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ABSTRACT

Covid-19, with its high death rate, was discovered nearly three years ago. New variants resistant
to vaccines still emerge while travel and export restrictions can not be held for longer. An
accurate and fast diagnosis of such a disease is crucial to reducing its global spread. Computed
Tomography CT scans have shown to be the most precise method for covid-19 diagnosis.
However, it is a slow process to read and diagnose a disease from a CT scan due to the scarcity of
skilled radiologists and the limited information and data available about covid-19. Computer
vision has been successfully used in assisting professionals in diagnosis tasks both in terms of
speed and accuracy when trained on large datasets. This work is an effort to develop a fast and
accurate Al model for covid-19 diagnosis trained on a small dataset. We developed an ensemble
model consisting of a 3D CNN LeNet-based model and a 2D Convolutional-Like Vision
transformer to diagnose CT scans as covid-19 and healthy. A total of 508 CT scans were used to
train the model as a subset of the publicly available MosMed dataset. This results in an accuracy

of 90%, specificity of 92%, and a sensitivity of 88%.
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OZET

Yiiksek 6liim oranina sahip olan Covid-19, yaklasik {i¢ y1l once tespit edildi. Seyahat ve ihracat
kisitlamalarinin daha uzun siire tutulmasinin miimkiin olmayacag1 durumdayken, asilara direngli
yeni varyantlar hala ortaya ¢ikmaya devam etmekte. BOyle bir hastaligin dogru ve hizl teshisi,
kiiresel yayilimini azaltmak i¢in ¢ok dnemlidir. Bilgisayarl1 Tomografi (BT) taramalarinin Covid-
19 tanist i¢in en hassas yontem oldugu gosterilmistir. Ancak, kalifiye radyologlarin azhig1 ve
covid-19 hakkinda smirl bilgi ve veri olmasi nedeniyle BT taramasini okuyarak hastali1 teshis
etmek uzun siiren bir islemdir. Biiylik veri kiimeleri {izerinde egitilen bilgisayar goriintiisi,
tanilama stireglerinde uzmanlara destek amagli olarak hem hiz hem de dogruluk acgisindan basarili
bir sekilde kullanilmistir. Bu c¢alisma, kiigiik bir veri kiimesi tizerinde egitilmis covid-19 tanisi
icin hizli ve dogru bir Al modeli gelistirmesi {izerinedir. BT taramalarindan covid-19 veya
saglikli teshisi yapan, 3D CNN LeNet tabanli bir model ve 2D Evrisimli-benzeri goriintii
doniistiiriictiden olusan bir kolektif model gelistirdik. Modeli egitmek icin, agik kaynak olan
MosMed veri kiimesinden bir alt kiime olarak toplam 508 BT tarama kullanilmistir. Bu, % 90

dogruluk, % 92 6zgiilliikk ve % 88 hassasiyet ile sonuglanmaktadir.
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1. INTRODUCTION

1.1. Deep Learning for Medical Imaging

Medical imaging is a term used to refer to images or visual representations of
the interior of the body taken for medical analysis or intervention. Accurate analysis
of these images is necessary as they are widely used for many diseases’ diagnosis
and treatment planning. There are many types of medical images; the most used
ones include radiography (X-Ray), ultrasound, magnetic resonance imaging (MRI),
and tomography (CT, PET). The large number of medical images taken each year,
the longer amount of time needed to accurately analyze them due to their
complexity, and the limited amount of skilled radiologists all derive the need for a
technological solution. The use of computers in medical image diagnosis automation
has been studied since the 1960s [1,2]. However, systematic development of a
computer-aided diagnosis system using machine learning image processing
techniques started as late as the 1980s [3,4]. The main goal of a CAD system, unlike
an automated diagnosis system, is to assist radiologists in diagnosis as a second
opinion. This approach is more suitable for a medical setting, as well as more
achievable with the hardware and technological limitations. The development of
CAD systems continued using traditional image processing techniques such as
difference-image and edge enhancement. But since the results of using these
methods were not accurate enough, they had a very limited presence in clinics. In
later years, deep learning proved its superior performance to traditional methods in
many different tasks and presented a new opportunity for developing highly
performing CAD systems. Deep learning systems can analyze a huge amount of data
in a very short amount of time while keeping high accuracy and precision. In a study
performed by Stanford Academic Medical Center, while radiologists labeled 420
images in 240 minutes on average, the Al model used in their study labeled the same
data in 1.5 minutes [5]. Its high accuracy and precision are also reliably consistent

since it doesn’t get tired or distracted. It also learns to diagnose new diseases



relatively fast. That can be observed by the number of published scientific papers
and Al models created for the novel coronavirus (covid-19) diagnosis within a
month after it was declared a pandemic. That fast-forwarded delivers an accurate

diagnosing tool even to remote areas.

1.2. Convolutional Neural Networks

1.2.1. Architecture

CNNs are created to mimic how the human brain recognizes objects. The
building blocks of CNNs are called artificial neural networks. Similar to the brain,
each neuron holds specific information which in total can understand the
characteristic features of an image. For example, consider a CNN model that
recognizes pictures of cats and dogs. The model consists of different layers. The
first layer is the input layer, taking in cats' and dogs' photos. In the training process,
these photos are labeled as 'cat' or 'dog'. In the next layer, the model would be
looking for certain features in the image. The first neuron of that layer might be
looking for triangular ears; the second could be the shape of the tail, or whiskers.
The next layer of neurons could be looking for even finer details. These are called
hidden layers since developers cannot exactly know what each neuron is measuring.
In each layer, the mathematical operation called “convolution” is applied. In
mathematics, convolution between two functions produces a third function that
shows how the shape of one function is changed by the other. In CNNss, the first
function is the input of the layer, the second function is the weights in the neurons
of the layer, and the resulted function is the output of the layer where the input has
been affected by the weights. Therefore, each time a new image passes through these
layers it gets a score of how identical each part of it is to the feature of the neuron.
Typically, each CNN layer has a nonlinear activation function followed by a pooling
layer. The max-pooling layer modifies the output to be more invariant to small
changes in the input layer by taking the maximum output within a rectangle. At the

end of a CNN model and after the CNN layers are usually “Dense” or fully



connected layers where a total score is computed for which category the image is

closest to.

CNN model architectures vary from one model to the other, depending on the
number of layers, neurons, the connections between the layers, and the types of
layers used. Different architectures yield different results in different applications.
A commonly used classification model is AlexNet. AlexNet architecture consists of
5 convolutional layers and 3 fully connected layers. In between the convolutional
layers, there are max-pooling layers for generalization and each layer uses ReLU as
an activation function for non-linearity. The depth of the convolutional layers
increases and the height and width decrease as we go deeper in the network. The
size of the used filters for convolution also decreases. Therefore, the network
converts the 2D weights, step by step, into a vector without losing the spatial
information of the images. Finally, we reach the fully connected layers ending with

a softmax activation function to find the correct class.
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Figure 1.1. Architecture of AlexNet, after [11]

1.2.2. Training

Training a CNN network uses a method called back-propagation. As previously
explained, each layer of the model contains weights that express the importance of
a feature towards the overall score of the input. To find the best values of these

weights, we train the model by feeding in the labeled input data. A score is



calculated and then compared against the given label through a loss function. Then
back-propagation is used to modify the weights according to the loss function
results. These steps are repeated till the end of training. There are some commonly
used loss functions for CNNs including Mean Squared Error Loss (MSE), Mean
Absolute Error Loss (MAE), Binary and categorical cross-entropy, etc. In addition
to model architecture and loss function, several parameters should be considered
when training to achieve the best performance of the model. These are usually called
hyperparameters and they include learning rate, number of epochs, and batch size.
Unfortunately, no formula can compute the best parameter values for a specific
application. The Hyperparameter tuning process was handled using a set of trials.
Lately, several frameworks were developed both commercially and open source that
can help speed up the tuning process by training the model with different parameter

values simultaneously and comparing the results.

