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Üniversitesi Matematik Anabilim Dal¬), bu konuda çal¬̧smama yard¬mc¬ olan Dr.
Canay AYKOL YÜCE�ye, çal¬̧smalar¬m s¬ras¬nda destek ve anlay¬̧s¬n¬esirgemeyen
sevgili aileme en içten sayg¬ve teşekkürlerimi sunar¬m.
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5. TARTIŞMA ve SONUÇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
KAYNAKLAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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1. G·IR·IŞ

Lp;�(Rn) Morrey uzaylar¬

kfkLp;� = sup
r>0;x2Rn

r�
�
p kfkLp(B(x;r)) <1

olacak biçimdeki tüm fonksiyonlar¬n kümesidir, burada 0 � � � n, p � 1, f 2

Llocp (Rn) ve B(x; r); Rn de x merkezli r yar¬çapl¬yuvar¬göstermektedir. Bu uza-

ylar eliptik k¬smi diferensiyel denklemlerin çözümlerinin lokal davran¬̧slar¬n¬n çal¬̧s-

malar¬nda Morrey (1938) taraf¬ndan ortaya ç¬kar¬lm¬̧st¬r. Morrey uzaylar¬varyas-

yonlar analizi teorisindeki problemlerde oldukça kullan¬̧sl¬d¬r. Ayr¬ca Navier-Stokes

ve Schrödinger denklemleri, süreksiz katsay¬l¬eliptik problemler potansiyel teorisinde

önemli uygulamalar¬ortaya ç¬km¬̧st¬r.

F. Chiarenza ve M. Frasca (1987) Lp;� (Rn) Morrey uzay¬nda

Mf(x) = sup
t>0
jB (x; t)j�1

Z
B(x;t)

jf(y)jdy

maksimal operatörünün s¬n¬rl¬l¬¼g¬n¬çal¬̧sm¬̧st¬r, burada jB(x; t)j, Rn de t yar¬çapl¬x

merkezli B (x; t) yuvar¬n¬n Lebesgue ölçüsünü göstermektedir.

Öklid uzaylar¬üzerinde tan¬mlanan Lp;� Morrey uzaylar¬nda

I�f(x) =

Z
Rn

f(y)dy

jx� yjn�� ; 0 < � < n

Riesz potansiyellerinin s¬n¬rl¬l¬¼g¬Peetre (1969) ve Adams (1975) taraf¬ndan çal¬̧s¬lm¬̧st¬r.

Lokal Morrey-tipi uzaylarda maksimal operatörler ve Riesz potansiyellerinin s¬n¬r-

l¬l¬¼g¬için gerek ve yeter şartlar Burenkov vd. (2004, 2007)�de verilmi̧stir.

� lokal düzeltilebilir bir Jordan e¼grisi olmak üzere her t 2 � ve r > 0 için

��(t; r) � c0r

oluyorsa bu durumda � e¼grisine bir Carleson e¼grisi (regüler e¼gri) denir, burada

� (t; r)

� (t; r) := � \B (t; r) , t 2 �, r > 0;
1



şeklinde tan¬mlan¬r.

Kazimetrik ölçü uzaylar¬üzerinde tan¬mlananMorrey uzaylar¬nda, özellikle Carleson

e¼grileri üzerinde tan¬mlanan Lp;�(�) Morrey uzaylar¬nda

Mf(t) = sup
t>0
(��(t; r))�1

Z
�(t;r)

jf(�)jd�(�)

M maksimal operatörünün s¬n¬rl¬l¬¼g¬n¬N. Samko (2008) çal¬̧sm¬̧st¬r.

� bir Carleson e¼grisi üzerinde tan¬mlanan Lp;� Morrey uzaylar¬nda

S�f (t) =
1

�

Z
�

f (�) d�

� � t

Cauchy singüler integral operatörünün s¬n¬rl¬l¬¼g¬Kokilashvili ve Meskhi (2008), Samko

(2008) taraf¬ndan çal¬̧s¬lm¬̧st¬r.

Bu tez beş bölümden oluşmaktad¬r. Birinci bölüm giri̧s k¬sm¬na ayr¬lm¬̧st¬r.

·Ikinci bölümde, temel tan¬m ve teoremlere yer verilmi̧stir, ayr¬ca Carleson e¼grileri ve

Morrey uzaylar¬hat¬rlat¬larak baz¬temel özellikleri verilmi̧stir. Üçüncü bölümde ilk

önce, maksimal fonksiyon tan¬mlan¬p, ard¬ndan bu operatörün kompleks düzlemde

Carleson e¼grileri üzerinde tan¬ml¬Lp;� (�) Morrey uzaylar¬nda s¬n¬rl¬l¬¼g¬verilmi̧stir.

Daha sonra, S� Cauchy singüler integral operatörlerinin Lp;� (�)Morrey uzaylar¬nda

varl¬k ve s¬n¬rl¬l¬¼g¬araşt¬r¬lm¬̧st¬r. Dördüncü bölümde kompleks düzlemde Carleson

e¼grileri üzerinde tan¬mlanan Morrey uzaylar¬ndaki Riesz potansiyel operatörleri ve

kesirli maksimal operatörlerin s¬n¬rl¬l¬¼g¬gösterilmi̧stir. Ard¬ndan, Carleson e¼grileri

üzerindeki kesirli maksimalM� operatörünün s¬n¬rl¬l¬¼g¬üzerine bir sonuç verilmi̧stir.

Ayr¬ca, 1 � p = (1 � �)=� limit durumunda, e¼ger � bir sonsuz Carleson e¼grisi ise

bu durumda modi�ye edilmi̧s eI� potansiyel operatörünün Lp;�(�) den BMO(�) ya
s¬n¬rl¬ve e¼ger �, bir sonlu Carleson e¼grisi ise I� operatörünün Lp;�(�) den BMO(�)

ya s¬n¬rl¬ oldu¼gu gösterilmi̧stir. Beşinci bölümde, tez çal¬̧smas¬ndan elde edilen

sonuçlar verilmi̧stir.
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2. KURAMSAL TEMELLER

2.1 Temel Tan¬m ve Teoremler

Tan¬m 2.1.1 X, K cismi üzerinde bir vektör uzay¬olsun. E¼ger bir

k:k : X ! R x! kxk

dönüşümü 8x; y 2 X ve 8a 2 K için

N1) kxk � 0 ve kxk = 0, x = �,

(N2) kaxk = jajkxk,

(N3) kx+ yk � kxk+ kyk

özelliklerini sa¼gl¬yorsa bu dönüşüme X üzerinde norm denir. (X; k:k) ikilisine

normlu bir vektör uzay¬denir. (X; k:k) normlu uzay¬k¬saca X ile gösterilir.

Tan¬m 2.1.2 X bir küme olsun. E¼gerX in alt kümelerinin birA s¬n¬f¬için aşa¼g¬daki

özellikler sa¼glan¬yorsa bu durumda A s¬n¬f¬na X üzerinde bir cebirdir denir:

(i) X 2 A

(ii) Her E 2 A için Ec = XnE 2 A

(iii) k = 1; 2; :::; n için Ek 2 A ise
n
[
k=1
Ek 2 A

E¼ger (iii) şart¬yerine

�Her n 2 N için En 2 A )
1
[
n=1
En 2 A�

şart¬konulursa A cebirine bir �� cebiri ad¬verilir.

Tan¬m 2.1.3 X bir küme ve A; X üzerinde bir ��cebiri olsun. Bu durumda

(X;A) ikilisine ölçülebilir uzay, A daki her bir kümeye de A-ölçülebilir küme veya

k¬saca ölçülebilir küme ad¬verilir.

Tan¬m 2.1.4 (X;A) bir ölçülebilir uzay ve f : X ! R bir fonksiyon olsun. E¼ger

8� 2 R için

f�1 (]�;+1[) = fx 2 X : f (x) > �g 2 A

oluyorsa f ye ölçülebilir fonksiyon denir. X üzerindeki ölçülebilir fonksiyonlar¬n

ailesi M (X;A) ile gösterilir.
3



Tan¬m 2.1.5 (Ölçü ve Sonlu Ölçü) (X;A) bir ölçülebilir uzay olsun. A üzerinde

tan¬ml¬geni̧sletilmi̧s reel de¼gerli bir � fonksiyonu

(i) � (;) = 0

(ii) Her A 2 A için � (A) � 0

(iii) Her ayr¬k (An) dizisi için �
� 1S
n=1

An

�
=

1P
n=1

� (An)

özelliklerini sa¼gl¬yorsa bu fonksiyona ölçü denir. E¼ger her A 2 A için � (A) <1 ise

� ye sonlu ölçü ad¬verilir.

Tan¬m 2.1.6 (X;A; �) bir ölçü uzay¬olsun. 0 < p <1 olmak üzere

Lp =

8<:f 2M(X;�) :
Z
X

jf jp d� <1

9=;
kümesine p-inci kuvvetten integrallenebilen fonksiyonlar s¬n¬f¬denir. Lpuzay¬nda bir

f fonksiyonunun normu

kfkp =

8>><>>:
�R
X

jf jp d�
� 1

p

; 1 � p <1

ess sup
x2X

jf(x)j ; p =1

ile tan¬mlan¬r.

ess sup
x2X

jf(x)j = inf f� : � (x 2 X : jf(x)j > �) = 0g

dir.

Tan¬m 2.1.7 (X; �) bir topolojik uzay ve M � X olsun. I bir indis kümesi olmak

üzere, e¼ger M � [i2IAi ise fAigi2I ailesine M kümesinin bir örtüsü denir. E¼ger Ai

ler aç¬k ise fAigi2I ailesine M kümesinin bir aç¬k örtüsü denir. J � I olmak üzere

M � [i2IAi ise fAigi2J ailesine bir alt örtü denir. E¼ger J sonlu ise fAigi2J ailesine

bir sonlu alt örtü denir.

Tan¬m 2.1.8 (X; �) bir topolojik uzay ve M � X olsun. E¼ger M nin her aç¬k

örtüsünün sonlu bir alt örtüsü varsa M ye X in kompakt alt kümesi denir. E¼ger X

kompakt ise X e kompakt uzay denir.

(X; d) metrik uzay¬nda

M � X kompaktt¬r , 8 (xn) �M için 9 (xnk) � (xn) var 3 xnk ! x 2M
4



dir. E¼ger bir X metik uzay¬nda M � X kompakt ise M kapal¬ve s¬n¬rl¬d¬r, fakat

tersi do¼gru de¼gildir.

Tan¬m 2.1.9 f : X ! C sürekli bir fonksiyon olmak üzere, f fonksiyonunun deste¼gi

f (x) 6= 0 şart¬n¬sa¼glayan x noktalar¬n¬n kapan¬̧s¬d¬r ve

Suppf = fx : f (x) 6= 0g

ile gösterilir. E¼ger f fonksiyonunun deste¼gi kompakt bir küme ise bu durumda f

kompakt destekli fonksiyon ad¬n¬al¬r.

Tan¬m 2.1.10 f ölçülebilir bir fonksiyon olmak üzere her kompakt K kümesi üz-

erinde Z
K

jf j d� <1

ise f fonksiyonuna lokal (yerel) integrallenebilirdir denir ve f 2 Lloc1 (Rn) ile gösterilir.

Lloc1 (Rn) =

8<:f :
Z
K

jf j d� <1;K � Rn; K kompakt

9=;
ve 1 � p � 1 için

Llocp (Rn) =

8><>:f :
0@Z
K

jf jp d�

1A 1
p

<1;K � Rn; K kompakt

9>=>;
ile gösterilir.

Teorem 2.1.1 E¼ger 1 � p � 1 ise Lp (Rn) � Llocp (Rn) � Lloc1 (Rn) dir.

Teorem 2.1.2 (Hölder Eşitsizli¼gi) p > 1 ve 1
p
+ 1
q
= 1 olmak üzere f 2 Lp, g 2 Lq

olsun. Bu durumda fg 2 L1 olur ve

kfgkL1 � kfkLpkgkLq

eşitsizli¼gi sa¼glan¬r. Bu eşitsizli¼ge Hölder eşitsizli¼gi denir (Sadosky 1979).

Tan¬m 2.1.11 A � Rn olsun.

�A =

8<: 1 ; x 2 A

0 ; x =2 A
5



ile tan¬mlanan �A fonksiyonu A n¬n karakteristik fonksiyonu olarak adland¬r¬l¬r.

Tan¬m 2.1.12 B (t; r) = fz 2 C : jz � tj < rg t merkezli r yar¬çapl¬aç¬k yuvard¬r.

