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INTEGRATION OF CONTENT-BASED IMAGE RETRIEVAL AND 

DATABASE MANAGEMENT SYSTEM: A CASE STUDY WITH DIGITAL 

MAMMOGRAPHY 

 

ABSTRACT 

In this thesis, we proposed a new integration method for content-based image 

retrieval and database systems, and developed a case study on mammography 

retrieval to measure performance of our approach. Initially, we investigated 26 

low-level features in total, 17 of them exist in the literature and rest of them is our 

proposal for mass contour description. Additionally, we proposed a new breast mass 

segmentation method called Breast Mass Contour Segmentation to determine 

accurate breast mass contours. Next, we reviewed available mammogram datasets to 

evaluate our proposal, and we also developed a new mammogram dataset due to 

insufficient annotation level of available datasets. During development of this 

dataset, we developed a new ontology-based annotation tool. Then, we performed 

series of experimentations on two different mammogram datasets to identify the best 

low-level features, machine learning and region selection methods for breast masses. 

Finally, we implemented our integration approach on PostgreSQL database 

management system using selected low-level features and evaluate the retrieval 

performance. Experimentation results showed that our integration approach of 

content-based image retrieval and Database Management Systems worked well and 

successfully applied to mammography mass retrieval system as case study. 

 

Keywords: Content-based image retrieval, content-based mammography retrieval, 

multimedia database management systems, spatial access methods, metric access 

methods, image features, machine learning 
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İÇERİK TABANLI GÖRÜNTÜ GERİGETİRİM ve VERİ TABANI 

YÖNETİM SİSTEMİ BÜTÜNLEŞMESİ: SAYISAL MAMOGRAFİYLE 

ÖRNEK BİR ÇALIŞMA 

 

ÖZ 

Bu tez kapsamında, içerik tabanlı görüntü gerigetirimi yaklaşımını veri tabanı 

sistemleri ile bütünleştirmek amacıyla yeni bir yöntem önerdik ve yöntemimizin 

başarımını ölçmek amacıyla bir mamografi gerigetirim sistemi geliştirdik. İlk olarak, 

17’si literatürde mevcut, geri kalanı da meme kitlelerinin sınırını tanımlamak için 

önerdiğimiz, toplam 26 adet düşük seviyeli öznitelikleri inceledik. Ayrıca, meme 

kitlelerinin doğru sınırlarını bulmak için meme kitle sınır bölütlemesi adında yeni bir 

bölütleme algoritması önerdik. Mevcut mamografi veri kümelerini önerdiğimiz 

yaklaşımı sınamak için inceledik ve mevcut veri kümelerinin yetersiz betimleme 

seviyeleri sebebiyle yeni bir mamografi veri kümesi geliştirdik. Veri kümesinin 

geliştirilmesi sırasında, ontoloji tabanlı yeni bir betimleme aracı geliştirdik. Daha 

sonra, meme kitleleri için en iyi düşük seviyeli öznitelikleri, makine öğrenmesi 

yöntemlerini ve bölge seçim yöntemini belirlemek için iki farklı veri kümesi 

üzerinde bir dizi deneyler gerçekleştirdik. Son olarak, bütünleştirme yaklaşımımızı, 

seçilen düşük seviyeli öznitelikleri kullanarak PostgreSQL veri tabanı yönetim 

sistemi üzerinde gerçekleştirdik ve gerigetirim başarımını ölçtük. Deneylerden elde 

ettiğimiz sonuçlar, yaklaşımımız içerik tabanlı görüntü gerigetirimi ve veri tabanı 

yönetim sistemlerini birleştirilmesini başarı ile kullanıldığını gösterdi ve örnek bir 

çalışma olarak mamografi gerigetirim sistemi üzerine başarıyla uygulandı. 

 

Anahtar sözcükler : İçerik tabanlı görüntü gerigetirimi, içerik tabanlı mamografi 

gerigetirimi, çokluortam veri tabanı yönetim sistemleri, uzaysal erişim yöntemleri, 

metrik erişim yöntemleri, görüntü öznitelikleri, makine öğrenmesi 
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1 CHAPTER ONE – 

INTRODUCTION 

1.1 Overview 

Today, the amount of digital data is growing exponentially by various digital 

devices and on-line information systems. Need of software to manage such amount 

of data is increasing rapidly. Database management systems (DBMS) are the most 

preferred software solution for data management, since DBMS is software that 

handles storage and management of large collections of data that is called a database. 

For modeling data, most of the DBMS use relational data model. Relational data 

model is based on grouping similar data into a logical data cluster, called table, and 

defining relations between those clusters. For example, a university database can 

contain a student table, a course table and a relation between students and courses. 

Today, DBMS provide almost same data manipulation and definition interfaces with 

the help of Structured Query Language (SQL) standard, which is proposed by 

International Organization for Standardization (ISO) (ISO, 2008). SQL has two sub 

parts, which are Data Definition Language (DDL) and Data Manipulation Language 

(DML). DDL is used to define tables and relations, while DML is used to add, 

remove, edit or retrieve data from tables. Thus, it is easy to say that any SQL 

compliant DBMS could easily define and manipulate data such that data properties 

could be defined declaratively. 

DBMS has very high success rate for modeling data. On the contrary, they are not 

universal tools such that it is impossible for them to model all kind of data. Because, 

DBMS could only model and manipulate structures data. However, it is impossible 

to define a structure for any data. For instance, it is very hard to define a structure for 

a free-form text or an image data, since they have no predefined properties like 

name, surname. Hence, many information system designers use DBMS for storing 

unstructured data, and they prefer to use other data to manipulate them. From this 

point of view, DBMS are just storage engines for unstructured data. 
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Researches for modeling unstructured data become very important topic during 

last decades, because amount of available unstructured data is extremely high. 

Although unstructured data has no declarative properties, content of unstructured 

data could be used for modeling purposes. Therefore, unstructured data becomes an 

active object for any information system with the help of its content. Information 

Retrieval (IR) approach is a data retrieval method that is focusing on data content 

instead of its declarative properties. IR systems aim to rank documents in large 

collections according to user information need instead of finding a particular one. 

Though this seems improper from data management perspective, IR obtains very 

successful application areas dealing with unstructured data like web search engines. 

IR systems usually represent the content of the data using multi-dimensional 

vectors. Hence, a document becomes a point in k-dimensional space. User 

information need is also represented in same space. As a result, IR systems rank 

documents according to their distances to user information need. Success of an IR 

system depends on multi-dimensional representation accuracy, since it is hard to 

convert a document to a multi-dimensional point. The most successful IR approach is 

textual IR that uses words in a collection as vector dimensions. Each textual 

document vector contains a weight factor for each word representing its importance 

for the document. Generally, importance factor is calculated by using the number of 

occurrences of the word in document. Similarly, user information need is generally 

expressed with keywords. Textual IR system converts user keywords to a query 

vector and ranks documents using distances of each document vector to query vector. 

But, contextual representation of other unstructured data is a non-trivial issue, since 

it is hard to split data content into small meaningful pieces like text documents. 

After success of textual IR, researches on modeling other kinds of unstructured 

data accelerated. Especially, image IR, called content-based image retrieval (CBIR), 

is one of the most interesting and vivid topic. Like textual IR, CBIR converts images 

into multi-dimensional vectors, called low-level features, using mathematical 

operations. Each low-level feature aims to represent specific properties of image 

content like color, texture and shape. Moreover, representing user information need 

is another issue for CBIR. The most preferred and easiest way is query by example. 
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CBIR system calculates low-level features of sample image and ranks images 

according to low-level feature vector distances. Other kinds of unstructured data 

modeling methods use almost the same approach. 

While there are methods for unstructured data access exists, information system 

designers are not taking them into account. The main reason of this situation is the 

lack of integration between DBMS and IR. However, two data modeling approaches 

have different data access perspectives. For a DBMS, finding exact data is a 

fundamental capability, while scoring all data according to user information need is 

what IR does. But, IR could help DBMS to model unstructured data. As a result, 

DBMS becomes a management tool for both structured and unstructured data.  

Any retrieval system without a successful real life application will have no impact 

on literature. One of the application areas of CBIR is medical imaging archives 

(PACS). Although many hospitals have digital imaging devices and archiving 

systems, they cannot use image data for searching their image collection due to lack 

of integration between DBMS and CBIR. Besides, PACS are focused on storage and 

communication of medical images, and they support image retrieval by querying 

patient information. In this way, PACS are useless for researchers who want to 

search similar cases to a specific one. This kind of search need is crucial for 

uncertain cases. For instance, if a radiology expert can look into previous similar 

cases to examined one, he or she may find similar cases supporting his/her opinions 

and this makes decision making process much more easier for him/her. Since PACS 

are primarily used for storage of medical images, most of them store no medical 

annotations or do not use medical annotations for retrieval purpose. Hence, 

alternative access method for image retrieval approach is needed to find similar cases 

in a PACS archive. 

Selecting a proper DBMS for CBIR integration is another decision for an 

integration approach designer such that DBMS should provide necessary 

functionality to define new data types and access methods. Although there are many 

commercial or open-source databases exist, only a small number of them supports 

necessary extensibility. One of them is PostgreSQL, which is an open source DBMS 
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that is originated from University of Berkeley. Today, it is being developed by 

community and supported by a commercial company, called Enterprise DB. It 

provides a very extensible programming interface that allows programmers to 

implement new data types and access methods. Thus, PostgreSQL is one of the most 

suitable solutions for CBIR integration. 

1.2 Aim of This Thesis 

Aim of this thesis is to integrate CBIR functionalities into a DBMS. Henceforth, 

DBMS provides necessary functionality to retrieve image data using common SQL 

interface. As a result, information system designers would be able to use images as 

active objects like other data types. Although CBIR approach has different 

perspective to retrieve images, it seems that CBIR is the only way to handle image 

data inside of a DBMS. Furthermore, usage of CBIR approach for image data access 

will increase with the help of DBMS integration. Aim of the thesis also involves to 

realize our integration approach on PostgreSQL, which is an open-source DBMS, 

and use it in mammography retrieval system as a case study. 

1.3 Thesis Organization 

This thesis is organized as follows. In chapter 2, a review of content based image 

retrieval systems are given. Chapter 3 introduces mammography and includes a 

review of low-level features used in or proposed to be used in mammogram images. 

Chapter 4 introduces a new mass contour segmentation approach capable of 

adjusting its parameters automatically. Detailed information about mammography 

datasets are given in chapter 5.  Performance evaluation of mammography mass 

classification task is presented in chapter 6. Architecture and experimental results of 

our approach is given in chapter 7. Finally, chapter 8 concludes this thesis and 

provides future direction. 

 



 

5 
 

2 CHAPTER TWO – 

CONTENT-BASED IMAGE RETRIEVAL 

2.1 Overview 

Rapid advances in digital image production technology in recent years brought 

about issues related with effective way to find images, which have visual properties 

to answer user information need, in large image warehouses naturally. So, 

researchers have been trying to find a suitable image retrieval approach for large 

image warehouses for decades. At current stage, image retrieval approaches could be 

divided into three main groups. The first proposed approach in historical 

development of image retrieval is storing images in databases by adding a BLOB 

(binary large object) column and searching them by using other fields related with 

BLOB column. However, it is understood that this approach is insufficient since 

images do not directly integrated the search process. 

Second approach proposed is to use image content to retrieve related ones in a 

warehouse and named Content-based image retrieval (CBIR). Content-based image 

retrieval (CBIR) is a technique, which uses visual contents to search images from 

large-scale image databases according to users' interests, and has been an active and 

fast advancing research area since the 1990s. During the past decade, remarkable 

progress has been made in both theoretical research and system development. 

However, there remain many challenging research problems that continue to attract 

researchers from multiple disciplines. CBIR uses the visual contents of an image 

such as color, shape and texture to represent and index images. In a typical CBIR 

system, the visual contents of images in the database are extracted priory and 

generally described by multi-dimensional feature vectors. The feature vectors of the 

images in the database form a feature database. Finally, feature databases are 

searched according to user information need or query. For instance, a typical CBIR 

query could be retrieving images that have visually similar shape or texture with a 

region or object like tumor in any image provided by user. 
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The third and final approach is to combine first and second approaches. Because, 

neither first nor second approach alone is capable of producing satisfying results. 

Using low-level features to represent images in CBIR arises several issues according 

to researches. First of all, users usually prefer to use high level concepts when 

describing their visual information need, i.e. query, while CBIR approach uses low-

level features. The gap between low-level features like color, shape and texture and 

their semantic interpretations made by humans is named semantic gap. Researchers 

working on this field have tended to develop solutions to close this gap in CBIR 

systems. Many recent works have proposed integrated image retrieval approaches 

using both keywords assigned to images by humans and low-level features 

representing image content. Thus, some relationships between images that cannot be 

found by using keywords become possible to find with help of properties hidden in 

images. 

This chapter is organized as follows. An in-depth review of current content-based 

image retrieval systems and their medical applications could be found in next 

section.  

2.2 Existing Content-Based Image Retrieval Systems 

Content-based image retrieval is one of the most vivid research fields. The first 

comprehensive pioneering work in this area is QBIC (Query By Image Content) 

project developed by IBM (Niblack et al., 1993). This system represents images by 

using low-level image features like color and texture descriptors. Moreover, QBIC is 

one of the first commercial image retrieval systems. After this stage, various content-

based image retrieval systems developed either commercial or non-commercial, and 

they obtained widespread usage area (Niblack et al., 1993). Candid (Kelly, Cannon, 

& Hush, 1995), Photobook (Pentland, Picard, & Sclaroff, 1996), Netra (Ma & 

Manjunath, 1997) and BlobWorld (Carson, Thomas, Belongie, Hellerstein, & Malik, 

1999) are examples of CBIR systems. Although it has wide usage area, CBIR 

technology has issues to be solved. These issues could be grouped into three major 

subjects; (1) what kind and how semantic layer is used, (2) which low-level features 

is used and which similarity metrics is used and (3) how data management and 
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organization becomes more effective (Smeulders, Worring, Santini, Gupta, & Jain, 

2000). 

Medical image archives (PACS, Picture Archiving and Communication System) 

is one of areas that CBIR is most needed. There are a lot of imaging sources exists in 

today’s hospitals to be used for diagnosis and treatment purposes. Images could be 

originated from X-Ray, CT, MRI, Ultrasound, Nuclear Medicine, cardiology, 

pathology and gastroenterology. Fundamental goal of a PACS is running queries on 

images, retrieving them and presenting them in the way user wants. Yet, 

alphanumerical metadata is used to retrieve images in today’s PACS. DICOM 

(Digital Image and Communications in Medicine) protocol has same issue. So, CBIR 

integration of the medical field will be an important contribution to enhancing 

quality of healthcare services, and may be extremely useful in evidence based 

medicine field. But, there are no PACS providing CBIR methods exist to be used in 

medical imaging archives. 

Applications of CBIR on medical images are recently being developed, and still 

there is no fully available CBIR system exists (Müller, Michoux, Bandon, & 

Geissbuhler, 2004). However, a small number of studies has been performed to 

evaluate performance of CBIR technology on medical images and to define its 

medical use (Howarth, Yavlinsky, Heesch, & Rüger, 2004; Tsishkou, Kukharchik, 

Bovbel, Kheidorov, & Liventseva, 2003). IRMA (Content-based Image Retrieval in 

Medical Applications) is one of these works (Lehmann et al., 2004). In this work, 

images are categorized in four groups, which are acquisition direction, imaging 

technique, anatomy and biosystem of body region examined by radiology experts 

manually. Thus, each class could be represented by low-level features of its images. 

Moreover, performance of the system is improving with the help of users feedback 

continuously. Another work in this area is the ASSERT (Automated Search and 

Selection Engine with Retrieval Tools) project, which is aimed to work on high-

resolution CT images and uses a semi-automatic way to extract low-level features of 

images (Aisen et al., 2003). Radiology experts select suspicious regions in high-

resolution CT, and then low-level features of suspicious region are extracted. 

Thereby, a solution to the unresolved segmentation problem is being provided. 
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In addition to studies above, there are several works exist in the literature. For 

instance, some of the studies works on particular type of medical images (Kosch et 

al., 2001; Long, Antani, Lee, Krainak, & Thoma, 2003); some of them tries to 

represent images using objects (Chu, Cardenas, & Taira, 1998); some of them 

proposes performance of CBIR system with the help of metadata (Atnafu, Chbeir, & 

Brunie, 2002; Müller, Ruch, & Geissbuhler, 2004), and some of them aims to add 

CBIR capabilities to medical imaging archives (Bueno, Chino, Traina, Traina, & 

Azevedo-Marques, 2002; Güld, Thies, Fischer, & Lehmann, 2005). But none of the 

works defines a content-based medical image retrieval system; instead they measure 

performance of CBIR in medical field. 

Another recent work on a content-based image retrieval system for digital 

mammography images uses positive and negative samples provided by user (El-

Naqa, Yang, Galatsanos, Nishikawa, & Wernick, 2004). According to the results of 

this work sufficient results are obtained by using machine learning approaches like 

support vector machines and neural networks. In another recent work, relevance 

vector machine based on Bayes theory is proposed to retrieve calcification clusters in 

mammography images (Wei, Li, & Wilson, 2009). Additionally some recent works 

emphasize retrieval methods based on clustering theory (Greenspan & Pinhas, 2007; 

J. Z. Wang & Krovetz, 2005). Another important issue emphasized in recent works is 

the importance of relevance feedback integration to CBIR systems; and various 

suggestions made about this issue (Cho et al., 2012; Kherfi & Ziou, 2006; Rahman, 

Bhattacharya, & Desai, 2007; Yin, Pan, Chen, & Zhang, 2008). 

Available PACS solutions provide retrieval of images in archive by using either 

demographic information of patient or metadata attached to images. Images and 

metadata of images are stores using DICOM (Digital Imaging and Communications 

in Medicine) standard in PACS. Although a lot of medical imaging device 

compatible with DICOM standard exist today, error rate of metadata could be very 

high. Whereat, undesirable results could be produced by queries using metadata. 

Hence, it is clear that using information acquired from image content alongside 

metadata in image retrieval in PACS produces more effective and more accurate 

results. In a work on this field (Müller, Ruch, et al., 2004) shows that using high-
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level and low-level features collaboratively produces better results than using each 

one alone. Additionally, it is reported that CBIR enables retrieval of poorly annotated 

images with high visual similarity rate, and using MeSH terms in annotation 

decreases false positive rate. 

On the other hand, another goal of the PACS is to find images in an acceptable 

period of time and in an effective way. For instance, finding visually similar images 

belonging the same body part in PACS to a patients current medical images helps to 

improve diagnosis of his/her. PACS supporting content-based retrieval capabilities is 

the most effective way to achieve this kind of diagnosis systems. 

CBIR based systems use contents of images in archive during query and retrieval. 

In this way, images in the archive become active objects joining query and retrieval 

process, instead of being passive objects stored in databases. Moreover, CBIR 

approach enables usage of image content with external properties like case id, patient 

name, and surname in image retrieval. However, medical images could be produced 

from varying medical disciplines (chest, orthopedics, heart and vessel etc.) using 

different imaging methods (MRI, Magnetic Resonance Imaging, CT, Computerized 

Tomography, Ultrasound, X-Ray, etc.). For instance, a recent study presents a CBIR 

method using a combined feature vector of intensity and texture features for dental 

images (Ramamurthy, Chandran, Meenakshi, & Shilpa, 2012). Since each imaging 

method, medical discipline and disease may need different requirements, it is hard to 

implement a general CBIR method for all kind of medical images (Akgül et al., 

2011). 

Regardless of working fields, almost all experts dealing with images face with 

problems related with storage and retrieval of images. CBIR approach is the best 

solution developed to answer those problems. Although there are a lot of CBIR 

systems in development, there is no standard defined among them. MPEG-7 (Moving 

Picture Experts Group) is an ISO approved standard that is developed by MPEG 

group to answer this need. MPEG-7 is a standard aiming to define multimedia 

content using both low-level and semantic level. Hence, the success achieved by 

textual search engines could be moved to multimedia field; even all of the 
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multimedia data on the earth could be accessed by their content (Manjunath, 

Salembier, & Sikora, 2002). Additionally, low-level features included in MPEG-7 

are designed for general-purpose images rather than medical images, but they are 

thought to be suitable for special purposes. Today, radiology experts are evaluating 

performance of low-level descriptors used in academic CBIR solutions and 

developers aim to find the most suitable low-level feature set for medical images. In 

a recent work, performance of shape features are tested on a liver lesions (Xu, 

Faruque, Beaulieu, Rubin, & Napel, 2012).  

Regardless of low-level feature set, users of a CBIR system want to use high-level 

concepts to query image archive. So, it is suggested to use both low-level features 

and high-level concepts with external properties attached to the image. MeSH 

ontology, which is developed U.S. National Institute of Health (NIH) and commonly 

used, targets indexing high-level medical concepts and mapping relations of these 

concepts on a semantic map. This ontology and semantic network between its 

concepts is renewed every year. As a result, medical systems based on MeSH 

ontology easily integrate new medical concepts, so that systems stay up-to-date. 

Additionally, there are some approaches aiming to model high-level concepts by 

using automatic methods (Faruque et al., 2011; W. Yang, Feng, Lu, & Chen, 2011). 

Today, DICOM protocol is used in medical imaging archives. This protocol puts 

standard on both storage of image including its metadata and communication of this 

data in a network environment. Although accuracy of metadata is open to discuss, 

they are important in terms of defining relationship between images and hospital 

information systems (HIS). Some of the metadata could also be used to classify 

images effectively. Thus, high-level medical concepts assigned according to 

examined body region, and images only related with examined body region could be 

filtered out. As a result, accuracy of both retrieval performance and clinical decisions 

given by using retrieval system is thought to increase. This approach is being used in 

another academic system, and it is reported that success rate is high (Lehmann et al., 

2004). 
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3 CHAPTER THREE – 

LOW-LEVEL FEATURES FOR DIGITAL MAMMOGRAPHY 

3.1 Overview 

Up today, in the literature, many low-level image features have been suggested for 

CBIR systems for digital mammography, including CADx systems for mass or 

calcification classifications etc. The algorithms are mostly evaluated in publically 

available datasets, but the results are not comparable and, in some cases, 

irreproducible since almost every study uses a different or unknown subset of the 

datasets, rather than using the whole set. So, we need to evaluate low-level features 

on public datasets available to select adequate low-level features for mammography 

mass classification task. 

Selecting qualified low-level features for mammography CAD system is the first 

step of developing a successful CAD system (Tang, Rangayyan, Xu, El Naqa, & 

Yang, 2009; Zheng, 2009). In a recent review, it is pointed out that several 

techniques are proposed to use in mammography CAD systems and stated that CAD 

systems help experts by detecting early stages of breast cancer (Tang et al., 2009). 

Although evolution of CAD systems in mammography takes about two decades, 

current performance of the CAD systems does not fully meet clinical needs. 

Performance improvement of such systems is expressed as a further study in this 

area. Each mass property must be assigned properly, since determining malignancy 

score of a mass depends on several mass properties. As a result, low level features 

which will be used in a mammography CAD system, must address not only one 

property of a mass but also they must be able to help measuring other aspects of a 

mammographic mass. Since selecting the most adequate feature set is the most 

important phase of CAD system development, an evaluation of low-level features is 

needed. 

In this thesis, we provide an exhaustive literature search on low-level image 

features for mammographic mass classification. In total, we studied 26 low level 

features where 17 of them are already used in the CBIR literature; however, 5 of 
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them not used for mammographic mass classification before. Moreover, we proposed 

9 new features describing margin of a mass. Total vector length is 578.  

This chapter is organized as follows. Mammography is presented in section 3.2. 

We present an in-depth introduction of low-level features for mammography masses 

in terms of CBIR requirements in section 3.3. 

3.2 Mammography 

Mammography is a special type of x-ray based imaging that is used to obtain 

detailed internal structure of the breast. Mammography is a medical imaging system 

that is especially designed for breast imaging with capable of obtaining high-contrast 

and high-resolution breast images by using low-dose x-ray. Early diagnosis of a 

breast cancer is the key factor for successful treatment. Mammography plays a very 

important role in the early diagnosis of breast cancer. Total number of 

mammography screening performed in United States is 35.8 million in a year 

(Spelic, Kaczmarek, Hilohi, & Belella, 2007). According to reports of U.S. Food and 

Drug Administration (FDA), mammography helps early diagnosis of breast cancer of 

women aged 50 and above. 

 Mammography could determine changes in breast, before those changes are 

detected by women herself or her doctor. A mass could be identified by 

mammography about two years before it becomes palpable (Barclay, 2012). After 

discovering tuberosity in breast, mammography plays an important role for cancer 

diagnosis. If an abnormality is found during a mammography examination or a 

palpable mass is confirmed by mammography, additional imaging methods like 

ultrasound imaging or breast biopsy can be performed. Biopsy is a procedure that 

sample tissue taken from breast with a surgical procedure or a needle is evaluated 

under microscope whether it has cancer cells. Mammography and ultrasound 

imaging are used a guide during biopsy to ensure needle positioned correctly. 

There are two kinds of mammography examination; Screening mammography and 

Diagnostic Mammography. 
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Screening Mammography is applied to women with no symptoms. Purpose of 

screening mammography is to detect very small masses, which could not be 

determined by women or medical expert, at early stages. Early diagnosis of breast 

cancer with mammography greatly improves the chances of successful treatment. So, 

every women older than 40 is suggested to perform a screening mammography 

examination in every year. In some cases, if woman has a family history of breast 

cancer, doctors recommend screening mammography before age 40. Today, 

screening mammography is widely used in many hospitals. 

Diagnostic mammography is more detailed kind of mammography that is applied 

to patients, who discovers a lump in their breasts or has suspicious findings like 

nipple discharge or has a breast abnormality confirmed by screening mammography. 

Diagnostic mammography is more time consuming and is used to determine exact 

location of the mass, dimensions of the mass, relations with surrounding tissues and 

status of lymph nodes. After acquiring additional views of breast, mammography 

images are interpreted. Hence, diagnostic mammography is more time consuming 

and costly than screening mammography. 

3.2.1 Analog Mammography 

During a mammography examination, an x-ray source is fired and resulting x-rays 

are falls on a film cassette after passing compressed breast. X-Ray falling on 

phosphor layer on the film cassette creates brightness according to its amount. Those 

brightness levels forms the mammography image. Since x-rays pass through the 

tissues at different rates depending on structure and density of tissue, internal 

structure of the breast is imaged. This imaging technique provides very detailed 

image of breast with minimum radiation possible by using high sensitive 

photography films and special x-rays. After that, photofinishing of mammography 

image is same with photofinishing of ordinary image. Finally, radiologists evaluate 

mammography films. 

Breast tissue includes fat, fiber and gland. Breast masses including benign and 

malign ones are seen as white regions (radiodense), while fat is seen as black 
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(radiolucent) on mammography film. Other tissues including glands, connective 

tissue, tumors and micro calcifications are seen as white regions at different levels on 

mammography film. 

Breast should be flattened a little by compression like Figure 3.1 to view highest 

amount of breast tissue during mammography acquisition. Compression of the breast 

could cause discomfort in patients. But this discomfort ends in a short time period 

required to complete mammography acquisition. The main reason of compression of 

breast is to avoid overlapping breast tissues as much as possible so that anatomy of 

breast and possible abnormalities could be viewed better. For instance, insufficient 

amount of breast compression could cause low-detailed view of micro-calcifications, 

which are tiny calcium clusters and early sign of breast cancer. Moreover, lowering 

the x-ray dose and prevention of patient movement are another important reasons of 

breast compression. 

 

Figure 3.1 Mammography acquisition (DeParedes, 2007). 

3.2.2 Digital Mammography 

Digital mammography uses same structure of analog mammography. But a digital 

sensor matrix is used to acquire image instead of film cassette. So, breast image is 

digitally acquired and viewed on a workstation computer immediately. Several works 

show that digital mammography produces accurate results at least analog 

mammography. FDA approves full-field digital mammography to examine and 
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diagnose the breast cancer. Moreover, full-field digital mammography replaces 

traditional mammography devices rapidly. 

3.2.3 Mammography Views 

Left and right breast of the patient are imaged separately during screening 

mammography. In mammographic examinations, two views are commonly used, 

which are cranial-caudal (from top to bottom, CC) and mediolateral-oblique (from 

inner-top to outer using predefined angle, MLO). Hence, there are 4 images, which 

are two CC and two MLO of each breast in a typical screening mammography. 