1.2.3. History

The beginning of the Convolutional Neural Networks dates back to the early
1980s. The first trained CNN model was created by LeCun et al. [6] to classify
handwritten digits. CNNs were quickly adopted by the industry, the AT&T research
group developed a CNN model to read checks [7] then used by the NEC, and
Microsoft used some CNN-based OCR and handwriting recognition systems [8]. To
this day, Facebook, Google, and IBM among a list of companies remain some of the
biggest contributors to CNN research. In medical applications, CNN was first
introduced in 1993 for lung nodule detection in chest radiographs [9]. In the same
year, CNNs were used for the recognition of mammographic microcalcifications
[10]. These models would easily replace traditional image processing techniques as
CNNs are insensitive to noise, blur, contrast, etc. CNN architectures since then
became increasingly complicated, deeper models were created, pooling layers were
added and rectified linear unit was used as activation function rather than the typical
sigmoid function. To decrease the chance of over-fitting, dropout layers and batch

normalization were introduced. Also transferred learning was introduced, increasing



the accuracy of applications with limited training data available. The first most
commonly used CNN architecture for transfer learning was introduced in 2012 as

AlexNet [11]. Different CNN architectures and their uses will be discussed next.

1.3.  Transfer learning

Training CNN architecture from scratch is not always the best choice. When
dealing with medical imaging in most cases the amount of labeled data is limited.
In that case, transfer learning with an off-the-shelf model is usually used.

Transfer learning is one of the commonly used techniques to ensure better
accuracy when using a small amount of data for training. The idea of transfer
learning is to use a pre-trained CNN model, freeze the first number of layers and
then train the model on new data for the specific application. This makes better use
of the limited available data as it is used only to train the model on the specific
features that the dataset contains rather than waste most of it on training the model
to extract generic features. Sometimes referred to as transfer of knowledge, the
method uses the pre-trained model’s knowledge of extracting general features and
then uses the small dataset to train the model specifically for the new application.
This is based on Yosinski et al. [12], who show that the first layers of CNNs contain
generic features and then the features become more specific as we go to deeper CNN

layers.

1.4. Classification

Classification models are CNN models trained to classify images to a set of
labels. Different classification models differ in depth, layer sizes, layer types, and
layouts. There are many famous classification architectures and pre-trained models
than proved high accuracy in different applications. These models include VGG,
ResNet, Inception net, etc. For example, VGG-16 [13] architecture consists of 11
convolutional layers split into 5 stages, the width and length dimensions of

convolution layers are decreased as we go into the next stage while the depth



increases. Activation functions for all convolutional layers are ReLU and every
stage is followed by a max-pooling layer. The stages are then followed by 3 fully

connected layers and a softmax activation function at the output layer.

1.5. Detection

Object detection models are different from classification models since they find
the place of the detected object rather than classifying the whole image with a label.
This also allows the model to find and classify more than one object in an image if
present. Object detectors use bounding boxes to mark the object’s place in an image,
therefore, the output of the model is the prediction and the size and coordinates of

the bounding box for each found object.

Detection methods can be divided into two main categories based on their way
of finding objects in an image, region proposal methods and sliding window
methods. The first group of object detectors tries to find regions of interest before
applying the classification problem. These methods consist of several stages, at least
two models. The first stage has two networks, a backbone network is classification
architecture such as ResNet or VGG, and a region proposal network that proposes a
huge number of regions, in this stage the model finds the region of interest. The
second model classifies the objects and finds their bounding boxes. Whether it has
two or more models, each model has to be trained separately, making it slower and
harder to train. Moreover, since these methods work in different consecutive stages
their speed in real-time applications is relatively slow compared to direct
classification methods. In this family of object detectors come R-CNN, SPP-net,
Fast R-CNN, and Faster R-CNN.

The second group of object detectors aims to reduce time expense by applying
global regression/ classification directly to the image without searching for regions
of interest. This object recognition method is relatively faster than the prior since

they do not have many stages and do not try to find the exact boundaries of an object.



Therefore, they are mainly used for applications where speed is more important than
accuracy. These methods include YOLO, SSD, DSSD, and DSOD. Most of these
models depend on single-shot learning, where the data go through a single forward

propagation of the network.

1.6. Segmentation

1.6.1. Semantic Segmentation

Semantic segmentation classifies objects in an image based on pixels rather than
a bounding box, which results in a precise location of the predicted object. The most
commonly used model in that category is U-net. U-net is an encoder-decoder CNN
model, where the encoder part classifies an object and the decoder finds its exact
location. The encoder part can be a classification model such as VGG, or ResNet.

V-net is a 3D implementation of the U-net architecture.

1.6.2. Instance Segmentation

Instance segmentation is a recent approach that integrates the goals of object
detection with semantic segmentation. It detects object labels with bounding boxes
while segmenting a mask for each object instance. Thus, instance segmentation
models can detect multiple instances of the same label objects and give their pixel-
precise location in the image. This is possible by using ROI-based detection model
architecture, ex: faster R-CNN, then adding a branch for predicting segmentation

masks on each ROI. Famous models of this type are Mask R-CNN and Deeplab.

1.7. Data

Since in supervised learning the model learns from the given annotated data, it
is especially important to create a suitable dataset for the application. The first step

of creating a dataset is data collection. There are multiple available datasets for



medical applications such as INbreast [14], The Lung Image Database Consortium
(LIDC), and the Image Database Resource Initiative (IDRI) lung nodules dataset
[15], etc. Some of these datasets can be used directly, others need some pre-
processing. However, not every application has an online public dataset available.
In that case, data need to be collected from hospitals or medical institutions. A
dataset should also be split, typically into train, test, and validation. The train and
test sets are used during training for updating weights through back-propagation and
testing the accuracy of the model while training. The validation set is used to

evaluate the performance of the model after training is finished.

1.7.1. Augmentation and Synthetic Data

In many cases, data augmentation is used to increase the amount of data in our
dataset. Data augmentation creates data by altering the images in the original dataset
by shifting, rotating, etc. These transformations can be slightly done to every image
numerous times, producing a large amount of data. Augmented data help increase
the accuracy of training but also can contribute to over-fitting since the variation
between the data is slight. Another approach to increase the amount of data in a
dataset is to use synthetic data. Unlike augmentation, synthetic data are not just
slight alterations to existing data, but it is the creation of new data after
understanding how the existing data is structured. There are two main approaches

two creating synthetic data, one uses CNNs and the other uses GANSs.

1.7.2. Preprocessing

After all the previous steps are taken and the dataset is completed, there is one
last step to do before feeding the data directly to the model for training, which is
data pre-processing. Pre-processing is the process of editing the images to fit into
the model architecture and simplify the numeric representation of the image. The

first and most common step of preprocessing is resizing and/or cropping the images



to drop the resolution for faster training, focus on the region of interest, or most
importantly match the size of the input layer of the model. Standardization is also
important to make all images' pixel values lie in the same range, ex: [0, 1]. Other
common edits are histogram equalization or normalization for eliminating the
effects of different lighting, and noise filtering for removing blur or extra sharpness.
The pre-processing function is then applied to the dataset before training as well as

any new input for prediction when using the model after training.



2. PURPOSE

Since the discovery of the novel Coronavirus Disease (SARS-Cov-2), to date,
there have been over 520 million confirmed cases worldwide and over 6 million
deaths as reported by the World Health Organization [16]. The disease was declared
a pandemic in February 2020, and health ministries all over the world started dealing
with the exponentially rising number of cases. Computed Tomography (CT) scans
proved to be the most reliable imaging to screen the disease and its development in
patients [17, 18]. However, recognizing the effects of the new disease correctly from
scans as well as its severity is a difficult task even for trained experts. The amount
of time it takes radiologists and other health care providers to learn about the new
disease and its manifestations on different types of medical imaging is dangerously
long for such a critical situation. The use of deep learning can help quickly transfer
the information needed to diagnose and give a prognosis to the new disease
internationally. Moreover, deep learning-based diagnostic systems proved to be
faster than radiologists without sacrificing accuracy [19]. The performance of
radiologists using a deep learning diagnostic system is much superior in terms of
speed, accuracy, and recall. All of these facts make Al-based systems extremely

desirable in the current medical situation.