Tan¬m 2.1.13 a < b olmak üzere

C [a; b] , [a; b] aral¬¼g¬nda reel de¼gerli fonksiyonlar

C1(a; b),(a; b) aral¬¼g¬nda reel de¼gerli sürekli türevlenebilir fonksiyonlar

C1 [a; b] , C [a; b]\C1(a; b) içinde a ve b de türevleri tek tara�¬sonlu limitlere sahip

fonksiyonlar olarak tan¬mlan¬r.

Tan¬m 2.1.14 E¼ger 1 < p <1 olmak üzere herhangi bir B yuvar¬için

[w]Ap = supB[w]Ap(B)

= supB

�
1
jBj
R
B
w(x)dx

��
1
jBj
R
B
w(x)1�p

0
dx
�p�1

<1

ise w a¼g¬rl¬k fonksiyonu Ap Muckenhoupt s¬n¬f¬ndand¬r denir, burada supremum

bütün B yuvarlar¬üzerinden al¬nmaktad¬r ve 1=p+ 1=p0 = 1 biçimindedir.

p = 1 iken, hemen her x için

Mw(x) � Cw(x) (2.1)

olacak şekilde C > 1 varsa w 2 A1 dir ve (2.1) eşitsizli¼gini sa¼glayan C nin in�mumu

[w]A1 ile gösterilir.

p ve p0 üsleri ile Hölder eşitsizli¼gi kullan¬l¬rsa

1 =
1

jBj

Z
B

dx =
1

jBj

Z
B

w(x)1=pw(x)�1=pdx � [w]1=pAp

elde edilir.

(2.1) eşitsizli¼ginde p!1 iken limite geçilirse

1

jBj

Z
B

w(x)dx � C exp
�
1

jBj

Z
B

logw(x)dx

�
elde edilir, bu durumda eşitsizlik sa¼gland¬¼g¬nda w 2 A1 denir. Ayr¬ca, p =1 iken

A1 =
S
1�p<1Ap ile tan¬mlan¬r. A1 için verilen bu iki tan¬m eşde¼gerdir (Garcia-

Cuerva ve Rubio de Francia 1985).

Teorem 2.1.3 (Lebesgue Diferensiyelleme Teoremi) f 2 Lloc1 (Rn) olsun. Bu

durumda h:h:x 2 Rn için
6



lim
r!0

1

jB(x; r)j

Z
B(x;r)

f(y)dy = f(x)

olur (Grafakos 2004).

Tan¬m 2.1.15 f : Rn ! R, f 2 Lloc1 (Rn) olsun. M maksimal operatörü

Mf(x) = sup
r>0

1

jB(x; r)j

Z
B(x;r)

jf(y)jdy

biçiminde tan¬mlan¬r.

Aşa¼g¬daki teorem maksimal operatörün Lebesgue uzaylar¬ndaki s¬n¬rl¬l¬¼g¬n¬karak-

terize etmektedir.

Teorem 2.1.4 Rn üzerinde tan¬mlanan f fonksiyonu için

(i) f 2 Lp(Rn); 1 < p � 1 ise Mf maksimal fonksiyonu hemen her yerde sonludur.

(ii) f 2 Lp(Rn); 1 < p � 1 ise Mf 2 Lp(Rn) ve

kMfkLp � ApkfkLp

eşitsizli¼gi gerçeklenir.

(iii) E¼ger f 2 L1(Rn) ise 8� > 0 için

jfx 2 Rn :Mf(x) > �gj � A

�

Z
Rn

jf(x)jdx

sa¼glan¬r, burada A sadece boyuta ba¼gl¬bir sabittir (Stein 1970).

Riesz Potansiyeli

Tan¬m 2.1.16 f 2 L1 (Rn) olmak üzere

bf (x) = 1

(2�)n

Z
Rn
f (y) e�ix�ydy

ile tan¬mlanan bf fonksiyonuna f nin Fourier dönüşümü denir. Bu dönüşüm

bf (x) = (2�)�n
2

Z
Rn
f (y) e�ix�ydy

7



veya eşde¼ger olarak bf (x) = Z
Rn
f (y) e�2�ix�ydy

al¬nabilir. E¼ger n = 1 ve f 2 L1 (R) ise bu durumda

bf (x) = 1

2�

Z +1

�1
f (y) e�ixydy

olur.

Tan¬m 2.1.17 f yeterince düzgün bir fonksiyon olmak üzere f fonksiyonunun

Laplasyeni;

�f =
nX
j=1

@2f

@x2j

biçiminde tan¬mlan¬r.

f 2 S olmak üzere

F�1
�
f̂(x)

�
= f(x) =

1

(2�)
n
2

Z
Rn

ei(xy)f̂(y)dy

dir. ei(xy) = ei(x1y1+:::+xnyn) olmak üzere

� (�) f(x) =
1

(2�)
n
2

Z
Rn

�
��ei(xy)

�
f̂(y)

=
1

(2�)
n
2

Z
Rn

�
� @

@x21
eix1y1 � @

@x22
eix2y2 � :::+ @

@x2n
eixnyn

�
f̂(y)dy

=
1

(2�)
n
2

Z
Rn

jyj2 ei(xy)f̂(y)dy

I�f = F�1 jyj�� F , f 2 S (2.2)

oldu¼gundan

) (��) f = F�1 jyj2 Ff

yaz¬labilir. Bilindi¼gi gibi Laplace operatörü eliptik operatördür. P. Seeley göster-

mi̧stir ki e¼ger bir eliptik L operatörü için

Lf = F�1�(x)Ff

8



formülü mevcut ise o zaman onun istenilen kompleks kuvveti için

Lzf = F�1�z(x)Ff

geçerlidir.

Dolay¬s¬yla bu teoreme göre Laplace operatörü için

(��)z f = F�1 jyj2z Ff

yaz¬labilir. Buradan z = ��
2
için

(��)�
�
2 f = F�1 jyj�� Ff (2.3)

oldu¼gu görülür. Yani (2.2) ve (2.3) den görülür ki Riesz potansiyelinin ve ��

n¬n negatif kesir kuvvetinin genelleşmi̧s anlamda Fourier dönüşümleri ayn¬d¬r. Bu

durumda

I� = (��)�
�
2 , 0 < � < n (2.4)

ifadesi yaz¬labilir. (2.3) ün yard¬m¬yla Laplace operatörünün negatif kesir kuvvetleri

tan¬mlanabilir, burada 0 < � < n ve

c(�) = �
n
2 2�

�
�
�
2

�
�
�
n
2
� �

2

�
olmak üzere

(I�f) (x) =
1

c(�)

Z
Rn

f(y)

jx� yjn��
dy

I� operatörüne Riesz potansiyeli denir.

I�f Riesz potansiyelinin Lp uzaylar¬ndaki s¬n¬rl¬l¬¼g¬aşa¼g¬daki teoremle verilir:

Teorem 2.1.5 (Hardy-Littlewood-Sobolev Teoremi)

0 < � < n, 1 � p < q <1, 1
p
� 1

q
= �

n
olsun.

(i) E¼ger f 2 Lp(Rn) ise I�f Riesz potansiyeli hemen her x için mutlak yak¬nsakt¬r.

(ii) E¼ger p > 1 ise bu durumda

kI�fkLq � Ap;qkfkLp

eşitsizli¼gi gerçeklenir.

9



(iii) E¼ger f 2 L1(Rn) ise bu durumda

j fx 2 Rn : jI�f(x)j > �g j �
�
AkfkL1
�

�q
d¬r (Stein 1970).

2.2 Carleson E¼grileri

Tan¬m 2.2.1 [a; b] � R olmak üzere, 
 : [a; b]! C şeklinde tan¬mlanan sürekli bir

fonksiyona kompleks düzlemde bir e¼gri (veya yay) denir.


 : [a; b]! C e¼grisinin parametrik denklemi 
 = x (t) + iy (t), t 2 [a; b] ile verilir.

Tan¬m 2.2.2 C nin bir � alt kümesi, ba¼glant¬l¬ve uç uca birleştirilmi̧s sonlu say¬da

yaylar¬n birleşimi olarak temsil ediliyorsa buna birleşik yay denir.

Tan¬m 2.2.3 
 (t) = x (t) + iy (t) nin 8t 2 [a; b] için 
0 (t) = x0 (t) + iy0 (t) türevi

varsa 
 e¼grisine diferensiyellenebilir e¼gri denir.

Tan¬m 2.2.4 E¼ger t 2 [a; b] için 
 (t) = x (t)+ iy (t) ile verilen e¼grinin 8t 2 [a; b] için


0 (t) = x0 (t) + iy0 (t) türevi mevcut, sürekli ve s¬f¬rdan farkl¬ise 
 e¼grisine düzgün

e¼gri denir. Burada x0 (a), x0 (b), y0 (a), y0 (b)

x0 (a) = lim
t!a+

x (t)� x (a)
t� a

tek tara�¬ türev yaklaş¬m¬d¬r. 
0 (t) 6= 0 olan bir t noktas¬ için, bu türevin bir

geometrik yorumu vard¬r, yani; 
 (t) noktas¬nda 
 n¬n yönünde bir te¼get vektörü

vard¬r ve şekil 2.1 de gösterilmi̧stir.

Şekil 2.1 
 n¬n te¼get vektörü
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Tan¬m 2.2.5 Bir 
 : [a; b]! C e¼grisinin uzunlu¼gu

` (
) = sup f` (
; P ) : P [a; b] nin bir parçalan¬̧s¬g

= sup

(
nX
k=1

j
 (tk)� 
 (tk�1)j , P : a = t0 < t1 < � � � < tn = b
)

ile tan¬mlan¬r.

Tan¬m 2.2.6 
 : [a; b] ! C ve P : a = t0 < t1 < � � � < tn = b, [a; b] aral¬¼g¬n¬n tüm

parçalan¬̧slar¬n¬göstermek üzere

` (
; P ) =
nX
k=1

j
 (tk)� 
 (tk�1)j <1

ise 
 e¼grisine düzeltilebilir e¼gri denir.

Tan¬m 2.2.7 C nin bir � altkümesi, kompleks düzlemin T := fz 2 C : jzj = 1g

birim çemberine homeomorf ise bu durumda � ya Jardon e¼grisi denir.

Tan¬m 2.2.8 � e¼grisi l = �� olmak üzere �(t) = s yay uzunluk ölçüsü ile kompleks

düzlemde � = ft 2 C : t = t(s); 0 � s � l � 1g düzeltilebilir Jordan e¼grisi olsun.

B (t; r) = fz 2 C : jz � tj < rg olmak üzere

� (t; r) := � \B (t; r) , t 2 �, r > 0;

ile tan¬mlan¬r.

Tan¬m 2.2.9 � lokal düzeltilebilir bir birleşik yay olsun ve � n¬n Lebesgue uzunluk

ölçüsü ile donat¬lm¬̧s oldu¼gunu kabul edelim. Ölçülebilir bir 
 � � alt kümesinin

ölçüsü j
j ile tan¬mlanacakt¬r. Özel olarak, j� (t; ")j, � (t; ") u oluşturan say¬labilir

çokluktaki yaylar¬n uzunluklar¬toplam¬d¬r.

Geometrik olarak ` (
; P ) ifade edilemez, fakat 
 n¬n "içine çizilmi̧s" bir belirli poligo-

nal yolun uzunlu¼gudur. n = 4 için bir parçalanma durumu şekil 2.2 de gösterilmi̧stir.

Şekil 2.2 ` (
; P ) yay uzunlu¼gu
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Uyar¬2.2.1 Düzeltilebilir e¼griler için aşa¼g¬daki özellikler sa¼glan¬r.

1) E¼ger 
 bir düzeltilebilir e¼gri ise bu durumda onun tersi olan �
 ile 
 n¬n uzunlu¼gu

ayn¬d¬r. Yani ` (
) = ` (�
) d¬r.

2) E¼ger 
 e¼grisi 
 = 
1 + 
2 + � � �+ 
n şeklinde yaz¬labiyorsa


 düzeltilebilirdir , her 1 � k � n için 
k lar düzeltilebilirdir

ve ` (
) = ` (
1) + ` (
2) + � � �+ ` (
n) dir

3)E¼ger �, paremetre de¼gi̧simi ile 
 dan elde edilebiliyor ise bu durumda bu e¼grilerin

biri düzeltilebilir oldu¼gunda di¼geri de düzeltilebilirdir ve ` (
) = ` (�) d¬r.

Tan¬m 2.2.10 Düzgün bir � : 
 (t) = x (t) + iy (t), a � t � b e¼grisinin uzunlu¼gu

�� = ` (
) =

Z



jdzj =
bZ
a

q
x0 (t)2 + y0 (t)2dt

ile verilir.


 : [a; b]! C bir düzeltilebilir e¼grisi ile onun uzunluk fonksiyonunu eşlemek mümkündür.

