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OZET

LINEER OLMAYAN KESIRLI MERTEBEDEN KISMi DIFERANSIYEL
DENKLEMLERIN ANALITIK COZUMLERI
YUKSEK LISANS TEZI
ABDULSAMET BEKTAS
PAMUKKALE UNIVERSITESI FEN BILIMLERI ENSTITUSU
MATEMATIK ANABILIiM DALI
(TEZ DANISMANI: DOC. DR. ALi KURT)

DENIZLi, AGUSTOS - 2022

Dort bolimden olusan tezin birinci bolimi olan giris boliimiinde, kesirli
tiirevin gelisimi, cesitli kesirli tiirev tanimlar1 ve bazi 6zelliklerinin yan1 sira kesirli
tiirev ile ilgili literatiirde yer alan bazi ¢aligmalara yer verildi.

Ikinci boliimde, conformable tiiriinden kesirli tiirev iceren kismi diferansiyel
denklemlerin tam ¢6ziimlerini bulmak igin kullandigimiz yontemler olan alt denklem
yontemi ve exp(—¢(<&)) yontemi ifade edilmistir.

Tezin orijinal kismi olan ii¢lincii boliimde, her biri kesirli mertebeden olan
Yu-Toda-Sasa-Fukuyama, gelistirilmis degistirilmis KDV, Date-Jimbo-Kashiwara-
Miwa, Caudrey-Dodd-Gibbon, negatif mertebeli KDV-Calogero-Bogoyavlenskii-
Schiff, genellestirilmis Benjamin denklemlerinin tam ¢oziimleri MATHEMATICA
programi araciligiyla alt denklem yontemi ve exp(—¢(<&)) yontemi kullanarak elde
edilmistir. Ayrica elde edilen ¢oziimlerin ii¢ boyutlu grafiklerine de bu béliimde yer
verilmigtir.

Dérdiincii boliimde ise sonug ve Onerilere yer verilmistir.

ANAHTAR KELIMELER: Conformable kesirli tiirev, Alt denklem yontemi, Tam ¢6ziim,
exp(—¢(£)) yontemi.



ABSTRACT

ANALYTICAL SOLUTIONS OF NONLINEAR FRACTIONAL PARTIAL
DIFFERENTIAL EQUATIONS
MSC THESIS
ABDULSAMET BEKTAS
PAMUKKALE UNIVERSITY INSTITUTE OF SCIENCE
MATHEMATICS
(SUPERVISOR: ASSOC. PROF. DR. ALi KURT)

DENIZLi, AUGUST 2022

In the introduction, which is the first part of the four part thesis, the
development of fractional derivative, various fractional derivative definitions and
some of its properties, as well as some studies in the literature on fractional
derivatives were included.

In the second part, theexp(—¢(&)) -method and sub-equation method are

expressed, which are the methods we use to find the exact solutions of partial
differential equations containing fractional derivatives of the conformable type.

In the third part, which is the original part of the thesis, the exact solutions of
fractional Yu-Toda-Sasa-Fukuyama equation, improved modified KDV equation,
Date-Jimbo-Kashiwara-Miwa equation, Caudrey-Dodd-Gibbon equation, negative
order KDV-Calogero-Bogoyavlenskii-Schiff equation and generalized Benjamin
equation are obtained using the sub-equation method and exp(—¢#(&)) method with
the help of MATHEMATICA program. In addition, 3D graphics of the obtained
solutions are also included in this section.

In the fourth part, conclusions and suggestions were included.

KEYWORDS: Conformable fractional derivative, Sub-equation method,
exp(—¢(£)) method, Exact solution.
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1. GIRIS

Kesirli mertebeden diferansiyel denklemlerin hikayesi, 30 Eylil 1695
tarthinde matematik diinyasinda isminden siklikla s6z ettiren L’Hospital’in,
diferansiyel ve tiirev analizinin temellerini atan Leibnitz’e yazdigi mektupta 1/2.
mertebeden tiirevin alinip alinamayacagini sorgulamasiyla baslamistir. Leibnitz bu
soruya “Bu durum su anda bir paradoks gibi goziikse de bir giin ¢ok kullanish
sonuglar1 ortaya cikaracak.” seklinde cevap vermistir. Gliniimiize kadar yapilan
basarili ¢alismalarda da mertebenin tamsayilarla kisithh olamayacagi goriilmiistiir.
Dolayisiyla L’Hospital’dan bu yana mertebesi rasyonel sayilarla temsil edilen alan

kesirli analiz olarak adlandirilmaktadir.

Fizik, kimya, biyoloji ve miihendislik gibi alanlarda karsimiza ¢ikan
problemlerin ¢6ziimlerini arastirmak ve bu ¢oziimlerin davraniglarini agiklayabilmek
icin matematiksel modellemeye ihtiya¢ duyulmaktadir. Giinimiize kadar olusturulan
bircok matematiksel modelde tam mertebeden tiirev ve integral kullanilmistir.
Yapilan ¢aligmalar neticesinde olusturulan bu modellerde tam mertebeden tiirev veya
integral yerine, kesirli mertebeden tiirev ve integralin kullanilmasinin daha avantajli

oldugu anlasilmistir. Bu avantajlardan bazilar1 asagidaki gibi agiklanabilir;

Kesirli analiz, sistem analizinin gelisiminin Onceki islemlere olan
bagimliligim1 kapsamlhi sekilde dikkate alarak kolayca ifade edebilir. Ancak tamsay1
hesab1, yerellik karakteristigi sebebiyle sistemin geg¢mis yapisini ifade etmekte
yetersiz kalmaktadir. Kesirli analizle ifade edilen teorik modeller, tam sayili
mertebeyle ifade edilen modellere nazaran deneysel verilerle daha uyumludur.
Karmagik fiziksel mekanik problemleri tanimlarken, kesirli analizle ifade edilen
modelin daha net bir fiziksel anlami1 ve daha basit bir ifadesi oldugu ortaya
koyulmustur (Kurt 2020).

Gilinimiizde fen, miihendislik ve diger birgok alanda kesirli mertebeden
diferansiyel kullanilarak elde edilen modeller oldukga ilgi gérmekte olup bu konuda
yapilan arastirmalar ve ¢alismalar da giderek artmaktadir. Bu ¢alismalar ¢ok farkli

alanlarda yapilmaktadir. Bunlardan bazilari elektrokimya alaninda Chai ve Chan



(1992)- Oldham (2010); elektromanyetik alaninda Engheta (1996); viskoelastisite
alaninda Adolfsson ve Olsson (2005)- Alotta ve dig. (2017); biyomiihendislik
alaninda Magin (2012); devre analizi alaninda Gomez-Aguilar ve dig. (2017); tip
alaninda Shiri ve Baleanu (2019) seklindedir.

Kesirli mertebeden diferansiyel denklemler, tam mertebeden diferansiyel
denklemlere nazaran biraz daha karmasiktir. Bunlari iyi anlayabilmek i¢in bazi temel
kavramlar1 (Gama fonksiyonu, Beta fonksiyonu, Riemann-Liouville integtiirev
operatorleri, Caputo tlirev operatorli, Mittag-Leffler fonksiyonlari, Griinwald-

Letnikov tlirevleri gibi) iyi anlamak, iyi bilmek ve dogru uygulamak gerekir.

Riemann-Liouville tamimindaki matematiksel modellemeler,  kesirli
mertebeden tiirev ve kesirli mertebeden integral ile bahsi gegen konumuzun
uygulamalarina yonelik ¢oziime dair ¢ok Onemli katkilar saglamistir. Matematik
alaninda zaman igerisinde yasanan degisim ile bazi fiziksel olaylari modellemede
kullanilan, kesirli mertebeden diferansiyel tanimlarinin baslangic kosullarini
belirleyen, fiziksel olaylarin karsiligini en uygun bigimde verebilen ve en avantajli
kullanima sahip tanim Caputo kesirli mertebeden tiirev tanimidir. Michele Caputo’
nun tanimlamis oldugu kesirli mertebeden tiirev Caputo tiirevi olarak da bilinir, bu
tanim Riemann-Liouville kesirli mertebeden tlirev taniminin iizerinde bazi

degisikliklerle elde edilmistir.

