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SEYREK OLUMSALLIK GIiZELGELERINDE ODDS ORANLARINA BAYESCI
YAKLASIM
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(074

Bu c¢alismanin amaci, seyrek olumsallik c¢izelgelerinde Bayesci yaklasim

yardimiyla odds orani tahminlerine ulagsmaktir.

Bir olumsallik cizelgesinde sifir siklikli gbzeler, o6rnekleme yapisindan
kaynaklaniyorsa ve Orneklem degistiginde sifir siklik icermeyecek yapidaysa bu
gbzeler orneklem sifin olarak adlandiriir. Orneklem sifiri iceren olumsallik
cizelgelerine seyrek olumsallik cizelgeleri adi verilir. Klasik yaklasim ile seyrek
olumsallik gizelgelerinde odds orani tahmini yapildiginda tim godzelere bir sabit
eklenir. Bu sabit her arastirmaci icin degisik bir deger alacagindan elde edilecek

tahminler gtvenilir olmayabilir.

Bu calismada Bayesci yaklasim ile seyrek olumsallik cizelgelerinde odds orani
tahmini yapmak igin kullanilan olabilirlik fonksiyonu ve onsel dagilim, drneklem

sifir iceren ve icermeyen gozeler igin incelenmistir.

Calisma sonunda elde edilen sonsal dagilim, Markov Zinciri Monte Carlo
yontemleri kullanilarak gergek bir veri kimesi Uzerinde odds orani tahmini yapmak

icin cozimlemeye alinmigtir.

Anahtar Kelimeler: Bayesci c¢ikarsama, Odds orani, Olumsallik c¢izelgesi,

Orneklem sifiri, Seyrek olumsallik gizelgesi, Metropolis Hastings algoritmasi.

Danigman: Prof. Dr. Silleyman GUNAY, Hacettepe Universitesi, Istatistik Bolimdi,
Uygulamali istatistik Anabilim Dali.



A BAYESIAN APPROACH TO ODDS RATIOS FOR THE SPARSE
CONTINGENCY TABLES
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ABSTRACT

The purpose of this study is to find odds ratios estimates by using Bayesian

approach when the contingency tables are sparse.

A contingency table can contain zero cell frequencies which are caused by
sampling structure. Zero cell frequencies can be filled by taking new samples from
the same population. These cells are said to be sampling zeros. The contingency
tables which contain sampling zeros are called sparse contingency tables. While
odds ratios are estimated for sparse contingency tables by using classical
approaches, a constant is added to all the cells. Since this constant may take

different values for each researcher, reliable estimates may not be obtained.

In this study, likelihood function and prior distribution, which are utilized for
estimation of odds ratios in sparse contingency tables by employing Bayesian
approach, are examined for the cells with or without sampling zeros.

In conclusion, in order to estimate odds ratios, obtained posterior distribution is

used on a real data set by employing Markov Chain Monte Carlo techniques.

Keywords: Bayesian inference, Contingency tables, Odds ratio, Sampling zeros,
Sparse tables, Metropolis Hastings algorithm.
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1. GIRIS

Tarihin baslangicindan bu yana arastirmacilar ilgi duyduklari alanlarla ilgili veri
kimesi elde etmisler ve bu veri kimesini de farkh farkli yontemlerle
degerlendirmiglerdir. Veri toplamanin yetersiz kaldigi karar verme surecinde,
belirsiz durumlar hakkinda yorum yapabilmek ve karar verebilmek igin
arastirmacilar olasilik kavramini kesfetmigler ve bu kavramla ilgilenmeye
baglamislardir. Zaman iginde matematigin gelismesi, istatistigin bir bilim dali olarak
ortaya c¢ikmasiyla arastirmacilar, bu veri kiumesi Uzerinde ¢ozumlemeler

yapmiglar, yorumlamiglar ve karar vermiglerdir.

Kategorik degiskenler kullanilarak olusturulan RxC boyutlu olumsallik cgizelgeleri
(contingency tables), elde edilen veri kiimesini goéstermenin en klasik yoludur.
Belirtilen degiskenler hakkindaki bilgi capraz cizelgeleme sayesinde daha duzenli

ve daha anlasilir bicimde ifade edilir.

