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ABSTRACT

SOME STUDIES ON CCZ-EQUIVALENCE OF THE INVERSE FUNCTION

Fidan, Mehtap
M.S., Department of Cryptography
Supervisor : Prof. Dr. Ferruh Ozbudak

September 2021, 36| pages

Most cryptographic systems, like block ciphers, depend heavily on vectorial Boolean
functions. A function with good cryptological properties should have low differential
uniformity which is invariant under some equivalence classes. The more general one
of these is CCZ-equivalence which is introduced by Carlet, Charpin and Zinoviev in
1998. In cryptography, CCZ-equivalence gained an interest since it preserves many
significant properties like differential uniformity. Looking for permutations within the
CCZ-class of a function for the construction of S-boxes used in block ciphers is also
intriguing. In this thesis, we presented a detailed description on the results of Kolsch’s
paper about nonexistence of permutation polynomials in the form L., (z™!) + L, ()
over binary finite field. This proves that every permutation CCZ-equivalent to the
inverse function is also affine equivalent to it. We also gave a criterian to be a permu-
tation polynomial which is verified by using Kloosterman sums.

Keywords: CCZ-equivalence, permutation polynomial, inverse function, kloosterman
sum
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TERS FONKSIYONUN CCZ-DENKLIGI UZERINE BAZI CALISMALAR

Fidan, Mehtap
Yiiksek Lisans, Kriptografi Boliimii
Tez Yoneticisi  : Prof. Dr. Ferruh Ozbudak

Eyliil 2021, 36 sayfa

Vektorel Boolean fonksiyonlar, blok sifreleme gibi ¢ogu kriptografik sistemin 6nemli
bilesenleridir. Iyi kriptolojik 6zelliklere sahip bir fonksiyon, baz1 denklik siniflarinda
degismez olan diisiik diferansiyel tekdiizelige sahip olmalidir. Bunlardan daha genel
olani, 1998 yilinda Carlet, Charpin ve Zinoviev tarafindan tanitilan CCZ-esdegerligidir.
Kriptografide, CCZ-esdegerligi, diferansiyel tekdiizelik gibi bircok onemli 6zelligi
korudugu icin ilgi gormeye baslamstir. Blok sifrelemede kullanilan S-kutularinin ta-
sartmu i¢in, bir fonksiyonun CCZ-sinifi i¢indeki permiitasyonlarini aramak da ilgi
cekici bir soru olmustur. Bu tezde, Kolsch’iin n > 5 i¢in ikili sonlu alanda incele-
nen L,,(z7') + L, (x) formundaki permiitasyon polinomlarin varlig1 ile ilgili maka-
lesinin sonuglarini ayrintilt bir aciklama ile sunduk. Ayrica, Kloosterman toplamini
kullanarak, bir permiitasyon polinomu olma kriteri verdik.

Anahtar Kelimeler: CCZ-denkligi, permiitasyon polinomu, ters fonksiyon, klooster-
man toplami
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CHAPTER 1

INTRODUCTION

In cryptography, vectorial Boolean functions are essential components of the most
crytographic systems, especially, Symmetric Key Cryptography. As design choices
of substitution boxes, or shortly S-boxes, they play a vital role in the construction
of block ciphers. Against to main attacks on block ciphers which are differential
and linear attacks, vectorial Boolean functions should have high resistance. This
means that the conditions low differential uniformity [1]] and high nonlinearity [16]
on these functions are necessary to be secure to linear and differential cryptanalysis,

respectively.

There are several equivalence concepts that are invariant under some operations and
conditions on vectorial Boolean functions. Three of them which is widely used are
affine equivalence, extended affine equivalence, or shortly EA-equivalence and CCZ-
equivalence. The most generic one of these equivalence classes is CCZ-equivalence.
[S] and since it preserves the differential uniformity it is powerful tool against differ-
ential attacks. It was introduced in [7]] by Carlet, Charpin and Zinoviev in 1998 and

named after [3]].

It is important to look for permutatitons within the CCZ-class of a function since they
are crucial to design block ciphers. In majority of the thesis, we study on results
of the paper of Kolsch [13] about nonexistence permutation polynomials in form
Ly (z7%) + Ly (z) over binary finite field for n is greater than or equal to 5, where
Ly, and L,, are linear mappings. It means that all functions CCZ-equivalent to the
inverse function are also extended affine equivalent to it. Furthermore, every permu-

tation that is CCZ-equivalent to the inverse function is also affine equivalent to that.



In this part of the thesis; basic concepts are introduced and a literature review is

introduced.

Organization of the thesis is as in the following:

In Chapter 2, literature review is given to make clear the concepts of equiva-

lence classes.

In Chapter 3, some definitions, lemmas, corollaries and theorems to be used

later are given.

In Chapter 4, the results of the paper of Kolsch about non-existence of permu-

tation polynomails in the form L,,(z~') + L, () are studied inclusively.

In Chapter 5, a criterian to be a permutation polynomial is verified by using

Kloosterman sums.

In Chapter 6, a conclusion is given.



CHAPTER 2

NOTION OF CCZ-EQUIVALENCE

In this part of the thesis; basic definitions are given and literature review is conducted

in details.

2.1 Differential and Linear Properties

There are differential and linear properties of functions in S-boxes which measure
resistance in the case of linear and differential attacks. For differential and linear
cryptanalysis, two main tables that are difference distribution table and linear approx-

imation table, respectively, are powerful tools.

The (DDT) Difference Distribution Table of a S-box is a crucial component to make
an estimation about the probabilty of a differential characteristic. The differential

uniformity of F' can be expressed as the maximum coefficient in the DDT.

Definition 1. Let F' : Fon — Fon be a vectorial Boolean function. The differential

uniformity  of F'is follows:

d= max {F(x)+ F(rx+c)=dlx €Fam}

c€F%, d€Fan

The function is defined APN (almost perfect nonlinear) if it has differential uniformity

wo.

A vectorial Boolean function which has good cryptological properties should have
low differential uniformity to have best resistance to differential attacks. Almost per-
fect nonlinear functions has the optimal resistance to these attacks, since the differen-

tial uniformity has to be always even.



