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AĞUSTOS 2022

ANTALYA



T.C.
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UZAYLARINDA DAVRANIŞININ İNCELENMESİ
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ÖZET

ZAYIF TEKİLLİĞE SAHİP BAZI İNTEGRAL OPERATÖRLERİN LEBESGUE

UZAYLARINDA DAVRANIŞININ İNCELENMESİ

Slava ISMAILOVA

Yüksek Lisans Tezi, Matematik Anabilim Dalı

Danışman: Prof.Dr. İlham ALİYEV

Ağustos 2022, 37 sayfa

Bu tezde, klasik Riesz ve Bessel potansiyellerini genelleştiren integral operatörler ta-

nımlanmış ve Lebesgue uzaylarındaki davranışları incelenmiştir. Bu operatörler, Sobolev

uzaylarının, Bessel potansiyelleri uzaylarının ve bunların çeşitli genellemelerinin ince-

lenmesinde önemli bir rol oynamaktadır. Öncelikle, "operatörlerin makul demeti" kav-

ramı tanıtılmış ve "makul demet" oluşturan operatörler ailesine çeşitli örnekler verilmiş-

tir. Daha sonra, klasik Riesz ve Bessel potansiyellerinin tek boyutlu integral gösterimleri

"makul demetler" yardımıyla ifade edilmiştir. Bu integral temsillerden esinlenerek, klasik

Riesz potansiyellerini genelleyen yeni bir integral operatörler ailesi tanıtılmış ve bu aile

için ünlü Hardy-Littlewood-Sobolev eşitsizliğinin benzeri kanıtlanmıştır. Tezin bir diğer

önemli sonucu da, hem Bessel ve hem de Flett potansiyellerini genelleştiren, iki paramet-

reye bağlı potansiyel tipi operatörlerin Lebesgue uzaylarında araştırılmasıdır.

ANAHTAR KELİMELER: Bessel Potansiyelleri, Gauss-Weierstrass yarıgrubu, Hardy-

Littlewood-Sobolev eşitsizliği, İki parametreye bağlı potansiyeller, Poisson Yarıgrubu,
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In this thesis, the integral operators that generalize classical Riesz and Bessel poten-

tials are defined and their behavior in Lebesgue spaces is investigated. These operators

play an important role in the examination of Sobolev spaces, Bessel potential spaces and

their various generalizations. First of all, the concept of "admissible bundle of operators"

is introduced, and various examples are given to the families of operators that make up

a "admissible bundle". Then, one-dimensional integral representations of classical Riesz

and Bessel potentials are given with the help of "admissible bundles". Inspired by these

integral representations, a new family of integral operators generalizing classical Riesz

potentials is introduced and analogous of the famous Hardy-Littlewood-Sobolev inequ-

ality is proved for this family of operators. Another important result of the thesis is to

investigate of bi-parametric potential-type operators which generalize both Bessel and

Flett potentials, in Lebesgue spaces.
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SİMGELER VE KISALTMALAR

Simgeler:

Z : Tam sayılar kümesi

Z0 : Negatif olmayan tam sayılar kümesi

Zn
0 : Z0 × · · · × Z0

N : Pozitif tam sayılar kümesi

N0 : N ∪ {0}

R : Reel sayılar kümesi

Rn : n bouytlu Euclid Uzayı, R× · · · × R

C : Kompleks sayılar kümesi

|x| : x ∈ Rn vektörünün Euclid normu

x · y : x ve y vektörlerinin iç çarpımı

E : Birim operatör

∆ : Laplace Bessel Diferansiyel Operatörü

S : Schwartz Test Fonksiyonları Uzayı

C0 = C0(Rn) : Rn’de sürekli olup, lim
|x|→∞

f(x) = 0 sağlayan fonksiyonlar uzayı

Lp ≡ Lp (Rn) : Rn’de ölçülebilir ve p-inci kuvveti integrallenen fonksiyonlar uzayı

f∧ = Ff : f fonksiyonunun Fourier Dönüşümü

f∨ = F−1f : f fonksiyonunun ters Fourier Dönüşümü

f ∗ g : f ile g fonksiyonlarının girişimi (konvolusyonu; convolution)

{Btf}t>0 : Riesz-Bochner integral operatörler ailesi

{Wtf}t>0 : Klasik Gauss-Weierstrass integral operatörler ailesi

{Ptf}t>0 : Klasik Poisson integral operatörler ailesi

{Mtf}t>0 : Metaharmonik integral operatörler ailesi{
B

(β)
t g
}

t>0
: g fonksiyonunun doğurduğu β-yarıgrup

Iαg : g ∈ S fonksiyonunun α mertebeli Riesz potansiyeli

Jαg : g ∈ S fonksiyonunun α mertebeli Bessel potansiyeli

Fαg : g ∈ S fonksiyonunun α mertebeli Flett potansiyeli

Jα
β g : g ∈ S fonksiyonunun iki paramtreye bağlı potansiyeli

vi
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GİRİŞ S. ISMAILOVA

1. GİRİŞ

Harmonik Analizde ve onun çeşitli uygulamalarında, singüler integral operatörler

(bir boyutlu uzayda Hilbert dönüşümü ve çok boyutlu uzayda Calderon-Zigmund singü-

ler integral operatörü) ile çekirdeğinde zayıf tekillik (zayıf singülarite) bulunan integral

operatörler çok önemli rol oynarlar (Stein 1970; Samko vd. 1993; Rubin 1996).

Zayıf singüler integral operatörlerin en ünlü örnekleri klasik Riesz ve Bessel potansi-

yelleridir.

Klasik Riesz potansiyeli, Fourier dönüşümü terimlerinde, φ Schwartz test fonksiyonu

olmak üzere,

(Iαφ)∧(x) = |x|−α φ∧(x), (x ∈ Rn, 0 < α < n)

şeklinde tanımlanır. Burada, x = (x1, · · · , xn) için |x| =

(
n∑

k=1

x2
k

)1/2

olup, φ∧ ile φ

fonksiyonunun Fourier dönüşümü gösterilmiştir.

φ fonksiyonunun α mertebeden Riesz potansiyeli operatörü olarak bilinen Iαφ ope-

ratörü, ∆ =
n∑

k=1

∂2

∂x2
k

Laplace diferansiyel operatörü olmak üzere, (−∆) operatörünün α

mertebeden negatif "kesirsel kuvvetinin" φ fonksiyonuna etkisi olarak yorumlanır.

Yine klasik Bessel potansiyeli, Fourier dönüşümü terimlerinde,

(Jαφ)∧(x) = (1 + |x|)−α/2 φ∧(x), (x ∈ Rn, 0 < α < ∞)

şeklinde tanımlanmış olup, E birim operatör ve ∆ Laplace operatörü olmak üzere, (E −

∆) operatörünün α mertebeden negatif "kesirsel kuvveti" olarak yorumlanır.

Bahsi geçen bu iki integral operatör, Lp, (1 ≤ p ≤ ∞) uzayları olarak bilinen Le-

besgue uzaylarının önemli alt uzayları olan Sobolev uzaylarının, Bessel potansiyelleri

uzaylarının ve onların çeşitli genellemelerinin incelenmesinde müstesna rol oynuyorlar.

Bu tez çalışmasının kaynaklar kısmında verilmiş Adams vd. 1967; Aliev ve Eryigit 2002;

Aliev ve Rubin 2005; Aliev 2009; Aronszajn ve Smith 1961; Aronszajn vd. 1963; Flett

1971; Johnson 1973; Muckenhoupt ve Wheeden 1974; Perez 1990; Rubin 1986; Rubin

1987; Samko 1976; Sezer ve Aliev 2010; Sobolev 1938 makaleleri ve Aliev vd. 2008;

Hao 2016; Rubin 1996; Samko vd. 1993; Samko 2002; Stein 1970 kitapları bu konudaki

kaynakların az bir kısmıdır. Riesz potansiyellerinin, uygun α, p ve q değerleri için Lp

uzayından Lq uzayına sınırlı etki etmesi ile ilgili iyi bilinen Hardy-Littlewood-Sobolev

1



GİRİŞ S. ISMAILOVA

teoreminin ve onun ağırlıklı uzaylardaki versiyonlarının çeşitli ispatları vardır (örneğin,

bu konuda Muckenhoupt ve Wheeden 1974; Perez 1990; Sobolev 1938; Stein 1970 kay-

naklarına bakılabilir).

Bu tez çalışmasında, birbiriyle bağlantılı olan iki konu ele alınmıştır. Birinci konu,

klasik Riesz potansiyellerinin bir genelleşmesi ile ilintilidir. İkinci konu ise, klasik Bessel

potansiyellerinin ileri bir genelleşmesi üzerinedir.

Riesz potansiyellerinin genelleşmesini elde etmek için, integral operatörlerin "makul

demeti" kavramı verilmiş ve bu kavram yardımıyla da, Riesz potansiyellerini genelle-

yen, zayıf singülariteye sahip integral operatörler ailesi tanımlanmış ve onlar için Hardy-

Littlewood-Sobolev Teoreminin bir benzeri kanıtlanmıştır.

Bu "makul demet" yerine, klasik Poisson integrali, Gauss-Weierstrass integrali, Riesz-

Bochner integrali veya beta-yarıgrup denilen integraller ailesinden herhangi biri alındı-

ğında, bizim tanımladığımız integral operatörler ailesi klasik Riesz potansiyelleri ailesine

dönüşüyor.

Tez çalışmamızın ikinci esas konusu ise, yukarıda da bahsedildiği üzere, klasik Bes-

sel potansiyellerinin ileri genellemesi olan, iki parametreye bağlı potansiyel tipli integral

operatörler ailesinin Lp uzayından Lq uzayına sınırlı etki etmesini sağlayan koşulların

ortaya çıkarılması ile ilgilidir.

Bu tez çalışması, Giriş ve Kaynaklar bölümleri hariç, üç bölümden oluşmaktadır.

Kaynak Taraması başlığı altındaki ikinci bölüm, kendi içinde birkaç alt bölüme ay-

rılmıştır: "Bazı gerekli gösterimler (notasyonlar) ve ön bilgiler" alt bölümünde, başlıktan

da anlaşılacağı üzere, okuyucunun, tez dışında başka kaynağa başvurmadan tez çalışma-

sını rahat okuyabilmesi için gereken tüm gösterimler, kavramlar, tanımlar ve ön bilgiler

verilmiştir.

"Lp uzaylarında etki eden operatörlerin "makul demeti" (admissible bunch) ve "ma-

kul yarıgrubu" (admissible semi-group) kavramları" alt bölümünde, Bulgular bölümünde

kullanılacak olan "makul demet" ve " makul yarıgrup" kavramları tanıtılmış ve 2.3 alt

bölümünde bu kavramlara önemli örnekler verilmiştir.

