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ABSTRACT 

 

 

 

 

Covid-19, with its high death rate, was discovered nearly three years ago. New variants resistant 

to vaccines still emerge while travel and export restrictions can not be held for longer. An 

accurate and fast diagnosis of such a disease is crucial to reducing its global spread. Computed 

Tomography CT scans have shown to be the most precise method for covid-19 diagnosis. 

However, it is a slow process to read and diagnose a disease from a CT scan due to the scarcity of 

skilled radiologists and the limited information and data available about covid-19. Computer 

vision has been successfully used in assisting professionals in diagnosis tasks both in terms of 

speed and accuracy when trained on large datasets. This work is an effort to develop a fast and 

accurate AI model for covid-19 diagnosis trained on a small dataset. We developed an ensemble 

model consisting of a 3D CNN LeNet-based model and a 2D Convolutional-Like Vision 

transformer to diagnose CT scans as covid-19 and healthy. A total of 508 CT scans were used to 

train the model as a subset of the publicly available MosMed dataset. This results in an accuracy 

of 90%, specificity of 92%, and a sensitivity of 88%. 
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ÖZET 

 

 

 

 

Yüksek ölüm oranına sahip olan Covid-19, yaklaşık üç yıl önce tespit edildi. Seyahat ve ihracat 

kısıtlamalarının daha uzun süre tutulmasının mümkün olmayacağı durumdayken, aşılara dirençli 

yeni varyantlar hala ortaya çıkmaya devam etmekte. Böyle bir hastalığın doğru ve hızlı teşhisi, 

küresel yayılımını azaltmak için çok önemlidir. Bilgisayarlı Tomografi (BT) taramalarının Covid-

19 tanısı için en hassas yöntem olduğu gösterilmiştir. Ancak, kalifiye radyologların azlığı ve 

covid-19 hakkında sınırlı bilgi ve veri olması nedeniyle BT taramasını okuyarak hastalığı teşhis 

etmek uzun süren bir işlemdir. Büyük veri kümeleri üzerinde eğitilen bilgisayar görüntüsü, 

tanılama süreçlerinde uzmanlara destek amaçlı olarak hem hız hem de doğruluk açısından başarılı 

bir şekilde kullanılmıştır. Bu çalışma, küçük bir veri kümesi üzerinde eğitilmiş covid-19 tanısı 

için hızlı ve doğru bir AI modeli geliştirmesi üzerinedir. BT taramalarından covid-19 veya 

sağlıklı teşhisi yapan, 3D CNN LeNet tabanlı bir model ve 2D Evrişimli-benzeri görüntü 

dönüştürücüden oluşan bir kolektif model geliştirdik. Modeli eğitmek için, açık kaynak olan 

MosMed veri kümesinden bir alt küme olarak toplam 508 BT tarama kullanılmıştır. Bu, % 90 

doğruluk, % 92 özgüllük ve % 88 hassasiyet ile sonuçlanmaktadır. 
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1. INTRODUCTION 

1.1. Deep Learning for Medical Imaging 

 

Medical imaging is a term used to refer to images or visual representations of 

the interior of the body taken for medical analysis or intervention. Accurate analysis 

of these images is necessary as they are widely used for many diseases’ diagnosis 

and treatment planning. There are many types of medical images; the most used 

ones include radiography (X-Ray), ultrasound, magnetic resonance imaging (MRI), 

and tomography (CT, PET). The large number of medical images taken each year, 

the longer amount of time needed to accurately analyze them due to their 

complexity, and the limited amount of skilled radiologists all derive the need for a 

technological solution. The use of computers in medical image diagnosis automation 

has been studied since the 1960s [1,2]. However, systematic development of a 

computer-aided diagnosis system using machine learning image processing 

techniques started as late as the 1980s [3,4]. The main goal of a CAD system, unlike 

an automated diagnosis system, is to assist radiologists in diagnosis as a second 

opinion. This approach is more suitable for a medical setting, as well as more 

achievable with the hardware and technological limitations. The development of 

CAD systems continued using traditional image processing techniques such as 

difference-image and edge enhancement. But since the results of using these 

methods were not accurate enough, they had a very limited presence in clinics. In 

later years, deep learning proved its superior performance to traditional methods in 

many different tasks and presented a new opportunity for developing highly 

performing CAD systems. Deep learning systems can analyze a huge amount of data 

in a very short amount of time while keeping high accuracy and precision. In a study 

performed by Stanford Academic Medical Center, while radiologists labeled 420 

images in 240 minutes on average, the AI model used in their study labeled the same 

data in 1.5 minutes [5]. Its high accuracy and precision are also reliably consistent 

since it doesn’t get tired or distracted. It also learns to diagnose new diseases 
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relatively fast. That can be observed by the number of published scientific papers 

and AI models created for the novel coronavirus (covid-19) diagnosis within a 

month after it was declared a pandemic. That fast-forwarded delivers an accurate 

diagnosing tool even to remote areas. 

1.2. Convolutional Neural Networks 

1.2.1. Architecture 

 

CNNs are created to mimic how the human brain recognizes objects. The 

building blocks of CNNs are called artificial neural networks. Similar to the brain, 

each neuron holds specific information which in total can understand the 

characteristic features of an image. For example, consider a CNN model that 

recognizes pictures of cats and dogs. The model consists of different layers. The 

first layer is the input layer, taking in cats' and dogs' photos. In the training process, 

these photos are labeled as 'cat' or 'dog'. In the next layer, the model would be 

looking for certain features in the image.  The first neuron of that layer might be 

looking for triangular ears; the second could be the shape of the tail, or whiskers. 

The next layer of neurons could be looking for even finer details. These are called 

hidden layers since developers cannot exactly know what each neuron is measuring. 

In each layer, the mathematical operation called “convolution” is applied. In 

mathematics, convolution between two functions produces a third function that 

shows how the shape of one function is changed by the other. In CNNs, the first 

function is the input of the layer, the second function is the weights in the neurons 

of the layer, and the resulted function is the output of the layer where the input has 

been affected by the weights. Therefore, each time a new image passes through these 

layers it gets a score of how identical each part of it is to the feature of the neuron. 

Typically, each CNN layer has a nonlinear activation function followed by a pooling 

layer. The max-pooling layer modifies the output to be more invariant to small 

changes in the input layer by taking the maximum output within a rectangle. At the 

end of a CNN model and after the CNN layers are usually “Dense” or fully 
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connected layers where a total score is computed for which category the image is 

closest to. 

 

CNN model architectures vary from one model to the other, depending on the 

number of layers, neurons, the connections between the layers, and the types of 

layers used. Different architectures yield different results in different applications. 

A commonly used classification model is AlexNet. AlexNet architecture consists of 

5 convolutional layers and 3 fully connected layers. In between the convolutional 

layers, there are max-pooling layers for generalization and each layer uses ReLU as 

an activation function for non-linearity. The depth of the convolutional layers 

increases and the height and width decrease as we go deeper in the network. The 

size of the used filters for convolution also decreases. Therefore, the network 

converts the 2D weights, step by step, into a vector without losing the spatial 

information of the images. Finally, we reach the fully connected layers ending with 

a softmax activation function to find the correct class. 

Figure 1.1. Architecture of AlexNet, after [11] 

 

1.2.2. Training 

 

Training a CNN network uses a method called back-propagation. As previously 

explained, each layer of the model contains weights that express the importance of 

a feature towards the overall score of the input. To find the best values of these 

weights, we train the model by feeding in the labeled input data. A score is 
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calculated and then compared against the given label through a loss function. Then 

back-propagation is used to modify the weights according to the loss function 

results. These steps are repeated till the end of training. There are some commonly 

used loss functions for CNNs including Mean Squared Error Loss (MSE), Mean 

Absolute Error Loss (MAE), Binary and categorical cross-entropy, etc. In addition 

to model architecture and loss function, several parameters should be considered 

when training to achieve the best performance of the model. These are usually called 

hyperparameters and they include learning rate, number of epochs, and batch size. 

Unfortunately, no formula can compute the best parameter values for a specific 

application. The Hyperparameter tuning process was handled using a set of trials. 

Lately, several frameworks were developed both commercially and open source that 

can help speed up the tuning process by training the model with different parameter 

values simultaneously and comparing the results. 