Similarly, Linear Approximation Table, shortly LAT, or Walsh transform of a S-box
provide an estimation about its linearity/noninearity characteristics. The linearity of

F' is defined as maximum coefficient in this table.

Definition 2. Let F' : Fon — Fon be a function. Then Walsh transform of F, Wg :
Fon X Won — Z is defined as

W]F(U,U) _ Z (_1)Tr(uF(J:)+v:v)

z€Fon

Then non-linearity of the function F' is the following:

1
NL(F)=2""1— -
(F) 3 e [We(u,v)|

To have a better resistance to linear attacks, the function of S-box should have high

nonlinearity.

For vectoral Boolean functions, some operations lead to several equivalence concepts
which differential and linear properties invariant. In next section, the definitions of
these equivalence classes are given. Before that, the graph of a function F' mapping

from Fon to [Fon is represented as the following.

{ZL' € an’(fﬂ, F(fE))} = GF C an X FQn

2.2 Concepts of CCZ- and EA-Equivalences

Definition 3. (EA-Equivalence) Let Fy and F, be two functions mapping from Fon to
Fon, If there exists affine permutations A1, Ay and an affine function Az : Fon — Fon

such as the following

F2:A10F10A2+A3 (21)

then Fy and F, are extended affine equivalent, or shortly EA-equivalent, where As is
sum of a constant and a linear function.

If Az in Eq. (2.1) is zero, then the functions F and F» are called as affine equivalent.

It can be observed that two functions which are affine equivalent are already EA-

equivalent.



CCZ-equivalence, of which EA-equivalence is a special case, is the most general kind
of function equivalence known to retain differential uniformity. It can be defined as
the fact that if an affine permutation exists that allows us to obtain from one graph
of a function to the graph of another function, then these two functions are called

CCZ-equivalent.

Definition 4. (CCZ-Equivalence) Let F,G : Fon — Fon be two vectorial Boolean

functions. If an affine, bijective mapping A on Fon X Fon exists as in the following
{z € Fonl(z, F(2))} = A{z € Fan|(z, G(2))})

then F, G are CCZ-equivalent.

It can be seen that two vectorial Boolean functions which are EA-equivalent are al-

ready CCZ-equivalent.

Generally, the notions of EA-equivalence and CCZ-equivalence differs from each
other at some points. For instance, while the compositional inverse of a one-to-one
and onto mapping is CCZ-equivalent to itself, this can not be said for EA-equivalence.
Note also that EA-equivalence preserves many of cryptologic properties of a func-
tion such as its nonlinearity, differential and degree of algebraic normal form (ANF).
However, CCZ-equivalence may not invariant under degree of ANF, unlike to EA-

equivalence [3]].

2.2.1 Coincidence of EA- and CCZ-equivalence

It was shown that in several cases, EA equivalence and CCZ-equivalence coincide
[13]]. Let the set of every functions which are CCZ-equivalent to F' be defined as
CCZ-class of I and the set of every functions which are EA-equivalent to /' be EA-
class of F'. EA-classes can be partition to CCZ-class, because EA-equivalence is a
specific case of the more general notion CCZ-equivalence. According to experimental
results, if /' is not permutation then EA- and CCZ-classes of F' coincides for most
of the vectorial Boolean functions F'. Furthermore, in case of being permutation F/,
CCZ-class of F'is composed of exactly two EA-classes of F' and its inverse. However,
there are some cases which CCZ-class has more than two EA-classes in it, this is

possible for Gold APN functions in Table [2.1]in odd dimension [5]].

5



Carlet and Budaghyan [4] proved that CCZ-equivalence and EA-equivalence coin-
cides for Boolean functions and bent functions. Also, another interesting case that
was proved in paper [2] is the fact that two APN functions, which are quadratic,
are CCZ-equivalent if and only if they are EA-equivalent. By applying Walsh trans-
form of a function F', namely its differential distribution table, Canteaut and Perrin
[6] found upper bound for the number of seperate EA-equivalence classes inside the
C(CZ-equivalence class.

It is not understandable yet how the CCZ-class of F' is defined exactly by the inverse

Table 2.1: Some APN exponents d to CCZ-equivalence [[13]]

H H Exponent d ‘ Condition ‘
Kasami | 225 —2% 41 ged(s,n) =1
Gold 2°+1 ged(s,n) =1

Niho o —925 —1 | reven,n=2r+1
3r+1

2" —2"2 — 1| rodd,n=2r+1
Inverse 2" — 2 n odd

Welch 2"+ 3 n=2r-+1

transformation (in case of being invertible) and EA-equivalence. This is an open
problem for most of the APN monomials in Table Only for small values of n by
using a computer search; Budaghyan, Calderini and Villa [3] improved the conjecture

below.

Conjecture 1. Assume F : Fyn — Fyn and F(z) = 2¢

is inverse function or nonGold
APN function. Then all function CCZ-equivalent to F' is already EA-equivalent to it

or its inverse in case of existing.

2.2.2 Searching Permutations in a CCZ-class

Here we have an interesting question which is how to analyze every permutations in
an APN function’s CCZ-class, however searching that problem is still difficult for the
APN families. For this question, Giiloglu and Langevin [10] reached the following
result by analysing of the Gold and Kasami functions’ bent components. If 4|n, any

permutation exists in the CCZ-class of APN Kasami functions in binary finite field.

Lucas Kolsh [[13] classified every permutations inside inverse function’s CCZ-class

6



in both odd and even dimensions. The proof method differs from that used in [10],
because there are no bent components for the case of inverse function. Let L,,, L,
be nonzero linear mappings. The following proposition is used as the method for the
special type of permutation polynomial which has form L,,(x~!) + L, (z). For a

proof see [9].

Proposition 1. . Let I be a vectorial Boolean function over Fon and L be nonzero
linear mapping. All permutation EA-equivalent to F' is also affine equivalent

to F, if there are no permutatiton in the form F(x) + L(x).

2. Let F' be a vectorial Boolean function over Fon and L,,, L., be nonzero lin-
ear mappings. Then all functions CCZ-equivalent to the function are already
affine equivalent to it or its inverse if there are no permutation in the form
L (F(2)) + Ly (x). In addition, every permutation CCZ-equivalent to F' is

affine equivalent to it and its inverse.

