
 

 

A FUZZY LOGIC BASED ENSEMBLE ADAPTIVE TILE PREFETCHING 

 

 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

 

 

 

BY 

 

MEHMET FATİH ULUAT 

 

 

 

 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF DOCTOR OF PHILOSOPHY 

IN 

COMPUTER ENGINEERING 

 

 

 

 

 

 

  

AUGUST 2014 

 





Approval of the thesis: 

 

A FUZZY LOGIC BASED ENSEMBLE ADAPTIVE TILE PREFETCHING 

 

 

submitted by MEHMET FATİH ULUAT in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in Computer Engineering Department, 

Middle East Technical University by, 

 

 

 

Prof. Dr. Canan Özgen                        _______________ 

Dean, Graduate School of Natural and Applied Sciences 

 

Prof. Dr. Adnan Yazıcı                       _______________ 

Head of Department, Computer Engineering 

 

Prof. Dr. Veysi İşler                       _______________ 

Supervisor, Computer Engineering Dept., METU   

 

Examining Committee Members: 

 

Assoc. Prof. Dr. Halit Oğuztüzün                     _______________ 

Computer Engineering Dept., METU 

 

Prof. Dr. Veysi İşler                       _______________ 

Computer Engineering Dept., METU 

 

Assoc. Prof. Dr. Tolga Can                      _______________ 

Computer Engineering Dept., METU 

 

Assoc. Prof. Dr. Tolga Çapın                      _______________ 

Computer Engineering Dept., TED University 

 

Asst. Prof. Dr. Hacer Yalım Keleş                     _______________ 

Computer Engineering Dept., Ankara University 

 

Date:              28/08/2014 



 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 

 

 

 

Name, Last name : MEHMET FATİH ULUAT 

 

 

Signature 

 

 

: 

 

 

  



 v 

ABSTRACT 

 

 

A FUZZY LOGIC BASED ENSEMBLE ADAPTIVE TILE PREFETCHING 

 

 

 

Uluat, Mehmet Fatih 

Ph.D., Department of Computer Engineering 

Supervisor: Prof. Dr. Veysi İşler 

 

August 2014, 142 pages 

 

Prefetching is a process in which necessary portion of data is predicted and loaded 

into memory beforehand. The increasing usage of geographic data in different types 

of applications motivated the development of different prefetching techniques. 

These techniques are usually developed for specific type of applications such as 2D 

geographic information systems or 3D visualization applications and crafted for 

corresponding navigation patterns. However, as boundary between these 

application types blurs, these techniques become insufficient for hybrid application 

types such as digital moving maps. This type of applications possess capabilities 

from both of these domains and exhibit various navigation patterns. Therefore, a 

group of prefetching techniques should be used together to handle different 

requirements and navigation patterns. In this study, a priority based tile prefetching 

approach is proposed which enables ensemble usage of different prefetching 

techniques at the same time. The proposed approach manages these techniques 

dynamically through a fuzzy logic based inference engine to increase prefetching 

performance and to adapt to various behaviors exhibited. This engine performs 

adaptive decisions about contribution of each technique according to their 

individual performance and activity level. The results obtained from experiments 

showed that up to 25% increase in prefetching performance is achieved with 

proposed adaptive ensemble usage over single technique usage. A generic model 



 vi 

for prefetching techniques is also developed and used to describe given approach. 

Finally, a cross-platform software framework with five different prefetching 

techniques are developed to let other users utilize proposed approach.  

 

Keywords: Prefetching, GIS, fuzzy logic, adaptive prefetching, tile prefetching, 

raster data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

ÖZ 

 

 

COĞRAFİ VERİLER İÇİN BULANIK MANTIK İLE ÖN YÜKLEME 

YAKLAŞIMI 

 

 

 

Uluat, Mehmet Fatih 

Doktora, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Veysi İşler 

 

Ağustos 2014, 142 sayfa 

 

Uygulamalar için gerekli olan verilerin önceden tahmin edilerek belleğe alınması 

işlemine ön yükleme denilmektedir. Uygulamalar tarafından coğrafi veri 

kullanımının artması ile birçok ön yükleme tekniği geliştirilmiştir. Bu tekniklerin 

birçoğu iki boyutlu coğrafi bilgi sistemleri veya üç boyutlu görselleştirme 

uygulamaları ve bunlara özgü navigasyon türleri için özelleşmiştir. Bu yaklaşımlar, 

belirli bir tip uygulama türü için ön yakalama ihtiyaçlarını karşılasalar da, kayan 

harita yazılımları gibi bünyesinde farklı kabiliyet ve navigasyon türlerini içeren 

uygulamalar için yetersiz kalmaktadır. Bu sebeple, tek bir ön yükleme tekniği 

kullanmak yerine, birden fazla teknik aynı anda kullanarak, farklı kabiliyet ve 

navigasyon türlerinin ihtiyaçları karşılanmalıdır. Bu çalışmada, çeşitli ön yükleme 

tekniklerinin birlikte kullanılmasına olanak sağlayan öncelik tabanlı bir pafta ön 

yükleme yaklaşımı sunulmuştur. Sunulan yaklaşım ile farklı ön yükleme 

tekniklerinin etkinlikleri, dinamik olarak bulanık mantık kullanılarak geliştirilmiş 

olan bir çıkarım motoru ile kontrol edilmektedir. Bu motor sayesinde, uygulama 

tarafından sergilenebilecek farklı kabiliyet ve navigasyon şekillerine uyum 

sağlanabilmektedir. Gerçekleştirilen deneyler ile bu yöntemin farklı kabiliyetleri 

bünyesinde taşıyan uygulamalarda, birlikte kullanımda tekil kullanıma göre 25%’e 

yaklaşan bir ön yükleme performans artışı sağlandığı gösterilmiştir. Bunun ile 

birlikte diğer ön yükleme yaklaşımlarını ifade etmek için kullanılabilecek genel bir 



 viii 

ön yükleme modeli geliştirilmiştir. Sunulan yaklaşım bu model üzerinden 

açıklanmıştır. Gerek farklı uygulama türlerini temsil etmek, gerekse deneylerde 

kullanılmak üzere beş farklı ön yükleme tekniği tasarlanmıştır. Bu yaklaşım 

geliştirilen bir yazılım alt yapısı ile diğer kullanıcıların kullanımına sunulmuştur. 

 

Anahtar Kelimeler: Ön belleğe alma, CBS, bulanık mantık, uyarlanabilir ön belleğe 

alma, coğrafik veri. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To My Daughter and Beloved Wife 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

  



 x 

ACKNOWLEDGMENTS 

 

 

 

The author wishes to gratefully thank his supervisor Prof. Dr. Veysi İşler for his 

invaluable guidance, advice and encouragements for this research. 

 

The author would also like to thank Assoc. Prof. Dr. Tolga Can and Assoc. Prof. 

Dr. Tolga Çapın for their suggestions and comments. 

 

Finally, the author wishes his special thanks to his family for their patience, support 

and motivation. 

 

 

 

  



 xi 

TABLE OF CONTENTS 

 

 

 

ABSTRACT ............................................................................................................. v 

ÖZ .......................................................................................................................... vii 

ACKNOWLEDGMENTS ....................................................................................... x 

TABLE OF CONTENTS ........................................................................................ xi 

LIST OF TABLES ................................................................................................ xiii 

LIST OF FIGURES .............................................................................................. xiv 

LIST OF ABBREVIATIONS ............................................................................. xviii 

CHAPTERS 

              1. INTRODUCTION ................................................................................. 1 

1.1 Problem ............................................................................................ 3 

1.2 Contributions ................................................................................... 7 

1.3 Thesis Overview .............................................................................. 8 

             2. PREFETCHING ..................................................................................... 9 

2.1 Studies from GIS Domain ............................................................. 13 

2.2 Studies from Visualization Domain............................................... 22 

              3. FUZZY LOGIC ................................................................................... 31 

3.1 Fuzzification Step .......................................................................... 35 

3.2 Fuzzy Processing Step ................................................................... 37 

3.3 Defuzzification Step ...................................................................... 39 

3.4 An Application Example of Fuzzy Logic ...................................... 41 

            4. ENSEMBLE ADAPTIVE PREFETCHING ......................................... 45 

4.1 EAP Architecture ........................................................................... 45 

4.2 Criterion Term ............................................................................... 49 

4.3 Forms of Data ................................................................................ 52 

4.4 Prefetching Steps and Prioritization .............................................. 53 

4.5 Fuzzy Logic-Based Adaptive Weight Balancer ............................ 67 

4.6 Ensemble Adaptive Prefetching Approach and Usage Scenario ... 79 



 xii 

             5. DEVELOPED SET OF CRITERIA ...................................................... 91 

5.1 2D MapView Criterion .................................................................. 91 

5.2 Retrospective Adaptive Prefetching (RAP) Criterion.................... 93 

5.3 2D/3D Distance Criterion .............................................................. 93 

5.4 3D Field of View (FOV) Criterion ................................................ 94 

5.5 Point of Interest (POI) Criterion .................................................... 95 

5.6 Vertical Cross Section (VCS) Analysis Criterion .......................... 96 

             6. EXPERIMENTATION AND DISCUSSION ....................................... 99 

6.1 Measurement Parameters ............................................................... 99 

6.2 Experimentation One ................................................................... 100 

6.3 Experimentation Two................................................................... 107 

6.4 Experimentation Three................................................................. 109 

            7. CONCLUSION AND FUTURE STUDY ........................................... 115 

REFERENCES ..................................................................................................... 117 

APPENDICES 

            A. EAP FRAMEWORK .......................................................................... 123 

A.1 EAP Packages .............................................................................. 123 

A.2 EAP Classes ................................................................................. 125 

A.3 EAP Utilization ............................................................................ 132 

            B. AN EXAMPLE CONFIGURATION FILE ........................................ 135 

CURRICULUM VITAE ...................................................................................... 141 

 

 

 

 

 

 

 

 

 

 



 xiii 

LIST OF TABLES 

 

 

 

TABLES 

 

Table 2.1 Characteristics of web objects [29] ....................................................... 14 

Table 2.2 Neighbor tiles to prefetch according to Easting and Southing .............. 19 

Table 2.3 Execution of grading formula for sample scenario with history depth 5

 ....................................................................................................................... 20 

Table 3.1 Example accumulation methods............................................................ 39 

Table 4.1 WB-FIE fuzzy logic rule matrix (rule base) ......................................... 72 

 

  



 xiv 

LIST OF FIGURES 

 

 

 

FIGURES  

 

Figure 1-1 Data storage levels with corresponding speed and capacities ............... 1 

Figure 1-2 The raster data tiling and layering ......................................................... 4 

Figure 2-1 A simple usage of prefetching ............................................................... 9 

Figure 2-2 Cooperation of server and client-side entities for prefetching [23] ..... 10 

Figure 2-3 Google Maps tiling schema [26] .......................................................... 11 

Figure 2-4 The first three steps of Hilbert Curve [5] ............................................. 16 

Figure 2-5 Direction vector on a 2-dimensional space [28] .................................. 17 

Figure 2-6 Sample navigation scenario when history depth is 5 ........................... 19 

Figure 2-7 System architecture of [31] .................................................................. 20 

Figure 2-8 Abstracted architecture of Web GIS systems [8] ................................. 21 

Figure 2-9 System pipeline of [7] .......................................................................... 25 

Figure 2-10 Scene Graph Representation [20] ...................................................... 26 

Figure 2-11 The out-of-core rendering approach of the iWalk system [21] ......... 27 

Figure 2-12 A section of model that colored according to PLP [21] .................... 28 

Figure 3-1 Traditional logic representation of a discrete temperature value ......... 31 

Figure 3-2 Fuzzy logic representation of temperature values ............................... 32 

Figure 3-3 Fuzzy logic graph that illustrates the clothing choice according to 

temperature .................................................................................................... 33 

Figure 3-4 Fuzzy logic system process algorithm ................................................. 34 

Figure 3-5 An overview of a fuzzy logic system .................................................. 34 

Figure 3-6 Membership function chart .................................................................. 36 

Figure 3-7 Different membership function shapes. S, Z, ᴧ, and ᴨ shapes are 

illustrated from left to right [39] .................................................................... 36 

Figure 3-8 Example temperature fuzzy set with five ᴧ shaped membership 

functions ........................................................................................................ 37 

Figure 3-9 Example rule set for clothing decision ................................................ 37 



 xv 

Figure 3-10 Rules with multiple input conditions that are logically linked with 

AND and OR relationships ........................................................................... 38 

Figure 3-11 A fuzzy set with multiple rules .......................................................... 38 

Figure 3-12 An example centroid calculation of an output membership function 40 

Figure 3-13 The input membership functions ....................................................... 41 

Figure 3-14 The rule base ...................................................................................... 42 

Figure 3-15 The output membership functions ..................................................... 42 

Figure 3-16 The input value and corresponding activated membership functions 43 

Figure 3-17 The corresponding fuzzy output values ............................................. 43 

Figure 3-18 The individual fuzzy output curves ................................................... 44 

Figure 3-19 The aggregated fuzzy output curve ................................................... 44 

Figure 3-20 The calculated centroid value ............................................................ 44 

Figure 4-1 The EAP architecture .......................................................................... 46 

Figure 4-2 The forms of data ................................................................................. 52 

Figure 4-3 Prefetching steps and forms of data through this process ................... 54 

Figure 4-4 Raster Metadata index file structure .................................................... 55 

Figure 4-5 a) The tile numbering, b) load-order for each direction in RAP 

according to (a) .............................................................................................. 57 

Figure 4-6 2D Navigation prioritization policy ..................................................... 60 

Figure 4-7 3D FOV prioritization policy .............................................................. 61 

Figure 4-8 How outside tiles are being prioritized in 3D FOV policy .................. 62 

Figure 4-9 Analysis prioritization policy .............................................................. 63 

Figure 4-10 The architecture of a weight balancer-fuzzy inference system ......... 68 

Figure 4-11 The criterion activity level membership functions ............................ 70 

Figure 4-12 The criterion correction level membership functions ........................ 70 

Figure 4-13 WB-FIE fuzzy logic rule list (rule base) ........................................... 71 

Figure 4-14 The mapping of list based rule to matrix representation ................... 72 

Figure 4-15 The criterion weight operation membership function ....................... 73 

Figure 4-16 The input values and CCL/CAL membership functions ................... 74 

Figure 4-17 The four triggered rules are shown in circles .................................... 75 



 xvi 

Figure 4-18 The operations occurred at fuzzy processing step for given triggered 

rule with corresponding mappings ................................................................ 75 

Figure 4-19 The selected output for triggered rule ................................................ 76 

Figure 4-20 The second triggered rule with corresponding mappings .................. 76 

Figure 4-21 The third triggered rule with corresponding mappings ..................... 77 

Figure 4-22 The fourth triggered rule with corresponding mappings ................... 77 

Figure 4-23 The outputs that are obtained from triggered rules ............................ 78 

Figure 4-24 The accumulated output of fuzzy processing step and application of 

centroid method for defuzzification .............................................................. 78 

Figure 4-25 The output of WB-FIE to action mapping ......................................... 79 

Figure 4-26 Overview of EAP usage ..................................................................... 80 

Figure 4-27 Example digital moving map application 2D map displays [46, 47]. 85 

Figure 4-28 Example digital moving map application 2D map displays (cont.) [48]

 ....................................................................................................................... 85 

Figure 4-29 Example digital moving map application 3D map displays [46, 48]. 86 

Figure 4-30 Example digital moving map application VCS analysis display [48] 86 

Figure 4-31 Tiles that will be prefetched by 2D map view criterion .................... 87 

Figure 5-1 Overview of 2D Map View criterion ................................................... 92 

Figure 5-2 a) The fixed order of tiles that will be prefetched in east and south west 

direction [4], b) the dynamic order in EAP that determined according to 

navigator location. ......................................................................................... 93 

Figure 5-3 Overview of 2D Distance criterion and pivot point ............................. 94 

Figure 5-4 Overview of FOV Criterion and its parameters ................................... 95 

Figure 5-5 Point of Interest criterion usage for radar POI ..................................... 96 

Figure 5-6 Overview of VCS analysis criterion .................................................... 97 

Figure 6-1 The designed flight trajectory that scenarios are executed through with 

corresponding behaviors exhibited through this path .................................. 102 

Figure 6-2 The overall hit ratios (HR) obtained from executed scenarios .......... 103 

Figure 6-3 The CCL values that are obtained from adaptive EAP scenario 

execution ...................................................................................................... 104 



 xvii 

Figure 6-4 The CAL values that are obtained from adaptive EAP scenario 

execution ..................................................................................................... 104 

Figure 6-5 The criteria weight values that are controlled and changed by adaptive 

WB-FIS ....................................................................................................... 105 

Figure 6-6 The number of direct (blue) and prefetch requests (red) initiated ..... 105 

Figure 6-7 The designed flight trajectory for experiment 2 ................................ 107 

Figure 6-8 The overall HRs obtained from execution of experiment 2 scenarios

 ..................................................................................................................... 108 

Figure 6-9 The designed first route for experiment 3 ......................................... 110 

Figure 6-10 The designed second route for experiment 3 ................................... 110 

Figure 6-11 The designed third route for experiment 3 ...................................... 111 

Figure 6-12 The first route executions and corresponding overall HRs ............. 112 

Figure 6-13 The second route executions and corresponding overall HRs ......... 113 

Figure 6-14 The third route executions and corresponding overall HRs ............ 114 

Figure A-1 Overview of VCS analysis criterion ................................................. 124 

Figure A-2 Overview of EAP core package class diagram ................................. 126 

Figure A-3 Overview of EAP criteria package class diagram ............................ 130 

Figure A-4 Overview of EAP loaders package class diagram ............................ 131 

Figure A-5 Overview of EAP navigator package class diagram ........................ 132 

  



 xviii 

LIST OF ABBREVIATIONS 

 

 

 

Abbreviation or Symbol Text 

2D………………………………….. 2 Dimension 

3D………………………………….. 3 Dimension 

API…………………………………. Application Programming Interface 

CAD………………………………… Computer Aided Design 

CAL………………………………… Criterion Activity Level 

CCL………………………………… Criterion Correction Level 

CPR………………………………… Correct Prediction Ratio 

CPU……………………………….... Central Processing Unit 

CWO………………………………... Criterion Weight Operation 

DTED………………………………. Digital Terrain Elevation Data 

EAP……………………….…........... Ensemble Adaptive Prefetching 

EVF……………………….…........... Extended View Frustum 

FI……………………….….............. Fuzzy Input 

FO……………………….….............. Fuzzy Output 

FLS……………………….…........... Fuzzy Logic System 

FOV………………………………... Field of View 

GIS…………………………………. Geographic Information Science 

GPS………………………………… Global Positioning System 

GPU………………………………… Graphical Processing Unit 

HCBP……………………………… Hilbert Curve Based Prefetching 

HR…………………………………. Hit Ratio 

HTML…………………………….... Hyper Text Markup Language 

I/O…………………………………... Input / Output 

ID…………………………………... Identifier 

INS………………………………... Inertial Navigation Systems 

LFU………………………………… Least Frequently Used 



 xix 

LOD………………………………… Level of Detail 

LRU………………………………… Least Recently Used 

MRU……………………………….. Most Recently Used 

NDK……………………………….. Native Development Kit 

NSMC……………………………… Neighbor Selection Markov chain 

PKM……………………………….. Previous-K-Movements 

PLP………………………………… Prioritized Layered Projection 

POI…………………………………. Point of Interest 

PSS…………………………………. Pyramidal Selection Scheme 

RAP……………………………….... Retrospective Adaptive Prefetching 

SLD……………………………….... Spatial Locality by Distance 

TDM……………………………….. Textured Depth Mesh 

VCS. ……………………………….. Vertical Cross Section 

WB-FIE……………………………. Weight Balancer Fuzzy Inference Engine 

XML ……………………………….. Extended Markup Language 

 

 

 

 

 





 1 

CHAPTER 1 

 

 

INTRODUCTION 

 

1. INTRODUCTION 

 

Recent advances in computer and acquisition technology increase the amount and 

availability of geographic data used by applications.  This data usually gets through 

different data storage levels where each level has different speeds and characteristics. 

How speed and storage change through each level is illustrated in Figure 1-1. At the 

bottom level, data is stored in data servers which have very big but slow storage 

devices. On top of that level, local hard disks are being used as storage medium which 

are usually faster than data servers but have less storage capacities. Then application 

loads this data into main memory which is also known as Random Access Memory 

(RAM). RAM provides better read and write speeds than hard disks where 

reading/writing operations depend on physical locations of storage medium and are 

very slow. Finally, cache memory is smaller than main memory and accessed by CPU 

quicker than regular RAM. 

 

 

 

Figure 1-1 Data storage levels with corresponding speed and capacities 

 



 2 

How data get through all these levels simply illustrated by an online map browsing 

application through a browser. The corresponding geographic data usually resides in 

remote web or Geographic Information Science (GIS) server and whenever data is 

requested by client, first remote server fetches the data from its local storage and then 

this data is sent to client computer which stores this data in its local hard disk. This 

data is being used by application, for given case, it is used to display 2D map on 

browser. To render map, this data is loaded into primary memory and then usually to 

Graphical Processing Unit (GPU) memory. As data travels through these layers, the 

speed of mediums increases, nevertheless the storage capacity is decreasing with 

higher layers. 

 

Recent advances in computer hardware and software technologies increase the 

application requirements for using, analyzing and processing very large geo-spatial 

data [1, 2, 3]. Processing big geographic data is still crucial in a number of application 

domains like GIS, flight simulations and interactive 3D games [1]. As availability of 

geographic data increases and exceeds the size of main memory, I/O operations 

between primary (main memory) and secondary memory (hard disc storage) become 

an important bottleneck. To ameliorate this situation, caches have been used in a 

variety of layers mentioned above. In basic case, a system may employ a typical two-

level memory architecture which consists of a small but fast cache and a relatively 

large but slower memory. Nowadays, caches are also being employed in GPUs. 

Independent from employed cache architecture, to have effective caches, the hit ratios 

should be increased. Thus, prefetching techniques are becoming critical to manage 

this data for all these kinds of systems through predicting which chunk of data will 

be needed next and fetch it into the cache.  

 

Prefetching techniques have been used by different systems to handle this big data 

[4, 5, 6, 7, 8, 9]. In this study, the focus is on the prefetching itself. It is not only 

crucial for big data management in GIS but also for 3D visualization. 

 



 3 

Internet mapping applications have been popular for the last decade. The internet, or 

in other words, World-Wide Web, permits anybody to access the vast quantities of 

information instantaneously. As performance increases with improvements in 

bandwidth and infrastructures, users continue to require less delays. In parallel, 

content providers continue to make greater demands on bandwidth. At this point, 

response time or user perceived delays become very essential for user satisfaction and 

productivity [10, 11, 12]. A widely-accepted study from Zona Research [13] provides 

evidence for the “8-second rule" in e-commerce (electronic commerce) which states 

that if a WEB site takes more than 8 seconds to load, the user is much more likely to 

become frustrated and leave the site. Thus, it is very important for geographic 

applications to provide a responsive interaction which is achieved by prefetching. 

 

1.1 Problem 

 

Prefetching is a process of loading user objects proactively before requested. More 

specifically, it mainly concerns about the retrieval of data from disk (out-of-core) into 

memory (in-core) to fulfill future application requirements. The primary purpose of 

prefetching is to ensure that at any one time, data required for application is already 

loaded into memory for further processing like analysis or visualization. Some 

existing techniques [14, 15] do nothing and let operating system does the actual 

fetching (paging) of data during runtime, but it is obvious that this approach is not 

feasible anymore.  

 

Prefetching techniques usually request data in the form of geographic tiles to improve 

the efficiency. Therefore, most of the available approaches generate data tiles instead 

of requesting whole data [8, 16]. The tiling minimizes the initial response time and 

reduce the transfer time. The dealing with tiles is more manageable than dealing with 

whole data. Hence, most of the studies about prefetching use tiling. In addition to 

tiling, layering is also employed by prefetching approaches in such a way that when 

user goes into a coordinate where no detailed data is available, first of all, a lower 

detailed data is loaded and then more detailed data is provided [16]. To achieve an 



 4 

optimum memory usage and high performance, determination of tile requests should 

be tackled carefully. A simple but efficient unique tile identification method is 

proposed for this purpose in this study which is described in Section 4.4.1. The tiling 

and layering concepts are illustrated in Figure 1-2. 

 

 

Figure 1-2 The raster data tiling and layering 

 

Prefetching is classified into two groups according to its employed location which 

are server and client sides [8, 17]. Although strategies used for these two group may 

differ from each other, their characteristics are similar. 

 

Prefetching techniques are usually developed for specific type of applications and 

embodied in systems as a tool for caching. Most of GIS approaches and applications 

use prefetching in conjunction with 2D map operations like panning or zooming to 

predict the user's next behavior. Some of these techniques use offline historical data 

for this purpose [18], others such as [19] uses geographic vector data. There are also 

drastically different approaches that employ neural network-based methods to 

determine these candidate tiles such as [16], but scope is still 2D map navigation.  

 

There are also prefetching studies which are conducted in computer graphics [20, 21]. 

These studies, on the other hand, usually employ visibility-based prefetching 

techniques and take observer field of view (FOV), view direction, movement 

direction and altitude into consideration. Underlying rendering infrastructure uses 



 5 

these techniques to fetch the necessary elevation and map tiles for 3D terrain 

visualization.  