Ote yandan Caputo tiirevinin daha kullamsli olmasinin bir baska sebebi de
baslangi¢ kosullarinin, tam mertebeden diferansiyel denklemlerin (6zellikle

baslangi¢ deger problemlerinde) ayni baslangi¢ kosullarina sahip olmasindandir.

Ne yazik ki, kesirli mertebeden diferansiyel denklemlerin ¢oziimlerinin
analitik yolla tam olarak bulunabilecegi genel bir yontem bulunmamaktadir. Bu
nedenle problemlerin ¢oziimii icin sayisal yontemler ve yaklasik c¢o6ziim
yontemlerinin gelistirilmesi i¢in matematik diinyasinda bu konu iizerine ¢aligmalar

halen devam etmektedir.

Asagida ilk olarak kesirli mertebeden adi diferansiyel denklem, daha sonra
kesirli mertebeden kismi diferansiyel denklem ve literatiirde sik¢a karsilasilan bazi

kesirli tiirev tanimlarina yer verilmektedir. Bu kesirli tiirev tanimlarindan en popiiler



olanlar siiphesiz Riemann-Liouville ve Caputo kesirli tlirev tanimlaridir. Literatiirde
bahsi gegen bu kesirli tirev tanimlarini kullanarak yapilmis bircok calisma

bulunmaktadir (Abdeljawad 2017).

Tammm 1.1 (Kesirli Mertebeden Adi Diferansiyel Denklem): Bir veya
birden fazla bagimli degiskenin, bir bagimsiz degiskene gore kesirli mertebeden
tirevlerini iceren denklemlere “kesirli mertebeden adi diferansiyel denklem” denir.
(Benghorbal 2004). Kesirli mertebeden sabit katsayili adi diferansiyel denklemin en
genel hali asagidaki sekilde ifade edilebilir

a D7 y(t)+a, D™ y(t)+...+aD?y(t) +a,Dy(t) = f(t) .

Ornek 1.1: Kesirli mertebeden lineer adi diferansiyel denklem

3 1

D2y(t)+D2y(t)-2y(t) =0
seklinde ifade edilebilir (Podlubny 1999).

Tamm 1.2 (Kesirli Mertebeden Kismi Diferansiyel Denklem): Bir veya
birden fazla bagimli degiskenin, birden fazla bagimsiz degiskene gore kesirli
mertebeden tiirevlerini igeren denklemlere “kesirli mertebeden kismi diferansiyel
denklem” denir (Podlubny 1999).

Ornek 1.2: Kesirli mertebeden kismi tiirevli diferansiyel denklem drnegi

o°u(x,t)

aXZ

D u(x,t) = A2 , 0<t ,—o<x<o0 ,0<a<l

seklindedir (Podlubny 1999).

1.1 Kesirli Tiirev Tanimlari

Tammm 1.1.1: h(t) fonksiyonu her sonlu (a,x) araliginda stirekli ve

integrallenebilir olsun. neN , n—-1<a<n ve a>0 olmak iizere X >a igin bir

h fonksiyonunun «. mertebeden Riemann-Liouville kesirli tiirevi

3



D) = F(n—a)(dtj I(t—r)“‘”+1’

a

seklinde tanimlanir (Podlubuy 1998). Burada I'(n —«a) fonksiyonu
r'(n) :jx”‘le‘xdx
0

ifadesi ile tanimlanan Gama fonksiyonudur.

Tamm 1.1.2: Riemann-Liouville kesirli tiirevi taniminin kullaniminda ortaya
cikan baslangi¢ degerlerinin hesaplanmasi veya deneysel yolla 6l¢iilmesi problemini
ortadan kaldirmak amaciyla 1967°de M. Caputo tarafindan ifade edilen Caputo

kesirli tirev tanimi

1 j h™(7)dr

oDt = T(n—a)? (t—7)* "™

(n=1<a<n)
0

seklindedir (Podlubny 1998).

Tanmm 1.1.3: h(k)(t) , (k=1,2,...,m+1) tiirevleri, [a,t] araliginda siirekli ve
msayisi, m> p-—1 esitsizligini saglayan bir tamsayr olmak iizere Griinwald-

Letnikov kesirli tiirev tanim1 (m < p <m+1) olmak tlizere

m_ (k) _ a) btk
G;_Dtp f (t) — z h (a)(t a) + 1

t
t— m—ph(m+1) d ,
o I'(=p+k+1) F(—p+m+1).£( 7) (r)dz

seklindedir (Podlubny 1998).

Tammm 1.1.4: h(x) sonlu (a,b) araliginda tanimli, siirekli ve n kez
diferansiyellenebilir bir fonksiyon olmak iizere, ayrica «, o, ueR ve a,0>0

olmak kosuluyla «. mertebeden Erdelyi-Kober kesirli tiirev tanimi

. ox @) Lot (t)dt
IO,O',7]+Gh(X) = o o\l-a
[Na) 5 (x7-t%)

,(0<a<x<m)

olmak tlizere



1 oY oo
Oo’r]h(x) X ( o-1 DJ XO-( 77)'0,0‘,0’+77(h(x))

oX

seklindedir (Atangana 2015).

Tammm 1.1.5: h(x) sonlu (a,b) araliginda tanimli, siirekli ve n kez
diferansiyellenebilir bir fonksiyon ve «eR olmak iizere, h(x)fonksiyonunun

Hadamard kesirli tirevi

DZ (h(x)) = e a)( M( J@dt,(a<x<b)

olarak ifade edilmistir (Atangana 2015).

Yukarida ifade edilen kesirli tiirev tanimlar1 yalnizca lineer olma 6zelligini
ortak olarak saglar (Khalil ve dig. 2014). Ancak bu tanimlarin dezavantajlar1 sadece
bununla smirh degildir. Pratikte ortaya ¢ikan aksakliklarin bazilar1 Khalil ve dig.
(2014) tarafindan asagidaki gibi ifade edilmistir.

i.  Riemann-Liouville kesirli tiirev yaklasiminda sabitin tiirevi sifir degildir.

Yani, ¢ sabit olmak tizere

DI (c)=0

esitligi saglanmaz.
ii. Riemann-Liouville ve Caputo kesirli tiirev yaklasimlar1 iki fonksiyonun

carpiminin tlirevi olarak bilinen
DY (f(g(®) = f1D] (9()+9®D; (1)
formtiliinii saglamazlar.

iii. Riemann-Liouville ve Caputo Kesirli tiirev yaklasimlar1 iki fonksiyonun

bolimiiniin tirevi olarak bilinen

( f(t)J f()D; (9(1) —g(t)Dy (f (1)
g(t) [9(OT"

formiiliinii saglamazlar.



Iv. Riemann-Liouville ve Caputo kesirli tiirev yaklagimlari

D (fog)() = (g (1)) 9" (t)

seklindeki zincir kuralin1 saglamazlar.

V. Riemann-Liouville ve Caputo kesirli tiirev yaklasimlari

DD f (t) = D“* f (1)

esitligini saglamazlar.
vi.  Caputo Kkesirli tirev yaklastmi ele alman bir f fonksiyonunun

diferansiyellenebilir oldugunu kabul eder.

Riemann-Liouville ve Caputo kesirli tiirev yaklasimlarinin temel matematikte
yer alan tirevin sagladigi genel ozellikleri saglamadigindan dolayr dezavantajlari
mevcuttur. Bu dezavantajlari ortadan kaldiran ve belirtilen &zellikleri saglayan,
conformable tiirev yaklasimi olarak adlandirilan tiirev yaklagimini, asagida yapilan

tanimlarla agiklayalim (Khalil ve dig. 2014).

Tamm 1.1.6: f:[0,0) >R, t>0 ve a €(0,1) olmak iizere & - mertebeden

bir f fonksiyonunun conformable kesirli tiirev yaklagimi

f(t+et™)—f(t)

&

T, (f(1)=lim

seklindedir. Eger f (t)fonksiyonu <0 olmak iizere (O,a) acik araliginda o -

mertebeden diferansiyellenebilir ve

lim ) (t)

t—0"

limiti mevcut ise, 0 zaman

£ (0)=lim £ (t)

t—0*

esitligi yazilir (Khalil ve dig. 2014).



