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ABSTRACT 

 

OPTIMUM DESIGN OF RIB-REINFORCED COMPOSITE I-BEAM 

 

 The main goal of this study is to develop a methodology for optimum shape design 

of reinforcing ribs on the web of an I-beam so as to minimize the weight of the structure and 

maximize the buckling-load carrying capacity of the beam under three-point bending test 

condition. IM7/8552 carbon-fiber reinforced composite material is selected for the model 

because of its high strength with low density. A finite element model is developed to simulate 

the mechanical behavior of the I-beam under three-point bending. The model is validated by 

comparing its predictions with the results of an experimental study. Then, an I-beam with a 

large web is considered so that the most critical failure mode is web-buckling due to 

transverse shear loads. Tsai-Wu criterion is used to predict static failure. By using ANSYS 

Parametric Design Language (APDL), codes are developed to implement the optimization 

algorithm and carry out buckling analyses to determine the maximum buckling-load 

capacity. The design variables are the geometric parameters defining the shape, size, and 

orientation of the ribs. Three different configurations are considered for the ribs and a 

parametric study is conducted to select the best rib configuration for optimization. 

Additionally, another parametric study is done to find the best stacking sequence for the 

layers of the web. The optimum shape and orientation angle of the ribs are found using 

modified simulated annealing algorithm, which is a global search algorithm. A considerable 

improvement is obtained in load-carrying capacity of the I-beam by introducing the optimum 

rib configuration, which results in an insignificantly small increase in the use material 

compared to the I-beam with flat web. 
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ÖZET 

 

Kaburga Takviyeli Kompozit I-kirişin Optimum Tasarımı 

 

Bu çalışmanın temel amacı, yapının ağırlığını en aza indirmek ve kirişin üç nokta 

altında burkulma yükü taşıma kapasitesini en üst düzeye çıkarmak için bir I-kirişin ağı 

üzerindeki takviye nervürlerinin optimum şekil tasarımı için bir metodoloji geliştirmektir. 

bükme testi koşulu. Model için düşük yoğunluklu ve yüksek mukavemeti nedeniyle IM7 / 

8552 karbon fiber takviyeli kompozit malzeme seçilmiştir. Üç noktalı eğilme altında I-

kirişin mekanik davranışını simüle etmek için bir sonlu eleman modeli geliştirilmiştir. 

Model, öngörüleri deneysel bir çalışmanın sonuçlarıyla karşılaştırılarak doğrulanır. Daha 

sonra, büyük bir ağa sahip bir I-kiriş düşünülür, böylece en kritik arıza modu, enine kesme 

yükleri nedeniyle ağ burkulmasıdır. Statik arızayı tahmin etmek için Tsai-Wu kriteri 

kullanılır. ANSYS Parametrik Tasarım Dili (APDL) kullanılarak, optimizasyon 

algoritmasını uygulamak ve maksimum burkulma-yük kapasitesini belirlemek için burkulma 

analizleri yapmak için kodlar geliştirilir. Tasarım değişkenleri, nervürlerin şeklini, boyutunu 

ve yönünü tanımlayan geometrik parametrelerdir. Kaburgalar için üç farklı konfigürasyon 

dikkate alınır ve optimizasyon için en iyi nervür konfigürasyonunu seçmek için bir 

parametrik çalışma yürütülür. Ek olarak, web katmanları için en iyi istifleme sırasını bulmak 

için başka bir parametrik çalışma yapılır. Kaburgaların optimum şekli ve yönelim açısı, 

global bir arama algoritması olan değiştirilmiş benzetilmiş tavlama algoritması kullanılarak 

bulunur. Optimum nervür konfigürasyonu getirilerek I-kirişin yük taşıma kapasitesinde 

önemli bir gelişme elde edilir, bu da düz ağlı I-kirişe kıyasla kullanım malzemesinde 

önemsiz derecede küçük bir artışa neden olur. 
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1. INTRODUCTION 

 

 

Materials based on their properties and characteristics are divided into four main 

categories: Metals, plastics, ceramics, and composites. Each category involves large 

numbers of materials with different properties that sometimes overlap each other. Composite 

material means two or more materials combined on a macroscopic scale that behave as a 

single material. Different materials are combined to form a composite material so as to 

improve mechanical properties. Fibrous, laminated, particulate composite materials, and a 

combination of them are common types of composite materials. They find application in 

industries such as automotive, construction, marine, and aerospace. 

 

The most important class of composite materials is continuous fiber-reinforced 

composites, because they have high strength and stiffness-to-weight ratios. For this reason, 

they are used in weight-critical applications. Considering their high material cost, composite 

part design should be optimized so that the desired performance is achieved with a minimum 

use of material or the performance is maximized for a given amount of material. 

 

I-beams are commonly used to support transverse loads in various applications like 

spar beams in airplane wings, construction, aerospace, and marine engineering applications. 

I-beams should be designed to support the applied load without failure. Failure modes in 

beams are classified into two major types: flexural failure and shear failure. The former 

occurs when the imposed load exceeds the flexural capacity of the materials of the beam, 

while the latter occurs due to deficiency in shear resistance between different materials of 

the beam [1]. Buckling failure of I-beams will be discussed in more detail in the next chapter. 

 

Bending-load carrying capacity of an I-beam can be increased by increasing its area 

moment of inertia. This can be achieved without an increase in its weight by making its 

flanges thicker and web thinner. However, as the web is made thinner, buckling of the web 
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becomes the dominant failure mode, especially if the web height is large as shown in Figure 

1.1. 

 

 

Figure 1.1. Web local buckling of an I-beam under pure bending. 

 

Shear buckling of web is one of the dominant failure modes of I-beam structures 

especially if the web height is large. There are several methods to avoid shear buckling of 

the web such as designing the web in corrugated shape as shown in Figure 1.2, using 

stiffeners on the web, and increasing thickness of the web. Thicker web means increased 

weight, and thus increased material cost of the structure. Considering that composite 

materials are costly and they are generally used in weight-critical applications, increasing 

thickness is undesirable. Corrugated webs have complex shapes leading to manufacturing 

difficulty in joining web and flange parts of the I-beam. On the other hand, using stiffeners 

and ribs makes possible to significantly increase buckling strength of I-beams with little 

increase in weight. 
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Figure 1.2. An illustration of an I-beam with sine wave web design [2]. 

 

1.1. Literature Review 

 

Three-point bending test is generally used to determine the flexural strength and 

stiffness of composite materials [4,5]. The test causes bending and shearing of specimens, 

therefore it involves a more complex stress state compared to tension tests. The web is 

predominantly under normal stresses due to bending and flange is predominantly under shear 

stresses. Besides, geometric parameters greatly affect the mechanical behavior of specimens. 

There are a few studies in the literature on composite I-beams under three-point bending test. 

Most of them considered a composite I-beam without any reinforcement and tried to 

determine its mechanical behavior under three-point bending test. Some others investigated 

the effect of dimensions of the I-beam parts on its mechanical properties. A review of these 

studies is presented in the following: 

 

Ozbasaran [6] analyzed the optimal design of an I-section beam-column subjected to 

different loading conditions. In that study, dimensions of the I-beam were considered as 

design variables. The I-beam was optimized using the crow search algorithm. In the 

optimization procedure, the critical factors were found to be buckling and large-deflection, 

if the flange and web thicknesses are small.  
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Yang et al. [7] experimentally and numerically investigated global buckling behavior 

of I-beams under three-point bending. That study showed all the test specimens developed 

lateral-torsional buckling and no local buckling. Increasing the slenderness or height-to-

width of the I-beams resulted in lower critical buckling load and lead to simultaneous local 

buckling. 

 

A fiber-reinforced polymer member design is commonly controlled by deflection 

and/or buckling instability, therefore buckling analysis is important in structures made by 

FRP material [8, 9]. Composite beams may undergo local buckling, global buckling or 

combination of both [8]. As a results, for local buckling numerous studies are conducted for 

different cross-sections [10-13]. Zeinali et al. [8] developed an experimental and numerical 

study on lateral torsional buckling of I-beam under three-point bending test. They showed 

the critical buckling load was increased non-linearly by decreasing span length of the I-

beam. 

 

Elbanna et al. [14] conducted an analytical study on the behavior of web of an I-beam 

with longitudinal and/or transverse stiffeners under pure in-plane bending condition using 

finite element modeling. They carried out a through parametric study to analyze the 

geometric parameters such as position, the flexural rigidity of the stiffeners and web plate 

aspect ratios. That study proposed that the stiffeners should be placed near the compression 

flange to get the maximum web buckling strength. Additionally, that study suggested that 

bend-buckling carrying capacity of stiffened panels is substantially related to the boundary 

condition along the edge of the stiffeners. 

 

Barbero and Raftoyiannis [15] used Rayleigh-Ritz method to analyze anisotropic 

flanges of I-beams. They developed an analytical solution to predict critical buckling loads 

and the buckling mode of the I-beams. 

 

Because of great benefits of ribs and stiffeners for helping structures to increase their 

strength under different loading types, there are a some studies in the literature on the design 
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optimization of stiffened and rib-reinforced composite structures. Lindgaard and Lund [16] 

optimized formulations for non-linear critical buckling load of composite structures. They 

considered different types of buckling behavior by concentrating on criterion functions for 

gradient-based optimization of the buckling load of laminated composite structures. They 

tried to maximize the buckling load considering fiber orientation angle as design variables.  

 

Nguyen et al. [17] optimized thin-walled composite I-beams to maximize the critical 

buckling load by using micro-genetic algorithm. They considered geometric parameters and 

fiber orientation angle as design variables. Their numerical study showed that the geometric 

parameters were more effective than fiber orientation in increasing the buckling strength. 

Additionally, this study revealed that length-to-height ratio and height-to-width ratio of I-

beams had significant effect on the critical buckling load. 

 

Duvaut et al. [18] introduced and developed a new technique for finding the optimum 

fiber directions and fibers volume fraction. They found their optimum values for different 

parts of the structure. Their optimization procedure considered both local and global 

buckling.  

 

Morton and Webber [19] proposed an optimization method to obtain minimum-weight 

design of a composite I-beam. All the I-beam dimensions were taken as design variables. 

They considered intra-laminar failure and buckling failure in the optimization procedure. 

 

1.2. Problem Statement 

 

The objectives of this thesis is to develop a methodology to maximize the web-

buckling strength of I-beams by optimizing the shape of ribs. First, a finite element model 

of I-beam is developed to investigate its mechanical behavior under three-point bending 

loading.  The dimensions of the I-beam and the rib shapes are defined parametrically using 

ANSYS parametric design language (APDL). The model is verified for an unstiffened I-



6 
  

beam by comparing the model predictions with the experimental results reported by a 

previous study. After that, a parametric study is conducted to investigate the effects of 

different placements of ribs and choose suitable values for upper and lower limits of the 

parameters defining the rib shape. 

 

Lastly, using a modified version of simulated annealing, which is a powerful stochastic 

global search algorithm, optimal shapes of various rib configurations are obtained. 
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2. THEORETICAL BACKGROUND 

 

 

2.1. Three-Point Bending Test 

 

Bending test methods have several characteristics that make them very useful and 

frequent to use in engineering applications. They have feasibility to measure different 

mechanical properties of materials. Young’s modulus, shear modulus, shear stress, fracture 

toughness etc., are some of these mechanical properties. Between bending test methods, the 

three-point bending test is the common technique that used mostly in engineering field [20]. 

The main motives for the popularity of this method are its simplicity and reliable results.  

Three-point test usually used for assess mechanical properties of polymers, wood, 

composites and brittle materials [21]. 

 

Three-point bending tests as shown in Figure 2.1 are usually applied on rectangular 

beams. These beams take place on two rollers or pins as supports and the load applied slowly 

by another roller or pin in the middle of the beam. As the result of this loading, the tensile 

stress is developed in the convex side of the beam, and the compressive stress is generated 

on the concave side of the beam. 

 

 

Figure 2.1. Typical three-point bending test. 
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The three-point bending test have some advantages and disadvantages. The 

preparation process of specimens and the procedure of testing is easy to apply, but the results 

of the test are depended on specimen geometry and loading conditions. 

 

If the section of the beam is in the shape of I, the shear stress that produced in the web 

part of the beam becomes a critical factor. It is due to possibility of failure of the beam 

because of shear buckling in the web part.  This study investigates the shear buckling of the 

I-beams and try to reduce the effect of generated shear load by adding ribs on the web part 

of the beam. 

 

2.2. I-Beam Structure 

 

An I-beam as shown in Figure 2.2 is a beam with an I-shaped cross-section. The 

horizontal elements of the beam are called flanges and the vertical element is called web. I-

beams are widely used in construction, civil engineering, aerospace and automotive. The 

design and structure of the I-beam makes it uniquely capable of handling a variety of loading 

conditions. The web part of the beam resists shear force, while the flanges resist most of the 

bending moment applied on beam. Due to design of the I-beam, it capable of bending under 

very high stress instead of buckling. I-beans are commonly used as critical support trusses 

or the main framework in the structures due to their mentioned characteristic. 

 

 

Figure 2.2. Parts of an I-beam. 
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2.3. Buckling 

 

If a load applied on a structure, it undergoes failure due to exceeded local stresses from 

the maximum allowable stress of the material. However, it can fail because of another failure 

mode which results in collapsing of entire structure. In engineering, this kind of failure mode 

called buckling. Study of buckling for structures begins in 1744 by Euler [22] for the stability 

of flexible compressed beams. 

 

Buckling is the instant change in the shape of structural elements under loading. It 

happens when a member in compression becomes elastically instable because of its 

slenderness and load [23]. The corresponding load is called critical buckling load. Primarily 

it is the case that accompanied with failure of structures in shape of column which have more 

length [24]. Beams, plates and shells are types of structures which buckling failure may be 

critical. Figure 2.3. shows the different types of buckling for different structures. 

 

 

Figure 2.3. Different buckling types of structures [25]. 

 

Buckling analysis is crucial for structures in the form of beam because they are slender 

structures [26]. The main aim of buckling analysis is to anticipate the critical buckling load 

and deformation of structure in buckling procedure, which lead to understand the load 

carrying capacity of the structure and prevent the structure from collapsing. Consequently, 
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in design of structures, avoiding buckling failure is one of the important criterion that must 

be consider. 

 

Structures which buckled has more than one critical buckling load. It means, when a 

structure is restrained from buckling by a lateral support, it might buckle at a higher load 

than the first critical buckling load. In mechanics of engineering different types of buckling 

shape of a structure is called buckling modes.  

 

 

2.3.1. Buckling Analysis Types 

 

Buckling occurs as an instability of a structure when it cannot support the applied 

compressive load levels. Each load level has an associated buckled mode shape; this is the 

shape that the structure predicted to behave in a buckled condition. Buckling is a critical 

failure criterion for various of structures. The type of buckling is related to the loading level, 

loading type, mechanical properties of material and geometry of the structure under loading. 

This part of study looks at two common buckling calculation, eigenvalue linear buckling and 

non-linear buckling, methods in finite element analysis (FEA).  

