32440

COMPUTER PROCESSING OF TURKISH:
MORPHOLOGICAL AND LEXICAL INVESTIGATION

by
TUNGA GUNGOR
B.S. in Computer Engineering, Bogazici University, 1987
M.S. in Computer Engineering, Bogazi¢i University, 1989

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Doctor
of

Philosophy

Bogazigi University
1995

COMPUTER PROCESSING OF TURKISH:
MORPHOLOGICAL AND LEXICAL INVESTIGATION

APPROVED BY

Prof. Dr. Selahattin Kuru

{Thesis Supervisor)

Dog. Dr. H. Levent Akin

Dog. Dr. Taflan Giindem

Prof. Dr. Sumru Ozsoy

Prof. Dr. Nadir Yicel

DATE OF APPROVAL

ii

ACKNOWLEDGEMENTS

I would like to thank to Prof.Dr. Selahattin Kuru for his great help and guidance as the
supervisor of this thesis. I also thank to Do¢.Dr. H. Levent Akin, Do¢.Dr. Taflan Gindem, Prof.Dr.
Sumru Ozsoy, and Prof.Dr. Nadir Yiicel for both their helpful comments and serving on my thesis
committee. In particular, I would like to express my gratitude to Prof.Dr. Sumru Ozsoy for her

invaluable guidance in reviewing many points and improving the linguistic content of the thesis.

I would like to thank to Bogazigi University, TUBITAK, and Digital Equipment Corporation
(DEC) for their support during the preparation of this thesis. Finally, I wish to thank to Kaan
Arslanoglu, Osman Ataker, Giilay Goktiirk, and Yavuz Sanes who have contributed in forming the

corpus used in this research; and to Mine Dilgimen Odok for her help.

1ii

ABSTRACT

The morphological analysis of Turkish is the subject of this thesis. Turkish belongs to the
group of agglutinative languages. Because of its agglutinative nature, Turkish morphology is quite
complex and includes many exceptional cases. Most recent research on Turkish morphology have
limited themselves with a partial treatment of the language. The study has concentrated especially on
the explanation and representation of the basic rules. The main objective of this thesis is to bring the
full morphological structure of Turkish to light and to build its computer representation. Before this

analysis is handled, the syntactic or semantic parsing of the language is quite impossible.

In this study, we divide the analysis of the morphology into two interrelated parts:
morphophonemic analysis and morphotactic analysis. We investigate and define the morphological
structure for both of these. Then we combine these in the Augmented Transition Network (ATN)
formalism. This forms the formal representation of the Turkish morphological structure. This proposed
morphological structure forms a basis for the language applications about Turkish. Among‘ these
applications, we design and implement a morphological parser and a spelling checker which

incorporates a spelling corrector component.

We perform statistical analysis of Turkish based on this morphological representation and the
implemented programs. This analysis is formed of two parts: lexical and morphological analysis, and
corpus analysis. The first one uses the information about the structural parts of the language. The
second one deals with the daily usage of the language. For this purpose, we form a corpus and run the

spelling checker program on this corpus.

Key words : Computational linguistics, Natural language processing, Morphological analysis,

Turkish, Augmented transition networks, Spelling checking, Corpus

iv

OZET

Bu tezin konusu Tiirkee’nin bigimbiliminin incelenmesidir. Tirkee bitigimli diller grubuna
dahildir. Bu Ozelliginden dolay1 Tirkee’nin bigimbilimi oldukca karmagiktir ve pek ¢ok istisnai
durumlar igerir. Son zamanlarda yapilan ¢caligmalarda dilin sadece bir kismi incelenmigtir. Bu caligmalar
ozellikle temel bazi kurallarin agiklanmasi ve gosterilmesi izerine kurulmustur. Bu tezin baglica amaci,
Tiirkge’nin tim bicimbilimsel yapisini agifa ¢lkarmak ve bu yapimn bilgisayardaki gosterimini
olugturmaktir. Bu iglem tamamlanmadan, dilin sdzdizimsel ve anlambilimsel olarak incelenmesi hemen

hemen olanaksizdir.

Bu galigmada bigimbilim analizini iki kisma ayiriyoruz: Eklerin yapisinin ve siralanmasiin
incelenmesi. Dilin bigimbilimini bu iki kismi1 gdz Oniline alarak tanimlayacagiz. Daha sonra bu
tamimlamalari Genigletilmis Gegig A formasyonunda birlestirecegiz. Boylece, Tiirkce’nin bigimbilimsel
yapisinin bilgisayardaki gOsterimini elde edecegiz. Bu Onerilen yapi, Tiirkge konusundaki dil
uygulamalari i¢in bir temel olusturacaktir. Bu uygulamalar arasindan, bir bicimbilimsel tarama programi

ile yazim diizeltme eleman: da iceren bir yazim kontrol programi hazirlayacagiz.

Bu bigimbilimsel gOsterimi ve hazirlanan programlan kullanarak Tirkge hakkinda istatistik
bilgi iretecegiz. Bu tretim iki kisimdan oluguyor: s6zliik ve bigimbilimi analizi ile metin analizi.
Bunlardan ilki dilin yapisal kistmlari hakkindaki bilgilerden yararlanir. Ikincisi ise dilin giinlik
kullanimiyla ilgilidir. Bu amagla, bir metin olugturacagiz ve yazim kontrol programini bu metin

izerinde calistiracagiz.

Anahtar s6zciikler : Bilgisayarli dilbilimi, Dogal dil igleme, Bicimbilimsel analiz, Tiirkge, Genisletilmig

gecis aflan, Yazim kontrolu, Metin

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

OZET

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES
I INTRODUCTION
1.1. Motivation

1.2. Subject of Thesis

1.3. Work Accomplished

1.4. Qutline of the Thesis

1L LITERATURE SURVEY

1IL INVESTIGATION OF FORMALISMS

3.1. Finite State Transition Networks
3.2. Finite State Transducers

3.3 Recursive Transition Networks
34. Augmented Transition Networks

Iv. TURKISH MORPHOLOGY

4.1. Morphophonemics

4.1.1. Vowel Harmony

4.1.2. Consonant Harmony

4.1.3. Root Deformations

4.2. Morphotactics

4.2.1. Nouns

4,2.2. Verbs

42.3. Verbal Nouns

4.2.4. Participles

V. MORPHOLOGICAL REPRESENTATION OF TURKISH

5.1 Root Categories

5.2, Morphophonemics

vi

O 00 3 W W =

14
14
16
18
20
22
24
24

31
34
34
38

49
49
50

5.3. Morphotactics .- 62

5.4. Turkish Morphology in ATN 63
5.5 Examples 69
5.6. Reasons for Choosing ATN Formalism for the Representation of
Turkish Morphology 71
VL LEXICAL AND MORPHOLOGICAL STATISTICS 76
6.1. Lexicon Statistics 78
6.2. Usage of Lexicon Statistics ... 85
6.3. Rule Statistics 86
6.3.1. Rules for the Root Words 86
6.3.2. Rules for the Derived Words 89
6.4. Suffix Statistics 89
VIL CORPUS STATISTICS 95
VIII. DESIGN AND IMPLEMENTATION OF TOOLS 108
8.1. ROOU LEKICOI vttt tssissssse st s e sessse s easassssessssse s sassensasasnssesnsssssssss 108
8.2. Data Structure and Storage of the Root Lexicon 110
8.3. Proper Noun Lexicon 111
8.4. Suffix Lexicon 112
8.5. Flags 113
8.6. ThE PATSET ccvvvrercirreintnnsreniiinimaessisniesasensssnsscsences 116
8.6.1. Consulting Hash Table . oo ... 116
8.6.2. Syllabification Check 116
8.6.3. Root Search 117
8.6.4. Suffix Search 117
8.7. Spelling Corrector 119
8.8. Performance Results . 120
IX. CONCLUSION 121
9.1. Work Accomplished 121
9.2. Recommendations for Future Research . 123
APPENDIX A. MORPHOTACTICS OF TURKISH LANGUAGE IN THE FORM OF
STATE TRANSITION TABLE 124
APPENDIX B. MORPHOPHONEMIC RULES ..., 133

APPENDIX C. REST OF STATISTICS . ettt ss s s e et sasssaebesias 146

vii

APPENDIX D. LIST OF SUFFIXES THAT ARE NOT USED IN THE SPELLING
CHECKER 177
BIBLIOGRAPHY 181

viii

FIGURE 3.1.
FIGURE 3.2.
FIGURE 3.3.
FIGURE 3.4.
FIGURE 4.1.
FIGURE 4.2.
FIGURE 4.3.
FIGURE 4.4.
FIGURE 5.1.
FIGURE 5.2.
FIGURE B.1.
FIGURE B.2.
FIGURE B.3.
FIGURE B4.
FIGURE B.S5.
FIGURE B.6.
FIGURE B.7.
FIGURE B.8.
FIGURE B.S.

FIGURE B.10.
FIGURE B.11.
FIGURE B.12.
FIGURE B.13.

LIST OF FIGURES

An example FSTN

An example FST

An example RTN

...........

An example ATN

..........

Inflectional suffixes for nouns

Inflectional suffixes for verbs

Inflectional suffixes for verbal nouns

Some derivational suffixes affixed to verbs

ATN representation of the ND network

FSTN representation of the ND network

......

Vowel harmony rule

.......

.....

Consonant harmony rules

Vowel insertion rules

Double consonant rule

.........

Phoneme deletion rules

Possessive suffix rules

Rules for compound words

.....

.......

Aorist suffix rule

Rule for the morpheme su

Rule for proper nouns

Rule for acronyms

Rule for numbers

Rule for particles

TABLE 5.1.
TABLE 5.2.
TABLE 35.3.
TABLE 5.4.
TABLE 5.5.
TABLE 5.6.
TABLE 5.7.
TABLE 5.8.
TABLE 5.9.

TABLE 5.10.
TABLE 5.11.
TABLE 5.12.
TABLE 5.13.
TABLE 5.14.
TABLE 5.15.
TABLE 5.16.

TABLE 6.1.
TABLE 6.2.
TABLE 6.3.
TABLE 6.4.
TABLE 6.5.
TABLE 6.6.
TABLE 6.7.
TABLE 6.8.
TABLE 6.9.

TABLE 6.10.
TABLE 6.11.
TABLE 6.12.
TABLE 6.13.
TABLE 6.14.

LIST OF TABLES

Word categories

Vowel harmony rule

Inverse vowel harmony rule

Consonant NArmoONY TUIE L wverenerrsrinssinisssssssssnssssessrsssssssssissssssssssssassssassssecs

Consonant harmony rule 3

Rule for compound words 1

Rule for compound words 2

Rule for compound words 3

Rule for compound words 4

Rule for acronyms 1

Derivational suffixes

Subcategories of verbs

Parsing of the word kutuplardaléi (at the POIES) et riccoenene

Parsing of the word grizellesri (he/she became beautiful)

Parsing of the word ayrimiyordu (he/she was not departing)c..coceeeeeececsenee

Rules corresponding the to ND network in Figure 5.2.

Distribution of words to categories

Distribution of words to number of categories

Distribution of words to initial letters

Distribution of words to final letters

Distribution of words to lengths

Distribution of occurrences to letters

Primary vowel harmony rule

Secondary vowel harmony rule

Last PhONEME TULEouueerieriireetcsrceesiniescsesesesssssssesssssassasssaossass

General rules for the derived words

Exceptional rules for the derived words

Distribution of suffixes to source categories

Distribution of suffixes to destination categories

Distribution of suffixes to source and destination categoriescccceeevvevureeeen.

70
70
71
73
79
80
81
82
83

87

8 &

91
91
92

TABLE 6.15.
TABLE 6.16.
TABLE 6.17.
TABLE 7.1.
TABLE 7.2
TABLE 7.3.
TABLE 74.
TABLE 7.5.
TABLE 7.6.
TABLE 8.1.
TABLE 8.2.
TABLE A.1L
TABLE B.1.
TABLE C.1.
TABLE C.2.
TABLE C3.
TABLE CA4.
TABLE C.5.
TABLE C.6.
TABLE C.7.
TABLE C.&8.
TABLE C.9.

TABLE C.10.
TABLE C.11.
TABLE C.12.
TABLE C.13.
TABLE C.14.
TABLE C.15.
TABLE C.16.
TABLE C.17.
TABLE C.18.
TABLE C.19.
TABLE C.20.
TABLE C.21.

Distribution of suffixes to suffix length

Distribution of suffixes to initial letters

Distribution of suffixes to final letters

General figures about the corpus

Most frequently used words

Most frequently used roots

......

Distribution of words to initial categories

Distribution of words to final categories

.......

Distribution of suffixes

Performance results for the spelling checker

Performance results for the spelling corrector

Morphotactics in state transition table form

List of functions

Words that have more than three categories

Distribution of words to initial two letters

Longest words in the lexicon

Root words that do not obey the primary vowel harmony rule
Root words that do not obey the secondary vowel harmony rule

Root words that do not obey the last phoneme rule

Words that do not obey the vowel harmony rule

Words that do not obey the consonant harmony rule 1 ...

Words that obey the consonant harmony rule 2

...........................

.......................

Words that obey the vowel insertion rule 1

Words that obey the vowel insertion rule 2

Words that obey the double consonant rule

Words that obey the phoneme deletion rule for verbs

Words that obey the possessive suffix rule 1

Words that obey the possessive suffix rule 2
Words that obey the rule for compound words 1
Words that obey the rule for compound words 2
Words that obey the rule for compound words 3

Words that obey the rule for compound words 4

Words that do not obey the aorist suffix rule

Words that obey the rule for the morpheme su ...

Xi

...............

93

93

94

97
101
102
103
104
105
120
120
125
134
147
148
161
162
163
163
164
165
166
167
167
168
168
169
169
170
17
172
173
173
174

TABLE C.22. List of longest words in the corpus 175
TABLE C.23. List of longest roots in the corpus 176
TABLE D.1. Suffixes not included in the suffix lexicon 178

xii

I. INTRODUCTION

Computational linguistics is a field of study that has developed from an intersection between
the general discipline of linguistics and the subset of computer science called artificial intelligence. It
aims to combine these two disciplines in order to solve the linguistic problems by the use of the
computers. From the point of view of a computer scientist studying in the field of artificial intelligence,
the motivation is clear: bringing computers closer to human activities. Linguistic issues are solved very
easily and even without a notice by human beings. Thus this forms an important step that should be

worked on in order to close the gap between us and the computers.

One important and more and more developing subfield of computational linguistics is referred
to as natural language processing. When humans communicate with each other using language, they
employ, almost effortlessly, extremely complex and still little understood processes. It has been very
difficult to develop computer systems capable of generating and understanding even fragments of a
natural language, such as English. The main source of the difficulty is the absence of the suitable
structures (like the structures in the human brain) that are responsible of processing the natural

language in a computer. Thus generating and understanding language forms an area of high complexity.

Natural language processing is a broad concept by itself. The problem that it deals with is
defined more or less clearly: understanding natural language and performing various tasks based on
this understanding. But the question immediately follows: How? How can a computer understand a
natural language? The answer to this question is not a simple one and it conceals many theoretical

and technical issues that must be tangled with.

~ In order to be able to cope with this problem, it ought to be brought into a more manageable
level. For this reason, natural language processing has been divided into several parts. We can group

these parts in the following way [1,2]:

Acoustic-phonetic: This is the process at the core level. Its function is to convert spoken
language into written language. It takes the sounds (presumably represented as a plot of how

much energy is coming at various sound frequencies) and translates the input into words.

Morphological: The input to this process is the words represented in written language. It takes
these words, processes them with the use of several language elements (lexicon, morphological
rules, etc.), and converts them into some kind of representation which will be utilized in the
next step. This representation makes explicit the parts of each word (the root word, the

category and the features of the word, the affixes, etc.).

Syntactic: The individual words decoded by the previous step are combined into larger
language elements and processed in order to check if they conform with the grammatical rules
of the language. The syntax of the language represented in a predefined formalism helps us
to achieve this goal. The output of this step is the internal representation of these language

elements [3,4].

Semantic-pragmatic: This final process is responsible of taking the syntactic representation and
"understanding"” it. This part.is the most mysterious of all; it somehow uses the information

in an appropriate way [5,6].

The whole process follows the sequence described above in the sense that one part requires
that the previous one has been handled successfully and it must be handled before the next one.
However, there is also a close relationship between them. For example, some of the morphological

issues may only be solved by some amount of syntactic and even semantic knowledge.

The second one of the steps defined above, namely morphological analysis, forms the subject
of the research in this thesis. We can define morphology as the study of the word structure [7]. It is
clear that the words of a language are not totally separate items without any similarities between them
or regularities within their structures. It has been traditional within linguistics to describe the
regularities in the structure of wo_rds by postulating that a single word can be viewed as made up of

one or more smaller units, called morphemes.

Morphological analysis aims to define the regularities in the word structure. It is of practical
relevance to constructing a dictionary. If there is no need to store every form of a word because the
various forms can be computed by some rules, the dictionary will be smaller. For a language like

Turkish, this will be a large benefit.

1.1. Motivation

Turkish belongs to the group of agglutinative languages. A language in which the process of
adding affixes (prefixes, infixes, and suffixes) to the root form is extremely productive is called an
agglutinative language. Finnish, Hungarian, Quechua, and Swahili are other examples of agglutinative
languages. In such a language, given a word in its root form, we can derive a new word by adding an
affix to this root form, then derive another word by adding another affix to this new word, and so on.
This iteration process may continue several levels. It is not unusual to find words obtained by affixing
ten or fifteen suffixes to a word in its root form. A single word in an agglutinative language may
correspond to a phrase made up of several words in a non-agglutinative language. The large number
of suffixes and the combination of these suffixes in different orders lead to a large number of words.
It is pointed out in [8,9] that it is possible to obtain over 10,000,000 words from a single noun in its

root form in Turkish.

This distinctive characteristic of agglutinative languages can be exemplified by the following

popular Turkish word:
Cekoslovakyalilagramadiklarinizdannugsiniz

whose equivalent in English is "(it is speculated that) you have been one of those whom we could not
convert to a Czechoslovakian.” In this example, one word in Turkish corresponds to a full sentence
in English. The root word is Cekoslovakya {Czechoslovakia) and there are ten suffixes affixed to this

root word.

Because of its agglutinative nature, Turkish morphology is quite complex and includes many
exception_al cases. Most recent research on Turkish morphology have limited themselves with a partial
treatment of the language. The study has concentrated especially on the explanation and representation
of the basic rules. The exceptional cases have been omitted totally or, at best, different structures have
been included in the analysis to handle some of them. For instance, [9] handles one of the frequently
used rules of Turkish, the consonant harmony rule, by storing two different forms of the word in the

lexicon.

The motivation of the research in this thesis is to bring the full morphological structure of

Turkish to light and to build its computer representation. We can define morphology as the study of

the word structure. This type of study has a direct and an indirect consequence. The direct consequence
allows us to understand the structure of the language at word level. In Turkish, word formation is a
highly complex process. There are several rules that must be taken into account and, in addition,
almost every rule comes with an exception. A complete study of this process is necessary in order to

formalise the use of the language.

The indirect consequence is related with the further studies on the language. For all
agglutinative languages in general and for Turkish in particular, morphological analysis forms the basic
step of all language applications based on written language. As mentioned above, Turkish morphology
is quite complex and the process of word formation is extremely productive. This productive nature
forces us to have a thorough morphological analysis for the language. Before this morphological

analysis is handled, the syntactic or semantic parsing of the language is quite impossible.

As an example, consider a natural language front end (NLFE) system which intends to cover
most of the language. The input to the system will be Turkish text. As a generally accepted
assumption, the system will own a lexicon (or dictiopary) which stores information about the words
and a parser (a sentence processing component). When a sentence is read, it must be parsed (analyzed)
to see if it conforms with the syntax of the language and then it must be converted into some kind of
internal representation provided that it is grammatically well-formed. The parsing and conversion
processes are necessary since the following modules (whatever they are - a question-answering module,

a language translation module, etc.) will operate on this well-formed representation.

While parsing the sentence, the parser must comprehend each word and consults the lexicon
for this purpose. Thus the lexicon must be capable of giving information for each word. The necessity
of a morphological component reveals itself at this step. Without such a component, the lexicon would
be the unique source of information and the parser would expect to find in the lexicon every word that
it encounters. However the number of Turkish words is almost infinitive and beyond the scope of any
resource. The only solution is to support the lexicon with a morphological component in such a way

to derive the missing words in the lexicon by the help of this component.

1.2. Subject of Thesis

The research in this thesis is about the morphology of the Turkish language. The main
objective is to formalise the full Turkish morphology. We aim to achieve this objective in two parts.
First we shall examine the Turkish morphology from a linguistic point of view. The linguistic literature
owns a rich set of methods that we shall make use of from time to time. The result of our
investigation will yield a definition of the Turkish morphology. Our main concern during this process

will be to form a complete and uniform definition.

The second part will be about the representation of this definition of the Turkish morphology
in the computer. We shall investigate several structures that are suitable for the representation of the
Turkish language. These structures will be compared taking into account the agglutinative nature of
Turkish and the special difficulties owned by the Turkish morphology. We shall then describe the
representation formalism that we have chosen and explain in detail the reasons behind this choice. The
morphological structure that will be proposed will then serve as the basis for computer applications

about the language.

Both of the steps sketched above have their own difficulties which we shall attempt to solve.
First of all, it is very difficult to find references on Turkish morphology in which the word formation
rules are well-defined. We have referred to many grammar books to collect the rules [10,11,12,13]. In
those books, after each rule is defined, usually it is reminded that there may occur some exceptions
to that rule in some conditions, but mostly those conditions can not be well defined. For example, in
all Turkish grammar books, it is said that "when a Turkish word ending with one of the consonants
Dotk receives a suffix beginning with a consonant, that final consonant turns into a voiced consonant,
but there are some such words whose final consonants do not change.” However, none of the books
says what the common property of those words which do not obey to that rule is, because most

probably it is not known yet.

Some of the irregularities encountered in the Turkish language are even not mentioned in any
of the grammar books. For example, although in some (but not all) of the grammar books we can see
the rule "The verbal roots de (to say) and ye (to eat) change as di and yi, respectively, when they
receive a suffix beginning with the consonant y," it is mentioned nowhere that the root de (to say) does
not always obey this rule. For instance, it does not change when it receives the suffix -yip, i.e. the

resulting word is not diyip as implied by the rule, but deyip (by saying).

The collection of the Turkish suffixes, especially the derivational ones, is much more difficult
than the rules. Grammar books do not include the suffixes, or at best only some frequently used
suffixes are shown during the description of the rules. We could find two references, [14,15], which give
a detailed documentation of the suffixes. Another point that has been left unclear is the order of the
suffixes during the affixation process, i.e. in which order the suffixes are affixed to a word and the

interrelations between these suffixes.

The main cause of these difficulties is that the formalization process of Turkish morphology
is relatively new. Until recently, an informal explanation of the grammar was enough for people to
grasp the main ideas. In order to develop applications based on Turkish language, it is necessary first
to define the morphology in a clear way. Even though it is claimed that Turkish word formation rules
are well-defined and Turkish is a very regular language, as used today it shows many irregularities that

cause the problem of parsing this language to become a hard and interesting problem.

Another part of the thesis is to design and implement a spelling checker program based on
the defined morphological structure. A spelling checker is a program that parses a word and decides
whether it is grammatically correct or not. The analysis is at the word level, i.e. each word is checked
one by one and without taking into account the syntactic and semantic relations between consecutive
words. A spelling checker program may have some additional features. For example, the same word
written twice consecutively can be displayed to the user as a possible spelling error. The program that
is presented in the thesis also includes a spelling corrector component. For a misspelled word, some

alternatives are given according to a spelling corrector algorithm.

The statistics about the structure and the usage of a language is an important source of
information. We shall analyze Turkish from a statistical point of view. This process is formed of two
parts. The first one is an analysis of lexical and morphological elements. For this purpose, the
morphological structure is used to obtain statistical data about the lexicon, the rules, and the suffixes.
The second one is corpus analysis. This gives us results about how the language is used in daily life.

For this, we shall use the spelling checker program and run it on a corpus formed of different topics.

1.3. Work Accomplished

Below we list the work accomplished in this research. Each of these items will be explained

in the following chapters:

B An Augmented Transition Network (ATN) formalism is introduced for Turkish
morphology, containing all of the categories and the suffixes. This includes 14 categories
and about 200 suffixes.

B A root lexicon of about 21,500 words and a proper noun lexicon of about 11,500 words
are formed in parallel to the ATN formalism.

B A parser and a spelling checker (including a spelling corrector) are implemented for
Turkish to test the completeness (coverage) and the efficiency of the formalism.

B A test environment comprising of these elements is produced to study and test
morphological properties of Turkish.

® The lexicon is analyzed to obtain statistics on the structural and usage patterns of the
Turkish morphology.

H A corpus of about 2,200,000 words, which is currently the largest corpus on Turkish, is
formed.

® This corpus is analyzed to obtain statistical properties of Turkish.

During this research, the following papers were produced:

R Representation of Turkish Morphology in ATN, Proceedings of the Second Turkish
Symposium on Artificial Intelligence and Artificial Neural Networks, Istanbul, 1993 [16]

B A Spelling Checker and Corrector for Turkish, Proceedings of the Second Turkish
Symposium on Artificial Intelligence and Artificial Neural Networks, Istanbul, 1993 [17]

m Full Turkish Morphology Represented as an Augmented Transition Network, submitted to
Literary and Linguistic Computing [18]

B Lexical and Morphological Statistics About Turkish Language, in preparation

The research projects completed are:

B Development of a Spelling Checker for Turkish, Bogazigi University Research Fund, Grant
no. 92A0118

W Development of a Spelling Checker for Turkish, Scientific and Technical Research Council
of Turkey (TUBITAK), Grant no. EEEAG-11

B Development of a Spelling Checker for Turkish and Integration into ALL-IN-1, Digital
Equipment Corporation EERP program, Grant no. TK-001

1.4. Outline of the Thesis

The outline of the thesis is as follows: Chapter 2 gives a survey of the literature on the
morphological analysis of agglutinative languages and especially of Turkish. Chapter 3 defines and
discusses the formalisms that can be used for the representation of the morphology. Chapter 4 is
devoted to the investigation of Turkish morphology from a linguistic point of view. In this chapter,
we divide the analysis into two parts, namely morphophonemics and morphotactics. For each of these,
the rules and the exceptional situations are derived. Chapter 5 is about the representation of the
information of the previous chapter in ATN formalism. The full representation schema is given and
the use of this mechanism is exemplified by some derivations. The following three chapters are based
on the morphological structure presented in this chapter. In chapter 6, we analyze the lexical and
morphological aspects of Turkish in order to obtain statistical data. The next chapter is about the
corpus statistics. A large corpus is used to obtain the results of this chapter. Chapter 8 explains the
design and implementation of the tools used in this study. The spelling checker and the spelling

corrector programs are explained. The last chapter is a conclusion.

II. LITERATURE SURVEY

For a long time, the research on morphological analysis has concentrated on languages, mainly
English, whose morphological structures were relatively simple. In these languages, there are a small
number of affixes and these affixes do not undergo much change during the affixation process. As a
result, words contain only a small number of affixes or none at all. This characteristic makes word
derivation a trivial task for most cases. This simplicity of morphological structure has caused the
researchers to develop and design simple algorithms and morphological components for these

languages.

As the study on agglutinative morphology has begun, it became clear that a straightforward
analysis was not enough to solve the newly-introduced problems of these languages. As opposed to
non-agglutinative languages, there are a large number of suffixes and they change frequently according
to the morphological rules. This indicates that words contain no direct indication of where the
morpheme boundaries are, and furthermore morphemes take a shape dependent on the morphological

environment.

This fact has forced the researchers to generate new techniques and to adopt the old
techniques that had been widely used in other fields of natural language processing for the
morphological analysis of agglutinative languages. Thus, a substantial increase in the research for

agglutinative morphology has been observed.

The literature consists of several studies on the morphology of agglutinative languages in
general and of Turkish in particular. One of the discussions facing agglutinative morphology is the
direction of the analysié: whether it should be left-to-right (root matching) or right-to-left (suffix
stripping). The former works by first determining a root word and then adding suffixes to this root,
while the latter works by stripping off the suffixes at the end and arriving at a root word. Both

approaches have been used from very early on in the history of morphological parsing.

Packard’s [19] parser for ancient Greek proceeds by stripping affixes off the word, and then
attempting to look up the remainder in a lexicon. Only if there is an entry in the lexicon matching the

remainder and compatible with the stripped-off affixes is the parse deemed a success.

Brodda and Karlsson [20] apply a similar method to the analysis of Finnish, an agglutinative
language, but without any lexicon of roots. Suffixes are stripped off from the end of the word until no

more can be removed, and what is left is assumed to be a root.

Sagvall [21], on the other hand, devised a morphological analyzer for Russian which first looks
in a lexicon for a root matching an initial substring of the word. It then uses grammatical information

stored in the lexical entry to determine what possible suffixes may follow.

In the early 1980’s, three different approaches to morphological analysis of agglutinative
languages were developed independently: for Quechua [22,23], for Finnish [24], and for Turkish [25].
They all proceed from left to right, in the fashion of Sagvall’s parser. Roots are sought in the lexicon
that match initial substrings of the word, and the grammatical category of the root determines what
class of suffixes may follow. When a suffix in the permitted class is found to match a further substring
of the word, grammatical information in the lexical entry for that suffix determines once again what
class of suffixes may follow. If the end of the word can be reached by the iteration of this process and

if the last suffix analyzed is one which may end a word, the parse is successful.

Koksal [26] proposed a left-to-right parsing algorithm for Turkish in his Ph.D. thesis. This
algorithm, called "Identified Maximum Match (IMM)" algorithm, tries to find the maximum length
substring, which is present in a root dictionary. If a match is found, i.e. the root morpheme is
identified, the remaining part of the word is considered as the search element for suffixes. This part
is searched in a suffix morpheme forms dictionary and the morphemes are identified one by one. The
process stops when nothing remains. However in some cases, although a solution is obtained, further
consistency analysis proves that this solution is not the correct one. In such cases the previous pseudo-

solution is reduced by one character and the search procedure is repeated.

Another discussion for agglutinative languages focuses on the question about what to include
in the word lexicon. There are two approaches in general. At one extreme is to include all forms of
a]l words in the lexicon without representation of internal structure and without representation of
connections to morphologically related entries. This is referred to as Full Listing Hypothesis (FLH). At
the other extreme is to include only the basic (atomic) forms, i.e. root words and suffixes. The former
approach excludes the need for morphological analysis, but is nearly impossible for agglutinative

languages. There are several variations which mediate between these two extremes.

10

Taft and Forster [27] use a variation of FLH in which complex words have their own lexical
entries, but the entries include a representation of morphological structure. For example, the word
unties would have a lexical entry of its own, but that entry would contain a morphological analysis of

the word, which is un-tie-s.

Bradley [28] and Lukatela et al. [29] devised another variation. In this algorithm, each word
has its own entry but all entries for complex words are linked in the organization of the lexicon to a
basic entry for the root word. For example, unties would have its own lexical entry in the lexicon, which
would be linked to the basic entry #ie. The basic entry is called the nucleus of the cluster of entries,

and all the others are called satellites.

Laudanna and Burani [30] propose a full listing model in which there are entries for whole
words and also entries for morphemes; a word is accessed via its full entry, and its morphological

composition is given by pointers from the word entry to the component morpheme entries.
Other algorithms and discussions on these issues can be found in [8,9,31,32,33,34,35,36,37].

There are some well-known formalisms that can be used to represent the morphology of a
language: Finite State Transition Network (FSTN), Recursive Transition Network (RTN), and
Augmented Transition Network (ATN) [1,34,38,39]. In the next chapter, we shall give formal
definitions of these formalisms and discuss the advantages and limitations of each one. In [32],
Hankamer describes an FSTN representation of morphotactics and a treatment of morphophonemic
alternations which employs generative-type rules operating cyclically (i.e. left-to-right) for Turkish
morphology. Morphophonemic alternation is accounted for by listing roots and suffixes in a basic form,
which is modified according to the surface environment when matching is done. The modifications
correspond to the phonologicafrules of the language. The important point is that these rules do not
have access to non-surface representations of previous or following morphemes, i.e. there are no
dependencies between non-adjacent word segments. This is the basic fact that allows him to represent
the morphotactics as an FSTN. The parser, named keci, described in the paper, handles most of the

Turkish morphology except some cases which require special treatment.

In [9,33], some points related to the Turkish morphology have been discussed. Among these
points are the morphological characteristics of the language, the method that will be used, and the

problems peculiar to Turkish. Then an algorithm based on these discussions and the proposed

11

solutions have been described. Being one of the first studies on Turkish morphology, some exceptions
of the morphology were treated very simply in the analysis. This gives rise to some complications and
to the expansion of the morphological structure of the language in a manner to include some
grammatically wrong words. These shortcomings have been pointed out and discussed. The algorithm

has also been evaluated in terms of performance and reliability.

A detailed analysis of Turkish morphology has been given by Solak [35]. In the paper, they
discuss most of the morphophonemic rules accompanied with several examples and point out the
exceptions of these rules. Root words are divided into two main groups: nominal and verbal. Based
on this assumption, inflectional suffixes are also classified into two groups according to the root class
that they can be affixed to. Then the order and the interrelation between the suffixes in each group

are extracted.

The paper then describes the parser that has been designed. The parser utilizes a maximal
match algorithm similar to that of Koksal [26]. In this algorithm, first the whole word is searched in
the dictionary. If it is found then the word has no suffixes and therefore it does not need to be parsed.
Otherwise, a letter is removed from the right and the resillting substring is searched. This process
continues by removing letters from the right until a root is found. To reduce the parsing time, they
make use of a preprocessing heuristic which analyzes the syllable structure of the word and accepts
the word only if it conforms with the Turkish syllable structure rules. If not, the word does not need

to be parsed and is marked as a wrong word.

In Stoop [40], the morphological analysis of Turkish forms the first step of a three step
process which aims at a machine translation system for Dutch and Turkish. More concerned about
syntactic structures and semantic analysis, the morphological part of the system limits itself with a
subset bf the morphophonemic rules and a small lexicon. The lexical categories used in the system are

mainly derived from Lewis [41].

In his thesis, Darcan [36] explains the design of a portable natural language database interface
system for Turkish. The system is complete in itself. It contains a morphological analyzer, a syntactic
parser, a meaning representation and internal query generator module, and a translator which
translates the internal query representation to a query in a declarative database query language. Being

an interface for a limited domain, the morphological analyzer component is a simple one and has been

12

designed to take into account only the cases that could be encountered in this particular domain. The

author pays particular attention to solve the problems peculiar to such a database interface system.

Two-level representation of the morphology has been proposed as an alternative description
schema for agglutinative languages [24,42,43,44,45]. In [43,44], Koster and Willems make use of an
AGFL (Affix Grammar over a Finite Lattice), which is a simple form of two-level grammars, in order
to represent Turkish morphology. The morphemes are considered on two levels: the morphosyntactic
level and the phonologic level, which correspond, roughly, to the morphotactics and the
morphophonemics, respectively. Based on this description, the derivation of surface forms from abstract
suffixes is defined as a two-step process: first there is a mapping between an abstract suffix (the form
of the suffix as defined in the suffix lexicon) and an actual suffix (one of the etymologically different
forms of the abstract suffix), second the absiract suffix gets its final surface shape based on the

preceding morpheme according to morphophonemic rules.

In [42], an AGFL is used to describe the morphology and syntax of the Hungarian language.
The authors explain some difficulties peculiar to the Hungarian language and discuss the usefulness
of an affix grammar in handling these problems. In the paper, some aspects of the Hungarian
morphology are examined and an experimental morphological analyzer is developed to handle a subset
of the morphology. The authors leave open the question of how to represent the full morphology and

propose the development of novel solutions.

In [24], Koskenniemi gives a two-level description of Finnish morphology. The model makes
use of two-level rules which mediate between surface forms and lexical representations. Similarly,
Oflazer [45] proposes a two-level description of Turkish morphology based on a lexical and a surface
representation of word structures. The lexical level denotes the structure of the functional components
of a word while the surface level denotes the standard orthographic realization of the word with the
given lexical structure. The morphotactics is represented as an FSTN and the morphophonemics is

compiled under 22 two-level rules.

13

III. INVESTIGATION OF FORMALISMS

In this chapter, we shall define and discuss some formalisms that can be used to represent the
morphology of a language. For each of these formalisms, we shall first give its formal definition and
then exemplify its use. The techniques that will be presented here are well-known in language theory.
They are widely used for the development and analysis of programming (formal) languages. After the
emergence of computational linguistics as a field, the researchers have begun to adapt these techniques

for the processing of natural languages.

