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ABSTRACT 

 

 

DESIGNING A RANGE SCANNER ON AN EMBEDDED 

PROCESSOR USING COLOR CODED STRUCTURED LIGHT 

  

 Three dimensional range data provides useful information for various computer 

vision and computer graphics applications. For these, extracting the range data reliably is 

utmost important. Therefore, various range scanners based on different working principles 

are proposed in the literature. Among these, coded structured light based range scanners 

are popular and used in most industrial applications. Unfortunately, these range scanners 

cannot scan shiny objects reliably. Either highlights on the shiny object surface or the 

ambient light in the environment disturb the codeword. As the code is changed, the range 

data extracted from it will also be disturbed. In this Ph.D. study, we focus on developing a 

system that can scan shiny and matte objects under ambient light. Therefore, we propose 

color invariant based single stripe, binary, ternary, and quaternary coded structured light 

based range scanners. We hypothesize that, by using color invariants we can eliminate the 

effect of highlights and ambient light in the scanning process. Therefore, we can extract the 

range data of shiny and matte objects in a robust manner. We implemented these scanners 

using a TI DM6437 EVM board with a flexible system setup such that the user can select 

the scanning type. Furthermore, we implemented a TI MSP430 microcontroller based 

rotating table system that accompanies our scanner. By the help of this system, we can 

obtain the range data of the target object from different viewpoints. We also implemented a 

range image registration method to obtain the complete object model from the range data 

extracted. We tested our scanner system on various objects and provided their range and 

model data.  
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ÖZET 

 

 

RENK KODLAMALI YAPISAL IŞIK KULLANARAK GÖMÜLÜ 

SİSTEM ÜZERİNDE BİR DERİNLİK TARAYICISI TASARIMI 

 

 Üç boyutlu derinlik verisi bilgisayarlı görü ve bilgisayar grafiği uygulamaları için 

kullanışlı bilgi sağlamaktadır. Bu tarayıcılar için en önemlisi güvenilir derinlik verisi 

çıkartmalarıdır.  Bu nedenle, literatürde değişik çalışma prensibine sahip çeşitli derinlik 

tarayıcıları  önerilmektedir. Bunların arasında kodlu yapısal ışık temelli derinlik tarayıcı 

yaygın ve endüstriyel uygulamalarda sıkça kullanılmaktadır. Ne yazık ki bu derinlik 

tarayıcıları parlak nesneleri güvenilir şekilde tarayamamaktadır. Parlak nesne yüzeyi 

üzerindeki ışık yansımaları ve ortam aydınlatması kod dizilimini karıştırmaktadır. Kod 

dizilimi değiştiğinden elde edilen derinlik verisi de karışmaktadır. Bu doktora çalışmasında 

biz aydınlık ortamda parlak ve mat nesneleri tarayabilen bir derinlik tarayıcısı tasarlamaya 

odaklandık. Bu nedenle renk değişmezi tabanlı tek çizgi, ikili, üçlü ve dörtlü kodlamalı 

yapısal ışık temelli derinlik tarayıcısı öneriyoruz. Renk değişmezlerini kullanarak parlama 

ve ortam aydınlatmasının etkilerini giderebileceğimizi hipotez olarak savunuyoruz. Bu 

sayede, parlak ve mat nenelerin derinlik verisini sağlıklı bir şekilde elde edebiliriz. Bu 

tarayıcıları TI DM6437 EVM kartı üzerinde kullanıcının tarayıcıyı seçebileceği esnek bir 

system olarak gerçekledik. Ayrıca TI MSP430 mikrokontrolör tabanlı bir döner tabla 

sistemi tarayıcımıza eşlik etmektedir. Bu sistemin yardımıyla, hedef nesnenin farklı bakış 

açılarından derinlik verisi elde edilebiliyoruz.  Ayrıca bir derinlik görüntüsü eşleştirme 

yöntemi kullanarak elde edilen derinlik verisinden nesnenin tamamının modelini elde 

ediyoruz. Tarayıcı sistemimizi çeşitli nelerle test ederek modellerini elde ettik. 
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1.  INTRODUCTION 

 

 

 From the time the first photograph was recorded by Joseph Niepce in 1826, 2D 

images got enormous usage areas. However, in today's technology they are becoming 

inadequate and the need for 3D data increases. Especially for the entertainment industry, 

generating realistic virtual environments is the main target. Three-dimensional 

cinematography, 3D televisions and game consoles are the examples of today's state of the 

art. As a result of technological progress in this direction, the importance of reliable three-

dimensional data acquisition increases. 

 

 Devices used to capture three-dimensional data are generally named as range 

scanners. Till now, a variety of scanner systems have been developed [1-4]. These can be 

classified into two groups as: contact and non-contact scanners. Contact 3D scanners probe 

the subject through physical touch. Although these systems are very precise, they have a 

disadvantage. They have to contact the object being scanned. During this process, probes 

may also cause damage to the surface of the object. Therefore, non-contact scanners are 

more preferable. Among these, structured light based range scanners are the most 

promising ones. 

 

Principally, structured light based range scanners project a set of coded patterns onto 

the object. These patterns are deformed based on object geometry. By capturing and 

processing the deformation on the pattern shape, the 3D range data is obtained. The pattern 

projection and image capturing operations in these scanners are highly effected by the 

surface reflectance and external illumination conditions. Especially, scanning shiny 

surfaces under ambient light conditions is a difficult task for these scanners. Highlights that 

occur on the shiny object surface based on illumination conditions cause wrong pattern 

decoding. This results in erroneous and noisy range data extraction. 

 

In this PhD study, we focused on this problem and proposed a solution using color 

information. By robust segmentation of color without being effected by the illumination, 

we can make the correct pattern decoding. For this purpose, we proposed using color 

invariants. Color invariants help segmenting colors in an image without being effected by 
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lighting, shadow, and highlights. Using color information has another advantage on pattern 

coding. Depending on the number of colors, the codification can be made with less number 

of patterns. This means, we can have a faster scanning system. This is a requirement 

especially for applications such as 3D face recognition for security applications. Therefore, 

our second objective in this study is implementing a fast scanner system by segmenting as 

many colors as possible using color invariants. According to these objectives, we designed 

five different structured light based range scanners using color invariants. We implemented 

these in a general setup that gives the user the ability to choose the scanner that meets the 

needs of his or her application. To have a fast and stand alone system, we implemented our 

scanner system on a digital signal processor. 

 

In the following chapters, we first give details of structured light scanner systems. 

Then, we give a brief explanation of real time systems that are used in structured light 

range scanners. The next subject we will cover is the setup we designed to implement our 

range scanners. Then, we focus on the details of color invariants and their usage in 

structured light scanning. We explain each scanner method and the experiments based on 

color invariants for these. The next chapter explains the embedded system implementation 

of the scanner. We introduce the hardware capabilities and the software written for the 

scanner system. Then, we evaluate the overall performance of the system by the range data 

obtained, their timings, and accuracy. Before concluding our study, we provide the three-

dimensional object models generated using our range scanner system. 
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2.  STRUCTURED LIGHT BASED RANGE SCANNERS 

 

 

With the ability to scan the object surface without touching it, structured light based 

range scanners are commonly used for most applications. They work on a principle of 

projecting one or more light stripes onto the object surface by a light source (laser, 

projector, etc.). The stripe produces a line of illumination that appears deformed from other 

perspectives than that of the projector. This deformation is used to extract the three-

dimensional range data of the object surface. Therefore, the basic setup of these scanners 

consists of a projector and a camera to capture the deformed stripe image. A schematic of 

the basic structured light based range scanner setup is shown in Figure 2.1. 

 

 

 

Figure 2.1. Schematic of a structured light system 

 

One handicap of this method is matching the projected stripe with the one in the 

captured image. This is called the correspondence problem of structured light based range 

scanners. In a single stripe projecting system, it's relatively easy to match the stipe with a 

robust stripe segmentation. However, for multiple stripe based systems this becomes a 
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serious problem. Next, we give a brief explanation of a single stripe and multiple stripe 

based structured light scanner systems. We explain their working principles and the 

proposed solutions for the correspondence problem. Then, we explain problems of 

scanning shiny surfaces. We will discuss the proposed solutions in the literature. We also 

explain our solution in detail in the following chapters. 

 

2.1.  SINGLE STRIPE BASED SCANNERS 

 

The single stripe based systems project a stripe onto the object by a light source 

(projection device or a line laser). Then a camera captures the stripe projected object 

image. In Figure 2.2 a sample of these systems is shown. 

 

 

 

Figure 2.2. Example of a single stripe scanning system 

 

Since a powerful light source projects the stripe, it is easily segmented by 

thresholding the intensity of the captured grayscale image. If the stripe is segmented 

robustly and the system is calibrated, the deformation information can be easily converted 

to the 3D range data [5-7]. In order to scan the entire object, the projected stripe should be 

shifted through the object surface. Therefore, single stripe based scanners are slow. 

However, as they give high resolution range data, they are still used in many applications. 

For faster scanning, multiple stripe based systems are proposed in the literature. Next, we 

give a brief explanation of these systems. 
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2.2.  MULTIPLE STRIPE BASED SCANNERS 

 

Multiple stripe based scanners work with the same principle as in single stripe 

scanners, as they project stripes by a projection device and compute the 3D range data 

from the deformation of the stripes from the captured image. As they project more than one 

stripe, they can extract the range data of the entire object faster. The correspondence 

problem occurs here distinctively, since each segmented stripe should be matched with the 

projected one correctly in order to calculate their deformation. A commonly accepted 

solution for this problem is time-multiplexed coding. Time-multiplexing works on a 

principle of projecting a set of patterns successively onto the object surface. The codeword 

of each pixel is formed by the sequence of illumination values for that pixel across the 

projected patterns. As the bits of the codewords are multiplexed in time, the codification is 

named as time-multiplexing. There are several techniques based on time-multiplexing. 

Here we will explain the binary and Gray coding technique since we use these in our 

scanner systems. The reader can access the details of other techniques in the survey paper 

by Salvi et.al. [1,2]. 

 

2.2.1.  Binary Coding 

 

Binary coding is the projection of a sequence of   patterns to encode    stripes using 

a plain binary code. Here, there are two illumination levels corresponding to “0” and “1”. 

In commonly used systems, black and white colored patterns are projected. The white 

illuminated parts are coded as “1” and the black pixels are coded as “0”. At the end of the 

sequence, each pixel has it's own codeword. Figure 2.3 shows the three levels of binary 

patterns to code eight stripes. The codification based on these stripes is given in Table 2.1. 

 

 

 

Figure 2.3. Example of three level binary patterns 
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Table 2.1. Binary coding example for eight stripes 

 

  Time   Pattern  

 I   01010101  

II   00110011  

III   00001111  

 Code   01234567  

 

2.2.2.  Gray Coding 

 

In binary coding, ambiguities may occur on the crossing edges of the successive 

patterns. Because of the hardware limitations, there may be some shifts on the crossing 

edges of the patterns. These may cause wrong codification and noise in the range data. To 

prevent this problem, Inokuchi et.al [8] proposed to use the Gray code instead of plain 

binary coding. In Gray coding, the consecutive patterns have Hamming distance of one. 

Therefore, the successive patterns do not contain any crossing edges to cause any 

ambiguity. The example patterns of Gray code for eight stripes is given in Figure 2.4. The 

corresponding codification is given in Table 2. 

 

 

 

Figure 2.4. Example of three level Gray coded patterns 
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Table 2.2. Gray coding example for eight stripes 

 

  Time   Pattern  

 I   01100110  

II   00111100  

III   00001111  

 Code   01326754  

 

2.2.3.  N-ary Gray Coding 

 

The drawback of binary coded structured light based range scanners is the need for 

large number of patterns to be projected. This slows down the scanning process and 

increases the computation load. To reduce the number of patterns to be projected, multi 

level Gray coding is proposed in the literature. For binary coding, for    number of stripes, 

  number of patterns are needed. However, in Nary coding    stripes can be coded with 

the same number of patterns. Caspi et. al. [9] was the first to introduce multilevel Gray 

coding using color. The Nary Gray code constitutes   number of symbols, each associated 

with a color. The Nary Gray code is similar with the binary Gray code that has a Hamming 

distance of one on each sequence to prevent the ambiguity. Its main advantage is the ability 

of coding with less number of patterns. In our scanner systems, we also used this 

advantage to reduce the number of patterns to be projected. 

