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ABSTRACT 

 

CONTROL OF DYNAMIC SYSTEM BEHAVIOUR BY 
MAGNETORHEOLOGICAL AND VARIABLE ORIFICE DAMPERS 

 

Passive and semi-active control devices are widely utilized for response 

reduction in civil engineering structures subjected to strong earthquakes. These devices 

absorb energy from the system. They do not add energy into the system being 

controlled. Therefore, the system stays stable in the sense of bounded-input-bounded-

output stability. In the current study, semi-actively controlled devices were investigated: 

magnetorheological dampers (MRDs) and variable orifice dampers (VODs). Various 

control schemes were applied to control the seismic response of a three-storey model 

structure. Some of these control systems were composed of MRDs applied to the bare 

model structure. Some of them consisted of hybrid application of MRD or VOD to the 

seismic isolated model structure. The hybrid control, which consisted of passive and 

semi-active controllers, was studied in order to benefit from advantages of both 

strategies and to compensate for their weak properties. In the simulations, different 

controllers were designed depending on the linear quadratic regulator (LQR), sliding 

mode control, H2/LQG, fuzzy logic, and linear quadratic Gaussian (LQG). The 

effectiveness of the control algorithms and the usefulness of semi-active dampers for 

response reduction were demonstrated through various numerical examples. Kalman-

Bucy filter was designed due to the necessity of an observer in real-world applications 

with state feedback control. Additional damping at the base level reduced the base 

velocity directly and decreased the base displacement indirectly at the expense of larger 

drifts and floor accelerations of the superstructure. The study has shown that the hybrid 

control system can prevent or significantly reduce structural damage during a seismic 

event even in case of a frequency overlap of excitation and system. Additionally, 

vibration response of a truck seat was controlled by three different passive dampers and 

the MRD. The passive dampers could effectively reduce the oscillations of the truck 

seat. On the other hand, the capacity of the RD-1005-3 MRD was excessive for the 

suspension system of the current truck seat. 
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ÖZET 

 

DİNAMİK SİSTEM DAVRANIŞININ MAGNETOREOLOJİK VE 
DEĞİŞKEN VANA AÇIKLIKLI SÖNÜMLEYİCİLERLE KONTROLÜ 

 

Günümüzde, güçlü depremlere maruz kalan inşaat mühendisliği yapılarının 

tepkilerinin indirgenmesinde pasif ve yarı-aktif kontrol cihazlarından geniş ölçüde 

faydalanılmaktadır. Bu cihazlar sistemden enerji sönümlerler. Kontrol edilen sisteme 

enerji eklemezler. Bundan dolayı sistem sınırlı-girdi-sınırlı-çıktı kararlılığı anlamında 

kararlı kalır. Mevcut çalışmada yarı-aktif olarak kontrol edilen magnetoreolojik 

sönümleyicilerle (MRD) ve değişken vana açıklıklı sönümleyicilerle (VOD) ilgilenildi. 

Üç katlı bir model yapının sismik tepkilerini kontrol etmek için çeşitli kontrol 

tasarımları uygulandı. Bu kontrol sistemlerinin bazıları çıplak model yapıya uygulanan 

magnetoreolojik sönümleyicilerden oluştu. Bazıları da sismik izolasyonlu model yapıya 

magnetoreolojik ya da değişken vana açıklıklı sönümleyicilerin karma uygulanması 

şeklindeydi. Pasif ve yarı-aktif kontrolcülerden oluşan karma kontrol, iki stratejinin 

avantajlarından yararlanmak ve zayıf özelliklerini telafi etmek amacıyla kullanıldı. 

Simulasyonlarda doğrusal karesel düzenleyici (LQR), kayan kipli kontrol, H2/LQG, 

bulanık mantık ve doğrusal karesel Gaussian (LQG) yöntemlerine dayanan farklı 

kontrolcüler tasarlandı. Kontrol algoritmalarının etkinliği ve yarı-aktif sönümleyicilerin 

yanıt indirgemedeki kullanışlılığı çeşitli sayısal örneklerle gösterildi. Durum geri-

beslemeli gerçek uygulamalardaki gözlemleyici ihtiyacından dolayı Kalman-Bucy 

filtresi tasarlandı. Zemin seviyesinde ilave sönüm, üstyapının katiçi ötelenmelerinin ve 

kat ivmelerinin artması pahasına, zemin hızını doğrudan ve zemin yerdeğiştirmesini 

dolaylı olarak azalttı. Mevcut çalışma, tahrik ve sistem frekanslarının çakıştığı bir 

sismik olay durumunda dahi, karma kontrol sisteminin yapısal zararları önleyebildiğini 

ya da önemli ölçüde azaltabildiğini göstermiştir. Ayrıca üç pasif ve bir magnetoreolojik 

sönümleyici ile bir kamyon koltuğunun titreşimleri kontrol edildi. Pasif sönümleyiciler 

kamyon koltuğunun salınımlarını başarıyla indirgedi. Fakat kullanılan RD-1005-3 

magnetoreolojik sönümleyicinin kapasitesi mevcut kamyon koltuğunun süspansiyon 

sistemi için fazla idi. 
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CHAPTER 1 

 

INTRODUCTION 

 

Structural control may be utilized to reduce the amount of energy transferred 

into the structure from the ground motion either by using external energy or absorbing a 

portion of the seismic energy. There exist passive, semi-active, active, and hybrid 

structural control systems (Symans & Kelly, 1999). Dampers decrease the response of 

the structure by absorbing some portion of the mechanical energy of the system and 

transform it into heat energy.  

Semi-active control devices utilized in civil engineering applications are variable 

orifice dampers, friction controllable braces, friction controllable isolators, variable 

stiffness devices, and controllable fluid dampers that utilize electrorheological or 

magnetorheological fluids. Two kinds of semi-active devices are investigated within the 

context of the present thesis: magnetorheological dampers (MRDs) and variable orifice 

dampers (VODs). 

Semi-active control is an innovation that arises after the passive and active 

control. The damping properties of passive systems, which are designed to absorb 

energy during a ground excitation, are constant. They do not need external energy 

sources. On the other hand, passive controllers are not as effective as semi-active, 

active, or hybrid ones. Active control strategies, on the other hand, are generally more 

effective, but they are disadvantageous as they need large amounts of power while they 

are in action, and they may result in instabilities of the controlled structure. Input power 

requirements of semi-active control devices are negligible when compared to active 

devices. Semi-active devices do not add energy into the system being controlled, This 

property makes semi-active control safer and more reliable than active control during a 

seismic event, even in case of a power cut. A problem of instability does not occur in 

the sense of bounded-input-bounded-output stability. Damping of semi-active devices is 

determined due to the force acting to the structure and can be changed at every time 

step. The change can be performed by batteries. This fact causes the popularity of semi-

active control devices. 
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1.1. Overview and Organization of the Thesis 

 

The present research is mainly two folded as the seismic response reduction of 

structures by MRDs and VODs, both of which are semiactively controlled devices. The 

dissertation is organized as explained in the following lines. 

In Chapter 2, the parameters considered in chosing the seismic data for the 

simulations are summarized. The effects of near-fault ground exitation is mentioned. 

The near-fault strong earthquakes in the world are summarized in a table according to 

data obtained from PEER. Finally, the seismic records utilized in the current research 

are presented, and the production of synthetic near-fault seismic excitation data is 

explained.  

Chapter 3 describes the three-storey model structure utilized in the simulations. 

The subjects of classically and nonclassically damped systems are discussed. The modal 

damping ratios are determined by means of the measurements performed by Turan and 

Aydın (2011). 

In Chapter 4, the MRD are examined in detail. A literature review on MRDs is 

provided. Then, the modified Bouc-Wen model is presented to model the behaviour of 

MRDs. The seismic response of the three-storey model structure in Chapter 3 is 

controlled by a MRD depending on four different control algorithms: LQR, sliding 

mode control, H2/LQG, and fuzzy controller. The results are compared and interpretted. 

Additionally, the response control of a hybrid system, which consists of a base isolated 

building and an MRD, was calculated to benefit from advantages of both strategies and 

to avoid the yielding of isolators. The fundamental period of the structure is lengthened 

by adding the base isolator to the bare building. Hence, the structure is affected from the 

smaller components of excitation and is protected from the detrimental effects of 

earthquake excitation. The advantages of hybrid application of the two control systems 

are revealed. The effectiveness of the control algorithm and the usefulness of MRD for 

response reduction are demonstrated. 

The hybrid control of the model structure including a VOD is performed in 

Chapter 5. Related literature on VODs are reviewed. Quite often it is not practical or 

possible to measure all the states in real-world applications with full state feedback 

control. Therefore, the control scheme is designed, depending on the LQG which 

contains a Kalman-Bucy observer. At the beginning of the studies, the observer cannot 
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predict the responses successfully. Therefore, Kalman and Kalman-Bucy observers are 

examined in detail, and some remedies for the observer design are applied: Generally, 

the disturbances are not sent to the observer. In structural engineering applications, the 

ground excitation can be recorded and sent to the observer in addition to the 

measurements during the event. In the present example, the observer is modified by 

sending the recorded disturbance. In structural engineering applications, the white noise 

prerequisite of Kalman filter is not fulfilled due to the low-frequency character of 

ground excitation. Therefore, prewhitening is applied to the base. Hence, the 

performance of the observer improves within the range of the earthquake-related 

frequencies. Furthermore, the superstructure is diagonalized to obtain independent 

subsystems for the observer design. Finally, the observer is designed for the 

prewhitened base and diagonalized superstructure separately. 

In Chapter 5, the control action is mainly governed by an upper controller. The 

required control force is calculated by LQG, and the VOD is directed to perform the 

designed control task by gain scheduling control. In the simulations, the system is 

excited by four different seismic records, two of which are synthetically produced. The 

chapter concludes with subsections in which the simulation results are discussed within 

different aspects such as: Damping demand, maximum total shear forces, snesitivity 

analysis, performance under arbitrary initial conditions, and comparison the responses 

with those of hybrid systems including passive dampers. 

Finally, in Chapter 6, vibrations of a truck seat obtained from a BMC 

cooperation are controlled by the MRD. The system is excited numerically by a 

frequency sweep data to monitor the behaviour of the truck seat within the period range 

of 0.1-2 seconds (the human body is sensitive to the vibrations in the frequency range of 

the 2-4 Hz). 

Important facts utilized within the thesis are presented in the appendices in 

detail. Appendix I mainly deals with the signal construction and related subjects in the 

simulations. Information about the LQR is provided in Appendix G. The necessary and 

sufficient conditions for optimality are discussed briefly. The choice of the weighting 

matrices in the LQR is discussed. Additionally, the MATLAB code for the system 

including a MRD is provided in Appendix J.  

At the beginning of the VOD studies, not being able to design an appropriate 

observer has enforced the author to code her own Kalman-Bucy function within 

MATLAB, instead of utilizing the Kalman function of MATLAB. Therefore, derivation 
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of the Kalman filter is presented in Appendix C. Transformation from the Kalman 

observer to the Kalman-Bucy observer is revealed in Appendix B and Appendix D. 

The differential equations of the observer of the superstructure have complex 

coefficients due to the diagonalization. Therefore, its response is calculated by a 

function coded within MATLAB (see Appendix A for the calculation of the forced 

response). The details about the diagonalization of the superstructure are displayed in 

Appendix H. 

The system in Chapter 5 exhibits under- and over-damped responses, depending 

on the selection of damping values of the VOD. Therefore, unforced response of a 

second-order mechanical system is represented in Appendix F. The MATLAB code for 

the system including a VOD and Kalman-Bucy observer is provided in Appendix E. 
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CHAPTER 2 

 

SEISMIC GROUND EXCITATION DATA 

 

In the context of the thesis, numerical simulations were performed to investigate 

the performance of two semi-active dampers as MRD and VOD by different controllers. 

The parameters that have to be considered while choosing the seismic excitation record 

were summarized in the following lines (Kalkan & Chopra, 2010; Wang et al., 2002; 

Katsanos et al., 2010): 

1. Magnitude of the earthquake and amplitude of the record 

2. Spectrum of the record in frequency domain (should have major components at 

periods that civil structures are sensitive) 

3. Distance from the causative fault 

4. Soil profile both at the site of interest and at the station of record 

5. Fault rupture directivity (This criterion is usually not taken into account during 

seismic design although excitation components larger in the strike-normal direction 

than that in the strike-parallel direction were observed evidently in severe 

earthquakes (Wang et al., 2002).). 

6. Duration of the record 

PEER utilizes three soil classifications for stations of the data: USGS, 

Geomatrix 3-letter, Taiwan CWB. The stations of the earthquakes, utilized in the 

present research, were classified due to the Geomatrix 3-letter categorization. This 

classification is displayed in Table 2.1 where    is the average shear wave velocity. The 

site of the station was classified according to its geotechnical subsurface characteristics. 

This classification is similar to that of the USGS (PEER, 2000). 

In the simulations of the current research, a general comparison of various 

control designs was performed for a model structure. There was not a certain 

construction site of interest. In that respect, the seismic data applied to the system had to 

have a wide frequency range to excite all of the modes of the structure. Therefore, the 

soil profile of the station of the utilized record had a major effect. The soft soil sites 

filter out high-frequency components of the ground excitation. On the other hand, 

records obtained from stations on stiff sites have wider frequency range compared to the 
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data of stations at softer regions. This case is shown in Figure 2.1 for the 1999 Kocaeli 

earthquake (see Table 2.2 for additional information for stations). 

 

Table 2.1. Geotechnical soil classification according to the geotechnical subsurface 
characteristics of the station (Third letter of the Geomatrix 3-letter site 
classification) (Source: PEER, 2000) 

Class Description Detailed description 

A Rock Instrument on rock (          ) or      of soil over rock 

B Shallow (stiff) soil Instrument on/in soil profile up to      thick overlying rock 

C Deep narrow soil 
Instrument on/in soil profile at least      thick overlying rock, 

in a narrow canyon or valley no more than several km wide 

D Deep broad soil 
Instrument on/in soil profile at least      thick overlying rock, 

in a broad valley 

E Soft deep soil Instrument on/in deep soil profile with average           

 

 

Table 2.2. Information about the records of Yarımca and İzmit stations of 1999 Kocaeli 
earthquake (Source: PEER, 2000) 

1999 Kocaeli earthquake (Mw 7.4) 

Station Yarımca İzmit 

Component YPT330 (East-West) IZT090 (East-West) 

Site profile D A 

Distance (km) 2.6 - 2.6 
 

4.8 - 4.8 
 

PGA (g) 0.349 0.220 

PGV (cm/s) 62.1 29.8 

PGD (cm) 50.97 17.12 

Data source KOERI ERD 

HP (Hz) 0.07 0.1 

LP (Hz) 50.0 30.0 

 

In Table 2.2, Yarımca station was placed on a softer soil site while İzmit station 

was located in a rocky region. The distances are the closest to fault rupture, hypocentral, 

and the closest to surface projection of rupture (Joyner-Boore distance) in kilometers, 

respectively. The angle of the station with respect to the North in degrees appears in the 

file name of the data processed and supplied by PEER (Silva, 2013). 
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Figure 2.1. EW component records of the Yarımca station and the İzmit station of the 

1999 Kocaeli earthquake 
 

The record of the İzmit station, which was placed on a stiffer site, has a wider 

effective frequency range than the others. The components of the datum on the rock site 

have almost equally-sized magnitudes, whereas the other datum has components of 

different magnitudes. 

The amplification effect of soft soil sites can be observed in the frequency 

domain since the data in time domain is composed of different sine waves with various 

frequencies. The ground accelerations recorded at soft soil sites, like Yarımca station, 

were amplified compared to those at rock sites. This case can also be shown in time 

domain by the examples in Table 2.3 for the 1999 Kocaeli earthquake. The distances are 

the closest to fault rupture, hypocentral, and the closest to surface projection of rupture 

(Joyner-Boore distance) in kilometers, respectively. The angle of the station with 

respect to the North in degrees appears in the file name of the data processed and 

supplied by PEER (Silva, 2013). 

In Table 2.3, the closest distances to fault rupture of four stations are 

approximately similar. If only descending one step in site condition, holding the 

distance to fault rupture constant, as in Maslak and Zeytinburnu stations, all peak values 

in horizontal directions are duplicated. As the soil profile of the site gets worse, for 

instance at Ambarlı station, the horizontal components of all peak values are 

approximately five times greater than that at Maslak station. The amplification effect of 

soft soil on the vertical components is not as tremendous as on the horizontal 
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components. The fact that the soil properties of the sites through which the seismic 

waves passed to reach the stations approximately 60 km away from the fault rupture has 

great importance on the recorded data. These properties have to be considered while 

commenting about the mentioned data sets. 

 
Table 2.3. PGA, PGV, and PGD values of four stations of 1999 Kocaeli earthquake 

emphasizing the amplifying effect of softer soil sites (Source: PEER, 2000) 
1999 Kocaeli erthquake (Mw 7.4) 

Station Ambarlı Ataköy Zeytinburnu Maslak 

Site profile E D D A 

Distance (km) 78.9 - 78.9 
 

67.5 - 67.5 
 

63.1 - 63.1 
 

63.9 - 63.9 
 

Component UP 000 090 

0.08 0.25 0.18 

8.5 40.0 33.2 

8.85 30.08 25.83 
 

UP 000 090 

0.06 0.11 0.16 

7.5 22.4 16.2 

6.09 23.47 11.59 
 

UP 000 090 

0.05 0.11 0.11 

7.2 18.5 15.2 

8.56 12.98 18.2 
 

UP 000 090 

0.03 0.04 0.04 

5.7 6.6 6.5 

7.24 6.52 9.24 
 

PGA (g)  

PGV (cm/s) 

PGD (cm) 

Data source KOERI ITU ITU ITU 

 

Near-field strong ground motions are observed within the diameter of less than 

15-20 km from fault rupture (Kalkan et al., 2004). This effect tends to increase the 

magnitude of the long-period components (T>1sec) of the acceleration record. 

Therefore, it should be taken into account especially for tall or flexible structures, base 

isolated buildings, and other structures that are sensitive to long-period seismic 

excitations. Otherwise, the structures in a near-fault region would exhibit harsh 

nonlinear responses including the possibility of collapse at some parts of the system. 

A near-fault ground motion record may contain velocity peaks while having 

small peak ground displacements. Some portion of displacements might have been 

removed during a standard processing procedure through filtering or baseline correction 

(Hall et al., 1995; Kalkan & Kunnath, 2006; Boore, 2001; Boore, 2002). Therefore, 

special attention should be applied while processing near-field raw records. 

The sensitivity of near-field ground motions to variations in the shaking source 

parameters was studied, and inclusion of directivity effects was recommended while 

modeling near-fault ground motions (Aagaard et al., 2000). In the literature, different 

types of pulses are suggested to generate near-fault motions synthetically (Hall et al., 

1995; Makris, 1997; Kalkan & Kunnath, 2006).  
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Wang et al. (2002) constituted iso-PGA maps for the 1999 Chi-Chi earthquake, 

due to the dense distribution of accelerographs in Twain. The distribution of PGAs in 

three components of 441 stations was presented. It is observed that the contour lines lie 

along the fault. Their magnitudes decrease as moving away from the fault (see Figure 

2.2). Furthermore, it is seen that the ground shaking is effective along the fault rather 

than around the epicenter. 

 

 
Figure 2.2. Contour maps of PGA in cm/s2 from the records of 441 stations of the 1999 

Chi-Chi Twain earthquake (Source: Wang et al., 2002) 
 

Chopra and Chintanapakdee (2001) emphasized some important outcomes in 

case of a near-fault ground motion. The PGA, PGV, and PGD values of the fault-normal 

component are larger than those of the fault-parallel component for near-field motions 

(directivity effect). Fault-normal component of a near-fault record displays a long-

period pulse in the acceleration time history. Its effect is seen in the velocity and 

displacement series as compatible pulses. This observation is not valid for far-field 

records. In most of the near-fault motions, narrower velocity-sensitive regions and 

wider acceleration- and displacement-sensitive regions are present in the response 

spectrum. Furthermore, the narrower velocity-sensitive regions are shifted to longer 

periods. Additional remarks are manifested for inelastic systems. 

Two behaviors are observed in near-field records as forward-directivity and 

fling-step type strong motions. The direction of rupture propagation relative to the site 

is implied as forward-directivity. Fling-step type motion is observed as a unidirectional 

large-amplitude velocity pulse and a step-type static permanent displacement history. It 

occurs in the strike-parallel direction of strike-slip faults and in the strike-normal 
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direction of dip-slips faults (see (Kalkan & Kunnath, 2006) for details). Records with 

fling effects activate the fundamental mode of the system. If the forward directivity is 

dominant without any fling, then higher modes are excited. Therefore, Kalkan and 

Kunnath (2006) suggested to utilize acceleration and velocity time histories together 

while examining the effects of near-fault records. 

Bolt (2008) provides a brief overview of the history of earthquakes and 

seismology. The causes and physical properties of seismic activity are explained. 

Additionally, he recommends leaving the regions close to or on main faults as 

greenbelts after the field observations of the 1999 Chi-Chi Taiwan earthquake. 

The data of four stations of the 1999 Kocaeli earthquake are presented in two 

graphs of Figure 2.3 to visualize the effect of near-fault records on the amplitude of 

high period components. In each graph, one pair of near- and far-field records obtained 

from stations with similar soil conditions is plotted. Hence, the comments can be 

performed within the content of different soil conditions as stiff soil and softer soil 

individually. The closest distance to fault rupture is displayed in the legend of the 

graphs. Other details about the data are presented in Table 2.4. The distances are the 

closest to fault rupture, hypocentral, and the closest to surface projection of rupture 

(Joyner-Boore distance) in kilometers, respectively. The angle of the station with 

respect to the North in degrees appears in the file name of the data processed and 

supplied by PEER (Silva, 2013). The North-South components of the data were chosen 

except for the data from Yarımca station. The closest component to the North-South 

direction was chosen for it as YPT060. 

The stations were chosen due to the closest distance to fault rupture and its soil 

profile. Unfortunately, the distribution of the recorders in Turkey was not as dense as in 

Twain to portrait the near-fault effect of earthquakes. For instance, there is not a station 

on a soil class of A within the radius of 20-60 km for the 1999 Kocaeli earthquake that 

affected the most developed regions of Turkey (PEER, 2000) (Near-field strong ground 

motions are observed within the diameter of less than 15-20 km from fault rupture 

(Kalkan et al., 2004)). On the other hand, the researchers who investigated the 1999 

Chi-Chi Twain earthquake could eliminate the data of some stations among those of 441 

stations since the data had defects (Wang et al., 2002). 

The soil of the station site gets softer from (a) to (b) in Figure 2.3. For each soil 

profile, the components with higher magnitudes in the high period range can be 

obviously seen for near-fault records. 
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It is important to emphasize the fact that most of the seismic record providers 

supply the data in N-S, E-W, and vertical directions. However, the components larger in 

the strike-normal direction than those in the strike-parallel direction were observed 

evidently in severe earthquakes. Therefore, it would be more convenient to supply the 

angle between the station and the fault together with the data by the data providers. 

Thus, the seismic data can be rotated. 

 

Table 2.4. Information about the stations utilized in Figure 2.3 
(Source: PEER, 2000) 

1999 Kocaeli erthquake (Mw 7.4) 

Station Sakarya Göynük Yarımca İznik 

Component SKR090 GYN090 YPT060 IZN090 

Site profile B B D D 

Distance (km) 3.1  -  3.1   35.5  -  35.5 2.6  -  2.6 31.8  -  31.8 

PGA (g) 0.376 0.119 0.268 0.136 

PGV (cm/s) 79.5 10.5 65.7 28.8 

PGD (cm) 70.52 3.94 57.01 17.44 

Data source ERD ERD KOERI ERD 

 

 

 
Figure 2.3. Near- and far-fault records of 1999 Kocaeli earthquake for stations located 

at two different sites in frequency domain (Numbers in the legend are the 
closest distance to fault rupture and the JB distance) 

 

(a) 

(b) 
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Some near-fault strong earthquakes of which the moment magnitude Mw is 

greater than 6.5 are presented in Table 2.5. The records with PGA value greater than 

0.5g or PGV value greater than 100 cm/s were chosen in horizontal direction (g is the 

gravitational acceleration). Some records in 1999 Chi-Chi earthquake have relatively 

small PGA values, whose PGV values are greater than 100 cm/s. The distances are the 

closest to fault rupture, hypocentral, and the closest to surface projection of rupture 

(Joyner-Boore distance) in kilometers, respectively. The stations were chosen according 

to any given distances less than 10 km. 

 

Table 2.5. Near-fault strong earthquakes in the world (Mw>6.5, d<10 km, and 
(PGA>0.5g or PGV>100cm/s in horizontal direction)) (Source: PEER, 
2000) 

Earthquake Mch* Mw Station 
Distance 

d (km) 

Site 

profile 

PGA 

(g) 

PGV 

(cm/s) 

PGD 

(cm) 

Cape Mendocino 

1992/04/25 

RN 7.1 89005 Cape Mendocino 8.5 - - 
 

A 1.497 127.4 41.0 

  89156 Petrolia 9.5 - - 
 

D 0.662 89.7 29.6 

Chi-Chi, Taiwan 

1999/09/20 
RN 7.6 

CHY028 7.31 - 7.31 
 

Hard† 0.821 67.0 23.3 

CHY080 6.95 - 6.79 
 

USGS B‡ 0.968 107.5 18.6 

TCU052 0.24 - 0.06 
 

Hard 0.419 118.4 246.2 

TCU065 0.98 - 0.98 
 

Hard 0.814 126.2 92.6 

TCU067 0.33 - 0.33 
 

Hard 0.503 79.5 93.1 

TCU068 1.09 - 0.5 
 

Hard 0.566 176.6 324.1 

TCU071 4.94 - 1.01 
 

Hard 0.655 69.4 49.1 

TCU084 10.39 - 0.01 
 

Hard 1.157 114.7 31.4 

TCU102 1.79 - 1.79 
 

Medium 0.298 112.4 89.2 

TCU129 1.18 - 1.18 
 

Hard 1.01 60.0 50.2 

WNT 1.18 - 1.18 
 

Hard 0.958 68.8 31.1 

Duzce, Turkey 

1999/11/12 
SS 7.1 

Duzce 8.2 - 8.2 
 

D 0.535 83.5 51.6 

375 Lamont 375 8.2 - 8.2 
 

B 0.97 36.5 5.5 

Erzincan, Turkey 

1992/03/13 
SS 6.9 95 Erzincan 2.0 - - 

 

D 0.515 83.9 27.4 

Gazli, USSR 

1976/05/17 
RN 6.8 9201 Karakır - 3.0 - 

 

A 0.718 71.6 23.7 

 
  

                                                 
* Faulting mechanism = RN:Reverse normal, SS:Strike slip, RO:Reverse oblique 
† For 1999 Chi-Chi earthquake, the site profile is classified according to the Central Weather Bureau 
(CWB) in Taiwan as hard, medium, and soft soil sites. 
‡ USGS B: Average shear wave velocity to a depth of 30m is 360-750 m/s. 

(cont. on next page) 
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Table 2.5. (cont.) 

Imperial Valley 

1979/10/15 
SS 6.5 

5054 Bonds Corner 2.5 - 2.6 
 

D 0.775 45.9 14.9 

952 El Centro Array #5 1.0 - 4.0 
 

D 0.519 46.9 35.4 

942 El Centro Array #6 1.0 - 1.3 
 

D 0.439 109.8 65.9 

5028 El Centro Array #7 0.6 - 0.6 
 

D 0.463 109.3 44.7 

958 El Centro Array #8 3.8 - 3.8 
 

D 0.602 54.3 32.3 

6619 SAHOP Casa 

Flores 
11.1 - 8.4 

 

C 0.506 30.9 5.6 

Kobe 

1995/01/16 
SS 6.9 

0 KJMA 0.6 - - 
 

B 0.821 81.3 17.7 

0 Takarazuka 1.2 - - 
 

E 0.694 85.3 16.8 

0 Takatori 0.3 - - 
 

E 0.616 120.7 32.7 

Landers 

1992/06/28 
SS 7.3 24 Lucerne 1.1 - - 

 

A 0.721 97.6 70.3 

Loma Prieta 

1989/10/18 
RO 6.9 

57007 Corralitos 5.1 - - 
 

B 0.644 55.2 10.9 

16 LGPC 6.1 - - 
 

A 0.563 94.8 41.2 

Nahanni, Canada 

1985/12/23 
RO 6.8 6097 Site 1 6.0 - - 

 

A 1.096 46.1 14.6 

Northridge 

1994/01/17 
RN 6.7 

24279 Newhall - Fire Sta 7.1 - 4.5 
 

D 0.59 97.2 38.1 

24514 Sylmar - Olive 

View Med FF 
6.4 - 3.6 

 

D 0.843 129.6 32.7 

24436 Tarzana, Cedar 

Hill 
17.5 - 4.1 

 

B 1.779 113.6 33.2 

0655 Jensen Filter Plant 6.2 - - 
 

D 0.593 99.3 24.0 

00000 LA Dam 2.6 - - 
 

- 0.511 63.7 21.2 

24207 Pacoima Dam 

(upper left) 
8.0 - 8.1 

 

A 1.585 55.7 6.1 

77 Rinaldi Receiving Sta 7.1 - - 
 

C 0.838 166.1 28.8 

0637 Sepulveda VA 8.9 - 0.4 
 

D 0.939 76.6 14.9 

74 Sylmar-Converter Sta 6.2 - 0.2 
 

D 0.897 102.8 47.0 

75 Sylmar-Converter Sta 

East 
6.1 - - 

 

D 0.828 117.5 34.2 

San Fernando 

1971/02/09 
RN 6.6 279 Pacoima Dam 2.8 - - 

 

B 1.226 112.5 35.5 

Superstitn Hills(B) 

1987/11/24 
SS 6.7 286 Superstition Mtn. 4.3 - - 

 

A 0.894 42.2 7.3 

Tabas, Iran 

1978/09/16 
RN 7.4 9101 Tabas - 3.0 - 

 

C 0.852 121.4 94.6 

 

Table 2.5 indicates that there are PGA values greater than 1.0g in earthquakes 

with moment magnitude of 6.6, 6.7, and 6.8 where g is the gravitational acceleration 

(1971 San Fernando, 1994 Northridge, 1985 Nahanni). Very large velocity pulses (>1.5 

m/s) were observed in some of the near-field strong ground motions in Table 2.5. 
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In the present work, the system was excited by two seismic records. These were 

the North-South component of the El Centro station of the 1940 Imperial Valley event 

and the East-West component of the Bolu station of the 1999 Düzce earthquake (see 

Figure 2.4). 

 

Table 2.6. Information about the seismic records utilized in the simulations 
(Source: PEER, 2000) 

 1940 Imperial Valley 1999 Düzce 

Date 1940/05/19 1999/11/12 

Mechanism Strike slip Strike slip 

Moment magnitude (Mw) 7.0 7.1 

Station 117 El Centro Array #9 Bolu 

Component ELC180 (North-South) BOL090 (East-West) 

Site profile of station D D 

Distance (km) 8.3 - 12.0 
 

17.6 - 17.6 
 

PGA (g) 0.313 0.822 

PGV (cm/s) 29.8 62.1 

PGD (cm) 13.32 13.55 

Data source USGS ERD 

HP (Hz) 0.2 0.05 

LP (Hz) 15 null 

 

Other details about the records utilized in the present research are presented in 

Table 2.6. The raw data provider is displayed as the data source, United States 

Geological Survey (USGS) and Earthquake Research Department (ERD) in Turkey. 

The processed data were obtained from Pacific Earthquake Engineering Center (PEER). 

The mechanism was strike slip (SS) in both earthquakes. The angle of the station with 

respect to the North in degrees appears in the file name of the data processed and 

supplied by PEER (Silva, 2013). Both stations were located at sites with similar soil 

profiles. The distances are the closest to fault rupture, hypocentral, and the closest to 

surface projection of rupture (Joyner-Boore distance) in kilometers, respectively. Peak 

ground acceleration, velocity, and displacement values are presented respectively where 

g is the gravitational acceleration. PGD value is the maximum of the doubly integrated 

form of the recorded acceleration time series. The cut-off frequencies of high-pass and 
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low-pass filters were indicated by HP and LP in Hertz, respectively. The data set of the 

Düzce earthquake was passed through only a high-pass filter. The angle of the station 

with respect to the North in degrees appears in the file name of the data processed and 

supplied by PEER (Silva, 2013). The data processed by PEER are presented in time- 

and frequency-domains for the two seismic events (see Figure 2.4). The two seismic 

records were plotted together to compare their possible effects on the responses. 

 

 
Figure 2.4. Seismic records in (a) time and (b) frequency domains: N-S component of 

the El Centro station of the Imperial Valley earthquake (IMP) & E-W 
component of the Bolu station of the Düzce earthquake (DZC) 

 

The Imperial Valley event has a wide frequency range, while the Düzce 

earthquake consists of low-valued cycling motion together with a single high peak 

shock at time        with a value of      and its neighbor peaks where   is the 

gravitational acceleration. The Imperial Valley earthquake affects structures with low 

periods more intensely compared to the Düzce event. 

Seismic records within 15-20 km of an active faulting system are considered as 

near-field strong motion data (Kalkan et al., 2004). In that respect, the two records in 

Figure 2.4 can be regarded as near-source data, keeping in mind their difference in 

distance (see Table 2.6 for the distances of the stations to the fault). On the other hand, 

the stations of these two seismic records are not as close to the fault as the stations in 

the 1999 Chi-Chi earthquake, which is a well-known near-fault earthquake (Wang et al., 

2002). Therefore, the seismic data of the Imperial Valley and Düzce earthquakes are 

(a)  (b)  
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shifted to the high-period range in frequency spectrum. The author suggests deeper 

studies on producing near-fault seismic data synthetically to monitor the effects of fling 

step and forward directivity on seismic response of controlled structures, especially 

their effects on flexible structures. 

In the context of the present work, two seismic data set were produced 

synthetically from the Imperial Valley and Düzce earthquakes to investigate the 

controller performance for near-fault earthquakes. The procedure of seismic data 

production is illustrated in Figure 2.5. 

 

 
Figure 2.5. Synthetic production of the near-fault excitation data 

 

The original time increment    was increased four times, hence the data was 

shifted to the high-period range in frequency spectrum. At this point, the number of data 

remained constant, while the total duration of the data was lengthened. The data become 

sparse and was interpolated to a smaller time increment. The details are presented in 

Section 4.5.6.1 and Section 5.8.1. 
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CHAPTER 3 

 

MODEL SUPERSTRUCTURE 

 

The model superstructure has three stories (Turan & Aydın, 2011). One of its 

frames was utilized for calculations. It is a shear frame and is presented in Figure 3.1. 

The story stiffnesses were modeled by linear springs. Damping of the model 

superstructure was modeled by proportional viscous damping model and was 

represented by viscous dashpots. 

 

 
Figure 3.1. Model superstructure 

 

Assuming that the controlled building response remains in the linear region, the 

equations of motion for the model superstructure was as follows: 

 

     ̈  ( )      ̇  ( )        ( )           ̈ ( ) (3.1) 

 

The subscript ss stands for the superstructure. The displacements of the floors 

relative to the ground are presented by the vector 

 

    ( )  (   ( )   ( )   ( ))
  (3.2) 

 

The mass and stiffness matrices of the superstructure are as, 
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    [
     
     
      

]     

    [
             
                  

            
]      

(3.3) 

  

The determination of the damping matrix     is summarized in Section 3.1.1. 

The damping matrix is presented in Equation (3.13).      is the location matrix of the 

external excitation. It specifies how the ground excitation  ̈  enters into the system. It is 

presented by 

 

      (    )  (3.4) 

 

indicating that the ground excitation acts to all degrees of freedom since the equation of 

motion of the system is written with respect to the ground. 

The undamped periods and frequencies of the 3-story model structure are 

presented in Table 3.1. The slowest mode contributes to the response mostly compared 

to the others since it goes on its response while rapid modes have finished their 

responses. Therefore, the slowest mode is named the fundamental mode.  

 

Table 3.1. Undamped periods and frequencies of the 3-story model superstructure 
 Period (s) Undamped frequency 

(Hz) 

Undamped circular 

frequency (rad/s) 

First mode 0.51 1.98 12.43 

Second mode 0.18 5.50 34.57 

Third mode 0.13 7.97 50.09 

 

The damped and undamped circular frequencies obtained from experiments 

done by Turan and Aydın (2011) are displayed in Table 3.2. The undamped circular 

frequencies were calculated by means the damped ones. 

According to the theory of modeling, the aim of the present research is to 

uncover the effectiveness of building control by MRDs and VODs. The reaction forces 

of these dampers are highly dependent on the velocity. In order to relate the outcomes 

of the present research, the magnitudes of the velocities should be in the same range as 
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typical building-type structures. Therefore, the period of the model structure was 

selected to be a typical value of 0.51 seconds and its isolated period as 5.06 seconds 

(see Section 4.7.1) (the seismic excitation data was not scaled in time domain). Thus, 

the expected velocities and displacements would be identical to a real structure. If the 

excitation data had been scaled, then the time increment would have decreased by 

square root of the scale factor of the structure, and the seismic data would have been 

pushed to the range of the excitation components with low periods. 

 

3.1. Determination of the Damping Matrix 

 

Damping dissipates the mechanical energy of a dynamic system and reduces the 

amplitude of its oscillations. Most of the dissipated energy is converted to heat energy. 

Unlike the mass and stiffness properties, in most cases, it is impossible to model 

damping exactly. There exist different mechanisms of damping (Liang & Lee, 1991; 

Inman, 2007): 

 The energy dissipation, caused by sliding of two dry surfaces under a normal force, 

is generally represented by the Coulomb-friction model. 

 In case of frequency-dependent damping, structural (hysteretic) damping model is 

convenient. 

 The resisting force in the motion of a body through a liquid is proportional to the 

velocity of the body and is modeled by the viscous damping model.      ̇ 

where   is the resisting force, and  ̇ is the velocity of the body.   is a constant of 

proportionality and is named the viscous damping coefficient. 

The classical damping is a special case of viscous damping, in which the 

damping coefficient is a linear combination of the mass and the stiffness. In other 

words, it is proportionally damped (Meirovitch, 1989). In multi-degree-of-freedom 

(MDOF) structures, the damping matrix is assumed to be a classical and a nonclassical 

one. Chopra (1995) defines: “Classical damping is an appropriate idealization if 

similar damping mechanisms are distributed throughout the structure (e.g., a multistory 

building with a similar structural system and structural materials over its height).” (p. 

417). He also states that: “The assumption of classical damping is not appropriate if the 

system to be analyzed consists of two or more parts with significantly different levels of 

damping.” (p. 425). 
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On the other hand, a nonproportionally-distributed damping mechanism is 

observed in structure-soil, structure-fluid, and seismic isolated systems, and in 

structures with special energy dissipating devices. The nonclassical damping matrix is 

formed by assembling the classical damping matrices of subsystems (see Section 5.4). 

If the damping ratios of all modes are known somehow (measured or assumed), 

then the damping matrix can be calculated via the modal damping matrix (in 

generalized coordinates) whose diagonal elements are        . Here,    is the modal 

damping ratio,    is the natural circular frequency,    is the mass, and          is 

the mode number. The damping matrix in physical coordinates is obtained by 

performing the inverse of the diagonalization (assuming the system is proportionally 

damped). 

