
DESIGNING A RANGE SCANNER ON AN EMBEDDED PROCESSOR USING

COLOR CODED STRUCTURED LIGHT

by

Rıfat Benveniste

Submitted to the Institute of Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

in

Electrical and Electronics Engineering

Yeditepe University

2011

iii

ACKNOWLEDGEMENTS

 Pursuing a PhD. Project is a both painful and enjoyable experience. It is a long

journey with bitterness, hardships, frustration, encouragement, trust and with so many

people‟s kind help. I would here like to express my thanks to the people who have been

very helpful to me during the time it took me to write this thesis.

 First of all I would like to thank to my supervisor Assoc. Prof. Dr. Cem ÜNSALAN.

He has tirelessly devoted his time and patience to my study. I have learned a lot of him.

Without his inspirational guidance, contributions and ideas, I could never finish my

doctoral work.

 I wish to express my gratitude to my advisory committee members Prof. Dr. Melih

PAZARCI and Assist. Prof. Dr. Dionysis GOULARAS. With their constructive criticism

and guidance they facilitated to complete my thesis work. I am also grateful to the official

referees of the dissertation Assoc. Prof. Dr. Yusuf Sinan AKGÜL and Prof. Dr. A. Coşkun

SÖNMEZ by their valuable reviews and revisions. I want to give a special thanks to my

teachers, colleagues and friends in Yeditepe University Department of Electrical and

Electronics Engineering and the Computer Vision Laboratory.

 I want to express my grateful thanks to my mother. I felt of her prayers from heaven

always in my heart. I am also very grateful to my father, who gave me the inspiration from

the childhood to be an electronics engineer. I thank to my wife's family to feel their support

behind me. I also thank to my sister and nephew for all their love and encouragement.

 Finally, all the best love and wishes are to my wife Elif ÖZTÜRK BENVENİSTE,

who makes my success significant. Without her support and trust, I could never complete

this thesis. Although she was pregnant, without complaining she endured all the problems

of my work at the laboratory and home. I also thank to my son Kağan BENVENİSTE for

his endless kicks inside his mother in the middle of the night to make us awake.

iv

ABSTRACT

DESIGNING A RANGE SCANNER ON AN EMBEDDED

PROCESSOR USING COLOR CODED STRUCTURED LIGHT

 Three dimensional range data provides useful information for various computer

vision and computer graphics applications. For these, extracting the range data reliably is

utmost important. Therefore, various range scanners based on different working principles

are proposed in the literature. Among these, coded structured light based range scanners

are popular and used in most industrial applications. Unfortunately, these range scanners

cannot scan shiny objects reliably. Either highlights on the shiny object surface or the

ambient light in the environment disturb the codeword. As the code is changed, the range

data extracted from it will also be disturbed. In this Ph.D. study, we focus on developing a

system that can scan shiny and matte objects under ambient light. Therefore, we propose

color invariant based single stripe, binary, ternary, and quaternary coded structured light

based range scanners. We hypothesize that, by using color invariants we can eliminate the

effect of highlights and ambient light in the scanning process. Therefore, we can extract the

range data of shiny and matte objects in a robust manner. We implemented these scanners

using a TI DM6437 EVM board with a flexible system setup such that the user can select

the scanning type. Furthermore, we implemented a TI MSP430 microcontroller based

rotating table system that accompanies our scanner. By the help of this system, we can

obtain the range data of the target object from different viewpoints. We also implemented a

range image registration method to obtain the complete object model from the range data

extracted. We tested our scanner system on various objects and provided their range and

model data.

v

ÖZET

RENK KODLAMALI YAPISAL IŞIK KULLANARAK GÖMÜLÜ

SİSTEM ÜZERİNDE BİR DERİNLİK TARAYICISI TASARIMI

 Üç boyutlu derinlik verisi bilgisayarlı görü ve bilgisayar grafiği uygulamaları için

kullanışlı bilgi sağlamaktadır. Bu tarayıcılar için en önemlisi güvenilir derinlik verisi

çıkartmalarıdır. Bu nedenle, literatürde değişik çalışma prensibine sahip çeşitli derinlik

tarayıcıları önerilmektedir. Bunların arasında kodlu yapısal ışık temelli derinlik tarayıcı

yaygın ve endüstriyel uygulamalarda sıkça kullanılmaktadır. Ne yazık ki bu derinlik

tarayıcıları parlak nesneleri güvenilir şekilde tarayamamaktadır. Parlak nesne yüzeyi

üzerindeki ışık yansımaları ve ortam aydınlatması kod dizilimini karıştırmaktadır. Kod

dizilimi değiştiğinden elde edilen derinlik verisi de karışmaktadır. Bu doktora çalışmasında

biz aydınlık ortamda parlak ve mat nesneleri tarayabilen bir derinlik tarayıcısı tasarlamaya

odaklandık. Bu nedenle renk değişmezi tabanlı tek çizgi, ikili, üçlü ve dörtlü kodlamalı

yapısal ışık temelli derinlik tarayıcısı öneriyoruz. Renk değişmezlerini kullanarak parlama

ve ortam aydınlatmasının etkilerini giderebileceğimizi hipotez olarak savunuyoruz. Bu

sayede, parlak ve mat nenelerin derinlik verisini sağlıklı bir şekilde elde edebiliriz. Bu

tarayıcıları TI DM6437 EVM kartı üzerinde kullanıcının tarayıcıyı seçebileceği esnek bir

system olarak gerçekledik. Ayrıca TI MSP430 mikrokontrolör tabanlı bir döner tabla

sistemi tarayıcımıza eşlik etmektedir. Bu sistemin yardımıyla, hedef nesnenin farklı bakış

açılarından derinlik verisi elde edilebiliyoruz. Ayrıca bir derinlik görüntüsü eşleştirme

yöntemi kullanarak elde edilen derinlik verisinden nesnenin tamamının modelini elde

ediyoruz. Tarayıcı sistemimizi çeşitli nelerle test ederek modellerini elde ettik.

vi

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. STRUCTURED LIGHT BASED RANGE SCANNERS .. 3

 2.1. SINGLE STRIPE BASED SCANNERS .. 4

 2.2. MULTIPLE STRIPE BASED SCANNERS .. 5

 2.2.1. Binary Coding ... 5

 2.2.2. Gray Coding .. 6

 2.2.3. N-ary Gray Coding .. 7

 2.3. PROBLEM OF SCANNING SHINY SURFACES ... 7

 2.4. SOLUTIONS PROPOSED IN THE LITERATURE ... 8

 2.5. OUR SOLUTION FOR SCANNING SHINY SURFACES 9

3. HARDWARE OF THE DEVELOPED RANGE SCANNER SYSTEM 10

 3.1. HARDWARE SETUP .. 10

 3.2. THE GEOMETRIC MODEL OF THE CAMERA .. 12

 3.2.1. Intrinsic and Extrinsic Camera Parameters ... 13

 3.2.2. Camera Calibration .. 14

 3.3. SYSTEM CALIBRATION IN PRACTICE ... 15

 3.3.1. Camera Calibration in Practice .. 15

 3.3.2. Projection Device Calibration in Practice ... 17

 3.3.3. Overall System Calibration ... 18

 3.4. 3D POINT CALCULATION BASED ON TRIANGULATION 18

 3.4.1. Three Dimensional Point Cloud Extraction .. 18

 3.5. EMBEDDED SYSTEMS ... 20

 3.5.1. Microprocessors .. 20

 3.5.2. Microcontrollers .. 22

 3.5.3. DigitalSignalProcessors ... 23

4. RANGE SCANNING USING COLOR INVARIANTS .. 24

 4.1. THE Ψ COLOR INVARIANT ... 24

 4.1.1. Derivation of the Proposed Color Invariant using PCA 25

 4.1.2. Properties of the Ψ Color Invariant .. 27

 4.2. STRIPE SEGMENTATION USING THE Ψ COLOR INVARIANT 28

vii

 4.3. THE „c‟ COLOR INVARIANT SET ... 30

 4.3.1. Properties of the „c‟ Color Invariant Set ... 31

 4.4. DECODING PATTERNS USING „c‟ COLOR INVARIANTS 31

 4.4.1. Decoding Binary Patterns .. 32

 4.4.2. Decoding Ternary Patterns .. 36

 4.4.3. Decoding Quaternary Patterns ... 38

5. EMBEDDED SYSTEM IMPLEMENTATION ... 40

 5.1. TI DM6437 EVM BOARD PROPERTIES .. 40

 5.1.1. The DSP Platform ... 40

 5.1.2. Video Input/Output Peripherals ... 41

 5.1.3. Programming and Debugging Issues ... 42

 5.1.4. DSP Configuration for Image Input/Output .. 42

 5.1.5. Properties of the Rotating Table .. 43

 5.1.5.1. Motor driving circuit ... 43

 5.1.5.2. The MSP430 microcontroller ... 44

 5.2. THE SCANNER SOFTWARE .. 45

 5.2.1. Pattern Generation ... 46

 5.2.2. Shadow Removal ... 47

 5.2.3. Image Capturing .. 48

 5.2.4. Pattern Decoding ... 48

 5.2.5. Three Dimensional Point Cloud Extraction .. 49

 5.2.6. Scanning Objects from Different Viewing Angles 49

 5.2.7. Transfer of Point Cloud Data .. 49

6. OVERALL PERFORMANCE OF THE SCANNER SYSTEM 51

 6.1. EXTRACTED RANGE DATA USING STANDARD BINARY SCANNER 52

 6.2. EXTRACTED RANGE DATA USING OUR SCANNERS 53

 6.2.1. Binary Range Scanners ... 53

 6.2.2. The Ternary Range Scanner .. 54

 6.2.3. The Quaternary Range Scanner ... 55

 6.3. QUANTITATIVE COMPARISON OF THE SCANNER RESULTS 56

 6.4. TIMING PERFORMANCE OF THE SCANNER SYSTEM 58

 6.5. ACCURACY OF THE SCANNER SYSTEM ... 60

 6.6. COMMENTS ON THE PERFORMANCE .. 62

viii

7. 3D MODEL CONSTRUCTION .. 63

 7.1. 3D MODEL CONSTRUCTION USING ICP .. 63

 7.2. PROPERTIES OF THE TEST OBJECTS.. 65

 7.3. OBJECT MODELS EXTRACTED BY THE SCANNER SYSTEM 68

8. CONCLUSIONS ... 74

APPENDIX A: OTHER INVARIANTS FOR THE SCANNER SYSTEM 76

 A.1. Invariants Tested for the Binary Coded Structured Light Scanner 77

 A.2. Invariants Tested for the Ternary Coded Structured Light Scanner 81

 A.3. Invariants Tested for the Senary Coded Structured Light Scanner 85

 A.3.1 Opponent Color Theory .. 86

 A.3.2 The Designed Pattern for Senary Coding ... 87

 A.3.3 Color Segmentation for Senary Patterns .. 87

 A.3.4 Extracted Range Data using Senary Coding .. 88

REFERENCES .. 90

ix

LIST OF FIGURES

Figure 2.1. Schematic of a structured light system .. 3

Figure 2.2. Example of a single stripe scanning system .. 4

Figure 2.3. Example of three level binary patterns .. 5

Figure 2.4. Example of three level Gray coded patterns ... 6

Figure 2.5. Example of highlight problems on a shiny object surface 8

Figure 3.1. System layout .. 10

Figure 3.2. Our range scanner from different viewpoints .. 12

Figure 3.3. Perspective projection of a point P .. 13

Figure 3.4. The checkerboard used for calibration .. 15

Figure 3.5. An example on image taking for calibration ... 16

Figure 3.6. An example of checkerboard pattern projection from projection device 17

Figure 3.7. The user interface of Bouguet's camera calibration toolbox 17

Figure 3.8. Triangulation based on epipolar geometry. ... 19

Figure 3.9. Typical layout of a microprocessor ... 21

Figure 3.10. Layout of a microcontroller ... 22

x

Figure 3.11. Typical layout of a DSP chip .. 23

Figure 4.1. Segmentation example for binary and single stripe scanners using ψ 29

Figure 4.2. Matte and shiny Atatürk objects .. 33

Figure 4.3. Binary pattern decoding results using c1 ... 34

Figure 4.4. Binary pattern decoding results using c3 ... 35

Figure 4.5. Binary pattern decoding results using black and white stripes 36

Figure 4.6. Ternary pattern decoding results using s ... 38

Figure 4.7. Quaternary pattern decoding results using s .. 39

Figure 5.1. The DM6437 EVM ... 41

Figure 5.2. The image input output structure ... 43

Figure 5.3. Rotating table motor driving schematic .. 44

Figure 5.4. Rotary table image ... 45

Figure 5.5. Starting the scanner from CCS .. 46

Figure 5.6. Selecting the scanning method by the user ... 46

Figure 5.7. Starting the scanning process .. 48

Figure 5.8. Transferring the point cloud data to the host computer 50

Figure 6.1. First set of test objects ... 51

xi

Figure 6.2. Point clouds of eight test objects using the standard binary range scanner 52

Figure 6.3. Point clouds of eight test objects using the binary range scanner (with c1). 53

Figure 6.4. Point clouds of eight test objects using the binary range scanner (with c3). 54

Figure 6.5. Point clouds of eight test objects using the ternary range scanner 55

Figure 6.6. Point clouds of eight test objects using the quaternary range scanner. 56

