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ABSTRACT

CONTROL OF DYNAMIC SYSTEM BEHAVIOUR BY
MAGNETORHEOLOGICAL AND VARIABLE ORIFICE DAMPERS

Passive and semi-active control devices are widely utilized for response
reduction in civil engineering structures subjected to strong earthquakes. These devices
absorb energy from the system. They do not add energy into the system being
controlled. Therefore, the system stays stable in the sense of bounded-input-bounded-
output stability. In the current study, semi-actively controlled devices were investigated:
magnetorheological dampers (MRDs) and variable orifice dampers (VODs). Various
control schemes were applied to control the seismic response of a three-storey model
structure. Some of these control systems were composed of MRDs applied to the bare
model structure. Some of them consisted of hybrid application of MRD or VOD to the
seismic isolated model structure. The hybrid control, which consisted of passive and
semi-active controllers, was studied in order to benefit from advantages of both
strategies and to compensate for their weak properties. In the simulations, different
controllers were designed depending on the linear quadratic regulator (LQR), sliding
mode control, Ho/LQG, fuzzy logic, and linear quadratic Gaussian (LQG). The
effectiveness of the control algorithms and the usefulness of semi-active dampers for
response reduction were demonstrated through various numerical examples. Kalman-
Bucy filter was designed due to the necessity of an observer in real-world applications
with state feedback control. Additional damping at the base level reduced the base
velocity directly and decreased the base displacement indirectly at the expense of larger
drifts and floor accelerations of the superstructure. The study has shown that the hybrid
control system can prevent or significantly reduce structural damage during a seismic
event even in case of a frequency overlap of excitation and system. Additionally,
vibration response of a truck seat was controlled by three different passive dampers and
the MRD. The passive dampers could effectively reduce the oscillations of the truck
seat. On the other hand, the capacity of the RD-1005-3 MRD was excessive for the

suspension system of the current truck seat.
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OZET

DINAMIK SISTEM DAVRANISININ MAGNETOREOLOJIK VE
DEGISKEN VANA ACIKLIKLI SONUMLEYICILERLE KONTROLU

Giliniimtizde, giiclii depremlere maruz kalan insaat miihendisligi yapilarinin
tepkilerinin indirgenmesinde pasif ve yari-aktif kontrol cihazlarindan genis Olgilide
faydalanilmaktadir. Bu cihazlar sistemden enerji soniimlerler. Kontrol edilen sisteme
enerji eklemezler. Bundan dolay1 sistem smirli-girdi-sinirli-¢ikti kararliligi anlaminda
kararli kalir. Mevcut calismada yari-aktif olarak kontrol edilen magnetoreolojik
soniimleyicilerle (MRD) ve degisken vana aciklikli soniimleyicilerle (VOD) ilgilenildi.
Uc kathi bir model yapmin sismik tepkilerini kontrol etmek icin cesitli kontrol
tasarimlar1 uygulandi. Bu kontrol sistemlerinin bazilar1 ¢iplak model yapiya uygulanan
magnetoreolojik soniimleyicilerden olustu. Bazilar1 da sismik izolasyonlu model yapiya
magnetoreolojik ya da degisken vana agiklikli soniimleyicilerin karma uygulanmasi
seklindeydi. Pasif ve yari-aktif kontrolclilerden olusan karma kontrol, iki stratejinin
avantajlarindan yararlanmak ve zayif o6zelliklerini telafi etmek amaciyla kullanildi.
Simulasyonlarda dogrusal karesel diizenleyici (LQR), kayan kipli kontrol, H,/LQG,
bulanik mantik ve dogrusal karesel Gaussian (LQG) yontemlerine dayanan farkl
kontrolciiler tasarlandi. Kontrol algoritmalarinin etkinligi ve yari-aktif soniimleyicilerin
yanit indirgemedeki kullamishligi gesitli sayisal Orneklerle gosterildi. Durum geri-
beslemeli ger¢ek uygulamalardaki gozlemleyici ihtiyacindan dolayr Kalman-Bucy
filtresi tasarlandi. Zemin seviyesinde ilave soniim, listyapinin kati¢i 6telenmelerinin ve
kat ivmelerinin artmasi pahasina, zemin hizin1 dogrudan ve zemin yerdegistirmesini
dolayl olarak azaltti. Mevcut calisma, tahrik ve sistem frekanslarinin cakistigi bir
sismik olay durumunda dahi, karma kontrol sisteminin yapisal zararlar1 6nleyebildigini
ya da 6nemli Sl¢iide azaltabildigini gdstermistir. Ayrica ii¢ pasif ve bir magnetoreolojik
sonlimleyici ile bir kamyon koltugunun titresimleri kontrol edildi. Pasif soniimleyiciler
kamyon koltugunun salinimlarini basariyla indirgedi. Fakat kullanilan RD-1005-3
magnetoreolojik soniimleyicinin kapasitesi mevcut kamyon koltugunun siispansiyon

sistemi i¢in fazla idi.
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CHAPTER 1

INTRODUCTION

Structural control may be utilized to reduce the amount of energy transferred
into the structure from the ground motion either by using external energy or absorbing a
portion of the seismic energy. There exist passive, semi-active, active, and hybrid
structural control systems (Symans & Kelly, 1999). Dampers decrease the response of
the structure by absorbing some portion of the mechanical energy of the system and
transform it into heat energy.

Semi-active control devices utilized in civil engineering applications are variable
orifice dampers, friction controllable braces, friction controllable isolators, variable
stiffness devices, and controllable fluid dampers that utilize electrorheological or
magnetorheological fluids. Two kinds of semi-active devices are investigated within the
context of the present thesis: magnetorheological dampers (MRDs) and variable orifice
dampers (VODs).

Semi-active control is an innovation that arises after the passive and active
control. The damping properties of passive systems, which are designed to absorb
energy during a ground excitation, are constant. They do not need external energy
sources. On the other hand, passive controllers are not as effective as semi-active,
active, or hybrid ones. Active control strategies, on the other hand, are generally more
effective, but they are disadvantageous as they need large amounts of power while they
are in action, and they may result in instabilities of the controlled structure. Input power
requirements of semi-active control devices are negligible when compared to active
devices. Semi-active devices do not add energy into the system being controlled, This
property makes semi-active control safer and more reliable than active control during a
seismic event, even in case of a power cut. A problem of instability does not occur in
the sense of bounded-input-bounded-output stability. Damping of semi-active devices is
determined due to the force acting to the structure and can be changed at every time
step. The change can be performed by batteries. This fact causes the popularity of semi-

active control devices.



1.1. Overview and Organization of the Thesis

The present research is mainly two folded as the seismic response reduction of
structures by MRDs and VODs, both of which are semiactively controlled devices. The
dissertation is organized as explained in the following lines.

In Chapter 2, the parameters considered in chosing the seismic data for the
simulations are summarized. The effects of near-fault ground exitation is mentioned.
The near-fault strong earthquakes in the world are summarized in a table according to
data obtained from PEER. Finally, the seismic records utilized in the current research
are presented, and the production of synthetic near-fault seismic excitation data is
explained.

Chapter 3 describes the three-storey model structure utilized in the simulations.
The subjects of classically and nonclassically damped systems are discussed. The modal
damping ratios are determined by means of the measurements performed by Turan and
Aydin (2011).

In Chapter 4, the MRD are examined in detail. A literature review on MRDs is
provided. Then, the modified Bouc-Wen model is presented to model the behaviour of
MRDs. The seismic response of the three-storey model structure in Chapter 3 is
controlled by a MRD depending on four different control algorithms: LQR, sliding
mode control, H,/LQG, and fuzzy controller. The results are compared and interpretted.
Additionally, the response control of a hybrid system, which consists of a base isolated
building and an MRD, was calculated to benefit from advantages of both strategies and
to avoid the yielding of isolators. The fundamental period of the structure is lengthened
by adding the base isolator to the bare building. Hence, the structure is affected from the
smaller components of excitation and is protected from the detrimental effects of
earthquake excitation. The advantages of hybrid application of the two control systems
are revealed. The effectiveness of the control algorithm and the usefulness of MRD for
response reduction are demonstrated.

The hybrid control of the model structure including a VOD is performed in
Chapter 5. Related literature on VODs are reviewed. Quite often it is not practical or
possible to measure all the states in real-world applications with full state feedback
control. Therefore, the control scheme is designed, depending on the LQG which

contains a Kalman-Bucy observer. At the beginning of the studies, the observer cannot



predict the responses successfully. Therefore, Kalman and Kalman-Bucy observers are
examined in detail, and some remedies for the observer design are applied: Generally,
the disturbances are not sent to the observer. In structural engineering applications, the
ground excitation can be recorded and sent to the observer in addition to the
measurements during the event. In the present example, the observer is modified by
sending the recorded disturbance. In structural engineering applications, the white noise
prerequisite of Kalman filter is not fulfilled due to the low-frequency character of
ground excitation. Therefore, prewhitening is applied to the base. Hence, the
performance of the observer improves within the range of the earthquake-related
frequencies. Furthermore, the superstructure is diagonalized to obtain independent
subsystems for the observer design. Finally, the observer is designed for the
prewhitened base and diagonalized superstructure separately.

In Chapter 5, the control action is mainly governed by an upper controller. The
required control force is calculated by LQG, and the VOD is directed to perform the
designed control task by gain scheduling control. In the simulations, the system is
excited by four different seismic records, two of which are synthetically produced. The
chapter concludes with subsections in which the simulation results are discussed within
different aspects such as: Damping demand, maximum total shear forces, snesitivity
analysis, performance under arbitrary initial conditions, and comparison the responses
with those of hybrid systems including passive dampers.

Finally, in Chapter 6, vibrations of a truck seat obtained from a BMC
cooperation are controlled by the MRD. The system is excited numerically by a
frequency sweep data to monitor the behaviour of the truck seat within the period range
of 0.1-2 seconds (the human body is sensitive to the vibrations in the frequency range of
the 2-4 Hz).

Important facts utilized within the thesis are presented in the appendices in
detail. Appendix I mainly deals with the signal construction and related subjects in the
simulations. Information about the LQR is provided in Appendix G. The necessary and
sufficient conditions for optimality are discussed briefly. The choice of the weighting
matrices in the LQR is discussed. Additionally, the MATLAB code for the system
including a MRD is provided in Appendix J.

At the beginning of the VOD studies, not being able to design an appropriate
observer has enforced the author to code her own Kalman-Bucy function within

MATLAB, instead of utilizing the Kalman function of MATLAB. Therefore, derivation
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of the Kalman filter is presented in Appendix C. Transformation from the Kalman
observer to the Kalman-Bucy observer is revealed in Appendix B and Appendix D.

The differential equations of the observer of the superstructure have complex
coefficients due to the diagonalization. Therefore, its response is calculated by a
function coded within MATLAB (see Appendix A for the calculation of the forced
response). The details about the diagonalization of the superstructure are displayed in
Appendix H.

The system in Chapter 5 exhibits under- and over-damped responses, depending
on the selection of damping values of the VOD. Therefore, unforced response of a
second-order mechanical system is represented in Appendix F. The MATLAB code for
the system including a VOD and Kalman-Bucy observer is provided in Appendix E.



CHAPTER 2

SEISMIC GROUND EXCITATION DATA

In the context of the thesis, numerical simulations were performed to investigate
the performance of two semi-active dampers as MRD and VOD by different controllers.
The parameters that have to be considered while choosing the seismic excitation record
were summarized in the following lines (Kalkan & Chopra, 2010; Wang et al., 2002;
Katsanos et al., 2010):

1. Magnitude of the earthquake and amplitude of the record

2. Spectrum of the record in frequency domain (should have major components at
periods that civil structures are sensitive)

3. Distance from the causative fault

4. Soil profile both at the site of interest and at the station of record

5. Fault rupture directivity (This criterion is usually not taken into account during
seismic design although excitation components larger in the strike-normal direction
than that in the strike-parallel direction were observed evidently in severe
earthquakes (Wang et al., 2002).).

6. Duration of the record

PEER utilizes three soil classifications for stations of the data: USGS,
Geomatrix 3-letter, Taiwan CWB. The stations of the earthquakes, utilized in the
present research, were classified due to the Geomatrix 3-letter categorization. This
classification is displayed in Table 2.1 where V; is the average shear wave velocity. The
site of the station was classified according to its geotechnical subsurface characteristics.
This classification is similar to that of the USGS (PEER, 2000).

In the simulations of the current research, a general comparison of various
control designs was performed for a model structure. There was not a certain
construction site of interest. In that respect, the seismic data applied to the system had to
have a wide frequency range to excite all of the modes of the structure. Therefore, the
soil profile of the station of the utilized record had a major effect. The soft soil sites
filter out high-frequency components of the ground excitation. On the other hand,

records obtained from stations on stiff sites have wider frequency range compared to the



data of stations at softer regions. This case is shown in Figure 2.1 for the 1999 Kocaeli

earthquake (see Table 2.2 for additional information for stations).

Table 2.1. Geotechnical soil classification according to the geotechnical subsurface
characteristics of the station (Third letter of the Geomatrix 3-letter site

classification) (Source: PEER, 2000)
Class|  Description Detailed description

A Rock Instrument on rock (V; > 600 m/s) or < 5 m of soil over rock

B [Shallow (stiff) soil| Instrument on/in soil profile up to 20 m thick overlying rock

Instrument on/in soil profile at least 20 m thick overlying rock,

C | Deep narrow soil | ‘
in a narrow canyon or valley no more than several km wide

Instrument on/in soil profile at least 20 m thick overlying rock,

D | Deep broad soil .
in a broad valley

E Soft deep soil | Instrument on/in deep soil profile with average V; < 150m/s

Table 2.2. Information about the records of Yarimeca and Izmit stations of 1999 Kocaeli
earthquake (Source: PEER, 2000)

1999 Kocaeli earthquake (M, 7.4)

Station Yarimca [zmit
Component YPT330 (East-West) | 1ZT090 (East-West)
Site profile D A

Distance (km) 26 - 2.6 48 - 48
PGA (g) 0.349 0.220
PGV (cm/s) 62.1 29.8
PGD (cm) 50.97 17.12
Data source KOERI ERD
HP (Hz) 0.07 0.1
LP (Hz) 50.0 30.0

In Table 2.2, Yarimca station was placed on a softer soil site while {zmit station
was located in a rocky region. The distances are the closest to fault rupture, hypocentral,
and the closest to surface projection of rupture (Joyner-Boore distance) in kilometers,
respectively. The angle of the station with respect to the North in degrees appears in the

file name of the data processed and supplied by PEER (Silva, 2013).
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Figure 2.1. EW component records of the Yarimca station and the Izmit station of the
1999 Kocaeli earthquake

The record of the Izmit station, which was placed on a stiffer site, has a wider
effective frequency range than the others. The components of the datum on the rock site
have almost equally-sized magnitudes, whereas the other datum has components of
different magnitudes.

The amplification effect of soft soil sites can be observed in the frequency
domain since the data in time domain is composed of different sine waves with various
frequencies. The ground accelerations recorded at soft soil sites, like Yarimca station,
were amplified compared to those at rock sites. This case can also be shown in time
domain by the examples in Table 2.3 for the 1999 Kocaeli earthquake. The distances are
the closest to fault rupture, hypocentral, and the closest to surface projection of rupture
(Joyner-Boore distance) in kilometers, respectively. The angle of the station with
respect to the North in degrees appears in the file name of the data processed and
supplied by PEER (Silva, 2013).

In Table 2.3, the closest distances to fault rupture of four stations are
approximately similar. If only descending one step in site condition, holding the
distance to fault rupture constant, as in Maslak and Zeytinburnu stations, all peak values
in horizontal directions are duplicated. As the soil profile of the site gets worse, for
instance at Ambarli station, the horizontal components of all peak wvalues are
approximately five times greater than that at Maslak station. The amplification effect of

soft soil on the vertical components is not as tremendous as on the horizontal

7



components. The fact that the soil properties of the sites through which the seismic
waves passed to reach the stations approximately 60 km away from the fault rupture has
great importance on the recorded data. These properties have to be considered while

commenting about the mentioned data sets.

Table 2.3. PGA, PGV, and PGD values of four stations of 1999 Kocaeli earthquake
emphasizing the amplifying effect of softer soil sites (Source: PEER, 2000)

1999 Kocaeli erthquake (M, 7.4)

Station Ambarl Atakoy Zeytinburnu Maslak

Site profile E D D A
Distance (km)| 789 - 789 67.5 - 675 63.1 - 63.1 639 - 639

Component | UP 000 090 | UP 000 090 | UP 000 090 | UP 000 090

PGA(g) |0.08 025 0.18 |0.06 0.11 0.16 [005 0.11 0.11]0.03 0.04 0.04
PGV (cm/s) | 85 40.0 332 | 75 224 162 | 72 185 152 | 57 6.6 6.5
PGD (cm) | 8.85 30.08 2583 | 6.09 23.47 11.59 | 856 1298 182 | 7.24 6.52 9.24
Data source KOERI ITU ITU ITU

Near-field strong ground motions are observed within the diameter of less than
15-20 km from fault rupture (Kalkan et al., 2004). This effect tends to increase the
magnitude of the long-period components (T>1sec) of the acceleration record.
Therefore, it should be taken into account especially for tall or flexible structures, base
isolated buildings, and other structures that are sensitive to long-period seismic
excitations. Otherwise, the structures in a near-fault region would exhibit harsh
nonlinear responses including the possibility of collapse at some parts of the system.

A near-fault ground motion record may contain velocity peaks while having
small peak ground displacements. Some portion of displacements might have been
removed during a standard processing procedure through filtering or baseline correction
(Hall et al., 1995; Kalkan & Kunnath, 2006; Boore, 2001; Boore, 2002). Therefore,
special attention should be applied while processing near-field raw records.

The sensitivity of near-field ground motions to variations in the shaking source
parameters was studied, and inclusion of directivity effects was recommended while
modeling near-fault ground motions (Aagaard et al., 2000). In the literature, different
types of pulses are suggested to generate near-fault motions synthetically (Hall et al.,

1995; Makris, 1997; Kalkan & Kunnath, 2006).



Wang et al. (2002) constituted iso-PGA maps for the 1999 Chi-Chi earthquake,
due to the dense distribution of accelerographs in Twain. The distribution of PGAs in
three components of 441 stations was presented. It is observed that the contour lines lie
along the fault. Their magnitudes decrease as moving away from the fault (see Figure
2.2). Furthermore, it is seen that the ground shaking is effective along the fault rather

than around the epicenter.
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Figure 2.2. Contour maps of PGA in cm/s” from the records of 441 stations of the 1999
Chi-Chi Twain earthquake (Source: Wang et al., 2002)

Chopra and Chintanapakdee (2001) emphasized some important outcomes in
case of a near-fault ground motion. The PGA, PGV, and PGD values of the fault-normal
component are larger than those of the fault-parallel component for near-field motions
(directivity effect). Fault-normal component of a near-fault record displays a long-
period pulse in the acceleration time history. Its effect is seen in the velocity and
displacement series as compatible pulses. This observation is not valid for far-field
records. In most of the near-fault motions, narrower velocity-sensitive regions and
wider acceleration- and displacement-sensitive regions are present in the response
spectrum. Furthermore, the narrower velocity-sensitive regions are shifted to longer
periods. Additional remarks are manifested for inelastic systems.

Two behaviors are observed in near-field records as forward-directivity and
fling-step type strong motions. The direction of rupture propagation relative to the site
is implied as forward-directivity. Fling-step type motion is observed as a unidirectional
large-amplitude velocity pulse and a step-type static permanent displacement history. It

occurs in the strike-parallel direction of strike-slip faults and in the strike-normal



direction of dip-slips faults (see (Kalkan & Kunnath, 2006) for details). Records with
fling effects activate the fundamental mode of the system. If the forward directivity is
dominant without any fling, then higher modes are excited. Therefore, Kalkan and
Kunnath (2006) suggested to utilize acceleration and velocity time histories together
while examining the effects of near-fault records.

Bolt (2008) provides a brief overview of the history of earthquakes and
seismology. The causes and physical properties of seismic activity are explained.
Additionally, he recommends leaving the regions close to or on main faults as
greenbelts after the field observations of the 1999 Chi-Chi Taiwan earthquake.

The data of four stations of the 1999 Kocaeli earthquake are presented in two
graphs of Figure 2.3 to visualize the effect of near-fault records on the amplitude of
high period components. In each graph, one pair of near- and far-field records obtained
from stations with similar soil conditions is plotted. Hence, the comments can be
performed within the content of different soil conditions as stiff soil and softer soil
individually. The closest distance to fault rupture is displayed in the legend of the
graphs. Other details about the data are presented in Table 2.4. The distances are the
closest to fault rupture, hypocentral, and the closest to surface projection of rupture
(Joyner-Boore distance) in kilometers, respectively. The angle of the station with
respect to the North in degrees appears in the file name of the data processed and
supplied by PEER (Silva, 2013). The North-South components of the data were chosen
except for the data from Yarimca station. The closest component to the North-South
direction was chosen for it as YPT060.

The stations were chosen due to the closest distance to fault rupture and its soil
profile. Unfortunately, the distribution of the recorders in Turkey was not as dense as in
Twain to portrait the near-fault effect of earthquakes. For instance, there is not a station
on a soil class of A within the radius of 20-60 km for the 1999 Kocaeli earthquake that
affected the most developed regions of Turkey (PEER, 2000) (Near-field strong ground
motions are observed within the diameter of less than 15-20 km from fault rupture
(Kalkan et al., 2004)). On the other hand, the researchers who investigated the 1999
Chi-Chi Twain earthquake could eliminate the data of some stations among those of 441
stations since the data had defects (Wang et al., 2002).

The soil of the station site gets softer from (a) to (b) in Figure 2.3. For each soil
profile, the components with higher magnitudes in the high period range can be

obviously seen for near-fault records.
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It 1s important to emphasize the fact that most of the seismic record providers
supply the data in N-S, E-W, and vertical directions. However, the components larger in
the strike-normal direction than those in the strike-parallel direction were observed
evidently in severe earthquakes. Therefore, it would be more convenient to supply the
angle between the station and the fault together with the data by the data providers.

Thus, the seismic data can be rotated.

Table 2.4. Information about the stations utilized in Figure 2.3
(Source: PEER, 2000)

1999 Kocaeli erthquake (M, 7.4)

Station Sakarya Goyniik Yarimca [znik
Component SKR090 GYNO090 YPTO060 1ZN090
Site profile B B D D

Distance (km) 3.1 - 3.1 35.5 - 355 2.6 - 2.6 31.8 - 31.8

PGA (g) 0.376 0.119 0.268 0.136
PGV (cm/s) 79.5 10.5 65.7 28.8
PGD (cm) 70.52 3.94 57.01 17.44
Data source ERD ERD KOERI ERD
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Figure 2.3. Near- and far-fault records of 1999 Kocaeli earthquake for stations located
at two different sites in frequency domain (Numbers in the legend are the
closest distance to fault rupture and the JB distance)
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Some near-fault strong earthquakes of which the moment magnitude My, is
greater than 6.5 are presented in Table 2.5. The records with PGA value greater than
0.59 or PGV value greater than 100 cm/s were chosen in horizontal direction (g is the
gravitational acceleration). Some records in 1999 Chi-Chi earthquake have relatively
small PGA values, whose PGV values are greater than 100 cm/s. The distances are the
closest to fault rupture, hypocentral, and the closest to surface projection of rupture
(Joyner-Boore distance) in kilometers, respectively. The stations were chosen according

to any given distances less than 10 km.

Table 2.5. Near-fault strong earthquakes in the world (Mw>6.5, d<10 km, and
(PGA>0.5g or PGV>100cm/s in horizontal direction)) (Source: PEER,

2000)
. Distance Site PGA | PGV | PGD
Earthquake Mch | M, Station
d (km) profile (g) |[(cm/s)| (cm)
Cape Mendocino | RN 7.1 |89005 Cape Mendocino| 85 - - A 1.497 | 127.4 | 41.0
1992/04/25 89156 Petrolia 95 - - D 0.662 | 89.7 | 29.6
CHY028 731 - 731 | Had" [0.821] 67.0 | 233
CHY080 6.95 - 6.79 | USGSB*|0.968 | 107.5 | 18.6
TCUO052 024 - 0.06 Hard | 0.419 | 118.4 | 246.2
TCUO065 098 - 098 Hard | 0.814 | 126.2 | 92.6
TCU067 033 - 033 Hard [ 0.503 | 79.5 | 93.1
Chi-Chi, Taiwan
RN | 7.6 TCU068 1.09 - 05 Hard | 0.566 | 176.6 | 324.1
1999/09/20
TCUO071 494 - 1.01 Hard | 0.655| 69.4 | 49.1
TCUO084 10.39 - 0.01 Hard 1.157 | 114.7 | 31.4
TCU102 1.79 - 1.79 | Medium | 0.298 | 112.4 | 89.2
TCU129 1.18 - 1.18 Hard 1.01 | 60.0 | 50.2
WNT 1.18 - 1.18 Hard | 0.958 | 68.8 | 31.1
Duzce, Turkey ss - Duzce 82 - 82 D 0.535| 83.5 | 51.6
1999/11/12 ' 375 Lamont 375 82 - 82 B 097 | 365 | 5.5
Erzincan, Turkey
SS 6.9 95 Erzincan 20 - - D 0.515| 83.9 | 274
1992/03/13
Gazli, USSR
RN | 6.8 9201 Karakir - 30 - A 0.718 | 71.6 | 23.7
1976/05/17

" Faulting mechanism = RN:Reverse normal, SS:Strike slip, RO:Reverse oblique

" For 1999 Chi-Chi earthquake, the site profile is classified according to the Central Weather Bureau
(CWB) in Taiwan as hard, medium, and soft soil sites.

1 USGS B: Average shear wave velocity to a depth of 30m is 360-750 m/s.

(cont. on next page)
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Table 2.5. (cont.)

5054 Bonds Corner 2.5 - 26 D 0.775 | 459 | 14.9
952 El Centro Array #5 1.0 - 4.0 D 0.519| 469 | 354
942 El Centro Array #6 1.0 - 1.3 D 0.439 | 109.8 | 65.9
Imperial Valley
SS 6.5 |5028 El Centro Array #7| 0.6 - 0.6 D 0.463 | 109.3 | 44.7
1979/10/15
958 El Centro Array #3 3.8 - 38 D 0.602 | 543 | 32.3
6619 SAHOP Casa
11.1 - 84 C 0.506 | 309 | 5.6
Flores
0 KIMA 0.6 - - B 0.821 | 81.3 | 17.7
Kobe
SS 6.9 0 Takarazuka 1.2 - - 0.694 | 853 | 16.8
1995/01/16
0 Takatori 0.3 - - 0.616 | 120.7 | 32.7
Landers
SS 7.3 24 Lucerne 1.1 - - A 0.721 | 97.6 | 70.3
1992/06/28
Loma Prieta RO 69 57007 Corralitos 5.1 - - B 0.644 | 552 | 109
1989/10/18 ' 16 LGPC 6.1 - - A 0.563 | 94.8 | 41.2
Nahanni, Canada
RO 6.8 6097 Site 1 6.0 - - A 1.096 | 46.1 | 14.6
1985/12/23
24279 Newhall - Fire Sta] 7.1 - 45 D 0.59 | 97.2 | 38.1
24514 Sylmar - Olive
6.4 - 36 D 0.843 | 129.6 | 32.7
View Med FF
24436 Tarzana, Cedar
175 - 4.1 B 1.779 | 113.6 | 33.2
Hill
0655 Jensen Filter Plant 6.2 - - D 0.593 | 99.3 | 24.0
Northridge 00000 LA Dam 2.6 - - - 0.511 | 63.7 | 21.2
RN 6.7
1994/01/17 24207 Pacoima Dam
8.0 - 8.1 A 1.585 | 55.7 | 6.1
(upper left)
77 Rinaldi Receiving Sta| 7.1 - - C 0.838 | 166.1 | 28.8
0637 Sepulveda VA 8.9 - 04 D 0.939 | 76.6 | 14.9
74 Sylmar-Converter Sta| 6.2 - 02 D 0.897 | 102.8 | 47.0
75 Sylmar-Converter Sta
6.1 - - D 0.828 | 117.5| 34.2
East
San Fernando
RN 6.6 279 Pacoima Dam 2.8 - - B 1.226 | 112.5| 35.5
1971/02/09
Superstitn Hills(B)
SS 6.7 | 286 Superstition Mtn. 4.3 - - A 0.894 | 422 | 73
1987/11/24
Tabas, Iran
RN 7.4 9101 Tabas - 3.0 - C 0.852 | 121.4 | 94.6
1978/09/16

Table 2.5 indicates that there are PGA values greater than 1.0g in earthquakes
with moment magnitude of 6.6, 6.7, and 6.8 where g is the gravitational acceleration
(1971 San Fernando, 1994 Northridge, 1985 Nahanni). Very large velocity pulses (>1.5

m/s) were observed in some of the near-field strong ground motions in Table 2.5.
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In the present work, the system was excited by two seismic records. These were
the North-South component of the El Centro station of the 1940 Imperial Valley event
and the East-West component of the Bolu station of the 1999 Diizce earthquake (see

Figure 2.4).

Table 2.6. Information about the seismic records utilized in the simulations

(Source: PEER, 2000)

1940 Imperial Valley 1999 Diizce
Date 1940/05/19 1999/11/12
Mechanism Strike slip Strike slip
Moment magnitude (My) 7.0 7.1
Station 117 El Centro Array #9 Bolu
Component ELC180 (North-South) BOLO090 (East-West)
Site profile of station D D
Distance (km) 83 - 120 176 - 17.6
PGA (g) 0.313 0.822
PGV (cm/s) 29.8 62.1
PGD (cm) 13.32 13.55
Data source USGS ERD
HP (Hz) 0.2 0.05
LP (Hz) 15 null

Other details about the records utilized in the present research are presented in
Table 2.6. The raw data provider is displayed as the data source, United States
Geological Survey (USGS) and Earthquake Research Department (ERD) in Turkey.
The processed data were obtained from Pacific Earthquake Engineering Center (PEER).
The mechanism was strike slip (SS) in both earthquakes. The angle of the station with
respect to the North in degrees appears in the file name of the data processed and
supplied by PEER (Silva, 2013). Both stations were located at sites with similar soil
profiles. The distances are the closest to fault rupture, hypocentral, and the closest to
surface projection of rupture (Joyner-Boore distance) in kilometers, respectively. Peak
ground acceleration, velocity, and displacement values are presented respectively where
g is the gravitational acceleration. PGD value is the maximum of the doubly integrated

form of the recorded acceleration time series. The cut-off frequencies of high-pass and
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low-pass filters were indicated by HP and LP in Hertz, respectively. The data set of the
Diizce earthquake was passed through only a high-pass filter. The angle of the station
with respect to the North in degrees appears in the file name of the data processed and
supplied by PEER (Silva, 2013). The data processed by PEER are presented in time-
and frequency-domains for the two seismic events (see Figure 2.4). The two seismic

records were plotted together to compare their possible effects on the responses.
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Figure 2.4. Seismic records in (a) time and (b) frequency domains: N-S component of
the El Centro station of the Imperial Valley earthquake (IMP) & E-W
component of the Bolu station of the Diizce earthquake (DZC)

The Imperial Valley event has a wide frequency range, while the Diizce
earthquake consists of low-valued cycling motion together with a single high peak
shock at time t = 12 s with a value of 0.8g and its neighbor peaks where g is the
gravitational acceleration. The Imperial Valley earthquake affects structures with low
periods more intensely compared to the Diizce event.

Seismic records within 15-20 km of an active faulting system are considered as
near-field strong motion data (Kalkan et al., 2004). In that respect, the two records in
Figure 2.4 can be regarded as near-source data, keeping in mind their difference in
distance (see Table 2.6 for the distances of the stations to the fault). On the other hand,
the stations of these two seismic records are not as close to the fault as the stations in
the 1999 Chi-Chi earthquake, which is a well-known near-fault earthquake (Wang et al.,
2002). Therefore, the seismic data of the Imperial Valley and Diizce earthquakes are
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shifted to the high-period range in frequency spectrum. The author suggests deeper

studies on producing near-fault seismic data synthetically to monitor the effects of fling

step and forward directivity on seismic response of controlled structures, especially

their effects on flexible structures.

In the context of the present work, two seismic data set were produced

synthetically from the Imperial Valley and Diizce earthquakes to investigate the

controller performance for near-fault earthquakes. The procedure of seismic data

production is illustrated in Figure 2.5.

Original data

dt

n

(n— 1)dt

4dt
n
4(n — 1)dt

Data should be interpolated to
the original time increment df

AN

Or, it is more convenient to
interpolate the data to a
smaller time increment for
computional reasons explained
previously

dt
4-1n-1+1
4(n — 1)dt

Or

dt/5
4-5(n—-1)+1
4(n - 1dt

Figure 2.5. Synthetic production of the near-fault excitation data

The original time increment dt was increased four times, hence the data was

shifted to the high-period range in frequency spectrum. At this point, the number of data

remained constant, while the total duration of the data was lengthened. The data become

sparse and was interpolated to a smaller time increment. The details are presented in

Section 4.5.6.1 and Section 5.8.1.
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CHAPTER 3

MODEL SUPERSTRUCTURE

The model superstructure has three stories (Turan & Aydin, 2011). One of its
frames was utilized for calculations. It is a shear frame and is presented in Figure 3.1.
The story stiffnesses were modeled by linear springs. Damping of the model
superstructure was modeled by proportional viscous damping model and was

represented by viscous dashpots.

q3(t)
mq | —>
C3 k3
T
t
2
Cy k2
—Il‘— YW
t
RS
Cq1 kl

0y (0)

Figure 3.1. Model superstructure

Assuming that the controlled building response remains in the linear region, the

equations of motion for the model superstructure was as follows:
Mssqss (t) + Css‘.Iss (t) + K955 (t) = _Msshlssqg (t) . 1)

The subscript ss stands for the superstructure. The displacements of the floors

relative to the ground are presented by the vector
qss(t) = (q:1(1)  q2(1)  qs(8))" (3.2)
The mass and stiffness matrices of the superstructure are as,
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103 0 0
Ms,=|0 100 0 |[kg

0 0 995
156000 —78000 0

—78000 156000 —78000
0 —78000 78000

(3.3)

K = N/m

The determination of the damping matrix Cgg is summarized in Section 3.1.1.
The damping matrix is presented in Equation (3.13). h, __ is the location matrix of the
external excitation. It specifies how the ground excitation G, enters into the system. It is

presented by
h,,=(1 1 DT (3.4)

indicating that the ground excitation acts to all degrees of freedom since the equation of
motion of the system is written with respect to the ground.

The undamped periods and frequencies of the 3-story model structure are
presented in Table 3.1. The slowest mode contributes to the response mostly compared
to the others since it goes on its response while rapid modes have finished their

responses. Therefore, the slowest mode is named the fundamental mode.

Table 3.1. Undamped periods and frequencies of the 3-story model superstructure

Period (s) Undamped frequency Undamped circular
(Hz) frequency (rad/s)
First mode 0.51 1.98 12.43
Second mode 0.18 5.50 34.57
Third mode 0.13 7.97 50.09

The damped and undamped circular frequencies obtained from experiments
done by Turan and Aydin (2011) are displayed in Table 3.2. The undamped circular
frequencies were calculated by means the damped ones.

According to the theory of modeling, the aim of the present research is to
uncover the effectiveness of building control by MRDs and VODs. The reaction forces
of these dampers are highly dependent on the velocity. In order to relate the outcomes

of the present research, the magnitudes of the velocities should be in the same range as

18



typical building-type structures. Therefore, the period of the model structure was
selected to be a typical value of 0.51 seconds and its isolated period as 5.06 seconds
(see Section 4.7.1) (the seismic excitation data was not scaled in time domain). Thus,
the expected velocities and displacements would be identical to a real structure. If the
excitation data had been scaled, then the time increment would have decreased by
square root of the scale factor of the structure, and the seismic data would have been

pushed to the range of the excitation components with low periods.

3.1. Determination of the Damping Matrix

Damping dissipates the mechanical energy of a dynamic system and reduces the
amplitude of its oscillations. Most of the dissipated energy is converted to heat energy.
Unlike the mass and stiffness properties, in most cases, it is impossible to model
damping exactly. There exist different mechanisms of damping (Liang & Lee, 1991;
Inman, 2007):

e The energy dissipation, caused by sliding of two dry surfaces under a normal force,
is generally represented by the Coulomb-friction model.

e In case of frequency-dependent damping, structural (hysteretic) damping model is
convenient.

e The resisting force in the motion of a body through a liquid is proportional to the
velocity of the body and is modeled by the viscous damping model. F = —cqg
where F is the resisting force, and ¢q is the velocity of the body. c¢ is a constant of
proportionality and is named the viscous damping coefficient.

The classical damping is a special case of viscous damping, in which the
damping coefficient is a linear combination of the mass and the stiffness. In other
words, it is proportionally damped (Meirovitch, 1989). In multi-degree-of-freedom
(MDQOF) structures, the damping matrix is assumed to be a classical and a nonclassical
one. Chopra (1995) defines: “Classical damping is an appropriate idealization if
similar damping mechanisms are distributed throughout the structure (e.g., a multistory
building with a similar structural system and structural materials over its height).” (p.
417). He also states that: “The assumption of classical damping is not appropriate if the
system to be analyzed consists of two or more parts with significantly different levels of
damping.” (p. 425).
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On the other hand, a nonproportionally-distributed damping mechanism 1is
observed in structure-soil, structure-fluid, and seismic isolated systems, and in
structures with special energy dissipating devices. The nonclassical damping matrix is
formed by assembling the classical damping matrices of subsystems (see Section 5.4).

If the damping ratios of all modes are known somehow (measured or assumed),
then the damping matrix can be calculated via the modal damping matrix (in
generalized coordinates) whose diagonal elements are 2{;w;m;. Here, {; is the modal
damping ratio, w; is the natural circular frequency, m; is the mass, and i = 1,2, ..n is
the mode number. The damping matrix in physical coordinates is obtained by
performing the inverse of the diagonalization (assuming the system is proportionally
damped).

On the other hand, if only damping ratios of two modes are known, then
Rayleigh damping can be utilized. The damping ratios of other modes are assigned
automatically. Additionally, Caughey damping, which is a more general form of
Rayleigh damping, can be used (Semblat, 1997). These two procedures form classical
damping matrices. Since the mode shapes of undamped and classically-damped systems
are the same, a common mode shape that can diagonalize the mass, damping, and
stiffness matrices of the system simultaneously exists. Hence, n uncoupled equations of
motion can be formed, and the classical modal analysis can be applied. The applicability
of classical modal analysis makes the proportional damping assumption attractive.

On the other hand, for systems with nonclassical damping, the mode shapes of
undamped and damped systems are not the same and there is not a common mode shape
that can diagonalize every term of the equation(s) of motion. Therefore, the equation(s)
of motion cannot be diagonalized and the classical modal analysis cannot be applied
(Chopra, 1995; He & Fu, 2001). Furthermore, in a nonproportionally damped system,
there are phase differences between various parts of the system leading to complex

modes (see Section 5.5.5.2).
3.1.1. Measurement of the Modal Damping Ratio ¢
In an under-damped single-degree-of-freedom (SDOF) system, the damping

ratio can be determined via the drop in the amplitude of the response within one cycle

of vibration (Meirovitch, 2001). This drop is mainly governed by the magnitude of the
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envelope curve e~$"nt of the unforced response of an under-damped system (see
Appendix F). ¢ is the dimensionless modal damping ratio defined as the fraction of the
present damping to the critical damping value, which represents the boundary between
the under-damped and over-damped cases.