On the other hand, if only damping ratios of two modes are known, then 

Rayleigh damping can be utilized. The damping ratios of other modes are assigned 

automatically. Additionally, Caughey damping, which is a more general form of 

Rayleigh damping, can be used (Semblat, 1997). These two procedures form classical 

damping matrices. Since the mode shapes of undamped and classically-damped systems 

are the same, a common mode shape that can diagonalize the mass, damping, and 

stiffness matrices of the system simultaneously exists. Hence,   uncoupled equations of 

motion can be formed, and the classical modal analysis can be applied. The applicability 

of classical modal analysis makes the proportional damping assumption attractive.  

On the other hand, for systems with nonclassical damping, the mode shapes of 

undamped and damped systems are not the same and there is not a common mode shape 

that can diagonalize every term of the equation(s) of motion. Therefore, the equation(s) 

of motion cannot be diagonalized and the classical modal analysis cannot be applied 

(Chopra, 1995; He & Fu, 2001). Furthermore, in a nonproportionally damped system, 

there are phase differences between various parts of the system leading to complex 

modes (see Section 5.5.5.2). 

 

 Measurement of the Modal Damping Ratio   3.1.1.

 

In an under-damped single-degree-of-freedom (SDOF) system, the damping 

ratio can be determined via the drop in the amplitude of the response within one cycle 

of vibration (Meirovitch, 2001). This drop is mainly governed by the magnitude of the 
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envelope curve        of the unforced response of an under-damped system (see 

Appendix F).   is the dimensionless modal damping ratio defined as the fraction of the 

present damping to the critical damping value, which represents the boundary between 

the under-damped and over-damped cases. 

For a linear MDOF system, every mode can be disturbed by an displacement 

initial condition in the shape of its mode, and the damping ratio corresponding to the 

relevant mode can be determined. The unforced responses of an under-damped SDOF 

system for two successive peaks are presented in Appendix F, as follows 

 

 
 (  )

 (  )
 
           (      )

           (      )
 (3.5) 

 

where         .          and      √      are the period and circular 

frequency of the damped oscillation, respectively.    is the natural circular frequency.   

is the damping ratio.   is a constant.   is the phase difference. Then,          is 

plugged into Equation (3.5), 

 

 
 (  )

 (  )
 

          (      )

     (     )    (  (     )   )
 (3.6) 

 

results in, 

 

 
 (  )

 (  )
       

   (      )

   (         )
  

   
  
   (3.7) 

 

Finally, the logarithmic decrement   is obtained as: 

 

     
 (  )

 (  )
   

 

√    
 (3.8) 

 

There is only one restriction for Equation (3.8) as the system is under-damped (   ). 

The damping ratio   can be determined via 

 



 

22 
 

   
 

√      
 (3.9) 

 

where the damping ratio   is not linearly proportional to the logarithmic decrement  . 

Equation (3.9) is valid for under-damped cases. 

The superstructure was manufactured in the Structural Laboratory of IYTE Civil 

Engineering Department. In the present research, its damping ratios were recalculated 

by means of the measurements performed previously by Turan and Aydın (2011). The 

damping ratios were calculated via the logarithmic decrement within successive peaks 

of the responses. In each case, only the corresponding mode was excited. The maximum 

values of the responses could not be determined correctly due to the small damping 

values. Different damping ratios were calculated for every couple of successive peaks. 

Therefore, a least-squares procedure explained by Meirovitch (2001) was applied. Six 

successive peak values were read and their natural logarithms were plotted versus 

measurement number. A line was fitted through a least-squares fit. The slope of the line 

was negative of the logarithmic decrement  . Six values, which were read from one 

measurement, were collected by a line fitting procedure to obtain the viscous damping 

ratio of the excited mode. At this point, it should be noted that the fitted resultant 

damping ratio was not exactly viscous while the read values were viscous (Meirovitch, 

2001).  

The damping ratios of the first two modes were calculated as 0.0058 and 0.0038, 

respectively. But, the damping ratio of the third mode could not be determined since 

relevant measurements were not reliable. Therefore, the damping matrix was composed 

via the Rayleigh damping instead of the modal damping matrix whose diagonal 

elements are        . 

Ewins (2000) defines the damping mechanism: “The actual damping 

mechanisms are usually found in parallel with the stiffness elements (for damping due 

to the internal material) or with mass elements (for damping due to friction).” (p.65). In 

the light of this opinion, the Rayleigh damping model, which assumes the damping as a 

combination of mass- and stiffness-proportional components, is utilized in the present 

research. The viscous damping matrix     is assumed as 

 

               (3.10) 
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The subscript ss stands for the superstructure in order not to confuse the matrix   of the 

controller with the stiffness matrix of the structure. The damping ratio of the ith mode is 

 

    
 

   
 
   
 

 (3.11) 

 

The modal damping factors for the two modes were determined and the proportionality 

coefficients   and   were calculated via the following formulas: 

 

 
  

      (         )

(  
    

 )
 

  
  (         )

(  
    

 )
 

(3.12) 

 

The derivations of Equations (3.11) and (3.12) are presented in Wood (1995). 

The undamped circular frequencies were utilized while calculating the proportionality 

coefficients   and   in Equation (3.12). Then, the damping ratio of the third mode was 

obtained automatically by Equation (3.11). The calculation of   and   are presented in 

Table 3.2. 

 

Table 3.2. Calculation of the proportionality coefficients   and   of the Rayleigh 
damping 

 

Modal damping 

ratio  

   

Damped circular 

frequency 

    (rad/s) 

Undamped circular 

frequency 

    (rad/s) 

  

(rad/s) 

  

(s/rad) 

First mode 0.0058 12.0830 12.0832 

0.1231 1.1667 10-4 Second mode 0.0038 34.9066 34.9069 

Third mode  48.3322  

 

The damping ratios and damped circular frequencies in rad/s were obtained from 

experiments done by Turan and Aydın (2011). The undamped circular frequencies were 

calculated by means of the damped circular frequencies. They were very close to the 

damped ones due to the very low damping levels. The coefficients   and   were 

calculated. The numerical difference in the magnitudes of   and   should be 

commented in the content of their units. 
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Then, the damping ratio    of the third mode was calculated as 0.0041 via 

Equation (3.11). Finally, the damping matrix of the superstructure was obtained by the 

proportional viscous damping model as 

 

               [
          
             
          

]       (3.13) 

 

The viscous damping model, in which the resisting force was proportional to the 

velocity difference, was assumed. Then, the viscous damping was determined by the 

Rayleigh damping model. In this case, it was preferable to express the damping of the 

structure with mass- and stiffness-proportional elements in Figure 3.1. Modelling the 

damping by a dashpot in Figure 3.1 was prefered due to the assumption of viscous 

damping model. 
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CHAPTER 4 

 

CONTROL OF SEISMIC RESPONSE WITH 

MAGNETORHELOGICAL DAMPERS (MRDs) 

 

4.1. Introduction 

 

Semi-active control devices have been attractive in recent times since they offer 

the advantages of passive and active control systems and compensate for weak features 

of them. The properties of semi-active control devices can be adjusted in real time. Such 

devices do not add energy into the system being controlled. Magnetorheological 

dampers (MRDs) are semi-active control devices that utilize MR fluid to produce 

controllable damping forces. 

 

 
Figure 4.1. Magnetorheological Damper 

(Source: Lord Corporation, 2008) 
 

Magnetorheological dampers are utilized in a variety of real world applications 

such as semi-active vibration control, sports equipments, and medical prosthesis. MRDs 

are widely used in suspension system of heavy military vehicles or in seat suspension 

systems of trucks. Hiemenz et al. applied MRDs to helicopter crew seat suspension 

system to enhance occupant comfort (2009). In aerospace applications, 

magnetorheological dampers exhibit benefits of semi-active control of aeromechanical 

instabilities (Wereley et al., 1999). 
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The advantages of MRDs are their low power requirements, high yield strength 

that allows large force capacity, low viscosity, and stable hysteretic behaviour over a 

wide temperature range. MRDs utilizes MR fluid to produce controllable damping 

forces (Jung et al., 2002). Jacob Rabinow discovered the MR fluid in 1948-1951 at the 

US National Bureau of Standards. Although it has been a long time since MR fluid was 

discovered, they have been utilized in engineering applications recently. 

The behaviour of magnetorheological dampers are highly nonlinear. Different 

phenomenological models exist in the literature for MRDs. In the current work, the 

modified Bouc-Wen model proposed by Spencer et.al. is utilized (1997). It is composed 

of Bouc-Wen hysteresis, springs, and dashpots to accurately reproduce the MRD 

behaviour. 

A modified clipped-optimal acceleration feedback control strategy is utilized to 

control the MRD. The controller consists of a linear optimal control part and a modified 

clipped algorithm. The effectiveness of the control algorithm and the usefulness of 

MRDs for response reduction are demonstrated through different numerical examples: 

First, a single MRD is excited by sinusoidal displacement. Secondly, a model structure 

including a MRD is excited seismically. Finally, a seismically isolated model structure, 

which contains a MRD, was controlled. 

 

4.2. Literature Review 

 

Structural control may be utilized to reduce the amount of energy transferred 

into the structure from the ground motion either by using external energy or by 

absorbing a portion of the seismic energy. There exist passive, semi-active, active, and 

hybrid structural control systems (Symans & Kelly, 1999). In that respect, Spencer et al. 

(1997) states that: “Semi-active control systems combine the best features of both 

approaches, offering the reliability of passive devices, yet maintaining the versatility 

and adaptability of fully active systems. According to presently accepted definitions, a 

semi-active control device is one that has properties that can be adjusted in real time 

but cannot input energy into the system being controlled.” (p.230). 

Some advantages of MRDs are their low power requirements, high yield 

strength that allows large force capacity, low viscosity, and stable hysteretic behavior 

over a wide temperature range (Spencer et al, 1997). The most attractive property of the 
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controllable MR fluid is their ability to reversibly change from a free-flowing, linear 

viscous fluid to a semi-solid with a controllable yield strength in milliseconds when 

exposed to a magnetic field.  

In the literature the damping properties of the MRDs were regulated by different 

control strategies. Dyke and her co-workers performed acceleration feedback control 

strategies based on H2/LQG methods (1996). Spencer et al. tried frequency domain 

optimal control strategies by two specific techniques: H2 and H∞ control methods 

(1994). Various research groups utilized fuzzy logic to control MRDs (Choi et al., 2004; 

Huang et al., 2009; Schurter & Roschke, 2001; Turan & Kinay, 2009; Wilson, 2005). 

Dyke and Spencer compared semi-active control strategies for the MRD and concluded 

that the performance of the control system is highly dependent on the choice of 

algorithm employed (1997). Instantaneous optimal control with velocity and 

acceleration feedback was utilized, and additionally the structural stability was 

guaranteed by using the Lyapunov approach (Ribakov & Gluck, 2002). Sliding mode 

control was also applied to MR dampers (Kinay & Turan, 2009). Yoshida and Dyke 

proposed the modified clipped control algorithm, in which the control voltage lies 

between 0 and vmax (2004). 

JZ20-2NW offshore platform in Bohai Gulf of China is the first offshore 

platform that is controlled by MRDs in the world (Wu et al., 2010).  The dynamic 

response of the platform against ice and earthquake excitations was tried to be 

decreased. The control system design and the full-scale real-time hybrid tests of the 

platform were explained in the mentioned study. Due to the limited number of 

measurements, a Kalman filter was employed to observe the states from displacement 

and acceleration measurements. The accuracy of the state estimate in case of an 

unknown external excitation was not as good as the case, in which the excitation mean 

value was known. On the contrary, this fact had small effect on the controlled 

responses. 

The response of MRDs that were attached to a three dimensional model 

structure was investigated by Turan and Kınay (2009). The model structure was excited 

individually by two horizontal components of the Bolu station of the 1999 Düzce 

earthquake. The effectiveness of MRDs to control vibrations of three dimensional 

structures were demonstrated through numerical examples. The floor responses were 

bounded to the response of a certain node at every story of the superstructure. Four 

MRDs were attached between the ground and the first floor. The displacement of each 
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damper was independent of each other. Therefore, their responses were treated  

separately in the code. The total acceleration values of the first floor were not reduced 

significantly by the MRDs. This fact may have been due to the existence of the dampers 

at the first floor level. On the other hand, the absolute acceleration values of the second 

and third floors provided more correct information with the behavior of the structure 

since the absolute accelerations of the first floor contained not only the structure’s 

accelerations but also accelerations coming from the damping forces of the MRDs. 

Acceptable reductions in maximum values of the responses were observed. After the 

first 8 seconds, the controlled response became very small compared to the uncontrolled 

one. On the other hand, the improvements in the maximum values of the total 

accelerations were not as good as those of displacements. 

 

4.3. Magnetorheological Dampers 

 

MRDs are widely utilized as supplemental damping strategies for response 

reduction in civil engineering structures subjected to strong earthquakes and severe 

winds. They are controllable fluid dampers, which utilize magnetorheological (MR) 

fluids. 

MR fluid is suspension of micron-sized, magnetizable particles randomly 

dispersed in a carrier medium such as mineral or silicon oil. In the absence of a 

magnetic field, MR fluid is free-flowing, linear viscous fluids (similar to motor oil). The 

iron particles form linear chains parallel to the field when exposed to a magnetic field 

and become a semi-solid behaving as a viscoplastic material.  

 

 
(a) (b) (c) 

Figure 4.2. Iron particles in a carrier medium (The arrows indicate the magnetic field 
direction) (Source: Lord Corporation, 2008) 
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In Figure 4.2(a) the arrangement of iron particles is shown in the absence of a 

magnetic field. In Figure 4.2(b) and (c) the change of arrangement is presented by 

increasing the magnetic field. The transition occurs within milliseconds depending on 

the magnitude of the applied magnetic field. This feature provides the opportunity of 

construction of devices with high bandwidth. 

Semi-active control devices have very low power requirements. This property is 

very important during seismic events when the main power source to the structure fails. 

MR fluid can be controlled with a low voltage of ~12-24 Volts, current-driven power 

supply outputting only ~1-2 ampers. The yield strength of modern MR fluid is at a level 

of 80 kPa. This feature allows generating high forces which is desired in full-scale 

applications.  

The rise time from 10% to 90% of the final value for the MRD force is a few 

milliseconds. Some part of this time lag is spent to reach rheological equilibrium of the 

MR fluid, and the remaining part is associated  with the electromagnet’s dynamics. A 

very small time step is required in numerical simulations to reproduce the MRD 

behaviour correctly. 

MR fluid can work over a wide range of operating conditions. Its yield stress 

varies slightly at temperatures from –40 to 150 C . Additionally, MR fluid is insensitive 

to impurities, and different additives can be chosen to improve its properties. The 

additives are utilized to provide homogeneity or to prevent gravitational settling and 

wear. A small amount of separation between the particle and the carrier fluid occur 

under common flow conditions. 

 

 
Figure 4.3. Longitudinal cross-section of MRD 

(Source: Dyke et.al., 1996) 
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A fixed orifice damper filled with MR fluid is presented in Figure 4.3. The input 

voltage is applied to the wires to the electromagnet. The desired magnetic field is 

generated by a small electromagnet in the piston head. The coil is placed near the orifice 

on the piston head. The armature output voltage    in Equations (4.5) and (4.6) occurs 

on the coil. 

An accumulator is placed in the damper in order to prevent cavitation in the 

fluid during normal operation. Additionally it corresponds to the volume of fluid 

displaced by the piston rod in the opposite cell and the thermal expansion of the fluid. It 

consists of  a bladder within the main cylinder, which is filled with pressurized gas (see 

Figure 4.3). 

The iron particles in the MR fluid are randomly dispersed in a carrier medium as 

seen in Figure 4.2. If zero voltage is applied, then magnetic field does not occur, and the 

MRD behaves as a viscous device. The force-displacement curve is nearly elliptical, 

and the force-velocity curve is almost linear (see Figure 4.5-Figure 4.7). As the applied 

voltage increases (or as the current increases), a magnetic field increases by means of 

the coil, and the force required to yield the fluid increases. MR fluid’s behaviour turns 

into a plastic material in parallel with a viscous damper (Bingham plastic behaviour). 

The damping force of the MRD is related with the velocity of the fluid while passing 

along the orifice. As the current increases, iron particles form chains, and the passing 

velocity decreases. When the iron particles form complete linear chains parallel to the 

field, the magnetic field may increase, but the fluid flow around the iron particles does 

not further slow down. An increase in the applied voltage does not affect the passing 

velocity anymore and the iron particles become stable. Consequently, the damping force 

of the MRD does not increase anymore. This situation is refered as the saturation of the 

magnetic field in the MRD. A chain denser than the one in the saturated case can not be 

obtained. The saturation voltage is the maximum voltage used in the clipped control 

algorithm. 
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 Modified Bouc-Wen Model for MRDs 4.3.1.

 

Magnetorheological dampers are highly nonlinear devices. A mechanical model 

proposed for a MRD should effectively portray its nonlinear character. Various 

phenomenological models have been proposed during the development period of 

behavior model for MR dampers due to their highly nonlinear behaviour. 

The Bingham viscoplastic model and a model which is an extension of the 

Bingham model have been utilized at the beginning of the development of rheological 

behaviour model for MRDs. As time passed the Bouc-Wen hysteresis model became 

widely accepted for MRDs. It could exhibit a wide range of hysteretic behaviours. 

Afterwards, the modified Bouc-Wen hysteresis model was proposed (Yang et al., 2002). 

This new model could predict the damper response better in the region where the 

acceleration and velocity have opposite signs, and the magnitude of the velocities are 

small. Jimenez and Alvarez-Icaza presented the improved LuGre friction model (2005). 

Yang et.al. (2009) improved the model parameters of the improved LuGre friction 

model by the gradient-based optimization method and by the least square technique. 

In the numerical simulations of the present research, the modifed Bouc-Wen 

model was utilized, which was proposed by Spencer et al. (1997). It is composed of 

Bouc-Wen hysteresis, springs, and dashpots to accurately reproduce the MRD behavior. 

The Bouc-Wen hysteresis model is numerically tractable and can exhibit a wide variety 

of hysteretic behaviour. 

 

 
Figure 4.4. Modified Bouc-Wen model 

(Source: Spencer et.al., 1997) 
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The damping force of the MRD in Figure 4.4 can be calculated from the lower section 

as, 

 

         ̇    (    ) (4.1) 

 

The same force can be calculated from the upper section as follows 

 

           ( ̇   ̇)    (   )    (    ) (4.2) 

 

Solving the two expressions for  ̇ results in 

 

  ̇  
 

     
[      ̇    (   )] (4.3) 

 

The evolutionary variable   of the Bouc-Wen model is governed by 

 

  ̇    | ̇   ̇|| || |     ( ̇   ̇)| |   ( ̇   ̇) (4.4) 

 

where    is the accumulator stiffness, and    is the initial displacement of spring    

associated with the nominal damper force due to the accumulator. The viscous damping 

observed at high velocities and the viscous damping for the force roll-of at low speeds 

are represented by    and   , respectively.    is the stiffness at high velocities.   is the 

external excitation.   is the internal variable of the Bouc-Wen model.   is the shaping 

parameter of the hysteresis. 

The role of the accumulator inside the damper is two folded. First, it accounts 

for the fluid volume change due to the displacement of the piston rod. Second, it allows 

volumetric changes of the fluid due to change in temperature. The accumulator in the 

damper behaves like a spring. Therefore, the spring    is placed in parallel due to the 

presence of accumulator. The difference between the areas of the piston’s both sides, 

which is due to the presence of piston rod, cause a difference in pressures on the areas. 

This is modeled by a constant value of an initial displacement    of the spring   . 

The values of the characteristic parameters of the model are presented in Table 

4.1. The linearity in the unloading region of the force versus velocity graph and the 

smoothness of the transition from the pre-yield region to the post-yield region can be 
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controlled by adjusting the characteristic parameters      and  . The appropriate 

parameters for the analytical model were obtained by a constrained nonlinear 

optimization (Spencer et al., 1997). At this point, the aim was to determine parameters 

for a wide range of operating conditions.  

In order to control the model structure’s seismic response, the properties of the 

MRD were varied by the magnetic field. This was performed by applying a voltage to 

the armature circuit. The MRD is governed by the applied voltage. The parameter   of 

the Bouc-Wen model and the viscous damping coefficients    and    are determined for 

both cases of constant magnetic field and fluctuating magnetic field (i.e. constant and 

varying applied voltage). The yield stress of the MR fluid depend on the magnetic field 

strength, therefore the parameter   is assumed to be directly proportional with the 

applied voltage. According to Figure 4.5-Figure 4.7, the steady-state yield level varies 

linearly with the applied voltage and have a nonzero initial value when zero voltage is 

applied. The reasons of this nonzero initial value are the facts that the fluid is designed 

in order to have a small yield strength at zero field for stability against gravitational 

settling and the friction in the piston rod seal. Therefore, the functional dependence of 

the parameters to the applied voltage presented in Equation (4.5) was proposed by 

Spencer et. al.: 

 

 

 (  )          

  (  )            

  (  )            

(4.5) 

 

   is the armature voltage. It is not possible to measure the armature output voltage   . 

Therefore, the dynamics of the MR fluid reaching rheological equilibrium are modeled 

by a first order low-pass filter presented by 

 

  ̇    (    ) (4.6) 

 

where   is the input voltage sent to the current driver. The mechanical model proposed 

by Spencer et al. (1997) gives the closest responses to those in the experiments 

performed within their research. Therefore, the parameters determined by Spencer et al. 

(1997) were utilized in the response calculations of the MRD (see Table 4.1).  
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Table 4.1. Parameters for the modified Bouc-Wen model 
(Source: Spencer et al., 1997) 

Parameter Value Parameter Value 

    2100 Ns/m    14000 N/m 

    350 Ns/mV    69500 NV/m 

    28300 Ns/m   3630000 m-2 

    295 Ns/mV   3630000 m-2 

   4690 N/m   301 

   500 N/m n 2 

   0.143 m   190 sec-1 

 

 

 MRD Response to Sinusoidal Excitations for Various Applied 4.3.2.

Voltage Levels 

 

Numerical results of an individual MRD excited by sinusoidal displacement are 

presented in Figure 4.5-Figure 4.7 for decreasing excitation frequencies. The magnitude 

was held constant in three excitation cases as the excitation frequencies varied (5 Hz, 1 

Hz, and 0.5 Hz). In a loading case, four different constant voltage levels were applied. 

All the simulations were performed for three full cycle depending on the excitation 

frequency. 

The value of time step increment is a very important issue for the calculations of 

the MRD response. A large time step causes wrong results, whereas a very small time 

step results in excessive calculation time. The MRD responses gave results similar to 

the experimental ones when the simulations run with a maximum time increment of 10-4 

seconds (the experimental responses were obtained from the results of the research  

done by Spencer et al. (1997)). Time step values smaller than this value yield responses 

similar to the experimental ones, but increased the computational time unnecessarily. If 

the time step had been chosen greater than 10-4 seconds, then the shape of responses 

completely would have changed.  

On the other hand, the other parts of the calculations did not required such a 

small time increment value (These parts were the calculation of the responses of the 

structure via the Newmark’s linear numerical integration method and the calculation of 



 

35 
 

the control force via various control methods). Therefore, an inner loop was designed to 

simulate the response of the MRD at a rate 100 times faster than that of the simulation. 

An outer loop, in which the responses of the structure were calculated, was run at a rate 

supplied by the seismic record or by the synthetic seismic excitation. 

In the present subsection, a time increment of 0.002 seconds was chosen to 

coincide with the time increment in the earthquake simulations of the present reasearch. 

The MRD calculations were run at a rate 100 times faster than that of the simulation. 

The resultant time increment value for the MRD calculations was 2·10-5 seconds that 

was smaller than the limit value (10-4 seconds). 

 

 

 
Figure 4.5. The responses of the MRD to a 5 Hz sinusoidal excitation with an amplitude 

of 0.01 meters for various applied voltage levels 
 

(a) (b) 

(c) 
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The force versus displacement loops in Figure 4.5-Figure 4.7 progressed in 

clockwise direction along the path with increasing time. On the other hand, the force 

versus velocity loops in Figure 4.5-Figure 4.7 progressed in counter-clockwise direction 

along the path with increasing time. 

The accumulator in the MRD was responsible of the nonzero mean force 

provided by the damper in Figure 4.5(a), Figure 4.6(a), and Figure 4.7(a). It caused an 

offset in the measured damper force and a small widening of the force-displacement 

curve and the force-velocity curve through a certain direction of force. 

 

 

 
Figure 4.6. The responses of the MRD to a 1 Hz sinusoidal excitation with an amplitude 

of 0.01 meters for various applied voltage levels 
 

(a) (b) 

(c) 
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According to the force-velocity curve in Figure 4.5(b), as the command voltage 

was increased, the maximum damping force of the MRD also increased, and the length 

of the pre-yield region increased compared to the length of the post-yield region in the 

force versus velocity loop. This indicates that the yield value increases as the command 

voltage is increased. The response of the MRD to a 1Hertz sinusoidal displacement is 

presented in Figure 4.6 for four constant applied voltage levels. Then, the response of 

the MRD to a 0.5 Hertz sinusoidal displacement is presented in Figure 4.7 for four 

constant applied voltage levels. 

 

 

 
Figure 4.7. The responses of the MRD to a 0.5 Hz sinusoidal excitation with an 

amplitude of 0.01 meters for various applied voltage levels 
 

(a) (b) 

(c) 
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As the frequency decreases, which is the case in Figure 4.7, the force versus 

displacement loop gets the shape of a circle and the force versus velocity curve 

converges to the elastic case (see the response indicated by blue line in Figure 4.7(b)). 

The maximum absolute values of the MRD force are presented in Table 4.2 

which corresponds to the applied voltages for three different excitation frequencies. In 

Table 4.2, one of the voltage values is 2.25 Volts. The results related with this voltage 

value are presented since it is the maximum allowable voltage value. 

 

Table 4.2. Maximum damping force values of the MRD 

Excitation frequency (Hz) Applied voltage (V) Maximum MRD force (N) 
0.5 0 226 

 1 619 
 2.25 981 
 5 1007 
 10 1053 
 50 1424 

1 0 282 
 1 698 
 2.25 1208 
 5 1942 
 10 2035 
 50 2776 

5 0 768 
 1 1271 
 2.25 1885 
 5 3187 
 10 5409 
 50 13596 

 

In all of MRD simulations of the current thesis, a conditional loop was present to 

limit the maximum MRD force by 3000 Newtons if a force value greater than 3000 

Newtons was calculated in the MRD functional coded within MATLAB. This 

conditional loop was removed only for calculations performed for Table 4.2. This case 

changed only the last three rows of Table 4.2. 

According to Table 4.2, as the applied voltage increases, saturation of magnetic 

field and the upper limit of MRD force can not be observed. The maximum allowable 

force level of the MRD can not be reached with the maximum allowable voltage level 
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for tested frequencies and magnitudes of excitations (   |    |         in 

Equation (4.1)-(4.2) and    | |         in Equation (4.6)). This case can be 

observed in the rows of the 2.25 Volts for three different excitation frequencies in Table 

4.2. 

Consequently, the time step increment mainly influenced the responses of the 

MRD. In the simulations, two different loops were utilized as inner and outer loops to 

calculate the responses faster instead of carrying out the calculations within a single 

loop. Besides, the modified Bouc-Wen model did not reflect saturation of the magnetic 

field. In the simulations, the MRD force was limited out of the MRD function coded 

within MATLAB. 

 

4.4. Control of the Seismic Response by MRDs 

 

Different control strategies can be utilized in order to find the control forces 

required for enhanced structural behaviour. In the optimal control algorithm, control 

signals that will cause the system to satisfy some physical constraints, and at the same 

time maximize or minimize a chosen cost function are determined. 

 

 
Figure 4.8. Block diagram of the semi-active control system 

(Source: Dyke et.al., 1996) 
 

In the present study, the controller consisted of two stages: a linear optimal 

control part and a modified clipped algorithm. The required control force   was 

calculated by the optimal controller. Then, the voltage to be applied was determined by 

the modified clipped algorithm by compared the required control force   and the 
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damper force      of the previous time step. The block diagram representation of the 

system is presented in Figure 4.8. 

 

 Modified Clipped Algorithm 4.4.1.

 

The magnetic field in the damper is set to develop damping forces that are equal 

to those obtained by the optimal control. This is performed by a clipped controller. The 

output of the feedback block in the block diagram representation in Figure 4.8 is 

determined by the modified clipped control algorithm. 

The MRD is driven by the magnetic field around it, hence it is driven by the 

voltage applied to the electromagnet. In order to obtain the desired forces by the MRD, 

the voltage to be applied is set by a clipped algorithm. When the MRD generates the 

desired control force (      ), the voltage   should be kept at the present level. If 

damper force’s magnitude is smaller than the desired control force’s magnitude, and 

both forces have the same sign, then maximum voltage should be applied in order to 

increase the MRD force and to approach the desired control force level. Otherwise, zero 

voltage should be sent. The algorithm explained above is graphically presented in 

Figure 4.9, and is stated as 

 

          {(      )    } (4.7) 

 

where   is the applied voltage,      is the maximum voltage, and  { } is the 

Heaviside step function. There is an upper limit of  the damping force of the MRD. The 

upper limit is related with saturation of the magnetic field in the MRD. If the MR fluid 

saturates, then an increase in the applied voltage will not cause an increase in the 

damper force. The voltage related with this force upper limit is the maximum voltage. 
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Figure 4.9. Graphical representation of modified clipped control algorithm 

(Source: Dyke et.al., 1996) 
 

In the clipped control strategy, the command voltage is either zero or maximum. 

During the simulations it is seen that MRD reaches the maximum force level lots of 

times even if that amount of force is too much for such a kind of system. Thus, the 

MRD works in a higher force capacity range than the required force capacity. In order 

to avoid the damper to work at higher force levels, the voltage value is proportioned 

according to the calculated control force in the modified control algorithm (Yoshida & 

Dyke, 2004; Yuen et al., 2007). The control voltage can take values between zero and 

the maximum voltage. In the simulations of Section 4.5, the damper started to work at 

lower force values and never reached the maximum force level, after the modified 

clipped algorithm was started to be utilized. The modified clipped algorithm is stated as 

follows 

 

          {(      )    } (4.8) 

      {

 

   (    )
             | |     (    )

                                       | |     (    )

 (4.9) 

 

where   is the applied voltage.      is the maximum voltage.   is the desired control 

force.      is the damping force of the MRD.    (    ) is the maximum force 

capacity of MRD. The graphical representation of Equation (4.9) is presented in Figure 

4.10. 
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Figure 4.10. Graphical representation of the modified clipped control algorithm 

 

In Figure 4.10, the maximum voltage and the maximum damper force are 

limited. The applied voltage   is determined according to the desired control force  . 

After application of the voltage  , the damper force      can be measured or calculated 

numerically according to the velocity difference on the damper at the current step.  

 

4.5. Control of the Seismic Response of the Model Superstructure by a 

MRD 

 

In the present subsection, the seismic response of the three-storey model 

structure was controlled by four different controllers depending on the LQR, SMC, 

H2/LQG, and fuzzy logic. The system was excited by the data of the Imperial Valley 

event presented in Figure 2.4. The MRD was attached between the ground and the first 

floor of the model structure in Figure 3.1. The model structure including the MRD is 

presented in Figure 4.11. 

 

 Model Superstructure Including a MRD 4.5.1.

 

The seismic response of the three-storey single-frame model superstructure in 

Chapter 3 was controlled by a MRD attached between the ground and the first floor. 
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Figure 4.11. Model superstructure including a MRD 

 

The equations of motion for the model superstructure presented by Equation 

(3.1) was modified for the MRD, as follows 

 

     ̈  ( )  [    ̇  ( )          ( )]        ( )           ̈ ( ) (4.10) 

 

The subscript ss stands for the superstructure. The displacement vector of the structure 

is    ( )  (   ( )   ( )   ( ))
 . Similarly, the velocity vector of the structure is 

 ̇  ( )  ( ̇ ( )  ̇ ( )  ̇ ( ))
 . The definitions of the variables are presented in 

Chapter 3.      is the damping force of the controlled damper. The damper force is 

assumed as an internal damping. But, for simplicity of presentation and simulation, it is 

taken from the left-hand-side of the equation of motion to the right-hand-side, as 

follows 

 

     ̈  ( )      ̇  ( )        ( )           ̈ ( )          ( ) (4.11) 

 

     is the location matrix of the control force. It specifies how the control force      

enters into the system. It is presented by 

 

      (    )  (4.12) 

 

indicating that the damping force is present only at the level of the first floor. 

In the state-space form of the equations of motion of the model structure, the 

states    ( ) were chosen as the displacements and velocities of the floors relative to the 
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ground as    ( )  (    ( )  ̇  ( ))
 . All the states and the damper force were 

assumed to be sensed for full state feedback. The process equation is as follows 

 

  ̇  ( )        ( )        ( )        ( ) (4.13) 

 

where 

 

 

    [
  

    
         

     
] 

     [
 

     
] 

     [
 

    
      

] 

(4.14) 

 

   ( ) is the control input.    ( ) is the disturbance.     is the state matrix.     is the 

disturbance vector.     is the control input vector. The definitions of the other variables 

are presented in Chapter 3. 

 

 Steady-State (Infinite-Horizon) Linear Quadratic Regulator 4.5.2.

 

The fundamental aim of the current research is to reduce vibrations of a system 

during an excitation (ground excitation, mechanical shaking etc.). In other words, the 

aim is to enforce the system to be as close as possible to an equilibrium state. This task 

can be performed via a control input. But if a great amount of control effort is spent 

within in a long time, then this won’t be a convenient engineering solution. There 

should be a balance between the control input amount, the system states, and the time 

passed, which then leads to an optimum solution. In that respect, Bryson and Ho (1975) 

defines a regulator as a feedback controller, which forces a stationary system to locate 

in a reasonable vicinity of a reference zero by spending an addmissable amount of 

control effort. 

For a linear regulator, the control input is a linear function of the state vector 

(Meirovitch, 1989). For an optimal solution, a certain objective function in terms of 

states, control input, and time passed should be minimized. If the cost function is 

quadratic, then the problem turns into a linear quadratic regulator (LQR). Its solution 
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can be obtained via the dynamic programming or via a variational approach. The 

formulation of the LQR is presented in Appendix G. As time passes, the LQR problem 

turns into a steady-state (infinite-horizon) LQR design. The derivation of LQ-based 

control algorithms (LQR, LQG, H2/LQG) look like an optimization problem rather than 

a control design due to the minimization of the performance index.  

The constraint cost function in Equation (G.2) is minimized in the finite-horizon 

LQR design, resulting in the differential Riccati equation (DRE) (see Equation (G.13)). 

As time tends to infinity, the solution  ( ) to the DRE converges to a finite constant 

value  ̅ (       ( )   ̅). The differential term  ̇( ) vanishes, and the DRE becomes 

an algebraic Riccati equation (ARE) as below 

 

      ̅   ̅   ̅       ̅              (4.15) 

 

The state feedback gain  ( )        ( ) becomes time-invariant as follows 

 

  ̅        ̅ (4.16) 

 

The optimal state trajectory   ( ) can be obtained via the closed loop state equation as 

 

  ̇ ( )  [         ̅]  ( )          (  )               (4.17) 

 

As the final time goes to infinity, the system converges to a steady-state equilibrium 

state. The terminal penalty term in the constrained cost function disappears since the 

state vector goes to zero as    . The constrained performance index becomes 

 

   ̃( )  
 

 
∫ {  ( )  ( )    ( )  ( )    ( )[  ( )    ( )   ̇( )]}  
 

  

 (4.18) 

 

The free-final-state and fixed-time optimization problem for the finite-horizon 

case turns into a zero-final-state and infinite-time one. The solution  ̅ of the ARE can 

be obtained via the Hamiltonian matrix [see the condition for existence of  ̅ in 

(Williams & Lawrence, 2007; Başar et al., 1998)]. In the current study, its solution is 

performed via the MATLAB command care, which is abbreviated for continuous-time 

ARE. 
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The stability of the infinite-horizon LQR problem can be determined via the 

poles of the closed loop system [see (Anderson & Moore, 1989; Bryson & Ho, 1975) 

for detailed discussions]. Furthermore, Stengel (1994) discusses the robustness analysis 

of the LQR in terms of gain and phase margins in detail. 

 

 Sliding Mode Control (SMC) 4.5.3.

 

The model structure with one MRD is controlled by sliding mode control 

method. Sliding mode control method is an attractive control strategy due to its 

robustness against environmental changes. In general, the state equation of the linear 

time-invariant system being controlled is as 

 

  ̇( )    ( )    ( )   ( )           (  )     (4.19) 

 

The definitions of the terms in Equation (4.19) are presented in Table 5.3.  ( ) 

is the excitation vector. The the sliding mode control is insensitive to environmental 

changes. The method aims to design a control rule that forces the response trajectory 

onto a sliding surface. Sliding surface is a surface, on which the motion is stable. Let 

       be the sliding surface, 

 

     ( )       ( ) (4.20) 

 

    ( )  [  ( )   ( )     ( )   ( )]
  is an r-vector consisting of r sliding 

variables   ( )   ( )     ( ). r is the number of controllers.      is a (r x 2n) matrix, 

which is determined in such a way that the motion on the sliding surface is stable.      

is calculated by the LQR.      is determined by minimizing the cost function      as 

 

      ∫  
 ( )

 

 

      ( )   (4.21) 

 

where      is a (2n x 2n) positive definite matrix. The control law is designed to drive 

the state trajectory into the sliding surface       . As a result, the control force is 

obtained by help of Lyapunov function for a continuous control as 
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  ( )      ( )   ̅ ( )
  (4.22) 

 

where 

 

  ( )      ( )
       (4.23) 

     ( )   (     )
      (  ( )   ( )) (4.24) 

 

     is referred to as the sliding margin.  ̅ is a (r x r) diagonal matrix with elements 

           on the main diagonal. Chattering creates serious problems while 

determining sliding modes. This formulation is the continuous one that overcomes the 

chattering phenomenon.  

 

 H2/LQG Control 4.5.4.

 

The H2 optimal control theory originates from the frequency domain 

interpretation of the cost function associated with time-domain state-space linear 

quadratic Gaussian (LQG) control theory. In literature, Safonov et al. (1981), Doyle et 

al. (1989), and Lu (2001) presented the framework for the LQG method. Ramallo et al. 

(2002) applied an H2/LQG control to a two storey model structure. 

The H2 optimal controller is a combination of a Kalman filter and a full-state 

feedback gain, both of which are determined in the usual linear quadratic regulator 

(LQR) manner. The signal   contains all external inputs, including disturbances, and 

sensor noise. The H2 norm of a transfer function matrix from   to  ,     is defined as 

 

 ‖   ‖  √     (
 

  
∫    (  )   

 (  )   
 

  

) (4.25) 

 

In order to perform a physical interpretation of the H2 norm, it is important to 

note that the H2 norm of a transfer function is equal to the RMS (root mean square) 

value of its output   in case of unit white input. The RMS output vector is defined by 
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 ‖ ‖       
   

 

  
∫   ( ) ( )  
 

  

 (4.26) 

 

This expression can also be written as 

 

 ‖ ‖    √∑ [  
 ( )]

 

 (4.27) 

 

where  [ ] indicates the expected value operator. After the current stage, the problem 

turns into a LQG algorithm. The LQG optimal controller is simply composed of a 

Kalman filter (linear quadratic estimator, LQE) with a LQR. The two Riccati equations 

that come from the optimization of the performance indices are solved for the optimal 

solution. With appropriate selection of design weights, the H2 optimal control criteria 

defined in the frequency domain can be numerically equivalent to the LQG optimal 

control criteria defined in the time domain (Lu, 2001). 