Bochner-Riesz integrali, Gauss-Weierstrass integrali, metaharmonik yarıgrup; modi-

fiye edilmiş Gauss-Weierstrass; modifiye edilmiş Poisson, modifiye edilmiş metaharmo-

nik yarıgrupları ve beta-yarıgrup (β-yarıgrup) denilen integraller ailesi makul demet kav-

2



GİRİŞ S. ISMAILOVA

ramına önemli örneklerdir.

Tez çalışmasının üçüncü, "Materyal ve Metot" bölümünde, Riesz, Bessel, Flett ve iki

parametreye bağlı potansiyeller tanıtılmış ve onların "makul demetler" yardımıyla ifade-

leri verilmiştir.

Orijinal tanımları çok katlı (n katlı) intgeraller yardımıyla ifade edilen Riesz, Bessel

ve Flett potansiyelleri, "makul demetler" kullanılarak, tek katlı integral biçiminde yazıla-

bilir ve bu da onların bazı özelliklerini incelemede kolaylık sağlar.

Tez çalışmasının "Bulgular ve Tartışma" kısmı iki alt bölümden oluşmaktadır. Birinci

alt bölümde "makul demetin" doğurduğu zayıf tekilliğe sahip integral operatörler için

Hardy-Littlewood-Sobolev tipli eşitsizlik kanıtlanmıştır. Makul demetin özel seçimiyle,

buradan klasik Riesz potansiyelleri için Hardy-Littlewood-Sobolev eşitsizliği elde edilir

ki, bu da tez çalışmasının önemli bulgularından biridir.

Tez çalışmasının diğer önemli bulgularından biri de "Bulgular ve Tartışma" Bölümü-

nün ikinci alt bölümünde verilmiş olup, iki parametreye bağlı potansiyel tipli integral

operatörlerin Lp uzaylarında davranışları ile ilgilidir. Bu sonuçlar da yeni olup, operatör-

lerin tanımında kullanılan β parametresinin özel seçimleri ile (yani, β = 1 veya β = 2

koyarak) sırasıyla, klasik Flett ve Bessel potansiyellerinin Lp uzaylarında davranışları ile

ilgili sonuçlar elde edilmiş olur.

Tez çalışması teorik nitelikte olup, elde edilen sonuçlar, Fonksiyonel uzaylar, Harmo-

nik Analiz, integral dönüşümler ve özel olarak, Riesz ve Bessel potansiyelleri ile ilgili

alanlarda çalışma yapan araştırmacılar için ek bir kaynak rolünü oynayabilir.

3



KAYNAK TARAMASI S. ISMAILOVA

2. KAYNAK TARAMASI

2.1. Bazı Gerekli Gösterimler (Notasyonlar) ve Ön Bilgiler

Bu tez çalışmasında, n ∈ N olmak üzere, n-boyutlu Euclid (Öklid) uzayını Rn ile

göstereceğiz:

Rn = {x : x = (x1, x2, · · · , xn); xk ∈ R, k = 1, 2, · · · , n}.

x ∈ Rn vektörünün normu, |x| ile gösterilecektir:

|x| =
√

x2
1 + · · ·+ x2

n.

x, y ∈ Rn vektörlerinin skaler (iç) çarpımı x · y ile gösterilecektir:

x · y = x1y1 + · · ·+ xnyn =
n∑

i=1

xiyi.

Normun tanımından, |x| =
√
x · x olur.

Rn uzayında ölçülebilir olup, 1 ≤ p < ∞ olmak üzere, mutlak değerinin p. kuvvetinin

Lebesgue integrali sonlu olan fonksiyonlar uzayını Lp ≡ Lp(Rn) ile göstereceğiz:

Lp = {f :

∫
Rn

|f(x)|p dx < ∞}, 1 ≤ p ≤ ∞.

Burada, x = (x1, · · · , xn) ve dx = dx1dx2 · · · dxn’dir.

C kompleks sayılar kümesi olmak üzere, f : Rn → C fonksiyonunun Lp-normu şöyle

gösterilecektir:

∥f∥p
tanım
=

(∫
Rn

|f(x)|p dx
)1/p

< ∞.

Lp uzayının bir Banach uzayı olduğu iyi bilinmektedir.

p = ∞ durumunda, ∥f∥∞ gösterimi,

∥f∥∞ = ess sup
x∈Rn

|f(x)|

sayısı için kullanılacaktır. Burada,

ess sup
x∈Rn

|f(x)| = inf{a ∈ [0,∞) : hemen hemen her x ∈ Rn için |f(x)| ≤ a}.

Schwartz test fonksiyonları uzayı için S ≡ S(Rn) gösterimi kullanılacaktır.

4



KAYNAK TARAMASI S. ISMAILOVA

Z0 = {0, 1, 2, · · · } ve Zn
0 = Z0 × · · · × Z0 olmak üzere, α = (α1, · · · , αn) ∈ Zn

0 ,

β = (β1, · · · , βn) ∈ Zn
0 ve x = (x1, · · · , xn) ∈ Rn için,

xα tanım
= xα1

1 · · ·xαn
n ve ∂βf(x)

tanım
=

∂β1+···+βn

∂x
β1
1 · · · ∂xβn

n

f(x)

tanımlarsak, Schwartz uzayı öyle f fonksiyonlarından oluşuyor ki, her α, β ∈ Zn
0 multi-

indisleri için,

sup
Rn

|x|α
∣∣∂βf(x)

∣∣ < ∞

sağlanır. Örneğin, her α ∈ Zn
0 , λ > 0 ve k ∈ N için,

f(x) = xαe−λ|x|2k ∈ S

olur.

Her p ∈ [1,∞) için, S uzayının Lp(Rn) uzayında yoğun olduğu iyi bilinir. Yani,

f ∈ Lp verildiğinde, her ε > 0 için öyle g = gε ∈ S vardır ki, ∥f − g∥p < ε sağlanır.

Bir h ∈ S fonksiyonunun Fourier dönüşümü,

(Fh) (x) = h∧(x) =

∫
Rn

h(y)e−i2πx·ydy

ve ters Fourier dönüşümü,

(
F−1h

)
(x) = h∨(x) =

∫
Rn

h(y)ei2πx·ydy

şeklinde tanımlanır. Burada, x · y = x1y1 + · · ·+ xnyn’dir.

Bazı kaynaklarda,

h∧(x) =

∫
Rn

h(y)e−ix·ydy, h∨(x) =
1

(2π)n

∫
Rn

h(y)eix·ydy

veya

h∧(x) =
1

(2π)n/2

∫
Rn

h(y)e−ix·ydy, h∨(x) =
1

(2π)n/2

∫
Rn

h(y)eix·ydy

gösterimleri de kullanılıyor.

u, v ∈ S fonksiyonlarının konvolusyonu (girişimi)

(u ∗ v)(x) tanım
=

∫
Rn

u(y)v(x− y)dy

5
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formülüyle tanımlanır. İki fonksiyonun konvolusyonu, fonksiyonlardan biri Lp (1 ≤ p ≤

∞) uzayında ve diğeri de, 1 ≤ q ≤ ∞ olmak üzere, Lq uzayında olduğunda yine tanım-

lanabilir. Dahası, örneğin, u ∈ Lp ve v ∈ Lq olması durumunda,∫
Rn

u(y)v(x− y)dy

integrali hemen hemen her x ∈ Rn (h.h.h.x ∈ Rn) için mutlak yakınsak olup, q ≤ r ≤ ∞

ve 1
p
+ 1

q
= 1

r
+ 1 olmak üzere,

∥u ∗ v∥r ≤ ∥u∥p ∥v∥q

eşitsizliği sağlanır (Grafakos 2008). Young konvolusyon eşitsizliği olarak bilinen bu eşit-

sizlik şöyle yorumlanabilir:

Verilmiş bir v ∈ Lq fonksiyonu için,

Au = u ∗ v, (u ∈ Lp, 1 ≤ p ≤ ∞)

integral operatörü tanımlanırsa, A operatörü, 1
r
= 1

p
+ 1

q
− 1 olmak üzere, Lp uzayından

Lr uzayına sınırlı etki eden bir lineer operatördür. (r = ∞ için 1
r
= 0 kabul ediliyor).

İki fonksiyonun "konvolusyon çarpımı" yerine "noktasal çarpımı" alınırsa, Young eşit-

sizliği yerine, Hölder eşitsizliği denilen eşitsizlik yazılabilir:

1 ≤ p, q ≤ ∞ ve 1
p
+ 1

q
= 1 olsun. O halde, u ∈ Lp, v ∈ Lq olması durumunda,

uv ∈ L1 olup, ∥uv∥1 ≤ ∥u∥p ∥v∥q eşitsizliği sağlanır (Grafakos 2008). "Açık" yazılırsa,
1
p
+ 1

q
= 1 olmak üzere,

∫
Rn

|u(x)v(x)| dx ≤
(∫

Rn

|u(x)|p dx
)1/p(∫

Rn

|v(x)|q dx
)1/q

.

Not: a) p = ∞ için, ∥u∥∞ = ess sup
x∈Rn

|u(x)| olarak tanımlanır;

b) p = q = 2 durumunda ortaya çıkan eşitsizlik Cauchy-Schwartz eşitsizliği

olarak bilinir.

Lebesgue anlamında ölçülebilir bir Ω ⊂ Rn kümesinin Lebesgue ölçümünü m(Ω) ile

göstereceğiz. Örneğin, ölçülebilir bir f : Rn → C fonksiyonu ve bir λ > 0 sayısı için

|f(x)| > λ eşitsizliğini sağlayan x ∈ Rn noktaları kümesinin ölçümünü,

Ω = {x ∈ Rn : |f(x)| > λ}

6
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olmak üzere, m(Ω) ile veya

m{x : |f(x)| > λ}

ile göstereceğiz.

h ∈ Lp fonksiyonuna ait klasik Hardy-Litttlewood maksimal fonksiyonu (maksimal

operatörü)

(Mh)(x)
tanım
= sup

r>0

1

m(Br)

∫
Br

|h(x− y)| dy

formülüyle tanımlanır. Burada,

Br = {y ∈ Rn : |y| < r},

orijin merkezli ve r yarıçaplı yuvar olup, m(Br) de onun Lebesgue ölçümüdür ("hacmi-

dir").

M operatörünün Lp, (1 ≤ p ≤ ∞) uzaylarında davranışı ile ilgili aşağıdaki Teorem

analizde çok önem arz etmektedir.

Teorem 2.1 (Hardy-Littlewood; Stein 1970, syf. 5). 1) h ∈ Lp , (1 ≤ p ≤ ∞) ise,

h.h.h.x ∈ Rn için (Mh)(x) fonksiyonu sonlu değer alır.

2) 1 < p ≤ ∞ ise, öyle C = C(p, n) > 0 sabiti vardır ki, her h ∈ Lp için

∥Mh∥p ≤ C ∥h∥p

eşitsizliği sağlanır. Yani, sub-lineer M operetörü Lp’den Lp’ye sınırlı etki eder.

