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Bu tez bes boliimden olugsmaktadir.

ik boliim giris kismina ayrilmistir.

Ikinci boliimde, 6ncelikle lineer pozitif operatérler tanitilacak ve bu operatorlerin temel dzellikleri
incelenecektir. Siireklilik modiiliiniin tanimi verilecek ve sagladigi bazi ozellikler ispatlanacaktir.
Daha sonraki boliimlerde kullanilacak olan bazi temel tanimlar ve g-analizinde sadece ihtiyacimiz
olan tamimlar verilecektir. Ayrica lineer pozitif operatorlerin 6nemine deginilecek, Bernstein’in
Weierstrass problemi i¢in verdigi teorem hatirlatilacak ve Korovkin teoremi ifade ve ispat edilecek-
tir.

Uciincii boliimde, Konhauser polinomlarmi iceren lineer pozitif operatorler tanitilacak ve Kan-
torovich tipli bir integral genellegtirilmesi verilecektir. Korovkin teoreminin kogularinin gergek-
lendigi gosterilecektir. Ayrica bu operatorlerin yakinsama hizlari, siireklilik modiilii, Lipschitz
smifindan olan fonksiyonlar ve Peetre K-fonksiyoneli yardimiyla hesaplanacaktir. Bu operator-
lerin r—inci basamaktan genellestirilmesi verilecek ve bu genellestirilmis operatoriin yakinsama
hiz1, siireklilik modiilii ve Lipschitz simifindan olan fonksiyonlar yardimiyla elde edilecektir. Daha
sonra Konhauser polinomlarini iceren lineer pozitif operatorlerin diferensiyel denklemlere uygulan-
masi verilecektir.

Dérdiincii boliimde ise g-Laguerre polinomlarini igeren lineer pozitif operatérlerin Kantorovich tipli
genellestirilmesi verilecektir. Oncelikle operator olusturulacak sonra Korovkin teoreminin bu ope-
rator i¢in de gerceklendigi ispat edilecektir. Daha sonraki kisimda ise, operatoriin yaklagim hizi bir-
inci ve ikinci basamaktan siireklilik modiilii ve Lipschitz sinifindan fonksiyonlar yardimiyla hesap-
lanacaktir.

Beginci boliimde, tezde elde edilen sonuclar tartigilmigtir.
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This thesis consists of five chapters.

The first chapter is devoted to the introduction.

In chapter 2, we give some basic definitions and elementary properties about linear and positive
operators. We recall the definition of modulus of continuity and prove some elementary proper-
ties. Moreover, we give some basic definitions needed in the next sections and give the definitions
related to g-integers. Also, we mention the importance of linear and positive operators. We state
Weierstrass theorem given by Bernstein and Korovkin’s theorem and give the proofs.

In chapter 3, we define linear and positive operators including Konhauser polynomials and give
a Kantorovich type integral generalization of the operator including Konhauser polynomials. We
show that they are verified the conditions of Korovkin’s theorem. Also, we studied on estimation
of the rate of convergence in terms of modulus of continuity, Lipschitz class functions and Peetre’s
K-functional. We introduce r-th order generalization of the operators and estimate the rate of
convergences via modulus of continuity and Lipschitz class function. At the end of the section, we
give an application to functional differential equations via linear and positive operators including
Konhauser polynomials.

In chapter 4, we introduce a Kantorovich type generalization of the operator including ¢-Laguerre
polynomials. Firstly, we construct the operator and then, we prove the Korovkin’s theorem for the
operator. In the last section, we estimate the rate of convergence via classical and second order
modulus of continuity and Lipschitz class functions.

In the last chapter, the results obtained in the thesis have been discussed.
September 2014, 76 pages
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1. GIRIS

Analizin bir alam olan yaklasim teorisi temelde, fonksiyonlara daha basit ve kolay
hesaplanabilen fonksiyonlar ile yaklagmaktir. Bu fonksiyonlar genelde iyi bilinen

polinomlar veya rasyonel fonksiyonlardir.

Reel degiskenli fonksiyonlarin yaklagim teorisinin temeli, Weierstrass tarafindan

1885 yilinda verilen teoremdir.

Weierstrass teoremi, [a,b] sonlu araliginda siirekli bir f fonksiyonu i¢in, f ye [a, b]
araliginda diizgiin yakinsak olacak sekilde bir cebirsel n-inci dereceden polinomun

var oldugunu ifade eder.

Weierstrass’in bu teoreminin ispati birgok yazar tarafindan yapilmigtir. 1912 yilinda
Bernstein, yaklagilmak istenen f € C'[0,1] fonksiyonuna [0, 1] iizerinde diizgiin

yakinsak olan

B, (f;z) = (Z)xk(l—x)"kf(§> (neN, z€l0,1])
k=0

seklindeki cebirsel polinomlarin bir B, (f;z) dizisini olusturarak Weierstrass teore-

minin basit ve giizel bir ispatini vermigtir. Bu diizgiin yakinsama probleminden

sonra, yaklagim hizi problemi ortaya ¢ikmistir. B, (f;x) Bernstein polinomlar:

C'[0, 1] uzayinda lineer pozitif operatorler simfindandir (Bernstein 1912). Bu prob-

lemin c¢oziimii siireklilik modiilii, Lipschitz sinifindan fonksiyonlar ve Peetre K-

fonksiyoneli yardimiyla incelenmigtir.

1951 yilinda Popoviciu, 1952’de Bohman ve 1953’de Korovkin, birbirinden bagimsiz
olarak, basit ve kolay uygulanabilen bir yontem geligtirdiler. Bu yonteme gore, lineer

pozitif A operatorlerinin bir dizisinin [a, b] kompakt aralhiginda f siirekli fonksiyo-



nuna diizgiin yakimsak olmas icin gerek ve yeter kosul, sadece ii¢ tane e, (z) = 2*,
k = 0,1,2 fonksiyonu i¢in A, (ek) dizisinin e, fonksiyonuna diizgiin yakinsak ol-
masidir. Yani, kompakt aralikta siirekli olan fonksiyonlara polinomlar ile yaklagimda

bazi lineer pozitif operator dizileri kullanilabilir.

Bir lineer pozitif operatoriin r—inci basamaktan bir genellestirilmesi ilk olarak 1993
yilinda Kirov ve Popova tarafindan verilmistir. Kirov ve Popova bir operatoriin
r—inci basamaktan genellegtirilmesi ile bu operator arasinda esitsizlik elde ederek
genellestirilme operatoriiniin yaklagim hizini kolayca hesaplamistir. Boylece diger
matematikciler de bu kolaylik sayesinde diger operatorlerin genellegtirilmelerinin

yaklagim ozelliklerini incelemislerdir.

Kantorovich 1930’da, klasik Bernstein operatorlerinin bir integral genellesmesini,

f € Ly ([0,1]) igin

(Knf) @) =+ 03 (7)o (1= kTﬂf (1)t
k=0 k/m+1

bi¢iminde tanimlamistir. Bu genellestirilme, lineer pozitif operatorlerden integral
tipli operatorler tanimlamak adina temel olma 6zelligi tasimaktadir. Bir¢cok matema-
tik¢i, Kantorovich’in bu genellestirilmesinden sonra bagka integral genellestirilmeleri

tanimlamig ve yaklagim hizlarini hesaplamiglardir.

Lineer pozitif operatorlerin diger bir genellestirilmesi, g-teori ile ilgilidir. Yaklagim
teorisinde ¢-genellesme kavramu ilk kez, Lupas tarafindan Bernstein polinomlarina
uygulanmugtir (Lupag 1987). Daha sonra Phillips, ¢-Bernstein polinomlarinin yak-
lagim &zelliklerini galigmugtir (Phillips 1996). Bu ¢alismalarda, ¢-Bernstein polinom-
lar1 ile yaklagimda elde edilen sonuglarin, klasik lineer pozitif operator dizilerine gore

daha iyi oldugu goriilmektedir.



Son zamanlarda, ¢g-analizinin gosterim ve yontemleri kullanilarak, lineer pozitif ope-
rator dizilerinin g-genellesmesi tanimlanmig ve bazi 6zellikleri incelenmigtir. Bun-
lara ornek olarak Meyer-Konig-Zeller operatorlerinin ¢-genellesmesi Trif tarafindan
tanimlanmisg ve yaklagim 6zelliklerini incelenmigtir (Trif 2000). Dogru (2006) yilinda,
q-Balédzs-Szabados operatorlerini tanimlamig ve yaklagim 6zelliklerini aragtirmistir.
Aral ve Gupta (2006)’da, Szdsz-Mirakyan operatorlerinin g-genellesmesini vererek

yaklagim ozelliklerine iligkin sonuclar elde etmislerdir.



2. TEMEL KAVRAMLAR

Bu boliimde, tezde kullanilacak olan bazi temel tanim ve teoremler verilecektir.

2.1 Temel Tanimlar ve Teoremler

Tanim 2.1.1 X ve Y iki fonksiyon uzay1 olsun. Eger X den alinan herhangi bir
f fonksiyonuna Y de bir g fonksiyonu karsilik getiren bir L kurali varsa buna X

uzaymda bir operatordiir denir ve L(f;x) = g(x) bi¢ciminde gosterilir.

Burada L(f;z) = L(f(t); ) olmak iizere L operatorii f fonksiyonunun bagh oldugu
t degiskenine gore uygulanmaktadir. Sonug ise = degiskenine bagh bir fonksiyondur.
Bundan dolay1 = degiskeni L igleminde sabit gibidir ve L(f(x);z) = f(z)L(1;2)
yazilabilir.

X uzayi lineer bir uzay oldugunda lineer operatoriin tanimi yapilabilir.

Tanmim 2.1.2 X ve Y fonksiyon uzaylar: olmak iizere,

L:X—-Y

seklindeki L operatoriinii gozoniine alalim. Eger V f, g € X ve V a, f € R icin

L(af + Bg;x) = aL(f;x) + BL(g; T)

kosulu saglaniyorsa o taktirde L operatoriine lineer operator denir.

Tanim 2.1.3 Eger bir L operatorii pozitif degerli fonksiyonu yine pozitif degerli bir

fonksiyona doniistiiriiyor ise yani, f bir fonksiyon ve L bir operator olmak iizere

f>0iken L(f;2) >0



oluyor ise L operatoriine pozitif operatér denir.
Hem lineerlik hem de porzitiflik sartin1 saglayan operatore lineer pozitif operator

denir.

Uyar: 2.1.1 f <0 iken L(f;z) < 0 gergeklenir mi?

Kabul edelim ki f < 0 olsun. Bu durumda

—f=0

elde edilir. L operatorii pozitif oldugundan

L(—f;2) >0

bulunur. L operatoriiniin lineerlik 6zelligi kullanilirsa

—L(f;x) > 01ise L(f;x) <0

elde edilir. Yani istenilen ¢zelligin gerceklendigi goriilmiis olur.

2.2 Lineer Pozitif Operatérlerin Ozellikleri

Lemma 2.2.1 Lineer pozitif operatorler monoton artandir. Yani;
f<gise L(f) < L(g)
esitsizligi saglanir.

Ispat. Kabul edelim ki f < g olsun. Bu durumda g — f > 0 olacagindan ve L

operatorii pozitif oldugundan

Lig—1f)=0 (2.1)



yazilabilir. Diger taraftan L operatorii lineer oldugundan

L(g = f) = L(g) = L(¥)

elde edilir. Bunun (2.1) de kullanilmasiyla

L(g — f) = L(g) = L(f) = 0ise L(f) < L(g)

bulunur.

Lemma 2.2.2 L bir lineer pozitif operator ise o taktirde;

IL(f)] < L(I£1D)
esitsizligi saglanir.
Ispat. Keyfi bir f fonksiyonu igin

=A< f<If] (2.2)

dir. L operatoriiniin lineerliginden, monoton artanhgindan ve de (2.2.2) den

—L(|f]) < L(f) < L(|f]) (2.3)

yazilabilir. Bu ise

IL(H)I < L(If1)

oldugunu gosterir.

Tanim 2.2.1 n € N olmak iizere f, (z)’e bir fonksiyon dizisi denir ve (f,) ile

gosterilir.

Tanmim 2.2.2 n € N olmak iizere L, (f;x)’e bir operatér dizisi denir ve (L,) ile



gosterilir.

Tanim 2.2.3 Kapali bir [a, b] aralig1 tizerinde siirekli ve reel degerli fonksiyonlardan

olusan kiimeye C'[a, b] fonksiyon uzay: denir. Bu uzaydaki norm,

L @)ooy = maks | f (z)]

a<z<b

seklinde tanimlanir. Burada

1. Vf,geClabigin f+geCla,b

2. Vf,geClabligin f+g=9g+f

3. Vf,g,heClab]igin(f+g)+h=f+(g+h)
4. VfeCla,b]igin 0 vardir ki f+0 =60+ f=f
5. VfeCla,b)igin 3fy vardr ki f+ fi=f1+f=06
6. VfeCla,b]veleCigin \f € Cla,b

7. VfeCla,b)ve A, pe Cigin (M) f=A(uf)

8. VfeCla,bliginl.f=f

9. VfeClCla,blver,peCigin A+ pu) f=Nf+uf
10. Vf,g€eCla,blve AeCicin A(f+9g)=\f+ Ag
11. Vfe Cla,b] igin ||f|| >0

12. VfeCla,bligin ||[f||=0 < f=0

13. VfeCla,b ve A € Cigin |[Af] = | f]]

4. Vf, g€ Cla,b] igin [|f + gll < [If[| + [lg]]

kosullar1 saglandigindan C'[a, b] Lineer Normlu Uzaydir.