 

2.3.1.1. Eigenvalue Linear Buckling. 

Eigenvalue linear buckling analysis predicts the theoretical critical buckling load of an 

ideal elastic without any non-linearity in geometry or mechanical properties of material [28]. 

This method known as classical Euler buckling analysis. In an eigenvalue linear buckling 

problem, we are try to find corresponding load with singular stiffness matrix of the model 

[27]. This method overestimates the capacity of the structure and material during buckling 

process. It only gives the buckling behavior of the structure under loading, and there is not 

any way to predict post-buckling behavior of structure. Additionally, it used to predict the 

critical buckling loads of ideal structure without any imperfections. As a result, it is not 
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recommended for accurate, realistic buckling prediction analysis. Advantages of eigenvalue 

linear buckling are: 

 Short computing time 

 Easy to define accurately  

 No convergence problems  

 No experience is required 

On the other hand, it has some disadvantages as following: 

 In many cases the results may not be accurate 

 Cannot take material nor geometrical non-linearity into account 

 

2.3.1.2. Non-Linear Buckling. 

The results of non-linear buckling are more accurate and match with real world 

outcomes because it employs non-linear, large-deflection and static analysis simultaneously 

to predict buckling load. It increases the applied load level gradually until it reaches critical 

load that structure becomes unstable. By unstable it means very large deflections occurs due 

to an infinitesimal increase in the load. This type of buckling analysis allows to model 

structure with geometric imperfections, load perturbations, material non-linearity and gaps. 

Non-linear buckling analysis has some disadvantages as following: 

 Any software that used for analysis in this method can animate failure process  

 Results are more robust than eigenvalue linear buckling outcomes 

 Non-linearity of the material and geometry can be defined in this analysis method 

However, it has some pitfalls: 

 The analysis process requires more computing time 

 There exists convergence problem in results 

 It is very difficult to set up the process 

 

Figure 2.4 exhibits load-displacement curve of linear and non-linear finite element 

method (FEM) model. The diagram shows that when the bar enters into plastic deflection 
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region, the loss of stiffness result in a great decrease of critical buckling load in comparison 

between linear and non-linear model [27]. 

 

 

Figure 2.4. Load-displacement curve of linear and nonlinear analysis. 

 

 

2.3.2. Buckling Modes of an I-Beam 

 

Buckling modes of beams with I-shaped section is categorized as following [29]:  

 Lateral-Torsional Buckling (LTB) 

 Local Buckling 

 Lateral-Distortional Buckling 
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Figure 2.5. Representation of I-beam as Separate Flanges and web [8]. 

 

When a simply supported beam experience flexure load condition, the top flange of 

the I-beam is under compression, and the bottom flange of the I-beam in tension (Figure 

2.5). Beams experience Lateral-Torsional Buckling (Figure 2.6. (a)) because of buckling of 

the under compression flange of a beam. Lateral buckling is combination of lateral 

displacement and twist of the beam without local buckling in the cross-section geometry 

[29]. The Lateral-Torsional Buckling can be prevented by suitable lateral bracing. The other 

factors that affect the Lateral-Torsional Buckling are the size and geometry of the beam, 

boundary conditions, initial imperfections of the geometry and material and the type of the 

loading. 

 

Local buckling (Figure 2.6. (b)) subdivided into two failure mode, Flange Local 

Buckling and Web Local Buckling. It considered as changes in the cross-section geometry 

of the flanges and/or web without significant lateral displacement or twist. This type of 

buckling failure mode can be controlled by choosing acceptable width to thickness ratio of 

flanges and the web parts. Web Local Bucking occurs when the width-thickness ratio of web 

part is greater than the moment of the beam resistance limit. Local instability can take place 

in the web part of the beam due to shear loading because of bending load applied on beam 

(Figure 2.5.). When the web is slender enough, local buckling due to shear loading is 

governing [30]. Flange Local Buckling is precisely the same as Web Local Buckling, but in 

term of the flanges.  
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Figure 2.6. Buckling modes of steel I-beams. (a) Lateral-torsional buckling; (b) local 

buckling; (c) lateral-distortional buckling [26]. 

 

Lateral-Distortional Buckling (Figure.2.6. (c)) is combination of several buckle failure 

modes. Lateral displacement and twist, associated with local changes in the geometry of 

cross-section results in Lateral-Distortional Buckling. This kind of buckling usually occurs 

in intermediate length beams with thick flanges and thin webs. It has been shown [31, 32] 

that, Lateral-Distortional Buckling can lead to remarkable decreasing of the critical buckling 

load for beams with certain dimensions. 

 

2.4. Laminated Composite Material 

 

Aforementioned, materials have four main types as metals, plastics, ceramics, and 

composites. Composite materials are combinations of the first three types. Composite 

materials are made up of two or more materials which combined together in macroscopic 

scale to achieve desirable mechanical properties. Based on structures, there exist two types 

of composite materials, sandwich-structured and laminate-structured. In this study, 

laminated-structured composites are considered due to their suitability of I-beam shape 

structures. 

 

A lamina or ply is a standard sheet of composite material which is plane or curved 

layer of unidirectional or woven fabric in a matrix [33] as shown in Figure 2.7. The laminae 
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are an orthotropic material therefore laminae have different mechanical properties based on 

their configuration of fibers. For instance, in fiber reinforced lamina, mechanical properties 

of ply depend on direction of the fibers inside the matrix as shown in Figure 2.8 [34]. 

Therefore, laminated composites have more than one Young’s modulus, shear modulus and 

so on. 

 

 

Figure 2.7. Different fiber arrangement in a lamina [35]. 

 

 

 

Figure 2.8. Direction dependent mechanical properties of fiber reinforced lamina [34]. 

 

To produce laminate with different stiffness and thickness. The laminate thickness is 

very small in contrast to other dimensions. The mechanical properties of a laminated 
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composite depend on the stacking sequence and the properties of its components such as 

reinforcement and matrix material. The laminate is assumed to have perfectly bonded 

laminae. Additionally, the bonds consider as non-shear deformable, and due to this the 

displacements are continuous across lamina boundaries [35]. 

 

2.4.1. Elastic Constitutive Relations for an Orthotropic Lamina 

 

The state of stress at a small point of continuum materials under loading can be 

illustrated by nine stress components as 𝜎𝑖𝑗 (where i, j = 1, 2, 3) as shown in Figure 2.9. At 

the same way deformation state can be illustrates as 𝜀𝑖𝑗. Generally, the stress and strain 

components are related by Hooke’s law as following: 

 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙,                                                    (2.1) 

𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙 ,                                                     (2.2) 

 

where i, j, k, l = 1, 2, 3,  𝐶𝑖𝑗𝑘𝑙’s are stiffness components, and 𝑆𝑖𝑗𝑘𝑙 ’s are compliance 

components. Thus, generally, we will need 81 elastic components to identify any material. 

However, since stress and strain tensors are symmetric (𝜎𝑖𝑗 = 𝜎𝑗𝑖 and 𝜀𝑖𝑗 = 𝜀𝑗𝑖) the number 

of independent elastic constants reduce to 36 from 81. Thus, the stress-strain relations for an 

anisotropic material can be expressed as: 

 

𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗,                                                          (2.3) 

𝜀𝑖 = 𝑆𝑖𝑗𝜎𝑗.                                                          (2.4) 

 

Where i, j = 1, 2, 3, …6, 𝜎𝑖’s are 𝜎1, 𝜎2, 𝜎3, 𝜎4 = 𝜏23, 𝜎5 = 𝜏13, and 𝜎6 = 𝜏12 respectively, 

and 𝜀𝑖’s are 𝜀1, 𝜀2, 𝜀3, 𝜀4 = 𝛾23, 𝜀5 = 𝛾13, and 𝜀6 = 𝛾12 respectively. 
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Figure 2.9. State of stress at a point of a continuum [36]. 

  

Additionally, stiffness and compliance tensors are symmetric, therefore the stress (or 

strain) components can be described by six independent constants. As a result, the 

constitutive equation can express by 21 independent elastic constants. For an orthotropic 

material, due to interrelation between stiffness and compliance terms, the number of 

independent constants is reduced to nine in constitutive equations. Thus, stress-strain 

relations in orthotropic material in the matrix form are: 
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and 
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Now, since most of the composite structure are used in the form of thin laminated it 

can be assumed the composite laminae are under plane stress condition. Consider the 

orthotropic lamina (Figure 2.10) that loaded in the plane of the lamina. In this condition out-

of-plane stresses 𝜎3, 𝜏23, and 𝜏13 are negligible. 

 

 

Figure 2.10. Composite lamina under plane stress condition [36]. 

 

Therefore, the orthotropic stress-strain equations become 
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or  
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and 
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where, 𝑄𝑖𝑗 = 𝐶𝑖𝑗 −
𝐶𝑖3𝐶𝑗3

𝐶33
   (i, j = 1, 2, 6). 

 

Thus, the constitutive equations for an orthotropic lamina under plane stress condition 

can be represented by only four independent elastic constants for in-plane stresses and 

strains. These constants can be related to engineering constants by some considerations. If 

an orthotropic material is subjected to uniaxial tensile loading in the principal direction 1, 

𝜎2 and 𝜏12 are zero (Figure 2.11 (a)), from Equation (2.9) we get 

 

𝜀1 = 𝑆11𝜎1, (2.10) 

𝜀2 = 𝑆12𝜎1, (2.11) 

 𝛾12 = 0. (2.12) 

 

From engineering perspective, we have 

𝜀1 =
𝜎1

𝐸1
 ,     (2.13) 

 𝜀2 = −
𝜐12

𝐸1
,     (2.14) 

𝛾12 = 0.           (2.15) 
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Figure 2.11. Loading condition of an orthotropic composite element (a) uniaxial tensile 

loading in direction 1; (b) uniaxial tensile transverse loading in direction 2; (c) pure shear 

loading [36]. 

 

where 𝐸1 and 𝜐12 are the effective elastic modulus and Poisson’s ratio for loading in direction 

of 1 and plane 1-2 respectively. From Equations (2.10) - (2.15) compliance elements in 

Equation (2.9) can be identified as: 

 

𝑆11 =
1

𝐸1
, (2.16) 

𝑆12 =
−𝜐12

𝐸1
. (2.17) 

 

Similarly, if the uniaxial tensile loading is in the transverse direction 2 (Figure 2.11 (b)), we 

have 

 

𝑆22 =
1

𝐸2
, (2.18) 
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𝑆12 =
−𝜐21

𝐸2
. (2.19) 

 

Finally, if the only loading is pure shear (Figure 2.12 (c)), 𝜏12, we only have 

 

 𝛾12 =
𝜏12

𝐺12
,                                                             (2.20)  

 

and as a result 

   

 𝑆66 =
1

𝐺12
.                                                            (2.21) 

 

where 𝐺12 is the effective shear modulus of the composite material in the 1-2 plane. 

In summary, the constants of compliance tensor can be written by engineering 

constants as following: 

 

𝑆11 =
1

𝐸1
, (2.22) 

𝑆12 =
−𝜐12

𝐸1
=

−𝜐21

𝐸2
, (2.23) 

𝑆22 =
1

𝐸2
, (2.24) 

𝑆66 =
1

𝐺12
. (2.25) 

 

The Poisson’s ratios in plane 1-2 and 2-1 are dependent by 𝜐21 = 𝜐12
𝐸2

𝐸1
. 
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2.4.2. Classical Lamination Theory 

 

Classical lamination theory includes a general set of mechanics of materials type of 

stress and deformation assumptions that leads to the force-strain-curvature and moment-

strain-curvature relations. By use of this theory, the laminate properties can obtain directly 

from lamina’s properties. This section follows ideas outlined in references [35] and [37]. 

 

The constitutive relations in principal material coordinates for an orthotropic lamina 

under plane stress are obtained in Equation 2.8, for other in plane coordinate system of the 

lamina, the relations between stress and strain can find by 
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Where, the transformed reduced stiffness matrix, 𝑄̅𝑖𝑗, are obtained based on the reduced 

stiffness matrix and fiber angle for each ply. 

 

𝑄̅1 = 𝑄1 cos4(𝜃) + 2(𝑄12 + 2𝑄6) sin2(𝜃) cos2(𝜃) + 𝑄2 sin4(𝜃)  

𝑄̅12 = (𝑄1 + 𝑄2 − 4𝑄6) sin2(𝜃) cos2(𝜃) + 𝑄12(sin
4(𝜃) + cos4(𝜃))  

𝑄̅16 = (𝑄1 − 𝑄12 − 2𝑄6) sin(𝜃) cos3(𝜃) + (𝑄12 − 𝑄2 + 2𝑄6) sin3(𝜃) cos(𝜃)  

 𝑄̅2 = 𝑄1 sin4(𝜃) + 2(𝑄12 + 2𝑄6) sin2(𝜃) cos2(𝜃) + 𝑄2 cos4(𝜃) 

𝑄̅16 = (𝑄1 − 𝑄12 − 2𝑄6) sin3(𝜃) cos(𝜃) + (𝑄12 − 𝑄2 + 2𝑄6) sin(𝜃) cos3(𝜃)  

𝑄̅6 = (𝑄̅1 + 𝑄̅2 − 2𝑄̅12 − 2𝑄̅6) sin2(𝜃) cos2(𝜃) + 𝑄6(sin
4(𝜃) + cos4(𝜃))  

 

The Equation 2.27 can consider as stress-strain relations for 𝑘𝑡ℎ ply of a laminate. 

Therefore, the Equation 2.27 can rewrite as 

(2.27) 
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{𝜎}𝑘 = [𝑄̅]𝑘{𝜀}𝑘.                                              (2.28) 

 

Some assumptions are considered in defining the classical lamination theory, which are: 

 Laminae are perfectly bonded inside of the laminate 

 The bonds are infinitesimally thin and they are not shear-deformable 

 Displacements in lamina boundaries are continuous 

These assumptions required 𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0 and 𝜀𝑧 = 0, where z is the direction as shown in 

Figure 2.12. 

 

 

Figure 2.12. Geometry of deformation in the x-z plane of a lamina [35]. 

 

The displacements field in x, y, and z direction respectively shown as u, v, and w, and 

they can derive as shown in Figure 2.12 as 

 

 𝑢𝑐 = 𝑢0 − 𝑧𝑐𝛽.                                      (2.29) 

 

where 𝛽 =
𝜕𝑤0

𝜕𝑥
 is the slope of the middle surface of laminate in the x direction and subscript 

‘0’ is used to represents middle surface values of variables. Therefore, the Equation 2.20 can 

be rewrite for u at any z point through the laminate thickness as 
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 𝑢 = 𝑢0 − 𝑧
𝜕𝑤0

𝜕𝑥
.       (2.30) 

 

And similarly, the displacement field v in the y direction can be written as 

 

  𝑣 = 𝑣0 − 𝑧
𝜕𝑤0

𝜕𝑦
.     (2.31) 

 

Since 𝜀𝑧 = 𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0, the remaining strains by using linear elasticity are defined 

in terms of displacement. 

