
DESIGN AND IMPLEMENTATION OF A PARALLEL BOUNDARY ELEMENT

METHOD SOLUTION FOR 3D PARTICLE FLOW PROBLEMS IN

MICROCHANNELS

A DOCTOR OF PHILOSOPHY THESIS

in

Modeling and Design of Engineering Systems (MODES)

(Main fields of study : Computer Engineering & Manufacturing Engineering)

Atılım University

by

ZIYA KARAKAYA

JANUARY 2015



DESIGN AND IMPLEMENTATION OF A PARALLEL BOUNDARY ELEMENT
METHOD SOLUTION FOR 3D PARTICLE FLOW PROBLEMS IN

MICROCHANNELS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
ATILIM UNIVERSITY

BY

ZIYA KARAKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

DOCTOR OF PHILOSOPHY
IN

MODELING AND DESIGN OF ENGINEERING SYSTEMS (MODES)
( MAIN FIELDS OF STUDY : COMPUTER ENGINEERING &

MANUFACTURING ENGINEERING )

JANUARY 2015



Approval of the Graduate School of Natural and Applied Sciences, Atılım University.
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ABSTRACT

DESIGN AND IMPLEMENTATION OF A PARALLEL BOUNDARY ELEMENT
METHOD SOLUTION FOR 3D PARTICLE FLOW PROBLEMS IN

MICROCHANNELS

Karakaya, Ziya

Ph.D., Modeling and Design of Engineering Systems

Supervisor : Assist. Prof. Dr. Besim Baranoğlu

Co-Supervisor : Prof. Dr. Ali Yazıcı

January 2015, 75 pages

A new formulation for tracking multiple particles in slow viscous flow for microflu-
idic applications is presented. The method employs the manipulation of the boundary
element matrices so that a system of equations is obtained relating to the rigid body
velocities of the particle to the forces applied on the particle. The formulation is spe-
cially designed for particle trajectory tracking and involves successive matrix multi-
plications for which Symmetric Multiprocessing (SMP) parallelisation is applied. It
is observed that the present formulation offers an efficient numerical model to be used
for particle tracking and can easily be extended for multiphysics simulations in which
several physics are involved.

Keywords: particle tracking, boundary element method, Stokes’ flow
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ÖZ

3 BOYUTLU MİKROKANALLARDA PARÇACIK AKIŞ PROBLEMLERİ İÇİN
SINIR ELEMAN YÖNTEMİ TABANLI ÖZEL BİR PARALEL FORMÜLASYON

TASARIMI VE UYGULAMASI

Karakaya, Ziya

Doktora, Mühendislik Sistemlerinin Modellenmesi ve Tasarımı

Tez Yöneticisi : Yrd. Doç. Dr. Besim Baranoğlu

Ortak Tez Yöneticisi : Prof. Dr. Ali Yazıcı

Ocak 2015 , 75 sayfa

Bu çalışmada mikroakışkan uygulamalarındaki kıvamlı yavaş akışta birden çok par-
çacığı izlemek için yeni bir formülasyon sunulmaktadır. Yöntem, sınır eleman mat-
rislerinin manipülasyonu işlemininden sonra, parçacığın katı bünye hızları ile üzerine
etki eden kuvvetleri ilişkilendiren bir denklem sistemi elde etmektedir. Formülasyon,
SMP paralelleştirme yönteminin uygulandığı ardışık matris çarpımı işlemleri sonu-
cunda özellikle parçacığın yörüngesinin takibi için tasarlanmıştır. Mevcut formülas-
yon, parçacık izleme işlemi için kullanılmak üzere etkili bir sayısal model sunmakta-
dır ve kolay bir şekilde birden çok fiziksel etkinin içerildiği çoklu-fizik simülasyonları
için genişletilebilir olduğu görülmektedir.

Anahtar Kelimeler: parçacık hareketinin takibi, sınır eleman yöntemi, Stokes akışı
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CHAPTER 1

INTRODUCTION

Boundary element method (BEM) has been proven to be a very effective tool for sim-

ulation of many applications in engineering, ranging from thermo-fluids and acoustics

[1] to elastodynamics [2] and to fluid mechanics [3]. Especially, if the mathematical

model derived from the engineering application (which is usually expressed in terms

of one or more differential equations) is linear, BEM, when compared to other nu-

merical methods (such as the finite element method - FEM) provides more accurate

results, especially in the zones of singularity [4].

1.1 General Procedure in BEM

The general procedure in BEM involves [5]

• transforming the governing equations into integral equations

• transforming the domain integrals appearing in the integral equations to bound-

ary integrals (surface integrals in 3D and contour/line integrals in 2D) using the

Gauss Integral Theorem (GIT)

• solving these boundary integrals numerically by discretizing the boundary of

the solution region, which allows the determination of the unknown boundary

quantities

In the problems where the evaluation of the internal quantities are desired, the internal

field variables can be computed after the solution of the boundary quantities with the

1



use of these boundary quantities. Note that, this stage is post-processing, meaning

there is no solution in this stage. The pre-determined now-known boundary quantities

are used to evaluate the internal field variables employing a special boundary integral

formulation.

1.2 Advantages and Disadvantages of BEM

Generally, for most engineering applications, the advantages of the BEM can be listed

as:

• The BEM discretizes only the boundary of the solution domain (Figure 1.1b).

When compared to domain discretization methods, such as FEM or finite vol-

ume method (FVM), this reduces the dimension of the geometry by one (for two

dimensional problems, the discretization is only over a curve - which is one di-

mensional, and for three dimensional problems, the discretization is made over

surfaces - which is two dimensional). Especially for complex geometries in

three dimensions, modelling is much more simpler in BEM.

(a) (b)

Figure 1.1: A 2D ellipse discretized in (a) FEM, and (b) BEM

• The reduction in space dimension also serves another advantage: the number of

unknowns in BEM is much less when compared with FEM or FVM. This is due

to the boundary-only discretization nature of the BEM. A simple verification in

2D is given in Figure 1.1 where it can be seen that the number of nodes are

much more in FEM when compared with BEM.
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• FEM (or FVM) is completely numerical. That is to say, the governing equa-

tions (GE), the boundary conditions (BC) and the continuity conditions (CC)

between the elements in the solution domain are satisfied approximately. BEM,

on the other hand, is considered to be semi-analytical. That is because, the fun-

damental solutions (FS) for a given problem are determined exactly (within the

solution domain and on the boundary), only the appearing integral equations

are solved numerically. The CC are satisfied within the solution domain in an

exact sense. That is why the boundary element (BE) solution is much more

accurate than the finite element (FE) or finite volume (FV) solution.

• A major advantage of boundary-only discretization is the reduced modelling

time in problems where successive remeshing is required. In FEM, if the solu-

tion domain is rapidly changing (as in the case of particle motion where mov-

ing particles change the solution domain), a considerable time is spent on the

remeshing process of this changing domain. The reduction of space dimension,

on the other hand, makes remeshing process comparably simple. A 2D FEM

mesh of a particle within a rectangular channel is given in Figure 1.2 a. Besides

from the complexity of the mesh (even it is in 2D) as the particle moves (Figure

1.2 b), the mesh has to be changed. In BEM, however, remeshing is much more

simple - internal meshing is not required (Figure 1.3 a), and when the particle

moves, remeshing is just moving the corresponding mesh (Figure 1.3 b).

(a)

(b)

Figure 1.2: 2D (a) 2D Meshing of a circular particle in rectangular channel (in FEM)

(b) as the particle moves, mesh has to be changed accordingly

3



(a)

(b)

Figure 1.3: (a) 2D Meshing of a circular particle in rectangular channel (in BEM),

a major advantage is the boundary-only discretization (b) as the particle moves, the

domain is not re-discretized, only the corresponding change in the boundary is applied

• Successive remeshing in FEM also has a major disadvantage: the field vari-

ables within the old mesh are transferred (in values) to the new mesh through

interpolation. That is, the values in the new mesh are approximated using the

values in the old mesh. Each remeshing step increases the approximation error

- to a level that even solution may not be possible after several remeshing steps

(for particle flow problems in 3D, this is the main reason of FEM not being an

effective tool). Remeshing in BEM, on the other hand, does not have interpo-

lation within the solution domain, since the solution domain is not discretized.

This is the main advantage of BEM - even with a great amount of remeshing,

the accuracy is not affected.

• FEM, and FVM, or any other numerical method that requires domain discretiza-

tion determines the differential quantities in the solution domain (eg. internal

flux, internal stress) by numerical differentiation. To do this, discretization

should be sufficiently fine at the regions where differential quantities are to be

evaluated (Figure 1.4 a). BEM, on the other hand, employs analytical differ-

entiation within the solution domain for such differential quantities. Therefore,

the differential quantities can be determined in any resolution (Figure 1.4 b) .

• If the region extends to infinity in one or more direction(s), FEM needs a bound-

4



(a) (b)

Figure 1.4: 2D (a) FEM model when the particle is near the channel wall: the mesh

should be fine between the particle and the wall so that the internal stresses can be

evaluated more correctly (b) A similar BEM model requiring no additional effort

when the particle is near the channel boundary

ing box so that a mesh can be generated (or the use of so-called infinite elements

required). This requirement makes it hard to model the radiation conditions in

the directions that goes to infinity. Either a large bounding box should be se-

lected (regarding the wave length in the solution domain) so that the reflected

waves can be disregarded in the solution, or at the boundary of the bounding

box, special boundary conditions should be imposed. BEM, on the other hand,

natively takes into account the radiation conditions in the directions that extends

to infinity. A demonstration of this fact is presented in Figure 1.5

With these advantages, also comes the disadvantages of BEM:

• The system matrices that is derived in BEM are full matrices possessing no

symmetry. Therefore, the fast solution methods of sparse and symmetric matri-

ces cannot be applied. In some problems, even if the number of unknowns are

less in BEM, solution times can be more when compared to FEM.

