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ÖZET 

 

 

Transfer Öğrenmesi Tabanlı Hibrit Evrişimsel Sinir Ağı 

Modelleri Kullanılarak Meme Kanseri Teşhisi 

Chingiz SEYIDBAYLI 

 

Mekatronik Mühendisliği Anabilim Dalı 

Yüksek Lisans Tezi 

 

Danışman: Doç. Dr. Cenk ULU 

 

Dünya Sağlık Örgütü'ne göre meme kanseri en yaygın kanser türlerinden biridir. 

2020 yılında meme kanseri teşhisi koyulmuş 2.26 milyon kişinin 685 bini hayatını 

kaybetmiştir. Son yıllardadijital kanser tanı sistemlerinin kullanımı popülerlik 

kazanmıştır. Özellikle son 10 yılda derin öğrenme modelleri ve evrişimsel sinir ağı 

(ESA) modelleri, yüksek performanslarından dolayı görüntülerden kanser 

sınıflandırma uygulamalarında yaygın olarak tercih edilmektedir. Transfer 

öğrenmesi yöntemi kullanılarak ön eğitilmiş modellerin özellik çıkarımı ile ilgili 

parametreleri yeni modellere aktarılabilmekte ve böylece kısıtlı eğitim veri seti 

olması durumunda dahi tatmin edici başarımlar elde edilebilmektedir. Son 

zamanlarda ESA’lar ile elde edilen teşhis performansını daha da arttırmak için 

hibrit modeller önerilmiştir. Literatürde hibrit modeller, genellikle farklı ESA 

mimarilerinin belli katmanları birleştirilerek oluşturulmaktadır. Bu hibrit 

modellerde her bir ESA modelinin katman çıkışları ayrı ayrı işlenip, elde edilen 

değerler birleştirilerek sınıflandırıcıya girdi olarak verilmektedir. 

Bu çalışmada, doku bazlı patoloji görüntüleri üzerinden gerçekleştirilen meme 

kanseri teşhis işleminde hibrit ESA modeli kullanılarak tekli ESA modelleri ile elde 
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edilen teşhis başarımının arttırılması amaçlanmıştır. Hibrit modeli oluşturmak için  

kullanılacak tekil ESA modelleri olarak ResNet50, VGG16, VGG19 ve Xception ön 

eğitilmiş modelleri tercih edilmiştir. En iyi hibrit modelin elde edilmesi için tekil 

modellerin ikili, üçlü ve dörtlü kombinasyonları oluşturulmuş ve başarımları 

deneysel olarak analiz edilmiştir.  

Modellerin eğitilmesi ve test edilmesi için CAMELYON ISBI ve BreaKHis veri setleri 

kullanılmıştır. Veri setlerinden elde edilmiş 225x225 boyutlarında görüntülerin 

sınıflandırılması gerçekleştirilmiştir. Tekli eğitim modellerinin oluşturulması için 

VGG16, VGG19, ResNet50 ve Xception modelleri transfer öğrenmesi yöntemi ile 

alınmış ve genel özellik çıkaran katmanları dondurulmuştur. Kalan katmanlardaki 

belirli bir katmanın çıkışına global maksimum havuzlama katmanı eklenmiş ve 

geri kalan katmanlar modelden çıkarılmıştır. Bu katmandan sonra sınıflandırma 

işlemi için bir tam bağlı ağ eklenmiştir. Bu tam bağlı ağda 1024 nörondan oluşan 

yoğunluk katmanı yer almakta, seyreltme ve yığın normalizasyon işlemleri 

yapılmakta ve softmax fonksiyonu kullanılarak sınıflandırma 

gerçekleştirilmektedir. Dondurulmuş katmanlar dışında kalan katmanların eğitimi 

gerçekleştirilmiştir. Tekil modellerin eğitimi yapılıp, parametreleri kaydedildikten 

sonra, ikili, üçlü ve dörtlü eğitim hibrit modelleri oluşturulmuştur. Bu modeller 

oluşturulurken kaydedilmiş her bir tekli modelin 1024 nörondan oluşan 

katmanından elde edilen öznitelik vektörlerinin birleştirilmesi ile yeni öznitelik 

vektörleri elde edilmiştir. Bu birleştirilmiş vektörlere seyreltme ve yığın 

normalizasyon işleminin uygulandığı tam bağlı katman ile sınıflandırma işlemi 

gerçekleştirilmiştir. Sonuçların başarım ölçümleri için kesinlik, duyarlılık, F1-

skoru ve doğruluk metrikleri seçilmiştir. Elde edilen deneysel sonuçlara göre 

CAMELYON veri seti için en iyi sonucu %97.08 doğruluk oranı ile ResNet50 – 

VGG16 – Xception üçlü hibrit modeli ve BreaKHis veri seti için en iyi sonucu 

%97.75 doğruluk oranı ile VGG16 – VGG19 ikili hibrit modeli göstermiştir.   

Anahtar Kelimeler: Evrişimsel sinir ağı, hibrit model, ön eğitilmiş ağlar, transfer 

öğrenmesi, meme kanseri teşhisi. 
                                        

YILDIZ TEKNİK ÜNİVERSİTESİ  

FEN BİLİMLERİ ENSTİTÜSÜ 
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Supervisor: Assoc. Prof. Dr. Cenk ULU 

 

According to the World Health Organization, breast cancer is one of the most 

common types of cancer. 685.000 of the 2.26 million people diagnosed with breast 

cancer died in 2020. The use of digital cancer diagnosis systems has gained 

popularity in recent years. Especially in the last 10 years, deep learning models 

and convolutional neural network (CNN) models have been widely preferred in 

cancer classification applications due to their high performance. By using the 

transfer learning method, the parameters related to the feature extraction of the 

pre-trained models can be transferred to the new models and thus satisfactory 

performances can be obtained even in the case of a limited training data set. 

Recently, hybrid models have been proposed to further enhance the diagnostic 

performance of CNNs. In literature, hybrid models are generally constructed by 

combining certain layers of different CNN architectures. In these hybrid models, 

the layer outputs of each CNN model are processed separately and the obtained 

values are combined and given as input to the classifier. 

In this study, it is aimed to increase the detection performance obtained with 

single CNN models by using the hybrid CNN model in breast cancer detection 

applications performed on histopathological images. ResNet50, VGG16, VGG19, 
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and Xception pre-trained models are preferred as single CNN models to construct 

the hybrid models. In order to obtain the optimal hybrid model, double, triple, 

and quadruple combinations of single models are constructed and their 

performances are analyzed experimentally. 

To train and test the models, CAMELYON ISBI and BreaKHis datasets are used. 

Classification of images with the size of 225x225 pixels obtained from datasets is 

performed. In order to construct single training models, VGG16, VGG19, 

ResNet50, and Xception models are taken by the transfer learning method, and 

their general feature extraction layers are frozen. A global maximum pooling layer 

is added to the output of a particular layer in the remaining layers, and subsequent 

layers are removed from the model. After the global maximum pooling layer, a 

fully connected network is added for the classification process. This fully 

connected network has a density layer consisting of 1024 neurons, a dropout 

layer, and a batch normalization layer, and classification is performed using the 

softmax function. The training of the layers other than the frozen layers is 

performed. After training the single models and saving their parameters, training 

hybrid models composed of two, three, and four CNN models are constructed. 

While constructing these hybrid models, a new feature vector is obtained by 

combining the feature vectors obtained from the layer consisting of 1024 neurons 

of each saved single model. The classification process is performed for these 

combined vectors by using a fully connected network including dropout and batch 

normalization layers. To evaluate the performances of the models, precision, 

recall, F1- score, and accuracy are chosen as the performance metrics. The 

experimental results show that the best performances are obtained by the 

ResNet50 – VGG16 – Xception hybrid model with the accuracy of 97.08% and the 

VGG16 – VGG19 hybrid model with the accuracy of 97.75% for the CAMELYON 

dataset and the BreaKHis dataset, respectively. 

Keywords: Convolutional neural network, hybrid model, pre-trained networks, 

transfer learning, breast cancer detection. 
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GİRİŞ 

 

1.1  Literatür Özeti 

Kanser, Dünya genelinde yaygın ölüm nedenlerindendir. Bu hastalıktan 2020 

yılında yaklaşık 10 milyon ölüm gerçekleşmiştir (Dünya Sağlık Örgütü, 2022). 

Listenin başında ise meme kanseri gelmektedir.  Dünya Sağlık Örgütü (DSÖ) 

verilerine göre 2020 yılında 2,26 milyon kişiye meme kanseri teşhisi konmuş ve 

bu vakaların 685 bini ölümle sonuçlanmıştır (Dünya Sağlık Örgütü, 2021).  

Meme kanseri, lobüller (süt üretimi için bezleri içeren dokular) vasıtası ile meme 

ucuna doğru bağlanan kanallara uzanan kanser türüdür. Tipik belirtiler 

gelişmeden önce hastanın yumrudan şüphelenmesi ile tespit edilir. Radyografik 

görüntüleme esnasında iyi huylu olduğuna kanaat getirilirse müdahale edilmez. 

Eğer lezyon ya da tümörden şüphelenilirse mamografi, manyetik rezonans, 

bilgisayarlı tomografi, fiziki muayene veya histopatolojik görüntü incelenmesi 

yöntemi ile teşhis edilir. Yardımcı tarama yöntemi için tümörün doğrusal olarak 

büyümesi beklenir. Ama eğer hastalıklı bölge heterojen biçimde büyümeye 

başlarsa yanlış teşhise yol açabilir. Bu problem beraberinde fazladan maliyete ve 

hastanın psikolojisinin etkilenmesine yol açabilir. Bu gibi durumlar göz önüne 

alındığında, teşhis başarımını arttırmak için geleneksel teşhis uygulamalarının 

yanında bilgisayar destekli teşhis sistemlerine de ihtiyaç duyulmuştur (Dogra, 

2019; Løberg ve ark., 2015; Nahid ve ark. 2017; Sadoughi, ve ark., 2018; Zou, ve 

ark, 2019). 

Bilgisayar destekli teşhis sistemleri 1950’lerin sonlarından itibaren araştırmacılar 

tarafından karar süreçlerini yönetmek, akış şemaları, istatistiksel model eşleştirme 

gibi alanlarda kullanılmaya başlamıştır (Yanase ve ark., 2019). 1970’lerin başında 

eğitim amacıyla kullanılmak üzere MYCIN (Shortliffe ve ark., 1975), Internist-I 

(Miller, Pople, ve ark., 1985) ve CADUCEUS (CADUCEUS: An Experimental 

Expert System for Medical Diagnosis, 1986) gibi uzmanlar sistemler geliştirildi. 
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Yine aynı dönemde Richard M. Karp tarafından yayınlanmış “Reducibility among 

Combinatorial Problems” (Birleşimsel Problemler Arasında İndirgenebilirlik) 

(Karp, 1972) makalesinden sonra araştırmacılar uzman sistemlerde bulunan 

sınırlamaları farkettiler ve bununla beraber yeni yaklaşımlar ortaya atılmaya 

başlanmıştır (Yanase ve ark., 2019). 