 

2.3.  PROBLEM OF SCANNING SHINY SURFACES 

 

Single stripe and binary coded structured light based range scanners are widely used 

in various applications. However, they have a restriction on scanning objects having shiny 

surfaces. These reflective surfaces have highlights depending on the ambient light in the 

environment and the strong projector light directed to the object. These highlights affect 

the intensity values of the grabbed image. This leads to noisy stripe segmentation and 

wrong pattern decoding. Hence, the range data extracted becomes corrupted. This is a 

severe restriction, since applications such as outdoor scanning cannot avoid this type of 

problem. This problem is reported in various studies in the literature [10-15]. In Figure 2.5, 
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some examples on problems occurring during the stripe segmentation based on highlights 

are given. 

 

 

 

Figure 2.5. Example of highlight problems on a shiny object surface 

 

One may think that scanning shiny objects can be performed under different 

constraints without any problem. A simple solution may be changing the reflectance 

property of the shiny surface either by painting it or by coating the surface with powder. 

This may not be feasible for most applications. One typical example emerges while 

scanning archeological findings. It may not be possible to paint them. Coating the surface 

may not be an option for others as well. Another solution may be scanning the object under 

dark. This may not be possible for some operations such as outdoor object scanning. Here, 

one may not control the illumination level on the object. Worse, the object may not be 

moved to a darker region. As in robotics applications, the illumination level may also 

change during the scanning operation. Most commercial range scanners use a specific filter 

passing only a specific color band. This solution is not always working properly. Besides, 

the color information (important for texture mapping) of the scanned object is lost at the 

end of this operation. To handle all these problems, a robust range scanning system is 

needed that can work under different ambient illumination levels. 

 

2.4.  SOLUTIONS PROPOSED IN THE LITERATURE 

 

Several methods are proposed in the literature to solve this problem. Umasuthan and 

Wallace [16] tried to solve the problem from the obtained range data. They used a least 

squares estimator to remove outliers in the range data. Elgazzar et al. [17] developed a 

specific laser stripe based range sensor for indoor environment scanning. They modified 
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the lens of the camera with a mask in front of it. They counted the insensitivity to ambient 

light as one of the advantages of this setup. Levoy et al. [18] tried different lighting 

conditions to decrease the effect of laser stripe scattering. Singhal et al. [19] introduced a 

technique to eliminate spurious range values using two (or more) cameras and several 

consistency tests. Forest et al. [20] proposed an FIR filter approach to locate the laser 

stripe on different surface types. Koninckx and Van Gool [21] proposed an adaptive range 

finder. Skocaj and Leonardis [22] proposed a method based on changing the intensity of 

the light projector. Trobina [23] approached the problem from the error model perspective. 

Zhang and Yau [24] proposed a multiple fringe projection based method to scan object 

surfaces having high reflectance range. Xu and Aliaga [25] recently proposed a method 

specifically to overcome strong interreflections. The common drawback for these methods 

is the need for extra or enormous number of patterns to be projected onto the object to be 

scanned. This naturally slows down the range scanning process. Besides, as the authors 

mentioned, some of these methods still suffer from shiny surfaces. 

 

2.5.  OUR SOLUTION FOR SCANNING SHINY SURFACES 

 

Since the illumination of the environment is the main effect of the shiny surface 

scanning problem, we should use a method that is robust to illumination effects. Therefore, 

we proposed to use color information for stripe segmentation. If we project colored stripes 

and can acquire the color data clearly, we can segment the stripes robustly. As mentioned 

above, by color coding we can also decrease the number of patterns to be projected and 

have a faster system. There are several structured light methods based on color information 

[9,26,27]. However, the main problem is separating the color without being effected by the 

illumination. Therefore, we proposed to use color invariants for this purpose. Color 

invariants help extraction of color information from an image without being effected by the 

environmental effects such as surface properties, illumination, highlights, and shadows. 

They were initially used for object recognition and content based image registration 

applications by Gevers and Smeulders [28-30]. We are the first in using these for range 

scanner applications. The detailed explanation of color invariants and the implementation 

for structured light range scanners based on these are given in Chapter 4.  
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3.  HARDWARE OF THE DEVELOPED RANGE SCANNER SYSTEM 

 

 

In the following chapters, we will explain the developed range scanner system in 

detail. Here, we review the general characteristics of it. First, we explain our hardware 

setup. Then we give a brief overview on stereo image geometry and triangulation principle. 

Then, we explain the used calibration method and its implementation. Finally, we give a 

brief overview on embedded processors, since we implemented our system on these. 

 

3.1.  HARDWARE SETUP 

 

One of our objectives is to implement our range scanner system on an embedded 

processor. Although our novel single stripe binary, ternary, and quaternary range scanners 

have different pattern coding and decoding properties, their basic hardware setup is the 

same. Some portions of their software are also the same. Therefore, in this section, we 

explore these common properties in the same framework. The scanner system we 

implemented consists of four main parts; projection device, camera, DSP board, and the 

rotary table. We designed our setup to output the point cloud in terms of range data. Then, 

we process this data in computer to obtain the 3D object surface model. We provide the 

systematic reprsentation of our system in Figure 3.1. Next, we give the details of the range 

scanner system we have implemented. 

 

 

 

Figure 3.1. System layout 



11 

 

 

We need a projection device that is stable such that it can project the same color with 

the same intensity value on each operation. In the DLP projection devices, there is a disc 

rotating with a constant speed in front of the DLP chip. Without a triggering circuitry, it's 

not possible to capture accurate colors by this device since the camera cannot synchronize 

with the rotary disc. To reduce the system complexity, we used a Hitachi CP-X3010Z 

Multimedia 3LCD projection device to project the patterns in our scanner system. This is a 

high performance projector that gives constant and accurate color output. 

 

To capture the pattern projected images, we used a Sony DXC-390P 3CCD camera. 

It's a standard definition 1/3" 3CCD 800 TV lines camera. It can give composite, S-video 

and RGB component outputs. It has a control output for digital zoom, auto focus, and auto 

iris applications. For our application, we used an 8 mm Fujinon C-mount lens. It is 

achromatic, eliminating chromatic abberations especially occurring on the sharp edges of 

high intensity color images. 

 

Texas Instruments DM6437 EVM board is the main processing unit of our scanner 

system. We will give the details of this board in the following chapters. The EVM board 

contains S-video, composite and component RGB outputs. For the best color quality, we 

connect it to the projection device by component outputs. Unfortunately, the EVM board 

contains only composite and S-video inputs. Therefore, we connect the camera to the board 

by S-video input. This causes sensor cross talk effects on the captured image. The control 

and data exchange with the the TI DM6437 EVM and computer is made by USB JTAG 

programming and debugging interface. 

 

To rotate the target object (to be scanned) in a desired angle, we implemented a 

rotating table system based on the TI MSP430 microcontroller. We will give the details of 

this rotary table system in the following chapters. Basically, the microcontroller of the 

rotary table is connected to the EVM board's general purpose input output (GPIO) ports. 

According to the signal given by the EVM, the microcontroller drives the stepper motor 

circuitry to rotate the object to be scanned. The rotary table is placed approximately 80 cm 

to 1 m away from the camera and projector device setup. We provide the images of our 

scanner system in Figure 3.2. 
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Figure 3.2. Our range scanner from different viewpoints 

 

3.2.  THE GEOMETRIC MODEL OF THE CAMERA 

 

The basic camera is a box with a small opening that projects the incoming light to the 

capturing surface. Therefore, we can model the camera with a pinhole model. If the 

pinhole was a single point exactly, one light ray would pass through each point in the 

image plane. However, the pinhole has a finite size. Even more, real cameras are equipped 

with lenses. Although it is not fully realistic, the pinhole model projection (central 

perspective projection) is accepted since it is mathematically convenient. Despite its 

simplicity, it often provides an acceptable approximation of the imaging process. 

Perspective projection creates inverted images. However, it is more convenient to consider 

a virtual image on an image plane at the same distance with the pinhole as the actual plane. 

This image is not inverted, but equivalent to the inverted one. Figure 3.3 shows an example 
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of a point   in real world and it's projection   on the virtual plane. The details of other 

projection methods can be found in [31]. 

 

 

 

Figure 3.3. Perspective projection of a point P 

 

As we introduced the fundamental model of perspective projection, we can show the 

constraints between the image measurements and the position of geometric objects in an 

arbitrary external coordinate system. We will introduce various physical parameters 

(intrinsic and extrinsic) relating the real world and camera coordinate frames and the 

general form of perspective projection equation in this setup. 

 

3.2.1.  Intrinsic and Extrinsic Camera Parameters 

 

The relationship between a 3D point   on a model plane and its image projection   is 

given by 

 

            (3.1) 

 

where   is an arbitrary scale factor.             is the augmented vector of 2D point. 

 

              is the augmented vector of the 3D point. The relation between the 

real world and the camera coordinate system is given by extrinsic parameters, denoted by 

( ,  ) as rotation and translation. The camera intrinsic parameters   are given by 
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   (3.2) 

 

where   and   are the scale factors in the image.   and   represent the axis and   is 

the skewness parameter of the two image axes. We assume the model plane is placed on 

    of the world coordinate system. This yields the point on model plane to be   

       and the augmented vector to be            . If we denote each column of 

rotation matrix   by   , then Eqn. (3.1 becomes 

 

   
 
 
 
             

 
 
 
     (3.3) 

 

Therefore, a point on the model plane and its image is related by homography,   

 

                (3.4) 

 

Then, Eqn. 3.3 becomes 

 

          (3.5) 

 

3.2.2.  Camera Calibration 

 

Camera calibration is a necessary step in a vision system to extract real world 

coordinates from 2D images. Different approaches for camera calibration have been 

proposed in the literature. One of them was proposed by Heikkila and Silven [32]. They 

made the calibration by a combination of a pinhole camera and lens distortion model. A 

well known method, based on the two-stage technique was proposed by Tsai [33]. He 

aimed an efficient computation of camera external position and orientation relative to 

object reference coordinate system as well as the effective focal length, radial lens 

distortion, and image scanning parameters. In this thesis, we used Zhang's, [34,35] 

approach. He proposed a flexible new technique for camera calibration by viewing a plane 

from different and unknown orientations. He solved the camera calibration problem by an 
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analytical solution followed by a nonlinear optimization technique based on the maximum 

likelihood estimation. We used the toolbox designed based on this method in our scanner 

system. Next, we give the details of this calibration process in practice. 

 

3.3.  SYSTEM CALIBRATION IN PRACTICE 

 

The real world coordinates of the range data is calculated using the intrinsic and the 

extrinsic parameters of the camera and the projection device. Therefore, these parameters 

should be obtained first. By calibrating the system, we can obtain these parameters. As a 

calibration tool, we used the Camera Calibration Toolbox for Matlab that is designed by 

Bouguet [36]. This toolbox implements a technique similar to Tsai's and Zhang's 

approaches on the camera calibration stage. It also includes the projector and overall 

system calibration. 

 

3.3.1.  Camera Calibration in Practice 

 

The toolbox is basically designed to obtain the camera calibration. Therefore, we 

first calibrate the camera. By using calibrated camera values, we can use the same tool to 

find the projector and overall system parameters. The toolbox needs reference points that 

the distance between them are known. Therefore, we place a checker board pattern and 

take the images of it from different angles. Figure 3.4 shows the checkerboard we used 

during calibration. 