For a linear MDOF system, every mode can be disturbed by an displacement
initial condition in the shape of its mode, and the damping ratio corresponding to the
relevant mode can be determined. The unforced responses of an under-damped SDOF

system for two successive peaks are presented in Appendix F, as follows

q(t;) _ Ce™nh1sin(wqty + @)
q(ty) ~ Ce—$wntz sin(wgt, + @)

(3.5)

where t, = t; + Ty. Ty = 2n/wy and wy = wy/1 — {2 are the period and circular
frequency of the damped oscillation, respectively. w,, is the natural circular frequency. ¢
is the damping ratio. C is a constant. ¢ is the phase difference. Then, t, = t; + T, is

plugged into Equation (3.5),

q(t) __ eTtmtsin(wgty + ¢) (3.6)
q(tz)  eonti¥ta) sin(wy(ty + Ta) + ¢) '
results in,
; 2
q(tl) — eqwan : Sln(wdtl + ¢) — ezwnw_Z (3.7)
q(t,) sin(wgt; + 21 + @)
Finally, the logarithmic decrement § is obtained as:
q(ty) ¢
5 =1n =2r— 3.8
q(t2) 1-—22 (3-8)

There is only one restriction for Equation (3.8) as the system is under-damped (¢ < 1).

The damping ratio { can be determined via
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where the damping ratio { is not linearly proportional to the logarithmic decrement §.
Equation (3.9) is valid for under-damped cases.

The superstructure was manufactured in the Structural Laboratory of IYTE Civil
Engineering Department. In the present research, its damping ratios were recalculated
by means of the measurements performed previously by Turan and Aydin (2011). The
damping ratios were calculated via the logarithmic decrement within successive peaks
of the responses. In each case, only the corresponding mode was excited. The maximum
values of the responses could not be determined correctly due to the small damping
values. Different damping ratios were calculated for every couple of successive peaks.
Therefore, a least-squares procedure explained by Meirovitch (2001) was applied. Six
successive peak values were read and their natural logarithms were plotted versus
measurement number. A line was fitted through a least-squares fit. The slope of the line
was negative of the logarithmic decrement §. Six values, which were read from one
measurement, were collected by a line fitting procedure to obtain the viscous damping
ratio of the excited mode. At this point, it should be noted that the fitted resultant
damping ratio was not exactly viscous while the read values were viscous (Meirovitch,
2001).

The damping ratios of the first two modes were calculated as 0.0058 and 0.0038,
respectively. But, the damping ratio of the third mode could not be determined since
relevant measurements were not reliable. Therefore, the damping matrix was composed
via the Rayleigh damping instead of the modal damping matrix whose diagonal
elements are 2{;w;m;.

Ewins (2000) defines the damping mechanism: “The actual damping
mechanisms are usually found in parallel with the stiffness elements (for damping due
to the internal material) or with mass elements (for damping due to friction).” (p.65). In
the light of this opinion, the Rayleigh damping model, which assumes the damping as a
combination of mass- and stiffness-proportional components, is utilized in the present

research. The viscous damping matrix Cg is assumed as

Cis =aMg + K (3.10)
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The subscript SS stands for the superstructure in order not to confuse the matrix K of the

controller with the stiffness matrix of the structure. The damping ratio of the ith mode is

(44 (OF
_a  po
Z(Ui 2

Gi (3.11)

The modal damping factors for the two modes were determined and the proportionality

coefficients a and 8 were calculated via the following formulas:

o= 201w, (w1 — {1w3)
(01?2 — wy?)

g = 2 (Gw1 — (w,)
(02— wy?)

(3.12)

The derivations of Equations (3.11) and (3.12) are presented in Wood (1995).
The undamped circular frequencies were utilized while calculating the proportionality
coefficients a and £ in Equation (3.12). Then, the damping ratio of the third mode was
obtained automatically by Equation (3.11). The calculation of « and  are presented in

Table 3.2.

Table 3.2. Calculation of the proportionality coefficients ¢ and [ of the Rayleigh

damping
Modal damping | Damped circular| Undamped circular 5
a
ratio frequency frequency
(rad/s) (s/rad)
i wg; (rad/s) Wn; (rad/s)
First mode 0.0058 12.0830 12.0832
Second mode 0.0038 34.9066 34.9069 0.1231 | 1.1667-10™
Third mode 48.3322

The damping ratios and damped circular frequencies in rad/s were obtained from
experiments done by Turan and Aydin (2011). The undamped circular frequencies were
calculated by means of the damped circular frequencies. They were very close to the
damped ones due to the very low damping levels. The coefficients ¢ and f were
calculated. The numerical difference in the magnitudes of a and B should be

commented in the content of their units.
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Then, the damping ratio {3 of the third mode was calculated as 0.0041 via
Equation (3.11). Finally, the damping matrix of the superstructure was obtained by the

proportional viscous damping model as

3088 —-9.1 0
Cs = aMy + Ky = [ —9.1 3051 —9.1| Ns/m (3.13)
0 —91 2135

The viscous damping model, in which the resisting force was proportional to the
velocity difference, was assumed. Then, the viscous damping was determined by the
Rayleigh damping model. In this case, it was preferable to express the damping of the
structure with mass- and stiffness-proportional elements in Figure 3.1. Modelling the
damping by a dashpot in Figure 3.1 was prefered due to the assumption of viscous

damping model.
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CHAPTER 4

CONTROL OF SEISMIC RESPONSE WITH
MAGNETORHELOGICAL DAMPERS (MRDs)

4.1. Introduction

Semi-active control devices have been attractive in recent times since they offer
the advantages of passive and active control systems and compensate for weak features
of them. The properties of semi-active control devices can be adjusted in real time. Such
devices do not add energy into the system being controlled. Magnetorheological
dampers (MRDs) are semi-active control devices that utilize MR fluid to produce

controllable damping forces.

Magnetic flux
3-Stage Piston

Thermal Expansion
Accelerator g

MR Fluid

Figure 4.1. Magnetorheological Damper
(Source: Lord Corporation, 2008)

Magnetorheological dampers are utilized in a variety of real world applications
such as semi-active vibration control, sports equipments, and medical prosthesis. MRDs
are widely used in suspension system of heavy military vehicles or in seat suspension
systems of trucks. Hiemenz et al. applied MRDs to helicopter crew seat suspension
system to enhance occupant comfort (2009). In aerospace applications,
magnetorheological dampers exhibit benefits of semi-active control of aeromechanical

instabilities (Wereley et al., 1999).
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The advantages of MRDs are their low power requirements, high yield strength
that allows large force capacity, low viscosity, and stable hysteretic behaviour over a
wide temperature range. MRDs utilizes MR fluid to produce controllable damping
forces (Jung et al., 2002). Jacob Rabinow discovered the MR fluid in 1948-1951 at the
US National Bureau of Standards. Although it has been a long time since MR fluid was
discovered, they have been utilized in engineering applications recently.

The behaviour of magnetorheological dampers are highly nonlinear. Different
phenomenological models exist in the literature for MRDs. In the current work, the
modified Bouc-Wen model proposed by Spencer et.al. is utilized (1997). It is composed
of Bouc-Wen hysteresis, springs, and dashpots to accurately reproduce the MRD
behaviour.

A modified clipped-optimal acceleration feedback control strategy is utilized to
control the MRD. The controller consists of a linear optimal control part and a modified
clipped algorithm. The effectiveness of the control algorithm and the usefulness of
MRDs for response reduction are demonstrated through different numerical examples:
First, a single MRD is excited by sinusoidal displacement. Secondly, a model structure
including a MRD is excited seismically. Finally, a seismically isolated model structure,

which contains a MRD, was controlled.

4.2. Literature Review

Structural control may be utilized to reduce the amount of energy transferred
into the structure from the ground motion either by using external energy or by
absorbing a portion of the seismic energy. There exist passive, semi-active, active, and
hybrid structural control systems (Symans & Kelly, 1999). In that respect, Spencer et al.
(1997) states that: “Semi-active control systems combine the best features of both
approaches, offering the reliability of passive devices, yet maintaining the versatility
and adaptability of fully active systems. According to presently accepted definitions, a
semi-active control device is one that has properties that can be adjusted in real time
but cannot input energy into the system being controlled.” (p.230).

Some advantages of MRDs are their low power requirements, high yield
strength that allows large force capacity, low viscosity, and stable hysteretic behavior

over a wide temperature range (Spencer et al, 1997). The most attractive property of the
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controllable MR fluid is their ability to reversibly change from a free-flowing, linear
viscous fluid to a semi-solid with a controllable yield strength in milliseconds when
exposed to a magnetic field.

In the literature the damping properties of the MRDs were regulated by different
control strategies. Dyke and her co-workers performed acceleration feedback control
strategies based on H,/LQG methods (1996). Spencer et al. tried frequency domain
optimal control strategies by two specific techniques: H, and H. control methods
(1994). Various research groups utilized fuzzy logic to control MRDs (Choi et al., 2004;
Huang et al., 2009; Schurter & Roschke, 2001; Turan & Kinay, 2009; Wilson, 2005).
Dyke and Spencer compared semi-active control strategies for the MRD and concluded
that the performance of the control system is highly dependent on the choice of
algorithm employed (1997). Instantaneous optimal control with velocity and
acceleration feedback was utilized, and additionally the structural stability was
guaranteed by using the Lyapunov approach (Ribakov & Gluck, 2002). Sliding mode
control was also applied to MR dampers (Kinay & Turan, 2009). Yoshida and Dyke
proposed the modified clipped control algorithm, in which the control voltage lies
between 0 and vi.x (2004).

JZ20-2NW offshore platform in Bohai Gulf of China is the first offshore
platform that is controlled by MRDs in the world (Wu et al., 2010). The dynamic
response of the platform against ice and earthquake excitations was tried to be
decreased. The control system design and the full-scale real-time hybrid tests of the
platform were explained in the mentioned study. Due to the limited number of
measurements, a Kalman filter was employed to observe the states from displacement
and acceleration measurements. The accuracy of the state estimate in case of an
unknown external excitation was not as good as the case, in which the excitation mean
value was known. On the contrary, this fact had small effect on the controlled
responses.

The response of MRDs that were attached to a three dimensional model
structure was investigated by Turan and Kinay (2009). The model structure was excited
individually by two horizontal components of the Bolu station of the 1999 Diizce
earthquake. The effectiveness of MRDs to control vibrations of three dimensional
structures were demonstrated through numerical examples. The floor responses were
bounded to the response of a certain node at every story of the superstructure. Four

MRDs were attached between the ground and the first floor. The displacement of each

27



damper was independent of each other. Therefore, their responses were treated
separately in the code. The total acceleration values of the first floor were not reduced
significantly by the MRDs. This fact may have been due to the existence of the dampers
at the first floor level. On the other hand, the absolute acceleration values of the second
and third floors provided more correct information with the behavior of the structure
since the absolute accelerations of the first floor contained not only the structure’s
accelerations but also accelerations coming from the damping forces of the MRDs.
Acceptable reductions in maximum values of the responses were observed. After the
first 8 seconds, the controlled response became very small compared to the uncontrolled
one. On the other hand, the improvements in the maximum values of the total

accelerations were not as good as those of displacements.

4.3. Magnetorheological Dampers

MRDs are widely utilized as supplemental damping strategies for response
reduction in civil engineering structures subjected to strong earthquakes and severe
winds. They are controllable fluid dampers, which utilize magnetorheological (MR)
fluids.

MR fluid is suspension of micron-sized, magnetizable particles randomly
dispersed in a carrier medium such as mineral or silicon oil. In the absence of a
magnetic field, MR fluid is free-flowing, linear viscous fluids (similar to motor oil). The
iron particles form linear chains parallel to the field when exposed to a magnetic field

and become a semi-solid behaving as a viscoplastic material.
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Figure 4.2. Iron particles in a carrier medium (The arrows indicate the magnetic field
direction) (Source: Lord Corporation, 2008)
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In Figure 4.2(a) the arrangement of iron particles is shown in the absence of a
magnetic field. In Figure 4.2(b) and (c) the change of arrangement is presented by
increasing the magnetic field. The transition occurs within milliseconds depending on
the magnitude of the applied magnetic field. This feature provides the opportunity of
construction of devices with high bandwidth.

Semi-active control devices have very low power requirements. This property is
very important during seismic events when the main power source to the structure fails.
MR fluid can be controlled with a low voltage of ~12-24 Volts, current-driven power
supply outputting only ~1-2 ampers. The yield strength of modern MR fluid is at a level
of 80 kPa. This feature allows generating high forces which is desired in full-scale
applications.

The rise time from 10% to 90% of the final value for the MRD force is a few
milliseconds. Some part of this time lag is spent to reach rheological equilibrium of the
MR fluid, and the remaining part is associated with the electromagnet’s dynamics. A
very small time step is required in numerical simulations to reproduce the MRD
behaviour correctly.

MR fluid can work over a wide range of operating conditions. Its yield stress
varies slightly at temperatures from —40 to 150°C. Additionally, MR fluid is insensitive
to impurities, and different additives can be chosen to improve its properties. The
additives are utilized to provide homogeneity or to prevent gravitational settling and
wear. A small amount of separation between the particle and the carrier fluid occur

under common flow conditions.

Accumulator Coil Piston Head

\
2\

/MENN k

Diaphragm Wires

Bearing & Seal

Figure 4.3. Longitudinal cross-section of MRD
(Source: Dyke et.al., 1996)
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A fixed orifice damper filled with MR fluid is presented in Figure 4.3. The input
voltage is applied to the wires to the electromagnet. The desired magnetic field is
generated by a small electromagnet in the piston head. The coil is placed near the orifice
on the piston head. The armature output voltage v, in Equations (4.5) and (4.6) occurs
on the coil.

An accumulator is placed in the damper in order to prevent cavitation in the
fluid during normal operation. Additionally it corresponds to the volume of fluid
displaced by the piston rod in the opposite cell and the thermal expansion of the fluid. It
consists of a bladder within the main cylinder, which is filled with pressurized gas (see
Figure 4.3).

The iron particles in the MR fluid are randomly dispersed in a carrier medium as
seen in Figure 4.2. If zero voltage is applied, then magnetic field does not occur, and the
MRD behaves as a viscous device. The force-displacement curve is nearly elliptical,
and the force-velocity curve is almost linear (see Figure 4.5-Figure 4.7). As the applied
voltage increases (or as the current increases), a magnetic field increases by means of
the coil, and the force required to yield the fluid increases. MR fluid’s behaviour turns
into a plastic material in parallel with a viscous damper (Bingham plastic behaviour).
The damping force of the MRD is related with the velocity of the fluid while passing
along the orifice. As the current increases, iron particles form chains, and the passing
velocity decreases. When the iron particles form complete linear chains parallel to the
field, the magnetic field may increase, but the fluid flow around the iron particles does
not further slow down. An increase in the applied voltage does not affect the passing
velocity anymore and the iron particles become stable. Consequently, the damping force
of the MRD does not increase anymore. This situation is refered as the saturation of the
magnetic field in the MRD. A chain denser than the one in the saturated case can not be
obtained. The saturation voltage is the maximum voltage used in the clipped control

algorithm.
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4.3.1. Modified Bouc-Wen Model for MRDs

Magnetorheological dampers are highly nonlinear devices. A mechanical model
proposed for a MRD should effectively portray its nonlinear character. Various
phenomenological models have been proposed during the development period of
behavior model for MR dampers due to their highly nonlinear behaviour.

The Bingham viscoplastic model and a model which is an extension of the
Bingham model have been utilized at the beginning of the development of rheological
behaviour model for MRDs. As time passed the Bouc-Wen hysteresis model became
widely accepted for MRDs. It could exhibit a wide range of hysteretic behaviours.
Afterwards, the modified Bouc-Wen hysteresis model was proposed (Yang et al., 2002).
This new model could predict the damper response better in the region where the
acceleration and velocity have opposite signs, and the magnitude of the velocities are
small. Jimenez and Alvarez-Icaza presented the improved LuGre friction model (2005).
Yang et.al. (2009) improved the model parameters of the improved LuGre friction
model by the gradient-based optimization method and by the least square technique.

In the numerical simulations of the present research, the modifed Bouc-Wen
model was utilized, which was proposed by Spencer et al. (1997). It is composed of
Bouc-Wen hysteresis, springs, and dashpots to accurately reproduce the MRD behavior.
The Bouc-Wen hysteresis model is numerically tractable and can exhibit a wide variety

of hysteretic behaviour.
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Figure 4.4. Modified Bouc-Wen model
(Source: Spencer et.al., 1997)
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The damping force of the MRD in Figure 4.4 can be calculated from the lower section

as,

furp = 1y + k1(x — %) 4.1)

The same force can be calculated from the upper section as follows

furp = as + co(Xx —y) + ko(x —y) + ki (x — xp) 4.2)

Solving the two expressions for y results in

) 1 .
y = ot [as + cox + ko(x — )] (4.3)

The evolutionary variable s of the Bouc-Wen model is governed by

$ = —ylx = yllslis|"™* = B(x = PIs|* + AGt — ¥) (4.4)

where k; is the accumulator stiffness, and x, is the initial displacement of spring k;
associated with the nominal damper force due to the accumulator. The viscous damping
observed at high velocities and the viscous damping for the force roll-of at low speeds
are represented by ¢, and ¢y, respectively. k; is the stiffness at high velocities. x is the
external excitation. y is the internal variable of the Bouc-Wen model. n is the shaping
parameter of the hysteresis.

The role of the accumulator inside the damper is two folded. First, it accounts
for the fluid volume change due to the displacement of the piston rod. Second, it allows
volumetric changes of the fluid due to change in temperature. The accumulator in the
damper behaves like a spring. Therefore, the spring k; is placed in parallel due to the
presence of accumulator. The difference between the areas of the piston’s both sides,
which is due to the presence of piston rod, cause a difference in pressures on the areas.
This is modeled by a constant value of an initial displacement x, of the spring k; .

The values of the characteristic parameters of the model are presented in Table
4.1. The linearity in the unloading region of the force versus velocity graph and the

smoothness of the transition from the pre-yield region to the post-yield region can be
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controlled by adjusting the characteristic parameters y,[,and A. The appropriate
parameters for the analytical model were obtained by a constrained nonlinear
optimization (Spencer et al., 1997). At this point, the aim was to determine parameters
for a wide range of operating conditions.

In order to control the model structure’s seismic response, the properties of the
MRD were varied by the magnetic field. This was performed by applying a voltage to
the armature circuit. The MRD is governed by the applied voltage. The parameter a of
the Bouc-Wen model and the viscous damping coefficients ¢, and c¢; are determined for
both cases of constant magnetic field and fluctuating magnetic field (i.e. constant and
varying applied voltage). The yield stress of the MR fluid depend on the magnetic field
strength, therefore the parameter a is assumed to be directly proportional with the
applied voltage. According to Figure 4.5-Figure 4.7, the steady-state yield level varies
linearly with the applied voltage and have a nonzero initial value when zero voltage is
applied. The reasons of this nonzero initial value are the facts that the fluid is designed
in order to have a small yield strength at zero field for stability against gravitational
settling and the friction in the piston rod seal. Therefore, the functional dependence of
the parameters to the applied voltage presented in Equation (4.5) was proposed by

Spencer et. al.:

0((1{4) =g+ apvy
co(Va) = Coq + CopVa 4.5)

c1(Va) = C1q + C1pVy

v, is the armature voltage. It is not possible to measure the armature output voltage v,.
Therefore, the dynamics of the MR fluid reaching rheological equilibrium are modeled

by a first order low-pass filter presented by

vy = —N(vy = v) (4.6)

where v is the input voltage sent to the current driver. The mechanical model proposed
by Spencer et al. (1997) gives the closest responses to those in the experiments
performed within their research. Therefore, the parameters determined by Spencer et al.

(1997) were utilized in the response calculations of the MRD (see Table 4.1).
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Table 4.1. Parameters for the modified Bouc-Wen model
(Source: Spencer et al., 1997)

Parameter Value Parameter Value
Coa 2100 Ns/m a, 14000 N/m
Cop 350 Ns/m-V ap 69500 N-V/m
Cia 28300 Ns/m y 3630000 m™
C1p 295 Ns/m-V B 3630000 m™
ko 4690 N/m A 301
ky 500 N/m n 2
X, 0.143 m n 190 sec™!

4.3.2. MRD Response to Sinusoidal Excitations for Various Applied

Voltage Levels

Numerical results of an individual MRD excited by sinusoidal displacement are
presented in Figure 4.5-Figure 4.7 for decreasing excitation frequencies. The magnitude
was held constant in three excitation cases as the excitation frequencies varied (5 Hz, 1
Hz, and 0.5 Hz). In a loading case, four different constant voltage levels were applied.
All the simulations were performed for three full cycle depending on the excitation
frequency.

The value of time step increment is a very important issue for the calculations of
the MRD response. A large time step causes wrong results, whereas a very small time
step results in excessive calculation time. The MRD responses gave results similar to
the experimental ones when the simulations run with a maximum time increment of 10™*
seconds (the experimental responses were obtained from the results of the research
done by Spencer et al. (1997)). Time step values smaller than this value yield responses
similar to the experimental ones, but increased the computational time unnecessarily. If
the time step had been chosen greater than 10™ seconds, then the shape of responses
completely would have changed.

On the other hand, the other parts of the calculations did not required such a
small time increment value (These parts were the calculation of the responses of the

structure via the Newmark’s linear numerical integration method and the calculation of
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the control force via various control methods). Therefore, an inner loop was designed to
simulate the response of the MRD at a rate 100 times faster than that of the simulation.
An outer loop, in which the responses of the structure were calculated, was run at a rate
supplied by the seismic record or by the synthetic seismic excitation.

In the present subsection, a time increment of 0.002 seconds was chosen to
coincide with the time increment in the earthquake simulations of the present reasearch.
The MRD calculations were run at a rate 100 times faster than that of the simulation.
The resultant time increment value for the MRD calculations was 2-10” seconds that

was smaller than the limit value (10 seconds).
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Figure 4.5. The responses of the MRD to a 5 Hz sinusoidal excitation with an amplitude
of 0.01 meters for various applied voltage levels
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The force versus displacement loops in Figure 4.5-Figure 4.7 progressed in
clockwise direction along the path with increasing time. On the other hand, the force
versus velocity loops in Figure 4.5-Figure 4.7 progressed in counter-clockwise direction
along the path with increasing time.

The accumulator in the MRD was responsible of the nonzero mean force
provided by the damper in Figure 4.5(a), Figure 4.6(a), and Figure 4.7(a). It caused an
offset in the measured damper force and a small widening of the force-displacement

curve and the force-velocity curve through a certain direction of force.
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Figure 4.6. The responses of the MRD to a 1 Hz sinusoidal excitation with an amplitude
of 0.01 meters for various applied voltage levels
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According to the force-velocity curve in Figure 4.5(b), as the command voltage
was increased, the maximum damping force of the MRD also increased, and the length
of the pre-yield region increased compared to the length of the post-yield region in the
force versus velocity loop. This indicates that the yield value increases as the command
voltage is increased. The response of the MRD to a 1Hertz sinusoidal displacement is
presented in Figure 4.6 for four constant applied voltage levels. Then, the response of
the MRD to a 0.5 Hertz sinusoidal displacement is presented in Figure 4.7 for four

constant applied voltage levels.
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Figure 4.7. The responses of the MRD to a 0.5 Hz sinusoidal excitation with an
amplitude of 0.01 meters for various applied voltage levels
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As the frequency decreases, which is the case in Figure 4.7, the force versus
displacement loop gets the shape of a circle and the force versus velocity curve
converges to the elastic case (see the response indicated by blue line in Figure 4.7(b)).

The maximum absolute values of the MRD force are presented in Table 4.2
which corresponds to the applied voltages for three different excitation frequencies. In
Table 4.2, one of the voltage values is 2.25 Volts. The results related with this voltage

value are presented since it is the maximum allowable voltage value.

Table 4.2. Maximum damping force values of the MRD

Excitation frequency (Hz) Applied voltage (V) Maximum MRD force (N)
0.5 0 226
1 619
2.25 981
5 1007
10 1053
50 1424
1 0 282
698
2.25 1208
1942
10 2035
50 2776
5 0 768
1271
2.25 1885
3187
10 5409
50 13596

In all of MRD simulations of the current thesis, a conditional loop was present to
limit the maximum MRD force by 3000 Newtons if a force value greater than 3000
Newtons was calculated in the MRD functional coded within MATLAB. This
conditional loop was removed only for calculations performed for Table 4.2. This case
changed only the last three rows of Table 4.2.

According to Table 4.2, as the applied voltage increases, saturation of magnetic
field and the upper limit of MRD force can not be observed. The maximum allowable

force level of the MRD can not be reached with the maximum allowable voltage level
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for tested frequencies and magnitudes of excitations (max|fygp|l =3000N in
Equation (4.1)-(4.2) and max|v| = 2.25V in Equation (4.6)). This case can be
observed in the rows of the 2.25 Volts for three different excitation frequencies in Table
4.2.

Consequently, the time step increment mainly influenced the responses of the
MRD. In the simulations, two different loops were utilized as inner and outer loops to
calculate the responses faster instead of carrying out the calculations within a single
loop. Besides, the modified Bouc-Wen model did not reflect saturation of the magnetic
field. In the simulations, the MRD force was limited out of the MRD function coded
within MATLAB.

4.4. Control of the Seismic Response by MRDs
Different control strategies can be utilized in order to find the control forces
required for enhanced structural behaviour. In the optimal control algorithm, control

signals that will cause the system to satisfy some physical constraints, and at the same

time maximize or minimize a chosen cost function are determined.

X yl
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Damper Structure |
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Modified Clipped < » Optimal
Algorithm <« Control ¢
Control Law

Figure 4.8. Block diagram of the semi-active control system
(Source: Dyke et.al., 1996)

In the present study, the controller consisted of two stages: a linear optimal
control part and a modified clipped algorithm. The required control force u was
calculated by the optimal controller. Then, the voltage to be applied was determined by

the modified clipped algorithm by compared the required control force u and the
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damper force fyzp of the previous time step. The block diagram representation of the

system is presented in Figure 4.8.

4.4.1. Modified Clipped Algorithm

The magnetic field in the damper is set to develop damping forces that are equal
to those obtained by the optimal control. This is performed by a clipped controller. The
output of the feedback block in the block diagram representation in Figure 4.8 is
determined by the modified clipped control algorithm.

The MRD is driven by the magnetic field around it, hence it is driven by the
voltage applied to the electromagnet. In order to obtain the desired forces by the MRD,
the voltage to be applied is set by a clipped algorithm. When the MRD generates the
desired control force (u = fygp), the voltage v should be kept at the present level. If
damper force’s magnitude is smaller than the desired control force’s magnitude, and
both forces have the same sign, then maximum voltage should be applied in order to
increase the MRD force and to approach the desired control force level. Otherwise, zero
voltage should be sent. The algorithm explained above is graphically presented in

Figure 4.9, and is stated as

V = Vpmax H{W — furp) furo} 4.7

where v is the applied voltage, V4, is the maximum voltage, and H{ } is the
Heaviside step function. There is an upper limit of the damping force of the MRD. The
upper limit is related with saturation of the magnetic field in the MRD. If the MR fluid
saturates, then an increase in the applied voltage will not cause an increase in the

damper force. The voltage related with this force upper limit is the maximum voltage.
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UV = Vrer

Figure 4.9. Graphical representation of modified clipped control algorithm
(Source: Dyke et.al., 1996)

In the clipped control strategy, the command voltage is either zero or maximum.
During the simulations it is seen that MRD reaches the maximum force level lots of
times even if that amount of force is too much for such a kind of system. Thus, the
MRD works in a higher force capacity range than the required force capacity. In order
to avoid the damper to work at higher force levels, the voltage value is proportioned
according to the calculated control force in the modified control algorithm (Yoshida &
Dyke, 2004; Yuen et al., 2007). The control voltage can take values between zero and
the maximum voltage. In the simulations of Section 4.5, the damper started to work at
lower force values and never reached the maximum force level, after the modified
clipped algorithm was started to be utilized. The modified clipped algorithm is stated as

follows

U = Vpef H{(u — furo) furp} (4.8)

u
S <
max(furp). " for lul < max(furo)

Vref = 4.9)

Umax» fOT Iul > max(fMRD)

where v is the applied voltage. v,,,, 1s the maximum voltage. u is the desired control
force. fyrp is the damping force of the MRD. max(fygp) is the maximum force
capacity of MRD. The graphical representation of Equation (4.9) is presented in Figure
4.10.
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Figure 4.10. Graphical representation of the modified clipped control algorithm

In Figure 4.10, the maximum voltage and the maximum damper force are
limited. The applied voltage v is determined according to the desired control force u.
After application of the voltage v, the damper force fygp can be measured or calculated

numerically according to the velocity difference on the damper at the current step.

4.5. Control of the Seismic Response of the Model Superstructure by a
MRD

In the present subsection, the seismic response of the three-storey model
structure was controlled by four different controllers depending on the LQR, SMC,
H,/LQG, and fuzzy logic. The system was excited by the data of the Imperial Valley
event presented in Figure 2.4. The MRD was attached between the ground and the first
floor of the model structure in Figure 3.1. The model structure including the MRD is

presented in Figure 4.11.

4.5.1. Model Superstructure Including a MRD

The seismic response of the three-storey single-frame model superstructure in

Chapter 3 was controlled by a MRD attached between the ground and the first floor.
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Figure 4.11. Model superstructure including a MRD

The equations of motion for the model superstructure presented by Equation

(3.1) was modified for the MRD, as follows

Msséss(t) + [CSSqSS(t) + hZSSfMRD(t)] + Kssqss(t) = _Msshlsséig(t) (4-10)

The subscript Ss stands for the superstructure. The displacement vector of the structure
is qs(t) = (q1(t) q2(t) q3(t))T. Similarly, the velocity vector of the structure is
Qss(t) = (G1(t)  G2(t) q3(t))T. The definitions of the variables are presented in
Chapter 3. fygp 1s the damping force of the controlled damper. The damper force is
assumed as an internal damping. But, for simplicity of presentation and simulation, it is
taken from the left-hand-side of the equation of motion to the right-hand-side, as

follows

Mssqss(t) + Cssqss(t) + Kssqss(t) = _Msshlssqg (t) - hZSSfMRD(t) (4-1 1)

h; . is the location matrix of the control force. It specifies how the control force fygp

enters into the system. It is presented by
h,,=(1 0 0) (4.12)

indicating that the damping force is present only at the level of the first floor.
In the state-space form of the equations of motion of the model structure, the

states x4, (t) were chosen as the displacements and velocities of the floors relative to the
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ground as X (t) = (qss(t) qss(t))T. All the states and the damper force were

assumed to be sensed for full state feedback. The process equation is as follows
A""SS (t) = ASSxSS (t) + GSSWSS (t) + BSSuSS (t) (413)
where

|

A —[ 0
ss _Mss_les _Mss_lcss

G, = [_ ,?1”] (4.14)

_ 0
Bss B [_MSS_thSs]

U (t) is the control input. wge(t) is the disturbance. Ay is the state matrix. G4 is the
disturbance vector. By, is the control input vector. The definitions of the other variables

are presented in Chapter 3.
4.5.2. Steady-State (Infinite-Horizon) Linear Quadratic Regulator

The fundamental aim of the current research is to reduce vibrations of a system
during an excitation (ground excitation, mechanical shaking etc.). In other words, the
aim is to enforce the system to be as close as possible to an equilibrium state. This task
can be performed via a control input. But if a great amount of control effort is spent
within in a long time, then this won’t be a convenient engineering solution. There
should be a balance between the control input amount, the system states, and the time
passed, which then leads to an optimum solution. In that respect, Bryson and Ho (1975)
defines a regulator as a feedback controller, which forces a stationary system to locate
in a reasonable vicinity of a reference zero by spending an addmissable amount of
control effort.

For a linear regulator, the control input is a linear function of the state vector
(Meirovitch, 1989). For an optimal solution, a certain objective function in terms of
states, control input, and time passed should be minimized. If the cost function is

quadratic, then the problem turns into a linear quadratic regulator (LQR). Its solution
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can be obtained via the dynamic programming or via a variational approach. The
formulation of the LQR is presented in Appendix G. As time passes, the LQR problem
turns into a steady-state (infinite-horizon) LQR design. The derivation of LQ-based
control algorithms (LQR, LQG, H,/LQG) look like an optimization problem rather than
a control design due to the minimization of the performance index.

The constraint cost function in Equation (G.2) is minimized in the finite-horizon
LQR design, resulting in the differential Riccati equation (DRE) (see Equation (G.13)).
As time tends to infinity, the solution P(t) to the DRE converges to a finite constant
value P (lim;_ P(t) = P). The differential term P(t) vanishes, and the DRE becomes
an algebraic Riccati equation (ARE) as below

0=A"P+ PA-PBR'B"P+Q (4.15)
The state feedback gain K(t) = R~*BT P(t) becomes time-invariant as follows
K =R 'B"P (4.16)
The optimal state trajectory x*(t) can be obtained via the closed loop state equation as
x*(t) = [A— BR™'BTP]x*(t) x(ty) = x, (4.17)

As the final time goes to infinity, the system converges to a steady-state equilibrium
state. The terminal penalty term in the constrained cost function disappears since the

state vector goes to zero as t — 0. The constrained performance index becomes
~ 1>
J(@ = > {xT®)Qx() + u" (O)Ru(t) + A7 (6)[Ax(¢) + Bu(t) — x(t)]}dt (4.18)
to

The free-final-state and fixed-time optimization problem for the finite-horizon
case turns into a zero-final-state and infinite-time one. The solution P of the ARE can
be obtained via the Hamiltonian matrix [see the condition for existence of P in
(Williams & Lawrence, 2007; Basar et al., 1998)]. In the current study, its solution is
performed via the MATLAB command care, which is abbreviated for continuous-time

ARE.
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The stability of the infinite-horizon LQR problem can be determined via the
poles of the closed loop system [see (Anderson & Moore, 1989; Bryson & Ho, 1975)
for detailed discussions]. Furthermore, Stengel (1994) discusses the robustness analysis

of the LQR in terms of gain and phase margins in detail.
4.5.3. Sliding Mode Control (SMC)

The model structure with one MRD is controlled by sliding mode control
method. Sliding mode control method is an attractive control strategy due to its
robustness against environmental changes. In general, the state equation of the linear

time-invariant system being controlled is as
x(t) = Ax(t) + Bu(t) + E(t) x(ty) = x, (4.19)

The definitions of the terms in Equation (4.19) are presented in Table 5.3. E(t)
is the excitation vector. The the sliding mode control is insensitive to environmental
changes. The method aims to design a control rule that forces the response trajectory
onto a sliding surface. Sliding surface is a surface, on which the motion is stable. Let

Ssuc = 0 be the sliding surface,

Ssmc(t) = Psycx(t) (4.20)

Seuc(®) = [S1(t)  Sy(t) - S_1(t) S,.(t)]T is an r-vector consisting of r sliding
variables S, (t), S, (t), ..., S, (t). r is the number of controllers. Pgy,c is a (r X 2n) matrix,
which is determined in such a way that the motion on the sliding surface is stable. Py,

is calculated by the LQR. Pg, is determined by minimizing the cost function J¢p, as

[oe)

Jsme = f X7 () Qs x(0)dt 4.21)

0

where Qg is a (2n x 2n) positive definite matrix. The control law is designed to drive
the state trajectory into the sliding surface Sgy = 0. As a result, the control force is

obtained by help of Lyapunov function for a continuous control as
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u(t) = Gpc(t) — 8T (4.22)
where

A(t) = Ssyc ()" PsycB (4.23)
Gsuc(t) = _(PSMCB)_IPSMC(Ax(t) + E(t)) (4.24)

8; > 0 is referred to as the sliding margin. & is a (r x r) diagonal matrix with elements
61,05, ...,0, on the main diagonal. Chattering creates serious problems while
determining sliding modes. This formulation is the continuous one that overcomes the

chattering phenomenon.
4.5.4. H,/LQG Control

The H; optimal control theory originates from the frequency domain
interpretation of the cost function associated with time-domain state-space linear
quadratic Gaussian (LQG) control theory. In literature, Safonov et al. (1981), Doyle et
al. (1989), and Lu (2001) presented the framework for the LQG method. Ramallo et al.
(2002) applied an H,/LQG control to a two storey model structure.

The H; optimal controller is a combination of a Kalman filter and a full-state
feedback gain, both of which are determined in the usual linear quadratic regulator
(LQR) manner. The signal d contains all external inputs, including disturbances, and

sensor noise. The H, norm of a transfer function matrix from d to z, G, is defined as

1G4l = \/trace <% j_o:osz(jw)sz*(jw)dw> (4.25)

In order to perform a physical interpretation of the H, norm, it is important to
note that the H, norm of a transfer function is equal to the RMS (root mean square)

value of its output q in case of unit white input. The RMS output vector is defined by
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1 T
Iallms = lim 5= [ 4" (@a(0)dt (4.26)
-7

This expression can also be written as

gl rms = /z Elqf (t)] (4.27)

where E[-] indicates the expected value operator. After the current stage, the problem
turns into a LQG algorithm. The LQG optimal controller is simply composed of a
Kalman filter (linear quadratic estimator, LQE) with a LQR. The two Riccati equations
that come from the optimization of the performance indices are solved for the optimal
solution. With appropriate selection of design weights, the H, optimal control criteria
defined in the frequency domain can be numerically equivalent to the LQG optimal
control criteria defined in the time domain (Lu, 2001).

The Q and R matrices declare the weights (importance) of both the states and
the controller. In the LQR design procedure, the Q and R values were utilized directly
whereas in the Hy/LQG design, Q was integrated in matrices C;, Dy;, and Dj,. The
H2/LQG method accepts a default value of 1 for R.

Observers are required intensely in full state feedback control and real-world
control applications (see Section 5.1 for reasons). In the simulations of Section 4.5, the
aim was to compare the performances of the controllers. The attention was not on the
observer. Therefore, it was assumed that any measurement was not performed, and all
states were directly fed back to the controller. In the numerical simulations of Chapter
5 of the thesis, the measured values were performed by adding randomly produced
noise values to the calculated values. For the present example, noise was assumed to be

Z€ro.
4.5.5. Fuzzy Logic Control

In the present subsection, the damping properties of the MRD are regulated by a
fuzzy logic control algorithm. In general, the fuzzy logic algorithms consist of three

steps:
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1. fuzzification during which numerical input variables are transformed into linguistic
variables by means of input membership functions (input membership functions
may be triangular, trapezodial, Gaussian and etcetera),

2. fuzzy inference rule that determines the output by means of inputs and logical IF-
THEN statements (Mamdani- and Sugeno-type fuzzy inference systems),

3. defuzzification during which the output is produced by defuzzifying the results of
the inference rules.

In the present fuzzy control design, complicated differential equations are not
required. The suitable inputs, membership functions and rules are sufficient enough to
reflect the nature of the system. Additionally, the semi-active fuzzy controller gives
directly the output voltage while the semi-active optimal controller performs its duty in
two stages (see Figure 4.8). The fuzzy controller produces the output by means of the

fuzzy rule inference. The block diagram is presented in Figure 4.12.

xyl
v

—P MR fmrD y
Damper —— P Structure »
I X1, Xl
<4 Fuzy Contoller

Figure 4.12. Block diagram of semi-active fuzzy control system

The input variables to the fuzzy controller were chosen as the first floor’s
displacements and velocities relative to the ground since the displacement and velocity
difference on the MRD were required. The boundaries of the input variables has to be
defined priori to the simulation. In the present simulations, the boundaries of the input
variables were selected as the maximum values of the first floor responses of the
uncontrolled structure. The boundaries of the input variables were chosen in such a way
that the controlled displacements and velocities of the first floor can not be greater than
those of the uncontrolled ones. If a case different from this occurs in a real earthquake,
then the fuzzy controller becomes useless. Seven identical triangles with 50% overlap

were utilized for the input membership functions (Figure 4.13).
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NL NM NS ZE PS PM PL

Figure 4.13. Input membership function

For the input fuzzy variables in Figure 4.13, the linguistic abbreviations NL,
NM, NS, ZE, PS, PM, and PL refer to negative large, negative medium, negative small,
zero, positive small, positive medium, and positive large, respectively.

The output was chosen as the voltage applied to the MRD. Six identical triangles
with 50% overlap were chosen for the output, which took values between zero and the
maximum voltage (Figure 4.14). The output variables took values between zero and the

maximum voltage (2.25 volts).

ZE VS S M L VL

0 vmax

Figure 4.14. Output membership function

For the output fuzzy variables in Figure 4.14, the abbreviations ZE, VS, S, M, L
and VL refer to zero, very small, small, medium, large, and very large, respectively. The
fuzzy inference rules are presented in Table 4.3. The calculations were performed by the
Mamdani-type fuzzy inference system (FIS) within the fuzzy logic toolbox of
MATLAB.