 

The most prefetching approaches are usually do not take different type of applications 

and navigation behaviors from different domains into consideration. They are usually 

developed for specific type of applications such as 2D GIS or 3D visualization 

applications and crafted for specific navigation patterns. However, these approaches 

become insufficient for hybrid application types that possess capabilities from both 

of these domains. They also do not employ a feedback mechanism for changing 

application state in such a way that navigation behavior of application may also vary 

at run-time. As a result, prefetching technique should be updated so that poorly 

performing technique’s contribution should be reduced and vice versa. 

 

Current prefetching approaches solve prefetching problem for specific type of 

applications and domains. However, as the boundary between GIS, visualization and 

applications blurs, these approaches become insufficient for hybrid applications 

which possess capabilities from both of these domains. Digital moving map systems 

are one example of such applications. They provide 2D map, 3D terrain visualization 

and analysis capabilities. Most of these are running on avionics systems that have 

very limited resources. Although specific prefetching techniques perform well, for 

instance, for 2D map navigation, they do not perform well if user switches to 3D 

visualization mode and vice versa. For 2D navigation, the Retrospective Adaptive 

Prefetching (RAP) method [4] or other heuristic or probability based methods can be 

employed, but these are not sufficient or suitable for 3D navigation. Nevertheless, 3D 

simulations or digital moving map applications begin to make use of this geographic 

data and capabilities which are provided previously by GIS applications. Therefore, 

no single prefetching technique fits perfectly to all these types of applications and 

navigation behaviors.  Nevertheless, most of these techniques may not perform well 

with varied patterns and capabilities due to not employing a feedback mechanism to 

response such changes.  

 



 6 

To overcome these limitations, different prefetching techniques should be used 

together to provide a better prefetching performance which is the main motivation of 

this study. In this study, a priority based ensemble adaptive tile prefetching (EAP) 

approach is proposed which enables ensemble usage of prefetching techniques at the 

same time to fulfill different application caching requirements.  

 

In the light of these facts, two important questions emerge about prefetching; 

 

• Which raster tiles should be prefetched and in which order they should be 

prefetched?   

• How can different type of prefetching techniques be combined to obtain a better 

prefetching performance? 

 

Although some prefetching techniques are developed to illustrate the approach, the 

main focus of this study is on second question. The first question is thoroughly 

studied and many prefetching techniques have been developed for specific 

applications and domains. In this paper, an adaptive approach is proposed which 

contains an ensemble of prefetching techniques registered to be used according to 

corresponding application capabilities.  

 

It is believed that a better prefetching performance can be obtained if a combination 

of prefetching techniques are used at the same time for applications that exhibit 

different capabilities. Even better hit ratios can be obtained if weight of these 

techniques are being set adaptively. 

 

With proposed approach, prefetching performance increases are showed even for the 

applications that exhibit different characteristics. Moreover, as a result of using more 

than one prefetching technique, the order of tile requests are determined more 

precisely. Focus of this study is on client side even though it is possible to extend this 

approach to be used at server side. 

 



 7 

1.2 Contributions 

 

In this study, a priority based ensemble adaptive tile prefetching (EAP) approach is 

proposed which enables the group of prefetching techniques used together at the same 

time. A fuzzy logic based inference engine is developed to determine the contribution 

of each technique. This engine prioritizes the tile requests and tiles that reside at cache 

dynamically to obtain the optimum load and replacement order. With proposed 

approach, applications can also change criteria parameters manually at execution time 

through provided generic interface. 

 

A generic prefetching model is developed which fits for most of the prefetching 

techniques. This model is described through well-defined steps, data forms and the 

term ‘criterion’ which is introduced to represent the prefetching and related 

operations such as requesting, cache replacement and evaluation. When current 

approaches are studied, although most of them come up with some steps of 

prefetching, concrete and well-defined steps of prefetching are not given or described. 

 

The proposed EAP approach is implemented through a cross platform framework to 

let other users utilize EAP for different types of applications. Each application 

requires a different set of prefetching techniques to be used for this purpose according 

to application requirements. With this framework, different prefetching techniques 

can be experimented to find optimum set and also to observe the performance. The 

four different prefetching techniques are developed to be used as basis for 2D, 3D, 

analysis and Point of Interest (POI) applications. Besides, RAP [4] prefetching 

technique is implemented using given framework to illustrate possible other 

prefetching technique employment in EAP. These techniques are used for 

experimentation of a hybrid application.  

 

In brief, this dissertation makes the following contributions; 

 

 Ensemble usage of different prefetching techniques at the same time, 



 8 

 Adaptiveness through employed fuzzy logic & online feedback mechanism, 

 Better prefetching performance even with hybrid applications, 

 More precise load order, 

 Prefetching formalization, 

 Easy utilization of EAP through generic cross-platform framework, 

 Development of five example prefetching techniques which are 2D 

MapView, 3D FOV, Vertical Cross Section (VCS) Analysis, Retrospective 

Adaptive Prefetching (RAP) and Point of Interest (POI). 

 

1.3 Thesis Overview 

 

The introduction chapter gives a brief background information about problem and 

motivation of this study. Chapter 2 examines general prefetching concepts and related 

work about prefetching approaches. In this chapter, not only studies from GIS field, 

but prefetching techniques employed in other fields like 3D visualization are also 

given to illustrate the commonality of problem in various domains. Chapter 3 

introduces the fuzzy logic which is used in adaptive part of EAP. Chapter 4 describes 

the proposed EAP process model and framework with all related concepts in detail. 

Chapter 5 presents the set of prefetching techniques developed for EAP in the scope 

of this study. Experimentations conducted about EAP to illustrate its performance 

and the results obtained from these experimentation are discussed in Chapter 6. 

Finally, the summary and future works are given in Chapter 7. 

 

 

 

 

 

 

 

 

 



 9 

CHAPTER 2 

 

 

PREFETCHING 

 

2. CHAPTER 2 

 

In this chapter, background information about prefetching concept, its role and 

studies conducted about prefetching from different domains are described. 

 

Prefetching is a process of loading user objects proactively before requested. The 

primary purpose is to ensure that anytime data required for user is already loaded into 

memory and available for further operations. It is also being employed to alleviate 

the data transfer costs that may occur as a result of I/O or network communication 

[22] in case of retrieving data from distant data servers.  

 

Before delving into prefetching concepts, a simple usage of prefetching is illustrated 

below in Figure 2-1 where application required to load necessary map tiles into 

memory to render map.  

 

 

Figure 2-1 A simple usage of prefetching 

 

The tiles represent the physical map tiles where blue parts represent the already 

loaded and rendered map tiles, red ones are not being loaded yet. The yellow lines 

show the visualized extent of map. In simplest scenario, as observer moving 



 10 

horizontally along a path, it is predicted that the next tiles that would be required are 

the ones that are shown in green. What prefetching does is to load them into cache 

before map extent is being slided to that region and user always sees map flawlessly 

and experiences no load delays. Here, it is also worth to mention that prefetching 

mechanism is closely related with caching mechanism. The prefetched data usually 

does not being used by applications directly, and they are usually stored in a cache 

till application require that tile. 

 

Prefetching also plays a very critical role in WEB browsing which becomes more 

popular in recent decades [23]. This study presented a prefetching approach to reduce 

the WEB latency experienced by web clients, by prefetching documents, before they 

are actually requested by web browser. The proposed idea is to keep the top ten 

popular documents for each web server, by this means, clients or proxy servers can 

prefetch only these popular documents without significantly increasing network 

traffic. The proposed study results show that this approach expects more than 40% of 

client requests and achieves close to a 60% hit ratio at the cost of increasing network 

traffic by no more than 10% in most cases [23]. Briefly, their approach is based on 

the cooperation of server and client-side entities as illustrated in Figure 2-2. More 

examples of such studies are given in section 2.1. 

 

 

Figure 2-2 Cooperation of server and client-side entities for prefetching [23] 

 

Prefetching is not a specific concept for geographic information systems, 

visualization or web technologies domain, it also being used prevalently by 

processors and file systems in such a way that Central Processing Unit (CPU)s and 

operating systems use prefetching to load instructions and data into CPU for a long 



 11 

time [24]. This kind of prefetching is implemented either by hardware or software. 

Besides, database systems make use of prefetching in order to minimize the number 

of data fetches between the client and the server in a database management system 

[25].  

 

The data that is being loaded by prefetching is completely based on the domain that 

prefetching is being used. There are various kinds of data from geographic elevation 

and imagery data to the WEB HTML pages. Special techniques are incorporated to 

improve performance of prefetching for some of these data. For instance, most of the 

geographic data is being tiled into smaller parts to reduce the user perceived delays 

and flawless user experience. An example of this tiling is used in well-known google 

maps [26]. It makes use of a tiling mechanism where first level (level 0) represents 

the whole world in a single 256x256 pixels tile (where the first 64 and last 64 lines 

of the tile are left blank) which is illustrated in Figure 2-3. The next level represents 

the world in 2x2 tiles of 256x256 pixels and this continues in powers of 2. The 

number of tiles in each level grows exponentially with the resolution level l. For 

instance, to cover the whole world with a pyramid of 20 resolution levels, 

approximately 3.7×1011 tiles are required which corresponds to petabytes of data. 

 

 

Figure 2-3 Google Maps tiling schema [26] 

 

The underlying layout of data and how it is being indexed is also important for 

prefetching data request. For instance, a 3D visualization application may employ 

http://www.microimages.com/documentation/TechGuides/76googleMapsStruc.pdf


 12 

octree like spatial data structures to identify efficiently the data that lies inside the 

prefetching view frustum.  

 

Prefetching techniques can be classified according to their employment location 

which are server side and client side prefetching [8, 17]. The server side methods try 

to prefetch data according to previously initiated requests by clients and usually do 

not have knowledge about the context and application capabilities that initiated these 

requests. The client side prefetching, on the other hand, usually evaluates the current 

state of application, predicts the possibly required data in the near future and initiates 

prefetching requests to the server. It is also possible to employ a hybrid approach 

where both client and server side prefetching techniques are used at the same time. 

 

In addition to client and server side usage, prefetching is also employed to load data 

that reside at local storage into main memory which is usually the case for client side 

GIS applications. Moreover, as the GPUs become more prevalent, the imagery or 

elevation data might be needed to be prefetched and loaded into GPU buffers from 

main memory. As the GPUs start to support this capability by hardware, some 

approaches started to make use of these in their application. Virtual texturing and 

mega texturing [27] are example of these approaches others of whom are given in 

detail at section 2.2. 

 

Finally, prefetching techniques can also be categorized according to their nature. 

Although such categorization in detail is out of scope of this study, it is believed that 

mentioning some of such categories may help new prefetching researchers to follow 

previous studies. For instance, some prefetching mechanisms make use of historical 

data to determine candidate data for prefetching, on the other hand, some studies only 

make use current data for prediction. Probabilistic methods which also making use of 

techniques like Markov chains are also proposed in addition to lately introduced 

neural network based learning prefetching techniques [28]. There are also heuristic 

methods which are based on the idea that there is no standard way of determining the 

user's behavior or finding out exact solutions for prefetching may never exist [4]. 



 13 

Some heuristics may improve the performance of prefetching through using other 

parameters such as historical data.  

 

No matter which kind of prefetching is proposed, most of them makes use of 

application specific parameters or attributes for their prefetching. Nevertheless, each 

of these approaches only focuses on one specific technique and no ensemble 

mechanism or approach is proposed yet which is also done with this study.  

 

After having discussed the core prefetching concepts, now studies conducted about 

prefetching are given in this section. As noted before, prefetching is being used by 

various techniques like out-of-core rendering or Computer Aided Design (CAD) 

visualization besides the wide-spread GIS usage. As a result of this, related 

prefetching studies from both GIS and visualization domains are given under two 

categories to illustrate the current approaches. Finally, for the sake of completeness, 

prefetching studies from different domains are also briefly described in a separate 

category. 

 

The most important motivation of scanning various literatures is to show that 

although requirements or capabilities of applications from these domains are 

different, the aim of these studies is same which is to make sure that data is loaded 

before requested. These studies are also important to see how prefetching can be used 

for different kinds of applications. Finally, it also important to note that the 

boundaries among these two different fields are blurred and now simultaneous usage 

of these capabilities is possible. 

 

2.1 Studies from GIS Domain 

 

First of all, some techniques from GIS field are going to be described. Most of these 

studies focus on web prefetching. The main reason for this is the latency that occurs 

over internet connection as in IO, popularity and prevalence of web technologies. 

Although individual computer processing power increases drastically, the network 



 14 

speed is not increased in same pace. In web applications, quick responses usually 

depend on less process on server side and nowadays less process is mostly achieved 

by the caching and prefetching policies. So these studies mainly focus on minimizing 

processing at server side, reduce the requests initiated by clients, and improve the hit 

ratio to provide low retrieval latency for user as described in [17]. Mobile studies are 

also summarized and mentioned under this section. 

 

The first study [29] performed a survey about characteristics of web objects that are 

used for replacement. The cache replacement, as is described in section 4.4.4, is very 

similar to prefetching and same approaches can be used for both prefetching and 

replacement in reverse logic. For instance, the web object which is selected according 

to Least Recently Used (LRU) strategy can be converted to Most Recently Used 

(MRU) way. These techniques are given here to show how these techniques and 

parameters can be used for prefetching. 

 

The study classified the following characteristics of web objects for replacement 

strategies which can also provide insights for other prefetching methodologies. 

 

Table 2.1 Characteristics of web objects [29] 

Identifier Description 

si Size of object i 

ti Last request time of object i 

Ti Time since last request to object i 

fi Number of past requests to object i 

li Access latency for object i 

ci Cost to fetch object i from its origin server; ci has a more general 

meaning than li (e.g. number of network hops, latency). 

 

 Recency: the time since the last reference to the object,  

 Frequency: the number of requests to the object, 

 Size: the size of web object, 



 15 

 Cost: the cost to fetch the object from the server that resides.  

 

According to employed characteristics, the strategies can be classified as recency-

based, frequency-based, recency/frequency-based, function-based and randomized 

strategies [29].  

 

Recency-based strategies focus on temporal locality of reference observed in WEB 

requests. These are similar to the well-known LRU strategies, which are removing 

the least recently referenced object. The other mentioned study, Pyramidal Selection 

Scheme (PSS) [30], uses a pyramidal classification of objects depending upon their 

size, and objects in each group are maintained as a separate list. Only the least 

recently used objects in each group are compared with each other, and the object 

which maximizes the product of its size and the number of accesses since the last 

time was being requested. 

 

Frequency-based strategies use the fact that popularity of WEB objects is related to 

their frequency values into consideration. These strategies make use of the LFU 

(Least Frequently Used) strategy, which removes the least frequently requested 

object. Recency/frequency-based strategies combine recency and frequency 

information for prefetching. 

 

The next study is from Dong-Joo Park and Hyoung-Joo Kim who presented a 

prefetching policy for retrieving large objects in WEB GIS applications [5]. They 

made an assumption on how the user accesses the geographic objects on the map and 

stated that it is very likely that the user chooses the neighbor objects around a certain 

central object which is called “callback object”. In other words, the access pattern of 

the user is determined according to the “spatial locality”. Under this assumption, they 

proposed a Hilbert Curve based prefetch algorithm where they employed Hilbert 

Curve for selecting a set of candidates based on the current callback object. Such 

candidates will have more probability to hit the client cache when the next callback 

object is requested. In this approach, map is divided by the Hilbert Curve and each 



 16 

cell is assigned with the values of that Hilbert Curve as shown in the Figure 2-4 

below. 

 

    

Figure 2-4 The first three steps of Hilbert Curve [5] 

 

An array of Hilbert Curve values are defined and each object is placed in this array 

with their corresponding Hilbert Curve values. The candidates which can be selected 

either dynamically or statically are selected from the left and right side of the callback 

object in the array. To give an example usage, assume that the location of the callback 

object is “i” and callback object is represented as “O”. In static way, a value called 

“window size” is chosen and if we say window size is “5”, the objects Oi-2 ... Oi+2 are 

selected as candidate objects. In dynamic approach, the window size is adjusted by 

the “spatial locality by distance” (SLD). The candidate objects are still selected from 

the left and right side of the callback object, but this time, instead of taking static 

number of objects, all the objects whose distance from the callback object is smaller 

than the SLD are chosen as the candidate objects. As a result of having varying 

number of candidates as the SLD value changes, the window size is dynamic. Also, 

a formula to determine an appropriate SLD value is defined. Through the 

experimental results, they show that the performance of the dynamic scheme is close 

to the static scheme; on the other hand, the network traffic of the former is lower than 

the latter.  

 

The third study is from Dong Ho Lee et al. who proposed two prefetching techniques 

[28]. One of these techniques is probability-based and it makes use of the location of 

the tile to predict the next navigation. It is stated, if the tile is located near to the upper 

border of the view extent, then the user is probably to navigate to an upper tile than 

the lower one. Moreover, it also takes the zooming levels of the current view extent 



 17 

into consideration too. The probabilities of all navigations are calculated and top “t” 

(number of tiles to prefetch) tiles with the highest transition probabilities are selected. 

The second technique described makes use of heuristic rather than the probability as 

previous method. It is called previous-k-movement approach. In this technique, rather 

than the current position as employed in the previous technique, former actions of the 

user determine the next movement. A Neighbor Selection Markov chain (NSMC) is 

created to obtain the neighbor selection probabilities that can be applied to a general 

tile. A state on NSMC presents a sequence of direction vectors that gives the tile 

selection history where this direction vector denotes a move from one tile to another 

and an example of that is shown below in Figure 2-5. 

 

 

Figure 2-5 Direction vector on a 2-dimensional space [28] 

 

In this method, the probabilities of previous navigations are put on a Hilbert Curve 

and next tiles are predicted according to patterns on this curve. The main difference 

between this method and Hilbert Curve based prefetch algorithm [5] is; this method 

makes predictions by using the past n moves before a specific tile instead of just using 

that specific tile.  

 

Another study from GIS domain is Retrospective Adaptive Prefetching (RAP) 

approach [4]. The RAP mainly focuses on map serving problem in GIS domain. Since 

most of the GIS services provide their geospatial data as basic image formats like 

PNG and JPEG, constructing those images and transferring them over the internet are 

costly operations. Caching the responses of the requests on the client side is the most 

commonly implemented solution. However, this method is not adequate by itself. 

Besides caching the responses, predicting the next possible requests of the client and 

updating the cache with the responses for those requests provide a remarkable 

performance improvement. 



 18 

 

The prefetch algorithm provided in RAP make use of a heuristic approach for 

retrieving the next possible tiles of a given tile according to previous navigations. 

Number of previous navigations, history depth, is determined as a configurable 

parameter. As depth increases, the accuracy of the result increases as well, however, 

the number of tiles to prefetch is not affected by the depth number. The only factor 

that affects the number of tiles to be prefetched is the pattern of the former navigations 

in history. Namely, if the user stays in a stable path during navigation, the algorithm 

assumes that she will probably keep on moving on the same path in the next moves.  

 

Otherwise, for instance, if the user makes random navigation on 2D map, the 

estimation of the algorithm will not be effective and hit ratio of the prefetching cache 

reduces. The algorithm given has a grading formula for determining the number of 

neighbor tiles with their relative locations according to source tile. Then, all these 

values are combined and divided into total differences. Namely, for instance, each 

Easting has a “difference value” which is normalized according to the hit ratio 

obtained by the prefetched tiles and those tiles are calculated with the help of that 

Easting value. The order of tiles that will be prefetched and loaded according to these 

values on the other hand is static which is shown in Table 2.2. The study compares 

their results of the proposed algorithm with previously mentioned methods which are 

Hilbert Curve Based Prefetching (HCBP) Algorithm [5, 28] and previous-k-

movements (PKM) method. 

 

An example navigation used for RAP is given in Figure 2-6. The <2, 2> cell is the 

center of the initial map extent which consists of 9 tiles. The square around the last 

tile represents the map extent of the final state. 2 bright arrows shows the first two 

navigations which are removed from the history because they are expired when user 

comes to <8, 5>. By expired, it is meant that 5 (history depth) navigations are passed 

after these two tiles and because of that they are no longer needed for calculations.  

 

 



 19 

Table 2.2 Neighbor tiles to prefetch according to Easting and Southing 

 

TILES TO 

PREFETCH 
EASTING SOUTHING 

 1 0 

 -1 0 

 
0 1 

 
0 -1 

 
1 1 

 
1 -1 

 
-1 -1 

 
-1 1 

 

 

 

Figure 2-6 Sample navigation scenario when history depth is 5 

 

Each step of grading formula according to above navigations used for RAP execution 

is shown in Table 2.3.  

 

 



 20 

Table 2.3 Execution of grading formula for sample scenario with history depth 5 

 

Step 
Previous 

Tile 

Current 

Tile 

Hit 

Ratio 
Easting Southing 

1 2 , 4 3 , 5 0.692 (5–4)*0.652 = 0.652 
(3 – 2) * 0.652 = 

0.652 

2 3 , 5 4 , 6 0.652 
(6– 5) * 0.652 = 

0.652 

(4 – 3) * 0.652 = 

0.652 

3 4 , 6 5 , 6 1 (6 – 6) * 1 = 0 (5 – 4) * 1 = 1 

4 5 , 6 5 , 7 1 (7 – 6) * 1 = 1 (5 – 5) * 4 = 0 

5 5 , 7 5 , 8 1 (8 – 7) * 1 = 1 (5 – 5) * 1 = 0 

Tota

l 
 3.304 2.304 

Aver

age: 
 

3.304 / 4 = 0,826 -> 

1 

2.304 / 3 = 0,768 -> 

1 

 

A relatively different approach is proposed in [31]. They say that significant 

improvement is achieved through employing background geographic information in 

addition to previous access patterns that are used by previous studies for prediction. 

A regressive model is proposed to predict probable areas that user will probably 

request soon. This is performed according to spatial cross-correlation between an 

unconstrained catalog of geographic features and a record of past cache request. The 

approach is experimented through Spain nation-wide public WEB map services. The 

proposed system architecture of this approach is depicted in Figure 2-7. 

 

 

Figure 2-7 System architecture of [31] 



 21 

Similar to previous approach, Quinn and Gahegan proposed a model for determining 

popular areas for caching by considering geographic features [18]. Their model take 

variables found in previous research into consideration for WEB map users, such as 

populated places, major roads, coastlines, and tourist attractions. They said that the 

content that users probably will request can help server administrators know which 

tiles to create in advance and to include in their server-side caches of map tiles. So 

their primary aim is to predict these areas of the map that will be most often viewed 

and should therefore be cached. 

 

In other study [8], a probability-based tile pre-fetching with a collaborative cache 

replacement algorithm for WEB geographical information systems (WEB GISs) are 

proposed. The basis Web GIS architecture used for this approach is shown in Figure 

2-8. It can be seen, in this approach prefetching is employed at server-side. The study 

also summarize how this architecture and prefetching for such WEB GIS systems are 

working. 

 

 

Figure 2-8 Abstracted architecture of Web GIS systems [8] 

 

The server collects and maintains the transition probabilities between adjacent tiles. 

With these probabilities the server can predict which tiles have the highest probability 



 22 

of access in next time than others, based on the global tile access pattern of all users 

and the semantics of query. The proposed cache replacement algorithm determines 

which tiles should be replaced based on the estimated future access probabilities. The 

proposed tile pre-fetching algorithm is employed with the cache replacement 

algorithm to improve the response time for user requests in WEB GIS systems. 

 

In [32], the web application Hotmap is proposed. This approach analyzes log requests 

from the Microsoft’s Live Search Maps service and visualizes the number of requests 

of each tile accurately on a map. These studies reflect that several features which 

drive most people’s attention, like shorelines, roads and populated places, can be 

identified.  

 

There are also studies that make use of neural networks for prefetching [16]. In this 

study, a neural network based method which takes background geographic 

information into consideration is proposed. It is stated that map tiles are not visited 

randomly and behavior of users is closely related with semantics of features 

combined in map tiles. History of service is also taken into consideration. Neural 

network is used to assign non-binary priorities automatically to map tiles according 

to performed training. The training is performed through a collection of past accesses 

with a catalog of geographic features, such as runways, highways or harbors, as 

predictor variables.  

 

It is obvious that all these approaches are focusing on some parameters and it would 

be very effective to combine or use all these collaboratively which become the most 

important motivation for this thesis. 

 

2.2 Studies from Visualization Domain 

 

Now, prefetching mechanisms employed in visualization techniques are described 

here to show how prefetching is being used this domain with corresponding 

techniques. Although these studies are not directly aiming prefetching problem, they 



 23 

employ prefetching as part of overall problem. Most of these studies are about out-

of-core rendering. Prefetching is active where the underlying model or data is being 

loaded into memory part by part. So first a background information about out-of-core 

rendering is given prior to describing the related work. 

 

Out-of-core rendering 

The purpose of out-of-core rendering studies is to render a model without loading the 

entire model into memory [14, 33]. As the terrain data become more and more and 

exceeds the size of main memory, I/O operations between primary (main memory) 

and secondary memory (hard disc storage) become an important bottleneck. A disk 

access is about one million times slower than an access to main memory. A simple 

management of external memory, e.g., with standard caching, may affect and in fact 

decrease the performance.  Some computations over these datasets might not be local 

and may require large amounts of I/O operations. At this point, out-of-core algorithms 

and related data structures manage how data are loaded and how they are stored.  

