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uygun davrandı̆gımı, yararlandı̆gım bütün kaynaklarıatıf yaparak belirttiğimi beyan ederim.
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Bu tez beş bölümden oluşmaktadır.

İlk bölüm giri̧s kısmına ayrılmı̧stır.

İkinci bölümde, öncelikle lineer pozitif operatörler tanıtılacak ve bu operatörlerin temel özellikleri

incelenecektir. Süreklilik modülünün tanımıverilecek ve sağladı̆gıbazıözellikler ispatlanacaktır.

Daha sonraki bölümlerde kullanılacak olan bazıtemel tanımlar ve q-analizinde sadece ihtiyacımız

olan tanımlar verilecektir. Ayrıca lineer pozitif operatörlerin önemine değinilecek, Bernstein’ın

Weierstrass problemi için verdiği teorem hatırlatılacak ve Korovkin teoremi ifade ve ispat edilecek-

tir.

Üçüncü bölümde, Konhauser polinomlarını içeren lineer pozitif operatörler tanıtılacak ve Kan-

torovich tipli bir integral genelleştirilmesi verilecektir. Korovkin teoreminin koşularının gerçek-

lendiği gösterilecektir. Ayrıca bu operatörlerin yakınsama hızları, süreklilik modülü, Lipschitz

sınıfından olan fonksiyonlar ve Peetre K-fonksiyoneli yardımıyla hesaplanacaktır. Bu operatör-

lerin r−inci basamaktan genelleştirilmesi verilecek ve bu genelleştirilmi̧s operatörün yakınsama
hızı, süreklilik modülü ve Lipschitz sınıfından olan fonksiyonlar yardımıyla elde edilecektir. Daha

sonra Konhauser polinomlarınıiçeren lineer pozitif operatörlerin diferensiyel denklemlere uygulan-

masıverilecektir.

Dördüncü bölümde ise q-Laguerre polinomlarınıiçeren lineer pozitif operatörlerin Kantorovich tipli

genelleştirilmesi verilecektir. Öncelikle operatör oluşturulacak sonra Korovkin teoreminin bu ope-

ratör için de gerçeklendiği ispat edilecektir. Daha sonraki kısımda ise, operatörün yaklaşım hızıbir-

inci ve ikinci basamaktan süreklilik modülü ve Lipschitz sınıfından fonksiyonlar yardımıyla hesap-

lanacaktır.

Beşinci bölümde, tezde elde edilen sonuçlar tartı̧sılmı̧stır.
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süreklilik modülü, ikinci basamaktan süreklilik modülü, Lipschitz sınıfı, Peetre K-fonksiyoneli, q-
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This thesis consists of five chapters.

The first chapter is devoted to the introduction.

In chapter 2, we give some basic definitions and elementary properties about linear and positive

operators. We recall the definition of modulus of continuity and prove some elementary proper-

ties. Moreover, we give some basic definitions needed in the next sections and give the definitions

related to q-integers. Also, we mention the importance of linear and positive operators. We state

Weierstrass theorem given by Bernstein and Korovkin’s theorem and give the proofs.

In chapter 3, we define linear and positive operators including Konhauser polynomials and give

a Kantorovich type integral generalization of the operator including Konhauser polynomials. We

show that they are verified the conditions of Korovkin’s theorem. Also, we studied on estimation

of the rate of convergence in terms of modulus of continuity, Lipschitz class functions and Peetre’s

K-functional. We introduce r-th order generalization of the operators and estimate the rate of

convergences via modulus of continuity and Lipschitz class function. At the end of the section, we

give an application to functional differential equations via linear and positive operators including

Konhauser polynomials.

In chapter 4, we introduce a Kantorovich type generalization of the operator including q-Laguerre

polynomials. Firstly, we construct the operator and then, we prove the Korovkin’s theorem for the

operator. In the last section, we estimate the rate of convergence via classical and second order

modulus of continuity and Lipschitz class functions.

In the last chapter, the results obtained in the thesis have been discussed.

September 2014, 76 pages

Key Words: Linear positive operators, Konhauser polynomials, Laguerre polynomials, modulus

of continuity, second order modulus of continuity, Lipschitz class, Peetre’s K-functional, q-calculus,

Jackson integral, Riemann type q-integral

iii
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hiçbir zaman çekinmeyen ve herkesin sorusuna bir çözüm bulma konusunda uzman olan sevgili

dostum Yrd. Doç. Dr. Sezgin SUCU’ya (Ankara Üniversitesi Fen Bilimleri Enstitüsü Matematik
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4.2 Operatörün Oluşturulması. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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SİMGELER DİZİNİ

N Doğal sayılar kümesi

R Reel sayılar kümesi

Z Tam sayılar kümesi

N0 N ∪ {0}
B (X) X kümesi üzerinde tanımlı, reel değerli ve sınırlı

fonksiyonların kümesi

C (X) X kümesi üzerinde tanımlı, reel değerli, sınırlıve sürekli

fonksiyonların kümesi

‖f‖C[a,b] C [a, b] sürekli fonksiyon uzayında norm (‖f‖C[a,b] = maks
a≤x≤b

|f (x)|)

‖f‖C2[a,b] ‖f‖C2[a,b] = ‖f‖C[a,b] + ‖f ′‖C[a,b] + ‖f ′′‖C[a,b]
L
(α)
n (x; q) α -ıncıbasamaktan q -Laguerre polinomu

ω (f ; δ) f fonksiyonunun süreklilik modülü

ω2 (f ; δ) f fonksiyonunun ikinci basamaktan süreklilik modülü

K (f ; t) f fonksiyonunun Peetre K-fonksiyoneli

B (x, y) Beta fonksiyonu

Y
(n)
υ (x; k) Konhauser polinomu

Fn (x, t) Konhauser polinomlarıiçin bir doğurucu fonksiyon

vi



1. GİRİŞ

Analizin bir alanıolan yaklaşım teorisi temelde, fonksiyonlara daha basit ve kolay

hesaplanabilen fonksiyonlar ile yaklaşmaktır. Bu fonksiyonlar genelde iyi bilinen

polinomlar veya rasyonel fonksiyonlardır.

Reel deği̧skenli fonksiyonların yaklaşım teorisinin temeli, Weierstrass tarafından

1885 yılında verilen teoremdir.

Weierstrass teoremi, [a, b] sonlu aralı̆gında sürekli bir f fonksiyonu için, f ye [a, b]

aralı̆gında düzgün yakınsak olacak şekilde bir cebirsel n-inci dereceden polinomun

var olduğunu ifade eder.

Weierstrass’ın bu teoreminin ispatıbirçok yazar tarafından yapılmı̧stır. 1912 yılında

Bernstein, yaklaşılmak istenen f ∈ C [0, 1] fonksiyonuna [0, 1] üzerinde düzgün

yakınsak olan

Bn (f ;x) =
n∑
k=0

(
n

k

)
xk (1− x)n−k f

(
k

n

)
(n ∈ N, x ∈ [0, 1])

şeklindeki cebirsel polinomların bir Bn (f ;x) dizisini oluşturarak Weierstrass teore-

minin basit ve güzel bir ispatını vermi̧stir. Bu düzgün yakınsama probleminden

sonra, yaklaşım hızı problemi ortaya çıkmı̧stır. Bn (f ;x) Bernstein polinomları

C [0, 1] uzayında lineer pozitif operatörler sınıfındandır (Bernstein 1912). Bu prob-

lemin çözümü süreklilik modülü, Lipschitz sınıfından fonksiyonlar ve Peetre K-

fonksiyoneli yardımıyla incelenmi̧stir.

1951 yılında Popoviciu, 1952’de Bohman ve 1953’de Korovkin, birbirinden bağımsız

olarak, basit ve kolay uygulanabilen bir yöntem geli̧stirdiler. Bu yönteme göre, lineer

pozitif /An operatörlerinin bir dizisinin [a, b] kompakt aralı̆gında f sürekli fonksiyo-

1



nuna düzgün yakınsak olmasıiçin gerek ve yeter koşul, sadece üç tane ek (x) = xk,

k = 0,1,2 fonksiyonu için An
(
ek
)
dizisinin ek fonksiyonuna düzgün yakınsak ol-

masıdır. Yani, kompakt aralikta sürekli olan fonksiyonlara polinomlar ile yaklaşımda

bazılineer pozitif operatör dizileri kullanılabilir.

Bir lineer pozitif operatörün r−inci basamaktan bir genelleştirilmesi ilk olarak 1993

yılında Kirov ve Popova tarafından verilmi̧stir. Kirov ve Popova bir operatörün

r−inci basamaktan genelleştirilmesi ile bu operatör arasında eşitsizlik elde ederek

genelleştirilme operatörünün yaklaşım hızınıkolayca hesaplamı̧stır. Böylece diğer

matematikçiler de bu kolaylık sayesinde diğer operatörlerin genelleştirilmelerinin

yaklaşım özelliklerini incelemi̧slerdir.

Kantorovich 1930’da, klasik Bernstein operatörlerinin bir integral genelleşmesini,

f ∈ L1 ([0, 1]) için

(Kmf) (x) = (m+ 1)
m∑
k=0

(
m

k

)
xk (1− x)m−k

k+1/m+1∫
k/m+1

f (t) dt

biçiminde tanımlamı̧stır. Bu genelleştirilme, lineer pozitif operatörlerden integral

tipli operatörler tanımlamak adına temel olma özelliği taşımaktadır. Birçok matema-

tikçi, Kantorovich’in bu genelleştirilmesinden sonra başka integral genelleştirilmeleri

tanımlamı̧s ve yaklaşım hızlarınıhesaplamı̧slardır.

Lineer pozitif operatörlerin diğer bir genelleştirilmesi, q-teori ile ilgilidir. Yaklaşım

teorisinde q-genelleşme kavramıilk kez, Lupaş tarafından Bernstein polinomlarına

uygulanmı̧stır (Lupaş 1987). Daha sonra Phillips, q-Bernstein polinomlarının yak-

laşım özelliklerini çalı̧smı̧stır (Phillips 1996). Bu çalı̧smalarda, q-Bernstein polinom-

larıile yaklaşımda elde edilen sonuçların, klasik lineer pozitif operatör dizilerine göre

daha iyi olduğu görülmektedir.
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Son zamanlarda, q-analizinin gösterim ve yöntemleri kullanılarak, lineer pozitif ope-

ratör dizilerinin q-genelleşmesi tanımlanmı̧s ve bazıözellikleri incelenmi̧stir. Bun-

lara örnek olarak Meyer-König-Zeller operatörlerinin q-genelleşmesi Trif tarafından

tanımlanmı̧s ve yaklaşım özelliklerini incelenmi̧stir (Trif 2000). Doğru (2006) yılında,

q-Balázs-Szabados operatörlerini tanımlamı̧s ve yaklaşım özelliklerini araştırmı̧stır.

Aral ve Gupta (2006)’da, Szász-Mirakyan operatörlerinin q-genelleşmesini vererek

yaklaşım özelliklerine ili̧skin sonuçlar elde etmi̧slerdir.
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2. TEMEL KAVRAMLAR

Bu bölümde, tezde kullanılacak olan bazıtemel tanım ve teoremler verilecektir.

2.1 Temel Tanımlar ve Teoremler

Tanım 2.1.1 X ve Y iki fonksiyon uzayıolsun. Eğer X den alınan herhangi bir

f fonksiyonuna Y de bir g fonksiyonu kaŗsılık getiren bir L kuralıvarsa buna X

uzayında bir operatördür denir ve L(f ;x) = g(x) biçiminde gösterilir.

Burada L(f ;x) = L(f(t);x) olmak üzere L operatörü f fonksiyonunun bağlıolduğu

t deği̧skenine göre uygulanmaktadır. Sonuç ise x deği̧skenine bağlıbir fonksiyondur.

Bundan dolayıx deği̧skeni L i̧sleminde sabit gibidir ve L(f(x);x) = f(x)L(1;x)

yazılabilir.

X uzayılineer bir uzay olduğunda lineer operatörün tanımıyapılabilir.

Tanım 2.1.2 X ve Y fonksiyon uzaylarıolmak üzere,

L : X → Y

şeklindeki L operatörünü gözönüne alalım. Eğer ∀ f, g ∈ X ve ∀ α, β ∈ R için

L(αf + βg;x) = αL(f ;x) + βL(g;x)

koşulu sağlanıyorsa o taktirde L operatörüne lineer operatör denir.

Tanım 2.1.3 Eğer bir L operatörü pozitif değerli fonksiyonu yine pozitif değerli bir

fonksiyona dönüştürüyor ise yani, f bir fonksiyon ve L bir operatör olmak üzere

f ≥ 0 iken L(f ;x) ≥ 0
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oluyor ise L operatörüne pozitif operatör denir.

Hem lineerlik hem de pozitiflik şartını sağlayan operatöre lineer pozitif operatör

denir.

Uyarı2.1.1 f ≤ 0 iken L(f ;x) ≤ 0 gerçeklenir mi?

Kabul edelim ki f ≤ 0 olsun. Bu durumda

−f ≥ 0

elde edilir. L operatörü pozitif olduğundan

L(−f ;x) ≥ 0

bulunur. L operatörünün lineerlik özelliği kullanılırsa

−L(f ;x) ≥ 0 ise L(f ;x) ≤ 0

elde edilir. Yani istenilen özelliğin gerçeklendiği görülmüş olur.

2.2 Lineer Pozitif Operatörlerin Özellikleri

Lemma 2.2.1 Lineer pozitif operatörler monoton artandır. Yani;

f ≤ g ise L(f) ≤ L(g)

eşitsizliği sağlanır.

İspat. Kabul edelim ki f ≤ g olsun. Bu durumda g − f ≥ 0 olacağından ve L

operatörü pozitif olduğundan

L(g − f) ≥ 0 (2.1)
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yazılabilir. Diğer taraftan L operatörü lineer olduğundan

L(g − f) = L(g)− L(f)

elde edilir. Bunun (2.1) de kullanılmasıyla

L(g − f) = L(g)− L(f) ≥ 0 ise L(f) ≤ L(g)

bulunur.

Lemma 2.2.2 L bir lineer pozitif operatör ise o taktirde;

|L(f)| ≤ L(|f |)

eşitsizliği sağlanır.

İspat. Keyfi bir f fonksiyonu için

− |f | ≤ f ≤ |f | (2.2)

dir. L operatörünün lineerliğinden, monoton artanlı̆gından ve de (2.2.2) den

−L(|f |) ≤ L(f) ≤ L(|f |) (2.3)

yazılabilir. Bu ise

|L(f)| ≤ L(|f |)

olduğunu gösterir.

Tanım 2.2.1 n ∈ N olmak üzere fn (x)’e bir fonksiyon dizisi denir ve (fn) ile

gösterilir.

Tanım 2.2.2 n ∈ N olmak üzere Ln (f ;x)’e bir operatör dizisi denir ve (Ln) ile
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gösterilir.

Tanım 2.2.3 Kapalıbir [a, b] aralı̆gıüzerinde sürekli ve reel değerli fonksiyonlardan

oluşan kümeye C [a, b] fonksiyon uzayıdenir. Bu uzaydaki norm,

‖f (x)‖C[a,b] = maks
a≤x≤b

|f (x)|

şeklinde tanımlanır. Burada

1. ∀f , g ∈ C [a, b] için f + g ∈ C [a, b]

2. ∀f , g ∈ C [a, b] için f + g = g + f

3. ∀f , g , h ∈ C [a, b] için (f + g) + h = f + (g + h)

4. ∀f ∈ C [a, b] için ∃θ vardır ki f + θ = θ + f = f

5. ∀f ∈ C [a, b] için ∃f1 vardır ki f + f1 = f1 + f = θ

6. ∀f ∈ C [a, b] ve λ ∈ C için λf ∈ C [a, b]

7. ∀f ∈ C [a, b] ve λ , µ ∈ C için (λµ) f = λ (µf)

8. ∀f ∈ C [a, b] için 1.f = f

9. ∀f ∈ C [a, b] ve λ , µ ∈ C için (λ+ µ) f = λf + µf

10. ∀f , g ∈ C [a, b] ve λ ∈ C için λ (f + g) = λf + λg

11. ∀f ∈ C [a, b] için ‖f‖ ≥ 0

12. ∀f ∈ C [a, b] için ‖f‖ = 0 ⇐⇒ f = 0

13. ∀f ∈ C [a, b] ve λ ∈ C için ‖λf‖ = |λ| ‖f‖

14. ∀f , g ∈ C [a, b] için ‖f + g‖ ≤ ‖f‖+ ‖g‖

koşullarısağlandı̆gından C [a, b] Lineer Normlu Uzaydır.

Tanım 2.2.4 (fn) fonksiyonlar dizisinin f fonksiyonuna C [a, b] lineer normlu uza-

yında düzgün yakınsak olmasıiçin, ∀x ∈ [a, b] iken

lim
n→∞

‖fn (x)− f (x)‖C[a,b] = 0
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olmasıdır. Daha açık olarak ise

lim
n→∞

maks
a≤x≤b

|fn (x)− f (x)| = 0

eşitliğinin sağlanmasıdemektir.

2.3 Süreklilik Modülü

f ∈ C [a, b] olsun. ∀δ > 0 için

ω (f ; δ) = sup
x,t∈[a,b]

|t−x|≤δ

|f (t)− f (x)| (2.4)

ile tanımlanan ω (f ; δ) ifadesine f fonksiyonunun süreklilik modülü denir (Bkz. örneğin

Altomare ve Campiti 1994).