 

 

Figure 3.4. The checkerboard used for calibration 
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In this checkerboard, each square has dimensions of          . To distinguish 

the original checkerboard points from the projected ones, we used a gray toned pattern. As 

we mentioned in the previous section, the parameters are calculated iteratively. Therefore, 

the toolbox needs more than one image to calculate the correct calibration parameters. We 

take 20 pictures in our calibration procedure by placing the checkerboard pattern 

approximately 50 cm away from the camera. Figure 3.5 shows an example of checkerboard 

image capturing scene. 

 

 

 

Figure 3.5. An example on image taking for calibration 

 

After taking the checkerboard images, we repeat the same procedure by projecting a 

checkerboard image from the projection device. Again we take images from different 

angles in this stage. An example of the projected checkerboard pattern is shown in Figure 

3.6. 
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Figure 3.6. An example of checkerboard pattern projection from projection device 

After taking images, we use Bouguet's toolbox to calculate the calibration parameters. The 

primary user interface of Bouguet's toolbox is as shown in Figure 3.7. 

 

 

 

Figure 3.7. The user interface of Bouguet's camera calibration toolbox 

 

First, we load and mark the corners of the checkerboards in the camera and 

projection device images. After marking corners, the toolbox automatically calculates the 

camera intrinsic and extrinsic parameters. These parameters are used on the next stage to 

calculate projection device calibration. 

 

3.3.2.  Projection Device Calibration in Practice 

 

Projection device can be accepted as an inverse camera. By calibrating the camera in 

the first stage, we know the real world coordinates of the checkerboard image projected by 

the projection device since we also know the dimensions of the checkerboard image given 

to the projection device. The toolbox can calculate the intrinsic and extrinsic parameters of 

this device. On the second stage of the calibration process, the toolbox calculates these 

parameters automatically. The final stage is calibrating the overall system. 
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3.3.3.  Overall System Calibration 

 

Overall system calibration is needed to calculate the relative positions of the camera 

and the projection device to make the triangulation on the range data extraction. As a final 

stage, the toolbox calculates the relative positions of the camera and the projection device. 

As a result of calibration, we obtain the extrinsic parameters that give the relative positions 

of the camera and projection device, intrinsic parameters of the camera and intrinsic 

parameters of the projection device. We place these parameters to a header file named 

“calibration header.h” to be used by the software of the DSP system. Next, we give the 

details of the triangulation process. 

 

3.4.  3D POINT CALCULATION BASED ON TRIANGULATION 

 

Structured light scanners work on defining the correspondence of each projected 

pixel with the camera captured one by using the data based pattern decoding. As each 

stripe is coded with a unique number from the decoded image, we can extract the 

horizontal location of the corresponding projected pixel. The vertical correspondence 

cannot be calculated directly from decodification. Next, we explain the per pixel 

correspondence calculation based on triangulation that provides us the real world 

coordinates of the scanned object. 

 

3.4.1.  Three Dimensional Point Cloud Extraction 

 

As explained above, we obtain the calibration data of our system once. This data 

provides the intrinsic and extrinsic parameters that will be used in triangulation. The 3D 

coordinates of a point   in the scene may be computed from its pixel coordinates    on the 

camera image and its projector coordinate   . In the triangulation operation, the 

intersection of two rays from the optical centers of the projector    and camera    gives 

the 3D coordinates based on per pixel disparity in which the depth is computed.  
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Figure 3.8. Triangulation based on epipolar geometry. 

 

This plane intersects the image planes in the epipolar lines    and   . The ray     

represents all the possible positions of the point   for the projection image plane. This is 

also projected on the epipolar line of the camera   . The coordinate system of the projector 

image plane can be transformed to the camera image plane by a translation   and rotation   

from the projector optical center    and to the camera center   . If    and    are the 

calibration matrices of the camera and projector device, the left and right projection of the 

of the point   is 

 

 
          

 
 
       (3.6) 

  

 
               

 
 
             (3.7) 

 

Using the co-planarity we can write, 

 

    
     

           
         (3.8) 
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This equation is homogeneous with respect to  , so the absolute scale cannot be 

recovered. It is helpful to replace the vector by matrix multiplication of      created from   

as 

 

 

      

      
      
      

   (3.9) 

 

We can rewrite Eqn. 8 as 

 

 
  

    
               

        (3.10) 

 

The middle part of this equation is expressed as a single matrix named the 

fundamental matrix   as 

 

   
        (3.11) 

 

It can be seen that the fundamental matrix   carries the coordinate information of 

pair of images from the projector and camera. As we find the correspondence by the 

pattern decodification, using the per pixel disparity and applying the fundamental matrix, 

we can calculate the real world coordinates of the object being scanned. More information 

on triangulation and the epipolar geometry can be found in [5-7]. 

 

3.5.  EMBEDDED SYSTEMS 

 

In developing our range scanners, we benefit from two different types of embedded 

systems as microcontrollers and DSP boards. In this section, we give a brief explanation to 

these. To be compact, we also explain the microprocessors. 

 

3.5.1.  Microprocessors 

 

Microprocessor is a silicon chip, designed to perform arithmetic and logic operations 

through its programs. Typical microprocessor operations include adding, subtracting, 
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comparing two numbers, and fetching numbers from one memory area to another. These 

operations are the result of a set of instructions that are part of the microprocessor design. 

Typical layout of a microprocessor is as in Figure 3.9. 

 

 

 

Figure 3.9. Typical layout of a microprocessor 

 

The Central Processing Unit (CPU) is the basic logical structure that accomplishes 

instructions given by the program. Arithmetic Logic Unit (ALU) is the logical structure 

that accomplishes arithmetic operations like addition and subtraction. Memory is the 

structure that the data and the program are stored in. Common microprocessors do not have 

very large memory space inside the chip. Therefore, the main data and program is stored 

outside the microprocessor. Instruction registers are small memory blocks. They handle 

processes that the CPU can execute. The program sets the instruction registers in an order 

to execute each process required one at a time. The size of the instruction register defines 

the bit processing capability of the microprocessor. 
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3.5.2.  Microcontrollers 

 

Microprocessors can only perform data manipulation and computation. To interact 

with the outside world, there should be some peripherals connected to the microprocessor. 

Microcontrollers are silicon chips that contain both the microprocessor and peripherals. 

Typical layout of a microcontroller is as in Figure 3.10. 

 

 

 

Figure 3.10. layout of a microcontroller 

 

Microcontrollers may contain all or some of the peripherals according to their usage 

area. For example, to process an audio or a video signal, the microcontroller with an 

Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC) is needed. 

Serial Peripheral Interface (SPI), RS232 Serial Communication Interface (SCI), I2C (two 

wire communication protocol) or JTAG (A fast real-time communication protocol) 

interfaces will be needed to communicate with another processor or computer. The setup 

and usage of these peripheral devices are arranged by the control, status, and data registers. 

For example, to define the sampling rate of the ADC, the necessary bits in the ADC control 

register are set. 
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3.5.3.  Digital Signal Processors 

 

Digital Signal Processor (DSP) is a microcontroller designed specifically for signal 

processing applications. This is achieved as follows. Commonly used operations in signal 

processing applications are convolution, filtering, and frequency-time domain conversions. 

These need recursive multiplication and additions. In other words, they need multiply and 

accumulate (MAC) operations. Standard microprocessors execute the multiplication 

operation as a recursive addition operation. This means for a standard microprocessor, the 

MAC operation is processed by excessive number of addition operations. This takes time. 

However, DSPs contain special MAC units that can execute the same operation in a single 

machine cycle. For example, a 150 MIPS DSP can process approximately 32 million data 

samples per second. For a standard 150 MIPS microprocessor, this reduces to two million 

data samples per second. Like microcontrollers, DSPs are equipped with different 

peripheral devices according to their usage area. Typical layout of a DSP chip is as in 

Figure 3.11. 

 

 

 

Figure 3.11 Typical layout of a DSP chip 
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4.  RANGE SCANNING USING COLOR INVARIANTS 

 

 

The main contribution of this thesis is using color invariants in range image 

scanning. In this chapter, we explore this in detail. Color invariants help extracting color 

properties of objects without being effected by imaging conditions such as the illumination 

of the environment, surface properties of the object, the highlights or shadows on the 

object, and the angle of view. In this thesis, we benefit from these to eliminate the 

illumination effects in stripe segmentation. Both in single stripe and multiple stripe 

scanners, we project stripes in different colors. By applying color invariants, we can 

robustly extract the color information. Therefore, we can segment the stripe without being 

effected by the illumination conditions. 

 

For the single stripe based and the binary scanner, we project two colors. Therefore, 

we proposed a color invariant based on two colors (red and green). However, we further 

implemented ternary and quaternary scanners that use three (red, green, and blue) and four 

(red, green, blue, cyan) colors respectively. Naturally, our color invariant cannot handle 

such cases. Therefore, we proposed different color invariants based on Gevers and 

Smeulders [28-30]. These were initially introduced for object recognition and content 

based image retrieval problems. In the following sections, we first explain our color 

invariant proposed for single stripe and binary scanner system. Then, we explain our color 

invariant based on Gevers and Smeulders' method. 

 

4.1.  THE Ψ COLOR INVARIANT 

 

For the single stripe based scanner, we project a red colored stripe on a green 

background (or a green stripe with red background) image by the projection device. 

Similarly, for the binary scanner system we project red and green (or blue and green) 

colored stripes in each pattern for binary codification. For both systems, we need to 

segment these two colors robustly for clean stripe segmentation and decoding. For this 

purpose, we proposed a color invariant that can segment out two colors robustly. 
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The color invariant we proposed is originated from a previous study on multispectral 

satellite images [37]. There, the Principal Component Analysis (PCA) is applied to the data 

in order to decorrelate the multispectral image components. Here, we apply the same 

procedure to the RGB image to obtain a new color invariant (specific for stripe 

segmentation). By this approach, we aim to suppress the effect of highlights (originating 

from the ambient light) in stripe detection. 

 

4.1.1.  Derivation of the Proposed Color Invariant using PCA 

 

PCA is a methodology for linearly transforming a correlated data set into a new 

space which has uncorrelated components [38]. The correlated data set is rotated about the 

origin using a linear transformation matrix to obtain the new space. For a set of correlated 

random vectors  , the linear transformation matrix   is calculated as follows. Let   be a 

    matrix as 

 

                   (4.1) 

 

where   is the dimensionality of the measurement and   is the number of data vectors 

(corresponding to the number of observations). 

 

For our application, we use the red and green color band pixel values as 

observations, hence    . To calculate the transformation matrix,  , first we obtain the 

covariance matrix as 

 

                      (4.2) 

 

 where    is the mean of the sample vector. Next, eigenvectors    that satisfy      

          are calculated. 

 

The eigenvalue-eigenvector pairs are indexed such that      . We also normalize 

the eigenvectors such that            . The value of    corresponds to the spread of the 

data (with respect to its mean) along the direction of   . The transformation matrix   is 

then formed by arranging the eigenvectors, one per row as 
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   (4.3) 

 

For our problem,   takes the form 

 

 
   

     

    
   (4.4)  

 

 where    and    values are obtained from eigenvectors as mentioned above. When this 

transformation is applied to any data vector   , it is projected onto each eigenvector as 

 

               (4.5) 

 

 For our derivations, we shift the principal components by transformed means as 

 

          (4.6) 

 

where            . We therefore work in non-centered spaces. 

 

To define the new color invariant, we transform the color components to an 

uncorrelated space using the PCA transformation as 

 

 
 
   
   

       
 
 
   (4.7) 

 

where   corresponds to the red color band (pixel value) of the image, similarly   

corresponds to the green color band (pixel value) of the image. This yields to 

 

               (4.8) 

 

 

              (4.9) 
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 As known,     and     are statistically uncorrelated. A slope on them can be 

defined as 

 

 

   
   

   
 

       

       
  (4.10) 

 

We take the negative value to emphasize the red band in extracting the color 

information of the stripe. A normalized angle (having values in    range) corresponding 

to this slope is defined as 

 

 

  
 

 
       

       

       
   (4.11) 

 

 

4.1.2.  Properties of the Ψ Color Invariant 

 

We take the angle   in Eqn. 4.11 as our color invariant in segmenting the stripe. 