1.2.3. History 

 

The beginning of the Convolutional Neural Networks dates back to the early 

1980s. The first trained CNN model was created by LeCun et al. [6] to classify 

handwritten digits. CNNs were quickly adopted by the industry, the AT&T research 

group developed a CNN model to read checks [7] then used by the NEC, and 

Microsoft used some CNN-based OCR and handwriting recognition systems [8]. To 

this day, Facebook, Google, and IBM among a list of companies remain some of the 

biggest contributors to CNN research. In medical applications, CNN was first 

introduced in 1993 for lung nodule detection in chest radiographs [9]. In the same 

year, CNNs were used for the recognition of mammographic microcalcifications 

[10]. These models would easily replace traditional image processing techniques as 

CNNs are insensitive to noise, blur, contrast, etc. CNN architectures since then 

became increasingly complicated, deeper models were created, pooling layers were 

added and rectified linear unit was used as activation function rather than the typical 

sigmoid function. To decrease the chance of over-fitting, dropout layers and batch 

normalization were introduced. Also transferred learning was introduced, increasing 
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the accuracy of applications with limited training data available. The first most 

commonly used CNN architecture for transfer learning was introduced in 2012 as 

AlexNet [11]. Different CNN architectures and their uses will be discussed next. 

1.3. Transfer learning 

 

Training CNN architecture from scratch is not always the best choice. When 

dealing with medical imaging in most cases the amount of labeled data is limited. 

In that case, transfer learning with an off-the-shelf model is usually used. 

Transfer learning is one of the commonly used techniques to ensure better 

accuracy when using a small amount of data for training. The idea of transfer 

learning is to use a pre-trained CNN model, freeze the first number of layers and 

then train the model on new data for the specific application. This makes better use 

of the limited available data as it is used only to train the model on the specific 

features that the dataset contains rather than waste most of it on training the model 

to extract generic features. Sometimes referred to as transfer of knowledge, the 

method uses the pre-trained model’s knowledge of extracting general features and 

then uses the small dataset to train the model specifically for the new application. 

This is based on Yosinski et al. [12], who show that the first layers of CNNs contain 

generic features and then the features become more specific as we go to deeper CNN 

layers. 

1.4. Classification 

 

Classification models are CNN models trained to classify images to a set of 

labels. Different classification models differ in depth, layer sizes, layer types, and 

layouts. There are many famous classification architectures and pre-trained models 

than proved high accuracy in different applications. These models include VGG, 

ResNet, Inception net, etc. For example, VGG-16 [13] architecture consists of 11 

convolutional layers split into 5 stages, the width and length dimensions of 

convolution layers are decreased as we go into the next stage while the depth 
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increases. Activation functions for all convolutional layers are ReLU and every 

stage is followed by a max-pooling layer. The stages are then followed by 3 fully 

connected layers and a softmax activation function at the output layer. 

1.5. Detection 

 

Object detection models are different from classification models since they find 

the place of the detected object rather than classifying the whole image with a label. 

This also allows the model to find and classify more than one object in an image if 

present. Object detectors use bounding boxes to mark the object’s place in an image, 

therefore, the output of the model is the prediction and the size and coordinates of 

the bounding box for each found object.  

 

Detection methods can be divided into two main categories based on their way 

of finding objects in an image, region proposal methods and sliding window 

methods. The first group of object detectors tries to find regions of interest before 

applying the classification problem. These methods consist of several stages, at least 

two models. The first stage has two networks, a backbone network is classification 

architecture such as ResNet or VGG, and a region proposal network that proposes a 

huge number of regions, in this stage the model finds the region of interest. The 

second model classifies the objects and finds their bounding boxes. Whether it has 

two or more models, each model has to be trained separately, making it slower and 

harder to train. Moreover, since these methods work in different consecutive stages 

their speed in real-time applications is relatively slow compared to direct 

classification methods. In this family of object detectors come R-CNN, SPP-net, 

Fast R-CNN, and Faster R-CNN.  

 

The second group of object detectors aims to reduce time expense by applying 

global regression/ classification directly to the image without searching for regions 

of interest. This object recognition method is relatively faster than the prior since 

they do not have many stages and do not try to find the exact boundaries of an object. 
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Therefore, they are mainly used for applications where speed is more important than 

accuracy. These methods include YOLO, SSD, DSSD, and DSOD. Most of these 

models depend on single-shot learning, where the data go through a single forward 

propagation of the network. 

1.6. Segmentation 

1.6.1. Semantic Segmentation 

 

Semantic segmentation classifies objects in an image based on pixels rather than 

a bounding box, which results in a precise location of the predicted object. The most 

commonly used model in that category is U-net. U-net is an encoder-decoder CNN 

model, where the encoder part classifies an object and the decoder finds its exact 

location. The encoder part can be a classification model such as VGG, or ResNet. 

V-net is a 3D implementation of the U-net architecture. 

1.6.2. Instance Segmentation 

 

Instance segmentation is a recent approach that integrates the goals of object 

detection with semantic segmentation. It detects object labels with bounding boxes 

while segmenting a mask for each object instance. Thus, instance segmentation 

models can detect multiple instances of the same label objects and give their pixel-

precise location in the image. This is possible by using ROI-based detection model 

architecture, ex: faster R-CNN, then adding a branch for predicting segmentation 

masks on each ROI. Famous models of this type are Mask R-CNN and Deeplab. 

1.7. Data 

 

Since in supervised learning the model learns from the given annotated data, it 

is especially important to create a suitable dataset for the application. The first step 

of creating a dataset is data collection. There are multiple available datasets for 



 
 

8 
 

medical applications such as INbreast [14], The Lung Image Database Consortium 

(LIDC), and the Image Database Resource Initiative (IDRI) lung nodules dataset 

[15], etc. Some of these datasets can be used directly, others need some pre-

processing. However, not every application has an online public dataset available. 

In that case, data need to be collected from hospitals or medical institutions.  A 

dataset should also be split, typically into train, test, and validation. The train and 

test sets are used during training for updating weights through back-propagation and 

testing the accuracy of the model while training. The validation set is used to 

evaluate the performance of the model after training is finished.  

1.7.1. Augmentation and Synthetic Data 

 

In many cases, data augmentation is used to increase the amount of data in our 

dataset. Data augmentation creates data by altering the images in the original dataset 

by shifting, rotating, etc. These transformations can be slightly done to every image 

numerous times, producing a large amount of data. Augmented data help increase 

the accuracy of training but also can contribute to over-fitting since the variation 

between the data is slight. Another approach to increase the amount of data in a 

dataset is to use synthetic data. Unlike augmentation, synthetic data are not just 

slight alterations to existing data, but it is the creation of new data after 

understanding how the existing data is structured. There are two main approaches 

two creating synthetic data, one uses CNNs and the other uses GANs.  

 

1.7.2. Preprocessing 

 

After all the previous steps are taken and the dataset is completed, there is one 

last step to do before feeding the data directly to the model for training, which is 

data pre-processing. Pre-processing is the process of editing the images to fit into 

the model architecture and simplify the numeric representation of the image. The 

first and most common step of preprocessing is resizing and/or cropping the images 
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to drop the resolution for faster training, focus on the region of interest, or most 

importantly match the size of the input layer of the model. Standardization is also 

important to make all images' pixel values lie in the same range, ex: [0, 1]. Other 

common edits are histogram equalization or normalization for eliminating the 

effects of different lighting, and noise filtering for removing blur or extra sharpness. 

The pre-processing function is then applied to the dataset before training as well as 

any new input for prediction when using the model after training. 
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2. PURPOSE 

 

Since the discovery of the novel Coronavirus Disease (SARS-Cov-2), to date, 

there have been over 520 million confirmed cases worldwide and over 6 million 

deaths as reported by the World Health Organization [16]. The disease was declared 

a pandemic in February 2020, and health ministries all over the world started dealing 

with the exponentially rising number of cases. Computed Tomography (CT) scans 

proved to be the most reliable imaging to screen the disease and its development in 

patients [17, 18]. However, recognizing the effects of the new disease correctly from 

scans as well as its severity is a difficult task even for trained experts. The amount 

of time it takes radiologists and other health care providers to learn about the new 

disease and its manifestations on different types of medical imaging is dangerously 

long for such a critical situation. The use of deep learning can help quickly transfer 

the information needed to diagnose and give a prognosis to the new disease 

internationally. Moreover, deep learning-based diagnostic systems proved to be 

faster than radiologists without sacrificing accuracy [19]. The performance of 

radiologists using a deep learning diagnostic system is much superior in terms of 

speed, accuracy, and recall. All of these facts make AI-based systems extremely 

desirable in the current medical situation. 