3.1. Finite State Transition Networks

A Finite State Automaton (FSA) is among the simplest computing machines that can be
envisaged [34,38,46]. For a natural language application, we can refer to an automaton as a formalized
definition of a process or mechanism for verifying the well-formedness of words or sentences. A given
automaton normally produces only a pair of outputs: True (or Yes) if the word or the sentence is
grammatical and False (or No) otherwise. Under these circumstances, it is customary to refer to the
automaton as an acceptor. On the other hand, we might place additional requirements on the
automaton such that it produce some non-trivial output; for example, translation from one language

into another. Under these circumstances, we refer to the automaton as a translator.

A Finite State Transition Network (FSTN) can be regarded as a neutral description of a
language (a set of sequences of symbols). It can also be interpreted, for instance, as a specification of
an FSA to recognize elements of the language or as a specification of an FSA to generate elements

of the language. We now give the formal definition of an FSTN:

An FSTN is a 5-tuple M=(Q,4,Kq,F), where:

(1) Q is a finite set of states or nodes

(2) A is a finite set of acceptable input symbols

(3) K is a mapping from QXA to Q which dictates the behavior of the finite state control; X
is called the state transition function

(4) 94 in Q is the initial state in the network

(5) F in Q is the set of accepting or final states

14

The state transition function K is in the form (qi,a)=(qj1,qj2,...,an), where a is an element

of A and 94951452 Ajn are elements of Q. When the system is in state ¢; and the current input is

| a, then a transition can be made to either qjl or qu, ey OT G as the next state. A given transition
(g;9) is nondeterministic if there exists more than one option as the next state; it is deterministic as

long as there is only a single possible transition to be made.

Note that the step-by-step behavior of these networks is defined as long as two items of
information are known: the current state of the network and the input symbol being scanned. These
two items of information, along with the remainder of the string to be scanned, completely determine
the future behavior of the network. This is written as (¢;,w), where w is the sequence of symbols
remaining to be read. (gq,w) is called an initial configuration and (g;.€), where g; is an clement of F

and ¢ denotes the empty string, is called a final (or accepting) configuration.

As a simple example, consider the FSTN M=({p,q,7},{0,1},K,p,{r}). Figure 3.1 shows the state
transition table K and the graphical representation of M. M accepts all strings of ¢’s and I’s which
have two consecutive ¢’s. That is, state p is the initial state and can be interpreted as "two consecutive
0’s have not yet appeared, and the previous symbol was not a 0". State g means "two consecutive 0's
have not appeared, but the previous symbol was a 0". State r means "two consecutive 0’s have
appeared.” Note that once state r is entered, M remains in that state. Also note that M is a

deterministic FSTN.

State

a] State transition table b) Graphical representation

FIGURE 3.1. An example FSTN

15

On input 01001, the only possible sequence of configurations, beginning with the initial
configuration (p,01001) is: (p,01001) --> (q,1001) --> (p,001) --> (q,01) --> (r,1) --> (r,e). Thus, the
input 01001 is accepted by M.

3.2. Finite State Transducers

An FSA of the kind we have discussed in the previous section, used to analyze some existing
input, is a recognizer, not a parser or a transducer, so all it can do is decide on the well-formedness
of a string. If it can reach the end of the string in a final state, then the string is well-formed; if it can
not reach the end of the string, or if can not reach the end of the string and simultaneously be in a
final state, then the string is not well-formed. That is all the information it provides. To get more

information, we need a parser or a transducer, not a recognizer.

Although we can interpret an FSTN as a machine that provides a simple yes or no output for
any input, with some small extensions to the notation, we can interpret one as a Finite State
Transducer (FST) [47,48]. An FST is simply a recognizer which emits an output string during each

move made (the output may be e, however). The definition of an FST is as follows.
An FST is a 6-tuple M=(Q,A,O,K,q0,F), where:

(1) Q is a finite set of states or nodes

(2) A is a finite set of acceptable input symbols

(3) O is a finite set of acceptable output symbols

(4) K is a mapping from QX4 to QXO*, where 0" represents n-times multiplication
OX0X... X0, n>=0. K is called the state transition function

(3) g in Q is the initial state

(6) F in Q is the set of accepting or final states

The operation of an FST is similar to that of an FSTN. The only difference is that, in addition

to the next state, each move also emits an output.

16

(0,1)

(.0 (.0)

K

St p | (1) (p.O) L) B S (1)
q
r

fr.1) [p.0)
1) (.0} (t.0)

a] State transition table b) Graphical representation

FIGURE 3.2. An example FST

As an example, consider the FST M=({p,q,r},{0,1},{0,1},Kp,{r}). The state transition function
K and the graphical representation are shown in Figure 3.2, This is a simple extension of the FSTN
given previously in such a way that 0’s and I’s in the input are replaced by I's and 0’s, respectively,
in the output. For instance, the input 01001 results in the output 10710. We can say that the output

contains two consecutive I’s if and only if the input contains two consecutive 0's.

It is important to note that FSTN and FST have the same power. That is, we can always
construct an FSTN for a given FST, and vice versa. In evaluating such formalisms, there are two

relevant notions of adequacy: mathematical adequacy and notational adequacy.

Mathematical adequacy is concerned with whether the formal objects characterized by the
notation, under the intended semantics, have the properties manifested in the real-world objects that
the notation and its interpretation are intended to model. Although FSTNs can recognize non-finite
languages (i.e. languages that contain an infinite set of strings), there are many non-finite languages
that they can not recognize. Thus, it is easy to build an FSTN to recognize the language of strings
consisting of any number of a’s (known as the language of a“) or the Janguage of strings consisting
of any number m of a’s followed by any number # of b’s (the language amb"), but impossible to build
an FSTN to recognize the language of strings consisting of some number » of a’s followed by the same
number of b’s (the language anbn), unless an upper bound is put on the size of », in which case we
cease to have a non-finite language. This is a failure of mathematical adequacy. From a linguistic point
of view, strings of the general form a"™ arise in a language when the language permits one string to

be embedded inside another and puts no limit on such embedding.

17

Notational adequacy is to do with how elegantly the notation describes the real-world objects.
In general, a short description is preferable to a longer one; repetition increases the possibility of
errors in the use of the notation. An ideal notation allows one to exploit the similarities between
different structures and state general properties when they exist. The agglutinative morphology and

natural language grammars are rich of such similar constructions.

3.3. Recursive Transition Networks

Basically, a Recursive Transition Network (RTN) is just like an FSTN except that it introduces
the extra concept of a named subnetwork [46,48]. That is, it is possible for an arc to name a
subnetwork to be traversed, instead of a specific input that is to appear. The idea is that if we have
a commonly used bunch of arcs, we can express this abstraction by making it into a self-contained,
named network. This network can then be referenced by its name in a network that needs it, rather

than having to appear expanded out in every place.

Informally, in an RTN, to traverse an arc that is labelled with a subnetwork name, it is
necessary to traverse the subnetwork named, but remembering where to resume when that has been
done. This purpose is achieved by the use of a stack. For an RTN, network traversal is defined

partially in terms of itself. This is the reason for the word "recursive” in recursive transition network.

An RTN is a 7-tuple M=(Q,A,P,K,qo,Zo,F), where:

(1) Q is a finite set of states or nodes

(2) A is a finite set of acceptable input symbols

3) P is a finite set of symbols that may appear on the stack

(4) K is a mapping from OQXAXP to QXP*, where P represents n-times multiplication
PXPX..XP, n>=0. K is called the state transition function

(5) g4 in Q is the initial state

(6) Zy in P is the start symbol, i.e. the symbol that appears initially on the stack

(7) F in Q is the set of accepting or final states

18

A transition is written as (¢;,4.4) --> (qj,B), whose interpretation is as follows: When in state
g;, if the input is 2 and the top-most symbol on the stack is 4, then the next state becomes 45 and B
is added to the stack. Reading the stack destroys the symbol being read (i.e. A is deleted from top of
the stack before B is added). During a transition, the input symbol, the symbol read from the stack,

or the symbol written to the stack may be empty.

As an example, consider the RTN M=({qo,ql,qz},{o,l},{Z,O},K,qo,Z,{qo}). This is the RTN
for the language 0™1™, where n >= 0. Figure 3.3 shows the state transition function K and the
graphical representation of the network. For instance, with the input string 0071, M makes the
following sequence of moves: (§,0011,Z) --> (44,011,0Z) --> (q,11,00Z) --> (45,1 ,0Z) --> qy82) -

-> (ggee)-

The use of the stack in an RTN allows us to deal naturally with some of the recursive
structures in natural languages. In addition, there are some recursive language structures that can be
recognized by RTNs but can not in principle be captured by FSTNs. The network shown above is such

an ckample. In this respect, an RTN is more powerful than an FSTN.

K(14.0.2) = {q,.07]
K{a,.0.0] = (q,.00)
K{q,.1.0] = [q,.€]

; (0.0:00]
0.z A (1.0:e)

1
Kig, 1.0 = (4,2) Y
Kig,.e.Z} = [q,.€) le.Ze]
a) State transition table b] Graphical representation

FIGURE 3.3. An example RTN

19

3.4. Augmented Transition Networks

An FSTN and an RTN have a common property: the order in which symbols appear in the
output echoes the order in which corresponding symbols appear in the input. If we want to change the
order, then we have to include a different set of arcs for each possible input-output pair. When the
input and output languages have large vocabularies, this leads to large networks which can not be

expressed concisely.

The main difference of an Augmented Transition Network (ATN) is the use of registers
(variables) for storing information [1,48]. Values can be assigned to the registers and these values can
be used for comparison. Each arc of the network may be annotated with instructions for how to shuffle

information between these registers when it is traversed.
An ATN is an 8-tuple M=(Q,4,P.K,O,Rq,Z), where:

(1) Q is a finite set of states or nodes

(2) A is a finite set of acceptable input symbols

(3) P is a finite set of symbols that may appear on the stack

(4) K is 2 mapping from QXAXPXR; to QXP*XRO, where R; and R represent the contents
of the registers before and after the transition is made, respectively.

(5) O is a finite set of operations for storing information in the registers

(6) R is a finite set of operations for reading information stored in the registers

@) 99 in @ is the initial state

8) Z,, in P is the start symbol, i.e. the symbol that appears initially on the stack
0 Yy ym pp Y

As a simple example, consider the ATN M=({g¢,9,},10,1},{Z},K,O,Rq,Z). We have a single
register r;. O consists of the operation store(i), which stores the current input symbol i to the
beginning of the register Iy The set R is empty. This ATN accepts an input string of 0’s and I’s, and
stores the inverse of the string in the register r;. Figure 3.4 shows the function K and the graphical

representation.

20

0.2:Z,stare(0))
K[qn,U,Z] = [qa,z,store[ﬂ)] (1.Z2:Zstore(1]]

Klqo,l.Z] = [q,.Z store{1]]

Klg,.e.4 = (g,.€]

a) State transition table b) Graphical representation

FIGURE 3.4. An example ATN

The use of registers in an ATN enables what would be different paths through an RTN to be
merged into one, and search to be avoided by storing information before its exact significance is
known. The flavour of an ATN is different from other formalisms. Writing an ATN is much more like
writing a computer program than writing either an FSTN or an RTN. For this purpose, ATNs are

procedural formalisms whereas FSTNs and RTNs are essentially declarative.

21

IV. TURKISH MORPHOLOGY

In this chapter, we shall investigate Turkish morphology from a linguistic point of view. Before
explaining the morphology, we must define the Turkish alphabet and the categorization of the letters
in the Turkish alphabet:

Turkish alphabet = {a,b,c,¢,d,e,f,g,8h,1,i,j,klm,n,0,0,p,1,88tu,i,v,yz}
Vowels = {a,e,1,1,0,0,u,ii}

Low vowels = {a,e, 0,0}

High vowels = {1,i,u,i}

Rounded vowels = {0,6,u,ii}

Unrounded vowels = {a,e,1,i}

Back vowels = {a,1,0,u}

Front vowels = {e,i,0,i}

Consonants = {b,c,¢,d,f,g,8,h,j,k]m,n,p,r,;s;stv.y,z}

Voiceless consonants = {¢,f,h,k,p,s,s,t}

Voiced consonants = {b,c,d,g,8,j,,m,n,r,v,y,z}

A remark about the definition of the alphabet is in order at this point. There are some words
that have the same orthographical representation but different meanings. For example, the word kar
means either "snow" or "profit”. In order to differentiate the meanings, such words are pronounced

differently and they own different phonetic representations.

Until recently, it was common among the linguistics to use some special phonemes in order
to give different orthographical representations to such words. According to this system, the alphabet
is enlarged with the three vowels 4, £, and i, and different sounds of the phonemes are represented
with these vowels. For instance, the word kar is separated into the forms kar (snow) and kdr (profit).
These three vowels are the centralized forms of the back vowels g, 1, and u, respectively. The words

that include these vowels are basically loanwords, originated mostly from the Arabic language.

Recent developments on linguistics and on Turkish tend to abandon this system for two
reasons [13,49,50]. The first reason is the harmony between the eight vowels in the alphabet. These

vowels and the categorization of these vowels form a sound mathematical model. The addition of new

22

vowels into this model means the disturbance of the harmony among them, which has negative effects
on the formal analysis of the language. The second reason is related with the use of these three
centralized vowels. It is a highly controversial subject among the language analysts when to use these
vowels. There is not any common rule accepted by these people. Each new dictionary or spelling guide

comes with its own rules.

In this thesis, as can be seen from the definition of the alphabet, we accept the modern
linguistic approach explained above. We do not use these three centralized vowels. For the words that
have the same orthographical shape but different phonetic representations, which of the possible

meanings is used is deduced from the context.

We can examine the morphological analysis of Turkish (and of agglutinative languages in

general) in two interrelated steps:

1. Morphophonemic analysis: There are some morphophonemic rules in Turkish used during
the word formation process. These rules determine the form of the suffixes. According to some
properties of a word, the form of a suffix that will be affixed to that word may change. For
example, in the Turkish language, the first person singular possessive suffix may take one of
the five forms -um, -im, -um, -tim, or -m according to the last phoneme of the word. For the
first four of these forms, the last phoneme is a consonant and the last vowel is in the set {a,1},
{e,i}, {o,u}, and {6,ii}, respectively. For the fifth form, the last phoneme is a vowel. So, with
respect to this rule, the following derivations are valid (for the present, we represent the suffix

as -im):

kalem (pencil) + -tm ---> kalemim (my pencil) 1
kol (arm) + -im ---> kolum (my arm)

masa (table) + -tn ---> masam (my table)

It can be thought that these different forms of a suffix can be handled separately (as if they

were different suffixes). In this case, the number of suffixes would be very large (a single suffix

1 Throughout the thesis, we shall write Turkish words, phrases, and suffixes in italic; and the English
translation of these words, phrases, and suffixes in parentheses. Word derivations will be shown in the
following notation. The words and suffixes are written on the left-hand side of the arc separated by the
plus sign, and the derived word is written on the right-hand side of the arc.

23

can have 24 different forms in Turkish - these different forms of a suffix are called allomorphs)
and, worst of all, all of the morphotactic rules must be duplicated for each different form of

a suffix.

2. Morphotactic analysis: The morphotactic analysis determines the order of the suffixes. That
is, which suffixes can be affixed to a word in a predefined category (noun, verb, etc.) and in
which order are these suffixes affixed. Words are grouped in different categories according to
their functions and a suffix that can be affixed to a word in a particular category may or may
not be affixed to a word in another category. Also, after a suffix is affixed to a word, some of

the suffixes may be valid and the rest may not.

4.1. Morphophonemics

Turkish word formation uses a number of phonetic harmony rules. One of the most
distinguishing characteristic of the Turkish language is its vowel and consonant harmony. While affixing
a suffix to a word, the vowels and consonants change in certain ways such that these harmony

constraints are not violated.

4.1.1. Vowel Harmony

The best known morphophonemic process in Turkish is the vowel harmony. Vowel harmony
is a process in which the vowels in all syllables of a word except the first one assimilate to the
preceding vowel with respect to certain phonetic features. Vowel harmony in Turkish is a left-to-right

process operating sequentially from syllable to syllable. The rules are:

1. A non-inijtial vowel assimilates to the preceding vowel in frontness
2. A non-initial high vowel assimilates to the preceding vowel in rounding
3. A non-initial low vowel must be unrounded; that is, the vowels o and ¢ do not occur except

in first syllables of the words.

The only exception to the third rule is the progressive tense suffix -zyor. In [51], it is pointed

out that 96.74 per cent of the occurrences of the letter 6 and 73.16 per cent of the occurrences of the

24

letter o correspond to the first or second characters of words. The remaining 3.26 per cent of the
occurrences of ¢ all belong to foreign words, such as akimiilator (accumulator) or aktor (actor); and

most of the remaining 26.84 per cent of the occurrences of o are due to the suffix -zyor.

The above rules imply that while any of the vowels may occur in the first syllable of a word,
the vowel of the following syllable is restricted to a choice of two. That is, knowing the preceding
vowel, the succeeding vowel must be one of the two possibilities. The features front/back and
rounded/unrounded are entirely predictable, and only high/low remains distinctive. We can show this

as follows:

1. If the preceding vowel is a or 1, then the succeeding vowel is either a or 1.
2. If the preceding vowel is o or u, then the succeeding vowel is either a or u.
3. If the preceding vowel is ¢ or i, then the succeeding vowel is either e or i

4. If the preceding vowel is & or i, then the succeeding vowel is either e or #.

There are a large number of loanwords used in Turkish. Since most of these words do not
obey to the vowel harmony rule, there are some roots that are not subject to vowel harmony internally.

However, nearly all suffixes are in harmony with the vowel on their left.

As indicated above, there are no suffixes in which the low vowels o and ¢ appear except the
suffix -ryor. Therefore, in citing suffixes, if we use the symbol A for a low vowel and / for a high vowel,
their allophones will be as follows (an allophone is any of the variant forms of a phoneme as

conditioned by position or adjoining sounds):

The symbol | indicates "or". The symbol A4, for instance, means that the vowel it denotes is
either a or e. Which one of these two must be used during affixation is decided by the vowel harmony
rule. According to this definition, the negation suffix can be shown as -mA and the narrative past tense

suffix as -mls.

When a suffix is affixed to a root, the first vowel in the suffix changes according to the last

vowel of the root. Succeeding vowels in the suffix change according to the vowel preceding them. If

25

we denote the preceding vowel (whether it is in the root or in the suffix) by pv, then the two classes

of vowels are resolved as follows:

A = a , ifpvis aJ1]o]u
= e s ifpvis e|ijo]u
I = 1 , ifpvis a1

, ifpvis e|i
= u , ifpvis o] u

= i , ifpvis 0|1

An allomorph is any of the variant forms of a morpheme. For example, the negation suffix -

mA has two allomorphs, where narrative past tense suffix -mly has four:

-mA -ma | -me

1

-mly = -nug | -mig | -mug | -mis

The allomorph of a suffix that is to be used is determined according to the phonemes of the
root word that it is affixed to. For example, when the suffix -mly is affixed to the root gor (to see), the
allomorph -mulg is used, because as the vowel preceding the vowel I is ¢ (pv = 0), I must resolve to

an g (ie. I =).
gor (to see) + -mls --> gormils (he/she had seen)

There are also some non-harmonic suffixes, such as -ken and -Iyor, which are exceptions to
harmonic conditioning from the vowel on their left. We shall distinguish the vowels that do not make
allomorphs by not capitalizing them. That is, only the vowels written in capital form are subject to

change according to the vowel harmony rule:

gel (to come) + -Ir + -ken --> gelirken (while coming)

gel (to come) + -Iyor --> geliyor (he/she is coming)

Similarly, the second vowel in compound verb suffixes (-pAbil, -yAdur, -yAgel, -yAgor, -yAkal, -

yAkoy. -yAyaz, -ylver) does not change according to the preceding vowel either:

26

oku (to read) + -yAbil --> okuyabil (can read)
oku (to read) + -ylver --> okuyuver (just read)
giy (to dress) + -In + -yAdur --> giyinedur (go on dressing)

Such suffixes condition the vowel on their right normally:

okuyabil (can read) + -Ir --> okuyabilir (he/she can read)
okuyuver (just read) + -dI --> okuyuverdi (he/she just read)

Because of their different phonetic structures, some loanwords do not obey to the vowel

harmony rule during agglutination. For example:

alkol (alcohol) + -II --> alkollii (containing alcohol), not alkollu

saat (watch) + -I --> saati (the watch), not saan

When certain suffixes beginning with a consonant are affixed to words ending with a
consonant, a high vowel is inserted between them. We shall denote such vowels as (I). The
parentheses, (and), indicate that the phoneme inside is not affixed during the affixation process if
the last phoneme of the word to which the suffix will be affixed is a vowel. This high vowel is also
determined similarly as explained before. For example, the first person plural possessive suffix (I)mlz

has eight different allomorphs:

(Dmlz = -z | -imiz | -umuz | -dmiz

=-mz | -miz | -muz | -miz

When this suffix is affixed to the root kap: (door), it takes the form -miz. The vowel (I) drops
since the last phoneme of the word is a vowel (z). But when it is affixed to the root okul (school), the
allomorph -umuz is used. In this case, the vowel (I) is affixed since the last phoneme of the word is

a consonant ().

27

4.1.2. Consonant Harmony

Another basic concept of Turkish phonology is consonant harmony. The consonant harmony

rules listed below are based on the classification of the consonants as voiceless and voiced:

1. In multi-syllabic words and in certain mono-syllabic roots, the final voiced consonants b, c,
d, g (or §) generally (not always) become voiceless (i.e. it changes to p, ¢, ¢, k, respectively) if

the word is in root form or when a suffix beginning with a consonant is affixed:

akord (tune) --> akort (tune)

kitab (book) + -lAr --> kitaplar (books)
¢iceg (flower) + -llk --> ¢igeklik (vase)
reng (color) + -II --> renkli (with color)

but

ad (name) + -lAr --> adlar (names)

The change from g to k, as in the root reng (color) above, occurs in (some) words whose final

consonant is g and the immediately preceding phoneme is n.

We represent the last phoneme of the words that are subject to the consonant harmony rule
as b, ¢, d, g (or §), instead of the more traditional approach of representing them with p, ¢,
¢, and k [13,50,52]. This approach of representing with voiced consonants is used by modern
linguistic analysis of Turkish morphology. It eases the definition of the morphophonemic rules.
Except some loanwords, there are no words in Turkish that end with the consonants b, ¢, d,
or g. Thus, we can deduce that all the roots whose last phonemes are one of these consonants

change these phonemes according to the above rules.

2. In some suffixes beginning with one of the consonants c, d, or g, this initial consonant might
change according to the last phoneme of the word it follows. If we show these consonants as

C, D, and G, their allophones will be:

U O
[/
Q

-

(Note that the phoneme b does not take place in this rule. Because, there are no suffixes in
Turkish that begin with b such that this b can change). If the last phoneme of the word to
which one of such suffixes is attached is a voiceless consonant, then the initial consonant of
the suffix becomes voiceless (g, ¢, or k, respectively), otherwise it remains as c, d, or g. Thus,

the allomorphs of the definite past tense suffix -DJI can be listed as:

DI =-di | di | -du | -di

= | 4 | |-m

This can be exemplified as follows:

-- gel (to come) + -DI --> geldi (he/she came)
kog (to run) + -DI --> kogtu (he/she ran)

In the case that both of the above rules apply to a word, the first rule takes precedence over
the second one. In the following example, the final b changes into p since the suffix begins with a
consonant, according to the first rule. Then, with respect to the second rule, the initial phoneme C

of the suffix takes the form ¢ since the word ends with the voiceless consonant p:

kitab (book) + -CI --> kitapgt (book seller)

Furthermore, some suffixes beginning with a vowel are affixed to the words ending with a
vowel with the insertion of one of the consonants #, s, §, or y. We shall denote such consonants as (n),
(s), (s), and (y), respectively. Similar to their use for the vowels, the parentheses, (and), imply that
the phoneme inside is not affixed if the last phoneme of the word is a consonant. For example, the
genitive suffix can be shown as -(n)In, the third person singular possessive suffix as -(s)I, distributive

numerical suffix as -(g)Ar, and the acceleration suffix as -(y)Iver. As an example of the suffix -(s)I:

29

bag (head) + -(s)I --> bagt (his/her head)
kapt (door) + -(s) --> kapust (his/her door)

The suffix -(s)I takes the form - in the first case. The phoneme (s) drops since the word ends
with a consonant (§). In the second case, since the last phoneme of the word is a vowel (2), the suffix

takes the form -si.

There may be some exceptions to these morphophonemic rules. For instance, because of the
former existence of an Arabic consonant not pronounced in Turkish, the consonant s is not inserted

between some words ending with a vowel and the third person singular possessive suffix:
mevki (position) + -(s)I --> mevkii (his/her position), not mevkisi
For some such words both forms are valid:

cami (mosque) + -(s)I --> camisi (his/her mosque)
--> camii (his/her mosque)
sanayi (industry) + -(s)I --> sanayisi (histher industry)
--> sanayii (his/her industry)

A similar case happens when a case suffix (-DA, -DAn, -(y)A, -(y)I) comes immediately after
some pronouns such as bu (this), su (that), o (it), kendi (self), after the relative suffix -ki, and after the

third person possessive suffixes -(s)I and -lArl. In such cases an n is inserted in between:

bu (this) + -(y)I --> bunu (this one), not buyu
kendi (self) + -DAn --> kendinden (from himself/herself), not kendiden
seninki (yours) + -(y)A --> seninkine (to yours), not seninkiye

kapist (his/her door) + -DA --> kapisinda (at his/her door), not kapisida

When all the rules above are considered, we reach the result that Turkish suffixes are highly

changeable. As an example, the participle suffix -DIG 2 has 16 allomorphs:

2 For some suffixes, the consonants b, c, d, § at the end of the suffix change when it iS not followed
by another suffix or it is followed by a suffix beginning with a consonant. The change is similar to the

30

-DIG =-dig | -di§ | -dug | -dug

—ng | g | g | g
=-dik | -dik | -duk | -dik
=-nk | -tk | -wk |-tk

Some examples are:

sat (to sell) + -DIG --> sattik (we sold)

sat (to sell) + -DIG + -In --> satngin (the thing that you sold)

In the first word, the suffix takes the form -1k, because it follows the root sat (to sell) which
ends with the voiceless consonant ¢ (so, D = t), whose last vowel is a (pv = a, so I = 1), and the suffix
is the last suffix affixed to the word (so, G = k). In the second word, there is another suffix whose first

phoneme is a vowel (so, G = §).

4.1.3. Root Deformations

Normally Turkish roots are not flexed. However, there are some cases where some phonemes
are changed by assimilation or various other deformations. An exceptional case related to the flexion
of roots is observed in personal pronouns. When the first and second singular personal pronouns ben

(I) and sen (you) take the dative suffix, they change as:

ben (1) + -(y)A --> bana (to me), not bene

sen (you) + -(y)A --> sana (to you), not sene

When these two roots take the plural suffix, their structures completely change:

ben (1) + -lAr --> biz (we), not benler

sen (you) + -lAr --> siz (you), not senler

first consonant harmony rule. Hence we treat these consonants like other phonemes that may have
allophones. Their allophones are p, ¢, ¢, and k, respectively.

31

A more systematic change occurs when the suffix -(I)yor comes after the verbs ending with the

low vowel 4. In such cases, the low vowel at the end of the word drops:
kapa (1o close) + -(I)yor --> kapiyor (he/she is closing), not kapayor

As an exceptional case, when not only the suffix (I)yor but also any of the suffixes beginning
with the consonant y is affixed to the roots de (to say) or ye (to eat), they change as di and yi,

respectively. This exception is valid only for these two roots:

de (to say) + -(I)yor --> diyor (he/she is saying), not deyor
de (10 say) + -(y)An --> diyen (the one who says), not deyen
ye (to eat) + -(y)Ip --> yiyip (by eating), not yeyip

However, the root de (to say) does not always obey to this exception, as in the following case:
de (to say) + -(y)Ip --> deyip (by saying), not diyip

One of the most important deformations in words occurs as the result of the first consonant
harmony rule. This rule says that when some words ending with one of the voiced consonants b, c, d,

g (or g) take a suffix beginning with a consonant, that voiced consonant changes into p, ¢, ¢, or k,

respectively:

dord (four) + -gen --> dérigen (quadrangle), not ddrdgen
tabag (plate) + -lAr --> tabaklar (plates), not tabaglar

reng (color) + -slz --> renksiz (without color), not rengsiz

A similar change occurs when a suffix beginning with a consonant is affixed to a word ending

with log. In such a case, the final § changes into g:
psikolog (psychologist) + -lAr --> psikologlar (psychologists), not psikologlar

Another root deformation occurs as a vowel insertion. When a suffix beginning with a
consonant comes after some nouns, generally designating parts of the human body, the vowel I is

inserted before the last consonant. We represent the root form of these nouns without this vowel:

32

agz (mouth) + -DA --> agizda (in the mouth), not agzda

Similarly, when some suffixes are affixed to verbs whose last vowels are omitted, the vowel 1

is inserted before the last consonant:

ayr (to separate) + -DI --> aywd: (he/she separated), not ayrd:

When a suffix beginning with a vowel is affixed to some originally Arabic roots ending with

a consonant, the final consonant of the root is duplicated:

hak (right) + -(I)m --> haklkim (my right), not hakim

zan (opinion) + -et --> zannet (to think), not zanet

A compound word is 2 word that is formed of two other words. The meaning of the compound
word may be a combination of the meanings of the underlying words or may be totally different. For
example, alinyazisi (destiny) is formed of alin (forehead) and yaz: (writing). When the plural suffix -L4r
is affixed to compound words, a deformation occurs. This suffix, coming before the possessive suffix

at the end of the word, forms a mid-fixing:

gozyagt (tear) + -lAr --> gozyaglar (tears), not gozyagsilar

Sometimes, more than one deformation may happen on the same root:

rengeyigi (reindeer) + -lAr --> rengeyikleri (reindeers), not rengeyigiler or rengeyigleri
ademogluy (mankind) + -lAr --> ademogullarn. (mankinds), not ademoglular or ademogllar

kayd (registration) + -lAr --> kayular (registrations), not kaydlar or kaywdlar

As can be noticed, the last phoneme of the words that are subject to the consonant harmony
are shown with voiced consonants (e.g., kitab (book)), and the last vowel of words subject to the vowel
insertion are dropped (e.g., agz (mouth)). A similar approach is used by Hankamer [32}. However,
when we look at the literature on Turkish morphology, we see that this representation schema is not
used by most of the researchers [9,33,35,45] and is relatively new. They utilize the voiceless consonants

for the consonant harmony and replace vowel insertion with the vowel ellipsis.

33

4.2. Morphotactics

We can classify the suffixes in two groups: inflectional (or conjugational) suffixes and
derivational suffixes [9,10,14,17,33,35]. An inflectional suffix does not change the meaning of the word
that it is affixed; it only adds something to the functional properties (such as the possession or the
tense) of the word. An inflectional suffix that is defined for a word category can be affixed to all of
the words in that category. A derivational suffix, on the other hand, changes the meaning of the word
that it is affixed, i.e. it forms a new word. It can also change the category of the word; for example,
a noun may be a verb after a derivational suffix is affixed. Also, the productivity of the derivational
suffixes is highly changeable. Some of these suffixes are productive (i.e. can be affixed to nearly all of

the words in the related category) while the others are not (i.e. can be affixed to a few words only).

In this section, we shall investigate the morphotactics of Turkish language mainly for the
inflectional suffixes. At the end of the section, we shall give a brief explanation for the derivational
suffixes. An inflectional suffix can be attached to a noun or a verb. The suffixes that can be received
by either of these groups are different, i.e. a suffix which can be affixed to a noun can not be affixed

to a verb with the same semantic function.

4.2.1. Nouns

The inflectional suffixes that can be affixed to nouns and the order of these suffixes are shown

in Figure 4.1. All of these suffixes are optional

The plural suffix -I4r is added directly to the root before any other suffix. In the plural forms
of the pronouns bu (this), sgu (that), and o (he/shefit), an n is inserted between the word and the suffix,
For example:

bu (this) + -lLAr --> bunlar (these), not bular

Possessive pronouns (in English: my, your, hisfher/its, our, your, their) are represented by

suffixes in Turkish. For example:

34

1. Plural suffix : -lAr

2. Possessive suffixes -(m -(I)mlz
-(I)n -(Dnliz
-(s)I -lArl

3. Case suffixes : -DA -CA
-DAn i
-(y)A -slz
-0 -0)IA
-(y)InAn -()lAn

Genitive suffix : -(n)in
4. Relative suffix : -ki

FIGURE 4.1. Inflectional suffixes for nouns

ev (house) + -(I)m --> evim (my house)

araba (car) + -(I)n --> araban (your car)

If the possessed noun is plural, possessive suffixes come after the plural suffix:

ev (house) + -lAr + -(I)m --> evlerim (my houses)

araba (car) + -lAr + -(I)n --> arabalann (your cars)

When the third person plural suffix -L4rI comes after a plural noun, two [4r’s combine and one of

them drops:

ev (house) + -IAr + -lArl --> evleri (their houses), not evierleri

Compound words have the third person singular possessive suffix already in their structure.
For example, the last phoneme (i) in atesbécegi (firefly), the last two phonemes (si) in safrakesesi (gall
bladder). Such words receive the possessive suffixes after removing the possessive suffix which is

already in their structures:

ategbocegi (firefly) + -(s)I --> ategbécedi (the firefly), not atesbocegisi

safrakesesi (gall bladder) + -(I)nlz --> safrakeseniz (your gall bladder), not safrakesesiniz

The root words su (water) and ne (what) create some irregular cases when they receive

possessive suffixes:

su (water) + -(I)m --> suyum (my water), not sum

su (water) + -(I)n --> suyun (your water), not sun

su (water) + -(s)I --> suyu (his/her water), not susu

su (water) + -(I)mlz --> suyumuz (our water), not sumuz
su (water) + -(I)nlz --> suyunuz (your water), not sunuz

su (water) + -lArl --> sulan (their water)

ne (what) + -(I)m --> neyim (what ... of me)
ne (what) + -(I)n --> neyin (what ... of you)
ne (what) + -(s)I --> neyi (what ... of he/she)
ne (what) + -(I)mlz --> neyimiz (what ... of us)
ne (what) + -(I)nlz --> neyiniz (what ... of you)

ne (what) + -lAr] --> neleri (what ... of them)

For the root ne (what), the regular forms (nem, nen, nesi, nemiz, neniz, and neleri) are also valid, but

mostly the irregular ones listed above are used.

Case suffixes can be grouped in two classes as internal and external case suffixes. Internal case
suffixes are more frequently used than the external ones. They are named as follows: -DA (locative), -

DAn (ablative), -(y)A (dative), and -(y)I (accusative).

Declensions of pronouns have some irregular forms. In the dative cases of ben (I) and sen
(you), the front vowels become back (see section 4.1.3). In the genitive of ben (I) and biz (we), -im is

used instead of the regular form -in:

ben (I) + -(n)ln --> benim (my), not benin

biz (we) + -(n)In --> bizim (our), not bizin

Additionally, when a case suffix is attached to certain nouns, an n is put in before the case
suffix. Among such nouns, we should add the compound words having the characteristics mentioned

above:

36

ategbocegi (firefly) + -(y)A --> atesbocegine (to the firefly), not ategbdcegiye
safrakesesi (gall bladder) + -DA --> safrakesesinde (in the gall bladder), not safrakeseside

The roots su and ne show exceptions for the genitive suffix, as for the possessive suffixes. In

their genitive cases, a y is inserted instead of an n:

su (water) + -(n)In --> suyun (of the water), not sunun

ne (what) + -(n)In --> neyin (of what), not nenin

The relative suffix -ki may be added only to the genitive suffix or to the locative case suffix.

For example:

kapt (door) + -(n)In + -ki --> kapminki (the door’s)
biz (we) + -DA + -ki --> bizdeki (the one which is in our hand)

It is possible to affix the relative suffix directly to a temporal adverb or a noun adverbially used, e.g.

demin (a while ago) + -ki --> deminki (of a while ago)

yann (tomorrow) + -ki --> yarinki (10moIrow’s)
or to a directional adverb or an adverb of place, e.g.

kargt (opposite side) + -ki --> kargiki (the one on the opposite side)
agagr (lower part) + -ki --> agagiki (the lower one)

The number of such roots is quite limited. A noun word that received the relative suffix may take the

plural suffix and any case ending:

buradaki (the one who is here) + -lAr --> buradakiler (those who are here)

buradakiler (those who are here) + -(y)l4 --> buradakilerle (with those who are here)

37

In its singular form, an » is inserted between -ki and the case ending:

buradaki (the one who is here) + -DAn --> buradakinden (from the one who is here)

In general, the relative suffix is not subject to vowel harmony. However, in the following cases,

-ki changes into -kii:

diin (yesterday) + -ki --> diinkii (yesterday’s)
bugiin (today) + -ki --> buginki (today’s)
giin (day) + -ki --> ganki (that day’s)

obiir (other) + -ki --> 6bdrkal (the other one)

4.2.2. Verbs

The affixation process for verbs is more complex than for nouns. The suffixes and the order

of these suffixes are shown in Figure 4.2.