Teorem 1.1.7: Eger f:[0,0) >R, t,>0ve « €(0,1] olmak iizere bir f

fonksiyonu « diferansiyellenebilir ise, o zaman f fonksiyonu t, noktasinda

stireklidir (Khalil ve dig. 2014).

Tamm 118: «ae(n,n+l] ve f fonksiyonu t>0 da n-

diferansiyellenebilir olsun. f fonksiyonunun « . mertebeden comformable kesirli

tirevi asagidaki gibi tanimlanir. (Khalil ve dig. 2014)

f|_a-|—1 t t|_a-|—a _ f|—a-|—l t
T,(f(t))=lim (+g ) O

&0 &

Burada I_Ot—l semboliiyle gosterilen ifade, « ’ya esit ya da « ’dan biiyiik, en kiigiik

tam say1 seklinde tanimlidir.

Teorem 1.1.9: ae(O,l] olmak tizere f ve g fonksiyonlar1 t>0

noktasinda diferansiyellenebilir olsun. Bu durumda;

1) Her a,beR igin,
T,(af(t)+bg(t))=aT,(f(t))+bT,(a(t)).

2) Her peR igin,
T, (t°)=pt"* .

3) Her f(t)=c sabit fonksiyonu icin,
T,(c)=0.

4 T,(f(t)a®)=fOT,(g(t)+a®T,(f1)).

5 T [ f(t)]: gOT. (*(1)-fOT. (90)
“La® [a®)]’

_ e 4T O
6) T, (f(t)=t ”

ozellikleri saglanir (Khalil ve dig. 2014).



Bazi temel fonksiyonlarin conformable kesirli mertebeden tiirevi;
1) Her peR igin,
T, (") =pt".
2) T, (l) =0.
3) Her ceR igin,
T, (e%)=cte.
4) Her beR igin,
T, (sin(bt)) =bt" cos(bt) .
5) Her beR igin,

T, (cos(bt)) =—bt™ sin(bt) .

o 7L )
a

seklindedir (Khalil ve dig. 2014).

Teorem 1.1.10: f ve g diferansiyellenebilir iki fonksiyon olsun. f
herhangi bir g(t) noktasinda ve g ’de herhangi bir t noktasinda diferansiyellenebilir

fonksiyonlar olmak {izere conformable kesirli tiirevi asagida verilen zincir kuralini

saglar.
T, ((fog)(x)) = X-“g(x)" g ' ()T, (f O],

Tanmmm 1.1.11: f fonksiyonu m degiskenli bir fonksiyon olmak iizere
O<a <1 igin conformable kismi tiirev asagidaki gibi tanimlanir;
o f O X X X X ) = F (X X))

pve f()g,xz,...,xm)zllm

&

Teorem 1.1.12: f(x,y) fonksiyonu i¢in 95[0} (f(x,y))] ve &[5 (f(x,y))]

tiirevleri var ve D < R? de siirekli olsun. Bu durumda;

ox[oy (f (x, yNI=ay[0% (f (x, y))1.



Teorem 1.1.13:  Kabul edelim ki f,g:(a,0)—>R fonksiyonlar:
a €(0,1] olmak iizere sol « - diferansiyellenebilir olsun ve h(t)= f (g(t)) alalim.

Bu takdirde h(t) sol o -diferansiyellenebilirdir ve her t igin,
tzave g(t)=0 ise (Th)(t)= (T f)(g(t)).(Ta) (t) g (®)™

t=a ise (Ta“h)(t)ztl_i)r{g(Ta“f)(g(t)).(Ta“g)(t)g(t)“‘l
dir (Abdeljawad 2015).

Tamm 1.1.14:0< <1 ve ne{l,2,3...} olmak iizere a —mertebeden n -
kez sol ardisik conformable kesirli tiirevi

T2 (1) = TATA. T2 (1)
|y e AN

n—kez

dir (Abdeljawad 2015).

a - mertebeden n - kez sag ardisik conformable kesirli tiirevi

T f (t) = °T,°T,..°T, f(t)

n—kez

ile tanimhidir (Abdeljawad 2015).

Lemmal.l.15: f:[a,0)—>o0 fonksiyonu (a,») agik aralifinda iki kez

diferansiyellenebilirve O0<a , <1, 1l<a+ B <2 olsun. O halde;

(TeTe)(0)= (2, OO+ (a- A (t-a) " T26) (1)
dir (Abdeljawad 2015).

Yukaridaki teoremlerden de goriilecegi iizere conformable kesirli tiirev
tanimi, temel analizde kullanilan tam mertebe tiirevin sagladigi birgok ozelligi
saglamaktadir. Conformable kesirli tiirevin bu avantaji tiirevin olduk¢a ilgi
¢ekmesine ve birgok bilimsel ¢alismada kullanilmasina sebep olmustur. Abdeljawad

(2015) yayinladigr ¢alismasinda conformable kesirli tiirevin yeni 6zelliklerini ifade
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etmenin yani sira zincir kurali, istel fonksiyon, kismi integrasyon, Taylor seri
acilimi, Laplace ac¢ilimi gibi temel kavramlarin conformable kesirli versiyonlarini
ifade etmistir. Yine 2015 yilinda yayinlanan bir diger calismada Atangana ve
arkadaslar1 conformable kismi tiirev kavramini, conformable diverjens teoremini,
conformable Green teoremini ifade edip, conformable kesirli tiireve dair bazi yeni
ozellikleri vermislerdir. Zhao ve Luo (2017) yilinda genellestirilmis conformable
kesirli tiirev kavramini tanimlayip, bu tanimin fiziksel agiklamasini yapmislardir.
Eslami ve Rezazadeh (2016) yaptiklar1 ¢alismada ilk integral yontemini kullanarak
conformable kesirli Wu-Zhang sisteminin analitik ¢éziimiine ulasmiglardir. Cenesiz
ve dig. (2017) yilinda yaptiklari ¢alismada conformable kesirli mertebeden Burgers
tipindeki denklemlerin tam ¢6ziimlerini elde etmislerdir. Arqub ve dig. (2020) kesirli
rezidii kuvvet serisi yontemi ile conformable kesirli tiirevli Ito, Sawada-Kotera,
Lax’s Korteweg-de Vries, Caudrey-Dodd-Gibbon, ve Kaup-Kupershmidt
denklemlerinin yar1 analitik ¢6ziimlerine ulagmislardir. Karayer ve dig. (2016)
caligmalarinda conformable kesirli Nikiforov-Uvarov yontemini sunmuslardir.
Thabet ve Kendre 2018 yilinda yaptiklar1 ¢alismalarinda conformable diferansiyel
donilisim yontemini kullanarak Navier-Stokes ve gaz dinamigi denklemlerinin
¢oztimlerini  tretmislerdir. Cenesiz ve Kurt (2017) conformable Fourier
doniislimiiniin tanimimni verdikleri yayinlarinda, ayni zamanda conformable Fourier
siniis ve kosinilis doniislimii tanimlarin1 da vererek bu doniisiimler yardimi ile
conformable kesirli mertebeden 1s1 denkleminin ¢6ziimiinii vermislerdir. Chen ve
Jiang (2018) basit denklem yontemini kullanarak zaman kesirli genellestirilmis
Burger, genellestirilmis KdV, genellestirilmis Sharma—Tasso—Olver, besinci mertebe
KdV ve (3+1) boyutlu KdV-Zakharov—Kuznetsov (KdV-ZK) denklemlerinin tam
¢ozlimlerini elde etmislerdir. Tasbozan ve dig. (2016) ise kesirli mertebeden
Boussinesq ve birlestirilmis KdV-mKdV denklemlerinin analitik ¢oziimlerini
verdikleri ¢aligmalarinda Jacobi eliptik  fonksiyonlar1 acilim  yOntemini
kullanmislardir. Bir¢ok alanda ¢ok fazla ilgiye mazhar olan conformable kesirli