 

The main purpose of this dissertation is to create a deep learning model for 

covid-19 diagnosis. The CNN-based model is to perform the classification process 

on CT scans with accuracy on par with radiologists and faster performance. The 

model should be beneficial to be used by radiologists to increase diagnosis accuracy 

and save experts’ and patients’ time. It is considered a second opinion system or a 

computer-aided diagnostic system as it does not aim to replace the role of a 

radiologist but rather to support the expert's decision-making process by providing 

fast reliable predictions. There are five main components of such a system; data 

collection, image processing, model architecture and training, optimization 

methods, and finally validation of results. 
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The first component, data, needs to be discussed in terms of acquisition and 

augmentation. Training a high accuracy model requires relatively high amounts of 

medical imaging data. However, especially for a new disease, the available data is 

scarce. To guarantee the true performance of the model, the used data needs to be 

verified or acquired from an approved source. The requirement of huge amounts of 

data can easily result in false high accuracy if the training data contains duplicates 

or incorrectly manipulated or labeled images. For example, in the Digital 

Mammography Dream challenge in 2016, a huge dataset was presented, and the 

winning teams created highly accurate deep learning but with a false positive rate 

much higher than a radiologist. This resulted from the low-quality labeling of the 

data [20].  Thus, one good source of public data would be one approved by a known 

medical or research institution. Acquiring data directly from hospitals is another 

reliable method; however, hospitals need to comply with the laws and regulations 

of patient privacy, which differ from one country or region to another. This includes 

redacting some patient information from the data, and/or getting written consent.  

 

After acquiring the base data for training, to reduce the overfitting of the model 

and increase accuracy, data augmentation needs to be applied. The traditional way 

of augmenting data is adding copies of manipulated base images by changing their 

rotation, scale, shear, etc. Many libraries achieve this, including Opencv and Keras. 

This increases the amount of training data thus increasing accuracy by allowing 

longer training epochs and decreasing over-fitting since it enables the model to be 

trained on different modifications of the image. Traditional data augmentation is 

generally useful in many applications however in medical applications its effect is 

different. Medical images and especially CT scans taken by the same machine are 

usually taken in specific orientation and scale, the difference between the machines 

regarding scale, rotation, and shear is minimal. Therefore, traditional augmentation 

should only be applied to medical images with limitations to account for different 

machines however its effects on increasing accuracy for detecting infected lesions 

on CTs taken by the same machine is negligible.  
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A more suitable data augmentation technique for medical images is using CNNs, 

such as UNet or GAN. GANs are used to create synthetic data by understanding the 

shapes and occurrences of infected lesions in the original data and then imitating 

them into its generated data. Unlike traditional data augmentation methods, GANs 

create new images according to the ROI of the images rather than just the rotation, 

scale, and so on. This produces better results on medical images both in terms of 

over-fitting and accuracy [21, 22]. 

 

The second component of the system is data pre-processing or image processing. 

Medical images, in general, are produced by different brands of machines with 

different calibrations and technologies, producing some apparent differences in the 

produced image, especially in terms of the number of pixels, pixel value ranges, and 

overall brightness and contrast of the produced image. This requires a data 

preprocessing step to be done for both the training data and any data used for testing 

or later for prediction. Histogram equalization is one of the most used methods to 

deal with brightness and contrast. Sometimes a filter is used to reduce noise. 

Resizing is used to ensure the same pixel size for all images. Finally, normalization 

and standardization are used to bring the pixel value range into a specific interval 

that is most suitable for training. In CT scans Hounsfield units (HU) are used to 

eliminate unwanted parts of each slice since they express the material of different 

parts of the scan with specific values. For example, the densest material in the human 

body is represented by 2000HU, so any values greater than 2000HU are unwanted 

as they represent objects outside the patient’s body seen by the machine, and 

therefore should be eliminated [23]. Since 1981, transfer learning has been proved 

by Stevo Bozinovski to be an effective way to build accurate models with relatively 

little data [24]. Using a pre-trained model on a large generic dataset and then fine-

tuning it using application-related data has many benefits. First, accuracy improves 

as the used application-related data all go towards training the model on the specifics 

of the ROIs to be detected rather than wasting a portion of it on training the model 

from scratch. Furthermore, it offers a solution for applications with limited available 

data, which is usually the case for many medical applications. Another benefit is 
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reducing the training time of the model drastically, which not only helps with the 

developing process of the model to reach better performance faster, it also makes it 

cheaper and more environmentally friendly. Many pre-trained models can be used 

for medical applications; most of them are trained on colored generic object images 

such as ResNetx150 which is based on the ResNet model architecture [25]. Other 

pre-trained models are designed specifically for medical images such as MedicalNet 

[26] which is a 3D black and white ResNet-based model. 

 

Thus far, all the discussed components are the proven factors for making a CNN-

based model perform a highly accurate classification. However, the process of 

developing such a model also depends highly on trial-and-error experiments. This 

is where the optimization component takes place. Although we understand generally 

how CNNs work, and how the mathematics of convolutional filters and gradient 

descent work at formulating the classification problem, there are many factors that 

we cannot determine how exactly they affect the training process or the final 

performance of the model. This includes all of the model's hyper-parameters such 

as batch size, size of used filters, number of layers, etc. Fortunately, in recent years 

many tools have been developed to decrease the amount of time spent on 

experimenting with hyper-parameters before reaching the desired performance. 

Such tools make use of search algorithms such as grid search and Bayesian 

optimization to help find the best parameters for the application. These frameworks 

include Optuna [27] and Ray tune [28]. Moreover, some dashboards help visualize 

the training process and its results using graphs and statistical analysis and make use 

of parallel training such as TensorBoard. 

 

The final component of the system is validation.  Although in recent years many 

deep learning-based models are created for medical applications, only a few are used 

in the health care system. This has many factors, but one of the most important 

factors that help a model become actively used in hospitals is the validation process. 

The first aim of the validation process is to determine the performance of a 

diagnostic model after training in terms of accuracy, sensitivity, specificity, and 
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some predictive values. Accuracy is the most commonly used evaluation metric 

although it is not enough to determine the performance of a model. A model that 

always gives a negative output can have high accuracy when tested with data of 

mostly negative cases. Sensitivity and specificity fix this problem; they show the 

rate of true positives and true negatives respectively. But to calculate these results 

the model needs to be tested on new data then the results should be validated 

according to ground truth. In a medical setting, ground truth can be reached either 

by consensus voting of a group of experts or by performing additional medical 

testing such as PCR tests for covid-19 or a biopsy for tumor-related diseases. 

Secondly, the validation process extends after the production of the model to its use 

in clinics. Acceptance testing must be done before using the model in a clinic to 

make sure its performance is not changing according to the local patient population 

[20]. Moreover, the quality of the model’s performance must be tested for some time 

to detect any malfunctions, such as biases or wrong predictions when presented with 

new data features. 

 

Finally, building up the model in the light of the previously discussed 

components is a process of mixing and matching to find the best combination for 

the application at hand. Next, the chosen parts are discussed in detail in terms of 

data collection and augmentation, data pre-processing, choosing model architecture, 

and using transfer learning for better results, optimization tools, and validation of 

results. 
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3. LITERATURE REVIEW 

 

3.1. Covid-19 Datasets 

 
 

Since the outbreak of covid-19, several CT-scan datasets have been collected 

and/or created to be used in Artificial intelligence research. Due to the different 

privacy laws in different countries and the lengthy official procedures to get 

permission for data collection from hospitals, many of the datasets used in 

developing deep learning models are not available for public use. However, there 

are some publicly available datasets with different amounts of patient data, 

augmentation techniques, and labels. Arranged by the number of citations are the 

following publicly available datasets.  

 

Song et al. [29] collected a small dataset from 275 patients in China with covid-

19, bacterial pneumonia, and healthy cases. Zhang et al. [30] constructed a large 

dataset from the China Consortium of Chest CT Image Investigation (CC-CCII) of 

a total of 617,775 CT images of healthy, pneumonia, and novel covid pneumonia 

complete scans collected from 4,154 patients. Wu et al. [31] collected a 

classification and segmentation dataset in China consisting of a total of 144,167 CT 

scan images of covid positive and negative from 750 patients. Yang et al. [32] 

collected from China a total of 812 CT images for covid-19 and non-covid-19 

patients. Rahmizadeh et al. [33] collected a total of 63,846 CT images from Iran of 

covid-19 positive and negative from 377 patients. Morozov et al. [34] collected 1110 

full CT scans from Russia with 5 labels; non-covid-19, mild, moderate, critical, and 

severe covid-19 pneumonia. Vaya et al. [35] collected 163 annotated CT studies 

from Valencia. Yan et al. [36] collected a total of 165,667 annotated CT images 

from 861 patients in China. Wang et al. [37] collected from five hospitals in China 

a total of 1418 CT scans of covid-19 positive and negative from 1391 patients. 