The Q and R matrices declare the weights (importance) of both the states and 

the controller. In the LQR design procedure, the Q and R values were utilized directly 

whereas in the H2/LQG design, Q was integrated in matrices C1, D11, and D12. The 

H2/LQG method accepts a default value of 1 for R. 

Observers are required intensely in full state feedback control and real-world 

control applications (see Section 5.1 for reasons). In the simulations of Section 4.5, the 

aim was to compare the performances of the controllers. The attention was not on the 

observer. Therefore, it was assumed that any measurement was not performed, and all 

states were directly fed back to the controller. In the numerical simulations of Chapter  

5 of the thesis, the measured values were performed by adding randomly produced 

noise values to the calculated values. For the present example, noise was assumed to be 

zero. 

 

 Fuzzy Logic Control 4.5.5.

 

In the present subsection, the damping properties of the MRD are regulated by a 

fuzzy logic control algorithm. In general, the fuzzy logic algorithms consist of three 

steps: 



 

49 
 

1. fuzzification during which numerical input variables are transformed into linguistic 

variables by means of input membership functions (input membership functions 

may be triangular, trapezodial, Gaussian and etcetera), 

2. fuzzy inference rule that determines the output by means of inputs and logical IF-

THEN statements (Mamdani- and Sugeno-type fuzzy inference systems), 

3. defuzzification during which the output is produced by defuzzifying the results of 

the inference rules. 

In the present fuzzy control design, complicated differential equations are not 

required. The suitable inputs, membership functions and rules are sufficient enough to 

reflect the nature of the system. Additionally, the semi-active fuzzy controller gives 

directly the output voltage while the semi-active optimal controller performs its duty in 

two stages (see Figure 4.8). The fuzzy controller produces the output by means of the 

fuzzy rule inference. The block diagram is presented in Figure 4.12. 

 

 
Figure 4.12. Block diagram of semi-active fuzzy control system 

 

The input variables to the fuzzy controller were chosen as the first floor’s 

displacements and velocities relative to the ground since the displacement and velocity 

difference on the MRD were required. The boundaries of the input variables has to be 

defined priori to the simulation. In the present simulations, the boundaries of the input 

variables were selected as the maximum values of the first floor responses of the 

uncontrolled structure. The boundaries of the input variables were chosen in such a way 

that the controlled displacements and velocities of the first floor can not be greater than 

those of the uncontrolled ones. If a case different from this occurs in a real earthquake, 

then the fuzzy controller becomes useless. Seven identical triangles with 50% overlap 

were utilized for the input membership functions (Figure 4.13). 
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Figure 4.13. Input membership function 

 

For the input fuzzy variables in Figure 4.13, the linguistic abbreviations NL, 

NM, NS, ZE, PS, PM, and PL refer to negative large, negative medium, negative small, 

zero, positive small, positive medium, and positive large, respectively.  

The output was chosen as the voltage applied to the MRD. Six identical triangles 

with 50% overlap were chosen for the output, which took values between zero and the 

maximum voltage (Figure 4.14). The output variables took values between zero and the 

maximum voltage (2.25 volts). 

 

 
Figure 4.14. Output membership function 

 

For the output fuzzy variables in Figure 4.14, the abbreviations ZE, VS, S, M, L 

and VL refer to zero, very small, small, medium, large, and very large, respectively. The 

fuzzy inference rules are presented in Table 4.3. The calculations were performed by the 

Mamdani-type fuzzy inference system (FIS) within the fuzzy logic toolbox of 

MATLAB. 

The fuzzy inference rule were determined according to this principle: if the 

structure is away from its neutral position and is moving further away from its neutral 

position, then the voltage applied should be increased to provide more damping. 

However, when the structure is away from its neutral position, and is moving towards it, 

little or no voltage needs to be applied (Wilson, 2005). The reasoning of the fuzzy 

inference rules and modified clipped algorithm is similar. 
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Table 4.3. Fuzzy inference rule 
 NL NM NS ZE PS PM PL 

NL VL L L M S VS ZE 

NM L L M S VS ZE VS 

NS L M S VS ZE VS S 

ZE M S VS ZE VS S M 

PS S VS ZE VS S M L 

PM VS ZE VS S M L L 

PL ZE VS S M L L VL 

 

In the present fuzzy logic design, the fuzzy rules were combined by the Boolean 

and. The rule strength was determined by taking the minimum of the two input 

membership values, which is the most common definition of the Boolean and  in fuzzy 

logic. Then, the output membership function was clipped at the rule strength, and the 

outputs of all fuzzy rules were combined by taking the maximum value of the 

membership functions to obtain one fuzzy output distribution. Finally, a single crisp 

output value was obtained from the fuzzy output distribution by defuzzification process. 

This output value was determined by the center-of-gravity (COG) method, which 

simply calculated the centroid of the area under the fuzzy output distribution. 

 

 Simulations 4.5.6.

 

4.5.6.1. Interpolation of the Seismic Excitation Data 

 

In the simulations, the system was excited by the data of the Imperial Valley 

event presented in Figure 2.4. In general, any simulation should run at least 20 times 

faster than the fastest mode to take into account the contribution of the fastest mode (see 

Section Signal Construction in APPENDIX I). This case is visualized by Figure I.1. In 

the current simulations, the fastest mode of the model structure had a frequency of 8.33 

Hz. The simulation frequency had to be at least 167 Hz. Therefore, the records were 

interpolated to the one fifth of the original time increment of the data, resulting in 500 

Hz (see Figure 4.15). The energy imparted to the system did not change by interpolation 

since the magnitude in time-domain and total duration of the data remained constant. 
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The number of data was increased by interpolation. The magnitudes in frequency-

domain remained unchanged (see Figure 4.15(b)). 

 

 

Figure 4.15. Interpolated form of the Imperial Valley earthquake record in (a) time and 
(b) frequency domains 

 

In Figure 4.15, the magnitudes in time and frequency domains were not the same 

for the original and interpolated data. The reason of this fact may have been two-folded: 

Firstly, the energy of the signal leaked into a number of frequencies instead of a 

concentrating at a single frequency due to spectral leakage (see Figure I.2). Secondly, 

the peak of 3 m/s2 in time-domain was composed of sine waves with different 

frequencies. 

 

4.5.6.2. Simulations and Comparison of the Results 

 

The seismic response of the three-storey model structure in Figure 3.1 was 

controlled by an MRD attached between the ground and the first floor (see Figure 4.11). 

Four controllers were designed, depending on the LQR, SMC, H2/LQG, and fuzzy 

logic. These methods and details about the simulations are explained in Sections 4.5.2-

4.5.5. 

The LQR, SMC, and H2/LQG are optimal control methods. By choosing the 

optimal control algorithm, control signals that will cause the system to satisfy some 

(a) (b) 
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physical constraints, and at the same time, maximize or minimize a chosen performance 

criteria (cost function) are determined. On the other hand, the fuzzy logic controller is 

not an optimal controller. 

The controllers based on LQR, SMC, and H2/LQG consisted of two stages: an 

optimal controller and a modified clipped algorithm. The required control force   was 

calculated by the control methods (see Section 4.5.2-4.5.4). Then, the voltage that had 

to be applied to supply   was determined by the modified clipped control algorithm (see 

Section 4.4.1). The control voltage lay between   and      (Yoshida & Dyke, 2004; 

Yuen et al., 2007). On the other hand, the proposed fuzzy logic controller provided the 

voltage value to be applied in a single step (see the related MATLAB codes in 

APPENDIX J). In the proposed fuzzy controller, the voltage to be applied was 

determined by the fuzzy inference rules presented in Table 4.3. Therefore, the modified 

clipped algorithm was not utilized. The fuzzy inference rules were determined by a 

logic similar to the one in the modified clipped algorithm (see Section 4.4.1 and Table 

4.3). 

The responses relative to the ground were controlled. The     couple of the 

LQR design was determined by a trial-and-success procedure similar to the one 

summarized in Table 5.4. They were selected as 

 

      

[
 
 
 
 
 
      
      
      
        
        
        ]

 
 
 
 
 

          
   (4.28) 

 

By this configuration of the     couple, the ratio between the absolute values of 

maximum control and MRD forces became 1.28 for the data of the Imperial Valley 

earthquake. The     couples of the SMC and H2/LQG designs are presented in 

Equation (4.29) and Equation (4.30), respectively. The H2/LQG method accepts a 

default value of 1 for R. 
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   (4.29) 
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           (4.30) 

 

The inputs of the fuzzy logic controlers were the displacement and velocity of 

the first floor. Hence, the first floor responses were controlled directly while the 

responses of the other floors were controlled indirectly. On the other hand, in optimal 

controllers, all states were controlled with an equal weight. The control ability of 

optimal controllers were shared among all states. 

In an experiment or in a real-world application, for the LQR method, all states 

need to be sensed since there is not an observer involved. On the other hand, for the 

H2/LQG method, only some of the states have to be sensed since an observer is 

designed within the method to estimate all the states. The present example was a priori, 

and comparison of performances of the controllers was mainly aimed. Therefore, it was 

assumed that measurement was not performed and all states were directly fed back to 

the controller. 

The interstory drift responses are presented in Figure 4.16 and Figure 4.17 

although the responses relative to the ground are controlled. The absolute acceleration 

responses are presented in Figure 4.18 and Figure 4.19. 
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Figure 4.16. The response of the first story displacement with respect to the ground due 

to the Imperial Valley earthquake for different control strategies 
 

 

 

 
Figure 4.17. Interstory drift of the third floor due to the Imperial Valley earthquake for 

different control strategies 
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Figure 4.18. Absolute acceleration of the first floor due to the Imperial Valley 

earthquake for different control strategies 
 

 

 

 
Figure 4.19. Absolute acceleration of the third floor due to the Imperial Valley 

earthquake for different control strategies 
 

The absolute acceleration response of the first floor contains not only the 

structure’s acceleration value, but also acceleration coming from the damping force of 

the MRD. Therefore, the absolute accelerations of the second and third floors supply 

more correct information about the behavior of the structure. Furthermore, the peak 

values of the responses for different control strategies are presented in Table 4.4. 
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Table 4.4. Peak responses of the Imperial Valley earthquake for different control 
strategies 

 Uncontrolled LQR SMC H2/LQG Fuzzy 

Drifts 

(cm) 

   1.9 1.1 1.6 1.0 0.8 

   3.1 1.7 2.0 1.6 1.2 

   3.7 1.7 2.0 1.7 1.0 

Total accelerations 

(m/s2) 

 ̈   14.9 8.2 12.6 7.4 6.4 

 ̈   10.8 7.1 10.5 6.9 6.3 

 ̈   7.7 5.6 19.5 4.5 4.5 

Maximum shear force of 

the 1st floor (N) 
     2918 1750 2070 1668 1238 

Damper force (N)      - 533 1858 591 817 

 

In Table 4.4, the maximum shear force at the first floor of the superstructure was 

calculated by 

 

         |∑    
 ̈      

 

   

| (4.31) 

 

where      is the maximum shear force at the first floor of the superstructure.     
 is 

the mass of the i-th story of the superstructure.  ̈       is the absolute acceleration of the 

i-th floor of the superstructure. 

According to Table 4.4, the SMC method is undesirable due to its high absolute 

acceleration responses compared to the responses of the other control methods. 

Additionally, the maximum damper force of the SMC is distinctively high compared to 

that of the other methods. 

In Table 4.4, on the other hand, the fuzzy logic controller exhibites the best 

controlled responses among all applied strategies due to its low drift, absolute 

acceleration, and total shear force values. It reduces all responses to half of the 

uncontrolled ones. It performes this task by a damper force of one third of the capacity 

of the MRD (              ). Thus, the MRD is not forced to work close to its 

limits compared to the responses of the SMC method. The proposed fuzzy controller is 

effective in reducing seismic response of the model structure. In addition to its 
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affirmative contribution, the fuzzy control design is very simple compared to the other 

control methods. 

The controllers based on the LQR and H2/LQG algorithms reduces the interstory 

drifts more than 45% compared to the uncontrolled case although responses relative to 

the ground are controlled. Additionally, the reduction in the maximum total shear forces 

is 40% with respect to the uncontrolled case. On the other hand, the reductions of the 

interstory drifts in the fuzzy controller are more than 58% compared to the uncontrolled 

case. Besides,the fuzzy controller performs a reduction of 58% in the maximum total 

shear force with respect to the uncontrolled case. 

 

4.6. Comparison of the Responses of a Passively Controlled MRD and 

a Semi-Actively Controlled MRD 

 

In the present subsection, the responses of a passive damper and a semi-active 

MRD were compared. The aim was to answer the question of controlling a damper was 

necessary or it was better to place a passive damper instead of a semiactively controlled 

MRD to limit the structural responses. The responses of the model superstructure in 

Figure 4.11 were simulated for four different seismic excitations as: Imperial Valley, 

Düzce, Synthetic1, and Synthetic2 (see Section 5.8.1 for synthetic production of the data 

Synthetic1 and Synthetic2). The excitation data was interpolated to one fifth of the 

original time increment of the data, resulting in 500 Hz. 

In the simulations the responses of uncontrolled, passive-off, and passive-on 

systems were calculated. Zero voltage was applied for passive-off case. Different 

constant voltage values were applied for passive-on case (0.45, 0.90, 1.35, 1.80, 2.25 

V). Additionally, in optimal control case the calculations were performed for different R 

values varying from 10-11 to 10-7. The configuration of the   matrix in the LQR design 

was chosen as:  

  

   

[
 
 
 
 
 
        
        
        
         
         
         ]

 
 
 
 
 

 (4.32) 
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In the simulations of the present thesis, the states were the displacements and 

velocities relative to the ground. The order of the velocities was approximately ten 

times the order of the displacement responses in the simulations. Therefore, the weights 

of the displacements in the LQR design were chosen ten times higher than those of 

velocities harmoniously with the numerical situation. The configuration of the   matrix 

in Equation (4.32) coincided with the magnitudes of the states. 

The reduction of the maximum absolute values of displacements and total 

accelerations were presented in Figure 4.20-Figure 4.23 for the four seismic excitations. 

The reduction percentage of the responses with respect to the uncontrolled case was 

defined as: 

 

                      
   |      |     |     |

   |      |
     (4.33) 

 

The value of the variable                      had to be smaller than 100% 

and could be negative indicating that the controlled maximum value was greater than 

the uncontrolled maximum value. The responses indicated by   in Equation (4.33) were 

the floor displacements relative to the ground and total accelerations of the floors. The 

floor displacements relative to the ground were controlled. The responses of the first 

and third floors were presented in Figure 4.20-Figure 4.23 for the four seismic 

excitations. Additionally, on the right vertical axis of (a) and (b) of Figure 4.20-Figure 

4.23 the ratio of the maximum damper force and the maximum control force were 

presented. It was named            , and indicated the amount of the required 

damping force that the damper could provide. The acceptable region of the responses 

had to be around the region which             was equal to one, meaning that the 

required damping force could be provided by the MRD. Therefore, its acceptable values 

were chosen in the region of 

 

                   
   |    |

   | |
       (4.34) 

 

In (a) and (b) of Figure 4.20-Figure 4.23, the distribution of the variable 

            indicated by a line as distinct from the variables                     . 

The aim was to emphasize its linearly increasing trend by increasing   values. On the 



 

60 
 

other hand, the variables                      of the responses did not have a linear 

trend by changing   values. Especially                      of the total 

accelerations behaved unpredictably due to the existence of the MRD. 

The reduction percentage values are presented for various   values of the 

optimally controlled MRD in (a) of Figure 4.20-Figure 4.23. Then, the graph in (a) was 

zoomed in the allowable region of force ratio, and the results were presented in (b) of 

Figure 4.20-Figure 4.23. Finally, the reduction percentage values were presented for 

various applied voltage values of the passive MRD in (c) of Figure 4.20-Figure 4.23. 

In general, possible expected outcomes due to the existence of the damper were 

the cases that the highest reductions occurred at the displacement of the first floor and 

the lowest reductions occurred at the total accelerations of the first floor. Additionally, 

the absolute acceleration response of the first floor contained not only the structure’s 

acceleration value, but also acceleration coming from the damping force of the damper. 

Therefore, the absolute accelerations of the other floors supplied more correct 

information about the behavior of the structure. 

According to (a) of Figure 4.20-Figure 4.23, the response of the optimally 

controlled system was mainly affected by the selection of   for the certain configuration 

of the   matrix in Equation (4.32). Inconvenient selection of the   value caused 

unacceptable reductions in the total accelerations. Decreasing   values led to increasing 

control force values. This fact created improper total acceleration responses specially at 

the first floor level, at which the MRD was attached. 

According to the graphs in (b) of Figure 4.20-Figure 4.23, the region of the 

optimal   values was determined as 10-8.3 – 10-7.3 for the present system due to the 

allowable region of force ratio. In each excitation case, the reductions were close to 

each other for different             values in (b) of Figure 4.20-Figure 4.23. For the 

simulations of the Imperial Valley and Düzce earthquakes, the reductions in the 

responses were in the region of approximately 25-50 and 15-40 percent, respectively. 

On the other hand, the reductions in the responses of the Synthetic1 excitation were 

higher compared to the others. The reductions in the responses of the Synthetic2 

excitation were the smallest ones. One of the controlled responses of the Synthetic2 

excitation was greater than the uncontrolled response for             close to the 

boundary of the acceptable region. 
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(a) Reduction percentage for various R values of the optimally controlled MRD 

 
(b) The graph in (a) is zoomed in the allowable region of force ratio (75%-125%) 

 
(c) Reduction percentage for various applied voltage values of the passive MRD 

Figure 4.20. Reduction percentage values of the optimally and passively controlled 
MRD for the Imperial Valley earthquake 
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(a) Reduction percentage for various R values of the optimally controlled MRD 

 
(b) The graph in (a) is zoomed in the allowable region of force ratio (75%-125%) 

 
(c) Reduction percentage for various applied voltage values of the passive MRD 

Figure 4.21. Reduction percentage values of the optimally and passively controlled 
MRD for the Düzce earthquake 
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(a) Reduction percentage for various R values of the optimally controlled MRD 

 
(b) The graph in (a) is zoomed in the allowable region of force ratio (75%-125%) 

 
(c) Reduction percentage for various applied voltage values of the passive MRD 

Figure 4.22. Reduction percentage values of the optimally and passively controlled 
MRD for the Synthetic1 excitation 
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(a) Reduction percentage for various R values of the optimally controlled MRD 

 
(b) The graph in (a) is zoomed in the allowable region of force ratio (75%-125%) 

 
(c) Reduction percentage for various applied voltage values of the passive MRD 

Figure 4.23. Reduction percentage values of the optimally and passively controlled 
MRD for the Synthetic2 excitation 
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The                      values were plotted versus applied voltage values 

of passive dampers in (c) of Figure 4.20-Figure 4.23. A better controlled response was 

an expected outcome as the applied voltage increased. Usually, the reductions in total 

accelerations were smaller than the reductions in relative displacements. This difference 

became more apparent as the applied voltage increased. The highest reductions were 

observed in the responses of the Synthetic1 excitation. On the other hand, the lowest 

reductions were in the responses of the Synthetic2 excitation.  

Furthermore, the increase in the applied voltage did not cause a significant 

change in the total acceleration responses in (c) of Figure 4.20-Figure 4.23. This case 

indicated that the controlled system was highly overdamped, and the capacity of the 

utilized MRD was beyond the control requirements of the model structure utilized 

within the thesis. 

Consequently, the comparison of (b) and (c) of Figure 4.20-Figure 4.23 in each 

case provides valuable comments about the question whether controlling a damper is 

necessary. The designer may perform the selection due to the control requirements, the 

distance of the structure to the closest (possible) fault, and convenience of the 

implementation of the optimal control action. 

 

4.7. Hybrid Control of a Base Isolated Model Structure by MRD 

 

In the present subsection, a hybrid control, which consists of passive and semi-

active controllers, was studied. The aim was to benefit from advantages of both 

strategies and to compensate for their weak properties. The hybrid seismic response 

control of the three-storey model superstructure was performed. The model 

superstructure is presented in Figure 3.1. It was isolated seismically and a semi-active 

MRD in parallel to the base isolation system was attached between the base and the 

ground (see Figure 4.24). The benefits of hybrid application of two control systems 

were revealed. The control method was based on the theory of the LQR. 
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 Base Isolation 4.7.1.

 

Passive base isolation systems are currently more adopted in the control 

technology than semi-active MRDs. There are two types of base isolation, namely, the 

elastomeric-based systems and sliding-base systems. The elastomeric-based systems can 

be divided into two subgroups: low-damping rubber bearings and lead-core bearings.  

Chandiramani (2004, p.6) explains the main idea of base isolation as: “Structure 

mounted on a suitably flexible base such that the high frequency component of ground 

motion is filtered out and the fundamental vibration period is lengthened. This results in 

deformation in the isolation system only, thus keeping the structure above almost rigid. 

However, if the earthquake excitation contains a major component of this fundamental 

period, there will be large sidesway (albeit almost rigid) motions” 

Additionally, Kelly (1998, para.1) explains how the base isolation performs its 

duty: “In this approach, the building or structure is decoupled from the horizontal 

components of the earthquake ground motion by interposing a layer with low horizontal 

stiffness between the structure and the foundation”. In that respect, the researcher points 

out that it is better to utilize the term dynamic stiffness instead of the term stiffness. The 

dynamic stiffness is defined as           (Ewins, 2000), where   is the angular 

frequency of the excitation in rad/s.      and   are the stiffness, mass, and damping, 

respectively. In low frequency and small damping cases, the dynamic stiffness is close 

to the stiffness). Hence, the fundamental period of the isolated structure is lengthened 

by comparison with that of the fixed-base structure. In the frequency spectrum, it is 

placed at the higher period range of the ground excitation whose magnitudes are low. 

Thus, the high frequency component of ground motion is filtered out, and the structure 

is decoupled from the horizontal components of the seismic excitation. However, if the 

seismic excitation contains components with large magnitudes at the fundamental 

period of the isolated structure, then detrimental deformations occurs. 

If the base isolator is assumed to have zero stiffness, then the base displacement 

relative to the ground is almost the reverse of the ground displacement. It performs 

relative displacements almost the same as ground, but in the opposite direction. The 

total displacement of the base is low. Conversely, the structure becomes a conventional 

one in case of a rigid base. 
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The isolators should be stiff enough in the vertical direction to resist the weight 

of the structure, while being flexible in the horizontal direction. In the present study, 

elastomeric-type base isolators were utilized, and the emphasis was not on the 

properties of the isolators. Therefore, details about the isolators were not provided. 

In structural control design, one of the primary criteria is that the interstory drifts 

are restricted to limit the internal forces of structural elements (displacement control). 

For that purpose, the story drifts should be at low, or at least, moderate levels. Also, it 

can be suggested to limit the total accelerations for protecting the goods inside the 

building (absolute acceleration control). Additional design criteria may be added due to 

some special design demands (in museums, hospitals etc.). 

The base isolation system may control the displacements or accelerations of the 

superstructure, depending on the frequency content of the ground excitation and the 

frequency range that the structure is shifted by the seismic isolation. In an isolated 

structure, the responses are mainly driven by the fundamental mode, and most of the 

deformation occurs at the base level. A small amount of deformation remains in the 

superstructure, resembling a rigid-body-motion. Therefore, in the present study, the 

mass of the whole structure was taken into account while calculating the damping and 

stiffness of the base. They were determined by the following formulas, 
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(4.35) 

 

where              are the mass, damping, and stiffness values of the base.    is the 

mass of the ith floor.    is the circular frequency of the base.    is the damping ratio of 

the base. In the present study, the base mass is chosen to be 154.5 kg, which is one and 

a half of the first story mass. The base system was considered to have 4% damping. 

Such a damping value was assumed for the isolator due to the very low damping level 

of the superstructure (                     and           from Table 3.2). The 

elastomeric stiffness was approximately 706 N/m (For comparison purposes, the first 

floor had a stiffness of 78000 N/m). 
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The undamped period of the base was chosen as 10 times the fundamental 

undamped period of the superstructure, resulting in 5.06 s (Naeim & Kelly, 1999). This 

value was selected in such a way that the structure was pushed to the range of the 

excitation components with smaller magnitudes. 

The isolation system designed in the present subsection was also used in the 

hybrid application of the VOD in Chapter 5. A linear observer and regulator design was 

considered for the isolated building in Section 5.5. Therefore, the overall stiffness of the 

isolators was assumed to be equal to a constant value so that the resulting model 

structure was linear at the starting point of the control design. The controllers of all 

subsystems were designed priori to the response calculations (a subsystem in the hybrid 

application of the VOD was the system with a certain orifice opening). The simulations 

were also performed with these linear isolators to investigate the effectiveness of the 

control algorithm towards the system for which it was designed for. The neglected non-

linear effect of the isolators would cause an additional damping in the structure. For 

natural rubbers, the introduced damping was very low when compared to the MRD or 

VOD effect, whose damping ratios started range from 0.16 to extremely overdamped 

values. Therefore, the linear isolator assumption that was made in this study was not 

expected to cause a significant difference in the obtained results.  

 

 Hybrid-Controlled Building Model 4.7.2.

 

In a base isolation system, it is aimed to reflect some portion of the seismic 

excitation energy by lengthening the period of the structure. Hence, the structure is 

protected from the detrimental effects of the ground excitation. In a near-source seismic 

event, the magnitude of the high-period components is larger compared to far-source 

seismic events. On the other hand, the distance of the structure to the epicenter of a 

possible future earthquake cannot be known. A place far away from a fault at the 

moment may become closer to the fault in time. Especially, this case can be considered 

to be more possible in a country like Turkey, in which most of the social and industrial 

regions are located near seismic zones. Therefore, this possibility should be taken into 

consideration while designing seismically isolated structures whose period is high 

compared to conventional structures. Consequently, it is advised to utilize hybrid 

control systems in seismic zones in place of bare base isolation systems. Hence, the 
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isolation system is protected by semi-actively controllable dampers placed in the base 

level. 

The hybrid control system is a system, in which two or more control devices are 

utilized simultaneously. Passive supplemental damping in a seismically isolated 

structure provides the necessary energy dissipation to limit the isolation system 

displacement. However, damper forces can become quite large as the passive damping 

level is increased. Utilization of an intelligent hybrid application of a semi-active 

damper, whose damping coefficient can be modulated, is a possible solution to limit the 

level of damping force while simultaneously controlling the isolation system 

displacement (Symans & Kelly, 1999). On the other hand, additional damping at the 

base level reduces the base velocity directly and decreases the base displacement 

indirectly at the expense of larger drifts and floor accelerations of the superstructure. 

Dampers are utilized to absorb energy from the structure. Thus, the larger the 

damping is, the less the relative structural velocity and displacement will be. The 

accelerations, however, will increase. If the latter behavior is not detrimental, then the 

act of controlling a damper appears to be useless. Since the maximum damping yields 

the best response, placing a controller into the system is not required. For building type 

structures, the control of dampers seems to be feasible only when buildings are 

seismically isolated. The function of the dampers in these types of structures is to limit 

the displacement of the dampers so that they cannot rupture. The presence of a damper 

in parallel to a base isolation system obviously decreases the effectiveness of the 

seismic isolation. Nevertheless, it will keep the elastomeric bearings from being driven 

into large displacements, thus securing the base isolation system.  

The hybrid-controlled structure is presented in Figure 4.24. It has one base and 

three stories. In the present study, elastomeric base isolators were utilized at the base. A 

semi-active MRD in parallel to the base isolation system was attached between the base 

and the ground. 
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Figure 4.24. Hybrid-controlled building model (including base isolation and MRD) 

 

In Figure 4.24,    and    are the base and floor masses.    and    are the base 

and floor damping.    is the base stiffness, and    is the floor stiffness for        . 

The equation of motion with respect to the ground is as follows 

 

    ̈ ( )  [   ̇ ( )        ( )]       ( )        ̈ ( ) (4.36) 

 

where   ( ) is the displacement vector of the hybrid controlled structure relative to the 

ground.               are the mass, damping, and stiffness matrices, respectively. 

They are presented in Equation (4.38).   ̈ ( ) is the process noise (disturbance) that is 

the ground acceleration in the current problem.    is the location matrix of the external 

excitation. It specifies how the ground excitation  ̈  enters into the system. It is equal to 

(       ) , indicating that the ground excitation acts to all degrees of freedom.      is 

the damping force of the controlled damper. The damper force is assumed as an internal 

damping, but, for simplicity of presentation and simulation, it is taken from the left-

hand-side of the equation of motion to the right-hand-side, as follows 

 

    ̈ ( )     ̇ ( )      ( )        ̈ ( )        ( ) (4.37) 

 

where    is the location matrix of the control force and specifies how the control force 

     enters into the system. It is presented by    (       ) , indicating that the 

damping force is present only at the base level. 
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Assembly of the global mass, damping, and stiffness matrices of the isolated 

structure was performed. The superstructure and base were individual subsystems. The 

superstructure was assumed to be classically damped since its damping ratios were 

close to each other (see Section 3.1.1). The mass, stiffness, and damping matrices of the 

superstructure (           ) are presented in Equation (3.3) and (3.13), respectively. 

The coefficient of the Rayleigh damping   and   were calculated as 0.1231 rad/s and 

1.1667 10-4 s/rad, respectively, in Section 3.1.1. Then, the global mass, stiffness, and 

damping matrices were constructed directly by assembling the matrices of the two 

subsystems: superstructure and base. For the base isolated structure, the global mass, 

stiffness, and damping matrices are as follows 
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(4.38) 

 

The portions of the matrices in Equation (4.38), which are related with common 

DOFs at the interface between subsystems, include contributions from both subsystems. 

Additionally, the state-space representation of the system was required for the LQR 

design. The equation of motion of the hybrid controlled structure in Equation (4.37) is 

transformed into a first order state-space representation as follows: 
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(4.39) 

 

where   ( ) is the state vectors.   ( ) is the control input.   ( ) is the disturbance.    

is the state matrix.    is the disturbance vector.    is the control input vector. The state-

space representation of the system was constituted by the equation of motion of the 

model structure remaining in the linear region. The states were chosen as the floor 
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displacements and velocities relative to the ground. All the states and the damper force 

were assumed to be sensed for full state feedback. 

The undamped periods and frequencies of the base isolated structure are 

presented in Table 4.5. The undamped periods of the superstructure are approximately 

0.51, 0.18, 0.13 seconds from Table 3.1. By the addition of the base isolator, the 

undamped periods take the values presented in Table 4.5, softening the first mode of 

vibration. 

 

Table 4.5. Undamped periods and frequencies of the base isolated structure 

 Period (s) 
Undamped frequency 

(Hz) 

Undamped circular frequency 

(rad/s) 

First mode 5.07 0.20 1.24 

Second mode 0.32 3.10 19.47 

Third mode 0.17 5.98 37.57 

Fourth mode 0.12 8.08 50.75 

 

A value for isolator period was chosen in such a way that the structure was 

pushed to the smaller magnitude range on the acceleration spectra of the far-fault 

excitation record (see Figure 4.25). Hence, the structure and the damper were protected 

from the detrimental effects of earthquake excitations. In Figure 4.25, the fundamental 

undamped periods of the fixed-base and isolated structures are marked by the dashed 

and bold lines, respectively. The magnitude of the corresponding excitation is marked 

by a grey dot. 

The responses of a conventional and an isolated structure are mainly driven by 

the fundamental damped period since they are under-damped systems (the damping 

ratio of the base and the first mode of the superstructure are 0.04 and 0.0058, 

respectively, see Section 4.7.1 and Section 3.1.1). The undamped and damped periods 

of the bare and isolated structure are close to each other due to the low damping ratio 

(     √    ⁄  where   is the damping ratio). On the other hand, the damping effect 

of the MRD on the damped periods does not presented in Figure 4.25. This fact should 

be taken into consideration while interpreting the response of the hybrid-controlled 

structure. 

 



 

73 
 

 
Figure 4.25. Original data of the Imperial Valley event in the frequency domain (The 

fundamental undamped periods of the fixed-base and isolated structure are 
marked by the dashed and bold lines) 

 

The isolation effect was created by choosing relatively high periods for isolators 

to rescue the structure from the range of high frequency excitations. In other words, the 

isolator acted as a low pass filter (see Figure 4.25). 

 

 Current State in the Simulations and Results of the Simulations 4.7.3.

 

The hybrid control system, which consists of a semi-active MRD in parallel to a 

base isolation system, is presented in Figure 4.24. The simulation was performed by 

using the data provided from the record of the 1940 Imperial Valley earthquake. The 

excitation data is displayed in Figure 2.4 in time- and frequency-domains. The 

excitation data was interpolated to one fifth of the original time increment of the data, 

resulting in 500 Hz. 

The control method was based on the theory of LQR. In the present simulations, 

the base isolator and the hydraulic damper were always in action during a seismic 

excitation, sharing the control task. The     couple of the LQR design was 

determined by a trial-and-success procedure similar to the one summarized in Table 5.4. 

They are presented in Equation (4.40). 

 

isolated fixed 
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          (4.40) 

 

In the present work, the states were treated as uncoupled. Therefore, the off-

diagonal terms of the   matrix were zero. The weights of the base responses were ten 

times higher than those of the floor responses assigning more control effort to the 

response control of the base. The weights of the displacements were ten times higher 

than those of the velocities coinciding the nature of degrees of freedom in the present 

problem.   should be strictly positive definite. It should be noted that the important 

issue in the LQR is not the individual values of   and  , but the ratio between them is 

important. 

By this configuration of the     couple, the ratio between the absolute values 

of maximum control force and MRD force became 0.99 for the data of the Imperial 

Valley earthquake. On the other hand, the maximum MRD force was at the level of one 

third of the force capacity of the MRD (3000 Newton), indicating that the capacity of 

the MRD was not benefitted from completely. If   had been decreased to increase the 

control force  , then the ratio between   and      would have increased, and the 

controlled response would have deteriorated. This fact indicated that the capacity of the 

utilized MRD was beyond the control requirements of the model structure utilized 

within the thesis. 

The displacement time histories of the ground, the seismic isolated base, and the 

hybrid controlled base are presented in Figure 4.26. The values of the base were relative 

to the ground. The black dashed line stands for the displacement of the ground. The 

black solid line belongs to the passive controlled system and green solid one is for the 

hybrid system. In Figure 4.26, the significance of the hybrid controller was observed 

after the ground acceleration peaks at 25-28 seconds. The base isolated structure 

performed large deformation, and the isolators were damaged. On the other hand, the 

hybrid controller protected the base from large displacement response.  
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Figure 4.26. Displacement time histories of the ground, the seismic isolated base and 

the hybrid controlled base due to the Imperial Valley earthquake (The 
values of the base are relative to the ground)  

 

 

 
Figure 4.27. Interstory drifts of the superstructure due to the Imperial Valley earthquake 
 

According to Figure 4.26, since the isolators were very soft, their relative 

displacements with respect to the ground were almost equal to the negative value of the 

eartquake’s displacement, at least for the first two seconds. At time t=22 seconds, the 

ground moved at a period of approximately 6 seconds, which was close to the 

fundamental period of the isolated structure, for a total duration of approximately 12 

seconds. Hence, the structure got into resonance, causing large structural displacements. 

The isolated structure had low damping, resulting in large amplitude harmonic motion 
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with a small decay. On the other hand, the amplitude for the hybrid controlled structure 

was approximately 50% smaller. 

The simulation responses of the interstory drifts of the superstructure are 

presented in Figure 4.27. Examining the graphs, the floor responses of the hybrid 

controlled structure were larger compared to the base isolated case. But, they were still 

in acceptable ranges (< 1 cm). This was an expected result that was taken into account 

during the engineering design. 

At the beginning of the studies of the related hybrid control, the designer 

intended to activate the MRD after the base drift exceeded 3 centimeters not to utilize 

the MRD at low levels of excitation. When this condition was applied, the maximum 

displacement of the base was 11 centimeters while the base of the isolated structure 

performed a displacement of 14 centimeters (all values were relative to the ground). The 

contribution of the hybrid control was only a reduction of 21 percent at the base level. 

On the other hand, if the MRD had beeen always in action during the seismic excitation, 

then the base would have performed a maximum displacement of 9 centimeters 

resulting in a displacement reduction of 36 percent. Therefore, it was preferred to keep 

the MRD always in action. Otherwise, the passive control system, which was only 

composed of the base isolation, seemed a better design since it did not increase the total 

accelerations of the system (see Figure 4.30). 

 

 
Figure 4.28. Response of the base velocity with respect to the ground due to the 

Imperial Valley earthquake 
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The interstory velocity responses of the base and the superstructure are 

presented in Figure 4.28 and Figure 4.29, respectively. The total acceleration values of 

the base, first, and third floors are presented in Figure 4.30. 

 

 
Figure 4.29. Interstory velocities of the superstructure due to the Imperial Valley 

earthquake 
 

 

 
Figure 4.30. Absolute accelerations due to the Imperial Valley earthquake 

 

The hybrid controller protected the base from large displacement and velocity 

responses after the ground acceleration peaks at 25-28 seconds while the base isolated 

structure underwent large deformation. The absolute acceleration peak value reached to 

2g (g: gravitational acceleration). It was a considerable value compared to the benefit in 
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the displacements and velocities. The increases in the accelerations when compared to 

those of the isolated structure was due to the existence of the damper at the base level. 

 

 
Figure 4.31. Interstory drift of the first floor in frequency domain ((b) is zoomed in 

vertical axis) 
 

 

 
Figure 4.32. Interstory drift of the third floor in frequency domain ((b) is zoomed in 

vertical axis) 
 

The interstory drifts of the first and third floors in frequency domain are 

presented in Figure 4.31 and Figure 4.32, respectively. The response of the uncontrolled 

structure was driven mainly by the first mode. The second mode exhibited a smaller 

contribution to the response. On the other hand, the base isolated structure’s response 
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was driven by its fundamental mode, and the effect of the other modes on the response 

could not be observed. When the MRD was added to the structure in addition to the 

base isolation, the first mode’s period was slightly shortened, and the contribution of the 

second and third modes had a larger effect at this time than the first mode. 

The beneficial effect of hybrid system was obviously revealed by the results of 

the present simulation: In the absence of the MRD, the base displacement was much 

higher and damped out in a longer period of time. By adding extra damping (MRD) to 

the structural control system, a reduction of 50% in terms of base displacement was 

obtained. On the other hand, the floor displacements increased, but they were still in an 

acceptable range. Consequently, the base isolators were protected from rupture or 

damage due to large deformations.  
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CHAPTER 5 

 

HYBRID CONTROL OF A BASE ISOLATED MODEL 

STRUCTURE WITH A VARIABLE ORIFICE DAMPER 

(VOD) 

 

5.1. Overview 

 

The variable orifice dampers are semi-actively controlled hydraulic dampers, 

whose damping coefficient can be changed by mechanically adjusting a valve. In the 

context of the present section, a hybrid control system, which consists of the seismic 

isolator and VOD, is designed. The hybrid system contains advantages of both 

components and compensates for weak properties of them. The base isolation prevents 

acting of some portion of the seismic energy into the superstructure. The energy 

dissipating device limits the displacement of an isolation system to an acceptable level 

and, hence, protects the isolator. The base isolator is always in action during a seismic 

excitation. The hydraulic damper, on the other hand, shares the control task only if the 

displacement demand is large. 