3) p = 1 durumunda, her h ∈ L1 ve her λ > 0 için

m{x ∈ Rn : (Mh)(x) > λ} ≤ A

λ
∥h∥1

sağlanacak biçimde A = A(n) sabiti vardır (örneğin, A = 5n alınabilir).

Not: 1 < p ≤ ∞ durumunda, Hardy-Littlewood maksimal operatörünün Lp’den Lp’ye

sınırlı operatör olduğu gerçeğini matematik literatüründe, "M maksimal operatörü, 1 <

p ≤ ∞ için (p, p)-güçlü operatördür" şeklinde de ifade ederler. Diğer yandan, p = 1

durumunda ise, M operatörünün "(1, 1)-zayıf tipli operatör" olduğu ifade edilir. Daha

genel olarak, Lp uzayında tanımlı ve sub-lineer bir T operatörü için öyle A > 0 sabiti

varsa ki, her h ∈ Lp ve her λ > 0 için,

m{x ∈ Rn : |(Th)(x)| > λ} ≤
(
A ∥h∥p

λ

)q

(*)

7
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sağlansın, o halde, T operatörü "(p, q)-zayıf tiplidir" veya, "zayıf (p, q)-tiplidir" denir.

(p, q)-güçlü tipli olan operatör hem de (p, q)-zayıf tipli olur. Gerçekten, her h ∈ Lp için

∥Th∥q ≤ A ∥h∥p sağlanırsa, Ω = {x : (Th)(x) > λ} dersek, A ∥h∥p ≥
(∫

Rn |(Th)(x)|q dx
)1/q ≥(∫

Ω
|(Th)(x)|q dx

)1/q ≥ λ(m(Ω))1/q olur ki, bu da yukarıdaki (*) eşitsizliğidir.

2.2. Lp Uzaylarında Etki Eden Operatörlerin "Makul Demeti" (Admissible Bunch)

ve "Makul Yarıgrubu" (Admissible Semi-Group) Kavramları

Burada tanımlayacağımız "Operatörler ailesinin δ-tipli makul demeti" ve "Operatörler

ailesinin δ-tipli makul yarıgrubu" kavramları, tezin ileriki bölümlerinde kullanılacaktır.

Tanım 2.2 (Aliev, Gadjiev, Aral, 2006). Lp = Lp(Rn), (1 ≤ p < ∞) uzayında sınırlı etki

eden {At}t>0 operatörler ailesi, aşağıdaki özelliklere sahip ise, bu aileye δ-tipli "makul

demet" diyeceğiz:

a) Bir δ > 0 sabiti için öyle c = c(δ) > 0 sayısı vardır ki, her g ∈ Lp ve her t > 0

için

ess sup
x∈Rn

|(Atg)(x)| ≤ ct−δ ∥g∥p ; (2.1)

b) Öyle c > 0 sayısı vardır ki, her g ∈ Lp için,

sup
t>0

∥Atg∥p ≤ c ∥g∥p ; (2.2)

c) (A∗g)(x) = sup
t>0

|(Atg)(x)|, (g ∈ Lp) şeklinde tanımlanmış A∗ "maksimal opera-

törü" zayıf (p, p)-tipli olsun, yani, her g ∈ Lp ve her λ > 0 için,

m{x ∈ Rn : |(A∗g)(x)| > λ} ≤
(
c ∥g∥p
λ

)p

. (2.3)

(Burada, ölçülebilir E ⊂ Rn için m(E) ile E’nin Lebesgue ölçümü gösterilir.)

d) Her g ∈ Lp, (1 ≤ p < ∞) için lim
t→0

∥Atg − g∥p = 0 ve her g ∈ C0 ∩ Lp için (Atg)

ailesi g’ye düzgün yakınsasın.

(Lp-normundaki yakınsama, Lp − lim
t→0

Atg = g şeklinde de gösterilir).

Ayrıca, eğer (a) koşulu her δ > 0 sayısı için sağlanırsa, o halde {At}t>0 ailesine

sonsuz tipli "makul demet" diyeceğiz.

8
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Tanım 2.3 (Aliev ve Rubin 2005). Lp , (1 ≤ p < ∞) uzayında sınırlı etki eden {At}t>0

operatörler ailesi (a)-(d) koşullarının yanısıra, aşağıdaki yarıgrup özelliğine de sahip ise,

bu operatörler ailesine δ-tipli "makul yarıgrup" diyeceğiz:

Her t, s ≥ 0 için AtAs = At+s, yani, her t, s ≥ 0 ve her g ∈ Lp için At(Asg) =

At+sg.

Burada, E birim operatör olmak üzere, A0 = E kabul edilir. Yukarıdaki d) koşulu, bu

tanımlamayı destekliyor.

Not: Yukarıdaki tanımlardan anlaşılacağı üzere, "makul demet" kavramı, "makul ya-

rıgrup" kavramından daha geniş bir kavram olup, {At}t>0 lineer operatörler ailesi, (a)-(d)

koşullarını sağlarsa, "δ tipli makul demet" ve ek olarak,

e) Her t, s ≥ 0 için

AtAs = At+s (2.4)

koşulunu sağlarsa, "δ tipli makul yarıgrup" diye adlandırılır.

2.3. Birkaç Önemli "Makul Demet" ve "Makul Yarıgrup" Örneği

2.3.1. Riesz-Bochner çekirdeği ve Riesz-Bochner integraller ailesi

Sabit tutulmuş ν > 0 parametresi verilsin. Aşağıdaki fonksiyonu tanımlayalım:

b(x) = bν(x) =

 (1− |x|2)ν , |x| ≤ 1 ise

0, |x| > 1 ise

 .

Burada, x ∈ Rn ve |x| =
√
x2
1 + · · ·+ x2

n.

Yukarıdaki b = b(x) fonksiyonunun Fourier dönüşümünü β = β(x) ile gösterelim:

β(x) = b∧(x) =

∫
Rn

b(y)e−2πix·ydy.

Burada, x · y =
n∑

k=1

xkyk ve dy = dy1dy2 · · · dyn.

Bir radyal fonksiyonun Fourier dönüşümü olarak, β = β(x) fonksiyonu radial bir

fonksiyon olup, açık ifadesi aşağıdaki şekildedir (Stein ve Weiss 1971, syf. 171):

β(x) =
1

πν
Γ(1 + ν) |x|−(

n
2
+ν) Jn

2
+ν(2π |x|).

9
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Burada, λ = n
2
+ ν olmak üzere, Jλ(t), (0 < t < ∞) fonksiyonu, birinci tip Bessel

fonksiyonu olup, açık ifadesi şu biçimdedir:

Jλ(t) =
(t/2)λ

Γ
(
2λ+1
2

)
Γ
(
1
2

) ∫ 1

−1

eits(1− s2)
2λ−1

2 ds.

İyi bilindiği üzere, lim
t→0+

(Jλ(t)/t
λ) limiti sonlu olup, t → ∞ için

√
tJλ(t) ifadesi

sınırlıdır (Stein ve Weiss 1971, syf. 158).

Tanım 2.4. Riesz-Bochner çekirdeği ve bir f ∈ Lp fonksiyonuna ait Riesz-Bochner integ-

raller ailesi, sırasıyla, aşağıdaki gibi tanımlanırlar:

βt(x) = t−nβ

(
1

t
x

)
, (x ∈ Rn, t > 0);

(Btf)(x) = (B(ν)
t f)(x) = (βt ∗ f)(x) =

∫
Rn

βt(y)f(x− y)dy.

Burada, f ∈ Lp, (1 ≤ p < ∞).

{Btf}t>0 integraller ailesinin aşağıdaki özellikleri vardır (Stein ve Weiss 1971, syf.

172):

(a)

ess sup
x∈Rn

|(Btf)(x)| ≤ c1t
−n/p ∥f∥p , (1 ≤ p < ∞);

burada, c1 = ∥β∥q .

(b) sup
t>0

∥Btf∥p ≤ c2 ∥f∥p (burada, c2 = ∥β∥1);

(c) sup
t>0

|(Btf)(x)| ≤ c3 (Mf) (x), (1 ≤ p ≤ ∞). (Burada, (Mf) (x) özellikleri Te-

orem 2.1’de verilen Hardy-Littlewood maksimal fonksiyonudur).

(d) Her f ∈ Lp, (1 ≤ p < ∞) için

Lp − lim
t→0

(Btf)(x) = f(x)

olup, f ∈ C0 ∩ Lp için yakınsama düzgündür (ayrıca, h.h.h. x ∈ Rn için (Btf)(x) ailesi,

t → 0 için f(x) değerine yakınsıyor).

Not: Bochner-Riesz integralleri ailesinin (c) özelliğine göre, {Btf}t>0 ailesi üstten

Hardy-Littlewood maksimal operatörü olan Mf ile bastırıldığından ve Mf operatörü de

zayıf (p, p)-tipli olduğundan, dolayısıyla, (A∗f)(x) = sup
t>0

|(Btf)(x)| şeklinde tanımla-

nan A∗ "maksimal operatörü" de zayıf (p, p)-tipli olur.

10
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Diğer yandan, {Btf}t>0 ailesinin (a) özelliği Tanım 2.2 dikkate alınırsa, {Btf}t>0

ailesinin δ = n
p

tipli "makul demet" olduğu söylenebilir. {Btf}t>0 ailesi için Bt(Bs) =

Bt+s özelliği bulunmadığından, bu aile bir "makul yarıgrup" değildir.

2.3.2. Gauss-Weierstrass Çekirdeği ve Gauss-Weierstrass integraller ailesi (yarıg-

rubu)

İntegral operatörlerin "makul yarıgrubu"na en ünlü örneklerden biri aşağıdaki klasik

Gauss-Weierstrass integraller ailesidir:

(Wtf)(x) =

∫
Rn

wt(y)f(x− y)dy, (0 < t < ∞).

Burada, wt(y) =
1
tn
w
(
1
t
y
)

ve w(y) = F−1(e−|x|2)(y) olup, F−1 Ters Fourier dönü-

şümüdür.

Not: Burada, önemli bir hatırlatma yapalım. Riesz-Bochner çekirdeğini tanımlarken,

(Stein ve Weiss 1971) kaynağına dayanarak, Fourier ve ters Fourier dönüşümlerinin

(Ff)(x) =

∫
Rn

e−i2πx·yf(y)dy ve (F−1f)(x) = (Ff)(−x)

tanımları kullanılmıştı.

Bundan sonra, Fourier ve ters Fourier dönüşümlerinin aşağıdaki tanımlarını kullana-

cağız:

(Ff)(x) =

∫
Rn

e−ix·yf(y)dy ve (F−1f)(x) =
1

(2π)n
(Ff)(−x).

Gauss-Weierstrass integralleri ailesinin, Tanım 2.3’deki "makul yarıgrup" koşullarını

sağladığı ve δ = n
2p

tipli "makul yarıgrup" olduğu iyi bilinmektedir (Rubin 1996, syf.

223).

