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ÖZET 

 

FRENLEME PARAMETRESİNİN UZAY-ZAMAN GEOMETRİSİNE ETKİLERİ 

 

Erol İMREN 
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Lisansüstü Eğitim Enstitüsü 

Matematik Anabilim Doktora Tezi 

Danışman: Doç. Dr. Can AKTAŞ 

29/11/2021, 50 

 

Bu çalışmada, kozmolojik terimli f(R,T) teoride topolojik kusurlardan biri olan sicim 

madde, homojen anizotropik Kantowski-Sachs metriğinde incelenmiştir. Bu amaçla Hubble 

parametresinin en genel ve kullanışlı hali alınarak dört farklı frenleme parametresi elde 

edilmiş, bu frenleme parametrelerinin uzay-zaman geometrisine olan etkileri araştırılmıştır. 

Her bir model için elde edilen sonuçların grafikleri çizdirilmiş ve ayrıntılı olarak f (R, T) 

teoride bazı fiziksel ve kinematik özellikleri tartışılmıştır. 

 

Anahtar Kelimeler: 𝑓(𝑅, 𝑇) Teori, Frenleme Parametresi, Kantowski-Sachs Evreni, 

Sicim Madde, Uzay-Zaman Geometrisi 
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ABSTRACT 

 

EFFECTS OF DECELERATION PARAMETER ON SPACE-TIME GEOMETRY 

 

Erol İMREN 
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Doctoral Dissertation in Mathematics Science 

Co-supervisor: Assoc. Prof. Dr. Can AKTAŞ 

29/11/2021, 50 

 

In this study, string matter, which is one of the topological flaws in the cosmological 

term f(R,T) theory, was examined in the homogeneous anisotropic Kantowski-Sachs metric. 

For this purpose, four different braking parameters were obtained by taking the most general 

and useful form of the Hubble parameter. The effects of these braking parameters on the 

space-time geometry were investigated. The results obtained for each model were plotted 

and some physical and kinematic properties of f (R, T) theory were discussed in detail. 

 

Keywords: 𝑓(𝑅, 𝑇) Theory, Deceleration Parameter, Kantowski-Sachs Universe, 

String Matter, Space-Time Geometry 
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BİRİNCİ BÖLÜM

GİRİŞ

Kozmoloji, evrenin kökenini, evrimini, yapısını, doğa yasaları ile ortaya çıkaran ve

evrenin son halini matematiksel ve fiziksel olarak inceleyen bilim dalıdır. Kozmoloji sadece

teorik gerçeklere ve bazı temel ilkelere dayanmakla kalmaz, aynı zamanda çeşitli gözlemler

ile kendisini desteklemektedir. Fiziksel kozmolojide, kozmologların çoğu, evrenin bir

başlangıç noktası olduğuna, bu noktada zamanın sıfır ve evrenin sonsuz yoğun olduğuna

inanmaktadırlar. Halen pek çok insan evrenin başlangıcı ve sonu olmadığını düşünse de,

1929 yılında Edwin Hubble, evrenin genişlediğini ve galaksilerin birbirinden uzaklaştığını

gözlemlemiştir. Ayrıca, bu gözlemler neticesinde yaklaşık on ile yirmi milyon yıl geçmişe

giderek, evrenin sonsuz yoğunluğa sahip olduğunu, bunun da bir tekillik olduğu anlamına

geldiğini ileri sürmüştür (Narlikar, 2002).

Hubble (1929)’ın galaksi gözlemi yoluyla evrenin genişlemesine ilişkin ilk çalışması,

şimdiye kadar yapılmış en önemli keşiflerden biri olarak kabul edilmektedir. Galaksilerin

kırmızıya kayması ve mesafe modülleri Hubble yasasının belirlenmesinde hayati bir rol

oynamaktadır. Edwin Hubble gözlemlerinde yakındaki galaksilerden gelen ışıktaki

kırmızıya kayma ile mesafeleri arasında basit bir orantılılık ilişkisi keşfetti. Hubble

keşfinde, yakındaki galaksilerin durgunluk hızlarının orantılılık sabiti H ile radyal

mesafeleri arasında doğrusal olarak ilişki olduğunu buldu. Böylece modern kozmolojinin

doğuşu, evrendeki hemen hemen her şeyin bizden uzaklaştığı keşfiyle başladı. Çoğunlukla,

galaksiler mesafeleriyle orantılı hızlarda bizden uzaklaşıyor gibi görünüyordu. Bu tür

büyük ölçekli özellikler genellikle tüm evrenin genişlemesi olarak yorumlanmaktadır.

Hawking ve Penrose (1996) da büyük patlama (big bang) kozmolojisine inanıyorlardı.

Teoremlerinde, zaman ve evrenin büyük patlama açısından bir başlangıç olduğunu

kanıtladılar. Büyük patlama teorisi, başlangıçta evrenin sonsuz derecede sıcak ve yoğun

olacağını öngörmektedir. Büyük patlama tekilliğinde, genel rölativite ve diğer tüm fiziksel

yasalar geçersiz kılınmaktadır (Hawking, 1996). Gözlemsel sonuçlarımız olmadığı için

büyük patlamadan önceki olaylar tahmin edilememektedir. Büyük patlamadan hemen sonra
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evren genişledikçe evrenin sıcaklığı düşmeye başlamıştır.

Evrenin şişmesi veya genişlemesi, büyük patlama tekilliğinin 10−36 saniyesinden

hemen sonra başlamaktadır. Bazı uzmanlar ise bunun büyük patlamadan yaklaşık 10−33 ve

10−32 saniye sonra olduğuna öngörmektedirler. Büyük patlamadan sonra, evren

genişlemeye devam etmekte, ancak mevcut hızlanma oranına kıyasla daha az

ivmelenmektedir. Dolayısıyla bu teori, temelde evrenin başlangıcında evrenin üstel

genişlemesi hakkındadır. Erken genişlemeden sorumlu olarak itici yerçekimi

döneminindeki şişme olduğu düşünülebilir. İtici yerçekimi döneminden hemen sonra,

çekici yerçekimi dönemi olarak adlandırılan bu zaman dilimi en yüksek sıcaklıkta denge

durumunu koruyabilen parçacıkların oluşmasıyla başlamıştır. Sıcaklık zamanla azalarak, ilk

çekirdeği oluşturmak için gerekli aşamaya ulaşmıştır. Buna göre sıcaklık değişimleri büyük

patlamaya güç vermiştir.

Erken evrenin, mevcut bazı kavramsal ve gözlemsel sorunların üstesinden gelmek

için şişkinlik olarak bilinen hızlandırılmış bir genişleme aşamasına geçisinide göz önüne

almak gerekmektedir. Bunun nedeni, skaler bir alanın faz geçişiyle ilişkilendirilebilmesidir.

Öte yandan, bu geçişin önemli bir sonucu olarak, domain walls, monopoller ve kozmik

sicimler gibi topolojik kusurların oluşumuna olanak sağlamıştır (Hindmarsh ve Kibble,

1995; Vilenkin ve Shellard, 2000; Bezerra de Mello vd., 2003; Folomeev vd., 2007).

Dolayısıyla, kozmik sicimler, Big Bang sonrası evrenin erken evresindeki sıcaklığın kritik

seviyelerin altına düştüğünde, bozulmuş eksenel simetri nedeniyle faz geçişi sırasında

oluşan tek boyutlu topolojik kusurlardır (Sahoo vd., 2016).

Günümüzde standart kozmoloji modelleri, mevcut evrenin kökenini ve evrimini

incelemek için en çok kabul gören modellerdir. Şimdiye kadar temsil edilen standart

modeller ve fiziksel seçenekler, doğallık ilkesinden esinlenmiştir ve kuvvetlerin

birleşmesinin arayışı içindedir. Ancak yerçekiminin kuantum fiziği ile uzlaştırılabileceği

yeni bir kavramsal çerçeve sunmamaktadırlar.

Kozmolojik ilke evrenin homojen ve izotropik olduğunu, her yerde ve her yönde aynı

olduğunu belirtir. Bu ilkenin temel fikri, evrenin, hangi yönden bakarsak bakalım, belirli bir
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çağda aynı resmi temsil etmesidir (Silk, 1997). Başka bir deyişle, izotropi, evrende tercih

edilen yönün olmadığı anlamına gelir; her noktadan aynı görünmesidir.

Copernicus, Dünya’nın evrenin merkezinde göreceli önemsiz bir konumda olduğunu

gözlemledi. Buna Kopernik ilkesi denir. Bu durumun, diğer tüm yıldızlara benzeyen Güneş

için de geçerli olduğunu söylemektedir (Ryden, 1970). Kozmolojik ilke, Kopernik ilkesinin

değiştirilmiş biçimidir. Bu ilke, evrendeki tüm konumların eşdeğer olduğunu, ayrıca fiziksel

özelliklerin konumdan bağımsız olduğunu ileri sürer. Bu varsayım, evrenimizin homojen

olduğu anlamına gelir. Homojenlik, evrende madde dağılımının konumdan bağımsız

olmasıdır (Zeeshan, 2018). Homojenlik ve izotropinin birbirini sağlamadığı durumlar

olabilir. Örneğin, homojen bir manyetik alana sahip bir evren homojendir, ancak dikey yön

alan çizgileri nedeniyle izotropik olamaz. Aynı noktada, küresel olarak simetrik bir dağılım

merkezi noktasından bakılırsa izotropiktir, ancak zorunlu olarak homojen değildir.

İzotropik durumu tüm uzaysal yönlerin denkliği ile ilgilidir. Kozmoloji ilkesel olarak,

evrenin maksimum simetrik olduğunu, yani maksimum simetri sayısına sahip olduğunu ima

eder. Matematiksel olarak, simetrik manifoldlar, uzayda sabittirler. Radyo dalgasından,

kozmik X ışınlarından ve özellikle kozmik mikrodalga arka plan radyasyonundan gelen

gözlemler, evrenin homojen olduğu gerçeğine işaret etmektedir (Allen vd., 2003; Bahcall

ve Bode, 2003; Voevodkin ve Vikhlinin, 2004; Allen vd., 2008).