�
 : [a; b] ! R uzunluk fonksiyonu aşa¼g¬daki gibi tan¬mlan¬r: �
 (a) = 0 ve

a < t � b için �
 (t), 
 y¬ [a; t] aral¬¼g¬na k¬s¬tlayarak elde edilen e¼grinin uzun-

lu¼gudur. �
 fonksiyonu [0; ` (
)] aral¬¼g¬nda azalmayan ve sürekli bir fonksiyondur.

Şimdi s = �
 (t) oldu¼gunda 
0 (s) = 
 (t) ¬sa¼glayan bir 
0 : [0; ` (
)] ! C fonksi-

yonunu tan¬mlayal¬m. 
0 ¬n iyi tan¬ml¬ve sürekli oldu¼gu aç¬kt¬r. ` (
) > 0 oldu¼gunu

kabul edersek,böylece 
0 bir e¼gridir. 
, h = �
 parametre de¼gi̧simi ile 
0 dan elde

edilece¼gi aç¬kt¬r. 
0 ¬n düzeltilebilir ve ` (
0) = ` (
) oldu¼gu yukar¬daki uyar¬dan

görülebilir. ·Ilave olarak 
0 ¬n �
0 uzunluk fonksiyonu 0 � s � ` (
) için �
0 (s) = s

formülüne de sahiptir.Geometrik olarak �
, 
0 (s) = 
 (a) dan başlayan ve daima 


ile özelleştirilen "yönler" e dikkat ederek 
 e¼grisi boyunca bir s uzunlu¼gunda hareket
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ederek var¬lan noktad¬r ve bu şekil 2.3 de gösterilmi̧stir.

Şekil 2.3 �
 fonksiyonu


0 ¬n bu tari�, 
 n¬n yay uzunlu¼gu parametrizasyonudur.

Örnek olarak, e¼ger z1 6= z2 ile 
 = [z1; z2] do¼gru parças¬ise 
0

0 � s � jz2 � z1j için 
0 (s) = z1 + s [(z2 � z1) = jz2 � z1j]

ile verilir.

Uyar¬ 2.2.2 Bir � birleşik yay¬ kompleks düzlemin bir alt kümesinde s¬n¬rl¬ ise

s¬n¬rl¬d¬r denir. Yani � � fz 2 C : jzj < Rgolacak şekilde R > 0 varsa � s¬n¬rl¬d¬r

denir. Aksi taktirde � s¬n¬rl¬ de¼gildir denir. [0; 1]�e homeomor�k yaylar¬n veya

Jardon e¼grilerinin daima s¬n¬rl¬oldu¼g¬aç¬kt¬r. Ayr¬ca;

[0;1) veya (�1;+1) a homeomor�k lokal düzeltilebilir bir yay s¬n¬r-
l¬d¬r , Bu yay düzeltilebilirdir.

Uyar¬2.2.3 Aşa¼g¬daki eşitlik

�� (t; r) = j� (t; r)j

her t 2 � ve r > 0 için sa¼glan¬r (V. Kokilashvili, V. Paatashvili, and S. Samko,

2006).

Tan¬m 2.2.11 � lokal düzeltilebilir bir Jordan e¼grisi olsun. E¼ger her t 2 � ve " > 0

için

��(t; ") � C�" olacak şekilde C� (2.5)

sabiti varsa bu durumda � e¼grisine bir Carleson e¼grisi (regüler e¼gri) denir. Burada

C� > 0, r ve " dan ba¼g¬ms¬z Carleson sabitidir. (2.5) koşulu genellikle Carleson

koşulu olarak ifade edilir.
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Lemma 2.2.1 � lokal düzeltilebilir birleşik bir yay olsun ve �1; :::;�N sonlu say¬da

yaylar¬n � = �1 [ ::: [ �N olacak şekilde birleşimi olsun.

�j(t; ") � �(t; ") � �1(t; ") [ ::: [ �N(t; ")

oldu¼gundan ve

j�j(t; ")j � j�(t; ")j � j�1(t; ")j+ :::+ j�N(t; ")j

ifadesinden

�bir Carleson e¼grisidir, Herbir �j Carleson e¼grisidir.

elde edilir.

Uyar¬2.2.4 i) � s¬n¬rl¬e¼gri ise genellikle (2.5) koşulu göz önüne al¬n¬r. Bu durumda

� s¬n¬rl¬ise (2.5) koşulu

9"0 > 0 : sup
t2�

sup
0<"<"0

j�(t; ")j
"

<1 (2.6)

koşuluna denktir. Asl¬nda (2.6) nin (2.5) den elde edildi¼gi aç¬kt¬r. Tersine; " � "0
ise

j�(t; ")j
"

� j�(t; ")j
"0

� j�j
"0

ifadesi (2.6) koşuluyla birlikte (2.5)�i verir.

ii)� s¬n¬rl¬olmayan bir e¼gri ise (2.5) ile (2.6) denk de¼gildir. Bu �lokal incelik�nin

inşas¬ile görülebilir ki, � yay¬n¬n �n parçalar¬kenar uzunluklar¬2n olan bir kareler

dizisinin içinde n2 ile kaŗs¬laşt¬r¬labilir.

n = 1; 2; 3; � � � için xn;k = n2 � n+ k ;(k = 0; 1; 2; � � � ; 2n) için yn;k = xn;k + 2ni

olsun. Böylece

�n :=

( [
k=1;3;:::;2n�1

[xn;k; yn;k]

)
[
( [
k=1;3;:::;2n�1

[xn;k; yn;k+1]

)
[
( [
k=1;3;:::;2n�1

[yn;k; yn;k+1]

)

ile � =
1[
n=1

�n tan¬mlan¬r. Bir resmin çiziminden sonra her " > 1
2
için
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j�(t; ")j
"

< 1 +
p
2 oldu¼gu kolayca görülebilir. Fakat

���(n2 + ni; np2)��
n
p
2

� 2n+ 2n:2n

n
p
2

=
p
2 + 2

p
2n!1

d¬r. Böylece (2.6) , "0 = 1
2
ile sa¼glan¬r. Fakat (2.5) sa¼glanmaz.

Örnek 2.2.1 � := [0; 2�] [ freir : r � 2�g olsun. Her t 2 � için " < � iken

j�(t; ")j < 2�" oldu¼gu kolayca görülebilir. Di¼ger taraftan R > 2� ise bu durumda ;

j�(0; R)j = 2� +
rZ
2�

��d(reir)�� = 2� + rZ
2�

p
1 + r2dr >

rZ
2�

rdr =
R2

2
� 2�2

olur. R!1 iken
j�(0; R)j
R

!1 olur.

Şekil 2.4 reir Aŗsimed sprali

Uyar¬2.2.5 E¼ger t, � e¼grisinin bir uç noktas¬ise bu durumda

� := fz 2 C : jz � tj = "; " yeterince küçükg

çemberi üzerinde bir noktaya sahip oldu¼gu sürece j�(t; ")j � " olur. t nin � e¼grisinin

veya � Jardon e¼grisinin bir s¬n¬r noktas¬olmamas¬durumunda benzer şekilde yeter-

ince küçük her " için j�(t; ")j � 2" oldu¼gu görülür. Bu özellikle C� � 2 den daima

elde edilir. Ayr¬ca �s¬n¬rl¬bir e¼gri ise;

� bir Carleson e¼grisidir, Yeterince küçük her " ve her t 2 �için " � j�(t; ")j � C�"

dir. S¬n¬rl¬Carleson e¼grileri �(t; ") nun küçük parçalar¬n¬n ölçüleri fz 2 C : jz � tj < "g

disklerinin çaplar¬ile kaŗs¬laşt¬r¬labilir olan s¬n¬rl¬e¼griler olarak tan¬mlanabilir.
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Sonuç 2.2.1

Lokal düzeltilebilir bir birleşik � e¼grisi Carleson e¼grisidir.,

C 0� := supz2C sup">0
j� \B(z; ")j

"
<1

(2.7)

dir.

·Ispat. Burada B(z; ") := f� 2 C : j� � zj < "g d¬r. (2.7) sa¼glan¬rsa (2.5) in sa¼g-

land¬¼g¬aç¬kt¬r. Tersine, farzedelim ki (2.5) geçer olsun. Bu durumda C 0� � 2C� ise

(2.7).sa¼glan¬r E¼ger � \ B(z; ") = ? ise bu durumda
j� \B(z; ")j

"
= 0 d¬r. Di¼ger

taraftan e¼ger bir t 2 �\B(z; ") varsa bu durumda j� \B(z; ")j
"

= C�2" oldu¼gundan

� \B(z; ") � � \B(t; 2") olur. Bu durumda ispat tamamlan¬r.

Önerme 2.2.1

� = f� 2 C : � = x+ if(x) , a � x � bg (2.8)

olsun. E¼ger

8x 2 (a; b) için f 2 C [a; b] \ C1(a; b) ve jf 0(x)j �M

sa¼glan¬yorsa bu durumda � bir Carleson e¼grisidir.

·Ispat. E¼ger t = x0 + if(x0) 2 � ve " > 0 ise �(t; "),

max fa; x0 � "g � x � min fb; x0 + "g u sa¼glayan tüm x + iy 2 C in tüm şeritleri

taraf¬ndan kapsan¬r. Sonuç olarak;

j�(t; ")j =
R

�(t;")

jd�j �
minfb;x0+"gR
maxfa;x0�"g

p
1 + (f 0(x))2dx

�
x0+"R
x0�"

p
1 +M2dx = 2

p
1 +M2"

elde edilir.

Örnek 2.2.2 (2.8) ile tan¬mlanan bir Carleson e¼grisi için � > 0 alal¬m ve

x 2 (0; 1] için f(x) =

8<: x� sin( 1
x
) , x 2 (0; 1]

0 , x = 0

biçiminde tan¬mlayal¬m. f 2 C [0; 1] \ C1(0; 1) oldu¼gu aç¬kt¬r.

�, � � 2 için Carleson e¼grisidir. (2.9)
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Şekil 2.5 x sin 1
x
in gra�¼gi

Şekil 2.6 x2 sin 1
x
in gra�¼gi

Önerme 2.2.2 Her r 2 (0; d] için

jr'0(r)j �M ve ' 2 C (0; d] \ C1(0; d)

ve

� = f0g [
�
� 2 C : � = rei'(r)

	
ise � bir Carleson e¼grisidir.

·Ispat. � n¬n s¬n¬rl¬bir e¼gri oldu¼gu aç¬kt¬r. t 2 � için �(t; ") parças¬orjin merkezli

max f0; jtj � "g ve min fd; jtj+ "g yar¬çapl¬iki çemberin aras¬nda kalan halkan¬n bir
17



alt kümesidir. Böylece;

j�(t; ")j =
R

j�(t;")j
jd�j �

minfd;jtj+"gR
maxf0;jtj�"g

p
1 + r2('0(r))2dr

�
jtj+"R
jtj�"

p
1 +M2dr = 2

p
1 +M2"

olur.

Örnek 2.2.3 Bir � 2 R sabiti için '(r) = �� log r olsun. � = 0 durumu bir do¼gru

parças¬d¬r. � > 0 (veya � < 0) ise r ! 0 iken

� = re�i� log r = r1�i� , ( log r = ln r dir)

orijinde saat yönünün tersine yukar¬kayd¬rma (veya saat yönünde) bir �logaritmik

spiral�tan¬mlar. r'0(r) = �� oldu¼gundan ' 2 C [0; d] \ C1(0; d) ve her r 2 (0; d]

için jr'0(r)j � M oldu¼gundan yukar¬daki önermeden logaritmik spiralin Carleson

yay¬oldu¼gunu elde ederiz.

Tan¬m 2.2.12 � Carleson e¼grisi olmak üzere 1 � p <1 için Lp(�) Lebesgue uzay¬

kfkLp(�) =

8><>:
�R
�
jf(t)jpd�(t)

�1=p
; 1 � p <1

ess sup
t2�
jf(t)j ; p =1

ess sup
t2�
jf(t)j = inf f� : � (t 2 � : jf(t)j > �) = 0g

sonlu olacak biçimde � üzerindeki tüm ölçülebilir fonksiyonlar¬n kümesidir.

Tan¬m 2.2.13 1 < p <1 olmak üzere WLp (�) zay¬f Lp (�) uzay¬

kfkWLp(�)
= sup

r>0
r (� ft 2 � : jf (t)j > rg)1=p <1

olacak biçimde lokal integrallenebilir fonksiyonlar¬n kümesi olarak tan¬mlan¬r.