Next, we explore its properties in depth on matte and shiny object surfaces. To note here, 

our segmentation method does not depend the object type. 

 

We can justify the usage of the   invariant in our range scanner systems by Caspi et 

al.'s [9] framework. They developed a structured light based range scanner using color 

codes similar to our system, but without using color invariants. In their study, they 

analyzed the overall process (from pattern projection to camera image acquisition). As a 

result, they introduced an equation relating the projected and received color values through 

projector and camera setup for structured light scanning. The equation proposed by Caspi 

et al. is 

 

 

 
 
 
 
   

         

         

         

  

    
    

    

  

  
  

  

   

  

  

  

   (4.12) 

 

Separating the equation for each color channel (R, G, B), we get 
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                               (4.13) 

 

                               (4.14) 

 

                               (4.15) 

 

where,   values represent projector-camera coupling values. Specifically,    ,    ,    , 

   ,    ,     correspond to sensor crosstalk values.    ,   , and    are the red, green, and 

blue reflectance values at the pixel.   ,   , and    are the projected color values (after a 

nonlinear transformation in the projection machine).   ,   , and    are the ambient light 

levels in the environment. 

 

Caspi et al. used a 3CCD camera as we do in this study. After tests, they observed 

that    ,    ,     values are approximately one.    ,    ,    ,    ,    ,     values are 

close to zero. We use the same values in this study. In our setup, the ambient light in the 

environment can be taken as white. Hence, we can define a unique ambient light level as 

          . After these assumptions and replacing the  ,   values in Eqn. 4.11 by 

the values in Eqns. 4.13,4.14,4.15 we obtain 

 

 

  
 

 
       

          

            
   (4.16) 

 

 We will use this equation for the stripe segmentation next. 

 

4.2. STRIPE SEGMENTATION USING THE Ψ COLOR INVARIANT 

 

For the single stripe or binary pattern sequences we use red or green color. 

Therefore, we examine the response of the invariant according to the red or green color 

projected pixels. For the projected red pixels,      and     . According to these 

values, Eqn. 4.16 becomes 
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   (4.17) 

 

As indicated in Eqn. 4.17, if there is no ambient light,    . If there is an ambient 

light, then      . Therefore to segment the red stripes, we can threshold the invariant 

applied image by 0 independent of the reflectance of the object. 

 

Similarly for the projected green pixels,      and     . Then, Eqn. 4.16 becomes 

 

 

  
 

 
        

  

     
   (4.18) 

 

In Eqn. 4.18, if there is no ambient light     . If there is an ambient light then 

      . As a result, the green pixels can be segmented by thresholding the invariant 

image for the values less than 0. 

 

The justifications above shows that, our color invariant can be used for both red and 

green colored line stripes. Besides, for other colored line stripes, this method can be 

generalized with the same derivation steps. In Figure 4.1, we provide a segmentation 

example of binary and single stripe scanners of binary and single red stripe image with a 

green background. 

 

 

 

Figure 4.1 Segmentation example for binary and single stripe scanners using ψ 
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We have published the single stripe based scanner with this color invariant in [39]. 

An extended version covering both the laser and the projection device system is published 

in [40]. The implementation of this scanner for the binary coded structured light scanners 

is published in  [41,42]. 

 

4.3. THE ‘c’ COLOR INVARIANT SET 

 

The   invariant is successful in segmenting two colors. However, as we mentioned 

in Section N-ary Gray Coding2.2.3, to reduce the number of stripes to be projected, we 

have to increase the number of colors used in the patterns. Naturally, our color invariant 

can not handle such cases. Therefore, we tried different color invariants. We give the 

details of the tests on other invariants in Appendix A. Although there are several color 

invariants in the literature, they are basically introduced for other purposes. After extensive 

testing, we decided that the „c‟ color invariant set introduced by Gevers and Smeulders 

[28] serve our purposes well for our range scanners. To protect the integrity of the scanner 

system, we will not use the   color invariant further for the binary and single stripe 

scanner systems. We will use the „c‟ color invariants and their combination for both binary, 

ternary, and quaternary scanner systems. These color invariants are 
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   (4.21) 

 

We refer the reader to the mentioned reference for more details on these color 

invariants. In our range scanner implementations, the color invariants    and    provide 

similar results. Therefore, we will not deal with the    color invariant further. In the 

following sections, we benefit from   ,   , and their combination in scanning shiny and 
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matte object surfaces in our range scanner system. We explore the properties of these color 

invariants in our setup next. 

 

4.3.1.  Properties of the ‘c’ Color Invariant Set 

 

As in the previous section, we justify the „c‟ color invariant set with Caspi et al.'s 

equation that relates the projected and the captured image. By replacing the  ,  ,   values 

in Eqns. 4.19, 4.21 by the values in Eqns. 4.13, 4.14, 4.15, we obtain 
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   (4.23) 

 

In our setup, the ambient light in the environment can be taken as white. Hence, we 

can define a unique ambient light level as           . Using this, we can further 

simplify Eqns. 4.22 and 4.23 as 
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   (4.25) 

 

 These two equations will serve for decoding binary, ternary, and quaternary patterns 

in the next section. 

 

4.4.  DECODING PATTERNS USING ‘c’ COLOR INVARIANTS 

 

In this section, we benefit from the   ,    color invariants and their combination to 

decode binary, ternary, and quaternary patterns projected onto the test object. To decode 

each pattern, we apply a different method. Therefore, we explore each method separately 

next. 
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4.4.1.   Decoding Binary Patterns 

 

We implement our binary range scanner in two different ways using    and    color 

invariants separately. To use the first color invariant,   , we project eight red and green 

colored patterns (in terms of line stripes with varying widths) onto the object. To decode 

these projected patterns from the grabbed camera images, we apply thresholding after 

obtaining their color invariant images. We explain this methodology next. 

 

For the pixels corresponding to the red stripe on the grabbed image, we have      

and     . Remember, we do not project the blue color. Therefore,      for this 

scenario. Then, we have 

  

 
          

    

 
   (4.26) 

 

Similarly for the pixels corresponding to the green stripes, we have      and 

    . As in the previous derivation,     . Based on these, we have 

  

 
          

 

    
   (4.27) 

 

We know that    and   values are greater than zero. Therefore,        for 

any ambient light level ( ) and the red reflectance value (  ). Similarly,        for 

any ambient light level ( ) and the green reflectance value (  ). These lead to the 

following conclusion. For the red stripes in the pattern, the term inside the arctangent 

function in Eqn. 4.26 will be greater than one. Since, the arctangent function is monotonic 

(within the        range);              or       . Similarly, for the green stripes in 

the pattern, the term inside the arctangent function in Eqn. 4.27 will be less than one. 

Therefore,       . Hence, the red and green stripes can be extracted from the    image 

easily by taking the threshold value of    . As can be seen, the ambient light level   has 

no effect on selecting this threshold value. The same derivations can be made for the    

color invariant. We apply this strategy to all eight red-green colored patterns. Then, we 

construct the decoded line stripes for each pattern. 
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In structured light based range scanners, we project patterns onto the whole object 

surface. Therefore, highlights will be either very bright red or very bright green depending 

on their location. By the justification above, we can claim that the intensity of the color 

does not affect the stripe extraction. Therefore, the stripes corresponding to the highlight 

locations can also be extracted reliably. 

 

We pick the matte and shiny Atatürk objects, as given in Figure 4.2, to show the 

difficulty in decoding the patterns from shiny object surfaces. We will also use these two 

test objects in the following sections for comparison. We picked these two objects since 

they have the same surface properties. Only their reflectance properties change. Therefore, 

we can have a controlled test environment. 

 

 

 

Figure 4.2. Matte and shiny Atatürk objects 

 

We provide the binary pattern decoding example using    on one of the eight patterns 

for our binary range scanner in Figure 4.3. For the    color invariant, we project red-green 

colored stripes (pattern) on these test objects. First, we provide the single layer of these 

coding images. In the same figure, we provide the extracted color invariant images and the 

decoded patterns (in color coded form) for both objects. As can be seen, binary pattern 

decoding results on matte and shiny Atatürk objects are fairly good using color coding and 

the    color invariant. 
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Figure 4.3. Binary pattern decoding results using c1. First column: matte and shiny Atatürk. 

Second column: c1 color invariant images. Third column: binary patterns decoded (in color 

coded form) 

 

 As the next example, we apply the same procedure using    in Figure 4.4. To use this 

invariant, we project blue-green colored stripes (pattern) on test objects. As in the previous 

example, we provide the coded images, color invariant versions, and the decoded patterns 

(in color coded form) in Figure 4.4. As can be seen, we can decode the single layer of 

binary patterns from both matte and shiny Atatürk objects in a reliable manner using the    

color invariant. 
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Figure 4.4. Binary pattern decoding results using c3. First column: matte and shiny Atatürk. 

Second column: c3 color invariant images. Third column: binary patterns decoded (in color 

coded form) 

 

 As a comparison, we also provide the singe layer of black and white pattern decoding 

example for the standard binary range scanner in Figure 4.5. In this figure, we provide the 

coded images of matte and shiny Atatürk objects and their decoding results. As can be 

seen, although the decoding results for the matte Atatürk object are fairly good, there are 

false decodings around the eye and the hair sections of the shiny Atatürk. These regions 

will lead to false range data after decoding all pattern levels. 
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Figure 4.5. Binary pattern decoding results using black and white stripes. First column: 

matte and shiny Atatürk. Second column: binary patterns decoded (in color coded form) 

 

4.4.2.  Decoding Ternary Patterns 

 

 For the ternary coded patterns, we use red, green, and blue colors. To decode stripes 

corresponding to these colors in the patterns projected, we have similar assumptions as in 

the binary range scanner. For the red colored stripes (in the patterns), we have     , 

    , and     . Using these values in Eqns. 4.24 and 4.25, we obtain 

  

           
    

 
           

 

    
   (4.28) 

 

 Similarly, for the green colored stripes (in the patterns), we have     ,     , and 

    . Using these values in Eqns. 4.24 and 4.25, we obtain 
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   (4.29) 

 

 Finally, for the blue colored stripes (in the patterns), we have     ,     , and 

    . Using these values in Eqns. 4.24 and 4.25, we obtain 

  

           
 

    
           

    

 
   (4.30) 

 

 We can see that there is a nice symmetry in Eqns. 4.28, 4.29, and 4.30. As in the 

binary range scanner, we have       ,       , and        

independent of the reflectance values and the ambient light level. Using the symmetry and 

the mentioned inequalities, we can define a new variable to decode ternary coded patterns 

as 

  

          (4.31) 

 

 For the red, green, and blue colored stripes,    ,    , and     respectively. 

Therefore, we can use   to extract the red, green, and blue stripes from the grabbed image. 

In implementation, we divide the range of the   value to three and apply segmentation 

based on these. We apply this strategy to all red, green, and blue colored pattern projected 

object images. Then, we construct the decoded line stripes in the overall image. 