Bilgisayar teknolojisinin gelişmesi ile günümüzde yaygın olarak yapay zeka 

destekli sistemlerden derin öğrenme yöntemleri kullanılmaktadır. Sinir ağlarının 

başarımı kayda değer oranda ilerlemiş ve birçok endüstriyel uygulamada etkin 

şekilde kullanılmaktadır (Szegedy ve ark., 2015). Makine öğrenmesi ve derin 

öğrenme yöntemi sayesinde, geleneksel yapay zeka yöntemleri ile çözülmesi zor 

problemler daha yüksek başarımla çözülebilmektedir (LeCun ve ark., 2015). Derin 

öğrenme modelleri, öğrenme için etiketsiz verileri kullanabilir ve bu sebepten 

ötürü heterojen verilerle çalışmak için uygundur (Chen ve ark., 2014). Bu alanda 

karmaşık verilerden öğrenme (Miotto ve ark., 2018; Wei ve ark., 2017), görüntü 

analizi (Shin ve ark., 2016), metin işleme (Song ve ark., 2016) gibi alanlarda 

çalışma sonuçları kabul görmektedir. Derin öğrenmenin kullanıldığı bir diğer alan 

da tıbbi teşhistir. Bu alanda derin öğrenme, sınıflandırma, bölütleme, tahmin vb. 

işlemler için kullanılmaktadır. Bilgisayar destekli teşhis sistemleri yanlış teşhisi 

%77 oranında azaltmaktadır (Nover ve ark., 2009; Burhenne, et al., 2000). 

Derin öğrenme yöntemleri ile geliştirilen önemli sağlık çalışmalarına örnek olarak 

kısa eksenli kardiyak manyetik rezonans görüntülemeden (MRG) sol ventrikülün 

segmentasyonunu kolaylaştırabilen deforme olabilen bir modelin 

parametrelerinin şifrelemesi (Avendi ve ark., 2016) ve MRG taramalarından 

biyobelirteçleri belirlemek için yapılan tıbbi görüntüleme çalışmalarını 

gösterebiliriz (Li ve ark., 2015). 

Derin öğrenme yöntemlerinden olan evrişimsel sinir ağları (ESA) tıbbi görüntü 

analizinde yaygın biçimde kullanılmaktadır. ESA’lar çok katmanlı algılayıcılar 

olarak görüntüleri girdi olarak alıp, daha sonra ağırlık ile özellik haritaları 

oluştururlar. Bu yapılar, geleneksel derin öğrenme modellerine göre kullanılan 

parametre sayısını azaltarak modelin verimliliğini artırmaktadırlar (Dabral ve 

ark., 2021). 
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ESA’lar, hastalıkların teşhisinde özellikle kanser biyopsilerinin teşhisi için 

vazgeçilmez hale gelmiştir (Tearney ve ark., 1997; Hendee, 1983). Bu derin 

öğrenme modelleri, tıbbi görüntüleme alanında günümüzde X ışınları, MRG, 

bilgisayarlı tomografi (BT), pozitron emisyon tomografisi (PET) ve ultrason 

yöntemleri ile elde edilmiş tıbbi görüntülerde kullanılmaktadır (Heidenreich, 

Desgrandschamps, ve ark., 2002). ESA’lar ile meme kanseri, akciğer kanseri, 

prostat kanseri, kemik baskılanması, deri lezyonları ve Alzheimer hastalığı gibi 

hastalıkların teşhisi için görüntü analizi yapılmaktadır (Nomura ve ark., 2017; 

Liang ve ark., 2016; Firmino ve ark., 2014; El-Baz ve ark., 2013; Nishio ve ark., 

2017; Kawagishi ve ark., 2017; de Carvalho Filho ve ark., 2017; Nomura ve ark., 

2017; Liang ve ark., 2016).  

Bilgisayar destekli teşhis sistemlerinde doğruluk oranı ve model performansını 

artırmak için birçok ESA model yapısı önerilmiştir.  

Afonso ve ark. (Afonso ve ark., 2019) tarafından yapılmış çalışmada Parkinson 

hastalığını teşhis etmek amacı ile motor sinyallerinin tekrarlama grafikleri, 

görüntü alanı ile eşleştirilmiştir. Daha sonra elde edilmiş bu veri ESA’yı beslemek 

için kullanılmış ve deneysel çalışmalarda %87 doğruluk oranı elde edilmiştir. 

Längkvist ve ark. (Längkvist ve ark., 2018) BT kesitlerinde üreter taşlarının 

tanımlanması için ESA kullanarak model tasarımı yapmışlardır. Önerilen yöntem, 

465 hastadan oluşan veri setinde değerlendirilmiş ve hasta başına %100 duyarlılık 

ve ortalama olarak 2.68 yanlış pozitif sonuç elde edilmiştir. 

Altaf (Altaf, 2021), mamografi görüntülerinden meme kanseri teşhisi için darbe 

bağlantılı sinir ağı (Pulse-coupled Neural Network) ve transfer öğrenme tabanlı 

evrişimsel sinir ağı ile birkaç farklı ön eğitilmiş ağı birleştirip hibrit model elde 

ederek eğitimde kullanılmamış veri seti üzerinde denemiş ve %98.77 oranında 

doğruluk elde etmiştir. 

Bilgisayar destekli teşhis sistemlerinde kanser teşhisi için biyopsi numunelerinin 

incelenmesi önem arz etmektedir. Tüm Slayt Görüntülüme yöntemi olarak 

adlandırılan bu yöntemde veriler hücre bazlı olan sitolojik ve doku bazlı olan 

histolojik olarak iki gruba ayrılmaktadır. Hücre bazlı görüntülerin sınıflandırılması 

işlemi her bir hücre için tek tek yapıldığından veri setinin hazırlanması için uzun 
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zaman harcanmaktadır. Yoğun emek harcanmasından dolayı hücre bazlı az sayıda 

veri seti bulunmaktadır. Örnek olarak hücre bazlı yapıya sahip olan kadın rahim 

ağzı kanseri için SIPaKMeD (Plissiti ve ark., 2018) ve Herlev (Arya ve ark.,2018) 

gibi sınıflandırılmış az sayıda veri bulunmaktadır. Histopatoloji (doku 

numunelerini inceleyen bilim dalı)  alanında ise farklı organlara ait birçok veri 

setleri bulunmaktadır. Farklı veri setleri yeni çalışmalara ve yeni yöntemlerin 

geliştirilmesine zemin yaratmaktadır. Örneğin, meme kanseri üzerine BreaKHis 

(Spanhol ve ark., 2015), CAMELYON (Ehtesham ve ark., 2017), BACH (Aresta, ve 

ark., 2019), Wisconsin (Dua ve ark., 2019), BreCaHAD (Aksac ve ark., 2019) gibi 

birçok veri setleri mevcuttur. Bu veri setleri ile hem bölütleme, hem de 

sınıflandırma üzerine çalışmalar yapılmıştır. 

Wang ve ark. (Wang ve ark., 2020) tarafından yapılan çalışmada EfficientNet ağı 

kullanılmış ve model performansını artırmak ve görüntü kalitesini korumak için 

Rastgele Merkez Kırpma yöntemi önerilmiştir. Ayrıca sinir ağının alt örnekleme 

ölçeği küçük çözünürlüklü görüntüler için yeniden ayarlanmış ve %97.96 

doğruluk değeri ve %99.68 Eğri Altındaki Alan (AUC) değeri elde edilmiştir. 

Vo-Le ve ark. (Vo-Le ve ark., 2021) tarafından yapılan çalışmada transfer 

öğrenmesi yöntemi ile CAMELYON ve VBCAN veri setleri üzerinde histopatolojik 

görüntülerden meme kanseri teşhisi yapılmıştır. Çalışmada, VGG16, GoogleNet ve 

ResNet50 ön eğitilmiş modellerinin kombinasyonları öznitelik çıkarılmada 

kullanılmış ve sonrasında geleneksel makine öğrenmesi yöntemi ile sınıflandırma 

yapılmıştır. CAMELYON veri seti ile test edildiğinde en yüksek doğruluk oranı 

%89.86 değeri ile VGG16 modeli olmuştur. VBCAN veri setinde (Vo-Le ve ark., 

2021) ise ResNet50 modeli %96.98 doğruluk değerine ulaşmıştır. 

ESA performansını artırmak için önerilen yöntemlerden bir tanesi de  ESA hibrit 

yapıda kullanılmasıdır. Hibrit ESA’lar yapısına ve oluşturulma şekline göre 

farklılık göstermektedir. 

Xie ve ark. (Xie ve ark., 2017) tarafından yapılan çalışmada geleneksel sözlük 

tabanlı özelliklerin görüntülerde daha fazla ayırt edici özellik barındırmasından 

dolayı ESA modelinin ayrı katmanlarında elde edilmiş farklı boyutlardaki özellik 
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haritalarını birleştirmiş ve elde edilen vektörü destek vektör makineleri ile 

sınıflandırmıştır. 

Ding ve ark. (Ding ve ark., 2020) önerdiği yöntemde bir boyutlu giriş verileri 

biçimlendirilmiş, elde edilen iki boyutlu veriler ESA mimarisine girdi olarak 

verilmiştir. Çok katmanlı ağdan elde edilmiş bir boyutlu verilerin özellikleri ile, 

ESA çıkışında elde edilmiş özellikler birleştirilmiş ve sınıflandırma için tam bağlı 

katmana girdi verisi olarak kullanılmıştır.  

Rahaman ve ark. (Rahaman ve ark., 2021) tarafından önerilen hibrit derin özellik 

füzyonu yöntemi ile farklı ESA’lar tarafından çıkarılmış öznitelik vektörleri 

birleştirilmiş ve elde edilmiş yeni vektör tam bağlı katmanda sınıflandırılmıştır. 

Çalışmada dört farklı ön eğitilmiş ESA modelinin 1024 boyutunda olan çıkışları 

birleştirilmiş ve tam bağlı katmanda sınıflandırılmıştır. 

Meme kanseri teşhisi için geliştirilen yöntemler arasında da hibrit ESA yapıları 

mevcuttur. Zhu ve ark. (Zhu ve ark., 2019) tarafından önerilen hibrit yöntemde 

tam slayt görüntüleri, hem bölümlenmiş olarak, hem de tam slayt görüntülerinin 

alt örneklemesi ESA ağına beslenmiş ve bölümlenmiş görüntülerden elde edilen 

tahmin oyu ile alt örneklenmiş görüntüden çıkarılmış sonuçlar birleştirilerek 

tahmin yapılmıştır. Model BreaKHis ve BACH veri setleri ile test edilmiştir. 

Görüntü bazında BreaKHis veri seti için 40x büyütme oranı için %85.6, 100x için 

%83.9, 200x için %85.4 ve 400x için %81.2 başarım oranı elde edilmiştir. BACH 

veri setinde ise %86.6 başarım oranı elde edilmiştir. Abedhaliem ve ark. 

(Abedhaliem ve ark., 2022) tarafından yapılmış çalışmada BACH veri setinden 

ResNet18, Inception ResNet V2, ShuffleNet ve Xception ESA modelleriyle 

çıkarılmış öznitelik vektörleri, el yordamı ile çıkarılmış özniteliklerle birleştirilmiş 

ve temel bileşenler analizi ile elde edilmiş yeni değerler Destek Vektör Makineleri 

(DVM), Rastgele Orman (RF) ve K-En Yakın Komşuluk yöntemleri ile 

sınıflandırılmıştır. Önerilen yöntem ile %96.97 doğruluk başarımı elde edilmiştir. 