Weyl (1918)’in varsayımında kozmolojik ölçekte madde bileşenlerinin, zamansal

jeodezikler boyunca hareket eden ideal akışkan gibi davranır. Bu jeodezikler, geçmişte bir

nokta dışında kesişmez. Yerçekimi etkileşimlerinin ürettiği tuhaf hızlar, evrenin evrimi

tarafından üretilen hızlar açısından genellikle ihmal edilebilir düzeydedir. Aynı zamanda

birlikte hareket eden gözlemci tarafından ölçülen, bir birlikte hareket etme süresi

tanımlamak da mümkündür.

Genişleyen evren düşüncesinde, bir galaksinin uzamsal koordinatının genişlemenin

bir sonucu olarak değişmediği, serbestçe düşen bir koordinat sistemini benimseyerek

genişleyen evreni eylemsiz bir referans çerçevesine dönüştürebilir. Bu, birlikte hareket eden

koordinat sistemi olarak adlandırılır. Galaksi koordinatları dünya çizgileri cinsinden

belirlenmektedir. Dünya çizgileri demetinin geometrisi, belirli bir süre içinde gelişen bir
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galaksiler kümesine karşılık geldiğinde, bu sistem dünya çizgileri demetini birbirine

bağlayan ve genellikle kozmik veya koordinat zamanı olarak adlandırılan hiper yüzeyler

gibi tanımlanmaktadır (Scholz, 2013). Ayrıca, yüksek boyut teorileri, sicim teorisi veya

M-teorisi, evrenin genişleme tanımını desteklemektedir (Nojiri ve Odintsov, 2003).

Günümüze kadar, bir kuantum yerçekimi teorisi olarak gelecek vaat eden en önemli

aday, sicim teorisidir. Sicim teorisindeki araştırmalardaki önemli teorik ilerleme

sağlandığın da dahi, deneysel olarak doğrulanabilir hale gelmesi için, başa çıkılması

gereken çeşitli zorluklara sahip olmaya devam etmektedir.

Sicim kozmolojik model, erken evrenimizin tanımlanmasında önemli bir rol

oynadığından, modern kozmoloji, erken evren anlayışımızla uyumlu olan arka planda

somut bir dizi modeli inşa ederek bu tür zorlukları keşfetmek için heyecan verici fırsatlar

sunmaktadır. Aslında, sicim teorisi, tüm madde ve kuvvetleri tek bir teorik çerçevede

birleştirmekte ve erken evrenin temel yapısının keşfetmeye olanak sağlamaktadır.

Dolayısıyla, sicimlerin erken evrendeki varlığı, büyük birleşik teoriler kullanılarak

açıklanabilir (Everett, 1981).

Albert Einstein, evreni tanımlamak için geometrik kütleçekim teorisi olarak "Genel

rölativite teorisi" yayınladı (Einstein, 1916). Bu teorinin madde enerji dağılımı yoluyla

uzay-zamanın geometrik bir özelliği olarak yerçekiminin birleşik bir tanımını sağladığı ve

evrenin her kozmolojik modeli altında yatan teori olduğu ortaya çıktı. Bu teoriye göre

madde geometriyi, geometride maddeyi etkilemektedir. Yani, Einstein’ın teoreisine göre

madde ve geometri etkileşim halindedir. Evrenin evrimi, genel rölativite (GR) Einstein alan

denklemleri tarafından açıklanmaktadır.

Kozmolojik ilkenin gözlemsel sonuçlara dayanmadığı, ancak GR teorisini evrenin

yapısı üzerine uygulamanın bir varsayım olduğu unutulmamalıdır. Bu varsayım, bilim

adamlarının Friedmann (1920); Lemaître (1927) evren modellerini inşa etmelerine yardımcı

oldu, çünkü o yıllarda onunla çelişecek hiçbir gözlemsel veri yoktu. Kozmolojik modeller

de evrenin aynı ortalama yoğunluğa ve aynı ortalama basınca sahip maddelerle dolu olduğu

düşünülebilir. Bu niceliklerin her ikisi de evren boyunca zamanla eşit olarak değişir.
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1917’de Einstein, alan denklemlerine küçük bir pozitif kozmolojik sabit ekleyerek bir

model sundu. Einstein bu sabiti, statik ve sonlu bir kozmolojik çözüm elde etmek için alan

denklemlerinde Λ olarak belirtmektedir (Einstein, 1922). Evrenin pozitif ağırlıklı olduğunu

ve çekici yerçekiminin Λ’nın itici yerçekimi ile dengelendiğini düşünüyordu. Ancak

evrenin genişlemesinin keşfi ile kozmolojik sabit ihmal edildi. Günümüzde, bu kozmolojik

sabit, genel rölativite çerçevesinde karanlık enerji için uygun bir aday olarak kabul

edilmektedir.

Genel rölativite teorisi büyük ölçekte evrenin yapısını açıklamaya çalışsa da evrenin

ivmelenerek genişlemesini açıklamada yetersiz kalmaktadır. Bu nedenle bilim insanları GR

teorisini modifiye ederek yeni teoriler ileriye sürmüşlerdir.

Son dönemlerde modern kozmoloji, genişleyen evren ilgili çalışmalarda önemli

ilerlemeler sağlamak için yeni bir vizyona ulaştı. Modefiye yerçekimi teorileri, evrenin

ivmelenerek genişlemesinin yanı sıra karanlık Enerji ile ilgili etkili nedenleri gözlemlemek

için kullanılmaya başlamıştır. Modifiye yerçekimi teorisi olan f (R) yerçekimin de

Lagrangian maddesinin yerine R’nin keyfi bir fonksiyonu gelir. Harko vd. tarafından 2011

yılında bu teoriyi, eylemin yerçekimi kısmının hala Ricci skaler R’ye ve enerjisi momentum

tensörü Tik’nin izine bağlı olduğu f (R,T ) teorisi olarak adlandırılan yeni bir modifiye

teoriye genişletmiştir. Madde-enerji birleşimi nedeniyle, bu teorinin öncü modelinin

enerji-momentum tensörünün değişimini temsil eden kaynak terime bağlı olduğu öne

sürülmektedir (Sahoo vd., 2017)

Yapılan tez çalışmasında, evrenin ivmelenerek genişlemesini açıklamaya çalışan

f (R,T ) teoride topolojik kusurlardan biri olan sicim bulutunun Kantowski-Sachs

metriğindeki davranışı ve alan denklemlerinin tam çözümlerini farklı frenleme

parametreleri kullanarak analiz edilmiştir. Analiz aşamasında farklı frenleme parametreleri

kullanılarak evren modelleri oluşturulmuştur. Modellere ait çözümlerden ve grafiklerden

elde edilen sonuçlar geometrik ve fiziksel olarak irdelenerek yorumlanmıştır.
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İKİNCİ BÖLÜM

ÖNCEKİ ÇALIŞMALAR

Akarsu ve Dereli (2012) tarafından elde edilen frenleme parametresi formunun bir

genellemesi olan için yeni bir form kullanılarak f (R,T ) teoride ideal akışkan için LRS

Bianchi tip-I kozmolojik modeli erken dönemi Tiwari ve Sofuoğlu (2020) tarafından

irdelenmiştir. Yapılan çalışmada kırmızı kaymalarda frenleme parametresinin etkisi

incelenmiştir.

Tiwari vd. tarafından 2021 yılında yapılan çalışmada f (R,T ) yerçekimi teorisinde

değişen kozmolojik sabit Λ ile Bianchi Tipi kozmolojik modelinin zamana bağlı bir

yavaşlama parametresi ile alan denklemlerinin tam bir çözümü elde edilmiştir. Çalışmada

Banerjee ve Das (2005) tarafından önerilen özel bir Hubble parametresi kullanılmıştır. Elde

edilen verilerin son gözlemlerle tutarlı olduğu ve ΛCDM modeline geç zamanlarda

yaklaştığı görülmüştür.

Prasad vd. 2020 yılında yaptıkları çalışmada evrenin geç zaman ivmesinin, kütle

viskoz akışkan ve f (R,T ) yerçekimi teorisinde evren çözümünü elde edilmiştir. Elde edilen

çözümler son dönem gözlemsel verilerle karşılaştırma yapılmıştır. Elde edilen evrenin bazı

fiziksel özellikleri tartışılmış ve frenleme parametresinin durumuna göre evren yaşı tespit

edilmiştir.

Tiwari vd.(2020) tarafından yapılan çalışmada f (R,T ) teorisinde ideal akışkan madde

dağılımı ile LRS Bianchi tip-I kozmolojik modelinin evrenin erken zaman yavaşlamasını ve

geç zaman ivmesini çalışmışlardır. Hubble parametresi kullanılarak zamanla değişen

yavaşlama parametresinin yeni bir özel biçimi önerilerek, alan denklemlerinin kesin

çözümü elde edilmiştir. Evren modelinin fiziksel ve geometrik büyüklükleri ve evrimi

yorumlanmıştır. Modelin bir başlangıç tekilliği ve başlangıçta yavaşlayan genişleme

sergilerdiği görülmüştür. Model son dönemlerde ivmelenen genişleme aşamasına geçtiği

görülmüştür. Ayrıca, modelin madde kaynağının niteliği, yapı oluşumu çerçevesinde

standart model ile uyumlu olduğu belirlemişlerdir.