Lemma 2.3.1 Süreklilik modülü aşağıdaki özellikleri sağlar (Bkz. örneğin Altomare

ve Campiti 1994):

(i) . ω (f ; δ) ≥ 0

(ii) . δ1 ≤ δ2 ise ω (f ; δ1) ≤ ω (f ; δ2)

(iii) . m ∈ N için ω (f ;mδ) ≤ m ω (f ; δ)

(iv) . λ ∈ R+ için ω (f ;λδ) ≤ (1 + λ)ω (f ; δ)

(v) . lim
δ→0

ω (f ; δ) = 0

(vi) . |f (t)− f (x)| ≤ ω (f ; |t− x|)

(vii) . |f (t)− f (x)| ≤
(

1 + |t−x|
δ

)
ω (f ; δ).

İspat.

(i) . Tanım gereğince, süreklilik modülü mutlak değerin supremumu olduğundan

ispat açıktır.
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(ii) . δ1 ≤ δ2 için |t− x| ≤ δ2 bölgesinin |t− x| ≤ δ1 bölgesinden daha büyük olduğu

açıktır. Bölge büyüdüğü taktirde, alınan supremumda büyüdüğünden ispat açıktır.

(iii) . Süreklilik modülünün tanımından dolayı

ω (f ;mδ) = sup
x,t∈[a,b]

|t−x|≤mδ

|f (t)− f (x)|

yazılabilir. |t− x| ≤ mδ için t = x+mh seçilmesiyle |h| ≤ δ elde edilir. O taktirde

ω (f ;mδ) = sup
x,t∈[a,b]

|h|≤δ

|f (x+mh)− f (x)|

şeklinde yazılabilir. Diğer yandan

sup
x,t∈[a,b]

|h|≤δ

|f (x+mh)− f (x)| = sup
x,t∈[a,b]

|h|≤δ

∣∣∣∣∣
m−1∑
k=0

[f (x+ (k + 1)h)− f (x+ kh)]

∣∣∣∣∣
olup, sağ tarafa üçgen eşitsizliği uygulanırsa

sup
x,t∈[a,b]

|h|≤δ

|f (x+mh)− f (x)| ≤
m−1∑
k=0

sup
x,t∈[a,b]

|h|≤δ

|f (x+ (k + 1)h)− f (x+ kh)|

≤ ω (f ; δ) + ...+ ω (f ; δ)

= m ω (f ; δ)

elde edilir.

(iv) . λ ∈ R+ sayısının tam kısmı[|λ|] ile gösterilirse bu durumda [|λ|] < λ < [|λ|] +

1 eşitsizliğinin geçerli olduğu açıktır. Şimdi bu eşitsizlikten ve (ii) de ispatlanan

ω (f ; δ) nın azalmayan fonksiyon olmasınıkullanarak

ω (f ;λδ) ≤ ω (f ; ([|λ|] + 1) δ)

eşitsizliği yazılabilir. [|λ|] pozitif bir tamsayı olduğundan üstteki eşitsizliğin sağ
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tarafına (iii) özelliği uygulanabilir. Bu durumda

ω (f ; ([|λ|] + 1) δ) ≤ ([|λ|] + 1) ω (f ; δ)

eşitsizliği elde edilir. Ayrıca ∀ λ ∈ R+ için [|λ|]+1 ≤ λ+1 olduğu göz önüne alınırsa

ω (f ; ([|λ|] + 1) δ) ≤ (λ+ 1) ω (f ; δ)

olur. Sonuç olarak

ω (f ;λδ) ≤ (λ+ 1)ω (f ; δ)

elde edilir ki, bu ise ispatıtamamlar.

(v) . |t− x| ≤ δ eşitsizliğindeki δ → 0 olmasıt→ x olmasıanlamına gelir. f fonksi-

yonu sürekli olduğundan, süreklilik tanımına göre t → x için |f (t)− f (x)| → 0

olduğundan ispat açıktır.

(vi) . ω (f ; δ) ifadesinde δ = |t− x| seçilirse

ω (f ; |t− x|) = sup
x∈[a,b]

|f (t)− f (x)|

elde edilir. O halde |f (t)− f (x)| lerin supremumu ω (f ; |t− x|) olacağından, |f (t)− f (x)|

ifadesi ω (f ; |t− x|) den küçük kalacaktır. Bu ise istenilendir.

(vii) . (vi) özelliğinden

|f (t)− f (x)| ≤ ω (f ; |t− x|) = ω

(
f ;
|t− x|
δ

δ

)

yazılabilir. Bu eşitsizlikte (iv) özelliği kullanılırsa

|f (t)− f (x)| ≤
(
|t− x|
δ

+ 1

)
ω (f ; δ)

bulunur ki bu ise ispatıtamamlar.
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2.4 Kullanılacak Olan Diğer Tanımlar

Tanım 2.4.1 Toplam için Cauchy-Schwarz eşitsizlĭgi

∞∑
i=1

|ζ iηi| ≤
( ∞∑
k=1

(ζk)
2

)1/2( ∞∑
l=1

(ηl)
2

)1/2

şeklinde tanımlıdır (Cauchy, Bunyakovsky, Schwarz).

Tanım 2.4.2 Her t, x ∈ I ⊂ R için

|f (t)− f (x)| ≤M |t− x|α

eşitsizliği sağlanıyorsa, f fonksiyonuna LipM (α) (0 < α ≤ 1) Lipschitz sınıfındandır

denir (Lipschitz 1864).

Tanım 2.4.3 Toplam için Hölder eşitsizlĭgi p > 1 ve
1

p
+

1

q
= 1 olmak üzere

∞∑
i=1

|ζ iηi| ≤
( ∞∑
k=1

(ζk)
p

)1/p( ∞∑
l=1

(ηl)
q

)1/q

şeklinde tanımlıdır (Rogers 1888, Hölder 1889).

Tanım 2.4.4 C2 [0, b] uzayı, f , f ′ ve f ′′ fonksiyonlarının [0, b] kapalı aralı̆gında

sürekli olduğu uzayıbelirtmektedir.

C2 [0, b] uzayındaki norm

‖f‖C2[0,b] := ‖f‖C[0,b] + ‖f ′‖C[0,b] + ‖f ′′‖C[0,b]

ile tanımlanmaktadır (Bleimann vd. 1980).
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Tanım 2.4.5 Sürekli fonksiyonlar uzayındaki Peetre K-fonksiyoneli

K (f, δ) = inf
g∈C2[0,b]

{
‖f − g‖C[0,b] + δ ‖g‖C2[0,b]

}
ile tanımlıdır (Bleimann vd. 1980).

Tanım 2.4.6 (İntegral için Jensen Eşitsizliği) Reel eksende Φ konveks ve f negatif

olmayan reel değerli Lebesgue integrallenebilen fonksiyon olsun. Bu durumda

Φ(

b∫
a

f (x) dx) ≤
b∫

a

Φ((b− a)f(x)) 1
b−adx

sağlanır (Wheeden ve Zygmund 1977).

Tanım 2.4.7 (İntegral için Hölder Eşitsizliği) p > 1 ve
1

p
+

1

q
= 1 olmak üzere

∫
|ζ iηi| ≤

(∫
(ζk)

p

)1/p(∫
(ηl)

q

)1/q

şeklinde tanımlıdır (Hölder 1889).

Tanım 2.4.8 (İntegral için Cauchy-Schwarz Eşitsizliği)

∫
|ζ iηi| ≤

(∫
(ζk)

2

)1/2(∫
(ηl)

2

)1/2

şeklindedir (Hardy vd. 1952).

Tanım 2.4.9 f ∈ C [0, b] fonksiyonunun ikinci basamaktan süreklilik modülü

ω2 (f ; δ) = sup
0<h≤δ

sup
x,x+2h∈[0,b]

|f (x+ 2h)− 2f (x+ h) + f (x)|

ile tanımlanmaktadır (DeVore ve Lorentz 1993).
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Tanım 2.4.10 Gama fonksiyonu

Γ (x) =

∫ ∞
0

tx−1e−tdt

olarak tanımlıdır (Euler 1730). Γ (x) = (x− 1)! (x > 0, Γ (0) = 1) özelliğine sahip-

tir.

Tanım 2.4.11 Re (x) ,Re (y) > 0 için Beta fonksiyonu

B (x, y) =

∫ 1

0

tx−1 (1− t)y−1 dt

şeklinde tanımlanmaktadır (Euler 1730). Beta fonksiyonu B (x, y) = Γ(x)Γ(y)
Γ(x+y)

özel-

liğini gerçekler.

Lemma 2.4.1 Sabit bir C > 0 sayısıiçin

K2 (f ; δ) ≤ Cω2

(
f ;
√
δ
)

dir (DeVore ve Lorentz 1993).

Tanım 2.4.12 I ⊂ R olmak üzere ω (x), I da tanımlıpozitif bir fonksiyon olsun.

m,n ∈ N ve m 6= n olmak üzere

(φn, φm) =

∫
I

ω (x)φn (x)φm (x) dx = 0

oluyorsa {φn (x)}n∈N polinom sistemine I aralı̆gında ω (x) ağırlık fonksiyonuna göre

ortogonaldir denir.

Lemma 2.4.2 I ⊂ R aralı̆gında {φn (x)}n∈N polinom sisteminin ω (x) ağırlık fonksiyo-

nuna göre ortogonal olmasıiçin gerek ve yeter koşul,

∫
I

φn (x)ω (x)xkdx = 0, k = 0, 1, ..., n− 1
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ifadesinin gerçeklenmesidir.

Tanım 2.4.13 F (x, t) iki deği̧skenli fonksiyonu deği̧skenlerden birine göre örneğin

t ye göre,

F (x, t) =

∞∑
n=0

cnφn (x) tn

biçiminde bir Taylor serisine açılıyor ise F (x, t) fonksiyonuna {φn (x)} fonksiyonlar

cümlesinin dŏgurucu fonksiyonu denir. Burada cn ler x ve t den bağımsız olup n nin

fonksiyonudur.

Tanım 2.4.14 r (x) ve s (x) sırasıyla x e göre h > 0 ve k > 0 ıncıdereceden reel

değerli polinomlar olsunlar. Rm (x) ve Sn (x) de sırasıyla r (x) ve s (x) e göre m-

yinci ve n-yinci dereceden polinomlarıgöstersinler. Bu durumda Rm (x) ve Sn (x)

sırasıyla x e göre mh-ıncıve nk-yıncıdereceden polinomlar olurlar. r (x) ve s (x)

polinomlarına temel polinomlar denir.

Tanım 2.4.15 m,n ∈ N0 olmak üzere eğer

Jm,n =

∫ b

a

ρ (x)Rm (x)Sn (x) dx =

 0 ; m 6= n

6= 0 ; m = n

ise, [Rm (x)] ve [Sn (x)] polinom kümelerine, (a,b) aralı̆gı üzerinde, ρ (x) uygun

ağırlık fonksiyonuna ve r (x) ve s (x) temel polinomlarına göre biortogonaldir denir.

2.5 q-Analizinin Özellikleri

Tanım 2.5.1 Bir f fonksiyonunun q-diferensiyeli dqf (x) ile gösterilir ve

dqf (x) = f (qx)− f (x)

şeklinde tanımlanır (Andrews vd. 1999).
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Tanım 2.5.2 q ∈ R+\ {1} olmak üzere bir f fonksiyonunun q-türevi Dqf (x) ile

gösterilir ve

Dqf (x) =
dqf (x)

dqx
=
f (qx)− f (x)

(q − 1)x

ile tanımlanır (Andrews vd. 1999). Eğer f türevlenebilirse lim
q→1

Dqf (x) = f ′ (x) dir.

Keyfi a ve b sabitleri için, q-türev

Dq(af (x) + bg (x)) = aDqf (x) + bDqg (x)

özelliğine sahiptir.

Tanım 2.5.3 Her k ∈ N ∪ {0} ve q ∈ R+ olmak üzere k nın q-analŏgu

[k] = [k]q :=


(
1− qk

)
/ (1− q) ; q 6= 1

k ; q = 1
ve [0] := 0

şeklinde tanımlıdır (Andrews vd. 1999).

Tanım 2.5.4 Her k ∈ N ve q ∈ R+ için k! in q-analoğu (q-faktöriyel i)

[k]! = [k]q! :=

 [1] [2] ... [k] ; k ≥ 1

1 ; k = 0

şeklindedir (Andrews vd. 1999).

Lemma 2.5.1 0 ≤ k ≤ n tamsayılarıiçin, q-binom katsayıları

[
n

k

]
=

[n]!

[n− k]! [k]!

biciminde tanımlanmaktadır (Andrews vd. 1999).
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İspat. Andrews vd. 1999 yılındaki çalı̧smalarında, q-analizi teorisinden

[
n

k

]
=

(1− qn+1−k)(1− qn+2−k)...(1− qn)

(1− qk)(1− qk−1)...(1− q)

olduğunu göstermi̧slerdir. Burada pay ve payda (1 − q)(1 − q2)...(1 − qn−k) ile

çarpılırsa

[
n

k

]
=

(1− q)(1− q2)...(1− qn−k)(1− qn−k+1)(1− qn−k+2)...(1− qn)

(1− q)(1− q2)...(1− qn−k)(1− q)...(1− qk−1)(1− qk)

elde edilir. Tanım 2.5.3 den

[
n

k

]
=

[1][2]...[n− k][n− k + 1]...[n]

[1][2]...[n− k][1][2]...[k]

olduğu görülür. Tanım 2.5.4 dikkate alınırsa

[
n

k

]
=

[n]!

[n− k]![k]!

bulunur. Bu ise ispatıtamamlar.

q-binom katsayılarında q → 1 durumunda
(
n
k

)
= n!

(n−k)!k!
klasik binom katsayıları

elde edilir.

Tanım 2.5.5 Negatif olmayan herhangi k ve n tamsayılarıiçin 0 ≤ k ≤ n olması

durumunda, q-Pochammer sembolü

[(n)k] := [n] [n+ 1] [n+ 2] ... [n+ k − 1]

şeklindedir (Andrews vd. 1999).

Tanım 2.5.6 f reel değerli bir fonksiyon, 0 < a < b ve 0 < q < 1 olsun. f

fonksiyonunun [0, a] ve [a, b] genel aralı̆gında q-Jackson integrali (Thomae 1869,
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Jackson 1910) sırasıyla

a∫
0

f (t) dqt = (1− q) a
∞∑
j=0

f
(
qja
)
qj

ve
b∫

a

f (t) dqt =

b∫
0

f (t) dqt−
a∫

0

f (t) dqt

şeklindedir.

Tanım 2.5.7 a,b ∈ R+ ve 0 < a < b ile 0 < q < 1 olmak üzere Riemann tipli

q-integral
b∫

a

f (t) dRq t = (1− q) (b− a)
∞∑
j=0

f
(
a+ (b− a) qj

)
qj

ile tanımlanmaktadır (Marinkovíc vd. 2008).

2.6 Lineer Pozitif Operatörlerin Önemi

Çağdaş fonksiyonel analiz ve fonksiyonlar teorisinde yer alan lineer pozitif operatör-

lerle yaklaşım konusu son elli yıl içinde ortaya çıkmı̧s bir araştırma alanıdır.

Alman Matematikçi Weierstrass 1885 yılında sonlu aralıkta sürekli olan her fonksi-

yona bu aralıkta yakınsayan bir polinomun varlı̆gınıispatlamı̧stır. 1912 yılında ise

Rus Matematikçi S. N. Bernstein bu polinomun, x ∈ [0, 1] için

Bn (f ;x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)n−k (2.5)

şeklinde olduğunu ispatlamı̧stır.

Bernstein’ın bu ispatınıvermeden önce kullanacağımız bazıifadeleri ve ispatlarını

verelim.
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Lemma 2.6.1 (2.5) ile tanımlanan Bernstein operatörleri için

Bn (1;x) = 1 (2.6)

Bn (t;x) = x (2.7)

Bn (t2;x) = x2 + x(1−x)
n

(2.8)

eşitlikleri geçerlidir.

İspat. Binom açılımından

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k

olup, bu açılımda a = x ve b = 1− x alınırsa

Bn (1;x) = 1

bulunur. Bu ise (2.6) eşitsizliğini verir. (2.5) eşitliğinde f (t) = t alınırsa

Bn (t;x) =
n∑
k=0

k

n

(
n

k

)
xk (1− x)n−k

=
n∑
k=1

(n− 1)!

(n− k)! (k − 1)!
xk (1− x)n−k

= x

n−1∑
k=0

(
n− 1

k

)
xk (1− x)n−k−1

elde edilir. Binom açılımından

Bn (t;x) = x

bulunur ki bu ise (2.7) nin ispatınıtamamlar. Son olarak (2.5) eşitliğinde f (t) = t2
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alınırsa

Bn

(
t2;x

)
=

n∑
k=0

k2

n2

(
n

k

)
xk (1− x)n−k

=

n∑
k=1

k

n

(n− 1)!

(n− k)! (k − 1)!
xk (1− x)n−k

=

n∑
k=1

(
k − 1

n
+

1

n
)

(n− 1)!