 

 𝜀𝑥 =
𝜕𝑢

𝜕𝑥
  

 𝜀𝑦 =
𝜕𝑣

𝜕𝑦
 (2.32) 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
 

 

 

By using Equations 2.21 and 2.22, the strains are 

  

                                        𝜀𝑥 =
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑥2   

𝜀𝑦 =
𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕2𝑤0

𝜕𝑦2  (2.33) 

                                           𝛾𝑥𝑦 =
𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
− 2𝑧

𝜕2𝑤0

𝜕𝑥𝜕𝑦
  

 

or in matrix form 
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where 𝜀𝑥
0, 𝜀𝑦

0, and 𝛾𝑥𝑦
0  are middle surface strains and 𝜅𝑥, 𝜅𝑥, and 𝜅𝑥𝑦 are the middle surface 

curvatures. Equations 2.19 and 2.25 show that the stress variation through the laminate 

thickness is not always linear against the linearity of strain variation. 

 

 

Figure 2.13. Geometry of an N-layered laminate [35]. 

 

The resultant forces and moments acting on a laminate with N layers as shown in 

Figure 2.13 can be get by integrating stresses in each ply over the laminate thickness and 

summation of these integrations. 
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where  𝑧𝑘 is distance of 𝑘𝑡ℎ layer of laminate from middle surface of it. By integrating 

Equations 2.29, 2.35, 2.36, and 2.37 the forces and moments become 
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If laminate sensitive to environmental factors such as temperature gradient and 

moisture gradient, the effects of them should added to Equations 2.28 and 2.29. Therefore, 

they written as 
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where 

 

 𝐴𝑖𝑗 = ∑ (𝑄̅𝑖𝑗)𝑘

𝑁
𝑘=1 (𝑧𝑘 − 𝑧𝑘−1)  

 𝐵𝑖𝑗 =
1

2
∑ (𝑄̅𝑖𝑗)𝑘

𝑁
𝑘=1 (𝑧2

𝑘 − 𝑧2
𝑘−1) (2.41) 

 𝐷𝑖𝑗 =
1

3
∑ (𝑄̅𝑖𝑗)𝑘

𝑁
𝑘=1 (𝑧3

𝑘 − 𝑧3
𝑘−1)  

 

   

where 𝐴𝑖𝑗, 𝐵𝑖𝑗, and 𝐷𝑖𝑗 are the extensional stiffness, bending-extension coupling stiffness, 

and bending stiffness matrix respectively. 

 

2.4.3. Beam Theories for Composite Laminates 

 

Beams defined as structures which one of its dimensions is much larger than the other 

two. The main axis of the beam is defined in longitudinal direction of the beam, and a cross-

section normal to the main axis. There exist different theories for considering and analyzing 

beams, such as Euler-Bernoulli and Timoshenko theory. These theories well-suited for 

beams with isotropic materials. Generally, beam theories consists of the reduction of a three-

dimensional elasticity problem to a one-dimensional one. As composite beams have become 

very popular in industries like automobile, aerospace, and so on. The needs for theories of 

composite beams get attention. In this section summary of theories for isotropic beams and 

composite beams is given. 

 

2.4.3.1.  Euler-Bernoulli Beam Theory. 

Euler-Bernoulli beam theory also known as classical beam theory is a simplifies form 

of linear theory of elasticity for beams. The Euler-Bernoulli beam theory can predict the load 

or the deflection under flexural loading and the stress and strain field as well. There are 

underlying assumptions for the Euler-Bernoulli beam theory. The first one is the cross-
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section of the beam is infinitely rigid in its own plane, the second is, during deformation the 

cross-section is assumed to remain plane, and finally, the cross-section is assumed to keep 

normal to the deformed axis of the beam [38]. In this theory, shear deformations are 

neglected and beam deflections are assumed to be single. Therefore, it is only valid for high 

length-thickness ratios. 

 

The Euler-Bernoulli theory show the elastic behavior of beams by Hooke’s law. The 

solution can be modified for composite beams by integration the lamination theory. The 

Euler-Bernoulli equation is related applied load and beam’s deflection, and describes the 

relations between them as: 

 

 𝐸𝐼
𝑑4𝑤(𝑥)

𝑑𝑥4 = 𝑞(𝑥)      (2.42) 

 

where 𝑤(𝑥) is deflection of the neutral axis, 𝑞(𝑥) is the applied load, 𝐸 is the elastic 

modulus, and 𝐼 is the second moment inertia of the beam’s cross-section. 

 

 

Figure 2.14. Three-point bending of beam with constant cross-section over the length. 
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The analytical results of maximum deflection for a three-point bending is obtained as [39]: 

 

  𝑤 =
𝑃𝐿3

48𝐸𝐼
     (2.43) 

 

where 𝑃 is applied load in the middle of the beam, and 𝐿 is the total length of the beam as 

shown in Figure 2.14. 

 

2.4.3.2. Timoshenko Beam Theory. 

The model in the Timoshenko beam theory considers shear deformation and rotational 

bending effects, unlike Euler-Bernoulli beam theory, and makes it well-suited for analyzing 

short thick beams and sandwich composite beams. Generally, Timoshenko beam theory 

estimates stiffness of the beam lower than theoretical value and as a result larger deflections 

occur. The Timoshenko equation for bending of beam with isotropic material is of forth 

order, but there is a second-order partial derivative. For constant cross-section isotropic 

beam, the Timoshenko’s equation is [40]: 

 

𝐸𝐼
𝑑4𝑤(𝑥)

𝑑𝑥4 = 𝑞(𝑥) −
𝐸𝐼

𝜅𝐴𝐺

𝑑2𝑞

𝑑𝑥2     (2.44) 

 

Where 𝐴 is the area of cross-section, 𝐺 is shear modulus, and 𝜅 is shear correction factor. 

Shear correction factor is defined as: 

 

𝜅 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑛 𝑎 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑
     (2.45) 

 

The main difference between Euler-Bernoulli and Timoshenko beam theories is in 

their assumptions. In Euler-Bernoulli theory the cross-section is consider perpendicular to 
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the flexural line, but in the Timoshenko theory rotation is between the cross-section and 

flexural line is allowed, which comes from shear deformation assumption in Timoshenko 

theory. Therefore, the Euler-Bernoulli beam is stiffer. However, If the length-thickness ratio 

is large enough the error between both theories is small. 

 

2.4.3.3. Bean Theories for Laminated Composite. 

Recent advances in composite materials technology leads to the various application of 

laminated composite beams as an element in engineering structures. Against isotropic 

beams, composite beams show coupling between extensional, bending, and twisting modes 

of deformation. Because of this characteristic of composite beam-like structures, it is 

required to develop a simple and applicable analysis theory for them. The beam theory for 

laminated composite beams is rooted in the shear deformable laminated plate theory. 

 

In laminated composite beams, the transverse shear deformation has great effects on 

the transverse displacements, the natural frequencies of vibration, and buckling loads. Euler-

Bernoulli beam theory due to ignoring transverse shear deformations results in high error 

percentage in analyzing laminated composite beams. Beam theories for laminated composite 

categorized as first-order shear deformation laminate theory and higher-order laminated 

beam theories. First-order shear deformation laminate theory is simply Timoshenko beam 

theory which presumes laminate as discrete layer with constant shear strains through the 

thickness. Higher-order laminated beam theories derived from usage of power series 

expansion in the thickness coordinate of the beam and includes parabolic shear deformation 

theories, Lo-Christensen-Wu type higher order theories, and layerwise (discrete layer) 

theories [41]. 

 

Parabolic shear deformation theories are layer wise shear deformation theory which 

presume transverse shear stress distribution inside each layer of laminate as parabolic for 

symmetric cross-ply laminates. Lo-Christensen-Wu type higher order theories are included 

the effects of transverse normal strain and transverse displacement assigned with transverse 

shear deformation for laminated plates which consist of eleven displacement variables. They 
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are obtainable by finite element solutions. Layer wise (discrete layer) theories are particular 

forms of lamination theory which discussed in section 2.4.2. [41]. 

 

2.4.4. Failure Mechanism of Laminated Composites 

 

Composite materials, especially laminated-composites, have anisotropic mechanical 

properties. Due to this characteristic of composite materials, the behavior of them at failure 

is highly related to the direction. Failure occurrence is not a single level event in composite 

laminates. It is a series of failure mechanisms that develop until the laminate collapse. 

Failure mechanism of composites can be considered in two different point of view, 

microscopic and macroscopic failure event. Macroscopic failure of a fiber composite is a 

result of one or more microscopic failure events. Microscopic failure events affect when 

their frequency is really high. Figure 2.15 is displayed the development of microscopic 

failure in a composite laminate. 

 

 

Figure 2.15. Development of damage in composite laminates until fracture [42]. 
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Different failure modes in composite lamina strongly depends on the stress condition, 

tensile or compressive loading, and whether the lamina has unidirectional fibers or woven 

fabric (Figure 2.7). Most common failure modes under in-plane loading are fiber tensile or 

compressive failure, matrix tensile or compressive failure, and shear failure (Figure 2.16) 

[36]. Matrix cracking, debonding, delamination and fiber breaking are the main microscopic 

failure events in tensile loading, while kinking is usual failure mode in compressive loading. 

Table 2.1 presents failure of unidirectional composites based on type of loading. All failures 

under different loading condition are combination of microscopic failure events. 
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Table 2.1. Failure mechanism of unidirectional composites based on type of loading. 

Failure of Unidirectional Composites 

Microscopic 

Failure 

events 

Failure 

under 

longitudinal 

tensile loads 

Failure 

under 

longitudinal 

compressive 

loads 

Failure 

under 

transverse 

tensile 

loads 

Failure 

under 

transverse 

compressive 

loads 

Failure 

under in-

plane shear 

loads 

Breaking of 

fibers 

Fiber breaks 

at its 

weakest 

cross section 

Transverse 

tensile 

failure 

(transverse 

splitting 

Matrix 

failure 

and/or 

interface 

failure 

Matrix shear 

failure 

Matrix shear 

failure 

Debonding 

or separation 

of fibers and 

matrix at the 

interface 

Brittle 

failure 

Fiber micro-

buckling or 

the local 

buckling of 

fibers 

 Component 

debonding 

Component 

debonding 

Matrix micro 

cracking  

Brittle 

failure with 

fiber pullout 

Gross shear 

failure 

 Fiber 

crushing 

Combination 

of the first 

two failure 

mechanism 

Fiber pullout Brittle 

failure with 

debonding 

and/or 

matrix 

failure 

 

 

 

   

Delamination 

in laminates 
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Figure 2.16. Failure modes of unidirectional composite under different loading condition 

(a) fiber tensile failure, (b) fiber compressive failure, (c) matrix tensile failure, (d) matrix 

compressive failure (e) shear failure [36]. 

 

Microscopic failure events that lead to different failure is described in following paragraphs. 

 

1) Matrix Cracking or Transverse Cracking: This failure (Figure 2.16 (c-d)) is usually 

the first damage mechanism that occur in fiber-reinforced composites. Matrix 

cracking initiates in the direction of the fibers and in the thickness direction of 

laminate [43]. Matrix cracking commonly happens due to high stresses produced by 

transverse loads. It does not affect the capacity of the fibers to carrying the load, but 

it has effects on the mechanical and thermal properties of the structure. Matrix 

cracking leads to activate for further failure mechanisms and speed up environmental 

degradation of laminate. 
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2) Debonding or Crack Coupling: The interface between fiber and matrix in lamina is 

subject to separating from each other because of inherent stress. When a laminated 

composite is loaded transversely, stress concentration areas between fibers and 

matrix leads to micro-cracks due to different mechanical properties of the elements 

of lamina. These micro-cracks growth resulted in separation of fibers and matrix and 

this process called debonding. Debonding become easier in laminated composites 

with weaker interface between fibers and matrix. 

 

3) Delamination: It is one of the well-known out-of-plane failure mechanism, which 

occurs when two adjacent layers separate. Delamination occurs due to bending load 

or fatigue loading that applied on the laminates [44]. In laminated structures, 

delamination commonly initiates from discontinuities of material such as cracks in 

matrix or imperfections od materials that resulted as manufacturing process. It can 

decrease the mechanical properties of the laminate such as stiffness and strength of 

the structure, but the presence of the delamination usually does not lead to the 

complete failure of the structure and sometimes it can delay the final failure of the 

structure since it provides stress relief [45]. 

 

4) Fiber breaking: Fibers in laminated composite structures are responsible for carrying 

loads. Therefore, fiber breaking is an important event in failure mechanism which 

leads to the collapse of the structures under tension (Figure 2.16(a)).  A fiber in 

tensile loading breaks when the load is sufficiently high. In a unidirectional laminated 

composite more than single fiber will break and some fibers may fracture at several 

point along it. 

 

5) Kink-band: The dominant compressive failure mode in unidirectional laminated 

composites is kink-band (Figure 2.17) or localized compressive buckling. The 

composite compression procedure triggers from elastic deformation and ends with 

fracture. This process can be divided into four staged as shown in Figure 2.18. At the 

first stage, the composite structure deformed under compressive loading uniformly. 

However, due to structure or loading imperfections, uniform deformation progress 
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into elastic instability slowly and because of low yield strength of the matrix, plastic 

deformation initiate in the structure. Plastic deformation causes local instability, 

kink-band. At the final stage by increasing the load level, the composite structure 

fails associated by the shear failure [47]. 

 

 

Figure 2.17. Micrography of a unidirectional composite kink-band [48]. 

 

 

 

Figure 2.18. Schematic kink-band formation under compressive loading [47]. 

  

2.4.5. Failure Criteria of Laminated Composites 

 

At the first, it should be clarified that failure criteria are not derived from any physical 

failure theory. Mechanics of materials failure criteria simply defined based on a stress or 

strain upper limit which materials fail at that level. Practically, all of them are originated 

from assumptions of homogeneity and linear stress-strain behavior of material during failure. 
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There are exist plenty of failure theories for composite structures. These theories 

categorized into three group. Limit or non-interactive theories (i.e. maximum stress and 

strain failure criteria), interactive theories (i.e. Tsai-Hill and Tsai-Wu), and partially 

interactive or physically based theories (i.e. Hashin-Rotem and Punk) [49].  

 

Limit or non-interactive criteria anticipate the failure load for modes of failure by 

comparing stresses and strains of lamina with related strength. In the limit criteria, 

interaction between stresses or strains is not accounted. Interactive criteria suppose that all 

the stress components have effect on the failure of composite at the same time. Partially 

interactive or physically based criteria consider matrix and fiber failure mode separately 

[50]. 

 

The reliability and applicability of each failure criterion rigorously depend on the its 

ease to apply and compatibility of the result with valid experimental data, that makes it 

somehow hard to decide selecting one theory between others. Commonly, there are four 

widely used failure criteria for laminated-composite materials which described as following. 

These criteria are based on the hypothesis that laminated fiber composites are orthotropic 

continua. 

 

2.4.5.1. Maximum Stress Failure Criterion. 

The maximum stress failure criterion is usually based on the uniaxial strength and 

stress in the principle material coordinate (Figure 2.19) of a unidirectional lamina. Failure 

is predicted when one of the following conditions is satisfied: 

 

𝜎1 ≥ 𝑋𝑡      or   𝜎2 ≥ 𝑌𝑡   (For tensile stresses)    (2.46) 

𝜎1 ≤ −𝑋𝑐   or   𝜎2 ≤ −𝑌𝑐   (For compressive stresses)  (2.47) 

|𝜏12| ≥ 𝑆12     (For shearing stress)   (2.48) 
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Figure 2.19. Principal material coordinates of a typical lamina [51]. 

