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ABSTRACT 

 

 

CLASSIFICATION OF POINT CLOUDS ACQUIRED THROUGH 

MOBILE LASER SCANNER IN URBAN AREAS USING 

GEOMETRIC AND SHAPE FEATURES 

 

 

Semanur SEYFELİ 

 

 

Master of Science, Department of Geomatics Engineering  

Supervisor: Assoc. Prof. Dr. Ali Özgün OK  

May 2021, 67 pages 

 

 

The mobile laser scanners (MLS) serve as a high density, high accurate and faster data 

collection method for urban areas from a street-level surveying perspective. The major 

processing phases of a MLS point cloud classification can be considered as (i) the 

neighborhood selection, (ii) the feature extraction, and finally (iii) the classification. 

Since MLS point clouds are poor in terms of the attributes, the classification phase must 

be supported by using features derived from the local neighborhood relations between 

points in a dataset.  

This thesis deals with the point-based supervised classification of point clouds acquired 

through a vehicle-based MLS system in urban areas using local geometric and shape 

features. The developed approaches are tested using the benchmark dataset representing 

the Technical University of Munich (TUM) City Campus. The local features of each 
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point in the point cloud were extracted and evaluated through three different 

neighborhood definitions, i.e. spherical, cylindrical and the k-nearest neighbor. As the 

classification strategy, the Random Forest (RF) classifier that has been preferred in 

quite a few studies dealing with MLS classification is applied, and is successively tested 

for the point-based supervised classification. A total of 8 classes are involved during the 

classification: artificial terrain, natural terrain, high vegetation, low vegetation, building, 

hardscape, artifact and vehicle. The results were evaluated as classification for all three 

local neighborhood types with different parameters, and for various combinations of 

features. The results achieved were compared with three previous studies utilizing the 

same data set in the literature, and a combination of the features from different 

neighborhood information increased the overall results at least 4% with considerable 

improvements (up to 40%) for the producer’s accuracies of multiple classes. 

 

 

Keywords: mobile laser scanning, point clouds, classification, feature extraction, 

geometric features, shape features, random forest, point neighborhood. 
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ÖZET 

 

 

KENTSEL ALANLARDA MOBİL LAZER TARAYICI İLE ELDE 

EDİLEN NOKTA BULUTLARININ GEOMETRİK VE ŞEKİL 

ÖZELLİKLERİ KULLANILARAK SINIFLANDIRILMASI 

 

 

Semanur SEYFELİ 

 

 

Yüksek Lisans, Geomatik Mühendisliği Bölümü 

Tez Danışmanı: Doç. Dr. Ali Özgün OK  

Mayıs 2021, 67 sayfa 

 

 

Mobil lazer tarayıcılar (MLS), kentsel alanlar için sokak düzeyinde ölçüm yapan bir 

perspektifte yüksek yoğunlukla, yüksek doğrulukta ve hızlı veri toplama yöntemi olarak 

hizmet etmektedir. MLS nokta bulutu sınıflandırmasının ana işlem aşamaları, (i) 

komşuluk seçimi, (ii) özellik çıkarımı ve son olarak (iii) sınıflandırma olarak 

düşünülebilir. MLS nokta bulutları öznitelik açısından zayıf olduğundan, veri setindeki 

noktalar arasındaki yerel komşuluk ilişkilerinden türetilen özellikler kullanılarak 

sınıflandırma aşaması desteklenmelidir. 

Bu tez çalışması, kentsel alanlarda araç tabanlı MLS aracılığıyla elde edilen nokta 

bulutlarının geometrik ve şekil özellikleri kullanılarak nokta tabanlı kontrollü 

sınıflandırılmasını ele almaktadır. Geliştirilen yaklaşımlar, Münih Teknik Üniversitesi 

(TUM) Şehir Kampüsü'nü temsil eden değerlendirme/kıyaslama veri seti kullanılarak 
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test edilmiştir. Nokta bulutundaki her nokta için yerel geometrik özellikler çıkarılmış ve 

küresel, silindirik ve k-en yakın komşuluk olmak üzere üç farklı komşuluk tanımı ile 

değerlendirilmiştir. Sınıflandırma yaklaşımı için, MLS sınıflandırması ile ilgili pek çok 

çalışmada tercih edilen Rastgele Orman (RF) sınıflandırıcı uygulanmış ve nokta tabanlı 

kontrollü sınıflandırma ile test edilmiştir. Sınıflandırma sırasında yapay arazi, doğal 

arazi, yüksek bitki örtüsü, düşük bitki örtüsü, bina, sert peyzaj, yapay yapı ve araç 

olarak toplam 8 sınıf yer almaktadır. Sonuçlar, her üç yerel komşuluk tipi için farklı 

parametreler ve özellik kombinasyonları için sınıflandırma olarak değerlendirilmiştir. 

Elde edilen sonuçlar, literatürde aynı veri setini kullanan ve daha önce yapılan üç 

çalışma ile karşılaştırılmış ve farklı komşuluk bilgilerinden gelen özelliklerin 

kombinasyonu, birden fazla sınıfın üretici doğruluğu için önemli iyileştirmelerle (%40'a 

kadar) beraber genel sonuçları en az %4 oranında artırmıştır. 

 

 

Anahtar Kelimeler: mobil lazer tarama, nokta bulutları, sınıflandırma, özellik çıkarma, 

geometrik özellikler, şekil özellikleri, rastgele orman, nokta komşuluğu. 
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1. INTRODUCTION 

1.1. Purpose and Scope 

Leading-edge technology of Light Detection and Ranging (LiDAR) is one of the 

privileged methods in mapping and surveying domain due to its progressive ability to 

generate dense and highly accurate three-dimensional (3D) point clouds. Such ground-

breaking data can be obtained through different platforms/sensors; and therefore, up till 

now, advanced systems including spaceborne laser scanning (SLS), airborne laser 

scanning (ALS), terrestrial laser scanning (TLS) and mobile laser scanning (MLS) were 

successfully developed. Amongst them, the MLS serves as a high density, high accurate 

and faster data collection method for urban areas from a street-level surveying 

perspective. For that reason, many leading applications in the fields of 3D city modeling 

[1], vegetation mapping [2], building information modeling [3], transportation 

infrastructure mapping [4,5], pedestrian detection [6], change detection [7], autonomous 

vehicle driving [8] are carried out based on MLS-derived information. For such 

applications, MLS data sets can be utilized exclusively or be supported with comparable 

data sets including ALS, TLS, aerial images, terrestrial images and so forth. 

In general, a regular MLS system consists of multiple elements involving imaging, 

scanning, positioning and storage systems placed on a mobile platform such as a 

vehicle, boat, train, backpack, robot (cf. Chapter 2). Vehicle-based platforms are 

common in urban areas due to their relative speed in regular traffic; thus, resulting in 

production of massive datasets at a single day of data collection [9]. Since the manual 

processing of large amount of MLS data is laborious and time-consuming, timesaving 

automated techniques for the processing and interpretation of such data are crucial and 

necessary for the effective handling of point clouds derived from the MLS systems.  

Until now, well-designed automated strategies have been proposed for the classification 

and modeling of MLS point clouds in urban environments. However, even though 

promising results were reported in a number of research studies, accurate and complete 

classification of MLS point clouds is of still concern. The ultimate goal is indeed to 

predict and finally assign a proper class label to each single point existing in the MLS 

point cloud after a particular classification strategy. The point cloud geometry (i.e. point 

neighborhood) forms key evidence that should be investigated, and for that reason, a 

number of segmentation- and point-based classification methods were proposed. The 
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major processing phases of the classification of a MLS point cloud can be considered as 

(i) the neighborhood selection, (ii) the feature extraction, and finally (iii) the 

classification. Since MLS point clouds are poor in terms of the attributes, the 

classification phase can be supported and performed by using features derived from the 

local neighborhood relations between points in a dataset [10]. For this purpose, different 

strategies describing and evaluating the local neighborhood of a point, e.g. k-nearest 

neighborhood (kNN) method based on k closest points, cylindrical and spherical 

neighborhood designs based on a certain radii, were developed in the past; and 

employed accordingly during the inference/computation of the geometric- and shape-

based features from the MLS point clouds. To accomplish the classification phase, a 

variety of classification approaches including the machine learning algorithms such as 

instance-based, probabilistic learning, rule-based learning, max-margin learning and 

ensemble learning, and deep learning algorithms were tested [10-12]. Besides, a number 

of benchmark datasets were published by several authors/institutes covering different 

urban regions while the published datasets differ for a number of criteria including the 

platform/sensor utilized, the point density collected, the number of classes involved, and 

the season of data acquired. In this respect, the outputs of the previous approaches 

developed are still limited due to extensive differences between the input datasets. 

This thesis deals with the point-based supervised classification of point clouds acquired 

through MLS in urban areas using features dealing with the basic geometry and shape 

of a point neighborhood. The developed approaches are tested using the benchmark 

dataset representing the Technical University of Munich (TUM) City Campus [13]. The 

local features for each point in the point cloud were extracted and evaluated through 

three different neighborhood definitions, i.e. spherical, cylindrical and the k-nearest 

neighborhoods. For the classification approach, the Random Forest (RF) classifier that 

has been preferred in quite a few studies dealing with MLS classification is applied, and 

successively tested for the point-based supervised classification. In this thesis, a total of 

8 classes are involved during the classification: artificial terrain, natural terrain, high 

vegetation, low vegetation, building, hardscape, artifact and vehicle. All implementation 

and processing of the framework presented in the thesis was developed using the 

MATLAB environment, and the open source 3D point cloud and mesh processing 

project, CloudCompare. Figure 1.1 shows a flowchart that briefly summarizes the 
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framework implemented to perform the point-based supervised classification of MLS 

point clouds using geometric and shape features. 

 

Figure 1.1: Classification workflow of the MLS point clouds. 
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1.2. Contributions 

This thesis contributes to the related literature in the following aspects: 

 The effects and importance of the geometric and shape features extracted from 

three different neighborhood types on the classification results were 

systematically evaluated.  Only a few studies dealing with the assessments of 

such issue have been found in the literature. 

 Combining important features of different neighborhood relations is proposed to 

improve the classification output while keeping the processing load in a 

manageable time-frame. 

 The proposed framework is implemented using a developed MATLAB script. 

 

1.3. Organization of the Thesis 

This thesis is organized as six chapters. Chapter 2 presents the preliminaries of MLS, 

and also reviews the related work devoted for the segment-based and point-based 

classification of MLS data. Chapter 3 details the implemented framework as the 

recovery of the point neighborhood, extraction of features of a point, and lastly the 

classification of point clouds. The study area, the dataset used, the assessment strategy, 

and finally the parameter evaluation are all described in Chapter 4. Chapter 5 comprises 

of the results of this study, and the related discussion. Chapter 6 contains the 

conclusions reached, and states the recommendations for further research on this topic. 
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2. BASICS AND STATE-OF-ART 

2.1. Mobile Laser Scanner (MLS)  

The 3D point cloud data generated based on the LiDAR principles have been a vital 

input for 3D urban models; and therefore, such data are frequently involved in a variety 

of application studies such as urban planning, simulation, emergency response, mapping 

and visualization [14]. MLS is a high-resolution, LiDAR-based, fast and flexible 3D 

data acquisition method that generates 3D point clouds of objects around its 

surroundings. In this respect, dense and precise point cloud data can be easily collected 

by means of a MLS system. The point cloud collected may include objects usually 

observed in urban areas such as buildings, trees, sidewalks, roads, traffic signs, power 

cables, poles, and moving objects like cars and pedestrians [15].  

