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The purpose of this thesis is to develop new regular and feature selection-
based models for predicting the racing times of cross-country skiers by using
machine learning and feature selection methods. Particularly, six popular machine
learning methods including Optimized-General Regression Neural Network
(OPGRNN), General Regression Neural Network (GRNN), Support Vector
Machine (SVM), Multilayer Perceptron (MLP), Radial Basis Function Neural
Network (RBFNN), and Single Decision Tree (SDT) have been used, whereas
Relief-F has been employed as the feature selector. Several models have been
developed to predict the racing time of cross-country skiers using physiological
data along with a rich set of survey-based data. By performing 10-fold cross-
validation, the prediction errors of the models have been calculated using root
mean square error (RMSE). The results emphasize that OPGRNN-based prediction
models show superior performance and can be categorized as a feasible tool to
predict the racing time of cross-country skiers. Furthermore, significant advantages
such as the non-exercise-based usage and the applicability to a broader range of
cross-country skiers make the prediction models proposed in this study easy-to-use
and more valuable.
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Bu tezin amac1, makine 6grenimi ve nitelik se¢me yontemlerini kullanarak
kros kayakeilarinin yaris siirelerini tahmin etmek icin yeni regiiler ve nitelik
secimine dayali modeller gelistirmektir. Optimize Edilmis Genel Regresyon Sinir
Ag1 (OPGRNN), Genel Regresyon Sinir Ag1 (GRNN), Destek Vektor Makinesi
(SVM), Cok Katmanli Algilayict (MLP), Radyal Temel Fonksiyon Sinir Ag1
(RBFNN) ve Tekli Karar Agact (SDT) olmak iizere alti popiiler makine dgrenme
yontemi kullanilirken, ozellik secici algoritma olarak Relief-F uygulanmustir.
Zengin bir anket tabanli veri seti ile birlikte fizyolojik verileri kullanarak kros
kayakeilarinin yaris siirelerini tahmin etmek icin gesitli modeller gelistirilmistir. 10
kat ¢apraz dogrulama uygulanarak, modellerin tahmin hatalari ortalama kare hatasi
(RMSE) hesaplanarak degerlendirilmistir. Sonuglar, OPGRNN tabanli tahmin
modellerinin iistiin performans gosterdigini ve kros kayakgilarinin yaris siiresini
tahmin etmek igin uygun bir ara¢ olarak kategorize edilebilecegini gostermektedir.
Ayrica, egzersize dayali olmayan kullanim ve daha genis bir kros kayake¢1 grubuna
uygulanabilirlik gibi 6nemli avantajlar, bu ¢aligmada onerilen tahmin modellerini
kullanimi kolay ve daha degerli kilmaktadir.

Anahtar Kelimeler: Makine Ogrenmesi, Yaris Zamani, Kros Kayakgilar, Tahmin




EXTENDED ABSTRACT

In cross-country skiing, skiers utilize their own condition to move across
snow-covered terrain, instead of utilizing ski lifts or other kind of special
equipment. For the foremost decade of the 20th century, solely traditional styles
were used for cross-country ski racing, where the cross-country skis stay along
each other within parallel tracks prepped into the snow. For this kind of skiing,
different techniques exist including kick double-pooling, herringbone, diagonal
stride which are used as a function of different factors such as steepness of terrain,
skier’s fitness and skiing speed. During the mid of 1980’s, a competitive skiing
style named as “skating” was introduced among the skiers for better competition.
The skating style is a movement looking like to ice skating.

Independent of the type of skiing, the racing time of cross-country skiers is
influenced by multiple parameters, such as the upper body power (UBP),
maximum oxygen uptake (VOzmax), maximum heart rate (HRmax), sex, age,
height, weight and body mass index (BMI). The effort accomplished by the
different parts of the body like shoulder, arm and trunk muscles is known as the
UBP rate. The force delivered by the chest area during cross-country skiing is
passed on through the poles and aids forward movement. VO,max is interpreted as
top ability to move and absorb oxygen while performing strenuous endurance
exercise. Even though the direct measurement of UBP and VO.max utilizing
laboratory-based experimental setup is the most precise strategy, it includes a few
constraints. As a matter of first importance, the equipment for measuring UBP and
VOzmax is not yet normally available because of its significant expense.
Particularly, the direct determination of UBP relies on special ergometers which, in
general, are only found in specific sports research facilities. Moreover, the direct
measurement does not allow to test more than one subject at once. Consequently,
in the case of higher number of subjects, it is not feasible to conduct the

measurement tests for all subjects. Additionally, measuring UBP and VO,max is a
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tedious procedure which necessitates the attendance of a qualified and experienced
staff.

In corresponding with the sport’s development and expanding popularity as
a recreational sport, it is necessary to understand the physiological, biomechanical,
and neurological elements that are responsible for better performance prediction of
skiers. Given the difficulty of conducting conventional laboratory-based
physiological and biomechanical evaluations with respect to an enormous number
of skiers, particularly when these testing resources are not even easily accessible, it
is important to devise alternative ways to indirectly estimate the racing time of
cross-country skiers via machine-learning models. Non-exercise prediction models
dependent on self-declared demographics, training and racing habits, just as past
experience can give an advantageous way to estimate the performance of cross-
country skiers. This methodology does not need a direct measurement of UBP and
VO;mayx, is reasonable, time-proficient, and feasible for large groups. Despite the
fact that there exist a few studies attempting to estimate the racing time in other
sports, the number of studies for predicting the racing times of cross-country skiers
is exceptionally constrained and none of these previous works leverage machine
learning strategies. Besides, the larger part of previous works utilizes
measurement-based variables to predict the racing time of cross-country skiers
instead of creating non-exercise regression models relying on survey information.

The purpose of this thesis is to develop new regular and feature selection-
based models for predicting the racing times of cross-country skiers by using
machine learning and feature selection methods. Particularly, six popular machine
learning methods including Optimized-General Regression Neural Network
(OPGRNN), General Regression Neural Network (GRNN), Support Vector
Machine (SVM), Multilayer Perceptron (MLP), Radial Basis Function Neural
Network (RBFNN), and Single Decision Tree (SDT) have been used, whereas
Relief-F has been employed as the feature selector algorithm. Several models have

been developed to predict the racing time of cross-country skiers using
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physiological data along with a rich set of survey-based data. By performing 10-
fold cross-validation, the prediction errors of the models have been calculated
using root mean square error (RMSE).

The results reveal that among the evaluated machine learning methods,
Optimized GRNN (OPGRNN) exhibits the best prediction performance and can be
considered as a feasible tool to predict the racing time of cross-country skiers from
survey-based data with acceptable RMSEs. The GRNN-based models yield the
second lowest RMSEs. There is no strict order between SVM-based and MLP-
based prediction models, but the RMSEs related to SVM-based and MLP-based
prediction models are always higher than those of GRNN-based prediction models,
and lower than those of RBFNN-based prediction models. The age and wave
variables have been found to be the most relevant attributes in predicting the racing
time of cross-country skiers. Among the set of all prediction models built by using
various machine learning methods, it is seen that the OPGRNN-based model
including age, height, weight, gender, number of BMT races completed within the
past 5 years and 10 years (BMT5 and BMT10), average number of hours of cross-
country skiing during preceding 6 weeks (HrsXC), average number of hours of
strength and power training (SP) during preceding 6 weeks (HrsSP), number of ski
races completed that season prior to the 2013 BMT race (RaceComp), number of
ski races planned for the entire season (RacePInd), and wave comparatively gives
the lowest RMSE value with 10.77 min for prediction of racing time of cross-

country skiers.






GENISLETILMIS OZET

Kros kayaginda kayakgilar, telesiyej veya diger 6zel ekipman kullanmak
yerine karla kapli arazide hareket etmek icin kendi kondisyonlarini
kullanmaktadirlar. 20. yiizyilin ilk on yilinda, karda hazirlanan paralel pistlerde
kros kayaklarinin yan yana durdugu arazi yarislar i¢in sadece geleneksel stiller
kullanilmistir. Bu tiir bir kayak i¢in, arazinin dikligi, kayak¢inin kondisyonu ve
kayak hizi gibi farkli faktorlerin bir fonksiyonu olarak kullanilan kick double-
pooling, baliksirti, ¢apraz adim gibi farkli teknikler mevcuttur. 1980'1erin
ortalarinda, rekabeti gelistirmek icin kayakcilar arasinda "paten" adi verilen
rekabetci bir kayak stili tanitildi. Paten, buz patenine benzeyen bir harekettir.