It was found that there exists permutation polynomial in the form L,,(z™ 1) + L, (z)
for n < 5, particularly, for n = 3 and n = 4 over finite field in characteristic 2 with

L,,(z) = x by Li and Wang [14].

By Lucas Kolsch [13], it was proven that if n is greater or equal to 5, then no per-
mutation polynomial in the form L,,(z™') + L, (z) exists in binary finite field. It
means that all functions CCZ-equivalent to the inverse function are affine equivalent

to it, which verifies Conjecture m In Chapter 4, the result in below will be reached.

Theorem 1. Let n > 5, assume F' is a inverse function in binary finite field. Then EA-
class and CCZ-class of F coincide. In addition, every permutation inside CCZ-class

of F'is already affine equivalent to it.






CHAPTER 3

PRELIMINARIES TO THE SUBJECT

In this section, some basic concepts of the subject and notations are introduced.

Definition 5. Letr F' be a function such that F' : Fon — Fom. Then it is called vectiral
Boolean function, where m € 7. The function F' is just defined Boolean function for

m = 1.

Definition 6. [f the function f in F,[z] to itself defined as x — f(x) is a permutation

of F,, the polynomial f from F|x] is defined a permutation polynomial of F|x].

Definition 7. The trace map T'r : Fpn — I, is defined as

n—1
Tr(x) = prl =z +a+a” + .. +aF
i=0

n—1

forall x € .

Throughout this chapter and Chapter 3, we will use trace mapping over binary Galois

field.

Definition 8. With respect to the bilinear form, adjoint mapping is denoted by L* of

a linear mapping L
Tr(zy) = (z,y)

namely, we have the following for each x,y € Fon

Tr(L(z)y) = Tr(zL"(y))

n—1

If we explicitly write linear mapping L(z) ==Y !, cix?, the adjoint mapping of L
is described as L*(x) = S0 2" a2

=0 “1



For the proof of the following lemma, see [15].

Lemma 1. For s # 0, let ra® + sx + t = 0 be the quadratic equation in Fon. Then,

Tr(rt/s?) = 0 if and only if the equation has solutions over Fyn.

The proof of the following lemma can be seen from [9].

Lemma 2. dim(ker(L)) = dim(ker(L*)) and dim(im(L)) = dim(im(L*)), where

L is linear mapping over Fon and L* is its adjoint.

Definition 9. For each © € Fon, quadratic form which is denoted by Q : Fon — Fy
is defined as follows:

Q)= 3 >

0<s<t<n

Definition 10. Bilinear form which is denoted by B(x,y) associated to Q is defined

as follows:

B(x,y) = Qx +y) + Q) + Q)

B(x,y) can be expressed by using absolute trace.

B(x,y) = Z (:E—l—y)2s+2t+ Z 222 Z y23+2t

0<s<t<n 0<s<t<n 0<s<t<n
s t s s
:E:x2y2:§:x2§:y2
s#t s t#s

=> Py + oy )
=> 27 (Tr(y) + )
= (@) +Tr(y) > 2™

=Tr(zy) +Tr(y)Tr(z)

Theorem 2. [I7] Let A be a finite subset of the Abelian group (G, -), g be an element
in G and H be a subgroup of G. Then A = gH if and only if |A - A| = |A]|.

Theorem 3. [[/4] Let F' : Fon — Fon and L be a nonzero linear function. Define
F(x) = a7 + L(x). Then the function F is not a permutation if n is greater than or

equal to 5.

10



Corollary 1. Let F' : Fon — Fon for n > 5. With non-zero linear mapping L,,, and
L, define F(z) = L,,(x7) 4+ Ly (x). Then the function F is not a permutation if

L,, or L, is bijective.

Proof. Let F(z) = Ly,(z7') 4+ L, (x) be a permutation. Firstly, let us choose L,
as bijective. Then by taking the convolution of F(x) from left by L1, we get the

following which is also a permutation.

L, (F(x)) = 27" + L} (L (2))

m

This is a contradiction to Corollary [} The same proof for the case L, is bijective
can be followed, because F(x) = L,,,(z!) + L, (z) is a permutation if and only if

F(x™Y) = Ly, (x) + Ly (271) is a permutation.
[

Definition 11. Let H be the set of finite subset of Fon. Then all inverses of the set H
is denoted by % ie.

1 1

—={-:he H\{0

= {5 he H\{0})
Moreover, the product set H-H = {hihy| hy,ho € H} and/H = {~/h| h € H)}.
We have |VH| = |H 2

Is

, since we are in binary finite field the function x — x

bijective.

Definition 12. Let H. is denoted as hyperplanes of Fon. Then the set H. is defined as
in the following for c € F3,.

He ={Tr(cx) =0]|z € Fon}

11






CHAPTER 4

SEARCHING EXISTENCE OF PERMUTATIONS

4.1 Method to prove

In this chapter, the results of Kolsch’s paper [13] which prove non-being of permu-
tation polynomial which has the form L,,(z™') + L,,(z) in binary finite field are
studied in details, here L,,, L,, are nonzero linear mapping and n > 5. To prove it,

three stages below will be followed.

e Showing for nonzero r and k|n, ker L, and ker L, are in the form rFyx if F is

a permutation
e Showing dim(kerL,) = dim(kerLy) = 1 for k = 1, by using previous stage

e Showing nonexistence of the permutation with the former stage

Before moving on main proof, some concepts which is used in the proof will be

constructed.

4.2 Kloosterman Sum over Fy. for Permutation Polynomials

Definition 13. Kloosterman sum of ¢ denoted by K, (c) in Fan for ¢ € Fan.

Kn(c) _ Z (_1)Tr(x*1+cx)

Z‘E]FQ'{L

Definition 14. For an element ¢ € Fon, c is defined as Kloosterman zero if K,,(¢) = 0.