Tanim 2.2.4 (f,) fonksiyonlar dizisinin f fonksiyonuna C'[a, b] lineer normlu uza-

yinda diizgiin yakisak olmasi i¢in, Vz € [a, b] iken

lim | f (2) = f (@)l oo = 0

n—oo



olmasidir. Daha acik olarak ise

lim maks |f, () — f(z)|=0

n—oo a<z<b

esitliginin saglanmasi1 demektir.
2.3 Siireklilik Modiilii
f € Cla,b] olsun. Vé > 0 i¢in

w(f;0) = fél[pb} |f(t) = f(2)] (2.4)
jt—z|<5

ile tammlanan w (f; 0) ifadesine f fonksiyonunun sireklilik modiilii denir (Bkz. drnegin

Altomare ve Campiti 1994).

Lemma 2.3.1 Siireklilik modiilii asagidaki 6zellikleri saglar (Bkz. dérnegin Altomare

ve Campiti 1994):

(i) w(f;6)=0

(7). 01 <dgisew(f;01) <w(f;02)

) ) < mw(f;d)
(). XeRTiginw (f; M) < (1+Nw(f;9)
(). lim w(f:6) =0

(i), 1F ()~ F @) <w(flt )

(wii). 11 ()= f @) < (1+52) w(£;6).

m € N i¢in w (f; mé

ispat.

(7). Tamm geregince, siireklilik modiilii mutlak degerin supremumu oldugundan

ispat aciktir.



(1) . 01 < d9 i¢in |t — x| < o bolgesinin |t — x| < §; bolgesinden daha biiyiik oldugu

aciktir. Bolge biiytidiigii taktirde, alinan supremumda biiyiidiigiinden ispat aciktir.

(747) . Stireklilik modiiliiniin tanimindan dolay1

w(f;mo) = fél[pb} |f(t) = f(2)]
[t—x|<mo

yazilabilir. |t — 2| < mJd i¢in t = x + mh segilmesiyle |h| < § elde edilir. O taktirde

w(fimd) = sup |f(x+mh)— [(z)

z,t€a,b
|h|<8
seklinde yazilabilir. Diger yandan
m—1
sup |f (x+mh) — f(x)] = sup | Y [f(z+ (k+1)h) — f(z+kh)]
x,tela,b] ztefad] |1
|h|<6 |h|<&

olup, sag tarafa tiggen esitsizligi uygulanirsa

MS

sup |f(z+mh)— f(z)] < sup |f(z+ (k+1)h)— f(x+ kh)|

x,tela,b] k—0 xteab]

|h|<é |n|<6
< w(fi0)+ .. +w(f;90)
= muw(f;0)

elde edilir.

(iv) . A € R sayisimin tam kismm [|A|] ile gosterilirse bu durumda [[A|] < A < [|A]] +
1 esitsizliginin gegerli oldugu agiktir. Simdi bu esitsizlikten ve (ii) de ispatlanan

w (f; ) min azalmayan fonksiyon olmasim kullanarak
w (f;A0) < w (f; ([IA] +1) )

esitsizligi yazilabilir. [|\|] pozitif bir tamsayr oldugundan iistteki esitsizligin sag



tarafina (ii7) 6zelligi uygulanabilir. Bu durumda

w (f; (AT +1)8) < (1M +1) w(f39)

esitsizligi elde edilir. AyricaV A € R igin [|A]]4+1 < A+1 oldugu goz 6niine alimrsa

w(f; (AT +1) 0) <A +1) w(f;0)

olur. Sonug olarak

w(f;20) < A+ 1w (f;9)

elde edilir ki, bu ise ispat1 tamamlar.

(v). |t — x| < § esitsizligindeki § — 0 olmasi ¢ — x olmasi anlamina gelir. f fonksi-
yonu siirekli oldugundan, siireklilik tanimina gore ¢t — z igin |f (¢) — f(z)] — 0

oldugundan ispat aciktir.
(vi). w(f;0) ifadesinde § = |t — x| segilirse
w(f;lt—z]) = s1[1pb] |f(t) = f(2)]
z€|a,

elde edilir. O halde |f (t) — f (z)| lerin supremumu w (f; |t — z|) olacagmndan, | f (t) — f (x)|

ifadesi w (f; |t — x|) den kiigiik kalacaktir. Bu ise istenilendir.

(vii) . (vi) bzelliginden

£ = F@ < (il = o) = (5:15500)

yazilabilir. Bu esitsizlikte (iv) 6zelligi kullanilirsa

t— x|

Fo-f@l< (5 1) o

bulunur ki bu ise ispat1 tamamlar.
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2.4 Kullanilacak Olan Diger Tanimlar

Tanmim 2.4.1 Toplam ic¢in Cauchy-Schwarz esitsizlig

oo o 1/2 / » 1/2
Z Cimil < (Z (Ck)2> (Z (771)2>

k=1

seklinde tanimhdir (Cauchy, Bunyakovsky, Schwarz).

Tanim 2.4.2 Her ¢t,2 € I C R i¢in
1f ()= fo) <Mt -zl

esitsizligi saglaniyorsa, f fonksiyonuna Lipys () (0 < a < 1) Lipschitz sinafindandir
denir (Lipschitz 1864).

1 1
Tamim 2.4.3 Toplam icin Holder esitsizligi p > 1 ve — + — = 1 olmak {izere
p q

o0 ) Up / o 1/q
>l = (L) (Lor)

seklinde tanimhdir (Rogers 1888, Holder 1889).

Tamm 2.4.4 C?[0,b] uzay1, f, f' ve f” fonksiyonlarmmn [0,b] kapal araliginda

siirekli oldugu uzay1 belirtmektedir.
C?10, b] uzayindaki norm

1l o206 = 1l + 1 e + 11 e

ile tanimlanmaktadir (Bleimann vd. 1980).

11



Tanmim 2.4.5 Siirekli fonksiyonlar uzayindaki Peetre K-fonksiyonel:

K (5,60 = it A7 = glley +0 llloaon

g€C2[0,b]

ile tanimhdir (Bleimann vd. 1980).

Tanim 2.4.6 (Integral icin Jensen Esitsizligi) Reel eksende ® konveks ve f negatif

olmayan reel degerli Lebesgue integrallenebilen fonksiyon olsun. Bu durumda

b b
o[ 1 @)de) < [ (b~ 0) (@)t
saglanir (Wheeden ve Zygmund 1977).

. 1 1
Tanim 2.4.7 (Integral i¢in Holder Esitsizligi) p > 1 ve — + — = 1 olmak iizere
P q

Jicni=([@r) " (o) "

seklinde tanimhdir (Holder 1889).

Tanim 2.4.8 (Integral icin Cauchy-Schwarz Esitsizligi)

[ 16 < ( / (<k>2) " ( / (m)2)1/2

seklindedir (Hardy vd. 1952).

Tanim 2.4.9 f € C'[0,b] fonksiyonunun ikinci basamaktan siireklilik modiilii

wa (f30) = sup sup | f (z+2h) =2f (x+h)+ f(2)]

0<h<§ z,2+2he0,b]

ile tanimlanmaktadir (DeVore ve Lorentz 1993).
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Tanmim 2.4.10 Gama fonksiyonu

olarak tanimhdir (Euler 1730). I'(z) = (z — 1)! (x > 0, IT'(0) = 1) 6zelligine sahip-

tir.
Tamim 2.4.11 Re (z),Re (y) > 0 i¢in Beta fonksiyonu

1
B(x,y):/ 2L (1 — )Y dt
0

L(z)C(y)

T(aty) ozel-

seklinde tamimlanmaktadir (Euler 1730). Beta fonksiyonu B (z,y) =
ligini gercekler.

Lemma 2.4.1 Sabit bir C' > 0 sayist i¢in
K (f;0) < Cws (f; \/3>

dir (DeVore ve Lorentz 1993).

Tanim 2.4.12 ] C R olmak iizere w (), I da tamimh pozitif bir fonksiyon olsun.

m,n € N ve m # n olmak iizere

(60 60) = / w () 6, () b (a) da = 0

oluyorsa {¢,, (x)},en polinom sistemine I araliginda w (z) agirhk fonksiyonuna gore

ortogonaldir denir.

Lemma 2.4.2 I C R araliginda {¢,, () }en polinom sisteminin w () agirlik fonksiyo-

nuna gore ortogonal olmasi icin gerek ve yeter kosul,

/¢n(a:)w(x)xkd:v20, k=0,1,..,m—1
I
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ifadesinin gergeklenmesidir.

Tanim 2.4.13 F(z,t) iki degigkenli fonksiyonu degiskenlerden birine gore drnegin

t ye gore,
F(x,t) =) cnt, (2)t"
n=0

bi¢iminde bir Taylor serisine aciliyor ise F'(x,t) fonksiyonuna {¢,, (z)} fonksiyonlar
ciimlesinin dogurucu fonksiyonu denir. Burada c,, ler x ve t den bagimsiz olup n nin

fonksiyonudur.

Tanim 2.4.14 r (z) ve s(x) swrasiyla x e gore b > 0 ve k > 0 mc1 dereceden reel
degerli polinomlar olsunlar. R,, (z) ve S, (z) de sirasiyla r (z) ve s(x) e gore m-
yinci ve n-yinci dereceden polinomlar: gostersinler. Bu durumda R, (z) ve S, ()
sirasiyla z e gore mh-nc1 ve nk-ymcr dereceden polinomlar olurlar. r(z) ve s (z)

polinomlarina temel polinomlar denir.

Tanmim 2.4.15 m,n € Ny olmak {izere eger

0 ; m#n
#0 ; m=n

ise, [R,, ()] ve [S, (x)] polinom kiimelerine, (a,b) aralig iizerinde, p(x) uygun

agirlik fonksiyonuna ve r (z) ve s (z) temel polinomlarima gore biortogonaldir denir.
2.5 ¢-Analizinin Ozellikleri

Tanim 2.5.1 Bir f fonksiyonunun g-diferensiyeli d,f (x) ile gosterilir ve

dof (x) = [ (qz) — f (x)

seklinde tanimlanir (Andrews vd. 1999).
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Tamm 2.5.2 ¢ € R*\ {1} olmak iizere bir f fonksiyonunun g¢-tirevi D,f (z) ile

gosterilir ve

_ dof () _ flgx) - [ (2)
qu(‘r)_ dql’ o (q—l)x

ile tanimlanir (Andrews vd. 1999). Eger f tiirevlenebilirse lirr% D,f (x) = f'(x) dir.
q—

Keyfi a ve b sabitleri icin, ¢-tiirev
D,(af (x) +bg (x)) = aDyf (z) + bD,g (x)

ozelligine sahiptir.

Tanim 2.5.3 Her k£ € NU {0} ve ¢ € R olmak iizere k£ nmin ¢-analogu

M=) G700 szl o

k q=1

seklinde tanimhdir (Andrews vd. 1999).

Tanim 2.5.4 Her k € N ve ¢ € R" igin k! in g-analogu (q-faktoriyeli)

2] ...[k] ;k>1
1 k=20

seklindedir (Andrews vd. 1999).

Lemma 2.5.1 0 < k < n tamsayilar icin, g-binom katsayilar:

e

biciminde tamimlanmaktadir (Andrews vd. 1999).

15



Ispat. Andrews vd. 1999 yilindaki cahismalarinda, g-analizi teorisinden

m _ A= =) (= ¢")
k (1=¢")1=¢"1)..(1-9q)

oldugunu gostermislerdir. Burada pay ve payda (1 — ¢)(1 — ¢?)...(1 — ¢"7%) ile

carpilirsa

m (1= —-¢")..A-g""A—g" (A —¢""?)..(1 —¢")
k (1-¢)(1=¢)...1=¢"")1=q)..1 ¢ )1 —¢"

elde edilir. Tanim 2.5.3 den

{n] _ [1]12]...[n — k][n — k + 1]...[n]
k [1][2]...[n — K][1][2]...[K]

oldugu goriiliir. T'anym 2.5.4 dikkate alinirsa

nl [n]!

k| [n— k]\[K]!
bulunur. Bu ise ispat1 tamamlar.

n n!

k) = oW klasik binom katsayilari

g-binom katsayilarinda ¢ — 1 durumunda (

elde edilir.

Tanim 2.5.5 Negatif olmayan herhangi k£ ve n tamsayilar1 i¢cin 0 < & < n olmasi

durumunda, ¢-Pochammer sembolii
[(n)g] :=[n][n+1][n+2]...[n+ k—1]

seklindedir (Andrews vd. 1999).

Tanmim 2.5.6 f reel degerli bir fonksiyon, 0 < a < b ve 0 < ¢ < 1 olsun. f

fonksiyonunun [0,a] ve [a,b] genel arahginda g-Jackson integrali (Thomae 1869,

16



Jackson 1910) sirasiyla

a

/f(t)dqt: 1-q)aY f(da) ¢

0 Jj=0

ve
b a

/f(t)dqt—/bf(t)dqt—/f(t)dqt

a 0

seklindedir.

Tamim 2.5.7 a,b € R" ve 0 < a < bile 0 < ¢ < 1 olmak {izere Riemann tipli

q-integral

[rod—a-0p-0X f+6-ar)d

ile tamimlanmaktadir (Marinkovi¢ vd. 2008).
2.6 Lineer Pozitif Operatorlerin Onemi

Cagdag fonksiyonel analiz ve fonksiyonlar teorisinde yer alan lineer pozitif operator-

lerle yaklagim konusu son elli yil i¢inde ortaya ¢ikmig bir aragtirma alanidir.

Alman Matematikgi Weierstrass 1885 yilinda sonlu aralikta siirekli olan her fonksi-
yona bu aralikta yakinsayan bir polinomun varligini ispatlamigtir. 1912 yilinda ise

Rus Matematikgi S. N. Bernstein bu polinomun, = € [0, 1] igin

B, (fi) = Z () () amar (2.5)

seklinde oldugunu ispatlamistir.
Bernstein’in bu ispatin1 vermeden 6nce kullanacagimiz bazi ifadeleri ve ispatlarini

verelim.
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Lemma 2.6.1 (2.5) ile tamimlanan Bernstein operatorleri igin

B, (Liz)=1 (2.6)
B, (tz) =x (2.7)
B, (t*x) = 2% + 02 (2.8)

esitlikleri gecerlidir.