Figure 3.2 includes sample MLO and CC view of a breast. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.2 Mammography views. (a) MLO and CC direction of 

right breast (Imaginis, 2012). (b) MLO image of right breast. 

(c) CC image of right breast. 
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3.2.4 Properties of Digital Mammography 

Since digital mammography images acquired directly digitally, they can be stored 

digitally in picture archiving and communication systems (PACS). Mammography 

images are the most detailed and has the largest size in a PACS compared to other 

imaging modalities. A screening mammography consists of four images generally. 

Resolution of each image is 50-100 μm and size of each image is 4096×4096. Color 

depth of each pixel varies from 12 and 16 bits. So, a typical mammography image is 

represented in 4096×4096×2
16

 bits, and takes roughly in 30 MB file. As a result, a 

typical mammography screening case costs approximately 120 MB of disk space in 

PACS. So, mammography images consume a considerable amount of disk space in 

PACS of a hospital with those disk space requirements. 

3.2.5 Masses in Mammograms 

Both malign and benign masses show different textural and morphological 

characteristics from surrounding breast tissue. So, a mass can be distinguished from 

other breast tissues by using its texture and morphology. After a mass observed in a 

mammogram, the next important step is to determine malignancy of a mass. 

Shape, contour and margin characteristics of a breast mass in digital 

mammograms have very important clues in discriminating malign and benign 

tumors. For instance, malign masses tend to spread other breast tissues, while benign 

masses remain stable. Moreover, malign masses forms very irregular shaped regions, 

as benign masses usually form very regular shapes. Figure 3.3 depicts relation of 

morphological and textural properties of breast masses with malignancy. 

American College of Radiology (ACR) puts a standard on mammography 

reporting named Breast Imaging Reporting and Data System (BI-RADS, (D’Orsi, 

Bassett, & Berg, 2003)) which represents experts judgment about presence or 

absence of breast cancer. According to BI-RADS standard, each mammography 

mass has a BI-RADS score from 0 to 6 depending on its morphological and textural 
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properties depicted in Figure 3.3. BI-RADS scale values with diagnostic meanings 

are given in Table 3.1. 

 

Figure 3.3 Samples of benign and malign masses according to 

their textural and morphological properties (Wei, Chen, & Liu, 

2012). 

 

Table 3.1 BI-RADS reporting scale for abnormalities (D’Orsi et al., 2003). 

BI-RADS Score Diagnosis Criterion 

0 Incomplete 

Mammogram or ultrasound didn't give the radiologist enough 

information to make a clear diagnosis; follow-up imaging is 

necessary. 

1 Negative There is nothing to comment on; routine screening recommended. 

2 Benign A definite benign finding; routine screening recommended. 

3 Probably Benign Findings that have a high probability of being benign (>98%) 

4 
Suspicious 

Abnormality 

Not characteristic of breast cancer, but reasonable probability of 

being malignant. Has three sub groups and biopsy should be 

considered. 

4A 
Finding needing intervention with a low suspicion for 

malignancy. Probability of being malignant (3 to 29%) 

4B 
Lesions with an intermediate suspicion of malignancy. 

Probability of being malignant (30 to 59%) 

4C 
Findings of moderate concern, but not classic for 

malignancy. Probability of being malignant (60 to 94%) 
 

5 
Highly Suspicious of 

Malignancy 

Lesion that has a high probability of being malignant (>= 95%); 

take appropriate action. 

6 
Known Biopsy Proven 

Malignancy 

Lesions known to be malignant that are being imaged prior to 

definitive treatment; assure that treatment is completed. 

 

3.3 Low-Level Features 

In the literature, many low-level features and their combinations are used in 

Mammography CADx systems. In this work, we used 26 features belonging to four 

groups: intensity, shape, texture and margin features.  
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Table 3.2 shows a detailed list of low-level features, which are used in 

mammography CADx systems. First column of the table contains category of the 

feature, second column in Table 3.2 depicts feature name, an third column contains 

the legend of the feature, which is used throughout in this work. Fourth column 

contains number of elements in the feature vector, and the last two columns of the 

table contain original work in which the feature is proposed and works that uses this 

feature. 

Table 3.2 List of all low level features included in this thesis. 

Feature 

Group 
Feature name Legend Length 

Proposed 

 by 
Used by 

Intensity Mean Average Intensity I-GEN 1 - - 

S
h

a
p

e 

General Shape Properties S-GEN 9 - 

(Boninski & 

Przelaskowski, 

2008; El-Naqa et 

al., 2004; Fan, 

Chang, Lin, & 

Hsieh, 2011; 

Golobardes, 

Llora, Salamó, & 

others, 2002; 

Peng, Yao, & 

Jiang, 2006; 

Verma, McLeod, 

& Klevansky, 

2010; X.-H. 

Wang, Park, & 

Zheng, 2009) 

Invariant Moments S-INM 9 (Hu, 1962) 

(El-Naqa et al., 

2004; Kinoshita, 

Azevedo-

Marques, Pereira, 

Rodrigues, & 

Rangayyan, 

2007; Yin et al., 

2008) 

Fourier Features of Complex 

Contour Representation 
S-FDE 10 

- 

(Pourghassem & 

Ghassemian, 

2008; Zheng, 

2009) 

Fourier Features of Distance 

Contour Representation 
S-DFD 10 

Fourier Features of Curvature 

Contour Representation 
S-CFD 10 

Radial Distance Feature S-RDD 7 

(Georgiou, 

Mavroforakis, 

Dimitropoulos, 

Cavouras, & 

Theodoridis, 

2007) 

(Georgiou et al., 

2007) 

Fourier Features of Radial 

Distance Signal 
S-RDF 10 

(Georgiou et al., 

2007) 

(Georgiou et al., 

2007) 

MPEG-7 Region Based Shape 

Feature 
S-RBS 36 

(Ricard, 

Coeurjolly, & 

Baskurt, 2005) 

- 
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Table 3.2 List of all low level features included in this thesis. 

Feature 

Group 
Feature name Legend Length 

Proposed 

 by 
Used by 

Zernike Moments S-ZER 15 
(Khotanzad & 

Hong, 1990) 

(N. A. Rosa et 

al., 2008) 
T

ex
tu

re
s 

Statistics of Gray Level 

Histogram 
T-HIS 9 - 

(Antonie, Zaïane, 

& Coman, 2003; 

Kinoshita et al., 

2007; Müller, 

Rosset, Vallée, 

Terrier, & 

Geissbuhler, 

2004; Subashini, 

Ramalingam, & 

Palanivel, 2010) 

Haralick-14 T-GLC 96 

(Haralick, 

Shanmugam, & 

Dinstein, 1973) 

(Kinoshita et al., 

2007; Lauria, 

2009; 

Pourghassem & 

Ghassemian, 

2008; Rangaraj 

M Rangayyan, 

Nguyen, Ayres, 

& Nandi, 2010; 

Yin et al., 2008; 

Zheng, 2009) 

Gray-Level Difference T-GLD 20 (Weszka, 1978) 
(Kim & Park, 

1999) 

Local Binary Patterns T-LBP 18 

(Timo Ojala, 

Pietikäinen, & 

Harwood, 1996) 

(Dagan Feng, Fu, 

& Tian, 2008) 

Edge Histogram T-EDH 80 
(Park, Jeon, & 

Won, 2000) 

(Dagan Feng et 

al., 2008; Timo 

Ojala, Mäenpää, 

Viertola, 

Kyllönen, & M, 

2002) 

Homogeneous Texture T-HOT 62 

(Ro, Kim, Kang, 

Manjunath, & 

Kim, 2001) 

- 

Texture Browsing T-TEB 5 

(Wu, Manjunath, 

Newsam, & Shin, 

2000) 

- 

M
a

rg
in

 

Column-wise Means M-CWM 20 new - 

Column-wise Standard 

Deviations 
M-CWS 20 new - 

Column-wise Skewness M-CWW 20 new - 

Column-wise Kurtosis M-CWK 20 new - 

Region Mean Differences M-CMD 20 new - 

Region Standard Deviation 

Differences 
M-CSD 20 new - 

Margin Mean Differences M-RMD 20 new - 

Margin Standard Deviation 

Differences 
M-RSD 20 new - 

Global Statistics of Inner and 

Outer Regions 
M-GLS 8 new - 

Total 578   

 

(Cont.) 
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3.3.1 Intensity Features 

Color is the most extensively used visual content feature for CBIR. Color 

moments, which are basically the first order (mean), the second order (variance) and 

the third order (skewness), have been successfully used in many content-based 

retrieval systems particularly when the image contains just the object and have been 

proved to be efficient and effective in representing color distributions of the images 

(Stricker & Orengo, 1995). However, the mammography images are intensity based 

gray scale images, and color is not defined in mammography. Instead, color feature 

is represented with intensity feature. Therefore, intensity features group contains 

only one feature that is the mean of the gray level of a mass. Moreover, this feature is 

human readable and, hence, radiology experts can interpret the feature, and it makes 

the intensity feature to be considered as high-level feature, as well. 

3.3.2 Shape Features 

Shape features aims to identify object shape in an image, and rarely used in CBIR 

systems. In our case, shape of a mass is an important property which defines 

malignancy of a mass. Since shape features aims to describe shape of an object, we 

consider them as the most important low-level feature for mass shape classification 

task. There is several shape features proposed and used in mammography area in 

literature. Shape features evaluated in this work is suggested by literature, except 

Region Based Shape feature, which is a MPEG-7 shape feature. Shape features used 

in this work are described in following sections. 

3.3.2.1 Statistical Shape Features 

Statistical shape features represent contour information of an object in a 

segmented image. These features are all extracted from binary image. Table 3.3 

shows the list of the statistical shape features. 
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Table 3.3 List of statistical shape features. 

Feature Formula Explanation 

Area       ∑ 

   

 
Number of  pixels in the region, 

where O is the set of pixels in the 

segmented object 

Perimeter      ∑ 

   

 
Total length of the boundary of 

object where B is the set of pixels on 

the boundary 

Compactness 

(Perimeter Based) 
      

(    )
 

       

 Determines compactness of a region 

Compactness 

(Area Based) 
         

 

    
∑(    (   )      )

 

   

 Variance of distances from the center 

of gravity and border pixels 

Modified 

Compactness 
            

    

     

 
Simplified version of the 

compactness 

Box min X,Y and 

max X,Y 
- 

Coordinates of extreme left, top, 

right and, respectively, bottom pixels 

of a region 

Feret X,Y - 

Dimension of the minimum 

bounding box of the region in the 

horizontal and vertical directions 

Roughness        
    

     

 Roughness of a region 

Length                        Length of a region 

Breadth                        Breadth of a region 

Elongation        
    

    

  

Centroid X,Y (     )  ∑ (
 

 
  

 

 
 )

(   )  

 Coordinates of the center of gravity 

of a region 

Radius      
 

  

∑√(     )
  (     )

 

   

 
Mean of distances from the center of 

gravity and border points, where    

is the number of boundary pixels 

 

In the literature, Peng et al. (Peng et al., 2006) uses these features in a 

microcalcification classification (detection) system and obtained 96% true positive 

rate when FP/image is 20%. El-Naqa et al. (El-Naqa et al., 2004) used these features 

in a medical content-based retrieval system and their retrieval system obtained 100% 

of precision at 20% recall level. Verma et al. (Verma et al., 2010) used these shape 

features in a mammographic classification system and experimentations on DDSM 

dataset resulted with 97.5% of accuracy. Fan et al. (Fan et al., 2011) used these shape 

features in a medical classification system. They used a fuzzy decision tree and 

accuracy of the proposed technique is about 90%. Golobardes (Golobardes et al., 
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2002) used these shape features in a microcalcification classification system and 

comments that performance of proposed system is equal to the other CAD systems. 

Wang et al. (X.-H. Wang et al., 2009) conducts experiments on medical content-

based image retrieval systems with shape features. They state that multi feature 

systems outperform single featured ones. These features are also used in IShark 

(Boninski & Przelaskowski, 2008) medical CBIR system. 

3.3.2.2 Moment Invariants 

Moment Invariants, proposed by Hu (Hu, 1962), are the classical representation of 

shape information. If the image is represented as a binary image, then the central 

moments of order p+q computed as follows; 

     ∑ (    )
 (    )

 

(   )  

 

where (  ,   ) is the centroid of the object. This feature can be normalized to be scale 

invariant as follows. 

     
    

    
    

     

 
 

Based on these moments, scale, translation and rotation invariant properties of 

shapes can be extracted from binary images (L. Yang & Albregtsen, 1994). The 

features extracted by using central moments are shown in Table 3.4. 

Yin et al. (Yin et al., 2008) used these moments in a medical image categorization 

system and accuracy of the system is measured as %97 on a small dataset. Kinoshita 

et al. (Kinoshita et al., 2007) uses these features in a CBIR system and proves that 

best performance of the system was obtained by using these features in conjunction 

with some other visual features. El-Naqa et al. (El-Naqa et al., 2004) used these 

features in a medical CBIR system and their retrieval system obtained 100% of 

precision at 20% recall level. 
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Table 3.4 List of moment invariant features. 

Feature Formula 

7 rotational and scale invariant features 

           

   (       )
      

  

   (        )
  (        )

  

   (       )
  (       )

  

   (        )(       )[(       )
   (       )

 ]

 (        )(       )[ (       )
 

 (       )
 ] 

     [(       )
   (       )

 ]
     (       )(       ) 

   (        )(       )[(       )
   (       )

 ]
 (        )(       )[ (       )

 

 (       )
 ] 

Principal axis    
 

 
     [

    

       

] 

Secondary axis                 

Eccentricity      
   √  

   √  

 

Axis ratio            
  

  
 

Majority           
  

    
                                      

 

3.3.2.3 Fourier Features 

These features use boundary pixels of an object in an image, and transforms 

boundary pixels using Fourier transform. These features need a suitable contour 

representation to apply Fourier transform. There are three types of contour 

representations for these features; centroid distance, curvature and complex 

representations shown in Table 3.5. 

Table 3.5 Boundary representation types. 

Boundary Representation Formal Definition 

Centroid Distance Representation    √(     )
  (     )

  

Curvature Representation 
 ( )  

 

  
 ( ) 

where  ( )       (
  

 

  
 ) and   

  
   

  
   

  
   

  
 

Complex Representation  ( )  (     )   (     ) 
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where, (  ,   ) is the centroid of the object, (  ,   ) are the successive pixel 

coordinates of object boundary. 

To ensure feature size, contour representation is sampled to obtain M samples 

using a uniform sampling function before Fourier features are extracted. Each 

contour representation has its own Fourier feature extraction scheme given in Table 

3.6. 

Table 3.6 Fourier feature definitions of each contour representation. 

Fourier Feature Name Formal Definition 

Centroid Distance Representation    [
|  |

|  |
 
|  |

|  |
   

|    |

|  |
] 

Curvature Representation    [|  | |  |   |    |] 

Complex Representation    [
|  ((   )  )|

|  |
   

|   |

|  |
 
|  |

|  |
   

|    |

|  |
] 

 

where, | | operator denotes module of a complex number,    and    are the DC and 

first non-zero frequency components of the Fourier transform which are used for 

normalization, respectively (Persoon & Fu, 1977). 

Classification performance of these features was measured in (Pourghassem & 

Ghassemian, 2008) by using the centroid distance and complex representation. 

According to this work,    feature has a classification accuracy of 42%. Zheng 

(Zheng, 2009) states that these visual features are one of the most preferred visual 

features in CAD systems. 

3.3.2.4 Radial Distance Features 

Radial distance signal represents distribution of contour pixels in means of 

distance to the centroid. Since margin is the one of the most important property of 

breast mass, features extracted from this signal caries very useful information to 

identify mass margin. Georgiou et al. (Georgiou et al., 2007) proposed 7 features 

based on radial distance signal whose formal definition is given in Table 3.7. 
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Table 3.7 List of radial distance features. 

Feature Name Formal Definition 

Radial Distance Mean   
 

 
∑ ( )

 

   

 

Radial Distance Standard Deviation   √
 

 
∑{ ( )   } 
 

   

 

Mass Circularity   
  

 
 

Entropy    ∑      (  )

 

   

 

Area Ratio 
   

 

   
∑{ ( )   }

 

   

 

where        ( )    

Zero Crossing Count    ∑ {
     ( ( )   )       ( (   )   )

          

   

   

 

Mass Boundary Roughness  ( )  ∑| ( )   (   )|   

   

   

     ⌈
 

 
⌉ 

 

Performance of these 7 features is tested on a subset of DDSM dataset. Reported 

performance of these 7 features varies from 89.8% to 96.7% in AUC performance 

measure (Georgiou et al., 2007). Additionally in (Georgiou et al., 2007), Discrete 

Fourier and Wavelet Transforms of radial distance signal are also considered, and it 

is reported that Fourier representation of radial distance signal yield a classification 

performance better than the one by the original signal. 

3.3.2.5 Region Based Shape Feature 

Region-based shape feature (Ricard et al., 2005), which is an element of MPEG-7 

standard, represents pixel distribution of a 2-D object. Feature uses a complex 

transform named Angular Radial Transform (ART). ART coefficients are defined by 

following formula. 

    ∫ ∫    
 (   ) (   )     
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where    (   )    ( )  ( ),   ( )  
 

  
     and 

  ( )  {
    

    (   )    
. Here     denotes ART coefficient of order n and m. 

Feature uses twelve angular and three radial functions. To the best of our knowledge, 

this shape feature has not been used in mammography imaging. 

3.3.2.6 Zernike Moments 

Zernike Moments (Khotanzad & Hong, 1990) are orthogonal moments, which use 

unit vector representation of an image. They are rotation and scale invariant and 

denoted as in the following formula. 

    
   

 
∑∑ (   )   

 (   )

  

       | |          | |    

where, | | denotes absolute value of a real number,   is the length of the vector from 

origin to point (   ), angle between x axis to the vector and    
       . Here, 

   
 (   ) are the Zernike polynomials and denoted as in the following formula. 

   (   )     ( )     

where, 

   ( )  ∑ (  ) 
(   ) 

  (
  | |

   )  (
  | |

   )  
     

  | |
 

   

 

Rosa et al. (N. A. Rosa et al., 2008) used Zernike Moments in a mammographic 

CBIR system. Experimentations on DDSM dataset show that the method achieves 

90% of precision with respect to the recall. 
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3.3.3 Texture Features 

Texture could be considered as repeating patterns of a local variation of pixel 

intensities (T. Ojala, Pietikainen, & Maenpaa, 2002) and widely used in CBIR 

systems. Similarly, these features are one of the most preferred low-level image 

features in mammography area. Most of the selected texture features in this work are 

already used in mammography. We also evaluate performance of four features in the 

literature, which is not used in mammography. Following sections give detailed 

information about texture features used in this work. 

3.3.3.1 Statistics of Gray Level Histogram (SGLH) 

Gray level histogram of an image includes useful information about it, especially 

about intensity distribution of the interested area. Statistical features of an area 

summarize pixel intensity of an image or object. Additionally, texture of an object 

could be defined as local intensity relationships among pixels, like Haralick-14 

(Haralick et al., 1973), which will be described in next section. Let      be the gray 

level pixel value at location (i, j), N be the number of pixels in the image,   be the 

number of gray levels,  ( ) be the probability of intensity level i in the histogram and 

 (   ) be the probability of intensity level at     . Features that are used to describe 

texture of a region or image are listed in Table 3.8. 

 

Table 3.8 List of statistical histogram features. 

Feature Name Formal Definition Measure 

Mean   
∑      

 
 Average Pixel Intensity 

Standard Deviation   √∑ (     )
 

  

 
 

Standard deviation of region of 

interest 

Smoothness     
 

(    )
 Smoothness of a region 

Skewness   
∑ (     )

 
  

   
 

A measure of symmetry around 

average pixel intensity value 
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Table 3.8 List of statistical histogram features. 

Feature Name Formal Definition Measure 

Uniformity   ∑  ( )    
    Uniformity of histogram 

Kurtosis   
∑ (     )

 
  

(   )  
 

Measure to determine flatness of 

histogram distribution 

Average Histogram     
 

 
∑ ( )

   

   

 Intensity probabilities 

Modified Standard Deviation    √∑(     )
 
 (   )

   

 Average contrast 

Modified Skewness    
 

  
∑(     )

 
 (   )

  

 A measure of symmetry around 

average pixel intensity value 

 

Subashini et al. (Subashini et al., 2010) used these statistical features in their 

automatic tissue density assessment approach. They report that with usage of pre-

segmentation of breast tissue and using Radial Basis Function (RBF) kernel SVM 

classifier, average performance of these features is about 95%, evaluated by using 3-

fold cross validation. Antonie et al. (Antonie et al., 2003) used these features in a 

rule-based classification system of mammography. In the proposed system, images 

are first segmented to remove unwanted regions. Then, a rule-learning algorithm is 

run and 80% of accuracy was reported from experimentation on MIAS dataset 

(Suckling et al., 1994). Kinoshita et al. (Kinoshita et al., 2007) measured 

performances of these features in conjunction with other features and the 

performance was obtained about 80%. MedGIFT system, which is used in the 

development of a reference medical dataset, also uses SGLH features (Müller, 

Rosset, et al., 2004). 

3.3.3.2 Haralick-14 

Haralick-14 features were proposed by Haralick et al. (Haralick et al., 1973) and 

intensively used in many texture related researches. These features aim to describe 

texture by using spatial intensity dependencies. In their work, texture was defined by 

calculating some statistical properties of Gray Level Co-occurrence Matrix (GLCM) 

representing intensity co-occurrence at d-distance and θ angle. GLCM is a square 

(Cont.) 
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matrix whose rows and columns represent a gray level intensity values. Hence, 

dimension of the GLCM matrix depends on the number of gray levels in the image. 

GLCM matrix is calculated by using the following formula. 

      (   )  ∑ ∑{
   (   )         (         )   

             

 

   

 

   

 

Here, I(x,y) is the image function, m and n are image width and height;    and 

   are distance parameters defined by d and θ, respectively. Figure 3.4 shows 

related pixels at d=1 and θ=(0º,45º,90º,135º). 

 

Figure 3.4 Pixels of 8-neighborhood at d=1 and θ=(0º, 45º, 90º, 

135º). 

After calculating co-occurrence matrix, each element of the matrix is normalized 

by using the following formula to create normalized co-occurrence matrix ( (   )). 

 (   )  
 (   )

∑ ∑  (   ) 
   

 
   

 

where, L denotes the number of gray levels in the image, p(i,j), which is also denoted 

as    , is the (i, j)-th element of the normalized co-occurrence matrix. Table 3.9 

shows the list of features extracted from GLCM. 

0º 

45º 

90º 
135º 
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Table 3.9 Haralick-14 features extracted from GLCM. 

Feature Formal Definition 

Angular second moment (  ) ∑∑{   }
 

  

 

Contrast (  ) ∑  { ∑ ∑   

  

   

  

   
|   |  

}

  

   

 

Correlation (  ) 

∑ ∑ (  )          

    

 

where    and    are row-wise average and standard 

deviation of co-occurrence matrix;    and    are 

column-wise average and standard deviation of co-

occurrence matrix 

Sum of Squares (Variance) (  ) ∑∑(   )    

  

 

Inverse Difference Moment (  ) ∑∑
 

  (   ) 
   

  

 

Sum Average (  ) ∑ 

{
 

 

∑ ∑   

  

   

  

   
     }

 

    

   

 

Sum Variance (  ) ∑(    )

  

   
{
 

 

∑ ∑   

  

   

  

   
     }

 

 

 

Sum Entropy (  )  ∑

{
 

 

∑ ∑   

  

   

  

   
     }

 

   

   

   

{
 

 

∑ ∑   

  

   

  

   
     }

 

 

 

Entropy (  )  ∑∑      (   )

  

 

Difference Variance (   )             { ∑ ∑   

  

   

  

   
|   |  

} 

Difference Entropy (   )  ∑ { ∑ ∑   

  

   

  

   
|   |  

}

    

   

   { ∑ ∑   

  

   

  

   
|   |  

} 

Information Measures of Correlation (   ,    ) 

    
       

   {     }
 

       √  (       ) 
where HX and HY are entropies of    and   , and 

      ∑∑      (          )

  

 

      ∑∑             (          )
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Table 3.9 Haralick-14 features extracted from GLCM. 

Feature Formal Definition 

Maximal Correlation Coefficient (   ) 

    √                               

where; 

 (   )  ∑
      

          
 

 

 

Pourghassem and Ghassemian (Pourghassem & Ghassemian, 2008) use these 

features to classify medical image type and obtain 22% of accuracy. It is also 

reported that accuracy of these feature-set increases to 54% when used in 

conjunction with some other visual features. Lauria (Lauria, 2009) uses these 

features in a distributed mass and microcalcification detection system, and obtains 

and reports sensitivity rates are 80% and 96%, respectively. Rangayyan et al. 

(Rangaraj M Rangayyan et al., 2010) investigates the effects of mammographic pixel 

resolution on performances of these features and finds that these features perform the 

best at images, which have 100μm and 200μm pixel resolution. Yin et al. (Fan et al., 

2011) uses these features in a medical image categorization system and obtains 97% 

of accuracy in a small dataset. As mentioned before, Kinoshita (Kinoshita et al., 

2007) uses these features in conjunction with other visual features in a 

mammographic classification system and obtained 80% of accuracy. Zheng (Zheng, 

2009) states that Haralick’s texture features are the one of the most commonly used 

visual feature in CAD system. 

3.3.3.3 Gray Level Difference Matrix 

Gray Level Difference Matrix (GLDM), which is a texture representation of 

images, is proposed by Weszka et al. (Kim & Park, 1999). These features consist of 

statistical properties of absolute intensity differences of two pixels at a given 

displacement. In other words, unlike Haralick’s texture features, this feature aims to 

measure intensity deviation between two pixels whose distance is defined by vector 

length and angle between them. A difference image is calculated using the following 

formula. 

(Cont.) 
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      (   )  | (   )   (         )| 

where, (     )) denotes displacement between two pixels,        and f represents 

difference image and original image, respectively. 

Kim and Park (Kim & Park, 1999) used this texture representation in their 

microcalcification detection system and report that their system has 74% of AUC 

value in a dataset, which has 120 X-Ray Mammograms. 

3.3.3.4 Local Binary Patterns 

Local Binary Patterns (LBP) was proposed by Ojala et al. (Timo Ojala et al., 

1996) to represent texture of a region or the whole image. Extraction of this feature 

uses 8-neigbour of each pixel. Neighbors of a pixel are threshold by using pixel 

value. Each neighbor above the threshold is multiplied by weight factor as shown in 

Figure 3.5. 

 

Figure 3.5 Calculation of LBP and C value. 

Ojala et al. (T. Ojala et al., 2002) extends LBP to include rotation invariance and 

uniformity by adding right shift operation to the LBP calculation. In medical field, 

performance of this feature is measured by Feng et al. (Dagan Feng et al., 2008) in 

conjunction with MPEG-7 Edge Histogram Feature. Accuracy of method is 

calculated as 80%. Although there are medical applications of this feature, there is no 

work in mammography area that uses this feature to the best of our knowledge. 
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3.3.3.5 Edge-Histogram 

Edges are important textural information for image retrieval and similarity 

calculation. Edge histogram feature aims to represent spatial edge information of an 

image (Park et al., 2000) and it is an element of MPEG-7 standard. Extraction 

procedure of this texture feature is implemented in spatial domain unlike other two 

MPEG-7 texture features. First, the image is divided into 4×4 sub images. A 

histogram of 5 standardized edge directions, shown in Figure 3, is computed for each 

sub image. 

 

Figure 3.6 Filters used to determine edges. 

To calculate edge histogram, edge filter responses at each 2×2 non-overlapping 

blocks of each sub-image is calculated and a block is assigned to the edge whenever 

filter response is maximum. Hence, the number of elements in edge histogram 

feature is 80 (union of 5 bin histograms of each 16 sub-image). 

In medical image field, usage of edge histogram feature is not very often. Feng et 

al. (Dagan Feng et al., 2008) uses this feature on imageCLEFmed dataset. Accuracy 

of classification is measured 80.5%. A small performance improvement is also 

reported when edge histogram is used in conjunction with local binary patterns 

feature (Dagan Feng et al., 2008). Ojala et al. (Timo Ojala et al., 2002) proposes an 

extension on edge histogram feature by adding edge histograms for row-wise, 

column-wise and 2x2 groups of sub images. Hence, total number of elements 

becomes 150. No research on mammography area using this feature exists in 

literature as we know. 
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3.3.3.6 Gabor Filters 

Gabor functions are Gaussian functions that are modulated by complex sinusoids. 