Kayak tiirlinden bagimsiz olarak, kros kayak¢ilarinin yaris siiresi, tist viicut
giicii (UBP), maksimum oksijen tiiketimi (VO2max), maksimum kalp atis hizi
(HRmax), cinsiyet, yas, boy, agirlik ve viicut kitle indeksi (BMI) gibi bir¢ok
parametreye baglidir. Omuz, kol ve govde kaslari gibi viicudun farkli bolgelerinin
gerceklestirdigi efor UBP orani olarak bilinmektedir. Kros kayagi sirasinda gogiis
bolgesi tarafindan verilen kuvvet kayak direklerden gegirilir ve ileriye dogru
harekete yardimeci olur. VO;max, yorucu dayaniklilik egzersizi yaparken hareket
etme ve oksijeni absorbe etme konusunda en iyi yetenek olarak tanimlanir. UBP ve
VO;max'in laboratuvar tabanli deney diizenegi kullanilarak dogrudan 6l¢limiiniin
en kesin strateji olmasina ragmen, birkag sinirlama igermektedir. Oncelikle UBP ve
VO;max't 6lgmek i¢in kullanilan ekipman, 6nemli masrafi nedeniyle heniiz her
yerde mevcut degildir. Ozellikle, UBP'nin dogrudan belirlenmesi, genel olarak
yalnizca belirli spor arastirma tesislerinde bulunan 6zel ergometreler kullanilarak
yapilmaktadir. Ayrica dogrudan oOl¢iim ayni anda birden fazla denegin test
edilmesine izin vermemektedir. Sonug olarak, denek sayisinin daha fazla olmasi
durumunda, tiim denekler i¢in 6l¢iim testlerini yiirlitmek miimkiin olmamaktadir.
Ek olarak, UBP ve VO.;max ol¢iimi, nitelikli ve deneyimli personelin katilimini

gerektiren sikici bir prosediirdiir.
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Sporun gelismesi ve rekreasyonel bir spor olarak artan popiilaritesi ile
baglantili olarak, kayakcilarin daha iyi performans tahminiyle iligkili olan
fizyolojik, biyomekanik ve norolojik unsurlari anlamak gerekmektedir. Cok sayida
kayak¢1 icin geleneksel laboratuvar tabanli fizyolojik ve biyomekanik
degerlendirmeler yapmanin zorlugu g6z Oniine alindiginda, Ozellikle bu test
kaynaklarina kolayca erisilemediginde, kros kayakgilarin yarig zamanini makine
o0grenme modelleri araciligiyla dolayli olarak tahmin etmek i¢in alternatif yollar
gelistirmek Onemlidir. Egzersiz dis1 tahmin modelleri, kayakeilarin beyan ettigi
demografik 6zelliklere, antrenmana, yaris aliskanliklarina ve gegmis deneyimlere
baglidir. Bu metodoloji, dogrudan bir UBP ve VO:;max 6l¢iimiine ihtiya¢ duymaz,
zaman agisindan ve biiyiik gruplar i¢in uygundur. Diger spor branglarindaki yaris
siiresini tahmin etmeye c¢alisan birka¢ arastirma olmasina ragmen, kros
kayakeilarinin yarig silirelerini tahmin etmeye yonelik yapilan ¢aligmalarin sayisi
son derece kisithidir ve 6nceki c¢alismalarin higbiri makine 6grenimi stratejilerini
kullanmamaktadir. Ayrica, 6nceki galigmalarin biiyiik bir kismi, anket bilgilerine
dayanan egzersiz digi1 regresyon modelleri olusturmak yerine kros kayakgilarinin
yarig siirelerini tahmin etmek icin 6l¢iim temelli degiskenler kullanmaktadir.

Bu tezin amaci, makine 6grenme ve 6zellik segme yontemlerini kullanarak
kros kayakgilarmin yarig siirelerini tahmin etmek igin yeni klasik ve 6zellik
secimine dayal1 modeller gelistirmektir. Ozellikle, Optimize Edilmis Genel
Regresyon Sinir Ag1 (OPGRNN), Genel Regresyon Sinir Ag1 (GRNN), Destek
Vektor Makinesi (SVM), Cok Katmanli Algilayict (MLP), Radyal Temel
Fonksiyon Sinir Agi (RBFNN) ve Tekli Karar Agaci (SDT) dahil olmak tizere alt1
popiiler makine O0grenme yontemi kullanilirken, 6zellik segici algoritma olarak
Relief-F kullanilmustir. Fizyolojik veriler ve zengin bir anket tabanli veri seti
kullanarak kros kayake¢ilarinin yaris siirelerini tahmin etmek i¢in ¢esitli modeller
gelistirilmistir. 10 kath capraz dogrulama yapilarak, modellerin tahmin hatalari,

ortalama kare hatas1 (RMSE) kullanilarak hesaplanmustir.
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Sonuglar, degerlendirilen makine Ogrenme yOntemleri arasinda
OPGRNN'nin en iyi tahmin performansini sergiledigini ve kros kayakeilarin yaris
stirelerini kabul edilebilir RMSE'lerle anket tabanli verilerden tahmin etmek igin
uygun bir ara¢ olarak kabul edilebilecegini ortaya koymaktadir. GRNN tabanl
modeller ikinci en diisik RMSE'leri iiretmistir. SVM tabanli ve MLP tabanlhi
tahmin modelleri arasinda kesin bir siralama yoktur, ancak SVM tabanli ve MLP
tabanli tahmin modellerinin iirettiZi RMSE'ler her zaman GRNN tabanli tahmin
modellerininkinden daha yiiksek ve RBFNN tabanli tahmin modellerininkinden
daha diisiiktiir. Yas ve dalga degiskenlerinin, kros kayakeilarinin yarig siiresini
tahmin etmede en alakali ozellikler oldugu gozlemlenmistir. Cesitli makine
Ogrenimi yontemleri kullanilarak olusturulan tiim tahmin modelleri seti arasinda
yas, boy, kilo, cinsiyet, son 5 yil ve 10 yil i¢inde tamamlanan BMT yarislarinin
sayist (BMT5 ve BMT10), onceki 6 hafta boyunca ortalama kros kayagi saati
(HrsXC), onceki 6 hafta boyunca ortalama gii¢ antrenmani saati sayisi (HrsSP),
2013 BMT yarigindan 6nce o sezon tamamlanan kayak yariglarinin sayisi
(RaceComp), tiim sezon igin planlanan kayak yarisi sayisi (RacePlnd) ve dalga
degiskenlerini iceren OPGRNN tabanli modelin kros kayakgilarinin yarig siiresinin

tahmini i¢in 10.77 dakika ile en diisik RMSE degerini tirettigi gorilmiistiir.
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1. INTRODUCTION

1.1. Overview of Cross-Country Skiing

The sport of cross-country skiing is thought to have originated over 4,000
years ago in Northern Europe. In cross-country skiing, skiers utilize their own
condition to move across snow-covered terrain, instead of utilizing ski lifts or other
kind of special equipment . For the most part of the twentieth century, cross-
country ski racing consisted only of the classical style, in which the skis remain
parallel to each other within parallel tracks groomed into the snow. In this style of
skiing, there are several distinct techniques (i.e., diagonal stride, double-poling,
kick double-pole, and herringbone) that are preferentially used as a function of
terrain steepness, skiing speed, as well as skier fitness. By the mid-1980s, a new
crosscountry skiing style called “skating” had become popular among competitive
ski racers. The skating style is a motion similar to ice skating (Alsobrook, 2005).
Figure 1 and Figure 2 show typical examples of classic style and skate skiing,
respectively.

1
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Cross-country skiing is a very strenuous sport because the cross-country
skiers intensively use all of upper and lower body musculature (Heil and Camenisc,
2014). Regardless of the style of skiing, the most important component that

determines the performance of a cross-country skier in a race is his/her ability to
utilize the upper body power (UBP) (Marsland et al., 2012).

Figure 1.2. The example for skate skiing of cross-country skiing

Cross-country ski racing consisted only of the classical style, in which the
skis remain parallel to each other. In this style of skiing, the skier strides uphill by
springing from one ski to another while pushing with the opposing pole in a motion
similar to running. The double pole technique is used while classical skiing in flat
terrain; the skier pushes on both poles simultaneously while bending slightly at the
waist, which allows assistance by the trunk muscles. By the mid-1980s, a new
skiing style called “skating” had become popular in cross-country ski racing. Ski-
skating is a motion similar to ice skating: the skis are turned outward in a V shape,

and the skier moves laterally from ski to ski while pushing with both poles. Today,
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skating and classical races are held as separate events, and most racers participate
in both events (Alsobrook, 2005).