Ispat. Binom acilimindan
(a+b)" = Zn: <n) akprF
k=0 k

olup, bu agilimda a = x ve b = 1 — x alinirsa
B,(1;z) =1

bulunur. Bu ise (2.6) esitsizligini verir. (2.5) esitliginde f (¢) = ¢ alinirsa

B, (t;r) = iﬁ(g)xk(l_@n—k

— N

_ - (n — 1)! k n—k
- R =t 1)

elde edilir. Binom agilimindan

B, (t;x) ==z

bulunur ki bu ise (2.7) nin ispatin1 tamamlar. Son olarak (2.5) esitliginde f (t) = ¢2
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alinirsa

k=1

seklinde yazilabilir. Boylece

B, (t%z) = : B —az)" "
() s OISy
+>» - " (1 —x)
kzln(n—k)!(k—l)'
z? (n — 1) = (n-2 k n—k—2
S D (R EN (R
k=0
m”_l n—1 k n—k—1
+ﬁz L)t (-a)
k=0
olup Binom agilimindan
B () = ST T 20 0)
n n n

bulunur. Bu ise (2.8) esitligini verir.

Teorem 2.6.1 (S. N. Bernstein, 1912) (2.5) ile tamimlh Bernstein polinomu [0, 1]

araliginda siirekli olan f fonksiyonuna aym aralikta diizgiin yakinsaktir.

Ispat. (2.5) ve (2.6) den

| Bn (f;2) = flz)] =

bulunur. z € [0,1] oldugundan (})z* > 0 ve (1 — 2)"" >0 dir. Uggen esitsizligin-
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den

By (f;2) = flz)] <

_ i;: () -r@| () oo
+ kZI f (%) — /(@) <Z)xk (1—z)"*

yazilabilir. f fonksiyonu siirekli oldugundan

r(E)-rw

< ¢ iken

——x
n

dur. O taktirde

elde edilir. f siirh oldugundan Vz € [0, 1] i¢in 6yle bir M > 0 vardir ki | f (z)| < M

dir. O halde
r(5)-r@

<|r (2)]+1r @l <2

yazilabilir. Boylece

Bu (fiz) = f(2)] < & > (Z)mk(l_x)nk

Eg|<s
+2M Z§>5<Z> (1 —2)" "
< Ego (Z) 2 (1 — )"
t2M Y (Z) ok (1 — z)"
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bulunur. (2.6) den

Ba(fin) - sl < om0 (et (2.9

%7x|>5

dir. Diger taraftan

— — x| > J iken

. G- (2.10)

yazilabilir. (2.10), (2.9) de kullanilirsa

B (f52) — f@)] S+ 2 Z| (£- ) (1) (-

n

olur. Burada x € [0, 1] ve § yeterince kiigiik oldugundan {% - x} >diken0<k<n
elde edilir. O taktirde

yazilabilir. Dolaysiyla (2.6), (2.7) ve (2.8) den
2M
|Bu (fi2) = f@) <+ — [z — 7]

bulunur. z € [0,1] oldugundan maks {x — 2?} = ; diir. O halde yukaridaki esitsiz-

ligin her iki yaninin z € [0, 1] i¢in maksimumu alimirsa

M
1B (f;2) = f(@)ll oy < €+ 2n6>

olur. Bu ise
| Bn (f;2) — f(x)Hc[o,u —0 (n—o0)

olmas1 demektir.
Bohman (1951) ve P. P. Korovkin (1953)’te sonlu kapali araliktaki siirekli fonksi-

yonlara yakinsama kosgullarina iliskin asagidaki teoremi vermistir.
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2.7 P. P. Korovkin Teoremi f € C [a,b] ve tiim reel eksende simirh
£ (@) < My (2.11)
olsun. Eger L, (f;x) lineer pozitif operator dizisi Va € [a, b] igin
i ([ (10) =y = 0 = 0.1.2

kogullarimi saghyorsa bu durumda [a, b] araliginda her f € C'[a, b]
Tim (| L, (f;2) = F (@)l cpap =0

dir (Korovkin 1953).

Ispat. Kabul edelim ki f € C [a, b] olsun. Siirekli fonksiyonlarim tanimindan dolay1
|t —x| <diken |f(t) — f(x)] <e

dir. |t — x| > § oldugunda ise (2.11) den ve iiggen esitsizliginden dolay1

[f @) = f @) < [f O+ | (2)] < 2M; (2.12)

elde edilir. Diger taraftan

2
t— 2| > 8 iken . 52‘75) > 1 (2.13)

saglanir. (2.12) ve (2.13) den

£ - 5 )| s 2y < 2, U0
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yazilabilir. O halde

lt—x| < diken |f(t)—f(v)|<e

t—al > 5iken | (1)~ f(2)] <20, L50)

elde edilir. Dolayisiyla Vi € R ve Vz € [a, b] i¢in

t— )’
£ - f @) <e 2,0 (2.14)
dir. Eger (L,) operator dizisinin ¢ = 0,1,2 i¢in lim ||L, (¢;z) —xi||c[a7b] =0

kosullarini saglandig1 gosterilirse ispat tamamlanir.

L,, operatoriiniin lineerlik 6zelliginden

(Lo (f () 52) = f (@)| = [ Lo ((f () = f (2));2) + f () (L (L;2) = 1))

dir. Burada ticgen egitsizliginin kullanilmasiyla

Lo (f () 52) = f (@)| < [ Lo ((F &) = f (@));2)] + [ (@) [(Ln (1;.2) = 1)

yazilabilir. Diger taraftan lineer pozitif operatorler monoton artan ve

f@) = f)<|f@) - f(2)

ozelligini saglayacagindan

Lo ((f () = f (@));2) < [Ln (If () = f (2)];2))

olur. L, operatorii pozitif oldugundan ve |f () — f(x)| > 0 esitsizligi gergek-
lendiginden

Lo (1F @) = [ (@) 52)] = Lo (| (1) = f ()] 5 2)
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dir. O halde

L (f () 52) = f (2)] < Lo (If (8) = f (2)5.2) + | f (2)[|(Ln (1;.2) = 1)

oldugu gosterilmis olur. (2.11) den

L (f @) ;2) = f ()] < Lo (| (8) = f(2)];2) + My [(Ln (1;2) = 1)

yazilabilir. L,, operatérii monoton artan oldugundan, (2.14) iin kullanilmas ile

Lo (F (0):0) = £ @)] < L, ( + 2Mf“‘5—;“’>;x> + My|(La (i) = 1)] (2:15)

bulunur. Diger taraftan

L, (6 + Zg\gf (t — x)Q;m) = eL,(L;z)+ %Ln ((t — x)z ;x)

20M;

= eL,(l;z)+ 52 (L, (% 3) — 2?)

+2z(x — Ly (t;x)) + 2*(Ln (1;2) — 1)]

yazilabilir. Son bulunan ifadenin (2.15) de kullanilmasiyla

1L (f ()52) = f(2)] < eln (L) + My [(Ly (12) = 1)

+2§V2[f (Lo (% 2) — 2?)

+22(x — Ly, (t; ) + 2*(Ln (1;2) — 1)]

elde edilir. Teoremin kogullarinin (2.16) da kullanilmasiyla

L (f () ;2) = f(z)| < e

bulunur. O halde
lim maks |L,(f(t);z)— f(z)] =0

n—oo a<zr<b

dir.
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Goriildiigii gibi Korovkin teoremi bu konudaki caligmalara biiyiik katk: saglamigtir.
Verilen operatoriin belirli test fonksiyonlar i¢in diizgiin yakinsakligin gerceklenmesi,
sonlu aralikta siirekli biitiin fonksiyonlarin bu operator yardimiyla diizgiin yakin-

samasinin soylenmesine yetmektedir.
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3. KONHAUSER POLINOMLARINI iCEREN LINEER POZITiF OPE-
RATORLERIN ve KANTOROVICH TiPLi GENELLESTIRILMESININ
YAKLASIM OZELLiKLERI

Bu boliimde, ilk olarak Konhauser polinomlar1 tamitilacaktir ve bu polinomlarin
sagladigr bir rekiirans formiilii verilecektir. Sonraki kisimda, operatoriin kurul-
mas1 siirecinde hangi operatorlerin kullanildig1 gosterilecektir ve Konhauser poli-
nomlarmi iceren lineer pozitif operator olusturulacaktir. Uciincii kisimda, opera-
toriin Korovkin teoreminin kosullarini sagladigi gosterilecektir. Dordiincii kisimda,
operatoriin fonksiyona yaklagsma hiz1 siireklilik modiilii, Lipschitz siifindan olan
fonksiyonlar ve Peetre K-fonksiyoneli yardimiyla hesaplanacaktir. Beginci kisimda,
operatoriin r-inci genellestirilmesi tanimlanacaktir ve L,, operatorii yardimiyla LY
genellestirilmig operatoriin yaklagim hizi hesaplanilacaktir. Sonraki kisimda, L,, op-
eratoriiniin bir fonksiyonel diferensiyel denklemi sagladig: ispat edilecektir. Yedinci
boliimde, L, operatoriiniin Kantorovich tipli bir integral genellestirilmesi tanim-
lanacaktir. Sekizinci kisimda, operatoriin Korovkin teoremini gercekledigi gosterile-
cektir. Dokuzuncu kisimda, L operatoriiniin f fonksiyonuna yaklagim hizi, sirasiyla,
siireklilik modiilii, Lipschitz sinifindan fonksiyonlar ve Peetre K-fonksiyoneli yardimiyla
hesaplanacaktir. Son kisimda, L} operatoriiniin r-inci genellestirilmesi tanimlanacak
ve r—inci genellestirilme olan L;ibm operatoriiniin f fonksiyona yaklasim hizi L} op-

eratoriiniin yardim ile hesaplanacaktir.
3.1 Giris

J. D. E. Konhauser, 1965 yilinda biortogonal polinomlarin teorisini vermigtir. 1967

yilinda ise, v € N olmak iizere klasik L (x) Laguerre polinomlar1 yardimiyla

Vi (k) ve ZS (k) (n > —1 ve k € ZV)

Y (@:1) = 20 (5:1) = L 2)
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esitligini saglayan biortogonal polinom ¢iftini tanimlamigtir. Burada v, (x k)

Y™ (z; k) == Z g Z ( ) (%)V (3.1)

=0 7=0

seklinde taniml olup, aynm1 zamanda Konhauser polinomu olarak da adlandirilir.

v, (x; k) Konhauser polinomlar i¢in bir dogurucu fonksiyon (Carlitz 1968)
(1—t)" "k exp {—x [(1 — )R- ] } ZY(”) rk)tY, n>0  (3.2)

seklindedir. Burada t € (—o0,0] i¢in v (t k) > 0 dir. v (t; k) Konhauser

polinomunun gergekledigi bir rekiirans formiilii (Srivastava 1982)
Y (k) = (k(v—1) +n+ 1) Y7 (k) — koY ™ (t; k) (3.3)
seklindedir ve burada v € Z~ i¢in Y™ (¢; k) =0 dur.

3.2 Operatoriin Olusturulmasi

Meyer-Konig ve Zeller (MKZ) operatorii, 1960 yilinda Meyer-Konig ve Zeller tarafin-
dan, x € [0,1) i¢in

My (fra) = (- 2 (ﬁ) (” ' ’“) o (3.4)

k=0

seklinde tanimlanmigtar.

k
k+n

M,, operatoriinde yerine alinirsa, operator Cheney and Sharma

E+n+1
(1964) tarafindan tanimlanan

Vi =0t S (F) (1) 3.5

k=0

Bernstein kuvvet serisine déner. Bu operatorler hakkinda bir¢ok caligma vardir.

Bunlardan bazilar1 Miiller’in (1967), Sikkema'nin (1970), Lupas ve Miiller’in (1970),
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Becker ve Nessel'in (1978), Khanin (1989) ve son olarak Abel’in (1995) yaptig
caligmalardir. Son zamanlarda bu operatorlerin bazi genellestirilmesi Dogru (1998)

ve Agratini (2001) tarafindan incelenmigtir.

n k :
Cheney ve Sharma, ayni yilda L,(g ) (0) = (n —]L_ ) oldugunu dikkate alarak, = € [0,1)

ve t € (—o0,0] i¢in, M} operatoriiniin bir genellegmesi olan

e )Zf(k+ et e

operatoriinii tanmimlamiglardir. Burada, L,(c”) () Laguerre polinomlar1 olup

k .
—l— k)! x!
L™ _ —_— 3.7
P ()t e
7=0
agik ifadesine sahiptir. Kolayca goriilmektedir ki, (3.6) ile tanimh olan P, ope-
ratorii, t = 0 i¢in (3.5) ile verilen M} operatoriinii verir.

(n)

Bu boliimde, (3.1) de tanimlanan olan Y, (z; k) Konhauser polinomlarimi igeren

1 kv w) /e, v
L)t = g S (s W 0 89

lineer pozitif operatorii incelenecektir. Burada = € [0,1), t € (—00,0] ve k <
n+1 geklindedir. Carlitz (1968), v (t; k) Konhauser polinomlari i¢in bir dogurucu
fonksiyonu

F, (z,t) = iY(”) (t;k)z", n>0 (3.9)
seklinde tammlamigtir. Burada F,, (z,t) lerin agik ifadesi
Fy (2,8) = (1 —a;)—”T“exp{—t [(1 ) E - 1]} (3.10)
seklindedir ve ¢ € (—o0, 0] i¢in Y,™ (t; k) > 0 dir.