In image processing, these functions are used for edge and bar detections. Gabor 

filters are defined by the following functions; 

   ( 
    )     (

 

      
) 

 
 
 
(
  

 

  
  

  
 

  
 )      

 

where a>1,     are integers,       (           )       (       

     ),   
  

 
, K is the number of orientations (Ma & Manjunath, 1996). As a 

texture feature, the following representation is used. For an image  (   ), its Gabor 

transform is computed as: 

   (   )  ∫  (     )    
 (         )       

where, * denotes the complex conjugate. Then, a texture of a region is now 

characterized by means and standard deviation of    . So, a Gabor feature vector is 

denoted as follows: 

  [                         ]
  

where,     ∬|   (   )|     and     √∬(|   (   )|     )     , S is 

the number of scales in the multiresolution decomposition. 

In medical image field, this feature set is used in some works to represent texture 

information of the image. Müller et al. (Müller, Rosset, et al., 2004) uses a generic 

CBIR system to create a reference medical dataset. Their system uses Gabor filters to 

describe image textual content. Zheng (Zheng, 2009) refers these features as 

“commonly used visual feartures” in mammographic CAD systems. Yu and Huang 

(Yu & Huang, 2010) show that using Gabor filters in conjunction with windowed 
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Fourier transform shows similar performance with high order statistical methods in 

microcalcification detection. 

3.3.3.7 Homogenous Texture 

Homogeneous Texture feature is given in MPEG-7 standard as low-level feature 

aiming to characterize texture of a region. However, to the best of our knowledge, it 

is not used in medial image retrieval. The feature is based on energy and energy 

deviation from set of frequency channels of image. Frequency channels are 

determined by Gabor functions in frequency domain and are indexed by (s, r) where 

s is the radial index and r is the angular index. Hence, the following formula is used 

to model the (s, r)-th frequency channel. 

    (   )   
 (    )

 

   
 

  
 (    )

 

   
 

 

where    and    are the standard deviation of the Gaussian in the radial direction and 

angular direction, respectively. Angular length of each frequency channel is 30º. So, 

         with   {           }. In radial direction, centers of each frequency 

channels are spaced by an octave scale which is       
   with     {         } 

and     
 ⁄ . Additionally, bandwidth of a frequency channel is denoted as 

      
   with     {         } and     

 ⁄ . Under this setting,    and    

parameters of Gabor function above could be estimated as follows. 

   
   

√    
 

   
  

 √    
 

Energy of a frequency channel is the log-scaled sum of the square of the Gabor-

filtered Fourier transform coefficients of an image. 

        [    ] 
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where,    is sum of the squares of the Gabor-filtered Fourier transform coefficients 

of frequency channel i and defined as follows. 

   ∑ ∑ [    (   ) |√  
    

 |  (           )]
     

    

 

   

 

where,    and    are elements of Jacobian between Cartesian and Polar coordinates, 

         , and  (   ) is the Fourier transform of image  (   ). Similarly, 

energy distribution of a frequency channel is log-scaled standard deviation of the 

squares of the Gabor filtered Fourier transform coefficients of an image. 

        [    ] 

where,    is the standard deviation of the squares of the Gabor filtered Fourier 

transform coefficients of frequency channels i and defined as follows; 

   √∑ ∑ {[    (   ) |√  
    

 |  (           )]    }
     

    

 

   

 

Finally, mean intensity (   ) and standard deviation of intensity (   ) is 

calculated. As a result, homogeneous texture feature is shown in the following 

formula. 

    [                               ] 

To the best of our knowledge, this MPEG-7 feature is not used in mammography 

area. 

3.3.3.8 Texture-Browsing 

Texture Browsing feature aims to describe texture of a region similar to human 

perception in terms of regularity, coarseness and directionality (Wu et al., 2000) and 
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it is an element of MPEG-7 standard. To the best of our knowledge, this texture 

feature, like Homogeneous texture feature, is not used in medical field. 

Representation of this feature is defined as the following feature vector. 

    [              ] 

Elements of the feature vector represent regularity (  ) of texture, dominant 

orientations (     ) of texture and dominant scales (     ) of texture. Extraction of 

this feature uses Gabor filter functions with 6 orientations and 4 scales as in the 

Homogeneous Texture feature. Like Homogeneous Texture feature, there is no 

CADx system using this feature in mammography area to the best of our knowledge. 

3.3.4 Margin Features 

Margin of a mass includes very important clues for determining malignancy of a 

mass. Therefore, a low-level feature modeling the mass margin formally is needed to 

assign margin property to a mass. There are several works attempting to model 

margin of a mass using shape features (Delogu, Evelina Fantacci, Kasae, & Retico, 

2007; Mudigonda, Rangayyan, & Desautels, 2000; R. M. Rangayyan, Mudigonda, & 

Desautels, 2000; Varela, Timp, & Karssemeijer, 2006). Although shape features are 

useful for margin characterization, intensity difference between inner and outer 

object areas is another important feature. 

In this work, we propose a new set of low-level features aiming to model marginal 

intensity characteristics of a mass. Polar representation of mass’s bounding box that 

is centered on mass center is used to extract angular properties of a mass. 

Additionally, manually or automatically segmented binary mass region is used to 

determine inner and outer regions of a mass in polar representation. Moreover, a 

dilation and erosion mask is used to find inner and outer margin areas. Generating a 

polar representation of an image is given with following formulas. 
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  √      

       (
 

 
) 

where (   ) is the coordinates of original image, (   ) are length and angle axis of 

the polar coordinate system. Figure 3.7 contains both original and segmented regions 

and their polar representations. 

 

Figure 3.7 (a) Original ROI (b) Polar representation of original 

ROI (c) Binary segmentation of the mass (d) Polar 

representation of the segmented ROI 

 

Herein, using polar representation of region mask we determine inner (IR) and 

outer (OR) regions of the mass in polar coordinate representation. Furthermore, 

approximate margin area is determined by subtracting original image from eroded 

(inner margin area, IMA) and dilated (outer margin area, OMA) mask region. After 

obtaining all required regions, we calculate the statistical features in Table 3.10. 

Table 3.10 List of the margin features. 

Feature Name Formal Definition 

Angular Means  ( )  
 

 
∑ 

 

   

(   ) 

Angular Standard Deviation  ( )  √
 

 
∑( (   )   ( ))

 
 

   

 

  

(a) (b) 

  

(c) (d) 

 



39 
 

 

 

Table 3.10 List of the margin features. 

Feature Name Formal Definition 

Angular Skewness 
  ( )  

 
 

∑ ( (   )   ( ))
  

   

 ( ) 
 

Angular Kurtosis 
  ( )  

 
 

∑ ( (   )   ( ))
  

   

 ( ) 
 

Angular Mean Differences   ( )     ( )     ( ) 

Angular Standard Deviation Differences   ( )     ( )     ( ) 

Angular mean differences of inner and outer margin 

area 
   ( )      ( )      ( ) 

Angular standard deviation differences of inner and 

outer margin area 
   ( )      ( )      ( ) 

Global region statistics     {                                       } 

 

where i parameter denotes i-th column of specified region,  (   ) denotes (   ) 

element of polar representation of the region. We calculate column-wise statistics in 

each case, since each column carries angular data of original region. For instance, 

statistical properties of inner and outer region areas will have very high differences if 

mass has a sharp margin. To support scale independency, first 20 Fourier features of 

each feature, shown in Table 3.10, except global statistics feature are used as 

features. 

 

(Cont.) 
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4 CHAPTER FOUR - 

BREAST MASS CONTOUR SEGMENTATION 

4.1 Overview 

Precision of breast mass segmentation methods play an important role in CAD 

systems for mass classification point of view, since most valuable properties of 

breast masses that define malignancy is related to mass morphology. For instance, 

malign masses tend to spread other areas, while benign masses remain stable. As a 

result, malign masses commonly form irregular shapes; conversely benign masses 

commonly form regular shapes. Similarly contour of the masses becomes uncertain 

and shows spicules while malignancy of mass increases. Rangayyan et al. (Rangaraj 

M. Rangayyan & Nguyen, 2005) states importance of shape characteristics while 

defining mass malignancy and proposed several low-level features to determine mass 

characteristics by using region shape. Thus, diagnosing performance of a CAD 

system depends on accuracy of segmentation method. But segmentation algorithms 

that have high accuracy could be useless in some situations. At this point, a useful 

segmentation means that segmentation algorithm is successful if segmentation results 

not only have high accuracy, but also have high consistency with real mass area. 

Finding real mass area is a crucial task even for a radiology expert. Therefore success 

rate of a segmentation algorithm can be measured by using accuracy and 

conformance with selection of expert. In other words, a segmentation algorithm can 

produce useful diagnosis suggestions if consistency between estimated mass area and 

mass selection of radiology expert increases. 

Recent studies show that machine-learning methods are frequently used for this 

segmentation issue. For instance, Tao et al. (Tao, Lo, Freedman, Makariou, & Xuan, 

2010) propose a classification system to identify spiculation of a mass with help of 

automatic segmentation approach. In their study, the ROI of a candidate mass is 

splitted into sub regions and each sub region is labeled using machine learning 

techniques. Then, the final segmentation result is obtained by using graph-cut 

algorithm and optimization methods. Song et al. (Song et al., 2009) propose a 

segmentation method, which uses plane-fitting method based on dynamic 
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programming optimization approach. Proposed method includes a preprocessing step 

in which edge information is enhanced by using gradients. Experimentation results of 

the proposed method on a subset of publicly available dataset give an acceptable 

level of performance. Meanwhile, in another recent study by Song et al. (Song et al., 

2010), performance of dynamic programming with combination of template 

matching is tested and found that the template matching approach performs better 

than plane fitting approach. A very recent an in-depth review on this topic with 

respect to mass detection can be found in (Oliver et al., 2010). 

Some of the studies focus on contour tracing approaches since margin 

characteristics of masses includes important clues about for malignancy of masses. 

Elter et al. (Elter, Held, & Wittenberg, 2010) proposed a contour tracing approach to 

extract shape of the region. To extract contour information, the ROI of the candidate 

mass is transformed into polar coordinate system, and then contour of estimated mass 

is calculated by using a shortest path algorithm. Proposed segmentation method 

tested on 60 ROI images of DDSM dataset and proposed method obtains the highest 

performance scores. Hong et al. (Hong & Sohn, 2010), propose different 

representation using the iso-contour maps for topographic, in which a salient region 

forms a dense quasi-concentric pattern of contours. The topological and geometrical 

structure of the image is analyzed using an inclusion tree that is a hierarchical 

representation of the enclosure relationships between contours. They have evaluated 

their approaches only for salient masses and show that a topographic representation 

is largely invariant to brightness and contrast, and it provides a robust and efficient 

representation for the characterization of mammographic features. Some other 

researchers use well-known segmentation methods to identify mass region. 

Domínguez and Nandi (Rojas-Domínguez & Nandi, 2008) propose a new 

thresholding approach, which uses combination of several threshold levels. Wei et al. 

(Wei et al., 2012) uses a seeded region growing approach to extract mass region in 

their retrieval system. Dubey et al. (Dubey, Hanmandlu, & Gupta, 2010) measure 

performance of Level-set and watershed segmentation methods on mass 

segmentation. 
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In this thesis, a new approach to the problem of segmentation of breast masses 

from the surrounding background tissue in a given ROI is presented. This approach 

is based on the concept of region growing with a capability of selecting optimum 

threshold value adaptively. Hence, we called this new approach Breast Mass Contour 

Segmentation (BMCS) method. The proposed approach is evaluated on DEMS 

dataset. The performance of the proposed approach is directly compared to the 

performance of the implementations of three state-of-the-art region growing 

approaches solutions, in terms of a set of different measurement metrics, such as 

Yassnoff Distance, Balanced Accuracy. Experimental results show that BMCS 

outperformed other three segmentation methods. Additionally, we use BMCS to 

measure performance of region selection method over mass classification task.  

4.2 Breast Mass Contour Segmentation (BMCS) 

Breast mass detection using a single mammography image relies on the fact that 

pixels inside a mass have different characteristics from the other pixels within the 

breast area. These characteristics can be simply related to grey-level intensity, texture 

or morphological characteristics. 

Breast mass segmentation methods can be roughly classified into three groups: 

Region based, contour-based and clustering methods. Region-based methods divide 

the image into spatially connected homogeneous regions while contour-based 

methods rely on the boundary of regions. On the other hand, clustering methods 

group together the pixels having the same properties and might result in non-

connected regions. Since goal of this study is to enhance boundary of a mass from a 

given region, we proposed an improvement on region growing approach, which is 

one of the well-known region based method.  

4.2.1 Reference Segmentation Methods 

We choose three segmentation methods to measure performance of our 

segmentation approach. All of the segmentation approaches are region based, since 

we focused on mass boundary enhancement instead of mass detection. And there are 
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some of the works (Dubey et al., 2010; Wei et al., 2012) available, which uses 

region-based methods to enhance initial detection results. Selected segmentation 

approaches are discussed below, shortly. 

4.2.1.1 Watershed Segmentation 

Watershed Segmentation method is based on Watershed transform (Beucher & 

Lantuejoul, 1979; Vincent & Soille, 1991). This method aims to find catchment 

basins, which define border between two objects. If water falls into these basins, 

level of the water rises until neighbor basins share the same level. So output of the 

algorithm is a hierarchy of catchment basins. The key point is to find most 

discriminative basins, since most discriminative basins are the basins that separate 

two different objects. 

4.2.1.2 Level-Set Segmentation 

Level-set segmentation approach is region enhancement approach, which evolves 

an initial region according to an energy field (Osher & Sethian, 1988). In other 

words, level-set methods start with an initial region and evolve this region while 

minimizing region energy. Energy of a region is calculated using the level-set 

equation, which is a partial differential equation, in each step. Finally algorithm stops 

when difference between energy of region in consecutive steps falls under a 

threshold value. 

4.2.1.3 Seeded Region Growing Segmentation 

Our approach, BMCS is based on Seeded Region Growing (SRG) method (Adams 

& Bischof, 1994). SRG segmentation approach expands an initial region or point by 

similar neighbor pixels. Similar term means a pixel whose intensity is in predefined 

range with seed region/point in this scope. So, we include seeded region growing 

method in performance comparison as basis. 
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4.2.2 Breast Mass Contour Segmentation Algorithm 

In this thesis, we propose a Breast Mass Contour Segmentation (BMCS) approach 

for a given ROI in an image, which is based on seeded region growing (SRG) 

algorithm and it is a variant of region based segmentation methods. SRG algorithm 

starts with a seed point and extends it by adding neighbor pixels that intensity value 

exceeds a predefined threshold value. But this approach is not appropriate for mass 

contour segmentation, because it is hard to choose a general threshold value for all 

kind of masses. Thus, SRG segmentation method needs to be tuned for each kind of 

masses. Otherwise, SRG segmentation method result too small or too large mass 

segments than reference mass segment, and these results are commonly referenced as 

under- and over-segmentation, respectively. We proposed a new thresholding 

approach for SRG, which adaptively adjusts the threshold value based on mass size 

estimation to prevent under- and over-segmentation. 

BMCS contains four steps; (1) ROI detection, (2) preprocessing, (3) mass size 

estimation and (4) segmentation. At first step, BMCS needs a rough bounding 

rectangle of a mass. Since BMCS focus on mass boundary enhancement, bounding 

rectangle selection method is discarded. In the experiments, we prefer to use 

bounding rectangles of a masses region drawn by user and given to system as input. 

We avoid using result of a machine segmentation method, since false positives may 

occur in machine segmentation techniques (Rojas-Domínguez & Nandi, 2009). 

In preprocessing step, the goal is to increase contrast level between mass and 

background tissue; as well as emphasizing contour information. Initially, we trimmed 

out the pixels with extreme intensity values, which are highest and lowest 5% of 

intensity histogram. Although we eliminated extreme pixel intensities from ROI, 

there are still exceptional circumstances must be solved, like calcifications appearing 

in front of the masses. So, we applied a median filter with window size of 5% of the 

bigger ROI dimension (width or height) to ROI for eliminating undesirable 

situations. However, applying a median filter to a ROI may produce artificial 

contours. Hence, we applied an averaging filter with the same size of median filter to 

overcome false contour problem. Finally, a Laplacian edge enhancement filter with 
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same size of previously applied filters is used to enhance edges of ROI to emphasize 

edge information. 

In mass size estimation step, we estimate mass size empirically by using an 

intensity histogram based segmentation approach named OTSU. OTSU segmentation 

algorithm aims to find one or more split points on intensity histogram which 

separates whole intensity histogram into two or more groups whose intra-class 

variances are minimum (Smith et al., 1979). In this step, we initially applied OTSU 

histogram segmentation approach to divide ROI into two groups namely large and 

small segment. Therefore, we could say that size of a segment in ROI should be 

larger than small segment and smaller than large segment. As a result, we have 

obtained an estimation of size interval for real mass segment. Moreover, we used 

division point of intensity histogram found in this step as initial threshold value in 

forth step. 

BMCS is based on Seeded Region Growing (SRG) segmentation algorithm 

(Adams & Bischof, 1994), which requires a predefined seed points or seed area in an 

image and expands initial seed by adding neighbor pixels while they satisfy 

following condition. 

|        |    

where μ is the average intensity level of segmented region,        is the intensity level 

at point (     ) which is a neighbor of current segmented region and θ is the intensity 

threshold. μ value is recalculated when a new pixel is added to evolving region. We 

proposed some changes in SRG to apply breast mass segmentation problem. First, 

we select the brighter pixels in center of ROI as initial seed points, since we know 

that breast masses contain the brighter pixels than their neighbor pixels and there is a 

real mass in center of ROI. We also expand initial seed with neighbor pixels 

satisfying following condition. 
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where        is the intensity of neighbor pixel to be added to current evolving region 

and θ is the intensity threshold. Another crucial problem of SRG is finding a proper 

threshold value, because it is hard to find a general threshold value for each mass. 

Therefore, we proposed an adaptive threshold modification approach to solve this 

problem. Initially, we select split point calculated in mass size estimation step as 

preliminary threshold value. When no neighbor pixels left to satisfy expansion 

condition above, we check the area of the current evolving mass region whether its 

area is greater than area of small segment. If the area of current region is smaller than 

small segment, we decrease threshold value and continue to expand region. 

Similarly, we stop segmentation process if area of the evolving region exceeds the 

area of the large segment. Consequently, result of our segmentation algorithm 

produces segments whose area stays in predefined interval. Furthermore, our 

approach proposes a solution for over- and under-segmentation problems. Finally, 

we dilate final segment using a sphere-shaped morphological to filter out remaining 

edge artifacts. Figure 4.1 and Figure 4.2 contains details of BMCS. 

// Input: ROI 

// Output: Set Segmented Points 

function BMCS(ROI) 

Width, Height ← Size of ROI 

H ← Intensity Histogram of ROI 

Eliminate Pixels of ROI with highest and lowest 5% of H 

Apply Median Filter To ROI with 5% of MAX(Width, Height) 

Apply Smoothing Filter To ROI with 5% of MAX(Width, Height) 

Apply Laplacian Filter to ROI with 5% of MAX(Width, Height) 

T ← OTSU division point of ROI 

MinSize ← Count of Pixels whose intensity value above T 

MaxSize ← Count of Pixels whose intensity value below T 

if MaxSize<MinSize then 

    Exchange Values of MaxSize and MinSize 

end 

MassRegion ← {} 

NeighbourPixels ← {} 

CurrentPixel ← Pixel whose value is Maximum 

while Intensity(CurrentPixel)>T && SizeOf(MassRegion)<=MaxSize 

   NeighbourPixels ← NeighbourPixels ∪ Neighbours of CurrentPixel 

   MassRegion ← MassRegion ∪ CurrentPixel 
   CurrentPixel ← Best of NeighbourPixels 

   if Intensity(CurrentPixel) <= T 

      if SizeOf(MassRegion) < MinSize 

         T ← T - 1 

      end 

   end 

end 

Dilate ROI using a sphere-filter with  

 size of 5% of MAX(Width, Height) 

return MassRegion 

Figure 4.1 Algorithm of BMCS. 
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Figure 4.2 Block diagram of BMCS segmentation method. 

4.3 Performance Evaluation 

We run a set of experimentations on DEMS dataset and compared performance of 

BMCS with different region based segmentation algorithms. Each algorithm is 

implemented in C++ by using QT UI Framework and OpenCV image processing 

library. However, we need to select suitable evaluation metrics at first for a 

successful quantitative comparison. Thus, we first provide a survey on segmentation 

evaluation metrics. 
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4.3.1 Segmentation Evaluation Metrics 

For a successful comparison, evaluation metrics are crucial for researchers to 

choose the right segmentation algorithm for their application needs or to compare 

their segmentation methods with other ones in the literature (Unnikrishnan, 

Pantofaru, & Hebert, 2007). Segmentation evaluation methods for this purpose can 

be classified into two major groups similarly to the machine-learning algorithms.  

The first group is supervised methods, which need previously defined region 

boundaries, and the other one is unsupervised methods that do not need previous 

region boundaries. Since we already have region boundary information, supervised 

evaluation metrics are more useful ones for our case. 

4.3.1.1 Supervised Evaluation Metrics 

Supervised evaluation metrics measures accuracy of segmentation method by 

using conformance of machine segmented region (MSR) and reference region (RR) 

(Hui Zhang, Fritts, & Goldman, 2008). Conformance between MSR and RR is 

determined in two ways; area conformance and edge conformance. Similarly, we can 

classify supervised segmentation evaluation metrics into two groups; area-based 

metrics (ABM), which measures conformance between MSR and RR, and edge-

based metrics (EBM), which measures, edge conformance between MSR and RR. 

The one of the oldest and most commonly used 

ABM has been proposed by Yasnoff et al. (Yasnoff, Mui, & Bacus, 1977). Yasnoff 

proposes segmentation error metric,   , which represents the ratio of misclassified 

pixels to the whole ROI.    is defined by following formula. 

     
|     |  |     |

|     |
 

where B and M denotes background and mass pixel sets, subscript S and R denotes 

segmentation and reference, respectively. By the way, the symbol |∙| represents the 

element count operator over a set. Second term in definition of    is known as 

4.3.1.1.1 Yasnoff Distance Metric. 



49 
 

 

 

Accuracy metric, which is commonly used in classification evaluation. Hence 

formula could also be rewritten as follows. 

     
     

     
            

where TP and TN denotes successfully segmented mass and background pixels 

respectively. However, quality of accuracy measure is open to discuss, because of its 

weak predictive power. For instance, consider a ROI containing a very small mass 

only, a segmentation algorithm can achieve high accuracy rate if it assigns all pixels 

as the background. As a result,    of the segmentation algorithm indicates very small 

error rate, even though algorithm could find no region in the image. 

Yasnoff proposed another error metric called 

Distance Error metric to overcome weak predictive power problem (Yasnoff et al., 

1977). Distance error metric considers the spatial distribution of incorrectly 

segmented pixels to regions. Formal definition of distance error metric is given in 

following formula. 

   
   

 
√∑  

 

 

   

 

where   is the number of pixels in reference region and    is the distance between  -

th pixel of       and its nearest neighbor in   . 

These metrics are well-known metrics 

from classification evaluation task, and Rosa et al. (B. Rosa, Mozer, & Szewczyk, 

2011) proposed usage of these metrics for this kind of evaluation. In original work, a 

confusion matrix of segmented pixels are created; and precision, recall (a.k.a. 

sensitivity) and F-Measure metrics are calculated to measure performance of calculi 

segmentation approach. Formal definitions of metrics are given in following 

formulas. 

4.3.1.1.2 Distance Error Metric. 

4.3.1.1.3 Classification-Based Metrics 
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Since these classification evaluation metrics is used for segmentation evaluation, 

following metrics could also be used in segmentation evaluation. 

            
|     |

(|     |  |     |)
 

                  
                       

 
 

Hausdorrf distance (Chalana & Kim, 1997) 

is an edge based segmentation evaluation metric. Let the edge of two objects 

represented by two sets;   {          } and   {          }, where    and 

   are the ordered pair of x and y points. Error metric between two edge point sets is 

called distance to closest point (DCP) and  could be defined as following formula. 

 (    )     
 

‖     ‖ 

Hausdorrf distance metric measures the maximum DCP between two edge point 

sets. Formal definition of Hausdorrf distance is given below. 

 (   )     (   
 

{ (    )}     
 

{ (    )}) 

Scalable discrepancy measures are 

4.3.1.1.4 Hausdorrf Distance Metric. 

4.3.1.1.5 Scalable Discrepancy Measures. 
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proposed to measure error of over- and under-segmented edge pixels (Odet, 

Belaroussi, & Benoit-Cattin, 2002). Formal definitions of these metrics are given 

below. 

    
 

  
∑(

  ( )

   
)

   

   

 

    
 

  
∑(

  ( )

   
)

   

   

 

where    and    are the number of over- and under-segmented edge pixels,    and 

   are the distances of over- and under-segmented pixels,     is the maximum 

allowed distance threshold, and n is the scale parameter for distances below    . 

4.3.2 Experimentation 

We evaluated the performance of our segmentation approach, BMCS, against to 

the three other region based segmentation methods. The first method is proposed by 

Dominguez and Nandi (Rojas-Domínguez & Nandi, 2008), which uses level-set 

segmentation algorithm with Chan-Vese energy fields. Method uses an image 

contrast enhancement method and applies a median filter, since median filtering is 

used in several mammographic mass detection algorithms for reducing noise while 

preserving edge information (Dubey et al., 2010; Rojas-Domínguez & Nandi, 2008; 

Subashini et al., 2010). In this algorithm, we used manually selected region instead 

of using a predefined zero level. In other words, level-set segmentation algorithm is 

used to enhance or fine-tune a roughly selected region. Finally, region that has the 

largest area is labeled as mass. 

The second method is proposed by Wei et al. (Wei et al., 2012), and uses seeded 

region-growing approach to enhance mass boundary. Proposed method includes a 

preprocessing step including a linear contrast enhancement method and median 

filtering to enhance distinction between mass region and background. Finally, multi-
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seeded region growing method with empirically defined constant area threshold is 

used to find mass boundary. 

The third method uses linear mapping and histogram equalization method for 

image enhancement (Dubey et al., 2010). Then, watershed segmentation algorithm is 

applied on enhanced image using edge pixels for background region marker and 

centroid of highest valued pixels for foreground region marker.  Figure 4.3 depicts 

sample segmentation results of four methods and Table 4.1 has corresponding error 

metrics of each sample. 

 Original ROI 
Reference 

Segment 
BMCS 

Chanvese 

Level-Set 
Wei’s Method 

Watershed 

Segmentation 

Sample 1 

      

Sample 2 

      

Sample 3 

      
Figure 4.3 Original images and segmentation results with compared algorithms. Images 

represents from left to right as follows; original region image, expert selection (reference), 

BMCS results, level set segmentation results, Wei’s segmentation method results, and watershed 

segmentation results. 

 

BMCS algorithm has the highest True Positive Rate, which means that 

segmentation result cover maximum area of manually selected region among other 

methods for the first sample. On the other hand, FPR rate of proposed segmentation 

method is the highest score for the same sample. But produced false pixels distance 

to the manual selections has no significant difference according to the Yasnoff Error 

(Ey) metric comparing to the other methods. Similarly, BMCS produces the closest 

segment to the reference segment. BMCS outperforms all the other methods in all 

metrics for second sample segmentation result. For last sample, Level-Set 

Segmentation method and Wei’s segmentation method produces higher true positive 
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values than our segmentation algorithm but they produce false positives at least two 

times higher than BMCS. Additionally, false positives produced by BMCS method 

have no statistical significance with LevelSet and Wei’s segmentation methods. 

Moreover, Balanced accuracy of our method outperforms other methods. This means 

that BMCS is good at finding true pixels adequately, while eliminating false pixels. 

Table 4.1 Performance metrics of samples given in Figure 4.3. 