1.2. Performance of Cross-Country Skiers

There are several parameters that affect the performance of cross-country
skiers in races. These parameters include racing Time , maximal oxygen uptake
(VO2max),maximal heart rate (HRmax), gender, age, height, weight and body
mass index (BMI), upper body power (UBP) cross skiing performance.

UBP is the rate at which work can be performed using the arm, shoulder,
and trunk muscles. Power generated by the upper body during cross-country
skiing is transmitted through the poles and assists in forward motion. For instance,
the upperbody has been appeared to contribute as much as half to the aggregate
propellingforce during uphill skating and 15% to 30% during uphill classical
skiing. Although measurement using experimental setup is the direct and most
accurate method to determine UBP, this method involves several limitations. First
of all, the equipment for measuring UBP is not yet usually accessible due to its
high cost. The tests of UBP have all been based upon custom-designed ergometers
which can only be found in specific sports research laboratories. In addition, the
measurement of UBP hasn’t got standardized as it is still a relatively new
physiological construct. Also, measuring UBP is a time-consuming process and it
requires the presence of a qualified and experienced staff.

VO,max is defined as the maximum ability to transport and consume
oxygen during strenuous endurance exercise and is considered the single best
measure of cardio-respiratory fitness. The direct measurement of VO,max during
a maximal graded exercise test (GXT) is accepted as the most accurate method for
the assessment of aerobic power. Cycle ergometer or treadmill graded exercise
tests (GXT) are commonly used for accurate measurement of VO,max. Maximal

tests require costly laboratory equipment, trained staff and are labor intensive.
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Also, when the number of subjects is large, it is not practical to apply VO.max
tests for all subjects .

Given the impracticality of performing traditional laboratory-based
physiological and biomechanical assessments on a large number of skiers,
especially when these testing resources are not even available, it is necessary to
develop alternative models to predict the performance of cross-country skiers

Non-exercise regression models based on self-reported demographics,
training and racing habits (both past and present), as well as past experience can
provide a convenient means to predict the performance of cross-country skiers.
This approach does not require a direct measurement of UBP and VO.max, is
inexpensive, time-efficient and realistic for large groups (Abut et al., 2017).

The sport’s evolution and increasing popularity as a recreational sport is
the desire by sports scientists to better understand the physiological,

biomechanical, and neurological factors that best predict cross skiing
performance. Given the impracticality of performing traditional lab-based
physiological and biomechanical assessments on a large number of skiers,
especially when these testing resources are not even available, it is necessary to

develop alternative models to predict the performance of cross-country skier .

1.3. Motivation, Purpose and Contributions of the Thesis

Although there exist some studies in literature that try to predict racing times
in different sports [8-10], the number of studies on prediction of racing times of
cross-country skiers is very limited and none of these studies benefits from the
power of machine learning methods. Most of the studies employ measurement-
based variables to predict the performance of cross-country skiers [11-13]. In fact,
to the best of our knowledge, there is a single study in literature [14] that uses the
non-exercise predictor variable "lean mass" to predict the race performance of elite

cross-country skiers using linear regression.
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Abut et al. (Abut, 2017) the first time used machine learning methods and
survey-based data for predicting the racing times of cross-country skiers.
Particularly, three popular types of artificial neural networks (ANN) including
Multilayer Feed-Forward Artificial Neural Network (MLP), General Regression
Neural Network (GRNN) and Radial Basis Function Neural Network (RBFNN)
have been used for model development. The utilized dataset is made up of samples
related to 370 cross-country skiers with heterogeneous properties, and includes
physiological variables such as gender, age, height, weight and body mass index
(BMI) along with a rich set of survey-based data. The performance of the three
ANN-based methods on prediction of racing time of cross-country skiers has been
found to be comparable to each other. Particularly, the RMSEs of MLP based
prediction models change from 19.43 min to 22.82 min. Similarly, the RMSEs of
GRNN-based prediction models vary between 18.58 min and 23.24 min. Finally,
the RMSEs of RBFNN-based models are between 20.70 min and 25.36 min.

The major differences between the current research and the studies from

related literature can be summarized as follows:

e This is the first study in literature that proposes to use machine
learning methods and survey-based data for predicting the race times
of cross-country skiers.

e This is the first study in literature that applies feature selection in
order to reveal the discriminative features of the race times of cross-
country skiers. The Relief-F algorithm combined with a ranker search
has been used to perform the feature selection operations.

e This is the first study to include heterogeneous sample of cross-
country skiers in the dataset. The past studies focused on predicting

the performance of elite cross-country skiers only.
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e  The number of samples in the dataset that will be used in this thesis is
370, which is way higher than the ones used in the past studies.

e  Six types of machine learning methods including Optimized-General
Regression Neural Network (OPGRNN), General Regression Neural
Network (GRNN), Support Vector Machine (SVM), Multilayer Feed-
Forward Artificial Neural Network (MLP), Single Decision Tree
(SDT), and Radial Basis Function Neural Network (RBFNN) have
been used for model development. Several race time prediction
models have been developed using different data sets and combination
of the predictor variables. By performing 10-fold cross-validation, the
prediction errors of the models have been calculated calculated using

root mean square error (RMSE).

1.4. Overview of the Dataset

The dataset that will be used in this thesis has been obtained from Dan
Heil, who is a professor at Health and Human Development Department of
Montana State University, Bozeman, MT, USA. The details of dataset generation
is given below.

Participants in the 2013 Boulder Mountain Tour (BMT) cross country
skiing race (February 2; Sun Valley, Idaho, USA) were recruited using an E-mail
list-serve a week after the race. The BMT is a 32 km point-to-point skate ski race
with a net elevation drop of 335 m from 2231 m (starting line) to 1901 m
(finishing line) and often attracts the fastest professional and age-group skiers in
North America. After providing informed consent to the purpose and methodology
of the study, participants were asked a series of self-report questions about BMT
ski racing background, personal ski training and racing history, as well as
demographic information. Completion of the entire survey required answers for 18
questions. The survey responses were then matched to official race completion

times that were published on-line and publicly available. These methods were
6
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approved by the Institutional Review Board of Montana State University
(Bozeman, MT, USA).

1.5. Demographic Information
Participants were asked to self-report their gender (male or female), their
age on the day of the 2013 BMT race (years), as well as body height (m) and body

mass (kg). Body height and mass were then used to calculate the BMI.

1.6. Training and Racing Habits

It is generally assumed that those who race more frequently will tend to
have a higher quality and quantity of training both within a given season, as well
as across successive racing seasons. Thus, two questions asked how many of the
past 10 years had the participant competed in at least one local or national caliber
ski race, as well as how many years over their lifetime. For the current 2012-2013
ski racing season, participants were also asked the number of ski races in which
they had competed before the 2013 BMT race, as well as the total number of ski
races for which they were planning in the entire 2012-2013 ski season. Several
additional common metrics of training amongst skiers is hours of training per
week, as well as hours of training per year. Hours of weekly training was broken
into three separate questions that asked for typical training habits over the six
weeks preceding the 2013 BMT: (1 Weekly hours spent cross country skiing? 2)
Weekly hours spent doing strength or power specific activities (e.g., weight
lifting)? 3) Weekly hours spent doing any other traditional forms of training (e.g.,
running, cycling, swimming). These three answers were then summed to represent
the average total weekly hours of training self-reported for the weeks just prior to

the race.
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1.7. BMT Race Experience

Given several fairly unique characteristics of the BMT race course (i.e.,
point-to-point with a net elevation drop of 335 m from start to finish), it seemed
necessary to assess the experience level of each participant with racing the BMT
course. Thus, participants were asked how many past BMT races within the past 5
years, as well as the past 10 years, that they had competed

Brief statistical of the predictor variables and target variable of the dataset

is given in Table 1.1. Figure 1.1 shows an image of the first 20 rows from the
dataset.