• The integral equations derived in BEM involves singularities. Thus, special

care should be given in numerical integration - mostly increasing total compu-

tation time.

• Most effort in research in numerical methods for the last decades is spent on

the domain discretization methods, like FEM or FVM (even finite difference

5



Figure 1.5: Propogation of elastic waves in semi-infinite medium (half-space)

method, FDM). The BEM, therefore, lacks of a general engineering program

which has a good user interface to model the problems. This brings in some

modelling difficulty when complex geometries are involved.

• A BEM formulation is mostly impossible when dealing with non-linear differ-

ential equations. Also, non-homogenous domains are hard to formulate. In

such cases, special treatment of the non-linearity or non-homogeneity is re-

quired, which mostly destroys the boundary-only nature of the BEM [Brebbia-

DRM].

• The BEM, having full and non-symmetrical system matrices, needs consider-

able amount of memory to store data. Although, with the recent developments

in computer architecture, the memory sizes of even personal computers have

been increased to a very high extent, this issue is still a major disadvantage of

the BEM.

1.3 A short note on particle tracking and microfluidics

With new developments in material and manufacturing techniques, special devices

in micro dimensions are being introduced to be used in many applications. Some

examples are, micro pumps, micro actuators, MEMS devices, etc [6]. Of these listed
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devices, lab-on-a-chip (LOC) devices take special care [7]. These devices consist of

a micro-channel within which a fluid flows with many inclusions in it. The special

geometry and some additional electrical/magnetic equipment makes it possible to

perform special processes over these particles, like separating cells from bacteria in

blood to determine infection, or count the number of sperms in a given sample. An

example illustration is shown in Figure 1.6 which is reproduced from [7], where some

sample, as a droplet, is being placed on the so-called chip at one end and placing

this chip to the Point-of-care testing (POCT) device, several processes, like reaction,

delivery and analysis, can be performed on this sample.

Figure 1.6: An example illustration of a LOC device [7]

To perform the tasks of a LOC device, designing proper micro-channels in which par-

ticles flow in an pre-expected trajectories play special role. The trajectory of the par-

ticles can be altered by applied hydrodynamic forces within the flow, or external exci-

tation, like application of electrical, magnetic or acoustic field on the channel at pre-

scribed locations, can be given. As an example process, several hydrodynamic sep-

aration methods are given in Figure 1.7. Here, DLD stands for deterministic lateral

displacement where it is mostly used for bio-particle separation, sorting and focusing.

A second method for use for the same purpose is hydrophoresis. It is also possible to

reach the same goal by contraction/expansion (pinch segment) within the microchan-

nel network together with the laminar flow profile where the particles are manipulated

7



to flow at different streamlines. This is known as pinch-flow-fractionation (PFF). The

last common approach is to use the inertia of the particles to obtain the same goal.

All these are illustrated in Figure 1.7.

Figure 1.7: Using hydrodynamic forces to separate, sort or focus flowing particles [8]

Particle tracking problems have many important applications. Especially, with the

recent developments in microfluidics technology, tracking several particles, especially

with external forces acting, such as forces arising from the application of an electric,

acoustic or optic field, gained special importance [8].

For an efficient design of microfluidic systems, the prediction of the particle tracks

is crucial. Particle trajectory is the result of the interaction of the particle(s) with the

external fields present.

One approach to model the particle trajectory within the microchannel is the stress

tensor approach [9]. In this approach, the field variables are solved with the presence

of the finite-sized particle. The resultant force on the particle can be obtained by

integrating the appropriate stress tensor on the particle surface. In each incremental
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movement of the particle, the field variables need to be resolved. In many studies,

this approach has also been successfully implemented [10, 11] to explore the nature

of the particle flow within a microchannel. A rigorous simulation of the particle

motion utilising tensor approach requires massive remeshing. For methods involving

domain discretisation, such as finite element method (FEM) or finite volume method

(FVM) not only the remeshing process is computationally expensive, but also at each

remeshing step, some interpolating algorithms relating the field variables in the new

mesh in terms of the variables of the old mesh are required which cause some loss

in the accuracy. Moreover, the determination of the forces induced on the particles

requires the calculation of gradient of the field variables. Therefore, for an accurate

calculation of gradient of field variables, fine mesh is required on and within the close

neighbourhood of the particle surface. Due to the computationally expensive nature,

only 2D models with relatively coarse mesh and the motion of single particle have

been worked on using FEM.

To overcome the remeshing problem for the simulation of particulate flow at macro-

scale, immersed boundary method [12] and fictitious domain method [13] have been

proposed and implemented. Although these methods are computationally very ef-

ficient, to model the particle-particle interaction, some contact modelling is required

which has a resolution that cannot be accepted for the simulation at microscale. More-

over, these methods are well established for flow simulations, but rare studies exist

for the coupling of flow with the electrical and/or magnetic fields.

Considering the microchannel networks within the Lab-on-a-chip (LOC) devices,

typical flow speed is low (resulting in very low Reynolds number) and the inertia

forces are negligible (in magnitude) when compared with the pressure or the viscous

forces. The flow is Stoke’s flow which governs by a set of linear partial differential

equations. Linear equations are suitable for Boundary Element Method (BEM). Since

the BEM does not require meshing within the flow region and the exact calculation of

the gradient of the field variables, it is preferable for particle tracking in a microchan-

nel. Referring to these advantages, recently, Dustin and Luo [14, 15] implemented

the BEM to simulate the particle trajectory within a microchannel under the action of

electrophoretic and electro-osmotically driven flow field.
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1.4 BEM for Stoke’s flow

The listed advantages of BEM makes it an almost perfect tool for the analysis of

Stoke’s flow, since:

• The governing equations of Stoke’s flow are linear differential equations

• The solution domain is mostly very large, and in some cases extends to infinity

in one or more directions (some problems are named as external flow) where

the solution domain is infinite medium.

• Most problems involve moving boundaries (eg., flow of bubbles in fluid, mov-

ing particles, fluid flowing over fluid, etc.), thus discretization and remeshing is

an important issue.

Aside from the potential theory solutions of the Stoke’s flow, it was Youngren and

Acrivos [16] who developed the first BEM formulation for flow over axisymmetric

particles. In this study, they employed rigid particles. The same authors also worked

on deformable bubbles [17] in extensional flow. Later, Rallison and Acrivos further

extended this formulation to viscous drops [18]. It is also important to cite the im-

portant studies of Pozrikidis, [19], where he worked on Stoke’s flow over stationary

and/or moving particles. In this study, the boundary conditions for a moving particle

are introduced. Later, he published his work on boundary element method solutions

of fluid mechanics as a book [3] and introduced a powerful library (BEMLIB) for

interested researchers.

Of course, even with a tool like BEM, modelling time for many particles is extremely

high. It is reported by [20] that by a 3D analysis with approximately 1000 parti-

cles took 20 minutes for a single velocity calculation on an Intel Paragon massively

parallel computer using 1844 processors. Also, due to dense matrices formed in the

analysis, the memory requirements (when motion of many particles are considered)

become excessively high [1]. A solution to this problem appears to be the so-called

fast-multipole techniques to be applied [21]. The main idea behind the multipole

techniques is to use Taylor series expansions to lump (or "pole") far field effects.

This way, it becomes possible to represent the influence from far-elements with larger
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poles, which brings in the advantage of less memory usage and computational time

[22]. The method also proves to be well in parallelisation [23]. With the advantages

given above, the method lacks three major disadvantages , the reason which in this

dissertation it is not considered in detail:

• The boundary conditions to the problem should be given in velocity (not trac-

tion or other kind) so that a Fredholm integral equation of the first kind in direct

method of BEM or Fredholm integral equation of the second kind in indirect

method of BEM is obtained. This way, the stability of the system is ensured,

so that an iterative solver can be used. But in pressure-driven micro-channel

flows, this is not always possible; at the channel walls and at the inlet, velocity

conditions are imposed, but on the exit, mostly, traction boundary conditions

apply [24].

• In the context of this study, the derived work is extendable to cases where ex-

ternal force can be applied to the particles. No work on multipole method is

presented in literature to deal with such cases.

• Although there appear several works on 3D applications of multipole method

for several engineering problems, like time-harmonic elastodynamics [25], low

frequency acoustic problems [26], elastic contact problems [27], etc., very few

(and recent) studies exist for 3D application for particle tracking problems [28].

1.5 Aim, Scope and Significance of the Study

The main objective of this study is to present a new formulation for 3D particle track-

ing in micro-channels together with the implementation of a parallel code for use in

microchannel flow problems. To attain this objective, this study will be restricted with

the following scope:

• The continuum will be governed by the Stoke’s equations. That is to say, the

nonlinear convective terms in the Naviér-Stokes equations will be assumed to

vanish for microchannel problems. This approximation stems from the di-

mension of the problem and the velocity of the fluid, resulting in a very low
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Reynolds number.

• The flow will be assumed to be steady. This is to imply that the boundary con-

ditions will not be changed in time, resulting in a steady velocity profile in the

micro-channel. It will be assumed that, the movement of the particle(s) will not

affect the steadiness of the flow (or the disturbance will be too small, so can

be neglected). This assumption will be valid for small sized-particles (com-

pared with the micro-channel dimensions) and sufficiently small flow velocity,

which is the case in particle tracking problems in micro-channel flow. Assum-

ing steady flow, the inertial forces will be neglected since in such a case, the

magnitudes of the inertial forces will be much smaller then the pressure or the

viscous forces.