Typically, data is organized into some hierarchy and then chosen for rendering based 

on a user-specified search criterion. Therefore, only small amounts of the data are 

being processed at any one time, alleviating the need to process all the data at once. 

However, much of this work is focused on rendering a specific region of this huge 

data and not the whole data itself, using only one dataset at a time.  

 

On top of this problem, the amount of graphics processing unit (GPU) memory 

available to desktop machines is not capable of storing all these datasets at runtime. 

Therefore, only a few of the datasets exist in memory (in-core) at any one time, 

specifically the datasets which are being used in rendering the visible terrain, while 

the rest are stored on the hard drive (out-of-core) until needed. The problem is how 

to determine if the data exists on the hard drive and not in the main system memory 

of the computer. Some approaches are making use of only a spatial subdivision 

hierarchy to alleviate this problem as datasets can be grouped based on their relative 

geographic locations. Other approaches make use of multi-resolution models and 

intelligent prefetching mechanism for this purpose. This model can then remain in 



 24 

memory without any data loaded simply to determine which datasets should be tested 

for rendering when the user makes a search query. As the number of datasets is large, 

creation of the hierarchy should happen in a preprocessing step and written to the 

hard drive, obviating the need for the runtime version of the algorithm to recreate it. 

 

The problem of out-of-core visualization is also studied from several aspects, which 

can be broadly classified into three closely interlinked sub-problems that should be 

addressed. These are listed as follows; terrain rendering, data query and pre-fetch, 

which correspond, respectively, to processing data to be displayed for terrain 

visualization, identification and organization of data to be retrieved, and retrieving 

data into in-core memory in anticipation of needs for processing in the near future.  

 

The terrain rendering sub-problem arises from the complexity of out-of-core data 

which makes it infeasible to render the geometry of the entire scene as mentioned 

above. State-of-the-art approaches focus on reducing scene complexity by reducing 

the amount of geometry to be processed by the graphics pipeline, while maintaining 

good visual fidelity which will be tackled through employment of multi-resolution 

model and Level of Detail (LOD) in this approach. 

 

The query sub-problem involves the layout of data and the indexing of data so that 

region queries can efficiently identify this data in the view frustum. Contemporary 

approaches use spatial data structures such as quadtrees, octrees and R-trees that 

perform spatial partitioning and data clustering in the scene. These structures do not 

only provide fast scene queries through their hierarchical properties to localize data 

currently in view, but also help in other respects like collision detection and analyses. 

 

The prefetching sub-problem which is also important for this thesis mainly concerns 

the retrieval of data from disk (out-of-core) into memory (in-core) to fulfill future 

processing requirements. The problem is to ensure that at any one time, data required 

for terrain visualization is already loaded in memory. After having described out-of-



 25 

core rendering now other studies that make use of prefetching are given with brief 

descriptions. 

 

Prefetching Studies in Visualization Domain 

The first study that makes use of out-of-core rendering is aiming to visualize very 

complex 3D models at interactive rates [7].  In this study, a subset of this complex 

model is selected as preferred viewpoints and partitions the space into virtual cells. 

Each cell contains near geometry, rendered using levels of detail and visibility 

culling, and far geometry, rendered as a textured depth mesh. The system then 

automatically balances the screen-space errors resulting from geometric 

simplification with those from textured depth-mesh distortion. Each new viewpoint 

sent into the pipeline is passed both to the prefetcher and to the rendering pipeline. 

The viewpoint determines what geometry and textured depth mesh (TDM)s are 

retrieved from disk. A speculative prefetching is implemented as an asynchronous 

activity in this study. The virtual cells are organized into a graph structure to facilitate 

prefetching. They maintain a priority queue of geometry that would be needed soon 

and priorities are assigned according to their cell distances. Then this prefetcher 

activity uses this queue for loading data from disk. An overview of their system is 

given in Figure 2-9. 

 

 

Figure 2-9 System pipeline of [7] 

 



 26 

Another study is from Varadhan and Manocha [20]. There were also studies that make 

use of out-of-core rendering with hierarchical levels of detail. In this study, an 

external memory algorithm for fast display of very large and complex geometric 

environments is given. The model is represented as a scene graph and additionally, 

different culling techniques for rendering acceleration are employed. The algorithm 

also uses a parallel approach to render the scene as well as fetch objects from the disk 

in a synchronous manner through simple threading. The memory overhead of 

algorithm is output sensitive and is typically tens of megabytes. In practice, this 

approach scales well with the model sizes, and its rendering performance is 

comparable to that of an in-core algorithm. The algorithm was also employed to large 

gigabyte sized environments that are composed of thousands of objects and tens of 

millions of polygons.  

 

Their system implements a priority-based pre-fetching algorithm which prioritizes 

objects in the scene based on some screen space error metric as well as their relative 

positions from the viewer’s line of sight. The pre-fetching mechanism employed here 

fetches multiple LODs for each object according to their priority in order to ensure 

that there is a high hit rate even when the object switches from one LOD to the next. 

The approach employs an expanded view frustum to reduce the page fault rate and 

the objects in the expanded view frustum are also prioritized according to their 

distance away from the actual view frustum.  More specifically, they take field of 

view (FOV) parameter as basis for their approach and calculate prefetching data as 

the union of possible FOVs for given time interval and determined set of parameters 

like viewer’s heading and motion parameters. Then, it takes this into consideration 

for LOD selection and geo-morphing. The employed scene graph representation is 

given in Figure 2-10. 

 

 

Figure 2-10 Scene Graph Representation [20] 



 27 

 

Another study paper that will be mentioned here is [21]. The system uses out-of- core 

preprocessing algorithm and a multi-threaded out-of-core rendering approach. The 

out-of-core preprocessing algorithm is incremental and fast, and it builds an on-disk 

hierarchical representation for a model larger than main memory. The out-of-core 

rendering approach uses multiple threads to overlap rendering, visibility computation, 

and disk operations. A rendering thread uses a from-point visibility algorithm to find 

the nodes of the model hierarchy that the user sees, and sends fetch requests to a 

geometry cache, which reads nodes from disk into memory. The algorithm presented 

here builds an out-of-core on octree whose leaves contain the geometry of the model. 

To store the octree on disk, study saves the geometric contents of each octree node in 

a separate file, and creates a hierarchy structure (HS) file. The HS file has information 

about the spatial relationship of the nodes in the hierarchy, and for each node it 

contains the node’s bounding box and auxiliary data needed for visibility culling. 

Figure 2-11 show the out-of-core rendering approach of the iWalk system. For each 

new camera (a), the system finds the set of visible nodes using either approximate 

visibility (b), or conservative visibility (c). For each visible node, the rendering thread 

(d) sends a fetch request to the geometry cache (i), and then sends the node to the 

graphics card (e). The look-ahead thread (g) predicts future cameras, estimates the 

nodes that the user would see then (h), and sends prefetch requests to the geometry 

cache (i). 

 

 

Figure 2-11 The out-of-core rendering approach of the iWalk system [21] 



 28 

 

For visibility determination, it uses prioritized layered projection (PLP) algorithm. At 

runtime, the iWalk system uses this PLP algorithm to estimate the nodes potentially 

visible from the current view frustum (outlined in yellow). The transparent color of 

each node indicates the projection priority of the node. An example usage of this 

algorithm is illustrated in Figure 2-12. 

 

 

Figure 2-12 A section of model that colored according to PLP [21] 

 

The other one is from Lindstrom and Pascucci [14] who proposed a new LOD scheme 

along with a data layout and indexing scheme using interleaved quadtrees. Although, 

there is no explicit prefetching, the operating system handles the necessary paging of 

data. In the area of scientific visualization, Cox and Ellsworth [33] mentioned the use 

of application specific knowledge to control prefetching, loading and unloading of 

data for better performance. 

 

The last study [34] state that visual exploration tools typically do not scale well with 

huge data sets, partially because being interactive necessitates real-time responses. It 

is observed that interactive visual explorations exhibit several properties that can be 

exploited for data access optimization, including locality of exploration, contiguous 

queries, and significant delays between user operations. Having considered these 

characteristics, they applied semantic caching of active query sets on the client side 

to exploit some of the above characteristics. They also introduced prefetching 

strategies, each of which exploits characteristics of their visual exploration 

environment. The result of this study then incorporated into XmdvTool which is a 



 29 

public-domain tool for visual exploration of multivariate data sets. Experimental 

studies with synthetic as well as real user inputs are conducted and their results 

demonstrate that these proposed optimization techniques achieve significant 

performance improvements. 

 

It can be noted that different from the GIS related studies, the most of the visualization 

techniques focus on visibility based prefetching. Therefore, visibility should be co-

operatively used with other prefetching techniques to also satisfy 3D visualization 

application requirements beside GIS capabilities which is satisfied through EAP 

approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 31 

CHAPTER 3 

 

 

FUZZY LOGIC 

 

3. CHAPTER 3 

 

This chapter provides background information about fuzzy logic which is used in 

adaptive part of EAP. In this section, necessary information about fuzzy logic and 

related concepts are examined. How fuzzy logic being used in EAP is described in 

Chapter 4.  

 

Fuzzy logic is a form logic which employs the partial values of truth instead of exact 

values as in traditional logic [35]. It is described as an extension to traditional logic 

for dealing with the knowledge representation problem in an environment of 

uncertainty. It is a form of logic where underlying modes of reasoning are 

approximate rather than exact. In traditional logic, values are either true or false. 

However, fuzzy logic permits degrees of truth. For instance, in traditional logic hot 

would be represented as discrete 1 value and cold would be described as 0 value as 

shown in Figure 3-1. In this figure, no value can be used to represent warm or cool 

temperatures. 

 

 

Figure 3-1 Traditional logic representation of a discrete temperature value  

 

Different from traditional logic, the fuzzy logic describes in-between data values. The 

values represent the degree of truth through given ranges like 0 to 1 where 1 represent 

absolute truth or maximum and 0 represents the absolute false or minimum values.  



 32 

 

  

Figure 3-2 Fuzzy logic representation of temperature values 

 

The Figure 3.2 represents the fuzzy logic version of same temperature values where 

cool temperature is also shown. Here 1 grade value represents the perfect cool air 

temperature. Any temperature below 15 °C considered as cold and temperature above 

25 °C considered as hot. These ranges are represent the not cool temperatures. In 

addition to these representations, fuzzy logic consider 22.5 °C as 50% cool and 50% 

hot which shows a level of coolness.    

 

In fact, fuzzy logic stems from human reasoning, which are usually based on 

approximate reasoning [35]. Moreover, it is described as a rule-based decision-

making technique, employed for expert systems and process control, which primarily 

aims to emulate the heuristic, rule-of-thumb approach of human reasoning to many 

problems. For instance, fuzzy logic based temperature representation is used by a 

person to decide on wearing which kind of clothes before going out. According to 

current temperature, the type of clothing is being decided. As illustrated in Figure 

3-3, at 20 °C short-sleeved shirt and pant can be worn. However, as temperature falls 

to 17.5 °C, a long-sleeved shirt instead of short one should be worn. If temperature 

decreases more like 15 °C, then a jacket might be worn additionally. It should be 

noted there could be more than one inputs to fuzzy logic as will be illustrated in 

following sections. 

 



 33 

 

Figure 3-3 Fuzzy logic graph that illustrates the clothing choice according to 

temperature 

 

Now on some historical information about development of fuzzy logic is going to be 

given. At the beginning of 20th century, first studies about fuzzy logic is conducted 

by Bertrand Russell as analyzing a Greek paradox which is given below [36]; 

 

“A Cretan asserts that all Cretans lie. So, is he lying? If he lies, then he is telling the truth and 

does not lie. If he does not lie, then he tells the truth and, therefore, he lies.” 

  

When the given phrase is analyzed, in either case all Cretans lie or all Cretans do not 

lie which lead to a contradiction. Because both statements are both true and false. 

This become a basis for Russell’s study in such a way that he found that this paradox 

can also be applied to the set theory used in discrete logic where statements must 

either be totally true or totally false and this lead to areas of contradiction. In fact, 

fuzzy logic is based on this problem in traditional logic through allowing statements 

to be interpreted as both true and false. Therefore, when we apply fuzzy logic to given 

Greek phrase, we obtain that Cretans tell the truth 50% of time and lie 50% of time. 

 

In addition to Russell study, another logician named Jan Lukasiewicz also started 

studying on multivalued logic which in fact created fractional values between logic 1 

and 0 values. Then a quantum philosopher, Max Black, applied this multivalued logic 

to lists, drew the first set of fuzzy curves, and called them vague sets in his article 

[37]. About twenty years later, Lotfi Zadeh published a paper which was entitled as 



 34 

“Fuzzy Sets” which in fact gave the name to the field of fuzzy logic [35]. In that 

paper, Zadeh applied Lukasiewicz’s logic to all objects in a set and deduce a complete 

algebra for fuzzy sets. As a result of his contributions, he is also considered as father 

of modern fuzzy logic.  

 

After having given background information about fuzzy logic, now fuzzy logic 

system (FLS) is going to be described. FLS is defined as nonlinear mapping of an 

input data set to a scalar output data [38]. FLSs usually consists of three steps which 

are fuzzification, fuzzy processing (fuzzy rules, inference engine) and 

defuzzification. Overall process of a FLS can be described as illustrated in Figure 

3-4. First of all, a crisp set of input data are gathered and converted into a fuzzy set 

using fuzzy linguistic variables, labels and membership functions. This step is known 

as fuzzification. Afterwards, an inference is made based on prepared set of rules 

which is known as fuzzy processing. Finally, obtained fuzzy output (FO) is mapped 

to a crisp output using the membership functions, in the defuzzification step. 

 

 

Figure 3-4 Fuzzy logic system process algorithm 

 

Overview of a fuzzy logic system is depicted as in Figure 3-5. 

 

 

Figure 3-5 An overview of a fuzzy logic system 



 35 

 

In following sub-sections, these steps and terminology related with fuzzy logic is 

going to be examined. 

 

3.1 Fuzzification Step 

 

Fuzzification step is responsible for converting input data into fuzzy membership; in 

other words, linguistic variables or labels [35]. A linguistic variable is one that uses 

linguistic values such as low, medium, and high. This is required to process rules that 

are defined in terms of linguistic variables. These variables are the input or output 

variables of the system whose values are words or sentences from a natural language, 

instead of numerical values. A linguistic variable is generally decomposed into a set 

of linguistic terms. For instance, hot and cold terms are being used to qualify the real 

life temperature values. These are used as linguistic variables of the temperature. 

Then these variables are further decomposed as too-cold, cold, warm, hot, and too 

hot. Each of these covers a portion of overall values of temperature.  

 

These input values are analyzed according to user-defined charts, which are called 

membership functions and used to group received input data into fuzzy sets. It is used 

to quantify a linguistic term. An example of membership function is given in Figure 

3-6. These functions are usually real-valued functions 0.0–1.0 and range outputs 

according to how well input fits into each function. The membership values should 

be 1 at the center of the set, in other words, for those members that definitely belong 

to the given set. These functions are defined by corresponding linguistic variables, 

which are called labels [36]. 

 



 36 

 

Figure 3-6 Membership function chart 

 

The membership functions may have various shapes, depending on the data set such 

as S, Z, ᴧ, and ᴨ [39]. The shape of the membership function is context dependent 

and it is usually chosen arbitrarily according to the user experience [38]. Some 

examples of different shapes of membership functions are depicted in Figure 3-7. 

 

 

Figure 3-7 Different membership function shapes. S, Z, ᴧ, and ᴨ shapes are 

illustrated from left to right [39] 

 

It should be noted that a significant characteristic of fuzzy logic is that a numerical 

input does not have to be fuzzified using only one membership function. A value can 

belong to multiple sets at the same time. For temperature fuzzy set, a temperature 

value is considered as both cold and too cold at the same time with corresponding 

degree of membership. All these functions form a fuzzy set. Figure 3-8 shows a fuzzy 

set with five membership functions. Although most of the fuzzy sets have an odd 

number of labels, a set can also have an even number of labels depending on how the 

inputs are defined in relationship to the membership functions. 

 



 37 

 

Figure 3-8 Example temperature fuzzy set with five ᴧ shaped membership functions 

 

3.2 Fuzzy Processing Step 

 

The fuzzy processing component is primarily responsible for analyzing the input data 

that is defined through membership functions and arrives at a control output. This is 

performed by mapping from input fuzzy sets into output, according to the information 

stored in the rule base. After the inputs are processed as previously mentioned, the 

corresponding input fuzzy sets are passed to this component, which processes the 

current inputs using the rules retrieved from the rule base. 

 

With fuzzy logic, most complicated problems can be formed through a collection of 

simple problems and can, therefore, be easily solved. It uses a reasoning with a set of 

rules which can also be called inferencing process. Each of these rules is in IF-THEN 

form such as “IF X1 is A1 and … and Xn is An THEN Y is B.”. An example set of 

rules that are created for clothing decision given in Figure 3-3 are given in Figure 

3-9. The fuzzy rules with two inputs are also represented in a matrix form. For 

example, a system that have two inputs X1, X2 with three terms and one output Y1 

are represented by a 3 x 3 matrix with 9 rules. This representation is preferred rather 

than the list one because it makes it easy to represent all the rules for a system. 

 

 

Figure 3-9 Example rule set for clothing decision 



 38 

A rule can have several input conditions that are logically linked in either with an 

AND or an OR relationship to trigger the rule’s outcome as shown in Figure 3-10. 

According to activated rules, the control output is generated based on the THEN part 

of these rules. A rule is activated if its input conditions, i.e., IF parts, are satisfied. 

There might also be cases where more than one rule is activated when all conditions 

are evaluated. After one or more rules are activated, outputs of each rule are combined 

into a single fuzzy set, which are considered as an outcome. This is the collection of 

one or more output membership functions, again with labels. In a fuzzy system, 

usually, there are many rules which corresponds to multiple IF conditions as shown 

in Figure 3-11.  

 

  

Figure 3-10 Rules with multiple input conditions that are logically linked with AND 

and OR relationships 

 

 

Figure 3-11 A fuzzy set with multiple rules  

 

For evaluation of fuzzy rules that are mentioned above and the combination of the 

results of these rules, the fuzzy set operators are being used. It should be noted that 

the fuzzy set operators are different than traditional logic set operators. Let φA and 

φB be a membership functions which are defined for fuzzy sets A and B over 

universal set U. The three common operators (union/or, intersection/and, 

complement/not) are given in below. 



 39 

 

φA∪B(x) = max(φA(x),φB(x)) 

φA∩B(x) = min(φA(x),φB(x)) 

φnot A(x) = 1-φA(x)) 

 

The details of these fuzzy operators and other related information can be found in 

[35, 36].  

 

There also different methods for combining each of the individual rules. Some 

example methods used to accumulate the results are shown in Table 3.1. The 

maximum algorithm is generally used for this purpose. 

 

Table 3.1 Example accumulation methods 

 

Method  Formula 

Maximum Max{φA(x), φB(x)} 

Bounded Sum Min{1, (φA(x) + φB(x)) } 

Normalized 

Sum 

(φA(x) + φB(x))  /  

Max{1, max{φA(x’), φB(x’)} } 

 

3.3 Defuzzification Step 

 

As the fuzzy processing component completes the rule processing and obtains an 

outcome, the defuzzification process begins. The main responsibility of the 

defuzzification step is to convert the obtained output into real output data or an action. 

In other words, the input of this component is a fuzzy set (aggregated output fuzzy 

set), and the output of the defuzzification process is a single real-life data value. 

Defuzzification is done according to the membership function of the output variable.  

 



 40 

There are many defuzzification methods that have been proposed in literature all of 

which are based on mathematical algorithms such as centroid, maximum 

decomposition, and bisector of the area [39]. The two most common defuzzification 

methods are maximum value and centroid. The maximum value method obtains its 

final output value on the rule output with the highest membership function grade. 

This method is usually used with discrete output membership functions. The second 

one, centroid method, is simply the weighted average of the output membership 

function. It mathematically obtains the center of mass/gravity of the triggered output 

membership functions. Figure 3-12 illustrates the centroid calculation for an example 

FO calculation. 

 

 

Figure 3-12 An example centroid calculation of an output membership function 

 

From mathematical perspective, a centroid is the point in a geometrical figure whose 

coordinates equal the average of all the other points that make up the figure. As 

mentioned above, it is the center of gravity of the figure. The center of gravity for 

obtained FO is the output data value as shown on the X-axis in figure above that 

divides the area under the fuzzy membership function curve into two equal parts. This 

method is the most commonly used defuzzification method because it provides more 

precise result based on the weighted values of several output membership functions. 

The output value that is sent to the output interface module is the output data value at 

the intersection of the horizontal axis and the centroid as illustrated above. 

 



 41 

Centroid (𝑌) is calculated as in equation (1) for continuous output fuzzy sets, and 

with summations rather than integration for discretized variables in equation (2) 

where 𝜇 represents membership function output and y represent the grades. 

 

𝑌(Centroid) = 
∫ 𝑦𝜇(𝑦)𝑑𝑦

𝑎
𝑏

∫ 𝜇(𝑦)𝑑𝑦
𝑎

𝑏

                                 (1) 

𝑌(Centroid) = 
∑ 𝑦𝑖𝜇(𝑦)𝑑𝑦𝑛

𝑖=1

∑ 𝜇(𝑦)𝑑𝑦𝑛
𝑖=1

                             (2) 

 

3.4 An Application Example of Fuzzy Logic 

 

Now a FO calculation is described through an example with corresponding 

membership functions, rules and charts. The generic labels will be used for 

membership function labeling. This labeling is used as basis for other membership 

functions. These labels span from the data range’s minimum point (negative large) to 

its maximum point (positive large). The labels are; 

 

 NL (negative large) 

 NM (negative medium) 

 NS (negative small) 

 ZR (zero) 

 PS (positive small) 

 PM (positive medium) 

 PL (positive large) 

 

These input membership functions are shown as in Figure 3-13. One input will be 

used for this example. 

 

 

Figure 3-13 The input membership functions 



 42 

The rule base that will be used for this example is given in Figure 3-14. The FI 

represents function input and FO represents the function output. 

 

 

Figure 3-14 The rule base 

 

The corresponding output membership function with respect to given rule base is 

shown in Figure 3-15. 

 

 

Figure 3-15 The output membership functions 

 

As mentioned in fuzzy processing step, the FO is composed of one or more 

membership functions with corresponding grades. The output membership function 

grade is directly affected by the grade level of given input data through input 

membership functions.  

 

In this example, the fuzzy input (FI) value, 60%, is provided as FI. This input belongs 

to ZR and PS membership functions as illustrated in Figure 3-16. Here, ZR function 

has 0.6 and PS function has 0.4 grades. For this example, ZR and PS membership 

functions will affect the output. These are determined through finding out the 

intersecting points for given input value. On the other hand, the output membership 



 43 

functions which are chosen for output value depends on the triggered rules that are 

defined in rule base. 

 

 

Figure 3-16 The input value and corresponding activated membership functions 

 

For given input, the rule 3 and 4 are being triggered, because the FI belongs to both 

ZR and PS. As a result of this, both FO action ZR and PL should be applied to the 

process according to grades generated in the input membership functions which are 

0.6 and 0.4 correspondingly. As a result of this employment, these 0.6 and 0.4 values 

are applied to ZR and PL correspondingly. Figure 3-17 shows this outputs. 

 

 

Figure 3-17 The corresponding fuzzy output values 

 

The individual output curves corresponds to given inputs are given in Figure 3-18. 

 



 44 

 

Figure 3-18 The individual fuzzy output curves 

 

To obtain final outcome value, the fuzzy outcomes are being added together to 

produce aggregated outcome as illustrated in Figure 3-19.  

 

 
Figure 3-19 The aggregated fuzzy output curve 

 

The final output which is generated through defuzzification step is obtained by using 

centroid method. For centroid method, the area of overall output curve is taken into 

consideration and through using the formula given in previous section, the centroid 

value is calculated as 65.3 and illustrated in Figure 3-20. 

 

 

Figure 3-20 The calculated centroid value 

 

 



 45 

CHAPTER 4 

 

 

ENSEMBLE ADAPTIVE PREFETCHING 

4. CHAPTER 4 

 

 

In this chapter, the proposed Ensemble Adaptive Prefetching (EAP) approach and its 

important concepts are described through given sub-sections. First of all, the 

architecture of EAP is depicted. Then, criterion term which is proposed with EAP is 

described, then the forms of data that are used in prefetching, prefetching steps and 

process are examined. The adaptive part of EAP is given in Fuzzy Logic-Based 

Adaptive Weight balancer section. All the related sections are described through 

referring related parts of architecture. 

 

4.1 EAP Architecture 

 

In this section, the proposed EAP architecture is examined in details. The proposed 

architecture is depicted in Figure 4-1. This architecture shows important actors with 

corresponding actions, relations and items. The technical details of this architecture 

are described in Appendix B. 

 

The modules are illustrated through boxes and arrows show the direction of 

interaction. Important action descriptions are shown on these arrows with 

corresponding numbers which are then used to refer corresponding actions from text. 

The outer rectangle represents the boundary of EAP architecture. This architecture is 

implemented through a framework which let applications incorporate the proposed 

capabilities and use them through provided interfaces. The framework is simply 

responsible of management of criteria, requests initiated by these criteria, tile loading, 

and prefetching and cache replacement.  

