi kendini sürdüren muazzam bir aktivite paternleri repertuvarı yaratır. Bu 

repertuar çok ilgi çekicidir çünkü salınımlar ve değişen aktivite modelleri potansiyel olarak 

hesaplama amaçlı ve fiziksel olayları modellemek için kullanılabilir. 

Bir dış model bir uyarıcı olarak kullanıldığında kaotik bir ağda gözlemlenen eğilimleri 

araştırıyorlar. Model uyaranı, tek katmanlı tekrarlayan bir ağdaki tüm nöronlara sabit bir harici 

girdidir. Uyaranın gücü, uyarılmış salınımların karmaşıklığında değişiklikler ve eğilimler üretmek 

için çeşitlidir. Daha güçlü uyaranlar, daha basit ve daha az çeşitli salınımları uyandırabilir. 

Gürültüye karşı direnç, gürültülü uyaranlar aynı veya benzer salınımları uyandırdığında ortaya 

çıkar. Daha güçlü uyaranlar gürültüye karşı daha dayanıklı olabilir. Bu gözlemlerin her birinin 

örneklerini gösterirler. Bir model-salınım haritası sonunda model tanıma ve diğer hesaplama 

amaçları için kullanılabilir. Böyle bir paradigmada, dış model uyarıcısı, bir model ilişkilendirme 

problemine yanıt olarak ağdan okunan bir salınımı çağrıştırır. Bu tür bir hesaplama 
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paradigmasının çok katmanlı statik ileri beslemeli bir ağdan daha yüksek desen kapasitesi ve 

sınır esnekliği potansiyeline sahip olduğuna dair kanıtlar sunarlar. 

 

2.5.2. Dil Öğrenimi 

 

Kremer, dilbilgisi indüksiyonu veya dil öğrenimi ile tekrarlayan sinir ağları arasındaki 

ilişkiyi inceler ve resmi dil öğrenmenin anlaşılmasının tekrarlayan sinir ağlarının tasarlanmasına 

ve uygulanmasına nasıl yardımcı olabileceğini sorar. Bu sorunun cevabı dört ders şeklinde gelir: 

(1) RNN'leri eğitmek zordur, (2) arama alanını azaltmak öğrenmeyi hızlandırabilir veya mümkün 

kılabilir, (3) arama alanını sipariş etmek öğrenmeyi hızlandırabilir ve (4) eğitim verilerinizi 

sipariş etmek yardımcı olur. Bu bölüm, zamanla değişen girdilerle sunulan ve zamanın çeşitli 

noktalarında çıktıları işlemek için tasarlanmış dinamik tekrarlayan sinir ağlarıyla ilgilidir. Bu 

durumda, ağın çalışması, bir girdi dizisini bir çıktı değerine veya değerler dizisine eşleyen bir 

işlevle tanımlanabilir ve girdilerin geçerli değerlerden oluşan ayrı bir alfabeden seçildiği ve çıktı 

değerlerinin ayrı ayrı düştüğü soruna uygulanır. kategoriler. Her bir öğenin bir girdi alfabesinden 

seçildiği girdi dizileriyle başa çıkma sorunu da biçimsel bir dil sorunu olarak değerlendirilebilir. 

Bu çalışma, bir giriş dilinin alt kümelerini sınıflandırmak için tekrarlayan sinir ağlarını kullanıyor 

ve dil öğrenimi için etkili teknikleri ortaya koyuyor. 

 

2.5.3. Sıralı Otomatik Birleştirme 

 

Bağlantıcı Doğal Dil İşleme (NLP) üzerine artan araştırmalara rağmen, uygun dilsel 

temsillerin geliştirilmesi gibi bir dizi sorunun çözülmesi gerekiyor. Doğal dil, altta yatan 

hiyerarşik yapıya ve ardışık dış görünüme sahip dinamik bir sistemdir ve yeterli bir hiyerarşik 

sistematik dilsel temsil yöntemine ihtiyaç duyar. Elman [61] tarafından Jordan Yinelenen Ağlar 

[62] ve Basit Yinelenen Ağlar (SRN) gibi küresel bellek yinelenen sinir ağlarının geliştirilmesi, bu 

küresel sistemdeki sıralı girdilerinin temsillerini kademeli olarak oluşturan modellerin 

geliştirilmesini teşvik etti. 

Stoianov, karmaşık sıralı verilerin statik dağıtılmış temsillerinden oluşan hiyerarşik bir 

sistem oluşturmak ve işlemek için tasarlanmış yeni bir bağlantısal mimari sunuyor. Giriş dizisinin 

karmaşık statik temsillerini oluşturma fikrini takip eder, ancak her girdi dizisi için benzersiz 

temsiller oluşturarak bu statik gösterimleri orijinal biçimlerinde yeniden üretmek üzere 

genişletilmiştir. Model, Tekrarlayan Otomatik İlişki Ağları (RAN'lar) adı verilen sıralı otomatik 

ilişkilendirme modüllerinden oluşur. Bu modüllerin her biri, girdi dizilerini yeniden üretmeyi 

öğrenir ve bir yan etki olarak dizilerin statik dağıtılmış temsillerini geliştirir. İstenirse, bu 

modüller statik gösterimleri orijinal sıralı biçimlerine açarlar. Sıralı olarak temsil edilen 
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hiyerarşik girdi verilerini işlemeye yönelik eksiksiz mimari, bir dizi RAN'dan oluşur. Bu kademeli 

şemadaki en düşük seviyeden herhangi birinden bir RAN modülünün girdi jetonları, daha düşük 

seviyeden RAN modülünün ürettiği statik temsillerdir. En düşük seviye RAN modülünün giriş 

verileri dış dünyadan algılanır. En düşük seviyeden bir modülün çıktısı bir efektör ile 

ilişkilendirilebilir. Daha sonra, RAN gizli katmanına ayarlanmış bir statik temsil verildiğinde, bu 

efektör, paket açma işlemi sırasında sırayla komutları alacaktır. 

RAN, doğal dillerin dinamiklerine uyan tekrarlayan bir sinir ağıdır ve RAN'lar, dizilerin 

temsillerini üretir ve bunları sıralı biçimlerine geri döndürerek yorumlar. Bir RAN dizisi olan 

daha genişletilmiş mimari, doğal dillerdeki hiyerarşiye benzer. Ayrıca, temsili bir eğitim ortamı 

verildiğinde, bu mimari, dağıtılmış temsilleri sistematik bir şekilde geliştirme kapasitesine 

sahiptir. RAN'ların bir sistematiklik açıklaması sağladığını ve bu nedenle RAN ve RAN 

kademesinin, ürettikleri dağıtılmış temsillerin kapsamlı bir şekilde dönüştürüldüğü ve 

ilişkilendirildiği daha küresel bir bilişsel modele katılabileceğini savunuyor.  