Most MLS systems consist of hardware responsible for the positioning (position and 

posture) as Global Navigation Satellite System (GNSS) receiver, Inertial Measurement 

Unit (IMU), Distance Measuring Indicator (DMI), 3D laser scanners, digital cameras, 

and a computer with data storage. All of this equipment is properly installed on a 

moving platform, including a vehicle [13], boat [16], train [17], backpack [9], robot [18] 

to collect 3D surface information along the path making headway (Figure 2.1). The 

mobile platform is under control, and treats all hardware utilized for the data collection 

as a single system. All equipment is precisely calibrated to maintain minimal errors 

between positioning, imagining and scanning systems [19].  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 2.1: The moving mobile platforms onboard (a) a boat [16], (b) a train [17], (c) a 

backpack [9], (d) a robot [18], and (e) a vehicle [13]. 
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Laser scanners emit laser pulse within the near-infrared wavelength to the surface and 

collect back the returning pulse. It measures range as time-of-flight (TOF) or phase shift 

[15]. The reflected energy is used in both approaches to determine intensity of a point. 

The intensity is the return strength of the laser beam and represents the reflective 

properties of the object’s surface [20]. The TOF is also known as pulse-based scanners 

emitting the laser pulse to the objects then receiving the reflected pulse. The distance 

between the object and the scanner is measured using recorded pulse traveling time. The 

phase shift and the transmitted number are used for the phase-based system to calculate 

the distance between the sensor and the related object [15]. Laser scanners with phase 

shifts are more accurate, but their measurement range is not that much long; hence, 

pulse-based scanners are generally used in MLS systems as it provides a farther 

measurement range [21].  Table 2.1 contains the specifications of some laser sensors 

used in mobile laser scanning. 

Table 2.1: Specifications of laser sensors used by MLS systems [22 - 26] 

 SICK LMS   Riegl LMS-

Q120i  

VLP-16 Velodyne 

HDL-32E 

Velodyne 

HDL-64E 

Range 30m (max 

80m) 

150m 1m to 100m 80m -100m up to 120m 

Accuracy ±35mm 20mm ±3cm ±2cm < 2cm 

Data Rate 75000 

points/s 

10000  

points/s 

300000 

points/s 

~1200000 

points/s 

~2200000 

points/s 

Vertical FOV - 80°          

(-40°,+40°) 

30°   

(-15°,+15°) 

40° (+10° to 

-30°) 

26.9°  (+2.0° 

to -24.9°) 

Horizontal 

FOV 

100°/180° - 360° 360° 360° 

Wavelength 905 nm 905 nm 905 nm 905nm 905 nm 

 

Raw MLS data collected may lack of texture information. Therefore, color images 

acquired from optical digital cameras along with the raw point cloud can be organized 

to visualize the point cloud considering the textural details [15]. As a result, such 
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additional information can also be employed for better understanding of street scenes, 

and for change detection applications at city-level.  

GPS, IMU and DMI provide the trajectory for the direct georeferencing of laser 

scanning data while the vehicle is in motion [15]. The GNSS gives exact positional 

information up to centimeter precision, and delivers three basic measurement 

observations: position, velocity, and time.  However, as well known, the positioning 

accuracy would decline due to multipath phenomenon caused by high-rise obstacles in 

urban areas like tall trees, buildings, etc. To mitigate multipath effects and overcome the 

restriction of GNSS signal loss, an IMU is therefore employed to give the instant 

location, velocity, and attitude of an MLS system. The DMI, a precise odometer, is 

mounted at the rear wheel of the vehicle, and is used to measure the traveled distance 

[21]. While GNSS and IMU offer precise position and orientation measurements of a 

moving vehicle, DMI's supplementary positioning information is employed when GNSS 

data is unavailable [27]. Figure 2.1e shows the external components of a vehicle based 

MLS. 

The MLS data can be used with other point data sources in urban applications, and in 

this respect, MLS can be compared with other advanced LiDAR systems (i.e. ALS, 

TLS, SLS). The main advantages of MLS point clouds are the fast and continuous 

collection of data with comparatively high point density. However, an ALS system has 

also capability to provide fast and permanent collection of data in terms of point clouds. 

Compared to the ALS, small details as well as surfaces that ALS fails to capture (e.g. 

underneath bridges and in tunnels) can be secured with the MLS systems [28]. Besides, 

due to the higher altitude of flight and controlled swath width, the point density for ALS 

systems is more uniform, but the MLS captures data more densely adjacent to the 

scanner path, and the point density drops farther away from the scanner path.  On the 

one hand, the MLS systems can collect facades of the high structures like buildings 

from the direct view, but not top of them. On the other hand, the ALS can capture the 

direct view of the top of all structures including buildings and an oblique view of the 

vertical façade [19]. Figure 2.2 shows a visual comparison of the viewing geometry of 

the two popular systems. Apparently, the MLS pulses cannot reach behind certain 

objects (e.g. buildings, cars), and this fact may increase the occlusion related problems. 

Compared to ALS, the processing of MLS data may be slow due to ultra-high point 

density and comparatively large data file size [28].  



 

9 

 

 

Figure 2.2: Comparison of ALS (A) and MLS (M) systems [19]. 

 

The TLS systems can provide some advantages over MLS systems. For the TLS system, 

scanners are mostly placed on a tripod, and scanning is performed in a static position. 

They provide additional options for setup locations except for active roads, and have the 

highest level of the detail for the point cloud. In contrast, the MLS systems measures on 

navigable roads, and they are preferred on a platform such as a vehicle for urban areas. 

Although static systems provide higher accuracy, mobile scanning has been widely 

accepted as an effective method of significantly faster data collection in relatively large 

urban environments while providing sufficiently accurate datasets [19].  

In a different domain, SLS systems (e.g. ICESat, ICESat-2) are utilized to determine the 

altitude changes and certain topographic features of the Earth. However, because these 

systems operate on a specific polar orbit, the measurements are only available as a 

linear measurement of the ground track of the platform, and the laser footprint is quite 

large and the distance between footprints is quite long compared to any other laser 

scanning system. Therefore, SLS systems are preferred in specific applications near the 

poles (e.g. to monitor the elevation of ice sheets, glaciers, sea ice) where dense SLS 

point cloud is available due to significantly high coverage. 

 

2.2. Related Work 

Point clouds obtained through laser scanning contain surface related information of 

objects. The attributes of each point can simply be described as a 4D vector, namely the 
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location information (X, Y, Z) and the intensity. However, a point in the point cloud 

does not contain any information about which object on the Earth’s surface it belongs 

to. Consequently, there are two main questions to be answered; (i) “which points belong 

to a certain object?”, and (ii) “what is the class label of that particular object?”.  

Assigning specific label information to every point (or segments of a point cloud) is 

called classification of point clouds [29]. As well known by the community, the 

methods for the classification can be broadly categorized as supervised or unsupervised 

[30]. In addition to this, classification strategies for point clouds can be grouped as 

point-based and segment-based [31]. No matter which category or strategy is preferred 

during the classification process, automated classification of point cloud datasets relies 

on certain features extracted for each point. A feature in this context describes any 

information regarding to points available in the dataset [29], and the feature sets are 

mainly constructed on the basis of four different types: geometric, radiometric, color 

and contextual. Local features (e.g. shape, size, roughness, density) of a point (or 

segment) are described as broad geometric features. MLS systems are capable of 

recording intensity and color information of points, and such information can be termed 

as radiometric and color features, respectively [32]. Finally, contextual features hold the 

spatial relationship amongst different points in a point cloud dataset [33]. After the 

features have been extracted from the point cloud, each point in the cloud must be 

assigned a class label. For that purpose, supervised classification methods (e.g. Random 

Forest, Support Vector Machines, AdaBoost) are usually implemented [10]. If the 

previous studies are evaluated, the RF method seems to be the most preferred approach 

due to its computational advantage and processing speed during labeling of the points 

surrounded by quite large MLS datasets in terms of the number of points. 

Comprehensive summaries and overviews on the topic of point cloud classification can 

be found in several (recent) review papers, see e.g., [11], [32]. Since the main goal of 

this thesis is based on the point cloud classification using MLS datasets, this part 

provides a review about the previous studies that only involve MLS data in their 

framework (Table 2.2). This chapter explores the previous works, summarizing each 

study based on essential points such as the algorithm presented, the data used, and the 

results provided. 
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Table 2.2: Summary of the previous works using MLS datasets in their framework. 

 
Previous Work 

Data 

Source 

Object of 

Interest 

Method       

Applied 
Limitation(s) 

S
eg

m
en

t-
b

a
se

d
 C

la
ss

if
ic

a
ti

o
n

 

Wang et al. [34] 

 

LiDAR 

DTM  

Single tree Voxelization Crown might be 

over split 

because of the 

large trees 

Rutzinger et al. 

[35] 

 

ALS 

MLS  

Building wall Region Growing 

Hough 

Some of the 

walls could not 

be found caused 

by occlusion. 

Yokoyama et al. 

[36] 

 

MLS Pole-like objects PCA False 

segmentation in 

overcrowded 

areas 

El-Halawany 

et.al  [37]  

MLS Road curb PCA, Canny Edge 

Detection 

Contains objects 

close to the road 

curb 

Rodríguez-

Cuenca et al. 

[38] 

MLS Pole-like objects Voxelization, RX 

Method 

Occlusion and 

shadow 

Xiao et al. [39] 

 

MLS Vehicle SVM, RF Failures caused 

by under 

segmentation 

Soilán et al. [40] 

 

MLS Road markings K-means 

Clustering, Neural 

Network  

Misdetection 

due to fading of 

paint/occlusion 

caused by 

parked vehicles 

Sun et al. [41] 

 

MLS Artificial terrain, 

natural terrain,  

high vegetation, 

low vegetation, 

buildings, 

artifacts, vehicles, 

hardscape 

Supervoxelization, 

RF 

Failed to 

classify objects 

that have few 

samples 
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P
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t-
b

a
se

d
 C
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ss
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ic

a
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o
n

 
Demantke et al. 

[42]  

ALS  

MLS  

TLS 

Ground, building, 

low vegetation, 

high vegetation 

Cylinder Neighbor False 

classification 

due to scale 

Yang and Dong 

[43] 

 

MLS Pole-like objects Spherical Neighbor 

Region Growing 

Carts were 

misclassified as 

trees 

Weinmann et al. 

[10]  

MLS Wire, ground 

vegetation, cars 

facade, pole, 

motorcycles, 

pedestrians, traffic 

signs  

k-Nearest Neighbor Overall 

accuracy was 

low on 

unbalanced 

datasets 

Zheng et al. [44] 

 

MLS Facades, cars, 

motorcycle 

pedestrians, traffic 

signs  

SVM (features from 

the cylindrical 

neighbor) 

Overlapping of 

two or more 

objects 

Thomas et al. 

[45] 

 

MLS Pedestrians,car 

facade,groud 

motorcycles, 

traffic signs,  

vegetation 

RF (features from the 

multiscale spherical 

neighbor) 

Misclassified 

classes because 

of scale 

Wang et al. [30] 

 

ALS  

MLS 

Power line RF (features from the 

multiscale neighbor) 

Lower ALS 

classification 

results 

considering the 

point density 

Guo and Feng 

[46] 

 

MLS  

TLS 

Terrain, artifact 

building, car, 

vegetation, 

hardscape 

Neural Network Misclassified 

classes because of 

the small sample 

and similar 

appearance 

Atik et al. [12] 

 

ALS  

MLS 

Ground, building, 

vegetation 

Machine Learning 

Algorithms (features 

from the multiscale 

spherical neighbor) 

Low accuracy at 

small scales for 

high point 

density data. 
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2.2.1. Segment-based Classification 

In segment-based classification, the point cloud is initially segmented, and afterwards a 

label is assigned to each segment. As a result, the classification's success is determined 

by the initial segmentation stage [10]. The segmentation approaches could be divided 

into four distinct groups: edge-based, region growing, model fitting, clustering-based. 

Besides, hybrid segmentation, the combination of at least two groups’ of segmentation 

approaches, is also presented in the literature.  