 

For a two-dimensional state of stress with 𝜏12 = 0, in a unidirectional lamina, the 

maximum stress failure criterion region has the form of a rectangle as shown in Figure 2.20. 

 

 

Figure 2.20. Failure region for unidirectional lamina under biaxial normal loading in 

maximum stress theory. 

 

Due to its simplicity, there are wide application of this failure criterion. Absence of 

interaction between the stress components which is normally observed in the experiments is 

one of the great pitfalls of this failure criterion [52]. 

 

𝜎2 
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2.4.5.2. Maximum Strain Failure Criterion. 

The maximum strain failure criterion is an alternative to the maximum stress failure 

criteria. Failure occurs when one of the strain components along the principal material 

coordinates goes over the ultimate strain in the same direction. It can be expressed 

mathematically in the form of following equations: 

 

𝜖1 ≥ 𝜖1𝑡
𝑢       or   𝜖2 ≥ 𝜖2𝑡

𝑢    (For tensile stresses)   (2.49) 

𝜖1 ≤ −𝜖1𝑐
𝑢    or   𝜖2 ≤ −𝜖2𝑐

𝑢    (For compressive stresses)  (2.50) 

|𝛾12| ≥ 𝛾12
𝑢      (For shearing stress)   (2.51) 

 

For a two-dimensional state of stress with 𝜏12 = 0, in a unidirectional lamina, the 

maximum strain failure criterion region has the form of a parallelogram as shown in Figure 

2.21. 

 

 

Figure 2.21. Failure region for unidirectional lamina under biaxial normal loading in 

maximum strain theory. 

 

𝜎2 

𝜎1 
𝑋𝑡 

𝑌𝑡  

−𝑋𝑐  

−𝑌𝑐  

𝜎2 − 𝜈21𝜎1 = 𝑌𝑡  

𝜎2 − 𝜈21𝜎1 = −𝑌𝑐  

𝜎1 − 𝜈12𝜎2 = 𝑋𝑡  

𝜎1 − 𝜈12𝜎2 = −𝑋𝑐  
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2.4.5.3. Tsai-Hill Failure Criterion. 

This failure criterion also known as the deviatoric strain or distortional energy theory. 

The deviatoric or distortional energy has been suggested by numerous researchers such as 

von Mises in different forms as a failure criterion for isotropic metals [33]. Hill [53] adjusted 

it for the anisotropic ductile metals. Azzi and Tsai [54] modified it to orthotropic composite 

materials. The Tsai-Hill criterion is a modified form of von Mises yield criterion. Following 

equations describes Tsai-Hill failure criterion for a case of plane stress. 

 

𝜎1
2

𝑋2 −
𝜎1𝜎2

𝑋2 +
𝜎2

2

𝑌2 +
𝜏12
2

𝑆12
2 = 1     (2.52)  

 

where,  

 

𝑋 = 𝑋𝑡  for  𝜎1 > 0    and   𝑋 = −𝑋𝑐  for  𝜎1 < 0       (2.53) 

𝑌 = 𝑌𝑡   for  𝜎2 > 0    and   𝑌 = −𝑌𝑐  for  𝜎2 < 0       (2.54) 

 

The Tsai-Hill failure criterion, against maximum stress and maximum strain failure 

criterion, proposed a single criterion instead of several sub-criteria. Additionally, it permits 

appreciable interchange between stress components. 

 

2.4.5.4.  Tsai-Wu Failure Criterion. 

Tsai-Wu failure criterion is a more general form of Tsai-Hill failure criterion. It is get 

from von Mises yield criterion like Tsai-Hill. Tsai-Wu failure criterion is tried to give a 

general failure theory for anisotropic materials without previous theories drawbacks. Tsai-

Wu failure criterion is operationally simple and easily compliant to computational 

procedures. Its equation takes the form 
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𝜎1
2

𝑋𝑡𝑋𝑐
+

𝜎2
2

𝑌𝑡𝑌𝑐
+

𝜏12
2

𝑆12
2 + 2𝐹12𝜎1𝜎2 +

𝜎1

𝑋𝑡
−

𝜎1

𝑋𝑐
+

𝜎1

𝑌𝑡
−

𝜎1

𝑌𝑐
= 1   (2.55) 

 

where 𝐹12 accounts for the interaction among 𝜎1 and 𝜎2. Because of this the Tsai-Wu failure 

criterion needs biaxial test results. 

 

Table 2.2 gives a summary of the four failure criteria and compare them base on physical 

basis, operational convenience, and required experimental input. 

 

For fiber-dominated laminates composites, maximum stress and maximum strain 

criteria exhibits better performance than others. They are not sensitive to variations in matrix 

strengths which obtaining them is so difficult. On the other hand, for matrix-dominated 

laminates, Tsai-Hill and Tsai-Wu failure criteria are sensitive to variations in matrix 

strengths. Due to interaction between stress components, sudden changing of failure modes 

results in the fitful failure region [50]. Figure 2.22 shows the failure regions for 

unidirectional lamina under biaxial normal loading which obtained by different criteria. 

Additionally, Figure 2.23 exhibits the failure regions for same lamina under transverse 

normal and shear loading.  
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Table 2.2. Comparison of Failure Criteria [33]. 

Theory Physical  

basis 

Operational 

convenience 

Required 

experimental input 

Maximum stress Tensile behavior of 

brittle material 

No stress interaction 

Inconvenient Few parameters by 

simple testing 

Maximum strain Tensile behavior of 

brittle material 

Some stress 

interaction 

Inconvenient Few parameters by 

simple testing 

Tsai-Hill Ductile behavior of 

anisotropic 

materials 

“Curve fitting” for 

heterogeneous 

brittle composites 

Can be programmed 

Different functions 

required for tensile 

and compressive 

strengths 

Biaxial testing is 

needed in addition 

to uniaxial testing 

Tsai-Wu Mathematically 

consistent 

Reliable “curve 

fitting” 

General and 

comprehensive 

Operationally 

simple 

Numerous 

parameters 

Comprehensive 

experimental 

program needed 
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Figure 2.22. Failure regions for unidirectional lamina under biaxial loading [49]. 

 

 

Figure 2.23. Failure regions for unidirectional lamina under transverse normal and shear 

loading [49]. 
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2.5. Finite Element Method 

 

Prediction of mechanical behaviors of engineering structures has a great importance 

during design, fabrication, and operation of the system. The finite element method (FEM) 

was basically developed for analysis of structural mechanic’s problems.  The finite element 

method is broadly used method for solving problems in engineering field. The finite element 

method starts by discretizing physical geometric domain into a number of smaller elements. 

These small parts called finite elements. Each sub-domain is solved individually and the 

results combined to reach the final solution of physical geometric domain. FEM is used to 

simulating realistic problems in computers which leads to reducing cost (time and money) 

of the manufacturing and testing the structure. Because of different sectors in industries, 

various finite element modeling software developed to meet the demands. 

 

The FEM procedure of analyzing a model consists of four steps, modeling of the 

geometry, meshing, specifying of material property, and specifying of boundary, initial, and 

loading conditions.  Several types of analysis can be handled by the finite element modeling 

software, such as static, dynamic, buckling and so on. Each analysis type can be applied 

linearly or nonlinearly as before mentioned in buckling analysis type section. 

 

In this method, against traditional methods, we formulate mathematical equations for 

each finite elements and gather them to get a final solution for the entire system. Generally, 

there are two approaches affiliated with this method in structural mechanic’s problems. One 

approach is the force or flexibility method and the other one is displacement or stiffness 

method. The first approach uses internal forces as the unknowns, and the second one uses 

the displacement if the nodes as the unknowns in equilibrium and compatibility equations of 

the problem [55]. 

 

It has been shown [56] that, for computational engineering purposes, the second 

approach, displacement or stiffness method, is more advantageous due to its simple 



45 
  

formulation for structural problems. Additionally, most of the commercial finite element 

programs have integrated this approach for solving structural problems. 

 

The most common methods used for solving finite element equations are Newton-

Raphson method and the Arc-Length method. Load controlled Newton-Raphson method 

was one of the earliest methods, but it fails in vicinity of convergence points. To vanquish 

this pitfall, displacement controlled algorithms were developed. However, for structures 

with snap-through or snap-back behavior, these algorithms fail. Another method to 

overcome this difficulty is developing a procedure to shift between load and displacement 

controls by giving up the equilibrium iterations in the neighborhood of convergence point. 

As a result, the Arc-Length method introduced by Riks and Wempner for structural analysis 

[57]. 

 

Against load controlled or displacement controlled algorithms in which the load or 

displacement increments are kept fixed during the analysis, the Arc-Length method is 

modified the load increment or load factor for each iteration. Because of this modification 

solver goes through some distinct path until solution converges.  

 

In some non-linear analysis such as non-linear buckling analysis, Newton-Raphson 

method is resulting in convergence difficulties. The Arc-Length method unlike Newton-

Raphson method is very useful in solving non-linear equations system.  
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2.6. Optimization Method 

 

Optimization basically is selecting the best design among the numerous available 

means. The main goal of the optimization is to minimize a function, namely objective 

function, that subjected to some constraints. Generally, there exists three types of 

optimization: 

 Size or cross sectional optimization 

 Topology optimization 

 Geometric or shape optimization 

 

Type of the optimization directly related to the design variables. In this thesis, the 

optimization process done through topology optimization. 

 

Additionally, there are two different optimization methods, Gradient-based and 

Heuristic methods. Gradient-based optimization methods such as steepest descent, quasi 

newton, and conjugate gradient, against Heuristic methods utilize gradient data of objective 

function and constraint to find the optimum solution of the problems. Gradient-based 

optimization techniques included linear programming (LP), non-linear programming (NLP), 

and dynamic programming (DP). However, they have several drawbacks which involve that 

they can only find a local optimum, they have complicated algorithms that are difficult to 

use efficiently, and they have difficulty in solving discrete optimization problems [59]. 

Because of these drawbacks another types of algorithms, Heuristic optimization approaches, 

generated. Heuristic approaches are usually used to solve complicated optimization 

problems that are difficult to solve with Gradient-based approaches. The most common 

Heuristic approaches include simulated annealing, tabu search, genetic algorithm, 

evolutionary algorithms, and so on [60]. 

 

In the last decades, fiber reinforces polymer composite (FRPC) materials has been 

used in many engineering applications. In the absence of the design standards for the fiber 
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reinforced composite structures in the field of engineering, the optimization methods and 

finite element analysis have a great effect on design of acceptable structures. 

 

The design of fiber reinforced composite structures is not end with their size or 

geometric design, the material and their composition should be in the process of designing 

structures too. The optimization process of composite structures is a complex process due to 

large set of design variables. Because of this reason, composite material optimization process 

usually cannot handle by the Gradient-based optimization algorithms. Optimization methods 

that used generally in fiber composite design are [61]: 

 

1) Design Sensitivity Analysis (DSA) 

Design Sensitivity method has been used mainly in automotive applications. This method 

needs the calculation of the gradient of the objective function and the constraints with respect 

to design variables of the problem 

 

2) Genetic Algorithm (GA) 

Because of it capability to deal with complex and vast design variables problems, Genetic 

Algorithm has been used widely in the optimization of structure designs. GA are typically 

used to get high-quality solutions. John Holland presented GA in 1960 based on the Darwin’s 

theory of evolution concept; later, David E. Goldberg developed GA in 1989 [62]. 

 

3) Simulated Annealing Method (SA) 

Simulated annealing is an approach for finding solution of unconstrained optimization 

problems. This approach imitates the process of heating a solid and then decreasing the 

temperature slowly and in controlled way to lower defects, and consequently minimizing the 

energy of the system. We discuss thoroughly about this in later sections. 
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4) Reliability Based Design Optimization (RBDO) 

Reliability Based Design Optimization is developed for solving the problem with reliability 

constraints. The RBDO approach incorporated two optimization method at the same time. 

The first one is seeking the feasible solution in an original random space, and the second one 

change the probability distribution into nonlinear mapping and finds the optimum solution 

within standard random space [63]. RBDO considers the uncertainty of the optimization 

design in fiber reinforced composite structure problems. 

 

5) Particle Swarm Optimization Algorithm (PSOA) 

Particle Swarm Optimization Algorithm is similar to the Genetic Algorithm method, but 

rather than focusing on a single individual execution, a numerous of individuals, called 

swarm, is considered instead. PSOA is based on swarm intelligence. The population move 

around trying to find a potential solution.   

 

6) Ant Colony Optimization (ACO) 

Ant Colony Optimization method is based on the ant’s capability to find the shortest path 

from food resource to their colony. An ant wanders randomly from one place to another to 

finally reach the destination. The primary algorithm is based on the swarm intelligence to 

solve the complex problems. In ACO, against GA, artificial ants try to set up the solution 

step by step. 

 

7) Multi-objective Robust Design Optimization (MRDO) 

There are other optimization methods that used in the design of fiber reinforced composite 

structures, but the prominent ones mentioned.  
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2.6.1. Modified Simulated Annealing 

 

Consider a Travelling Salesman Problem [64] with a vast number of cities. Searching 

among a giant number of potential solutions to seek the optimum one can be an adversity. 

The number of potential solutions can be numerous. Because of this, solution that is close 

enough to optimum solution is satisfying. As a result, we need a approach or algorithm that 

can get a good enough solution in a rational amount of time with lower cost. One of the most 

suited algorithm to these conditions is Simulated Annealing Algorithm. 

 

Simulated Annealing is well known local search heuristic approach that used to solve 

discrete and continuous optimization problems [65]. Simulate Annealing is gained its name 

due to its similarity to the process of physical annealing process in metallurgy. This process 

involves heating solid until it reaches its melting point, and slowly cooled down it in a 

controlled cooling behavior to increase the crystallic size and minimize their defects. 

The final properties of the material strongly depend on the cooling process that applied. 

Different designs of the optimization problem represent different positioning of the atoms. 

The cost of a design represents the lowest energy state [66]. 

 

Simulated Annealing Algorithm process starts with setting a temperature variable to 

simulate the heating process. Simulated Annealing Algorithm will assign it a high initial 

value to generate a random initial solution and then slowly lower the temperature. As the 

algorithm run it will frequently accept solutions which are worse than our current solution 

as long as this temperature variable is high. By doing this, algorithm allow itself to pass over 

any local optimums. The possibility of accepting worse solutions will decrease as the 

temperature become lower. Because of this, algorithm is slowly focus on an area of search 

space in which a solution that is close to optimum one can be found. 
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The prominent advantages of using this approach can be sorted as follows [67]: 

 A mathematical model is not required 

 It does not require gradient information of objective function and constraints 

 It is not easily tricked by local optimum point 

 It can solve highly non-linear optimization problems with large number of constraints                                                                                                                                                                                                                                                                                                                                                                                                   
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3. FINITE ELEMENT MODELING 

 

 

Finite element method (FEM) is a preferred and efficient numerical technique for 

analyzing structure behaviors. Numerical techniques help to solve complex engineering 

problems by simulating real-world structures that cannot be analyzed using. analytical 

methods. 