• For simplicity, but without losing generality, the particle(s) involved in the anal-

ysis will be spherical. Other possible geometries, like ellipsoid, toroid, etc., will

be considered in a future study. Also, the particle(s) will be assumed to be rigid.

• In parallelisation, SMP will be considered, and coding will be done using

OpenMP. Other alternatives like MPI and GPU utilisation is considered as fu-

ture studies.

To assess the study, several problems from literature are solved and the results are

compared to analytical solutions and/or previous numerical results obtained in lit-

erature. Also, further analysis on the parallelisation characteristics is performed in

comparison with the conventional method of solving Stokes flow problems.

One major novelty of the study is the derivation of a matrix relation where the motion

parameters (linear and angular velocity of the center of gravity) related to a number of

particles are obtained directly from the components of force and moment vectors ap-

plied at the given center. Through this matrix relation it becomes possible to directly

solve the velocity of the particle under the application of forces. With only hydro-

dynamic effects in place, e.g., no external forces are applied to the particle(s) from

other physics applications (like electric field, magnetic field, etc.), the free motion

trajectories of the particles are obtained.
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The matrix relation mentioned above gives rise to the second major novelty of the

study, which is easy parallelisation. Since the formulation depends on matrix multi-

plications, it becomes possible to effectively and efficiently parallelise the algorithm

in any parallel device. Although in this study only SMP parallelisation is imple-

mented, it is possible to extend the work (as a further study) to other parallelisation

techniques, such as MPI, GPU, GPU+CPU, MPI+GPU, etc.

The organisation of this thesis dissertation is as follows: The introduction chapter,

which is the current chapter, is followed by Chapter 2, formulating the boundary

element method for Stokes flow and presenting the proposed algorithm for particle

tracking. The third chapter is on implementation of the method along with the con-

ventional solution algorithm. Chapter 4 presents firstly the verification of the algo-

rithm, comparing the results of several problems with analytical solutions. Later in

Chapter 4, the performance of the proposed algorithm is compared with the conven-

tional method. Lastly, in Chapter 4, two engineering problems are solved to assess

the implemented code: the first example is on particle separation, and the second one

is on cytometry, that is, to count the number of particles in a multi-particle flow. Last

chapter, Chapter 5, gives a brief conclusion of the thesis study and proposes some

recommendations on future perspectives of the study.
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CHAPTER 2

FORMULATION

In this chapter, the particle tracking formulation is presented. For this, firstly, the

steady Stoke’s flow formulation with BEM is presented, followed by the imposition

of the rigid body movement boundary conditions. This long introduction is in place

since especially the imposition of the rigid body movement boundary conditions are

not shown in detail in the literature. Therefore, the explicit explanation will be useful

for further reference. Also, with this introduction, the later formulation will be more

readable.

Later, in this chapter, the new formulation for particle tracking in microchannels, the

impedance formulation, is presented in detail. The chapter will close with comments

on the new formulation and its intended use.

2.1 BEM formulation of the Stoke’s flow in 3D

For fluid flow in microchannels, since the dimension, L, and the flow velocity, U , is

very small (in scale of micrometers and micrometer/s), the Reynolds number, defined

in view of the density, ρ, and viscosity, µ, of the fluid,

Re =
ρUL

µ
(2.1)

is sufficiently small to neglect the nonlinear convective terms in the Navier-Stokes

equations. The resulting equations become

ρ
∂ui
∂t

= −p,i + µ (ui,j + uj,i),j (2.2)
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It is important here to note that, in the above equation and in the equations that follow,

Einstein’s summation convention is in place, requiring a summation over a repeated

index in its range. Also, to simplify notation, spatial derivatives are designated with

a (,) in the subscript, e.g., ∂ui
∂xj

= ui,j . In eq.(2.2), p represents the pressure and ui

are the components of the velocity vector. Further simplification in eq(2.2) can be

done considering the flow to be steady. With this assumption, the inertial effects will

be negligible (compared to the pressure and the viscous forces), which leads to the

velocity formulation of the governing equations of the steady Stoke’s flow:

−p,i + µ (ui,j + uj,i),j = 0 (2.3)

At this point we impose the continuity condition requiring,

ui,i = 0 (2.4)

which would further reduce the equation to a form

−p,i + µui,jj (2.5)

The stress tensor can be defined as

σij = −pδij + µ (ui,j + uj,i) (2.6)

Here, δij are the components of the Kronecker’s Delta. From eq(2.6) the traction

components at the boundary of the solution domain can be defined as

ti = σijnj (2.7)

The direct formulation of BEM is possible with such definitions of the field variable

ui, the traction on the boundary, ti and the pressure p. Note that, to incorporate the

gravity, the pressure can be modified as

P = p− ρgx (2.8)

Here, g is the gravitational acceleration and x are the Cartesian coordinates.
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The BE formulation of the above equations are given in several references, one of

which is replicated below [1]:

Cij(A)uj(A) +

∫
S

t∗ij(A,P) · uj(P) · dA =

∫
S

u∗ij(A,P) · tj(P) · dA (2.9)

In this equation, A represents the fixed (evaluation) point and P represents the varied

(integration) point. Note that P is on the boundary of the solution region, whereas

A can be in the solution domain, on the boundary, or outside the domain. Cij takes

values 1, if A is in the solution domain, 1
2

if it is on a smooth boundary or 0 if it is out-

side the solution domain. The field variables of eq(2.9) are the velocity components,

ui and the traction components ti, and u∗ij and t∗ij are the first and second fundamental

solutions of Stoke’s equation.

It should be noted that, all integrals in the eq(2.9) are surface integrals (in 3D). Similar

equation can be derived in case of 2D, where in this case, the resulting integral terms

will be line integrals. It is obvious that, through the solution of eq(2.9), one can obtain

the field variables, ui and ti at all points on the boundary as well as within the solution

domain. With the calculated values of the mentioned field variables, it is possible to

evaluate the pressure on the boundary and in the solution domain through the solution

of the integral equation:

C(A)p(A) =

∫
S

q∗j (A,P) · tj(A) · dA− µ
∫
S

p∗j(A,P) · uj(P) · dA (2.10)

Note that, obtaining pressure is a post-processing step in BEM formulation - it is not

required to obtain the boundary solution. In the above equation, the constant term C

depends on the location of the fixed point A, where the dependence is the same as

Cij .

Although found in literature [1], the fundamental solutions u∗ij , t
∗
ij , q

∗
j and t∗j are given

in Appendix-A.

The equations (2.9) and (2.10) are total boundary integrals, from which an explicit

solution of the boundary quantities is almost impossible. Thus, a numerical solution
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is attempted. In this study, since it can be considered as a post-processing step, the

pressure equation will not be considered further, but the same discretization strategy

that will be presented below can be employed to this equation too.

For simplicity, without losing generality, constant triangular elements will be used in

this study to discretize the boundary of the domain. Employing a total of N elements

on the boundary, eq(2.9) can be re-written as:

Cij(Ak)+
N∑
n=1

∫
Tn

u∗ij(Ak,Pn)·tj(Pn)·dA =
N∑
n=1

∫
Tn

t∗ij(Ak,Pn)·uj(Pn)·dA (2.11)

which, when written for all nodes, can be expressed as a matrix equation:

H · u = G · t (2.12)

Here, each component of the matrix G and the matrix H are obtained through the

evaluation of the integrals

Gkn =

∫
Sk


u∗11 u∗12 u∗13

u∗21 u∗22 u∗23

u∗31 u∗32 u∗33

 dA (2.13)

Hkn =

∫
Sk


t∗11 t∗12 t∗13

t∗21 t∗22 t∗23

t∗31 t∗32 t∗33

 dA (2.14)

As can be observed, each element of the matrix G and the matrix H is a 3 × 3 sub-

matrix. The vectors u and t contain the components of velocity and traction at each

node. The imposition of boundary conditions requires the definition of one and only

one of the couples (uni , t
n
i ) or a combination of these two at all points of the defined

boundary, where n represents the node number and i represents the direction. In

general case where no rigid body motion is given to any part of the solution domain,

the boundary conditions are given as:

• Dirichlet condition: where the component of velocity, e.g., ui is specified in a

given direction i,

• Neumann condition: where the component of traction, e.g., ti is specified in a

given direction i
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• Mixed condition: where a combination of the velocity and traction is specified

in a given direction i, generally a linear relation is given as a× ui + b× ti = c

(where a, b and c are constants).

A possible solution requires one and only one condition to be imposed in a given

direction, which implies that out of 6N unknowns, 3N are prescribed, leaving the

system to be 3N equations for 3N unknowns. The imposition of boundary condi-

tions is generally an easy task: through necessary column-swaps in the coefficient

matrices G and H the unknown quantities are transferred to the left-hand-side (LHS)

of the eq(2.12) and the known quantities are transferred to the right-hand-side (RHS),

leaving the system as

K · x = L · b (2.15)

where, x represents the unknowns vector and b represents the vector formed by the

boundary conditions. After the multiplication of the RHS matrix and the boundary

conditions vector to a single load vector l,

l = L · b (2.16)

the solution of the system of equations given in matrix form

K · x = l (2.17)

determines the solution.