(n− k)! (k − 1)!
xk (1− x)n−k

şeklinde yazılabilir. Böylece

Bn

(
t2;x

)
=

n∑
k=2

k − 1

n

(n− 1)!

(n− k)! (k − 1)!
xk (1− x)n−k

+

n∑
k=1

1

n

(n− 1)!

(n− k)! (k − 1)!
xk (1− x)n−k

=
x2 (n− 1)

n

n−2∑
k=0

(
n− 2

k

)
xk (1− x)n−k−2

+
x

n

n−1∑
k=0

(
n− 1

k

)
xk (1− x)n−k−1

olup Binom açılımından

Bn

(
t2;x

)
=
x2 (n− 1)

n
+
x

n
= x2 +

x (1− x)

n

bulunur. Bu ise (2.8) eşitliğini verir.

Teorem 2.6.1 (S. N. Bernstein, 1912) (2.5) ile tanımlıBernstein polinomu [0, 1]

aralı̆gında sürekli olan f fonksiyonuna aynıaralıkta düzgün yakınsaktır.

İspat. (2.5) ve (2.6) den

|Bn (f ;x)− f(x)| =
∣∣∣∣∣
n∑
k=0

(f

(
k

n

)
− f (x))

(
n

k

)
xk (1− x)n−k

∣∣∣∣∣
bulunur. x ∈ [0, 1] olduğundan

(
n
k

)
xk ≥ 0 ve (1− x)n−k ≥ 0 dır. Üçgen eşitsizliğin-
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den

|Bn (f ;x)− f(x)| ≤
n∑
k=0

∣∣∣∣f (kn
)
− f (x)

∣∣∣∣ (nk
)
xk (1− x)n−k

=
∑
| kn−x|≤δ

∣∣∣∣f (kn
)
− f (x)

∣∣∣∣ (nk
)
xk (1− x)n−k

+
∑
| kn−x|>δ

∣∣∣∣f (kn
)
− f (x)

∣∣∣∣ (nk
)
xk (1− x)n−k

yazılabilir. f fonksiyonu sürekli olduğundan∣∣∣∣kn − x
∣∣∣∣ ≤ δ iken

∣∣∣∣f (kn
)
− f (x)

∣∣∣∣ ≤ ε

dur. O taktirde

|Bn (f ;x)− f(x)| ≤ ε
∑
| kn−x|≤δ

(
n

k

)
xk (1− x)n−k

+
∑
| kn−x|>δ

∣∣∣∣f (kn
)
− f (x)

∣∣∣∣ (nk
)
xk (1− x)n−k

elde edilir. f sınırlıolduğundan ∀x ∈ [0, 1] için öyle birM > 0 vardır ki |f (x)| < M

dir. O halde ∣∣∣∣f (kn
)
− f (x)

∣∣∣∣ ≤ ∣∣∣∣f (kn
)∣∣∣∣+ |f (x)| < 2M

yazılabilir. Böylece

|Bn (f ;x)− f(x)| ≤ ε
∑
| kn−x|≤δ

(
n

k

)
xk (1− x)n−k

+2M
∑
| kn−x|>δ

(
n

k

)
xk (1− x)n−k

≤ ε

n∑
k=0

(
n

k

)
xk (1− x)n−k

+2M
∑
| kn−x|>δ

(
n

k

)
xk (1− x)n−k
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bulunur. (2.6) den

|Bn (f ;x)− f(x)| ≤ ε+ 2M
∑
| kn−x|>δ

(
n

k

)
xk (1− x)n−k (2.9)

dır. Diğer taraftan ∣∣∣∣kn − x
∣∣∣∣ > δ iken

(
k
n
− x
)2

δ2 > 1 (2.10)

yazılabilir. (2.10), (2.9) de kullanılırsa

|Bn (f ;x)− f(x)| ≤ ε+
2M

δ2

∑
| kn−x|>δ

(
k

n
− x
)2(

n

k

)
xk (1− x)n−k

olur. Burada x ∈ [0, 1] ve δ yeterince küçük olduğundan
∣∣ k
n
− x
∣∣ ≥ δ iken 0 ≤ k ≤ n

elde edilir. O taktirde

|Bn (f ;x)− f(x)| ≤ ε+
2M

δ2

n∑
k=0

(
k

n
− x
)2(

n

k

)
xk (1− x)n−k

yazılabilir. Dolayısıyla (2.6) , (2.7) ve (2.8) den

|Bn (f ;x)− f(x)| ≤ ε+
2M

nδ2

[
x− x2

]
bulunur. x ∈ [0, 1] olduğundan maks

x
{x− x2} = 1

4
dür. O halde yukarıdaki eşitsiz-

liğin her iki yanının x ∈ [0, 1] için maksimumu alınırsa

‖Bn (f ;x)− f(x)‖C[0,1] ≤ ε+
M

2nδ2

olur. Bu ise

‖Bn (f ;x)− f(x)‖C[0,1] → 0 (n→∞)

olmasıdemektir.

Bohman (1951) ve P. P. Korovkin (1953)’te sonlu kapalıaralıktaki sürekli fonksi-

yonlara yakınsama koşullarına ili̧skin aşağıdaki teoremi vermi̧stir.
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2.7 P. P. Korovkin Teoremi f ∈ C [a, b] ve tüm reel eksende sınırlı

|f (x)| < Mf (2.11)

olsun. Eğer Ln (f ;x) lineer pozitif operatör dizisi ∀x ∈ [a, b] için

lim
n→∞

∥∥Ln (ti;x)− xi∥∥C[a,b]
= 0 (i = 0, 1, 2)

koşullarınısağlıyorsa bu durumda [a, b] aralı̆gında her f ∈ C [a, b]

lim
n→∞

‖Ln (f ;x)− f (x)‖C[a,b] = 0

dir (Korovkin 1953).

İspat. Kabul edelim ki f ∈ C [a, b] olsun. Sürekli fonksiyonların tanımından dolayı

|t− x| ≤ δ iken |f (t)− f (x)| < ε

dir. |t− x| > δ olduğunda ise (2.11) den ve üçgen eşitsizliğinden dolayı

|f (t)− f (x)| ≤ |f (t)|+ |f (x)| ≤ 2Mf (2.12)

elde edilir. Diğer taraftan

|t− x| > δ iken
(t− x)2

δ2 > 1 (2.13)

sağlanır. (2.12) ve (2.13) den

|f (t)− f (x)| ≤ 2Mf ≤ 2Mf
(t− x)2

δ2
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yazılabilir. O halde

|t− x| ≤ δ iken |f (t)− f (x)| < ε

|t− x| > δ iken |f (t)− f (x)| ≤ 2Mf
(t− x)2

δ2

elde edilir. Dolayısıyla ∀t ∈ R ve ∀x ∈ [a, b] için

|f (t)− f (x)| ≤ ε+ 2Mf
(t− x)2

δ2 (2.14)

dir. Eğer (Ln) operatör dizisinin i = 0, 1, 2 için lim
n→∞

‖Ln (ti;x)− xi‖C[a,b] = 0

koşullarınısağlandı̆gıgösterilirse ispat tamamlanır.

Ln operatörünün lineerlik özelliğinden

|Ln (f (t) ;x)− f (x)| = |Ln ((f (t)− f (x));x) + f (x) (Ln (1;x)− 1)|

dir. Burada üçgen eşitsizliğinin kullanılmasıyla

|Ln (f (t) ;x)− f (x)| ≤ |Ln ((f (t)− f (x));x)|+ |f (x)| |(Ln (1;x)− 1)|

yazılabilir. Diğer taraftan lineer pozitif operatörler monoton artan ve

f (t)− f (x) ≤ |f (t)− f (x)|

özelliğini sağlayacağından

|Ln ((f (t)− f (x));x)| ≤ |Ln (|f (t)− f (x)| ;x)|

olur. Ln operatörü pozitif olduğundan ve |f (t)− f (x)| ≥ 0 eşitsizliği gerçek-

lendiğinden

|Ln (|f (t)− f (x)| ;x)| = Ln (|f (t)− f (x)| ;x)
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dir. O halde

|Ln (f (t) ;x)− f (x)| ≤ Ln (|f (t)− f (x)| ;x) + |f (x)| |(Ln (1;x)− 1)|

olduğu gösterilmi̧s olur. (2.11) den

|Ln (f (t) ;x)− f (x)| ≤ Ln (|f (t)− f (x)| ;x) +Mf |(Ln (1;x)− 1)|

yazılabilir. Ln operatörü monoton artan olduğundan, (2.14) ün kullanılmasıile

|Ln (f (t) ;x)− f (x)| ≤ Ln

(
ε+ 2Mf

(t− x)2

δ2 ;x

)
+Mf |(Ln (1;x)− 1)| (2.15)

bulunur. Diğer taraftan

Ln

(
ε+

2Mf

δ2 (t− x)2 ;x

)
= εLn (1;x) +

2Mf

δ2 Ln
(
(t− x)2 ;x

)
= εLn (1;x) +

2Mf

δ2

[
(Ln

(
t2;x

)
− x2)

+2x(x− Ln (t;x)) + x2(Ln (1;x)− 1)
]

yazılabilir. Son bulunan ifadenin (2.15) de kullanılmasıyla

|Ln (f (t) ;x)− f (x)| ≤ εLn (1;x) +Mf |(Ln (1;x)− 1)|

+
2Mf

δ2

[
(Ln

(
t2;x

)
− x2)

+2x(x− Ln (t;x)) + x2(Ln (1;x)− 1)
]

(2.16)

elde edilir. Teoremin koşullarının (2.16) da kullanılmasıyla

|Ln (f (t) ;x)− f (x)| ≤ ε

bulunur. O halde

lim
n→∞

maks
a≤x≤b

|Ln (f (t) ;x)− f (x)| = 0

dır.
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Görüldüğü gibi Korovkin teoremi bu konudaki çalı̧smalara büyük katkısağlamı̧stır.

Verilen operatörün belirli test fonksiyonlarıiçin düzgün yakınsaklı̆gın gerçeklenmesi,

sonlu aralıkta sürekli bütün fonksiyonların bu operatör yardımıyla düzgün yakın-

samasının söylenmesine yetmektedir.
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3. KONHAUSERPOLİNOMLARINI İÇEREN LİNEERPOZİTİF OPE-

RATÖRLERİN ve KANTOROVICHTİPLİ GENELLEŞTİRİLMESİNİN

YAKLAŞIM ÖZELLİKLERİ

Bu bölümde, ilk olarak Konhauser polinomları tanıtılacaktır ve bu polinomların

sağladı̆gı bir rekürans formülü verilecektir. Sonraki kısımda, operatörün kurul-

ması sürecinde hangi operatörlerin kullanıldı̆gı gösterilecektir ve Konhauser poli-

nomlarını içeren lineer pozitif operatör oluşturulacaktır. Üçüncü kısımda, opera-

törün Korovkin teoreminin koşullarınısağladı̆gıgösterilecektir. Dördüncü kısımda,

operatörün fonksiyona yaklaşma hızı süreklilik modülü, Lipschitz sınıfından olan

fonksiyonlar ve Peetre K-fonksiyoneli yardımıyla hesaplanacaktır. Beşinci kısımda,

operatörün r-inci genelleştirilmesi tanımlanacaktır ve Ln operatörü yardımıyla L
[r]
n

genelleştirilmi̧s operatörün yaklaşım hızıhesaplanılacaktır. Sonraki kısımda, Ln op-

eratörünün bir fonksiyonel diferensiyel denklemi sağladı̆gıispat edilecektir. Yedinci

bölümde, Ln operatörünün Kantorovich tipli bir integral genelleştirilmesi tanım-

lanacaktır. Sekizinci kısımda, operatörün Korovkin teoremini gerçeklediği gösterile-

cektir. Dokuzuncu kısımda, L∗n operatörünün f fonksiyonuna yaklaşım hızı, sırasıyla,

süreklilik modülü, Lipschitz sınıfından fonksiyonlar ve Peetre K-fonksiyoneli yardımıyla

hesaplanacaktır. Son kısımda, L∗n operatörünün r-inci genelleştirilmesi tanımlanacak

ve r−inci genelleştirilme olan L∗[r]n operatörünün f fonksiyona yaklaşım hızıL∗n op-

eratörünün yardımıile hesaplanacaktır.

3.1 Giri̧s

J. D. E. Konhauser, 1965 yılında biortogonal polinomların teorisini vermi̧stir. 1967

yılında ise, ν ∈ N olmak üzere klasik L
(n)
ν (x) Laguerre polinomları yardımıyla

Y
(n)
ν (x; k) ve Z(n)

ν (x; k) (n > −1 ve k ∈ Z+)

Y (n)
ν (x; 1) = Z(n)

ν (x; 1) = L(n)
ν (x)
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eşitliğini sağlayan biortogonal polinom çiftini tanımlamı̧stır. Burada Y (n)
ν (x; k)

Y (n)
ν (x; k) =

1

ν!

ν∑
i=0

xi

i!

i∑
j=0

(−1)j
(
i

j

)(
j + n+ 1

k

)
ν

(3.1)

şeklinde tanımlı olup, aynı zamanda Konhauser polinomu olarak da adlandırılır.

Y
(n)
υ (x; k) Konhauser polinomlarıiçin bir doğurucu fonksiyon (Carlitz 1968)

(1− t)−(n+1)/k exp
{
−x
[
(1− t)−1/k − 1

]}
=
∞∑
υ=0

Y (n)
υ (x; k) tυ, n > 0 (3.2)

şeklindedir. Burada t ∈ (−∞, 0] için Y
(n)
υ (t; k) ≥ 0 dır. Y

(n)
υ (t; k) Konhauser

polinomunun gerçeklediği bir rekürans formülü (Srivastava 1982)

tY
(n+1)
υ−1 (t; k) = (k (υ − 1) + n+ 1)Y

(n)
υ−1 (t; k)− kυY (n)

υ (t; k) (3.3)

şeklindedir ve burada υ ∈ Z− için Y (n)
υ (t; k) = 0 dır.

3.2 Operatörün Oluşturulması

Meyer-König ve Zeller (MKZ) operatörü, 1960 yılında Meyer-König ve Zeller tarafın-

dan, x ∈ [0, 1) için

Mn (f ;x) = (1− x)n+1
∞∑
k=0

f

(
k

k + n+ 1

)(
n+ k

k

)
xk (3.4)

şeklinde tanımlanmı̧stır.

Mn operatöründe
k

k + n+ 1
yerine

k

k + n
alınırsa, operatör Cheney and Sharma

(1964) tarafından tanımlanan

M∗
n (f ;x) = (1− x)n+1

∞∑
k=0

f

(
k

k + n

)(
n+ k

k

)
xk (3.5)

Bernstein kuvvet serisine döner. Bu operatörler hakkında birçok çalı̧sma vardır.

Bunlardan bazılarıMüller’in (1967), Sikkema’nın (1970), Lupaş ve Müller’in (1970),
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Becker ve Nessel’in (1978), Khan’ın (1989) ve son olarak Abel’in (1995) yaptı̆gı

çalı̧smalardır. Son zamanlarda bu operatörlerin bazıgenelleştirilmesi Doğru (1998)

ve Agratini (2001) tarafından incelenmi̧stir.

Cheney ve Sharma, aynıyılda L(n)
k (0) =

(
n+ k

k

)
olduğunu dikkate alarak, x ∈ [0, 1)

ve t ∈ (−∞, 0] için, M∗
n operatörünün bir genelleşmesi olan

Pn (f ;x) = exp

(
tx

1− x

) ∞∑
k=0

f

(
k

k + n

)
L

(n)
k (t)xk (1− x)n+1 (3.6)

operatörünü tanımlamı̧slardır. Burada, L(n)
k (x) Laguerre polinomlarıolup

L
(n)
k (x) =

(n+ k)!

k!

k∑
j=0

(−1)j
(
k

j

)
xj

(j + n)!
(3.7)

açık ifadesine sahiptir. Kolayca görülmektedir ki, (3.6) ile tanımlı olan Pn ope-

ratörü, t = 0 için (3.5) ile verilen M∗
n operatörünü verir.

Bu bölümde, (3.1) de tanımlanan olan Y (n)
υ (x; k) Konhauser polinomlarınıiçeren

(Lnf) (x, t; k) =
1

Fn (x, t)

∞∑
υ=0

f

(
kυ

k (υ − 1) + n+ 1

)
Y (n)
υ (t; k)xυ (3.8)

lineer pozitif operatörü incelenecektir. Burada x ∈ [0, 1), t ∈ (−∞, 0] ve k <

n+1 şeklindedir. Carlitz (1968), Y (n)
υ (t; k) Konhauser polinomlarıiçin bir doğurucu

fonksiyonu

Fn (x, t) =
∞∑
υ=0

Y (n)
υ (t; k)xυ, n > 0 (3.9)

şeklinde tanımlamı̧stır. Burada Fn (x, t) lerin açık ifadesi

Fn (x, t) = (1− x)−
n+1
k exp

{
−t
[
(1− x)−

1
k − 1

]}
(3.10)

şeklindedir ve t ∈ (−∞, 0] için Y (n)
υ (t; k) ≥ 0 dir.

