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ylar1 hatirlatilarak bu uzaylarim bazi temel ézellikleri verilmistir. Uciincii boliimde
maksimal operatoriin kompleks diizlemde Carleson egrileri iizerinde tanimh Ly, , (I")
Morrey uzaylarinda siirlilign verilmigtir. Daha sonra, St Cauchy singiiler inte-
gral operatoriiniin L, \ (I') Morrey uzaylarmmda smirhiligs gosterilmigtir. Dordiinci
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1. GIRIiS

L, \(R™) Morrey uzaylari
1 lzpn = sup v 7P fliyoeny < o0
r>0,0€R?

olacak bicimdeki tiim fonksiyonlarin kiimesidir, burada 0 < A < n, p > 1, f €
Lé"C(R”) ve B(z,r), R" de x merkezli r yarigapl yuvar1 gostermektedir. Bu uza-
ylar eliptik kismi diferensiyel denklemlerin ¢oziimlerinin lokal davraniglarinin ¢alig-
malarinda Morrey (1938) tarafindan ortaya gikarilmigtir. Morrey uzaylari varyas-
yonlar analizi teorisindeki problemlerde oldukca kullanighdir. Ayrica Navier-Stokes
ve Schrodinger denklemleri, siireksiz katsayili eliptik problemler potansiyel teorisinde

onemli uygulamalar: ortaya ¢ikmigtir.

F. Chiarenza ve M. Frasca (1987) L, \ (R™) Morrey uzayida

Mf(z) = sup| B (2, 1)] /B Wy

t>0

maksimal operatoriiniin sinirlihgini galigmigtir, burada |B(z,t)|, R™ de ¢ yaricaph z

merkezli B (z,t) yuvarimin Lebesgue 6lgiisiinii gostermektedir.

Oklid uzaylar iizerinde tamimlanan L, , Morrey uzaylarinda

Io‘f(x):/RnM O<a<n

T — y’nfa’

Riesz potansiyellerinin sinirhligy Peetre (1969) ve Adams (1975) tarafindan ¢aligilmigtar.

Lokal Morrey-tipi uzaylarda maksimal operatorler ve Riesz potansiyellerinin sinir-

lilig1 igin gerek ve yeter sartlar Burenkov vd. (2004, 2007)’ de verilmigtir.
I" lokal diizeltilebilir bir Jordan egrisi olmak tizere her ¢ € I' ve r > 0 icin
vI(t,r) < cor

oluyorsa bu durumda I' egrisine bir Carleson egrisi (regiiler egri) denir, burada
I'(tr)

L(t,r)y:=TNB(tr),tel,r>0,
1



seklinde tanimlanir.

Kazimetrik 6l¢ii uzaylar: tizerinde tanimlanan Morrey uzaylarinda, ézellikle Carleson

egrileri tizerinde tanimlanan L, »(I') Morrey uzaylarinda

MO =supeT(e ) [ (p(mlav(r)
t>0 ]__‘(t"r)

M maksimal operatoriiniin siirhiligini N. Samko (2008) galigmigtir.

I' bir Carleson egrisi izerinde tanimlanan L, x Morrey uzaylarinda

sef )=+ [ L

Cauchy singiiler integral operatoriiniin simrlihg Kokilashvili ve Meskhi (2008), Samko

(2008) tarafindan galigilmigtir.

Bu tez beg boliimden olugsmaktadir. Birinci boliim giris kismina ayrilmigtir.

Ikinci boliimde, temel tanim ve teoremlere yer verilmistir, ayrica Carleson egrileri ve
Morrey uzaylar: hatirlatilarak bazi temel 6zellikleri verilmistir. Uciincii boliimde ilk
once, maksimal fonksiyon tanimlanip, ardindan bu operatoriin kompleks diizlemde
Carleson egrileri tizerinde tanimh L,  (I') Morrey uzaylarinda simirhlig verilmigtir.
Daha sonra, Sr Cauchy singiiler integral operatorlerinin L,, \ (I') Morrey uzaylarinda
varlik ve simirhiligr aragtirilmigtir. Dordiincii bolimde kompleks diizlemde Carleson
egrileri tizerinde tanimlanan Morrey uzaylarindaki Riesz potansiyel operatorleri ve
kesirli maksimal operatorlerin sinirlihigi gosterilmistir. Ardindan, Carleson egrileri
tizerindeki kesirli maksimal M operatoriiniin sinirliligi tizerine bir sonug verilmistir.
Ayrica, 1 < p = (1 — )/« limit durumunda, eger I" bir sonsuz Carleson egrisi ise
bu durumda modifiye edilmis G potansiyel operatoriintin L, x(I') den BMO(I") ya
siirlt ve eger I', bir sonlu Carleson egrisi ise I* operatoriiniin L, »(I') den BMO(T)
ya sinirhl oldugu gosterilmistir. Besinci boliimde, tez calismasindan elde edilen

sonuglar verilmistir.



2. KURAMSAL TEMELLER

2.1 Temel Tanim ve Teoremler

Tanim 2.1.1 X, K cismi iizerinde bir vektor uzay: olsun. Eger bir
X =R z—

doniisiimii Vo, y € X ve Va € K igin

N1)||z|| >0 ve|z|]| =0z =0,

(N2) [Jaz]| = fall]z]l

(N3) [z + gl < el + Iyl

ozelliklerini sagliyorsa bu doniigiime X iizerinde norm denir. (X, |.||) ikilisine

normlu bir vektor uzay1 denir. (X ||.||) normlu uzay1 kisaca X ile gosterilir.

Tanmim 2.1.2 X bir kiime olsun. Eger X in alt kiimelerinin bir A sinifi i¢in agsagidaki
ozellikler saglaniyorsa bu durumda A sinifina X iizerinde bir cebirdir denir:

(i) X e A

(i7) Her E € Aigin B = X\F e A

(iii) k = 1,2, ...,n icin B}, € A ise kglEk cA

Eger (iii) sart1 yerine
"Her n € N icin E, € A= Otlen e A’
n—
sart1 konulursa A cebirine bir o— cebiri ad1 verilir.

Tanmim 2.1.3 X bir kiime ve A, X iizerinde bir o—cebiri olsun. Bu durumda
(X, A) ikilisine 6lgiilebilir uzay, A daki her bir kiimeye de A-6l¢iilebilir kiime veya

kisaca olciilebilir kiime ad1 verilir.

Tanim 2.1.4 (X, A) bir 6lgiilebilir uzay ve f : X — R bir fonksiyon olsun. Eger
Va € R i¢in
(o, +c)={zeX:f(x)>ale A

oluyorsa f ye olgiilebilir fonksiyon denir. X {izerindeki 6lciilebilir fonksiyonlarin

ailesi M (X, A) ile gosterilir.



Tanim 2.1.5 (Olgii ve Sonlu Olgii) (X, A) bir slciilebilir uzay olsun. A iizerinde

taniml genigletilmis reel degerli bir ;1 fonksiyonu

(i) (@) =0

(ii) Her A € Aicin u(A) >0

(iii) Her ayrik (A,,) dizisi i¢in p <fj An) = i p(An)

ozelliklerini sagliyorsa bu fonksiyo?fa1 olcii der?i?.l Eger her A € Aigin pu(A) < oo ise

i ye sonlu 6lcii ad1 verilir.

Tamim 2.1.6 (X, A, i) bir 6l¢ii uzay1 olsun. 0 < p < oo olmak iizere

L,= fGM(X,Z):/|f|pdu<oo
X

kiimesine p-inci kuvvetten integrallenebilen fonksiyonlar sinifi denir. L,uzayinda bir

f fonksiyonunun normu

(){Iflpdu)p,lép<oo

esssup | f(z)], p= o0
zeX

I1Fll, =

ile tanumlanir.

esssup |f(z)] =inf {\: p(x € X :|f(x)] > A) =0}

zeX

dir.

Tanim 2.1.7 (X, 7) bir topolojik uzay ve M C X olsun. I bir indis kiimesi olmak
tizere, eger M C UjcrA; ise {A;},.; ailesine M kiimesinin bir ortiisii denir. Eger A;
ler agik ise {A;},.; ailesine M kiimesinin bir agik ortiisii denir. JJ C I olmak iizere
M C UjerA; ise {A;},.; ailesine bir alt ortii denir. Eger J sonlu ise {A,},_; ailesine

bir sonlu alt ortii denir.

Tanim 2.1.8 (X, 7) bir topolojik uzay ve M C X olsun. Eger M nin her agik
ortiistiniin sonlu bir alt ortiisii varsa M ye X in kompakt alt kiimesi denir. Eger X
kompakt ise X e kompakt uzay denir.

(X, d) metrik uzayinda

M C X kompakttir < V(z,) C M i¢in 3 (z,,) C (x,) var > z, —x € M
4



dir. Eger bir X metik uzayinda M C X kompakt ise M kapali ve sinirhdir, fakat
tersi dogru degildir.

Tanim 2.1.9 f : X — C siirekli bir fonksiyon olmak iizere, f fonksiyonunun destegi

f () # 0 sartimi saglayan x noktalarimin kapamgidir ve

Suppf = {x: f (x) # 0}

ile gosterilir. Eger f fonksiyonunun destegi kompakt bir kiime ise bu durumda f

kompakt destekli fonksiyon adini alir.

Tanmim 2.1.10 f olgiilebilir bir fonksiyon olmak iizere her kompakt K kiimesi iiz-

erinde

I[lf\du<oo

ise f fonksiyonuna lokal (yerel) integrallenebilirdir denir ve f € L¢(R™) ile gosterilir.
LI(R™) = ¢ f /|f]d,u < o0; K C R", K kompakt
K

ve 1 < p < o0 igin
1
p

loc(mpn) __ . . n
LYy‘(R") = 4 f /|f]pd,u < o0; K C R", K kompakt
K

ile gosterilir.

Teorem 2.1.1 Eger 1 < p < oo ise L, (R") C LI**(R") C L (R™) dir.

Teorem 2.1.2 (Holder Esitsizligi) p > 1 ve %—i—% = 1 olmak tizere f € L,, g € L,

olsun. Bu durumda fg € L; olur ve

19l < Ifllz, llgllz,
esitsizligi saglanir. Bu esitsizlige Holder esitsizligi denir (Sadosky 1979).

Tanim 2.1.11 A C R" olsun.

1, z€eA
0, z¢A

XA =



ile tanimlanan y 4 fonksiyonu A nin karakteristik fonksiyonu olarak adlandirilir.
Tamm 2.1.12 B(t,r) = {z € C: |z — t| < r} t merkezli r yaricapl agik yuvardir.