Afshar et al. [38] collected a total of 305 scans of covid-19, healthy and community-

acquired pneumonia from Iran. Ning et al. [39] collected 19,685 CT slices from 
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1521 patients in China. Yan et al. [40] collected from two hospitals a total of 828 

CT scans of 618 patients with covid-19 and non-covid-19 pneumonia from China 

and Canada. Tsai et al. [41] collected two datasets, one with 31,856 annotated CT 

images of 110 patients, and the second with 21,220 CT images of 117 patients. 

Gunraj et al. [42] constructed a large dataset of different publicly available datasets 

to form 201,103 CT images of normal, common pneumonia and covid-19 of 4,501 

patients from at least 15 countries.  

3.2. Covid-19 Classification Models 

 

Deep learning has been used to facilitate many tasks in the fight against the 

pandemic. Nguyen et al. [43] show different AI models used for diagnosis from 

medical images, data analysis for covid-19 modeling, computational biology for 

vaccine and treatment development as well as Internet of Things IOT solutions that 

help screen and trace patients, and Natural Language Processing models to analyze 

sentiment and awareness of disease prevention policies. In the medical imaging 

field, many models have been developed to perform or support diagnosis and 

prognosis tasks in hospitals. These models vary both in terms of architecture and 

goal. Here we list the relevant work of classification models trained on CT imaging. 

 

Classification models can perform both diagnosis and prognosis tasks. The 

diagnosis task determines whether a scan is of a covid-19 positive or negative 

patient. While the prognosis task determines the severity of the disease to help 

professionals plan for treatment accordingly. Diagnosis tasks are carried out with 

binary classification models as follows. Yang et al. [44] developed a self-supervised 

model using pre-trained DenseNet-169 [45] and ResNet-50 [25] models on the 

ImageNet dataset [46]. Jaiswal et al. [47] use a pre-trained Dense-Net-201 [45] on 

the ImageNet dataset. Yang et al. [48] trained a DenseNet-based architecture on 

high-resolution ct scans. Wang et al. [49] use a pre-trained GoogleNet Inception v3 

[50] on the ImageNet dataset. Bai et al. [51] used a pre-trained EfficientNet B4 [52] 

on the ImageNet dataset. Pathak et al. [53] use a pre-trained ResNet-50 on the 
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ImageNet dataset. Serte and Demirel [54] created an ensemble model of several 

ResNet-50 models combining results using majority voting. Mishra et al. [55] 

developed an ensemble model combining results from 5 modes: VGG16 [56], 

InceptionV3, ResNet50, DenseNet121, and DenseNet201 using majority voting. 

Rahimzadeh et al. [57] created a model using ResNet50V2 as the backbone with a 

Feature Pyramid Network (FPN) and classification layers. Goel et al. [58] used the 

ResNet50 model after generating data using a generative adversarial network 

(GAN) optimized by the whale optimization algorithm (WOA). Wu et al. [59] 

developed a multi-view fusion deep learning model that uses the axial, coronal, and 

sagittal views of a scan. He et al. [60] proposed a Self-Trans model, a self-supervised 

model with transfer learning comparing different large datasets that are commonly 

used for transfer learning. Chen et al. [61] developed a contrastive learning model 

with a pre-trained encoder. 

 

Other classification models are used to differentiate between covid and other 

pneumonia-related diseases. Others are used for prognosis as they could classify the 

severity of covid in the lungs. These models use categorical classifications as 

follows. Ning et al. [62] use CT scans alongside other clinical findings such as blood 

and urine tests to train a VGG-16-based model integrated with an ANN model to 

classify the severity of the disease. Singh et al. [63] proposed an ensemble model of 

DenseNet201, ResNet152V2, and VGG16 to classify scans as covid-19, 

tuberculosis, pneumonia, or healthy. Xu et al. [64] developed a ResNet-18-based 

architecture combined with a location-attention mechanism to classify scans as 

covid-19, influenza-A viral pneumonia (IAVP), and irrelevant to infection (ITI). 

Wang et al. [65] designed a novel prior-attention residual learning block by coupling 

two 3D ResNet models and integrating prior-attention mechanisms to classify scans 

as covid-19, interstitial lung disease (ILD), and non-pneumonia. Polsinelli et al. [66] 

developed a SqueezeNet-based [67] model to classify scans as covid-19, 

community-acquired pneumonia, and healthy. Ouyang et al. [68] created an online 

attention module with a 3D CNN to classify scans as covid-19, CAP, and healthy. 
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Yan et al. [69] use a multi-scale convolutional neural network model (MSCNN) to 

classify scans as covid-19 or CAP.  

 

Haseeb et al. [70], show their extensive survey results in an informative table, 

similarly we represent the literature review results in Tables 3.1 and 3.2. 

 

Table 3.1. List of top publicly available covid-19 CT scan datasets 

 

Author’s Name Location Data Structure 

Song et al. [29] China 275 patients with covid-19, 
bacterial pneumonia, and 

healthy cases 
Zhang et al. [30] China Consortium of 

Chest CT Image 
Investigation (CC-

CCII) 

617,775 CT images of healthy, 
pneumonia, and covid-19 full 

scans collected from 4,154 
patients 

Wu et al. [31] China 144,167 CT scan images of 
covid positive and negative 

from 750 patients 
Yang et al. [32] China of 812 CT images for covid-19 

and non-covid-19 patients 
Rahmizadeh et al. 

[33] 
Iran 63,846 CT images from of 

covid-19 positive and negative 
from 377 patients. 

Morozov et al. [34] Russia 1110 full CT scans from with 5 
labels; non-covid-19, mild, 

moderate, critical, and severe 
covid-19 

Vaya et al. [35] Valencia 163 annotated CT studies of 
covid-19 

Yan et al. [36] China 165,667 annotated CT images 
from 861 patients 

Wang et al. [37] China 1418 CT scans of covid-19 
positive and negative from 1391 

patients 
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Afshar et al. [38] Iran 305 scans of covid-19, healthy 
and community-acquired 

pneumonia 
Ning et al. [39] China 19,685 CT slices from 1521 

patients 
Yan et al. [40] China and Canada 828 CT scans of 618 patients 

with covid-19 and non-covid-19 
Tsai et al. [41] USA Two datasets, one with 31,856 

annotated CT images of 110 
patients, and the second with 

21,220 CT images of 117 
patients 

Gunraj et al. [42] At least 15 countries 201,103 CT images of normal, 
common pneumonia and covid-

19 of 4,501 patients 
 

 

Table 3.2. List of top covid-19 binary classification models using CT scans 

 

Source/Author Dataset 
Information 

Framework/Approach Performance 

Yang et al. 
[44] 

49 covid-19 CT 
images from 216 
patients, and 463 
non-COVID-19 

CTs 

self-supervised model 
using pre-trained 

DenseNet-169 and 
ResNet-50 on the 
ImageNet dataset 

Accuracy: 0.89 
F1-score: 0.90 

Jaiswal et al. 
[47] 

COVID-CT-
Dataset 

a pre-trained Dense-
Net-201 on the 

ImageNet dataset 

Accuracy: 0.85 
F1-score: 0.86 

Yang et al. 
[48] 

146 covid-19 
patients, and 149 
normal patients, 
High Resolution 

CT scans 

a DenseNet-based 
architecture on high-
resolution CT scans 

Accuracy: 0.92 
Sensitivity: 0.97 
Specificity: 0.87 
F1-score: 0.93 

Wang et al. 
[49] 

453 COVID CT 
images 

a pre-trained 
GoogleNet Inception 
v3 on the ImageNet 

dataset 

Accuracy: 0.829 
Sensitivity: 0.81 
Specificity: 0.84 
F1-score: 0.77 
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Bai et al. [51] 521 covid-19, and 
665 non-covid-19 

pneumonia 

a pre-trained 
EfficientNet B4 on 

the ImageNet dataset 

Accuracy: 0.96 
Sensitivity: 0.95 
Specificity: 0.96 

Pathak et al. 
[53] 

413 covid-19 
images, and 

439 images of 
normal or non-
covid-19 CT 

scans 

a pre-trained ResNet-
50 on the ImageNet 

dataset 

Accuracy: 0.93 
Specificity: 0.95 
Sensitivity: 0.91 

Serte and 
Demirel [54] 