 

 As in the previous section, we provide the ternary pattern decoding example using   

on one of the five patterns for our ternary range scanner in Figure 4.6. First, we provide the 

ternary coding images for matte and shiny Atatürk objects. In the same figure, we provide 

the extracted   images and the decoded patterns (in color coded form) for both objects. As 

can be seen, ternary pattern decoding results on matte and shiny Atatürk objects are fairly 

good using color coding and the   value. The binary and ternary scanner implementation 

using the „c‟ color invariants is published in  [43]. 
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Figure 4.6. Ternary pattern decoding results using s. First column: matte and shiny 

Atatürk. Second column: s images. Third column: ternary patterns decoded (in color coded 

form) 

  

4.4.3.  Decoding Quaternary Patterns 

 

 To decode quaternary patterns, we apply a similar strategy as in the ternary pattern 

case. Therefore, we again use   in Eqn. 4.31. In quaternary coding, we have red, green, 

blue, and cyan color coded stripes in the patterns. For the red, green, and blue colored 

stripes, the derivations are the same as in the ternary coding case. To extract the cyan 

colored stripes, we have     ,     , and     . Using these values in Eqns. 4.24 and 

4.25, we obtain 
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   (4.33) 

 

 For the cyan colored stripes,   has a negative value such that       . Although 

there is no symmetry here, in implementation we experimentally observed that, we can 

extract four different colored stripes in the quaternary scanner by dividing the   range to 

four and applying segmentation based on these. We apply this strategy to all four red, 
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green, blue, and cyan colored patterns. Then, we construct the decoded line stripes in the 

overall image. 

 

 As in the previous section, we provide the quaternary pattern decoding example 

using   on one of the four patterns for our quaternary range scanner in Figure 4.7. First, we 

provide the coding images on both matte and shiny Atatürk objects. In the same figure, we 

provide the extracted   images and the decoded patterns in color coded form for both 

objects. As can be seen, the quaternary pattern decoding results on matte and shiny Atatürk 

objects are fairly good using color coding and the   value. 

 

 

 

Figure 4.7. Quaternary pattern decoding results using s. First column: matte and shiny 

Atatürk. Second column: s images. Third column: quaternary patterns decoded (in color 

coded form) 
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5.  EMBEDDED SYSTEM IMPLEMENTATION 

 

 

 To implement the mentioned range scanner system, we used a TI DM6437 EVM 

board as the main unit. Our scanner system includes all the methods explained in the 

previous chapter. Therefore, it gives the user an opportunity to choose the scanner type. 

Furthermore, our range scanner system can scan the target object from different viewing 

angles. To do so, we added a rotating table system controlled by the TI DM6437 EVM 

board. Hence, we can obtain the object model. The single stripe scanner implementation on 

the embedded system is published in [44]. We will give the details of model construction 

in the following chapter. Here, we focus on the the details of the hardware part of our 

scanner system. 

 

5.1.  TI DM6437 EVM BOARD PROPERTIES 

 

 Structured light coding, decoding, pattern generation, and stripe extraction operations 

require a powerful computing platform. TI DM6437 EVM board is one of such platforms. 

It provides high computational power, as well as highly optimized software tools. 

Therefore, we decided to use it in our implementation. We provide its properties next. 

 

5.1.1.  The DSP Platform 

 

 TI DM6437 is a high performance, fixed point digital media processor build on 

C64x+ CPU with clock rates up to 700 MHz. The processor in the TI DM6437 EVM board 

has 600 MHz clock rate, corresponding to 4800 million instructions per second (MIPS). 

The DSP subsystem has 32 KB program and 80 KB data level one cache. The 128 KB 

level two cache provides flexible allocation to be used as RAM or cache. Besides, the 

internal memory of the TI DM6437 EVM board contains 32 MB NOR and 64 MB NAND 

flash memories used for boot loading, 2 MB SRAM for application debugging and 2x64 

MB DDR2 SDRAM for program, data, and video storage. 
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Figure 5.1. The DM6437 EVM 

 

5.1.2.  Video Input/Output Peripherals 

 

 In the TI DM6437 EVM board, video input/output peripherals are managed by the 

Video Processing Subsystem (VPSS). VPSS involves two configurable video/imaging 

peripherals: one Video Processing Front-End (VPFE) input used for video capturing, one 

Video Processing Back-End (VPBE) output having a Video Encoder (VENC). The VENC 

provides four analog DACs that run at 54 MHz, providing a means for composite NTSC or 

PAL video, S-video, and/or component video output. VPFE has a CCD Controller 

(CCDC), a preview engine, histogram module, auto-exposure, white balance, focus module 

(H3A), and resizer. The CCDC is capable of interfacing to common video decoders, 

CMOS sensors, and CCDs. On the TI DM6437 EVM board, CCDC is interfaced with a 

TVP5146M2 video decoder. 

 

 The TVP5146M2 is a 10-bit, 30 million samples per second (MSPS) high quality 

single-chip digital video decoder that digitizes and decodes NTSC, PAL, SECAM, 

composite, and S-video into component       format [45]. The decoder is configured 

over the I2C host port interface. According to this configuration, it generates 

synchronization, blanking, field, active video window, horizontal and vertical syncs, clock, 

genlock (for downstream video encoder synchronization), host CPU interrupt, 

programmable logic I/O signals and 4:2:2       video output signals. 
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5.1.3.  Programming and Debugging Issues 

 

 TI has an integrated DSP development environment called Code Composer Studio 

(CCS). We used CCS V.4 to program and debug the TI DM6437 EVM board and the TI 

MSP430 microcontroller. A real-time multi-tasking kernel (mini-operating-system) created 

by TI for the TMS320 family of DSP's named DSP/BIOS is an integrated part of this 

development platform. The DSP/BIOS includes graphical kernel object viewer and real-

time analysis tools specifically focused on debugging and tuning multitasking applications. 

Through a graphical configuration manager, DSP/BIOS manages device configurations, 

hardware and software interrupts, memory mappings, CPU and peripheral timings, and 

data exchange between the evaluation board and the CCS environment. In coordination 

with the DSP/BIOS, device initializations and controls are implemented through the Chip 

Support Libraries (CSL) and Board Support Libraries (BSL) by the C language callable 

functions. To have a fast scanning operation, we used TI's fixed point IQmath and FastRTS 

libraries in programming. 

 

5.1.4.  DSP Configuration for Image Input/Output 

 

 The first implementation step on the TI DM6437 EVM board is to setup the image 

input/output structure. To have an optimized hardware configuration, we used the video 

preview framework provided by TI Digital Video Software Development Kit (DVSDK). It 

uses C language callable functions of VPSS to capture and output the image. This 

framework generates video input and output buffer queues having three times the image 

size by memory allocation on the DDR2 SDRAM. These queues work in FIFO structure. 

The image to be processed is called from the video input queue. The processed image is 

placed to the video output queue. At the same time, a new image is captured and placed in 

the video input queue. Therefore, the data acquisition and processing runs in parallel. We 

provide this operation in a systematic layout form in Figure 5.2. We use the advantage of 

this structure to prevent the time loss in shadow image capturing (to be explained next). 
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Figure 5.2. The image input output structure 

 

5.1.5.  Properties of the Rotating Table 

 

 To be able to scan the target object from different viewpoints, we implemented a 

rotating table system for our scanner setup. By controlling the rotation angle, we can scan 

the target object from any desired angle. Our rotating table system consists of a step motor, 

driving circuit and a TI MSP430 microcontroller. 

 

5.1.5.1. Motor driving circuit 

 

 We used a step motor in the rotating table system to have an angular control. The 

step motor rotates in steps according to the magnetic field occurred by the current flowing 

through different directions on the four coils of the motor. We used an ULN2003 H-Bridge 

IC to control the current directions on the motor coils. This IC changes the current flow 

direction according to the states given by the microcontroller. The microcontroller gives 

eight states on four bits to control the motor on half step driving. We used optocouplers to 

isolate the microcontroller from the ULN2003 circuit. This way, we can protect the 

microcontroller from any undesired current flows. We also balanced the voltage levels of 

the IC and the microcontroller this way. The motor is fed by a 9V-3A DC power supply. 

The microcontroller circuit is supplied through the TI DM6437 EVM board by a 3.3V DC 

voltage. The schematic of the motor driving circuit is given in Figure 5.3. 
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Figure 5.3. Rotating table motor driving schematic 

 

5.1.5.2. The MSP430 microcontroller 

 

 To control the states of the motor driving circuitry, we used a TI MSP430F2274 

microcontroller. The MSP430F2274 has a powerful 16-bit RISC CPU, 16-bit registers, and 

constant generators that contribute to maximum code efficiency. Port2 of the 

microcontroller is set to be used as the general purpose output. We provide the state output 

from this port to drive the motor to the next step. The first bit of port1 on the 

microcontroller is set to get an interrupt from the TI DM6437 EVM board. On each high to 

low change signal from the TI DM6437 EVM board, the microcontroller gets an interrupt. 

The program in the microcontroller branches to the interrupt service routine that places the 

next state value to port2. This way, according to the number of pulses given by the TI 

DM6437 EVM board, the microcontroller gets interrupts and rotates the motor to the 

desired angle. The pictures of the motor driving circuit, motor, and the complete rotating 

table structure is given in Figure 5.4. 
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Figure 5.4. Left: The stepping motor used. Top right: The driver circuit. Bottom left: The 

MSP430 microcontroller. Bottom right: Rotating table during a scan process 

 

5.2. THE SCANNER SOFTWARE 

 

 In this section, we focus on the software implementation issues of our range scanner 

in terms of hardware properties. For more advanced DSP implementations of the proposed 

methods in this study, we refer the reader to two excellent books [46,47]. We configured 

the CCS such that, when it is launched on the host computer, it connects to the target board 

and waits with an empty user interface. By using the GEL script language specified for the 

CCS environment, we designed a menu item called “3D Scanner” to the user interface. 

This menu item is given in Figure 5.5. 
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Figure 5.5. Starting the scanner from CCS 

 

 By clicking on the “Start Scanner” icon from this menu, the user loads and starts the 

program. At the beginning, the program asks the user to choose the scanning method. The 

user selects one of the binary, ternary, or quaternary scanning methods by entering the 

number corresponding to it. This window is shown in Fig. 29. According to the selection, 

the program calls the corresponding pattern generation function. 

 

 

 

Figure 5.6. Selecting the scanning method by the user 

 

5.2.1.  Pattern Generation 

 

 In order to prevent delays based on pattern generation during the scanning operation, 

we prepare the patterns at the beginning of the program. To generate and store the patterns, 

we used a buffer structural element. For all scanning methods, we use vector header files 

that contain the pattern structure in a single line. The projection device projects a     

    pixel image. According to the selected scanning method, the single line pattern code is 

expanded to the entire image to be projected. Our scanner software has a queuing structure 

for parallel processing of image projection and capturing (to be explained in detail next). 

To benefit from this parallel structure, the program first copies the patterns to be projected 
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to the output buffer queue. The first pattern is projected by releasing the first output buffer. 

As the new frame is captured from the input buffer queue, the second pattern is 

automatically released from the output queue. While the second pattern is being projected, 

the color conversion operations (to be explained in the pattern decoding section next) are 

performed. This cycle continues sequentially for each pattern. After the last pattern in the 

frame is captured, a fully bright white colored image is released from the output buffer. 

The resulting image is captured to be used for shadow removal stage (to be explained 

next). 

 

5.2.2.  Shadow Removal 

 

 The shadow that is captured by the camera can disturb the color invariant 

calculations. Therefore, it should be removed. On the other hand, some dark colored 

objects may also be taken as shadow if the method works for all scenes. To prevent this 

confusion, the system asks the user whether the shadow should be removed or not. If the 

user selects to remove the shadow regions, the program takes an extra image with a pure 

white illumination. The   value (in      ) in the grabbed image is thresholded by 40. The 

pixels lower than this value are assumed to be from a shadow region. Let us remind that, 

we use a projection device that supports a controlled illumination. Therefore, we can use a 

fixed threshold. In the image processing stage of our program, we exclude the shadow 

pixels from further processing. This way, we reduce the unnecessary processor load. 

 

 After the shadow removal step, the program waits for the start command to begin the 

scanning operation. At the same time, the program places the first pattern to be projected 

from queue to the output. By the start command, the first pattern is projected onto the 

object. The user interface of this state is as given in Fig. 30. 
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Figure 5.7. Starting the scanning process 

 

5.2.3.  Image Capturing 

 

 After the pattern is projected onto the object, its image is captured and placed to the 

video input queue. The frame to be processed is called from the queue to a buffer structural 

element. To optimize the bandwidth, the image in the buffer is subsampled in 4:2:2       

format by the TVP5146 video decoder of the TI DM6437 EVM board. Our program first 

decomposes the       data and calculates the corresponding red, green, and blue color 

values. In the next step of the program, we benefit from these color values in calculating 

the color invariants for pattern decoding. 

