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OZET

FRENLEME PARAMETRESININ UZAY-ZAMAN GEOMETRISINE ETKIiLERI

Erol IMREN
Canakkale Onsekiz Mart Universitesi
Lisansiistii Egitim Enstitiisii
Matematik Anabilim Doktora Tezi
Danigsman: Dog¢. Dr. Can AKTAS
29/11/2021, 50

Bu ¢alismada, kozmolojik terimli f(R,T) teoride topolojik kusurlardan biri olan sicim
madde, homojen anizotropik Kantowski-Sachs metriginde incelenmistir. Bu amagla Hubble
parametresinin en genel ve kullanigh hali alinarak dort farkli frenleme parametresi elde
edilmis, bu frenleme parametrelerinin uzay-zaman geometrisine olan etkileri arastirilmistir.
Her bir model i¢in elde edilen sonuglarin grafikleri ¢izdirilmis ve ayrintili olarak f (R, T)

teoride bazi fiziksel ve kinematik 6zellikleri tartisilmistir.

Anahtar Kelimeler: f (R, T) Teori, Frenleme Parametresi, Kantowski-Sachs Evreni,

Sicim Madde, Uzay-Zaman Geometrisi



ABSTRACT

EFFECTS OF DECELERATION PARAMETER ON SPACE-TIME GEOMETRY

Erol IMREN
(Canakkale Onsekiz Mart University
School of Graduate Studies
Doctoral Dissertation in Mathematics Science
Co-supervisor: Assoc. Prof. Dr. Can AKTAS
29/11/2021, 50

In this study, string matter, which is one of the topological flaws in the cosmological
term f(R,T) theory, was examined in the homogeneous anisotropic Kantowski-Sachs metric.
For this purpose, four different braking parameters were obtained by taking the most general
and useful form of the Hubble parameter. The effects of these braking parameters on the
space-time geometry were investigated. The results obtained for each model were plotted

and some physical and kinematic properties of f (R, T) theory were discussed in detail.

Keywords: f(R,T) Theory, Deceleration Parameter, Kantowski-Sachs Universe,
String Matter, Space-Time Geometry
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BIRINCI BOLUM
GIRIS

Kozmoloji, evrenin kokenini, evrimini, yapisini, doga yasalari ile ortaya ¢ikaran ve
evrenin son halini matematiksel ve fiziksel olarak inceleyen bilim dalidir. Kozmoloji sadece
teorik gerceklere ve bazi temel ilkelere dayanmakla kalmaz, ayn1 zamanda ¢esitli gézlemler
ile kendisini desteklemektedir. Fiziksel kozmolojide, kozmologlarin ¢ogu, evrenin bir
baslangi¢c noktasi1 olduguna, bu noktada zamanin sifir ve evrenin sonsuz yogun olduguna
inanmaktadirlar. Halen pek ¢ok insan evrenin baglangici ve sonu olmadigim diisiinse de,
1929 yilinda Edwin Hubble, evrenin genisledigini ve galaksilerin birbirinden uzaklastigini
gozlemlemistir. Ayrica, bu gozlemler neticesinde yaklagik on ile yirmi milyon yil gecmise
giderek, evrenin sonsuz yogunluga sahip oldugunu, bunun da bir tekillik oldugu anlamina

geldigini ileri stirmiistiir (Narlikar, 2002).

Hubble (1929)’1n galaksi gézlemi yoluyla evrenin genislemesine iliskin ilk caligmasi,
simdiye kadar yapilmis en onemli kesiflerden biri olarak kabul edilmektedir. Galaksilerin
kirmiziya kaymast ve mesafe modiilleri Hubble yasasinin belirlenmesinde hayati bir rol
oynamaktadir. Edwin Hubble go6zlemlerinde yakindaki galaksilerden gelen 1siktaki
kirmiziya kayma ile mesafeleri arasinda basit bir orantililik iligkisi kesfetti. Hubble
kesfinde, yakindaki galaksilerin durgunluk hizlarmin orantililik sabiti H ile radyal
mesafeleri arasinda dogrusal olarak iliski oldugunu buldu. Bdylece modern kozmolojinin
dogusu, evrendeki hemen hemen her seyin bizden uzaklastig1 kesfiyle bagladi. Cogunlukla,
galaksiler mesafeleriyle orantili hizlarda bizden uzaklasiyor gibi goriiniiyordu. Bu tiir

biiyiik 6l¢ekli 6zellikler genellikle tiim evrenin genislemesi olarak yorumlanmaktadir.

Hawking ve Penrose (1996) da biiyiik patlama (big bang) kozmolojisine inaniyorlardi.
Teoremlerinde, zaman ve evrenin bilylikk patlama acisindan bir baglangic oldugunu
kanitladilar. Biiyiik patlama teorisi, baslangicta evrenin sonsuz derecede sicak ve yogun
olacagin1 dngdrmektedir. Biilyiik patlama tekilliginde, genel rolativite ve diger tiim fiziksel
yasalar gecersiz kilinmaktadir (Hawking, 1996). Gozlemsel sonuglarimiz olmadigr igin

biiyiik patlamadan 6nceki olaylar tahmin edilememektedir. Biiyiik patlamadan hemen sonra



evren genisledikge evrenin sicakligr diigmeye baslamistir.

Evrenin sismesi veya genislemesi, biiyiik patlama tekilliginin 10736

saniyesinden
hemen sonra baslamaktadir. Bazi uzmanlar ise bunun biiyiik patlamadan yaklasik 10733 ve
10732 saniye sonra olduguna &ngormektedirler. Biiyliik patlamadan sonra, evren
genislemeye devam etmekte, ancak mevcut hizlanma oranina kiyasla daha az
ivmelenmektedir.  Dolayisiyla bu teori, temelde evrenin baslangicinda evrenin iistel
geniglemesi hakkindadir. Erken genislemeden sorumlu olarak itici yercekimi
doneminindeki sisme oldugu diisiiniilebilir. Itici yercekimi doneminden hemen sonra,
cekici yercekimi donemi olarak adlandirilan bu zaman dilimi en yiiksek sicaklikta denge
durumunu koruyabilen parcaciklarin olusmasiyla baslamistir. Sicaklik zamanla azalarak, ilk

cekirdegi olusturmak icin gerekli asamaya ulagsmistir. Buna gore sicaklik degisimleri biiyiik

patlamaya gii¢c vermistir.

Erken evrenin, mevcut bazi kavramsal ve gozlemsel sorunlarin iistesinden gelmek
icin sigkinlik olarak bilinen hizlandirilmis bir genisleme asamasina gegisinide goéz Oniine
almak gerekmektedir. Bunun nedeni, skaler bir alanin faz gecisiyle iligkilendirilebilmesidir.
Ote yandan, bu gecisin 6nemli bir sonucu olarak, domain walls, monopoller ve kozmik
sicimler gibi topolojik kusurlarin olusumuna olanak saglamistir (Hindmarsh ve Kibble,
1995; Vilenkin ve Shellard, 2000; Bezerra de Mello vd., 2003; Folomeev vd., 2007).
Dolayisiyla, kozmik sicimler, Big Bang sonrasi evrenin erken evresindeki sicaklifin kritik
seviyelerin altina diistiigiinde, bozulmus eksenel simetri nedeniyle faz gecisi sirasinda

olusan tek boyutlu topolojik kusurlardir (Sahoo vd., 2016).

Gliniimiizde standart kozmoloji modelleri, mevcut evrenin kokenini ve evrimini
incelemek icin en ¢ok kabul goren modellerdir. Simdiye kadar temsil edilen standart
modeller ve fiziksel secenekler, dogallik ilkesinden esinlenmistir ve kuvvetlerin
birlesmesinin arayisi icindedir. Ancak yercekiminin kuantum fizigi ile uzlastirilabilecegi

yeni bir kavramsal ¢cerceve sunmamaktadirlar.

Kozmolojik ilke evrenin homojen ve izotropik oldugunu, her yerde ve her yonde ayn

oldugunu belirtir. Bu ilkenin temel fikri, evrenin, hangi yonden bakarsak bakalim, belirli bir



cagda ayni resmi temsil etmesidir (Silk, 1997). Baska bir deyisle, izotropi, evrende tercih

edilen yoniin olmadig1 anlamina gelir; her noktadan ayni goriinmesidir.

Copernicus, Diinya’nin evrenin merkezinde goreceli onemsiz bir konumda oldugunu
gozlemledi. Buna Kopernik ilkesi denir. Bu durumun, diger tiim yildizlara benzeyen Giines
i¢cin de gegerli oldugunu sdylemektedir (Ryden, 1970). Kozmolojik ilke, Kopernik ilkesinin
degistirilmis bicimidir. Bu ilke, evrendeki tiim konumlarin esdeger oldugunu, ayrica fiziksel
ozelliklerin konumdan bagimsiz oldugunu ileri siirer. Bu varsayim, evrenimizin homojen
oldugu anlamina gelir. Homojenlik, evrende madde dagiliminin konumdan bagimsiz
olmasidir (Zeeshan, 2018). Homojenlik ve izotropinin birbirini saglamadigi durumlar
olabilir. Ornegin, homojen bir manyetik alana sahip bir evren homojendir, ancak dikey yon
alan cizgileri nedeniyle izotropik olamaz. Ayn1 noktada, kiiresel olarak simetrik bir dagilim
merkezi noktasindan bakilirsa izotropiktir, ancak zorunlu olarak homojen degildir.
Izotropik durumu tiim uzaysal yonlerin denkligi ile ilgilidir. Kozmoloji ilkesel olarak,
evrenin maksimum simetrik oldugunu, yani maksimum simetri sayisina sahip oldugunu ima
eder. Matematiksel olarak, simetrik manifoldlar, uzayda sabittirler. Radyo dalgasindan,
kozmik X 1sinlarindan ve ozellikle kozmik mikrodalga arka plan radyasyonundan gelen
gozlemler, evrenin homojen oldugu gercegine isaret etmektedir (Allen vd., 2003; Bahcall

ve Bode, 2003; Voevodkin ve Vikhlinin, 2004; Allen vd., 2008).