There are four voices of verbs in Turkish: reflexive, reciprocal, causative, and passive.
Combination of these suffixes are possible, with the following restrictions: The reflexive voice suffix -
(I)n, the reciprocal voice suffix -(I)g, and the causative voice suffixes -Ar, -Ir, and -(I)t are mutually
exclusive, i.e. only one of these can be affixed to a verb. After these suffixes, the other causative voice
suffixes -DiIr and -¢, and one of the passive voice suffixes -(I)! and -(I)n can be affixed, in this order.

The following sequence of derivations is an example:

gor (to see) + -(I)g --> gorig (to see each other)
gorig (to see each other) + -DIr --> géristir (to cause to see each other)
gordgtir (to cause to see each other) + -(I)l --> gorigninil (to be caused to see each other)

Neither the reflexive nor the reciprocal can be affixed to all verb roots. The following

derivations are valid:

dov (to beat) + -(I)n --> doviin (to beat oneself)

anla (to understand) + -(I)§ --> anlag (to understand each other)

38

1. Voice suffixes
Reflexive voice suffix : ~-(Dn
Reciprocal voice suffix : -()s
Causative voice suffixes : -Ar

-(Dt
-DIr
-t
Passive voice suffixes : ~(I)

-(Dn

2. Negation suffixes : -mA4
-(y)AmA

3. Compound verb suffixes : ~(y)Adur ~-(y)Akoay
() Agel -()Ayaz
-(y)Agor -(y)Iver
-(y)Akal

4, Mood suffix : -(v)Abil

5. Main tense suffixes : -(A)r -(y)A
-DI -(y)AcAG
-(Dr -(y)Allm
-(I)yor -(y)n
-mAktA :
-mAIl
-mlg

=)

. Question suffix : -ml
7. Second tense suffixes R -(y)DI

-()mig

-(v)sA
8. Person suffixes : -m -(y)Im
-n -sin
-k -(y)Iz
-nlz -sinlz

9. Predicate suffix : -DIr

FIGURE 4.2. Inflectional suffixes for verbs

while the following are not:

kos (to run) + -(I)n --> kogun
oku (to read) + -(I)s --> okug

35

The causative voice of verbs takes various forms. The causative verb suffixes can be used

repeatedly in the indicated order. The following sequence is an example of three causative suffixes used

consecutively:

kapa (to close) + -(I)t --> kapat (to close)

kapat (10 close) + -Dir --> kapatur (10 have someone to close)

kapatar (to have someone to close) + -t --> kapattirt (to have someone to have someone to
close)

The passive voice verb suffix also takes different forms. The rule that determines the form to

be used is as follows: If the word ends with a vowel or the consonant / then the suffix (I)n, otherwise

the suffix -(I){ is used:

dde (10 pay) + -(I)n --> dden (10 be paid)
bul (to find) + -(I)n --> bulun (to be found)

sev (to love) + -(I)i --> sevil (1o be loved)

The passive and reflexive forms of some verbs have the same structure, but they differ in their
meanings. For example, the verb yikan is in passive voice in the sentence bulagik yikand: (the dishes

were washed), where it is in reflexive voice in the sentence Al ytkand: (Ali washed himself).

There are two suffixes which give a verb negative meaning: -mA4 (not) and -(y)4mA (can not).

The suffix -(y)AmA is used to express impossibility:

soyle (to say) + -mA + -m --> soylemem (I don’t say)
soyle (to say) + -(y)AmA + -m --> soyleyemem (I can’t say)

Compound verb suffixes can be affixed to verbs to add them some extra meanings. Among

them, the acceleration suffix -(y)Iver is the most frequently used one. The mood suffix -(y)Abil gives

a verb possibility meaning. In some cases, a compound verb suffix can be followed by the mood suffix:

soyle (to say) + -(y)Iver --> sdyleyiver (just say)
sdyleyiver (just say) + -(y)Abil + -Ir --> s&yleyiverebilir (he/she can say)

40

None of the compound verb suffixes can be used after the impossibility suffix -(y)4mA. Similarly, the
suffixes -(y)Akal, -(y)Akoy, and -(y)Ayaz are not used after negation suffixes.

As causative and passive voice suffixes, the aorist suffix also changes according to some specific
rules. In the negative form of a verb which is in present tense, the aorist suffix is not used. The first
singular and plural person suffixes are directly affixed to the negation suffix, while the other person

suffixes are affixed with the insertion of a z in between, as in the following example:
ver (to give) + -mA + -m --> vermem (I don’t give)

but
ver (to give) + -mA + -sin --> vermezsin (you don’t give), not vermesin

The progressive tense suffix -(f)yor causes a deformation on some roots it is affixed to (see
section 4.1.3). The same deformation occurs in the negation suffix when it is followed by the suffix -

(Ijyor:
sev (to love) + -mA + -(I)yor --> sevmiyor (he/she doesn’t love), not sevmeyor

The suffix -mAkiA can also be considered as a progressive tense suffix since it is used to indicate that

an action continues in the present time.

There is no special suffix for imperative in Turkish. Whether a verb is in imperative form is
understood through its person suffix. Every verb root can be considered as in the second person
singular imperative form (for positive orders positive roots, for negative orders negative ones): e.g. gel

(come), kapama (don’t close).

The question suffix -m/ is written separate from the word it follows; but it is subject to vowel
harmony. Its place within the verb is not consistent; it may appear after the main tense suffix or after
the person suffix, depending on the tense of the verb. It comes after the person suffix if the tense suffix

is definite past (-DI), conditional (-s4), or optative (-(y)4):

41

gel (to come) + -DI + -n + -ml --> geldin mi ? (did you come?)

gel (to come) + -s4 + -m + -ml --> gelsem mi ? (should I come?)

For the remaining tenses, the place of the question suffix is between the main tense suffix and the

person suffix:

gel (to come) + -(ljr + -ml + -(y)Iz --> gelir miyiz ? (do we come?)

gel (to come) + -(0)ACAG + -mI + -sln --> gelecek misin ? (will you come?)
No matter in which tense the verb is, the question suffix comes after the third person plural suffix:

gel (to come) + -mAIl + -lAr + -ml --> gelmeliler mi ? (must they come?)

gel (1o come) + -(I)yor + -lAr + -ml --> geliyorlar mi ? (are they coming?)

In addition to the time concept coming from the main tense suffix, a second time may be
added to a verb through the second tense suffixes. These suffixes are formed by removing the i from
the definite past, narrative past, and conditional forms of the verb imek, ie. idi, imig, and ise,

respectively:

gel (to come) + -(Dyor + -(y)DI + -m --> geliyordum (1 was coming)
gel (to come) + -(Ijr + -(y)mls + -sIn --> gelirmigsin (I am told that you come)
gel (to come) + -(Y)AcAG + -(y)sA + -k --> geleceksek (if we shall come)

When these forms are used as independent words, without being subject to the vowel harmony, they

play the same role as the second tense suffixes:
gel (to come) + -(I)yor and idi + -m --> geliyor idim (I was coming)

gel (to come) + -()r and imig + -sln --> gelir imigsin (I am told that you come)

gel (to come) + -(y)AcAG and ise + -k --> gelecek isek (if we shall come)

42

The second tense suffixes are affixed to verbs ending with a vowel with the insertion of a y in between:

gel (to come) + -sA + -(y)DI --> gelseydi (if he/she came)
gel (to come) + -(y)A + -(y)mls --> geleymig (I wish he/she had come)
gel (to come) + -mAll + -(y)sA --> gelmeliyse (if he/she must come)

The compound imperfect and conditional forms of the definite past tense can be used in two

ways; the second tense suffix may come after or before the person suffix:

gel (to come) + -DI + -n + -(y)DI --> geldindi (you had come) or
gel (to come) + -DI + -(y)DI + -n --> geldiydin (you had come)

gel (1o come) + -DI + -k + -(y)sA --> geldikse (if we came) or
gel (to come) + -DI + -(y)sA + -k --> geldiysek (if we came)

In the third person plural, the first form is more frequently used than the second:

gel (to come) + -DI + -lAr + -(y)DI --> geldilerdi (they had come)
gel (to come) + -DI + -IAr + -(y)sA --> geldilerse (if they came)

None of the second tense suffixes can be used without a main tense suffix. Additionally, the
narrative second tense suffix can not be used with definite past tense suffix (-DI), and the conditional
second tense suffix can not come after the optative (-(y)4) and the conditional (-s4) tense suffixes.

That is, the following derivations are not valid:

oku (to read) + -(y)DI --> okuydu _
oku (1o read) + -DI + -(y)mls --> okuduymug
oku (1o read) + -s4 + -(y)sA --> okusaysa

For the person suffix, different suffixes are used to represent the first, second, and third

singular, and plural persons. They also show differences depending on the main or second tense suffix

they are affixed to.

43

Different person suffixes may have the same form. For example, the suffix -sln may be the

second person singular suffix or the third person singular suffix:

gel (to come) + -mAll + -sln --> gelmelisin (you must come)

gel (to come) + -sin --> gelsin (let him/her come)

No suffix is used for the third singular person; if no person suffix exists in the verb its person

is accepted as the third singular person:

gel (to come) + -DI --> geldi (he/she came)
gel (to come) + -(I)r + -(y)sA --> gelirse (if he/she comes)

The imperative form shows an exception in this rule. With this form, no suffix is used for the second

singular person, while the suffix -sln is used for the third singular person:

gel ([you] come)

gel (1o come) + -sin --> gelsin (let him/her come)

Additionally, the imperative forms of the first singular and plural persons do not exist.

4.2.3. Verbal Nouns

In Turkish, sentences can be classified as verb sentences and noun sentences. In verb sentences,
there is an action, and this action is represented by a verb within the sentence: e.g. okula gittim (I went
to the school). On the other hand, in a noun sentence there is no explicit verb: e.g. dgrenciyim (I am
a student). The noun sentences of Turkish correspond to the sentences formed by the verb fo be in
English. In Turkish, instead of using an extra verb in such sentences, some suffixes which play the role
of the verb ro be in English are added to the subject of the sentence. These suffixes can be shown as

in Figure 4.3.

Negation concept shows differences in noun and verb sentences. In a verb sentence, it is
obtained by adding a negation suffix (-mA or -(y)AmA) to the verb of the sentence (see section 4.2.2):

e.g. okula gitmedim (I didn’t go to the school), where gid (to go) is the verb. There is no such a suffix

44

1. Question suffix : -ml
2. Tense suffixes : -()DI

3. Person suffixes : -m -(v)Im
' -n -sln
-k -z
-nlz -sinlz

4. Predicate suffix : -DIr

FIGURE 4.3. Inflectional suffixes for verbal nouns

for the verbal noun of a noun sentence. Instead, the word degil (not) is used for this purpose: dgrenci

defilim (I am not a student).

As for the verb sentences, interrogative noun sentences are formed by adding the question

suffix:

gid (to go) + -DI + -n + -ml --> gittin mi ? (did you go?)

dgrenci (student) + -ml + -sln --> dgrenci misin ? (are you a student?)

Time concept is given with the help of the tense suffixes in a noun sentence. As seen in Figure
4.3, there are three tense suffixes that can be added to a noun. They correspond to the second tense
suffixes of verb sentences. Thus, they are the definite past, narrative past, and conditional forms of the
verb imek (see section 4.2.2), and they may also be used as independent words, i.e. idi, imig, and ise.

That is, both of the following are valid:

ogrenci (student) + -(y)DI + -m ~-> Ogrenciydim (I was a student)

ogrenci (student) and idi + -m --> dgrenci idim (I was a student)

To express the remaining tenses and modes apart from these three tenses in noun sentences, the

infinitive o/ (to become) is used:

45

dgrenci (student) and ol + -(y)AcAGV + -(y)Im --> Ogrenci olacagim
(I will be a student)
dgrenci (student) and ol + -mAll + -(y)Im --> Ogrenci olmalyim

(I must be a student)

The suffix -DIr is not an obligatory suffix. It is usually not used in spoken language. In fact,
it changes the meaning of the sentence a bit; it adds a probability or sometimes a definiteness concept.
For example, the sentence arkadaginiz burada (your friend is here) means "I am sure that he/she is
here", but the sentence arkadagsiniz buradadir (your friend is here) means "he/she must be here
(perhaps)". However, it is certainly used in statements which express permanent validities: e.g. kedi bir
hayvandwr (cat is an animal). -DIr can also be used after the verbs in narrative past, progressive, or

future tense, in necessitative mode, or in narrative form of one of these tenses:

gel (to come) + -(I)yor + -DIr --> geliyordur (1 am sure that he/she is coming)
gel (to come) + -mAll + -(y)mls + -DIr --> gelmeliymigtir (probably he/she must

have come)

4.24. Participles

In Turkish, verb sentences can be transformed into a noun, adjective, or adverb clause by
adding certain derivational suffixes to the verb of the sentence. Some of the mostly used ones of these
suffixes are listed in Figure 4.4 in two groups. The first group shows the suffixes that make a noun or
an adjective, and the second group is for the suffixes that result in an adverb. Among the participles,
only -mAdAn and -mdAksizin can not be used with the negation suffix since they include negation

within their structures.

The suffix -mAG forms the infinitive form of the Turkish verbs. The infinitive can be used as

a noun, and may take any of the case suffixes. It never takes possessive suffixes. The followings are

valid:

oku (to read) + -mAG + -(y)A --> okumaga (to the reading)
oku (to read) + -mAG + -DAn --> okumaktan (of the reading)

46

1. Noun and adjective : -DIG -(y)AcAG

-mA -(y)An
-mAG -(n)AsI
-mlg Ol
2. Adverb : -cAsinA -(y)ArAG
-mAdAn -(y)IncA
-mAkslzin -(y)Ip
-()All -(y)ken

FIGURE 4.4. Some derivational suffixes affixed to verbs

while the followings are not:

oku (to read) + -mAG + -(n)In --> okumagn
oku (to read) + -mAG + -IArI --> okumaklar

Similarly, all the participles that transform the verb into a noun or an adjective may be used as a noun

root, i.e. they may take all the suffixes that a noun root can take. For example:

gel (to come) + -(y)Is + -(Dnlz + -(y)A --> geliginize (to your coming)
ver (to give) + -DIG + -lAr + -(s)[+ -n + -DAn + -(y)DI -->

verdiklerindendi (it was one of those that you/they gave)

The participles that make adverbs from verbs usually do not take any suffixes. Some of them
can take only certain suffixes. For example, -(y)ArAG participle can take the suffix -DAn, which adds

nothing to its meaning:

yap (to do) + -(y)4rAG --> yaparak (by doing something)
yap (to do) + -(y)ArAG + -DAn --> yaparaktan (by doing something)

-(y)ken has a somewhat different usage than the other participles. Originally it is the -(y)An
relative participle of the verb imek. Like the other forms of this verb, it may be used as a suffix or as
an independent word, i.e. iken. It is an invariable suffix, that is, it is not subject to the vowel harmony.
It is affixed to a verb in the necessitative mode or in any tense except the definite past. It is not used

with person suffixes, but it can follow the third person plural suffix -L4r. Second tense suffixes are not

47

used with -(y)ken. It can also be affixed to a noun causing a noun sentence to transform into a noun

clause:

dgrenci (student) + -(y)ken —-> Ofrenciyken (when one was a student)
ev (house) + -DA + -lAr + -(y)ken --> evdelerken (when they are at home)

-cAsinA shows some similarities with -(y)ken. It is affixed to certain tense bases, namely,

present, narrative past, and narrative of progressive and future:

ug (to fly) + -(A)r + -cAsInA --> ugarcasina (as if flying)
u¢ (to fly)y + -(I)yor + -(y)mls + -cAsInA --> uguyormugcasina (as if he/she was flying)

and it can also be affixed to nouns and adjectives:

cocug (child) + -cAsinA --> ¢ocukcasina (like a child)

ctigin (crazy) + -cAslnA --> glgincasina (like crazy).

V. MORPHOLOGICAL REPRESENTATION OF TURKISH

In the previous chapter, the morphological structure of Turkish has been investigated. We have
divided the analysis into two interrelated parts: morphophonemic analysis and morphotactic analysis.
For the first one, we have defined the morphophonemic rules and explained the irregularities of these

rules. For the morphotactics, we have displayed the order of the suffixes for different root types.

In this chapter, we shall attempt to formalize this morphological structure in the form of an
Augmented Transition Network (ATN). The morphotactics, that is the order of the suffixes, will be
defined as transitions on the network. The morphophonemic rules will accompany the network as rules
that are activated when transitions between the states occur. Combination of the state transitions in

the network and the rules will form the structure of a morphological parser for the Turkish language.

S.1. Root Categories

Belore discussing the morphology of Turkish words, we must categorize the roots. This is
necessary because all the suffixes are not affixed to all of the words. For example, it is syntactically
incorrect to affix the first person possessive suffix -(I)m (my), which is affixed to nouns, to a verb.
Table 5.1 shows the word categories in alphabetical order used in this research. Also some example
root words are displayed in the table to clarify the meaning of the categories. For each category, we
shall make use of a single-letter abbreviation. These abbreviations will ease the definition of the

morphotactic structure.

As can be seen from the table, we divide ihe words into 14 categories. As the number of the
categories increases, it becomes easier to define the morphotactics of the language. The suffixes that
are affixed to words in different categories can be distinguished more easily. Each category owns a
different structure which represents its morphotactics and the suffixes can be placed in the structures

that they should be.

An expanded form of this idea is referred to as semantic categorization. In this process, the
words arc¢ not only categorized with respect to their basic properties (such as noun, verb, adjective),

but also categorized taking into account their semantics. For example, a subcategory of nouns

49

TABLE 5.1, Word categories

Category Category name Examples

A Adjective adil, giizel, san

B Chemical symbol Au, Br, Eu

C Conjunction ama, ancak, eger

D Adverb kiskavrag, kolaylikla, Iikar kar

E Postposition aid, dair, degin

I Interjection agu, ah, aman, eh, elveda

K Acronym AET, Cad., Dog., kg., TBMM

L Letter ab,c, ..,z

N Noun adam, kitab, masa

P Pronoun bazisi, ben, biz, bu, kendi, kim, o, siz, su
R Proper noun Ankara, Atatiirk, Kutupyldizi

S Number bin, bir, iki, milyar, milyon, on, yilz
v Verb agla, gozet, oku

W Unknown category adfil, gapar, isfilt

comprises the words that define the professions, a subcategory of proper nouns can be used for the
country names, and so on. The aim of this subcategorization is to affix a suffix only to the relevant
words. For instance, a suffix that can be affixed to a country name may not be affixed to other proper
nouns. In section 5.4, we shall utilize a similar method for verbs. The verbs will be divided into

subcategories based on their syntactic properties.

Note that we have reserved a category, W, for words whose categories are not known. We have
collected these words from [53] which is the main spelling guide and which does not include word
explanations. We could not find these words in the dictionaries [54,55,56]. Thus it was not possible
to guess their categories. But we have included these words in our lexicon for completeness and
grouped them in a separate category. Since the original categories of these words are not known, no

suffixes can be attached to the words in the category W.
5.2. Morphophonemics
The morphophonemic rules are used, in general, to determine the form of a suffix that will
be affixed to a word. In addition to the suffix formation, some of the rules may operate on the word

itself instead of the suffix; i.e. the rules change the form of the word. This situation is rare in Turkish,

but to arrive at a complete morphological structure, we must consider these exceptional situations.

50

In what follows, we have derived all the rules that are used in our morphological structure.
These rules include some well-known rules such as the vowel harmony rule, and some rules which are
used for a very limited number of cases such as the vowel insertion rule 1. In fact, rules of this second
kind are not considered as morphophonemic rules in grammar books on Turkish morphology, instead
they are treated as exceptional cases [10,11,12,53,57]. Hence they are not given a name as a rule; the
names for some of the following rules are due to the authors. In order to be able to build a uniform

morphophonemic component, we have derived all the rules that modify the suffixes and/or the words.

Below we list the morphophonemic rules. Some of the rules (rules 1, 2, 4, 8, 9, and 23) apply
to each of the suffixes that are affixed to a word, while the rest of the rules apply only to the first
suffix that is affixed to the word. These rules make use of the category (vowel, low vowel, etc.) and the
order of the phonemes in the word and/or the suffix. To make the rules easy to read, we have used

the following abbreviations:

jps : first phoneme of the suffix

fvs : first vowel of the suffix

ipw : last phoneme of the current word

vw : last vowel of the current word

lew : last consonant of the current word
Itpw : last two phonemes of the current word

The affixation process goes in this way: given a word in its root form, we derive a new word
by adding an affix to this root form, then derive another word by adding another affix to this new
word, and so on. The phrase current word denotes the word parsed up to that time, i.e. it signifies
either the root word (for the first suffix) or the word derived from the root word by the affixation of

the previous suffixes (for the succeeding suffixes).

Rule 1 Vowel harmony rule : Depending on the last vowel of the current word and the vowel of the
suffix, the latter one changes. Nearly all of the Turkish words obey the vowel harmony rule. But some
loanwords do not obey this rule due to their different phonetic structures (in fact, they obey another
rule which we can name as inverse vowel harmony rule). So, we classify the words in two categories:
words that obey the vowel harmony rule, and words that obey the inverse vowel harmony rule. Tables

5.2 and 5.3 show the rules for each of these groups.

51

Examples: kalem (pencil) + -DA ---> kalemde (at the pencil)
kug (bird) + -(y)I ---> kugu (the bird)

gel (to come) + -(I)yor ---> geliyor (he/she is coming)
Example: saat (watch) + -(I)m ---> saatim (my watch)

Note that in the derivation of the word geliyor (he/she is coming), the vowel o in the suffix -

(1)yor does not change. This vowel is not subject to the vowel harmony rule since it is not capitalized.

The first part of this rule (the rule for words that obey the vowel harmony) is applied to each
vowel (that is subject to the rule) in each suffix. The second part (the rule for words that obey the
inverse vowel harmony), on the other hand, is applied only to the first vowel (if it is subject to the
rule) in the first suffix. In other words, for the first vowel in the first suffix, either the first or the
second part of the rule applies; for other vowels in all the suffixes, the first part of the rule applies.
As an example, consider the following derivation, where saar (watch) is a word that obeys the inverse

vowel harmony rule:

saat (watch) + -(I)mlz + -DA ---> saatimizde (at our watch)
We can represent this derivation in the following sequence:

saat (watch) + -(I)m ---> saatim

saatim + -Iz ---> saatimiz (our watch)

saatimiz (our watch) + -DA ---> saatimizde (at our watch)

In the first derivation, the second i)art of the rule applies. In the next two derivations, the first part

of the rule applies.
Rule 2 Consonant harmony rule 1 : For some current words whose last phoneme is one of b,c,d,g or

g, this last phoneme changes when no more suffixes are affixed to the current word or when a suffix

beginning with a consonant is affixed. Table 5.4 shows the rule.

52

TABLE 5.2, Vowel harmony rule

fvs

Ivw

Rule

back vowel

front vowel

back and unrounded vowel
back and rounded vowel
front and unrounded vowel
front and rounded vowel

fvs does not change
fvs is replaced by e
fvs does not change
fvs is replaced by u
fvs is replaced by i
fvs is replaced by i

TABLE 5.3. Inverse vowel harmony rule

fvs Ivw Rule

a back vowel fvs is replaced by e

a front vowel fvs does not change
! back and unrounded vowel fvs is replaced by i

L back and rounded vowel fvs is replaced by u
L front and unrounded vowel fvs does not change
! front and rounded vowel - fvs is replaced by u
Examples: kitab (book) ---> kitap (book)

In this rule, there is a distinction between the first suffix and the succeeding suffixes. For the
first suffix affixed to the word, the word determines whether the rule will be applied or not. For
example, the word kitab (book) obeys this rule, while the word ad (name) does not. For the succeeding
suffixes, the last suffix that has already been attached to the word determines whether the current word

obeys the rule or not. The word obeys the rule if the last phoneme of the suffix is capitalized. For

example:

giceg (flower) + -lAr ---> gigekler (flowers) (also rule 1 applies)

emred (to order) + -DI --> emretti (he/she has ordered) (also rule 1 applies)

agla (to cry) + -mAG + -l --> aglamakl (crying)

53

TABLE 5.4. Consonant harmony rule 1

Suffix Ipw Rule

no suffix or fps is consonant b Ipw is replaced by p
no suffix or fps is consonant ¢ Ipw is replaced by ¢
no suffix or fps is consonant d Ipw is replaced by ¢
no suffix or fps is consonant gg Ipw is replaced by k&

Rule 3 Consonant harmony rule 2 : If Ipw is § and either there is no suffix or fps is a consonant, then

Ipw is replaced by g.

Example: psikolog (psychologist) + -IAr ---> psikologlar (psychologists)

Rule 4 Consonant harmony rule 3 : For some suffixes that begin with b,cd, or g, the first phoneme
of the suffix changes if the last phoneme of the current word is a voiceless consonant. Table 5.5 shows

the rule.

Example: kitab (book) + -CI ---> kitapgt (book seller)

Note that rule 2 (consonant harmony rule 1) is applied before this rule, which changes b into
p. Also note that we represent the consonants that can change according to this rule in capitalized
form. For example, the following suffix does not obey to this rule although the word kug (bird) ends

with a voiceless consonant:

kug (bird) + -baz --> kugbaz (bird catcher)

TABLE 3.5, Consonant harmony rule 3

Ipw fps Rule

voiceless consonant
voiceless consonant
voiceless consonant
voiceless consonant

fps is replaced by p
fps is replaced by ¢
fps is replaced by ¢
fps is replaced by k&

QA e o

54

Rule 5 Vowel insertion rule 1 : If there is no suffix or fps is a consonant, then I is inserted before the

last consonant of the current word. This rule applies to nouns only.
Example: agz (mouth) + -IAr ---> agzlar (mouths)

Rule 6 Vowel insertion rule 2 : If there is no suffix or the suffix is not one of -L-()G,-(D-(Dm,-(D)ntl,-

(I)t, then I is inserted before the last consonant of the current word. This rule applies to verbs only.

Examples: ayr (to separate) + -DI ---> aywd: (he/she separated)
cagr (to call) + -mAz ---> ¢agirmaz (he/she does not call)

Rule 7 Double consonant rule : If the suffix is one of -eD,-(I)m,-(I)mlIz,-(D)n,-(1)nlz,-(n)In,-ol,- (s)],-(y) A4,-
()L-(y)IlAn,-(y)InAn, then lpw doubles. This rule applies to nouns only.

Example: ub (medicine) + -(y}I ---> nbbt (the medicine)
Rule 8 Phoneme deletion rule : If fps and Ipw are either both vowels or both consonants, then fps drops.
Examples: sev (1o love) + -(y)AcAG ---> sevecek (he/she will love)

(also rule 1 applies for the two vowels in the suffix)

masa (table) + -(I)m ---> masam (my table)

Rule 9 Phoneme deletion rule for the suffix -(I)yor : If the suffix is -(I)yor and Ipw is a vowel, then Ipw
drops.

Example: agla (1o cry) + -(I)yor ---> agliyor (he/she is crying)

Rule 10 Phoneme deletion rule for verbs : If Ipw is a vowel and fps is y, then Ipw is replaced by I. This

rule applies to verbs only.

Examples: de (10 say) + -(y)An ---> diyen (the one who says) (also rule 1 applies)
de (10 say) + -(y)AcAG ---> diyecek (he/she will say) (also rule 1 applies)

35

This rule has an exception for the word de (to say). If the word is de (to say) and the suffix

is one of -(y)Ip or -(y)IncA, then the rule is not applied:

de (to say) + -(y)Ip ---> deyip (by saying)
de (to say) + -(y)IncA ---> deyince (when one says)

Rule 11 Possessive suffix rule 1 : If the suffix is -(s)1, then fps (which is s) drops.
Example: mevki (position) + -(s)I ---> mevkii (his/her position) (also rule 1 applies)
Rule 12 Possessive suffix rule 2 : If the suffix is -(s)1, then fps (which is s) may or may not drop.

Example: sanayi (industry) + -(s)I ---> sanayisi (his/her industry) (also rule 1 applies)
sanayi (industry) + -(s)I ---> sanayii (his/her industry) (also rule 1 applies)

Rule 13 Rule for compound words 1 : A compound word is a word that is formed of two other words.
The meaning of the compound word may be a combination of the meanings of the underlying words
or may be totally different. For example, alinyazist (destiny) is formed of alin (forehead) and yaz

(writing). This rule applies to compound words that end in sI or suyu. Table 5.6 shows the rule.

Examples: alinyazisy (destiny) + -lAr ---> alinyazilart (destinies)
alinyazist (destiny) + -(s)I ---> alinyazist (his/her destiny)
almyazist (destiny) + -(I)m ---> alimyazim (my destiny) (also rule 8 applies)

almyazist (destiny) + -CA ---> alinyazisinca (according to the destiny)
Note that for compound words that end with suyu, in the cases where the last two phonemes

of the word drop, the word takes a form which ends with su and thus rule 18 (rule for the morpheme

su) is applied.

Rule 14 Rule for compound words 2 : This rule applies to compound words that end in a high vowel

and lcw is one of b,c,dg, or §. Table 5.7 shows the rule.

56

TABLE 5.6, Rule for compound words 1

Suffix Rule

-lAr Itpw drop, -l4r is inserted, -I is inserted
-(s)I suffix drops

-(Dm,-(Dmlz,-(Dn,-(Dnlz Itpw drop before the suffix
-CA,-DA,-DAn,-(y)A,-(y)I n is inserted before the suffix

-(y)lA no change

other suffixes Itpw drop before the suffix

TABLE 5.7. Rule for compound words 2

Suffix Rule

-lAr Ivw drops, lew is replaced by p,gtk respectively, -lAr is
inserted, -7 is inserted

-(s)I suffix drops

-(Dm,-(Dmlz,-(I)n,-(Inlz,-(y)IA no change

-CA,-DA,-DAn,-(y)A,-(y)1 n is inserted before the suffix

other suffixes Ivw drops, Icw is replaced by p,¢tk respectively before the
suffix

Examples: ayakucu (foot) + -lAr —-> ayakuglan (feet)

ayakucu (foot) + -(s)I ---> ayakucu (his/her foot)
ayakucu (foot) + -(I)m ---> ayakucum (my foot) (also rule 8 applies)
ayakucu (foot) + -CA ---> ayakucunca (according to the foot)

Rule 15 Rule for compound words 3 : This rule applies to compound words that end in a high vowel.

Table 5.8 shows the rule.

Examples: aslanagznt (snapdragon) + -lAr —-> aslanagzlant (snapdragons)
aslanagz (snapdragon) + -(s)I ---> aslanagz: (his/her snapdragon)
aslanagzi (snapdragon) + -(I)m ---> aslanagzim (my snapdragon) (also rule 8
applies)

aslanagzi (snapdragon) + -CA ---> aslanagzinca (according to the snapdragon)

57

TABLE 5.8. Rule for compound words 3

Suffix Rule

-lAr Itpw are interchanged, -L4r is inserted, - is inserted
-(s{ suffix drops

-(Dm,-(I)mlz,-(Dn,-(Dnlz,-(y)A no change

-CA,-DA,-DAn,-(y)A,-(y)I
other suffixes

n is inserted before the suffix
ltpw are interchanged before the suffix

TABLE 5.9. Rule for compound words 4

Suffix Rule

-lAr Ivw drops, -lAr is inserted, -I is inserted
-(s)I suffix drops
-(Dm,-(D)miz,-(In,-(I)nlz,-(y)IA no change

-CA,-DA,-DAn,~(y)A,-(y)I

n is inserted before the suffix

other suffixes Ivw drops before the suffix

Rule 16 Rule for compound words 4 : This rule applies to compound words to whom the rules 13,
14, and 15 are not applicable. Table 5.9 shows the rule.

Examples: adacay! (garden sage) + -lAr ---> adacgaylan (garden sages)

adagay: (garden sage) + -(s)I ---> adagayr (his/her garden sage)

adagay: (garden sage) + -(I)m ---> ada¢ayim (my garden sage) (also rule 8 applies)

adagayt (garden sage) + -CA ---> adagaymca (according to the garden sage)

Rule 17 Aorist suffix rule : There are two forms of the aorist suffix in Turkish: -(4)r and -(I)r. Some
of the verbs take the first one, while the rest take the second. There is no specific rule to decide
whether -(A4)r or -(I)r is affixed to a verb. So, we accept the form -(4)r as the default aorist suffix for
verbs and handle the verbs that use the form -(I)r by the following rule: If the suffix is -(A)r, then the
suffix is replaced by -(Dr.

Example: gel (to come) + -(A)r ---> gelir (he/she comes) (also rule 1 applies)

Rule 18 Rule for the morpheme su : Words that end in su show irregularities when a possessive suffix
(-(Dm,-(I)mlz,-(n,-(I)niz,-(s)I) or the genitive suffix (-(n)In) is affixed. If the suffix is one of -(I)m,-
(Dmlz,-(Dn,-(I)nlz,-(n)In,-(s)I, then y is inserted before the suffix.

58

Examples: su (water) + -(I)m ---> suyum (my water) (also rule 1 applies)
su (water) + -(s)I ---> suyu (his/her water) (also rule 1 and rule 8 apply)
akarsu (running water) + -(n)In ---> akarsuyun (of the running water)

(also rule 1 and rule 8 apply)

Rule 19 Rule for proper nouns : This rule applies to proper nouns only. If the suffix is an inflectional
suffix, then the apostrophe character (°) is inserted before the suffix. If the suffix is -LAr, then the apostrophe
character (’) may or may not be inserted before the suffix [53].

Examples: Atatirk + -(I)n ---> Atatirk’iin (also rule 1 applies)
Atatilrk + -lAr ---> Atatirk’ler (also rule 1 applies)
Atatiirk + -lAr ---> Atatirkler (also rule 1 applies)

Rule 20 Rule for acronyms 1 : This rule applies to acronyms only. When a suffix is affixed to an
acronym, other rules (vowel harmony rule, consonant harmony rules, etc.) apply to the reading of the
acronym; not to the reading of the expanded form of the acronym. In other words, we consider the
reading of the acronym as if it were the word and then apply the relevant rules. This rule tries to
extract the reading of the acronym by considering the last vowel and the last consonant in the word.
But the rule does not always yield true derivations since we can not extract the reading by only
syntactic knowledge. Hence, the rule is designed as to accept the suffix attachments for all the possible
reading forms of the word. This means that some invalid attachments are also included in the rule.
Table 5.10 shows the rule.
Examples: 1. TBMM + -DA ---> TBMM'de (also rule 21 applies)

2. TBMM + -(n)In ---> TBMM nin (also rule 21 applies)

3. AET + -(n)In ---> AET’nin (also rule 21 applies)

4, AET + -(n)In ---> AET'in (also rule 21 applies)

5. ASELSAN + -(y)I ---> ASELSAN": (also rule 21 applies)

6. ASELSAN + -(y)I ---> ASELSANYi (also rule 21 applies)

7. UNSC + -(y)I ---> UNSCY%i (also rule 21 applies)

8. UNSC + -(y)I ---> UNSC’u (also rule 21 applies)

9. OSS. + -(y)I > OSS.yi

10p.m. + -DA --> p.m.de

11J0 + -(n)In ---> [O’niin (also rule 21 applies)

12.CENTO + -(y)I ---> CENTO%u (also rule 21 applies)

59

TABLE 5.10. Rule for acronyms 1

Ipw Ivw Rule

consonant front vowel other rules apply as if lvw is a front vowel and lpw is either
a vowel or a consonant

consonant back vowel other rules apply as if either lvw is a front vowel and Ipw is
a vowel or lvw is a back vowel and lpw is a consonant

consonant word has no vowels other rules apply as if lvw is a front vowel and Ipw is a
vowel

vowel front vowel other rules apply as if Ivw is a front vowel and Ipw is a
vowel

vowel back vowel other rules apply as if Ivw is a back vowel and Ipw is a vowel

The examples 4, 6, and 8 above are not correct; the valid derivations for these examples are
3, 5, and 7, respectively. As indicated above, the reason is that acronyms with the same syntactic form
have different readings. For instance, ASELSAN and UNSC both end in a consonant and their last
vowels are back vowels. However, they are pronounced differently; the first one is pronounced as a
single word, while the second one is pronounced letter by letter. Hence, the form of the suffix which
is true for one of them is wrong for the other. In order to correct this situation, an internal
classification of the acronyms, which divides them into two groups according to the pronunciation,

should be done in the lexicon.

Rule 21 Rule for acronyms 2 : This rule applies to acronyms only. If [pw is not ., then the apostrophe

character (°) is inserted before the suffix [53].