 



 46 

 

Figure 4-1 The EAP architecture 

 

The application is abstracted from this framework through provided interface (shown 

with 14 in Figure 4-1). This framework can be considered as a component or library 

that can be integrated into any application. The main responsibility of application is 

to register the set of criteria or single criterion according to its requirements. The 

application registers set of criteria (shown with 15 in Figure 4-1) through this 

interface to determine the capabilities that will be used for prefetching and related 

operations at run-time. Then it should provide necessary criterion parameters and 

application state data required such as current geographic location, altitude, speed, 

view direction, view angle, etc. through this interface.  

 

Finally, EAP accepts a configuration file (shown with 12 in Figure 4-1) which set 

initial configuration and settings for behavior of overall system. It contains 

parameters for data that is going to be used. It also sets up initial weight balancer 

parameters and rule input values. All thresholds, initial weights and other criterion 

specific parameters are also provided to EAP through this file. This file also contains 

module specific parameters and these parameters are passed to each module during 

initialization. The details and an example configuration file are given in Appendix B.  

 



 47 

As illustrated in Figure 4-1 EAP has five modules which are EAP, Criteria, Request, 

Data managers, and Weight Balancer Fuzzy Inference Engine (WB-FIE). Each 

module performs the assigned task asynchronously in their own thread.  

 

The EAP manager module is responsible for the administration of overall system and 

other managers. Initialization of framework through provided configuration file and 

interaction between application and framework is performed by this module. It 

provides corresponding initial configuration parameters to each module in 

initialization. This module obtains application input (action or data) and passes on 

this to responsible module. It is also responsible from monitoring execution of 

framework and gathering necessary statistics from other managers.  

 

The criteria manager module is responsible for management of registered criteria. It 

executes each criterion operations according to initial configuration file and current 

state of application (shown with 9 in Figure 4-1). These operations are described in 

section 4.2. It passes the load requests to active criteria, obtains request priorities from 

each of them and provides this information to request management module to 

determine the load order (shown with 7, 10 in Figure 4-1). The same operation is also 

performed for the tiles in the cache to determine replacement order of the tiles that 

will be disposed (shown with 11 in Figure 4-1). It also updates criteria weights 

according to feedback received from weight balancer. The weight balancer uses the 

metrics such as criterion correction level and activity level which are given in Section 

4.5 about how each criterion performs and these metrics are collected by criterion 

manager (shown with 8 in Figure 4-1) through employed statistics module. 

 

The request manager is responsible for managing all load requests received from each 

criterion, gathering them together and determining the load order with aid of criterion 

manager and weight balancer (shown with 6, 7 in Figure 4-1). Then passes on these 

requests to data management module (shown with 5 in Figure 4-1). Holding current 

tile requests in a list and maintaining the order of this list is also carried out by this 

manager. Besides, it keeps track of tile request history and manages the state of each 



 48 

request. For instance, the request initiator criteria, the current state of request whether 

it is loaded, or still being loaded or cached or disposed. It informs each criterion about 

status of its tile request according to responses received from data manager module. 

The conflicting situations like initiation of same tile requests from multiple criteria 

are resolved by this module. This module is also responsible for management of 

cached tiles and their replacement order as in load order (shown with 4 in Figure 4-1).  

 

The data manager module is responsible for loading tile data from disc and 

management of data in main memory and cache (shown with 1, 2, and 3 in Figure 

4-1). The loading operations are initiated by the requests received from request 

manager module in the given load order and whenever load operation is completed 

the request manager module is informed about completion (shown with 5 in Figure 

4-1). This module also identifies and provides information about the source of data, 

its unique tile identifier and the other details according to provided geographic 

position and raster metadata given in initial configuration file. It performs 

simultaneous load operations according to available system resources and manages 

their status. The cache, its size and current cached items are also managed by this 

module. This module provides the loaded tile data to active criteria and application. 

Moving tiles from cache to main memory and vice versa is performed by this module. 

 

The last module is Weight Balancer Fuzzy Inference Engine (WB-FIE) which is 

called weight balancer in short. As a result of employing multiple criteria at the same 

time and the versatile exhibition of application capabilities at run-time requires 

employment of criteria weights. These weights show the contribution of each 

criterion. This module is responsible from determining these criterion weights 

adaptively according to obtained metrics from criterion manager module (shown with 

8 in Figure 4-1). To do so, it uses a rule base and fuzzy logic engine. The details of 

this engine, WB-FIE, and rule base are given in section 4.5. 

 

 



 49 

4.2 Criterion Term 

 

The criterion is defined as an agent that is responsible for the execution of requests, 

according to domain specific requirements and the current state of the application. In 

fact, each different prefetching approach, mentioned in related work section, can be 

considered as individual criterion from an EAP perspective in such a way that each 

of them is specifically developed to be used for given purpose. However, different 

from those approaches, EAP can employ more than one and different criteria together 

at the same time.  

 

Criterion word is deliberately selected to describe prefetching techniques’ preference 

on tile data. For instance, a visibility-based criterion focuses more on tiles that are in 

the Field of View (FOV) and prefers to load those closest to the observer before 

distant ones. On the other hand, a vertical cross section analysis focuses more on tiles 

that lie through view direction rather than whether they lie inside the FOV or not. 

Hence, it is believed that ensemble usage of this group of criteria help to achieve high 

performance and satisfy various capabilities that are used for retrieving raster data 

tiles. It can also be said that the more criteria application employs, the more accurate 

and effective prefetching it can achieve through using EAP.  

 

It is also possible to categorize these criteria. When current literature is scanned, each 

individual criterion can be categorized as deterministic, adaptive or heuristic 

according the requirements imposed by application or developer desire. They can also 

be categorized as online and offline according to input being used for prefetching 

decision. In other words, if a criterion makes use of existing or pre-collected data then 

it can be categorized as off-line, however, if it chooses tiles to prefetch solely based 

on current state of application then it can be categorized as online. From EAP 

perspective, all these kinds of criterion can be used with EAP. In fact EAP, itself, is 

adaptive and online according to mentioned categorization. 

 



 50 

In EAP, criterion not only covers prefetching operation. Prefetching is usually 

employed with other operations and usually does not operate by itself. Although some 

of these operations are explicitly mentioned in literature like cache replacement [8], 

no other operation is mentioned. Two additional operations are defined which are 

evaluation and requesting. All these operations are gathered under four groups: 

requesting, prefetching, evaluation, and replacement.  

 

The requesting operation is responsible for determination of necessary geographic 

tiles required by criterion specific capabilities such as 2D map display or 3D terrain 

visualization. The main responsibility of requesting operation is to make sure that 

necessary tiles for given criterion is being loaded into memory. This operation makes 

use of direct-load requests to load tiles into memory which is going to be described 

in Prefetching Steps. For instance, a 3D FOV criterion request operation determines 

tiles that are within the FOV and initiates necessary actions to load those tiles into 

memory. On the other hand, 2D Map View criterion request operation determines the 

tiles that lie inside the map extent. 

 

The second operation, prefetching, refers to abilities necessary to determine tiles that 

will be prefetched. In fact, this is the operation that defines prefetching related tasks 

and the success of prefetching technique. Here, the criterion tries to predict next 

possible behavior according to current state of application and then loads tiles into 

cache even though they are not required at that time. This operation makes use of 

prefetching-load request to load tiles into memory which is going to be described in 

Prefetching Steps. For instance, a 2D map view criterion prefetches neighboring tiles 

according to previous user navigation, even if they are not required or requested at 

that time. A 3D FOV criterion may use turning direction to prefetch tiles that will be 

soon visible by current FOV. 

 

The replacement operation is primarily responsible for identifying the tiles that are 

not needed any more and need to be disposed. The tile replacement policies are 

employed within this operation to prevent tile thrashing or similar issues. 



 51 

 

The evaluation operation takes all existing load requests initiated by other criteria and 

prioritizes them according to developed criterion prioritization policy. This operation 

evaluates existing requests initiated by other criteria and provides a preference for 

them. For instance, a FOV criterion may evaluate the load requests initiated by a 2D 

map view criterion and assign higher priorities to those that also lie inside the FOV. 

The other three operations use this to determine tile load, prefetch or replacement 

order accordingly. In fact, with this operation, different criteria specify their 

preferences on the tiles to find out the most required tile. 

 

Criteria may either perform all of these operations or only some of them may be 

exhibited. In other words, one criterion might be used only for evaluation or for 

requesting, evaluating, and prefetching tiles. For instance, a criterion that takes 

current requests and prioritizes them according to their access frequency only needs 

to perform evaluation operation. It does not initiate any load or prefetching requests. 

 

One important question about these operations is how they are triggered. There are 

some attempts to determine such triggers under a prefetching scheme [40]. This study 

identified two classes of schema: spatial and temporal threshold. In a spatial schema, 

prefetching occurs whenever a given pre-assigned spatial threshold is fulfilled. For 

instance, it is triggered when the FOV is rotated by a given angle. A temporal schema 

performs prefetching in a regular fashion such as prefetching once every 1 s. In EAP, 

threshold values are used for this purpose. Different from [40], threshold values are 

controlled by the criterion. These can also be changed dynamically, according to the 

state of the application. For instance, if the user rotates the FOV faster, then the 

prefetching bearing threshold value decreases. These threshold values are used for 

both request and prefetching operations. 

 

In EAP, it is also possible to trigger and configure the amount of prefetching 

operations according to current CPU load of system. Whenever system is in idle mode 

or has time to perform prefetching, those are executed and load operations are 



 52 

completed. This mechanism provides more flexible and configurable trigger schemas 

than previously mentioned studies.  

 

4.3 Forms of Data 

 

The data that is used in this approach is geographic. As described previously, goal of 

prefetching is to keep necessary subset of this data set in main memory at any given 

time and the rest of the data may reside in the secondary storage drive or on a network 

server. Moreover, considering the size of globe data, even the secondary storage of 

local computer might not be enough for holding all these terabyte level data. 

Geographic data is in the middle of this problem, labeling it might help to express 

and understand the overall prefetching process with its corresponding usage. From 

this point, these labels of data will be used correspondingly in the text to address the 

form of data in process. Geographic data is categorized as raster and vector data, but 

this study concentrates on raster data. The forms of data are given in Figure 4-2. 

 

 

Figure 4-2 The forms of data 

 

The first form of data is called raw-data. This covers the initial data, which is usually 

obtained from acquisition devices. Although this can be used directly, it is more 

convenient to process and transform it into a more efficient and usable format, called 

raster tile data. This data usually incorporated with a metadata (either as a separate 

index file or in the same file) and exhibits a different format for specific purposes 

(e.g. in CADRG or zip format). The raster tile data usually resides at GIS data servers 

or secondary devices of client computers. 

 

Whenever raster tile data is loaded into main memory and is ready to be used by 

applications, it becomes either active or passive data, according to its current usage. 

If it is currently being used by the application, it is active; however, it is called passive 



 53 

data if it is not used by the application. Passive data is either loaded through 

prefetching to become active later, or it comes from active data that is not being used 

anymore, and resides in cache. The active data is the primary data that is used by 

applications. However, passive data is either loaded into memory (or secondary disc) 

through prefetching to become active very soon or it comes from active-data that is 

not being used nor needed any more. Both active and passive data share same format 

and characteristics so that conversion from one to other requires no processing or 

calculation. 

 

The last form of data is replaced data. This data form is introduced to identify the 

data that is disposed from the cache and no longer resides on memory. Although 

passive data can be used for data items that are not active any more, this data form 

introduced to identify the data that is replaced from cache and become active 

previously which is also being used for experimentation. Some approaches may 

employ specific operations for this form of data or just unload it from memory. 

 

Usually, the size of active/passive data is lesser than raster tile data, whereas the size 

of raw data usually is less than raster tile data.  

 

4.4 Prefetching Steps and Prioritization 

 

After having defined the forms of data, now the overall prefetching process steps with 

how they make use of this data are described. Important steps of overall prefetching 

process with corresponding forms of data are given in Figure 4-3.  

 



 54 

 

Figure 4-3 Prefetching steps and forms of data through this process 

 

4.4.1 Preprocessing Step 

 

The first step in prefetching is preprocessing, which is commonly used by many data-

driven applications, but it has become more important as the scale of current 

geographic data is taken into consideration. The preprocessing covers the activities 

that are performed prior to execution of application. In other words, it contains any 

type of processing or activity that is performed on raw data which is usually 

acquainted with acquisition devices to prepare it for primary usage. Usually, this 

preliminary data is transformed into a format through some data mining practices and 

data preprocessing algorithms that will be more easily and effectively processed for 

the prefetching. Another important motivation of preprocessing is alleviate the 

burden of executable models and provide more effective and interactive execution, 

query and data retrieval operations at execution time. 

 

The preprocessing is also used for incomplete data that may come from “Not 

applicable” data, human/hardware/software problems or noisy data especially for 

image or signal data that may stem from faulty data collection instruments, human or 

computer error at data entry or errors in data transmission. Finally, it is used for 

inconsistent data that comes from different data sources. 

 



 55 

At this step, according to nature of data, compression, identification and encoding 

operations can be applied to raw data. Moreover, operations necessary for tiling are 

usually applied at this stage. 

 

For EAP, raster data tile files are generated from raw data, according to developed 

unique raster tile ID determination. These files are being produced according to 

developed unique raster tile id determination and then a metadata index file that 

contains information depicted by Figure 4-4 about the preprocessed data is generated.  

 

 

Figure 4-4 Raster Metadata index file structure 

 

These raster tiles are assigned unique identifier (ID)s according to their resolution, 

location, and origin. With such assignment, candidate tile search is no longer required 

because a simple calculation to determine which tile search is to be retrieved at 

runtime is made, according to its geographic location. The raster tile data files are 

generated in tiles which are addressed through mentioned metadata files. 

 

Another contribution that has been done in this phase is to assign these raster tiles 

unique ids according to their resolution which is called unique raster tile id 

determination. The acquired geographic data refers to unique locations on earth, from 

this fact, this data is partitioned into sub-partitions and enumerate them according to 

resolution or map scale. As a result of this very simple technique, the search of tile to 

load is not required anymore. To find out which tile is required to be retrieved at 



 56 

runtime is nothing but a simple calculation. In fact, raster data files that are generated 

in preprocessing phase are named according to this id. These IDs are stated with 

unsigned integers which provide <0, 4.294.967.295> range. 

 

4.4.2 Query Step 

 

In this step, all prefetching and loading of candidate tiles occurs, as well as querying 

raster tile data, according to the layout determined in the previous step. According to 

nature of prefetching, it might be complex or as simple as loading raster tiles directly 

into memory. It involves querying the raster tile data whose layout is specifically 

designed so that queries can efficiently identify this data at runtime. This is provided 

through the unique id assignment defined in previous step where query operations 

become the calculation of this unique id. 

 

The loading of tile data is performed through two operations: direct and prefetching 

load requests. The direct load request usually occurs at the beginning of application 

execution where no information for prefetching exists, or when drastic changes occur 

in geographic locations. Moreover, these are initiated when the prefetching technique 

fails to predict the corresponding raster tiles. These are the situations where there is 

little or no information for prefetching exist and application required to use raster tile 

data that is not exist in cache or loaded into main memory yet.  

 

Whenever sufficient information for prefetching is obtained, the prefetching load 

requests are initiated and the data that will be probably required by application is 

loaded into cache. This is generated according to the nature of individual criteria. 

Whenever the application requires this data, rather than loading corresponding data, 

the already loaded passive data becomes active and is provided to the application. 

Later whenever application requires this data, instead of going to secondary disc or 

server and load corresponding data, the passive data becomes active and provided to 

application.  

 



 57 

The data that stays on secondary disc or server is in not loaded state. Whenever it is 

loaded into memory and become an active tile, than it pass to active state and 

whenever it is moved into cache it pass to cached  state. Finally, it passes to disposed 

state whenever it is unloaded from memory. These states closely resemble the forms 

of data mentioned. 

 

An important element of the query step, prioritization, is described in the following 

section. 

 

4.4.3 Prioritization 

 

An important issue independent of the origin of request (prefetching or direct load 

request) is load ordering. Certain prefetching mechanisms focus on load ordering 

rather than determining candidate tiles. The most straightforward approach is to load 

these items in the order in which they were requested. However, this approach could 

be problematic when user moves rapidly or multiple cache misses occurs, so the item 

in the load-order may lose its importance or become irrelevant. The RAP [4] method 

follows this approach, and the load order is predetermined according to movement 

direction. In this case, each neighboring tile is represented by a number and a fixed 

order of these tiles are loaded according to movement direction whenever a transition 

occurs. This numbering and load order is shown in Figure 4-5.  

 

    

Figure 4-5 a) The tile numbering, b) load-order for each direction in RAP according 

to (a) 

 

Although this approach is sufficient in RAP cases where the scope is simple 2D 



 58 

navigation, it becomes more complicated when 3D and other criteria are involved, 

and number of tiles that are going to be fetched increased. In fact, it is highly possible 

that some individual tiles are required before than others in 3D. Nevertheless, the 

order of required tiles might be changed dynamically, according to 2D/3D. 

 

It is critical to reduce the user perceived delays which becomes an important 

motivation of our EAP approach. Although the misses cannot be prevented 

completely, necessary actions could be initiated to reduce this delay. This is achieved 

with dynamic load order and loading the nearest most important tiles before then 

others. Hence, first the predetermination of order is abandoned which does not 

provide best results in most of the common scenarios and instead incorporate a 

prioritization policy. These requests are evaluated and assigned priorities to those 

requests such that the higher prioritized tile is loaded before other ones according to 

criterion specific conditions and requirements. 

 

In EAP, this ordering is performed by employing mentioned raster tile prioritization. 

As a result of using an ensemble of prefetching techniques, EAP provides more 

precise load ordering than individual prefetching mechanisms. This is very important 

for prefetching, as it helps to access those tiles that are more likely to be required 

before others to prevent possible misses. Moreover, application delays and lags are 

reduced for direct load requests. Hence, prioritization policy mechanisms are 

incorporated into EAP through each criterion where each request is evaluated and 

assigned priorities by each prefetching technique, and higher prioritized tiles are 

loaded before others.  

 

Moreover, this same policy is also used for tile disposal in such a way that this time 

the lower prioritized tiles are being selected for disposal. As a result of using same 

mechanism, no extra cost or mechanisms are required for disposal and priority policy 

developed for prefetching can easily be used for disposal.  

 

For direct load request and prefetching load request, 1.0–100.0 and 0.0–1.0 ranges 



 59 

are used, respectively, to make application load required tiles before prefetched ones. 

These ranges ensure that the tiles that would be required directly by application are 

assigned higher priority values than prefetching candidate tiles. It should also be 

noted that all these range values and parameters could easily be changed through 

configuration files. 

 

The prioritization policies are dependent on each individual prefetching techniques; 

thus, three policies are developed for three categories of prefetching approaches, 

which are 2D prefetching, 3D prefetching, and analysis prefetching.  

 

The prioritization policy used for 2D prefetching in EAP is illustrated in Figure 4-6. 

Here, the map extent represents the portion of map tiles (which is 4 x 3) that the user 

sees in 2D navigation mode in her screen. Most of the 2D map visualization 

applications follow this representation where number of map tiles are being displayed 

inside a window to user and user navigate on this map through well-defined 

operations like pan and zoom. User expect to see flawless map transition as she pan 

and navigate on map. So the policy should take this into consideration and employ 

prefetching according to this motivation. It is believed that the policy proposed for 

2D map navigation can be used for most of the 2D map visualization and navigation 

prefetching operations. 

 

Raster tiles that are within the map extent are assigned priorities from 1.0 to 100.0, 

according to the geographic distance of their center to the map extent center. In other 

words, tile that contains the map extent center has the highest priority value which is 

100.0 and the tile that lies at the boundary of map extent has 1.0 priority value. The 

tiles that lies among map extent center and boundary are assigned priority values 

linearly according to their distances.  

 

The tiles that are outside the map extent are assigned priorities from 1.0 to 0.0 up to 

a maximum range. In other word, tiles that are just outside the map extent are assigned 

priority value 1.0 and this priority decreases as tiles get further away from the center 



 60 

of map extent. The priority assignment is limited with a range in such a way that if a 

tile is farther than this given max range it is assigned priority value 0.  

 

In addition to this distance based prioritization, this policy make use of navigation 

direction for priority assignment. After obtaining distance-based priority, the tiles are 

evaluated according to the next possible movement direction. This direction is 

determined by considering previous user navigations and if a tile is in the possible 

movement direction of the map extent, then its priority is increased by an extra 25%. 

 

 

Figure 4-6 2D Navigation prioritization policy 

 

The prioritization policy for 3D prefetching is illustrated in Figure 4-7 which is 

primarily developed for 3D visualization and navigation applications. Here, FOV 

triangle represents the user’s or camera’s current field of view where all 3D 

visualization based on. The most of the 3D visualization applications like 3D 

simulations or fly-through applications follow this representation where a 3D world 

or terrain is being constructed according to current FOV. This world or terrain is 

usually generated through finding the FOV intersected elevation and map tiles. 

However, in 3D, the user navigation is more complex than the 2D case where user 



 61 

can rotate its FOV or change is angle or change the other view parameters like 

heading and pitch. In addition to these, she may ascend or descend which changes the 

number of raster tiles required to be fetched. Moreover, different kind of combined 

navigations is possible such as moving one direction as looking backwards or other 

sides. Such issues are taken into consideration while designing the 3D FOV 

prioritization policy to serve these kinds of applications. 

 

Raster tiles that are within the FOV are prioritized according to their distance from 

the navigator, as in the 2D case from 1.0 to 100 according to the geographic distance 

of their center to eye point/navigator location. In other words, tile that is just in front 

of navigator view or contains navigator has the highest priority value which is 100.0 

and the tiles that lie at the boundary of FOV triangle has 1.0 priority value. The tiles 

that lie among navigator location and FOV triangle boundaries are assigned priority 

values linearly according to their distances as in 2D policy.  

 

 

Figure 4-7 3D FOV prioritization policy 

 

The tiles that are outside the FOV triangle are assigned priorities from 1.0 to 0.0 up 

to a maximum range as in 2D case. In other word, tiles that is just outside FOV 



 62 

triangle and near to navigator are assigned priority value 1.0 and this priority 

decreases as tiles getting further away from the FOV triangle and navigator. Different 

from 2D map extent case, the priority values of the tiles that are outside the FOV 

triangle but near to navigator location assigned higher priority than the farther tiles 

which is illustrated in Figure 4-8. The maximum range could also be set as far 

clipping plane parameter of perspective projections which is used for 3D 

visualization. The priority assignment is limited with a range in such a way that if a 

tile is farther than this given max range it is assigned priority value 0.  

 

  

Figure 4-8 How outside tiles are being prioritized in 3D FOV policy 

 

The remaining tiles are prioritized according to their distance from the FOV triangle 

up to a maximum range. Moreover, as in the 2D case, the tiles that are within the next 

possible turn or move direction (clockwise or counter clockwise) are given higher 

rates than other. For instance, if user turns its heading clockwise for given period then 

it probably continues turns its heading in clockwise direction. As a result of this, those 

tiles are assigned extra priorities as illustrated in Figure 4-7. In addition to these turn 

directions, if it moves in forward or backward, those tiles that lie after or behind 

navigator are also assigned higher percentages. 

 

Finally, a prioritization policy for analysis prefetching in EAP is developed for linear 

GIS analyses like vertical cross section analysis as illustrated in Figure 4-9. Here, the 

line represents the line that analysis is interested. This line may move with navigator 



 63 

movement or it can be applied to a given fixed geographic location. When used with 

navigator, its directions are changed according to view direction of navigator. Its 

length can also be changed. This policy mainly aims to find and prioritize tiles that 

intersect with this line and around it. 

 

Raster tiles that are intersect with analysis cross section are prioritized from 100.0 to 

1.0, according to their geographic distance from analysis start point to end point. In 

other words, the tiles that contain the analysis start point are being assigned priority 

value 100. On the other hand, the one that contains the analysis end point is assigned 

priority value 1.0. The priorities of rest of the tiles that lie among these two points are 

assigned linearly. The tiles that intersect with the extension of the cross-section are 

again rated in a similar way, but with a 0.0–1.0 interval till a given maximum range. 

 

 

Figure 4-9 Analysis prioritization policy 

 

The final priority of a tile is obtained by adding the weight-multiplied priority values 

of each prefetching policy described above. These weights, which are in the 0.0–1.0 

range, determine the influence of each criterion. These grading/prioritization 

operations are performed whenever a load operation is initiated or policies are 

triggered. When a load request is initiated, currently active prefetching techniques 

calculate corresponding tile’s priority value for the first time and place it into a 

priority-based load list.  

 

The tiles are re-graded whenever prioritization policies are being triggered. For 2D 



 64 

prefetching, the policy is triggered when the map extent is panned for a given distance 

or a zoom operation is performed. For 3D prefetching, it is triggered by FOV bearing 

and FOV angle changes and viewer movement for given thresholds. Finally, for 

analysis prefetching, it is triggered whenever the analysis start point or analysis range 

is changed. As these ranges and threshold values can be configured prior the 

execution of application, they can also be changed at run time according to current 

state of application. For instance, if a user moves rapidly the threshold value used for 

panning is increased to prevent any unnecessary raster tile loads. 