Figure 6.7. The staircase object for testing the accuracy of range scanners 61

Figure 7.1. ICP implementation example under MATLAB .. 65

Figure 7.2. Second set of test objects ... 66

Figure 7.3. Models 1 .. 68

Figure 7.4. Models 2 .. 69

Figure 7.5. Models 3 .. 70

Figure 7.6. Models 4 .. 71

Figure 7.7. Models of the flat objects .. 72

Figure 7.8. Our face scans and their texture mapped versions .. 72

Figure 7.9. Our body and hand scans ... 73

Figure A.1. The metal plate object used as a benchmark .. 76

xii

Figure A.2. Hue and normalized color results for the binary scanner. 78

Figure A.3. The c color invariant results for the binary pattern .. 79

Figure A.4. The l color invariant results for binary pattern ... 80

Figure A.5. Lab, XYZ and xyY color space results .. 81

Figure A.6. Projected pattern and the Hue result ... 82

Figure A.7. Normalized color results for the ternary pattern ... 82

Figure A.8. The „c‟ color invariant results for ternary pattern .. 83

Figure A.9. The l color invariant results for the ternary pattern .. 84

Figure A.10. Lab, XYZ and xyY color space results .. 85

Figure A.11. Opponent-color encoding schematic .. 86

Figure A.12. Segmented six colors in the senary pattern .. 88

Figure A.13. Range data extracted by the senary scanner. .. 89

xiii

LIST OF TABLES

Table 2.1. Binary coding example for eight stripes ... 6

Table 2.2. Gray coding example for eight stripes .. 7

Table 6.1. Average percentage (%) of outliers for the scanners .. 57

Table 6.2. Average percentage (%) of missing points for the scanners 58

Table 6.3. Operation timings in milliseconds for the scanners .. 59

Table 6.4. Comparison of the actual and the measured depth values (in millimeters) on the

staircase test object .. 61

Table 7.1. Dimensions of test objects (in millimeters) used in experiments 67

xiv

LIST OF SYMBOLS / ABBREVIATIONS

 Intrinsic parameter matrix

 Projector camera coupling parameters

 Temporary matrix to calculate calibration parameters

 Blue color value

 Projected blue band color value

 Covariance matrix

 Color invariant set

 Distance Function

 Dimensionality of measurement

 Distance

 Set of points as reference

 Green color value

 Projected green band color value

 Homography

 Columns of homography

 Covariance matrix

 Reflectance parameters

 Levenberg resulting matrix

 Color invariant set

 A set of correlated random vectors

 Numeral

 Set of points to be registered

 Point in real world

 Point in virtual plane

 Principal components

 Image point corrupted by noise

 Projection on eigenvector

 Linear transformation matrix

 Eigenvectors

xv

 Rotation matrix

 Red color value

 Opponent colors

 Columns of rotation matrix

 Projected red band color value

 Slope

 Arbitrary scalar

 Difference of and color invariants

 Translation vector

 Translation vector

 Image ideal horizontal axis

 Measured image coordinate

 Image ideal vertical axis

 Measured image coordinate

 Ambient white illumination

 Focal plane axis

 Real coordinates

 Measured normalized image coordinate

 Focal plane axis

 Opponent colors

 Real coordinates

 Measured normalized image coordinate

 Focal plane axis

 Image scale factor based on focal length

 Scaling scalars

 Image scale factor based on focal length

 Skewness

 Arbitrary scale factor

 Mean of sample vector

 Color invariant

xvi

3D Three Dimensional

ADC Analog to Digital Converter

ALU Arithmetic Logic Unit

CCD Charge Coupled Device

CCS Code Composer Studio

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CSL Chip Support Library

DAC Digital to Analog Converter

DC Direct Current

DLP Digital Light Processor

DSP Digital Signal Processor

DVSDK Digital Video Software Development Kit

EVM Evaluation Module

FIFO First In First Out

GPIO General Purpose Input Output

IC Integrated Circuit

ICP Iterative Closest Point

I2C A two wire serial communication interface

KB Kilobytes

LCD Liquid Crystal Display

MAC Multiply and Accumulate

MB Megabytes

PCA Principal Component Analysis

RGB Red,Green,Blue

RTS Runtime Support

SCI Serial Communication Interface

SPI Serial Peripheral Interface

USB Universal Serial Bus

VENC Video Encoder

VPBE Video Processing Back End

VPFE Video Processing Front End

VPSS Video Processing Subsystem

1

1. INTRODUCTION

 From the time the first photograph was recorded by Joseph Niepce in 1826, 2D

images got enormous usage areas. However, in today's technology they are becoming

inadequate and the need for 3D data increases. Especially for the entertainment industry,

generating realistic virtual environments is the main target. Three-dimensional

cinematography, 3D televisions and game consoles are the examples of today's state of the

art. As a result of technological progress in this direction, the importance of reliable three-

dimensional data acquisition increases.

 Devices used to capture three-dimensional data are generally named as range

scanners. Till now, a variety of scanner systems have been developed [1-4]. These can be

classified into two groups as: contact and non-contact scanners. Contact 3D scanners probe

the subject through physical touch. Although these systems are very precise, they have a

disadvantage. They have to contact the object being scanned. During this process, probes

may also cause damage to the surface of the object. Therefore, non-contact scanners are

more preferable. Among these, structured light based range scanners are the most

promising ones.

Principally, structured light based range scanners project a set of coded patterns onto

the object. These patterns are deformed based on object geometry. By capturing and

processing the deformation on the pattern shape, the 3D range data is obtained. The pattern

projection and image capturing operations in these scanners are highly effected by the

surface reflectance and external illumination conditions. Especially, scanning shiny

surfaces under ambient light conditions is a difficult task for these scanners. Highlights that

occur on the shiny object surface based on illumination conditions cause wrong pattern

decoding. This results in erroneous and noisy range data extraction.

In this PhD study, we focused on this problem and proposed a solution using color

information. By robust segmentation of color without being effected by the illumination,

we can make the correct pattern decoding. For this purpose, we proposed using color

invariants. Color invariants help segmenting colors in an image without being effected by

2

lighting, shadow, and highlights. Using color information has another advantage on pattern

coding. Depending on the number of colors, the codification can be made with less number

of patterns. This means, we can have a faster scanning system. This is a requirement

especially for applications such as 3D face recognition for security applications. Therefore,

our second objective in this study is implementing a fast scanner system by segmenting as

many colors as possible using color invariants. According to these objectives, we designed

five different structured light based range scanners using color invariants. We implemented

these in a general setup that gives the user the ability to choose the scanner that meets the

needs of his or her application. To have a fast and stand alone system, we implemented our

scanner system on a digital signal processor.

In the following chapters, we first give details of structured light scanner systems.

Then, we give a brief explanation of real time systems that are used in structured light

range scanners. The next subject we will cover is the setup we designed to implement our

range scanners. Then, we focus on the details of color invariants and their usage in

structured light scanning. We explain each scanner method and the experiments based on

color invariants for these. The next chapter explains the embedded system implementation

of the scanner. We introduce the hardware capabilities and the software written for the

scanner system. Then, we evaluate the overall performance of the system by the range data

obtained, their timings, and accuracy. Before concluding our study, we provide the three-

dimensional object models generated using our range scanner system.

3

2. STRUCTURED LIGHT BASED RANGE SCANNERS

With the ability to scan the object surface without touching it, structured light based

range scanners are commonly used for most applications. They work on a principle of

projecting one or more light stripes onto the object surface by a light source (laser,

projector, etc.). The stripe produces a line of illumination that appears deformed from other

perspectives than that of the projector. This deformation is used to extract the three-

dimensional range data of the object surface. Therefore, the basic setup of these scanners

consists of a projector and a camera to capture the deformed stripe image. A schematic of

the basic structured light based range scanner setup is shown in Figure 2.1.

Figure 2.1. Schematic of a structured light system

One handicap of this method is matching the projected stripe with the one in the

captured image. This is called the correspondence problem of structured light based range

scanners. In a single stripe projecting system, it's relatively easy to match the stipe with a

robust stripe segmentation. However, for multiple stripe based systems this becomes a

4

serious problem. Next, we give a brief explanation of a single stripe and multiple stripe

based structured light scanner systems. We explain their working principles and the

proposed solutions for the correspondence problem. Then, we explain problems of

scanning shiny surfaces. We will discuss the proposed solutions in the literature. We also

explain our solution in detail in the following chapters.

2.1. SINGLE STRIPE BASED SCANNERS

The single stripe based systems project a stripe onto the object by a light source

(projection device or a line laser). Then a camera captures the stripe projected object

image. In Figure 2.2 a sample of these systems is shown.

Figure 2.2. Example of a single stripe scanning system

Since a powerful light source projects the stripe, it is easily segmented by

thresholding the intensity of the captured grayscale image. If the stripe is segmented

robustly and the system is calibrated, the deformation information can be easily converted

to the 3D range data [5-7]. In order to scan the entire object, the projected stripe should be

shifted through the object surface. Therefore, single stripe based scanners are slow.

However, as they give high resolution range data, they are still used in many applications.

For faster scanning, multiple stripe based systems are proposed in the literature. Next, we

give a brief explanation of these systems.

5

2.2. MULTIPLE STRIPE BASED SCANNERS

Multiple stripe based scanners work with the same principle as in single stripe

scanners, as they project stripes by a projection device and compute the 3D range data

from the deformation of the stripes from the captured image. As they project more than one

stripe, they can extract the range data of the entire object faster. The correspondence

problem occurs here distinctively, since each segmented stripe should be matched with the

projected one correctly in order to calculate their deformation. A commonly accepted

solution for this problem is time-multiplexed coding. Time-multiplexing works on a

principle of projecting a set of patterns successively onto the object surface. The codeword

of each pixel is formed by the sequence of illumination values for that pixel across the

projected patterns. As the bits of the codewords are multiplexed in time, the codification is

named as time-multiplexing. There are several techniques based on time-multiplexing.

Here we will explain the binary and Gray coding technique since we use these in our

scanner systems. The reader can access the details of other techniques in the survey paper

by Salvi et.al. [1,2].

2.2.1. Binary Coding

Binary coding is the projection of a sequence of patterns to encode stripes using

a plain binary code. Here, there are two illumination levels corresponding to “0” and “1”.

In commonly used systems, black and white colored patterns are projected. The white

illuminated parts are coded as “1” and the black pixels are coded as “0”. At the end of the

sequence, each pixel has it's own codeword. Figure 2.3 shows the three levels of binary

patterns to code eight stripes. The codification based on these stripes is given in Table 2.1.

Figure 2.3. Example of three level binary patterns

6

Table 2.1. Binary coding example for eight stripes

 Time Pattern

 I 01010101

II 00110011

III 00001111

 Code 01234567

2.2.2. Gray Coding

In binary coding, ambiguities may occur on the crossing edges of the successive

patterns. Because of the hardware limitations, there may be some shifts on the crossing

edges of the patterns. These may cause wrong codification and noise in the range data. To

prevent this problem, Inokuchi et.al [8] proposed to use the Gray code instead of plain

binary coding. In Gray coding, the consecutive patterns have Hamming distance of one.

Therefore, the successive patterns do not contain any crossing edges to cause any

ambiguity. The example patterns of Gray code for eight stripes is given in Figure 2.4. The

corresponding codification is given in Table 2.

Figure 2.4. Example of three level Gray coded patterns

7

Table 2.2. Gray coding example for eight stripes

 Time Pattern

 I 01100110

II 00111100

III 00001111

 Code 01326754

2.2.3. N-ary Gray Coding

The drawback of binary coded structured light based range scanners is the need for

large number of patterns to be projected. This slows down the scanning process and

increases the computation load. To reduce the number of patterns to be projected, multi

level Gray coding is proposed in the literature. For binary coding, for number of stripes,

 number of patterns are needed. However, in Nary coding stripes can be coded with

the same number of patterns. Caspi et. al. [9] was the first to introduce multilevel Gray

coding using color. The Nary Gray code constitutes number of symbols, each associated

with a color. The Nary Gray code is similar with the binary Gray code that has a Hamming

distance of one on each sequence to prevent the ambiguity. Its main advantage is the ability

of coding with less number of patterns. In our scanner systems, we also used this

advantage to reduce the number of patterns to be projected.

2.3. PROBLEM OF SCANNING SHINY SURFACES

Single stripe and binary coded structured light based range scanners are widely used

in various applications. However, they have a restriction on scanning objects having shiny

surfaces. These reflective surfaces have highlights depending on the ambient light in the

environment and the strong projector light directed to the object. These highlights affect

the intensity values of the grabbed image. This leads to noisy stripe segmentation and

wrong pattern decoding. Hence, the range data extracted becomes corrupted. This is a

severe restriction, since applications such as outdoor scanning cannot avoid this type of

problem. This problem is reported in various studies in the literature [10-15]. In Figure 2.5,

8

some examples on problems occurring during the stripe segmentation based on highlights

are given.

Figure 2.5. Example of highlight problems on a shiny object surface

One may think that scanning shiny objects can be performed under different

constraints without any problem. A simple solution may be changing the reflectance

property of the shiny surface either by painting it or by coating the surface with powder.

This may not be feasible for most applications. One typical example emerges while

scanning archeological findings. It may not be possible to paint them. Coating the surface

may not be an option for others as well. Another solution may be scanning the object under

dark. This may not be possible for some operations such as outdoor object scanning. Here,

one may not control the illumination level on the object. Worse, the object may not be

moved to a darker region. As in robotics applications, the illumination level may also

change during the scanning operation. Most commercial range scanners use a specific filter

passing only a specific color band. This solution is not always working properly. Besides,

the color information (important for texture mapping) of the scanned object is lost at the

end of this operation. To handle all these problems, a robust range scanning system is

needed that can work under different ambient illumination levels.

2.4. SOLUTIONS PROPOSED IN THE LITERATURE

Several methods are proposed in the literature to solve this problem. Umasuthan and

Wallace [16] tried to solve the problem from the obtained range data. They used a least

squares estimator to remove outliers in the range data. Elgazzar et al. [17] developed a

specific laser stripe based range sensor for indoor environment scanning. They modified

9

the lens of the camera with a mask in front of it. They counted the insensitivity to ambient

light as one of the advantages of this setup. Levoy et al. [18] tried different lighting

conditions to decrease the effect of laser stripe scattering. Singhal et al. [19] introduced a

technique to eliminate spurious range values using two (or more) cameras and several

consistency tests. Forest et al. [20] proposed an FIR filter approach to locate the laser

stripe on different surface types. Koninckx and Van Gool [21] proposed an adaptive range

finder. Skocaj and Leonardis [22] proposed a method based on changing the intensity of

the light projector. Trobina [23] approached the problem from the error model perspective.