2.3 Lp;� Morrey Uzaylar¬

Bu k¬s¬mda öncelikle 0 � � � n + p olmak üzere, Lp;� (Rn) uzay¬tan¬t¬lacak ve bu

uzay üzerinde tan¬mlanan norm verilecektir. Daha sonra, � n¬n durumlar¬na göre
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Lp;� (Rn) uzay¬n¬n yap¬s¬hakk¬nda baz¬sonuçlar verilecektir. Daha da önemlisi, tez-

imizin ana maddesini oluşturan 0 < � < n için Lp;� (Rn)Morrey uzay¬tan¬t¬lacakt¬r.

Tan¬m 2.3.1 (Lp;� Uzay¬) 
; Rn nin aç¬k ve ba¼glant¬l¬bir alt kümesi ve

1 � p <1, 0 � � � n+ p olmak üzere 
 daki f lokal integrallenebilen fonksiyonlar

uzay¬n¬, Lp;� = Lp;�(
) ile gösterece¼giz öyle ki her x0 2 
 için (f; x0 ve r ye ba¼gl¬)

herhangi bir � say¬s¬vard¬r veZ
B(x0;r)\


jf(x)� �jp dx � Cr�

eşitsizli¼gi gerçeklenir, burada C sabiti sadece f ye ba¼gl¬d¬r ve B (x0; r), merkezi x0

ve yar¬çap¬r olan aç¬k yuvar¬göstermektedir. Bu durumda

kfk = inf C
1
p (2.10)

ile tan¬mlanan k:k, Lp;� uzay¬nda bir yar¬- normdur.(f sabit oldu¼gunda kesin olarak

kfk = 0 d¬r).

Lp;� Uzay¬n¬n Yap¬s¬

Lp;� uzaylar¬n¬n yap¬lar¬hakk¬nda baz¬sonuçlar aşa¼g¬da verilmi̧stir.

a) � = 0 oldu¼gunda Lp;� = Lp, yani bilinen Lebesgue uzay¬d¬r.Z



jf(x)jp dx � c <1

dir.

b) 0 < � < n oldu¼gunda Lp;� Morrey uzay¬, yani her x0 2 
 ve her r içinZ
B(x0;r)\


jf(x)jp dx � Cr�

sa¼glanacak biçimdeki fonksiyonlar¬n uzay¬d¬r. Bu durum Campanato taraf¬ndan

gösterilmi̧stir.
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c) � = n oldu¼gunda Lp;� = " John - Nirenberg uzay¬, yani her x0 2 
 ve her r için

uygun bir � ile Z
B(x0;r)\


�
exp

�
jf(x)� �j

C

�
� 1
�
dx � rn

dir.

d) n < � � n+ p oldu¼gunda Lp;� = Lip�, � = (��n)
p
, yani her x ve y 2 
 için

jf(x)� f(y)j � C jx� yjn , 0 < � � 1

sa¼glan¬r. Bu durum Camponato ve Meyers taraf¬ndan ba¼g¬ms¬z olarak gösterilmi̧stir.

Tüm durumlarda C sadece f ye ba¼gl¬d¬r (Peetre 1969).

Tan¬m 2.3.2 0 � � < 1, 1 � p < 1 ve f 2 Llocp (�) olmak üzere Lp;�(�) Morrey

uzaylar¬

kfkLp;�(�) = sup
r>0; t2�

r�
�
p kfkLp(�(t;r))

= sup
r>0; t2�

�
r��

Z
�(t;r)

jf (�)jp d� (�)
�1=p

<1

olacak biçimdeki fonksiyonlar¬n uzay¬d¬r. � < 0 veya � > 1 iken Lp;�(�) = � d¬r,

burada �, � üzerinde 0 a denk olan fonksiyonlar¬n kümesini belirtmektedir.

Ayr¬ca, 0 � � < 1, 1 � p <1 ve f 2 WLlocp (�) olmak üzere WLp;�(�) ile

kfkWLp;� � kfkWLp;�(�) = sup
r>0; t2�

r�
�
p kfkWLp(�(t;r))

sonlu olacak biçimdeki fonksiyonlar¬n uzay¬belirtilmektedir.

Lemma 2.3.1 � bir Carleson e¼grisi ve 1 � p <1 olsun. Bu durumda

Lp;1 (�) = L1 (�)

ve

kfkL1(�) < kfkLp;1(�) < c
1=p
0 kfkL1(�)

dir.
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·Ispat. f 2 L1(�) olsun. Bu durumda�
r�1
Z
�(t;r)

jf(�)jpd�(�)
�1=p

� c1=p0 kfkL1(�)

dir. Böylece f 2 Lp;1(�) ve

kfkLp;1(�) � c
1=p
0 kfkL1(�)

dir. f 2 Lp;1(�) olsun. Lebesgue diferensiyellenebilme teoreminden

lim
r!0

(��(t; r))�1
Z
�(t;r)

jf(�)jpd�(�) = jf(t)jp

elde ederiz. Buradan

jf(t)j =
�
limr!0(��(t; r))

�1 R
�(t;r)

jf (�)jp d� (�)
�1=p

� sup
t2�; 0<r�1

�
(��(t; r))�1

R
�(t;r)

jf (�)jp d�(�)
�1=p

� kfkLp;1(�)

bulunur. Böylece f 2 L1(�) ve kfkL1(�) � kfkLp;1(�) dir.

Lemma 2.3.2 � bir Carleson e¼grisi, 1 � p <1 and 0 � � < 1 olsun. E¼ger � = 1��
p

ise, bu durumda 1=p+ 1=p0 = 1 olmak üzere

Lp;� (�) � L1;1�� (�) ve kfkL1;1��(�) � c
1=p0

0 kfkLp;�(�)

dir.

·Ispat. f 2 Lp;�(�); 1 � p <1; 0 � � < 1 ve �p = 1� � olsun. Hölder eşitsizli¼gi

ile R
�(t;r)

jf(�)jd�(�) �
�R

�(t;r)
jf(�)jpd�(�)

�1=p �R
�(t;r)

d�(�)
�1=p0

� c1=p
0

0 r1=p
0
�R

�(t;r)
jf (�)jp d� (�)

�1=p
dir. ·Ilave olarak,

r��1
R
�(t;r)

jf(�)j d�(�) � c1=p
0

0 r��1=p
�R

�(t;r)
jf(�)jp d�(�)

�1=p
= c

1=p0

0

�
r��

R
�(t;r)

jf(�)jp d�(�)
�1=p

� c1=p
0

0 kfkLp;�(�)
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dir. Böylece f 2 L1;1��(�) ve

kfkL1;1��(�) � c
1=p0

0 kfkLp;�(�)

dir.

Tan¬m 2.3.3 � bir Carleson e¼grisi ve f 2 Lloc1 (�) olsun.

f nin maksimal fonksiyonu;

Mf(t) = sup
t>0
(��(t; r))�1

Z
�(t;r)

jf(�)jd�(�)

biçiminde tan¬mlan¬r.

Tan¬m 2.3.4 (BMO Uzay¬) f 2 Lloc1 (�) olmak üzere BMO(�) uzay¬

f�(t;r) = (��(t; r))
�1
Z
�(t;r)

f(�)d�(�):

olmak üzere

kfkBMO(�) = sup
r>0; t2�

(��(t; r))�1
Z
�(t;r)

jf(�)� f�(t;r)jd�(�) <1

olacak biçimdeki fonksiyonlar¬n uzay¬d¬r.

Tan¬m 2.3.5 (Keskin (sharp) Maksimal Fonksiyon) f 2 Lloc1 (�) ve

f�(t;r) = (��(t; r))
�1
Z
�(t;r)

f(�)d�(�):

olmak üzere keskin maksimal fonksiyon

M#f (t) = sup
r>0

1

j� (t; r)j

Z
�(t;r)

��f (�)� f�(t;r)�� d� (�)
şeklinde tan¬mlan¬r, burada supremum � da t leri içeren tüm �(t; r) ler üzerinden

al¬n¬r. Bu integrallerin her biri �(t; r) ler üzerinde f nin ortalama sal¬n¬m¬n¬ölçer.

Diyebiliriz ki; e¼gerM#f (x) fonksiyonu s¬n¬rl¬ysa f ortalama s¬n¬rl¬sal¬n¬ml¬fonksiyon-

dur. Bu özellikteki fonksiyonlar uzay¬, BMO(�) uzay¬olarak adland¬r¬l¬r ve

BMO =
�
f (x) 2 Lloc1 :M#f (x) 2 L1
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dir.

BMO üzerindeki norm

kfkBMO =


M#f




1

olarak tan¬mlan¬r.

Tan¬m 2.3.6 (Kesirli Maksimal Operatör) � bir Carleson e¼grisi ve 0 < � < 1

olsun. Her f 2 Lloc1 (�) kesirli maksimal M� operatörü

M�f(t) = sup
t>0
(��(t; r))��1

Z
�(t;r)

jf(�)jd�(�)

dir.

Tan¬m 2.3.7 � bir Carleson e¼grisi ve f 2 Lloc1 (�) olsun. f nin Riesz potansiyeli

I�f(t) =

Z
�

f(�)d�(�)

jt� � j1�� ; 0 < � < 1

biçiminde tan¬mlan¬r.

Riesz potansiyellerinin Lp;� (Rn) Morrey uzaylar¬ndaki s¬n¬rl¬l¬¼g¬Peetre (1969) ve

Adams (1975) taraf¬ndan çal¬̧s¬lm¬̧st¬r.

0 < � < n ve 0 � � < n, 1 � p < n��
�
olsun.

1) E¼ger 1 < p < n��
�
ise bu durumda I� n¬n Lp;� (Rn) den Lq;� (Rn) ye s¬n¬rl¬l¬¼g¬için

gerek ve yeter koşul 1
p
� 1

q
= �

n�� olmas¬d¬r.

2) E¼ger p = 1 ise bu durumda I� nin L1;� (Rn) den WLq;� (Rn) ye s¬n¬rl¬l¬¼g¬ için

gerek ve yeter koşul 1� 1
q
= �

n�� olmas¬d¬r.

E¼ger � = n
p
� n

q
ise bu durumda � = 0 ve Teorem 1 in ifadesi Lp (Rn) de Hardy-

Littlewood-Sobolev�in klasik sonucuna dönüşür:

1 < p < q <1 için, I�; Lp(Rn) den Lq(Rn) ya s¬n¬rl¬d¬r, � =
n

p
� n
q

ve

p = 1 < q <1 için, I�; L1(Rn) den WLq(Rn) ya s¬n¬rl¬d¬r, � = n� n
q
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(Adams, 1975).

Kazimetrik ölçü uzaylar¬üzerinde tan¬mlananMorrey uzaylar¬nda, özellikle Carleson

e¼grileri üzerinde tan¬mlanan Lp;�(�)Morrey uzaylar¬nda I� potansiyel operatörünün

s¬n¬rl¬l¬¼g¬Kokilashvili ve Meskhi (2008) taraf¬ndan çal¬̧s¬lm¬̧st¬r ve aşa¼g¬daki teoremi

ispatlanm¬̧st¬r.

Teorem 2.3.1 � bir Carleson e¼grisi, 1 < p < q < 1, 0 < � < 1, 0 < �1 <
p
q
,

�1
p
= �2

q
ve 1

p
� 1

q
= � olsun. Bu durumda I� operatörü Lp;�1(�) uzay¬ndan Lq;�2(�)

ye s¬n¬rl¬d¬r.

Tan¬m 2.3.8 � bir Carleson e¼grisi ve f 2 Lloc1 (�) olsun. f nin modi�ye edilmi̧s

potansiyel operatörü;

eI�f(t) = Z
�

�
jt� � j��1 � jt0 � � j��1��n�(t0;1)(�)

�
f(�)d�(�); t0 2 �

biçiminde tan¬mlan¬r.

Çeşitli uzaylarda Carleson e¼grileri üzerinde tan¬ml¬Maksimal operatör ve potansiyel

operatör Bötcher ve Karlovich (1997,1999), Karlovich (2008), Kokilashvili (1990),

Kokilashvili ve Meskhi (2001,2008), Kokilashvili ve Samko (2008), Samko(2008) gibi

birçok matematikçi taraf¬ndan çal¬̧s¬lm¬̧st¬r.

Lemma 2.3.3 (Kokilashvili ve S. Samko, 2008) � bir Carleson e¼grisi ve � > 0

olsun, bu durumda c1 ve c2 t 2 � ve r > 0 ya ba¼gl¬olmayan pozitif sabitler olmak

üzere

c1r
� �

Z
�(t;r)

jt� � j��1 d� (�) � c2r�

dir.

Lemma 2.3.4 t, � , t0 2 C ve 0 < � < 1 olsun. Bu durumda 2 jt� t0j � jt0 � � j

için ��jt� � j��1 � jt0 � � j��1�� � 21�� jt0 � � j��2 jt� t0j
eşitsizli¼gi geçerlidir.