The main purpose of this dissertation is to create a deep learning model for
covid-19 diagnosis. The CNN-based model is to perform the classification process
on CT scans with accuracy on par with radiologists and faster performance. The
model should be beneficial to be used by radiologists to increase diagnosis accuracy
and save experts’ and patients’ time. It is considered a second opinion system or a
computer-aided diagnostic system as it does not aim to replace the role of a
radiologist but rather to support the expert's decision-making process by providing
fast reliable predictions. There are five main components of such a system; data
collection, image processing, model architecture and training, optimization

methods, and finally validation of results.

10



The first component, data, needs to be discussed in terms of acquisition and
augmentation. Training a high accuracy model requires relatively high amounts of
medical imaging data. However, especially for a new disease, the available data is
scarce. To guarantee the true performance of the model, the used data needs to be
verified or acquired from an approved source. The requirement of huge amounts of
data can easily result in false high accuracy if the training data contains duplicates
or incorrectly manipulated or labeled images. For example, in the Digital
Mammography Dream challenge in 2016, a huge dataset was presented, and the
winning teams created highly accurate deep learning but with a false positive rate
much higher than a radiologist. This resulted from the low-quality labeling of the
data [20]. Thus, one good source of public data would be one approved by a known
medical or research institution. Acquiring data directly from hospitals is another
reliable method; however, hospitals need to comply with the laws and regulations
of patient privacy, which differ from one country or region to another. This includes

redacting some patient information from the data, and/or getting written consent.

After acquiring the base data for training, to reduce the overfitting of the model
and increase accuracy, data augmentation needs to be applied. The traditional way
of augmenting data is adding copies of manipulated base images by changing their
rotation, scale, shear, etc. Many libraries achieve this, including Opencv and Keras.
This increases the amount of training data thus increasing accuracy by allowing
longer training epochs and decreasing over-fitting since it enables the model to be
trained on different modifications of the image. Traditional data augmentation is
generally useful in many applications however in medical applications its effect is
different. Medical images and especially CT scans taken by the same machine are
usually taken in specific orientation and scale, the difference between the machines
regarding scale, rotation, and shear is minimal. Therefore, traditional augmentation
should only be applied to medical images with limitations to account for different
machines however its effects on increasing accuracy for detecting infected lesions

on CTs taken by the same machine is negligible.

11



A more suitable data augmentation technique for medical images is using CNNss,
such as UNet or GAN. GANSs are used to create synthetic data by understanding the
shapes and occurrences of infected lesions in the original data and then imitating
them into its generated data. Unlike traditional data augmentation methods, GANs
create new images according to the ROI of the images rather than just the rotation,
scale, and so on. This produces better results on medical images both in terms of

over-fitting and accuracy [21, 22].

The second component of the system is data pre-processing or image processing.
Medical images, in general, are produced by different brands of machines with
different calibrations and technologies, producing some apparent differences in the
produced image, especially in terms of the number of pixels, pixel value ranges, and
overall brightness and contrast of the produced image. This requires a data
preprocessing step to be done for both the training data and any data used for testing
or later for prediction. Histogram equalization is one of the most used methods to
deal with brightness and contrast. Sometimes a filter is used to reduce noise.
Resizing is used to ensure the same pixel size for all images. Finally, normalization
and standardization are used to bring the pixel value range into a specific interval
that is most suitable for training. In CT scans Hounsfield units (HU) are used to
eliminate unwanted parts of each slice since they express the material of different
parts of the scan with specific values. For example, the densest material in the human
body is represented by 2000HU, so any values greater than 2000HU are unwanted
as they represent objects outside the patient’s body seen by the machine, and
therefore should be eliminated [23]. Since 1981, transfer learning has been proved
by Stevo Bozinovski to be an effective way to build accurate models with relatively
little data [24]. Using a pre-trained model on a large generic dataset and then fine-
tuning it using application-related data has many benefits. First, accuracy improves
as the used application-related data all go towards training the model on the specifics
of the ROIs to be detected rather than wasting a portion of it on training the model
from scratch. Furthermore, it offers a solution for applications with limited available

data, which is usually the case for many medical applications. Another benefit is

12



reducing the training time of the model drastically, which not only helps with the
developing process of the model to reach better performance faster, it also makes it
cheaper and more environmentally friendly. Many pre-trained models can be used
for medical applications; most of them are trained on colored generic object images
such as ResNetx150 which is based on the ResNet model architecture [25]. Other
pre-trained models are designed specifically for medical images such as MedicalNet

[26] which is a 3D black and white ResNet-based model.

Thus far, all the discussed components are the proven factors for making a CNN-
based model perform a highly accurate classification. However, the process of
developing such a model also depends highly on trial-and-error experiments. This
is where the optimization component takes place. Although we understand generally
how CNNs work, and how the mathematics of convolutional filters and gradient
descent work at formulating the classification problem, there are many factors that
we cannot determine how exactly they affect the training process or the final
performance of the model. This includes all of the model's hyper-parameters such
as batch size, size of used filters, number of layers, etc. Fortunately, in recent years
many tools have been developed to decrease the amount of time spent on
experimenting with hyper-parameters before reaching the desired performance.
Such tools make use of search algorithms such as grid search and Bayesian
optimization to help find the best parameters for the application. These frameworks
include Optuna [27] and Ray tune [28]. Moreover, some dashboards help visualize
the training process and its results using graphs and statistical analysis and make use

of parallel training such as TensorBoard.

The final component of the system is validation. Although in recent years many
deep learning-based models are created for medical applications, only a few are used
in the health care system. This has many factors, but one of the most important
factors that help a model become actively used in hospitals is the validation process.
The first aim of the validation process is to determine the performance of a

diagnostic model after training in terms of accuracy, sensitivity, specificity, and
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some predictive values. Accuracy is the most commonly used evaluation metric
although it is not enough to determine the performance of a model. A model that
always gives a negative output can have high accuracy when tested with data of
mostly negative cases. Sensitivity and specificity fix this problem; they show the
rate of true positives and true negatives respectively. But to calculate these results
the model needs to be tested on new data then the results should be validated
according to ground truth. In a medical setting, ground truth can be reached either
by consensus voting of a group of experts or by performing additional medical
testing such as PCR tests for covid-19 or a biopsy for tumor-related diseases.
Secondly, the validation process extends after the production of the model to its use
in clinics. Acceptance testing must be done before using the model in a clinic to
make sure its performance is not changing according to the local patient population
[20]. Moreover, the quality of the model’s performance must be tested for some time
to detect any malfunctions, such as biases or wrong predictions when presented with

new data features.

Finally, building up the model in the light of the previously discussed
components is a process of mixing and matching to find the best combination for
the application at hand. Next, the chosen parts are discussed in detail in terms of
data collection and augmentation, data pre-processing, choosing model architecture,
and using transfer learning for better results, optimization tools, and validation of

results.

14



3. LITERATURE REVIEW

3.1. Covid-19 Datasets

Since the outbreak of covid-19, several CT-scan datasets have been collected
and/or created to be used in Artificial intelligence research. Due to the different
privacy laws in different countries and the lengthy official procedures to get
permission for data collection from hospitals, many of the datasets used in
developing deep learning models are not available for public use. However, there
are some publicly available datasets with different amounts of patient data,
augmentation techniques, and labels. Arranged by the number of citations are the

following publicly available datasets.