6



Bhardwaj ve Dixit (2020) f (R,T ) teoride LRS Bianchi-I uzay-zamanda kozmolojik

sıçrama çözümünü araştırmışlardır. Çalışmalarında LRS Bianchi-I uzay-zamanda ölçek

faktörü kullanarak, Hubble parametresi ve yavaşlama parametresi gibi geometrik

parametreler türetilmiş ve daha sonra bunların basınç ifadesinde kullanılması, yoğunluk ve

EoS parametresi Ω , sıçrama anında evrenin başlangıç koşullarını niteliksel olarak

doğrulamışlardır. Sıçramanın yakın enerji koşullarının ihlali ve modelin kararlılığı analizi,

madde zıplama yaklaşımının sıçrama sırasında oldukça dengesiz olduğunu ancak

sıçramadan kaynaklı bozulmaların hızlı bir şekilde azalmasının modelin kararlılığını

desteklediğini göstermiştir.

P. S. Singh ve Priyokumar Singh (2021) izotropik evren modeli için süper-expential

genişlemeyi incelemiştir. f (R,T ) teoride karanlık enerji için oluşturulan modelde başlangıç

tekilliğinden bağımsız, sonlu zamanlı gelecekte vakum enerjisi veya kozmolojik sabitin

hakim olduğu Sitter aşamasına yaklaşması öngörülmüştür. Skaler eğrilik R zamanla

azalmakta, olduğunu literütürdeki diğer çalışmalarla uyumlu olduğunu belirlemiştir.

Dagwal vd. 2020 yılında f (R,T ) teoride LRS Bianchi tip I kozmolojik modelleri

incelmişlerdir. Berman (1983) tarafından önerilen, sabit yavaşlama parametresi veren

Hubble parametresinin özel varyasyon yasasını varsayan bir modeli araştırmış ve alan

denklemlerinin çözümlerini belirlemiştir. Dust Universe, Radiation Universe, Hard

Universe and Zedovich Universe gibi farklı anizotropik fiziksel modelleri tanımlamak için

durum denklemlerini kullanmış ortaya çıkan fiziksel ve geometrik yönlerini belirlemiştir.

Aktaş vd. (2018) tarafından yapılan çalışmada alan denklemlerinin f (R,T ) yerçekimi

teorisi çerçevesinde sabit frenleme parametresi kullanarak Marder evreni için manyetize

acayip kuark madde çözümleri elde edilmiştir. Çalışmada t → ∞ için p→ Bc, ρ → Bc ve

Ω = −1 olacak şekilde karanlık enerji modeli elde edilmiştir. Kozmolojik sabit f (R,T ) ve

genel rölativitede negative olarak elde edilmiştir.

f (R,T ) yerçekimi teorisi çerçevesinde ideal akışkan madde için Kantowski-Sachs

evrenine ilişkin alan denklemlerinin kesin çözümleri Samanta (2013) tarafından araştırılmış,

kozmolojik modelin fiziksel davranışı ve Hubble parametresi, parlaklık mesafesi gibi
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astrofiziksel bazı önemli özellikleri ve kırmızıya kaymalar mesafe modülü incelenmiştir.

Tekillik içermeyen ve anizotropik Bianchi tip III ve Kantowski-Sachs kozmolojik

modellerini f (R,T ) teoride inceleyen Katore ve Hatkar (2016), modifiye alan denlemlerinin

evrenin hızlanan genişlemesi ile kozmolojilerini araştırmıştır. Elde edilen çözümler

sonrasında yapılan değerlendirmede evrenin ivmesinin yerçekiminden kaynaklandığı ve

gravitasyonel çökmelere eğimli duvarların neden olduğu belirlenmiştir.

f (R,T ) teoride Zubair ve Ali Hassan (2016) araştırmalarında dinamik alan

denklemlerinin çözümü için, genel anizotropik uzay-zamanda frenleme parametresi ve

enerji yoğunluğu ile Bianchi tip I, III ve Kantowski-Sachs evren modellerini

incelemişlerdir.

Ghate ve Sontakke (2018) tarafından yapılan çalışmada f (R,T ) teoride

Kantowski-Sachs kozmolojik modelininin enerji momentum tensörü vizkoz akışkan ve

hayalet kararlık madde enerjisi olup, alan denklemlerini J. Singh (2008) önerdiği hubble

parametresi formunu kullanılarak modelin fiziksel ve kinematik özellikleri araştırılmıştır.

Rani vd.(2015) tarafından yapılan araştırmada homojen ve anizotropik Bianchi tip-III

sicim kozmolojik modelleri f (R,T ) teoride manyetik alanı incelenmiştir. Sicim çözümleri

ρ + λ = 0 olmak üzere, geometrik sicimler ve sicim modeli olarak tartışılmıştır. Einstein

denklemlerine bağlı sicim bulutu için modelin fiziksel özellikleri irdelenmiştir.

Aygün (2017) homojen ve anizotropik Marder uzay-zamanını f (R,T ) teoride vizkoz

sicim dağılımı için alan denklemlerin anizotropi parametresi σ x
x

θ
ve yavaşlama parametresi

kullanarak çözmüştür.

Aktaş (2019) f (R,T ) teorisinde değişen G ve Λ ile Friedmann-Robertson-Walker

(FRW) evreni için tachyon field, k-essence and quintessence karanlık enerji modellerini

araştırmıştır. Alan denklemlerinin çözümünde lineer frenleme parametresi, durum denklemi

ile hubble parametresi ve kozmolojik sabit arasındaki orandan yararlanmıştır.
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ÜÇÜNCÜ BÖLÜM

MATERYAL VE YÖNTEM

Evrenin ilk zamanlarından günümüze kadar olan gelişmesini araştıran bilim insanları

süpernova IA deneylerindeki gözlemlerle, kozmik dalgalanmaların arka planını, anizotropik

galaksi kümesini ve hızla genişleyen evreni kapsayan geniş bir resme ulaşmışlardır.

Einstein’ın GR teorisinin şimdiye kadar deneysel olarak kurulmuş yerçekimi olgularını

tanımlamaya dayanan başarılı bir yerçekimi teorisi olduğuna inanılmasına rağmen, evrenin

hızlanan genişlemesini, karanlık maddenin ve karanlık enerjinin varlığını açıklamakta

yetersiz kaldığı görülmüştür. Bu durumu açıklamak içim yapılan araştırmalar ve deneylerin

temel amacı, evrenin hızla ivmelenmesine neden olan karanlık enerjiyi ölçmektir. Karanlık

enerji durum denklemiyle tanımlanabilmektedir. Böylece yerçekimi teorimi üzerinde

modifikasyon yapılabilmektedir. Araştırmalara genel olarak bakıldığında Einstein’ in

yerçekimi teorisinin doğru olduğu görülmüş ve evrenin hızlanan genişlemesi Einstein’ in

kozmolojik sabiti ile ilişkilendirilmiştir (Thorne vd., 2000).

Kozmolojik sabit, boşluk enerjisi olarak bilinen kuantum mekaniksel bir olgu olarak

kabul edilir. Bu enerji, evrenin hızlanmasından sorumludur. Dolaysıyla, yeni gözlemler ve

ileri sürülen tüm yeni teorilerin ivmeyi açıklamanın gerekliliğini ortaya koymaktadır.

Ayrıca vakum enerjisi en olası neden olarak da görülebilir. Bu nedenle evrenin genişleme

tarihi, bu sabit ivmenin arka planda normal yerçekimi teorisine eklenmesiyle açıklanabilir.

Karanlık enerjinin varlığını ve ivmelenerek genişlemeyi açıklamak için, literatürde

Quintessence, Phantom Enerji, K-essence, Tachyon, F-essence, Chaplygin gazı gibi farklı

teorik modeller tasarlanmıştır. Ayrıca, f (R) teori, Gauss-Bonnet teori ve f (G) teori gibi

modifiye yerçekimi teorileri, evrenin ivmelenerek genişlemesini açıklayan diğer

yaklaşımlardır. Bunun yanında modifiye yerçekimini yardımıyla ivmeyi açıklamak için

alternatif olarak kullanılan girişimlerin çoğu yetersiz kalmaktadır ve son yıllarda modifiye

yerçekimi ile ilgili neredeyse yapılan tüm tartışmalar karanlık enerjiyi açıklamaktan çok

GR’nin büyük ölçekli kozmolojik testleri hakkındadır.
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Gravitasyonel etkileşimleri ve büyük ölçekteki evrenin yapısını açıklayan Einstein

alan denklemlerinin tensörel formdaki ifadesi 3.1 denkleminde gösterilmiştir.

Rkl−
1
2

Rgkl +Λgkl =−χTkl (3.1)

Einstein alan denklemlerinin (EFE) birkaç genellemesi yapılmıştır. Bu

genellemelerden biri ve en basit şekli Ricci skalerinin (R) bir fonsiyonu olan ve GR’nin

Einstein-Hilbert çalışmalarında değiştirerek elde edilen f (R) yerçekimi teorisidir.

(Bertolami vd., 2007) tarafından f (R) kütle çekim teorisinin genelleştirilmesinde Ricci

skalerinin madde Lagrangian yoğunluğu (Lm) ile birleştirilmesi önerilmiştir. Bu bağlantıda

büyük parçacıkların hareketi jeodezik olmamakta ve dörtlü hız vektörü ortogonal olan bir

dış kuvvet ortaya çıkarmaktadır. Harko (2008), madde ve geometrinin birleşimini dikkate

alarak, f (R) ’deki uzantının başka bir versiyonunu önerdi. Madde geometri birleştirme

uygulamaları, farklı çalışmalarda Harko ve diğer araştırmacılar tarafından yaygın olarak

kullanılmıştır (Harko, 2010; Harko vd., 2011). Harko ve Lobo (2010) yılında Ricci skaleri

ve Lm bir fonksiyon olarak Hilbert-Einstein’ın çalışmalarına ekleyerek yerçekimi alan

denklemlerinin metrik formunu elde ettirler. Ayrıca enerji-momentum tensörünün

kovaryant açılımından çıkan analiz sonucunda parçacığın hareket denklemini elde

etmişlerdir.