The fuzzy inference rule were determined according to this principle: if the
structure is away from its neutral position and is moving further away from its neutral
position, then the voltage applied should be increased to provide more damping.
However, when the structure is away from its neutral position, and is moving towards it,
little or no voltage needs to be applied (Wilson, 2005). The reasoning of the fuzzy

inference rules and modified clipped algorithm is similar.
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Table 4.3. Fuzzy inference rule

NL NM NS ZE PS PM PL
NL VL L L M S VS ZE
NM L S VS ZE VS
NS L S A ZE A S
ZE M S VS ZE VS S
PS S VS ZE VS S M L
PM VS ZE VS S L
PL ZE VS S M L L VL

In the present fuzzy logic design, the fuzzy rules were combined by the Boolean
and. The rule strength was determined by taking the minimum of the two input
membership values, which is the most common definition of the Boolean and in fuzzy
logic. Then, the output membership function was clipped at the rule strength, and the
outputs of all fuzzy rules were combined by taking the maximum value of the
membership functions to obtain one fuzzy output distribution. Finally, a single crisp
output value was obtained from the fuzzy output distribution by defuzzification process.
This output value was determined by the center-of-gravity (COG) method, which

simply calculated the centroid of the area under the fuzzy output distribution.

4.5.6. Simulations

4.5.6.1. Interpolation of the Seismic Excitation Data

In the simulations, the system was excited by the data of the Imperial Valley
event presented in Figure 2.4. In general, any simulation should run at least 20 times
faster than the fastest mode to take into account the contribution of the fastest mode (see
Section Signal Construction in APPENDIX I). This case is visualized by Figure I.1. In
the current simulations, the fastest mode of the model structure had a frequency of 8.33
Hz. The simulation frequency had to be at least 167 Hz. Therefore, the records were
interpolated to the one fifth of the original time increment of the data, resulting in 500
Hz (see Figure 4.15). The energy imparted to the system did not change by interpolation

since the magnitude in time-domain and total duration of the data remained constant.
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The number of data was increased by interpolation. The magnitudes in frequency-

domain remained unchanged (see Figure 4.15(b)).
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39.75 39.8
(a) (b)

Figure 4.15. Interpolated form of the Imperial Valley earthquake record in (a) time and
(b) frequency domains

In Figure 4.15, the magnitudes in time and frequency domains were not the same
for the original and interpolated data. The reason of this fact may have been two-folded:
Firstly, the energy of the signal leaked into a number of frequencies instead of a
concentrating at a single frequency due to spectral leakage (see Figure 1.2). Secondly,
the peak of 3 m/s® in time-domain was composed of sine waves with different

frequencies.

4.5.6.2. Simulations and Comparison of the Results

The seismic response of the three-storey model structure in Figure 3.1 was
controlled by an MRD attached between the ground and the first floor (see Figure 4.11).
Four controllers were designed, depending on the LQR, SMC, H,/LQG, and fuzzy
logic. These methods and details about the simulations are explained in Sections 4.5.2-
4.5.5.

The LQR, SMC, and H,/LQG are optimal control methods. By choosing the

optimal control algorithm, control signals that will cause the system to satisfy some
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physical constraints, and at the same time, maximize or minimize a chosen performance
criteria (cost function) are determined. On the other hand, the fuzzy logic controller is
not an optimal controller.

The controllers based on LQR, SMC, and H,/LQG consisted of two stages: an
optimal controller and a modified clipped algorithm. The required control force u was
calculated by the control methods (see Section 4.5.2-4.5.4). Then, the voltage that had
to be applied to supply u was determined by the modified clipped control algorithm (see
Section 4.4.1). The control voltage lay between 0 and v,,,, (Yoshida & Dyke, 2004;
Yuen et al., 2007). On the other hand, the proposed fuzzy logic controller provided the
voltage value to be applied in a single step (see the related MATLAB codes in
APPENDIX J). In the proposed fuzzy controller, the voltage to be applied was
determined by the fuzzy inference rules presented in Table 4.3. Therefore, the modified
clipped algorithm was not utilized. The fuzzy inference rules were determined by a
logic similar to the one in the modified clipped algorithm (see Section 4.4.1 and Table
4.3).

The responses relative to the ground were controlled. The @ — R couple of the
LQR design was determined by a trial-and-success procedure similar to the one

summarized in Table 5.4. They were selected as

1 0 0 0 0 O-
010 0 0 0
loo1 0o o o 1107
Qur={y o0 0 o1 0 o |Reer=1-10 (4.28)
000 O 01 O
0 00 0 0 o1

By this configuration of the @ — R couple, the ratio between the absolute values of
maximum control and MRD forces became 1.28 for the data of the Imperial Valley
earthquake. The Q@ — R couples of the SMC and Hy/LQG designs are presented in
Equation (4.29) and Equation (4.30), respectively. The Hy/LQG method accepts a
default value of 1 for R.
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10 0 0 0 0 O
0O 10 0 0 0 O
0O 0 10 0 0 O _
O 0 0 0 1 0
-0 0 O 0 0 1
100 O 0 0 0 O
0 100 0 O O O
0 0 100 0 0 O
QHZ/LQG =103 0 0 0 1 0 0 ;RHZ/LQG =1 (4.30)
0 0 0O 0 1 0
- 0 0 0 0 0 1-

The inputs of the fuzzy logic controlers were the displacement and velocity of
the first floor. Hence, the first floor responses were controlled directly while the
responses of the other floors were controlled indirectly. On the other hand, in optimal
controllers, all states were controlled with an equal weight. The control ability of
optimal controllers were shared among all states.

In an experiment or in a real-world application, for the LQR method, all states
need to be sensed since there is not an observer involved. On the other hand, for the
H,/LQG method, only some of the states have to be sensed since an observer is
designed within the method to estimate all the states. The present example was a priori,
and comparison of performances of the controllers was mainly aimed. Therefore, it was
assumed that measurement was not performed and all states were directly fed back to
the controller.

The interstory drift responses are presented in Figure 4.16 and Figure 4.17
although the responses relative to the ground are controlled. The absolute acceleration

responses are presented in Figure 4.18 and Figure 4.19.
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Figure 4.16. The response of the first story displacement with respect to the ground due
to the Imperial Valley earthquake for different control strategies
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Figure 4.17. Interstory drift of the third floor due to the Imperial Valley earthquake for
different control strategies
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Figure 4.18. Absolute acceleration of the first floor due to the Imperial Valley
earthquake for different control strategies
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Figure 4.19. Absolute acceleration of the third floor due to the Imperial Valley
earthquake for different control strategies

The absolute acceleration response of the first floor contains not only the
structure’s acceleration value, but also acceleration coming from the damping force of
the MRD. Therefore, the absolute accelerations of the second and third floors supply
more correct information about the behavior of the structure. Furthermore, the peak

values of the responses for different control strategies are presented in Table 4.4.
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Table 4.4. Peak responses of the Imperial Valley earthquake for different control

strategies
Uncontrolled | LQR | SMC | H,/LQG | Fuzzy
qs 1.9 1.1 1.6 1.0 0.8
Drifts
q 3.1 1.7 2.0 1.6 1.2
(cm)
ol 3.7 1.7 2.0 1.7 1.0
G3, 14.9 8.2 12.6 7.4 6.4
Total accelerations .
5 42, 10.8 7.1 10.5 6.9 6.3
(m/s%)
G, 7.7 56 | 19.5 4.5 4.5
Maximum shear force of
. Vinax 2918 1750 | 2070 1668 1238
the 1* floor (N)
Damper force (N) fmrD - 533 | 1858 591 817

In Table 4.4, the maximum shear force at the first floor of the superstructure was

calculated by

Vinax = max (4.31)

3
Z MssiQitotal

i=1

where Vi,qx 1s the maximum shear force at the first floor of the superstructure. mgy, is
the mass of the i-th story of the superstructure. §;, ., is the absolute acceleration of the

i-th floor of the superstructure.

According to Table 4.4, the SMC method is undesirable due to its high absolute
acceleration responses compared to the responses of the other control methods.
Additionally, the maximum damper force of the SMC is distinctively high compared to
that of the other methods.

In Table 4.4, on the other hand, the fuzzy logic controller exhibites the best
controlled responses among all applied strategies due to its low drift, absolute
acceleration, and total shear force values. It reduces all responses to half of the
uncontrolled ones. It performes this task by a damper force of one third of the capacity

of the MRD (fygrp,, 4, = 3000 N). Thus, the MRD is not forced to work close to its

limits compared to the responses of the SMC method. The proposed fuzzy controller is

effective in reducing seismic response of the model structure. In addition to its
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affirmative contribution, the fuzzy control design is very simple compared to the other
control methods.

The controllers based on the LQR and H,/LQG algorithms reduces the interstory
drifts more than 45% compared to the uncontrolled case although responses relative to
the ground are controlled. Additionally, the reduction in the maximum total shear forces
is 40% with respect to the uncontrolled case. On the other hand, the reductions of the
interstory drifts in the fuzzy controller are more than 58% compared to the uncontrolled
case. Besides,the fuzzy controller performs a reduction of 58% in the maximum total

shear force with respect to the uncontrolled case.

4.6. Comparison of the Responses of a Passively Controlled MRD and
a Semi-Actively Controlled MRD

In the present subsection, the responses of a passive damper and a semi-active
MRD were compared. The aim was to answer the question of controlling a damper was
necessary or it was better to place a passive damper instead of a semiactively controlled
MRD to limit the structural responses. The responses of the model superstructure in
Figure 4.11 were simulated for four different seismic excitations as: Imperial Valley,
Diizce, Syntheticl, and Synthetic2 (see Section 5.8.1 for synthetic production of the data
Syntheticl and Synthetic2). The excitation data was interpolated to one fifth of the
original time increment of the data, resulting in 500 Hz.

In the simulations the responses of uncontrolled, passive-off, and passive-on
systems were calculated. Zero voltage was applied for passive-off case. Different
constant voltage values were applied for passive-on case (0.45, 0.90, 1.35, 1.80, 2.25
V). Additionally, in optimal control case the calculations were performed for different R
values varying from 10™" to 10”. The configuration of the Q matrix in the LQR design

was chosen as:

1.0 0 0 0 0 0 -
0 10 0 0 0 0
o o 10 o 0 0
Q= 0 0 0 001 0 0 (4.32)
0 0 0 0 001 0
Lo 0 0 0 0 0.01
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In the simulations of the present thesis, the states were the displacements and
velocities relative to the ground. The order of the velocities was approximately ten
times the order of the displacement responses in the simulations. Therefore, the weights
of the displacements in the LQR design were chosen ten times higher than those of
velocities harmoniously with the numerical situation. The configuration of the Q matrix
in Equation (4.32) coincided with the magnitudes of the states.

The reduction of the maximum absolute values of displacements and total
accelerations were presented in Figure 4.20-Figure 4.23 for the four seismic excitations.
The reduction percentage of the responses with respect to the uncontrolled case was

defined as:

max xunconl - maxlxcontl .

Reduction percentage = 100 (4.33)

max Ixuncon |

The value of the variable Reduction percentage had to be smaller than 100%
and could be negative indicating that the controlled maximum value was greater than
the uncontrolled maximum value. The responses indicated by x in Equation (4.33) were
the floor displacements relative to the ground and total accelerations of the floors. The
floor displacements relative to the ground were controlled. The responses of the first
and third floors were presented in Figure 4.20-Figure 4.23 for the four seismic
excitations. Additionally, on the right vertical axis of (a) and (b) of Figure 4.20-Figure
4.23 the ratio of the maximum damper force and the maximum control force were
presented. It was named Force ratio, and indicated the amount of the required
damping force that the damper could provide. The acceptable region of the responses
had to be around the region which Force ratio was equal to one, meaning that the
required damping force could be provided by the MRD. Therefore, its acceptable values

were chosen in the region of

max
75% < Forceratio = M < 125% (4.34)
max|u|

In (a) and (b) of Figure 4.20-Figure 4.23, the distribution of the variable
Force ratio indicated by a line as distinct from the variables Reduction percentage.

The aim was to emphasize its linearly increasing trend by increasing R values. On the
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other hand, the variables Reduction percentage of the responses did not have a linear
trend by changing R values. Especially Reduction percentage of the total
accelerations behaved unpredictably due to the existence of the MRD.

The reduction percentage values are presented for various R values of the
optimally controlled MRD in (a) of Figure 4.20-Figure 4.23. Then, the graph in (a) was
zoomed in the allowable region of force ratio, and the results were presented in (b) of
Figure 4.20-Figure 4.23. Finally, the reduction percentage values were presented for
various applied voltage values of the passive MRD in (¢) of Figure 4.20-Figure 4.23.

In general, possible expected outcomes due to the existence of the damper were
the cases that the highest reductions occurred at the displacement of the first floor and
the lowest reductions occurred at the total accelerations of the first floor. Additionally,
the absolute acceleration response of the first floor contained not only the structure’s
acceleration value, but also acceleration coming from the damping force of the damper.
Therefore, the absolute accelerations of the other floors supplied more correct
information about the behavior of the structure.

According to (a) of Figure 4.20-Figure 4.23, the response of the optimally
controlled system was mainly affected by the selection of R for the certain configuration
of the Q matrix in Equation (4.32). Inconvenient selection of the R value caused
unacceptable reductions in the total accelerations. Decreasing R values led to increasing
control force values. This fact created improper total acceleration responses specially at
the first floor level, at which the MRD was attached.

According to the graphs in (b) of Figure 4.20-Figure 4.23, the region of the
optimal R values was determined as 10®° — 107 for the present system due to the
allowable region of force ratio. In each excitation case, the reductions were close to
each other for different Force ratio values in (b) of Figure 4.20-Figure 4.23. For the
simulations of the Imperial Valley and Diizce earthquakes, the reductions in the
responses were in the region of approximately 25-50 and 15-40 percent, respectively.
On the other hand, the reductions in the responses of the Syntheticl excitation were
higher compared to the others. The reductions in the responses of the Synthetic2
excitation were the smallest ones. One of the controlled responses of the Synthetic2
excitation was greater than the uncontrolled response for Force ratio close to the

boundary of the acceptable region.
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Figure 4.20. Reduction percentage values of the optimally and passively controlled
MRD for the Imperial Valley earthquake

61



100 e S . 2.5
4 ] ] ]
0~*..,.c,t‘3:1!1}!22!!””””’r’—
- : . *‘ * . ® o o 19
°§D-100~ NI .
S 200 - G 13
g ‘. 18
& g
_§ -300e i i o i ' ] H ] ——Force ratio || §
8 ¢ Relative disp1 2
g -400 - o : : : ' : o
o e ® R T -Rela‘uvedlsp305
500 e e | e Totalaccel, |~
] ] 3 » Total accel,
-600 —e i I S S S T
10" 107° 107 10* 10
R
(a) Reduction percentage for various R values of the optimally controlled MRD
60— ‘ ‘ ‘ ‘ 1.25
o 40;" ¢ K J ¢ ¢ ¢
[
g s :
5 200 — -2
<
_§ 0 ——Force ratio E
S + Relative disp1
3
5 o
o = Relative disp,
-20 3|
e Total accel1
‘ » Total acce]3
-40 e — ' 0.75

(b) The graph in (a) is zoomed in the allowable region of force ratio (75%-125%)
65

+ Relative disp, 1 | | . .

60 = Relative disp3 o . : |
s© 55/| o Total accel, 4 |
%50» * Total accel, ¢ 4 7 . |
E | |
Q
S 451 . : . |
e
g40r . . |
§2 | . |
R 301 o . . |

251 ‘ . * | P . | . |

* | | | |
20 0 0.5 2 2s

1 1.5
Applied voltage (Volts)
(c) Reduction percentage for various applied voltage values of the passive MRD

Figure 4.21. Reduction percentage values of the optimally and passively controlled
MRD for the Diizce earthquake
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Figure 4.22. Reduction percentage values of the optimally and passively controlled
MRD for the Syntheticl excitation
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MRD for the Synthetic2 excitation
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The Reduction percentage values were plotted versus applied voltage values
of passive dampers in (c) of Figure 4.20-Figure 4.23. A better controlled response was
an expected outcome as the applied voltage increased. Usually, the reductions in total
accelerations were smaller than the reductions in relative displacements. This difference
became more apparent as the applied voltage increased. The highest reductions were
observed in the responses of the Syntheticl excitation. On the other hand, the lowest
reductions were in the responses of the Synthetic2 excitation.

Furthermore, the increase in the applied voltage did not cause a significant
change in the total acceleration responses in (c) of Figure 4.20-Figure 4.23. This case
indicated that the controlled system was highly overdamped, and the capacity of the
utilized MRD was beyond the control requirements of the model structure utilized
within the thesis.

Consequently, the comparison of (b) and (c) of Figure 4.20-Figure 4.23 in each
case provides valuable comments about the question whether controlling a damper is
necessary. The designer may perform the selection due to the control requirements, the
distance of the structure to the closest (possible) fault, and convenience of the

implementation of the optimal control action.

4.7. Hybrid Control of a Base Isolated Model Structure by MRD

In the present subsection, a hybrid control, which consists of passive and semi-
active controllers, was studied. The aim was to benefit from advantages of both
strategies and to compensate for their weak properties. The hybrid seismic response
control of the three-storey model superstructure was performed. The model
superstructure is presented in Figure 3.1. It was isolated seismically and a semi-active
MRD in parallel to the base isolation system was attached between the base and the
ground (see Figure 4.24). The benefits of hybrid application of two control systems
were revealed. The control method was based on the theory of the LQR.

65



4.7.1. Base Isolation

Passive base isolation systems are currently more adopted in the control
technology than semi-active MRDs. There are two types of base isolation, namely, the
elastomeric-based systems and sliding-base systems. The elastomeric-based systems can
be divided into two subgroups: low-damping rubber bearings and lead-core bearings.

Chandiramani (2004, p.6) explains the main idea of base isolation as: “Structure
mounted on a suitably flexible base such that the high frequency component of ground
motion is filtered out and the fundamental vibration period is lengthened. This results in
deformation in the isolation system only, thus keeping the structure above almost rigid.
However, if the earthquake excitation contains a major component of this fundamental
period, there will be large sidesway (albeit almost rigid) motions”

Additionally, Kelly (1998, para.l) explains how the base isolation performs its
duty: “In this approach, the building or structure is decoupled from the horizontal
components of the earthquake ground motion by interposing a layer with low horizontal
stiffness between the structure and the foundation”. In that respect, the researcher points
out that it is better to utilize the term dynamic stiffness instead of the term stiffness. The
dynamic stiffness is defined as k — w?m + iwc (Ewins, 2000), where w is the angular
frequency of the excitation in rad/s. k,m, and c are the stiffness, mass, and damping,
respectively. In low frequency and small damping cases, the dynamic stiffness is close
to the stiffness). Hence, the fundamental period of the isolated structure is lengthened
by comparison with that of the fixed-base structure. In the frequency spectrum, it is
placed at the higher period range of the ground excitation whose magnitudes are low.
Thus, the high frequency component of ground motion is filtered out, and the structure
is decoupled from the horizontal components of the seismic excitation. However, if the
seismic excitation contains components with large magnitudes at the fundamental
period of the isolated structure, then detrimental deformations occurs.

If the base isolator is assumed to have zero stiffness, then the base displacement
relative to the ground is almost the reverse of the ground displacement. It performs
relative displacements almost the same as ground, but in the opposite direction. The
total displacement of the base is low. Conversely, the structure becomes a conventional

one in case of a rigid base.
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The isolators should be stiff enough in the vertical direction to resist the weight
of the structure, while being flexible in the horizontal direction. In the present study,
elastomeric-type base isolators were utilized, and the emphasis was not on the
properties of the isolators. Therefore, details about the isolators were not provided.

In structural control design, one of the primary criteria is that the interstory drifts
are restricted to limit the internal forces of structural elements (displacement control).
For that purpose, the story drifts should be at low, or at least, moderate levels. Also, it
can be suggested to limit the total accelerations for protecting the goods inside the
building (absolute acceleration control). Additional design criteria may be added due to
some special design demands (in museums, hospitals etc.).

The base isolation system may control the displacements or accelerations of the
superstructure, depending on the frequency content of the ground excitation and the
frequency range that the structure is shifted by the seismic isolation. In an isolated
structure, the responses are mainly driven by the fundamental mode, and most of the
deformation occurs at the base level. A small amount of deformation remains in the
superstructure, resembling a rigid-body-motion. Therefore, in the present study, the
mass of the whole structure was taken into account while calculating the damping and

stiffness of the base. They were determined by the following formulas,

my, = 154.5 kg
3
Ns
Cp = ZCD <Z m; + mb> Wy = 4543 —
i=1 m (4.35)

3 , N
kb: Zmi+mb Wp :706E

i=1

where my, ¢, and k;, are the mass, damping, and stiffness values of the base. m; is the
mass of the ith floor. w,, is the circular frequency of the base. }, is the damping ratio of
the base. In the present study, the base mass is chosen to be 154.5 kg, which is one and
a half of the first story mass. The base system was considered to have 4% damping.
Such a damping value was assumed for the isolator due to the very low damping level
of the superstructure ({; = 0.0058,{, = 0.0038, and {3 = 0.0041 from Table 3.2). The
elastomeric stiffness was approximately 706 N/m (For comparison purposes, the first

floor had a stiffness of 78000 N/m).
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The undamped period of the base was chosen as 10 times the fundamental
undamped period of the superstructure, resulting in 5.06 s (Naeim & Kelly, 1999). This
value was selected in such a way that the structure was pushed to the range of the
excitation components with smaller magnitudes.

The isolation system designed in the present subsection was also used in the
hybrid application of the VOD in Chapter 5. A linear observer and regulator design was
considered for the isolated building in Section 5.5. Therefore, the overall stiffness of the
isolators was assumed to be equal to a constant value so that the resulting model
structure was linear at the starting point of the control design. The controllers of all
subsystems were designed priori to the response calculations (a subsystem in the hybrid
application of the VOD was the system with a certain orifice opening). The simulations
were also performed with these linear isolators to investigate the effectiveness of the
control algorithm towards the system for which it was designed for. The neglected non-
linear effect of the isolators would cause an additional damping in the structure. For
natural rubbers, the introduced damping was very low when compared to the MRD or
VOD effect, whose damping ratios started range from 0.16 to extremely overdamped
values. Therefore, the linear isolator assumption that was made in this study was not

expected to cause a significant difference in the obtained results.

4.7.2. Hybrid-Controlled Building Model

In a base isolation system, it is aimed to reflect some portion of the seismic
excitation energy by lengthening the period of the structure. Hence, the structure is
protected from the detrimental effects of the ground excitation. In a near-source seismic
event, the magnitude of the high-period components is larger compared to far-source
seismic events. On the other hand, the distance of the structure to the epicenter of a
possible future earthquake cannot be known. A place far away from a fault at the
moment may become closer to the fault in time. Especially, this case can be considered
to be more possible in a country like Turkey, in which most of the social and industrial
regions are located near seismic zones. Therefore, this possibility should be taken into
consideration while designing seismically isolated structures whose period is high
compared to conventional structures. Consequently, it is advised to utilize hybrid

control systems in seismic zones in place of bare base isolation systems. Hence, the
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isolation system is protected by semi-actively controllable dampers placed in the base
level.

The hybrid control system is a system, in which two or more control devices are
utilized simultaneously. Passive supplemental damping in a seismically isolated
structure provides the necessary energy dissipation to limit the isolation system
displacement. However, damper forces can become quite large as the passive damping
level is increased. Utilization of an intelligent hybrid application of a semi-active
damper, whose damping coefficient can be modulated, is a possible solution to limit the
level of damping force while simultaneously controlling the isolation system
displacement (Symans & Kelly, 1999). On the other hand, additional damping at the
base level reduces the base velocity directly and decreases the base displacement
indirectly at the expense of larger drifts and floor accelerations of the superstructure.

Dampers are utilized to absorb energy from the structure. Thus, the larger the
damping is, the less the relative structural velocity and displacement will be. The
accelerations, however, will increase. If the latter behavior is not detrimental, then the
act of controlling a damper appears to be useless. Since the maximum damping yields
the best response, placing a controller into the system is not required. For building type
structures, the control of dampers seems to be feasible only when buildings are
seismically isolated. The function of the dampers in these types of structures is to limit
the displacement of the dampers so that they cannot rupture. The presence of a damper
in parallel to a base isolation system obviously decreases the effectiveness of the
seismic isolation. Nevertheless, it will keep the elastomeric bearings from being driven
into large displacements, thus securing the base isolation system.

The hybrid-controlled structure is presented in Figure 4.24. It has one base and
three stories. In the present study, elastomeric base isolators were utilized at the base. A
semi-active MRD in parallel to the base isolation system was attached between the base

and the ground.
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Figure 4.24. Hybrid-controlled building model (including base isolation and MRD)

In Figure 4.24, m;, and m; are the base and floor masses. ¢, and c; are the base
and floor damping. k;, is the base stiffness, and k; is the floor stiffness for i = 1,2,3.

The equation of motion with respect to the ground is as follows
Msés(t) + [qu$(t) + hy furp ®)] + K.q,(t) = _Mshléig (t) (4.36)

where q,(t) is the displacement vector of the hybrid controlled structure relative to the
ground. M, ,C,,and K are the mass, damping, and stiffness matrices, respectively.
They are presented in Equation (4.38). ¢, (t) is the process noise (disturbance) that is
the ground acceleration in the current problem. h, is the location matrix of the external
excitation. It specifies how the ground excitation ¢, enters into the system. It is equal to
(111 1)7, indicating that the ground excitation acts to all degrees of freedom. fyrp is
the damping force of the controlled damper. The damper force is assumed as an internal
damping, but, for simplicity of presentation and simulation, it is taken from the left-

hand-side of the equation of motion to the right-hand-side, as follows
Mqs(t) + Csq,(t) + Koqs(t) = _Mshlq.g(t) — h; furp (1) (4.37)

where h, is the location matrix of the control force and specifies how the control force
furp enters into the system. It is presented by h, = (100 0)7, indicating that the

damping force is present only at the base level.
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Assembly of the global mass, damping, and stiffness matrices of the isolated
structure was performed. The superstructure and base were individual subsystems. The
superstructure was assumed to be classically damped since its damping ratios were
close to each other (see Section 3.1.1). The mass, stiffness, and damping matrices of the
superstructure (Mg, K, C) are presented in Equation (3.3) and (3.13), respectively.
The coefficient of the Rayleigh damping a and 8 were calculated as 0.1231 rad/s and
1.1667-10* s/rad, respectively, in Section 3.1.1. Then, the global mass, stiffness, and
damping matrices were constructed directly by assembling the matrices of the two
subsystems: superstructure and base. For the base isolated structure, the global mass,

stiffness, and damping matrices are as follows

1545 0 0 O

1o 103 0 o0
Ms=10 0 100 o|*9
00 0 995

78706 —78000 0 O
—78000 156000 -—-78000 O
0 —78000 156000 —78000

0 0 —78000 78000

5453 —9.1 0 0
c. —|~91 3088 —91 O|Ns
710 —91 3051 -9.1f m

0 0 -91 2135

K, = N/m (4.38)

The portions of the matrices in Equation (4.38), which are related with common
DOFs at the interface between subsystems, include contributions from both subsystems.
Additionally, the state-space representation of the system was required for the LQR
design. The equation of motion of the hybrid controlled structure in Equation (4.37) is

transformed into a first order state-space representation as follows:

.xs(f) As xs(t) ‘ Gs e Bg
gzgg]z[—Mso'le —M:‘lcs [3% +[—?11]5;(T)+[—M?‘1h2]”5“) (439

where x,(t) is the state vectors. ug(t) is the control input. w,(t) is the disturbance. A,
is the state matrix. G is the disturbance vector. By is the control input vector. The state-
space representation of the system was constituted by the equation of motion of the

model structure remaining in the linear region. The states were chosen as the floor
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displacements and velocities relative to the ground. All the states and the damper force
were assumed to be sensed for full state feedback.

The undamped periods and frequencies of the base isolated structure are
presented in Table 4.5. The undamped periods of the superstructure are approximately
0.51, 0.18, 0.13 seconds from Table 3.1. By the addition of the base isolator, the
undamped periods take the values presented in Table 4.5, softening the first mode of

vibration.

Table 4.5. Undamped periods and frequencies of the base isolated structure

) Undamped frequency | Undamped circular frequency
Period (s)
(Hz) (rad/s)
First mode 5.07 0.20 1.24
Second mode 0.32 3.10 19.47
Third mode 0.17 5.98 37.57
Fourth mode 0.12 8.08 50.75

A value for isolator period was chosen in such a way that the structure was
pushed to the smaller magnitude range on the acceleration spectra of the far-fault
excitation record (see Figure 4.25). Hence, the structure and the damper were protected
from the detrimental effects of earthquake excitations. In Figure 4.25, the fundamental
undamped periods of the fixed-base and isolated structures are marked by the dashed
and bold lines, respectively. The magnitude of the corresponding excitation is marked
by a grey dot.

The responses of a conventional and an isolated structure are mainly driven by
the fundamental damped period since they are under-damped systems (the damping
ratio of the base and the first mode of the superstructure are 0.04 and 0.0058,
respectively, see Section 4.7.1 and Section 3.1.1). The undamped and damped periods

of the bare and isolated structure are close to each other due to the low damping ratio

(Ty = T,,/+/1 — {? where ( is the damping ratio). On the other hand, the damping effect
of the MRD on the damped periods does not presented in Figure 4.25. This fact should
be taken into consideration while interpreting the response of the hybrid-controlled

structure.
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Figure 4.25. Original data of the Imperial Valley event in the frequency domain (The
fundamental undamped periods of the fixed-base and isolated structure are
marked by the dashed and bold lines)

The isolation effect was created by choosing relatively high periods for isolators
to rescue the structure from the range of high frequency excitations. In other words, the

isolator acted as a low pass filter (see Figure 4.25).

4.7.3. Current State in the Simulations and Results of the Simulations

The hybrid control system, which consists of a semi-active MRD in parallel to a
base isolation system, is presented in Figure 4.24. The simulation was performed by
using the data provided from the record of the 1940 Imperial Valley earthquake. The
excitation data is displayed in Figure 2.4 in time- and frequency-domains. The
excitation data was interpolated to one fifth of the original time increment of the data,
resulting in 500 Hz.

The control method was based on the theory of LQR. In the present simulations,
the base isolator and the hydraulic damper were always in action during a seismic
excitation, sharing the control task. The Q@ — R couple of the LQR design was
determined by a trial-and-success procedure similar to the one summarized in Table 5.4.

They are presented in Equation (4.40).
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In the present work, the states were treated as uncoupled. Therefore, the off-
diagonal terms of the Q matrix were zero. The weights of the base responses were ten
times higher than those of the floor responses assigning more control effort to the
response control of the base. The weights of the displacements were ten times higher
than those of the velocities coinciding the nature of degrees of freedom in the present
problem. R should be strictly positive definite. It should be noted that the important
issue in the LQR is not the individual values of Q and R, but the ratio between them is
important.

By this configuration of the @ — R couple, the ratio between the absolute values
of maximum control force and MRD force became 0.99 for the data of the Imperial
Valley earthquake. On the other hand, the maximum MRD force was at the level of one
third of the force capacity of the MRD (3000 Newton), indicating that the capacity of
the MRD was not benefitted from completely. If R had been decreased to increase the
control force u, then the ratio between u and fyzp would have increased, and the
controlled response would have deteriorated. This fact indicated that the capacity of the
utilized MRD was beyond the control requirements of the model structure utilized
within the thesis.

The displacement time histories of the ground, the seismic isolated base, and the
hybrid controlled base are presented in Figure 4.26. The values of the base were relative
to the ground. The black dashed line stands for the displacement of the ground. The
black solid line belongs to the passive controlled system and green solid one is for the
hybrid system. In Figure 4.26, the significance of the hybrid controller was observed
after the ground acceleration peaks at 25-28 seconds. The base isolated structure
performed large deformation, and the isolators were damaged. On the other hand, the

hybrid controller protected the base from large displacement response.
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Figure 4.26. Displacement time histories of the ground, the seismic isolated base and
the hybrid controlled base due to the Imperial Valley earthquake (The
values of the base are relative to the ground)
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Figure 4.27. Interstory drifts of the superstructure due to the Imperial Valley earthquake

According to Figure 4.26, since the isolators were very soft, their relative
displacements with respect to the ground were almost equal to the negative value of the
eartquake’s displacement, at least for the first two seconds. At time t=22 seconds, the
ground moved at a period of approximately 6 seconds, which was close to the
fundamental period of the isolated structure, for a total duration of approximately 12
seconds. Hence, the structure got into resonance, causing large structural displacements.

The isolated structure had low damping, resulting in large amplitude harmonic motion
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with a small decay. On the other hand, the amplitude for the hybrid controlled structure
was approximately 50% smaller.

The simulation responses of the interstory drifts of the superstructure are
presented in Figure 4.27. Examining the graphs, the floor responses of the hybrid
controlled structure were larger compared to the base isolated case. But, they were still
in acceptable ranges (< 1 cm). This was an expected result that was taken into account
during the engineering design.

At the beginning of the studies of the related hybrid control, the designer
intended to activate the MRD after the base drift exceeded 3 centimeters not to utilize
the MRD at low levels of excitation. When this condition was applied, the maximum
displacement of the base was 11 centimeters while the base of the isolated structure
performed a displacement of 14 centimeters (all values were relative to the ground). The
contribution of the hybrid control was only a reduction of 21 percent at the base level.
On the other hand, if the MRD had beeen always in action during the seismic excitation,
then the base would have performed a maximum displacement of 9 centimeters
resulting in a displacement reduction of 36 percent. Therefore, it was preferred to keep
the MRD always in action. Otherwise, the passive control system, which was only
composed of the base isolation, seemed a better design since it did not increase the total

accelerations of the system (see Figure 4.30).
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Figure 4.28. Response of the base velocity with respect to the ground due to the
Imperial Valley earthquake

76



The interstory velocity responses of the base and the superstructure are

presented in Figure 4.28 and Figure 4.29, respectively. The total acceleration values of

the base, first, and third floors are presented in Figure 4.30.
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earthquake
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Figure 4.30. Absolute accelerations due to the Imperial Valley earthquake

The hybrid controller protected the base from large displacement and velocity
responses after the ground acceleration peaks at 25-28 seconds while the base isolated
structure underwent large deformation. The absolute acceleration peak value reached to
2g (g: gravitational acceleration). It was a considerable value compared to the benefit in
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the displacements and velocities. The increases in the accelerations when compared to

those of the isolated structure was due to the existence of the damper at the base level.
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Figure 4.31. Interstory drift of the first floor in frequency domain ((b) is zoomed in
vertical axis)
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Figure 4.32. Interstory drift of the third floor in frequency domain ((b) is zoomed in
vertical axis)

The interstory drifts of the first and third floors in frequency domain are
presented in Figure 4.31 and Figure 4.32, respectively. The response of the uncontrolled
structure was driven mainly by the first mode. The second mode exhibited a smaller
contribution to the response. On the other hand, the base isolated structure’s response

78



was driven by its fundamental mode, and the effect of the other modes on the response
could not be observed. When the MRD was added to the structure in addition to the
base isolation, the first mode’s period was slightly shortened, and the contribution of the
second and third modes had a larger effect at this time than the first mode.

The beneficial effect of hybrid system was obviously revealed by the results of
the present simulation: In the absence of the MRD, the base displacement was much
higher and damped out in a longer period of time. By adding extra damping (MRD) to
the structural control system, a reduction of 50% in terms of base displacement was
obtained. On the other hand, the floor displacements increased, but they were still in an
acceptable range. Consequently, the base isolators were protected from rupture or

damage due to large deformations.
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CHAPTER 5

HYBRID CONTROL OF A BASE ISOLATED MODEL
STRUCTURE WITH A VARIABLE ORIFICE DAMPER
(VOD)

5.1. Overview

The variable orifice dampers are semi-actively controlled hydraulic dampers,
whose damping coefficient can be changed by mechanically adjusting a valve. In the
context of the present section, a hybrid control system, which consists of the seismic
isolator and VOD, is designed. The hybrid system contains advantages of both
components and compensates for weak properties of them. The base isolation prevents
acting of some portion of the seismic energy into the superstructure. The energy
dissipating device limits the displacement of an isolation system to an acceptable level
and, hence, protects the isolator. The base isolator is always in action during a seismic
excitation. The hydraulic damper, on the other hand, shares the control task only if the
displacement demand is large.

The current section of the research focuses on gain scheduling control of a three
story frame structure. The hybrid control system consists of a passive controller
(elastomeric isolators) and a semi-actively controlled hydraulic damper, namely a VOD,
that is connected in parallel to the base isolator. The damping value of the VOD is
varied by adjusting the orifice opening size. The system behaves nonlinearly as the
orifice opening of the damper changes. Linear subsystems were assigned for a number
of different orifice settings, and a controller was designed for each of these linear sub-
systems.

Generally, in control examples, only the displacements are sensed. On the other
hand, the story velocities are not measured although they are required for the full state
information. Therefore, the necessity of designing an observer is crucial to predict the
unmeasured states. On the other hand, in real-world applications with state feedback

control all the states of the system have to be known. But, quite often it is not practical
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or possible to measure all the states. This fact enforces the researchers to employ
observers in the control of civil engineering structures, in which some of the states have
to be estimated from the measurements. Therefore, in the present study, special
attention was paid for the subject of observers in the context of the LQG control.

The linear quadratic Gaussian (LQG) based controllers were designed for
various orifice openings of the damper in the isolated structure. The whole system
consists of sub-systems, their controllers, and their observers. During a simulation, the
optimum orifice size was selected among the previously defined orifice opening values
at each time step by means of an upper controller, by which large isolator displacements
and isolator damages were prevented.

At the beginning of the studies, the observer could not predict the responses
successfully. Therefore, Kalman and Kalman-Bucy observers were studied in detail, and
some remedies for the observer design were applied: The observer was modified by
sending the recorded disturbance. Besides, the base was prewhitened to satisfy the white
input prerequisite of the Kalman-Bucy filter. The superstructure was diagonalized to
obtain independent subsystems for the observer design. The observer was designed for
the prewhitened base and diagonalized superstructure separately. The substructured
configuration was utilized only for the observer design. The responses of the hybrid

controlled system were calculated for the 4-by-4 structure.

5.2. Literature Review

A hydraulic actuator was implemented with a controllable orifice, which was
designed by Sack and Patten (1996) for a full-scale highway bridge (Patten et al., 1999).
Some researchers investigated the application of VODs for seismic response reduction
of buildings and bridges (Symans & Constantinou, 1997; Symans & Kelly, 1999).

In some experiments performed by Symans & Constantinou (1999), a structure
with semi-active dampers exhibited a linear behavior in a certain limit of applied control
voltage. The findings revealed that the linear relationship was deteriorated when closer
to maximum speed or force levels. The models of the seismic isolators and damper were
determined experimentally by Wongprasert and Symans (2005).

An extended review of the gain scheduling literature was provided by Leith &

Leithead (2000). The related study explained the fundamental theoretical and design
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procedures briefly. Other references related with gain scheduling control are presented
in Section 5.6.

Wau et al. controlled the JZ20-2NW offshore platform in Bohai Gulf of China by
MRDs (2010). Due to the limited number of measurements, a Kalman filter was
designed (see Section 4.2 for details).

H,/LQG control including Kalman estimator was applied to an active base
isolation system in (Chang & Spencer, 2010). Kalman-Bucy filter was designed for
output feedback control of a cable-stayed bridge by Schemmann and Smith (1998).
LQG control system was employed in a benchmark structural control problem by
Spencer et al. (1998). Kalman filter modified by inserting ay-degree relative stability to
the algorithm was designed by Wang (2003).

A control algorithm that can estimate ground excitation by using a Kalman filter
was proposed by Aldemir (2009). The suggested algorithm exhibits results similar to
those of a completely optimal control system, except for the maximum values.

Three-dimensional response of a structure by placing semi-active VODs in two
directions was controlled by Turan (2010). Gain-scheduling control of a VOD was
performed for a three story building subjected to earthquake excitation by Kinay et al
(2010).