Song et al. [29] collected a small dataset from 275 patients in China with covid-
19, bacterial pneumonia, and healthy cases. Zhang et al. [30] constructed a large
dataset from the China Consortium of Chest CT Image Investigation (CC-CCII) of
a total of 617,775 CT images of healthy, pneumonia, and novel covid pneumonia
complete scans collected from 4,154 patients. Wu et al. [31] collected a
classification and segmentation dataset in China consisting of a total of 144,167 CT
scan images of covid positive and negative from 750 patients. Yang et al. [32]
collected from China a total of 812 CT images for covid-19 and non-covid-19
patients. Rahmizadeh et al. [33] collected a total of 63,846 CT images from Iran of
covid-19 positive and negative from 377 patients. Morozov et al. [34] collected 1110
full CT scans from Russia with 5 labels; non-covid-19, mild, moderate, critical, and
severe covid-19 pneumonia. Vaya et al. [35] collected 163 annotated CT studies
from Valencia. Yan et al. [36] collected a total of 165,667 annotated CT images
from 861 patients in China. Wang et al. [37] collected from five hospitals in China
a total of 1418 CT scans of covid-19 positive and negative from 1391 patients.
Afshar et al. [38] collected a total of 305 scans of covid-19, healthy and community-

acquired pneumonia from Iran. Ning et al. [39] collected 19,685 CT slices from
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1521 patients in China. Yan et al. [40] collected from two hospitals a total of 828
CT scans of 618 patients with covid-19 and non-covid-19 pneumonia from China
and Canada. Tsai et al. [41] collected two datasets, one with 31,856 annotated CT
images of 110 patients, and the second with 21,220 CT images of 117 patients.
Gunraj et al. [42] constructed a large dataset of different publicly available datasets
to form 201,103 CT images of normal, common pneumonia and covid-19 of 4,501

patients from at least 15 countries.

3.2. Covid-19 Classification Models

Deep learning has been used to facilitate many tasks in the fight against the
pandemic. Nguyen et al. [43] show different Al models used for diagnosis from
medical images, data analysis for covid-19 modeling, computational biology for
vaccine and treatment development as well as Internet of Things IOT solutions that
help screen and trace patients, and Natural Language Processing models to analyze
sentiment and awareness of disease prevention policies. In the medical imaging
field, many models have been developed to perform or support diagnosis and
prognosis tasks in hospitals. These models vary both in terms of architecture and

goal. Here we list the relevant work of classification models trained on CT imaging.

Classification models can perform both diagnosis and prognosis tasks. The
diagnosis task determines whether a scan is of a covid-19 positive or negative
patient. While the prognosis task determines the severity of the disease to help
professionals plan for treatment accordingly. Diagnosis tasks are carried out with
binary classification models as follows. Yang et al. [44] developed a self-supervised
model using pre-trained DenseNet-169 [45] and ResNet-50 [25] models on the
ImageNet dataset [46]. Jaiswal et al. [47] use a pre-trained Dense-Net-201 [45] on
the ImageNet dataset. Yang et al. [48] trained a DenseNet-based architecture on
high-resolution ct scans. Wang et al. [49] use a pre-trained GoogleNet Inception v3
[50] on the ImageNet dataset. Bai et al. [51] used a pre-trained EfficientNet B4 [52]
on the ImageNet dataset. Pathak et al. [53] use a pre-trained ResNet-50 on the
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ImageNet dataset. Serte and Demirel [54] created an ensemble model of several
ResNet-50 models combining results using majority voting. Mishra et al. [55]
developed an ensemble model combining results from 5 modes: VGG16 [56],
InceptionV3, ResNet50, DenseNet121, and DenseNet201 using majority voting.
Rahimzadeh et al. [57] created a model using ResNet50V2 as the backbone with a
Feature Pyramid Network (FPN) and classification layers. Goel et al. [58] used the
ResNet50 model after generating data using a generative adversarial network
(GAN) optimized by the whale optimization algorithm (WOA). Wu et al. [59]
developed a multi-view fusion deep learning model that uses the axial, coronal, and
sagittal views of a scan. He et al. [60] proposed a Self-Trans model, a self-supervised
model with transfer learning comparing different large datasets that are commonly
used for transfer learning. Chen et al. [61] developed a contrastive learning model

with a pre-trained encoder.

Other classification models are used to differentiate between covid and other
pneumonia-related diseases. Others are used for prognosis as they could classify the
severity of covid in the lungs. These models use categorical classifications as
follows. Ning et al. [62] use CT scans alongside other clinical findings such as blood
and urine tests to train a VGG-16-based model integrated with an ANN model to
classify the severity of the disease. Singh et al. [63] proposed an ensemble model of
DenseNet201, ResNet152V2, and VGG16 to classify scans as covid-19,
tuberculosis, pneumonia, or healthy. Xu et al. [64] developed a ResNet-18-based
architecture combined with a location-attention mechanism to classify scans as
covid-19, influenza-A viral pneumonia (IAVP), and irrelevant to infection (ITT).
Wang et al. [65] designed a novel prior-attention residual learning block by coupling
two 3D ResNet models and integrating prior-attention mechanisms to classify scans
as covid-19, interstitial lung disease (ILD), and non-pneumonia. Polsinelli et al. [66]
developed a SqueezeNet-based [67] model to classify scans as covid-19,
community-acquired pneumonia, and healthy. Ouyang et al. [68] created an online

attention module with a 3D CNN to classify scans as covid-19, CAP, and healthy.
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Yan et al. [69] use a multi-scale convolutional neural network model (MSCNN) to

classify scans as covid-19 or CAP.

Haseeb et al. [70], show their extensive survey results in an informative table,

similarly we represent the literature review results in Tables 3.1 and 3.2.

Table 3.1. List of top publicly available covid-19 CT scan datasets

Author’s Name

Location

Data Structure

Song et al. [29]

China

275 patients with covid-19,
bacterial pneumonia, and
healthy cases

Zhang et al. [30]

China Consortium of

617,775 CT images of healthy,

Chest CT Image pneumonia, and covid-19 full
Investigation (CC- scans collected from 4,154
CCII) patients
Wu et al. [31] China 144,167 CT scan images of
covid positive and negative
from 750 patients
Yang et al. [32] China of' 812 CT images for covid-19
and non-covid-19 patients
Rahmizadeh et al. Iran 63,846 CT images from of
[33] covid-19 positive and negative
from 377 patients.
Morozov et al. [34] Russia 1110 full CT scans from with 5
labels; non-covid-19, mild,
moderate, critical, and severe
covid-19
Vaya et al. [35] Valencia 163 annotated CT studies of
covid-19
Yan et al. [36] China 165,667 annotated CT images
from 861 patients
Wang et al. [37] China 1418 CT scans of covid-19

positive and negative from 1391

patients
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Afshar et al. [38] Iran 305 scans of covid-19, healthy
and community-acquired
pneumonia
Ning et al. [39] China 19,685 CT slices from 1521
patients
Yan et al. [40] China and Canada 828 CT scans of 618 patients
with covid-19 and non-covid-19

Tsai et al. [41] USA Two datasets, one with 31,856

annotated CT images of 110
patients, and the second with
21,220 CT images of 117
patients

Gunraj et al. [42]

At least 15 countries

201,103 CT images of normal,
common pneumonia and covid-
19 0f 4,501 patients

Table 3.2. List of top covid-19 binary classification models using CT scans

Source/Author Dataset Framework/Approach Performance
Information
Yang et al. 49 covid-19 CT | self-supervised model | Accuracy: 0.89
[44] images from 216 using pre-trained Fl-score: 0.90

patients, and 463
non-COVID-19

DenseNet-169 and
ResNet-50 on the
ImageNet dataset

a pre-trained Dense-
Net-201 on the
ImageNet dataset

Accuracy: 0.85
Fl1-score: 0.86

a DenseNet-based
architecture on high-
resolution CT scans

Accuracy: 0.92
Sensitivity: 0.97

Specificity: 0.87
F1-score: 0.93

CTs
Jaiswal et al. COVID-CT-
[47] Dataset
Yang et al. 146 covid-19
[48] patients, and 149
normal patients,
High Resolution
CT scans
Wang et al. 453 COVID CT
[49] images

a pre-trained
GoogleNet Inception
v3 on the ImageNet
dataset

Accuracy: 0.829
Sensitivity: 0.81

Specificity: 0.84
Fl1-score: 0.77
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Bai et al. [51]