(3.8) ile tanımlanan Ln operatörünün pozitif ve lineer olduğu kolayca görülebilir.
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(3.8) ile tanımlanan Ln operatöründe k = 1 alınırsa, (3.6) ile tanımlanan Pn oper-

atörü elde edilir. (3.8) operatöründe k = 1 ve t = 0 alınmasıdurumunda ise (3.5)

ile tanımlıM∗
n operatörü elde edilir. Yani, Ln operatörü özel durumlarda Pn ve

M∗
n operatörlerini vermektedir. O halde Ln operatörü (3.5) ve (3.6) ile tanımlanan

operatörleri de içine alan daha geni̧s bir operatördür.

3.3 Ln Operatörünün Yaklaşım Özellikleri

Bu kısımda, Ln operatörünün Korovkin teoreminin koşullarınıgerçeklediği göster-

ilecektir.

Teorem 3.3.1 Eğer f fonksiyonu [0, b] (0 < b < 1) aralı̆gında sürekli, x ∈ [0, b]

ve
|t|
n
→ 0 (n→∞) sağlanıyorsa bu durumda [0, b] aralı̆gında Lnf operatörü f

fonksiyonuna düzgün yakınsaktır.

İspat. Ln operatörünün lineer ve pozitif olduğu kullanılır ve (3.9) eşitliği dikkate

alınırsa, f (s) = e0 (s) = 1 (ei (x) = xi, i = 0, 1, ...) için

(Lne0) (x, t; k) =
1

Fn (x, t)

∞∑
υ=0

Y (n)
υ (t; k)xυ = 1 (3.11)

elde edilir.

f (s) = e1 (s) = s alınır ve (3.3) ile verilen rekürans formülü kullanılırsa

(Lne1) (x, t; k) =
1

Fn (x, t)

∞∑
υ=0

kυ

k (υ − 1) + n+ 1
Y (n)
υ (t; k)xυ

=
1

Fn (x, t)

∞∑
υ=1

(
Y

(n)
υ−1 (t; k)− t

k (υ − 1) + n+ 1
Y

(n+1)
υ−1 (t; k)

)
xυ

(3.12)
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eşitliği elde edilir. t ∈ (−∞, 0] olduğu gözönüne alınırsa

t

Fn (x, t)

∞∑
υ=1

1

k (υ − 1) + n+ 1
Y

(n+1)
υ−1 (t; k)xυ ≤ 0

eşitsizliğinin doğru olduğu görülür. O halde, (3.12) eşitliğinde yukarıdaki eşitsizlik

kullanılırsa

(Lne1) (x, t; k) ≥ 1

Fn (x, t)

∞∑
υ=1

Y
(n)
υ−1 (t; k)xυ

=
x

Fn (x, t)

∞∑
υ=0

Y (n)
υ (t; k)xυ

elde edilir. (3.9) eşitliği, yukarıdaki eşitsizlikte dikkate alınırsa

x ≤ (Lne1) (x, t; k) (3.13)

bulunur. Diğer taraftan, (3.12) eşitliğinden

(Lne1) (x, t; k) = x− tx

Fn (x, t)

∞∑
υ=0

1

kυ + n+ 1
Y (n+1)
υ (t; k)xυ

yazılabileceği görülebilir. (3.10) eşitliğinden Fn+1 (x, t) = (1− x)−1/k Fn (x, t) sağ-

landı̆gıve
1

kυ + n+ 1
≤ 1

n
eşitsizliğinin doğru olduğu gözönüne alınırsa

(Lne1) (x, t; k)− x ≤ −tx
n

1

(1− x)1/k Fn+1 (x, t)

∞∑
υ=0

Y (n+1)
υ (t; k)xυ

elde edilir. (3.2) eşitliğinden

(Lne1) (x, t; k)− x ≤ −tx
n

(1− x)−1/k

bulunur. Şimdi, yukarıdaki eşitsizlikte her iki tarafın mutlak değeri alınır ve x ∈ [0, b]

için (1− x)−1/k ≤ 1

1− b eşitsizliği yerine yazılırsa

|(Lne1) (x, t; k)− x| ≤ |t|x
n (1− b) (3.14)
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olur. (3.14) eşitsizliğinin her iki tarafının [0, b] üzerinden maksimumu alınırsa

‖(Lne1) (x, t; k)− x‖C[0,b] ≤
|t| b

n (1− b) (3.15)

elde edilir. (3.13) ile (3.15) birlikte düşünülürse

0 ≤ ‖(Lne1) (x, t; k)− x‖C[0,b] ≤
|t| b

n (1− b) (3.16)

bulunur.

Son olarak f (s) = e2 (s) = s2 alınırsa, (3.8) ile tanımlanan Ln operatörünün

tanımından

(Lne2) (x, t; k) =
1

Fn (x, t)

∞∑
υ=0

(
kυ

k (υ − 1) + n+ 1

)2

Y (n)
υ (t; k)xυ (3.17)

elde edilir. (3.3) rekürans formülü iki kez kullanılırsa

( υk
k(υ−1)+n+1

)2Y (n)
υ (t; k) = k(υ−2)+n+1

k(υ−1)+n+1
Y

(n)
υ−2 (t; k)− t

k(υ−1)+n+1
Y

(n+1)
υ−2 (t; k)

+ k
k(υ−1)+n+1

Y
(n)
υ−1 (t; k)− tkυ

(k(υ−1)+n+1)2
Y

(n+1)
υ−1 (t; k)

(3.18)

eşitliğinin sağlandı̆gıgörülür. Bu eşitlik (3.17) de yerine yazılırsa

(Lne2) (x, t; k)− x2 =

[
1

Fn (x, t)

∞∑
υ=2

k (υ − 2) + n+ 1

k (υ − 1) + n+ 1
Y

(n)
υ−2 (t; k)xυ − x2

]

− t

Fn (x, t)

∞∑
υ=2

1

k (υ − 1) + n+ 1
Y

(n+1)
υ−2 (t; k)xυ

+
k

Fn (x, t)

∞∑
υ=1

1

k (υ − 1) + n+ 1
Y

(n)
υ−1 (t; k)xυ

− kt

Fn (x, t)

∞∑
υ=1

υ

(k (υ − 1) + n+ 1)2Y
(n+1)
υ−1 (t; k)xυ

(3.19)
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dört toplamdan oluşan eşitlik bulunur. kυ+n+1
k(υ+1)+n+1

< 1 eşitsizliği ve (3.9) eşitliği

kullanılırsa

1

Fn (x, t)

∞∑
υ=2

k (υ − 2) + n+ 1

k (υ − 1) + n+ 1
Y

(n)
υ−2 (t; k)xυ − x2 <

x2

Fn (x, t)

∞∑
υ=0

Y (n)
υ (t; k)xυ − x2

= x2 − x2 = 0 (3.20)

elde edilir. 1
k(υ+1)+n+1

< 1
n
eşitsizliği, (3.10) eşitliğinden Fn+1(x,t)

Fn(x,t)
= (1− x)−1/k ve

(3.9) eşitliliği kullanılırsa

−t
Fn (x, t)

∞∑
υ=2

1
k(υ−1)+n+1

Y
(n+1)
υ−2 (t; k)xυ < −tx2

n(1−x)1/kFn+1(x,t)

∞∑
υ=0

Y (n+1)
υ (t; k)xυ

= − tx2

n (1− x)1/k
(3.21)

olur. Benzer şekilde, 1
kυ+n+1

< 1
n
eşitsizliği ve (3.9) eşitliği kullanılırsa

k

Fn (x, t)

∞∑
υ=1

1

k (υ − 1) + n+ 1
Y

(n)
υ−1 (t; k)xυ <

kx

nFn (x, t)

∞∑
υ=0

Y (n)
υ (t; k)xυ

=
kx

n
(3.22)

bulunur. Son olarak υ
(kυ+n+1)2

< 1
n
eşitsizliği, Fn+1(x,t)

Fn(x,t)
= (1− x)−1/k ve (3.9) eşitlik-

leri kullanılacak olursa

−kt
Fn (x, t)

∞∑
υ=1

υ
(k(υ−1)+n+1)2

Y
(n+1)
υ−1 (t; k)xυ < −ktx

n(1−x)1/kFn+1(x,t)

∞∑
υ=0

Y (n+1)
υ (t; k)xυ

= − ktx

n (1− x)1/k
(3.23)

elde edilir. (3.20), (3.21), (3.22) ve (3.23) eşitsizlikleri (3.19) eşitliğinde yazılırsa

(Lne2) (x, t; k)− x2 < − tx2

n (1− x)1/k
+
kx

n
− ktx

n (1− x)1/k
(3.24)

eşitsizliği bulunur. (3.24) eşitsizliğinin her iki tarafın mutlak değeri alındıktan sonra,
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x ∈ [0, b] aralı̆gıüzerinden maksimumu alınırsa

∥∥(Lne2) (x, t; k)− x2
∥∥
C[0,b]

<
1

n

(
|t| b2

1− b + kb+
k |t| b
1− b

)
(3.25)

elde edilir. Diğer taraftan

s2 = (s− x)2 + 2xs− x2

açılımına Ln operatörü uygulanırsa

(Lne2) (x, t; k)− x2 =
(
Ln (e1 − x)2) (x, t; k) + 2x (Ln (e1 − x)) (x, t; k)

eşitliği bulunur. Ln operatörünün pozitifliği, x ∈ [0, b] ve (3.13) eşitsizliği kullanılırsa

(Lne2) (x, t; k)− x2 ≥ 0 (3.26)

elde edilir. (3.25) ve (3.26) dan

0 ≤
∥∥(Lne2) (x, t; k)− x2

∥∥
C[0,b]

<
1

n

(
|t| b2

1− b + kb+
k |t| b
1− b

)
(3.27)

yazılabilir. (3.11), (3.16) ve (3.27) den, Korovkin teoreminin koşullarının gerçek-

lendiği görülür. Dolayısıyla f ∈ C [0, b] için Lnf operatörü f fonksiyonuna [0, b]

aralı̆gında düzgün yakınsaktır.

3.4 Ln Operatörünün Yaklaşım Hızı

(3.8) ile verilen Lnf lineer pozitif operatörünün f fonksiyonuna yaklaşım hızıüç

farklıyolla hesaplanacaktır. Öncelikle Lnf operatörünün f fonksiyonuna yaklaşım

hızınısüreklilik modülü yardımıyla hesaplayalım.
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Teorem 3.4.1 Her f ∈ C [0, b] ve
|t|
n
→ 0 (n→∞) için

‖(Lnf) (x, t; k)− f (x)‖C[0,b] ≤
(

1 +
√

3B
)
ω

(
f ;

1√
n

)

dir. Burada B = maks

{
kb,

k |t| b
1− b ,

3 |t| b2

1− b

}
şeklindedir.

İspat. f ∈ C [0, b] olsun. Ln operatörünün lineerlik ve monoton özellikleri ile

birlikte, (3.11) eşitliği ve Lemma 2.3.1 in (vii)-inci maddesi gözönüne alınırsa

|(Lnf) (x, t; k)− f (x)| ≤ (Ln |f (s)− f (x)|) (x, t; k)

≤
(
Ln

[
ω (f ; δ)

(
1 +
|s− x|
δ

)])
(x, t; k)

≤ ω (f ; δ)

{
1 +

1

δ
(Ln |e1 − x|) (x, t; k)

}
(3.28)

bulunur. Ln |e1 − x| için, Tanım 2.4.1 ile tanımlıolan Cauchy-Schwarz eşitsizliği

kullanılır ve (3.9) eşitliği dikkate alınırsa

(Ln |e1 − x|) (x, t; k) =
1

Fn (x, t)

∞∑
υ=0

∣∣∣∣ kυ

k (υ − 1) + n+ 1
− x
∣∣∣∣Y (n)

υ (t; k)xυ

≤
(

1

Fn (x, t)

∞∑
υ=0

(
kυ

k (υ − 1) + n+ 1
− x
)2

Y (n)
υ (t; k)xυ

)1/2

×
(

1

Fn (x, t)

∞∑
υ=0

Y (n)
υ (t; k)xυ

)1/2

=

(
1

Fn (x, t)

∞∑
υ=0

(
kυ

k (υ − 1) + n+ 1
− x
)2

Y (n)
υ (t; k)xυ

)1/2

=
√(

Ln (e1 − x)2) (x, t; k)

elde edilir. Bu eşitsizlik (3.28) de yerine yazılırsa

|(Lnf) (x, t; k)− f (x)| ≤ ω (f ; δ)

{
1 +

1

δ

√(
Ln (e1 − x)2) (x, t; k)

}
(3.29)
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olur. x ∈ [0, b] için

(
Ln (e1 − x)2) (x, t; k) ≤

∣∣(Lne2) (x, t; k)− x2
∣∣+ 2x |(Lne1) (x, t; k)− x|

yazılabileceği kolaylıkla görülebilir. Her iki tarafın [0, b] üzerinden maksimumu

alınırsa

maks
x∈[0,b]

(
Ln (e1 − x)2) (x, t; k) ≤

∥∥(Lne2) (x, t; k)− x2
∥∥
C[0,b]

+2b ‖(Lne1) (x, t; k)− x‖C[0,b]

bulunur. Burada (3.16) ve (3.27) eşitsizlikleri kullanılırsa

maks
x∈[0,b]

(
Ln (e1 − x)2) (x, t; k) ≤ 1

n

(
3 |t| b2

1− b + kb+
k |t| b
1− b

)
(3.30)

elde edilir. B = maks

{
kb,

k |t| b
1− b ,

3 |t| b2

1− b

}
alınır, δ = δn =

1√
n
seçilir ve (3.29) de

yerlerine yazılırsa

‖(Lnf) (x, t; k)− f (x)‖C[0,b] ≤
(

1 +
√

3B
)
ω (f ; δn)

bulunur ki bu ise ispatıtamamlar.

Şimdi de Lipschitz sınıfından olan fonksiyonlar yardımıyla Lnf operatörünün f

fonksiyonuna yaklaşma hızınıhesaplayalım.

Teorem 3.4.2 Her f ∈ LipM (α) ve
|t|
n
→ 0 (n→∞) olmak üzere

‖(Lnf) (x, t; k)− f (x)‖C[0,b] ≤M (3B)α/2 n−α/2

dir. Burada B, Teorem 3.4.1 de tanımlandı̆gıgibidir.

İspat. f ∈ LipM (α) (0 < α ≤ 1) olsun. Ln operatörünün lineerlik, monotonluk
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özelliklerinden ve Tanım 2.4.2 de verilen Lipschitz sınıfıtanımından

(Lnf) (x, t; k)− f (x) ≤ M

Fn (x, t)

∞∑
υ=0

∣∣∣∣ kυ

k (υ − 1) + n+ 1
− x
∣∣∣∣α Y (n)

υ (t; k)xυ

elde edilir. p =
2

α
ve q =

2

2− α için Tanım 2.4.3 ile verilen Hölder eşitsizliği

kullanılırsa

(Lnf) (x, t; k)− f (x) ≤ M

(
1

Fn(x,t)

∞∑
υ=0

(
kυ

k(υ−1)+n+1
− x
)2

Y (n)
υ (t; k)xυ

)α/2

×
(

1
Fn(x,t)

∞∑
υ=0

Y (n)
υ (t; k)xυ

)(2−α)/2

= M

(
1

Fn(x,t)

∞∑
υ=0

(
kυ

k(υ−1)+n+1
− x
)2

Y (n)
υ (t; k)xυ

)α/2

= M
√[(

Ln (e1 − x)2) (x, t; k)
]α

bulunur. Teorem 3.4.1 deki i̧slemler tekrarlanırsa

‖(Lnf) (x, t; k)− f (x)‖C[0,b] ≤M (3B)α/2 n−α/2

elde edilir.

Son olarak Peetre K-fonksiyoneli yardımıyla Lnf operatörünün f fonksiyonuna yak-

laşım hızınıhesaplayalım.

Teorem 3.4.3 f ∈ C [0, b] ve
|t|
n
→ 0 (n→∞) ise, bu durumda

‖(Lnf) (x, t; k)− f (x)‖C[0,b] ≤ 2K (f, δ∗n)

dir. Burada

δ∗n =

[
|t| b

2n (1− b) +
1

4n

(
3 |t| b2

1− b + kb+
k |t| b
1− b

)]
şeklindedir.
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İspat. g ∈ C2 [0, b] olsun. O taktirde g (s) fonksiyonunun x noktasındaki Taylor

açılımı

g (s) = g (x) + (s− x) g′ (x) + (s− x)2 g
′′ (x)

2

dir. Ln operatörü, yukarıdaki eşitliğin her iki tarafına uygulanır ve üçgen eşitsizliği

kullanılırsa

|(Lng) (x, t; k)− g (x)| ≤ |(Ln (e1 − x)) (x, t; k)| |g′ (x)|+1

2

∣∣(Ln (e1 − x)2) (x, t; k)
∣∣ |g′′ (x)|

olur. Her iki tarafın [0, b] üzerinden maksimumu alınır ve (3.16) ile (3.30) kullanılırsa

‖(Lng) (x, t; k)− g (x)‖C[0,b] ≤
|t| b

n (1− b) ‖g
′‖C[0,b]+

1

2n

(
3 |t| b2

1− b + kb+
k |t| b
1− b

)
‖g′′‖C[0,b]

bulunur. Tanım 2.4.4 ile verilen C2 [0, b] uzayında norm tanımıdikkate alınırsa

‖(Lng) (x, t; k)− g (x)‖C[0,b] ≤
[
|t| b

n (1− b) +
1

2n

(
3 |t| b2

1− b + kb+
k |t| b
1− b

)]
‖g‖C2[0,b]

(3.31)

elde edilir. Diğer taraftan, Ln lineer ve monoton operatör olduğundan

|(Lnf) (x, t; k)− f (x)| = |(Lnf) (x, t; k)− (Lng) (x, t; k) + (Lng) (x, t; k)− g (x)

+g (x)− f (x)|

≤ |(Ln (f − g)) (x, t; k)|+ |f (x)− g (x)|

+ |(Lng) (x, t; k)− g (x)|

yazılabilir. Her iki tarafın [0, b] üzerinden maksimumu alınır ve (3.11) gözönünde

bulundurulursa

‖(Lnf) (x, t; k)− f (x)‖C[0,b] ≤ 2 ‖f − g‖C[0,b] + ‖(Lng) (x, t; k)− g (x)‖C[0,b]
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olur. (3.31) eşitsizliği yukarıdaki eşitsizlikte yerine yazılırsa

‖(Lnf) (x, t; k)− f (x)‖C[0,b] ≤ 2

{
‖f − g‖C[0,b] +

[
|t| b

2n (1− b)

+
1

4n

(
3 |t| b2

1− b + kb+
k |t| b
1− b

)]
‖g‖C2[0,b]

}

bulunur. Eşitsizliğin her iki tarafının g ∈ C2 [0, b] için infimumu alınır ve

δ∗n =

[
|t| b

2n (1− b) +
1

4n

(
3 |t| b2

1− b + kb+
k |t| b
1− b

)]

seçilirse ispat tamamlanmı̧s olur.