Weyl (1918)’in varsayiminda kozmolojik Olcekte madde bilesenlerinin, zamansal
jeodezikler boyunca hareket eden ideal akigkan gibi davranir. Bu jeodezikler, ge¢miste bir
nokta diginda kesismez. Yercekimi etkilesimlerinin iirettigi tuhaf hizlar, evrenin evrimi
tarafindan iiretilen hizlar agisindan genellikle ihmal edilebilir diizeydedir. Ayni zamanda
birlikte hareket eden gozlemci tarafindan Olgiilen, bir birlikte hareket etme siiresi

tanimlamak da miimkiindiir.

Genisleyen evren diisiincesinde, bir galaksinin uzamsal koordinatinin genislemenin
bir sonucu olarak degismedigi, serbestce diisen bir koordinat sistemini benimseyerek
genisleyen evreni eylemsiz bir referans cercevesine doniistiirebilir. Bu, birlikte hareket eden
koordinat sistemi olarak adlandirilir.  Galaksi koordinatlar1 diinya c¢izgileri cinsinden

belirlenmektedir. Diinya ¢izgileri demetinin geometrisi, belirli bir siire icinde gelisen bir



galaksiler kiimesine karsilik geldiinde, bu sistem diinya cizgileri demetini birbirine
baglayan ve genellikle kozmik veya koordinat zamani olarak adlandirilan hiper yiizeyler
gibi tanimlanmaktadir (Scholz, 2013). Ayrica, yiiksek boyut teorileri, sicim teorisi veya

M-teorisi, evrenin genisleme tanimini desteklemektedir (Nojiri ve Odintsov, 2003).

Giinlimiize kadar, bir kuantum yercekimi teorisi olarak gelecek vaat eden en 6nemli
aday, sicim teorisidir. ~ Sicim teorisindeki arastirmalardaki Onemli teorik ilerleme
saglandigin da dahi, deneysel olarak dogrulanabilir hale gelmesi icin, basa cikilmasi

gereken cesitli zorluklara sahip olmaya devam etmektedir.

Sicim kozmolojik model, erken evrenimizin tanimlanmasinda ©nemli bir rol
oynadigindan, modern kozmoloji, erken evren anlayisimizla uyumlu olan arka planda
somut bir dizi modeli insa ederek bu tiir zorluklar1 kesfetmek i¢in heyecan verici firsatlar
sunmaktadir. Aslinda, sicim teorisi, tim madde ve kuvvetleri tek bir teorik cercevede
birlestirmekte ve erken evrenin temel yapisinin kesfetmeye olanak saglamaktadir.
Dolayisiyla, sicimlerin erken evrendeki varligi, biiyiik birlesik teoriler kullanilarak

aciklanabilir (Everett, 1981).

Albert Einstein, evreni tanimlamak i¢in geometrik kiitlegekim teorisi olarak "Genel
rolativite teorisi" yayinladi (Einstein, 1916). Bu teorinin madde enerji dagilimi yoluyla
uzay-zamanin geometrik bir 6zelligi olarak yercekiminin birlesik bir tanimini sagladig: ve
evrenin her kozmolojik modeli altinda yatan teori oldugu ortaya c¢ikti. Bu teoriye gore
madde geometriyi, geometride maddeyi etkilemektedir. Yani, Einstein’in teoreisine gore
madde ve geometri etkilesim halindedir. Evrenin evrimi, genel rolativite (GR) Einstein alan

denklemleri tarafindan aciklanmaktadir.

Kozmolojik ilkenin gozlemsel sonuclara dayanmadigi, ancak GR teorisini evrenin
yapist iizerine uygulamanin bir varsayim oldugu unutulmamalidir. Bu varsayim, bilim
adamlarinin Friedmann (1920); Lemaitre (1927) evren modellerini inga etmelerine yardimci
oldu, ¢iinkii o yillarda onunla celisecek hi¢bir gozlemsel veri yoktu. Kozmolojik modeller
de evrenin ayni ortalama yogunluga ve ayni ortalama basinca sahip maddelerle dolu oldugu

diisiiniilebilir. Bu niceliklerin her ikisi de evren boyunca zamanla esit olarak degisir.

4



1917°de Einstein, alan denklemlerine kii¢iik bir pozitif kozmolojik sabit ekleyerek bir
model sundu. Einstein bu sabiti, statik ve sonlu bir kozmolojik ¢6ziim elde etmek i¢in alan
denklemlerinde A olarak belirtmektedir (Einstein, 1922). Evrenin pozitif agirlikli oldugunu
ve cekici yergekiminin A’nin itici yercekimi ile dengelendigini diigiiniiyordu. Ancak
evrenin genislemesinin kesfi ile kozmolojik sabit ihmal edildi. Giiniimiizde, bu kozmolojik
sabit, genel rolativite cercevesinde karanlik enerji i¢in uygun bir aday olarak kabul

edilmektedir.

Genel rolativite teorisi biiyiik 6lcekte evrenin yapisimi agiklamaya caligsa da evrenin
ivmelenerek genislemesini agiklamada yetersiz kalmaktadir. Bu nedenle bilim insanlar1 GR

teorisini modifiye ederek yeni teoriler ileriye siirmiiglerdir.

Son donemlerde modern kozmoloji, genisleyen evren ilgili c¢alismalarda 6nemli
ilerlemeler saglamak icin yeni bir vizyona ulasti. Modefiye yercekimi teorileri, evrenin
ivmelenerek genislemesinin yani sira karanlik Enerji ile ilgili etkili nedenleri gozlemlemek
icin kullanilmaya baglamigtir.  Modifiye yercekimi teorisi olan f(R) yercekimin de
Lagrangian maddesinin yerine R’nin keyfi bir fonksiyonu gelir. Harko vd. tarafindan 2011
yilinda bu teoriyi, eylemin yercekimi kisminin hala Ricci skaler R’ye ve enerjisi momentum
tensorii Ty ’nin izine bagli oldugu f(R,T) teorisi olarak adlandirilan yeni bir modifiye
teoriye genisletmistir. Madde-enerji birlesimi nedeniyle, bu teorinin 6ncii modelinin
enerji-momentum tensoriiniin degisimini temsil eden kaynak terime bagli oldugu One

siirtilmektedir (Sahoo vd., 2017)

Yapilan tez calismasinda, evrenin ivmelenerek genislemesini aciklamaya calisan
f(R,T) teoride topolojik kusurlardan biri olan sicim bulutunun Kantowski-Sachs
metrigindeki davramist ve alan denklemlerinin tam ¢6ziimlerini farkli frenleme
parametreleri kullanarak analiz edilmistir. Analiz asamasinda farkli frenleme parametreleri
kullanilarak evren modelleri olusturulmustur. Modellere ait ¢coziimlerden ve grafiklerden

elde edilen sonuclar geometrik ve fiziksel olarak irdelenerek yorumlanmaisgtir.



IKINCI BOLUM
ONCEKI CALISMALAR

Akarsu ve Dereli (2012) tarafindan elde edilen frenleme parametresi formunun bir
genellemesi olan i¢in yeni bir form kullanilarak f(R,T) teoride ideal akigkan i¢in LRS
Bianchi tip-I kozmolojik modeli erken donemi Tiwari ve Sofuoglu (2020) tarafindan
irdelenmigtir. ~ Yapilan ¢alismada kirmizi kaymalarda frenleme parametresinin etkisi

incelenmistir.

Tiwari vd. tarafindan 2021 yilinda yapilan calismada f(R,T) yercekimi teorisinde
degisen kozmolojik sabit A ile Bianchi Tipi kozmolojik modelinin zamana bagli bir
yavaglama parametresi ile alan denklemlerinin tam bir ¢6ziimii elde edilmistir. Calismada
Banerjee ve Das (2005) tarafindan 6nerilen 6zel bir Hubble parametresi kullanilmigtir. Elde
edilen verilerin son gozlemlerle tutarli oldugu ve ACDM modeline ge¢ zamanlarda

yaklagti§1 goriilmiistiir.

Prasad vd. 2020 yilinda yaptiklar1 ¢calismada evrenin ge¢ zaman ivmesinin, kiitle
viskoz akigkan ve f(R,T) yercekimi teorisinde evren ¢oziimiinii elde edilmistir. Elde edilen
coziimler son donem gozlemsel verilerle karsilastirma yapilmistir. Elde edilen evrenin bazi
fiziksel ozellikleri tartisilmis ve frenleme parametresinin durumuna gore evren yasi tespit

edilmistir.

Tiwari vd.(2020) tarafindan yapilan calismada f (R, T) teorisinde ideal akigkan madde
dagilimi ile LRS Bianchi tip-I kozmolojik modelinin evrenin erken zaman yavaglamasini ve
gec zaman ivmesini c¢alismiglardir.  Hubble parametresi kullanilarak zamanla degisen
yavaglama parametresinin yeni bir 0zel bi¢imi Onerilerek, alan denklemlerinin kesin
coziimii elde edilmigtir. Evren modelinin fiziksel ve geometrik biiyiikliikleri ve evrimi
yorumlanmistir. Modelin bir baglangi¢ tekilligi ve baglangicta yavaslayan genisleme
sergilerdigi goriilmiistiir. Model son donemlerde ivmelenen genisleme asamasina gectigi
goriilmiistiir.  Ayrica, modelin madde kaynagmin niteligi, yapr olusumu cercevesinde

standart model ile uyumlu oldugu belirlemislerdir.