Bu çalışmada dinamik verilerdeki hiyerarşi tartışmasını içerir ve hecelerin temsillerini 

geliştirmek için küçük bir RAN örneği sunulmuştur. Model, hiyerarşik olarak yapılandırılmış 

dizilerin temsillerini geliştirme sorununu çözse de özellikle otonom bir bilişsel model geliştirmek 

için bazı sorular açık kalmaktadır. Yine de önerilen model, bağlantısal modellemede önemli bir 

adım olabilir. 

 

2.5.4. Eğitim Sorunları 

 

Tekrarlayan sinir ağlarının önemli bir uygulaması, belirli gerekli zaman ilişkileri olan 

olayların iyi örnekleri olan yörüngeleri içeren dinamik sistemlerin modellenmesidir. Tipik test 

durumları, dairenin ve sekiz şeklinin ünlü doğrusal olmayan ve otonom dinamik sistemleridir. 

Tekrarlayan ağları eğitmedeki zorluk, genellikle verimsiz eğitimle sonuçlanabilecek tahminlerin 

kullanılmasıyla sonuçlanır. Sundareshan, Wong ve Condarcure çalışmalarında gradyan 

değerlendirmeleri gerektirmeyen iki alternatif öğrenme prosedürünü açıklamaktadır. Sürekli 

yörüngeler üretmek için karmaşık bir uzay-zamansal öğrenme görevini kullanarak iki 

algoritmanın performansını gösterirler. Uygulamada önemli avantajlar gösterirler. 

İki farklı yaklaşımı tanımlarlar. Biri otomatik öğrenme teorisindeki kavramları kullanır, 

diğeri ise klasik simpleks optimizasyon yaklaşımına dayanır. Eğitimli bir sinir ağı tarafından uzay-

zamansal sinyal üretimi görevi ile bu yaklaşımların eğitim verimliliğini gösterirler. Bu görevin 

karmaşıklığı, tekrarlayan sinir ağlarının zamansal dinamiklere yaklaşma konusundaki benzersiz 

yeteneğini ortaya koyuyor. 

Hagner, Hassoun ve Watta tek katmanlı tamamen tekrarlayan ağlar ve harici yinelemeli 

çok katmanlı ağlar dahil olmak üzere farklı ağ mimarilerini ve öğrenme kurallarını 



Musa Gül, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Mersin Üniversitesi, 2021 

22 
 

karşılaştırmışlardır: artımlı gradyan inişi, eşlenik gradyan inişi ve genişletilmiş Kalman filtresinin 

üç versiyonu. Daire yörüngesinin, sekiz şeklindeki yörünge zor olduğu halde nispeten kolay 

öğrenildiği gösterilmiştir. Bu dahili ve harici olarak tekrarlayan otonom sistemlerin sinir ağı 

yaklaşımlarının kalitatif ve kantitatif bir analizini verirler. 

 

2.5.5. Adaptif Robot Davranışı 

 

Ziemke, robot kontrolü ve öğrenimi için tekrarlayan sinir ağlarının kullanımını tartışıyor 

ve bunun bilişsel bilim, yapay zekâ ve robot kontrol sistemleri mühendisliği dahil olmak üzere 

farklı araştırma alanlarıyla olan ilişkisini araştırıyor. Şimdiye kadar robotlarda nadiren kullanılan 

ikinci dereceden RNN'ler özellikle ayrıntılı olarak tartışılmış ve uyarlanabilir robot davranışını 

gerçekleştirme kapasiteleri gösterilmiş ve deneysel olarak analiz edilmiştir. 

 

2.6. Gelecekteki Yönlendirmeler 

 

 Bu çalışma, tekrarlayan sinir ağlarına olan ilginin genişliğini ve derinliğini temsil ediyor 

ve devam eden araştırmalar için çeşitli yönlere işaret ediyor. Bölümler hem yeni hem de 

geliştirilmiş algoritmaları ve tasarım tekniklerini ve ayrıca yeni uygulamaları ele almaktadır. 

Konular dil işleme, kaotik ve gerçek zamanlı sistemler, optimizasyon, yörünge problemleri, 

filtreleme ve kontrol ve robotik davranış ile ilgilidir. 

Tekrarlayan sinir ağlarında yapılan araştırmalar, 1980'lerin sonlarında önemli temel 

çalışmalara dayanarak, esas olarak 1990'larda gerçekleştirildi. Önümüzdeki on yıl, teori ve 

tasarımda önemli gelişmelerin yanı sıra önemli pratik sorunların yaratıcı çözümü için daha birçok 

uygulama üretmelidir. Tekrarlayan sinir ağlarının yaygın olarak uygulanması, araştırma ve 

geliştirmeye daha fazla ilgi uyandırmalı ve daha fazla teorik ve tasarım sorusu doğurmalıdır. 

Hibrit sistemlere olan ilginin devam etmesi, tekrarlayan sinir ağlarının yeni ve daha güçlü 

kullanımlarıyla sonuçlanmalıdır. 

 

2.7. Taşınabilir Yürütülebilir Formatın Tanımlanması 

 

 Taşınabilir yürütülebilir (PE) biçimi (Şekil 3), Microsoft tarafından Windows NT 3.1 

işletim sistemiyle tanıtıldı. Başlangıcından bu yana, onu Windows'un daha yeni sürümlerine dahil 

etmek için çeşitli iyileştirmeler gördü. Unix, Windows PE formatına benzer ELF formatını kullanır. 

Bu tezin kapsamı, Unix tabanlı işletim sistemlerinde çalışan kötü amaçlı yazılımlar için 

mevcut veriler sınırlı olduğundan, Windows çalıştırılabilir dosyalarıyla sınırlıdır. Ancak, PE 

dosyalarında bulunan COFF başlığı hem Unix hem de Windows ortamları için ortaktır [74]. 
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Önerdiğimiz model, dosyanın kötü niyetli mi yoksa zararsız mı olduğunu belirlemek için PE 

dosyalarından çıkarılan özellikleri analiz eder. Bu bölüm PE dosyalarından elde edilebilecek 

bilgileri açıklamaktadır. 

 

2.7.1. MS-DOS Koçanı 

 

 Bu saplama, dosya bir MS-DOS ortamında her yürütüldüğünde yürütülür. Tek amacı, 

dosyanın MS-DOS ortamında çalıştırılamayacağını belirten bir mesaj yazdırmaktır. MS-DOS 

Stub'dan sonra eklenen bir imza, dosyanın PE biçiminde olduğunu gösterir. [75] 

 

 

Şekil 3. PE Dosya Formatı [85] 
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2.7.1.1. Ortak Nesne Dosya Formatı 

 

 Ortak Nesne Dosyası Biçimi (COFF) başlığı, MS-DOS Koçanının hemen ardından bulunur. 