  Accuracy 
Balanced 

Accuracy 
Ey Dy FPR TPR H (UDI,ODI) 

B
M

C
S

 Sample 1 95,09% 94,98% 4,91% 0,58 6,34% 96,30% 55 (0.0, 0.0) 

Sample 2 85,93% 89,23% 14,07% 0,00 0,00% 78,46% 11.18 (0.0, 0.0) 

Sample 3 91,11% 91,80% 8,89% 0,19 3,07% 86,66% 154.65 (0.0, 0.0) 

L
ev

el
se

t 

S
eg

m
en

ta
ti

o
n

 

Sample 1 89,96% 90,49% 10,04% 0,70 2,91% 83,90% 124.17 (0.0, 0.21) 

Sample 2 74,16% 80,22% 25,84% 0,00 0,00% 60,44% 20.13 (0.0, 0.0) 

Sample 3 82,39% 81,48% 17,61% 6,63 25,38% 88,34% 317.29 (0.0, 0.10) 

W
ei

’s
 M

et
h

o
d

 

Sample 1 86,95% 87,91% 13,05% 0,02 0,18% 76,00% 114.24 (0.0, 0.0) 

Sample 2 65,43% 73,54% 34,57% 0,00 0,00% 47,07% 27.30 (0.0, 0.0) 

Sample 3 90,56% 90,96% 9,44% 1,00 5,99% 87,92% 142.39 (0.0, 0.0) 

W
a

te
rs

h
ed

 

S
eg

m
en

ta
ti

o
n

 

Sample 1 70,11% 72,35% 29,89% 0,03 0,17% 44,86% 154.56 (0.18, 0.0) 

Sample 2 72,26% 78,76% 27,74% 0,00 0,00% 57,53% 36.80 (0.22, 0.0) 

Sample 3 52,00% 57,65% 48,00% 0,00 0,00% 15,30% 633.54 (0.70, 0.0) 

 

Overall performance of all methods is given in Table 4.2. Watershed 

segmentation method has the lowest false positive rate and Dy values. So we can 

infer that watershed method produces very accurate and consistent with manual 

selection. But watershed segmentation method has the lowest true positive rate and 

accuracy values, so watershed segmentation could not cover mass area as accurate as 

other methods. Additionally difference between BMCS and Watershed in false 

positive rate is statistically insignificant (p=0.83). Watershed segmentation approach 

obtains the highest Hausdorrf distance value. Moreover, difference between BMCS 

and watershed segmentation in accuracy and Dy is statistically significant (p=0 for 

both cases). This means that BMCS and Watershed segmentation algorithms 

produces same amount of False Positive pixels but results obtained from Watershed 
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segmentation method fits better to reference data. On the contrary, BMCS produces 

more accurate results that Watershed segmentation algorithm. These results indicate 

that BMCS segmentation approach reduces false positive rate while producing high 

accuracy values comparing to Watershed segmentation approach. 

Table 4.2 Performance results of different segmentation methods over DEMS dataset. 

Method Accuracy Balanced 

Accuracy 

Ey Dy FPR TPR H (UDI,ODI) 

BMCS 80,04% 83,15% 19,96% 1,73 10.86% 77,16% 95.99 
(0.0051, 

0.0019) 

Chanvese 

Levelset 
81,15% 82,47% 18,85% 2,27 14.45% 79,38% 100.07 

(0.0076, 

0.0045) 

Wei’s 

Method 
78,22% 78,51% 21,78% 2,60 20.97% 78,00% 118.76 

(0.0363, 

0.0023) 

WaterShed 

Segmentation 
59,15% 67,30% 40,85% 1,01 10.51% 45,10% 188.48 

(0.1418, 

0.0020) 

 

Level-set segmentation approach has the highest accuracy and true positive rates. 

But its false positive rate, Dy, H and (UDI, ODI) metrics are higher than BMCS. 

Statistically; difference between BMCS and Level-set segmentation is significant in 

all metrics for 10% confidence interval. Hence, we can say that BMCS produces less 

false positive pixels with more suitable regions to reference data than Level-set 

method, and produces more optimum segmentation result comparing with Level-set 

segmentation method. 

Finally, BMCS outperforms other methods in terms of balanced accuracy, 

Hausdorrf distance and Scalable discrepancy metrics. So, we can infer that BMCS 

segmentation approach produces acceptable mass segments with less possibility of 

producing over- and under-segmented masses. 
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5 CHAPTER FIVE - 

DIGITAL MAMMOGRAPHY DATASETS 

5.1 Overview 

There are several mammogram datasets available to researchers who want to 

measure performance of their lesion detection and classification approaches. But 

most of them loses their majority or are no longer available. Major mammography 

datasets are described in following sections. In this thesis, DDSM and DEMS 

datasets are used in evaluation. Before introducing DEMS dataset, let us summarize 

other available mammogram datasets, shortly. 

5.2 Available Mammography Datasets 

5.2.1 Nijmegen Digital Mammogram Dataset 

This dataset includes 40 digitized mammograms of 20 patients. Dataset created by 

Department of Radiology, University of Nijmegen in the Netherlands and The Dutch 

National Expertise and Training Center for Breast Cancer Screening. Images are 

obtained by using combination of Kodak MIN-R/SO177 and a variety of hardware. 

Then images are digitized by using Eikonix 1412 12-bit CCD camera with 50 µm 

sampling aperture and 100 µm sampling distance settings (effective pixel resolution 

100 µm). Each image size is 2048 × 2048 pixels. Subsequently, regional light 

inequality in the images is corrected. All images include at least one cluster of 

microcalcifications, and dataset consists of 7 malignant, 13 benign lesions. This 

dataset is not available now (“USF Digital Mammography: ‘Other Resources’ Page,” 

n.d.). 

5.2.2 Washington University Digital Mammogram Dataset 

This dataset consists of 80 cases acquired by LoRad CCD-based stereotactic core 

biopsy system to locate the lesion in the breast with single point of view-angle 

images of digital mammography. The number of benign and malign lesions is equal 
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like the number of microcalcifications and masses. Each image size has 512×512 

pixels, 100 µm pixel resolution and 12-bits intensity depth Although this dataset is 

no longer available, this is the first example of digitally captured dataset and could 

have been accessible by anyone via FTP (Nishikawa, 1998). 

5.2.3 OWH (Office of Women’s Health) Dataset 

According to the Nishikawa's article (Nishikawa, 1998), this dataset developed by 

Office of Women Health under U.S. Ministry of Health and it is not freely available 

to everyone. It contains totally 900 diagnoses from 5 different regions (University of 

Pennsylvania, University of Virginia, UCLA, UCSF and the American National 

Naval Medical Center) to provide a national training dataset for CAD developers. 

Each case includes CC and MLO view of both right and left breast acquired using 

Lumiscan 85 film scanner at 50 µm pixel resolution and 12-bit color depth. Dataset 

contains 540 normal subjects (proved by biopsy or diagnosed after two years of 

examination), and 180 benign and 180 malignant lesions. Additionally, the dataset 

includes the location and properties of the lesion, and pathological features. 

5.2.4 (Mini-)MIAS (Mammographic Image Analysis Society) Dataset 

This dataset is developed by Mammographic Image Analysis Society, formed by 

more than twenty research institutes in the UK (Davies, 1993), and includes 161 

cases selected from British National Mammography Screening Program. Each case 

includes MLO view of left and right breast (total number of images 322). The 

original dataset images have 50 µm pixel resolution with 8-bit color depth, but this 

set of data is not available now (Nishikawa, 1998). Moreover, a new dataset named 

mini-MIAS containing cropped versions of original images at 1024x1024 image size 

and 200 µm pixel resolutions were created according to intensive demand. 

5.2.5 LLNL/UCSF Dataset 

This dataset prepared jointly by the U.S. Lawrence Livermore National 

Laboratory (LLNL) and The Department of Radiology of University of California at 
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San Francisco (UCSF) to help researchers working on microcalcifications. Dataset 

contains 197 digitized mammograms of 50 patients (CC and ML views of both left 

and right breast for each patient, 2 images instead of 4 for one patient who had 

mastectomy, and 1 corrupted image) (Ashby et al., 1995). Images are digitized by 

using Du Pont Industrial NDT film digitizer with 35 µm pixel resolution and 12-bit 

intensity depth and stored using ICS (Image Cytometry Standard) format. Moreover 

dataset contains two binary truth files describing calcification clusters and major 

calcification boundaries. Additionally, dataset contains a text file including case 

history and expert radiologist comments (Nishikawa, 1998). 

5.2.6 GPCALMA (Grid Platform for a Computer-Aided Library in Mammography) 

Dataset  

This dataset developed by a group of physician working in Italian National 

Institute for Nuclear Physics (INFN) with radiologists at 1999. Dataset contains 

totally 3369 digitized mammography images of 967 cases (each case has varying 

number of images from 1 to 6) (Lauria, 2009). Mammograms from participating 

Italian Hospitals are digitized by using single CCD film scanner at 2067×2657 size 

with 85 µm effective resolution and 12 bit intensity depth and stored using CALMA 

format (Lauria et al., 2006). No normalization is applied to the images during the 

digitization phase due to unavailability of acquisition parameters of films. Dataset 

contains some assessments made by expert radiologists like breast tissue, lesion 

presence, and lesion location and type. Moreover, dataset includes some 

demographical information and follow-up studies. 

5.2.7 INbreast Dataset 

This dataset is developed in Breast Centre in CHSJ, Porto. Cases in dataset belong 

to patients who diagnosed between April 2008 and July 2010. All images acquired 

by MammoNovation Siemens FFDM at 70-µm effective resolution and 14-bit 

intensity depth. Acquired images are stored in DICOM files. Dataset includes a total 

number of 115 cases and 56 of them have biopsy data (Moreira et al., 2012). 
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5.2.8 Digital Database for Screening Mammography (DDSM) 

This dataset is developed by co-operation of Massachusetts General Hospital, 

University of South Florida (USF), American Sandia National Laboratories and the 

U.S. Army Medical Research and Material Unit Breast Cancer Research Program’s 

fund. Each case in the dataset contains two standard views (CC and MLO) of two 

breasts and is selected from patients diagnosed between October 1988 and February 

1999 at Massachusetts General Hospital, Wake Forest University School of 

Medicine, St. Sacred Heart Hospital and Washington St. Louis University School of 

Medicine (Heath, Bowyer, Kopans, Moore, & Kegelmeyer, 2001). The dataset has a 

total number of 2620 studies. Besides, dataset also contains demographic data for 

each case like, age of the patient, the mammogram acquisition date, mammogram 

digitization date and ACR breast density determined by an expert, as well as 

abnormality verification file containing lesion markings, breast density assessment 

made by a radiology expert, with the degree of difficulty. This dataset is the de-facto 

standard for mammographic researches. In this thesis we used the whole DDSM 

dataset available in our experimental setup. 

Statistics of masses in DDSM dataset is shown in Table 5.1. Since ACR put BI-

RADS standard after this dataset being prepared, annotations of cases in this dataset 

misses some properties defined in BI-RADS standard. For instance, masses in 

DDSM have no density property, which is defined in BI-RADS standard. Moreover, 

some properties have no values assigned. Such values are assigned to a special value 

names Miscellaneous. 

Table 5.1 Statistics of DDSM dataset. 

Mass Property Value Lesion Count 

Shape 

Misc 5 

Round 228 

Lobular 587 

Irregular 1308 

Oval 613 

BI-RADS Score 

0 185 

1 3 

2 131 

3 537 

4 1179 

5 706 
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Table 5.1 Statistics of DDSM dataset. 

Mass Property Value Lesion Count 

Margin 

Misc 105 

Circumscribed 618 

Microlobulated 170 

Obscured 408 

Indistinct /ill-defined 753 

Spiculated 687 

Total 2741 

 

5.2.9 Dokuz Eylul University Mammogram DataSet (DEMS) 

This thesis study also includes development of a mammography dataset named 

DEMS, which is also for low-level feature evaluation. Firstly, DEMS mammogram 

dataset is a fully annotated digital mammogram dataset for computer-aided diagnosis 

(CAD) studies, and it is compliant with the state of the art semantic web knowledge 

representation technologies. Case selection performed in two stages. The first, 

candidate cases are selected retrospectively from PACS system of Radiology 

Department of Dokuz Eylul University Medical Faculty Hospital, among more than 

50K mammography examination diagnosed between 2004 January and 2008 

November. Each candidate case includes four images in DICOM format, which are 

CC and MLO views of both breasts. All of the patients and physicians data is 

removed and the whole dataset were anonymized. More than 50K radiology reports 

of the cases are obtained from Hospital’s reporting server in text format. To select 

initial candidate cases, a textual Boolean information retrieval system is developed to 

speed up selection process. Additionally, developed system helps us to select 

candidate cases for each concept in the ontology by assigning initial annotations. 

Finally, DEMS contains 485 mammographic cases where 255 of them contain one or 

more lesion, where expert radiologists annotated each case in three phases using the 

MAT. 

Screening mammography generally involves two views of each breast: one from 

above (Cranial-Caudal view, CC) and the other from oblique or angled views 

(Mediolateral-Oblique, MLO).  Therefore, a typical screening mammography case 

contains four mammograms, MLO and CC views for two breasts. In this respect, 

(Cont’d.). 
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each mammography case in DEMS contains four images in lossless PNG format and 

one XML file called as “DEMS Annotation XML”. Each image converted from 

DICOM file by using a third party tool. The name of the images is set according to 

its view, e.g. LCC.png, LMLO.png. Resulting PNG images have 16-bit intensity 

depth, 70 µm effective resolution and, 2560x3328 or 3328x4096 size. Figure 5.1 

shows sample mammography case in DEMS, which have more than one 

abnormality. The case contains one mass and two associated findings in the left 

breast. The mass is indicated with red contour and it has irregular shape, spiculated 

margin and equal density. Additionally, there are skin retraction (Green contour) and 

skin thickening (Blue contour) as the associated findings. The breast density of the 

case is Almost Entirely Fat and final BI RADS score of the case is 6. This means that 

the mass is pathologically proven malignancy. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.1 Sample mammography case with its ROI’s in 

DEMS, (a) RCC view, (b) LCC view, (c) RMLO view (d) 

LMLO view 
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5.2.9.1 Mammography Annotation Tool (MAT) 

Mammography annotation tool is developed to annotate mammograms in DEMS. 

MAT allows radiologists to examine four images in total, CC and MLO projection of 

the right and left breasts, for a typical mammography case. During this examination, 

the radiologists mark and annotate the abnormalities on images by using a variety of 

tools, which are easily done by clicking on it, and can also add the breast type. MAT 

stores all annotations in XML format, which is then easily converted into OWL 

format. The annotation file can also produce classical radiology reports in natural 

language, or to any other desired format. MAT is developed MAT using C++ 

programming language with QT framework with a cross-platform support. Figure 5.2 

depicts a sample screen shot of the MAT. 

 
Figure 5.2 Screen capture of mammography annotation tool. 

5.2.9.2 Mammography Annotation Ontology (MAO) 

DEMS has ontology-based annotations. Therefore, an ontology called 

Mammography Annotation Ontology is developed (Bulu, Alpkocak, & Balci, 2012). 

MAO is built on the 3rd edition of BI-RADS Mammography Atlas (Liberman & 

Menell, 2002), and is used to annotate any abnormality observed in mammograms. 

Principally, the MAO provides a shared vocabulary and knowledge that makes 
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annotations understandable and computable by computers. Prominently it makes 

reasoning of any other information possible and forms a knowledge base. MAO is 

developed considering the domain covered with intended use of the ontology and 

using middle-out strategy as ontology development methodology (Fernández López, 

1999). Figure 5.3 shows major concepts of the MAO with their relationships. 
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Figure 5.3 Major classes and their relationships in Mammography Annotation Ontology (MAO). 

 

DEMS Annotation XML file contains Patient and Case tags. For privacy reasons 

only birth date of patient is kept. On the other hand Case tag includes all image and 

annotation data with date of study, which is important to calculate age of the patient 

at the examination date. Images are described by Image tag, which contains 

important DICOM headers and lesion annotation denoted by GraphicItem tag.  A 

sample GraphicItem tag is shown in Figure 5.4. 
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<GraphicItem id="1" type="4" groupId="1" uniqueId="123"> 

  <PointCollection> 

    <Point x="2658.057469371625" y="1941.542446510455" /> 

    ... 

  </PointCollection> 

  <Annotation> 

    <Instance classId="03"> 

   <Property valueId="11" id="04" /> 

   <Property valueId="03" id="05" /> 

   <Property valueId="03" id="06" /> 

   <Property valueId="02" id="07" /> 

    </Instance> 

    <MiddleLevelFeatures> 

      <Property valueText="94.6206" id="13" /> 

      <Property valueText="5215.78" id="14" /> 

      <Property valueText="67.5157" id="15" /> 

      <Property valueText="101.529" id="16" /> 

    </MiddleLevelFeatures> 

  </Annotation> 

</GraphicItem> 

Figure 5.4 Sample GraphicItem tag in DEMS Annotation XML 

5.2.9.3 DEMS Statistics 

There are four types of lesions in DEMS, 

which are mass, calcification, special case and associated finding. Additionally, some 

breast may contain metallic clip(s) after surgical operations and these are seen in the 

mammograms clearly. To be able to distinguish them from any other lesions, another 

lesion type named other is created and they are annotated in these group. Table 5.2 

contains abnormality distribution of DEMS. 

Table 5.2 Abnormality distribution of DEMS. 

Abnormality Type Case Count Lesion Count 
Total Number of Annotations 

Count (%) 

Mass 116 136 260 33 

Calcification 119 144 274 35 

Special Cases 19 20 32 5 

Associated Findings 65 97 146 24 

Other 10 13 23 3 

 

where, Case Count column shows the number of unique mammographic case 

contains related lesion type/property/value, Lesion Count column shows the number 

of unique lesion marked with related lesion/property/value and Total Annotation 

column shows the number of annotation instances totally created for related 

lesion/property/value with their percentages. 

The BI-RADS mammography atlas 

5.2.9.3.1 Abnormality Distribution. 

5.2.9.3.2 Breast Density Distribution. 
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identifies four types of breast densities, namely, Almost Entirely Fat, Scattered 

Fibroglandular Tissue, Heterogeneously Dense and Extremely Dense. During the 

mammographic examinations expert should add the breast density of the patient to 

the annotation. In DEMS all cases has their own breast density annotation. Table 5.3 

shows count of the breast densities in DEMS, i.e. Extremely Dense breast type has 

the lowest percentage. 

Table 5.3 Distribution of breast densities in DEMS. 

Breast Density 
Case 

Count (%) 

Almost Entirely Fat (BI-RADS Density I) 182 38 

Scattered Fibroglandular Tissue (BI-RADS Density II) 160 33 

Heterogeneously Dense (BI-RADS Density III) 104 21 

Extremely Dense (BI-RADS Density IV) 39 8 

 

The one of the major lesion type of the DEMS is 

mass. According to BI-RADS mammography atlas each mass has three attributes; 

shape, margin and density. Furthermore, each attribute has its set of allowed values. 

For example, mass shape can be round, lobular, oval or irregular. Figure 5.5 shows 

one of the masses in DEMS with its boundary, where the mass has irregular shape, 

spiculated margin and equal density. Table 5.4 shows the distribution of masses in 

DEMS according to their features in detail. 

 

Figure 5.5 Sample mass in DEMS 

5.2.9.3.3 Mass Distribution. 
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In DEMS, all masses annotated as BI-RADS category 6 are pathologically proven 

malignant lesion. On the other hand, BI-RADS category 2 indicates benign lesions. 

Total percentage of BI-RADS 2 and 6 masses is 32. For all other masses pathologic 

examination is required to determine if they are benign or malign. 

Table 5.4 Mass distributions with respect to properties in DEMS. 

Property Value Case Count Lesion Count 
Annotation 

Count (%) 

BI-RADS      

 2 23 27 50 20 

 3 26 29 55 21 

 4A 9 9 18 7 

 4B 6 6 12 4 

 4C 10 10 19 7 

 5 37 39 75 29 

 6 14 16 31 12 

Shape      

 Round 21 27 50 19 

 Lobular 28 29 57 22 

 Irregular 56 59 113 44 

 Oval 21 21 40 15 

Margin      

 Circumscribed 44 52 98 38 

 Microlobular 5 5 9 3 

 Obscured 16 16 31 12 

 Illdistinct / Illdefined 22 26 49 19 

 Spiculated 37 37 73 28 

Density      

 High 51 62 119 46 

 Equal / Isodence 55 59 111 43 

 Low / Not Fat Containing 3 3 6 2 

 Fat Containing Radiolucent 11 12 24 9 

 

The second major abnormality type in DEMS 

is calcification. Like masses, according to BI-RADS mammography atlas annotation 

of calcifications is determined. So, each calcification has its category, type and 

distribution attribute with their allowed values. Table 5.5 shows the distribution of 

calcifications in DEMS with respect to their features in detail. 

Table 5.5 Calcification distributions with respect to calcification properties in DEMS. 

Property Value 
Case 

Count 

Lesion 

Count 

Annotation 

Count (%) 

BI-RADS      

 2 77 95 177 66 

 3 9 9 18 6 

 4 24 24 47 17 

 5 16 16 32 11 

5.2.9.3.4 Calcification Distribution. 
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Table 5.5 Calcification distributions with respect to calcification properties in DEMS. 

Property Value 
Case 

Count 

Lesion 

Count 

Annotation 

Count (%) 

Category      

 Typically Benign 79 97 181 67 

 Intermediate Concern 28 28 55 19 

 Higher Probability of Malignancy 21 21 42 14 

Type      

 Skin 5 6 10 4 

 Vascular 12 12 24 8 

 Coarse or Popcorn Like 16 17 32 12 

 Large Rod Like 6 6 11 4 

 Round 17 18 34 12 

 Lucent Centered 10 10 20 7 

 Eggshell or Rim 7 8 14 6 

 Milk of Calcium 3 3 6 2 

 Suture 1 4 4 3 

 Dystrophic 9 9 18 6 

 Punctuate 12 12 24 8 

 Amorphous or Indistinct 9 9 18 6 

 Coarse Heterogeneous 7 7 13 5 

 Fine Pleomorphic 22 22 44 15 

 Fine Linear of Fine Linear Branching 3 3 6 2 

Distribution      

 Grouped or Clustered 35 38 70 26 

 Segmental 7 7 14 5 

 Regional 12 12 24 8 

 Diffuse Scattered 48 52 97 36 

 Single None 33 33 65 22 

 Linear 4 4 8 3 

 

The third abnormality type in DEMS is 

special cases. There are six types of special cases in mammography.  Types and BI-

RADS scores of the special cases are given in Table 5.6 with their counts. DEMS has 

no special case whose BI RADS score is higher than 3. 

Table 5.6 Special Case distribution with respect to properties in DEMS. 

Property Value 
Case 

Count 

Lesion 

Count 

Annotation 

Count (%) 

BIRADS      

 1 4 4 6 20 

 2 7 8 12 40 

 3 8 8 14 40 

Type      

 Asymmetric Tubular Structure / Solitary Dilated 

Duct 
1 1 2 5 

 Intramammary Lymph Node 7 7 13 35 

 Global Asymmetry 5 5 9 25 

 Focal Asymmetry 3 3 4 15 

 Bilateral Accessories Breast Tissue 1 2 2 10 

 Unilateral Accessories Breast Tissue 2 2 2 10 

 

5.2.9.3.5 Special Case Distribution. 

(Cont’d.). 
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The last abnormality type in DEMS is 

associated findings. In mammography seven types of associated findings are exist. 

Different from the other abnormalities in DEMS, some associated findings may not 

have BI-RADS scores. For these types of lesions, an N/A value added BI-RADS 

score. Types and BI-RADS scores of all the special cases are given in Table 5.7 with 

their counts. 

Table 5.7 Associated Finding distribution with respect to properties in DEMS. 

Property Value 
Case 

Count 

Lesion 

Count 

Annotation 

Count (%) 

BIRADS      

 N/A 15 21 29 22 

 1 5 5 10 5 

 2 20 30 41 31 

 3 1 1 1 1 

 4 5 6 12 6 

 5 23 32 49 33 

 6 1 2 4 2 

Type      

 Skin Retraction 12 13 16 14 

 Nipple Retraction 7 7 14 7 

 Skin Thickening 18 18 35 19 

 Trebecular Thickening 11 11 22 11 

 Skin Lesion 5 5 10 5 

 Axillary Adenopathy 25 37 37 38 

 Architectural Distortion 6 6 12 6 

 

5.2.9.3.6 Associated Finding Distribution. 
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6 CHAPTER SIX – 

FEATURE SELECTION FOR CONTENT DESCRIPTION 

6.1 Overview 

Selecting proper low-level features for breast mass property classification task 

needs a set of experimentation to be conducted. Moreover, it is also important to 

measure effects of other parameters; e.g. classifier performances, dataset differences 

etc. Therefore, we conducted a series of experimentations on two datasets which are 

DDSM (Heath et al., 1998, 2001) and DEMS (Akçay, Alpkoçak, Balcı, & Dicle, 

2009). Details of both datasets are given in chapter 5. Unlike similar works in this 

topic, we include all cases of DDSM dataset in our experiments setup instead of 

selecting a subset of it. Finally, we made publicly available of classification results 

and low-level features on both datasets, so that any researcher in this area can repeat 

our findings or compare with any other method or features easily. 

In this thesis, we measure performance of four parameters, which are low-level 

feature, dataset, mass selection type and classifier on mammography mass property 

classification task. Total number of experiments we conducted is 11544; and only 

one parameter changed in each experiment. 

This chapter organized as follows. Section 6.2 introduces classifiers used in 

experiments. Finally, Results of all experiments are presented in section 6.3.  

6.2 Classifiers 

In this thesis, we use several classifiers to measure performance of low-level 

features. Each classifier is tested using 10-fold cross validation to ensure consistency 

and estimation quality using data mining software called RapidMiner (Mierswa, 

Wurst, Klinkenberg, Scholz, & Euler, 2006). We used k-Nearest Neighbor (Bremner 

et al., 2005), Random Forests (Breiman, 2001), (Prinzie & Van den Poel, 2007), 

Naïve Bayes (Harry Zhang, 2004), Artificial Neural Networks (Bhadeshia, 1999), 
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Linear Discriminant Analysis (Mika, Ratsch, Weston, Scholkopf, & Mullers, 1999) 

and Support Vector Machine (Cortes & Vapnik, 1995) classifiers in this work. 

6.2.1 k-Nearest Neighbor (k-NN) 

k-Nearest Neighbor (k-NN) classifier is a simple voting classifier which assigns 

object to a class if most of the k-neighbors of the object belongs to that class. Here, 

neighbors of an object are determined by selecting objects in dataset having 

minimum distance to the object. In this thesis, we used 5-NN classifier only. 

6.2.2 Random Forests (RAF) 

Decision Trees are usually highly efficient classifiers. Unfortunately, it is reported 

that decision trees has over-fitting problem (Breiman, 2001). To overcome this 

problem, a group of decision trees are grouped and used as a classifier instead of one 

decision tree. This approach is called Random Forests, and it has been reported by 

Ho (Ho, 2000) and Breiman (Breiman, 2001) that Random forest with adequate 

number of Decision Trees deals with over-fitting problem. In our experimentation 

setup, we prefer to use Random Forests with 10 trees where each tree is based on 

information gain criteria. 

6.2.3 Naïve Bayes Classifier (BAY) 

This classifier is a probabilistic classifier based on Bayes theorem. This classifier 

assumes that features are independent from each other; an each feature vector is 

associated to a class using conditional probability between feature vector and each 

class, as shown in the following formula. 

 ( | ⃗)  
 ( ) ( ⃗| )

∑  (  ) ( ⃗| )    
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where,  ( ) is the prior probability of class   and  ( ⃗| ) is the probability of 

generating feature vector  ⃗ from class  . In our case, we assume that features are 

independent from each other. As a result, formula could be rewritten as follows; 

 ( ⃗|  )  ∏ ( ⃗[ ]|  )

 

   

 

where,  ⃗[ ] is the value of jth element of  ⃗. Each value for this formula can be 

calculated using Maximum Likelihood Estimation technique. 

6.2.4 Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANNs) are mathematical models simulating 

biological neural networks. Algebraic ANNs, also called as feed-forward ANNs, 

consist of neurons, which are usually grouped into layers and usually perform a 

weighted sum followed by a nonlinear mapping. Such algebraic ANNs used as 

classifiers contain at least two layers named the input layer having the same number 

of neurons with input data vector size and the output layer, which determines result 

of the classification. If an ANN has more than two layers, then the rest of the layers 

are called hidden layers and there is no restriction of number of neurons in these 

layers. In this thesis, we construct the most widely used feed-forward ANN, i.e. 

Multi-Layer Perceptron (MLP) such that it has 3 layers and the number of the 

neurons in the hidden layer is chosen dynamically to adopt different input sizes. 