Example: TBMM + -DA ---> TBMM'de (also rule 20 applies)

Rule 22 Rule for numbers : This rule applies to the numbers that are written as a sequence of digits.
When a suffix is affixed to a number, other rules (vowel harmony rule, consonant harmony rules, etc.)
apply as if the number is written explicitly (i.e. as a sequence of words corresponding to the digits).

Therefore, we first convert the number into its written form.

This conversion procedure is straightforward if the last digit of the number is not zero. For
example, if the number is 34, it is enough to convert 4 into ddérd (four). However, if the last digit is

zero, then we must know how many zeros there are at the end of the number. If there is one zero,

60

then the written form ends in on (ten), yirmi (twenty), and so on, depending on the digit preceding the
last one. If there are two zeros, then the written form ends in yiz (hundred). If there are three zeros,
then the written form ends in bin (thousand). The conversion process continues in this way. So, the
rule is: The number is converted into its written form, the apostrophe character (°} is inserted before the

suffix, and the suffix is affixed as if the number were written in this form [53].

Examples: 8 + -(I)ncI > &’inci (also rule 1 applies to sekiz (eight))
4 + -(5)Ar ---> 4’er (also rule 1 and rule 8 apply to dord (four))
130 + -(5)Ar ---> 130’ar (also rule 8 applies to yiiz otz (one hundred and thirty))

Rule 23 Rule for particles : The particles -dA4 (the emphatic particle, which has a meaning like even),
-ki (complementizer), and -m/ (question particle) have a special feature: they are written separate from
the current word they follow. 3 we generally refer to these as particles because of this property and
to distinguish them from the suffixes -DA (locative case suffix) and -ki (relative suffix). But these
particles are subject to all the rules we have defined as other suffixes. If the suffix is one of the particles

-dA,-ki, or -ml, then a space character is inserted before the suffix.

Examples: gocug (child) + -dA --> ¢ocuk da (even this child) (also rule 2 applies)
kitab (book) + -ki --> kitap ki (such a book) (also rule 2 applies)

geldi (he/she came) + -ml --> geldi mi ? (did he/she come?) (also rule 1 applies)

Note that the consonant d in the particle -d4 and the vowel i in the particle -ki do not obey

the harmony rules. Hence they are not capitalized.

Most of the rules listed above have some exceptions; i.e. they are not valid for all of the words.
Only the rules 9, 19, 20, 21, 22, and 23 are valid all the time. The rules 4 and 8 are handled by the
use of the symbols capital letter and (); i.e. if the phoneme is represented with these symbols, then
it can change or drop, respectively. For rule 1, we have handled the exceptional cases (i.e. words that
do not obey the vowel harmony rule - or, words that obey the inverse vowel harmony rule) with a
separate rule within rule 1; the reason is that the exceptional cases also obey a different rule. For the

rest of the rules that have exceptions, we did not mention those exceptional cases; the exceptional

3 The transitions of the ATN in which these particles are written separate from the current word can
be seen in appendix A.

61

cases will be treated as if there is no such rule. For example, consider rule 5 for the following

derivations:

agz (mouth) + -lAr ---> agizlar (mouths)
tank (tank) + -l4Ar ---> tanklar (tanks)

The first word obeys the rule, while the second one does not. The second word takes the suffix -(Dm

without considering rule 5 and the word ranklar (tanks) derives.

Some of the rules that have exceptions are valid for most of the words (e.g. vowel harmony
rule) and some of them are valid for only a very limited number of cases. For example, rule 10 is valid
for only two words in Turkish, which are de (to say) and ye (to eat). In section 5.4, we shall see how

we can handle these exceptional cases formally.

Some of the studies on Turkish morphology treat some of the rules in a simple way. Usually
the acronyms and the numbers shown in digits are not counted as language elements despite the fact
that they occur frequently inside texts. Hence, no rules are designed for these elements. As another
example, in {25] the aorist suffix rule is not implemented and the parser does not reject a word affixed

with the wrong aorist suffix.

As a final remark, Hankamer [32] divides the morphophonemic rules into two groups: rules
for roots and rules for suffixes. The relevant rule set is applied depending on whether the root or a
suffix is to be modified. In our approach, we did not make a distinction between these two. The rules
have the capability of operating on the root and the suffixes as determined by the functions of the

ATN.

5.3. Morphotactics

Turkish morphology is quite rich in the number of suffixes, especially the derivational ones.
This forced us to make a detailed research in compiling the suffixes that are used in Turkish
[9,10,11,14,15,35]. Among these references, [14,15] are the ones that we have consulted most. In these
references most of the suffixes are listed and they are accompanied with brief explanations on their

use. The type of the suffixes (inflectional or derivational) are also mentioned. Other than these

62

references, we have also consulted the word dictionaries [54,55,56], in order to extract the suffixes that

are rarely used and hence not mentioned in grammar books.

Derivational suffixes are the suffixes which produce a new word having a different meaning
than the word they are affixed to. Some of these suffixes also change the category of the word; for

example, a noun may be a verb after a derivational suffix is affixed.

Some of the derivational suffixes are highly productive while the others are not. The participles
are among the suffixes that may be received by all of the words in the category that they belong to.
Another group of the derivational suffixes can be attached to a great number, but not all, of the words
in their categories. For example, -CI, -lAs, -IIG are such suffixes. There are also some derivational
suffixes that can be affixed to a few words only. As an extreme example, the suffix -kek can only be

affixed to the noun er (male) to form the noun erkek (man).

There is a large number of derivational suffixes used in Turkish. Table 5.11 lists the
derivational suffixes that are used in this research. Originating category denotes the category of the
words that the suffix can be affixed; destination category denotes the category of the new word after the
suffix is affixed. The interrelationships between these suffixes will be defined formally in the following

section within the ATN representation.

5.4, Turkish Morphology in ATN

In this section, we shall explain the morphological structure of Turkish language by using the
morphotactics and the morphophonemic rules. The morphotactics will be shown in a list format and
also a small part as a transition network. The morphophonemic rules will be defined in a pseudo
language. When defining these rules, we shall make use of some functions. The explanation of these

functions will also be given.

For each word category shown in Table 5.1, there is a transition network that is used to parse
a word that is originated from that category, i.e. a word whose root form belongs to that category. For
example, the root form of the word kitaplaniniz (our books) is kitab (book) which belongs to the noun

category. So, we begin parsing from the noun network. Also, in addition to the main network for a

63

TABLE 5.11. Derivational suffixes

Originating category Suffixes

Destination category

A (adjective)

D (adverb)

I (interjection)
N (noun)

P (pronoun)
R (proper noun)

S (number)

V (verb)

-bIz, -CA, -(I)msAr, -(Dmsl, -(DmuraG, -lIG, -gin
-CA, -DAn, -en, -(I)nA, -sinAd, -skz

-(A)z

-(A)l

-(y)sA

-CACIG, -CAnA, -DAn, -lkIA, -mAsinA

-4

-(A)l, -CA, -CI, -CIl, -(i)G, -kar, -II, -lIG, -perver,
-TAG, -sAl, -sever, -sI, -sll, -skz, -(v)i, -(y)ane
-CA, -leyin, -lI, -slzIn, -(y)ane, -(y)llAn, -(y)In,
-(y)InAn, -(y)lA

-(A)C, -(A)gl, -(a)j, -(A)G, -(A)IAG, -(A)t, -bagt, -baz,

-CA, -cAglz, -CAG, -CI, -CIG, -dA, -dAG, -dAlIG,
-DAm, -DAn, -Dar, -DAg, -dIrIG, -dIz, -GA, -GAn,

-giller, -hane, -(I)I, -(1)t, -(i)st, -(i)zm, -keG, -keg, -ki,

-lA, -lAé, -lAm, -IIG‘, -mAn, -mAr, -name, -6lger,
-SAG, -slz, -tay, -zade

-A, -(A)n, -(A)r, -(A)s, -DAn, -DAg, -DAt, -eD, -1,
-(DG, -(IimsA, -lA, -IAn, -1Ag, -14t, -ol, -sA, -sI
-clldyln

-giller, -LAr, -lIG,

-cAglz, -CI, -CIG, -(i)st, -(i)zm, -ll, -skz

-IA, -lAg

-gen, -(I)I’lCI, "(I)Z9 -(g‘)AI‘

-dAIIG

-aln, -altnug, -beg, -bin, -bir, -doksan, -dokuz, -dérD,
-elli, -iki, -kirk, -milyar, -milyon, -on, -otuz, -sekiz,
-seksen, -trilyon, -ig, -yedi, -yetmig, -yirmi, -yiz

-(A)cAn, -(A)gAn, -GIn, -(I)G, -(DmsAr, -mlg, -pAG,

-SAG, -sAl, -vAn, -(y)AsIcA, -(y)IcI
-CA, -CAsInA, -C, -DAn, -(D)n, -(I)na, -sA, -skzin,

-0A, -WAIL, -(y)An, -(y)ArAG, -(y)AslyA, -(y)IncA,

-)Ip

-1A

-(4)C, -(A)G, -(A)IgA, -(A)m, -(A)mAG, -(A)mik,
-(A)ndk, -(A)r, -(A)v, -(A)y, -CA, -CAG, -CAmA,

-GA, -GAC, -GAn, -GI, -GIC, -Glt, -I, -()cIG, -(Dm,

-(Dn, -(Dntl, -(Dt, -UG, -mAC, -mAn, -mAz, -mIG,
-mur, -nAG, -sl, -tl, -(y)AcAG, -(y)An, -(y)Asl

-Ar, -dA, -DAn, -DIG, -dlr, -()l, -(Dn, -Ir, -(Ds, -(I)t,

-ki, -mA, -mAz, -t, -(y)I§

A (adjective)
D (adverb)
N (noun)

V (verb)

C (conjunction)
D (adverb)
V (verb)

A (adjective)
A (adjective)
D (adverb)
D (adverd)
N (noun)

N (noun)

N (noun)

N (noun)

N (noun)

N (noun)

V (verb)

V (verb)

P (pronoun)
N (noun)

R (proper noun)
V (verb)

A (adjective)
N (noun)

S (number)
S (number)
S (number)
A (adjective)
A (adjective)
D (adverb)
D (adverb)
D (adverb)
E (postposition)
N (noun)

N (noun)

N (noun)

N (noun)

N (noun)

V (verb)

V (verb)

category, there may be subnetworks for that category. These subnetworks are called recursively from
other networks. In the transition networks, in addition to the arcs for recursive call, we also include
a jump arc. A jump arc indicates that the parsing continues from another network. This process is
different from a recursive call; when a jump to another network is performed, the process does not
return to the originating network. The use of the jump arcs simplifies the design of the network; it
can be eliminated by introducing additional nodes. Also, if we think of all the morphotactics as a single

network, this jump operation can be seen just as a transition from one node to another.

In the list and the network notation, we have used the following conventions:

B A node represents a state of the network. An arc represents a transition from one node to

another.

B A circular node represents a node of the network. A rectangular node represents a node
of another network, i.e. after the transition, the process continues from the indicated node in
the other network. As indicated above, this is referred to as a jump (not a recursive call) to

the other network.

® A node labelled * indicates that parsing ends after the transition occurs.

® The end node of a network is labelled by n/e in the graph and by n/end in the list, where

n is the name of the network.

® The label on an arc can be one of three types:

m A suffix

m A recursive call to another network, indicated as (parse n), where n represents a
node in another network. The process continues from node n and when the end of
the network is reached, the process returns to the node following the arc labelled
(parse n). While processing the network that contains the node », if a jump (not a
recursive call) to another network is encountered, then the process continues from

this new network and it does not return to the calling network.

65

B An empty suffix, indicated as ~. This means that the process may jump from the
node preceding the arc to the node following the arc without affixing a suffix or

performing a recursive call.

M If there is more than one transition between two nodes, then these alternatives are written

as different labels on the same arc and are separated by commas.

W (x), where x is a phoneme, indicates that the phoneme deletion rule (rule 8) can be applied

to the phoneme x.

M X, where x is a phoneme, indicates that the vowel harmony rule (rule 1) (if x is a vowel)
or the consonant harmony rule 3 (rule 4) (if x is a consonant) can be applied to the phoneme

X.

W (X), where x is a phoneme, indicates that both (x) and X are valid.

The full set of morphotactics is listed in appendix A. Figure 5.1 shows the ATN representation
of a part of the noun network in graphical form. In the following paragraphs, we shall summarize the

parsing of some of the networks.

Parsing of the noun network begins from node N. Then two subnetworks are called; network
ND (network that consists of the derivational suffixes for nouns) followed by the network NC (network
that consists of the inflectional suffixes for nouns). The NC network is further divided into two parts;
the first part contains the plural suffix (-LAr), the possessive suffixes (-(I)m, -(I)n, etc.), and some other
suffixes that are used in this state; the second part calls the network NE which contains the case
suffixes (-DA:locative, -DAn:ablative, -(y)A:dative, -(y)[:accusative), the genitive suffix -(n)In, and the
relative suffix -ki. The network NC ends with the particles (the emphatic particle -d4 and the

complementizer -ki) which are written separate from the word.

The verb network is the most complex one in the morphological structure. One important
point that must be noted is that, in addition to the categorization of the words as noun, verb, adjective,
etc.,, we have also categorized the verbs internally. The reason of this subcategorization is that the

affixation of the voice suffixes (-(I)g:reciprocal, -(I)n:reflexive, -Ar,-Dir,-Ir,-(I)t,-t:causative, -(I)l:passive)

CLCN, ()G, sAls!
LCI,(1)G,sAl,s)E:]

giller @
{Alr.[4)5.DA5.DALeD, (G
AL[msA sA,sl
lAg.IAt
ND1 = ND2 -
G IG, .
ND & ZND5
‘ S nG,~
y cl,-
AIC. (g - o ND4
()}, (A)G... tlger
né

fAlLkar, G, perver,rAG, sever,sil, (VL [y)ane,~

FIGURE 5.1. ATN representation of the ND network

to the verbs are different. These suffixes are affixed to the root form of a verb. The subcategorization
process simplifies the morphotactic rules that control the use of the voice suffixes. The categorization
of the verbs is listed in Table 5.12, with an explanation of each subcategory. There are nine
subcategories. Although the starting node of the verb network is labelled V, none of the verbs start

parsing from this node; instead the nodes V1 through V9 are used as the starting nodes for the verbs.

The V network handles the affixation of some of the voice suffixes, and then calls the networks
VA and VB. The VA network contains the passive suffix -(I)! and some other derivational suffixes that
cause a jump to noun, adjective, or adverb networks. The VB network includes the compound verb
suffixes (-(y)Abil, -(y)Adur, etc.) and the negation suffix (-mA). It then parses the main tense suffix (-DJ,
-ml§, -mAII, etc.) and performs a jump to the network corresponding to this main tense suffix. The VC
network contains the derivational suffixes that can be affixed to a verb in this state. The networks VD,
VE, VF, and VG include the question suffix (-mI), second tense suffixes (-(y)DI, -(y)mlIg, -(y)sA), and

the person suffixes (-m, -n, -k, -nlz, -lAr) that can follow each of the main tense suffixes.

67

TABLE 5.12. Subcategories of verbs

Subcategory Explanation

Vi Verbs that can take the causative suffix -Ar, e.g. kop (to break)

V2 Verbs that can take the causative suffix -Ir, ¢.g. bar (to sink), doy (to be satiated), pis
(to be cooked)

V3 Verbs that can take the causative suffix -z, e.g. ayr (to separate), agir (to pass over),
bagr (to shout)

V4 Verbs that do not belong to other verb subcategories, e.g. abart (to exaggerate), as
(to hang)

\A Verbs that end with a vowel, e.g. agla (to cry), sicra (to leap)

V6 Verbs that can take the causative suffix -(I)¢, e.g. kok (to smell), kork (to be afraid)

V7 Monosyllabic verbs that end with the consonant /, e.g. al (to take), gel (to come)

V8 Polysyllabic verbs that end with the consonant /, e.g. al¢al (to stoop), kigul (to
become small), yiksel (to rise)

V9 Verbs that end with the consonant n, €.g. dayan (to endure), don (to spin)

Similar to the verb network, the network for acronyms (category K) is categorized internally
in the following way: K1 (acronyms whose letters must be in upper case, e.g. TBMM), K2 (acronyms
with the first letter in upper case and the rest in lower case, e.g. Fr.), and K3 (acronyms whose letters
must be in lower case, e.g. kg.). The node K is not used as the starting node; instead the nodes K1

through K3 are used as the starting nodes for the acronyms.

The category of a derived word is the category in which the parsing ends. For example, the
root form of the word grizellegti (he/she became beautiful) is the word gizel (beautiful), which is an
adjective. We begin parsing this word from the adjective network. The parsing is completed in the verb

network., Hence the category of the word gizellesti (he/she became beautiful) is verb.

Now we define the morphophonemic rules in a pseudo language. The rules make use of some

variables and functions. The variables used by the rules are described below:

word : the current word
suffic : the current suffix
fps : the first phoneme of the current suffix

fvs : the first vowel of the current suffix

The functions can be divided into two groups: general purpose functions and morphophonemic

rules functions. The second group is categorized into two subgroups. Morphophonemic character check

68

functions are used in the vowel harmony rules, consonant harmony rule 3, and the phoneme deletion
rule. Morphophonemic rule check function denotes whether the word obeys a particular
morphophonemic rule or not. We assume that, when the parse of a word in the root form begins, the
value of the morphophonemic rule check function for all the rules for this word are available. Since
most of the rules have‘exceptions, the use of this function is necessary. For example, most of the
words, but not all, obey the vowel harmony rule; we must know which ones obey and which ones do
not in order to arrive at a correct parsing. The implementation details of the morphophonemic rule

check function will be explained in section 8.5.

Appendix B contains the morphophonemic rules given in section 5.2 in terms of these

variables and functions.

5.5. Examples

In this section, we shall try to explain the proposed morphological structure by the use of
some examples. The transitions during parsing are written under the columns originating state, label,
and destination state. The column current word holds the word parsed up to that time. The column rules
applied indicates the rules applied at that state. To reserve room on the paper, we cease the examples

as soon as the word is parsed; we do not continue until the end of the network is reached.

Example 1:
word : kutuplardaki (at the poles)
root : kutb (pole)

root category : noun

Table 5.13 illustrates the parsing of the word.

Example 2:
word : guzellegti (he/she became beautiful)
root : gizel (beautiful)

root category : adjective

Table 5.14 illustrates the parsing of the word.

69

TABLE 5.13. Parsing of the word kutuplardaki (at the poles)

Originating state Label Destination state Current word Rules applied

N (parse ND) N1 kutb

ND ~ ND5 kutb

NDS ~ NDé6 kutb

NDé6 - ND/end kutb

N1 (parse NC) N/end kutb

NC - NC1 kutb

NC1 -lAr NC2 kutuplar rule 5 (u inserted)
rule 2 (b --> p)
rule 1 (4 --> a)

NC2 - NC4 kutuplar

NC4 - NC7 kutuplar

NC7 (parse NE) NC9 kutuplar

NE -DA NES kutuplarda rule 4 (D --> d)
rule 1 (4 --> a)

NES -ki NE4 kutuplardaki

TABLE 5.14. Parsing of the word guzellesti (he/she became beautiful)

Originating state Label Destination state Current word Rules applied

A - Al guzel

Al F N gizel

N (parse ND) N1 gilzel

ND - NDS5 gilzel

NDS5 -lAg V4 gizelles rule 1 (4 --> e)
V4 (parse VA) V19 guzelles

VA - VA2 guzelleg

VA2 = VA3 gizelleg

VA3 - VAS giizelles

VAS - VA/end gizelleg

Vi9 (parse VB) V20 gizelleg

VB - VB2 guzelles

VB2 - VB6 guzelles

VB6 - VB9 giizelleg

VBS -DI VD gilzellegti rule 4 (D -->1)

rule 1 (I --> i)

70

TABLE 5.15. Parsing of the word ayridmiyordu (he/she was not departing)

Originating state Label Destination state Current word Rules applied
V3 (parse VA2) V19 ayr
VA2 - VA4 ayr
VA4 -t VAS ayrl rale 1 (I --> 1)
VAS - VA/end ayrd
V19 (parse VB) V20 ayri
VB - VB2 ayril
VB2 - VB3 ayrl
VB3 -ml VBI11 ayninu rule 1 (-->1)
VBI11 -(I)yor VF ayrimiyor rule 9 (z drops)
rule 1 (I --> 1)
VF - VF1 aynimiyor
VF1 - VE2 ayrimiyor
VE2 -(y)DI VE3 ayrimiyordu rule 8 ((y) drops)
rule 4 (D > d)
rule 1 (I --> u)
Example 3:
word : aynimiyordu (he/she was not departing)
root : ayr (1o separate)

root category : verb (V3)

Table 5.15 illustrates the parsing of the word.

5.6. Reasons for Choosing ATN Formalism for the Representation of Turkish Morphology

The formalisms FSTN, RTN, and ATN [46,47,58] have been evaluated for Turkish and we have
chosen ATN as the representation schema in this research. There are several reasons underlying this
decision. The first one is the efficiency in terms of speed and space. The peculiarity and the complexity
of Turkish morphophonemic rules make it difficult to use FSTN or RTN formalisms. When affixing
a suffix to a word, it is not enough just to affix the suffix as it is written on the network. Meanwhile,
several processes need to be handled. For example, a vowel of the suffix may change due to the vowel
harmony rule, the last consonant of the word may change due to the consonant harmony rule 1, or

a vowel may be inserted to the word before the last consonant. These modifications (change, deletion,

n

and insertion of letters) cannot be handled by an FSTN or RTN elegantly; we need a more powerful

formalism.

FSTN and RTN result in a huge number of transition networks while defining the morphology.
This is due to the fact that the suffixes have different allomorphs and we must place each allomorph
into a different network. It is common for a single suffix to have several allomorphs and the number
of possible combinations of these allomorphs is very large. Which allomorph is used for a particular

case is determined by the morphophonemic rules.

The ATN and the FSTN representations can be compared by an example. Figure 5.2 illustrates
one of the ND networks (in the form of an FSTN) that corresponds to the ATN in Figure 5.1 and
Table 5.16 is a list of the relevant rules for this FSTN. In other words, only the words that own the
properties shown by these rules are parsed using this network. For example, adam (man) is such a
word - it obeys the vowel harmony rule and the last vowel is a back and unrounded vowel (rule 1),
it does not end in b,c,d,g, or g (rules 2 and 3), and so on. Other words make use of other copies of
the ND network during parsing. Our analysis has showed us that the number of the ND networks that
must be built under this representation is 48 (that is, a single network in ATN representation
corresponds to 48 networks in FSTN representation). Considering the fact that other networks also
have several copies and the networks have to be merged in different combinations, it is obvious that
the result of the FSTN approach is a huge number of networks. This increase in the number of

networks means more space to store the network and more time to traverse it.

Another reason is the uniformity of the structure, It is very hard, if not impossible, for some
of the Turkish morphophonemic rules to be expressed on an FSTN. The rules that necessitate a
change in the root form of the word constitute this group. The vowel insertion rule 1 (see section 5.2)
is an example: for some words, a vowel is inserted before the last consonant in the word when a suffix

beginning with a consonant is affixed to the word. This modification is outside the power of FSTNs.

One way to handle this is to include two different entries for the word in the lexicon. We can
illustrate the case by considering the word agz (mouth), which obeys the vowel insertion rule 1, and

the following derivations:

agz (mouth) + -(I)m ---> agzun (my mouth)
agz (mouth) + -lAr ---> agzlar (mouths)

72

ci,cil,ig.sal,si1
g){AI]

glller NCZ

ar,ag,dag,dat.ed, 1§ va
a,1,imsa, 88,81 /

al,kar.l|gzgerver.rag,sever,sll,vl.yane,"

FIGURE 5.2. FSTN representation of the ND network

TABLE 5.16. Rules corresponding to the ND network in Figure 5.2

Rule Explanation

1 either obeys the rule and lvw is back and unrounded or does not obey the rule and lvw is
front and unrounded

2 Ipw is not one of b,c,d,gg
3 Ipw is not ¢

4 Ipw is not a voiceless consonant
S does not obey the rule

7 does not obey the rule

8 Ipw is a consonant

13 does not obey the rule
14 does not obey the rule
15 does not obey the rule
16 does not obey the rule
18 does not obey the rule

73

The first entry that must be stored in the lexicon is the base form of the word (agz) and the second
one is the form with the last vowel inserted (afiz). Then we must create different networks and each
form traverses the appropriate network. For example, the network for the first form does not contain
any suffix beginning with a consonant as the first suffix (so, afz + -lAr ---> agzlar, which is
grammatically incorrect, does not produce), and the network for the second form does not contain any
suffix beginning with a vowel as the first suffix (so, afiz (mouth) + -(Dm ---> afizum, which is

grammatically incorrect, does not produce). This solution further increases the number of networks.

We can think of uvsing an FST (Finite State Transducer) for these cases [38]. An FST is
another kind of finite state automata that allows a string of output symbols to be produced as an input
string is recognized (sec section 3.2). In the case of the word agz (mouth), the transducer takes the
word as input and outputs the form agiz. The rest of the affixation process is similar to the process
in FSTNs. But the use of FSTs does not free us from creating too many structures; we still need

different transducers for traversing.

Another important criteria which is a direct consequence of the uniformity is the clarity of the
representation. In this research, we have tried to handle all the cases using the same approach. This

is important for a clear understanding and for the contribution of this study in future research.

It is worthwhile to state that the approach proposed in this thesis has some similarities with
the two-level description of the morphology. The basic characteristic of the two-level formalism is that
the morphotactics is applied to the root word at the first level to obtain the lexical representation,
then this lexical representation is modified by the morphophonemic rules at the second level to arrive
at the surface representation. In the ATN formalism, these two steps are mixed. Instead of considering
the morphotactics as an FSTN and the morphophonemic rules as mediating structures, the full
morphology is compiled under a uniform representation environment. While a suffix, determined by
the morphotactics, is affixed to a word, the morphophonemic rules work on the word and/or the suffix
simultaneously to obtain the surface form. This means that, after each affixation process, the result is
the surface form of the word parsed up to that point. It is an easy matter to change the description

from one formalism to the other.

In [32,35], the morphotactics is represented as an FSTN and the morphophonemic rules are
assumed to take effect during affixation. That is, recognition of suffixes is mediated by a routine which

allows for influence of phonological and grammatical context on suffix shape. This approach divides

74

the process into two. First the network is traversed and a suffix is determined. Then a routine is called

which gives its proper form to this suffix according to the current phonological environment.

In the ATN formalism proposed here, however, it is the functions augmenting the network
that is responsible from the environment. Each function is triggered automatically when its conditions,
which depend on the current context, are satisfied. In this respect, the network serves as the sole

mechanism in which the morphology is represented.

75

VI. LEXICAL AND MORPHOLOGICAL STATISTICS

In this and the next chapter, we shall present statistical information about the morphological
structure and the usage of the Turkish language in daily life. The results of these two chapters are

based on the morphological structure that has been proposed in the previous sections.

We can group the statistical data analysis in two main categories: lexical and morphological
analysis, and corpus analysis. The former one takes into account all the parts of the structure of the
language (the words, the affixes, the grammatical rules of the language, etc.). Among the results
obtained from this analysis are: the number of roots in the language, the distribution of these roots
to the word categories (e.g. noun, verb), the average length of the suffixes, the number of words that
obey and do not obey to the rules of the language, and so on. On the other hand, the latter one
concerns with the daily usage of the language [59]. For example, what percentage of the language is
utilized by people, which are the most frequently used words and suffixes, how many suffixes are affixed
to a word on the average (which is the basic point that distinguishes agglutinative and non-

agglutinative languages), and so on. The main function of this both type of data is the following:

L. It serves to know the statistics about Turkish. It is not possible to find this kind of data in
grammar books or in other references. These references describe the structure and the rules
of the language. On the other hand, the statistics give us information on how the language is
used in daily life and how these structures and rules are utilized. For example, it may be useful
to know the longest word in the dictionary, to know the average length of root words, or to

know how many times the plural suffix occurs inside a text.

2. It acts as a base for the researchers who intend to develop language applications, e.g.
spelling checker programs or electronic dictionaries. The data contains many useful
information for this purpose. Before beginning the application, the data can be analyzed in
order to get information about the content of the application and to set it up based on this
information. For example, by looking at the statistics about the lexicon (the number of words
in the lexicon, the length of the longest word, etc.), one can design different data structures
to store the lexicon and then analyze the feasibility of these data structures with respect to the

lexical statistics in order to obtain the one with the desired properties. As another example,

76

for a spelling checker program, it is possible to speed up the parsing of words by designing

special data structures and/or algorithms for the frequently used words and suffixes.

3. It can be used for the compression of texts for storage and especially for transmission. Text
compression is a challenging and developing area of research. The amount of data that are
used by people and that must be distributed among people increases from day to day. The
storage and the transmission of this data are expensive operations. The methods that can
reduce this cost is of great benefit for this field. The usage patterns of Turkish texts can be
analyzed in order to decide how to compress it. For example, a method similar to Huffman
coding can be used based on the usage frequencies of letters or words. Alternatively, the words
can be split into (morphological) parts and these parts are encoded. The storage and

transmission of these parts may consume less space than the individual words.

This chapter deals with the lexical and morphological statistics. As mentioned above, this type
of analysis concerns with the structure of the language. The structure is formed from the words of the
language, the affixes that are used in building new words, the morphophonemic rules, the rules for the
syllabification process, and so on. These can be regarded as static language elements since they do not
change from day to day. Of course, a language is an evolving concept and the structural parts may
change in time. New words may be included or a rule may be modified to conform with its usage by
the people. But from the point of an analyst, they can be regarded as unchanging parts during a fixed

period of time.

We divide lexical and morphological statistical data analysis into three groups: lexicon
statistics, rule statistics, and suffix statistics. Lexicon statistics refers to the data that are obtained from
the root lexicon. Rule statistics is based on the Turkish word formation rules. Finally, suffix statistics

corresponds to the results about the suffixes in the suffix lexicon.

Throughout this and the following chapter, we shall consider the root lexicon and the proper
noun lexicon as a single lexicon. That is, the statistical results will be obtained as if we have a single
lexicon including all these words. However, most of the proper nouns are foreign words and some of
the results are more meaningful for Turkish words only. Hence, wherever appropriate, we shall also

show the results obtained by excluding the proper nouns.

77

The results will be presented in the form of tables. Because of lack of space, we shall display
here the important parts of these tables. Other parts of the tables, especially the list of the words

which correspond to the given statistical data, will be displayed in appendix C.

6.1. Lexicon Statistics

Lexicon statistics refers to the statistical data collected solely from the root lexicon. A root
word is defined as a word that is stripped off all the suffixes. The root word lexicon contains, for each
root word, the following information: the word and a list of the categories that the word possesses.
Regardless of the number of categories, each word occupies a single entry. That is, there does not exist

different entries for different categories of a word.

We have made use of the references [53,54,55,56] in forming the lexicon. [53] is the main
spelling guide and the others are Turkish dictionaries. We accepted the spelling guide as our basic
reference. This means that for words that have different spellings in the references, we have accepted
the one in [53] as the correct spelling. However, since we did not use the centralized vowels 4, 7, and
i in this research because of the reasons sketched in chapter 4, we represented these vowels that take
place in [53] with g, i, and i, respectively, in our lexicon. The other references have contributed with
the words that were absent in the spelling guide. In this way, the lexicon has been built as a
combination of these references. Note that these references do not include only the root words; they
also include most of the words that were affixed with derivational suffixes. Therefore it was necessary
to exclude the words that are not in root form in building the lexicon. The statistical data that will be

presented below is obtained from the root lexicon.

The number of root words in the root lexicon is 31,255. The number of root words, excluding

the proper nouns, is 21,727.

Table 6.1 shows the number and the percentage of roots in each category in descending order.
Note that the total number of roots in this table is greater than the number of roots in the lexicon
(which is 31,255). This is due to the fact that some words belong to more than one category (see the
next table), hence they appear in all the categories that they own in the table. For example, a word
that is both a noun and an adjective increases the word numbers in both of these categories. We see

from the table that nearly half of the Turkish root words serve as noun and almost 90 per cent of the

78

TABLE 6.1. Distribution of words to categories

Category Number of words Percentage
n (noun) 16,759 47.68 %
r (proper noun) 11,632 33.09 %
a (adjective) 3,669 10.44 %
v (verb) 1,184 337 %
d (adverb) 858 2.44 %
k (acronym) 381 1.08 %
i (interjection) 200 0.57 %
w (unknown) 144 0.41 %
b (chemical symbol) 105 0.30 %
¢ (conjunction) 76 0.22 %
¢ (postposition) 50 0.14 %
p (pronoun) 38 0.11 %
1 (letter) 32 0.09 %
s (number) 23 0.07 %

Average : 2,511

root words belong to the three categories noun, proper noun, and adjective. The average number of

words per category (obtained by dividing the number of words by the number of categories) is 2,511.

Table 6.2 shows the distribution of the words to the number of categories they own. The left
part of the table is obtained by considering all the roots while the right part is obtained after the
proper nouns are excluded. The table indicates that a root may belong to as much as six categories.
Most of the words, nearly 90 per cent have a single category, nearly 99 per cent have either one or
two categories, and there is only one root word in the lexicon that has six categories. We see that, on
the average, each root word owns 1.12 categories when the proper nouns are included and 1.11

categories when they are excluded. Table C.1 lists the roots that own more than three categories.

Table 6.3 shows the statistics about the initial letters of root words. Note that the table
contains three extra letters (g,w, and x) that do not belong to the Turkish alphabet. This is due to the
categories proper noun (e.g. Washington), chemical symbols (e.g. xe), and letters (g,w,x). In order to
arrive at a complete lexicon that includes all the root words that are used in daily usage of the
language, we did not exclude these words despite the fact that they contain foreign letters. As a result,

the table is formed of 32 rows. We see that nearly 10 per cent of the root words begin with the letter

79

TABLE 6.2, Distribution of words to number of categories

[with proper nouns 1 [without proper nouns 1
Number of categories Number of words Percentage Number of words Percentage
1 27,833 89.05 % 19,737 90.84 %
2 2,995 9.58 % 1,674 7.70 %
3 388 124 % 297 137 %
4 32 0.10 % 18 0.08 %
5 6 0.02 % 0 0.00 %
6 1 0.00 % 1 0.00 %
Weighted average : 1.12 Weighted average : 1.11

k. There is only one word which begins with the letter ¢, and this is the letter itself (the category is

). This is a consequence of a rule of Turkish: no word begins with g.

Table 6.4 shows the statistics about the final letters of root words. The layout of the table is
similar to the preceding one. One difference is that the number of rows is more than that of Table
6.3. In addition to the three foreign letters g,w, and x, it includes the character °.’, which comes from
the acronyms (category k). For example, vs. is a Turkish acronym (which corresponds to efc. in

English) whose last character is °.’. The acronyms were collected from [53].

Another statistical figure is the statistics about the initial two letters of root words. Since this
is a long table, it will be given in appendix C as Table C.2. It shows the number and the percentage

of words that begin with each of the initial two-letter combinations.

Table 6.5 shows the distribution of the root words to the length of the words. The table
indicates that the maximum word length is 20 and there are two root words of this length in the
lexicon. We see that the mostly occurring length is five which possesses more than 20 per cent of the
words. An important result that we get from the table is that the average length of root words is 6.60
for the whole lexicon and is 6.66 when the proper nouns are not taken into account. The words whose

lengths are greater than or equal to 17 are shown in Table C.3.

Table 6.6 shows the distribution of all the letters in the lexicon. The lexicon contains 206,258
letters in the first case and 144,746 letters in the second. We notice two extra characters, * and -. These
characters arise from the proper nouns, acronyms, and words whose categories are unknown. The

mostly occurring letter is @ and the mostly occurring three letters are unrounded vowels.