Bhardwaj ve Dixit (2020) f(R,T) teoride LRS Bianchi-I uzay-zamanda kozmolojik
sicrama ¢Oziimiinii aragtirmiglardir. Calismalarinda LRS Bianchi-I uzay-zamanda olgek
faktorii kullanarak, Hubble parametresi ve yavaslama parametresi gibi geometrik
parametreler tiiretilmis ve daha sonra bunlarin basing ifadesinde kullanilmasi, yogunluk ve
EoS parametresi (2, sigrama aninda evrenin baglangic kosullarini niteliksel olarak
dogrulamislardir. Sicramanin yakin enerji kosullarinin ihlali ve modelin kararlilig1 analizi,
madde ziplama yaklasiminin sigrama sirasinda olduk¢a dengesiz oldugunu ancak
sicramadan kaynakli bozulmalarin hizli bir sekilde azalmasimmin modelin kararlili§ini

destekledigini gostermistir.

P. S. Singh ve Priyokumar Singh (2021) izotropik evren modeli icin siiper-expential
genislemeyi incelemistir. f(R,T) teoride karanlik enerji i¢in olusturulan modelde baglangic
tekilliginden bagimsiz, sonlu zamanl gelecekte vakum enerjisi veya kozmolojik sabitin
hakim oldugu Sitter asamasina yaklagmasi Ongoriilmiistiir.  Skaler egrilik R zamanla

azalmakta, oldugunu literiitiirdeki diger ¢alismalarla uyumlu oldugunu belirlemistir.

Dagwal vd. 2020 yilinda f(R,T) teoride LRS Bianchi tip I kozmolojik modelleri
incelmislerdir. Berman (1983) tarafindan Onerilen, sabit yavaslama parametresi veren
Hubble parametresinin 6zel varyasyon yasasini varsayan bir modeli arastirmis ve alan
denklemlerinin coziimlerini belirlemistir.  Dust Universe, Radiation Universe, Hard
Universe and Zedovich Universe gibi farkli anizotropik fiziksel modelleri tanimlamak i¢in

durum denklemlerini kullanmis ortaya ¢ikan fiziksel ve geometrik yonlerini belirlemistir.

Aktas vd. (2018) tarafindan yapilan ¢aligmada alan denklemlerinin f(R,T) yercekimi
teorisi cercevesinde sabit frenleme parametresi kullanarak Marder evreni i¢cin manyetize
acayip kuark madde ¢oziimleri elde edilmistir. Calismada ¢ — oo icin p — B., p — B, ve
Q = —1 olacak sekilde karanlik enerji modeli elde edilmistir. Kozmolojik sabit f(R,T) ve

genel rolativitede negative olarak elde edilmistir.

f(R,T) yercekimi teorisi ¢ercevesinde ideal akigkan madde i¢in Kantowski-Sachs
evrenine iligkin alan denklemlerinin kesin ¢oziimleri Samanta (2013) tarafindan arastirilmas,

kozmolojik modelin fiziksel davranisi ve Hubble parametresi, parlaklik mesafesi gibi



astrofiziksel baz1 6nemli 6zellikleri ve kirmiziya kaymalar mesafe modiilii incelenmistir.

Tekillik icermeyen ve anizotropik Bianchi tip III ve Kantowski-Sachs kozmolojik
modellerini f(R,T) teoride inceleyen Katore ve Hatkar (2016), modifiye alan denlemlerinin
evrenin hizlanan genislemesi ile kozmolojilerini arastirmigtir.  Elde edilen ¢oziimler
sonrasinda yapilan degerlendirmede evrenin ivmesinin yercekiminden kaynaklandigi ve

gravitasyonel ¢okmelere egimli duvarlarin neden oldugu belirlenmistir.

f(R,T) teoride Zubair ve Ali Hassan (2016) arastirmalarinda dinamik alan
denklemlerinin ¢Oziimil i¢in, genel anizotropik uzay-zamanda frenleme parametresi ve
enerji yogunlugu ile Bianchi tip I, III ve Kantowski-Sachs evren modellerini

incelemislerdir.

Ghate ve Sontakke (2018) tarafindan yapilan c¢alismada f(R,T) teoride
Kantowski-Sachs kozmolojik modelininin enerji momentum tensorii vizkoz akigkan ve
hayalet kararlik madde enerjisi olup, alan denklemlerini J. Singh (2008) 6nerdigi hubble

parametresi formunu kullanilarak modelin fiziksel ve kinematik 6zellikleri arastirilmistir.

Rani vd.(2015) tarafindan yapilan aragtirmada homojen ve anizotropik Bianchi tip-I1I
sicim kozmolojik modelleri f(R,T) teoride manyetik alani incelenmistir. Sicim ¢oziimleri
p + A = 0 olmak iizere, geometrik sicimler ve sicim modeli olarak tartisilmigtir. Einstein

denklemlerine bagli sicim bulutu i¢in modelin fiziksel 6zellikleri irdelenmistir.

Aygiin (2017) homojen ve anizotropik Marder uzay-zamanini f(R,T) teoride vizkoz
sicim dagilimi i¢in alan denklemlerin anizotropi parametresi %f ve yavaglama parametresi

kullanarak ¢ozmiigtiir.

Aktas (2019) f(R,T) teorisinde degisen G ve A ile Friedmann-Robertson-Walker
(FRW) evreni icin tachyon field, k-essence and quintessence karanlik enerji modellerini
arastirmistir. Alan denklemlerinin ¢oziimiinde lineer frenleme parametresi, durum denklemi

ile hubble parametresi ve kozmolojik sabit arasindaki orandan yararlanmistir.



UCUNCU BOLUM
MATERYAL VE YONTEM

Evrenin ilk zamanlarindan giiniimiize kadar olan gelismesini arastiran bilim insanlari
siipernova IA deneylerindeki gézlemlerle, kozmik dalgalanmalarin arka planini, anizotropik
galaksi kiimesini ve hizla genisleyen evreni kapsayan genis bir resme ulagsmislardir.
Einstein’in GR teorisinin simdiye kadar deneysel olarak kurulmus yercekimi olgularini
tanimlamaya dayanan basarili bir yercekimi teorisi olduguna inanilmasina ragmen, evrenin
hizlanan genislemesini, karanlik maddenin ve karanlik enerjinin varlifini agiklamakta
yetersiz kaldig1 goriilmiistiir. Bu durumu agiklamak i¢im yapilan arastirmalar ve deneylerin
temel amaci, evrenin hizla ivmelenmesine neden olan karanlik enerjiyi olgmektir. Karanlik
enerji durum denklemiyle tamimlanabilmektedir. Bdylece yercekimi teorimi iizerinde
modifikasyon yapilabilmektedir.  Arastirmalara genel olarak bakildiginda Einstein’ in
yercekimi teorisinin dogru oldugu goriilmiis ve evrenin hizlanan genislemesi Einstein’ in

kozmolojik sabiti ile iligkilendirilmistir (Thorne vd., 2000).

Kozmolojik sabit, bosluk enerjisi olarak bilinen kuantum mekaniksel bir olgu olarak
kabul edilir. Bu enerji, evrenin hizlanmasindan sorumludur. Dolaysiyla, yeni gozlemler ve
ileri siiriilen tiim yeni teorilerin ivmeyi agiklamanin gerekliligini ortaya koymaktadir.
Ayrica vakum enerjisi en olas1 neden olarak da goriilebilir. Bu nedenle evrenin genisleme

tarihi, bu sabit ivmenin arka planda normal yer¢ekimi teorisine eklenmesiyle agiklanabilir.

Karanlik enerjinin varlifini ve ivmelenerek genislemeyi agiklamak icin, literatiirde
Quintessence, Phantom Enerji, K-essence, Tachyon, F-essence, Chaplygin gazi gibi farklh
teorik modeller tasarlanmistir. Ayrica, f(R) teori, Gauss-Bonnet teori ve f(G) teori gibi
modifiye yercekimi teorileri, evrenin ivmelenerek genislemesini aciklayan diger
yaklagimlardir. Bunun yaninda modifiye yercekimini yardimiyla ivmeyi aciklamak igin
alternatif olarak kullanilan girisimlerin ¢ogu yetersiz kalmaktadir ve son yillarda modifiye
yercekimi ile ilgili neredeyse yapilan tiim tartismalar karanlik enerjiyi aciklamaktan ¢ok

GR’nin biiyiik 6l¢ekli kozmolojik testleri hakkindadir.



Gravitasyonel etkilesimleri ve biiyiik Olcekteki evrenin yapisint aciklayan Einstein

alan denklemlerinin tensorel formdaki ifadesi 3.1 denkleminde gosterilmistir.