Uyarı3.4.1 Bu kısımda verilen üç teoremde elde edilen δn ve δ∗n ifadelerinin n→∞

durumunda δn, δ
∗
n → 0 olacağına dikkat edilmelidir.

3.5 Ln Operatörünün r-inci Basamaktan Genelleştirilmesi

Bu bölümde (3.8) ile verilen Ln operatörünün r-inci basamaktan genelleştirilmesi

verilecektir. f ∈ Cr [0, b] , r = 0, 1, 2, ... and n ∈ N olmak üzere Ln operatörünün

r-inci genelleştirilmesi

(
L[r]
n f
)

(x, t; k) =
1

Fn (x; t)

∞∑
υ=0

r∑
i=0

f (i)
(

kυ
k(υ−1)+n+1

) (x− kυ
k(υ−1)+n+1

)i
i!

Y (n)
υ (t; k)xυ

(3.32)

şeklinde tanımlanmaktadır. BuradaCr [0, b] (0 < b < 1 ve r = 0, 1, 2, ...) ile f fonksiyo-

nunun r-inci türevlerinin sürekli olduğu uzay gösterilmektedir. Özel olarak (3.32)

ile tanımlanan operatörde r = 0 alınırsa (3.8) ile verilen operatör elde edilir.

Şimdi, L[r]
n lineer pozitif operatörü ile Ln lineer pozitif operatörü arasındaki ili̧skiyi

veren aşağıdaki teoremi verelim.
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Teorem 3.5.1 f (r) ∈ LipM (α) ve f ∈ Cr [0, b] (r = 0, 1, ...) ise, bu durumda

∥∥(L[r]
n f
)

(x, t; k)− f (x)
∥∥
C[0,b]

≤ M

(r − 1)!

α

α + r
B (α, r)

∥∥(Ln |e1 − x|α+r) (x, t; k)
∥∥
C[0,b]

(3.33)

dir. Burada B (α, r) Beta fonksiyonu ve r, n ∈ N dir.

İspat. (3.32) ile verilen L[r]
n operatörünün tanımından

f (x)−
(
L[r]
n f
)

(x, t; k) =
1

Fn (x; t)

∞∑
υ=0

[
f (x)−

r∑
i=0

f (i)
(

kυ
k(υ−1)+n+1

)
× (x− kυ

k(υ−1)+n+1)
i

i!

]
Y (n)
υ (t; k)xυ (3.34)

elde edilir. Yukarıdaki eşitlikte serinin içindeki ilk ifade için, Taylor integral for-

mülünden (Kirov ve Popova 1993)

f (x)−
r∑
i=0

f (i)
(

kυ
k(υ−1)+n+1

) (x− kυ
k(υ−1)+n+1)

i

i!
=

(x− kυ
k(υ−1)+n+1)

r

(r−1)!

1∫
0

(1− z)r−1

×
[
f (r)

(
kυ

k(υ−1)+n+1
+ z

(
x− kυ

k(υ−1)+n+1

))
− f (r)

(
kυ

k(υ−1)+n+1

)]
dz

(3.35)

bulunur. f (r) ∈ LipM (α) olduğundan, yukarıdaki integralin içindeki ifade

∣∣∣f (r)
(

kυ
k(υ−1)+n+1

+ z
(
x− kυ

k(υ−1)+n+1

))
− f (r)

(
kυ

k(υ−1)+n+1

)∣∣∣
≤Mzα

∣∣∣x− kυ
k(υ−1)+n+1

∣∣∣α (3.36)

eşitsizliğini gerçekler. Beta fonksiyonunun tanımından

1∫
0

zα (1− z)r−1 dz = B (1 + α, r) =
α

α + r
B (α, r) (3.37)
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yazılabilir. (3.36) ve (3.37), (3.35) de yerlerine yazılırsa∣∣∣∣∣∣∣f (x)−
r∑
i=0

f (i)

(
kυ

k (υ − 1) + n+ 1

) (x− kυ
k(υ−1)+n+1

)i
i!

∣∣∣∣∣∣∣
≤ M

(r − 1)!

α

α + r
B (α, r)

∣∣∣∣x− kυ

k (υ − 1) + n+ 1

∣∣∣∣α+r

(3.38)

sonucuna ulaşılır. (3.34) ve (3.38) birlikte düşünülürse

∣∣f (x)−
(
L[r]
n f
)

(x, t; k)
∣∣ ≤ M

(r − 1)!

α

α + r
B (α, r)

(
Ln |e1 − x|α+r) (x, t; k) (3.39)

bulunur. (3.39) eşitsizliğinin her iki tarafının [0, b] üzerinden maksimumu alınırsa

(3.33) elde edilir ki bu da ispatıtamamlar.

g ∈ C [0, b] fonksiyonu için

g (s) = |s− x|α+r (3.40)

şeklinde tanımlansın. s = x alındı̆gıtaktirde g (x) = 0 olacağıgöz önüne alınırsa, bu

durumda Ln operatörü her g ∈ C [0, b] fonksiyonu için Korovkin teoremini sağlaya-

cağından

lim
n→∞

‖(Lng) (x, t; k)− g (x)‖C[0,b] = 0

olduğu görülür. Teorem 3.5.1 in hipotezleri gözönüne alınırsa, (3.33) eşitsizliğinden

lim
n→∞

∥∥(L[r]
n f
)

(x, t; k)− f (x)
∥∥
C[0,b]

= 0

elde edilir.

Şimdi de L[r]
n f operatörünün f fonksiyonuna yaklaşma hızınıLn operatörünün yardımı

ile hesaplayalım.

Sonuç 3.5.1 f ∈ Cr [0, b] ve f (r) ∈ LipM (α) ise, bu durumda

∥∥(L[r]
n f
)

(x, t; k)− f (x)
∥∥
C[0,b]

≤ M

(r − 1)!

α

α + r
B (α, r)

(
1 +
√

3B
)
ω

(
g;

1√
n

)
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dir. Burada g fonksiyonu (3.40) şeklinde tanımlanmaktadır.

Sonuç 3.5.2 f ∈ Cr [0, b] ve f (r) ∈ LipM (α) ise, bu durumda

∥∥(L[r]
n f
)

(x, t; k)− f (x)
∥∥
C[0,b]

≤ Mbr

(r − 1)!

α

α + r
B (α, r) (3B)α/2 n−α/2

dir.

Uyarı3.5.1 Buradan görülmektedir ki, Sonuç 3.5.1 ve Sonuç 3.5.2 ile L[r]
n f ope-

ratörünün f fonksiyonuna yaklaşım hızı sırasıyla süreklilik modülü ve Lipschitz

sınıfından olan fonksiyonlar yardımıyla hesaplanmı̧stır.

3.6 Ln Operatörünün Fonksiyonel Diferensiyel Denkleme Uygulanması

Bu bölümde (3.8) ile verilen Ln operatörünün bir fonksiyonel diferensiyel denkleme

uygulanmasıüzerinde durulacaktır. Birçok çalı̧smada (May 1976, Volkov 1978, Alke-

made 1984), operatör bir fonksiyonel diferensiyel denkleme uygulanmı̧stır. Bu uygu-

lama, lineer pozitif operatörlerin de bir diferensiyel denklemi sağlayabileceği sonucu

bakımından son derece önemli bir özelliktir.

Şimdi Ln operatörünün sağladı̆gıdiferensiyel denklem, aşağıdaki teorem ile verile-

cektir.

Teorem 3.6.1 g (s) =
s

1− s olsun. Her x ∈ [0, b] (0 < b < 1) ve f ∈ C [0, b] için Ln

operatörü

x
d

dx
(Lnf) (x, t; k) = −xn+1−t(1−x)−1/k

k(1−x)
(Lnf) (x, t; k) + n−k+1

k
(Ln(f.g)) (x, t; k)

(3.41)

fonksiyonel diferensiyel denklemini sağlar.

İspat. f ∈ C [0, b] olduğundan (3.8) ile tanımlanan operatörün sağ tarafındaki

kuvvet serisi [0, b] aralı̆gında yakınsak olacaktır. Bu durumda bu seri [0, b] de terim
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terime türevlenebilir. O halde (3.8) ile tanımlıolan Ln operatörünün x deği̧skenine

göre türevi alınırsa

d

dx
(Lnf) (x, t; k) =

− ∂
∂x
Fn (x; t)

F 2
n (x; t)

∞∑
υ=0

f
(

kυ
k(υ−1)+n+1

)
Y (n)
υ (t; k)xυ

+
1

Fn (x; t)

∞∑
υ=1

f
(

kυ
k(υ−1)+n+1

)
Y (n)
υ (t; k) υxυ−1 (3.42)

eşitliği elde edilir. g (s) =
s

1− s olduğundan g
(

υk
k(υ−1)+n+1

)
= υk

n+1−k bulunur ve

(3.10) ile verilen Fn (x; t) tanımından

∂

∂x
Fn (x; t) =

n+ 1− t (1− x)−1/k

k (1− x)
Fn (x; t) (3.43)

olur. (3.42) eşitliğinin her iki tarafıx deği̧skeni ile çarpılır, (3.43) ile g
(

υk
k(υ−1)+n+1

)
=

υk
n+1−k eşitlikleri yerlerine yazılırsa

x
d

dx
(Lnf) (x, t; k) = −xn+1−t(1−x)−1/k

k(1−x)Fn(x;t)

∞∑
υ=0

f
(

υk
k(υ−1)+n+1

)
Y (n)
υ (t; k)xυ

+ n−k+1
kFn(x;t)

∞∑
υ=0

(f.g)
(

υk
k(υ−1)+n+1

)
Y (n)
υ (t; k)xυ

bulunur. (3.8) ile verilen Ln operatörün tanımıdikkate alınırsa, (3.41) elde edilir ki

bu ise ispatıtamamlar.

3.7 Ln Operatörünün Kantorovich Tipli İntegral Genelleştirilmesi

Kantorovich (1930), (2.5) de açık olarak ifade edilen klasik Bernstein operatörlerinin

Kantorovich tipli integral genelleşmesini f ∈ L1 ([0, 1]) için

(Kmf) (x) = (m+ 1)

m∑
k=0

(
m

k

)
xk (1− x)m−k

k+1/m+1∫
k/m+1

f (t) dt

biçiminde tanımlamı̧stır.
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(3.8) ile verilen Ln lineer pozitif operatörünün Kantorovich tipli genelleşmesi olan

(L∗nf) (x, t; k) = 1
Fn(x,t)

∞∑
υ=0

(
kυ+n+1

n

)
Y (n)
υ (t; k)xυ

kυ+ n
kυ+n+1∫
kυ

f
(

u
k(υ−1)+n+1

)
du

(3.44)

lineer pozitif operatörü incelenecektir. Burada x ∈ [0, 1), t ∈ (−∞, 0] ve k < n + 1

şeklindedir.

Ayrıca M [0, b], [0, b] üzerinde ölçülebilir fonksiyonların sınıfınıgöstermektedir. f ∈

M [0, b] dir.

L∗n operatörünün lineer ve pozitif olduğu kolayca görülebilir.

Dikkat edilmelidir ki, L∗n operatöründe özel seçimlerle M
∗
n ve Pn operatörlerinin

Kantorovich tipli genelleştirilmeleri elde edilir.

3.8 L∗n Operatörünün Yaklaşım Özellikleri

Bu kısımda, L∗n operatörünün Korovkin teoreminin koşullarınıgerçeklediği göste-

rilecektir.

Teorem 3.8.1 Eğer f fonksiyonu [0, b] (0 < b < 1) aralı̆gında sürekli, x ∈ [0, b]

ve
|t|
n
→ 0 (n→∞) sağlanıyorsa bu durumda [0, b] aralı̆gında L∗nf operatörü f

fonksiyonuna düzgün yakınsaktır.

İspat. L∗n operatörünün lineerlik ile pozitiflik özellikleri kullanılır ve (3.9) eşitliği

dikkate alınırsa, f (s) = e0 (s) = 1 için

(L∗ne0) (x, t; k) = 1
Fn(x,t)

∞∑
υ=0

(
kυ+n+1

n

)
Y (n)
υ (t; k)xυ

kυ+ n
kυ+n+1∫
kυ

du

= (Lne0) (x, t; k) = 1 (3.45)

elde edilir.
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(3.44) ile tanımlanan L∗n operatöründe f (s) = e1 (s) = s alınırsa

(L∗ne1) (x, t; k) = 1
Fn(x,t)

∞∑
υ=0

kυ+n+1
n

Y (n)
υ (t; k)xυ

kυ+ n
kυ+n+1∫
kυ

u
k(υ−1)+n+1

du

= 1
Fn(x,t)

∞∑
υ=0

kυ+n+1
2n(k(υ−1)+n+1)

Y (n)
υ (t; k)xυ

×
[

2kυn
kυ+n+1

+
(

n
kυ+n+1

)2
]

= (Lne1) (x, t; k) + 1
2Fn(x,t)

∞∑
υ=0

n
(kυ+n+1)(k(υ−1)+n+1)

Y (n)
υ (t; k)xυ

eşitliği elde edilir. n
(υk+n+1)(k(υ−1)+n+1)

≤ 1
n
olduğu gözönüne alınırsa

(L∗ne1) (x, t; k) ≤ (Lne1) (x, t; k) + 1
2n

(Lne0) (x, t; k)

bulunur. Yukarıdaki eşitsizlikte öncelikle her iki tarafın mutlak değeri alınır sonra

[0, b] üzerinden maksimumu alınır ve de (3.11) ile (3.16) eşitsizlikleri kullanılırsa

‖(L∗ne1) (x, t; k)− x‖C[0,b] ≤
|t|b

n(1−b) + 1
2n

(3.46)

elde edilir. Son olarak (3.44) tanımında f (s) = e2 (s) = s2 alınırsa

(L∗ne2) (x, t; k) = 1
Fn(x,t)

∞∑
υ=0

kυ+n+1
n

Y (n)
υ (t; k)xυ

kυ+ n
kυ+n+1∫
kυ

[
u

k(υ−1)+n+1

]2

du

= 1
Fn(x,t)

∞∑
υ=0

kυ+n+1
n

1
3(k(υ−1)+n+1)2

Y (n)
υ (t; k)xυ

×
[
3 (kυ)2 n

kυ+n+1
+ 3 (kυ)

(
n

kυ+n+1

)2
+
(

n
kυ+n+1

)3
]

= (Lne2) (x, t; k) + 1
Fn(x,t)

∞∑
υ=0

n
(kυ+n+1)(k(υ−1)+n+1)

kυ
k(υ−1)+n+1

×Y (n)
υ (t; k)xυ + 1

3Fn(x,t)

∞∑
υ=0

[
n

(kυ+n+1)(k(υ−1)+n+1)

]2

Y (n)
υ (t; k)xυ

elde edilir. n
(kυ+n+1)(k(υ−1)+n+1)

≤ 1
n
ve
[

n
(kυ+n+1)(k(υ−1)+n+1)

]2

≤ 1
n2
eşitsizlikleri
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kullanılırsa

(L∗ne2) (x, t; k) ≤ (Lne2) (x, t; k) + 1
n

(Lne1) (x, t; k) + 1
3n2

(Lne0) (x, t; k)

bulunur. Her iki tarafın öncelikle mutlak değeri alınır, daha sonra [0, b] üzerinden

maksimumu alınırsa ve ayrıca (3.11), (3.16) ile (3.27) kullanılırsa

∥∥(L∗ne2) (x, t; k)− x2
∥∥
C[0,b]

≤ |t|b
n(1−b)

(
k + b+ 1

n

)
+ (k + 1) b

n
+ 1

3n2
(3.47)

elde edilir. (3.45), (3.46) ve (3.47) den, Korovkin teoreminin koşullarının gerçek-

lendiği görülür. Dolayısıyla f ∈ C [0, b] için L∗nf operatörü f fonksiyonuna [0, b]

aralı̆gında düzgün yakınsaktır.