 

It should be noted that the proposed three policies can easily be used for mentioned 

kinds of applications as basis. With EAP, other prioritization policies can also easily 

be developed and integrated into the system to increase the efficiency and precision 

of prefetching. 

  

As a result of this mechanism, tile load order may change till the start of the load 

operation which provides great flexibility. This is also the case for cache replacement 

where the cached tiles are being held till the start of tile disposal which prevents any 

unnecessary disposing and reloading operations. 

 

Before closing prioritization discussion, the overall process of prioritization, its usage 

in overall execution of EAP is going to be described in a more formal way. These can 

easily be correlated with previously mentioned prefetching elements. 

 

 Let § be the current state of application. This state contains any information that is used 

by criterion for prefetching like system mode (whether 2D or 3D visualization activated) 

or speed or altitude, etc, 

 Let ℒ be the geographic location of navigator. This is an important actor and trigger for 

all prefetching operations which also represent the navigator being used for most of the 

prioritization policies, 

 Let εi be the ith criterion that is currently used for prefetching. 

o θi be the weight of ith criterion. Different from other approaches, EAP can 

dynamically calibrate the weight of each criterion. How these weights are being 

calibrated is going to be described in section 4.5. 

o τR be the direct request operation threshold.  



 65 

o τP be the prefetch request operation threshold. These two are the threshold values 

that are specific to each criterion.  

 Let r be the single tile request. There is a set of priority values assigned by each criterion 

and an overall priority ρr of corresponding request, 

 Let ordered set of requests be represented as Ѕo and unordered request set as Ѕu. This order 

is determined by using each active criterion through the evaluator operation. 

 Let LA and LC be the current Active and Cache lists, 

 Let H be the priority based ordered request list, 

 Let ƒ be the evaluator function specific to each criterion.  

Now on, we can illustrate how EAP prefetching occurs in a formalized manner. 

 So at any time t0  while application is in § state; 

o If τp is satisfied for corresponding εi then a set of tile requests                                 

Ѕu = { r1, r2, …., rn} where n is the number of prefetch tile request initiated, 

 ∀r  in Ѕu calculate; 

      ρr1 = ∑ θi*ƒ(εi, §, L, ri)
n
i=0                

ρr1 = ∑ θi*ƒ(εi, §, L, ri)
n
i=0 , 

where n is the no of active criteria and generate set of Ѕo = { ri, ri+1, …, rn}  through 

H where request are ordered according to calculated priorities from highest to 

lowest and start with highest-valued request for loading. 

 Loaded tiles are put into cache tile list (passive data), 

o If τR is satisfied for corresponding εi then a set of tile requests                    

Ѕu = {r1, r2, …., rn} where n is the number of direct tile load requests initiated, 

 Follow the same procedure, only loaded tiles are directly put into active tile list. 

o At any time if εi realize that a requested tile r is not needed any more by application 

then move corresponding item from LA active tile list to LC cache list. 

o At any time if cache size is reached to a defined range then remove the provided 

number of items from H that has lowest priorities to generate space for new tiles.  

o The weight of each criterion might be changed during run-time. 

o A criterion may decide to ignore a request which is initiated by other criteria 

according to current application state.  

 

4.4.4 Replacement Step 

 

Through the query step, raster data tiles are loaded into memory through either direct 

or prefetching load requests. To have a more efficient data management 

infrastructure and to prevent any unnecessary I/O operations, most prefetching 

systems employ a cache; thus, rather than disposing not required data from memory 

directly, it is first placed into cache where it can be accessed later. For EAP, there are 

two sources of cache data: the first is the recently used active data, which has become 



 66 

passive, and the other is from the employed prefetching algorithm.  

 

Whenever a new raster data tile is required by the application, the cache is checked 

first. If it is found there then a cache hit occurs; however, if it is not found there then 

a cache miss occurs and a direct load request is initiated to load data. The employed 

cache in the proposed approach holds processed raster tile data, and its size can be 

configured either before the application is executed or during run-time, according to 

system resources. 

 

The replacement step occurs when the current cache is full and space is required 

either for not-required active items that will become passive or for newly prefetched 

items that will be placed into cache. Although removing the tiles in the order in which 

they are loaded is an option, it is not feasible to follow this policy. There are many 

well-known policies such as last recently used (LRU), least frequently used (LFU), 

or most recently used (MRU), which can be employed for replacement. Although 

these are good candidates, in EAP, a priority-based replacement policy is employed. 

Hence, the same mechanism that is used for load ordering can also be used for 

replacement, in such a way that items that have least priority are replaced first. The 

motivation behind this choice is similar to one that is mentioned in load order 

discussion, which is to be able to change the order of items till the start of dispose 

operation. For instance, the priority of a raster tile data that is a candidate for 

replacement may increase as the viewer goes closer to that tile; thus, these tiles need 

to be evaluated before they are directly replaced. Moreover, as a result of using the 

same mechanism for both loading and replacement, less processing is required for 

selecting candidates for disposal. 

 

Another issue in the replacement step is when the cache is being checked for disposal. 

The replacement operation is triggered when current cache size is reached to a user 

provided or a default 75% limit. The cache size is checked whenever a prefetching 

operation is initiated or tiles are required to be moved from main memory to cache. 

If the available cache size is reached to a given limit, then a user provided or default 



 67 

number of tiles are disposed according to the priority based replacement policy. The 

default number of tiles to dispose and cache limit is determined through following 

method given in [4]. 

 

4.5 Fuzzy Logic-Based Adaptive Weight Balancer 

 

Having described the EAP process model, the adaptive part, which is based on fuzzy 

logic, is going to be described in detail. This is critical, especially when more than 

one criterion is being employed. The output of this step is criterion weight which is, 

in fact, being used by prioritization. Its primary purpose is to increase the overall 

prefetching performance (hit ratio) by continuously changing the weights of each 

criterion at run-time. For this purpose, the weight of a well-performing criterion is 

increased to make it more prevalent and that of poorly performing ones is decreased, 

which reduces their negative contribution to the hit ratio. Then, these weights are 

multiplied with tile priority values that are obtained with prioritization policies to get 

a final load order. Note that these weights may change according to exhibited 

capabilities at run-time. 

 

The main motivation of selecting fuzzy logic for proposed approach is its suitability 

for prefetching problem. The navigations and capabilities that are handled by 

prefetching can vary from one application type to other and even in one application 

from start of session to end. So, it is not possible to find a statistical or mathematical 

model that can fit and cover all these cases. In fact, it is believed that prefetching 

problem itself cannot be expressed in precise numerical terms. However, describing 

problem with words from natural language through some well-defined rules seems 

more suitable for prefetching. At this point, other approaches entail accurate 

equations to model such real-world behaviors. On the other hand, fuzzy logic design 

can accommodate the ambiguities of real-world in such a way that it provides both 

an intuitive method for describing systems in human terms and automates the 

conversion of such system specifications into effective models. Hence, fuzzy logic 

rapidly become an important to for developing sophisticated control systems. As 



 68 

described in Chapter 2 and previous paragraph, employing and managing set of 

prefetching techniques can be considered as a control problem and so fuzzy logic fits 

in with given problem. 

 

Fuzzy logic can be described as an extension to traditional logic for dealing with the 

knowledge representation problem in an environment of uncertainty. It is a form of 

logic where underlying modes of reasoning are approximate rather than exact. In fact, 

fuzzy logic stems from human reasoning, which are usually based on approximate 

reasoning [35]. Moreover, it is described as a rule-based decision-making technique, 

employed for expert systems and process control, which primarily aims to emulate 

the heuristic, rule-of-thumb approach of human reasoning to many problems. 

Similarly, from a prioritization perspective, it may not be easy to label tiles as load 

first or last. According to overall priority of each tile, a grade might be assigned to 

each of them, which make fuzzy logic suitable for weight balancing. For this purpose, 

a weight balancer-fuzzy inference engine (WB-FIE) is developed to modify these 

weights. The overview of WB-FIE is shown in Figure 4-10. 

 

 

Figure 4-10 The architecture of a weight balancer-fuzzy inference system 

 

There are three important components of WB-FIE: fuzzification, fuzzy processing, 

and defuzzification with input and outputs.  

 

Fuzzification is responsible for converting input data into fuzzy membership; in other 

words, linguistic variables. A linguistic variable is a one that uses linguistic values 

such as low, medium, and high. This is required to process rules that are defined in 

terms of linguistic variables. These input values are analyzed according to user-



 69 

defined charts, which are called membership functions and used to group received 

input data into fuzzy sets. These functions are usually real-valued functions 0.0–1.0 

and range outputs according to how well input fits into each function where 1 value 

is at the center of the given set. These functions are defined by corresponding 

linguistic variables, which will shortly called as label [36].  

 

For WB-FIE, criterion activity level (CAL) and criterion correction level (CCL) are 

defined as input variables in term of percentages. The CAL is obtained by observing 

the activities of individual applications. For instance, in case of 3D applications, if 

FOV bearing or angle changes frequently, then CAL will increase. Similarly, in case 

of 2D applications, it increases if user pan continuously. The CAL decays by time if 

no activity occurs. If any activity occurs, then the activity level is set to 50%. The 

contribution of each activity to CAL is specific to each criterion. For a 3D criterion, 

the FOV angle, bearing, pitch, and location changes are considered as contributors. 

Bearing change is the highest contributor with 80% and remaining 20% shared among 

other activities. These percentages are obtained through observing the frequency of 

activities exhibited in 3D applications. The CCL value represents the correct 

prediction level and calculated by equation (3). 

 

CCL = (No. of Correct Predictions [hits] / Total No. of Predictions) * 100        (3) 

 

The membership functions may have various shapes, depending on the data set such 

as S, Z, ᴧ, and ᴨ [39]. For WB-FIE, ᴧ-shape is selected because of its simplicity and 

to ensure smoother control over input. The membership functions for CAL and CCL 

are shown in Figure 4-11 and Figure 4-12 correspondingly. 

 



 70 

 

Figure 4-11 The criterion activity level membership functions 

 

 

Figure 4-12 The criterion correction level membership functions 

 

The fuzzy processing component is primarily responsible for analyzing the input data 

that is defined through membership functions and arrives at a control output. This is 

performed by mapping from input fuzzy sets into output, according to the information 

stored in the rule base. After the inputs are processed as previously mentioned, the 

corresponding input fuzzy sets are passed to this component, which processes the 

current inputs using the rules retrieved from the rule base. Each of these rules is in 

IF-THEN form such as “IF X1 is A1 and … and Xn is An THEN Y is B.” According 

to activated rules, the control output is generated based on the THEN part of these 

rules. A rule is activated if its input conditions, i.e., the IF parts, are satisfied. There 



 71 

might be cases where more than one rule is activated when all conditions are 

evaluated. Fuzzy operators that are used for this purpose are described in [35, 36]. 

The rules developed for WB-FIE are listed in Figure 4-13. The number of rules which 

is nine kept as small as possible to achieve a less complex inference engine. In fact, 

these rules perfectly cover different types of the capabilities and behaviors as 

illustrated in experiments conducted which are given in Chapter 6. Moreover, these 

can be extended or configured through again provided configuration file.  

 

 

Figure 4-13 WB-FIE fuzzy logic rule list (rule base) 

 

Fuzzy logic rules which have two inputs can also be represented in a matrix form to 

represent AND conditions. An advantage of this representation is that it makes it easy 

to represent all the rules for a system in a more compact form. These rules are 

displayed in Table 4.1 

  



 72 

Table 4.1 WB-FIE fuzzy logic rule matrix (rule base) 

 

 

For instance, Figure 4-15 illustrates a 3x3 matrix and 9 rules in total that uses two 

inputs X1 and X2, and one output Y1.  

 

 

Figure 4-14 The mapping of list based rule to matrix representation 

 

After one or more rules are activated, the outputs of each rule are combined into a 

single fuzzy set, which is considered as an outcome. This is the collection of one or 

more output membership functions, again with labels. The criterion weight operation 

(CWO) output membership functions are shown in Figure 4-15. Here, according to 

the obtained output, the multiplier for changing the weight of the criterion is provided. 

These operations are then analyzed and applied to each criterion, according to their 

current weight. 

 



 73 

 

Figure 4-15 The criterion weight operation membership function 

 

As the fuzzy processing component completes the rule processing and obtains an 

outcome, the defuzzification process begins. The main responsibility of the 

defuzzification step is to convert the obtained output into real output data or an action. 

In other words, the input of this component is a fuzzy set (aggregated output fuzzy 

set), and the output of the defuzzification process is a single number. Various 

defuzzification techniques have been proposed in the literature such as centroid, 

maximum decomposition, and bisector of the area [39]. The most common one is 

centroid, which is also used for WB-FIE. This method is simply the weighted average 

of the output membership function. The centroid method is used for WB-FIE because 

of its simplicity and commonality. This method applies to both non-continuous, or 

discrete, output membership functions, as well as continuous ones. The controller 

uses approximate digitized values for membership functions to compute each of the 

points in the summation.  How this centroid is calculated is given in equation 2 at 

section 3.3. 

 

The output of WB-FIE in terms of CAL and CCL is CWO, which is illustrated above. 

According to the obtained output, the EAP changes the weight of the corresponding 

criterion. For instance, if the activity level of a criterion is high with its high precision 

ratio, then EAP increases its weight to emphasize its influence on load order, which 

places this criterion’s preferred tiles at the front of the load list. 

 



 74 

4.5.1 A Sample WB-FIE Execution 

 

In this section, an example WB-FIE execution is going to be described through the 

corresponding fuzzy logic components that are discussed above to illustrate the 

adaptive engine working logic. Same input/output membership functions and rules 

are going to be used for this purpose which are CCL, CAL and CWO. 

 

The input values CCL and CAL are being collected periodically and fed into adaptive 

engine. So at one point, assume that the following input crisp values (32.5% for CCL 

and 60% CAL) are observed and fed into the WB-FIE. 

 

 

Figure 4-16 The input values and CCL/CAL membership functions 

 

So at first stage, these crisp input values should be converted into semantic values 

through fuzzification. It should be noted that these two inputs have four intersections 

with four membership functions namely; low and medium for CCL, more active and 

active for CAL. These intersection points are illustrated with small circles on 

membership functions as illustrated in Figure 4-16. As a result, these inputs are 

semantically described as with these labels. Then through fuzzy processing steps, 

these converted inputs are used to find triggered rules and then overall outcome 

should be calculated. According to rules that are given in Figure 4-13 and Table 4.1, 

four rules are being triggered as illustrated below in Figure 4-17. Each output of 

triggered rule is depicted through drawn circles. Now, overall process is going to be 

described through these triggered rules. 



 75 

 

Figure 4-17 The four triggered rules are shown in circles 

 

The inputs for the first triggered rule are CCL=Low and CAL=MoreActive and these 

two inputs maps to output CWO=Preserve. The corresponding mappings and 

mappings of inputs on output membership functions are shown in Figure 4-18. As 

illustrated in Figure 4-18, the output is illustrated as areas as a result of having 

continuous membership functions.  

 

 

Figure 4-18 The operations occurred at fuzzy processing step for given triggered 

rule with corresponding mappings 

 

Then the smaller output is being selected among these two outputs as a result of 

triggered rule. The rule triggered has `AND` fuzzy logic operator and as mentioned 

before fuzzy logic and operator takes smaller input as illustrated in Figure 4-19. 



 76 

 

Figure 4-19 The selected output for triggered rule 

 

Similarly, the other triggered three rules in fuzzy processing stage are illustrated in 

Figure 4-20, Figure 4-21, and Figure 4-22. The arrows are originated from the inputs 

used in triggered rule. The selected outputs and intersected membership function are 

illustrated through circles. 

 

 

Figure 4-20 The second triggered rule with corresponding mappings 



 77 

 

Figure 4-21 The third triggered rule with corresponding mappings 

 

 

Figure 4-22 The fourth triggered rule with corresponding mappings 

 

Finally, at defuzzification step, the all four outputs which are shown in Figure 4-23 

are accumulated together and Figure 4-24 is obtained. Then centroid of these 



 78 

accumulated outputs are calculated which is 0.995.  This output value then converted 

into an action according to pre-defined actions listed in Figure 4-25. 

 

 

Figure 4-23 The outputs that are obtained from triggered rules 

 

 

Figure 4-24 The accumulated output of fuzzy processing step and application of 

centroid method for defuzzification 

 



 79 

 

Figure 4-25 The output of WB-FIE to action mapping 

 

The steps that are just described are repeated for each active criterion in a periodic 

fashion which let system to make use of this feedbacks to improve overall prefetching 

performance. 

 

4.6 Ensemble Adaptive Prefetching Approach and Usage Scenario 

 

4.6.1 EAP Approach 

 

After having described the architecture of EAP and its important concepts, now EAP 

approach and a general usage scenario are going to be described through an example 

application type using these concepts. The general usage is illustrated in Figure 4-26. 

 

There are two important actors in EAP; EAP framework and application. The 

application is abstracted from EAP framework through provided unified interfaces. 

It can be considered as a component or library that can be integrated into any 

application. As illustrated in Figure 4-26, the requests are initiated by registered set 

of criteria and are loaded from provided data source. In this study, file system is used 

as data source through set of files, but obviously this can also be replaced with web 

servers. The set of criteria stay between application and EAP framework plays the 

interface role. Moreover, a common interface is provided to registered criteria and 

application to observe and change the currently employed prefetching parameters 

during execution time.  



 80 

 

Figure 4-26 Overview of EAP usage 

 

The main application responsibility is to register criterion to EAP, because the 

criterion is managed by EAP framework. Then it set necessary criterion prefetching 

parameters and provide application state data to these set of criteria through provided 

interface.  

 

The other important application responsibility is to utilize user input and provide 

parameters to EAP framework. To help the applications and unify the inputs that are 

provided through criteria, navigator concept is introduced. For instance, for 2D Map 

View criterion, the main responsibility of navigator is to provide geographic location, 

speed, and altitude and zoom level. For 3D FOV criterion, it is expected to provide 

the field of view angle, view direction, rotation angle and etc. In addition to these 

parameters, navigator can also be used to provide these parameters through making 

use of keyboard and mouse. 

 



 81 

This configurability is another important capability provided by EAP approach. The 

main motivation behind this configurability is to let application to be able to configure 

criterion, EAP framework parameters accordingly to current state of application and 

let also applications to interfere with EAP manually.  

 

Moreover, user can either determine the list of active criteria before execution or she 

may activate/deactivate corresponding criterion during run-time. For instance, 

consider the case that is given in introduction part. The most of contemporary GIS 

applications begin to exhibit also 3D flythrough or terrain visualization capabilities 

as well as providing 2D map display and analysis capabilities. Although these 

capabilities have some common prefetching behavior, these three capabilities are 

considered as system modes. So whenever user switches to 3D mode, criteria that are 

developed for 3D might be activated and whenever user switch to 2D mode 

corresponding criteria might be activated.   

 

Alternative to previously given system mode example, the application may also 

employ a set of criteria and change the weight of these criteria without deactivating 

any of them. With employed criteria and this weight infrastructure application can 

change the effectiveness of each criterion during runtime either manually through 

some predefined parameters like hit ratio, correctly and incorrectly predicted raster 

data tiles. However, it should be noted that the EAP performs this automatically 

through developed WB-FIE and criterion weighting, but such manual intervention is 

also permitted. 

 

The other EAP parameters that can be configured by application at execution time 

are; 

 

 The direct and prefetching request trigger threshold values, 

 The number of loading threads, 

 The cache and active tile container size,  

 The prioritization policy parameters, 

 The WB-FIE parameters (membership function parameters), 



 82 

 The criterion weight, 

 The criteria specific parameters. 

 

4.6.2 EAP Usage Scenario 

 

After having described the overall EAP approach, now a usage scenario is going to 

be described through a hybrid application with important steps. Some of these steps 

are related with the architecture given in section 4.1 through enumeration. The Digital 

Moving Map application is selected to be used for this purpose [41, 42]. The concept 

behind this application type is to represent the geographic area in which an aircraft's 

position is depicted and its environment is visualized and provided to pilot. As the 

aircraft's position changes, the area of map is also adjusting itself to keep up with the 

aircraft's progress along its flight path [43].  

 

Digital moving map applications are developed to replace cumbersome paper maps 

in aircraft cockpits. They provide navigational and tactical information that is useful 

for performing corresponding tasks. In addition, they provide a means for enhancing 

mission effectiveness and situation awareness. They allow the pilot to focus her 

attention on navigation tasks with a minimum effort. These systems integrate 

information from several sources. They serve to display information more efficiently 

such that the pilot should be able to obtain all the information required to assess a 

situation and accomplish a task with a quick glance at the display. Moreover, digital 

moving map applications provide control of the displayed information to pilots [44, 

45].   

 

This type of applications require data for different kinds of domain specific 

operations at the same time. They are providing 2D map, 3D terrain visualization, 

analysis capabilities and most of these are running on avionics systems that have very 

limited resources. So it is very important to provide a prefetching mechanism that 

fulfill the data availability problem for these exhibited different kinds of capabilities 

and operations at the same time. Hence, it is also a good candidate for illustrating the 



 83 

usage of EAP and how it can fit for these types of applications.  

 

The usage scenario is described through phases which also summarize life cycle of 

digital moving map application. 

 

4.6.2.1 Pre-execution Phase 

 

In this phase, the activities that are required to be performed before application 

execution are going to be described. There are two important activities at this phase 

which are preprocessing and initial configuration file preparation (0 and 12 in Figure 

4-1). The preprocessing activities are described in section 4.4.1 and these are usually 

common for all types of applications, so those will not be repeated here. The other 

activity is the preparation of a configuration file according to application 

requirements. This configuration file should contains settings about the data, data 

loaders, criteria and statistics. The format of this configuration file and the file 

prepared for this usage scenario is given in Appendix B. 

 

The data that is going to be used by application is highly dependent on the application 

requirements. The digital moving map application requires at least elevation raster 

data and satellite photo data. So, configuration file should contain descriptive 

information about this data such as its resolution, path, format, and extent and tiling 

information. The EAP can handle multiple layers and data sources. As a result of 

having different types of data, the data loaders that are going to be used should also 

be provided through this configuration file. The EAP framework provide a generic 

interfaces and base classes to handle these different kinds of data, so user can develop 

its own data loader objects using these classes and then integrate them into EAP 

framework. 

 

Another important configuration set is about registered criteria. For digital moving 

map, 3D FOV, 2D Map View and Vertical Cross Section (VCS) Analysis criteria are 

used for prefetching and related operations. There are some settings common to all 



 84 

criteria such as the data and data loaders that will be used for these criteria, operations 

that are exhibited by each criterion, initial criterion weights and criterion operation 

thresholds. The user can enable or disable prefetching, requesting, replacement or 

evaluation operation from these settings. In addition to these settings, users can 

provide criterion specific parameters. For instance, for 3D FOV criterion, initial 

bearing, roll, pitch, view direction, view angle and depth parameters should be 

provided. For 2D Map View criterion, the map extent size ad initial scale values 

should be provided and for VCS analysis the initial analysis length parameter should 

be provided. These settings are provided through pre-defined templates. Whenever a 

new criterion is introduced and registered, the corresponding set of parameters should 

be added into configuration file through given format. These configuration settings 

are then passed to each criterion at the beginning of application.  

 

There is also a set of settings for statistics. The EAP provides a statistics infrastructure 

to applications to let them collect various parameters through application execution. 

These parameters are registered through this configuration file. At execution time 

these metrics are being collected and dumped into files to be analyzed after execution 

is completed. 

 

4.6.2.2 Execution Phase 

 

After configuration file is prepared and application is started, configuration settings 

are passed to EAP framework and initialization is performed with these settings. Then 

the execution phase is started where most of the activities described previously are 

occurred. Before examining the activities, capabilities of digital moving map 

application are going to be described. These capabilities resemble the criteria 

mentioned at the beginning of the section which are 2D map display, 3D terrain 

visualization and elevation analyzes.  

 

The primary purpose of 2D map display is to provide pilots necessary information 

about its location, flight trajectory and of course situational awareness. Prior to digital 



 85 

map systems, paper maps are being used extensively for this purpose. However, they 

are hard to follow while controlling the aircraft and very cumbersome. The 2D map 

displays renders raster tiles to pilot through display devices. Moreover, there are some 

additional operational and tactical layers for pilot usage. These tiles are brought 

together to obtain 2D map display. Example 2D map displays from different digital 

moving map applications are shown in Figure 4-27 and Figure 4-28. 

 

  

Figure 4-27 Example digital moving map application 2D map displays [46, 47] 

 

   

Figure 4-28 Example digital moving map application 2D map displays (cont.) [48] 

 

In addition to 2D map display, now these type of applications are also employing 3D 

terrain visualization. This 3D mode is being used especially for the cases where pilot 

is unable to determine its location or position because of weather conditions. It 

enhances terrain awareness. It is also being used for landing and takeoffs. Moreover, 

other elements such as airports, obstacles are being displayed and placed over 3D 

terrain. To be able to visualize the terrain, application take the elevations tiles and 



 86 

generate terrain geometry using these elevation tiles. Then this terrain is being 

covered with satellite photo tiles to make it resemble the real terrain. There are 

various visualization techniques which makes use of these tiles. Although these 

techniques may use different methods, all of them requires elevation data and uses a 

visibility based occlusion. Example 3D terrain visualization displays from different 

digital moving map applications are shown in Figure 4-29. 