80

TABLE 6.3. Distribution of words to initial letters

[with proper nouns 1 [without proper nouns |
Initial letter =~ Number of words Percentage Number of words Percentage
k 3,076 9.84 % 2,382 10.96 %
a 2,532 8.10 % 1,524 7.02 %
m 2,486 7.95 % 2,038 9.38 %
t 2,348 751 % 1,656 7.62 %
s 2,336 747 % 1,568 122 %
b 2,049 6.56 % 1,321 6.08 %
d 1,511 4.84 % 1,122 5.16 %
g 1,434 4.59 % 777 3.58 %
h 1,263 4.04 % 988 4.55 %
e 1,237 3.96 % 750 345 %
i 1,161 3.71 % 936 4.31 %
P 1,134 3.63 % 936 431 %
y 1,016 325 % 709 3.26 %
f 850 272 % 666 3.07 %
¢ 811 2.59 % 595 274 %
n 744 2.38 % 404 1.86 %
c 627 2.01 % 395 1.82 %
$ 624 2.00 % 418 1.92 %
o] 611 1.95 % 359 1.65 %
r 592 1.89 % 408 1.88 %
0 568 1.82 % 244 1.12 %
1 462 148 % 363 1.67 %
\4 433 1.39 % 316 145 %
u 405 1.30 % 201 093 %
z 398 1.27 % 294 135 %
i 243 0.78 % 128 0.59 %
1 193 0.62 % 156 0.72 %
j 87 0.28 % 64 0.29 %
w 14 0.04 % 6 0.03 %
q 6 002 % 0 0.00 %
X 3 0.01 % 2 0.01 %
g 1 0.00 % 1 0.00 %

81

TABLE 6.4, Distribution of words to final letters

[with proper nouns] [without proper nouns 1
Final letter Number of words Percentage Number of words Percentage
n 4,130 1322 % 2,108 9.70 %
r 2,878 921 % 1,829 842 %
a 2,861 9.15 % 2,094 9.64 %
e 2,604 833 % 1,364 8.58 %
t 2,538 812 % 2,107 9.70 %
k 2,418 774 % 1,843 848 %
i 2,313 740 % 1,833 8.44 %
1 1,756 5.62 % 1,090 502 %
m 1,410 451 % 1,191 5.48 %
1 1,318 422 % 1,135 522 %
z 881 2.82 % 631 290 %
y 780 2.50 % 158 0.73 %
u 780 2.50 % 551 254 %
s 685 2.19 % 533 245 %
) 624 2.00 % 400 1.84 %
] 620 1.98 % 407 187 %
v 461 147 % 305 140 %
o] 364 1.16 % 280 1.29 %
f 344 1.10 % 321 1.48 %
h 343 1.10 % 221 1.02 %
i 334 1.07 % 232 1.06 %
. 186 0.60 % 186 0.86 %
4 149 0.48 % 63 0.29 %
g 132 0.42 % 96 0.44 %
v 127 041 % 77 035 %
j 83 0.27 % 82 0.38 %
d 64 0.20 % 34 0.16 %
b 31 0.10 % 26 0.12 %
c 19 0.06 % 17 0.08 %
(o] 10 0.03 % 8 0.04 %
w 7 0.02 % 4 0.02 %
X 3 0.01 % 1 0.00 %
q 2 0.00 % 0 0.00 %

82

TABLE 6.5. Distribution of words to lengths

[with proper nouns] [without proper nouns]
Word length Number of words Percentage Number of words Percentage
1 35 0.10 % 30 0.14 %
2 230 0.74 % 227 1.04 %
3 1,050 3.36 % 983 452 %
4 2,653 849 % 2,072 9.54 %
5 6,756 21.62 % 4,548 20.93 %
6 6,336 20.29 % 3,827 1761 %
7 5,025 16.08 % 3,122 14.37 %
8 4,011 12.83 % 2,669 12.28 %
9 2,064 6.60 % 1,540 7.09 %
10 1,458 4.66 % 1,201 553 %
11 776 2.48 % 697 321 %
12 401 1.28 % 374 1.72 %
13 242 0.77 % 232 1.07 %
14 107 0.34 % 101 0.46 %
15 57 0.18 % 52 0.24 %
16 30 0.10 % 28 0.13 %
17 6 0.02 % 6 0.03 %
18 12 0.04 % 12 0.06 %
19 4 0.01 % 4 0.02 %
20 2 0.01 % 2 001 %
Weighted average : 6.60 Weighted average : 6.66

83

TABLE 6.6. Distribution of occurrences to letters

[with proper nouns] [without proper nouns]
Letter Number of occurrences Percentage Number of occurrences Percentage
a 27,149 13.16 % 18,586 12.84 %
e 17,960 8.71 % 12,472 8.62 %
i 14,278 6.92 % 10,767 7.44 %
T 13,721 6.65 % 9,426 6.51 %
n 12,165 590 % 7,354 5.08 %
k 11,427 554 % 8,366 5.78 %
t 11,119 539 % 8,503 587 %
1 10,492 5.09 % 7,167 495 %
m 8,228 3.99 % 6,418 443 %
s 7,948 3.85 % 5,804 401 %
o 6,612 3.21 % 5,065 3.50 %
u 6,575 319 % 4,134 2.86 %
y 5,850 2.834 % 3,729 2.58 %
1 5,774 2.80 % 4,646 321 %
d 5,216 2.53 % 3,593 248 %
b 5,076 2.46 % 3,39 235 %
i} 4,631 224 % 2,942 2.03 %
z 4,109 1.99 % 2,858 197 %
h 3,731 1.81 % 2,490 1.72 %
g 3513 170 % 2,030 1.40 %
P 3,361 1.63 % 2,677 1.85 %
§ 3,105 1.51 % 2,232 1.54 %
v 2,652 129 % 1,917 132 %
f 2,540 1.23 % 2,060 142 %
v 2,414 1.17 % 1,637 1.13 %
c 2,320 1.12 % 1,521 1.05 %
6 1,850 0.90 % 1,124 0.78 %
g 1,669 0.81 % 1,179 0.81 %
j 446 022 % 392 0.27 %
. 241 0.12 % 241 0.17 %
\ 39 0.02 % 10 0.01 %
- 23 0.01 % 8 0.01 %
X 11 0.01 % 2 0.00 %
q 10 0.00 % 0 0.00 %
? 3 0.00 % 0 0.00 %

Total number of letters : 206,258 Total number of letters : 144,746

6.2. Usage of Lexicon Statistics

The statistics about the initial letters, final letters, and the initial two letters of the words
imply several useful informations from the point of view of a language application. For instance, the
interpretation of the data for a spelling checker program suggests two important implications. The first
one is that we can develop some heuristics about the language. We list below some heuristics that can

be noticed at a first glance:

a) Since there are no words beginning with ad (see Table C.2), we can stop parsing a word
and mark it as a "wrong word" if the initial two letters are ad. In other words, we do not need
to continue the parsing with all the possible root words and the suffixes. For this heuristic to
have a correct effect, we also have to analyze the suffixes to be sure that no derived words in
the language can begin with these letters. This analysis can be done beforehand, all the letter
combinations that cannot form the initial two characters of the words are extracted, and this
can be incorporated into the spelling checker program as a precheck before the parsing of the

word.

b) There can be no words in Turkish beginning with the letter g, except the one that is the

letter itself (Table 6.3).

¢) Except the categories letter and chemical symbol, all the words that begin with the foreign
letters q,w, and x are proper nouns (this can be seen from the lexicon), and thus the first

character must be capitalized. If not, such a word can be marked as misspelled.

The second implication of the data is that it helps one to build a data structure for the
organization of the lexicon. We can design different candidate data structures and then compare them
in terms of speed and storage space. Here we wish 1o exemplify this idea with an index mechanism.
One possibility is to store the lexicon in alphabetical order and index the words with respect to the
initial letters. The search algorithm first identifies the word group corresponding to the initial letter
of the word (i.e. the first and last record numbers of the words beginning with this letter) and then
performs binary search within this group. Table 6.3 indicates that the word group with the maximum
number of entries contains 3,076 entries, hence the binary search needs 12 accesses (211 < 3,076 <
212) in the worst case. If the index is with respect to the initial two letters (see Table C.2), then the

binary search necessitates 11 accesses (210 < 1,110 < 211) in the worst case (after identifying the word

85

group). Obviously this second data structure consumes more storage space compared to the first one,
since the number of the entries increases as the depth of the index mechanism increases. A similar

analysis can be performed for other storage structures.

6.3. Rule Statistics

Rule statistics refers to the statistical information about the rules of the Turkish language.
Because of the complexity of its morphological structure, there are a large number of rules that are

used in Turkish. We can separate the rules into two groups according to their functions:

a) Rules for the root words: This group consists of the rules that are related to the (internal)
structure of the root words in the root word lexicon. We shall investigate three rules in this

category: primary vowel harmony rule, secondary vowel harmony rule, and last phoneme rule.

b) Rules for the derived words: These are the rules that are used while deriving new words

by the suffix affixation process.

6.3.1. Rules for the Root Words

Normally, nearly all of the Turkish words obey the rules in this group. But the language
consists of a large number of loanwords; i.e. words that have originated from foreign languages. The
principal languages that had an influence on Turkish are Arabic, Persian, English, and French. Some
of the words that originated from these languages have been modified so as to comply with the rules
of Turkish, but the rest, which constitute the dominant part, have been accepted with little
modifications without the concern of the obeyance to the rules. This process has led to a large number

of loanwords in the dictionary.

In this section, we shall present statistical data for three well-known rules. We have consulted
the root word lexicon in order to obtain the results of this section. The table for each rule displays
the number of root words that obey and do not obey the rule. These numbers are classified with
respect to the categories. We do not include the category proper noun in these tables since the proper

noun lexicon contains many foreign words which we can not expect to obey the rules for Turkish roots.

86

The acronyms are not included either for a similar reason. The percentage in the tables indicates what
percentage each category contributes to the total number of words that obey or do not obey the rule.
Note that the totals at the end of the tables are less than the sum of the corresponding columns. The
reason is the same as that of Table 6.1. In addition to these figures, the tables C.4 through C.6 in

appendix C also include a list of some of the words that do not obey to each of the rules.

Primary vowel harmony rule: All the vowels of a word are either back vowels or front vowels.

See Table 6.7.

Secondary vowel harmony rule: If the first vowel of a word is unrounded, then the rest of the
vowels are unrounded. If the first vowel is rounded, then the rest of the vowels are either high and
rounded {u,ii} or low and unrounded {a,e}. A consequence of this rule is that, except the first

vowel, the words do not include low and rounded vowels (o and &). See Table 6.8.

Last phoneme rule: No word ends in the consonants b,c,d, or g. In this rule, we do not consider
the roots that are represented with one of these consonants in the lexicon but that change
according to the consonant harmony. For instance, the root kitab (book) takes the form kitap

(book) in its word form, thus does not form an exception to this rule. See Table 6.9.

TABLE 6.7. Primary vowel harmony rule

No of words No of words that

Category that obey Percentage do not obey Percentage
a 2,216 16.00 % 1,453 15.64 %
b 104 0.75 % 1 0.01 %
c 55 0.40 % 21 023 %
d - 612 442 % 246 2.65 %
e 43 031 % 7 0.08 %
i 145 1.05 % 55 0.59 %
1 32 023 % 0 0.00 %
n 9,308 67.23 % 7,451 80.19 %
p 35 025 % 3 0.03 %
s 20 0.14 % 3 0.03 %
v 1,158 836 % 26 0.28 %
w 118 0.85 % 26 0.28 %
Total : 12,565 8,807

87

TABLE 6.8. Secondary vowel harmony rule

No of words No of words that
Category that obey Percentage do not obey Percentage
a 2,651 15.67 % 1,018 16.36 %
b 103 0.61 % 2 0.03 %
c 70 041 % 6 0.10 %
d 729 431 % 129 2.07 %
¢ 48 0.28 % 2 0.03 %
i 171 1.01 % 29 0.47 %
1 32 0.19 % 0 0.00 %
n 11,789 69.70 % 4,970 79.85 %
P 36 0.21 % 2 0.03 %
S 21 0.12 % 2 0.03 %
v 1,147 6.78 % 37 0.59 %
w 117 0.6 % 27 043 %
Total : 15,429 5,943
TABLE 6.9. Last phoneme rule

No of words No of words that
Category that obey Percentage do not obey Percentage
a 3,665 15.94 % 4 2.82 %
b 85 037 % 20 14.08 %
c 76 033 % 0 0.00 %
d 858 373 % 0 0.00 %
e 50 0.22 % 0 0.00 %
i 200 0.87 % 0 0.00 %
1 28 0.12 % 4 282 %
n 16,649 72.40 % 110 7746 %
p 38 0.17 % 0 0.00 %
s 23 0.10 % 0 0.00 %
v 1,182 5.14 % 2 141 %
w 142 0.62 % 2 141 %
Total : 21,232 140

6.3.2. Rules for the Derived Words

We shall present here statistical figures about the morphophonemic rules of section 5.2. We
shall consider only the rules that have exceptions. We are not interested in the rules that are valid for

all of the words since our aim is to collect statistical information about the validity of the rules.

We classify these rules in two groups. The first group consists of the vowel harmony rule, the
consonant harmony rule 1, and the aorist suffix rule. For these three rules, we consider the words that
do not obey the rule. The second group includes the rest of the rules. For the rules in this group, we
consider the words that obey the rule. This classification is due to the generality of the rule. Being a
general rule of the language (e.g. vowel harmony rule) means that all the words obey the rule unless
stated otherwise. Being an exceptional rule of the language (e.g. double consonant rule) means that

none of the words obey the rule unless stated otherwise.

Table 6.10 shows the number of words that do not obey the rules in the first group. Table 6.11
shows the number of words that obey the rules in the second group. It must be noted that, for each
rule, only the words that are related to that rule are taken into account. For example, vowel insertion
rule 1 applies to nouns only, therefore only the nouns are considered. The list of the words

corresponding to these rules can be seen in Tables C.7 through C.21.
6.4. Suffix Statistics

Suffix statistics refers to the statistical data collected solely from the suffix lexicon. The suffix
lexicon contains, for each suffix, the following information: the suffix, the source category of the suffix,
the destination category of the suffix, and the type of the suffix. The source category indicates the
category of the words that the suffix can be affixed to. The destination category indicates the category
of the word after the suffix is affixed to. The type of a suffix is either inflectional or derivational. As
can be seen, a suffix has as many occurrences in the lexicon as the number of its source and

destination category combinations. The lexicon includes only one allomorph of each suffix.

The number of suffixes in the suffix lexicon is 199. Note that this is the number of distinct
suffixes. That is to say, regardless of the number of occurrences in the lexicon (because of different
source and destination categories for the same suffix), each suffix is counted as a single suffix in this

figure.

89

TABLE 6.10. General rules for the derived words

Rule Number of words that do not obey the rule
Vowel harmony rule 280
Consonant harmony rule 1 185
Aorist suffix rule 526

TABLE 6.11. Exceptional rules for the derived words

Rule Number of words that obey the rule
Consonant harmony rule 2 24
Vowel insertion rule 1 171
Vowel insertion rule 2 14
Double consonant rule 43
Phoneme deletion rule for verbs 2
Possessive suffix rule 1 81
Possessive suffix rule 2 5
Rule for compound words 1 233
Rule for compound words 2 428
Rule for compound words 3 25
Rule for compound words 4 840
Rule for the morpheme su 19

There are 57 inflectional suffixes and 158 derivational suffixes. Note that the total of these two
figures is greater than the number of the suffixes since some of the suffixes function both as an

inflectional suffix and as a derivational suffix depending on the source and destination categories.

Table 6.12 shows the distribution of the suffixes to the source categories. For the same reason,
the total number of suffixes in this table is greater than the number of suffixes in the lexicon (which
is 199), since the suffixes that can originate from more than one category contribute to the numbers
in each of these categories. We see that more than 40 per cent of the suffixes are affixed to verbs. Also
noun and verb serve as the source categories for nearly 80 per cent of the suffixes. We must note that
these figures do not correspond to the usage of the suffixes; they are based on the number of the
suffixes, not to the use of them inside a text. The statistics of this second type will be given in chapter

7.

TABLE 6.12. Distribution of suffixes to source categories

Source category No of suffixes Percentage
v 112 42.11 %
n 92 34.59 %
s 28 10.53 %
a 14 5.26 %
r 12 4.51 %
d 6 2.26 %
i 1 0.38 %
P 1 0.38 %

Table 6.13 shows the distribution of the suffixes to the destination categories. The layout of
the table is similar to the preceding one. The character * as the category implies the ending category,

i.e. no more suffixes can be affixed to the words that arrive to this state.

Table 6.14 is an extended form of the previous two tables. It shows the suffix distribution for
both the source and the destination categories. For example, the number of suffixes that are affixed
to adjectives and result in adjectives is seven. We sce that the total number of suffixes for the category

adjective is 15, which differs from Table 6.12. This is because of the same reason.

TABLE 6.13. Distribution of suffixes to destination categories

Destination category No of suffixes Percentage

n 84 32.56 %
v 69 26.74 %
a 37 14.34 %
d 30 11.63 %
13 23 891 %
r 7 271 %
* 5 1.94 %
C 1 0.39 %
e 1 0.39 %
p 1 0.39 %

91

TABLE 6.14. Distribution of suffixes to source and destination categories

Source category Destination category No of suffixes
a a 7
d 6
n 1
v 1
d c 1
d 5
i A 1
n a 17
d 9
n 56
v 18
* 1
P P 1
r n 3
r 7
v 2
s a 4
n 1
s 23
v a 12
d 15
e 1
n 37
v 54
* 2

Table 6.15 shows the distribution of the suffixes to the length of the suffixes. The maximum
suffix length is seven and there are three suffixes of this length in the lexicon. We see that the mostly
occurring length is three which possesses more than 30 per cent of the suffixes. An important result

that we get from the table is that the average length of the suffixes is 3.56.

Table 6.16 shows the statistics about the initial letters of the suffixes. In this table, all the
possible initial phonemes of the suffixes are taken into account. For example, the initial phoneme of
the suffix -(I)m may be 1, §, u, 4, or m, depending on the word that it is affixed to. Thus this suffix
increases by one the number on the column number of suffixes for each of these five phonemes. This
is better than just counting the first phoneme of the suffixes as they are shown in the suffix lexicon.
In such a case, for example, the phoneme ¢ would not take part in the table (although it is used

frequently during affixation) since e is represented by A4 in the suffix lexicon.

TABLE 6.15. Distribution of suffixes to suffix length

Length Number of suffixes Percentage
1 7 3.52 %
2 41 20.60 %
3 61 30.65 %
4 36 18.09 %
5 35 17.59 %
6 16 8.04 %
7 3 151 %

Weighted average : 3.56

TABLE 6.16. Distribution of suffixes to initial letters

Initial letter Number of suffixes Percentage
y 49 11.09 %
a 41 9.28 %
e 40 9.05 %
i 38 8.60 %
1 35 792 %
i 34 7.69 %
u 33 747 %
3 25 5.66 %
m 22 498 %
d 15 339 %
k 15 339 %
t 15 339 %
I 14 3.17 %
n 12 271 %
c 11 2.49 %
¢ 10 226 %
g 8 1.81 %
b S 113 %
z 4 0.90 %
0 3 0.68 %
$ 3 0.68 %
r 2 0.45 %
v 2 045 %
g 2 0.45 %
h 1 0.23 %
j 1 0.23 %
p 1 023 %
0 1 023 %

93

There are 28 rows in the table. We notice that there are no suffixes that begin with the letter
f and with the foreign letters (as expected). The letter y is the leading letter serving as the beginning

letter for more than 11 per cent of the suffixes.

Table 6.17 shows the statistics about the final letters of the suffixes in a similar layout with
that of the preceding table. As in the preceding table, all the allophones of the final letters of the
suffixes are considered. One difference from Table 6.16 is the smaller number of rows in the table.

There are only 22 phonemes that can occur as the final phoneme of suffixes.

TABLE 6.17. Distribution of suffixes to final letters

Final letter Number of suffixes Percentage
€ 30 9.80 %
n 30 9.80 %
a 26 8.50 %
k 25 8.17 %
i 24 784 %
r 22 719 %
g 21 6.86 %
1 20 6.54 %
u 18 5.88 %
z 18 5.88 %
i 18 5.88 %
m 10 327 %
1 9 294 %
$ 9 2.94 % -
t 8 2.61 %
v 6 1.96 %
c 4 131 %
y 3 0.98 %
d 2 0.65 %
j 1 033 %
p 1 033 %
v 1 0.33 %

94

VII. CORPUS STATISTICS

The statistical data obtained in the previous chapter are based on lexical and morphological
structure of the language. The root word lexicon, the suffix lexicon, and the rules of the language form
the basis of the analysis. Another important issue concerning natural language processing is the use
of the language in daily life. The data obtained in this way can be regarded as dynamic data. This
second kind of data is of vital importance for the language analysts. It shows explicitly how the
language is used by people. The direction in which the language is evolving, the acceptance percentage
of the new words by people, the effects of foreign languages on the language are among the

conclusions that the analyst can acquire from the analysis.

This chapter is devoted to the presentation of statistical information about the usage of
Turkish language. The method that we employ is to run a spelling checker program on a corpus and
record the output of the program. The spelling checker program that we utilize is the one that has

been developed as a part of this research. The program will be explained in detail in chapter 8.

The program has been run on a corpus of 2,203,787 words. The content of this corpus was

formed from the following:

m Text from a daily newspaper, Sabah (1,837,451 words). The content includes all type of
news.

m Text from Bilkent University (190,224 words). The text is formed of different domains.

® A novel (66,347 words). The novel is about the life of a family [60].

W Text from a weekly periodical, Aktiel (42,180 words). This periodical contains news from
daily life.

® A novel (38,105 words). The author defines his novel as a psychological and philosophical
investigation of the nature of the human being [61].

M A novel (29,480 words).

It is obvious that the statistics reflects the real usage of the language more clearly as the

number of the input data increases. This requires the necessity of developing comprehensive corpora

which will serve as a data bank for any natural language processing in Turkish.

95

Now we present the tables that contain the results about the corpus. Table 7.1 includes general
statistical figures about the corpus. The numbers under the left column are obtained by considering
all the words. The numbers under the right column are obtained after the proper nouns are excluded
from the lexicon. For this second case, the lexicon does not contain any proper noun, hence the proper

nouns in the corpus are accepted as misspelled words. The meaning of these figures is as follows:
a) Number of words: This figure shows the number of words in the corpus.

b) Number of distinct words: This figure shows the number of distinct words in the corpus.

This means that all the occurrences of a word are regarded as a single occurrence.

¢) Average word usage: This figure indicates, on the average, how many times each word is

used in the corpus. It is obtained by the formula "a / b".

d) Number of successful parses: This figure shows the number of words that the spelling
checker program had been able to parse. In other words, these words comply with the rules
of the Turkish syntax. They either are root words that take place in the root word lexicon or
can be derived from the root words with the application of the morphotactics and
morphophonemic rules. The number of successful parses decreases when we exclude proper

nouns from the lexicon.

€) Number of unsuccessful parses: This figure shows the number of words that the spelling
checker program was unable to parse and marked as grammatically wrong. In other words,
these words do not comply with the rules of the Turkish syntax. It is obtained by the formula
"a - d". Depending on the program used, these may either be grammatically wrong words as
said by the p_rogram or be grammatically correct words but were outside the capacity of the
prograﬁx. The major reason of this second kind of unsuccessful parses, as also encountered by
the program used in this research, is the proper nouns that are not included in the lexicon.

The number of proper nouns is huge and beyond the capacity of any lexicon.

We see that 8.88 per cent of the words in the corpus are counted as grammatically wrong
words. For the case in which the proper nouns are not taken into account, this percentage
increases to 13.24. This indicates that the proper noun lexicon used by this spelling checker

program can handle 4.36 per cent of the words for this particular corpus.

96

TABLE 7.1. General figures about the corpus

[with proper nouns] [without proper nouns]
a) Number of words : 2,203,787
b) Number of distinct words 200,120
¢) Average word usage : 11.01
d) Number of successful parses : 2,008,145 1,912,061
€) Number of unsuccessful parses 195,642 291,726
f) Number of distinct roots 11,806 9,491
g) Average root usage 170.10 201.46
h) Percentage of lexicon usage 37.77 43.68
i) Number of affixed words : 1,026,095 982,152
i) Number of unaffixed words 982,050 929,909
k) Number of words that do not change category : 1,568,741 1,501,110
1) Number of words that change category 439,404 410,951
m) Minimum word length 1
n) Maximum word length 25
0) Average word length 6.13
p) Minimum root length 1 1
q) Maximum root length 16 16
r) Average root length 4.03 4.01
$) Minimum number of suffixes 0 0
t) Maximum number of suffixes 8 8
u) Average number of suffixes for all words 0.94 0.97
v) Average number of suffixes for affixed words 1.85 1.90
w) Minimum suffix length 1 1
%) Maximum suffix length 7 7
y) Average suffix length 2.44 2.44

f) Number of distinct roots: This figure shows the number of distinct roots in the corpus.

g) Average root usage: This figure indicates, on the average, how many times each root word

is used in the corpus. It is obtained by the formula "d / f".

h) Percentage of lexicon usage: This figure shows what percentage of the root word lexicon
is utilized by the corpus. It is obtained by the formula "f / number of root words in the lexicon
* 100". The number of root words is 31,255 including the proper nouns and 21,727 without
the proper nouns (see section 6.1). We must note that since the contents of the lexicons differ
slightly, this figure yields different numbers for different spelling checker programs. However,

we include it here in order to give a general idea about the proportion of the roots used.

97

i) Number of affixed words: This figure shows the number of words in the corpus that are

affixed with at least one suffix, i.e. the words that are not in root form.

More than half of the words in the corpus are in affixed form.

i) Number of unaffixed words: This figure shows the number of words in the corpus that are
not affixed with any suffix, i.e. the words that are in root form. It is obtained by the formula

"d - i

k) Number of words that do not change category: This figure shows the number of words
whose initial category (the category of the root word of which the word has derived) and final
category (the ending category of the word) are the same. This number is always greater than
or equal to the number shown in part j, since the root category acts as both the initial and

the final category for unaffixed words.

About 78 per cent of the successfully parsed words in the corpus do not change their

categories.
1) Number of words that change category : This figure shows the number of words whose
initial and final categories differ. It is obtained by the formula "d - k". In a similar way, this

number is always less than or equal to the one shown in part i.

m) Minimum word length: This figure shows the length of the shortest word in the corpus.

It is obvious that for almost every corpus this number evaluates to one.

n) Maximum word length: This figure shows the length of the longest word in the corpus. The

words of this maximum length can be seen in Table C.22.

o) Average word length: This figure shows the average length of the words contained in the

corpus. This is an important figure as it is an indication of the word lengths used in daily life.

p) Minimum root length: This figure shows the length of the shortest root word in the corpus.

98

q) Maximum root length: This figure shows the length of the longest root word in the corpus.

The list of the longest roots is given in Table C.23.
We see that the roots in the lexicon with length greater than 16 are not used in this corpus.

r) Average root length: This figure shows the average length of the root words contained in

the corpus.

The average root length for this corpus is 4.03 (or, 4.01 without proper nouns). We see from
Table 6.5 that the same figure for the lexicon is 6.60 (or, 6.66). The difference between these

two implies that people prefer shorter root words during typing,

s) Minimum number of suffixes: This figure shows the least number of suffixes that are affixed

to a word in the corpus. Obviously, it evaluates to zero for almost every corpus.

t) Maximum number of suffixes: This figure shows at most how many suffixes are affixed to
a word in the corpus. For agglutinative languages, theoretically there is no upper limit in the
number of affixations. And it is not unusual to find words formed of several suffixes in texts.

This is the basic point that distinguishes agglutinative and non-agglutinative languages.

u) Average number of suffixes for all words: This figure shows the number of suffixes that are
affixed to a word on the average. It is obtained by considering all the successfully parsed words

(part d). It is calculated as: "total number of suffixes used in the corpus / d".
In the corpus, on the average, each word is affixed with nearly one suffix,

v) Average number of suffixes for affixed words: This figure shows the number of suffixes that
are affixed to a word on the average. It is obtained by considering only the affixed words (part
i). It is calculated as: "total number of suffixes used in the corpus / i". This number is always

greater than or equal to the one shown in part u.

w) Minimum suffix length: This figure shows the length of the shortest suffix that is used in
the corpus. It evaluates to one for almost every corpus since there are several suffixes of

length one in Turkish.

x) Maximum suffix length: This figure shows the length of the longest suffix that is used in
the corpus. This number is less than or equal to the maximum suffix length shown in Table

6.15. Being less than this number implies that the longer suffixes are not used in the corpus.

y) Average suffix length: This figure shows the average length of the suffixes in the corpus.
An interesting result that can be obtained is the following: The average root word length plus
the average number of suffixes multiplied by the average suffix length yields more or less the

average word length. Stated in another way, (r + u * y) is more or less equal to o.

In the suffix lexicon, the average suffix length is 3.56 (Table 6.15). In the corpus it is 2.44. This

means that shorter suffixes are used more frequently in the corpus.

Table 7.2 and Table 7.3 list some of the most frequently used words and roots, respectively,
in the corpus. For each word and root, its number and percentage of occurrence in the corpus are
given. The tables contain words and roots whose percentages of occurrence are greater than 0.10 per
cent. In these tables, we notice some words like yiizde (percentage), a proper noun Rusya (Russia), and
the number 710. We think that these words do not appear frequently (at least, with the frequencies
shown in the tables) in Turkish texts. In our opinion, this is due to the heavy periodical content of the
corpus. Especially the word yizde (percentage) bears this property. The reason for the word Rusya

(Russia) is that the text contains an investigation about Russia.

The next two tables, Table 7.4 and Table 7.5, display the distribution of words to the
categories. The first one lists the number of root words originating from each category. The second
one lists the number of words that end in each category. Table 7.6 shows the number of occurrences

of the suffixes used in the corpus.

In appendix C, two more tables, Table C.22 and Table C.23, are given. These tables contain

a list of some of the longest words and roots, respectively, used in the corpus.

100

TABLE 7.2. Most frequently used words

Word Number of usage Percentage
bir 49,438 2.24 %
ve 42,236 192 %
da 25,233 1.14 %
bu 24,376 1.11 %
icin 12,000 0.54 %
ile 9,246 042 %
gok 8,759 0.40 %
0] 8,277 0.38 %
daha 7,415 0.34 %
olarak 6,752 031 %
olan 6,701 0.30 %
sonra 6,697 0.30 %
ama 6,314 0.29 %
gibi 5,530 0.25 %
en 5,449 025 %
kadar 5,375 0.24 %
bityitk 4,516 0.20 %
her 4,440 0.20 %
ise 4,203 0.19 %
konu 3,802 017 %
ne 3,527 0.16 %
bin 3,398 0.15 %
iki 3,234 0.15 %
yeni 3,230 0.15 %
yul 2,837 0.13 %
yiizde 2,617 0.12 %
ancak 2,539 0.12 %
10 2,381 0.11 %
ilk 2,264 0.10 %

101

TABLE 7.3. Most frequently used roots

Root Number of usage Percentage
bir 52,951 2.40 %
ve 42,235 1.92 %
ol 39,883 1.81 %
da 25,233 1.14 %
bu 24,472 1.11 %
ed 17,866 081 %
igin 12,066 0.55 %
yap 11,894 0.54 %
yil 11,209 0.51 %
de 11,009 0.50 %
ile 8,801 040 %
bag 8,490 0.39 %
al 8,426 0.38 %
cof 8,417 0.38 %
0 7,667 035 %
gor 7,355 033 %
ara 7,201 033 %
daha 7,120 0.32 %
ver 6,935 031 %
sonra 6,601 0.30 %
bul 6,002 027 %
kendi 5,891 027 %
geg 5,454 0.25 %
ama 5,379 0.24 %
var 5,329 0.24 %
konu 5,102 0.23 %
ben 4,747 022 %
on 4,349 0.20 %
kadar 4,262 0.19 %
iste 4,256 0.19 %
bun 4,220 0.19 %
gibi 4,154 0.19 %
iki 4,138 0.19 %
en 4,096 0.19 %
buyig 3,369 0.15-%
kars1 3,352 0.15 %
bil 3,304 0.15 %
gel 3,221 0.15 %
zaman 3,189 0.14 %
ise 3,130 0.14 %
soyle 3,084 0.14 %
bin 2,807 0.13 %
ne 2,794 0.13 %
calig 2,774 0.13 %

102

TABLE 7.3. Most frequently used roots (continued)

Root Number of usage Percentage
son 2,772 0.13 %
yizde 2,673 0.12 %
yer 2,629 0.12 %
kadin 2,292 0.10 %
ag 2,261 0.10 %
rusya 2,225 0.10 %

TABLE 7.4. Distribution of words to initial categories

Category Number of words Percentage
n (noun) 1,038,323 47.12 %
v (verb) 459,457 20.85 %
a (adjective) 212,459 9.64 %
s (number) 150,366 6.82 %
¢ (conjunction) 96,822 4.39 %
r (proper noun) 96,084 4.36 %
d (adverb) 89,507 4.06 %
¢ (postposition) 28,918 1.31 %
p (pronoun) 22,695 1.03 %
i (interjection) 5,527 0.25 %
I (letter) 2,346 0.11 %
w (unknown) 710 0.03 %
b (chemical symbol) 387 0.02 %
k (acronym) 186 0.01 %

103

TABLE 7.5, Distribution of words to final categories

Category Number of words Percentage
n (noun) 1,100,980 49.96 %
v (verb) 333,613 15.14 %
a (adjective) 266,311 12.08 %
d (adverb) 151,859 6.89 %
$ (number) 134,115 6.09 %
¢ (conjunction) 101,496 4.61 %
r (proper noun) 67,631 3.07 %
¢ (postposition) 26,119 1.19 %
p (pronoun) 14,013 0.64 %
i (interjection) 4,032 0.18 %
1 (letter) 2,346 0.11 %
w (unknown) 710 0.03 %
b (chemical symbol) 387 0.02 %
k (acronym) 175 0.01 %

104

TABLE 7.6. Distribution of suffixes

Suffix Number of words Percentage
-1n 224,645 11.89 %
-S1 220,804 11.69 %
-lar 168,180 8.90 %
-ya 111,828 592 %
-da 100,585 532 %
-ma 73,843 391 %
-yi 60,142 3.18 %
-t 47,322 2.50 %
-dan 45,082 2.39 %
-dir 44,825 237 %
-yan 44,083 233 %
-nin 41,836 221 %
- 41,398 219 %
-1l 39,001 2.06 %
-1m 37,786 2.00 %
-1yor 33,470 1.77 %
-n 32,882 1.74 %
8173 32,727 1.73 %
-d1 32,449 1.72 %
-1ir 27,673 1.46 %
-mig§ 24,517 1.30 %
-yla 22,898 1.21 %
-yacag 22,583 1.20 %
-la 22,521 1.19 %
-yds 22,045 117 %
-mag 16,949 090 %
-lan 16,107 0.85 %
-yarag 15,905 0.84 %
-1 15,070 0.80 %
-ig 14,788 0.78 %
-C1 13,944 0.74 %
ki 13,506 0.71 %
-al 13,219 0.70 %
-t 11,975 0.63 %
-ca 9,326) 049 %
-yabil 9,227 049 %
-1miz 8,555 045 %
-S1Z 7,688 0.41 %
-yip 7,265 0.38 %
-yim 7,196 0.38 %
-g 7,163 0.38 %
-m 7,154 0.38 %
-lag 7,070 037 %
1§ 7,068 037 %

105

TABLE 7.6. Distribution of suffixes (continued)

Suffix Number of words Percentage
-t1 6,702 0.35 %
-makta 5,882 031 %
-1§ 5,364 0.28 %
-maz 5,237 0.28 %
-yin 4,842 0.26 %
yiz 4,828 0.26 %
-ag 4,794 0.25 %
-yken 4,508 0.24 %
-1n1z 3,916 0.21 %
-sin 3,741 0.20 %
-ysa 3,691 0.20 %
-ed 3,678 0.19 %
-yic1 3,518 0.19 %
-mi1 3,336 0.18 %
-ymig 3,108 0.16 %
-gin 2,960 0.16 %
-sal 2,387 013 %
-mal1 2,351 0.12 %
-sa 2,227 012 %
-1nct 2,147 0.11 %
-yinan 1,805 0.10 %
-S1n1Z 1,767 0.09 %
-1na 1,596 0.08 %
-lat 1,428 0.08 %
-k 1,221 0.06 %
-yinca 1,215 0.06 %
-nz 971 0.05 %
-yilan 910 0.05 %
-ist 854 0.05 %
-yami 798 0.04 %
-1t 778 0.04 %
-en 766 0.04 %
-izm 675 0.04 %
-gar 501 0.03 %
-hane 457 0.02 %
-int1 348 0.02 %
-mac 270 001 %
-name 251 0.01 %
-yver 230 0.01 %
-cil 204 0.01 %
-c1g 192 0.01 %
-sinlar 190 001 %
-ar 142 001 %
-likla 131 001 %

106

TABLE 7.6. Distribution of suffixes (continued)

Suffix Number of words Percentage
-1z 96 0.01 %
-bin 86 0.00 %
-yiniz 78 0.00 %
-bir 71 0.00 %
-yagel 69 0.00 %
-yasiya 69 0.00 %
-gan 65 0.00 %
-gen 55 0.00 %
-yali 52 0.00 %
-yast 45 0.00 %
-ac 36 0.00 %
-beg 29 0.00 %
-na 29 0.00 %
-kca 25 0.00 %
-casina 24 0.00 %
-1mst 23 0.00 %
-yakal 21 0.00 %
-ytiz 18 0.00 %
-casl 16 0.00 %
-milyon 13 0.00 %
-niza 12 0.00 %
-mamaz 10 0.00 %
-yadur 9 0.00 %
-dérd 9 0.00 %
-ig 9 0.00 %
-iki 8 0.00 %
-larsa 8 0.00 %
-si 8 0.00 %
-alt1 7 0.00 %
-yedi 7 0.00 %
-sekiz S 0.00 %
-giller 5 0.00 %
-on 4 0.00 %
-elli 3 0.00 %
-yabilin 2 0.00 %
-yaca 2 0.00 %
-y 2 0.00 %
-d 2 0.00 %
-yaglr 2 0.00 %
-otuz 2 0.00 %
-dokuz 1 0.00 %
-n1 1 0.00 %
-8 1 0.00 %
-yakoy 1 0.00 %

107

VIII. DESIGN AND IMPLEMENTATION OF TOOLS

The morphological structure of Turkish proposed in this research has been used for the design
of a spelling checker program [17,62]. Spelling checker is one of the major application areas for
agglutinative languages. Until recently spelling checking was done by human beings. However, as the
number of written material that must be processed increases it becomes impossible to spell check all
these documents in a reasonable time and at a reasonable cost, thus the process must be automated.
For non-agglutinative languages like English and French, spelling checking is almost completely solved.
On the other hand, due to the complexity of the word formation process, spelling checking in

agglutinative languages is a difficult problem.