Yan ve ark. (Yan ve ark., 2020) tarafından hibrit ESA modeli ile elde edilmiş 

öznitelik vektörlerinin birleştirilerek Yenilenebilir Sinir Ağları ile sınıflandırılma 

işleminin gerçekleştirildiği bir yöntem önerilmiştir. BreaKHis veri setinin 

kullanıldığı bu çalışmada %91.3 başarım elde edilmiştir. Singh ve ark. (Singh ve 
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ark., 2011) meme histopatoloji görüntüsünü tasarladıkları 8 özellik ve 3 ileri ve 

geri yönlü Yapay Sinir Ağı (YSA) ile sınıflandırmış ve %95 başarı oranına 

ulaşmışlardır. Wang ve ark. (Wang ve ark., 2018) hiyerarşik kayıplı ESA tasarlamış 

ve dört sınıflı bir sınıflandırma işlemi gerçekleştirmişlerdir. Önerilen modelde iki 

özellik haritası birleştirilerek elde edilen yeni yapıya uygulanan evrişim işlemi ile 

sınıflandırma işlemi gerçekleştirilmiştir. Özellik haritalarından birincisi giriş 

verisine uygulanan ESA modelinden, ikincisi ise giriş verisine uygulanmış global 

havuzlama, evrişim ve havuzdan çıkarma işlemlerinden elde edilmiştir. 

Universidade do Porto tarafından oluşturulmuş veri setinde %88 doğruluk oranı 

elde edilmiştir. Patil ve ark. (Patil ve ark., 2019) dikkate dayalı çoklu örnek 

öğrenme yöntemi (A-MIL) ile ESA tasarlamış ve BreaKHis ve BACH veri setleri ile 

test etmişlerdir. Model BreKHis 400x veri seti üzerinde %84.43, BACH veri seti 

üzerinde %80 doğruluk elde etmiştir. Joseph ve ark. (Joseph ve ark., 2022) el işi 

özellik ve derin öğrenme ağı kullanarak çok sınıflı sınıflandırma işlemi 

gerçekleştirmişlerdir. BreaKHis 400x veri seti üzerinde %96.84 doğruluk oranı 

göstermiştir. Deniz ve ark. (Deniz ve ark., 2018) Alexnet ve VGG16 ön eğitilmiş 

ESA modellerini kullanarak her bir ağdan elde edilmiş öznitelik vektörlerini 

birleştirmiş ve DVM yardımı ile sınıflandırma işlemini gerçekleştirmişlerdir. Ön 

eğitilmiş modellerin çıkardığı öznitelik matrisleri birleştirilmiş ve sınıflandırma 

gerçekleştirilmiştir. Ayrıca Alexnet ağı üzerinde ince ayar yapılarak model test 

edilmiştir. BreaKHis veri seti üzerinde hibrit modelden %86.75, iyileştirilmiş 

Alexnet modelinden ise %91.3 doğruluk değeri elde edilmiştir. Erdem ve ark. 

(Erdem ve ark., 2021) tarafından önerilmiş yöntemde VGG16 ve Inception-V3 

modellerinin “Global Average Pooling2d” katmanından elde edilen öznitelik 

değerleri birleştirilmiş ve 512 nörondan oluşan iki tam bağlı katman ile 

sınıflandırma işlemi gerçekleştirilmiştir. Önerilen yöntem BreaKHis 40X veri 

setinde %99.03 başarıma ulaşmıştır. Dandıl ve ark. (Dandıl ve ark., 2021) 

tarafından yapılmış çalışmada dört farklı yöntemle elde edilmiş öznitelik 

vektörleri birleştirilmiş ve Bag of Words yöntemi ve derin sinir ağı yöntemlerinin 

birleştirilmesi ile sınıflandırılmıştır. Kullanılan veri seti üzerinde %94.5, test veri 

seti üzerinde %80.8 başarım elde edilmiştir. 
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1.2 Tezin Amacı 

Bu tez çalışmasının amacı, doku bazlı patoloji görüntüleri üzerinden 

gerçekleştirilen meme kanseri teşhis işleminde hibrit ESA modeli kullanarak tekli 

ESA modelleri ile elde edilen teşhis başarımını arttırmaktır. Çalışmada BreaKHis 

ve CAMELYON veri setleri kullanılmıştır. Kullanılan hibrit modeli oluştururken 

öncelikle ön eğitilmiş ResNet50, VGG16, VGG19 ve Xception ESA modellerinin 

genel özellik çıkarma katmanları transfer öğrenmesi yöntemi ile alınmış ve genel 

özellik çıkaran katmanları dondurulmuştur. Kalan katmanlardaki belirli bir 

katmanın çıkışına global maksimum havuzlama katmanı eklenmiş ve geri kalan 

katmanlar modelden çıkarılmıştır. Bu katmandan sonra sınıflandırma işlemi için 

bir tam bağlı katman eklenmiştir. Bu tam bağlı katmanda 1024 nörondan oluşan 

yoğunluk katmanı yer almakta, seyreltme ve yığın normalizasyon işlemleri 

yapılmakta ve softmax fonksiyonu kullanılarak sınıflandırma 

gerçekleştirilmektedir. Dondurulmuş katmanlar dışında kalan katmanların eğitimi 

gerçekleştirilmiştir. Daha sonrasında en uygun hibrit model kombinasyonunun 

belirlenmesi için modellerin ikili, üçlü ve dörtlü şekilde gruplandırması yapılmış 

ve bu kombinasyonlarda elde edilen öznitelik matrisleri derin öznitelik füzyonu 

yöntemi ile birleştirilerek tam bağlı ağ yardımı ile sınıflandırma işlemi 

gerçekleştirilmiştir. Oluşturulan hibrit ESA modelinin başarımı tekil model 

başarımları ile karşılaştırılarak üstünlüğü gösterilmiştir.  

1.3 Hipotez 

Bu tez çalışmasının hipotezi, doku bazlı patoloji görüntüleri üzerinden 

gerçekleştirilen meme kanseri teşhis işleminde ön eğitilmiş ağların kullanıldığı 

hibrit ESA model yapısının kullanılması ile  tekli ESA modellerinin kullanılması 

durumuna göre daha üstün bir başarım elde edileceğidir. 
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GENEL BİLGİLER 

 

2.1 Makine Öğrenmesi 

Makine öğrenmesi, araştırmacılar, mühendisler, veri bilimciler tarafından tercih 

edilen modeller ve algoritmalar ile örüntü tanıma, veri analitiği, tahmin sistemleri 

için kullanılan hesaplama yöntemidir. Veriler üzerindeki gizli örüntüleri ve 

özellikleri keşfetmeye yardımcı olur (Ahuja ve ark., 2017). Makine öğrenmesi, 

bilgisayarlara açıkça programlanmadan öğrenme yeteneği sağlar (Latif ve ark., 

2019). Tahmin için seçilen model veya algoritmalar evrensel olmamasından 

dolayı geçmiş gözlem ve çalışmalar incelenerek uygun model seçimi yapılır 

(Haykin S. , 1998). Makine öğrenmesinin Şekil 2.1'de gösterildiği gibi denetimli, 

denetimsiz ve pekiştirmeli öğrenme gibi alt kategorileri mevcuttur. 

 

Şekil 2.1 Makine öğrenmesi yöntemleri 

2.1.1 Denetimli Öğrenme 

Makine öğrenmesi Şekil 2.2’de gösterildiği gibi modelinin veri etiketine dayalı 

olarak öğrenme türüdür. Veriler ve verilerin açıklaması olan etiketler modele 

eğitim için beslenir. Model kendisini eğiterek ve güncelleyerek etiket-veri çiftini 

öğrenir. Daha sonradan eğitimi tamamlanmış model yine etiketli veri ile test edilir 

ve çıktı olarak elde edilen etiketler gerçek etiket ile karşılaştırılarak doğruluk oranı 

belirlenir. Denetimli öğrenmenin amacı, girdi ve çıktılar arasındaki eşlemeyi 
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öğrenerek sisteme girdi olarak verilen verilerin çıktılarını tahmin etmektir. Bazen 

öğretmenle öğrenme, etiketli veriden öğrenme veya tümevarımsal öğrenme olarak 

da adlandırılmaktadır (Haykin S. , 1998; Kotsiantis, 2007). 

Denetimli öğrenme, sınıflandırma ve regresyon olarak ikiye ayrılır. Regresyon 

problemlerinde girdi verilerini çıktı fonksiyonları ile eşleştirmeye çalışılır. 

Sınıflandırma problemlerine ise girdinin hangi gruba veya sınıfa ait olduğu 

belirlenmeye çalışılır. 

 

Şekil 2.2 Denetimli öğrenme modeli 

2.1.2 Denetimsiz Öğrenme 

Denetimsiz öğrenme, etiketlenmemiş ve sınıflandırılmamış veriler ile öğrenme 

modelidir. Makine öğrenmesi algoritması bu işlemleri gerçekleştirirken herhangi 

dış rehberliğe ihtiyaç duymaz, etiketlendirilmemiş olsa bile Şekil 2.3’deki gibi 

veriler arasında benzerlik ve farklıklara göre gruplandırma işlemini 

gerçekleştirmektedir. Etiketsiz veriler öncelikle model tarafından işlenerek 

özellikleri çıkarılır ve benzer özelliklere sahip verilerin gruplandırılması veya 

hesaplanması için algoritma elde edilir. Sonrasında tahmin işlemi ile kümeleme 

gerçekleştirilir.  Amaç, verilerdeki gizli örüntülerin keşfedilmesidir (Hastie ve ark., 

2009; Dridi, 2021). 

Denetimsiz öğrenme modellerinde işlemler temel olarak girdiler arasında 

bağlantıların keşfedilmesi ile ilgilidir. Seçilen denetimsiz öğrenme modeline göre 

verilerle kümeleme, boyut azaltma işlemleri gerçekeştirilir. 
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Şekil 2.3 Denetimsiz öğrenme modeli 

2.1.3 Pekiştirmeli Öğrenme 

Pekiştirmeli öğrenme, bir etmenin deneme yanılma yolu ile bilinmeyen ortamı 

öğrenme yöntemidir. Şekil 2.4’de görüldüğü üzere etmen, yaptığı eyleme karşılık 

çevreden geri bildirimi ödül veya ceza olarak alır, daha sonra elde ettiği bu geri 

dönüşü kendisini eğitmek ve çevre hakkında bilgi edinmek için kullanır. Amaç, 

etmenin ödülünü en yüksek değere ulaştırması için en iyi eylemleri seçmesidir. 

Pekiştirmeli öğrenmede etmen, denetimsiz öğrenme gibi herhangi bir uzman 

bilgisine ihtiyaç duymadan eylemleri deneyerek politika oluşturur. Pekiştirmeli 

öğrenmenin temelinde herhangi bir durumda etmenin o ana kadar öğrendiği 

bilgiden yararlanması veya o durumda hiç denenmemiş eylemleri deneyerek yeni 

eylemler keşfetmesi arasında seçim yapılması problemi yer alır (NAEEM ve ark., 

2020). 

 

Şekil 2.4 Pekiştirmeli öğrenme modeli 
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2.2 Yapay Sinir Ağları 

Yapay sinir ağları, insanın beyninde gerçekleşen süreçleri simüle eden, biyolojik 

bir sinir sisteminden ilham alınarak tasarlanmış hesaplama ağlarıdır (Park ve ark., 

2016). 

2.2.1 İnsan Beyni ve Sinir Sistemi Yapısı 

İnsan sinir sisteminin merkezinde bilgileri alan, işleyen ve ona uygun karar veren 

beyin durur. Reseptörler dışarıdan gelen uyarıları beyne ileten elektriksel sinyaller 

üretir (Haykin S., 2009). Beyin 10 milyar nöron ve bu nöronları birbirine bağlayan 

60 trilyon sinapstan veya bağlantıdan oluştuğu tahmin edilmektedir (Shepherd & 

Koch, 1990).  