521 covid-19, and

a pre-trained

Accuracy: 0.96

665 non-covid-19 | EfficientNet B4 on Sensitivity: 0.95
pneumonia the ImageNet dataset | Specificity: 0.96
Pathak et al. 413 covid-19 a pre-trained ResNet- | Accuracy: 0.93
[53] images, and 50 on the ImageNet | Specificity: 0.95
439 images of dataset Sensitivity: 0.91

normal or non-

covid-19 CT
scans

Serte and 214 covid-19 CT | an ensemble model of | Accuracy: 0.84

Demirel [54]

scans, and 105
normal CT scans

several ResNet-50
models combining
results using majority
voting

Sensitivity: 0.1
Specificity: 0.8

Mishra et al.
[55]

360 covid-19 CT
scans, and 397
normal CT scans

an ensemble model
combining results
from 5 modes:
VGG16,
InceptionV3,
ResNet50,
DenseNetl121, and
DenseNet201 using
majority voting

Accuracy: 0.883
F1-score: 0.867

Rahimzadeh et
al. [57]

95 covid-19 CT
scans, and
282 normal CT
scans

a model using
ResNet50V2 as the
backbone with a
Feature Pyramid
Network (FPN) and
classification layers

Accuracy: 0.985
Sensitivity: 0.95

Goel et al. [58]

1252 covid-19 CT

images, and 1230

non-covid-19 CT
images

ResNet50 model after
generating data using
GANSs optimized by
WOA

Accuracy: 99.22
Sensitivity: 99.78
Specificity: 97.78
F1-score: 98.79

Wu et al. [59]

368 covid-19 CT
scans, and 127
non covid-19
pneumonia

a multi-view fusion
deep learning model

Accuracy: 0.7
Sensitivity: 0.73
Specificity: 0.615

He et al. [60]

216 covid-19 CT
scans, and 133

a self-supervised
model with transfer

normal CT scans

learning

Accuracy: 0.86
F1-score: 0.85
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Chen et al. [61]

216 covid-19 CT
scans, and 171
normal CT scans

a contrastive learning
model with a pre-
trained encoder

Accuracy: 0.868
Sensitivity: 0.872

Ouyang et al.
[68]

3389 covid-19 CT
images, and 1593

CAP CT images

an online attention
module with a 3D
CNN

Accuracy: 0.875
Sensitivity: 0.869
Specificity: 0.9
F1-score: 0.82

Yan et al. [69]

416 covid-19 CT
scans, and 412
non-covid-19
pneumonia CT
scans

a multi-scale
convolutional neural
network model

Accuracy: 0.875
Sensitivity: 0.89
Specificity: 0.857

Table 3.3. List of top non-binary covid-19 classification models using CT scans

Source/Author

Dataset

Information

Framework/Approach

Performance

Ning et al. [62]

1,521 patients
with negative,
mild and severe
covid-19 CT
scans with 130
clinical features

a VGG-16-based
model integrated with
an ANN model to
classify the severity

Accuracy:
0.95, 0.83, 0.88
Sensitivity:
0.85, 0.88, 0.71
Specificity:
0.998, 0.79, 0.93

Singh et al. [63]

3038 healthy,
2890 non-covid-
19 pneumonia,
3193
tuberculosis, and
2373 covid-19
CT images

an ensemble model of
DenseNet201,
ResNet152V2, and
VGG16

Accuracy
(overall): 0.988
Sensitivity
(overall): 0.988
Specificity
(overall): 0.988
Fl-score
(overall): 0.98

Xu et al. [64]

175 healthy, 224
influenza-A, 219
covid-19 CT
scans

a ResNet-18-based
architecture
combined with a
location-attention

Accuracy
(overall): 0.87

mechanism
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Wang et al. [65] 936 healthy, a novel prior- Accuracy:
2406 ILD, 1315 attention residual 0.915, 0.89, 0.93
covid-19 CT learning block by Sensitivity:
scans coupling two 3D 0.82, 0.885,
ResNet models and 0.876
integrating prior- Specificity:
attention mechanisms | 0.935, 0.9, 0.955
Polsinelli et al. A total of 397 SqueezeNet-based Accuracy
[66] CT scans of model (overall): 0.85
healthy and non-
covid-19

pneumonia, and
360 covid-19
CT scans
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4. MEDICAL INFORMATION

4.1. Diagnosis

The main goal of the Al system is to correctly diagnose covid-19 patients from
their CT scans with accuracy on par with radiologists. Thus, it is needed to analyze
the problem from both medical and technological sides. First, we discuss CT scans,
why they are a good medium to study covid-19 effects, the manifestations of covid-

19 on CT scans, and how radiologists diagnose it.

Computed Tomography (CT) scans are a type of medical imaging where a
computer is used to process a combination of X-ray measurements taken from
different angles. The result of a lung CT scan is a large number of cross-sectional
X-ray images of the lung, arranged in order from the top to the bottom of the
patient’s chest. This results in a highly detailed volume of images of organs, tissues,
bones, and other elements that cannot be otherwise seen without invasive
procedures. CT scan tests include an amount of radiation, however, some developed

software can help get a highly detailed scan with reduced radiation dosages.

In the case of covid-19, the current standard test to definitively diagnose the
disease is the transcription-polymerase chain reaction assay (rt-PCR). However, to
understand the extent of the damage produced by the disease, track its progress, and
create treatment plans, analyzing radiological images is necessary. Unlike CT scans,
Chest X-ray (CXR) has less radiation but is not sensitive enough for pulmonary
abnormalities detection, especially at the early stage of the disease. CT scan is
proven to be effective for distinguishing covid-19 abnormalities as well as

estimating the evolution of the disease [71]
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To date, many studies have been published about specific covid-19 findings in
CT scans [72]. However, most of these studies rely on experience as there is a
deficiency in radiologic-pathologic correlations studies [73]. This makes the
collective knowledge of diagnosing covid-19 from CT scan based mainly on
experience or in technological terms; data. Similar to a deep learning model,
radiologists learn some features of covid-19 ct scans from confirmed cases and

diagnose new scans by searching for similar findings.

The CT scans of covid-19 patients present the effects or damage the disease
causes in the patient's lungs which have some unique characteristics that we can
differentiate from the effects of pneumonia or other lung-damaging diseases.
Radiologists screen for the following when assessing a potential covid-19 ct scan:
ground-glass opacities (hazy or grey areas caused by air displacement by fluid),
consolidation (a region of lung tissue that became of airless solid consistency),
reticular pattern (a collection of small linear opacities that can appear like a net
without significant ground-glass opacity), mixed pattern (combination of all
previously stated findings) and honeycomb pattern [74]. The most common findings

of covid-19 are ground-glass opacities, bilateral abnormalities (on both lungs),

lower lobe involvement, and posterior predilection [73].

Figure 4.1. Covid-19 pneumonia in two patients showing bilateral areas of ground-

glass opacities (arrows) in a peripheral distribution. Adapted from [73].
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Figure 4.2. RT-PCR-test—proven covid-19 patient shows consolidation surrounded
by ground-glass opacity in the right lobe (arrow) and consolidation in both lower

lobes (arrowheads). After [73]

4.2.  Scoring

After recognizing the discussed patterns, a scoring system is needed to quantify
the severity of the disease. Similar to diagnosis there are many publications with
different methods for scoring covid severity from medical imaging [71]. As Chest
X-ray (CXR) is typically used for monitoring the disease progression since it
exposes the patient to fewer radiations, there are several scoring systems based on
X-ray images. For CT images, one method is called Chest Computed Tomography
Severity Score (CT-SS) which uses lung opacification as an equivalent for extension
of the disease in the lungs. The lung is divided into 20 regions, each region is
evaluated and given a score of 0,1 or 2 depending on the parenchymal opacification
involved: 0%, 1-50%, or 51-100%, respectively. The scores are then added up to get
a total score of range 0-40 points [75]. Another method is Total Severity Score (TSS)
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where both lungs are divided into 5 lobes, each assessed for inflammatory
abnormalities including ground-glass opacities and consolidation, then gives a score
for each lobe in the range of 0-4 points depending on the percentage of the involved
lobe: 0 (0%), 1 (1-25%), 2 (26-50%), 3 (51-75%), or 4 (76-100%). The TSS is then
calculated by summing the lobes’ points [76].