Imposing the rigid body motion conditions, on the other hand, requires special treat-

ment. In the context of this study, we will consider the motion of undeformable par-

ticles. Thus, for any point on the particle, the velocity vector can be obtained through

u = uB + ω × r (2.18)

where u is the velocity of the point on the particle, uB is the velocity of the selected

center of the particle, ω is the rotational velocity vector and r is the relative posi-

tion vector of the particle point to the selected center of the particle. The imposition

of eq(2.18) relates all velocity components (evaluated at the prescribed nodes on the

moving particle) to six new parameters (per particle): three components of the trans-

lational velocity of the center of the particle and three components of the rotational
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velocity vector: 
u1

u2

u3

 =


uB1

uB2

uB3

+


ω2r3 − ω3r2

ω3r1 − ω1r3

ω1r2 − ω2r1

 (2.19)

Therefore, this condition increases the size of the matrix system by six-per-particle.

To accomplish this in the system of equations, six new columns are added to the LHS

coefficient matrix. In the organisation of the matrices, it is assumed that the unknowns

belonging to the moving particle are at the lower end of the vectors formed. In the

schematic explanation given in Figure 2.1, H0 represents the columns of the matrix H

which multiplies the components of the velocity vector at the non-moving boundary

parts, u0, and HP represents the columns of the same matrix which multiplies the

components of the velocity vector on the particle, uP . The same notation is valid for

G0, G, GP , t0 and tP . After new columns are added to the LHS coefficient matrix,

the contents of these columns are filled with the corresponding summations of the

columns HP .

H0"
u0"

Hp"

up"

G0"
t0"

Gp"

tp"

H0"
u0"

Hp"

up"

G0"
t0"

Gp"

tp"

u1"
u2"
u3"
ω1"
ω2"
ω3"

Figure 2.1: The first step in imposing rigid body boundary conditions - the augmen-

tation of H with six new columns
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After the first step is imposed, we can assume the particle velocities as the knowns of

the problem, since all components of the vector uP can be expressed in terms of the

six new components,
{
uB1 uB2 uB3 ω1 ω2 ω3

}T

. The unknowns are the traction

components on the particle, tP , which is transferred to the LHS by column swaps

between GP and HP , which is schematically shown in Figure 2.2

H0	  
u0	  

Hp	  

up	  

G0	  
t0	  

Gp	  

tp	  

u1	  
u2	  
u3	  
ω1	  
ω2	  
ω3	  

H0	  
u0	  

Gp	  

tp	  

G0	  
t0	  

0	  

0	  

u1	  
u2	  
u3	  
ω1	  
ω2	  
ω3	  

Figure 2.2: The second step in imposing rigid body boundary conditions - column

swaps

At this point, the number of unknowns are 3N + 6, where the number of equations

are 3N . Therefore, six new equations per particle are needed to make the system

of equations solvable. These six equations come from the force equilibrium on the

particle

fBi =
M∑
n=1

fn =
M∑
n=1

∫
Cn

ti(Pn)dS =
M∑
n=1

tni An (2.20)

and the moment equilibrium

mB =
M∑
n=1

r× fn (2.21)
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whereM is the number of elements on the particle. These static equilibrium equations

can be represented in terms of six new rows added to the system as in Figure 2.3.

H0"
u0"

Gp"

tp"

��

0"

u1"
u2"
u3"
ω1"
ω2"
ω3"

f1"
f2"
f3"
m1"
m2"
m3"

0"
0"
0"
0"
0"
0"

0"
0"
0"
0"
0"
0"

Figure 2.3: The augmentation of the LHS coefficient matrix with six new rows

It can be seen that, the imposition of rigid body boundary conditions will require

addition of six new unknowns and six new equations per particle to the system of

equations. Through the solution of the final system, the rigid body motion param-

eters can be determined, from which the velocities on each moving particle can be

evaluated using eq(2.19).

2.1.1 Impedance formulation

The major drawback of the classical formulation (which is presented above) is the

repeated solution of a considerably large linear system of equations. Although a very

large part of the coefficient matrices that correspond to non-moving boundary is not

re-evaluated, as the particle moves, parts of the coefficient matrices that are related

with particle has to be updated and the system is to be re-solved.

In most applications of particle tracking problems, the main focus is on obtaining the
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trajectory of the particle(s). The determination of field variables on the boundary or

in the solution domain does not have a significant importance. With this note in place,

we present a new formulation for tracking multiple particles, the impedance formu-

lation, which is based on a similar formulation derived by Mengi and co-workers in

several studies [29, 30]. For this, we express the rigid body motion of a particle in

matrix form as

uP = M · uB (2.22)

where uP is a column vector containing the velocity values at the nodes of the particle

which is organised as

uP =

{ {
u1 u2 u3

}1 {
u1 u2 u3

}2

· · ·
{
u1 u2 u3

}N }T

(2.23)

and uB is the vector containing the center velocity of the particle

uB =
{
uB1 uB2 uB3 ωB1 ωB2 ωB3

}T

(2.24)

and the coefficient matrix M is of size (3N×6) whose elements are obtained through

the eq(2.18). Similarly, defining a combined resultant force-moment vector for the

particle as

fB =
{
fB1 fB2 fB3 m1 m2 m3

}T

(2.25)

and the traction vector defined as

tP =

{ {
t1 t2 t3

}1 {
t1 t2 t3

}2

· · ·
{
t1 t2 t3

}N }T

(2.26)

a matrix relation as

fB = F · t (2.27)

can be obtained. Here, the (6× 3) matrix F is obtained through the relations given in

eq(2.20) and eq(2.21). At this point, we make a partitioning in the system of equations

such as  H00 H0P

HP0 HPP

 u0

uP

 =

 G00 G0P

GP0 GPP

 t0

tP

 (2.28)

where the index 0 refers to the non-moving boundary and P refers to moving bound-

ary - thus 0P refers to components that are evaluated when the fixed point is on

non-moving boundary and the integration is done over the moving boundary, etc. We

will assume that all components u0 are known and t0 are unknown, easily obtainable
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when necessary column changes are performed with given boundary conditions. The

first line of eq(2.28) requires

H00u0 + H0PuP = G00t0 + G0P tP (2.29)

which leads to

t0 = G−100 (H00u0 + H0PuP −G0P tP ) (2.30)

Inserting this to the second row equation of eq(2.28) we get

B · tP = A · uP + C · u0 (2.31)

where

A =
[
HPP −GP0G

−1
00 H0P

]
B =

[
GPP −GP0G

−1
00 G0P

]
(2.32)

C =
[
HP0 −GP0G

−1
00 H00

]
Inserting equations (2.22) and (2.27) to eq(2.31) and defining

K = FB−1AM

b = FB−1Cu0 (2.33)

we obtain

KuP = fB − b (2.34)

It is important to note here that,

• eq(2.34) is a system of linear equations where K is a square matrix of size

(6P × 6P ), and up, fB and b are column vectors of size 6P where P is the

number of particles in the system.

• Inverting a considerably large matrix, G00 to obtain G−100 , just once (at the

beginning of the analysis), the rest of the formulation contains matrix multipli-

cations and an inversion of the considerably very small matrix B which is of

size (3P × 3P ) to get B−1.

• The formulation readily involves the external forces to the system. This allows

direct imposition of external forces found from different analyses involving

different type of problems (electromagnetic, acoustic, etc.).
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• The final form is obtained with matrix multiplications, for which parallelization

is not only simple, but also effective.

• A special case of eq(2.34) is when there is no non-moving boundary, the case

that arises in infinite medium. In such case, b = 0 and A = HPP = H,

B = GPP = G. The solution can be evaluated through

KuP = fB

K = FG−1HM (2.35)

In the present study, time integration is performed in an explicit sense, using forward

Euler difference, for simplicity. For more rigorous analysis, other time integration

schemes, both explicit and implicit can be adopted.
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CHAPTER 3

IMPLEMENTATION

In this chapter, the development of sequential and parallel code in C++, which imple-

ments both the conventional and proposed method described in previous chapter, are

discussed and presented. First of all, the conventional method is implemented using

the sequential algorithm and some optimization methodologies are applied to have

efficient solutions. Then the equivalent parallel codes are developed.

Later, in this chapter, the development of codes, which is implementing the proposed

method based on impedance formulation, is discussed. Chapter is concluded with

information about the execution environment.

Before going into more depth, it would be better to discuss the preliminary decisions

about the linear algebra operations that should be used during the development of

application.

3.1 Computational Issues and Mathematical Libraries

The solution of the engineering problems, especially BE applications, requires exces-

sive amount of dense linear algebra operations on floating point numbers. In such

problems, there may be many operations on single dimensional arrays called vectors

and two dimensional arrays called matrix. Especially vector-vector, matrix-vector and

matrix-matrix operations are time consuming, and the developer would need to have

efficient algorithms preventing overflow and underflow errors that would occur dur-

ing computation. In addition to having large dense matrices, by the nature of problem
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being solved, the proposed method contains many matrix-matrix operations.

Almost all applications, developed for high computational engineering problems, use

linear algebra libraries for efficiency and accuracy. Today, a number of libraries,

such as BLAS (Basic Linear Algebra Subprograms) [31, 32, 33], ATLAS [34], Intel’s

MKL [35], AMD’s ACML [36], and IBM’s ESSL [37], are available in the literature.

The Open Source implementation of BLAS library, named GotoBLAS, later ported

and named as OpenBLAS [38], also exists and is not only the optimised version of

the generic BLAS library, but also supports the multithreading on shared memory

architectures. Linear Algebra PACKage (LAPACK)[39], and libFLAME [40] are

linked to this multithreaded BLAS, so that they simply shifted their sequential codes

to the parallel arena [41].

There is also another version of LAPACK called Parallel LAPACK (PLAPACK)

which adds parallel algorithms on some operations to support more parallelism on

SMP based computers. For the distributed memory architectures, the ScaLAPACK is

a good example of such library using Message Passing Interface MPI [42].