The current section of the research focuses on gain scheduling control of a three 

story frame structure. The hybrid control system consists of a passive controller 

(elastomeric isolators) and a semi-actively controlled hydraulic damper, namely a VOD, 

that is connected in parallel to the base isolator. The damping value of the VOD is 

varied by adjusting the orifice opening size. The system behaves nonlinearly as the 

orifice opening of the damper changes. Linear subsystems were assigned for a number 

of different orifice settings, and a controller was designed for each of these linear sub-

systems. 

Generally, in control examples, only the displacements are sensed. On the other 

hand, the story velocities are not measured although they are required for the full state 

information. Therefore, the necessity of designing an observer is crucial to predict the 

unmeasured states. On the other hand, in real-world applications with state feedback 

control all the states of the system have to be known. But, quite often it is not practical 
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or possible to measure all the states. This fact enforces the researchers to employ 

observers in the control of civil engineering structures, in which some of the states have 

to be estimated from the measurements. Therefore, in the present study, special 

attention was paid for the subject of observers in the context of the LQG control. 

The linear quadratic Gaussian (LQG) based controllers were designed for 

various orifice openings of the damper in the isolated structure. The whole system 

consists of sub-systems, their controllers, and their observers. During a simulation, the 

optimum orifice size was selected among the previously defined orifice opening values 

at each time step by means of an upper controller, by which large isolator displacements 

and isolator damages were prevented. 

At the beginning of the studies, the observer could not predict the responses 

successfully. Therefore, Kalman and Kalman-Bucy observers were studied in detail, and 

some remedies for the observer design were applied: The observer was modified by 

sending the recorded disturbance. Besides, the base was prewhitened to satisfy the white 

input prerequisite of the Kalman-Bucy filter. The superstructure was diagonalized to 

obtain independent subsystems for the observer design. The observer was designed for 

the prewhitened base and diagonalized superstructure separately. The substructured 

configuration was utilized only for the observer design. The responses of the hybrid 

controlled system were calculated for the 4-by-4 structure.  

 

5.2. Literature Review 

 

A hydraulic actuator was implemented with a controllable orifice, which was 

designed by Sack and Patten (1996) for a full-scale highway bridge (Patten et al., 1999). 

Some researchers investigated the application of VODs for seismic response reduction 

of buildings and bridges (Symans & Constantinou, 1997; Symans & Kelly, 1999). 

In some experiments performed by Symans & Constantinou (1999), a structure 

with semi-active dampers exhibited a linear behavior in a certain limit of applied control 

voltage. The findings revealed that the linear relationship was deteriorated when closer 

to maximum speed or force levels. The models of the seismic isolators and damper were 

determined experimentally by Wongprasert and Symans (2005).  

An extended review of the gain scheduling literature was provided by Leith & 

Leithead (2000). The related study explained the fundamental theoretical and design 
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procedures briefly. Other references related with gain scheduling control are presented 

in Section 5.6. 

Wu et al. controlled the JZ20-2NW offshore platform in Bohai Gulf of China by 

MRDs (2010). Due to the limited number of measurements, a Kalman filter was 

designed (see Section 4.2 for details). 

H2/LQG control including Kalman estimator was applied to an active base 

isolation system in (Chang & Spencer, 2010). Kalman-Bucy filter was designed for 

output feedback control of a cable-stayed bridge by Schemmann and Smith (1998). 

LQG control system was employed in a benchmark structural control problem by 

Spencer et al. (1998). Kalman filter modified by inserting α0-degree relative stability to 

the algorithm was designed by Wang (2003). 

A control algorithm that can estimate ground excitation by using a Kalman filter 

was proposed by Aldemir (2009). The suggested algorithm exhibits results similar to 

those of a completely optimal control system, except for the maximum values.  

Three-dimensional response of a structure by placing semi-active VODs in two 

directions was controlled by Turan (2010). Gain-scheduling control of a VOD was 

performed for a three story building subjected to earthquake excitation by Kınay et al 

(2010). 

 

5.3. Variable Orifice Damper (VOD) 

 

The VOD was manufactured by modifying a piston with a pipe that 

interconnects its two chambers. A stepper motor controlled valve was placed in series 

with this pipe (see Figure 5.1). The damping value of the VOD is related to the size of 

the orifice opening (Turan & Aydın, 2011). The critical damping value     for the 

isolated structure was determined as 1115 Ns/m. Its calculation was performed by 

Equation (5.2) and was summarized in Table 5.1. 
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Figure 5.1. Longitudinal section of the utilized semi-active damper 

 

At the early simulations of the present research, the damping values of the VOD 

were from 100 till 2500 Ns/m by increments of 100 Ns/m. On the other, the maximum 

damper force was at the level of 1000 N indicating that the capacity of the damper was 

not utilized (maximum damper force is 5000 N). By this selection of damping values, it 

was aimed to create an under-damped response that the structure approached to a 

reference zero by performing oscillations, instead of an over-damped response. This 

selection (100 till 2500 Ns/m by increments of 100 Ns/m) was left behind due to the 

low force levels and the damping values were chosen as 100, 200, 300, 400, 500, 600, 

700, 800, 900, 1000, 1500, 2000, 2500, 3000, 10000, 15000, 20000, and 25000 Ns/m to 

increase the damper force levels. The upper limit was selected so that the piston’s 

capacity did not exceed, whereas the lower limit corresponded to approximately 10% of 

the critical damping. The chosen damping range allowed the controller to put the 

structure into a harmonic, or a very stiff state. The structure might damp out the seismic 

energy while performing oscillations, or the structure might converge to a zero state 

rapidly in an exponential manner leading to a very stiff response (see Appendix F for 

details).  

In an under-damped SDOF system, the damping ratio can be determined via the 

drop in the amplitude of the response within one cycle of vibration (Meirovitch, 2001). 

Hence, the critical damping     of the SDOF system can be obtained. This fact can be 

utilized for a linear MDOF system whose response is a superposition of SDOF 

responses at different frequencies. The procedure was illustrated in Section 3.1.1. The 

logarithmic decrement   is 

 

     
 (  )

 (  )
   

 

√    
 (5.1) 
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There is only one restriction for Equation (5.1) as the system is to be under-damped 

(   ). The damping ratio   can be determined via 

 

   
 

√      
 (5.2) 

 

where the damping ratio   is not linearly proportional to the logarithmic decrement   

(see Table 5.1). Equation (5.2) is valid for under-damped cases. 

The damping of the structure with a VOD varies as the orifice size of the damper 

changes. Hence, the response of the system becomes under-damped or over-damped 

depending on the orifice opening. Therefore, the under-damped and over-damped 

responses in the context of a SDOF system are presented in Appendix F. 

The VOD does not have a critical damping value since it does not have a mass 

as a mechanical device. It is just a dashpot. A certain critical damping value can be 

pronounced when the VOD is mounted to a system. In the present study, the critical 

damping     and the damping ratio   corresponding to every orifice size were 

determined by the logarithmic decrement within one period of the system. The system 

was excited by an initial condition in the shape of the first mode as 

[                        ]. The initial condition was in the shape of the state 

vector: the first four ones were for displacements, and the remaining ones stood for the 

velocities. The values related with velocity were set to zero in order to excite the first 

mode only. Otherwise, a relation between the displacements and velocities would have 

been defined. 

The damping value    of the VOD was held constant like a passive damper. 

Then, it could be assumed to be a linear system, and the principle of superposition was 

valid. When    was set to zero, the damping observed in the response was the damping 

of the base. For the first mode, a damping value of 45.43 Ns/m was always present as 

the damping of the base and    was an additional damping. The calculations are 

presented in Table 5.1. 
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Table 5.1. Determination of the critical damping value of the fundamental mode of the 
system 

Damping of 

VOD 

   (Ns/m) 

Damping of 

system 

  (Ns/m) 

Logarithmic decrement 

    
 (  )

 (  )
 

Damping ratio 

  
 

√      
 

0 45.43   
   

        
        0.0734 

100 145.43   
   

        
        0.1603 

200 245.43   
   

        
        0.2479 

300 345.43   
   

        
        0.3358 

400 445.43   
   

        
        0.4231 

500 545.43   
   

        
        0.5107 

600 645.43   
   

        
        0.5988 

700 745.43   
   

        
        0.6870 

800 845.43   
   

        
        0.7759 

850 895.43   
   

        
        0.8179 

 

where    is the damping of the damper.   is the calculated damping ratio of the excited 

mode.   is the damping present in the first story.     is the critical damping of the 

fundamental mode of the isolated structure.  (  )      (  ) are two successive peaks in 

the displacement response. 

The first peak could be seen in the displacement response. As the damping 

increased, the second peak could not be obviously seen (for       ). Therefore, a 

damping value of VOD as 850 Ns/m was applied numerically. Actually this value is not 

one of the damping value values of the VOD, but it was applied to make the data denser 

in the region close to the critical damping case. 

The damping values   are presented versus the damping ratios   in Figure 5.2. 

These values are in the second and forth columns of Table 5.1. They are dependent 
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linearly by   

   
 , in which     is a constant value. Therefore, fitting a linear curve to 

the data was a convenient choice. Hence, the critical damping value    , at where    , 

was determined as      1102.34 Ns/m. The damping value of the base was always 

present (    45.43 Ns/m). The value remaining for the VOD was 1057 Ns/m. The 

closest damping value of the VOD was 1000 Ns/m. Therefore, the fundamental 

response of the hybrid-controlled structure is over-damped for the damping values of 

the VOD higher than 1000 Ns/m. 

 

 
Figure 5.2. Determination of the critical damping value of the fundamental mode of the 

system 
 

Instead of utilizing the procedure explained above, the critical damping value 

    can be determined aproximately by obtaining the damped period    from the 

response. Then, the damped circular frequency    in rad/s is calculated, and the 

corresponding damping ratio   can be obtained by      √    . Hence, the critical 

damping value     is calculated by     
 

 
. It was preferred to utilize moderate or high 

damping values to prevent numerical errors while calculating  . 

 

5.4. Hybrid-Controlled Building Model 

 

In the present research, a hybrid control system, which is constituted from a 

passive controller (elastomeric bearings) and a semi-actively controlled hydraulic 
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damper, was designed. The damper was connected in parallel to the base isolator. In a 

similar research, the MRD was activated only when the base drift exceeded 50 per cent 

of the isolator displacement capacity (Ribakov & Gluck, 2002). In the present 

simulations, the displacement limit of the base to start the control scheme was 0.03 m. If 

the base displacement had been smaller than this value, then a control action would not 

have been applied. In this case, the damping of the VOD was set to the minimum value. 

It is physically not possible to completely remove the damper when control action is not 

applied.  

The hybrid-controlled structure is presented in Figure 5.3. It has one base and 

three stories. Elastomeric base isolators were utilized at the base. A semi-active VOD in 

parallel to the base isolation system was attached between the base and the ground. 

 

 
Figure 5.3. Hybrid-controlled building model (including base isolation and VOD) 

 

In Figure 5.3,    and   are the base and floor masses.    and    are the base 

and floor damping.    and    are the base and floor stiffness for        . The equation 

of motion with respect to the ground is as follows 

 

    ̈ ( )   [  ( )  ̇ ( )]  ̇ ( )      ( )        ̈ ( ) (5.3) 

 

where   ( ) is the displacement vector of the hybrid controlled structure relative to the 

ground.           are the mass and stiffness matrices, respectively.  ̈ ( ) is the 

process noise (disturbance), which is the ground acceleration in the current problem.    
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is the location matrix of the external excitation. It specifies how the ground excitation 

 ̈  enters into the system. It is equal to (       ) , indicating that the ground excitation 

acts to all degrees of freedom.  

The term  [  ( )  ̇ ( )] indicates that the damping of the structure depends 

directly on the displacement and velocity of the base by the upper controller. 

Additionally, it is based on the displacements and velocities of the superstructure 

indirectly. Therefore, the system is nonlinear. 

The isolated structure and VOD contribute to the damping force in Equation 

(5.3), which is indicated by  [  ( )  ̇ ( )]  ̇ ( ). Nonlinearity arises from the VOD, 

which can be assumed to be a passive damper for every orifice opening size. In the light 

of this fact, linear system approach can be applied to the structure in smaller constant 

damping ranges restricted by the damping value of the VOD. Then, the nonlinear 

system in Equation (5.3) can be regarded as a composition of linear systems at different 

operating points. The transition among different damping values of the VOD is 

performed by the gain scheduling technique (see Section 5.6 for details). Thus, the 

equation of motion in Equation (5.3) is transformed into the following equation. 

 

    ̈ ( )     ̇ ( )      ( )        ̈ ( ) (5.4) 

 

In Equation (5.4),    is the damping matrix of the isolated structure including 

VOD and is presented in Equation (5.6). Assembly of the global mass, damping, and 

stiffness matrices of the isolated structure was performed in Section 4.7.2. The mass, 

stiffness, and damping matrices of the isolated structure are presented in Equation 

(4.38). They are as follows 
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   [

             
           
           
            

]     

   [

                 
                       
                       

                 

]      

   [

                
                   
                   
                

] 
  

 
 

(5.5) 

 

The portions of the matrices related with common DOFs at the interface 

between subsystems include contributions from both subsystems. The damping value of 

the VOD is added to the related DOF of the damping matrix of the isolated structure in 

Equation (5.5)  for the hybrid controlled structure, as follows 

 

    [

                   
                   
                   
                

] 
  

 
 (5.6) 

 

The matrix    includes a varying value   , which is the damping value of the 

VOD. Its numerical values were assigned as: 100, 200, 300, 400, 500, 600, 700, 800, 

900, 1000, 1500, 2000, 2500, 3000, 10000, 15000, 20000, and 25000 Ns/m (see Section 

5.3). The equation of motion of the hybrid controlled structure in Equation (5.4) is 

transformed into a first order state-space representation as follows 

 

 
[
 ̇ ( )
 ̈ ( )

]
⏞    
 ̇ ( )

 [
  

   
       

    
]

⏞              
  

[
  ( )
 ̇ ( )

]
⏞    
  ( )

 [
 
   

]
⏞  
  

 ̈ ( )⏞  
  ( )

 (5.7) 

 

where   ( ) is the state vectors.   ( ) is the disturbance.    is the state matrix.    is 

the disturbance vector. The state-space representation of the system was constituted by 

the equation of motion of the model structure remaining in the linear region. In all 

formulations, the states were chosen as the floor displacements and velocities relative to 

the ground. There is not an explicit control input to the system since the control effect is 

applied by changing the damping value of the VOD. The floor displacements and the 
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damper force were assumed to be sensed. The measurement equation of the hybrid 

controlled structure is as follows 

 

 

[
 
 
 
 
 
 
       ( )

       ( )

       ( )

       ( )

       ( )]
 
 
 
 
 
 

⏞      
  ( )

 [
        
             

]
⏞            

  

  ( )   ( ) 
(5.8) 

 

where   ( ) and    are the measurements and its matrix, respectively.  ( ) is the 

measurement noise. The measured terms contain some amount of measurement noise 

 ( ). In order to distinguish between the states and the measured terms, the subscript 

noisy was added. On the other hand, the measurement vector   ( ) does not have a 

subscript noisy since it is well-known that it contains noisy terms. 

In the simulations, the observer and regulator was designed priori to the 

calculations of the responses. Therefore, the stiffness of the isolators was assumed to be 

a constant value and was not determined hysteretically. On the other hand, if the isolator 

properties had been determined hysteretically, then a constant stiffness would have used 

for the priori designs and hysteretic values would have been utilized for the response 

calculations. This remedy corresponded to the special architecture of the code within 

MATLAB. The responses would not have differred dramatically in constant and 

hysteretic stiffness cases. Therefore, the choice of constant stiffness would not effect the 

responses significantly (see Section 4.7.1). 

The undamped periods and frequencies of the base isolated structure are 

presented in Table 4.5. The original data of the Imperial Valley event in the frequency 

domain is presented in Figure 4.25. As long as the expected seismic excitations obey the 

frequency trends as shown in Figure 4.25, the isolated structure does not require any 

further design consideration. If a near-fault earthquake occurs, on the other hand, then 

the isolated structure is likely to be excited by large amplitudes of motion as can be 

depicted from Figure 5.17 and Figure 5.18. At this stage, the significance of a VOD 

becomes apparent. It can be adjusted to have small damping in the case of small 

amplitude vibrations, or large damping in the case of large magnitude vibrations. 
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5.5. Linear Quadratic Gaussian (LQG) Control of the VOD 

 

At the early stages of the current study, different control methods were applied 

for the VOD mounted structure. The controller studies started with the LQR method. In 

case of near-field seismic excitation, there were some unacceptable single peaks in the 

displacements of LQR. Then, the on-off control was implemented in place of LQR. The 

absolute floor accelerations were too high in near-source seismic data case. Later, 

H2/LQG control was applied. The problem was similar to the one in the on-off control. 

Finally, the route was oriented towards the LQG control. Besides, in real-world 

applications with state feedback control all the states of the system have to be known. 

Nevertheless, quite often it is not practical or possible to measure all the states. This fact 

motivates the researchers to employ observers in the control of civil engineering 

structures, in which some of the states have to be estimated from the measurements. 

Therefore, in the present study, special attention was paid for the subject of observers in 

the context of the LQG control. 

In stochastic optimal control, inclusion of Gaussian disturbance and 

measurement noise into the system definition convert the problem from a deterministic 

LQR design into a LQG control. In some cases, it is not possible to access all the states. 

Hence, they are not available for feedback. Therefore, they have to be estimated from 

measurements. The LQG algorithm is a combination of a linear quadratic estimator 

(LQE) and a LQR. Independent design and computation of two stages are guaranteed by 

the separation principle (Başar et al., 1998). Brezinski (2002) divides the optimal 

feedback control for a linear stochastic system into two designs: the optimal observer to 

estimate the states of the system and the optimal deterministic controller which is fed by 

the observed states. 

Additionally, the controller is fed by the observed states assuming that they are 

the actual ones since the system state is not completely accessible, which is known as 

the certainty equivalence principle (Bosgra & Kwakernaak, 2001). The observer and 

controller are designed individually. Then, they are combined by the feedback relation 

 ( )     ̂( ) (for a time-invariant system). For a time-invariant continuous-data 

linear system 

 

  ̇( )    ( )    ( )    ( ) (5.9) 
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whose measurement equation is as follows 

 

  ( )    ( )   ( ) (5.10) 

 

where       and   are the state, input, disturbance, and measurement matrices, 

respectively.  ( )  ( ) and  ( ) are the state, input and disturbance vectors, 

respectively.  ( ) and  ( ) are the measurement vector and its noise, respectively. 

A stochastic observer may be assumed to be in the form of the state equation 

(5.9) since it will reproduce the state by an arbitrary precision (Bosgra & Kwakernaak, 

2001). Nevertheless, the disturbances cannot be included to a conventional stochastic 

observer system since they are not known during the event. The definitions of the 

variables in Equations (5.9) and (5.10) are presented in Table 5.3. 

 

  ̇̂( )    ̂( )    ( )   ( ( )   ̂( )) (5.11) 

 

with a measurement equation without measurement noise, as follows 

 

  ̂( )    ̂( ) (5.12) 

 

where  ̂( ) is the observer state vector that represents the estimate of  ( ). The extra 

input term in Equation (5.11) is the measurement error term  ( )   ̂( ). It provides a 

correction, and the correction is active until the estimation error becomes zero.   is the 

observer gain, which is a weighting matrix that relates the error in the measured values 

to the state estimates. This correction is the key idea of the observer. Substituting the 

observer measurement equation into the observer system yields the common form of the 

observer system as 

 

 
 ̇̂( )  (    )⏞      

  ̂

 ̂( )    ( )    ( ) (5.13) 

 

where   ̂ is the state matrix of the observer. 

The observer differential equation presented in Equations (5.11) or (5.13) is 

similar to the system differential equation in Equation (5.9) with an additional weighted 
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error term of the measured values. The control input is the same in both equations. But, 

the disturbances are not fed into the observer system equation since they are not known. 

In the present work, the observer gain was obtained by the Kalman-Bucy filter, 

which is a stochastic predictor-corrector type estimator. It is optimal in the sense of 

minimizing the expected value of the squared state estimation error (Equation (C.13)). It 

also filters out sensor noise from the measurements. 

The independence of the observer and the controller design is shown for the 

system in Equations (5.9) and (5.10). A full-state feedback is combined with a Kalman-

Bucy filter. The states of the resultant closed loop system are composed of the actual 

states  ( ) and the estimation error  ( )   ( )   ̂( ) (Equation (C.7)). The 

fundamental aim of any observer is estimating the actual states properly. Therefore, the 

estimation error is chosen as a convenient tool to exhibit the system behavior. In 

Kalman filter design, the performance index to be minimized is chosen in terms of the 

estimation error (Equation (C.13)). Substitution of the feedback law  ( )     ̂( ) 

and   ̂( )   ( )   ( ) into Equation (5.9) yields 

 

  ̇( )  (    ) ( )     ( )    ( ) (5.14) 

 

The error system is performed by subtracting Equation (5.13) from Equation 

(5.9). Then, the measurement equation in Equation (5.10) is plugged into it, and the 

error system appears as in the following form, 

 

  ̇( )  (    ) ( )    ( )    ( ) (5.15) 

 

Collecting Equations (5.14) and (5.15) in matrix form yields 

 

 
[
 ̇( )

 ̇( )
]  [    

⏞    
   

  
     ⏟    

 ̂

]

⏞            
 ̿

[
 ( )

 ( )
]  [

 
 
] ( )   [

 
  
]  ( ) (5.16) 

 

Dynamics of the system in Equation (5.16) is governed by the eigenvalues of the 

coefficient matrix  ̿ of the homogeneous part of the equation. The characteristic 

equation of the system is the product of the characteristic equations of the regulator and 
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observer since  ̿ is a triangular matrix. Thus, the controller and the observer are 

independent of each other (Bosgra & Kwakernaak, 2000; Schemmann, 1997; Brezinski, 

2002). Additionally, stability of the LQG controller is validated by the asymptotical 

stability of two independent subsystems whose eigenvalues should have strictly 

negative real parts. 

 

 Kalman Observer 5.5.1.

 

While controlling the seismic response of the civil engineering structures, some 

of the states have to be estimated from the measurements since quite often it is not 

practical or possible to measure all the states. At the former simulations of the Kalman-

Bucy filter, it was not possible to obtain the desired ratio between the poles of the 

observer and the system for all the modes of the base-isolated and damped structure (see 

Equation (5.22)). Some of the modes were not possible to speed up, while others were 

extremely fast. The slow modes were undesired because they may have been too slow to 

approach the true modes. The fast modes were unacceptable due to stability constraints. 

The remedies were investigated, which did not increase the frequencies of the slower 

modes (see Section 5.5.2). Thus, for the numerical simulations, it was decided to 

constitute a Kalman-Bucy filter functionality instead of utilizing the Kalman-

functionality within MATLAB. For this purpose, the present subsection was formed to 

increase the understanding on the inner dynamics of the Kalman-Bucy filter. The 

derivation of the Kalman filter, which was a discrete-time formulation, was presented in 

Appendix C. In the present research, continuous-time systems are dealt with. Therefore, 

after deriving the Kalman observer, the Kalman-Bucy filter for continuous-time 

problems was obtained from a limiting process of the Kalman estimator. The details 

were presented in Appendix B and D. 

An observer is an algorithm utilized to estimate the states of the system. If the 

dimensions of the system and the observer state vectors are of the same size, then it is a 

full-order observer, which is the case for a Kalman filter. Otherwise, it is a reduced-

order observer. 

If a system is deterministic, then it does not contain any randomness while 

evolving the future states of the system. It gives the same output for a certain input 

starting from a certain set of initial conditions. In reality, the process may be corrupted 
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by some unwanted input signals, as disturbance (process noise). Additionally, some 

measurements may be required, and measurements are corrupted by some degree of 

noise, biases, and device inaccuracies. Then the system turns into a stochastic one. An 

observer may be deterministic as a Luenberger observer or may be stochastic leading to 

the Kalman or Kalman-Bucy filter (Meirovitch, 1989). 

In 1960, Rudolf Emil Kalman represented a recursive solution to the discrete-

data linear filtering and prediction problems (Kalman, 1960). One year later, Kalman 

and Bucy extended the formulation for continuous-time linear systems (Kalman & 

Bucy, 1961). The fundamental problem is to predict the internal states of a linear system 

by accessing only to the noisy sensor measurements. The Kalman and Kalman-Bucy 

filters perform stochastic estimates, which are optimal in the sense of minimizing the 

state estimation error covariance under predefined noise covariances (Meirovitch, 1989; 

Welch & Bishop, 2001). 

The system utilized in Chapter 5 is time-invariant for each orifice opening of the 

VOD. However, during the derivation of the Kalman filter, a time-variant formulation 

was preferred to prevent any knowledge loss that might appear due to the assumption of 

the system being time-invariant. At the final stage, the formulation is adopted for the 

time-invariant system. 

For a linear time-variant system, the process to be estimated is presented as a 

linear combination of the previous state     , control input     , and process noise 

     in discrete-time. 

 

                               (5.17) 

 

whose measurement model is as follows 

 

            (5.18) 

 

The linear stochastic time-variant plant model is summarized in Table 5.2 for 

continuous- and discrete-time cases. The definitions of the variables are presented in 

Table 5.3. The subscript j indicates the jth time step. 
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Table 5.2. Linear time-variant plant and measurement models 
Model Continuous-time Discrete-time 

Process  ̇( )   ( ) ( )   ( ) ( )   ( ) ( )                               

Measurement  ( )   ( ) ( )   ( )            

Process noise 
 { ( )}    

 { ( )  ( )}   ( ) (   ) 

 {  }    

 {    
 }     (   ) 

Measurement 

noise 

 { ( )}    

 { ( )  ( )}   ( ) (   ) 

 {  }    

 {    
 }     (   ) 

 

 

Table 5.3. Definitions of terms in Table 5.2 
Continuous-time Discrete-time Dimension 

  State vector    State vector at time         

  State matrix      

Matrix transforms the previous state to the 

current state in the absence of either a 

forcing function or process noise 

      

  Control input matrix      Control input matrix at time            

  Control input vector      Control input vector at time           

  Disturbance matrix      Disturbance matrix at time            

  Disturbance      Process noise (disturbance) at time           

  Measurement    Measurement at time         

  Measurement matrix    

Matrix describing the noiseless connection 

between the measurement and the state 

vector at    

      

  Measurement noise    Measurement noise at time         

  

  

Positive-definite covariance matrices of 

process and measurement noises 

   

   

Positive-definite covariance matrices of 

process and measurement noises 

      

      

  Dirac delta function   Kronecker delta function     

 

The main idea of the Kalman observer is similar to the one presented in 

Equation (5.11). Distinctively, it is not a single-step algorithm, it is a predictor-

corrector type algorithm. Firstly, a priori predictions  ̂   and     for the state estimate 

and estimation error covariance are performed by means of the estimates of the previous 

step,  ̂    and     . Then, these estimates are corrected or improved by performing an 

actual measurement    at the current step. The actual measurements correct the 

predicted state by adding the residual weighted by a gain factor   . A similar 

improvement is performed for the estimate error covariance. The steps of the Kalman 
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estimator are summarized in Figure 5.4 (see Appendix C for a detailed explanation of 

equations displayed in Figure 5.4). 

 

 
Figure 5.4. Kalman filter (discrete-time) (The equation numbers belong to Appendix C) 

(Source: Welch & Bishop, 2001) 
 

In the current optimization problem, it is desired to determine optimal state 

estimates. Therefore, a state error, which is the difference between the real and 

predicted states, would be the most feasible variable to be utilized in the cost function. 

Therefore, the heart of the Kalman observer design, the gain     is determined by 

minimizing the expected value of the squared state estimation error. The computational 

origins of the Kalman filter are presented in Appendix C. The Kalman gain is as, 

 

      
    

 (     
    

    )
   (5.19) 

 

where     is the covariance matrix of the error of the a priori state estimate. 

Furthermore, the statistical assumptions of the Kalman filter can be summarized as 

follows: 

 The initial state has a known mean and covariance. 

 The disturbance and measurement noise sequences    and    are white 

(spectrally) and zero-mean (statistically) random signals with known 

autocorrelation of 

 

  {     
 }      (   ) (5.20) 
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 {     
 }      (   ) 

 

where    and    are positive-definite covariance matrices. 

 The initial state (or the initial state error) and two noise sequences are 

uncorrelated. 

 

 

 {    
 }                

 {    
 }                

 {    
 }                  

(5.21) 

 

The autocorrelation function of a signal  ( ) is  

 { ( )  ( )}   ( )  (   ) where  ( ) is the positive definite covariance matrix of 

the signal. If the signal is stationary, then spectrum of its autocorrelation function is 

constant, meaning that the covariance matrix does not vary with time ( { ( )  ( )}  

   (   )).  

White noise is a random signal whose autocorrelation function (its correlation 

with itself over time) is a delta function, meaning that white noise is completely 

uncorrelated with itself at any time except for the present. The whiteness of a signal is 

represented by a delta function as a correlation function. In continuous-time case it is a 

Dirac delta function as  (   ), and in discrete case it is a Kronecker delta function as 

 (   ).  

The Kalman filter describes a recursive solution to the discrete-data linear 

filtering problem. In a recursive procedure, the key point is the use of the results of the 

previous step to calculate the desired result of the current step. The recursive nature is 

one of the attractive features of the Kalman filter in contrast to other approaches, such 

as the Wiener filter, in which all the past data are required to perform calculations at the 

current step (Brown & Hwang, 1992). 

It is required to give information about the stability of the filter in steady-state 

case roughly. In most of the problems, within a certain period of time after starting the 

initiation, the Kalman filter reaches to a steady-state or quasi-steady-state case, and the 

gain becomes constant (Brown & Hwang, 1992). For the asymptotic stability of the 

Kalman-Bucy filter, the closed loop system should have eigenvalues whose real-parts 

are strictly negative (Williams & Lawrence, 2007).  
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Furthermore, the duality of two optimization problems (the Kalman (or Kalman-

Bucy) observer and the LQR problem) was mentioned briefly: In both cases, a quadratic 

cost function is minimized subjected to linear dynamic constraints. The differential 

equations (Equation (G.13) and Equation (D.24)) and their solutions have the same 

shapes (Meirovitch, 1989; Williams & Lawrence, 2007; Stengel, 1994; Grewal & 

Andrews, 2008). 

The numerical calculations were performed via the Kalman-Bucy function 

coded within MATLAB. The solution of the ARE in the optimization problem was 

performed via the MATLAB command care abbreviated for continuous-time ARE. 

 

 Observer Design 5.5.2.

 

The fundamental design criterion for a convenient observer is the measure of the 

closeness of the observed responses to the simulated responses. Another design criterion 

is how fast its modes are compared to the modes of the original system. In the literature, 

it is suggested that the modes of an observer should be 2-4 times faster than those of the 

system (Arıkan & Ercan, 2011). Extremely fast observer modes are unacceptable due to 

the stability constraints. The ratio of the real parts of the poles of the observer to those 

of the system is defined as, 

 

            
    (          ( ̂))

    (          ( ))
 
    (          (    ))

    (          ( ))
 (5.22) 

 

The real component is responsible for determining how fast the response 

approaches to zero while the imaginary part creates the oscillatory behavior (see 

Appendix F). Therefore, the ratio of the real parts of the poles is chosen as the decision 

criterion for the observer design. 

For the Kalman-Bucy filter, the noise variances   and   were selected in such a 

way that the variable           was aimed to be in the range of 2-4. At the former 

simulations of the current study, it was not possible to obtain this ratio for all the modes 

of the base-isolated and damped structure. Some modes were not possible to speed up 

(           ), while others were extremely fast (                   ). This fast 

ratio was unacceptable due to stability constraints. On the other hand, slow modes of the 

observer were undesired (           ). Various   and   values were examined, 
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nevertheless any desirable result was not obtained to increase the frequencies of the 

slower modes of the observer. This may have been due to the fact that a convenient 

observer was searched in a range that was limited by the     couples tried. 

 

5.5.2.1. Modification of the Kalman-Bucy Observer 

 

In the present study, an observer similar to the one in Equation (5.13) is 

designed for the hybrid-controlled building model in Equation (5.7). There are not any 

explicit control inputs to the system since the control effect is applied by changing the 

damping value of the VOD. 

 

 
 ̇̂( )   ̂ ̂( )    ( ) 

 ̂( )    ̂( ) 
(5.23) 

 

where  ̂( )  is the observer state.  ̂ is the state matrix of the observer as  ̂       

where   is the gain matrix of the Kalman-Bucy observer.  ( ) is the vector of measured 

values. 

In a regular Kalman-Bucy observer, the disturbances are not fed into the 

observer system equation since they are not known. On the other hand, in structural 

engineering applications, this is not the case. The ground excitation can be recorded and 

be sent to the observer in addition to the measurements during the event. While 

recording, measurement noise is included to the disturbance. The observer system in 

Equation (5.23) is modified to reflect this special feature as follows 

 

 
 ̇̂( )     ̂ ̂( )           ( )      ( )   

 ̂( )      ̂( )   
(5.24) 

 

The term       ( ) in Equation (5.24) indicated this unusual noisy disturbance 

case. In the present simulations, the observer was designed for the sub-structured base 

and superstructure, separately (see Section 5.5.3 and 5.5.5.1 for details). 

The floor responses of the superstructure were observed in absence of a 

controller to validate the enhancement of the modification of the Kalman-Bucy filter. It 

was aimed to focus only on the distinction which arose by modification of the observer. 
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Therefore, the superstructure was utilized instead of the isolated structure to design an 

observer with desired poles (for the diagonalized superstructure). 

The responses of the two observers were compared with the simulated 

responses. The two observers were the original and modified Kalman-Bucy estimators. 

The displacements and velocities of the first floor are presented in Figure 5.5 and Figure 

5.6 for the Imperial Valley and Düzce earthquakes, respectively. 

 

 
Figure 5.5. The first floor responses due to the Imperial Valley event (only 

superstructure and no control action) 
 

 

  
Figure 5.6. The first floor responses due to the Düzce event (only superstructure and no 

control action) 
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The same     couple and the same observer gain matrix   were utilized for 

the conventional and modified observers.     for the disturbance and   had a shape 

of identity matrix as   [
   
   
   

] for the measurement noises.     0.001, 0.001, and 

0.1 for the three independent subsystems. An conditional loop was coded to determine a 

convenient     couple for a better observer design. The          s defined in 

Equation (5.22) are 1.04, 1.94, and 3.16 for states of the subsystems, respectively. 

The responses of the conventional observer for both excitations were 

unacceptable. Additionally, there was some amount of phase difference in the response 

of the conventional observer. On the other hand, the structural response with the 

modified observer overlapped with the simulated response. Consequently, the 

enhancement of the modification of the Kalman-Bucy filter was observed. 

 

5.5.2.2. Selection of    and   Values by Genetic Algorithms 

 

The GA studies mentioned in the present subsection were performed only for the 

superstructure, not for the isolated structure. By doing this, it was aimed to encounter 

with the numerical difficulties step by step. Thus, in the first instance, the calculations 

were started by the superstructure whose damping matrix is proportional. At the end of 

the GA studies, even in case of proportional damping, various numerical challenges 

occurred in GA. Consequently, the GA studies were not utilized select a convenient  

    couple. The details about the GA studies are presented in the following lines. 

In the current study, the poles of the observer could not be placed in desired 

ranges by convenient selection of     couple. Therefore, a genetic algorithms study 

was performed to obtain the     couple in such a way that           values in the 

range of 2-4 were obtained. 

In genetic algorithms (GA), the design variables which minimize the objective 

function are searched within the defined bounds and under some constraints. The range 

of the initial conditions, which the genetic algorithms start calculations, is very 

important. Usually, the success of a case depends on the fact that whether the selected 

range of the initial conditions is close to a global extremum. 

In the present studies, the objective (fitness) function was chosen as the sum of 

square of the difference between the simulated and observed states. The design 
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variables were the elements of the   and   matrices.           was applied as the 

nonlinear constraint to force the GA tool to find the optimal   and   matrices in such a 

way that the observer poles were in the desired range. 

In general, the algorithm works as follows: First, the GA produces design 

variables within the boundaries by means of the range of the initial conditions. Then, 

these design variables are sent to the constraint file to check whether the constraints are 

satisfied. If they are fulfilled, the design variables are sent to the fitness function file. 

On the other hand, if they are not satisfied, then the GA should produce new design 

variables that satisfy the constraints.  

In the present GA studies, none of the cases explained in the previous paragraph 

were obtained for the Kalman observer. For most of the design variables, MATLAB 

quitted the GA calculations due to an error that occurred in the Kalman function of 

MATLAB instead of trying a new set of design variables. Additional constraints were 

added to overcome the numerical problems in the Kalman function, and this locked the 

system. Therefore, some of the constraints, which were directly related with the 

problem, were not taken into consideration. As a result, not being able to reach any 

results in GAs was the motivation to derive the formulation in the appendices B, C, and 

D and to utilize the Kalman-Bucy function which was coded within MATLAB in the 

context of the present thesis. 

Various remedies were conducted such as reducing the number of design 

variables, changing the boundaries, changing the range of the initial conditions, and 

changing the constraints. The results were not satisfactory. Later, the problem definition 

was completely changed, and the objective function was chosen as the          . The 

results were similar to the previous ones. At the end, the GA studies were not utilized to 

select a convenient      couple since global extrema could not be obtained in any of 

the calculations. 

 

  Substructured Form of the Building for the Observer Design: 5.5.3.

Base & Superstructure 

 

The observer was aimed to be designed for independent subsystems. These 

independent subsystems were obtained via diagonalization. On the other hand, the base 

isolated structure could not be diagonalized since its damping matrix was non-
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proportional (see Section 3.1 and Section 5.5.5.1 for details). Therefore, the structure 

was sub-structured into the base and the superstructure for the observer design as in 

Figure 5.7. The responses were calculated for the 4-by-4 structure presented in Section 

5.4. 

 

 
Figure 5.7. Substructured configuration of the structure for the observer design– base 

and superstructure 
 

In Figure 5.7,    and   are the base and floor masses.    and    are the base 

and floor damping.    and    are the base and floor stiffness for        . The forces 

emerged due to the sub-structured configuration (     ( ̇ ( )   ̇ ( )) and     

  (  ( )    ( ))). The state-space representation of the base that is shown in Figure 

5.7 is as follows 

 

 

 ̇ ( )      ( )      ( ) 

[
 ̇ ( )
 ̈ ( )

]
⏞    
 ̇ ( )

 [

  

 (     )

  

 (        )

  

]

⏞                  
  

[
  ( )
 ̇ ( )

]
⏞    
  ( )

 [

   

  
  
  

  
  

]

⏞          
  

[

 ̈ ( )

  ( )
 ̇ ( )

]

⏞    
  ( )

 
(5.25) 

 

where   ( )     and    are the state vector, state matrix, and disturbance matrix of the 

base, respectively. The last two terms in the disturbance vector   ( ) come from the 

superstructure.    is the stiffness of the first floor.    is the stiffness-proportional part of 
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the damping of the first floor and is approximately assumed to be    . The 

measurement equation is 

 

 

  ( )      ( )   ( ) 

[
       ( )

       ( )
]

⏞        
  ( )

 [
  
    

]
⏞      

  

  ( )   ( ) 
(5.26) 

 

where   ( ) and    are the measurements of the base and its corresponding matrix, 

respectively.  ( ) is the measurement noise. The state-space representation of the 

superstructure is as follows 

 

 

 ̇  ( )        ( )   ̃   ̃  ( ) 

 ̇  ( )  [
        

    
         

     
]

⏞                  
   

   ( )  [
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⏞                    
 ̃  
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 ̈ ( )

  ( )
 ̇ ( )

]

⏞    
 ̃  ( )

 
(5.27) 

 

where    ( )  [  ( )   ( )   ( )    ̇ ( )  ̇ ( )  ̇ ( )]
  is the state vector.      

and  ̃   are the state and disturbance matrices of the superstructure, respectively. The 

last two terms in the disturbance vector  ̃  ( ) comes from the formulation of the base. 