5.3. Variable Orifice Damper (VOD)

The VOD was manufactured by modifying a piston with a pipe that
interconnects its two chambers. A stepper motor controlled valve was placed in series
with this pipe (see Figure 5.1). The damping value of the VOD is related to the size of
the orifice opening (Turan & Aydin, 2011). The critical damping value c., for the
isolated structure was determined as 1115 Ns/m. Its calculation was performed by

Equation (5.2) and was summarized in Table 5.1.
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Figure 5.1. Longitudinal section of the utilized semi-active damper

At the early simulations of the present research, the damping values of the VOD
were from 100 till 2500 Ns/m by increments of 100 Ns/m. On the other, the maximum
damper force was at the level of 1000 N indicating that the capacity of the damper was
not utilized (maximum damper force is 5000 N). By this selection of damping values, it
was aimed to create an under-damped response that the structure approached to a
reference zero by performing oscillations, instead of an over-damped response. This
selection (100 till 2500 Ns/m by increments of 100 Ns/m) was left behind due to the
low force levels and the damping values were chosen as 100, 200, 300, 400, 500, 600,
700, 800, 900, 1000, 1500, 2000, 2500, 3000, 10000, 15000, 20000, and 25000 Ns/m to
increase the damper force levels. The upper limit was selected so that the piston’s
capacity did not exceed, whereas the lower limit corresponded to approximately 10% of
the critical damping. The chosen damping range allowed the controller to put the
structure into a harmonic, or a very stiff state. The structure might damp out the seismic
energy while performing oscillations, or the structure might converge to a zero state
rapidly in an exponential manner leading to a very stiff response (see Appendix F for
details).

In an under-damped SDOF system, the damping ratio can be determined via the
drop in the amplitude of the response within one cycle of vibration (Meirovitch, 2001).
Hence, the critical damping c., of the SDOF system can be obtained. This fact can be
utilized for a linear MDOF system whose response is a superposition of SDOF
responses at different frequencies. The procedure was illustrated in Section 3.1.1. The

logarithmic decrement § is

somd) _, ¢ 5.1

Cqt) T 1-¢2
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There is only one restriction for Equation (5.1) as the system is to be under-damped

(¢ < 1). The damping ratio { can be determined via

)
o e

where the damping ratio ¢ is not linearly proportional to the logarithmic decrement §
(see Table 5.1). Equation (5.2) is valid for under-damped cases.

The damping of the structure with a VOD varies as the orifice size of the damper
changes. Hence, the response of the system becomes under-damped or over-damped
depending on the orifice opening. Therefore, the under-damped and over-damped
responses in the context of a SDOF system are presented in Appendix F.

The VOD does not have a critical damping value since it does not have a mass
as a mechanical device. It is just a dashpot. A certain critical damping value can be
pronounced when the VOD is mounted to a system. In the present study, the critical
damping c.. and the damping ratio { corresponding to every orifice size were
determined by the logarithmic decrement within one period of the system. The system
was excited by an initial condition in the shape of the first mode as
[01 0.1 0.1 01 0 0 O O0].The initial condition was in the shape of the state
vector: the first four ones were for displacements, and the remaining ones stood for the
velocities. The values related with velocity were set to zero in order to excite the first
mode only. Otherwise, a relation between the displacements and velocities would have
been defined.

The damping value ¢, of the VOD was held constant like a passive damper.
Then, it could be assumed to be a linear system, and the principle of superposition was
valid. When c¢p was set to zero, the damping observed in the response was the damping
of the base. For the first mode, a damping value of 45.43 Ns/m was always present as
the damping of the base and ¢, was an additional damping. The calculations are

presented in Table 5.1.
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Table 5.1. Determination of the critical damping value of the fundamental mode of the

system
Damping of Damping of Logarithmic decrement Damping ratio
VOD system q(ty) o)
cp (Ns/m) ¢ (Ns/m) o= ln(I(tz) 5= Van? + 62

0 4543 lnm = 0.4624 0.0734

100 145.43 lnL = 1.0207 0.1603
0.036033

200 245.43 lnL = 1.6078 0.2479
0.020032

300 345.43 lnL = 2.2396 0.3358
0.010650

400 44543 IHL = 2.9343 0.4231
0.005317

500 545.43 IHL = 3.7322 0.5107
0.002394

600 645.43 IHL = 4.6973 0.5988
0.000912

700 745.43 lnL = 5.9408 0.6870
0.000263

800 845.43 IDL = 7.7287 0.7759
0.000044

850 895.43 IDL = 8.9327 0.8179
0.000013

where cp, is the damping of the damper. { is the calculated damping ratio of the excited
mode. ¢ is the damping present in the first story. ¢, is the critical damping of the
fundamental mode of the isolated structure. q(t;) and q(t,) are two successive peaks in
the displacement response.

The first peak could be seen in the displacement response. As the damping
increased, the second peak could not be obviously seen (for { > 0.75). Therefore, a
damping value of VOD as 850 Ns/m was applied numerically. Actually this value is not
one of the damping value values of the VOD, but it was applied to make the data denser
in the region close to the critical damping case.

The damping values ¢ are presented versus the damping ratios { in Figure 5.2.

These values are in the second and forth columns of Table 5.1. They are dependent
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linearly by = CL , in which c., is a constant value. Therefore, fitting a linear curve to
cr

the data was a convenient choice. Hence, the critical damping value c.,., at where { = 1,
was determined as ¢, = 1102.34 Ns/m. The damping value of the base was always
present (c, = 45.43 Ns/m). The value remaining for the VOD was 1057 Ns/m. The
closest damping value of the VOD was 1000 Ns/m. Therefore, the fundamental
response of the hybrid-controlled structure is over-damped for the damping values of

the VOD higher than 1000 Ns/m.

1000
800+ 1
c¢=1139.69 € - 37.35
;’o 6001 ¢ 1
g
o,
g
A 400r 1
200t
® Data
— Fitted curve
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Damping ratio §
Figure 5.2. Determination of the critical damping value of the fundamental mode of the

system

Instead of utilizing the procedure explained above, the critical damping value
c.r can be determined aproximately by obtaining the damped period T,; from the

response. Then, the damped circular frequency w,; in rad/s is calculated, and the
corresponding damping ratio { can be obtained by w; = w,+/1 — {?. Hence, the critical

damping value c., is calculated by c., = % It was preferred to utilize moderate or high

damping values to prevent numerical errors while calculating ¢.
5.4. Hybrid-Controlled Building Model

In the present research, a hybrid control system, which is constituted from a

passive controller (elastomeric bearings) and a semi-actively controlled hydraulic
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damper, was designed. The damper was connected in parallel to the base isolator. In a
similar research, the MRD was activated only when the base drift exceeded 50 per cent
of the isolator displacement capacity (Ribakov & Gluck, 2002). In the present
simulations, the displacement limit of the base to start the control scheme was 0.03 m. If
the base displacement had been smaller than this value, then a control action would not
have been applied. In this case, the damping of the VOD was set to the minimum value.
It is physically not possible to completely remove the damper when control action is not
applied.

The hybrid-controlled structure is presented in Figure 5.3. It has one base and
three stories. Elastomeric base isolators were utilized at the base. A semi-active VOD in

parallel to the base isolation system was attached between the base and the ground.

q3(t)
m3 —>
ca| ks
'—E_ VAVAV
q2(t)
[ m, |
¢y .
a__}— VW
q1(t)
qp(t)
—

L=l
7z
Gg (1)

Figure 5.3. Hybrid-controlled building model (including base isolation and VOD)

In Figure 5.3, m;, and m are the base and floor masses. ¢, and c; are the base
and floor damping. k;, and k; are the base and floor stiffness for i = 1,2,3. The equation

of motion with respect to the ground is as follows
Msés(t) + f[qs(t): qs(t)] qs(t) + qus(t) = _MshléZg (t) (5.3)

where q,(t) is the displacement vector of the hybrid controlled structure relative to the

ground. Mg and K are the mass and stiffness matrices, respectively. G, (t) is the

process noise (disturbance), which is the ground acceleration in the current problem. h,
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is the location matrix of the external excitation. It specifies how the ground excitation
{4 enters into the system. It is equal to (111 1)7, indicating that the ground excitation
acts to all degrees of freedom.

The term f[q.(t), qs(t)] indicates that the damping of the structure depends
directly on the displacement and velocity of the base by the upper controller.
Additionally, it is based on the displacements and velocities of the superstructure
indirectly. Therefore, the system is nonlinear.

The isolated structure and VOD contribute to the damping force in Equation
(5.3), which is indicated by f[q(t), 4s(t)] gs(t). Nonlinearity arises from the VOD,
which can be assumed to be a passive damper for every orifice opening size. In the light
of this fact, linear system approach can be applied to the structure in smaller constant
damping ranges restricted by the damping value of the VOD. Then, the nonlinear
system in Equation (5.3) can be regarded as a composition of linear systems at different
operating points. The transition among different damping values of the VOD is
performed by the gain scheduling technique (see Section 5.6 for details). Thus, the

equation of motion in Equation (5.3) is transformed into the following equation.

Msds(t) + C;q(0) + Ksqs(t) = _Mshl(ig(t) (5.4)

In Equation (5.4), Cy is the damping matrix of the isolated structure including
VOD and is presented in Equation (5.6). Assembly of the global mass, damping, and
stiffness matrices of the isolated structure was performed in Section 4.7.2. The mass,
stiffness, and damping matrices of the isolated structure are presented in Equation

(4.38). They are as follows
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1545 0 0 O

1o 103 0 o0
Ms=10 0 100 o|*9
00 0 995

78706 —78000 0 O
—78000 156000 -78000 O
0 —78000 156000 -—78000

0 0 —78000 78000

5453 -9.1 0 0
-9.1 30.88 -9.1 0fNs
0 —-9.1 3051 —-91| m
0 0 -91 2135

K, = N/m (5.5)

C; =

The portions of the matrices related with common DOFs at the interface
between subsystems include contributions from both subsystems. The damping value of
the VOD is added to the related DOF of the damping matrix of the isolated structure in
Equation (5.5) for the hybrid controlled structure, as follows

5453+c¢, —91 0 0
-9.1 3088 -9.1 0 |Ns
0 —9.1 3051 —9.1 | m
0 0 —9.1 2135

C, = (5.6)

The matrix C includes a varying value cp, which is the damping value of the
VOD. Its numerical values were assigned as: 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000, 1500, 2000, 2500, 3000, 10000, 15000, 20000, and 25000 Ns/m (see Section
5.3). The equation of motion of the hybrid controlled structure in Equation (5.4) is

transformed into a first order state-space representation as follows

.ks(t) As x4(t) Gy o
[Zgg] otk —m-c] [38] +[5]5o (5.7)

where x(t) is the state vectors. w,(t) is the disturbance. A; is the state matrix. G is
the disturbance vector. The state-space representation of the system was constituted by
the equation of motion of the model structure remaining in the linear region. In all
formulations, the states were chosen as the floor displacements and velocities relative to
the ground. There is not an explicit control input to the system since the control effect is

applied by changing the damping value of the VOD. The floor displacements and the
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damper force were assumed to be sensed. The measurement equation of the hybrid

controlled structure is as follows

ys(t)
_qlnoisy(t)_
qznoisy(t) i 0
. t — 4x4 4x4
qsnolsyé; ot 00 0] %s(®) +v(®
Q4noisy

/o noisy ().

D

(5.8)

where y¢(t) and D are the measurements and its matrix, respectively. v(t) is the
measurement noise. The measured terms contain some amount of measurement noise
v(t). In order to distinguish between the states and the measured terms, the subscript
noisy was added. On the other hand, the measurement vector y¢(t) does not have a
subscript noisy since it is well-known that it contains noisy terms.

In the simulations, the observer and regulator was designed priori to the
calculations of the responses. Therefore, the stiffness of the isolators was assumed to be
a constant value and was not determined hysteretically. On the other hand, if the isolator
properties had been determined hysteretically, then a constant stiffness would have used
for the priori designs and hysteretic values would have been utilized for the response
calculations. This remedy corresponded to the special architecture of the code within
MATLAB. The responses would not have differred dramatically in constant and
hysteretic stiffness cases. Therefore, the choice of constant stiffness would not effect the
responses significantly (see Section 4.7.1).

The undamped periods and frequencies of the base isolated structure are
presented in Table 4.5. The original data of the Imperial Valley event in the frequency
domain is presented in Figure 4.25. As long as the expected seismic excitations obey the
frequency trends as shown in Figure 4.25, the isolated structure does not require any
further design consideration. If a near-fault earthquake occurs, on the other hand, then
the isolated structure is likely to be excited by large amplitudes of motion as can be
depicted from Figure 5.17 and Figure 5.18. At this stage, the significance of a VOD
becomes apparent. It can be adjusted to have small damping in the case of small

amplitude vibrations, or large damping in the case of large magnitude vibrations.

90



5.5. Linear Quadratic Gaussian (LQG) Control of the VOD

At the early stages of the current study, different control methods were applied
for the VOD mounted structure. The controller studies started with the LQR method. In
case of near-field seismic excitation, there were some unacceptable single peaks in the
displacements of LQR. Then, the on-off control was implemented in place of LQR. The
absolute floor accelerations were too high in near-source seismic data case. Later,
H,/LQG control was applied. The problem was similar to the one in the on-off control.
Finally, the route was oriented towards the LQG control. Besides, in real-world
applications with state feedback control all the states of the system have to be known.
Nevertheless, quite often it is not practical or possible to measure all the states. This fact
motivates the researchers to employ observers in the control of civil engineering
structures, in which some of the states have to be estimated from the measurements.
Therefore, in the present study, special attention was paid for the subject of observers in
the context of the LQG control.

In stochastic optimal control, inclusion of Gaussian disturbance and
measurement noise into the system definition convert the problem from a deterministic
LQR design into a LQG control. In some cases, it is not possible to access all the states.
Hence, they are not available for feedback. Therefore, they have to be estimated from
measurements. The LQG algorithm is a combination of a linear quadratic estimator
(LQE) and a LQR. Independent design and computation of two stages are guaranteed by
the separation principle (Basar et al., 1998). Brezinski (2002) divides the optimal
feedback control for a linear stochastic system into two designs: the optimal observer to
estimate the states of the system and the optimal deterministic controller which is fed by
the observed states.

Additionally, the controller is fed by the observed states assuming that they are
the actual ones since the system state is not completely accessible, which is known as
the certainty equivalence principle (Bosgra & Kwakernaak, 2001). The observer and
controller are designed individually. Then, they are combined by the feedback relation
u(t) = —Kx(t) (for a time-invariant system). For a time-invariant continuous-data

linear system

x(t) = Ax(t) + Bu(t) + Gw(t) (5.9)

91



whose measurement equation is as follows
y(t) = Dx(t) + v(t) (5.10)

where A,B,G and D are the state, input, disturbance, and measurement matrices,
respectively. x(t),u(t) and w(t) are the state, input and disturbance vectors,
respectively. y(t) and v(t) are the measurement vector and its noise, respectively.

A stochastic observer may be assumed to be in the form of the state equation
(5.9) since it will reproduce the state by an arbitrary precision (Bosgra & Kwakernaak,
2001). Nevertheless, the disturbances cannot be included to a conventional stochastic
observer system since they are not known during the event. The definitions of the

variables in Equations (5.9) and (5.10) are presented in Table 5.3.

x(t) = AZ(t) + Bu(t) + L(y(®) — y(®)) (5.11)
with a measurement equation without measurement noise, as follows
y(t) = Dx(¢) (5.12)

where X(t) is the observer state vector that represents the estimate of x(t). The extra
input term in Equation (5.11) is the measurement error term y(t) — y(t). It provides a
correction, and the correction is active until the estimation error becomes zero. L is the
observer gain, which is a weighting matrix that relates the error in the measured values
to the state estimates. This correction is the key idea of the observer. Substituting the
observer measurement equation into the observer system yields the common form of the

observer system as

A
x(t) = (A — LD) X(t) + Bu(t) + Ly(t)

(5.13)
where 4 is the state matrix of the observer.
The observer differential equation presented in Equations (5.11) or (5.13) is

similar to the system differential equation in Equation (5.9) with an additional weighted
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error term of the measured values. The control input is the same in both equations. But,
the disturbances are not fed into the observer system equation since they are not known.

In the present work, the observer gain was obtained by the Kalman-Bucy filter,
which is a stochastic predictor-corrector type estimator. It is optimal in the sense of
minimizing the expected value of the squared state estimation error (Equation (C.13)). It
also filters out sensor noise from the measurements.

The independence of the observer and the controller design is shown for the
system in Equations (5.9) and (5.10). A full-state feedback is combined with a Kalman-
Bucy filter. The states of the resultant closed loop system are composed of the actual
states x(t) and the estimation error e(t) = x(t) —X(t) (Equation (C.7)). The
fundamental aim of any observer is estimating the actual states properly. Therefore, the
estimation error is chosen as a convenient tool to exhibit the system behavior. In
Kalman filter design, the performance index to be minimized is chosen in terms of the
estimation error (Equation (C.13)). Substitution of the feedback law u(t) = —Kx(t)
and X(t) = x(t) — e(t) into Equation (5.9) yields

x(t) = (A— BK)x(t) + BKe(t) + Gw(t) (5.14)

The error system is performed by subtracting Equation (5.13) from Equation

(5.9). Then, the measurement equation in Equation (5.10) is plugged into it, and the
error system appears as in the following form,

e(t)=(A—-LD)e(t) + Gw(t) — Lv(t) (5.15)

Collecting Equations (5.14) and (5.15) in matrix form yields

Ac
el =" Q2| (v [Sr0

A

Dynamics of the system in Equation (5.16) is governed by the eigenvalues of the

coefficient matrix A of the homogeneous part of the equation. The characteristic

equation of the system is the product of the characteristic equations of the regulator and
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observer since A is a triangular matrix. Thus, the controller and the observer are
independent of each other (Bosgra & Kwakernaak, 2000; Schemmann, 1997; Brezinski,
2002). Additionally, stability of the LQG controller is validated by the asymptotical
stability of two independent subsystems whose eigenvalues should have strictly

negative real parts.

5.5.1. Kalman Observer

While controlling the seismic response of the civil engineering structures, some
of the states have to be estimated from the measurements since quite often it is not
practical or possible to measure all the states. At the former simulations of the Kalman-
Bucy filter, it was not possible to obtain the desired ratio between the poles of the
observer and the system for all the modes of the base-isolated and damped structure (see
Equation (5.22)). Some of the modes were not possible to speed up, while others were
extremely fast. The slow modes were undesired because they may have been too slow to
approach the true modes. The fast modes were unacceptable due to stability constraints.
The remedies were investigated, which did not increase the frequencies of the slower
modes (see Section 5.5.2). Thus, for the numerical simulations, it was decided to
constitute a Kalman-Bucy filter functionality instead of utilizing the Kalman-
functionality within MATLAB. For this purpose, the present subsection was formed to
increase the understanding on the inner dynamics of the Kalman-Bucy filter. The
derivation of the Kalman filter, which was a discrete-time formulation, was presented in
Appendix C. In the present research, continuous-time systems are dealt with. Therefore,
after deriving the Kalman observer, the Kalman-Bucy filter for continuous-time
problems was obtained from a limiting process of the Kalman estimator. The details
were presented in Appendix B and D.

An observer is an algorithm utilized to estimate the states of the system. If the
dimensions of the system and the observer state vectors are of the same size, then it is a
full-order observer, which is the case for a Kalman filter. Otherwise, it is a reduced-
order observer.

If a system is deterministic, then it does not contain any randomness while
evolving the future states of the system. It gives the same output for a certain input

starting from a certain set of initial conditions. In reality, the process may be corrupted
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by some unwanted input signals, as disturbance (process noise). Additionally, some
measurements may be required, and measurements are corrupted by some degree of
noise, biases, and device inaccuracies. Then the system turns into a stochastic one. An
observer may be deterministic as a Luenberger observer or may be stochastic leading to
the Kalman or Kalman-Bucy filter (Meirovitch, 1989).

In 1960, Rudolf Emil Kalman represented a recursive solution to the discrete-
data linear filtering and prediction problems (Kalman, 1960). One year later, Kalman
and Bucy extended the formulation for continuous-time linear systems (Kalman &
Bucy, 1961). The fundamental problem is to predict the internal states of a linear system
by accessing only to the noisy sensor measurements. The Kalman and Kalman-Bucy
filters perform stochastic estimates, which are optimal in the sense of minimizing the
state estimation error covariance under predefined noise covariances (Meirovitch, 1989;
Welch & Bishop, 2001).

The system utilized in Chapter 5 is time-invariant for each orifice opening of the
VOD. However, during the derivation of the Kalman filter, a time-variant formulation
was preferred to prevent any knowledge loss that might appear due to the assumption of
the system being time-invariant. At the final stage, the formulation is adopted for the
time-invariant system.

For a linear time-variant system, the process to be estimated is presented as a

linear combination of the previous state x;_;, control input u;_,, and process noise

w;_; in discrete-time.

Xj = ¢j_1xj_1 + I"j_luj_l + /lj_1Wj_1 (517)

whose measurement model is as follows

yj = H;x; + v; (5.18)

The linear stochastic time-variant plant model is summarized in Table 5.2 for
continuous- and discrete-time cases. The definitions of the variables are presented in

Table 5.3. The subscript j indicates the jth time step.
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Table 5.2. Linear time-variant plant and measurement models

Model Continuous-time Discrete-time
Process x(t) = A(®)x(t) + B(Ou(t) + G(Ow() | xj = Pj_1xj_ 1 + Tj_uj_; + Aj_wj_4
Measurement y(t) = D(t)x(t) + v(t) yj=Hjx; + v
. E{w(t)} =0 E{w;} =0
Process noise
E{w(®)w" (1)} = Q(©)5(t — 1) E{w;w]} = Q;4( — i)
Measurement E{fv(t)}=0 E{v;}=0
noise E{v(®)vT (1)} = R()S(t — 1) E{vjvl} = RiA( - )

Table 5.3. Definitions of terms in Table 5.2

Continuous-time Discrete-time Dimension

X State vector X State vector at time ¢; n,xl
Matrix transforms the previous state to the

A State matrix D, current state in the absence of either a NeXNy

forcing function or process noise

B Control input matrix | Control input matrix at time £;_; NyXMNy,

u Control input vector Uj_q Control input vector at time ¢;_; n,x1

G Disturbance matrix Ay Disturbance matrix at time t;_4 NyXMN,,

w Disturbance wi_q Process noise (disturbance) at time t;_; n,x1

y Measurement Y Measurement at time t; nyx1
Matrix describing the noiseless connection

D Measurement matrix H; between the measurement and the state Ny XMy

vector at ¢;

v Measurement noise v; Measurement noise at time t; n,x1

Q  |Positive-definite covariance matrices off ~ Q; Positive-definite covariance matrices of N XMy

R process and measurement noises R; process and measurement noises NyXNy

1) Dirac delta function A Kronecker delta function 1x1

The main idea of the Kalman observer is similar to the one presented in
Equation (5.11). Distinctively, it is not a single-step algorithm, it is a predictor-
corrector type algorithm. Firstly, a priori predictions X; and IP; for the state estimate

and estimation error covariance are performed by means of the estimates of the previous

step, Xj_; and P;_;. Then, these estimates are corrected or improved by performing an
actual measurement y;at the current step. The actual measurements correct the
predicted state by adding the residual weighted by a gain factor L;. A similar

improvement is performed for the estimate error covariance. The steps of the Kalman
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estimator are summarized in Figure 5.4 (see Appendix C for a detailed explanation of

equations displayed in Figure 5.4).

PREDICTOR CORRECTOR

Perform a priori state estimate X} Compute Kalman gain L

Ly = Pj H"(H; Py H;" +R)™"  (C13)

< Measurement y;

X = f—lif—l +l‘j_1u]-_1 (C())

Update state estimate X; by measurement y;

Perform a priori error covariance estimate P}’ PO —
x}‘ :xj +I].4}(yl—Hij) (C4)

Py = i1 P ®i” + Ao Qi AT (C11)

Update error covariance IP;
P; = (1 - L;H;)) P} (C.20)

Previous estimates for ®;_; and P;_,

Figure 5.4. Kalman filter (discrete-time) (The equation numbers belong to Appendix C)
(Source: Welch & Bishop, 2001)

In the current optimization problem, it is desired to determine optimal state
estimates. Therefore, a state error, which is the difference between the real and
predicted states, would be the most feasible variable to be utilized in the cost function.
Therefore, the heart of the Kalman observer design, the gain L;, is determined by
minimizing the expected value of the squared state estimation error. The computational

origins of the Kalman filter are presented in Appendix C. The Kalman gain is as,
L = P; H;"(H; P; H;" + R;))™* (5.19)

where ;" is the covariance matrix of the error of the a priori state estimate.
Furthermore, the statistical assumptions of the Kalman filter can be summarized as
follows:
e The initial state has a known mean and covariance.
e The disturbance and measurement noise sequences w; and v; are white
(spectrally) and zero-mean (statistically) random signals with known

autocorrelation of
E{w;wl}=Q; 4G — 1) (5.20)
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E{v;v[} =R; A( — 0)

where Q; and R; are positive-definite covariance matrices.

e The initial state (or the initial state error) and two noise sequences are

uncorrelated.
E{x,v’} =0 Vi
E{x;wi}=0 Vi (5.21)
Efviwl}=0  vij
The autocorrelation function of a signal n(t) is

E{n(t)n” (1)} = T(t) §(t — 1) where T(t) is the positive definite covariance matrix of
the signal. If the signal is stationary, then spectrum of its autocorrelation function is
constant, meaning that the covariance matrix does not vary with time (E{n(t)n’ (1)} =
TH(t —1)).

White noise is a random signal whose autocorrelation function (its correlation
with itself over time) is a delta function, meaning that white noise is completely
uncorrelated with itself at any time except for the present. The whiteness of a signal is
represented by a delta function as a correlation function. In continuous-time case it is a
Dirac delta function as §(t — 7), and in discrete case it is a Kronecker delta function as
A = 10).

The Kalman filter describes a recursive solution to the discrete-data linear
filtering problem. In a recursive procedure, the key point is the use of the results of the
previous step to calculate the desired result of the current step. The recursive nature is
one of the attractive features of the Kalman filter in contrast to other approaches, such
as the Wiener filter, in which all the past data are required to perform calculations at the
current step (Brown & Hwang, 1992).

It is required to give information about the stability of the filter in steady-state
case roughly. In most of the problems, within a certain period of time after starting the
initiation, the Kalman filter reaches to a steady-state or quasi-steady-state case, and the
gain becomes constant (Brown & Hwang, 1992). For the asymptotic stability of the
Kalman-Bucy filter, the closed loop system should have eigenvalues whose real-parts

are strictly negative (Williams & Lawrence, 2007).
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Furthermore, the duality of two optimization problems (the Kalman (or Kalman-
Bucy) observer and the LQR problem) was mentioned briefly: In both cases, a quadratic
cost function is minimized subjected to linear dynamic constraints. The differential
equations (Equation (G.13) and Equation (D.24)) and their solutions have the same
shapes (Meirovitch, 1989; Williams & Lawrence, 2007; Stengel, 1994; Grewal &
Andrews, 2008).

The numerical calculations were performed via the Kalman-Bucy function
coded within MATLAB. The solution of the ARE in the optimization problem was

performed via the MATLAB command care abbreviated for continuous-time ARE.
5.5.2. Observer Design

The fundamental design criterion for a convenient observer is the measure of the
closeness of the observed responses to the simulated responses. Another design criterion
1s how fast its modes are compared to the modes of the original system. In the literature,
it is suggested that the modes of an observer should be 2-4 times faster than those of the
system (Arikan & Ercan, 2011). Extremely fast observer modes are unacceptable due to
the stability constraints. The ratio of the real parts of the poles of the observer to those

of the system is defined as,

real(eigenvalue(A)) _ real(eigenvalue(A — LD))

PoleRatio = (5.22)

real(eigenvalue(A))  real(eigenvalue(A))

The real component is responsible for determining how fast the response
approaches to zero while the imaginary part creates the oscillatory behavior (see
Appendix F). Therefore, the ratio of the real parts of the poles is chosen as the decision
criterion for the observer design.

For the Kalman-Bucy filter, the noise variances Q and R were selected in such a
way that the variable PoleRatio was aimed to be in the range of 2-4. At the former
simulations of the current study, it was not possible to obtain this ratio for all the modes
of the base-isolated and damped structure. Some modes were not possible to speed up
(PoleRatio~1), while others were extremely fast (PoleRatio~30 to 120). This fast
ratio was unacceptable due to stability constraints. On the other hand, slow modes of the

observer were undesired (PoleRatio < 1). Various Q and R values were examined,
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nevertheless any desirable result was not obtained to increase the frequencies of the
slower modes of the observer. This may have been due to the fact that a convenient

observer was searched in a range that was limited by the @ — R couples tried.
5.5.2.1. Modification of the Kalman-Bucy Observer

In the present study, an observer similar to the one in Equation (5.13) is
designed for the hybrid-controlled building model in Equation (5.7). There are not any
explicit control inputs to the system since the control effect is applied by changing the

damping value of the VOD.

xX(t) = Ax(t) + Ly(¢t) (5.23)
y(t) = Dx(1)
where X(t) is the observer state. 4 is the state matrix of the observer as A = A — LD
where L is the gain matrix of the Kalman-Bucy observer. y(t) is the vector of measured
values.

In a regular Kalman-Bucy observer, the disturbances are not fed into the
observer system equation since they are not known. On the other hand, in structural
engineering applications, this is not the case. The ground excitation can be recorded and
be sent to the observer in addition to the measurements during the event. While
recording, measurement noise is included to the disturbance. The observer system in

Equation (5.23) is modified to reflect this special feature as follows

X(t) =AR(t) + Gwyoisy(t) + Ly(t)
y(t) = DR(t)

(5.24)

The term wy,;s, (t) in Equation (5.24) indicated this unusual noisy disturbance
case. In the present simulations, the observer was designed for the sub-structured base
and superstructure, separately (see Section 5.5.3 and 5.5.5.1 for details).

The floor responses of the superstructure were observed in absence of a
controller to validate the enhancement of the modification of the Kalman-Bucy filter. It

was aimed to focus only on the distinction which arose by modification of the observer.
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Therefore, the superstructure was utilized instead of the isolated structure to design an
observer with desired poles (for the diagonalized superstructure).

The responses of the two observers were compared with the simulated
responses. The two observers were the original and modified Kalman-Bucy estimators.
The displacements and velocities of the first floor are presented in Figure 5.5 and Figure

5.6 for the Imperial Valley and Diizce earthquakes, respectively.
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Figure 5.5. The first floor responses due to the Imperial Valley event (only
superstructure and no control action)
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Figure 5.6. The first floor responses due to the Diizce event (only superstructure and no
control action)
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The same Q — R couple and the same observer gain matrix L were utilized for

the conventional and modified observers. Q = 1 for the disturbance and R had a shape

1 0 0
of identity matrix as 1y [O 1 0] for the measurement noises. r; = 0.001, 0.001, and
0 0 1

0.1 for the three independent subsystems. An conditional loop was coded to determine a
convenient Q — R couple for a better observer design. The PoleRatios defined in
Equation (5.22) are 1.04, 1.94, and 3.16 for states of the subsystems, respectively.

The responses of the conventional observer for both excitations were
unacceptable. Additionally, there was some amount of phase difference in the response
of the conventional observer. On the other hand, the structural response with the
modified observer overlapped with the simulated response. Consequently, the

enhancement of the modification of the Kalman-Bucy filter was observed.

5.5.2.2. Selection of Q and R Values by Genetic Algorithms

The GA studies mentioned in the present subsection were performed only for the
superstructure, not for the isolated structure. By doing this, it was aimed to encounter
with the numerical difficulties step by step. Thus, in the first instance, the calculations
were started by the superstructure whose damping matrix is proportional. At the end of
the GA studies, even in case of proportional damping, various numerical challenges
occurred in GA. Consequently, the GA studies were not utilized select a convenient
Q — R couple. The details about the GA studies are presented in the following lines.

In the current study, the poles of the observer could not be placed in desired
ranges by convenient selection of @ — R couple. Therefore, a genetic algorithms study
was performed to obtain the @ — R couple in such a way that PoleRatio values in the
range of 2-4 were obtained.

In genetic algorithms (GA), the design variables which minimize the objective
function are searched within the defined bounds and under some constraints. The range
of the initial conditions, which the genetic algorithms start calculations, is very
important. Usually, the success of a case depends on the fact that whether the selected
range of the initial conditions is close to a global extremum.

In the present studies, the objective (fitness) function was chosen as the sum of

square of the difference between the simulated and observed states. The design
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variables were the elements of the @ and R matrices. PoleRatio was applied as the
nonlinear constraint to force the GA tool to find the optimal @ and R matrices in such a
way that the observer poles were in the desired range.

In general, the algorithm works as follows: First, the GA produces design
variables within the boundaries by means of the range of the initial conditions. Then,
these design variables are sent to the constraint file to check whether the constraints are
satisfied. If they are fulfilled, the design variables are sent to the fitness function file.
On the other hand, if they are not satisfied, then the GA should produce new design
variables that satisfy the constraints.

In the present GA studies, none of the cases explained in the previous paragraph
were obtained for the Kalman observer. For most of the design variables, MATLAB
quitted the GA calculations due to an error that occurred in the Kalman function of
MATLAB instead of trying a new set of design variables. Additional constraints were
added to overcome the numerical problems in the Kalman function, and this locked the
system. Therefore, some of the constraints, which were directly related with the
problem, were not taken into consideration. As a result, not being able to reach any
results in GAs was the motivation to derive the formulation in the appendices B, C, and
D and to utilize the Kalman-Bucy function which was coded within MATLAB in the
context of the present thesis.

Various remedies were conducted such as reducing the number of design
variables, changing the boundaries, changing the range of the initial conditions, and
changing the constraints. The results were not satisfactory. Later, the problem definition
was completely changed, and the objective function was chosen as the PoleRatio. The
results were similar to the previous ones. At the end, the GA studies were not utilized to
select a convenient @ — R couple since global extrema could not be obtained in any of

the calculations.

5.5.3. Substructured Form of the Building for the Observer Design:

Base & Superstructure

The observer was aimed to be designed for independent subsystems. These
independent subsystems were obtained via diagonalization. On the other hand, the base

isolated structure could not be diagonalized since its damping matrix was non-
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proportional (see Section 3.1 and Section 5.5.5.1 for details). Therefore, the structure
was sub-structured into the base and the superstructure for the observer design as in
Figure 5.7. The responses were calculated for the 4-by-4 structure presented in Section

5.4.

q3(t)
nma —>
C3 k3
=
rl__lﬁ‘ q2(t)
m, >
Cy ko

E.(t) + Fi (1)

qp(t)
my —>
KT
g\t

Figure 5.7. Substructured configuration of the structure for the observer design— base
and superstructure

In Figure 5.7, my, and m are the base and floor masses. ¢, and c; are the base
and floor damping. k; and k; are the base and floor stiffness for i = 1,2,3. The forces
emerged due to the sub-structured configuration (F, = ¢;(q,(t) — q,(t)) and F;, =
k1(q.(t) — q,(t))). The state-space representation of the base that is shown in Figure

5.7 1is as follows

xp(t) = Apxp(t) + Gpwy (1)

xp(t) v xp(t) __Gb ’Wb(t) ]

: 0 1 —_— 0 o0 0 1[dg(®) (5.25)
C'I‘b(t)] = |-—tkyiry —(cp+p+c1) [‘?b(t)] +_1 L2y C_ll lch(t)]

O |, ™y v (t) my  mpl|gy(t)

where x,(t), 4, and G, are the state vector, state matrix, and disturbance matrix of the
base, respectively. The last two terms in the disturbance vector w,, (t) come from the

superstructure. k4 is the stiffness of the first floor. ¢, is the stiffness-proportional part of
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the damping of the first floor and is approximately assumed to be [k;. The

measurement equation is

Yp(t) = Dpxp(t) + v(t)
yp(t) Dy,

™ 0] (5.26)
fDnoisy(t)l N [0 —CD] xp () + (1)

where y,(t) and D, are the measurements of the base and its corresponding matrix,
respectively. v(t) is the measurement noise. The state-space representation of the

superstructure is as follows

X5 (t) = Agsxss(t) + Esswss (t)

Wss(t)
A 03x3 5 27
: 03x3 13x3 —_ kl -1 o qg (t) ( )
Xss(t) = [_M -1 _M."c xs(t) + B M [ l M [ ] Qb(t)
oo (D)

where x¢(t) = [q1(t)  q2(t) q3(t) G2(6) G2(t) q3(t)]" is the state vector. Ag,
and G are the state and disturbance matrices of the superstructure, respectively. The
last two terms in the disturbance vector Wy (t) comes from the formulation of the base.
The tilde indicates that G, and W in the superstructure part of the sub-structured
formulation is different from G, and w in the state equation of the bare superstructure

(Equation (4.13)). The measurement equation is as follows

¥ss(t) = Dssxss () + (8)

Vss(t)
Q1 015y () Dss (5.28)
T2noisy | = I 0] 255(8) + v(0)
%noisy(t)

where ¥ (t), Dy are the measurements and its matrix of the superstructure in the sub-
structured formulation, respectively. v(t) is the measurement noise. The floor

displacements of the superstructure are assumed to be sensed.
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5.5.4. Prewhitening

In practice, colored noise sources are more realistic than white noise assumption.
Especially in structural engineering applications with low-frequency ground excitations,
the Kalman-Bucy filter is not appropriate since it is based on white noise disturbance
input.

In various examples of Kalman observer in civil structures, prewhitening was
applied (Schemmann, 1997; Meirovitch, 1989). Besides, prewhitening was
recommended for different applications of the Kalman observer in the literature in case
of colored noises instead of white ones (Bar-Shalom et al., 2001; Grewal & Andrews,
2008).

It is not necessary for the observer to focus on the high frequencies that are not
present in any ground excitation record. If it is concentrated on the earthquake-related
frequencies, then its performance will be better. In this light, the plant is prewhitened by
augmenting the system by a shaping filter. It is important to note that, for a prewhitened
system, the observer performs better within the defined frequency range while
performing worse outside of this range when compared to the original (raw) controller.
The resulting system is a linear system driven by white signal (see Figure 5.8). The

observer is designed for the augmented system.

d\\’hite Shapl ng dcolored System response
filter

Augmented system

Figure 5.8. System augmented by a shaping filter for prewhitening

In the current research, all the responses were calculated with respect to the
ground. Hence, the earthquake acceleration signal was applied as an input to all degrees
of freedoms. At the beginning, only the base was prewhitened. The responses of the
system were satisfactory. Therefore, the superstructure was not prewhitened although its
input was ground excitation, which was a colored signal.

If the responses of the system had been unacceptable, then the superstructure
would have been prewhitened, and the augmented superstructure would have been

diagonalized to design observers for the three independent subsystems. On the other
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hand, if the whole system had been prewhitened together including the base, then it
would have been convenient to apply the same shaping filter to the base and to the
superstructure since their input signal was the same.

The shaping filter was designed as a second-order low-pass transfer function as

follows

wé
5?2 + 20w,s + w?

(5.29)

where w, is the cut-off frequency in rad/s.

In order to determine the value of w., the two different earthquake records,
which were used in the present study, were sent to the filter. The smallest w, value that
resulted in the same output as the input was found by trial-and-success. Finally, the cut-
off frequency w, was specified as 27t - 100 rad/s.