The libFLAME, High Performance Dense Linear Algebra Library, underlined with

OpenBLAS not only benefits from multithreaded BLAS library, but also contains

many parallel algorithms supporting their operations. LibFLAME is preferred to be

used in this study because of its easy of notation and high performance implementa-

tion of Dense Linear Algebra operations on Shared Memory Architecture (SMA).

3.2 Numerical Linear System Solver

For the solution of a linear system of equation given by A × x = b, the matrix A is

called ill-conditioned if Cond[A] =‖ A ‖‖ A−1 ‖ is very large. Obviously, from the

following inequality [43, 44],

‖ 4x ‖
‖ x ‖

≤ Cond[A]
‖ 4A ‖
‖ A ‖

a large condition number may cause instability in the solution vector x.

The BE problem to be solved given in equation 2.17 and 2.35, by nature, involves a

large asymmetric dense and highly ill-conditioned coefficient matrix. For such sys-
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tems, instead of an iterative solver, a direct solver is opted for, among which LU-

factorization is one of the most common in the literature [45, 46].

3.3 Conventional Method Implementation

An application, named Conventional Method in this study, is developed by imple-

menting the algorithm given in Figure 3.1 where LU Solver is utilized to compute the

results. The programming language C++ is used in order to apply Object Oriented

Programming techniques, to produce flexible and efficient code.

Figure 3.1: General Activity diagram of Conventional Method
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3.3.1 Details of the Algorithm

The algorithm, shown in Figure 3.1, starts with creation of the system, which contains

a channel and particles. Channel walls are defined with many planes, and particles

defined as spherical. Details of this process is given in Figure 3.2.

Figure 3.2: Activity diagram of Create System

During the creation of any Shape type, such as Plane or Sphere, triangulation of

the mesh is also done in the constructor function. For example when constructing the

planes of channel walls, the object constructor requires its coordinates in the order of

left top (lTop), left bottom (lBot), right top (rTop), right bottom (rBot) so that

the normal direction of the triangles, that will mesh the shape, can be decided. The

triangulation process is defined in a way that all triangles meshing the shape has the

same normal direction obtained by using the right hand rule.

The number of divisions of sides are also taken by the constructor, so that during the

creation of shapes, the discretization process is done at the same time. There are two

different methods of triangulation, one is defined by the number of increments where

in each increment, all triangles of that shape are divided into two, the other is defined

by number of divisions of sides, where the shape is divided into small rectangles first,

and then each rectangle is divided into four triangle. Although the former method can
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be used for any kind of shape, the latter is more suitable for rectangular shapes.

A single object of System type keeps track of every elements of channel and parti-

cles in a thread safe list container, where by benefiting from the type provided in C++

Standard Template Library (STL). All triangles, meshing the shape, are also stored in

an STL type vector container, which again is thread safe.

The following code is an example of such constructor from the Plane class, which

is derived from Shape type.

Plane::Plane(Point lt, Point lb, Point rt,

Point rb, int n, int m)

: Shape(), tSplit(n+1),lSplit(m+1) {

lTop = points->add(lt);

lBot = points->add(lb);

rTop = points->add(rt);

rBot = points->add(rb);

divideRect(lt, lb, rt, rb, n, m);

}

As can be observed from the above code, four Point objects are passed to construc-

tor as parameters, and they are stored in a PointContainer type object named

points, so that all Point objects are stored in the container and referenced by their

index position in the rest of the application. The add method of PointContainer

accepts a Point object as its parameter and adds to its internal vector container,

if not already exists, and returns an integer number pointing to the index position of

that object. If the passed Point object was already contained, it simply returns the

index position without adding to container. The add method of PointContainer

is as follows,

int PointContainer::add(Point &p){

int place = find(p);

if ( place != -1){

return place;
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}

pData.push_back(p);

return pData.size()-1;

}

The last statement in the constructor of Plane executes the method divideRect,

which is inherited from the abstract base class Shape. It is coded in a way that any

rectangular shape can be mashed using triangles, which is called triangulation in this

study.

void Shape::divideRect(Point lt, Point lb, Point rt,

Point rb, int n, int m){

int lSplit = m + 1;

int tSplit = n + 1;

Point pArr[lSplit][tSplit];

int pPlace[lSplit][tSplit];

pArr[0][0] = lt;

pPlace[0][0] = points->find(lt);

pArr[lSplit-1][0] = lb;

pPlace[lSplit-1][0] = points->find(lb);

pArr[0][tSplit-1] = rt;

pPlace[0][tSplit-1] = points->find(rt);

pArr[lSplit -1][tSplit-1] = rb;

pPlace[lSplit-1][tSplit-1] = points->find(rb);

// top side

Point tVec = rt - lt;

double tSize = tVec.length();

double tSplitSize = tSize / n;

tVec /= tSize;
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// bottom side

Point bVec = rb - lb;

double bSize = bVec.length();

double bSplitSize = bSize / n;

bVec /= bSize;

for (int i=0; i < tSplit; i++){

pList.insert(pPlace[0][i] = points->add(pArr[0][i] =

pArr[0][0] + tVec*(i*tSplitSize)));

pList.insert(pPlace[lSplit-1][i] = points->add(

pArr[lSplit-1][i] = pArr[lSplit-1][0] +

bVec * (i*bSplitSize)));

// left side

Point lVec = pArr[lSplit-1][i] - pArr[0][i];

double lSize = lVec.length();

double lSplitSize = lSize / m;

lVec /= lSize;

for (int j=1; j < lSplit-1; j++){

pList.insert(pPlace[j][i] = points->add(pArr[j][i]

= pArr[0][i] + lVec * (j * lSplitSize)));

}

}

for (int i=1; i< lSplit; i++){

for (int j=1; j < tSplit; j++){

triRect(pPlace[i-1][j-1], pPlace[i][j-1],

pPlace[i-1][j], pPlace[i][j]);

}

}

}

31



The above code divides a rectangular plane into (n+ 1)× (m+ 1) small rectangles,

as shown in Figure 3.3, and then calls triRect method overrided in Plane class,

which triangulizes a given rectangular area with four equal triangles.

(a)

(b)

Figure 3.3: Rectangular plane triangulation 20x4

Similar to divideRect method, the triRect method is also inherited from the

base class Shape, and is defined as a virtual function so that any child class can

specialize it by overriding mechanism, so that there may be other derived types of

Shape type, which has different triangulation strategy. This is the case in Sphere

and Plane classes, where in the former class any rectangular area is divided into two

triangles, but in the latter it is divided into four. The implementation is given below;
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void Sphere::triRect(int lTop,int lBot,int rTop,int rBot)

{

tList.push_back(Triangle(rTop, lBot, rBot));

tList.push_back(Triangle(lBot, rTop, lTop));

}

void Plane::triRect(int lTop,int lBot,int rTop,int rBot)

{

int rmp = points->add((*(points->at(lBot)) +

*(points->at(rTop)))/2);

tList.push_back(Triangle(rTop, rmp, rBot));

tList.push_back(Triangle(rBot, rmp, lBot));

tList.push_back(Triangle(lBot, rmp, lTop));

tList.push_back(Triangle(lTop, rmp, rTop));

}

As stated above there are two different triangulation mechanisms implemented in the

codes. First mechanism is presented in divideRect method of Shape class. The

second method is used in Sphere class and is suitable for spherical shapes. To show

the methodology, it is better to start from the constructor of Sphere class.

Sphere::Sphere(Point c, double rr, int dc) :

r(rr), divCount(dc), center(c)

{

side = r / sqrt(3);

// side of the cube inside this sphere 3x^2 = r^2

// top

divideRect(

Point(center.x+side, center.y+side, center.z+side),

Point(center.x+side, center.y+side, center.z-side),

Point(center.x-side, center.y+side, center.z+side),

Point(center.x-side, center.y+side, center.z-side),
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1, 1);

// bottom

divideRect(

Point(center.x-side, center.y-side, center.z+side),

Point(center.x-side, center.y-side, center.z-side),

Point(center.x+side, center.y-side, center.z+side),

Point(center.x+side, center.y-side, center.z-side),

1, 1);

// right is defined like above

// divideRect(...);

// left is defined like above

// divideRect(...);

// front is defined like above

// divideRect(...);

// rear is defined like above

// divideRect(...);

this->subDivide(divCount);

}

The constructor of Sphere class accepts three parameters, first is the center point,

second is the radius, and the third is the number of iterations that should be followed

during triangulation process. In this code, the biggest cube that can fit into the sphere

is defined and each side of the cube is triangulized by divideRect method. The

last statement in the constructor executes subDivide method with the number of

iterations. In every iteration, all the triangles of that shape are divided into two differ-

ent triangles, as shown in Figure 3.4. For this purpose, the mid point of longest side
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of triangle is found and mapped on sphere, then using four points (three points from

the edge of original triangle, plus one newly calculated point), two new triangles are

defined according to the right hand rule in order to keep the normal direction the same

as in the original triangle. In short, every triangle meshing the sphere is divided into

two, and new triangle list is kept. This process is done by the following code:

void Sphere::subDivide(int cnt){

int m;

for (int i=0; i < cnt;i++){

TriangleList newList;

for(TriangleList::iterator i = tList.begin();

i != tList.end(); ++i) {

Point mid = (i->getA() + i->getB()) * 0.5f;

// point betwenn points A and B

this->putOnSurface(&mid);// put in on the sphere

pList.insert(m = points->add(mid));

newList.push_back(Triangle(i->b, i->c, m));

newList.push_back(Triangle(i->c, i->a, m));

}

tList.clear();

tList.swap(newList); // use new set of triangles;

}

}

The longest side of any triangle is always the side connecting the first and second

edge. So that, there is no need to calculate the side lengths to find the longest one.