2.3.3. Poisson çekirdeği ve Poisson integralleri ailesi (yarıgrubu)

Lp = Lp(Rn), (1 ≤ p ≤ ∞) uzaylarında etki eden integral operatörlerin "makul

yarıgrubu" olan bir diğer ünlü örnek aşağıdaki klasik Poisson integralleri ailesidir:

(Ptf)(x) =

∫
Rn

pt(y)f(x− y)dy, (0 < t < ∞, x ∈ Rn).

Burada, pt(y) = F−1
x→y(e

−t|x|) = 1
(2π)n

∫
Rn e

−t|x|eix·ydx olarak tanımlanmıştır. Poisson

çekirdekleri ailesi olarak bilinen {pt(y)}t>0 ailesinin açık ifadesi aşağıdaki gibidir (Stein

11
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ve Weiss 1971; Rubin 1996, syf. 217):

pt(y) =
Γ((n+ 1)/2)

π(n+1)/2
· t

(|y|2 + t2)(n+1)/2
.

f ∈ Lp , (1 ≤ p ≤ ∞) olmak üzere, {Ptf} integraller ailesinin sağladığı özellikler,

örneğin, (Rubin 1996, syf. 217-218) kaynağında bulunabilir. Bu özelliklerden anlaşılacağı

üzere, {Ptf}t>0 ailesi, δ = n
p

tipli "makul yarıgrup" oluşturmaktadır.

2.3.4. Lp uzayında etki eden integral operatörler ailesinin "makul yarıgrubuna"

bir ilginç örnek: Metaharmonik yarıgrup

Lp uzayında etki eden integral operatörler ailesinin "makul yarıgrubuna" bir ilginç

örnek de metaharmonik yarıgrup ismiyle bilinen aşağıdaki integral operatörler ailesidir

(Rubin 1996, syf. 257-258):

(Mtf)(x) =

∫
Rn

mt(y)f(x− y)dy, (0 < t < ∞, x ∈ Rn).

Burada, mt(y) = F−1
x→y(e

−t
√

1+|x|2) olup, v = n+1
2

ve Kv(·) fonksiyonu v mertebeden

McDonald fonksiyonu (Rubin 1996, syf. 257) olmak üzere,

mt(y) =
2t

(2π)v
·
Kv(

√
|y|2 + t2)

(
√

|y|2 + t2)v
, (t > 0, y ∈ Rn)

şeklindedir.

f ∈ Lp, (1 ≤ p ≤ ∞) olmak üzere, {Mtf}t>0 ailesinin, (Rubin 1996, syf. 257-

258) kaynağında verilmiş özelliklerinden anlaşılacağı üzere, bu aile δ = ∞ tipli "makul

yarıgrup" oluşturmaktadır.

2.3.5. Modifiye edilmiş makul yarıgrup örnekleri

{Wt}t>0, {Pt}t>0 ve {Mt}t>0 yukarıda tanımladığımız Gauss-Weierstrass, Poisson

ve Metaharmonik yarıgruplar olsun. Bu yarıgruplar yardımıyla oluşturulan ve sırasıyla

"modifiye edilmiş Gauss-Weierstrass yarıgrubu", "modifiye edilmiş Poisson yarıgrubu"

ve "modifiye edilmiş Metaharmonik yarıgrup" diye adlandırılan

{e−tWt}t>0, {e−tPt}t>0, ve {e−tMt}t>0

12
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integral operatörler ailelerini ele alalım. Bunlar da δ = ∞ tipli makul yarıgrup oluşturur-

lar. Gerçekten, Ut ile Wt, Pt ve Mt’den herhangi birini gösterirsek ve At = e−tUt dersek,

her f ∈ Lp, (1 ≤ p ≤ ∞) ve her s, t ∈ (0,∞) için

As(Atf) = e−sUs(e
−tUtf) = e−se−tUs(Utf)

= e−(s+t)Us+tf = As+tf,

yani, her s, t ∈ (0,∞) için

AsAt = As+t

olur. Dolayısıyla, At = e−tUt bir yarıgruptur ve Ut = Wt, Ut = Pt, Ut = Mt için {At}t>0

yarıgrubu, δ = ∞ tipli "makul yarıgrup" tur.

2.3.6. Beta-yarıgrup

Aşağıda vereceğimiz ve β-yarıgrup diye adlandırdığımız integraller ailesi, Gauss-

Weierstrass ve Poisson yarıgruplarının ikisini de genelleştiren bir "makul yarıgruptur".

Tanım 2.5 (Aliev vd. 2008, syf. 11-13; Aliev 2009, syf. 154). f ∈ Lp , (1 ≤ p ≤ ∞)

olmak üzere, aşağıdaki integraller ailesini tanımlayalım:

(B
(β)
t f)(x) =

∫
Rn

w
(β)
t (y)f(x− y)dy, (0 < t < ∞, x ∈ Rn).

Burada, β ∈ (0,∞) sabit tutulmuş bir parametre olmak üzere,

w
(β)
t (y) = F−1

x→y(e
−t|x|β)

şeklinde tanımlanmıştır.

w
(β)
t (y) çekirdeği, β = 1 için Poisson çekirdeği ve β = 2 için Gauss-Weierstrass

çekirdeği olur:

w
(1)
t (y) =

Γ((n+ 1)/2)

π(n+1)/2
· t

(|y|2 + t2)(n+1)/2
;

w
(2)
t (y) = (4πt)−n/2e−|y|2/4t.

β ̸= 1 ve β ̸= 2 için w
(β)
t (y) çekirdeğinin açık (analitik) ifadesi bilinmiyor. Lakin hem

w
(β)
t (y) çekirdeğinin, hem de {B(β)

t f}t>0 ailesinin birçok önemli özellikleri biliniyor. Bu

özellikleri bir Önteorem şeklinde ifade edelim.
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Önteorem 2.6 (Aliev vd. 2008, syf. 11-13; Aliev 2009, syf. 154-156). 0 < t < ∞, 0 <

β < ∞, y ∈ Rn olsun. w(β)
t (y) çekirdek fonksiyonu yukarıdaki gibi tanımlansın. O halde,

1) w(β)
t (y) fonksiyonu y değişkeninin radyal fonksiyonudur (yani, |y| =

√
y21 + · · ·+ y2n

normuna bağlıdır) ve her λ > 0 için

w
(β)
λt (λ

1/βy) = λ−n/βw
(β)
t (y)

şeklinde "anizotropik homojenlik" özelliği sağlanır;

2) 0 < β ≤ 2 için w
(β)
t (y) pozitiftir;

3) Eğer β > 0 sayısı çift tam sayı ise, w(β)
t (y) fonksiyonu y değişkeninin sonsuz

diferansiyellenen ve |y| → ∞ için hızla sıfıra giden bir fonksiyonudur (yani, Schwartz

test fonksiyonları uzayındandır). Eğer β > 0 çift tam sayı değil ise, her sabit tutulmuş

t > 0 ve |y| → ∞ için

w
(β)
t (y) = O(|y|−n−β)

sağlanır. Dolayısıyla, her β > 0 ve her 1 ≤ p ≤ ∞ için w
(β)
t ∈ Lp olur.

4) Her t > 0 ve β > 0 için ∫
Rn

w
(β)
t (y)dy = 1;

5) 1 ≤ p ≤ ∞ ve f ∈ Lp için ∥∥∥B(β)
t f

∥∥∥
p
≤ cβ ∥f∥p .

Burada,

cβ =

∫
Rn

∣∣∣w(β)
t (y)

∣∣∣ dy =

∫
Rn

∣∣∣w(β)
1 (y)

∣∣∣ dy < ∞

olup, 0 < β ≤ 2 için cβ = 1’dir.

6) sup
t>0

∣∣∣(B(β)
t f

)
(x)
∣∣∣ ≤ c(Mf)(x). Burada M , klasik Hardy-Littlewood maksimal

operatörü olup, f ∈ Lp için aşağıdaki şekilde tanımlanır:

(Mf)(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

|f(y)| dy;

Br(x), x ∈ Rn merkezli ve r yarıçaplı yuvar ve |Br(x)| de bu yuvarın Lebesgue ölçümü-

dür ("hacmidir").

7) f ∈ Lp, (1 ≤ p < ∞) için

sup
x∈Rn

∣∣∣(B(β)
t f

)
(x)
∣∣∣ ≤ ct−

n
βp ∥f∥p .

14
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8) (yarıgrup özelliği): her t, s > 0 için

B
(β)
t B(β)

s = B
(β)
t+s.

9) f ∈ Lp, 1 ≤ p ≤ ∞ (L∞ ≡ C0) olsun. O halde, lim
t→0+

(
B

(β)
t f

)
(x) = f(x) sağlanır.

Burada, limit Lp-normunda veya h.h.h.x ∈ Rn için noktasal limit olarak anlaşılır. f ∈ C0

ise, limit sup-norma göre limittir (yani, yakınsama düzgün yakınsamadır).

Not: a) {B(β)
t f}t>0 ailesinin tanım ve özelliklerinden anlaşılacağı üzere, bu aile δ =

n
βp

tipli "makul yarıgrup" olup, β = 2 için Gauss-Weierstrass ve β = 1 için Poisson

yarıgrubuna dönüşür.

b) At = e−tB
(β)
t , (0 < t < ∞) tanımlarsak, A0 = E olmak üzere, {At}t≥0 yine

bir yarıgrup olup, β = ∞ tipli "makul yarıgrup" oluşturur.
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3. MATERYAL VE METOT

3.1. Riesz, Bessel, Flett ve İki Parametreye Bağlı Potansiyeller ve Onların "Makul

Demetler" Yardımıyla İfadeleri

Klasik Harmonik Analizin önemli teknik araçlarından biri Riesz potansiyelleridir. S =

S(Rn) Schwartz uzayı olmak üzere, g ∈ S fonksiyonunun α mertebeli Riesz potansiyeli

şöyle tanımlanır (Stein 1970):

(Iαg)(x) =
1

γn(α)

∫
Rn

g(y)

|x− y|n−αdy, 0 < α < n, γn(α) =
2απ

n
2Γ(α/2)

Γ
(
n−α
2

) .

Burada, |x− y| =
√

(x1 − y1)2 + · · ·+ (xn − yn)2 olarak tanımlanmıştır. Normalleşti-

rici katsayı olan γn(α) sayısı öyle seçilmiştir ki,

(Iαg)∧(x) = |x|−α g∧(x)

eşitliği sağlanır.

Her pozitif k tamsayısı ve ∆ =
n∑

k=1

∂2

∂x2
k

Laplace operatörü için sağlanan

(−∆)kg(x) = (|y|2k g∧(y))∨(x)

eşitliği dikkate alınırsa,

(Iαg)(x) = (|y|−α g∧(y))∨(x)

eşitliğinden, formal olarak

(Iαg)(x) = (−∆)−α/2g(x)

yazılabilir. Dolayısıyla, g fonksiyonunun α > 0 mertebeden Riesz potansiyeli (−∆) ope-

ratörünün (−α/2) mertebeden negatif "kesirsel kuvvetinin" g fonksiyonuna etkisi olarak

yorumlanabilir.