Tamim 2.1.13 a < b olmak tizere

C'|a,b] , [a,b] araliginda reel degerli fonksiyonlar

C'(a,b),(a,b) araliginda reel degerli siirekli tiirevlenebilir fonksiyonlar

Cla,b] , Cla,b] N C(a,b) iginde a ve b de tiirevleri tek tarafli sonlu limitlere sahip

fonksiyonlar olarak tanimlanir.
Tanim 2.1.14 Eger 1 < p < oo olmak tizere herhangi bir B yuvari igin

[w]a, = supglw]a,s)
’ p-1
= supp (ﬁ wa(x)da:> (ﬁ Jpw(x)'? da:) < o0
ise w agirhk fonksiyonu A, Muckenhoupt smifindandir denir, burada supremum
biitiin B yuvarlar iizerinden alinmaktadir ve 1/p + 1/p’ = 1 bigimindedir.

p = 1 iken, hemen her z i¢in

Muw(z) < Cw(z) (2.1)

olacak sekilde C' > 1 varsa w € A; dir ve (2.1) esitsizligini saglayan C' nin infimumu
[w)] 4, ile gosterilir.

p ve p' iisleri ile Holder esitsizligi kullanilirsa

1= — [ de = — [ wx)YPw(z)"Vrde < [w]/?
|B| 5 |B| B ( ) ( ) [ ]Ap

elde edilir.

(2.1) esitsizliginde p — oo iken limite gegilirse

% /B w(w)dr < Cexp (é /B logw(m)dm)

elde edilir, bu durumda egitsizlik saglandiginda w € A, denir. Ayrica, p = oo iken
Ao =4 <peoo Ap 1le tanmmlanir. A icin verilen bu iki tanim esdegerdir (Garcia-

Cuerva ve Rubio de Francia 1985).

Teorem 2.1.3 (Lebesgue Diferensiyelleme Teoremi) f € LY(R") olsun. Bu

durumda h.h.x € R" i¢in



Ho\Bm\/m v)dy = fz)
olur (Grafakos 2004).

Tanmim 2.1.15 f: R" — R, f € L*(R") olsun. M maksimal operatorii

M) = sup s / F@)ldy
B(xr

biciminde tamimlanir.

Asagidaki teorem maksimal operatoriin Lebesgue uzaylarindaki sinirlihigini karak-

terize etmektedir.

Teorem 2.1.4 R" iizerinde tanimlanan f fonksiyonu i¢in

(i) f € L,(R™), 1 < p < oo ise M f maksimal fonksiyonu hemen her yerde sonludur.
(i) fe L,(R"),1 <p<ooise Mf e L,(R") ve
M fllz, < Apllfllz,
esitsizligi gergeklenir.
(iii) Eger f € L1(R") ise Ya > 0 igin

{r € R": Mf(z) > a}] < g/\fwd:c

saglanir, burada A sadece boyuta bagh bir sabittir (Stein 1970).
Riesz Potansiyeli

Tanim 2.1.16 f € L; (R") olmak iizere

1

Fa) = oy || Fw)e vy

ile tamimlanan f fonksiyonuna f nin Fourier doniisiimii denir. Bu doniigiim

f(x) = (2m) 2 f() ™Yy



veya esdeger olarak

~

flo)=[ [fly ey
-

alinabilir. Eger n =1 ve f € Ly (R) ise bu durumda

I

Fay=o- | f@eay

olur.

Tanim 2.1.17 f yeterince diizgiin bir fonksiyon olmak iizere f fonksiyonunun

Laplasyeni;

Af = Z 2

j=1
biciminde tanimlanir.
f € S olmak iizere
~ 1 o
P2 (@) = 1) = o [ Sy
Rn

1 ) ”
@@ = ooy [ (a0
Rn
1 o 0 ivous O v\ 7
= W/(_a_gn%e Y _(9_,1'%6 Y —+%€ y>f(y)d’y
Rn
1 . o
= gor [ WP
™)

If=F 1y F, fes (2.2)

oldugundan

= (-A) f=F'yPFf

yazilabilir. Bilindigi gibi Laplace operatorii eliptik operatordiir. P. Seeley goster-

migstir ki eger bir eliptik L operatorii igin

Lf=F"¢(x)Ff
8



formiilii mevcut ise o zaman onun istenilen kompleks kuvveti icin

Lif = F'¢*(x)F f

gecerlidir.

Dolayisiyla bu teoreme gore Laplace operatorii icin
(=8 f=F"yl" Ff
yazilabilir. Buradan z = —¢ igin
(~A)E f=F Ty Ff (2:3)

oldugu goriiliir. Yani (2.2) ve (2.3) den goriiliir ki Riesz potansiyelinin ve —A
nin negatif kesir kuvvetinin genellesmis anlamda Fourier doéniigiimleri aynmidir. Bu

durumda

R

I“=(-A)"z2, 0<a<n (2.4)

ifadesi yazilabilir. (2.3) iin yardimiyla Laplace operatoriiniin negatif kesir kuvvetleri

tanimlanabilir, burada 0 < a < n ve

olmak {izere

1 f(y)
N = o [ 0y
(@) J |z —y|
]Rn
1 operatoriine Riesz potansiyeli denir.

I f Riesz potansiyelinin L, uzaylarmdaki sinirlihg agsagidaki teoremle verilir:

Teorem 2.1.5 (Hardy-Littlewood-Sobolev Teoremi)
()<04<n,1§p<q<oo,%—%:%olsun.
(i) Eger f € L,(R") ise I*f Riesz potansiyeli hemen her x i¢in mutlak yakinsaktir.

(ii) Eger p > 1 ise bu durumda

119 fllz, < Apgll £,

esitsizligi gergeklenir.



(iii) Eger f € Li(R") ise bu durumda
A O\
[{z e R™: [[°f(z)] > A}| < <—”§”L )

dir (Stein 1970).

2.2 Carleson Egrileri

Tanmim 2.2.1 [a,b] C R olmak iizere, 7 : [a,b] — C geklinde tanimlanan siirekli bir
fonksiyona kompleks diizlemde bir egri (veya yay) denir.

v : [a,b] — C egrisinin parametrik denklemi v = z (t) + iy (¢), t € [a, b] ile verilir.

Tanim 2.2.2 C nin bir I alt kiimesi, baglantili ve u¢ uca birlegtirilmis sonlu sayida

yaylarin birlesimi olarak temsil ediliyorsa buna birlesik yay denir.

Tanim 2.2.3 v (t) = x () + iy (t) nin V¢ € [a,b] i¢in v (t) = 2 (t) + iy’ (¢) tiirevi

varsa 7y egrisine diferensiyellenebilir egri denir.

Tanmim 2.2.4 Eger t € [a,b] i¢in v (t) = z (t)+ 1y (¢) ile verilen egrinin Vt € [a, b] igin
v (t) = 2’ (t) + 4y’ (t) tiirevi mevcut, siirekli ve sifirdan farkl ise v egrisine diizgiin
egri denir. Burada 2’ (a), 2’ (b), ¥ (a), v (b)

() —a(a)
vla) = Jim ==

tek tarafli tiirev yaklagmmidir. +'(¢t) # 0 olan bir ¢ noktasi i¢in, bu tiirevin bir
geometrik yorumu vardir, yani; v (¢) noktasinda v nin yoniinde bir teget vektorii

vardir ve sekil 2.1 de gosterilmigtir.

170

Y(®
Y (a)

¥ (b)

Sekil 2.1 v nin teget vektorii
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Tanim 2.2.5 Bir v : [a,b] — C egrisinin uzunlugu
((y) =sup{l(y,P): P [a,b] nin bir parcalanis}
:sup{i]’y(tk)—’y(tklﬂ ,Pra=ty<ty<--- <tn:b}
k=1
ile tanimlanir.

Tanim 2.2.6 v :[a,b] = Cve P:a=ty <ty <---<t,=b, [a,b] arahginn tiim

parcalaniglarin1 gostermek {iizere

(v, P) = |y (ts) =7 (trio1)] < o0

ise v egrisine diizeltilebilir egri denir.

Tanim 2.2.7 C nin bir I' altkiimesi, kompleks diizlemin 7" := {z € C: |z| = 1}

birim ¢gemberine homeomorf ise bu durumda I" ya Jardon egrisi denir.

Tanim 2.2.8 I" egrisi [ = vI" olmak tizere v(t) = s yay uzunluk 6l¢iisii ile kompleks
diizlemde I' = {t e C: t =1(s), 0 < s < < oo} diizeltilebilir Jordan egrisi olsun.

B(t,r) ={z¢€ C: |z —t| <r} olmak iizere
I'(t,ry:=NnB(t,r),tel,r>0,
ile tanimlanir.

Tanim 2.2.9 I' lokal diizeltilebilir bir birlesik yay olsun ve I' nin Lebesgue uzunluk
olciisii ile donatilmis oldugunu kabul edelim. Olgiilebilir bir v C T' alt kiimesinin
olciisii |/ ile tanimlanacaktir. Ozel olarak, |T'(¢,¢)|, T' (,€) u olugturan sayilabilir

cokluktaki yaylarin uzunluklar: toplamidir.

Geometrik olarak ¢ (v, P) ifade edilemez, fakat -y nin "igine ¢izilmis" bir belirli poligo-
nal yolun uzunlugudur. n = 4 igin bir parcalanma durumu sekil 2.2 de gosterilmistir.
[l

() 1®)

———— —Y—b (@)

a [1 lz t3 h 7('-1)
Yty

Sekil 2.2 £ (v, P) yay uzunlugu
11



Uyar: 2.2.1 Diizeltilebilir egriler i¢in asagidaki 6zellikler saglanir.

1) Eger ~ bir diizeltilebilir egri ise bu durumda onun tersi olan —7 ile v nin uzunlugu

aynidir. Yani £ () = £ (—~) dur.

2) Eger v egrisi v = v, + 7, + - - - + 7, seklinde yazilabiyorsa

v diizeltilebilirdir < her 1 < k < n i¢in v, lar diizeltilebilirdir
ve £(7) =L () + (7)) + -+ L(v,) dir

3)Eger 3, paremetre degisimi ile v dan elde edilebiliyor ise bu durumda bu egrilerin

biri diizeltilebilir oldugunda digeri de diizeltilebilirdir ve ¢ () = ¢ () dir.