The tilde indicates that  ̃   and  ̃   in the superstructure part of the sub-structured 

formulation is different from     and     in the state equation of the bare superstructure 

(Equation (4.13)). The measurement equation is as follows 

 

 

 ̃  ( )   ̃     ( )   ( ) 

[

       ( )

       ( )

       ( )

]

⏞        
 ̃  ( )

 [  ]⏞  
 ̃  

   ( )   ( ) 
(5.28) 

 

where  ̃  ( )  ̃   are the measurements and its matrix of the superstructure in the sub-

structured formulation, respectively.  ( ) is the measurement noise. The floor 

displacements of the superstructure are assumed to be sensed. 
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 Prewhitening 5.5.4.

 

In practice, colored noise sources are more realistic than white noise assumption. 

Especially in structural engineering applications with low-frequency ground excitations, 

the Kalman-Bucy filter is not appropriate since it is based on white noise disturbance 

input.  

In various examples of Kalman observer in civil structures, prewhitening was 

applied (Schemmann, 1997; Meirovitch, 1989). Besides, prewhitening was 

recommended for different applications of the Kalman observer in the literature in case 

of colored noises instead of white ones (Bar-Shalom et al., 2001; Grewal & Andrews, 

2008). 

It is not necessary for the observer to focus on the high frequencies that are not 

present in any ground excitation record. If it is concentrated on the earthquake-related 

frequencies, then its performance will be better. In this light, the plant is prewhitened by 

augmenting the system by a shaping filter. It is important to note that, for a prewhitened 

system, the observer performs better within the defined frequency range while 

performing worse outside of this range when compared to the original (raw) controller. 

The resulting system is a linear system driven by white signal (see Figure 5.8). The 

observer is designed for the augmented system. 

 

 
Figure 5.8. System augmented by a shaping filter for prewhitening 

 

In the current research, all the responses were calculated with respect to the 

ground. Hence, the earthquake acceleration signal was applied as an input to all degrees 

of freedoms. At the beginning, only the base was prewhitened. The responses of the 

system were satisfactory. Therefore, the superstructure was not prewhitened although its 

input was ground excitation, which was a colored signal.  

If the responses of the system had been unacceptable, then the superstructure 

would have been prewhitened, and the augmented superstructure would have been 

diagonalized to design observers for the three independent subsystems. On the other 
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hand, if the whole system had been prewhitened together including the base, then it 

would have been convenient to apply the same shaping filter to the base and to the 

superstructure since their input signal was the same. 

The shaping filter was designed as a second-order low-pass transfer function as 

follows 

 

 
  
 

           
 
 (5.29) 

 

where    is the cut-off frequency in rad/s.  

In order to determine the value of   , the two different earthquake records, 

which were used in the present study, were sent to the filter. The smallest    value that 

resulted in the same output as the input was found by trial-and-success. Finally, the cut-

off frequency    was specified as        rad/s.  

A filter response was desired in such a way that it converged to a resultant value 

as fast as possible without performing any oscillations. Therefore, an over-damped case 

was chosen (     ). On the other hand, if the damping ratio had been chosen to be 

1.5, then the poles of the filter would have become -1645 and -240. Extremely fast 

modes were unacceptable due to the stability constraints. Therefore, the damping ratio 

was chosen 1.01 which was at the boundary of the region of the over-damped response. 

The damping ratio 1.01 led to poles of -724 and -546. Hence, the fastest pole got closer 

to the origin while the magnitude of the other pole increased. The absolute values of the 

poles were also high, and this case was due to the high value of the cutoff frequency. In 

order to investigate the response, if   had been chosen as 0.5, then the poles would have 

been          , leading to an oscillatory behavior which was undesired in the 

present case (see Appendix F for the response of second-order systems). Hence, the 

damping ratio   was chosen 1.01. The system of the applied shaping filter is as: 

 

 
 ̇  ( )  [
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⏞              

   

   ( )  [
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(5.30) 
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The output of the shaping filter is the filtered ground acceleration. Different 

shaping filters can be designed due to the needs of the random process (Grewal & 

Andrews, 2008). In the present example, the base in Equation (5.25) is augmented by 

the shaping filter defined in Equation (5.30) and Equation (5.31) for prewhitening. The 

ground excitation  ̈ ( ) in the disturbance vector   ( ) of the base is a colored signal 

in Equation (5.25). Therefore, Equation (5.25) turns into the following form as, 

 

 
 ̇ ( )      ( )  [

   

  
  
  

  
  

]

⏞          
  

[

      ( )
  ( )
 ̇ ( )

]

⏞        
  ( )

 (5.32) 

 

Taking the term       ( ) out of the vector   ( ) yields, 

 

  ̇ ( )      ( )  [
 
  
]

⏞
 ̃ 

      ( )    [

 
  ( )
 ̇ ( )

] (5.33) 

 

By collecting the systems in Equation (5.33) and Equation (5.30) in matrix form, the 

system of the augmented base is obtained as follows 
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]
⏞        

   

[
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 ̇ ( )
 ̈ ( )

]
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   ( )

 (5.34) 

 

where     and     are the state and disturbance matrices of the base that is augmented 

by the shaping filter, respectively.    ( ) and    ( ) are the state and disturbance 

vector of the augmented base, respectively.   ( )   , and    are the state vector, state 

matrix, and disturbance matrix of the base, respectively.  ̃  is the first column of the 

disturbance matrix of the base.    ( )    , and     are the state vector, state matrix, 

and measurement matrix of the shaping filter, respectively.   ( ) and   ̇ ( ) are 

displacement and velocity of the first floor of the superstructure.  ̈ ( ) is the ground 

acceleration. The measurement equation of the augmented base system is as 
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(5.35) 

 

where    ( ) and  ( ) are the measurement vector and its noise, respectively. The 

observer of the augmented base is modified as in Equation (5.24) for the ground 

excitation case since the earthquake shaking can be sent to the observer in a recorded 

form. It is presented as follows 

 

  ̇̂  ( )  (          )
⏞          

 ̂  
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  ( )

 ̇ ( )

 ̈      
( )]
 
 
 
 

⏞        

        ( )

    [
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       ( )
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 ̂  ( )      ̂  ( ) 

(5.36) 

 

where  ̂  ( ) is the observer state vector that represents the estimate of    ( ).     is 

the observer gain matrix of the augmented base.  ̂  ( ) is the observer measurement 

vector.         ( ) is the disturbance vector of the observer of the augmented base. 

  ( ) and  ̇ ( ), on the other hand, are the inputs from the superstructure. Therefore, 

they do not contain any noise. The situation is similar in the superstructure formulation. 

It has been emphasized earlier that the recorded earthquake acceleration were 

sent to the observer during simulations (see Section 5.5.2.1). Noise was added to the 

disturbance signal numerically due to the recording process. The subscript noisy in 

        ( ) indicates the unusual noisy character of the disturbance vector of the 

observer. 

The augmented observer is focused on a smaller frequency range so that it may 

have a better performance within the related frequency range and may have a worse 

performance out of the related frequency range compared to the non-augmented system. 

The original and augmented systems are not identical anymore. Therefore, their 

simulated responses are not similar. 
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The responses of two observers without and with a prewhitened base were 

calculated to validate the enhancement of the prewhitening. The base responses are 

presented without and with prewhitening in Figure 5.9 and Figure 5.10 for the Imperial 

Valley and the Düzce earthquakes, respectively. 

 

                       (a)     (b) 
  Figure 5.9. Base responses (a) prewhitening was not applied to the base and (b) 

prewhitening was applied to the base (the Imperial Valley earthquake) 
 

 

                     (a)          (b) 
  Figure 5.10. Base responses (a) prewhitening was not applied to the base and (b) 

prewhitening was applied to the base (the Düzce earthquake) 
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Despite violating the white noise assumption of the Kalman-Bucy filter, the 

conventionally designed observer estimated responses of the superstructure well. But, it 

was not successful to predict the base responses (see Figure 5.9(a) and Figure 5.10(a)). 

Therefore, the system was prewhitened to improve the performance of the observer by 

satisfying the white input prerequisite of the Kalman-Bucy filter.  

The enhancement of the prewhitening in the base responses were observed in 

Figure 5.9 and Figure 5.10 for the Imperial Valley and Düzce earthquakes, respectively. 

The nonaugmented observer performed well in the simulations except for the base 

responses. The nonaugmented observer was not able to predict the base velocity 

correctly while estimating the base displacement successfully with a phase difference 

between the simulated and observed responses. On the other hand, the observer could 

estimate the base responses successfully when prewhitening was applied even only to 

the base. The responses of the prewhitened system are presented on the right-hand-side 

of the figures. 

 

 Observer of the Superstructure 5.5.5.

 

The base system was prewhitened only. This improved the responses of the 

observer of the base, which was the only remaining problem in the simulation results. 

Therefore, the superstructure was not augmented for prewhitening although the colored 

signal (earthquake acceleration) was sent to it.  

In the observer design, transforming any system into generalized coordinates 

and designing Kalman-Bucy observers with convenient poles for these independent 

subsystems may be a convenient engineering solution. On the other hand, the 

augmented base cannot be diagonalized since the damping ratios of the base and the 

shaping filter have extremely different magnitudes (        and         ) (see 

Section 3.1 for details). 

In Section 5.5.5.1, the superstructure was transformed into generalized 

coordinates to obtain independent subsystems. Then, three Kalman-Bucy observers with 

convenient poles were designed for three independent subsystems of the superstructure. 

Afterwards, the observers of the subsystems were superposed. Finally, the resultant 

observer of the superstructure was obtained by transforming the superposed observers 

back into physical coordinates. 
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The superstructure system is presented in Equations (5.27) and (5.28). Its 

observer is designed as follows 

 

  ̇̂  ( )  (        ̃  )
⏞          

 ̂  

 ̂  ( )   ̃  [

 ̈      
( )

  ( )
 ̇ ( )

]

⏞        

 ̃       ( )

     [

       ( )

       ( )

       ( )

]

⏞        
 ̃  ( )

 

 ̂  ( )   ̃   ̂  ( ) 

(5.37) 

 

where     is the observer gain matrix of the superstructure.  ̃        is the disturbance 

vector of the observer of the superstructure in the sub-structured formulation. It has the 

subscript noisy due to the existence of the noise in the recorded earthquake acceleration 

which is sent to the observer during simulations.   ( ) and  ̇ ( ) are the inputs from the 

augmented base and they do not contain any noise. The tilde indicates that the 

superstructure system in the sub-structured formulation (Equations (5.27) and (5.28)) is 

different from the state equation of the bare superstructure in Equation (4.13). 

 

5.5.5.1. Diagonalization of the System Equations of  the Superstructure 

 

In the context of the current research, the superstructure (Equation (5.27)) 

 

  ̇  ( )        ( )   ̃   ̃  ( ) (5.38) 

 

was diagonalized via the following transformation 

 

    ( )      ( ) (5.39) 

 

where    ( ) is the state vector of the superstructure.   is the eigenvector matrix of     

since dynamics of a system is governed by the coefficient matrix of the homogeneous 

part of the equation.    ( ) is the state vector of the superstructure in generalized 

coordinates. 

The time derivative of the transformation in Equation (5.39) was substituted into 

Equation (5.38). Then, the expression was premultiplied by     results in the system 

equation for the superstructure as follows 
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  ̇  ( )   ̅      ( )   ̅    ̃  ( ) (5.40) 

 

in which the diagonal state matrix is  ̅           and  ̅       ̃   (see 

Appendix H for details). The superstructure was diagonalized only to design the 

observer. The diagonalized formulation of the superstructure was not utilized to 

calculate the responses. Therefore, only the state equation was diagonalized, and the 

output equation was not diagonalized. For the observer system (Equation (5.37-a)), 

 

 
 ̂ ̇   ( )  (        ̃  )

⏞          
 ̂  

 ̂  ( )   ̃   ̃       ( )       ̃  ( ) 
(5.41) 

 

The observer states were transformed via 

 

  ̂  ( )    ̂  ( ) (5.42) 

 

Equation (5.42) and its time derivative were plugged into Equation (5.41). Then, 

the expression was premultiplied by    . Finally, the observer system equation for the 

superstructure was obtained as follows 

 

  ̇̂  ( )  ( ̅    ̅   ̅  ) ̂  ( )   ̅    ̃  ( )   ̅   ̃  ( ) (5.43) 

 

where 

 
 ̅    

      

 ̅    ̃    
(5.44) 

 

The tilde indicates that the superstructure system in the sub-structured 

formulation (Equations (5.27) and (5.28)) is different from the state equation of the bare 

superstructure in Equation (4.13). 
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5.5.5.2. Physical Interpretation of Complex Eigen Quantities 

 

The eigenvalues of the matrix    
      which is a real symmetric matrix are real 

(Meirovitch, 2001). Its distinct eigenvectors are orthogonal with respect to the mass or 

stiffness matrices. This case is an orthogonality with respect to a weighting matrix and 

is different from the ordinary orthogonality. On the other hand, the eigenquantities of a 

nonsymmetric matrix     in Equation (4.13) are not guaranteed to be real. Additionally, 

the eigenvectors of a nonsymmetric matrix are not orthogonal with respect to a 

weighting matrix. They have the biorthogonality property which means that the distinct 

right eigenvectors are orthogonal to the left eigenvectors with respect to the 

nonsymmetric matrix    . 

A real mode is the shape of deformation, in which all points of the structure are 

either in-phase or out-of-phase by π radians with any other points of the structure. 

Therefore, all points of the structure reach their own maxima and minima 

simultaneously within one vibration cycle. Additionally, all points of the structure pass 

through their zero deflection position at the same time within one period.  

On the other hand, relative phase differences between responses of adjacent 

parts of the structure indicate a complex mode. The facts mentioned for real modes are 

no longer valid for structures with complex mode shapes. A real mode looks like a 

standing wave, while a complex mode exhibits a travelling deflection shape (Ewins, 

2000; He & Fu, 2001).  

Ewins (2000) summarizes the origins of complex modes as: nonproportionally 

distributed damping mechanism in structures with close modes, gyroscopic effects of 

rotation, and identical natural frequencies even in the absence of nonclassical damping 

or gyroscopic effects (see Section 3.1 about the nonclassical damping). 

The calculated eigenvalues and eigenvectors may be interpreted as follows: 

While the real part of a complex eigenvalue is equal to    , the imaginary part of it is 

equal to   √    . The real and imaginary parts of a complex eigenvalue represents 

the decay and oscillatory components of the natural frequency in the response (Ewins, 

2000). The magnitude of a complex eigenvalue gives the natural circular frequency    

(Gavin, 2001). A complex mode shape can be defined by both amplitude and phase, or 

by its real and imaginary components (Zad, 1997). 
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In the state-space representation, the size of the system is twice of the number of 

the DOFs, and generally the states contain the displacements and velocities. Therefore, 

the eigenvectors have components for displacements and velocities. The first half of the 

eigenvector belongs to the displacements, depending on the definition of the state 

vector. Besides, every eigenmode appears by its conjugate pair. Consequently, a 

        complex eigenvector matrix is reduced to a       vector for displacement 

modes, where   is the number of the DOFs. If the damping is proportional, then the 

phase differences between the displacements of the related DOFs are 0 or π radians. On 

the other hand, there is a certain amount of phase difference between the displacements 

and velocities of the related DOFs. If the phase difference between DOFs is different 

from 0 or π radians, this case indicates a complex mode. 

 

 

Figure 5.11. Damped mode shapes of the superstructure (displacement phase angles of 
the DOFs and damped circular frequencies of the modes are presented) 

 

The damped mode shapes of the superstructure are presented in Figure 5.11. 

Additionally, the damped mode shapes of the base isolated structure are presented in 

Figure 5.12. The phase angles of the displacements of the DOFs and the damped 

circular frequencies of the modes are displayed. According to Figure 5.11, all DOFs of 

the classically damped structure are either in-phase or out-of-phase by approximately π 

radians with any other DOFs of the structure. This case is also valid for the non-

proportionally damped structure in Figure 5.12.  
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Figure 5.12. Damped mode shapes of the base isolated structure (the phase angles of the 
DOFs and the damped circular frequencies of the modes are presented) 

 

According to the definition of the complex modes, the non-proportionally 

damped structure in Figure 5.12 has real modes. It is important to note that the non-

proportionality is a necessary condition for complex modes to exist, but it is not 

sufficient (Ewins, 2000). The other necessary condition is that two or more modes 

should be close to each other (see (Ewins, 2000) for the discussion about the measure of 

the closeness of the modes). 
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Furthermore, in the literature there are different approximations for realization 

of complex modes (Rad, 1997). For a second-order nonproportionally damped system, a 

relationship between the real and imaginary parts of complex modes is presented in case 

of real and symmetric mass, stiffness, and damping matrices (Garvey et al., 1998). 

 

5.5.5.3. Complex Analysis 

 

The observer of the superstructure was designed for the three independent 

subsystems of the superstructure. The convenient     couples were determined in a 

loop to obtain a           in the range of 2-4 (see Equation (5.22) for the definition of 

the variable          ). 

Then, the observer gain matrix  ̅   of the diagonalized superstructure was 

obtained by stacking the observer gain matrices of the three independent subsystems in 

matrix form. Finally,  ̅   in generalized coordinates was transformed back to the 

physical coordinates by        ̅   (Equation (5.44)). Some of the elements of the 

eigenvector matrix   presented in Equation (H.2-b) were complex eigenvectors. 

Therefore, imaginary components appeared in the observer gain matrix    , even  ̅   

did not contain a complex value. The imaginary components in     appeared due to the 

back transformation performed via the eigenvector matrix  . Hence, the observer state 

matrix  ̂           ̃   involved complex components that required dealing with 

complex arithmetic throughout the analysis. The system matrices    ,  ̃  , and  ̃   

were real matrices since they were defined for an ordinary second order mechanical 

system presented in Figure 5.7. 

In order to determine the responses of the system, the state equation of the 

continuous system had to be solved. The MATLAB function lsim simulates the time 

response of linear time invariant models to arbitrary inputs. The solution process within 

lsim cannot deal with systems whose differential equations have complex coefficients. 

Instead, a function was coded within MATLAB to calculate the response of the 

observer of the superstructure via Equation (5.46). The general solution to the dynamic 

response of a linear system defined by Equation (5.41) is presented by Equation (A.6). 

It is as follows 
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  ̂  (  )   (       )   ̂  (    )  ∫  (    )  ( )  ( )   

  

    

 (5.45) 

 

where  ̂  (  ) is the observer response of the superstructure at time   .  (       ) is the 

state transition matrix.  ( ) is the input matrix, and  ( ) is the corresponding input.  

In the simulations, the responses were calculated in a time loop. Therefore, the 

time-variant system could be assumed to be time-invariant within each time step. 

Hence, the state transition matrix  (       ) turned into   ̂     (see Equation (A.9)) in 

which  ̂           ̃   was the state matrix of the observer of the superstructure. 

Consequently, the response of the observer of the superstructure in Equation (5.41) is 

calculated by 

 

  ̂  (  )   
 ̂      ̂  (    )  ∫   ̂  (    ) [ ̃     ]

⏞      
  ( )

 [
 ̃       ( )

 ̃  ( )
]

⏞        
  ( )

   

  

    

 (5.46) 

 

where  ( )  [ ̃     ] is the input matrix.   ( )  [ ̃       ( )  ̃  ( )]
 
 is the 

corresponding input vector.    is the time increment. The first term in Equation (5.46) is 

the homogenous solution, and the second part is the particular solution. The particular 

solution in Equation (5.46) is a convolution integral.  

In the function complexanalysis, the homogenous solution was computed via the 

MATLAB command expm.  The input  ( ) could not be taken out of the integral since 

it was a function of  . It was known numerically, but not functionally. Therefore, the 

integral was calculated numerically via the Simpson’s 1/3 rule. The results of the 

function complexanalysis were confirmed via the MATLAB function lsim in case of an 

arbitrary system whose (ordinary) differential equation had real coefficients. lsim 

simulated the time response of linear time invariant models to arbitrary inputs. While 

confirming the results of the function complexanalysis via lsim, the inputs were formed 

as step, triangle, half-period sine wave, and impulse loadings. The outputs for the first 

three loading case completely overlapped. Nevertheless, the impulse responses had 

different magnitudes since lsim performed interpolation within the time step, and the 
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utilized time increment was not small enough to create an impulsive loading which is 

similar to a white signal. 

Additionally, a function was coded within MATLAB to calculate the matrix 

exponential   ̂     in Equation (5.46) symbolicly via the Cayle-Hamilton theorem. Due 

to the calculation time being long, it was preferred to employ the MATLAB command 

expm instead of utilizing this coded function. 

After the simulations, the responses were obtained numerically. The imaginary 

parts of the displacements and velocities of the superstructure had the order of 10-17. 

The complex components were neglected while plotting the responses due to their very 

small magnitudes. The displacements and velocities of the base did not have any 

imaginary parts since the base was not diagonalized for the observer design (see 

Sections 5.8.4 and 5.8.5 for details). 

 

 LQR Part of the LQG Control of the VOD 5.5.6.

 

After designing a convenient observer, the required control force had to be 

determined. The LQR design was performed for the 4-by-4 full structure, which is 

presented by Equation (5.7). There was not an explicit control input to the system since 

the control effect was applied by changing the damping value of the VOD. On the other 

hand, the LQR design required a control matrix (see Equation (4.15)). Therefore, it was 

defined as follows 

 

    

[
 
 
 
 
    

  
  

 
 
 
 ]
 
 
 
 

 (5.47) 

 

In the usual formulation of the present research, the matrix    had a negative 

sign. On the other hand, in the VOD design, the damping force was defined by      

    ̇  in the MATLAB code, including the negative sign. Therefore, the matrix    of 

the VOD design did not contain the negative sign (see Equation (5.47)). 

The floor displacements and velocities, relative to the ground, were aimed to be 

controlled. As a customary way, the weighting matrices   and   of the LQR were 

chosen in such a way that the calculated control force   and the damping force      



 

120 
 

were to be as close as possible. Initially, the   matrix in Equation (5.48) was 

determined. 
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 (5.48) 

 

The   matrix was chosen in such a way that its configuration coincided with the 

magnitudes of the states since the states were the displacements and velocities, 

respectively. The weights of the displacements were chosen ten times higher than those 

of velocities harmoniously with the numerical situation (order of the velocities was 

approximately ten times the order of the displacement responses in the simulations).  

Additionally, the base responses were controlled ten times more heavily than 

those of the superstructure since controlling the base responses would control the floor 

responses indirectly. The controller allocated more control effort to the control of the 

base response by increasing the damper force. This remedy decreased the translation of 

the isolation.  

After selection of the   matrix, the weight of the control input, which should be 

strictly positive definite, was determined as follows: Holding the value given for the   

matrix in Equation (5.48) constant,   values were varied, and the results were displayed 

in Table 5.4. The ratio of the maximum values of   and      was presented for different 

  and   values. The maximum values of the base responses were listed in Table 5.4, 

and they did not completely reflect the behaviour of the states within the whole time 

range. The LQR was designed for the records of the 1940 Imperial Valley and 1999 

Düzce events. 
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Table 5.4. Determination of the weighting matrices   and   for the LQR design 

   
   | |

   |    |
 
   |  | 

(m) 

   | ̇ | 

(m/s) 

Im
pe

ria
l V

al
le

y 
ev

en
t 5·10-3 0.02 0.0901 0.30 

5·10-7 0.38 0.0407 0.35 

5·10-8 0.79 0.0400 0.39 

3·10-8 1.04 0.0399 0.42 

1.44·10-8 1.28 0.0402 0.38 

D
üz

ce
 e

ve
nt

 

5·10-3 0.02 0.2545 0.64 

5·10-7 0.79 0.1511 1.00 

5·10-8 1.73 0.1482 0.92 

3·10-8 2.29 0.1532 0.89 

1.44·10-8 3.30 0.1539 0.86 

 

where    and  ̇  are the displacement and velocity of the base relative to the ground, 

respectively. In Table 5.4, four digits were presented for displacements in order to show 

and comment the numerical changes. The responses relative to the ground were 

controlled. Therefore, the responses of the superstructure were similar to those of the 

base and were not presented in Table 5.4. The positive semi-/definiteness of the chosen 

    values were confirmed by their eigenvalues in the MATLAB code. 

The important issue in the LQR design is not the individual values of Q and R, 

but the ratio between them is important. The judgement about   and   was made by 

means of Table G.1 due to the desired performance specifications. As   decreased,   

increased, hence the ratio    | |    |    |⁄  increased. Decreasing   was equivalent 

to increasing   and led to smaller values of the states, and vice versa. This case was 

obvious when distinctive numerical changes were applied while selecting   values. For 

instance this case was observed when a numerical value decreased from 5·10-3 to 5·10-7. 

On the other, if the numerical changes in   values were not huge, this case could not be 

obviously observed. 

In Table 5.4, the maximum displacement values for the Düzce earthquake were 

higher compared to those of the Imperial Valley event (This fact was due to the single 

high peak shock with a value of      in the seismic record in Figure 2.4).  
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According to Table 5.4, the   value was chosen in such a way that the damper 

force was close to the calculated control force  . This situation indicated that the 

damper could supply the required control effort. Control force values, which were 

greater than the damper force, pointed out the case of capacity exceeding in terms of the 

damping value or the velocity difference on the VOD (At an instant of the simulations, 

the controller may have selected the maximum damping value of the VOD. 

Nevertheless, if the velocity difference on the VOD had not been sufficient enough, 

then the VOD could not have provided the required damping force.). On the other hand, 

control force values smaller than the damper force indicated that the damper provided a 

redundant amount of damping force. Consequently, keeping a balance between the 

demands of the system (the calculated control force  ) and the control effort that the 

system could supply (the damping force of the VOD,     ), the   value was chosen as 

follows: 

 

          (5.49) 

 

A special algorithm was not coded to determine a better     couple. Only a 

trial-and-success procedure summarized in Table 5.4 was applied. In the context of the 

present research, the studies were focused on enhancing the performance of the 

observer. As a future work, some investigations by GA may be performed for     

couple of the LQR to obtain such controlled responses better than the present ones. 

 

5.6. Gain Scheduling Control 

 

A nonlinear system can be subdivided into linear sub-systems at different 

operating points, and its control law may consist of a bundle of alternative controllers. 

The corresponding operating region of the system is determined by monitoring its 

system variables. Then, the corresponding linear controller for the current operating 

region is applied. This switching technique is the gain scheduling scheme, which is an 

adaptive control technique for nonlinear systems. A similar supervisory control 

architecture is presented in Figure 5.13, where     (i=1,2,...n) are the damping 

coefficients of the damper, which belongs to different orifice openings (Spong & Tsao, 

1998). 
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Figure 5.13. Supervisory control 

(Source: Spong & Tsao,1998) 
 

The analysis and design of gain scheduled control systems were investigated in 

detail by Shamma (1988). In the literature, there is a wide variety of applications of gain 

scheduling control (Lin & Yu, 1993; Choi & Lim, 2005). It was applied for control of 

web transport systems (Claveau et al., 2008), for control of air/fuel ratio in diesel 

engines (Alfieri et al., 2009), and for robust global stabilization of linear systems (Zhou 

et al., 2010). Gain scheduling scheme of a proportional integral control was designed 

for a synchronous generator (Sedaghati, 2006). Leith and Leithead (2000) presented an 

extended review of the gain scheduling literature and linearization techniques that can 

be applied to the nonlinear control systems.  

The stability of a system with frozen parameters does not guarantee the stability 

of the system for a certain parameter trajectory. The variations in the scheduling 

parameter should be sufficiently slow to guarantee the closed-loop stability of the 

overall system. In the literature, various researchers investigated the stability of gain-

scheduled control systems. Shamma and Athans emphasized the necessity of developing 

a theory for the stability of LPV systems without any limitations (1992). Stability of 

nonlinear systems with slowly varying inputs was studied (Lawrence & Rugh, 1990). 

The results of the work can be implemented in the context of gain-scheduled control 

systems. The stability of switched systems with average dwell-time was studied by 

Hespanha and Morse (1999). Morse investigated the estimator-based supervisory 

control (1996). The stability analysis of switching    controllers for a class of linear 

parameter varying (LPV) systems with slow parameter variations were presented by 



 

124 
 

Yan and Özbay (2007). The asymptotic stability of switched linear systems with time 

delays was investigated (Yan & Özbay, 2008). 

In the current example, the system was a LPV system, which depended on the 

damping coefficients     (i=1,2,...18) of the VOD. Thus, the system was linearized 

indirectly without applying a certain linearization procedure. Linear feedback 

controllers were designed for all linear sub-systems to achieve the desired performance, 

and they were linear sub-controllers. The controller consisted of these linear sub-

controllers, and its parameters were determined by monitoring the scheduling variables. 

The switching logic was carried out by the supervisor. In the current problem, this task 

was performed by the upper controller (see Section 5.7). 

In the present example, the varying parameter was the damping coefficient of 

the VOD. Damping of a mechanical system cannot be negative, therefore, cannot add 

energy to the system. The damper always absorbed energy from the system, annihilating 

the possibility of instability. Thus, the overall stability of the switching system was 

guaranteed. 

 

5.7. Upper Controller 

 

In the current simulations, any explicit control force was not input to the system. 

The optimal control force was calculated by the LQR and was applied to the system by 

simply changing the orifice setting of the damper. The system behaved nonlinearly as 

the orifice size of the damper changed. A different linear system occurred for every 

different orifice size. Every lower controller and observer belonged to these linear sub-

systems. The whole system consisted of sub-systems, their controllers, and their 

observers. The optimum orifice size was selected among many lower control systems by 

means of an upper controller due to the system requirements. The upper controller was 

designed to switch between different feedback control gains during earthquake 

simulations. The system matrices A and C of the state-space representation were 

calculated for different    values which belonged to different orifice positions. The 

optimum feedback gain and the observer gain were evaluated for each differently 

damped building models. In Equation (5.50), the optimum    value was directly 

determined by dividing the additionally required damper force in the next time step by 

the velocity    of the damper. 
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 (5.50) 

 

A passive device may only absorb energy from the system, which is the case for 

dampers. That is why the damping force can only act in the opposite direction of its 

velocity. In the present example, if the calculated optimum damping constant had had a 

negative sign, then it would have been impossible to produce the required force. In this 

case, the damping constant would have taken its minimum value. If the calculated    

value had been out of the limits of the variable orifice damper, it would have chosen to 

be the limit value. If the calculated    value had been within the limits, it would have 

rounded to the nearest possible damping value. Then, the simulation of the ith step took 

place, and the optimum damping value for the next step was obtained. The damper force 

was calculated for the new optimum    value by 

 

     {

               
                   

               

 (5.51) 

 

where    is the damping constant of the semi-active damper in the ith time step.      

and      are the limit damping constants of the damper. 

A numerical precaution was taken to prevent a “divide by zero” error during the 

calculation of the optimum damper constant. Therefore, the smallest absolute damper 

velocity was limited to 1 mm/s. This case would not have a detrimental effect to the 

structural response since the worst case caused a small magnitude of force (     

     
 

 
      

  

 
      

 

 
     ). 

The upper controller also decides when the optimum control forces should be 

applied. In Figure 5.14, the decision mechanism is presented. The sections when the 

controller is in action are marked by the bold lines in a representational example in 

Figure 5.15. Initially, the controller is at rest, during which the damper is at its 

minimum resistance. Whenever the displacement of the damper gets into danger, the 

controller applies the optimum damping constant to the damper. The term “danger” in 

this study is defined as an isolator displacement of 3 cm or more. Once an isolator 
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exceeds this value, the controller is in action until an extremum that is less than 3 cm is 

reached. 

 

 
Figure 5.14. Decision of the upper controller 

 

 

 
Figure 5.15. Illustration of the upper controller on a representational displacement graph 

(the controller is in action along the sections marked by the bold line) 
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5.8. Numerical Simulations 

 

 Interpolation & Synthetic Production of the Seismic Excitation 5.8.1.

Data 

 

In the current numerical simulations, the required control force was applied to 

the system by changing the orifice opening of the VOD. The ground excitation record 

was read and interpolated to the one fifth of the original time increment of the data due 

to the computational requirements. Utilization of a smaller time increment within the 

simulations made the transition among different VOD damping values smoother. 

Otherwise, the rapid changes in the damper force may have caused a bang-bang type 

behavior, and the responses would completely change undesiredly.  

A base isolated structure is protected by lengthening the fundamental period of 

the system. In a near-fault seismic event, the magnitude of the high-period components 

is high. Therefore, isolating a structure that is located close to a seismic fault may cause 

detrimental consequences. In the context of the present work, the seismic data were 

produced synthetically by interpolating the Imperial Valley and Düzce earthquakes to 

investigate the controller performance for near-fault earthquakes. Thus, a situation of a 

frequency overlap of excitation and system was performed. The procedure of seismic 

data production is illustrated in Figure 5.16. 

 

 

Figure 5.16. Schematic representation of how the synthetic near-fault data are produced 
and interpolated 

 

The original time increment    was increased four times, hence the data was 

shifted to the high-period range in frequency spectrum. At this point, the number of data 

remained constant, while the total duration of the data was lengthened. The data became 
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sparse, and it had to be interpolated to a smaller time increment due to the 

computational reasons explained earlier. 

 

 
Figure 5.17. Imperial Valley earthquake and Synthetic1 data in frequency domain (The 

fundamental undamped period of the isolated structure is marked by a 
thick line) 

 

 

 
Figure 5.18. Düzce earthquake and Synthetic2 data in frequency domain (The 

fundamental undamped period of the isolated structure is marked by a 
thick line) 

 

The synthetically produced data were named Synthetic1 and Synthetic2. 

Synthetic1 was obtained by modifying the data of the Imperial Valley event. Synthetic2 

was formed from the data of the Düzce earthquake. In Figure 5.17 and Figure 5.18, they 

were presented together with the data which were utilized to produce them. Actually, 

the original and synthetic data were completely different. They were presented together 
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just to exhibit how the structure would be effected if an excitation closer to the structure 

had acted. 

The synthetic data in Figure 5.17 and Figure 5.18 were interpolated to their 

original time increment    due to the last step of the procedure illustrated in Figure 5.16 

due to the computational reasons. The original data are represented by black line and the 

grey line stands for the synthetic near-fault excitation. The fundamental undamped 

period of the seismic isolated structure is marked by a thick line (      = 5.07 

seconds). In Figure 5.17 and Figure 5.18, the seismic data are offset to the higher period 

range in the frequency spectrum. As a result, the fundamental mode of the isolated 

structure will be maximally affected in case of a near-fault ground excitation. 

The (under-damped) response of the seismic isolated structure is mainly driven 

by the fundamental damped period. The base is assumed to have 4% damping (see 

Section 4.7.1). The fundamental damped period of the isolated structure is 

approximately equal to the undamped one due to the low damping ratio (       

      √    ⁄    5.07 seconds where   is the damping ratio).  

On the other hand, the fundamental damped period of the hybrid-controlled 

structure varies leading to an under-damped or over-damped response depending on the 

orifice opening of the VOD. A periodic behavior cannot be observed for an over-

damped system. The exponential response is driven by the damping ratio   and the 

natural circular frequency    in Equation (F.6) and the definition of damped period (or 

damped frequency) is not valid for over-damped response. Therefore, in order to form 

an opinion about the response of the hybrid-controlled structure, the damped period at 

the upper limit of the under-damped region was calculated: the limit damping value of 

the VOD is 850 Ns/m corresponding to a damping of 81.79% (see Section 5.3). This 

value leads to a fundamental damped period of approximately twice of the undamped 

one (        8.81 s). This fact should be taken into consideration while interpreting 

the time behavior of the hybrid-controlled structure in Figure 5.17 and Figure 5.18. 
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 Current State in the Numerical Simulations 5.8.2.

 

The current state of the system and calculations is summarized in the present 

subsection. The gain scheduling control of a substructured system with a VOD was 

performed. The controller is presented in Section 5.7. The block diagram of the system 

is presented in Figure 5.19. 

The floor displacements and floor velocities relative to the ground were 

controlled. The measured story displacements and unmeasured story velocities were 

observed. The controller was fed by the observed states since they were less noisy than 

the measured ones by means of the filtering character of the Kalman-Bucy observer. In 

a real-world application, which is not the case for the present research, the calculated 

responses cannot be obtained, only the estimated and measured values are achieved. 

Therefore, the controller is fed by the observed values which are less noisy than the 

measured ones. 

The ground excitation input to the observer was prewhitened due to the white 

noise prerequisite of the Kalman filter. This was performed by augmenting the observer 

system of the base by a shaping filter (see Section 5.5.3 for details). Augmenting the 

base only by this method, improved the responses of the observer of the base, which 

was the only remaining problem in the simulation results (Figure 5.9 and Figure 5.10). 

Therefore, the superstructure was not augmented for prewhitening although the colored 

signal (earthquake acceleration) was sent to the superstructure. 

The superstructure was diagonalized into three subsystems to design an observer 

whose poles were placed in a desired range. Three Kalman-Bucy observers with 

convenient poles were designed for three independent subsystems of the superstructure. 

Then, the final observer of the superstructure was obtained by superposing and 

transforming them back into physical coordinates. On the other hand, the augmented 

base could not be diagonalized since its damping ratios had extremely different 

magnitudes. (see Section 5.5.5 for details). 

The system equations of the structure and the observer, which were utilized at 

the final simulations, are presented in Table 5.5. Additionally, the block diagram of the 

system and the text file in MATLAB are presented in Figure 5.19 and Appendix E, 

respectively. The definitions of the variables in the equations are presented in the 

related sections of the thesis. 
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Table 5.5. System equations utilized in the simulations 
Building 
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Equation (5.8) 

The responses of the structure were calculated via the Newmark’s linear numerical integration method by the equation of motion. 
Substructured observer 
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Equation (5.36) 
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Equation (5.37) 
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Equation (5.36) 
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Equation (5.37) 

The solutions to the state equations of the observers were obtained via the state transition matrix in an sequential way (see Equation (5.46)). 
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Table 5.5 was divided into two sections for the structure and the observer. 

Besides, the original equation numbers are presented in Table 5.5. The noisy subscript 

in the performed measurements indicates that the related variable contain some amount 

of noise. The disturbance, i.e. the ground excitation, was sent to the observer after a 

recording procedure. Therefore, it was noisy. 

The responses of the structure were calculated via the Newmark’s numerical 

integration method for multi degree-of-freedom linear systems (Chopra, 1995). The 

average acceleration method was utilized in the calculations. It is unconditionally stable 

for every time increment value. On the other hand, the time interval should be small 

enough for the accuracy of the results. The time increment    was chosen as 0.002 

seconds for the present research. The solution to the state equations of the observers was 

obtained via the state transition matrix in Equation (5.46) sequentially. 

In the simulations, the relative story displacements and the damper force were 

assumed to be sensed. The noise was generated by the randn-functionality within 

MATLAB. Noises of all responses were formed individually. Otherwise, they would be 

correlated, which could create problems in the observer design violating the 

uncorrelatedness assumption of the noise sequences in the Kalman filter (see Section 

5.5.1) 

In order to utilize high numerical values for noise generation, the responses of 

the passive damper with minimum damping value were utilized for the displacements. 