Yetişkin bir beyinde çalışma mekanizması nöronlar arasında yeni sinaptik 

bağlantıların yaratılması ve mevcut sinapsların düzenlenmesi ile 

gerçekleşmektedir. Şekil 2.5’deki gibi pürüzsüz yüzeye, az dallanmış ve uzun 

yapıya sahip aksonlar, iletim kanalları ve algılayıcı düzensiz yüzeye sahip ve daha 

fazla dallanan yapıya sahip olan dendritler plastisite mekanizmasına yardımcı 

olurlar (Freeman, 1975). 
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Şekil 2.5 İnsan sinir modeli yapısı (Haykin S., 1998) 

2.2.2 Nöron Modeli 

Nöron, yapay sinir ağında en temel bilgi işleme birimidir. Bir nöronun temel yapısı 

Şekil 2.6’da gösterilmiştir. Nöral modelde herhangi 𝑘 nöronuna bağlanan 𝑗 

sinapsının girişindeki 𝑥𝑗 sinyali 𝑤𝑘𝑗  ağırlığı ile çarpılır ve toplayıcıya eklenir. 

Toplayıcıya giren bias değeri sinyal ve ağırlık çarpımı ile toplanır ve aktivasyon 

fonksiyonuna girer. 
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Şekil 2.6 Nöron modeli 

Matematiksel olarak 𝑘 nöronu Denklem 2.1 ve 2.2’de ifade edildiği gibi yazılabilir: 

𝑣𝑘 =∑𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

 (2.1) 

𝑦𝑘 = 𝜑(𝑣𝑘 + 𝑏𝑘) (2.2) 

Nöronun değerini temsil eden 𝑣𝑘 değeri nörona giren tüm değerlerin ağırlıklar ile 

çarpılmasının toplamını, 𝑦𝑘 değeri ise bu toplam ifadesinin bias değeri ile 

toplamının aktivasyon fonksiyonunda hesaplanmış değerini temsil eder. 

2.2.3 Tek Katmanlı Ağlar 

Tek katmanlı sinir ağında Şekil 2.7'de gösterildiği gibi nöronlar bir katman olarak 

düzenlenir. Nöronların çıkışları doğrudan çıkış katmanına yansır. Bu tip ağlara 

ileri beslemeli ağlar denir. Kaynak düğümlerin girişleri katman olarak sayılmaz. 
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Şekil 2.7 Tek katmanlı ağ (Haykin S., 1998) 

2.2.4 Çok Katmanlı Ağlar 

İleri beslemeli ağın diğer bir türü çok katmanlı ağlardır. Tek katmanlı yapıdan 

farklı olarak burada Şekil 2.8’de görüldüğü gibi giriş veya çıkış katmanında 

görünmeyen “gizli” katman veya katmanlar bulunmaktadır. Gizli katmanın amacı 

girdi katmanından alınan veriyi ağırlıklandırarak bir aktivasyon fonksiyonu 

aracılığı ile çıktı katmanına iletmektir. Bu sayede gizli katman, karmaşık verilerde 

bulunan örüntülerin öğrenilmesini kolaylaştırmaktadır. 
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Şekil 2.8 Çok katmanlı ağlar (Haykin S., 1998) 

2.3 Derin Öğrenme 

Diğer adı temsili öğrenme (Bengio ve ark., 2013) olan ve yaygın olarak kullanılan 

derin öğrenme Şekil 2.9'da gösterildiği gibi yapay zeka ve makine öğrenmesinin 

bir alt dalıdır. Derin öğrenme metin madenciliği (Amrit ve ark., 2017), istenmeyen 

e-posta algılama (Crawford ve ark., 2015), video önerme (Deldjoo ve ark., 2016), 

görüntü sınıflandırma (Al-Dulaimi ve ark., 2019) gibi birçok uygulamada 

kullanılmaktadır. 

Derin öğrenme algoritmaları ile otomatik şekilde veriden özellik 

çıkarılabilmektedir. Bu modeller, ilk katmanlarda düşük seviyeli, son katmanlar 

ise yüksek seviyeli öznitelik çıkarmaktadırlar. Derin öğrenme mimarisi, farklı 

olayları kullanarak insan beyni gibi veriden otomatik çıkarım yapabilmektedir 

(Alzubaidi ve ark., 2021). 
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Şekil 2.9 Yapay zeka ve makine öğrenmesinin alt dalı olarak derin öğrenme 

modeli 

2.3.1 Evrişimsel Sinir Ağları 

Derin öğrenme yöntemleri arasında en yaygın olarak kullanılanlardan bir tanesi 

Evrişimsel Sinir Ağlarıdır (ESA). ESA’lar kendi öncülerine göre insan denetimi 

olmadan öznitelikleri otomatik olarak tanımlar (Gu ve ark., 2018). Bilgisayarlı 

görü, yüz tanıma (Fang ve ark., 2020), konuşma işleme (Palaz ve ark. 2019) gibi 

birçok alanda ESA'lar kullanılmaktadır. Geleneksel sinir ağlarından farklı olarak 

ESA’lar görüntü gibi iki boyutlu verilerden tam yararlanmak için kullanılır. Bu 

işlem az sayıda parametre kullanarak eğitim sürecini basitleştirir. Çok katmanlı 

algılayıcı yapısına benzeyen bu yapı Şekil 2.10'da gösterildiği gibi bir dizi 

katmandan oluşur (Alzubaidi ve ark., 2021). Bu katmanlar evrişim katmanı, 

havuzlama katmanı, aktivasyon katmanı, tam bağlı katmanlarıdır. Ayrıca 

seyreltme, yığın normalizasyon gibi düzenlileştirme (regülarizasyon) işlemleri 

mevcuttur. 
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Şekil 2.10 Evrişimsel sinir ağı modeli 

2.3.1.1 Evrişim Katmanı 

ESA mimarisinin en önemli bileşeni olan evrişim katmanı, bir dizi çekirdek olarak 

adlandırılan filtreden oluşur. Evrişim katmanının amacı N boyutlu metriğe sahip 

girdi verisinin özellik haritasını çıkarmaktır. 

Çekirdek, ağırlık olarak tanımlanan ayrık sayı veya değerlerden oluşan bir 

matristir. ESA eğitiminin başlangıcında ağırlıklar rastgele atanır. Bu ağırlıklar 

eğitim sürecinde düzenlenir ve veriden önemli özellikleri çıkarmayı öğrenir. 

Evrişim işlemi çekirdek matrisinin Şekil 2.11’de görüldüğü üzere girdi verisi 

üzerinde dolaşması ile gerçekleşir. Örnek olarak RGB görüntüler üç kanallı bir veri 

iken gri tonlamalı görüntüler ise tek kanallı bir veridir. Şekilde verilmiş büyük 

matris girdi verisini, yeşil matris ise çekirdek matrisini temsil eder. Çekirdek 

matrisi girdi matrisi üzerinde yatay ve dikey olarak kayarak dolaşır. Bu işlem daha 

fazla kayma alanı kalmayana kadar devam eder. Çekirdek matrisi genellikle 1x1, 

3x3, 5x5 ve 7x7 boyutlarında seçilmektedir. 

Çekirdek matrisinin girdi matrisi üzerinde bulunduğu bölgedeki değerler ile skaler 

çarpımı gerçekleşir ve bu değerler toplanır. Kayma işleminin bitmesi ile yeni 

matris elde edilmiş olur. Evrişim işleminden geçmiş olan matrisin boyutu, giriş 

matrisinden daha küçük olur. Eğer aynı boyutlu matris elde edilmek istenirse bu 
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zaman çekirdek matrisinin orta noktası, giriş matrisinin köşesine gelecek şekilde 

yerleştirilir. 

 

Şekil 2.11 Evrişim işlemi (Haykin S., 2009) 

Çekirdek matrisinin adım değerleri ve başlangıç noktaları değiştirilebilir 

özelliklerdir. Bu değerlerin değiştirilmesi ile özellik haritasının boyutları değişir. 

Ama genellikle burada amaç elde edilmiş yeni matrisin önceki matrise göre daha 

küçük boyutta olmasıdır. 

Renkli görüntünün 3 kanaldan oluşmasından dolayı, girişin bir renkli resim olması 

durumunda evrişim işleminin çıktısı 3 boyutlu bir matris olmaktadır. Fakat 
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renklerin önem taşımadığı durumlarda iş yükünü azaltmak için girdi resimleri 

siyah beyaz olarak kullanılmaktadır. 

Evrişim işlemi gerçekleştikten sonra elde edilen özellik haritası  daha yüksek 

seviyeli özellikleri çıkarmak için bir sonraki evrişim katmanına giriş olarak 

uygulanır. Bu işlemde filtre sonucunda elde edilen özellik haritasının konuma 

bağlı oluşuı modelin performansını düşürmektedir. Bu durumda havuzlama 

yöntemi ile daha büyük kayma adımı ve doldurma yöntemi ile görüntünün daha 

yüksek seviyeli özellikler çıkarması sağlanabilir. 

2.3.1.2 Havuzlama Katmanı 

Havuzlama katmanı, özellik haritalarının alt örneklemesini oluşturmak için 

kullanılır. Bu işlem evrişim işleminin ardından gerçekleştirilir. Bu işlemin amacı, 

havuzlama aşamasının her adımında baskın bilgileri koruyarak daha küçük özellik 

haritasının oluşturulmasıdır. Havuzlama, evrişim işleminde doldurma ve daha 

büyük kayma adımı ile elde edilen yüksek seviyeli özelliklerin elde edilmesi için 

kullanılan başka bir yöntemdir. 

Farklı havuzlama katmanlarında kullanılmak üzere farklı havuzlama yöntemleri 

vardır. En yaygın kullanılan havuzlama yöntemleri ağaç havuzlama, kapılı 

havuzlama, maksimum havuzlama, ortalama havuzlama, global ortalama 

havuzlama ve global maksimum havuzlama yöntemleridir. Şekil 2.12’de ortalama 

havuzlama, global ortalama havuzlama ve maksimum havuzlama işlemlerinin 

örneği verilmiştir. 

Ortalama havuzlama işleminde havuzlama filtresi üzerinde durduğu alanda 

bulunan değerlerin ortalamasını alarak yeni elde edilecek matrisin ilgili 

konumuna yerleştirir. Daha sonra havuzlama filtresi, evrişim katmanında olduğu 

gibi daha fazla kayma alanı kalmayana kadar görüntü üzerinde kayarak yeni 

özellik haritası oluşturur. Maksimum havuzlama yönteminde ise filtre, içerisinde 

kalan girdi verisinin en büyük değerini alarak yeni özellik haritasını oluşturur. 

Global ortalama havuzlama yönteminde ise tüm görüntünün ortalama değeri elde 

edilerek özellik matrisi çıkarılır. 
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Şekil 2.12 Havuzlama yöntemleri 

2.3.1.3 Aktivasyon Fonksiyonları 

Aktivasyon fonksiyonu, nöronların uygun şekilde ateşlenerek girdi verisini çıktı 

verisine eşleştirmek için kullanılan bir fonksiyondur. Girdi değeri, bias ve ağırlıklar 

ile hesaplanmış nöron çıkışıdır. Bu aktivasyon fonksiyonu ilgili girdiye göre 

nöronu ateşleme kararını verir. Fonksiyonlar ayrıca ESA’ lara ekstra karmaşık 

yapıları öğrenme yeteneği verir. Yaygın aktivasyon fonksiyonları aşağıda 

belirtilmiştir 

Sigmoid Fonksiyonu: Girişi gerçek sayı olan bu fonksiyon 0 ile 1 arasında bir çıkış 

değeri üretir ve Şekil 2.13(a)’da gösterildiği gibi S şeklinde bir görünüme sahiptir.  