6.2.5 Linear Discriminant Analysis (LDA) 

This classifier aims to find a hyper-plane that splits feature space in a way that 

classes are separated in an optimal way. Formal definition of such a hyper-plane is 

given in following formula. 

     〈  ⃗⃗ ⃗⃗    〉       
   

  ⃗⃗⃗    ⃗⃗⃗⃗       
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where   is the set of observation pairs,     is the numeric label associated with the 

observation. This formula defines a set of hyper-planes for each class. The 

parameters for each hyper-plane are calculated by using least-squares minimization. 

6.2.6 Support Vector Machines (SVM) 

Support Vector Machines (SVMs) is a kind of Linear Discriminant Analyzers, but 

instead of finding hyper-planes for each class, SVM searches for linear boundaries 

that separate given classes from each other. Hence, SVMs are also referred as max-

margin learning algorithms (Guo, Sun, Deng, & Li, 1994). In SVM, input vectors are 

mapped into a high (may be infinite) dimensional feature space by a nonlinear 

mapping implicitly defined by a kernel in order to transform an originally nonlinear 

separation problem into a linearly separable one. Besides, SVMs could operate also 

on linearly non-separable feature spaces as a consequence of the associated 

optimization formulations allowing for a (desirably) small number of non-separable 

vectors. SVMs usually possess high generalization abilities as provided by their high 

separation margins and by their sparse representations defined with a small set of so-

called support vectors. In our experiments, SVM is used with radial basis kernel. 

6.3 Experimentation 

We conducted total number of 11544 experiments to measure performance of 

individual low-level feature performance on mass property classification task. In 

each experiment we change only one variable, which could be low-level feature, 

classifier and property class. Results of each experiment are measured using 

accuracy, specificity, sensitivity and balanced accuracy metrics. All of these metrics 

are based on confusion matrix including number of correctly and incorrectly 

classified samples. Table 6.1 shows a sample confusion matrix. 
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Table 6.1 Sample confusion matrix. 

  Predicted Class 

  Positive Negative 
A

ct
u

a
l 

C
la

ss
 

Positive 
True Positives (TP) 

True samples that are correctly classified 

False Negatives (FN) 

True samples that are incorrectly classified 

Negative 
False Positives (FP) 

False samples that are incorrectly classified 

True Negatives (TN) 

False samples that are correctly classified 

 

Sensitivity metric aims to measure classification ability to identify positive results 

and defined as following formula. 

            
  

     
 

Specificity metric is used to measure system performance of negative examples. In 

following formula calculation of Specificity metric is given. 

            
  

     
 

Accuracy metric aims to measure system performance of correctly classified 

examples either they are positive or negative. Accuracy can be calculated by using 

following formula. 

         
     

           
 

Since we used more than one metric, it is hard to define which experiment 

produces better results than other one. Although accuracy metric measures overall 

classification performance, it has very weak predictive power in some cases, e.g. 

classes with very little number of true samples. So, we use balanced accuracy 

metric, which is average of sensitivity and specificity metrics, to rank experiment 

results. Additionally, we present other three metrics to present performance of 

experiment on true and false samples. Only results of top 10 successful experiments 
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are presented to summarize. More detailed performance values could be found in 

appendices. 

6.3.1 Results of Shape Property Experiments 

Shape property has four classes defined in ACR BI-RADS atlas namely round, 

oval, lobular and irregular. Here, round masses has low malignancy rate while 

irregular masses have the highest malignancy rate. Unfortunately, some masses have 

no shape property, so those masses assigned to N/A class. Detailed performance 

results of shape property experimentations are discussed below. 

6.3.1.1 Low-Level Feature Performance Comparison 

N/A class contains masses with no shape information given. Moreover, masses of 

this class are originated from the DDSM dataset. Figure 6.1 shows performance 

graph of this class. Shape features obtain top three performance results. But, 

sensitivity values are too low for all low-level features. We can say that results of 

this class are successful for negative examples. 

 
Figure 6.1 Low-Level feature performances of N/A class. 

Low-level feature performances for round class are given in Figure 6.2. Round 

class is dominated by shape features, where 9 out of 10 top results belong to shape 
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feature type. Although, radial basis signal feature obtains the highest balanced 

accuracy score, Zernike moment feature is the most successful for identifying true 

samples. Additionally, only texture feature enters top 10 list is gray level difference 

feature. 

 
Figure 6.2 Low-Level feature performances of Round class. 

Low-level feature performance of oval class is given in Figure 6.3. Similar to 

results of round class, shape features dominate classification results of oval class 

also. The most successful low-level feature for this task is Fourier Distance 

Descriptor of radial distance signal. According to the results, low-level features could 

only retrieve about 30% of oval classes at maximum. 

Figure 6.4 shows performance results of low-level features on Lobular class. 

Shape features are the most successful ones for this class similar to performance of 

other classes. Moreover, texture and contour features produces good results. But, 

sensitivity of all results is too low for this class. 
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Figure 6.3 Low-Level feature performances of Oval class. 

 
Figure 6.4 Low-Level feature performances of Lobular class. 

Finally, Figure 6.5 depicts low-level feature performance results on Irregular 

class. According to the results, experiments on Irregular class show better sensitivity 

results than other classes and shape features dominate this class similar to previous 

results. Additionally, there are two texture features in top 10 which are edge 

histogram feature and homogeneous texture feature. Average sensitivity of almost all 

low-level features is above 70%. Although it is considered as texture feature, average 

sensitivity of edge histogram feature is about 75%. But, average specificity of only 

two low-level features is above 50%, which are general shape features and Fourier 
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coefficients of distance contour representation. Hence, we can say that Irregular class 

is the most successful one in shape classification task in terms of sensitivity. 

 
Figure 6.5 Low-Level feature performances of Irregular class. 

In sum, Irregular class is the best among other class considering all metrics. 

Especially, 75% of all true samples are correctly classified using shape and texture 

features. Besides, accuracy of experiments achieved maximum accuracy rate 

between 71% and 82%. 

6.3.1.2 Dataset Performance Comparison 

Figure 6.6 shows the results of experiments on two dataset for mass shape 

classification task. According to the results, experiment on DEMS show better results 

than DDSM almost in all metrics. Sensitivity scores of some experiments on DDSM 

only shows great scores than ones conducted on DEMS. Accuracy and sensitivity 

values of DEMS outperform DDSM on the other hand. 

Similar to low-level feature experimentation results, experiments on irregular 

class shows better performance results than other ones in terms of sensitivity scores. 

Moreover, Irregular class outperforms other classes in terms of accuracy and 

balanced accuracy metrics, if N/A class is discarded. 
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We can conclude that DEMS dataset has more accurate dataset to perform 

experimentations on mass shape classification task and Irregular class is the best 

class for mass classification task independent from dataset difference. 

 
Figure 6.6 Dataset performance comparison. 

6.3.1.3 Mass Selection Method Performance Comparison 

Figure 6.7 shows effect of region selection method on classification performance 

for shape classification task. Here, ASR indicates automatically segmented regions 

using BMCS algorithm and MSR indicates reference regions. According to the 

results, automatically segmented regions shows almost same performances with 

manually segmented regions. Sensitivity and balanced accuracy scores of oval and 

lobular classes on MSR is greater than ASR. Additionally, experiments on irregular 

class obtain the highest performance scores on both ASR and MSR like previous 

experiments. Hence, it is clear that ASR and MSR shows almost same performance 

results on mass shape classification task. 
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Figure 6.7 Region selection method performance comparison. 

6.3.1.4 Classifier Performance Comparison 

Figure 6.8 includes classifier performances of N/A shape class. According to the 

results, only Bayes and SVM classifiers could identify positive examples, since N/A 

class includes masses with no shape information. 

 
Figure 6.8 Classifier performance on N/A class. 

Figure 6.9 shows classifier performances of experiments conducted on masses 

belonging to Round class. Although Random Forest classifier obtained the highest 

maximum balanced accuracy score, Naïve Bayes classifier is the best classifier 
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considering sensitivity value. Moreover balanced accuracy difference between 

Random Forest and Naïve Bayes classifiers is so small. It is also interesting that 

k-NN classifier obtains the second highest sensitivity score. 

 
Figure 6.9 Classifier performance on Round class. 

 
Figure 6.10 Classifier performance on Oval class. 

Performance evaluation results of experiments conducted on Oval shaped masses 

are given in Figure 6.10. According to the results Naïve Bayes classifier obtains the 

highest balanced accuracy score. But k-NN classifier obtains the highest sensitivity 

score value, although it has the least specificity score. 
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Performance of classifiers on Lobular class is depicted on Figure 6.11. Similar to 

Oval class experiments, Naïve Bayes classifier obtains the highest Balanced 

Accuracy score although k-NN classifier has the highest Sensitivity scores. 

 
Figure 6.11 Classifier performance on Lobular class. 

 
Figure 6.12 Classifier performance on Irregular class. 

Finally, Figure 6.12 includes results of experiments conducted on Irregular class. 

Similar to previous experiments, Naïve Bayes classifier obtains the highest Balanced 

Accuracy result. Although Random Forest classifier obtains the highest Sensitivity 

score, it has the lowest Specificity score. 
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As a result, We can say that Naïve Bayes classifier performs well on almost all 

classes. Similar to previous experiment results, best performance scores obtained 

from experiments conducted on Irregular class. 

6.3.2 Results of Margin Property Experiments 

Margin property has five classes defined in ACR BI-RADS atlas namely 

circumscribed, microlobular, obscured, spiculated and irregular. Here, 

circumscribed masses has low malignancy rate while irregular masses have the 

highest malignancy rate. N/A class represents masses with no margin property. 

Detailed performance results of margin property experimentations are discussed 

below. 

6.3.2.1 Low-Level Feature Performance Comparison 

Figure 6.13 includes low-level feature performances of experiments conducted on 

N/A class. Local Binary Pattern feature obtains the highest balanced accuracy score 

and second sensitivity score. Although gray level co-occurrence matrix obtains very 

low balanced accuracy score, it has the highest sensitivity score. 

 
Figure 6.13 Low-Level feature performances of N/A class. 
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Figure 6.14 shows low-level feature performances of experiments conducted on 

Circumscribed class. Most of the successful features are shape features. Especially 

distance based shape representations (DFD and RBS) obtain the highest scores. Only 

edge histogram and histogram properties features enter top ten list. 

 
Figure 6.14 Low-Level feature performances of Circumscribed class. 

 
Figure 6.15 Low-Level feature performances of Microlobular class. 

Figure 6.15 includes performance results of experiments conducted on 

Microlobular class. Although most of the successful features belong to shape group, 
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Max. B.Accuracy 79,80% 78,60% 76,22% 75,60% 75,14% 74,86% 74,26% 74,15% 73,66% 70,19%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Low-Level Feature Performance on Circumscribed Class 

S-RDD S-FDE S-GEN T-HIS S-INM S-CFD S-ZER S-RBS
M-

CWW

M-

CWK

Max. Accuracy 96,54% 96,54% 96,51% 96,51% 96,54% 96,54% 96,54% 96,54% 96,51% 96,51%

Avg. Sensitivity 4,64% 9,52% 7,78% 16,50% 5,03% 15,48% 8,54% 2,98% 7,30% 5,08%
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histogram properties texture feature and fourier representation of curvature contour 

representation shape feature obtain the highest two sensitivity score. 

Figure 6.16 includes performance results of experiments conducted on Obscured 

class. According to the results, shape features obtain 5 out of 10 most successful 

balanced accuracy score, while texture features obtains 4 of them. Hence, we can 

infer that Obscure masses could be better identified by using both shape and texture 

features. 

 
Figure 6.16 Low-Level feature performances of Obscured class. 

 
Figure 6.17 Low-Level feature performances of Spiculated class. 
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Figure 6.17 includes results of experiments conducted on Spiculated class. 

Although highest balanced accuracy score belongs to a texture feature, shape features 

obtain 7 of 10 highest score. Two of the successful features are MPEG-7 texture 

descriptors, which are edge histogram and homogeneous texture features. 

Figure 6.18 includes performance results of experiments on Irregular class. 

Similar to previous experiments shape features shows better performance than other 

feature groups. 

 
Figure 6.18 Low-Level feature performances of Irregular class. 

In sum, we can say that shape features are more suitable for margin classification 

task than other feature groups. Although Obscured class is an exception for that 

situation, combination of shape features and texture features could produce better 

results for that class. It is also interesting that most successful classification 

performances are obtained from experiments that are conducted on Circumscribed, 

Spiculated and Irregular classes, since malignancy level of a mass increases from 

Circumscribed masses to Irregular masses. In other words, experiments show that 

benign and malign classes could be identified correctly than intermediate classes. 
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6.3.2.2 Dataset Performance Comparison 

Figure 6.19 includes results of experiments aiming to test dataset performance on 

Margin property. Similar to shape experiments, balanced accuracy results of 

experiments conducted on DEMS dataset are higher than ones conducted on DDSM 

dataset. Results indicate that successful classes in each dataset are different. 

Performance results of Irregular class are the highest ones on DDSM dataset while 

Performance results of Circumscribed and Spiculated classes are highest one on 

DEMS dataset. 

 
Figure 6.19 Dataset performance comparison. 

6.3.2.3 Mass Selection Method Performance Comparison 

Figure 6.20 includes region selection performance comparison of margin 

classification task. Unlike shape experimentation results, experiments show different 

performance characteristics. Only experiments on Spiculated class show no major 

differences on each region selection method. On the other hand, experiments on 

Microlobular class shows that performance of ASR method is better than MSR 

method. Performance of MSR method is better than ASR method in other classes. 

Hence, we could say that margin of a mass is more accurately identified by machine 

learning methods, when manually selected region boundaries is used. 
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Figure 6.20 Region selection method performance comparison. 

6.3.2.4 Classifier Performance Comparison 

Figure 6.21 includes classifier performances of N/A class. According to the 

results, Naïve Bayes classifier outperforms other classifiers in terms of sensitivity 

and balanced accuracy metrics. 

 
Figure 6.21 Classifier performance on N/A class. 

Figure 6.22 includes classifier performances of experiments on Circumscribed 

class. Although Naïve Bayes classifier obtains the best balanced accuracy score, 
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Neural Network and Support Vector Machine classifiers obtain the highest sensitivity 

scores. 

 
Figure 6.22 Classifier performance on Circumscribed class. 

Figure 6.23 includes performance results of experiments on Microlobular class. It 

is interesting than k-NN classifier obtains the highest balanced accuracy score. 

Additionally Naïve Bayes classifier obtains the highest sensitivity score, which is 

nearly three times better than second one. 

 
Figure 6.23 Classifier performance on Microlobular class. 
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Figure 6.24 includes performance results of experiments on Obscured class. 

According to the results, Naïve Bayes classifier obtains the highest balanced 

accuracy score. Besides, k-NN classifier obtains the second sensitivity score. 

 
Figure 6.24 Classifier performance on Obscured class. 

Figure 6.25 includes classifier performance of experiments on Spiculated class. 

Naïve Bayes classifier obtains the highest balanced accuracy score, while neural 

network classifier obtains the highest sensitivity score. 

 
Figure 6.25 Classifier performance on Spiculated class. 
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Figure 6.26 includes classifier performance results of experiments on Irregular 

class. Like previous experimental results, Naïve Bayes classifier obtains the highest 

balanced accuracy score. On the other hand, Random Forest classifier obtains the 

highest sensitivity score. 

 
Figure 6.26 Classifier performance on Irregular class. 

Finally, we could say that Naïve Bayes classifier is the most suitable one for 

margin classification task. Like previous experimental results, best performance 

scores obtained from Circumscribed, Spiculated and Irregular classes. 

6.3.3 Results of Density Property Experiments 

Density property has four classes defined in ACR BI-RADS atlas namely high-

dense, iso-dense, low-dense and radiolucent. Here, radiolucent masses has low 

malignancy rate while high-dense masses have the highest malignancy rate. Detailed 

performance results of margin property experimentations are discussed below. Since 

only DEMS dataset contains density annotation information, no dataset performance 

comparison is given in this section. 
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6.3.3.1 Low-Level Feature Performance Comparison 

Figure 6.27 includes performance evaluation results of experiments on High-

Dense class. According to the results, Global Margin Features obtain the highest 

balanced accuracy score. Additionally, other two margin features obtains second 

highest sensitivity scores with 73,59%, while Color feature obtains the highest 

sensitivity score. Besides, texture features obtain remarkably better evaluation 

scores. 

 
Figure 6.27 Low-Level feature performances of High-Dense class. 

Figure 6.28 includes performance evaluation results of experiments on Iso-Dense 

class. Similar to previous experiment, global marginal properties feature obtains the 

highest balanced accuracy score. Moreover, same feature obtains the highest 

sensitivity score. Color and texture features show considerable balanced accuracy 

values. But, sensitivity scores of them are low. It is interesting that radial basis signal 

feature enter the top ten lists. 

Figure 6.29 includes performance evaluation results of experiments on Low-

Dense class. According to the results, radial distance representation of shape features 

obtains the highest balanced accuracy score. But sensitivity scores of all experiments 

are insufficient. Only homogeneous texture feature could retrieve 22.22% of positive 

examples. 
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Figure 6.28 Low-Level feature performances on Iso-Dense class. 

 
Figure 6.29 Low-Level feature performances Low-Dense class. 

Figure 6.30 includes performance evaluation results of experiments on 

Radiolucent class. Results indicate that texture features perform better than other 

feature groups. It is also interesting that performance of shape features enter top 10 

results for density classification task. 
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Figure 6.30 Low-Level feature performances Radiolucent class. 

Finally, we could say that margin and texture features could be used for density 

classification task. High-Dense and Iso-Dense class obtains the highest performance 

evaluation scores. 

6.3.3.2 Mass Selection Method Performance Comparison 

 
Figure 6.31 Region selection method performance comparison. 

Figure 6.31 includes performance evaluation results of region selection method on 

margin classification task. According to the results, ASR method produces slightly 

better balanced accuracy results. Additionally, sensitivity scores of both method 
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Avg. Specificity 93,52% 97,44% 93,66% 95,09% 88,03% 96,28% 97,24% 94,37% 96,30% 95,71%

Max. B.Accuracy 73,40% 71,79% 71,31% 69,71% 66,29% 65,15% 62,85% 61,70% 61,59% 61,38%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Low-Level Feature Performance on Radiolucent Class 

High-

Dense
Iso-Dense

Low-

Dense

Radio-

Lucent

High-

Dense
Iso-Dense

Low-

Dense

Radio-

Lucent

ASR MSR

Max. Accuracy 77,91% 70,93% 98,06% 91,86% 75,97% 69,38% 98,06% 91,86%

Avg. Sensitivity 64,38% 36,33% 8,76% 10,50% 62,52% 36,46% 10,04% 11,97%

Avg. Specificity 46,72% 70,75% 95,70% 95,60% 48,66% 69,60% 95,96% 94,19%

Max. B.Accuracy 77,38% 72,21% 79,76% 73,40% 75,79% 68,76% 78,97% 73,40%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Performance on Region Selection Method 



93 
 

 

 

produces are almost same. Hence, we can say that performance of two region 

selection methods show no difference in terms of evaluation metrics used. 

6.3.3.3 Classifier Performance Comparison 

Figure 6.32 includes classifier performance evaluation results of experiments on 

High-Dense class. Linear Discriminant Analysis classifier obtains the highest 

balanced accuracy score, while Random Forest classifier obtains the highest 

sensitivity score. 

 
Figure 6.32 Classifier performance on High-Dense class. 

Figure 6.33 includes classifier performance evaluation results of experiments on 

Iso-Dense class. Similar to High-Dense class experiments, linear discriminant 

analysis classifier obtains the highest balanced accuracy score. Moreover, it obtains 

second highest sensitivity score in this case. Neural network classifier obtains the 

highest sensitivity score, on the other hand. It is also noticeable that k-NN classifier 

obtains third highest sensitivity score in this experimentation setup. 

Figure 6.34 includes classifier performance results of experiments on Low-Dense 

class. According to the results, Naïve Bayes classifier obtains the highest balanced 

accuracy and sensitivity score. Results of other classifier performances are 

insufficient. 
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Figure 6.33 Classifier Performance on Iso-Dense class. 

 
Figure 6.34 Classifier performance on Low-Dense class. 

Figure 6.35 includes classifier performance results of experiments on Radiolucent 

class. According to the results, naïve Bayes classifier obtains the highest sensitivity 

and balanced accuracy scores. 

In sum, we could say that high-dense and iso-dense classes could be identified by 

LDA classifier and the other classes could be identified by naïve Bayes classifier. 

Additionally, high-dense and iso-dense classes obtain better performance scores than 

other two classes. 
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Max. B.Acc. 72,21% 71,06% 67,62% 65,50% 64,17% 64,02%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Classifier Performance on Iso-Dense Class 

BAY LDA NN 5-NN SVM RAF
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Max. B.Acc. 79,76% 66,27% 66,27% 65,67% 57,34% 50,00%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Classifier Performance on Low-Dense Class 



95 
 

 

 

 
Figure 6.35 Classifier performance on Radiolucent class. 

6.3.4 Results of BI-RADS Property Experiments 

BI-RADS property determines malignancy level of a mass and varies from 0 to 6. 

Similar to other properties, BI-RADS 0 means low malignancy while 6 means high 

malignancy rate. Here, only BI-RADS 2, BI-RADS 3 and BI-RADS 5 classes are 

common between two datasets. BI-RADS 0, BI-RADS 1 and BI-RADS 4 classes 

only exists in DDSM dataset, while BI-RADS 4A, BI-RADS 4B, BI-RADS 4C and 

BI-RADS 6 classes only exists in DEMS dataset. Detailed performance results of 

BI-RADS property experimentations are discussed below. 

6.3.4.1 Low-Level Feature Performance Comparison 

Figure 6.36 includes low-level feature performances of experiments on BI-RADS 

0 class. According to the results, shape features obtain the highest balanced accuracy 

results. But, texture features obtain highest sensitivity scores.  

Figure 6.37 includes low-level feature performance results of experiments on BI-

RADS 1 class. Although performance scores especially sensitivity scores are not 

good enough, texture browsing feature obtains both highest balanced accuracy and 

sensitivity scores. 
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Figure 6.36 Low-Level feature performance on BI-RADS 0 class. 

 
Figure 6.37 Low-Level feature performance on BI-RADS 1 class. 

Figure 6.38 includes low-level feature performances of experiments on BI-RADS 

2 class. Both shape and texture features get 5 of 10 results. Hence we could say that 

shape and texture features could be used to identify BI-RADS 2 class. Similar to 

previous experimental results, sensitivity scores of all experiments are too low. 

Figure 6.39 includes low-level feature performances of experiments on BI-RADS 

3 class. Shape features outperform other feature groups of experiments on this class, 

although histogram properties texture feature obtains highest sensitivity score. 
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Figure 6.38 Low-Level feature performance on BI-RADS 2 class. 

 
Figure 6.39 Low-Level feature performance on BI-RADS 3 class. 

Figure 6.40 includes low-level feature performances of experiments on BI-RADS 

4 class. Texture features obtain 5 of the 10 top balanced accuracy results, while 

shape features obtain 4 of them. But highest scores belong to texture features. 

Sensitivity scores of all experiments are above 60%. 

Figure 6.41 includes low-level feature performances of experiments on BI-RADS 

4A class. Margin features obtain 7 of the top 10 balanced accuracy results. But 

sensitivity scores of all experiments are below 10%. Since samples of this class 
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belongs to DEMS dataset and number of the samples are too low, degree of 

sensitivity scores is acceptable. 

 
Figure 6.40 Low-Level feature performance on BI-RADS 4 class. 

 
Figure 6.41 Low-Level feature performance on BI-RADS 4A class. 

Figure 6.42 includes low-level feature performances of experiments on BI-RADS 

4B class. Texture features obtain 4 of the 10 results. However, sensitivity scores of 

all experiments are below from 10% like BI-RADS 4A class. 

Figure 6.43 includes low-level feature performances of experiments on BI-RADS 

4C class. Shape features obtain 5 of the 10 results. Although sensitivity scores are 
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better than other two BI-RADS 4 subsets, sensitivity scores are not good enough as 

evaluation results of other properties. 

 
Figure 6.42 Low-Level feature performance on BI-RADS 4B class. 

 
Figure 6.43 Low-Level feature performance on BI-RADS 4C class. 

Low-level feature performance evaluation results of BI-RADS 5 class are given in 

Figure 6.44. Performance results of shape features are better than other features, 

although edge histogram texture feature obtains the highest balanced accuracy score. 
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Max. B.Accuracy 61,69% 61,49% 61,18% 56,30% 56,30% 56,10% 56,10% 55,89% 55,69% 55,28%
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T-HOT S-RDD S-ZER S-FDE S-GEN T-HIS S-INM M-CWS M-GLS T-LBP

Max. Accuracy 92,64% 92,69% 92,69% 92,69% 92,64% 93,02% 92,69% 92,64% 92,64% 92,64%

Avg. Sensitivity 19,30% 8,33% 17,11% 11,84% 13,16% 17,54% 12,72% 3,95% 8,33% 4,39%

Avg. Specificity 90,38% 97,12% 88,01% 91,21% 95,61% 96,03% 91,25% 96,48% 95,68% 96,79%

Max. B.Accuracy 67,68% 67,29% 64,50% 63,95% 63,10% 62,32% 59,51% 58,02% 57,18% 56,85%
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Figure 6.45 includes low-level feature performance evaluation results of 

experiments on BI-RADS 6 class. According to the results, shape, texture and margin 

features show almost equal balanced accuracy scores. 

 
Figure 6.44 Low-Level feature performance on BI-RADS 5 class. 

 
Figure 6.45 Low-Level feature performance on BI-RADS 6 class. 

In sum, shape and texture features shows better performance than other feature 

groups. But experiments on BI-RADS 3, BI-RADS 4, BI-RADS 5 and BI-RADS 6 

classes obtain acceptable sensitivity scores in terms of sensitivity metric. Especially 

performance results of BI-RADS 4 and BI-RADS 5 class are noticeable. 
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Avg. Specificity 72,40% 70,08% 77,25% 77,37% 78,66% 73,59% 71,36% 79,09% 74,00% 78,96%
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Nevertheless, scores of all experiments will be increased by using high level 

annotations, since BI-RADS score is based on other properties like shape, margin 

and density. 

6.3.4.2 Dataset Performance Comparison 

Figure 6.46 includes dataset performance comparison of experiments on BI-

RADS property classification task. In common classes scores of DEMS class is 

higher than DDSM scores. Besides BI-RADS 4 is the most successful class in 

DDSM experiments while BI-RADS 5 is the most successful class in DEMS 

experiments. 

 
Figure 6.46 Dataset performance comparison. 

 

6.3.4.3 Mass Selection Method Performance Comparison 

Figure 6.47 and Figure 6.48 include region selection method performance 

evaluation results of experiments on BI-RADS classification task. Most of the results 

are almost same except BI-RADS 0, BI-RADS 2 and BI-RADS 4A. ASR performs 

better than MSR experiments on BI-RADS 4A class while MSR performs better than 
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ASR on other two classes. BI-RADS 4 and BI-RADS 5 is the most successful classes 

of experiments on both ASR and MSR method. 

 
Figure 6.47 ASR performance results. 

 
Figure 6.48 MSR performance results. 

6.3.4.4 Classifier Performance Comparison 

Figure 6.49 includes classifier performances of experiments on BI-RADS 0 class. 

Naïve Bayes classifier obtains the highest balanced accuracy and sensitivity scores. 

Results of the other classifiers are twice times worse than naïve bayes classifier in 

terms of sensitivity metric. 
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Figure 6.49 Classifier performance on BI-RADS 0 class. 

Figure 6.50 includes classifier performance results of experiments on BI-RADS 1 

class. Although naïve Bayes classifier outperforms other classifiers, sensitivity scores 

of all experiments are below 10%. However, sensitivity score of naïve Bayes 

classifier is 5 times better than SVM classifier, which is second successful classifier 

for these experiments. 

 
Figure 6.50 Classifier performance on BI-RADS 1 class. 

Figure 6.51 includes classifier performances of experiments on BI-RADS 2 class. 

Naïve Bayes classifier obtains the highest balanced accuracy score like previous 
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classes. Additionally, k-NN classifier obtains the highest sensitivity score, which is 

slightly better than naïve Bayes score. 

 
Figure 6.51 Classifier performance on BI-RADS 2 class. 

Figure 6.52 includes classifier performance of experiments on BI-RADS 3 class. 

Although random forest classifier obtains the highest balanced accuracy score, naïve 

Bayes classifier obtains the highest sensitivity score, which is followed by k-NN 

classifier. 