24



·Ispat. Ortalama de¼ger Teoremindenmin fjt� � j; jt0 � � jg � � � max fjt� � j; jt0 � � jg

olmak üzere

��jt� � j��1 � jt0 � � j��1�� � jjt� � j � jt0 � � jj � ���2
eşitsizli¼gini elde ederiz.

jt� � j � jt0 � � j+ jt� t0j � 3
2
jt0 � � j;

jt� � j � jt0 � � j � jt� t0j � 1
2
jt0 � � j

ve dolay¬s¬yla

jt� � j � jt0 � � j � jt� t0j �
1

2
jt0 � � j;

jt� � j � jt0 � � j � �
1

2
jt� t0j

dir. Buradan
1

2
jt0 � � j � jt� � j �

3

2
jt0 � � j

ve

jjt� � j � jt0 � � jj �
1

2
jt� t0j

elde edilir ve böylece ispat tamamlan¬r.
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3. CARLESON E¼GR·ILER·I ÜZER·INDE TANIMLI MORREY

UZAYLARINDA MAKS·IMAL OPERATÖR ve

CAUCHY S·INGÜLER OPERATÖRÜNÜN SINIRLILI¼GI

Bu bölümde kompleks düzlemde Carleson e¼grileri üzerinde maksimal operatör ve

Cauchy singüler integral operatörü tan¬mlan¬p ve bu operatörlerin Lp;� (�) uzay-

lar¬nda s¬n¬rl¬l¬¼g¬verilecektir.

3.1 Maksimal Fonksiyon

Maksimal fonksiyon harmonik analizin önemli konular¬aras¬ndad¬r. Özellikle k¬smi

türevli denklemler teorisi ve matematiksel �zikte birçok uygulamalar¬vard¬r.

Bu kesimde maksimal operatörün, Carleson e¼grileri üzerinde s¬n¬rl¬l¬¼g¬incelenecektir.

f 2 Lloc1 (�) olsun. Lebesgue Diferensiyelleme Teoremi�ne göre

lim
r!0

(��(t; r))�1
Z
�(t;r)

f(�)d�(�) = f(t)

elde ederiz, burada B (t; r) = fz 2 C : jz � tj < rg t merkezli r yar¬çapl¬aç¬k yuvar

olmak üzere

� (t; r) := � \B (t; r) , t 2 �, r > 0;

d¬r. Yukar¬daki limit yerine supremum f yerine jf j al¬narak f nin maksimal fonksi-

yonu tan¬mlan¬r.

Maksimal fonksiyon Rn nin standart kümelerinde n = 1 için Hardy Littlewood

taraf¬ndan tan¬mlanm¬̧s veWiener taraf¬ndan n- boyutluRn Öklid uzay¬na geni̧sletilmi̧stir

(Stein 1970).

� bir Carleson e¼grisi ve f 2 Lloc1 (�) olsun. f nin maksimal fonksiyonu

Mf(t) = sup
t>0
(��(t; r))�1

Z
�(t;r)

jf(�)jd�(�)

biçimindedir.

K¬smi diferensiyel denklemlemlerin çal¬̧s¬lmas¬ile ilgili olarak Morrey (1938) da giri̧s

yap¬lan ve çeşitli kitaplarda verilen Lp;� (�) Morrey uzaylar¬nda maksimal, singüler

ve potansiyel operatörlerin s¬n¬rl¬l¬¼g¬son y¬llarda araşt¬r¬lm¬̧st¬r (Adams vd. (2004),
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Alvarez ve Plerez (1994), Arai ve Mizuhara (1997), Chiarenza ve Frasca (1987), Di

Fazio ve Ragusa (1991), Ding ve Lu. (2002), Nakai (1994), Nakai (2001), Nakai

ve Sumitomo (2001), Palagachev ve Softova (2004), Peetre(1966), Peetre (1969),

Pradolini ve Salinas (2004), Shirai (2006), Spanne (1965), Stampacchia (1965)).

Morrey uzaylar¬ndaki maksimal operatörlerin s¬n¬rl¬l¬¼g¬(Chiarenza ve Frasca (1987))

taraf¬ndan ispatlanm¬̧st¬r.

Aşa¼g¬daki ifade Öklidyen uzaylarda (Fe¤erman ve Stein (1971), Lemma 1; Stein

(1993)) geçerlidir ve homojen uzaylar için Pradolini ve Salinas (2004) daki Önerme

3.4 de verilmi̧stir.

C1r � �� (t; r) � C2r ; C1 > 0 ve C2 > 0 (3.1)

Lemma 3.1.1 (Fe¤ermann-Stein eşitsizli¼gi) � bir Carleson e¼grisi olsun. Bu

durumda Z
�

(Mf) (�)pw (�) d�(�) �
Z
�

f (�)p (Mw) (�) d�(�) (3.2)

� üzerindeki bütün negatif olmayan f , w fonksiyonlar¬için sa¼glan¬r.

Lp;�(�) da, M maksimal operatörün s¬n¬rl¬l¬¼g¬n¬Samko (2008) çal¬̧sm¬̧s ve aşa¼g¬daki

teoremi ispatlam¬̧st¬r.

Teorem 3.1.1 � bir Carleson e¼grisi olsun. (3.1) şart¬alt¬ndaM maksimal operatörü

Lp;� (�), 1 � p <1, 0 � � < 1 uzay¬nda s¬n¬rl¬d¬r.

·Ispat. (3.2) Fe¤erman-Stein eşitsizli¼gi ile,Z
�

(Mf (�))p ��(t;r) (�) d� =

Z
�(t;r)

(Mf (�))p d� � C
Z
�

jf (�)jpM��(t;r) (�) d�

� C
Z

�(t;2r)

jf (�)jp d� + C
1X
j=0

Z
�(t;2j+1r)n�(t;2jr)

jf (�)jpM��(t;r) (�) d�
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elde ederiz. (3.1) şart¬alt¬nda geçerli olan

� (t; 2r) = � \B (t; 2r) ve B (t; 2r) : f� : jt� � j < 2rg

oldu¼gundan

�n� (t; 2r) = f� : jt� � j � 2rg \ �

elde edilir. Bu durumda

jt� � j � r � r ) (jt� � j � r) � r

olur.

) r

(jt� � j � r) � 1

dir. Ayr¬ca

M��(t;r) = sup
r>0

1
j�(t;r)j

Z
�(t;r)

��(t0;r) (y) dy

��(t0;r)
=

8<: 1 , t0 2 � (t; r)

0 , t0 =2 � (t; r)

= sup
r>0

1
j�(t;r)j

Z
�(t;r)\�(t0;r)

dy = c

elde edilir

M��(t;r) (�) � C
r

(��(t; r)� r) (3.3)

eşitsizli¼gini kullanaca¼g¬z, ispat (3.1) şart¬alt¬nda Burenkov ve Guliyev (2004), de

oldu¼gu durumla ayn¬d¬r. Bu durumda

Z
�(t;r)

(Mf (�))p d� � C
Z

�(t;2r)

jf (�)jp d� + C
1X
j=1

Z
�(t;2j+1r)n�(t;2jr)

jf (�)jpM��(t;r) (�) d�

� C
Z

�(t;2r)

jf (�)jp d� +
1X
j=1

C

[2j � 1]

Z
�(t;2j+1r)

jf (�)jp d� .
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elde edilir. Böylece

kMfkLp;� = sup
t2�;r>0

1

r�

Z
�(t;r)

(Mf (�))p d�

� sup
t2�;r>0

C

r�

Z
�(t;2r)

jf (�)jp d� +
1X
j=1

C

[2j � 1]1��
sup

t2�;r>0

1

r�

Z
�(t;r)

jf (�)jp d�

= C1 kfkLp;�
(3.4)

bulunur.

Ayr¬ca p = 1 için

kMfkL1;� � c kfkL1;�

oldu¼gundan

t jfMf > tg \ � (t; r)j � cr� kfkL1;�

elde edilir.

3.2 Cauchy Singüler ·Integralleri

Bu kesimde, kompleks düzlemde Carleson e¼grileri üzerindeki Cauchy singüler integ-

ral operatörü tan¬mlanacak ve ard¬ndan Lp;� (�) uzaylar¬nda s¬n¬rl¬l¬¼g¬araşt¬r¬lacak-

t¬r.

Tan¬m 3.2.1 � yönlendirilmi̧s bir e¼gri olsun. " > 0 için,

(S"f) (t) :=
1

�

Z
�n�(t;")

f (�)

� � td�

ile bir t 2 � noktas¬nda bir f : �! C fonksiyonunun S"f kesikli singüler integralini

tan¬mlayal¬m.

f 2 L1 (�) ise (S"f) (t) nin iyi tan¬ml¬ve sonlu oldu¼gu aç¬kt¬r.

Tan¬m 3.2.2 t 2 � ve f her " > 0 için (S"f) (t) iyi tan¬ml¬ve sonlu olacak şekilde

bir fonksiyon olsun. E¼ger

lim
"!0

(S"f) (t) := lim
"!0

1

�

Z
�n�(t;")

f (�)

� � td� (3.5)
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limiti mevcut ve sonlu ise bu limit (Sf) (t) ile gösterilir ve t noktas¬nda f nin Cauchy

singüler integralinin de¼geri olarak adland¬r¬l¬r. S nin � üzerinde tan¬mland¬¼g¬n¬

belirtmek amac¬yla ço¼gunlukla S yerine S� yaz¬lacakt¬r.

Aşa¼g¬daki teorem � n¬n s¬n¬rl¬ve f nin sabit oldu¼gu durum içindir.

Teorem 3.2.1 � bir basit düzeltilebilir e¼gri ve t 2 � noktas¬nda te¼get (iki-yanl¬)

mevcut olsun. Bu durumda

(S1) (t) := lim
"!0

1

�

Z
�n�(t;")

d�

� � t

vard¬r ve sonludur. E¼ger � bir Jordan e¼grisi ise bu durumda (S1) (t) = 1 dir. E¼ger

�, A noktas¬nda başlayan ve B noktas¬nda sonlanan bir yay ise bu durumda

(S1) (t) :=
1

�
log

B � t
A� t � 1 (3.6)

dir, burada log ((B � t) = (A� t)), Cn� da analitik ve z, t ye soldan yaklaş¬rken

sonsuzda s¬f¬r olan log ((B � z) = (A� z)) fonksiyonunun dal¬n¬n s¬n¬r de¼geridir.

·Ispat. ·Ilk olarak belirtelim ki (3.6) n¬n sa¼g taraf¬

1

�
(log (B � t)� log (A� t)� � (t))

d¬r, burada log (z � t) �, �\� = ftg olacak şekilde t yi sonsuza birleştiren herhangi

bir e¼gri olmak üzere Cn� da sürekli logaritman¬n herhangi bir dal¬d¬r ve � (t) 2

f��; �g

� (t) = lim
�!t+

arg (� � �)� lim
�!t�

arg (� � �)

ile tan¬ml¬d¬r.

s 7�! z (s), t = (s0) ¬n bir komşulu¼gunda � n¬n do¼gal parametrizasyonu olsun. Bu

durumda

s! s0 iken z (s) = z (s0) + z0 (s0) (s� s0) + o (js� s0j)

d¬r. Genelli¼gi bozmaks¬z¬n, z (s0) = 0 ve z0 (s0) = 1 kabul edebiliriz; yani,

z (s) = s� s0 + o (js� s0j) (3.7)
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olsun. n 2 f2; 3; : : :g verilsin, bu durumda

js� s0j � �n için jo (js� s0j)j < (1=n) js� s0j (3.8)

olacak şekilde bir �n > 0 vard¬r. �n nin, 0 a monoton azalan oldu¼gunu kabul edebili-

riz. (3.7), (3.8) ve arcsin (1=n) < �= (2n) eşitsizli¼ginden, arc 
n := f� 2 � : ` (� ; t) � �ng

kümesi

�n :=
�
rei� : r 2 R, � �= (2n) < � < �= (2n)

	
bölgesinde içerilir. a ve b, 
2 nin uç noktalar¬n¬göstersin. (�n
2) [ fa; bg kümesi

kompaktt¬r ve � 7�! j� j (= j� � tj) bu küme üzerinde sürekli ve pozitiftir. �0 > 0

bu fonksiyonun minimumu olsun. Bu durumda � (0; �0) sadece 
2 nin noktalar¬n¬

içerir:

" � �0 için � (0; ") = 
2 (0; ") (3.9)

olur.