3.9 L∗n Operatörünün Yaklaşım Hızı

(3.44) ile tanımlanan L∗nf lineer pozitif operatörünün f fonksiyonuna yaklaşım hızı

üç farklıyolla hesaplanacaktır. Bunlardan ilki olan süreklilik modülü ile yaklaşım

hızıaşağıdaki teorem yardımıyla verilecektir.

Teorem 3.9.1 Her f ∈ C [0, b] (0 < b < 1) ve
|t|
n
→ 0 (n→∞) ise, bu durumda

‖(L∗nf) (x, t; k)− f (x)‖C[0,b] ≤ 2ω (f ; γn)

dir. Burada γn =
√

|t|b
n(1−b)

(
k + 3b+ 1

n

)
+ (k + 2) b

n
+ 1

3n2
şeklindedir.

İspat. f ∈ C [0, b] olsun. L∗n operatörünün lineerlik ile monotonluk özellikleri,

(3.45) eşitliği ve Lemma 2.3.1 in (vii) şıkkıgözönüne alınırsa

|(L∗nf) (x, t; k)− f (x)| ≤ (L∗n |f (s)− f (x)|) (x, t; k)

≤
(
L∗n

[
ω (f ; δ)

(
1 +
|s− x|
δ

)])
(x, t; k)

≤ ω (f ; δ)

{
1 +

1

δ
(L∗n |e1 − x|) (x, t; k)

}
(3.48)
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bulunur. Tanım 2.4.8 ile verilen integraller için Cauchy-Schwarz eşitsizliği kul-

lanılırsa

kυ+
n

kυ+n+1∫
kυ

∣∣∣ u
k(υ−1)+n+1

− x
∣∣∣ du ≤

kυ+
n

kυ+n+1∫
kυ

(
u

k(υ−1)+n+1
− x
)2

du

1/2

×

kυ+
n

kυ+n+1∫
kυ

du

1/2

=

kυ+
n

kυ+n+1∫
kυ

(
u

k(υ−1)+n+1
− x
)2

du

1/2 [
n

kυ+n+1

]1/2
elde edilir. O taktirde

(L∗n |e1 − x|) (x, t; k) ≤ 1
Fn(x,t)

∞∑
υ=0

√
kυ+n+1

n
Y (n)
υ (t; k)xυ

×

kυ+
n

kυ+n+1∫
kυ

(
u

k(υ−1)+n+1
− x
)2

du

1/2

eşitsizliği bulunur. Şimdi Tanım 2.4.1 ile verilen seriler için Cauchy-Schwarz eşit-

sizliği kullanılırsa

(L∗n |e1 − x|) (x, t; k)

≤

 1
Fn(x,t)

∞∑
υ=0

kυ+n+1
n

Y (n)
υ (t; k)xυ

kυ+
n

kυ+n+1∫
kυ

(
u

k(υ−1)+n+1
− x
)2

du

1/2

×
[

1
Fn(x,t)

∞∑
υ=0

Y (n)
υ (t; k)xυ

]1/2

elde edilir. O taktirde, yukarıdaki eşitsizlikten

(L∗n |e1 − x|) (x, t; k) ≤
√(

L∗n (e1 − x)2) (x, t; k)

sağlandı̆gıgörülür. Bu eşitsizlik (3.48) de yerine yazılırsa

|(L∗nf) (x, t; k)− f (x)| ≤ ω (f ; δ)

{
1 +

1

δ

√(
L∗n (e1 − x)2) (x, t; k)

}
(3.49)
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bulunur. x ∈ [0, b] için

(
L∗n (e1 − x)2) (x, t; k) ≤

∣∣(L∗ne2) (x, t; k)− x2
∣∣+ 2x |(L∗ne1) (x, t; k)− x|

yazılabilir. Her iki tarafın [0, b] üzerinden maksimumu alınırsa

maks
x∈[0,b]

(
L∗n (e1 − x)2) (x, t; k) ≤

∥∥(L∗ne2) (x, t; k)− x2
∥∥
C[0,b]

+2b ‖(L∗ne1) (x, t; k)− x‖C[0,b]

olur. Burada (3.46) ve (3.47) eşitsizlikleri kullanılırsa

maks
x∈[0,b]

(
L∗n (e1 − x)2) (x, t; k) ≤ |t|b

n(1−b)
(
k + b+ 1

n

)
+ (k + 1) b

n
+ 1

3n2

+2b
(
|t|b

n(1−b) + 1
2n

)
= |t|b

n(1−b)
(
k + 3b+ 1

n

)
+ (k + 2) b

n
+ 1

3n2

(3.50)

elde edilir. (3.50) eşitsizliği (3.49) de yerlerine yazılır ve

δ = γn =

√
|t|b

n(1−b)

(
k + 3b+

1

n

)
+ (k + 2)

b

n
+

1

3n2

seçilirse

‖(L∗nf) (x, t; k)− f (x)‖C[0,b] ≤ 2ω (f ; γn)

bulunur ki bu ise ispatıtamamlar.

Şimdi de Lipschitz sınıfından olan fonksiyonlar yardımıyla L∗nf operatörünün f

fonksiyonuna yaklaşma hızınıhesaplayalım.

Teorem 3.9.2 Her f ∈ LipM (α) ve
|t|
n
→ 0 (n→∞) ise, bu durumda

‖(L∗nf) (x, t; k)− f (x)‖C[0,b] ≤Mγαn

47



dir. Burada γn, Teorem 3.9.1 de tanımlandı̆gıgibidir.

İspat. f ∈ LipM (α) (0 < α ≤ 1) olsun. L∗n operatörünün lineerlik ile monotonluk

özelliği ve Tanım 2.4.2 ile verilen Lipschitz sınıfıtanımıkullanılırsa

|(L∗nf) (x, t; k)− f (x)| ≤ (L∗n |f (t)− f (x)|) (x, t; k)

≤ M (L∗n |t− x|
α) (x, t; k)

= M
Fn(x,t)

∞∑
υ=0

kυ+n+1
n

Y (n)
υ (t; k)xυ

×
kυ+

n
kυ+n+1∫
kυ

∣∣∣ u
k(υ−1)+n+1

− x
∣∣∣α du

elde edilir. p =
2

α
ve q =

2

2− α olmak üzere Tanım 2.4.7 ile verilen integraller için

Hölder eşitsizliği kullanılırsa

kυ+
n

kυ+n+1∫
kυ

∣∣∣ u
k(υ−1)+n+1

− x
∣∣∣α du

≤ [

kυ+
n

kυ+n+1∫
kυ

(
u

k(υ−1)+n+1
− x
)2

du]α/2[

kυ+
n

kυ+n+1∫
kυ

du

(2−α)/2

=
(

n
kυ+n+1

)(2−α)/2

kυ+
n

kυ+n+1∫
kυ

(
u

k(υ−1)+n+1
− x
)2

du

α/2

bulunur. O halde, bu eşitsizlik operatör tanımında yazılırsa

(L∗n |t− x|
α) (x, t; k) ≤ 1

Fn(x,t)

∞∑
υ=0

[
kυ+n+1

n

]α/2
Y (n)
υ (t; k)xυ

×[

kυ+
n

kυ+n+1∫
kυ

(
u

k(υ−1)+n+1
− x
)2

du


α
2

olur. Şimdi, p =
2

α
ve q =

2

2− α olmak üzere Tanım 2.4.3 ile verilen seriler için

Hölder eşitsizliği kullanılır, (3.9) eşitliği göz önünde bulundurulur ve (3.44) ile verilen
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L∗n operatör tanımıdikkate alınırsa

(L∗n |t− x|
α) (x, t; k) ≤

[
1

Fn(x,t)

∞∑
υ=0

kυ+n+1
n

Y (n)
υ (t; k)xυ

×
kυ+

n
kυ+n+1∫
kυ

(
u

k(υ−1)+n+1
− x
)2

du

α/2

×
[

1
Fn(x,t)

∞∑
υ=0

Y (n)
υ (t; k)xυ

](2−α)/2

=
[(
L∗n (e1 − x)2) (x, t; k)

]α/2
elde edilir. Teorem 3.9.1 deki benzer i̧slemler tekrarlanırsa

‖(L∗nf) (x, t; k)− f (x)‖C[0,b] ≤Mγαn

eşitsizliği bulunur. Burada γn, Teorem 3.9.1 tanımlandı̆gıgibidir.

Son olarak, L∗nf operatörünün f fonksiyonuna yaklaşım hızını, Peetre K-fonksiyoneli

yardımıyla hesaplayalım.

Teorem 3.9.3 Her f ∈ C [0, b] ve
|t|
n
→ 0 (n→∞) ise, bu durumda

‖(L∗nf) (x, t; k)− f (x)‖C[0,b] ≤ 2K (f ; γ∗n)

dır. Burada

γ∗n = 3|t|b2
n(1−b) + (k+1)|t|b

n(1−b) + |t|b
n2(1−b) + (k+2)b

n
+ 1

3n2
+ 1

2n

şeklinde tanımlıdır.

İspat. g ∈ C2 [0, b] olsun. g fonksiyonunun Taylor açılımından

|(L∗ng) (x, t; k)− g (x)| ≤ |(L∗n (t− x)) (x, t; k)| |g′ (x)|

+
∣∣(L∗n (t− x)2) (x, t; k)

∣∣ |g′′ (x)|
2

(3.51)
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elde edilir. (3.51) eşitsizliğinin her iki tarafının [0, b] üzerinden maksimumu alınır,

(3.46) ve (3.50) eşitsizlikleri kullanılırsa

‖(L∗ng) (x, t; k)− g (x)‖C[0,b] ≤ ‖(L∗n (t− x)) (x, t; k)‖C[0,b] ‖g′‖C[0,b]

+1
2

∥∥(L∗n (t− x)2) (x, t; k)
∥∥
C[0,b]

‖g′′‖C[0,b]

≤
(
|t|b

n(1−b) + 1
2n

)
‖g′‖C[0,b]

+1
2

{
|t|b

n(1−b)
(
k + 3b+ 1

n

)
+ (k + 2) b

n
+ 1

3n2

}
‖g′′‖C[0,b]

≤
{

3|t|b2
n(1−b) + (k+1)|t|b

n(1−b) + |t|b
n2(1−b) + (k+2)b

n

+ 1
3n2

+ 1
2n

}
‖g‖C2[0,b] (3.52)

bulunur. Diğer taraftan, L∗n operatörünün lineerlik, monotonluk özellikleri ve üçgen

eşitsizliği kullanılırsa

|(L∗nf) (x, t; k)− f (x)| ≤ |(L∗n (f − g)) (x, t; k)|+ |f (x)− g (x)|

+ |(L∗ng) (x, t; k)− g (x)| (3.53)

bulunur. (3.53) eşitsizliğinin her iki tarafının [0, b] üzerinden maksimumu alınır ve

(3.52) eşitsizliği kullanılırsa

‖(L∗nf) (x, t; k)− f (x)‖C[0,b] ≤ 2
{
‖f (x)− g (x)‖C[0,b] + γ∗n ‖g (x)‖C2[0,b]

}
(3.54)

elde edilir. Son olarak, (3.54) eşitsizliğinin her iki yanının g ∈ C2 [0, b] üzerinden

infimumu alınır ve

γ∗n = 3|t|b2
n(1−b) + (k+1)|t|b

n(1−b) + |t|b
n2(1−b) + (k+2)b

n
+ 1

3n2
+ 1

2n

seçilirse ispat tamamlanmı̧s olur.

3.10 L∗n Operatörünün r-inci Basamaktan Genelleştirilmesi

Bu bölümde (3.44) ile verilen L∗n operatörünün r-inci basamaktan genelleştirilmesi

verilecektir. f ∈ Cr [0, b] , r = 0, 1, 2, ... ve n ∈ N olmak üzere L∗n operatörünün
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r-inci genelleştirilmesi

(
L∗

[r]

n f
)

(x, t; k) = 1
Fn(x;t)

∞∑
υ=0

kυ+n+1
n

Y (n)
υ (t; k)xυ

kυ+ n
kυ+n+1∫
kυ

r∑
j=0

f (j)
(

u
k(υ−1)+n+1

)

×

(
x− u

k(υ−1)+n+1

)j
j!

du (3.55)

şeklinde tanımlanmaktadır. Daha öncede belirtildiği gibi, Cr [0, b] (0 < b < 1 ve

r = 0, 1, 2, ...) gösterimi ile f fonksiyonunun r-inci türevlerinin sürekli olduğu uzay

gösterilmektedir. Özel olarak (3.55) ile tanımlanan L∗
[r]

n operatöründe r = 0 alınırsa

(3.44) ile verilen L∗n operatörü elde edilir.

Şimdi, L∗
[r]

n ile L∗n lineer pozitif operatörleri arasındaki bağlantıyıveren aşağıdaki

teoremi verelim.

Teorem 3.10.1 f (r) ∈ LipM (α) ve f ∈ Cr [0, b] ise, bu durumda

∥∥∥(L∗[r]n f
)

(x, t; k)− f (x)
∥∥∥
C[0,b]

≤ M
(r−1)!

α
α+r

B (α, r)
∥∥(L∗n |e1 − x|α+r) (x, t; k)

∥∥
C[0,b]

(3.56)

dir. Burada B (α, r) Beta fonksiyonu ve r, n ∈ N dir.

İspat. (3.55) ile verilen L∗
[r]

n operatörünün tanımından

f (x)−
(
L∗

[r]

n f
)

(x, t; k) = 1
Fn(x;t)

∞∑
υ=0

kυ+n+1
n

Y (n)
υ (t; k)xυ

kυ+ n
kυ+n+1∫
kυ

[f (x)−

×
r∑
j=0

f (j)
(

u
k(υ−1)+n+1

) (x− u
k(υ−1)+n+1)

j

j!

]
du (3.57)

elde edilir. (3.57) eşitliğinde integralin içindeki ifade için Taylor integral formülü
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(Kirov ve Popova 1993) kullanılırsa

f (x)−
r∑
j=0

f (j)
(

u
k(υ−1)+n+1

) (x− u
k(υ−1)+n+1)

j

j!
=

(x− u
k(υ−1)+n+1)

r

(r−1)!

1∫
0

(1− s)r−1

×
[
f (r)

(
u

k(υ−1)+n+1
+ s

(
x− u

k(υ−1)+n+1

))
− f (r)

(
u

k(υ−1)+n+1

)]
ds

(3.58)

bulunur. (3.58) eşitliğinde integralin içinde bulunan ikinci terim için, f (r) ∈ LipM (α)

olduğunu göz önünde bulundurulursa

∣∣∣f (r)
(

u
k(υ−1)+n+1

+ s
(
x− u

k(υ−1)+n+1

))
− f (r)

(
u

k(υ−1)+n+1

)∣∣∣
≤Msα

∣∣∣x− u
k(υ−1)+n+1

∣∣∣α (3.59)

eşitsizliği gerçeklenir. Beta fonksiyonunun tanımından

1∫
0

sα (1− s)r−1 ds = B (1 + α, r) =
α

α + r
B (α, r) (3.60)

yazılabilir. (3.59) ve (3.60), (3.58) de yerlerine yazılırsa∣∣∣∣∣∣f (x)−
r∑
j=0

f (j)
(

u
k(υ−1)+n+1

) (
x− u

k(υ−1)+n+1

)j
j!

∣∣∣∣∣∣
≤ M

(r−1)!
α
α+r

B (α, r)
∣∣∣x− u

k(υ−1)+n+1

∣∣∣α+r
(3.61)

sonucuna ulaşılır. (3.57) ün her iki tarafının mutlak değeri alınır ve (3.61) burada

yerine yazılırsa

∣∣∣f (x)−
(
L∗

[r]

n f
)

(x, t; k)
∣∣∣ ≤ M

(r−1)!
α
α+r

B (α, r)
(
L∗n |e1 − x|α+r) (x, t; k) (3.62)

bulunur. (3.62) eşitsizliğinin her iki tarafının [0, b] üzerinden maksimumu alınırsa,

(3.56) elde edilir ki bu da ispatıtamamlar.
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Daha önce kısım 3.5 de, g ∈ C [0, b] fonksiyonu (3.40) eşitliği ile verilmi̧stir ve

g (s) = |s− x|α+r

şeklinde tanımlanmı̧stır. Kısım 3.5 de yapılan i̧slemlere benzer şekilde, s = x alındı̆gı

taktirde g (x) = 0 olacağıgöz önüne alınırsa, bu durumda L∗n operatörü her g ∈

C [0, b] fonksiyonu için Korovkin teoremini sağlayacağından

lim
n→∞

‖(L∗ng) (x, t; k)− g (x)‖C[0,b] = 0

olduğu görülür. Teorem 3.10.1 in hipotezleri gözönüne alınırsa (3.56) eşitsizliğinden

lim
n→∞

∥∥∥(L∗[r]n f
)

(x, t; k)− f (x)
∥∥∥
C[0,b]

= 0

elde edilir.

Şimdi de L∗
[r]

n f operatörünün f fonksiyonuna yaklaşma hızınıL∗n operatörü yardımıyla

hesaplayalım.