Tanim 2.2.10 Diizgiin bir I': v (¢) =z (t) + iy (), a <t < b egrisinin uzunlugu

vl =4 (v) = A |dz| = /\/x’ (t)* 4o (t)dt

ile verilir.

v : a, b] — C bir diizeltilebilir egrisi ile onun uzunluk fonksiyonunu eglemek miimkiindiir.
o, @ [a,b] — R uzunluk fonksiyonu asagidaki gibi tammlamr: o, (a) = 0 ve
a <t < bigin o,(t), v 1 [a,t] arahgma kisitlayarak elde edilen egrinin uzun-
lugudur. o, fonksiyonu [0, ¢ ()] arahginda azalmayan ve siirekli bir fonksiyondur.
Simdi s = o, (t) oldugunda 7, (s) = 7 (¢) 1 saglayan bir v, : [0, ¢ ()] — C fonksi-
yonunu tanimlayalim. v, 1n iyi tanimli ve siirekli oldugu agiktir. ¢ () > 0 oldugunu
kabul edersek,boylece v, bir egridir. v, h = o, parametre degisimi ile vy, dan elde
edilecegi agiktir. v, n diizeltilebilir ve £ (v,) = £ () oldugu yukaridaki uyaridan
goriilebilir. Ilave olarak v, m ., uzunluk fonksiyonu 0 < s < £(7) i¢in o, (s) = s
formiiliine de sahiptir.Geometrik olarak o, v, (s) = 7 (a) dan baglayan ve daima -y

ile vzellestirilen "yonler" e dikkat ederek v egrisi boyunca bir s uzunlugunda hareket
12



ederek varilan noktadir ve bu gekil 2.3 de gosterilmigtir.
s YO =7 06)

W
T®)=1,(0

1@ =Y,©

y \

a t b 0 S=oi®  1a1P

=

Sekil 2.3 o, fonksiyonu

7o 1 bu tarifi, ¥ nin yay uzunlugu parametrizasyonudur.

Ornek olarak, eger z; # 2 ile 7 = [21, 23] dogru parcasi ise v,
0<s<|zg— 2| igin vy, (s) =21+ s[(22 — 21) / |22 — 21]]

ile verilir.

Uyar1 2.2.2 Bir I' birlegik yay1 kompleks diizlemin bir alt kiimesinde sinirh ise
siirhdir denir. Yani I' C {z € C: |z] < R}olacak sekilde R > 0 varsa I' sinirhdir
denir. Aksi taktirde I' simirh degildir denir. [0, 1]’e homeomorfik yaylarin veya

Jardon egrilerinin daima simirh oldugi agiktir. Ayrica;

[0,00) veya (—oo,+00) a homeomorfik lokal diizeltilebilir bir yay sinar-
lidir < Bu yay dizeltilebilirdir.

Uyar 2.2.3 Agagidaki egitlik
vI () = [T (¢,7)]

her t € T ve r > 0 i¢in saglanmir (V. Kokilashvili, V. Paatashvili, and S. Samko,
2006).

Tanmim 2.2.11 T lokal diizeltilebilir bir Jordan egrisi olsun. Eger her t € I' ve ¢ > 0
icin

vI'(t,e) < Cre olacak gekilde Cr (2.5)
sabiti varsa bu durumda I' egrisine bir Carleson egrisi (regiiler egri) denir. Burada
Cr > 0, r ve ¢ dan bagimsiz Carleson sabitidir. (2.5) kosulu genellikle Carleson

kosulu olarak ifade edilir.
13



Lemma 2.2.1 I' lokal diizeltilebilir birlesik bir yay olsun ve I'y, ..., 'y sonlu sayida

yaylarin I' = I'; U ... U 'y olacak sekilde birlegimi olsun.
[i(t,e) CI'(t,e) C Ii(t,e) U...UTN(t,¢)
oldugundan ve
IDi(t, &) <[P e)| < [Talt,e)l + .. + [T (t, €]
ifadesinden
I'bir Carleson egrisidir < Herbir I'; Carleson egrisidir.
elde edilir.

Uyar1 2.2.4 i) I simirli egri ise genellikle (2.5) kogulu goz éniine alinir. Bu durumda

' siirh ise (2.5) kogulu

I'(t
Tl

dep > 0 :sup sup (2.6)

tel’ 0<e<eg

koguluna denktir. Ashinda (2.6) nin (2.5) den elde edildigi agiktir. Tersine; ¢ > &

ise
T(to)l _ IPe)l _

1T
9 o o

ifadesi (2.6) kosuluyla birlikte (2.5)" i verir.

ii)[" smirl olmayan bir egri ise (2.5) ile (2.6) denk degildir. Bu ” lokal incelik” nin
ingas1 ile goriilebilir ki, I yayimin I',, parcalar1 kenar uzunluklar1 2n olan bir kareler

dizisinin icinde n? ile karsilastirilabilir.
n=1,23 - icna,p=n—n+k;k=0,1,2-,2n) igin g, = T, + 2ni

olsun. Boylece

Fn = { U [xn,ku yn,k] }U{ U [xn,ka yn,k+1] }U{ U [yn,lc7 yn,k—H] }
k=1,3,....2n—1 k=1,3,....2n—1 k=1,3,...2n—1

oo
ile ' = UF" tanimlanir. Bir resmin ¢iziminden sonra her ¢ > % icin

n=1

14



I'(t
C(t, )l < 14 /2 oldugu kolayca goriilebilir. Fakat
€

IT(n?+ ni,nv2)| _ 2n 4 2n.2n
’ > =V24+2V2n —
nv/2 - nv'2

dir. Boylece (2.6) , g9 = 3 ile saglanir. Fakat (2.5) saglanmaz.

Ornek 2.2.1 T' := [0,27] U {re" : 7 > 27} olsun. Her ¢t € T igin ¢ < 7 iken
IT'(t,€)| < 2me oldugu kolayca goriilebilir. Diger taraftan R > 27 ise bu durumda ;

r

T r 9
IT'(0,R)| = 27T+/|d(7"eir)} = 27r+/\/1 + r2dr > /rdr = % — 272
2T 2T

27

00, R)|

olur. R — oo iken — 00 olur.

Sekil 2.4 e’ Arsimed sprali

Uyar1 2.2.5 Eger t, I' egrisinin bir ug noktasi ise bu durumda
[':={z € C:|z—t| =e,e yeterince kiigiik}

gemberi iizerinde bir noktaya sahip oldugu siirece |['(¢,¢)| > € olur. ¢ nin I egrisinin
veya I' Jardon egrisinin bir sinir noktasi olmamas: durumunda benzer sekilde yeter-
ince kiigiik her ¢ igin |['(¢,€)| > 2¢ oldugu goriiliir. Bu 6zellikle Cr > 2 den daima

elde edilir. Ayrica I'sinirhi bir egri ise;
" bir Carleson egrisidir < Yeterince kiigiik her ¢ ve her ¢ € Tigin ¢ < |T'(¢,¢)| < Cre

dir. Smurh Carleson egrileri I'(¢, €) nun kiigiik pargalarinin dlgiileri {z € C : |z — t| < ¢}

disklerinin caplar ile karsilagtirilabilir olan sinirh egriler olarak tanimlanabilir.
15



Sonug 2.2.1

Lokal diizeltilebilir bir birlegik I' egrisi Carleson egrisidir. <
TN B(ze)] (27)
— <X

[
CF = SUP.ec SUP.5g .

dir.

Ispat. Burada B(z,¢) := {( € C:|¢ — 2| <&} dir. (2.7) saglamirsa (2.5) in sag-

landigy agiktir. Tersine, farzedelim ki (2.5) geger olsun. Bu durumda Cf. < 2Cr ise

I'nB
(2.7).saglamir Eger I' N B(z,e) = @ ise bu durumda 0B e)l = 0 dir. Diger
£
I'nB
taraftan eger bir t € I'N B(z, ¢) varsa bu durumda T BG )| = Cr2¢ oldugundan
€

I'N B(z,e) C T'N B(t,2¢) olur. Bu durumda ispat tamamlanir. m

Onerme 2.2.1
F'={leC:A=z+if(zx),a<z<b} (2.8)

olsun. Eger
Vx € (a,b) igin f € Cla,b) N C*(a,b) ve |f'(x)] < M
saglaniyorsa bu durumda I' bir Carleson egrisidir.

Ispat. Eger t = x4+ if(x¢) € I ve € > 0 ise I'(t, ),
max {a,zo — e} < x < min{b, xy + £} u saglayan tiim = + iy € C in tiim seritleri

tarafindan kapsanir. Sonug olarak;

min{b,zo+e}
Tte)l= [ ldA < [ 1+ ('())de
[(t,e) mciv{a,xofs}
zo+e
< [ VIt M2dw=2JT+ M2%
To—€

elde edilir. m

Ornek 2.2.2 (2.8) ile tammlanan bir Carleson egrisi i¢in a > 0 alalim ve

x%sin(2) |z € (0,1
x € (0,1] i¢in f(z) = @) (©.1]
0 , =20

bigiminde tanimlayalim. f € C'[0,1] N C(0, 1) oldugu agiktur.

I, a > 2 igin Carleson egrisidir. (2.9)
16



HH\ 08 /.—-”’f..f
\'\. |:||5 z/
N [ /
\ /
L 04l /
'-llllllll /n'
\ 0.2 /
1 fli koot /
P § .,".f'.l“.. H
-10 0.5 'gﬁl |'II | all R 10
H‘u"l _oab I"u’

[ I
S 0.005 b \
Illl A : .'f \
| - ! II I|
| x. i\ ] i kB
I ll- e II I| I|r| il f'.lnl-_.__ﬂ%' A I..II ! Il. II o |I R (|
-0.10 I|| |I —qﬂb Iul gy i i I',.,'I I| Flll:lﬁ |r I| 0.10
I ||I II""II i Y II| 'I ||
llL | B I",-'II III
i / i 1
W/ —0.005 | \
g I|'
|II llll

Sekil 2.6 22 sin% in grafigi

Onerme 2.2.2 Her 7 € (0, d) icin
7' (r)] < M ve ¢ € C(0,d] N C*(0,d)

ve
I={0}u{reC:A=re}

ise I" bir Carleson egrisidir.

Ispat. T' nin siirh bir egri oldugu aciktir. ¢ € T igin ['(t,e) pargast orjin merkezli

max {0, [t| — e} ve min {d, |t| + ¢} yarigaph iki gemberin arasinda kalan halkanin bir
17



alt kiimesidir. Boylece;

min{d,|t|+c}
Dte)l= [ A < [ 1+r3g(r)dr
|T(t,e)| |m‘ax{0,\t|75}
t|+e
< [ V14 M?2dr=2V1+ M2
[t]—e

olur. m

Ornek 2.2.3 Bir § € R sabiti icin ¢(r) = —dlogr olsun. § = 0 durumu bir dogru

parcasidir. § > 0 (veya 6 < 0) ise r — 0 iken

—idlogr

A=re

— ,rl—ié 7 (

logr = Inr dir)

orijinde saat yoniiniin tersine yukar1 kaydirma (veya saat yoniinde) bir ”logaritmik
spiral” tammlar. r¢'(r) = —§ oldugundan ¢ € C'[0,d] N C*(0,d) ve her r € (0,d]
icin |r¢'(r)] < M oldugundan yukaridaki énermeden logaritmik spiralin Carleson

yay1 oldugunu elde ederiz.