1
R = SRgua + Agu = —xTu (3.1)
Einstein alan denklemlerinin (EFE) birka¢ genellemesi yapilmistir. Bu

genellemelerden biri ve en basit sekli Ricci skalerinin (R) bir fonsiyonu olan ve GR’nin
Einstein-Hilbert calismalarinda degistirerek elde edilen f(R) yercekimi teorisidir.
(Bertolami vd., 2007) tarafindan f(R) kiitle ¢cekim teorisinin genellestirilmesinde Ricci
skalerinin madde Lagrangian yogunlugu (L,,) ile birlestirilmesi Onerilmistir. Bu baglantida
biiyiik parcaciklarin hareketi jeodezik olmamakta ve dortlii hiz vektorii ortogonal olan bir
dis kuvvet ortaya ¢ikarmaktadir. Harko (2008), madde ve geometrinin birlesimini dikkate
alarak, f(R) ’deki uzantimin bagka bir versiyonunu onerdi. Madde geometri birlestirme
uygulamalari, farkli calismalarda Harko ve diger arastirmacilar tarafindan yaygin olarak
kullanilmistir (Harko, 2010; Harko vd., 2011). Harko ve Lobo (2010) yilinda Ricci skaleri
ve L, bir fonksiyon olarak Hilbert-Einstein’in ¢alismalarina ekleyerek yercekimi alan
denklemlerinin metrik formunu elde ettirler. ~ Ayrica enerji-momentum tensoriiniin
kovaryant acilimindan c¢ikan analiz sonucunda parcacigin hareket denklemini elde

etmislerdir.

Eylemsizlik ilkesine dayanarak Poplawski (2006), rolativisttik olarak kovaryant
etkilesim modelini g6z 6niinde bulundurarak f(R,L,,) yer¢ekiminin 6zel bir uygulamasini
onerdi. Yercekimsel Lagrangian’daki kozmolojik sabit, gerilim-enerji tensoriiniin izinin bir
fonksiyonu olarak kabul edildi ve model A(T) yergekimi modeli olarak adlandirildi. Son
kozmolojik verilerin degisken kozmolojik sabiti destekledigi ve bu gozlemlerin A(T)

fonksiyonunun kesin bir formunun tutarh oldugu acikland1 (Poplawski, 2006).

Modifiye yercekimi teorilerinin ilham verici ve nihai formlarindan biri, Harko vd.
(2011) tarafindan tasarlanan f(R,T) modifiye edilmis yercekimi teorisidir. L,,, Ricci skaler
R’nin fonksiyonu ve enerji-momentum tensorii 7 nin izi olarak kabul edilmistir. Ayrica,
T’ye bagimhiligin acayip kusurlu akiskanlar veya kuantum etkileriyle indiiklenebilecegine

inanilmaktadir.
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f(R,T) fonksiyonu metrige ve enerji-momentum tensoriiniin degisimi ile temsil
edilen kaynak terime baglidir. Bu kaynak terim genellikle L,,’nin bir fonksiyonu olarak
ifade edilmektedir. Dolayisiyla, her L,, nin se¢imi farkli alan denklemleri olusturmaya yol
acar. Bu teori, GR’nin Einstein-Hilbert Lagrangian’inda R’nin genel fonksiyonu f(R,T) ile

degistirilerek elde edilir.

3.1. f(R,T) Alan Denklemleri

f(R,T) teoride etki fonksiyonu (Harko vd., 2011):

. f(R7T) 4

seklindedir. Burada f(R,T) fonksiyonu R ve T’ye bagli olup, Ricci skaler R’nin
fonksiyonudur. Enerji-momentum tensoril ise 7 nin izi ve L,, Lagrangian yogunlugudur.

Buradan enerji-momentum tensorti,

_ 2 (V=8

sekilde tamimlanmaktadir (Landau ve Lifschits, 1975). 3.3 denkleminde T = gy T* olarak
verilmistir.  Ayrica, L, ’nin metrik tensor bilesenlerinin gi; bagli, ancak tiirevine bagh

olmadigini denklem:

L
Ty = grlLlm — 2@,’3 (3.4)

seklinde ifade edilmektedir. g& metrik tensoriine gore S’nin varyasyonu almirsa:

’ 6 M 5 —&&m
[ ( Fr(R,T)3R+ fr(R, T) 50k — SHBIO 16%%) J—gd*x

0S =
167

(3.5)

&fg;’T) ve fr(R,T) = % "dir. R’nin varyasyonu

esitligine ulagilir. Burada fg(R,T) =

i¢in:
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SR = 5(g"Ru) = Rudg" + (V8T — V4 Ty

(3.6)

esitligi ile verilir. Burada Vy, Christoffel sembolii I”ya gore kovaryant tiirevini gosterir.

Yani, GR’ deki gibi metrik tensor (g;;) ile iligkilidir. Bu durumda Christofell semboliiniin

metrik tensor bilesenleri:

gTr

STY =
kl 7

(Vidgir+ V1681 —V,68u)

seklinde verilmigtir. 3.6 denklemi 3.7 denkleminde yazilirsa:
SR =Ry 68" + gy08g" — ViV, 58"

bulunur. 3.8 denklemini 3.5 denklemine eklendiginde;

1
65— | [fR<R, T)Rudg" + fr (R, T)guD88" — fa(R,T) Vi V188"
S(grls)Trﬁ 5okl 8klf(R>T)5gkl
o gkl & 2

0(v/—8Ln

+fT(R7T)
+ 167

elde edilir. 7 varyasyonunun ifadesi su sekilde verilir (Harko vd., 2011):

S g}’l9T19

Burada,

ré 6Tr19

@kl =g Sgkl

3.9’de denklem 3.10 ve 3.11 yerine yazilirsa, f(R,T) yer ¢ekimi alan denklemleri,

12

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)



R.T
w + (g0 — ViV)) frR(R,T) =87Ty
(3.12)

— fr(R,T)(Tiy + O)

fR(R, T )Ry —

formunu alir. Burada 3.12’de verilen f(R,T) yercekimi alan denklemleri, f(R)’nin
degistirlerek elde edilmis hali olup, f(R,T) indirgeyerek f(R) alan denklemlerine

ulagilmaktadir. Boylece 3.12 denklemi R ve T arasinda iligkilendirilerek,
fRIR,T)R—2f(R,T)+30fr(R,T) =T — Fr(R,T)(T +O) (3.13)

olur. Burada ® = @/ olup, 3.12 ve 3.13 denklemlerinden L fg(R, T) yok edilerek,

R R.T T
Fe(R.T) (sz— §k1>_|_f( 6)gkl :87r(Tk1— §kl)

—fr(R,T) (@kl_%) (.14

+ViVifr(R,T)

elde edilir. 3.12 denkleminin Koivisto (2006) makalesinde gecen matematiksel 6zdesligi

kullanarak, kovaryant acilimi yapilirsa;

f(R,T)gu

vk ( fr(R,T)Ry — 5

+(gle—VkV1)fR(R,T)> =0 (3.15)

bulunur. Enerji-momentum tensorii 7,

SrRT)

\A20) 3.16
87 (R.T) + ki (3.16)

V¥ Ty = ((Tkz +®kl)vklnfT(R7T)>

seklinde ifade edilir. 3.11 ve 3.16 denklemleri incelendiginde, ®; tensorii L, elde

edilebilir. 3.4 denkleminin varyasyonu ile metrik tensor:

6Tr19 Sgrﬂ aLm 282Lm
T s tm 8 S T S i
g 4 g gdg
_ 58r19L N grogulm  groTu  20°Ly (3.17)
5gkl m 2 2 agklagm
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ogr

olur. g,0g?? = ¢g? oldugundan 5g,§,’ ifadesi,
8gry
5o — —Srasovdii” (3.18)

seklinde yazilir. Burada 5,{12" genellestirilmis Kronecker sembolii olup, yapilan igslemlerden

sonra 3.11 denklemindeki &, tensorii,

20%L,

Ou = —2Tjq + guLom — EFCEP

(3.19)
seklinde ifade edilmektedir (Amir ve Sattar, 2016).

Enerji momentum tensoriiniin toz formu, L,, = p ve p = py i¢in, basing yogunluktan
bagimsiz sabit bir nicelik durumundadir (Harko, 2010). Basincin termodinamik ya da
radyal bileseni bulunmuyor ise, pg = 0 olarak alinabilir. Burada p basinci ve p Lagrange

yogunlugunu belirtmektedir.
Yapilan calismada, toz durumundaki kozmik sicimler icin Lagrange yogunlugu

L,, = p verilmektedir. Boylece, L,,, Tj;, ve Oy coziimlerde yer almistir (Harko, 2010;
Harko vd., 2011).

Bu durumda kozmik sicimler icin L,,, Ty, ve Oy;

Ln=p (3.20)

Ty = puiu; — ;kaxl 3.21)

seklindedir. Enerji-momentum tensoriiniin karigtk formunun matris gosterimi asagidaki

gibidir.

3
B
I

(3.22)

S O o >
S o O O
o o o O
T o o o
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Burada, u; dortlii hiz vektorii, x; sicimlerin yoniinii gosteren uzaysal vektor ve A ise

k

sicimlere ait gerilim yogunlugudur. Dértlii iz vektorii igin wfuy = 1 ve Vi =0

esitlikleri vardir. Ayrica, aga/j% g" = 0 olmak iizere, 3.19 ve 3.20 denklemlerinden,
Ou = 2T + P8 (3.23)

elde edilmektedir.

3.2. (R, T)’nin Farkh Durumlari i¢cin Alan Denklemleri

Alan denklemlerini ¢oziimiinii aragtiran Harko vd. (2011), f(R,T) ’nin fonksiyonel
formunu ayrmtili incelenerek bazi 6zel durumlar elde etmislerdir. Genel olarak, alan
denklemleri tensor ®y; yoluyla maddenin fiziksel yapisina baghdir. Modifiye edilmis
f(R,T) yercekimi teorisinde, alan denklemleri madde yapisina ve f(R,T) sec¢imine bagh

oldugundan, farkli kuramcilar tarafindan birkac teorik model elde edilmistir.