The responses of the passive damper with maximum damping value were utilized for 

the damper force. In real world applications, the acceleration measurements are more 

noisy than the displacement measurements (Turan & Aydın, 2011). Therefore, white 

noise with a magnitude of 5% of their standard deviation was added to the simulated 

displacement responses as sensor noise. This value was 15% of its standard deviation 

for the damper force and the ground acceleration.  

In the simulations by near-fault excitation, the displacements of the passive 

damper with minimum damping increased approximately ten times. Therefore, the noise 

magnitude in the displacement measurements was taken as 0.5% of the displacements’ 

standard deviation. The noise ratios in damper force and accelerations remained 

unchanged since their maxima and standard deviations were in the same range as the 

response that was based on the far-field type ground excitations. 

In the present simulations, the stability of the closed loop regulator was checked 

although there was not an explicit control input to the system (the control effect was 
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applied by changing the damping value of the VOD). Stability of the augmented base’s 

observer and observer stability of the superstructure were confirmed. Additionally, 

stability of the shaping filter utilized to prewhiten the base observer was checked.  

Observability of the augmented base and the superstructure’s observability were 

confirmed. Positive-definiteness of the chosen       values was confirmed by 

their eigenvalues in the Kalman-Bucy estimator designs of the augmented base and the 

superstructure. 

 

 Block Diagram of the System 5.8.3.

 

The block diagram of the system is presented in Figure 5.19. The fundamental 

file of the computer program is present in Appendix E. The sub-files (or subroutines) 

were executed in the MATLAB file by simply calling their filenames.  

The system is mainly composed of the structure, the observer, and the controller. 

The structure was splitted into two for the observer design as: the base and the 

superstructure. The base was augmented by a low-pass shaping filter for prewhitening. 

The superstructure was diagonalized to obtain independent subsystems for the observer 

design. The observers of the base and the superstructure were designed for the 

augmented base and the diagonalized superstructure. The observed responses were 

calculated separately. The dashed line indicates the modification of the Kalman-Bucy 

observer by sending the disturbances to it. 

At the beginning of the simulation, the properties of the base and the 

superstructure were defined. The ground excitation record was read and interpolated to 

the one fifth of the original time increment of the data due to the computational 

requirements. Additionally, this remedy made the transition among different VOD 

damping values smoother (see Chapter 2 for details). 
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Figure 5.19. Block diagram of the system 
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Then, the responses of the systems with two passive dampers whose damping 

values were the minimum and maximum of the damping values defined in Section 5.3 

were calculated. By means of these passive responses, the noises were generated for the 

variables that were assumed to be sensed. The displacements of the base and the floors, 

which were relative to the ground, were assumed to be measured. Furthermore, the 

damping force of the VOD was assumed to be measured. White noise with a magnitude 

of 5% of the standard deviation of the simulated displacements was added to the 

simulated responses as sensor noise. Additionally, for the damper force measurement, 

white noise with a magnitude of 15% of the standard deviation of the simulated damper 

force was added to the simulated responses as sensor noise. 

After the memory allocation was performed for the variables that would be used 

in the time loop, the inner controller was designed. It calculated and stored the damping 

matrix, state matrix, measurement matrix, LQR gain matrix, and observer gain matrix 

for all orifice opening positions (   100, 200, 300, 400, 500, 600, 700, 800, 900, 

1000, 1500, 2000, 2500, 3000, 10000, 15000, 20000, and 25000 Ns/m, where    is the 

damping value of the VOD). When the required damping value was determined in the 

simulation loop, the corresponding matrices were retrieved among the previously 

calculated matrices by means of a gain scheduling controller. This coding remedy was 

prefered for reducing the calculation time. The LQR and the Kalman-Bucy observer 

were designed for all damping values of the VOD (see Section 5.7 for details). The 

LQR was designed for the 4-by-4 system including the base. On the other hand, the 

Kalman-Bucy observer was designed for the substructured system. 

Afterwards, the response calculation started in a time loop. Initially, the 

controller was at rest, during which the damper was at its minimum resistance. The 

plant response was calculated by the matrices of the previous time step. Then, the 

measured responses were performed. The observed states were obtained individually for 

the augmented observer and superstructure. The smallest damper velocity was limited to 

1 mm/s since a value smaller than 1 mm/s could not be measured correctly. Hence, this 

numerical precaution also prevented a “divide by zero” error in the calculation of the 

optimum damper constant. 

Any explicit control force was not applied to the system. The optimal control 

force was calculated by the LQR, and it was supplied to the system by simply changing 

the orifice setting of the damper. The upper controller was designed to switch between 

different feedback control gains during earthquake simulations. The upper controller 
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also decided when the optimum control forces had to be applied. The decision 

mechanism is presented in Figure 5.14. The observer states were less noisy than the 

measured ones. Therefore, the upper controller was fed by them. In a simulation, the 

observer had to calculate the same responses as the actual system in absence of noise 

since they become identical. 

After the required control force   was determined, the    value was calculated 

and rounded to an applicable damper force. Additionally, if the calculated    value had 

been out of the limits of the capacity of the VOD, then it would have been taken into the 

limits. Finally, the damper force was calculated, and the responses were presented by 

the graphics. 

 

 Simulations of the 1940 Imperial Valley Earthquake 5.8.4.

 

The excitation record utilized in the present subsection belongs to the 1940 

Imperial Valley earthquake. It is presented in time- and frequency-domains in Figure 

2.4. The simulation responses of the superstructure’s drifts are presented in Figure 5.20 

and Figure 5.21. While plotting the responses, complex components were neglected due 

to their very small magnitudes (10-17). The displacements and velocities of the base did 

not have any imaginary part since the base was not diagonalized for the observer design. 

The accelerations did not have complex components since they were not observed nor 

diagonalized. 

 

 
Figure 5.20. Response of the base displacement with respect to the ground due to the 

Imperial Valley earthquake 
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Figure 5.21. Interstory drifts of the superstructure due to the Imperial Valley earthquake 
 

The states of the system were the displacements and the velocities of the floors 

relative to the ground. The floor displacements relative to the ground and the damper 

force were assumed to be sensed. In the simulations, the measured values were obtained 

by adding certain amount of the standard deviation of the related quantity to the 

simulated responses. Therefore, the magnitudes of the noise of the interstory drifts were 

high. Eventually, the observer was successful to estimate the simulated responses from 

the measured ones and to filter out the noisy parts of the response. The interstory 

velocities of the base and the superstructure are presented in Figure 5.22 and Figure 

5.23, respectively. 

 

 
Figure 5.22. Base velocity response due to the Imperial Valley earthquake 
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Figure 5.23. Interstory velocities due to the Imperial Valley earthquake 

 

The total acceleration values of the base, first, and third stories are presented in 

Figure 5.24. According to the responses in Figure 5.20-Figure 5.24, the designed 

observer satisfactorily filtered out the noise. The absolute acceleration responses of all 

devices were satisfactory, except for some aggressive peaks which were present in the 

controlled response of the system at the base level. 

 

 
Figure 5.24. Absolute accelerations due to the Imperial Valley earthquake 
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 Simulations of the 1999 Düzce Earthquake 5.8.5.

 

The excitation record utilized in the present subsection belongs to the 1999 

Düzce earthquake. It is presented in time- and frequency-domains in Figure 2.4. The 

simulation responses of the superstructure’s drifts are presented in Figure 5.25 and 

Figure 5.26. 

 

 
Figure 5.25. Response of the base displacement with respect to the ground due to the 

Düzce earthquake 
 

 

 
Figure 5.26. Interstory drifts of the superstructure due to the Düzce earthquake 
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The imaginary parts of the displacements and velocities of the superstructure 

were neglected due to their very small magnitudes. The interstory velocities of the base 

and the superstructure are presented in Figure 5.27 and Figure 5.28, respectively. 

Finally, the absolute accelerations of the base, first, and third floors are presented in 

Figure 5.29. 

 

 
Figure 5.27. Base velocity response due to the Düzce earthquake 

 

 

 
Figure 5.28. Interstory velocities due to the Düzce earthquake 
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Figure 5.29. Absolute accelerations due to the Düzce earthquake 

 

 Simulations of the Ground Excitation Data Synthetic1 5.8.6.

 

The seismic data in Figure 2.4 was offset to the higher period range in the 

frequency spectrum to investigate the controller performance for near-fault earthquakes. 

It was named Synthetic1. It is presented in Figure 5.17 in frequency domain. The 

fundamental mode of the isolated structure were affected maximally due to the 

frequency spectrum of the excitation Synthetic1. The observer and controller designs 

remained unchanged to test the performance of them under a situation of a frequency 

overlap of excitation and system. There was only one change in the MATLAB code for 

synthetic excitations compared to the simulations of the Imperial Valley and Düzce 

earthquakes: The displacements of the passive damper with minimum damping 

increased approximately ten times. Therefore, the noise magnitude in the displacement 

measurements was taken as 0.5% of the standard deviation of the displacements. The 

noise ratios in damper force and accelerations remained unchanged since their maxima 

and standard deviations were in the same range as the responses to the Imperial Valley 

and Düzce earthquakes.  

The simulation responses of the superstructure’s drifts are presented in Figure 

5.30 and Figure 5.31. High displacements and velocities were the expected outcomes of 

near-fault earthquakes, which were observed in Figure 5.30-Figure 5.32 and Figure 

5.34-Figure 5.36. 
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Figure 5.30. Response of the base displacement with respect to the ground due to the 

data Synthetic1 

 

 

 
Figure 5.31. Interstory drifts of the superstructure due to the data Synthetic1 

 

In Figure 5.30 and Figure 5.31, it was observed that the observer could predict 

the simulated response successfully, while filtering the measured values successfully. 

The interstory velocities of the base and the superstructure are presented in Figure 5.32. 

The total accelerations values of the base, the first, and the third stories are presented in 

Figure 5.33. 
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Figure 5.32. (a) Base velocity and (b) interstory velocities due to the data Synthetic1 

 

 

 
Figure 5.33. Absolute accelerations due to the data Synthetic1 

(a) 

(b) 
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 Simulations of the Ground Excitation Data Synthetic2 5.8.7.

 

The simulation  responses of the superstructure’s drifts are presented in Figure 

5.34 and Figure 5.35 for the near-field Synthetic2 excitation. The interstory velocities of 

the base and the superstructure are presented in Figure 5.36. The absolute accelerations 

of the base and the superstructure are presented in Figure 5.37. 

 

 
Figure 5.34. Response of the base displacement with respect to the ground due to the 

data Synthetic2 

 

 

 
Figure 5.35. Interstory drifts of the superstructure due to the data Synthetic2 
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Figure 5.36. (a) Base velocity and (b) interstory velocities due to the data Synthetic2 

 

 

 
Figure 5.37. Absolute accelerations due to the data Synthetic2 

(a) 

(b) 
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 The Variable PoleRatio in the Observer Design 5.8.8.

 

The variable           defined by Equation (5.22) is one of criteria in the 

observer design. In the literature, it has been suggested that the modes of an observer 

should be 2-4 times faster than those of the system (Arıkan & Ercan, 2011). This 

suggestion could be fulfilled for the observer of the superstructure. Although 

remarkable effort was paid for the observer design of the augmented base, unfortunately 

the recommended values for           could not be achieved (see Table 5.6). 

Although the elements of the variable           are one, the observer could estimate 

the response at the base level successfully. At least, the observer was not slower than 

the hybrid controlled structure. 

The initial values of the     couple for the augmented base and the 

diagonalized superstructure were chosen as the covariances of the numerical simulation 

outputs and the noise assumed.   was held constant, and   was multiplied by a factor 

that was depicted from a logarithmically changing vector. An observer was designed for 

every     couple in an inner loop. When the variable           was in the desired 

interval, then the loop was stopped, and the convenient observer system was calculated. 

The initial values of the     couple for the augmented base and the diagonalized 

superstructure are listed as follows 

 

     [

     
         

    
  

                

         

        
           

        

            

] (5.52) 
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] (5.53) 
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The subscript ab stands for the augmented base and ss is for superstructure. The 

symmetry  of the matrices coincides with the physical case of the states. The 

logarithmically spaced vector started from 10-8 till 1012 with 1000 elements. Here, the 

ratios between   and   are important, but not their numerical values. 

The gains of the controller and observers are presented in Table 5.6 for three of 

the damping values of the VOD. The superstructure remained the same as the damping 

value of the VOD changed. Therefore, there was only one     matrix. 

 

Table 5.6. Gains of the controllers and the observers and           of the observers 
corresponding to the damping values of the VOD 

 Controller Observer of base Observer of superstructure 

Damping of 

VOD 

   

(Ns/m) 

LQR gain 

  

([
   ⁄

  
]) 

LQE gain of base 

   

([
  ⁄    ⁄

   ⁄  (    )⁄
]) 

 
 
  
 
 
  
 
 
 LQE gain of superstructure 
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200 § § [
    
    

] 

300 § § [
    
    

] 

400 § § [
    
    

] 

500 § § [
    
    

] 

600 § § [
    
    

] 

700 § § [
    
    

] 

800 § § [
    
    

] 

900 § § [
    
    

] 

1000 § § [
    
    

] 

                                                       
§ The related matrices were not supplied. The matrices of three cases (  =100, 1500, 25000 Ns/m) were only 
presented to give an opinion to the reader. 

(cont. on next page) 
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Table 5.6. (cont.) 

1500 

[
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2000 § § [
    
    

] 

2500 § § [
    
    

] 

3000 § § [
    
    

] 

10000 § § [
    
    

] 

15000 § § [
    
    

] 

20000 § § [
    
    

] 

25000 

[
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] 

[
    
    

] 

 

In Table 5.6, the variable           of the base was displayed.           of 

the shaping filter was not presented since it was out of interest. Although the variable 

          of the base could not be increased (          [    
    

]), the responses of 

the base observer were successful. Therefore, the current observer design was accepted. 

 

 Damping Demand of the System 5.8.9.

 

The optimum damping values of the VOD and the resulting damper forces are 

presented in Figure 5.38 and Figure 5.39 for the simulations of the Imperial Valley and 

Synthetic1 earthquakes, respectively. Some undesirable peaks occurred in the simulated 

damper force. Since these peaks were made up of a single point, the damper was not 

able to perform these aggressive peaks. 
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Figure 5.38. Optimum damping values of the VOD and the corresponding damper 

forces for the Imperial Valley event 
 

 

 
Figure 5.39. Optimum damping values of the VOD and the corresponding damper 

forces for the Synthetic1 excitation 
 

For the near-field excitation case (Synthetic1 earthquake), the control force 

demand was much higher than that of the Imperial Valley event, as it was expected. The 

number of the undesirable peaks increased. In order to satisfy such high control 

demands, the upper controller chose damping values higher than those of the Imperial 

Valley earthquake, dispersed in the overdamped region. 
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Figure 5.40. Optimum damping values of the VOD and the corresponding damper 

forces for the Düzce earthquake 
 

 

 
Figure 5.41. Optimum damping values of the VOD and the corresponding damper 

forces for the Synthetic2 excitation 
 

The optimum damping values of the VOD and the corresponding damper forces 

are presented in Figure 5.40 and Figure 5.41 for the simulations of the Düzce and 

Synthetic2 earthquakes, respectively. The VOD could not provide the calculated high-

frequency damping forces. Either the base velocity was not high enough or the 

application time of the high-valued control force was too short. 



 

151 
 

A slow and smooth transition from      to      could be performed by the 

damper successfully. If the controller had enforced the damper for an aggressive 

transition, then the damper would not have been able to achieve this task. In the 

numerical simulations, the damper force was obtained by the negation of the 

multiplication of the damping constant (evaluated at the previous time step) and the 

dampers velocity (or base velocity). At the current time step, the velocity most likely 

would be different from the velocity, for which the damping constant was evaluated. 

Thus, a difference in the optimum control force and the obtained damping forces was 

expected. Certainly, this situation was related to the selection of the     values of the 

controller, which were the best ones among the tested values. 

The significance of VOD was exhibited even in case of a near-fault excitation. 

The required damper force was zero within some regions, and the controller chose the 

minimum damping value (see Figure 5.38-Figure 5.41). The moderate and high level 

force demands were provided by changing the orifice opening size. If a passive damper 

with minimum damping had been placed, then the damper would not have satisfied the 

control requirements of the system. On the other hand, if a passive damper with 

maximum damping had been placed, then the structure would have exhibited an 

extremely over-damped behavior without performing oscillations. Therefore, placing a 

semi-active damper would have been a convenient design. 

The fundamental response of the hybrid-controlled structure was over-damped 

for the damping values of the VOD higher than 1000 Ns/m (see Section 5.3). The 

number of times that the optimal damping value selected a value greater than 1000 

Ns/m is presented in Table 5.7 for four ground excitations. The percentages are with 

respect to the total number in every excitation. 

The critical damping case corresponded to the damping value of the VOD as 

1057 Ns/m (see Section 5.3). Therefore, the response could not be critically damped due 

to the distribution of the damping values of the VOD. The number of under- or over-

damped responses was almost same for the Imperial Valley and Düzce events. On the 

other hand, in case of a near-fault excitation, the response became over-damped more 

heavily. The toughest ground excitation in terms of number of over-damped response 

was Synthetic1 earthquake. 
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Table 5.7. Number of under- and over-damped responses 

Earthquake 
Number of under-damped 

cases & their percentage 

Number of over-damped 

cases & their percentage 
Total number 

Imperial Valley 
16077 

80.4% 

3919 

19.6% 

19996 

100% 

Düzce 
24176 

86.5% 

3770 

13.5% 

27946 

100% 

Synthetic1 
50278 

62.9% 

29703 

37.1% 

79981 

100% 

Synthetic2 
83661 

74.8% 

28120 

25.2% 

111781 

100% 

 

According to Table 5.7, the hybrid controlled structure can satisfy the system 

requirements within a large range of under- and over-damped responses for various 

excitations. This case is not possible for the isolated structure including a passive 

damper. 

 

 Maximum Total Shear Forces 5.8.10.

 

The maximum total shear forces at the first floor of the superstructure were 

calculated according to Equation (4.31). The results are presented in Table 5.8. The aim 

was to investigate how much the columns of the superstructure were forced. The 

maximum values of the interstory drifts decreased as the floor number increased. This 

fact can be observed in Figure 5.21, Figure 5.26, Figure 5.31, and Figure 5.35 for four 

simulations. Therefore, the maximum shear force only at the first floor of the 

superstructure was presented. 

All excitations were tough for the uncontrolled structure, especially the Düzce 

and Synthetic1 data sets in terms of the maximum shear forces (due to the frequency 

distribution in Figure 5.17 and Figure 5.18). On the other hand, the Synthetic2 excitation 

was the toughest one for the isolated structure including passive damper with cmin. The 

maximum total shear forces of the hybrid controlled structure were approximately 63%-

75% of the isolated structure including passive damper with cmax, except for the 

Synthetic1 excitation. 
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Table 5.8. Maximum total shear forces at the first floor of the superstructure 
 Maximum shear force at the first floor (Newton) 

Uncontrolled Isolated structure  

+ passive damper 

with cmin 

Hybrid-controlled 

(isolated structure  

+ VOD) 

Isolated structure 

+ passive damper 

with cmax 

Imperial Valley 2918 94 1230 1905 

Düzce 4820 174 2063 3183 

Synthetic1 5371 531 1797 1832 

Synthetic2 3641 1518 2458 3250 

 

The maximum total shear force of the isolated structure including a passive 

damper system with minimum damping value was the best among the responses of the 

others. On the other hand, its base drifts in Figure 5.42 were unacceptable. The 

reductions of the maximum total shear forces of the hybrid controlled structure were 

satisfactory compared to those of uncontrolled structure even in case of a frequency 

overlap of excitation and system. The base drifts of the isolated structure including a 

passive damper system with maximum damping value were low in Figure 5.42. On the 

other hand, its maximum total shear forces were high. Therefore, the hybrid controlled 

structure exhibited a balancing performance between the responses of isolated structures 

including passive dampers. 

 

  Comparison of the Responses of the Hybrid Controlled 5.8.11.

Structures with Passive Dampers and VOD 

 

In the present subsection, the responses of the hybrid controlled structure with 

three different dampers were exhibited. The dampers were the optimally controlled 

VOD and two passive dampers whose damping coefficients were 100 and 25000 Ns/m 

(the damping constant range of the VOD was inbetween 100 and 25000 Ns/m). The 

structures with passive dampers were isolated seismically. The control actions applied 

to the VOD were not performed for the passive dampers. In the present study, the aim 

was to investigate whether applying a control scheme was profitable or it was better to 

place passive dampers instead of optimally controlled ones. 
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The main objective of controlling the response of the system was to decrease the 

interstory displacements and total accelerations of the superstructure. For this purpose, 

the structure was isolated seismically. On the other hand, in a seismic zone, there is 

always the possibility of a near-fault ground excitation. The isolation systems respond 

unsuccessfully in such regions due to the frequency distribution of the excitation. 

Therefore, in the current research, the isolation system was protected by the VOD. On 

the other hand, more damping at the base level prevented higher deformations of the 

base. As a result, the isolators were protected, but the story responses were larger when 

compared to the minimally damped case. 

 

  
    (a) Imperial Valley earthquake      (b) Synthetic1 excitation 

  
    (c) Düzce earthquake      (d) Synthetic2 excitation 

   Isolation + damper with 

min damping 

    Isolation + controlled 

damper 

    Isolation + damper with 

max damping 
  

Figure 5.42. Maximum absolute values of the simulated base drifts of the hybrid 
controlled structure 
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The maximum absolute values of the base drifts are presented for the Imperial 

Valley, Düzce, Synthetic1, and Synthetic2 earthquakes in Figure 5.42. The minimally 

damped case exhibited poor drift responses in the base level as it was expected. 

According to Figure 5.42(a), the maximum drift was approximately three times greater 

than that of the controlled response. 

 

  
(a) Imperial Valley earthquake (b) Synthetic1 excitation 

  
(c) Düzce earthquake (d) Synthetic2 excitation 

   Isolation + damper with 

min damping 

    Isolation + controlled 

damper 

    Isolation + damper with 

max damping 
 

Figure 5.43. Maximum absolute values of the simulated interstory drifts of the hybrid 
controlled structure (Numbers on the vertical axis indicates the floor 
numbers) 

 

In Figure 5.43, the base responses of the Düzce event was different from those 

of the other far-fault excitation due to its single high peak shock with a value of     . 

The response of the minimally damped device was 16 and 38 times greater than that of 

the controlled device, similar to that of a base isolated structure in case of a near-fault 
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ground excitation since the damping value was very small (   = 100 Ns/m). The base 

drifts of the system including a passive damper with minimum damping value were 

unacceptable in case of near-fault excitations. 

 

  
(a) Imperial Valley earthquake (b) Synthetic1 excitation 

  
(c) Düzce earthquake (d) Synthetic2 excitation 

   Isolation + damper with 

min damping 

    Isolation + controlled 

damper 

    Isolation + damper with 

max damping 
 

Figure 5.44. Maximum absolute values of the simulated total accelerations of the hybrid 
controlled structure (Numbers on the vertical axis indicates the floor 
numbers) 

 

The maximum absolute values of the interstory drifts of the superstructure are 

presented for the Imperial Valley, Düzce, Synthetic1,and Synthetic2 earthquakes in 

Figure 5.43. Except for the Synthetic1 excitation, the interstory drifts of the hybrid 

controlled system were better than those of the system including a passive damper with 

maximum damping value. By adding a controllable damping (VOD) to the structural 

control system a reduction of more than 25% in terms of base displacement was 
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obtained compared to the case of passive damper with minimum damping value, while 

the floor displacements, which were still in acceptable range, increased. 

The maximum absolute values of the total accelerations of the hybrid controlled 

structure are presented for the Imperial Valley, Düzce, Synthetic1, and Synthetic2 

earthquakes in Figure 5.44. At the first sight, the total accelerations at the base level 

were unacceptable for the hybrid control system. Nevertheless, its absolute 

accelerations at the floors were still in an acceptable range except for the response of 

Düzce earthquake. The absolute accelerations of floors for the VOD and passive damper 

with a maximum damping value were close for the Synthetic2 excitation. Considering 

the advantages of the hybrid control system in terms of drifts, the high total 

accelerations at the base level may have been accepted by the designer. 

The interstory drift of the third floor in frequency domain for the Imperial 

Valley and Düzce earthquakes are presented in Figure 5.45(a) and Figure 5.45(b), 

respectively. The simulated responses are presented. The systems are the ones in Figure 

5.42-Figure 5.44. The graphics, which are zoomed only in vertical axis, are presented to 

compare the performance of the passive and hybrid controllers (see Figure 5.45(c) and 

Figure 5.45(d)). The interstory drift of the third floor in frequency domain for the 

synthetic earthquakes are presented in Figure 5.46. 

According to Figure 5.45 and Figure 5.46, the uncontrolled response of the 

structure was driven mainly by the first mode at a damped period of approximately 0.51 

seconds (indicated by black line). The second mode exhibited a smaller contribution to 

the response. When the VOD was added to the structure in addition to the base 

isolation, the period of the first mode was slightly shortened, and the contribution of the 

second and third modes had a larger effect on the response. The response of the 

structure with the minimally damped device was similar to the response of the base 

isolated structure since the damping of the device was small. The response of the 

structure with the minimally damped device had smaller magnitudes when compared to 

the responses of the other systems. Its response was driven by its fundamental mode, 

and the effect of its other modes on the response could not be observed. 

According to Figure 5.45, the third floor drift of the structure with the minimally 

damped device had very small components within the period range for far-fault 

excitation cases. On the other hand, it responded more heavily in higher period ranges 

for near-fault excitation cases (see Figure 5.46). 
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Figure 5.45. Interstory drift of the third floor in frequency domain for the (a) Imperial Valley earthquake, (b) Düzce earthquake, (c) Imperial 
Valley earthquake zoomed only in vertical axis, and (d) Düzce earthquake zoomed only in vertical axis 

(a) Imperial Valley earthquake (b) Düzce earthquake 

(c) Imperial Valley earthquake zoomed only in vertical axis (d) Düzce earthquake zoomed only in vertical axis 
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Figure 5.46. Interstory drift of the third floor in frequency domain for the (a) Synthetic1 earthquake, (b) Synthetic2 earthquake, (c) Synthetic1 
earthquake zoomed only in vertical axis, and (d) Synthetic2 earthquake zoomed only in vertical axis

(a) Synthetic1 earthquake (b) Synthetic2 earthquake 

(c) Synthetic1 earthquake zoomed only in vertical axis (d) Synthetic2 earthquake zoomed only in vertical axis 

159  
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Consequently, inclusion of controlled damping in the base level reduces base 

displacements, protecting the base isolators from rupture or damage due to large 

deformations. On the other hand, it increases the building floor responses above the 

isolators. 

 

  System Sensitivity with Respect to the Stiffness and Mass of the 5.8.12.

Structure 

 

Plant models are inherently inaccurate. Controllers (regulators) described by 

such models must be able to provide satisfactory performance in the presence of system 

uncertainties and disturbances. The control scheme designed in the present section 

consists of a controller (including the upper controller, gain scheduling of VOD, and 

LQR) and an observer. In the sensitivity analysis of the present system, when the 

performance of the controller is good, this indicates that the controlled response is 

acceptable, and the observer can predict the simulated response successfully. The 

performance of an observer is associated with the case if the observer can estimate the 

simulated response successfully even under harsh conditions. For instance, the assumed 

mass, damping, and stiffness matrices of the system may be different from those of the 

real system. In other words, the performance of an observer relate to the correctness of 

its estimation of the system states, basing on an approximate transfer function of the 

system.  

In the present study, the controller contained the LQR and the Kalman-Bucy 

observer. The controller gain K and the observer gain L were determined for various 

VOD damping values prior to response calculation in the simulations. For sensitivity 

analysis, holding the controller and observer designs constant, the mass and stiffness 

matrices were varied individually by     percent. The upper controller can perform its 

selection of optimal orifice opening of the VOD independently during the simulations 

due to the measurements.  

The results were very close when the mass was decreased by 10 percent, and the 

stiffness was increased by 10 percent, and vice versa. Therefore, only the results of the 

system in which the stiffness matrix    was varied were presented. All the results were 

with respect to the ground as in the manner which the equation of motion was written. 
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The performance of the controller was investigated as the stiffness matrix    

was varied. The damping matrix was determined by the Rayleigh damping. Therefore, 

the damping matrix changed as    varied within a consistency with the real case. In 

such a way that: If the stiffness had been calculated higher than the actual one in a real-

world application, then the actual damping which originates from the energy dissipation 

at the joints would have been smaller. 

In Table 5.9, the change in the simulated responses is presented as the stiffness 

matrix was varied. The ratios of the maximum absolute values of the simulated 

responses of the varied case with respect to the simulated responses of the unvaried case 

are listed in Table 5.9, and the ratios had to be commented together with the correlation 

coefficients in Table 5.10. 

 

Table 5.9. Ratios of the maximum absolute values of the simulated responses with 
respect to the responses of the unvaried case as the stiffness matrix    was 
varied 

 
Imperial Valley earthquake Düzce earthquake 

                            

  ( ) 1.0496 0.9559 1.0005 0.9175 

  ( ) 1.0268 0.9689 0.9966 0.9123 

  ( ) 0.9911 0.9260 0.9826 0.8485 

  ( ) 0.9895 0.9782 0.9468 0.7980 

 ̇ ( ) 0.9700 0.8129 1.1144 1.0545 

 ̇ ( ) 0.9272 1.0010 1.1001 0.8820 

 ̇ ( ) 1.0255 1.0753 1.0176 0.8392 

 ̇ ( ) 1.0212 0.9260 0.8866 0.8136 

 

The correlation coefficients between the observed and simulated responses are 

presented in Table 5.10 as    of the hybrid controlled structure is varied. Additionally, 

the displacement and velocity responses of the two cases in Table 5.10 are presented in 

Figure 5.47 and Figure 5.48. Before commenting the performance of the observer in 

case of misdetermination of the system matrices, brief information about the correlation 

coefficient is provided: The correlation coefficients between the observed and simulated 

responses were presented. They provide a measure of how close the observed responses 

to the simulated ones. The correlation coefficient r is a measure of the linear 
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dependence between two variables giving a value in the range of -1 and +1. A value of 

zero correlation coefficient indicates that there is not a correlation between two 

variables. It takes values close to boundaries -1 and 1 as the relation between two 

variables gets stronger. If it is positive, then one of the variables increases as the other 

increases. If it is negative, then one of the variables increases as the other one decreases. 

In the present simulations, the corrcoef-functionality within MATLAB, which is 

abbreviated for correlation coefficients, is utilized. 

 The correlation analysis provides numerical information about the relation 

between two sets of variables. There may be a nonzero correlation coefficient between 

the variables which can never be directly related to each other (virtual or spurious 

correlation). Therefore, the analyzer should be aware of this fact while commenting the 

results of a correlation analysis. 

 

Table 5.10. Correlation coefficients between the estimated and simulated responses as 
the stiffness matrix    of the hybrid controlled structure was varied  

 
Imperial Valley earthquake Düzce earthquake 

                                  

  ( ) 0.9876 0.9998 0.9922 0.9913 0.9999 0.9953 

  ( ) 0.9924 0.9999 0.9947 0.9947 0.9999 0.9968 

  ( ) 0.9935 1.0000 0.9977 0.9940 1.0000 0.9978 

  ( ) 0.9997 1.0000 0.9996 0.9996 1.0000 0.9997 

 ̇ ( ) 0.8342 0.9983 0.9242 0.8683 0.9991 0.9548 

 ̇ ( ) 0.8902 0.9984 0.9300 0.9097 0.9991 0.9554 

 ̇ ( ) 0.7494 0.9990 0.9255 0.7887 0.9995 0.9180 

 ̇ ( ) 0.9926 0.9983 0.9887 0.9937 0.9996 0.9938 

 

The correlation coefficients of the observed and simulated responses were 

presented within each simulation for all of the system states. The columns in the middle 

stands to exhibit the observer performance of the unvaried case for both earthquakes. 

The observer at the base level performed well for all cases since the base was 

prewhitened for the observer design. The observer could estimate the displacement 

responses successfully even the stiffness matrix was varied. The correlation coefficient 

decreased for velocities. The worst case in the sensitivity analysis was obtained for the 
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velocity of the first floor when    was decreased in the simulation of the Imperial 

Valley earthquake (r=0.7494).  

 

 
Figure 5.47. Responses for the Düzce event with respect to the ground (The stiffness 

matrix    was increased by 10%) – Best response in the sensitivity 
analysis 

 

 

 
Figure 5.48. Responses for the Imperial Valley event with respect to the ground (The 

stiffness matrix    is decreased by 10%) – Worst response in the 
sensitivity analysis 

 

The best performances in the sensitivity analysis were observed when the 

stiffness matrix    was increased 10 percent in the Düzce event. The related responses 
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are presented in Figure 5.47. On the other hand, the worst results in the sensitivity 

analysis were obtained at the velocity of the first floor when the stiffness was decreased 

by 10% for the Imperial Valley event. The related results of the Imperial Valley event 

are presented in Figure 5.48. 

In all simulations of the sensitivity analysis, the controller performed better at 

the base level compared to the responses of the superstructure. This may have been due 

to the fact that the observer of the base was designed for the prewhitened base since the 

observer of the base was focused on the effective frequency range of earthquake 

excitation. This was not the case for the observer design of the superstructure. 

Consequently, it may be better to prewhiten the superstructure, so that the controller can 

handle possible changes of system properties better in real-world applications. 

 

  Performance of the Observer Under Arbitrary Initial 5.8.13.

Conditions 

 

The performance of an observer is mainly determined by the time duration that 

lasts for the observer to estimate the system response successfully. Therefore, arbitrary 

initial conditions were applied in the simulations of the Imperial Valley and Düzce 

earthquakes. In the earthquake simulations, the time duration passed to estimate the 

response successfully was investigated in case of a misdetermination of initial 

conditions. 

The initial conditions were chosen as a combination of different mode shapes or 

only in shape of a certain mode. The first initial condition set was in the shape of 

[                                            ]. The first four values stood 

for the floor displacements, and they corresponded to the form of the third mode shape 

in meters. The second four values were for the floor velocities, and they coincided with 

the form of the second mode shape in meter/second. Handling such an initial condition 

set was a tough task for an observer since high numerical values were applied to all 

degrees-of-freedom at the same time and in different modes. The displacements and 

velocities of the base and the first floor are presented in Figure 5.49 for Düzce event 

under the first initial condition set. 
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     Measured      Observed     Simulated 

 

Figure 5.49. Floor responses for the Düzce event under the first initial condition set 
  

 

 

 
     Measured      Observed     Simulated 

 

Figure 5.50. Floor responses for the Düzce event under the second initial condition set 
 

In Figure 5.49 and Figure 5.50, the results were presented starting from -0.1 

seconds to show the applied initial conditions in the simulated responses. For the first 

set, the observer estimated the simulated displacement and velocity responses 

successfully in 8 seconds. 
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The second initial condition set was in the shape of the first mode as 0.01 meter 

for displacements and 0.2 meter/second for velocities. The responses of the base and the 

first floor are presented in Figure 5.50 for the Düzce earthquake under the second initial 

condition set. The observer predicted the simulated displacement responses effectively 

in 6 seconds. On the other hand, the time passed to estimate the simulated velocities 

correctly was approximately 7-8 seconds. Surprisingly, the observer was slower than the 

former one to estimate the response successfully. 

Notably, the performance of the observer was better in the simulations of the 

Imperial Valley earthquake for both of two initial condition sets compared to its 

performance for the Düzce event. The time duration passed to estimate the response 

successfully was reduced by half in the simulations of the Imperial Valley earthquake. 

The observer predicts the base response in a shorter time duration compared to those of 

the superstructure. Most probably, this was due to the fact that the observer of the base 

was focused on the effective frequency range of earthquake excitations by 

prewhitening. 

 

 Filtering Property of the Kalman-Bucy Observer 5.8.14.

 

The performance of the observer as a filter is exhibited in the present section. 

The magnitudes of the base drift in the frequency spectrum for the Düzce and 

Synthetic2 earthquakes are presented in Figure 5.51 and Figure 5.52, respectively. The 

responses belonged to the measured and observed values. 

The Kalman-Bucy observer received the measured values and output less noisy 

responses as seen in the zoomed parts of Figure 5.51 and Figure 5.52, acting as a filter. 

The magnitudes of the responses in the region of interest (periods greater than 0.1 

seconds) were close to each other for the measured and observed values, indicating that 

there was not any data loss that could affect the responses. The remaining components, 

whose periods were not related with the hybrid controlled system, were assumed to be 

noise, and they were filtered by the Kalman-Bucy observer. 
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Figure 5.51. Magnitudes of the base displacement (with respect to the ground) in the 

frequency domain for the (a) Düzce earthquake and (b) the Düzce 
earthquake zoomed in vertical axis between periods of 0.004-1 s and 
scaled in the horizontal axis 

 

 

 

 
Figure 5.52. Magnitudes of the base displacement (with respect to the ground) in the 

frequency domain for the (a) Synthetic2 excitation and (b) the Synthetic2 
excitation zoomed in vertical axis between periods of 0.004-1 s and scaled 
in the horizontal axis 

 

  

(a) 

(b) 

(a) 

(b) 
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 Results of the Simulations 5.8.15.

 

The data of the Imperial Valley earthquake has a wider frequency range than 

those of the Düzce event (see Figure 2.4), and its low-frequency components double 

those of the Düzce event. Therefore, the Imperial Valley data affect the structures with 

low periods more intensely, which is not the case for a seismic isolated structure. On the 

other hand, the Düzce earthquake consists of low-valued cycling motion together with 

single high peak shocks of 50 and 80 percent of the ground acceleration. The results of 

the simulations have shown that the Düzce earthquake is a more demanding excitation 

record than the Imperial Valley event for structures whose frequencies and damping 

values are similar to the system in the present research.  

The system response was simulated for near- and far-source earthquake records 

numerically. The results were compared with respect to two passive damper systems 

with minimum and maximum damping value. The isolators were protected at the instant 

of high magnitude responses by means of the controller. The interstory drift and 

velocity at the base level decreased more than 25% for both excitation types compared 

to those of the minimally damped passive device. 

In the sensitivity analysis, the performance of the observer at the base level was 

very good for all cases since the base was prewhitened for the observer design. 

Therefore, the superstructure may be prewhitened in the future studies. 

Additional damping at the base level reduces the base velocity directly and 

decreases the base displacement indirectly at the expense of larger drifts and floor 

accelerations of the superstructure. One of the important findings of the study is that 

large damping in the base level is not beneficial for base isolated buildings. On the other 

hand, regarding the isolation system, the highest damping case would be beneficial, 

making sure that failure in the isolation system does not occur. 
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CHAPTER 6 

 

NUMERICAL STUDIES ON RESPONSE CONTROL OF  

A TRUCK SEAT 

 

The primary purpose of the present section is to control the response of a truck 

seat by a MRD. This chapter describes the setup of the seat suspension. The damper 

mounted on the seat was replaced by a RD-1005-3 MRD that was manufactured by 

Lord Corporation. Only the numerical simulations were performed, and the seat 

response was controlled by the LQR. 

 

6.1. Literature Review 

 

Truck drivers spend most of their working hours at tough driving periods. This 

case may cause attention reduction, which is a risk for the driver, passengers, 

bystanders, and the goods. Also, during the vertical seat vibrations, the driver may lose 

the control of the truck and may injure some parts of his body. Therefore, the seat 

suspensions of trucks and heavy vehicles attract attention of different research groups. 

Some of the related studies are presented in the following lines. 