Sonuç 3.10.1 f ∈ Cr [0, b] ve f (r) ∈ LipM (α) ise, bu durumda

∥∥∥(L∗[r]n f
)

(x, t; k)− f (x)
∥∥∥
C[0,b]

≤ 2M

(r − 1)!

α

α + r
B (α, r)ω (g; γn)

dir. Burada g fonksiyonu (3.40) şeklinde tanımlanmaktadır ve

γn =

√
|t|b

n(1−b)

(
k + 3b+

1

n

)
+ (k + 2)

b

n
+

1

3n2

şeklindedir.

Sonuç 3.10.2 f ∈ Cr [0, b] ve f (r) ∈ LipM (α) ise, bu durumda

∥∥∥(L∗[r]n f
)

(x, t; k)− f (x)
∥∥∥
C[0,b]

≤ Mbr

(r − 1)!

α

α + r
B (α, r) γαn
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dir. Burada γn, Sonuç 3.10.1 de tanımlandı̆gışekildedir.

Uyarı3.10.1 Buradan görülmektedir ki, Sonuç 3.10.1 ve Sonuç 3.10.2 ile L∗
[r]

n f

ope- ratörünün f fonksiyonuna sırasıyla süreklilik modülü ve Lipschitz sınıfından

fonksiyonlar yardımıyla yaklaşım hızıhesaplanmı̧stır.
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4. q-LAGUERREPOLİNOMLARINI İÇEREN LİNEERPOZİTİF OPE-

RATÖRLERİN KANTOROVICH TİPLİ GENELLEŞMESİ

Bu bölümde ilk olarak, üçüncü bölümde de verdiğimiz ve operatörün kurulmasında

zemin teşkil eden operatörlere değinilecektir. Daha sonra ise, q-Laguerre polinom-

larınıiçeren lineer pozitif operatörlerin Kantorovich tipli bir genelleştirilmesi olan

Kn,q operatörleri tanımlanacaktır. Üçüncü kısımda Kn,q operatörlerinin Korovkin

teoreminin koşullarınıgerçeklediği gösterilecektir. Son kısımda ise, Kn,qf operatör-

lerinin f fonksiyonuna yaklaşım hızıbirinci ile ikinci süreklilik modülleri ve Lipschitz

sınıfından olan fonksiyonlar yardımıyla hesaplanacaktır.

4.1 Giri̧s

1912 yılında S. N. Bernstein, kendi ismini verdiği bilinen Bernstein operatörünü

f ∈ C [0, 1] için

Bn (f ;x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)n−k

şeklinde tanımlamı̧stır. Kantorovich ise 1930 yılında Bernstein operatörlerinin Kan-

torovich tipli integral genelleştirilmesini f ∈ L1 ([0, 1]) için

(Kmf) (x) = (m+ 1)
m∑
k=0

(
m

k

)
xk (1− x)m−k

k+1/m+1∫
k/m+1

f (t) dt

biçiminde tanımlamı̧stır. Meyer-König ve Zeller (1960), daha önceki bölümlerde de

açık olarak ifade edilen Mn operatörünün tanımınıvermi̧stir. 1964 de ise Cheney ve

Sharma, öncelikle MKZ operatöründe deği̧siklik yaparakM∗
n Bernstein kuvvet serisini

tanımlamı̧slardır ve ardından da Laguerre polinomlarınıiçeren Pn operatörünü ver-

mi̧slerdir. Lineer pozitif operatörlerin q-genelleşmesi ilk olarak Phillips (1996) tarafın-

dan verilmi̧stir. Philips, klasik Bernstein operatörünün q-genelleştirilmesini, n po-
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zitif tamsayı, 0 < q ≤ 1 ve f ∈ C ([0, 1]) olmak üzere

Bn,q (f ;x) =

n∑
k=0

f

(
[k]

[n]

)[
n

k

]
xk

n−k−1∏
s=0

(1− qsx) (4.1)

vermi̧stir ve bu operatör için Voronovskaja tipli asimptotik formülü ve yaklaşım

hızınıelde etmi̧stir. Trif (2000), Meyer-König ve Zeller operatörünün q-geni̧slemesi

olan

Mn,q (f ;x) =

n∏
j=0

(
1− qjx

) ∞∑
k=0

f

(
[k]

[k + n]

)[
n+ k

k

]
xk (4.2)

operatörünü tanımlamı̧stır. 2007 yılında ise M. A. Özarslan, Pn operatörlerinin

q-geni̧slemesini

Pn,q (f ;x) =
1

Fn,q (x, t)

∞∑
k=0

f

(
[k]

[k + n]

)
L

(n)
k (t; q)xk (4.3)

olarak tanımlamı̧stır. Moak (Moak, 1981), q-Laguerre polinomları için doğurucu

fonksiyon tanımını

Fn,q (x, t) =
(xqn+1; q)∞

(x; q)∞

∞∑
m=0

qm
2+mn [− (1− q)xt]m

(q; q)m (xqn+1; q)m

=
∞∑
k=0

L
(n)
k (t; q)xk (Reα > 1) (4.4)

ile vermi̧stir ve q-Laguerre polinomlarının açık ifadesi (Jackson 1944, Hahn 1949 ve

Moak 1981)

L
(n)
k (x; q) =

(qn+1; q)k
(q; q)k

k∑
j=0

(
q−k; q

)
j
q

(
j
2

)
(1− q)j

(
qn+k+1x

)j
(qn+1; q)j (q; q)j

(4.5)

şeklindedir. Ayrıca t = 0 için

L
(n)
k (0; q) =

(qn+1; q)k
(q; q)k

=

[
n+ k

k

]
(4.6)
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ve
1

Fn,q (x, 0)
=

(x; q)∞
(xqn+1; q)∞

=
n∏
j=0

(
1− qjx

)
(4.7)

olacağıdikkate alınırsa, (4.6) ve (4.7) den Mn,q (f ;x) operatörünün Pn,q (f ;x) nin

bir özel durumu olduğu kolayca görülür. Ayrıca

lim
q→1−

Pn,q (f ;x) = Pn (f ;x)

dir.

4.2 Operatörün Oluşturulması

Bu bölümde, Özarslan (2007) tarafından tanımlanan Pn,q operatörünün Kantorovich

tipli genelleştirilmesi olan

(Kn,qf) (x, t) =
1

Fn,q (x, t)

∞∑
k=0

 [k+1]/[n+k]∫
[k]/[n+k]

f (t) dRq t

 q−k [n+ k]L
(n)
k (t; q)xk (4.8)

lineer pozitif operatörü ele alınacaktır. Burada x ∈ [0, 1] , t ∈ (−∞, 0] , q ∈ (0, 1],

n > 1 ve {Fn,q (x, t)}n∈N dizisi, Moak (1981) tarafından verilen ve (4.4) ile tanım-

lanan q-Laguerre polinomlarıiçin doğurucu fonksiyondur.

Kn,q operatörü lineer ve pozitiftir.

Tanım 2.5.6 ile verilen [a, b] aralı̆gında f fonksiyonunun q-Jackson integrali, iki son-

suz toplam içermektedir. Bu ise, q-Jackson integralini içeren lineer pozitif ope-

ratörlerin yaklaşımının hesaplanmasında kullanılan, bazı integral eşitliklerinin q-

analoğunun türevlerini hesaplamada problemler yaratmaktadır. Bu problemleri

çözmek üzere Marinkovíc vd. (2008) yeni bir q-integral tanımlamı̧slardır. Bu in-

tegral, Riemann tipli q-integral olarak adlandırılmaktadır ve Tanım 2.5.7 de açık

ifadesi verilmi̧stir. Klasik q-integral tanımının aksine bu tanım sadece integral ara-

lı̆gındaki noktaları içermektedir. Bu sebeple (4.8) ile tanımlanan operatörde Rie-

mann tipli q-integral tanımıkullanılmı̧stır.
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4.3 Kn,q Operatörünün Yaklaşım Özellikleri

Bu kısımda Kn,q operatörünün Korovkin teoreminin koşullarınıgerçeklediği göste-

rilecektir.

Teorem 4.3.1 Eğer f ∈ C [0, 1] ve |t|
[n]
→ 0 (n→∞) ise, bu durumda Kn,qf ope-

ratörü f fonksiyonuna [0, b] (0 < b < 1) aralı̆gında düzgün yakınsaktır.

İspat. Kn,q operatörünün lineerlik ile pozitiflik özellikleri kullanılır ve (4.8) ile

verilen tanımıdikkate alınırsa, f (s) = e0 (s) = 1 için

(Kn,qe0) (x, t) =
1

Fn,q (x, t)

∞∑
k=0

 [k+1]/[n+k]∫
[k]/[n+k]

dRq t

 q−k [n+ k]L
(n)
k (t; q)xk (4.9)

elde edilir. Tanım 2.5.7 ile verilen Riemann tipli q-integral tanımından

[k+1]/[n+k]∫
[k]/[n+k]

dRq t =
qk

[n+ k]
(4.10)

bulunur. (4.10) eşitliği (4.9) de yerine yazılır ve (4.4) ile verilen doğurucu fonksiyon

tanımıkullanılırsa

(Kn,qe0) (x, t) = 1 (4.11)

olur. (4.8) ile verilen Kn,q operatöründe f (s) = e1 (s) alınırsa

(Kn,qe1) (x, t) =
1

Fn (x, t)

∞∑
k=0

 [k+1]/[n+k]∫
[k]/[n+k]

tdRq t

 q−k [n+ k]L
(n)
k (t; q)xk (4.12)

elde edilir. Tanım 2.5.7 ile verilen Riemann tipli q-integral tanımından kolaylıkla

hesaplanabilir ki
[k+1]/[n+k]∫
[k]/[n+k]

tdRq t =
qk

[n+ k]2

(
[k] +

qk

[2]

)
(4.13)
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dir. (4.13) eşitliği (4.12) de yerine yazılırsa

(Kn,qe1) (x, t) =
1

Fn (x, t)

∞∑
k=0

1

[n+ k]

(
[k] +

qk

[2]

)
L

(n)
k (t; q)xk (4.14)

olur. Kolaylıkla görülebilir ki 0 < q ≤ 1 için qk ≤ 1 dir ve [n] ≤ [k + n] eşitsizliği

gerçeklenir. Bu eşitsizlikler (4.14) eşitliğinde yerlerine yazılırsa, (4.3) ile verilen Pn,q

operatör tanımından

(Kn,qe1) (x, t) ≤ Pn,q (e1;x) +
1

[2] [n]
Pn,q (e0;x) (4.15)

bulunur. Özarslan (2007) tarafından Pn,q operatörünün yaklaşım özelliklerini incele-

mek için elde edilen

Pn,q (e0;x) = 1 (4.16)

eşitliği ve

Pn,q (e1;x) ≤ x− tx

[n] (1− bqn+1)
(4.17)

eşitsizliği (4.15) eşitsizliğinde kullanılırsa

(Kn,qe1) (x, t)− x ≤ − tx

[n] (1− bqn+1)
+

1

[2] [n]
(4.18)

elde edilir. Diğer taraftan, (4.14) eşitliğinden kolaylıkla görülebilir ki

(Kn,qe1) (x, t) ≥ Pn,q (e1;x) (4.19)

dir. Yine Özarslan (2007) tarafından verilen Pn,q (e1;x) ≥ x eşitsizliği (4.19) eşitsi-

zliğinde kullanılırsa

(Kn,qe1) (x, t) ≥ x (4.20)

bulunur. (4.18) ve (4.20) eşitsizliklerinden

0 ≤ (Kn,qe1) (x, t)− x ≤ − tx

[n] (1− bqn+1)
+

1

[2] [n]
(4.21)

olur. (4.21) eşitsizliğinin öncelikle her iki tarafının mutlak değeri ve daha sonra [0, b]
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üzerinden maksimumu alınırsa

‖(Kn,qe1) (x, t)− x‖C[0,b] ≤
|t| b

[n] (1− bqn+1)
+

1

[2] [n]
(4.22)

elde edilir.

Son olarak (4.8) ile verilen Kn,q operatöründe f (s) = e2 (s) alalım. Bu durumda

(Kn,qe2) (x, t) =
1

Fn (x, t)

∞∑
k=0

 [k+1]/[n+k]∫
[k]/[n+k]

t2dRq t

 q−k [n+ k]L
(n)
k (t; q)xk (4.23)

olur. Tanım 2.5.7 ile verilen Riemann tipli q-integral tanımından kolaylıkla hesap-

lanabilir ki
[k+1]/[n+k]∫
[k]/[n+k]

t2dRq t =
qk

[n+ k]3

(
[k]2 +

2qk

[2]
[k] +

q2k

[3]

)
(4.24)

dir. (4.24) eşitliği (4.23) de yerine yazılırsa

(Kn,qe2) (x, t) =
1

Fn (x, t)

∞∑
k=0

1

[n+ k]2

(
[k]2 +

2qk

[2]
[k] +

q2k

[3]

)
L

(n)
k (t; q)xk (4.25)

elde edilir. Kolaylıkla görülebilir ki 0 < q ≤ 1 için qk ≤ 1 dir ve [n] ≤ [k + n]

eşitsizliği gerçeklenir. Bu eşitsizlikler (4.25) eşitliğinde yerlerine yazılırsa, (4.3) ile

verilen Pn,q operatör tanımından

(Kn,qe2) (x, t) ≤ Pn,q (e2;x) +
2

[2] [n]
Pn,q (e1;x) +

1

[3] [n]2
Pn,q (e0;x) (4.26)

yazılabilir. Özarslan (2007) tarafından verilen

Pn,q (e2;x) ≤ x2 − t (x2 + x)

[n] (1− bqn+1)
+

x

[n]
(4.27)
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eşitsizliği, (4.16) ve (4.17) eşitlik ve eşitsizliği, (4.26) de kullanılırsa

(Kn,qe2) (x, t)− x2 ≤ − t (x2 + x)

[n] (1− bqn+1)
+

x

[n]
+

1

[3] [n]2

+
2

[2] [n]

(
x− tx

[n] (1− bqn+1)

)
(4.28)

elde edilir. Diğer taraftan

s2 = (s− x)2 + 2xs− x2

eşitliğinin her iki yanına Kn,q operatörü uygulanırsa

(Kn,qe2) (x, t)− x2 =
(
Kn,q (e1 − x)2) (x, t) + 2x (Kn,q (e1 − x)) (x, t)

olur. (4.21) eşitsizliğinden ve Kn,q operatörünün pozitiflik özelliğinden

(Kn,qe2) (x, t)− x2 ≥ 0 (4.29)

olduğu görülür. (4.28) ve (4.29) eşitsizliklerinden

0 ≤ (Kn,qe2) (x, t)− x2 ≤ − t (x2 + x)

[n] (1− bqn+1)
+

x

[n]
+

1

[3] [n]2

+
2

[2] [n]

(
x− tx

[n] (1− bqn+1)

)
(4.30)

eşitsizliği elde edilir. (4.30) eşitsizliğinin önce her iki tarafının mutlak değeri daha

sonra ise [0, b] üzerinden maksimumu alınırsa

∥∥(Kn,qe2) (x, t)− x2
∥∥
C[0,b]

≤ |t| (b2 + b)

[n] (1− bqn+1)
+

2 |t| b
[2] [n]2 (1− bqn+1)

+

(
1 +

2

[2]

)
b

[n]
+

1

[3] [n]2
(4.31)

olur.

Eğer burada, q yerine lim
n
qn = 1 limitini gerçekleyen bir qn dizisi alınırsa, (4.11),
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(4.22) ve (4.31) den Korovkin teoreminin koşullarının gerçeklendiği görülür. Dolayısıy-

la f ∈ C [0, 1] için Kn,qf lineer pozitif operatörü f fonksiyonuna [0, b] (0 < b < 1)

aralı̆gında düzgün yakınsaktır. Bu ise teoremi ispatlar.

4.4 Kn,q Operatörünün Yaklaşım Hızı

Bu kısımda, Kn,qf operatörünün f fonksiyonuna yaklaşım hızı birinci ve ikinci

basamaktan süreklilik modülü ve Lipschitz sınıfından fonksiyonlar yardımıyla hesap-

lanacaktır.

Kn,q operatörünün yaklaşım hızınısüreklilik modülü ile hesaplamadan önce, Kn,q

operatörünün ikinci momentini elde edelim. Kn,q operatörünün lineerlik özelliğinden

(
Kn,q (e1 − x)2) (x, t) = (Kn,qe2) (x, t)− x2 − 2x [(Kn,qe1) (x, t)− x]

yazılabilir. Her iki tarafın öncelikle mutlak değeri daha sonra ise x ∈ [0, b] üzerinden

maksimumu alınırsa

∥∥(Kn,q (e1 − x)2) (x, t)
∥∥
C[0,b]

≤
∥∥(Kn,qe2) (x, t)− x2

∥∥
C[0,b]

+2 ‖x‖C[0,b] ‖(Kn,qe1) (x, t)− x‖C[0,b]

elde edilir. Burada (4.22) ve (4.31) eşitsizlikleri kullanılırsa

∥∥(Kn,q (e1 − x)2) (x, t)
∥∥
C[0,b]

≤ |t| (3b2 + b)

[n] (1− bqn+1)
+

2 |t| b
[2] [n]2 (1− bqn+1)

+

(
1 +

4

[2]

)
b

[n]
+

1

[3] [n]2
(4.32)

bulunur.