Tamm 2.2.12 T" Carleson egrisi olmak tizere 1 < p < oo i¢in L,(I") Lebesgue uzay1

(fr ‘f(t)‘pdV(t))l/p 1<p<oo

esssup|f(t)] , p= o0
tel

/1L,y =
esssup |f(t)|=inf{A\:v(t el :|f(t)] >N =0}
teT
sonlu olacak bicimde I' tizerindeki tiim 6l¢iilebilir fonksiyonlarin kiimesidir.
Tanim 2.2.13 1 < p < oo olmak tizere WL, (I') zayif L, (I') uzay1
19wy = supr (v {t € T 1F ()] > 7)) < oc

olacak bicimde lokal integrallenebilir fonksiyonlarin kiimesi olarak tanimlanir.

2.3 L, Morrey Uzaylar:

Bu kisimda ¢ncelikle 0 < A < n + p olmak tizere, L, , (R") uzay: tamtilacak ve bu

uzay iizerinde tanimlanan norm verilecektir. Daha sonra, A nin durumlarina gore

18



L, (R™) uzaymn yapisi hakkinda bazi sonuglar verilecektir. Daha da 6nemlisi, tez-

imizin ana maddesini olugturan 0 < A < n igin L,  (R") Morrey uzay1 tanitilacaktir.

Tanim 2.3.1 (L, Uzay1) Q, R™ nin acik ve baglantih bir alt kiimesi ve
1 <p<oo,0< X< n+polmak iizere €2 daki f lokal integrallenebilen fonksiyonlar
uzaymi, L, = L, () ile gosterecegiz dyle ki her zy € Q icin (f,z¢ ve 7 ye bagh)

herhangi bir ¢ sayis1 vardir ve

|f(z) —ofPdx < or

B(zo,r)NQ

esitsizligi gergeklenir, burada C' sabiti sadece f ye baghdir ve B (g, 7), merkezi zg

ve yaricapi r olan acik yuvar1 gostermektedir. Bu durumda
If]| = inf v (2.10)

ile tanimlanan ||.||, L, » uzayinda bir yar1 - normdur.(f sabit oldugunda kesin olarak

[fI}' =0 dur).

L, » Uzaymn Yapisi

L, » uzaylarmin yapilar1 hakkinda baz sonuglar agsagida verilmistir.

a) A =0 oldugunda L, = L,, yani bilinen Lebesgue uzayidir.

/]f(m)\pdm§c< 00
Q
dir.
b) 0 < A < n oldugunda L,y Morrey uzay1, yani her zo € Q ve her r icin

/ @) de < O

B(zo,r)NQ

saglanacak bigimdeki fonksiyonlarin uzayidir. Bu durum Campanato tarafindan

gosterilmigtir.
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¢) A = n oldugunda L, , = ¢ John - Nirenberg uzay1, yani her xy € §2 ve her r igin

[ (oo (MY Y

B(zg,r)NQ

uygun bir o ile

dir.

d) n < XA <n+poldugunda L, \ = Lip,, o = (A;"), yani her z ve y € ) i¢in
[f(@) = fl < Clz—y[", 0<a<l

saglanir. Bu durum Camponato ve Meyers tarafindan bagimsiz olarak gosterilmistir.

Tiim durumlarda C sadece f ye baghdir (Peetre 1969).

Tamm 2.3.2 0 < A < 1,1 <p < oo ve fe L) olmak iizere L, (") Morrey

uzaylari

_a
||f||Lm(r) = T>SOU£)6F7” P | fllep i)

1/p
= sup <r’\/ |f (7)) dv (7')) < 00
r>0, tel’ L(t,r)

olacak bicimdeki fonksiyonlarin uzayidir. A < 0 veya A > 1 iken L, ,(I") = 6 dur,

burada 6, I' iizerinde 0 a denk olan fonksiyonlarin kiimesini belirtmektedir.
Ayrica, 0 < A< 1, 1<p<ovefé€e WLZ’C(F) olmak tizere WL, ,(I') ile

_A
I fllwer,, = 1 fllwe, @) = Sup 7 1AW Ly,

sonlu olacak bicimdeki fonksiyonlarin uzay1 belirtilmektedir.

Lemma 2.3.1 T" bir Carleson egrisi ve 1 < p < 0o olsun. Bu durumda

ve
1
1 ey < Il ooy < @7 1 ey

dir.
20



Ispat. f € Lo (T) olsun. Bu durumda

1/p
(- [ )|f<7>|pdy<7>> < 71y
I(t,r

dir. Boylece f € L,1(T") ve

1
£z, oy < o 11l

dir. f € L,;(I") olsun. Lebesgue diferensiyellenebilme teoreminden

lim (VF(t,T))_l /F(t | |f(m)[Pdv(T) = | f(t)[P

r—0

elde ederiz. Buradan

1/p
O = (T o) fy 1 (v (7))
1/
< sup (VFtT’ fr )P dv(r )) !
ter, 0<r<1
< fllz, .

bulunur. Boylece f € Loo(I') ve [|fl[;_ ) < [Iflz, ) dir- =

Lemma 2.3.2 I bir Carleson egrisi, 1 < p < oo and 0 < A < 1 olsun. Eger a =

ise, bu durumda 1/p + 1/p’ = 1 olmak iizere

Lpa (D) € Lyas (D) ve [Ifllp, oy < " 11, o

dir.

1-\

Ispat. f ¢ Loa(l),1<p<o0,0<A<1veap=1-—\olsun. Holder esitsizligi

ile
1/p'
fr(m) |f(T)|dv(T) < fl"(t ) |f(T)|Pdv(T ) (fr >
1/p
&7 (g 1 (D) dv (7))

IN

dir. Ilave olarak,

P fony FO () < el retip (fm F)P d( r)
1/p ( EY fF |de( )) L/p

< co/p £ 1z, )
21



dir. Boylece f € L11-o(I") ve

1 /
||f||L1,1,a(F) < Co/p ||f||Lp,/\(F)

dir. m

Tamim 2.3.3 T bir Carleson egrisi ve f € L'*(T") olsun.

f nin maksimal fonksiyonu;

MF(t) = sup(uT(t, ) / G

t>0

biciminde tanimlanir.

Tanim 2.3.4 (BMO Uzay1) f € LP¢(T") olmak iizere BMO(T) uzay
friery = (WT(t,7)) ( )f(T)dV(T)-
I'(t,r

olmak iizere

Iflsyowy = sup (WT(t,7)™" /F(t )|f(T) = franldv(T) < o0

r>0, tel’

olacak bigimdeki fonksiyonlarin uzayidir.

Tamim 2.3.5 (Keskin (sharp) Maksimal Fonksiyon) f € LP(T) ve
fr(t,r) = (VF(t,T’))_l /( )f(T>dV(T)'
T(t,r

olmak {izere keskin maksimal fonksiyon

r>0

1
M#f (t) = sup mr(t/) ‘f (T) — f[‘(tﬂn)’ dv (T)

seklinde tanimlanir, burada supremum I' da ¢ leri igeren tiim I'(¢,7) ler iizerinden
alimir. Bu integrallerin her biri I'(¢, ) ler iizerinde f nin ortalama salimmim &lger.
Diyebiliriz ki; eger M7 f () fonksiyonu sinirhysa f ortalama simirh salimimh fonksiyon-

dur. Bu ozellikteki fonksiyonlar uzayi, BAMO(I") uzay olarak adlandirilir ve

BMO = {f(z) € LY : M¥f () € Loo }
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dir.
BMO tizerindeki norm
1 saro = |47 £,

olarak tamimlanir.

Tanim 2.3.6 (Kesirli Maksimal Operator) I' bir Carleson egrisi ve 0 < o < 1
olsun. Her f € LP(T") kesirli maksimal M® operatorii

MEF(t) = sup(uT(t, 1)) / G

t>0

dir.

Tamim 2.3.7 T bir Carleson egrisi ve f € L{(T") olsun. f nin Riesz potansiyeli

I°f(t) = F%, 0<a<l

biciminde tanimlanir.

Riesz potansiyellerinin L, ) (R™) Morrey uzaylarindaki sinirhligi Peetre (1969) ve
Adams (1975) tarafindan gahgilmigtir.

0<a<nve0§)\<n,1§p<”7_’\olsun.

1) Eger 1 < p < 2=2 ise bu durumda /® nn L,, 5 (R") den Ly (R") ye smirhligr igin

gerek ve yeter kosul ]lj — é = —25 olmasidir.

2) Eger p = 1 ise bu durumda /* nin Ly , (R") den WL, (R") ye smirlihg igin
gerek ve yeter kosul 1 — % = -2 olmasidir.

Eger a = 2 — 2 ise bu durumda A = 0 ve Teorem 1 in ifadesi L, (R") de Hardy-

n
p

Littlewood-Sobolev’in klasik sonucuna doniisiir:

1 <p<gq<ooigin, I Ly(R") den L,(R") ya smirhdir & o = n_n
p g
ve
p=1<q<ooigin, I L;(R") den WL,(R") ya siurhdir & o =n — L
q
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(Adams, 1975).

Kazimetrik 6l¢ii uzaylar tizerinde tanimlanan Morrey uzaylarinda, ¢zellikle Carleson
egrileri iizerinde tamimlanan L, »(I") Morrey uzaylarinda I potansiyel operatériiniin
siirhligr Kokilashvili ve Meskhi (2008) tarafindan gahigilmigtir ve agagidaki teoremi

ispatlanmigtir.

Teorem 2.3.1 ' bir Carleson egrisi, 1 < p < g< oo, 0<a<1,0< )\ < g,

Mo e oy 1

L= 2 ve é = « olsun. Bu durumda I* operatori L, y, (I') uzayindan Ly, (T)

ye sunarlidar.

Tanim 2.3.8 T' bir Carleson egrisi ve f € LY*(T") olsun. f nin modifiye edilmis

potansiyel operatorii;

I f(t) = /F (It = 71*7" = lto = 71" Xryroy (7)) f(T)dr(7), to €T
biciminde tanimlanir.