Edge-based segmentation approaches comprises of two stages:  (i) edge detection is the 

process of extracting the boundaries of dissimilar regions, and (ii) grouping points 

within the regions to form the final segment [47]. Because of their simplicity, edge-

based algorithms allow for fast point cloud segmentation, but they cannot be maintained 

when the point clouds have noise and uneven density [48]. Region growing 

segmentation approaches depend on selected seed points, and start segmentation from 

one or more initial points called seeds. Thereafter, they merge neighboring points with 

similar characteristics [47]. The region-growing methods are more noise-resistant than 

edge-based methods, although they are sensitive to seed point position [48]. The 

segments grow starting from the seed points up to pre-defined similarity criteria in the 

bottom-up region growing segmentation approach. However, for the other top-down 

region growing approach, all points are assigned to a group in the first step, and finally 

segments are created by splitting. Model fitting segmentation approaches are based on 

the fitting of geometric primitives such as plane, cylinder and sphere to the point cloud. 

Subsequently, they form the segment by identifying the points supporting the fitting 

procedure. In this context, two widely employed algorithms are the Hough Transform 

[49] and the Random Sample Consensus (RANSAC) [50] approach. Clustering-based 

segmentation approaches rely on similarity criteria. The unsupervised clustering 

algorithm K-means divides the point cloud into K number of unlabeled segments.  

However, as in most cases, determining a proper value of K is the main problem. 

Another method applied is based on the Mean-shift clustering algorithm [51]. Unlike 

the K-means [52] clustering algorithm, the number of clusters can be determined 

automatically with a given user-based parameters. Note that all segmentation 

approaches may suffer from over- and under-segmentation issues.  
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2.2.2. Review of Studies Comprising Segment-based Classification 

A method to analyze vertical canopy structure and to conduct single tree modeling was 

presented in [34] for a test site located in the south of Germany, Kuernacher Wald, 

covered with 95% forest area. They segmented the whole area with the size of 

20m×20m grids, and used a raster DTM to compute absolute object height with the help 

of normalized point cloud. First, a transformation matrix based on the thickness of each 

layer and the raster resolution of the horizontal surface was used to translate the 

normalized points in each grid into local voxel space. Considering the voxel as an image 

pixel, the normalized points in the voxel were defined as the gray value of a pixel. In 

this way, 2D horizontal projection images were created (Figure 2.3). Projected images 

at various height levels were subjected to the process of hierarchical morphological 

opening and closing.  3D prisma were created from 2D crown areas in each layer. As a 

result, a 3D crown model was reconstructed from all the crown prisms. Lower canopy 

layers that were overlapped with high canopies can also be found detectable by using 

the method presented, but the crown might over split because of the large trees. 

 

Figure 2.3: Representation of 2D horizontal projection images and local voxel [34]. 

 

Automatic wall extraction with ALS and MLS point clouds was examined by [35]. The 

test data involved 45 buildings (most of them were single story) in Enschede, 

Netherlands. First, region growing was applied to the point cloud to find planar areas. 

Seed surfaces were found with the help of 3D Hough transformation. Wall segments 
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were extracted from MLS (165 segments) and ALS (262 segments) datasets. The results 

were compared with the cadastral map of the test area. Accordingly, the walls missing 

in the cadastral map were also detected. Some of the walls could not be extracted due to 

occlusion (between the sensor and the building) caused by trees and cars. While MLS 

provides more detailed information for the building facades, parts that cannot be 

collected with MLS were processed with the ALS data.  

Pole-like object recognition from MLS data was studied in [36]. For the experiments, 

three MLS datasets belonging to the same urban area in Japan were utilized. First of all, 

the ground has been removed from the dataset. The algorithm consists of four stages 

(Figure 2.4). First, the input point cloud was segmented with the nearest neighbors’ 

graph. Second, to improve the recognition rate, Laplacian smoothing was applied to 

each segment. With Laplacian smoothing, pole-like objects were transformed into one-

dimensional-like thin pole shapes. However, the branching structures were not 

preserved. The endpoints preserving Laplacian smoothing has been applied to fix this 

problem, and after that, branching structures remained. Third, each point was classified 

with Principal Component Analysis (PCA). Finally, thresholding was used to extract 

segments of the pole-like object. They found that the result depends on the complexity 

of the measured area, and the dataset containing overcrowded and various objects 

caused false segmentation.  

 

Figure 2.4: The recognition method for pole-like items [36]. 
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A MLS data belonging to Elgin Street in Ottawa city to extract road curbs was used in 

[37]. Their curb extraction application took place in five steps. Initially, the point cloud 

was irregular, so the point cloud was organized with using the KD-tree algorithm. Later, 

all points were searched for spherical neighborhoods, and PCA was performed. The 

surface normal and normalized eigenvalues were calculated. Next, the point cloud was 

split and segmented as ground and non-ground based on the direction of the surface 

normal and relative size of eigenvalue. Parts of objects such as trees, poles and 

buildings in the separated ground were removed by fitting a plane. In the fourth stage, 

curb borders, street floor, and sidewalk were extracted. Finally, the curb was separated 

from the street floor and sidewalk by thresholding different parameters using Canny 

edge detection [53].  The authors concluded that removing objects close to the curb such 

as vehicles was found to be difficult.  

Detecting vertical urban objects to classifying them as tree and man-made was studied 

in [38]. Their approach was applied to two different MLS datasets. Accordingly, a 

geometric index based on geometric features was used to separate vertical and 

horizontal objects from the datasets. Points belonging to the same surface were 

segmented. The dataset was divided into 3D vertical pillars to speed up the detection 

and extraction process. Each point was associated with a pillar. To do that, the point 

cloud was divided into grids. The pillar was then converted into voxels with fixed 

heights. The detection was continued starting from the voxel with the lowest height that 

was containing at least one point until the empty voxel coincided. Each pillar consisted 

of points between the lowest and the first empty, the others were omitted (Figure 2.5). 

With the RX anomaly detection algorithm, pole-like objects were automatically 

detected and unsupervised classification was completed. 

 

Figure 2.5: Limiting the pillar height up to an empty voxel [38]. 
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Parking monitoring from MLS point clouds was studied in [39]. The dataset was 

divided into segments. Each segment was considered as an object, and 3D geometric 

features that describe shape and size were obtained from segments. Vehicle and non-

vehicle were separated from each other by making a binary classification. The objects 

were often found to be incomplete because the scanning of MLS system was conducted 

from only a single direction. For that reason, a deformable vehicle model has been 

fitted, and the occluded parts were modeled to redo complete vehicle models for 

accurate localization. In addition to geometric features, the model parameters were 

handled as vehicle attributes.  Support Vector Machine (SVM) and Random Forest (RF) 

were preferred as classifiers. The corresponding vehicles were detected and then 

compared in the feature space to detect vehicle changes in two datasets collected at 

different times (Figure 2.6). For this purpose, supervised learning was applied. The 

classifier was trained on the vehicle pairs. In the feature space, the same vehicle pairs 

and different vehicle pairs were compared, and the difference was used to construct a 

new training set.  Two main issues, under-segmentation and occlusion were found to be 

the causes of false alarms on the final results. 

 

Figure 2.6: Change detection of the vehicles. Vehicles that have not been changed are in 

black, vehicles with a change are in blue color, and without corresponding 

vehicles are in white [39]. 

 

A road marking extraction and classification method from MLS data was proposed in 

[40] for smart cities to determine and update the road markings. Reflective points were 
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extracted from the point cloud by segmenting the pavements via K-means clustering, 

and applying the intensity filtering to separate road markings. Road markings were 

detected with several image processing steps after producing a binary intensity based 

image. Two different sets of features were produced for each marking, and pedestrian 

crossing and arrows were classified through a neural network. As a result, misdetections 

were observed due to fading of paint or occlusion caused by parked vehicles. The 

resulting classified road marking were transferred to a Geographic Information System 

(GIS) for future studies.  

The classification of MLS point cloud by extracting geometric features with supervoxel-

based local context instead of individual points was presented in [41]. The data was split 

into 3D cubes for supervoxelization (Figure 2.7). Thus, the MLS point cloud was not 

affected by the uneven density problem, and the computational time was reduced. 

Geometric features were extracted based on segments. For each supervoxel, the local 

geometry tendency was determined using high pass filtering to leverage unique 

geometric characteristics. Supervised classification through height, density and eigen-

based features were performed on the TUM Campus MLS1 dataset, half as training and 

half as testing, with a Random Forest classifier. As a result, uneven edges, such as the 

corners between the wall and the ground, were misinterpreted as zigzag connections, 

and objects with inadequate samples were misclassified. 

 

Figure 2.7: Representation of supervoxel [41]. 

 

2.2.3. Point-based Classification 

In point-based classification, each point in the point cloud is labeled individually 

without segmenting the point cloud data. The geometric properties of points within a 

close neighborhood are used to classify them, and the uniqueness of the geometric 

characteristics depends on the neighborhood. Therefore, different strategies were 
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proposed to define the local neighborhood of a point within the point cloud. However, 

the most commonly preferred definitions of local neighborhood are based on the 

spherical neighborhood [54], cylindrical neighborhood [55], and k-nearest neighbors 

[56]. Since the point density is variable in MLS-based point clouds due to specific 

reasons (occlusion, varying scanning angle, and varying distance), clarifying the local 

neighborhood information (length, size, shape etc.) is very important to achieve a 

satisfactory final result [42]. In most cases, neighborhood definitions can be 

accomplished with a single parameter (radius or the number of closest points), and prior 

knowledge about the data can be quite useful for the appropriate selection of that 

parameter. Besides, there are also approaches proposed for selecting the optimal 

neighborhood size as per the data, aiming to support different neighborhood sizes for 

different classes. Multiple scales of the point cloud can be utilized instead of a single 

scale to characterize the local 3D structure. This can be formed by spherical 

neighborhood and cylindrical neighborhood of different radii or a combination of these 

two types [57]. Since the point-based features are generally sensitive to point density, 

multiscale features might be useful to improve the classification performance.  

 

2.2.4. Review of Studies Comprising Point-based Classification 

A methodology to finding the optimal neighborhood radius based on a given point 

location were presented by [42]. Figure 2.8 represents the linear, planar or volumetric 

behavior of points and spreading of points as one, two or three dimensions. Dimension-

based features are calculated by using cylindrical neighborhoods considering different 

radii. Two methods were used as entropy feature and similarity index, to finding the 

optimal neighborhood radius for each point, and evaluated on ALS, TLS and MLS 

datasets. Considering TLS and MLS evaluations, relatively large objects having low 

point density can be assumed planar for medium-sized neighborhoods, while objects 

having small widths can be viewed as planar or volumetric. 
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Figure 2.8: Ellipsoid reveals the linear, planar or volumetric behavior if the points are 

spread in one (blue), two (grey) or three dimensions (green) [42]. 

 

A point-based classification have been carried out in [43], and they applied a 

segmentation method to extract pole-like objects. PCA method was applied to find 

eigenvalues. Accordingly, dimensionality features like linear, planar and spherical were 

extracted. The optimal neighborhood selection was found to be important since fixed 

neighborhoods caused poor estimation results. Therefore, dimensionality features were 

formulated as an entropy function to finding the optimal neighborhood of a sphere. 

Point-based classification based on just three shape-based features was carried out by 

applying the SVM classifier to the MLS point cloud. Finally, a segmentation step was 

applied to the classified point cloud with region growing method using principal 

direction, normal vector and intensity of each labeled point. The presented method 

achieved successful results in classifying pole-like objects in complex areas. However, 

there were some misclassifications e.g. carts were classified as trees since the extracted 

shape features were quite similar to each other (Figure 2.9). 
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Figure 2.9: Misclassified part of pole-like objects [43]. 