Riesz potansiyelinin, Poisson ve Gauss-Weierstrass yarıgrupları ile aşağıdaki ifadeleri

iyi bilinmektedir:

(Iαg)(x) =
1

Γ(α)

∫ ∞

0

tα−1(Ptg)(x)dt, (Stein ve Weiss 1960) (3.1)

(Iαg)(x) =
1

Γ(α/2)

∫ ∞

0

t
α
2
−1(Wtg)(x)dt, (Johnson 1973) (3.2)
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Riesz potansiyellerinin, yukarıda, 2.3.1 alt bölümünde tanımladığımız Riesz-Bochner

"makul demeti" ile ilişkili tek boyutlu bir integral gösterimi daha vardır. Bu integral göste-

rim, (3.1) ve (3.2) formülleri gibi yaygın olmasa da, Riesz potansiyelleri teorisi açısından

ilginçtir. Söz konusu formülü bir teorem şeklinde ifade edelim.

Teorem 3.7 (Karapınar 2006). (Btg)(x) ≡ (B(ν)
t g)(x), g ∈ Lp fonksiyonunun doğurduğu

Riesz-Bochner "makul demeti" olsun. Eğer, ν > n−1
2

, 0 < α < n
p
, (1 ≤ p < ∞) ise,

(Iαg)(x) =
1

cν(α)

∫ ∞

0

tα−1(Btg)(x)dt (3.3)

eşitliği sağlanır.

Buradaki cν(α) "normalleştirici" katsayısı aşağıdaki gibidir:

cν(α) =

∫ 1

0

sα−1(1− s2)νds =
1

2

Γ
(
α
2

)
Γ (ν + 1)

Γ
(
α
2
+ ν + 1

) .
İlgilenenler, (3.3) formülünün kanıtını (Karapınar 2006, syf. 15-19) kaynağından bu-

labilirler.

Riesz potansiyelleri için, yukarıdaki (3.1) ve (3.2) formüllerinin ikisini de genelleşti-

ren bir integral gösterim daha vardır. Bunu da bir teorem vasıtasıyla ifade edelim.

Teorem 3.8 (Sezer ve Aliev 2010). 0 < α < n, 1 ≤ p < n
α

ve g ∈ Lp olsun. Ayrıca,

β > 0 olmak üzere, {B(β)
t g}t>0 integraller ailesi g fonksiyonunun doğurduğu β-yarıgrup

olsun. Bu taktirde,

(Iαg)(x) =
1

Γ(α/β)

∫ ∞

0

t
α
β
−1(B

(β)
t g)(x)dt (3.4)

eşitliği sağlanır.

Açıkça görüldüğü üzere, β = 1 ve β = 2 için (3.4) formülü, sırasıyla, (3.1) ve (3.2)

formüllerine dönüşür.

İlgilenenler, (3.4) formülünün kanıtını (Sezer ve Aliyev 2010) kaynağında bulabilirler.

Hatırlatalım ki, (Sezer, Aliyev-2010) kaynağında, (3.4) formülü kullanılarak,

Iα(Lp) = {f : f = Iαg, g ∈ Lp(Rn)},
(
1 < p <

n

α

)
şeklinde tanımlanan ve Riesz Potansiyelleri Uzayı diye adlandırılan Iα(Lp) uzayının yeni

bir karakterizasyonu bulunmuştur.
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Klasik Harmonik Analizin, Riesz potansiyelleri gibi önemli olan başka bir teknik aracı

Bessel potansiyelleri denilen integral operatörlerdir. S = S(Rn) Schwartz uzayı olmak

üzere, g ∈ S fonksiyonunun α > 0 mertebeli Bessel potansiyeli şöyle tanımlanıyor (Stein

1970, syf. 130; Samko vd. 1993, syf. 540):

(Jαg)(x) =
1

βn(α)

∫
Rn

Gα(y)g(x− y)dy. (3.5)

Burada,

Gα(y) =

∫ ∞

0

s
α−n
2

−1e−s−|y|2/4sds, (y ∈ Rn)

olup, "normalleştirici"

βn(α) = 2nπ
n
2Γ
(α
2

)
katsayısı öyle seçilmiştir ki,

(Jαg)(x) = ((1 + |y|2)−α/2g∧(y))∨(x)

sağlanır. Yani, konvolusyon (girişim) tipli (Jαg)(x) integral operatörünün Fourier çarpanı

(Fourier multiplier) (1 + |x|2)−α/2’dir.

g fonksiyonunun α mertebeden Bessel potansiyeli, E birim operatör olmak üzere,

(E − ∆) diferansiyel operatörünün (−α/2) mertebeden negatif "kesirsel kuvvetinin" g

fonksiyonuna etkisi olarak yorumlanır.

∧ = (−∆)1/2 olmak üzere, (E + ∧) operatörünün (−α) mertebeden negatif kuvvet-

leri olarak yorumlanan, başka ifadeyle, Fourier çarpanları terimlerinde

(Fαg)∧(x) = (1 + |x|)−αg∧(x), (α > 0, x ∈ Rn)

şeklinde tanımlanan ve Flett potansiyelleri diye adlandırılan (Fαg)(x) integral operatör-

lerinin açık ifadesi aşağıdaki gibidir (Flett 1971; Samko vd. 1993; Aliyev vd. 2006):

(Fαg)(x) =

∫
Rn

Φα(y)g(x− y)dy; (3.6)

Φα(y) =
1

λn(α)
|y|α−n

∫ ∞

0

tαe−t|y|

(1 + t2)(n+1)/2
dt,

λn(α) = π(n+1)/2Γ(α)/Γ((n+ 1)/2).
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(3.5) formülüyle tanımlanan Bessel potansiyeli operatörünün ve (3.6) formülüyle ta-

nımlanan Flett potansiyeli operatörünün Gauss-Weierstrass ve Poisson "makul yarıgrup-

ları" vasıtasıyla bir boyutlu integral şeklinde ifadeleri vardır: g ∈ Lp ise,

(Jαg)(x) =
1

Γ(α/2)

∫ ∞

0

t
α
2
−1e−t(Wtg)(x)dt; (Flett 1971) (3.7)

(Fαg)(x) =
1

Γ(α)

∫ ∞

0

tα−1e−t(Ptg)(x)dt. (Flett 1971) (3.8)

Bunların yanısıra, Bessel potansiyellerinin, 2.3.4 alt bölümünde tanımlanmış olan me-

taharmonik yarıgrup yardımıyla tek boyutlu integral ifadesi de vardır:

(Jαg)(x) =
1

Γ(α)

∫ ∞

0

tα−1(Mtg)(x)dt, (Lizorkin 1964).

Yukarıda tanımını verdiğimiz ve β-yarıgrup (beta-yarıgrup) diye adlandırılan {B(β)
t g}t>0

integraller ailesi yardımıyla, (Aliyev 2009) makalesinde, Bessel ve Flett potansiyellerinin

ikisini de genelleştiren ve iki parametreye bağlı potansiyeller (bi-parametric potentials)

diye adlandırılan integral operatörler ailesi tanımlanmıştır. Bu tanımı verelim:

Tanım 3.9 (Aliev 2009). α > 0, β > 0, 1 ≤ p ≤ ∞ ve g ∈ Lp(Rn) olmak üzere,

(Jα
β g)(x) =

1

Γ(α/β)

∫ ∞

0

t
α
β
−1e−t(B

(β)
t g)(x)dt (3.9)

şeklinde tanımlanan (Jα
β g)(x) integral operatörüne iki parametreye bağlı potansiyel ope-

ratör denir.

(Jα
β g)

∧(x) = (1 + |x|β)−α/βg∧(x), (Aliyev 2009, syf. 158)

formülü dikkate alınırsa, (Jα
β g) operatörü (E+(−∆)β/2) operatörünün (−α/β) mertebe-

den negatif "kesirsel kuvveti" olarak yorumlanabilir. Yine (3.9) formülünden ve {B(β)
t }t>0

yarıgrubunun tanımından kolayca görülebileceği üzere, (Jα
β g) operatörü, β = 2 için Bes-

sel potansiyeline ve β = 1 için de Flett potansiyeline dönüşür. Hatırlatalım ki, (Aliev

2009) makalesinde iki parametreye bağlı potansiyel operatörler kullanılarak, Bessel po-

tansiyelleri uzayının yeni bir karakterizasyonu verilmiştir.

Riesz potansiyellerinin (3.1)-(3.4) gösterimlerinden esinlenerek, bir sonraki Bulgular

ve Tartışma bölümünde Riesz potansiyellerini genelleyen integral operatörler ailesi ta-

nımlanacak ve bu aile için Hardy-Littlewood-Sobolev tipli eşitsizlik kanıtlanacaktır. Yine,
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Bulgular ve Tartışma kısmında Bessel ve Flett potansiyellerini genelleyen ve (3.9) formü-

lüyle tanımlanan Jα
β opratörlerinin Lp uzayından Lq uzayına sınırlı etki etmesini sağlayan

koşullar bulunacaktır.
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4. BULGULAR VE TARTIŞMA

4.1. Makul Demetin Doğurduğu İntegral Operatörler için Hardy-Littlewood-Sobolev

Tipli Eşitsizlik

Bu bölümde, yukarıda verdiğimiz "makul demet" kavramını kullanarak, integral opera-

törler ailesi tanımlayacağız. Makul demetin özel seçimleri ile klasik Riesz potansiyelleri

elde edilecektir. Dolayısıyla, bizim tanımlayacağımız integral operatörler, klasik Riesz

potansiyellerinin bir genelleşmesi olacaktır. Riesz potansiyelleri için iyi bilinen Hardy-

Littlewood-Sobolev eşitsizliğinin bir benzeri, burada tanımlayacağımız integral operatör-

ler için kanıtlanacaktır. Burada önemli bir hatırlatma yapalım: Bölüm 2.2’de verilen "ma-

kul demet" kavramında dört koşul vardı. Aşağıda verdiğimiz integral operatörler ailesini

tanımlamak için "makul demetin" yalnız iki koşulu yeterli olacaktır.

Tanım 4.10. {St}t>0 operatörler ailesi, Lp = Lp(Rn), (1 ≤ p < ∞) uzayında verilmiş

δ-tipli makul demet olsun. Yani, δ > 0 verilmiş bir parametre olmak üzere,

(a)

sup
t>0

∥Stf∥p ≤ c ∥f∥p ; (4.1)

(b)

ess sup
x∈Rn

|(Stf)(x)| ≤ ct−δ ∥f∥p (4.2)

eşitsizlikleri sağlansın. O halde,

(
Aθf

)
(x) =

∫ ∞

0

tθ−1(Stf)(x)dt, (θ > 0) (4.3)

integraller ailesine, {St}t makul demetinin doğurduğu potansiyel tipli integral operatör-

ler ailesi denir.