Harko, Lobo, Nojiri, ve Odintsov (2011) f(R, T) teorisi i¢in sundugu ii¢ durum:

(

R+2f(T)
JR.T) =1 fi(R)+ fo(T) (3.24)
| fi (R)+ f2(R) f3(T)

seklindedir. I.durumda Harko vd. (2011) f(7) fonksiyonunu 7 nin keyfi bir fonksiyonu

olarak almiglardir.
f(R,T)=R+2f(T) (3.25)

I. durum i¢in 3.12 alan denklemleri (Gy; = Ry, — %ngl),
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R
Rt = 58 = 87Tk — 2f(T)Ou + f(T)gu (3.26)
seklinde ifade edilir. Burada f/(T) = % seklindedir.

II. durum i¢in f(R,T) = f1(R) + f>(T) esitlifinde yer alan fonksiyonlar ayr1 ayri R ve
T’1in fonksiyonudur (Harko vd., 2011). o halde herhangi bir madde i¢in alan denklemleri,

f1(R)
2

1
JI(R)Ri — g+ f1(R) (gud — ViVy) = 8xTyy — £5(T) (Tkl + O — 5) (3.27)
olur. f(R,T) teorisinde, kozmik ivmenin nedeni enerji yogunlugundan kaynaklanmaktadir.
Dolayisiyla kozmik ivme maddenin igerigine baghdir. Buradan Hilbert-Einstein

Lagrangian’da geometri-madde baglantis1 yoluyla modifikasyon saglanmaktadir.

II. durumda Harko vd. (2011) f(R,T) = fi(R) + f2(R) f3(T) esitligi ele alinmustr.
Herhangi bir madde icgin yercekimi alan denklemlerini ifade denklem 3.28’da

belirtilmektedir.

/ éR) 8kl

(fl’ (R)+ f2(R)f3 (T)) (Rkl +euld - V"V’) a (3.28)

=8nTy — f>(R) (fg’(T)(Tkl +0Oy) — @gkz)

3.3. Model Parametreleri

Gozlemsel ve kozmolojik parametreler agisindan evrenin genislemesini tanimlamak

i¢in bazi niceliklerin tanimlanmasi 6nem tagimaktadir.

3.3.1. Olcek Faktorii

Olgek faktorii, evrenin genislemesini parametrelestirmek ve boyutunu (galaksiler

arasindaki mesafeyi) belirlemek i¢in kullanilan, boyuttan daha az zamana bagh pozitif bir
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fonksiyondur. Ayn1 zamanda genisleme faktorii veya kozmolojik yaricap olarak da
adlandirilir. Evren modellerini tanimlayan metrigin bir bileseni olarak kullanilir. Einstein’in
gozlemleri agiklayan alan denklemlerinde merkezi yer alan Hubble parametresi (H) ve

frenleme parametresi (g) i¢in Taylor serisi genislemesinde Olcek faktori;
1
a(t) =al(ty) +a(ty)(t —to) + Ed(to)(t —10)2 + ... (3.29)

olarak tanimlanabilirler (Kousar, 2019). Burada tiirev zaman baghdir.

3.3.2. Hubble Parametresi

Evrenin yasimi ve boyutunu belirlemek icin kullanilan Hubble Parametresi (H)
kozmolojideki en 6nemli niceliktir. Dolayisiyla evrenin genisleme hizini temsil etmektedir.
Hubble Parametresinin mevcut degeri, farkli galaksilerin kirmiziya kaymas: kullanilarak

tahmin edilebilir (Hubble, 1929). Zamana bagh degisen H’in degeri su sekilde verilir:

(3.30)

QIR

H’in mevcut degeri Hubble sabiti olarak adlandirlir. a(¢) bityiik patlama aninda sifir

olup, evreni genisletmeyi diisiindiigiimiizde artacaktir. Bu durum,
a
Hy = <—) :d(l‘o) (3.31)
aJ 1=t

ifade edilir. Genisleyen evrenin temel gozlemlenebilir ozelligidir. Izotropik genisleme
durumunda, Hubble parametresi 3.30 gibi belirtilir ancak anizotropik genisleme i¢in
ortalama Hubble parametresi kullanilir. Yonlii Hubble parametrelerinin ortalamasit H,
ortalama Hubble parametresi olarak bilinir. n boyutlu Hubble parametresi zamana baglh

degisiyorsa,

a-_H1—|—H2—|—...—|—Hn_
N n—1

1 (3.32)
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olarak tanimlanir. Hy, (i =1,2,...,n— 1) her yondeki genigleme oranidir.

Ortalama anizotropi parametresi genel olarak,

B 1 n_l H; 2
A= Y (ﬁ — 1) (3.33)

”_1k:1

seklinde tamimlanir. Izotropik kozmik genisleme durumunda A = 0’dur.

Hubble parametrelerinin parametrelendirilmesi sayesinde, Hubble yasasinda
varsayilan degisiklikler ile gbzlemlenen degerler arasindaki tutarsizlik ortadan kaldirilir.
Dolayisla dinamikler icin zamanla degisen olcek faktoriiniin basit bir islevsel formu elde
edilmektedir. Pacif vd. (2017) yaptig1 calismada literatiirdeki hemen hemen tiim Hubble
parametrelerini kapsayacak sekilde genel formda, bir Hubble parametresi gibi olacak
sekilde zamana bagli Hubble parametresinin en genel ve kullanigh hali olarak,

m

H= (ﬂfi;a)p (3.34)
gibi onermiglerdir (Pacif vd., 2017). Burada, o, 3 # 0 olup, m,n, p reel sabitleri ise farkli
formlar icin 6zel olarak degismektedir. Denklem 3.34 Hubble parametresinin fonksiyonel
formunda bes parametre bulunmaktadir. Modellere ait fiziksel ve geometrik davranislar
analiz etmek icin m,n,p parametrelerine bazi 06zel degerler verilerek, modeldeki
parametrelerin sayisin1 azaltilmaktadir.  Bazi modellerde m,n,p degerlerine verilen

degerlerle elde edilen o ve B degerleri tablo 1°de verilmistir (Pacif vd., 2017).
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Tablo 1

Model parametrelerinin bazi spesifik degerleri icin elde edilen cesitli modeller

Model m,n, p degerleri Hubble Parametresi (H) Frenleme Parametresi (g)
I m=0,p=0,Vn B -1
B 1
m 7p 7” t +B
B 1
I —0,p=1,n=1 _p L
m=Rp =L t+o +B
- - 1
v m=1,p=0,VYn Bt _I_W
B 2t
v =0,p=1,n=2 142
. 7 2+a +[3
1 B 1
VI =0,p==,n=1 —1+
" ™" Vi+ao 2BVt+a
VI m:Op:anZ B B
’ 2’ Vi2+o B2 +a
t 1
VI  m=1p=1n=1 B _ -
t+a B2
Pt 1 «
IX =1 =1l.n=2 4+ = - =
m 7p N t2+a +ﬁ ﬁtz
1 B o
X m=1,p=—-,n=2 - =
P=2 ViZ+o Br2Vir +a
B o+2t
XI m=—1,p=1ln=1 1+
p 1+ a) B
X m=—1l,p=1n=2 P o3
CopE e 2+ a) B

Tablo 1’de baz1 6zel parametrelerin se¢cimine gore Hubble parametresi ve frenleme
parametresinin alacagi formlar verilmistir (Pacif vd., 2017). Model I ACMD modeli olup,
burada B kozmolojik sabitin yerine kullanilmigtir. Model II giiclii enerjili kozmolojisi
belirtmektedir (Lohiya ve Sethi, 1999). Model III’de % = m olup Berman’nin sabit

frenleme parametreli modelidir (Berman, 1991). Abdel-Rahman (1992) modelli olan model
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IX’da B = 1 alinmig, Abdussattar ve Prajapati (2011) ¢alismalarindaki genellestirilmis
modeli burdan elde etmiglerdir. Model XI dogrusal olarak degisen Frenleme parametresine
benzemektedir, burada % = —kve % = m alinmaktadir (Akarsu ve Dereli, 2012). Boylece,
tim bu modellerin bazi 6zel model parametreleri se¢cimiyle H’nin parametrizasyon
semasina girdigini gorebiliriz. Dolayisiyla elde edilen bir¢ok c¢oziimiin, olgcek faktoriiniin
bazi sonlu degerlerinde sicramanin meydana geldigi tekil olmayan sigrayan coziimleri
olmaktadir. a = 0 i¢in, H = " "*” olmakta ve p = 0 ile model LII ve IV ayni sonucu
vermektedir. Denklem 3.34, o negatiflik durumunda H = ([ﬁ;’;)p; o > 0 olmaktadir. H’ nin
bu formu 6lgek faktoriiniin davranist bazi modellerde ve dolayisiyla dinamikler {izerinde

biiyiik olciide farklilik gosterecektir. Tum modeller (p # 0), t = an’te coken bir yapiya

o >t olursa, t = o de tekillige sahip modellere yol acacaktr.

Bt"+n .
(a—tm)p>

sahiptir. Eger H = ( B

Mmoo,
(a—mp>
Hubble parametreleri H = o > t olarak modifiye edersek (n diger bir
parametredir), p = 0 ic¢in hibrit olgek faktdrii kozmolojisini elde etmek miimkiindiir

(Akarsu vd., 2014; Mishra ve Trioathy, 2015).

3.3.3. Frenleme (Yavaslama) Parametresi

Frenleme parametresi (¢), DE modelinin ve kozmik genislemenin agiklanmasiyla
bilinen klasik geometrik parametrelerindendir. Hubble parametresinin de8isimi Olgiile
bilinirse evrenin yapisi ve kaderi aciklanabilmektedir. Frenleme parametresi evrenin kendi
kiitle cekimiyle kozmik genislemesinin yavaslayacagi hiz degisimini tanimlamaktadir.