(3.8) ile tanimlanan L,, operatoriiniin pozitif ve lineer oldugu kolayca goriilebilir.
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(3.8) ile tanmimlanan L,, operatoriinde & = 1 alimirsa, (3.6) ile tanimlanan P, oper-
atorii elde edilir. (3.8) operatoriinde k£ = 1 ve t = 0 alinmas1 durumunda ise (3.5)
ile tamimh M operatorii elde edilir. Yani, L, operatorii 6zel durumlarda P, ve
M} operatorlerini vermektedir. O halde L,, operatorii (3.5) ve (3.6) ile tanimlanan

operatorleri de igine alan daha genig bir operatordiir.
3.3 L, Operatériiniin Yaklasim Ozellikleri

Bu kisimda, L, operatoriiniin Korovkin teoreminin kosullarini gercgekledigi goster-

ilecektir.

Teorem 3.3.1 Eger f fonksiyonu [0,0] (0 <b < 1) arahiginda siirekli, z € [0, ]
t

ve 1] — 0 (n — o0) saglaniyorsa bu durumda [0, b] araliginda L, f operatorii f
n

fonksiyonuna diizgiin yakinsaktir.

Ispat. L, operatoriiniin lineer ve pozitif oldugu kullamhr ve (3.9) esitligi dikkate

almirsa, f(s) =eg(s) =1 (¢; (z) =2, i =0,1,...) igin

(Lueo) (@) = 5 (1;(;, VI ket =1 (3.11)

v=0

elde edilir.

f(s) =e1(s) = s almr ve (3.3) ile verilen rekiirans formiilii kullanilirsa

1 > kv
L, tik) = > Y™ (t; k) 2
( €1>(Z)5,, ) Fn<$,t)v:0]€(v—1)+n+1 v (7 )JI
1 s t
= > (vt k D (k) ) 2
Fn<x7t)vl( v—1(7 ) k(v—1)+n+1 v—1 (7 ) T
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esitligi elde edilir. ¢ € (—o0, 0] oldugu gozoniine alinirsa

o0

! 1 (n+1)
Y, tk)z' <0
Fn(x7t)vz::1k'('l)—1)—}—n—|—]_ v—1 (’ )J] —

esitsizliginin dogru oldugu goriiliir. O halde, (3.12) esitliginde yukaridaki esitsizlik

kullanilirsa

1 oo
(Lney) (z,t; k) > STV (k) 2

elde edilir. (3.9) esitligi, yukaridaki esitsizlikte dikkate alimirsa

r < (Lypeq) (x,t; k) (3.13)

bulunur. Diger taraftan, (3.12) esitliginden

tx > 1
L, tk)=x— YD (4 k) 2
( 61)(1', ) ) X Fn(at,t);kv—l—n—l—l v (7 )Q?

yazilabilecegi goriilebilir. (3.10) esitliginden F,y (z,t) = (1 —2) V" E, (z,t) sag-

Lo o O
< — egitsizliginin dogru oldugu gozoniine alinirsa

landifl ve ————
e A S

tx 1
Lypey) (x,t;k) —x < ——
( ) ) n(1-— x)l/k Foq (,

Z Y. (¢ k) 2®
t) v=o
elde edilir. (3.2) esitliginden

(Lpey) (x,t; k) —x < tr (1-— x)_l/k
n

bulunur. Simdi, yukaridaki egitsizlikte her iki tarafin mutlak degeri alimir ve = € [0, 0]
~1/k

1
icin (1 — ) b egitsizligi yerine yazilirsa

|t

(Ener) (@, R) = o] < 25

(3.14)
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olur. (3.14) esitsizliginin her iki tarafinin [0, b] iizerinden maksimumu alinirsa

[t b
[(Lner) (2,8 k) — 2| < n—0) (3.15)
elde edilir. (3.13) ile (3.15) birlikte diigiiniiliirse
0<||(L ik < 4 3.16
< [(Lnex) (2,8 k) = x| g < ) (3.16)
bulunur.
Son olarak f(s) = ey(s) = s* almrsa, (3.8) ile tammlanan L, operatériiniin
tanimindan
oo 2
(Lpes) (,t; k) Z< ) Y. (t; k) 2 (3.17)
U:o (v—=1)+n+1
elde edilir. (3.3) rekiirans formiilii iki kez kullanilirsa
v n) (4 —  ku=2)dntl v (n) (nt1) (4.
(o) Y (6 h) = pms Yoo (6K) — s Yoo (6F)
+ i Yo (k) — =y YTt k)
(3.18)
esitliginin saglandigy goriiliir. Bu egitlik (3.17) de yerine yazilirsa
k(v + n+1_(n y
(Lpes) (x,t; k) — e s le(f)z (t; k) z¥ — 2
t = 1 (n+1)
— Y, t; k) x¥
F, (z,t) ;k(v—1)+n+1 w2 (BR)T
L — 1 (n)
Y, (L k
+Fn(x7t);k(v—l)+n+1 1 (t:F)
kt > v (n+1)
_ t; k) z”
Fo(2,t) = (k(v—1)+n+1)° ot (55K)
(3.19)
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__kvtntl

dort toplamdan olugan esitlik bulunur. < 1 egitsizligi ve (3.9) esitligi

k(v+1)4+n+1
kullanilirsa
oo 1 . o0
Z J+n+ Y(_)Q(t;k)x”—x2 M) (k) 2¥ — 2
UZ? )+n+1 =
= 2% —2? :0 (3.20)
elde edilir. m < L egitsizligi, (3.10) esitliginden %ﬁ;) = (1- x)fl/k ve
(3.9) esitliligi kullanilirsa
+1) . v —tz? (n+l Y
w (2, 1) Zk +n+1 (k)" < n(1—2) Yk Fyyy (a,t) ZOYU
ta?
= —-—— 3.21
n(l—xz)* ( )

olur. Benzer sekilde < L esitsizligi ve (3.9) esitligi kullanilirsa

1
’ kv+n+1

v (4 k) v c Y (¢ k) ¥
;kv—l +n+1“1(’ )@ nFn(x,t)Z“ (t: k)2

v=0
kx
= — 3.22
- (3.22)
bulunur. Son olarak m L esitsizligi, % = (1—2)7* ve (3.9) esitlik-
leri kullanilacak olursa
—kt - v (n+1) /.. v —ktx . (n4+1) (4.
F, (x,t) ; (k(v71)+n+1)2Yv*1 (tk)2” < n(1—z)* Py (w,t) ;Yv (t: k) 2
kt
- — (3.23)
n(l—x)

elde edilir. (3.20), (3.21), (3.22) ve (3.23) esitsizlikleri (3.19) esitliginde yazilirsa

ta? kx ktx

Lpes) (w, k) -2 < ————— 4 — — ——————
(Lne2) ) n(l—x)/* n  pa-z)*

(3.24)

esitsizligi bulunur. (3.24) esitsizliginin her iki tarafin mutlak degeri alindiktan sonra,
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x € [0,b] aralig1 tizerinden maksimumu alimirsa

1 2
<1 (M F kbt W) (3.25)

H(Lneg) (w,t; k) _x2Hc[07b} n\1=5 1-0

elde edilir. Diger taraftan
s = (s —x)’ + 225 — 2

acilimina L, operatorii uygulanirsa

(Lpea) (z,t;k) — 2* = (L, (e1 — x)z) (z,t; k) + 2z (L, (e1 — 7)) (x, t; k)

esitligi bulunur. L, operatoriiniin pozitifligi, x € [0, b] ve (3.13) esitsizligi kullanihirsa
(Lnes) (z,t;k) — 22 >0 (3.26)

elde edilir. (3.25) ve (3.26) dan

0 < |[(Lne2) (z,t; k) — x?\\cw < % (F’—_bz + kb + @bj) (3.27)

yazilabilir. (3.11), (3.16) ve (3.27) den, Korovkin teoreminin kogullarimin gercek-
lendigi goriiliir. Dolayisiyla f € C'[0,b] i¢in L, f operatorii f fonksiyonuna [0, 0]

araliginda diizgiin yakinsaktir.
3.4 L, Operatoriiniin Yaklasim Hizi
(3.8) ile verilen L, f lineer pozitif operatoriiniin f fonksiyonuna yaklagim hizi iig

farkli yolla hesaplanacaktir. Oncelikle L, f operatoriiniin f fonksiyonuna yaklasim

hizini siireklilik modiilii yardimiyla hesaplayalim.
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Teorem 3.4.1 Her f € C'[0,b] ve — ’ | 0 (n — o0) icin

I(Laf) (@) = £ @)y < (1+ V3B) w <f, })

klt|b 3t
1—b 1-b

dir. Burada B = maks {k;b } seklindedir.

Ispat. f € C[0,b] olsun. L, operatoriiniin lineerlik ve monoton &zellikleri ile

birlikte, (3.11) esitligi ve Lemma 2.3.1 in (vii)-inci maddesi gézoniine alinirsa
(Lo f) (@, k) = f ()] < (Lalf(s) = [ (@)]) (x,t; k)
z|

(Ln {w (f;0) (1 4 las 5 )D (z,t; k)

w(f;é){l—i—%([/ﬂel—x“ (x,t;k)} (3.28)

IN

IN

bulunur. L, |e; — x| igin, Tanwsm 2.4.1 ile tamimh olan Cauchy-Schwarz esitsizligi

kullanilir ve (3.9) esitligi dikkate alinirsa

L, ey — tk) = Y. (t; k) 2
(Luler =l (e, 6k) = 5 ;kv_HnH St k)
0 kU 9 1/2
< Y (¢ k) 2¥
- < ; k(u—1)+n+1 x) S M)

elde edilir. Bu egitsizlik (3.28) de yerine yazilirsa

(L) i) = f@I < ({14 5T - o) @b} (329
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olur. = € [0,b] igin
(Ln (€1 — :L‘)z) (z,t; k) < [(Lne2) (z, k) — 2°| + 22 |(Lper) (z,t; k) —

yazilabilecegi kolaylikla goriilebilir. Her iki tarafin [0,b] {izerinden maksimumu

alinirsa

maks (L, (e1 — 3:)2) (z,t; k) < ||(Lne2) (z,t; k) —

2 .
s x HC[O’b]—l—Qb |(Lper) (x,t; k) — m”C[O,b]

bulunur. Burada (3.16) ve (3.27) esitsizlikleri kullanilirsa

1 (3]t v? k|t| b
L —1)? k)< — | —— —_— .
CereC[LO]?bf( n(e1 a:))(x,t,k)_n(l_b+kb+1_b (3.30)
klt|b 3|t b? 1
elde edilir. B = maks { kb, L, 31 almir, 6 = d,, = — segilir ve (3.29) de
-0 1-b NG

yerlerine yazilirsa
N(Euf) (@, 0) = f @)l egoy < (14 VBB w (£00)

bulunur ki bu ise ispat1 tamamlar.

Simdi de Lipschitz simifindan olan fonksiyonlar yardimiyla L, f operatoriiniin f

fonksiyonuna yaklagma hizin1 hesaplayalim.

g

Teorem 3.4.2 Her f € Lipy () ve — — 0 (n — 00) olmak {izere
n
I(Laf) (@t k) = f (@)l < M (3B)**n /2

dir. Burada B, Teorem 3.4.1 de tanimlandig: gibidir.

Ispat. f € Lipy (a) (0 < <1) olsun. L, operatoriiniin lineerlik, monotonluk
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ozelliklerinden ve T'anym 2.4.2 de verilen Lipschitz sinifi tanimindan

«

L, t; k) — < > — x| Y (tk)2”
( f)($77 ) f(x)_Fn(,t Uzok’u_l +n+1 z v (’ )x
. 2 - . . e e
elde edilir. p = — ve ¢ = 5 icin T'amam 2.4.3 ile verilen Holder esitsizligi
o -«

kullanilirsa

(Lnf) (.t k) = f (x)

IN

/2
2
M (Fn(m ) Z ( (o— 1 +n+1 - x) Yv(n) (t; k) fv)
oo (2-a)/2
(a0

v=0

a/2
2
= (Fn(x ) Z ( (o 1 Fes i x) Y (8 k) xu>
= M\/ (e1 — ) (x t; l{:)]

bulunur. Teorem 3.4.1 deki igslemler tekrarlanirsa

I(Znf) (@, t:k) = f (@)l oy < M (3B)*2n=/2

elde edilir.

Son olarak Peetre K-fonksiyoneli yardimiyla L, f operatoriiniin f fonksiyonuna yak-

lasim hizini hesaplayalim.
t

Teorem 3.4.3 f € C'[0,b] ve 1] — 0 (n — o0) ise, bu durumda
n

I(Lnf) (2,8 k) = f (@)l oo < 26 (f,07)

dir. Burada

. lt|b 1 /3|t|v? kt|b
o =l—+— kb+ ——
Sl Tm\1-s Ty

seklindedir.