 

A framework presented in [10] consisting of components including neighborhood 

selection, feature extraction, feature selection and classification. They employed the k-

nearest neighbors of a given point as the neighborhood definition. First, eigenvalues 

were obtained by calculating the covariance matrix. Calculated eigenvalues were used 

to find both local surface variation and other eigen-based features. In total, 21 geometric 

3D and 2D features were extracted. 7 different neighborhood definitions were formed 

by selecting five different k values (10, 25, 50, 75, 100), the optimal neighborhood by 

dimensionality-based, and eigen entropy-based scale selection. During the training 

process, the same number of samples was randomly collected for each class. 10 

different classification methods were tested on Oakland 3D Point Cloud Dataset and 

Paris-rue-Madame database. They built a training set with 1000 training examples per 

class for both, and then utilized the remaining data as the test set. As a result, the 

Random Forest classifier gave a better result for eigen entropy-based scale selection and 

with 4 feature selection method. On imbalanced datasets, the ideal neighborhood size 

was found to be low, and the overall accuracy was shown to be low. 

The height of objects was used in addition to the intensity value of the points to classify 

MLS point cloud in [44]. They assigned the height difference and the density of the 

points inside the cylinder to each point in the point cloud using the cylindrical 

neighborhood (Figure 2.10). The cylinder was created vertically, and its height was 

fixed for the entire dataset. The MLS dataset obtained from Paris-Rue-Madame in 2013 

was utilized for the experiments. Although the dataset covers 26 classes in total, the 

SVM classifier has been selected by applying a point-based classification on just 5 

classes out of 26 classes. They separated ground and non-ground points by filtering, and 
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the radius of the cylinder, which is an important parameter, was fixed to 25 cm. 

Randomly selected 1000 points was chosen for each class for training. They found that 

the radius of the cylinder and overlapping of two or more objects affects the 

classification result. 

 

Figure 2.10: Vertical cylindrical neighborhood with a specified radius. The lowest and 

the highest points determine the height difference of a point [44]. 

 

The study proposed in [45] focused on semantic classification with a multiscale 

spherical neighborhood strategy utilized to extract geometric features. The framework is 

shown in the Figure 2.11. As argued in the study, scale selection was important as it 

affected the computational time to extract geometric features. According to their 

strategy, if the point density was high, the point cloud could be subsampled to create a 

uniform cloud, and therefore, they divided the point cloud into grids. They evaluated 

covariance-based features and color features (when available) for the experiments on 

different datasets such as Paris-Rue-Madame, Paris-Rue-Cassette. The classification 

was carried on 6 classes (for the Paris-Rue-Cassette dataset). As a training set, randomly 

distributed 1000 points per class were selected.  Besides, three datasets from different 

environments were assessed. They preferred the Random Forest classifier as a base 

classification approach, and Intersection over Union (IoU) measure for evaluating the 

results. They achieved the mean accuracy of all classes as 82.84% and 65.50% for 

Paris-Rue-Madame and Paris-Rue-Cassette datasets, respectively.    
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Figure 2.11: Semantic classification framework [45]. 

 

A study in the field of power line classification using ALS and MLS datasets was 

presented in [30]. They carried out supervised classification, and evaluated different 

neighborhood types, classification methods and feature sets. In total, 5 datasets (3 ALS, 

2 MLS) including urban, forest and suburb areas were involved. The ground was 

filtered from the point cloud, and the powerline point candidate was selected from the 

points by selecting a height threshold (i.e. 4 m) above the ground. Four types of local 

neighborhoods were defined (the spherical neighborhood with a fixed radius, vertical 

cylindrical neighborhood, k nearest neighborhood and optimal k nearest neighborhood 

whose k value was obtained from eigenentropy-based scale selection). Six different 

radius parameters were investigated (i.e. 1m, 3m, 5m, 7m, 9m, and 11m). For the 

powerline classification, eigenvalues were calculated, and accordingly, 3 different 

feature sets were created. The first feature set included 26 features. PCA was applied to 

the first set, and those who exceeded 90% of the sum of variance created the second 

feature set. For the third set, 9 out of 26 features (linearity, scattering, anisotropy, 

changing of curvature, density, verticality, eigenvalue entropy, radius, and standard 

deviation of the Z values) were selected. 6 different classification methods were 

implemented, and RF classification with the multiscale vertical cylinder for the local 

neighborhood gave the best results. Considering the computation speed and results, the 

third feature set was preferred, and MLS results were found to be better than ALS 

results. 

A multiscale and hierarchical deep learning approach to classify 3D point clouds 

(Figure 2.12) was developed in [46]. The Oakland and Europe datasets were preferred 

as MLS and TLS point cloud, respectively. First, a single-scale neural network was built 

to learn the deep properties of the point cloud on a single scale, and features were 

created by combining the features of the convolution layer and the max pool layer. A 

multiscale point cloud pyramid was created by subsampling the input point cloud to 
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different scales. To build the input point cloud, a set number of n-nearest adjacent 

points were retrieved by treating each point as the center. The deep features were 

extracted by using the single-scale deep neural network at every scale and stacked into 

one feature vector. The classification was applied based on the extracted feature vector 

to determine the label of each point, and the process was run iteratively until the neural 

network parameters were optimized. The point labels were compared with the reference 

labels for the performance evaluation. Some misclassified pixels were encountered for 

some classes having small-sized samples and having similar appearance. As a result, a 

classification accuracy of over 90% was reached. 

 

Figure 2.12: Workflow of multiscale and hierarchical deep neural network-based 

classification framework [46]. 

 

The classification performance of several machine learning methods upon several scales 

was tested in [12]. This process was carried on Dublin city, Vaihingen and Oackland3D 

datasets, and tested using different classifiers (RF, Linear Discriminant Analysis, 

Gaussian Naïve Bayes and Logistic Regression, Multi-Layer Perceptron, Decision Tree, 

SVM and k-nearest neighbors). Three classes (ground surface, building and vegetation) 

were considered in the classification. For each point, areas with different radii (0.5m, 

1m, 1.5m, 2m, and 3m) were created through spherical neighborhood, and 13 features 

(produced from covariance matrix and height, roughness, normal change rate and 

volume density) were calculated. Classification accuracy was found to be the best with 

a 3 m scale for the Dublin city dataset which has the highest point density. However, 
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since the point density is less in Vaihingen and Oakland3D datasets, the highest 

accuracy was obtained with different scales (1m and 1.5m). Thus, a relatively large 

radius would be preferred for dense point clouds, and the selected scale parameter (and 

point density) was found to be important for producing more accurate results. 
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3. PROPOSED FRAMEWORK 

The proposed framework is divided into three main parts: (i) the recovery of local 

neighborhood of each 3D point in the cloud, (ii) the extraction of features for all points 

within the local neighborhood points, and (iii) the classification to assigning the labels 

based on the extracted features. The overall framework is depicted in Figure 1.1. In this 

chapter, the details of the approaches utilized are provided. Despite the fact that the 

segment-based approaches provide relatively less computation time and runs on 

(imperfect) homogeneous regions defined beforehand, the parameterization of the 

segmentation step (e.g. segmentation method, size, internal parameters) requires critical 

assessments. For that reason, in this thesis, point-based classification strategy is 

preferred. 

The main algorithm steps are summarized as follows: 

Algorithm  

1. Let any point in the MLS point cloud be Xi. Each Xi point is taken as the center 

to create a local 3D structure. 

2. Selecting the neighborhood type and defining the neighborhood. 

3. Calculating features based on the points in the local neighborhood for each 𝑋𝑖 

4. Automatically generating the training, validation and test sets.  

5. Training the RF model with the generated training set 

6. Validation of the RF model based on the validation dataset 

7. Classifying the test set based on the RF model 

8. Calculating the accuracy measures (confusion matrix, overall accuracy, kappa).  

 

3.1. The Recovery of a Point Neighborhood  

One of the imported factors of the classification of MLS point clouds is determining the 

local neighborhood points in the cloud, and different approaches can be exploited to 

collect local neighborhood information from a point cloud [30]. Spherical 

neighborhoods or cylindrical neighborhoods are formed according to a defined radius 

parameter, whereas k-nearest neighborhood is determined according to the number of 

closest points based on Euclidean distance in 3D space [57].  
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3.1.1. k-Nearest Neighborhood (kNN) 

In this method, for a given point, k number of closest points is selected from the point 

cloud with the help of the Euclidean distance measure. Since the number of k points is 

fixed, the method adjusts the area of interest according to the point density, and the 

closest points are selected. Note that, kNN method does not contain a fixed spatial 

neighborhood size (Figure 3.1). For each point in the point cloud, the k closest points 

are determined, and the features described in Section 3.2 are extracted according to 

these points, and assigned as features to the point under evaluation.  

 

Figure 3.1: Two examples of kNN neighborhood definition (Green: point under 

consideration, Red: highest point, Blue: lowest point). 

 

3.1.2. Spherical Neighborhood 

For each point Xi in the point cloud, Xi is taken as the center of the local neighborhood. 

A sphere is created over a constant radius r (Figure 3.2).  

 

Figure 3.2: Spherical neighborhood with radius r (Green: a point under consideration, 

Red: highest point, Blue: lowest point). 

 

Based on the points within this sphere, the features described in Section 3.2 are 

computed. Compared to the kNN, the size of the sphere does not change even the 
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density may change for different points since the radius of the sphere is fixed (Figure 

3.3). 

 

Figure 3.3: The difference between kNN and spherical neighborhood at different points. 

 

3.1.3. Cylindrical Neighborhood 

For each point Xi in the point cloud, Xi is taken as the center of the local neighborhood. 

The point cloud is projected into a 2D horizontal plane (XY-plane) to find the points 

inside the circle with a fixed radius r (Figure 3.4). To extract the features described in 

Section 3.2, the X, Y, Z coordinates of these points within the circle are used. 

 

Figure 3.4: Representation of the point cloud in the XY-plane at radius r, and 

accordingly vertical cylindrical neighborhood with radius r (Green: point 

under consideration, Red: highest point, Blue: lowest point). 

 

3.2. Feature Extraction 

Since MLS point clouds are composed of only points with 3D coordinates, the 

classification step requires rich features to be extracted from either analyzing the local 

geometric structure of neighboring points in the cloud or overlaying with optical images 

(if available) for RGB values. If there is a lack of optical images along with the point 
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cloud, geometric features have to be carefully generated from the close neighborhood of 

each point in the point cloud. Thereafter, using geometric characteristics collected from 

the spatial arrangement of 3D points in the immediate vicinity, a classifier can be run.  

In this thesis, local features around a point neighborhood are grouped as (i) 3D 

geometric properties and (ii) 3D shape features (Table 3.1).  

Table 3.1: Local geometry and shape information collected from X, Y, and Z 

coordinates of surrounding points in a point cloud are used to generate 

features. 

Feature 

Group 

Feature Symbol Formula Reference 

Local 

geometric 

features 

Normalized height of a point 𝐻 |𝑍| [12] 

Number of points in the 

neighborhood 
𝑁 - [44] 

Height Difference ∆𝐻 ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛 [44] 

Standard Deviation of Height 𝜎𝐻 √
1

𝑘
∑(𝐻𝑗 − 𝜇𝐻)2

𝑘

𝑗=1

 [10] 

Verticality 𝑉 1 − 𝑛𝑧 [31] 

Local 

shape 

features 

Linearity 𝐿𝜆 
𝜆1 − 𝜆2

𝜆1
 [56] 

Planarity 𝑃𝜆 
𝜆2 − 𝜆3

𝜆1
 [10] 

Sphericity 𝑆𝜆 
𝜆3

𝜆1
 [10] 

Omnivariance 𝑂𝜆 √𝜆1𝜆2𝜆3
3

 [12] 

Anisotropy 𝐴𝜆 
𝜆1 − 𝜆3

𝜆1
 [12] 

Eigenentropy 𝐸𝜆 - ∑ 𝜆𝑖ln (𝜆𝑖)3
𝑖=1  [12] 

Sum of Eigenvalues ∑𝜆 𝜆1 + 𝜆2 + 𝜆3 [56] 

Change of local curvature 𝑐𝜆 
𝜆3

𝜆1 + 𝜆2 + 𝜆3
 [10] 

 

3.2.1 Local Geometric Features 

The first set of features is defined in terms of the geometric properties of the considered 

local neighborhood (i.e. normalized height, height difference, the standard deviation of 
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height, number of points within the predefined neighborhood, and verticality). 