13



For the proof of the following proposition, see [9]

Proposition 2. Assume that F' : Fon — Fon and L., & L, are linear mappings such
that Ly, Ly, # 0 inFaon. For each u € Fs,., the polynomial L,,(F(x)) + Ly (x) is a

permutation if and only if
We( L, (), Ly (1)) = 0

Proof. The fact that a function’s all components should be balanced to be a permuta-
tion is well-known [15]]. In our case, namely, L., (F(x)) + L, (z) is a permutation if
and only if

Z (_1)TT(u(Lm(F(x))+Lm(r))) —0, YucT;

zEFon

Z (_1)Tr(L¢n(u)F(x)+Lfn(u)x)) -0

z€F3,

from the definiton of Walsh transform we get

We (L, (u), Ly, (u)) = 0

Here Tr(L(z)y) = Tr(xzL*(y)) is used for the computation.

Notice that for F(z) = 27!, K, (u) = Wg(1,u).
Case 1: For u # 0 we obtain the following:

WF(U,U) _ Z (_1)Tr(ux_l+v:r)

zE€Fon

by substituting x — ux

_ Z (_1)Tr(x’1+uvx)

zE€Fon

which is equal to

= K, (uv)
Case 2: For u = (0 and v # 0 the following is obtained
Wr(u,v) = K,(uv) =0

14



Now, by using Kloosterman sums, above Proposition can be written as the following.
Proof of this can be found in [9]]. Later Proposition [3] will be used to give a criterian

to be a permutation for L,,(z71) + L, ().

Proposition 3. For two linear functions L,,, L,, on binary finite field with n dimen-
sion and each v € Fon; then K, (L} (u)L},(u)) = 0 and ker(L},) Nker(L,) = {0}

if and only if L,,(x™1) + L, () is a permutation polynomial over Fan.

Theorem 4. [[2|] Assume n is greater than or equal to 4 and u is a nonzero element
in Fon. If u is a Kloosterman zero of Fon in modula 16, then its quadratic and trace

functions are zero polynomials, i.e. Q(u) = 0 and T'r(u) = 0.

Vice versa of the theorem is also true. Now, by applying Theorem [4]to Proposition 3]

the following corollary is obtained .

Corollary 2. Let n be greater than or equal to 4 and u be any nonzero element in Fan.
Then ker(L%,) Nker(L:,) = {0} and Q(L:,(u)L* ,(u)) = Tr(L:, (u)L:,(u)) = 0,
if Lyy(x™1) + Ly (2) is a permutation of Fon,

4.3 Proof for Non-existence of Permutation Polynomial

The following theorem is the essential step to obtain the main result.

Theorem 5. Let L, and L, be two linear functions on Fon such that L,,, L, # 0
forn > 5. Define F(x) = L,,(z7) + Ly (z). Then kernels of L,, and L., are in
the form rFy for a non-zero r and k|n, namely they are translates of a subfields Fo».
of binary finite field with n dimension if F' is a permutation. In addition, kerL,, =
Ly (ker(L},)) and ker L, = L, (ker(LZ ,))

Proof. Let F(x) = Ly (x™') + L, (x) be a permutation of Fy.. By Corollary
we have Q(L; (u)L! ,(u)) = Tr(L:,(u)L!,(u)) = 0. Let P(x) be equal to
L¥ (x)L: ,(x). Also, let us take y in ker(L},) and x in Fan.

15



By computing the following:

P(x) + Ly, () L3 (y) + L, (y) Ly () + P(y))
Since L (y) = 0 = P(y), we have
0= Q(P(x) + L, (x) L7, (y))

By using bilinear form B(z,y) = Q(z+y)+ Q(x) + Q(y) = Tr(xy)+Tr(z)Tr(y)

in [Fy», in this case

B(P(x), Ly (2) Ly (y) = Q(P(x) + L, (2) Ly (y) + Q(P()) + Q(Ly, (%) L ()
= Tr(P(2) L, (2) Ly, (y) + Tr(P(x)Tr(Ly, () L,y (y))

the following is obtained.

0= Q(P(x)) + QL (x) Ly, (y) + B(P(x) + Ly, () Ly ()
= Q(P(x)) + QL (2) Ly (y) + Tr(P(2) Ly (2) Ly (y)) + T (P (2))Tr (L, (2) Ly (y))

By Corollary 2] Q(P(z)) = 0 and Tr(P(x)) = 0, then
= Q(Ly, (@) Ly (y)) + Tr(P(x) Ly, (2) L () (4.1)
For each = in ker(L?,), the Equation .1 becomes
0=Q(Lp,(x+ 2)Lyy(y) + Tr(P(x + 2) Ly, (x + 2) Ly (y))

Similarly, L} (z) = 0, linear and trace mapping properties are used the throghout the

following computation.

= QL (2)) Ly (y)) + Tr(P(x + 2) L, (2) Ly (y))

= QL (2)) Ly (y)) + Tr (Lo () Ly (2 + 2) Ly, () Ly (y)

= QL (2)) Ly (y)) + Tr((L, (2) Ly () + Ly () L (2)) Ly () Ly (y))
= QL (2)) Ly (y)) + Tr(P() Ly, () Ly (y) + Loy (2) Ly (2) Ly () Ly (y)

The following is obtained.
= QL3 (%)) Ly () +Tr(P(x) Ly, () Ly () +Tr (L, (2)) Ly (2) L (y) (42)
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Let us add Equation 4.1|{to Equation then for each z in Fy. and y, z in ker (L)
Tr((Li(@))* Ly (2) Ly (y)) = 0 (4.3)
Let us take z = y for Equation[4.3] then we have
Tr((Ly, ()" (L3 (¥)*) = Tr(Ly, () Ly (y) = 0
By Definition 8, 7r(L(x)y) = Tr(zL*(y)), the equation becomes
Tr(Ly(2) Ly (y)) = Tr(a Ly, (L (y)) = 0
for each x € Fan.

From this equation L’ ,(y) € kerL,, and from the setting y € ker (L), L;(ker(L},)) C
ker(L,,). By using Lemma 2| dim(ker(L,,)) = dim(ker(L},)) and Corollary
ker(L:)Nker(L:,) = {0}, we have L’ ,(ker(L},)) = ker(Ly,).

Using Definition 8| again,
Tr((Ly, (%)) Ly (2) Ly (y)) = Tr(Ly (2)\/ L (2) L (4))
= Tr(zLm(\/ Ly, (2) L7y (1))

Similarly, since y, z € ker(L},) and \/L* ,(z)L* ,(y) is in ker(L,,), we get the fol-
lowing \/L? , (ker(L%,)) L, (ker(L%,)) C ker(Ly,). By previous result L, (ker(L?,)) =
ker(Ly,), we obtained +/ker(Ly,)ker(Ly,) = ker(Ly,).