36



Ispat. g € C? [0,0] olsun. O taktirde g (s) fonksiyonunun x noktasindaki Taylor

acilim

dir. L, operatorii, yukaridaki esitligin her iki tarafina uygulanir ve tiggen esitsizligi

kullanmilirsa

|(Lng) (z, k) — g ()] < [(Ln (€1 — 7)) (2, £; )| g’ (fﬂ)|+% (Lo (e1 = 2)%) (2,8:K)| |g" ()]

olur. Her iki tarafin [0, b] tizerinden maksimumu aliir ve (3.16) ile (3.30) kullanilirsa

, it 1 (3t]b° EION | oy
|(Lng) (z,t; k) — g (x)HC[O,b] < m lg ||C[0,b]+% 1_b + kb + -3 lg ”C[O,b]

bulunur. Tanim 2.4.4 ile verilen C? [0, b] uzaymda norm tamm dikkate alimirsa
. t|b 1 /3]t|v? k|t|b
I(209) (0,8 0) = 9 @t < | i s + 5 (3 + 40+ 15 ) | ol

(3.31)

elde edilir. Diger taraftan, L, lineer ve monoton operator oldugundan

(L f) (@, 65 k) = f ()] = [(Lnf) (2,6 k) = (Lng) (2,6 k) + (Lng) (2,8 k) — g (2)
+g(z) — f(2)]
< (L (f —9) (@, 5 B)| + | f (z) — g (2)]

+1(Lng) (z,5: k) — g ()]

yazilabilir. Her iki tarafin [0, b] iizerinden maksimumu almir ve (3.11) gozoniinde

bulundurulursa

ICLnf) (2,85 F) = (@)l ey < 20 = gl + I(Lng) (2,8 K) = g (@)l e
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olur. (3.31) esitsizligi yukaridaki esitsizlikte yerine yazilirsa

b
I(Lnf) (@ t5%) = f (@)l opy < 2{||f—9||c[o,bﬁr {ﬁ

1 /3|t v? i k|t|b
T\ Ty T T Ty 19l c2(o0.4

bulunur. Esitsizligin her iki tarafinin ¢ € C? [0, 0] igin infimumu alimir ve

. lt|b 1 /3|t|v? kt|b

n=|l—+———+kb+—

" [2n(1—b)+4n 1—b+ +1—b
secilirse ispat tamamlanmig olur.

Uyar1 3.4.1 Bu kisimda verilen {ig teoremde elde edilen §,, ve ), ifadelerinin n — oo

durumunda 9,,, §; — 0 olacagina dikkat edilmelidir.
3.5 L,, Operatoriiniin r-inci Basamaktan Genellestirilmesi

Bu boliimde (3.8) ile verilen L, operatoriiniin r-inci basamaktan genellestirilmesi
verilecektir. f € C"[0,b], r = 0,1,2,... and n € N olmak {izere L,, operatoriiniin

r-inci genellegtirilmesi

r kv

(089) 010 = e 530 (i) C )

n F, (a:; t) Lt L v—1)4+n+1 il

(3.32)
seklinde tanimlanmaktadir. Burada C”[0,8] (0 <b <1 ver =0,1,2,...)ile f fonksiyo-
nunun r-inci tiirevlerinin siirekli oldugu uzay gosterilmektedir. Ozel olarak (3.32)

ile tanimlanan operatorde r = 0 alimirsa (3.8) ile verilen operator elde edilir.

Simdi, LZ“] lineer pozitif operatorii ile L,, lineer pozitif operatorii arasindaki iligkiyi

veren agagidaki teoremi verelim.
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Teorem 3.5.1 ) € Lipy (o) ve f € C"[0,b] (r =0,1,...) ise, bu durumda

r M « o+r
”(LL}f) (z, 6 k) = f (x)||0[0,b} < r—Dlart TB (o, r) [[(Ln fex = 2|*7) (2. t; k>HC[O,b]
(3.33)
dir. Burada B («, ) Beta fonksiyonu ve r,n € N dir.
ispat. (3.32) ile verilen L] operatériiniin tanimmdan
1 o0
— (Ll . - - @) (kv
1@ =N @D = > 10510 (i)
(= ra=tmmmn) | v g 1y o0
X - Y™ (k) @ (3.34)

elde edilir. Yukaridaki esitlikte serinin icindeki ilk ifade icin, Taylor integral for-

miiliinden (Kirov ve Popova 1993)

( ) Zf (VW)Z _ (x k(v Ilv)v+n+1 Tj 1)1t
(v— 1 +n+1 3! - 5 Z
r kv kv r
[f( ( o1 T 7 (x - k(u71)+n+1)) AL ( (o—1 +n+l>i| dz

(3.35)
bulunur. f™ € Lipy; (o) oldugundan, yukaridaki integralin icindeki ifade
r kv kv T kv
)f " ( Dt T ("” N k(v—1>+n+1)) - (—k<v—1>+n+1>)
e’ kv
esitsizligini gergekler. Beta fonksiyonunun tanimindan
1
o
“(1—2)""dz=B(1 = B 3.37
[=a-atas=Baran - B (3.57

0
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yazilabilir. (3.36) ve (3.37), (3.35) de yerlerine yazilirsa

kv ‘
Zf kv (x - k(v—l)—i—n-‘rl)
—1)+n+1 7!
M a kv atr
—B — 3.38
“(r—=D0a+r (a,r)|e k(v—1)4n+1 (3:38)

sonucuna ulagihir. (3.34) ve (3.38) birlikte diigiiniiliirse

M o

|f () = (LE1f) (2, t:k)| < G —latr

B(a,7) (Lyler — z[*"") (z, k) (3.39)

bulunur. (3.39) esitsizliginin her iki tarafinin [0, b] tizerinden maksimumu alinirsa

(3.33) elde edilir ki bu da ispat: tamamlar.

g € C']0,b] fonksiyonu igin
g(s)=|s— x| (3.40)

seklinde tamimlansin. s = z alindig: taktirde g (x) = 0 olacag goz 6niine alimrsa, bu

durumda L,, operatorii her g € C'[0,b] fonksiyonu i¢in Korovkin teoremini saglaya-

cagindan

lim [|(Lng) (z,t; k) = g ()]l = 0

n—oo

oldugu goriiliir. Teorem 3.5.1 in hipotezleri gozoniine alinirsa, (3.33) esitsizliginden

i [(L3F) (2.t k) — f(x)HC[o,b} =0

elde edilir.

Simdi de Ll f operatoriiniin f fonksiyonuna yaklagma hizin1 L,, operatoriiniin yardimi

ile hesaplayalim.
Sonug 3.5.1 f € C"[0,b] ve f( € Lipy (o) ise, bu durumda

IEE9) () = £ o < gy B ) (14 V3B)w (o

(r—D!'a+r

)
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dir. Burada ¢ fonksiyonu (3.40) seklinde tammlanmaktadir.

Sonug 3.5.2 f € C"[0,b] ve f € Lipy (o) ise, bu durumda

Mb" «Q

B 3B)**p—o/?
(r—1)a+r (c;r) (3B)n

H(Lg]f) (l’,t; k) - f (‘r)HC[O,b] <

dir.

Uyar: 3.5.1 Buradan goriilmektedir ki, Sonuc 3.5.1 ve Sonug 3.5.2 ile Ll f ope-
ratoriiniin f fonksiyonuna yaklagim hizi sirasiyla siireklilik modiilii ve Lipschitz

sinifindan olan fonksiyonlar yardimiyla hesaplanmigtir.
3.6 L, Operatoriiniin Fonksiyonel Diferensiyel Denkleme Uygulanmasi

Bu boliimde (3.8) ile verilen L,, operatériiniin bir fonksiyonel diferensiyel denkleme
uygulanmasi iizerinde durulacaktir. Birgok gahismada (May 1976, Volkov 1978, Alke-
made 1984), operator bir fonksiyonel diferensiyel denkleme uygulanmigtir. Bu uygu-
lama, lineer pozitif operatorlerin de bir diferensiyel denklemi saglayabilecegi sonucu

bakimindan son derece énemli bir 6zelliktir.

Simdi L,, operatoriiniin sagladigr diferensiyel denklem, agagidaki teorem ile verile-

cektir.

olsun. Her z € [0,b] (0 <b < 1) ve f € C'[0,b] i¢in L,

Teorem 3.6.1 g (s) = ! i

operatorii

x% (Luf) (2.t K) = —o™ 50070 (1 ) (2,1 k) + 255 (Lo (£.9)) (2,15 K)
(3.41)

fonksiyonel diferensiyel denklemini saglar.

Ispat. f € C[0,b] oldugundan (3.8) ile tamimlanan operatoriin sag tarafindaki

kuvvet serisi [0, b] arahginda yakinsak olacaktir. Bu durumda bu seri [0, b] de terim
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terime tiirevlenebilir. O halde (3.8) ile tanimh olan L,, operatoriiniin x degiskenine

gore tirevi alinirsa

d
—(Luf) (2. 1:k) = F2xt Zf( e ) Y (1 ) 2

(z; t Zf< (v— 1+n+1) Y (t k) vzt (3.42)

T e S o vk _
esitligi elde edilir. ¢ (s) = T oldugundan g <k(v—1)+n+1> = n+1 - bulunur ve
(3.10) ile verilen F,, (z;t) tanimindan
9 n+1—t(1—z) "
—F, (z;t) = E,(z;t 3.43
e ast) = O (it (3.43)

olur. (3.42) esitliginin her iki tarafi = degigkeni ile carpilir, (3.43) ile g (k:(v+)k+n+l> =

~ flkf - esitlikleri yerlerine yazihirsa
d n1—t(1—a)~ /% . }
(L’% (Lnf) (x;t,k) = —zx +1 tm Fn)z‘t Zf ( — +n+1> Y,U( ) (t,]{;)x
n—k+1
TRFu( ;:_t (U1—+n+1> " (t; k) a¥
U:0

bulunur. (3.8) ile verilen L,, operatoriin tanimi dikkate alinirsa, (3.41) elde edilir ki

bu ise ispat1 tamamlar.

3.7 L, Operatoriiniin Kantorovich Tipli Integral Genellestirilmesi

Kantorovich (1930), (2.5) de agik olarak ifade edilen klasik Bernstein operatorlerinin

Kantorovich tipli integral genellesmesini f € L; ([0, 1]) igin

- k41/m+1
af) ) = m s 03 ()0 - W/ﬂf

bi¢iminde tanimlamigtir.
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(3.8) ile verilen L, lineer pozitif operatoriiniin Kantorovich tipli genellesmesi olan

1 e k 1 ( ) k?’U-‘r k'vJ:fnJrl
(L f) (@t k) = Fr(z,0) Z ( T )Yvn k)" [ f (W) du
v=0 kv
(3.44)
lineer pozitif operatorii incelenecektir. Burada = € [0,1), ¢t € (—o00,0] ve k <n + 1

seklindedir.

Ayrica M [0,b], [0, b] tizerinde 6lgiilebilir fonksiyonlarin simifim gostermektedir. f €
M [0, 0] dir.

L operatoriiniin lineer ve pozitif oldugu kolayca goriilebilir.

Dikkat edilmelidir ki, L} operatoriinde 6zel segimlerle M ve P, operatorlerinin

Kantorovich tipli genellestirilmeleri elde edilir.
3.8 L} Operatoriiniin Yaklasim Ozellikleri

Bu kisimda, L} operatoriiniin Korovkin teoreminin kogullarim gergekledigi goste-

rilecektir.

Teorem 3.8.1 Eger f fonksiyonu [0,0] (0 < b < 1) araliginda siirekli, =z € [0, ]
t

ve i — 0 (n — o0) saglaniyorsa bu durumda [0, b] araliginda L} f operatorii f
n

fonksiyonuna diizgiin yakinsaktir.

Ispat. L operatoriiniin lineerlik ile pozitiflik 6zellikleri kullanilir ve (3.9) esitligi

dikkate almirsa, f(s) =€ (s) =1 igin

) %) . ) kv—"—,w_,_"in_H
(Lpeo) (x,t:k) = by > (B2 V™ (1 k) 2 kf du
v=0 v
= (Lpeo) (z,t;k) =1 (3.45)

elde edilir.
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(3.44) ile tanimlanan L} operatoriinde f (s) = e; (s) = s alinirsa

n
]C’U-‘r kv+n+1

(Lrey) (z,t;k) = Z kUMHY (tk)a [ oD u
v=0 kv
_ 1 kv+n+1
T Fu(zpt) 2n(k(v— 1)+n+1) (t k)
v=0
2kvn n 2
X [kv-‘rn-‘rl + (kv-i—n—f—l) ]
= (Lner) (2,1 k) + 2Fn zt) Z (kv+n+1)( +n+1)Y (t k) =¥
esitligi elde edilir. <1 = oldugu gozoniine alimirsa

(vk+n+1)(k (v 1)+n+1)

(Ler) (z,t;k) < (Lner) (z, 6 k) + 5= (Lneo) (z,t; k)

bulunur. Yukaridaki esitsizlikte oncelikle her iki tarafin mutlak degeri alinir sonra

0, b] tizerinden maksimumu alimir ve de (3.11) ile (3.16) esitsizlikleri kullanilirsa

* b
I(Lyer) (@65 %) = 2l ooy < wiiss + 3 (3.46)

elde edilir. Son olarak (3.44) tamminda f (s) = ey (s) = s% alinirsa

n
k'UJF kv+n+1

2
(Liey) (z,t:k) = Z’“’*”“Y (t; k) ¥ kf [m] du

_ kv+n+1
o Z n o 3(k(v— 1)+n+1)Y (t k)

v=0

x [3 (kv)? s +3 (k) (i) + (ierr) |

[e.9]

_ . 1 n kv
= (Lne2) (z, 1 k) + Fr(z,2) Z (kvtn+1) (k(v—1)+n+1) k(o—1)+n+1
v=0

<Y, ™ (t: k) x

2
D n () (4.
* 3Fn(w,t) Z |:(kv+n+1)(k(vfl)+n+1):| Yv (t: k) x
v=0

2
elde edilir. n < Lve |gommd | S i esitsialikleri

(kv+n+1)(k(v—1)+n+1) — n
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kullanilirsa
(Lye2) (w,t; k) < (Lnes) (z,t;:k) + = (Lyer) (@, 6 k) + 555 (Lneo) (2,85 k)

bulunur. Her iki tarafin éncelikle mutlak degeri alinir, daha sonra [0, b] iizerinden

maksimumu alimirsa ve ayrica (3.11), (3.16) ile (3.27) kullanilirsa

[(Lye2) (@, k) = 22| oy < 5 (k o+ )+ k+1) 24+ L (3.47)

elde edilir. (3.45), (3.46) ve (3.47) den, Korovkin teoreminin kogullarimin gercek-
lendigi goriiliir. Dolayisiyla f € C'[0,b] i¢in L} f operatorii f fonksiyonuna [0, 0]

araliginda diizgiin yakinsaktir.
3.9 L} Operatoriiniin Yaklasim Hizi

(3.44) ile tanimlanan L7 f lineer pozitif operatériiniin f fonksiyonuna yaklagim hizi
ii¢ farkli yolla hesaplanacaktir. Bunlardan ilki olan siireklilik modiilii ile yaklagim

hiz1 agagidaki teorem yardimiyla verilecektir.

t
Teorem 3.9.1 Her f € C'[0,0] (0<b< 1) ve 1] — 0 (n — 00) ise, bu durumda
n

(Lo f) (et k) = f (@)l e < 20 (F570)

dir. Burada v, = \/ 1o (k: +3b+ 1)+ (k+2) 2 + 3% seklindedir.