tiirevle kullanilarak yapilan bir bagka ¢alismada Abdeljawad ve dig. (2017) « € (1, 2]

olmak tizere conformable baslangi¢ deger problemi i¢in genellestirilmis Lyapunov
tipi esitsizlikleri ispatlamislardir. Akbulut ve Kaplan ise yardimci denklem yontemini

kullandiklar1 ¢alismalarinda (2+1)—boyutlu Zoomeron denklemi ve igiinci

mertebeden modifiye edilmis KDV denklemimin tam ¢6ziimlerini elde etmislerdir.
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Batarfi ve dig. (2015) kesirli diferansiyel denklemi, baslangi¢c ve {i¢ noktali sinir
kosullarina sahip yeni bir kesirli tiirev kavramini kullanarak incelemisler, lineer
problem i¢in Green fonksiyonunu elde etmisler lineer olmayan denklem {izerine de
calismalar yapmuslardir. Arqub ve Al-Smadi (2022) ise yeni bulanik kesirli tiirev
tanim1 olan conformable bulanik kesirli tiirev ve integral kavramlarini literatiire
kazandirmislar, varlik ve teklik gibi kavramlari ele almislar ve bu kavramlara agiklik
getirmislerdir. Khalil ve dig. (2019) calismalarinda conformable kesirli tlirevin
geometrik yorumunu yapmislardir. Diger kesirli tiirev tamimlarinin geometrik
yorumu heniiz literatiirde var olmadigindan dolayi, bir kesirli tiirevin geometrik

yorumunun yapilmasi agisindan bir ilk olma 6zelligini tagimaktadir.

Bu tez calismasinda conformable kesirli mertebeden kismi tiirevli
denklemlerden bazilar1 ele alinmis ve bu denklemlerin tam ¢dziimleri alt denklem

yontemi ve exp(—¢(&)) yontemi kullanarak elde edilmistir. Conformable kesirli tiirev

kullanilarak elde edilen bu ¢oziimlere literatiirde rastlanmadigindan bir ilk olma
ozelligini tasimakta olup, orijinal sonuglar elde edilmistir. Elde edilen sonuglarin ii¢

boyutlu grafikleri de okuyucuya sunulmustur.
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2. MATERYAL VE YONTEM

Bu boliimde, ilk olarak yontemlerin isleyisi i¢inde kullanacagimiz homojen
denge prensibinin prosediiriinii ifade ettikten sonra sirasiyla alt denklem yonteminin

ve exp(—¢(&)) yonteminin uygulama agamalari ifade edilecektir.

2.1  Homojen Denge Prensibi

Homojen denge sayisi, toplam seklinde verilen tam ¢dziimiin iist sinirini ifade
eder. Lineer olmayan bir adi diferansiyel denklemde en yiiksek mertebeden lineer

terim ile en yiiksek dereceden lineer olmayan terim arasinda sabit bir say1 elde edilir.

a

Bir adi diferansiyel denklemde en yiiksek mertebeden lineer terim j—l: ve en yliksek
£

r

4 . d
dereceden lineer olmayan terim up( -
&

3
uj seklinde verilsin. u=7" doniisimii

yapilirsa p,q,r,s pozitif tam say1 ve n homojen denge sayis1 olmak iizere homojen
denge bagmtis1 n+q=np+s(n+r) seklinde elde edilir. Bu denklemden n pozitif

homojen denge sayisina ulasilir (Tasbozan ve dig. 2016).

2.2 Alt Denklem Yoéntemi

Bu boliimde alt denklem yontemini kisaca dzetleyelim (Durur ve dig. 2020).

Kesirli mertebeden lineer olmayan kismi tiirevli diferansiyel denklem;
P(u, Dfu, D,u,D?“u,D}u,..) =0 (2.1)

seklinde verilsin. Bu denklemde kesirli tiirevler conformable tiirev cinsinden olup,
u(x,t) aranan fonksiyon ve D{'“ ise u(x,t) fonksiyonunun n kez ardisik olarak

a.mertebeden conformable tiirevini ifade etmektedir. Simdi alt denklem yontemini

adim adim aciklayalim.
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a

wt
Adim I: k dalga genligi ve w dalga hizi olmak iizere & =KX+
o

dalga
dontisiimii ve conformable kesirli tiirev i¢in zincir kurali kullanilarak (2.1) denklemi
G(u,u’,u",...)=0 (2.2)

seklinde lineer olmayan adi diferansiyel denkleme indirgenir. Burada u fonksiyonu
& ye bagl bir fonksiyon olup u’, u” tiirevleri ise yeni bagimsiz degiskenimiz & ye

bagli tam mertebeli tiirevlerdir.

Adim 2: Kabul edelim ki (2.2) denkleminin ¢dzimii
N .
u@)=> a¢'() . a, =0 (2.3)
i=0

formunda olsun. Bu ifadede a, (0<i<N) terimleri sabitler olup daha sonra

hesaplanacaktir. N ise (2.2) denkleminde homojen denge yontemi uygulanarak

belirlenecek sabittir. ¢(&) fonksiyonu ise o bir sabit olmak tizere

(&) =0 +(@(&))’ (2.4)

diferansiyel denklemini saglayan bir fonksiyondur. (2.4) diferansiyel denkleminin

o ‘nin durumlaria 6zgili ¢6ziimleri asagida verilmistir.

—J-c tanh(v-5¢&), o<0
—J-o coth(v-c¢), <0
(&) = {No tan(Jo &), o>0 (2.5)
—Jo cot(/o &), o>0

,w=sabit, o=0
E+w

Adim 3: (2.3) ve (2.4) denklemleri (2.2) esitliginde yerine yazilir ve (/)i (3]
teriminin katsayilari sifira esitlenir. Bu yontem a;,k, w degiskenlerine bagli cebirsel

bir denklem sistemi tiretir.
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Adim 4: Elde edilen denklem sistemi ¢oziilerek bilinmeyen sabitler bulunur.
Bulunan bu sabitler ile (2.5) ¢oziimleri (2.3) denkleminde yerine yazilir ve dalga

dontistimii tekrar kullanilirsa (2.1) denkleminin tam ¢oziimiine ulagilir.

2.3 exp(—¢(¢&)) Yontemi

Simdi exp(—¢(£)) yontemini kisaca agiklayalim (Akbulut ve dig. 2017).
Kabul edelim ki u=u(X,t) olmak iizere lineer olmayan conformable kesirli tiirevli

kismi diferansiyel denklem
P(u, D?u,D,u, D, D?u, D{*®u,D,u,..) =0 (2.6)

seklinde verilmis olsun. Burada Dt(za) operatorii conformable kesirli tiirevin U

fonksiyonuna ardisik olarak «. mertebeden iki kez uygulanmasi anlamina

gelmektedir. Yontem adim adim asagidaki gibi verilebilir.

Adum I: ¢ dalga genligi, k dalga hizi olmak tizere

u(x,t)=u(é) , E=cx—kt 2.7)
dalga doniisiimii uygulanirsa (2.6) kesirli diferansiyel denklemi
Q(u,u’,u”,..)=0 (2.8)

seklindeki lineer olmayan tam mertebeli adi diferansiyel denkleme doniisiir.
Buradaki u’ ve daha yiiksek mertebeli ifadeler dalga doniisiimii sonrasi yeni

bagimsiz degiskenimiz olan &’ ye gore tiirev anlamina gelmektedir.