From here, we can obtain |(ker(L,,) \ {0}) - (ker(L,,) \ {0})| = |(ker(L.,) \ {0})].
Then by Theorem [2] for subgroup H of F3. and r € Fon, we have the following
ker(Ly,) \ {0} = rH, or equivalently, ker(L,,) = rH U {0}. Since cardinality of
ker(L,,) is 2* for an element k in N, 2¥ — 1 is the cardinality of H. Also, since H is
the multiplicative subgroup of Fox, for k|n and r € F3,., we have ker(L,,) = rFax.
Similary, the same results can be obtained for ker(L,) since F(z™') = L,,(z) +

L,y (z71) is a permutation if and only if F'(z) = L,,(z™') 4+ L, () is a permutation.
[

Proposition 4. Let L, and L, be two linear functions on Fon such that L,,, L, # 0.
Define F'(z) = L,,(x™) + L, (). Then for each nonzero u in Fon, L,y (u) is not in

Lon(5)

u

and F' has one solution if and only if F' is a permutation.

17



Proof. For u in %, and each x in Fan, F(z + u) + F(x) # 0 if and only if F' is a

permutation. Namely,

L ((z +u)™) + Ly (2 + u) + Lin(27") + Ly (z) # 0
Lp(z7 4 (2 4+ u)™") + Ly (z + (z +u)) # 0 (4.4)
Ly (w) # Lyp(x7" + (2 4+ u)™)

Let the setbe A, = {a € Fon : (x +u)™t + 271 = a for some x in Fon }

Case I: Let us choose x = u and x = ( for the equation (z + u)~! + 27! = a. Then

we getu~! = a.

Case 2: If we choose z other than u and 0, by multiplying the equation (x + u)~! +

x~! = a by x(z + u), we obtain the following equation
ar® +uax +u =0

The equation has solutions if and only if Tr(-%%) = Tr(-=) = 0 with a # 0, from

Lemmalll

By combining the cases, we get

1
(r+u)'+arl=a <= u'=a or Tr(—)=0

ua
From Definition[12],
x
Hi = {Tr(a) =0:x €Fon}
1 1
T {TT(E) =0:2""' €Fon},Vu € Fin

We can say that u~! € A, and ﬁ € A,
Equationimplies L (u) ¢ Ljﬂ(Au), and o0 L, (u) & Ly, ().

1
If u is a solution for F',i.e. F(u) = 0, then we have L,,(a™!) = L, (a).

]

Lemma 3. For three distinct nonzero elements r, s,t from F5,., r + s = t if ad only if
Fon = H, UHsUH;. Particularly, nonzero three elements r, s, t always can be found

in A\ {0} s.t. Hi UH: UH1 = Fon if A = aFox where k > 1, k|n and a € F,.

18



Proof. Since a hyperplane’s dimension is one less than that of its ambient space, in
our binary finite field FF5» case whose dimension is n, a hyperplane’s dimension is
n — 1. Thus, a hyperpane has 2"! elements. Similarly, intersection of two distinct
hyperplanes has one less dimension than one’s dimension, and has 2"~2 elements.

Based on these, we can write the following:

= [H, UH, UM,

= [He VA O He] = [y DM = [He 0 Ha] = [H O Ha] 4[]+ [+ ]
M, My N H| —3-272 4 3. 97

= | H, N H NHy| + 2772 4 27!

This implies that 272 = |H,NH,NH,| if and only if H, UH,UH; = Fan. Also, since
having 2"~ elements two hyperplanes which do not coincide, one of the hyperplanes
contains the elements of intersection of the other two distinct hyperplanes, let H; be
the hyperplane. Namely, H, N ‘H, C H,, which implies that r 4- s = ¢.

Particularly, for two elements » = ab;, s = abs from A = alFyx, by, by € .

1

1 1 11+)
r s a'b b

Also, i~ + 3= = ¢ € Fi.. Now we have three distinct elements 7, s, ab such that
L+1 = L Byabove part of the proof, we can conclude that H 1UH 1 UH . isequal

to binary finite field with n dimension.
O

Theorem 6. Let n > 5. For F' : Fon — Fon and two linear functions L,, and L., on
Fon such that L, L,y # 0, define F(z) = Ly, (z™) 4+ Ly (z), Then |ker(L,,)| =
|ker(Ly,)| = 2, if F is a permutation.

Proof. To prove |ker(L,,)| = 2, we should show k = 1 for ker(L,,) = rFy and
ker(Ly,) = rFar which we get from Theorem 3]

Let us assume that &£ > 2. Then by Lemma 3] three nonzero distinct elements r, s, ¢ €

kerLyy stHi UHs UHs =Fyn and 57— U 51~ U 57— = F. can be found.

Recall Propositionwhich says L (a) é Lm(' L) for all u € F},.

H

Sl
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Since ker(L,, ) = rFaox and k > 2, there exist an element in F3, such that L, (z) =
0, so we can write the following by using Proposition [ for three elements r, s,t €
F,.
0 ¢ Ln(F5) = Ln(3) U L) U Ln(5)
AR AL "NH "NH

We know that ker L, has more than one element by Corollary |1} so we have a contra-
diction to above equation. |ker(L,, )| = 2, since k = 1.

Similarly, we can prove it for ker L, since F(z™') = L,,(z) + L, (z™') is a permu-

tation if and only if F'(z) = L,,(x™") + L, (z) is so.

]

By using Theorem@ assume L,,(z) = 2% + ux for an element u # 0 (after we will
take u = 1, so |ker(L,,)| = 2 by Theorem [6). Let us examine the following for
Lp(z™) + Ly (2) = a:

a=ax 2 +ur + Ly(z) (4.5)

By multiplying this with v >

uPa=clr P +ule +u? Ly (2)

and substituting z — <, we have
-2 ) -1 -2 Z
wCa=a " +x +u Ly(-)
u

which has one solution if and only if for each a € Fy» Equation 4.5has only a zero.