Sigmoid fonksiyonu denklem 2.1’de gösterildiği gibi ifade edilir: 

𝑓(𝑥)𝑠𝑖𝑔𝑚 =
1

1 + 𝑒−𝑥
 (2.1) 

 

Tanh Fonksiyonu: Girişi sigmoid fonksiyonu gibi gerçek sayılar olan Tanh 

fonksiyonunun çıkışı Şekil 2.13(b)’de gösterildiği gibi -1 ile 1 arasındadır. Tanh 

fonksiyonu denklem 2.2’de gösterildiği gibi ifade edilir: 

𝑓(𝑥)𝑡𝑎𝑛ℎ =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2.2) 
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ReLU Fonksiyonu: ESA yapılarında en çok kullanılan fonksiyondur. Şekil 

2.13(c)’de gösterildiği gibi tüm giriş değerlerini pozitif değerlere dönüştürür. 

ReLU fonksiyonu denklem 2.3’de gösterildiği gibi ifade  edilir: 

𝑓(𝑥)𝑅𝑒𝐿𝑈 = max⁡(0, 𝑥) (2.3) 

 

Şekil 2.13 Aktivasyon fonksiyonları 

2.3.1.4 Tam Bağlı Katman 

Tam bağlı katmanlar, ESA mimarilerinin sonunda bulunur ve sınıflandırma işlemi 

için kullanılır. Bu katmanlarda Şekil 2.14’de gösterildiği gibi her bir nöron, bir 

önceki katmanın nöronlarına bağlıdır. Tam bağlı katmalardan oluşan ağın girişi 

son havuzlama veya son evrişim katmanının çıkışından gelir. Bu girdi, özellik 

haritalarını oluşturan bir vektör biçimindedir. 
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Şekil 2.14 Tam bağlı katman 

2.3.1.5 Seyreltme 

Genelleme işlemi için yaygın olarak kullanılan bu teknik her eğitim aşamasında 

nöronları rastgele düşürür veya modelden atar. Bu durumda o nöronlar ve nöron 

bağlantıları yok sayılır. Bunun amacı özellik seçim gücünü tüm nöronlara 

dağıtmak ve modeli farklı bağımsız özellikler öğrenmeye zorlamaktır. Ayrıca bu 

yöntem aşırı öğrenme probleminin önüne de geçmektedir. Buna rağmen test 

işlemi sırasında tahmin etmek için tam ölçekli ağ kullanılır. 

2.3.1.6 Yığın Normalizasyon 

Yığın normalizasyon yöntemi, çıktı aktivasyonlarının performanslarını sağlar. Bu 

performans Gauss dağılım birimini takip eder. Her katmandaki çıktıdan 

ortalamayı çıkarıp standart sapmaya bölmek çıktıyı normalleştirir. Ön işleme 

görevi gören bu katmanın aktivasyon katmanlarına uygulanması, dahili kovaryans 

kaymasını azaltmak içindir. Bu kayma, farklı kaynaklardan toplanmış görüntülerin 

eğitimleri sırasında sürekli ağırlık güncellemesi maliyete neden olacaktır. Fakat 

yığın normalizasyon bu maliyeti en aza indirmek için kullanılır. 
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2.3.2 Ön Eğitilmiş Ağlar 

Son 10 yılda farklı araştırma grupları tarafından birçok ESA mimarisi önerilmiştir. 

Bu modellerin amacı farklı uygulamaların performanslarını iyileştirmektir. 

ESA’ların tarihi, el yazısı rakamlarını tanımak için kullanılan LeNet (LeCun ve ark., 

1995) ile başlamıştır. Krizhevesky ve ark. tarafından önerilen görüntü tanıma ve 

sınıflandırma alanlarında yenilikçi sonuçlar elde etmiş AlexNet (Krizhevsky, 

Sutskever, & Hinton, 2017) mimarisi yaygın biçimde kabul görmektedir. Alexnet 

mimarisi sonrasında VGG (Simonyan & Zisserman, 2014), GoogleNet (Szegedy ve 

ark., 2015), ResNet (He ve ark., 2016), Xception (Chollet, 2017) vb. gibi bir çok 

başarılı ESA mimariler ortaya çıkmıştır. Bu modellerin eğitilmesi ve test 

edilmesinde ImageNet (Deng ve ark., 2009), CIFAR-10, CIFAR-100 (CIFAR-10 

and CIFAR-100 datasets), MNIST (Fatahi, 2014) veri setleri yaygın olarak 

kullanılmaktadır. ESA mimarilerinde en yeni gelişmeler ağ derinliğinin değişmesi 

ile elde edilmiştir. Bu ağlar ön eğitilmiş sinir ağları olarak da ifade edilmektedir. 

Yaygın olarak kullanılan ve ayrıca bu çalışmada da tercih edilmiş ağ modellerinin 

yapıları aşağıdaki bölümde belirtilmiştir. 

2.3.2.1 VGG 

ESA’ların görüntü tanıma işlemlerinde etkinliği kabul edildikten sonra Simonyan 

ve Zisserman tarafından Görsel Geometri Grubu – Visual Geometry Group (VGG) 

adı verilen model önerilmiştir. Bu model, kendi öncüleri ZefNet (Zeiler & Fergus, 

2014) ve AlexNet mimarilerinden 19 adet daha fazla katmana sahiptir. 

VGG ağında kendi öncüsü ZefNet mimarisinin aksine 5 × 5 ve 11 × 11 ölçüsünde 

filtre yerine 3 × 3 boyutunda filtre yerleştirilmiştir Şekil 2.15’de gösterildiği gibi 

VGG modelinde 224 x 224 ölçülü giriş katmanında sonra gelen evrişim 

katmanından ardından ölçüleri düşürmek için havuzlama katmanı mevcuttur. 

Kullanılabilir filtre sayısına bakacak olursak, önce 128'e, sonra 256'ya 

çıkarabileceğimiz 64 civarında filtre mevcuttur. Son katmanlarda 512 filtre 

kullanılmaktadır. VGG16 ve VGG19 modelleri arasında temel fark evrişim katmanı 

sayısı farkıdır. 

Ek olarak, VGG mimarisinde evrişim katmanlarının ortasına 1×1 ölçüsünde filtre 

eklenerek ağ karmaşıklığı düzenlenmiştir. Ağ ayarlarında çözünürlüğü korumak 
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için dolgu uygulanırken, VGG mimarisinde maksimum havuzlama katmanı 

eklenmiştir. VGG mimarisinin eksik yanı 140 milyon parametre kullanmasından 

dolayı hesaplama süresinin yüksek olmasıdır. 

 

Şekil 2.15 VGG16 (a) ve VGG 19 (b) mimarisi yapısı (Wang ve ark., 2020) 

2.3.2.2 ResNet 

ILSVRC yarışmasının 2015 yılı kazananı olan ResNet mimarisinin (He ve ark., 

2016) özelliği öncülerinde var olan kaybolan gradyan sorunun ortadan 

kaldırılmasıdır. ResNet mimarisinin 34 katmandan 1202 katmana kadar farklı 

derinliklere sahip olan versiyonları tasarlanmıştır. En yaygını ise Şekil 2.16’da 

gösterilen 49 evrişim katmanı artı bir tam bağlı katmandan oluşan ResNet50 

mimarisidir. ResNet mimarisinin ana fikri, Highway ağlarında derin ağ 

eğitimlerinde adresleme sorununun ortadan kaldırılması için baypas yolu 

konseptinin kullanılmasıdır. ResNet parametresiz ve veriden bağımsız olarak 

çapraz katman bağlantısını etkinleştirmek için kısa yol sunmaktadır. Bu öneri 

gradyan azalma sorununu ortadan kaldırmaktadır. 152 katman derinliği ile VGG 

mimarisinin 8 katı derinliğe sahiptir. Fakat VGG ile kıyaslandığında daha düşük 

hesaplama karmaşıklığına sahiptir. 
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Şekil 2.16 ResNet50 mimarisi yapısı (He, Zhang, Ren, & Sun, 2016) 

2.3.2.3 Xception 

Xception mimarsinin (Chollet, 2017) ana özelliği, modelin ayrılabilir evrişime 

sahip olmasıdır. Model, başlangıç bloğunu daha geniş hale getirip ve 3×3 

boyutuna dönüştürüp ardından 1×1 evrişim katmanı ile hesaplama karmaşıklığını 

azaltmaktadır. Geleneksel ESA mimarisi yalnızca bir dönüşüm segmenti 

kullanırken, Xception üç dönüşüm segmenti uygulamaktadır. Şekil 2.17’de 

Xception mimarisinin yapısı gösterilmiştir. 
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Şekil 2.17 Xception mimarisi yapısı (Srinivasan, et al., 2021) 

2.3.3 Transfer Öğrenmesi 

Evrişimsel sinir ağlarında iyi bir başarım elde etmek için büyük miktarda veri 

gerekmektedir. Gereğinden az sayıda veri eksik öğrenmeye sebebiyet vermektedir. 

Küçük miktarda veri seti ile eğitimin çözümü transfer öğrenmesi yöntemidir. 

Transfer öğrenmesi mekanizması ESA modelinin büyük veri ile eğitilmesi ve daha 

sonradan küçük veri seti ile ince ayar yapılması şeklinde çalışır. Transfer 

öğrenmesi modeli Şekil 2.18’de verilmiştir. 

Öğrenci-öğretmen ve öğreten-öğrenen ilişkisi olarak tanımlanan bu yapıda 

öğretmen öğrendiği bilgileri doğrudan öğrenciye aktarır ve öğrenci ağırlık ve 

bozucu değerleri ile modeli optimize eder. Bu aktarım ön eğitilmiş modelin 

tamamı olabileceği gibi, bir kısmı da olabilir. Modeli sıfırdan eğitmek yerine bu 

şekilde kullanımı maliyetleri büyük oranda düşürmekte ve model doğruluğunu 

artırmaktadır. 
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Şekil 2.18 Transfer öğrenmesi modeli 

2.4 Hibrit Modeller 

Evrişimsel sinir ağlarının performansını artırmak için hibrit modeller önerilmiştir. 

Hibrit modeller, ESA mimarisinin veya mimarilerinin herhangi bir kısmında elde 

edilmiş çıkışların birleştirilmesidir. Belirli bir yöntemi veya yapısı olmayan bu 

modeller araştırmacılar tarafından probleme özgü seçilmektedir.  

Örneğin Xie ve ark. (Xie ve ark., 2017) tarafından önerilen bir hibrit ESA modeli 

Şekil 2.19’da gösterilmiştir. Bu modelde ESA modelinin ayrı katmanlarında elde 

edilmiş farklı boyutlardaki özellik haritaları birleştirilmiş ve elde edilen öznitelik 

vektörü destek vektör makineleri yöntemi kullanılarak sınıflandırmıştır. 

Ding ve ark. (Ding ve ark., 2020) önerdiği farklı bir hibrit yöntem Şekil 2.20’de 

gösterilmiştir. Bu yöntemde  bir boyutlu giriş verileri biçimlendirilmiş, elde edilen 

iki boyutlu veriler ESA mimarisine girdi olarak verilmiştir. Çok katmanlı ağdan 

elde edilmiş bir boyutlu verilerin özellikleri ile ESA çıkışında elde edilmiş özellikler 

birleştirilmiş ve  tam bağlı katmanda sınıflandırma işlemi gerçekleştirilmiştir.     