Considering the first geometric feature, the elevation of a point in the MLS point cloud 

is available w.r.t. to a reference surface, i.e. the ellipsoidal surface (Z). In this thesis, the 

elevation of each point is normalized (|𝑍|) according to the terrain height. For that 

purpose, the Clouth Simulation Filtering (CSF) plug-in [58] of the Cloud Compare 

software is applied to extract the ground surface height. According to the CSF 

algorithm, the original point cloud is inverted and clouth is passed over it. Looking at 

the interaction between the input points and the clouth node, the clouth is given its final 

shape. Produced clouth is used to separate the original point cloud as ground and non-

ground. Next, the distance between the points in the original point cloud and the 

produced clouth mesh is calculated. Finally, the height of each point (H) from the mesh 

is assigned to the relevant points.  

The local geometric features calculated other than the heights (H) are 

 the number of points (N) in the local neighborhood,  

 the height difference (∆𝐻), i.e. the difference between the maximum and the 

minimum height of the points within the local neighborhood,  

 the standard deviation of the heights of the points within local neighborhood 

(𝜎𝐻),  

 the verticality (V), i.e. the difference from vertical of the Z component of the 

normal vector. 

Note that the feature the number of points (N) in the local neighborhood is not 

meaningful for the kNN neighborhood since k is always equal to N for all points. 

Therefore, this feature is not extracted when the kNN neighborhood is utilized. 

 

3.2.1 Local Shape Features 

The other features rely on eigenvalues 𝜆𝑖 with 𝑖 = 1,2,3 which are represented as local 

shape features. These features are given by  

 the linearity (𝐿𝜆) explains the variance with the only largest eigenvalue, 

 the planarity (𝑃𝜆) explains the variance with the two largest eigenvalue,  

 the sphericity (𝑆𝜆) explains the variance with the smallest eigenvalue,  

 the omnivariance (𝑂𝜆) presents the volumetric point distribution,  
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 the anisotropy (𝐴𝜆) is the directional dependence,  

 the eigenentropy (𝐸𝜆) indicates the order/disorder of 3D points within the local 

neighborhood, 

 the sum of eigenvalues (∑𝜆),  

 the change of local curvature (𝑐𝜆). 

Principal component analysis (PCA) provides the main aspects of the point distribution 

in 3D, and the magnitudes in the variation of the point distribution based on the center 

of gravity of the neighborhood [42]. PCA is used to generate a covariance matrix for 

each point within neighbors, and assessing the eigenvalues generated from the 

covariance matrix [27]. The coordinates of the neighboring points specify a shape with 

the eigenvalues obtained from the 3×3 covariance matrix. Eigenvalues are positive and 

sorted as 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0. The neighborhood defines a 3D line shape when one of the 

eigenvalues is large and the others are close to zero. If two eigenvalues have almost the 

same value and the other one is close to zero, the neighborhood forms a 3D plane. Other 

than this, if all of them are large, it forms a 3D spherical or fuzzy surface [44].  

 

3.3. Random Forest Classification 

Once the features are extracted, the next step is to apply a classification to assigning a 

label to each point in the point cloud. In this study, the RF classifier was employed with 

geometric features to classify MLS point cloud with a point-based classification point-

of-view.  

RF [59] is a collection of tree-structured classifiers that consists of a series of 

classification (or regression) trees generated on random samples of data. The RF uses a 

subset of randomly constrained and selected predictors to split each node in each 

classification tree. A tree is grown using random feature selection using a new training 

data set created from the original data set with replacement [59,60]. Three parameters 

are required to initialize RF algorithm (cf. Chapter 4). These are the number of trees to 

grow, the number of variables used to split each node and the minimum number of 

observations per tree leaf, respectively. A bootstrapped dataset is created by randomly 

selecting a sample from the original data set, and to perform the method, first, N 

bootstrap samples are drawn from 2/3 of the training data set. Bootstrapped the dataset 

and aggregate to make a decision is called bagging. Next, remaining 1/3 of the training 
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data, also called out-of-bag (samples that are not included in the bootstrapped dataset), 

are utilized to test the error of the predictions. The out-of-bagged error shows how 

accurate the created random forest model is with out of bagged dataset. Then, from each 

bootstrap sample, an unpruned tree is created, with m predictors randomly picked as a 

subset of predictor variables at each node, and lastly, the optimal split among those 

variables is determined [61]. Classification and Regression Tree (CART) algorithm is 

utilized when creating trees [59]. Further details of RF method can be obtained from 

[59]. 

RF classifier has been utilized in a number of studies involving MLS data classification 

(see Table 2.2), and instead of relying on a decision based on a single tree, the random 

forest creates a prediction from each individual decision tree generated, and based on 

the majority voting of the predictions, and combines the predictions to produce a more 

accurate result. Figure 3.5 represents diagram of Random Forest classification 

algorithm. 

 

Figure 3.5: Random Forest classification algorithm.  
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4. DATASET AND EXPERIMENTS 

This chapter is devoted to the description of the study area and the dataset, the 

evaluation strategy, and finally the assessments of the experiments conducted. In this 

thesis, the dataset utilized belongs to MLS point cloud acquired over a part of Germany, 

which is a dataset published as a benchmark dataset in 2016 to support the training and 

validating phases of the classification task of MLS point clouds (Table 4.1).  

Table 4.1: Benchmark datasets available for MLS. 

Datasets Sensors # Points #Classes Year 

Oakland [33] SICK LMS 1.6M 44 2009 

Sydney Urban Objects [62] Velodyne HDL-64E - 4 2013 

TerraMobilita/iQmulus [63] Riegl LMS-Q120i 12M 22 2013 

Paris-Rue-Madame [64] Velodyne HDL-32E 20M 17 2014 

TUM-MLS1 [13] Velodyne HDL-64E 41M 8 2016 

Paris Lille 3D [65] Velodyne HD-32E 143.1M 50 2018 

SemanticKITTI [66] Velodyne HDL-64E 4.5 B 28 2019 

Toronto-3D [67] Velodyne HDL-32E 78.3M 8 2020 

A2D2 [68] Velodyne VLP-16 - 38 2020 

 

4.1. Study Area  

The study area covers the city campus of the Technical University of Munich (TUM) 

(Figure 4.1) which is located in Munich, Germany, (48.1493° N, 11.5685° E) and the 

total area is of about 29000 m2. In this study, a cooperative benchmark of TUM-PF and 

Fraunhofer IOSB, TUM-MLS1 dataset is utilized [13]. The research topic not only 

connects multiple groups (such as computer vision, robotics, and geoinformatics), but 

also provides a consistent and area-wide representation of the studied urbanized 

landscape, including high-rise building facades. The test area is around 0.2 km2 in size, 

and has highways that are around 1 km long. 
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Figure 4.1: Overview and real scene representation of TUM campus from Google Earth. 

 

4.2. Dataset 

The test dataset TUM-MLS1 was acquired by MLS platform MODISSA on April 18th, 

2016. The point clouds were created using two Velodyne HDL-64E cameras set at a 35° 

angle on the vehicle's front top [41]. The dataset requires 62 GB of storage, and each 

point within the dataset has 3D coordinates (X, Y, and Z) and an intensity value. Table 

4.2 includes dataset specifications. The parts of the test area have been manually labeled 

for training and evaluation as ground truth, and it is shown in Figure 4.2.  
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Table 4.2: Specification of benchmark from MLS 

S
p

ec
if

ic
a

ti
o

n
 

Data collection date April 2016 

Data type MLS 

Sensor type Velodyne HDL-64E 

Sensor angle 35° on the front top of the vehicle 

Scene type Urban 

File format pcd 

File size 62 GB 

 

The dataset includes the following classes:  

 Artificial Terrain (1) as roads and impervious ground,  

 Natural Terrain (2) as grass and bare land,  

 High Vegetation (3) as trees,  

 Low Vegetation (4) as bushes and flowers,  

 Building (5) as building facades and roofs,  

 Hardscape (6) as walls and fences,  

 Artifact (7) as power cables and other artificial objects, and  

 Vehicle (8) as parked cars and busses.  

 

 

Figure 4.2: Manually classified MLS point cloud of the test scene with eight different 

semantic labels. 
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Figure 4.3 shows the distribution of the ground truth (reference data) size of each class 

for the entire data set, and in total, there are 3,039,327 labeled points. For certain classes 

like buildings and high vegetation, relatively high numbers of reference points are 

noticeable. Whereas, the dataset holds relatively less numbers of labeled data especially 

for two classes, i.e. low vegetation and hardscape. 

 

Figure 4.3: Distribution of the ground truth point sizes of each class within the dataset. 

 

4.3. Assessment Strategy 

As the assessment strategy, the holdout cross-validation [69] technique is performed. 

Cross-validation is a popular procedure preferred to evaluate different machine learning 

models, and designed to figure out how a machine learning model will act for a dataset. 

The holdout technique is one of the cross validation methods randomly dividing the data 

set into training and test data.  

Initially, the reference data were randomly divided into two groups: one to be used as a 

training set (about 25%), and the other (about 75%) to be utilized independently for 

evaluating the classification findings. Figure 4.4 shows those two groups and the 

distribution of number of points each class within the group.  

In the case of holdout cross-validation, the training dataset is also randomly divided into 

training and validation data. While the classification model is estimated with the training 

data, the performance of the trained model is internally evaluated with the validation 

data. The training set is also randomly split into two groups during the RF learning 
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stage, with 80% of the training set serving as training data and the remaining 20% 

serving as validation data (Figure 4.5).  

In addition, during this step, k-fold cross validation method (k value was chosen as 5) 

was also tested. However, since the results computed were found to be the same 

(difference less than 1%), the results of such cross validation were not reported in this 

thesis. 

 

Figure 4.4: Distribution of the ground truth sizes of each class for training and testing 

datasets. 

 

Figure 4.5: Selection strategy of training, validation, and test sets. 

 

During the evaluations of the classified results, a detailed investigation on the 

classification performance is provided. Well known two measures, overall accuracy 

(total number of correct labels / total number of reference labels) and kappa index 

(difference to chance), are calculated to understand how well the RF classifier predict 

the classes. Confusion matrices as well as results of producer’s and user’s accuracies are 

also presented for further evaluation. 
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4.4. Parameter Evaluation 

According to the framework described in Chapter 3, the parameters necessary to 

initialize the proposed method are presented in Table 4.3.  

Table 4.3: Parameter test settings defined for the strategies implemented. 

Stage Parameters  {Tested} / “Selected” 

3.1. Neighborhood recovery 

k Value for kNN 

neighborhood based on 3D 

Euclidian distance (𝑵𝐤𝐍𝐍) 

{50,75,100,125, “150”} 

Radius for spherical 

neighborhood (𝑵 𝐒 ) 
{0.50,0.75, 1.00,1.25, “1.50”} 

Radius for vertical cylindrical 

neighborhood (𝑵 𝑪 ) 
{0.50, “0.75”} 

3.2. Geometric Feature 

Extraction 

# of features (𝑵𝐤𝐍𝐍) {in total 12, “in total 9” } 

# of features (𝑵 𝐒 ) {in total 13, “in total 7” } 

# of features (𝑵 𝑪 ) {in total 13, “in total 4” } 

3.3. Random Forest 

Classification 

# of trees {5, 10, 15, 20, “25”, 30} 

# of variables (n) to select for 

each decision split, √𝑛  
“3” (default) 

Minimum # of observations 

per tree leaf 
“1” (default) 

 

In order to test how point-based classification is affected by neighborhood selection, 

different neighborhood types along with 13 geometric features described in Section 3.2, 

were taken into account. The outputs of the classification for different classes in terms 

of user’s and producer’s accuracies are summarized in the following tables (Table 4.4, 

Table 4.5, and Table 4.6).  