 

  

Figure 4-29 Example digital moving map application 3D map displays [46, 48] 

 

Finally, analysis capabilities are employed in these type of applications. The most 

important analysis is VCS analysis which is going to be addressed in this study. This 

analysis is being used to illustrate the terrain heights dynamically in the direction of 

aircraft so that pilot can assess the dangerous elevation heights and maneuver 

accordingly. An example display of VCS analysis is shown in Figure 4-30.  

 

 

Figure 4-30 Example digital moving map application VCS analysis display [48] 



 87 

 

For 2D, 3D and analysis capabilities, the prioritization policies described in section 

4.4.3 are being used. At the beginning, usually no background information exists for 

prefetching, so direct load requests are initiated to load necessary tiles into memory 

(The sequence: 9-7-8-5-1-3 in Figure 4-1). As aircraft moves or user starts to interact 

with 2D map, the aircraft parameters like its location, heading and speed are provided 

to EAP framework through these three registered criteria. The corresponding criteria 

use these parameters to perform evaluation, prefetching and requesting operations.  

 

In digital moving map application case, assume that it is started in 2D map mode. So 

necessary direct load requests are initiated to load those tiles that lies in client window 

to display 2D map to pilot. Whenever aircraft started to move or user started to pan 

or zoom, the registered criteria also started to initiate prefetching tile requests. For 

this purpose, 2D map view criteria initiate prefetching operation according to 

previous user action (The sequence: 9-7-8-5-1-2 in Figure 4-1). For instance, if user 

pans the map in the right direction, this criterion initiate prefetching load requests to 

load those tiles that lies in the right outside of map extent as illustrated in Figure 4-31. 

So whenever user pans to right, the corresponding tiles are provided to criterion 

immediately action (The sequence: 9-7-5-2-3 in Figure 4-1) and user do not realize 

any loading or delay which is the purpose of prefetching. In 2D mode, all other active 

criteria requesting operations are being disabled. 

 

 

Figure 4-31 Tiles that will be prefetched by 2D map view criterion 

 

In addition to 2D map view criterion, the other criteria also initiate prefetching load 



 88 

requests as described in section 4.4.2 and 4.4.3. Moreover, other registered criteria 

evaluate the tile requests that are initiated by each other to come up with overall load 

order. For instance, prefetching initiated tiles that are also lying in the aircraft FOV 

will get higher priority values and being loaded earlier than other tiles. As user 

continue to use 2D map display and exhibit corresponding capabilities, its weight is 

being increased by WB-FIE and other criterion initiated prefetch tile requests are 

moved toward the end of load list. Here, it is important to note that WB-FIE is doing 

these through using the CCL and CAL values (8 in Figure 4-1). Hence, if user does 

not perform any action or perform too much unexpected movements, then there may 

not be too much increase in criterion weight. This is natural result of such adaptive 

behavior, but effects of unexpected navigation behavior is alleviated by employing a 

criterion that is designed for this purpose.  

 

As size of cache reach to a predefined limit, replacement operation is being triggered 

to provide space for new tiles. Here, the cached tiles are being prioritized again by 

active three criteria and given number of tiles are being disposed. The limit of cache 

is provided through initial configuration file. The order of these cached items are 

usually highly dependent on the current mode of application. For instance, if user 

switch to 3D mode from 2D mode then the tiles that are being put to cache by 3D 

FOV criterion are less likely to be disposed.  

 

Different from other two criteria, analysis criterion does not perform any operation 

till it is being enabled by application and when it is enabled then it also starts to 

initiate prefetch, requesting, evaluation and replacement operations. This is also a 

good example of how a criterion can be utilized through provided settings. In other 

words, applications can enable or disable specific criteria according to application 

requirements dynamically at runtime without manual intervention.  

 

Whenever pilot switch to 3D mode, then requesting operation of 2D map view 

criterion is being disabled as 2D map display is not required anymore. The direct load 

request are started to be initiated to load the tiles that are necessary for terrain 



 89 

visualization which are usually the ones that are inside the aircraft FOV. The 

capabilities that are exhibited in 3D mode are being performed according to aircraft 

navigation or behavior. For instance, whenever aircraft rotates, the FOV direction is 

also being changed or its location or its altitude. During 3D mode, 2D map view 

criterion still initiates prefetching requests and usually the ones that are also lies 

inside the FOV being loaded prior then others.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 91 

CHAPTER 5 

 

 

DEVELOPED SET OF CRITERIA 

 

5. CHAPTER 5 

 

Another important contribution of this study is to develop different criteria to increase 

the prefetching performance for given application domains in conjunction with 

corresponding capabilities as described in the introduction section. Moreover, this 

illustrates the possible use of prefetching techniques through EAP. In this section, 

developed criteria are described by their characteristics and usage in examples, 

according to the formalization given above. 

 

5.1 2D MapView Criterion 

 

This is the basis criterion for most of the 2D GIS and visualization applications. This 

criterion is developed to handle 2D map displays and corresponding user navigations. 

It has a deterministic nature and performs Requesting, Evaluation, Prefetch and 

Replacement operations. The main responsibility of this criterion is to initiate load 

request for raster tiles that lie in map extent or client window for 2D map rendering. 

 

It is defined by a map extent, which has a center point, width, height, and rotation 

parameters in geographic coordinates and makes use of the 2D navigation 

prioritization policy mentioned in the query step. The tiles that are being loaded 

through direct load requests are determined according to these parameters. These 

parameters are illustrated in Figure 5-1. It prioritizes the raster tiles according to their 

distance to map extent center and whether they are inside the map extent or not. So if 

a raster tile is inside this map extent and located at the center, then it has the highest 

priority. This priority decreases as tiles getting further away from center. This 

criterion also evaluates the candidate raster tiles that were requested by other criteria 



 92 

according to aforementioned distance based prioritization. In 2D navigation case, this 

criterion checks requests initiated by other criteria and may also discard some of these 

to prevent any unnecessary tile requests.  

 

 

Figure 5-1 Overview of 2D Map View criterion 

 

The trigger for requesting and prefetching operations is the change of center for given 

threshold (τR and τP) value. This value is initially given in configuration file and can 

also be changed during execution time. So whenever user pans or moves the map 

extent with given amounts, the actions are executed. It is either driven by aircraft’s 

location or navigated through controllers like an observer in visualization 

applications or mouse panning in GIS applications. Requesting operation ensures that 

raster tiles that are within the map extent are ready whenever it is requested by 

application; however, if they are not, then it initiates direct load requests for them. 

When these tiles are being loaded, they are directly being put into main memory for 

application usage. 

 

The prefetching operation is again performed according to aircraft/user movement 

(or panning) in such a way that if aircraft/user moves towards east then it prefetch the 

tiles enumerated as X, Y, Z and if it moves toward south west then A, B, C, D, E, F 

and G tiles are prefetched as illustrated in Figure 5-2. It is important to state that 

different from some studies like [4], the order of tiles that are going to be loaded are 

determined at runtime dynamically according position of aircraft/navigator. In [4], if 

user moves towards east the Y, X, Z tiles are loaded always with given order as shown 



 93 

in Figure 5-2-a. However, in EAP approach, according to position of 

aircraft/navigator and other employed criteria this order may change. For instance, if 

navigator located near tile 2, the order will be X, Y and Z as shown in Figure 5-2-b. 

 

 

Figure 5-2 a) The fixed order of tiles that will be prefetched in east and south west 

direction [4], b) the dynamic order in EAP that determined according to navigator 

location. 

 

5.2 Retrospective Adaptive Prefetching (RAP) Criterion 

 

This criterion implements the RAP method [4] which is described in related work 

section in detail. It contains both 2D map navigation and zooming capabilities in 

itself. It performs requesting, evaluation, and prefetch and replacement operations 

and has a heuristic based nature. 

 

This criterion is added to be able to use corresponding prefetching technique in EAP 

and also illustrate the possible usage of existent prefetching techniques in EAP 

through criterion mechanism. The requesting and prefetching behavior is same as the 

2D map view approach which is to display 2D map.  

 

5.3 2D/3D Distance Criterion 

 

This criterion performs only evaluation operation and it does not initiate any direct 

or prefetching load requests. This criterion can be employed for different kinds of 

applications from GIS to visualization applications. It evaluates the raster tile requests 

initiated by other criterion and prioritize them according to their 2D distance to the 



 94 

chosen pivot point. For instance, 2D map view criterion performs requesting 

operation and initiate load request for some candidate raster tiles. This criterion may 

evaluate their distances and assign extra priorities according to their distances to the 

pivot point. However, different from 2D map view criterion this distance is not related 

with the client’s window or map extent. With this criterion, applications assign 

different pivot points and makes use of them in prioritization in addition to the 

navigation position. This criterion can also adapted for 3D space with the aid of 

altitude parameter. An overview of this criterion with pivot point and map extent 

center is depicted in Figure 5-3. 

 

 

Figure 5-3 Overview of 2D Distance criterion and pivot point 

 

5.4 3D Field of View (FOV) Criterion 

 

The 3D FOV criterion is developed for 3D applications that require visibility-based 

prefetching and visualization capabilities. This is especially critical for applications 

that employ FOV-based LOD or data models like terrain visualization. It is defined 

through FOV angle, FOV depth, bearing, and pitch parameters, and it performs 

requesting, evaluation, and prefetch and replacement operations.  

 

The main responsibility of this criterion is make sure that every raster tiles that lies 

in the range of 3D field of view ready and loaded to be used by application. It is 

deterministic and does not employ any heuristics. It is defined through field of view 

parameter, FOV depth parameter, bearing and pitch parameters as illustrated in 

Figure 5-4. This criterion makes use of the 3D FOV prioritization policy mentioned 



 95 

in the query step. 

 

Figure 5-4 Overview of FOV Criterion and its parameters 

 

The trigger for requesting and prefetching operations is the change of aircraft position 

or rotation of view direction (i.e. bearing or pitch) for given threshold (τR and τP) 

values. Similar to other criteria, these values are provided through initial 

configuration file. So whenever navigator rotate its FOV or move for given amount 

the corresponding requesting and prefetching operations are performed.  

 

For FOV prefetching operation, EVF (Extent View Frustum) concept is introduced. 

The EVF represent the area that will be probably required to be loaded very soon. It 

is obtained through FOV parameters, navigator speed and view frustum rotation 

direction. The difference between the FOV and EVF region represent the area that 

will be used for prefetching rater tiles. Also the rotational speed of viewer is 

employed for this purpose in such a way that a faster rotational speed causes a larger 

EVF generation.  

 

For instance, in Figure 5-4, the blue raster tiles represent currently active tiles and red 

ones represent the tiles that will be prefetched. It also evaluates already initiated raster 

tile requests according to mentioned prioritization policy.  

 

5.5 Point of Interest (POI) Criterion 

 

Most of previous prefetching techniques interest in requesting raster data tiles to 



 96 

render a 2D map or 3D terrain. However, for some applications, especially command 

and control or planning applications, the data which is located around a given point 

of interest might be more important and needed to be loaded before the other raster 

tiles. This criterion is developed especially to fulfill these requirements. It performs 

requesting, evaluation, and prefetch and replacement operations. 

 

The main responsibility of this criterion is to initiate direct load requests that cover 

the point of interest and the area around that point. It also evaluates the current raster 

tile requests whether they lies inside this region or not. The prefetching operation is 

performed in such a way that whenever aircraft/navigator comes near to given POI 

and satisfies the determined spatial distance threshold, it initiates prefetching load 

requests and load those tiles into cache according to corresponding. The range of POI 

is specific to each data and criterion performs its operations accordingly. Finally, 

whenever aircraft/navigator goes out the scope of POI, the loaded raster tiles are being 

sent to cache. 

 

  

Figure 5-5 Point of Interest criterion usage for radar POI 

 

In Figure 5-5, the green raster tiles represent currently active tiles and red ones which 

centered at given radar POI represent the tiles that will be prefetched.  

 

5.6 Vertical Cross Section (VCS) Analysis Criterion 

 

Last developed criterion is vertical cross section (VCS) analysis, which is developed 



 97 

primarily to fulfill VCS analysis requirements. Although one of previously mentioned 

criteria may be employed for this purpose, these may cause unnecessary raster tile 

loads. Because, in VCS, only the height values that are in the current view direction 

are required; thus, other data does not required to be loaded. It performs requesting, 

evaluation, and prefetch and replacement operations. 

 

The requesting operation loads the raster data tiles that are across the vertical cross 

section, and the prefetching operation prefetches the tiles that are across the extension 

of analysis track. The length of analysis is dynamic and can be configured during 

execution time. This criterion makes use of the analysis prioritization policy 

mentioned in the query step. The overview of VCS analysis criterion is depicted in 

Figure 5-6. 

 

 

Figure 5-6 Overview of VCS analysis criterion 

 

 

 

 

 

 

 

 

 



 98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 99 

CHAPTER 6 

 

 

EXPERIMENTATION AND DISCUSSION 

 

6. CHAPTER 6 

 

In this section, measurement parameters and how EAP performs under these 

parameters are described. First of all, measurement parameters are described. Then 

an experiment which is based on a flight trajectory is designed to be used with EAP 

to illustrate its performance in detail with different scenario executions. In addition 

to this flight trajectory, additional experiments are also being conducted to show 

performance gains obtained in different scenarios. The results obtained from these 

experimentation are also given in corresponding section. Finally, chapter is 

concluded with discussion about measurement results and overall EAP approach. 

 

6.1 Measurement Parameters 

 

The first parameter is hit ratio (HR). It is defined as correct predictions to overall 

number of requests, which is given in equation (4) [49]: 

 

         HR = (No. of Correct Predictions [hits]/Total No. of Requests) * 100          (4) 

 

HR itself is a good representative of overall prefetching performance. However, to 

assess individual criterion performance an additional parameter, i.e., correct 

prediction ratio (CPR), is employed. CPR represents the ratio of correctly prefetched 

tiles to total number of prefetched tiles of corresponding criterion, which is calculated 

by equation (5): 

 

       CPR = (No. of Correct Predictions [hits] / Total No. of Predictions) * 100    (5) 

 

Two more parameters are defined for WB-FIE, which are CAL and CCL. The CPR 

parameter is used directly for CCL. The CAL parameter is obtained by observing the 



 100 

activities of individual criteria. For instance, in a 3D FOV case, if the FOV bearing 

or angle changes frequently, then the 3D FOV criterion activity level will increase. 

Similarly, in a 2D case, if the user pans continuously, the activity level will increase. 

The activity level decays by time if no activity occurs. If any activity occurs, then the 

activity level is set to 50%. These activities and their contribution to CAL are 

determined according to the nature of each criterion. For a 3D FOV criterion, the 

FOV bearing, angle, depth, and location changes are considered as activities. The 

highest contributor is FOV bearing change with 80% with the remaining 20% shared 

among other activities. 

 

6.2 Experimentation One 

 

A comprehensive flight trajectory is designed for first experimentation. In this 

section, details about this experimentation, setup and obtained results are given under 

successive sections. 

 

6.2.1 Experiment Setup 

 

The given trajectory is specifically designed to show how ensemble usage of 

prefetching techniques increase the performance of overall hit ratio. This trajectory 

contains different navigation patterns, but in a more complete fashion. Design of this 

trajectory is done according to possible navigations that can be exhibited by aircrafts 

that employ hybrid applications like digital moving map applications. Although 

trajectory may appear fixed, it is prepared so that it does not only include 2D 

navigation habits but also 3D navigations and analyses. So the trajectory also contains 

various navigation habits.   

 

During this flight, different navigation patterns (for 2D: panning left, right, zooming 

in/out; for 3D: turning right/left, ascending, descending, hovering, FOV/bearing/pitch 

changes) that are used in real world 2D/3D hybrid applications are induced randomly 

to measure the performance of EAP. Through this route, different modes, such as 



 101 

2D/3D, and capabilities, such as analysis, are enabled. At the beginning of the route, 

2D mode is enabled and corresponding panning activities are performed, then 3D 

mode is activated. Then, all activities and capabilities are enabled and exhibited until 

the end of the route. In addition to the aforementioned patterns, certain abrupt patterns 

are also introduced into route to observe the behavior of EAP. For instance, panning 

right then down, panning up and left, or changing the FOV bearing in the opposite 

direction rather than turning it smoothly. 

 

The speed of the navigator is increased by a factor of 100 for simulation purposes; 

thus, it takes approximately 6 min to complete the designed trajectory. The total 

length of the trajectory is about 1500 km. The digital terrain elevation data (DTED) 

Level 2 is used as raster data, which has a resolution of 30 m [50], and is extensively 

used by both 2D and 3D applications. This raster data is preprocessed into 512 x 512 

raster tiles. A 64 raster tile-sized cache, which is approximately 32 MB, is employed 

for these executions. The cache size is deliberately chosen so small to show the true 

performance of EAP in such restricted environments, because prefetching operations 

usually perform better with bigger caches. An overview of the designed flight 

trajectory is shown in Figure 6-1. The behaviors exhibited during this trajectory is 

illustrated on this figure. 

 

First of all, the current system modes and capabilities that are activated through 

execution is illustrated with different line styles and described in top left box of Figure 

6-1. From start till the 65 s, mostly the 2D map display related navigation patterns are 

exhibited like panning. Then till 100 s, only 3D visualization capabilities are 

exhibited and finally till the end of the course both of 2D/3D/Analysis system 

capabilities are exhibited altogether. During this trajectory, especially among 197 s 

and 270 s, the capabilities belongs to these three criteria are frequently exhibited to 

also test EAP under such stressed situations. 

 

 



 102 

 

Figure 6-1 The designed flight trajectory that scenarios are executed through with 

corresponding behaviors exhibited through this path 

 

6.2.2 Results and Discussion 

 

Four scenarios are designed for experimentation. In the first two scenarios, individual 

3D FOV and 2D map view criteria are employed to measure their individual 

prefetching performances, and to be used as a basis for comparison for ensemble 

usage. In the third scenario, the ensemble of 3D, 2D, and analysis criteria with fixed 

weights are employed to see how non-adaptive EAP performs. Finally, three criteria 

with adaptive mode enabled are employed to demonstrate the true performance of 

EAP. It is important to note that the route, activities, and capabilities in each scenario 

are exactly the same, except for the employed criteria and whether or not 

ensemble/single or adaptive mode is enabled. Figure 6-2 shows the overall HR results 

of each scenario execution. 

 



 103 

 

Figure 6-2 The overall hit ratios (HR) obtained from executed scenarios 

 

It is illustrated that, although the newly developed 2D and 3D criteria achieve 71% 

HR individually, it increases to 92% with fixed-weight EAP, and finally to 97% with 

adaptive EAP. The adaptive EAP usage outperforms the individual cases by 

approximately 25%. Moreover, EAP preserves this high HR through the whole 

scenario execution, which is not the case for individual ones. For instance, although 

the 2D criterion achieves a high HR from the beginning to 60 s, it decreases as 3D 

capabilities are enabled, whereas the 3D criterion HR starts to increase. It can also be 

observed that such ups and downs in HR are well absorbed by EAP. 

 

The given scenarios are also executed with a 16 raster tile-sized cache, which is about 

8 MB. An HR of approximately 65% is obtained for individual 2D and 3D criteria, 

81% for fixed-weight EAP, and finally 83% for adaptive EAP, which still performs 

better than individual usage. It should also be noted that fixed-weight EAP execution 

overall HR do not increase after a point. In fact, this is the point where all kinds of 

capabilities and navigation are started to be exhibited by user. On the other hand, the 

adaptive EAP handles this and even increase the HR about 5%. 

 

The following figures show the parameters that are used and affected by EAP 



 104 

adaptive mode. The two input values of WB-FIE, i.e., CCL and CAL, are illustrated 

in Figure 6-3 and Figure 6-4. The resultant weight values obtained from WB-FIE are 

shown in Figure 6-5.  

 

 

Figure 6-3 The CCL values that are obtained from adaptive EAP scenario 

execution 

 

 

Figure 6-4 The CAL values that are obtained from adaptive EAP scenario 

execution 

 

When CCL values are analyzed, the 2D criterion has higher CCL values than the 3D, 



 105 

which indicates that 2D criterion has a better prefetching performance individually. 

On the other hand, the analysis criterion performs better than the other two criteria 

because it is very simple in its nature. 

 

 

Figure 6-5 The criteria weight values that are controlled and changed by adaptive 

WB-FIS 

 

 

Figure 6-6 The number of direct (blue) and prefetch requests (red) initiated 

 

When CAL values are analyzed, the 2D criterion maintains a higher activity value, 

which is primarily based on location changes. In fact, it increases as it moves and 

decreases whenever it is stopped, which can also be seen in Figure 6-4. The 3D 

criterion activity, on the other hand, is affected mainly by visibility-based parameter 



 106 

changes rather than location changes. For instance, from 270 to 330 s, the location is 

fixed and the viewer’s FOV angle, bearing, and its depth is continuously changed, 

which increases CAL values as it decreases 2D and analysis values. When these two 

values are analyzed, EAP favors 2D map view criterion because it has higher CCL 

and CAL values than the other two criteria, which can be seen with weight values in 

Figure 6-5. Therefore, although EAP reduces the weight of 3D FOV, a higher HR is 

achieved, which primarily stems from the fact that it started to make use of 2D 

criterion-predicted raster tiles rather than its own.  

 

The 25% HR increase obtained could be improved further with additional criterion 

usage. One question that might arise at this point is the trade-off this approach. When 

programmatic calculations are analyzed, the processing overhead is negligible with 

respect to obtained overall hit ratio. The real overhead is the number of requests that 

have been initiated. Although three different criterion are employed in collaborative 

mode, the total number of requests does not increase, as illustrated in Figure 6-6. In 

fact, the total number of direct requests is decreased in EAP, at a cost of a slight 

increase in prefetch request counts. The biggest portion of prefetch requests come 

from the 3D criterion, which is also realized by the adaptive EAP system, and 

reflected as a reduction in weight of corresponding 3D criterion, as shown in Figure 

6-6. Moreover, the prefetch request counts of the other two criteria also decrease. 

This increase in 3D criterion can be further decreased by more complex and well-

performed individual criterion design. 

 

One last point that should be mentioned here is the load order. The EAP not only 

provides a higher HR, but also reduces the user-perceived delays by providing the 

application with more required raster tiles as soon as possible.  

 

Now, additional conducted experiments are going to be given in less detail to 

illustrate the performance of proposed approach in different scenarios. 

 

 



 107 

6.3 Experimentation Two 

 

In this experiment, another flight trajectory is being designed for experimentation. 

The details about this experimentation, setup and obtained results are given under 

successive sections. 

 

6.3.1 Experiment Setup 

 

The experimentation is again based on a well-known navigation pattern which is 

called Hold Pattern. This navigation pattern is being used by aircrafts to circle over 

given location. Design of this trajectory is performed by considering such navigations 

that can be exhibited by aircrafts that employ digital moving map applications. 

 

Here, for given experiment, additional patterns are also injected into this trajectory as 

illustrated in Figure 6-7 which are 2D based like panning top-left, right, and bottom, 

top and bottom-left. At the beginning of the route, both 2D and 3D modes are enabled 

and when panning activities are being performed, 3D mode disabled and then 

enabled. Similarly, DTED2 is also being used as raster data in experimentation.  

 

 

Figure 6-7 The designed flight trajectory for experiment 2 



 108 

6.3.2 Results and Discussion 

 

Three scenarios are designed for experimentation. In the first two scenarios, 

individual 3D FOV and 2D Map View criteria are employed to measure their 

individual prefetching performances, and to be used as a basis for comparison for 

ensemble usage. In the third scenario, the ensemble of 3D FOV and 2D Map View 

criteria with adaptive mode enabled are employed to demonstrate the performance of 

EAP. It is important to note that the route, activities, and capabilities in each scenario 

are exactly the same, except for the employed criteria and whether or not 

ensemble/single or adaptive mode is enabled. Figure 6-8 shows the overall HR results 

of each scenario execution. 

 

 

Figure 6-8 The overall HRs obtained from execution of experiment 2 scenarios 

 

Although the newly developed 2D and 3D criteria achieve 72% and 45% HR 

individually, it increases to 88% with adaptive EAP usage. The adaptive EAP usage 

outperforms individual 2D Map View criterion by approximately 16% and 3D FOV 

over 40%. Moreover, EAP preserves this high HR through the whole scenario 



 109 

execution as in first experimentation, which is not the case for individual ones 

especially for 3D FOV criterion. For instance, although the 2D criterion achieves a 

high HR from the beginning to 60 s, it decreases as 3D capabilities are enabled, 

whereas the 3D criterion HR starts to increase. The 3D criterion HR increases and 

decreases are too steep as a result of not exhibiting too much 3D capabilities 

comparing to 2D behaviors. In fact, the major difference between individual 2D Map 

View and 3D FOV is mainly stems from the behaviors exhibited through trajectory 

where most of the time 2D behaviors are exhibited. 

 

6.4 Experimentation Three 

 

Three different routes are designed for third experimentation. The details about this 

experimentation, setup and obtained results are given under successive sections. 

 

6.4.1 Experiment Setup 

 

The experimentation is performed through three different routes. These three 

geographic routes are designed deliberately to illustrate performance of EAP in 

different scenarios. It is important to note that the route, activities, and capabilities in 

each scenario are exactly the same, except for the employed criteria and whether or 

not ensemble/single or adaptive mode is enabled 

 

As in other experiments, DTED2 is used as raster data for this experimentation. 