Not: {St}t>0 makul demetinin özel seçimlerini kullanarak, (4.3) ailesinden, θ para-

metresine bağlı çarpan farkıyla, klasik Riesz potansiyellerini elde edebiliriz: Iαf , f ’nin

Riesz potansiyeli olmak üzere,

1) St = Bt ≡ B(ν)
t (Riesz-Bochner), δ = n

p
, θ = α için,

Aαf = cν(α)I
αf , cν(α) =

1

2
·
Γ
(
α
2

)
Γ (ν + 1)

Γ
(
α
2
+ ν + 1

) ;
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2) St = Pt (Poisson), δ = n
p
, θ = α için,

Aαf = Γ(α)Iαf ;

3) St = Wt (Gauss-Weierstrass), δ = n
2p
, θ = α

2
için,

Aα/2f = Γ
(α
2

)
Iαf ;

4) St = Bt (β-yarıgrup), δ = n
βp
, θ = α

β
için,

A
α
β f = Γ

(
α

β

)
Iαf

elde edilir.

Şimdi, (4.3) formülüyle tanımlanmış Aθf integraller ailesi için Hardy-Littlewood-

Sobolev tipli eşitsizliği ifade edelim ve kanıtlayalım.

Teorem 4.11. {St}t>0 δ-tipli makul demeti, (4.1) ve (4.2) koşullarını sağlasın ve f ∈ Lp

olmak üzere, Aθf integral operatörleri ailesi (4.3)’deki gibi tanımlansın:

(Aθf)(x) =

∫ ∞

0

tθ−1(Stf)(x)dt, (0 < θ < δ)

O halde, 1 < p < ∞ olmak üzere,

1

q
=

1

p

(
1− θ

δ

)
(4.4)

eşitliğini sağlayan her q > p için öyle C = C(p, q, δ) > 0 sabiti vardır ki,

∥∥Aθf
∥∥
q
≤ C ∥f∥p (4.5)

eşitsizliği sağlanır.

Ayrıca, 1 ≤ p < q < ∞ ve q sayısı da (4.4) eşitliğini sağlamak üzere, Aθ operatörü

zayıf (p, q) tipli olur, yani, her λ > 0 için

m{x :
∣∣(Aθf)(x)

∣∣ > λ} ≤ C

(∥f∥p
λ

)q

(4.6)

sağlanır.
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Not 2: (4.4) eşitliği şöyle de yazılabilir:

θ = δp

(
1

p
− 1

q

)
, (1 ≤ p < q < ∞).

İspat Biz önce, 1 ≤ p < q < ∞ olmak üzere, θ = δp
(

1
p
− 1

q

)
koşulunu sağlayan θ için

Aθ operatörünün zayıf (p, q) tipli olduğunu kanıtlayacağız. Daha sonra, Marcinkiewicz

interpolasyon teoremi kullanılarak, 1 < p < q < ∞, 1
q
= 1

p

(
1− θ

δ

)
durumunda Aθ

operatörünün güçlü (p, q) tipli olduğu sonucu elde edilir.

(Aθf)(x) =

∫ ∞

0

tθ−1(Stf)(x)dt

=

∫ µ

0

tθ−1(Stf)(x)dt+

∫ ∞

µ

tθ−1(Stf)(x)dt (4.7)

yazalım. (Stein 1970) kaynağındaki Hardy-Littlewood-Sobolev teoreminin ispatındaki

bazı teknikleri kullanacağız (kıyaslama için bakınız: Stein 1970, syf. 119-121 ).

(4.7)’ye göre, λ > 0 olmak üzere,

m{x :
∣∣(Aθf)(x)

∣∣ > 2λ} ≤ m{x :

∣∣∣∣∫ µ

0

tθ−1(Stf)(x)dt

∣∣∣∣ > λ}

+m{x :

∣∣∣∣∫ ∞

µ

tθ−1(Stf)(x)dt

∣∣∣∣ > λ}. (4.8)

g(x) =
∫ µ

0
tθ−1(Stf)(x)dt dersek, (4.8)’deki ilk toplanan için

m{x : |g(x)| > λ} = m{x : |g(x)|p > λp}

olur. Önce Chebyshev ve sonra da Minkowski eşitsizlikleri uygulanırsa,

m{x : |g(x)| > λ} = m{x : |g(x)|p > λp} ≤ 1

λp

∫
Rn

|g(x)|p dx

=
1

λp ∥g∥
p
p =

1

λp

∥∥∥∥∫ µ

0

tθ−1(Stf)(x)dt

∥∥∥∥p
p

≤ 1

λp

(∫ µ

0

tθ−1 ∥Stf∥p dt
)p

(4.1)

≤
(
c ∥f∥p

λ

)p(∫ µ

0

tθ−1dt

)p

=

(
c ∥f∥p

λ

)p(
µθ

θ

)p

. (4.9)

Şimdi de, (4.8)’deki ikinci toplanana bakalım.∣∣∣∣∫ ∞

µ

tθ−1(Stf)(x)dt

∣∣∣∣ (4.2)≤ c ∥f∥p
∫ ∞

µ

tθ−1tδdt = c ∥f∥p
∫ ∞

µ

tθ−δ−1dt

= c ∥f∥p ·
1

θ − δ
(−µθ−δ)

= c ∥f∥p ·
1

δ − θ
µθ−δ

= b ∥f∥p µ
θ−δ; (4.10)
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burada, b = c
δ−θ

> 0.

(4.7) eşitliğindeki µ > 0 parametresinin seçimi bizim elimizdedir. Biz, µ parametre-

sini öyle seçelim ki, b ∥f∥p µθ−δ = λ olsun. Yani,

µ =

(
λ

b ∥f∥p

) 1
θ−δ

= b
1

δ−θ

(∥f∥p
λ

) 1
δ−θ

(4.11)

alalım. O halde, µ’nun bu değeri için (4.10)’a göre,

sup
x∈Rn

∣∣∣∣∫ ∞

µ

tθ−1(Stf)(x)dt

∣∣∣∣ ≤ λ

olur ve dolayısıyla,

m{x :

∣∣∣∣∫ ∞

µ

tθ−1(Stf)(x)dt

∣∣∣∣ > λ} = 0

olur. Bunu ve (4.9)’u (4.8)’de dikkate alırsak,

m{x :
∣∣(Aθf)(x)

∣∣ > 2λ} ≤
(
c ∥f∥p

λ

)p(
µθ

θ

)p

= cp
(∥f∥p

λ

)p
1

θp
b

θ
δ−θ

(∥f∥p
λ

) θp
δ−θ

=
( c
θ

)p
b

θ
δ−θ

(∥f∥p
λ

)p+ θp
δ−θ

= B

(∥f∥p
λ

)p+ θp
δ−θ

. (4.12)

Burada, B =
(
c
θ

)p
b

θ
δ−θ =

(
c
θ

)p ( c
δ−θ

) θ
δ−θ .

Teoremin koşulundan,

p+
θp

δ − θ
= q

olduğu görülür. Dolayısıyla, her λ > 0 için,

m{x :
∣∣(Aθf)(x)

∣∣ > 2λ} ≤ B

(∥f∥p
λ

)q

,

veyahutta, her λ > 0 için,

m{x :
∣∣(Aθf)(x)

∣∣ > λ} ≤ 2qB

(∥f∥p
λ

)q

(4.13)

olur. Yani, Aθ operatörü zayıf (p, q) tiplidir. Marcinkiewicz interpolasyon teoremi uygu-

lanırsa, 1 < p < q < ∞, 1
q
= 1

p

(
1− θ

δ

)
için, Aθ operatörünün güçlü (p, q) tipli olduğu

çıkar.

Teorem ispatlandı. □
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Not 3: θ = δp
(

1
p
− 1

q

)
eşitliği kullanılırsa, (4.13)’teki B katsayısı şu şekle düşer:

B =

(
cq

δp

) q
p
−1+p

·
(
q

p
− 1

)−p

.

Buradaki c > 0 ve δ > 0 sayıları Tanım 4.10’daki (4.1) ve (4.2) ifadelerindeki sabitlerdir.

Not 4: Teoremin ifadesindeki {St}t>0 makul demeti yerine, Not 1’deki demetlerden

herhangi birini alırsak, klasik Riesz potansiyelleri için Hardy-Littlewood-Sobolev teoremi

elde edilmiş olur.

Örneğin, St = Bt ≡ B
(β)
t (β-yarıgrup), δ = n

βp
ve θ = α

β
alırsak,

A
α
β f = Γ

(
α

β

)
Iαf

olacağından, Teoreme göre, 1 < p < q < ∞ ve

1

q
=

1

p

(
1− θ

δ

)
=

1

p

(
1−

α
β
n
βp

)
=

1

p

(
1− pα

n

)
=

1

p
− α

n
,

yani, 1
q
= 1

p
− α

n
için Iα operatörü (Riesz potansiyeli) Lp uzayından Lq uzayına sınırlı etki

eder (başka ifadeyle, güçlü (p, q) tiplidir). Bu da, klasik Riesz potansiyeli için iyi bilinen

Hardy-Littlewood-Sobolev teoremidir.

4.2. İki Parametreye Bağlı Potansiyel Tipli Operatörlerin Lp Uzaylarında Davranı-

şının İncelenmesi

Tez çalışmasının bu bölümünde, yukarıda, Tanım 3.9’da bahsi geçen ve (Aliev 2009)

makalesinde tanımlanmış olan iki parametreye bağlı potansiyel tipli operatörlerin (bi-

parametric potential-type operators) Lp = Lp(Rn), (1 ≤ p ≤ ∞) uzaylarında davranışını

inceleyeceğiz.

Yukarıda, 3.1 numaralı alt bölümde verdiğimiz iki parametreye bağlı potansiyel tipli

operatörlerin tanımını tekrar hatırlatalım (Aliev 2009):

0 < β < ∞, 0 < α < ∞, 1 ≤ p ≤ ∞ ve g ∈ Lp olmak üzere,

(Jα
β g)(x) =

1

Γ(α/β)

∫ ∞

0

t
α
β
−1e−t(B

(β)
t g)(x)dt (4.14)

integral operatörüne, β ve α parametrelerine bağlı potansiyel tipli operatör denir.

Bu integral operatörler, β = 2 için klasik Bessel potansiyellerine ve β = 1 için Flett

potansiyellerine dönüşür.
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g fonksiyonu Schwartz uzayından ise,

(Jα
β g)

∧(y) = (1 + |y|β)−α/β · g∧(y), (y ∈ Rn)

olduğu görülebilir (Aliev 2009, syf. 157).

Bu eşitlik dikkate alınarak, E birim operatör ve ∆ Laplace diferansiyel operatörü

olmak üzere, Jα
β integral operatörler ailesi, (E + (−∆)β/2) operatörlerinin (−α/β) mer-

tebeden negatif "kesirsel kuvvetleri" olarak yorumlanabilir (Aliev 2009):

Jα
β g = (E + (−∆)β/2)−α/βg, (g ∈ S).