Table 4.4: User’s accuracy (%) and producer’s accuracy (%) of the validation set for 

each class according to kNN (kNN neighborhood: NkNN where k = 50, 75, 

100, 125, 150 points) (Best performances are given in bold). 

Classes 
Type of 

Accuracy 
𝑵𝐤𝐍𝐍:𝟓𝟎 𝑵𝐤𝐍𝐍:𝟕𝟓 𝑵𝐤𝐍𝐍:𝟏𝟎𝟎 𝑵𝐤𝐍𝐍:𝟏𝟐𝟓 𝑵𝒌𝑵𝑵:𝟏𝟓𝟎 

Artificial 

Terrain 

User’s 88.8 88.9 89.7 90.3 90.4 

Producer’s 93.5 94.0 94.1 94.2 94.3 

Natural Terrain User’s 76.1 78.2 79.3 80.0 80.3 
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Producer’s 79.2 80.1 80.9 82.3 82.7 

High Vegetation User’s 88.8 94.7 96.3 96.4 96.5 

Producer’s 95.0 97.5 97.8 98.6 98.7 

Low Vegetation User’s 76.8 76.8 81.0 83.5 85.5 

Producer’s 48.3 53.3 59.3 64.0 67.1 

Building User’s 91.3 95.3 95.9 97.0 97.3 

Producer’s 86.1 93.1 95.1 95.3 95.5 

Hardscape User’s 75.3 77.2 79.0 80.0 81.1 

Producer’s 44.6 49.2 51.2 53.3 53.0 

Artifact User’s 83.9 87.4 87.9 90.3 89.4 

Producer’s 45.7 62.1 69.0 71.8 74.3 

Vehicle User’s 83.6 85.0 85.6 87.1 88.1 

Producer’s 82.5 83.3 84.0 83.9 84.3 

 

Table 4.5: User’s accuracy (%) and producer’s accuracy (%) of the validation set for 

each class according to spherical neighborhood type (Spherical 

Neighborhood: NS, and radius = 0.50, 0.75, 1, 1.25, 1.50 (in meters)) (Best 

performances are given in bold). 

Classes 
Type of 

Accuracy 
𝑵𝐒:𝟎.𝟓𝟎 𝑵𝐒:𝟎.𝟕𝟓 𝑵𝐒:𝟏.𝟎𝟎 𝑵𝐒:𝟏.𝟐𝟓 𝑵𝐒:𝟏.𝟓𝟎 

Artificial 

Terrain 

User’s 85.1 86.0 86.7 88.3 89.0 

Producer’s 90.3 90.9 91.5 92.7 93.3 

Natural Terrain User’s 73.2 75.9 77.1 79.8 81.4 

Producer’s 73.7 76.4 77.3 80.2 81.4 

High Vegetation User’s 83.7 86.4 88.6 89.8 90.6 

Producer’s 91.1 93.9 95.3 95.9 96.4 

Low Vegetation User’s 50.5 60.2 70.6 82.9 83.6 

Producer’s 19.1 34.5 38.9 49.9 60.3 

Building User’s 83.5 88.1 90.8 92.3 93.4 
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Producer’s 79.1 82.9 86.1 87.8 88.9 

Hardscape User’s 63.5 76.1 84.5 83.5 87.4 

Producer’s 19.6 32.1 42.1 49.3 56.9 

Artifact User’s 59.5 75.4 81.1 84.9 87.5 

Producer’s 19.3 29.4 38.2 44.5 50.0 

Vehicle User’s 63.6 71.3 76.2 81.1 85.4 

Producer’s 67.2 73.7 78.6 82.3 84.9 

  

Table 4.6: User’s accuracy (%) and producer’s accuracy (%) of the validation set for 

each class according to cylindrical neighborhood type (Cylindrical 

neighborhood: NC and radius=0.5, 0.75 (in meters)) (Best performances are 

given in bold). 

Classes Type of Accuracy 𝑵𝐂:𝟎.𝟓𝟎 𝑵𝐂:𝟎.𝟕𝟓 

Artificial Terrain User’s 89.8 90.9 

Producer’s 94.0 94.7 

Natural Terrain User’s 80.5 82.7 

Producer’s 81.7 84.0 

High Vegetation User’s 97.9 98.4 

Producer’s 99.0 99.1 

Low  Vegetation User’s 87.0 90.5 

Producer’s 65.6 71.4 

Building User’s 98.0 98.1 

Producer’s 97.3 97.9 

Hardscape User’s 81.4 84.2 

Producer’s 53.6 56.0 

Artifact User’s 90.3 92.6 

Producer’s 77.9 81.0 

Vehicle User’s 88.4 89.9 

Producer’s 86.3 88.1 
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The performance of the classification can be analyzed by inspecting the overall 

accuracies and kappa values computed for the validation set. Considering the 

parameters tested for three different local neighborhood types, the best results for the 

overall accuracies and kappa values are obtained in cases where (i) k is set to 150 for 

kNN neighborhood, (ii) the radius is set to 0.75 meters for the vertical cylindrical 

neighborhood, and (iii) the radius is 1.50 meter for the spherical neighborhood (Table 

4.7). 

Table 4.7: Overall accuracy and Kappa index (in %) of validation set for all three 

neighborhood and size parameters (best performances are given in bold). 

Neighborhood Size Parameter Overall Accuracy (%) Kappa Index (%) 

𝑵𝑘𝑁𝑁 K=50 88.4 83.4 

K=75 92.5 89.2 

K=100 93.5 90.7 

K=125 94.2 91.6 

K=150 94.4 91.9 

𝑵𝐒 R=0.50 82.3 74.4 

R=0.75 85.6 79.3 

R=1.00 87.8 82.5 

R=1.25 89.4 84.8 

R=1.50 90.4 86.3 

𝑵𝐶  R=0.50 95.1 93.0 

R=0.75 95.8 94.0 

 

Considering the random forest classification, the effect of the number of trees was 

evaluated, since the number of trees is an important parameter of the RF classifier 

affecting the output results of the classification. For that parameter, a number of values 

(5, 10, 15, 20, 25 and 30) were tested, and the overall results reached for each parameter 

are illustrated in Figure 4.6. After such evaluation, the number of trees was fixed to 25, 

when results are found to be stable and consistent after that value. Table 4.3 shows the 

values that would normally not be modified for the other RF classifier parameters. 
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Figure 4.6: Overall accuracy based on the number of trees of the Random Forest 

classifier. 

 

The relative importance of all 13 features used during the classification was tested using 

“Out of Bag Predictor Importance Estimates” of the RF algorithm of MATLAB (see 

Figure 4.7). A fixed threshold value was determined and predictors below this threshold 

were removed. If all of the results were jointly taken into account, the most important 

parameter for all neighborhood types amongst 13 features was found to be the 

normalized height of a point (H) (Figure 4.7). 
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k-Nearest Neighborhood 93,1 93,9 94,1 94,3 94,4 94,4

Spherical Neighborhood 88,7 89,7 90,2 90,3 90,4 90,4

Cylindirical Neighborhood 94,8 95,4 95,7 95,8 95,8 95,8
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(b) 

 

(c) 

Figure 4.7: Out-of-bag importance of all parameters for (a) kNN (k = 150), (b) spherical 

neighborhood (R = 1.50m), and (c) cylindrical neighborhood (R = 0.75m). 

Note that the red line in all subfigures represent the threshold value selected 

(i.e. 3.8) to determine predictor importance. Blue and black colored bars 

represent the features accepted and rejected based on the selected threshold, 

respectively. 

 

The strength of the relationship between pairs of predictors can be inferred using the 

elements of the predictor association. Larger values indicate highly correlated pairs of 

predictors. The tests revealed high correlation between the features sphericity and 

anisotropy with almost 100% correlation for all neighborhood types (Figure 4.8).  In 
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addition to sphericity and anisotropy, the feature curvature was also highly correlated 

with these two predictors for the kNN and the cylindrical neighborhood. These three 

highly correlated parameters were not considered for cylindrical neighborhood, since 

their importance was found to be relatively low. Depending on out-of-bag importance 

and predictor association estimates, the parameters given in the Table 4.8 were chosen 

as final features.  

 

(a) 

 

(b) 
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(c) 

Figure 4.8: Predictor association estimates of using (a) kNN neighborhood, (b) 

spherical neighborhood, and (c) cylindrical neighborhood. 

 

Table 4.8: Selected features according to out-of-bag importance and predictor 

association estimates for each neighborhood type. 

Neighborhood Size Parameter Selected Features 

NkNN K=150 𝐿𝜆, 𝑃𝜆, 𝑆𝜆, 𝑂𝜆, 𝐸𝜆, 𝑉, 𝐻, ∆𝐻, 𝜎𝐻 

NS R=1.50 𝐿𝜆, 𝑂𝜆, ∑λ, 𝑐𝜆, 𝐻, 𝑁, ∆𝐻 

NC R=0.75 𝑉, 𝐻, 𝑁, ∆𝐻 
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5. RESULTS AND DISCUSSION 

This chapter summarizes the point-based classification of the TUM-MLS1 point cloud 

using 8 classes (i.e. artificial terrain, natural terrain, high vegetation, low vegetation, 

building, hardscape, artifact and vehicle). First, the classification results regarding the 

numerical and visual outcomes for each local neighborhood definition are reported, and 

the reasons related to the false positive matches are discussed. Next, the outputs of RF 

classifications dealing with combinations of important features extracted from such 

local neighborhoods are presented. Finally, the classification results achieved in this 

thesis are compared with the other approaches selected from the literature considering 

the same benchmark dataset. 

 

5.1. Results for Different Neighborhood Definitions 

In order to understand how local neighborhood information affects the classification 

outcome, three local neighborhood extraction methods are assessed (kNN 

neighborhood, spherical neighborhood, and vertical cylindrical neighborhood), and all 

numerical results are reported in Tables 5.1 – 5.4.  

Amongst the three local neighborhood information tested, the classification accuracy 

reached by means of geometric- and shape-based features through a local spherical 

neighborhood relationship is found to be the lowest. As shown in Section 4.4, the best 

result for training of the spherical neighborhood is obtained when the radius is set to 

1.50 meters. Therefore, the confusion matrix output of the classification carried out 

using a spherical neighborhood based on 1.50 meter radius is evaluated (see Table 5.1). 

Main sources of classification errors are confusions between high vegetation and 

building classes, and artificial terrain and natural terrain classes. In this case, producer’s 

accuracy of three classes (i.e. low vegetation, hardscape, and artifact) is found to be less 

satisfactory (≈ 51-61%). Note that for three classes (artificial terrain, high vegetation, 

and building) pleasing results are achieved for both user’s and producer’s accuracies (≥ 

88.3%). In this case, the overall accuracy and kappa index were computed to be 90.1% 

and 85.8%, respectively (Table 5.4). 
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Table 5.1: Confusion matrix of the test data using spherical neighborhood (R = 1.5m). 