 

 Unfortunately, we have a delay in the projection device. This causes problems in 

capturing the correct pattern projected image from the object surface. To overcome this 

problem, the program renews the image capturing process three times while the same 

pattern is released from the output buffer. This causes a delay in the pattern projection and 

image capturing stages of our software. We will talk about this issue in Section 6.4. 

 

5.2.4.  Pattern Decoding 

 

 To decode patterns, we apply the color invariant on each pixel of the grabbed image. 

The resulting values are thresholded (calculated theoretically in previous sections). If the 

pixel's color invariant value is above the threshold, it is stored in a buffer with a code 

number related to the pattern projected. The program repeats the pattern projection, image 
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capturing, and stripe segmentation processes for each pattern. Finally, we obtain a buffer 

array that contains the decoded data of the object's scanned pose. 

 

5.2.5.  Three Dimensional Point Cloud Extraction 

 

 As the patterns are decoded in the previous step, we can extract each line stripe 

(coded by Nary representation) separately. Then, using the triangulation principle and the 

disparity information between the projected and decoded line stripe positions, we can 

obtain the depth information [5-7]. We explained the details of triangulation in Chapter 3. 

For a proper triangulation the system should be calibrated. We obtain the calibration data 

of our system once. We feed this calibration data to our program as a header file. We gave 

the details of calibration in Chapter 3. 

 

5.2.6.  Scanning Objects from Different Viewing Angles 

 

 When the scanning from one viewing angle is completed, the program calls the 

rotating table function to rotate the object. To prevent any time losses, we rotate the table 

in parallel with the point cloud calculation operation. To register the point clouds from 

different viewing angles in a robust manner, the object should be rotated in small angles. 

Therefore, we scan the object from 11 different angles covering the overall 360 degrees 

range. 

 

5.2.7.  Transfer of Point Cloud Data 

 

 At the end of the scanning process, the program informs the user by the “Scan 

Process Completed” message. The user selects the ``Point Out'' icon under the “3D 

Scanner” menu item to transfer the point cloud data to the host computer. The view of this 

operation is as in Figure 5.8. 
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Figure 5.8. Transferring the point cloud data to the host computer 

 

 The GEL script we prepared saves the point cloud obtained from 11 different 

viewing angles in rectangular coordinates        . For each viewing angle, a specific text 

file is created with “.dat” extension. The registration software (that will be explained in the 

following chapter) can easily open these files and read the point cloud data. 
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6.  OVERALL PERFORMANCE OF THE SCANNER SYSTEM 

 

 

 In this chapter, we measure the performance of the proposed range scanner system 

by: the quality of the range data, operation timing, and accuracy. We performed 

experiments on each range scanner with objects constituting different surface 

characteristics. We test the proposed range scanner system on these objects under ambient 

light. For comparison purposes, we first provide the range data extracted by the standard 

binary structured light based range scanner (using black and white patterns). Then, we 

provide the range data extracted by our scanners. We also performed timing experiments to 

show the improvement on scanning time by decreasing the number of patterns. Having the 

highest precision was not our primary objective. However, we also measured the accuracy 

of the scanners we proposed. Next, we give the extracted range data by the proposed 

system. 

 We provide the images of the first set of our test objects, besides the matte and shiny 

Atatürk objects (given in Figure 4.2) in Fig. 32. These objects are: shiny teapot, shiny 

concave fish, shiny carafe, shiny green cat, soft donkey, and hen. In total, five of these test 

objects have shiny surfaces. The remaining three have matte surfaces. The shiny concave 

fish has a concave shape. Also, these test objects have different colors on them. We 

provide the extracted range data of these test objects in terms of point clouds for each 

scanner separately next. 

 

 

 

Figure 6.1. First set of test objects. First row: shiny teapot, shiny concave fish, shiny 

carafe. Second row: shiny green cat, soft donkey, hen 
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6.1.  EXTRACTED RANGE DATA USING THE STANDARD BINARY SCANNER 

 

 We implemented the standard binary structured light based range scanner (using 

black and white color patterns) through our hardware as a benchmark. We provide the 

range data extracted by this scanner in Figure 6.2. 

 

 

 

Figure 6.2. Point clouds of eight test objects using the standard binary range scanner. First 

row: matte Atatürk, shiny Atatürk. Second row: shiny teapot, shiny concave fish, shiny 

carafe. Third row: shiny green cat, soft donkey, hen 

 

 As can be seen in Figure 6.2, the standard binary range scanner gives good results on 

the matte Atatürk object. However, the chin and the hair parts of the shiny Atatürk object is 

problematic. As we have mentioned previously, this is due to the problem in the pattern 

decoding step. This problem is also evident for the remaining test objects. For the matte 

objects such as soft donkey and hen, the scan results are good. On all other shiny objects, 

this scanner gives poor results. Either some parts of the objects are missing or there are 
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some outliers in the extracted range data. The main reason for this poor performance is, as 

mentioned above, the pattern decoding step. 

 

6.2.  EXTRACTED RANGE DATA USING OUR SCANNERS 

 

 Since we proposed several scanners, we provide the range data extracted from them 

separately in this section. We start with binary range scanners based on color invariants    

and    separately. Then, we proceed to the results of the ternary and quaternary range 

scanners. 

 

6.2.1.  Binary Range Scanners 

 

 We provide the range data extracted by our binary range scanner using    in Figure 

6.3. As can be seen in this figure, the range data extracted from all objects are fairly good. 

 

 

 

Figure 6.3. Point clouds of eight test objects using the binary range scanner (with c1). First 

row: matte Atatürk, shiny Atatürk. Second row: shiny teapot, shiny concave fish, shiny 

carafe. Third row: shiny green cat, soft donkey, hen 
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 Similarly, we provide the range data extracted by our binary range scanner using    

in Figure 6.4. As in the previous scanner, all results are fairly good. The main difference 

between this and the previous binary scanner is the used pattern colors (blue-green) in 

coding. 

 

 

 

Figure 6.4. Point clouds of eight test objects using the binary range scanner (with c3). First 

row: matte Atatürk, shiny Atatürk. Second row: shiny teapot, shiny concave fish, shiny 

carafe. Third row: shiny green cat, soft donkey, hen 

 

6.2.2.  The Ternary Range Scanner 

 

 We provide the range data extracted by our ternary range scanner in Figure 6.5. As 

can be seen in this figure, the range data extracted from all test objects using this scanner 

are also fairly good. 



55 

 

 

 

Figure 6.5. Point clouds of eight test objects using the ternary range scanner. First row: 

matte Atatürk, shiny Atatürk. Second row: shiny teapot, shiny concave fish, shiny carafe. 

Third row: shiny green cat, soft donkey, hen 

 

6.2.3.  The Quaternary Range Scanner 

 

 Finally, we provide the range data extracted by our quaternary range scanner in 

Figure 6.6. Although the results obtained with this scanner are better than the standard 

binary range scanner, for the green cat and hen objects, the range data is not as good as the 

ternary and binary range scanners. One possible explanation for these results is the 

decoding step. As we mentioned before, for decoding the cyan colored stripes, we could 

not obtain a symmetric relationship. This may have caused minor problems in the decoding 

step. 
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Figure 6.6. Point clouds of eight test objects using the quaternary range scanner. First row: 

matte Atatürk, shiny Atatürk. Second row: shiny teapot, shiny concave fish, shiny carafe. 

Third row: shiny green cat, soft donkey, hen 

 

6.3.  QUANTITATIVE COMPARISON OF THE SCANNER RESULTS 

 

 To have a quantitative comparison of the standard binary range scanner and the ones 

proposed in this study, we measured the percentage of the outliers and the missing points 

on the extracted range data. Table 6.1. Average percentage (%) of outliers for the scanners 

tabulates the percentage of the outlier points for each scanner. For a fair comparison, we 

divided our test objects as matte (matte Atatürk, soft donkey, hen) and shiny (shiny 

Atatürk, shiny teapot, shiny concave fish, shiny carafe, and shiny green cat). For each 

scanner type, we provide the average percentage of outliers separately (for matte and shiny 

objects) in this table. 
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Table 6.1. Average percentage (%) of outliers for the scanners 

 

   

Scanner Type 

  Object Type  

Matte Shiny 

Standard binary 0.34 2.01 

Binary    0.37 0.23 

Binary    0.70 0.55 

Ternary 0.72 0.45 

Quaternary 0.74 2.17 

  

  

 As can be seen in Table 6.1. Average percentage (%) of outliers for the scanners, for 

matte objects the standard binary scanner gives better results compared to others. However, 

the performance improvement is not significant. On the other hand, for the shiny objects 

the standard binary scanner has an average of       outlier. On the average, this scanner 

gives 38000 points for the five shiny objects. Therefore, the standard binary range scanner 

has an average of 763 outliers for each shiny object. This number is almost tenfold more 

than the binary range scanner using   . In this table, it can be seen that, the quaternary 

scanner has a high number of outliers. However, this is not because of the shiny surface 

characteristics. It is based on the color of the surface. Especially, for the shiny green cat 

object, the effect of sensor crosstalk caused the number of the outliers to be higher. This 

increases the average percentage error for the quaternary scanner. 

 

 Not only the outliers but also missing points occur based on decodification errors. 

Therefore, we also measured the percentage of the missing points on the same matte and 

shiny test objects. Table 6.2. Average percentage (%) of missing points for the 

scannerstabulates the average percentage of missing points for each scanner. 
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Table 6.2. Average percentage (%) of missing points for the scanners 

 

 Object Type 

Scanner Type Matte Shiny 

Standard binary 0.11 3.35 

Binary    0.02 0.76 

Binary    0.02 0.24 

Ternary 0.02 0.08 

Quaternary 0.02 0.02 

  

  

 As can be seen in Table 6.2. Average percentage (%) of missing points for the 

scanners, for both matte and shiny objects the percentage of the missing points is higher for 

the standard binary scanner. Based on the calculations for outliers in the above paragraph, 

for a shiny object approximately 1273 points are missing on the average. However, in our 

scanners this number decreases to 288 in the worst case. This is a fivefold improvement. 

This improvement and the one obtained for the outliers in the previous paragraph clearly 

show that our range scanners provide better range data compared to the standard binary 

range scanner. 

 

6.4.  TIMING PERFORMANCE OF THE SCANNER SYSTEM 

 

 We also tested the timing performances of our range scanners. We picked the shiny 

carafe as the test object. We provide the time needed for each scanning step (from one 

viewing angle only) in Table 6.3 for our binary, ternary, and quaternary range scanners. In 

this table, „Initialization‟ stands for the initialization of the TI DM6437 EVM board. 

„Pattern generation‟ is the step to generate the pattern image to be projected. 

„Configuration‟ stands for the configuration of the video processing subsystem. In the 

„Acquisition‟ step, the pattern to be projected is filled to the buffer, projected, acquired, 

decomposed, and converted from       4:2:2 format to    . „Pattern decoding‟ step 

involves the usage of color invariants to decode patterns. „Rotating the table‟ step involves 

the time needed to control the rotating table for the next scan. Finally, „Calculations‟ step 
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includes all the calculations to output real world coordinates of the scan result. We take the 

clock of the TI DM6437 EVM board as 600 MHz. 

 

 

Table 6.3. Operation timings in milliseconds for the scanners 

    

 Time (msec) 

Step Binary Ternary Quaternary 

Initialization 0.19 0.19 0.19 

Pattern generation 415.87 307.67 283.38 

Configuration 0.10 0.10 0.10 

Acquisition 1778.51 1180.79 968.72 

Pattern decoding 2393.45 1969.02 3477.81 

Rotating the table 88.17 88.17 88.17 

Calculations 1918.10 2649.32 728.94 

TOTAL 6594.39 6195.26 5547.31 

  

  

 As can be seen in Table 6.3. Operation timings in milliseconds for the scanners, the 

total time needed to scan the shiny carafe object from one viewing angle is 6.59 sec, 6.19 

sec, and 5.54 sec for the binary, ternary, and the quaternary range scanners respectively. 