 
Figure 6.52 Classifier performance on BI-RADS 3 class. 
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Figure 6.53 includes classifier performance evaluation results of experiments on 

BI-RADS 4 class. According to the results, SVM classifier obtains the highest 

balanced accuracy score. On the other hand, random forest classifier obtains the 

highest sensitivity score. However, its specificity score is 0%. So we could say that 

random forest classifier assigns all samples to BI-RADS 4 class. 

 
Figure 6.53 Classifier performance on BI-RADS 4 class. 

 
Figure 6.54 Classifier performance on BI-RADS 4A class. 

Figure 6.54 includes classifier performance results of experiments on BI-RADS 

4A class. According to the results, k-NN classifier obtains the highest balanced 

SVM BAY NN LDA 5-NN RAF

Max. Accuracy 57,30% 59,46% 56,38% 56,99% 56,31% 43,14%

Avg. Sensitivity 61,89% 26,42% 87,65% 87,71% 44,51% 100,00%

Avg. Specificity 43,19% 76,36% 18,07% 16,44% 59,41% 0,00%
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accuracy score. Naïve Bayes classifier obtains the second rank in terms of both 

sensitivity and balanced accuracy metrics. 

 
Figure 6.55 Classifier performance on BI-RADS 4B class. 

Figure 6.55 includes classifier performance evaluation results of experiments on 

BI-RADS 4B class. Here, neural network classifier obtains the highest balanced 

accuracy scores. Though, naïve Bayes classifier obtains the highest sensitivity score, 

which is below 10%. 

 
Figure 6.56 Classifier performance on BI-RADS 4C class. 
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Figure 6.56 includes classifier performance evaluation results of experiments on 

BI-RADS 4C class. According to the results, naïve Bayes classifier obtains the 

highest evaluation scores in terms of both balanced accuracy and sensitivity scores. 

 
Figure 6.57 Classifier performance on BI-RADS 5 class. 

Figure 6.57 includes classifier performance evaluation results of experiments on 

BI-RADS 5 class. Even though naïve Bayes classifier obtains the highest balanced 

accuracy score, random forest classifier obtains the highest sensitivity score. 

 
Figure 6.58 Classifier performance on BI-RADS 6 class. 
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Figure 6.58 includes classifier performance evaluation results of experiments on 

BI-RADS 6 class. LDA classifier obtains the highest balanced accuracy score. 

However, naïve Bayes classifier obtains the highest sensitivity score. Additionally k-

NN classifier obtains second best sensitivity score. 

Overall, we could say that Naïve Bayes classifier could be used to identify BI-

RADS property of masses. Moreover, BI-RADS 5 and BI-RADS 4 are the most 

successful classes for BI-RADS classification task. 
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7 CHAPTER SEVEN – 

INTEGRATING DATABASE AND CONTENT-BASED IMAGE 

RETRIEVAL: 

DIGITAL MAMMOGRAPHY MASS DATABASE 

7.1 Overview 

Database management systems are used to store and retrieve structured data in a 

uniform way. However, data storage and retrieval need changes during last decades, 

because of increasing rate of multimedia production. Currently, images are static and 

non-queryable objects from database management systems point of view. This makes 

hard to search large image collections for a particular image. Although some 

approaches propose using manually attached textual tags to search images, image 

search using a sample produces are expected be produce better results. Furthermore, 

manually attached tags are too subjective. 

CBIR approach aims to find a particular image in large image collections. But, all 

of the experimental CBIR systems use their own data representation format. 

Moreover, each system uses different subset of low-level image features. So, it is 

hard to integrate CBIR approach into any system related with image data. For 

instance, FIRE (Deselaers, Keysers, & Ney, 2005), which is a flexible image 

retrieval engine, uses its own server and data format, and uses HTTP protocol to 

communicate with its clients. Hence, if someone needs to use FIRE, he/she needs to 

learn HTTP protocol and usage of FIRE. Moreover, FIRE uses its own subset of low-

level features. Although FIRE is built on extensible infrastructure, C/C++ knowledge 

is needed to implement additional features. Finally, we could conclude that current 

CBIR systems need to be integrated to a data system that could be used by other 

systems easily. 

In this thesis, we propose a database management system extension aiming to 

integrate CBIR capabilities to a DBMS, which is well-known open source database 

management system named PostgreSQL. Although there are similar systems exist in 
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the literature, some of them are discontinued or inaccessible for public use and the 

others are too restricted to be used in any system. 

This chapter is organized as follows. Section 7.2 provides a literature overview for 

available database management systems that integrates CBIR approach. 

Multidimensional indexing and indexing methods is presented in section 7.3. 

Architecture of our extension is presented in section 7.4. Finally, section 7.5 includes 

performance evaluation of our extension on DEMS dataset. 

7.2 Available Image Database Management Systems 

Researchers have been trying to integrate CBIR methods into DBMS for last 

decade, this is ultimate goal of multimedia retrieval. Hence, some products or 

extension to DBMS have been developed and released on well-known relational 

database management systems. Furthermore, an ISO standard called 

SQL/MM:StillImage is being developed to define image related capabilities for 

relational databases and described in following sections. Although such efforts exist, 

there is no commonly accepted standard or product exists to be used for image access 

or index. 

This section includes commercial or non-commercial database management 

systems that we found in the literature that support image access methods. 

7.2.1 SQL-MM:Still-image 

SQL-MM is a standard for database management system aiming to define 

multimedia capabilities and access methods (ISO, 2003). Part 5 of the standard 

focuses on image object, its properties, related functions and access methods. 

According to the standard, an SQL/MM compliant database management system 

should store binary representation on the image with its height, width and image 

format metadata. 
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The standard includes some image manipulation functions like zooming, rotating, 

format changing and thumbnail creation. These methods are all related to StillImage 

object and should exist in a DBMS supporting SQL/MM standard. 

SQL/MM provides four types of low-level features for image access, which are 

average color, color histogram, positional color, and texture feature. There is no 

implementation restriction or details given in the standard. Consequently, DBMS 

developers are free to choose any color space for color features or any texture feature 

exists in the literature. Standard provides no support for new feature 

implementations. 

7.2.2 Oracle InterMedia 

Oracle interMedia (Pelski, 2005) is one of the well-known image extensions 

exists. It supports SQL/MM StillImage standard and provides three kinds of features, 

which are shape, texture and color. System uses java advanced imaging (JAI) 

technology to process images and oracle database management system as image 

storage. Overview of the system is given in Figure 7.1. 

 

Figure 7.1 Architectrue of oracle interMedia (Pelski, 2005). 



112 
 

 

 

Although oracle interMedia provides an extensible infrastructure, it seems main 

goal of the extension is to provide metadata access for images, especially for 

DICOM images. Moreover, oracle interMedia is tightly integrated with other oracle 

products like Oracle Application Server. Additionally, interMedia only supports 

range queries, which aims to find images whose distance is below a predefined 

distance score. 

7.2.2.1 CIRCE 

This is an experimental CBIR database management system that is built on Oracle 

Database 9i. To the best of our knowledge, system was being used in a PACS system 

that is called cbPACS (Traina et al., 2005) and no other image related system is using 

CIRCE. System architecture is given in Figure 7.2. 

 

Figure 7.2 Architecture of CIRCE (Traina et al., 2005). 

CIRCE uses a non-standard SQL syntax. So, it has its own SQL processor, which 

converts CIRCE SQL into traditional SQL commands. CIRCE uses slim-tree (Traina 

Jr., Traina, Seeger, & Faloutsos, 2000) which is an enhanced version of M-Tree 

(Ciaccia & Zezula, 1997). According to the experimental results, CIRCE provides a 

noticeable time reduce for querying a medical image archive. Moreover, SQL 

language syntax provided is so simple to understand and easy to use. However, 
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system is not publicly available and only used in a PACS system of Brazilian 

hospital. 

7.2.3 IBM AIV Extender 

This extension is based on QBIC project (Niblack et al., 1993) and implemented 

on IBM DB2 universal database. Similar to oracle interMedia, system supports CBIR 

mechanism. However, IBM discontinues the product, and does not provide any 

support for AIV extender. 

7.2.4 IBM DB2 Still Image Extender 

This extension (Stolze, 2005) aims to manipulate images stored in IBM DB2 

universal database. Extension supports SQL/MM functionality and manipulation 

functions only. No content-based access method is provided by this extension. So, 

this third party extension for IBM DB2 universal database aims only to provide 

metadata extraction and manipulation functions for images. 

7.3 Multidimensional Indexing 

Efficient processing and accessing to multimedia data is an important requirement 

for CBIR systems. Because all of the CBIR tools represent images in 

high-dimensional feature vectors, hence, they need to efficient access methods for 

high-dimensional data. For example, FIRE uses a memory based k-d tree 

implementation to improve search performance. In total, CBIR systems need a data 

storage mechanism that supports multi-dimensional data processing capabilities. 

Multi-dimensional indexing structures are a very hot topic during last decades. 

Most of the methods aim to work on geographical data like R-Tree (Guttman, 1984) 

to index two dimensional data. But query performance often worsens while 

dimensionality increases. Many specialized indexing structures proposed to 

overcome dimensionality problems. 
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Query types of multi-dimensional structures are different from traditional query 

types. There are two types of multi-dimensional query types exists which are nearest 

neighbor query and range query. Range queries aim to find multi-dimensional data 

whose distance to particular data is below a predefined threshold value. Nearest 

neighbor queries deals with number of retrieved documents instead of distances. In 

other words, nearest neighbor queries aim to find k multidimensional data points 

nearest to particular multi-dimensional point. 

In this section, we present an overview of multi-dimensional indexing structures 

in literature. 

7.3.1 k-d Tree 

This multidimensional access structure is an extended version of binary search 

tree (Bentley, 1975). The k- term denotes the dimension of data is being indexed. So, 

k-d tree is capable to index any multi-dimensional data. 

k-d tree uses as split algorithm which uses different dimensions at each level. A 

sample 2-d tree is presented in Figure 7.3. As you can see from the figure, each level 

is splitted by using different dimension. 

 

Figure 7.3 Sample k-d tree (Wikipedia, 2012). 

k-d tree supports both range and nearest neighbor queries. But performance of k-d 

tree decreases while dimension of data increased is increased. According to the 

experiments, it is shown that number of the elements must be greater than 2
k
 to 

ensure optimal query times. 
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7.3.2 X-Tree 

X-Tree (Berchtold, Keim, & Kriegel, 1996) is a hybrid approach that uses a 

hierarchical R-Tree like (Guttman, 1984) and linear array like dictionary. Aim of X-

Tree is minimizing overlapping regions by using super nodes, which store history of 

page splits occurred before. General overview of an X-Tree is given in Figure 7.4. 

 

Figure 7.4 General overview of X-Tree (Berchtold et al., 1996). 

Darker nodes of the Figure 7.4 represent super nodes. A typical X-Tree could be 

in a heterogeneous structure, so that non-leaf nodes could be either normal nodes or 

super nodes. Method uses most of algorithms from other multidimensional 

approaches like R*-Tree. Only insert method differs from other indexing approaches. 

During data insertion, method chooses a minimum-bounding rectangle (MBR), and 

tries to add data to that MBR region. If adding causes a split, method checks an 

overlapping region exists. If so, current node is enlarged and become a super node. 

So, X-Tree guarantees minimum number of overlapping regions exists in dataset. 

7.3.3 VP-Tree 

A vantage point tree (Yianilos, 1993) (vp-tree) is metric space partitioning tree 

based on distance metrics. Unlike k-d tree, VP-tree partitions the space into circular 

structures instead of rectilinear structures. Figure 7.5shows examples both k-d tree 

space partitioning and VP tree space partitioning. 
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(a) VP-tree Partitioning (b) k-d tree partitioning 

Figure 7.5 Space partitioning examples of (a) VP-tree and (b) k-d tree (Yianilos, 

1993) 

VP tree aims to split metric space into two groups using a distance threshold to a 

particular point (vantage point). In other words, points are categorized into two 

groups, which are close points whose distance is below distance threshold and 

distance points whose distance is above distance threshold. If the procedure is 

applied recursively, metric space is divided into small regions of neighbor data. 

7.3.3.1 M-Tree 

M-tree (Ciaccia & Zezula, 1997) is a specialized metric access method aiming to 

reduce access time for multi-dimensional data. Similar to vantage point tree, M-tree 

partitions data space by using center points determined at insertion time. A Sample 

M-tree node includes entries containing a routing object (Or) which is the centroid of 

its neighbor data points, pointer to tree covered by Or (T(Or)), covering radius of all 

child data (r(Or)), and distance to the parent routing object (d(Or, P(Or)). Graphical 

and hierarchical representation of M-tree is given in Figure 7.6. 

 

Figure 7.6 Routing object and child objects of M-tree (Patella, 

1999) 
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M-tree uses triangular inequality property of metric spaces to both truncate search 

tree and eliminate unnecessary distance calculation steps, which is depicted in Figure 

7.7. During query execution process, entries whose parent distance is higher than 

distance between query object and parent object are discarded, because of triangular 

inequality rule of metric spaces. 

 

Figure 7.7 Triangular inequality used in M-tree (Patella, 1999). 

 

In literature there is a number of works aiming to extend M-tree exists. Some of 

them aims to balance tree by reorganizing existing one (Traina Jr. et al., 2000), while 

an some of the proposes an efficient split algorithm with a second phase of tree 

reconstruction (Vieira, Jr, Chino, & Traina, 2004). Although such extensions exist, 

we prefer to use M-tree implementation for this thesis due to its single phase of 

construction. 

7.4 PostgreSQL Extension 

PostgreSQL is one of the open source database management systems exist in the 

literature. It was developed in University of California at Berkeley. Michael 

Stonebraker and his graduate students developed initial Postgres95 (Momjian, 2000). 

After Postgres95 is released, it become a community project and named PostgreSQL. 

PostgreSQL is written in C and includes many features that do not even exist in 

commercial database management systems. For instance, PostgreSQL supports 

object relational relations between tables, array storage, partial indexing etc. 
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Furthermore, PostgreSQL provides a very extensible programming API to implement 

new data types, indexing mechanisms, and user defined functions. It is crucial to 

implement new indexing structures to achieve goal of this thesis. However, current 

indexing API of PostgreSQL does not support space-partitioning trees. Hence, we 

design our own indexing structure on PostgreSQL database server. Another 

important property of PostgreSQL for this thesis is support of array types. Low-level 

descriptors of a CBIR system could be represented by numeric vector, and they can 

be stored and retrieved by using numerical array type of PostgreSQL. 

7.4.1 System Architecture 

Our extension uses two tables to maintain meta-data and indexing structure. All of 

the fields to be indexed using our extension should be registered for creation of meta-

data and indexing table structure. Then all of the operations on user data are 

manipulated by a trigger function to maintain indexing structure. Overview of our 

extension is given in Figure 7.8. 

 

Figure 7.8 Overview of proposed system architecture. 

Currently our approach requires a field with id in user table to link index tuple to 

user tuple and uses Euclidean distance to index data. Metadata table contains crucial 

User table with 
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Contains information 
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Indexing Table 
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contains pages. 

Registration 

User Query 
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information like index of root tuple, sequence names for both user id field and index 

table etc. Structure of metadata table is given in Table 7.1. 

Table 7.1 Structure of metadata table. 

Column Name Description 

schemaname Schema of user table 

tblname Name of the user table 

fieldname Field name to be indexed 

idxtablename Name of the index table 

rootnode Id of the root node 

data_seq_name Name of the id sequence of user table 

idx_seq_name Name of the id sequence of index table 

dim Dimension of the data 

 

Indexing table contains actual M-tree structure. A new data type named mnode is 

used for all tuples in index table. Currently, a node can contain data up to 8K due to 

size restrictions of PostgreSQL. Structure of index table is given in Table 7.2. 

Table 7.2 Structure of index table. 

Column Name Description 

id Unique identifier of index node. 

node Actual node data. 

 

As a result, any application that can produce low-level feature descriptors or user 

defined functions that return numerical array could use our extension to model their 

data. 

7.4.2 SQL Extension 

We implemented several user-defined functions to achieve M-tree functionality, 

since PostgreSQL does not provide any extensibility feature for its SQL engine. On 

the other hand, users of our extension need only to learn M-tree related functions 

instead of a new SQL-like language in this way. Currently, system does not involve 

with feature extraction from images. Meanwhile system supports any numerical 

arrays; any C or SQL function could be used for this purpose. 
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Extension is built on PostgreSQL v9.1, which provides two kind of C API. We 

prefer to use newest calling convention for our extension, which is also suggested by 

PostgreSQL developers. 

Running multi-dimensional queries on PostgreSQL is another issue, since we 

cannot modify the query results being produced. In ideal case, typical m-tree query 

could be able to return ids of user tuples and calculated distance values. Since 

PostgreSQL uses indexes to eliminate unnecessary tree lookup, modifying the query 

results is impossible. Hence, we have used set returning function method to create 

our own query engine, which simply returns ids and distance scores of user tuples. 

7.4.2.1 Available Functions 

We developed four utility functions to ensure data and index integrity, as well as 

debugging purposes. Functions are compiled and tested on a Core i5 machine with 4 

GB of ram. Besides, code could be compiled on other operating systems like 

windows or *nix. Detailed information about utility functions is given in following 

sections. 

 This function registers a user field to be 

indexed using M-tree. Function takes four parameters. First three parameters are 

strings and determine schema, table and field name to be indexed respectively. Forth 

parameter is integer and denotes dimension of the numeric array to be indexed. 

Figure 7.9 includes prototype and sample call of the function. 

create_mtree_field(cstring, cstring, cstring, integer) 

 

select 

create_mtree_field('public','edgehistogram','featureVector', 80); 

Figure 7.9 Prototype and sample function call of create_mtree_field function. 

Example creates an m-tree on field featureVector, which contains 80 elements. 

Function creates a metadata tuple in metadata table. After successful creation of 

meta-data table-indexing table is created and an empty root node is added to index 

7.4.2.1.1 create_mtree_field Function 
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data. Existing data is processed and initial creation of m-tree is completed. Finally, a 

trigger function is attached to user table to provide synchronization between user 

table and index table. 

 This function is used as trigger function that 

provides synchronization between user table and index table. Functions take no 

arguments and shouldn’t be called by user. create_mtree_field function 

automatically registers this function to user table on insert, update and delete 

operations. Hence, when user inserts updates or deletes a tuple from table, this 

function applies necessary modifications to the indexing table. 

 This function calculates Euclidean distance 

between two numeric arrays. This function takes two arguments, which are source 

and destination numeric array. Return value of this function is the Euclidean distance 

between two numeric arrays. Figure 7.10 shows function prototype and sample 

usage. 

euclideandistance(float8[], float8[]) 

 

select euclideandistance(‘{1,1,1,1}’, ‘{2,2,2,2}’); 

Figure 7.10 Prototype and sample function call of euclideandistance function. 

Here, example calculates distance between two four dimensional vectors which 

are <1,1,1,1> and <2,2,2,2> and returns distance value. 

 This function checks whether an m-tree node 

contains a particular object id. Function takes two arguments, which are m-tree node 

to check and an integer value that is id of the object. Figure 7.11 shows function 

prototype and sample usage. 

containsoid(mnode, integer) 

 

select containsoid(node1, 1); 

Figure 7.11 Prototype and sample function call of containsoid function. 

7.4.2.1.2 mtree_handler Function 

7.4.2.1.3 euclideandistance Function 

7.4.2.1.4 containsoid Function 
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Here, example checks whether node1 contains object id 1. We have implemented 

this function for debugging purposes. 

7.4.2.2 Range Queries 

This query type aims to find tuples whose distance to particular query point is 

below a predefined distance threshold. We have implemented a special function 

named rangequery to run range queries on our system. Since this function is a part 

of our query execution system, this function returns a set of tuples containing ids and 

distance scores. Prototype of this function is given in Figure 7.12. 

rangequery(cstring, cstring, cstring, float8[], float8) 

Figure 7.12 Prototype of rangequery function. 

Similar to create_mree_field, first three parameters denote schema, table and 

field names of user data, forth parameter denotes query object, and finally fifth 

parameter denotes threshold value. 

We have used range search algorithm that is provided with original M-Tree 

implementation. Algorithm uses triangular inequality narrow down search space. 

Range query algorithm of M-tree is given in Figure 7.13. 

RangeSearch(N: MTreeNode, range(Q, rQ): query) 
   Op ← Parent of N 
   if N is not Leaf 
      foreach Or in N 
         if abs(dist(Op, Q)-dist(Or, Op))<rQ+r(Or) 
            if d(Or, Q)<rQ+r(Or) 
               RangeSearch(T(Or), range(Q, rQ)) 
            end 
         end 
      end 
   else 
      foreach Oj in N 
         if abs(dist(Op, Q)- dist(Oj, Op)) ≤ rQ 
            if dist(Oj, Op) ≤ rQ 
               add Oj to resultset 
            end 
         end 
      end 
   end 
Figure 7.13 Range search algorithm of M-Tree (Patella, 1999). 



123 
 

 

 

Here dist(Op, Q) is calculated in previous nodes, so there is no need to calculate 

parent distance at each step. Sample execution of range query is depicted in Figure 

7.14. 

select * from rangequery('public', 'edgehistogram', 'feature', 

'{1,2,3,4}', 0.7) as rng(id integer, distance float8) 

Figure 7.14 Sample usage of range query. 

Here, query finds tuples whose distance to vector <1, 2, 3, 4> is below 0.7. Result 

set of this function contains ids and distances to query vector. 

7.4.2.3 Nearest Neighbor Queries 

This queries aims to find k nearest tuples to a specific point. Similar to range 

query type a set returning function named knnquery executes nearest neighbor 

queries on our indexing mechanism. Prototype of this function is given in Figure 

7.15. 

knnquery(cstring, cstring, cstring, float8[], 

int) 

Figure 7.15 Prototype of knnquery function. 

All of the parameters except the last one is same as range query function. Last 

parameter denotes k which is the number of nearest tuple to return. 

Algorithm of knnquery is similar to one used in R-Tree. Algorithm uses a priority 

queue define current maximal range value. Algorithm of knnsearch is presented in 

Figure 7.16. 

NN_Update function updates current result array and return maximum distance 

score, dk donates current level of maximum distance function which is defined as 

maximum distance score of current result array; dmin and dmax donates minimum and 

maximum distance limits of tree node T(Or) to query respectively. Formal definition 

of dmin and dmax is given following formula. 
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KnnNodeSearch(N: MTreeNode, NN(Q, k): query) 
   Op ← Parent of N 
   if N is not leaf node 
      foreach Or in N 
         if abs(dist(Op, Q)-dist(Or, Op))≤dk+r(Or) 
            if dmin(T(Or))≤dk 
               PR ← PR ∪ [T(Or), dmin(T(Or))] 
               if dmax(T(Or))<dk 
                  dk ← NN_Update(_, dmax(T(Or))) 
                  Remove all entries in PR which dmin(T(Or))>dk 
               end 
            end 
         end 
      end 
   else 
      foreach Oj in N 
         if dist(Oj, Q)≤dk 
            dk ← NN_Update(oid(Oj), dist(Oj, Q)) 
            Remove all entries in PR which dmin(T(Or))>dk 
         end 
      end 
   end 
Figure 7.16 Algorithm of knn search (Patella, 1999). 

Sample execution of nearest neighbor query is given in Figure 7.17. 

select * from knnquery('public', 'edgehistogram', 'feature', 

'{1,2,3,4}', 100) as knn(id integer, distance float8) 

Figure 7.17 Sample execution of nearest neighbor queries. 

Sample query finds first 100 nearest tuples to vector <1, 2, 3, 4>. Result set of this 

function contains ids and distances to query vector. 

7.4.2.4 Farthest Neighbor Queries 

Although this type of query is rarely used in CBIR systems, we have implemented 

this query type to find k farthest tuples to particular point. This kind of query will be 

helpful, when user needs to normalize distance scores of a result set. Similar to 

previous query types, a set returning function named kfnquery executes this query 
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and returns ids and distance scores. Figure 7.19 depicts prototype of kfnquery 

function. 

kfnquery(cstring, cstring, cstring, float8[], 

int) 

Figure 7.18 Prototype of kfnquery function. 

All parameters are same to knnquery function. Function uses same algorithm with 

knnquery function. But reverse of the distance scores is used instead of distance 

scores. We used logarithmic inversion of distance values which is given in following 

formula. 

                    (            ) 

Sample execution of nearest neighbor query is given in Figure 7.19. 

select * from kfnquery('public', 'edgehistogram', 'feature', 

'{1,2,3,4}', 100) as kfn(id integer, distance float8) 

Figure 7.19 Sample execution of farthest neighbor queries. 

Sample query finds first 100 farthest tuples to vector <1, 2, 3, 4>. Result set of 

this function contains ids and distances to query vector. 

7.5 Performance Evaluation 

We conducted a set of experiments on two datasets to measure performance of our 

system in both access time and information retrieval perspectives. We have executed 

all types of queries on a very huge dataset and calculated total execution time, 

number of page access and number of distance calculations to measure data access 

performance of our system. We generated Precision-Recall graphs to measure 

information retrieval performance of our system. However, we could only present the 

most successful Precision-Recall graphs. The rest of the precision recall graphs are 

presented in appendices. 
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7.5.1 Data Access Performance 

We used the ImageCLEFMed dataset to measure data access performance of M-

Tree. We run two kinds of queries to measure speed-up. First query type is sequential 

scan (SEQ) which is a typical database query executing multidimensional query 

without using M-Tree indexing method. SEQ queries are using distance function on 

all tuples in user data and query object. Then, database system eliminates the tuples 

that does not satisfy query condition. After running SEQ query, we run the same 

query with our extension and observed query parameters, which are number of page 

access, number of distance calculations and query execution time. We run each query 

type with two distinct points one of which belong to dataset and one of which does 

not. Hence we could compare data access parameters objectively. 

 

Figure 7.20 Number of page accesses of M-Tree and SEQ. 

Figure 7.20 describes total number of page accesses for each multidimensional 

query type. According to the results, M-tree reduces number of page accesses in all 

query types. But, it is interesting that M-tree performs better for KNN and range 

query types using a foreign data. On the contrary, performance of KFN increases 

using data point belonging to dataset. 
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Figure 7.21 Number of distance calculations of M-Tree and SEQ. 

Figure 7.21 includes total number of distance calculations performed of both SEQ 

and M-tree. According to the results, M-tree decreases the total number of results 

about 40% in the worst case. Similar to page access time results, query types show 

different performance characteristics in terms of query type and query object origin. 

Figure 7.22 shows query execution times of M-tree and SEQ. Although M-tree 

reduces number of page access and distance calculation, some SEQ queries run faster 

than M-tree. Various factors could cause this difference. First, PostgreSQL uses a 

very efficient cache mechanism. Hence, SEQ queries that fit in memory executed 

faster. Furthermore, we implemented our system on top of PostgreSQL’s query 

execution engine. So, SEQ could access tuple data faster than our system does. 

Additionally, our system is also using PostgreSQL’s query execution engine. But our 

system has very good access times comparing to other systems (Bueno et al., 2002). 

In sum, M-tree improves multidimensional access methods comparing to typical 

query execution. Although query execution times are worse than typical queries, we 

think that M-tree will outperform typical query in all metrics. 
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Figure 7.22 Total query execution times of MTree and SEQ. 

7.5.2 Performance of Shape Property Queries 

We used masses of DEMS dataset to measure image retrieval performance of our 

integration approach. First, we extract features of breast masses and stored them in a 

PostgreSQL DBMS using our extension. Then, we executed CBIR queries using 

each of the masses. As a result, we executed total number of 260 queries. Finally, we 

presented average of all performance queries. 

Figure 7.23 includes PR graph of Zernike moments feature on shape property 

queries. According to the results, Irregular class has the best precision results 

followed by Round class. Precision levels of Irregular class vary between 56% and 

37%. 

Irregular class also obtains the best PR scores using other features. This result 

supports previous findings. Unlike previous experimental results, Round class 

obtains the second score. So we could say that our system performs better on the 

most benign and malign shape classes. 
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Figure 7.23 PR graph of zernike moments on shape property. 

7.5.3 Performance of Margin Property Queries 

 

Figure 7.24 PR graph of edge histogram on margin property 

Edge Histogram feature achieves the best precision recall scores of experiments 

on margin property among other features. Figure 7.24 includes PR graph of margin 

property experiments. According to the results, performance of circumscribed and 
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spiculated class is higher than other classes, like experimental results of low-level 

features. In sum, we could say that our system is also capable to identify most benign 

and malign margin classes. 