Eylemsizlik ilkesine dayanarak Poplawski (2006), rölativisttik olarak kovaryant

etkileşim modelini göz önünde bulundurarak f (R,Lm) yerçekiminin özel bir uygulamasını

önerdi. Yerçekimsel Lagrangian’daki kozmolojik sabit, gerilim-enerji tensörünün izinin bir

fonksiyonu olarak kabul edildi ve model Λ(T ) yerçekimi modeli olarak adlandırıldı. Son

kozmolojik verilerin değişken kozmolojik sabiti desteklediği ve bu gözlemlerin Λ(T )

fonksiyonunun kesin bir formunun tutarlı olduğu açıklandı (Poplawski, 2006).

Modifiye yerçekimi teorilerinin ilham verici ve nihai formlarından biri, Harko vd.

(2011) tarafından tasarlanan f (R,T ) modifiye edilmiş yerçekimi teorisidir. Lm, Ricci skaler

R’nin fonksiyonu ve enerji-momentum tensörü T ’nin izi olarak kabul edilmiştir. Ayrıca,

T ’ye bağımlılığın acayip kusurlu akışkanlar veya kuantum etkileriyle indüklenebileceğine

inanılmaktadır.
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f (R,T ) fonksiyonu metriğe ve enerji-momentum tensörünün değişimi ile temsil

edilen kaynak terime bağlıdır. Bu kaynak terim genellikle Lm’nin bir fonksiyonu olarak

ifade edilmektedir. Dolayısıyla, her Lm’nin seçimi farklı alan denklemleri oluşturmaya yol

açar. Bu teori, GR’nin Einstein-Hilbert Lagrangian’ında R’nin genel fonksiyonu f (R,T ) ile

değiştirilerek elde edilir.

3.1. f (R,T ) Alan Denklemleri

f (R,T ) teoride etki fonksiyonu (Harko vd., 2011):

S =
∫ ( f (R,T )

16πG
+Lm

)√
−gd4x (3.2)

şeklindedir. Burada f (R,T ) fonksiyonu R ve T ’ye bağlı olup, Ricci skaler R’nin

fonksiyonudur. Enerji-momentum tensörü ise T ’nin izi ve Lm Lagrangian yoğunluğudur.

Buradan enerji-momentum tensörü,

Tkl =−
2√
−g

δ (
√
−g)Lm

δgkl (3.3)

şekilde tanımlanmaktadır (Landau ve Lifschits, 1975). 3.3 denkleminde T = gklT kl olarak

verilmiştir. Ayrıca, Lm’nin metrik tensör bileşenlerinin gkl bağlı, ancak türevine bağlı

olmadığını denklem:

Tkl = gklLm−2
∂Lm

∂gkl (3.4)

şeklinde ifade edilmektedir. gkl metrik tensörüne göre S’nin varyasyonu alınırsa:

δS =

∫ (
fR(R,T )δR+ fT (R,T ) δT

δgklδgkl −
gkl f (R,T )δgkl

2 +16π
δ (
√
−gLm)√
−gδgkl

)√
−gd4x

16π
(3.5)

eşitliğine ulaşılır. Burada fR(R,T ) =
∂ f (R,T )

∂R ve fT (R,T ) =
∂ f (R,T )

∂T ’dir. R’nin varyasyonu

için:
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δR = δ (gklRkl) = Rklδgkl +(∇ϒ δΓ
ϒ
kl−∇ϑ δΓ

ϒ
kϒ ) (3.6)

eşitliği ile verilir. Burada ∇ϒ , Christoffel sembolü Γ’ya göre kovaryant türevini gösterir.

Yani, GR’ deki gibi metrik tensör (gik) ile ilişkilidir. Bu durumda Christofell sembolünün

metrik tensör bileşenleri:

δΓ
ϒ
kl =

gϒ r

2
(∇kδglr +∇lδgrl−∇rδgkl) (3.7)

şeklinde verilmiştir. 3.6 denklemi 3.7 denkleminde yazılırsa:

δR = Rklδgkl +gkl�δgkl−∇k∇lδgkl (3.8)

bulunur. 3.8 denklemini 3.5 denklemine eklendiğinde;

δS =
1

16π

∫ [
fR(R,T )Rklδgkl + fR(R,T )gkl�δgkl− fR(R,T )∇k∇lδgkl

+ fT (R,T )
δ (grϑ )Trϑ

δgkl δgkl− gkl f (R,T )δgkl

2

+16π
δ (
√
−gLm)√
−gδgkl

]
√
−gd4x

(3.9)

elde edilir. T varyasyonunun ifadesi şu şekilde verilir (Harko vd., 2011):

δ (grϑ Trϑ )

δgkl = Tkl +Θkl (3.10)

Burada,

Θkl ≡ grϑ δTrϑ

δgkl (3.11)

3.9’de denklem 3.10 ve 3.11 yerine yazılırsa, f (R,T ) yer çekimi alan denklemleri,
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fR(R,T )Rkl−
f (R,T )gkl

2
+(gkl�−∇k∇l) fR(R,T ) =8πTkl

− fT (R,T )(Tkl +Θkl)

(3.12)

formunu alır. Burada 3.12’de verilen f (R,T ) yerçekimi alan denklemleri, f (R)’nin

değiştirlerek elde edilmiş hali olup, f (R,T ) indirgeyerek f (R) alan denklemlerine

ulaşılmaktadır. Böylece 3.12 denklemi R ve T arasında ilişkilendirilerek,

fR(R,T )R−2 f (R,T )+3� fR(R,T ) = κT −FT (R,T )(T +Θ) (3.13)

olur. Burada Θ =Θ r
r olup, 3.12 ve 3.13 denklemlerinden � fR(R,T ) yok edilerek,

fR(R,T )
(

Rkl−
Rgkl

3

)
+

f (R,T )gkl

6
=8π

(
Tkl−

T gkl

3

)
− fT (R,T )

(
Θkl−

Θkl

3

)
+∇k∇l fR(R,T )

(3.14)

elde edilir. 3.12 denkleminin Koivisto (2006) makalesinde geçen matematiksel özdeşliği

kullanarak, kovaryant açılımı yapılırsa;

∇
k
(

fR(R,T )Rkl−
f (R,T )gkl

2
+(gkl�−∇k∇l) fR(R,T )

)
= 0 (3.15)

bulunur. Enerji-momentum tensörü Tkl ,

∇
kTkl =

(
(Tkl +Θkl)∇

k ln fT (R,T )
) fT (R,T )

8π fT (R,T )
+∇

k
Θkl (3.16)

şeklinde ifade edilir. 3.11 ve 3.16 denklemleri incelendiğinde, Θkl tensörü Lm elde

edilebilir. 3.4 denkleminin varyasyonu ile metrik tensör:

δT rϑ

δgk =
δgrϑ

δgkl Lm +grϑ

∂Lm

∂gkl −
2∂ 2Lm

∂gkl∂grϑ

=
δgrϑ

δgkl Lm +
grϑ gklLm

2
− grϑ Tkl

2
− 2∂ 2Lm

∂gkl∂grϑ

(3.17)
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olur. grΩ gΩϑ = gϑ
r olduğundan δgrϑ

δgkl ifadesi,

δgrϑ

δgkl =−grΩ gϑνδ
Ων
kl (3.18)

şeklinde yazılır. Burada δ Ων
kl genelleştirilmiş Kronecker sembolü olup, yapılan işlemlerden

sonra 3.11 denklemindeki Θkl tensörü,

Θkl =−2Tkl +gklLm−
2∂ 2Lm

∂gkl∂grϑ
gkl (3.19)

şeklinde ifade edilmektedir (Amir ve Sattar, 2016).

Enerji momentum tensörünün toz formu, Lm = ρ ve p = p0 için, basınç yoğunluktan

bağımsız sabit bir nicelik durumundadır (Harko, 2010). Basıncın termodinamik ya da

radyal bileşeni bulunmuyor ise, p0 = 0 olarak alınabilir. Burada p basıncı ve ρ Lagrange

yoğunluğunu belirtmektedir.

Yapılan çalışmada, toz durumundaki kozmik sicimler için Lagrange yoğunluğu

Lm = ρ verilmektedir. Böylece, Lm, Tkl , ve Θkl çözümlerde yer almıştır (Harko, 2010;

Harko vd., 2011).

Bu durumda kozmik sicimler için Lm, Tkl , ve Θkl;

Lm = ρ (3.20)

Tkl = ρukul−λxkxl (3.21)

şeklindedir. Enerji-momentum tensörünün karışık formunun matris gösterimi aşağıdaki

gibidir.

T k
l =


λ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ρ

 (3.22)
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Burada, uk dörtlü hız vektörü, xl sicimlerin yönünü gösteren uzaysal vektör ve λ ise

sicimlere ait gerilim yoğunluğudur. Dörtlü hız vektörü için ukuk = 1 ve uk∇luk = 0

eşitlikleri vardır. Ayrıca, ∂ 2Lm
∂gkl∂grϑ gkl = 0 olmak üzere, 3.19 ve 3.20 denklemlerinden,

Θkl = 2Tkl +ρgkl (3.23)

elde edilmektedir.

3.2. f (R,T )’nin Farklı Durumları İçin Alan Denklemleri

Alan denklemlerini çözümünü araştıran Harko vd. (2011), f (R,T ) ’nin fonksiyonel

formunu ayrıntılı incelenerek bazı özel durumlar elde etmişlerdir. Genel olarak, alan

denklemleri tensör Θkl yoluyla maddenin fiziksel yapısına bağlıdır. Modifiye edilmiş

f (R,T ) yerçekimi teorisinde, alan denklemleri madde yapısına ve f (R,T ) seçimine bağlı

olduğundan, farklı kuramcılar tarafından birkaç teorik model elde edilmiştir.