COFF Başlığı yapısı Tablo 2'de tanımlanmıştır. COFF başlığındaki Makine alanı ve Özellikler alanı 

için tüm olası değerler sırasıyla Tablo 3 ve Tablo 4'te tanımlanmıştır. Dosya yalnızca makine alanı 

üzerinde yürütülecek hedef makineyle eşleşirse bir makinede yürütülebilir. 

 

Tablo 2. COFF: Yapısı [75] 

Offset Size Field Description 
0 2 Machine Identifies the target machine that the executable can 

run on. Refer to Table 3.2 
2 2 NumberOfSections Size of the section table. (follows the header table) 
4 4 TimeDateStamp Date of Creation. Represented as seconds after 

January 1, 1970. 
8 4 PointerToSymbolTable File offset of COFF symbol table. 0 for no table. 
12 4 NumberOfSymbols Number of entries in the symbol table. 
16 2 SizeOfOptionalHeader Size of the optional header (required for executables) 
18 2 Characteristics Indicates the attributes of the file. Refer to Table 3.3. 

 

2.7.1.2 İsteğe Bağlı Başlık 

 

Yürütülebilir dosyalar (resimler) olarak kabul edilen dosyaların ek bir isteğe bağlı başlığı 

vardır. Bu başlık, çalıştırılabilir dosyaların yürütülmesinden sorumlu olan işletim sisteminde 

bulunan yükleyiciye bilgi sağlar. Bu başlık çalıştırılabilir dosyalar için gerekli olsa da, nesne 

dosyalarında da mevcut olabilir. Nesne dosyalarındaki isteğe bağlı başlıklar, dosya boyutunu 

artırmak dışında hiçbir amaca hizmet etmez. 

 

İsteğe bağlı başlığın boyutu, COFF başlığındaki SizeOfOptionalHeader alanında 

tanımlanır. Tablo 5'te gösterildiği gibi, isteğe bağlı başlıkta bulunan sihirli bir sayı, yürütülebilir 

dosyanın PE32 mi yoksa PE32 + mı olduğunu belirler. 

E32 + yürütülebilir dosyaları 64 bit bellek adres alanına izin verir, ancak boyut olarak 2 

gigabayttan fazla olamaz. İsteğe bağlı başlık, Tablo 6’da tanımlanan 3 ana bölüme ayrılmıştır. 

İsteğe bağlı başlıktaki standart alanlar, her COFF uygulaması (Windows ve Unix) için 

tanımlanmıştır. Bu bölümde yer alan bilgilerin bir özeti aşağıdadır: 

• Dosyanın normal bir çalıştırılabilir (0x10B), bir ROM görüntüsü (0x107) veya bir PE32 + 

çalıştırılabilir (0x20B) olduğunu gösteren sihirli sayı. 

• Bu PE dosyası için kullanılacak bağlayıcı sürümü. 
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Tablo 3. COFF: Makine Tipleri [75] 

Constant Value Description 

IMAGE_FILE_MACHINE_UNKNOWN 0x0 Applicable to any machine 

IMAGE_FILE_MACHINE_AM33 0x1d3 Matsushita AM33 

IMAGE_FILE_MACHINE_AMD64 0x8664 X64 

IMAGE_FILE_MACHINE_ARM 0x1c0 ARM little endian 

IMAGE_FILE_MACHINE_ARM64 0xaa64 ARM64 little endian 

IMAGE_FILE_MACHINE_ARMNT 0x1c4 ARM Thumb-2 little endian 

IMAGE_FILE_MACHINE_EBC 0xebc EFI byte  code 

IMAGE_FILE_MACHINE_I386 0x14c Intel 386 or equivalent 

IMAGE_FILE_MACHINE_IA64 0x200 Intel Itanium processor family 

IMAGE_FILE_MACHINE_M32R 0x9041 Mitsubishi M32R little endian 

IMAGE_FILE_MACHINE_MIPS16 0x266 MIPS16 

IMAGE_FILE_MACHINE_MIPSFPU 0x366 MIPS with FPU 

IMAGE_FILE_MACHINE_MIPSFPU16 0x466 MIPS16 with FPU 

IMAGE_FILE_MACHINE_POWERPC 0x1f0 Power PC little endian 

IMAGE_FILE_MACHINE_POWERPCFP 0x1f1 Power PC with floating point support 

IMAGE_FILE_MACHINE_R400 0x166 MIPS little endian 

IMAGE_FILE_MACHINE_RISCV32 0x5032 RISC-V 32-bit address space 

IMAGE_FILE_MACHINE_RISCV64 0x5064 RISC-V 64-bit address space 

IMAGE_FILE_MACHINE_RISCV128 0x5128 RISC-V 128-bit address space 

IMAGE_FILE_MACHINE_SH3 0x1a2 Hitachi SH3 

IMAGE_FILE_MACHINE_SH3DSP 0x1a3 Hitachi SH3 DSP 

IMAGE_FILE_MACHINE_SH4 0x1a6 Hitachi SH4 

IMAGE_FILE_MACHINE_SH5 0x1a8 Hitachi SP5 

IMAGE_FILE_MACHINE_THUMB 0x1c2 Thumb 

IMAGE_FILE_MACHINE_WCEMIPSV2 0x169 MIPS little-endian WCE v2 
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Tablo 4. COFF: Mevcut Özellik İşaretleri [75] 

Flag Value  
IMAGE_FILE_RELOCS_STRIPPED 0x0001 The file must be loaded at its preferred 

base address because it does not allow 
base relocation. 

IMAGE_FILE_EXECUTABLE_IMAGE 0x0002 Set for valid files. Linker error if this is 
not set. 

IMAGE_FILE_LINE_NUMS_STRIPPED 0x0004 Deprecated. Set to zero. 
IMAGE_FILE_LOCAL_SYMS_STRIPPED 0x0008 Deprecated. Set to zero. 
IMAGE_FILE_FILE_AGRESSIVE_WS_TRIM 0x0010 Obsolete for Windows 2000 and 

later. Set to zero. 
IMAGE_FILE_LARGE_ADDRESS_AWARE 0x0020 Capable of handling addresses 

more than 2GB. 
 0x0040 Reserved. 
IMAGE_FILE_BYTES_RESERVED_LO 0x0080 Little Endian. Deprecated. Set to zero. 
IMAGE_FILE_32BIT_MACHINE 0x0100 Machine uses 32-bit architecture. 
IMAGE_FILE_DEBUG_STRIPPED 0x0200 File does not have debug infor- mation. 
IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP 0x0400 Copy the image to memory if it is on 

removable media. 
IMAGE_FILE_NET_RUN_FROM_SWAP 0x0800 Copy the image to memory if it 

is on network media. 
IMAGE_FILE_SYSTEM 0x1000 System File 
IMAGE_FILE_DLL 0x2000 DLL File. Cannot be executed. 
IMAGE_FILE_SYSTEM_ONLY 0x4000 Only support uniprocessor ma- 

chine. 
IMAGE_FILE_BYTES_RESERVED_HI 0x8000 Big Endian. Deprecated. Set to 

zero. 