 214 covid-19 CT 
scans, and 105 

normal CT scans 

an ensemble model of 
several ResNet-50 
models combining 

results using majority 
voting 

Accuracy: 0.84 
Sensitivity: 0.1 
Specificity: 0.8 

Mishra et al. 
[55] 

360 covid-19 CT 
scans, and 397 

normal CT scans 

an ensemble model 
combining results 

from 5 modes: 
VGG16, 

InceptionV3, 
ResNet50, 

DenseNet121, and 
DenseNet201 using 

majority voting 

Accuracy: 0.883 
F1-score: 0.867 

Rahimzadeh et 
al. [57] 

95 covid-19 CT 
scans, and 

282 normal CT 
scans 

a model using 
ResNet50V2 as the 

backbone with a 
Feature Pyramid 

Network (FPN) and 
classification layers 

Accuracy: 0.985 
Sensitivity: 0.95 

Goel et al. [58] 1252 covid-19 CT 
images, and 1230 
non-covid-19 CT 

images 

ResNet50 model after 
generating data using 
GANs optimized by 

WOA 

Accuracy: 99.22 
Sensitivity: 99.78 
Specificity: 97.78 
F1-score: 98.79 

Wu et al. [59] 368 covid-19 CT 
scans, and 127 
non covid-19 
pneumonia 

a multi-view fusion 
deep learning model 

Accuracy: 0.7 
Sensitivity: 0.73 

Specificity: 0.615 
 

He et al. [60] 216 covid-19 CT 
scans, and 133 

normal CT scans 

a self-supervised 
model with transfer 

learning 

Accuracy: 0.86 
F1-score: 0.85 
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Chen et al. [61] 216 covid-19 CT 
scans, and 171 

normal CT scans 

a contrastive learning 
model with a pre-
trained encoder 

Accuracy: 0.868 
Sensitivity: 0.872 

Ouyang et al. 
[68] 

3389 covid-19 CT 
images, and 1593 
CAP CT images 

an online attention 
module with a 3D 

CNN 

Accuracy: 0.875 
Sensitivity: 0.869 
Specificity: 0.9 
F1-score: 0.82 

Yan et al. [69] 416 covid-19 CT 
scans, and 412 
non-covid-19 

pneumonia CT 
scans 

a multi-scale 
convolutional neural 

network model 

Accuracy: 0.875 
Sensitivity: 0.89 

Specificity: 0.857 
 

 

 

Table 3.3. List of top non-binary covid-19 classification models using CT scans 

 

Source/Author Dataset 

Information 

Framework/Approach Performance 

Ning et al. [62] 1,521 patients 
with negative, 

mild and severe 
covid-19 CT 

scans with 130 
clinical features 

a VGG-16-based 
model integrated with 

an ANN model to 
classify the severity 

Accuracy: 
0.95, 0.83, 0.88 

Sensitivity: 
0.85, 0.88, 0.71 

Specificity: 
0.998, 0.79, 0.93 

Singh et al. [63] 3038 healthy, 
2890 non-covid-
19 pneumonia, 

3193 
tuberculosis, and 
2373 covid-19 

CT images 

an ensemble model of 
DenseNet201, 

ResNet152V2, and 
VGG16 

Accuracy 
(overall): 0.988 

Sensitivity 
(overall): 0.988 

Specificity 
(overall): 0.988 

F1-score 
(overall): 0.98 

Xu et al. [64] 175 healthy, 224 
influenza-A, 219 

covid-19 CT 
scans 

a ResNet-18-based 
architecture 

combined with a 
location-attention 

mechanism 

Accuracy 
(overall): 0.87 
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Wang et al. [65] 936 healthy, 
2406 ILD, 1315 

covid-19 CT 
scans 

a novel prior-
attention residual 
learning block by 
coupling two 3D 

ResNet models and 
integrating prior-

attention mechanisms 

Accuracy: 
0.915, 0.89, 0.93 

Sensitivity: 
0.82, 0.885, 

0.876 
Specificity: 

0.935, 0.9, 0.955 
Polsinelli et al. 

[66] 
A total of 397 
CT scans of 

healthy and non-
covid-19 

pneumonia, and 
360 covid-19 

CT scans 

SqueezeNet-based 
model 

Accuracy 
(overall): 0.85 
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4. MEDICAL INFORMATION 

 

4.1. Diagnosis 

 
 

The main goal of the AI system is to correctly diagnose covid-19 patients from 

their CT scans with accuracy on par with radiologists. Thus, it is needed to analyze 

the problem from both medical and technological sides. First, we discuss CT scans, 

why they are a good medium to study covid-19 effects, the manifestations of covid-

19 on CT scans, and how radiologists diagnose it. 

 

Computed Tomography (CT) scans are a type of medical imaging where a 

computer is used to process a combination of X-ray measurements taken from 

different angles. The result of a lung CT scan is a large number of cross-sectional 

X-ray images of the lung, arranged in order from the top to the bottom of the 

patient’s chest. This results in a highly detailed volume of images of organs, tissues, 

bones, and other elements that cannot be otherwise seen without invasive 

procedures. CT scan tests include an amount of radiation, however, some developed 

software can help get a highly detailed scan with reduced radiation dosages.  

 

In the case of covid-19, the current standard test to definitively diagnose the 

disease is the transcription-polymerase chain reaction assay (rt-PCR). However, to 

understand the extent of the damage produced by the disease, track its progress, and 

create treatment plans, analyzing radiological images is necessary. Unlike CT scans, 

Chest X-ray (CXR) has less radiation but is not sensitive enough for pulmonary 

abnormalities detection, especially at the early stage of the disease. CT scan is 

proven to be effective for distinguishing covid-19 abnormalities as well as 

estimating the evolution of the disease [71] 
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To date, many studies have been published about specific covid-19 findings in 

CT scans [72]. However, most of these studies rely on experience as there is a 

deficiency in radiologic-pathologic correlations studies [73]. This makes the 

collective knowledge of diagnosing covid-19 from CT scan based mainly on 

experience or in technological terms; data. Similar to a deep learning model, 

radiologists learn some features of covid-19 ct scans from confirmed cases and 

diagnose new scans by searching for similar findings.  

 

The CT scans of covid-19 patients present the effects or damage the disease 

causes in the patient's lungs which have some unique characteristics that we can 

differentiate from the effects of pneumonia or other lung-damaging diseases. 

Radiologists screen for the following when assessing a potential covid-19 ct scan: 

ground-glass opacities (hazy or grey areas caused by air displacement by fluid), 

consolidation (a region of lung tissue that became of airless solid consistency), 

reticular pattern (a collection of small linear opacities that can appear like a net 

without significant ground-glass opacity), mixed pattern (combination of all 

previously stated findings) and honeycomb pattern [74]. The most common findings 

of covid-19 are ground-glass opacities, bilateral abnormalities (on both lungs), 

lower lobe involvement, and posterior predilection [73]. 

 

 

 

Figure 4.1. Covid-19 pneumonia in two patients showing bilateral areas of ground-

glass opacities (arrows) in a peripheral distribution. Adapted from [73]. 
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Figure 4.2. RT-PCR-test–proven covid-19 patient shows consolidation surrounded 

by ground-glass opacity in the right lobe (arrow) and consolidation in both lower 

lobes (arrowheads). After [73] 

 

4.2. Scoring 

 
 

After recognizing the discussed patterns, a scoring system is needed to quantify 

the severity of the disease. Similar to diagnosis there are many publications with 

different methods for scoring covid severity from medical imaging [71]. As Chest 

X-ray (CXR) is typically used for monitoring the disease progression since it 

exposes the patient to fewer radiations, there are several scoring systems based on 

X-ray images. For CT images, one method is called Chest Computed Tomography 

Severity Score (CT-SS) which uses lung opacification as an equivalent for extension 

of the disease in the lungs. The lung is divided into 20 regions, each region is 

evaluated and given a score of 0,1 or 2 depending on the parenchymal opacification 

involved: 0%, 1-50%, or 51-100%, respectively. The scores are then added up to get 

a total score of range 0-40 points [75]. Another method is Total Severity Score (TSS) 
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where both lungs are divided into 5 lobes, each assessed for inflammatory 

abnormalities including ground-glass opacities and consolidation, then gives a score 

for each lobe in the range of 0-4 points depending on the percentage of the involved 

lobe: 0 (0%), 1 (1-25%), 2 (26-50%), 3 (51-75%), or 4 (76-100%). The TSS is then 

calculated by summing the lobes’ points [76]. 