Tl

Ispat. f € C[0,b] olsun. L* operatoriiniin lineerlik ile monotonluk 6zellikleri,

(3.45) esitligi ve Lemma 2.3.1 in (vii) sikki gozoniine alinirsa

(L3 f) (2,6 k) = f ()] < (Lo [f (s) = [ (2)]) (=, 8; k)
x|

(552

c(ro {1+ L|e1—x|><x,t;k>} (3.48)

IN

IN
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bulunur. Tanwsm 2.4.8 ile verilen integraller icin Cauchy-Schwarz esitsizligi kul-

lanilirsa
1/2
kv+ karnnJrl kv+ ﬁ 2
U u
)k(u—1)+n+1 —o|du < <k(v—1)+n+1 N x) du
kv kv
1/2
kv+ k:v+nn+1
X f du
kv
1/2
kv+ kv+nn+1 2
_ u . d [ n }1/2
= Fo—1)tnt1 L) @ kotntl
kv

elde edilir. O taktirde

o0

* ) 1 k 1 .
Ly ler —2|) (2, 6:k) < 755 PRV SR CGY
v=0
1/2
kvt karnnJrl 2
U
X (m - l’) du

kv

esitsizligi bulunur. Simdi T'anwm 2.4.1 ile verilen seriler i¢in Cauchy-Schwarz egit-

sizligi kullanilirsa

(L ler — ) (. £ k)

n
kvt kv+n+1 (

kv+n n . v
= Fn(lm,t) Z o =Y (k)@ kf
v=0 v

. 1/2
X | w2V () x]
v=0

elde edilir. O taktirde, yukaridaki esitsizlikten

(L ler — a]) (2. 8:8) </ (L5 (61 — 2)%) (2, 1)

saglandig1 goriiliir. Bu esitsizlik (3.48) de yerine yazilirsa

(wn e tih) — f@I <o {14 5T - @an} (349

46



bulunur. z € [0, 5] i¢in
(L; (er — :L‘)z) (z,t; k) < |[(Lres) (z,t;: k) — 2| + 22 |(Lier) (w,; k) —
yazilabilir. Her iki tarafin [0, ] iizerinden maksimumu alinirsa

maks (L5, (er = 2)%) (,1:8) < [|(Lhea) (2, 150) = 2%l

+20|[(Lye) (2,5 k) = 2l o

olur. Burada (3.46) ve (3.47) esitsizlikleri kullanmlirsa

maks (L (er = 2)°) (@, t:k) < ity (kb4 3) + (k1) 3 + 532
xe|0,

elde edilir. (3.50) esitsizligi (3.49) de yerlerine yazilir ve

1 b 1
SO B
5_%_\/”(1b)(k+3b+ﬁ)+(ls+2)g+%

segilirse

(L) (8 k) = f (@)l oo < 20 (f57n)

bulunur ki bu ise ispat1 tamamlar.

Simdi de Lipschitz smifindan olan fonksiyonlar yardimiyla L} f operatoriiniin f

fonksiyonuna yaklagsma hizim1 hesaplayalim.

i

Teorem 3.9.2 Her f € Lipy (o) ve — — 0 (n — 00) ise, bu durumda
n

(L3 f) (st k) = f (@)l cpop) < M
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dir. Burada v,,, T'eorem 3.9.1 de tamimlandig1 gibidir.

Ispat. f € Lipy (o) (0 < a < 1) olsun. L* operatoriiniin lineerlik ile monotonluk

ozelligi ve T'anam 2.4.2 ile verilen Lipschitz sinifi tanimi kullanilirsa

(Lo | £ (8) = [ (2)]) (=, 85 k)
M (L, [t — =[*) (z, 8 k)

(L f) (2,8 k) — f (2))]

IN

A

_ M kv+n+1 n . v
= ey D Y (k)
v=0

n
kvt kv+n+1

(3
X (G — x| du

E(o—1)4+n+1

kv

olmak tizere T'anim 2.4.7 ile verilen integraller igin

2
elde edilir. p = — ve ¢ =
o' 2

Holder esitsizligi kullanilirsa

n
kv+kv+n+l «
u
‘k(u71)+n+1 — x| du
kv
0 n (2-a)/2
kvt kv+n+1 2 /2 ku+ kv+n+1
u _ fe!
< (k(v—1)+n+1 x) du]*[ [ du
kv kv
a/2
k.v_,'_#
kv+n+1
~ (o )(2—a>/2 u 2V du
o kv+n+1 k(v—1)+n+1

kv

bulunur. O halde, bu esitsizlik operator taniminda yazilirsa

[kv+n+l]a/2 Y;j(n) (t, ]C) Y

n

NE

(Lot —2|*) (@, t:k) < 77

Fy(z,t)

n
S —
x| (
kv

olmak {izere T'aniym 2.4.3 ile verilen seriler igin

2
olur. Simdi, p = — ve ¢ =
«

Holder esitsizligi kullanihir, (3.9) esitligi goz niinde bulundurulur ve (3.44) ile verilen
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L} operator tanmimi dikkate alinirsa

(LE |t — 2] (2.t k) < [Fn(lm) Z ku+nn+1YU(n) (t; k) 2"
v=0

n
kvt kv+n+1 <

L —x>2du

X k(v—1)4n+1

kv

00 (2704)/2
. [—Fnzx,t) Sy (55 ]
v=0

- [(LZ (e1 — 35)2) (z,t; k‘)}a/z

elde edilir. Teorem 3.9.1 deki benzer iglemler tekrarlanirsa

(L3 f) (2,65 k) = f (@)l o < MAn

esitsizligi bulunur. Burada v,,, T'eorem 3.9.1 tamimlandig1 gibidir.

a/2

Son olarak, L} f operatoriiniin f fonksiyonuna yaklagim hizini, Peetre K-fonksiyoneli

yardimiyla hesaplayalim.
t

Teorem 3.9.3 Her f € C[0,0] ve i — 0 (n — 00) ise, bu durumda
n

ICL5S) (st k) = f (@)l cpo < 2K (f570)

dir. Burada

x _ 3lt|p? (k+1)[t|b |t|b (k+2)b 1 1
Yo = ni-5 ¥ w6 TR0 7w T 32 T o

seklinde tanimhidir.

Ispat. g € C?0,b] olsun. g fonksiyonunun Taylor acilimindan

(Lng) (x5 k) —g ()] < |(Ly (¢ =) (2, t; k)| g ()]

+](L; (= 2)%) (.t F)| |9"2(1')|
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elde edilir. (3.51) esitsizliginin her iki tarafinin [0, b] iizerinden maksimumu alinr,

(3.46) ve (3.50) esitsizlikleri kullanilirsa

1(Lrg) (., t:k) = g (@)lopy < Ly (=) (@88 oo 119 | oo
+% H(LZ (t — ) ) , 15 k) HC[Ob] lg” ||(J[0,b}
b
< <n(|1‘7b) + %) ||g ||C[O,b]

+1 {n(lfl_bb) (k+3b+21)+(k+2)2 3n2} lg” e

3)t|b? (k+1)[t]b |t|b (k+2)b
{n(l—b) + n(1-b) + n2(1-b) + n

+arz + 3n ) 190204 (3.52)

bulunur. Diger taraftan, L} operatoriiniin lineerlik, monotonluk 6zellikleri ve tiggen

esitsizligi kullanilirsa

(Lo f) (@, 6 k) = f ()] < [(Ly (f = 9) (&, 5 B) [ + [ f (2) — g (2)]
+[(Lhg) (2,6 k) — g (2)] (3.53)

bulunur. (3.53) esitsizliginin her iki tarafinin [0, b] tizerinden maksimumu alinir ve

(3.52) esitsizligi kullanilirsa

1L f) (@, 0) = f @ legon < 2{1F @) = 9 @l + 75 19 @) oy} (3-54)

elde edilir. Son olarak, (3.54) esitsizliginin her iki yammin g € C?0,0] iizerinden

infimumu alinir ve

« _ 3lt|p? (k+1)[t|b [t|b 1 1
Yo = nt-p ¥ wion) TR0 T n T3z T o

secilirse ispat tamamlanmig olur.
3.10 L} Operatoriiniin r-inci Basamaktan Genellestirilmesi

Bu boliimde (3.44) ile verilen L} operatériiniin r-inci basamaktan genellegtirilmesi

verilecektir. f € C"[0,b], r = 0,1,2,... ve n € N olmak iizere L} operatoriiniin
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r-inci genellegtirilmesi

[e's) karm r
*[”] v+n n . U j U
(L) @tsk) = gy D Y (k) e S (vt
v=0 v j=0

X <m’“(”‘11§+”“)]du (3.55)

seklinde tammlanmaktadir. Daha oncede belirtildigi gibi, C" [0,b] (0 < b < 1 ve
r=0,1,2,...) gosterimi ile f fonksiyonunun r-inci tiirevlerinin siirekli oldugu uzay
gosterilmektedir. Ozel olarak (3.55) ile tamimlanan L;[T] operatoriinde r = 0 alinirsa

(3.44) ile verilen L} operatorii elde edilir.

Simdi, LfLM ile L} lineer pozitif operatorleri arasindaki baglantiyr veren asagidaki

teoremi verelim.

Teorem 3.10.1 f) € Lipy (a) ve f € C™[0,b] ise, bu durumda

(7] a * a-+tr
|(z77) @k s @) < PaseB @) (L ler =) (@ 68) | o
(3.56)
dir. Burada B («,r) Beta fonksiyonu ve r,n € N dir.

ispat. (3.55) ile verilen L*" operatoriiniin tanmmndan

) T
+[7] vtn n v
F@) = () w6k = mhg o ERayO e [ @)=
=0 kv

X

J

r
s v—1)+n+1 7!

elde edilir. (3.57) esitliginde integralin igindeki ifade i¢in Taylor integral formiilii
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(Kirov ve Popova 1993) kullanilirsa

(1-— s)r_1

o,

r . w*+n ! x*ﬁ )
£ @)= % 19 (i) e
pa

< |1 (et + 5 (o~ ot ) ) — 10 (vt )| s

(3.58)

bulunur. (3.58) esitliginde integralin i¢inde bulunan ikinci terim icin, ) € Lipy ()

oldugunu goz oniinde bulundurulursa

10 (gt + 5 (o~ stimn)) — 19 (st )|

< Ms® o= gt | (3:59)
esitsizligi gerceklenir. Beta fonksiyonunun tanimindan
f 1
“(1-s)" "ds=B(1 = B 3.60
{3 (1—3s) s (14 a,r) Py (a,7) ( )
yazilabilir. (3.59) ve (3.60), (3.58) de yerlerine yazilirsa
~ 0) u (“””‘k(v—qu+n+1)j
F@) =2 1 (i J!
=0
M o u a+r
< roniap B (@) ‘fc — oo (3.61)

sonucuna ulagilir. (3.57) iin her iki tarafinin mutlak degeri alimir ve (3.61) burada

yerine yazilirsa

(r=1! a+r

@) = (B7F) @b < G2t Blor) (Lo —af™7) (k) (3.62)

bulunur. (3.62) esitsizliginin her iki tarafinin [0, b] tizerinden maksimumu alinirsa,

(3.56) elde edilir ki bu da ispat1 tamamlar.
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Daha 6nce kisim 3.5 de, g € C'[0, b] fonksiyonu (3.40) esitligi ile verilmigtir ve

g(s)=ls—a*""

seklinde tanimlanmigtir. Kisim 3.5 de yapilan islemlere benzer sekilde, s = x alindigi
taktirde g () = 0 olacag goz oniine alinirsa, bu durumda L} operatorii her g €

C'[0, b] fonksiyonu igin Korovkin teoremini saglayacagindan

lim |[(Ly,g) (z, 8 k) — g ()l oy = O

n—o0

oldugu goriiliir. T'eorem 3.10.1 in hipotezleri gézoniine alinirsa (3.56) esitsizliginden

lim H(L:j”f) (z,t: k) — f(x)H —0

n—0o0 Clo,b]

elde edilir.

Simdi de L;‘LM f operatoriiniin f fonksiyonuna yaklagma hizini L} operatorii yardimiyla

hesaplayalim.

Sonug 3.10.1 f € C"[0,b] ve f™) € Lipy () ise, bu durumda

2M «Q

<_—_ ___ B .
oy — (r—D'a+r (, 1) w (g5 7n)

|(2:77) @ty = s @)

dir. Burada ¢ fonksiyonu (3.40) seklinde tanimlanmaktadir ve

1 b 1
_ [t[b
’yn_\/n(lb) <k+3b+ﬁ> +(I€+2)E+w

seklindedir.

Sonug 3.10.2 f € C"[0,b] ve f) € Lipy («) ise, bu durumda

Mb" «Q

<—+———B @
o — (r—D!a+r (e )7

|(2:7r) @ty = 1 @)
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dir. Burada 7,,, Sonu¢ 3.10.1 de tanimlandig1 sekildedir.