Rahaman ve ark. (Rahaman ve ark., 2021) tarafından önerilen hibrit ESA modeli 

Şekil 2.21’de gösterilmiştir. Bu hibrit modelde dört farklı ESA modelinden  

çıkarılmış öznitelik vektörleri hibrit derin özellik füzyonu yöntemi kullanılarak 

birleştirilmiş ve elde edilmiş yeni vektör tam bağlı katmanda sınıflandırılmıştır. 
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Şekil 2.19 Xie ve ark. tarafından önerilen hibrit model 

 

Şekil 2.20 Ding ve ark. tarafından önerilen hibrit model 

Hibrit derin özellik füzyonu yöntemi Şekil 2.21’de gösterilmiştir. Bu yöntemde 

ince ayar yapılmış ön eğitilmiş modellerden  elde edilen 1024 boyutundaki 

öznitelik vektörleri birleştirilerek Nx1024 boyutunda yeni bir öznitelik vektörü 

elde edilmektedir.  Bu yeni oluşturulan öznitelik vektörü  tam bağlı ağa giriş olarak 

uygulanmakta ve sınıflandırma işlemi gerçekleştirilmektedir. 



29 

 

Şekil 2.21 Rahaman ve ark. tarafından önerilen hibrit model 

 

Şekil 2.22 Hibrit derin özellik füzyonu yapısı 
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KULLANILAN TEKLİ VE HİBRİT MODEL YAPILARI 

 

Bu çalışmada Rahaman ve ark. (Rahaman ve ark., 2021) tarafından hücre bazlı 

kadın rahim ağzı kanseri teşhisi uygulaması için önerilmiş ve başarılı sonuçlar elde 

edilmiş hibrit ESA model yapısı tercih edilmiştir. Bu tez çalışmasında doku bazlı 

meme kanseri teşhisi uygulamasında kullanılmıştır. Hibrit modelde kullanılacak 

tekil ESA modelleri için ResNet50, VGG16, VGG19 ve Xception ön eğitilmiş 

modelleri tercih edilmiştir. En iyi hibrit modelin elde edilmesi için tekil modellerin 

ikili, üçlü ve dörtlü kombinasyonları oluşturulmuş ve başarımları deneysel olarak 

analiz edilmiştir.  

3.1 Kullanılan Transfer Öğrenmesi Yapısı 

ResNet50, VGG16, VGG19 ve Xception ön eğitilmiş modelleri tamamen olduğu 

gibi kullanılmamış, transfer öğrenmesi yöntemi ile belirli katmanları aktarıldıktan 

sonra modeller üzerinde ince ayar yapılmıştır. Modellerin genel özellik çıkaran 

katmanları dondurulmuş şekilde yeni modele aktarılmış ve parametreleri olduğu 

gibi kullanılmıştır. Bu katmanlardan sonra gelen katmanlar “eğitilebilir” şekilde 

yeni modele aktarılmış ve modelin ara katmanından elde edilen çıkışlara yeni 

katmanlar eklenmiştir. 

3.1.1 Dondurulmuş Katmanlar 

Dondurulmuş katmanlar, ön eğitilmiş modellerden olduğu gibi alınarak 

oluşturulmuş yeni modele aktarılan katmanları ifade etmektedir. Bu katmanların 

ilgili ağırlıkları doğrudan yeni modele aktarılmış ve tekrar bir eğitim sürecine dahil 

edilmeden kullanılmıştır. Tüm ağlar için bu katmanların ortak özelliği genel 

özellik çıkarma katmanları olmasıdır. Dondurulmuş katmanlar, Şekil 3.1’de 

gösterildiği gibi ResNet50 ağı için 85. katman, VGG16 ağı için 12. katman, VGG19 

ağı için 16. katman ve Xception ağı için 35. katmana kadar olan kısımlardır. 
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Şekil 3.1 Transfer öğrenmesi için kullanılan dondurulmuş katmanlar 

3.1.2 İnce Ayar Yapılmış ve Yeni Eklenmiş Katmanlar 

İnce ayar yapılan katmanlar, veriler üzerinden daha detaylı özellik çıkaran 

katmanlardır. İyileştirme yapılması için Şekil 3.2’deki gösterildiği üzere ResNet50 

modeli için 86-174, VGG16 modeli için 13-18, VGG19 modeli için 17-21, Xception 

modeli için 34-131 aralığındaki katmanlar “eğitilebilir” şekilde bırakılmıştır. 

Belirli katmanlardan sonrasına yığın normalizasyon, seyreltme, global maksimum 

havuzlama, 1024 boyutunda öznitelik vektörü çıkışı veren yoğunluk katmanı, 

ReLU aktivasyon fonksiyonu ve ikili sınıflandırma yapılması için Softmax 

aktivasyon fonksiyonu eklenmiştir. Yeni katmanlar, ResNet50 modelinde 87. 

katman çıkışına, VGG16 modelinde 13. katman çıkışına, VGG19 modelinde 18. 

Katman çıkışına ve Xception modelinde ise 37. Katman çıkışına eklenmiştir. 

 

Şekil 3.2 İnce ayar yapılmış ve yeni eklenmiş katmanlar 

3.2 Oluşturulan Tekli Modellerin Eğitilmesi 

Revize edilen dört tekil modelde de ağırlık değeri olarak ImageNet ağının 

ağırlıkları kullanmaktadır. Toplamda 100 epoch olarak gerçekleştirilen eğitimin 

ilk 50 epoch’luk bölümünde 10-3 öğrenme oranı, geri kalan 50 epoch’luk 

bölümünde ise 10-5 öğrenme oranı ile değeri kullanılmıştır. Eğitim 
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tamamlandıktan sonra model ve model ağırlıkları hibrit modelde kullanılmak 

üzere  kaydedilmiştir. 

3.3 Hibrit Modellerin Oluşturulması 

Bu tez çalışmasında, en iyi hibrit modeli belirlemek için Tablo 3.1’de gösterildiği 

gibi tekli modellerin ikili, üçlü ve dörtlü kombinasyonları şeklinde hibrit modeller 

oluşturularak performansları ölçülmüştür. Bu işlem gerçekleştirilirken her bir 

kaydedilmiş tekli model tekrardan çağrılmış ve Şekil 3.2’de gösterilen 1024 adet 

nöron bulunan katmanın çıkışlarından elde edilen öznitelik vektörleri derin özellik 

füzyonu yöntemi kullanılarak birleştirilmiştir. Bu durumda ikili model için 2048, 

üçlü model için 3072, dörtlü model için 4096 boyutunda yeni öznitelik vektörleri 

elde edilmiştir. Elde edilen bu vektörlere  yığın normalizasyon ve seyreltme 

işleminin ardından Softmax fonksiyonu ile sınıflandırılmıştır. tam bağlı katmana 

giriş olarak beslenmiştir. Tam bağlı katmanda sınıflandırma işlemi softmax 

fonksiyonu kullanılarak gerçekleştirilmiştir. 

 

Şekil 3.3 Hibrit model yapıları 

Tablo 3.1 Hibrit model kombinasyonları 

İkili Hibrit Modeller Üçlü Hibrit Modeller Dörtlü Hibrit Model 

ResNet50 – VGG16 

ResNet50 – VGG19 

ResNet50 – Xception 

VGG16 – VGG19 

ResNet50 – VGG16 – VGG19 

ResNet50 – VGG16 – Xception 

ResNet50 – VGG19 – Xception 

VGG16 – VGG19 – Xception 

ResNet50 – VGG16 – VGG19 – 

Xception 
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VGG16 – Xception 

VGG19 – Xception 

 

3.4 Hibrit Modellerin Eğitilmesi 

Tablo 3.1’de belirtilen hibrit model kombinasyonları oluşuturulduktan sonra Şekil 

3.3’de gösterilen hibrit model yapılarındaki tam bağlı katmanlar eğitime tabi 

tutulmuştur. Eğitim sürecinde öğrenme oranı 10-3 olarak seçilmiş ve eğitim 200 

epoch olarak gerçekleştirilmiştir. 
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VERİLERİN HAZIRLANMASI 

 

4.1 Veri Setleri 

Çalışmada meme dokusuna ait histopatoloji görüntüleri için CAMELYON ve 

BreaKHis veri setleri kullanılmıştır. 

4.1.1 CAMELYON Veri Seti 

CAMELYON veri seti, Radboud Üniversitesi Tıbbi merkezinin etik kurul izni ile 

Hollanda’nın the RUMC, the Utrecht University Medical Center (UMCU), the 

Rijnstate Hospital (RST), the Canisius-Wilhelmina Hospital (CWZ), ve LabPON 

(LPON) gibi beş farklı sağlık kuruluşundan toplanmış patoloji slayt 

görüntülerinden oluşmaktadır. Verilerin tamamı patologlar tarafından 

yorumlanmıştır. Görüntüler TIFF formatında olup, patoloji tarayıcıları aracılığı ile 

taranmış ve Automated Slide Analysis Platform (ASAP) yorumlama yazılımı ile 

üzerinde tümör bölgelerinin işaretlemesi gerçekleştirilmiştir. Veri setinden 1399 

adet tam slayt görüntüsü olup, toplamda 2.95 terabayt veri boyutuna sahiptir. 

Şekil 4.1’de bu veri setinden alınmış örnek görüntüler gösterilmiştir. 

 

Şekil 4.1 CAMELYON veri setine ait örnek görüntüleri 
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4.1.2 BreaKHis Veri Seti 

BreaKHis veri seti, Şekil 4.2’de gösterildiği gibi 82 hastadan toplanmış dört farklı 

(40X, 100X, 200X ve 400X) büyütme oranına sahip meme tümörü mikroskobik 

görüntülerinden oluşmaktadır. Veri seti, P&D Laboratuvarı ve Parana, Brezilya 

merkezli Patolojik Anatomi ve Sitopatoloji işbirliği ile 2480 iyi huylu, 5429 kötü 

huylu olmak üzere toplamda 9109 adet görüntüden oluşturulmuştur. İyi huylu 

tümör sınıfında bulunan görüntüler herhangi bir malignite kriteri ile eşleşmeyen 

bir lezyona ait görüntülerdir. Kötü huylu tümörler ise lezyon, lokal invaziv ve 

metastaza sebebiyet verebilecek tümör türleridir. 

Çalışmada 400X büyütme oranına sahip görüntüler kullanılmıştır.  Veriler, kısmi 

mastektomi veya eksizyonel biyopsi olarak adlandırılan SOB (Slice Biopsy) 

yöntemi ile toplanılmıştır. 

 

Şekil 4.2 BreaKHis veri Setine ait 40X, 100X, 200X, 400X büyütülmüş meme 

dokusu görüntüsü (Spanhol ve ark., 2015) 
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4.2 Verilerin Hazırlanması 

4.2.1 CAMELYON Veri Setinin Hazırlanması 

CAMELYON veri seti, yayınlanmış resmi yarışma sayfası olan camelyon17.grand-

challenge.org adresinden indirilmiştir. Görüntüler Şekil 4.3’de görüldüğü gibi 

ASAP yazılımı ile görüntülenmiş ve tümör bölgelerinin bulunduğu XML uzantılı 

dosyalar yüklenmiştir. Ardından tümör bölgesi içerisinde alanı en büyük olacak 

şekilde dikdörtgen çizilmiştir. Çizilmiş dikdörtgen koordinatları yeni XML 

dosyasına kaydedilmiştir. OpenSlide kütüphanesi ile ilgili koordinatlar dosyadan 

okunmuş ve Tam Slayt görüntüsünden Şekil 4.4’deki gibi 225x225 piksel 

ölçüsünde, 50 normal ve 50 tümör tam slayt görüntüsünden her sınıfa ait 6000 

adet olmak üzere toplamda 12000 adet görüntü oluşturulmuştur. Verilerin %60’ı 

eğitim, %20’si doğrulama ve %20’si test için kullanılmıştır.