However, the time needed just to acquire the pattern images (including all initialization 

steps) from the object surface is      sec,      sec, and      sec for the same scanners. 

Therefore, to scan an object from one viewing angle, it should stay in front of the binary 

scanner at most 2.19 sec. For the quaternary scanner, this time reduces to 1.25 sec. The rest 

of the operations can be done off line. 

 

 In Table 6.3, it is clearly seen that, the pattern decoding, acquisition, and calculations 

steps take most of the operation time. Since our method needs color information, these 

timings are unavoidable. Besides, in the calculations step, the timing between each scanner 

type is different since each extract different number of range points depending on their 

spatial resolution. This is because of the different line widths used for each scanner. In 

terms of total timings, the quaternary range scanner is the fastest of all, as expected. 
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Besides, the binary and ternary range scanners have fairly good operation speeds. These 

results are due to the TI DM6437 EVM board and using C programming with optimized 

fixed point coding libraries. 

 

 The proposed method implemented on the TI DM6437 EVM board may seem slow 

compared to fringe projection based methods such as [4]. This is because of three main 

reasons. First, due to budget constraints and availability we had to use a standard 

projection device in the setup. Therefore, delays in projecting the patterns and acquiring 

them became unavoidable. Besides, it was not possible to use an external trigger for this 

projector. There are projection devices specifically designed for range scanning 

applications. Using these will definitely shorten the operation timings. Second, our DSP 

platform was specifically designed to process video images. Although it was a good choice 

for academic purposes, developing a real time range scanner was not possible based on its 

characteristics. Third, using color information also decreased the timing performance of 

our system. On the other hand, our proposed method implemented on a TI DM6437 EVM 

board as suggested in this study is faster than standard PC based implementations. One can 

see timing comparisons of recent structured light based range scanning systems in the 

review paper [2]. 

 

6.5.  ACCURACY OF THE SCANNER SYSTEM 

 

 Caspi et al. [9] used a staircase object to verify the accuracy of their system. 

Similarly, we tested the accuracy of our binary range scanner on a staircase object given in 

Figure 6.7. This object has three levels. We measured the actual depth of each staircase 

level from three different locations (left, middle, right) by a caliper. Then, we measured the 

depth of these locations by our range scanner. We provide the results in Table 6.4. 
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Figure 6.7. The staircase object for testing the accuracy of range scanners 

 

    

Table 6.4. Comparison of the actual and the measured depth values (in millimeters) on the 

staircase test object 

 

Step, location Actual Measured Error 

First step, left 39.90000 39.11473 0.78527 

First step, middle 39.99000 40.03656 -0.04656 

First step, right 39.80000 39.27202 0.52798 

Second step, left 20.59000 19.20797 1.38203 

Second step, middle 19.92000 19.31543 0.60457 

Second step, right 20.34000 20.67780 -0.33780 

Third step, left 10.29000 9.86059 0.42941 

Third step, middle 9.62000 9.80263 -0.18263 

Third step, right 9.55000 9.80600 -0.25600 
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 As can be seen in Table 6.4, the maximum error is         mm on the second step. 

The average error for the first, second, and third steps are         mm,         mm, 

        mm respectively. The overall average error for the staircase test object is 

        mm. Based on these tests, we can claim that the accuracy of our binary range 

scanner is acceptable. To note here, the accuracy was not the main target in this study. 

Using more advanced techniques and equipments, this acucracy can be improved further. 

 

6.6.  COMMENTS ON THE PERFORMANCE 

 

Comparing all the range data extracted by five range scanners, we can summarize 

some key observations. First of all, the standard binary range scanner (using black and 

white patterns) is not a good choice for scanning shiny objects under ambient light. The 

binary range scanner based on    gives good results on all test objects. The other binary 

range scanner based on    also gives good results on all test objects. The range data 

extracted by the ternary range scanner is fairly good. Finally, the range data extracted by 

the quaternary range scanner from most test objects is fairly good. Only for some 

challenging objects, the extracted range data is not as good as the other scanners based on 

color invariants. The average value of outliers and the missing points justifies these claims 

quantitatively. We also compared the operation timings for these scanners in Section 4. As 

expected, the speed of the system increases as the number of patterns decrease. However, 

the user should decide on using whether a high speed scanning or a high resolution 

scanning. As a final comment, either fast or slow, with high or low resolution, our scanner 

system can scan shiny or matte surfaces reliably under ambient light. 
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7.  3D MODEL CONSTRUCTION 

 

 

 The final step in object scanning is the 3D model construction. The proposed scanner 

system gives 3D point cloud as an output. Then, we obtain the polygon meshes of the 

poses from different angles of the object. For obtaining the object model, these meshes 

should be registered. We use the iterative closest point (ICP) algorithm to register these 

patches [5]. Next, we will give a brief explanation of the ICP method. Then, we summarize 

the test objects used. Finally, we give the models of these test objects. 

 

7.1.  3D MODEL CONSTRUCTION USING ICP 

 

 There are several 3D point set registration algorithms proposed in the literature. 

Rodrigues et al. [48] presented a survey on major registration algorithms. Iterative Closest 

Point (ICP) proposed by Besl and McKay [5] is the current state-of-art algorithm. 

Rusinkiewicz and Levoy [49] categorized and summarized variants of the ICP algorithm. 

Here we will explain the basic algorithm. 

 

 ICP is an algorithm introduced to register the two set of 3D points. Since the 

algorithm is very effective, it is commonly used to reconstruct the final 3D models of real 

objects from their range data. The algorithm works on a basis of iterative estimation of the 

Euclidean transformation (translation and rotation) between the two point sets. The 

algorithm requires an initial estimation of the transformation. Till satisfying the stopping 

criteria, the algorithm works iteratively. The output of the algorithm is the refined 

transformation. 

 

 Assume that we try to register the two set of range image points   and  . The 

algorithm calculates the 3D rotation matrix   and the translation vector   that minimizes 

the error as 

  

        
 

  
  

  
                (7.1) 
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where    is the     point in the point set to be registered,    is the     point in the 

reference point set to which   is registering.    is the number of points in the data set  . 

 

 The closest points are calculated using the Euclidian distance between each points. 

For two points given as                   and                   the Euclid distance is 

  

                                               (7.2) 

 

 Let   be point set with    points denoted by       :            for             . The 

distance between a point to be registered    and the point set set   is 

  

            
        

               (7.3) 

 

  For every point    in the point set  , and the corresponding point in   is computed 

using Eqn. 7.3. 

 

The ICP algorithm iteratively minimizes the error function. It starts with an initial 

rotation matrix   and the translation vector   that transforms the data set to be registered 

and calculates the registration error. Then it calculates the rotation matrix   and the 

translation vector   again by minimizing the distance. Until the error reaches to the 

required level, the process continues iteratively. This iterative process is guaranteed to 

converge to a local minimum for any starting value of   when it is a subset of  . However, 

there are some limitations of the ICP algorithm when used in range data registration. First, 

range data are not subsets of each other. Instead, they partially overlap with each other 

depending on the viewpoint. Therefore, the algorithm requires the detection of outliers that 

comes through the non-overlapping regions. Second, the algorithm requires a good initial 

estimation close to the global minimum in order to avoid any local minimum. 

 

 We give an example of ICP algorithm implementation for the hen test object in 

Figure 7.1 On the left side, the two patches are given with blue and red colored points. The 

middle figure shows the rough registration using ICP algorithm. The right figure shows the 

fine registration of the two point clouds. 
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Figure 7.1. ICP implementation example under MATLAB 

. 

 The ICP algorithm has an average complexity of      , where   is the number of 

points in the range image. One needs to compute the corresponding point pairs in every 

iteration. This increases the complexity and time consumption of the algorithm. For a 

faster algorithm, Sertel and Ünsalan  [50] proposed using the edge information that makes 

the rough registration based on the edges of the patches. Although we can implement this, 

because of the time complexity, we used a commercial software having an optimized and 

fast ICP implementation. To note here, other registration methods may also be used taking 

the rotating table properties into account. 

 

7.2.  PROPERTIES OF THE TEST OBJECTS 

 

 To test the overall system, from range data extraction to model formation, we picked 

28 test objects given in Figure 4.2, Figure 6.1 (given in the previous chapters) and Figure 

7.2 (given below). These test objects have diverse surface characteristics. We provide the 

dimensions of these test objects in Table 7.1 As can be seen in this table, the dimensions of 

our test objects are also diverse. 
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Figure 7.2. Second set of test objects. First row: circular carafe, column vase, bunny, clay 

pot, armed vase, shoe. Second row: elephant, brown shoe, dove and yellow shoe. Third 

row: hedgehog, bird, cornered vase, Venus. Fourth row: Alexander, moon, shiny fish, 

shiny 
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Table 7.1. Dimensions of test objects (in millimeters) used in experiments 

 

Object Length Width Depth 

Atatürk 110 120 10 

Shiny teapot 110 118 113 

Shiny concave fish 110 195 45 

Shiny carafe 170 140 110 

Shiny green cat 140 90 80 

Soft donkey 110 145 45 

Hen 150 150 80 

Circular carafe 150 125 40 

Column vase 160 100 100 

Bunny 85 55 60 

Clay pot 185 120 120 

Armed vase 190 110 85 

Shoe 80 125 40 

Elephant 65 95 70 

Brown shoe 90 135 65 

Dove 140 185 100 

Yellow shoe 80 85 40 

Hedgehog 50 80 60 

Bird 80 145 70 

Cornered vase 185 75 75 

Venus 160 170 125 

Alexander 260 230 160 

Moon 120 40 5 

Shiny fish 70 120 25 

Shiny stork 90 100 10 

Cow 75 65 20 

Shiny star 120 120 25 

Shiny rose 85 65 30 
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7.3.  OBJECT MODELS EXTRACTED BY THE PROPOSED SCANNER SYSTEM 

 

 In this section, we provide the models of our test objects using our binary range 

scanner (using   ). For each object, we provide the object model from three different 

directions. Only the final eight objects are imaged from only one direction, since they have 

flat surfaces. In Figure 7.3, we provide the models of the shiny teapot, shiny carafe, shiny 

green cat, soft donkey and hen objects.  

 

 

 

Figure 7.3. Models of shiny teapot, shiny carafe, shiny green cat, soft donkey, and hen 

objects 
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Figure 7.4. Models of the circular carafe, column vase, bunny, clay pot, and armed vase 

object 

 

 Figure 7.4 holds the models of the circular carafe, column vase, bunny, clay pot, and 

armed vase object. Similarly, in Figure 7.5, we provide the models of shoe, elephant, 

brown shoe, dove, and yellow shoe objects. In Figure 7.6, we provide the models of the 

hedgehog, bird, cornered vase, Venus, and the Alexander object.  
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Figure 7.5. Models of the shoe, elephant, brown shoe, dove, and yellow shoe objects 

 

 We provide the models of flat objects shiny concave fish, shiny Atatürk, moon, shiny 

fish, shiny stork, shiny rose, cow and shiny star in Figure 7.7. These are small sized and 

highly detailed objects. As can be seen, all object models are reliably extracted by the 

proposed range scanner system. These results are fairly good. We provide our face scan 

results by our system in Figure 7.8. We also provide our texture mapped face scans in the 

same figure. Finally, we provide our body and hand scans in Figure 7.9. As can be seen, 

our face and body scan results are also fairly good. 
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Figure 7.6. Models of the hedgehog, bird, cornered vase, Venus, and Alexander objects 
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Figure 7.7. Models of the flat objects. First row: shiny concave fish, shiny Atatürk, moon, 

shiny fish. Second row: shiny stork, shiny rose, cow, shiny star 

 

 

 

Figure 7.8. Our face scans and their texture mapped versions 
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Figure 7.9. Our body and hand scans 
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8. CONCLUSIONS 

 

 

 In this study, we designed and implemented a novel range scanner system both in 

hardware and software. Our aim was to solve the problem of range scanning of shiny 

objects under ambient light. We benefit from color pattern projection and color invariants 

for this purpose. This is our main contribution since the color invariants are used for the 

first time for this application. We developed five range scanning methods based on single 

stripe, binary, ternary, and quaternary color coded patterns. Although the standard binary 

coded structured light based range scanner could not extract the range data of shiny 

objects, our color invariant based range scanners were able to extract the same range data 

in a reliable manner. The increase of the number of colors used in the scanner system 

directly affect the speed of the system. However, the resolution is decreased related to the 

coding strategy. If the main aspect of the user is speed, than the user can use the ternary or 

quaternary scanner. If the aim is higher precision, then the user can select the scanner with 

less number of colors. 