The spelling checker program implemented as a part of this research also incorporates a
spelling corrector component. As far as we know, this is the first spelling corrector implemented for

Turkish.

The source code of the program was written in standard Pascal. It was first developed on a
PC and later ported to a VAX 4000/200 running VMS 5.5 machine. The executable code of the
program occupies 37 KB of space. In the following sections, we shall describe the components of the

program.

8.1. Root Lexicon

The root lexicon holds the words in their root forms, i.e. stﬁpped off the suffixes. It contains
approximately 21,500 roots. We built the lexicon by the use of the references Aksoy [53] and Eren
[55,56]. Aksoy [53] is the main spelling guide; Eren [55,56] are the main Turkish dictionaries published
by the Turkish Language Institution. Between the spelling guide and the dictionaries there are some
controversial points about the spelling of the words. We have accepted the spelling guide as our basic
reference (except the use of the centralized vowels 4, #, and). This means that for words that have
different spellings in the references, we have accepted the one in [53] as the correct spelling. The other

two references have contributed with the words that were absent in the first one.

108

The spelling guide does not include the categories of the words. Hence we have found the
categories from the dictionaries. However, we have encountered with words that exist in the spelling
guide but not in the dictionaries. In order to find their categories, we consulted another dictionary,
[54], which is a publication of the Redhouse press. Finally, we have compiled the words that do not
exist in this dictionary either in the lexicon under a special category (the category for unknown words,

W - see section 5.1).

Note that the references listed above do not include only the root words; they also include
most of the words that were affixed with derivational suffixes. Therefore it was necessary to exclude

the words that were not in root form in building the lexicon.

Some of the derivational suffixes are not productive. As will be explained in section 8.5, if a
suffix is not affixed to all the words in the related category, then a flag is reserved in the lexicon in
order to determine to which words it can be affixed. Each flag consumes some storage. Therefore, in
order to minimize storage requirements and to decrease search time we collected the suffixes that can
be affixed to less than 20 words and inserted these words in their affixed form directly into the lexicon.
For example, the suffix -perver is used for the following roots only: cumhuriyet (republic), hayr
{(philanthropy), menfaat (advantage), milliyet (nationality), misafir (guest), sulh (peace), terakki
(progress), and vatan (motherland). It adds a meaning like "a person who is fond of .." as in the

following example:

misafir (guest) + -perver --> misafirperver (hospitable)
The lexicon contains both of the words misafir (guest) and misafirperver (hospitable).

The implemented program is a general purpose spelling checker. That is, it was not designed
for a particular field. Hence the root lexicon does not include technical terms. However, the program

has the feature of using other lexicons together with the standard root lexicon. In this way, the user

can build his/her own lexicons and add these to the program.

109

8.2. Data Structure and Storage of the Root Lexicon
For each root word, the following information is stored in the lexicon:

= The word
m The categories of the word

® The flags for the word (see section 8.5).

Regardless of the number of categories, each root word occupies a single entry. For instance,
the root tad, which is both a noun (meaning "taste”) and a verb (meaning "to taste"), is stored as: tad

, v,

From the point of view of minimizing the storage space and reducing the search time, that are
two design choices that must be decided. These two usually conflict with each other. If a compression
scheme is used to save space, then the number of applicable search techniques is limited due to the
nature of the compression. There is also the additional overhead for decompression. This overhead
may be a very important computational burden in the case of spelling correction where dozens of
alternatives for a given incorrectly spelled word must be considered. For these reasons, the root lexicon

was stored in an incompressed way.

For the data structure that is to be used to store the root lexicon, we investigated some
alternatives. In accordance with the root matching algorithm, the following access method was selected:
The root lexicon is sorted alphabetically and stored in an array. While searching a root, an indexing
mechanism is used. There is another array which holds the first and last positions of the roots in the
root lexicon array for each initial two letters of the roots. For example, to search the root kalem
(pencil), we take the initial two letters, which is ka, consult the indexing array to determine the
position of the first root word in the root lexicon array that begins with ka (say, 11000) and the
position of the last root word in the root lexicon array that begins with ka (say, 11050). Then we
sequentially search all the roots in the root lexicon array between these two limits (i.e. 11000 and
11050).

Note that in consulting the indexing array we make use of a unique hashing function. Each

character has an ordinal value. For example, the ordinal value of £ is 14 and that of a is 1. The

110

hashing function is as follows: ord(k)*33+ord(a). Thus, we do not perform any search on the indexing

array; we access it only once for each word.

8.3. Proper Noun Lexicon

The proper nouns usually bring additional difficulties to spelling checking. One source of
difficulty originates from the foreign words. These words may contain some letters that do not exist
in the native alphabet. For example, the letter w in the word Washingion is not an element of the

Turkish alphabet.

The number of proper nouns in a language is much greater than the number of words in all
other categories. Even the people names constitute a large group by itself [63,64,65,66]. As the number
of entries in the lexicon increases, the search time also increases. Keeping the number of entries in

the root lexicon at a minimum has the benefit of decreasing the average parsing time.

To handle these problems, the proper nouns were separated and put into a special lexicon.
From a computational point of view, the probability of a given word in a document to be a proper
noun is much less than the probability for all other categories. Given a word, the program first
searches the root lexicon and only if the word is not found the proper noun lexicon is accessed. In this

way, for most of the words, the proper noun lexicon is not searched at all.

The lexicon contains approximately 11,500 proper nouns. We have included three types of

words:

®m Turkish people names from [66]

® Geographical names like countries, cities, mountains, lakes, etc. from [67]

m All the proper nouns in the spelling guide [53]. These form a large spectrum. They include
geographical names, names of nations, names of institutions, religious terms, astronomic terms,

and so on.

For each proper noun, the following information is stored in the lexicon:
® The word

® The flags for the word (see section 8.5).

111

Since the lexicon is dedicated to the proper nouns only, it is no longer necessary to have a

field that indicates word category.

The data structure used for the proper noun lexicon is similar to that of the root lexicon. The
only difference is that we designed the indexing array according to the initial three letters of words

instead of the initial two letters.

8.4. Suffix Lexicon

The suffix lexicon contains approximately 200 suffixes. In Turkish, most of the suffixes have
several allomorphs (a single suffix can have 24 allomorphs). The suffix lexicon contains only one form

of each suffix; the allomorph that must be used in a particular case is determined by the rules.

For each suffix, the following information is stored:

= The suffix

& Type of the suffix: The type is either inflectional or derivational. This information is utilized
by the rule for proper nouns (see section 5.2).

m Affixation flag index (see section 8.5)

® Termination flag : If this flag is set, then the suffix can be the last suffix of a word. In other
words, after this suffix is affixed to the word, the word is in a grammatically correct state.
Otherwise the word formed after this suffix is attached is not a correct Turkish word. For
example, the termination flag for the suffix -mAz is not set. Hence the following is not a

correct word:

gel (to come) + -mA + -mAz --> gelmemez

while the following is a grammatically correct word since the termination flag of the suffix -I/G

is set:

gel (to come) + -mA + -mAz + -lIG --> gelmemezlik (not coming)

m Destination category : This field indicates the category of the word after the suffix is affixed.

112

m Particle flag: This flag is used to denote whether the suffix must be written separate from
the word it follows or not. If it is set, then the suffix is a particle and must be written separate
from the word it is affixed to. In the suffix lexicon, this flag is set for the particles -d4 (the
emphatic particle), -ki (complementizer), and -m/ (the question particle).

® For each letter in the suffix, a deformation flag and a drop flag : These flags correspond to
the symbols capital letter and (), respectively, that we have been using throughout the thesis.
For example, the suffix -(I)mlz has the deformation flags (1,0,1,0) and the drop flags (1,0,0,0),

where 1 indicates that the flag is set and O indicates that the flag is not set.

The data structure utilized for the suffix lexicon is a bucket structure. The suffixes that can
be affixed in a particular category are grouped together and form a bucket. This is the source category
of these suffixes. The suffixes within a bucket are sorted alphabetically. Given the source category, the

suffixes in this bucket are searched sequentially.

Before the suffix lexicon was formed, we made a detailed analysis for the suffixes used in
Turkish. There are a large number of derivational suffixes. We collected these suffixes and extracted
the words that use these suffixes. If a suffix can not be affixed to all the words in the related category,
we must reserve a flag for the suffix in the lexicon. Each additional flag implies more storage. For this
reason, we decided not to include rarely used suffixes in the suffix lexicon. Instead, the words that can
receive these suffixes were put into the lexicon in their affixed forms. We give the listing of the suffixes
that were not inserted into the suffix lexicon in appendix D. The listing also includes the words to

which these suffixes can be affixed.
8.5. Flags
Most of the morphophonemic rules defined in section 5.2 are valid only for a subset of the
words, not for all of the words. In order to obtain the correct spelling of a word, we must know if a
particular rule is applicable to this word or not. For example, consider the vowel harmony rule in the

following derivation:

kalem (pencil) + -(I)m --> kalemim (my pencil) or

kalem (pencil) + -(I)m --> kalenum

113

Only one of the above derivations is valid. If the root kalem (pencil) obeys the vowel harmony then
the first one, otherwise the second one is valid. In order to be able to decide which one is the correct

word, we must know if the root obeys to the rule or not.

As discussed in section 5.3, the productivity of a derivational suffix highly differs from one
suffix to another. At one extreme it can be affixed to all the words in the related category; at the other
extreme it can be affixed to a single word. An example of this second type of suffixes is the suffix -kek,

which can only be affixed to the noun er (male) to form the noun erkek (man).

During the parsing of a word, we must know whether a suffix can be affixed to a word or not.

Consider the following derivations:

cirkin (ugly) + -lAs --> ¢irkinleg (t0 become ugly)
solgun (pale) + -ldAg --> solgunlag

Both of the words ¢irkin (ugly) and solgun (pale) are adjectives. -4y is a suffix that is attached
to adjectives or nouns, forming a verb. It adds a meaning like "to become ..". But the second
derivation above does not yield a meaningful Turkish word. Hence in order to prevent such

derivations, we must know to which adjectives and nouns the suffix -L4§ can be affixed.

We use the flag concept in order to handle both of these issues. Each word in the root lexicon
and the proper noun lexicon has a number of associated flags. The value of each flag is either 1 (the
flag is set) or O (the flag is not set). There are two types of flags: rule flags and suffix flags. A rule flag
indicates a property of the word (more precisely, whether the word obeys the property indicated by
the flag or not). The flag that shows the obeyance to the vowel harmony rule is a rule flag. A suffix
flag indicates whether a suffix can be affixed to the word (if the flag is set) or not (if the flag is not
set). The flag for the suffix -L4g is of this type.

The words in different categories are subject to different rules and suffixes. For example, the
aorist suffix rule is applicable to verbs only. Therefore the categories own different flag sets. We have

four flag sets:

1. Flags for categories other than verbs and adverbs

2. Flags for verbs

114

3. Flags for adverbs

4. Flags for proper nouns

Note that the first three correspond to the root lexicon while the last one corresponds to the
proper noun lexicon. The first three groups are mutually exclusive with respect to the flags used. That
is, a verb in its root form cannot be treated as a noun or adjective; a suffix must be affixed in order
o convert it 10 a noun. A noun can functjon as a verb (see section 4.2.3), but at the portion of the
verb network where the noun (in its root form) jumps to, none of the flags used for verbs are

applicable.

We considered the categories like postposition and interjection inside the first group (which
is basically the group of nouns and adjectives). Although there are no special rules and suffixes for the
words in these categories, it is possible that a word in one of these categories jumps to the noun
network without receiving any suffix. After it jumps to the noun network, it is treated as a noun and
the rules and the suffixes in that part of the noun network are applicable to this word also. Hence it

is necessary to know the values of the flags corresponding to these rules and suffixes for this word.

There are a total of 56 flags that should be stored in the lexicons. But, as mentioned above,
the flag sets are mutually exclusive. Thus to save storage space, instead of storing all the flags for each
word, only the relevant flags are stored. For instance, the entry in the lexicon for a noun is formed of
the root word, its category, and a set of 38 flags. Since the flag set of adverbs is formed of only two
flags and the number of adverbs in the language is small, we decided to store the flags of verbs and
adverbs together in order to improve the processing time at the expense of increasing the storage space
a little. So, the entry in the lexicon of a verb is formed of the root word, its category, and a set of 18
flags, where the last two of these flags are not used. The situation for an adverb is similar, except that

the first 16 flags remain unused.

As mentioned in section 8.4, each suffix in the suffix lexicon has a field called the affixation
flag index. This field holds the index of the flag for the suffix in the flag array. During parsing of a
word, in order to decide whether a suffix can be affixed to a word or not, the affixation flag index is
found from the suffix lexicon and the value of the corresponding flag for this word in the root (or
proper noun) lexicon is extracted. The suffix can be affixed provided that the value of the flag is 1. For
suffixes that can be affixed to all the words in the related category, the affixation flag index is zero,

which means that there is no flag reserved for this suffix.

115

This type of semantic information is used by some researchers. The flag concept presented
here is also used by Solak and Oflazer [35]. On the other hand, Koksal does not make a distinction
between the suffixes that may and may not be affixed to the words [26]. It is only the grammatical
category of the word which determines the suffixes that may follow. Thus, both of the forms given
above ¢irkinles (to become ugly) and solgunlag are accepted by his parser, since the roots ¢irkin (ugly)

and solgun (pale) belong to the same category.

8.6. The Parser

The parser performs the following operations on each word:

® Consulting hash table
B Syllabification check
B Root search

| Suffix search

8.6.1. Consulting Hash Table

The parser first checks whether the input word has already been examined by consulting a hash
table. The hash table is stored as an array of 1193 (a prime number) buckets with external chaining
to handle overflows [17]. If the word has already been checked for spelling, then the result stored in

the hash table is used; the following routines are not called, i.e. the parsing of this word is completed.

8.6.2. Syllabification Check

If the word is encountered for the first time then the parser checks its syllable structure,
Syllabification check is used as a preprocessing heuristic in the spelling checker. The heuristic is as
follows: if a word does not have the proper syllable structure of Turkish, then it is misspelled. The
syllabification checking algorithm used in the program was borrowed from [68]. This is a regular
expression and a corresponding finite state automaton for validating if a word matches the syllable

structure rules of Turkish. The word whose spelling is to be checked is first processed with the regular

116

expression. It is reported as misspelled if its syllable structure can not be matched with this expression,
i.e. the phonemes of the word do not form valid sequences according to Turkish syllable structure. On
the other hand, if it can be matched, its morphological structure is analyzed as it may still be a non-

Turkish or a misspelled word.

8.6.3. Root Search

If the word passes the syllabification check, then the parser begins spelling checking. First it
tries to match an initial substring of its input to one of the roots in the root lexicon. Using another
hashing function which considers the first two letters of the word to be checked, all the words starting
with those two letters are examined as possible candidate roots (see section 8.2). After the root search,
the roots that do not match the characters of the input word other than the first two are eliminated

and a list of candidate roots is formed.

There are some variants of the root search algorithm in the literature. Kibaroglu [9] parses
the word from left to right and accepts the first substring of the word that matches an entry in the
lexicon as a possible root. On the other hand, Koksal [26] and Solak [35] try to find the root with the
maximum length. They parse the word from right to*left during root search. All of these algorithms
include a backtracking component, ie. if the root found does not lead to a successful parse, they

attempt to find another root and continue the analysis.

8.6.4. Suffix Search

The category of each candidate root determines a class of suffixes that are permitted in the
next position. The parser searches the suffix lexicon for a suffix that is in the permitted class and
matches the surface string at the current point. If one is found, a pointer is advanced to the new
current point in the word and the parser jumps to the new state, corresponding to the derived stem
category, determined by the suffix. This is a recursive process. If the end of the input string is reached
and the parser is in a designated final state, then the string is said to be successfully parsed and the

input word is a well-formed Turkish word.

117

An issue that can be taken into account during suffix search is the iteration of the suffixes.
The design of the morphotactics prevents the consecutive usage of the same suffix twice where it does
not result to a meaningful word. But we do not have a mechanism for the control of the iterative

usage of a sequence of suffixes. Consider the following words:

80z (eye)

gozlik (glasses)

gozlikeyl (optician)

gozlitkeulik (the occupation of opticians)
gozliikgulitkgil

gozliikgilitkgillitk

Though it is arguable [8], we think that the last two words above are not meaningful. However, they
are considered as well-formed words by our parser. The situation is the same for most of the parsers
on Turkish morphology [26,35]. Some semantic control mechanisms should be included within the

parser to avoid accepting such words.

After the processes described above, the spelling checking of the word is completed. The result
of the spelling checking is inserted into the hash table together with the word. If the word is
misspelled then the spelling corrector routine is called and a list of alternative words is displayed (see
section 8.7). In some cases, a simple look-in of the root lexicon is not enough to find the root word.
Due to some morphophonemic rules, the root part of the input word may be deformed, and the parser

considers such cases by inserting and deleting letters into the input during root search.

The morphophonemic alternation is accounted for by a phonological component that mediates
between the lexical and surface forms of morphemes. This process is a part of the matching process

briefly expressed above.

The morphophonology is encoded in the functions that determine whether a given surface
string matches a root or suffix entry. There are two different procedures, one for roots and one for
suffixes. What these functions do is to modify the basic form of the morpheme to make it compatible

with its surface environment using the rules.

118

8.7. Spelling Corrector

In producing a document using a word processor two basic kinds of spelling errors occur:

m Typing errors

m Errors made due to lack of grammatical knowledge

In this study, only the typing errors are considered. This is due to the fact that most of the
spelling errors that can be made while writing a text in Turkish language are typing errors, such as
omitting a letter, interchanging two letters, writing an extra letter, or writing an incorrect letter, The

following typing errors are considered:

® Transposition of two letters
® One extra letter
® One letter missing

¥ One letter wrong

It is also assumed that in each misspelled word there is only one type of error.

Spelling correction is performed by first detecting a misspelled word, then checking for the
above mentioned typing errors and forming a list of candidate words based on each error, spelling
checking each candidate word to determine whether it is a well-formed word, and finally listing the
well-formed words as suggestion. In this respect spelling correction is a very costly operation. If the
misspelled word contains w characters, then from considering transposition w-1, from considering one
extra letter w, from considering one letter missing (w+1)*32 (we use an alphabet formed of 32
characters), and from considering one letter wrong w*31, that is a total of 65*w+31 alternative words

have to be formed and spell checked.

To reduce the time complexity of spelling correction, we use the syllabification check heuristic
explained in section 8.6.2. The syllable structure of each candidate word is checked before displaying
to the user as a suggestion. The word is displayed only if it passes the check. Although the
syllabification check reduces the time considerably, the time complexity of spelling correction remains
in general an order of magnitude greater than spelling checking. To further speed up the process, new

heuristics can be designed based on the statistical results about the language (see section 6.2).

119

8.8. Performance Results

The spelling checker and corrector were tested on VAX environment using two books and
performance results were obtained [17]. Tables 8.1 and 8.2 show the results for the spelling checker

and the spelling corrector, respectively.

Table 8.1 indicates that the average spelling checking rate is 1,750 - 2,200 words/min. when
there are errors in the text, and 3,300 words/min. when there are no spelling errors. The analysis of
the list of misspelled words has shown that approximately 60 per cent of them are proper nouns and
the remaining consists of technical terms not included in the root lexicon and really misspelled words.
The performance therefore can be improved by using additional specialized lexicons for different

domains.

Table 8.2 indicates that spelling corrector is a costly operation. For each misspelled word, it

takes 7-8 seconds to generate the candidate correct words.

TABLE 8.1. Performance results for the spelling checker

Number of misspelled Total CPU Total CPU time for

Number of words words time (sec) correct words (sec)
65,155 5,204 1,758.4 1,062.7
40,166 5,468 1,378.4 6274

TABLE 8.2. Performance results for the spelling corrector

Number of misspelled Average number of Average CPU time

words alternatives per word per word (sec)
5,204 6.5 7.73
5,468 7.1 8.14

120

IX. CONCLUSION

As the conclusion of this thesis, we would like to mention the work done and state some

recommendations for future work on this field.

9.1. Work Accomplished

In this thesis we have analyzed the morphological structure of Turkish and formed its
computer representation. Our main objective was to formalise the full Turkish morphology. To achieve
this goal, we first investigated the morphology from a linguistic point of view. We collected all the
word formation rules, and defined the rules and the irregularities among them. Our main concern

during this process was to form a complete and uniform definition.

This definition of the morphology has been represented in the form of an ATN. In this
representation, the morphotactics, that is the order of the suffixes, are defined as transitions on the
network. The morphophonemic rules accompany the network as rules that are activated when
transitions between the states occur. Combination of the state transitions in the network and the rules

forms the structure of a morphological parser for the Turkish language.

An important part of the research was the investigation of the formalisms FSTN, RTN, and
ATN as the possible representation schema for the morphology. This analysis showed us that it was
not feasible to use an FSTN or RTN for this purpose. It is very hard, if not impossible, for some of
the Turkish morphophonemic rules to be expressed on an FSTN. The rules that necessitate a
modification in the root form of the word constitute this group. Such modifications are outside the

power of FSTNs.

The morphological structure proposed in this thesis forms a basis for the language applications
about Turkish. There are several areas that make use of morphological information. Some of these are:
parsing [3,36,69], text generation [70], machine translation [40,71], dictionary tools, text-to-speech
systems, speech recognition, spelling checker, document retrieval. Among these applications, we

designed and implemented a morphological parser and a spelling checker. The spelling checker also

121

incorporates a spelling corrector component. As far as we know, this is the first spelling corrector

implemented for Turkish.

Lexical and morphological investigation of Turkish from a statistical point of view was another

part of this thesis. This investigation was also based on our morphological structure. The corpus

analysis is an important process that reveals many useful results about the language. An important

issue here is the formation of a corpus which serves as a data bank for such an analysis. It should be

large enough and comprise text on different topics.

In summary, the work done in this thesis consists of the following:

An Augmented Transition Network (ATN) formalism was introduced for Turkish
morphology, containing all of the categories and the suffixes.
A root lexicon of about 21,500 words and a proper noun lexicon of about 11,500 words

were formed in parallel to the ATN formalism.

" A parser and-a spelling checker (including a spelling corrector) were implemented for

Turkish to test the completeness (coverage) and the efficiency of the formalism.

A test environment comprising of these elements was produced to study and test
morphological properties of Turkish.

The lexicon was analyzed to obtain statistics on the structural and usage patterns of the
Turkish morphology.

A corpus of about 2,200,000 words, which is currently the largest corpus on Turkish, was
formed.

This corpus was analyzed to obtain statistical properties of Turkish.

In parallel to this research, the following papers were produced:

Representation of Turkish Morphology in ATN, Proceedings of the Second Turkish
Symposium on Artificial Intelligence and Artificial Neural Networks, Istanbul, 1993 [16]
A Spelling Checker and Corrector for Turkish, Proceedings of the Second Turkish
Symposium on Artificial Intelligence and Artificial Neural Networks, Istanbul, 1993 [17]
Full Turkish Morphology Represented as an Augmented Transition Network, submitted to
Literary and Linguistic Computing [18]

Lexical and Morphological Statistics About Turkish Language, in preparation

122

9.2. Recommendations for Future Research

One of the challenging areas for future research is the semantic categorization of the lexicon.
Currently we use syntactic categories such as noun, adjective, verb, etc. In addition to this, the words
can be grouped taking into account their meanings. This necessitates the division of words into
subcategories. For example, some subcategories for the nouns may be: abstract nouns, nouns that
define professions, nouns that refer to animals, and so on. The advantage of this process is that it
allows a simpler and more modular morphological structure to be built. Because, in general, it is the
semantics of the words that denote whether a suffix can be affixed to a word or not. If semantically
close entities are grouped together, then it becomes easier to define the morphotactics. In such a case,
a suffix that can be received by a word in a group will be received by all other words in that group.
Currently, we use flags to decide whether a suffix can be affixed to a word or not. In the case of
semantic categorization, the use of the flags will reduce to a minimum or will not be used at all.
However, this is a hard topic and necessitates a great effort and too much time. All of the words in

the lexicon must be examined carefully with the help of linguistically oriented people.

Another possible feature extension of this research may be in the use of acronyms. As
discussed in section 5.2, the rule that we use for acronyms (rule 20) does not always give the true
derivation. In order to correct the rule, some form of semantic information is needed, which indicates
the vowel and consonant categories in the last morpheme in the reading form of the acronym. This
is an easy matter and can be obtained by the an analysis of the acronyms. For the spelling checker

program, this information can be added to the lexicon.

In this study, we have started the statistical investigation of Turkish. We formed a quite large
corpus aI;d obtained some statistical figures about the language. The development of this analysis is
an attractive research area. The corpus can be enlarged with respect to both the number of words it
contains and the topics it comprises. In addition to the results about the language as a whole, this also
allows us to obtain results on individual topics. For example, we can get information about the usage

of the language in a particular domain and compare it with its general usage.

As a final remark, natural language processing is a broad concept and morphological analysis
is only one part of it. It must be followed by syntactic and semantic analysis in order to be able to fully

computerize the process.

123

APPENDIX A. MORPHOTACTICS OF TURKISH LANGUAGE IN THE FORM OF STATE
TRANSITION TABLE

In this appendix, we list the morphotactics of Turkish language. The transitions are grouped
into different networks (N, ND, etc.). Name of network stands for the name of the network, originating
state and destination state are the beginning and ending states of the transition, and suffixes for
transition shows the suffixes used in this transition. If the destination state is *, it indicates that the
parsing ends after this transition occurs. The symbol (#) on the right of a suffix indicates that the
suffix is a particle and is written separate from the word it follows. Table A.1 lists the full set of

morphotactic rules for Turkish language.

124

TABLE A.1. Morphotactics in state transition table form

Name of Originating Destination
Network state state Suffixes for transition

A A A sin
Al ~, blz, CA, (DmsAr, (ms], ()mtiraG
D1 CA, DAn, ¢n, sInA, slz
N (A)z
V8 (A)l
Al AlJend ~
A2 (¢}
N -
A2 D1 (DnA
N -
B B/end ~
C C/end ~
D C (Y)sA
D/end ~, CAcIG, CAnA, DAn, 1IkIA, mAsInA
D1 ~

TCOow

E E E/end 3
NC2 -~

I I I/end <
NC i
V5 1A

K1 K/end ~, (parse NC)
K/end ~, (parse NC)
K/end ~, (parse NC)
L/end -
N1 (parse ND)
N/end (parse NC)
NC NC NC1 -
- NC2 -
NC1 NC2 1Ar
NC2 Al CA
D1 CA
NC3 (Om, (Iymlz, (I)n, (I)nlz
NC4 -
NCS5 ~-,CA
NC3 * slz
D1 CA
NC4 -
ND6 CA

rAw
ZZC55

125

TABLE A.1. Morphotactics in state transition table form (continued)

Name of Originating Destination
network state state Suffixes for transition
NC NC4 NC7 -
NC10 -
NC5 NCo)1
NCo6 NC7 n
NC9 -
NC10 -
VF1 -
NC7 NCo (parse NE)
NC9 NC/end ~, dA (#), ki (#)
NC10 D1 (M1An, (y)InAn, (y)IA
ND ND A ~, (A)], Kar, 1IG, perver, rAG, sever, sll, (v)i, (y)ane
Al Cl, C1L, (i)G, sAl, sl
D1 leyin, 11, slzln, (y)ane, (y)In
NC2 giller
ND (A)C, (AL (a)j, (A)G, (AIAG, (A)t, bag, baz, cAglz, CAG,

dAG, dAIIG, DAm, DAn, Dar, DA, dIrIG, dIz, GA, GAn, hane,
(DL, (O, (Dst, ()zm, keG, ke, 1A, IAG, 1Am, mAn, mAr, name,

sAG, tay, zade
ND1 uG
ND3 CIG
ND4 CI
NDS ~
ND6 G
\'Z! (A)1, (A)s, DAg, DAY, eD, (NG
V5 A, I, (INmsA, sA, sl
V7 ol
V9 (A)n, DAn
ND1 ND2 ClI
ND5 ~, CIG
ND2 ND5 ~, UG
ND3 ND4 ~,Cl
ND4 ND5 ~, UG
NDS5 ND olger
ND6 ~
V4 1As, 1At
V5 1A
V9 1An
ND6 A 11, slz
ND/end ~

126

TABLE A.1. Morphotactics in state transition table form (continued)

Name of Originating Destination
network state state Suffixes for transition

NE NE NE/end I

NE1 NA
NE2 ~, DAn
NE3 =, (n)In
NES DA

NE1 NE/end -~
VF6 ~

NE2 NE/end -~
VF1 -

NE3 NE2 -

NE4 NC1 -

P cllAyIn
P/end 5
R R NC2 giller, 1Ar
R1 ~, CI, CIG, (i)st, (i)yzm, 11, slz
R2 cAglz
V4 1As
\'A) 1A
R1 NC2 ~, G
R/end -
R2 NC2 ~, 1Ar
S S S1 yiiz
S3 -~
S1 S2 ~, altmig, doksan, elli, kirk, on, otuz, seksen, yetmis, yirmi
S2 N dAIIG
S3 ~, alti, bes, bir, dokuz, d6rD, iki, sekiz, tig, yedi
S3 S4 -
S20 bin
5S4 S5 trilyon
S10 milyar
S15 milyon
S24 -
S5 S6 ~, alti, bes, dokuz, dorD, iki, sekiz, i, yedi
S7 ~
S6 S7 yiiz
s9 -

127

TABLE A.1. Morphotactics in state transition table form (continued)

Name of Originating Destination
network state state Suffixes for transition
S S7 S8 ~, altmisg, doksan, elli, kirk, on, otuz, seksen, yetmis, yirmi
S8 S9 ~, alti, beg, bir, dokuz, d6rD, iki, sekiz, iig, yedi
S9 S10 milyar
S15 milyon
S20 bin
S24 -~
S10 S11 ~, alti, beg, dokuz, dorD, iki, sekiz, G¢, yedi
S12 -
S11 S12 yiiz
sS4 -
S12 S13 ~, altmig, doksan, elli, kirk, on, otuz, seksen, yetmis, yirmi
S13 S14 ~, alty, bes, bir, dokuz, dorD, iki, sekiz, ii¢, yedi
S14 S15 milyon
S20 bin
S24 -
S15 S16 ~, alu, bes, dokuz, dorD, iki, sekiz, iig, yedi
817 -
$16 S17 yiz
S19 -
817 S18 ~, altmig, doksan, elli, kirk, on, otuz, seksen, yetmis, yirmi
S18 S19 ~, alt, bes, bir, dokuz, dorD, iki, sekiz, tg, yedi
S19 S20 bin
S24 -
S20 S21 ~, alu, bes, dokuz, dorD, iki, sekiz, lig, yedi
S22 -
S21 S22 yiz
S24 -
S22 S23 ~, altmug, doksan, elli, kirk, on, otuz, seksen, yetmis, yirmi
S23 S24 ~, alu, bes, bir, dokuz, dorD, iki, sekiz, ii¢, yedi
S24 Al ~, gen, (Dncl, (Dz, (g)Ar
S/end -~
v A" \ 1 -
V2 -
V3 -
V4 -
V5 -
V6 -
v7 -
V8 -
V9 -
Vi v3 Ar
V19 (parse VA3)
V2 V3 Ir

128

TABLE A.1. Morphotactics in state transition table form (continued)

Name of Originating Destination
network state state Suffixes for transition
A% V2 V19 (parse VA3)
V3 V10 =
V19 (parse VA2)
V4 Vi1 -
V19 (parse VA)
V5 V10 -
Vit =
A\ Vi1 -
Vi2 It
V19 (parse VA3)
\'} Vi3 (Dn, (s
Vi4 DIr
Vi9 (parse VA3)
V8 V10 =
V15 (Dn, (D
A\ V16 =, (s
V10 V17 t
V19 (parse VA3)
Vi1 Vi8 (Hn, (I)s
Vi2 V19 (parse VA)
V13 V19 (parse VA)
Vi4 V19 (parse VA1)
V15 V19 (parse VA)
Vieé V19 (parse VA)
V17 V19 (parse VA)
V18 V19 (parse VA)
V19 V20 (parse VB)
V20 V/end dA (#), ki (#)
VA VA D1 C, (y)All
VAl DIr
VA2 -
VAl VA2 't ,
VA2 VA3 -
VA4 -
VA3 A (A)cAn, (A)gAn, Gln, (ImsAr, pAG, sAG, sAl, vAn, (Y)AslcA
Al (y)Icl
N (A)C, (A)G, (A)lgA, (A)m, (A)mAG, (A)mIG, (A)nAG, (A,

(A)y, CA, CAG, CAmA, GA, GAC, GAn, GI, GIC, GI, |,
(DcIG, (On, (Ot, mAn, mAz, mIG, mur, nAG, s, I
V5 -

129

TABLE A.1. Morphotactics in state transition table form (continued)

Name of Originating Destination

network state state Suffixes for transition
VA VA3 VAS -
VA4 VAS -, (M
VAS A nG
D1 (Dn, (y)An
N (Dm, (T)ntl
VA/end -
VB VB VB1 ~, mA
VB2 -
VB1 VB2 (y)Adur, (y)Agel, (Y)Agor, (y)Akal, (y)Akoy, (y)Ayaz, (y)Iver
VB2 ()l
VB2 VB3 -, NA
VB4 (y)Abil
VB6 -
VB3 N mAC
VBS5 mA
VB7 mAz.
VBI11 ~, ml
VB4 VB3 A
VBI11 -
VBS5 Di DAn
V20 m, (y)lz
VB6 -
VB6 D1 A, ()AL (y)AslyA
VB8 mAz
VB9 ~, (y)Abil
VB7 VB8 -
VF ~
VB8 NC G
VB9 VBI10 (A)x
vC ~
VD Dl
VE mlg)
VF mAKktA, mAllL mls, (y)AcAG
VG sA
VG4 A
VB10 D1 CAsInA
N -
VF -
VBI11 VF (Dyor
VBI12 D1 DAn
N ~, GAn
vC vC * SAnA, sAnlzA

130

TABLE A.1. Morphotactics in state transition table form (continued)

Name of Originating Destination

network state state Suffixes for transition
vC vC A mls
D1 (VAIAG, (y)IncA, (y)Ip
N (A)r
ND6 ()AcAG, (y)An, (y)Asl
V20 =, ®In, (y)Inlz
VCl1 MA
vC3 sIn, sInlAr
VCS DIG
VC6 mA
vC7 mAG
VCl1 * 1Ar
V20 sin, sinlz
vCz 1Im, (y)Im
vC2 * ml (#)
V20 -
VC3 V20 -
vC4 ~, ml (#)
vC4 & (y)DI
VCs D1 (OnA
NC i
VCo D1 P
N ~, CA
vC7 D1 slzln
E 1A
N -
VC8 DAn
VC8 D1 ~,SA
VD VD V20 1AsA
VD1 ~, ml (#)
vD3 ~, 1Ar, m, n, nlz
VD5 k
VD6 _(ysA
VD1 VD2 (y)DI
VD2 V20 ~, k, 1Ar, m, n, nlz
VD3 V20 -
VD4 ml (#)
VD4 V20 ~, (y)D1
VDS D1 CA
VD3 -
VD6 V20 ~, k, 1Ar, m, n, nlz
VE VE D1 CAsInA
VE1 ~, ml (#)
VE4 ml (#)

131

TABLE A.1. Morphotactics in state transition table form (continued)

Name of Originating Destination

network State state Suffixes for transition
VE VE VE6 1Ar
VE1 VE2 ~, sn, sInlz, (y)Im, (y)lz
VE3 (y)DI
VE2 V20 ~, DIr
VE3 V20 ~,k m, n, nlz
VE4 VES (y)DI
VES * 1Ar
VE6 VE7 ~, ml (#)
VE7 V20 ~, DIr, (y)DI
VF VF VF1 -
VF6 1Ar
VF1 VF2 ~, ml (#)
VF6 -~

VF10 ml (#)
VF12 ¥)sA

VE2 VF3 (y)DI
VF4 (y)mls
VE5 ~, sln, snlz, (y)Im, (y)lz
VE3 V20 ~,k, m,n, nlz
VF4 V20 ~, (Dm, (Dz, 1Ar, sln, sinlz
VF5 V20 ~, DIr
VF6 V20 (Y)sA
VF7 =, ml (#)
VE8 (y)ken
VE7 V20 ~, DIr, (y)DI], (y)mls
VE8 VF9 ~, ml (#)
VEF9 V20 ~, DIr, (y)DI, (y)mlIs
VF10 VF11 (y)DI
VF11 V20 ~, lAr
VF12 V20 k, 1Ar, m, n, nlz
vG VG VG1 1Ar
VG2 ~,k, m, n, nlz
VG4 ~, ml (#)
VGl VG2 -
VG3 -~
VG2 V20 ~
VG3 ml (#)
VG3 V20)D], (y)mls
VG4 VGS (y)DI
VG6 (y)mls
VGS V20 ~, k, 1Ar, m, n, nlz
VG6 V20 ~, (hm, (T)z, 1Ar, sin, sinlz
w w Wiend -~

132

APPENDIX B. MORPHOPHONEMIC RULES
In this appendix, we list the morphophonemic rules in a pseudo language utilizing the variables
defined in section 5.4, The functions are defined in Table B.1 (in the descriptions, strl and sfr2 denote

character strings; chl and ch2 denote letters; nl denotes a number).