 

Şekil 4.3 ASAP yazılımı üzerinde işaretlenmiş tümör bölgesi ve içerisine çizilmiş 

bölünecek olan dikdörtgen alan 

 

Şekil 4.4 225x225 piksel ölçüsünde bölümlenmiş doku görüntüsü 

4.2.2 BreaKHis Veri Setinin Hazırlanması 

BreaKHis 400x veri seti görüntüleri Google şirketine ait Kaggle platformundan 

indirilmiştir. Veri seti içerisinde 700x460 piksel ölçülerinde 547 adet benign ve 

1148 adet malign histopatolojik meme görüntüsü mevcuttur. Veri setinden Şekil 
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4.5’de olduğu gibi 225x225 piksel ölçüsünde 2110 benign ve 2110 malign olmak 

üzere toplamda 4220 adet görüntü elde edilmiştir. Verilerin %60’ı eğitim, %20’si 

doğrulama ve %20’si test için kullanılmıştır. 

 

Şekil 4.5 BreaKHis veri setinden elde edilmiş 225x225 piksel ölçüsünde doku 

görüntüsü 
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DENEYSEL SONUÇLAR 

 

5.1 Başarım Metrikleri 

Bu çalışmada deneysel sonuçlarının gösterilmesinde her bir model için karışıklık 

matrislerinden yararlanılmıştır. Kullanılan karışıklık matrisinin yapısı Şekil 5.1’de 

gösterilmiştir. Deneysel çalışmalarda başarım ölçütleri olarak tüm analizlerde 

kesinlik, duyarlılık, F1 skoru ve doğruluk oranı metrikleri kullanılmıştır. Buu 

metrikler ile ilgili formüller sırası ile 5.1, 5.2, 5.3 ve 5.4’de gösterilmiştir. 

 

Şekil 5.1 Karışıklık matrisi yapısı 

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 =
𝐷𝑃

𝐷𝑃 + 𝑌𝑃
⁡ 

5.1 

𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘 =
𝐷𝑃

𝐷𝑃 + 𝑌𝑁
 

5.2 

𝐹1 =
2 × 𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 × 𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 + 𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘
 

5.3 

𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘 =
𝐷𝑃 + 𝐷𝑁

𝐷𝑃 + 𝑌𝑁 + 𝑌𝑃 + 𝐷𝑁
 

5.4 
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5.2 Tekli Modeller İle Elde Edilen Deneysel Sonuçlar 

Çalışmada kullanılmış ResNet50, VGG16, VGG19 ve Xception ön eğitilmiş ESA 

modellerinin Camelyon ve BreaKHis veri setleri üzerindeki deneysel sonuçlarını 

gösteren karışıklık matrisleri Şekil 5.2 ve Şekil 5.3’de ve elde edilen başarım 

sonuçları Tablo 5.1 ve Tablo 5.2’de verilmiştir.  

 

Şekil 5.2 Tekli modellerin CAMELYON veri seti üzerinde karışıklık matrisleri 

 

 

Şekil 5.3 Tekli modellerin BreaKHis veri seti üzerinde karışıklık matrisleri 
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Tablo 5.1 Tekli modellerin CAMELYON veri seti üzerindeki sonuçları 

Model Adı Sınıf Kesinlik Duyarlılık F1 Skoru Doğruluk 

ResNet50 

Normal 0.9620 0.970833333 0.966403982 

0.96625 Tümör 0.9705 0.961666667 0.9660946 

Ortalama 0.9662 0.96625 0.966249291 

VGG16 

Normal 0.9665 0.9625 0.964509395 

0.964583333 Tümör 0.9626 0.966666667 0.964656965 

Ortalama 0.9645 0.964583333 0.96458318 

VGG19 

Normal 0.9587 0.93 0.944162437 

0.945 Tümör 0.9320 0.9600 0.945812808 

Ortalama 0.9454 0.9450 0.944987622 

Xception 

Normal 0.9166 0.9625 0.93902439 

0.9375 Tümör 0.9605 0.9125 0.935897436 

Ortalama 0.9385 0.9375 0.937460913 
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Tablo 5.2 Tekli modellerin BreaKHis veri seti üzerindeki sonuçları 

Tablo 5.1’den görüldüğü gibi CAMELYON veri seti için en yüksek doğruluk 

oranına sahip model %96.62 ile ResNet50 modelidir. Daha sonra sırasıyla %96.45 

ile VGG16, %94.50 ile VGG19 ve %93.75 ile Xception modelleri gelmektedir. 

Tablo 5.2’den görüldüğü gibi BreaKHis veri seti için ise en yüksek doğruluk oranı 

%95.61 şeklinde VGG16 modeli ile elde edilmiştir. Daha sonra sırasıyla %95.37 

ile ResNet50, %95.29 ile VGG19 ve %87.08 ile Xception modelleri gelmektedir. 

CAMELYON veri seti için ortalama F1 Skoru değer sıralaması 0.9662 ile ResNet50, 

0.9645 ile VGG16, 0.9449 ile VGG19, 0.9374 ile Xception şeklinde sıralanmıştır. 

BreaKHis veri seti için ise F1 Skoru sıralaması 0.9561 ile VGG16, 0.9537 ile 

ResNet50, 0.9528 ile VGG19 ve 0.8698 ile Xception şeklindedir. 

 

Model Adı Sınıf Kesinlik Duyarlılık F1 Skoru Doğruluk 

ResNet50 

Normal 0.9382 0.9715 0.9545 

0.9537 Tümör 0.9705 0.9360 0.95295 

Ortalama 0.9543 0.9537 0.95377 

VGG16 

Normal 0.9306 0.9857 0.95742 

0.9561 Tümör 0.9848 0.9265 0.95482 

Ortalama 0.9577 0.9561 0.9561 

VGG19 

Normal 0.9276 0.9825 0.9542 

0.9529 Tümör 0.9813 0.9233 0.9514 

Ortalama 0.9545 0.9529 0.9528 

Xception 

Normal 0.8161 0.9573 0.8811 

0.8708 Tümör 0.9484 0.7843 0.8586 

Ortalama 0.8822 0.8708 0.8698 
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5.3 İkili Hibrit Modeller İle Elde Edilen Deneysel Sonuçlar 

Çalışmada kullanılmış ResNet50 – VGG16, ResNet50 – VGG19, ResNet50 – 

Xception, VGG16 – VGG19, VGG16 – Xception ve VGG19 – Xception ikili hibrit 

modellerin CAMELYON ve BreaKHis veri setleri üzerindeki deneysel sonuçlarını 

gösteren karışıklık matrisleri Şekil 5.4 ve Şekil 5.5’de gösterilmiştir. Elde edilen 

başarım sonuçları Tablo 5.3 ve Tablo 5.4’de verilmiştir. 

 

Şekil 5.4 İkili hibrit modellerin CAMELYON veri seti üzerinde karışıklık 

matrisleri 

 

Şekil 5.5 İkili hibrit modellerin BreaKHis veri seti üzerinde karışıklık matrisleri 
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Tablo 5.3 İkili hibrit modellerin CAMELYON veri seti üzerindeki sonuçları 

 

Model Adı Sınıf Kesinlik Duyarlılık F1 Skoru Doğruluk 

ResNet50 – 

VGG16 

Normal 0.9595 0.9683 0.9639 

0.9637 Tümör 0.9680 0.9591 0.9635 

Ortalama 0.9637 0.9637 0.9637 

ResNet50 – 

VGG19 

Normal 0.9645 0.9750 0.9697 

0.9695 Tümör 0.9747 0.9641 0.9694 

Ortalama 0.9696 0.9695 0.9695 

ResNet50 – 

Xception 

Normal 0.9517 0.9858 0.9684 

0.9679 Tümör 0.9853 0.9500 0.9673 

Ortalama 0.9685 0.9679 0.9679 

VGG16 – 

VGG19 

Normal 0.9612 0.9716 0.9664 

0.9662 Tümör 0.9713 0.9608 0.9660 

Ortalama 0.9663 0.9662 0.9662 

VGG16 – 

Xception 

Normal 0.9621 0.9750 0.9685 

0.9683 Tümör 0.9746 0.9616 0.9681 

Ortalama 0.9684 0.9683 0.9683 

VGG19 – 

Xception 

Normal 0.9539 0.9675 0.9606 

0.9604 Tümör 0.9670 0.9533 0.9601 

Ortalama 0.9605 0.9604 0.9604 
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Tablo 5.4 İkili hibrit modellerin BreaKHis veri seti üzerindeki sonuçları 

Tablo 5.3’den görüldüğü gibi CAMELYON veri seti için en yüksek doğruluk 

oranına sahip model %96.95 ile VGG19 – ResNet50 hibrit modelidir. Daha sonra 

sırasıyla %96.83 ile VGG16 – Xception, %96.79 ile Xception – ResNet50, %96.62 

Model Adı Sınıf Kesinlik Duyarlılık F1 Skoru Doğruluk 

ResNet50 – 

VGG16 

Normal 0.9785 0.9715 0.9750 

0.9751 Tümör 0.9717 0.9786 0.9752 

Ortalama 0.9751 0.9751 0.9751 

ResNet50 – 

VGG19 

Normal 0.9716 0.9763 0.9739 

0.9739 Tümör 0.9761 0.9715 0.9738 

Ortalama 0.9739 0.9739 0.9739 

ResNet50 – 

Xception 

Normal 0.9783 0.9620 0.9701 

0.9703 Tümör 0.9627 0.9786 0.9706 

Ortalama 0.9705 0.9703 0.9703 

VGG16 – 

VGG19 

Normal 0.9786 0.9763 0.9774 

0.9774 Tümör 0.9763 0.9786 0.9775 

Ortalama 0.9774 0.9774 0.9774 

VGG16 – 

Xception 

Normal 0.9714 0.9691 0.9703 

0.9703 Tümör 0.9692 0.9715 0.9704 

Ortalama 0.9703 0.9703 0.9703 

VGG19 – 

Xception 

Normal 0.9518 0.9360 0.9438 

0.9443 Tümör 0.9370 0.9526 0.9447 

Ortalama 0.9444 0.9443 0.9443 
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ile VGG16 – VGG19, %96,37 ile VGG16 – ResNet50 ve %96,04 ile VGG19 – 

Xception ikili hibrit modelleri gelmektedir. Tablo 5.4’den görüldüğü gibi BreaKHis 

veri seti için ise en yüksek doğruluk oranı  %97.74 şeklinde VGG16 – VGG19 

modeli ile elde edilmiştir. Daha sonra sırasıyla, %97.51 ile VGG16 – ResNet50, 

%97.39 ile VGG19 – ResNet50, %97.03 ile VGG16 – Xception,  %97.03 ile 

Xception – ResNet50 ve %94.43 ile VGG19 – Xception ikili hibrit modelleri 

gelmektedir.  

CAMELYON veri seti için ortalama F1 Skoru değer sıralaması 0.9695 ile VGG19 – 

ResNet50, 0.9683 ile VGG16 – Xception, 0.9679 ile ResNet50 – Xception, 0.9662 

ile VGG16 – VGG19, 0.9637 ile VGG16 – ResNet50, 0.9604 ile VGG19 – Xception 

çiftleri şeklindedir. BreaKHis veri seti için ise F1 Skoru sıralaması 0.9774 ile 

VGG16 – VGG19, 0.9751 ile VGG16 – ResNet50, 0.9739 ile VGG19 – ResNet50, 

0.9703 ile VGG16 – Xception, 0.9703 ile Xception – ResNet50, 0.9443 ile VGG19 

– Xception çiftleri şeklindedir. 