4.3. Temporal Development

Disease progression starting from first symptoms prevalence can be roughly
divided into 4 stages; early-stage days 0-5 where ground-glass opacity is prominent,
progressive stage days 6-8 where ground glass opacities increase and crazy-paving
appears, peak stage days 9-13 where consolidation increases and late-stage 14 days
and more where consolidation and ground-glass opacities gradually decrease [73].
In a more detailed study, it is shown that before symptoms onset only 4 out of 10
patients present abnormalities in CT scans, 2 present pure ground-glass opacities,
and 2 present consolidations [74]. Illness days 0-5 after symptoms onset, ground-
glass opacity is the most prominent with a percentage of 62%, crazy-paving pattern
comes in second place with 24%, and consolidation with 23%. Illness days 6-11
present decreasing ground-glass opacities, decreasing crazy-paving pattern, and
consistent consolidation with 24%. Illness days 12-17 ground-glass opacity drops to
45% and a large increase in mixed patterns occurs from 1% to 38%. The reported

results are consistent with other temporal studies [77,78].
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Figure 4.3. CT scans of coronavirus 2019 pneumonia progression. 4 Scan obtained
on illness day 3 shows ground-glass opacity with a crazy-paving pattern in the
right lower lobe. B, Scan obtained on illness day 7 shows crazy-paving pattern
superimposed on ground-glass opacity with increased extent. Note that patchy

ground-glass opacity is newly developed in the left lower lobe. C, Scan obtained
on illness day 12 shows the absorption of abnormalities, with pure ground-glass
opacity left in both lower lobes. D, Scan obtained on illness day 17 shows obvious
absorption of abnormalities. Only small pure ground-glass opacity is observed in
both lower lobes. The patient was discharged on illness day 20. The day of initial
symptom onset was defined as illness day 0. After [74].
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5. METHODS

5.1. Data

The model uses chest CT scans as input. 3D chest CT scans are acquired using
computed tomography scanners that take X-ray images of the chest from different
angles, then process them to produce a number of highly detailed 2D slices that
constitute a volume or a 3D image of the patient’s chest. The 2D slices are arranged
to show the lungs and chest area from top to bottom. The sequence of the slices is
important when using the data in a 3D format to keep the volumetric information.
The thickness of the tissue represented in each slice varies depending on the used

machine; therefore, the total number of 2D slices in a CT scan varies accordingly.

5.1.1. Dataset

The used dataset for this project is the publicly available MosMed dataset
published by the Center of Diagnostics and Telemedicine in Russia [34]. It consists
of 1110 chest CT scans of 1110 anonymized patients, obtained between March and
May of 2020, and provided by municipal hospitals in Moscow, Russia. The scans
are split into 4 folders based on the severity of the disease: CTO folder contains 254
scans of healthy lung images (non-consistent with pneumonia including covid-19),
CT1 contains 684 scans of mild covid-19 infection or less than 25% ground-glass
opacities involvement in lungs, CT2 contains 125 scans of moderate covid-19
infection with ground-glass opacities involvement between 25% and 50%, CT3
contains 45 scans of severe covid-19 infection with between 50% and 75% ground-
glass opacities and consolidation involvement, lastly CT4 contains 2 scans of critical
covid-19 infection with more than 75% ground-glass opacities, consolidation, and

reticular changes.
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Figure 5.1. MOSMED dataset number of scans according to each class

The data is uploaded in NIfTI format which was converted directly from the
original DICOM format of the scans. DICOM is the standard format for medical
imaging while NIfTI is a file format usually used in neuroimaging but sometimes
used for other types of medical imaging. The main difference between DICOM and
NIfTI formats is that DICOM stores a scan as 2D slices, whereas NIfTI stores a scan
as a 3D volume. Currently, the most efficient Python library to process NIfTI data
is Nibabel [79].

40 O

Figure 5.2. 3D visualization of a covid-19 patient chest ct scan acquired from [34]

after segmentation.
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Figure 5.3. Original 2D slice number 27 of the same covid-19 patient acquired
from [34].

5.1.2. Pre-Processing

The data pre-processing phase of this project consists of multiple functions, both
on the 2D and 3D levels. On the 2D level, the following methods are applied to each
slice individually. The first is used to omit unwanted parts of the slice and create a
better system for the pixel values. CT scans use Hounsfield units (HU) to express
the material of different parts of the scan. Different tissues in the human body absorb
different amounts of the scanner’s emitted X-ray. Hounsfield units are used to
represent the amount of X-ray absorption, and therefore the material of an element
in the scan. For example, air is expressed as -1000 HU, water at 0 HU, and very
dense bones at 2000 HU [79]. Notice in figure 2, the heart and other soft tissues
have a similar gray shade while bones have lighter almost white color, and areas
inside the lungs are darker as it is mostly air. From this information, it is safe to set
pixels of values greater than 2000 to zero, since there couldn’t be a material in the

patient’s body higher than 2000 HU which means these pixels are out of the scan.

The second function is further segmentation to get the region of interest

(ROI) or saliency information of each scan. Skimage python library is used to find
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different regions in each slice using the region props function. The result is a

segmented slice with only the ROI for covid cases, which are the lungs only.

normalized resized

segmented

Figure 5.4. Segmented 2D slice number 27 of the same covid-19 patient.

The third function is Normalization. After getting rid of unwanted pixel data,
and keeping only the region of interest pixels, it is important to normalize data
images to ensure that each pixel has a similar data distribution. This eliminates data
inconsistency and makes the convergence of the model faster when training [80].
The normalization function calculates the mean and standard deviation of the image
and subtracts pixels by the mean and divides by the standard deviation. Thus,

returning the image with pixels ranging from 0 to 1.

Next, on the 3D level, it is important to prepare the scans to fit into the input
of the 3D CNN model. First, since each patient’s scan can have a different number
of slices, we can omit some of the slices at the beginning and end of a scan as the
furthest top and bottom parts of the lung do not usually contain any ROI resulting
in a dark image after segmentation. Therefore, we set a specific size for the depth of
a scan (number of slices). Secondly, we divide each scan’s slices (depth) into
batches for easier learning of the model. So, we set a specific depth size for each
batch, in this case, 40, to have all 3D inputs of the same size. Then, we rescale the
other two dimensions height and width into 144 and 144. At this point, batches of
3D data are ready to be input into the model.

The last step before training is splitting the processed dataset into train, test,

and validation sets. The first two sets are used in training and producing the model’s
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initial evaluation metrics. Then the validation set is used to evaluate the model on
new data after training. The dataset is split into 60% training (304 cases), 20% test
(104 cases), and 20% validation (100 cases). However, for K-fold cross-validation,
we combine training and validation sets and use sklearn library’s Kfold algorithm

to split data randomly into train and validation for each fold.

CT0 CT1 -CT2 =CT3 =CT4

Healthy

Covid

0 100 200 300

Figure 5.5. Our used balanced subset of MOSMED dataset for classification tasks

Data split
Train
Test
Validate
0 100 200 300 400

Figure 5.6. Data split of the balanced subset of MOSMED dataset used for

classification

5.2. Models

As mentioned before, many popular models created for the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) perform well on many applications
by using the trained model directly or after using transfer learning. Convolutional
models and Attention models have been performing increasingly better, proving

their capabilities in image classification. In order to choose an appropriate model for
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diagnosing covid-19 in CT scans, two aspects of covid-19 diagnosis need to be taken
into consideration. The first is the features of covid-19 patterns such as ground-glass
opacities and consolidations. The second is the placement of the found features in
the lungs. The proposed model is an ensemble model that covers the most important
points for covid-19 diagnosis by combining a 3D CNN model for considering
volumetric information, and a 2D attention-based model Convit for recognizing
covid-19 patterns in detail in slices of lung scan. Such a model consists of three
important components, a 3D model, a 2D model, and the combination of the results
of both models. First, we train the 3D CNN and ConViT models separately using
the same pre-processed and sampled dataset as shown in Figure 5.7. Then we train
a linear regression model using the classification output of 3D CNN on a full CT
scan as covid-19 or healthy, and the classification output of ConViT on 11 middle

slices of the same scan. This builds up the prediction flow as shown in Figure 5.8.