Gunumuzde olumsallik cizelgeleri sosyolojik, psikolojik, medikal olmak Uzere
bircok alanda vyapilan c¢alismalarda yogun bigcimde kullaniimaktadir. Bu
calismalarda farkh yapilardaki olumsallik cizelgeleri ile karsilasilir. Seyrek
olumsallik cizelgeleri bunlardan bir tanesidir. Seyrek olumsallik gizelgelerinde
klasik yaklasim ile yapilan parametre tahminlerinde genellikle tutarsiz sonuglar ile

karsilasilir.

Olumsallik cizelgelerinde parametre tahminlerinde arastirmacilar en ¢ok odds
oraninin tahmini ile ilgilenmektedirler. Odds orani ile kategorik degisken duzeyleri
arasinda basari etkenlerinin var olup olmadiginin arastirilmasi énemli bir sorun

olarak kargsimiza ¢gikmaktadir.

Bayesci yaklagsim, sadece 6rneklem bilgisini temsil eden olabilirlik fonksiyonu ile
yetinmez. Bu yaklagsimda daha onceki deneyimler ve bu deneyimlerden gelen
bilginin de tahmin slrecinde kullaniimasi gerekir. Bayesci yaklagimi benimsemis
arastirmacilar tahmin surecinde onsel bilgi ile 6rneklem bilgisini birlestirirler. Klasik
yaklagsimi benimseyen istatistikciler, her ne kadar bu noktada Bayesci yaklasimi
benimseyenlerle karsi karsiya gelseler de aslinda klasikgiler de ¢ézumlemede

arastirmalarina kendi deneyimlerini tahmin slrecine katmak isterler.



Literatirde olumsallik gizelgelerinde Bayesci yaklasim ile birgok ¢alisma yapilmis
olsa da olumsallik cizelgelerinde odds oranlari hakkinda calismalar ¢ok az

sayidadir.

Albert (1987) odds oranlarinda degisebilirlik (exchangeability) oldugunda 2x2xK
boyutlu gizelgeler i¢cin odds oranlarinin eszamanl tahminleri ile 2x2 boyutlu bir
olumsallik gizelgesinde onsel bagimsizlik kosulu altinda odds oranlarinin tahmini

uzerinde calismistir.

Demirhan ve Hamurkaroglu (2008) RxC ve 2x2xK boyutlu olumsallik
cizelgelerinde log odds orani tahminlerine ulagsmak i¢in uyguladiklari tahmin sureci

ve elde ettikleri sonsal tahminler hakkinda kapsamli bilgi vermislerdir.

Tez calismasinda Bayesci yaklasim ile seyrek olumsallik gizelgelerinde odds orani
tahmini yaparken, érneklem sifiri (sampling zeros) ile karsilagilmasi durumunda,
tahminlerin klasik yaklasima gore daha guvenilir ve etkin sonuglar vermesi
amaclanmistir. Bu nedenle; bilgi icermeyen sifir siklikli gozeler icin bilgi iceren

onsel dagihimlar belirlenerek o gdzelerin de tahmin strecinde yer almasi 6nemlidir.

Tez c¢alismasinin  birinci bolumunde giris yapiimig ve seyrek olumsallik
cizelgelerinde odds oranlarinin neden Bayesci yaklasim ile tahmin edildigi
aciklanmistir. ikinci béliminde olumsallik gizelgeleri, seyrek olumsallik gizelgeleri
ve odds orani hakkinda, t¢lncu boéliminde ise Bayesci yaklasim, Bayes teoremi,
Bayesci tahmin stireci ve bu surecte kullanilan olabilirlik fonksiyonu, énsel dagilim,
sonsal dagilim ve sonsal tahminler, Bayesci yaklagimda karsilasilan zorluklar,
Bayesci yaklasim ile klasik yaklagimin karsilastiriimasi hakkinda genel bilgiler
verilmigtir. DOrduncu  bolumde seyrek olumsallik cizelgelerinde log odds
oranlarinin Bayesci tahminleri i¢in kullanilan Bayesci tahmin sureci detayli olarak
anlatilmistir. Beginci bolumde ise sini kaplumbaga yavrularina ait sayisal ornek
icin MATLAB paket programi kullanilarak 2 x 2, 2 x 3 ve 3 x 2 boyutlu seyrek
olumsallik cizelgelerinde odds oranlarinin tahminleri hakkinda incelemeler
yapilmigtir. Son bolumde elde edilen sonuglar incelenmis, yapilan tartismalara yer
verilmigtir. Ekte ise Markov zinciri Monte Carlo (MCMC) yontemlerinden biri olan
Metropolis Hastings (MH) algoritmasi, uygulamada kullanilan 6nsel dagilim

parametreleri ve bulunan sonsal tahminler hakkinda bilgi verilmistir.