Adim 2. exp(—¢(£)) metoduna gore (2.8) denkleminin ¢oziimii

exp(—¢(&)) 'nin polinomu olan
u(&) = X8, (Xp(-4()) (2.9

Ifadesiyle verilebilir. Burada a, (a, #0) sabitler olmak iizere bu sabitler daha sonra
elde edilecektir. ¢(&) ise
#'(&) = exp(=¢()) + nexp(4(s)) + 4 (2.10)
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diferansiyel denklemini saglayan fonksiyonlardir. Ayrica burada tanimi yapilan

(2.10) diferansiyel denkleminin ¢dziim ailesi asagida verilmistir:

o Setl: A*—4u>0 ve u#0 olmak iizere

—JA —4pu tanh("/lzzéw (§+c)]/1

24

() =In

o Set2: A*—4u<0 ve u#0 olmak iizere

N/PE tan[W(gm)J—z

2u

¢2(§) =In

o Set3: 1*—4u>0, u=0 ve 10 olmak iizere

y A
¢,(S)=—In [ cosh(A(¢ +c¢)) +sinh(A(& +c¢)) —J

o Set4: A*—4u=0, u+#0 ve 10 olmak iizere

_2(z(§+c)+2)j

¢4(<§)=|n( 2 (E+0)

o Set5: A°—4u=0, u=0 ve 1=0 olmak iizere

¢(5) =In(¢ +c)

Burada c keyfi integrasyon sabitidir. Bunun yani sira (2.9) denklemindeki m
sayist, (2.8) denklemindeki en yiiksek dereceli lineer olmayan terim ile en yiiksek

mertebeli lineer terim arasinda homojen denge prensibi kullanilarak bulunur.

Adim 3: (2.9) denklemi, (2.8) denkleminde yerine yazilir ve ayni kuvvetli
exp(—¢(&)" (n=0,1,2,...) terimleri bir arada yazilirsa, exp(—¢(&)) terimine bagli
bir polinom elde edilir. Elde edilen bu polinomdaki katsayilar sifira esitlenirse a,
(n=0,1,2,...),4, k, c, u degiskenlerine bagl cebirsel denklem sistemi elde edilir.

Bu elde edilen denklemler ¢oziiliirse (2.6) denkleminin farkli analitik ¢dziimlerine

ulagilir.
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3. BULGULAR

3.1 Kesirli Mertebeden Yu-Toda-Sasa-Fukuyama Denkleminin

Analitik Coziimleri

Kesirli mertebeden lineer olmayan Yu-Toda-Sasa-Fukuyama denklemini
—4D{D,u+ D;D,u+4D,uD, D,u+2D;uD,u+3D;u =0 (3.1)

seklindedir.

a

(3.1) Denkleminde & =ax+by+cz+ L,
o

dalga donilistimii yapilir ve zincir kurali
uygulanip, elde edilen denklem bir kez integre edilirse;

a’cu” +3a’c(u’)’ +(3b° —4ad )u' =0 (3.2)
lineer olmayan adi diferansiyel denklemi bulunur.
(3.2) denkleminde homojen denge yontemi kullanirsa

m+3=2(m+1) (3.3)

olmak tizere iki denklem esitlenirse m=21 bulunur. (2.3) denklemi yardimiyla (3.2)

denkleminin ¢6ziimiiniin
u(e) =k, k(%) (3.4)

seklinde oldugu kabul edilecek olup, Kk, ve k daha sonra hesaplanacaktir. (3.4) ve
(2.4) denklemleri (3.2) denkleminde yerine yazilip elde edilen denklem ¢(&)

fonksiyonunun kuvvetlerine goére diizenlenir ve her bir katsayi sifira esitlenirse

asagidaki denklem sistemine ulagilir.
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2a°ck,0” +3a’ck’c” + ko (30° —4ad ) =0
8a’ck,o +6a’ck ‘o +k, (3b° ~4ad ) =0 (3.5)
6a’ck, +3a’ck,” =0

(3.5) denklem sistemi MATHEMATICA programi yardimiyla ¢oziiliirse

2\aco +ad
J3

b=- k =-2a (3.6)

a

¢oziim kiimesi elde edilir. (3.4), (3.6), (2.5) ve éfzax+by+cz+dt
a

doniistimii

kullanilarak, (3.1) denkleminin analitik ¢oziimleri asagidaki sekilde elde edilmistir.

3 a
u (X, y,2,t) =k, + 2ay—o tanh [\/0‘ [ax—% y+Cz+ at B
(04

Sekil 1 : u,(x,Y,z,t) fonksiyonunun « =0.8, y=05,z=05,k,=1,a=1,c=1,
d =1, o =—1degerleri i¢in 3 boyutlu grafigi

3 o
0 y,z,o:zaracom[«/—a{w— TR ]]k

o

Sekil 2 : u,(x,Y,z,t) fonksiyonunun «=0.8, y=1,z=5,k,=-1,a=1,c=-1,
d =0.3, o =—1degerleri i¢in 3 boyutlu grafigi
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Uy (X, y,z,t) =Kk, —2a/o tan| Jo

+ax+Cz +—
(94

2y\a’co+ad dt”
J3

Sekil 3 : uU,(X, Y, z,t) fonksiyonunun «=0.8, y=1,z=5,k,=-1,a=1,c=1,
d =0.3, o =1degerleri i¢in 3 boyutlu grafigi

2a
u,(x,y,z,t) = +k
R ST
J3 a

s
-‘
5

e
PSS
ey

Sekil 4 : u,(x,Y,z,t) fonksiyonunun a:% ,y=1,z2=5,k,=-1,a=1,c=1,

d =0.3, g =1degerleri igin 3 boyutlu grafigi

3 a
Us(X,Y,z,t) — 2a/o cot| o @ dt

+ax+cz+— | |+K,
(04
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Sekil 5: u;(X, Y, z,t) fonksiyonunun « =08, y=05,z=05,k,=1,a=1,c=1,
d =1, o =1degerleri igin 3 boyutlu grafigi

3.2 Kesirli Mertebeden Gelistirilmis Degistirilmis KdV Denkleminin

Analitik Coziimleri

Kesirli mertebeden lineer olmayan gelistirilmis degistirilmis KdV denklemini
-D?Dfu+Du+Du+u’Du=0 (3.7)

seklindedir.

a

(3.7) denkleminde & = mx + nt
a

dalga doniisiimii, zincir kurali uygulanip, elde edilen

denklem bir kez integre edilirse;
(3m3—3m2n)u”+mu3+3nu =0 (3.8)

lineer olmayan adi diferansiyel denklemi bulunur. (3.8) denkleminde homojen denge

yontemi kullanirsa
m+2=3m (3.9

m=21 bulunur. (2.3) denklemi yardimiyla (3.8) denkleminin ¢6ziimii

u(g) =k, +k(s) (3.10)
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seklinde olup, k, ve k daha sonra hesaplanacaktir. (3.10) denklemi ve (2.4)
denklemleri (3.8) denkleminde yerine yazildiktan sonra elde edilen denklem ¢(&)

fonksiyonunun kuvvetlerine gore dilizenlenir ve her bir katsay:1 sifira esitlenirse

asagidaki denklem sistemine ulagilir.

k,’m+3k,n=0

3k, k,m+2k,o (3m* —3m*n) +3k,n =0
3Kk,k,2m =0

km-+2k, (3m* —3m*n) =0

(3.11)

(3.11) denklem sistemi MATHEMATICA programi yardimiyla ¢oziiliirse

2mio 2mic
k, =— 1/ -m* , k,=0 , n=——— 3.12
\/_ 2m?o -1 g 2mio -1 ( )

a

I > nt
¢oziim ailesi elde edilir. (3.10), (3.12), (2.5) ve & =mx+
a

doniisiimii yardimiyla,

(3.7) denkleminin analitik ¢6ziimleri asagidaki sekilde elde edilmistir.