The Lord Corporation designed the LORD Motion MasterTM. It has been the 

only solution that automatically adapts to both the driver’s body weight and changing 

levels of shock and road vibration (Lord, 2007). The system was based on the RD-1005-

3 damper. The system has been already mounted more than 30000 systems on the roads 

and has been logged more than 109 kilometers in truck, bus, and agricultural operations. 

The numbers were according to the data of 2007. It satisfied or exceeded the conditions 

of some standards as SAE J1386, ISO 7096, ISO 5007 (Carlson, 2007). 

Reichert studied MRDs and skyhook control in his master thesis by Lord 

Corporation’s support (1997). He modified an Isringhausen seat suspension to replace a 

passive damper with a controllable MRD. Additionally, the source of the unexpected 

peak in the acceleration spectrum of the seat was searched. 

Engin et al. designed, manufactured, and tested a MRD for a tractor seat 

application (2008). They performed a fluid dynamics-based analysis of flow inside the 
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damper, and the flow field inside the MRD was investigated using computational fluids 

dynamics. Taguchi method was utilized as an optimization tool to optimize the damper 

geometry. A seat simulator was designed and manufactured to conduct real-time PC-

based control tests of the MRD. Various control algorithms (sky-hook, ground-hook, 

and hybrid) were comparatively designed. The results showed that the displacement, 

velocity, and acceleration could be suppressed in an effective manner by using the 

proposed control strategy. 

Göksel performed the optimal sliding mode control of a semi-active seat 

suspension system (2007). He applied different control strategies to control the semi-

active MRD. The results showed that the utilized suspension system reduced most of 

the seat vibrations. 

Sapinski and Rosol investigated the shock isolation performance of a driver seat 

with a MRD suspension system (2007). The aim of the experimental studies was to 

recognize the MRD performance against shock effects. Rounded pulses and square 

waves were applied. The controller failed to reduce the accelerations. The reason of the 

unwanted results was attributable to the properties and operating principles of the 

electromagnetic circuit of the RD-1005-3 MRD. 

Song et al. focused on an experimental implementation of a semi-active seat 

suspension using MRDs (2007). An adaptive control algorithm was proposed to 

eliminate the superharmonics from the MRD seat suspension response. The 

effectiveness and feasibility of the proposed adaptive algorithm were shown by 

comparing the test results. 

Yazıcı et al. tested a semi-active seat suspension system in a real time computer-

based application (2008). The results showed that the suspension system reduced the 

sinusoidal excitation by 70% for certain excitation frequencies.  

Six seat suspension systems were tested and analyzed at the National Institute 

for Occupational Safety and Health1 – Pittsburgh Research Laboratory (NIOSH – PRL) 

(Mayton et al.). The investigations were performed for only vertical vibrations and by 

using a modified version of the ISO 5007 Standard. The seat suspension systems were 

four passive and two semi-active seat suspension designs, which were typical of seat 

suspensions commonly found on large off-road heavy surface mining, construction, and 

agricultural vehicles. The results suggested that the application of rheonetic technology 

had to provide improved isolation from the vibration transmitted from the seat. 
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Hiemenz et al. (2009) worked on the seat suspension system of the 

Expeditionary Fighting Vehicle (EFV). It was an amphibious vehicle designed to 

operate through harsh conditions and at much higher speeds than its predecessors. The 

unique capabilities and broadly varying operational conditions required a complicated 

suspension system different from a conventional passive seat suspension system. 

Different operating conditions over water and land at high speeds threatened the health 

of the passengers. Therefore, s semi-active magnetorheological (MR) seat suspension 

was developed. It could adapt to broadly varying operational conditions and passenger 

weight. The results showed that the MR seat suspension system reduced the shock and 

vibration transmitted to the passenger by up to 33% and 65%, respectively, when 

compared to the existing passive suspension. 

Gao et al. studied the problem of robust multi-objective control for a class of 

uncertain semi-active seat suspension systems with actuator time delay by proposing a 

state-feedback controller (2010). The essential dynamics of a seated human body 

vibration was modeled by a three DOF model. The effectiveness and advantages of the 

proposed controller design was demonstrated by a design example. 

Metered et al. introduced a semi-active control strategy for an MRD used in a 

seat suspension (2009). The proposed control system comprised a system controller that 

computed the desired damping force using a sliding mode control algorithm, and a 

neural-based damper controller. Direct estimation of the command voltage was 

provided to track the desired damping force. The proposed semi-active seat suspension 

was compared with a passive seat suspension for prescribed base displacements. The 

simulated results revealed that the semi-active seat suspension provided a significant 

improvement in ride comfort. 

Modeling the human body is an important issue while designing seat 

suspensions. Various researchers have been studied on modeling the human body under 

certain conditions. Smith formulated a five DOF model to predict the effects of selected 

seat cushion (2000). It was based on the measured driving-point impedance and 

transmissibilities of major anatomical structures contributing to the observed resonance 

behaviors. The ability of the model to predict the effects of selected seat cushions was 

examined. The model was effective in simulating both the lower impedance peak 

observed in the primary resonance region (4-8 Hz) and the prevalent impedance peak 

observed in the second resonance region (7-10 Hz) in the smaller subjects. However, the 

model was not effective in predicting the dampening observed in the second resonance 
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peak with the use of cushions. Improvements were possible by redistributing the model 

coefficients. 

Rodean investigated the biodynamic response of human body subjected to 

vertical vibrations in an auto vehicle (2008). The different situations were regarded: the 

driver was sitting on a rigid and vehicle seat with/without seat cushion. 

Stein et al. formed a linear model of the seated human body and cushioned seat 

in the fore-and-aft direction (2007). The fore-and-aft vibrations play an important role 

in industrial environment. Their model based on the laboratory measurements 

performed by thirteen male subjects with body masses between 62.2 and 103.6 kg that 

sat on a cushioned driver seat with hands on a support and backrest contact in the 

lumbar region. A random signal in the frequency range between 0.3 and 30 Hz were 

applied. 

 

6.2. Truck Seat 

 

The truck seat was manufactured by Grammer. It was a Grammer MSG 90.3 P 

and obtained from a BMC cooperation. The seat itself is 22 kilograms and presented in 

Figure 6.1. The front view of the setup is presented in Figure 6.2. The shaker was 

mounted on a rigid wall in order to create vertical excitations. The seat and its base was 

placed on the support unit that was manufactured in the IYTE Central Mechanical 

Workshop. The required pressure was provided by a compressor. The pressure level 

was approximately 6.5 bar. The seat suspension system isolated the driver from some 

part of the excitation, which originated from the road profile. The seat suspension 

system is presented in Figure 6.3. 
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Figure 6.1. Setup 

 

 

 

 

 

Figure 6.2. Front view of the setup 
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(a) front view (b) side view 

Figure 6.3. Seat suspension 
 

 

The adjustment buttons of the seat are presented in Figure 6.4. They are for seat 

angle, shock absorber, and height adjustment from left to right (Grammer, 2010). The 

last one stands for quick deflation. The shock absorber utilized in the original seat (prior 

to the placement of the MRD) can be adjusted in 4 levels from soft up to hard. By 

pulling the handle upwards, the driver seat becomes softer, and vice versa. The seat can 

be adjusted in range of 100 mm upwards or downwards. The seat has a quick deflation 

adjustment, which makes it easier to get on and off the seat. By pulling the handle 

before getting off, the seat moves to its lowest position by discharging air. At actuating 

the handle before movement, the driver seat moves to its driving position automatically. 

 

 

 
Figure 6.4. Seat adjustment buttons 
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6.3. Mechanical Model of the Truck Seat 

 

The truck seat and its seat suspension system in Figure 6.1 was modeled 

mechanically (see Figure 6.5). The equation of motion of the system is 

 

     ̈       ̇              ̇                 (6.1) 

 

where     is the effective part of the total mass of the driver and the seat.     is the 

damping coefficient due to friction of the mechanism.     is the spring coefficient. The 

subscript ts stands for the truck seat and the subscript tsb stands for the base of the truck 

seat.     is the seat displacement relative to the ground.      is the displacement of the 

base of the truck seat relative to the ground. Dot stands for the first time derivative, and 

double dot is for the second time derivative.      is the damping force of the MRD. 

 

 
Figure 6.5. Mechanical model of the truck seat 

 

In the state-space representation of the system, the states are the displacement 

and velocity of the seat relative to the ground. The state-space representation of the 

equation of motion in Equation (6.1) is as follows 
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(6.2) 

 

where     is the system matrix.     is the control input matrix.     and    ( ) are the 

disturbance matrix and vector, respectively. The output in the simulations is the 

acceleration of the seat relative to the ground. The output equation is as follows 
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The mass and stiffness of the truck seat were determined by means of the seat 

obtained from a BMC cooperation. It was assumed that only 70-77% of the human 

weight acts to the seat (Engin et al., 2008). This reduction was due to the contact of the 

legs to the ground. The ISO standard for the driver mass is 75 kg and is 65 kg for the 

passenger. ISO standard considers the reduction due to the contact of the legs to the 

ground while determining the driver and passenger weights. The Grammer seat 

weighted 22 kg. The total effective mass for the seat including the driver and the seat 

was assumed to be 80 kg in the present simulations since only 70-77% of the human 

weight acts to the seat (   =80 kg). 

It was observed that sitting of a man of 80 kgf caused a settlement of almost 7 

centimeters in the seat after the damper was removed (see Figure 6.1). If only 70-77% 

of the human weight acted to the seat, then aprroximately 60 kgf (  590 Newton) acted 

to the seat. This yielded an average seat stiffness of 8400 N/m (   =8400 N/m).  

Due to the connections of the seat suspension system, a small amount of 

damping may have been present. Therefore, the damping ratio of the seat suspension 

mechanism was assumed to be 0.03. Then, its damping coefficient got the value of 49 

Ns/m (             49 Ns/m). 

 

6.4. Frequency Sweep Data 

 

The experiments performed by various researchers shows that truck drivers are 

exposed to low frequency vibration. This case may cause temporary or even permanent 
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injuries. The resonance frequency range of a human body is the range of the 2-4 Hz 

(Engin et al., 2008; Reichert, 1997). The RMS value of the accelerations and the 

transmission ratio are also limited by the standards. For instance, the RMS value of the 

accelerations should be smaller than 1.25 m/s2, and the upper limit of the transmission 

ratio is 2 for tractor seats in Turkey (AT 78/764). 

 

 
   (a) Power spectral density (PSD) of the excitation 

 
 (b) Base displacement sample 
  

Figure 6.6. ISO 7096/2000 Class 2 (a) excitation and (b) base displacement sample 
(Source: Reichert, 1997) 
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The ISO 7096/2000 is a standard for earth-moving machinery in laboratory 

evaluation of operator seat vibration. The ISO2 excitation is a relatively broad-band 

excitation, with frequency content from approximately 1 to 4 Hz. It is preferred since it 

is commonly used by the Original Equipment Manufacturers (OEM) and seat 

manufacturers for evaluating seat suspension (Reichert, 1997). The power spectral 

density (PSD) and a sample time trace are presented in Figure 6.6. 

The ISO 5007/1990 is a standard for agricultural wheeled tractors in laboratory 

measurement of transmitted vibration. The test protocol in ISO 5007 Section 10.1 

requires a sinusoidal vibration of amplitude ±15 mm (0.59 in) and a frequency range 

from 0.5 to 2 Hz at 0.05 Hz intervals (Mayton et al.). Test weights or masses of 40 and 

80 kg (88 and 176 lbs) are specified by ISO 5007 to simulate the upper and lower ends 

(5
th 

percentile female and 95
th 

percentile male) for the range of seated vehicle operators. 

Mayton et al. applied a modified version of ISO 5007. The test protocol in ISO 

5007 Section 10.1 requires a sinusoidal vibration of amplitude ±15 mm (0.59 in) and a 

frequency range from 0.5 to 2 Hz at 0.05 Hz intervals. Test weights or masses of 40 and 

80 kg (88 and 176 lbs) are specified by ISO 5007 to simulate the upper and lower ends 

(5
th 

percentile female and 95
th 

percentile male) for the range of seated vehicle operators. 

They added a range of 2 to 8 Hz at 0.25 Hz intervals to measure the transmissibility 

characteristics for each seat suspension system in the range most sensitive to the human 

body overall. They recorded each interval for 15 s.  

In the present example, the frequency sweep data was composed of signals with 

decreasing amplitude and linearly varying period. The period values started from 2 

seconds and decreased to 0.1 seconds by intervals of 0.001 seconds. It had a white-like 

spectrum in the related frequency region and provided a full spectral coverage (see 

Figure 6.20). It generally used to test the frequency response of systems and to 

determine the system properties in the system identification problems. In the present 

research, it was utilized to test the system response whose properties were predefined 

within a certain frequency range. The results of the experiments performed by various 

researchers show that truck drivers are exposed to low frequency vibration. The human 

body is sensitive at the frequencies between 2 and 4 Hz (Engin et al., 2008; Reichert, 

1997). Therefore, a sinusoidal wave was utilized in the numerical simulations of the 

present research. The velocity wave was produced as follows 
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)                     (6.4) 

 

Then, the displacement excitation data was obtained by integrating the velocity 

data numerically. The coefficient (   ) in Equation (6.4) was added to decrease the 

magnitude of the signal for increasing time or period values. The coefficient   in 

Equation (6.4) was determined according to the fact that the maximum displacement 

would be 5 centimeters. The excitation data are presented in time domain in Figure 6.7 

and in frequency domain in Figure 6.20. The displacement had an initial maximum 

amplitude of 5 centimeters, then it disturbed the system in the vicinity of a reference 

zero point of approximately 3.8 centimeters sinusoidally. The amplitude of the 

displacement was determined corresponding to that of velocity. The displacement and 

velocity of the base of the seat were applied to the system as disturbances (see Equation 

(6.2)). The sudden drop in the displacement disturbance may have caused a kind of 

impulsive loading. In the future studies, the related fact will be dealt with. 

 

 

 
Figure 6.7. Frequency sweep data applied to the base of the truck seat (for the first two 

seconds of the simulation) 
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6.5. Numerical Simulations 

 

The truck seat was obtained from a BMC cooperation. Its suspension system 

was modified by three passive dampers and a MRD in the numerical model. The 

numerical simulations were performed for four individual systems. The system was 

excited by the frequency sweep data presented in Figure 6.7. 

In passive damper cases, three different passive dampers were applied to the 

system in Figure 6.5 instead of the MRD. The passive dampers were underdamped 

(       = 0.8), critically damped (       = 1), and extremely overdamped (       = 

10). Firstly, the responses of the system, which underdamped passive damper was 

applied, were displayed. The related displacement, velocity, and acceleration responses 

relative to the ground are presented in Figure 6.8, Figure 6.9, and Figure 6.10, 

respectively. The dashed line stands for the responses of the uncontrolled system, while 

the black line indicates those of the controlled system. 

Damping of the uncontrolled system was originated only from the mechanism of 

the seat suspension system (      ). Therefore, the uncontrolled system exhibited 

underdamped responses in the forced and unforced regions of the simulation. On the 

other hand, the controlled system’s response was underdamped, critically damped or 

overdamped depending on the damper which was applied to the suspension system. 

 

 
Figure 6.8. Displacement response of the truck seat relative to the ground in the passive 

damper application (damping ratio of the damper is 0.8, underdamped case) 
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Figure 6.9. Velocity response of the truck seat relative to the ground in the passive 

damper application (damping ratio of the damper is 0.8, underdamped case) 
 

 

 
Figure 6.10. Acceleration response of the truck seat relative to the ground in the passive 

damper application (damping ratio of the damper is 0.8, underdamped 
case) 

 

Secondly, the responses of the system, which critically damped passive damper 

was applied, were displayed. The related displacement, velocity, and acceleration 

responses relative to the ground are presented in Figure 6.11, Figure 6.12, and Figure 

6.13, respectively. The dashed line stands for the responses of the uncontrolled system, 

while the black line indicates those of the controlled system.  
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Figure 6.11. Displacement response of the truck seat relative to the ground in the 

passive damper application (damping ratio of the damper is 1, critically 
damped case) 

 
 

 
Figure 6.12. Velocity response of the truck seat relative to the ground in the passive 

damper application (damping ratio of the damper is 1, critically damped 
case) 
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Figure 6.13. Acceleration response of the truck seat relative to the ground in the passive 

damper application (damping ratio of the damper is 1, critically damped 
case) 

 

Lastly, the responses of the system, which overdamped passive damper was 

applied, were displayed. The related displacement, velocity, and acceleration responses 

relative to the ground are presented in Figure 6.14, Figure 6.15, and Figure 6.16, 

respectively. The dashed line stands for the responses of the uncontrolled system, while 

the black line indicates those of the controlled system.  

 

 
Figure 6.14. Displacement response of the truck seat relative to the ground in the 

passive damper application (damping ratio of the damper is 10, 
overdamped case) 
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Figure 6.15. Velocity response of the truck seat relative to the ground in the passive 

damper application (damping ratio of the damper is 10, overdamped case) 
 
 

 
Figure 6.16. Acceleration response of the truck seat relative to the ground in the passive 

damper application (damping ratio of the damper is 10, overdamped case) 
 

In the MRD simulations, the system in Equation (6.2) was utilized in the 

numerical simulations. The maximum MRD force was limited by 3000 N. The 

maximum voltage that could be applied to the electromagnet was limited by 2.25 Volts. 

The modified clipped algorithm was utilized to calculate the required voltage value. The 

MRD calculations were run at a rate hundred times faster than the response calculations 

of the seat. The values presented in Equation (6.5) were utilized for     values of the 
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LQR. They were chosen by keeping the required control force   and damping force 

     as close as possible. 

 

   [
         
         

]         (6.5) 

 

The displacement, velocity, and acceleration responses of the truck seat are 

presented in Figure 6.17, Figure 6.18, and Figure 6.19, respectively. The dashed line 

stands for the responses of the uncontrolled system, while the black line indicates those 

of the controlled system. 

In all cases, the uncontrolled system oscillated around the point of displacement 

of 0.38 meters by its damped period. After removal of the disturbance (t > 1.9 s), the 

uncontrolled system went on to oscillate around the zero displacement point by the 

same damped period. 

For the first 1.9 seconds of Figure 6.8-Figure 6.19, the forced responses were 

examined. After removal of the disturbance, the responses became unforced (see the 

disturbance in Figure 6.7). The underdamped, critically damped, and overdamped 

responses of an unforced second-order system are presented in Appendix F. 

 

 

 
Figure 6.17. Displacement response of the truck seat relative to the ground in the MRD 

application 
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Figure 6.18. Velocity response of the truck seat relative to the ground in the MRD 

application 
 

 

 
Figure 6.19. Acceleration response of the truck seat relative to the ground in the MRD 

application 
  

In the unforced region of Figure 6.8, the controlled system did not exhibit visible 

oscillations since the damping ratio of the damper was 0.8. The waves could be 

observed obviously for a maximum damping ratio of 0.5-0.6. As the damping ratio got 

closer to the critical damping ratio, the waves deteriorated. A similar situation was 

encountered with while determining the critical damping ratio of the VOD in Table 5.1. 

The overdamped system converged to the zero displacement point slower than the 

critically damped system in the unforced regions of Figure 6.11 and Figure 6.14, as it 
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was expected (compare Equation (F.6) and Equation (F.7) in Appendix F for the 

unforced solutions of overdamped and critically damped second-order systems). 

The magnitudes of the seat displacement (relative to the ground) in the 

frequency domain are displayed in Figure 6.20. In every time step, the excitation period 

changed, therefore there may have been some amount of spectral leakage in the 

spectrum (see Figure I.2 for details). Some remedies will be applied in the future 

studies. 

 
 

 
Figure 6.20. Magnitudes of the seat displacement (with respect to the ground) in the 

frequency domain in the MRD application (the response is displayed in 
the frequency range of 0-5 Hz) 

 

 

The displacement response of the control system, which contained a 

semiactively controlled MRD, was not acceptable in Figure 6.17. Additionally, the 

maximum damper force      was approximately 350 Newtons. MRD was not 

activated. The capacity of the RD-1005-3 MRD was excessive for the truck seat in 

Figure 6.5.  

The systems with passive dampers could effectively reduce the oscillations of 

the truck seat. On the otherhand, the suspension system with the MRD could not 

performed its duty in terms of seat displacements relative to the ground. Consequently, 

the capacity of the RD-1005-3 MRD was excessive for the current system. 
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CHAPTER 7 

 

CONCLUSIONS 

 

7.1. Conclusions 

 

The result of subsequent subsections are presented at the end of each subsection. 

In the present section, the results are mentioned briefly. 

Seismic response reductions by the MRD and by its hybrid application were 

performed in Chapter 4. At the beginning, the individual MRD was excited by 

sinusoidal displacements. The results have shown that the choice of time step increment 

is very important for the MRD as usual for nonlinear cases. Therefore, the MRD 

response was calculated by a loop inside the main loop in which the response was 

calculated. Hence, the calculations were performed faster instead of carrying out the 

calculations within a single loop. 

In Section 4.5, the seismic response of the three-storey model structure was 

controlled by a MRD depending on four different control algorithms. The proposed 

fuzzy controller was the best in reducing seismic response of the structure effectively. 

In addition to its affirmative contribution, another advantage of fuzzy controllers was 

that its control algorithm was much simpler than those of the other three control 

algorithms. On the other hand, the boundaries of the input variables had to be defined 

priori to the simulation. 

The responses of a passive damper and a semi-active MRD were compared in 

Section 4.6. the results indicated that the choice of     mainly influenced the 

responses of the MRD. Furthermore, the results showed that the capacity of the utilized 

MRD was beyond the control requirements of the model structure utilized within the 

thesis (see also Section 4.7.3). 

In Section 4.7, the hybrid control of the three-storey model structure including 

the base isolation and the MRD was performed. The structural responses were 

satisfactory. Moreover, the isolator was protected from detrimental effects of the ground 

excitation. The interstory drift reduction at the base level was approximately 50% when 

compared to the response of the base isolated structure. As a result, the base 
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displacements and velocities were reduced by additional damping in the base level. 

Thus, the base isolators were protected. On the other hand, the superstructure’s 

responses increased reasonably due to the presence of large damping in the base level. 

The study has shown that the hybrid control system including the MRD can prevent or 

significantly reduce structural damage during a seismic event. 

In Chapter 5, the hybrid control of the model structure including a VOD was 

performed. The control scheme was based on the LQG. The optimal control saved the 

isolator system from too large displacements, while the responses of the superstructure 

slightly increased when compared to the minimal damping case. Regarding the 

superstructure, the case with minimum damping, or even further, no damping at all, 

would be the most feasible situation. On the other hand, regarding the isolation system, 

the highest damping case would be beneficial, making sure that failure in the isolation 

system did not occur. The study has shown that the hybrid control system including the 

VOD can significantly reduce the displacements and velocities of the floors even in case 

of a frequency overlap of excitation and system. On the other hand, the absolute 

acceleration of the base increased. In conclusion, simulation results of Chapter 5 

demonstrates that the controller keeps a balance among the requirements of the sub- and 

super-structures even in case of a frequency overlap of excitation and system. 

According to the results of Section 4.7 and Chapter 5, one of the important findings of 

the study is that large damping in the base level is not beneficial for base isolated 

buildings. 

The hybrid control system including the MRD did not increase the absolute 

accelerations of the base (see Figure 4.30). On the other hand, the hybrid application of 

the VOD increased the absolute accelerations of the base unacceptably.  

Finally, the vibration response of the truck seat was controlled by three different 

passive dampers and the MRD in Chapter 6. The passive dampers could effectively 

reduce the oscillations of the truck seat. On the other hand, the capacity of the RD-

1005-3 MRD was excessive for the current system. 
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7.2. Future Work 

 

There exist different possible future directions of the present research. They are 

summarized in the following lines: A study which focuses on producing near-fault 

seismic data synthetically could be useful in monitoring the effects of fling step and 

forward directivity on seismic response of controlled structures, especially their effects 

on flexible structures. Additionally, deeper studies in phenomenological model of MRD 

are suggested to propose a new model including fractional derivatives for the 

relationship between the inertial force and acceleration at high velocities. 

The hybrid application of the optimally controlled VOD was capable of 

effectively reducing displacements and velocities, but not successful in decreasing the 

absolute accelerations. Therefore, a further study is suggested to prevent the increase in 

the absolute acceleration of the base of the hybrid system including the VOD. 

Furthermore, GA studies are recommended to investigate     couples to obtain 

controlled responses better than the present ones in the LQR and LQG control designs. 

The results of an experimental study on the control of the model structure may 

provide more information about the behaviour of the system being controlled. The 

experimental results obtained in the future studies may be compared with the results of 

Chapter 4 and Chapter 5. Finally, one of the possible future directions of the present 

research may be the experimental studies with the setup of the truck seat to validate the 

responses of the simulations of the thesis. 
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APPENDIX A 

 

SOLUTION OF THE CONTINOUS-TIME STATE 

EQUATION 

 

The homogeneous (unforced) state equation is, 

 

  ̇( )   ( ) ( ) (A.1) 

 

where the upper dot indicates time derivation and  (  ) is known. Integration results, 

 

  ( )   (  )  ∫  ( )
 

  

 ( )   (A.2) 

Replacing   by   yields, 

  ( )   (  )  ∫  ( )
 

  

 ( )   (A.3) 

 

Substituting Equation (A.3) into Equation (A.2) results in the following expression: 

 

 ( )   (  )  ∫  ( )
 

  

[ (  )  ∫  ( )
 

  

 ( )  ]    

 ( )                    (  )  ∫  ( )
 

  

    (  )  ∫  ( )
 

  

∫  ( )
 

  

 ( )      

Continuing this process by replacing   by   and plugging the result into Equation (A.2) 

yields (Raven, 1995), 

 

 ( )  [  ∫  ( )
 

  

   ∫  ( )
 

  

∫  ( )
 

  

      ∫  ( )
 

  

∫  ( )
 

  

∫  ( )
 

  

          ]   (  ) 

 

The solution of the homogeneous state equation (A.1) is 

 

  ( )   (    )  (  ) (A.4) 
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where  (    ) is the state transition matrix, which transforms any initial state  (  ) of 

the dynamic system into any state  ( ) at time   in the absence of either a forcing 

function or process noise. 

 

  (    )  [  ∫  ( )
 

  

   ∫  ( )
 

  

∫  ( )
 

  

      ∫  ( )
 

  

∫  ( )
 

  

∫  ( )
 

  

          ] (A.5) 

 

Similarly, the solution of the state equation  ̇( )   ( ) ( )   ( ) ( )  

 ( ) ( ) is 

 

  ( )   (    )  (  )  ∫  (   )
 

  

 ( ) ( )   ∫  (   )
 

  

 ( ) ( )   (A.6) 

 

which composes of the homogeneous and forced solutions. The initial state  (  ) is 

known and  (    ) is the state transition matrix from    to  . In general, the transition 

matrix does not have an explicit form. If the commutativity property in Equation (A.7) 

is satisfied, 

 

  ( )∫  ( )
 

  

   ∫  ( )
 

  

    ( ) (A.7) 

 

only then the state transition matrix has the form in Equation (A.8) (Shalom et al.). 

 

  (    )   
∫  ( )
 
  

  
 (A.8) 

 

The commutativity property presented by Equation (A.7) is satisfied by time-

invariant systems or by systems with diagonal  ( ) matrices. For a time-invariant 

system, starting from time step     , the state transition matrix becomes, 

 

  (       )   (    )        
 (       )       (A.9) 

 

where    is the time increment. The notation  (       ) indicates the transition from 

time      to time   .  
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APPENDIX B 

 

TRANSFORMATION FROM CONTINUOUS TO 

DISCRETE SYSTEMS 

 

Given the linear, continuous-time differential equation model for a stochastic 

dynamic system, the evolution of the state vector   in time is described by 

 

  ̇( )   ( ) ( )   ( ) ( )   ( ) ( ) (B.1) 

 

The time-varying measurement model is, 

 

  ( )   ( ) ( )   ( ) (B.2) 

 

Terms in Equation (B.1) and (B.2) are displayed in Table 2. The solution of the system 

in Equation (B.1) is recalled from Equation (A.6), 

 

  ( )   (    )  (  )  ∫  (   )
 

  

 ( ) ( )   ∫  (   )
 

  

 ( ) ( )   (B.3) 

 

with the known initial condition  (  ). 

Zero-order hold (ZOH) assumes that the control inputs and the disturbances are 

piecewise constant over the sampling period   . Applying a ZOH to  ( ),  ( ) 

becomes constant throughout the sample interval, that is,  ( )   (       )   

              ZOH is also applied to the disturbances, resulting in  ( )  

 (       ). The initial time step is                . The next step is  

          . 

 

  (  )   (       )  (    )  ∫  (    ) ( )
  

    

    (    )  ∫  (    ) ( )
  

    

    (    ) (B.4) 

 

Equation (B.4) gives the solution   at the jth time step, assuming that input and 

disturbance are piecewise constant, as the sum of a term consisting of the transition of 



 

207 
 

the initial state and terms arising from the input and process noise. By a sampling 

definition as  ( )        , Equation (B.4) turns into 

 

                                  (B.5) 

where 

      (       ),      ∫  (    ) ( )
  
    

  , and      ∫  (    ) ( )
  
    

   

 

If the system properties are constant throughout the time interval   , then the 

 ( ) and  ( ) terms can be taken out of the integral. Then      and      turns into 

Equation (B.6), 

 

 

     ∫  (    )
  

    

        

     ∫  (    )
  

    

        

(B.6) 

 

where       (    ) and       (    ). 

Additionally, details about the state transition matrix are presented in Appendix 

A. The transformation for the measurement equation is presented by Equation (D.10). 

The continuous formulation can be obtained from the discrete case, vice versa, by a 

limiting process (Shalom et al., 2001). 
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APPENDIX C 

 

KALMAN FILTER (DISCRETE-TIME FORMULATION) 

 

A random process is modeled as, 

 

                               (C.1) 

 

The measurement of the process is performed at discrete times as, 

 

            (C.2) 

 

The terms in Equations (C.1) and (C.2) are defined in Table 5.3. Equation (C.1) 

describes the way that a state    is modeled as a linear combination of the previous state 

    , some input     , and some process noise     . Similarly, the measurement 

equation Equation (C.2) shows the relationship between the process state and the 

measurement as the measurement is a linear combination of the states. 

In the formulations, the head   stands for the estimated variables and the super 

minus indicates a priori estimation case. Derivation of the dynamic estimation algorithm 

starts with performing a priori state estimate  ̂  . The a priori state estimate  ̂   is 

utilized to predict the output   ̂ . 

The a priori value is the one before the measurement information is taken into 

account, and the a posteriori value is performed after the measurement information is 

employed. Alternatively, the a priori value is the predicted one and the a posteriori 

value is the updated one. 

The difference between the estimated output and the measured (actual) output is 

the measurement residual (measurement estimation error). The residual shows the 

discrepancy between the actual measurement and the a priori measurement estimate. 

 

              ̂         ̂ 
  (C.3) 

 

By using this information, the estimated state   ̂  is improved as, 
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  ̂   ̂ 
               ̂ 

    (      ̂ 
 ) (C.4) 

 

The first term  ̂   in Equation (C.4) represents the a priori prediction of  ̂  

without any measurement knowledge of the current step. The second term is a 

correction term containing the difference between the new measurement and its 

estimate, namely the residual, weighted by a gain factor   . The gain    is the most 

important part of the Kalman estimator. 

In the following lines, the optimal gain    is obtained to improve the state 

estimate. First, the predicted state  ̂   is defined by performing the mathematical 

expectation to the state equation presented in Equation (C.1), 

 

  ̂ 
   {  }   {                          } (C.5) 

 

where the operator  { } represents the expected, or mean, value. The expected value 

of a known term is itself. Since the process noise   is a white sequence with zero mean, 

its expected value is zero. 

 

  ̂ 
       ̂             (C.6) 

 

The state estimate errors, each of which are the difference between the actual 

state    and the estimate, are defined in Equation (C.7), 

 

   
      ̂ 

      (      ̂   )                  ̂  (C.7) 

 

The input   does not appear in the a priori estimate error (Equation (C.7)) 

meaning that it does not have an effect on the estimation error as long as it is known. 

Then, an expression for the predicted measurement   ̂  is similarly obtained by 

performing the expectation of the measurement equation Equation (C.2). 

 

  ̂   {   }   {       } (C.8) 
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Since measurement noise has zero mean, the term  {  } vanishes, 

 

  ̂     {  }     ̂ 
  (C.9) 

 

The a priori error covariance     is as follows 

 

   
   {(    ̂ 

 )(    ̂ 
 ) } (C.10) 

 

where     is a positive-definite matrix. The expressions for the plant in Equation (C.1) 

and for the a priori state estimate in Equation (C.6) are plugged into Equation (C.10), 

resulting in the following expression: 

 

  
   {(                                ̂            ) (        

                        ̂            )
 }  

  
   {(    (      ̂   )          ) (    (      ̂   )          )

 } 

 

The process noise is independent of the previous values of either the state or its a 

priori estimate. Therefore, multiplication of the first and forth terms in the last 

expression is zero and multiplication of the second and third terms is zero. 

 

  
   {(    (      ̂   )(      ̂   )

 
    

                
     

 )} 

  
       {(      ̂   )(      ̂   )

 
}    

          {        
 }     

  

 

Using the previous definitions for the a posteriori estimate error  covariance  matrix 

     and for the process noise covariance matrix     , the a priori estimate error  

covariance  matrix     becomes as follows 

 

   
              

                  
  (C.11) 

 

which gives the a priori error covariance as a function of the previous a posteriori value.  

The a posteriori error covariance    is, as follows 
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    {(    ̂ ) (    ̂ )
 } 

    {[    ̂ 
    (      ̂ 

 )][    ̂ 
    (      ̂ 

 )]
 
} 

where    is a positive-definite matrix. The measurement equation (Equation (C.2)) is 

plugged into the last expression, resulting in 

 

    {[    ̂ 
    (           ̂ 

 )][    ̂ 
    (           ̂ 

 )]
 
} 

 

The expression is turned into the following one by the fact that the a priori 

estimation error     is uncorrelated with the measurement noise   ,  {(    ̂  )  }  

 {  
   }   , 

 

    {[(      )(    ̂ 
 )(    ̂ 

 ) (      )
 
       

   
 ]} 

   (      )  {[  
   

  ]} (      )
 
     {    

 }   
  

 

Using the previous definitions for the a priori estimate error covariance matrix     and 

for the measurement noise covariance matrix   , the a posteriori error covariance  

matrix  becomes as follows 

 

    (      )   
  (      )

 
       

  (C.12) 

 

The estimation error increases as the measurement noise increases (see Equation 

(C.12)). This is consistent with the intuition that as the measurement becomes noisy, the 

estimation keeps away from the actual state. 

The heart of the Kalman estimator, the gain   , is determined by optimizing a 

chosen quadratic cost function. In general, a quadratic cost function has a form of 

  ( )  ( ), where  ( ) is the variable to be optimized and   is a symmetric, positive-

definite weighting matrix. For the current problem, the expected value of the squared 

state estimation error is chosen to be minimized with a unity weighting matrix. Hence, 

the cost function to be minimized by chosing the gain    is 
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     {     
 }    (  ) (C.13) 

 

where tr indicates trace of the matrix. The terms along the main diagonal of    are the 

variances of state estimation errors. Here, the aim is to minimize the sum of the terms 

along the main diagonal of   . The trace is minimized due to the fact that individual 

mean-squared errors are minimized when the sum of them is minimized. On the other 

hand, there are various ways for optimization by different choices of cost function 

(Brown & Hwang, 1992). Thus, an estimate is produced in such a manner that the error 

is minimized statistically. Consequently, from Equation (C.12), 

 

 
   
   

 
   (  )

   
 (C.14) 

 

It is obvious that the trace of a matrix is equal to the trace of its transpose. 

Differentiation of the trace is performed by using the following matrix differentiation 

formulas, 

 

   (  )

  
          

   (      
 )

   
 (    

 )  

   (    )

  
           

   (  (     
    

    )  
 )

   
    (     

    
    ) 

(C.15) 

 

where matrix    must be square and matrix   must be symmetric.     is independent 

of the gain   . Equation (C.12) is rearranged as 

 

      
        

    
   

   
      (    

   
    )  

  (C.16) 

 

Differentiation of the trace of    with respect to    results as follows 

 

 
   (  )

   
   (    

 )      (    
   

    ) (C.17) 

 

The expression in Equation (C.17) is set equal to zero and is solved for the optimal gain, 

resulting in 
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 (     
    

    )
   (C.18) 

 

Finally, the optimal Kalman observer gain   , which minimizes the mean-square 

estimation error, is obtained for the discrete-time model. An alternative form of the 

discrete-time gain matrix    is presented in Equation (D.1). 

Additionally, whether the extremum is a minimum or a maximum is determined 

as follows: The second derivative of the cost function should be positive-definite to 

provide the sufficient condition for a minimum. This fact can be formulized by the 

following equation: 

 

 
    (  )

   
    

  (     
    

    )    (C.19) 

 

The extremum obtained by   , which is defined in Equation (C.18) is a 

minimum since     and    are positive-definite (Stengel, 1994). On the hand, the priori 

error covariance     is a positive-definite matrix since     cannot be a negative-definite 

matrix (see Equation (C.10)).    must be positive-definite to guarantee a minimum. In 

order to obtain a compact expression for the a posteriori error covariance   , the gain 

equation (Equation (C.18)) is rearranged as, 

 

     
  (      )  

    
  

 

An expression for posteriori error covariance   , which do not contain the 

variable   , is formed by plugging the expression for    into Equation (C.12), 

 

   (      )   
  (      )

 
     

  (      )  
    

    
  

   (      ) (  
  (      )

 
   

    
    

 ) 

 

Finally, the expression for the a posteriori error covariance    is obtained as, 

 

    (      )   
  (C.20) 
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APPENDIX D 

 

TRANSFORMATION FROM KALMAN OBSERVER TO 

KALMAN-BUCY OBSERVER 

 

Transformation from the Kalman observer (discrete-time formulation) to the 

Kalman-Bucy observer (continuous-time formulation) is just a limiting process as the 

time increment    goes to zero. 

Before starting the derivation, expressions for the process noise covariance 

matrix    and for the measurement noise covariance matrix    in terms of continuous 

variables are required to eliminate the discrete variables in the formulation. 

Additionally, an expression for the Kalman filter gain    containing a single      term is 

required to eliminate the term    during the limiting process. 

First, Equation (C.18) is rearranged to obtain an expression for the Kalman filter 

gain   . The expression should contain a single      term. Therefore, a term of        

is added at the middle of the expression. 
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   (     

    
   

    )   

 

The expression on the right-hand side is taken to the left and the multiplications are 

performed as follows: 

 

   (     
    

   
    )    

    
   

   

       
    

   
         

    
   

   

 

Then, the term    is left on the left-hand-side alone, 
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    (      )   
    

   
   (D.1) 

 

Equation (C.20) is plugged into Equation (D.1), 

 

         
   

   (D.2) 

 

which is the alternative form of the discrete-time Kalman filter gain matrix. 

The process noise covariance matrix is presented in Table 5.2 as, 

 

  {    
 )}     (   ) (D.3) 

 

for discrete-time case and, as, 

 

  { ( )  ( )}   ( ) (   ) (D.4) 

 

for continuous-time case, where    and  ( ) are positive definite covariance matrices. 

  and   are Kronecker and Dirac delta functions, respectively. The expression for the 

discrete-time process noise in Equation (B.5) is as follows 

 

      ∫  (      )
    

  

 ( ) ( )   (D.5) 

 

For vanishingly small values of time increment   , the state transition matrix  (     ) 

tends to the identity matrix. Equation (D.5) turns into Equation (D.6) for  ( ) values 

constant or slowly varying over the time interval. 