5.4 Üçlü Hibrit Modeller İle Elde Edilen Deneysel Sonuçlar 

Çalışmada kullanılmış ResNet50 – VGG16 – VGG19, ResNet50 – VGG16 - 

Xception, ResNet50 – VGG19 – Xception ve VGG16 – VGG19 – Xception üçlü hibrit 

modellerinin CAMELYON ve BreaKHis veri setleri üzerindeki deneysel sonuçlarını 

gösteren karışıklık matrisleri Şekil 5.6’da ve Şekil 5.7’de ve performansları 

gösteren tablo Tablo 5.5’de ve Tablo 5.6’da verilmiştir 

 

Şekil 5.6 Üçlü hibrit modellerin CAMELYON veri seti üzerinde karışıklık 

matrisleri 
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Şekil 5.7 Üçlü hibrit modellerin BreaKHis veri seti üzerinde karışıklık matrisleri 

Tablo 5.5’den görüldüğü gibi CAMELYON veri seti için en yüksek doğruluk 

oranına sahip model %97.08 ile ResNet50 – VGG16 – Xception üçlü hibrit 

modelidir. Daha sonra sırasıyla %96.95 ile VGG16 – VGG19 – Xception, %96.66 

ile ResNet50 – VGG19 – Xception, %96.16 ile VGG16 – VGG19 – ResNet50 

modelleri gelmektedir. Tablo 5.6’dan görüldüğü gibi BreaKHis veri seti için ise en 

yüksek doğruluk oranı %97.27 ile ResNet50 – VGG16 – VGG19 üçlü hibrit modeli 

ile elde edilmiştir. Daha sonra sırasıyla, %97.03 ile ResNet50 – VGG19 – Xception, 

%96.80 ile VGG16 – VGG19 – Xception, %96.56 ile ResNet50 – VGG16 – Xception 

hibrit modelleri gelmektedir. 

CAMELYON veri seti için F1 Skoru sıralaması 0.9708 ile ResNet50 – VGG16 – 

Xception, 0.9695 ile Xception – VGG16 – VGG19, 0.9666 ile ResNet50 – VGG19 – 

Xception, 0.9616 ile ResNet50 – VGG19 – VGG16, BreaKHis veri seti için 0.9727 

ile ResNet50 – VGG16 – VGG19, 0.9703 ile ResNet50 – VGG19 – Xception, 0.9680 

ile VGG16 – VGG19 – Xception ve 0.9656 ile VGG16 – ResNet50 – Xception 

şeklindedir. 
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Tablo 5.5 Üçlü hibrit modellerin CAMELYON veri seti üzerindeki sonuçları 

 

 

 

 

 

 

 

 

Model Adı Sınıf Kesinlik Duyarlılık F1 Skoru Doğruluk 

ResNet50 – 

VGG16 – 

VGG19 

Normal 0.9453 0.9800 0.9623 

0.9616 Tümör 0.9792 0.9433 0.9609 

Ortalama 0.9622 0.9616 0.9616 

ResNet50 – 

VGG16 – 

Xception 

Normal 0.9578 0.9850 0.9712 

0.9708 Tümör 0.9845 0.9566 0.9704 

Ortalama 0.9712 0.9708 0.9708 

ResNet50 – 

VGG19 – 

Xception 

Normal 0.9494 0.9858 0.9672 

0.9666 Tümör 0.9852 0.9475 0.9660 

Ortalama 0.9673 0.9666 0.9666 

VGG16 – 

VGG19 – 

Xception 

Normal 0.9600 0.9800 0.9698 

0.9695 Tümör 0.9795 0.9591 0.9692 

Ortalama 0.9697 0.9695 0.9695 
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Tablo 5.6 Üçlü hibrit modellerin BreaKHis veri seti üzerindeki sonuçları 

 

5.5 Dörtlü Hibrit Model İle Elde Edilen Deneysel Sonuçlar  

Çalışmada kullanılmış ResNet50 – VGG16 – VGG19 – Xception hibrit modelinin 

CAMELYON ve BreaKHis veri setleri üzerindeki deneysel sonuçlarını gösteren 

karışıklık matrisleri Şekil 5.8’de ve Şekil 5.9’da ve performansları gösteren tablo 

Tablo 5.7’de ve Tablo 5.8’de verilmiştir. 

ResNet – VGG16 – VGG19 – Xception hibrit modelinin CAMELYON veri seti 

üzerinde doğruluk oranı %96.83, BreaKHis veri seti üzerinde ise %96.56 olarak 

hesaplanmıştır. F1 Skoru ise CAMELYON veri seti için 0.9683, BreaKHis veri seti 

için 0.9656 şeklindedir. 

Model Adı Sınıf Kesinlik Duyarlılık F1 Skoru Doğruluk 

ResNet50 – 

VGG16 – 

VGG19 

Normal 0.9650 0.9810 0.9729 

0.9727 Tümör 0.9807 0.9644 0.9725 

Ortalama 0.9728 0.9727 0.9727 

ResNet50 – 

VGG16 – 

Xception 

Normal 0.9689 0.9620 0.9655 

0.9656 Tümör 0.9623 0.9691 0.9657 

Ortalama 0.9656 0.9656 0.9656 

ResNet50 – 

VGG19 – 

Xception 

Normal 0.9783 0.9620 0.9701 

0.9703 Tümör 0.9627 0.9786 0.9706 

Ortalama 0.9705 0.9703 0.9703 

VGG16 – 

VGG19 – 

Xception 

Normal 0.9759 0.9597 0.9677 

0.9680 Tümör 0.9603 0.9763 0.9682 

Ortalama 0.9681 0.9680 0.9680 
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Şekil 5.8 Dörtlü hibrit modellerin CAMELYON veri seti üzerinde karışıklık 

matrisleri 

 

Şekil 5.9 Dörtlü hibrit modellerin BreaKHis veri seti üzerinde karışıklık matrisleri 

Tablo 5.7 Dörtlü hibrit modellerin CAMELYON veri seti üzerindeki sonuçları 

 

 

 

 

 

 

Model Adı Sınıf Kesinlik Duyarlılık F1 Skoru Doğruluk 

ResNet50 – 

VGG16 – 

VGG19 – 

Xception 

Normal 0.9621 0.9750 0.9685 

0.9683 Tümör 0.9746 0.9616 0.9681 

Ortalama 0.9684 0.9683 0.9683 
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Tablo 5.8 Dörtlü hibrit modellerin BreaKHis veri seti üzerindeki sonuçları 

5.6 Deney Sonuçlarının Değerlendirilmesi 

Deney sonuçlarından görüldüğü gibi oluşturulan hibrit ESA modelleri ile büyük 

çoğunlukla tekil modellere kıyasla her iki veri seti için de daha üstün bir başarım 

elde edilmiştir. Oluşturulan ikili, üçlü ve dörtlü hibrit ESA modelleri arasından en 

üstün başarıma sahip olanlar dikkate alındığında ise elde edilen başarım 

değerlerinin her zaman tekil modeller ile elde edilen başarım değerlerinden daha 

üstün olduğu görülmüştür. 

Seçilen tekil modellerin hibrit kombinasyonları üzerinde yapılan başarım 

analizleri sonucunda en üstün başarımı CAMELYON veri seti için ResNet50 – 

VGG16 - Xception üçlü hibrit ESA modelinin, BreaKHis veri seti için ise  VGG16 – 

VGG19 ikili hibrit ESA modelinin sağladığı görülmektedir. Bu sonuçlar 

değerlendirildiğinde hibrit model oluşturulması için seçilecek tekil model sayısının 

artmasının her zaman başarımı arttırmadığı sonucu ortaya çıkmaktadır.  

Benzer şekilde hibrit model oluşturulurken en iyi tekil başarıma sahip modellerin 

kullanılmasının her zaman daha iyi başarım sağlamadığı görülmüştür. Örneğin 

Tablo 5.5' te CAMELYON veri seti için verilen üçlü hibrit model 

karşılaştırmalarında görüldüğü gibi, en iyi ilk üç tekil model başarımı sırasıyla 

VGG19, VGG16 ve ResNet50 modelleri ile elde edilmiş olmasına karşın VGG16 – 

ResNet50 – Xception hibrit modeli ile ResNet50 – VGG16 – VGG19 hibrit modeline 

kıyasla daha yüksek bir başarım elde edilmiştir. 

Ayrıca, bir veri seti için en üstün başarımı sergileyen hibrit ESA modeli 

kombinasyonunun başka bir veri seti için aynı başarımı her zaman sağlayamadığı 

görülmüştür. Bu durum hibrit model kombinasyonunun veri setine özgü olarak 

belirlenmesi gerektiği sonucunu ortaya çıkarmıştır.  

Model Adı Sınıf Kesinlik Duyarlılık F1 Skoru Doğruluk 

ResNet50 – 

VGG16 – 

VGG19 – 

Xception 

Normal 0.9623 0.9691 0.9657 

0.9656 Tümör 0.9689 0.9620 0.9655 

Ortalama 0.9656 0.9656 0.9656 
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Bu sonuçlar değerlendirildiğinde, hibrit model yapısının uygulamaya özgü olarak 

belirlenmesi gerektiği ve bu çalışmada gerçekleştirildiği gibi ön analizler yapılarak 

en uygun hibrit modelin seçilmesinin daha yüksek başarıma sahip hibrit 

modellerin belirlenmesi adına gerekli olduğu görülmüştür. 
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SONUÇ VE ÖNERİLER 

 

Bu tez çalışmasında doku bazlı patoloji görüntüleri üzerinden derin özellik 

füzyonu yöntemine dayalı hibrit ESA modeli kullanılarak meme kanseri teşhisi 

uygulaması gerçekleştirilmiştir. Çalışmada hibrit ESA modeli oluşturulurken 

VGG16, VGG19, ResNet50 ve Xception ön eğitilmiş ESA modelleri kullanılmıştır. 

En iyi hibrit model yapısının belirlenebilmesi için bu tekli modellerin bir araya 

getirilerek ikili, üçlü ve dörtlü hibrit kombinasyonları elde edilmiş ve oluşturulmuş 

hibrit modellerin CAMELYON ve BreaKHis meme dokusu histopatoloji görüntüleri 

üzerinde başarımları analiz edilmiştir. Gerçekleştirilen başarım analizleri 

sonucunda en üstün teşhis başarımı CAMELYON veri seti için %97.08 doğruluk 

oranına sahip ResNet50 – VGG16 – Xception, BreaKHis veri seti için ise %97.75 

doğruluk oranına sahip VGG16 – VGG19 hibrit ESA modelleri ile elde edilmiştir.  

Yapılan analizlerde hibrit model oluşturulması için seçilecek tekil model sayısının 

artmasının her zaman başarımı arttırmadığı, en iyi tekil başarıma sahip modellerin 

kullanılmasının her zaman daha iyi başarım sağlamadığı ve bir veri seti için en 

üstün başarımı sergileyen hibrit ESA modeli kombinasyonunun başka bir veri seti 

için aynı başarımı her zaman sağlayamadığı sonuçları ortaya çıkmıştır.  

Bu sonuçlar değerlendirildiğinde, kullanılacak hibrit model yapısının uygulamaya 

özgü olarak belirlenmesi gerektiği ve bu çalışmada gerçekleştirildiği gibi ön 

analizler yapılarak en uygun hibrit model yapısının seçilmesinin daha yüksek 

başarıma sahip hibrit modellerin belirlenmesi adına gerekli olduğu görülmüştür. 

Bu tezin devamı olacak çalışmalarda hibrit modellerin performansını daha da 

arttırmak adına yeni derin özellik füzyonu yöntemleri geliştirilmesi ve farklı veri 

setlerinde test edilmesi planlanmaktadır. 
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