 

 

Tablo 5. Optimal Başlık Sihir Numarası [75] 

Magic number PE format 
0x10b  PE32 
0x20b PE32+ 

 

 

Tablo 6. Optimal Başlık Parçaları [75] 

Offset 
(PE32/PE32+) 

Size 
(PE32/PE32+) 

Header part Description 

0  28/24 Standard fields Common for Windows and Unix COFF 
implementations 

28/24 68/88 Windows-spesific 
fields 

Defines Windows spesific features. 

96/112 Variable Data directories Address and size of special tables used by 
OS. 
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• Kod bölümünün boyutu. Kod bölümü, dosya yürütüldüğünde çalıştırılacak gerçek yazılımı 

içeren bir PE dosyasının metin bölümünü ifade eder. Dosya içinde bu tür birden çok kod bölümü 

olabilir, bu durumda başlık alanı, birleştirilmiş tüm kod bölümlerinin toplam boyutunu 

gösterecektir. Kod bölümleri, bir PE dosyasının .text bölümü olarak da adlandırılır. 

• Dosyada bulunan başlatılmış ve başlatılmamış verilerin boyutu. Bu aynı zamanda bir PE 

dosyasının .data bölümü olarak da adlandırılır. 

• Dosyanın giriş noktasının adresi. PE dosyası belleğe yüklendiğinde komut işaretçisinin 

başlayacağı yer burasıdır. [75] 

 

Windows'a özgü alanlar, özellikle Windows ortamları için gerekli olan belirli bilgileri 

içerir. İşletim sistemi sürümünü, görüntü sürümünü (örneğin Word sürüm 8.0), başlıkların 

boyutunu, görüntünün boyutunu, DLL özelliklerini, yükleyici bayraklarını, veri dizininin 

uzunluğunu, veri dizininin kendisini ve sağlama toplamını içerir. Görüntünün boyutu, 

görüntünün çalışması için işletim sistemi tarafından ne kadar adres alanı ayrılması gerektiğini 

belirler. [74] 

Veri dizinleri, Windows için gerekli olan dizinlerin adresini ve boyutunu verir. Buna, 

bunlarla sınırlı olmamak üzere, içe / dışa aktarma tabloları, kaynak tablosu, istisna tablosu vb. 

Dahildir. [75] 

 

2.7.1.3. Bölüm Tablosu 

 

PE dosyasındaki her bölüm, boyutu 40 bayt olan bir bölüm başlığı içerir. Bu, bölümün 

adını, sanal boyutunu, satır sayısını ve çeşitli işaretçileri (çizgiler, ham veriler, yer değiştirmeler, 

vb.) Tanımlar [75]. 

Yukarıda açıklanan bölümlerin yanı sıra, PE dosyası yazılımın çalıştırılabilir kodunu 

içerir. Dosyaya bağlı olarak dahil edilebilecek birkaç başka bölüm vardır, ancak bu tezin kapsamı 

dışındadır. 

 

2.7.1.4. x86/x64 mimarisi 

 

Temel montaj kodunu anlamak için aşina olunması gereken birkaç husus vardır. Bunlar 

yazmaçlar, veri türleri, komut seti ve Windows temelleridir.  

Mimaride sekiz genel amaçlı kayıt (GPR) vardır. Kayıtları ve normalde ne için kullanıldıklarını 

listeleriz:  

EAX - Aritmetik işlemler. 
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EBX - Veri işaretçisi. 

ECX - Döngülerde sayaç. 

EDX - Dizi / bellek işlemlerinde kaynak. 

EDI - Dizi / bellek işlemlerinde hedef. 

ESI - Akış işlemlerinde kaynağa yönelik işaretçi. 

EBP - Temel çerçeve işaretçisi. Bu, yığın içindeki karelere işaret eder. Çerçeveler, işlevler için 

verileri depolar. 

ESP - Yığın işaretçisi. Bu, işlem yığınının tepesine işaret eder. 

Veri türleri 

Yaygın veri türleri 

• Bayt - 8 bit, örneğin AL, BL ve CL'de saklanır. 

• Word - 16 bit, örneğin AX, BX ve CX'te saklanır. 

• Çift kelime - 32 bit, örneğin EAX, EBX ve ECX'te saklanır. 

Dört sözcük de kullanılabilir. 64 bit elde etmek için iki kaydı birleştirerek oluşturulurlar. 

Komut seti 

Veriler beş şekilde taşınabilir ve depolanabilir. Kaydetmek için hemen, hemen belleğe, 

kayıttan kayıda taşınabilir, kayıt ve bellek arasında hareket ettirilebilir ve bellekten belleğe 

taşınabilir. Verileri taşırken, sözdizimi bir işlem kodu, hedef ve bir kaynak işlenenden oluşur.  

Aritmetik işlemler kullanılarak gerçekleştirilir. 

• ADD - belirli bir değer ekler. 

• SUB - belirli bir değeri çıkarır. 

• INC - 1 ekler. 

• Aralık - 1'i çıkarır. 

Ve bir dizi mantıksal talimat: 

• AND - ve verilen bir değer. 

• OR - veya belirli bir değer. 

• XOR - belirli bir değeri xors. 

• NOT - belirli bir değerdeki bitleri ters çevirir. 

Yığın da belirtilmelidir. Yığın, push ve pop'u destekleyen son giren ilk çıkar veri yapısıdır. 

İtme, yığının en üstüne bir şey koyar ve pop yığının üstünden bir şey çıkarır. ESP tarafından işaret 

edilen bitişik bir hafıza bölgesidir ve aşağı doğru büyür. 

Akış kontrolü söz konusu olduğunda, if / else, switch / case ve while / for gibi üst düzey 

yapılar: 

• CMP - Birini diğerinden çıkararak iki işlenen karşılaştırır  

• TEST - Aralarında AND kullanarak iki işlenen karşılaştırır 

• JMP - ESP'yi belirli bir adresle günceller 
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• JCC - Bir dizi atlama komutu 

• EFLAGS 
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3. MATERYAL VE YÖNTEM  

3.1. Veri seti 

 

Yinelenen sinir ağları genellikle zaman serisi ya da sekans halinde ilerleyen veriler için 

kullanılan bir yapay sinir ağı yöntemidir. Veri setinin kaliteli olması özellikle bu tarz çalışmalarda 

oldukça önemlidir ve titizlikle davranılmalıdır. Bu yüzden en çok saldırılan işletim sistemi olan 

Windows seçilmiş ve yine derli toplu kaliteli bir veri seti olması dolayısıyla Microsoft’un sunduğu 

ve Microsoft Malware Classification Challenge (BIG 2015) ekinliği için hazırlanan veri seti 

kullanılmıştır [76].  