/ 2m*ct”
u,(x,t) = tanh[ { P 1) +me

1.80

Sekil 6 : u, (X,t) fonksiyonunun & =0.03 , m=0.8 , o =1degerleri i¢in 3 boyutlu grafigi
u,(x,t) = c oth| vV—c 2mot + mx
\/ a(2mio -1)
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Sekil 7 : u,(x,t) fonksiyonunun & =0.03 , m=0.8 , o =1degerleri i¢in 3 boyutlu
grafigi

4 3 o
Uy (%,1) = —BYo |2 _ 2 tan| | 2Ot

2m’o -1 a(2m20—1)+mx

10510

Sekil 8 : u,(x,t) fonksiyonunun  =0.003 , m=0.8 , o =1degerleri i¢in 3 boyutlu
grafigi

2mio 2m
u,(x,t =\/6 ——m2 cot —_—+
«(x0) o 2mio—1 J; a(2m20'—1)

=i

!_‘"
\%

%
=
ES
=
=

i
AN
WS

]
=
=3,
B
[
z
%

¥

Sekil 9 : u, (x,t) fonksiyonunun & =0.4 , m=1.2 , o =1degerleri i¢in 3 boyutlu grafigi
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3.3 Kesirli Mertebeden Date-Jimbo-Kashiwara-Miwa Denkleminin

Analitik Coziimleri

—28DD{u+ D;D,u +2D,uDju +4D,uD; D u +6D;uD,D,u—#D%u =0 (3.13)

seklindedir.

a

) ct .
(3.13) denkleminde & =ax+by+—dalga doniisiimii ve zincir kurali uygulanip,
o

elde edilen denklem iki kez integre edilirse;
(a*)u"+3a’b(u')’ —2a”Acu’ - 6b™u’ =0 (3.14)
lineer olmayan adi diferansiyel denklemi bulunur.

(3.14) denkleminde homojen denge yontemi kullanirsa

m+3=2(m+1) (3.15)

olmak {izere iki denklem esitlenirse m=21 bulunur. (2.3) denklemi yardimiyla (3.14)

denkleminin ¢6zimii

u(g) =k, +k(s) (3.16)

Seklinde oldugu kabul edilecek olup, k, ve k; daha sonra hesaplanacaktir. (3.16) ve

(2.4) denklemleri (3.14) denkleminde yerine yazildiktan sonra elde edilen denklem

(&) fonksiyonunun kuvvetlerine gore diizenlenir ve her bir katsayi sifira esitlenirse

asagidaki denklem sistemine ulagilir.

16a*bk,c* +12a°bk,’c? — 4a*Bck o — 2b°0k,o =0
40a*bk,o + 24a°bk,’c — 4a’ Bk, — 2b°0k, =0 (3.17)
24a°bk, +12a°bk,’ =0

(3.17) denklem sistemi MATHEMATICA programi yardimiyla ¢oziiliirse
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§/J192a1293a3 +81a* fc0* —9a’ Bch?
339 -
4a'c
$/J1728a129303 +729a B°c’0" — 278’ Bco?
k, =—-2a

(3.18)

ct”
Coziim seti elde edilir. (3.16), (3.18), (2.5) ve ¢ =ax+by+— doniisiimii
a

yardimiyla, (3.13) denkleminin analitik ¢éziimleri asagidaki sekilde elde edilmistir.

“6°c® +81a’ p*c* 0" —9a’ pch’
32/39 -

3+/192a
u, (X, y,t) =k, +2ay-o tanh| yy-o \/\/

4 a
oo 4a°c f '_—a[ax+Ct j

(o2
%/J1728a1293a3 +729a* B7c20" — 273> o’ a

Sekil 10 : u, (X, y,t) fonksiyonunun « =0.8, y=-0.5, k,=1,0=1,5=1,
a=1,c=1,0 =—1degerleri i¢in 3 boyutlu grafigi

J\J192a%6°c* +81a’ p*c?0* —9a’ fcH?
u,(x,y,t) =k, + 2av—o coth| yv/-o \/\/ ° 32,35 / -

4
yv— fa o +-o (ax+ ¢

ta
O
Y\i728226°6° + 729a° pic0° — 2702 oy a
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Sekil 11 : u, (X, y,t) fonksiyonunun « =0.8, y=05, k, =1,0=1,4=1,
a=1,c=1, 0 =-1degerleri i¢in 3 boyutlu grafigi

J192a26°c° +81a’ %c26" —9a> fct?

32/3 9

3
U, (X, y,t) =k, — 2a+/o tan y\/;\/

4
Y\/; 4a° o +\/g(aX+C

ta
Y\17282%6°6° + 1298 B0 — 27 Be6? o

Sekil 12 : u,(X, y,t) fonksiyonunun =0.8, y=0.5, k,=1,0=1,5=1,
a=1.1,c=1, o =1degerleri i¢in 3 boyutlu grafigi

U (x,y.t) =k, + 2 +ax+£+g
a

, i92a76°s" 1 81a'pc’e" —9a’ ped’ prO
2/3
¥ J\i728a%0°" + 1298 6" — 27a% ot
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Sekil 13 : u,(x, y,t) fonksiyonunun =0.8, y=0.5, k, =1,0=1,5=1,
a=1,c=1,0=-1, 9 =1degerleri i¢in 3 boyutlu grafigi

3.4  Kesirli Mertebeden Caudrey-Dodd-Gibbon Denkleminin Analitik

Coziimleri

Kesirli mertebeden lineer olmayan Caudrey-Dodd-Gibbon denklemini ele
alalim.

Dyu+30uDu +30D,uD’u + Du +180u’D,u =0 (3.19)

a

. nt
(3.19) denklemine &=mx+
a

dalga dontisiimii ve zincir kurali uygulanip, elde
edilen denklem bir kez integre edilirse;

m°u ™'+ 30m*uu "+ 60mu® +nu =0 (3.20)
lineer olmayan adi diferansiyel denklemi bulunur.
(3.20) denkleminde homojen denge yontemi kullanirsa
m+4=m+m+2 (3.21)

olmak iizere iki denklem esitlenirse m=2 bulunur. (2.9) dan (3.20) denkleminin

¢OzUmiiniin
u(&) = a, +a, exp(—¢(&)) + a, exp(—4(£))? (3.22)
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seklinde oldugunu kabul edilsin. (3.22) denklemi ve (2.10) denklemleri (3.20)

denkleminde yerine yazilir ve elde edilen denklem exp(—¢(&)) fonksiyonunun

kuvvetlerine gore diizenlenir ve her bir katsayi sifira esitlenirse

60a,’m +30a,a,Aum® +60a,a,°m* +a,n +a,A° um® +
8a, Au*m® +14a,A% 1*m° +16a,1°m° =0

180a,a,°’m +180a,a,m® +180a,°a,m + 60a,°m*® +
390a,a,Am® +60a,Am° +120a,°A°m*® + 240a,” um® +
330a,1?m° + 240a, um® =0

360a,a,a,m + 60a,a,m* +300a,a,Am* + 60a,°m +
90a,°Am® +150a,a,A°’m* + 300a,a, um* +50a,4°m° +
40a, um® +180a,° Aum® +130a,4°m° + 440a,Aum® =0

180a,’a,m +180a,a,°m + 90a,a, Am® +120a,a,4°m* +
240a,a,m® +30a,°A*m® + 60a,” um® + 210a,a, Lum® +
15a,4°m® + 60a, Aum® + 60a,’ 1z°m® +16a,4'm° +
232a,A% um°® +136a,.°m° +a,n =0

180a,’a,m +30a,a,4°m* + 60a,a, um® +180a,a,Aum® +

30a,°Aum® +60a,a,1°m* + a,A*'m° + 22a 4> um® + 293
16a,1°m° +a,n +30a,4°um’® +120a, u°m° =0 (3:23)

60a,’m +180a,°m® +120a,m* =0
180a,a,’m + 240a,a,m* + 24a,m° + 300a,°Am® + 336a,Am° = 0

denklem sistemine ulasilir. (3.23) denklem sistemi MATHEMATICA programi

yardimiyla ¢oziiliirse asagidaki ¢oziim kiimeleri elde edilir:

Coziim Kiimesi 1:

2

a, =/1(—m2),a2 =-m?,a, =,u(—m2),n=—m5(/12—4,u)
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Coziim Kiimesi 2 ve 3:

a =A(-m*) , a,=-m’, aO:J—r% % m4(/12—4,u)2—%m2(ﬂ,2+4y)

n= —%m3 (22 —4;1)(1 105,[m* (47 — 4u)” +11m? (22 —4;1))

a

(3.24)

A - nt
¢oziim ailesi elde edilir. (3.22), (3.24), (2.10) ve & =mx+
(04

doniisiimii yardimiyla,

(3.19) denkleminin analitik ¢oziimleri asagidaki sekilde elde edilmistir. Coziim

kiimesi 1 i¢in asagidaki ¢oziim setleri elde edilir:
e A*—4u>0 ve u#0 igin ¢oziim;

4 ZmZ
u (X, t)=- A -

[m tanh {; M[C —M+ me - /1}

[21

22um? 2

5(q2 2 a
—JA? -4y tanh {;\MZ —4u {C—m(ldfﬂ)t+ me/l

o

0.9

Sekil 14 : u,(x,t) fonksiyonunun & =0.8, m=1.2, 1 =3, 4 =1.2,C =1 degerleri igin
3 boyutlu grafigi

e A*—4u<0 ve u#0 igin ¢oziim;
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2.2
0, () = - 4 m 2 B
m° (A% —4u) t“
J4u—2% tan %\/4;1—/12 C—¥+mx )
(24

2um’ 2
° (22 —4#)2 t “

m
Jau-27 tan %«/4;1—12 C-———— " imx||-2

o

2

Sekil 15 : u,(X,t) fonksiyonunun ¢ =0.8, m=1.2, A =1, u=2,C =1 degerleri i¢in 3
boyutlu grafigi

e A*—4u>0, A#0ve u=0 igin ¢dziim;

A*m?