Different from other experimentations, another prefetching technique is implemented 

and employed for execution with these set of trajectories to both illustrate the possible 

usage of other prefetching techniques in EAP and also to illustrate the performance 

of individual criterion being developed. The RAP [4] technique is being used for this 

purpose. However, RAP criterion itself is not included in collaborative mode, because 

its purpose is same as 2D Map View criterion that was developed so adding it is not 

meaningful. 

 



 110 

The characteristics and overview of first route is illustrated in Figure 6-9. In the first 

part of route (till the 45 s), the 2D mode is enabled and corresponding navigation 

capabilities are exhibited and then 3D mode is enabled and again corresponding 

capabilities are exhibited and FOV bearing angle is being changed continuously. This 

experiment designed to illustrate how different user navigation behaviors are handled 

by individual and ensemble usage in case of exclusive usage. In other words, these 

capabilities are not exhibited at the same time. The trajectory is approximately 122 

km. 

 

 

Figure 6-9 The designed first route for experiment 3 

 

The characteristics and overview of second route is illustrated in Figure 6-10. In this 

route, both 2D and 3D mode capabilities are exhibited at the same time through all 

route. The abrupt directions changes are introduced to show how these case are 

handled. This route is longer than the previous one and is approximately 350 km. 

 

 

Figure 6-10 The designed second route for experiment 3 

 

The characteristics and overview of third route is illustrated in Figure 6-11. In this 

route, in addition to 2D and 3D mode capabilities, analysis capabilities are also being 



 111 

exhibited through this route simultaneously with other capabilities. The route is 

designed as zig-zag that contains forward and backward movements. This route is 

longer than the previous one and is approximately 210 km. 

 

 

Figure 6-11 The designed third route for experiment 3 

 

6.4.2 Results and Discussion 

 

Four scenarios are designed for experimentation. In the first three scenarios, 

individual 3D FOV, 2D Map View and RAP criteria are employed to measure their 

individual prefetching performances, and to be used as a basis for comparison for 

ensemble usage. In final scenario, ensemble adaptive usage employed to show how 

EAP performs. In ensemble usage, both 2D Map View and 3D FOV criteria are being 

employed for route 1 and route 2. For route 3, additional analysis criterion is also 

being employed for EAP-adaptive usage. 

 

Figure 6-12 shows the overall HR results of first route scenario executions. 



 112 

 

Figure 6-12 The first route executions and corresponding overall HRs 

 

The individual results from route 1 executions shows that for capabilities exhibited 

in this route, the developed 2D Map View and 3D FOV criterion performs better than 

RAP criterion.  

 

On the other hand, both of individual executions shows that till a point both criterion 

performs well but when 3D capabilities are started to be exhibited, 2D Map View 

criterion’s HR started to decrease. Besides, 3D FOV criterion handles these 

capabilities and HR still continue to increase. 

 

In EAP-adaptive execution, the ensemble usage performs approximately 15% percent 

better than individual prefetching technique usage. 

 

Figure 6-13 shows the overall HR results of first route scenario executions. 



 113 

 

Figure 6-13 The second route executions and corresponding overall HRs 

 

The individual results from route 2 executions shows that for capabilities exhibited 

in this route, the RAP criterion performs better than the developed 2D Map View and 

3D FOV criterion. The main reason for this difference is believed to be the 

employment of heuristic method that make use of historical navigations. 

 

Both of individual executions shows that after a point both individual criterion 

achieve a HR and then increases and decreases occur as execution continues. In other 

words, HR cannot be preserved or stable HR is obtained with these individual 

executions. On the other hand, EAP-adaptive execution both shows a much better 

HRs over individual executions and provides a more stable HR through execution. 

 

Approximately 10% better HR over individual RAP criterion, 15% HR over 

individual 3D FOV criterion and over 20% HR is gained over individual 2D Map 

View with EAP-adaptive execution.  

 

Figure 6-14 shows the overall HR results of first route scenario executions. 



 114 

 

Figure 6-14 The third route executions and corresponding overall HRs 

 

The individual results from route 3 executions shows that for capabilities exhibited 

in this route, the RAP criterion performs better than the developed 2D Map View and 

3D FOV criterion as in route 2 case. 

 

The individual executions shows a relatively stable HRs which become fixed around 

70%. The main reason for this stable HR is the route itself as illustrated in Figure 

6-11. On the other hand, EAP-adaptive execution still achieve a much better HRs 

over individual executions and provides a slightly more stable HR through execution. 

Approximately 20% better HR over individual 3D FOV and 2D Map View criteria 

and 5-10% better over individual RAP criterion is gained with EAP-adaptive 

execution.  

 

All these three route executions shows that EAP performs still much better HRs than 

individual prefetching technique employment for different kinds of routes and user 

navigation patterns. 

 



 115 

CHAPTER 7 

 

 

CONCLUSION AND FUTURE STUDY 

 

7. CHAPTER 7 

 

In this study, a priority based adaptive tile prefetching approach is proposed which 

enable to use ensemble of different prefetching techniques together for applications 

that exhibit different capabilities. Although there are various studies about 

prefetching, they are usually aiming to solve this problem by focusing on specific 

types of applications and these become insufficient as the boundary between these 

applications blurs. To overcome this problem, EAP is developed to let applications 

employ an ensemble of different types of prefetching techniques collaboratively in 

one unified model. The contribution of each prefetching technique is determined 

through a fuzzy logic-based weight balancer and prioritization.  

 

To do so, first of all, the prefetching problem, its importance and current issues with 

contemporary approaches are explained. After outlining the related literature, EAP 

architecture, its important elements, and the prefetching process are described. 

Finally, developed prefetching techniques are described. It is demonstrated that EAP 

achieves better prefetching performance even with applications that exhibit different 

characteristics. Moreover, user-perceived delays are reduced with more precise load 

ordering. Besides, a cross-platform framework is developed to illustrate its real-world 

usage and lets other users to utilize given approach easily. 

 

As a result of being generic in its nature, the EAP has many potential subtopics. One 

future study is to improve EAP approach so that it handles prefetching for geographic 

vector data. Although characteristics of vector data and raster data are very different, 

it is believed that EAP approach can also be used for this purpose. 

 



 116 

Another future study is to adapt this method so that it can also be used at server side. 

However, there are some additional concerns in case of server usage like multiple 

clients and having less information about the nature of client applications. Moreover, 

previous client requests or other historical data can be employed for this purpose. 

 

Finally, it is believed that the mechanism and infrastructure developed here could 

easily be used for 3D visualization and mobile GIS application especially out-of-core 

terrain visualization applications. More specialized prefetching techniques can be 

developed to fulfill the specific visualization requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 117 

REFERENCES 

 

 

 

[1] Liqiang Z., Liang Z., Yingchao R., and Zhifeng G., “Transmission and 

Visualization of Large Geographical Maps”, ISPRS Journal of 

Photogrammetry and Remote Sensing, 66 (1), 73-80, 2000. 

[2] Hawick K. A., Coddington P. D., and James H. A., “Distributed Frameworks 

and Parallel Algorithms for Processing Large-Scale Geographic Data”, 

Parallel Computing 10, 2003. 

[3] Smith T., Menon S., Star J., and Estes J., “Requirements and Principles for the 

Implementation and Construction of Large-Scale Geographic Information 

System”, pp. 19-37 in W. Ripple (ed.) Fundatmentals of Geographics 

Information Systems: A compendium. Bethesda, Md.: American Congress on 

Surveying and Mapping. 

[4] Yesilmurat S., Isler V., “Retrospective Adaptive Prefetching for Interactive 

Web GIS Applications”, GeoInformatica 16(3): 435-466, 2012. 

[5] Park D. J.，Kim H. J., “Prefetch Policies for Large Objects in a Web-enabled 

GIS Application”, Data & Knowledge Engineering, 37, 65-84, ISSN: 0169-

023X, April 2001. 

[6] Funkhouser, T., “Database Management for Interactive Display of Large 

Architectural Models”, in Graphics Interface ’96, ed. W. A. Davis and R. 

Bartels, (Canadian Human- Computer Communication Society, 1996, p. 1. 

[7] Aliaga D., Cohen J., Wilson A., Zhang H., Erikson C., Hoff K., Hudson T., 

Stürzlinger W., Baker E., Bastos R., Whitton M., Brooks F., Manocha D., 

“MMR: An Interactive Massive Model Rendering System Using Geometric 

And Image-Based Acceleration”, in: 1999 ACM Symposium on Interactive 

3D Graphics, 1999, 199–206. 

[8] Kang Y. K., Kim K. C., Kim Y. S., “Probability-Based Tile Pre-fetching and 

Cache Replacement Algorithms for Web Geographical Information 

Systems”, Proceedings of the 20th International Conference on Advances in 



 118 

Geographic Information Systems, GIS ’12, California, USA. New York: 

ACM, 349-358. 

[9] Li R., Guo R., Xu Z., Feng W., “A Prefetching Model Based On Access 

Popularity For Geospatial Data in a Cluster-Based Caching System”. 

International Journal of Geographical Information Science, 26(10): 1831-

1844, 2012. 

[10] Doherty, W. J., Thadani, A., J.: "The Economic Value of Rapid Response Time", 

IBM. White Plains, NY, USA, 1982. Technical report GE20-0752-0. 

[11] Brady, J., T., "A Theory of Productivity in the Creative Process". In: IEEE 

Computer Graphics and Applications VI, 5, 25-34, 1986. 

[12] Roast, C., "Designing for Delay in Interactive Information Retrieval.”, 

Interacting with Computers 10, 87-104, 1998. 

[13] ZONA, "The Economic Impact of Inaccessible Web Site Download Speeds", 

Zona Research Center, White Papers Zona Research Center, 1999. 

[14] Lindstrom P. and Pascucci V. “Terrain Simplification Simplified: A General 

Framework for View-Dependent Out-Of-Core Visualization”. IEEE 

Transactions on Visualization and Computer Graphics, 239–254, 2002. 

[15] Pascucci V. and Frank R. “Global Static Indexing For Realtime Exploration of 

Very Large Regular Grids”. Proceedings of the 2001 ACM/IEEE Conference 

on Supercomputing, 2001. 

[16] García, R., de Castro J. P., Verdú M. J., Verdú E., Regueras L. M., and López 

P. “An Adaptive Neural Network-Based Method for Tile Replacement in a 

Web Map Cache”,  Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 

6782: 76-91, 2011. 

[17] Jiang Y., Wu M.-Y., Shu W. “Web Prefetching: Costs, Benefits and 

Performance”, Proceedings of 7th International Workshop on Web Caching 

& Distribution, 2002. 

[18] Quinn, S. and Gahegan, M. “A predictive Model for Frequently Viewed Tiles in 

a Web Map”. Transactions in GIS”, 14 (2), 193–216, 2010. 



 119 

[19] Kefaloukos, P. K., Salles, M. V., Zachariasen, M, “TileHeat: A Framework for 

Tile Selection”, ACM SIGSPATIAL GIS ’12, November 6-9, 2012. Redondo 

Beach, CA, USA. 

[20] Varadhan G. and Manocha D.  “Out-of-Core Rendering of Massive Geometric 

Environments”, Proceedings of the Conference on Visualization ’02, pages 

69–76, 2002. 

[21] Corrêa W. T., Klosowski J. T., Silva C. T. “iWalk: Interactive Out-Of-Core 

Rendering of Large Models”. Technical Report TR-653-02, Princeton 

University, 2002.  

[22] Rabinovich M. and Spatschek O., “Web Caching and Replication”, SIGMOD 

Record, 32(4):107–108, 2002. 

[23] Markatos, E., Chronaki, C., "A Top-10 Approach to Prefetching on the Web," 

Tech. Rpt. No. 173, Aug. 1996, ICS-FORTH, Heraklion Crete, Greece. 

[24] Tse, J. Altera Corp., El Cerrito, CA, USA, Smith, A. J., “CPU Cache 

Prefetching: Timing Evaluation Of Hardware Implementations.”, IEEE 

Transactions on Computers, 47(5), 509-526, 1998. 

[25] Han W., Whang K. Y., Moon Y. S., "A Formal Framework for Prefetching 

Based on the Type-Level Access Pattern in Object-Relational DBMSs", IEEE 

Transactions on Knowledge and Data Engineering, 17(10), 1436-1448, 2005.  

[26] Google Map Structure, http://www.gisteam.de/ftp/Farbtafeln/76/ 

76googleMapsStruc.pdf , last visited on July 2014. 

[27] From Texture Virtualization to Massive Parallelization, 

http://mrl.cs.vsb.cz/people/gaura/agu/05-JP_id_Tech_5_Challenges.pdf, last 

visited on July 2014. 

[28] Lee, D., Kim, J., Kim, S., Kim, K., Yoo-Sung, K., & Park, J. , “Adaptation of 

a Neighbor Selection Markov Chain for Prefetching Tiled Web GIS Data”, 

Proceedings of the Second International Conference on Advances in 

Information Systems, vol. 2457, pp. 213-222. ISBN: 3-540-00009-7, 2002. 

[29] Podlipnig S., Boszormenyi L., “A Survey of Web Cache Replacement 

http://www.gisteam.de/ftp/Farbtafeln/76/%2076googleMapsStruc.pdf
http://www.gisteam.de/ftp/Farbtafeln/76/%2076googleMapsStruc.pdf
http://mrl.cs.vsb.cz/people/gaura/agu/05-JP_id_Tech_5_Challenges.pdf


 120 

Strategies.”, ACM Computing Surveys 35(4), 374–398, 2003. 

[30] Aggarwal, C., Wolf, J.L., Yu, P.S., “Caching On the World Wide Web”. IEEE 

Transactions on Knowledge and Data Engineering 11(1), 94–107, 1999. 

[31] García R., de Castro J.P., Verdú E., Verdú M.J., Regueras L.M., “An OLS 

Regression Model for Context Aware Tile Prefetching in A  Web Map Cache”, 

International Journal of Geographical Information Science, 2012. 

[32] Fisher D., “The Impact of Hotmap”, http://research.microsoft.com/apps/ 

pubs/default.aspx?id=81244, last visited on July 2014. 

[33] Cox M. and Ellsworth D. “Application-Controlled Demand Paging for Out-Of-

Core Visualization”. In Proceedings of the 8th Conference on Visualization 

’97, pages 235–244, 1997. 

[34] Doshi P. R., Rundensteiner E. A., and Ward M. O., "Prefetching for Visual 

Data Exploration.", Eight Database Systems for Advanced Applications 

(DASFAA), 195-202. IEEE, 2003. 

[35] Zadeh, L.A., “Fuzzy Sets”, Information and Control 8, 338–352, 1965. 

[36] Bryan, L.A, Bryan E.A., “Programmable Controller Theory and 

Implementation”, Chapter Seventeen, pp. 798-845, 1997. 

[37] Black, M., "Vagueness: An exercise in logical analysis". Philosophy of Science 

4: 427–455. Reprinted in R. Keefe, P. Smith (eds.): Vagueness: A Reader, 

MIT Press 1997, ISBN 978-0-262-61145-9.  

[38] A Short Fuzzy Logic Tutorial, http://cs.bilkent.edu.tr/~zeynep/files/ 

short_fuzzy_logic_tutorial.pdf, last visited on July 2014.  

[39] Kulkarni, D. A., "Chapter 3: Fuzzy Logic Fundamentals"; Computer Vision 

and Fuzzy-Neural Systems; (Prentice Hall, 2007), 61-103.  

[40] Ng C.-M., Nguyen C.-T., Tran D.-N., Tan T.-S., Yeow S.-W., “Analyzing Pre-

Fetching in Large-Scale Visual Simulation”. Proceedings of Computer 

Graphic International Conference, New York, NY, USA, 100–107, 2005. 

[41] Ruffner, J. W., Lohrenz, M. C., & Trenchard, M. E., “Human Factors Issues in 

the Development of an Advanced Digital Moving Map System”. Proceedings 

http://research.microsoft.com/apps/
http://cs.bilkent.edu.tr/~zeynep/files/
http://scholar.google.com/scholar?q=%22Chapter+3%3A+Fuzzy+Logic+Fundamentals%22


 121 

of the Human Factors and Ergonomics Society Annual Meeting, 43(1), 31-

35, SAGE Publications, 1999. 

[42] Lohrenz, M. C., Zuyle, P.V., Trenchard, M.E. Myrick, S.A., and Fechtig, S. D., 

“Optimizing Cockpit Moving Map Displays for Enhanced Situational 

Awareness”. Proceedings for the Symposium on Situational Awareness in the 

Tactical Air Environment. Dayton, OH: Crew Systems Ergonomics 

Information Analysis Center (CSERIAC), 1996. 

[43] Product Focus: Moving Maps New Connections, 

http://www.aviationtoday.com/av/issue/feature/Product-Focus-Moving-

Maps-New-Connections_737.html #.U7xf1_mSxBl, last visited on July 2014. 

[44] Rogers, S. P., & Spiker, V.A., “Computer-Generated Map Display for the 

Pilot/Vehicle Interface”. SAE Transactions Journal of Aerospace, 97, 1.1148-

1.1161, 1988. 

[45] Unger, R. A., & Schopper, A. W., “Digital Moving Map Displays For Fighter 

and Tactical Aircraft” (CSERIACRA- 95-001). Wright Patterson Air Force 

Base, OH: Crew Systems Ergonomics Information Analysis Center, 1995. 

[46] FliteScene® 2.7.3 Digital Moving Map Overview, 

http://download.harris.com/app/public_download.asp?fid=2389, last visited 

on July 2014. 

[47] The Stratomaster Odyssey & Voyager, http://www.lightflying.com.au/ 

Stratomaster%20Pages/Odyssey.htm, last visited on July 2014. 

[48] FocusFlite Digital Moving Map, http://focusflite.stm.com.tr/en, last visited on 

July 2014. 

[49] Domènech, J., Pont, A., Sahuquillo, J., Gil, J.A. “An Experimental Framework 

for Testing Web Prefetching Techniques”, Proceedings of the 30th 

EUROMICRO Conference, Rennes, France, 2004. 

[50] Performance Specification of DTED, MIL-PRF-89020B, 

http://dds.cr.usgs.gov/srtm/version2_1/Documentation/MIL-PDF-

89020B.pdf, last visited on July 2014. 

http://www.aviationtoday.com/
http://www.lightflying.com.au/%20Stratomaster%20Pages/Odyssey.htm
http://www.lightflying.com.au/%20Stratomaster%20Pages/Odyssey.htm
http://dds.cr.usgs.gov/srtm/version2_1/Documentation/MIL-PDF-89020B.pdf
http://dds.cr.usgs.gov/srtm/version2_1/Documentation/MIL-PDF-89020B.pdf


 122 

[51] Inertial Navigation System, http://en.wikipedia.org/wiki/Inertial_navigation_ 

system, last visited on July 2014. 

[52] Global Positioning System, http://en.wikipedia.org/wiki/Global_Positioning_ 

System, last visited on July 2014. 

[53] Android NDK, http://developer.android.com/tools/sdk/ndk/index.html, last 

visited on July 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Inertial_navigation_
http://en.wikipedia.org/wiki/Global_Positioning_%20System
http://en.wikipedia.org/wiki/Global_Positioning_%20System
http://developer.android.com/tools/sdk/ndk/index.html


 123 

APPENDIX A 

 

 

EAP FRAMEWORK 

 

A Appendix A 

 

After having described EAP approach, now important components of framework with 

corresponding software counterparts are going to be examined through sub-sections. 

Although some of these components are already mentioned in previous section 

semantically, here their software counterparts in framework are explained. Beside, 

how can these components be used to extend and create new capabilities are going to 

be described.  

 

As mentioned in various lines, the EAP is being used as framework so application 

that will utilize EAP employs it either through static library or dynamic libraries and 

manage it through provided services. In addition to this usage, EAP can also work as 

a client engine and provide all necessary data to multiple application through shared 

memory. It also accepts commands through a well-defined shared memory protocol. 

 

A.1 EAP Packages 

 

First of all, packages that contain the framework classes are described. These 

packages are depicted in Figure A-1. 

 

 



 124 

 

Figure A-1 Overview of VCS analysis criterion 

 

There are five packages. The first one is the EAP core package which contains the 

core EAP framework classes which are EAPManager, RequestManager, 

CriteriaManager, ApplicationManager, NavigationManager and WBFISEngine. 

These classes form the EAP infrastructure and being used to perform EAP 

capabilities and operations. This package also contains interface class which are 

provided to be used by applications to derive new criterion, navigator and loader 

classes. The details of these classes ad their relationship are described in the following 

lines.  

 

The EAP criteria package contains the developed criteria and related classes which 

are described in chapter 5. Although, it is possible to develop new criterion by 

deriving from the interfaces provided with EAP core package, it would be much 

easier to uses the basis criterion classes that are located in this package. These criteria 

are developed specifically for possible application capabilities like 2D map display, 

3D terrain visualization, VCS analysis and etc. 

 

The EAP loaders package contains the developed data loader and loader object 

classes. To be able to process the different kinds of data, EAP utilizes a plugin like 

mechanism which let applications register their data loader and loader objects through 

a configuration file mentioned in section 4.6 and appendix-B. Again the interface of 

these classes are provided in core package, this package contains the derived classes. 

The functions of these classes are described at class level in section A.2.  

 



 125 

The EAP navigator package contains the developed keyboard and auto navigators 

that are used by applications to provide necessary criterion parameters like 

geographic position, altitude and speed. Normally, applications provide these to 

related criteria by taking them from corresponding sensors like Global Positioning 

System (GPS) or Inertial Navigation Systems (INS) [51, 52]. 

 

Finally, EAP utility package contains the supporting classes that are being used by 

all EAP framework such as statistics, unique tile identifier generator and briefing 

classes. These utilities can also be used by application that employs EAP. 

 

A.2 EAP Classes 

 

In this section, important classes that are developed for EAP framework are going to 

be described according to packages given in previous section. Some of these are 

already mentioned in different sections such as section 4.1 and section 4.6.2, here 

these are going to be described in more technical way.  

 

A.2.1 EAP Core Package Classes 

 

The overview of classes that EAP contains are shown in Figure A-2.  

 



 126 

 

Figure A-2 Overview of EAP core package class diagram 

 

All manager classes share same common life-cycle management methods like 

Configure, Initialize, Tick and Finalize. The Configure method passes the 

configuration file to manager classes and let these classes obtain the data from this 

file. The configuration and initialization are provided as two separate method to let 

all manager modules first obtain configuration file content and then perform 

initialization. Tick method is the main trigger method which is called periodically by 

EAPManager class with delta time. Finally, the Finalize method let manager classes 

perform any deallocations and free the resources allocated during execution. 

 

 EAPFWEngine: 

o This class represents the EAPManager that is illustrated in the architecture that 

is given in section 4.1. It is responsible from management of overall EAP 

framework and its interaction with application. It provides EAP services to 

application and vice versa. It also manages the other manager classes and calls 

the life cycle methods of each manager. 

 



 127 

 IApplication: 

o Represent the application from EAP perspective. It provides interface with 

methods to get application specific parameters. For instance, a digital moving 

map application should inherit this interface and provides an application class to 

EAP framework which can be used by registered criteria to query the current 

state such as current application display mode. One application is usually 

sufficient for most of the scenarios. 

 ApplicationManager: 

o This class is responsible from management of application classes registered and 

also passing the configuration file to registered application classes. 

 ICriterion: 

o This is the base interface class provided for all criteria and it provides necessary 

operations and services that all derived criteria require. Some of these operations 

are related with criterion life cycle such as configuration through provided XML 

configuration file, initialization and finalization. Some of these operations are 

related with EAP framework such requesting, prefetching, evaluation and 

replacement operations. Events are also provided. One such event is 

requestCompleted event which informs criterion about status of its request with 

corresponding information. There also events like pre/post-operations to let 

criteria perform operations before or after mentioned EAP operations. There are 

also methods to get the list of provided operations by criterion, to get its weight, 

name, and priority range and activation statuses. 

 CriteriaManager: 

o This class is responsible from management of registered criteria and their 

behavior. It is also illustrated and described briefly through the architecture that 

is given in section 4.1. It passes the evaluation of load and replacement requests 

to corresponding criteria. The weights of these criteria are also managed by this 

class and WB-FIE engine. This manager also provides necessary information 

about registered criteria to other framework classes and application. It also passes 

the active navigator to active criteria.  

 



 128 

 ICriteriaFactory: 

o This interface let application to create criterion objects using factory pattern. 

 IDataLoaderObject:  

o This is the lowest level of loader class interface which is responsible from 

loading and parsing operations. So application should derive this interface for 

each different raster data types such as raw or compressed or elevation or map 

and sources such as file system or file server that are going to be handled by 

EAP. Each loader object works as a different thread so that all loading operations 

are executed asynchronously. This class uses the raster metadata provided 

through configuration file for loading operations.  

 IDataLoaderObjectFactory: 

o This interface let application to create data loader objects using factory pattern. 

 IDataLoader:  

o This loader class is responsible from management of data loader objects 

mentioned above. It contains necessary management capabilities in itself and can 

be extended for specific purposes and extra operations. Passing tile load requests 

to corresponding loader objects, managing the loaded tile chunks, moving these 

chunks from cache to main memory, main memory to cache and disposing the 

not required tiles also performed by this class. This class also manages the 

allocation/deallocation of loaded tile chunks.  