Windows işletim sistemi için ele alınacak taşınabilir yürütülebilir dosya formatındaki 

zararlı yazılımların bu yöntemle işlenebilmesi için ham verinin işlenmesi gerekmektedir. Bu 

yüzden de zararsız olmayan taşınabilir yürütülebilir dosyaların makine dili kodlarına 

dönüştürülme işlemi IDA Pro adlı program kullanılarak gerçekleştirilmiştir. Zararlı olan 

yazılımlar hali hazırda Microsoft tarafından dönüştürülmüş haliyle veri setinde sunulduğu için bu 

işleme tabi tutulmamıştır. Buradan elde edilen işlem kodu sekanslarında örüntü aranarak zararlı 

yazılım tespit edilmeye çalışılacaktır. Yaklaşık 500 GB boyutundaki veri seti sıkıştırılarak boyutu 

küçültülmüş ve test ile eğitim verileri ayrılmıştır. Veri setinde 9 farklı virüs ailesinden 10868 adet 

.bytes dosyası, 10868 adet de .asm dosyası olmak üzere 21.736 adet dosya bulunmaktadır. Her 

bir zararlı yazılımın kimlik numarası, 20 karakterlik özet değeri, sınıfı ve bu 9 aileyi temsil eden 

bir sayı değeri bulunmaktadır. Bu zararlı yazılım aileleri ve sayı değerleri tablodaki gibidir: 

 

Tablo 7. Zararlı yazılım aileleri ve sayı değerleri 

Sıra Aile 
1 Ramnit 
2 Lollipop 
3 Kelihos_ver3 
4 Vundo 
5 Simda 
6 Tracur 
7 Kelihos_ver1 
8 Obfuscator.ACY 
9 Gatak 

 

 

Her bir statik yürütülebilir zararlı yazılımın ham verileri, ikili dosyaların onaltılık 

sistemde gösterimi ile taşınabilir yürütülebilir başlığı verilmeden hazırlanmıştır. Ayrıca 

günlükleri içeren meta veri bildirimleri (fonksiyon çağrıları vs.) de bu veri setinde ikili şekilde 

bulunmaktadır. 
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Veri setinde bulunan 9 aileden kaç adet örnek olduğuna baktığımız zaman aşağıdaki grafik 

ortaya çıkmıştır. 

 

Şekil 4. Zararlı yazılım örneklerinin dağılımları 

 

Şekil 4’e bakıldığında özellikle Ramnit, Lollipop ve Kelihos_ver3 türünden zararlı yazılım 

türü örnek sayısının diğer türlere göre oldukça fazla olduğu ve bu da veri setinde bir sınıf 

dengesizliği oluşturduğu gözlemlenmektedir. Bu nedenle Simda adlı virüs ailesinden 42 adet 

bulunmasından ötürü tüm ailelerden 42 adet rastgele örnek seçilmiştir. 

Üzerinde çalışılacak veri seti hazırlanırken toplamda 378 adet zararlı yazılım, 125 adet 

ise zararlı olmayan yazılım örneği kullanılmıştır. Zararlı olmayan yazılımlar taşınabilir 

yürütülebilir formatta Windows üzerinde çalışabilen rastgele dosyalardan seçilmiştir. 

 

3.2. Yöntem 

 

Kullanılacak veri seti seçilirken yinelenen sinir ağlarının kullanılabilirliğine dikkat 

edilmiştir. Veri seti zararlı yazılımların işlem kodu sekansları şeklinde düzenlendikten sonra 

yinelenen sinir ağlarının kullanımına uygun hale getirilmiştir. Bu başlık altında veri setini 

hazırlamak için yapılan tüm işlemler ve kullanılan platformlar anlatılacaktır. 

 

3.2.1. Verilerin Hazırlanması ve Özellik Çıkarımı 

 

Özellik çıkarımı örüntü tanıma aşamalarından biridir ve sınıflandırma işleminin kalitesini 

belirlemede doğrudan etkilidir. Python programlama dili kullanılarak taşınabilir yürütülebilir 

dosya örnekleri özellik çıkarımına uygun hale gelecek şekilde parçalara ayrılmıştır. Tüm dosyalar 
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sadece işlem kodları kalacak şekilde ayıklanmış ve bu ayıklama işleminin doğruluğunu sağlamak 

amacıyla da Intel ve AMD işlemcilerin kullanma kılavuzlarındaki referans listesi kullanılmıştır 

[77]. Elde edilen bu parçalar metin dizisine dönüştürülerek işlem kodu sekansları referans seti 

ile eşleştirilmiş ve böylece assembly dosyasından elde edilecek gereksiz kodlar elenmiştir. 

Kod sekanslarına bakıldığında assembly dosyaları içerisinde bulunan işlem kodlarının 

tekrar eden kısımlara sahip olduğu, API çağrı isimlerini içerdiği ve her dosyanın birbirinden 

bağımsız büyüklüklere sahip olduğu görülmüştür. Bu nedenle bu kod sekansları içerisinden 

tekrar eden ve gereksiz olan işlem kodları silinmiş, her bir dosyadan gelen kod sekansının 

büyüklüğü belirli bir boyut ile sınırlandırılmıştır. Bu boyuttan büyük olan dosyalar için geri kalan 

kodlar alınmazken, küçük olanlar içinse eksik kalan kısımlar sıfır kullanılarak doldurulmuştur. 

Bunun en büyük sebebi makine öğrenme algoritmaları için verilecek verinin boyutunun düzenli 

olmasıdır. 

 

Şekil 5. Ramnit adlı virüs ailesine ait bir zararlı yazılımın assembly komutlarındaki en sık 

kullanılan 10 işlem kodu 

Şekil 5’te veri seti içerisindeki Ramnit ailesine ait bir zararlı yazılım içerisinde en çok 

kullanılan 10 adet işlem koduna ait kullanım frekansı grafiği verilmiştir. Genellikle “mov” ve 

“push” komutlarının oldukça sık kullanıldığı görülmüştür. Bazı işlem kodları ise oldukça az 

kullanıma sahiptir. Frekans belirleme işlemi tüm veri setindeki assembly dosyalarına 

uygulanarak çok az kullanılan işlem kodları elenmiş ve veri setinin boyutu küçültülerek işlem hızı 

artırılmaya çalışılmış ve daha doğru sonuçlar elde etmek amaçlanmıştır. 

 

3.2.2. Word2Vec 

 

Yinelenen sinir ağları, yapısı gereği metin dizilerini yorumlayamazken sadece sayısal 

değerleri girdi alabilir. Bu yüzden de işlem kodu sekansları metin olarak değil, sayısal vektörler 
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olarak ifade edilmelidir. Bunu yapmak için kullanılan en basit yöntemlerden biri “one-hot 

encoding” yöntemidir. Bu yöntem genellikle makine öğrenmesi algoritmalarında çalıştırılmak 

üzere hazırlanan verinin kategorik değişkenler içermesi durumunda bu değişkenleri ikili olarak 

temsil ederken kullanılır.  