 

In this study, the mechanical behavior of I-beam is analyzed by developing a FE model 

using ANSYS Mechanical APDL (ANSYS Parametric Design Language), which is a 

powerful commercial CAE software that can perform various complicated engineering 

analyses in different fields. ANSYS is capable of analyzing geometrically linear or non-

linear problems associated with small or large displacement by considering material or 

geometric linearity or non-linearity. The key steps to construct a finite element model in 

ANSYS APDL software are 

 

 Initialization of the program 

 Specifying the analysis type 

 Defining the material property 

 Specifying the element type 

 Defining the key points of geometry 

 Creating the area or volume by using the pre-defined key points 

 Generating finite element (FE) mesh 

 Applying suitable boundary conditions 

 Getting the result 
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3.1. General Design Parameters of I-beam 

 

The main objective of this thesis is to develop optimized design of composite I-beams 

with rib-reinforced web part under three-point bending load condition. The beam is simply 

supported. Suitable values for general dimensions of web/flanges width and thickness are 

chosen by a parametric study and optimization is performed for shape of the ribs on the web. 

 

 

Figure 3.1. A schematic of an I-beam under three-point bending, (a) isometric view (b) 

cross-sectional view. 

 

The general dimensions of I-beam are defined by its length, 𝐿𝑏, total height, 𝐻𝑏 , 

thickness of the web, 𝑡𝑐, thickness of the flanges, 𝑡𝑠, and width of the beam, 𝐿1, as shown in 
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Figure 3.1. The dimensions defined within are given in Table 3.1. All the dimensions are 

specified parametrically which make them capable to change easily inside the code. 

 

Table 3.1. The general dimensions of the I-beam. 

Total Height, 𝐻𝑏  500 [mm] 

Flange Thickness, 𝑡𝑠 12 [mm] 

Web Thickness, 𝑡𝑐  2 [mm] 

Total Length, 𝐿𝑏 2400 [mm] 

Width of Flange, 𝐿1 200 [mm] 

Length of Span, 𝐿 2000 [mm] 

 

At first, the areas of the structure are defined then the shell elements are defined in 

two-dimension (2D), then section properties such as number of plies and fiber orientation in 

each layer are defined. ANSYS gives three offset options for shells thickness which are top, 

middle, and bottom. The whole thickness created towards up or down when top or bottom 

options are selected, respectively for a shell element. Otherwise, if the middle option is 

chosen for that element, the total defined thickness is separated equally and created in both 

sides of the element. As shown in Figure 3.2, the shell thickness offsets are specified as top 

and bottom for top flange or bottom flange, respectively, and middle for the web part of the 

I-beam. The shell element will be explained in detail in the next section. 
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Figure 3.2. Shell thickness offset of I-beam. (a) Right view, (b) isometric view (c) front 

view. 

 

3.2. Element Type 

 

Considering that I-beams have high width-to-thickness ratio, they can be modelled by 

shell elements to reduce the computational time of analysis. Main goal of using shell 

elements are their suitability for structural applications as one direction thickness is 

considered to be small than the other. As a result, plane stress condition is imposed, allowing 

reduced number of degrees of freedom and computational time. 

 

Considering that I-beams have high width-to-thickness ratio, they can be modelled by 

shell elements to reduce the computational time of analyses. This study analyzes a 

continuous fiber-reinforced laminated structure. ANSYS provides two different shell 

elements, SHELL-181 and SHELL-281 (Figure 3.3). They are both suitable to use in this 

study, since both elements support orthotropic material properties for structural analysis and 

they are capable of analyzing thin to moderately- thick shell structures. SHELL-181 is a 

four-node element and SHELL-281 is an eight-node element. Both have six degrees of 

freedom (displacements in x, y, and z directions, and rotations about x, y, and z axes) at each 
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node. Both of them are compatible for linear, large rotation, and/or large strain non-linear 

applications [68]. 

 

 

Figure 3.3. Geometry, node locations, and the coordinate system related to each element 

for (a) SHELL-181 and (b) SHELL-281 [68]. 

 

These shell elements can be used for analyzing layered structures made of composite 

materials. They are based on the first-order shear deformation theory. The only difference 

between them is in the number of nodes which has a great effect on analysis time.  

 

In this study, SHELL-181 is selected as the element type due to reduced analysis time. 

SHELL-281 element with eight-node is appropriate to accurately determine the stress state 

in complex shaped structure unlike I-beams. 

 

 

Figure 3.4. MASS21 element type [68]. 
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Additionally, in this study another element type is used to define constraint equation 

and loading condition. This element type is MASS21, which stands for structural mass. 

MASS21 is a point element that has six DOFs, displacements in x, y, and z directions and 

rotations about x, y, and z axes. Definition of MASS21 element does not have any effect on 

static analysis solution [68]. Figure 3.4 depicts this element type. 

 

3.3. Material Properties 

 

In this study, IM7/8522 CFRP is chosen for the I-beam. Kaddour et al. [70] gave 

detailed and complete information about mechanical properties of this material. IM7/8552 

CFRP’s mechanical properties are given in Table 3.2. Ply thickness is 0.125 mm and the 

density of material is 1600 𝐾𝑔 𝑚3⁄  [70].  
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Table 3.2. Mechanical properties of IM7/8552 laminae [70]. 

Parameter Value 

Fiber Volume Fraction 𝑉𝑓  [%] 60 

Longitudinal Modulus 𝐸1 [GPa] 165 

Transverse Modulus 𝐸2 [GPa] 9 

Through-Thickness Modulus 𝐸3 [GPa] 9 

In-Plane Shear Modulus 𝐺12 [GPa] 5.6 

Transverse Shear Modulus 𝐺13 [GPa] 5.6 

Through-Thickness Shear Modulus 𝐺23 [GPa] 2.8 

Major Poisson's Ratio 𝜐12 0.34 

Major Transverse Poisson's Ratio 𝜐13 0.34 

Through-Thickness Poisson's Ratio 𝜐23 0.5 

Longitudinal Tensile Strength 𝜎1𝑡 [MPa] 2560 

Longitudinal Compressive Strength 𝜎1𝑐 [MPa] 1590 

Transverse Tensile Strength 𝜎2𝑡 [MPa] 73 

Transverse Compressive Strength 𝜎2𝑐 [MPa] 185 

Through-Thickness Tensile Strength 𝜎3𝑡 [MPa] 63 

Through-Thickness Compressive Strength 𝜎3𝑐 [MPa] 185 

 In-Plane Shear Strength 𝜏12 [MPa] 90 

Transverse Shear Strength τ13 [MPa] 90 

Through-Thickness Shear Strength 𝜏23 [MPa] 57 

Longitudinal Tensile Failure Strain 𝜀1𝑡 [%] 1.551 

Longitudinal Compressive Failure Strain 𝜀1𝑐 [%] 1.1 

Transverse Tensile Failure Strain 𝜀2𝑡 [%] 0.81 

Transverse Compressive Failure Strain 𝜀2𝑐 [%] 3.2 

Through-Thickness Tensile Failure Strain 𝜀3𝑡 [%] 0.7 

Through-Thickness Compressive Failure Strain 𝜀3𝑐 [%] 3.2 

In-Plane Shear Failure Strain 𝛾12
𝑢  [%] 5 

Transverse Shear Failure Strain 𝛾13
𝑢  [%] 5 

Through-Thickness Shear Failure Strain 𝛾23
𝑢  [%] 2.1 
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As mentioned in Chapter 2, compressive and tensile normal stresses develop in the top 

flange and bottom flange of an I-beam in three-point bending, respectively, which are the 

results of section bending moment arising due to the transverse forces (Figure 2.7.). 

Consequently, flanges should consist of primarily 0° plies to withstand normal stresses in 

the axial direction of the beam. On the other hand, the web part of the I-beam under 

transverse loading experience shear stresses (Figure 2.7.). According to Fleuret et al. [71] 

the layers of this part should consist of plies with ±45° orientations of fibers for improved 

buckling strength.  

 

In this thesis, the dimension given in Table 3.1 and the number of plies and layup 

sequences given in Table 3.2 are taken constant. The schematic representations of the lay-

ups of each ply cluster are shown in Figure 3.5 and Figure 3.6. 

 

Table 3.3. Configurations and lay-up of used materials 

 Flanges Web 

Lay-up [+45∘/0∘/−45∘/0∘]𝑠 [+45∘/−45∘]𝑠 

Number of Plies 96 16 

Thickness [mm] 12 2 

 

 

Figure 3.5. Stacking sequences of each ply cluster of the web. 
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Figure 3.6. Stacking sequences of each ply cluster of the flanges. 

 

3.4. Meshing 

 

After creating the model geometry, and assigning the material properties to the model, 

the next step is to generate the finite element meshes. In finite element modelling, meshing 

is an indispensable stage of modeling. In the meshing procedure, the mesh type, size, and 

shape are the important factors, since they are directly related to the accuracy and 

computational time of the analysis. 

 

Fine meshes result in accurate outcomes, but increase the cost of analysis. On the other 

hand, coarse meshes lead to inaccurate and untrustworthy results, but yield results in a 

shorter time [72]. 
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Figure 3.7. (a) Free mesh vs. (b) Mapped mesh. 

 

There are two main meshing methods in ANSYS APDL, which is free and mapped 

mesh. Each one has its own disadvantages and advantages over another. In free mesh, there 

is not any restriction on the shape of elements, and mesh does not follow any pre-defined 

pattern, which makes it well-suited for models with complex shape. On the other hand, 

mapped mesh restricts element shapes to quadrilaterals and hexahedra for areas and volumes, 

respectively, which are the more accurate compared to triangular or tetrahedral elements. 

However, it is applicable to relatively simple geometries. Figure 3.7 gives a comparison 

between mapped and free mesh. 

 

 

Figure 3.8. Two different mesh size for Finite Element Model (a) mesh size=30[mm] (b) 

mesh size=60[mm]. 
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In this study, mapped mesh and free mesh methods are applied. Mesh convergence and 

model validation are discussed in next chapter. 

 

3.5. Boundary Conditions 

 

The boundary condition in a finite element model represent the external effects on the 

structure in terms of the applied forces and displacements. Accurate representation of the 

external effects is necessary for predicting the actual response of the structure. 

 

The boundary conditions can be applied to key-points, lines, areas, nodes, and 

elements. For a particular node in a finite element model, either load or displacement can be 

applied, but not both of them.  

 

In this study, a rib-reinforced I-beam under three-point bending condition is 

considered; therefore, it is necessary to apply suitable boundary conditions simulating the 

loading condition in three-point bending test. As shown in Figure 2.1, the specimen under 

three-point bending test is rigidly constrained in the transverse direction at the bottom at 

both ends. Then, the nodes at these locations are restricted from movement in the Y direction 

(UY=0). Because there is no force applied along the width direction, friction forces are 

sufficient to prevent movement in this direction in real test conditions. Accordingly, 

movement in the X direction is also restrained in these nodes (UX=0). In real tests, there is 

no restriction along the longitudinal direction of specimen, but in FE modeling, rigid motion 

must be prevented. Accordingly, in the longitudinal direction of the beam (UZ=0). 

Rotational degrees of freedom are not restrained since the specimen undergoes bending 

during the test. Additionally, for the top flanges two constraints, movement in the X direction 

and rotation about the Z direction is restrained to prevent the I-beam experiences torsional-

lateral buckling. 
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Figure 3.9. Boundary conditions of finite element model. 

 

3.5.1. Constraint Equations 

 

Constraint equations are equations defined to relate and restrict the value of slave 

nodes or elements degrees of freedom (DOF) to the value of reference node. Generally, there 

exist three types of constraint equations: 

 Constraints Equations (CEs) 

 Couples (CP) 

 Multipoint Constraint (MPC) 

 

The CEs are generally imposed to the model to establish a connection between DOFs 

of system. CP is an equation that makes all DOFs equal to each other at a specified node. In 

other words, CP constraints the movement of group of elements to be the same as the 

movement of a reference or master point. CP is a special kind of the CE. MPCs are an 

advanced feature of an analysis system which allow to tie and relate different nodes and 

DOFs together in the system. 
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The applications of these kind of equations are  

1) To replace parts of the structures which are not modeled 

2) Restricting meshes which haven’t same sizes and geometries 

3) To apply distributed loads and constraints 

4) Generating rigid regions 

 

As in this study, the roller which introduce the loading to the structure is omitted, the 

constraint equations are used for replacing it. 

 

 

Figure 3.10. Generating rigid region by defining constraint equation. 

 

3.5.2. Application of the force on the mid-span using constraint equations 

 

In three-point bending test, the force on the middle part of the specimen is applied by 

a pin or roller as shown in Figure 2.1. In order to model this loading condition in the finite 
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element model, two different methods can be used. The first one is to include the roller or 

pin in the model and slowly move it downwards. In this method, contact features between 

the roller and the specimen are defined and then displacement rate of the pin is specified. 

The second one is to exclude the roller and apply the force directly on the nodes that the 

roller has contact on the top of the specimen. In this study, the second approach is adopted 

to apply the force due to simplicity and reduced computational time. 

 

In order to apply the distributed force on the mid-span of the beam, a CE command is 

used, because the roller of three-point bending test used to apply force on the mid-span is 

excluded from the model to decrease the cost of analysis. The force is applied to a master 

node and a rigid connection is defined between this node and the nodes on which the roller 

has contact. As shown in Figure 3.9, by using CERIG command in ANSYS APDL and 

defining a key-point as a reference point on the mid-span, the displacement of all nodes 

which located at the loading section are tied together. 

 

 

Figure 3.11. The applied loading on specimen from the isotropic view. 
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3.6. ANSYS Parametric Design Language (APDL) Commands Used to Create the 

Finite Element Model 

 

The basic commands of APDL code used to define the model and analyze the structure 

are provided in this section. Table 3.5 is a list of commands for generating the geometry of 

the model including key-points, lines, and areas. At first, key-points are defined, then by 

using these key-points, areas generated, and finally the areas are created by pre-defined lines 

and glue together to get final geometry. 

 

Table 3.4. ANSYS APDL commands for generating the geometry. 

Command Description 

K,NPT,X,Y,Z Define a point with reference number as NPT, and location at (X,Y,Z) 

in active Cartesian coordinate system  

L,P1,P2 Generating line between two points, P1 and P2 

A,P1,P2,…,P18 Defines an area by using key-points from P1 to P18, the minimum 

number of key-points are three and the maximum is 18 

AGLUE, All Merging the areas which are not connected 

 

After generating the geometry of the model, SHELL-181 elements are created on the 

defined areas using free-mapped quadratic elements. The mesh is generated on the model by 

using the commands in Table 3.6. Because the mesh size has a great effect on the accuracy 

of the result, it should be verified that mesh size is sufficiently small to obtain accurate 

results. In the chapter on the validation of the finite element model, this will be explained. 
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Table 3.5. Meshing generator commands in ANSYS APDL. 