4.3. Temporal Development 

 
 

Disease progression starting from first symptoms prevalence can be roughly 

divided into 4 stages; early-stage days 0-5 where ground-glass opacity is prominent, 

progressive stage days 6-8 where ground glass opacities increase and crazy-paving 

appears, peak stage days 9-13 where consolidation increases and late-stage 14 days 

and more where consolidation and ground-glass opacities gradually decrease [73]. 

In a more detailed study, it is shown that before symptoms onset only 4 out of 10 

patients present abnormalities in CT scans, 2 present pure ground-glass opacities, 

and 2 present consolidations [74]. Illness days 0-5 after symptoms onset, ground-

glass opacity is the most prominent with a percentage of 62%, crazy-paving pattern 

comes in second place with 24%, and consolidation with 23%. Illness days 6-11 

present decreasing ground-glass opacities, decreasing crazy-paving pattern, and 

consistent consolidation with 24%. Illness days 12-17 ground-glass opacity drops to 

45% and a large increase in mixed patterns occurs from 1% to 38%. The reported 

results are consistent with other temporal studies [77,78]. 
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Figure 4.3. CT scans of coronavirus 2019 pneumonia progression. A Scan obtained 

on illness day 3 shows ground-glass opacity with a crazy-paving pattern in the 

right lower lobe. B, Scan obtained on illness day 7 shows crazy-paving pattern 

superimposed on ground-glass opacity with increased extent. Note that patchy 

ground-glass opacity is newly developed in the left lower lobe. C, Scan obtained 

on illness day 12 shows the absorption of abnormalities, with pure ground-glass 

opacity left in both lower lobes. D, Scan obtained on illness day 17 shows obvious 

absorption of abnormalities. Only small pure ground-glass opacity is observed in 

both lower lobes. The patient was discharged on illness day 20. The day of initial 

symptom onset was defined as illness day 0. After [74]. 
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5. METHODS 

 

5.1. Data 

 

The model uses chest CT scans as input. 3D chest CT scans are acquired using 

computed tomography scanners that take X-ray images of the chest from different 

angles, then process them to produce a number of highly detailed 2D slices that 

constitute a volume or a 3D image of the patient’s chest. The 2D slices are arranged 

to show the lungs and chest area from top to bottom. The sequence of the slices is 

important when using the data in a 3D format to keep the volumetric information. 

The thickness of the tissue represented in each slice varies depending on the used 

machine; therefore, the total number of 2D slices in a CT scan varies accordingly.  

 

5.1.1. Dataset 

 
 

The used dataset for this project is the publicly available MosMed dataset 

published by the Center of Diagnostics and Telemedicine in Russia [34]. It consists 

of 1110 chest CT scans of 1110 anonymized patients, obtained between March and 

May of 2020, and provided by municipal hospitals in Moscow, Russia. The scans 

are split into 4 folders based on the severity of the disease: CT0 folder contains 254 

scans of healthy lung images (non-consistent with pneumonia including covid-19), 

CT1 contains 684 scans of mild covid-19 infection or less than 25% ground-glass 

opacities involvement in lungs, CT2 contains 125 scans of moderate covid-19 

infection with ground-glass opacities involvement between 25% and 50%, CT3 

contains 45 scans of severe covid-19 infection with between 50% and 75% ground-

glass opacities and consolidation involvement, lastly CT4 contains 2 scans of critical 

covid-19 infection with more than 75% ground-glass opacities, consolidation, and 

reticular changes. 
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Figure 5.1. MOSMED dataset number of scans according to each class  

 

The data is uploaded in NIfTI format which was converted directly from the 

original DICOM format of the scans. DICOM is the standard format for medical 

imaging while NIfTI is a file format usually used in neuroimaging but sometimes 

used for other types of medical imaging. The main difference between DICOM and 

NIfTI formats is that DICOM stores a scan as 2D slices, whereas NIfTI stores a scan 

as a 3D volume. Currently, the most efficient Python library to process NIfTI data 

is Nibabel [79]. 

Figure 5.2. 3D visualization of a covid-19 patient chest ct scan acquired from [34] 

after segmentation. 
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Figure 5.3. Original 2D slice number 27 of the same covid-19 patient acquired 

from [34]. 

 

5.1.2. Pre-Processing 

 

The data pre-processing phase of this project consists of multiple functions, both 

on the 2D and 3D levels. On the 2D level, the following methods are applied to each 

slice individually. The first is used to omit unwanted parts of the slice and create a 

better system for the pixel values. CT scans use Hounsfield units (HU) to express 

the material of different parts of the scan. Different tissues in the human body absorb 

different amounts of the scanner’s emitted X-ray. Hounsfield units are used to 

represent the amount of X-ray absorption, and therefore the material of an element 

in the scan. For example, air is expressed as -1000 HU, water at 0 HU, and very 

dense bones at 2000 HU [79]. Notice in figure 2, the heart and other soft tissues 

have a similar gray shade while bones have lighter almost white color, and areas 

inside the lungs are darker as it is mostly air. From this information, it is safe to set 

pixels of values greater than 2000 to zero, since there couldn’t be a material in the 

patient’s body higher than 2000 HU which means these pixels are out of the scan. 

  

The second function is further segmentation to get the region of interest 

(ROI) or saliency information of each scan. Skimage python library is used to find 
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different regions in each slice using the region props function. The result is a 

segmented slice with only the ROI for covid cases, which are the lungs only. 

 

 

Figure 5.4. Segmented 2D slice number 27 of the same covid-19 patient. 

 

The third function is Normalization. After getting rid of unwanted pixel data, 

and keeping only the region of interest pixels, it is important to normalize data 

images to ensure that each pixel has a similar data distribution. This eliminates data 

inconsistency and makes the convergence of the model faster when training [80]. 

The normalization function calculates the mean and standard deviation of the image 

and subtracts pixels by the mean and divides by the standard deviation. Thus, 

returning the image with pixels ranging from 0 to 1.  

  

Next, on the 3D level, it is important to prepare the scans to fit into the input 

of the 3D CNN model. First, since each patient’s scan can have a different number 

of slices, we can omit some of the slices at the beginning and end of a scan as the 

furthest top and bottom parts of the lung do not usually contain any ROI resulting 

in a dark image after segmentation. Therefore, we set a specific size for the depth of 

a scan (number of slices). Secondly, we divide each scan’s slices (depth) into 

batches for easier learning of the model. So, we set a specific depth size for each 

batch, in this case, 40, to have all 3D inputs of the same size. Then, we rescale the 

other two dimensions height and width into 144 and 144. At this point, batches of 

3D data are ready to be input into the model. 

 

The last step before training is splitting the processed dataset into train, test, 

and validation sets. The first two sets are used in training and producing the model’s 
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initial evaluation metrics. Then the validation set is used to evaluate the model on 

new data after training. The dataset is split into 60% training (304 cases), 20% test 

(104 cases), and 20% validation (100 cases). However, for K-fold cross-validation, 

we combine training and validation sets and use sklearn library’s Kfold algorithm 

to split data randomly into train and validation for each fold. 

 

 

Figure 5.5. Our used balanced subset of MOSMED dataset for classification tasks 

 

 

Figure 5.6. Data split of the balanced subset of MOSMED dataset used for 

classification 

  

5.2. Models 

 

As mentioned before, many popular models created for the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) perform well on many applications 

by using the trained model directly or after using transfer learning. Convolutional 

models and Attention models have been performing increasingly better, proving 

their capabilities in image classification. In order to choose an appropriate model for 
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diagnosing covid-19 in CT scans, two aspects of covid-19 diagnosis need to be taken 

into consideration. The first is the features of covid-19 patterns such as ground-glass 

opacities and consolidations. The second is the placement of the found features in 

the lungs. The proposed model is an ensemble model that covers the most important 

points for covid-19 diagnosis by combining a 3D CNN model for considering 

volumetric information, and a 2D attention-based model Convit for recognizing 

covid-19 patterns in detail in slices of lung scan. Such a model consists of three 

important components, a 3D model, a 2D model, and the combination of the results 

of both models. First, we train the 3D CNN and ConViT models separately using 

the same pre-processed and sampled dataset as shown in Figure 5.7. Then we train 

a linear regression model using the classification output of 3D CNN on a full CT 

scan as covid-19 or healthy, and the classification output of ConViT on 11 middle 

slices of the same scan. This builds up the prediction flow as shown in Figure 5.8. 