Figures B.1 through B.13 show the morphophonemic rules.

133

TABLE B.1. List of functions

a) General purpose functions:

consonant (chl) : returns true if chl is a consonant, returns false otherwise.

delete (strl, str2) : deletes the string str2 from the string strl.

concat (strl, str2) : inserts the string str2 to the end of the string strl.

insert (strl, chl, nl) : inserts the character chl as the n1'™ Iast character in the string strl.

interchange (strl, chl, ch2) : interchanges the characters chl and ch2 in the string strl.

last_consonant (strl) : returns the last consonant in the string strl.

last_phoneme (strl) : returns the last phoneme in the string strl.

last_phoneme p (strl, nl) : returns the n1*® fast phoneme in the string strl, where nl is greater
than 1.

last_vowel (strl) : returns the last vowel in the string strl.

no_suffix : returns true if there are no more suffixes affixed to the word, returns
false otherwise.

vowel (chl) : returns true if chl is a vowel, returns false otherwise.

vowel_exists (strl) : returns true if at least one vowel exists in the string strl, returns false
otherwise.

b) Morphophonemic character check functions:

can_change (chl) : returns true if the character chl can change; i.e. if chl is written in
capitalized form in the network. It returns false otherwise.
can_delete (chl) : returns true if the character chl can drop; i.e. if chl is written in the

form (chl) in the network. It returns false otherwise.

¢) Morphophonemic rule check function:

obey (rule, strl) : returns true if the string strl obeys the rule; returns false otherwise. For
the rule names, we shall use an abbreviation which is formed from the
first letter of each word in the name of the rule.

134

Rule 1 : Vowel harmony rule
if can_change (fvs) then
if obey (vhr, word) then
case fvs of

’a’ . case last_vowel (word) of
{a,,o,u} : fus := "2’
{e,i,6,u} : fus := "¢

endcase

1’ : case last_vowel (word) of
{ag} :fus:="1
{e,i} : fus:="0"
{o,u} : fus :="w
{6,i} : fus 1= "0

endcase
endcase
else
case fvs of
"a’ : case last_vowel (word) of
{a, o,u} : fus := ¢
{e,i,0,i} : fos :="a’
endcase
I’ : case last_vowel (word) of
{ajg} : fos:= "1
{ej} :fus:="0
{o,u} : fus ;="
{6,u} : fus :="u
endcase
endcase
endif
endif

Figure B.1. Vowel harmony rule

135

a) Rule 2 : Consonant harmony rule 1
if obey (chrl, word) then
if no_suffix or consonant (fps) then
case last_phoneme (word) of
’®* :last_phoneme (word) :=p’

’c :last_phoneme (word) 1= ¢
'd® :last_phoneme (word) .=t
g’ : last_phoneme (word) := 'K’
endcase
endif

endif

b) Rule 3 : Consonant harmony rule 2
if obey (chr2, word) then
if no_suffix or consonant (fps) then
last_phoneme (word) :="g’
endif
endif

¢) Rule 4 : Consonant harmony rule 3
if can_change (fps) then
if last_phoneme (word) is in {¢,£hkp,sst} then

case fps of
9b9 :f‘ps := ’p’
’C’ :fps := 999
& fps =0
tg) :fps := ’k)

endcase

endif
endif

Figure B.2. Consonant harmony rules

136

a) Rule 5 : Vowel insertion rule 1
if obey (virl, word) then
if no_suffix or consonant (fps) then
insert (word, 1, 2)
endif
endif

b) Rule 6 : Vowel insertion rule 2
if obey (vir2, word) then
if no_suffix or suffix is not in {-L-(I)G,-(I)}-(I)m,-(I)ntl,-(I)t} then
insert (word, 1, 2)
endif
endif

Figure B.3. Vowel insertion rules

Rule 7 : Double consonant rule
if obey (dcr, word) then
if suffix is in {-eD,-()m,-([)mIz,-(Dn,-(I)nlz,-(n)In,-ol,-(s)L,-()A,-(v)],-(y)IIAn,-(y)InAn} then
concat (word, last_phoneme (word))
endif
endif

Figure B.4. Double consonant rule

137

a) Rule 8 : Phoneme deletion rule
if can_delete (fps) then
if (vowel (fps) and vowel (last_phoneme (word))) or
(consonant (fps) and consonant (last_phoneme (word))) then
delete (suffix, fps)
endif
endif

b) Rule 9 : Phoneme deletion rule for the suffix -(I)yor
if suffix = -(I)yor then
if vowel (last_phoneme (word)) then
delete (word, last_phoneme (word))
endif
endif

c) Rule 10 : Phoneme deletion rule for verbs
if obey (pdrfv, word) then
if fps =y’ then
last_phoneme (word) := 1
endif
endif

Figure B.5. Phoneme deletion rules

a) Rule 11 : Possessive suffix rule 1
if obey (psrl, word) then
if suffix = -(s)I then
delete (suffix, fps)
endif
endif

b) Rule 12 : Possessive suffix rule 2
if obey (psr2, word) then
if suffix = -(s)I then
{do nothing and continue parsing}
if parse fails then
delete (suffix, fps)
endif
endif
endif

Figure B.6. Possessive suffix rules

138

a) Rule 13 : Rule for compound words 1
if obey (rfpwl, word) then
if suffix = -L4r then
delete (word, lipw)
concat (word, -lAr)
concat (word, -I)
clse
if suffix = -(s)I then
delete (suffix, -(s)I)
else
if suffix is in {-(D)m,-(Dmliz-(I)n,-(I)niz} then
delete (word, lipw)
else
if suffix is in {-CA,-DA,-DAn,-(y)A,-(y)I} then
concat (word, 'n’)
else
if suffix <> -(y)I4 then
delete (word, lipw)
endif
endif
endif
endif
endif
endif

Figure B.7. Rules for compound words

139

b) Rule 14 : Rule for compound words 2
if obey (rfpw2, word) then

if suffix = -l4r then
delete (word, last_phoneme (word))
case last_consonant (word) of
b’ : last_consonant (word) :=’p’
'’ :last_consonant (word) := ¢
'd’> : last_consonant (word) :='t’
*g’§’: last_consonant (word) := kK’
endcase
concat (word, -lAr)
concat (word, -I)
else
if suffix = -(s)I then
delete (suffix, -(s)I)
else
if suffix is in {-CA,-DA,-DAn,-(y)A,-(y)I} then
concat (word, ’n’)

else
if suffix is not in {-(I)m,-(I)mlz-(I)n,-(I)nlz,-(y)IA} then

delete (word, last_phoneme (word))
case last_consonant (word) of

'®* : last_consonant (word) :="p’
’c® :last_consonant (word) :='¢’
’d®> : last_consonant (word) := 't
*g’,’g’: last_consonant (word) ="K’
endcase
endif
endif
endif
endif

endif

Figure B.7. Rules for compound words (continued)

140

¢) Rule 15 : Rule for compound words 3
if obey (rfpw3, word) then
if suffix = -lAr then
interchange (word, Itpw))
concat (word, -IAr)
concat (word, -I)
else
if suffix = -(s)I then
delete (suffix, -(s}I)
else
if suffix is in {-CA,-DA,-DAn,-(y}A,~(y)I} then
concat (word, ’n’)
else
if suffix is not in {-(D)m,-(I)mlIz-(I)n,-(I)nlz-(y)IA} then
interchange (word, ltpw)
endif
endif
endif
endif
endif

d) Rule 16 : Rule for compound words 4
if obey (rfpwd, word) then
if suffix = -l4Ar then
delete (word, last_vowel (word))
concat (word, -lAr)
concat (word, -I)
else
if suffix = -(s)I then
delete (suffix, -(s)I)
else
if suffix is in {-CA,-DA,-DAn,-(y)A,-(y)I} then
concat (word, 'n’)
else
if suffix is not in {-(I)m,-(I)mliz,-(I)n,-(I)nlz,-(y){4} then
delete (word, last_vowel (word))
- endif
endif
endif
endif
endif

Figure B.7. Rules for compound words (continued)

141

Rule 17 : Aorist suffix rule
if obey (asr, word) then
suffic := ~(Dr
endif

Figure B.8. Aorist suffix rule

Rule 18 : Rule for the morpheme su
if obey (rftms, word) then
if suffiv is in {-(D)m,-(I)mlz,-(D)n,-(I)nlz,-(n)in,-(s)I} then
concat (word, ’y’)
endif
endif

Figure B.9. Rule for the morpheme su

Rule 19 : Rule for proper nouns
if suffix = -l4Ar then
{do nothing and continue parsing}
if parse fails then
concat (word, ™)
endif
else
if suffix is inflectional then
concat (word, *”)
endif
endif

Figure B.10. Rule for proper nouns

142

a) Rule 20 : Rule for acronyms 1
if consonant (last_phoneme (word)) then
if vowel_exists (word) then
if front_vowel (last_vowel (word)) then
{assume that last_vowel (word) is a front vowel and
last_phoneme (word) is a vowel or a consonant}
else
{assume that
(last_vowel (word) is a front vowel and last_phoneme (word) is a vowel) or
(last_vowel (word) is a back vowel and last_phoneme (word) is a consonant)}
endif
else
{assume that last_vowel (word) is a front vowel and
last_phoneme (word) is a vowel}
endif
else
if front_vowel (last_vowel (word)) then
{assume that last_vowel (word) is a front vowel and
last_phoneme (word) is a vowel}
else
{assume that last_vowel (word) is a back vowel and
last_phoneme (word) is a vowel}
endif
endif

b) Rule 21 : Rule for acronyms 2
if last_phoneme (word) <>’ then
concat (word,)
endif

Figure B.11. Rules for acronyms

143

Rule 22 : Rule for numbers
if last_phoneme (word) is in {1,..,9} then
case last_phoneme (word) of
1’ : w_form := ’bir
2’ : w_form := ik?’

'3 : w_form := g’
4 : w_form := ’dord’
’5’ : w_form := ’beg’
6’ : w_form :=’altr’
7 . w_form := yedy’
8 w_form := ’sekiZ’

9 : w_form := ‘dokuz’
endcase
else
if last_phoneme_p (word, 2) is in {1,..,.9} then
case last_phoneme_p (word, 2) of
1’ : w_form := ‘on’
2 : w_form = ‘yirmi’

*3’ : w_form := ‘oz’
4 : w_form = kark’
’5’ s w_form = ‘elli’
’6’ : w_form := ‘altnug’
7 w_form := ‘yetmig’
'8 : w_form ;= ’seksen’

‘9’ : w_form := ’doksan’
endcase
else
if last_phoneme_p (word, 3) is in {1,..,9} then
w_form := ‘yiz’
else
if (last_phoneme_p (word, 4) is in {1,.,9}) or
(last_phoneme_p (word, 5) is in {1,..,9}) or
(last_phoneme_p (word, 6) is in {1,..,.9}) then
w_form := "bin’
clse
if (last_phoneme_p (word, 7) is in {1,..,9}) or
(last_phoneme_p (word, 8) is in {1,..,.9}) or
(last_phoneme_p (word, 9) is in {1,..,9}) then
w_form := ‘milyon’
else
if (last_phoneme_p (word, 10) is in {1,..,9}) or
(last_phoneme_p (word, 11) is in {1,..,9}) or
(last_phoneme_p (word, 12) is in {1,..,9}) then
w_form := ’milyar’
else
w_form := ’yon’
endif

Figure B.12. Rule for numbers

144

endif
endif
endif
endif
endif
{assume that word is written in w_form}

Figure B.12. Rule for numbers (continued)

Rule 23 : Rule for particles
if suffix is in the set of particles {-dA,-ki,-mlI} then
concat (word, ’ ")
endif

Figure B.13. Rule for particles

145

APPENDIX C. REST OF STATISTICS
In chapter 6 and chapter 7, statistical data about the language have been given. We did not place

some details of the tables in those chapters because of lack of space. In this appendix, we display the

remaining results.

146

TABLE C.1. Words that have more than three categories

Number of categories Words Categories
4 ag adnv
ak anrv
as abnv
agag aden
ay airv
az abdyv
baylan adrv
beri aenr
dal anrv
diril anrv
efendi ainr
eskin adnr
geri adin
gonen anrv
giic adnr
gizel adnr
kara anrv
kang anrv
kargt aden
kat1 adnr
koca anrv
o ailp
ogiir anrv
o0z anpr
salt adkr
sek adkv
tamam adin
tez adnr
yakin adnv
yalniz acdn
zahir adnr
zot adin
S al abnrv
cek aknrv
dogru adenr
er bdnrv
ileri adinr
tek adknr
6 ne abcdnp

147

TABLE C.2. Distribution of words to initial two letters

[with proper nouns 1 [without proper nouns 1
Initial letters Number of words Percentage Number of words Percentage
ka 1,110 3.55 % 892 4.10 %
ba 734 235 % 478 220 %
te 730 234 % 597 275 %
ta 722 231 % 478 220 %
sa 694 223 % 438 2.01 %
ma 616 1.97 % 510 2.35 %
ha 598 1.92 % 461 212 %
me 589 1.88 % 448 2.06 %
gl 551 1.76 % 141 0.65 %
se 525 1.68 % 293 1.35 %
mii 512 1.64 % 452 2.08 %
ko 488 1.56 % 368 1.69 %
ya 481 1.54 % 354 1.63 %
de 435 139 % 329 151 %
be 425 1.36 % 242 1.11 %
mu 380 1.22 % 312 1.44 %
al 373 1.20 % 209 0.96 %
ku 364 1.16 % 224 1.03 %
pa 351 1.12 % 293 135 %
ak 348 111 % 149 0.68 %
er 347 1.11 % 67 031 %
di 315 1.01 % 224 1.03 %
bi 306 0.98 % 190 0.87 %
ke 292 093 % 240 1.10 %
0z 286 092 % 58 0.27 %
go 281 0.90 % 150 0.69 %
ki 281 0.90 % 206 0.95 %
ca 278 0.89 % 184 0.85 %
ar 275 0.88 % 167 0.77 %
ay 257 0.82 % 98 045 %
pe 253 081 % 177 0.81 %
5a 237 0.76 % 152 0.69 %
da 236 0.76 % 178 0.82 %
na 230 0.74 % 137 o 0.63 %
to 229 0.73 % 138 0.64 %
si 224 0.72 % 178 0.82 %
ne 219 0.70 % 127 0.58 %
mi 209 0.67 % 170 0.78 %
se 209 0.67 % 116 053 %
ye 202 0.65 % 136 0.63 %
an 200 0.64 % 166 0.76 %
tu 196 0.62 % 100 0.46 %
sit 195 0.62 % 140 0.64 %

148

TABLE C.2. Distribution of words to initial two letters (continued)

[with proper nouns 1 [without proper nouns 1
Initial letters Number of words Percentage Number of words Percentage
ge 193 0.62 % 144 0.66 %
re 192 0.61 % 141 0.65 %
is 191 0.61 % 155 071 %
fe 190 0.61 % 107 049 %
bo 189 0.60 % 120 0.55 %
ga 189 0.60 % 166 0.76 %
ra 189 0.60 % 123 0.56 %
SO 188 0.60 % 125 0.58 %
ca 185 0.59 % 77 035 %
fa 182 0.58 % 134 0.62 %
su 182 0.58 % 120 0.55 %
bu 174 0.56 % 123 0.57 %
la 173 0.56 % 143 0.66 %
in 171 0.55 % 146 0.67 %
va 171 0.55 % 123 0.56 %
il 168 0.54 % 86 0.40 %
ce 164 0.52 % 111 0.51 %
hi 163 0.52 % 140 0.64 %
ce 162 - 0.52 % 107 0.49 %
tii 160 0.51 % 76 035 %
do 157 0.50 % 110 0.51 %
fi 153 0.49 % 129 0.59 %
ki 150 0.48 % 121 0.56 %
he 142 0.45 % 125 0.58 %
kii 141 045 % 116 0.53 %
po 140 045 % 118 0.54 %
st 131 042 % 110 0.51 %
ve 131 042 % 82 0.38 %
or 130 042 % 92 0.42 %
¢i 129 041 % 103 047 %
el 127 041 % 99 0.46 %
as 126 0.40 % 95 0.44 %
ab 123 0.39 % 49 023 %
at 117 037 % 62 0.29 %
ko 116 037 % 89 041 %
nu 116 037 % 8 0.04 %
mo 114 0.36 % 85 0.39 %
dii 110 035 % 93 0.43 %
du 109 0.35 % 55 025 %
en 109 035 % 82 0.38 %
pi 109 035 % 97 045 %
ci 106 034 % 75 035 %
fo 105 0.34 % 102 047 %

149

TABLE C.2. Distribution of words to initial two letters (continued)

I with proper nouns] { without proper nouns]
Initial letters Number of words Percentage Number of words Percentage
za 105 034 % 79 0.36 %
ho 103 033 % 78 0.36 %
ze 100 0.32 % 67 031 %
yu 96 031 % 55 025 %
ni 95 0.30 % 64 029 %
es 93 0.30 % 59 027 %
ok 93 030 % 31 0.14 %
pr 93 0.30 % 84 0.39 %
ad 92 0.30 % 51 023 %
tr 91 0.29 % 83 0.38 %
le 90 029 % 64 029 %
co 89 0.28 % 71 033 %
ti 88 0.28 % 68 031 %
hii 87 0.28 % 47 022 %
li 84 0.27 % 68 031 %
ek 83 027 % EA! 0.33 %
Gl 82 0.26 % 72 033 %
6n 82 0.26 % 53 0.24 %
si 80 0.26 % 61 0.28 %
kr 75 0.24 % 70 032 %
st 74 0.24 % 68 031 %
bi 73 0.23 % 52 0.24 %
hu 71 0.23 % 54 025 %
ac 70 022 % 43 020 %
ag 70 0.22 % 52 024 %
em 70 022 % 47 0.22 %
fi 70 0.22 % 67 031 %
hi 70 0.22 % 56 0.26 %
ig 70 ‘ 022 % 67 031 %
ul 70 0.22 % 17 0.08 %
yii 70 022 % 47 022 %
ik 68 022 % 63 029 %
on 68 022 % 28 0.13 %
v 67 021 % 42 0.19 %
zi 67 021 % 49 023 %
vi 66 0.21 % 50 0.23 %
ra 65 021 % 37 0.17 %
t 65 0.21 % 63 0.29 %
ev 64 0.20 % 50 023 %
ot 60 0.19 % 50 023 %
is 59 0.19 % 51 023 %
do 58 0.19 % 44 020 %
c1 57 0.18 % 55 025 %

150

TABLE C.2. Distribution of words to initial two letters (continued)

[with proper nouns 1 [without proper nouns 1
Initial letters Number of words Percentage Number of words Percentage
18 57 0.18 % 55 0.25 %
im 57 0.18 % 48 022 %
iz 56 0.18 % 39 0.18 %
gi 55 0.18 % 40 0.18 %
lo 55 0.18 % 48 022 %
iin 53 0.17 % 10 0.05 %
yo 33 0.17 % 41 0.19 %
ah 52 0.17 % 39 0.17 %
€§ 52 017 % 46 0.21 %
ir 52 0.17 % 42 0.19 %
s6 52 0.17 % 38 0.17 %
uz 52 0.17 % 33 0.15 %
az 51 0.16 % 32 0.15 %
it 51 0.16 % 49 0.23 %
ol 51 0.16 % 33 0.15 %
af 50 0.16 % 38 0.17 %
or 50 0.16 % 34 0.16 %
ap 49 0.16 % 46 0.21 %
av 49 0.16 % 37 0.17 %
di 49 0.16 % 48 0.22 %
ag 48 0.15 % 38 0.18 %
bo 48 0.15 % 37 0.17 %
1§ 48 0.15 % 25 012 %
Z1 48 0.15 % 48 022 %
s 47 0.15 % 35 0.16 %
br 46 0.15 % 30 0.14 %
gr 46 0.15 % 40 0.18 %
ih 46 015 % 43 0.20 %
pl 45 0.14 % 42 0.19 %
fr 44 0.14 % 35 0.16 %
pu 44 0.14 % 38 0.17 %
ki 43 0.14 % 41 0.19 %
uy 43 0.14 % 32 0.15 %
et 42 0.13 % 37 0.17 %
cu 41 0.13 % 29 0.13 %
ro 41 0.13 % 32 0.15 %
mi 40 0.13 % 40 0.18 %
us 39 0.12 % 23 0.11 %
zii 39 0.12 % 19 0.09 %
gu 38 0.12 % 27 0.12 %
ed 37 0.12 % 21 0.10 %
fl 37 0.12 % 35 0.16 %
no 37 0.12 % 29 0.13 %

151

TABLE C.2. Distribution of words to initial two letters (continued)

[with proper nouns] [without proper nouns]
Initial letters Number of words Percentage Number of words Percentage
ri 37 0.12 % 24 0.11 %
ur 37 0.12 % 9 0.04 %
e 35 0.11 % 29 0.13 %
§1 34 0.11 % 33 0.15 %
¢o 33 011 % 28 0.13 %
ip 33 0.11 % 29 0.13 %
ug 33 0.11 % 10 0.05 %
og 32 0.10 % 7 0.03 %
m 32 0.10 % 29 0.13 %
rii 32 0.10 % 22 0.10 %
u¢ 32 0.10 % 15 0.07 %
fu 31 0.10 % 27 0.12 %
ful 31 0.10 % 28 013 %
oy 30 0.10 % 18 0.08 %
sp 30 0.10 % 27 0.12 %
il 30 0.10 % 11 0.05 %
ur 30 0.10 % 17 0.08 %
ef 29 0.09 % 19 0.09 %
je 29 0.09 % 24 0.11 %
pi 29 0.09 % 24 0.11 %
ib 28 0.09 % 20 0.09 %
ok 28 0.09 % 15 0.07 %
(6] 28 0.09 % 16 0.07 %
fii 27 0.09 % 19 0.09 %
ag 26 0.08 % 17 0.08 %
ag 26 0.08 % 24 0.11 %
co 26 0.08 % 9 0.04 %
cu 26 0.08 % 21 0.10 %
id 26 0.08 % 24 0.11 %
h 25 0.08 % 25 0.12 %
eb 25 0.08 % 21 0.10 %
um 25 0.08 % 10 0.05 %
Z0 25 0.08 % 19 0.09 %
cli 24 0.08 % 23 0.11 %
| 24 0.08 % 17 0.08 %
ja 24 0.08 % 15 0.07 %
li 24 0.08 % 15 0.07 %
ep 23 0.07 % 22 0.10 %
go 23 0.07 % 16 0.07 %
nii 23 0.07 % 19 0.09 %
og 23 0.07 % 18 0.08 %
su 23 0.07 % 20 0.09 %
vo 23 0.07 % 21 0.10 %

152

TABLE C.2. Distribution of words to initial two letters (continued)

[with proper nouns 1 [without proper nouns]
Initial letters Number of words Percentage Number of words Percentage
if 22 0.07 % 21 0.10 %
€c 21 0.07 % 11 0.05 %
op 21 0.07 % 19 0.09 %
eg 20 0.06 % 17 0.08 %
os 20 0.06 % 7 0.03 %
yi 20 0.06 % 13 0.06 %
dr 19 0.06 % 17 0.08 %
od 19 0.06 % 11 0.05 %
1r 19 0.06 % 17 0.08 %
g 19 0.06 % 11 0.05 %
gl 18 0.06 % 17 0.08 %
iy 18 0.06 % 10 0.05 %
(o] 18 0.06 % 17 0.08 %
ch 17 0.05 % 15 0.07 %
€z 17 0.05 % 14 0.06 %
Iu 16 0.05 % 6 0.03 %
om 16 0.05 % 13 0.06 %
v 16 0.05 % 16 0.07 %
yo 16 005 % 10 0.05 %
bl 15 0.05 % 11 0.05 %
ey 15 0.05 % 13 0.06 %
ig 15 0.05 % 15 0.07 %
od 15 0.05 % 14 0.06 %
ot 15 0.05 % 12 0.06 %
$0 15 0.05 % 14 0.06 %
iz 15 0.05 % 11 0.05 %
vu 15 0.05 % 14 0.06 %
ob 14 0.04 % 13 0.06 %
ol 14 0.04 % 9 0.04 %
uf 14 0.04 % 10 0.05 %
ov 13 0.04 % 5 0.02 %
ic 12 0.04 % 11 0.05 %
i 12 0.04 % 9 0.04 %
of 12 0.04 % 10 0.05 %
oz 12 0.04 % 6 0.03 %
ps 12 0.04 % 12 0.06 %
n 12 0.04 % 6 0.03 %
sk 12 0.04 % 10 0.05 %
un 12 0.04 % 9 0.04 %
ho 11 0.04 % 10 0.05 %
50 11 0.04 % 11 0.05 %
im 11 0.04 % 6 0.03 %
Oy 10 0.03 % 9 0.04 %

153

TABLE C.2. Distribution of words to initial two letters (continued)

[with proper nouns] [without proper nouns]
Initial letters Number of words Percentage Number of words Percentage
po 10 0.03 % 9 0.04 %
st 10 0.03 % 7 0.03 %
ut 10 0.03 % 7 0.03 %
zu 10 0.03 % 9 0.04 %
1t 9 0.03 % 9 0.04 %
iv 9 0.03 % 8 0.04 %
16 9 0.03 % 9 0.04 %
nd 9 0.03 % 9 0.04 %
og 9 0.03 % 0 0.00 %
¢l 8 0.03 % 6 0.03 %
ni 8 0.03 % 8 0.04 %
it 8 0.03 % 6 0.03 %
ai 7 0.02 % 6 0.03 %
ov 7 0.02 % 6 0.03 %
uc 7 0.02 % 5 0.02 %
uk 7 0.02 % S 0.02 %
g 7 0.02 % 7 0.03 %
ch 6 0.02 % 0 0.00 %
1k 6 0.02 % 6 0.03 %
ju 6 0.02 % 4 0.02 %
og 6 0.02 % 1 0.00 %
Om 6 0.02 % 1 0.00 %
th 6 0.02 % 4 0.02 %
vil 6 0.02 % 6 0.03 %
aj 5 0.02 % 4 0.02 %
au S 0.02 % 2 0.01 %
f. 5 0.02 % 5 0.02 %
hr 5 0.02 % 4 0.02 %
1th S 0.02 % 5 0.02 %
jo 5 0.02 % 2 0.01 %
ju 5 0.02 % 4 0.02 %
qu 5 0.02 % 0 0.00 %
sl 5 0.02 % 3 0.01 %
tb S 0.02 % 5 0.02 %
up S 0.02 % 5 0.02 %
iv 5 0.02 % 4 0.02 %
dd 4 0.01 % 4 0.02 %
dz 4 0.01 % 4 0.02 %
ej 4 0.01 % 3 001 %
1p 4 0.01 % 4 0.02 %
1z 4 0.01 % 4 0.02 %
ia 4 0.01 % 4 0.02 %
mo 4 0.01 % 4 0.02 %

154

TABLE C.2. Distribution of words to initial two letters (continued)

[with proper nouns] [without proper nouns 1
Initial letters Number of words Percentage Number of words Percentage
p- 4 0.01 % 4 0.02 %
tc 4 001 % 4 0.02 %
tm 4 0.01 % 4 0.02 %
ub 4 0.01 % 1 0.00 %
us 4 0.01 % 4 0.02 %
iib 4 0.01 % 0 0.00 %
a. 3 001 % 3 0.01 %
ae 3 0.01 % 3 0.01 %
ao 3 0.01 % 3 0.01 %
b. 3 001 % 3 001 %
bs 3 0.01 % 3 0.01 %
C. 3 001 % 3 0.01 %
cr 3 0.01 % 1 0.00 %
dm 3 0.01 % 3 0.01 %
€0 3 0.01 % 3 0.01 %
hs 3 0.01 % 3 0.01 %
d 3 0.01 % 0 0.00 %
g 3 0.01 % 3 0.01 %
m 3 0.01 % 3 0.01 %
jo 3 001 % 3 0.01 %
ks 3 0.01 % 3 0.01 %
Ii 3 001 % 3 0.01 %
oc 3 001 % 2 0.01 %
oe 3 0.01 % 3 0.01 %
oh 3 0.01 % 3 0.01 %
00 3 0.01 % 3 0.01 %
6b 3 0.01 % 3 0.01 %
6c¢ 3 0.01 % 1 0.00 %
Os 3 0.01 % 3 0.01 %
ph 3 001 % 2 0.01 %
pt 3 0.01 % 3 0.01 %
sb 3 0.01 % 3 0.01 %
sf 3 0.01 % 2 0.01 %
sm 3 001 % -3 0.01 %
sn 3 0.01 % 3 0.01 %
ST 3 0.01 % 2 0.01 %
ts 3 0.01 % 3 001 %
ug 3 0.01 % 0 0.00 %
uh 3 0.01 % 3 0.01 %
il 3 0.01 % 3 0.01 %
we 3 0.01 % 0 0.00 %
bn 2 0.01 % 2 0.01 %
cb 2 0.01 % 2 0.01 %

155

TABLE C.2. Distribution of words to initial two letters (continued)

[with proper nouns] [without proper nouns]
Initial letters Number of words Percentage Number of words Percentage
co 2 001 % 2 0.01 %
fk 2 001 % 2 0.01 %
g 2 0.01 % 2 0.01 %
gn 2 0.01 % 2 0.01 %
h. 2 0.01 % 2 0.01 %
hv 2 0.01 % 2 0.01 %
1c 2 0.01 % 2 001 %
m 2 0.01 % 2 0.01 %
k. 2 0.01 % 2 0.01 %
kd 2 0.01 % 2 0.01 %
kg 2 0.01 % 2 0.01 %
kh 2 0.01 % 1 0.00 %
It 2 0.01 % 2 0.01 %
v 2 001 % 2 0.01 %
mb 2 0.01 % 0 0.00 %
mg 2 001 % 2 0.01 %
mk 2 0.01 % 2 0.01 %
mn 2 0.01 % 2 0.01 %
mp 2 0.01 % 2 0.01 %
ms 2 0.01 % 2 0.01 %
mt 2 0.01 % 2 001 %
nd 2 0.01 % 1 0.00 %
nh 2 0.01 % 0 0.00 %
0j 2 0.01 % 2 001 %
o¢ 2 0.01 % 1 0.00 %
of 2 0.01 % 2 0.01 %
op 2 0.01 % 2 0.01 %
0s 2 0.01 % 1 0.00 %
sS 2 0.01 % 2 0.01 %
tk 2 0.01 % 2 0.01 %
tl 2 0.01 % 2 0.01 %
tp 2 0.01 % 2 0.01 %
tt 2 0.01 % 2 0.01 %
v 2 0.01 % 2 0.01 %
ty 2 0.01 % 2 001 %
uv 2 0.01 % 2 0.01 %
ic 2 0.01 % 2 0.01 %
ig 2 0.01 % 0 0.00 %
ik 2 0.01 % 0 0.00 %
wa 2 0.01 % 0 0.00 %
wi 2 0.01 % 0 0.00 %
y. 2 0.01 % 2 0.01 %
yb 2 0.01 % 2 0.01 %

156

TABLE C.2. Distribution of words to initial two letters (continued)

[with proper nouns] [without proper nouns 1
Initial letters Number of words Percentage Number of words Percentage
yd 2 001 % 2 0.01 %
a 1 0.00 % 1 0.00 %
aa 1 0.00 % 1 0.00 %
a1 1 0.00 % 1 0.00 %
ai 1 0.00 % 1 0.00 %
b 1 0.00 % 1 0.00 %
bb 1 0.00 % 1 0.00 %
bg 1 0.00 % 1 0.00 %
bh 1 0.00 % 0 0.00 %
bk 1 0.00 % 1 0.00 %
bp 1 0.00 % 1 0.00 %
c 1 0.00 % 1 0.00 %
cc 1 0.00 % 1 0.00 %
cd 1 0.00 % 1 0.00 %
cf 1 0.00 % 1 0.00 %
cg 1 0.00 % 1 0.00 %
cl 1 0.00 % 1 0.00 %
cm 1 0.00 % 1 0.00 %
cs 1 0.00 % 1 0.00 %
c 1 - 0.00 % 1 0.00 %
¢n 1 0.00 % 0 0.00 %
cs 1 0.00 % 1 0.00 %
Qv 1 0.00 % 1 0.00 %
d 1 0.00 % 1 0.00 %
d. 1 0.00 % 1 0.00 %
dc 1 0.00 % 1 0.00 %
dg 1 0.00 % 1 0.00 %
dh 1 0.00 % 1 0.00 %
dk 1 0.00 % 1 0.00 %
dl 1 0.00 % 1 0.00 %
dn 1 0.00 % 1 0.00 %
dp 1 0.00 % 1 0.00 %
ds 1 0.00 % 1 0.00 %
dt 1 0.00 % 1 B 0.00 %
dv 1 0.00 % 1 0.00 %
dy 1 0.00 % 1 0.00 %
e 1 0.00 % 1 0.00 %
e 1 0.00 % 1 0.00 %
ei 1 0.00 % 1 0.00 %
cu 1 0.00 % 1 0.00 %
f 1 0.00 % 1 0.00 %
fb 1 0.00 % 1 0.00 %
fo 1 0.00 % 1 0.00 %

157

TABLE C.2. Distribution of words to initial two letters (continued)

[with proper nouns] [without proper nouns 1
Initial letters Number of words Percentage Number of words Percentage
ft 1 0.00 % 1 0.00 %
g 1 0.00 % 1 0.00 %
gd 1 0.00 % 1 0.00 %
gm 1 0.00 % 1 0.00 %
gs 1 0.00 % 1 0.00 %
gy 1 0.00 % 0 0.00 %
h 1 0.00 % 1 0.00 %
hf 1 0.00 % 1 0.00 %
hg 1 0.00 % 1 0.00 %
hm 1 0.00 % 1 0.00 %
hp 1 0.00 % 1 0.00 %
hz 1 0.00 % 1 0.00 %
1 1 0.00 % 1 0.00 %
1b 1 0.00 % 1 0.00 %
10 1 0.00 % 1 0.00 %
v 1 0.00 % 1 0.00 %
i 1 0.00 % 1 0.00 %
ie 1 0.00 % 1 0.00 %
ig 1 0.00 % 1 0.00 %
i6 1 0.00 % 1 0.00 %
it 1 0.00 % 1 0.00 %
j 1 0.00 % 1 0.00 %
j 1 0.00 % 1 0.00 %
ig 1 0.00 % 1 0.00 %
k 1 0.00 % 1 0.00 %
kk 1 0.00 % 1 0.00 %
km 1 0.00 % 1 0.00 %
kv 1 0.00 % 1 0.00 %
kw 1 0.00 % 1 0.00 %
ky 1 0.00 % 1 0.00 %
1 1 0.00 % 1 0.00 %
Ir 1 0.00 % 1 0.00 %
Iw 1 0.00 % 1 0.00 %
ly 1 0.00 % 0 0.00 %
m 1 0.00 % 1 0.00 %
m. 1 0.00 % 1 0.00 %
md 1 0.00 % 1 0.00 %
mm 1 0.00 % 1 0.00 %
mv 1 0.00 % 1 0.00 %
mw 1 0.00 % 0 0.00 %
my 1 0.00 % 0 0.00 %
mz 1 0.00 % 0 0.00 %
n 1 0.00 % 1 0.00 %