ConViT
model

Mosmed 2D Pre-
- ;
Dataset processing

3D Pre- | 3D CNN
processing model

Figure 5.7. Training flow of the proposed model
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Figure 5.8. Prediction flow of the proposed model

5.2.1. Volumetric Convolutional Neural Networks

To build our diagnosis 3D CNN model architecture, a LeNet-based architecture
was chosen for 3D CNN classification. A combination of different numbers of CNN
layers and filters were tested, as well as the use of different optimizing layers. The
most efficient architecture consists of 3 convolutional layers each followed by max-
pooling and batch normalization. After that, a global average pooling layer is used
before a fully connected dense layer with dropout, followed by a fully connected
output layer. All layers use the ReLu activation function except for the output layer

which uses sigmoid. The exact sizes of each layer are shown in Figure 5.9.

ya— ya— a—
| v
“"" — - | =0
LV LV LV
MaxPooling3D+ MaxPooling3D+ MaxPooling3D+
Input layer Conv3D Batch Conv3D Batch ConvaD Batch Global Average 15t
(144,144,40,1) (142,142,38,64) Normalization (69,69,17,128) Normalization (32,32,6,256) Normalization Pooling 3D (1)
(71,71,19,64) (34,34,8,128) e (16,16,3,256) (256)

Figure 5.9. Architecture of the proposed 3D CNN model
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For this model to have a balanced dataset for training we use all 254 normal
cases, all CT2, CT3, and CT4 cases which add up to 172 covid-19 cases, we then
add 83 cases of mild covid-19 folder CT1 to have a total of 254 covid-19 cases. The
balanced dataset then undergoes the mentioned pre-processing algorithm to produce

an input to the model of size (144, 144, 40).

The 3D CNN model is trained with an Adam optimizer of an initial learning
rate of 0.0001, using Keras exponential decay function with a decay rate of 0.96.
The loss function is binary cross-entropy, trained on 100 epochs, batch size of 2,
and saved best weights. Hardware used is Google colab pro virtual machines,

providing 25 GB RAM, and Tesla-P100 GPU.
The model was trained with 5-fold cross-validation giving average accuracy
0f' 95% then evaluated on a test set resulting in accuracy, sensitivity, and specificity

0 92%.

Table 5.1. Confusion matrix for 3D CNN model on test set

Predicted Negative | Predicted Positive

Actual 44 8
Negative

Actual 8 44
Positive

Many experiments were conducted to reach this performance, by modifying
data pre-processing, model architecture, and hyperparameters. The most relevant

experiments are stated in Table 5.2.
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Table 5.2. Performance results of proposed 3D CNN model

Exp. no Data Model Hyperparameters Results

1 Mosmed-508 254 LeNet based with 3 Optimizer: Adam On test set:
healthy and 254 from | 3D convolutional Learning rate: 0.0001 | Accuracy: 0.86
ctl+ct2+ct3 layers (32, 64, 128) + | with decay rate 0.96 Sensitivity: 0.88
304 train - 104 test - Dense 256 + Dropout | Batch size: 2 Specificity: 0.84
100 val + New layer 0.7 Epochs: 250
Segmentation

2 Mosmed-508 254 LeNet based with 3 Optimizer: Adam On test set:
healthy and 254 from | 3D convolutional Learning rate: 0.0001 | Accuracy: 0.875
ctl+ct2+ct3 layers (64, 128, 256) + | with decay rate 0.96 Sensitivity: 0.9
304 train - 104 test - Dense 256 + Dense Batch size: 2 Specificity: 0.85
100 val + New 128 + Dropout layer Epochs: 250
Segmentation 0.7

3 Mosmed-508 254 LeNet based with 3 Optimizer: Adam On test set:
healthy and 254 from | 3D convolutional Learning rate: 0.0001 | Accuracy: 0.86
ctl+ct2+ct3 layers (64, 128, 256) + | with decay rate 0.96 Sensitivity: 0.75
304 train - 104 test - Dense 256 + Dropout | Batch size: 2 Specificity: 0.98
100 val + New layer 0.5 Epochs: 250
Segmentation

4 Mosmed-508 254 LeNet based with 3 Optimizer: Adam On test set:

healthy and 254 from
ctl+ct2+ct3

304 train - 104 test -
100 val + New

Segmentation

3D convolutional
layers (64, 128, 256) +
Dense 256 + Dropout
layer 0.7

Learning rate: 0.0001
with decay rate 0.96
Batch size: 2
Epochs: 250

Accuracy: 0.92
Sensitivity: 0.92
Specificity: 0.92

A similar prognosis model was also trained by changing the output layer to

4 and loss function to categorical cross-entropy. Even after data sampling to balance

the amount of data in each class, a prognosis model could not be trained on such a

small dataset.
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5.2.2. Convolutional-Like Vision Transformers

Since Dosovitskiy et al.[81] introduced Vision transformers, transformers have
been increasingly used in image recognition and classification tasks. One approach
that makes use of both convolution and vision transformers is ConViT [82]. ConViT
proposes Gated Positional Self-Attention (GPSA) layers, which initially act as
convolutional layers in terms of locality but can be adjusted by a gating parameter
that controls the attention paid to position versus content. This creates a self-
attention model with soft convolutional inductive bias, combining the CNN's ability

to train on relatively small data and the great performance of flexible self-attention.

As shown in Figure 5.7, the GPSA layer is based on the combination of two
ideas, multi-head self-attention, and self-attention as a generalized convolution.

Multi-head self-attention uses queries W, and keys Wy, as well as the linear
projections of embed patches X; and X; to produce an attention filter. While
convolution property of a convolutional layer with filter size \/N, X .,/Nj 1is

generated using multi-head positional self-attention by applying the following

conditions, as shown by Cordinnier et al. [83]:

Vgos = _ah(l; _ZArll - 2Ah, 0,...0)
2
Ts i= (||5|| ,01,0,,0,...0) 5.1
VVqry = Wkey =0, Wy =1

Npis the number of heads and learnable relative position encodings of the
positional self-attention. A" is the center of attention, which is the position where
the head h pays most attention to. ™ is the locality strength, which controls how
focused the attention is around its center. Therefore, GPSA layers initially act purely
convolutional by setting the mentioned conditions, then the addition controlled by
the learned gated parameter A gives the layer freedom to escape convolutional

locality.
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Figure 5.10. Architecture of ConViT (left) and architecture of GPSA layers (right),
after [82]

Using the publicly released code and models on Github stated in the paper
[82] with some modifications, multiple experiments have been conducted for Covid-
19 diagnosis on Mosmed dataset as shown in Table 5.3. The training was conducted
using Google colab pro virtual machines, providing 25 GB RAM, and Tesla-P100
GPU. The best performing model was trained with a batch size of 16 on 50 epochs
with locality up to layer 2, locality strength of 0.5, and embed dimension of 64.
Since the public code does not include a custom dataset option, we modified the
ImageNet dataset function to load and normalize the CT data correctly by
calculating the mean and standard deviation of the used dataset instead of using the
pre-defined ImageNet values. Accuracy calculation was modified as well to obtain
accuracy for binary classification rather than the top k categories method. After
using the predefined ConViT model architectures such as convit-tiny, we created a
smaller version with 3 self-attention heads instead of the smallest model with 4

attention heads. Figure 5.11 shows the used architecture.
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Figure 5.11. Architecture of the proposed ConViT model

Table 5.3. Performance results of proposed ConViT model

Exp. [ Data Model Hyperparameter | Results

no s

1 Mosmed-508 ConViT tiny | Mixup: 0 Val
254*5 healthy and 254*5 covid Cutmix: 0 accuracy:
ctl+ct2+ct3 (including only 5 Colorjitter: 0 0.84
middle  slices) + New Batch size: 16
Segmentation Epochs: 50

2 Mosmed-508 ConViT mini | Mixup: 0 Val
254%*5 healthy and 254*5 covid Cutmix: 0 accuracy:
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middle  slices) + New

Segmentation

Batch size: 16
Epochs: 50
Locality
strength: 0.5

Local to

up
layer: 2

Embed dim: 64

ctl+ct2+ct3 (including only 5 Colorjitter: 0 0.86
middle  slices) + New Batch size: 16
Segmentation Epochs: 50

3 Mosmed-508 ConViT mini | Mixup: 0 Val
254*5 healthy and 254*5 covid Cutmix: 0 accuracy:
ctl+ct2+ct3 (including only 5 Colorjitter: 0 0.88

For testing, we load each original scan and then choose the number of slices

on which we classify the scan as covid-19 or healthy. Although most publications

choose middle slices directly, we found it better to choose slices a bit lower than the

middle since covid-19 patterns tend to affect the lower lobes of the lungs. Since each

scan contains around 40 slices, we choose slice 26 as the middle slice and we add 5

slices before and 5 slices after it to classify 11 slices. Then using the majority voting

technique, we add up classification results to find the final decision. We then

calculate the metrics for model performance, as shown in Table 5.4 and 5.5.