 

 

Şekil 6. One-hot Encoding örneği 

 
One-hot encoding öncelikle kullanılacak sözlüğün boyutunda boş bir vektör yaratır. 

Burada sözlük olarak bahsedilen şey aslında her bir kategorik değişkeni içeren bir kümedir ve bu 

kümedeki veriler sütunlara yerleştirilir. Ardından verinin kullanıldığı yerde 1 kullanılmadığı 

yerde 0 olarak vektörü doldurur [78]. Ancak bu yöntemin bazı dezavantajları bulunmaktadır.  

Bunlardan ilki tüm işlem kodlarını aynı vektörle ifade etmektir ki bir işlem kodu eğer 

diğer bir işlem koduyla ilişkili ise one-hot encoding bunu tespit edemez. İkincisi ise her bir veri 

için uzun bir vektör oluşacağından hesaplama süresi artacaktır. Bu yüzden de daha iyi bir temsil 

yöntemi olarak Word2Vec kullanılmıştır. 

 

Şekil 7. One-hot encoding ile kelime temsili farkı 

Kelime temsili (word embedding) dil modelleme yöntemlerinden biri olup girdi olarak 

aldığı metinleri her bir sözcüğün arasındaki mesafeyi de dikkate alarak temsil uzayında yüksek 

boyutlu sayısal vektörlere dönüştürür. Bu çalışmada popüler gözetimsiz ve tahmin temelli doğal 
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dil işleme modellerinden Word2Vec kullanılmıştır [79].  Bu yöntemin en büyük avantajı, vektör 

uzayında temsil edilen her bir kelimenin birbirlerine olan benzerliğini kosinüs benzerliği denilen 

hesaplama ile matematiksel olarak tespit edebilmesidir. Bu model çıktı olarak bir tüm kelime 

vektörlerini barındıran bir kelime haznesi verir. Word2Vec uygulamaları sadece doğal dil işleme 

alanında değil genetik, müzik listesi, beğeniler, sosyal medya grafları gibi birçok alanda da 

kullanılmaktadır.  

 

 

Şekil 8. CBOW ve Skip-gram modelleri 

 
Word2Vec çıktı olarak verdiği kelime haznesini kullanarak farklı şekillerde yorumlamalar 

yapabilir. Bir kelimenin hangi bağlama ait olduğunu ya da bir bağlama ait en olası kelimeleri 

tahminleyebilir. Genellikle Word2Vec 2 farklı mimari içerir:  

• Sürekli Kelime Torbası Modeli (Contextual Bag-of-Words - CBOW): Bu model metin 

içerisindeki her bir cümleyi girdi olarak alıp daha sonrasında bir sözcüğün bu bağlamla 

alakalı olup olmadığını tahmin etmeye çalışır. 

• Gram Atlama (Skip-Gram - SG): Bu model ise tam tersi olarak bir kelimeyi kullanarak 

bu kelimenin bağlı bulunduğu bağlama ait kelimeleri tahmin eder. 

 

 

Şekil 9. Verilerin işlenmesini özetleyen akış şeması 
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Şekil 9.’da verilerin işlenip hazırlanmasına dair geçen sürecin bir görsel akış şeması 

verilmiştir. Vektörel gösterim elde edildikten sonra LSTM modeline girdi olarak verilmiştir. 

 

3.2.3. Yinelenen Sinir Ağları (Recurrent Neural Network) 

 

Yinelemeli sinir ağı ya da RNN, ileri beslemeli sinir ağlarının içerisinde hafıza barındıran 

versiyonu olarak tanımlanabilir. Aslında diğer sinir ağları gibi her bir girdi için aynı fonksiyonu 

kullanarak bir çıktı üretir ancak bu çıktı bir sonraki aşamanın girdisi olarak verilir. Çıktı 

hesaplandıktan sonra kopyalanır ve yinelenen ağa geri verilir. Ancak girdilerin tümünün 

birbirinden bağımsız olduğu diğer ileri beslemeli sinir ağlarının aksine bir hafıza barındırarak 

girdileri sekanslar halinde işler. Bu yapısından ötürü genellikle el yazması tespiti, ses tanıma gibi 

alanlarda sıklıkla kullanılırlar [80]. 

 Şekil 10.’da ileri beslemeli bir sinir ağının nasıl yinelemeni bir sinir ağına dönüştürüldüğü 

gösterilmektedir. 

 

Şekil 10. İleri beslemeli sinir ağının yinelenen sinir ağına dönüşümü 

 

RNN modeli birbirine bağlı sekanslar için yapısı itibariyle oldukça kullanışlıdır. Herhangi 

bir girdi uzunluğu ile kullanılabilir. Modelin kendi büyüklüğü girdi büyüklüğü ile doğru orantılı 

bir şekilde artmaz, ancak geçmiş veri sayısı arttıkça işlem hızı da etkilenir. Bu yüzden RNN ağını 

eğitmek zordur ve bazı aktivasyon fonksiyonları uzun sekansları işlemeye uygun değildir [81]. Bu 

nedenle tez çalışmasında RNN’in farklı bir versiyon olan LSTM modeli kullanılacaktır. 

 

3.2.3.1. LSTM 

 

Sınıflandırma işlemi için yinelenen sinir ağları modeli kullanılmıştır. Kullanılacak veri seti 

oldukça uzun sekanslar içerdiğinden bu tip ağlarda sıklıkla görülen kaybolan gradyan problemine 
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yani uzun sekanslar içeren derin ağlarda türevlerin sıfıra yaklaşması problemine (vanishing 

gradient) yol açabilir. Bu yüzden de buna bir çözüm olarak önerilen ve yinelenen sinir ağlarının 

farklı bir versiyonu olan LSTM (kısa ve uzun süreli hafıza) modeli kullanılmıştır. Bu modelin 

klasik yinelenen sinir ağlarından farkı hem kısa hem de uzun süreli hafızaya sahip olmasıdır. Bu 

hafızanın oluşmasını sağlayan da LSTM modelinde bulunan farklı kapılardır. LSTM modellerinde 

4 farklı birim bulunur: girdi kapısı, çıktı kapısı, unut kapısı ve hücre durumu. Hücre durumu 

verinin geçmişini tutan hafıza kısmıdır ve diğer LSTM hücrelerine güncel veri sağlamakla 

görevlidir. Girdi kapısı ise gelen verileri 0 ve 1 arasındaki değerlere normalize ederek 

güncellenmesi gereken değerlere karar veren birimdir. Unut kapısı hafızadan veri atma işlemini 

gerçekleştirir. Çıktı kapısı ise hiperbolik tanjant fonksiyonu kullanarak işleme giren veri ile 

güncel hücre durumundan hangi verinin seçileceğine karar veren birimdir [82]. 