Uyar: 3.10.1 Buradan goriilmektedir ki, Sonu¢ 3.10.1 ve Sonuc¢ 3.10.2 ile L:ibm f
ope- ratoriiniin f fonksiyonuna sirasiyla siireklilik modiilii ve Lipschitz simifindan

fonksiyonlar yardimiyla yaklagim hizi hesaplanmigtir.
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4. -LAGUERRE POLINOMLARINI iCEREN LINEER POZITiF OPE-
RATORLERIN KANTOROVICH TiPLi GENELLESMESI

Bu boliimde ilk olarak, iiciincii boliimde de verdigimiz ve operatoriin kurulmasinda
zemin tegkil eden operatorlere deginilecektir. Daha sonra ise, g-Laguerre polinom-
larin igeren lineer pozitif operatorlerin Kantorovich tipli bir genellegtirilmesi olan
K, operatorleri tamimlanacaktir. Ugiincii kissmda K, , operatorlerinin Korovkin
teoreminin kogullarim gercekledigi gosterilecektir. Son kisimda ise, K, ,f operator-
lerinin f fonksiyonuna yaklagim hizi birinci ile ikinci stireklilik modiilleri ve Lipschitz

sinifindan olan fonksiyonlar yardimiyla hesaplanacaktir.

4.1 Giris

1912 yilinda S. N. Bernstein, kendi ismini verdigi bilinen Bernstein operatoriinii

f e C0,1] igin )
Bl =31 (5) (1) -

seklinde tanimlamigtir. Kantorovich ise 1930 yilinda Bernstein operatorlerinin Kan-

torovich tipli integral genellegtirilmesini f € L; ([0, 1]) igin

() @) = o+ )3 (7)1 //mf () d
k=0 k/m-+1

bigiminde tanmimlamigtir. Meyer-Konig ve Zeller (1960), daha énceki boliimlerde de
acik olarak ifade edilen M,, operatoriiniin tanimini vermistir. 1964 de ise Cheney ve
Sharma, oncelikle MKZ operatoriinde degisiklik yaparak M Bernstein kuvvet serisini
tanimlamiglardir ve ardindan da Laguerre polinomlarini iceren P, operatoriinii ver-
miglerdir. Lineer pozitif operatorlerin g-genellesmesi ilk olarak Phillips (1996) tarafin-

dan verilmistir. Philips, klasik Bernstein operatoriiniin g-genellegtirilmesini, n po-
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zitif tamsay1, 0 < ¢ <1 ve f € C([0,1]) olmak iizere

n n—k—1
k
):Zf(%)”:&]‘[ (1-q'z) (4.1)
k=0 s=0
vermistir ve bu operator i¢in Voronovskaja tipli asimptotik formiilii ve yaklagim
hizam elde etmigtir. Trif (2000), Meyer-Konig ve Zeller operatoriiniin ¢-geniglemesi

-l () [ e

olan

operatoriinii tamimlanustir. 2007 yilinda ise M. A. Ozarslan, P, operatorlerinin

g-geniglemesini

L& W ey
Pua0:0) = 5oy O 1 () B (i) (4.3)

olarak tanmmlamigtir. Moak (Moak, 1981), g-Laguerre polinomlar: i¢in dogurucu

fonksiyon tanimini

(o) = @ 0e g [ (L= g o]
e (#:0)0  2= (), (x¢"5q),
= > LV (tg)2F (Rea > 1) (4.4)
k=0

ile vermistir ve g-Laguerre polinomlarimin agik ifadesi (Jackson 1944, Hahn 1949 ve

Moak 1981)

(a7%59), 0 (1 - gy (g 41y’

(n) ("), o
Ly (z;9) = : (4.5)
g (¢; ), JZO (¢ 9); (49);
seklindedir. Ayrica t = 0 igin
L0 (05q) = 5 { } 4.6
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ve

L = (z; q?oo = ﬁ (1 — qjx) (4.7)

olacag dikkate alinirsa, (4.6) ve (4.7) den M, ,(f;z) operatoriiniin P, , (f;z) nin

bir 6zel durumu oldugu kolayca goriiliir. Ayrica

dir.
4.2 Operatoriin Olusturulmasi

Bu boliimde, Ozarslan (2007) tarafindan tammlanan P, , operatoriiniin Kantorovich

tipli genellestirilmesi olan

[k+1]/[n+k]

(o) <“>=m2 / F@ | g KL () a* (4.8)
X =0\ (k] fnt i

lineer pozitif operatorii ele alinacaktir. Burada x € [0,1], ¢t € (—00,0], ¢ € (0, 1],

n>1ve {F,,(z,t)} _ dizisi, Moak (1981) tarafindan verilen ve (4.4) ile tanim-

neN
lanan ¢-Laguerre polinomlari i¢in dogurucu fonksiyondur.

K, , operatorii lineer ve pozitiftir.

Tanwm 2.5.6 ile verilen [a, b] araliginda f fonksiyonunun g-Jackson integrali, iki son-
suz toplam icermektedir. Bu ise, g-Jackson integralini igeren lineer pozitif ope-
ratorlerin yaklagiminin hesaplanmasinda kullanilan, bazi integral esitliklerinin ¢-
analogunun tiirevlerini hesaplamada problemler yaratmaktadir. Bu problemleri
gozmek iizere Marinkovi¢ vd. (2008) yeni bir g-integral tamimlamiglardir. Bu in-
tegral, Riemann tipli ¢g-integral olarak adlandirilmaktadir ve T'anism 2.5.7 de agik
ifadesi verilmistir. Klasik ¢-integral taniminin aksine bu tanim sadece integral ara-
ligindaki noktalar1 igermektedir. Bu sebeple (4.8) ile tanimlanan operatorde Rie-

mann tipli g-integral tanimi kullanilmigtir.
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4.3 K, , Operatoriiniin Yaklagim Ozellikleri

Bu kisimda K, , operatoriiniin Korovkin teoreminin kogullarim gergekledigi goste-
rilecektir.
t]

Teorem 4.3.1 Eger f € C[0,1] ve = 0 (n — o0) ise, bu durumda Ky o f ope-

ratorii f fonksiyonuna [0,b] (0 < b < 1) araliginda diizgiin yakinsaktir.

Ispat. K, , operatoriiniin lineerlik ile pozitiflik ozellikleri kullamhr ve (4.8) ile

verilen tanimu dikkate alinirsa, f(s) = e (s) =1 igin

(k+1]/[n+k]
_ R —k (n) (4. 3
(K q€0) (z,1) = Foo (@) > / dot | ¢ " In+ k] Ly (tq) =" (4.9)
’ F=00\ Ik [n+k]

elde edilir. T'anim 2.5.7 ile verilen Riemann tipli ¢-integral tanimindan

[k+1]/[n+k]
Ry _
dlit =

qk

(n + k|

(4.10)

[k]/[n+k]

bulunur. (4.10) esitligi (4.9) de yerine yazilir ve (4.4) ile verilen dogurucu fonksiyon

tamm kullanilirsa

(Kpqe0) (z,t) =1 (4.11)

olur. (4.8) ile verilen K, , operatoriinde f (s) = e; (s) alirsa

[k+1]/[n+k]
1 R —k (n) (4. k
(nr) 0= [t ot 0L et (@2
- (K]/ [n+k]

elde edilir. T'anvm 2.5.7 ile verilen Riemann tipli ¢g-integral tanimindan kolaylikla

hesaplanabilir ki
[k+1]/[n+k]

tdlit = ¢ ([qu—) (4.13)

[k]/[n+Fk]
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dir. (4.13) esitligi (4.12) de yerine yazilirsa

1 1 @\ ;o k
K, ) = [ O 4.14
olur. Kolaylikla goriilebilir ki 0 < ¢ < 1 i¢in ¢* < 1 dir ve [n] < [k + n] esitsizligi
gerceklenir. Bu egitsizlikler (4.14) esitliginde yerlerine yazilirsa, (4.3) ile verilen P, ,

operator tanimindan

(Kpge1) (z,t) < P, (e1;2) + P, (eo; x) (4.15)

2] [n]
bulunur. Ozarslan (2007) tarafindan P, , operatériiniin yaklagim 6zelliklerini incele-
mek icin elde edilen

P,q(ep;z) =1 (4.16)

esitligi ve
tw

P, ) <r—-— 4.17
a5 =2 LT ) 1
esitsizligi (4.15) esitsizliginde kullanihirsa
(Knger) (2,8) —2 < -ty 1 (4.18)
rE TS T b ) T Rl '
elde edilir. Diger taraftan, (4.14) egitliginden kolaylikla goriilebilir ki
(Kpqe1) (x,t) > P, (e1;) (4.19)

dir. Yine Ozarslan (2007) tarafindan verilen B, (e1;x) > z esitsizligi (4.19) esitsi-
zliginde kullanilirsa

(Kpqe1) (z,t) > (4.20)
bulunur. (4.18) ve (4.20) esitsizliklerinden

tx N 1
[n] (1 = bgn ™)~ [2][n]

0<(Kpq4e1)(z,t)—az < — (4.21)

olur. (4.21) esitsizliginin oncelikle her iki tarafinin mutlak degeri ve daha sonra [0, 0]
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tizerinden maksimumu alinirsa

t] b 1
[(Knge1) (2,1) = @[l g0 <

ST P 422

elde edilir.

Son olarak (4.8) ile verilen K, , operatoriinde f (s) = ez (s) alalm. Bu durumda

[k+1]/[n+k]
1 2 3R
(Ko ges) (1) = m% / 2d%t | g+ K L () (4.23)
- (k]/[n+kK]

olur. Tanmym 2.5.7 ile verilen Riemann tipli ¢-integral tanimindan kolaylikla hesap-

lanabilir ki

[k+1]/[n+k] . ok ok
R — (kz2+i k +q—) 4.24
[k]/[n+Fk]
dir. (4.24) esitligi (4.23) de yerine yazilirsa
(Kpqe2) (2,1) i ( + 2" (k] + ﬁ) L' (t;q) 2% (4.25)
" Fo(2,t) & [n + k]’ 2] 3]

k:0

elde edilir. Kolaylikla goriilebilir ki 0 < ¢ < 1 i¢in ¢ < 1 dir ve [n] < [k + n]
esitsizligi gergeklenir. Bu esitsizlikler (4.25) esitliginde yerlerine yazilirsa, (4.3) ile

verilen P, , operator tanimindan

(Knge2) (2,1) < Pog(ea;2) + mpn,q (er;2) + [S—npn’q (eo; ) (4.26)

yazilabilir. Ozarslan (2007) tarafindan verilen

R B Gt k) N 2
Prg(eg;z) < b Tl (4.27)
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esitsizligi, (4.16) ve (4.17) esitlik ve egitsizligi, (4.26) de kullanilirsa

_ g2 B t(z?+ ) @1
a0 = W (L= b)) ] 3] [n)?
2 tx
+[2] [n] (33 Tl bqn+1)) (4.28)

elde edilir. Diger taraftan

§2 = (s —x)° 4 225 — 2°
esitliginin her iki yanina kK, , operatorii uygulanirsa

(Kpqe2) (z,t) — 2% = (KM (e1 — x)z) (,t) + 22 (K4 (e1 — x)) (x,1)

olur. (4.21) esitsizliginden ve K, , operatoriiniin pozitiflik 6zelliginden

(Kpqe2) (z,t) —2* >0 (4.29)
oldugu goriiliir. (4.28) ve (4.29) esitsizliklerinden

t(z*+ ) x 1

0 = Bagea) (0.t) 2" < —pra— oy + o F 3] [n)”

2 tx
eI ( T bqn+1>> (4.30)

esitsizligi elde edilir. (4.30) esitsizliginin 6nce her iki tarafimin mutlak degeri daha

sonra ise [0, b] iizerinden maksimumu alinirsa

|t| (b* + b) 2|t b

H(Kn7q€2) (z,t) — 12”0[0,1)} = [n](A=bg"t) 2] [n]2 (1 —bgntt)
2\ b 1
* <1 * @) DT

olur.

Eger burada, ¢ yerine lim g, = 1 limitini gergekleyen bir ¢, dizisi alinirsa, (4.11),
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(4.22) ve (4.31) den Korovkin teoreminin kogullarinin gergeklendigi goriiliir. Dolayisty-
la f € C0,1] i¢in K, ,f lineer pozitif operatorii f fonksiyonuna [0,b] (0 < b < 1)

araliginda diizgiin yakinsaktir. Bu ise teoremi ispatlar.
4.4 K, , Operatoriiniin Yaklagim Hiz

Bu kisimda, K, ,f operatoriiniin f fonksiyonuna yaklagim hizi birinci ve ikinci
basamaktan siireklilik modiilii ve Lipschitz sinifindan fonksiyonlar yardimiyla hesap-

lanacaktir.

K, , operatoriiniin yaklasim hizim stireklilik modiilii ile hesaplamadan once, K, 4

operatoriiniin ikinci momentini elde edelim. K, , operatoriiniin lineerlik 6zelliginden
(Kng (er = 2)7) (a,1) = (Kpge2) (2, 1) = 2° = 22 [(Knge1) (2, 1) — 2]

yazilabilir. Her iki tarafin 6ncelikle mutlak degeri daha sonra ise 2 € [0, b] iizerinden

maksimumu alinirsa

[ (B (e = 2)) @Dl < [(Kagen) (,0) = %]l

+2 ||$||(J[o,b] [(Knqe1) (,1) — IHC[O,b]

elde edilir. Burada (4.22) ve (4.31) esitsizlikleri kullanilirsa

RN |t| (3b* + b) 20t b
Enater=7) @ 0lewn < G0 =20 * R0 -0
4 b 1
(o m) o 432

bulunur.