A filter response was desired in such a way that it converged to a resultant value
as fast as possible without performing any oscillations. Therefore, an over-damped case
was chosen (¢ > 1.0). On the other hand, if the damping ratio had been chosen to be
1.5, then the poles of the filter would have become -1645 and -240. Extremely fast
modes were unacceptable due to the stability constraints. Therefore, the damping ratio
was chosen 1.01 which was at the boundary of the region of the over-damped response.
The damping ratio 1.01 led to poles of -724 and -546. Hence, the fastest pole got closer
to the origin while the magnitude of the other pole increased. The absolute values of the
poles were also high, and this case was due to the high value of the cutoff frequency. In
order to investigate the response, if ¢ had been chosen as 0.5, then the poles would have
been —314 + 544i, leading to an oscillatory behavior which was undesired in the
present case (see Appendix F for the response of second-order systems). Hence, the

damping ratio ¢ was chosen 1.01. The system of the applied shaping filter is as:

AsF Gsk
: —1269 —394780 1] . 5.30
ksr(0) =77 780 e () + [ ] ) (5.30)
g rigperea® = [0__394780] x5r (1) (5.31)

D
Ysr(t) SF
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The output of the shaping filter is the filtered ground acceleration. Different
shaping filters can be designed due to the needs of the random process (Grewal &
Andrews, 2008). In the present example, the base in Equation (5.25) is augmented by
the shaping filter defined in Equation (5.30) and Equation (5.31) for prewhitening. The
ground excitation ¢4 (t) in the disturbance vector wy,(t) of the base is a colored signal

in Equation (5.25). Therefore, Equation (5.25) turns into the following form as,

Gp wp(t)
0 0  071|Dspxsr(t)
. 5.32
HO=4xnO+|_, o all w® (-32)
m, my 41(t)

Taking the term D¢pXgr(t) out of the vector wy, (t) yields,

Gp
r—*—\

0
xp(t) = Apxp(t) + [ 1] Dpxgp(t) + G, ql(t)] (5.33)

41(0)

By collecting the systems in Equation (5.33) and Equation (5.30) in matrix form, the

system of the augmented base is obtained as follows

Wab ®

Xsr(t) Agr 1 lxsp(t) Gsr 191(0)
Gg(t)

Xap(t) Xap(t)
[xb(t)] [ GbDSF] [xb(t)] [ om] lql(t)‘ (5.34)
0,2 023
where A, and G, are the state and disturbance matrices of the base that is augmented
by the shaping filter, respectively. x,;,(t) and w,,(t) are the state and disturbance
vector of the augmented base, respectively. x,(t), 4,, and G,, are the state vector, state
matrix, and disturbance matrix of the base, respectively. G, is the first column of the
disturbance matrix of the base. x5z (t), Asp, and Dgp are the state vector, state matrix,
and measurement matrix of the shaping filter, respectively. q,(t) and q,(t) are
displacement and velocity of the first floor of the superstructure. G4 (t) is the ground

acceleration. The measurement equation of the augmented base system is as
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Yap () = DgpXap(t) +v(8)

Dgp
Yab(®) Dy (5 35)
CIbnoisy(t) 1 0O 0 0 ‘
fnnoisy(t)lz 0 —¢p 0 o w®FVO

where y,;,(t) and v(t) are the measurement vector and its noise, respectively. The
observer of the augmented base is modified as in Equation (5.24) for the ground
excitation case since the earthquake shaking can be sent to the observer in a recorded

form. It is presented as follows

Wabnoisy(t)
—t

N 0 Yap(t)
Aap
N R q1(8) Db oisy (O
Xap(t) = (Aap — LapDap) Xap(£) + Gap q,(t) + Lgp fDnOfsy(t)] (5.36)
. noisy
qgnoisy (t)

/yab (t) = Dgp Qab ()

where X, (t) is the observer state vector that represents the estimate of x4, (t). L,y is
the observer gain matrix of the augmented base. ¥, (t) is the observer measurement

vector. wabnoisy(t) is the disturbance vector of the observer of the augmented base.

q.1(t) and g,(t), on the other hand, are the inputs from the superstructure. Therefore,
they do not contain any noise. The situation is similar in the superstructure formulation.

It has been emphasized earlier that the recorded earthquake acceleration were
sent to the observer during simulations (see Section 5.5.2.1). Noise was added to the
disturbance signal numerically due to the recording process. The subscript noisy in

Wabnoisy(t) indicates the unusual noisy character of the disturbance vector of the

observer.

The augmented observer is focused on a smaller frequency range so that it may
have a better performance within the related frequency range and may have a worse
performance out of the related frequency range compared to the non-augmented system.
The original and augmented systems are not identical anymore. Therefore, their

simulated responses are not similar.
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The responses of two observers without and with a prewhitened base were
calculated to validate the enhancement of the prewhitening. The base responses are
presented without and with prewhitening in Figure 5.9 and Figure 5.10 for the Imperial

Valley and the Diizce earthquakes, respectively.
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Figure 5.9. Base responses (a) prewhitening was not applied to the base and (b)
prewhitening was applied to the base (the Imperial Valley earthquake)
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Figure 5.10. Base responses (a) prewhitening was not applied to the base and (b)
prewhitening was applied to the base (the Diizce earthquake)
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Despite violating the white noise assumption of the Kalman-Bucy filter, the
conventionally designed observer estimated responses of the superstructure well. But, it
was not successful to predict the base responses (see Figure 5.9(a) and Figure 5.10(a)).
Therefore, the system was prewhitened to improve the performance of the observer by
satisfying the white input prerequisite of the Kalman-Bucy filter.

The enhancement of the prewhitening in the base responses were observed in
Figure 5.9 and Figure 5.10 for the Imperial Valley and Diizce earthquakes, respectively.
The nonaugmented observer performed well in the simulations except for the base
responses. The nonaugmented observer was not able to predict the base velocity
correctly while estimating the base displacement successfully with a phase difference
between the simulated and observed responses. On the other hand, the observer could
estimate the base responses successfully when prewhitening was applied even only to
the base. The responses of the prewhitened system are presented on the right-hand-side

of the figures.

5.5.5. Observer of the Superstructure

The base system was prewhitened only. This improved the responses of the
observer of the base, which was the only remaining problem in the simulation results.
Therefore, the superstructure was not augmented for prewhitening although the colored
signal (earthquake acceleration) was sent to it.

In the observer design, transforming any system into generalized coordinates
and designing Kalman-Bucy observers with convenient poles for these independent
subsystems may be a convenient engineering solution. On the other hand, the
augmented base cannot be diagonalized since the damping ratios of the base and the
shaping filter have extremely different magnitudes ({ = 0.04 and (s = 1.01) (see
Section 3.1 for details).

In Section 5.5.5.1, the superstructure was transformed into generalized
coordinates to obtain independent subsystems. Then, three Kalman-Bucy observers with
convenient poles were designed for three independent subsystems of the superstructure.
Afterwards, the observers of the subsystems were superposed. Finally, the resultant
observer of the superstructure was obtained by transforming the superposed observers

back into physical coordinates.
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The superstructure system is presented in Equations (5.27) and (5.28). Its

observer is designed as follows

Wssnoisy () Yss(t)
“A ..
ASS qg’nolsy (t) qlno,ﬂgy (t)
Xss(t) = (Ass - Lssts) Xss(8) + G qp(t) + Lss |92noisy (®) (5.37)
qp(t) Q3 noisy )

?ss ) = D’ssiss )

where Lgg is the observer gain matrix of the superstructure. Wy . sy is the disturbance

vector of the observer of the superstructure in the sub-structured formulation. It has the
subscript noisy due to the existence of the noise in the recorded earthquake acceleration
which is sent to the observer during simulations. g, (t) and g, (t) are the inputs from the
augmented base and they do not contain any noise. The tilde indicates that the
superstructure system in the sub-structured formulation (Equations (5.27) and (5.28)) is

different from the state equation of the bare superstructure in Equation (4.13).
5.5.5.1. Diagonalization of the System Equations of the Superstructure
In the context of the current research, the superstructure (Equation (5.27))
Xss (1) = AgsXs () + GysWis (t) (5.38)
was diagonalized via the following transformation
X5s(t) = Wrgs(t) (5.39)

where x4 (t) is the state vector of the superstructure. W is the eigenvector matrix of Ay
since dynamics of a system is governed by the coefficient matrix of the homogeneous
part of the equation. ry(t) is the state vector of the superstructure in generalized
coordinates.

The time derivative of the transformation in Equation (5.39) was substituted into
Equation (5.38). Then, the expression was premultiplied by W~ results in the system

equation for the superstructure as follows
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Tes(t) = les T (t) + Ess W (8) (5.40)

in which the diagonal state matrix is Ay, = P 1AW and Gg, = W16, (see
Appendix H for details). The superstructure was diagonalized only to design the
observer. The diagonalized formulation of the superstructure was not utilized to
calculate the responses. Therefore, only the state equation was diagonalized, and the

output equation was not diagonalized. For the observer system (Equation (5.37-a)),

ASS
Iy g FoEEND ~ ~ 5.41
5 55(8) = (Ass — LysDsg) Zys(8) + Gosysore, () + Lis s () D)
The observer states were transformed via
/x\ss(t) = llJi\'ss (t) (5-42)

Equation (5.42) and its time derivative were plugged into Equation (5.41). Then,
the expression was premultiplied by W~1. Finally, the observer system equation for the

superstructure was obtained as follows

?Ss(t) = (ZSS - Z'S.S'ESS)?.SS(t) + ESS WSS(t) + ZSS?SS(t) (543)
where
L.=%1L
o (5.44)
D, = D, W

The tilde indicates that the superstructure system in the sub-structured
formulation (Equations (5.27) and (5.28)) is different from the state equation of the bare

superstructure in Equation (4.13).
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5.5.5.2. Physical Interpretation of Complex Eigen Quantities

The eigenvalues of the matrix M3l K, which is a real symmetric matrix are real
(Meirovitch, 2001). Its distinct eigenvectors are orthogonal with respect to the mass or
stiffness matrices. This case is an orthogonality with respect to a weighting matrix and
is different from the ordinary orthogonality. On the other hand, the eigenquantities of a
nonsymmetric matrix Agg in Equation (4.13) are not guaranteed to be real. Additionally,
the eigenvectors of a nonsymmetric matrix are not orthogonal with respect to a
weighting matrix. They have the biorthogonality property which means that the distinct
right eigenvectors are orthogonal to the left eigenvectors with respect to the
nonsymmetric matrix Ag.

A real mode is the shape of deformation, in which all points of the structure are
either in-phase or out-of-phase by m radians with any other points of the structure.
Therefore, all points of the structure reach their own maxima and minima
simultaneously within one vibration cycle. Additionally, all points of the structure pass
through their zero deflection position at the same time within one period.

On the other hand, relative phase differences between responses of adjacent
parts of the structure indicate a complex mode. The facts mentioned for real modes are
no longer valid for structures with complex mode shapes. A real mode looks like a
standing wave, while a complex mode exhibits a travelling deflection shape (Ewins,
2000; He & Fu, 2001).

Ewins (2000) summarizes the origins of complex modes as: nonproportionally
distributed damping mechanism in structures with close modes, gyroscopic effects of
rotation, and identical natural frequencies even in the absence of nonclassical damping
or gyroscopic effects (see Section 3.1 about the nonclassical damping).

The calculated eigenvalues and eigenvectors may be interpreted as follows:

While the real part of a complex eigenvalue is equal to {w,,, the imaginary part of it is

equal to wn\/m. The real and imaginary parts of a complex eigenvalue represents
the decay and oscillatory components of the natural frequency in the response (Ewins,
2000). The magnitude of a complex eigenvalue gives the natural circular frequency w,,
(Gavin, 2001). A complex mode shape can be defined by both amplitude and phase, or
by its real and imaginary components (Zad, 1997).
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In the state-space representation, the size of the system is twice of the number of
the DOFs, and generally the states contain the displacements and velocities. Therefore,
the eigenvectors have components for displacements and velocities. The first half of the
eigenvector belongs to the displacements, depending on the definition of the state
vector. Besides, every eigenmode appears by its conjugate pair. Consequently, a
2n x 2n complex eigenvector matrix is reduced to a nxn vector for displacement
modes, where n is the number of the DOFs. If the damping is proportional, then the
phase differences between the displacements of the related DOFs are 0 or © radians. On
the other hand, there is a certain amount of phase difference between the displacements
and velocities of the related DOFs. If the phase difference between DOFs is different

from O or & radians, this case indicates a complex mode.

0.06 002 -0.007
(-1.57rad)  (1.56 rad)\; (1.56 rad) \
0.05 0.01
(-1.57 rad) i (-1.57 rad)
= 0.03 3 0.02 -0.01 £
{/(-1.57 rad) i[(-1.57rad)  (1.56 rad) |;
TI7777 777 /77
b1 b2 b3
w, = —0.07 + 12.43i w, = —0.13 + 34.57i w3 = —0.21 + 50.09i
|w,| = 12.43 rad/s |w,| = 34.57 rad/s |ws| = 50.09 rad/s

Figure 5.11. Damped mode shapes of the superstructure (displacement phase angles of
the DOFs and damped circular frequencies of the modes are presented)

The damped mode shapes of the superstructure are presented in Figure 5.11.
Additionally, the damped mode shapes of the base isolated structure are presented in
Figure 5.12. The phase angles of the displacements of the DOFs and the damped
circular frequencies of the modes are displayed. According to Figure 5.11, all DOFs of
the classically damped structure are either in-phase or out-of-phase by approximately 1t
radians with any other DOFs of the structure. This case is also valid for the non-

proportionally damped structure in Figure 5.12.
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(-1.64 rad)
0.32
(-1.64 rad)
0.31
(-1.64 rad)
0.31
(-1.64 rad)
T
b1
w; = —0.09 + 1.24i
|w,| = 1.24 rad/s
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-0.03 L i 0.01 -0.003 |:
(1.57 rad) i(1.57 rad)  (-1.57 rad)}
SIS S (/Y /17
¢2 ¢3 ¢4
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Figure 5.12. Damped mode shapes of the base isolated structure (the phase angles of the
DOFs and the damped circular frequencies of the modes are presented)

According to the definition of the complex modes, the non-proportionally
damped structure in Figure 5.12 has real modes. It is important to note that the non-
proportionality is a necessary condition for complex modes to exist, but it is not
sufficient (Ewins, 2000). The other necessary condition is that two or more modes
should be close to each other (see (Ewins, 2000) for the discussion about the measure of

the closeness of the modes).
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Furthermore, in the literature there are different approximations for realization
of complex modes (Rad, 1997). For a second-order nonproportionally damped system, a
relationship between the real and imaginary parts of complex modes is presented in case

of real and symmetric mass, stiffness, and damping matrices (Garvey et al., 1998).

5.5.5.3. Complex Analysis

The observer of the superstructure was designed for the three independent
subsystems of the superstructure. The convenient @ — R couples were determined in a
loop to obtain a PoleRatio in the range of 2-4 (see Equation (5.22) for the definition of
the variable PoleRatio).

Then, the observer gain matrix Lg, of the diagonalized superstructure was
obtained by stacking the observer gain matrices of the three independent subsystems in
matrix form. Finally, Lg in generalized coordinates was transformed back to the
physical coordinates by Ly, = ¥ Ly, (Equation (5.44)). Some of the elements of the
eigenvector matrix ¥ presented in Equation (H.2-b) were complex eigenvectors.
Therefore, imaginary components appeared in the observer gain matrix Lgg, even L
did not contain a complex value. The imaginary components in Ly, appeared due to the
back transformation performed via the eigenvector matrix ¥. Hence, the observer state
matrix A = Ay — L Dy involved complex components that required dealing with
complex arithmetic throughout the analysis. The system matrices Ay, Gy, and D
were real matrices since they were defined for an ordinary second order mechanical
system presented in Figure 5.7.

In order to determine the responses of the system, the state equation of the
continuous system had to be solved. The MATLAB function Isim simulates the time
response of linear time invariant models to arbitrary inputs. The solution process within
Isim cannot deal with systems whose differential equations have complex coefficients.

Instead, a function was coded within MATLAB to calculate the response of the
observer of the superstructure via Equation (5.46). The general solution to the dynamic
response of a linear system defined by Equation (5.41) is presented by Equation (A.6).

It is as follows
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t

2ss(ti) = d)(ti: ti—l) st(ti—l) + J. (D(ti: T) g(T) w(T) dt (5-45)

ti—1

where X (t;) is the observer response of the superstructure at time t;. tb(tj, t j—1) is the
state transition matrix. §(7) is the input matrix, and «r(7) is the corresponding input.

In the simulations, the responses were calculated in a time loop. Therefore, the
time-variant system could be assumed to be time-invariant within each time step.
Hence, the state transition matrix ¢b(tj, t j—1) turned into ess4t (see Equation (A.9)) in
which Ay, = Ay, — L D was the state matrix of the observer of the superstructure.

Consequently, the response of the observer of the superstructure in Equation (5.41) is

calculated by
¢ @ w ()
i g(t —_—
~ y T s = [W . (T)
Ros(t) = Mo R (6) + [ MO Lss]l o) ldT (5.46)
ti—l yss

where G(t) = [Gys L] is the input matrix. (1) = [Wssnoisy(T) 7ss(T)]T is the
corresponding input vector. dt is the time increment. The first term in Equation (5.46) is
the homogenous solution, and the second part is the particular solution. The particular
solution in Equation (5.46) is a convolution integral.

In the function complexanalysis, the homogenous solution was computed via the
MATLAB command expm. The input «+(7) could not be taken out of the integral since
it was a function of 7. It was known numerically, but not functionally. Therefore, the
integral was calculated numerically via the Simpson’s 1/3 rule. The results of the
function complexanalysis were confirmed via the MATLAB function Isim in case of an
arbitrary system whose (ordinary) differential equation had real coefficients. Isim
simulated the time response of linear time invariant models to arbitrary inputs. While
confirming the results of the function complexanalysis via Isim, the inputs were formed
as step, triangle, half-period sine wave, and impulse loadings. The outputs for the first
three loading case completely overlapped. Nevertheless, the impulse responses had

different magnitudes since Isim performed interpolation within the time step, and the
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utilized time increment was not small enough to create an impulsive loading which is
similar to a white signal.

Additionally, a function was coded within MATLAB to calculate the matrix

exponential e4ssdt

in Equation (5.46) symbolicly via the Cayle-Hamilton theorem. Due
to the calculation time being long, it was preferred to employ the MATLAB command
expm instead of utilizing this coded function.

After the simulations, the responses were obtained numerically. The imaginary
parts of the displacements and velocities of the superstructure had the order of 1077,
The complex components were neglected while plotting the responses due to their very
small magnitudes. The displacements and velocities of the base did not have any
imaginary parts since the base was not diagonalized for the observer design (see

Sections 5.8.4 and 5.8.5 for details).

5.5.6. LQR Part of the LQG Control of the VOD

After designing a convenient observer, the required control force had to be
determined. The LQR design was performed for the 4-by-4 full structure, which is
presented by Equation (5.7). There was not an explicit control input to the system since
the control effect was applied by changing the damping value of the VOD. On the other
hand, the LQR design required a control matrix (see Equation (4.15)). Therefore, it was

defined as follows

(5.47)

In the usual formulation of the present research, the matrix B had a negative
sign. On the other hand, in the VOD design, the damping force was defined by f,op =
—cpqp in the MATLAB code, including the negative sign. Therefore, the matrix B of
the VOD design did not contain the negative sign (see Equation (5.47)).

The floor displacements and velocities, relative to the ground, were aimed to be
controlled. As a customary way, the weighting matrices Q and R of the LQR were

chosen in such a way that the calculated control force u and the damping force f,op
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were to be as close as possible. Initially, the Q matrix in Equation (5.48) was

determined.

o

(5.48)
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The Q matrix was chosen in such a way that its configuration coincided with the
magnitudes of the states since the states were the displacements and velocities,
respectively. The weights of the displacements were chosen ten times higher than those
of velocities harmoniously with the numerical situation (order of the velocities was
approximately ten times the order of the displacement responses in the simulations).

Additionally, the base responses were controlled ten times more heavily than
those of the superstructure since controlling the base responses would control the floor
responses indirectly. The controller allocated more control effort to the control of the
base response by increasing the damper force. This remedy decreased the translation of
the isolation.

After selection of the Q matrix, the weight of the control input, which should be
strictly positive definite, was determined as follows: Holding the value given for the Q
matrix in Equation (5.48) constant, R values were varied, and the results were displayed
in Table 5.4. The ratio of the maximum values of u and f;,,p was presented for different
Q and R values. The maximum values of the base responses were listed in Table 5.4,
and they did not completely reflect the behaviour of the states within the whole time
range. The LQR was designed for the records of the 1940 Imperial Valley and 1999

Diizce events.
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Table 5.4. Determination of the weighting matrices Q and R for the LQR design

R max|u| max|q,| | max|q,l

max|fyopl (m) (m/s)

= 5-107 0.02 0.0901 0.30
;i 5107 0.38 0.0407 0.35
§ 510 0.79 0.0400 0.39
g | 30t 1.04 0.0399 0.42
;3 1.44-10° 1.28 0.0402 0.38
g 5-107 0.79 0.1511 1.00
E 510 1.73 0.1482 0.92
§ 3-10° 2.29 0.1532 0.89
1.44-10° 3.30 0.1539 0.86

where g, and g, are the displacement and velocity of the base relative to the ground,
respectively. In Table 5.4, four digits were presented for displacements in order to show
and comment the numerical changes. The responses relative to the ground were
controlled. Therefore, the responses of the superstructure were similar to those of the
base and were not presented in Table 5.4. The positive semi-/definiteness of the chosen
Q — R values were confirmed by their eigenvalues in the MATLAB code.

The important issue in the LQR design is not the individual values of Q and R,
but the ratio between them is important. The judgement about Q and R was made by
means of Table G.1 due to the desired performance specifications. As R decreased, u
increased, hence the ratio max|u|/max|f,op| increased. Decreasing R was equivalent
to increasing Q and led to smaller values of the states, and vice versa. This case was
obvious when distinctive numerical changes were applied while selecting R values. For
instance this case was observed when a numerical value decreased from 5-107 to 5-107.
On the other, if the numerical changes in R values were not huge, this case could not be
obviously observed.

In Table 5.4, the maximum displacement values for the Diizce earthquake were
higher compared to those of the Imperial Valley event (This fact was due to the single

high peak shock with a value of 0.8g in the seismic record in Figure 2.4).
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According to Table 5.4, the R value was chosen in such a way that the damper
force was close to the calculated control force u. This situation indicated that the
damper could supply the required control effort. Control force values, which were
greater than the damper force, pointed out the case of capacity exceeding in terms of the
damping value or the velocity difference on the VOD (At an instant of the simulations,
the controller may have selected the maximum damping value of the VOD.
Nevertheless, if the velocity difference on the VOD had not been sufficient enough,
then the VOD could not have provided the required damping force.). On the other hand,
control force values smaller than the damper force indicated that the damper provided a
redundant amount of damping force. Consequently, keeping a balance between the
demands of the system (the calculated control force u) and the control effort that the
system could supply (the damping force of the VOD, f,,op), the R value was chosen as

follows:

R=3-10"8 (5.49)

A special algorithm was not coded to determine a better @ — R couple. Only a
trial-and-success procedure summarized in Table 5.4 was applied. In the context of the
present research, the studies were focused on enhancing the performance of the
observer. As a future work, some investigations by GA may be performed for Q — R

couple of the LQR to obtain such controlled responses better than the present ones.

5.6. Gain Scheduling Control

A nonlinear system can be subdivided into linear sub-systems at different
operating points, and its control law may consist of a bundle of alternative controllers.
The corresponding operating region of the system is determined by monitoring its
system variables. Then, the corresponding linear controller for the current operating
region is applied. This switching technique is the gain scheduling scheme, which is an
adaptive control technique for nonlinear systems. A similar supervisory control
architecture is presented in Figure 5.13, where cp; (i=1,2,..n) are the damping
coefficients of the damper, which belongs to different orifice openings (Spong & Tsao,

1998).
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Figure 5.13. Supervisory control
(Source: Spong & Tsao,1998)

The analysis and design of gain scheduled control systems were investigated in
detail by Shamma (1988). In the literature, there is a wide variety of applications of gain
scheduling control (Lin & Yu, 1993; Choi & Lim, 2005). It was applied for control of
web transport systems (Claveau et al., 2008), for control of air/fuel ratio in diesel
engines (Alfieri et al., 2009), and for robust global stabilization of linear systems (Zhou
et al., 2010). Gain scheduling scheme of a proportional integral control was designed
for a synchronous generator (Sedaghati, 2006). Leith and Leithead (2000) presented an
extended review of the gain scheduling literature and linearization techniques that can
be applied to the nonlinear control systems.

The stability of a system with frozen parameters does not guarantee the stability
of the system for a certain parameter trajectory. The variations in the scheduling
parameter should be sufficiently slow to guarantee the closed-loop stability of the
overall system. In the literature, various researchers investigated the stability of gain-
scheduled control systems. Shamma and Athans emphasized the necessity of developing
a theory for the stability of LPV systems without any limitations (1992). Stability of
nonlinear systems with slowly varying inputs was studied (Lawrence & Rugh, 1990).
The results of the work can be implemented in the context of gain-scheduled control
systems. The stability of switched systems with average dwell-time was studied by
Hespanha and Morse (1999). Morse investigated the estimator-based supervisory
control (1996). The stability analysis of switching H* controllers for a class of linear

parameter varying (LPV) systems with slow parameter variations were presented by
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Yan and Ozbay (2007). The asymptotic stability of switched linear systems with time
delays was investigated (Yan & Ozbay, 2008).

In the current example, the system was a LPV system, which depended on the
damping coefficients cp; (i=1,2,...18) of the VOD. Thus, the system was linearized
indirectly without applying a certain linearization procedure. Linear feedback
controllers were designed for all linear sub-systems to achieve the desired performance,
and they were linear sub-controllers. The controller consisted of these linear sub-
controllers, and its parameters were determined by monitoring the scheduling variables.
The switching logic was carried out by the supervisor. In the current problem, this task
was performed by the upper controller (see Section 5.7).

In the present example, the varying parameter was the damping coefficient of
the VOD. Damping of a mechanical system cannot be negative, therefore, cannot add
energy to the system. The damper always absorbed energy from the system, annihilating
the possibility of instability. Thus, the overall stability of the switching system was

guaranteed.

5.7. Upper Controller

In the current simulations, any explicit control force was not input to the system.
The optimal control force was calculated by the LQR and was applied to the system by
simply changing the orifice setting of the damper. The system behaved nonlinearly as
the orifice size of the damper changed. A different linear system occurred for every
different orifice size. Every lower controller and observer belonged to these linear sub-
systems. The whole system consisted of sub-systems, their controllers, and their
observers. The optimum orifice size was selected among many lower control systems by
means of an upper controller due to the system requirements. The upper controller was
designed to switch between different feedback control gains during earthquake
simulations. The system matrices A and C of the state-space representation were
calculated for different c¢p values which belonged to different orifice positions. The
optimum feedback gain and the observer gain were evaluated for each differently
damped building models. In Equation (5.50), the optimum cp value was directly
determined by dividing the additionally required damper force in the next time step by

the velocity gp of the damper.
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qu

(5.50)

Cp;

A passive device may only absorb energy from the system, which is the case for
dampers. That is why the damping force can only act in the opposite direction of its
velocity. In the present example, if the calculated optimum damping constant had had a
negative sign, then it would have been impossible to produce the required force. In this
case, the damping constant would have taken its minimum value. If the calculated cj
value had been out of the limits of the variable orifice damper, it would have chosen to
be the limit value. If the calculated ¢, value had been within the limits, it would have
rounded to the nearest possible damping value. Then, the simulation of the ith step took
place, and the optimum damping value for the next step was obtained. The damper force

was calculated for the new optimum cj, value by

Cmins CDi < Cmin
Cp; = Cpj» Cmin < Cp; < Crax (5.51)

Cmax» Cmax < Cp;

where cp;is the damping constant of the semi-active damper in the ith time step. Cipin

and ¢4, are the limit damping constants of the damper.

A numerical precaution was taken to prevent a “divide by zero” error during the
calculation of the optimum damper constant. Therefore, the smallest absolute damper
velocity was limited to 1 mm/s. This case would not have a detrimental effect to the
structural response since the worst case caused a small magnitude of force (Cpqy -
0.0012 = 250002 0.0012 = 25 N).

N m N

The upper controller also decides when the optimum control forces should be
applied. In Figure 5.14, the decision mechanism is presented. The sections when the
controller is in action are marked by the bold lines in a representational example in
Figure 5.15. Initially, the controller is at rest, during which the damper is at its
minimum resistance. Whenever the displacement of the damper gets into danger, the
controller applies the optimum damping constant to the damper. The term “danger” in

this study is defined as an isolator displacement of 3 cm or more. Once an isolator
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exceeds this value, the controller is in action until an extremum that is less than 3 cm is

reached.
if |qu| <3 cm
if QDi_1QDi< O
flag = 0 » NO CONTROL ¢, = cppin
else
HOLD THE CURRENT STATE OF CONTROL
end
else
flag=1 » OPTIMAL CONTROL
end
Figure 5.14. Decision of the upper controller
0.06
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&
k=
0.02
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‘-‘% 0
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§-0.02
=
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Figure 5.15. Illustration of the upper controller on a representational displacement graph
(the controller is in action along the sections marked by the bold line)
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5.8. Numerical Simulations

5.8.1. Interpolation & Synthetic Production of the Seismic Excitation
Data

In the current numerical simulations, the required control force was applied to
the system by changing the orifice opening of the VOD. The ground excitation record
was read and interpolated to the one fifth of the original time increment of the data due
to the computational requirements. Utilization of a smaller time increment within the
simulations made the transition among different VOD damping values smoother.
Otherwise, the rapid changes in the damper force may have caused a bang-bang type
behavior, and the responses would completely change undesiredly.

A base isolated structure is protected by lengthening the fundamental period of
the system. In a near-fault seismic event, the magnitude of the high-period components
is high. Therefore, isolating a structure that is located close to a seismic fault may cause
detrimental consequences. In the context of the present work, the seismic data were
produced synthetically by interpolating the Imperial Valley and Diizce earthquakes to
investigate the controller performance for near-fault earthquakes. Thus, a situation of a
frequency overlap of excitation and system was performed. The procedure of seismic

data production is illustrated in Figure 5.16.

dt
Original data Data should be iI'IIL'I'pU!LlIL‘d 1/ 4 41((7111_ 11))d‘t|‘ 1
dt 4dt the original time increment df
n n Or
(n—1dt 4(n — 1)dt | Or, it is more convenient to
interpolate the data to a dt/5
smaller time increment for 4-5(n-1)+1
computional reasons explained 4(n — Dadt

preyv iously

Figure 5.16. Schematic representation of how the synthetic near-fault data are produced
and interpolated

The original time increment dt was increased four times, hence the data was
shifted to the high-period range in frequency spectrum. At this point, the number of data

remained constant, while the total duration of the data was lengthened. The data became
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sparse, and it had to be interpolated to a smaller time increment due to the

computational reasons explained earlier.
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Figure 5.18. Diizce ecarthquake and Synthetic2 data in frequency domain (The
fundamental undamped period of the isolated structure is marked by a
thick line)

The synthetically produced data were named Syntheticl and Synthetic2.
Syntheticl was obtained by modifying the data of the Imperial Valley event. Synthetic2
was formed from the data of the Diizce earthquake. In Figure 5.17 and Figure 5.18, they
were presented together with the data which were utilized to produce them. Actually,

the original and synthetic data were completely different. They were presented together
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just to exhibit how the structure would be effected if an excitation closer to the structure
had acted.

The synthetic data in Figure 5.17 and Figure 5.18 were interpolated to their
original time increment dt due to the last step of the procedure illustrated in Figure 5.16
due to the computational reasons. The original data are represented by black line and the
grey line stands for the synthetic near-fault excitation. The fundamental undamped

period of the seismic isolated structure is marked by a thick line (T, Fund™— 5.07

seconds). In Figure 5.17 and Figure 5.18, the seismic data are offset to the higher period
range in the frequency spectrum. As a result, the fundamental mode of the isolated
structure will be maximally affected in case of a near-fault ground excitation.

The (under-damped) response of the seismic isolated structure is mainly driven
by the fundamental damped period. The base is assumed to have 4% damping (see
Section 4.7.1). The fundamental damped period of the isolated structure is

approximately equal to the undamped one due to the low damping ratio (T, Fund =

T, Fund /y1—{? = 5.07 seconds where { is the damping ratio).

On the other hand, the fundamental damped period of the hybrid-controlled
structure varies leading to an under-damped or over-damped response depending on the
orifice opening of the VOD. A periodic behavior cannot be observed for an over-
damped system. The exponential response is driven by the damping ratio { and the
natural circular frequency w, in Equation (F.6) and the definition of damped period (or
damped frequency) is not valid for over-damped response. Therefore, in order to form
an opinion about the response of the hybrid-controlled structure, the damped period at
the upper limit of the under-damped region was calculated: the limit damping value of
the VOD is 850 Ns/m corresponding to a damping of 81.79% (see Section 5.3). This
value leads to a fundamental damped period of approximately twice of the undamped

one (T, fund = 8.81 s). This fact should be taken into consideration while interpreting

the time behavior of the hybrid-controlled structure in Figure 5.17 and Figure 5.18.
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5.8.2. Current State in the Numerical Simulations

The current state of the system and calculations is summarized in the present
subsection. The gain scheduling control of a substructured system with a VOD was
performed. The controller is presented in Section 5.7. The block diagram of the system
is presented in Figure 5.19.

The floor displacements and floor velocities relative to the ground were
controlled. The measured story displacements and unmeasured story velocities were
observed. The controller was fed by the observed states since they were less noisy than
the measured ones by means of the filtering character of the Kalman-Bucy observer. In
a real-world application, which is not the case for the present research, the calculated
responses cannot be obtained, only the estimated and measured values are achieved.
Therefore, the controller is fed by the observed values which are less noisy than the
measured ones.

The ground excitation input to the observer was prewhitened due to the white
noise prerequisite of the Kalman filter. This was performed by augmenting the observer
system of the base by a shaping filter (see Section 5.5.3 for details). Augmenting the
base only by this method, improved the responses of the observer of the base, which
was the only remaining problem in the simulation results (Figure 5.9 and Figure 5.10).
Therefore, the superstructure was not augmented for prewhitening although the colored
signal (earthquake acceleration) was sent to the superstructure.

The superstructure was diagonalized into three subsystems to design an observer
whose poles were placed in a desired range. Three Kalman-Bucy observers with
convenient poles were designed for three independent subsystems of the superstructure.
Then, the final observer of the superstructure was obtained by superposing and
transforming them back into physical coordinates. On the other hand, the augmented
base could not be diagonalized since its damping ratios had extremely different
magnitudes. (see Section 5.5.5 for details).

The system equations of the structure and the observer, which were utilized at
the final simulations, are presented in Table 5.5. Additionally, the block diagram of the
system and the text file in MATLAB are presented in Figure 5.19 and Appendix E,
respectively. The definitions of the variables in the equations are presented in the

related sections of the thesis.
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Table 5.5. System equations utilized in the simulations
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The solutions to the state equations of the observers were obtained via the state transition matrix in an sequential way (see Equation (5.46)).




Table 5.5 was divided into two sections for the structure and the observer.
Besides, the original equation numbers are presented in Table 5.5. The noisy subscript
in the performed measurements indicates that the related variable contain some amount
of noise. The disturbance, i.e. the ground excitation, was sent to the observer after a
recording procedure. Therefore, it was noisy.

The responses of the structure were calculated via the Newmark’s numerical
integration method for multi degree-of-freedom linear systems (Chopra, 1995). The
average acceleration method was utilized in the calculations. It is unconditionally stable
for every time increment value. On the other hand, the time interval should be small
enough for the accuracy of the results. The time increment dt was chosen as 0.002
seconds for the present research. The solution to the state equations of the observers was
obtained via the state transition matrix in Equation (5.46) sequentially.

In the simulations, the relative story displacements and the damper force were
assumed to be sensed. The noise was generated by the randn-functionality within
MATLAB. Noises of all responses were formed individually. Otherwise, they would be
correlated, which could create problems in the observer design violating the
uncorrelatedness assumption of the noise sequences in the Kalman filter (see Section
5.5.1)

In order to utilize high numerical values for noise generation, the responses of
the passive damper with minimum damping value were utilized for the displacements.
The responses of the passive damper with maximum damping value were utilized for
the damper force. In real world applications, the acceleration measurements are more
noisy than the displacement measurements (Turan & Aydin, 2011). Therefore, white
noise with a magnitude of 5% of their standard deviation was added to the simulated
displacement responses as sensor noise. This value was 15% of its standard deviation
for the damper force and the ground acceleration.

In the simulations by near-fault excitation, the displacements of the passive
damper with minimum damping increased approximately ten times. Therefore, the noise
magnitude in the displacement measurements was taken as 0.5% of the displacements’
standard deviation. The noise ratios in damper force and accelerations remained
unchanged since their maxima and standard deviations were in the same range as the
response that was based on the far-field type ground excitations.

In the present simulations, the stability of the closed loop regulator was checked

although there was not an explicit control input to the system (the control effect was
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applied by changing the damping value of the VOD). Stability of the augmented base’s
observer and observer stability of the superstructure were confirmed. Additionally,
stability of the shaping filter utilized to prewhiten the base observer was checked.
Observability of the augmented base and the superstructure’s observability were
confirmed. Positive-definiteness of the chosen Q@ — R — P values was confirmed by
their eigenvalues in the Kalman-Bucy estimator designs of the augmented base and the

superstructure.

5.8.3. Block Diagram of the System

The block diagram of the system is presented in Figure 5.19. The fundamental
file of the computer program is present in Appendix E. The sub-files (or subroutines)
were executed in the MATLAB file by simply calling their filenames.

The system is mainly composed of the structure, the observer, and the controller.
The structure was splitted into two for the observer design as: the base and the
superstructure. The base was augmented by a low-pass shaping filter for prewhitening.
The superstructure was diagonalized to obtain independent subsystems for the observer
design. The observers of the base and the superstructure were designed for the
augmented base and the diagonalized superstructure. The observed responses were
calculated separately. The dashed line indicates the modification of the Kalman-Bucy
observer by sending the disturbances to it.

At the beginning of the simulation, the properties of the base and the
superstructure were defined. The ground excitation record was read and interpolated to
the one fifth of the original time increment of the data due to the computational
requirements. Additionally, this remedy made the transition among different VOD

damping values smoother (see Chapter 2 for details).
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Then, the responses of the systems with two passive dampers whose damping
values were the minimum and maximum of the damping values defined in Section 5.3
were calculated. By means of these passive responses, the noises were generated for the
variables that were assumed to be sensed. The displacements of the base and the floors,
which were relative to the ground, were assumed to be measured. Furthermore, the
damping force of the VOD was assumed to be measured. White noise with a magnitude
of 5% of the standard deviation of the simulated displacements was added to the
simulated responses as sensor noise. Additionally, for the damper force measurement,
white noise with a magnitude of 15% of the standard deviation of the simulated damper
force was added to the simulated responses as sensor noise.

After the memory allocation was performed for the variables that would be used
in the time loop, the inner controller was designed. It calculated and stored the damping
matrix, state matrix, measurement matrix, LQR gain matrix, and observer gain matrix
for all orifice opening positions (cp =100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 1500, 2000, 2500, 3000, 10000, 15000, 20000, and 25000 Ns/m, where cj, is the
damping value of the VOD). When the required damping value was determined in the
simulation loop, the corresponding matrices were retrieved among the previously
calculated matrices by means of a gain scheduling controller. This coding remedy was
prefered for reducing the calculation time. The LQR and the Kalman-Bucy observer
were designed for all damping values of the VOD (see Section 5.7 for details). The
LQR was designed for the 4-by-4 system including the base. On the other hand, the
Kalman-Bucy observer was designed for the substructured system.

Afterwards, the response calculation started in a time loop. Initially, the
controller was at rest, during which the damper was at its minimum resistance. The
plant response was calculated by the matrices of the previous time step. Then, the
measured responses were performed. The observed states were obtained individually for
the augmented observer and superstructure. The smallest damper velocity was limited to
1 mm/s since a value smaller than 1 mm/s could not be measured correctly. Hence, this
numerical precaution also prevented a “divide by zero” error in the calculation of the
optimum damper constant.

Any explicit control force was not applied to the system. The optimal control
force was calculated by the LQR, and it was supplied to the system by simply changing
the orifice setting of the damper. The upper controller was designed to switch between

different feedback control gains during earthquake simulations. The upper controller
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also decided when the optimum control forces had to be applied. The decision
mechanism is presented in Figure 5.14. The observer states were less noisy than the
measured ones. Therefore, the upper controller was fed by them. In a simulation, the
observer had to calculate the same responses as the actual system in absence of noise
since they become identical.