For any shape construction, in the design of the codes, object oriented techniques are

being utilized so that any 3D shape can be defined, by inheriting the Shape abstract

base class whose UML diagram is given in Figure 3.5. All other shape types, such

as Sphere and Plane are derived from Shape class to have polymorphism, which

helps to reduce the complexity of coding. Any new shape type can easily be defined

by deriving the abstract base class Shape, which may make the codes more reusable
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Figure 3.4: Sphere triangulation shown in every iteration from 1 to 9

and easily extensible in further studies.

In the application, everything is stored as an object or encapsulated in an object, and

all objects are kept by an instance of System class with the composition technique,

where the "Singleton Pattern" is used.

3.3.2 Optimization

Before introducing the parallelization into the codes, some code re-factoring is done

for optimizing the performance in sequential solutions using reordering loop vari-
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Figure 3.5: Abstract base class Shape

ables to make more cache hits [47]. For example, in integral computations, instead

of keeping the fixed point A’s, and traversing on varied point P’s, that are given in

equation-2.9, the loop variables are reordered so that outer loop fixed P’s and inner

loop traversed on A’s. By doing this, re-computation of Gauss-points in P’s triangle

are eliminated.

Memory usage optimization is also done by keeping all the coordinates as a Point

type in a big container, and using their index position in other objects, such as Trian-

gle, and Rectangle type. For example, the triangle edges are stored as an index of

three different Point objects, which are residing in an instance of PointContai-

ner. The creation of PointContainer instance is an another example of using

"Singleton Pattern". A Point object contains three floating point numbers, which

can be used as a position on 3D coordinate system, or as any kind of vector represent-

ing velocity, displacement, etc. If a container were not used in keeping coordinates,

to prevent redundant data, every triangle object would contain at least three Point

objects for their edge position, which are shared at least with four other Triangle

depending on its position. It is obvious that by re-factoring, approximately 75 percent

of memory used for edge position of triangles are saved.

As another trivial optimization, the repeated calculations of the unchanged part of

matrices, such as the computation of G00 and H00 given in equation 2.28 are avoided

after the initial step. The activity diagram of creating G and H matrices are given in

Figure 3.6.

37



Figure 3.6: Sequential computation of G and H matrices

3.4 Paralellization Strategy

At this point, it should be emphasized that the major objective of this study is not to

implement the most efficient application, but to develop a parallel application which

illustrates the efficiency of the proposed algorithm.

SMP parallelization techniques are used for making efficient use of computation

power in solving the problem. In order to accomplish this, OpenMP [48] prepro-

cessor directives are being utilised in parallel code generation.

OpenMP is an API which supports shared memory multiprocessing programming.

OpenMP’s SMA (Shared Memory Architecture) is based on threading, and gives
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programmer an API to use threading easily and safely. In the present problem, there is

a huge amount of data to be processed and all the data is used in the subsequent steps

of the computation. An advantage of SMA is that, there is no data transfer between

threads, since all threads are executed on the same computer, but on different CPU

cores, sharing the same memory.

An example of a OpenMP directive used in this study is given below:

#pragma omp parallel for private(i)

for (i=0; i < ipSz; i++){

for (int j=0; j < tvSz; j++){

doIntegrate(mu, internalPoints[i], *(triVector[j]),

intGMatrix, intHMatrix, i, j);

}

}

This pragma directive causes the outer loop be executed in a parallel session by

generating a number of threads.

As a complex example of an OpenMP directive, where the dynamic scheduling is also

being utilised, is shown in the following code section:

#pragma omp parallel for private(r_dist, r_dist2, drdn,

r_vect, xa, IG, IH, IGmult, IHmult,l)

shared(t, vpArr, k, mu, IGBuffer, IHBuffer, triSize)

schedule(dynamic)

for (l=0; l < triSize; l++){

// ......

}

When developing a parallel version of the program, concentration is given on the

parts where sequential code consumes much of the computing time.
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As can be seen from the general activity diagram in Figure 3.1, after the system is

created, all other operations are repeated in every iteration. Generating the system

and triangulation of the mesh is done only once and these operations are relatively

less time consuming and there is no need to parallelise this part.

Figure 3.7 shows how the parallelization is applied on the generation of G and H

matrices, where the domain decomposition method is performed. As can be seen

in eq(2.28), G and H matrices are decomposed into four sub-matrices. Since the

channel does not change its shape, G00 and H00 are needed to be computed only

once. In the first iteration, they are computed and stored once in the memory and

retrieved many times in the subsequent iterations. Also, as discussed before, the loop

reorganisation is applied to use more cache hits in order to increase the performance.

Figure 3.7: Parallel computation of G and H matrices
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Figure 3.8: General Activity diagram of impedance formulation

Parallel performance is mainly gained by using libFLAME library, which is based

on the micro-kernel operations of OpenBLAS that supports multithreading and par-

allelizing the generation of G and H matrices. In addition to this performance gain,

application benefits from the OpenMP parallelization, especially in the computation

of integrals.

3.5 Implementation of the impedance formulation

In order to show the accuracy of the new formulation with respect to the Conventional

Method, impedance formulation is implemented as depicted in section 2.1.1, whose

activity diagram is given in Figure 3.8, using both sequential and parallel algorithms.

The most important difference between the conventional method and the new method

application is in the memory management of G and H matrices. In conventional
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method, both matrices are stored in contiguous memory locations, for which the

memory space is taken by using a single malloc function call, and zeroed the con-

tent by using memset function call. In the new method, two new data types called

ZKMatrix and ZKArray are defined to store all matrices and all vectors used in

application. It should be noted here that, the memory used by these matrix and array

instances are shared with the flame objects. Flame library has special object types

for each construct, which reserves memory space in addition to other information,

but they can also be constructed by attaching an already allocated memory space,

either in row or column major order, which are reserved from somewhere else. De-

veloped application benefits from this capability of flame objects so that flame object

are linked directly to ZKMatrix and ZKArray objects.

As in the conventional method, the generation of G and H matrices are computed in

each step but the G00 and H00 parts are computed once. In the solution by conven-

tional method, G and H matrices are stored in contiguous memory as a whole block

because of LU factorization and linear solver operations works on them as a whole.

On the other hand, in the new method the matrices are physically divided into four,

and each of them is defined as separate objects.

As stated above in the conventional method, LU operation is done on the whole G

matrix, but the inverse of G00 is computed once only in the first iteration, where

again LU decomposition is used, and is stored in another object called G00Inv. In

subsequent iterations, the inverted matrix is retrieved from the memory and used in

the rest of the calculations. As can be seen from the activity diagram, in each iteration

there is a step where the A, B, and C matrices are all computed, as defined in equation

2.32.

In the proposed method, most of time spent in computing the result is used in matrix

multiplications and in computing the inverse of B matrix depending on the structure

of the problem to be solved.
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3.6 Benchmark Environment

In the analysis, DELL R720 computer with 32 virtual Core (having 2 CPU with 16

real cores) CPU, having NUMA Architecture with 384 GB of RAM is being used

to measure and compare the efficiency of both applications. Linux operating sys-

tem, 64bit, is installed on this architecture and all libraries used in this study are

re-compiled on this environment.

Output of Linux shell command "lscpu" is given in Figure 3.10, and the NUMA

architecture is displayed by the output of shell command "lstopo -no-io" in

Figure 3.9;

Figure 3.9: NUMA architecture of Benchmark Environment

As shown in Figure 3.10 architecture is X86_64 of having 2 CPU sockets each of
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Figure 3.10: CPU architecture of Benchmark Environment

having 8 cores are being utilised in benchmark operation. Since the architecture sup-

ports hyper-threading, two threads per core can be executed concurrently, the com-

puter can be used to measure 32 cores.
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CHAPTER 4

NUMERICAL RESULTS

4.1 Verification of the formulation

The developed formulation has been tested for some 2D benchmark problems, and

good agreement has been achieved by analytical and FEM solutions. The details of

2D verification can be found elsewhere [24]. It should be stated that, in examples

given in this chapter, the length units are in µm, the time unit is s and the mass unit is

kg. All units are derived from these major units, and also, since the Stoke’s equation

is a linear differential equation, it is possible to non-dimensionalise the respective

quantities with the above mentioned units. From this perspective, all units in all

figures are given in stated dimensions.

4.1.1 Flow in a square channel

For the verification of the 3D formulation, the flow in a square channel with ofW and

length of L is analysed as a first benchmark. At the inlet, constant velocity profile is

given, and at the exit, the viscous forces are zero, leading to a no-traction condition.

At the channel walls, sticking boundary conditions (zero velocity) are imposed. The

flow, which has a constant velocity profile, turns to a paraboloid at each section of the

square channel. The analytical solution can be obtained by using integral transform

techniques as:

u(x, y) =
16

W 2

∆P

µL

∞∑
m=1

∞∑
n=1

sin(βmx/W ) sin(λny/W )

(β2
m + λ2n)βmλn

(4.1)
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(a)

(b)

Figure 4.1: Two views from channel flow analysis

where βm and λn’s are the eigenvalues defined as:

βm = (2m− 1)π/W, λn = (2n− 1)π/W (4.2)

The boundary element analysis results, presented in Figure 4.1 fits in a very good

correlation to the exact data (with less than 1% error).