2. OLUMSALLIK GiZELGELERI

iki ya da daha cok kategorik degiskenin sikliklarinin belirtildigi cizelgelere

olumsallik gizelgeleri denir.

“Olumsallik gizelgesi” terimi ilk kez ingiliz matematikgi Karl Pearson (1904)
tarafindan "On the Theory of Contingency and Its Relation to Association and
Normal Correlation" adli ¢alismasinda kullanilmistir (Unsay, 2004). Ginimizde
birbirinden farkh ¢alisma alanlarinda olumsallik gizelgelerinden yararlaniimakta ve

bu gizelgeler Gzerinden istatistiksel cozimlemeler yapiimaktadir.

2.1. RxC Boyutlu Gizelgeler

X kategorik degdigkeninin R tane, Y kategorik degiskeninin C tane duzeyi
bulunmasi durumunda, bu kategorik degiskenleri ifade etmek igin kullanilan

olumsallik gizelgelerine RxC boyutlu gizelgeler adi verilir (Agresti, 1997).

RxC boyutlu cizelgelerde satir degiskeninin i. dizeyi ve sittun degiskeninin j.
duzeyinde (X,Y) durumunun ortaya g¢ikmasi olasihgi p; olarak ve yine satir
degiskeninin i. duzeyi ve sutun degigkeninin j. dizeyinde gozlenen siklik ise yj ile
ifade edilir. Satir degiskeni olan X kategorik degiskeninin i. dizeyi icin marjinal
olasiliklar pi+ ve gozlenen sikliklar yi. ile gosterilirken, sutun degiskeni olan Y
kategorik degiskeninin j. duzeyi igin marjinal olasiliklar p.; ve gozlenen sikliklar y.;
ile gosterilir.

Toplam denek sayisi y, p; >0 ve p; = i olmak Uzere, satir ve sutun degiskenleri
y

icin goze olasiliklari ve gozlenen goze siklarina ait esitlikler,

Pi. =zj:pij P, =2P; Zi:pn =Zj:p+j :Zi:zi:pij =1
Yii :gyij Y =2Yi Zi:yw :Zj:yﬂ' :;Zj:yij =y

seklinde yazilabilir.



X kategorik degiskeninin i. duzeyine gore Y kategorik degigkeninin j. duzeyinin

ortaya gikma olasiligr p; (j=1, ..., C) seklinde ifade edilir ve >p, =1'dir.
j

ji

X ve Y kategorik degiskenleri icin RxC boyutlu olumsallik gizelgesinde sikliklar ve

olasilik dagilimlarina ait gosterimleri Cizelge 1'de verilmistir.

Cizelge 1: RxC Boyutlu Olumsallik Cizelgesi (Sikliklar ve Olasilik Dagilimlari)

Y DEGiSKENi
DUZEY 1 2 C-1 C TOPLAM
L Y11 Y12 . Y1ic-1) Yic Y1+
P11 P12 P1c-1) Pic P1+
—_ Y21 Y22 . Y2(c-1) Yac Yo+
= 2
v P21 P22 P2(c-1) P2c P2+
Q)
L
[ YR-1)1 Y(R-1)2 YRr-1)(C1) | YR1C Y(R-1)+
PLY R-1
PRr-1)1 PRr-1)2 Pr-1)c1) | PR1C PRr-1)+
R YRr1 YRr2 . YRrR(C-1) YRrC YR+
Pr1 Pr2 Pr(c-1) Prc Pr+
TOPLAM Y+1 Y+2 ... Y+(c-1) Y+C Yy
P+1 P42 P+(c-1) Psc 1

Olumsallik c¢izelgeleri poisson, multinomial ve hipergeometrik o6rnekleme

yontemleri kullanilarak olusturulabilir (Agresti, 1997).