Command Description 

CM,Cname,Entity Make component by grouping the geometry items such as volumes 

(VOLU), areas (AREA), lines (LINE), and so on 

ESIZE,SIZE Specifies the size of elements by SIZE  

AMESH,All Mesh all the selected areas by predefined mesh size 

 

After generating the model geometry and defining the mesh, the boundary conditions 

are imposed to the lines and nodes using the commands in Table 3.7. 

 

 

Table 3.6. ANSYS APADL commands for imposing boundary and loading conditions to 

the model. 

Command Description 

DL,Nodenum,UX,0 Define displacement in X direction as zero for node, 

Nodenum 

DL,Nodenum,UY,0 Define displacement in Y direction as zero for node, 

Nodenum 

DL,Nodenum,UZ,0 Define displacement in Z direction as zero for node, 

Nodenum 

F,All,FY,VALUE Specifies force load, VALUE, at all selected nodes in 

direction of Y 

NSEL,S,Loc,Z,VALUE1 Select those nodes which their Z coordinates are equal to 

VALUE1 

NSEL,S,Loc,Y,VALUE2 Reselect those node from previously selected group of nodes 

which their Y coordinates are equal to VALUE2 

ALLSEL Commands that allows the user to select all items in the 

modeling space 

CERIG,Maste,Slave,Ldof Generating rigid region to define constraint equation 
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4. VALIDATION OF THE FINITE ELEMENT 

 

 

4.1. Model Verification and Validation 

 

In this period of technology, due to the high capacity of computer’s computing 

capability, complex equations and simulations can be solved easily. As a result, finite 

element analysis software is used commonly in any field especially in the mechanical 

engineering field to analyze engineering structures and their mechanical behavior. However, 

simulation models are not an accurate and exact imitation of real-world behavior of 

simulated systems. Because of this problem, any simulated model should be verified and 

validated based on its requirements and objectives.  

 

Verification of a simulated model is a means of ensuring that the model accurately 

represents the behavior of the system. Generally, validation of any simulation models is a 

three-step procedure [76]: 

 Step 1: Design a model which represents the real-world structure  

 Step 2: Consider the validation and verification of real-world systems in simulated 

model 

 Step 3: Compare the outcomes of simulated model with the results of the real model  

 

In this study, the finite element model developed in ANSYS APDL is first validated 

by performing mesh convergence analysis; secondly, by comparing its numerical results 

with the results of an experimental study. 
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4.1.1. Validation Using the Experimental Results of Takayanagi et al. [74] 

 

The finite element model developed in this study is verified by comparing its 

predictions with the outputs of an experimental study. Takayanagi et al. [74] conducted an 

experimental study on the behavior of CFRP I-beams under three-point bending test. Their 

main objective was to investigate the shear-lag effect in composite I-beams under transverse 

loads. They chose three different configurations of I-beams and compared the experimental 

results with the results of two different beam theories, modified beam theory (MBT) and 

composite beam theory (CBT). 

 

 

Figure 4.1. Schematic view of the specimen used by Takayanagi et al. [74]. 

 

All three specimen have the same length of 500 mm. Their cross-sectional dimensions 

and the stacking sequences at their flange and web are given in Table 4.1 and Table 4.2 

respectively. The schematic view of a specimen is shown in Figure 4.1. 

 

Table 4.1. Cross-sectional dimensions of the specimens [74]. 

Specimen b 𝑏𝑤 𝑡𝑓 𝑡𝑤 

A 27.36 2.48 2.10 60.17 

B 28.32 2.24 2.00 60.17 

C 28.36 2.46 2.06 60.17 
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Table 4.2. Stacking sequences of the CFRP I-beams [74]. 

Specimen Flange Web 

Outside Inside 

A UD: [0]8 AP: [±45]4 AP: [(±45)4]𝑠 

B QI: [45 0⁄ /−45 90⁄ ]2 AP: [±45]4 AP: [(±45)4]𝑠 

C AP: [±45]4 AP: [±45]4 AP: [(±45)4]𝑠 

 

The I-beams in that study were fabricated from Toray P3060 (T300/3601) prepreg 

cured at 180℃. Each ply had a thickness of about 0.125 mm, and each laminate included 16 

plies with different stacking sequences. The material properties of the composite material 

are given in Table 4.3. 

 

In that study, the I-beams were tested using a three-point bending test setup depicted 

in Figure 4.2. They used three gages to measure the deflection at three different points, one 

in mid-span and two others at Points A as shown in Figure 4.2. 

 

 

Figure 4.2. Schematic of the I-beam specimen under three-point bending test [74]. 
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Table 4.3. Mechanical properties of Toray P3060(T300/3601) prepreg cured at 180° 

laminae [74]. 

Parameter Value 

Fiber Volume Fraction 𝑉𝑓  [%] 66 

Longitudinal Modulus 𝐸1 [GPa] 150 

Transverse Modulus 𝐸2 [GPa] 9.1 

Through-Thickness Modulus 𝐸3 [GPa] 9.1 

In-Plane Shear Modulus 𝐺12 [GPa] 4.6 

Transverse Shear Modulus 𝐺13 [GPa] 4.6 

Through-Thickness Shear Modulus 𝐺23 [GPa] 3.05 

Major Poisson's Ratio 𝜐12 0.32 

Major Transverse Poisson's Ratio 𝜐13 0.32 

Through-Thickness Poisson's Ratio 𝜐23 0.49 

Longitudinal Tensile Strength 𝜎1𝑡 [MPa] 1900 

Longitudinal Compressive Strength 𝜎1𝑐 [MPa] 1900 

Transverse Tensile Strength 𝜎2𝑡 [MPa] 68 

Transverse Compressive Strength 𝜎2𝑐 [MPa] 490 

Through-Thickness Tensile Strength 𝜎3𝑡 [MPa] 58 

Through-Thickness Compressive Strength 𝜎3𝑐 [MPa] 490 

 In-Plane Shear Strength 𝜏12 [MPa] 90 

Transverse Shear Strength τ13 [MPa] 90 

Through-Thickness Shear Strength 𝜏23 [MPa] 57 

 

 

4.1.2. Modeling and Simulation 

 

The finite element model developed in this study using ANSYS APDL is adapted to 

simulate the three-point bending testing of these specimen. The geometry, material 

properties, layup sequence, and boundary conditions are taken the same as in the 

experimental study. Other features of the simulation are the same as explained in Chapter 3. 
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4.1.3. Comparison of Numerical and Experimental Results 

 

In the experimental study, three different stacking sequences for material of I-beams 

considered. As shown in Figure 4.3 specimen B shows best accuracy when compare to MBT 

and it is able to suffer largest loading among other three specimens before fracture happens. 

Takayanagi et al. [74] conducted three-point bending test for each I-beam and plot the Load-

Deflection plot for related I-beam and they compared the results with MBT and CBT at the 

same graph. 

 

 

Figure 4.3. Load-Deflection curve for three different specimens under three-point bending 

test [74]. 

 

The values of deflection reported by Takayanagi et al. [74] were obtained by 

subtracting the measured deflection at point A (Figure 4.2) from the measured deflection at 

mid-span in order to compensate the effect of flange flattering under loading. 

 

The specimens B and C are chosen for comparison. First, a mesh convergence analysis 

is carried out to ensure that errors of discretization are limited. The results of simulation are 

close to results of experimental which the errors of simulation mostly are under 1.5%. 
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Although, in smaller loads the errors increases due to decrease in flexural rigidity because 

of shear-lag effect [74]. 

 

4.2. Mesh Convergence Analysis 

 

Selecting an appropriate mesh size in finite element analysis (FEA) is a key step in the 

modeling procedure. The reason of importance of mesh size is its direct relation with 

accuracy of the results, computing time, and cost of analysis. Based on FEA theory, the finite 

element (FE) models with small element sizes result in quite accurate outcomes with long 

computational times, but when larger mesh sizes are used, the accuracy of the outcomes 

decreases besides analysis time.  

 

Because of importance of mesh size, mesh convergence analysis should be performed 

for the finite element model to reach the proper mesh size, which yields accurate results with 

reasonable analysis time [72]. Analysis of mesh convergence and mesh density is 

recommended for each different geometry to get accurate results. Therefore, mesh 

convergence analysis is performed for the I-beam under three-point bending loading. 

 

In order to establish appropriate mesh size, the following steps should conducted 

 Perform simulation for different mesh sizes. 

 Refine mesh sizes in regions where high deformations or high stresses occur. 

 Assemble information of analysis for each mesh size, such as results of 

displacements and stresses, node number, and computing time 

 Compare the collected information to select the best mesh size for the finite element 

model 

 

The errors in deformation, displacement and rotation, are small in comparison with the 

errors of in stresses. Based on finite element analysis theory, displacements are more 
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accurately predictable than stresses, since stresses are calculated from the results of 

displacements [72].  

 

In this study, several element sizes are tried to check convergence of results. In Tables 

4.4 and Table 4.5 the deflection results of different mesh sizes are given for specimen B and 

C, respectively. As shown in Tables 4.4 and 4.5 for mesh sizes under 4 mm the differences 

in the results are low, therefore the numerical model becomes mesh independent.  

 

Table 4.4. The convergence results for different mesh sizes for specimen B. 

Load 

[N] 

Result of Deflection for Different Mesh Sizes [mm] Experimental 

Result [mm] 

MBT Results 

[mm] 8 6 4 3 2.5 2 

1000 0.161 0.161 0.160 0.156 0.156 0.156 0.170 0.155 

3000 0.485 0.486 0.482 0.468 0.468 0.470 0.500 0.465 

5000 0.810 0.812 0.806 0.782 0.772 0.785 0.800 0.775 

7000 1.137 1.141 1.132 1.098 1.089 1.102 1.140 1.095 

9000 1.468 1.473 1.451 1.418 1.401 1.415 1.540 1.405 

11000 1.801 1.809 1.771 1.740 1.721 1.730 1.900 1.725 

 

Table 4.5. The convergence results for different mesh sizes for specimen C. 

Load 

[N] 

Result of Deflection for Different Mesh Sizes [mm] Experimental 

Result [mm] 

MBT Results 

[mm] 8 6 4 3 2.5 2 

1000 0.305 0.303 0.302 0.303 0.303 0.303 0.300 0.300 

3000 0.919 0.911 0.908 0.911 0.910 0.911 0.890 0.890 

5000 1.515 1.524 1.518 1.519 1.517 1.517 1.470 1.470 

7000 2.158 2.142 2.132 2.140 2.143 2.144 2.220 2.090 

9000 2.785 2.765 2.752 2.761 2.767 2.766 3.140 2.710 

11000 3.340 3.335 3.310 3.315 3.287 3.283 4.510 3.300 
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Figures 4.4 and 4.5 present the load-deflection curve for specimens B and C obtained 

numerically with 4 mm mesh size using the FE model developed in this study and the 

experimental load-deflection curve and modified beam theory (MBT) results reported by 

Takayanagi et al. [74].  

 

 

Figure 4.4. The load-deflection curves for specimen B. Experimental and analytical MBT 

results are reported by Takayanagi et al. [74]. The FEA results are obtained with mesh size 

equal to 4 mm. 

 

0

2000

4000

6000

8000

10000

12000

14000

0 0.5 1 1.5 2 2.5

Lo
ad

 [
N

]

Deflection [mm]

Load-Deflection Curve

FEA Experimental MBT



75 
  

 

Figure 4.5. The load-deflection curves for specimen C. Experimental and analytical MBT 

results are reported by Takayanagi et al. [74]. The FEA results are obtained with mesh size 

equal to 4 mm. 

 

As shown in Figures 4.5 and 4.6, the difference between the experimental results and 

the numerical one is small at lower load levels. The numerical and experimental curves 

deviate at higher loads. The nonlinear region in the experimental curve can be attributed to 

initiation and progression of damage in the specimens during testing. Due to damage 

stiffness of the specimens decrease. On the other hand, the FE model does not account for 

damage and associated stiffness degradation. It should be noted that web buckling does not 

occur in the specimens. The FE model also does not predict web buckling for the load levels 

applied on the specimens. In a typical buckling curve, load-deflection curve is almost linear 

up to a point, and then suddenly load drops and a large displacement occur at buckling point. 

As a result, buckling did not occur in the I-beam. Nevertheless, the FE model developed in 

this study accurately predicts deflections as long as no significant damage occurs in the 

beam.  
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5. OPTIMIZATION PROCEDURE 

 

 

5.1. Introduction 

 

For most of the human activities there is an inclination to get the most profits and best 

results with minimum efforts or investments. For instance, in the aviation industry 

perspective, maximum safety and profit are craved with minimum cost, or in the business 

outlook maximum gain is desired with minimum investment. The main goal of optimizing a 

design or structure is to reach the best favorable configuration based on the restrictions and 

needs of the problem. For each problem in engineering applications, there exist various 

solutions. The process of selecting the best one among them starts by defining a suitable 

objective function based on the requirements of the problem. Besides, some restrictions exist 

that should be satisfied by potential solutions of the problem. 

 

In this study, the rib-reinforced I-beam is optimized using modified simulated 

annealing (MSA) algorithm. The objective is to obtain the optimum design with the 

maximum buckling strength-to-weight ratio by optimizing the shape and size of the ribs. 

 

5.2. Objective Function 

 

In this study, the objective function includes both the weight of the rib-reinforced I-

beam and the magnitude of the buckling force. Accordingly, a multi-objective optimization 

is conducted. The optimization procedure tries to maximize buckling strength, while at the 

same time minimizing the weight of the structure by systematically trying different values 

for the design variables. The objective function used in this study is 

 

𝑓 = 𝐶1 (
𝐿𝐹0

𝐿𝐹
) + 𝐶2(

𝑊

𝑊0
).                                     (5.1) 
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where, 𝐿𝐹 is the buckling load factor for a given configuration of rib-reinforced I-beam, 𝐿𝐹0 

is the buckling load factor of the I-beam without ribs, 𝑊 is the total weight of the rib-

reinforced I-beam, 𝑊0 is the weight of the I-beam without ribs, and 𝐶𝑖s are the weight 

coefficients. The values of 𝐶𝑖s, are chosen depending on the importance that the designer 

gives to individual term of the objective function. Because the optimization algorithms are 

configured to minimize the objective function as standard and the buckling load factor is 

maximized in this study, the objective function includes “1 𝐿𝐹⁄ ” not “𝐿𝐹”. Besides, LF and 

W are normalized with corresponding values of I-Beam with flat web so that discrepancy in 

their units and magnitudes is removed. The weight of the structure is calculated as 

 

𝑊 = 𝜌𝑔𝑉.     (5.2) 

 

where, 𝜌 is the density of the material (
𝑘𝑔

𝑚3), g is the gravitational acceleration (
𝑚

𝑠2) and 𝑉 is 

the volume of the structure which is calculated automatically by ANSYS APDL. 

      

5.3. Optimization Variables and Constraints 

 

In this thesis, the shape of the ribs is optimized; for this reason, the cross sectional 

dimensions of the I-beam and its length are taken constant during the optimization process. 