Aşağıdaki teoremde Kn,qf operatörünün f fonksiyonuna yaklaşım hızısüreklilik mo-

dülü yardımıyla hesaplanacaktır.
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Teorem 4.4.1 Her f ∈ C [0, b] ve |t|
[n]
→ 0 (n→∞) ise, bu durumda

‖(Kn,qf) (x, t)− f (x)‖C[0,b] ≤ 2ω (f, µn) (4.33)

dir. Burada

µn =

√
|t|(3b2+b)

[n](1−bqn+1)
+ 2|t|b

[2][n]2(1−bqn+1)
+ (1 + 4

[2]
) b

[n]
+ 1

[3][n]2

şeklindedir.

İspat. f ∈ C [0, b] olsun. Kn,q operatörünün lineerlik ile monotonluk özellikleri

kullanılır ve Lemma 2.3.1 de verilen (vii)-inci özelliği gözönüne alınırsa

|(Kn,qf) (x, t)− f (x)| ≤ (Kn,q |f (s)− f (x)|) (x, t)

≤ ω (f, δ)

(
Kn,q

(
1 +
|s− x|
δ

))
(x, t)

= ω (f, δ)

[
1 +

1

δ
(Kn,q |s− x|) (x, t)

]
(4.34)

elde edilir. Dalmanoğlu ve Doğru (2010), Riemann tipli q-integralin pozitif operatör

olduğunu ve 0 < a < b, 0 < q < 1 ve
1

m
+

1

n
= 1 olmak üzere aşağıdaki Hölder

eşitsizliğini sağladı̆gını

Rq (|fg| ; a; b) ≤ (Rq (|f |m ; a; b))
1/m

(Rq (|g|n ; a; b))
1/n (4.35)

göstermi̧slerdir. (4.35) eşitsizliğinde m = 2 ve n = 2 alınırsa

[k+1]/[n+k]∫
[k]/[n+k]

|t− x| dRq t ≤

 [k+1]/[n+k]∫
[k]/[n+k]

(t− x)2 dRq t


1/2 [k+1]/[n+k]∫

[k]/[n+k]

dRq t


1/2

(4.36)

elde edilir. Bu durumda

(Kn,q |s− x|) (x, t) =
1

Fn,q (x, t)

∞∑
k=0

 [k+1]/[n+k]∫
[k]/[n+k]

|t− x| dRq t

 q−k [n+ k]L
(n)
k (t; q)xk
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ifadesinde (4.36) eşitsizliği ve Tanım 2.4.1 ile verilen seriler için Cauchy-Schwarz

eşitsizliği kullanılırsa

(Kn,q |s− x|) (x, t) ≤ [
∞∑
k=0

1
Fn,q(x,t)

(
[k+1]/[n+k]∫
[k]/[n+k]

(t− x)2 dRq t)q
−k [n+ k]L

(n)
k (t; q)xk]1/2

×[
∞∑
k=0

1
Fn,q(x,t)

(
[k+1]/[n+k]∫
[k]/[n+k]

dRq t)q
−k [n+ k]L

(n)
k (t; q)xk]1/2

=
((
Kn,q (e1 − x)2) (x, t)

)1/2
((Kn,qe0) (x, t))1/2 (4.37)

olur. (4.11) ve (4.32), (4.37) eşitsizliğinde gözönüne alınırsa

(Kn,q |s− x|) (x, t) ≤
√

|t|(3b2+b)
[n](1−bqn+1)

+ 2|t|b
[2][n]2(1−bqn+1)

+ (1 + 4
[2]

) b
[n]

+ 1
[3][n]2

(4.38)

yazılabilir. (4.38) eşitsizliği (4.34) de yerine yazılır ve δ = µn seçilirse, bu durumda

teorem ispat edilmi̧s olur.

Şimdi, Kn,q operatörünün yaklaşım hızı, Lipschitz sınıfından fonksiyonlar yardımıyla

hesaplanacaktır.

Teorem 4.4.2 Her f ∈ LipM (α) ve |t|
[n]
→ 0 (n→∞) ise, bu durumda

‖(Kn,qf) (x, t)− f (x)‖C[0,b] ≤Mµαn (4.39)

dir. Burada µn, Teorem 4.4.1 de tanımlandı̆gıgibidir.

İspat. f ∈ C [0, b] olsun. Tanım 2.4.2 ile verilen Lipschitz sınıfıtanımıve Kn,q

operatörünün lineerlik ile monotonluk özelliğinden

|(Kn,qf) (x, t)− f (x)| ≤ (Kn,q |f (s)− f (x)|) (x, t)

≤ M
Fn,q(x,t)

∞∑
k=0

(
[k+1]/[n+k]∫
[k]/[n+k]

|t− x|α dRq t)q−k

× [n+ k]L
(n)
k (t; q)xk (4.40)
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elde edilir. Diğer taraftan, m =
2

α
ve n =

2

2− α olmak üzere (4.35) eşitsizliği

dikkate alınırsa, (4.40) eşitsizliğinin sağ tarafındaki integral

[k+1]/[n+k]∫
[k]/[n+k]

|t− x|α dRq t ≤
(

[k+1]/[n+k]∫
[k]/[n+k]

(t− x)2 dRq t

)α/2(
[k+1]/[n+k]∫
[k]/[n+k]

dRq t

)(2−α)/2

(4.41)

şeklinde bulunur. (4.41) eşitsizliği (4.40) da yerine yazılır ve p = 2
α
ve q = 2

2−α olmak

üzere Tanım 2.4.3 ile verilen Hölder eşitsizliği kullanılırsa

|(Kn,qf) (x, t)− f (x)|

≤ M [
∞∑
k=0

1
Fn,q(x,t)

(
[k+1]/[n+k]∫
[k]/[n+k]

(t− x)2 dRq t)q
−k [n+ k]L

(n)
k (t; q)xk]α/2

×[
∞∑
k=0

1
Fn,q(x,t)

(
[k+1]/[n+k]∫
[k]/[n+k]

dRq t)q
−k [n+ k]L

(n)
k (t; q)xk](2−α)/2

olur. Buradan, (4.8) ile verilen Kn,q operatörün tanımından

|(Kn,qf) (x, t)− f (x)| ≤M
((
Kn,q (e1 − x)2) (x, t)

)α/2
yazılabileceği görülür. Eğer (4.32) eşitsizliği kullanılır ve δ = µn, Teorem 4.4.1 de

tanımlandı̆gışekilde seçilirse ispat tamamlanır.

Şimdi, Teorem 4.4.3 ün ispatında kullanılacak olan bir lemma verelim. Bunun

öncesinde ise Lemma 4.4.1 de kullanılacak olan Kn,q operatörünün yardımıyla veri-

len

(Ln,qf) (x, t) = (Kn,qf) (x, t)− f
(
x− tx

[n](1−bqn+1)
+ 1

[2][n]

)
+ f (x) (4.42)

operatörünü tanımlayalım. Burada x ∈ [0, 1] dir.
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Lemma 4.4.1 g ∈ C2[0, 1] olsun. Bu durumda

|(Ln,qg) (x, t)− g (x)| ≤
{
−t (3x2 + x)

[n] (1− bqn+1)
− 2tx

[2] [n]2 (1− bqn+1)
+

(
1 +

4

[2]

)
x

[n]

+
1

[3] [n]2
+

(
−tx

[n] (1− bqn+1)
+

1

[2] [n]

)2
}
‖g′′‖ (4.43)

dir.

İspat. Ln,q operatörünün (4.42) ile verilen tanımı, (4.11) eşitliği ve (4.21) eşitsizliği

gözönüne alınırsa

(Ln,q (s− x)) (x, t) = (Kn,q (s− x)) (x, t) +
tx

[n] (1− bqn+1)
− 1

[2] [n]

≤ − tx

[n] (1− bqn+1)
+

1

[2] [n]
+

tx

[n] (1− bqn+1)
− 1

[2] [n]

= 0 (4.44)

elde edilir. x ∈ [0, 1] ve g ∈ C2[0, 1] olduğu gözönüne alınırsa Taylor formülünden

g (s)− g (x) = (s− x) g′ (x) +

s∫
x

(s− u) g′′ (u) du

bulunur. Bu eşitliğin her iki yanına Ln,q operatörü uygulanır ve (4.44) eşitsizliği

dikkate alınırsa

(Ln,qg) (x, t)− g (x) = g′ (x) (Ln,q (s− x)) (x, t)

+

Ln,q
 s∫

x

(s− u) g′′ (u) du

 (x, t)

≤

Ln,q
 s∫

x

(s− u) g′′ (u) du

 (x, t)
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=

Kn,q

 s∫
x

(s− u) g′′ (u) du

 (x, t)

−
an(x,t)∫
x

(
x− tx

[n] (1− bqn+1)
+

1

[2] [n]
− u
)
g′′ (u) du.

elde edilir. Burada an(x, t) = x− tx
[n](1−bqn+1)

+ 1
[2][n]

şeklindedir. (4.8) ile verilen Kn,q

operatörünün monotonluk özelliğinden

|(Ln,qg) (x, t)− g (x)| ≤

∣∣∣∣∣∣
an(x,t)∫
x

(
x− tx

[n] (1− bqn+1)
+

1

[2] [n]
− u
)
g′′ (u) du

∣∣∣∣∣∣
+

Kn,q

∣∣∣∣∣∣
s∫

x

(s− u) g′′ (u) du

∣∣∣∣∣∣
 (x, t) (4.45)

olur. Diğer taraftan kolayca görülür ki∣∣∣∣∣∣
s∫

x

(s− u) g′′ (u) du

∣∣∣∣∣∣ ≤ (s− x)2 ‖g′′‖ (4.46)

dir. (4.45) eşitsizliğinin sağ tarafındaki ilk integrali

I :=

an(x,t)∫
x

(
x− tx

[n] (1− bqn+1)
+

1

[2] [n]
− u
)
g′′ (u) du

ile gösterelim. (4.46) eşitsizliğinden

I ≤
(
− tx

[n] (1− bqn+1)
+

1

[2] [n]

)2

‖g′′‖ (4.47)

yazılabilir. (4.46) ve (4.47) eşitsizlikleri (4.45) de yazılırsa

|(Ln,qg) (x, t)− g (x)| ≤
[(
Kn,q (s− x)2) (x, t) + (

−tx
[n] (1− bqn+1)

+
1

[2] [n]
)2

]
‖g′′‖

(4.48)
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elde edilir. (4.32) eşitsizliği (4.48) de yerine yazılırsa

|(Ln,qg) (x, t)− g (x)| ≤
{
−t (3x2 + x)

[n] (1− bqn+1)
− 2tx

[2] [n]2 (1− bqn+1)
+

1

[3] [n]2

+

(
1 +

4

[2]

)
x

[n]
+

(
−tx

[n] (1− bqn+1)
+

1

[2] [n]

)2
}
‖g′′‖

bulunur. Bu ise ispatıtamamlar.

Teorem 4.4.3 Her f ∈ C [0, 1] ve x ∈ [0, 1] ise, bu durumda

|(Kn,qf) (x, t)− f (x)| ≤ Cω2

(
f ;
√
µ∗n (x)

)
+ ω

(
f ;

∣∣∣∣ −tx
[n] (1− bqn+1)

+
1

[2] [n]

∣∣∣∣)

dir. Burada

µ∗n (x) =
−t (3x2 + x)

[n] (1− bqn+1)
− 2tx

[2] [n]2 (1− bqn+1)
+

(
1 +

4

[2]

)
x

[n]

+
1

[3] [n]2
+

(
−tx

[n] (1− bqn+1)
+

1

[2] [n]

)2

şeklindedir ve C ise pozitif bir sabittir.

İspat. (4.42) ile verilen Ln,q operatörün tanımından ve (4.11) eşitliğinden

|(Ln,qf) (x, t)| ≤ 3 ‖f‖ (4.49)

yazılabilir. (4.43) ve (4.49) eşitsizliklerinden

|(Kn,qf) (x, t)− f (x)| ≤ |(Ln,q (f − g)) (x, t)|+ |(f − g) (x)|

+ |(Ln,qg − g (x)) (x, t)|

+
∣∣∣f (x− tx

[n](1−bqn+1)
+ 1

[2][n]

)
− f (x)

∣∣∣
≤ 4 ‖f − g‖+ |(Ln,qg) (x, t)− g (x)|

+ω
(
f ;
∣∣∣ −tx

[n](1−bqn+1)
+ 1

[2][n]

∣∣∣)
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≤ 4 ‖f − g‖+

{
−t(3x2+x)

[n](1−bqn+1)
− 2tx

[2][n]2(1−bqn+1)

+
(

1 + 4
[2]

)
x

[n]
+ 1

[3][n]2
+
(

−tx
[n](1−bqn+1)

+ 1
[2][n]

)2
}
‖g′′‖

+ω
(
f ;
∣∣∣ −tx

[n](1−bqn+1)
+ 1

[2][n]

∣∣∣)
≤ 4 ‖f − g‖+ 4µn (x) ‖g′′‖

+ω
(
f ;
∣∣∣ −tx

[n](1−bqn+1)
+ 1

[2][n]

∣∣∣)
olduğu görülür. g ∈ C2[0, 1] üzerinden her iki tarafın infimumu alınır, Tanım 2.4.5

göz önünde bulundurulur ve Lemma 2.4.1 ile verilen eşitsizlik kullanılırsa

|(Kn,qf) (x, t0)− f (x)| ≤ 4K2 (f ;µ∗n (x)) + ω

(
f ;

∣∣∣∣ −tx
[n] (1− bqn+1)

+
1

[2] [n]

∣∣∣∣)
≤ Cω2

(
f ;
√
µ∗n (x)

)
+ ω

(
f ;

∣∣∣∣ −tx
[n] (1− bqn+1)

+
1

[2] [n]

∣∣∣∣)

elde edilir.Burada µ∗n, Teorem 4.4.3 de ifade edildiği gibidir. Bu ise teoremin ispat-

landı̆gınıgöstermektedir.
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5. TARTIŞMA ve SONUÇ

Bu tezin orjinal olan üçüncü bölümünde, J.D.E. Konhauser (1965) tarafından tanım-

lanan, klasik Laguerre polinomlarının bir genelleştirilmesi olan ve Konhauser poli-

nomlarını içeren lineer pozitif operatör tanımlanmı̧stır. Bu operatör Cheney ve

Sharma (1964) tarafından verilen, klasik Laguerre polinomlarının bir genelleşti-

rilmesidir. Bu operatörün Korovkin (1953) teoremini gerçeklediği gösterilmi̧s ve

yaklaşım hızı, yaklaşımlar teorisinde en çok kullanılan üç ana modül ile (süreklilik

modülü, Lipschitz sınıfından olan fonksiyonlar ve Peetre K-fonksiyoneli) hesaplan-

mı̧stır. Daha sonra, ilk olarak Kirov ve Popova (1993) tarafından verilen, operatörün

r-inci basamaktan genelleştirilmesi tanımlanmı̧s ve bu genelleştirilmenin de yak-

laşım hızıhesaplanmı̧stır. Böylece görülmüştür ki, bir operatörün r-inci basamak-

tan genelleştirilmesi elde edilebiliyor ise, bu operatöründe yaklaşım hızıhesaplana-

bilmektedir. Bu bölümün son kısmında ise, operatörün bir fonksiyonel diferensiyel

denklemi sağladı̆gıgösterilmi̧stir.

Korovkin teoreminin ispatından sonra, Bernstein lineer pozitif operatör dizisinin,

birçok genelleştirilmesi yapılmı̧stır (Meyer-König-Zeller, Szász-Mirakyan, Baskakov,

Kantorovich, Durrmeyer, Stancu, Schurer vd.). Bu genelleştirilmelerden biri de

Kantorovich tipli genelleştirilmedir. Kantorovich tarafından, klasik Bernstein ope-

ratörlerinin Kantorovich genelleştirilmesi verilmi̧stir. Buradan hareketle, üçüncü

bölümde tanımlanan Konhauser polinomlarınıiçeren operatörün Kantorovich tipli

genelleştirilmesi verilmi̧stir.

Lineer pozitif operatörlerin q-genelleşmesi ilk olarak Phillips (1996) tarafından ve-

rilmi̧stir. Trif (2000), Meyer-König ve Zeller operatörünün q-geni̧slemesini tanım-

lamı̧stır. Moak (1981), q-Laguerre polinomlarıiçin doğurucu fonksiyon tanımınıve

açık ifadesini vermi̧stir. Özarslan (2007) q-Laguerre polinomlarınıiçeren lineer pozi-

tif operatörü tanımlamı̧stır. Bu tezin beşinci bölümünde ise, Özarslan tarafından

verilen operatörün Kantorovich tipli integral genelleştirilmesi verilmi̧stir. Sonraki
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kısımda, operatörün yaklaşım özellikleri incelenmi̧stir. Bu tezin son kısmında ise,

operatörün yaklaşım hızıhesaplanmı̧stır.

Konhauser polinomları, biortogonal polinomdur. Bu polinomlar, doğurucu fonksiyon,

rekürans bağıntısı, Rodrigues formülü gibi birçok özelliklere sahiptir. Ortogonal ve

biortogonal polinomları içeren lineer pozitif operatörlerle ilgili çalı̧smalar oldukça

azdır. Bu tez bu tip çalı̧smalar için bir ı̧sık kaynağıdır.
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Doğum Yeri : Yozgat
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