Olgiilerilir 6zelligi olan genisleme parametresiyle boyutsuz ¢ parametresi,

g= —W (3.35)

olarak ifade edilir. Burada a(z) ol¢ek faktoriinii ve nokta zamana bagl tiirevini belirtir. Son
gozlemler, DE’nin etkileri nedeniyle evrenin genisleme hizinin su anda hizlandigini

gostermektedir. Dolayisiyla g nun degerleri giiniimiizde negatiftir.

g’nun isareti kozmik genislemenin yavasladigini veya hizlandigim1 géstermektedir. O

halde ¢’nun pozitif isareti evrenin yavaglamasini geniglemesini ve g’nun negatif isareti
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evrenin ivmelenmesini gosterir.  Dolasiyla son gozlemlere gore q, hizlanan kozmik
genislemeyi saglayan negatif degere sahiptir. ~ Ayrica frenleme parametresi Hubble

parametresi arasindaki baginti,

1 d d (1
- T 1+ (= 3.36
1= "H24 T <H> (3.36)

olarak tanimlhidir. Bu durumda 3.29’de ki Taylor serisi,

a=alto) [1 —i—HO(t—to)—%Hg(t—to)z—l—... (3.37)

olmaktadir.

Pacit vd. (2017) yaptiZ1 calismada, Tablo 1’de listelenen 12 modelde frenleme
parametresi, I — III modellerinde sabit ¢ikarken, model IV — XII’de zamana bagimlidir.
o, B > 0 igin modeller IV, VIII, X sonsuz hizlanmali faz gegisi sergilerken, V, VII, IX, XI,
XII modelleri ilk hizlanmadan yavaglamaya seklinde faz gegisini veya belirli @ ve 3
seciminde sonsuz hizlanmali faz gecisini gdstermektedir. Sadece model VI, yavaslamadan
hizlanmaya bir faz gecisi gosterir. Faz gecisi agisindan cesitli durumlar Tablo 2’te analiz

edilmigtir (Pacif vd., 2017).
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Tablo 2
Tablo 1 elde edilen modellerde faz gegis zamani

Model Faz Gegisi Tipi Faz gecis zamam
v sonsuz hizlanmali —
A\ hizlanan — yavaglayan g

VI yavaglayan — hizlinan B
sonsuz hizlanmal —

hizlanan — yavaglayan
VII 1-p2
sonsuz hizlanmali —

VIII sonsuz hizlanmal —

o

X hizlanan — yavaslayan \/ =i
sonsuz hizlanmali —

X sonsuz hizlanmali —

XI hizlanan — yavaglayan ﬁ%‘x
sonsuz hizlanmal —
hizlanan — yavaslayan \/ Ba

XTI yavaglay 3

sonsuz hizlanmal

Evrenin gercek yasinin Hubble zaman1 yardimiyla, evrenin yavaglamasi ve hizlanmasi
arasindaki fark frenleme parametresi tarafindan belirlendigi bilinen bir gercektir.
Dolayisiyla Hubble parametresi (H) ve frenleme parametresi (g), evrenin statik ve dinamik
yapisini ifade etmektedir (Berman, 1983; Sahoo vd., 2016). Ancak, kozmolojik
genislemenin kinematiginin ayrintili agiklamasi i¢in, zamana bagli frenleme parametresinin

cesitli parametrelestirilmis bi¢cimlerini dikkate almak gerekir.

Eger (Adhav vd., 2010; Adhav, 2011;Akarsu ve Dereli, 2012),

q > 0, H > 0 evren modeli yavaglayarak ivmelenen genislemeye sahiptir,

q < 0, H > 0 evren modeli hizlanarak ivmelenen genislemeye sahiptir,

q > 0, H < 0 evren modeli yavaslayarak ivmelenen daralmaya sahiptir,

q < 0, H < 0 evren modeli hizlanarak ivmelenen daralmaya sahiptir,

q =0, H > 0 evren modeli sabit geniglemeye sahiptir,
* q =0, H <0 evren modeli sabit daralmaya sahiptir,

* g =0, H=0 evren modeli duragandir.
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Sabit frenleme parametresi, kozmologlar tarafindan cesitli yonlerden literatiirde

yaygin olarak kullanilmaktadir (Berman, 1983; Sahoo vd., 2016).
Hacimin sabit kaldig1 zaman icindeki egrisel bozulmanin 6lciisiine Shear tensorii
denir  (Poisson,  2004). Shear  tensoriiniin  indisleri  simetrik  olup,

(oKl = gkmgrl s, = gk™cl ), su sekilde tammlanmaktadir:

1
o’ = —oy o (3.38)
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DORDUNCU BOLUM
ARASTIRMA BULGULARI

Evrenin ge¢ zamanda ivmelenen genislemesini agiklamaya calisan f(R,T) yercekimi
teorisi cercevesinde topolojik kusurlardan biri olan sicim bulutunun, uzay-zamanin
anizotropik dogas1 yardimiyla modifiye alan denklemlerini ¢ozerek ve Kantowski-Sachs
metrigindeki davranigini zamanla degisen 0zel frenleme parametreleri kullanarak,

ongoriilen evren modellerinin ¢esitli dinamik ve fiziksel davraniglari aragtirilmistir.

Yapilan calismada, 2011 yilinda Harko ve diger arastirmacilarin yayinladiklar
makalede yer alan f(R,T) fonksiyonu i¢in onerilen ii¢ 6nerinden f(R,T) = R+ 2f(T)
olarak alinmustir. f(7T) = uT olarak se¢ilmistir.Burada p sabittir. g = 0 alinirsa, f(R,T)
terorisi genel rolativite teorisine doniigiir. f(R,T) = R+ 2uT ifadesinde ilk terim genel
rolativitenin Einstein-Hilbert etkisini ifade ederken, ikinci terim ise madde dagilimi ve

uzayin egriligi arasindaki etkilesimi ifade etmektedir.

Kiiresel koordinatlarda homojen ve anizotropik Kantowski-Sachs metriginin genel

formu (Kantowski ve Sachs, 1966);

ds* = —A%(t)dr* — B*(t)(d6? + sin(0)?d ®*) + dr* 4.1)

seklindedir. 4.1 denkeminden metrik tensoriin kovaryant gosterimi;

—AZ 0 0 0
0 -B2 0 0
gik = (4.2)
0 0 —B%in’(0) 0
0 0 0 1

Calismada f(R,T) teoride sicim bulutunun Kantowski-Sachs metrigindeki davranigini bazi
ozel frenleme parametreleri kullananarak evren modelleri 6ngoriilmiistiir. f(R,T) teorideki

kozmolojik terimli (A) alan denklemleri (Harko vd., 2011):
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1
Rij— 5Rgij = 82T+ [2pf/(T) + f(T) + Al gij (4.3)

seklinde verilmektedir.
Enerji momentum tensoriiniin izi:
T=A+p (4.4)

Denklem 4.1 metrigi ile 3.21 ve 3.14 denklemleriden f(R,T) teorideki alan

denklemleri,
BB nisip— putA 4.5)
B B B
§+§+g=lu—pu+/\ (4.6)
g—z+i4§+%—8pn+3pu+lu+A 4.7)

seklinde elde edilir. Denklemler 4.5, 4.6 ve 4.7 olusan denklem sisteminden; enerji

yogunlugu, sicim gerilimi ve kozmolojik terimi,

1 _A+I§+AB+BZ+1 “48)
P4+ \ A B aB " B '
1 A B AB B*+1

— (4 4.9

T 4Q2n+p) < ATB AT TR > 49)
A B AB A 2AB

A= (4.10)
A8V aB 27t+u AT A

olarak A ve B cinsinden yazabiliriz. p, A ve A’y1 belirleyebilmek icin ek iki ilave denkleme

daha ihtiyac vardir.

Her bir modelimizin ¢6ziimii i¢in, 6zel belirledigimiz frenleme parametresi ve evrenin
anizotrop olup olmadigim gosteren, genel formu 3.33 denkleminde belirtilen Anizotropi

parametresi ilave denklemler olarak kullanilmaktadir. Eger anizotropi parametresi O ise
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evrenin izotrop oldugunu gosterir.
A=E (4.11)

Burada anizotrop parametresi Kantowski-Sachs metrigi i¢in anizotropinin yonii

radyal yonlii secilmis ve 0 < & < 1 bir sabittir. Denklem 4.11 ¢oziiliirse;
A=B" (4.12)

bulunur. Burada n = olmaktadir. Yani, ¢oziimler de B metrik potansiyelini

3,/26-2£-3
— &2
bulmak diger ¢oziim niceliklerini bulmak i¢in avantaj saglamaktadir.

4.1. Cahsmada Modeller icin Kullanilan Frenleme Parametreleri

Bu calismada, dort farkli frenleme parametresi formu icin modeller olusturulmustur.
Modeller de 3.34 denkleminde verilen Hubble parametresinin en basit ve kullanigh

halindeki m, p ve n degerleri ile iligkilendirilen frenleme parametrelerinden elde edilen

modeller irdelenmistir.