Besides, number of plies and layup sequence are not varied. Only the variables defining the 

geometry of the ribs on the web of the I-beam are optimized. Accordingly, four optimization 

variables are used, which includes height (𝐻𝑟𝑖𝑏), length (𝐿𝑟𝑖𝑏), width (𝑤𝑟𝑖𝑏), and orientation 

angle of the ribs (𝜃𝑟𝑖𝑏). There exists some restriction for number, length, width and angle of 

ribs due to dimensions of web. These restrictions are as following 
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𝐻𝑙 ≤ 𝐻𝑟𝑖𝑏 ≤ 𝐻𝑢                [𝑚𝑚],               (5.4) 

𝐿𝑙 ≤ 𝐿𝑟𝑖𝑏 ≤ 𝐿𝑢                  [𝑚𝑚],                (5.5) 

𝑤𝑙 ≤ 𝑤𝑟𝑖𝑏 ≤ 𝑤𝑢                [𝑚𝑚],               (5.6) 

𝜃𝑙 ≤ 𝜃𝑟𝑖𝑏 ≤ 𝜃𝑢.      (5.7) 

 

 

Figure 5.1. The key points of the ribs on the web from normal to web view. 

 

The location and the size of the ribs are defined by four key points. Figure 5.1 shows 

the key points of a rib on the web. The coordinates of key point one (𝐾𝑃1) are specified 

depending on the chosen location of the rib. The position of other three key points depends 

on the position of the first key point as well as values of the optimization variables as in 

Equations 5.8 and 5.9. 

 

{

𝑦𝐾𝑃2 = 𝑦𝐾𝑃1 + 𝐿𝑟𝑖𝑏 sin 𝜃𝑟𝑖𝑏

𝑦𝐾𝑃3 = 𝑦𝐾𝑃1 + 𝑊𝑟𝑖𝑏 cos𝜃𝑟𝑖𝑏

𝑦𝐾𝑃4 = 𝑦𝐾𝑃1 + 𝑊𝑟𝑖𝑏 cos𝜃𝑟𝑖𝑏 + 𝐿𝑟𝑖𝑏 sin 𝜃𝑟𝑖𝑏

,       (5.8) 

 

{

𝑧𝐾𝑃2 = 𝑧𝐾𝑃1 + 𝐿𝑟𝑖𝑏 cos 𝜃𝑟𝑖𝑏

𝑧𝐾𝑃3 = 𝑧𝐾𝑃1 − 𝑊𝑟𝑖𝑏 sin 𝜃𝑟𝑖𝑏

𝑧𝐾𝑃4 = 𝑧𝐾𝑃1 − 𝑊𝑟𝑖𝑏 sin 𝜃𝑟𝑖𝑏 + 𝐿𝑟𝑖𝑏 cos 𝜃𝑟𝑖𝑏

.   (5.9) 
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Additionally, the position of the key points in the x-direction is the same as that of the 

web, since they are located on the web.  Whenever the values of the optimization variables 

are changed by the search algorithm, a new shape design is generated. 

 

The positions of the key points are restricted to be within a pre-defined region, which 

is called search domain as shown in Figure 5.2 with red boxes. When the algorithm randomly 

selects a set of values for the optimization variables, the corresponding key points are 

checked. If they are outside the search domain, the configuration is rejected and a new 

configuration is generated. The key points in the symmetric part of the web have the same 

y-coordinate as their counterparts, but negative z-coordinate. The optimum shape design for 

rib-reinforced I-beam is obtained by determining the optimum values of the variables, 𝐿𝑟𝑖𝑏, 

𝑊𝑟𝑖𝑏 , 𝐻𝑟𝑖𝑏 ,and 𝜃𝑟𝑖𝑏  via optimization algorithm so that the minimum value of the objective 

function is attained. 

 

 

Figure 5.2. Pre-defined search domain for position of key points in optimization algorithm. 

 

5.4. Optimization Technique 

 

In order to find the optimum design of the rib-reinforced I-beam, a modified simulated 

annealing (MSA) method is used which is presented by M. Akbulut and F. O. Sonmez [5-

1]. In this method against ordinary simulated annealing algorithm which just vicinity of a 

single point is searched, the vicinity of all the current points in the set is searched. In other 

words, the MSA algorithm creates a new set of configuration in every iteration, the good 
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configurations are kept in the set. After that, by comparing the objective function value of 

newly generated configuration with current one, it replaces over the worse one. 

 

In this study there are four parameters which affected on the shape of the design as 

discussed in the Section 5.3, therefore the number of design variables is four. 

 

n = 4.      (5.10) 

 

Where 𝑛 is the number of design variables in this thesis. Changing the position of the 

key points and number of ribs results in generating a new shape design. The 𝑋𝑘𝑝 and 𝑌𝑘𝑝 are 

the coordinate of the 𝐾𝑡ℎ moving key point of the selected configuration, their values 

updated by 

 

𝑋𝑘𝑝 = 𝑋𝑘 + 𝐶𝑟𝑎𝑛𝑑𝑅𝑥,      (5.11) 

𝑌𝑘𝑝 = 𝑌𝑘 + 𝐶𝑟𝑎𝑛𝑑𝑅𝑦.     (5.12) 

 

Where 𝑋𝑘  and 𝑌𝑘 are the coordinates of the current 𝐾𝑡ℎ key point, 𝐶𝑟𝑎𝑛𝑑  is randomly 

generated number in the range of (−1,1), 𝑅𝑥 and 𝑅𝑦 present the maximum distance that each 

key point can move with different directions. Based on search domain of the study, the 

position of new key-points depend on the previous key points. The precision of the optimized 

shape depends on the number of design variables and definition inside the optimization 

algorithm. In the beginning of the optimization procedure, some shapes are generated 

randomly. The number of these configurations are related to number of design variables, as 

 

𝑁𝑐𝑜𝑛𝑓 = 9 × 𝑛 .     (5.13) 
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A set of current configuration is kept during the MSA optimization procedure unlike 

the ordinary SA, which just maintains just one. Newly generated configuration is replaced 

on the worse ones, if it has accepted value of objective function. The acceptability of newly 

generated trial set of configuration, which its objective function value calculated by using 

Equation 5.1, is evaluated by the following criterion: 

 

𝐴𝑡 = 𝑓(𝑥) = {
1, 𝑓𝑂 < 𝑓ℎ

exp (
𝑓ℎ−𝑓𝑂

𝑇𝑖
), 𝑓𝑂 ≥ 𝑓ℎ

.                    (5.14) 

 

Here 𝑓ℎ  is the objective function value of one of the current configurations which has 

highest amount among others. Based on Equation 5.10. if each new design configuration has 

an objective function value lower than 𝑓ℎ , it is acceptable. Otherwise, the acceptance of new 

configuration depends on the value of 𝐴𝑡. After calculating the value of 𝐴𝑡, its value will be 

compared with a randomly generated number 𝑃𝑟 which its value is between 0.0 and 0.1. If 

its value is greater than 𝑃𝑟, the new configuration is accepted. But, if it is lower than 𝑃𝑟, it is 

rejected. The accepted configuration replaces with inferior configuration. Therefore, after 

each iteration the objective functions value of current configuration are updated. 

 

The acceptance probability the new configuration is controlled by using a control 

parameter 𝑇𝑖. At the first stages of optimization procedure, the control parameter has high 

values which resulted in any configuration is accepted regardless of its objective function 

value. Taking value for control parameter so large at the beginning of the process leads the 

search algorithm considers the entire domain. The set of configurations which are generated 

with constant value of control parameter, 𝑇𝑖, is called Markov chain. Markov chain’s 

minimum length, 𝐿𝑡, is depended on the design variables number: 

 

𝐿𝑡 = 3𝑛,      (5.15) 
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The length of current Markov chain is controlled by the step size ratio according to 

Equation 5.12. According to Equation 5.12, the length of current Markov chain is 𝐿𝑡 when 

the step size ratio goes to 0, while at the beginning it is equal to 3𝑛. 

 

𝐿𝑡𝑐 = 𝑛𝑖𝑛𝑡 (𝐿𝑡 (1 + 2 (
𝑟𝑠

𝑟𝑠𝑖𝑛
))),                         (5.16) 

 

where 𝐿𝑡𝑐 is the length of current Markov chain, 𝑛𝑖𝑛𝑡 is an command in ANSYS APDL 

which find nearest integer to the value within the parenthesis, 𝑟𝑠 and 𝑟𝑠𝑖𝑛 are current and 

initial step sizes, respectively. Choosing of the initial step size, 𝑟𝑠𝑖𝑛, depends on the search 

domain. If the 𝑓𝑜 is less than the best configuration during a Markov chain, the current chain 

is ended and a new one starts. But, if the 𝑓𝑜 is less than the worse configuration, it indicates 

that there is an improvement in the chain. The number of the improvements change 

according to 

 

𝑁𝑖𝑚 = 𝑁𝑖𝑚 + 1.,                (5.17) 

 

where 𝑁𝑖𝑚 is the number of improvements inside a Markov chain. If the number of 

improvement is less than 10% of the number of trials, in the other words if there is not 

acceptable improvement inside the loop, the current step size, 𝑟𝑠, reduces such that: 

 

𝑟𝑠 = 0.9𝑟𝑠,                                                               (5.18) 

 

In the final step of Markov chain, control parameter (temperature) is decreased as 

following  

 

                          𝑇𝑖 = 𝛼𝑖𝑇𝑖−1,       (5.19) 
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where, 𝛼 is the temperature reduction factor, 𝑇𝑖 and 𝑇𝑖−1 are the values of the control 

parameter in the 𝑖𝑡ℎ and (𝑖 − 1)𝑡ℎ  Markov chain, respectively. 

 

     𝑅𝑎 =
𝐴𝑚

𝑖𝑛
,      (5.20) 

 

where 𝑅𝑎 is the ratio of the accepted movement and 𝐴𝑚 is the number of the accepted points. 

 

𝑅𝑠 = (
𝑟𝑠

𝑟𝑠𝑖𝑛
) + 0.01,     (5.21) 

 

which 𝑅𝑠 is the step size ratio for each iteration. The temperature reduction factor, 𝛼𝑖,is 

calculated as 

 

𝛼𝑖 = {
𝛼𝑚𝑖𝑛 , 𝑖𝑓 𝑅𝑠 < 𝑅𝑎

𝛼𝑚𝑎𝑥 , 𝑖𝑓 𝑅𝑎 < 𝑅𝑠
,    (5.22) 

 

where, 𝛼𝑚𝑖𝑛 is taken as 0.9 and 𝛼𝑚𝑎𝑥 is taken as 0.9999. at the final step of the optimization 

procedure, the worse and best configurations will be compared, if the current control 

parameter is less than “5e-04” and the difference between the objective function values of 

the best and worse one is less than “5e-08”, the optimization procedure will stop; otherwise 

the control parameter is decreased again as 

 

𝑐𝑘 = 𝑎𝑙𝑓𝑎 ∗ 𝑐𝑘.                                                          (5.23) 
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6. RESULTS AND DISCUSSION  

 

 

6.1. Finite Element Modeling Results 

 

In the Chapter 4, the model validated and verified. In this part of this chapter the I-

beam without rib-reinforced analysis results are discussed. Finite element modeling of this 

thesis problem is discussed in the Chapter 3. The Table 3.1 gave the dimensions of the I-

beam and the Table 3.2 represented the mechanical properties of material which is used in 

this current study. 

 

During this part two different analysis are discussed, the first one is eigenvalue or 

linear buckling analysis and the second one is non-linear buckling analysis which considers 

non-linearity of the geometry. The first analysis done was eigenvalue linear analysis for 

determination of critical buckling load and buckling modes. After eigenvalue buckling 

analysis is done, the non-linear buckling analysis conducted to get the near real world result 

since in the real world tests there exist imperfections in the geometry of the specimen. 

 

6.1.1.  Eigenvalue Buckling Analysis Results 

 

As discussed in the Chapter 2, buckling is the rapid change in the shape of structural 

elements under loading. There exists two different buckling analysis type, eigenvalue 

buckling and non-linear buckling analysis. The eigenvalue buckling analysis anticipate the 

theoretical buckling load of a structure without any imperfection. 

 

The eigenvalue buckling analysis is conducted for the I-beam without rib-

reinforcement. Figure 6.1 represents first mode of buckling of an I-beam under three-point 

bending test. As shown in Figure 6.1 the loading factor is 0.580967, and the load applied on 

the structure is 10 [KN]. Therefore, the theoretical critical load of buckling for this model is 

5809.67 [N], which it is obtained by multiplication of loading factor and applied load. 
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Figure 6.1. First mode of buckling of the I-beam without rib-reinforcement from (a) 

Isometric view, (b) Right view, (c) Front view. 

 

6.1.2.  Non-Linear Buckling Analysis Results 

 

After conducting linear buckling analysis, and finding the theoretical critical buckling 

load, the non-linearity of the geometry is considered. Non-linear buckling analysis considers 

imperfections in the geometry and it is more realistic in compare with linear buckling one. 

 

Figure 6.2 represents displacement in the normal to web of the I-beam direction versus 

time. As one can see at the time around 0.5446 the displacement increased instantly which 

indicates at this point the structure undergoes to buckling. Since the total loading which 

applied on structure during total time 1 is 10 [KN], therefore the structure’s critical buckling 

load when non-linearity of the geometry is considered becomes 5446 [N]. Figure 6.3 shows 
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the displacement contour diagram of the I-beam without rib-reinforcement at the time 

0.5446. 

 

 

Figure 6.2. Displacement-Time diagram in the middle of the I-beam without rib-

reinforcement. 
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Figure 6.3. Maximum displacement of the I-beam without rib-reinforcement at the time 

0.5446. 

 

As shown in Figure 6.4, the Tsai-Wu failure index of the structure in all points of the 

structure is less than 1. As discussed in the Chapter 2, the Tsai-Wu index for buckling failure 

should be less than 1, otherwise the dominant failure mode isn’t buckling. 
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Figure 6.4. Tsai-Wu failure index of the I-beam without rib-reinforcement. 

 

In the conclusion, the theoretical critical buckling load based on the linear analysis is 

5809.67 [N] where the theoretical critical buckling load in non-linear analysis is 5446 [N]. 

The difference between two value is due to considering geometrical non-linearity of the 

structure in non-linear buckling analysis. Therefore, the result of the non-linear analysis is 

more realistic than eigenvalue buckling analysis. 

 

6.2. Parametric Study of Rib-Reinforced I-Beam 

 

In this study two different parametric study is done. The first one is for the geometry 

of the ribs to get the best possible rib configuration and simultaneously to find the upper and 

lower limits for their length, width, orientation angle, and height. The second parametric 

study is conducted to survey the effect of the fiber orientation angle of the web of the rib-

reinforced I-beam on the critical buckling load. The results of these parametric studies are 

given in the upcoming section. 
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6.2.1. Parametric Study of the Ribs Geometry 

 

The main objective of this study is to introduce ribs to the web of an I-beam, and 

optimize the geometry and number of the ribs to get the best optimized configuration for the 

ribs. For this reason, three different configurations are considered and analyzed in this study. 

In the following section the parametric study conducted for these three configurations, and 

the best one is chosen to implement in the optimization process. Additionally, the upper and 

lower limits for design variables are calculated.  