Jα
β , (α > 0, β > 0) integraller ailesinin Lp uzaylarındaki davranışını bir teoremle

ifade edelim.

Teorem 4.12. 0 < α < ∞; 0 < β ≤ 2 olup, Jα
β integral operatörler ailesi (4.14)’deki

gibi tanımlansın. O halde,

(a) Her g ∈ Lp , (1 ≤ p ≤ ∞) için

∥∥Jα
β g
∥∥
p
≤ ∥g∥p (4.15)

sağlanır.

(b) 1 < p < q < ∞ ve α = n
(

1
p
− 1

q

)
için g fonksiyonundan bağımsız öyle A1 > 0

vardır ki, her g ∈ Lp için, ∥∥Jα
β g
∥∥
q
≤ A1 ∥g∥p (4.16)

sağlanır. Yani, Jα
β operatörü güçlü (p, q) tipli operatördür.

(c) p = 1 ve α = n
(
1− 1

q

)
ise, g ∈ L1 fonksiyonundan bağımsız öyle A2 > 0 sabiti

vardır ki, her λ > 0 için

m{x ∈ Rn :
∣∣(Jα

β g)(x)
∣∣ > λ} ≤

(
A2 ∥g∥1

λ

)q

(4.17)

sağlanır. Yani, Jα
β operatörü, p = 1 ve q = n

n−α
için zayıf (1, q) tiplidir.

(d) 1 ≤ p ≤ q ≤ ∞ ve α > n
(

1
p
− 1

q

)
ise, öyle A3 > 0 sabiti vardır ki, her g ∈ Lp

için ∥∥Jα
β g
∥∥
q
≤ A3 ∥g∥p (4.18)

sağlanır.
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(e) p ≥ 1, α = n
p

ve q = ∞ ise, öyle g ∈ Lp vardır ki,
∥∥Jα

β g
∥∥
∞ = ∞ olur. Yani, her

g ∈ Lp için ∥∥Jα
β g
∥∥
∞ ≤ A4 ∥g∥p

eşitsizliğini sağlayan A4 sabiti yoktur.

İspat Önteorem 2.6’daki bilgilerden yararlanacağız.

(a) 0 < β ≤ 2 olduğundan, B(β)
t yarıgrubunun çekirdeği pozitif olur ve Önteorem

2.6-5)’e göre
∥∥∥B(β)

t g
∥∥∥
p
≤ ∥g∥p sağlanır. O halde, Minkowski eşitsizliğine ve Γ (gamma)

fonksiyonunun tanımına göre,∥∥Jα
β g
∥∥
p

≤ 1

Γ(α/β)

∫ ∞

0

t
α
β
−1e−t

∥∥∥B(β)
t g
∥∥∥
p
dt

≤ ∥g∥p
1

Γ(α/β)

∫ ∞

0

t
α
β
−1e−tdt = ∥g∥p

sağlanır.

(b) Şimdi, 1 < p < q < ∞ ve α = n
(

1
p
− 1

q

)
olsun. 0 < β ≤ 2 olduğundan, yukarıda

da söylediğimiz gibi, B(β)
t yarıgrubunun çekirdeği pozitiftir: w(β)

t (y) > 0. O halde, her

g ∈ Lp ve her x ∈ Rn için ∣∣∣(B(β)
t g)(x)

∣∣∣ ≤ B
(β)
t (|g|)(x)

sağlanır. Buradan,∣∣(Jα
β g)(x)

∣∣ ≤ Jα
β (|g|)(x)

=
1

Γ(α/β)

∫ 1

0

t
α
β
−1e−tB

(β)
t (|g|)(x)dt+ 1

Γ(α/β)

∫ ∞

1

t
α
β
−1e−tB

(β)
t (|g|)(x)dt

≤ 1

Γ(α/β)

∫ ∞

0

t
α
β
−1B

(β)
t (|g|)(x)dt+ 1

Γ(α/β)

∫ ∞

1

t
α
β
−1e−tB

(β)
t (|g|)(x)dt

≡ Aα
0 (|g|)(x) + Aα

1 (|g|)(x) (4.19)

Buradan, q sayısı α = n
(

1
p
− 1

q

)
eşitliğini sağlayan sayı, yani q = np

n−αp
olmak üzere,∥∥Jα

β g
∥∥
q
≤ ∥Aα

0 (|g|)∥q + ∥Aα
1 (|g|)∥q (4.20)

yazılabilir.

(4.19)’daki Aα
0 integral operatörü, (3.4) formülüne göre, |g| ∈ Lp fonksiyonunun α

mertebeden Riesz potansiyelidir. O halde, Hardy-Littlewood-Sobolev teoremine göre, bir

c1 > 0 sabiti için

∥Aα
0 (|g|)∥q ≤ c1 ∥g∥p (4.21)
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olur.

Diğer yandan, Minkowski eşitsizliğine göre,

∥Aα
1 (|g|)∥q ≤

1

Γ(α/β)

∫ ∞

1

t
α
β
−1e−t

∥∥∥B(β)
t (|g|)

∥∥∥
q
dt (4.22)

ve ∥∥∥B(β)
t (|g|)

∥∥∥
q

=

(∫
Rn

(B
(β)
t (|g|)(x))qdx

)1/q

=

(∫
Rn

(B
(β)
t (|g|)(x))q−p · (B(β)

t (|g|)(x))pdx
)1/q

≤ (burada, Önteorem 2.6-7)’yi kullanıyoruz)

≤ (c · t−
n
βp ∥g∥p)

q−p
q

∥∥∥(B(β)
t (|g|)

∥∥∥ p
q

p

≤ (burada, Önteorem 2.6-5)’yi kullanıyoruz)

≤ c1−
p
q · t−

n
βp(1−

p
q ) ∥g∥

1− p
q

p ∥g∥
p
q
p

= c1−
p
q · t−

1
β
·n( 1

p
− 1

q ) ∥g∥p

olur. Sonuncu eşitlik (4.22)’de kullanılırsa ve n
(

1
p
− 1

q

)
= α olduğu dikkate alınırsa,

∥Aα
1 (|g|)∥q ≤ c1−

p
q

Γ(α/β)

(∫ ∞

1

t
α
β
−1− 1

β
·n( 1

p
− 1

q )e−tdt

)
∥g∥p

=
c1−

p
q

Γ(α/β)

(∫ ∞

1

t−1e−tdt

)
∥g∥p ≤

c1−
p
q

Γ(α/β)

(∫ ∞

1

e−tdt

)
∥g∥p

=
c1−

p
q

eΓ(α/β)
∥g∥p = c2 ∥g∥p (4.23)

olur. Burada, c2 = c
1− p

q

eΓ(α/β)
.

Şimdi, (4.21) ve (4.23) eşitsizlikleri (4.20)’de dikkate alınırsa ve c1+ c2 = c3 denirse,

her g ∈ Lp için ∥∥Jα
β g
∥∥
q
≤ c3 ∥g∥p

eşitsizliğinin sağlandığını söyleyebiliriz.

(c) Şimdi, g ∈ L1 ve q = n
n−α

olsun. Yukarıdaki (4.19) eşitsizliğine göre,∣∣(Jα
β g)(x)

∣∣ ≤ Aα
0 (|g|)(x) + Aα

1 (|g|)(x).

Buradan, her λ > 0 için,

{x ∈ Rn :
∣∣(Jα

β g)(x)
∣∣ > 2λ}

⊂ {x ∈ Rn : Aα
0 (|g|)(x) > λ} ∪ {x ∈ Rn : Aα

1 (|g|)(x) > λ}.
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ve dolayısıyla,

m{x ∈ Rn :
∣∣(Jα

β g)(x)
∣∣ > 2λ}

≤ m{x ∈ Rn : Aα
0 (|g|)(x) > λ}+m{x ∈ Rn : Aα

1 (|g|)(x) > λ} (4.24)

olur.

Aα
0 (|g|) operatörü g ∈ L1 fonksiyonunun α mertebeden Riesz potansiyeli olduğundan,

Hardy-Littlewood-Sobolev teoremine göre, öyle c4 > 0 sabiti vardır ki, her λ > 0 için,

m{x ∈ Rn : Aα
0 (|g|)(x) > λ} ≤

(
c4 ∥g∥1

λ

)q

,
(
q =

n

n− α

)
(4.25)

sağlanır.

Diğer yandan, Chebyshev eşitsizliğine ve (4.23) eşitsizliğine göre, p = 1 ve q = n
n−α

için

m{x ∈ Rn : Aα
1 (|g|)(x) > λ} = m{x ∈ Rn : |Aα

1 (|g|)(x)|
q > λq}

≤ 1

λq

∫
Rn

(Aα
1 (|g|)(x))

q dx =
1

λq ∥Aα
1 (|g|)∥

q
q

(4.23)
≤ 1

λq (c2 ∥g∥1)
q =

(
c2 ∥g∥1

λ

)q

(4.26)

elde edilir. (4.25) ve (4.26) eşitsizlikleri (4.24)’de dikkate alınırsa (4.17) elde edilmiş olur.

(d) Şimdi de, 1 ≤ p ≤ q ≤ ∞ ve α > n
(

1
p
− 1

q

)
olsun. Bir A3 > 0 sabiti ve her

g ∈ Lp için ∥∥Jα
β g
∥∥
q
≤ A3 ∥f∥p

kanıtlamak istiyoruz.

Öncelikle, girişim için Young eşitsizliğini anımsatalım: 1 ≤ p, q, r ≤ ∞ ve 1
q
=

1
p
+ 1

r
− 1 ise, u ∈ Lr ve v ∈ Lp için

∥u ∗ v∥q ≤ ∥u∥r ∥v∥p .

Minkowski eşitsizliği kullanılırsa,

∥∥Jα
β g
∥∥ ≤ 1

Γ(α/β)

∫ ∞

0

t
α
β
−1e−t

∥∥∥B(β)
t g
∥∥∥
q
dt (4.27)

olur.

(B
(β)
t g)(x) =

∫
Rn

w
(β)
t (y)g(x− y)dy ≡ (w

(β)
t ∗ g)(x)
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olduğundan, Young eşitsizliğine göre, 1
q
= 1

p
+ 1

r
− 1 olmak üzere,∥∥∥B(β)

t g
∥∥∥
q
≤
∥∥∥w(β)

t

∥∥∥
r
· ∥g∥p (4.28)

ve 0 < β ≤ 2 için w
(β)
t (y) > 0 olduğundan,∥∥∥w(β)

t

∥∥∥r
r
=

∫
Rn

(
w

(β)
t (y)

)r
dy (4.29)

yazabiliriz.

w
(β)
t (y) çekirdek fonksiyonunun aşağıdaki anizotropik homojenlik özelliğini kullana-

cağız (Önteorem 2.6 ):

w
(β)
t (t

1
β y) = t−n/βw1(y), (t > 0, y ∈ Rn). (4.30)

(4.29) eşitliğinde y = t1/βz, (dy = tn/βdz) şeklinde değişken değiştirerek (4.30) özelli-

ğini kullanırsak,∥∥∥w(β)
t

∥∥∥r
r
=

∫
Rn

t
n
β · t−

n
β
r
(
w

(β)
1 (z)

)r
dz = t

n
β
(1−r)

∫
Rn

(
w

(β)
1 (z)

)r
dz (4.31)

olur. Önteorem 2.6’daki

w
(β)
1 (y) = O(|y|−n−β), ( |y| → ∞)

asimptotik eşitliğini kullanırsak,
∫
Rn

(
w

(β)
1 (z)

)r
dz integralinin yakınsak olduğu görülür.