After the required control force u was determined, the ¢, value was calculated
and rounded to an applicable damper force. Additionally, if the calculated ¢, value had
been out of the limits of the capacity of the VOD, then it would have been taken into the
limits. Finally, the damper force was calculated, and the responses were presented by

the graphics.

5.8.4. Simulations of the 1940 Imperial Valley Earthquake

The excitation record utilized in the present subsection belongs to the 1940
Imperial Valley earthquake. It is presented in time- and frequency-domains in Figure
2.4. The simulation responses of the superstructure’s drifts are presented in Figure 5.20
and Figure 5.21. While plotting the responses, complex components were neglected due
to their very small magnitudes (10™""). The displacements and velocities of the base did
not have any imaginary part since the base was not diagonalized for the observer design.

The accelerations did not have complex components since they were not observed nor

diagonalized.
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Figure 5.20. Response of the base displacement with respect to the ground due to the

Imperial Valley earthquake
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Figure 5.21. Interstory drifts of the superstructure due to the Imperial Valley earthquake

The states of the system were the displacements and the velocities of the floors
relative to the ground. The floor displacements relative to the ground and the damper
force were assumed to be sensed. In the simulations, the measured values were obtained
by adding certain amount of the standard deviation of the related quantity to the
simulated responses. Therefore, the magnitudes of the noise of the interstory drifts were
high. Eventually, the observer was successful to estimate the simulated responses from
the measured ones and to filter out the noisy parts of the response. The interstory

velocities of the base and the superstructure are presented in Figure 5.22 and Figure

5.23, respectively.
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Figure 5.22. Base velocity response due to the Imperial Valley earthquake
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Figure 5.23. Interstory velocities due to the Imperial Valley earthquake

The total acceleration values of the base, first, and third stories are presented in
Figure 5.24. According to the responses in Figure 5.20-Figure 5.24, the designed
observer satisfactorily filtered out the noise. The absolute acceleration responses of all
devices were satisfactory, except for some aggressive peaks which were present in the

controlled response of the system at the base level.
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Figure 5.24. Absolute accelerations due to the Imperial Valley earthquake
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5.8.5. Simulations of the 1999 Diizce Earthquake

The excitation record utilized in the present subsection belongs to the 1999
Diizce earthquake. It is presented in time- and frequency-domains in Figure 2.4. The

simulation responses of the superstructure’s drifts are presented in Figure 5.25 and

Figure 5.26.
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Figure 5.25. Response of the base displacement with respect to the ground due to the
Diizce earthquake
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Figure 5.26. Interstory drifts of the superstructure due to the Diizce earthquake
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The imaginary parts of the displacements and velocities of the superstructure
were neglected due to their very small magnitudes. The interstory velocities of the base
and the superstructure are presented in Figure 5.27 and Figure 5.28, respectively.

Finally, the absolute accelerations of the base, first, and third floors are presented in

Figure 5.29.
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Figure 5.27. Base velocity response due to the Diizce earthquake
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Figure 5.28. Interstory velocities due to the Diizce earthquake
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Figure 5.29. Absolute accelerations due to the Diizce earthquake

5.8.6. Simulations of the Ground Excitation Data Syntheticl

The seismic data in Figure 2.4 was offset to the higher period range in the
frequency spectrum to investigate the controller performance for near-fault earthquakes.
It was named Syntheticl. It is presented in Figure 5.17 in frequency domain. The
fundamental mode of the isolated structure were affected maximally due to the
frequency spectrum of the excitation Syntheticl. The observer and controller designs
remained unchanged to test the performance of them under a situation of a frequency
overlap of excitation and system. There was only one change in the MATLAB code for
synthetic excitations compared to the simulations of the Imperial Valley and Diizce
earthquakes: The displacements of the passive damper with minimum damping
increased approximately ten times. Therefore, the noise magnitude in the displacement
measurements was taken as 0.5% of the standard deviation of the displacements. The
noise ratios in damper force and accelerations remained unchanged since their maxima
and standard deviations were in the same range as the responses to the Imperial Valley
and Diizce earthquakes.

The simulation responses of the superstructure’s drifts are presented in Figure
5.30 and Figure 5.31. High displacements and velocities were the expected outcomes of
near-fault earthquakes, which were observed in Figure 5.30-Figure 5.32 and Figure

5.34-Figure 5.36.

141



L —Measured I
0.06 —Observed
—Simulated
0.041 a
g
& 0.02 :
=
a
2 0
<
m
-0.02 .
-0.04 - w i
0 20 40 60 80 100 120 140 160
Time (s)
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Figure 5.31. Interstory drifts of the superstructure due to the data Syntheticl

In Figure 5.30 and Figure 5.31, it was observed that the observer could predict
the simulated response successfully, while filtering the measured values successfully.
The interstory velocities of the base and the superstructure are presented in Figure 5.32.

The total accelerations values of the base, the first, and the third stories are presented in

Figure 5.33.
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5.8.7. Simulations of the Ground Excitation Data Synthetic2

The simulation responses of the superstructure’s drifts are presented in Figure

5.34 and Figure 5.35 for the near-field Synthetic2 excitation. The interstory velocities of

the bas

e and the superstructure are presented in Figure 5.36. The absolute accelerations

of the base and the superstructure are presented in Figure 5.37.
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Figure 5.34. Response of the base displacement with respect to the ground due to the
data Synthetic2
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Figure 5.35. Interstory drifts of the superstructure due to the data Synthetic2

144



Base Velocity (m/s)

| —Observed
0.4~ —Simulated||
0.2 |
0
-02 - a

- | | | | | | | | | | |
04 20 40 60 80 100 120 140 160 180 200 220

(a) Time (s)

= | — Observed |
5 E —Simulated
Qo
Fc -

> | | | |

| | | | | | |
20 40 60 80 100 120 140 160 180 200 220

e 2

First Story
Velocity (m/s)

o
[\

20 40 60 80 100 120 140 160 180 200 220
(b) Time (s)

Figure 5.36. (a) Base velocity and (b) interstory velocities due to the data Synthetic2

—
o

—
=)
T

Third Story
(m/s°)
(=]

w
o
w
v
N
[==]
I
W
W
o
W
)
N
(=]
[=2)
Q
~]
o
~
W
o0
(=]

(m/s%)

—
wOUlom

Absolute Acceleration
First Story

N
(=

Base
(m/s2)
)
S o

w
o
w
vy
N
==
N
W
W
o
N
S
[=))
Q
~J
(=}
~
W
)
S

55
Time (s)
Figure 5.37. Absolute accelerations due to the data Synthetic2

145



5.8.8. The Variable PoleRatio in the Observer Design

The variable PoleRatio defined by Equation (5.22) is one of criteria in the
observer design. In the literature, it has been suggested that the modes of an observer
should be 2-4 times faster than those of the system (Arikan & Ercan, 2011). This
suggestion could be fulfilled for the observer of the superstructure. Although
remarkable effort was paid for the observer design of the augmented base, unfortunately
the recommended values for PoleRatio could not be achieved (see Table 5.6).
Although the elements of the variable PoleRatio are one, the observer could estimate
the response at the base level successfully. At least, the observer was not slower than
the hybrid controlled structure.

The initial values of the @ — R couple for the augmented base and the
diagonalized superstructure were chosen as the covariances of the numerical simulation
outputs and the noise assumed. @ was held constant, and R was multiplied by a factor
that was depicted from a logarithmically changing vector. An observer was designed for
every Q@ — R couple in an inner loop. When the variable PoleRatio was in the desired
interval, then the loop was stopped, and the convenient observer system was calculated.
The initial values of the @ — R couple for the augmented base and the diagonalized

superstructure are listed as follows

1078 0 0 0
0 3.2-107* 13-107® -1-10"*

- 5.52
Qav 0 1.3:107° 4.44-1073 4-107* (5:52)
0 —1-10™* 4-107*  1.0041
3.05-107* —0.8919
Rap = 5.53
@1 08919 61602 (5:53)
0.2715  0.0043 —0.0174
Q. =|0.0043 0.0005 3-1078 (5.54)
—0.0174 3-1078  0.0065
0.3255 0.0063  0.0031
Rss =107%10.0063 03339 —0.0034 (5.55)
0.0031 —0.0034 0.3541
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The subscript ab stands for the augmented base and ss is for superstructure. The
symmetry of the matrices coincides with the physical case of the states. The
logarithmically spaced vector started from 107 till 10'* with 1000 elements. Here, the
ratios between Q and R are important, but not their numerical values.

The gains of the controller and observers are presented in Table 5.6 for three of
the damping values of the VOD. The superstructure remained the same as the damping

value of the VOD changed. Therefore, there was only one Ly, matrix.

Table 5.6. Gains of the controllers and the observers and PoleRatio of the observers
corresponding to the damping values of the VOD

Controller Observer of base Observer of superstructure
Damping of LQR gain LQE gain of base o LQE gain of superstructure %
2 _6”
VoD K Lb E' Lss E
x
Cp ( kg/s]) ( 1/s 1/kg ) % ( 1/s]> §
Q
(Ns/m) kg 1/s%2 1/(kg's) a 1/s? &
1512847 3 g
3928 S S
—-169 S
1 2849 " 1.00
00 6862 oo [1.00 -
793 o TTeoT
660 = colL Lo
L 676 T SR 2T
= Tl d+
— N N
- : 1.00 SSggey
200 § § [ . ] (. |
1.00 3.92
. . EREEE: [3:92]
300 ; y [1-00 5T 515 |3.92]
1.00 S28g=g= 13.97|
s s 1.00 + o+ 1 3.97
400 [1.00 §o ' 858 [3.93J
. . 100 s $s5°9 3.93
500 § § [y
1'00 ©0 o ™
§ § 1.00 T LLT ST
600 1.00] = 22523
S+ T+
1.00 + + |
700 § § 1.00] 8823y
§ § 1.00 os_ol ol S Ol S
800 [1.00]
§ § 1.00
900 [1.00]
§ § 1.00
1000 [1.00]

¥ The related matrices were not supplied. The matrices of three cases (c,=100, 1500, 25000 Ns/m) were only
presented to give an opinion to the reader.

(cont. on next page)
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Table 5.6. (cont.)

]

1524101" 3 =
2059 S
1014 2
1.00
1500 2410 [
5654 o g 1.00
757 o T
669 »
L 664 | P
—
2000 s § [1'88
2500 s § [1'88
3000 s § [1'88
10000 § ] [1'88
15000 § ] [1'88
20000 § § [}'88]
6117377 S
—4086 S |
1113 e
~307 o 1.00
25000 1022 ® 3 [1.00
231 | it
ll 240 Jl —
234 7
o
—

In Table 5.6, the variable PoleRatio of the base was displayed. PoleRatio of

the shaping filter was not presented since it was out of interest. Although the variable

1.00
1.00

the base observer were successful. Therefore, the current observer design was accepted.

PoleRatio of the base could not be increased (PoleRatio = [ ]), the responses of

5.8.9. Damping Demand of the System

The optimum damping values of the VOD and the resulting damper forces are
presented in Figure 5.38 and Figure 5.39 for the simulations of the Imperial Valley and
Syntheticl earthquakes, respectively. Some undesirable peaks occurred in the simulated
damper force. Since these peaks were made up of a single point, the damper was not

able to perform these aggressive peaks.
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Figure 5.39. Optimum damping values of the VOD and the corresponding damper

forces for the Syntheticl excitation

For the near-field excitation case (Syntheticl earthquake), the control force

demand was much higher than that of the Imperial Valley event, as it was expected. The

number of the undesirable peaks increased. In order to satisfy such high control

demands, the upper controller chose damping values higher than those of the Imperial

Valley earthquake, dispersed in the overdamped region.
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Figure 5.41. Optimum damping values of the VOD and the corresponding damper
forces for the Synthetic2 excitation

The optimum damping values of the VOD and the corresponding damper forces
are presented in Figure 5.40 and Figure 5.41 for the simulations of the Diizce and
Synthetic2 earthquakes, respectively. The VOD could not provide the calculated high-
frequency damping forces. Either the base velocity was not high enough or the

application time of the high-valued control force was too short.

150



A slow and smooth transition from c,,;;, t0 Cpqy could be performed by the
damper successfully. If the controller had enforced the damper for an aggressive
transition, then the damper would not have been able to achieve this task. In the
numerical simulations, the damper force was obtained by the negation of the
multiplication of the damping constant (evaluated at the previous time step) and the
dampers velocity (or base velocity). At the current time step, the velocity most likely
would be different from the velocity, for which the damping constant was evaluated.
Thus, a difference in the optimum control force and the obtained damping forces was
expected. Certainly, this situation was related to the selection of the Q — R values of the
controller, which were the best ones among the tested values.

The significance of VOD was exhibited even in case of a near-fault excitation.
The required damper force was zero within some regions, and the controller chose the
minimum damping value (see Figure 5.38-Figure 5.41). The moderate and high level
force demands were provided by changing the orifice opening size. If a passive damper
with minimum damping had been placed, then the damper would not have satisfied the
control requirements of the system. On the other hand, if a passive damper with
maximum damping had been placed, then the structure would have exhibited an
extremely over-damped behavior without performing oscillations. Therefore, placing a
semi-active damper would have been a convenient design.

The fundamental response of the hybrid-controlled structure was over-damped
for the damping values of the VOD higher than 1000 Ns/m (see Section 5.3). The
number of times that the optimal damping value selected a value greater than 1000
Ns/m is presented in Table 5.7 for four ground excitations. The percentages are with
respect to the total number in every excitation.

The critical damping case corresponded to the damping value of the VOD as
1057 Ns/m (see Section 5.3). Therefore, the response could not be critically damped due
to the distribution of the damping values of the VOD. The number of under- or over-
damped responses was almost same for the Imperial Valley and Diizce events. On the
other hand, in case of a near-fault excitation, the response became over-damped more
heavily. The toughest ground excitation in terms of number of over-damped response

was Syntheticl earthquake.
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Table 5.7. Number of under- and over-damped responses

Number of under-damped | Number of over-damped
Earthquake ‘ _ Total number
cases & their percentage | cases & their percentage
16077 3919 19996
Imperial Valley
80.4% 19.6% 100%
24176 3770 27946
Diizce
86.5% 13.5% 100%
) 50278 29703 79981
Syntheticl
62.9% 37.1% 100%
) 83661 28120 111781
Synthetic2
74.8% 25.2% 100%

According to Table 5.7, the hybrid controlled structure can satisfy the system
requirements within a large range of under- and over-damped responses for various
excitations. This case is not possible for the isolated structure including a passive

damper.

5.8.10. Maximum Total Shear Forces

The maximum total shear forces at the first floor of the superstructure were
calculated according to Equation (4.31). The results are presented in Table 5.8. The aim
was to investigate how much the columns of the superstructure were forced. The
maximum values of the interstory drifts decreased as the floor number increased. This
fact can be observed in Figure 5.21, Figure 5.26, Figure 5.31, and Figure 5.35 for four
simulations. Therefore, the maximum shear force only at the first floor of the
superstructure was presented.

All excitations were tough for the uncontrolled structure, especially the Diizce
and Syntheticl data sets in terms of the maximum shear forces (due to the frequency
distribution in Figure 5.17 and Figure 5.18). On the other hand, the Synthetic2 excitation
was the toughest one for the isolated structure including passive damper with Cpin. The
maximum total shear forces of the hybrid controlled structure were approximately 63%-
75% of the isolated structure including passive damper with Cpax, except for the

Syntheticl excitation.
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Table 5.8. Maximum total shear forces at the first floor of the superstructure

Maximum shear force at the first floor (Newton)

Uncontrolled | Isolated structure | Hybrid-controlled |Isolated structure
+ passive damper | (isolated structure [+ passive damper
with Cin + VOD) with Crmax
Imperial Valley 2918 94 1230 1905
Diizce 4820 174 2063 3183
Syntheticl 5371 531 1797 1832
Synthetic2 3641 1518 2458 3250

The maximum total shear force of the isolated structure including a passive
damper system with minimum damping value was the best among the responses of the
others. On the other hand, its base drifts in Figure 5.42 were unacceptable. The
reductions of the maximum total shear forces of the hybrid controlled structure were
satisfactory compared to those of uncontrolled structure even in case of a frequency
overlap of excitation and system. The base drifts of the isolated structure including a
passive damper system with maximum damping value were low in Figure 5.42. On the
other hand, its maximum total shear forces were high. Therefore, the hybrid controlled
structure exhibited a balancing performance between the responses of isolated structures

including passive dampers.

5.8.11. Comparison of the Responses of the Hybrid Controlled

Structures with Passive Dampers and VOD

In the present subsection, the responses of the hybrid controlled structure with
three different dampers were exhibited. The dampers were the optimally controlled
VOD and two passive dampers whose damping coefficients were 100 and 25000 Ns/m
(the damping constant range of the VOD was inbetween 100 and 25000 Ns/m). The
structures with passive dampers were isolated seismically. The control actions applied
to the VOD were not performed for the passive dampers. In the present study, the aim
was to investigate whether applying a control scheme was profitable or it was better to

place passive dampers instead of optimally controlled ones.
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The main objective of controlling the response of the system was to decrease the

interstory displacements and total accelerations of the superstructure. For this purpose,

the structure was isolated seismically. On the other hand, in a seismic zone, there is

always the possibility of a near-fault ground excitation. The isolation systems respond

unsuccessfully in such regions due to the frequency distribution of the excitation.

Therefore, in the current research, the isolation system was protected by the VOD. On

the other hand, more damping at the base level prevented higher deformations of the

base. As a result, the isolators were protected, but the story responses were larger when

compared to the minimally damped case.
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(a) Imperial Valley earthquake

1 2 3
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(b) Syntheticl excitation
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Figure 5.42. Maximum absolute values of the simulated base drifts of the hybrid
controlled structure
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The maximum absolute values of the base drifts are presented for the Imperial
Valley, Diizce, Syntheticl, and Synthetic2 earthquakes in Figure 5.42. The minimally
damped case exhibited poor drift responses in the base level as it was expected.
According to Figure 5.42(a), the maximum drift was approximately three times greater

than that of the controlled response.
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Figure 5.43. Maximum absolute values of the simulated interstory drifts of the hybrid
controlled structure (Numbers on the vertical axis indicates the floor
numbers)

In Figure 5.43, the base responses of the Diizce event was different from those
of the other far-fault excitation due to its single high peak shock with a value of 0.8g.
The response of the minimally damped device was 16 and 38 times greater than that of

the controlled device, similar to that of a base isolated structure in case of a near-fault
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ground excitation since the damping value was very small (¢, = 100 Ns/m). The base
drifts of the system including a passive damper with minimum damping value were

unacceptable in case of near-fault excitations.
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Figure 5.44. Maximum absolute values of the simulated total accelerations of the hybrid
controlled structure (Numbers on the vertical axis indicates the floor
numbers)

The maximum absolute values of the interstory drifts of the superstructure are
presented for the Imperial Valley, Diizce, Syntheticl,and Synthetic2 earthquakes in
Figure 5.43. Except for the Syntheticl excitation, the interstory drifts of the hybrid
controlled system were better than those of the system including a passive damper with
maximum damping value. By adding a controllable damping (VOD) to the structural

control system a reduction of more than 25% in terms of base displacement was
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obtained compared to the case of passive damper with minimum damping value, while
the floor displacements, which were still in acceptable range, increased.

The maximum absolute values of the total accelerations of the hybrid controlled
structure are presented for the Imperial Valley, Diizce, Syntheticl, and Synthetic2
earthquakes in Figure 5.44. At the first sight, the total accelerations at the base level
were unacceptable for the hybrid control system. Nevertheless, its absolute
accelerations at the floors were still in an acceptable range except for the response of
Diizce earthquake. The absolute accelerations of floors for the VOD and passive damper
with a maximum damping value were close for the Synthetic2 excitation. Considering
the advantages of the hybrid control system in terms of drifts, the high total
accelerations at the base level may have been accepted by the designer.

The interstory drift of the third floor in frequency domain for the Imperial
Valley and Diizce earthquakes are presented in Figure 5.45(a) and Figure 5.45(b),
respectively. The simulated responses are presented. The systems are the ones in Figure
5.42-Figure 5.44. The graphics, which are zoomed only in vertical axis, are presented to
compare the performance of the passive and hybrid controllers (see Figure 5.45(c) and
Figure 5.45(d)). The interstory drift of the third floor in frequency domain for the
synthetic earthquakes are presented in Figure 5.46.

According to Figure 5.45 and Figure 5.46, the uncontrolled response of the
structure was driven mainly by the first mode at a damped period of approximately 0.51
seconds (indicated by black line). The second mode exhibited a smaller contribution to
the response. When the VOD was added to the structure in addition to the base
isolation, the period of the first mode was slightly shortened, and the contribution of the
second and third modes had a larger effect on the response. The response of the
structure with the minimally damped device was similar to the response of the base
isolated structure since the damping of the device was small. The response of the
structure with the minimally damped device had smaller magnitudes when compared to
the responses of the other systems. Its response was driven by its fundamental mode,
and the effect of its other modes on the response could not be observed.

According to Figure 5.45, the third floor drift of the structure with the minimally
damped device had very small components within the period range for far-fault
excitation cases. On the other hand, it responded more heavily in higher period ranges

for near-fault excitation cases (see Figure 5.46).
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Consequently, inclusion of controlled damping in the base level reduces base
displacements, protecting the base isolators from rupture or damage due to large
deformations. On the other hand, it increases the building floor responses above the

isolators.

5.8.12. System Sensitivity with Respect to the Stiffness and Mass of the

Structure

Plant models are inherently inaccurate. Controllers (regulators) described by
such models must be able to provide satisfactory performance in the presence of system
uncertainties and disturbances. The control scheme designed in the present section
consists of a controller (including the upper controller, gain scheduling of VOD, and
LQR) and an observer. In the sensitivity analysis of the present system, when the
performance of the controller is good, this indicates that the controlled response is
acceptable, and the observer can predict the simulated response successfully. The
performance of an observer is associated with the case if the observer can estimate the
simulated response successfully even under harsh conditions. For instance, the assumed
mass, damping, and stiffness matrices of the system may be different from those of the
real system. In other words, the performance of an observer relate to the correctness of
its estimation of the system states, basing on an approximate transfer function of the
system.

In the present study, the controller contained the LQR and the Kalman-Bucy
observer. The controller gain K and the observer gain L were determined for various
VOD damping values prior to response calculation in the simulations. For sensitivity
analysis, holding the controller and observer designs constant, the mass and stiffness
matrices were varied individually by +10 percent. The upper controller can perform its
selection of optimal orifice opening of the VOD independently during the simulations
due to the measurements.

The results were very close when the mass was decreased by 10 percent, and the
stiffness was increased by 10 percent, and vice versa. Therefore, only the results of the
system in which the stiffness matrix K was varied were presented. All the results were

with respect to the ground as in the manner which the equation of motion was written.
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The performance of the controller was investigated as the stiffness matrix K
was varied. The damping matrix was determined by the Rayleigh damping. Therefore,
the damping matrix changed as K varied within a consistency with the real case. In
such a way that: If the stiffness had been calculated higher than the actual one in a real-
world application, then the actual damping which originates from the energy dissipation
at the joints would have been smaller.

In Table 5.9, the change in the simulated responses is presented as the stiffness
matrix was varied. The ratios of the maximum absolute values of the simulated
responses of the varied case with respect to the simulated responses of the unvaried case
are listed in Table 5.9, and the ratios had to be commented together with the correlation

coefficients in Table 5.10.

Table 5.9. Ratios of the maximum absolute values of the simulated responses with
respect to the responses of the unvaried case as the stiffness matrix K, was

varied

Imperial Valley earthquake Diizce earthquake

09K 1.1-K; 09-K; 1.1-K;
qs(t) 1.0496 0.9559 1.0005 0.9175
q,(t) 1.0268 0.9689 0.9966 0.9123
q.(t) 0.9911 0.9260 0.9826 0.8485
qp(t) 0.9895 0.9782 0.9468 0.7980
qs(t) 0.9700 0.8129 1.1144 1.0545
q,(t) 0.9272 1.0010 1.1001 0.8820
q,(t) 1.0255 1.0753 1.0176 0.8392
qp(t) 1.0212 0.9260 0.8866 0.8136

The correlation coefficients between the observed and simulated responses are
presented in Table 5.10 as K of the hybrid controlled structure is varied. Additionally,
the displacement and velocity responses of the two cases in Table 5.10 are presented in
Figure 5.47 and Figure 5.48. Before commenting the performance of the observer in
case of misdetermination of the system matrices, brief information about the correlation
coefficient is provided: The correlation coefficients between the observed and simulated
responses were presented. They provide a measure of how close the observed responses

to the simulated ones. The correlation coefficient r is a measure of the linear
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dependence between two variables giving a value in the range of -1 and +1. A value of
zero correlation coefficient indicates that there is not a correlation between two
variables. It takes values close to boundaries -1 and 1 as the relation between two
variables gets stronger. If it is positive, then one of the variables increases as the other
increases. If it is negative, then one of the variables increases as the other one decreases.
In the present simulations, the corrcoef-functionality within MATLAB, which is
abbreviated for correlation coefficients, is utilized.

The correlation analysis provides numerical information about the relation
between two sets of variables. There may be a nonzero correlation coefficient between
the variables which can never be directly related to each other (virtual or spurious
correlation). Therefore, the analyzer should be aware of this fact while commenting the

results of a correlation analysis.

Table 5.10. Correlation coefficients between the estimated and simulated responses as
the stiffness matrix K of the hybrid controlled structure was varied

Imperial Valley earthquake Diizce earthquake
09-K; K 1.1 K 09-K; K 1.1 K
qs(t) 0.9876 0.9998 0.9922 0.9913 0.9999 0.9953
q.(t) 0.9924 0.9999 0.9947 0.9947 0.9999 0.9968
q.(t) 0.9935 1.0000 0.9977 0.9940 1.0000 0.9978
qp(t) 0.9997 1.0000 0.9996 0.9996 1.0000 0.9997
qs(t) 0.8342 0.9983 0.9242 0.8683 0.9991 0.9548
q,(t) 0.8902 0.9984 0.9300 0.9097 0.9991 0.9554
q.(t) 0.7494 0.9990 0.9255 0.7887 0.9995 0.9180
qp(t) 0.9926 0.9983 0.9887 0.9937 0.9996 0.9938

The correlation coefficients of the observed and simulated responses were
presented within each simulation for all of the system states. The columns in the middle
stands to exhibit the observer performance of the unvaried case for both earthquakes.
The observer at the base level performed well for all cases since the base was
prewhitened for the observer design. The observer could estimate the displacement
responses successfully even the stiffness matrix was varied. The correlation coefficient

decreased for velocities. The worst case in the sensitivity analysis was obtained for the
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velocity of the first floor when K¢ was decreased in the simulation of the Imperial

Valley earthquake (r=0.7494).
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Figure 5.47. Responses for the Diizce event with respect to the ground (The stiffness
matrix K, was increased by 10%) — Best response in the sensitivity
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Figure 5.48. Responses for the Imperial Valley event with respect to the ground (The
stiffness matrix K is decreased by 10%) — Worst response in the

sensitivity analysis

The best performances in the sensitivity analysis were observed when the

stiffness matrix K, was increased 10 percent in the Diizce event. The related responses
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are presented in Figure 5.47. On the other hand, the worst results in the sensitivity
analysis were obtained at the velocity of the first floor when the stiffness was decreased
by 10% for the Imperial Valley event. The related results of the Imperial Valley event
are presented in Figure 5.48.

In all simulations of the sensitivity analysis, the controller performed better at
the base level compared to the responses of the superstructure. This may have been due
to the fact that the observer of the base was designed for the prewhitened base since the
observer of the base was focused on the effective frequency range of earthquake
excitation. This was not the case for the observer design of the superstructure.
Consequently, it may be better to prewhiten the superstructure, so that the controller can

handle possible changes of system properties better in real-world applications.

5.8.13. Performance of the Observer Under Arbitrary Initial

Conditions

The performance of an observer is mainly determined by the time duration that
lasts for the observer to estimate the system response successfully. Therefore, arbitrary
initial conditions were applied in the simulations of the Imperial Valley and Diizce
earthquakes. In the earthquake simulations, the time duration passed to estimate the
response successfully was investigated in case of a misdetermination of initial
conditions.

The initial conditions were chosen as a combination of different mode shapes or
only in shape of a certain mode. The first initial condition set was in the shape of
[0.01 0.015 —0.01 0.02 0.1 0.15 —0.1 —0.2]. The first four values stood
for the floor displacements, and they corresponded to the form of the third mode shape
in meters. The second four values were for the floor velocities, and they coincided with
the form of the second mode shape in meter/second. Handling such an initial condition
set was a tough task for an observer since high numerical values were applied to all
degrees-of-freedom at the same time and in different modes. The displacements and
velocities of the base and the first floor are presented in Figure 5.49 for Diizce event

under the first initial condition set.
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Figure 5.50. Floor responses for the Diizce event under the second initial condition set

In Figure 5.49 and Figure 5.50, the results were presented starting from -0.1

seconds to show the applied initial conditions in the simulated responses. For the first

set, the observer estimated the simulated displacement and velocity responses

successfully in 8 seconds.
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The second initial condition set was in the shape of the first mode as 0.01 meter
for displacements and 0.2 meter/second for velocities. The responses of the base and the
first floor are presented in Figure 5.50 for the Diizce earthquake under the second initial
condition set. The observer predicted the simulated displacement responses effectively
in 6 seconds. On the other hand, the time passed to estimate the simulated velocities
correctly was approximately 7-8 seconds. Surprisingly, the observer was slower than the
former one to estimate the response successfully.

Notably, the performance of the observer was better in the simulations of the
Imperial Valley earthquake for both of two initial condition sets compared to its
performance for the Diizce event. The time duration passed to estimate the response
successfully was reduced by half in the simulations of the Imperial Valley earthquake.
The observer predicts the base response in a shorter time duration compared to those of
the superstructure. Most probably, this was due to the fact that the observer of the base
was focused on the effective frequency range of earthquake excitations by

prewhitening.

5.8.14. Filtering Property of the Kalman-Bucy Observer

The performance of the observer as a filter is exhibited in the present section.
The magnitudes of the base drift in the frequency spectrum for the Diizce and
Synthetic2 earthquakes are presented in Figure 5.51 and Figure 5.52, respectively. The
responses belonged to the measured and observed values.

The Kalman-Bucy observer received the measured values and output less noisy
responses as seen in the zoomed parts of Figure 5.51 and Figure 5.52, acting as a filter.
The magnitudes of the responses in the region of interest (periods greater than 0.1
seconds) were close to each other for the measured and observed values, indicating that
there was not any data loss that could affect the responses. The remaining components,
whose periods were not related with the hybrid controlled system, were assumed to be

noise, and they were filtered by the Kalman-Bucy observer.
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5.8.15. Results of the Simulations

The data of the Imperial Valley earthquake has a wider frequency range than
those of the Diizce event (see Figure 2.4), and its low-frequency components double
those of the Diizce event. Therefore, the Imperial Valley data affect the structures with
low periods more intensely, which is not the case for a seismic isolated structure. On the
other hand, the Diizce earthquake consists of low-valued cycling motion together with
single high peak shocks of 50 and 80 percent of the ground acceleration. The results of
the simulations have shown that the Diizce earthquake is a more demanding excitation
record than the Imperial Valley event for structures whose frequencies and damping
values are similar to the system in the present research.

The system response was simulated for near- and far-source earthquake records
numerically. The results were compared with respect to two passive damper systems
with minimum and maximum damping value. The isolators were protected at the instant
of high magnitude responses by means of the controller. The interstory drift and
velocity at the base level decreased more than 25% for both excitation types compared
to those of the minimally damped passive device.

In the sensitivity analysis, the performance of the observer at the base level was
very good for all cases since the base was prewhitened for the observer design.
Therefore, the superstructure may be prewhitened in the future studies.

Additional damping at the base level reduces the base velocity directly and
decreases the base displacement indirectly at the expense of larger drifts and floor
accelerations of the superstructure. One of the important findings of the study is that
large damping in the base level is not beneficial for base isolated buildings. On the other
hand, regarding the isolation system, the highest damping case would be beneficial,

making sure that failure in the isolation system does not occur.
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CHAPTER 6

NUMERICAL STUDIES ON RESPONSE CONTROL OF
A TRUCK SEAT

The primary purpose of the present section is to control the response of a truck
seat by a MRD. This chapter describes the setup of the seat suspension. The damper
mounted on the seat was replaced by a RD-1005-3 MRD that was manufactured by
Lord Corporation. Only the numerical simulations were performed, and the seat

response was controlled by the LQR.

6.1. Literature Review

Truck drivers spend most of their working hours at tough driving periods. This
case may cause attention reduction, which is a risk for the driver, passengers,
bystanders, and the goods. Also, during the vertical seat vibrations, the driver may lose
the control of the truck and may injure some parts of his body. Therefore, the seat
suspensions of trucks and heavy vehicles attract attention of different research groups.
Some of the related studies are presented in the following lines.

The Lord Corporation designed the LORD Motion Master'™. It has been the
only solution that automatically adapts to both the driver’s body weight and changing
levels of shock and road vibration (Lord, 2007). The system was based on the RD-1005-
3 damper. The system has been already mounted more than 30000 systems on the roads
and has been logged more than 10° kilometers in truck, bus, and agricultural operations.
The numbers were according to the data of 2007. It satisfied or exceeded the conditions
of some standards as SAE J1386, ISO 7096, ISO 5007 (Carlson, 2007).

Reichert studied MRDs and skyhook control in his master thesis by Lord
Corporation’s support (1997). He modified an Isringhausen seat suspension to replace a
passive damper with a controllable MRD. Additionally, the source of the unexpected
peak in the acceleration spectrum of the seat was searched.

Engin et al. designed, manufactured, and tested a MRD for a tractor seat

application (2008). They performed a fluid dynamics-based analysis of flow inside the
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damper, and the flow field inside the MRD was investigated using computational fluids
dynamics. Taguchi method was utilized as an optimization tool to optimize the damper
geometry. A seat simulator was designed and manufactured to conduct real-time PC-
based control tests of the MRD. Various control algorithms (sky-hook, ground-hook,
and hybrid) were comparatively designed. The results showed that the displacement,
velocity, and acceleration could be suppressed in an effective manner by using the
proposed control strategy.

Goksel performed the optimal sliding mode control of a semi-active seat
suspension system (2007). He applied different control strategies to control the semi-
active MRD. The results showed that the utilized suspension system reduced most of
the seat vibrations.

Sapinski and Rosol investigated the shock isolation performance of a driver seat
with a MRD suspension system (2007). The aim of the experimental studies was to
recognize the MRD performance against shock effects. Rounded pulses and square
waves were applied. The controller failed to reduce the accelerations. The reason of the
unwanted results was attributable to the properties and operating principles of the
electromagnetic circuit of the RD-1005-3 MRD.

Song et al. focused on an experimental implementation of a semi-active seat
suspension using MRDs (2007). An adaptive control algorithm was proposed to
eliminate the superharmonics from the MRD seat suspension response. The
effectiveness and feasibility of the proposed adaptive algorithm were shown by
comparing the test results.

Yazic et al. tested a semi-active seat suspension system in a real time computer-
based application (2008). The results showed that the suspension system reduced the
sinusoidal excitation by 70% for certain excitation frequencies.

Six seat suspension systems were tested and analyzed at the National Institute
for Occupational Safety and Health1 — Pittsburgh Research Laboratory (NIOSH — PRL)
(Mayton et al.). The investigations were performed for only vertical vibrations and by
using a modified version of the ISO 5007 Standard. The seat suspension systems were
four passive and two semi-active seat suspension designs, which were typical of seat
suspensions commonly found on large off-road heavy surface mining, construction, and
agricultural vehicles. The results suggested that the application of rheonetic technology

had to provide improved isolation from the vibration transmitted from the seat.
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Hiemenz et al. (2009) worked on the seat suspension system of the
Expeditionary Fighting Vehicle (EFV). It was an amphibious vehicle designed to
operate through harsh conditions and at much higher speeds than its predecessors. The
unique capabilities and broadly varying operational conditions required a complicated
suspension system different from a conventional passive seat suspension system.
Different operating conditions over water and land at high speeds threatened the health
of the passengers. Therefore, s semi-active magnetorheological (MR) seat suspension
was developed. It could adapt to broadly varying operational conditions and passenger
weight. The results showed that the MR seat suspension system reduced the shock and
vibration transmitted to the passenger by up to 33% and 65%, respectively, when
compared to the existing passive suspension.

Gao et al. studied the problem of robust multi-objective control for a class of
uncertain semi-active seat suspension systems with actuator time delay by proposing a
state-feedback controller (2010). The essential dynamics of a seated human body
vibration was modeled by a three DOF model. The effectiveness and advantages of the
proposed controller design was demonstrated by a design example.

Metered et al. introduced a semi-active control strategy for an MRD used in a
seat suspension (2009). The proposed control system comprised a system controller that
computed the desired damping force using a sliding mode control algorithm, and a
neural-based damper controller. Direct estimation of the command voltage was
provided to track the desired damping force. The proposed semi-active seat suspension
was compared with a passive seat suspension for prescribed base displacements. The
simulated results revealed that the semi-active seat suspension provided a significant
improvement in ride comfort.

Modeling the human body is an important issue while designing seat
suspensions. Various researchers have been studied on modeling the human body under
certain conditions. Smith formulated a five DOF model to predict the effects of selected
seat cushion (2000). It was based on the measured driving-point impedance and
transmissibilities of major anatomical structures contributing to the observed resonance
behaviors. The ability of the model to predict the effects of selected seat cushions was
examined. The model was effective in simulating both the lower impedance peak
observed in the primary resonance region (4-8 Hz) and the prevalent impedance peak
observed in the second resonance region (7-10 Hz) in the smaller subjects. However, the

model was not effective in predicting the dampening observed in the second resonance
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peak with the use of cushions. Improvements were possible by redistributing the model
coefficients.

Rodean investigated the biodynamic response of human body subjected to
vertical vibrations in an auto vehicle (2008). The different situations were regarded: the
driver was sitting on a rigid and vehicle seat with/without seat cushion.

Stein et al. formed a linear model of the seated human body and cushioned seat
in the fore-and-aft direction (2007). The fore-and-aft vibrations play an important role
in industrial environment. Their model based on the laboratory measurements
performed by thirteen male subjects with body masses between 62.2 and 103.6 kg that
sat on a cushioned driver seat with hands on a support and backrest contact in the
lumbar region. A random signal in the frequency range between 0.3 and 30 Hz were

applied.

6.2. Truck Seat

The truck seat was manufactured by Grammer. It was a Grammer MSG 90.3 P
and obtained from a BMC cooperation. The seat itself is 22 kilograms and presented in
Figure 6.1. The front view of the setup is presented in Figure 6.2. The shaker was
mounted on a rigid wall in order to create vertical excitations. The seat and its base was
placed on the support unit that was manufactured in the IYTE Central Mechanical
Workshop. The required pressure was provided by a compressor. The pressure level
was approximately 6.5 bar. The seat suspension system isolated the driver from some
part of the excitation, which originated from the road profile. The seat suspension

system is presented in Figure 6.3.
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Figure 6.1. Setup
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Figure 6.2. Front view of the setup
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Figure 6.3. Seat suspension

The adjustment buttons of the seat are presented in Figure 6.4. They are for seat
angle, shock absorber, and height adjustment from left to right (Grammer, 2010). The
last one stands for quick deflation. The shock absorber utilized in the original seat (prior
to the placement of the MRD) can be adjusted in 4 levels from soft up to hard. By
pulling the handle upwards, the driver seat becomes softer, and vice versa. The seat can
be adjusted in range of 100 mm upwards or downwards. The seat has a quick deflation
adjustment, which makes it easier to get on and off the seat. By pulling the handle
before getting off, the seat moves to its lowest position by discharging air. At actuating

the handle before movement, the driver seat moves to its driving position automatically.