4.1.1. Model I

m= —1, p=1 ve n=1 olmak iizere, H’nin genel ve kullanigl halini veren 3.34

denklemi:

Hi = (4.13)

olur. O halde frenleme parametresi;

q,:—1+%+§t (4.14)
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seklinde elde edilir. H > 0 i¢in, burada iki durum karsimiza ¢ikmaktadir.

i)a<0Ovef <0,

i)oa>0vef >0

Model I i¢in, Hubble parametresinin ve frenleme parametresinin grafikleri sirayla:

T T T T T T T T T T T T T T T T

0.5}

0.3}

0.2}

01"

L L L 1 L L L L L L

0 5 10 15

t
Sekil 1. Model I icin Hubble parametresinin zamana bagli degisimi

0.0

-0.2} :

T
I

-0.4
-0.6F ]

-0.8F

_1.01\ L L L L 1 L L L L 1 L L L L 1 L l;
0 5 10 15

t
Sekil 2. Model I i¢in frenleme parametresinin zamana bagl degisimi

q = 0’da bulunan ¢ degerine "transit ¢ degeri" denir. Kisaca #;, ile gosterilmektedir. O

halde ¢ = 0 i¢in #, = ﬁ%‘x olur. Her zaman t;, > 0’dir. Buradan da ﬁ%a >0=B8>a«
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olmaktadir.

4.1.2. Model I1

m=1, p=1 ve n =2 olmak lizere, 3.34 denklemi ile verilen H:

__Br
2 ta
seklinde olur. Buradan frenleme parametresi:

Hyy

1 o

=—14+-—--=
qn +B B2

seklindedir. Hubble parametresi ve frenleme parametresinin kozmik

degisimleri sekil 3 ve sekil 4 gosterilmistir.

20" 1

1.5 1

05" .

0.0}

-0.5" 1

-1.0f .

0 5 10 15

t
Sekil 3. Model II icin Hubble parametresinin zamana bagl degisimi
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Sekil 4. Model II i¢in frenleme parametresinin zamana bagh degisimi

g=0iset;, = % olur. O halde #;, > 0 = % > 0 dir. H > 0 igin, buradan iki
durum ortaya cikar.

i)a>0vel— P >0 (veyal > B). Yani faz degistirme hizlanmadan — yavaslamaya
halindedir.

ii)a <0Ovel—Pf <0 (veyal < fB). Yani faz degistirme, siirekli hizlanarak devam

edecektir.

4.1.3. Model II1

m=0,p= % ve n = 1 olmak iizere, H i¢in verilen 3.34 denklemi:

B
Hy = 4.17
L (4.17)
seklindedir. Buradan frenleme parametresi:
1 1
(4.18)

=14 ——
qiir 2[3\/t+—05

seklinde elde edilir. Model III ait Hubble parametresi ve frenleme parametresi zamansal

degisimleri sekil 5 ve sekil 6 goriilmektedir.
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Sekil 5. Model III i¢in Hubble parametresinin zamana bagh degisimi
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Sekil 6. Model III i¢in frenleme parametresinin zamana baglh degisimi

g=0iset, = # — o dir. O halde #;, > 0 = # — o >0 olup, H > 0 i¢in, iki durum

ortaya cikar.

i) B/ a < % ise, faz degistirme yavaglamadan — hizlanmaya dogrudur.

ii) /o > % ise, faz degistirme siirekli hizlanmaktadir.
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4.1.4. Model IV

m= —1, p=1ve n =2 olmak iizere, H nin 3.34 denklemi:
Hy = ——— 4.19
olmaktadir. Bu durumda frenleme parametresi:
o 3,
qv =—1+—-+—t (4.20)
B B

seklindendir. Model IV ait Hubble parametresi ve frenleme parametresinin kozmik zamana

bagli degisimleri sekil 7 ve sekil 8 belirtilmisgtir.

°
-
(=}
T
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t
Sekil 7. Model IV icin Hubble parametresinin zamana bagli degisimi

31



400 - f
300 |
200 1

100 f

Bl L L L L 1 L L L L 1 L L L L 1

0 5 10 15

t
Sekil 8. Model IV icin frenleme parametresinin zamana bagh degisimi

Eger, g =0 olursa, t;, = 4/ B_Ta elde edilir. H > 0 i¢in, burada iki durum olmaktadir.

i) o, B > 0ve B > a igin, faz degistirme hizlanmadan — yavaslamaya gecer.

ii) a,B < 0 ve B < « i¢in, faz degistirme siirekli yavaglanmaktadir.

4.2. Modellerin f(R,T) Alan Denklemlerinin Coziimlerinin Elde Edilmesi

Model I-1V i¢in f(R,T) teoride sicim bulutu ¢oziimleri ayri ayri degerlendirilerek,
modellerin madde ve geometrik kisimlarina ait niceliklerinden elde edilen bulgular

grafiklere doniistiiriilmiistiir.

4.2.1. f(R,T) Alan Denklemlerinin Model I I¢in Coziimleri

g=—1+ % + %t olarak belirlenen model I i¢in, denklemler 4.12 ve 4.14’den metrik

potansiyelleri:

3B

t 2+n)a
B=c | — (4.21)

r+o

olmaktadir. Buradan A ve B metrik postasiyellerin kozmik zamanda degisimi sekil.9” de
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gosterilmigtir.
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Sekil 9. Model I i¢in A ve B metrik potansiyellerinin zamana bagli degisimleri

Y =[t(t4+ a)(n+2)]* ve k = 4(2m + u) alimrsa, 4.21 ve 4.12 denklemleri 4.8 ve 4.9

denklemlerinde yerine yazilirsa:

Sicim enerji yogunlugu,

on(1-mp? 32+t Dn+2B  (59) (%)
T'k Tk c%k

p= (4.22)

40 - -

20

0 5 10 15

t
Sekil 10. Model I i¢in sicim enerji yogunlugunun zamana baglh degisimi
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Sicim gerilimi,

U T R I GO

4.23
Tk Tk Tk (29
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t
Sekil 11. Model I i¢in sicim geriliminin zamana bagl degisimi
seklinde elde edilir. Ayrica 4.10 denkleminde kozmolojik terim ise,
L 18 [4m(n® +n+1)+pu(2n+1)(n+1)] B>
- Yk (4.24)
_6(2t+a)(dmn+2un+4n+p)(n+2)B
Tk

olarak bulunur.
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Sekil 12. Model I i¢in kozmolojik terimin zamana baglh degisimi

4.2.2. f(R,T) Alan Denklemlerinin Model II icin Coziimleri

g=—1+ % — %%2 olarak belirlenen model II i¢in, denklemler 4.12 ve 4.16’den B

metrik potansiyeli:

3B

B=cy(? +a)mi (4.25)

olarak elde edilir.
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Sekil 13. Model Il icin A ve B metrik potansiyellerinin zamana bagli degisimleri
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Buradan Q = [(*+ a)(n+2)] *vek= 4(2m + u) olacak sekilde 4.25 ve 4.12 denklemleri

4.8, 4.9 ve 4.10 denklemlerinde yerine yazilirsa sicim yogunlugu:

C9%%n(1-n)B? 32 —oa)(n+1)(n+2)p 1
p= o - o + ; (4.26)

(P +a) (<"+2>“) c3k

T
I

0.6
0.5 ]
0.4+ :

a 0.3F ]

0.1+ 1

0.0- 1

0 5 10 15

t
Sekil 14. Model II i¢in sicim enerji yogunlugunun zamana bagli degisimi

Sicim gerilimi,

Lo PU=mp® 3P —a)(n-1)(n+2)B 1 : 4.27)

3
ek K (2 + a)(m) c3k
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Sekil 15. Model II i¢in sicim geriliminin zamana bagh degisimi

olarak bulunur ve kozmik zamana bagh degisimleri sekil 13, sekil 14 ve 15 belirtildigi gibi
gerceklesir.

Kozmolojik terim ise,

A :18t2 [4m(n® +n+1)+pu(2n+1)(n+1)] B>

Qk (4.28)
6(1> — o) (n+2) [4nn+2un+4m+ u B
_|_

Qk
ar |
3 ]

< |
2f i
1) ]
of ]
0 5 10 15
t

Sekil 16. Model II i¢in kozmolojik terimin zamana bagli degisimi
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seklinde elde edilir.

4.2.3. f(R,T) Alan Denklemlerinin Model III Icin Céziimleri

q=-—-1+ ﬁﬁ olarak belirlenen model III i¢in, denklemler 4.12 ve 4.18’den B

metrik potansiyelin ¢6ziimii;

6\iTap
B = cye m2 (4.29)

seklindedir. A ve B metrik potasiyellerinin kozmik zamana bagli degisimi sekil 17

verilmisgtir.

140 - ]
120 - A

[ — B ]
100 - 1

60 ]

40" :

o; ]

I S T S S S S EN S S S S SN S S S (S S SRS S S S S S SR S S B

0 5 10 15 20 25 30 35

t
Sekil 17. Model Il i¢in A ve B metrik potansiyellerinin zamana bagli degisimleri

O halde, elde edilen 4.29 denklemi ve 4.12 denklemininden faydalanarak, 4.8, 4.9 ve

4.10 denklemleri ¢oziiliirse:
Burada ¥ = /(t + a)(n+2) ve k = 4(2w + u) olmak iizere;

Sicim enerji yogunlugu,
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9n(1—n)[32+3(n—|—1)(n—|—2)2ﬁ 1

p = 1P2k \P3k . 12\n/5r+2a[3 c2
3

(4.30)
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Sekil 18. Model III i¢in sicim enerji yogunlugunun zamana baglh degisimi

Sicim gerilimi,

91 —n)(n+2)B%> 3(n—1)(n+2)%B 1

W2k 2%k 2 )

A= (4.31)

F T T T T T T T T T T T T T ™3
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Sekil 19. Model III i¢in sicim geriliminin zamana bagl degisimi
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Kozmolojik terim,

18 [4m(n® +n+ 1)+ p(2n* +3n+1)] B>

A=
, P2k (4.32)
+3(n+2) Arn(n+1)4+u(2n+1)]B
w3k
0.8; .
0.6; 1
< 04 ]
0.2; *
0.0; *
0 5 10 15
t

Sekil 20. Model III i¢cin kozmolojik terimin zamana bagl degisimi

kinematiklerin kozmik zamanla degisimi sekil 18, sekil 19 ve sekil 20 gosterilmistir.