Asagidaki teoremde K, ,f operatoriiniin f fonksiyonuna yaklasim hiz stireklilik mo-

diilii yardimiyla hesaplanacaktir.
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Teorem 4.4.1 Her f € C'[0,b] ve % — 0 (n — o0) ise, bu durumda

|(Eonaf) (@.8) = f (@)oo < 20 (fo1,) (4.33)

dir. Burada

B 1t](362+b) 2/t[b 4\ b 1
Hn = \/[n}(l—bqnﬂ) +aprasen T @t Epe
seklindedir.

Ispat. f € C0,b] olsun. K, , operatoriiniin lineerlik ile monotonluk o6zellikleri

kullamlir ve Lemma 2.3.1 de verilen (vii)-inci 6zelligi gozoniine alinirsa

(Ko g f) (,1) = f ()]

IN

(Kog | (s) = [ (2)]) (1)

< o (Ko (1415 ) e

w(f,0) [1 + % (Knygls —x|) (:p,t)] (4.34)

AN

elde edilir. Dalmanoglu ve Dogru (2010), Riemann tipli g-integralin pozitif operator
1 1

oldugunu ve 0 < a < 0, 0 < ¢ < 1 ve — + — = 1 olmak tizere agagidaki Holder
m n

esitsizligini sagladigini
e 1m p n. o py\1/n
Ry (1fgl5050) < (Rq (If[™5a50))"™ (Bq (Ig]" 5 a;0)) (4.35)

gostermiglerdir. (4.35) egitsizliginde m = 2 ve n = 2 alimirsa

[-+1]/[nt+-k] [k+1]/[n+-k] V2 ]/ k] 1/2
R 2 IR R
t— 2] dt < / (t — 2)* Pt / a7 (4.36)

[k]/[n+F] [k]/[n+F] [k]/[n+F]

elde edilir. Bu durumda
o [ B/t
Fpls=al @) = =S| [ w=aldit|a i L (o)t
= K]/ In-+4]
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ifadesinde (4.36) esitsizligi ve T'anum 2.4.1 ile verilen seriler i¢in Cauchy-Schwarz

esitsizligi kullanilirsa

o e/ s m . -
(Kngls—al)(z,t) < [X 5omn( [ @E—2)7dit)g " [n+ K] L (t;q) =]
k [K]/[n+k]
= 1 o) et R k (n) k11/2
x[> an(x,t)( f dqt)q_ [+ k] L. (t;q) 27 /
k=0 [k]/[n-+k]

1/2

= ((Kng(er = 2)%) (@,6)) 7 (Kpge0) (,1))"? (4.37)

olur. (4.11) ve (4.32), (4.37) esitsizliginde gozoniine alinirsa

It](362+b) 2t|b 4\ b 1
(Kn7q |S - ID (x7 t) S \/[n](l_bqn+1) + [2}[n}2(1—bq”+1) + (1 + m)m _I_ W (4-38)

yazilabilir. (4.38) esitsizligi (4.34) de yerine yazilir ve 0 = p,, secilirse, bu durumda

teorem ispat edilmis olur.

Simdi, K, , operatoriiniin yaklagim hizi, Lipschitz simifindan fonksiyonlar yardimuyla

hesaplanacaktir.

Teorem 4.4.2 Her f € Lipy («) ve % — 0 (n — o0) ise, bu durumda

(K f) (2, 8) = f (@)l oo < Mps (4.39)

dir. Burada p,,, Teorem 4.4.1 de tanimlandigy gibidir.

Ispat. f € C[0,0] olsun. Tansm 2.4.2 ile verilen Lipschitz smifi tammm ve K,

operatoriiniin lineerlik ile monotonluk 6zelliginden

((Eogf) (2,8) = f ()] < (Kaglf (s) = F(@)]) (2,1)
oo [k+1]/[n+k]

e 2 [ t—al%dit)g™"
E= TSy

X [n + k] L,(Cn) (t;q) 2" (4.40)

IN
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2
elde edilir. Diger taraftan, m = — ve n = 5 olmak tizere (4.35) esitsizligi
o -«

dikkate almirsa, (4.40) esitsizliginin sag tarafindaki integral

[k-+1]/[n+k] (k1] [n+] U2 kg1) k] (2-a)/2
R 2 JR R
[ t—="dt < [ t—=x)dt [ djt (4.41)
[k]/[n+k] [K]/[n+k] [k]/[n+k]

seklinde bulunur. (4.41) esitsizligi (4.40) da yerine yazilir ve p = 2 ve ¢ = ;% olmak

tizere T'anum 2.4.3 ile verilen Holder esitsizligi kullanilirsa

[(Kngf) (1) = f ()|
- 1 AR 2 JRy\ —k (n) k1a/2
< MY mln( [ (=) dig [+ ML () 2h°
k=0 [k]/In+k]

- 1 1l fnth] R k (n) k(2 2
[ Fn,q(x,t)( [ dta " n+ kLY (tg)x j@=e/
k=0 (K]/[n-+Fk]

olur. Buradan, (4.8) ile verilen K, , operatoriin tanimindan

(Kaf) (,8) = f (2)] < M ((Kng (1 — 2)%) (x,0)) "

yazilabilecegi goriiliir. Eger (4.32) esitsizligi kullanilir ve § = p,,, Teorem 4.4.1 de

tanimlandig: sekilde secilirse ispat tamamlanir.

Simdi, Teorem 4.4.3 iin ispatinda kullanilacak olan bir lemma verelim. Bunun
oncesinde ise Lemma 4.4.1 de kullamlacak olan K, , operatoriiniin yardimiyla veri-

len

(Lnaf) (@,8) = (Ko f) (08) = [ (3= ey + 5y ) + £ (2) (4.42)

operatoriinii tanimlayalim. Burada x € [0, 1] dir.
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Lemma 4.4.1 g € C?[0,1] olsun. Bu durumda

—t (322 + ) ot 4\ o
(L) 2.0 -9 < {5 5 [n]2(1_bqnﬂ)+< )

1 —tx 1

+[3] [n]® " <[n] (1 — bgnt1) + 2] [n]) } lg"|l  (4.43)

—

dir.
Ispat. L, , operatoriiniin (4.42) ile verilen tanimi, (4.11) esitligi ve (4.21) esitsizligi
gozoniine alinirsa

tx B 1
[n] (1 —bg"tt)  [2][n]

(Lng (s =) (2,8) = (Kng(s—a))(2,t) +

< _ tx L 1 L tx _ 1
- @ =bg*t)  [2][n]  [n](1—bgtt)  [2][n]

-0 (4.44)

elde edilir. = € [0,1] ve g € C?[0, 1] oldugu gozoniine alinirsa Taylor formiiliinden

s

g(s)—g(z)=<s—x)g'<x>+/<s—u>g"<u>du

x

bulunur. Bu esitligin her iki yanma L, , operatorii uygulanir ve (4.44) esitsizligi

dikkate alinirsa

(Lnag) (x,8) =g (2) = g (2) (Lng (s — 7)) (2,1)

[\
RS
t~

E
_Q
~
5 \m
w
|
E
Q\
=
Q
N
~
~_
®
=
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N / <x (1 iqunJrl) + [2]1[n] — U) g’ (u) du.

elde edilir. Burada a,(z,t) =z — ¢ (lffqn 7y + [2]1[n] seklindedir. (4.8) ile verilen K, ,

operatoriiniin monotonluk 6zelliginden

an(x,t)

tx 1

o) 0.0 -9@] < | [ (o= b ) o e

xT

s

+ | K., / (s —u) g (u) dul | (z,) (4.45)

T

olur. Diger taraftan kolayca goriiliir ki

S

[ =0 @ < (s =27 s (4.40

dir. (4.45) esitsizliginin sag tarafindaki ilk integrali

an(z,t)

= [ e ) 0

xT

ile gosterelim. (4.46) esitsizliginden

tx 1 2 "
I= (‘ A=) [n]) 9"l (4.47)

yazilabilir. (4.46) ve (4.47) esitsizlikleri (4.45) de yazilirsa
2 —tx 1 ol
(o) (0.0 = 9] < | (K5~ 0) (08 + (g + | 19
(4.48)
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elde edilir. (4.32) egitsizligi (4.48) de yerine yazilirsa

—t (322 + ) 2t 1
|(Lngg) (2:) —g (@) < { (= b)) R (b)) 3] ]

+O+%>ﬁ+(muf@meQMY}W”

bulunur. Bu ise ispat1 tamamlar.

Teorem 4.4.3 Her f € C'[0,1] ve z € [0, 1] ise, bu durumda

(Koo f) (2,) = f (2)] < Cws (f \/T +w <f ‘ bq”+1) + [2]1[n] )
dir. Burada
e 4N\ s
pn () = [n] (1 — bg™t1) 2] [n]2 (1—bg ) + <1 + [2]) ]

1 —tx 1 \?
+MMF+QMO—M“U+MMO

seklindedir ve C' ise pozitif bir sabittir.

Ispat. (4.42) ile verilen L, , operatoriin tammindan ve (4.11) esitliginden

(Lo g f) (2, 0)] <3| (4.49)

yazilabilir. (4.43) ve (4.49) esitsizliklerinden

[(Knof) (@,t) = f (@) < [(Lnyg (f = 9)) (2, )] + |(f = g) (2)]
+|(Lngg — g (x)) (x,1)]
’f< sy T [211[n1) - f@)‘
< 4Hf—g|!+\( na9) (2,1) = g (z)]

o5 )

—tx 1
M be) T 2]
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—t(3$2+a:) 2%xr
< a7 = ol + { i -
—tx 1
<1+ [2}) ORETa ([ 0oy T [2[n> }“g |
. —tx
Tw (f sy T )
< Allf =gl +4p, (@) [|g"]

—tx

Tt + B

+w (f,

)

goz oniinde bulundurulur ve Lemma 2.4.1 ile verilen esitsizlik kullanilirsa

oldugu goriiliir. g € C?[0, 1] tizerinden her iki tarafin infimumu alimir, Tanim 2.4.5
—tx 1
+

[(Kngf) (w,10) = [ (2)] < 4K2<f;“3<x”+“’(f @b " 2 m)
< Cws (f;\/u;;(fv))JFW(fi - 1

W1 —bg ™) T 2]

)

elde edilir.Burada (), T'eorem 4.4.3 de ifade edildigi gibidir. Bu ise teoremin ispat-

landigim gostermektedir.
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5. TARTISMA ve SONUC

Bu tezin orjinal olan iigiincii boliimiinde, J.D.E. Konhauser (1965) tarafindan tanim-
lanan, klasik Laguerre polinomlarinin bir genellegtirilmesi olan ve Konhauser poli-
nomlarini igeren lineer pozitif operator tanimlanmigtir. Bu operator Cheney ve
Sharma (1964) tarafindan verilen, klasik Laguerre polinomlarinin bir genellesti-
rilmesidir. Bu operatoriin Korovkin (1953) teoremini gercekledigi gosterilmis ve
yaklagim hizi, yaklagimlar teorisinde en ¢ok kullanilan ii¢ ana modiil ile (siireklilik
modiilii, Lipschitz simifindan olan fonksiyonlar ve Peetre K-fonksiyoneli) hesaplan-
mugtir. Daha sonra, ilk olarak Kirov ve Popova (1993) tarafindan verilen, operatoriin
r-inci basamaktan genellestirilmesi tamimlanmis ve bu genellestirilmenin de yak-
lasim hiz1 hesaplanmigtir. Boylece goriilmiistiir ki, bir operatoriin r-inci basamak-
tan genellestirilmesi elde edilebiliyor ise, bu operatoriinde yaklagim hizi hesaplana-
bilmektedir. Bu boliimiin son kisminda ise, operatoriin bir fonksiyonel diferensiyel

denklemi sagladig1 gosterilmigtir.

Korovkin teoreminin ispatindan sonra, Bernstein lineer pozitif operator dizisinin,
birgok genellestirilmesi yapilmigtir (Meyer-Konig-Zeller, Szasz-Mirakyan, Baskakov,
Kantorovich, Durrmeyer, Stancu, Schurer vd.). Bu genellestirilmelerden biri de
Kantorovich tipli genellestirilmedir. Kantorovich tarafindan, klasik Bernstein ope-
ratorlerinin Kantorovich genellestirilmesi verilmigtir. Buradan hareketle, iigiincii
boliimde tanimlanan Konhauser polinomlarini iceren operatoriin Kantorovich tipli

genellestirilmesi verilmistir.

Lineer pozitif operatorlerin g-genellesmesi ilk olarak Phillips (1996) tarafindan ve-
rilmigtir. Trif (2000), Meyer-Konig ve Zeller operatoériiniin g-geniglemesini tanim-
lamigtir. Moak (1981), ¢-Laguerre polinomlari i¢in dogurucu fonksiyon tanimini ve
acik ifadesini vermistir. Ozarslan (2007) ¢-Laguerre polinomlarini iceren lineer pozi-
tif operatorii tamimlamistir. Bu tezin besinci boliimiinde ise, Ozarslan tarafindan

verilen operatoriin Kantorovich tipli integral genellegtirilmesi verilmigtir. Sonraki
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kisimda, operatoriin yaklagim ozellikleri incelenmistir. Bu tezin son kisminda ise,

operatoriin yaklagim hizi hesaplanmigtir.

Konhauser polinomlari, biortogonal polinomdur. Bu polinomlar, dogurucu fonksiyon,
rekiirans bagintisi, Rodrigues formiilii gibi bircok 6zelliklere sahiptir. Ortogonal ve
biortogonal polinomlar: iceren lineer pozitif operatorlerle ilgili caligmalar oldukca

azdir. Bu tez bu tip calismalar icin bir 1g1k kaynagidir.
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