Zhang and Yau [24] proposed a multiple fringe projection based method to scan object

surfaces having high reflectance range. Xu and Aliaga [25] recently proposed a method

specifically to overcome strong interreflections. The common drawback for these methods

is the need for extra or enormous number of patterns to be projected onto the object to be

scanned. This naturally slows down the range scanning process. Besides, as the authors

mentioned, some of these methods still suffer from shiny surfaces.

2.5. OUR SOLUTION FOR SCANNING SHINY SURFACES

Since the illumination of the environment is the main effect of the shiny surface

scanning problem, we should use a method that is robust to illumination effects. Therefore,

we proposed to use color information for stripe segmentation. If we project colored stripes

and can acquire the color data clearly, we can segment the stripes robustly. As mentioned

above, by color coding we can also decrease the number of patterns to be projected and

have a faster system. There are several structured light methods based on color information

[9,26,27]. However, the main problem is separating the color without being effected by the

illumination. Therefore, we proposed to use color invariants for this purpose. Color

invariants help extraction of color information from an image without being effected by the

environmental effects such as surface properties, illumination, highlights, and shadows.

They were initially used for object recognition and content based image registration

applications by Gevers and Smeulders [28-30]. We are the first in using these for range

scanner applications. The detailed explanation of color invariants and the implementation

for structured light range scanners based on these are given in Chapter 4.

10

3. HARDWARE OF THE DEVELOPED RANGE SCANNER SYSTEM

In the following chapters, we will explain the developed range scanner system in

detail. Here, we review the general characteristics of it. First, we explain our hardware

setup. Then we give a brief overview on stereo image geometry and triangulation principle.

Then, we explain the used calibration method and its implementation. Finally, we give a

brief overview on embedded processors, since we implemented our system on these.

3.1. HARDWARE SETUP

One of our objectives is to implement our range scanner system on an embedded

processor. Although our novel single stripe binary, ternary, and quaternary range scanners

have different pattern coding and decoding properties, their basic hardware setup is the

same. Some portions of their software are also the same. Therefore, in this section, we

explore these common properties in the same framework. The scanner system we

implemented consists of four main parts; projection device, camera, DSP board, and the

rotary table. We designed our setup to output the point cloud in terms of range data. Then,

we process this data in computer to obtain the 3D object surface model. We provide the

systematic reprsentation of our system in Figure 3.1. Next, we give the details of the range

scanner system we have implemented.

Figure 3.1. System layout

11

We need a projection device that is stable such that it can project the same color with

the same intensity value on each operation. In the DLP projection devices, there is a disc

rotating with a constant speed in front of the DLP chip. Without a triggering circuitry, it's

not possible to capture accurate colors by this device since the camera cannot synchronize

with the rotary disc. To reduce the system complexity, we used a Hitachi CP-X3010Z

Multimedia 3LCD projection device to project the patterns in our scanner system. This is a

high performance projector that gives constant and accurate color output.

To capture the pattern projected images, we used a Sony DXC-390P 3CCD camera.

It's a standard definition 1/3" 3CCD 800 TV lines camera. It can give composite, S-video

and RGB component outputs. It has a control output for digital zoom, auto focus, and auto

iris applications. For our application, we used an 8 mm Fujinon C-mount lens. It is

achromatic, eliminating chromatic abberations especially occurring on the sharp edges of

high intensity color images.

Texas Instruments DM6437 EVM board is the main processing unit of our scanner

system. We will give the details of this board in the following chapters. The EVM board

contains S-video, composite and component RGB outputs. For the best color quality, we

connect it to the projection device by component outputs. Unfortunately, the EVM board

contains only composite and S-video inputs. Therefore, we connect the camera to the board

by S-video input. This causes sensor cross talk effects on the captured image. The control

and data exchange with the the TI DM6437 EVM and computer is made by USB JTAG

programming and debugging interface.

To rotate the target object (to be scanned) in a desired angle, we implemented a

rotating table system based on the TI MSP430 microcontroller. We will give the details of

this rotary table system in the following chapters. Basically, the microcontroller of the

rotary table is connected to the EVM board's general purpose input output (GPIO) ports.

According to the signal given by the EVM, the microcontroller drives the stepper motor

circuitry to rotate the object to be scanned. The rotary table is placed approximately 80 cm

to 1 m away from the camera and projector device setup. We provide the images of our

scanner system in Figure 3.2.

12

Figure 3.2. Our range scanner from different viewpoints

3.2. THE GEOMETRIC MODEL OF THE CAMERA

The basic camera is a box with a small opening that projects the incoming light to the

capturing surface. Therefore, we can model the camera with a pinhole model. If the

pinhole was a single point exactly, one light ray would pass through each point in the

image plane. However, the pinhole has a finite size. Even more, real cameras are equipped

with lenses. Although it is not fully realistic, the pinhole model projection (central

perspective projection) is accepted since it is mathematically convenient. Despite its

simplicity, it often provides an acceptable approximation of the imaging process.

Perspective projection creates inverted images. However, it is more convenient to consider

a virtual image on an image plane at the same distance with the pinhole as the actual plane.

This image is not inverted, but equivalent to the inverted one. Figure 3.3 shows an example

13

of a point in real world and it's projection on the virtual plane. The details of other

projection methods can be found in [31].

Figure 3.3. Perspective projection of a point P

As we introduced the fundamental model of perspective projection, we can show the

constraints between the image measurements and the position of geometric objects in an

arbitrary external coordinate system. We will introduce various physical parameters

(intrinsic and extrinsic) relating the real world and camera coordinate frames and the

general form of perspective projection equation in this setup.

3.2.1. Intrinsic and Extrinsic Camera Parameters

The relationship between a 3D point on a model plane and its image projection is

given by

 (3.1)

where is an arbitrary scale factor. is the augmented vector of 2D point.

 is the augmented vector of the 3D point. The relation between the

real world and the camera coordinate system is given by extrinsic parameters, denoted by

(,) as rotation and translation. The camera intrinsic parameters are given by

14

 (3.2)

where and are the scale factors in the image. and represent the axis and is

the skewness parameter of the two image axes. We assume the model plane is placed on

 of the world coordinate system. This yields the point on model plane to be

 and the augmented vector to be . If we denote each column of

rotation matrix by , then Eqn. (3.1 becomes

 (3.3)

Therefore, a point on the model plane and its image is related by homography,

 (3.4)

Then, Eqn. 3.3 becomes

 (3.5)

3.2.2. Camera Calibration

Camera calibration is a necessary step in a vision system to extract real world

coordinates from 2D images. Different approaches for camera calibration have been

proposed in the literature. One of them was proposed by Heikkila and Silven [32]. They

made the calibration by a combination of a pinhole camera and lens distortion model. A

well known method, based on the two-stage technique was proposed by Tsai [33]. He

aimed an efficient computation of camera external position and orientation relative to

object reference coordinate system as well as the effective focal length, radial lens

distortion, and image scanning parameters. In this thesis, we used Zhang's, [34,35]

approach. He proposed a flexible new technique for camera calibration by viewing a plane

from different and unknown orientations. He solved the camera calibration problem by an

15

analytical solution followed by a nonlinear optimization technique based on the maximum

likelihood estimation. We used the toolbox designed based on this method in our scanner

system. Next, we give the details of this calibration process in practice.

3.3. SYSTEM CALIBRATION IN PRACTICE

The real world coordinates of the range data is calculated using the intrinsic and the

extrinsic parameters of the camera and the projection device. Therefore, these parameters

should be obtained first. By calibrating the system, we can obtain these parameters. As a

calibration tool, we used the Camera Calibration Toolbox for Matlab that is designed by

Bouguet [36]. This toolbox implements a technique similar to Tsai's and Zhang's

approaches on the camera calibration stage. It also includes the projector and overall

system calibration.

3.3.1. Camera Calibration in Practice

The toolbox is basically designed to obtain the camera calibration. Therefore, we

first calibrate the camera. By using calibrated camera values, we can use the same tool to

find the projector and overall system parameters. The toolbox needs reference points that

the distance between them are known. Therefore, we place a checker board pattern and

take the images of it from different angles. Figure 3.4 shows the checkerboard we used

during calibration.

Figure 3.4. The checkerboard used for calibration

16

In this checkerboard, each square has dimensions of . To distinguish

the original checkerboard points from the projected ones, we used a gray toned pattern. As

we mentioned in the previous section, the parameters are calculated iteratively. Therefore,

the toolbox needs more than one image to calculate the correct calibration parameters. We

take 20 pictures in our calibration procedure by placing the checkerboard pattern

approximately 50 cm away from the camera. Figure 3.5 shows an example of checkerboard

image capturing scene.

Figure 3.5. An example on image taking for calibration

After taking the checkerboard images, we repeat the same procedure by projecting a

checkerboard image from the projection device. Again we take images from different

angles in this stage. An example of the projected checkerboard pattern is shown in Figure

3.6.

17

Figure 3.6. An example of checkerboard pattern projection from projection device

After taking images, we use Bouguet's toolbox to calculate the calibration parameters. The

primary user interface of Bouguet's toolbox is as shown in Figure 3.7.

Figure 3.7. The user interface of Bouguet's camera calibration toolbox

First, we load and mark the corners of the checkerboards in the camera and

projection device images. After marking corners, the toolbox automatically calculates the

camera intrinsic and extrinsic parameters. These parameters are used on the next stage to

calculate projection device calibration.

3.3.2. Projection Device Calibration in Practice

Projection device can be accepted as an inverse camera. By calibrating the camera in

the first stage, we know the real world coordinates of the checkerboard image projected by

the projection device since we also know the dimensions of the checkerboard image given

to the projection device. The toolbox can calculate the intrinsic and extrinsic parameters of

this device. On the second stage of the calibration process, the toolbox calculates these

parameters automatically. The final stage is calibrating the overall system.

18

3.3.3. Overall System Calibration

Overall system calibration is needed to calculate the relative positions of the camera

and the projection device to make the triangulation on the range data extraction. As a final

stage, the toolbox calculates the relative positions of the camera and the projection device.

As a result of calibration, we obtain the extrinsic parameters that give the relative positions

of the camera and projection device, intrinsic parameters of the camera and intrinsic

parameters of the projection device. We place these parameters to a header file named

“calibration header.h” to be used by the software of the DSP system. Next, we give the

details of the triangulation process.

3.4. 3D POINT CALCULATION BASED ON TRIANGULATION

Structured light scanners work on defining the correspondence of each projected

pixel with the camera captured one by using the data based pattern decoding. As each

stripe is coded with a unique number from the decoded image, we can extract the

horizontal location of the corresponding projected pixel. The vertical correspondence

cannot be calculated directly from decodification. Next, we explain the per pixel

correspondence calculation based on triangulation that provides us the real world

coordinates of the scanned object.

3.4.1. Three Dimensional Point Cloud Extraction

As explained above, we obtain the calibration data of our system once. This data

provides the intrinsic and extrinsic parameters that will be used in triangulation. The 3D

coordinates of a point in the scene may be computed from its pixel coordinates on the

camera image and its projector coordinate . In the triangulation operation, the

intersection of two rays from the optical centers of the projector and camera gives

the 3D coordinates based on per pixel disparity in which the depth is computed.

19

Figure 3.8. Triangulation based on epipolar geometry.

This plane intersects the image planes in the epipolar lines and . The ray

represents all the possible positions of the point for the projection image plane. This is

also projected on the epipolar line of the camera . The coordinate system of the projector

image plane can be transformed to the camera image plane by a translation and rotation

from the projector optical center and to the camera center . If and are the

calibration matrices of the camera and projector device, the left and right projection of the

of the point is

 (3.6)

 (3.7)

Using the co-planarity we can write,

 (3.8)

20

This equation is homogeneous with respect to , so the absolute scale cannot be

recovered. It is helpful to replace the vector by matrix multiplication of created from

as

 (3.9)

We can rewrite Eqn. 8 as

 (3.10)

The middle part of this equation is expressed as a single matrix named the

fundamental matrix as

 (3.11)

It can be seen that the fundamental matrix carries the coordinate information of

pair of images from the projector and camera. As we find the correspondence by the

pattern decodification, using the per pixel disparity and applying the fundamental matrix,

we can calculate the real world coordinates of the object being scanned. More information

on triangulation and the epipolar geometry can be found in [5-7].

3.5. EMBEDDED SYSTEMS

In developing our range scanners, we benefit from two different types of embedded

systems as microcontrollers and DSP boards. In this section, we give a brief explanation to

these. To be compact, we also explain the microprocessors.

3.5.1. Microprocessors

Microprocessor is a silicon chip, designed to perform arithmetic and logic operations

through its programs. Typical microprocessor operations include adding, subtracting,

21

comparing two numbers, and fetching numbers from one memory area to another. These

operations are the result of a set of instructions that are part of the microprocessor design.

Typical layout of a microprocessor is as in Figure 3.9.

Figure 3.9. Typical layout of a microprocessor

The Central Processing Unit (CPU) is the basic logical structure that accomplishes

instructions given by the program. Arithmetic Logic Unit (ALU) is the logical structure

that accomplishes arithmetic operations like addition and subtraction. Memory is the

structure that the data and the program are stored in. Common microprocessors do not have

very large memory space inside the chip. Therefore, the main data and program is stored

outside the microprocessor. Instruction registers are small memory blocks. They handle

processes that the CPU can execute. The program sets the instruction registers in an order

to execute each process required one at a time. The size of the instruction register defines

the bit processing capability of the microprocessor.

22

3.5.2. Microcontrollers

Microprocessors can only perform data manipulation and computation. To interact

with the outside world, there should be some peripherals connected to the microprocessor.

Microcontrollers are silicon chips that contain both the microprocessor and peripherals.

Typical layout of a microcontroller is as in Figure 3.10.