7.5.4 Performance of Density Property Queries 

 

Figure 7.25 PR graph of homogeneous texture on density property. 

Homogeneous texture is the best feature according to the experimental results. 

Figure 7.25 includes precision recall graph of homogeneous texture feature of 

queries on margin property. According to the results, high- and iso-dense classes 

obtain the best precision results. Moreover, these results are consistent with low-level 

feature comparison results. 

7.5.5 Performance of BI-RADS Property Queries 

Homogeneous texture property also obtains the best performance results for 

BI-RADS property queries. According to the low-level feature experiments, 

BI-RADS 5 is the best identified class. Figure 7.26 includes PR graph of 

homogeneous texture property. Performance of queries on BI-RADS 5 class obtains 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

P
re

ci
si

o
n

 

Recall 

PR Graph of Homogeneous Texture on Density Property 

HighDense

Isodense

LowDensity

RadioLucent



131 
 

 

 

the highest precision scores among other classes. This result is also supports previous 

findings. 

 

Figure 7.26 PR graph of homogeneous texture on BI-RADS property. 
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8 CHAPTER EIGHT – 

CONCLUSIONS 

Aim of this thesis, in terms of broader perspective, is to integrate CBIR methods 

into traditional database management system. Therefore, large-scale image 

collections could be searched using sample image. However, in order to achieve this 

goal, we have several improvements. 

This thesis presents a new mammogram dataset named DEMS to be used in 

computer aided diagnosis and interpretation of mammography. DEMS includes only 

FFDM images since they are gaining importance with technological advances on 

image acquisition devices and do not include artificial artifacts like digitized 

mammograms. Additionally, FFDM images provide both sufficient contrast rates and 

intensity depth for mammogram interpretation. Lesions in DEMS have well defined 

contour information. In other words, instead of marking the lesions by using 

minimum bounding rectangle, expert determined the boundary of the lesions, 

thoroughly. DEMS uses Mammography Annotation Ontology, and all annotations 

are in XML format compliant with the state-of-the-art semantic web technologies. 

Thus, semantic relationships in mammography could be easily investigated and 

discovered by using any inference engines and query tools like SPARQL and 

SQWRL. Hence, DEMS is a crucial dataset for intelligent CADx with semantic 

interpretation of mammograms. Moreover, it is easy to parse and convert DEMS 

Annotation XML files to different annotation formats and any further work on this 

area could use our ontology for annotation or semantic research. 

DEMS dataset contains 485 mammography cases in total. In case selection stage, 

we considered all possible lesion types seen in mammographic examinations. As a 

result, DEMS contains 136 masses in 116 cases, 144 calcification in 119 cases, 20 

special cases in 19 cases and 97 associated findings in 65 cases. We believe that 

many researchers will use DEMS as a reference set in their researches on computer-

based detection and diagnosis of mammary lesions and hope to see it will help to 

close the semantic gap in interpretations of mammograms. 
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During development of DEMS, a new mammography annotation tool (MAT) 

based on our ontology is developed. MAT is developed using Qt, which is a cross 

platform C++ toolkit. Anyone using MAT could easily create a new dataset based on 

our ontology. Furthermore, MAT supports querying previously annotated cases using 

a sample one. We believe that MAT would be a fundamental tool for mammogram 

dataset developers and it would be a powerful information utility for mammography 

researchers. 

We proposed a new breast mass contour segmentation algorithm, called breast 

mass contour segmentation (BMCS). The approach is an extended version of 

classical seeded region growing algorithm with additional capability of dynamic 

threshold adjustment and proper stopping conditions for the size of segments to 

compensate for under and over segmentation. 

In order to evaluate BMCS, we first provide an extensive summary of 

segmentation evaluation methods available in literature, discussing descriptive 

powers of each evaluation metric individually, since segmentation accuracy or 

simple overlapping rate is not enough to express segmentation performance. The 

performance of BMCS is tested against the leading three region-based segmentation 

approaches, namely, level-set segmentation, seeded region growing segmentation 

and watershed segmentation. In order to perform a comparison, we have used a data 

set containing 260 masses. We have showed that BMCS mostly outperforms all the 

other methods tested and BMCS minimizes false positive pixels while obtaining high 

accuracy rates and least distance values to reference region. In other words, BMCS 

that is using adaptive threshold value and two stopping condition to prevent under 

and over segmentation, works well and improves the segmentation results in terms of 

several metrics. 

Additionally, we evaluated individual performances of low-level image features 

on breast mass classification task on four different properties; shape, margin, density 

and BIRADS score. Each property, except mass density, is tested on two datasets 

DEMS and DDSM. The DDSM dataset is very common and publically available 

dataset including scanned images of analog film mammography. Unlike the most of 
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the studies based on DDSM dataset, we try to use the whole dataset instead of 

selecting a subset. However, we had to discard 42 cases from DDSM dataset due to 

corrupted images file and/or incorrect annotation data. A complete set of all level 

image features used in this study, both from DDSM and DEMS, are available to 

researchers for further improvement and comparison at http://digimam.cs.deu.edu.tr/. 

We believe that this data set of low level image features can be a reference for future 

studies related to breast mass classifications. 

According to low-level feature performance evaluation results, we could say that 

shape and texture features are the best feature groups to be used to identify mass 

properties. Shape features identify shape and margin property of a mass better than 

other feature groups, while texture features identify density of a mass better than 

other feature groups. On the other hand BI-RADS property of a mass could be 

identified by using both texture and shape features. However, we can suggest no 

common features to be used in this task. Additionally, combination of the low-level 

features is still needed to be tested, since we only consider individual feature 

performances. 

This thesis is also contains performance evaluation of experiments on mass 

property classification task on two different dataset: DDSM and DEMS. Images in 

two dataset differ from each other, where DDSM dataset contains digitized 

mammography films while DEMS dataset contains only digital mammography 

images. Furthermore, some of the mass annotations of DDSM dataset are missing 

while DEMS contains fully annotated mass regions according to latest BI-RADS 

standard. Hence, we had some troubles on comparing performances of both datasets. 

Particularly, DDSM mass annotations have no density property and have different 

BI-RADS score properties from DEMS annotations. Although there are such 

differences, experimentations showed that DEMS dataset is more suitable than 

DDSM for performance evaluation purposes. 

We also measured the performance of manual region selections (MSR) and 

automatic segmented regions (ASR) on mass property classification task. We 
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observe that there is no significant difference between ASR and MSR region 

selection method in terms of all metrics. 

During development of this thesis, we also aim to choose best machine learning 

algorithm for mass classification task. We found that Naïve Bayes classifier is the 

most successful classifier for mass property classification task, according to the 

experimental results. 

Ultimate goal of this thesis is integration of content-based image retrieval 

methods and a relational database management system. We have implemented an 

extension for PostgreSQL database management system to accomplish this goal. Any 

multi-dimensional data could be efficiently searched and retrieved with the help of 

our extension. Furthermore, experimental results encourage us to improve our system 

by including new distance functions and low-level features etc. 

Major findings and contributions of this thesis can be summarized as follows: 

1) We proposed nine new low-level image features for mammogram masses as 

well as extensive investigation of the existing features for CBIR performance. 

2) We proposed a new segmentation algorithm for breast masses, called breast 

mass contour segmentation (BMCS), and showed that it increases 

segmentation accuracy of breast masses. 

3) We developed a new fully annotated mammography dataset called DEMS 

and a tool for mammogram annotation and retrieval. 

4) We integrated CBIR and DBMS together in PostreSQL. 

All in all, this thesis shows that a database management system could become an 

essential part of a content-based image retrieval system. But, we think that a database 

could become a complete content-based image retrieval system by integrating other 

CBIR tools like relevance feedback, low-level feature fusion, weighting etc. 
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APPENDICES 

A Low-Level Feature Performance Results. 

A.1 Low-Level Feature Performance Results of Shape Property 

A.1.1 Low-Level Feature Performances of N/A Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-CFD 99,79% 13,33% 87,50% 65,39% 

S-INM 99,79% 3,33% 98,32% 62,65% 

S-RDD 99,79% 3,33% 96,51% 62,21% 

T-GLC 99,79% 13,33% 91,97% 59,42% 

M-RMD 99,79% 15,00% 85,14% 57,55% 

M-CSD 99,79% 10,00% 88,22% 57,16% 

I-GEN 99,79% 3,33% 97,73% 56,81% 

M-RSD 99,79% 20,00% 81,33% 56,54% 

T-HIS 99,79% 6,67% 95,43% 56,42% 

T-GLD 99,79% 3,33% 97,55% 54,37% 

M-CMD 99,79% 13,33% 86,77% 52,50% 

S-FDE 99,79% 5,00% 95,39% 52,49% 

M-CWM 99,79% 0,00% 99,47% 50,00% 

T-EDH 99,79% 0,00% 99,75% 50,00% 

S-ZER 99,79% 1,67% 95,19% 50,00% 

S-RDF 99,79% 0,00% 99,88% 50,00% 

S-GEN 99,79% 0,00% 99,49% 50,00% 

M-CWK 99,79% 0,00% 99,06% 50,00% 

T-HOT 99,79% 0,00% 96,50% 50,00% 

M-CWS 99,79% 0,00% 99,54% 50,00% 

M-CWW 99,79% 13,33% 81,98% 50,00% 

M-GLS 99,79% 0,00% 98,47% 50,00% 

T-LBP 99,79% 0,00% 97,02% 50,00% 

T-TEB 99,79% 0,00% 96,14% 50,00% 

S-RBS 99,79% 0,00% 99,58% 50,00% 

S-DFD 99,79% 0,00% 99,96% 50,00% 
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A.1.2 Low-Level Feature Performances of Round Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-RBS 90,77% 28,34% 93,28% 85,81% 

S-INM 90,58% 30,37% 89,37% 85,10% 

S-DFD 90,58% 29,46% 86,88% 83,24% 

S-ZER 90,63% 33,08% 85,55% 83,14% 

S-GEN 90,55% 31,41% 87,62% 82,31% 

S-CFD 90,58% 13,79% 93,43% 79,90% 

S-FDE 90,58% 26,72% 90,63% 79,48% 

S-RDD 90,58% 24,08% 95,62% 77,90% 

S-RDF 90,58% 19,47% 92,98% 74,14% 

T-GLD 90,55% 23,11% 88,97% 70,67% 

T-HIS 90,55% 28,40% 88,30% 69,38% 

T-EDH 90,63% 17,33% 92,04% 68,55% 

T-LBP 90,55% 13,05% 94,88% 68,27% 

T-HOT 90,55% 25,63% 87,59% 67,75% 

T-GLC 90,55% 16,32% 93,23% 66,15% 

T-TEB 90,55% 15,43% 93,34% 64,84% 

M-GLS 90,55% 11,71% 93,11% 63,59% 

M-RSD 90,55% 16,91% 86,78% 62,87% 

M-RMD 90,55% 13,65% 87,57% 55,66% 

M-CSD 90,55% 16,46% 84,40% 55,42% 

M-CMD 90,55% 10,17% 90,10% 55,38% 

M-CWM 90,55% 8,67% 93,05% 55,38% 

M-CWS 90,63% 7,91% 93,76% 54,55% 

M-CWK 90,55% 9,18% 90,19% 53,48% 

I-GEN 90,55% 3,40% 97,19% 53,07% 

M-CWW 90,55% 11,92% 87,57% 51,14% 
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A.1.3 Low-Level Feature Performances of Oval Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-RDF 87,69% 28,35% 87,50% 80,91% 

S-DFD 87,31% 23,41% 86,47% 75,68% 

S-RBS 86,54% 22,48% 88,02% 71,93% 

S-FDE 85,00% 15,36% 89,54% 71,70% 

S-RDD 84,62% 15,53% 92,08% 71,48% 

S-GEN 84,88% 22,22% 86,13% 68,93% 

I-GEN 84,50% 21,71% 85,25% 64,37% 

S-INM 85,00% 15,49% 88,76% 63,86% 

T-HIS 85,27% 17,77% 91,98% 62,02% 

M-GLS 84,50% 22,24% 86,17% 61,00% 

S-ZER 84,88% 11,20% 91,24% 60,80% 

T-HOT 84,50% 16,61% 90,92% 60,31% 

T-GLD 84,50% 16,49% 90,81% 59,60% 

M-CWS 84,50% 10,71% 92,40% 59,50% 

M-RMD 84,50% 8,30% 94,82% 58,96% 

M-CSD 84,50% 5,63% 94,18% 58,91% 

S-CFD 85,00% 11,45% 90,44% 58,41% 

M-CMD 84,50% 8,64% 94,51% 58,27% 

T-EDH 84,50% 15,74% 88,39% 57,81% 

T-GLC 84,50% 15,61% 91,19% 57,58% 

M-CWK 84,50% 9,10% 92,45% 57,20% 

M-RSD 84,50% 6,19% 94,38% 54,14% 

T-LBP 84,50% 13,35% 90,87% 54,08% 

M-CWM 84,50% 9,58% 91,64% 53,50% 

M-CWW 84,50% 8,93% 90,79% 53,25% 

T-TEB 84,50% 4,68% 96,49% 52,79% 
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A.1.4 Low-Level Feature Performances of Lobular Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-RBS 78,46% 17,76% 88,33% 71,34% 

S-DFD 78,29% 17,52% 86,68% 68,22% 

S-GEN 79,07% 14,69% 90,92% 65,89% 

T-HOT 78,29% 16,38% 90,62% 64,80% 

S-RDD 78,29% 16,71% 86,37% 63,25% 

M-CMD 78,29% 13,76% 89,26% 62,49% 

S-INM 78,29% 12,67% 90,49% 62,08% 

M-RMD 78,29% 17,18% 86,65% 61,42% 

T-HIS 78,29% 16,53% 86,83% 60,83% 

S-FDE 78,29% 14,62% 88,29% 60,11% 

T-LBP 78,29% 15,00% 90,19% 59,14% 

T-GLC 78,29% 14,98% 88,53% 58,65% 

M-GLS 78,29% 13,11% 91,11% 58,55% 

M-CWM 78,29% 18,54% 84,42% 58,55% 

M-CSD 78,29% 10,03% 91,29% 58,16% 

S-ZER 78,29% 11,83% 90,83% 57,20% 

S-RDF 78,29% 11,41% 89,20% 56,78% 

T-TEB 78,29% 9,48% 92,66% 56,26% 

I-GEN 78,29% 6,80% 93,91% 55,52% 

M-CWS 78,29% 14,70% 85,98% 55,28% 

T-EDH 78,29% 16,07% 87,57% 55,18% 

T-GLD 78,29% 12,50% 89,77% 55,17% 

M-RSD 78,29% 8,39% 91,65% 54,78% 

M-CWK 78,68% 16,63% 85,21% 54,74% 

M-CWW 78,29% 5,70% 93,95% 54,52% 

S-CFD 78,29% 10,79% 89,80% 53,88% 
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A.1.5 Low-Level Feature Performances of Irregular Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-GEN 82,95% 69,81% 50,87% 82,54% 

T-EDH 81,78% 74,14% 42,67% 81,62% 

S-RBS 82,31% 73,35% 46,45% 81,08% 

S-ZER 79,85% 70,08% 46,47% 79,59% 

S-FDE 78,46% 71,60% 46,35% 79,38% 

S-INM 78,08% 72,67% 45,10% 78,67% 

S-DFD 79,23% 64,37% 53,40% 77,54% 

T-HOT 74,81% 72,36% 45,91% 74,62% 

S-RDF 71,92% 73,01% 42,13% 73,64% 

S-RDD 72,31% 75,41% 40,09% 73,46% 

T-GLD 69,77% 71,77% 41,43% 71,42% 

S-CFD 68,46% 69,06% 37,03% 70,07% 

T-HIS 68,99% 69,40% 48,43% 69,69% 

M-GLS 67,83% 73,45% 39,03% 69,39% 

T-GLC 67,44% 73,82% 41,38% 68,22% 

T-LBP 60,85% 78,77% 34,83% 64,27% 

M-RSD 61,24% 64,26% 38,62% 62,76% 

M-CWM 62,79% 70,27% 34,31% 60,89% 

M-CWS 58,14% 73,19% 30,83% 60,83% 

M-RMD 58,81% 62,07% 41,46% 60,13% 

I-GEN 60,55% 76,41% 28,12% 58,70% 

T-TEB 58,14% 81,52% 24,35% 58,23% 

M-CSD 59,43% 64,08% 36,77% 58,06% 

M-CWK 58,23% 66,97% 33,23% 55,57% 

M-CWW 58,77% 63,74% 36,65% 55,44% 

M-CMD 58,64% 66,34% 34,25% 53,95% 
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A.2 Low-Level Feature Performance Results of Margin Property 

A.2.1 Low-Level Feature Performances of N/A Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

T-LBP 96,16% 14,29% 91,63% 62,71% 

S-GEN 96,16% 13,89% 91,66% 59,70% 

M-CWK 96,16% 7,22% 96,19% 58,14% 

S-RBS 96,23% 6,83% 97,55% 57,94% 

M-CWM 96,27% 4,21% 98,47% 57,01% 

S-INM 96,17% 8,10% 96,91% 56,76% 

S-ZER 96,30% 5,56% 98,25% 56,75% 

T-GLC 96,16% 20,48% 85,34% 56,10% 

S-RDD 96,17% 6,98% 98,71% 55,79% 

S-DFD 96,17% 5,40% 98,38% 55,48% 

S-RDF 96,17% 4,84% 98,60% 55,04% 

M-GLS 96,16% 8,33% 93,90% 54,86% 

T-HOT 96,16% 4,76% 98,86% 54,59% 

T-HIS 96,16% 3,97% 98,95% 54,48% 

T-EDH 96,23% 6,19% 98,21% 54,34% 

S-FDE 96,17% 3,89% 98,18% 53,80% 

T-GLD 96,16% 4,60% 98,49% 53,51% 

T-TEB 96,16% 5,08% 95,66% 53,20% 

M-CWS 96,27% 3,49% 98,01% 52,73% 

S-CFD 96,19% 4,60% 96,07% 52,69% 

M-RSD 96,16% 13,73% 86,59% 52,46% 

M-RMD 96,16% 14,92% 85,65% 52,12% 

M-CSD 96,16% 12,70% 87,99% 51,98% 

M-CMD 96,16% 11,67% 89,29% 51,80% 

M-CWW 96,16% 15,63% 84,54% 51,11% 

I-GEN 96,16% 3,97% 96,31% 51,01% 
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A.2.2 Low-Level Feature Performances of Circumscribed Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-DFD 78,85% 52,53% 60,80% 79,80% 

S-RBS 79,62% 45,77% 71,25% 78,60% 

S-FDE 77,45% 43,83% 74,49% 76,22% 

S-RDF 77,45% 50,66% 66,00% 75,60% 

S-GEN 77,39% 48,80% 71,66% 75,14% 

S-INM 77,45% 42,87% 68,63% 74,86% 

S-RDD 77,45% 39,15% 78,21% 74,26% 

T-EDH 77,46% 46,35% 70,27% 74,15% 

S-ZER 77,46% 41,74% 73,56% 73,66% 

T-HIS 77,39% 49,50% 71,13% 70,19% 

T-HOT 77,39% 46,82% 75,85% 69,90% 

S-CFD 77,53% 42,19% 63,58% 68,83% 

T-GLD 77,39% 42,55% 76,94% 68,67% 

T-GLC 77,39% 42,98% 73,18% 68,31% 

M-RSD 77,39% 38,81% 64,77% 64,42% 

T-LBP 77,39% 44,63% 70,48% 64,08% 

I-GEN 77,39% 49,62% 57,80% 63,39% 

T-TEB 77,39% 32,99% 73,63% 61,96% 

M-GLS 77,39% 46,55% 62,90% 60,81% 

M-CWS 77,39% 44,25% 58,80% 60,32% 

M-CWM 77,39% 43,77% 59,96% 59,69% 

M-CSD 77,39% 41,89% 60,54% 59,30% 

M-RMD 77,39% 34,24% 68,26% 58,46% 

M-CWK 77,39% 42,13% 58,98% 56,71% 

M-CWW 77,39% 36,42% 65,16% 54,71% 

M-CMD 77,39% 33,43% 66,91% 52,77% 
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A.2.3 Low-Level Feature Performances of Microlobular Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-RDD 96,54% 4,64% 97,81% 82,13% 

S-FDE 96,54% 9,52% 95,04% 77,56% 

S-GEN 96,51% 7,78% 97,45% 74,90% 

T-HIS 96,51% 16,50% 93,34% 73,16% 

S-INM 96,54% 5,03% 96,57% 66,25% 

S-CFD 96,54% 15,48% 88,48% 65,27% 

S-ZER 96,54% 8,54% 94,11% 64,79% 

S-RBS 96,54% 2,98% 97,91% 59,32% 

M-CWW 96,51% 7,30% 92,21% 59,10% 

M-CWK 96,51% 5,08% 96,37% 57,97% 

M-GLS 96,51% 2,83% 98,29% 57,50% 

T-GLD 96,12% 9,79% 91,40% 56,63% 

T-TEB 96,51% 10,44% 90,62% 55,89% 

S-DFD 96,90% 3,75% 96,74% 55,56% 

T-HOT 96,51% 13,02% 90,60% 55,27% 

M-RSD 96,51% 9,72% 88,99% 55,15% 

T-GLC 96,51% 5,37% 96,05% 54,82% 

M-RMD 96,51% 10,16% 89,94% 54,48% 

M-CWM 96,51% 3,52% 96,63% 54,35% 

T-LBP 96,51% 3,81% 96,83% 53,68% 

S-RDF 96,54% 1,25% 98,47% 53,38% 

T-EDH 96,51% 5,76% 92,99% 52,49% 

M-CMD 96,51% 8,35% 91,51% 51,87% 

M-CSD 96,51% 7,15% 91,47% 51,43% 

M-CWS 96,51% 0,71% 98,35% 50,67% 

I-GEN 96,51% 0,34% 99,06% 50,00% 
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A.2.4 Low-Level Feature Performances of Obscured Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-RDD 88,08% 14,02% 88,12% 63,75% 

S-GEN 87,98% 8,86% 94,17% 60,75% 

M-CWS 87,98% 6,84% 95,38% 60,55% 

T-LBP 87,98% 19,09% 88,66% 60,49% 

T-GLC 87,98% 14,09% 92,10% 60,32% 

T-HOT 87,98% 14,58% 92,02% 60,17% 

S-RBS 88,08% 8,00% 93,57% 58,18% 

S-RDF 88,08% 5,06% 95,39% 57,92% 

T-EDH 87,98% 11,08% 92,60% 57,91% 

S-ZER 88,08% 12,82% 89,05% 56,96% 

M-CSD 87,98% 7,56% 92,93% 56,89% 

M-GLS 87,98% 8,09% 95,16% 56,51% 

T-HIS 87,98% 8,50% 94,41% 56,30% 

S-FDE 88,08% 9,36% 91,68% 55,96% 

M-CMD 87,98% 6,39% 95,10% 55,42% 

T-GLD 87,98% 9,72% 93,94% 55,40% 

M-RMD 87,98% 9,26% 91,62% 55,34% 

S-INM 88,08% 8,92% 92,48% 55,13% 

M-CWK 87,98% 7,00% 93,57% 54,90% 

S-CFD 88,08% 4,90% 96,55% 53,96% 

S-DFD 88,08% 4,95% 95,15% 53,70% 

M-CWM 87,98% 5,17% 94,29% 53,09% 

M-CWW 87,98% 6,86% 93,73% 52,86% 

T-TEB 87,98% 3,46% 96,72% 52,42% 

I-GEN 87,98% 1,75% 97,47% 51,30% 

M-RSD 87,98% 5,07% 94,14% 50,29% 
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A.2.5 Low-Level Feature Performances of Spiculated Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

T-EDH 82,56% 32,96% 86,64% 79,37% 

S-FDE 83,46% 38,85% 80,91% 78,51% 

S-GEN 79,07% 36,31% 78,69% 75,08% 

T-HIS 77,52% 44,71% 80,25% 74,88% 

S-INM 81,54% 29,43% 81,10% 74,64% 

S-RDD 77,69% 40,61% 75,25% 74,15% 

S-DFD 78,85% 28,42% 81,66% 74,12% 

S-ZER 74,94% 32,52% 82,93% 73,21% 

S-RBS 76,15% 30,53% 82,80% 72,24% 

T-HOT 75,97% 42,74% 80,19% 71,14% 

T-GLC 75,45% 35,98% 80,13% 70,94% 

S-RDF 76,54% 35,27% 78,17% 70,09% 

T-GLD 74,94% 41,65% 74,70% 67,96% 

S-CFD 74,94% 15,74% 87,50% 65,41% 

M-GLS 74,94% 32,32% 79,54% 65,14% 

M-CWS 74,94% 23,69% 82,58% 63,47% 

I-GEN 75,30% 26,93% 78,18% 62,48% 

T-LBP 74,94% 29,45% 80,34% 60,93% 

M-CSD 74,94% 9,75% 90,74% 56,29% 

M-CWM 74,94% 21,00% 80,85% 55,80% 

M-CMD 74,94% 18,09% 82,99% 55,04% 

M-RSD 74,94% 14,18% 87,13% 54,88% 

M-RMD 74,94% 12,63% 87,39% 54,26% 

M-CWK 74,94% 19,50% 80,89% 54,00% 

T-TEB 74,94% 27,10% 75,13% 53,85% 

M-CWW 75,01% 14,74% 85,48% 53,37% 
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A.2.6 Low-Level Feature Performances of Irregular Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-RDF 81,15% 30,26% 73,43% 63,15% 

S-INM 81,92% 33,83% 71,43% 61,82% 

S-GEN 81,01% 29,58% 75,11% 61,25% 

S-RDD 81,15% 30,12% 73,25% 60,02% 

M-GLS 81,01% 29,33% 74,94% 58,67% 

T-LBP 81,01% 27,24% 77,57% 58,23% 

T-GLC 81,01% 26,24% 77,21% 57,54% 

S-RBS 81,15% 36,82% 66,49% 57,27% 

S-DFD 81,15% 28,40% 75,18% 56,79% 

M-RMD 81,01% 30,38% 71,34% 56,22% 

T-EDH 81,01% 32,11% 70,31% 55,37% 

M-CWK 81,01% 27,83% 72,79% 54,96% 

T-HOT 81,01% 25,34% 77,36% 54,89% 

I-GEN 81,78% 28,00% 73,47% 54,65% 

T-GLD 80,62% 27,19% 76,14% 54,64% 

T-HIS 81,01% 26,20% 76,45% 54,57% 

S-FDE 81,01% 29,65% 71,38% 54,54% 

M-CWS 81,01% 31,62% 68,93% 54,53% 

M-CWM 81,01% 29,99% 71,00% 54,29% 

S-CFD 81,15% 30,99% 69,28% 54,23% 

T-TEB 81,01% 30,57% 69,03% 54,11% 

S-ZER 81,15% 29,68% 71,74% 53,08% 

M-CWW 81,78% 27,37% 71,64% 52,04% 

M-CSD 81,01% 28,31% 71,29% 51,93% 

M-CMD 81,01% 30,01% 69,29% 51,33% 

M-RSD 81,01% 25,38% 72,90% 50,30% 
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A.3 Low-Level Feature Performance Results of Density Property 

A.3.1 Low-Level Feature Performances of Radiolucent Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

T-HIS 91,86% 29,17% 93,52% 73,40% 

I-GEN 90,70% 6,94% 97,44% 71,79% 

T-HOT 89,53% 34,03% 93,66% 71,31% 

T-TEB 90,70% 29,17% 95,09% 69,71% 

T-EDH 90,70% 21,53% 88,03% 66,29% 

S-RDD 91,47% 20,14% 96,28% 65,15% 

S-INM 90,77% 5,56% 97,24% 62,85% 

S-GEN 90,70% 10,42% 94,37% 61,70% 

T-LBP 91,47% 9,72% 96,30% 61,59% 

S-RBS 90,77% 8,68% 95,71% 61,38% 

M-RSD 90,70% 11,81% 91,45% 61,38% 

T-GLC 90,70% 11,11% 95,44% 61,32% 

M-GLS 91,47% 12,85% 96,44% 61,16% 

S-RDF 90,77% 7,99% 95,68% 61,16% 

T-GLD 91,09% 12,50% 94,94% 60,26% 

M-RMD 90,70% 4,51% 97,65% 59,46% 

S-DFD 90,77% 6,25% 94,90% 59,25% 

S-ZER 90,77% 15,97% 88,47% 58,90% 

S-FDE 90,77% 5,90% 95,18% 58,47% 

S-CFD 90,77% 6,25% 93,10% 55,29% 

M-CWM 90,70% 3,47% 96,94% 54,91% 

M-CWS 90,70% 3,47% 96,33% 54,33% 

M-CWK 90,70% 2,43% 96,15% 54,06% 

M-CMD 90,70% 2,78% 97,19% 53,21% 

M-CSD 90,70% 5,21% 94,62% 52,03% 

M-CWW 90,70% 4,17% 95,05% 51,98% 
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A.3.2 Low-Level Feature Performances of Low-Dense Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-RDF 97,69% 9,72% 98,06% 79,76% 