Table 1.1. Statistical information about the dataset

. . . . Standard
Predictor Variables Minimum Maximum Mean Deviation
Wave 1 7 4.20 1.91
Age (years) 43 86 47.56 13.19
Height (m) 1.72 2.05 1.74 0.10
Weight (kg) 74.09 115.90 70.00 12.79
BMI 24.83 36.20 2291 2.73
Gender 0 1 0.62 0.48
BMT5 1 5 1.83 1.86
BMT10 1 10 3.06 3.45
YRS10 (years) 1 11 7.16 3.58
YRSALL (years) 1 46 12.32 10.40
HrsXC (hours) 0 17 5.70 3.26
HrsSP (hours) 0 15 1.83 1.83
HrsOther (hours) 3 30 3.40 3.60
HrsTot (hours) 2 5 2.95 0.89
RaceComp 0 20 2.29 3.29
RacePInd 1 40 5.14 5.48
RaceTime (min) 69.14 214.09 106.19 24.84
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A B E D E F G H

I J K L M N (o] P Q R S
RaceTime Age SRBH SRBM BMI  Genderl Gender2 BMTS5 BMT10 YRS10 YRSALL HrsXC HrsSP HrsOther HrsTot RaceComp RacePind

1
2 (hrs) AG  Wave (yrs) (m) (kg)  (kg/im"2) (0/1) (F/M) (yrs)  (yrs) (yrs) (yrs) (hrs) (hrs) (hrs) (cat) (numb) (numb)
3 /115241833 M2529 1 57 173 7409 2484 M 1 1 1 1 n 3 3 3 20 3
4 115264417 M2529 1 25 185 8091 2353 1 M 0 0 n 15 12 1 2 5 20 40
5 | 115265972 M2529 1 28 175 6727 2190 1 M 3 3 mn 20 12 2 2 5 17 32
6 | 11527075 M18-24 1 24 175 7727 2516 1 M 2 2 mn 13 13 1 2 4 14 28
7 | 115293306 M2529 1 28 183 7727 2310 1 M 0 o mn 15 16 2 1 5 15 27
8 | 115296194 M18-24 1 19 191 8182 2255 1 M 1 1 7 12 13 2 2 5 0 23
9 | 115331361 M2529 1 25 185 7500 2181 1 M 1 1 mn 12 10 3 2 5 & 20
10| 115351833 M25-29 1 26 185 7727 2248 1 M 1 1 mn 13 17 2 1 5 m 20
11 115600222 M2529 1 29 175 7045 2294 1 M 3 3 mn 14 8 1 1 4 6 18
12| 116655028 M35-39 1 38 183 7500 2242 1 M 1 1 6 12 6 0 1 3 4 8
13] 118006361 M3539 1 40 183 8636 2582 1 M 0 1 11 33 15 0 0 4 3 8
14118997194 M30-3¢4 1 34193 10000 2684 1 M 0 2 n 25 5 1 7 3 4 8
15 119007806 M40-44 1 43 183 7636 2283 1 M 5 10 11 13 8 2 2 3 5 0
16 119017583 M4549 1 45 170 6591 2276 1 M 3 8 11 32 6 1 2 4 7 1
17| 120487667 M30-34 1 33 183 7500 2242 1 M 1 1 5 16 9 2 7 3 2 6
18| 1,20517889 M18-24 1 24 170 @ 54,09 18.68 1 M 1 1 1 13 5 2 3 3 7 14
19| 1,20618667 M2529 1 2 178 7273 2301 1 M 5 8 8 7 8 2 1 3 4 10

20 121342639 M40-44 1 4 180 7045 2166 1 M 4 9 1 25 2 0 3 2 2 8

Figure 1.3. Image of the first 20 rows from the dataset

1.8. Literature Review

Reid et al. (2020) aimed to measure ski movement characteristics using 3-
dimensional kinematic data set collected on highly skilled skiers during slalom
racing simulations and to compare these measurements with theoretical predictions
based primarily on ski geometric properties. In middle steepness (19 °) slalom
turns, ski edge angles reached maximum 65.7 + 1.7 © and 71.0 + 1.9 ° values for 10
and 13 m doorways. Turning radii reached the minimum values of 3.96 + 0.23 and
4.94 £+ 0.59 m for 10 and 13 m tracks. These values are in good agreement with the
theoretical estimates of the turning radius based on the edge angle by Howe (2001).
Other results of the study support recent advances in understanding the role ski
scoop plays in groove formation during carving, and also point to the need for
further study of how ski geometric and physical properties interact to determine the
trajectory of skiing, especially at low levels, for example edge angles. These results
have important implications for understanding the implications that ski design can
have for skier technique and tactics in competitive slalom skiing [1].

Supej et al. (2020) aimed to summarize published research by the GNSS
on the methodological and practical aspects of evaluating alpine ski performance.
Methodologically, in conjunction with trajectory analysis, it has been proven that a
resolution of 1-10 cm, achievable with the most advanced GNSS systems, provides

acceptable accuracy. The antenna should be positioned to follow the trajectory of
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the skier's center of mass (CoM) as closely as possible, and the prediction of this
trajectory can be further improved by applying advanced modeling and / or other
computerized approaches. From a practical point of view, effective evaluation
requires consideration of a large number of performance-related parameters,
including gate-to-door times, trajectory, speed and energy distribution. The video
footage should be synchronized with GNSS data for analysis, both more
comprehensive and more accessible to coaches / athletes. In summary, recent
advances in GNSS technology allow, at least to some extent, precise biomechanical
analysis of performance in real time on an entire Alpine ski racetrack [2].

Ekstrom (2020) attempted to estimate future timings in Vasaloppet using
timings from past and present controls. Linear regression predictions were made
using deep neural networks and supported vector machine regression. The current
control and timings up to now are used as input data. The timing to be predicted
into the future was used as output data. This resulted in 28 estimated functions
made for each start row. With 11 initial rows, the final number of estimated
transfer functions is 308. All methods have significantly improved the estimation
with up to six times lower average error compared to the currently used method. It
has been found that deep neural networks have the ability to make the best
predictions, but the training time required is unrealistic given the available
resources. Support vector regression performed almost as well as deep neural
networks but was trained much faster. Linear regression had the worst performance
of machine learning algorithms and the fastest training time. Improvement ranged
from the lower average hourly error up to six times the average hourly error to 1.3
times the average hourly error depending on the evaluated transfer function
estimate. The improvements made for the predictions from the first check, where
the absolute error was by far the largest, yielded the best results. Therefore, the
worst predictions about the original model are most developed [3].

Biathlon performance consists of ski speed, shooting accuracy (ShAcc) and

shooting time (ShT). For coaches, it is very important to evaluate the performance
10
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level for the selection of biathletes to specific events. Dzhilkibaeva et al. (2019)
aimed to compare two different approaches (relative ski speed, SS% and ski time
coefficient, STC) to analyze the ski performance of biathletes and to analyze the
relationship between different performance parameters between the two
competition levels (World Cup, WC). Data from four competitive seasons were
analyzed, including 166 male and 184 female biathletes. The correlation between
SS% in IC and WC was similar for both genders (males r = .81; females r = .78
compared to the correlation between STC in IC and WC (males r = .80; females r =
.75).) (p <.001), whereas the mean absolute percent error is higher for STC (1.2%
and 1.8% versus 18% and 22%). In IC, SS%, ShAcc, and ShT explained 54% and
45% (p <.001) of the overall WC rank for males and females, respectively. For this
reason, it is recommended to use SS% to evaluate the ski performance of biathletes
[4].

Nilsson (2019) correlated physiological and anthropometric test results (X
variables) with FIS points (Y variables) to investigate the predictive power of
physiological and anthropometric variables for competitive performance in skiing.
The significance of the included test results was examined using bivariate and
multivariate data analysis. As a result, it was found that the inclusion of aerobic test
results, neither alone nor in combination with anthropometric variables, did not
predict competitive performance of young elite mountain skiers. Major component
analysis shows that male and female young mountain skiers can be distinguished
based on test results, but none of the tests included are significant for sport-specific
performance [5].

Jonsson et al. (2019) investigated the biomechanical differences in double
poling (DP) between gender and performance level were investigated in female and
male cross-country skiers during a classical race (10/15 km). Skiers were divided
into faster and slower according to race performance: women faster (n = 20),
women slower (n = 20), men faster (n = 20), and men slower (n = 20). DP on a

straight section of the track, joint and pole angles at the pole plant (PP) and pole
11



1. INTRODUCTION Shahaboddin DANESHVAR

exit, loop characteristics, and the use and coordination pattern of heel raising (heel
elevation higher body position in PP) were analyzed. Faster women and men had
4.3% and 7.8% higher DP rates than slower ones (both P <0.001). Faster men had
6.5% longer cycles than slower men (P <0.001). Faster skiers then stopped heel
raising than slower skiers. (women: 1.0 £+ 3.5% versus 2.0 £+ 3.4%, P <0.05; men:
3.9% =+ 2.4% of cycle time versus PP, P 0.8 + 3.2 of <0.001). At PP, faster skiers
and male skiers had a smaller pole angle than the vertical and a larger ankle-to-hip
and ankle-to-shoulder angle, resulting in a more pronounced forward body
inclination. However, they thought that most of the differences were likely due to
the higher DP rate [6].