Since w2 Ly, (%) is linear map, we can take Ly, (r) = x* + x, or equivalent case
L(z) = (22 +2)>"" = 22" + 2% = 2 4+ 2*"". Since adjoint mapping of L is
L* = Z;:Ol c?nfj 22", when we take L,,(z) = z + 22", the adjoint mapping of L
is L (v) = 22 4 x. Notice ker(L,,) = ker(L?,) = {0, 1}. From this and Theorem 3]

kerL,, = L* ,(kerm/(L%,)), we can conclude L* ,(1) = 1.

Theorem 7. For F' : Fon — Fon and two linear functions L,, and L., on Fon s.t.
Ly, Ly # 0, define F(x) = Ly, (z7') + L,y (). Forn > 5, permutation polynomial

in the form of the function F' does not exist.

Proof. From above, we have L*,(1) = 1, L} () = 2* + x, and Z?;& c;a? = L%,

Also, let F' permutes binary finite field with n . Then we should get contradiction to
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conditions above which we obtain from Corollary 2] and Equation . 1| Notice that for
y=1,L (y) = 1lsince L} ,(1) = 1. For each z in Fan,

0 = Tr(L}, (2) Ly (2)) = Tr((e? + 2) Ly () (4.6)

0= Q(L;,(2) L, () = Q2" + ) Ly, (2)) 4.7)

0= Q(Ly,(z)Lyy(y)) + Tr(P(z) Ly, (2) Ly, (y)

0= Q2>+ )+ Tr((2® +z)(2* +2)L},(2)) = Q(z* +x) + Tr((z* +2*) L}, (x))

4.8)
Let us look at condition (4.06)).
n—1 n—1 n—1
— 2 2 2J
0="Tr((z*+x) cjx r(z c]x )+ Tr(x cjz”)
Jj=0 Jj=0 Jj=0
n—1 n—1 n—1 n—1
J S J S
0=)Y (@*) ¥ ) + E () cjz*)?
s=0 7=0 s=0 7=0
n—1 n—1 n—1 n—1
o 928 2g+s+25+1 928 2j+5+25
0= G + ¢ x
s=0 ]:0 s=0 ]:0
By substituting j — j — s, we get
n—1 n—1 n—1 n—1
_ 25 27495+l 25 20428
0= E E Ci_s + E E Cj_sT
s=0 j=0 s=0 j=0

Again, by substituting s — s — 1 in the left sum, then the following:

n—1 n—1 n—1 n—1

2s-1 27428 2J+2S _
D2 Ghnd® T ) ) Gt =
s=0 j=0 s=0 =0
n—1 n—1

25 1 98 2j+25 o
E : E ] s+1 +c ] S)IL' =0
s=0 j=0

When we take 7 = s = 1, the coefficient of z* becomes ¢; + 6(2) =0.
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2"+1 ;

Fori = 0, s = r, the coefficient of 2> +!is ¢*, | + ¢*, = 0.

Similarly, for i = 7, s = 0, the coefficient of x> ™! is c;ﬂl + ¢, = 0. For each
1 < r < n — 1, we can write the following for the coefficients of z2" 1.
2T+1+c —I—c,,+1—|—cr—0 4.9)

Now, let us look at the condition 4.8]

0=Tr((z* + 2% Li(x)) + Q(2* + x)

= Tr(2®) + Tr(z) + Tr((z* + 2?) i: ¢;z?) + Q(z?) + Q(x)

Since Q(z) = Q(z?%), we get

n—1 n—1 _ n—1 n—1 )
0=Tr(z*) + Tr(x) + Z(x4 Z c;ir® )+ () cip?)*
s=0 =0 s=0 7=0
n—1 n—1 n—1n—1 n—1n-1

s Jj+s s+1
j2 1'2 +2

I
x

Jud
(]
&'8.

I
(]
(]
e
z

+
M

Q

<
Il
o
<
Il
=)
»
Il
=)
<
|
=)
w
Il
)
<
Il
=)

Again by substituting j — 7 — s for right and left double sum, we have

n—1 n—1 n—1 n—1
J+1 J j s+2 s 7 s+1
E 2 +2+E z? —l—E E c g2 +2 +§ E c?_stH =0
j=0 s=0 j=0 s=0 j=0

By substituting s — s — 2 for left double summation

n—1 n—1 n—1 n—1
27+14.27 -2 2J+25 2s—1 27495
Z +Zx —FZZCJ s12T Ci_st1® =0
7=0 s=0 j=0
2]+1+2] 29 2 28 1 2j+2s o
S +Zx PSS @ e <o
7=0 s=0 5=0

When we look at the coefficient of 8 fori = s = 2, we getl +co + C% = 0.

. o . 27‘+1 . 2—2 2—1 _
For j = r, s = 0, the coefficient of isc o+, =0.

Also, notice that when r = 1 and r = n — 1, we have coefficient 1 from Tr(z3).

2741 or—1

Similarly, for i = 0, s = r, the coefficient of is % +2 + ¢, = 0. By writing

these together, we get

_— 0, re{2,..,n—2}
+2 + 2, +1 + 2 +2 +c, = (4.10)
1, re{l,n—1}
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Let us substitute » — r — 1 and square it, then we have

0, re{3,..,n—1}
1, r€40,2}

271 + 27‘72 2771 o
CT+1 + Cr C—r+3 + C—T+2 -

When we add that to Equation .9 we get the following. Notice that » > 1 for
Equation 4.9

1, r=2
0, re{3,..,n—1}

2r—2 2'r—1 27‘—1 or o
Clrp3 TC 4 TC 4 TC0, =

Again, substitute r — —r

L e e _ 0, re{3,..,n—1}
272 21 g—r—1 2-T ) y e

CT‘+3 +CT+2 +C7"+1 +cr =
1, r=2

and take the exponent 2”2,

0, re{l,...n—3

izt A+ = { J (4.11)
1, r=n-—2

Before, it has found that the equations c; +c(2) = 0 for coefficient of z* and c%+02+1 =

0 for coefficient 2°. Based on these, we have a claim.
Claim: For all 7, where 1 <1 <n —1

2, if i is odd
¢ = i (4.12)
& +1, ifiiseven

Proof of Claim: Claim is proved by induction.

The case i = 1 is done, we know that ¢; = c3.