T-GLD 97,67% 16,67% 97,82% 78,97% 

S-RDD 97,69% 12,50% 95,69% 76,39% 

M-CMD 98,06% 13,89% 99,54% 74,60% 

M-RMD 97,67% 6,94% 98,61% 72,82% 

S-DFD 97,69% 9,72% 95,76% 70,54% 

S-RBS 97,69% 5,56% 96,45% 69,16% 

T-HOT 97,67% 22,22% 95,77% 66,27% 

M-CWM 97,67% 9,72% 99,17% 66,27% 

M-CWS 97,67% 4,17% 98,88% 66,07% 

T-LBP 97,67% 11,11% 98,94% 66,07% 

S-ZER 97,69% 9,72% 96,57% 65,88% 

M-GLS 98,06% 8,33% 99,17% 65,87% 

T-HIS 97,67% 11,11% 99,01% 65,87% 

T-GLC 97,67% 8,33% 98,68% 65,67% 

T-EDH 97,67% 11,11% 95,97% 64,29% 

M-CSD 97,67% 15,28% 87,33% 59,92% 

S-CFD 97,69% 13,89% 86,81% 59,91% 

M-CWK 97,67% 1,39% 98,61% 57,94% 

M-RSD 97,67% 11,11% 89,35% 57,34% 

S-FDE 97,69% 6,94% 95,07% 56,50% 

M-CWW 97,67% 11,11% 86,81% 53,77% 

T-TEB 97,67% 13,89% 86,84% 52,98% 

I-GEN 97,67% 0,00% 99,54% 50,00% 

S-GEN 97,67% 0,00% 98,41% 50,00% 

S-INM 97,69% 0,00% 98,75% 50,00% 
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A.3.3 Low-Level Feature Performances of Iso-Dense Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

M-GLS 70,93% 63,41% 64,92% 72,21% 

T-HOT 69,38% 58,64% 64,30% 68,76% 

I-GEN 65,50% 52,58% 68,07% 65,61% 

T-HIS 65,12% 47,12% 68,24% 64,69% 

M-CMD 64,34% 43,71% 71,62% 62,78% 

T-LBP 62,02% 39,09% 68,47% 62,11% 

T-GLD 62,02% 40,15% 66,89% 62,11% 

M-CWM 62,40% 32,50% 75,84% 61,04% 

T-GLC 61,24% 37,42% 70,61% 60,50% 

S-RBS 62,02% 35,08% 69,80% 60,24% 

S-DFD 62,02% 32,75% 69,71% 60,12% 

M-RMD 59,30% 30,38% 72,58% 59,86% 

S-INM 63,08% 31,54% 72,04% 59,86% 

S-RDD 61,24% 43,82% 62,41% 58,98% 

S-ZER 59,23% 38,53% 66,50% 58,65% 

S-GEN 58,14% 33,64% 69,54% 57,79% 

S-RDF 57,75% 36,73% 65,32% 57,57% 

T-EDH 56,98% 33,79% 71,73% 56,21% 

M-CSD 57,36% 30,08% 72,30% 55,90% 

M-CWK 58,53% 24,32% 74,21% 55,39% 

M-CWS 58,53% 28,56% 73,37% 54,42% 

M-CWW 58,53% 24,47% 75,56% 54,36% 

S-CFD 57,36% 26,08% 73,25% 53,86% 

S-FDE 56,20% 30,75% 68,81% 53,29% 

M-RSD 57,36% 24,92% 74,32% 52,70% 

T-TEB 57,36% 26,21% 74,10% 51,56% 
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A.3.4 Low-Level Feature Performances of High-Dense Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

M-GLS 77,91% 69,70% 71,37% 77,38% 

I-GEN 74,03% 74,22% 59,64% 74,21% 

T-HIS 73,64% 69,49% 62,98% 73,72% 

T-HOT 74,03% 58,33% 73,69% 73,61% 

M-CMD 67,05% 73,09% 48,27% 65,98% 

T-LBP 64,34% 66,53% 46,07% 64,28% 

M-CWM 62,40% 73,59% 36,43% 63,09% 

T-GLC 63,18% 67,51% 45,36% 62,94% 

M-RMD 62,40% 71,26% 36,13% 62,29% 

T-GLD 62,40% 60,45% 48,45% 61,96% 

S-RDF 61,63% 62,53% 46,44% 61,91% 

S-INM 60,85% 71,51% 38,15% 61,46% 

S-GEN 62,02% 65,75% 43,81% 61,27% 

S-ZER 62,02% 52,67% 54,39% 60,94% 

S-RDD 60,77% 54,15% 53,50% 60,81% 

S-DFD 59,30% 63,39% 44,54% 60,30% 

S-RBS 59,23% 64,06% 44,48% 59,20% 

S-FDE 59,23% 60,71% 42,26% 57,76% 

M-CSD 57,75% 55,37% 48,63% 57,14% 

S-CFD 56,54% 53,38% 46,42% 56,32% 

M-CWS 55,04% 70,34% 34,52% 56,15% 

T-EDH 55,43% 54,66% 49,64% 55,20% 

T-TEB 54,65% 53,95% 46,67% 53,88% 

M-CWK 53,88% 70,13% 30,60% 53,64% 

M-RSD 55,04% 55,51% 45,18% 52,96% 

M-CWW 55,43% 57,34% 42,32% 52,54% 

 

  



170 
 

 

 

A.4 Low-Level Feature Performance Results of BI-RADS Property 

A.4.1 Low-Level Feature Performances of BI-RADS 0 Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-GEN 93,30% 14,44% 95,49% 78,98% 

S-RBS 93,30% 14,42% 93,50% 74,13% 

S-DFD 93,25% 20,63% 92,31% 73,59% 

T-LBP 93,56% 30,05% 92,08% 72,05% 

T-GLC 94,00% 23,13% 96,62% 70,92% 

S-FDE 93,30% 10,88% 93,38% 67,13% 

S-INM 93,30% 10,55% 93,93% 66,86% 

T-HOT 93,49% 27,41% 95,59% 66,67% 

T-GLD 93,30% 27,87% 92,86% 66,55% 

S-ZER 93,30% 13,03% 93,63% 63,05% 

S-CFD 93,30% 4,53% 97,40% 60,92% 

T-HIS 93,45% 13,21% 98,10% 60,73% 

T-EDH 93,30% 11,93% 95,24% 59,81% 

S-RDD 93,30% 16,84% 86,29% 59,03% 

I-GEN 93,30% 3,01% 98,28% 55,72% 

S-RDF 93,32% 4,43% 97,77% 54,93% 

M-CWS 93,30% 5,60% 97,28% 54,71% 

M-GLS 93,30% 5,28% 98,06% 54,09% 

M-CMD 93,30% 6,28% 94,81% 53,52% 

M-CWK 93,30% 3,32% 97,93% 53,29% 

M-CSD 93,30% 9,47% 91,62% 52,83% 

M-RMD 93,30% 10,11% 90,48% 51,95% 

M-CWM 93,30% 1,46% 98,54% 51,38% 

M-CWW 93,30% 4,96% 95,46% 51,18% 

M-RSD 93,30% 5,37% 94,42% 51,13% 

T-TEB 93,30% 3,19% 97,22% 50,98% 
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A.4.2 Low-Level Feature Performances of BI-RADS 1 Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

T-TEB 99,89% 11,11% 96,73% 75,70% 

S-RDD 99,93% 2,78% 99,34% 66,67% 

M-CWW 99,89% 2,78% 92,48% 62,31% 

T-HOT 99,89% 5,56% 97,80% 60,35% 

I-GEN 99,89% 2,78% 97,10% 59,78% 

T-LBP 99,89% 5,56% 96,12% 55,29% 

M-CSD 99,89% 8,33% 89,99% 52,07% 

S-CFD 99,89% 8,33% 89,20% 50,00% 

M-RSD 99,89% 2,78% 93,80% 50,00% 

M-CWM 99,89% 0,00% 98,76% 50,00% 

T-GLC 99,89% 0,00% 97,31% 50,00% 

S-DFD 99,89% 0,00% 99,77% 50,00% 

T-HIS 99,89% 0,00% 97,66% 50,00% 

T-GLD 99,89% 0,00% 99,66% 50,00% 

S-RBS 99,89% 0,00% 99,91% 50,00% 

M-CMD 99,89% 0,00% 97,40% 50,00% 

T-EDH 99,89% 0,00% 99,96% 50,00% 

M-CWK 99,89% 0,00% 99,66% 50,00% 

M-CWS 99,89% 0,00% 99,66% 50,00% 

S-ZER 99,89% 0,00% 97,32% 50,00% 

M-GLS 99,89% 0,00% 99,16% 50,00% 

S-RDF 99,89% 0,00% 99,87% 50,00% 

M-RMD 99,89% 0,00% 92,16% 50,00% 

S-FDE 99,89% 0,00% 94,22% 50,00% 

S-GEN 99,89% 0,00% 98,66% 50,00% 

S-INM 99,89% 0,00% 99,68% 50,00% 
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A.4.2 Low-Level Feature Performances of BI-RADS 2 Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-RDF 95,22% 16,27% 92,14% 75,81% 

T-HIS 95,21% 16,32% 95,56% 71,47% 

S-RBS 95,39% 12,78% 92,28% 68,14% 

T-HOT 95,21% 15,63% 94,52% 67,79% 

T-GLC 95,21% 19,71% 92,71% 67,61% 

S-RDD 95,26% 18,67% 93,00% 67,05% 

T-LBP 95,21% 19,03% 92,90% 66,90% 

T-EDH 95,35% 14,78% 92,55% 66,60% 

S-DFD 95,22% 17,13% 89,03% 65,67% 

S-FDE 95,22% 13,47% 91,87% 63,95% 

S-ZER 95,43% 9,18% 96,00% 62,95% 

I-GEN 95,21% 10,32% 95,01% 61,84% 

M-GLS 95,21% 17,35% 90,01% 61,31% 

T-GLD 95,21% 16,97% 93,44% 61,31% 

S-CFD 95,22% 9,27% 92,39% 60,57% 

S-GEN 95,21% 9,57% 94,51% 59,51% 

M-CWM 95,39% 9,20% 94,35% 58,83% 

M-CWS 95,39% 8,80% 94,42% 56,79% 

M-CWK 95,21% 6,00% 94,30% 56,38% 

M-RMD 95,21% 14,48% 87,17% 56,35% 

M-RSD 95,21% 14,37% 87,47% 56,07% 

M-CMD 95,21% 8,63% 91,41% 56,02% 

M-CWW 95,21% 10,29% 90,55% 55,59% 

T-TEB 95,21% 9,05% 93,67% 55,23% 

S-INM 95,37% 10,84% 92,61% 54,90% 

M-CSD 95,21% 6,96% 92,92% 54,19% 
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A.4.3 Low-Level Feature Performances of BI-RADS 3 Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-FDE 80,46% 25,36% 84,32% 75,08% 

T-HIS 80,46% 35,24% 83,08% 74,03% 

S-GEN 80,46% 28,58% 85,48% 73,82% 

S-ZER 80,46% 22,66% 85,97% 71,00% 

T-GLD 80,62% 26,27% 86,75% 70,55% 

S-RBS 80,46% 19,21% 88,12% 69,38% 

S-RDF 80,46% 22,79% 86,90% 67,47% 

S-INM 80,46% 17,12% 87,70% 67,41% 

S-RDD 80,46% 15,70% 92,22% 65,68% 

S-DFD 80,41% 22,95% 83,22% 65,30% 

T-EDH 80,46% 14,08% 91,10% 64,52% 

S-CFD 80,46% 15,05% 87,97% 62,46% 

I-GEN 80,46% 19,72% 85,60% 61,87% 

M-RSD 80,46% 11,06% 90,96% 61,83% 

M-GLS 80,46% 17,29% 86,98% 61,13% 

T-LBP 80,46% 14,85% 90,36% 60,94% 

M-CWS 80,46% 10,26% 90,90% 60,55% 

T-GLC 80,46% 18,00% 88,48% 60,22% 

T-HOT 80,46% 23,18% 85,52% 60,15% 

M-CMD 80,46% 9,77% 91,37% 57,76% 

M-RMD 80,46% 9,49% 92,22% 56,34% 

M-CSD 80,53% 11,17% 89,35% 56,17% 

T-TEB 80,46% 7,01% 94,44% 55,24% 

M-CWM 80,46% 16,11% 85,45% 54,45% 

M-CWW 80,46% 10,13% 90,93% 54,16% 

M-CWK 80,46% 8,81% 89,75% 51,87% 
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A.4.4 Low-Level Feature Performances of BI-RADS 4 Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

T-HIS 57,30% 71,87% 36,82% 60,13% 

S-GEN 59,46% 64,73% 42,10% 58,98% 

T-GLC 57,41% 64,01% 44,22% 58,85% 

T-HOT 56,42% 62,52% 46,88% 58,62% 

S-ZER 56,06% 72,84% 33,35% 58,10% 

S-DFD 57,68% 68,86% 36,04% 57,94% 

M-GLS 56,17% 71,69% 34,14% 57,61% 

T-GLD 58,18% 65,49% 41,93% 57,48% 

S-RBS 58,41% 68,17% 36,36% 55,81% 

T-EDH 54,59% 70,26% 34,07% 55,42% 

M-CWK 52,84% 80,03% 23,83% 55,36% 

S-INM 56,84% 81,06% 21,54% 54,77% 

T-LBP 55,95% 65,27% 40,11% 54,74% 

S-FDE 58,98% 62,64% 41,65% 54,72% 

S-RDD 59,02% 71,48% 31,27% 54,68% 

S-RDF 54,94% 78,82% 24,64% 54,63% 

S-CFD 56,95% 59,80% 40,59% 53,96% 

M-CWS 53,20% 82,77% 19,47% 53,03% 

M-CWM 55,91% 72,51% 29,43% 52,56% 

M-RSD 56,64% 59,66% 40,57% 51,97% 

M-CSD 56,97% 59,23% 41,08% 51,70% 

M-CMD 56,17% 65,68% 34,79% 51,26% 

I-GEN 54,04% 64,11% 35,91% 50,93% 

T-TEB 53,46% 67,33% 32,63% 50,75% 

M-CWW 56,82% 60,62% 39,08% 50,58% 

M-RMD 56,53% 57,39% 42,55% 50,47% 
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A.4.5 Low-Level Feature Performances of BI-RADS 4A Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-GEN 93,02% 4,63% 98,47% 63,75% 

M-CWM 93,02% 9,26% 92,43% 62,29% 

M-CWS 93,02% 6,02% 96,63% 60,97% 

M-RSD 93,02% 9,72% 91,56% 60,63% 

M-RMD 93,02% 9,72% 93,19% 60,14% 

M-CWW 93,02% 8,33% 96,42% 59,03% 

M-CSD 93,02% 5,09% 96,25% 57,78% 

T-HIS 93,41% 5,56% 98,33% 57,57% 

S-DFD 93,08% 3,70% 97,41% 56,74% 

M-CMD 93,02% 2,78% 97,22% 56,32% 

S-CFD 93,08% 3,24% 97,44% 56,04% 

S-RBS 93,08% 4,17% 96,44% 55,44% 

T-LBP 93,41% 10,19% 95,90% 55,35% 

S-ZER 93,08% 4,17% 95,68% 54,82% 

M-CWK 93,02% 4,63% 95,73% 54,38% 

T-GLC 93,02% 3,70% 96,67% 54,31% 

S-RDF 93,08% 3,24% 97,92% 54,17% 

M-GLS 93,02% 3,70% 96,98% 53,68% 

T-GLD 93,02% 4,63% 95,56% 52,92% 

S-RDD 93,08% 0,93% 98,10% 52,66% 

S-FDE 93,08% 2,78% 97,09% 50,90% 

T-EDH 93,02% 2,78% 97,08% 50,56% 

I-GEN 93,02% 0,46% 98,68% 50,07% 

T-HOT 93,02% 1,85% 95,63% 50,00% 

T-TEB 93,02% 1,85% 97,85% 50,00% 

S-INM 93,08% 0,00% 97,58% 50,00% 
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A.4.6 Low-Level Feature Performances of BI-RADS 4B Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

T-EDH 95,35% 8,33% 96,61% 61,69% 

S-CFD 95,38% 8,33% 92,93% 61,49% 

M-RSD 95,35% 7,64% 93,22% 61,18% 

I-GEN 95,35% 1,39% 99,22% 56,30% 

T-LBP 95,35% 4,17% 98,37% 56,30% 

M-CMD 95,35% 2,08% 98,34% 56,10% 

S-RBS 95,38% 2,78% 95,75% 56,10% 

T-GLC 95,35% 2,78% 96,07% 55,89% 

T-HIS 95,35% 6,94% 97,09% 55,69% 

S-INM 95,38% 3,47% 98,28% 55,28% 

M-GLS 95,35% 3,47% 96,14% 54,78% 

S-RDD 95,38% 2,78% 97,71% 54,50% 

M-CSD 95,74% 7,64% 91,23% 54,17% 

S-RDF 95,38% 1,39% 98,25% 53,56% 

M-CWS 95,35% 1,39% 97,93% 53,56% 

S-ZER 95,38% 3,47% 96,66% 53,46% 

M-CWK 95,35% 0,69% 98,10% 53,15% 

S-DFD 95,38% 3,47% 96,56% 52,76% 

M-CWW 95,35% 8,33% 91,97% 52,74% 

S-GEN 95,35% 0,69% 98,75% 52,34% 

S-FDE 95,38% 2,78% 97,53% 52,15% 

T-HOT 95,35% 2,78% 96,27% 51,93% 

T-TEB 95,35% 1,39% 97,97% 50,00% 

M-RMD 95,35% 0,69% 96,58% 50,00% 

T-GLD 95,35% 0,00% 97,49% 50,00% 

M-CWM 95,35% 0,00% 97,83% 50,00% 
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A.4.7 Low-Level Feature Performances of BI-RADS 4C Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

T-HOT 92,64% 19,30% 90,38% 67,68% 

S-RDD 92,69% 8,33% 97,12% 67,29% 

S-ZER 92,69% 17,11% 88,01% 64,50% 

S-FDE 92,69% 11,84% 91,21% 63,95% 

S-GEN 92,64% 13,16% 95,61% 63,10% 

T-HIS 93,02% 17,54% 96,03% 62,32% 

S-INM 92,69% 12,72% 91,25% 59,51% 

M-CWS 92,64% 3,95% 96,48% 58,02% 

M-GLS 92,64% 8,33% 95,68% 57,18% 

T-LBP 92,64% 4,39% 96,79% 56,85% 

M-RMD 92,64% 8,77% 92,89% 56,41% 

S-DFD 92,69% 4,82% 96,15% 54,99% 

T-GLD 92,64% 4,39% 95,68% 54,88% 

I-GEN 92,64% 2,19% 98,43% 54,34% 

S-RBS 92,69% 3,95% 96,42% 54,23% 

M-CWM 92,64% 4,39% 95,57% 54,13% 

M-CWW 92,64% 4,39% 94,77% 54,13% 

T-TEB 92,64% 3,51% 97,14% 54,04% 

M-CWK 92,64% 4,39% 94,39% 53,80% 

S-RDF 92,69% 3,51% 97,64% 53,59% 

S-CFD 92,69% 3,07% 95,45% 53,33% 

M-CMD 92,64% 2,19% 95,96% 52,21% 

T-GLC 92,64% 7,02% 92,19% 51,79% 

M-CSD 92,64% 7,89% 91,00% 51,79% 

T-EDH 92,64% 13,16% 85,91% 51,29% 

M-RSD 92,64% 2,19% 96,30% 51,17% 
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A.4.8 Low-Level Feature Performances of BI-RADS 5 Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

T-EDH 80,23% 43,35% 72,40% 77,80% 

S-GEN 77,13% 48,33% 70,08% 76,64% 

S-FDE 75,00% 38,49% 77,25% 75,86% 

S-INM 75,77% 33,48% 77,37% 75,44% 

S-DFD 79,23% 30,30% 78,66% 73,95% 

S-RDD 81,92% 40,60% 73,59% 73,42% 

S-RBS 77,31% 42,84% 71,36% 72,95% 

S-ZER 77,69% 36,88% 79,09% 72,83% 

S-RDF 74,28% 38,38% 74,00% 72,34% 

T-HIS 76,25% 43,03% 78,96% 72,25% 

T-HOT 76,74% 44,26% 75,47% 71,02% 

T-GLC 74,61% 41,31% 70,57% 67,64% 

M-GLS 74,53% 40,02% 73,37% 66,22% 

T-LBP 74,28% 38,52% 70,86% 64,87% 

T-GLD 74,28% 38,39% 74,43% 64,08% 

S-CFD 74,28% 36,53% 67,52% 63,82% 

I-GEN 74,46% 44,85% 60,26% 61,06% 

M-CWS 74,28% 35,22% 67,60% 59,84% 

M-CWM 74,28% 35,11% 69,82% 59,42% 

M-RSD 74,28% 30,90% 71,44% 58,72% 

M-RMD 74,28% 29,54% 71,39% 57,08% 

T-TEB 74,28% 42,01% 60,09% 55,64% 

M-CWW 74,28% 30,79% 69,72% 55,04% 

M-CWK 74,28% 34,22% 66,85% 54,66% 

M-CMD 74,28% 36,84% 63,93% 53,17% 

M-CSD 74,28% 30,37% 69,65% 52,58% 
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A.4.9 Low-Level Feature Performances of BI-RADS 6 Class 

Low-Level Feature Max. Accuracy Avg. Sensitivity Avg. Specificity Max. B.Accuracy 

S-GEN 91,47% 27,01% 95,16% 71,10% 

S-RBS 88,76% 19,81% 94,83% 69,33% 

T-GLC 88,76% 22,41% 91,19% 67,83% 

M-CWS 88,76% 18,39% 92,36% 67,54% 

S-ZER 89,92% 23,29% 92,69% 67,22% 

T-HIS 89,92% 31,61% 93,89% 67,22% 

M-CMD 88,76% 15,52% 89,45% 65,71% 

T-HOT 88,76% 24,14% 91,70% 64,60% 

M-CWM 88,76% 11,78% 94,21% 62,44% 

S-RDD 88,76% 17,38% 89,99% 62,26% 

T-GLD 88,76% 23,56% 89,16% 61,78% 

T-LBP 88,76% 22,41% 89,08% 60,77% 

T-EDH 88,76% 10,34% 94,40% 60,25% 

M-CSD 88,76% 8,05% 95,60% 59,64% 

S-RDF 89,15% 12,66% 94,40% 59,63% 

S-FDE 88,76% 10,62% 95,92% 59,45% 

S-INM 88,76% 9,97% 93,41% 57,75% 

S-DFD 88,76% 10,09% 93,12% 57,36% 

I-GEN 88,76% 2,30% 97,89% 56,41% 

M-RSD 88,76% 8,05% 93,52% 56,20% 

M-CWW 88,76% 14,08% 88,86% 56,15% 

M-GLS 88,76% 9,20% 94,32% 55,35% 

S-CFD 88,76% 5,02% 95,74% 54,25% 

M-RMD 88,76% 6,61% 92,39% 53,42% 

M-CWK 88,76% 10,63% 90,17% 53,16% 

T-TEB 88,76% 8,62% 85,66% 50,00% 
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B Precision-Recall Graphs of Low-Level Features 

B.1 Precision-Recall Graphs of Shape Property Queries 

B.1.1 Precision-Recall Graph of Edge Histogram Feature 

 

B.1.2 Precision-Recall Graph of Haralick-14 Feature 
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B.1.3 Precision-Recall Graph of Gray Level Difference Feature 

 

B.1.4 Precision-Recall Graph of Gray Level Histogram Feature 
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B.1.5 Precision-Recall Graph of Homogeneous Texture Feature 

 

B.1.6 Precision-Recall Graph of Invariant Moments Feature 
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B.1.7 Precision-Recall Graph of Local Binary Pattern Feature 

 

B.1.8 Precision-Recall Graph of Global Margin Statistics Feature 
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B.1.9 Precision-Recall Graph of Radial Basis Signal Feature 

 

B.1.10 Precision-Recall Graph of Texture Browsing Feature 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

P
re

ci
si

o
n

 

Recall 

PR Graph of Radial Basis Signal Feature 

Irregular

Lobular

Oval

Round

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

P
re

ci
si

o
n

 

Recall 

PR Graph of Texture Browsing Feature 

Irregular

Lobular

Oval

Round



185 
 

 

 

B.1.11 Precision-Recall Graph of Zernike Moments Feature 

 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

P
re

ci
si

o
n

 

Recall 

PR Graph of Zernike Moments Feature 

Irregular

Lobular

Oval

Round



186 
 

 

 

B.2 Precision-Recall Graphs of Margin Property Queries 

B.2.1 Precision-Recall Graph of Edge Histogram Feature 

 

B.2.2 Precision-Recall Graph of Haralick-14 Feature 
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B.2.3 Precision-Recall Graph of Gray Level Difference Feature 

 

B.2.4 Precision-Recall Graph of Gray Level Histogram Feature 
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B.2.5 Precision-Recall Graph of Homogeneous Texture Feature 

 

B.2.6 Precision-Recall Graph of Invariant Moments Feature 
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B.2.7 Precision-Recall Graph of Local Binary Pattern Feature 

 

B.2.8 Precision-Recall Graph of Global Margin Statistics Feature 
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B.2.9 Precision-Recall Graph of Radial Basis Signal Feature 

 

B.2.10 Precision-Recall Graph of Texture Browsing Feature 
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B.2.11 Precision-Recall Graph of Zernike Moments Feature 
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B.3 Precision-Recall Graphs of Density Property Queries 

B.3.1 Precision-Recall Graph of Edge Histogram Feature 

 

B.3.2 Precision-Recall Graph of Haralick-14 Feature 
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B.3.3 Precision-Recall Graph of Gray Level Difference Feature 

 

B.3.4 Precision-Recall Graph of Gray Level Histogram Feature 
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B.3.5 Precision-Recall Graph of Homogeneous Texture Feature 

 

B.3.6 Precision-Recall Graph of Invariant Moments Feature 
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B.3.7 Precision-Recall Graph of Local Binary Pattern Feature 

 

B.3.8 Precision-Recall Graph of Global Margin Statistics Feature 
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B.3.9 Precision-Recall Graph of Radial Basis Signal Feature 

 

B.3.10 Precision-Recall Graph of Texture Browsing Feature 
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B.3.11 Precision-Recall Graph of Zernike Moments Feature 
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B.4 Information Retrieval Performance of BI-RADS Property Queries 

B.4.1 Precision-Recall Graph of Edge Histogram Feature 

 

B.4.2 Precision-Recall Graph of Haralick-14 Feature 
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B.4.3 Precision-Recall Graph of Gray Level Difference Feature 

 

B.4.4 Precision-Recall Graph of Gray Level Histogram Feature 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

P
re

ci
si

o
n

 

Recall 

PR Graph of Gray Level Difference Feature 

Birads 2

Birads 3

Birads 4A

Birads 4B

Birads 4C

Birads 5

Birads 6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

P
re

ci
si

o
n

 

Recall 

PR Graph of Gray Level Histogram Feature 

Birads 2

Birads 3

Birads 4A

Birads 4B

Birads 4C

Birads 5

Birads 6



200 
 

 

 

B.4.5 Precision-Recall Graph of Homogeneous Texture Feature 

 

B.4.6 Precision-Recall Graph of Invariant Moments Feature 
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B.4.7 Precision-Recall Graph of Local Binary Pattern Feature 

 

B.4.8 Precision-Recall Graph of Global Margin Statistics Feature 
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B.4.9 Precision-Recall Graph of Radial Basis Signal Feature 

 

B.4.10 Precision-Recall Graph of Texture Browsing Feature 
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B.4.11 Precision-Recall Graph of Zernike Moments Feature 
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