 

 

Şekil 11. Uzun-Kısa Süreli Bellek (LSTM) 

 

İşlem kodu sekansları metin şeklinde olduğundan öncelikle bu verilerin işlenebilmesi için 

nümerik şekilde ifade edilmesi gerekmektedir. Farklı işlem kodu değerleri için farklı sayılar 

belirlenerek ve bunları bir sözlük olarak depolayarak bu dönüştürme işlemi gerçekleşmiştir. 

Daha sonra bu sekanslar yinelenen sinir ağları kullanılarak sınıflandırma işlemine geçilmiştir. 

Hazırlanan model işlem kodunda şüpheli bulduğu sekansları ve örüntüleri tespit edip öğrenerek 

kararlar vermeye çalışacaktır. Bunun için ise verinin %10’u test için, %90’ı ise öğretim aşaması 

için ayrılmıştır. Yinelenen sinir ağının çıktısı bize taşınabilir yürütülebilir dosyanın yararlı mı 

zararlı mı olduğuna karar verecektir. 
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LSTM modeli oluşturulurken nöron sayısı 128, seyreltme değeri olarak da 0.2 

belirlenmiştir. Nöron sayısının fazla olması genellikle işlem hızını düşürmekle beraber daha iyi 

sonuçlar verir. Ancak belirli bir doğruluk oranına ulaşmış bir modelin nöron sayısını artırmak 

doğruluk oranını artırmamakla beraber sadece performansın düşmesine neden olacaktır. Bu 

yüzden nöron sayısı için 128 kullanılması uygun bulunmuştur. Seyreltme oranı ise LSTM 

içerisindeki nöronlara belirli oranda gürültü eklenerek aşırı uyum gösterme problemini ortadan 

kaldırma amaçlı kullanılan bir parametredir. Yine nöron sayısında olduğu gibi eğitim tur sayısı 

arttıkça çok küçük ölçeklerde performans etkileneceğinden tüm bu parametrelerle LSTM ağı 

farklı eğitim turları ile eğitilerek performansın artık değişmediği sayıda bırakılacaktır. 

 

3.2.3.2. Google Colaboratory 

 

Google Colaboratory ya da kısa adıyla Colab, Google’ın sunduğu bulut hizmetlerinden biri 

olup derin öğrenme algoritmalarını kullanmak için gerekli tüm altyapıya sahip ve tarayıcı 

üzerinden kullanılabilen ücretsiz bir platformdur. Hiçbir kurulum gerektirmeden Python 

programlama dili geliştirme ortamlarından Jupyter Notebook [https://jupyter.org/] servisinin 

kullanımına imkân tanır. Colab hizmeti ile kullanıcılara bir Linux sanal makinesi atanır ve bu 

makine üzerinde derin öğrenme algoritmalarının Python kütüphaneleri Keras, Tensorflow, 

PyTorch gibi oldukça sık kullanılan kütüphaneler bulunur [83].  
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Şekil 12. Google Colaboratory servisi arayüzü 

 
Yapılan tüm çalışmalar Google’ın bulut depolama servisi Google Drive kullanılarak 

kaydedilebilir. Ayrıca Github gibi platformlardan da proje aktarımı yapılabilir. 

İşlem gücü olarak da oldukça iyi performanslı bir makine sunan Colab, NvidiaK80, T4, P4 ve P100 

gibi birçok güçlü grafik kartının gücünden yararlanmaya olanak tanır [84]. 

 

3.2.3.3. Değerlendirme Ölçütleri 

 

Yapılacak olan sınıflandırma zararlı yazılım olup olmamasına dair olduğundan bu bir ikili 

sınıflandırma problemidir. Bu yüzden sonuçlar değerlendirilirken karmaşıklık matrisi 

kullanılarak bir tabloda sınıflandırılmıştır. 

 

Tablo 8. Karmaşıklık matrisi kullanılarak değerlendirme 

  Gerçek Veriler 

  Zararlı Zararsız 

Tahmin Edilen 
Veriler 

Zararlı Doğru Pozitif (DP) Yanlış Pozitif (YP) 

Zararsız Yanlış Negatif (YN) 
Doğru Negatif 

(DN) 
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Karmaşıklık matrisinde kullanılan değerlere bakacak olursak: 

• Doğru Pozitif (DP): Modelin bir örneği zararlı yazılım olarak tahmin etmesi ve o örneğin 

gerçekten de zararlı yazılım olması durumunu temsil eder. 

• Doğru Negatif (DN): Modelin bir örneği zararsız yazılım olarak tahmin etmesi ve o örneğin 

gerçekten de zararsız yazılım olması durumunu temsil eder. 

• Yanlış Pozitif (YP): Modelin bir örneği zararlı yazılım olarak tahmin etmesi ancak o 

örneğin zararsız yazılım olması durumunu temsil eder. 

• Yanlış Negatif (YN): Modelin bir örneği zararsız yazılım olarak tahmin etmesi ancak o 

örneğin zararlı yazılım olması durumunu temsil eder. 

 

Bu tablodaki veriler kullanılarak doğruluk, kesinlik ve duyarlılık değerleri aşağıdaki 

formüllere göre hesaplanmış, sonuçlara bakılarak da modelin performansı değerlendirilmiştir. 

 

• Doğruluk: Doğru sınıflandırmaların göreceli sıklığını ifade eder ve doğru tahminlerin tüm 

veri setine oranı ile hesaplanır. Genellikle basit ve yeterli olmasından ötürü performans 

değerlendirmelerinde sıkça kullanılır. Ancak veri setinde sınıf dengesizliği varsa bu değer 

performansı net olarak yansıtmayabilir. 

Doğruluk = (DP + DN) / (DP + DN + YP + YN) 

 

• Duyarlılık: Doğru olarak sınıflandırılması gereken işlemlerin ne kadarının doğru olarak 

tahmin edildiğini gösteren bir orandır. 

Duyarlılık = DP / (DP + YN) 

 

• Kesinlik: Doğru sınıflandırılmış pozitif örneklerin göreceli sıklığını ifade eder. Kesinlik 

değeri doğru sınıflandırmaların oranını gösterir. Düşük bir keskinlik değeri veri setindeki 

sınıf dengesizliğine işaret olabilir. 

Kesinlik = DP / (DP + YP) 

Modelin ne kadar iyi çalıştığını yüksek doğruluk değerinden, yüksek duyarlılıktan ve 

yüksek kesinlik değerlerinden anlamak mümkün olacağından bu değerler incelenmiştir. 
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4. BULGULAR VE TARTIŞMA 

 

BIG2015 veri seti bir önceki başlıkta anlatıldığı üzere makine öğrenme algoritmalarında 

kullanılacak üzere yeniden düzenlenip birtakım işlemler sonucu hazır hale gelmiştir. 