Dolayısıyla, (4.31)’e göre, bir c1 > 0 için∥∥∥w(β)
t

∥∥∥r
r
≤ c1t

n
β
(1−r)

ve buradan da, c2 = c
1
r
1 dersek,∥∥∥w(β)

t

∥∥∥
r
≤ c2t

n
β (

1
r
−1) = c2t

n
β (

1
q
− 1

p)

olur. Böylece, (4.28)’e göre, ∥∥∥B(β)
t g
∥∥∥
q
≤ c2t

n
β (

1
q
− 1

p) ∥g∥p .

Sonuncu eşitsizliği (4.27)’te kullanırsak,

∥∥Jα
β g
∥∥ ≤ c2 ∥g∥p

1

Γ(α/β)

∫ ∞

0

e−tt
α
β
−1+n

β (
1
q
− 1

p)dt
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olur. Sağdaki integralin yakınsak olması için, α
β
+ n

β

(
1
q
− 1

p

)
> 0 olmalı, yani, α >

n
(

1
p
− 1

q

)
olmalıdır ki, bu da teoremin koşullarından biridir.

(e) (Stein 1970, syf. 119) kaynağında Riesz potansiyellerinin, p = n
α

için Lp’den L∞’a

sınırlı etki etmediğini göstermek için kurulan fonksiyon örneği burada da işe yarıyor.

0 < ε < 1 olmak üzere,

g(x) =

 |x|−α
(
ln 1

|x|

)−α
n
(1+ε)

, |x| ≤ 1
2

0, |x| > 1
2

 (4.32)

fonksiyonunun p = n
α

için Lp uzayından olduğu açıktır. Gerçekten,∫
Rn

|g(x)|p dx =

∫
|x|≤ 1

2

|x|−n

(
ln

1

|x|

)−(1+ε)

dx < ∞.

Bu fonksiyon için
∥∥Jα

β g
∥∥
∞ = ∞ olduğunu göstermek istiyoruz. Aşağıda görüleceği

üzere, bunu kanıtlamak, Riesz potansiyellerindeki gibi kolay değildir.

g, (4.32)’deki fonksiyon olmak üzere,

∥∥Jα
β g
∥∥
∞ = ess sup

x∈Rn

∣∣(Jα
β g
)
(x)
∣∣ ≥ ∣∣(Jα

β g
)
(0)
∣∣

olup, (
Jα
β g
)
(0) =

1

Γ(α/β)

∫ ∞

0

t
α
β
−1e−t(B

(β)
t g)(0)dt (4.33)

eşitliği sağlanır. α
n
(1 + ε) = γ diyelim. α < n olduğundan, ε > 0 sayısı o kadar küçük

alınabilir ki, γ < 1 olur.

(B
(β)
t g)(0) =

∫
Rn

w
(β)
t (y)g(−y)dy =

∫
|y|≤ 1

2

w
(β)
t (y) |y|−α

(
ln

1

|y|

)−γ

dy.

w
(β)
t (y) çekirdeğinin anizotropik homojenlik özelliği kullanılırsa,

(B
(β)
t g)(0) =

∫
|y|≤ 1

2

t−
n
βw

(β)
1

(
t−

1
β y
)
|y|−α

(
ln

1

|y|

)−γ

dy

olur. Burada, y = t
1
β z, (dy = t

n
β dz) şeklinde değişken değiştirirsek,

(B
(β)
t g)(0) =

∫
|z|≤ 1

2
t−1/β

w
(β)
1 (z) |z|−α t−

α
β

(
ln

1

|z| t
1
β

)−γ

dz

= t−
α
β

∫
|z|≤ 1

2
t−1/β

w
(β)
1 (z) |z|−α

(
ln

1

|z| t
1
β

)−γ

dz
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olur. O halde,

Γ

(
α

β

)(
Jα
β g
)
(0) =

∫ ∞

0

e−tt
α
β
−1t−

α
βA(t)dt

=

∫ ∞

0

e−t1

t
A(t)dt (4.34)

olur. Burada,

A(t) =

∫
|z|≤ 1

2
t−1/β

w
(β)
1 (z) |z|−α

(
ln

(
1

|z| t
1
β

))−γ

dz

0 < β ≤ 2 olduğundan, w(β)
1 (z) > 0 ve dolayısıyla, her t > 0 için A(t) > 0 olur. O halde,

(4.34)’e göre

Γ

(
α

β

)(
Jα
β g
)
(0) >

∫ 1/2

0

e−t1

t
A(t)dt >

1√
e

∫ 1/2

0

1

t
A(t)dt,

∫ 1/2

0
1
t
A(t)dt = ∞ olduğunu göstermek istiyoruz. w(β)

1 (z) > 0 fonksiyonu bir radial

fonksiyondur. Yazılışın kolaylığı için w
(β)
1 (z) yerine w(|z|) notasyonunu kullanacağız.

Böylece,

A(t) =

∫
|z|< 1

2
t−1/β

w(|z|) |z|−α

(
ln

(
1

|z| t
1
β

))−γ

dz

= c1

∫ 1
2
t−1/β

0

w(r)rn−α−1

(
ln

(
1

rt
1
β

))−γ

dr

Sonuncu integralde

r = st−1/β , (dr = t−1/βds)

şeklinde değişken değiştirmesi yaparsak,

A(t) = c1

∫ 1
2

0

w(st−1/β)sn−α−1t−
n−α−1

β

(
ln

1

s

)−γ

t−1/βds

= c1t
−n−α

β

∫ 1
2

0

w(st−1/β)sn−α−1

(
ln

1

s

)−γ

ds. (4.35)

w(0) = w
(β)
1 (0) = (2π)−n

∫
Rn e

−|x|βdx = 2a diyelim. δ > 0 sayısını o kadar küçük

alalım ki, 0 < τ ≤ δ olan her τ için w(τ) ≥ a olsun. Böyle seçilmiş δ sayısı için (4.35)’e
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göre,

A(t) ≥ c1t
−n−α

β

∫ δt1/β

0

w(st−1/β)sn−α−1

(
ln

1

s

)−γ

ds

≥ c1at
−n−α

β

∫ δt1/β

0

sn−α−1

(
ln

1

s

)−γ

ds

≥ c1at
−n−α

β

∫ δt1/β

1
2
δt1/β

sn−α−1

(
ln

1

s

)−γ

ds

≥ c1at
−n−α

β

(
ln

(
2

δt1/β

))−γ ∫ δt1/β

1
2
δt1/β

sn−α−1ds

= c1at
−n−α

β

(
ln

(
2

δt1/β

))−γ (
δt

1
β

)n−α
(
1− 1

2n−α

)
= c2

(
ln

2

δt1/β

)−γ

.

Burada, c2 = c1aδ
n−α

(
1− 1

2n−α

)
.

Böylece,

A(t) ≥ c2

(
ln

(
2

δt1/β

))−γ

.

Buradan, ∫ 1/2

0

1

t
A(t)dt ≥ c2

∫ 1/2

0

1

t

(
ln

(
2

δt1/β

))−γ

dt. (4.36)

2
δt1/β

= r dersek, t =
(
δ
2

)−β
r−β , (dt = −βr−β−1dr) olup, γ = α

n
(1+ε) < 1 olduğundan,∫ 1/2

0

1

t

(
ln

(
2

δt1/β

))−γ

dt = c3

∫ ∞

1
δ
2
1+ 1

β

1

r
(ln r)−γdr = ∞

olur.

O halde, ∫ 1/2

0

1

t
A(t)dt = ∞

ve dolayısıyla,

(Jα
β g)(0) = ∞

elde edilir. □

Böylece, Teoremin ispatı tamamlanmış oldu.
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5. SONUÇLAR

Bu tez çalışmasında, Harmonik Analizin önemli teknik araçlarından sayılan ve Sobo-

lev uzaylarının, Bessel potansiyelleri uzaylarının ve onların çeşitli genellemelerinin ince-

lenmesinde müstesna rol oynayan klasik Riesz ve klasik Bessel potansiyel operatörlerini

genelleştiren integral operatörler tanımlanmış ve onların Lebesgue uzaylarında davranış-

ları incelenmiştir. Bunun için, öncelikle "operatörlerin makul demeti" ve "operatörlerin

makul yarıgrubu" kavramları tanıtılarak, bunların önemli örnekleri hatırlatılmıştır. Daha

sonra, klasik Riesz potansiyellerinin ve klasik Bessel potansiyellerinin, "makul demetler"

yardımıyla tek boyutlu integral gösterimleri verilmiştir.

Makul demetler yardımıyla Riesz potansiyellerinin tek boyutlu integral gösteriminden

esinlenerek, Riez potansiyellerini genelleştiren yeni bir integral operatörler ailesi tanım-

lanmış ve bu aile için, ünlü Hardy-Littlewood-Sobolev teoreminin bir benzeri kanıtlan-

mıştır. Makul demet yardımıyla tanımlanmış integral operatör, makul demetin özel se-

çimleri ile klasik Riesz potansiyeline dönüşür ve sonuç olarak, Riesz potansiyeli için iyi

bilinen klasik Hardy-Littlewood-Sobolev eşitsizliği elde edilir.

Tez çalışmasında elde edilen bir diğer önemli sonuç, klasik Bessel ve Flett potansi-

yellerinin ikisini de genelleyen ve iki parametreye bağlı potansiyeller (bi-parametric po-

tentials) diye adlandırılan integral operatörler ailesinin, uygun p ≥ 1 ve q ≥ 1 değerleri

için Lp(Rn) uzayından Lq(Rn) uzayına sınırlı etki etmesini sağlayan yeterli koşulların

bulunmasıyla ilgilidir. Klasik Bessel potansiyelleri Harmonik Analizde önemli yere sahip

olduğundan ve iki parametreye bağlı potansiyeller de, parametrelerden birinin özel seçi-

miyle Bessel potansiyeli operatörüne dönüştüğünden, bu tez çalışmasında iki parametreye

bağlı potansiyellerin Lebesgue uzaylarında davranışı ile ilgili elde edilen sonuçların da

Harmonik Analiz açısından faydalı olduğunu düşünüyoruz.

Tez çalışması teorik nitelikte olup, elde edilen sonuçlar, Fonksiyonel uzaylar, Harmo-

nik Analiz ve integral dönüşümler alanında çalışan araştırmacılar için faydalı bir kaynak

rolünü oynayabilir.
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