At this point, a short note can be added: in the case of a creeping flow, if there is

a small obstacle (eg. a sphere) within the channel, the far-field solutions should not

be affected. That is to say, if a spherical small particle is added to the channel, at

its centroid, the flow redevelops quickly such that the solution at the exit will remain
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Figure 4.2: Development of the velocity profile after an obstacle in the square channel

unchanged. We demonstrate this fact in Figure 4.2.

In this figure, both exit velocities and the velocities at a vertical section within the

flow domain are plotted. It can be seen that they both have parabolic shape.

4.1.2 Two sphere problem

As a second benchmark, the motion of a spherical particle over a stationary particle

in an infinite medium is analysed. The schematic drawing of this problem is given in

Figure 4.3.

U∞ 

bmin 
x 

y r 

ξ =  
2(r-a-b) 

a+b 

a 

b 

Figure 4.3: Schematic drawing of the second benchmark problem

This problem has an analytical solution for ξ � 1 (far-field solution) and for ξ � 1
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(near-field solution) [49]. The comparison of the far-field is given in Figure 4.4. In

the simulations 6144 elements per particle are used on the particles. As seen from the

figure, BE formulation recovers the analytical solution pretty well.
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0   
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]

Analytical Solution
BEM Results

Figure 4.4: Comparison of BEM and analytical solution for far-field two sphere prob-

lem

In the near-field, however, the analytical solution is applicable only if the particle(s)

are sufficiently small. From the fact that the analytical solution is symmetric, we can

deduct such a conclusion: if a very small particle is moving close to the sphere, its

path will be symmetrical. But if the particle size is increased, it will be affected by

the velocities away from the non-moving sphere, and therefore the path will deviate

from being symmetrical. This may be called, the size effect. To demonstrate this, we

solve the near-field problem with two different particles: the first particle has a radius

of 10µm, whereas the second particle has a radius of 5µm. They both start at the

same distance to a non-moving sphere of 10µm radius. The drawing for the problem

is given in Figure 4.5.

In Figure 4.6, the path of the center of the moving sphere is plotted. The guidelines

are for referencing the symmetry along the center location of the fixed sphere. Note

that, symmetry is not achieved in this case.

Decreasing the radius of the particle to 5µm, the path becomes more symmetrical

(Figure 4.7), as expected.
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(a) (b)

Figure 4.5: Two different problems to demonstrate size effect

Figure 4.6: The near-field solution with BEM for large sphere

Figure 4.7: The near-field solution with BEM for small sphere
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4.1.3 Three sphere problem

As a third benchmark problem, a three sphere (with identical radius) problem is con-

sidered (schematic drawing of the problem can be seen in Figure 4.8). Recently, a

numerical technique has been proposed and compared against the Stokian Dynamics

solution, and found that the proposed techniques are accurate up to particle separa-

tion of 0.1 radius [50]. The problem statement is simple: three spheres of same radius

(a) is placed on a line with separation being s > a. The center sphere is forced to

the right sphere with unit non-dimensional force. The output of the analysis is the

velocity of the middle sphere and the velocities of the side spheres (which should be

equal). The result of the study is compared with the BEM formulation presented in

this study and the results are tabulated in Table 4.1 (the results from [50] was digitised

for the comparison). All units in the presented table are non-dimensional. As seen

from the results (Table 4.1), a very good agreement has been achieved.

x 

y 

separation(s) 

a 

s 

Figure 4.8: Schematic drawing of the benchmark problem

s/a
Middle Sphere Side Sphere

BEM [50] % Error BEM [50] % Error
2.01 0.666 0.659 1.08 0.644 0.645 0.21
2.05 0.703 0.694 1.28 0.629 0.630 0.10
2.10 0.733 0.727 0.89 0.615 0.614 0.10
2.20 0.780 0.775 0.69 0.589 0.589 0.01
2.40 0.847 0.838 1.02 0.548 0.547 0.13
2.60 0.886 0.878 0.89 0.513 0.512 0.25
2.80 0.913 0.906 0.80 0.483 0.483 0.06
3.00 0.933 0.925 0.90 0.457 0.456 0.15

Table 4.1: Comparison of the drag forces on the spheres for three sphere problem
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4.2 Performance of the proposed algorithm

As stated above, the verification of the code is made for several problems, comparing

the results with the analytical formulations or results from the previous studies. In

this section, the case studies measuring the performance of the conventional method

and presented algorithm are given.

For this, a very simple microchannel flow problem is defined: a channel with dimen-

sions 100x100x500 µm with one or more particles located near to the centroid of the

channel. Each particle is assumed to be spheres of 10µm radius. A representative

sketch with one particle is given in Figure (4.9).

Figure 4.9: Example problem for performance analyses

The boundary conditions can be stated as follows: at the inlet, constant velocity pro-

file with 100µm/s along the longer channel axis and zero velocity along the other

two directions; at the exit no viscous forces; and on the channel walls zero velocity

in all directions. From the analysis the particle velocity for single particle is found to

be approximately 250µm/s, which means, with a time step size of 0.001s, the parti-

cle will move 250µm in 1000 time steps, for which the performance calculations are

based on. Note that, for different problems which will have different dimensions, the

number of steps to consider will differ, which will affect the following discussions.

It is clear that the performance of both methods would depend on the problem size.

The main difference between the conventional method and the presented algorithm is

that; in the former method the computation of LU decomposition is done on G and

H matrices as a whole, but in the latter method, inverse of G00 is computed once and

used in the subsequent operations.
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4.2.1 Analysis 1

We begin case studies with a fixed number of elements on the particle, which is se-

lected to be 384, and investigate the effect of changing number of elements on the

channel. The number of CPU in each solution is fixed to 32 core, and the number of

elements on channel is selected as 2200, 3168, 4312, 5632, 7128, 8800, 10648, and

12672.

The time to compute the results in 1000 iterations of both application, when increas-

ing the number of elements on channel, is shown in Figure (4.10), from where it is

obviously seen that proposed method gets better and better when the channel size is

increased, so forth the problem size.

Figure 4.10: Time spent in 1000 iterations when #element on particle is fixed to 384,

and #element on channel is increasing

To get the performance ratio of proposed method with respect to conventional method

the formula;

pr =
tc
tp

is being used, where pr represents the performance ratio, tc is the time spent in Con-

ventional Method, and tp is the time spent in Proposed Method. The calculated per-

formance ratios are sketched in Figure 4.11, from where it can be easily seen that the

proposed method increases its performance when the number of elements increased

on the channel. That means, when the ratio of number of elements on channel with
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respect to number of elements on particle increased, the proposed method gets much

faster than the conventional method.

Figure 4.11: Performance ratio depending on the channel size, particle size is fixed

4.2.2 Analysis 2

A second analysis is done comparing the different numbers of particles in flow with

the number of elements on the channel unchanged (Figure 4.12). Each particle is

of the same size and discretised with the same number of elements. Three different

channel discretisations are performed: (i) 3168, (ii) 5652, and (iii) 8800 elements on

the channel. Numerical results are given in Table (4.2) where the table headings are

named as;

nOfPart : number of particle

#elCh : total number of element on channel

#elParticle : total number of elements on particles

timeConven : time spend in conventional method

timeProposed : time spend in proposed method

Ratio : time in conventional / time in proposed
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Table 4.2: Time spent and performance ratio

nOfPart #elCh #elParticle timeConven timeProposed Ratio
1 3168 384 10059.264 4488.844 2.24095
2 3168 768 12850.391 8281.405 1.55172
4 3168 1536 21845.281 19271.072 1.13358
8 3168 3072 45255.747 56445.316 0.80176

16 3168 6144 127149.301 212930.510 0.59714

1 5632 384 11311.0536 31200.2420 2.75836
2 5632 768 19702.7879 38453.0132 1.95165
4 5632 1536 41996.4081 56013.6747 1.33377
8 5632 3072 106254.2890 96091.4544 0.90435

16 5632 6144 332924.0140 214216.6400 0.64344
1 8800 384 22817.1027 91541.1939 4.01196
2 8800 768 40905.0666 105616.6715 2.58199
4 8800 1536 85258.7855 130397.1705 1.52943
8 8800 3072 196739.1028 198925.9942 1.01112

16 8800 6144 623241.6868 395470.8260 0.63454

The results are also displayed in Figure 4.12 where it can be observed that, the per-

formance of the presented algorithm depends on the ratio of number of elements on

the channel to the total number of elements on the particles.

Close inspection reveals that, when this ratio is increased, the performance of the

presented method increases. At this point, a short note is in place: in most particle

tracking problems in microfluidic applications, the total number of elements on the

channel is comparably much more than the total number of elements on the particles,

which introduces a very important advantage for the presented algorithm.

4.2.3 Analysis 3

A third analysis is on the parallelisation of the procedure. For this, the problem size

is fixed and the number of processors being used is changed. The number of elements

on particle is selected as 768, and the number of elements on channel is fixed to 5632.

For every number of processor settings, both application is executed 10 times, with the

number of iterations fixed to 100. The time consumed in every execution and in each

iteration is recorded and average time consumption is calculated for each iteration.
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Figure 4.12: Performance ratio depending on number of particles

Since the time used in first iteration is different then the remaining iterations, its

average is calculated separately. Then the results are interpolated to 1000 iterations

by the formula tt = tfi + tri ∗ 999 (where tt states for total time, tfi states for

"average time consumed in first iteration", and tri represents "average time consumed

in remaining iterations other than the first one").

The calculated time consumption results of both algorithms on different number of

processors are given in Figure 4.13.

Figure 4.13: Time consumption depending on the number of processors
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From the same results, the speedup ratio is calculated by the equation;

s =
ts
tp

where ts is the time spent in sequential, and tp is the time spent in parallel algorithms.