Harko, Lobo, Nojiri, ve Odintsov (2011) f (R,T ) teorisi için sunduğu üç durum:

f (R,T ) =


R+2 f (T )

f1(R)+ f2(T )

f1(R)+ f2(R) f3(T )

(3.24)

şeklindedir. I.durumda Harko vd. (2011) f (T ) fonksiyonunu T ’nin keyfi bir fonksiyonu

olarak almışlardır.

f (R,T ) = R+2 f (T ) (3.25)

I. durum için 3.12 alan denklemleri (Gkl = Rkl− 1
2Rgkl),
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Rkl−
R
2

gkl = 8πTkl−2 f ′(T )Θkl + f (T )gkl (3.26)

şeklinde ifade edilir. Burada f ′(T ) = d f
dT şeklindedir.

II. durum için f (R,T ) = f1(R)+ f2(T ) eşitliğinde yer alan fonksiyonlar ayrı ayrı R ve

T ’in fonksiyonudur (Harko vd., 2011). o halde herhangi bir madde için alan denklemleri,

f ′1(R)Rkl−
f1(R)

2
gkl + f1(R)(gkl�−∇k∇l) = 8πTkl− f ′2(T )

(
Tkl +Θkl−

1
2

)
(3.27)

olur. f (R,T ) teorisinde, kozmik ivmenin nedeni enerji yoğunluğundan kaynaklanmaktadır.

Dolayısıyla kozmik ivme maddenin içeriğine bağlıdır. Buradan Hilbert-Einstein

Lagrangian’da geometri-madde bağlantısı yoluyla modifikasyon sağlanmaktadır.

III. durumda Harko vd. (2011) f (R,T ) = f1(R)+ f2(R) f3(T ) eşitliği ele alınmıştır.

Herhangi bir madde için yerçekimi alan denklemlerini ifade denklem 3.28’da

belirtilmektedir.

(
f ′1(R)+ f ′2(R) f3(T )

)(
Rkl +gkl�−∇k∇l

)
−

f ′1(R)
2

gkl

= 8πTkl− f2(R)
(

f ′3(T )(Tkl +Θkl)−
f3(T )

2
gkl

) (3.28)

3.3. Model Parametreleri

Gözlemsel ve kozmolojik parametreler açısından evrenin genişlemesini tanımlamak

için bazı niceliklerin tanımlanması önem taşımaktadır.

3.3.1. Ölçek Faktörü

Ölçek faktörü, evrenin genişlemesini parametreleştirmek ve boyutunu (galaksiler

arasındaki mesafeyi) belirlemek için kullanılan, boyuttan daha az zamana bağlı pozitif bir
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fonksiyondur. Aynı zamanda genişleme faktörü veya kozmolojik yarıçap olarak da

adlandırılır. Evren modellerini tanımlayan metriğin bir bileşeni olarak kullanılır. Einstein’ın

gözlemleri açıklayan alan denklemlerinde merkezi yer alan Hubble parametresi (H) ve

frenleme parametresi (q) için Taylor serisi genişlemesinde ölçek faktörü;

a(t) = a(t0)+ ȧ(t0)(t− t0)+
1
2

ä(t0)(t− t0)2 + . . . (3.29)

olarak tanımlanabilirler (Kousar, 2019). Burada türev zaman bağlıdır.

3.3.2. Hubble Parametresi

Evrenin yaşını ve boyutunu belirlemek için kullanılan Hubble Parametresi (H)

kozmolojideki en önemli niceliktir. Dolayısıyla evrenin genişleme hızını temsil etmektedir.

Hubble Parametresinin mevcut değeri, farklı galaksilerin kırmızıya kayması kullanılarak

tahmin edilebilir (Hubble, 1929). Zamana bağlı değişen H’in değeri şu şekilde verilir:

H =
ȧ
a

(3.30)

H’in mevcut değeri Hubble sabiti olarak adlandırlır. a(t) büyük patlama anında sıfır

olup, evreni genişletmeyi düşündüğümüzde artacaktır. Bu durum,

H0 =

(
ȧ
a

)
t=t0

= ȧ(t0) (3.31)

ifade edilir. Genişleyen evrenin temel gözlemlenebilir özelliğidir. İzotropik genişleme

durumunda, Hubble parametresi 3.30 gibi belirtilir ancak anizotropik genişleme için

ortalama Hubble parametresi kullanılır. Yönlü Hubble parametrelerinin ortalaması Hk,

ortalama Hubble parametresi olarak bilinir. n boyutlu Hubble parametresi zamana bağlı

değişiyorsa,

H =
(lnV )̇

n−1
= (lna)̇ =

H1 +H2 + . . .+Hn

n−1
−1 (3.32)
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olarak tanımlanır. Hk, (i = 1,2, . . . ,n−1) her yöndeki genişleme oranıdır.

Ortalama anizotropi parametresi genel olarak,

∆ =
1

n−1

n−1

∑
k=1

(
Hk

H
−1
)2

(3.33)

şeklinde tanımlanır. İzotropik kozmik genişleme durumunda ∆ = 0’dır.

Hubble parametrelerinin parametrelendirilmesi sayesinde, Hubble yasasında

varsayılan değişiklikler ile gözlemlenen değerler arasındaki tutarsızlık ortadan kaldırılır.

Dolayısla dinamikler için zamanla değişen ölçek faktörünün basit bir işlevsel formu elde

edilmektedir. Pacif vd. (2017) yaptığı çalışmada literatürdeki hemen hemen tüm Hubble

parametrelerini kapsayacak şekilde genel formda, bir Hubble parametresi gibi olacak

şekilde zamana bağlı Hubble parametresinin en genel ve kullanışlı hali olarak,

H =
β tm

(tn +α)p (3.34)

gibi önermişlerdir (Pacif vd., 2017). Burada, α,β 6= 0 olup, m,n, p reel sabitleri ise farklı

formlar için özel olarak değişmektedir. Denklem 3.34 Hubble parametresinin fonksiyonel

formunda beş parametre bulunmaktadır. Modellere ait fiziksel ve geometrik davranışları

analiz etmek için m,n, p parametrelerine bazı özel değerler verilerek, modeldeki

parametrelerin sayısını azaltılmaktadır. Bazı modellerde m,n, p değerlerine verilen

değerlerle elde edilen α ve β değerleri tablo 1’de verilmiştir (Pacif vd., 2017).
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Tablo 1
Model parametrelerinin bazı spesifik değerleri için elde edilen çeşitli modeller

Model m,n, p değerleri Hubble Parametresi (H) Frenleme Parametresi (q)

I m = 0, p = 0,∀n β −1

II m =−1, p = 0,∀n β

t
−1+

1
β

III m = 0, p = 1,n = 1
β

t +α
−1+

1
β

IV m = 1, p = 0,∀n β t −1− 1
β t2

V m = 0, p = 1,n = 2
β

t2 +α
−1+

2t
β

VI m = 0, p =
1
2
,n = 1

β√
t +α

−1+
1

2β
√

t +α

VII m = 0, p =
1
2
,n = 2 β√

t2+α
−1+ 1

β

√
t2+α

VIII m = 1, p = 1,n = 1
β t

t +α
−1− 1α

β t2

IX m = 1, p = 1,n = 2
β t

t2 +α
−1+

1
β
− α

β t2

X m = 1, p =
1
2
,n = 2

β√
t2 +α

−1− α

β t2
√

t2 +α

XI m =−1, p = 1,n = 1
β

t(t +α)
−1+

α +2t
β

XII m =−1, p = 1,n = 2
β

t(t2 +α)
−1+

α +3t2

β

Tablo 1’de bazı özel parametrelerin seçimine göre Hubble parametresi ve frenleme

parametresinin alacağı formlar verilmiştir (Pacif vd., 2017). Model I ΛCMD modeli olup,

burada β kozmolojik sabitin yerine kullanılmıştır. Model II güçlü enerjili kozmolojisi

belirtmektedir (Lohiya ve Sethi, 1999). Model III’de 1
β
= m olup Berman’nın sabit

frenleme parametreli modelidir (Berman, 1991). Abdel-Rahman (1992) modelli olan model
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IX’da β = 1 alınmış, Abdussattar ve Prajapati (2011) çalışmalarındaki genelleştirilmiş

modeli burdan elde etmişlerdir. Model XI doğrusal olarak değişen Frenleme parametresine

benzemektedir, burada 2
β
= −k ve α

β
= m alınmaktadır (Akarsu ve Dereli, 2012). Böylece,

tüm bu modellerin bazı özel model parametreleri seçimiyle H’nin parametrizasyon

şemasına girdiğini görebiliriz. Dolayısıyla elde edilen birçok çözümün, ölçek faktörünün

bazı sonlu değerlerinde sıçramanın meydana geldiği tekil olmayan sıçrayan çözümleri

olmaktadır. α = 0 için, H = β tm−np olmakta ve p = 0 ile model I,II ve IV aynı sonucu

vermektedir. Denklem 3.34, α negatiflik durumunda H = β tm

(tn−α)p ; α > 0 olmaktadır. H’nin

bu formu ölçek faktörünün davranışı bazı modellerde ve dolayısıyla dinamikler üzerinde

büyük ölçüde farklılık gösterecektir. Tüm modeller (p 6= 0), t = α
1
n ’te çöken bir yapıya

sahiptir. Eğer H = β tm

(α−tn)p ; α > t olursa, t = α
1
n de tekilliğe sahip modellere yol açacaktır.

Hubble parametreleri H = β tm+η

(α−tn)p ; α > t olarak modifiye edersek (η diğer bir

parametredir), p = 0 için hibrit ölçek faktörü kozmolojisini elde etmek mümkündür

(Akarsu vd., 2014; Mishra ve Trioathy, 2015).

3.3.3. Frenleme (Yavaşlama) Parametresi

Frenleme parametresi (q), DE modelinin ve kozmik genişlemenin açıklanmasıyla

bilinen klasik geometrik parametrelerindendir. Hubble parametresinin değişimi ölçüle

bilinirse evrenin yapısı ve kaderi açıklanabilmektedir. Frenleme parametresi evrenin kendi

kütle çekimiyle kozmik genişlemesinin yavaşlayacağı hız değişimini tanımlamaktadır.