4.  S5ia 4 5ra B
sinh(ﬂ(C—/1 m’t +me+cosh(/1(C—/1 m’t +me—1
o o
Amdt” Amdt” ’
sinh [/1 (C - + mijH:osh [ﬂ{c - +me—1
o a

Uy (X, t) =—

Sekil 16 : U,(X,t) fonksiyonunun ¢ =0.8, m=-1.2, A =1, #=0,C =1 degerleri i¢in
3 boyutlu grafigi
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Coziim kiimesi 2 i¢in asagidaki ¢6ziim setleri elde edilir.

o A*—4u>0ve u#0 igin ¢dziim;

22
2

4um

UA(X!t) ==
( m*(A? - 4u)te [Jﬁﬂfm‘*(/lz —4;1)2 +11m’ (22 —4;,))
!
8a

~J4* — 4y tanh %\/ﬁ ~4u Lc +mx—

2Aum?
m3(12 - 4/1)t” («flo—5 m* (/12 - 4;:)2 +11m? (12 —4,u)]
+mx ||-4

—«MZ —4utanh %«Mz —-4u| C- 8
o
%E,,m“(f ~apY —%mz(/lz +4u)

-

0os T
‘

0.000

Sekil 17 : u,(x,t) fonksiyonunun ¢ =0.8, m=1.2, A =3, x=1,C =1 degerleri i¢in 3
boyutlu grafigi

e A°—4u<0 ve u+0 icin ¢dziim;
44 m?

US(X,t) ==
( m® (4% - 4u)t” (Jm_sﬁfm“ (22 - 4u) +11m? (2% - 4;1))
+mx | |-A4
8a

J4u - 2% tan %\/4;4 -2 [c -

2Aum?
( mB(ﬂz —4ﬂ)t'z (\/10—5 m“(ﬂz - 4u)Z +11m? (/12 - 4;1)]
+mx||-4

LC _
8a

Jau - 2% tan %\/4;1 -2

17 m“(/12—4y)2—%m2(/12+4y)

8\15
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Sekil 18: u.(x,t) fonksiyonunun ¢ =0.8, m=-2, A =1, u=2,C =1 degerleri i¢in 3
boyutlu grafigi

A*—4u>0, A#0 ve =0 icin ¢oziim;

2%m?
/12m3(\/105\//14m4 +1M2m2)t“ H
+mx | |-1

Us(x,t) =—
/12m3(«/105\//1“m4 +11/12m2)t”
sinh| 1| C - +mx | [+cosh| A| C—
8a 8a
A%m?
__
A%m° (\/105\/ﬂ4m“ +11/12m2)t” ﬂzms(\/105\/l4m4 +1M2mz)t“
+mx | [+cosh| A| C— 8 +mx | [-1
104

S

1 7 4.4 1 2,2
= «’\Mm -=A'm
8\}15 8

18
4000

-2000
i
Zanr o iy
L i
....-.1

Lol

g 7~~~

............
S i |

a
010
0.12
014
Q.16

Sekil 19: u,(X,t) fonksiyonunun ¢ =0.8, m=-1.2, A=2,4=0,C =2 degerleri i¢in
3 boyutlu grafigi

Coziim kiimesi 3 i¢in asagidaki ¢oziim setleri elde edilir:

e A°—4u>0ve u+0 icgin ¢dziim;
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u,(x,t)=—

4ﬂ2m2

[ (2 e OB (27 - ag) —11m (22 - ag)
7 agtanh| 277 —au| C + mx+
#E " { 8a

-1
24um?

. m3(,12—4y)t“(\/m_5,[m4(,12—4y)2—11m2(,12—4y)]
SVA —4u| C+ »

+mx ||—A4

D1

T '
e - { \K‘“»J}.O();
[ o B
I\ v |
| .

-

T 0,000
| .

-7

Sekil 20: u,(X,t) fonksiyonunun ¢ =0.8, m=1.2, 1 =3, u=1,C =1 degerleri i¢in 3
boyutlu grafigi
e 1*—4u<0 ve u#0 igin ¢oziim;

US(X,t) == 4ﬂ2m2 5
. m® (4% — 4p)te (\/m_sﬁ[m“(/lz —4u) ~11m? (22 —4;1)]
Jau— 2% tan 5\/4;1—12 LC+mx+ P -2
2Aum?
1/4# 7 tan|

m® (4% - 4u )t (Jm_s m*(4* —4;4)2 ~11m*(4? —4/1))
5«’4# -2 C+

+mx||—A
8a

o e G -2 (24 40)
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7

£ g .‘/-'
= 7
Ty 000

Sekil 21: ug(x,t) fonksiyonunun ¢ =0.8, m=1.2, A =1, u=1,C =1 degerleri igin 3
boyutlu grafigi

e A*—4u>0, A#0ve u=0 igin ¢dziim;

A*m?
Uy (xt)=-
12m3(«/105«//1“m" —1M2m2)t” ﬂzmz(\/105 'm’ —1u2m2)t“
sinh| 1| C+ +mx | [+cosh| A| C+ +mx | |-1
8a 8a
A*m?
- 2
izms(«/lOSx/A“m“ —11/12m2)t“ 2%m° (\/105\/,1“m4 —11/12m2)t“
sinh| A| C+ 2 +mx | [+cosh| A| C+ 8 +mX | |-
104 104

17 4..4 122
+=,]—=vA'm —=1"m
ARG

Sekil 22: uy(x,t) fonksiyonunun & =0.8, m=-1.2, =1, u=0,C =1 degerleri i¢in 3
boyutlu grafigi
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3.5 Kesirli  Mertebeden  Negatif Mertebeli  KDV-Calogero-
Bogoyavlenskii-Schiff Denklemi

Kesirli mertebeden lineer olmayan negatif mertebeli KDV-Calogero-

Bogoyavlenskii-Schiff denklemini ele alalim.
D D,u+6D:u+xD,D,u+D;D,u+2D,ubDiu+4D,uD,D,u+yD,D,u=0 (3.25)

a

(3.25) denkleminde &=X+Yy+z+ t
a

dalga doniistimii ve zincir kurali uygulanip,

elde edilen denklem bir kez integre edilirse asagidaki lineer olmayan adi diferansiyel

denkleme ulasilir.
U+ u'(d + 0+ +y)+3(u) =0 (3.26)

(3.26) denkleminde homojen denge yontemi kullanirsa

m+3=2(m+1) (3.27)

olmak iizere iki denklem esitlenirse m=1 bulunur. (2.9) dan (3.26) denkleminin

¢ozimi
u($) = a, +a, exp(—¢(&)) (3.28)

seklinde elde edilecek olup, @, ve & daha sonra hesaplanacaktir. (3.28) denklemi ve

(2.10) denklemleri (3.26) denklemlerinde yerine yazilir ve elde edilen denklem

exp(—¢(&)) fonksiyonunun kuvvetlerine gore diizenlenir ve her bir katsayi sifira

esitlenirse asagidaki denklem sistemine ulagilir.