 

 

Figure 5.7. Training flow of the proposed model 
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Figure 5.8. Prediction flow of the proposed model 

 

5.2.1. Volumetric Convolutional Neural Networks 

 
 

To build our diagnosis 3D CNN model architecture, a LeNet-based architecture 

was chosen for 3D CNN classification. A combination of different numbers of CNN 

layers and filters were tested, as well as the use of different optimizing layers. The 

most efficient architecture consists of 3 convolutional layers each followed by max-

pooling and batch normalization. After that, a global average pooling layer is used 

before a fully connected dense layer with dropout, followed by a fully connected 

output layer. All layers use the ReLu activation function except for the output layer 

which uses sigmoid. The exact sizes of each layer are shown in Figure 5.9. 

 

Figure 5.9. Architecture of the proposed 3D CNN model 
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For this model to have a balanced dataset for training we use all 254 normal 

cases, all CT2, CT3, and CT4 cases which add up to 172 covid-19 cases, we then 

add 83 cases of mild covid-19 folder CT1 to have a total of 254 covid-19 cases. The 

balanced dataset then undergoes the mentioned pre-processing algorithm to produce 

an input to the model of size (144, 144, 40). 

 

The 3D CNN model is trained with an Adam optimizer of an initial learning 

rate of 0.0001, using Keras exponential decay function with a decay rate of 0.96. 

The loss function is binary cross-entropy, trained on 100 epochs, batch size of 2, 

and saved best weights. Hardware used is Google colab pro virtual machines, 

providing 25 GB RAM, and Tesla-P100 GPU.  

 

The model was trained with 5-fold cross-validation giving average accuracy 

of 95% then evaluated on a test set resulting in accuracy, sensitivity, and specificity 

of 92%. 

 

Table 5.1. Confusion matrix for 3D CNN model on test set 

 Predicted Negative Predicted Positive 

Actual 

Negative 

44 8 

Actual 

Positive 

8 44 

 

 

Many experiments were conducted to reach this performance, by modifying 

data pre-processing, model architecture, and hyperparameters. The most relevant 

experiments are stated in Table 5.2. 
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Table 5.2. Performance results of proposed 3D CNN model 

 

Exp. no Data Model Hyperparameters Results 

1 Mosmed-508 254 

healthy and 254 from 

ct1+ct2+ct3 

304 train - 104 test - 

100 val + New 

Segmentation 

LeNet based with 3 

3D convolutional 

layers (32, 64, 128) + 

Dense 256 + Dropout 

layer 0.7 

Optimizer: Adam 

Learning rate: 0.0001 

with decay rate 0.96 

Batch size: 2 

Epochs: 250 

 

On test set: 

Accuracy: 0.86 

Sensitivity: 0.88 

Specificity: 0.84 

2 Mosmed-508 254 

healthy and 254 from 

ct1+ct2+ct3 

304 train - 104 test - 

100 val + New 

Segmentation 

LeNet based with 3 

3D convolutional 

layers (64, 128, 256) + 

Dense 256 + Dense 

128 + Dropout layer 

0.7 

Optimizer: Adam 

Learning rate: 0.0001 

with decay rate 0.96 

Batch size: 2 

Epochs: 250 

 

On test set: 

Accuracy: 0.875 

Sensitivity: 0.9 

Specificity: 0.85 

3 Mosmed-508 254 

healthy and 254 from 

ct1+ct2+ct3 

304 train - 104 test - 

100 val + New 

Segmentation 

LeNet based with 3 

3D convolutional 

layers (64, 128, 256) + 

Dense 256 + Dropout 

layer 0.5 

Optimizer: Adam 

Learning rate: 0.0001 

with decay rate 0.96 

Batch size: 2 

Epochs: 250 

 

On test set: 

Accuracy: 0.86 

Sensitivity: 0.75 

Specificity: 0.98 

4 Mosmed-508 254 

healthy and 254 from 

ct1+ct2+ct3 

304 train - 104 test - 

100 val + New 

Segmentation 

LeNet based with 3 

3D convolutional 

layers (64, 128, 256) + 

Dense 256 + Dropout 

layer 0.7 

Optimizer: Adam 

Learning rate: 0.0001 

with decay rate 0.96 

Batch size: 2 

Epochs: 250 

 

On test set: 

Accuracy: 0.92 

Sensitivity: 0.92 

Specificity: 0.92 

 

 

A similar prognosis model was also trained by changing the output layer to 

4 and loss function to categorical cross-entropy. Even after data sampling to balance 

the amount of data in each class, a prognosis model could not be trained on such a 

small dataset. 
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5.2.2. Convolutional-Like Vision Transformers 

 

Since Dosovitskiy et al.[81] introduced Vision transformers, transformers have 

been increasingly used in image recognition and classification tasks. One approach 

that makes use of both convolution and vision transformers is ConViT [82]. ConViT 

proposes Gated Positional Self-Attention (GPSA) layers, which initially act as 

convolutional layers in terms of locality but can be adjusted by a gating parameter 

that controls the attention paid to position versus content. This creates a self-

attention model with soft convolutional inductive bias, combining the CNN's ability 

to train on relatively small data and the great performance of flexible self-attention. 

 

As shown in Figure 5.7, the GPSA layer is based on the combination of two 

ideas, multi-head self-attention, and self-attention as a generalized convolution. 

Multi-head self-attention uses queries 𝑊௤௥௬ and keys 𝑊௞௘௬ as well as the linear 

projections of embed patches 𝑋௜ and 𝑋௝ to produce an attention filter. While 

convolution property of a convolutional layer with filter size ඥ𝑁ℎ × ඥ𝑁ℎ  is 

generated using multi-head positional self-attention by applying the following 

conditions, as shown by Cordinnier et al. [83]:  

 

𝜈௣௢௦
௛ ∶=  −𝛼௛(1, −2𝛥ଵ

௛ − 2𝛥ଶ
௛ , 0, . . .0) 

𝑟ఋ ∶=  (ห|𝛿|ห
ଶ

, 𝛿ଵ, 𝛿ଶ, 0, . . .0)                                                (5.1) 

𝑊௤௥௬  =  𝑊௞௘௬ ∶=  0,  𝑊௩௔௟ ∶=  𝐼 

 

𝑁௛is the number of heads and learnable relative position encodings of the 

positional self-attention. 𝛥௛ is the center of attention, which is the position where 

the head ℎ pays most attention to. 𝛼௛ is the locality strength, which controls how 

focused the attention is around its center. Therefore, GPSA layers initially act purely 

convolutional by setting the mentioned conditions, then the addition controlled by 

the learned gated parameter 𝜆 gives the layer freedom to escape convolutional 

locality. 
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Figure 5.10. Architecture of ConViT (left) and architecture of GPSA layers (right), 

after [82] 

 

Using the publicly released code and models on Github stated in the paper 

[82] with some modifications, multiple experiments have been conducted for Covid-

19 diagnosis on Mosmed dataset as shown in Table 5.3. The training was conducted 

using Google colab pro virtual machines, providing 25 GB RAM, and Tesla-P100 

GPU. The best performing model was trained with a batch size of 16 on 50 epochs 

with locality up to layer 2, locality strength of 0.5, and embed dimension of 64. 

Since the public code does not include a custom dataset option, we modified the 

ImageNet dataset function to load and normalize the CT data correctly by 

calculating the mean and standard deviation of the used dataset instead of using the 

pre-defined ImageNet values. Accuracy calculation was modified as well to obtain 

accuracy for binary classification rather than the top k categories method. After 

using the predefined ConViT model architectures such as convit-tiny, we created a 

smaller version with 3 self-attention heads instead of the smallest model with 4 

attention heads. Figure 5.11 shows the used architecture. 
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Figure 5.11. Architecture of the proposed ConViT model 

 

Table 5.3. Performance results of proposed ConViT model 

 

Exp. 

no 

Data Model Hyperparameter

s 

Results 

1 Mosmed-508 

254*5 healthy and 254*5 covid 

ct1+ct2+ct3 (including only 5 

middle slices) + New 

Segmentation 

ConViT tiny Mixup: 0 

Cutmix: 0 

Colorjitter: 0 

Batch size: 16 

Epochs: 50 

Val 

accuracy: 

0.84 

2 Mosmed-508 

254*5 healthy and 254*5 covid 

ConViT mini Mixup: 0 

Cutmix: 0 

Val 

accuracy: 
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ct1+ct2+ct3 (including only 5 

middle slices) + New 

Segmentation 

Colorjitter: 0 

Batch size: 16 

Epochs: 50 

 

0.86 

3 Mosmed-508 

254*5 healthy and 254*5 covid 

ct1+ct2+ct3 (including only 5 

middle slices) + New 

Segmentation 

ConViT mini Mixup: 0 

Cutmix: 0 

Colorjitter: 0 

Batch size: 16 

Epochs: 50 

Locality 

strength: 0.5 

Local up to 

layer: 2 

Embed dim: 64 

Val 

accuracy: 

0.88 

 

For testing, we load each original scan and then choose the number of slices 

on which we classify the scan as covid-19 or healthy. Although most publications 

choose middle slices directly, we found it better to choose slices a bit lower than the 

middle since covid-19 patterns tend to affect the lower lobes of the lungs. Since each 

scan contains around 40 slices, we choose slice 26 as the middle slice and we add 5 

slices before and 5 slices after it to classify 11 slices. Then using the majority voting 

technique, we add up classification results to find the final decision. We then 

calculate the metrics for model performance, as shown in Table 5.4 and 5.5. 