Ölçülerilir özelliği olan genişleme parametresiyle boyutsuz q parametresi,

q =− aä
(ȧ)2 (3.35)

olarak ifade edilir. Burada a(t) ölçek faktörünü ve nokta zamana bağlı türevini belirtir. Son

gözlemler, DE’nin etkileri nedeniyle evrenin genişleme hızının şu anda hızlandığını

göstermektedir. Dolayısıyla q nun değerleri günümüzde negatiftir.

q’nun işareti kozmik genişlemenin yavaşladığını veya hızlandığını göstermektedir. O

halde q’nun pozitif işareti evrenin yavaşlamasını genişlemesini ve q’nun negatif işareti
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evrenin ivmelenmesini gösterir. Dolasıyla son gözlemlere göre q, hızlanan kozmik

genişlemeyi sağlayan negatif değere sahiptir. Ayrıca frenleme parametresi Hubble

parametresi arasındaki bağıntı,

q =− 1
H2

ä
a
=−1+

d
dt

(
1
H

)
(3.36)

olarak tanımlıdır. Bu durumda 3.29’de ki Taylor serisi,

a = a(t0)
[
1+H0(t− t0)−

q0

2
H2

0 (t− t0)2 + . . .
]

(3.37)

olmaktadır.

Pacif vd. (2017) yaptığı çalışmada, Tablo 1’de listelenen 12 modelde frenleme

parametresi, I – III modellerinde sabit çıkarken, model IV – XII’de zamana bağımlıdır.

α,β > 0 için modeller IV, VIII, X sonsuz hızlanmalı faz geçişi sergilerken, V, VII, IX, XI,

XII modelleri ilk hızlanmadan yavaşlamaya şeklinde faz geçişini veya belirli α ve β

seçiminde sonsuz hızlanmalı faz geçişini göstermektedir. Sadece model VI, yavaşlamadan

hızlanmaya bir faz geçişi gösterir. Faz geçişi açısından çeşitli durumlar Tablo 2’te analiz

edilmiştir (Pacif vd., 2017).
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Tablo 2
Tablo 1 elde edilen modellerde faz geçiş zamanı

Model Faz Geçişi Tipi Faz geçiş zamanı

IV sonsuz hızlanmalı ––

V hızlanan→ yavaşlayan β

2

VI
yavaşlayan → hızlınan
sonsuz hızlanmalı

1
4β 2 −α

––

VII
hızlanan → yavaşlayan
sonsuz hızlanmalı

√
αβ√

1−β 2

––

VIII sonsuz hızlanmalı ––

IX
hızlanan → yavaşlayan
sonsuz hızlanmalı

√
α

1−β

––

X sonsuz hızlanmalı ––

XI
hızlanan → yavaşlayan
sonsuz hızlanmalı

β−α

2

––

XII
hızlanan→ yavaşlayan
sonsuz hızlanmalı

√
β−α

3

––

Evrenin gerçek yaşının Hubble zamanı yardımıyla, evrenin yavaşlaması ve hızlanması

arasındaki fark frenleme parametresi tarafından belirlendiği bilinen bir gerçektir.

Dolayısıyla Hubble parametresi (H) ve frenleme parametresi (q), evrenin statik ve dinamik

yapısını ifade etmektedir (Berman, 1983; Sahoo vd., 2016). Ancak, kozmolojik

genişlemenin kinematiğinin ayrıntılı açıklaması için, zamana bağlı frenleme parametresinin

çeşitli parametreleştirilmiş biçimlerini dikkate almak gerekir.

Eğer (Adhav vd., 2010; Adhav, 2011;Akarsu ve Dereli, 2012),

• q > 0, H > 0 evren modeli yavaşlayarak ivmelenen genişlemeye sahiptir,

• q < 0, H > 0 evren modeli hızlanarak ivmelenen genişlemeye sahiptir,

• q > 0, H < 0 evren modeli yavaşlayarak ivmelenen daralmaya sahiptir,

• q < 0, H < 0 evren modeli hızlanarak ivmelenen daralmaya sahiptir,

• q = 0, H > 0 evren modeli sabit genişlemeye sahiptir,

• q = 0, H < 0 evren modeli sabit daralmaya sahiptir,

• q = 0, H = 0 evren modeli durağandır.
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Sabit frenleme parametresi, kozmologlar tarafından çeşitli yönlerden literatürde

yaygın olarak kullanılmaktadır (Berman, 1983; Sahoo vd., 2016).

Hacimin sabit kaldığı zaman içindeki eğrisel bozulmanın ölçüsüne Shear tensörü

denir (Poisson, 2004). Shear tensörünün indisleri simetrik olup,

(σ kl = gkmgnlσmn = gkmσ l
m), şu şekilde tanımlanmaktadır:

σ
2 =

1
2

σklσ
kl (3.38)
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DÖRDÜNCÜ BÖLÜM

ARAŞTIRMA BULGULARI

Evrenin geç zamanda ivmelenen genişlemesini açıklamaya çalışan f (R,T ) yerçekimi

teorisi çerçevesinde topolojik kusurlardan biri olan sicim bulutunun, uzay-zamanın

anizotropik doğası yardımıyla modifiye alan denklemlerini çözerek ve Kantowski-Sachs

metriğindeki davranışını zamanla değişen özel frenleme parametreleri kullanarak,

öngörülen evren modellerinin çeşitli dinamik ve fiziksel davranışları araştırılmıştır.

Yapılan çalışmada, 2011 yılında Harko ve diğer araştırmacıların yayınladıkları

makalede yer alan f (R,T ) fonksiyonu için önerilen üç önerinden f (R,T ) = R + 2 f (T )

olarak alınmıştır. f (T ) = µT olarak seçilmiştir.Burada µ sabittir. µ = 0 alınırsa, f (R,T )

terorisi genel rölativite teorisine dönüşür. f (R,T ) = R + 2µT ifadesinde ilk terim genel

rölativitenin Einstein-Hilbert etkisini ifade ederken, ikinci terim ise madde dağılımı ve

uzayın eğriliği arasındaki etkileşimi ifade etmektedir.

Küresel koordinatlarda homojen ve anizotropik Kantowski-Sachs metriğinin genel

formu (Kantowski ve Sachs, 1966);

ds2 =−A2(t)dr2−B2(t)(dθ
2 + sin(θ)2dΦ

2)+dt2 (4.1)

şeklindedir. 4.1 denkeminden metrik tensörün kovaryant gösterimi;

gik =


−A2 0 0 0

0 −B2 0 0

0 0 −B2sin2(θ) 0

0 0 0 1

 (4.2)

Çalışmada f (R,T ) teoride sicim bulutunun Kantowski-Sachs metriğindeki davranışını bazı

özel frenleme parametreleri kullananarak evren modelleri öngörülmüştür. f (R,T ) teorideki

kozmolojik terimli (Λ ) alan denklemleri (Harko vd., 2011):
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Ri j−
1
2

Rgi j = 8πTi j +
[
2ρ f ′(T )+ f (T )+Λ

]
gi j (4.3)

şeklinde verilmektedir.

Enerji momentum tensörünün izi:

T = λ +ρ (4.4)

Denklem 4.1 metriği ile 3.21 ve 3.14 denklemleriden f (R,T ) teorideki alan

denklemleri,

2B̈
B

+
Ḃ2

B2 +
1

B2 = 8λπ +5λ µ−ρµ +Λ (4.5)

B̈
B
+

Ä
A
+

ȦḂ
AB

= λ µ−ρµ +Λ (4.6)

Ḃ2

B2 +
2ȦḂ
AB

+
1

B2 = 8ρπ +3ρµ +λ µ +Λ (4.7)

şeklinde elde edilir. Denklemler 4.5, 4.6 ve 4.7 oluşan denklem sisteminden; enerji

yoğunluğu, sicim gerilimi ve kozmolojik terimi,

ρ =
1

4(2π +µ)

(
− Ä

A
+

B̈
B
+

ȦḂ
AB

+
Ḃ2 +1

B2

)
(4.8)

λ =
1

4(2π +µ)

(
− Ä

A
+

B̈
B
− ȦḂ

AB
+

Ḃ2 +1
B2

)
(4.9)

Λ =

(
Ä
A
+

B̈
B
+

ȦḂ
AB

)
+

(
µ

2π +µ

)(
Ä
A
+

2ȦḂ
AB

)
(4.10)

olarak A ve B cinsinden yazabiliriz. ρ , λ ve Λ ’yı belirleyebilmek için ek iki ilave denkleme

daha ihtiyaç vardır.

Her bir modelimizin çözümü için, özel belirlediğimiz frenleme parametresi ve evrenin

anizotrop olup olmadığını gösteren, genel formu 3.33 denkleminde belirtilen Anizotropi

parametresi ilave denklemler olarak kullanılmaktadır. Eğer anizotropi parametresi 0 ise
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evrenin izotrop olduğunu gösterir.

∆ = ξ (4.11)

Burada anizotrop parametresi Kantowski-Sachs metriği için anizotropinin yönü

radyal yönlü seçilmiş ve 0 < ξ < 1 bir sabittir. Denklem 4.11 çözülürse;

A = Bn (4.12)

bulunur. Burada n =
3
√

2ξ−2ξ−3
ξ−2 olmaktadır. Yani, çözümler de B metrik potansiyelini

bulmak diğer çözüm niceliklerini bulmak için avantaj sağlamaktadır.

4.1. Çalışmada Modeller İçin Kullanılan Frenleme Parametreleri

Bu çalışmada, dört farklı frenleme parametresi formu için modeller oluşturulmuştur.

Modeller de 3.34 denkleminde verilen Hubble parametresinin en basit ve kullanışlı

halindeki m, p ve n değerleri ile ilişkilendirilen frenleme parametrelerinden elde edilen

modeller irdelenmiştir.