Confusion Matrix of the Test Data (2,279,495 points) 

Classes 
A.T 

(1) 

N.T 

(2) 

H.V  

(3) 

L.V 

(4) 

B 

(5) 

H 

(6) 

A 

(7) 

V 

(8) 
Total 

A.T (1) 266616 14948 0 1 1980 295 78 1013 284931 

N.T (2) 22344 130350 67 71 3288 885 339 1620 158964 

H.V (3) 0 122 850667 239 35163 74 1082 149 887496 

L.V (4) 27 204 976 6818 1462 270 337 1066 11160 

B (5) 3914 5817 81802 146 712834 430 938 1416 807297 

H (6) 3398 5107 268 175 2107 15177 400 570 27202 

A (7) 237 1168 9614 310 8564 606 23549 1893 45941 

V (8) 1804 1553 459 260 3149 356 595 48328 56504 

Total 298340 159269 943853 8020 768547 18093 27318 56055 2279495 

 

User's 

Accuracy 

(%) 

89.4 81.8 90.1 85.0 92.8 83.9 86.2 86.2 

 

Producer's 

Accuracy 

(%) 

93.6 82.0 95.9 61.1 88.3 55.8 51.3 85.5 

 

 

In the case of kNN local neighborhood, the overall accuracy of the test data when k is 

set to 150 nearest points is computed as 94.5% (Table 5.4). Although this result is 

significantly better than the results achieved using the spherical neighborhood, yet a 

number of points belonging to the classes building and high vegetation are 

misclassified. The classification results of the low vegetation and hardscape classes are 

still computed to be the lowest two of all classes (Table 5.2). 

 

Table 5.2: Confusion matrix of the test data using kNN neighborhood (k = 150). 

Confusion Matrix of the Test Data (2,279,495 points) 

Classes 
A.T 

(1) 

N.T 

(2) 

H.V  

(3) 

L.V 

(4) 

B 

(5) 

H 

(6) 

A 

(7) 

V 

(8) 
Total 

A.T (1) 269178 12054 5 7 2048 441 67 1131 284931 

N.T (2) 19786 132592 301 154 3257 1119 492 1263 158964 

H.V (3) 0 408 875862 243 9844 113 906 120 887496 

L.V (4) 278 903 594 7473 744 204 386 578 11160 

B (5) 2641 5898 24925 208 771658 286 888 793 807297 

H (6) 2681 7263 166 103 1293 14574 446 676 27202 

A (7) 249 1822 4025 396 2725 599 34452 1673 45941 

V (8) 1809 3349 137 260 1178 676 724 48371 56504 

Total 296622 164289 906015 8844 792747 18012 38361 54605 2279495 

 

User's 

Accuracy 

(%) 

90.7 80.7 96.7 84.5 97.3 80.9 89.8 88.6 

 

Producer's 

Accuracy 

(%) 

94.5 83.4 98.7 67.0 95.6 53.6 75.0 85.6 
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Compared with the other two local neighborhood definitions, the most successful 

overall result was obtained with the vertical cylindrical neighborhood. As indicated in 

Table 5.4, the overall accuracy computed is 95.3% with a kappa index value of 93.3% 

for the cylindrical neighborhood based on radius of 0.75 meters. Two classes, High 

Vegetation and Building, yielded very successful results with accuracies all over 97.5% 

despite the confusion within these two classes (Table 5.3). Even in this case, the 

producer’s accuracy of the class hardscape could not reach a satisfactory level (i.e. 

56.8%).  

Table 5.3: Confusion matrix of the test data using cylindrical neighborhood (R = 

0.75m). 

Confusion Matrix of the Test Data (2,279,495 points) 

Classes 
A.T 

(1) 

N.T 

(2) 

H.V  

(3) 

L.V 

(4) 

B 

(5) 

H 

(6) 

A 

(7) 

V 

(8) 
Total 

A.T (1) 269631 11341 0 32 2229 504 92 1102 284931 

N.T (2) 20249 132354 197 143 2506 1483 477 1555 158964 

H.V (3) 4 263 877185 309 8389 75 1131 140 887496 

L.V (4) 342 917 621 7382 508 269 394 727 11160 

B (5) 2651 3045 12295 139 787128 312 997 730 807297 

H (6) 2438 6988 205 170 690 15387 515 809 27202 

A (7) 337 1755 3275 415 2069 648 35381 2061 45941 

V (8) 1946 3352 142 390 1058 688 908 48020 56504 

Total 297598 160015 893920 8980 804577 19366 39895 55144 2279495 

 

User's 

Accuracy 

(%) 

90.6 82.7 98.1 82.2 97.8 79.5 88.7 87.1 

 

Producer's 

Accuracy 

(%) 

94.6 83.3 98.8 66.1 97.5 56.6 77.0 85.0 

 

 

In this thesis, MATLAB was used during the implementation and processing, running 

on a desktop computer with i7-9700K 3.60GHZ, 32GB RAM. The processing time 

mainly affected by the size and definition of neighborhood form, and the number of 

features selected. As can be easily predicted, since the features were calculated using 

the points detected in the local neighborhood, the processing time increases as the 

number of points in the neighborhood increases. As indicated in Table 5.4, cylindrical 

neighborhood provided the best results. However, this comes at the cost of a substantial 

increase in processing time (approximately 6 hours, see Table. 5.4) especially because 

of the computation of covariance matrix to calculate the shape features. Although kNN 

method provided the second best results, its processing has completed within ≈ 8 
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minutes; thus, provided the shortest processing time. The processing of the spherical 

neighborhood was found to be nearly two times slower than the kNN method. 

 

Table 5.4: Overall accuracy, kappa index (in %) and processing time (in minutes) for 

all three neighborhoods (bold values indicate the best values). 

Neighborhood 

Information 

Neighborhood 

Parameter 

Time     

(minutes) 

Overall Accuracy 

(%) 

Kappa Index 

(%) 

NkNN K=150 7.44 94.5 92.1 

NS R=1.50 14.60 90.1 85.8 

NC R=0.75 355.08 95.3 93.3 

 

The result of the point-based classification with the RF classifier using the geometric 

and shape features extracted for each point in the point cloud with the vertical 

cylindrical neighborhood (R=0.75 meters) is given in the Figure 5.1. If the classification 

results are examined visually, objects with similar properties like artificial terrain and 

natural terrain, objects with either overlapping or adjacent (e.g. high vegetation vs. 

artifact or (building vs. high vegetation) seems to be caused misclassification (Figure 

5.2). 

 

 

Figure 5.1: Classification output of the test dataset. 
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(a) 

                                                                                  

(b) 

 

                                                 

(c) 

Figure 5.2: Misclassification of points in the (a) high vegetation (left: result vs. right: 

reference), (b) artifact classes due to overlap with high vegetation (left: 

result vs. right: reference), (c) natural terrain due to similarities between 

artificial terrain (top: result vs. bottom: reference). 

 

5.2. Results after the Combination of Features from Different Neighborhood 

Information 

Considering the results presented in Section 5.1, a nice balance between the accuracy 

and the processing speed was achieved by the kNN method. Accordingly, 9 important 

features of kNN were selected as base features, and the (important) features from other 

neighborhood relations are added to the feature set, and thereafter, the results are 

evaluated in cooperation. Firstly, only the confusion matrix of the test results for kNN 
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neighborhood is given in the Table 5.5 for completeness. Note that the producer’s 

accuracy of the two classes, hardscape and low vegetation, were at an insufficient level. 

However, overall accuracy and kappa was computed as 94.5% and 92.1%, respectively. 

This was the shortest process and took ≈ 7.44 minutes (Table 5.9). 

Table 5.5: Confusion matrix of the test data using kNN with selected 9 important 

features (k=150) 

Confusion Matrix of the Test Data (2,279,495 points) 

Classes 
A.T 

(1) 

N.T 

(2) 

H.V  

(3) 

L.V 

(4) 

B 

(5) 

H 

(6) 

A 

(7) 

V 

(8) 
Total 

A.T (1) 269178 12054 5 7 2048 441 67 1131 284931 

N.T (2) 19786 132592 301 154 3257 1119 492 1263 158964 

H.V (3) 0 408 875862 243 9844 113 906 120 887496 

L.V (4) 278 903 594 7473 744 204 386 578 11160 

B (5) 2641 5898 24925 208 771658 286 888 793 807297 

H (6) 2681 7263 166 103 1293 14574 446 676 27202 

A (7) 249 1822 4025 396 2725 599 34452 1673 45941 

V (8) 1809 3349 137 260 1178 676 724 48371 56504 

Total 296622 164289 906015 8844 792747 18012 38361 54605 2279495 

 

User's 

Accuracy 

(%)  

90.7 80.7 96.7 84.5 97.3 80.9 89.8 88.6 

 

Producer's 

Accuracy 

(%) 

94.5 83.4 98.7 67.0 95.6 53.6 75.0 85.6 

 

 

Secondly, important features obtained by kNN (= 9) and spherical neighborhood (= 7) 

were combined, and RF classification was repeated using all 16 features. Based on the 

results computed, the overall results and kappa index are increased to 96.1% and 94.4%, 

respectively (Table 5.9). 

Table 5.6: Confusion matrix of the test data using important features of the kNN and 

spherical neighborhoods (k=150, R=1.5m) 

Confusion Matrix of the Test Data (2,279,495 points) 

Classes 
A.T 

(1) 

N.T 

(2) 
H.V (3) 

L.V 

(4) 

B 

(5) 

H 

(6) 

A 

(7) 

V 

(8) 
Total 

A.T (1) 275331 6943 0 7 1495 202 72 881 284931 

N.T (2) 12533 142589 77 60 1918 628 349 810 158964 

H.V (3) 0 121 876795 99 9996 28 443 14 887496 

L.V (4) 65 270 300 9191 565 109 237 423 11160 

B (5) 1402 1996 22998 44 780164 50 331 312 807297 

H (6) 1422 4710 116 49 1252 19012 313 328 27202 

A (7) 209 1033 4443 177 3220 274 35341 1244 45941 

V (8) 1621 952 62 57 613 318 349 52532 56504 

Total 292583 158614 904791 9684 799223 20621 37435 56544 2279495 
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User's 

Accuracy 

(%) 

94.1 89.9 96.9 94.9 97.6 92.2 94.4 92.9 

 

Producer's 

Accuracy 

(%)  

96,.6 89.7 98.8 82.4 96.6 69.9 76.9 93.0 

 

 

Thirdly, the classification result of the test data was assessed by appending only the 3 

important geometric features (𝐻, 𝑁 and ∆𝐻) through the cylindrical neighborhood to 

the important features derived from the kNN neighborhood. As a result, surprisingly, 

the overall accuracy and kappa index are slightly decreased to 95.8% and 93.9%, 

respectively, when compared to the previous case. This was due to the stunning 

decrease observed in classification results for the three classes: low vegetation, 

hardscape and vehicle. In this case, the classification task lasted for around 46 minutes 

(Table 5.9). 

Table 5.7: Confusion matrix of the test data using kNN and cylindrical neighborhoods. 

Important 9 features of kNN and 3 features of cylindrical neighborhood as 

𝐻, 𝑁and ∆𝐻 were jointly processed (k=150, R=0.75m). 

Confusion Matrix of the Test Data (2,279,495 points) 

Classes 
A.T 

(1) 

N.T 

(2) 

H.V  

(3) 

L.V 

(4) 

B 

(5) 

H 

(6) 

A 

(7) 

V 

(8) 
Total 

A.T (1) 272016 10045 0 5 1433 361 72 999 284931 

N.T (2) 17288 136506 133 117 2385 959 414 1162 158964 

H.V (3) 0 327 879552 228 6400 116 786 87 887496 

L.V (4) 288 830 484 8119 434 152 289 564 11160 

B (5) 2307 3882 15641 41 784082 325 471 548 807297 

H (6) 2257 6731 154 100 952 16082 382 544 27202 

A (7) 233 1538 3127 338 1963 455 36786 1501 45941 

V (8) 1842 2909 75 168 736 568 598 49608 56504 

Total 296231 162768 899166 9116 798385 19018 39798 55013 2279495 

 

User's 

Accuracy 

(%) 

91.8 83.9 97.8 89.1 98.2 84.6 92.4 90.2 

 

Producer's 

Accuracy 

(% 

95.5 85.9 99.1 72.8 97.1 59.1 80.1 87.8 

 

 

Finally, the RF classification was performed by combining the features obtained from 

all neighborhood information using a total of 19 features extracted for each point in the 

point cloud. In this case, the overall accuracy and kappa index were computed to be 
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96.9% and 95.5%, respectively (Table 5.9). However, as expected, the process took 

longer than the other combinations tested, as the relatively large number of points in the 

cylindrical neighborhood significantly increases the total processing time (≈ 66.88 

minutes). Figure 5.3 compares visually the reference data and the results of 

classification performed using each combination for the selected 6 classes. 