Bunker et al. (2019) aimed to provide a critical analysis of Machine
Learning literature with a focus on the application of Artificial Neural Network
(ANN) to prediction of sports outcomes. In doing so, he identified the learning
methodologies used, data sources, appropriate model assessment tools, and specific
difficulties in predicting sports outcomes, which later led to the proposal for a new
sports prediction framework in which machine learning can be used as a learning
strategy [7].

Windhaber et al. (2019) sought to evaluate whether spiroergometry
performance in adolescent Alpine ski racers could predict progress into a
professional career later. For over 10 years in a row, adolescent skiers of the
regional Austrian Youth Skiers Association (local level) have been subjected to
annual medical examinations, including extensive bicycle spirergometry.
Performance was determined at constant (2 and 4 mmol / | serum lactate) and
individual (individual anaerobic threshold (IAT) and lactate equivalent (LAE))
thresholds. Data from the last available test were compared between skiers who
later progressed to the professional level (Austrian national ski team) and those
who did not. Ninety-seven mountain skiers (n = 51 men; n = 46 women); mean age
16.6 (range 15-18) was included. Of these, 18 adolescents (n = 10 men; n = 8

women) started a professional career. No significant difference was found for
12
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maximum oxygen uptake (VO2max). Athletes progressing to the professional level
had significantly higher performance and VO2 at the LAE. In addition, male
professionals had significantly higher performances at fixed thresholds and IAT.
Performance and VO2 in LAE and thus the ability to generate power at a certain
metabolic threshold has been determined as the optimal spiroergometric parameter
to predict a later professional career [8].

Stoggl et al. (2018) reviewed the scientific literature to determine the
effects of pacing strategy on the performance of elite XCS racers. Four electronic
databases were searched using relevant topics and keywords. All 27 articles
reviewed applied correlative designs to examine the effectiveness of different
speed strategies. None of the articles include the use of an experimental design.
Also, potential changes in external conditions (eg weather, ski characteristics) were
not taken into account. A comparable number of studies have been found focusing
on ice skating or classical technique. In most cases, a positive pacing rate was
observed with some indication that higher level athletes and those with more
endurance and strength were using a more even pace strategy. The ability to
achieve and maintain a long cycle length across all terrain types was an important
determinant of performance in all studies included, but not for cycle rate. In
general, uphill performance has been closely related to overall race performance,
uphill performance has been most associated with the success of female skiers, and
performance on flat terrain has been found to be more important for male skiers.
As a result, they suggested that skiers of all levels could improve their performance
with more specific training in techniques (i.e., sustaining long cycles and choosing
appropriate techniques without sacrificing cycle rate), along with training for
endurance and greater strength [9].

Nilsson et al. (2018) investigated the predictive power of aerobic test
results and anthropometric variables in the FIS ranking of young elite mountain
skiers. Twenty-three male and female adolescent elite mountain skiers' results for

two seasons were included in multivariate statistical models. Physical work
13
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capacity was determined by VO2 peak, blood lactate concentration ([HLa] b) and
heart rate (HR) during the ergometer cycle. Anthropometric variables were body
height, body weight and calculated BMI. There was no significant relationship
between competitive performance and aerobic working capacity or anthropometric
data in neither male nor female skiers. Pre-season physical tests and
anthropometric data could therefore not predict the end of season FIS rankings.
The best regression (R2) and prediction (Q2) models of the FIS slalom (SL) and
giant slalom (GS) rank reached R2 = 0.51 to 0.86, Q2 = —0.73 to 0.18, showing
that it is not a valid model. This study failed to establish VO2peak and other
included variables as determinants of competitive performance [10].

Supej et al. (2018) investigated the relationship between slope and initial
strategy during mountain skiing. Eight FIS skiers performed starts on a flat (3°)
and steep (21°) incline employing five different strategies. Their times, trajectories
and velocities were monitored with a GNSS system and video. A significant
interaction was observed between slope incline and start strategy with respect to
the skier’s exit velocity (p < 0.001, n2p = 0.716), but not for the start section time
(p = 0.732, n2p = 0.037). On the almost flat incline, both section time (p = 0.022,
n2p = 0.438) and exit velocity (p < 0.001, n2p = 0.786) were influenced
significantly by start strategy, with four V2 skate-pushes being optimal. On the
steep incline, neither section time nor exit velocity was affected significantly by
start strategy, the fastest section time and exit velocity being attained with four and
two V2 skate-pushes, respectively. In conclusion, these findings demonstrate that
the start strategy exerts considerable impact on start performance on almost flat
inclines, with strategies involving three or more V2 skate-pushes being optimal. In
contrast, start performance on the steep incline was not influenced by strategy [11].

To date, there is no evidence of the relationship between competitive
performance and 'acute stress response’ markers. Danese et al. (2018) this study; (i)
acute sympatho-adrenergic activation during endurance exercise in recreational

runners by measuring free metanephrine (MN) and normetanephrine (NMN)
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plasma levels before and after the half-marathon run; (ii) designed to investigate
the relationship between metanephrine levels and duration of work. 26 amateur
runners (15 men, 11 women) aged 30 to 63 years were recorded. Quantification of
MN and NMN was done by LC-MS / MS. Anthropometric, ergonomic and routine
laboratory data were recorded. Statistical analysis included paired T-test, univariate
and multivariate regressions. Post-run values of MN and NMN increased
approximately 3.5 and 7-fold compared to baseline values, respectively. (p <0.0001
for both). NMN pre-run values and pre / post-run delta values showed a significant
direct and inverse relationship (p = 0.021 and p = 0.033, respectively) with running
performance. No correlation was found for MN values. NMN is a reliable marker
of sympatho-adrenergic activation by exercise and is thought to be predictive of
endurance performance of each athlete. Adaptation phenomena that do not occur
only in the adrenal medulla may represent the biological mechanism underlying
this relationship. Further study of sympatho-adrenergic activation, competitive
performance, and educational status should consider measuring these metabolites
rather than their unstable precursors [12].

Hallmarker et al. (2018) examined the relationship between participation in
a long-distance skiing race and the incidence of cardiovascular diseases (CVD) to
address the hypothesis that lifestyle reduces incidence. A cohort of 399 630
subjects in Sweden, half were skiers in the world’s largest ski race, and half were
non-skiers. Non-skiers were frequency matched for gender, age, and year of race.
Individuals with severe diseases were excluded. The endpoints were death,
myocardial infarction, or stroke. The subjects were followed up for a maximum of
21.8 years and median of 9.8 years. We identified 9399 death, myocardial
infarction, or stroke events among non-skiers and 4784 among the Vasaloppet
skiers. The adjusted hazard ratios (HRs) comparing skiers and non-skiers were 0.52
[95% confidence interval (CI) 0.49-0.54] for all-cause mortality, 0.56 (95% CI
0.52-0.60) for myocardial infarction and 0.63 (95% CI 0.58-0.67) for stroke and

for all three outcomes 0.56 (95% CI 0.54-0.58). The results were consistent across
15
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subgroups: age, gender, family status, education, and race year. For skiers, a
doubling of race time was associated with a higher age-adjusted risk of 19%, and
male skiers had a doubled risk than female skiers, with a HR 2.06 (95% CI 1.89—
2.41). The outcome analyses revealed no differences in risk of atrial fibrillation
between skiers and non-skiers. This large cohort study provides additional support
for the hypothesis that individuals with high level of physical activity representing
a healthy lifestyle, as evident by their participation in a long-distance ski race, have
a lower risk of CVD or death [13].