Cesitli uzaylarda Carleson egrileri iizerinde tanimli Maksimal operator ve potansiyel
operator Botcher ve Karlovich (1997,1999), Karlovich (2008), Kokilashvili (1990),
Kokilashvili ve Meskhi (2001,2008), Kokilashvili ve Samko (2008), Samko(2008) gibi

bircok matematik¢i tarafindan caligilmigtir.

Lemma 2.3.3 (Kokilashvili ve S. Samko, 2008) I' bir Carleson egrisi ve o > 0
olsun, bu durumda ¢; ve co t € I' ve r > 0 ya baglh olmayan pozitif sabitler olmak
luzere
or® < / it —7|* dv (1) < cpr®
D(t,r)

dir.
Lemma 2.3.4 t, 7, t) € C ve 0 < a < 1 olsun. Bu durumda 2 [t — to| < |t — 7|
icin

[t — 77" = [to — 7" < 21 [t — 722 |t — 1

esitsizligi gecerlidir.
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Ispat. Ortalama deger Teoreminden min {|t — 7|, |ty — 7|} < € < max {|t — 7|, |to — 7|}

olmak {izere
It =71 = [t = r]* | < It = 7| = [to — 7| - €77
esitsizligini elde ederiz.

t—=7l <I[to—7|+ [t —to] < 3lto— 7],

it —71| >lto—7|— |t —to| > 3|to — 7|
ve dolayisiyla
1
V—ﬂ—ﬁv“ﬂﬁﬁ—ﬁﬂﬁj%—TL

1
t—rl = lto — | = —5lt — ol

dir. Buradan

1\t | <t |<3|t |
—|tg — T -7 —ltg — 7
o1t = = 5lto

ve

1
|W—TFW%—TH§§U—%|

elde edilir ve boylece ispat tamamlanir. m
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3. CARLESON EGRILERI UZERINDE TANIMLI MORREY
UZAYLARINDA MAKSIMAL OPERATOR ve
CAUCHY SINGULER OPERATORUNUN SINIRLILIGI

Bu boliimde kompleks diizlemde Carleson egrileri iizerinde maksimal operator ve
Cauchy singiiler integral operatorii tanimlamp ve bu operatorlerin L, 5 (I') uzay-

larinda smirliligy verilecektir.
3.1 Maksimal Fonksiyon

Maksimal fonksiyon harmonik analizin énemli konular1 arasindadir. Ozellikle kismi
tiirevli denklemler teorisi ve matematiksel fizikte bircok uygulamalar1 vardir.
Bu kesimde maksimal operatoriin, Carleson egrileri tizerinde sinirliligi incelenecektir.
f € L¢(T") olsun. Lebesgue Diferensiyelleme Teoremi’ne gore

lim (vD(t, 7)) " f(r)dv(T) = f(t)

r—0 r(tr)
elde ederiz, burada B (t,7) = {z € C: |z — t| < r} t merkezli r yarigaph agik yuvar
olmak tizere

L'(tr)y:=NnB(tr),tel,r>0,

dir. Yukaridaki limit yerine supremum f yerine | f| alinarak f nin maksimal fonksi-
yonu tanimlanir.

Maksimal fonksiyon R™ nin standart kiimelerinde n = 1 i¢in Hardy Littlewood
tarafindan tanimlanmis ve Wiener tarafindan n- boyutlu R” Oklid uzayina genisletilmistir

(Stein 1970).

I" bir Carleson egrisi ve f € Li¢(T") olsun. f nin maksimal fonksiyonu
M) = supOT ()" [ |Fldu(r)
t>0 I(t,r)

bi¢imindedir.

Kismi diferensiyel denklemlemlerin ¢aligilmast ile ilgili olarak Morrey (1938) da girig
yapilan ve ¢esitli kitaplarda verilen L, » (I') Morrey uzaylarinda maksimal, singiiler

ve potansiyel operatorlerin sinirhiligi son yillarda aragtirilmigtir (Adams vd. (2004),
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Alvarez ve Plerez (1994), Arai ve Mizuhara (1997), Chiarenza ve Frasca (1987), Di
Fazio ve Ragusa (1991), Ding ve Lu. (2002), Nakai (1994), Nakai (2001), Nakai
ve Sumitomo (2001), Palagachev ve Softova (2004), Peetre(1966), Peetre (1969),
Pradolini ve Salinas (2004), Shirai (2006), Spanne (1965), Stampacchia (1965)).
Morrey uzaylarindaki maksimal operatérlerin simirhligi (Chiarenza ve Frasca (1987))

tarafindan ispatlanmigtar.

Asagidaki ifade Oklidyen uzaylarda (Fefferman ve Stein (1971), Lemma 1; Stein
(1993)) gecerlidir ve homojen uzaylar icin Pradolini ve Salinas (2004) daki Onerme

3.4 de verilmigtir.

Cir <vl'(t,r) < Cor ,Cy >0ve Cy >0 (3.1)

Lemma 3.1.1 (Feffermann-Stein esitsizligi) I" bir Carleson egrisi olsun. Bu
durumda

[anerw / I () du(7) (3.2)

T

I' iizerindeki biitiin negatif olmayan f, w fonksiyonlar: i¢in saglanir.

L, (I") da, M maksimal operatoriin simirhligimi Samko (2008) calismis ve agagidaki

teoremi ispatlamigtir.

Teorem 3.1.1 T bir Carleson egrisi olsun. (3.1) sart1 altinda M maksimal operatorii

L,»(T),1<p<o0,0<A\<1uzaymda smirhdir.

Ispat. (3.2) Fefferman-Stein esitsizligi ile,

/ (M F (1) xpn (1) dr = / (Mf (1) dr < C / F ()P My, (7)dr

r T(t,r)

<c [ 1o |pd7+oz [ ror,

I'(t,2r) =Or(t,20+1m\T(1,297)
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elde ederiz. (3.1) sart1 altinda gegerli olan
I'(t,2r)=TNDB(t2r) ve B(t,2r) : {r: |t — 7| <2r}

oldugundan

M\[(t,2r)={r:|t—7|>2r}NT

elde edilir. Bu durumda
t—7|—r>r=(t—71|—1)>Tr

olur.

dir. Ayrica

— 1
MXF(t,T) - ?}i%) INCED] /XF(to,r) (y) dy

I'(t,r)
1 ,tpel (t,”/’)
0 ,to&T(tr)

1
= sty [ W=
T'(¢,r)NC (to,r)

elde edilir

r

(vI(t,r) — 1) (3.3)

MXF(t,r) <7—) S C

esitsizligini kullanacagiz, ispat (3.1) sart1 altinda Burenkov ve Guliyev (2004), de

oldugu durumla aymidir. Bu durumda

/ (Mf(r)'dr <C / FEOPdr+ 0y / F @O My, (7)dr

I(tr) I(t,2r) T=1p (4,294 17\ D (¢,297)
> C
<o [erasX gy [ o
T(¢,2r) =1 I(t,2/+1r)
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elde edilir. Boylece

1
M — - M Pd
IMfll, Pty (Mf ()P dr
T'(t,r)
C - C 1
< sup — )P dr + ——— Su —/ )P dr
Sy | MOPar e e sy | )
I'(t,2r) J= L(t,r)
Gl

(3.4)

bulunur.

Ayrica p =1 i¢in
IM A, <clflc,,

oldugundan

tH{Mf >30T ()] < e l|fll,

elde edilir. m
3.2 Cauchy Singiiler Integralleri

Bu kesimde, kompleks diizlemde Carleson egrileri iizerindeki Cauchy singiiler integ-
ral operatorii tanimlanacak ve ardindan L,y (I') uzaylarinda simirhlig aragtirilacak-
tir.

Tanim 3.2.1 I' yonlendirilmis bir egri olsun. € > 0 i¢in,

(S.1) (1) = - ) 4

s T—1
\I'(t,e)

ile bir ¢ € T" noktasinda bir f : I' — C fonksiyonunun S. f kesikli singiiler integralini
tanimlayalim.

f e Li(T) ise (S.f) (t) nin iyi tanimh ve sonlu oldugu agiktir.

Tanim 3.2.2 t € " ve f her ¢ > 0 igin (S.f) (¢) iyl tanimh ve sonlu olacak gekilde

bir fonksiyon olsun. Eger

de

T—1

lim (S.f) (t) := lim 1 / (3.5)

e—0 e—0 77
M\I'(t,e)
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limiti mevcut ve sonlu ise bu limit (Sf) (¢) ile gosterilir ve ¢t noktasinda f nin Cauchy
singiiler integralinin degeri olarak adlandirilir. S nin I' iizerinde tanimlandigin

belirtmek amaciyla ¢cogunlukla S yerine Sr yazilacaktir.

Asgagidaki teorem I' min sinirh ve f nin sabit oldugu durum igindir.
Teorem 3.2.1 T' bir basit diizeltilebilir egri ve ¢ € I" noktasinda teget (iki-yanh)
mevcut olsun. Bu durumda

(S1) (£) = lim ~ / dr

e—0 T T—1
T\I['(¢,e)

vardir ve sonludur. Eger I" bir Jordan egrisi ise bu durumda (S1) (¢) = 1 dir. Eger

I', A noktasinda baslayan ve B noktasinda sonlanan bir yay ise bu durumda

1 B -1
1 =—1 —
(S1)(t) := —log ——

1 (3.6)

dir, burada log ((B —t) /(A —t)), C\I' da analitik ve z, ¢ ye soldan yaklagirken

sonsuzda sifir olan log ((B — z) / (A — z)) fonksiyonunun dalimin sinir degeridir.