4.2.4. f(R,T) Alan Denklemlerinin Model IV i¢cin Coziimleri

Frenleme parametresi ¢ = —1 + % + %tz olarak belirlenen model IV icin, denklemler

4.12 ve 4.20’den B metrik potansiyeli:

3

t t2a

olmaktadir. Model IV’iin metrik potasiyelleri A ve B zamanla degisimileri sekil 21

goriilmektedir.
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Sekil 21. Model IV i¢in A ve B metrik potansiyellerinin zamana bagh degisimleri

Burada 4.8, 49 ve 4.10 denklemleri i¢in 4.33 ve 4.12 denklemleri yerlerine yazilir.
@ = [t(t> + a)(n+2)]? ve k = 427 + ) alimrsa;

Sicim enerji yogunlugu,

6B
ViZia ) e
_9n(1—n)ﬁ2+3(3t2+a)(n+1)(n+2)[3+ ( lt+a> 434)
P="""xk Dk 2k '
Sicim gerilimi,
NG
n+2)o
L on(l=m(+2)p? 3G +a)n—1)n+2)B ( ’ﬁ“) @35)
B Dk Dk cik '
Kozmolojik terim,
182 [4n(n® +n+1)+pu2n+1)(n+1)] B2
, Pk (4.36)
_6(3t° +a)(dmn+2un+4w+u)(n+2)B
Pk
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Sekil 22. Model IV i¢in sicim enerji yogunlugunun zamana bagh degisimi
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Sekil 23. Model IV i¢in sicim geriliminin zamana bagl degisimi
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Sekil 24. Model IV i¢in kozmolojik terimin zamana bagli degisimi

coziimleri ve grafikleri elde edilir.
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BESINCI BOLUM
SONUC VE ONERILER

Evrenin genis Olcekli yapisi, astronomik gozlemler ve maddenin dinamik 6zellikleri
fizik yasalartyla desteklenen matematiksel modeller kullanilarak ag¢iklanmaktadir. Bu
calismada, dort farkli frenleme parametresi i¢in sicim maddenin Kantowski-Sachs
metrigindeki davranisi incelenmis ve analiz edilmistir. Her bir frenleme parametresi i¢in

evren modeli olusturularak, bu modellerin sonuglar1 ve sonuglarin ortaya c¢ikardigi

davraniglar belirlenmistir.

Hubble parametresi ve frenleme parametresinin modeller i¢in o ve fB’min bazi

degerlerindeki, faz gecis siirelerine iliskin Tablo 3’de verilmistir.

Tablo 3

Modellere ait Hubble parametresinin ve frenleme parametresinin zamanla degisimi

H
Model ——— @, Faz Gegisi Tipi
I 0 |« ﬁ%a yavaglayan — hizlanan a,f>0
B - stirekli hizlanan a,f <0
+%- | hizlanan — yavaslayan oa>0,<1
oo 14+ 1L 1-B =0k =
I 0 0 1+ B ) '
- siirekli hizlanan a<0,>1
B | ! ﬁ — o | yavaglayan —hizlanan Bva <1
m L o0 | -l+gn S :
- siirekli hizlanan BvVa >3
v 0 i \/ 6%0‘ hizlanan —syavaglayan — «,f8 > Ovef > a
P - siirekli yavaglayan o,B <0vef < a

I. modelin Hubble parametresi ve frenleme parametresi grafiksel degisiklikleri

incelendiginde zamanla azaldig1 goriilmektedir. 1. modelin o, B > 0 igin, faz gegis noktasi
Ly = ﬁ%a olarak bulunmugtur. Yani evren #;- den 6nce yavaslayan, ¢, den sonra ise hizlanan

genislemeye sahiptir. o, B < 0 i¢in ise siirekli hizlanmaktadir.

II. model grafiksel olarak incelendiginde Hubble parametresi + = 0 aninda H = 0
oldugu daha sonra belirli bir diizey artis gosterdikten sonra zamanla azaldig1 belirlenmistir.

Frenleme parametresini £ = 0 da « ve B degerlerinin alacagi degerlere gore, —oo den
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-1+ % degerine ulagtig1 goriilmektedir. Bizim kullandigimiz sabit degerlere gére bu durum
sekil 4’te grafigi verilen frenleme parametresi icin azalma seklindedir. II. modelin faz gegis
noktasi \/% bulunmustur.  Buna gore, o > 0, < 1 degeri dikkate alindiginda
hizlanmadan yavaglamaya faz deg8isimi gozlenirken, uygulamamizda kullamilan

o <0, > 1 degerlerine gore siirekli hizlanan genisleme goriilmektedir.

III. modelde r = 0 aninda Hubble parametresi ve frenleme parametresi o ve f3

degerlerine bagli olarak degismektedir. Buna gore, t =0 da H = \% veg=—1+ 2131/&

seklindedir. Bu iki parametreye ait grafikler incelendiginde Hubble parametresi zamanla
azaldig1 ve frenleme parametresinin ise negatif degerler alarak azaldigi goriilmiigtiir. III.
modelde B/ < % icin t;, = # — o aninda faz gecisleri gerceklesmektedir. Bu zamana
kadar evren yavaslayan genisleme, sonrasinda ise hizlanan genislemeye sahiptir. /ot > %

olarak kullanildiginda ise, evren genislemesi siirekli hizlanmaktadir.

IV. modelde Hubble parametresi I. modele benzer sekilde zamanla azaldigi
goriilmektedir. Frenleme parametresi ise . modelin tersine 1 = 0 anindan zit yonli bir
gortintii vermektedir. IV. model de a,f > Ovef3 > « i¢in, t;, = \/@ faz gecis noktasi
olup ivmelenerek genisleyen evren yavaglama gostermektedir. o, B < Ovef3 < o oldugunda

ise, evren siirekli yavaslayayarak genislemektedir.

Modellerin metrik potansiyellerinin ve kinematiklerinin grafikleri incelenerek tablo 4
olusturulmustur. Modellerdeki A ve B metrik potansiyelleri evrenin ilk zamanlarindan sonra
bir noktada esitlenmislerdir. Bu durum sirasiyla I'V. model, III. model, II. model ve I. model
olarak gerceklesmistir. 1. modelde esitlenmeden Once A degerleri B den yiiksek degerlere
sahipken, sonrasinda B degeri hizla yiikselmistir. II.model ve III. modelde A potansiyeli B
ye gore cok diisiik degerlerdedir. Ayrica II. ve III. modellerde B degeri belirli bir zamandan
sonra ¢ok yiiksek degerlere ulagsmistir. IV. modelde ise A ve B potansiyelleri esitlendikten
kisa siire sonra B potansiyeli ile A potansiyel arasinda fark hizla artmistir. Modellerin sicim
enerji yogunluklari, sicim gerilimleri ve kozmolojik terimler incelendiginde zamanla

azalma gosterdigi goriilmiistiir.
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Tablo 4

Metrik Potansiyellerinin ve kinematiklerin zamanla degisimi

Model A B p A A
I t:0 O 0 [ee] [ee] oo
t—o0 |0 o 0 0 O
t=01]0 0 o o oo
I
t—o0 |0 o 0 0 O
I
t—o0 |0 oo 0 0 O
IZO O 0 [ee] [ee] oo
v
t—o00 |0 oo 0 0 O

Genel olarak modellere bakildiginda; tablo 3 gére model II ve model III baglangicta
singiilariteden arindirilmig oldugu ve siirh bir etki alani olan model I ve model IV iin

biiyiik patlama kokenli oldugu goriilmektedir.

Model III yakin zamanda sonmesi, bu modelin sinirli bir tekilligi sahip oldugunu
gostermektedir. Ancak tekillik B degeri biiytidiik¢e gecikmektedir. Benzer sekilde tekillige
yakin Hubble parametresi ve frenleme parametresi incelendiginde model II’de evrenin
sonsuz bir ivme ile basladig1 sonucuna varilmaktadir. Bu durumda model III sonlu bir hiz
ve ivme ile baglarken, model I ve model IV sonsuz hiz ve sonlu bir ivme ile baglamaktadir.
Modellerin ilk hizlar1 ve ilk ivmelenme orant model sabitleri & ve 3 secimine baghdir.
Model I ve model IV evrenin ¢ — oo’da hiz1 ve frenleme parametresi 0 goriilmektedir.
Modellerin frenleme parametreleri zamana bagh olarak degismektedir. ¢, 8 > 0 i¢in model
LII ve IV modellerinde faz gecisleri hizlanmadan-yavaglamaya seklinde goriilmektedir.

Sadece model III de yavaglamadan-hizlanma seklindedir.

Bazi1 yeni kozmolojilere yol acan modellerde ov < 0 ve B < 0 modellerinin olacagi
olasilig1 tartigilmaktadir.  Bu caligmada 1. ve IV. modeller i¢in o ve B alinarak
degerlendirilmede bulunulmustur. Bu modellerde Hubble parametresi hem sinirli zamanda
degisime hemde gelecekte evrenin kendisini olusturan parcaciklarin ve uzay-zamanin

parcalandi81 ol¢iide niayi bir genislemede (Big Rip) tekilligi gostermektedir.
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