As the speedups illustrate in Figure 4.14, the proposed method shows better spedups

from the conventional method, which proves itself as more parallellizable than the

conventional method.

Figure 4.14: Speedup ratio depending on number of processor

4.3 Separation problem

Up to this point, the verification and performance of the proposed method is pre-

sented. Now, a very common application of microchannel flow in LOC will be shown:

the hydrodynamic separation. The main objective of the hydrodynamic separation is

to separate large and small particles in a particulate flow - the large particles may

resemble the red blood cells in a blood sample with small particles being the bacte-

ria, so the designed microchannel may be used to separate bacteria in a blood sample

from the red blood cells.

The hydrodynamic separation is mainly achieved by geometry changes in a microchan-

nel which alters the flow lines so that different sized particles with the same initial
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starting position end up at different exit locations. With the exit locations, the parti-

cles can be extracted to separate places.

In the presented example problem, separation of two spherical particles, one with

10µm and the second with 4µm diameters, will be studied. The channel geometry is

given in Figure 4.15.

Figure 4.15: The channel geometry for separation problem

The particles are released at symmetric positions from the channel wall, with the

same distance 10µm from the wall. It is obvious that, since the assumed motion of

the fluid obeys Stoke’s equation, regarding the distance of the particles, the effect of

one particle to the other will be negligible. This is to say that, the particle trajectories

could be obtained by releasing one particle at a time, then combining the analysis.

In this study, however, two particles are released at the same time as displayed in

Figure 4.16.

Figure 4.16: Starting position of the two particles in separation problem

The trajectory of the particles are displayed in Figure 4.17. It can be seen that, the

particle with smaller diameter appears to end up at a closer location to the symmetry

axis of the channel when compared with the particle with the larger diameter. This
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way, it can be concluded that these two particles are separated.

Figure 4.17: Trajectory of the two particles in separation problem

4.4 Cytometry problem

Another practical problem in microfluidic applications is to count the number of par-

ticles of importance. An example would be to count the number of bacteria in urine

samples, revealing whether the subject is infected or not. A very practical way to

achieve this is to force the particulate fluid to cross a hurdle (a smaller channel or an

obstacle in the channel) where this cross over will be forced to be one-particle at a

time. This way, using a laser beam or a marker, each particle can be counted. This is

a design problem where many simulations with lots of particles should done. In this

study, a simple example with 27 particles of 5µm radius each, will be presented. The

particles are placed at an equal grid of 3× 3 and relased within the flow. The channel

geometry is the same as given in Figure 4.15.

The results of the analysis is presented in Figure 4.18. It can easily be seen that,

the method simulates the flow of 27 particles in a long channel with hurdle at the

middle in a sufficiently good manner. Even when the particles get very close to each

other (when crossing the hurdle) it has been seen that hydrodynamic effects keep

them from touching each other’s boundary. It appears, on the other hand, that the

selected channel geometry is not a good geometry for cytometry applications. It can

be observed that two particles pass at the same vertical position at a time. This is a

situation that is not in favour of counting the particles.

58



Figure 4.18: Screen captures of 27 particle moving inside the channel
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CHAPTER 5

CONCLUSIONS

A new method for particle trajectory tracking is presented for Stoke’s flow problems,

especially applicable to the field of microchannel flows. The method depends on

matrix multiplications using the system matrices of the boundary element method,

resulting into a system of equations relating the particle velocities (linear and angular)

to the external forces and moments applied on the particle (in case of freely moving

particle(s), these forces and moments are zero). The presented method would prove

its use in multiphysics applications where the external force is due to another physical

problem, such as electrical, magnetic and/or acoustic field, etc.

LU factorisation with partial pivoting, although being one of the most effective meth-

ods for solving linear system of equations, is very difficult to parallelise, due to the

pivoting step [46]. Incremental pivoting is proposed [46] for speeding up the LU

factorisation. However, it was mentioned in the same article that, this approach may

cause numerical instability.

Matrix multiplication operations, on the other hand, has been proven to have high

parallel performance, especially on the new infrastructures (such as GPUs) are intro-

duced. Also, with these new infrastructures, new algorithms that give higher speed-

ups in parallel processing are being introduced [51, 52]. Accordingly, the formulation

presented in this study is expected to be much more useful in the near future. Note

that, the speed-up of the presented algorithm compared with the conventional solu-

tion is increasing when the number of CPU cores increase (recall Figure 4.14 for a

demonstration up to 32 cores) - which is an indication of high-scalability of the pro-

posed method. Considering the number of cores in GPUs available for floating point

60



operations, the proposed algorithm would be much more effective.

In the presented algorithm, the matrices G00 and H00 are computed only once, and

the inverse of the matrix G00 is obtained at the beginning of the process. A possible

application to utilise this property of the present procedure would be as: computing

the G00, H00 and G−100 in a powerful computer that has sufficient memory and storing

it for use in a common computer where only the matrix multiplications are performed.

Also, with the above matrices evaluated once, different problems (e.g. with different

number of particles at different locations) can be solved simultaneously in different

machines.

A major drawback of the presented algorithm would be the requirement of large mem-

ory space. This, however, is not a major issue when the increasing trend of computer

architectures with larger memory installed. Also, with the note above in place, the

static matrices G00 and H00 can be computed in a computer with sufficient mem-

ory for later use in computer(s) with less memory. Therefore, although there appears

a disadvantage in memory usage of the proposed method when compared with the

conventional method, this can be disregarded.

In the case study presented, it can be seen that, as the ratio of G00 over GPP increases,

the presented method gets better. When general applications of particle flow in mi-

crochannels is considered, this ratio is very high. This makes the presented algorithm

a powerful tool for particle tracking problems in microfluidic applications.

Aside from the performance of the proposed method, in this study, the effectiveness of

the BEM in solving particle flow problems is demonstrated using several examples.

In each example, it has been seen that the BEM presents a very powerful tool for

solution of Stoke’s flow problems as well as particle motion - especially when the

particle is close to the non-moving boundary.

5.1 Further Study

The parallelization techniques and the underlying architecture plays a very important

role on the performance of both method. It is stated, in this study, that there are many
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parallel matrix multiplication methods in the literature. Especially GPU paralleliza-

tion may be implemented to improve the performance. There are also many research

on hybrid GPU-CPU matrix operations in the literature, which may also be studied

for proposed method. It is also recommended for researchers to work on distributed

parallel processing techniques, such as MPI.

The other important issue in solving BE problem is the amount of memory required

to solve the dense matrix systems. Further research may also be concentrated on this

issue, and solution such as out-of-core (OOC) could be applied.

A third, and very important future perspective is to employ deformable particles

within the study. In this study all particles are assumed to be rigid; yet in real life ap-

plications, especially when blood samples or similar particulate flows are considered,

the particles are deformable. The inclusion of deformable particles in the formulation

would be most beneficial.

Also, the proposed formulation presents it usefulness in multiphysics applications.

These applications can be listed as;

• Electric field (AC or DC) application to certain areas of the fluid medium,

which would affect different particles (with different electrical properties) in

different amounts resulting in different total net force on the particle.

• Magnetic field application at certain locations, affecting the total net force on

the particle.

• Acoustical field application, resulting in a similar net force change on the par-

ticles

• Optical field, like laser beam application, would also affect particles with dif-

ferent properties in applied net force.

The present study makes it possible to impose the net external force (which might

come from a different physics problem as stated above) directly into the resulting set

of linear algebraic equations. This external force can be computed via a different

simulation - in that case, a coupled analysis is possible. Another possible application

would be the reverse engineering problems, where the external force application is
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not know directly, but the path of the particle may be extracted from experimental

analysis. With this experimental results, the net total force on the particle due to the

application of the external field can be computed using the proposed formulation.
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APPENDIX A

APPENDIX

The fundamental solutions of the Stokes’ flow are given as (adopted from [1]):

u∗ij(A,P) =
1

8πµr
(δij + rirj) (A.1)

t∗ij(A,P) =
3rirj
4πr2

∂r

∂n
(A.2)

p∗i (A,P) =
rj

4πr2
(A.3)

q∗i (A,P) =
1

2πr3

[
nj − 3rj

∂r

∂n

]
(A.4)

for 3D. Also 2D fundamental solutions are given below for completeness:

u∗ij(A,P) =
1

4πµ

[
ln(

1

r
)δij + rirj

]
(A.5)

t∗ij(A,P) =
rirj
πr

∂r

∂n
(A.6)

p∗j(A,P) =
rj

2πr
(A.7)
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q∗j (A,P) =
1

πr2

[
nj − 2rj

∂r

∂n

]
(A.8)

All these equations refer to the definitions below (with Fig-A.1)

Figure A.1: Development of the velocity profile after an obstacle in the square chan-

nel

A Fixed point

P Varied point

r Distance between the fixed point and the varied point

r The unit vector in the
−−→
AP direction

ri Components of the vector r

n The unit normal vector at the point P when the point is on the boundary

ni Components of the vector n

∂r
∂n

The directional derivative of the position function r(A,P) in the normal direction

at the point P
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With these definitions, the following identities are in place:

ri =
∂r

∂xi
(A.9)

∂r

∂n
= r · n = rini (A.10)
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2004-2009

Instructor Dept. of Computer Engineering, Atılım

University, Ankara

2001-Cont

PUBLICATIONS

1. Ziya Karakaya, “Development and Implementation of an On-line Exam for a

Programming Language Course”, Ms. Thesis, METU-CEIT, September 2001.

2. Ziya Karakaya, “Design, Development and Implementation of On-Line Exam

System”, International Open and Distance Education Symposium, Anadolu
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