Figure 6.4. Seat adjustment buttons
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6.3. Mechanical Model of the Truck Seat

The truck seat and its seat suspension system in Figure 6.1 was modeled

mechanically (see Figure 6.5). The equation of motion of the system is

Mesles + CesQes + Kesles = CesQesp + KesQesp — fMRD (6.1)

where m; is the effective part of the total mass of the driver and the seat. ¢;¢ is the
damping coefficient due to friction of the mechanism. k;, is the spring coefficient. The
subscript ts stands for the truck seat and the subscript tsb stands for the base of the truck
seat. q;s 1s the seat displacement relative to the ground. q;s;, is the displacement of the
base of the truck seat relative to the ground. Dot stands for the first time derivative, and

double dot is for the second time derivative. fyzp is the damping force of the MRD.

Truck seat

%kts \_‘hcts L%MRD ICItsb(t)

I qes(t)

’ Base of

Figure 6.5. Mechanical model of the truck seat

In the state-space representation of the system, the states are the displacement
and velocity of the seat relative to the ground. The state-space representation of the

equation of motion in Equation (6.1) is as follows
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xts(t) = ApsXes(t) + Bt (t) + Grawig (1)
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where A, is the system matrix. B, is the control input matrix. G.; and w(t) are the
disturbance matrix and vector, respectively. The output in the simulations is the

acceleration of the seat relative to the ground. The output equation is as follows

ks _ Ces

fes(0) = [~

(6.3)

]xts(t)-l_ ! fMRD( )+

ts ts

The mass and stiffness of the truck seat were determined by means of the seat
obtained from a BMC cooperation. It was assumed that only 70-77% of the human
weight acts to the seat (Engin et al., 2008). This reduction was due to the contact of the
legs to the ground. The ISO standard for the driver mass is 75 kg and is 65 kg for the
passenger. ISO standard considers the reduction due to the contact of the legs to the
ground while determining the driver and passenger weights. The Grammer seat
weighted 22 kg. The total effective mass for the seat including the driver and the seat
was assumed to be 80 kg in the present simulations since only 70-77% of the human
weight acts to the seat (m. ;=80 kg).

It was observed that sitting of a man of 80 kgf caused a settlement of almost 7
centimeters in the seat after the damper was removed (see Figure 6.1). If only 70-77%
of the human weight acted to the seat, then aprroximately 60 kgf (= 590 Newton) acted
to the seat. This yielded an average seat stiffness of 8400 N/m (k;;=8400 N/m).

Due to the connections of the seat suspension system, a small amount of
damping may have been present. Therefore, the damping ratio of the seat suspension
mechanism was assumed to be 0.03. Then, its damping coefficient got the value of 49

Ns/m (¢;s = 2{w,mg = 49 Ns/m).
6.4. Frequency Sweep Data

The experiments performed by various researchers shows that truck drivers are

exposed to low frequency vibration. This case may cause temporary or even permanent
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injuries. The resonance frequency range of a human body is the range of the 2-4 Hz
(Engin et al., 2008; Reichert, 1997). The RMS value of the accelerations and the
transmission ratio are also limited by the standards. For instance, the RMS value of the
accelerations should be smaller than 1.25 m/s*, and the upper limit of the transmission

ratio is 2 for tractor seats in Turkey (AT 78/764).
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Figure 6.6. ISO 7096/2000 Class 2 (a) excitation and (b) base displacement sample
(Source: Reichert, 1997)
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The ISO 7096/2000 is a standard for earth-moving machinery in laboratory
evaluation of operator seat vibration. The ISO2 excitation is a relatively broad-band
excitation, with frequency content from approximately 1 to 4 Hz. It is preferred since it
1s commonly used by the Original Equipment Manufacturers (OEM) and seat
manufacturers for evaluating seat suspension (Reichert, 1997). The power spectral
density (PSD) and a sample time trace are presented in Figure 6.6.

The ISO 5007/1990 is a standard for agricultural wheeled tractors in laboratory
measurement of transmitted vibration. The test protocol in ISO 5007 Section 10.1
requires a sinusoidal vibration of amplitude £15 mm (0.59 in) and a frequency range
from 0.5 to 2 Hz at 0.05 Hz intervals (Mayton et al.). Test weights or masses of 40 and
80 kg (88 and 176 1bs) are specified by ISO 5007 to simulate the upper and lower ends

(5th percentile female and 95th percentile male) for the range of seated vehicle operators.
Mayton et al. applied a modified version of ISO 5007. The test protocol in ISO

5007 Section 10.1 requires a sinusoidal vibration of amplitude 15 mm (0.59 in) and a

frequency range from 0.5 to 2 Hz at 0.05 Hz intervals. Test weights or masses of 40 and

80 kg (88 and 176 1bs) are specified by ISO 5007 to simulate the upper and lower ends

(5th percentile female and 95th percentile male) for the range of seated vehicle operators.
They added a range of 2 to 8 Hz at 0.25 Hz intervals to measure the transmissibility
characteristics for each seat suspension system in the range most sensitive to the human
body overall. They recorded each interval for 15 s.

In the present example, the frequency sweep data was composed of signals with
decreasing amplitude and linearly varying period. The period values started from 2
seconds and decreased to 0.1 seconds by intervals of 0.001 seconds. It had a white-like
spectrum in the related frequency region and provided a full spectral coverage (see
Figure 6.20). It generally used to test the frequency response of systems and to
determine the system properties in the system identification problems. In the present
research, it was utilized to test the system response whose properties were predefined
within a certain frequency range. The results of the experiments performed by various
researchers show that truck drivers are exposed to low frequency vibration. The human
body is sensitive at the frequencies between 2 and 4 Hz (Engin et al., 2008; Reichert,
1997). Therefore, a sinusoidal wave was utilized in the numerical simulations of the

present research. The velocity wave was produced as follows
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: : t _
Gisp(t) = ¢ (2 —t)sin (an>, t =0,0.001,..,1.9 (6.4)

Then, the displacement excitation data was obtained by integrating the velocity
data numerically. The coefficient (2 — t) in Equation (6.4) was added to decrease the
magnitude of the signal for increasing time or period values. The coefficient ¢ in
Equation (6.4) was determined according to the fact that the maximum displacement
would be 5 centimeters. The excitation data are presented in time domain in Figure 6.7
and in frequency domain in Figure 6.20. The displacement had an initial maximum
amplitude of 5 centimeters, then it disturbed the system in the vicinity of a reference
zero point of approximately 3.8 centimeters sinusoidally. The amplitude of the
displacement was determined corresponding to that of velocity. The displacement and
velocity of the base of the seat were applied to the system as disturbances (see Equation
(6.2)). The sudden drop in the displacement disturbance may have caused a kind of

impulsive loading. In the future studies, the related fact will be dealt with.
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Figure 6.7. Frequency sweep data applied to the base of the truck seat (for the first two
seconds of the simulation)
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6.5. Numerical Simulations

The truck seat was obtained from a BMC cooperation. Its suspension system
was modified by three passive dampers and a MRD in the numerical model. The
numerical simulations were performed for four individual systems. The system was
excited by the frequency sweep data presented in Figure 6.7.

In passive damper cases, three different passive dampers were applied to the
system in Figure 6.5 instead of the MRD. The passive dampers were underdamped
(Caamper= 0.8), critically damped ({gamper= 1), and extremely overdamped ({gamper=
10). Firstly, the responses of the system, which underdamped passive damper was
applied, were displayed. The related displacement, velocity, and acceleration responses
relative to the ground are presented in Figure 6.8, Figure 6.9, and Figure 6.10,
respectively. The dashed line stands for the responses of the uncontrolled system, while
the black line indicates those of the controlled system.

Damping of the uncontrolled system was originated only from the mechanism of
the seat suspension system ({ = 0.03). Therefore, the uncontrolled system exhibited
underdamped responses in the forced and unforced regions of the simulation. On the
other hand, the controlled system’s response was underdamped, critically damped or

overdamped depending on the damper which was applied to the suspension system.
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Figure 6.8. Displacement response of the truck seat relative to the ground in the passive
damper application (damping ratio of the damper is 0.8, underdamped case)
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Figure 6.9. Velocity response of the truck seat relative to the ground in the passive
damper application (damping ratio of the damper is 0.8, underdamped case)
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Figure 6.10. Acceleration response of the truck seat relative to the ground in the passive
damper application (damping ratio of the damper is 0.8, underdamped

case)

Secondly, the responses of the system, which critically damped passive damper

was applied, were displayed. The related displacement, velocity, and acceleration

responses relative to the ground are presented in Figure 6.11, Figure 6.12, and Figure

6.13, respectively. The dashed line stands for the responses of the uncontrolled system,

while the black line indicates those of the controlled system.
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Figure 6.11. Displacement response of the truck seat relative to the ground in the
passive damper application (damping ratio of the damper is 1, critically
damped case)
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Figure 6.12. Velocity response of the truck seat relative to the ground in the passive
damper application (damping ratio of the damper is 1, critically damped
case)
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Figure 6.13. Acceleration response of the truck seat relative to the ground in the passive

damper application (damping ratio of the damper is 1, critically damped
case)

Lastly, the responses of the system, which overdamped passive damper was

applied, were displayed. The related displacement, velocity, and acceleration responses

relative to the ground are presented in Figure 6.14, Figure 6.15, and Figure 6.16,

respectively. The dashed line stands for the responses of the uncontrolled system, while

the black line indicates those of the controlled system.

0.06

0.04

0.02

Displacement (m)

-0.02 |-

-0.04 |-

PO , e : s ~ [*~Uncontrolled]
N ‘ : ‘ ‘ : —Controlled

Figure 6.14

1 2 3 4 5 6 7 8 9 10
Time (s)

. Displacement response of the truck seat relative to the ground in the

passive damper application (damping ratio of the damper is 10,
overdamped case)
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Figure 6.15. Velocity response of the truck seat relative to the ground in the passive
damper application (damping ratio of the damper is 10, overdamped case)
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Figure 6.16. Acceleration response of the truck seat relative to the ground in the passive
damper application (damping ratio of the damper is 10, overdamped case)

In the MRD simulations, the system in Equation (6.2) was utilized in the
numerical simulations. The maximum MRD force was limited by 3000 N. The
maximum voltage that could be applied to the electromagnet was limited by 2.25 Volts.
The modified clipped algorithm was utilized to calculate the required voltage value. The
MRD calculations were run at a rate hundred times faster than the response calculations

of the seat. The values presented in Equation (6.5) were utilized for Q — R values of the
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LQR. They were chosen by keeping the required control force u and damping force

furp as close as possible.

o = [0-1050 00
0.0  0.0262

],R = 1078 (6.5)

The displacement, velocity, and acceleration responses of the truck seat are
presented in Figure 6.17, Figure 6.18, and Figure 6.19, respectively. The dashed line
stands for the responses of the uncontrolled system, while the black line indicates those
of the controlled system.

In all cases, the uncontrolled system oscillated around the point of displacement
of 0.38 meters by its damped period. After removal of the disturbance (t > 1.9 s), the
uncontrolled system went on to oscillate around the zero displacement point by the
same damped period.

For the first 1.9 seconds of Figure 6.8-Figure 6.19, the forced responses were
examined. After removal of the disturbance, the responses became unforced (see the
disturbance in Figure 6.7). The underdamped, critically damped, and overdamped

responses of an unforced second-order system are presented in Appendix F.
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Figure 6.17. Displacement response of the truck seat relative to the ground in the MRD
application
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Figure 6.18. Velocity response of the truck seat relative to the ground in the MRD
application
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Figure 6.19. Acceleration response of the truck seat relative to the ground in the MRD
application

In the unforced region of Figure 6.8, the controlled system did not exhibit visible
oscillations since the damping ratio of the damper was 0.8. The waves could be
observed obviously for a maximum damping ratio of 0.5-0.6. As the damping ratio got
closer to the critical damping ratio, the waves deteriorated. A similar situation was
encountered with while determining the critical damping ratio of the VOD in Table 5.1.
The overdamped system converged to the zero displacement point slower than the

critically damped system in the unforced regions of Figure 6.11 and Figure 6.14, as it
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was expected (compare Equation (F.6) and Equation (F.7) in Appendix F for the
unforced solutions of overdamped and critically damped second-order systems).

The magnitudes of the seat displacement (relative to the ground) in the
frequency domain are displayed in Figure 6.20. In every time step, the excitation period
changed, therefore there may have been some amount of spectral leakage in the

spectrum (see Figure 1.2 for details). Some remedies will be applied in the future

studies.
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Figure 6.20. Magnitudes of the seat displacement (with respect to the ground) in the
frequency domain in the MRD application (the response is displayed in
the frequency range of 0-5 Hz)

The displacement response of the control system, which contained a
semiactively controlled MRD, was not acceptable in Figure 6.17. Additionally, the
maximum damper force fyrp was approximately 350 Newtons. MRD was not
activated. The capacity of the RD-1005-3 MRD was excessive for the truck seat in
Figure 6.5.

The systems with passive dampers could effectively reduce the oscillations of
the truck seat. On the otherhand, the suspension system with the MRD could not
performed its duty in terms of seat displacements relative to the ground. Consequently,

the capacity of the RD-1005-3 MRD was excessive for the current system.
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CHAPTER 7

CONCLUSIONS

7.1. Conclusions

The result of subsequent subsections are presented at the end of each subsection.
In the present section, the results are mentioned briefly.

Seismic response reductions by the MRD and by its hybrid application were
performed in Chapter 4. At the beginning, the individual MRD was excited by
sinusoidal displacements. The results have shown that the choice of time step increment
is very important for the MRD as usual for nonlinear cases. Therefore, the MRD
response was calculated by a loop inside the main loop in which the response was
calculated. Hence, the calculations were performed faster instead of carrying out the
calculations within a single loop.

In Section 4.5, the seismic response of the three-storey model structure was
controlled by a MRD depending on four different control algorithms. The proposed
fuzzy controller was the best in reducing seismic response of the structure effectively.
In addition to its affirmative contribution, another advantage of fuzzy controllers was
that its control algorithm was much simpler than those of the other three control
algorithms. On the other hand, the boundaries of the input variables had to be defined
priori to the simulation.

The responses of a passive damper and a semi-active MRD were compared in
Section 4.6. the results indicated that the choice of Q — R mainly influenced the
responses of the MRD. Furthermore, the results showed that the capacity of the utilized
MRD was beyond the control requirements of the model structure utilized within the
thesis (see also Section 4.7.3).

In Section 4.7, the hybrid control of the three-storey model structure including
the base isolation and the MRD was performed. The structural responses were
satisfactory. Moreover, the isolator was protected from detrimental effects of the ground
excitation. The interstory drift reduction at the base level was approximately 50% when

compared to the response of the base isolated structure. As a result, the base
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displacements and velocities were reduced by additional damping in the base level.
Thus, the base isolators were protected. On the other hand, the superstructure’s
responses increased reasonably due to the presence of large damping in the base level.
The study has shown that the hybrid control system including the MRD can prevent or
significantly reduce structural damage during a seismic event.

In Chapter 5, the hybrid control of the model structure including a VOD was
performed. The control scheme was based on the LQG. The optimal control saved the
isolator system from too large displacements, while the responses of the superstructure
slightly increased when compared to the minimal damping case. Regarding the
superstructure, the case with minimum damping, or even further, no damping at all,
would be the most feasible situation. On the other hand, regarding the isolation system,
the highest damping case would be beneficial, making sure that failure in the isolation
system did not occur. The study has shown that the hybrid control system including the
VOD can significantly reduce the displacements and velocities of the floors even in case
of a frequency overlap of excitation and system. On the other hand, the absolute
acceleration of the base increased. In conclusion, simulation results of Chapter 5
demonstrates that the controller keeps a balance among the requirements of the sub- and
super-structures even in case of a frequency overlap of excitation and system.
According to the results of Section 4.7 and Chapter 5, one of the important findings of
the study is that large damping in the base level is not beneficial for base isolated
buildings.

The hybrid control system including the MRD did not increase the absolute
accelerations of the base (see Figure 4.30). On the other hand, the hybrid application of
the VOD increased the absolute accelerations of the base unacceptably.

Finally, the vibration response of the truck seat was controlled by three different
passive dampers and the MRD in Chapter 6. The passive dampers could effectively
reduce the oscillations of the truck seat. On the other hand, the capacity of the RD-

1005-3 MRD was excessive for the current system.
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7.2. Future Work

There exist different possible future directions of the present research. They are
summarized in the following lines: A study which focuses on producing near-fault
seismic data synthetically could be useful in monitoring the effects of fling step and
forward directivity on seismic response of controlled structures, especially their effects
on flexible structures. Additionally, deeper studies in phenomenological model of MRD
are suggested to propose a new model including fractional derivatives for the
relationship between the inertial force and acceleration at high velocities.

The hybrid application of the optimally controlled VOD was capable of
effectively reducing displacements and velocities, but not successful in decreasing the
absolute accelerations. Therefore, a further study is suggested to prevent the increase in
the absolute acceleration of the base of the hybrid system including the VOD.
Furthermore, GA studies are recommended to investigate @ — R couples to obtain
controlled responses better than the present ones in the LQR and LQG control designs.

The results of an experimental study on the control of the model structure may
provide more information about the behaviour of the system being controlled. The
experimental results obtained in the future studies may be compared with the results of
Chapter 4 and Chapter 5. Finally, one of the possible future directions of the present
research may be the experimental studies with the setup of the truck seat to validate the

responses of the simulations of the thesis.
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APPENDIX A

SOLUTION OF THE CONTINOUS-TIME STATE
EQUATION

The homogeneous (unforced) state equation is,
x(t) = A(t)x(t) (A.1)

where the upper dot indicates time derivation and x(t,) is known. Integration results,

t
x(t) = x(t,) + f A(D) x(2)dr (A2)
to
Replacing t by 7 yields,
x(@0) = x(60) + [ A@ x(@dr (A3)
to

Substituting Equation (A.3) into Equation (A.2) results in the following expression:

t T
x(t) = x(ty) + f A(7) lx(to) + f A(7) x(r)d‘rl dt

T

= x(ty) + ftA(T) dt x(t,) + ftA(‘c) A(t) x(t)dt dt

to to to
Continuing this process by replacing t by T and plugging the result into Equation (A.2)
yields (Raven, 1995),

t t T t T T
x(t) = [I + f A(t)dt + f A(t) | A(t)dtdt+ f A(t) | A(t) | A(t)dtdrdt+ | x(ty)
to to to to to to
The solution of the homogeneous state equation (A.1) is
x(t) = @(¢,tp) x(to) (A4)
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where @ (¢, t,) is the state transition matrix, which transforms any initial state x(t,) of
the dynamic system into any state x(t) at time t in the absence of either a forcing

function or process noise.

t t T T T
D(t, ty) = [l + f A(t)dt + f A(t) | A(t)drdr+ ftA(T) A(t) | A(t)drdrdt+ - (A.S)
to f t

0 to o to to

Similarly, the solution of the state equation x(t) = A(t)x(t) + B(t)u(t) +
G(t)w(t) is

x(t) = (¢, ty) x(ty) + | @(t,7) B(nu(r)dr + | @(t,7) G(D)w(r)dt (A.6)

to to

which composes of the homogeneous and forced solutions. The initial state x(t,) is
known and @(t, t,) is the state transition matrix from t, to t. In general, the transition
matrix does not have an explicit form. If the commutativity property in Equation (A.7)

is satisfied,

A(t) | A(t)dt = J A(7) dt A(t) (A.7)

to 0

only then the state transition matrix has the form in Equation (A.8) (Shalom et al.).

t

¢(t, t()) — eftoA(T)dT (A8)

The commutativity property presented by Equation (A.7) is satisfied by time-
invariant systems or by systems with diagonal A(t) matrices. For a time-invariant

system, starting from time step ¢;_1, the state transition matrix becomes,
d)(t], tj—l) = (p(t]—l) = (pj—l = eA(tj_tj_l) = eAdt (Ag)

where dt is the time increment. The notation ¢(tj, t _1) indicates the transition from

J

time t;_, to time ;.
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APPENDIX B

TRANSFORMATION FROM CONTINUOUS TO
DISCRETE SYSTEMS

Given the linear, continuous-time differential equation model for a stochastic

dynamic system, the evolution of the state vector x in time is described by
x(t) = A()x(t) + B(H)u(t) + G(t)w(t) (B.1)
The time-varying measurement model is,

y(t) = D(®)x(t) + v(¢) (B.2)

Terms in Equation (B.1) and (B.2) are displayed in Table 2. The solution of the system
in Equation (B.1) is recalled from Equation (A.6),

t t
x(t) = @(t,tp) x(ty) + | ®(t,7) B(Du(r)dr + | &(t,7) G()w(r)dt  (B.3)

to to

with the known initial condition x(t;).

Zero-order hold (ZOH) assumes that the control inputs and the disturbances are
piecewise constant over the sampling period dt. Applying a ZOH to u(t), u(t)
becomes constant throughout the sample interval, that is, u(r) = u(j - dt —dt), j -
dt —dt <t <j-dt. ZOH is also applied to the disturbances, resulting in w(t) =
w(j - dt — dt). The initial time step is to = j-dt —dt =tj_;. The next step is

t =ty +dt =t

x(t) = 0(t,-0) x(5) + [ 96, B drus)+ [ o5 )6@drw(s)  (B.4)

tj—q tj1

Equation (B.4) gives the solution x at the jth time step, assuming that input and

disturbance are piecewise constant, as the sum of a term consisting of the transition of
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the initial state and terms arising from the input and process noise. By a sampling

definition as x(t)@¢=jr = X;, Equation (B.4) turns into

Xj = d)j—l Xj—q1 + Fj—l Uj_q + Aj—l W;_q (BS)
where

@, =b(t,t4), -1 = fttjj_l @&(t;,7)B(t)dr,and A;_, = fttjj_ld)(tj,‘[)G(T) dr

If the system properties are constant throughout the time interval dt, then the
B(7) and G(7) terms can be taken out of the integral. Then I';_; and A;_; turns into

Equation (B.6),

6
r_, =f] ®(t;,7)dr Bj_,
tj—1

! (B.6)
/lj_1 = f q’(t], T) dt Gj_1
t

j-1
where B;_; = B(tj_1) and G;_; = G(t;_1).

Additionally, details about the state transition matrix are presented in Appendix
A. The transformation for the measurement equation is presented by Equation (D.10).

The continuous formulation can be obtained from the discrete case, vice versa, by a

limiting process (Shalom et al., 2001).
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APPENDIX C

KALMAN FILTER (DISCRETE-TIME FORMULATION)

A random process is modeled as,
Xj=D@j_1xj_+Ti_uj_1 +A_1wj_4 (C.1)
The measurement of the process is performed at discrete times as,
y; =Hjx; + v; (C2)

The terms in Equations (C.1) and (C.2) are defined in Table 5.3. Equation (C.1)
describes the way that a state x; is modeled as a linear combination of the previous state
Xj_1, some input u;_,;, and some process noise w;_;. Similarly, the measurement
equation Equation (C.2) shows the relationship between the process state and the
measurement as the measurement is a linear combination of the states.

In the formulations, the head * stands for the estimated variables and the super
minus indicates a priori estimation case. Derivation of the dynamic estimation algorithm
starts with performing a priori state estimate X;. The a priori state estimate X; is
utilized to predict the output y;.

The a priori value is the one before the measurement information is taken into
account, and the a posteriori value is performed after the measurement information is
employed. Alternatively, the a priori value is the predicted one and the a posteriori
value is the updated one.

The difference between the estimated output and the measured (actual) output is
the measurement residual (measurement estimation error). The residual shows the

discrepancy between the actual measurement and the a priori measurement estimate.

By using this information, the estimated state X; is improved as,
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X; = X; + L; Residual =X; + L;(y; — H;X;) (C.4)

The first term X; in Equation (C.4) represents the a priori prediction of X;
without any measurement knowledge of the current step. The second term is a
correction term containing the difference between the new measurement and its
estimate, namely the residual, weighted by a gain factor IL;. The gain L; is the most
important part of the Kalman estimator.

In the following lines, the optimal gain L; is obtained to improve the state
estimate. First, the predicted state X; is defined by performing the mathematical

expectation to the state equation presented in Equation (C.1),
’;f]_ = E{x]} = E{¢j_1x]'_1 + Fj_lu]'_l + /1]'_1Wj_1} (CS)
where the operator E{ } represents the expected, or mean, value. The expected value

of a known term is itself. Since the process noise w is a white sequence with zero mean,

its expected value is zero.
?'_ = j_l/x\j_l + rj_luj_l (C.6)

The state estimate errors, each of which are the difference between the actual

state x; and the estimate, are defined in Equation (C.7),

— ~— ~

ej = xj — xj = ¢j_1(xj_1 — Qj—l) + Aj_1Wj_1, ej = x]' — x]' (C7)
The input u does not appear in the a priori estimate error (Equation (C.7))
meaning that it does not have an effect on the estimation error as long as it is known.

Then, an expression for the predicted measurement ¥; is similarly obtained by

performing the expectation of the measurement equation Equation (C.2).

y; = E{y;} = E{H;x; + v}} (C.8)
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Since measurement noise has zero mean, the term E {vj} vanishes,
The a priori error covariance P} is as follows

Py = E{(x; — %) (x; — %)} (C.10)

where IP; is a positive-definite matrix. The expressions for the plant in Equation (C.1)

and for the a priori state estimate in Equation (C.6) are plugged into Equation (C.10),

resulting in the following expression:

= E{(®j-1%j-1 + Tjoatyoy + AWy — @y — gty ) (91X
+ rj_luj_l + A]'_1Wj_1 - ¢j_1/.x\j_1 - F]’_luj_l)T}

= E{(Pj_1(Xj_1 — Rj_1) + Aj_1wj_) (Pj_1 (Xj_1 — Rj_1) + A;_yw;_)T}

The process noise is independent of the previous values of either the state or its a
priori estimate. Therefore, multiplication of the first and forth terms in the last

expression is zero and multiplication of the second and third terms is zero.

Py =E {(cb,-_l(xj_l ~%0) (%o — %) D" + Aj—le—le—lTAj—lT)}

= j—lE{(xj—l_jzj—l)(xj—l xj-1) } 1+ Ay E{wj_w T} 4

Using the previous definitions for the a posteriori estimate error covariance matrix

P;_

i—1 and for the process noise covariance matrix Q;_;, the a priori estimate error

covariance matrix IP’]-_ becomes as follows
Py = j—1Pj—1¢j—1T + 4, Q4 Aj—1T (C.11)

which gives the a priori error covariance as a function of the previous a posteriori value.

The a posteriori error covariance P; is, as follows

210



P; = E{(x; - %)) (x; — %"}
o — o 1T
Pj=E {[x,- - % — Li(y; - Hix))][x; — 37 - Li(y; — H;37)] }
where P; is a positive-definite matrix. The measurement equation (Equation (C.2)) is
plugged into the last expression, resulting in
_ ~ ,\_ o 1T
Py = £ {[x — & — Lj(Hx; +v; — H%)][x — % — L(Hjx; + v, — H%7)] |

The expression is turned into the following one by the fact that the a priori

estimation error e; is uncorrelated with the measurement noise v;, E {(xj — fj")vj} =

Efejv;} =0,

P = E{|( - LH) G — %) - %) - LiH;)' + Ly, L[}

_ - _-T T Ty T
= (I - LiH;) E{[ej &; "]} (1 = I H;) + 1 E{w;v,"} Ly
Using the previous definitions for the a priori estimate error covariance matrix ;" and
for the measurement noise covariance matrix R;, the a posteriori error covariance

matrix becomes as follows

P, = (I - LH) P (I~ LiH) +LRjL" (C.12)

The estimation error increases as the measurement noise increases (see Equation
(C.12)). This is consistent with the intuition that as the measurement becomes noisy, the
estimation keeps away from the actual state.

The heart of the Kalman estimator, the gain L;, is determined by optimizing a
chosen quadratic cost function. In general, a quadratic cost function has a form of
q" (t)Tq(t), where q(t) is the variable to be optimized and T is a symmetric, positive-
definite weighting matrix. For the current problem, the expected value of the squared
state estimation error is chosen to be minimized with a unity weighting matrix. Hence,

the cost function to be minimized by chosing the gain L; is
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Ji =E{e;j T} = tr(P)) (C.13)

where tr indicates trace of the matrix. The terms along the main diagonal of P; are the
variances of state estimation errors. Here, the aim is to minimize the sum of the terms
along the main diagonal of IP;. The trace is minimized due to the fact that individual
mean-squared errors are minimized when the sum of them is minimized. On the other
hand, there are various ways for optimization by different choices of cost function
(Brown & Hwang, 1992). Thus, an estimate is produced in such a manner that the error

is minimized statistically. Consequently, from Equation (C.12),

= (C.14)
oL, aL;

It is obvious that the trace of a matrix is equal to the trace of its transpose.

Differentiation of the trace is performed by using the following matrix differentiation

formulas,
otr(&T) _ _, otr (LH;Py) _ (H,P)T
(C.15)
=T otr(L:(H: PT H.T + RL.T
atr(;sge ) ey o OTQ(H) ja]ij +R)LT) _ 2,(H, 7 H,T + R,)

where matrix & must be square and matrix J must be symmetric. P;" is independent

of the gain L;. Equation (C.12) is rearranged as
P; = P; — L;H;P; — Py H,"L," + L;(H;P; H;" + R)L;" (C.16)

Differentiation of the trace of IP; with respect to L; results as follows

datr (PP;
a; 2 —2(H;P))" + 2L;(H;Pj H;" + R;) (€.17)
j

The expression in Equation (C.17) is set equal to zero and is solved for the optimal gain,

resulting in
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L = P; H;"(H; P; H;" + R;)™* (C.18)

Finally, the optimal Kalman observer gain IL;, which minimizes the mean-square
estimation error, is obtained for the discrete-time model. An alternative form of the
discrete-time gain matrix IL; is presented in Equation (D.1).

Additionally, whether the extremum is a minimum or a maximum is determined
as follows: The second derivative of the cost function should be positive-definite to
provide the sufficient condition for a minimum. This fact can be formulized by the

following equation:

62tr(IP’])

=2(H; Py H" +R;)) >0 (C.19)
T ] 7] ] J
oL;" 9L,

The extremum obtained by L;, which is defined in Equation (C.18) is a
minimum since P;” and R; are positive-definite (Stengel, 1994). On the hand, the priori
error covariance ;" is a positive-definite matrix since IP;” cannot be a negative-definite
matrix (see Equation (C.10)). R; must be positive-definite to guarantee a minimum. In
order to obtain a compact expression for the a posteriori error covariance P;, the gain
equation (Equation (C.18)) is rearranged as,

R; = L;"'(I — L;H)P; H;"

J J

An expression for posteriori error covariance IP;, which do not contain the

variable R;, is formed by plugging the expression for R; into Equation (C.12),

. _ T -1 - Ty T
P; = (I — L;H;) P; (I-LiH;) +LiK, ' - L;H)P; H;" L;

- T — gy Tq T
= (I-LH)) (P; (I-LiH;) +P; H;' L;")
Finally, the expression for the a posteriori error covariance IP; is obtained as,
P; = (I - L;H;) P; (C.20)
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APPENDIX D

TRANSFORMATION FROM KALMAN OBSERVER TO
KALMAN-BUCY OBSERVER

Transformation from the Kalman observer (discrete-time formulation) to the
Kalman-Bucy observer (continuous-time formulation) is just a limiting process as the
time increment dt goes to zero.

Before starting the derivation, expressions for the process noise covariance
matrix Q; and for the measurement noise covariance matrix R; in terms of continuous
variables are required to eliminate the discrete variables in the formulation.

Additionally, an expression for the Kalman filter gain IL; containing a single ]Rj_1 term is
required to eliminate the term dt during the limiting process.

First, Equation (C.18) is rearranged to obtain an expression for the Kalman filter
gain IL;. The expression should contain a single ]Rj_l term. Therefore, a term of Rj_le

is added at the middle of the expression.
— - g.Tm-1 — _
L; = P; H;"R;'R; (H, P; H;" + R))™!
— Ty — — T —1N—
=P H;'R;" ((H; P; H;" + R))R;)™

- Tm-1 - Tm—-1 -1
=P; H; R; (H][Pj H; R; +1)

The expression on the right-hand side is taken to the left and the multiplications are

performed as follows:

- Tm-1 — D— Tm-1
]Lj(H][Pj H; R; +I)—[Pj H;" R;

- g Tm-1 — - g Tr-1
LiH; Py Hy Ry~ + L; =P; H; R;
Then, the term L; is left on the left-hand-side alone,

_ - g Tm-1 - g Tm-1
L, = —-L;H, P; H;"R;* + P; H;"R;
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- T oy —
L; = (I-L;H;) P; H;"R;! (D.1)
Equation (C.20) is plugged into Equation (D.1),
— T—
Ly =P;H; R; 1 (D.2)

which is the alternative form of the discrete-time Kalman filter gain matrix.

The process noise covariance matrix is presented in Table 5.2 as,
E{wiwD)} = Q;4( — i) (D.3)
for discrete-time case and, as,
Efw(Ow' (1)} = Q(t)5(t — 1) (D.4)

for continuous-time case, where Q; and Q(t) are positive definite covariance matrices.

A and 6 are Kronecker and Dirac delta functions, respectively. The expression for the

discrete-time process noise in Equation (B.5) is as follows

tj+1
Ajw; = D(tj,1,7) G(D)W(T)dT (D.5)

t
For vanishingly small values of time increment dt, the state transition matrix ®(t;, t;)
tends to the identity matrix. Equation (D.5) turns into Equation (D.6) for G(t) values
constant or slowly varying over the time interval.
The covariance of the discrete-time process noise is as,

E{wiwj A7)} = A; E{(w;w)} A] = 4; Q; 4] (D.7)

Then, Equation (D.5) is plugged into Equation (D.7),
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tj+1

j tj

tj+1 T
E{/ljijjT/l]-T)} = E{ D(tj41,7) G(T)W(T)d‘[] U <I)(tj+1, a) G(a)w(a)da] }

The above expression is rewritten as a double integral as follows
tj+1
E{aqw;wi A} = E fft D(t;,1,7)GOWOW ()GT ()P (¢4, a) dT da
j
Applying the expectation on the integrand yields,
tj+1
E{Aw,wTAT)} = f jt B(t,11,7)6 (1) EW@OW (@)} 67 (@)D" (1)1, ) dr dax
j
Equation (D.4) is plugged into the last expression,
tj+1
E{A;w;w] A} = .Ut ®D(t41,7)6(1) Q(0)8(r — @) GT(@)PT(tj44, ) dr da
j
Then, it is integrated over «,
tj+1
E{AjijjT/le)} = D(t;41,7)6(DQ(T)E" ()P (tj41,a) dT
tj

For very small values of time increment, the state transition matrix @ (t;,t;) tends into

the identity matrix, and the expression becomes as follows for G(t) values constant or

slowly varying within the time interval.
E{ajw;wi A} = 6(4)Q(5;)6" (¢;)dt (D-8)

Equations (D.7) and (D.8) are collected together resulting in
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4; Q; A7 = 6(t;)2(t;)6" () dt (D.9)

The last term in Equation (C.11) will be replaced with its equivalent in Equation
(D.9). Additionally, an expression for the measurement noise covariance matrix R; is
obtained as follows. The discrete-time measurement can be thought as a short-term
average of the continuous-time measurement, during which the state is assumed to be

constant (Bar-Shalom et al., 2001).

1 (b
yi=2| y@de

tj—dt

1

= Ej;jidt[D(r)x(r) +v(7)] dt (D.10)

t .

=D()x(t) + = [ v@ar

tj—dt

Comparison of the last expression with the discrete-time measurement equation

(y; = Hjx; + v;) yields,
D(t;) = H; (D.11)

and the discrete-time and continuous-time measurement noises are related as

[ v
V= — v(t) dt D.12
] dt tj—dt ( )

The covariance of the discrete-time measurement noise and the intensity of the

continuous-time measurement noise are related as follows

1 tj
R; = E{vjv;T} = E{F ff (V" (a) dr da}
j—dt
1 tj
=— ] R()S§(t—a)drda
dt L‘j—dt
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Integration of the Dirac delta function with respect to 7, is equal to the Heaviside (unit

step) function, and the expression becomes

R —1 J R(1)d L1 R(t)d
. = T T =—— T T
! dtz tj—dt dt dt L‘j—dt

The value of the last integration divided by dt is an average value of the
continuous function R at the time step ¢;. Finally, the relationship between the

covariances of the discrete-time measurement noise and the continuous-time

1

So far, expressions, which are required during the derivation of the gain matrix
and the propagation equation of the state error covariance, have been obtained.
While transforming from discrete to continuous case, as dt goes to zero, there is

not a distinction between the a priori and a posteriori error covariance matrices P;_; and

IP;_;. Using its alternative form in Equation (D.2), the optimal filter gain takes the form

in Equation (D.14) in the limit case,

Tmom-—1
L(t) = lim {E} = lim M (D.14)
dt—o (dt dt—0 dt .

Equation (D.13) is plugged into Equation (D.14), resulting in

L(t) = lim

dt—0

dt P;H;"R™1(¢))
dt

The term H; can be replaced by D(tj) by means of Equation (D.11) for the continous-
time case. Finally,

L(t) = P()DT(HO)R1(t) (D.15)
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The same limiting procedure is applied to the covariance difference equation,

= P(¢t) (D.16)

lim {P]_ - Pj_—l} _ dP(t)
dt—0 dt dt

The expression for the a priori error covariance matrix [P; is recalled from Equation
(C.11),

Py =@, P ®;_, + A;Q; A7 (D.17)

An expression for the state transition matrix @;_; of the time-varying case is required.

The expression for @ (t,t,) is referred from Equation (A.5),
t t T t T T
D(t,ty) = [I + L)A(T) dt + J;OA(T) -L)A(r) drdr + -LOA(T) -L,A(T) -L)A(r) drdrdt + - (D.18)

A(7) is assumed to be constant over the time interval (¢, t,). This assumption is
not a contradiction for time-varying systems. The system is still time-varying.
Additionally, the higher order terms, which contain powers of dt equal to or greater
than two, will vanish during the limiting procedure. Therefore, the corresponding
integrands in Equation (D.18) are not taken into account. Finally, @(t,t,) is
approximated as, for a time-varying system,

D(t, ty) =~ I+ A(t)dt (D.19)
The initial step t;, = t;_; and the next step t = t; are inserted to the expression,
D(t;,tj1) = DP(tj1) = Pj_y ~ 1+ A(tj_,)dt =1+ A;j_,dt  (D.20)

Equation (D.17) is referred,

P = (I+ A;_ydt) (P, — Ly Hy_ Py ) (T + Aj_ydt) + Ay Qg A" (D.21)
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The expression (Equation (D.9)) for A;_;Q;_4 /lj_lT is substituted into the last

equation,
P = (I + Aj_ydt)(Piy — L H;_ Py ) (T + Aj_ydt) + 6(5-1)Q(t-1)6" (¢j_1) dt

The multiplications and limiting procedure are performed. After this, there is not a

distinction between the a priori and a posteriori error covariance matrices.