Şimdi �n � �0 olacak şekilde bir n � 2 tamsay¬s¬n¬sabitleyelim ve 0 < " < �n=2

olsun. � 1, � 2 2 
2 için, 
2 nin � 1, � 2 aras¬ndaki altyay¬n¬n uzunlu¼gunu ` (� 1; � 2) ile

gösterelim. � = z (s) 2 
2 ve j� j � " olsun. Bu durumda (3.8),

" � jz (s)j = js� s0 + o (js� s0j)j > js� s0j �
1

2
js� s0j =

1

2
js� s0j

olmas¬n¬gerektirir, böylece js� s0j � 2" < �n olur. Böylece yine (3.8) den dolay¬,

" � jz (s)j = js� s0 + o (js� s0j)j > js� s0j �
1

n
js� s0j =

n� 1
n

js� s0j

olur. Özet olarak, � 2 
n � �n ve

` (0; �) = js� s0j <
n

n� 1" (3.10)

oldu¼gunu elde ederiz.

P (") := 
2\fz 2 C : jzj = ", Re z � 0g kümesi kompaktt¬r ve z 7�! s�s0 := ` (0; z)

P (") üzerinde süreklidir.

s� (") := min fs : z (") 2 P (")g , s+ (") := max fs : z (") 2 P (")g

� (") := "ei arg z(s�(")), � (") := "ei arg z(s+("))

olsun.


2 \ fz 2 C : Re z � 0g yay¬, 0 ve � (") aras¬ndaki �1 ("), � (") ve � (") aras¬ndaki
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�2 (") ve � (") ve b aras¬ndaki �3 (") altyaylar¬n¬n birleşimidir. �
+
2 (") := f� 2 �2 (") : j� j � "g

diyelim. (3.10) dan ` (0; � (")) < n"= (n� 1) oldu¼gunu elde ederiz. ` (0; � (")) �

j� (")j = " oldu¼gundan,

���+2 (")�� � j�2 (")j = ` (� (") ; � (")) < n

n� 1"� " =
"

n� 1

oldu¼gu görülür. Sonuç olarak�������
Z

�+2 (")

d�

�

������� �
Z

�+2 (")

jd� j
j� j �

1

"

Z
�+2 (")

jd� j � 1

n� 1

d¬r ve böylece � (") 2 
n � �n olmas¬ndan dolay¬�������
Z

(
2n
2(0;"))\fz2C:Re z�0g

d�

�
� log b+ log "

������� =

�������
Z

�+2 (")

d�

�
+

Z
�3(")

d�

�
� log b+ log "

�������
� 1

n� 1 +

�������
Z

�3(")

d�

�
� log b+ log "

�������
=

1

n� 1 + jlog b� log � (")� log b+ log "j

=
1

n� 1 + jlog "� log � (")j

=
1

n� 1 + jarg � (")j

<
1

n� 1 +
�

2n
(3.11)

elde ederiz. Benzer şekilde�������
Z

(
2n
2(0;"))\fz2C:Re z�0g

d�

�
+ log a� log "

������� <
1

n� 1 +
�

2n
(3.12)

oldu¼gunu ispatlayabiliriz. (3.11) ve (3.12) eklenerek, n � 2, �n � �0 ve 0 < " < �n=2

iken �������
Z


2n
2(0;")

d�

�
� log b+ log a

������� <
2

n� 1 +
�

n

elde edilir. Bu

lim
"!0

Z

2n
2(0;")

d�

�
= log b� log a
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oldu¼gunu gösterir. Son olarak (3.9) eşitli¼ginden yararlanarak teoremin kalan k¬sm¬

elde edilir.

Singüler integraller hakk¬ndaki klasik kitaplar¬n ço¼gunda (Sf) (t) yi (3.5) ile tan¬m-

lamay¬p, daha ziyade

(Sf) (t) := lim
"!0

1

�i

Z
�n�(t;")

f (�)

� � td� (3.13)

ile tan¬mlam¬̧st¬r. (3.9) eşitli¼ginden, e¼ger � Carleson e¼grisi ve t de iki yanl¬te¼gete

sahip ( hemen hemen tüm t 2 � larda bu beklenir ) ise, bu durumda yeterince küçük

her " > 0 için � [t; "] � � (t; ") � � (t; C�") d¬r. Böylece bu t noktalar¬nda her iki

tan¬m denktir. (Sf) (t) yi hesaplamak için,

(S"f) (t) :=
1

�i

Z
�n�(t;")

f (�)� f (t)
� � t d� +

f (t)

�i

Z
�n�(t;")

d�

� � t (3.14)

yazar¬z. Teorem 3.2.1, (3.14) ün sa¼g taraf¬ndaki ikinci terim her düzeltilebilir � e¼grisi

üzerinde bir limite sahip oldu¼gunu ifade eder. f yeterince düzgün bir fonksiyon ise

(3.14) ün sa¼g taraf¬ndaki birinci terim bir singüleriteye sahip de¼gildir.

Tan¬m 3.2.3 C10 (R2), kompakt destekli bütün g : R2 ! C sonsuz kez sürekli difer-

ensiyellenebilir fonksiyonlar¬n kümesidir, ve C10 (�) ile C
1
0 (R2) deki fonksiyonlar¬n

� ya k¬s¬tlanm¬̧s olanlar¬n kümesidir. C10 (�) � L1 (�) oldu¼gu aç¬kt¬r.

Teorem 3.2.2 � bir basit lokal düzeltilebilir e¼gri ve f 2 C10 (�) olsun. E¼ger t 2 � da

� için (iki yanl¬) te¼get mevcutsa, bu durumda (Sf) (t) limiti mevcuttur ve sonludur.

·Ispat. � n¬n sonlu olmas¬durumunda, Teorem 3.2.1 ve (3.14) formülünden " ! 0

ken Z
�n�(t;")

f (�)� f (t)
� � t d� (3.15)

ifadesi sonludur. t! �

f (�) = f (t) + f 0 (t) (� � t) +O
�
j� � tj2

�
oldu¼gundanZ

�n�(t;")

f (�)� f (t)
� � t d� =

Z
�n�(t;")

O
�
j� � tj2

�
j� � tj d� + f 0 (t)

Z
�n�(t;")

d� (3.16)

33



elde edilir. (3.16) n¬n ikinci teriminin yak¬nsak oldu¼gu aç¬kt¬r. Fonksiyon � ya

giderken
O(j��tj2)
j��tj 2 L1 (�) d¬r ve böylece

G :=

Z
�

O
�
j� � tj2

�
j� � tj d�

mevcut ve sonludur. Yeterince küçük " > 0 ve C <1 sabiti için�������
Z

�n�(t;")

O(j��tj2)
j��tj d� �G

������� �
Z
�

jO(j��tj2)j
j��tj d�

� C" j� (t; ")j � C" j�j

(3.16) n¬n ilk terimi G ye yak¬nsar.

� n¬n sonsuz olmas¬durumunda ise her R > 0 içinZ
�n�(t;")

f (�)

� � td� =
Z

�n�(t;R)

f (�)

� � td� +
Z

�(t;R)n�(t;")

f (�)

� � td� (3.17)

sa¼glan¬r. (3.17) nin ilk terimi supp f � � (t; R) ise yok olur, ikinci terimin yak¬n-

sakl¬¼g¬aç¬kt¬r.

� bir Carleson e¼grisi ve f 2 Lloc1 (�) olmak üzere S� Cauchy singüler integral oper-

atörü

S�f (t) =
1

�

Z
�

f (�) d�

� � t

biçimindedir.

S� Cauchy singüler integral operatörünün s¬n¬rl¬l¬¼g¬n¬ ispatlamak için Calderon-

Zygmund singüler operatörleri için Öklidyen kümelerde bilinen

M#f (x) = sup
r>0

1

j� (t; r)j

Z
�(t;r)

��f (�)� f�(t;r)��p d� (�) , f�(t;r) = Z
�(t;r)

f (�) d� (�)

olmak üzere

M# (jS�f js) (t) � C[Mf (t)]s, 0 < s < 1 (3.18)

noktasal Alvarez-Pérez- tipli eşitsizlikten yararlan¬lacakt¬r.
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S� Cauchy singüler integral operatörünün Lp;� (�), 1 < p <1, 0 � � < 1 s¬n¬rl¬l¬¼g¬n¬

elde etmek için aşa¼g¬daki lemma kullan¬lacakt¬r.

Lemma 3.2.1 X ölçüsü sonsuz olan bir homejen metrik uzay olsun. (3.18) şart¬

alt¬nda,

kMfkLp;�(X) � C


M#f




Lp;�(X)

, 1 < p <1, 0 � � < 1

dir.

·Ispat. ·Ispat, Di Fazio ve Ragusa (1991) dakine benzerdir. Homojen metrik ölçü

uzaylar için geçerli olan Lp normundaki aşa¼g¬daki a¼g¬rl¬kl¬Fe¤erman-Stein eşitsi-

zli¼gini kullanaca¼g¬z:Z
X

jMf (x)jpw (x) dx � C
Z
X

��M#f (x)
��pw (x) dx, w 2 A1, f 2 Lp (X;w) (3.19)

A1 Coifman-Rochberg karakterizasyonuna göre,
h
M�B(x;r)

i"
, 0 < " < 1 fonksiyonu

A1 dedir. (3.19), �B(x;r) �M�B(x;r) �
h
M�B(x;r)

i"
eşitsizli¼gini ve (3.18) kullanarak

Z
B(x;r)

jMf (y)jp d� (y) � C
Z
X

jMf (y)jp
h
M�B(x;r) (y)

i"
d� (y)

� C
Z
X

��M#f (y)
��p hM�B(x;r) (y)

i"
d� (y)

�
Z

B(x;r)

��M#f (y)
��p d� (y)

+
1X
j=0

C

(2j+1 � 1)N"

Z
B(x;2j+1r)

��M#f (y)
��p d� (y)

elde ederiz. Bu durumda (3.4) eşitsizli¼gine benzer olarak,

kMfkLp;� = sup
r>0;x2Rn

1

r�

Z
B(x;r)

(Mf (y))p d� (y)

� sup
r>0;x2Rn

C

r�

Z
B(x;r)

��M#f (y)
��p d� (y)

+

1X
j=0

C

[2j+1 � 1]N"��
sup

r>0;x2Rn

1

r�

Z
B(x;2j+1r)

��M#f (y)
��p d� (y)

" 2
�
�
n
; 1
�
seçimi alt¬nda lemma ispatlan¬r.
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S� singüler operatörünün s¬n¬rl¬e¼griler üzerindeki s¬n¬rl¬l¬¼g¬Kokilashvili, ve Meskhi

(2008) makalesinde ispatlanm¬̧st¬r.

Aşa¼g¬daki teoremde S� singüler operatörünün sonsuz Carleson e¼grileri üzerindeki

s¬n¬rl¬l¬¼g¬n¬n ispat¬verilecektir.

Teorem 3.2.3 � bir Carleson e¼grisi olsun. S� singüler operatörü, 1 < p < 1,

0 � � < 1 olmak üzere Lp;� (�) uzaylar¬nda s¬n¬rl¬d¬r.

·Ispat. Bir s¬n¬rl¬Carleson e¼grisi üzerindeki bir fonksiyon, Morrey uzay¬n¬n korun-

mas¬ile bir sonsuz Carleson e¼grisi için s¬f¬ra sürdürülebilece¼ginden, � n¬n bir sonsuz

e¼gri oldu¼gunu kabul etmek yeterlidir.

(3.5) eşitsizli¼gi ve

kfkp;� = kf sk p
s
;� , 0 < s < 1

eşitli¼gi kullan¬larak

kS�fkp;� = k(S�f)
sk p

s
;� � kM [(S�f)

s]k p
s
;�

bulunur. Lemma 3.2.1 ve (3.18) eşitsizli¼gi ile,

kS�fkp;� � C


M# [(S�f)

s]



p
s
;�
� C k(Mf)sk p

s
;� = C kMfkp;�

elde edilir. Son olarak Teorem 3.1.1. in uygulanmas¬yla

kS�fkp;� � C kMfkp;� = sup
t2�;r>0

1

r�

Z
�(t;r)

(Mf (�))p d�

� sup
t2�;r>0

C

r�

Z
�(t;r)

jf (�)jp d� +
1X
j=1

C

[2j � 1]1��
sup

t2�;r>0

1

r�

Z
�(t;r)

jf (�)jp

= C1 kfkLp;�

bulunur. Böylece S� n¬n Lp;� (�) uzaylar¬nda s¬n¬rl¬l¬¼g¬elde edilir.
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4. CARLESON E¼GR·ILER·I ÜZER·INDE POTANS·IYEL OPERATÖRÜ

ve KES·IRL·IMAKS·IMAL FONKS·IYONU ·IÇ·IN SOBOLEV-MORREY

EŞ·ITS·IZL·IKLER·I

Bu bölümde, Carleson e¼grileri üzerinde tan¬mlanan potansiyel operatörleri için Sobolev-

Morrey eşitsizliklerini ispatlayaca¼g¬z. Ayr¬ca Carleson e¼grileri üzerinde tan¬ml¬Mor-

rey uzaylar¬nda M� kesirli maksimal operatörünün s¬n¬rl¬l¬¼g¬üzerine bir sonuç vere-

ce¼giz.