Fornasiero et al. (2017) for the first time examined a vertical competition
that investigated the relationship between laboratory measurements and uphill
performance through multiple regression analysis. Nine high-level ski
mountaineers (20.6 + 3.0 years old, VO2max 69.3 + 7.4 mL / min / kg). Performed
an anthropometric assessment for the laboratory and the ski-mountaineering grade
exercise test (GXT) for VO2max, gross efficiency (GE), ventilation thresholds
(VTs), blood lactate thresholds (LTs) and power output with these indices were
examined. News of vertical gain, length and average slope are as follows: 460 m, 3
km, 15.3% for young men and older women; 600 m, 3.5 km, 17.1% for the elderly.
According to the reviews, the average race time was 23:35 + 01:25 (min: sec).
Learning power output during the race is 3.40 + 0.34 W / kg, equal to 79.0 = 3.5%
of the maximal calculated at GXT and 95.3 &+ 5.2% of VT2. The most variable with
performance is VO2 (mL / min / kg) in VT2 (R = 0.91, p <0.001) with 80% of the
performance variation (Probable R 2 = 0.80, p = 0.001). When GE was included in
the analysis, the regression model was significantly improved (improved R2 =
0.90, p = 0.031). The study showed that the power output maintained during a
vertical race is close to talking power with VT2 and is related to the physiological
characteristics of the athletes. In particular, two variables, VT2 and VO2 in GE,
which can be measured with a particular GXT, account for 90% of the performance

variation in a ski-mountaineering vertical race. Training programs, according to
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Fornasiero et al., Should focus on increasing the GE with technical development as
well as the maximum development of VT2 [14].

Stoggl et al. (2017) attempted to analyze whether specific skating tests and
cycling length are determinants of cross-country skiing (XC) performance of youth
and to evaluate gender-specific differences. The data set includes data from 41
subjects, 33 men and 16 women. Each subject has completed the wheeled ski tests
of both short (50 m) and long (575 m) periods. Test results were correlated with on
snow XC skiing performance (PXC) based on 3 skating and 3 classical distance
competitions (3 to 6 km). The main findings of the current study were: 1)
Anthropometrics and maturity status were related to boys’, but not to girls’ PXC;
2) Significant moderate to acceptable correlations between girls’ and boys’ short
duration maximal roller skiing speed (double poling, V2 skating, leg skating) and
PXC were found; 3) Boys’ PXC was best predicted by double poling test
performance on flat and uphill, while girls’ performance was mainly predicted by
uphill double poling test performance; 4) When controlling for maturity offset,
boys’ PXC was still highly associated with the roller skiing tests [15].
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2. OVERVIEW OF METHODS

In this section, the theoretical foundations of machine learning and feature

selection algorithms used to develop the prediction models are given.

2.1. Generalized Regression Neural Network
A GRNN architecture includes four layers, the names of which are given

in Figure 2.1.

Input layer Pattern layer Summation layer Output layer

Figure 2.1. A typical GRNN architecture

Total number of features specifies the number of input structures. As
shown in Figure 2.1, each layer is directly connected to next layer without having
any feedback loops. The summation layer is comprised of a single division unit and
summation units. A normalization of the output set is performed by both the

summation and output layer.
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GRNN can be considered as a technique to predict the joint pdf of x and v,
when only a training set is given. Let f (x, y) represent the joint pdf of a vector
random variable, x and a scalar random variable, y. In this case, the conditional

expected value of y given X, is calculated by (2.1.).

L yf(xy)dy

T2 fxydy (2.1)

Ely|X]

In case f (X, y) is not known, a sample of observations of x and y has to be
used to predict f (x, y). Let /°(X, Y) (given by (2.2.)) be the probability estimator.
£'(X, Y) includes sample values X' and Y' of the random variables x and y. In (2.2.),
n is the number of sample observations, o is the width and p is the dimension of the
vector variable x.

FIOY) = b L el B O (1) o 5
) _(Zn)(p“)/za(“)n i=1€Xp 202 p 2 v

o2

The scalar function D? is given by (2.3.) and (2.4.) is obtained after

carrying out the necessary integrations.
p? = (x - x1)" (x - x) (2.3)

2
Zﬂ= yi _bi.
y/(x) = 2o (2.4)

D%
n 14
Zi:l EXP(_zaZ

It should be noted that the final equation given by (2.4.) is applicable to

problems involving numerical data.
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2.2. Optimized Generalized Regression Neural Network

Much of the success of machine learning has come from building larger
neural networks. This allows these models to perform better on various tasks, but
also makes them more expensive to use. Larger models take more storage space
which makes them harder to distribute. Larger models also take more time to run
and can require more expensive hardware.

Model compression aims to reduce the size of models while minimizing
loss in accuracy or performance. In machine learning, pruning is removing
unnecessary neurons or weights.

One of the disadvantages of GRNN models compared to multilayer
perceptron networks is that GRNN models are large due to the fact that there is one
neuron for each training row. This causes the model to run slower than multilayer
perceptron networks when using scoring to predict values for new rows.

The optimized GRNN offers neuron pruning option, as illustrated in Figure
2.2., to remove unnecessary neurons from the model after the model has been

created. Removing unnecessary neurons has three benefits:
1. The size of the stored model is reduced.

2. The time required to apply the model during scoring is reduced.

3. Removing neurons often improves the accuracy of the model.
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before pruning after pruning

pruning
synapses

-——

pruning
neurons

Figure 2.2. The pruning process used by OPGRNN

2.3. Support Vector Machines

SVM is one of the most promising statistical learning methods for
classification and regression. (Vapnik, 1995) developed the principles of SVM.
Since then, SVM have gained enormous popularity owing to the fact that SVM
having many effective features, and providing good performance. Instead of the
ERM principle, which is used by artificial neural networks, SRM has been adopted
in SVM (Gunn et al., 1997). The error in the training set is minimized in the ERM,
whereas the expected risk is minimized in SRM. The generalization ability, which
is one of the main aims of statistical learning, of SVM comes from this difference.
Although SVM were originally designed to solve classification problems, they
have been lately restructured to solve regression problems (Vapnik et al., 1997).

2.3.1. Linear SVM

We are given the training data (X,Y,),(i=1...,¢), where x is a d-

. . . . d .
dimensional input vector with XeR and the output vector is Y €R . (2.5)

shows the linear regression model (Vapnik, 2000):

f(X)=<a),X>+b, o, XeR, beR, (2.5.)
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In (2.5.), the target function is represented by f(X) and () gives the

dot product inR * .

To measure the empirical risk, some sort of loss function definition is
required. The e-insensitive loss function, which is proposed by Vapnik (Vapnik,
2000), is the most frequently used function. (2.6.) defines the e-insensitive loss

function;

Lg(y)={o for|f (x) -y|<e

[f()-y|-¢ otherwise 26)

The optimization problem given in (2.7.) (Gunn, 1998) should be solved

to find out the optimal » and b values

min —Joff +CY (& +¢)

(2.7.)
with constraints:
y,—(o,x)-b<e+¢&,
(@,%)+b-y, <e+&,
&6 20, i=l.. N (2.8)

In (2.8.), there exists toleration for the deviations larger than ¢ and the

tradeoff between the flatness of (X) is determined by C. The deviations from the

¢ -tube are represented by the variables &~ and & .

The dual optimization problem given in (2.9.)
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ng(_%ii(ai* _ai)(a]‘k_aj)<xiixj>_iyi(ai* _ai)_gi(ai* +a)

i=1 j=1
(2.9.)
with constraints:
0<a,a <C, i=1,..7,
4
z (o) =0
- (2.10)

has to be solved, which in turn gives the optimum values of the Lagrange

multipliers e and @, while @ and b are given by

@

ZI: (o —a )%

—l<a_),(xr + xs)> ,
: (2.11)

where X and X are support vectors (Gunn, 1998).

b

2.3.2. Nonlinear SVM

Nonlinear SVM can be constructed using a nonlinear mapping ¢0f the

input space onto a higher dimension feature space. (2.12.) shows the nonlinear

regression model

f(X)=(w,4(x))+b, oxeR" , beR, (2.12.)

Where
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w= i(ai —a; )p(X),
<(0’ a(x)> = Z(ai -a;) <¢(Xi)! ¢(X)> = i(ai —a; )K(%;,X),

b= _Ei(ai = (K%, %)+ K(X, %))
24 (2.13)

the support vectors are represented by X and X; . A Kernel function K satisfying

Mercer’s conditions has been used to explain dot products (Vapnik, 2000).

After b is integrated into the kernel function, (2.12.) becomes:

3 (= K (6,

(2.14))

Many different kernel functions including the radial basis function
(RBFNN), the polynomial function and the sigmoid function exist. However;

RBFNN, as defined in (2.15.) is the most commonly used Kernel function:

[x=x1"

K(x,X") =exp(— ).