Figure 3.10. layout of a microcontroller

Microcontrollers may contain all or some of the peripherals according to their usage

area. For example, to process an audio or a video signal, the microcontroller with an

Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC) is needed.

Serial Peripheral Interface (SPI), RS232 Serial Communication Interface (SCI), I2C (two

wire communication protocol) or JTAG (A fast real-time communication protocol)

interfaces will be needed to communicate with another processor or computer. The setup

and usage of these peripheral devices are arranged by the control, status, and data registers.

For example, to define the sampling rate of the ADC, the necessary bits in the ADC control

register are set.

23

3.5.3. Digital Signal Processors

Digital Signal Processor (DSP) is a microcontroller designed specifically for signal

processing applications. This is achieved as follows. Commonly used operations in signal

processing applications are convolution, filtering, and frequency-time domain conversions.

These need recursive multiplication and additions. In other words, they need multiply and

accumulate (MAC) operations. Standard microprocessors execute the multiplication

operation as a recursive addition operation. This means for a standard microprocessor, the

MAC operation is processed by excessive number of addition operations. This takes time.

However, DSPs contain special MAC units that can execute the same operation in a single

machine cycle. For example, a 150 MIPS DSP can process approximately 32 million data

samples per second. For a standard 150 MIPS microprocessor, this reduces to two million

data samples per second. Like microcontrollers, DSPs are equipped with different

peripheral devices according to their usage area. Typical layout of a DSP chip is as in

Figure 3.11.

Figure 3.11 Typical layout of a DSP chip

24

4. RANGE SCANNING USING COLOR INVARIANTS

The main contribution of this thesis is using color invariants in range image

scanning. In this chapter, we explore this in detail. Color invariants help extracting color

properties of objects without being effected by imaging conditions such as the illumination

of the environment, surface properties of the object, the highlights or shadows on the

object, and the angle of view. In this thesis, we benefit from these to eliminate the

illumination effects in stripe segmentation. Both in single stripe and multiple stripe

scanners, we project stripes in different colors. By applying color invariants, we can

robustly extract the color information. Therefore, we can segment the stripe without being

effected by the illumination conditions.

For the single stripe based and the binary scanner, we project two colors. Therefore,

we proposed a color invariant based on two colors (red and green). However, we further

implemented ternary and quaternary scanners that use three (red, green, and blue) and four

(red, green, blue, cyan) colors respectively. Naturally, our color invariant cannot handle

such cases. Therefore, we proposed different color invariants based on Gevers and

Smeulders [28-30]. These were initially introduced for object recognition and content

based image retrieval problems. In the following sections, we first explain our color

invariant proposed for single stripe and binary scanner system. Then, we explain our color

invariant based on Gevers and Smeulders' method.

4.1. THE Ψ COLOR INVARIANT

For the single stripe based scanner, we project a red colored stripe on a green

background (or a green stripe with red background) image by the projection device.

Similarly, for the binary scanner system we project red and green (or blue and green)

colored stripes in each pattern for binary codification. For both systems, we need to

segment these two colors robustly for clean stripe segmentation and decoding. For this

purpose, we proposed a color invariant that can segment out two colors robustly.

25

The color invariant we proposed is originated from a previous study on multispectral

satellite images [37]. There, the Principal Component Analysis (PCA) is applied to the data

in order to decorrelate the multispectral image components. Here, we apply the same

procedure to the RGB image to obtain a new color invariant (specific for stripe

segmentation). By this approach, we aim to suppress the effect of highlights (originating

from the ambient light) in stripe detection.

4.1.1. Derivation of the Proposed Color Invariant using PCA

PCA is a methodology for linearly transforming a correlated data set into a new

space which has uncorrelated components [38]. The correlated data set is rotated about the

origin using a linear transformation matrix to obtain the new space. For a set of correlated

random vectors , the linear transformation matrix is calculated as follows. Let be a

 matrix as

 (4.1)

where is the dimensionality of the measurement and is the number of data vectors

(corresponding to the number of observations).

For our application, we use the red and green color band pixel values as

observations, hence . To calculate the transformation matrix, , first we obtain the

covariance matrix as

 (4.2)

 where is the mean of the sample vector. Next, eigenvectors that satisfy

 are calculated.

The eigenvalue-eigenvector pairs are indexed such that . We also normalize

the eigenvectors such that . The value of corresponds to the spread of the

data (with respect to its mean) along the direction of . The transformation matrix is

then formed by arranging the eigenvectors, one per row as

26

 (4.3)

For our problem, takes the form

 (4.4)

 where and values are obtained from eigenvectors as mentioned above. When this

transformation is applied to any data vector , it is projected onto each eigenvector as

 (4.5)

 For our derivations, we shift the principal components by transformed means as

 (4.6)

where . We therefore work in non-centered spaces.

To define the new color invariant, we transform the color components to an

uncorrelated space using the PCA transformation as

 (4.7)

where corresponds to the red color band (pixel value) of the image, similarly

corresponds to the green color band (pixel value) of the image. This yields to

 (4.8)

 (4.9)

27

 As known, and are statistically uncorrelated. A slope on them can be

defined as

 (4.10)

We take the negative value to emphasize the red band in extracting the color

information of the stripe. A normalized angle (having values in range) corresponding

to this slope is defined as

 (4.11)

4.1.2. Properties of the Ψ Color Invariant

We take the angle in Eqn. 4.11 as our color invariant in segmenting the stripe.

Next, we explore its properties in depth on matte and shiny object surfaces. To note here,

our segmentation method does not depend the object type.

We can justify the usage of the invariant in our range scanner systems by Caspi et

al.'s [9] framework. They developed a structured light based range scanner using color

codes similar to our system, but without using color invariants. In their study, they

analyzed the overall process (from pattern projection to camera image acquisition). As a

result, they introduced an equation relating the projected and received color values through

projector and camera setup for structured light scanning. The equation proposed by Caspi

et al. is

 (4.12)

Separating the equation for each color channel (R, G, B), we get

28

 (4.13)

 (4.14)

 (4.15)

where, values represent projector-camera coupling values. Specifically, , , ,

 , , correspond to sensor crosstalk values. , , and are the red, green, and

blue reflectance values at the pixel. , , and are the projected color values (after a

nonlinear transformation in the projection machine). , , and are the ambient light

levels in the environment.

Caspi et al. used a 3CCD camera as we do in this study. After tests, they observed

that , , values are approximately one. , , , , , values are

close to zero. We use the same values in this study. In our setup, the ambient light in the

environment can be taken as white. Hence, we can define a unique ambient light level as

 . After these assumptions and replacing the , values in Eqn. 4.11 by

the values in Eqns. 4.13,4.14,4.15 we obtain

 (4.16)

 We will use this equation for the stripe segmentation next.

4.2. STRIPE SEGMENTATION USING THE Ψ COLOR INVARIANT

For the single stripe or binary pattern sequences we use red or green color.

Therefore, we examine the response of the invariant according to the red or green color

projected pixels. For the projected red pixels, and . According to these

values, Eqn. 4.16 becomes

29

 (4.17)

As indicated in Eqn. 4.17, if there is no ambient light, . If there is an ambient

light, then . Therefore to segment the red stripes, we can threshold the invariant

applied image by 0 independent of the reflectance of the object.

Similarly for the projected green pixels, and . Then, Eqn. 4.16 becomes

 (4.18)

In Eqn. 4.18, if there is no ambient light . If there is an ambient light then

 . As a result, the green pixels can be segmented by thresholding the invariant

image for the values less than 0.

The justifications above shows that, our color invariant can be used for both red and

green colored line stripes. Besides, for other colored line stripes, this method can be

generalized with the same derivation steps. In Figure 4.1, we provide a segmentation

example of binary and single stripe scanners of binary and single red stripe image with a

green background.

Figure 4.1 Segmentation example for binary and single stripe scanners using ψ

30

We have published the single stripe based scanner with this color invariant in [39].

An extended version covering both the laser and the projection device system is published

in [40]. The implementation of this scanner for the binary coded structured light scanners

is published in [41,42].

4.3. THE ‘c’ COLOR INVARIANT SET

The invariant is successful in segmenting two colors. However, as we mentioned

in Section N-ary Gray Coding2.2.3, to reduce the number of stripes to be projected, we

have to increase the number of colors used in the patterns. Naturally, our color invariant

can not handle such cases. Therefore, we tried different color invariants. We give the

details of the tests on other invariants in Appendix A. Although there are several color

invariants in the literature, they are basically introduced for other purposes. After extensive

testing, we decided that the „c‟ color invariant set introduced by Gevers and Smeulders

[28] serve our purposes well for our range scanners. To protect the integrity of the scanner

system, we will not use the color invariant further for the binary and single stripe

scanner systems. We will use the „c‟ color invariants and their combination for both binary,

ternary, and quaternary scanner systems. These color invariants are

 (4.19)

 (4.20)

 (4.21)

We refer the reader to the mentioned reference for more details on these color

invariants. In our range scanner implementations, the color invariants and provide

similar results. Therefore, we will not deal with the color invariant further. In the

following sections, we benefit from , , and their combination in scanning shiny and

31

matte object surfaces in our range scanner system. We explore the properties of these color

invariants in our setup next.

4.3.1. Properties of the ‘c’ Color Invariant Set

As in the previous section, we justify the „c‟ color invariant set with Caspi et al.'s

equation that relates the projected and the captured image. By replacing the , , values

in Eqns. 4.19, 4.21 by the values in Eqns. 4.13, 4.14, 4.15, we obtain

 (4.22)

 (4.23)

In our setup, the ambient light in the environment can be taken as white. Hence, we

can define a unique ambient light level as . Using this, we can further

simplify Eqns. 4.22 and 4.23 as

 (4.24)

 (4.25)

 These two equations will serve for decoding binary, ternary, and quaternary patterns

in the next section.

4.4. DECODING PATTERNS USING ‘c’ COLOR INVARIANTS

In this section, we benefit from the , color invariants and their combination to

decode binary, ternary, and quaternary patterns projected onto the test object. To decode

each pattern, we apply a different method. Therefore, we explore each method separately

next.

32

4.4.1. Decoding Binary Patterns

We implement our binary range scanner in two different ways using and color

invariants separately. To use the first color invariant, , we project eight red and green

colored patterns (in terms of line stripes with varying widths) onto the object. To decode

these projected patterns from the grabbed camera images, we apply thresholding after

obtaining their color invariant images. We explain this methodology next.

For the pixels corresponding to the red stripe on the grabbed image, we have

and . Remember, we do not project the blue color. Therefore, for this

scenario. Then, we have

 (4.26)

Similarly for the pixels corresponding to the green stripes, we have and

 . As in the previous derivation, . Based on these, we have

 (4.27)

We know that and values are greater than zero. Therefore, for

any ambient light level () and the red reflectance value (). Similarly, for

any ambient light level () and the green reflectance value (). These lead to the

following conclusion. For the red stripes in the pattern, the term inside the arctangent

function in Eqn. 4.26 will be greater than one. Since, the arctangent function is monotonic

(within the range); or . Similarly, for the green stripes in

the pattern, the term inside the arctangent function in Eqn. 4.27 will be less than one.

Therefore, . Hence, the red and green stripes can be extracted from the image

easily by taking the threshold value of . As can be seen, the ambient light level has

no effect on selecting this threshold value. The same derivations can be made for the

color invariant. We apply this strategy to all eight red-green colored patterns. Then, we

construct the decoded line stripes for each pattern.

33

In structured light based range scanners, we project patterns onto the whole object

surface. Therefore, highlights will be either very bright red or very bright green depending

on their location. By the justification above, we can claim that the intensity of the color

does not affect the stripe extraction. Therefore, the stripes corresponding to the highlight

locations can also be extracted reliably.

We pick the matte and shiny Atatürk objects, as given in Figure 4.2, to show the

difficulty in decoding the patterns from shiny object surfaces. We will also use these two

test objects in the following sections for comparison. We picked these two objects since

they have the same surface properties. Only their reflectance properties change. Therefore,

we can have a controlled test environment.

Figure 4.2. Matte and shiny Atatürk objects

We provide the binary pattern decoding example using on one of the eight patterns

for our binary range scanner in Figure 4.3. For the color invariant, we project red-green

colored stripes (pattern) on these test objects. First, we provide the single layer of these

coding images. In the same figure, we provide the extracted color invariant images and the

decoded patterns (in color coded form) for both objects. As can be seen, binary pattern

decoding results on matte and shiny Atatürk objects are fairly good using color coding and

the color invariant.

34

Figure 4.3. Binary pattern decoding results using c1. First column: matte and shiny Atatürk.

Second column: c1 color invariant images. Third column: binary patterns decoded (in color

coded form)

 As the next example, we apply the same procedure using in Figure 4.4. To use this

invariant, we project blue-green colored stripes (pattern) on test objects. As in the previous

example, we provide the coded images, color invariant versions, and the decoded patterns

(in color coded form) in Figure 4.4. As can be seen, we can decode the single layer of

binary patterns from both matte and shiny Atatürk objects in a reliable manner using the

color invariant.

35

Figure 4.4. Binary pattern decoding results using c3. First column: matte and shiny Atatürk.

Second column: c3 color invariant images. Third column: binary patterns decoded (in color

coded form)

 As a comparison, we also provide the singe layer of black and white pattern decoding

example for the standard binary range scanner in Figure 4.5. In this figure, we provide the

coded images of matte and shiny Atatürk objects and their decoding results. As can be

seen, although the decoding results for the matte Atatürk object are fairly good, there are

false decodings around the eye and the hair sections of the shiny Atatürk. These regions

will lead to false range data after decoding all pattern levels.