158

TABLE C.2. Distribution of words to initial two letters (continued)

"m

[with proper nouns 1 [without proper nouns 1

Inijtial letters Number of words Percentage Number of words Percentage
n’ 1 0.00 % 0 0.00 %
nb 1 0.00 % 1 0.00 %
0 1 0.00 % 1 0.00 %
03 1 0.00 % 1 0.00 %
ou 1 0.00 % 0 0.00 %
o] 1 0.00 % 1 0.00 %
Oa 1 0.00 % 0 0.00 %
6h 1 0.00 % 1 0.00 %
P 1 0.00 % 1 0.00 %
pb 1 0.00 % 1 0.00 %
pd 1 0.00 % 1 0.00 %
pk 1 0.00 % 0 0.00 %
pm 1 0.00 % 1 0.00 %
py 1 0.00 % 0 0.00 %
r 1 0.00 % 1 0.00 %
b 1 0.00 % 1 0.00 %
rc 1 0.00 % 1 0.00 %
rd 1 0.00 % 1 0.00 %
rh 1 0.00 % 1 0.00 %

1 0.00 % 1 0.00 %
s 1 0.00 % 1 0.00 %
s. 1 0.00 % 1 0.00 %
sc 1 0.00 % 1 0.00 %
sh 1 0.00 % 0 0.00 %
sV 1 0.00 % 0 0.00 %
sy 1 0.00 % 0 0.00 %
SZ 1 0.00 % 0 0.00 %
s 1 0.00 % 1 0.00 %
S 1 0.00 % 1 0.00 %
sb 1 0.00 % 1 0.00 %
§T 1 0.00 % 0 0.00 %
N\ 1 0.00 % 1 0.00 %
t 1 0.00 % 1 0.00 %
td 1 0.00 % 1 0.00 %
tf 1 0.00 % 1 0.00 %
tg 1 0.00 % 1 0.00 %
tg 1 0.00 % 1 0.00 %
u 1 0.00 % 1 0.00 %
ua 1 0.00 % 0 0.00 %
ue 1 0.00 % 0 0.00 %
i} 1 0.00 % 1 0.00 %
. 1 0.00 % 1 0.00 %
id 1 0.00 % 1 0.00 %

159

TABLE C.2. Distribution of words to initial two letters (continued)

[with proper nouns] [without proper nouns]
Initial letters Number of words Percentage Number of words Percentage
ag 1 0.00 % 1 0.00 %
iy 1 0.00 % 1 0.00 %
v 1 0.00 % 1 0.00 %
vb 1 0.00 % 1 0.00 %
vd 1 0.00 % 1 0.00 %
vl 1 0.00 % 0 0.00 %
Vs 1 0.00 % 1 0.00 %
w 1 0.00 % 1 0.00 %
w. 1 0.00 % 1 0.00 %
wb 1 0.00 % 1 0.00 %
wC 1 0.00 % 1 0.00 %
wh 1 0.00 % 1 0.00 %
wm 1 0.00 % 1 0.00 %
WO 1 0.00 % 0 0.00 %
X 1 0.00 % 1 0.00 %
xa 1 0.00 % 0 0.00 %
xe 1 0.00 % 1 0.00 %
y 1 0.00 % 1 0.00 %
yr 1 0.00 % 1 0.00 %
ys 1 0.00 % 1 0.00 %
¥y 1 0.00 % 1 0.00 %
yz 1 0.00 % 1 0.00 %
zZ 1 0.00 % 1 0.00 %
zf 1 0.00 % 1 0.00 %
zn 1 0.00 % 1 0.00 %
zr 1 0.00 % 1 0.00 %

160

TABLE C.3. Longest words in the lexicon

Length

Word

Categories

17

18

19

20

elektromanyetizma
kafadanbacaklilar
meryemanaeldiveni
piiskiilkuyruklular
vaybabacigimcilif
yuvarlakagizlilar
dikenlibalikgiller
dikenliyiizgegliler
elektrodinamometre
geviggetirmeyenler
giineshayvanciklart
karindanbacakhlar
kirlangicfirtinasi
mikrosinematografi
Ozkedibalifigiller
siirmemantarigiller
iiniversitelerarasi
yassisolungaglilar
denizkaplumbagalari
elektroansefalogram
elektrokardiyografi
geridondirillemezlig
citarsarmisagigiller
elektroansefalografi

2B 2525508803 33 B3 D3B3 BES BSOS SN

161

TABLE C.4. Root words that do not obey the primary vowel harmony rule

Category Words that do not obey the rule

a abani, abes, abidevi, abstre, acayip, acele, acemi, acil, adali, adapte, adet, adi, adil, adli,
aerodinamig, afaki

b cu

c bari, bazen, dahi, hakeza, halbuki, keza, kezalig, lakin, madem, mademki, mamafih,
oysaki, sanki, gayet, vaktaki, velhasil, velhasilikelam, veya, veyahut, yani, zira

d accelerando, acele, acep, acitato, adagio, adeta, affettuoso, agitato, ahir, ailecek,
akabinde, akilane

€ aid, dair, hasebiyle, ila, itibaren, nagi, ragmen

i abe, acayib, aferin, aleykiimselam, alimallah, amenna, bagkesen, billah, bismillah, cicoz,
dandini, destur

n abadi, abakiis, abandone, abani, abdest, abdiaciz, abdiilleziz, abece, aberasyon, abide,
abis, ablatif

p birkag, filan, filanca

S milyar, milyon, trilyon

v adgek, added, affeyle, ahzed, aser, defol, eskos, hamded, hasred, hatmed, inan, kahred,
kahreyle, kaybed, koyver, menol, merhabalas, naksed, rapted, sabreyle, sahiles, saliver,
tabed, tayyed, vazgeg, zehrol

w absiird, adfii], alameti, alikiran, ambale, amiri, ayini, ¢akar-soner, gintan, digyuvasil,

etibba, formiile, hanidir, hidroklorik, iner-gikar, karaim, kito, konstriiktivist, mepsuten,
monte, onikiparmak, sabote, taler, iirodel, veryansin, zevku

162

TABLE C.5. Root words that do not obey the secondary vowel harmony rule

Category Words that do not obey the rule

a abago, abullabut, abus, acul, aerodinamig, afyonkes, agnostig, akaju, akkor, akromatig,
aktiiel, akut

b au, eu

c dolayisiyla, halbuki, oysaki, Gistelik, veyahut, yahut

d accelerando, acitato, adacyo, adagio, affettuoso, agitato, aksamistli, aksamiizeri,
alaminiit, alelhusus

€ dolayi, dolayisiyla

i abu, agu, agucug, aleykiimselam, alo, aport, agkolsun, ayol, banko, bravo, cicoz, destur,
desturun, elhamdiilillah, estagfurullah, fesuphanallah, giitnaydin, hayrola, hodri, istop,
miithig, 6h0, pardon, paydos, selamiinaleykiim, saralop, tiinaydin, voyvo, yahu

n abajur, abakiis, abandone, abanoz, abdiilleziz, aberasyon, abluka, abone, abonman,
aborda

p oteki, suraciy

s milyon, trilyon

v agula, alikonul, alikoy, avun, avut, bagvur, defol, dolandir, diivesi, egkos, gadrol, gagyol,
gOresi, hallol, indiikle, kahrol, kavrul, kavr, kavus, kaybol, kaydol, lagvol, mahvol,
menol, naksol, 6ngdr, parpulla, savul, savun, savr, savug, sirrol, siiblimles, yamrul,
yamul, yavukla, zehrol '

w absiird, abuk, abur, adfiil, afur, cambul, ¢cakar-sOner, garpuk, ¢atur, digyuvasil, dolanli,

eliistéi, hidroklorik, katur, kito, konstriiktivist, kumandi, mepsuten, onikiparmak,
sabote, sakangur, sakulta, irik, lirodel, yamru, yazboz, zevku

TABLE C.6. Root words that do not obey the last phoneme rule

Category Words that do not obey the rule

a homolog, had, sad, yad

b ac, ag, b, ¢, cb, cc, cd, gd, hg, mg, nb, nd, pb, pd, rb, sb, sc, tb, tc, yb

1 b,cd g

n ad, alg, antropolog, arkeolog, astrolog, aysberg, aysfild, bakteriyolog, biyolog, brifing,
bumerang

v ged, yed)

w absiird, hod

163

TABLE C.7. Words that do not obey the vowel harmony rule

Word Categories

acul
akropol
alg

alkol
amal
ametal
amfibol
amiral
ampersaat
ampul
anasaat
anormal
arzuhal
atol
atonal
ayal
bandrol
barkarol
basketbol
bagrol

S BB D3B OB OMBIBIDDBSIBEBEIBDDBERB

164

TABLE C.8. Words that do not obey the consonant harmony rule 1

Word

Categories

ad

af

agiryag

alg
antikgag
antropolog
arkeolog
astrolog
aysberg
aysfild

bag
bakteriyolog
balig
bagbug
belig
biyolog
bog

bog

brifing
bulug

<

B8 D34l 333D D838 BS

165

TABLE C.9. Words that obey the consonant harmony rule 2

Word Categories

antropolog
arkeolog
astrolog
bakteriyolog
biyolog
dermatolog
diyalog
etimolog
etnolog
farmakolog
filolog
fizyolog
gastroenterolog
glasyolog
grafolog
hematolog
hidrolog
jeolog
jeomorfolog
jinekolog

2R BEDOIDBEBBBBBEDIBBBEIBIDDIDIRBRDD

166

TABLE C.10. Words that obey the vowel insertion rule 1

Word Categories

acz
adamcagz
ajz

ahd

akd

akl

aks

aln

asr

asr

atf

azl

azm

bajr

bahs
basgsehr
bedr
benz
beyn

beyt

B3B3 BDBIDIBSBDIBSBD

TABLE C.11. Words that obey the vowel insertion rule 2

Word Categories
ayr v

bagr nv

buyr v

cafir v

cevr v

qigr nv

devr nv

kavr v)
kayr nv

kivr v

savr v

s1yr v

sogr \

yogr A\

167

TABLE C.12. Words that obey the double consonant rule

Word Categories

af

ced

cer
emrihak
fek

fen
galatthis
hac

had

hak

hat

haz

his

kay
lediin
lef
mahal
mas
med

A2
< =

TABLE C.13. Words that obey the phoneme deletion rule for verbs

Word Categories
de cv
ye v

168

TABLE C.14. Words that obey the possessive suffix rule 1

Word Categories

cima
elveda
emrivaki
enva
ibda
ictima
ihtira
ikna
imtina
indifa
inkita
intiba
irca
irtica
irtifa
kablelvuku
kani
maktu
matbu
matla

B RO I BB B3IEOS3ESB3IBRBE

TABLE C.15. Words that obey the possessive suffix rule 2

Word Categories
bayi n

cami an

misra n

sanayi n

sema n

169

TABLE C.16. Words that obey the rule for compound words 1

Word Categories

acemborusu
acemlalesi
afrikamenekgesi
agacminesi
aksamsefasi
altinsuyu
amerikaelmasi
amerikapiresi
arpasuyu
aslanpencesi
asiboyasi
atbaklasi
atkestanesi
aylyoncasi
babatatlisi
bademezmesi
balarisi
balikyumurtast
bagOrtiisii.
besisuyu

SRS PDBB BB RIS
=

170

TABLE C.17. Words that obey the rule for compound words 2

Word Categories

adabalif
akyabalif
amberagacl
amberbalif1
ambergicedi
amerikaarmudu
antepfistif
armutkabagi
aslankuyrugu
asmakabag1
atbalif
ategbalifi
ategbtcefi
atescicedi
ategkayigi
atkuyrugu
atlasagaci
atlascicegi
atsinegi
avizeagaci

B s RBBB3IBEDDBBEEIB3IDIBIDRIB =SB

171

TABLE C.18. Words that obey the rule for compound words 3

Word Categories

aslanagzi
balikagzi
danaburnu
deveboynu
cloglu
gokcismi
gokkutbu
giivercinboynu
herifcioglu
hinoglu
insanoglu
itburnu
kargaburnu
kavugumdevri
kisioglu
kuloglu
kurtagzi
kurtbagn
kusburnu
tavukgogsii

BB B3B3BB3IBBB3IBBBSDIBSSBDER

172

TABLE C.19. Words that obey the rule for compound words 4

Word Categories

adagay1
adamkokii

adamotu
adasogani
adatavsani
afyonruhu
akildisi
alantopu
alaybeyi
algitagi
almangimiigi
altinkoki
amerikabademi
amerikatavgani
amerikatiziimii
anadili
anaokulu
anasinifi
andizotu
aptesbozanotu

B 28 8B BB3BD3 DB BBBBED3IDIB3IBNBD

TABLE C.20. Words that do not obey the aorist suffix rule

Word Categories

aban
abart
actk
aksir
aktar
al

algal
aldan
aldat
alikonul
ahg
andirig
anir
anigtir
apar
apig
aragtir
artakal

o <
=]
<

I B - R R R B . I IR R I I R

173

TABLE C.21. Words that obey the rule for the morpheme su

Word

Categories

agirsu
akarsu
aksu
altinsuyu
arpasuyu
bengisu
besisuyu
billursu
camsuyu
gigeksuyu
ersuyu
glilsuyu
karasu
kenarsuyu
madensuyu
Ozsu

pissu

su
ylizsuyu

B S B83BpB3EsBB3BD DO 333D

174

TABLE C.22. List of longest words in the corpus

gerceklestirilebilecegini
degerlendirilebilecegini
gergeklestirebileceginiz
sonuglandirilamayacagina
demokratiklestirecektir
gerceklesgtiremeyecektir
gergeklestirilememigtir
kaydettirebileceklerini
mikrobiyolojistlerinden
barindirilabilecekleri
doniistirilemeyecegidir
gergeklestirilmektedir
igsellestirilebilecegi
kullandinlabilecegini
saflamlastiracaklardir
silahsizlandirilmasini
yararlanamamaktadirlar
acimasizlastiriyorlar
balkanlagtirilmasinin
Bulgaristan’dakilerin
cevaplandirilmasidan
deneyimlenebilecegini
degerlendirebiliyoruz
degerlendirildiginden
degerlendirilmesinden
degistirmeyeceklerini
elestirilemeyeceginin
gelistirilebilecektir
gergeklestirdiklerini
gergeklestiriyorsunuz
giincellestirilecegini
hizlandirabileceginin
irtibatlandirlmigtir
kademelendirilecektir
kargilastirilamayacak
monotonlastirildigini
programiastiriimasina
taksitlendirilecegini
yasayabileceklerinden
yararlanabildiklerini
yerlegtirebileceginiz
yumusatilamayacagidir

gerceklestirilemeyecegini
dinleyebileceklerimizden
kargilagtirlabildikleri
afaclandirilabilecegini
gerceklestirememektedir
gerceklestirilebilecegi
gerceklestirmediklerini
kullandirabileceklerini
randevulagabiliyorsunuz
bilgilendirilemedigini
gerceklegtirilebilmesi
gorevlendirebilecegini
ilgilenebileceklerinin
memnuniyetsizliklerini
sevindirebileceklerini
sinirlandirilmamalidir
yayginlagtiracaklarini
ayarlayabileceklerini
beslenemeyebilecegini
bulundurulamayacaklar
cezalandiriimiglardir
desteklemeyeceklerdir
degerlendireceklerini
degerlendirilmedigini
degistirebilecegimizi
donigtiirilmeyenlerden
etkilenebileceklerini
genellestirilebilirse
gergeklestirilecegini
gorevlendirileceklere
hesaplayamayacaginiz
hoggoriisiizliklerimizi
istikrarsizlasgtirtyor
kargilagabilecegimizi
karsilagtirilmaksizin
olusturulabilecegidir
silahsizlandiracakur
tamamlayabiliyorsunuz
yakalanabileceklerini
yayginlagabilmektedir
yerlestirileceklerini

anlamlandirabiliyordunuz
etkisizlestirileceginden
kargilagtirilamayacagini
cezalandirilabilecegini
gergeklestirememislerdi
gergeklestirilemedigini
gorevlendirilmeyecekler
kullandiramadiklarindan
anlamlandiramiyorsunuz
degerlendirilebilmekte
gerceklestirilememigti
gosterilmeyeceklerinin
kargilastirabildigimiz
olanaksizlagtiracagin
silahsizlandirilmasina
yararlanabileceklerini
yetistirebileceklerini
bagkonsolosluklarinda
bindokuzyiizdoksandort
carptrilabilecekleri
cumhurbagkanligindaki
degerlendirebilecekti
degerlendirememesinin
degerlendirilmektedir
degistirebiliyorsunuz
duygusuzlastiriyorlar
gecirilebileceklerini
genisletilebilecegini
gerceklestirilmesidir
giilimseyebiliyordunuz
hissettireceklerinden
ilgilendirebilecegini
istikrarsizlagtirmaya
kargilagtinlabilecek
milletvekillerimizden
odiillendiriliyorlard: -
siirdirebilmektedirler
Tiirkce’lestirildigini
yakalanamayacaklarini
yayginlastirtlacaktir
yetistirilebilecegine

175

TABLE C.23, List of longest roots in the corpus

allahaismarladik
telekomiinikasyon
hindistancevizi
karbonmonoksit
milletlerarasi
selamiinaleykiim
alacakaranlik
cumhurbagkani
elhamdiilillah
fesuphanallah
Kahramanmarag
konfederasyon
konsolidasyon
maalmemnuniye
misafirperver
nitrogliserin
sinyalizasyon
sterilizasyon
terakkiperver
yiiksekOgretim

egzistansiyalist
elektrifikasyon
transplantasyon
konvertibilite
rehabilitasyon
toplumlararasi
Anadoluhisart
derinlemesine
endokrinoloji
Gaziosmanpaga
karakteristik
konsantrasyon
konvansiyonel
maslahatgiizar
modernizasyon
pastOrizasyon
sosyoekonomik
Sarkikaraagac
transatlantik

gastroenteroloji
elektromanyetik
antidemokratik
mikroorganizma
reorganizasyon
transformasyon
bibliyografya
dokiimantasyon
enternasyonal
hipertansiyon
kendiliginden
konservatuvar
kordiplomatik
mikrobiyoloji
miitekabiliyet
radyoaktivite
sosyokiiltiirel
sehirlerarasi
yiiksekOgrenim

176

APPENDIX D. LIST OF SUFFIXES THAT ARE NOT USED IN THE SPELLING CHECKER

This appendix lists the suffixes that are affixed to a small number of words. Because of this,

these suffixes were not inserted into the suffix lexicon. The suffixes are given in Table D.1.

177

TABLE D.1. Suffixes not included in the suffix lexicon

Suffix Source category Words

A n ad, bos, dis, ot, s1, tiir, yas

(A)cAn v bil, ev, iv, sev

(A)C n ana, baba, bazlama, dar, dofa, diiz, kaya, kir, kisa,
orta, top

(A)gAn v dur, gel, gid, kiis, ol, pis, solu

Agl n dis, kil, kir

@)j n blog, bobin, doz, dren, estamp, gram, krom, model,
pilot, pompa, silindir, sonda, ton, volt

A)G n ad, baldir, bag, bebe, ben, bor, dam, gél, kog, koy,
orta, ot, 6z, pas, sol, top, yan, yayla, yol

Aayla v bagda, calka, ¢ek, des, don, dur, es, gev, gez, gid, it,
ov, sag, sars, serp, §as

(A)lgA v bit, ¢iz, go¢, kon

(A)m v diz, d6n, kur, tut

(A)mAG v bas, kag, tut, ye

(A)n n dil, giic, Oz, tist

(A)nAG v daya, diiz, ek, geg, gor, goze, it, kes, ol, dde, ort, seg,
tak, tut, yaz, yet

(A)r n bol, boz, deli, ev, gog, gol, ig, ot, toz

A n anane, bag, gol, hitkm, 6z

(A)v v igle, sina, soyle

(A)y v bit, dene, dol, dola, ol, uza

bast n ases, haham, hamal, koca, kol, mehter, mimar, oda,
pazar, sekban, usta

baz n cene, dil, diizen, hile, kumar, kus, kiifr, oyun, sihr

CA d adamakilly, alelacele, ayri, bagka, beraber, boyle,
cabug, epey, erken, evvel, iyi, kasti, Oyle, sade, s0yle,
yalniz

CA v begen, dinlen, dokun, donen, diigiin, eflen, gerek,
giiven, imren, inan, sakin

cAcIG d hemen, kolay, usul, yavag

cAglz n abla, adam, ¢ocug, kadin, kiz

cAG n aile, ev

cAG n ayag, biriim, 111, 1s1, kol, oyun, piir, yalin, yavru

cAG v em, erin, salin

CAnA d aq§, beraber, boyle, iyi, kolay, dyle, soyle

cllAyln P ben, biz, sen

C v avun, dayan, diren, edin, erin, gbnen, giiven, ifren,
ilen, inan, kazan, kiskan, kivan, Ozen, usan, utan,
isen

dAG n dingil, 6z, yar

dANIG n giin, on, &n

DAn n al, yel

DAn a can, dig, ig, ince, kdk, 0z, sira, su, top, ylireg

178

TABLE D.1. Suffixes not included in the suffix lexicon (continued)

Suffix Source category Words

Dar n alem, bayrag, defter, din, hazine, hiikm, 1s, kin,
makas, methal, mihman, ser

DAg n denk, diigiin, ev, kan, karn, kol, kok, 0z, pay, ses,
sekl, tiir, yan, yon, yurd

DAt n al, ser

airiG n boyn, burn, gigin, ofl

GA n im, omur, 8z, sim, soy, yar

GA v bil, b6l, ¢iz, ¢okel, diz, gdster, kavr, Oner, 6r, sémiir,
siipiir, yon

GAC v bur, gevr, del, kis, siiz, utan, iisen, yiiz

GAn n bas, belit, ceb, kose, yel

GIC A bil, dal, del, kaz

GAn v cali, eri, giris, koru, sirit, stiriin

I n bar, berk, erg, palaz, savk, tas, toz

I v berk, kak, kaz, sor

OG n ag, geg, gbz, kar

(DKIA v diirt, say, stir

D1 n ad, ag, ard, as, ba§, buz, ¢og, dis, digi, dord, er, giz,
iki, kas, kum, tas, tek, tirpit, yaban

(ImsA a ani, az, ben, ¢og, giic, koti, Oz, sayri, yok

(DmsA v an, ¢ek, duy, giil, kag, sofr

(I)msAr a iyi, kara, kotii

(I)mtxraG a acl, beyaz, eksi, gri, kahverengi, kirmizi, mavi, mor,
pembe, sari, siyah, yesil

(DOn \ ak, bas, gak, diz, ek, kiy, sat, say, yay, yaz, yi§

(D n an, boy, brong, dol, es, karsi, kok, yag

k v bur, sar, sil

keg n afyon, cefa, cile, esrar, gayret, keman, ser, sirma,
tufra

1A i agu, ah, deh, 1h, of, pehpeh, puf, pif, uf, yuha

1A n ay, buz, kum, ki3, sin, tuz

1AG n av, biige, biive, dig, giiz, kis, kug, ot, su, teker, tuz

1Am n) ba§, boy, deng, diiz, ek, en, es, gbz, i, iki, iz, sag,
ses i

leyin n aksam, gece, sabah

I n bihuzur, ek6deme, esas, hata, hiz, hiilya, icedonis,
kasvet, kuruntu, tad, tekparga, yanédeme, yapmacig,
zaman

mAn n af, ata, ev, gof, goz, kamera, kir, koca, koskoca,
kole, sag, sis

mAn \4 aragtir, ¢ek, gevr, danig, diz, efir, efit, elestir, gez,
g0g, 1, kat, Ofret, say, sec, yaz

mAz v added, art, befen, benze, defis, doy, eksil, eski,

gerek, 1rgala, kirp, kizar, piskir

179

TABLE D.1. Suffixes not included in the suffix lexicon (continued)

Suffix Source category Words

mIG v cigne, il, kis, kiy, kus

nAG v der, deg, kas, 6de

ol n def, gadr, gasy, hal, kahr, kayb, kayd, lagv, mahv, sir,
zehr

perver n cumhuriyet, hayr, menfaat, milliyet, misafir, sulh,
terakki, vatan

1AG n aci, boz, dig, ig, kav, kisa, yej

sAG n bagr, burn, su, tiim, yakin, irak

sAG v sav, tut

sAl v dokun, duy, diigtin, egit, gor, isit, uy

sever n banig, dil, hak, hayr, kitab, konug, muzig, sanat,
sinema, spor, sulh, ulus, vatan, yardim, yurd

sl n an, giceg, yaban, yad, yan

sl v giy, sin, tiit, yat

sl n dudag, maya, ot, var, yog

sInA d afra tafra, bedava, boyle, Oyle, soyle, yanlama, yeni

slz n besmele, ekddeme, hata, kot, yanédeme, yapmact,
zaman

sln a ak, kara, sarn

tay n dani§, kamu, kurul, yargi

Wi n abide, aile, anape, anayasa, angarya, daire, efsane,
figki, mide, mucize, terbiye, yaban

(v)ane n acz, akil, dost, dahi, hakim, halis, mahir, masum,
mecnun, mest, muzaffer, naciz, sair, zalim

(V)AsIcA v at, bat, ¢ildir, doy, eri, 6l, zibar

)In n ansiz, ¢ogf, giic, giz, ilk, ki, 68le, 6rneg, yaz

(y)sA d boyle, nasil, neden, nerde, nerede, Oyle, siki

zade n amca, asil, bey, dayi, hala, haram, helal, hemsire,

kisi, pasa, teyze

180

10.
11.
12.
13.

14.
15.

16.

17.

BIBLIOGRAPHY

Charniak, E. and McDermott, D., Introduction to Artificial Intelligence, Addison-Wesley
Publishing Company, 1985.

Nilsson, N.J., Principles of Artificial Intelligence, Tioga Publishing Company, 1982.
Meskill, R.H., A Transformational Analysis of Turkish Syntax, Mouton and Co. N.V. Pub.,
The Hague, 1970.

Erguvanli, E.E., The Function of Word Order in Turkish Grammar, University of California

Press, California, May 1984,

Stoop, A.M., "Atmaca: Semantic Analysis by the Computer,” Studies on Turkish Linguistics,
pp. 539-564, 1988.

Hirst, G., "Semantic Interpretation and Ambiguity,” Artificial Intelligence, vol.34, pp. 131-177,
1988.

Huber, W., Computational Linguistics: Tutorial, 1982.
Hankamer, J., "Morphological Parsing and the Lexicon," W.M. Wilson (ed), Lexical

Representation and Processing, MIT Press, 1988.

Kibaroglu, M.O., "Spell Checking in Agglutinative Languages and an Implementation for
Turkish,” M.S. Thesis, Bogazi¢i University, Istanbul, 1991.

Ergin, M., Tiirk Dilbilgisi, 19th ed., Bayrak Yayinlari, Istanbul, 1990.

Kog, N., Yeni Dilbilgisi, inkildp Yaywmlari, Istanbul, 1990.

Banguoglu, T., Tiirk¢e’nin Grameri, Tiirk Tarih Kurumu, Ankara, 1990.

Lees, R.B.,, The Phonology of Modern Standard Turkish, Indiana University Press,
Bloomington, 1961.

Cotuksoken, Y., Tirkce’de Ekler-Kokler-Govdeler, 2nd ed., Cem Yayinlari, Istanbul, 1991.]
Sebiiktekin, H.I, Turkish-English Contrastive Analysis - Turkish Morphology and

Corresponding English Structures, Mouton Press, The Hague, Paris, 1971.

Giingor, T. and Kuru, S., "Representation of Turkish Morphology in ATN," Proceedings of
the Second Symposium on Artificial Intelligence and Artificial Neural Networks, Istanbul, pp.
94-104, June 1993.

Akin, H.L., Kuru, 8., Gingdr, T., Hamzaoglu, 1., and Arbatl;, D., "A Spelling Checker and

Corrector for Turkish," Proceedings of the Second Turkish Symposium on__Artificial
Intelligence and Artificial Neural Networks, Istanbul, pp. 113-120, 24-25 June 1993.

181

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

29.

30.

31.

32.

Giing6r, T. and Kuru, S., "Full Turkish Morphology Represented as an Augmented Transition

Network,” submitted to Literary and Linguistic Computing.
Packard, D., "Computer-Assisted Morphological Analysis of Ancient Greek," Computational

and Mathematical Linguistics: Proceedings of the International Conference on Computational
Linguistics, Pisa. Leo S.Olschki, Firenze, pp. 343-355, 1973.

Brodda, B. and Karlsson, F., An Experiment with Morphological Analysis of Finnish, Papers
from the Institute of Linguistics, University of Stockholm, Publication 40, Stockholm, 1980.
Sagvall, A., "A System for Automatic Inflectional Analysis Implemented for Russian,” Data
Linguistica, 8, Almqvist and Wiksell, Stockholm, 1973.

Kasper, R. and Weber, D., User’s Reference Manual for the C Quechua Adaptation Program,
Occasional Publications in Academic Computing, Number 8, Summer Institute of Linguistics,

Inc., 1982.

Kasper, R. and Weber, D., Programmer’s Reference Manual for the C Quechua Adaptation

Program, Occasional Publications in Academic Computing, Number 9, Summer Institute of

Linguistics, Inc., 1982.

Koskenniemi, K., Two-level Morphology: A General Computational Model for Word Form

Recognition and Production, Publication No: 11, Department of General Linguistics,
University of Helsinki, 1983.
Hankamer, J., "Turkish Generative Morphology and Morphological Parsing,” unpublished

paper, presented at Second International Conference on Turkish Linguistics, Istanbul, 1984.

Koksal, A., "Automatic Morphological Analysis of Turkish," Ph.D. Thesis, Hacettepe
University, Ankara, 1975.

Taft, M. and Forster, K., "Lexical Storage and Retrieval of Prefixed Words," Journal of Verbal
Learning and Verbal Behavior, vol.14, pp. 638-647, 1975.

Bradley, D.C,, "Lexical Representation of Derivational Relation,” Juncture, MIT Press, 1980.
Lukatela, G., Gligorijevic, B., Kostic, A., and Turvey, M.T., "Representation of Inflected Nouns
in the Internal Lexicon,” Memory and Cognition, vol.8, pp. 415-423, 1980.

Laudanna, A. and Burani, C., "Address Mechanisms to Decomposed Lexical Entries,"
Linguistics, An Interdisciplinary Journal of the Language Sciences, Mouton Press, pp. 775-792,
1985.

Hankamer, J., "Morphological Parsing," Conference on Lexical Representation and Processing,
Nijmegen, 1986.
Hankamer, J., "Finite State Morphology and Left to Right Phonology," Proceedings of the

West Coast Conference on Formal Linguistics, vol. 5, Stanford University, 1986.

182

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

45.

47.

Kibaroglu, M.O., and Kuru, S., "A Left-to-Right Morphological Parser for Turkish,”
Proceedings of the Sixth International Symposium on Computer and Information Sciences,
Antalya, 1991.

Ritchie, G.D., Russell, G.J., Black, A.W., and Pulman, S.G., Computational Morphology, MIT

Press, Cambridge, 1992,

Solak, A. and Oflazer, K., "Parsing Agglutinative Word Structures and Its Application To
Spelling Checking For Turkish,” submitted to Computational Linguistics, 1992.

Darcan, O.N., "An Intelligent Database Interface for Turkish,” M.S. Thesis, Bofazici
University, Istanbul, 1991.

Dekkers, C., Koster, C.H.A., Nederhof, M.J., and Zwol, A.V., The Grammar Work Bench: A
First Step Towards Lingware Engineering, Technical Report no. 92-06, University of Nijmegen,
1992.

Gazdar, G. and Mellish, C., Natural Language Processing in Lisp, Addison-Wesley Publishing

Company, 1989.
McEnery, T., Computational Linguistics: A Handbook and Toolbox for Natural Language

Processing, Sigma Press, Wilmslow, 1990.

Stoop, A.M.,, "Transit in the Word of Machine Translation: Towards an Automatic Translator

For Dutch and Turkish,” in H.E. Boeschoten and L.T. Verhoeven (eds), Studies on Modern
Turkish Proceedings of the Third Conference on Turkish Linguistics, pp. 157-177, 1987.
Lewis, G.L., Turkish Grammar, Oxford University Pub, 1984.

Farkas, E., Koster, C.H.A., Koves, P., and Naszodi, M., "Towards an Affix Grammar for the

Hungarian Language,” Conference on Intelligent Systems, pp. 223-236, 1991.

Koster, C.H.A., Affix Grammars for Natural Ianguages, Technical Report no. 91-12,

University of Nijmegen, 1991.

Koster, C.H.A. and Willems, R., "Towards an Affix Grammar for Turkish,” Proceedings of the
Sixth International Symposium on Computer and Information Sciences, pp. 1067-1076,
Antalya, 1991.

Oflazer, K., "Two-level Description of Turkish Morphology," Proceedings of the Second
Turkish Symposium on Artificial Intelligence and Neural Networks, pp. 86-93, Istanbul, 1993.

Aho, A.V. and Ullman, J.D., The Theory of Parsing, Translation, and Compiling, Prentice-Hall
International, 1972,

Gazdar, G. and Mellish, C., Natural Language Processing in Prolog, Addison-Wesley
Publishing Company, 1989.

Krulee, G.K., Computer Processing of Natural Language, Prentice-Hall Inc., 1991.

183

49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

65.

67.

69.

Ozsoy, S., Tiirkce’nin Betimlemeli Sesbilimine Girig, in preparation.

Ozsoy, S., personal communication.

Toreci, E., "Statistical Investigations on the Turkish Language Using Digital Computers,” M.S.
Thesis, METU, Ankara, 1974.

Sezer, E., "The k/0 Alternation in Turkish,” Harvard Studies in Phonology, vol.2, pp. 354-382,
February 1981.

Aksoy, O.A., Ana Yazim Kilavuzu, 4th ed., Adam Yayinlari, Istanbul, 1991.

Alkim, B., Redhouse Yeni Tﬁrkgg—Ingj!igce Sozliik, 11th ed., Redhouse Yayinlari, Istanbul,
1990.

Eren, H., Tiirkce Sozliik, Atatiirk Kiilttir Dil ve Tarih Yiiksek Kurumu, Tirk Dil Kurumu
Yayinlari, Ankara, 1988.

Eren, H., Tiirkce S8zliik, Tiirk Dil Kurumu Yayinlari, Ankara, 1985.

Solak, A. and Oflazer, K., "Implementation Details and Performance Results of a Spelling
Checker for Turkish,” Proceedings of the Sixth International Symposium on Computer and
Information Sciences, pp. 1057-1066, Antalya, 1991.

Sproat, R.W., Morphology and Computation, MIT Press, 1992.

GOneng, G. and Toreci, E., "Tirkge'nin Bazi Ozelliklerinin Bilgisayarla Sayimsal
Coziimlenmesi," Bilisim Dergisi, pp. 42-78, 1975.

Pamuk, O., Kara Kitap, iletigim Yayimlari, 1992.

Arslanoglu, K., Yamlmanin Gergekligi, insancil Yaynlari, Istanbul, 1994.

Kuru, S. and Akm, H.L., "Spelling Checking in Turkish,” Proceedings of the DECSYM 92

Latest Trends in Computing Conference, Antalya, 1992.

Par, A.H., A’dan Z’ve Ansiklopedik Tiirk Adlan Sozliigii, Serhat Yaymevi, Istanbul, 1981.
Piiskiilliioglu, A., Cocuk Adlari Sozligii, 4th ed., Ozgir Yaymnevi, Istanbul, 1992.
Siit¢iioglu, R. and Sitgiioglu, A., Isimler Sozligi, Mey Yayinevi, Izmir, 1991.

Aysan, A. and Tuncay, S., Tirk Adlar1 S6zligi, V Yayinlar, 1987.

Anonim, Bilyiik Diinya Atlasi, Milliyet, 1992.

Solak, A. and Oflazer, K., "A Finite State Machine for Turkish Syllable Structure Analysis,"
Proceedings of the Fifth International Symposium on Computer and Information Sciences,
vol.2, Nevsehir, pp. 1195-1202, 1990.

Demir, C. and Oflazer, K., "An ATN Grammar for a Subset of Turkish,” Proceedings of the

Second Turkish Symposium on Artificial Intellipence and Neural Networks, pp. 162-169,
Istanbul, 1993.

184

70.

71.

72.

Hovy, E.H., "Pragmatics and Natural Language Generation," Artificial Intelligence, vol.43, pp.
153-197, 1990.

Nirenburg, S., Carbonell, J., Tomita, M., and Goodman, K., Machine Translation, Morgan
Kaufmann Publishers, California, 1992.

Goneng, G., "A Finite-State Automaton for Syllabification of Turkish words,” Proceedings of

the Sixth International Symposium on Computer and Information Sciences, pp. 1039-1046,
Antalya, 1991.

185