2p° (2.15.)

In (2.15.) the width of the RBFNN function is defined by .

2.4. Multilayer Perceptron
Neural networks are composed of simple elements operating in parallel.
These elements are inspired by biological nervous systems. As in nature, the

network function is determined by the connections between elements. A neural
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network can be trained to perform a particular function by adjusting the values of
the connections (weights) between the elements. Commonly neural networks are
adjusted, or trained, so that a particular input leads to a specific target output. Such
a situation is shown in Figure 2.1. Here, the network is adjusted, based on a
comparison of the output and the target, up to the network output matches the
target. Typically many such input/target output pairs are used to train a network.
Batch training of a network proceeds by making weight and bias changes based on
an entire set (batch) of input vectors. Incremental training changes the weights and
biases of a network as needed after presentation of each individual input vector.
Incremental training is sometimes referred to as ‘‘online’” or ‘‘adaptive’’ training.
Neural networks have been trained to perform complex functions in various fields
of application including pattern recognition, identification, classification, speech,
and vision and control systems. Today neural networks can be trained to solve
problems that are difficult for conventional computer programs or human beings
(Saltan, 2008).

Considering the geometry of the network, there are several types of neural
networks: Hopfield, Hamming, Campenter and Grossberg, Kohonen, multi-layer
feed forward neural network and others (Lippmann, 1987). Neural networks with

different geometry are used for solving various problems.

30



2. OVERVIEW OF METHODS Shaboddin DANESHVAR

Neural Network including

— . .
Input connections (called weights) Output
between neurons

Adjust
weights

Figure 2.3. Concept of an artificial neural network

The fist three types of neural networks are usually used for binary input
data and with problems of classification into classes. The last two types of neural
networks are appropriate for the approximation of an unknown function
(Ambrozic, 2003).

The geometry of a multilayer feed-forward neural network is shown in
Figure 2.3. Input units are connected to the first layer of hidden units which are
further connected to the units of the second hidden layer. The units of the last
hidden layer are connected to the output units. The input units represent the input
data, and the output units represent the output data. The hidden layers may be
considered as a black box which performs the necessary transformations of the
input data so that the target output data are obtained.

Each unit is represented by its value yi* : Each connection between the units
is represented by its weight wi ; where index i corresponds to the unit number of
the k™ layer, while index j corresponds to the unit number of the (k-1)" layer. The
input layer is denoted by 0, whereas the output layer is denoted by ni: The signals
travel in one direction only, i.e. from the input layer towards the output layer.

The value of a unit is multiplied by the corresponding weight and added to

the value of the signal in the unit of the next layer. In addition, the value of bias
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neuron or threshold z9ik is added to the equation, which is given in (2.18)

(Ambrozic & Turk, 2003).
yik =f [Zwil; Yik_l + ‘9|kj (2.18)
i=1

Activation function f (.) enables the modeling of an arbitrary nonlinear
relation between input and output variables. Different functions could be used as an
activation function. The usual choices of activation function are a sigmoid
function, Gaussian and radial basis function.

The behavior of the neural network depends on the values of weights w;
and thresholds 19ik which have to be determined by the training procedure. The

supervised training is in fact a general optimization problem in which the minimum

of error Ej is sought

=52t 219

where t,; are the target output values, y,™ are the values of neurons in the output
layer, i.e. the output values evaluated by neural network, no is the number of

neurons in output layer, i.e. the number of output variables (Ambrozic, 2003).
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Figure 2.4. Geometry of a multilayer feed-forward neural network

2.5. Single Decision Trees
SDT is differentiated from other regression techniques in two aspects
which are its simplicity and potential effectiveness in making decisions.

Experiments with SDT in various domains show that it performs well even with
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large enough samples [18]. The values for minimum rows in a node, minimum size
node to split and maximum tree levels determine the quality of SDT on prediction
models. Unlike linear regression models that calculate the coefficients of
predictors, tree regression models calculate the relative importance of predictors.
The relative importance of predictors can be computed by summing up the overall
reduction of optimization criteria like RMSE. The main difference between a
regression tree and a classification tree is the how you measure the "badness" of a
node. There are various ways to do it for both regression and classification trees.
For regression trees, you could use sum of squared error or median absolute

deviation or some other function

2.6. Radial Basis Function Network

RBFNN’s appeared as a variant of artificial neural network in the last
years of 1980. Nonetheless, their roots are settled in much more pattern recognition
techniques. These techniques can be clustering, mixture models, potential
functions, spline interpolation and functional approximation.

RBFNN network includes several layers and the first layer has input
neurons. These neurons feed the feature vectors into the network. The second one
is the hidden layer that calculates the result of the main functions. The last layer is
the output layer that calculates a linear combination of the main functions (Park
and Sanberg, 1991). Simple structures of these networks give a decreasing for
training time and make possible learning in stages.

RBFNN has the feed-forward structure. It has one layer that consists of
hidden units. These units are completely adjusted with the output units. (2.18)

indicates the output units ('/’j ) from a linear combination of the main functions

(Ghosh-Dastidar et al., 2008).
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X—= Cj
V()= K(?) (2.18.)

]

f:RM > R is estimated by using an RBFNN network. X e RN is an

input, W(x,cj,aj)is the j™ function with centre C; €R", width O, and
W= (W, W,,...,W,) € RM is the vector of linear output weights. M represents the
main number function. The M centres C; eR"are connected to obtain

CZ(Q,CZ,---,Cm)ER”M. Lastly, the widths are connected to obtain

0=(0,0,0) ) € RM The output of the network for X€ R" and o € R™ s

shown by (2.19).

M
F(x,c,o,w)= > (w.w(X,C.,0:)) (2.19)
j=1 J ] )

Suppose that y:(yl, y2,...,yn) is the weighted output vector and
(Xi,yi)1i=l2,---,N is a series of training pairs. For eachCeR™

we RM,O'E RY and for random Weightsﬁ,i i=12,...,N, which are taken as

positive numbers to point out importance of definite domains of the input space, set
(2.20) (Wright et al., 2013).

2
E(c,o,0) = % [ﬂi (yi - F(Xi ,C,0, a)))} (2.20.)
|

M2

1
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2.7. Relief-F Algorithm

The algorithm of Relief-F is given in Pseudocode 1. Relief-F randomly

selects an instance R (line 3), but then searches for k of its nearest neighbors from
the same class, called nearest hits H; (line 4), and also k nearest neighbors from
each of the different classes, called nearest misses M, (C) (lines 5 and 6). It
updates the quality estimation W[A] for all attributes A depending on their values
forg, hits H, and misses M, (C) (lines 7, 8 and 9). The update formula is similar to

that of Relief, except that the contribution of all the hits and all the misses are
averaged. The contribution for each class of the misses is weighted with the prior

probability of that class p(c)(estimated from the training set). Since the

contributions of hits and misses in each step should be in [0,1] and also symmetric
it should be ensured that misses’ probability weights sum to 1. As the class of hits
is missing in the sum, each probability weight has to be divided with factor

1— P(class(Ri))(which represents the sum of probabilities for the misses’ classes).
The process is repeated for m times.

Inpur: for each training instance a vector of attribute values and the class
value
Output: the vector W of estimations of the qualities of attributes

1. setall weights W[A] :=0.0;

2. fori:=1 tom do begin

3 randomly select an instance R;;

4 find k nearest hits H;;

5. for each class C # class(R;) do

6 from class C find k nearest misses M;(C);
7. for A:=1toado

8

k
WIA]:= W[A]- 3 diff(A, R;, H;)(m - k)}+
J=l1

k

9 Y liramy L diff(AL Ry, MjC)Yom - k;
C#class(Ri) i=l

10. end;
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Pseudocode 1. The algorithm of Relief-F

Selection of  hits and misses is the basic difference to Relief and ensures
greater robustness of the algorithm concerning noise. User-defined parameter

controls the locality of the estimates. For most purposes it can be safely set to 10.
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3. DEVELOPMENT OF PREDICTION MODELS

3.1. Methodology
This section first introduces the methodology of regular model creation.
Then, the methodology for creating feature selection based models is presented.