36

Figure 4.5. Binary pattern decoding results using black and white stripes. First column:

matte and shiny Atatürk. Second column: binary patterns decoded (in color coded form)

4.4.2. Decoding Ternary Patterns

 For the ternary coded patterns, we use red, green, and blue colors. To decode stripes

corresponding to these colors in the patterns projected, we have similar assumptions as in

the binary range scanner. For the red colored stripes (in the patterns), we have ,

 , and . Using these values in Eqns. 4.24 and 4.25, we obtain

 (4.28)

 Similarly, for the green colored stripes (in the patterns), we have , , and

 . Using these values in Eqns. 4.24 and 4.25, we obtain

37

 (4.29)

 Finally, for the blue colored stripes (in the patterns), we have , , and

 . Using these values in Eqns. 4.24 and 4.25, we obtain

 (4.30)

 We can see that there is a nice symmetry in Eqns. 4.28, 4.29, and 4.30. As in the

binary range scanner, we have , , and

independent of the reflectance values and the ambient light level. Using the symmetry and

the mentioned inequalities, we can define a new variable to decode ternary coded patterns

as

 (4.31)

 For the red, green, and blue colored stripes, , , and respectively.

Therefore, we can use to extract the red, green, and blue stripes from the grabbed image.

In implementation, we divide the range of the value to three and apply segmentation

based on these. We apply this strategy to all red, green, and blue colored pattern projected

object images. Then, we construct the decoded line stripes in the overall image.

 As in the previous section, we provide the ternary pattern decoding example using

on one of the five patterns for our ternary range scanner in Figure 4.6. First, we provide the

ternary coding images for matte and shiny Atatürk objects. In the same figure, we provide

the extracted images and the decoded patterns (in color coded form) for both objects. As

can be seen, ternary pattern decoding results on matte and shiny Atatürk objects are fairly

good using color coding and the value. The binary and ternary scanner implementation

using the „c‟ color invariants is published in [43].

38

Figure 4.6. Ternary pattern decoding results using s. First column: matte and shiny

Atatürk. Second column: s images. Third column: ternary patterns decoded (in color coded

form)

4.4.3. Decoding Quaternary Patterns

 To decode quaternary patterns, we apply a similar strategy as in the ternary pattern

case. Therefore, we again use in Eqn. 4.31. In quaternary coding, we have red, green,

blue, and cyan color coded stripes in the patterns. For the red, green, and blue colored

stripes, the derivations are the same as in the ternary coding case. To extract the cyan

colored stripes, we have , , and . Using these values in Eqns. 4.24 and

4.25, we obtain

 (4.32)

 (4.33)

 For the cyan colored stripes, has a negative value such that . Although

there is no symmetry here, in implementation we experimentally observed that, we can

extract four different colored stripes in the quaternary scanner by dividing the range to

four and applying segmentation based on these. We apply this strategy to all four red,

39

green, blue, and cyan colored patterns. Then, we construct the decoded line stripes in the

overall image.

 As in the previous section, we provide the quaternary pattern decoding example

using on one of the four patterns for our quaternary range scanner in Figure 4.7. First, we

provide the coding images on both matte and shiny Atatürk objects. In the same figure, we

provide the extracted images and the decoded patterns in color coded form for both

objects. As can be seen, the quaternary pattern decoding results on matte and shiny Atatürk

objects are fairly good using color coding and the value.

Figure 4.7. Quaternary pattern decoding results using s. First column: matte and shiny

Atatürk. Second column: s images. Third column: quaternary patterns decoded (in color

coded form)

40

5. EMBEDDED SYSTEM IMPLEMENTATION

 To implement the mentioned range scanner system, we used a TI DM6437 EVM

board as the main unit. Our scanner system includes all the methods explained in the

previous chapter. Therefore, it gives the user an opportunity to choose the scanner type.

Furthermore, our range scanner system can scan the target object from different viewing

angles. To do so, we added a rotating table system controlled by the TI DM6437 EVM

board. Hence, we can obtain the object model. The single stripe scanner implementation on

the embedded system is published in [44]. We will give the details of model construction

in the following chapter. Here, we focus on the the details of the hardware part of our

scanner system.

5.1. TI DM6437 EVM BOARD PROPERTIES

 Structured light coding, decoding, pattern generation, and stripe extraction operations

require a powerful computing platform. TI DM6437 EVM board is one of such platforms.

It provides high computational power, as well as highly optimized software tools.

Therefore, we decided to use it in our implementation. We provide its properties next.

5.1.1. The DSP Platform

 TI DM6437 is a high performance, fixed point digital media processor build on

C64x+ CPU with clock rates up to 700 MHz. The processor in the TI DM6437 EVM board

has 600 MHz clock rate, corresponding to 4800 million instructions per second (MIPS).

The DSP subsystem has 32 KB program and 80 KB data level one cache. The 128 KB

level two cache provides flexible allocation to be used as RAM or cache. Besides, the

internal memory of the TI DM6437 EVM board contains 32 MB NOR and 64 MB NAND

flash memories used for boot loading, 2 MB SRAM for application debugging and 2x64

MB DDR2 SDRAM for program, data, and video storage.

41

Figure 5.1. The DM6437 EVM

5.1.2. Video Input/Output Peripherals

 In the TI DM6437 EVM board, video input/output peripherals are managed by the

Video Processing Subsystem (VPSS). VPSS involves two configurable video/imaging

peripherals: one Video Processing Front-End (VPFE) input used for video capturing, one

Video Processing Back-End (VPBE) output having a Video Encoder (VENC). The VENC

provides four analog DACs that run at 54 MHz, providing a means for composite NTSC or

PAL video, S-video, and/or component video output. VPFE has a CCD Controller

(CCDC), a preview engine, histogram module, auto-exposure, white balance, focus module

(H3A), and resizer. The CCDC is capable of interfacing to common video decoders,

CMOS sensors, and CCDs. On the TI DM6437 EVM board, CCDC is interfaced with a

TVP5146M2 video decoder.

 The TVP5146M2 is a 10-bit, 30 million samples per second (MSPS) high quality

single-chip digital video decoder that digitizes and decodes NTSC, PAL, SECAM,

composite, and S-video into component format [45]. The decoder is configured

over the I2C host port interface. According to this configuration, it generates

synchronization, blanking, field, active video window, horizontal and vertical syncs, clock,

genlock (for downstream video encoder synchronization), host CPU interrupt,

programmable logic I/O signals and 4:2:2 video output signals.

42

5.1.3. Programming and Debugging Issues

 TI has an integrated DSP development environment called Code Composer Studio

(CCS). We used CCS V.4 to program and debug the TI DM6437 EVM board and the TI

MSP430 microcontroller. A real-time multi-tasking kernel (mini-operating-system) created

by TI for the TMS320 family of DSP's named DSP/BIOS is an integrated part of this

development platform. The DSP/BIOS includes graphical kernel object viewer and real-

time analysis tools specifically focused on debugging and tuning multitasking applications.

Through a graphical configuration manager, DSP/BIOS manages device configurations,

hardware and software interrupts, memory mappings, CPU and peripheral timings, and

data exchange between the evaluation board and the CCS environment. In coordination

with the DSP/BIOS, device initializations and controls are implemented through the Chip

Support Libraries (CSL) and Board Support Libraries (BSL) by the C language callable

functions. To have a fast scanning operation, we used TI's fixed point IQmath and FastRTS

libraries in programming.

5.1.4. DSP Configuration for Image Input/Output

 The first implementation step on the TI DM6437 EVM board is to setup the image

input/output structure. To have an optimized hardware configuration, we used the video

preview framework provided by TI Digital Video Software Development Kit (DVSDK). It

uses C language callable functions of VPSS to capture and output the image. This

framework generates video input and output buffer queues having three times the image

size by memory allocation on the DDR2 SDRAM. These queues work in FIFO structure.

The image to be processed is called from the video input queue. The processed image is

placed to the video output queue. At the same time, a new image is captured and placed in

the video input queue. Therefore, the data acquisition and processing runs in parallel. We

provide this operation in a systematic layout form in Figure 5.2. We use the advantage of

this structure to prevent the time loss in shadow image capturing (to be explained next).

43

Figure 5.2. The image input output structure

5.1.5. Properties of the Rotating Table

 To be able to scan the target object from different viewpoints, we implemented a

rotating table system for our scanner setup. By controlling the rotation angle, we can scan

the target object from any desired angle. Our rotating table system consists of a step motor,

driving circuit and a TI MSP430 microcontroller.

5.1.5.1. Motor driving circuit

 We used a step motor in the rotating table system to have an angular control. The

step motor rotates in steps according to the magnetic field occurred by the current flowing

through different directions on the four coils of the motor. We used an ULN2003 H-Bridge

IC to control the current directions on the motor coils. This IC changes the current flow

direction according to the states given by the microcontroller. The microcontroller gives

eight states on four bits to control the motor on half step driving. We used optocouplers to

isolate the microcontroller from the ULN2003 circuit. This way, we can protect the

microcontroller from any undesired current flows. We also balanced the voltage levels of

the IC and the microcontroller this way. The motor is fed by a 9V-3A DC power supply.

The microcontroller circuit is supplied through the TI DM6437 EVM board by a 3.3V DC

voltage. The schematic of the motor driving circuit is given in Figure 5.3.

44

Figure 5.3. Rotating table motor driving schematic

5.1.5.2. The MSP430 microcontroller

 To control the states of the motor driving circuitry, we used a TI MSP430F2274

microcontroller. The MSP430F2274 has a powerful 16-bit RISC CPU, 16-bit registers, and

constant generators that contribute to maximum code efficiency. Port2 of the

microcontroller is set to be used as the general purpose output. We provide the state output

from this port to drive the motor to the next step. The first bit of port1 on the

microcontroller is set to get an interrupt from the TI DM6437 EVM board. On each high to

low change signal from the TI DM6437 EVM board, the microcontroller gets an interrupt.

The program in the microcontroller branches to the interrupt service routine that places the

next state value to port2. This way, according to the number of pulses given by the TI

DM6437 EVM board, the microcontroller gets interrupts and rotates the motor to the

desired angle. The pictures of the motor driving circuit, motor, and the complete rotating

table structure is given in Figure 5.4.

45

Figure 5.4. Left: The stepping motor used. Top right: The driver circuit. Bottom left: The

MSP430 microcontroller. Bottom right: Rotating table during a scan process

5.2. THE SCANNER SOFTWARE

 In this section, we focus on the software implementation issues of our range scanner

in terms of hardware properties. For more advanced DSP implementations of the proposed

methods in this study, we refer the reader to two excellent books [46,47]. We configured

the CCS such that, when it is launched on the host computer, it connects to the target board

and waits with an empty user interface. By using the GEL script language specified for the

CCS environment, we designed a menu item called “3D Scanner” to the user interface.

This menu item is given in Figure 5.5.

46

Figure 5.5. Starting the scanner from CCS

 By clicking on the “Start Scanner” icon from this menu, the user loads and starts the

program. At the beginning, the program asks the user to choose the scanning method. The

user selects one of the binary, ternary, or quaternary scanning methods by entering the

number corresponding to it. This window is shown in Fig. 29. According to the selection,

the program calls the corresponding pattern generation function.

Figure 5.6. Selecting the scanning method by the user

5.2.1. Pattern Generation

 In order to prevent delays based on pattern generation during the scanning operation,

we prepare the patterns at the beginning of the program. To generate and store the patterns,

we used a buffer structural element. For all scanning methods, we use vector header files

that contain the pattern structure in a single line. The projection device projects a

 pixel image. According to the selected scanning method, the single line pattern code is

expanded to the entire image to be projected. Our scanner software has a queuing structure

for parallel processing of image projection and capturing (to be explained in detail next).

To benefit from this parallel structure, the program first copies the patterns to be projected

47

to the output buffer queue. The first pattern is projected by releasing the first output buffer.

As the new frame is captured from the input buffer queue, the second pattern is

automatically released from the output queue. While the second pattern is being projected,

the color conversion operations (to be explained in the pattern decoding section next) are

performed. This cycle continues sequentially for each pattern. After the last pattern in the

frame is captured, a fully bright white colored image is released from the output buffer.

The resulting image is captured to be used for shadow removal stage (to be explained

next).

5.2.2. Shadow Removal

 The shadow that is captured by the camera can disturb the color invariant

calculations. Therefore, it should be removed. On the other hand, some dark colored

objects may also be taken as shadow if the method works for all scenes. To prevent this

confusion, the system asks the user whether the shadow should be removed or not. If the

user selects to remove the shadow regions, the program takes an extra image with a pure

white illumination. The value (in) in the grabbed image is thresholded by 40. The

pixels lower than this value are assumed to be from a shadow region. Let us remind that,

we use a projection device that supports a controlled illumination. Therefore, we can use a

fixed threshold. In the image processing stage of our program, we exclude the shadow

pixels from further processing. This way, we reduce the unnecessary processor load.

 After the shadow removal step, the program waits for the start command to begin the

scanning operation. At the same time, the program places the first pattern to be projected

from queue to the output. By the start command, the first pattern is projected onto the

object. The user interface of this state is as given in Fig. 30.

48

Figure 5.7. Starting the scanning process

5.2.3. Image Capturing

 After the pattern is projected onto the object, its image is captured and placed to the

video input queue. The frame to be processed is called from the queue to a buffer structural

element. To optimize the bandwidth, the image in the buffer is subsampled in 4:2:2

format by the TVP5146 video decoder of the TI DM6437 EVM board. Our program first

decomposes the data and calculates the corresponding red, green, and blue color

values. In the next step of the program, we benefit from these color values in calculating

the color invariants for pattern decoding.

 Unfortunately, we have a delay in the projection device. This causes problems in

capturing the correct pattern projected image from the object surface. To overcome this

problem, the program renews the image capturing process three times while the same

pattern is released from the output buffer. This causes a delay in the pattern projection and

image capturing stages of our software. We will talk about this issue in Section 6.4.

5.2.4. Pattern Decoding

 To decode patterns, we apply the color invariant on each pixel of the grabbed image.

The resulting values are thresholded (calculated theoretically in previous sections). If the

pixel's color invariant value is above the threshold, it is stored in a buffer with a code

number related to the pattern projected. The program repeats the pattern projection, image

49

capturing, and stripe segmentation processes for each pattern. Finally, we obtain a buffer

array that contains the decoded data of the object's scanned pose.