Table 5.4. Performance results on a test set of proposed ConViT model

Model No. of slices Accuracy Sensitivity Specificity
ConViT 13 0.79 0.6 0.98
ConViT 11 0.84 0.7 0.98
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ConViT 7 0.83 0.74 0.92

ConViT 5 0.79 0.64 0.94

Table 5.5. Confusion matrix for ConViT model on test set

Predicted Negative | Predicted Positive

Actual 49 1
Negative

Actual 15 35
Positive

A similar prognosis model was also trained by changing the number of
classes to 4. Trained with and without data sampling to balance the amount of data

in each class, a prognosis model could not be trained on such a small dataset.

5.2.3. Residual Networks

The most used models for covid-19 diagnosis are ResNet50 and ResNet101. For
comparison, we trained both ResNet50 and ResNet101 models using the same pre-
processed 2D data used for ConViT training. We used the ImageNet weights but
trained all layers without freezing so it could help the model converge faster while
learning the specifics of medical imaging rather than generic colored images of
ImageNet. We then added a fully connected layer and an output layer with a sigmoid
activation function as shown in Figure 5.12. The loss function used is binary cross-
entropy with an Adam optimizer and a learning rate of 0.0001. This trains a
ResNet50 model with a validation accuracy of 0.867 and a ResNet101 model with

a validation accuracy of 0.872.
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Figure 5.12. Architecture of the used ResNet model

For testing, we use the same method used for testing ConViT performance.

Compared to the same number of slices, the results are shown in Tables 5.6, 5.7, and

5.8.
Table 5.6. Performance results on a test set of ResNet50 model

Model No. of slices | Accuracy Sensitivity Specificity
ResNet50 13 0.83 0.80 0.86
ResNet50 11 0.83 0.82 0.84
ResNet50 7 0.78 0.80 0.76
ResNet50 5 0.80 0.80 0.8
ResNet101 13 0.87 0.88 0.86
ResNet101 11 0.87 0.88 0.86
ResNet101 7 0.85 0.90 0.80
ResNet101 5 0.83 0.90 0.78
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Table 5.7. Confusion matrix for ResNet50 model on test set for 11 slices

Predicted Predicted
Negative Positive
Actual 42 8
Negative
Actual 9 41
Positive

Table 5.8. Confusion matrix for ResNet101 model on test set for 11 slices

Predicted Predicted
Negative Positive
Actual 43 7
Negative
Actual 6 44
Positive

5.2.4. Linear Regression

After training 2D and 3D models separately, we use a linear regression model to
combine the results of the two. We use the decision of each classified slice of the
2D model along with the decision of the 3D model as input. The goal of a regression
model is to find a classification decision based on the results of both models
combined by best fitting weights and biases. The model is trained with a loss
function of binary cross-entropy and an Adam optimizer with a learning rate of 0.01.

The results of training on 50 epochs are a training and validation accuracy of 0.98.
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On the test set, the model produces a specificity of 0.92, a sensitivity of 0.88, and

an accuracy of 0.9.

Table 5.9. Confusion matrix for linear regression model on test set

Predicted Predicted
Negative Positive
Actual 44 6
Negative
Actual 5 45
Positive
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6. RESULTS

The proposed ensemble model trained on very small balanced data of 508 CT

scans, performs better than top published classification models trained on datasets

of similar size. The model is also superior for its light weight, small total number of

parameters and short time of training. The model was trained on virtual machines

provided by Google’s Colab Pro, providing 25 GB RAM, and Tesla-P100 GPU with

total training time less than two hours.

The full proposed model on test set results an accuracy of 0.9, sensitivity or

recall of 0.88, specificity of 0.92, precision of 0.88 and F1-score of 0.88.

Table 6.1. Comparing proposed model to related work

Author/model Data Approach Performance
Proposed model | 254 healthy CT | Ensemble model Accuracy: 0.9
scans, and 254 of 3D CNN and Sensitivity: 0.88
covid-19 CT ConViT with Specificity: 0.92
scans Linear Regression F1-score: 0.88

Mishra et al. [55]

360 covid-19
CT scans, and
397 normal CT

scans

an ensemble model

combining results
from 5 modes:

VGG16,
InceptionV3,
ResNet50,

DenseNetl121, and
DenseNet201
using majority

voting

Accuracy: 0.883
F1-score: 0.867

He et al. [60]

216 covid-19
CT scans, and
133 normal CT

scans

a self-supervised
model with
transfer learning

Accuracy: 0.86
Fl-score: 0.85
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Chen et al. [61]

216 covid-19
CT scans, and
171 normal CT
scans

a contrastive
learning model
with a pre-trained
encoder

Accuracy: 0.868
Sensitivity: 0.872
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7. CONCLUSION

The use of computer vision in the medical field, although increasingly beneficial
in terms of speed and confidence in diagnosis and prognosis tasks, will always have
the challenge of limited data. Medical images for new or rare diseases are scarce,
and even for common diseases are limited due to restrictions and regulations. This

makes the development of computer vision models on small datasets a critical task.

The steps taken to achieve this goal starts with preprocessing of data.
Although many data augmentation techniques are available for computer vision
tasks, medical images need to keep many of their features unchanged to avoid
information loss. Thus, in this study, we only apply segmentation and normalization
to CT scans before training. In the future, augmentation techniques with minimal
alterations of medical images, such as Mixup and CutMix, can be used to increase
the amount of data. To choose a model for a medical diagnosis task it is important
to take into consideration the specification of the disease and its manifestation in
medical imaging. Covid-19 causes ground-glass opacities, consolidation, and
reticular patterns especially at the back and lower lobes of the lungs. This gives
priority to the 3D information of a CT scan as well as the patterns in 2D slices. This
study explored different architectures and principles in computer vision to achieve
this task and proposed combining models in order to achieve good performance

using a very small dataset.

Convolutional Neural Networks have been developed for decades for
computer vision tasks and are the most expected to perform well. The 3D CNN
model makes use of the volumetric information of CT scans which is essential as
position in the third dimension plays a critical role in diagnosis. We used a 3D
LeNet-based CNN model to achieve this goal. Lately, Attention-based models have
been increasingly used in computer vision tasks. Vision transformers perform well

on images but are not used widely in medical imaging due to their small datasets.
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We used the Convolutional-Like Vision Transformer to make use of the
convolution’s ability to learn from small datasets and attention’s superior
performance. The performance of the ConViT model in this study proves the
efficiency of attention in medical imaging. With its small architecture and the much
smaller number of parameters, it performs as well as the complicated architecture of

the ResNet50 on a small dataset.

This study proposed an ensemble of a 2D attention based ConViT model and
a 3D CNN model with linear regression, although trained on only 508 cases split
into train, validation, and test sets produces an accuracy of 90% with a specificity
of 92% and sensitivity of 88%. Such a model proves that computer-aided diagnosis

systems can be trained and used for diseases with limited data.
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