 

The first configuration which is considered in this study is ribs in the same orientation 

angle as shown in Figure 6.5. Different lengths, widths, orientation angles, and number of 

ribs are analyzed to get best upper and lower limits for them. 

 

 

Figure 6.5. First configuration of ribs on the I-beam. 

 

The code of the I-beam is modified to simulate the rib-reinforced I-beam. Figure 6.6 

represents simulation of the ribs on the web of the I-beam. Different simulations are done to 

get the results for various design variable values.  
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Figure 6.6. Rib simulation on the web of the I-beam. 

 

For the first configuration, the parametric study results are shown in Figure 6.7. 

Different number of ribs for this configuration modeled and the buckling analysis is done 

for them. As seen in the Figure 6.7 for the first configuration of the ribs, by increasing the 

number of the ribs the load factor value decreases. For odd number of ribs, it is decreased 

dramatically, since there is not any rib in the middle of the rib which has great effect on the 

increasing the buckling resistance of the I-beam. The best result is obtained when there is a 

rib which is in the middle of the web of the rib-reinforced I-beam. 

 



91 
  

 

Figure 6.7. The relations between the design variables and effect of them on the critical 

buckling load for the rib-reinforced I-beam first configuration with different number of 

ribs, effects of (a) orientation angle, (b) height, (c) total length, (d) width of the ribs. 

 

The next configuration which is considered in this study is ribs which are mirrored 

about to the middle of the I-beam as shown in Figure 6.8. They have same design variables 

values; the only difference is their orientation angles about the longitudinal axes of the beam. 

Different lengths, widths, orientation angles, and number of ribs are analyzed to get best 

upper and lower limits for them. 
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Figure 6.8. Second configuration of ribs on the I-beam. 

 

The final configuration which is considered in this study is ribs which are mirrored 

about to the middle of the I-beam as shown in Figure 6.9. The difference between this 

configuration and previous one is the orientation angle sign of the ribs is changed one after 

another. They have same design variables values. Different lengths, widths, orientation 

angles, and number of ribs are analyzed to get best upper and lower limits for them.  

 

 

Figure 6.9. Third configuration of ribs on the I-beam. 

 

The individual effects of the design variables on the theoretical critical buckling load 

of the I-beam is probed in which one parameter is changed at a time and others are considered 

as constant. The result of the parametric study for the second and third configuration and the 

best results of the first configuration are presented in the Figure 6.10. 
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Figure 6.10. The relations between the design variables and effect of them on the critical 

buckling load for the rib-reinforced I-beam for three different configurations, effects of (a) 

orientation angle, (b) height, (c) total length, (d) width of the rib. 

 

As shown in Figure 6.10 (a), by increasing the orientation angle of the ribs the critical 

buckling load of the I-beam increased for all configurations, but after 90° the amount of load 

factor decreased. In Figure 6.10 (b), the height of the rib’s effects on the load factor is shown, 

which by increasing the height of the ribs the load factor increased for all three 

configurations, but since there exist manufacturing problem for higher values for ribs in 

composite materials it is not suitable to go beyond the 25 [𝑚𝑚]. In Figure 6.10 (c) the total 

length of the ribs effect on load factor is presented. As one can see, greater value for total 

length is resulted in greater load factor value, but due to geometry of the web of I-beam, it 

cannot go farther. The Figure 6.10 (d) shows the relation between the width of the rib and 

load factor which shows the effect of width size on the load factor in the comparison with 

other design variables is not considerable. In all of this analysis which are presented in Figure 
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6.10 the one design variable is changed at a moment and other variables are considered as a 

constant value.  

 

The parametric study is done for three different rib configurations. As shown in the 

Figure 6.10, the values for the second configuration in comparison with other configurations 

is greater, therefore the second one is chosen for the optimization process. 

 

6.2.2.  Parametric Study of Fibers Orientation Angle of the Web 

 

After parametric study of the ribs configuration is done and the best possible 

configuration is selected, a parametric study is conducted for fibers orientation angle of the 

web. The five different sequences are considered for the fiber orientation angle which are 

shown in Table 6.1. 

 

Table 6.1. Fiber orientation angle of the web of rib-reinforced I-beam. 

Configurations of fiber orientation angle of web 

[+15∘/−15∘/−15∘/+15∘]4 

[+30∘/−30∘/−30∘/+30∘]4 

[+45∘/−45∘/−45∘/+45∘]4 

[+60∘/−60∘/−60∘/+60∘]4 

[+75∘/−75∘/−75∘/+75∘]4 

 

The parametric study for fiber orientation angle for the second configuration with same 

values for ribs geometry. The length, width, and height of the ribs is considered as a constant 

value (Total Length is 338[mm], Width is 60[mm], and the Height of the ribs is equal to 

10[mm]), but the ribs orientation angle varied for each fiber orientation angle of the web. 

The result of this parametric study is given in Figure 6.11.  
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As seen in the Figure 6.11, the best values for the load factor is obtained when the fiber 

orientation angle is 45°, which the previous parametric study for the rib geometry is 

conducted for 45° fiber orientation angle. 

 

 

Figure 6.11. Parametric study of the fiber orientation angle. 

 

6.3. Optimization Results of the Rib-Reinforced I-beam 

 

The best configuration of the ribs geometry and the fiber orientation angle is obtained 

in the previous section. Now, the configuration should go through the optimization process 

to get the most optimized rib-reinforced I-beam by using the modified simulated annealing 

algorithm with commercial finite element software ANSYS APDL. 

The material used for this study is fiber-reinforced composite. Its mechanical 

properties are given in Table 3.2. The flange of the I-beam contains 96 plies; the thickness 

of each ply is 0.125 mm with a total thickness of 12 mm. The web part of the I-beam and 

ribs contain 16 plies and the total thickness of them are 2 mm. The dimensions of the I-bean 



96 
  

and stacking sequence are chosen for this composite material is given in Table 3.1 and Table 

3.2 respectively. The geometry of the flanges is kept constant during the optimization 

process. 

The major goal for the optimization to increase the local buckling resistance in the 

middle of the web with minimum use of the material. In this study, the optimization process 

is performed on the rib-reinforced I-beam for a static loading. To begin with optimization 

algorithm, the relative weights of the terms in the objective function are decided by choosing 

𝐶1 = 0.85 and 𝐶2 = 0.15 in Equation 5.1. 

As investigated in the previous parametric study in section 6.2, the best rib 

configuration and the best number of ribs are chosen. During the optimization process, as 

shown in Figure 6.12 in some points the buckling failure shifts from the middle of the web 

to the end parts of the web. To solve this problem, another two ribs added to the web part to 

prevent this shifts. 

 

 

Figure 6.12. Shift of the buckling failure to the both ends of the I-beam from middle of the 

web. 

 

At the first step, the six ribs are considered with the same distance from each other, 

but in several configurations they interference with each other as shown in Figure 6.13. For 

solving this problem two different distancing configuration for the ribs is considered as 

shown in Figure 6.14, but for distancing (b) in Figure 6.14 the results are better than the 

distancing (a). Therefore, the second distancing method is used in the optimization 
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procedure. Additionally, for investigating effect of the other rib number a rib-reinforced with 

ten ribs is considered during this study. 

 

 

Figure 6.11. The interference of ribs on the web with equal distancing from each other. 

 

 

Figure 6.12. The two different distancing for the ribs configurations. 

Different limits for optimization variables are considered. Additionally, different 

directions for rib projection from the web of I-beam are considered. The result for these 

simulations are presented in Table 6.2.  
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Table 6.2. The result of different best configurations simulation (“Active” means the 

constraint is active, i.e., the optimum value is equal to constraint limit.). 

Best Configuration A B C D E 

Number of Ribs 6 6 6 6 10 

Height, H [mm] 25 

(Active) 

25 

(Active) 

25 

(Active) 

25 

(Active) 

25 

(Active) 

Length, L [mm] 537.7 532.6 535.7 522.6 559.0 

Width, W [mm] 119.8 199.9 296.3 260.8 160.0 

Rib Orientation, 𝜽 [deg] 44.7 51.3 49.3 50.9 51.1 

Buckling Load [N] 26263 30113 40041 40420 66772 

Mass (kg) 33.570 33.349 33.242 33.267 33.760 

Protrusion in Two 

Direction 

No No No Yes Yes 

 

 The results of best configuration for different optimizations are presented in Table 

6.2. The optimization procedure started with configuration A (Figure 6.14 (A)). The height 

and the width of the ribs are equal to upper limit of the constraint and the other optimization 

variables are inside the constraint limits. Since the value of the height of the rib is limited by 

the manufacturing process it is considered as active constraint and further improvement is 

not possible for it, but for width of the ribs the upper limit of the constraint increased to 200 

mm. In optimization process B (Figure 6.14 (B)) again the result of best configuration 

reaches to the upper limit of width constraint and further improvement is needed. For 

optimization procedure C (Figure 6.14 (C)) which upper limit for width is considered as 320 

mm, the best configuration width value is obtained as 296.3 mm which is inside the 

constraint limits and because of that the further improvement is not needed for it. As shown 

in Figure 6.14 (D) the new configuration is considered for rib protrusion (in two different 

direction) and same analysis is done for it. For further consideration, the rib-reinforced I-

beam with protrusion of ten ribs in two different directions is investigated as shown in Figure 

6.14 (E). 
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Figure 6.13. The five different configuration of optimization procedure (A), (B), and (C) 

ribs protrude in positive X-direction (E) and (D) ribs protrude in two different directions. 

 

Figure 6.15 and Figure 6.16 are shown the eigenvalue buckling result and Tsai-Wu 

failure index respectively for five different configurations. As seen in Table 6.2 and Figure 

6.15 the value buckling load is increased by increasing the upper limit of width constraint. 

In configurations C and D which the difference is their rib protrusion direction, the 

configuration with protrusion in two different direction gave better results. Additionally, 

when the number of ribs increased to ten with different protrusion direction the value of 

buckling load increased about 1.5 times of in comparison with configuration with six ribs 

where the mass of the structure increased only 1.5%. 
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Figure 6.14. Displacement results in normal to web direction of eigenvalue buckling analysis of the five different configuration of 

optimization procedure, (A), (B), and (C) ribs protrude in positive X-direction (E) and (D) ribs protrude in two different directions. 
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Figure 6.15. Tsai-Wu failure index result of the five different configuration of optimization procedure, (A), (B), and (C) ribs protrude in 

positive X-direction (E) and (D) ribs protrude in two different directions. 
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The Figure 6.16 is presented the Tsai-Wu failure index of the configurations. For first 

three configurations the amount of the Tsai-Wu failure index is lower than one, which is 

indicated that the dominant failure mode is buckling for these three configurations. As shown 

in Figure 6.16 (D) and (E), for configurations D and E this value is greater than one only in 

some local points. The reason of this is loading condition which introduced only on a line 

over the structure which is in real-world tests the area which loaded is bigger. For solving 

this problem, one can introduce more layer of material as stiffener on that locations. 

  

The two best results among the five different configurations are configurations D and 

E. Non-linear buckling analyses is conducted for them. Figures 6.17 and 6.18 depicted the 

displacement in the normal to web of the configuration D and E, respectively, versus Time. 

For specimen D, as shown in Figure 6.17 the buckling started at time equal to 0.52 due to 

instant increase in displacement of the I-beam. Since the total loading which applied on 

structure during total time 1 is 40.4 kN as mentioned in Table 6.2, therefore the structure’s 

critical buckling load when non-linearity of the geometry is considered becomes 21 kN.  

 

 

Figure 6.17. Displacement-Time diagram in the middle of the rib-reinforced I-beam, D 

configuration. Time is the sub-steps which total load is applied over the structure. 
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For specimen E, as shown in Figure 6.18 the buckling started at time equal to 0.78 due 

to instant increase in displacement of the I-beam. Since the total loading which applied on 

structure during total time 1 is 66.7 kN as mentioned in Table 6.2, therefore the structure’s 

critical buckling load when non-linearity of the geometry is considered becomes 52 kN. 

  

 

Figure 6.18. Displacement-Time diagram in the middle of the rib-reinforced I-beam, E 

configuration. Time is the sub-steps which total load is applied over the structure. 

 

Figures 6.19 and 6.20 are shown the Tsai-Wu failure index for configurations D and 

E, respectively. For configuration D in all point when buckling happened the Tsai-Wu index 

is less than one, therefore the dominant failure mode for this configuration is buckling. For 

configuration E at some points especially around the loading part the Tsai-Wu index is more 

than one. The reason is, the loading applied in a line which is real world it is not happened 

in this way and the load distributes in larger part, but for withstand this problem, one can 

add some layer of material to this part to make it stronger, or spread the loading to larger 

span. 
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Figure 6.19. Tsai-Wu failure index of configuration D. 

 

 

Figure 6.20. Tsai-Wu failure index of configuration E. 
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7. FUTURE WORKS AND RECOMMENDATIONS 

 

 

In this study, the buckling failure resistance of a composite I-beam subjected to a 

bending loading in three-point bending test analyzed and by attaching an optimally designed 

ribs to it the buckling resistance of it is improved. The optimization variables are length, 

height, width, and orientation angle of the ribs. For further improvements the stacking 

sequence, number of laminate plies, the thickness of the web, and general dimensions of the 

I-beam can be considered as optimization variables. In addition, using different rib 

configurations, the position of them on the web of the I-beam, and different number of ribs 

can be a subject for the future studies. 

 

Additionally, since beams are very useful in any field of engineering such civil, 

aerospace, mechanical, automotive engineering sectors, it is beneficial to study the effect of 

the ribs for different beam types such as T-type beams and L-type beams  
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8. CONCLUSION 

 

 

The main aim of the optimization in this study is to improve the buckling failure 

resistance of a rib-reinforced I-beam with minimum use of material. A finite element model 

is developed to simulate the behavior of the beam under three-point bending test. A modified 

simulated annealing algorithm is used to seek the optimum shape design for the ribs. 

Different rib configurations are tried and the best one among them is chosen. The length, 

height, width, and orientation angle of the ribs are considered as the design variables. Six-

rib I-beam and 10-rib I-beam are optimized and the optimum configurations are compared 

with the I-beam without rib-reinforcement. 

 

 The I-beam without rib-reinforcement exhibit a low buckling resistance (5.8kN). 

Changing the stacking sequence of the web laminate does not improve the performance. 

Increasing the thickness of the web leads to a larger buckling strength, but with a significant 

increase in material use. 

 

The six-rib I-beam with optimum shape design has a buckling strength of 40.4 kN. 

This means about 7 times increase in buckling strength and only 0.84% increase in mass 

compared to the I-beam with flat web. The 10-rib I-beam with optimum shape design has a 

buckling strength of 66.8. This means about times increase in buckling strength and only 

2.33% increase in mass compared to the I-beam with flat web. 

 

Tsai-Wu failure criterion is not used as a constraint during optimization. However, 

after obtaining the optimum shape design, the critical buckling load is applied statically on 

the beam and Tsai Wu failure index is calculated. In the main body of the structure, Tsai Wu 

index is much smaller than 1.0. Only a small region below the point of application of the 

force is found to be critical. This means locally strengthening this region by additional layers 

is sufficient to avoid intra-laminar failure of the composite material.  
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