5.2.5. Three Dimensional Point Cloud Extraction

 As the patterns are decoded in the previous step, we can extract each line stripe

(coded by Nary representation) separately. Then, using the triangulation principle and the

disparity information between the projected and decoded line stripe positions, we can

obtain the depth information [5-7]. We explained the details of triangulation in Chapter 3.

For a proper triangulation the system should be calibrated. We obtain the calibration data

of our system once. We feed this calibration data to our program as a header file. We gave

the details of calibration in Chapter 3.

5.2.6. Scanning Objects from Different Viewing Angles

 When the scanning from one viewing angle is completed, the program calls the

rotating table function to rotate the object. To prevent any time losses, we rotate the table

in parallel with the point cloud calculation operation. To register the point clouds from

different viewing angles in a robust manner, the object should be rotated in small angles.

Therefore, we scan the object from 11 different angles covering the overall 360 degrees

range.

5.2.7. Transfer of Point Cloud Data

 At the end of the scanning process, the program informs the user by the “Scan

Process Completed” message. The user selects the ``Point Out'' icon under the “3D

Scanner” menu item to transfer the point cloud data to the host computer. The view of this

operation is as in Figure 5.8.

50

Figure 5.8. Transferring the point cloud data to the host computer

 The GEL script we prepared saves the point cloud obtained from 11 different

viewing angles in rectangular coordinates . For each viewing angle, a specific text

file is created with “.dat” extension. The registration software (that will be explained in the

following chapter) can easily open these files and read the point cloud data.

51

6. OVERALL PERFORMANCE OF THE SCANNER SYSTEM

 In this chapter, we measure the performance of the proposed range scanner system

by: the quality of the range data, operation timing, and accuracy. We performed

experiments on each range scanner with objects constituting different surface

characteristics. We test the proposed range scanner system on these objects under ambient

light. For comparison purposes, we first provide the range data extracted by the standard

binary structured light based range scanner (using black and white patterns). Then, we

provide the range data extracted by our scanners. We also performed timing experiments to

show the improvement on scanning time by decreasing the number of patterns. Having the

highest precision was not our primary objective. However, we also measured the accuracy

of the scanners we proposed. Next, we give the extracted range data by the proposed

system.

 We provide the images of the first set of our test objects, besides the matte and shiny

Atatürk objects (given in Figure 4.2) in Fig. 32. These objects are: shiny teapot, shiny

concave fish, shiny carafe, shiny green cat, soft donkey, and hen. In total, five of these test

objects have shiny surfaces. The remaining three have matte surfaces. The shiny concave

fish has a concave shape. Also, these test objects have different colors on them. We

provide the extracted range data of these test objects in terms of point clouds for each

scanner separately next.

Figure 6.1. First set of test objects. First row: shiny teapot, shiny concave fish, shiny

carafe. Second row: shiny green cat, soft donkey, hen

52

6.1. EXTRACTED RANGE DATA USING THE STANDARD BINARY SCANNER

 We implemented the standard binary structured light based range scanner (using

black and white color patterns) through our hardware as a benchmark. We provide the

range data extracted by this scanner in Figure 6.2.

Figure 6.2. Point clouds of eight test objects using the standard binary range scanner. First

row: matte Atatürk, shiny Atatürk. Second row: shiny teapot, shiny concave fish, shiny

carafe. Third row: shiny green cat, soft donkey, hen

 As can be seen in Figure 6.2, the standard binary range scanner gives good results on

the matte Atatürk object. However, the chin and the hair parts of the shiny Atatürk object is

problematic. As we have mentioned previously, this is due to the problem in the pattern

decoding step. This problem is also evident for the remaining test objects. For the matte

objects such as soft donkey and hen, the scan results are good. On all other shiny objects,

this scanner gives poor results. Either some parts of the objects are missing or there are

53

some outliers in the extracted range data. The main reason for this poor performance is, as

mentioned above, the pattern decoding step.

6.2. EXTRACTED RANGE DATA USING OUR SCANNERS

 Since we proposed several scanners, we provide the range data extracted from them

separately in this section. We start with binary range scanners based on color invariants

and separately. Then, we proceed to the results of the ternary and quaternary range

scanners.

6.2.1. Binary Range Scanners

 We provide the range data extracted by our binary range scanner using in Figure

6.3. As can be seen in this figure, the range data extracted from all objects are fairly good.

Figure 6.3. Point clouds of eight test objects using the binary range scanner (with c1). First

row: matte Atatürk, shiny Atatürk. Second row: shiny teapot, shiny concave fish, shiny

carafe. Third row: shiny green cat, soft donkey, hen

54

 Similarly, we provide the range data extracted by our binary range scanner using

in Figure 6.4. As in the previous scanner, all results are fairly good. The main difference

between this and the previous binary scanner is the used pattern colors (blue-green) in

coding.

Figure 6.4. Point clouds of eight test objects using the binary range scanner (with c3). First

row: matte Atatürk, shiny Atatürk. Second row: shiny teapot, shiny concave fish, shiny

carafe. Third row: shiny green cat, soft donkey, hen

6.2.2. The Ternary Range Scanner

 We provide the range data extracted by our ternary range scanner in Figure 6.5. As

can be seen in this figure, the range data extracted from all test objects using this scanner

are also fairly good.

55

Figure 6.5. Point clouds of eight test objects using the ternary range scanner. First row:

matte Atatürk, shiny Atatürk. Second row: shiny teapot, shiny concave fish, shiny carafe.

Third row: shiny green cat, soft donkey, hen

6.2.3. The Quaternary Range Scanner

 Finally, we provide the range data extracted by our quaternary range scanner in

Figure 6.6. Although the results obtained with this scanner are better than the standard

binary range scanner, for the green cat and hen objects, the range data is not as good as the

ternary and binary range scanners. One possible explanation for these results is the

decoding step. As we mentioned before, for decoding the cyan colored stripes, we could

not obtain a symmetric relationship. This may have caused minor problems in the decoding

step.

56

Figure 6.6. Point clouds of eight test objects using the quaternary range scanner. First row:

matte Atatürk, shiny Atatürk. Second row: shiny teapot, shiny concave fish, shiny carafe.

Third row: shiny green cat, soft donkey, hen

6.3. QUANTITATIVE COMPARISON OF THE SCANNER RESULTS

 To have a quantitative comparison of the standard binary range scanner and the ones

proposed in this study, we measured the percentage of the outliers and the missing points

on the extracted range data. Table 6.1. Average percentage (%) of outliers for the scanners

tabulates the percentage of the outlier points for each scanner. For a fair comparison, we

divided our test objects as matte (matte Atatürk, soft donkey, hen) and shiny (shiny

Atatürk, shiny teapot, shiny concave fish, shiny carafe, and shiny green cat). For each

scanner type, we provide the average percentage of outliers separately (for matte and shiny

objects) in this table.

57

Table 6.1. Average percentage (%) of outliers for the scanners

Scanner Type

 Object Type

Matte Shiny

Standard binary 0.34 2.01

Binary 0.37 0.23

Binary 0.70 0.55

Ternary 0.72 0.45

Quaternary 0.74 2.17

 As can be seen in Table 6.1. Average percentage (%) of outliers for the scanners, for

matte objects the standard binary scanner gives better results compared to others. However,

the performance improvement is not significant. On the other hand, for the shiny objects

the standard binary scanner has an average of outlier. On the average, this scanner

gives 38000 points for the five shiny objects. Therefore, the standard binary range scanner

has an average of 763 outliers for each shiny object. This number is almost tenfold more

than the binary range scanner using . In this table, it can be seen that, the quaternary

scanner has a high number of outliers. However, this is not because of the shiny surface

characteristics. It is based on the color of the surface. Especially, for the shiny green cat

object, the effect of sensor crosstalk caused the number of the outliers to be higher. This

increases the average percentage error for the quaternary scanner.

 Not only the outliers but also missing points occur based on decodification errors.

Therefore, we also measured the percentage of the missing points on the same matte and

shiny test objects. Table 6.2. Average percentage (%) of missing points for the

scannerstabulates the average percentage of missing points for each scanner.

58

Table 6.2. Average percentage (%) of missing points for the scanners

 Object Type

Scanner Type Matte Shiny

Standard binary 0.11 3.35

Binary 0.02 0.76

Binary 0.02 0.24

Ternary 0.02 0.08

Quaternary 0.02 0.02

 As can be seen in Table 6.2. Average percentage (%) of missing points for the

scanners, for both matte and shiny objects the percentage of the missing points is higher for

the standard binary scanner. Based on the calculations for outliers in the above paragraph,

for a shiny object approximately 1273 points are missing on the average. However, in our

scanners this number decreases to 288 in the worst case. This is a fivefold improvement.

This improvement and the one obtained for the outliers in the previous paragraph clearly

show that our range scanners provide better range data compared to the standard binary

range scanner.

6.4. TIMING PERFORMANCE OF THE SCANNER SYSTEM

 We also tested the timing performances of our range scanners. We picked the shiny

carafe as the test object. We provide the time needed for each scanning step (from one

viewing angle only) in Table 6.3 for our binary, ternary, and quaternary range scanners. In

this table, „Initialization‟ stands for the initialization of the TI DM6437 EVM board.

„Pattern generation‟ is the step to generate the pattern image to be projected.

„Configuration‟ stands for the configuration of the video processing subsystem. In the

„Acquisition‟ step, the pattern to be projected is filled to the buffer, projected, acquired,

decomposed, and converted from 4:2:2 format to . „Pattern decoding‟ step

involves the usage of color invariants to decode patterns. „Rotating the table‟ step involves

the time needed to control the rotating table for the next scan. Finally, „Calculations‟ step

59

includes all the calculations to output real world coordinates of the scan result. We take the

clock of the TI DM6437 EVM board as 600 MHz.

Table 6.3. Operation timings in milliseconds for the scanners

 Time (msec)

Step Binary Ternary Quaternary

Initialization 0.19 0.19 0.19

Pattern generation 415.87 307.67 283.38

Configuration 0.10 0.10 0.10

Acquisition 1778.51 1180.79 968.72

Pattern decoding 2393.45 1969.02 3477.81

Rotating the table 88.17 88.17 88.17

Calculations 1918.10 2649.32 728.94

TOTAL 6594.39 6195.26 5547.31

 As can be seen in Table 6.3. Operation timings in milliseconds for the scanners, the

total time needed to scan the shiny carafe object from one viewing angle is 6.59 sec, 6.19

sec, and 5.54 sec for the binary, ternary, and the quaternary range scanners respectively.

However, the time needed just to acquire the pattern images (including all initialization

steps) from the object surface is sec, sec, and sec for the same scanners.

Therefore, to scan an object from one viewing angle, it should stay in front of the binary

scanner at most 2.19 sec. For the quaternary scanner, this time reduces to 1.25 sec. The rest

of the operations can be done off line.

 In Table 6.3, it is clearly seen that, the pattern decoding, acquisition, and calculations

steps take most of the operation time. Since our method needs color information, these

timings are unavoidable. Besides, in the calculations step, the timing between each scanner

type is different since each extract different number of range points depending on their

spatial resolution. This is because of the different line widths used for each scanner. In

terms of total timings, the quaternary range scanner is the fastest of all, as expected.

60

Besides, the binary and ternary range scanners have fairly good operation speeds. These

results are due to the TI DM6437 EVM board and using C programming with optimized

fixed point coding libraries.

 The proposed method implemented on the TI DM6437 EVM board may seem slow

compared to fringe projection based methods such as [4]. This is because of three main

reasons. First, due to budget constraints and availability we had to use a standard

projection device in the setup. Therefore, delays in projecting the patterns and acquiring

them became unavoidable. Besides, it was not possible to use an external trigger for this

projector. There are projection devices specifically designed for range scanning

applications. Using these will definitely shorten the operation timings. Second, our DSP

platform was specifically designed to process video images. Although it was a good choice

for academic purposes, developing a real time range scanner was not possible based on its

characteristics. Third, using color information also decreased the timing performance of

our system. On the other hand, our proposed method implemented on a TI DM6437 EVM

board as suggested in this study is faster than standard PC based implementations. One can

see timing comparisons of recent structured light based range scanning systems in the

review paper [2].

6.5. ACCURACY OF THE SCANNER SYSTEM

 Caspi et al. [9] used a staircase object to verify the accuracy of their system.

Similarly, we tested the accuracy of our binary range scanner on a staircase object given in

Figure 6.7. This object has three levels. We measured the actual depth of each staircase

level from three different locations (left, middle, right) by a caliper. Then, we measured the

depth of these locations by our range scanner. We provide the results in Table 6.4.

61

Figure 6.7. The staircase object for testing the accuracy of range scanners

Table 6.4. Comparison of the actual and the measured depth values (in millimeters) on the

staircase test object

Step, location Actual Measured Error

First step, left 39.90000 39.11473 0.78527

First step, middle 39.99000 40.03656 -0.04656

First step, right 39.80000 39.27202 0.52798

Second step, left 20.59000 19.20797 1.38203

Second step, middle 19.92000 19.31543 0.60457

Second step, right 20.34000 20.67780 -0.33780

Third step, left 10.29000 9.86059 0.42941

Third step, middle 9.62000 9.80263 -0.18263

Third step, right 9.55000 9.80600 -0.25600

62

 As can be seen in Table 6.4, the maximum error is mm on the second step.

The average error for the first, second, and third steps are mm, mm,

 mm respectively. The overall average error for the staircase test object is

 mm. Based on these tests, we can claim that the accuracy of our binary range

scanner is acceptable. To note here, the accuracy was not the main target in this study.

Using more advanced techniques and equipments, this acucracy can be improved further.