� bir Carleson e¼grisi ve f 2 Lloc1 (�) olsun. f nin Riesz potansiyeli

I�f(t) =

Z
�

f(�)d�(�)

jt� � j1�� ; 0 < � < 1

biçimindedir.

1 � p <1; f 2 WLlocp (�) olmak üzere WLp;�(�) ile

kfkWLp;� � kfkWLp;�(�) = sup
r>0; t2�

r�
�
p kfkWLp(�(t;r))

sonlu olacak biçimdeki fonksiyonlar¬n uzay¬d¬r.

Teorem 4.1 � bir Carleson e¼grisi, 0 < � < 1, 0 � � < 1� � ve 1 � p < 1��
�
olsun.

1) 1 < p < 1��
�
için

a.) E¼ger 1p �
1
q
= �

1�� ise I
�; Lp;�(�) dan Lq;�(�) ya s¬n¬rl¬d¬r.

b.) � n¬n sonsuz e¼gri olmas¬durumunda I� n¬n Lp;�(�) dan Lq;�(�) ya s¬n¬rl¬olmas¬

için gerek ve yeter koşul 1
p
� 1

q
= �

1�� olmas¬d¬r.

2) p = 1 için

a.) E¼ger 1� 1
q
= �

1�� ise I
�; L1;�(�) dan WLq;�(�) ya s¬n¬rl¬d¬r.

b.) � n¬n sonsuz e¼gri olmas¬durumunda I� n¬n L1;�(�) dan WLq;�(�) ya s¬n¬rl¬

olmas¬için gerek ve yeter koşul 1� 1
q
= �

1�� olmas¬d¬r.

·Ispat. 1) (Yeterlilik) � bir Carleson e¼grisi, 0 < � < 1, 0 � � < 1� �, f 2 Lp;�(�),

1 < p < 1��
�
ve 1

p
� 1

q
= �

1�� olsun. Bu durumda

I�f(t) =

�Z
�(t;r)

+

Z
�n�(t;r)

�
f(�)jt� � j��1d�(�) � A1(t; r) + A2(t; r) (4.1)
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yazar¬z. A1(t; r) için

jA1(t; r)j �
R
�(t;r)

jf(�)jjt� � j��1d�(�)

�
1P
j=1

(2�jr)
��1 R

�(t;2�j+1r)n�(t;2�jr) jf(�)jd�(�)

�
1P
j=1

(2�jr)
��1

��(t; 2�j+1r)Mf(t) � 2c0r�Mf(t)
1P
j=1

2�j�

elde ederiz. Buradan

C1 =
2c0
2� � 1 ile jA1(t; r)j � C1r

�Mf(t) (4.2)

dir. A2(t; r) için, Hölder eşitsizli¼ginden

jA2(t; r)j �
�R

�n�(t;r) jt� � j
��jf(�)jpd�(�)

�1=p
�
�R

�n�(t;r) jt� � j
(�p+��1)p0d�(�)

�1=p0
= J1 � J2

elde ederiz. � < � < 1� �p olsun. J1 için C2 =
�

2�

2����1

�1=p
olmak üzere

J1 =

 
1P
j=0

R
�(t;2j+1r)n�(t;2jr) jf(�)j

pjt� � j��d�(�)
!1=p

� 2
�
p r

���
p kfkLp;�(�)

 
1P
j=0

2(���)j

!1=p
= C2r

���
p kfkLp;�(�)

(4.3)

elde edilir.

J2 için C3 =
c
1=p0
0

1�2(1��)=p�� olmak üzere

J2 =
�R

�n�(t;r) jt� � j
(�p+��1)p0d�(�)

�1=p0

=

 
1P
j=1

R
�(t;2j+1r)n�(t;2jr) jt� � j

(�p+��1)p0d�(�)

!1=p0

�
 

1P
j=1

(2jr)(
�
p
+��1)p0 ��(t; 2j+1r)

!1=p0

�
 
c0

1P
j=1

(2jr)(
�
p
+��1)p0+1

!1=p0
� C3r

�
p
+�� 1

p

(4.4)
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elde edilir. Bu durumda (4.3) ve (4.4) den C4 = C2 � C3 olmak üzere

jA2(t; r)j � C4r
��1
p
+� kfkLp;�(�) (4.5)

elde ederiz. Böylece, (4.2) ve (4.5) den

jI�f(t)j � C1r�Mf(t) + C4r
��1
q kfkLp;�(�)

elde ederiz. r ye göre minimize ederek, r =
h
(Mf(t))�1 kfkLp;�

ip=(1��)
ve

C5 = C1 + C4 olmak üzere

jI�f(t)j � C5 (Mf(t))p=q kfk1�p=qLp;�(�)

elde ederiz. Böylece Teorem 2.3.1 den C6 = C5 � Cp;� olmak üzereR
�(t;r)

jI�f(t)jq d�(�) � C5 kfkq�pLp;�(�)

R
�(t;r)

(Mf(t))p d�(�)

� C5Cp;�r� kfkq�pLp;�(�)
kfkpLp;�(�) = C6r

� kfkqLp;�(�)
dir. Böylece I�f 2 Lq;�(�) ve

kI�fkLq;�(�) � C6kfkLp;�(�)

olur.

(Gereklilik) � bir sonsuz Carleson e¼grisi, 1 < p < 1��
�
olsun ve I�, Lp;�(�) den

Lq;�(�) ya s¬n¬rl¬olsun. t = t(s) 2 � için rt = t(rs); fr(t) =: f(rt) tan¬mlayal¬m.

Bu durumda

kfrkLp;�(�) = r�
1
p sup
�2�; r1>0

�
r��1

R
�(t;rr1)

jf(�)jpd�(�)
�1=p

= r�
1��
p kfkLp;�(�)

ve

I�fr(t) = r
��I�f(rt)

olur. Böylece

kI�frkLq;�(�) = r�� sup
r1>0; t2�

�
r��1

R
�(t;r1)

jI�f(rt)jq d�(t)
�1=q

= r���
1��
q sup

r1>0; t2�

�
r��1

R
�(t;rr1)

jI�f(t)jq d�(t)
�1=q

= r���
1��
q kI�fkLq;�(�)
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elde ederiz.

Cp;q;�, sadece p; q ve � ya ba¼gl¬olmak üzere I� n¬n s¬n¬rl¬l¬¼g¬ndan dolay¬

kI�fkLq;�(�) � Cp;q;�r
�+ 1��

q
� 1��

p kfkLp;�(�);

elde ederiz. E¼ger 1p <
1
q
+ �

1�� ise bu durumda her f 2 Lp;�(�) için

r ! 0 iken kI�fkLq;� = 0

elde ederiz ki bu imkans¬zd¬r. Benzer şekilde, e¼ger 1p >
1
q
+ �

1�� ise bu durumda her

f 2 Lp;�(�) için

r !1 iken kI�fkLq;�(�) = 0

elde ederiz ki bu imkans¬zd¬r. Dolay¬s¬yla 1
p
= 1

q
+ �

1�� dir.

2) (Yeterlilik) f 2 L1;�(�) ve 1� 1
q
= �

1�� olsun.

� f� 2 �(t; r) : jI�f(�)j > 2�g � � f� 2 �(t; r) : jA1(� ; r)j > �g

+� f� 2 �(t; r) : jA2(� ; r)j > �g

elde ederiz.

Teorem 3.1.1 ve (4.2) eşitsizli¼gini hesaba katarak C7 = C1 � C1;� olmak üzere

� f� 2 �(t; r) : jA1(� ; r)j > �g � �
n
� 2 �(t; r) :Mf(�) > �

C1r�

o

� C7r�

�
� r� kfkL1;�(�) ;

elde ederiz.

A2(t; r) için C 04 =
2�

1�2�+��1 olmak üzere

jA2(t; r)j �
R
�n�(t;r) jf(�)jjt� � j

��1d�(�)

�
1P
j=0

(2jr)
��1 R

�(t;2j+1r)n�(t;2jr) jf(�)jd�(�)

�
1P
j=1

(2jr)
��1

(2j+1r)
� kfkL1;�(�)

= C 0�+��14 kfkL1;�(�) = C
0��1
q

4 kfkL1;�(�)
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elde ederiz. Böylece e¼ger C 04r
��1
q kfkL1;�(�) = � dersek, bu durumda jA2(� ; r)j � �

ve sonuç olarak j f� 2 �(t; r) : jA2(� ; r)j > �g j = 0 dir.

Son olarak, C8 = C7 � Cq�14 olmak üzere

� f� 2 �(t; r) : jI�f(�)j > 2�g � C7
�
r�r� kfkL1;�(�) = C8r

�

 
kfkL1;�(�)

�

!q
olur.

(Gereklilik) I�, L1;�(�) den WLq;�(�) ye s¬n¬rl¬olsun

kI�frkWLq;�(�)
= sup

�>0
� sup
�2�; r1>0

�
r��1

R
f�2�(t;r1) : jI�fr(�)j>�g d�(�)

�1=q

= r�� sup
�>0

�r� sup
�2�; r1>0

�
���

R
f�2�(t;r1) : jI�f(r�)j>�r�g d�(�)

�1=q

= r���
1
q sup
�>0

�r� sup
�2�; r1>0

�
r�(r1r)

�� R
f�2�(t;rr1) : jI�f(�)j>�r�g d�(�)

�1=q

= r���
1��
q kI�fkWLq;�(�)

elde ederiz. I� n¬n L1;�(�) den WLq;�(�) ye s¬n¬rl¬l¬¼g¬ndan, C1;q;� sadece q ve � ya

ba¼gl¬olmak üzere

kI�fkWLq;�(�)
� C1;q;�r�+

1��
q
�(1��)kfkL1;�(�)

eşitsizli¼gini elde ederiz. E¼ger 1 < 1
q
+ �

1�� ise bu durumda f 2 L1;�(�) için

r ! 0 iken kI�fkWLq;�(�)
= 0

oldu¼gunu elde ederiz ki bu imkans¬zd¬r. Benzer şekilde, e¼ger 1 > 1
q
+ �

1�� ise bu

durumda her f 2 L1;�(�) için

r !1 iken kI�fkWLq;�(�)
= 0

elde ederiz ki bu imkans¬zd¬r. Böylece 1 = 1
q
+ �

1�� elde ederiz. Böylece Teorem 4.1

nin ispat¬tamamlan¬r.

� bir Carleson e¼grisi ve 0 < � < 1 olsun. Her f 2 Lloc1 (�) için M� kesirli maksimal

operatörü

M�f(t) = sup
t>0
(��(t; r))��1

Z
�(t;r)

jf(�)jd�(�)
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ile tan¬mlan¬r ve her t 2 � için

M�f(t) � I�(jf j)(t) (4.6)

eşitsizli¼gi sa¼glan¬r.

Teorem 4.1 ve (4.6) eşitsizli¼ginin bir sonucu olarak aşa¼g¬daki sonucu elde ederiz.

Böylece M� kesirli maximal operatörünün s¬n¬rl¬l¬¼g¬, I� potansiyel operatörünün

s¬n¬rl¬l¬¼g¬ndan elde edilmi̧s olur.

Sonuç 4.1 � bir Carleson e¼grisi, 0 < � < 1, 0 � � < 1� � ve 1 � p < 1��
�
olsun.

1) 1 < p < 1��
�
için

a.) E¼ger 1p �
1
q
= �

1�� ise M
�; Lp;�(�) dan Lq;�(�) ya s¬n¬rl¬d¬r.

b.) � n¬n sonsuz e¼gri olmas¬durumundaM� n¬n Lp;�(�) dan Lq;�(�) ya s¬n¬rl¬olmas¬

için gerek ve yeter koşul 1
p
� 1

q
= �

1�� olmas¬d¬r.

2) p = 1 için

a.) E¼ger 1� 1
q
= �

1�� ise M
�; L1;�(�) dan WLq;�(�) ya s¬n¬rl¬d¬r.

b.) � n¬n sonsuz e¼gri olmas¬durumunda M� n¬n L1;�(�) dan WLq;�(�) ya s¬n¬rl¬

olmas¬için gerek ve yeter koşul 1
p
� 1

q
= �

1�� olmas¬d¬r.

·Ispat. 1) ve 2) ifadelerinin ispatlar¬n¬n yeterlilik k¬s¬mlar¬ Teorem 4.1 ve (4.6)

eşitsizli¼ginden görülür.