Table 5.8: Confusion matrix of the test data using all neighborhood information. All 

important features of kNN and spherical neighborhood, and 3 features of 

cylindrical neighborhood as H, N and ∆H were jointly processed (k=150 for 

kNN, R=1.50m for spherical neighborhood and R=0.75m for cylindrical 

neighborhood). 

Confusion Matrix of the Test Data (2,279,495 points) 

Classes 
A.T 

(1) 

N.T 

(2) 

H.V  

(3) 

L.V 

(4) 

B 

(5) 

H 

(6) 

A 

(7) 

V 

(8) 
Total 

A.T (1) 276404 6107 1 5 1309 202 60 843 284931 

N.T (2) 12117 143406 88 54 1561 675 310 753 158964 

H.V (3) 0 113 880100 133 6873 14 261 2 887496 

L.V (4) 70 240 266 9472 461 85 175 391 11160 

B (5) 1258 1544 15275 20 788758 38 132 272 807297 

H (6) 1404 4461 131 45 969 19693 223 276 27202 

A (7) 220 940 3511 152 2357 257 37373 1131 45941 

V (8) 1640 791 36 59 468 195 248 53067 56504 

Total 293113 157602 899408 9940 802756 21159 38782 56735 2279495 

 

User's 

Accuracy 

(%) 

94.3 91.0 97.9 95.3 98.3 93.1 96.4 93.5 

 

Producer's 

Accuracy 

(%) 

97.0 90.2 99.2 84.9 97.7 72.4 81.3 93.9 

 

 

Table 5.9: Overall accuracy, kappa index (in %) and processing time (in minutes) for 

combination of all neighborhoods (bold values indicate the best values). 

Neighborhood 

Information 

Number of   

Features 

Time     

(minutes) 

Overall 

Accuracy (%) 

Kappa Index 

(%) 

NkNN 9 7.44 94.5 92.1 

NkNN + NS 9+7 = 16 24.46 96.1 94.4 

NkNN + NC 9 + 3 (H, N, ∆H) =12 46.20 95.8 93.9 

NkNN + NS + NC 9+7+3 = 19 66.88 96.9 95.5 
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Reference NkNN NkNN + NS NkNN + NC NkNN + NS + NC 

  

(a) 

  

  
(b) 

  

  
(c) 

  

  
(d) 

  

  
(e) 

  

       

(f) 

  

Figure 5.3: Visual classification results based on neighborhood combination of classes 

(a) artifact, (b) natural terrain, (c) hardscape, (d) artificial terrain, (e) low 

vegetation, and (f) vehicle. 
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As described in Section 4.3, all test results were obtained using the training and 

validation ratio of 80% and 20%, respectively. However, in this thesis, it is also 

considered how the classification results be affected after reducing the ratio of training 

set for the approach combining all neighborhood information. For this reason, a set of 

training ratio was chosen between 1% - 80%, and the overall accuracies and kappa 

indices of the test dataset (75% of the whole data set, cf. Section 4.3) were computed 

(Figure 5.4). As seen from Figure 5.4, reducing the training ratio affects the overall 

accuracy of the test data negatively, as expected. However, this analysis proves that 

even with a 1% training ratio, it is possible to achieve a successful overall accuracy 

reaching over 90%.  

 

Figure 5.4: Overall accuracy and kappa index (both in %) of the test dataset when the 

training ratio is changed. 

 

5.3. Comparison with Previous Studies 

The results are evaluated by conducting a comparison to the state-of-the-art approaches 

reported in [41]. In [41], a total of 13 features; 7 eigen-based features (linearity, 

planarity, sphericity, omnivariance, anisotropy, eigenentropy and local curvature), 2 

height features (mean height and height difference), 3 spatial features (normal vectors), 

and 1 radiometric feature (intensity), were utilized using the RF classifier. Accordingly, 

classification of the same benchmark has been performed using this feature set with the 
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methods described in [70] and [71]. In this way, the results achieved in this thesis are 

compared with the approaches presented in [41], [70], and [71]. Note also that in [41], 

the number of trees was chosen as 200 for RF classifier, and 50% of the entire dataset 

was used as training for the results presented in Table 5.10. However, in this thesis, only 

20% of the entire dataset was used as training purposes (see Figure. 4.5) and the number 

of trees was 25. 

The comparison of the accuracies of individual classes and the overall accuracies are 

provided in Table 5.10. As indicated in the results, a combination of the features from 

different neighborhood information increased the overall results more than 4% 

compared to the approach presented in [41]. Besides, massive improvements for 

producer’s accuracies of multiple classes are achieved, e.g. low vegetation, hardscape, 

artifacts.  

 

Table 5.10: Comparison with the other approaches using the TUM-MLS1 dataset (best 

performances are given in bold). 

Class 
Accuracy 

Measure 

Approach     

in [70] 

Approach     

in [71] 

Approach     

in [41] 

Approach 

Presented 

A.T (1) 

User's 0.951 0.917 0.952 0.943 

Producer's 0.932 0.936 0.943 0.970 

N.T (2) 

User's 0.781 0.799 0.839 0.910 

Producer's 0.905 0.883 0.911 0.902 

H.V (3) 

User's 0.858 0.895 0.931 0.979 

Producer's 0.934 0.960 0.972 0.992 

L.V (4) 

 

User's 0.697 0.692 0.787 0.953 

Producer's 0.333 0.267 0.496 0.849 

B (5) 

 

User's 0.878 0.915 0.933 0.983 

Producer's 0.842 0.887 0.931 0.977 

H (6) 

 

User's 0.707 0.864 0.844 0.931 

Producer's 0.391 0.365 0.495 0.724 
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A (7) 

User's 0.489 0.663 0.747 0.964 

Producer's 0.190 0.303 0.345 0.813 

V (8) 

User's 0.798 0.840 0.827 0.935 

Producer's 0.766 0.801 0.848 0.939 

 Overall 0.868 0.893 0.921 0.969 
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6. CONCLUSION AND RECOMMENDATION 

In this chapter, the conclusions from the presented thesis work are summarized and 

recommendations for future works are presented. 

6.1. Conclusion 

This thesis has been completed under three main headings: the recovery of a point 

neighborhood, extraction of geometric and shape features of points within the defined 

neighborhood, and point-based classification of the TUM-MLS1 point cloud using RF 

classifier for a total of 8 classes (Artificial Terrain, Natural Terrain, High Vegetation, 

Low Vegetation, Building, Hardscape, Artifact, and Vehicle).  

The following conclusions are reached from the results achieved for the point based 

classification framework implemented: 

 The type of the local neighborhood significantly affects the results of 

classification. Considering the neighborhood types evaluated, the worst overall 

result (90.1%) is computed for the spherical neighborhood. The other two point 

neighborhood information, kNN and cylindrical neighborhoods, yield similar 

results. However, the cylindrical neighborhood, reaching 95.3% overall 

accuracy with a kappa ratio of 93.3%, provided slightly the best results. 

 The results for particular classes (i.e. Low Vegetation, Hardscape and Artifact) 

are computed to be relatively low; and in general, could not reach a satisfactory 

level (≈ 50-70%). However, since the classification results of the other major 

classes (Artificial Terrain, Natural Terrain, High Vegetation, and Building) 

dominating the point samples in the dataset with a relatively high number of 

points, the final overall accuracies are all computed over 90%.  

 The results of the neighborhood strategies examined in this thesis are influenced 

by the size of the local neighborhood. As expected, the larger the neighborhood 

size parameter, the more time-consuming the processing. Based on the results 

provided, although the cylindrical neighborhood reached the best results, it 

consumed the longest processing time amongst the three neighborhood types 

evaluated. 

 Like every supervised classification outline, feature selection step affects the 

efficiency of processing; and thus, the accuracy of the final classification. 
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According to the tests carried out in this thesis, the most important feature 

amongst the selected 13 features is found to be the normalized height of a point 

(H), and this feature has ranked the first place for all neighborhood types. 

Therefore, in any case, estimating the terrain height for each point in an accurate 

manner seems to be a critical issue. 

 Considering the geometric and shape features tested, we found that the shape 

features become more important for kNN and spherical neighborhoods; whereas 

almost all of the shape features have minimal effect on the final results when the 

cylindrical neighborhood is utilized. This is most probably due to the large 

variation of points existing in the cylindrical neighborhood which eventually 

makes difficult to interpret representative shape information.  

 The features obtained with the kNN neighborhood, which has provided a nice 

balance between the overall accuracy and the processing speed, are combined 

with the features obtained with other neighborhood types, and thereafter, the 

classification steps are repeated. As a result, the overall accuracy of 96.9% was 

reached when a feature set was produced by using all neighborhoods at the same 

time, and this was the best result achieved for the benchmark dataset TUM- 

MLS1. 

 Although successful results are achieved using the framework implemented, 

misclassifications are observed for classes, especially the classes with similar 

geometric features (i.e. artificial terrain and natural terrain), and in classes that 

are positioned very close to each other (i.e. high vegetation and building), as 

each point is classified individually without taking into account the 

neighborhood information during the classification. 

 The framework presented in this thesis yielded better results compared to the 

results of previous studies using the same benchmark dataset. A combination of 

the features from different neighborhood information increased the overall 

results at least 4%, and considerable improvements (up to 40%) for producer’s 

accuracies of multiple classes are observed, e.g. Low Vegetation, Hardscape, 

and Artifacts. 
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6.2. Recommendation 

The followings are suggested for further studies: 

 The feature set can be enriched (i) using the intensity information of the points, 

and (ii) with the RGB images (if available) that may be collected to improve the 

point cloud classification. 

 Depending on the point density of the cloud, fixed radius selection may not be 

suitable for classes having small number of samples. Therefore, instead of using 

single neighborhood size parameter for the whole data set, multiple parameters 

for the size parameter may be preferred. 

 The parameters determined in the study may not be effective for a dataset having 

a large difference in terms of the point density. For this reason, the parameters 

could be generalized according to the density of points in the cloud. 

 The normalization of features is not performed in this thesis; however, feature 

normalization may positively affect the features which are found to be 

correlated. Therefore, approaches for the data normalization or dimensionality 

reduction can be evaluated. 

 In this study, for all neighborhood definitions, Kd-tree data structure was 

utilized to efficiently detecting neighboring points. However, other data 

structures such as the octree scheme can be evaluated to speed up the 

processing. 

 The receiver operating characteristic (ROC) curve showing the performance of a 

classification model at all classification thresholds can be drawn. Besides, area 

under the ROC curve (AUC) can be used to evaluate the classification 

performance. 

 Since the processing load will increase as the data density increases, several 

approaches (segmentation, voxels etc.) to mitigate this problem can be 

implemented for better handling of large data sets (over 100 M). For instance, 

point cloud down-sampling can be utilized by filtering the dataset through a 

voxel grid. 
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 The validation of the proposed framework and its parameters must be carried out 

for other benchmark datasets available to the remote sensing community. In this 

way, the validity of the parameters and their effects can be better understood. 

 Another common way to handle pixel neighborhoods is to incorporate a 

smoothness prior into the classification framework for point clouds. In this way, 

similar class labels for the points that are positioned very close to each other can 

be enforced during the classification step. 

 Last but not least, the advances in deep learning may simplify the extraction of 

feature representations for point cloud classification. In this context, another 

future work is to test/compare the current framework with deep network models. 

In addition, how the trained model can be used as a feature extractor and transfer 

learning (i.e fine tuning strategies) can be investigated. 
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