Ispat. Ilk olarak belirtelim ki (3.6) nin sag tarafi

%(log(B—t) —log(A—1t)—o(t))

dir, burada log (z — t) A, 'NA = {t} olacak sekilde ¢ yi sonsuza birlegtiren herhangi
bir egri olmak iizere C\A da siirekli logaritmanin herhangi bir dahdir ve o (¢) €
{_7]—7 7T}

o(t) = lim arg (1 —m) — lim arg (7 — )
T—t T—t~

ile tanimhidur.
s+ z(s), t = (so) m bir komgulugunda I" nin dogal parametrizasyonu olsun. Bu

durumda

s — 8o iken z (s) = 2z (so) + 2’ (80) (s — 80) + 0 (|s — s0])

dir. Genelligi bozmaksizin, z (sq) = 0 ve 2’ (sg) = 1 kabul edebiliriz; yani,

z2(s)=s—so+0(]s—so|) (3.7)
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olsun. n € {2,3,...} verilsin, bu durumda
|s — so| <8, icin |o(|s — so|)| < (1/n)]|s — sol (3.8)

olacak gekilde bir §,, > 0 vardir. §,, nin, 0 a monoton azalan oldugunu kabul edebili-
riz. (3.7), (3.8) ve arcsin (1/n) < 7/ (2n) esitsizliginden, arc~y, := {Tr € I': £(7,t) < 0, }
kiimesi

A, ={re”:reR, —7/(2n) <0</ (2n)}

bolgesinde igerilir. a ve b, v, nin ug noktalarim gostersin. (I'\7y,) U {a,b} kiimesi
kompakttir ve 7 —— |7| (= |7 — t|) bu kiime {izerinde siirekli ve pozitiftir. u, > 0
bu fonksiyonun minimumu olsun. Bu durumda I" (0, z4,) sadece 7, nin noktalarimi
igerir:

e < o igin I'(0,e) = 4 (0,¢) (3.9)
olur.
Simdi §,, < p, olacak sekilde bir n > 2 tamsayisini sabitleyelim ve 0 < € < §,,/2
olsun. 71, 79 € 7, i¢in, 7, nin 71, 75 arasidaki altyayimin uzunlugunu £ (74, 79) ile
gosterelim. 7 = z (s) € v, ve |7] < € olsun. Bu durumda (3.8),

1 1
ez [2(s)] = s —so+olls = sol)l > [s = 50| = 5 |s = 50| = 5[5 = 0l

olmasini gerektirir, boylece |s — so| < 2¢ < 4, olur. Boylece yine (3.8) den dolayn,

1 n—1
e>lz(s)|=|s—so+o(ls—so|)| >|s—so| — E|S_SO‘ = |s — sol
olur. Ozet olarak, 7 € 7, C A, ve
n
(0,7) =|s — so| < p— (3.10)

oldugunu elde ederiz.
P () :=v,n{z € C: |z| =€, Rez > 0} kiimesi kompakttir ve z — s—sq := £ (0, 2)

P (e) iizerinde siireklidir.
s_(e):=min{s:z(e) € P(e)}, s;(e):=max{s:z(e) € P(e)}
a (8) = geiargz(s,(a)), ﬁ (6) = 66z‘a]rgz(st(a))

olsun.

75N {z € C:Rez >0} yayi, 0 ve a(e) arasindaki 1, (¢), a () ve § (¢) arasindaki
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1, (€) ve B (¢) ve b arasindaki 75 (¢) altyaylarimmn birlegimidir. n; (&) := {7 € n,(¢) : |7| > €}
diyelim. (3.10) dan ¢(0,3(¢)) < ne/(n —1) oldugunu elde ederiz. ¢ (0, ()) >

|a ()| = € oldugundan,

5 ()| < =/ < o= °
1 @] < e @) = £((6) Ae) < e —e = 2
oldugu goriiliir. Sonug olarak
[E < [l [a< 1
T T T e n—1
3 () 40 3 (€)
dir ve boylece S (¢) € v,, C A,, olmasindan dolay:
d d d
—T—logb—l—loge = /—T—l— /—T—logb—l—loga
T T T
¥2\72(0,6))N{2€C:Re 2>0} T () ns(e)
1

d
+ / a —logb+loge
-
1 3(e)
e + |logb — log B (¢) — log b + log ¢|

n—1

1
=1 + |loge —log 3 (¢)|

= g ()

1 s
n—1 2n
(3.11)
elde ederiz. Benzer sekilde
/ I loge| < 4 (3.12)
— +loga —loge — :
T & & n—1 2n

v2\72(0,€))N{z€C:Re 2<0}

oldugunu ispatlayabiliriz. (3.11) ve (3.12) eklenerek, n > 2, §,, < p, ve 0 < & < §,,/2
iken
s

dr 2

— —logb+loga| < —— +

T n—1 n
2\72(0,¢)

elde edilir. Bu
lim / ﬁ = logb —loga
’7—

e—0
72\72(0,¢)
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oldugunu gosterir. Son olarak (3.9) esitliginden yararlanarak teoremin kalan kismi

elde edilir. m

Singiiler integraller hakkindaki klasik kitaplarin ¢ogunda (Sf) (¢) yi (3.5) ile tanim-
lamay1p, daha ziyade

1 f(7)
(S7) () = lim / L0 dr (3.13)
\I'(¢,e)

ile tammmlamigtir. (3.9) esitliginden, eger I' Carleson egrisi ve ¢ de iki yanh tegete
sahip ( hemen hemen tiim ¢ € I" larda bu beklenir ) ise, bu durumda yeterince kiigiik
her € > 0 igin I' [t,e] C ' (t,e) C T'(¢,Cre) dir. Boylece bu ¢ noktalarinda her iki
tamim denktir. (Sf) (t) yi hesaplamak igin,

(S-f) (¢ /‘f T_t dr + L@-/) ar (3.14)

Uy T—1
r\r (t,e) \I'(t,e)

yazariz. Teorem 3.2.1, (3.14) iin sag tarafindaki ikinci terim her diizeltilebilir I" egrisi
iizerinde bir limite sahip oldugunu ifade eder. f yeterince diizgiin bir fonksiyon ise

(3.14) iin sag tarafindaki birinci terim bir singiileriteye sahip degildir.

Tanim 3.2.3 C§° (R?), kompakt destekli biitiin g : R? — C sonsuz kez siirekli difer-
ensiyellenebilir fonksiyonlarm kiimesidir, ve C5° (') ile C§° (R?) deki fonksiyonlarin

I" ya kisitlanmug olanlarin kiimesidir. C5° (T') € L' (T') oldugu agiktir.

Teorem 3.2.2 I" bir basit lokal diizeltilebilir egri ve f € C§° (I') olsun. Eger ¢t € I' da

[ igin (iki yanh) teget mevcutsa, bu durumda (S f) (¢) limiti mevcuttur ve sonludur.

Ispat. T' nin sonlu olmasi durumunda, Teorem 3.2.1 ve (3.14) formiiliinden ¢ — 0

/)iﬁllﬂﬁm (3.15)

T—1

ken

D\I'(¢,e)

ifadesi sonludur. ¢t — 7

FO)=fO+f O -t)+0(Ir—tf)

oldugundan
fn)—f@) / O (Ir -t , /
= —=d t d 3.16
/ — t dr 7 T+ f (1) T ( )
\I'(t,e) \I'(t,e) T\['(¢,e)
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elde edilir. (3.16) nin ikinci teriminin yakisak oldugu agiktir. Fonksiyon 7 ya

. O(|r—t*) N
giderken ——— € L, (T') dir ve boylece

2
G::/—O(’T_t’ Var
=1
T

mevcut ve sonludur. Yeterince kiigiik € > 0 ve C' < oo sabiti igin

[ e < [ote

\I'(t,¢)

< Ce|l'(t,e)] < CelT|

(3.16) nin ilk terimi G ye yakinsar.

I nin sonsuz olmasi durumunda ise her R > 0 i¢in

/Mm: G / LGP (3.17)

T—1 T — t T—1
\I'(t,e) \I'(¢,R) L(t,R)\I'(t,e)

saglanir. (3.17) nin ilk terimi supp f C T' (¢, R) ise yok olur, ikinci terimin yakin-
sakligi aciktir. m

I" bir Carleson egrisi ve f € L'°¢(T") olmak iizere Sp Cauchy singiiler integral oper-

SFf /fT—t

atorii

bicimindedir.

Sr Cauchy singiiler integral operatoriiniin sinirliligini ispatlamak icin Calderon-

Zygmund singiiler operatorleri icin Oklidyen kiimelerde bilinen

1 p
M#f(z) = supm / |f(7) = fram [ dv (), fren = / f(r)dv(7)
L'(¢,r)

r>0
I(tr)
olmak iizere

FASefI) () < CIMF@B)), 0<s <1 (3.18)

noktasal Alvarez-Pérez- tipli esitsizlikten yararlanilacaktir.
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St Cauchy singiiler integral operatoriiniin L, » (I'), 1 < p < 00, 0 < A < 1 siirhligim
elde etmek icin agagidaki lemma kullanilacaktir.

Lemma 3.2.1 X o6lgiisii sonsuz olan bir homejen metrik uzay olsun. (3.18) sart1
altinda,

1Ml x) <C||M7f, l<p<oo,0< <1

p,)x(X) ’

dir.

Ispat. Ispat, Di Fazio ve Ragusa (1991) dakine benzerdir. Homojen metrik slcii
uzaylar icin gegerli olan L, normundaki asagidaki agirhkh Fefferman-Stein esitsi-

zligini kullanacagiz:

/ny r)dr < c/\M#f w(x)dr, w € Ay, f € LP(X,w) (3.19)

S
A; Coifman-Rochberg karakterizasyonuna gore, [M } , 0 < e < 1 fonksiyonu

XB(z,r)
= [ XB(a,r)

Ay dedir. (3.19), X < M

o } esitsizligini ve (3.18) kullanarak

| s <c/ M )P [My, )] e (9)

B(z,r)

c / M2 W M, 0)] )

X
< / |M#f (y)|" du(y)
B(z,r)
M# g
B(x,2i+1r)
elde ederiz. Bu durumda (3.4) esitsizligine benzer olarak,
1 p
IMfll,, , = suwp — (Mf ()" du (y)
’ r>0,zeR? T
B(z,r)
C 4 »
< sup — [ |M*f(y)|"du(y)
r>0,z€R™ T o
B(x,r

r>0,0cRn T ]
B(z,2i+1r)

+; [2i+1 — 1177 Sub. X / |M#f (y)|" du(y)

€€ (E? 1) secimi altinda lemma ispatlanir. m
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Sr singiiler operatoriiniin sinirl egriler iizerindeki sinirliligi Kokilashvili, ve Meskhi

(2008) makalesinde ispatlanmigtir.

Agagidaki teoremde St singiiler operatoriiniin sonsuz Carleson egrileri iizerindeki
sinirliliginin ispat1 verilecektir.
Teorem 3.2.3 I" bir Carleson egrisi olsun. Sr singiiler operatorii, 1 < p < o0,

0 < X < 1 olmak iizere L, (I') uzaylarinda smirhdir.