2.2. Seyrek Olumsallik Cizelgeleri

Bir kitleden alinan orneklem kuguk oldugunda ya da orneklem buyuk olmasina
karsin olumsallik gizelgelerinde satir ve sutunda yer alan degisken sayilari veya
bu degiskenlere ait dizey sayilari ¢ok sayida oldugunda ortaya ¢ikan olumsallik

cizelgeleri seyrek olumsallik gizelgeleri olarak adlandirilir (Agresti, 2002).

Olumsallik cizelgelerinde sifir siklik igceren gdzeler bulunabilir. Burada dikkat
edilmesi gereken durum, bu gdzelerin beklenen sikliklarinin sifirdan buyuk
degerler alabilecegdidir. Bu durumda alinan érneklemde goze sikligi sifir olurken,

e

orneklem buyuklugu degistiginde ya da kitleden s6z edildiginde bu siklik sifirdan




farkh olabilir. Bu duruma &rneklem sifiri adi verilir. Seyrek olumsallik gizelgelerinde
orneklem sifiri ile kargilasilir. Orneklem sifirlarindan, log-dogrusal ve lojit model
parametrelerinin en c¢ok olabilirlik tahmin edicileri etkilenir. Goéze sikhgi sifir
oldugunda vyapilan tahminlerde de guvenilir olmayan sonuglara ulasilir. Bu
durumdan kurtulmak igin degigik yontemler kullanilir, kimi zaman sifir siklikli
gOzelere kuguk sabit bir sayl eklenir, kimi zaman ise duzlestirme yodntemleri
uygulanir. Eklenen sabit sayllar hemen hemen her arastirmada farkli alinir ve
kullanilan dizlestirme yontemlerinde farkli kisitlar bulunur. Bu nedenle; odds orani

tahmini ele alindiginda her yontem igin farkli odds orani tahminlerine ulasilabilir.

2.3. Odds Orani

Odds, bir olayin meydana gelmesi olasiliginin, meydana gelmemesi olasiligina
oranidir. iki oddsun birbirine orani ise odds orani olarak adlandirilir. Odds orani
medikal ¢alismalar basta olmak Uzere, sosyolojik alanda yapilan ¢alismalarda ve

benzeri kategorik degiskenlerin s6z konusu oldugu birgok alanda kullanilir.

Olumsallik  gizelgelerinde parametre tahminlerinin  yanisira degiskenlerin
duzeylerinin birbirlerini nasil etkilediklerini incelemek i¢in odds orani tahmini
yapilir. Odds orani sifirdan blyidk herhangi bir deger alabilir. X ve Y kategorik
degiskenleri bagimsiz olduklarinda odds orani bire esit olur. Eger odds orani
birden bluylk ise 1. satirdaki basarinin oddsu, 2. satirdakinden daha yuksektir
seklinde yorumlanabilir. Birden uzak odds orani degerlerinin, belirlenen yonde

daha guclu iliskiyi ifade ettigi de soylenilebilir.

RxC boyutlu olumsallik gizelgelerinde klasik yaklagsim ile yerel (local) odds orani;

aij _ Py Py _ Yi Y , i=1..R-1 : j=1..C-1 2.1)
pi(i+l) 'p(i+1)i yi(j+l) 'y(i+1)j

R) (C
bigiminde tahmin edilir. RxC boyutlu olumsallik gizelgelerinde (2)(2} tane odds

orani tahmini yapilabilir.



Orneklem yeterince blylk olmadiginda, odds oraninin érneklem dagiliminin sivri
(sharp) bir yapiya sahip oldugu ve bu sivrilikten dolayi odds oraninin asimetrik bir
yapida oldugu gdézlemlenmistir. Bu nedenle; istatistiksel c¢ikarimlarda, odds
oraninin dogal logaritmasi (log odds orani) alinarak tahminler yapilir. Boylece log

odds oraninin 6rneklem dagilimi, sifir noktasinin etrafinda simetrik 6zellik gosterir.

Log odds oraninin standart hatasi (SE);

SE(|og(;j)= N S S (2.2)
yij y(i+1)j yi(j+l) y(i+1)(j+l)

formulu ile hesaplanabilir.