 IDataLoaderFactory: 

o This interface let application to create data loaders using factory pattern. 

 DataManager: 

o This class represents the DataManager that is illustrated in the architecture that 

is given in section 4.1. This class is responsible from management of all data 

loaders and data loader objects. It provide necessary data loading services to 

other EAP framework classes. It also responsible from managing the raster data 

that is going to be used by system and provide necessary information about this 

data to other classes and application.  

 LoadRequest: 

o This class holds data about the request that is initiated by a criterion like raster 



 129 

tile id, initiator criterion, origin (prefetch or direct), data origin (local, remote), 

status (requested, loaded, load failed, etc), unique id (to identify each request), 

loader id, priorities and active requesters. This is the data that is used by most of 

the EAP classes and operations.  

 RequestManager: 

o This class represents the RequestManager that is illustrated in the architecture 

that is given in section 4.1. This class is mainly responsible from management of 

request initiated by criteria. It also performs passing load requests from 

CriteriaManager to DataManager and inform back about their statuses, load and 

replacement orderings, checking data manager for load requests, checking cache 

and initiate tile disposing if required. All loaded requests are analyzed by this 

class and then corresponding initiator is informed about the result of request. It 

accumulates all load and prefetch requests and forward them to corresponding 

criteria through Criteria Manager to come up with load order and similarly for 

replacement order in case of tile disposal. This manager also maintains historical 

information about each request.  

 INavigator: 

o An interface class which provide services that should be fulfilled by each 

navigator that is going to be used with EAP such as providing geographic 

location data, speed, altitude and etc. 

 INavigatorFactory: 

o This interface let application to create navigator objects using factory pattern. 

 NavigatorManager: 

o This class is responsible from management of navigators that are provided by 

applications. It also let application to choose an active navigator among these 

registered ones and provide it to CriteriaManager.  

 ICriteriaService, IDataService, INavigationService, IRequestService: 

o These service interfaces are being used to provide the capabilities and services 

that are mentioned above to each other framework classes and application.  

 

 



 130 

A.2.2 EAP Criteria Package Classes 

 

The overview of classes that EAP criteria package contains are shown in Figure A-3. 

 

 

Figure A-3 Overview of EAP criteria package class diagram 

 

 2DMapViewCrtierion: 

o This class represents the developed criteria for 2D map displaying capability 

which is described in chapter 5 and is derived from ICriteria interface. It also 

implements the RAP capabilities and can switch one to other through provided 

enable method. 

 FOVCriterion: 

o This class represents the developed criteria for 3D terrain visualization capability 

which is described in chapter 5 and is derived from ICriteria interface.  

 AnalysisCriterion: 

o This class represents the developed criteria for vertical cross section analysis 

capability which is described in chapter 5 and is derived from ICriteria interface.  

 POICriterion: 

o This class represents the developed criteria for point of interest display which is 

described in chapter 5 and is derived from ICriteria interface.  

 2DDistanceCriterion: 

o This class represents the 2D distance evaluator criteria which is described in 

chapter 5 and is derived from ICriteria interface.  

 



 131 

 CriterionFactory: 

o This class is responsible from creating the criteria that are mentioned above using 

factory pattern and is derived from ICriteriaFactory interface.  

 

A.2.3 EAP Loaders Package Classes 

 

The overview of classes that EAP loaders package contains are shown in Figure A-4. 

 

 

Figure A-4 Overview of EAP loaders package class diagram 

 

 DtedRawFileLoaderObject: 

o This class extends the IDataLoaderObject interface to load and parse raw DTED 

data which is stored as 512x512 tiles on file system. 

 DtedDataLoader: 

o This class extends the IDataLoader interface to load DTED data using 

DtedRawFileLoaderObject class instances.  

 EAPDataFactory: 

This class is responsible from creating data loader and data loader object that are 

mentioned above using factory pattern.  

 

A.2.4 EAP Navigators Package Classes 

 

The overview of classes that EAP navigators package contains are shown in Figure 

A-5. 



 132 

 

Figure A-5 Overview of EAP navigator package class diagram 

 

 AutoNavigator: 

o This class extends the INavigator interface and being used to execute the pre-

recorded or prepared flights as if they are currently being provided by 

application. This navigator can be considered as briefing tool. It is developed to 

run the EAP framework with prepared experimentation scenarios and recorded 

flights. 

 KeyboardMouseNavigator: 

o This class extends the INavigator interface and mainly responsible from 

providing application inputs. For instance, keyboard is being used to simulate 

aircraft movement and mouse is being used to perform 2D navigation patterns 

such as zooming and panning.  

 NavigatorFactory: 

o This class is responsible from creating navigators that are mentioned above using 

factory pattern.  

 

A.3 EAP Utilization 

 

As mentioned in contributions section, the EAP framework can also be used for 

testing and evaluation purposes. This is provided through criterion. For this purpose, 

developed prefetching mechanism should be ported to implement provided ICriteria 

interface which is described briefly above. Then it should be simply registered to 

CriteriaManager, the rest is managed by EAP engine.  Moreover, the EAP framework 

can controlled through provided services. 



 133 

 

The EAP framework is developed using C++ with considering cross platform usage 

so it can be used for both windows and android platforms using provided Android 

Native Development Kit (NDK) [53]. The framework is deployed as static library so 

applications that are utilize EAP only need to include and link this library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 134 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 135 

APPENDIX B 

 

 

AN EXAMPLE CONFIGURATION FILE 

 

B Appendix B 

 

The configuration file is prepared in XML format and can be adapted for further 

usage. The words that are shown in “< >” are keywords that EAP are looking for. An 

example configuration file content is shown below. 

 

<?xml version="1.0" encoding="utf-8"?> 

<!-- Unique Ids should be started from 1 --> 

<root> 

  <Statistics> 

    <!-- Type eUInt32 => 0, eInt32 => 1, eDecimal32 => 2 --> 

    <StatisticType> 

      <Id>0</Id> 

      <Name>MissPredictCount</Name> 

      <Type>0</Type> 

    </StatisticType> 

    <StatisticType> 

      <Id>1</Id> 

      <Name>CorrectPredictCount</Name> 

      <Type>0</Type> 

    </StatisticType> 

    <StatisticType> 

      <Id>2</Id> 

      <Name>UnusedPredictionCount</Name> 

      <Type>0</Type> 

    </StatisticType> 

    <StatisticType> 

      <Id>3</Id> 

      <Name>PredictCount</Name> 

      <Type>0</Type> 

    </StatisticType> 

    <StatisticType> 

      <Id>4</Id> 

      <Name>RequestCount</Name> 

      <Type>0</Type> 

    </StatisticType> 

    <StatisticType> 

      <Id>5</Id> 

      <Name>HitRatio</Name> 

      <Label>HR</Label> 

      <Type>2</Type> 

    </StatisticType> 

    <StatisticType> 

      <Id>6</Id> 

      <Name>UnusedPrectionRatio</Name> 

      <Label>UPR</Label> 

      <Type>2</Type> 

    </StatisticType> 

    <StatisticType> 

      <Id>7</Id> 

      <Name>CorrectPrectionRatio</Name> 



 136 

      <Label>UPR</Label> 

      <Type>2</Type> 

    </StatisticType> 

    <StatisticType> 

      <Id>8</Id> 

      <Name>CriterionWeight</Name> 

      <Label>Weight</Label> 

      <Type>2</Type> 

    </StatisticType> 

    <StatisticType> 

      <Id>9</Id> 

      <Name>CriterionActivityLevel</Name> 

      <Label>CAL</Label> 

      <Type>2</Type> 

    </StatisticType> 

    <StatisticType> 

      <Id>10</Id> 

      <Name>FuzzyEngineOperation</Name> 

      <Label>CAL</Label> 

      <Type>0</Type> 

    </StatisticType> 

  </Statistics> 

  <DataManagement> 

    <SharedMemoryLabel>CAPDataMngmntSharedMemory</SharedMemoryLabel>     

  </DataManagement> 

  <DataLayers> 

    <!-- System wise data layer information --> 

    <DataLayer Name="DTED2 Elevation Data" LayerUniqueID ="1"> 

      <LoaderName>ED2Loader</LoaderName> 

      <DataType>Raster</DataType> 

      <Desc>This layer containes 30m resolution elevation data which is provided through tiles.</Desc> 

      <CommonRasterProperties> 

        <BoundCount>1</BoundCount> 

        <ResolutionX>0.00027777800000000023</ResolutionX> 

        <ResolutionY>0.00027777799999999996</ResolutionY> 

      </CommonRasterProperties> 

      <!-- Each data layer may contain different data sources in different formats like RAW, ECW --> 

      <DataSource DataSourceID="1"> 

        <Desc>This source contain raw data dted2 data.</Desc> 

        <DataFormat>RAW</DataFormat> 

        <DataRootPath>../Data/RasterData/</DataRootPath> 

        <FileNameTemplate>ED2</FileNameTemplate> 

        <IsTiled>1</IsTiled> 

        <TileSize>512</TileSize> 

        <DataSourceRasterProperties> 

          <Width>9001</Width> 

          <Height>10801</Height> 

          <PixelFormat>short</PixelFormat> 

          <PixelSize>2</PixelSize> 

          <PyramidCount>0</PyramidCount> 

          <NoDataValue>-9999.0</NoDataValue> 

          <ExtentCenterX>35.750000999999997</ExtentCenterX> 

          <ExtentCenterY>39.499998800000000</ExtentCenterY> 

          <ExtentWidth>2.5002797780000021</ExtentWidth> 

          <ExtentHeight>3.0002801779999997</ExtentHeight> 

        </DataSourceRasterProperties> 

      </DataSource> 

      <DataSource DataSourceID="2"> 

        <Desc>This source contain ecw dted2 data.</Desc> 

        <DataFormat>ECW</DataFormat> 

        <DataRootPath>../Data/DTED2Data/</DataRootPath> 



 137 

        <FileNameTemplate>ED2ECW</FileNameTemplate> 

        <IsTiled>false</IsTiled> 

        <DataSourceRasterProperties> 

          <ExtentCenterX>35.50000999999997</ExtentCenterX> 

          <ExtentCenterY>39.0</ExtentCenterY> 

          <ExtentWidth>19.0</ExtentWidth> 

          <ExtentHeight>6.0</ExtentHeight> 

        </DataSourceRasterProperties> 

      </DataSource> 

    </DataLayer> 

  </DataLayers> 

  <DataLoaders> 

    <!-- For each layer there will be one data loader --> 

    <!-- These loader objects should be registered before configuration is started!--> 

    <DataLoader Name="ED2Loader" LoaderUniqueID="1"> 

      <Desc>This loader will be used to load RAW DTED2 Elevation Data.</Desc> 

      <DataLayerUniqueIDToLoad>1</DataLayerUniqueIDToLoad> 

      <LoaderObjectName>ED2RawFileLoaderObject</LoaderObjectName> 

      <LoaderObjectCount>2</LoaderObjectCount> 

      <!-- Overall memory allocation --> 

      <MaxAllocatedChunkSize>2512</MaxAllocatedChunkSize>   

      <!-- Memory portion reserved for cache --> 

      <CachedChunkSize>64</CachedChunkSize> 

      <NoOfCacheItemsToDispose>8</NoOfCacheItemsToDispose> 

      <!-- eAllocatedAsRequest => 0, eAllocateInitially => 1--> 

      <AllocationMethod>0</AllocationMethod> 

      <SharedMemoryLabel>ED2LoaderSharedMemory</SharedMemoryLabel> 

    </DataLoader> 

  </DataLoaders> 

  <DataLoaderObjects> 

    <!-- There might be different loader objects which are responsible from loading data from different       

           sources or different formats of same data layer--> 

    <DataLoaderObject Name="ED2RawFileLoaderObject" DataLoaderObjUniqueID="1"> 

      <Desc>This object is responsible from loading RAW DTED2 elevation data from file system.</Desc> 

      <DataSourceIDToLoad>1</DataSourceIDToLoad> 

      <!-- The wait in msec before each load op. For debug purposes --> 

      <WaitPeriod>0</WaitPeriod> 

    </DataLoaderObject > 

    <DataLoaderObject  Name="ED2ECWFileLoaderObject" DataLoaderObjUniqueID="2"> 

      <Desc>This object is responsible from loading ECW DTED2 elevation data from file system.</Desc> 

      <DataSourceIDToLoad>2</DataSourceIDToLoad> 

      <!-- The wait in msec before each load op. For debug purposes --> 

      <WaitPeriod>0</WaitPeriod> 

    </DataLoaderObject > 

  </DataLoaderObjects> 

  <CriteriaManagement> 

    <!-- This element will be used to configure general criteria management parameters like adaptive or direct  

           loading, replacement policy, priority ranges, etc --> 

    <IsAdaptive>1</IsAdaptive> 

    <!--Unique ids of registered set of criteria--> 

    <ActiveCriteriaList> 

      <Criteria Id ="1"/> 

      <Criteria Id ="2"/> 

      <Criteria Id ="3"/> 

    </ActiveCriteriaList> 

  </CriteriaManagement> 

  <RequestManagement> 

    <PrefetchLoadSlotSize>10</PrefetchLoadSlotSize> 

  </RequestManagement> 

  <CriterionList> 

    <!-- For each criterion that will be used in system there will be one item --> 



 138 

    <!-- Both generic and criterion specific parameters will be defined here --> 

    <Criterion Name="2DMapview" CriterionUniqueID="1"> 

      <!--Common attributes--> 

      <Desc>This criterion mainly deals with 2D navigation operations like panning and zooming. </Desc> 

      <HasRequestCapability> 1</HasRequestCapability> 

      <HasEvaluateCapability>1</HasEvaluateCapability> 

      <HasPrefetchCapability> 1</HasPrefetchCapability> 

      <ActivateRequestCapability>0</ActivateRequestCapability> 

      <ActivateEvaluateCapability>0</ActivateEvaluateCapability> 

      <ActivatePrefetchCapability>0</ActivatePrefetchCapability> 

      <ActivateReplacementCapability>0</ActivateReplacementCapability> 

      <HasReplacementCapability> 1</HasReplacementCapability> 

      <EmployStatistics>1</EmployStatistics> 

      <InitialWeight>0.5</InitialWeight> 

      <MinWeight>0.05</MinWeight> <!--These values require reasoning!--> 

      <MaxWeight>0.95</MaxWeight> 

      <MinPriorityRange>0.0</MinPriorityRange> 

      <MaxPriorityRange>1.0</MaxPriorityRange> 

      <AffectedBySpeed>1</AffectedBySpeed> 

      <RegisteredDataLoaders> 

        <Raster LoaderName="ED2Loader"/> 

        <!--1 => Dted2--> 

      </RegisteredDataLoaders> 

      <!--Specific attributes--> 

      <!--This extent parameters are given in degree --> 

      <MapViewExtentWidth>0.4</MapViewExtentWidth> 

      <MapViewExtentHeight>0.3</MapViewExtentHeight> 

      <MapViewScale>500000</MapViewScale> 

      <NumberOfRowsToBePrefetched>1</NumberOfRowsToBePrefetched> 

      <!--This max range is given in nm --> 

      <MaxPrioritizationRange>200.0</MaxPrioritizationRange> 

      <!--If this flag is set then this map view is shown as rectangle and not fit into original map view--> 

      <FitIntoScreen>0</FitIntoScreen> 

      <!--This threshold values are given in percentage the percentage of a single tile with/height in default--> 

      <LatitudeThreshold>50.0</LatitudeThreshold> 

      <LongtitudeThreshold>50.0</LongtitudeThreshold> 

    </Criterion> 

    <Criterion Name="Analysis" CriterionUniqueID="2"> 

      <!--Common attributes--> 

      <Desc>This criterion mainly perform vertical cross section analysis.</Desc> 

      <HasRequestCapability> 1</HasRequestCapability> 

      <HasEvaluateCapability>1</HasEvaluateCapability> 

      <HasPrefetchCapability> 1</HasPrefetchCapability> 

      <HasReplacementCapability> 1</HasReplacementCapability> 

      <ActivateRequestCapability>0</ActivateRequestCapability> 

      <ActivateEvaluateCapability>0</ActivateEvaluateCapability> 

      <ActivatePrefetchCapability>0</ActivatePrefetchCapability> 

      <InitialWeight>0.5</InitialWeight> 

      <EmployStatistics>1</EmployStatistics> 

      <MinWeight>0.05</MinWeight> 

      <!--These values require reasoning!--> 

      <MaxWeight>0.95</MaxWeight> 

      <MinPriorityRange>0.0</MinPriorityRange> 

      <MaxPriorityRange>1.0</MaxPriorityRange> 

      <AffectedBySpeed>0</AffectedBySpeed> 

      <RegisteredDataLoaders> 

        <Raster LoaderName="ED2Loader"/> 

        <!--1 => Dted2--> 

      </RegisteredDataLoaders> 

      <!--Specific attributes--> 

      <InitialAnalysisLength>30</InitialAnalysisLength> 



 139 

      <AnalysisPrefetchLength>5</AnalysisPrefetchLength> 

      <!--This extent parameters are given in degree --> 

      <MaxPrioritizationRange>200.0</MaxPrioritizationRange> 

      <!--If this flag is set then this map view is shown as rectangle and not fit into original map view--> 

      <FitIntoScreen>0</FitIntoScreen> 

      <!--This threshold values are given in percentage--> 

      <LatitudeThreshold>30.0</LatitudeThreshold> 

      <LongtitudeThreshold>30.0</LongtitudeThreshold> 

    </Criterion> 

    <Criterion Name="FOV" CriterionUniqueID="3"> 

      <!--Common attributes--> 

      <Desc>This criterion mainly deals with 3D visibility based navigation operations.</Desc> 

      <HasRequestCapability> 1</HasRequestCapability> 

      <HasEvaluateCapability>1</HasEvaluateCapability> 

      <HasPrefetchCapability> 1</HasPrefetchCapability> 

      <ActivateEvaluateCapability>0</ActivateEvaluateCapability> 

      <ActivateRequestCapability>0</ActivateRequestCapability> 

      <ActivatePrefetchCapability>0</ActivatePrefetchCapability> 

      <ActivateReplacementCapability>0</ActivateReplacementCapability> 

      <HasReplacementCapability> 1</HasReplacementCapability> 

      <EmployStatistics>1</EmployStatistics> 

      <InitialWeight>0.5</InitialWeight> 

      <MinWeight>0.05</MinWeight> 

      <!--These values require reasoning!--> 

      <MaxWeight>0.95</MaxWeight> 

      <MinPriorityRange>0.0</MinPriorityRange> 

      <MaxPriorityRange>1.0</MaxPriorityRange> 

      <AffectedBySpeed>1</AffectedBySpeed> 

      <RegisteredDataLoaders> 

        <Raster LoaderName="ED2Loader"/> 

        <!--1 => Dted2--> 

      </RegisteredDataLoaders> 

      <!--Specific attributes--> 

      <!--This parameters are given in degree --> 

      <InitialFOVYaw>90.0</InitialFOVYaw> 

      <InitialFOVPitch>0.0</InitialFOVPitch> 

      <InitialFOVRoll>0.0</InitialFOVRoll> 

      <InitialFOV>60.0</InitialFOV> 

      <FOVDepth>25.0</FOVDepth> 

      <!--This parameters are given in nm --> 

      <NearPlane>0.01</NearPlane> 

      <FarPlane>15.0</FarPlane> 

      <!--This max range is given in nm --> 

      <MaxPrioritizationRange>100.0</MaxPrioritizationRange> 

      <!--This threshold values are given in degrees--> 

      <FOVThreshold>2.5</FOVThreshold> 

      <BearingThreshold>2.5</BearingThreshold> 

      <!--This threshold values are given in percentage the percentage of a single tile with/height in default--> 

      <LatitudeThreshold>50.0</LatitudeThreshold> 

      <LongtitudeThreshold>50.0</LongtitudeThreshold> 

    </Criterion> 

    <Criterion Name="POI" CriterionUniqueID="4"> 

      <!--Common attributes--> 

      <Desc>This criterion deals with POI data that increase the priority of corresponding raster tiles.</Desc> 

      <HasRequestCapability> 1</HasRequestCapability> 

      <HasEvaluateCapability>1</HasEvaluateCapability> 

      <HasPrefetchCapability> 1</HasPrefetchCapability> 

      <HasReplacementCapability> 1</HasReplacementCapability> 

      <EmployStatistics>1</EmployStatistics> 

      <Initial2DWeight>0.5</Initial2DWeight> 

      <Initial3DWeight>0.5</Initial3DWeight> 



 140 

      <Min2DWeight>0.0</Min2DWeight> <!--These values require reasoning!--> 

      <Max2DWeight>0.7</Max2DWeight> 

      <Min3DWeight>0.0</Min3DWeight> 

      <Max3DWeight>0.7</Max3DWeight> 

      <MinPriorityRange>0.0</MinPriorityRange> 

      <MaxPriorityRange>1.0</MaxPriorityRange> 

      <AffectedBySpeed>0</AffectedBySpeed> 

      <RegisteredDataLoaders> 

        <Raster>ED2Loader</Raster> 

        <!--1 => Dted2--> 

      </RegisteredDataLoaders> 

      <!--Specific attributes--> 

      <!--This threshold values are given in percentage where this will be used according to radius of POIs 

          i.e. if poi interest radius is 10 nm than request will be 11 for %110, and 15 nm for %150--> 

      <RequestDistance>110</RequestDistance> 

      <PrefetchDistance>150</PrefetchDistance> 

    </Criterion> 

  </CriterionList> 

  <NavigatorManagement> 

    <ActiveNavigator>2</ActiveNavigator> 

  </NavigatorManagement> 

  <NavigatorList> 

    <Navigator Name="KeyboardMouseNavigator" NavigatorUniqueID="1"> 

      <Desc>This navigator provides user to navigate using only keyboard. The moving/panning/rotation/scale 

up/down are provided through shortcuts</Desc> 

      <InitialLatitude>39.2</InitialLatitude> 

      <InitialLongtitude>35.6</InitialLongtitude> 

      <!--How much will navigator move in each tick in degree--> 

      <DegreePerKeyStoke>0.000005</DegreePerKeyStoke> 

      <!--How much will navigator rotate bearing in each tick in degree-- 

      <RotateDegreePerKeyStoke>0.001</RotateDegreePerKeyStoke> 

    </Navigator> 

    <Navigator Name="AutoNavigator" NavigatorUniqueID="2"> 

      <Desc>This navigator provides necessary capabilities for experimentation.</Desc> 

      <InitialLatitude>39.2</InitialLatitude> 

      <InitialLongtitude>35.6</InitialLongtitude> 

    </Navigator> 

  </NavigatorList> 

</root> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 141 

CURRICULUM VITAE 

 

PERSONAL INFORMATION 

 

Surname, Name: Uluat, Mehmet Fatih 

Nationality: Turkish (TC) 

Date and Place of Birth : 26 August 1981, Van  

Marital Status : Married and have one children. 

Phone :  +90 535 629 06 22 

Email :  f_uluat@yahoo.com 

tr.linkedin.com/pub/mehmet-fatih-uluat/64/423/69 

 

 

EDUCATION 
 

Degree   Institution            Year of Graduation - CPGA  
M. Sc.  Dept. of Computer Engineering, METU        2007 - 3.43 / 4 

B. S.  Dept. of Computer Engineering, METU        2004 - 3.27 / 4 

High School      Van Private Serhat Science College        1999 - 4.95 / 5 

 

WORK EXPERIENCE 
 

Year   Place    Enrollment 

2011-Present     STM, A.Ş.   Digital Map Application Group Leader 

2008-2011         Simsoft    Project Manager 

2004-2008         ASELSAN   Expert Software Engineer 

2003-2004         Meteksan Sistem  Software Engineer 

 

FOREIGN LANGUAGES 
 

Advanced English 

 

PUBLICATIONS 

 

Journal Publications and Book Chapters 

 

1. Uluat, M. F., İşler V.: “A Fuzzy Logic Based Ensemble Adaptive Tile 

Prefetching”, IJGIS, International Journal of Geographic Information Science, 

2014, (Submitted and revision is received). 

2. Uluat, M.F., Oguztüzün, H.: “Model Based Approach to the Federation Object 

Model Independence Problem.”, In ISCIS (2011), 451-459. 

 

Conference Publications 

 

1. “UML Applications in Real-Time Systems”,  published and presented in National 

Software Engineering Symposium 2005 (UYMS), as an author with Ersel Ercek 

mailto:f_uluat@yahoo.com


 142 

and Sevda Erdoğdu, Ankara, Published in II. Ulusal Yazılım Mühendisliği 

Sempozyumu, 2005. 

2. “Pedestal Mounted Air Defense Missile System Training Simulator”,  published 

and presented in National Defense Application Modeling and Simulation 

Conference 2005(USMOS), as an author with Ersel Ercek, Ankara (UYMS 

2005).  

 

CERTIFICATIONS 

 

 HTML 5  techology,  

 Beden Dili Eğitimi, 

 Real-Time Design Patterns, 

 Software Architecture Design For Large Scale and Complex Systems, 

 Object Oriented Software Development With Case Tool Rhapsody 6.0, 

 MSDN TRAINING: Developing Microsoft .Net Applications For Windows in 

C#, 

 High Level Architecture, 

 Anlayarak Hızlı Okuma. 