 

Table 5.4. Performance results on a test set of proposed ConViT model 

 

Model No. of slices Accuracy Sensitivity Specificity 

ConViT 13 0.79 0.6 0.98 

ConViT 11 0.84 0.7 0.98 
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ConViT 7 0.83 0.74 0.92 

ConViT 5 0.79 0.64 0.94 

 

Table 5.5. Confusion matrix for ConViT model on test set 

 Predicted Negative Predicted Positive 

Actual 

Negative 

49 1 

Actual 

Positive 

15 35 

 

 

A similar prognosis model was also trained by changing the number of 

classes to 4. Trained with and without data sampling to balance the amount of data 

in each class, a prognosis model could not be trained on such a small dataset. 

5.2.3. Residual Networks 

 

The most used models for covid-19 diagnosis are ResNet50 and ResNet101. For 

comparison, we trained both ResNet50 and ResNet101 models using the same pre-

processed 2D data used for ConViT training. We used the ImageNet weights but 

trained all layers without freezing so it could help the model converge faster while 

learning the specifics of medical imaging rather than generic colored images of 

ImageNet. We then added a fully connected layer and an output layer with a sigmoid 

activation function as shown in Figure 5.12. The loss function used is binary cross-

entropy with an Adam optimizer and a learning rate of 0.0001. This trains a 

ResNet50 model with a validation accuracy of 0.867 and a ResNet101 model with 

a validation accuracy of 0.872. 
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Figure 5.12. Architecture of the used ResNet model 

 

For testing, we use the same method used for testing ConViT performance. 

Compared to the same number of slices, the results are shown in Tables 5.6, 5.7, and 

5.8. 

 

Table 5.6. Performance results on a test set of ResNet50 model 

 

Model No. of slices Accuracy Sensitivity Specificity 

ResNet50 13 0.83 0.80 0.86 

ResNet50 11 0.83 0.82 0.84 

ResNet50 7 0.78 0.80 0.76 

ResNet50 5 0.80 0.80 0.8 

ResNet101 13 0.87 0.88 0.86 

ResNet101 11 0.87 0.88 0.86 

ResNet101 7 0.85 0.90 0.80 

ResNet101 5 0.83 0.90 0.78 

 

 



 
 

43 
 

Table 5.7. Confusion matrix for ResNet50 model on test set for 11 slices 

 Predicted 

Negative 

Predicted 

Positive 

Actual 

Negative 

42 8 

Actual 

Positive 

9 41 

 

 

Table 5.8. Confusion matrix for ResNet101 model on test set for 11 slices 

 Predicted 

Negative 

Predicted 

Positive 

Actual 

Negative 

43 7 

Actual 

Positive 

6 44 

 

5.2.4. Linear Regression 

 

After training 2D and 3D models separately, we use a linear regression model to 

combine the results of the two. We use the decision of each classified slice of the 

2D model along with the decision of the 3D model as input. The goal of a regression 

model is to find a classification decision based on the results of both models 

combined by best fitting weights and biases. The model is trained with a loss 

function of binary cross-entropy and an Adam optimizer with a learning rate of 0.01. 

The results of training on 50 epochs are a training and validation accuracy of 0.98. 
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On the test set, the model produces a specificity of 0.92, a sensitivity of 0.88, and 

an accuracy of 0.9. 

 

Table 5.9. Confusion matrix for linear regression model on test set 

 

 Predicted 

Negative 

Predicted 

Positive 

Actual 

Negative 

44 6 

Actual 

Positive 

5 45 
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6. RESULTS 

 
 

The proposed ensemble model trained on very small balanced data of 508 CT 

scans, performs better than top published classification models trained on datasets 

of similar size. The model is also superior for its light weight, small total number of 

parameters and short time of training. The model was trained on virtual machines 

provided by Google’s Colab Pro, providing 25 GB RAM, and Tesla-P100 GPU with 

total training time less than two hours. 

 

The full proposed model on test set results an accuracy of 0.9, sensitivity or 

recall of 0.88, specificity of 0.92, precision of 0.88 and F1-score of 0.88. 

 

Table 6.1. Comparing proposed model to related work 

 

Author/model Data Approach Performance 

Proposed model 254 healthy CT 
scans, and 254 
covid-19 CT 

scans 

Ensemble model 
of 3D CNN and 

ConViT with 
Linear Regression 

Accuracy: 0.9 
Sensitivity: 0.88 
Specificity: 0.92 
F1-score: 0.88 

Mishra et al. [55] 360 covid-19 
CT scans, and 
397 normal CT 

scans 

an ensemble model 
combining results 

from 5 modes: 
VGG16, 

InceptionV3, 
ResNet50, 

DenseNet121, and 
DenseNet201 
using majority 

voting 

Accuracy: 0.883 
F1-score: 0.867 

He et al. [60] 216 covid-19 
CT scans, and 
133 normal CT 

scans 

a self-supervised 
model with 

transfer learning 

Accuracy: 0.86 
F1-score: 0.85 
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Chen et al. [61] 216 covid-19 
CT scans, and 
171 normal CT 

scans 

a contrastive 
learning model 

with a pre-trained 
encoder 

Accuracy: 0.868 
Sensitivity: 0.872 
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7. CONCLUSION 

 
 

The use of computer vision in the medical field, although increasingly beneficial 

in terms of speed and confidence in diagnosis and prognosis tasks, will always have 

the challenge of limited data. Medical images for new or rare diseases are scarce, 

and even for common diseases are limited due to restrictions and regulations. This 

makes the development of computer vision models on small datasets a critical task. 

 

  The steps taken to achieve this goal starts with preprocessing of data. 

Although many data augmentation techniques are available for computer vision 

tasks, medical images need to keep many of their features unchanged to avoid 

information loss. Thus, in this study, we only apply segmentation and normalization 

to CT scans before training. In the future, augmentation techniques with minimal 

alterations of medical images, such as Mixup and CutMix, can be used to increase 

the amount of data. To choose a model for a medical diagnosis task it is important 

to take into consideration the specification of the disease and its manifestation in 

medical imaging. Covid-19 causes ground-glass opacities, consolidation, and 

reticular patterns especially at the back and lower lobes of the lungs. This gives 

priority to the 3D information of a CT scan as well as the patterns in 2D slices. This 

study explored different architectures and principles in computer vision to achieve 

this task and proposed combining models in order to achieve good performance 

using a very small dataset.  

 

Convolutional Neural Networks have been developed for decades for 

computer vision tasks and are the most expected to perform well. The 3D CNN 

model makes use of the volumetric information of CT scans which is essential as 

position in the third dimension plays a critical role in diagnosis. We used a 3D 

LeNet-based CNN model to achieve this goal. Lately, Attention-based models have 

been increasingly used in computer vision tasks. Vision transformers perform well 

on images but are not used widely in medical imaging due to their small datasets. 
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We used the Convolutional-Like Vision Transformer to make use of the 

convolution’s ability to learn from small datasets and attention’s superior 

performance. The performance of the ConViT model in this study proves the 

efficiency of attention in medical imaging. With its small architecture and the much 

smaller number of parameters, it performs as well as the complicated architecture of 

the ResNet50 on a small dataset. 

 

This study proposed an ensemble of a 2D attention based ConViT model and 

a 3D CNN model with linear regression, although trained on only 508 cases split 

into train, validation, and test sets produces an accuracy of 90% with a specificity 

of 92% and sensitivity of 88%. Such a model proves that computer-aided diagnosis 

systems can be trained and used for diseases with limited data. 
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