3.1.1. Regular Model Creation

Various models habe been developed based on Optimized Generalized
Regression Neural Networks (Optimized-GRNN), GRNN, Support Vector
Machines (SVM), Multilayer Perceptron (MLP), Single Decision Tree (SDT) and
Radial Basis Function Network (RBFN) to predict the race time prediction models.
By using 10-fold cross-validation, the performance of the prediction models has
been assessed using the RMSE. By using the unique, double, triple, quadruple,
quintuple, sextuple, septuple, octuple, nonuple, decuple and undecuple
combinations of the predictor variables, a total of 11, 55, 165, 330, 462, 462, 330,
165, 55, 11 and 1 prediction models have been formed, as given in Table A.3.1
through Table A.3.187* respectively.

3.1.2. Feature Selection Based Model Creation
For feature selection, 2 separate versions of the data set are taken into
account. The first version, referred as racing-time-set-(1), contains the
personal variables sex, age, height, and weight as well as all other survey data
except the assigned starting wave of cross-country skiers. The second version,
referred to as racing-time-set-(2), consists of the same variables as in racing-
time-set-(1) plus the assigned starting wave of cross-country skiers to

investigate its effect on prediction of racing time.

! Due to space constraints, all regular prediction models along with their predictor variables
are included in the appendix.
39


https://en.wiktionary.org/wiki/septuple
https://en.wiktionary.org/wiki/octuple
https://en.wiktionary.org/wiki/nonuple
https://en.wiktionary.org/wiki/decuple
https://en.wiktionary.org/w/index.php?title=undecuple&action=edit&redlink=1

3. DEVELOPMENT OF PREDICTION MODELS

Shahaboddin DANESHVAR

By running the Relief-F attribute evaluator on racing-time-set-(1) and

racing-time-set-(2), the importance rank of each predictor variable has been

determined using 10-fold cross-validation, as illustrated in Table 3.1 and

Table 3.2. As the next step, the predictor variables have been arranged by

decreasing order of importance based on their scores. By iteratively

eliminating the variable with the most irrelevant rank from the data sets,

several different prediction models for racing-time-set-(1) and racing-time-set-

(2) have been created. All prediction models for racing-time-set-(1) and

racing-time-set-(2) together with the predictor variables included in any model

are shown in Table A.3.1 and Table A.3.2?, respectively.

Table 3.1. Average Relief-F ranks of predictor variables for racing-time-set-(1)
using 10-fold cross-validation

Predictor Variable IAverage Relief-F Rank
Age 120
Weight 2.50 £ 0.67
HrsSP 2.90 £ 0.94
HrsTot 4.60 £ 0.92
Height 4.80 + 1.08
YRSALL 7.60 + 2.46
HrsXC 7.70 £ 2.37
HrsOther 7.90 + 1.51
Sex 8.10 £ 1.37
YRS10 9.20 + 1.40
RacePInd 10.50 £ 1.28
BMT5 11.70 £ 1.68
BMT10 12.80 + 0.87
RaceComp 13.70 £ 0.64

2 Due to space constraints, all fetature selection based prediction models along with their
predictor variables are included in the appendix.
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Table 3.2. Average Relief-F ranks of predictor variables for racing-time-set-(2)

using 10-fold cross-validation

Predictor Variable Average Relief-F Rank
Wave 1.00x0
Age 2.00+0
Weight 3.60 £ 0.49
HrsSP 3.60 + 0.80
Height 5.40 £ 1.02
Sex 5.70 + 0.64
HrsTot 7.40 £ 1.28
HrsOther 7.80 + 0.87
'YRS10 9.30 + 0.78
HrsXC 9.40 £ 0.80
RacePInd 11.40 £ 0.49
YRSALL 11.50 £ 1.02
BMT5 13.30 £ 0.78
RaceComp 14.20 £ 0.75
BMT10 14.40 + 0.66

Shahaboddin DANESHVAR

3.1.3. Model Evaluation Metrics

The generalization error of the prediction models has been assessed by
performing 10-fold cross-validation, and the prediction errors have been calculated
using RMSE, the formula of which is shown in (3.1).

n

RMSE = \/EZ(Y Y, (3.1

[ Ry

In Eq. (3.1.), Y represents the measured racing time value value, Y’ represents the
predicted racing time value, Y represents the mean of the measured values of
racing time value and n represents the number of samples in a test subset.

The RMSE metric is the most widely used evaluation measure in the field
of sport physiology, and also most of the studies related to prediction of racing
time value utilize this metric for performance and accuracy evaluations of

prediction models. Particularly, RMSE measures the difference between predicted
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and measured values, which are squared and then averaged over the number of

total samples.

3.2. Details of Prediction Models
This subsection introduces the details of GRNN-based, OPGRNN-based,
SVM-based, MLP-based, SDT-based, and RBFNN-baed models.

3.2.1. GRNN-based Prediction Models

GRNN was devised by (Specht, 1991) and is also known to be widely
effective for modeling and prediction. Structurally, the GRNN resembles the MLP.
However, unlike MLP, the GRNN does not require an iterative training procedure,
leading to much faster training times than other back propagation networks. Also, it
has recently been shown that GRNN’s have the potential to often exhibit more
satisfactory prediction performance (Celikoglu and Cigizoglu, 2007; Kim et al.,
2004; ParojcCic¢ et al., 2007).

The GRNN approximates any arbitrary function between input and output
vectors, drawing the function estimate directly from the training data. Particularly,
GRNN works by measuring how far a given sample pattern is from patterns in the
training set in N dimensional space, where N is the number of inputs in the
problem. When a new pattern is presented to the network, that input pattern is
compared in N dimensional space to all of the patterns in the training set to
determine how far in distance it is from those patterns. The output that is predicted
by the network is a proportional amount of all of the outputs in the training set.
The proportion is based upon how far the new pattern is from the given patterns in
the training set. In addition, it is consistent that as the training set size becomes
large, the estimation error approaches zero, with only mild restrictions on the
function (Kim et al., 2004).

For a GRNN-based model, the minimum and maximum values for sigma,

search step and the type of kernel function influences the performance of GRNN-
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based models. Table 3.3. shows the ranges for the utilized values of parameters for

GRNN-based prediction models.

Table 3.3. Values of the utilized parameters for the GRNN-based models

Parameter Value

Minimum Sigma 0.0001

Maximum Sigma 10

Search Step 20

Kernel function Gaussian function

Prediction of every sample points

| l No
> RMSE >= Target RMSE |—b
lYes

Use sigma value for
prediction

v

Update sigma value |

END

N-hold the sample point

A 4

Calculation of RMSE

T

Prediction of next sample
point

F

No

Y

< Prediction of every sample points which is made

Figure 3.1. Flow chart of GRNN-based model

3.2.2. OPGRNN-based Prediction Models

The biggest challenge in pruning used by OPGRNN is determining what to

prune. When removing nodes from a model, the removed parameters should be less
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useful. There are different heuristics and methods that determine which nodes are
less important and can be removed with minimal impact on accuracy.

The process of removing unnecessary neurons is an iterative process.
Leave-one-out validation is used to measure the error of the model with each
neuron removed. The neuron that causes the least increase in error (or possibly the
largest reduction in error) is then removed from the model. The process is repeated
with the remaining neurons until the stopping criterion is reached.

There are three criteria that can be selected to guide the removal of

neurons:

1. Minimize error — If this option is used, then it removes neurons as
long as the leave-one-out error remains constant or decreases. It stops
when it finds a neuron whose removal would cause the error to
increase above the minimum found.

2. Minimize neurons — If this option is used, it removes neurons until the
leave-one-out error would exceed the error for the model with all
neurons.

3. # of neurons — If this option is used, it reduces the least significant

neurons until only the specified number of neurons remain.

With pruning, there is a tradeoff between model performance and
efficiency. You can prune heavily and have a smaller more efficient network, but
also less accurate. Or you could prune lightly and have a highly performant
network, that is also large and expensive to operate. This trade-off needs to be
considered for different applications of the neural network. Table 3.4. lists the
intervals for values of the utilized parameters for OPGRNN-based prediction

models.
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Table 3.4. Values of the utilized parameters for the OPGRNN-based models

Parameter Value

Minimize error Enabled
Minimize neurons Enabled
# of neurons [10, 100]

3.2.3. SVM-based Prediction Models

The prediction accuracy of SVM largely relies on the values of model
parameters such as the value of epsilon (&) for the e-insensitive loss function, the
value of C, and the type and parameters of the utilized kernel function. In literature,
the RBFNN kernel has often been reported to present satisfactory generalization
capabilities (Campbell, 2002; Kavzoglu and Colkesen, 2009). Accordingly,
RBFNN is utilized as the kernel function in this study, which requests the
optimization of the function parameter y.

Befo