Ispat. Bir smirl Carleson egrisi tizerindeki bir fonksiyon, Morrey uzaymin korun-
masi ile bir sonsuz Carleson egrisi i¢in sifira siirdiiriilebileceginden, I' nin bir sonsuz
egri oldugunu kabul etmek yeterlidir.
(3.5) esitsizligi ve

1£llpn = 1l 0 < 5 <1

esitligi kullanilarak
ISP fllpn = 1CSTS) Mo p < (M [(STS) 2 s
bulunur. Lemma 3.2.1 ve (3.18) esitsizligi ile,
150 fllp 0 < CIMZ (S0 ]|[o ) < CNMEY [l y = C M £,

elde edilir. Son olarak Teorem 3.1.1. in uygulanmasiyla

1
1Srfll,n < CIMS],,= sup 7/ (Mf ()" dr
terr>o0 T

T'(t,r)

su VP dr + / )P
teF1P>0T / |f | Z 2 —1 teFr>07’ |f

T(t,r)
e ||fuLp,A

bulunur. Boylece Sy nin Ly, , (I') uzaylarinda simirhlig: elde edilir. m
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4. CARLESON EGRILERi UZERINDE POTANSIiYEL OPERATORU
ve KESIRLI MAKSIMAL FONKSIYONU iCIN SOBOLEV-MORREY
ESITSiZLIKLERI

Bu boliimde, Carleson egrileri {izerinde tanimlanan potansiyel operatorleri i¢in Sobolev-
Morrey esitsizliklerini ispatlayacagiz. Ayrica Carleson egrileri iizerinde tanimli Mor-
rey uzaylarinda M kesirli maksimal operatoriiniin sinirhilig1 iizerine bir sonug vere-

cegiz.

I bir Carleson egrisi ve f € Li°°(T") olsun. f nin Riesz potansiyeli

I°f(t) = —J|;(_> |1(a), 0<a<l

bicimindedir.
1 <p<oo, feWLLYT) olmak tizere WL, (T) ile

A
HfHWLp,)\ = ||fHWLp,)\(F) = 8sup 1 °* ||f||WLp(r(t,r))

r>0, tel’

sonlu olacak bicimdeki fonksiyonlarin uzayidir.

Teorem 4.1 I' bir Carleson egrisi, 0 < a<1,0< A< 1—avel<p< =2 olsun.
1)1 <p< 2 icin

a.) Eger ]13 - % = %5 ise 1%, L, \(I') dan Ly (') ya smurhdar.

b.) I' nin sonsuz egri olmasi durumunda /* nin L, ,(I') dan L, (") ya siurh olmasi

i¢cin gerek ve yeter k0§ul = — % = 1% olmasidir.
2) p=1i¢in
a.) Eger 1 — é = 1% ise 1%, Ly \(I') dan W Ly (I") ya smurhdir.

b.) I' nin sonsuz egri olmasi durumunda /* nin L; ,(I') dan WL, (') ya smirh

.. 1 «
olmasi i¢in gerek ve yeter kosul 1 — 7= Tox olmasidir.

Ispat. 1) (Yeterlilik) I' bir Carleson egrisi, 0 < a <1, 0< A <1—a, f € L,(I),

l<p<i2vyel_— % = 175 olsun. Bu durumda

1
p

o f(#) = (/t /F\W) L ldu(r) = Ayt ) + Ag(tr) (A1)
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yazariz. Aj(t,r) i¢in

|Ay(t, )] < f”r |f(D||t — 7|* v (T)

21 fopamsrimpna s |V ()

IN
8

<.
Il
—

(2797)° 7 Ul (L, 2794 ) Mf(E) < 2000 M(E) 30 279
j=1

IN
Mg

<
Il
—

elde ederiz. Buradan

2
C1 = 5o ile [ At )| < CorMf() (4.2)

dir. As(t,r) igin, Holder esitsizliginden

Aa(t, 1) < (fiwn It = 7121 (DPav(r) )
Bya— ’ 1/p
X <fF\F(t,r) |t — T’(”Jr e dV(T>> =Ji-Ja

1/p

elde ederiz. A < 8 <1 — ap olsun. J; i¢in Cy = (25,2571

/p
) olmak tizere

1/p
= (Z; f]f‘(t72j+17‘)\l“(t72jr) |f(T)P]t — T‘_BdV(T))
J:

1/p (4.3)
25 S 908 | o
2y ||f||L Zo =Lar ? ||f”LM(F)
j:
elde edilir.
1/p
JQ 1(;111 03 = 1_2&—% olmak tizere
Bia—1)p 1/p
Sy = (fr\r(tﬂ«) |t - 7'|(er r dV(T)>
1/p’
Bia—1)y
3 Frarminetan It = G dv(r))
(4.4)

1

1/’
0 8
< ey (@) prat)y “) < Cyre ™
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elde edilir. Bu durumda (4.3) ve (4.4) den Cy = C5 - C5 olmak iizere
SN
Aa(t, ) < Cor T4 A (45)
elde ederiz. Boylece, (4.2) ve (4.5) den

112 f()] < Cor*Mf(t) + Car™a |I£ll,, )

]p/(l/\)

elde ederiz. r ye gore minimize ederek, r = [(Mf(t))fl ||f||Lp R ve

C5 = C1 + C4 olmak iizere

[1oF ()] < Cs (M) 7S

Lp(
elde ederiz. Boylece Teorem 2.3.1 den Cs = Cj - C), , olmak tizere
fr(m) [Iof ()Y dv(r) < Cs Hf”%;ﬁ(r) fr(w) (M f(t))* dv(r)
< O5CP7/\T>\ Hf”%;i(l“) Hf”ip)\(p) = CGTA Hf”%p»\(lﬂ)

dir. Boylece I*f € L, A(T") ve

1 F L, oy < CollFllzyacey

olur.

(Gereklilik) T' bir sonsuz Carleson egrisi, 1 < p < =2 olsun ve 1%, L,,(T') den

L,A(T) ya smurh olsun. t = t(s) € I' i¢in 7t = t(rs), f.(t) =: f(rt) tanimlayalim.

Bu durumda

_1 _ 1/p
1illsy sy =77 s (17 fygmy L) Pd())

Tel',r1>0

12
=r. v ||f||Lp,)\(F)

ve
12 fe(t) = r= 1" f(rt)

olur. Boylece

1/q
11 frll ROk ¢ sup )\fr “al (rt)|* dv(t)
q, ()

r1>0,tel’

1-)

_a—1=2 _ - 1/q
= sup (17 S PO v (1)

r1>0,tel’

e l=A
=T o || fHLq,A(r)
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elde ederiz.

Cp.q.1, sadece p, g ve A ya bagl olmak tizere /* nin sinirhligindan dolay:

”[Oéf“Lq)\(I‘) < Cpgar +T77Hf“Lp (D)
elde ederiz. Eger % < % + 1% ise bu durumda her f € L, »(I') icin
r — 0 iken HIO(fHLM =
elde ederiz ki bu imkansizdir. Benzer sekilde, eger Ilj > % + 1% ise bu durumda her

f € L,\(I') igin

r — oo iken ||faf||Lq,A(F) =0

. . . 1 _ 1 o .
elde ederiz ki bu imkansizdir. Dolayisiyla s =T dir.

2) (Yeterlilik) f € Lix(T) ve 1 — 2 = 125 olsun.

q

v{reT(t,r): |I*f(1)] > 28} <v{rel(tr):|A(r,r)>pL}

+v{r € T(t,r) : |As(7,7)| > B}
elde ederiz.

Teorem 3.1.1 ve (4.2) esitsizligini hesaba katarak C7; = Cy - C \ olmak {izere

v{r €T(t,r): A7) > B} < V{T eT(t,r): Mf(r) > Cga}

C )\
< = Ml

elde ederiz.

Ay(t,r) icin O = 1_23% olmak tizere

|Aa(t, )| < fF\Ftr |f(D)||t — 7| dv(T)

IN
(18

(2] a 1fr‘t2]+1 \Ft2]'r- |f( )|dy( )

T
o

IN
™M

<
Il
-

Pya—1 ; A
27)" " @) L, oy

= Al s = Ca " M,y
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elde ederiz. Boylece eger C’Z’lr% £z, , ) = B dersek, bu durumda [Ay(7,7)| < 8
ve sonug olarak | {r € I'(t,r) : |Az(7,r)| > B} ] =0 dir.

Son olarak, Cs = C - C7" olmak iizere

f q
o €TEm) ¢ 11 (D] > 28) < vl = Cor® (—” ”;’*“))

olur.
(Gereklilik) I, Ly x(I') den W L, (T") ye siurh olsun

7o B ) d 1/q
1 el =50 pue | (7 firertenn - oo ()

““sup fre ( - dv( ))Uq
=7r"%sup gr® sup (7T eD(tr) ¢ 1T Flrr)|>grey VAT
550 €T 110 {rel(t,r1) « [Zof(rr)[>pr}

L 1/q
=7 “Tasup Br® sup (T)‘ rr)~? - L du(T >
B3>0 7€, r1>0 (rir) f{TGF(t’m) 2o gy WAT)

PN £ S,
=T o |1 f||WLq7A(I‘)
elde ederiz. I® min Ly ,(I') den WL, (') ye stmirhihgindan, C , \ sadece ¢ ve A ya

bagh olmak iizere

o at+i=2 _(1-x
11l < Craar®™ s ™l
esitsizligini elde ederiz. Eger 1 < % + 1% ise bu durumda f € L; (') icin

r — 0 iken HI”fHWLqA

Ao =0

oldugunu elde ederiz ki bu imkansizdir. Benzer sekilde, eger 1 > % + 125 ise bu
durumda her f € Ly (") icin

r— oo iken [[I*fllyp ) =0
elde ederiz ki bu imkansizdir. Boylece 1 = % + 175 elde ederiz. Boylece Teorem 4.1

nin ispati tamamlanir. m

I" bir Carleson egrisi ve 0 < a < 1 olsun. Her f € LP¢(T) i¢in M® kesirli maksimal

operatorii

M S0) = sup () [ 1t
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ile tamimlanir ve her ¢ € I' igin

M) < I*(|fD() (4.6)
esitsizligi saglanir.

Teorem 4.1 ve (4.6) esitsizliginin bir sonucu olarak agagidaki sonucu elde ederiz.
Boylece M® kesirli maximal operatoriiniin siirliligi, I* potansiyel operatoriiniin

sinirliligindan elde edilmig olur.

Sonug 4.1 I bir Carleson egrisi, 0 < a< 1,0 < A<l—-avel<p< ITTO‘ olsun.
1)1 <p<Lt2igin

a.) Eger % - é = 1% ise M®, L, x\(T') dan Ly (") ya smurhdar.
b.) I' nin sonsuz egri olmasi durumunda M® nin L, (') dan L, \(I") ya smirh olmasi
1

icin gerek ve yeter kosgul 5 % = 125 olmasidir.