6.6. COMMENTS ON THE PERFORMANCE

Comparing all the range data extracted by five range scanners, we can summarize

some key observations. First of all, the standard binary range scanner (using black and

white patterns) is not a good choice for scanning shiny objects under ambient light. The

binary range scanner based on gives good results on all test objects. The other binary

range scanner based on also gives good results on all test objects. The range data

extracted by the ternary range scanner is fairly good. Finally, the range data extracted by

the quaternary range scanner from most test objects is fairly good. Only for some

challenging objects, the extracted range data is not as good as the other scanners based on

color invariants. The average value of outliers and the missing points justifies these claims

quantitatively. We also compared the operation timings for these scanners in Section 4. As

expected, the speed of the system increases as the number of patterns decrease. However,

the user should decide on using whether a high speed scanning or a high resolution

scanning. As a final comment, either fast or slow, with high or low resolution, our scanner

system can scan shiny or matte surfaces reliably under ambient light.

63

7. 3D MODEL CONSTRUCTION

 The final step in object scanning is the 3D model construction. The proposed scanner

system gives 3D point cloud as an output. Then, we obtain the polygon meshes of the

poses from different angles of the object. For obtaining the object model, these meshes

should be registered. We use the iterative closest point (ICP) algorithm to register these

patches [5]. Next, we will give a brief explanation of the ICP method. Then, we summarize

the test objects used. Finally, we give the models of these test objects.

7.1. 3D MODEL CONSTRUCTION USING ICP

 There are several 3D point set registration algorithms proposed in the literature.

Rodrigues et al. [48] presented a survey on major registration algorithms. Iterative Closest

Point (ICP) proposed by Besl and McKay [5] is the current state-of-art algorithm.

Rusinkiewicz and Levoy [49] categorized and summarized variants of the ICP algorithm.

Here we will explain the basic algorithm.

 ICP is an algorithm introduced to register the two set of 3D points. Since the

algorithm is very effective, it is commonly used to reconstruct the final 3D models of real

objects from their range data. The algorithm works on a basis of iterative estimation of the

Euclidean transformation (translation and rotation) between the two point sets. The

algorithm requires an initial estimation of the transformation. Till satisfying the stopping

criteria, the algorithm works iteratively. The output of the algorithm is the refined

transformation.

 Assume that we try to register the two set of range image points and . The

algorithm calculates the 3D rotation matrix and the translation vector that minimizes

the error as

 (7.1)

64

where is the point in the point set to be registered, is the point in the

reference point set to which is registering. is the number of points in the data set .

 The closest points are calculated using the Euclidian distance between each points.

For two points given as and the Euclid distance is

 (7.2)

 Let be point set with points denoted by : for . The

distance between a point to be registered and the point set set is

 (7.3)

 For every point in the point set , and the corresponding point in is computed

using Eqn. 7.3.

The ICP algorithm iteratively minimizes the error function. It starts with an initial

rotation matrix and the translation vector that transforms the data set to be registered

and calculates the registration error. Then it calculates the rotation matrix and the

translation vector again by minimizing the distance. Until the error reaches to the

required level, the process continues iteratively. This iterative process is guaranteed to

converge to a local minimum for any starting value of when it is a subset of . However,

there are some limitations of the ICP algorithm when used in range data registration. First,

range data are not subsets of each other. Instead, they partially overlap with each other

depending on the viewpoint. Therefore, the algorithm requires the detection of outliers that

comes through the non-overlapping regions. Second, the algorithm requires a good initial

estimation close to the global minimum in order to avoid any local minimum.

 We give an example of ICP algorithm implementation for the hen test object in

Figure 7.1 On the left side, the two patches are given with blue and red colored points. The

middle figure shows the rough registration using ICP algorithm. The right figure shows the

fine registration of the two point clouds.

65

Figure 7.1. ICP implementation example under MATLAB

.

 The ICP algorithm has an average complexity of , where is the number of

points in the range image. One needs to compute the corresponding point pairs in every

iteration. This increases the complexity and time consumption of the algorithm. For a

faster algorithm, Sertel and Ünsalan [50] proposed using the edge information that makes

the rough registration based on the edges of the patches. Although we can implement this,

because of the time complexity, we used a commercial software having an optimized and

fast ICP implementation. To note here, other registration methods may also be used taking

the rotating table properties into account.

7.2. PROPERTIES OF THE TEST OBJECTS

 To test the overall system, from range data extraction to model formation, we picked

28 test objects given in Figure 4.2, Figure 6.1 (given in the previous chapters) and Figure

7.2 (given below). These test objects have diverse surface characteristics. We provide the

dimensions of these test objects in Table 7.1 As can be seen in this table, the dimensions of

our test objects are also diverse.

66

Figure 7.2. Second set of test objects. First row: circular carafe, column vase, bunny, clay

pot, armed vase, shoe. Second row: elephant, brown shoe, dove and yellow shoe. Third

row: hedgehog, bird, cornered vase, Venus. Fourth row: Alexander, moon, shiny fish,

shiny

67

Table 7.1. Dimensions of test objects (in millimeters) used in experiments

Object Length Width Depth

Atatürk 110 120 10

Shiny teapot 110 118 113

Shiny concave fish 110 195 45

Shiny carafe 170 140 110

Shiny green cat 140 90 80

Soft donkey 110 145 45

Hen 150 150 80

Circular carafe 150 125 40

Column vase 160 100 100

Bunny 85 55 60

Clay pot 185 120 120

Armed vase 190 110 85

Shoe 80 125 40

Elephant 65 95 70

Brown shoe 90 135 65

Dove 140 185 100

Yellow shoe 80 85 40

Hedgehog 50 80 60

Bird 80 145 70

Cornered vase 185 75 75

Venus 160 170 125

Alexander 260 230 160

Moon 120 40 5

Shiny fish 70 120 25

Shiny stork 90 100 10

Cow 75 65 20

Shiny star 120 120 25

Shiny rose 85 65 30

68

7.3. OBJECT MODELS EXTRACTED BY THE PROPOSED SCANNER SYSTEM

 In this section, we provide the models of our test objects using our binary range

scanner (using). For each object, we provide the object model from three different

directions. Only the final eight objects are imaged from only one direction, since they have

flat surfaces. In Figure 7.3, we provide the models of the shiny teapot, shiny carafe, shiny

green cat, soft donkey and hen objects.

Figure 7.3. Models of shiny teapot, shiny carafe, shiny green cat, soft donkey, and hen

objects

69

Figure 7.4. Models of the circular carafe, column vase, bunny, clay pot, and armed vase

object

 Figure 7.4 holds the models of the circular carafe, column vase, bunny, clay pot, and

armed vase object. Similarly, in Figure 7.5, we provide the models of shoe, elephant,

brown shoe, dove, and yellow shoe objects. In Figure 7.6, we provide the models of the

hedgehog, bird, cornered vase, Venus, and the Alexander object.

70

Figure 7.5. Models of the shoe, elephant, brown shoe, dove, and yellow shoe objects

 We provide the models of flat objects shiny concave fish, shiny Atatürk, moon, shiny

fish, shiny stork, shiny rose, cow and shiny star in Figure 7.7. These are small sized and

highly detailed objects. As can be seen, all object models are reliably extracted by the

proposed range scanner system. These results are fairly good. We provide our face scan

results by our system in Figure 7.8. We also provide our texture mapped face scans in the

same figure. Finally, we provide our body and hand scans in Figure 7.9. As can be seen,

our face and body scan results are also fairly good.

71

Figure 7.6. Models of the hedgehog, bird, cornered vase, Venus, and Alexander objects

72

Figure 7.7. Models of the flat objects. First row: shiny concave fish, shiny Atatürk, moon,

shiny fish. Second row: shiny stork, shiny rose, cow, shiny star

Figure 7.8. Our face scans and their texture mapped versions

73

Figure 7.9. Our body and hand scans

74

8. CONCLUSIONS

 In this study, we designed and implemented a novel range scanner system both in

hardware and software. Our aim was to solve the problem of range scanning of shiny

objects under ambient light. We benefit from color pattern projection and color invariants

for this purpose. This is our main contribution since the color invariants are used for the

first time for this application. We developed five range scanning methods based on single

stripe, binary, ternary, and quaternary color coded patterns. Although the standard binary

coded structured light based range scanner could not extract the range data of shiny

objects, our color invariant based range scanners were able to extract the same range data

in a reliable manner. The increase of the number of colors used in the scanner system

directly affect the speed of the system. However, the resolution is decreased related to the

coding strategy. If the main aspect of the user is speed, than the user can use the ternary or

quaternary scanner. If the aim is higher precision, then the user can select the scanner with

less number of colors.

 Another important objective of this study is to implement this system on an

embedded processor. This way, the overall processing speed is increased and the system

became less dependent on a computer. Therefore, we implemented our range scanners on a

TI DM6437 EVM board. All the range data extraction software works on this board with

an optimized, fast, and reliable structure. Only the 3D model formation part of our range

scanner system works on the host computer. By a GEL script file, we also implemented a

basic interface for the user. The system gives the entire complete object model in an

acceptable time and quality.

 The hardware limits us on developing range scanners with less number of patterns.

Since the EVM board we use does not have a component RGB input, we have a sensor

cross talk problem on the image captured from the camera. Also, the resolution of the

camera limits us on the minimum width of the stripe pixels that we can project. Another

hardware limitation of the system is the projection device. Based on the delays of the

projection device, we had to slow down the system in the pattern image acquisition step.

With a triggered system, that works synchronized with the camera, we may have a faster

75

operation. Obtaining very high resolution range data was not the main target of our study.

Therefore, we did not design modules for reaching subpixel accuracies. On the other hand,

we have adequate quality and timing from the proposed range scanner system. As a general

conclusion, we can claim that our color invariant based range scanner system can be used

to scan shiny and matte objects under ambient light in an acceptable operation time and

quality.

76

APPENDIX A: OTHER INVARIANTS FOR THE SCANNER SYSTEM

 Here, we summarize other color invariants that we used in our experiments. These

are: Hue, normalized RGB, and some other invariants that were proposed by Gevers

and Smeulders for content based image retrieval. Some of these invariants give good

results for a specific type of scanner. However, for the completeness of the system, we

choose the invariant that works on all scanners in a reliable manner. In comparing these

color invariants, we picked the metallic plate object given in Figure A.1. We also provide

the segmentation results in color coded form in the following sections

Figure A.1. The metal plate object used as a benchmark

77

A.1. INVARIANTS TESTED FOR THE BINARY CODED STRUCTURED LIGHT

SCANNER

 First, we performed experiments on Hue and normalized RGB color components

(, ,). Hue is the the quality of a color as determined by its dominant wavelength.

Normalized RGB values are obtained by the ratio of the base color to the sum of the base

colors of the pixel. These invariants are calculated as

(A.1)

 (A.2)

 We provide the segmentation results for these scanners in Figure A.2. As can be

seen, Hue provides a result that can be thresholded without being effected from the

highlights. In and , the effect of the highlights will create a problem in thresholding.

Since covers the blue color, we do not expect a result for the red and green colored

pattern.

78

Figure A.2. Hue and normalized color results for the binary scanner. First row: from left to

right shiny metal plate with red and green pattern, Hue result. Second row: from left to

right normalized red and blue results

 Another set of invariants that we tested is the invariants proposed by

Gevers and Smeulders. They are defined as

 (A.3)

 We give the results of these invariants together with the invariants in Figure

A.3. Here, and has similar results that can be thresholded without being effected by

the highlights. The effect of shiny surface can be seen more on the invariant . We should

not expect a useful result from the , and for a red and green colored pattern.

79

Figure A.3. The c color invariant results for the binary pattern. First row: from left to right

c1 ,c2, c3 results. Second row: from left to right c4, c5, c6 results

 The last set of invariants we tested is proposed by Gevers and

Smeulders. These invariants are

 (A.4)

Figure A.4 shows the results of the color invariants. , , , and color

invariants take the ratio of the difference of blue from red and green to the difference of all

colors. Therefore, these color invariants does not give successful results for this pattern.

80

Figure A.4. The l color invariant results for binary pattern. First row: from left to right l1,

l2, l3 results. Second row: from left to right l4, l5, l6 results

 Other than these color invariants, we tested different color spaces (Lab, XYZ and

xyY) as invariants [51]. The results on these color spaces are given in Figure A.5. As can

be seen, Lab and XYZ are highly effected by the shiny surface and do not give a successful

result. The 'y' component of the xyY space is successful on color segmentation of red and

green colored pattern stripes.

81

Figure A.5. Lab, XYZ and xyY color space results. First row: Lab components. Second

row: XYZ components. Third row: xyY components

A.2. INVARIANTS TESTED FOR THE TERNARY CODED STRUCTURED

LIGHT SCANNER

 As we did in binary patterns, we tried different color invariants for the ternary coded

structured light scanner. The first invariant we tried is Hue. We projected a ternary pattern

with red, green, and blue colored stripes on to the metal plate object. Figure A.6 shows the

pattern projected image and the Hue result for the ternary pattern.

82

Figure A.6. Projected pattern and the Hue result

 Hue gives successful result on segmentation of these three colors. Another set we

tried is the normalized colors , , and . The results for normalized colors is given in

Figure A.7. Normalized colors are successful on color segmentation. However, it seems

that there will be problems in thresholding on shiny surfaces.

Figure A.7. Normalized color results for the ternary pattern. From left to right Rn, Gn, and

Bn

 As we did in the binary scanner, the second invariant set we tested is the `c' color

invariants. The , , and give successful result on segmentation especially without

being effected by the shiny surface. However, we cannot say the same thing for the , ,

and invariants.

83

Figure A.8. The `c' color invariant results for ternary pattern. First row: from left to right

c1, c2, and c3. Second row: from left to right c4, c5, c6 results

 The last color invariant set we tried for ternary patterns is the `l' color invariants. The

results for the , , , , , are given in Fig. 56. These color invariants take the ratio

of the difference of two colors with respect to the sum of the difference of the all colors.

Therefore, we should not expect to have a successful result for three colors by these

invariants.