 

       (  ) (  )   (D.6) 

 

The covariance of the discrete-time process noise is as, 

 

  {      
   

 )}      {(    
 )}   

          
  (D.7) 

 

Then, Equation (D.5) is plugged into Equation (D.7), 
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} 

 

The above expression is rewritten as a double integral as follows 
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 )}   {∬  (      ) ( ) ( ) 
 ( )  ( )  (      )      

    

  

} 

 

Applying the expectation on the integrand yields, 
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Equation (D.4) is plugged into the last expression, 
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Then, it is integrated over  , 

 

 {      
   

 )}  ∫  (      ) ( ) ( ) 
 ( )  (      )   

    

  

 

 

For very small values of time increment, the state transition matrix  (     ) tends into 

the identity matrix, and the expression becomes as follows for  ( ) values constant or 

slowly varying within the time interval. 

 

  {      
   

 )}   (  ) (  ) 
 (  )   (D.8) 

 

Equations (D.7) and (D.8) are collected together resulting in 
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   (  ) (  ) 

 (  )    (D.9) 

 

The last term in Equation (C.11) will be replaced with its equivalent in Equation 

(D.9). Additionally, an expression for the measurement noise covariance matrix    is 

obtained as follows. The discrete-time measurement can be thought as a short-term 

average of the continuous-time measurement, during which the state is assumed to be 

constant (Bar-Shalom et al., 2001). 
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(D.10) 

 

Comparison of the last expression with the discrete-time measurement equation  

(          ) yields, 

 

  (  )     (D.11) 

 

and the discrete-time and continuous-time measurement noises are related as 

 

    
 

  
∫  ( )   
  

     

 (D.12) 

 

The covariance of the discrete-time measurement noise and the intensity of the 

continuous-time measurement noise are related as follows 
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Integration of the Dirac delta function with respect to    is equal to the Heaviside (unit 

step) function, and the expression becomes 

 

   
 

   
∫  ( )   
  

     

 
 

  
 
 

  
∫  ( )   
  

     

 

 

The value of the last integration divided by    is an average value of the 

continuous function   at the time step   . Finally, the relationship between the 

covariances of the discrete-time measurement noise and the continuous-time 

measurement noise is, as follows 

 

    
 

  
 (  ) (D.13) 

 

So far, expressions, which are required during the derivation of the gain matrix 

and the propagation equation of the state error covariance, have been obtained. 

While transforming from discrete to continuous case, as    goes to zero, there is 

not a distinction between the a priori and a posteriori error covariance matrices       and 

    . Using its alternative form in Equation (D.2), the optimal filter gain takes the form 

in Equation (D.14) in the limit case, 

 

  ( )     
    

{
  
  
}     

    
{
    

   
  

  
}   (D.14) 

 

Equation (D.13) is plugged into Equation (D.14), resulting in 

 

 ( )     
    

{
       

    (  )

  
}  

 

The term    can be replaced by  (  ) by means of Equation (D.11) for the continous-

time case. Finally, 

 

  ( )   ( )  ( )   ( ) (D.15) 
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The same limiting procedure is applied to the covariance difference equation, 

 

    
    

{
  
      

 

  
}  

  ( )

  
  ̇( )  (D.16) 

 

The expression for the a priori error covariance matrix       is recalled from Equation 

(C.11), 

   
              

            
  (D.17) 

 

An expression for the state transition matrix      of the time-varying case is required. 

The expression for   (    ) is referred from Equation (A.5), 
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 ( ) is assumed to be constant over the time interval (    ). This assumption is 

not a contradiction for time-varying systems. The system is still time-varying. 

Additionally, the higher order terms, which contain powers of    equal to or greater 

than two, will vanish during the limiting procedure. Therefore, the corresponding 

integrands in Equation (D.18) are not taken into account. Finally,  (    ) is 

approximated as, for a time-varying system, 

 

  (    )     ( )   (D.19) 

 

The initial step         and the next step      are inserted to the expression, 

 

  (       )   (    )          (    )            (D.20) 

 

Equation (D.17) is referred, 
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The expression (Equation (D.9)) for                is substituted into the last 

equation, 

 

  
  (        )(    

              
 )(        )

 
    (    ) (    ) 

 (    )    

 

The multiplications and limiting procedure are performed. After this, there is not a 

distinction between the a priori and a posteriori error covariance matrices. 
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(D.22) 

 

Equation (D.13) is plugged into Equation (D.2), 

 

                  
    (    ) (D.23) 

 

The term      can be replaced by  (    ) by means of Equation (D.11) for the 

continous-time case. Equation (D.23) is inserted into Equation (D.22). Then, the 

propagation equation of the covariance is formed as follows, namely the matrix Riccati 

differential equation, 

 

  ̇( )   ( ) ( )   ( )  ( )   ( ) ( )  ( )   ( )  ( )   ( ) ( ) ( )  (D.24) 

 

with the initial condition  (  ). 
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APPENDIX E 

 

MATLAB CODE FOR VOD INCLUDING KALMAN-BUCY 

OBSERVER 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                                   Gain Scheduled Control of a VOD by LQG                                             %%%       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%author: Kinay 
%created: january 2010 
%last modified: 27.5.2013 
  
close all; clear; clc; 
  
superstructure %3x3 superstructure 
 
base %base 
  
h1star = ones(dofstar,1); %EQ xdd is applied to all DOFs  
h2star = (1 0 0 0)'; storyD = 1; 
  
eq_; 
  
disp_limit_of_base = 0.03; %m 
f_damper_MAX = 5000; %Newton, max damper force 
c_ = (100:100:1000  1500:500:3000  10000:5000:25000); %VOD’s 
  
passive_min_max_damping 
  
noise_generation 
  
size_initiation 
  
inner_controller_CORE %CORE  
  
disp('simulation STARTS') 
  
c_opti(1) = min(c_); %simulation stars with min c_ 
A_combstar = A_combstar_store(:,:,1); 
C_combstar = C_combstar_store(:,:,1); %capital C: system matrix 
c_combstar = c_combstar_store(:,:,1); %small c: damping matrix 
AbAUG = AbAUG_store(:,:,1); 
CbAUG = CbAUG_store(:,:,1); 
Kb = Kb_store(:,:,1); 
LbAUG = LbAUG_store(:,:,1);  
  
flag = 0; sayt = 0; 
XbAO = zeros(2+2,1); XsOBS = zeros(2*dof,1); XESTI_ = zeros(2*dofstar,1); 
  
for i = 2:length(eq) 
     
    Prhs(:,i) = -Mstar * h1star * eq(i); 
    xhelper0 = xSTATEstar(:,i-1); 
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    (x_, xDot_, xDdot_) = NewmarkLIN(Mstar, Kstar, c_combstar, Prhs(:,i-1:i), dt, xhelper0); 
    xSTATEstar(:,i) = (x_(:,2) ; xDot_(:,2)); xDdotstar(:,i) = xDdot_(:,2); 
     
    xSTATEb = xSTATEstar(1:4:5,:); xSTATEs = (xSTATEstar(2:4,:) ; xSTATEstar(6:8,:)); 
         
    fD(:,i) = -c_opti(i-1) * xSTATEstar(dofstar+1,i); 
    Ymeasured(:,i-1:i) = (xSTATEstar(1:dofstar,i-1:i) + measuNOIS(1:dofstar,i-1:i) ; fD(:,i-1:i) + 
measuNOIS(ns,i-1:i)); 
    YBmeasured = Ymeasured(1:4:5,:); YSmeasured = Ymeasured(2:4,:);  
         
    %Observer of augmented base 
    AbAUG_OBS = AbAUG - LbAUG*CbAUG; 
    BbAUG_OBS = (BbAUG-LbAUG*DbAUG    LbAUG); 
    XbAO = complexanalysis(AbAUG_OBS , BbAUG_OBS , (0 0 ; xSTATEs(1:3:6,i-1:i) ; eqN(i-1:i) ; 
YBmeasured(:,i-1:i)) , XbAO); 
    XbAUG_ESTI(:,i) = XbAO(1:2); 
         
    %Observer of diagonalized superstucture 
    AsOBS = As-Ls*Cssu; 
    BsOBS = (Gs-Ls*Ds    Ls); 
    XsOBS = complexanalysis(AsOBS , BsOBS , (eqN(i-1:i) ;  xSTATEb(:,i-1:i) ; YSmeasured(:,i-1:i)) , 
XsOBS); 
    XsESTI(:,i) = XsOBS; 
     
    XESTI(:,i) = (XbAUG_ESTI(1,i) ; XsESTI(1:3,i) ; XbAUG_ESTI(2,i) ; XsESTI(4:6,i)); 
         
    velocity_correction 
         
    %UPPER CONTROLLER 
    if abs(XbAUG_ESTI(1,i)) < disp_limit_of_base 
        if XbAUG_ESTI(2,i-1) * XbAUG_ESTI(2,i)< 0 
            flag=0; 
        end %if 
         
    else 
        flag=1; 
    end 
             
    flag_1_and_0 
         
    fD(i) = -c_opti(i) * XbAUG_ESTI(2,i); 
         
    restricting_fD 
         
    fD(i) = -c_opti(i) * XbAUG_ESTI(2,i); 
 
    if abs(fD(i)) > f_damper_MAX 
        for jj = 2:length(c_) 
            if c_opti(i) == c_(jj); 
                c_opti(i) = c_(jj-1); 
            end 
        end 
    end 
    fD(i) = -c_opti(i) * XbAUG_ESTI(2,i); 
         
    obtain_A_C_Ab_Cb_cD_Kb_LbAUG 
     
end %end of time loop 
plot_ 
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APPENDIX F 

 

UNFORCED RESPONSE OF SECOND-ORDER 

MECHANICAL SYSTEM 

 

The unforced equation of motion for a SDOF second-order system is formulated 

as follows: 

 

   ̈( )    ̇( )    ( )    (F.1) 

 

A general solution for Equation (F.1) in shape of  ( )      is searched where p is a 

real or complex number (Artem, 2008). The general solution and its derivatives are 

plugged into Equation (F.1), 

 

 (        )       (F.2) 

 

For a nontrivial solution, the first part in Equation (F.2) should be equal to zero since 

the second part cannot be zero. By multiplying this equation by   ⁄ , 

 

    
 

 
  

 

 
   (F.3) 

 

If the damping is assumed to be viscous, then   ⁄      .   is the 

dimensionless damping ratio defined as the fraction of the present damping to the 

critical damping value. The critical damping value is the damping value representing the 

boundary between the under-damped and over-damped cases. Hence, Equation (F.3) 

turns into the following equation since       ⁄ . 

 

            
    (F.4) 

 

The roots of Equation (F.4) are as follows 
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             √ 
    (F.5) 

 

Up to that point, there is not a restriction related with the damping ratio  . For 

over-damped case (   ), the roots of Equation (F.4) are real and distinct, leading to a 

solution as, 

 

  ( )     
(   √    )       

(   √    )    (F.6) 

 

where    and    are constants. The motion decays to a reference zero value without 

oscillations. On the other hand, if     (critically damped case), then the roots of 

Equation (F.4) are real and repeated and the solution becomes 

 

  ( )  (      )  
      (F.7) 

 

The motion is similar to the over-damped case. The critically damped response 

returns to an equilibrium position without performing oscillations and at a faster rate 

compared to the over-damped case. As damping is added to the system, the system 

returns to an equilibrium position slower than the critically damped case. 

Finally, for the under-damped case (   ), the roots of Equation (F.4) become 

complex leading to a oscillatory behavior (coming in conjugate pairs). The response is 

formulated as: 

 

   ( )     
(   √    )       

(   √    )    (F.8) 

 

By plugging the rearrangement in Equation (F.9), 

 

 √     √       (F.9) 

 

Equation (F.8) becomes as follows 

 

  ( )  (   
 √           

  √       )        (F.10) 
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The damped circular frequency is defined as      √     for under-damped 

systems. By plugging this definition into Equation (F.10), the following formula is 

obtained. 

 

  ( )  (   
        

     )        (F.11) 

 

The Euler formula (                   ) is plugged into Equation (F.11) for 

complex exponential term, 

 

 

 ( )  (  (              )    (              ))   
      

 ( )  ((     )         (     )       )   
      

 ( )  (                 )   
       

(F.12) 

 

Finally, the under-damped response  ( ) becomes 

 

  ( )      (     )  
      (F.13) 

 

where   is a constant.   is the phase angle. 

At this point, the sinusoidal term, which leads to the oscillatory behavior, arises 

from the imaginary part of the roots      that only exists in under-damped case. On the 

other hand, the real part determines how fast the response decays acting as an envelope 

curve (Özdemir, 2008). 
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APPENDIX G 

 

FINITE-TIME LINEAR QUADRATIC REGULATOR 

 

The formulation of a steady-state (infinite-horizon) LQR consists of three 

equations: a performance index, its optimum solution (in form of an algebraic Riccati 

equation (ARE)), and a feedback control law that contains the solution of the ARE. In 

this subsection, the aim is to answer the questions below: 

 Does the linearity of LQR arise from the definition of the system ( ̇( )  

  ( )    ( )), or from the definition of the controller ( 

 ( )     ( )) ? 

 How is the state feedback form chosen? Is it supplied by the formulation or does 

it originate from a shape that is assumed at the beginning of the formulation? 

 Why is the cost function chosen as   ̃( )  
 

 
∫ {  ( )  ( )  
 

  

  ( )  ( )}  ? How can it be modified? 

 How is the cost function minimized? What is the Euler-Lagrange equation? 

What is the Hamiltonian function? 

The derivation of LQ-based control algorithms (LQR, LQG, H2/LQG) look like 

an optimization problem rather than a control design due to the minimization of the 

performance index. The necessary condition for a minimum is that the first variation of 

the related function must vanish. Additionally, the minimality of the extremum is 

guaranteed by a positive-definite second variation as a sufficient condition. 

In the literature, the solution of the LQR problem is obtained via the dynamic 

programming or via a variational approach. The dynamic programming states that an 

optimal cost function must get the minimum value of the cost function:    { } ( )
   . 

Hence, the necessary and sufficient conditions for minimality are satisfied 

simultaneously. The dynamic programming solution leads to the Hamilton-Jacobi-

Bellman (HJB) equation (Başar et al., 1998; Anderson & Moore, 1989; Bryson & Ho, 

1975). 

In the variational approach, a certain function is minimized. If this function is 

the Hamiltonian function  [ ( )  ( )  ( )  ]   [ ( )  ( )  ]    ( )[  ( )  

  ( )] for a linear time-invariant system, then the approach is named the minimum 
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principle of Pontryagin (Stengel, 1994). After minimizing the Hamiltonian function, the 

well-known Euler-Lagrange equation is formed. 

In the current study, the variational approach is utilized. An augmented cost 

function   ̃ is minimized instead of the Hamiltonian function. First of all, the inner 

structure of the cost function has to be determined. 

The current optimization problem is to determine a control input   ( ) that 

enforces the system to follow a trajectory   ( ), while minimizing a scalar cost function 

 ( ) subjected to the constraints imposed by the state equation and the defined initial 

state   . The asteriks *
 stands for the optimal case.  ( ) contains the variables that are 

desired to be optimized.  

The aim is to reflect the magnitude of the function  ( ( )  ̇( )  ), which is a 

measure of the cost paid along a trajectory. The area under it may be a convenient 

measure of its cumulative magnitude within a certain time period. For unconstrained 

minimization, the cost of  ( ) on the interval (     ) can be defined as the integral of a 

function reflecting the contribution of the variables to the cost. Here, the derivative  ̇( ) 

is assumed to be continuous for the mathematical necessities during minimization. 

Then, the performance index may take the following form: 

 

  ( )  ∫  [ ( )  ̇( )  ]  
  

  

  

 

with possible boundary conditions.   ( ) minimizes the objective function  ( ). 

If some constraints exist, they can be imposed via the augmented cost function. 

Additionally, if the final state is set free, but it is desired to be penalized via a terminal 

state penalty, then the performance index becomes, 

 

   ̃( )  ∫ { [ ( )  ̇( )  ]    ( )  [ ( )  ̇( )  ]}  
  

  

  ( (  )   ) (G.1) 

 

The constraint is embedded within the function to be minimized by the 

Lagrange multiplier vector  ( ). In the constrained optimization,   ( ) minimizes 

  ̃( ), while satisfying the given boundary conditions and the constraint 

 [ ( )  ̇( )  ]    over the entire interval. Due to mathematical requirements, 

Lagrange multiplier functions are assumed to be continuously differentiable on the 
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interval (     ).  ( (  )   ) is the terminal state penalty term, by which the system is 

forced to be as close as possible to reference zero state at time   . The regulator is 

punished, if it cannot drive the system to zero state at the predefined time   . This is a 

free-final-state and fixed-time constraint optimization problem. 

If the attention is turned into the inner structure of the scalar integrand function 

 [ ( )  ̇( )  ],  a scalar quadratic form as   ( ) ( ) may be a convenient selection, 

otherwise positive and negative terms may cancel each other leading to a completely 

wrong result. In the next steps of minimization, differentiation of the integrand function 

  will be performed and a constant number of 2 will appear in the formulation. A 

constant     is introduced to the cost function in order to get rid of the multiplier 2. 

Otherwise, it would have been carried out throughout the result. For the current 

problem, the cost should reflect the penalty paid in terms of the states, control input, and 

time. The performance index should penalize nonzero states and control inputs. 

Therefore, the variable  ( ) in Equation (G.1) takes the following form: 

 

  ( )  [
 ( )

 ( )
]  

 

If total accelerations are desired to be regulated instead of states, then  ( ) 

should be arranged in a convenient way including  ( ) (Turan & Aydın, 2011). One of 

the fundamental objectives in a control design is to keep the magnitude of the control 

input bounded, or relatively small. Additionally, for a regulator problem, an arbitrary 

nonzero initial state has to be moved to a zero state as fast as possible. Therefore, it may 

be a convenient choice to limit  ( ) during the event by such a cost as 

∫ {  ( ) ( )}  
  
  

 (or ∫ {  ( ) ( )}  ⁄   
  
  

) that represents the accumulated deviation 

of the state from zero state. A weight can be introduced on the states to exhibit the 

relative importance among the states and the control. The designer may desire to pay 

more control input for some of the states that are more important than the others, or vice 

versa. In the current research, the control of the base response is much more crucial than 

those of the story responses since the whole structure can be protected by controlling 

the response of the base. Hence, the function   becomes 

[  ( )   ( )] [
  
  

] [
 ( )
 ( )

]. The zero cross terms in the weighting matrix point out 
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the uncoupled nature of the variables in the current problem. To this end, the cost 

function of the constrained minimization is introduced in a weighted quadratic form as: 

 

 
  ̃( )  

 

 
∫ {  ( )  ( )    ( )  ( )    ( )[  ( )    ( )   ̇( )]}  
  

  

 
 

 
  (  )  (  ) 

(G.2) 

 

for the deterministic control design of a linear time-invariant system 

 

  ̇( )    ( )    ( )           (  )        (G.3) 

 

The weights    , and   are constant vectors for a linear time-invariant system. 

They may be chosen as constant or time dependent in case of a linear time-variant 

system (Başar et al., 1998). 

The weighting matrix   must be symmetric since the cross weights     and    , 

which denote the relationship between the elements    and   , should be identical. 

Similarly,   and   should be symmetric. Additionally, they must be positive-

semidefinite since they represent the weights of the related variables. Distinctively,   

should be strictly positive-definite**. This obligation will appear within the context of 

the sufficient condition for a minimum of the cost function (Zak, 2003). Williams and 

Lawrence (2007) defines the cost function as: 

 “The cost function serves to capture the fundamental design tradeoff between 

the conflicting objectives of regulation performance and control effort.” (p.358). 

Therefore, the relative values of    , and   represent the importance of  ( )  ( ), and 

 (  ) in the control design, respectively. Desired performance specifications are 

imposed on the controlled system response by proper choice of the weighting matrices 

as summarized in Table G.1. 

  

                                                 
** A symmetric matrix is positive-definite, if all its eigenvalues are positive. It is positive-semidefinite, 
if all its eigenvalues are nonnegative. Hence, its smallest eigenvalue can be zero. 



 

230 
 

Table G.1. Performance of the controller 
    Advantage Disadvantage 

High Low Good regulation performance High control energy 

Low High Inadmissible regulation performance Low control energy 

 

According to Table G.1, if   is chosen relatively high compared to  , then the 

contribution of the state to the cost will be higher than that of the control. Thus, the 

system forces itself to decrease the contribution of the states by keeping the states 

relatively small. Vice-versa, if   is selected relatively small compared to  , the states 

will be relatively large. Similarly, as the penalty   on the final state is increased, the 

regulation performance gets better in the sense that the final state gets closer to a zero 

state, and vice versa. In summary, if the weight of any variable is held relatively high, 

then the system will tend to underspend in terms of the related variable. The weights are 

generally determined by a trial-and-success procedure. They are tuned until a 

satisfactory behavior is reached or until the control aims are fulfilled. 

The cost function has already been determined. At the current step, the attention 

is turned into the minimization of the performance index. For a functional   ̃ whose first 

two derivatives are continuous, the fundamental theorem of calculus of variations states 

that for an optimum   ( ) to exist, the (first) variation of   ̃( ) must vanish. Physically, 

this condition indicates that   ̃( ) is insensitive (stationary) to infinitesimal changes 

(variations) in  ( ). In the current formulation, the necessary condition is fulfilled by 

satisfying the Euler-Lagrange equation in Equation (G.4). The sufficient condition for a 

minimum is that the second variation must be a positive-definite matrix for every 

nonzero variation. In the current study, the minimality is guaranteed by utilizing the 

Gateaux variation as described by (Williams & Lawrence, 2007). 

 

   ̃[  ( )   ( )]      

 

The first variation of the integral function  ̃ is performed. Then, integration by 

parts is applied to express the relation only in terms of   ( ) (Naidu, 2003). Finally, the 

following relation is obtained. 
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 ∫ [
  ̃

   
 
 

  
(
  ̃

  ̇ 
)]    ( )   

  

  

     

 

Since   ( ) is arbitrary, the only way for the necessary condition to be satisfied is that 

the coefficient of   ( ) vanishes. This yields the well-known Euler-Lagrange equation 

as, 

 

 
  ̃

   
 
 

  
(
  ̃

  ̇ 
)    (G.4) 

 

within the whole interval. For the current constrained minimization problem where the 

variable is  ( )  [  ( )   ( )]  and the integrand function is as follows 

 

   ̃[ ( )  ̇( )  ]  
 

 
[  ( )  ( )    ( )  ( )]    ( )[  ( )    ( )   ̇( )] (G.5) 

 

The Euler-Lagrange equation yields 

 

 [  ( )    ( )   ( )    ( ) ]  
 

  
[   ( )  ]   

 

in matrix form. The equations are rearranged and transposed, resulting in the following 

formulas: 

 

  ̇( )       ( )    ( ) (G.6) 

  ( )         ( ) (G.7) 

 

At the moment, three equations (Equations (G.3), (G.6), and (G.7)) should be solved 

simultaneously for the LQR problem. They are rearranged in matrix form as below, 

 

 [
 ̇( )

 ̇( )
]  [

        

     
] [
 ( )
 ( )

] (G.8) 

  ( )         ( ) (G.9) 

 

with boundary conditions 
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  (  )               (  )    (  )           (G.10) 

 

The second boundary condition arises from the fact that the variation of the cost 

function vanishes on an optimum trajectory (see (Williams & Lawrence, 2007) for 

details). But, solution of these ordinary differential equations (ODEs) is not guaranteed 

due to the contradiction in the definition of boundary conditions since they are 

introduced at different boundaries. It can be solved by the sweep method assuming that 

the states and the Lagrange multiplier are linearly related by 

 

  ( )   ( ) ( )           (G.11) 

 

(Williams & Lawrence, 2007; Başar et al., 1998; Meirovitch, 1989; Bryson & Ho, 

1975). Hence, an expression for control input in form of state feedback is obtained by 

substituting Equation (G.11) into Equation (G.9) as follows: 

 

  ( )         ( ) ( )    ( ) ( ) (G.12) 

 

where the time varying feedback gain matrix is  ( )        ( ). Minimization of 

the augmented cost function  ̃ yields to a linear feedback law. Chosing a nonquadratic 

cost would not turn out to a linear feedback law (Anderson & Moore, 1989). 

An initial condition  (  ) or a terminal condition  (  ) is required to solve Equation 

(G.8). These can be obtained by the linear relation between the states and the Lagrange 

multiplier in Equation (G.11) at    and    as follows 

 

  (  )   (  )             (  )     

 

The initial condition for  ( ) is known. Then, the ODEs in Equation (G.8) can 

be solved forward in time with  (  )     and  (  )   (  )  . Equation (G.11) is 

differentiated. Then, the first expression in the matrix form of Equation (G.8) is 

substituted into it. Finally, by equating the differentiated form of Equation (G.11) to the 

second expression in the matrix form of Equation (G.8), the following differential 

equation is obtained: 
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   ̇( )     ( )   ( )   ( )       ( )              (  )              (G.13) 

 

This equation is the well-known differential Riccati equation (DRE). The 

solution  ( ) to this equation must be symmetric for the whole interval since its 

boundary condition is defined by a symmetric matrix (Williams & Lawrence, 2007). 
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APPENDIX H 

 

DIAGONALIZATION OF A SQUARE MATRIX 

 

In linear algebra, two matrices   and  ̅              are named similar, if 

an invertible   matrix exists. Here,   is a similarity transformation that is a linear 

change of coordinates. The eigenvalues of a square matrix remain unchanged under a 

similarity transformation since similar matrices have identical characteristic 

polynomials (Juang, 1994). 

The behavior of linear dynamical systems is governed by their eigenvalues and 

eigenvectors. A square matrix   acts on a nonzero vector   by      . If the 

vector magnitude changes while its direction remains constant or reverse, then the 

vector is an eigenvector of the matrix. The factor   that changes the magnitude of the 

eigenvector is the corresponding eigenvalue (Sharma, 2012). Here,   is a linear 

transformation. This case can be visualized in two-dimensional space as in Figure H.1. 

 

 
Figure H.1. The ith eigenvector of the matrix   in two-dimensional space 

(Source: Sharma, 2012) 
 

The standard eigenvalue problem for the nxn matrix   is as, 

 

                          (H.1) 

 

The equations are stacked in a similar manner in (Juang, 1994), 
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  [           ]  [                  ] 

  [                     ]  [            ] [

   
   

 
 
 

   
     

] 
(H.2) 

 

in matrix form, 

 

       (H.3) 

 

where   is the eigenvector matrix. By postmultiplying Equation (H.3) by    , the 

eigendecomposition of the matrix   is obtained as 

 

         (H.4) 

 

Similarly, by premultiplying Equation (H.3) by    , the diagonalized form of the 

matrix   is as follows 

 

         (H.5) 

 

where   contains the eigenvalues of   on the main diagonal (see Equation (H.2-b)). 

For a square matrix  , diagonalization is the operation of performing a 

similarity transformation resulting a diagonal matrix  , in which the eigenvalues of   

are placed on the main diagonal (Williams & Lawrence, 2007). 
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APPENDIX I 

 

SIGNALS AND RELATED SUBJECTS 

 

Signal Construction: 

 

In the present research, signals were constructed numerically. Then, they were 

sampled. In the present subsection, the facts that have to be considered while sampling a 

signal were mentioned. 

If an analog signal is sampled twice at every cycle, then the curve obtained by 

connecting the sample points resembles the continuous signal. There is a risk of 

sampling at zero values, leading to a meaningless case. Therefore, it is a convenient way 

to sample more than twice at every cycle (Bores, 1998). The sampling theorem by 

C.E.Shannon simply states that it is required to sample a signal at a rate at least two 

times greater than its maximum frequency component in order to represent the signal 

correctly (Texas Instruments, 2004). For sure, the resulting signal is much more close to 

the original one as the sampling rate increases.  

 

 
Figure I.1. A signal of 1 Hz is sampled at different frequencies as 2, 3, 4, 10, and 20 Hz 

(The sampled points and reconstructed signals are indicated by dot and 
colored lines, respectively) 

 

In Figure I.1, a signal which represented an analog signal of 1 Hz was sampled 

at different frequencies (2, 3, 4, 10, and 20 Hz). The sampled values were indicated by 
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colored dots. The sampled signals were reconstructed simply by connecting points by 

colored lines. There are various signal reconstruction ways (Lathi, 2010; Proakis & 

Manolakis, 1996). 

In Figure I.1, the full period signal was constructed starting from zero. 

Otherwise, spectral leakage would occur during the FFT transformation and the energy 

would spread out various frequencies instead of a single frequency in the spectral 

domain (see the following lines about spectral leakage). 

According to the sampling theorem, the signal indicated by the bold black line 

had to be sampled at least at 2 Hz which came across zero values for the present case 

(see Figure I.1). Consequently, the sampling frequency was at least 20 times higher than 

the signal frequency. 

 

Fourier Analysis: 

 

The Fourier analysis is based on the Fourier series and Fourier transform. Its 

discretized form is present for digital systems. The main idea is that a function periodic 

in time can be represented as a sum of sinusoids (Ewins, 2000).  

The Fourier transform is a reversible mathematical transformation between the 

time and frequency domains. The discrete Fourier transform is computed via the fast 

Fourier transform (FFT) that utilizes a specific computational algorithm developed for 

faster calculations in the 1960s. The number of data is required to be a power of 2 in 

FFT (Juang, 1994). 

The FFT assumes the signal is periodic and symmetric out of the given range of 

signal. The number of data has to be a power of 2 for FFT. If this is not the case, then 

zero padding symmetrically to both ends of the data set is recommended. But, at this 

point, it is important to note that the frequency content is contaminated by the 

components those come from the sudden drop at both ends of the data set. This 

impulsive effect may add components similar to white noise, and the components that 

do not exist in the signal may appear. Therefore, instead of a sudden drop, a smooth 

transition band to zero value may be applied symmetrically to both ends of the signal.  

In the context of the present thesis, the FFT function was coded within 

MATLAB. The magnitudes of the FFT were obtained from the fft functional of 

MATLAB. The number of data supplied by the fft functional of MATLAB was the 

number of bins. Bins in frequency domain correspond to the samples in time domain. 
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The fft functional of MATLAB gave relative amplitudes of components of the signal. 

The magnitudes in time-domain were calculated by dividing the absolute value of the fft 

functional by half of the number of samples in time or in frequency domains. 

 

Spectral Leakage: 

 

In the context of the present research, the FFT of signals were performed several 

times. Most of these signals were the responses of the systems and the seismic 

excitation in time domain. They were composed of sine waves with various frequencies.  

In the present subsection, the effect of improper simulation of a signal on the frequency 

distribution of the signal was visualized for a pure sine wave. Actually, this fact could 

not be taken into account in the present research since the signals were composed of 

sine waves with various frequencies. 

 

 
Figure I.2. (a) Proper and (b) improper simulation or measurement of the same sine 

wave (Source: Ewins, 2000) 
 

Figure I.2 shows a single sine wave of 1 Hz, which is measured properly and 

improperly. The signal in time- and frequency-domains are presented in Figure I.2(a) 

and (b), respectively. The signal in Figure I.2(a) is measured till the first 4 seconds 

which is a full period. On the other hand, the signal in Figure I.2(b) is measured for 3.5 

seconds. According to Figure I.2(b), when the measurement is performed 

inconveniently, the energy of the signal leaks into a number of frequencies instead of a 

concentrating at a single frequency. The observed phenomenon is known as spectral 

(a) (b) 
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leakage. The Fourier transform assumes that the signal is periodic outside the 

measurement interval. If this is not the case in reality, then discontinuties at the edges of 

the measurement interval occur as indicated by a red circle. 

In the literature, there exist suggestions to prevent or reduce the effect of leakage 

for data acquisition (Ewins, 2000; Bores, 1998). 
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APPENDIX J 

 

MATLAB CODES FOR MRD INCLUDING LQR, SMC, 

H2/LQG, AND FUZZY CONTROLLERS 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                                Response of superstructure is controlled by MRD (LQR)                           %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%author: Kinay 
%created: 2009, updated: 6.2013 
  
close all; clear; clc; 
superstructure %3x3 superstructure 
h1 = ones(dof,1); h2 = (1 0 0)'; storyD = 1;  
EQ_; 
global fMRDmax vMAX stepIN 
fMRDmax = 3000 %max MRD force  N 
vMAX = 2.25; %max applied voltage  V 
stepIN = 100; %chosen, A VERY IMPORTANT CHOICE FOR THE ALGORITHM 
system_; 
size_initiation; 
lqr_; 
 
for i = 2:length(eq) 
        
      P(:,i) = -Mss * h1 * eq(i) - h2 * fMRD(i-1); 
      xhelper0 = xSTATE(:,i-1); 
      (x_, xDot_, xDdot_) = NewmarkLIN(Mss, Kss, css, P(:,i-1:i), dt, xhelper0); 
      xSTATE(:,i) = (x_(:,2) ; xDot_(:,2)); xDdot(:,i) = xDdot_(:,2); 
        
      uC(i) = -Kgain * xSTATE(:,i); 
      v(i) = MODIclippedCONTR(uC(i), fMRD(i-1)); 
        
      (u(i), s(i), y(i), yDot(i), fMRD(i)) = MRDhysteresis(xSTATE(storyD,i-1), xSTATE(dof+storyD,i-1), 
u(i-1), v(i), s(i-1), y(i-1), yDot(i-1)); 
  
end %i 
plot_ 
 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                           Response of superstructure is controlled by MRD (SMC)                               %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%author: Kinay 
%created: 2009, updated: 6.2013 
  
close all; clear; clc; 
superstructure %3x3 superstructure 
h1 = ones(dof,1); h2 = (1 0 0)'; storyD = 1;  
EQ_; 
global fMRDmax vMAX stepIN 
fMRDmax = 3000; vMAX = 2.25; stepIN = 100; 
system_; 
size_initiation; 
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QR_for_SMC 
  
%SMC Continous 
global Psmc  deltabar 
deltabar = 1; Psmc = SMC1(); 
  
for i = 2:length(eq) 
        
      P(:,i) = -Mss * h1 * eq(i) - h2 * fMRD(i-1); 
      xhelper0 = xSTATE(:,i-1); 
      (x_, xDot_, xDdot_) = NewmarkLIN(Mss, Kss, css, P(:,i-1:i), dt, xhelper0); 
      xSTATE(:,i) = (x_(:,2) ; xDot_(:,2)); xDdot(:,i) = xDdot_(:,2); 
        
      uC_ = SMC2(G*eq(i) , xSTATE(:,i)); 
      uC(i) = uC_; 
      v(i) = MODIclippedCONTR(uC(i), fMRD(i-1)); 
        
      (u(i), s(i), y(i), yDot(i), fMRD(i)) = MRDhysteresis(xSTATE(storyD,i-1), xSTATE(dof+storyD,i-1), 
u(i-1), v(i), s(i-1), y(i-1), yDot(i-1)); 
  
end %i 
plot_ 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                         Response of superstructure is controlled by MRD (H2/LQG)                           %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%author: Kinay 
%created: 2011, updated: 6.2013 
  
close all; clear; clc; 
superstructure %3x3 superstructure 
h1 = ones(dof,1); h2 = (1 0 0)'; storyD = 1;  
EQ_; 
global fMRDmax vMAX stepIN 
fMRDmax = 3000; vMAX = 2.25; stepIN = 100; 
h2lqg_ 
  
size_initiation; 
ymeasured = zeros(ns+1,length(eq)); 
xCP = zeros(2*dof,length(eq)); 
  
nois = zeros(ns,length(t)); %noise=0 
 
for i = 2:length(eq) 
        
    P(:,i) = -Mss * h1 * eq(i) - h2 * fMRD(i-1); 
    xhelper0 = xSTATE(:,i-1); 
    (x_, xDot_, xDdot_) = NewmarkLIN(Mss, Kss, css, P(:,i-1:i), dt, xhelper0); 
    xSTATE(:,i) = (x_(:,2) ; xDot_(:,2)); xDdot(:,i) = xDdot_(:,2); 
     
     
    ymeasured(:,i-1:i) = ((eq(i-1:i)) ; xSTATE(1:3,i-1:i) + nois(1:dof,i-1:i) ; (fMRD(i-1:i,:))' + nois(ns,i-
1:i)); 
          
    (uC_ , xCP_) = lsim(ACP , BCP , CCP , DCP, (ymeasured(:,i-1)  ymeasured(:,i))' , (0 dt) , xCP(:,i-1)); 
%h2lqg's optimal control force 
    uC(i) = uC_(2,:); xCP(:,i) = xCP_(2,:); 
    v(i) = MODIclippedCONTR(uC(i), fMRD(i-1)); 
         



 

242 
 

    (u(i), s(i), y(i), yDot(i), fMRD(i)) = MRDhysteresis(xSTATE(storyD,i-1), xSTATE(dof+storyD,i-1), 
u(i-1), v(i), s(i-1), y(i-1), yDot(i-1)); 
  
end %i 
plot_ 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                        Response of superstructure is controlled by MRD (Fuzzy logic controller)                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%author: Kinay 
%created: 2009, updated: 6.2013 
   
% input: first floor's displacement and velocity 
% output: voltage applied to MRD 
% KINAY's membership functions and fuzzy inference rules 
  
close all; clear; clc; 
superstructure %3x3 superstructure 
h1 = ones(dof,1); h2 = (1 0 0)'; storyD = 1; 
EQ_; %includes some details related with fuzzy logic 
 
global fMRDmax vMAX stepIN 
fMRDmax = 3000; vMAX = 2.25; stepIN = 100; 
system_; 
size_initiation; 
 
(xUNCON, xdUNCON, xddUNCON) = NewmarkLIN(Mss, Kss, css, -Mss * h1 * eq, dt); %uncontrolled 
3x3 superstructure 
x1 = xUNCON(1,:); x1 = max(abs(x1)) %1st floor's displacement 
xd1 = xdUNCON(1,:); xd1 = max(abs(xd1)) %1st floor's velocity 
 
disp('ATTENTION: change the boundaries of inputs x1 & xd1 in fuzzy toolbox') 
  
disp('FOR NORMAL STRUCTURE, if they are different than -0.04<x1<0.04 & -0.55<xd1<0.55 for IMP 
eq') 
disp('type fuzzy(''DUZCE_EQ_fuzzy'') or fuzzy(''IMPERIAL_VALLEY_EQ_fuzzy'') on the command 
window to change the boundaries of two input, disp and velo of first floor') 
 
for i = 2:length(eq) 
         
    P(:,i) = -Mss * h1 * eq(i) - h2 * fMRD(i-1); 
    xhelper0 = xSTATE(:,i-1); 
    (x_, xDot_, xDdot_) = NewmarkLIN(Mss, Kss, css, P(:,i-1:i), dt, xhelper0); 
    xSTATE(:,i) = (x_(:,2) ; xDot_(:,2)); xDdot(:,i) = xDdot_(:,2); 
          
    v(i) = evalfis((xSTATE(1,i)  xSTATE(4,i)),fis); %FUZZY CONTROLLER 
         
    (u(i), s(i), y(i), yDot(i), fMRD(i)) = MRDhysteresis(xSTATE(storyD,i-1), xSTATE(dof+storyD,i-1), 
u(i-1), v(i), s(i-1), y(i-1), yDot(i-1)); 
         
end %i 
%surfview(fis) 
plot_  
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