4.1.1. Model I

m = −1, p = 1 ve n = 1 olmak üzere, H’nin genel ve kullanışlı halini veren 3.34

denklemi:

HI =
β

t(t +α)
(4.13)

olur. O halde frenleme parametresi;

qI =−1+
α

β
+

2
β

t (4.14)
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şeklinde elde edilir. H > 0 için, burada iki durum karşımıza çıkmaktadır.

i) α < 0 ve β < 0,

ii) α > 0 ve β > 0

Model I için, Hubble parametresinin ve frenleme parametresinin grafikleri sırayla:
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Şekil 1. Model I için Hubble parametresinin zamana bağlı değişimi
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Şekil 2. Model I için frenleme parametresinin zamana bağlı değişimi

q = 0’da bulunan t değerine "transit t değeri" denir. Kısaca ttr ile gösterilmektedir. O

halde q = 0 için ttr =
β−α

2 olur. Her zaman ttr ≥ 0’dır. Buradan da β−α

2 ≥ 0⇒ β ≥ α
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olmaktadır.

4.1.2. Model II

m = 1, p = 1 ve n = 2 olmak üzere, 3.34 denklemi ile verilen H:

HII =
β t

t2 +α
(4.15)

şeklinde olur. Buradan frenleme parametresi:

qII =−1+
1
β
− α

β t2 (4.16)

şeklindedir. Hubble parametresi ve frenleme parametresinin kozmik zamana ilişkin

değişimleri şekil 3 ve şekil 4 gösterilmiştir.

0 5 10 15

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

t

H

Şekil 3. Model II için Hubble parametresinin zamana bağlı değişimi
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Şekil 4. Model II için frenleme parametresinin zamana bağlı değişimi

q = 0 ise ttr =
√

α

1−β
olur. O halde ttr ≥ 0⇒ α

1−β
≥ 0 dır. H > 0 için, buradan iki

durum ortaya çıkar.

i) α ≥ 0 ve 1−β ≥ 0 (veya 1≥ β ). Yani faz değiştirme hızlanmadan→ yavaşlamaya

halindedir.

ii) α ≤ 0 ve 1−β ≤ 0 (veya 1 ≤ β ). Yani faz değiştirme, sürekli hızlanarak devam

edecektir.

4.1.3. Model III

m = 0, p = 1
2 ve n = 1 olmak üzere, H için verilen 3.34 denklemi:

HIII =
β√

t +α
(4.17)

şeklindedir. Buradan frenleme parametresi:

qIII =−1+
1

2β

1√
t +α

(4.18)

şeklinde elde edilir. Model III ait Hubble parametresi ve frenleme parametresi zamansal

değişimleri şekil 5 ve şekil 6 görülmektedir.
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Şekil 5. Model III için Hubble parametresinin zamana bağlı değişimi
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Şekil 6. Model III için frenleme parametresinin zamana bağlı değişimi

q = 0 ise ttr = 1
4β 2 −α dır. O halde ttr ≥ 0⇒ 1

4β 2 −α ≥ 0 olup, H > 0 için, iki durum

ortaya çıkar.

i) β
√

α < 1
2 ise, faz değiştirme yavaşlamadan→ hızlanmaya doğrudur.

ii) β
√

α > 1
2 ise, faz değiştirme sürekli hızlanmaktadır.
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4.1.4. Model IV

m =−1, p = 1 ve n = 2 olmak üzere, H’nın 3.34 denklemi:

HIV =
β

t(t2 +α)
(4.19)

olmaktadır. Bu durumda frenleme parametresi:

qIV =−1+
α

β
+

3
β

t2 (4.20)

şeklindendir. Model IV ait Hubble parametresi ve frenleme parametresinin kozmik zamana

bağlı değişimleri şekil 7 ve şekil 8 belirtilmiştir.
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Şekil 7. Model IV için Hubble parametresinin zamana bağlı değişimi
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Şekil 8. Model IV için frenleme parametresinin zamana bağlı değişimi

Eğer, q = 0 olursa, ttr =
√

β−α

3 elde edilir. H > 0 için, burada iki durum olmaktadır.

i) α,β > 0 ve β > α için, faz değiştirme hızlanmadan→ yavaşlamaya geçer.

ii) α,β < 0 ve β < α için, faz değiştirme sürekli yavaşlanmaktadır.

4.2. Modellerin f (R,T ) Alan Denklemlerinin Çözümlerinin Elde Edilmesi

Model I-IV için f (R,T ) teoride sicim bulutu çözümleri ayrı ayrı değerlendirilerek,

modellerin madde ve geometrik kısımlarına ait niceliklerinden elde edilen bulgular

grafiklere dönüştürülmüştür.

4.2.1. f (R,T ) Alan Denklemlerinin Model I İçin Çözümleri

q = −1+ α

β
+ 2

β
t olarak belirlenen model I için, denklemler 4.12 ve 4.14’den metrik

potansiyelleri:

B = c1

(
t

t +α

) 3β

(2+n)α
(4.21)

olmaktadır. Buradan A ve B metrik postasiyellerin kozmik zamanda değişimi şekil.9’ de
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gösterilmiştir.
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B
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Şekil 9. Model I için A ve B metrik potansiyellerinin zamana bağlı değişimleri

ϒ = [t(t +α)(n+2)]2 ve k = 4(2π + µ) alınırsa, 4.21 ve 4.12 denklemleri 4.8 ve 4.9

denklemlerinde yerine yazılırsa:

Sicim enerji yoğunluğu,

ρ =
9n(1−n)β 2

ϒ k
+

3(2t +α)(n+1)(n+2)β
ϒ k

+

( t+α

t

)( 6β

(n+2)α

)
c2

1k
(4.22)

0 5 10 15

0

20

40

60

t

ρ

Şekil 10. Model I için sicim enerji yoğunluğunun zamana bağlı değişimi
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Sicim gerilimi,

λ =
9(1−n)β 2

ϒ k
+

3(2t +α)(n−1)(n+2)β
ϒ k

+

( t+α

t

)( 6β

(n+2)α

)
c2

1k
(4.23)
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Şekil 11. Model I için sicim geriliminin zamana bağlı değişimi

şeklinde elde edilir. Ayrıca 4.10 denkleminde kozmolojik terim ise,

Λ =
18
[
4π(n2 +n+1)+µ(2n+1)(n+1)

]
β 2

ϒ k

− 6(2t +α)(4πn+2µn+4π +µ)(n+2)β
ϒ k

(4.24)

olarak bulunur.
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Şekil 12. Model I için kozmolojik terimin zamana bağlı değişimi

4.2.2. f (R,T ) Alan Denklemlerinin Model II İçin Çözümleri

q = −1 + 1
β
− α

β

1
t2 olarak belirlenen model II için, denklemler 4.12 ve 4.16’den B

metrik potansiyeli:

B = c2(t2 +α)
3β

2n+4 (4.25)

olarak elde edilir.
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Şekil 13. Model II için A ve B metrik potansiyellerinin zamana bağlı değişimleri
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Buradan Ω =
[
(t2 +α)(n+2)

]2 ve k = 4(2π +µ) olacak şekilde 4.25 ve 4.12 denklemleri

4.8, 4.9 ve 4.10 denklemlerinde yerine yazılırsa sicim yoğunluğu:

ρ =
9t2n(1−n)β 2

Ωk
− 3(t2−α)(n+1)(n+2)β

Ωk
+

1

(t2 +α)

(
3β

(n+2)α

)
c2

2k
(4.26)
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Şekil 14. Model II için sicim enerji yoğunluğunun zamana bağlı değişimi

Sicim gerilimi,

λ =
9t2(1−n)β 2

Ωk
− 3(t2−α)(n−1)(n+2)β

Ωk
+

1

(t2 +α)

(
3β

(n+2)α

)
c2

2k
(4.27)
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Şekil 15. Model II için sicim geriliminin zamana bağlı değişimi

olarak bulunur ve kozmik zamana bağlı değişimleri şekil 13, şekil 14 ve 15 belirtildiği gibi

gerçekleşir.

Kozmolojik terim ise,

Λ =
18t2 [4π(n2 +n+1)+µ(2n+1)(n+1)

]
β 2

Ωk

+
6(t2−α)(n+2) [4πn+2µn+4π +µ]β

Ωk

(4.28)
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Şekil 16. Model II için kozmolojik terimin zamana bağlı değişimi
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şeklinde elde edilir.

4.2.3. f (R,T ) Alan Denklemlerinin Model III İçin Çözümleri

q = −1+ 1
2β

1√
t+α

olarak belirlenen model III için, denklemler 4.12 ve 4.18’den B

metrik potansiyelin çözümü;

B = c3e
6
√

t+αβ

n+2 (4.29)

şeklindedir. A ve B metrik potasiyellerinin kozmik zamana bağlı değişimi şekil 17

verilmiştir.
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Şekil 17. Model III için A ve B metrik potansiyellerinin zamana bağlı değişimleri

O halde, elde edilen 4.29 denklemi ve 4.12 denklemininden faydalanarak, 4.8, 4.9 ve

4.10 denklemleri çözülürse:

Burada Ψ =
√

(t +α)(n+2) ve k = 4(2π +µ) olmak üzere;

Sicim enerji yoğunluğu,
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ρ =
9n(1−n)β 2

Ψ2k
+

3(n+1)(n+2)2β

Ψ3k
+

1

e
12
√

t+αβ

n+2 c2
3k

(4.30)
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Şekil 18. Model III için sicim enerji yoğunluğunun zamana bağlı değişimi

Sicim gerilimi,

λ =
9(1−n)(n+2)β 2

Ψ2k
+

3(n−1)(n+2)2β

2Ψ3k
+

1

e
12
√

t+αβ

n+2 c2
3k

(4.31)
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Şekil 19. Model III için sicim geriliminin zamana bağlı değişimi
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Kozmolojik terim,

Λ =
18
[
4π(n2 +n+1)+µ(2n2 +3n+1)

]
β 2

Ψ2k

+
3(n+2)2 [4π(n+1)+µ(2n+1)]β

Ψ3k

(4.32)
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Şekil 20. Model III için kozmolojik terimin zamana bağlı değişimi

kinematiklerin kozmik zamanla değişimi şekil 18, şekil 19 ve şekil 20 gösterilmiştir.