(P =Py . _ T L H; 1P, — T
tﬁ% {T} - E%%Lr%) {H:Dj_lAj_l a T h HJj_lHj_l[Pj_lAj_l (D 22)
+4; 4P+ A4, H; P, + G(tj—l)Q(tj—l)GT(tj—l) }
Equation (D.13) is plugged into Equation (D.2),
Ly =dtP_; Hi ;"R (t;_,) (D.23)

The term H;_; can be replaced by D(tj_l) by means of Equation (D.11) for the

continous-time case. Equation (D.23) is inserted into Equation (D.22). Then, the
propagation equation of the covariance is formed as follows, namely the matrix Riccati
differential equation,

Pt)=ADP@) + P(OAT() + G)Q)GT (t) — P(t)DT ()R~ (t)D(t)P(t) (D.24)

with the initial condition P (t,).
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APPENDIX E

MATLAB CODE FOR VOD INCLUDING KALMAN-BUCY
OBSERVER

%%%%0%%%6%%%6%%%6%%%6%0%%6%0%%6%0%%%:%6%%% %% %% %% %% %%%6%% %% %% % %% %
%%% Gain Scheduled Control of a VOD by LQG %%%
%%%%0%%%6%%%6%%%6%%%6%0%%6%0%%6%0%%%0%6%%% %% %% %% %% %%%6%%%6 %% %% %% %

%author: Kinay
%created: january 2010
%Ilast modified: 27.5.2013

close all; clear; clc;
superstructure %3x3 superstructure
base %base

hlstar = ones(dofstar,1); %EQ xdd is applied to all DOFs
h2star = (1 0 0 0)'; storyD = 1;

eq;
disp limit of base =0.03; %m

f damper MAX = 5000; %Newton, max damper force
¢_=(100:100:1000 1500:500:3000 10000:5000:25000); %VOD’s

passive_min_max_ damping

noise_generation

size_initiation

inner controller CORE %CORE

disp(‘'simulation STARTS")

¢ _opti(1) = min(c_); %simulation stars with min ¢_

A _combstar = A_combstar_store(:,:,1);

C_combstar = C_combstar_store(:,:,1); %capital C: system matrix
c_combstar = c_combstar_store(:,:,1); %small c: damping matrix
AbAUG = AbAUG store(:,:,1);

CbAUG = CbAUG store(:,:,1);

Kb =Kb_store(:,:,1);

LbAUG = LbAUG store(:,:,1);

flag = 0; sayt = 0;
XbAO = zeros(2+2,1); XsOBS = zeros(2*dof,1); XESTI = zeros(2*dofstar,1);

for i = 2:length(eq)

Prhs(:,i) = -Mstar * hlstar * eq(i);
xhelper0 = xSTATEstar(:,i-1);
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(x_, xDot_, xDdot_) = NewmarkLIN(Mstar, Kstar, c_combstar, Prhs(:,i-1:1), dt, xhelper0);
xSTATEstar(:,1) = (x_(:,2) ; xDot (:,2)); xDdotstar(:,i) = xDdot_(:,2);

xSTATEDb = xSTATEstar(1:4:5,:); xXSTATEs = (xSTATEstar(2:4,:) ; xXSTATEstar(6:8,:));

fD(:,1) = -c_opti(i-1) * xSTATEstar(dofstar+1,1);

Ymeasured(:,i-1:1) = (xSTATEstar(1:dofstar,i-1:1) + measuNOIS(1:dofstar,i-1:i) ; fD(:,i-1:1) +
measuNOIS(ns,i-1:1));

YBmeasured = Ymeasured(1:4:5,:); YSmeasured = Ymeasured(2:4,:);

%Observer of augmented base

AbAUG OBS = AbAUG - LbLAUG*CbAUG;

BbAUG_OBS = (BbAUG-LbAUG*DbAUG LbAUG);

XbAO = complexanalysis(AbAUG_OBS , BbAUG_OBS, (0 0 ; xSTATEs(1:3:6,i-1:1) ; eqN(i-1:1) ;
YBmeasured(:,i-1:1)) , XbAO);

XbAUG_ESTI(:,i) = XbAO(1:2);

%O0Observer of diagonalized superstucture

AsOBS = As-Ls*Cssu;

BsOBS = (Gs-Ls*Ds  Ls);

XsOBS = complexanalysis(AsOBS , BsOBS , (eqN(i-1:1) ; xSTATED(:,i-1:1) ; YSmeasured(:,i-1:1)),
XsOBS);

XsESTI(:,i) = XsOBS;

XESTI(:,i) = (XbAUG_ESTI(1,1) ; XsESTI(1:3,i) ; XbAUG_ESTI(2,i) ; XsESTI(4:6,1));
velocity correction

%UPPER CONTROLLER
if abs(XbAUG_ESTI(1,i)) <disp_limit of base
if XbAUG_ESTI(2,i-1) * XbAUG_ESTI(2,i)< 0
flag=0;
end %if

else
flag=1;
end

flag 1 and 0
fD(i) = -¢_opti(i) * XbAUG_ESTI(2,i);
restricting_fD
fD(1) = -c_opti(i) * XbAUG ESTI(2,i);

if abs(fD(i)) > f damper MAX
for jj = 2:length(c )
if ¢_opti(i) == c_(jj);
¢_opti(i) = ¢_(ji-1);
end
end
end
fD(i) = -c_opti(i) * XbAUG_ESTI(2,i);

obtain A_C_Ab_Cb_cD Kb LbAUG

end %end of time loop
plot_
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APPENDIX F

UNFORCED RESPONSE OF SECOND-ORDER
MECHANICAL SYSTEM

The unforced equation of motion for a SDOF second-order system is formulated

as follows:
mg(t) + cq(t) + kq(t) =0 (F.1)

A general solution for Equation (F.1) in shape of q(t) = eP! is searched where p is a
real or complex number (Artem, 2008). The general solution and its derivatives are

plugged into Equation (F.1),
(mp? +cp+k)ePt =0 (F.2)

For a nontrivial solution, the first part in Equation (F.2) should be equal to zero since

the second part cannot be zero. By multiplying this equation by 1/m,

2 C Lk _ F.3
Pt —p+—=0 (F.3)

If the damping is assumed to be viscous, then c¢/m = 2{w,. { is the
dimensionless damping ratio defined as the fraction of the present damping to the
critical damping value. The critical damping value is the damping value representing the
boundary between the under-damped and over-damped cases. Hence, Equation (F.3)

turns into the following equation since w,? = k/m.
p? + 2{wup + w,* =0 (F.4)

The roots of Equation (F.4) are as follows
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p1,2 = _an + Wn A/ (2 -1 (FS)

Up to that point, there is not a restriction related with the damping ratio ¢. For
over-damped case (¢ > 1), the roots of Equation (F.4) are real and distinct, leading to a

solution as,
q(t) = (Cle(_g”rv Z-)wnt | (Cze(_(_“zz_l)“’"t (F.6)

where C; and C, are constants. The motion decays to a reference zero value without
oscillations. On the other hand, if { = 1 (critically damped case), then the roots of

Equation (F.4) are real and repeated and the solution becomes
q(t) = (C; + Cyt) e~5nt (F.7)

The motion is similar to the over-damped case. The critically damped response
returns to an equilibrium position without performing oscillations and at a faster rate
compared to the over-damped case. As damping is added to the system, the system
returns to an equilibrium position slower than the critically damped case.

Finally, for the under-damped case ({ < 1), the roots of Equation (F.4) become
complex leading to a oscillatory behavior (coming in conjugate pairs). The response is

formulated as:
q(t) = (Cle(_c”rV ot | (Cze(_{_“zz_l)‘”"t (F.8)

By plugging the rearrangement in Equation (F.9),

JiZ—-1=1-¢2i (F.9)
Equation (F.8) becomes as follows

q(t) = (CeV1~¢ont 4 C e~ W1-¢Pwnt) p=fwnt (F.10)
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The damped circular frequency is defined as wy; = wy/1 — ¢? for under-damped

systems. By plugging this definition into Equation (F.10), the following formula is

obtained.
q(t) = (Cret@dt + C e~ t@at) g=¢wnt (F.11)

The Euler formula (e~'“t = coswt + isinwt) is plugged into Equation (F.11) for

complex exponential term,

q(t) = (C;(cos wat + i sinwyt) + Cy(cos wyt — i sinwyt)) e S@nt
= ((C; + Cp) cos wgt + i(C; — C,) sinwgt) e $@nt (F.12)

= (C5 cos wgt + C, sinwyt) e $@nt
Finally, the under-damped response q(t) becomes
q(t) = Csin(wyt + ¢p) e=$@nt (F.13)

where C is a constant. ¢ is the phase angle.
At this point, the sinusoidal term, which leads to the oscillatory behavior, arises
from the imaginary part of the roots p, , that only exists in under-damped case. On the

other hand, the real part determines how fast the response decays acting as an envelope

curve (Ozdemir, 2008).
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APPENDIX G

FINITE-TIME LINEAR QUADRATIC REGULATOR

The formulation of a steady-state (infinite-horizon) LQR consists of three
equations: a performance index, its optimum solution (in form of an algebraic Riccati
equation (ARE)), and a feedback control law that contains the solution of the ARE. In
this subsection, the aim is to answer the questions below:

e Does the linearity of LQR arise from the definition of the system (x(t) =

Ax(t) + Bu(t)), or from the definition of the controller (

u(t) = —Kx(t))?

e How is the state feedback form chosen? Is it supplied by the formulation or does

it originate from a shape that is assumed at the beginning of the formulation?
e Why is the cost function chosen as J(z)= % ) :{xT () Qx(t) +

u” (t)Ru(t)}dt? How can it be modified?

e How is the cost function minimized? What is the Euler-Lagrange equation?

What is the Hamiltonian function?

The derivation of LQ-based control algorithms (LQR, LQG, H,/LQG) look like
an optimization problem rather than a control design due to the minimization of the
performance index. The necessary condition for a minimum is that the first variation of
the related function must vanish. Additionally, the minimality of the extremum is
guaranteed by a positive-definite second variation as a sufficient condition.

In the literature, the solution of the LQR problem is obtained via the dynamic
programming or via a variational approach. The dynamic programming states that an

optimal cost function must get the minimum value of the cost function: J* = Zl(it’}{(]}.

Hence, the necessary and sufficient conditions for minimality are satisfied
simultaneously. The dynamic programming solution leads to the Hamilton-Jacobi-
Bellman (HJB) equation (Basar et al., 1998; Anderson & Moore, 1989; Bryson & Ho,
1975).

In the variational approach, a certain function is minimized. If this function is
the Hamiltonian function H[x(t),u(t),A(t),t] = #[x(t), u(t),t] + AT (t)[Ax(t) +

Bu(t)] for a linear time-invariant system, then the approach is named the minimum
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principle of Pontryagin (Stengel, 1994). After minimizing the Hamiltonian function, the
well-known Euler-Lagrange equation is formed.

In the current study, the variational approach is utilized. An augmented cost
function J is minimized instead of the Hamiltonian function. First of all, the inner
structure of the cost function has to be determined.

The current optimization problem is to determine a control input u*(t) that
enforces the system to follow a trajectory x*(t), while minimizing a scalar cost function
J(z) subjected to the constraints imposed by the state equation and the defined initial
state x,. The asteriks = stands for the optimal case. z(t) contains the variables that are
desired to be optimized.

The aim is to reflect the magnitude of the function J(z(t),z(t),t), which is a
measure of the cost paid along a trajectory. The area under it may be a convenient
measure of its cumulative magnitude within a certain time period. For unconstrained
minimization, the cost of z(t) on the interval (o, ts) can be defined as the integral of a
function reflecting the contribution of the variables to the cost. Here, the derivative z(t)
is assumed to be continuous for the mathematical necessities during minimization.

Then, the performance index may take the following form:

ty
9(2) = j i2(0), 2(6), t]dt

0

with possible boundary conditions. z*(t) minimizes the objective function J(z).
If some constraints exist, they can be imposed via the augmented cost function.
Additionally, if the final state is set free, but it is desired to be penalized via a terminal

state penalty, then the performance index becomes,

t

J(z) = f{;;[z(t),i(t), t] + A7) c[z(®), 2(t), t]}dt + Y(x(¢f), tf) (G.1)

to

The constraint is embedded within the function to be minimized by the
Lagrange multiplier vector A(t). In the constrained optimization, z*(t) minimizes
J(z), while satisfying the given boundary conditions and the constraint
clz(t),z(t),t] = 0 over the entire interval. Due to mathematical requirements,
Lagrange multiplier functions are assumed to be continuously differentiable on the
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interval (o, tf). Y(x(tf), tr) is the terminal state penalty term, by which the system is
forced to be as close as possible to reference zero state at time tr. The regulator is
punished, if it cannot drive the system to zero state at the predefined time t;. This is a
free-final-state and fixed-time constraint optimization problem.

If the attention is turned into the inner structure of the scalar integrand function
7lz(t), z(t),t], a scalar quadratic form as z7 (t)z(t) may be a convenient selection,
otherwise positive and negative terms may cancel each other leading to a completely
wrong result. In the next steps of minimization, differentiation of the integrand function
# will be performed and a constant number of 2 will appear in the formulation. A
constant 1/2 is introduced to the cost function in order to get rid of the multiplier 2.
Otherwise, it would have been carried out throughout the result. For the current
problem, the cost should reflect the penalty paid in terms of the states, control input, and
time. The performance index should penalize nonzero states and control inputs.

Therefore, the variable z(t) in Equation (G.1) takes the following form:

x(t)
u(t)

2@ = |

If total accelerations are desired to be regulated instead of states, then z(t)
should be arranged in a convenient way including u(t) (Turan & Aydm, 2011). One of
the fundamental objectives in a control design is to keep the magnitude of the control
input bounded, or relatively small. Additionally, for a regulator problem, an arbitrary
nonzero initial state has to be moved to a zero state as fast as possible. Therefore, it may

be a convenient choice to limit x(t) during the event by such a cost as
) ttof {xT(©)x(t)}dt (or [ ttof {xT (t)x(t)}/2dt) that represents the accumulated deviation

of the state from zero state. A weight can be introduced on the states to exhibit the
relative importance among the states and the control. The designer may desire to pay
more control input for some of the states that are more important than the others, or vice
versa. In the current research, the control of the base response is much more crucial than
those of the story responses since the whole structure can be protected by controlling

the  response of the base. Hence, the function 4  becomes

x(t)

[xT(t) uT(®)] g g] [u (t)]' The zero cross terms in the weighting matrix point out
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the uncoupled nature of the variables in the current problem. To this end, the cost

function of the constrained minimization is introduced in a weighted quadratic form as:

t

f{xT(t)Qx(t) + uT(&)Ru(t) + A7 (t)[Ax(t) + Bu(t) — x(¢)]}dt
o (G.2)

227 (t)sx(t)

3@ =5

for the deterministic control design of a linear time-invariant system
x(t) = Ax(t) + Bu(t) x(ty) = x, (G.3)

The weights Q, R, and S are constant vectors for a linear time-invariant system.
They may be chosen as constant or time dependent in case of a linear time-variant
system (Basar et al., 1998).

The weighting matrix Q@ must be symmetric since the cross weights Q;; and Qj;,
which denote the relationship between the elements x; and x;, should be identical.
Similarly, R and S should be symmetric. Additionally, they must be positive-
semidefinite since they represent the weights of the related variables. Distinctively, R
should be strictly positive-definite . This obligation will appear within the context of
the sufficient condition for a minimum of the cost function (Zak, 2003). Williams and
Lawrence (2007) defines the cost function as:

“The cost function serves to capture the fundamental design tradeoff between
the conflicting objectives of regulation performance and control effort.” (p.358).
Therefore, the relative values of @, R, and S represent the importance of x(t), u(t), and
x(tf) in the control design, respectively. Desired performance specifications are
imposed on the controlled system response by proper choice of the weighting matrices

as summarized in Table G.1.

™ A symmetric matrix is positive-definite, if all its eigenvalues are positive. It is positive-semidefinite,
if all its eigenvalues are nonnegative. Hence, its smallest eigenvalue can be zero.
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Table G.1. Performance of the controller

Q R Advantage Disadvantage
High Low Good regulation performance High control energy
Low High Inadmissible regulation performance Low control energy

According to Table G.1, if Q is chosen relatively high compared to R, then the
contribution of the state to the cost will be higher than that of the control. Thus, the
system forces itself to decrease the contribution of the states by keeping the states
relatively small. Vice-versa, if Q is selected relatively small compared to R, the states
will be relatively large. Similarly, as the penalty S on the final state is increased, the
regulation performance gets better in the sense that the final state gets closer to a zero
state, and vice versa. In summary, if the weight of any variable is held relatively high,
then the system will tend to underspend in terms of the related variable. The weights are
generally determined by a trial-and-success procedure. They are tuned until a
satisfactory behavior is reached or until the control aims are fulfilled.

The cost function has already been determined. At the current step, the attention
is turned into the minimization of the performance index. For a functional J whose first
two derivatives are continuous, the fundamental theorem of calculus of variations states
that for an optimum z*(¢) to exist, the (first) variation of J(z) must vanish. Physically,
this condition indicates that J(z) is insensitive (stationary) to infinitesimal changes
(variations) in z(t). In the current formulation, the necessary condition is fulfilled by
satisfying the Euler-Lagrange equation in Equation (G.4). The sufficient condition for a
minimum is that the second variation must be a positive-definite matrix for every
nonzero variation. In the current study, the minimality is guaranteed by utilizing the

Gateaux variation as described by (Williams & Lawrence, 2007).
§J1z"(t),62(t)] = 0
The first variation of the integral function J is performed. Then, integration by

parts is applied to express the relation only in terms of 8z(t) (Naidu, 2003). Finally, the

following relation is obtained.
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jtf 07 —i(af)] 8z(t) dt = 0
. oz " ac\az

Since 6z(t) is arbitrary, the only way for the necessary condition to be satisfied is that
the coefficient of 8z(t) vanishes. This yields the well-known Euler-Lagrange equation

as,

97 d /0f
_a _ G.4
oz"  dt (az*) 0 G4)

within the whole interval. For the current constrained minimization problem where the

variable is z(t) = [xT(t) uT(t)]” and the integrand function is as follows
Flz(0), z(t), t] = %[xT(t)Qx(t) + uT(ORu(t)] + 27 (t)[Ax(t) + Bu(t) — x(t)] (G.5)

The Euler-Lagrange equation yields

L@ o

[A"(HQ+2"(HA u'(OR+A(DB]" =

in matrix form. The equations are rearranged and transposed, resulting in the following

formulas:

At) = —ATAT(t) — Qx(t) (G.6)
u(t) = —R 'BTA(t) (G.7)

At the moment, three equations (Equations (G.3), (G.6), and (G.7)) should be solved

simultaneously for the LQR problem. They are rearranged in matrix form as below,

(-4 "R

u(t) = —RIBTA(t) (G.9)

with boundary conditions
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x(to) = x, A(tr) = Sx(tf) (G.10)

The second boundary condition arises from the fact that the variation of the cost
function vanishes on an optimum trajectory (see (Williams & Lawrence, 2007) for
details). But, solution of these ordinary differential equations (ODEs) is not guaranteed
due to the contradiction in the definition of boundary conditions since they are
introduced at different boundaries. It can be solved by the sweep method assuming that

the states and the Lagrange multiplier are linearly related by
A(t) = P(t)x(t) (G.11)

(Williams & Lawrence, 2007; Basar et al., 1998; Meirovitch, 1989; Bryson & Ho,
1975). Hence, an expression for control input in form of state feedback is obtained by

substituting Equation (G.11) into Equation (G.9) as follows:
u(t) = —R'BTP(t)x(t) = —K(t)x(t) (G.12)

where the time varying feedback gain matrix is K(t) = R~!BTP(t). Minimization of
the augmented cost function J yields to a linear feedback law. Chosing a nonquadratic
cost would not turn out to a linear feedback law (Anderson & Moore, 1989).

An initial condition A(t,) or a terminal condition x(t;) is required to solve Equation
(G.8). These can be obtained by the linear relation between the states and the Lagrange
multiplier in Equation (G.11) at t, and t as follows

A(ty) = P(ty)x, P(tr)=S

The initial condition for A(t) is known. Then, the ODEs in Equation (G.8) can
be solved forward in time with x(t,) = x, and A(ty) = P(ty)x,. Equation (G.11) is
differentiated. Then, the first expression in the matrix form of Equation (G.8) is
substituted into it. Finally, by equating the differentiated form of Equation (G.11) to the
second expression in the matrix form of Equation (G.8), the following differential

equation is obtained:
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—P(t) =A"P(t) + P(t)A— P(t)BR™'B"P(t) + Q P(t;)=S (G.13)

This equation is the well-known differential Riccati equation (DRE). The
solution P(t) to this equation must be symmetric for the whole interval since its

boundary condition is defined by a symmetric matrix (Williams & Lawrence, 2007).
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APPENDIX H

DIAGONALIZATION OF A SQUARE MATRIX

In linear algebra, two matrices A and A = T1AT € C™" are named similar, if
an invertible T matrix exists. Here, T is a similarity transformation that is a linear
change of coordinates. The eigenvalues of a square matrix remain unchanged under a
similarity transformation since similar matrices have identical characteristic
polynomials (Juang, 1994).

The behavior of linear dynamical systems is governed by their eigenvalues and
eigenvectors. A square matrix A acts on a nonzero vector P by AY = AP. If the
vector magnitude changes while its direction remains constant or reverse, then the
vector is an eigenvector of the matrix. The factor A that changes the magnitude of the
eigenvector is the corresponding eigenvalue (Sharma, 2012). Here, A is a linear

transformation. This case can be visualized in two-dimensional space as in Figure H.1.

Pi

S

X

Figure H.1. The ith eigenvector of the matrix A in two-dimensional space
(Source: Sharma, 2012)

The standard eigenvalue problem for the nxn matrix A is as,

cAlIJi = Aill)i, i = 1,2, W n (Hl)

The equations are stacked in a similar manner in (Juang, 1994),
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A [Py Py . Y] = [Py L, . A,]

/11 0 oo 0 (H 2)
0 4 0 .
= []pl ]IJZ !I}Tl] : 2 .. :
00 - Iy
in matrix form,
AP =PA (H.3)

where W is the eigenvector matrix. By postmultiplying Equation (H.3) by W1, the

eigendecomposition of the matrix A is obtained as

A=PAP-1 (H.4)

Similarly, by premultiplying Equation (H.3) by ¥~1, the diagonalized form of the

matrix A is as follows

A=Y lAgyp (H.5)

where A contains the eigenvalues of A on the main diagonal (see Equation (H.2-b)).
For a square matrix A, diagonalization is the operation of performing a
similarity transformation resulting a diagonal matrix A, in which the eigenvalues of A

are placed on the main diagonal (Williams & Lawrence, 2007).
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APPENDIX |

SIGNALS AND RELATED SUBJECTS

Signal Construction:

In the present research, signals were constructed numerically. Then, they were
sampled. In the present subsection, the facts that have to be considered while sampling a
signal were mentioned.

If an analog signal is sampled twice at every cycle, then the curve obtained by
connecting the sample points resembles the continuous signal. There is a risk of
sampling at zero values, leading to a meaningless case. Therefore, it is a convenient way
to sample more than twice at every cycle (Bores, 1998). The sampling theorem by
C.E.Shannon simply states that it is required to sample a signal at a rate at least two
times greater than its maximum frequency component in order to represent the signal
correctly (Texas Instruments, 2004). For sure, the resulting signal is much more close to

the original one as the sampling rate increases.

== Original signal

Sampled at 20 Hz
—e—Sampled at 10 Hz
——Sampled at 4 Hz ||
—o—Sampled at 3 Hz
-e-Sampled at 2 Hz

0.5

Magnitude
=

_ ! ! ! ! ! ! v
! 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Figure I.1. A signal of 1 Hz is sampled at different frequencies as 2, 3, 4, 10, and 20 Hz
(The sampled points and reconstructed signals are indicated by dot and
colored lines, respectively)

In Figure 1.1, a signal which represented an analog signal of 1 Hz was sampled

at different frequencies (2, 3, 4, 10, and 20 Hz). The sampled values were indicated by
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colored dots. The sampled signals were reconstructed simply by connecting points by
colored lines. There are various signal reconstruction ways (Lathi, 2010; Proakis &
Manolakis, 1996).

In Figure 1.1, the full period signal was constructed starting from zero.
Otherwise, spectral leakage would occur during the FFT transformation and the energy
would spread out various frequencies instead of a single frequency in the spectral
domain (see the following lines about spectral leakage).

According to the sampling theorem, the signal indicated by the bold black line
had to be sampled at least at 2 Hz which came across zero values for the present case
(see Figure I.1). Consequently, the sampling frequency was at least 20 times higher than

the signal frequency.

Fourier Analysis:

The Fourier analysis is based on the Fourier series and Fourier transform. Its
discretized form is present for digital systems. The main idea is that a function periodic
in time can be represented as a sum of sinusoids (Ewins, 2000).

The Fourier transform is a reversible mathematical transformation between the
time and frequency domains. The discrete Fourier transform is computed via the fast
Fourier transform (FFT) that utilizes a specific computational algorithm developed for
faster calculations in the 1960s. The number of data is required to be a power of 2 in
FFT (Juang, 1994).

The FFT assumes the signal is periodic and symmetric out of the given range of
signal. The number of data has to be a power of 2 for FFT. If this is not the case, then
zero padding symmetrically to both ends of the data set is recommended. But, at this
point, it is important to note that the frequency content is contaminated by the
components those come from the sudden drop at both ends of the data set. This
impulsive effect may add components similar to white noise, and the components that
do not exist in the signal may appear. Therefore, instead of a sudden drop, a smooth
transition band to zero value may be applied symmetrically to both ends of the signal.

In the context of the present thesis, the FFT function was coded within
MATLAB. The magnitudes of the FFT were obtained from the fft functional of
MATLAB. The number of data supplied by the fft functional of MATLAB was the

number of bins. Bins in frequency domain correspond to the samples in time domain.
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The fft functional of MATLAB gave relative amplitudes of components of the signal.
The magnitudes in time-domain were calculated by dividing the absolute value of the fft

functional by half of the number of samples in time or in frequency domains.

Spectral Leakage:

In the context of the present research, the FFT of signals were performed several
times. Most of these signals were the responses of the systems and the seismic
excitation in time domain. They were composed of sine waves with various frequencies.
In the present subsection, the effect of improper simulation of a signal on the frequency
distribution of the signal was visualized for a pure sine wave. Actually, this fact could
not be taken into account in the present research since the signals were composed of

sine waves with various frequencies.

2 4
Time (s)
21 1
G
o ®
O °
205 0.5
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10" . 10° ) 10" 10" . 10° i) 10"
requenc requenc

Figure 1.2. (a) Proper and (b) improper simulation or measurement of the same sine
wave (Source: Ewins, 2000)

Figure 1.2 shows a single sine wave of 1 Hz, which is measured properly and
improperly. The signal in time- and frequency-domains are presented in Figure 1.2(a)
and (b), respectively. The signal in Figure 1.2(a) is measured till the first 4 seconds
which is a full period. On the other hand, the signal in Figure 1.2(b) is measured for 3.5
seconds. According to Figure 1.2(b), when the measurement is performed
inconveniently, the energy of the signal leaks into a number of frequencies instead of a

concentrating at a single frequency. The observed phenomenon is known as spectral
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leakage. The Fourier transform assumes that the signal is periodic outside the

measurement interval. If this is not the case in reality, then discontinuties at the edges of

the measurement interval occur as indicated by a red circle.

In the literature, there exist suggestions to prevent or reduce the effect of leakage

for data acquisition (Ewins, 2000; Bores, 1998).
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APPENDIX J

MATLAB CODES FOR MRD INCLUDING LQR, SMC,
H,/LQG, AND FUZZY CONTROLLERS

%%%%%%%6%%%6%%%6%%%6%%%%0%%6%%%%%%%0%%%:%% %% %% % %% %% %% %% % %% %
%%% Response of superstructure is controlled by MRD (LQR) %%%
%%%%%%%6%%%6%%%6%%%6%%%%0%%6%0%%%:%%%0%% %% %% %% %% %% %% %% %% % %% %
%author: Kinay

%created: 2009, updated: 6.2013

close all; clear; clc;

superstructure %3x3 superstructure

h1 = ones(dof,1); h2 = (1 0 0)'; storyD = 1;
EQ_;

global f/MRDmax vMAX stepIN
fMRDmax = 3000 %max MRD force N
VMAX = 2.25; %max applied voltage V
stepIN = 100; %chosen, A VERY IMPORTANT CHOICE FOR THE ALGORITHM
system _;

size_initiation;

lgr ;

for i = 2:length(eq)

P(:,i) =-Mss * hl * eq(i) - h2 * fMRD(i-1);

xhelper0 = xSTATEC(,i-1);

(x_, xDot_, xDdot ) = NewmarkLIN(Mss, Kss, css, P(:,i-1:1), dt, xhelper0);
xSTATE(:,1) = (x_(:,2) ; xDot_(:,2)); xDdot(:,i) = xDdot (:,2);

uC(i) = -Kgain * xSTATE(:,1);
v(i) = MODlIclippedCONTR (uC(i), fMRD(i-1));

(u(i), s(i), y(i), yDot(i), fIMRD(i)) = MRDhysteresis(xSTATE(storyD,i-1), xSTATE(dof+storyD,i-1),
u(i-1), v(i), s@i-1), y(i-1), yDot(i-1));

end %i
plot

%%%%%%%6%%%6%%%6%%%6%%%6%0%%6%0%%%0%%%%% %% %% %% %% %% %% %% %% % %% %
%%% Response of superstructure is controlled by MRD (SMC) %%%
%%%%%%%6%%%6%%%6%%%6%%%6%0%%6%0%% %% %% %% % %% %% %% % %% %% %% %% % %% %
%author: Kinay

%created: 2009, updated: 6.2013

close all; clear; clc;

superstructure %3x3 superstructure

h1 = ones(dof,1); h2 = (1 0 0)'; storyD = 1;

EQ_;

global f/MRDmax vMAX stepIN

fMRDmax = 3000; vMAX = 2.25; stepIN = 100;
system _;

size_initiation;
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QR _for SMC

%SMC Continous
global Psmc deltabar
deltabar = 1; Psmc = SMCI1();

for i = 2:length(eq)

P(:,i)) = -Mss * hl * eq(i) - h2 * fMRD(i-1);

xhelper0 = xSTATEC(:,i-1);

(x_, xDot_, xDdot_) = NewmarkLIN(Mss, Kss, css, P(:,i-1:1), dt, xhelper0);
xSTATE(:,1) = (x_(:,2) ; xDot_(:,2)); xDdot(:,i) = xDdot (:,2);

uC_=SMC2(G*eq(i) , xSTATEC(:,1));
uC@i)=uC_;
v(i) = MODIclipped CONTR (uC(i), fMRD(i-1));

(u(), s(i), y(i), yDot(i), fMRD(i)) = MRDhysteresis(xSTATE(storyD,i-1), xSTATE(dof+storyD,i-1),
u(i-1), v(), s(i-1), y(i-1), yDot(i-1));

end %i
plot_

%%%%%%%6%%%6%6%%6%%%%%%%%%6%%% %% %% %% % %% %% %% %% %% %% %% %% %% %
%%% Response of superstructure is controlled by MRD (H2/LQG) %%%
%%%%%%%6%%%6%6%%6%0%%%%%%%%6% %% %% %% %% % %% %% %% %% %6 %% %% %% % %% %
%author: Kinay

%created: 2011, updated: 6.2013

close all; clear; clc;
superstructure %3x3 superstructure
h1 = ones(dof,1); h2 = (1 0 0)'; storyD = 1;

EQ_;

global f/MRDmax vMAX stepIN

fMRDmax = 3000; vMAX = 2.25; stepIN = 100;
h2lqg_

size_initiation;
ymeasured = zeros(ns+1,length(eq));
xCP = zeros(2*dof,length(eq));

nois = zeros(ns,length(t)); %noise=0
for i = 2:length(eq)

P(:,i)) = -Mss * hl * eq(i) - h2 * fMRD(i-1);

xhelper0 = xSTATEC(:,i-1);

(x_,xDot_, xDdot_) = NewmarkLIN(Mss, Kss, css, P(:,i-1:1), dt, xhelper0);
xSTATE(:,1) = (x_(:,2) ; xDot_(:,2)); xDdot(:,i) = xDdot_(:,2);

ymeasured(:,i-1:1) = ((eq(i-1:1)) ; XSTATE(1:3,i-1:1) + nois(1:dof,i-1:1) ; (fIMRD(i-1:1,:))' + nois(ns,i-
L:));

(uC _, xCP ) =1sim(ACP, BCP, CCP, DCP, (ymeasured(:,i-1) ymeasured(:,i))', (0 dt), xCP(:,i-1));
%h21qg's optimal control force

uC(i) =uC _(2,:); xCP(:,i) =xCP_(2,);

v(i) = MODIclipped CONTR(uC(i), fMRD(i-1));
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(u(i), s(i), y(i), yDot(i), fMRD(i)) = MRDhysteresis(xSTATE(storyD,i-1), xXSTATE(dof+storyD,i-1),
u(i-1), v(i), s(i-1), y(i-1), yDot(i-1));

end %i
plot_

%%%%%%%%6%0%%%%%%6%6%%%%%%6%6%%%%%%6%6 %% %% %% %% %% %% %% %% %% %% %
% Response of superstructure is controlled by MRD (Fuzzy logic controller) %
%%%%%%%%6%0%%%%%%6%6%%%%%%6%6% %% %% %% %% %% %% %6 %% %% %% %6 %% %% %% %
%author: Kinay

%created: 2009, updated: 6.2013

% input: first floor's displacement and velocity
% output: voltage applied to MRD
% KINAY's membership functions and fuzzy inference rules

close all; clear; clc;

superstructure %3x3 superstructure

h1 = ones(dof,1); h2 = (1 0 0)'; storyD = 1;

EQ ; %includes some details related with fuzzy logic

global f/MRDmax vMAX stepIN
fMRDmax = 3000; vMAX = 2.25; stepIN = 100;
system_;

size_initiation;

(XUNCON, xdUNCON, xddUNCON) = NewmarkLIN(Mss, Kss, css, -Mss * hl * eq, dt); %uncontrolled
3x3 superstructure

x1 =xUNCON(1,:); x1 = max(abs(x1)) %1st floor's displacement

xd1 = xdUNCON(1,:); xd1 = max(abs(xd1)) %lst floor's velocity

disp(ATTENTION: change the boundaries of inputs x1 & xdl in fuzzy toolbox")

disp(FOR NORMAL STRUCTURE, if they are different than -0.04<x1<0.04 & -0.55<xd1<0.55 for IMP
eq’)

disp('type fuzzy("DUZCE _EQ fuzzy") or fuzzy("IMPERIAL VALLEY EQ fuzzy") on the command
window to change the boundaries of two input, disp and velo of first floor")

for i = 2:length(eq)
P(:,i) = -Mss * hl * eq(i) - h2 * fMRD(i-1);
xhelper0 = xSTATEC(:,i-1);
(x_, xDot_, xDdot ) = NewmarkLIN(Mss, Kss, css, P(:,i-1:1), dt, xhelper0);
xSTATE(:,1) = (x_(:,2) ; xDot_(:,2)); xDdot(:,i) = xDdot (:,2);
v(i) = evalfis((XSTATE(1,i) xSTATE(4,1)).fis); %FUZZY CONTROLLER

(u(i), s(i), y(i), yDot(i), fMRD(i)) = MRDhysteresis(xSTATE(storyD,i-1), xSTATE(dof+storyD,i-1),
u(i-1), v(i), s(i-1), y(i-1), yDot(i-1));

end %i

Y%surfview(fis)
plot

242



VITA

Gokge KINAY was born in Izmir, Turkey, on February 12, 1979, the daughter of
Giilsiim Imren ERAL and Sinan KINAY. After completing her degree at Karsiyaka
Anatolian High School, izmir, Turkey, in 1997, she entered the Dokuz Eyliil University,
receiving the degree of Bachelor of Civil Engineering in July, 2001 with honours. She
entered the Graduate School in the Department of Civil Engineering at the izmir
Institute of Technology (IYTE) in September, 2001. She received her first Master of
Science degree on computational mechanics of materials and structures in COMMAS at
University of Stuttgart, Germany in May, 2004. After a professional career, she
received her second Master of Science degree on structural mechanics in the
Department of Civil Engineering at IYTE in July, 2006. She started PhD studies in the
Department of Mechanical Engineering at IYTE in October, 2006. She attended to a one
year of scientific orientation program in the Department of Mechanical Engineering at
IYTE. She received the degree of Doctor of Philosophy of Mechanical Engineering in
August, 2013 with honours. During the PhD studies, she was a scholar of National
Scholarship Programme for PhD students by TUBITAK Science Fellowships and Grant
Programmes Department (BIDEB). She has been a member of Turkish Chamber of
Civil Engineers since 2001. Her interest areas are semi-active and hybrid structural
control, structural dynamics, structural mechanics, computational mechanics, dynamics,
numerical analysis. During the PhD studies, she assisted to the lectures of Computer
Science and Programming, Statics, Applied Mathematics for Engineers, Dynamics,
Strength of Materials, Numerical Methods in Engineering, System Analysis and Control
in the Department of Mechanical Engineering at IYTE. During her PhD studies at
IYTE, she founded the Society of Friends of Animals in 2007. She worked in the area
of the Giilbahge Campus to rehabilitate the stray domestic animals for five years. Since
2012, she has left her responsibilities in the society and has been working as the
founding chairman of the Society of Friends of Animals at [YTE.

Permanent  address: Siraselviler ~ Sitesi  No:40  Urla-Izmir, TURKEY

This thesis was typed entirely by the author.



	ACKNOWLEDGEMENTS
	ABSTRACT
	ÖZET
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1
	1.1. Overview and Organization of the Thesis

	CHAPTER 2
	CHAPTER 3
	3.1. Determination of the Damping Matrix
	3.1.1.  Measurement of the Modal Damping Ratio 𝜻


	CHAPTER 4
	4.1. Introduction
	4.2. Literature Review
	4.3. Magnetorheological Dampers
	4.3.1.  Modified Bouc-Wen Model for MRDs
	4.3.2. MRD Response to Sinusoidal Excitations for Various Applied Voltage Levels

	4.4. Control of the Seismic Response by MRDs
	4.4.1.  Modified Clipped Algorithm

	4.5. Control of the Seismic Response of the Model Superstructure by a MRD
	4.5.1.  Model Superstructure Including a MRD
	4.5.2.  Steady-State (Infinite-Horizon) Linear Quadratic Regulator
	4.5.3.  Sliding Mode Control (SMC)
	4.5.4.  H2/LQG Control
	4.5.5.  Fuzzy Logic Control
	4.5.6.  Simulations
	4.5.6.1. Interpolation of the Seismic Excitation Data
	4.5.6.2. Simulations and Comparison of the Results


	4.6. Comparison of the Responses of a Passively Controlled MRD and a Semi-Actively Controlled MRD
	4.7. Hybrid Control of a Base Isolated Model Structure by MRD
	4.7.1.  Base Isolation
	4.7.2.  Hybrid-Controlled Building Model
	4.7.3.  Current State in the Simulations and Results of the Simulations


	CHAPTER 5
	5.1. Overview
	5.2. Literature Review
	5.3. Variable Orifice Damper (VOD)
	5.4. Hybrid-Controlled Building Model
	5.5. Linear Quadratic Gaussian (LQG) Control of the VOD
	5.5.1.  Kalman Observer
	5.5.2.  Observer Design
	5.5.2.1. Modification of the Kalman-Bucy Observer
	5.5.2.2. Selection of  𝓠 and 𝓡 Values by Genetic Algorithms

	5.5.3.  Substructured Form of the Building for the Observer Design: Base & Superstructure
	5.5.4.  Prewhitening
	5.5.5.  Observer of the Superstructure
	5.5.5.1. Diagonalization of the System Equations of  the Superstructure
	5.5.5.2. Physical Interpretation of Complex Eigen Quantities
	5.5.5.3. Complex Analysis

	5.5.6.  LQR Part of the LQG Control of the VOD

	5.6. Gain Scheduling Control
	5.7. Upper Controller
	5.8. Numerical Simulations
	5.8.1. Interpolation & Synthetic Production of the Seismic Excitation Data
	5.8.2.  Current State in the Numerical Simulations
	5.8.3.  Block Diagram of the System
	5.8.4.  Simulations of the 1940 Imperial Valley Earthquake
	5.8.5.  Simulations of the 1999 Düzce Earthquake
	5.8.6.  Simulations of the Ground Excitation Data Synthetic1
	5.8.7.  Simulations of the Ground Excitation Data Synthetic2
	5.8.8.  The Variable PoleRatio in the Observer Design
	5.8.9.  Damping Demand of the System
	5.8.10.  Maximum Total Shear Forces
	5.8.11.  Comparison of the Responses of the Hybrid Controlled Structures with Passive Dampers and VOD
	5.8.12.  System Sensitivity with Respect to the Stiffness and Mass of the Structure
	5.8.13.  Performance of the Observer Under Arbitrary Initial Conditions
	5.8.14.  Filtering Property of the Kalman-Bucy Observer
	5.8.15.  Results of the Simulations


	CHAPTER 6
	6.1. Literature Review
	6.2. Truck Seat
	6.3. Mechanical Model of the Truck Seat
	6.4. Frequency Sweep Data
	6.5. Numerical Simulations

	CHAPTER 7
	7.1. Conclusions
	7.2. Future Work

	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	APPENDIX G
	APPENDIX H
	APPENDIX I
	APPENDIX J