For the case 1 = 2, we have ¢, = C% +1= 0(2)2 + 1.

For the case i = 3, we use Equation .10 for » = 1, and we get.

272 271 27‘72 27"71 -
Cpa TG+, pte, =1

c§‘2 + cg_l + cf_l +c=1
AT+ @+ (R =1
AT+ R+ 14+cp+c=1

272 2 _ .8
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Now let us look at for the case k£ > 3 by using Equation for r is other than n — 2.

2, 2 4
Ch1 + €+ g + ¢ =10

By claim Equation4.13} we get the following if & is odd.

Qkf -2

1= (3 )+ (g +1) + (G )
_ gk+1 I C%k 1 Cgk

=& 41

Similarly, in case of k is even, we have the following result.

ok—1 ok—2

Crpr = (2 + 12+ ()2 (@)

2k+1

=M1+ + &+

2k+1
= CO

For the case ¢,_; we will use the Equation 4.9|for r = 1.
r—1 T L
C27 +1+C%T+Cz+1+cr =0
-1
CO+C2,1+C% +c=0

Since ¢,, = ¢y, and so ¢,,_1 = c_1, we have

[\

Ch—1 = Co + (632 —+ 1)271 + Cg

[

¢ | =cil+c+ utc

[\

c,_1=¢C+1

2—1
Cn1=¢5 +1
. —1 —1 —1 .
Since g =c2",andso 3 =", wegetc, 1 =c2 + 1 which concludes that n

is odd. Therefore, the proof of the claim is done.

Still, we do not verify a contradiction to the coefficients from the conditions @] and

4.8l Thus, we look at condition

n—1
0=Q((&* +2)Liy(2)) = Q(&* + 7)Y cja”)
j=0
n—1 ) n—1 _
=00 a¥ P4 e
7=0 7=0
n—1 _ n—1 ) n—1 _ n—1 _
S S Do St Sy
0<t<s<n j=0 7=0 =0 =0

n—1 n—1 n—1 n—1
t Jj+t t+1 t J+t t s i+s s s i+s s
_ 2: (2302552 +2 +§:sz2 +2)(§:czaj2 +2+1+§:szz +2°)
J J 1 J
j=0 i=0 =0

0<t<s<n j=0
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By substituting ) — j —t and ¢ — ¢ — s, we have

n—1 n—1 n—1
t J t+1 t J t s 7 s i s
— § (§ Cz_thz +2 +§ :Cz_tlz +2 )(§ :02 2+2 +1+ E 2+2
J J
0<t<s<n j=0 7=0 =0

Again, by substituting ¢ — ¢ — 1 into left sum of left parentheses and s — s — 1 into

left sum of right parentheses, we have

n—1 n—1
2t—1 2]+2t 2]+2t 25— 1 21+2s 27.+25
E (E :Cj*T+1 + § :C —y E :C —s+1% + Cz sT
=0

0<t<s<n j=0

n—1 et
= Y Y+ )
0<t<s<n j=0 p
n—1 n—1

o 2t 1 25 28 2]+2'r+2z+2s
- E §:§:jt+1+c t)(zs+1+zs>$

0<t<s<n j=0 i=0

Let us check the coefficients of #® in this polynomial to get a contradiction to condi-
tion 4.8 which is a zero polynomial. The possible choices for i, r, 7, s are given in the

following. Let d;;; s = (c?t ;H + c t)(cfsfg+1 +c¥ ).

Table 4.1: List of coefficients of 2® in Q((z? + z)L*,,(z))
Lifr]dls ] i

0]1(0]2 1
00|21 0
0]01]2 0
11002 1
210101 1
Now ,we can see the following from Table 4.1}
1, otherwise
jtis = (4.13)

0, ifj=tori=s

Since sum of coefficients d;, ; s is 1, Q((2* + )L, (x)) is not a zero polynomial, so

a contradiction is obtained. Thus, Theorem [/|is proved.

By Theorem [7] and Proposition [I] we reached the main result which is mentioned in

Chapter 1. O
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CHAPTER 5

CRITERIAN FOR THE EXISTENCE OF PERMUTATION IN
Fpn

In this part of the thesis, a proposition is verified on [¥,», which gives a criterian to be
a permutation polynomial in the special type L,,(z~1) + L, () by using the general
form of Kloosterman sum. Later, it is planned to be used for future work mentioned

on next section. Recall the general form of Kloosterman sums:
Kpn(a) = D (rem e
QZEFpn

where ( is the primitive p — th rooth of unity.

5.1 Kloosterman Sum over [F. for Permutation Polynomials

Proposition S. For two linear functions L,,, Ly, on Fp. and each w € Fpyn; then
Ky (LY (w)LE,(w)) = 0 and ker(L:,) N ker(LY,) = {0} if and only if L,(z71) +

L, () is a permutation polynomial over I n.

Proof. A function’s all components should be balanced to be a permutation [15]].
Namely, F(z) = L,,(x™') + L, (z) is a permutation if and only if

r(u mx_l (@ *
0= Z ¢Trullan @D+ Lo @) vy € F5,

Z’GFpn

= 37 (T L we)

IEFpn

— We(L, (w), Ly ()
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Let’s examine the cases of L}, (b) and L ,(b).

Case 1: Let L} (u) = 0 and L* ,(u) # 0. Then we have the following

Z CTT(L:n, (u)z)

IEFpn

For simplicity, let’s call L} ,(u) as 3.

Claim: If 8 # 0, then )" ¢Tr(Bz) =,

JZEIFpn

Proof of Claim: There exists an element zy €F,» such that T'r(5z,) # 0. Since
{z :Fp}={x+z0:Fpm},

Z CTT(ﬂx) — Z CTT(ﬁ(x-HEO)

IG]FP’!L LBEFPn

. Z CTT(Bw) Z CTT(ﬂ(:vo)

:L'EFpn {L’GFpn

Let S =3 s, ¢t and uw =Y _p  ¢T7(520) then we have the following

a:EIFp
S =05
S(1—v)=0

Since T'r(fBzg) # 0, v can not be equal to 1, so S has to be 0. Thus, our claim is hold.
In addition, since we choose L}, (u) is different from O for all w in .., ker(L;,,) = 0.