 

 Another important objective of this study is to implement this system on an 

embedded processor. This way, the overall processing speed is increased and the system 

became less dependent on a computer. Therefore, we implemented our range scanners on a 

TI DM6437 EVM board. All the range data extraction software works on this board with 

an optimized, fast, and reliable structure. Only the 3D model formation part of our range 

scanner system works on the host computer. By a GEL script file, we also implemented a 

basic interface for the user. The system gives the entire complete object model in an 

acceptable time and quality. 

 

 The hardware limits us on developing range scanners with less number of patterns. 

Since the EVM board we use does not have a component RGB input, we have a sensor 

cross talk problem on the image captured from the camera. Also, the resolution of the 

camera limits us on the minimum width of the stripe pixels that we can project. Another 

hardware limitation of the system is the projection device. Based on the delays of the 

projection device, we had to slow down the system in the pattern image acquisition step. 

With a triggered system, that works synchronized with the camera, we may have a faster 
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operation. Obtaining very high resolution range data was not the main target of our study. 

Therefore, we did not design modules for reaching subpixel accuracies. On the other hand, 

we have adequate quality and timing from the proposed range scanner system. As a general 

conclusion, we can claim that our color invariant based range scanner system can be used 

to scan shiny and matte objects under ambient light in an acceptable operation time and 

quality. 
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APPENDIX A: OTHER INVARIANTS FOR THE SCANNER SYSTEM 

 

 

 Here, we summarize other color invariants that we used in our experiments. These 

are: Hue, normalized RGB,       and some other invariants that were proposed by Gevers 

and Smeulders for content based image retrieval. Some of these invariants give good 

results for a specific type of scanner. However, for the completeness of the system, we 

choose the invariant that works on all scanners in a reliable manner. In comparing these 

color invariants, we picked the metallic plate object given in Figure A.1. We also provide 

the segmentation results in color coded form in the following sections 

 

 

 

Figure A.1. The metal plate object used as a benchmark 
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A.1.   INVARIANTS TESTED FOR THE BINARY CODED STRUCTURED LIGHT 

SCANNER 

 

 First, we performed experiments on Hue and normalized RGB color components 

(  ,   ,   ). Hue is the the quality of a color as determined by its dominant wavelength. 

Normalized RGB values are obtained by the ratio of the base color to the sum of the base 

colors of the pixel. These invariants are calculated as 

  

 
           

       

           
   

(A.1) 

  

 
   

 

     

   
 

     

   
 

     

  (A.2) 

 

 We provide the segmentation results for these scanners in Figure A.2. As can be 

seen, Hue provides a result that can be thresholded without being effected from the 

highlights. In    and   , the effect of the highlights will create a problem in thresholding. 

Since    covers the blue color, we do not expect a result for the red and green colored 

pattern. 
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Figure A.2. Hue and normalized color results for the binary scanner. First row: from left to 

right shiny metal plate with red and green pattern, Hue result. Second row: from left to 

right normalized red and blue results 

 

  Another set of invariants that we tested is the          invariants proposed by 

Gevers and Smeulders. They are defined as 

  

    
   

   

   
   

   

   
   

   

  (A.3) 

 

 We give the results of these invariants together with the          invariants in Figure 

A.3. Here,    and    has similar results that can be thresholded without being effected by 

the highlights. The effect of shiny surface can be seen more on the invariant   . We should 

not expect a useful result from the   ,    and    for a red and green colored pattern. 
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Figure A.3. The c color invariant results for the binary pattern. First row: from left to right 

c1 ,c2, c3 results. Second row: from left to right c4, c5, c6 results 

   

 The last set of invariants we tested is                   proposed by Gevers and 

Smeulders. These invariants are 

  

    
      

                    

   
      

                    

   
      

                    

   
     

                 

   
     

                 

   
     

                 

  (A.4) 

 

Figure A.4 shows the results of the   color invariants.   ,   ,   , and    color 

invariants take the ratio of the difference of blue from red and green to the difference of all 

colors. Therefore, these color invariants does not give successful results for this pattern. 
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Figure A.4. The l color invariant results for binary pattern. First row: from left to right l1, 

l2, l3 results. Second row: from left to right l4, l5, l6 results 

   

 Other than these color invariants, we tested different color spaces (Lab, XYZ and 

xyY) as invariants [51]. The results on these color spaces are given in Figure A.5. As can 

be seen, Lab and XYZ are highly effected by the shiny surface and do not give a successful 

result. The 'y' component of the xyY space is successful on color segmentation of red and 

green colored pattern stripes. 
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Figure A.5. Lab, XYZ and xyY color space results. First row: Lab components. Second 

row: XYZ components. Third row: xyY components 

   

 

A.2.  INVARIANTS TESTED FOR THE TERNARY CODED STRUCTURED 

LIGHT SCANNER 

 

 As we did in binary patterns, we tried different color invariants for the ternary coded 

structured light scanner. The first invariant we tried is Hue. We projected a ternary pattern 

with red, green, and blue colored stripes on to the metal plate object. Figure A.6 shows the 

pattern projected image and the Hue result for the ternary pattern. 
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Figure A.6. Projected pattern and the Hue result 

   

 Hue gives successful result on segmentation of these three colors. Another set we 

tried is the normalized colors   ,   , and   . The results for normalized colors is given in 

Figure A.7. Normalized colors are successful on color segmentation. However, it seems 

that there will be problems in thresholding on shiny surfaces. 

 

 

 

Figure A.7. Normalized color results for the ternary pattern. From left to right Rn, Gn, and 

Bn 

   

 As we did in the binary scanner, the second invariant set we tested is the `c' color 

invariants. The   ,   , and    give successful result on segmentation especially without 

being effected by the shiny surface. However, we cannot say the same thing for the   ,   , 

and    invariants. 

 



83 

 

  

 

 

Figure A.8. The `c' color invariant results for ternary pattern. First row: from left to right 

c1, c2, and c3. Second row: from left to right c4, c5, c6 results 

   

 The last color invariant set we tried for ternary patterns is the `l' color invariants. The 

results for the   ,   ,   ,   ,   ,    are given in Fig. 56. These color invariants take the ratio 

of the difference of two colors with respect to the sum of the difference of the all colors. 

Therefore, we should not expect to have a successful result for three colors by these 

invariants. 
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Figure A.9. The l color invariant results for the ternary pattern. First row: from left to right 

l1, l2, and l3. Second row: from left to right l4, l5, l6 results 

   

 Finally, we give the results of other color spaces in Figure A.10. „L‟ carries the 

intensity in the Lab space. Therefore its directly effected by the illumination. For the „a‟ 

and „b‟ components, we cannot separate the three colors. XYZ color space is effected by 

the illumination and could not give a robust threshold result. The „y‟ component in the xyY 

color space can be used for the segmentation of the three colors. Although there is a short 

range between red and green color separation, these colors can be separated by 

thresholding. 
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Figure A.10. Lab, XYZ and xyY color space results. First row: Lab components; second 

row: XYZ components; third row: xyY components 

   

 According to these experiments, we decided to use the    and    color invariants for 

our system. Since these invariants also give successful results for quaternary patterns, we 

did not try other invariants for quaternary patterns. 

 

A.3.  INVARIANTS TESTED FOR THE SENARY CODED STRUCTURED LIGHT 

SCANNER 

 

 To decrease the number of patterns to be projected to three, we should project six 

colors. This means we should segment out six different colors. Neither „c‟ nor the other 

color invariants that we tested can segment six colors reliably. Therefore, we proposed a 

new color invariant based on opponent color theory for this purpose [52,53,54]. We also 

designed a new pattern structure, that can work reliably with the proposed color invariant. 
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Next, we give a brief explanation of the opponent color theory and the designed scanner. 

Then, we will provide the range data extracted by this method. 

 

A.3.1.  Opponent Color Theory 

 

 The opponent color space is based on human visual system that interprets the color 

from cones and rods. According to this theory, human visual system does not see a 

yellowish blue or reddish green. Therefore, the visual system interprets the color in twos 

sets of hues yellow-blue (YB) and red-green (RG). These opponent color channels can be 

derived form trichromatic channels (RGB) as 

  

       
         

  (A.5) 

 

 Figure A.11 is a schematic diagram that shows how the cone responses are 

encoded into luminance (I) and the two opponent color channels. 

 

   

 

Figure A.11. Opponent-color encoding schematic 

   

 In the opponent color space, Hue can be coded in a circular format ranging through 

blue, green, yellow, red and black to white on two axis of RG and YB. Therefore, 

opponent colors space is more suitable for modeling the perceived color than RGB. 
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A.3.2.  The Designed Pattern for Senary Coding 

 

 In order to segment out six colors, we designed the most suitable pattern to the result 

of opponent color space. Our pattern colors are formed by three sinusoidal signal that are 

shifted by     radians for each channel of (RGB) colors as 

  

           

          
  

 
 

          
  

 
 

  (A.6) 

 

 We add these colors and divide them into six levels that give six different color 

values for our patterns. As in the previous scanners, we place the colored stripes by Gray 

coding to prevent ambiguities in cross sections of the patterns. 

 

A.3.3.  Color Segmentation for Senary Patterns 

 

 As we mentioned above, we designed our patterns to segment the six colors by using 

opponent color theory. If we place the three color channels of the designed pattern into the 

Eqns 52 these equations become 

  

                     
  

 
 

            
  

 
 

  (A.7) 

 

  Simplifying these, we obtain 

  

             
 

 
          

    
 

 
                     

  (A.8) 

 

  These are the two axes of an ellipse. In segmentation, we divide the ellipse in to six 

regions by the threshold levels obtained experimentally. For an ideal camera image, the 

colors should be aligned according to the center of the image. However according to the 

camera color properties, these colors are shifted from the center of the ellipse. 
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Furthermore, pixels that correspond to shadow or highlights give a response close to the 

center of this shifted ellipsoid shape. Therefore, in segmentation we remove the pixels 

having values close to the center of the ellipse. The remaining pixels are thresholded taking 

the shifting into account. Figure A.12 shows the segmented colors on the matte Atatürk 

object. 

 

 

 

Figure A.12. Segmented six colors in the senary pattern 

   

A.3.4.  Extracted Range Data using Senary Coding 

 

 By increasing the number of colors, we had to decrease the resolution of the patterns. 

Therefore, by increasing the color pattern to have six colors, the resolution of the senary 

scanner is decreased (compared to the previous scanners). In Figure A.13, we provide the 

extracted range data for the senary scanner. 
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Figure A.13. Range data extracted by the senary scanner. First row: matte carafe and dove 

objects. Second row: shiny and matte Atatürk, and the teapot objects. Third row: Venus, 

Alexander, and the statue objects 

   

 Unfortunately, the resolution of the senary range scanner limited us using other test 

objects. Therefore, we did not include it as another scanning option in our range scanner 

system. However, we believe that using a high resolution camera, the resolution of this 

scanner may be increased and better range data can be obtained.  
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