(Gereklilik) Teorem 4.1 deki gibi fr(�) =: f(r�) tan¬mlanm¬̧s olsun. Bu durumda

kM�frkWLq;�(�)
= r���

1��
q kM�fkWLq;�(�)

ve

kM�frkLq;�(�) = r
��� 1��

q kM�fkLq;�(�)

oldu¼gu aç¬kt¬r.

1) 1 < p < 1��
�
, f 2 Lp;�(�) olsun ve M�, Lp;�(�) dan Lq;�(�) ya s¬n¬rl¬olsun. Bu

durumda

kM�fkLq;�(�) = r�+
1��
q kM�frkLq;�(�)

� Cr�+
1��
q kfrkLp;�(�) = Cr

�+ 1��
q
� 1��

p kfkLp;�(�)
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elde edelir. E¼ger 1p >
1
q
+ �

1�� ise bu durumda her f 2 Lp;�(�) için

r ! 0 iken kM�fkLq;�(�) = 0

elde edelir ki bu imkans¬zd¬r. Benzer şekilde, e¼ger1p <
1
q
+ �

1�� ise bu durumda her

f 2 Lp;�(�) için

r !1 iken kM�fkLq;�(�) = 0

elde ederizki bu imkans¬zd¬r, ve böylece 1
p
= 1

q
+ �

1�� buluruz.

2)M� L1;�(�) den WLq;�(�) ya s¬n¬rl¬olsun. Bu durumda C, q ve � ya ba¼gl¬olmak

üzere

kM�fkWLq;�(�)
= r�+

1��
q kM�frkWLq;�(�)

� Cr�+
1��
q kfrkL1;�(�) = Cr

�+ 1��
q
�(1��)kfkL1;�(�)

elde ederiz.

E¼ger 1 < 1
q
+ �

1�� ise bu durumda her f 2 L1;�(�) için

r ! 0 iken kM�fkWLq;�(�)
= 0

elde ederiz, ki bu imkans¬zd¬r. Benzer şekilde, e¼ger 1 > 1
q
+ �

1�� ise bu durumda her

f 2 L1;�(�) için

r !1 iken kM�fkWLq;�(�)
= 0

elde ederiz ki bu da imkans¬zd¬r. Buradan 1 = 1
q
+ �

1�� buluruz. Böylece Sonuç 4.1

nin ispat¬tamamlan¬r.

� bir Carleson e¼grisi ve f 2 Lloc1 (�) olsun. f nin modi�ye edilmi̧s potansiyel oper-

atörü;

eI�f(t) = Z
�

�
jt� � j��1 � jt0 � � j��1��n�(t0;1)(�)

�
f(�)d�(�); t0 2 �

biçimindedir.

� bir sonsuz e¼gri oldu¼gu zaman, p = 1��
�
limit durumunda Teorem 4.1 deki 1)

ifadesi sa¼glanmaz. Üstelik, p = 1��
�
iken her t 2 � için I�f(t) =1 olacak şekilde bir

f 2 Lp;�(�) vard¬r. Bununla beraber, ispatlayaca¼g¬z ki, e¼ger L1(�) uzay¬daha geni̧s
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olan BMO(�) uzay¬ile yer de¼gi̧stirirse, modi�ye edilmi̧s eI� potansiyel operatörü için
Teorem 4.1 deki 1) ifadesi sa¼glan¬r.

Aşa¼g¬daki teorem Mamedkhanov ve Dadashova (2010) taraf¬ndan ispatlanm¬̧st¬r.

Teorem 4.2 � bir Carleson e¼grisi, 0 < � < 1, ve 0 � � � 1�� olsun. Bu durumda

1) E¼ger � sonsuz e¼gri ise, bu durumda modi�ye edilmi̧s eI� potansiyel operatörü
L 1��

�
;�(�) dan BMO(�) ya s¬n¬rl¬d¬r.

2) E¼ger � sonlu e¼gri ise, bu durumda I� potansiyel operatörü L 1��
�
;�(�) danBMO(�)

ya s¬n¬rl¬d¬r.

3)M�, L 1��
�
;�(�) dan L1(�) ya s¬n¬rl¬d¬r.

·Ispat. 1) � bir sonsuz e¼gri � = 1 � �,ve f 2 L1;1��(�) olsun. Verilen r > 0 ve

t0 2 � için, ��(t0;2r), �(t0; 2r) kümesinin karakteristik fonksiyonu olmak üzere

f1(t) = f(t)��(t0;2r)(t); f2(t) = f(t)� f1(t); (4.7)

diyelim. Bu durumda

F1(t) =

Z
�(t0;2r)

�
jt� � j��1 � jt0 � � j��1��n�(t0;1)(�)

�
f(�)d�(�)

ve

F2(t) =

Z
�n�(t0;2r)

�
jt� � j��1 � jt0 � � j��1��n�(t0;1)(�)

�
f(�)d�(�)

olmak üzere eI�f(t) = eI�f1(t) + eI�f2(t) = F1(t) + F2(t);
elde ederiz. f1 fonksiyonu kompakt (s¬n¬rl¬) deste¼ge sahiptir ve böylece

a1 = �
Z
�(t0;2r)n�(t0;minf1;2rg)

jt0 � � j��1f(�)d�(�)

sonludur.

Ayn¬zamanda

F1(�)� a1 =
R
�(t0;2r)

j� � � j��1f(�)d�(�)

�
R
�(t0;2r)n�(t0;minf1;2rg) jt0 � � j

��1f(�)d�(�)

+
R
�(t0;2r)n�(t0;minf1;2rg) jt0 � � j

��1f(�)d�(�)

=
R
�
j� � � j��1f1(�)d�(�) = Iaf1(�):

44



sa¼glan¬r. Dolay¬s¬yla

jF1(�)� a1j �
Z
�(t0;2r)

j� � � j��1jf(�)jd�(�):

elde ederiz. Her t 2 �(t0; r) için Lemma 2.3.3 ile

(��(t; r))�1
Z
�(t;r)

jF1(�)� a1j d�(�)

� (��(t; r))�1
R
�(t;r)

�R
�(t0;3r)

j� � � j��1jf(�)jd�(�)
�
d�(�)

� r�1
R
�(t0;3r)

�R
�(t;r)

j� � � j��1d�(�)
�
jf(�)jd�(�)

� r�1
R
�(t0;3r)

�R
�(�;3r+jt�t0j) j� � � j

��1d�(�)
�
jf(�)jd�(�)

� c2r�1(3r + jt� t0j)�
R
�(t0;3r)

jf(�)jd�(�)

� c2r��(3r + jt� t0j)�kfkL1;1��(�)

(4.8)

� 4�c2kfkL1;1��(�)

elde edilir.

a2 =

Z
�(t0;maxf1;2rg)n�(t0;2r)

jt0 � � j��1f(�)d�(�)

diyelim. t 2 �(t0; r) için

jF2(t)� a2j �
Z
�n�(t0;2r)

jf(�)j
��jt� � j��1 � jt0 � � j��1�� d�(�)

dir. Lemma 2.3.4 uygulanarak,

jF2(t)� a2j � 21��jt� t0j
R
�n�(t0;2r) jf(�)jjt0 � � j

��2d�(�)

= 21��jt� t0jI1

elde ederiz. I1 için,

I1 =
1P
j=0

R
�(t;2j+2r)n�(t;2j+1r) jf(�)jjt0 � � j

��2d�(�)

�
1P
j=0

(2j+1r)
��2 R

�(t;2j+2r)
jf(�)jd�(�)

� 21��r�1 kfkL1;1��(�)

elde ederiz.

Bu durumda her t 2 �(t0; r) için

jF2(t)� a2j � 22�2� kfkL1;1��(�) (4.9)
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elde ederiz.

af = a1 + a2 =

Z
�(t0;maxf1;2rg)

jt0 � � j��1f(�)d�(�)

ile gösterelim.

Son olarak, (4.8) ve (4.9) dan C3 = 4�c2 + 22�2� olmak üzere

sup
r>0;t02�

1

��(t0; r)

Z
�(t0;r)

���eI�f(t)� af ��� d�(t) � C3kfkL1;1��(�)
elde ederiz. Böylece


eI�f




BMO
� 2 sup

r>0;t02�

1
��(t0;r)

R
�(t0;r)

���eI�f(t)� af ��� d�(t)
� 2C3kfkL1;1��(�)

(4.10)

elde edilir.

1 < 1��
�
durumunda Teorem 4.2 in 1) ifadesi, Lemma 2.3.2 ve (4.10) eşitsizli¼ginden

elde edilir.

2) f 2 Lp;�(�), 1 � p = 1��
�
ve t0 2 � olsun, ve � bir sonlu e¼gri olsun. Bu durumda

C(f) =

Z
�n�(t0;1)

jt0 � � j��1f(�)d�(�)

olmak üzere 2N � l = �� < 2N+1 ve

I�f(t) = eI�f(t) + C(f)
olacak şekilde bir N do¼gal say¬s¬vard¬r. Bu durumda C(f) sonludur:

jC(f)j �
R
�n�(t0;1) jt0 � � j

��1jf(�)jd�(�)

=
NP
j=0

R
�(t;2j+1)n�(t;2j) jt0 � � j

��1jf(�)jd�(�)

�
NP
j=0

2j(��1)
R
�(t;2j+1)n�(t;2j) jf(�)jd�(�)

� N21��kfkL1;1��(�)
� N21��c1=p

0

0 kfkLp;�(�)

3) M� operatörünün s¬n¬rl¬l¬¼g¬

M�f(t) � sup
t2�; r>0

r��1
R
�(t;r)

jf(�)jd�(�)

= kfkL1;1��(�) � c
1=p0
o kfkL 1��

� ;�
(�)
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eşitsizliklerinden elde edilir. Böylece Teorem 4.2 ispatlan¬r.
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5. TARTIŞMA ve SONUÇ

Bu çal¬̧smada, ilk olarak Carleson e¼grileri ve Lp;� Morrey uzaylar¬tan¬mlanm¬̧st¬r.

Kompleks düzlemde Carleson e¼grileri üzerinde maksimal operatör ve Cauchy singüler

integral operatörü tan¬mlanm¬̧s ve bu operatörlerin Lp;� (�) Morrey uzaylar¬nda

s¬n¬rl¬l¬¼g¬verilmi̧stir:

Teorem � bir Carleson e¼grisi olsun. C1r � �� (t; r) � C2r ; C1 > 0 ve C2 > 0 şart¬

alt¬nda M maksimal operatörü Lp;� (�), 1 � p <1, 0 � � < 1 uzay¬nda s¬n¬rl¬d¬r.

Teorem � bir Carleson e¼grisi olsun. S� singüler operatörü, 1 < p <1, 0 � � < 1

olmak üzere Lp;� (�) uzaylar¬nda s¬n¬rl¬d¬r.

Daha sonra, Carleson e¼grileri üzerinde tan¬mlanan I� Riesz potansiyel operatörü

için aşa¼g¬daki Sobolev-Morrey eşitsizlikleri ispatlanm¬̧st¬r:

Teorem � bir Carleson e¼grisi, 0 < � < 1, 0 � � < 1� � ve 1 � p < 1��
�
olsun.

1) 1 < p < 1��
�
için

a.) E¼ger 1p �
1
q
= �

1�� ise I
�; Lp;�(�) dan Lq;�(�) ya s¬n¬rl¬d¬r.

b.) � n¬n sonsuz e¼gri olmas¬durumunda I� n¬n Lp;�(�) dan Lq;�(�) ya s¬n¬rl¬olmas¬

için için gerek ve yeter koşul 1
p
� 1

q
= �

1�� olmas¬d¬r.

2) p = 1 için

a.) E¼ger 1� 1
q
= �

1�� ise I
�; L1;�(�) dan WLq;�(�) ya s¬n¬rl¬d¬r.

b.) � n¬n sonsuz e¼gri olmas¬durumunda I� n¬n L1;�(�) dan WLq;�(�) ya s¬n¬rl¬

olmas¬için için gerek ve yeter koşul 1
p
� 1

q
= �

1�� olmas¬d¬r.

Ayr¬ca, tezin sonunda Carleson e¼grileri üzerindekiM� kesirli maksimal operatörünün

s¬n¬rl¬l¬¼g¬üzerine bir sonuç verilmi̧s ve 1 � p = (1 � �)=� limit durumunda, e¼ger

� bir sonsuz Carleson e¼grisi ise bu durumda modi�ye edilmi̧s eI� potansiyel oper-
atörünün Lp;�(�) den BMO(�) ya s¬n¬rl¬ve e¼ger �, bir sonlu Carleson e¼grisi ise I�

operatörünün Lp;�(�) den BMO(�) ya s¬n¬rl¬oldu¼gu gösterilmi̧stir.
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