84

Figure A.9. The l color invariant results for the ternary pattern. First row: from left to right

l1, l2, and l3. Second row: from left to right l4, l5, l6 results

 Finally, we give the results of other color spaces in Figure A.10. „L‟ carries the

intensity in the Lab space. Therefore its directly effected by the illumination. For the „a‟

and „b‟ components, we cannot separate the three colors. XYZ color space is effected by

the illumination and could not give a robust threshold result. The „y‟ component in the xyY

color space can be used for the segmentation of the three colors. Although there is a short

range between red and green color separation, these colors can be separated by

thresholding.

85

Figure A.10. Lab, XYZ and xyY color space results. First row: Lab components; second

row: XYZ components; third row: xyY components

 According to these experiments, we decided to use the and color invariants for

our system. Since these invariants also give successful results for quaternary patterns, we

did not try other invariants for quaternary patterns.

A.3. INVARIANTS TESTED FOR THE SENARY CODED STRUCTURED LIGHT

SCANNER

 To decrease the number of patterns to be projected to three, we should project six

colors. This means we should segment out six different colors. Neither „c‟ nor the other

color invariants that we tested can segment six colors reliably. Therefore, we proposed a

new color invariant based on opponent color theory for this purpose [52,53,54]. We also

designed a new pattern structure, that can work reliably with the proposed color invariant.

86

Next, we give a brief explanation of the opponent color theory and the designed scanner.

Then, we will provide the range data extracted by this method.

A.3.1. Opponent Color Theory

 The opponent color space is based on human visual system that interprets the color

from cones and rods. According to this theory, human visual system does not see a

yellowish blue or reddish green. Therefore, the visual system interprets the color in twos

sets of hues yellow-blue (YB) and red-green (RG). These opponent color channels can be

derived form trichromatic channels (RGB) as

 (A.5)

 Figure A.11 is a schematic diagram that shows how the cone responses are

encoded into luminance (I) and the two opponent color channels.

Figure A.11. Opponent-color encoding schematic

 In the opponent color space, Hue can be coded in a circular format ranging through

blue, green, yellow, red and black to white on two axis of RG and YB. Therefore,

opponent colors space is more suitable for modeling the perceived color than RGB.

87

A.3.2. The Designed Pattern for Senary Coding

 In order to segment out six colors, we designed the most suitable pattern to the result

of opponent color space. Our pattern colors are formed by three sinusoidal signal that are

shifted by radians for each channel of (RGB) colors as

 (A.6)

 We add these colors and divide them into six levels that give six different color

values for our patterns. As in the previous scanners, we place the colored stripes by Gray

coding to prevent ambiguities in cross sections of the patterns.

A.3.3. Color Segmentation for Senary Patterns

 As we mentioned above, we designed our patterns to segment the six colors by using

opponent color theory. If we place the three color channels of the designed pattern into the

Eqns 52 these equations become

 (A.7)

 Simplifying these, we obtain

 (A.8)

 These are the two axes of an ellipse. In segmentation, we divide the ellipse in to six

regions by the threshold levels obtained experimentally. For an ideal camera image, the

colors should be aligned according to the center of the image. However according to the

camera color properties, these colors are shifted from the center of the ellipse.

88

Furthermore, pixels that correspond to shadow or highlights give a response close to the

center of this shifted ellipsoid shape. Therefore, in segmentation we remove the pixels

having values close to the center of the ellipse. The remaining pixels are thresholded taking

the shifting into account. Figure A.12 shows the segmented colors on the matte Atatürk

object.

Figure A.12. Segmented six colors in the senary pattern

A.3.4. Extracted Range Data using Senary Coding

 By increasing the number of colors, we had to decrease the resolution of the patterns.

Therefore, by increasing the color pattern to have six colors, the resolution of the senary

scanner is decreased (compared to the previous scanners). In Figure A.13, we provide the

extracted range data for the senary scanner.

89

Figure A.13. Range data extracted by the senary scanner. First row: matte carafe and dove

objects. Second row: shiny and matte Atatürk, and the teapot objects. Third row: Venus,

Alexander, and the statue objects

 Unfortunately, the resolution of the senary range scanner limited us using other test

objects. Therefore, we did not include it as another scanning option in our range scanner

system. However, we believe that using a high resolution camera, the resolution of this

scanner may be increased and better range data can be obtained.

90

REFERENCES

1. Salvi, J., J. Pages and J. Batlle, “Pattern codification strategies in structured light

systems”, Pattern Recognition, Vol. 37, pp. 827 – 849, 2004.

2. Salvi, J., S. Fernandez, T. Pribanic and X. Llado, “A state of the art in structured light

patterns for surface profilometry”, Pattern Recognition, Vol. 43, pp. 2666–2680, 2010.

3. Zhang, S. and P. S. Huang, “High-resolution, real-time three-dimensional shape

measurement”, Optical Engineering, Vol. 45, pp. 1–8, 2006.

4. Karpinsky, N. and S. Zhang, “High-resolution, real-time 3D imaging with fringe

analysis”, Journal of Real-Time Image Processing, pp. 1–12, 2010.

5. Besl, P. J., “Active, optical range imaging sensors”, Machine Vision and Applications,

Vol. 1, pp. 127–152, 1988.

6. Klette, R., K. Schlüns and A. Koschan, Computer Vision: Three-Dimensional Data

from Images, Springer, 1998.

7. Sonka, M., V. Hlavac and R. Boyle, Image Processing, Analysis, and Machine Vision,

Thomson-Engineering, 3 edn., 2007.

8. Inokuchi, S., K. Sato and F. Matsuda, “Range imaging system for 3-D object

recognition”, Proceedings of International Conference on Pattern Recognition 1984,

pp. 806–808, 1984.

9. Caspi, D., N. Kiryati and J. Shamir, “Range Imaging With Adaptive Color Structured

Light”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, pp.

470–480, 1998.

10. Bernardini, F. and H. Rushmeier, “The 3D Model Acquisition Pipeline”, Computer

Graphics Forum, Vol. 21, pp. 149–172, 2002.

91

11. Boehnen, C. and P. J. Flynn, “Accuracy of 3D scanning technologies in a face

scanning scenario”, Proceedings of the Fifth International Conference on 3-D Digital

Imaging and Modeling, pp. 310–317, 2005.

12. Blais, F., M. Picard and G. Godin, “Accurate 3D acquisition of freely moving objects”,

Proceedings of the 2nd International Symposium on 3D Data Processing,

Visualization, and Transmission, 2004.

13. Godin, G., F. Blais, L. Cournoyer, J. A. Beraldin, J. Domey, J. Taylor, M. Rioux and S.

El-Hakim, “Laser Range Imaging in Archaeology: Issue and Results”, IEEE CVPR

Workshop on Applications of Computer Vision to Archaeology ACVA’03, p. 11, 2003.

14. Guidi, G., A. Beraldin and C. Atzeni, “High-accuracy 3-D modeling of cultural

heritage: The digitizing of Donatello’s Maddalena”, IEEE Transactions on Image

Processing, Vol. 13, pp. 370–380, 2004.

15. Park, J. and A. C. Kak, “3D modeling of optically challenging objects”, IEEE

Transactions on Visualization and Computer Graphics, Vol. 14, pp. 246–262, 2008.

16. Umasuthan, M. and A. M. Wallace, “Outlier removal and discontinuity preserving

smoothing of range data”, IEEE Proceedings of Vision Image and Signal Processing,

Vol. 143, pp. 191–200, 1996.

17. Elgazzar, S., R. Liscano, F. Blais and A. Miles, “Active range sensing for indoor

environment modeling”, IEEE Transactions on Instrumentation and Measurement,

Vol. 47, pp. 260–264, 1998.

18. Levoy, M., P. Brunet and R. Scopigno, “The Digital Michelangelo Project”,

EUROGRAPHICS, 1999.

92

19. Fisher, R. B., D. K. Naidu and D. Singhal, “Rejection of spurious reflections in

structured illumination range finders”, Proceedings on 2nd Conference on Optical 3-D

Measurement Techniques, pp. 467–474, 1993.

20. Forest, J., J. Salvi, E. Cabruja and C. Pous, “Laser stripe peak detector for 3D

scanners, A FIR filter approach”, Proceedings of the 17th International Conference on

Pattern Recognition ICPR, 2004.

21. Koninckx, T. P. and L. Van Gool, “Real-Time Range Acquisition by Adaptive

Structured Light”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 28, pp. 432–445, 2006.

22. Skocaj, D. and A. Leonardis, “Range Image Acquisition of Objects with Non-uniform

Albedo Using Structured Light Range Sensor”, Proceedings of International

Conference on Pattern Recognition 2000, pp. 778–781, 2000.

23. Trobina, M., Error Model of a Coded-Light Range Sensor, Technical report biwi-tr-

164, ETH Zurich, Switzerland, 1995.

24. Zhang, S. and S. T. Yau, “High dynamic range scanning technique”, Optical

Engineering, Vol. 48, pp. 1–7, 2009.

25. Xu, Y. and D. Aliaga, “An Adaptive Correspondence Algorithm for Modeling Scenes

with Strong Interreflections”, IEEE Transactions on Visualization and Computer

Graphics, Vol. 15, pp. 465–480, 2009.

26. Chen, C. S., Y. P. Hung, C. C. Chiang and J. L. Wu, “Range data acquisition using

color structured lighting and stereo vision”, Image and Vision Computing, Vol. 15, pp.

445–456, 1997.

27. Rocchini, C., P. Cignoni, C. Montani, P. Pingi and R. Scopigno, “A low cost 3D

scanner based on structured light”, Proceedings of Eurographics, pp. 299–308, 2001.

93

28. Gevers, T. and A. W. M. Smeulders, “Color based Object Recognition”, Pattern

Recognition, Vol. 32, pp. 453–464, 1999.

29. Gevers, T. and A. W. M. Smeulders, “Content-Based Image Retrieval by Viewpoint-

Invariant Color Indexing”, Image and Vision Computing, Vol. 17, pp. 475–488, 1999.

30. Gevers, T. and A. W. M. Smeulders, “PictoSeek: Combining Color and Shape

Invariant Features for Image Retrieval”, IEEE Transactions on Image Processing,

Vol. 9, pp. 102–119, 2000.

31. Forsyth, D. and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2003.

32. Heikkila, J. and O. Silven, “Calibration procedure for short focal length off-the-shelf

CCD cameras”, Proceedings of the 13th International Conference on Pattern

Recognition 1996, Vol. 1, pp. 166–170 vol.1, Aug 1996.

33. Tsai, R., “A versatile camera calibration technique for high-accuracy 3D machine

vision metrology using off-the-shelf TV cameras and lenses”, IEEE Journal of Robotics

and Automation, Vol. 3, No. 4, pp. 323–344, Aug 1987.

34. Zhang, Z., “Flexible camera calibration by viewing a plane from unknown

orientations”, Proceedings of International Conference on Computer Vision ICCV

1999, pp. 666–673,1999.

35. Zhang, Z., “A flexible new technique for camera calibration”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330–1334, Nov 2000.

36. Bouguet, J. Y., Complete Camera Calibration Toolbox for Matlab.

37. Unsalan, C. and K. Boyer, “Linearized vegetation indices based on a formal statistical

framework”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 7,

pp. 1575 – 1585, july 2004.

94

38. Jollife, I. T., Principal Component Analysis, Springer, 2 edn., 2002.

39. Benveniste, R. and C. Ünsalan, “Single stripe projection based range scanning of shiny

objects under ambient light”, 24th International Symposium on Computer and

Information Sciences, 2009. ISCIS 2009., pp. 1–6, sept. 2009.

40. Benveniste, R. and C. Ünsalan, “A color invariant for line stripe based range

scanners”, The Computer Journal, Vol. 54, No. 5, pp. 738–753, 2011.

41. Benveniste, R. and C. Ünsalan, “A binary coded structured light system to scan shiny

surfaces”, IEEE 18th Signal Processing and Communications Applications Conference

(SIU), 2010, pp. 292 –295, april 2010.

42. Benveniste, R. and C. Ünsalan, “A Color Invariant Based Binary Coded Structured

LightRange Scanner for Shiny Objects”, 20th International Conference on Pattern

Recognition (ICPR), 2010, pp. 798 –801, aug. 2010.

43. Benveniste, R. and C. Ünsalan, “Binary and ternary coded structured light 3D scanner

for shiny objects”, 25th International Symposium on Computer and Information

Sciences, 2010. ISCIS 2010., 2010.

44. Benveniste, R. and C. Ünsalan, “Single stripe projection based range scanner

implementation on TI DaVinci DM6437 EVM”, 4th European DSP Education and

Research Conference (EDERC 2010), Nice, France, December 2010 2010.

45. TI, TV P5146 NTSC/PAL/SECAM 4x10 Bit Digital Video Decoder Datasheet.

46. Kehtarnavaz, N., Real-Time Digital Signal Processing: Based on the TMS320C6000,

Newnes Publishing, 2004.

47. Qureshi, S., Embedded Image Processing on the TMS320C6000 DSP: Examples in

Code Composer Studio and MATLAB, Springer, 2005.

95

48. Rodrigues, M., R. Fisher and Y. Liu, “On the Representation of Rigid Body

Transformations for Accurate Registration of Free-Form Shapes”, Computer Vision

and Image Understanding, Vol. 87, pp. 1–7, 2002.

49. Rusinkiewicz, S. and M. Levoy, “Efficient Variants of the ICP Algorithm”,

Proceedings of Third International Conference on 3-D Digital Imaging and Modeling,

pp. 145–152, 2001.

50. Sertel, C., O.and Ünsalan, “Range image registration with edge detection in spherical

coordinates”, Lecture Notes in Computer Science, no: 4105, pp. 745–752, 2006.

51. Poynton, C., Digital Video and HDTV Algorithms and Interfaces, Morgan Kaufmann

Publishing, 2003.

52. Plataniotis, K. N. and A. N. Venetsanopoulos, Color Image Processing and

Applications, Springer, 2000.

53. Thyagarajan, K. S., Digital Image Processing with Application to Digital Cinema,

Focal, 2006.

54. Ebner, M., Color Constancy, John Wiley, 2007