Then we get ker(L%,) Nker(L*,) = 0.
Case 2: Let L} (u) = 0 and L} ,(u) = 0. Then we have the following

r(L¥ (u)z~?! * (uw)x n
S (T, D)

$€]Fpn
Case 3: Let L} (u) # 0 and L} ,(u) = 0. Then we get the following

$ (Tt

IEGFpn

For simplicity, let’s call L* (u) as (3.
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Claim: If 8 # 0, then ) ¢TrBz) = .

:L’E]Fpn

Proof of Claim:

Z (o) — ZCTT(A%%) 4 ZCTT(B%)

z€F,n z#0 =0

Since {z € F} - 2} = {z € Fpn - 1},

— Z CTT(B;E) + Z CT'I‘(ﬂ.O)

x#0 =0

— Z CTT(BJ:)

$E]Fpn

Similarly in Case 1, ker(L},) = 0 since we choose L’ (u) is different from O for all

win ¥y, ker(L;,,) = 0.Then, again we obtain ker(L;,) N ker(Ly,) = 0.

Case 4: Let L} (u) # 0 and L} ,(u) # 0. Then we have the following

Z CTr(L;(u)z—lJrL;*n,(u)x)

.CEEIFpn

Let y~! = L7 (u)x™!, then z = yL* (u). Substituting these to the equation above
yields
Z (Trlv + Lo L3 (w)y)

Y

which is equal to Kloosterman sum for F,,» which we want to obtain K (L, (u) L, (u)).

We get u ¢ ker(L:,) N ker(L},), thus

Wi (L, (w), Ly (w)) = Kpn (L, (u) Ly (1))
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5.2 Possible Future Works

As future work, our main aim is to examine the existence of permutation polynomial
in specal type L,,(x™') + L, () in characteristic 3 finite field. In particular, as a first
stage, we want to search the accuracy of the statement if F'(z) = L,,(z71) + L, (z)
is a permutation over F3. then for r # 0 kernels of L,, and L, are in the form 7,

namely they are translates of 3. This statement is based on Theorem [5

To prove that, the steps below should be followed.

1. Defining an appropriate form Q over Fsn
2. Defining an appropriate bilinear form B(x, y) associated to () over Fs»

3. Determining for which modula we can derive a condition on ternary Kloost-
erman zeros over 3. such that K3.(a) = 0 by using trace mapping 7'r and

suitable form Q).

Step 3 is based on Theorem [4]

Moreover, for step 3, there are some results to characterize ternary Kloosterman sums

modula 9 and 27 which are conducted in [8§]].

The result for ternary Kloosterman sums in modula 9 using the trace mapping by

using Stickelberger’s theorem is the following:
Theorem 8. /8]

0 (mod9), if Tr(a)
Ksn(a) = ¢ 3 (mod9), if Tr(a)
6 (mod9), if Tr(a)

0
1
2

for u € Fan.

The result for ternary Kloosterman sums in modula 27 using the trace mapping by

using Gross-Koblitz formula is the following:

30



Theorem 9. [8] For p = 3 and n > 3, the following:

.

0 (mod27), if 7tp(u)+27a(u)=0 and Tr(u)=0

3 (mod27), if 8(u)=2 and Tr(u)=1

6 (mod27), if 7mp(a)+7ala)=2 and Tr(u)=2

9 (mod27), if tp(u)+271a(u)=1 and Tr(u)=0

Kan(u) =9 12 (mod27), if m8(u)=0 and Tr(u)=1
15 (mod27), if 7p(u)+7a(u) =0 and Tr(u) =2

18 (mod27), if 7p(u)+274(u)=2 and Tr(u)=0

21 (mod27), if 1g(u)=1 and Tr(u)=1

[ 24 (mod27), if 7p(u)+71a(u)=1 and Tr(u)=2

,where the sets:
A:={k e {0,..,3" — 2}|k = 3° + 3'}, (s, t not necesserily distinct)

B :={k€{0,...,3" — 2}|k = 3" + 3" + 3¥}, (, s t distinct)

and 7g : F)n — ), generalised trace is defined as

icS
where S is any subset of {0, ..., p"™ — 2} such that S” := {s? mod(p" —1)|s € S} =
S.

In our case, we used generalised trace as 7 : Fon — Iy

COED

i€Q
where Q := {k € {0, ...,2" — 2}|k = 2° + 2'}, (s, t distinct).
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CHAPTER 6

CONCLUSION AND OPEN PROBLEMS

S-boxes which vectorial Boolean functions are used in their design are one of the
block buildings of symmetric key cryptography systems. It is important to have high
resistance of these functions on some cryptographic attacks. Differential and lin-
ear attacks are the main attacks widely used in cryptography. These properties re-
mains invariant under several equivalence classes such as EA-equivalence and CCZ-
equivalence. Moreover, since permutations have a significant role in design of block
ciphers, it is beneficial to search permutations inside CCZ-class of a function F' :

Fon — Fon.

In the first and second chapter, we have given basic definitions and concepts in
order to make the subject explicit. Also, to clarify the questioning process about
coincidence of EA-equivalence & CCZ-equivalence and permutations inside CCZ-

equivalence, some literaure review is conducted.

In Chapter 3, we have presented on detailed description CCZ-equivalence of the in-
verse function. We have presented in [y~ non-existence of permutation polynomials
of the form L,,(z™') + L, (x) for n > 5. Main result which is reached by Lucas
Kolsch, is that the CCZ-class of F' : Fyn — Fon coincides with the EA-class of F'.
In addition to that, all permutations in the CCZ-class of F' are affine equivalent to it.
It is an open question for other functions which have desirable differetial uniformity
and nonlinearity properties. Same question would also be researched for odd charac-
teristic. Non-existence of permutation polynomials of the form L,,(z™!) + L, ()
for characteristic > 5 is shown in [[11]] based on non-existence of Kloosterman zeros.

However, it can be search for charactestic 3.
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In Chapter 4, a criterian which is about being permutation polynomial of the form
Ly (x™) + Ly (x) over Fpn is delivered by using Kloosterman sums and Walsh trans-
forms. This criterian can be applied for all charactaristics p. Therefore, it can be used

to search the problem mentioned above for characteristic 3.
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