4.2.4. f (R,T ) Alan Denklemlerinin Model IV İçin Çözümleri

Frenleme parametresi q = −1+ α

β
+ 3

β
t2 olarak belirlenen model IV için, denklemler

4.12 ve 4.20’den B metrik potansiyeli:

B = c4

(
t√

t2 +α

) 3β

(n+2)α
(4.33)

olmaktadır. Model IV’ün metrik potasiyelleri A ve B zamanla değişimileri şekil 21

görülmektedir.
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Şekil 21. Model IV için A ve B metrik potansiyellerinin zamana bağlı değişimleri

Burada 4.8, 4.9 ve 4.10 denklemleri için 4.33 ve 4.12 denklemleri yerlerine yazılır.

Φ = [t(t2 +α)(n+2)]2 ve k = 4(2π +µ) alınırsa;

Sicim enerji yoğunluğu,

ρ =
9n(1−n)β 2

Φk
+

3(3t2 +α)(n+1)(n+2)β
Φk

+

(√
t2+α

t

) 6β

(n+2)α

c2
4k

(4.34)

Sicim gerilimi,

λ =
9n(1−n)(n+2)β 2

Φk
+

3(3t2 +α)(n−1)(n+2)β
Φk

+

(√
t2+α

t

) 6β

(n+2)α

c2
4k

(4.35)

Kozmolojik terim,

Λ =
−18t2 [4π(n2 +n+1)+µ(2n+1)(n+1)

]
β 2

Φk

− 6(3t2 +α)(4πn+2µn+4π +µ)(n+2)β
Φk

(4.36)

41



0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

t

ρ

Şekil 22. Model IV için sicim enerji yoğunluğunun zamana bağlı değişimi
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Şekil 23. Model IV için sicim geriliminin zamana bağlı değişimi
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Şekil 24. Model IV için kozmolojik terimin zamana bağlı değişimi

çözümleri ve grafikleri elde edilir.
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BEŞ ̇INCİ BÖLÜM

SONUÇ VE ÖNERİLER

Evrenin geniş ölçekli yapısı, astronomik gözlemler ve maddenin dinamik özellikleri 

fizik yasalarıyla desteklenen matematiksel modeller kullanılarak açıklanmaktadır. Bu 

çalışmada, dört farklı frenleme parametresi için sicim maddenin Kantowski-Sachs 

metriğindeki davranışı incelenmiş ve analiz edilmiştir. Her bir frenleme parametresi için 

evren modeli oluşturularak, bu modellerin sonuçları ve sonuçların ortaya çıkardığı 

davranışlar belirlenmiştir.

Hubble parametresi ve frenleme parametresinin modeller için α ve β ’nın bazı 

değerlerindeki, faz geçiş sürelerine ilişkin Tablo 3’de verilmiştir.

Tablo 3

Modellere ait Hubble parametresinin ve frenleme parametresinin zamanla değişimi

Model
H q

ttr Faz Geçişi Tipi
t = 0 t→ ∞ t = 0 t→ ∞

I ∞ 0 1− α

β
∞

β−α

2 yavaşlayan→ hızlanan α,β > 0
- sürekli hızlanan α,β < 0

II 0 0 −∞ −1+ 1
β

√
α

1−β
hızlanan→ yavaşlayan α ≥ 0,β ≤ 1

- sürekli hızlanan α ≤ 0,β ≥ 1

III β√
α

0 −1+ 1
2β
√

α
−1

1
4β 2 −α yavaşlayan→hızlanan β

√
α < 1

2

- sürekli hızlanan β
√

α > 1
2

IV ∞ 0 −1+ α

β
∞

√
β−α

3 hızlanan→yavaşlayan α,β > 0veβ > α

- sürekli yavaşlayan α,β < 0veβ < α

I. modelin Hubble parametresi ve frenleme parametresi grafiksel değişiklikleri

incelendiğinde zamanla azaldığı görülmektedir. I. modelin α,β > 0 için, faz geçiş noktası

ttr =
β−α

2 olarak bulunmuştur. Yani evren ttr den önce yavaşlayan, ttr den sonra ise hızlanan

genişlemeye sahiptir. α,β < 0 için ise sürekli hızlanmaktadır.

II. model grafiksel olarak incelendiğinde Hubble parametresi t = 0 anında H = 0

olduğu daha sonra belirli bir düzey artış gösterdikten sonra zamanla azaldığı belirlenmiştir.

Frenleme parametresini t = 0 da α ve β değerlerinin alacağı değerlere göre, −∞ den
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−1+ 1
β

değerine ulaştığı görülmektedir. Bizim kullandığımız sabit değerlere göre bu durum

şekil 4’te grafiği verilen frenleme parametresi için azalma şeklindedir. II. modelin faz geçiş

noktası
√

α

1−β
bulunmuştur. Buna göre, α ≥ 0,β ≤ 1 değeri dikkate alındığında

hızlanmadan yavaşlamaya faz değişimi gözlenirken, uygulamamızda kullanılan

α ≤ 0,β ≥ 1 değerlerine göre sürekli hızlanan genişleme görülmektedir.

III. modelde t = 0 anında Hubble parametresi ve frenleme parametresi α ve β

değerlerine bağlı olarak değişmektedir. Buna göre, t = 0 da H = β√
α

ve q = −1+ 1
2β
√

α

şeklindedir. Bu iki parametreye ait grafikler incelendiğinde Hubble parametresi zamanla

azaldığı ve frenleme parametresinin ise negatif değerler alarak azaldığı görülmüştür. III.

modelde β
√

α < 1
2 için ttr = 1

4β 2 −α anında faz geçişleri gerçekleşmektedir. Bu zamana

kadar evren yavaşlayan genişleme, sonrasında ise hızlanan genişlemeye sahiptir. β
√

α > 1
2

olarak kullanıldığında ise, evren genişlemesi sürekli hızlanmaktadır.

IV. modelde Hubble parametresi I. modele benzer sekilde zamanla azaldığı

görülmektedir. Frenleme parametresi ise I. modelin tersine t = 0 anından zıt yönlü bir

görüntü vermektedir. IV. model de α,β > 0veβ > α için, ttr =
√

β−α

3 faz geçiş noktası

olup ivmelenerek genişleyen evren yavaşlama göstermektedir. α,β < 0veβ < α olduğunda

ise, evren sürekli yavaşlayayarak genişlemektedir.

Modellerin metrik potansiyellerinin ve kinematiklerinin grafikleri incelenerek tablo 4

oluşturulmuştur. Modellerdeki A ve B metrik potansiyelleri evrenin ilk zamanlarından sonra

bir noktada eşitlenmişlerdir. Bu durum sırasıyla IV. model, III. model, II. model ve I. model

olarak gerçekleşmiştir. I. modelde eşitlenmeden önce A değerleri B den yüksek değerlere

sahipken, sonrasında B değeri hızla yükselmiştir. II.model ve III. modelde A potansiyeli B

ye göre çok düşük değerlerdedir. Ayrıca II. ve III. modellerde B değeri belirli bir zamandan

sonra çok yüksek değerlere ulaşmıştır. IV. modelde ise A ve B potansiyelleri eşitlendikten

kısa süre sonra B potansiyeli ile A potansiyel arasında fark hızla artmıştır. Modellerin sicim

enerji yoğunlukları, sicim gerilimleri ve kozmolojik terimler incelendiğinde zamanla

azalma gösterdiği görülmüştür.
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Tablo 4

Metrik Potansiyellerinin ve kinematiklerin zamanla değişimi

Model A B ρ λ Λ

I
t = 0 0 0 ∞ ∞ ∞

t→ ∞ ∞ ∞ 0 0 0

II
t = 0 0 0 ∞ ∞ ∞

t→ ∞ ∞ ∞ 0 0 0

III
t = 0 0 0 ∞ ∞ ∞

t→ ∞ ∞ ∞ 0 0 0

IV
t = 0 0 0 ∞ ∞ ∞

t→ ∞ ∞ ∞ 0 0 0

Genel olarak modellere bakıldığında; tablo 3 göre model II ve model III başlangıçta

singülariteden arındırılmış olduğu ve sınırlı bir etki alanı olan model I ve model IV ün

büyük patlama kökenli olduğu görülmektedir.

Model III yakın zamanda sönmesi, bu modelin sınırlı bir tekilliği sahip olduğunu

göstermektedir. Ancak tekillik β değeri büyüdükçe gecikmektedir. Benzer şekilde tekilliğe

yakın Hubble parametresi ve frenleme parametresi incelendiğinde model II’de evrenin

sonsuz bir ivme ile başladığı sonucuna varılmaktadır. Bu durumda model III sonlu bir hız

ve ivme ile başlarken, model I ve model IV sonsuz hız ve sonlu bir ivme ile başlamaktadır.

Modellerin ilk hızları ve ilk ivmelenme oranı model sabitleri α ve β seçimine bağlıdır.

Model I ve model IV evrenin t → ∞’da hızı ve frenleme parametresi 0 görülmektedir.

Modellerin frenleme parametreleri zamana bağlı olarak değişmektedir. α,β > 0 için model

I,II ve IV modellerinde faz geçişleri hızlanmadan-yavaşlamaya şeklinde görülmektedir.

Sadece model III de yavaşlamadan-hızlanma şeklindedir.

Bazı yeni kozmolojilere yol açan modellerde α < 0 ve β < 0 modellerinin olacağı

olasılığı tartışılmaktadır. Bu çalışmada I. ve IV. modeller için α ve β alınarak

değerlendirilmede bulunulmuştur. Bu modellerde Hubble parametresi hem sınırlı zamanda

değişime hemde gelecekte evrenin kendisini oluşturan parçacıkların ve uzay-zamanın

parçalandığı ölçüde niayi bir genişlemede (Big Rip) tekilliği göstermektedir.
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