Yapılan çalışmalarda genellikle Python programlama dili kullanılmış olup, yapay zeka 

uygulamalarını çalıştırmak için sağladığı ücretsiz altyapısı ve hazır kütüphanelerinin 

bulunmasından ötürü yüksek işlem gücü de sağlayan Google Colaboratory hizmeti kullanılmıştır. 

Word2Vec modelinden bahsederken değinilen Geri Atlama ve Sürekli Kelime Torbası 

modellerinin farklı pencere boyutlarında nasıl sonuçlar verdiği ve bu Word2Vec modellerinden 

hangisinin zararlı yazılım tespit ederken daha iyi sonuçlar vereceğine dair testler yapılmıştır. 

Genel itibariyle CBOW modeli, Skip-gram modeline göre daha iyi sonuçlar vermiştir. Ayrıca 

CBOW modeli uygun görüldükten sonra Tablo 9. incelendiği takdirde en iyi sonuçların pencere 

boyutunun 15 olduğu çalışmada elde edildiği görülmektedir. Bu yüzden pencere boyutu olarak 

da 15 belirlenmiştir. 

 

Tablo 9. Kelime Penceresi Boyutuna göre Sürekli Kelime Torbası ve Geri Atlama modellerinin 

sonuçları. 

  Sürekli Kelime Torbası Geri Atlama 

5 94.21 94.01 

10 94.23 94.22 

15 94.80 94.43 

20 94.65 94.50 

35 94.02 94.00 

 

 

Word2Vec için gerekli parametrelere karar verildikten sonra LSTM modeli için 

kullanılacak parametreler belirlenmiştir. Bu parametreler ve değerleri Tablo 10.’daki gibidir. 

 

Tablo 10. LSTM modeli için kullanılacak parametreler 

Parametre Değer 
max sequence length 600 
batch size 64 
embedding size 300 
learning rate 1e-3 
dropout rate 0.2 
number of layers 2 
hidden layer neuron 128 

 

 

Parametrelere değinecek olursak; 
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• max sequence length: Maksimum opcode sekansı 

• batch size: Modelin her bir iterasyonda girdi olarak alacağı örnek sayısı 

• embedding size: İşlem kodu sekanslarının vektör olarak ifade edildiği temsil uzayının 

boyutu 

• learning rate: Modelin optimizasyon için ayarladığı öğrenme oranı 

• dropout rate: Seyreltme oranı 

• number of layers: Sinir ağındaki katman sayısı 

• hidden layer neuron: LSTM’nin gizli katmanlarındaki nöron sayısı 

 

LSTM modeli farklı eğitim ve test turları sonuçları Şekil13. ve Şekil 14.’ te verilmiştir. 

 

 

Şekil 13. LSTM modeli farklı eğitim turları çalışma sonucu 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 14. LSTM modeli farklı test turları çalışma sonucu 

 

Test Turu 
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Çıkan sonuçlar incelendiğinde LSTM modelinin oldukça az sayıda eğitim turu yapılsa dahi 

öğrenmeye gayet yüksek doğruluk oranları ile başladığını, ardından eğitim turu arttıkça da 

doğruluk oranının dramatik bir şekilde yükseldiği görülmektedir. Beklenildiği gibi 10 eğitim turu 

sonrasında ise artık model doygunluğa eriştiği için performansındaki gelişmeler çok sınırlı 

kalmıştır. 50 eğitim turu sonrası elde edilen en iyi doğruluk değeri ise %95,8 olarak elde 

edilmiştir. Testler sonucunda elde edilen sayısal sonuç verileri Karmaşıklık matrisine 

yerleştirilmiştir. Sonuçlar Tablo 11’de gösterilmiştir. 

 

Tablo 11. Karmaşıklık matrisi sonuçları 

n=378 
 Gerçek Veriler 
 Zararlı Zararsız 

Tahmin 
Edilen 
Veriler 

Zararlı 362 16 

Zararsız 15 110 
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5. SONUÇLAR VE ÖNERİLER 

 

Bu çalışmada farklı özellik çıkarma yöntemleriyle desteklenerek taşınabilir yürütülebilir 

zararlı yazılımların tespiti için LSTM hücreleri kullanılarak güçlendirilen yinelenen sinir ağları 

kullanılmıştır. Sonuçlar göstermiştir ki zararlı yazılım tespiti derin öğrenme algoritmaları ile 

yapılabilmektedir ve sonuçların geliştirilmesi için de farklı katmanlar eklenmesi faydalıdır. 

LSTM’nin oldukça iyi sonuçlar verdiği görülmekle beraber büyük boyutlu dosyalarda uzun işlem 

kodu sekanslarının oluşmasının performansa etki ettiği görülmüştür. Veri seti tümü ile çalışmaya 

dahil edilmesi yerine periyotlar halinde temin edilerek, çalışmanın zaman sekanslarına 

bölünerek yapılabileceği görülmüştür. 

Tekrar eden işlem kodu sayısının fazla olması da özellik çıkarma işleminin daha da 

özelleştirilip geliştirilmesi gerektiğini göstermektedir. Kullanılan veri seti Microsoft tarafından 

2015 yılında yayınlandığından daha yeni veri setleri oluşturup sürekli güncellenen zararlı 

yazılımlara karşı daha iyi bir model geliştirilebilir. Ayrıca işlem kodları programa ait davranışı 

genel biçimde gayet iyi bir şekilde gösterse de işlenen (operand) kısmı da bu davranışı 

betimlemede hassas bilgiler içerebilir. Bu yüzden ilerleyen çalışmalarda işlenen kısmı da veri 

çıkarma işlemine dahil edilerek daha güçlü bir model elde edilmeye çalışılacaktır. 

Veri seti içerisinden LSTM modeline uygun olacak şekilde her virüs ailesinden simetrik 

sayıda zararlı yazılım örneği almak yerine her virüs ailesinden asimetrik sayıda zararlı yazılımın 

seçilerek sonuçlara etkisi araştırılabilir. 

İlerleyen çalışmalarda LSTM modelinden farklı olarak Google’ın önerdiği BERT modeli 

kullanılarak daha farklı özellik çıkarma yöntemlerinin de kombinasyonları ile daha güçlü bir 

model çıkarılması hedeflenmektedir. Çıkarılmaya çalışılacak olan modelde zararlı yazılımların 

oluşturacağı tahribatlar da tahmin edilmeye çalışılacaktır. Ayrıca yinelenen sinir ağlarının yanı 

sıra ikili verilerin sınıflandırılması ya da verilerin elde edilmesi aşamasında yinelenen sinir ağları 

dışında farklı derin öğrenme metotları da modele dahil edilip derinleşmiş ve daha özelleşmiş bir 

model oluşturulması hedeflenmektedir. 
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