2) p=1i¢in

a.) Eger 1 — é = 1% ise M®, Ly x(I') dan W Ly (T") ya smurhdar.

b.) T' nin sonsuz egri olmasi durumunda M* nmm L; (I') dan WL, (') ya simurh

olmast icin gerek ve yeter kogul 1 — X = -2 olmasidir.
> P q 1-A

Ispat. 1) ve 2) ifadelerinin ispatlarimm yeterlilik kisimlarr Teorem 4.1 ve (4.6)
esitsizliginden goriiliir.

(Gereklilik) Teorem 4.1 deki gibi f,.(7) =: f(r7) tanimlanmig olsun. Bu durumda

NI 5N o
[ M follyy Nohatd “ [ Ml AT
g A (1) aA (D)

ve
el lA
HMafr”Lq’A(F) =T o [lM fHLq,A(P)

oldugu aciktir.

1)1 <p< 2 feL,\(T) olsun ve M*, L,,(T') dan L, (T') ya smurh olsun. Bu

durumda

M _ atl=2 M
| fHL,M(F) =ra | fT‘HLq,x(F)
a_"_ﬂ a_’_ﬂ_ﬂ
<Cr® HfrHLp,)\(F) =Cr" e T HfHLp,A(F)
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elde edelir. Eger % > % + 1% ise bu durumda her f € L, ,(I') icin
r— 0iken [[M*fll, =0

elde edelir ki bu imkansizdir. Benzer sekilde, egelr}—l7 < % + 175 ise bu durumda her
f e L,\(I) i¢in

r— oo iken [|M*f|[, & =0

elde ederizki bu imkansizdir, ve boylece ]13 = % + 125 buluruz.

2) M* Ly (') den WL, x(I") ya smurh olsun. Bu durumda C, ¢ ve a ya bagh olmak

lizere

a+t+i=2 @
||Maf||WLq,>\(F) =T ||M fT‘||WLq7A(F)
1-)

a A 1-XA_q_

<O | ol = O T Y L
elde ederiz.
Eger 1 < é + 175 ise bu durumda her f € Ly (I') igin

r— 0iken [[M® [y =0

elde ederiz, ki bu imkansizdir. Benzer sekilde, eger 1 > % + 125 ise bu durumda her
f € L) igin

r — oo iken ||Maf||WLq,A(F) =0

elde ederiz ki bu da imkansizdir. Buradan 1 = % + 125 buluruz. Boylece Sonug 4.1

nin ispati tamamlanir. m

I" bir Carleson egrisi ve f € L*(T") olsun. f nin modifiye edilmis potansiyel oper-

atori;

I“f(t) = /r (It =71 = Jto = 71" "Xp\po.y (7)) f(T)dw(7), to €T
bicimindedir.
I' bir sonsuz egri oldugu zaman, p = % limit durumunda Teorem 4.1 deki 1)

ifadesi saglanmaz. Ustelik, p = =2 iken her ¢ € I i¢in I° f(t) = oo olacak sekilde bir

f € L, (') vardir. Bununla beraber, ispatlayacagiz ki, eger L (I") uzay: daha genig
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olan BMO(T") uzay ile yer degistirirse, modifiye edilmis 1o potansiyel operatorii i¢in
Teorem 4.1 deki 1) ifadesi saglanir.

Asagidaki teorem Mamedkhanov ve Dadashova (2010) tarafindan ispatlanmigtir.

Teorem 4.2 T" bir Carleson egrisi, 0 < a < 1, ve 0 < A < 1 — « olsun. Bu durumda
1) Eger I" sonsuz egri ise, bu durumda modifiye edilmis Ie potansiyel operatorii
L%)\(F) dan BMO(T") ya smurhdir.

2) Eger I' sonlu egri ise, bu durumda I potansiyel operatorii L ey ,(I') dan BMO(T)
ya sinirhdir.

3)M<®, Lix (') dan Loo(I") ya smirhdir.

Ispat. 1) T bir sonsuz egri @ = 1 — A,ve f € Ly o(T) olsun. Verilen 7 > 0 ve

to € I' igin, Xp(y 2r), 1'(to, 2r) kiimesinin karakteristik fonksiyonu olmak tizere

Si(t) = FO)Xr(o.on (), fa(t) = (1) = f2(D), (4.7)

diyelim. Bu durumda

()= [ (=i = o = i () F(7)dv(r)
I (to,2r)

ve
Fy(t) = / (Jt =717t = [t — T|a_1XF\F(tO,1)(7_)) f(r)dv(T)
\I'(t0,2r)

olmak {izere

I f(t) = I*fult) + I* falt) = Fi(t) + Fa(t),

elde ederiz. f; fonksiyonu kompakt (smirli) destege sahiptir ve boylece
ow=- to— 717 (o)
I'(to,2r)\I'(¢to,min{1,27})
sonludur.

Aynm zamanda

F1(77) — a1 = fl"(to’Qr) |7] - T|a_1f<T)dV(T)
(7)
(7)

- fr(to,2r)\r(t0,min{1,2r}) |t0 - T|a71f(7)
a—1
+ fF(to,2r)\r(to,min{l,zr}) |t0 - T‘ f(T)

= JpIn—7° fa()dv(r) = I fi(n).
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saglanir. Dolayisiyla

Mﬂm—aJSZ;an—ﬂaﬂﬂﬂuwﬂ-

elde ederiz. Her t € I'(to, ) i¢in Lemma 2.3.3 ile

@r@m»—{ﬁa)uam>—aﬂm4m

< T Sy (o 11— 71 1)l (r)) do)

< ooy (Jrm In = 7127 2v(m)) 1F(7)]dv()

IN

IN

corH(3r + [t — to])® fr(tmgr) |f(7)|dv(T)
o~ (31 + [t —to )| fll 11w

4| fllLraa(m)

IN

IN

elde edilir.

a2:/‘ ity — 7|7~ £ ()du(7)
I'(to,max{1,2r)\I(t0,2r)

diyelim. ¢t € I'(¢p,r) igin

umw—aﬂ§/° FO It —71* = Jto — 7]° | d(r)
T\I'(to,2r)

dir. Lemma 2.3.4 uygulanarak,

) — sl < 2700t o] fopian |7t — 71-2d(7)
= 217a|t — t0|[1

elde ederiz. I; i¢in,

s

<
Il
o

L = fl"(t,2j+2r)\1"(t,2j+1qn) |f(T)]]to — T|a72du(7)
a—2
‘ (21r) fr (t,29%2r) |f(7)|dv(7)

et ||f||LL1,a(r)

IN
18

<.
I

<

[\]

elde ederiz.

Bu durumda her ¢ € I'(¢y,r) igin

[Bo(t) = aof < 27| £, o)
45

)
rot fF(t0,3r) (fl"(r,3r+|t—t0|) | — 7] tdu( )> |f(7)|dv(7)

(4.8)



elde ederiz.
oy =atar= [ to — 711 (7)dw(7)
I'(to,max{1,2r})

ile gosterelim.

Son olarak, (4.8) ve (4.9) dan C5 = 4%cy + 2272% olmak iizere

sup ——— I° t—a‘dutSC B
roswer VT (fo, 7) /r(to,T) Fi8) = ag| df) < Collfllas-etm

elde ederiz. Boylece

Iy I°f(t) — ay

1
‘BMO = 2r>soli§er v (to,r) ff(toﬂ‘) v (f)

< 203 ||f||L1,1—a(P)

(4.10)

elde edilir.
1 < =2 durumunda Teorem 4.2 in 1) ifadesi, Lemma 2.3.2 ve (4.10) esitsizliginden

elde edilir.

2) f € Lya(l), 1 <p= 12 ve ty € I olsun, ve I bir sonlu egri olsun. Bu durumda

e = [ o=t @)
\I'(to,1)
olmak tizere 2V < [ = vT < 2VN*1 ve

If(t) = I"f(t) + C(f)
olacak gekilde bir N dogal sayis1 vardir. Bu durumda C(f) sonludur:
CUN < Jupn lto = 711 F(D)ldv(7)
= 3 frqaanran to = "))
€ 32 Sl

< N2V fllny s —am)
o 1/p
< N2 || fllz, a0y

3) M operatoriiniin sinirlihg

M) < s [ ()

tel', r>
1 /
= ||f||L1,1—a(F) < Co/p ||f||Lﬂ7)\(P)
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esitsizliklerinden elde edilir. Boylece Teorem 4.2 ispatlanir. m
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5. TARTISMA ve SONUC

Bu calismada, ilk olarak Carleson egrileri ve L, y Morrey uzaylar1 tanimlanmigtir.
Kompleks diizlemde Carleson egrileri iizerinde maksimal operator ve Cauchy singiiler
integral operatorii tanmimlanmig ve bu operatorlerin L, , (I') Morrey uzaylarinda
sinirhiligy verilmigtir:

Teorem I' bir Carleson egrisi olsun. Cyr < vI' (t,7) < Cor ,C7 > 0 ve Cy > 0 sart1
altinda M maksimal operatorii L, (I'), 1 <p < 00, 0 < A < 1 uzayinda smirhdir.
Teorem I' bir Carleson egrisi olsun. St singiiler operatorii, 1 < p < oo, 0 < A <1

olmak tizere L, , (I') uzaylarinda siirhdir.

Daha sonra, Carleson egrileri iizerinde tamimlanan [* Riesz potansiyel operatorii

icin agagidaki Sobolev-Morrey esitsizlikleri ispatlanmigtir:

Teorem I' bir Carleson egrisi, 0 < a < 1,0<A<1l—avel<p< % olsun.
1)1 <p<i2icin

a.) Eger ]13 - % = %5 ise 1%, L, \(I') dan Ly (") ya smirhdar.

b.) I' nin sonsuz egri olmasi durumunda /® nin L, (') dan L, ,(I") ya sinirh olmasi

i¢in icin gerek ve yeter kosul % — % = 125 olmasidir.

2) p=1i¢in

a.) Eger 1 — % = 1% ise 1%, Ly (') dan W Ly (I") ya smurhdir.

b.) T min sonsuz egri olmasi durumunda /* min Ly z(I') dan WL, ,(T') ya siurh

olmasi i¢in i¢in gerek ve yeter kosul % — % = 175 olmasidr.

Ayrica, tezin sonunda Carleson egrileri tizerindeki M kesirli maksimal operatoriiniin
simirhligy iizerine bir sonug verilmig ve 1 < p = (1 — \)/a limit durumunda, eger
I’ bir sonsuz Carleson egrisi ise bu durumda modifiye edilmig I potansiyel oper-
atortiniin L, ,(I') den BMO(I") ya smirh ve eger I', bir sonlu Carleson egrisi ise ¢

operatoriiniin L, y(I') den BMO(I") ya siirh oldugu gosterilmistir.
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