38’y —adu—au—-axu—ai u—2au" —auy =0

6a,°4—12a,4 =0,

33’ -6a, =0, (3.29)
3a°A’ +6a’u—ad-afd—-ax-7a4°—8au—awy =0,
6a°Au—adi-a0dl-axi-ai’—-8alu—-aiy =0

(3.29) denklem sistemi MATHEMATICA programi yardimiyla ¢oziiliirse
k=—d-0-A*+4u—y,a =2 (3.30)

33



a

t
Cozim seti elde edilir. (3.28), (3.30), (2.10) ve &=x+ y+z+d
a

dontigimii
yardimiyla, (3.25) denkleminin analitik ¢oziimleri asagidaki sekilde elde edilmistir.

e A1°—4u>0ve u+0 icin ¢bziim;

u(x,y,z,t)=a, + hu -
—JA*—4u tanh(;«/ﬂf —4u [C LS y+ ij—l
a

Sekil 23: u, (X, y,z,t) fonksiyonunun « =0.8, a,=1,d=1,y=1,z=1,
A=-3,u=15,C =1 degerleri i¢in 3 boyutlu grafigi

e A°—4u<0 ve u+0 icin ¢oziim;

4u

Jau—A° tan[;«my—/lz (C+ t +x+y+zn—}t
a

UZ(X7 y’Z7t) :aO +

Sekil 24: u,(X, Y, z,t) fonksiyonunun ¢ =0.8, a,=1,d=1,y=1,z=1,
A=-1,u=15,C =1 degerleri i¢in 3 boyutlu grafigi
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e A*—4u>0, A#0ve u=0 igin ¢dziim;

50y, 2,) =, + a 2 a
sinh[/l(CJr at +X+Yy+ zD+cosh[/1(C+ at + X+ y+zD—1

o

o

- 1000
2000

Sekil 25: U,(X, Y, Z,t) fonksiyonunun ¢ =0.8, 8, =-1,d=-1,y=-1,z=-1,
A=-1,u4=15,C =1 degerleri i¢in 3 boyutlu grafigi

3.6  Kesirli Mertebeden Genellestirilmis Benjamin Denkleminin

Analitik Coziimleri

Kesirli mertebeden lineer olmayan genellestirilmis Benjamin denklemini ele alalim.
DZ“u+ DU+ AuDu +Dfu+A(Du) =0 (3.31)

a

t
(3.31) Denkleminde &= px+-
(04

dalga doniisiimii ve zincir kuralt uygulanip, elde

edilen denklem bir kez integre edilirse asagidaki lineer olmayan adi diferansiyel

denkleme ulasilir.
Lp*u”+c’u’+Ap°uu’=0 (3.32)
(3.32) denkleminde homojen denge yontemi kullanirsa
m+3=2m+1 (3.33)
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olmak iizere iki denklem esitlenirse m=2 bulunur. (2.9) dan (3.32) denkleminin

¢Ozimii
u(&) = a, +a, exp(—¢(<)) + a, exp(—¢(£))? (3.34)

seklinde elde edilecek olup, a, ,a ve a, daha sonra hesaplanacaktir. (3.34)

denklemi ve (2.10) denklemleri (3.32) denklemlerinde yerine yazilir ve elde edilen

denklem exp(—¢(&)) fonksiyonunun kuvvetlerine gore diizenlenir ve her bir katsayi

sifira esitlenirse asagidaki denklem sistemine ulagilir.
—2a,°Ap® —24a,pp* =0
—3a,a,1p° —6a,8p* —2a,°A*p* —54a,8ip* =0

—28,2,Ap° —a,°Ap® —3a,8,4° p* ~12a,4Ap" -
2a,°Aup® —2a,c’ —38a,p1° p* —40a,Bup* =0

—a,a,Ap* —2a,a,4°p* —a,°A°p® —3a,8,Aup’ —ac’ -
7a,pA%p* —8a,fup* —2a,c’°1—8a,B81°p* —52a,Aup* =0

—a,aA° p? —2a,8,Aup’ —aAup’ —ac’i-apAp’ -
8a,fAup* —2a,c’u—14a, B up* —16a,Bu’p* =0

—a,aAup’ —ac’u—a pAup* —2a pu’p’ —6a,pu’p* =0 (3.35)

(3.35) denklem sistemi sembolik hesaplama programlarindan biri olan

MATHEMATICA yardimiyla ¢oziiliirse;

128p°
p)

a, =-124p’ a, =- C=—\-a,Ap’— pA°p* ~8fup’  (3.36)

a

ct
¢6ziim seti elde edilir. (3.34), (3.36), (2.10) ve &= px+
a

dontlistimii yardimiyla,

(3.31) denkleminin analitik ¢oziimleri asagidaki sekilde elde edilmistir.

e A —4u>0ve u+0 icin ¢oziim;
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48pu° p’

2
ta _ ﬂ, 2 _ 12 4 —8 4
/1[—1/22 —4u tanh [;«/ﬂz —4u {— \/ QAP - fAP ~8fup FKE+ px]]—ﬂ}

a

u (x,t)=—

2
_ 24Bup ia,

ta - )b 2 2’2 4_8 4
—«/22—4ytanh[;\/ﬂz—4y[— \/ao P AR ~8hup +K+PXD—1

a

Sekil 26: U, (X,t) fonksiyonunun «=0.4 , p=1, k=3, =2, 1=3, u=1,
a, =1 degerleri i¢in 3 boyutlu grafigi

e A*—4u<0 ve u#0 igin ¢oziim;
48u° p*

2
a [_ 2 pq2 4 4
1[1/4;1—/12 tan{;hy—ﬂz [—t \/ QAP = pAp —8fup FE+ pr—/’tJ

u,(x,t)=-

a

2
) 246up va

ta _ /l 2 _ 12 4_8 4
«/4;1—12 tan[;\M,u—/lz{— \/ao P-pAp pup +K+pxﬂ—l

Sekil 27: U, (X,t) fonksiyonunun ¢ =0.2 , p=3, x«=3, f=-1, A=1, u=3,
a, = —1 degerleri i¢in ii¢ boyutlu grafigi
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e A*—4u>0, A#0ve u=0 igin ¢dziim;

1262 p?

a [ 2 gai204 a [_ 2 gai2n4
Sinh[i[,t— i —patet | px}cosh[l[,t— JFair —pate* | pXJJ,l

o o

U (x,t) =—

1281 p?

+3

o

o

2
a [ 2 g2 a [ 2 _ g 24
[sinh[ﬂ[t W+K+DXD+COS,{,{,t— W+K+pXD1]

Sekil 28: U,(X,t) fonksiyonunun ¢ =09, p=3, k=2, f=-2 ,1=3, u=0,
a, = —3 degerleri i¢in 3 boyutlu grafigi
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4. SONUC VE ONERILER

Bu tez caligmasinda, conformable kesirli tiirevli Yu-Toda-Sasa-Fukuyama,
gelistirilmis  degistirilmis KDV, Date-Jimbo-Kashiwara-Miwa, Caudrey-Dodd-
Gibbon, negatif mertebeli KDV-Calogero-Bogoyavlenskii-Schiff, genellestirilmis
Benjamin denklemleri ele alindi. Ele alinan kesirli mertebeden kismi tiirevli
denklemler dalga doniisiimii ve zincir kurali ile tam say1 mertebeden lineer olmayan

adi diferansiyel denkleme indirgendikten sonra alt denklem yontemi ve exp(—¢(<))

yontemleri yardimiyla ¢oziildii. Bu islemleri gerceklestirictken MATHEMATICA

programindan yardim alinmistir.

Literatiirde ilk olma 6zelligini tasiyan bu ¢oziimlerin, geometrik davranisgini
gbozlemleyebilmek icin bazi 6zel degerler kullamilarak iic boyutlu grafikleri

olusturulmustur.

Sonu¢ olarak, alt denklem yontemi ve exp(—¢(<&)) yontemlerinin,

conformable mertebeden tiirev iceren kismi diferansiyel denklemlerin ¢oziimiinde

oldukea etkili ve kullanigli yontemler oldugu anlasilmistir.
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