Log odds oraninin oOrneklem dagilimi asimptotik olarak normal dagilima

yakinsadigindan, 1-« guven duzeyinde log odds oraninin guven araligi;
Iog((;ij)i Zo/2 -(SE(Ioggij)) (2.3)

formilinden bulunabilir.

Seyrek olumsallik c¢izelge yapisi dikkate alindiginda, odds oraninin tahmini
hesaplanirken, paydadaki goze bilgisi (Pyj.y:Piy; Y2 da Vi, Yiw) SHir
oldugunda hesaplamalarda zorluklarla karsilasilabilir. Bu durumda, Kklasik

yaklasimda ¢ gibi ktiglk bir sayinin esitliklere eklenerek hesaplamalarin yapiimasi

onerilir.



3. BAYESCI YAKLASIM

Olasilik teorisi incelendiginde, olasiigin goreli siklik ve klasik tanimlar ile
kargilasilir (Karadag, 2011). Bunlarin yanisira olasilik teorisine yeni bir soluk

getiren 6znel olasilik tanimi da zaman iginde olasilik teorisinde yerini almigtir.

Oznel olasilik kavraminin temeli, ingiliz matematikgi ve rahip Thomas Bayes
tarafindan atiimistir. Bayes'in olasilikta ¢igir agan teorisi* her ne kadar yasami
suresince kabul gérmemis olsa da élumunden iki yil sonra g¢alismalari Richard
Price tarafindan derlenip yayinlanmistir®. Laplace’in olasilik teorisi {izerine yaptigi
calismalar® sonucunda Bayes Teoremi tekrar giindeme gelmis, ancak bu da
Bayesci yaklasimin hemen kabul gérmesine neden olmamistir. Yirminci ytzyilin
sonlarina dogru klasik yaklasimin ilgilenilen problemlerin ¢éziminde yetersiz
kaldigi gorulmus ve Bayesci yaklagsima olan ilgi artmigtir. MCMC (Gelfand ve
Smith, 1990) olarak adlandirilan benzetim tekniginin gelistirimesi sonucunda
problemlerin incelenmesinde ve ¢déziminde Bayesci yaklasim daha da yaygin bir

sekilde kullaniimaya baglanmistir.

3.1. Bayesci Yaklasim ve Bayes Teoremi

Bayesci yaklagsimda arastirilan konuya ait tim bilginin kullanilmasi hedeflenir
(Demirhan, 2004). Bu nedenle; Bayesci istatistikte, arastirmacinin veri toplayarak
elde ettigi bilgi ile benzer c¢alismalardan, uzman goruslerinden ya da
arastirmacinin inanglarindan elde edilen tim mantikh bilgi bir arada degerlendirilir.
Arastirmacinin veri toplayarak elde ettigi orneklem bilgisi nesnel bir yapiya sahip
iken, benzer c¢alismalardan, uzman gorUglerinden ya da arastirmacinin
inanglarindan elde edilen 6nsel bilgi 6znel bir yapiya sahiptir. Bayes teoremi

yardimiyla bu farkl iki yapiya sahip bilgi birlegtirilir.

Bayes teoremi, Bayes tarafindan (1763), P(B) >0 olmak Uzere, B olayinin ortaya

ciktigi bilindiginde A olayinin ortaya gikma olasiligi,

! Bayes Teoremi ve bu teoremin olasilik teorisindeki yeri.

% Thomas Bayes’in en 6nemli eseri olan ve Bayes Teoremini igeren 1763 yilinda yayinlanan bu
makalenin adi “An Essay Towards Solving a Problem in the Doctorine of Chances”dir.

3 Laplace’in 1812 yilinda yaptigi bu ¢alismalar Theorie Analytique des Probabilités adli kitabinda
yer almaktadir.



P(B|A)-P(A)

P(A|B)= 3.1
(A]B) P(B) (3.1)
seklinde ifade edilmistir.
Bayes teoreminin genellestiriimis ifadesi ise;
P(B|A ) -P(Ai
P(A,|B) = n( | ') ( ) , 1=12,...,n (3.2)
ZP(B|Ai)'P(Ai)
i=1
bigiminde verilmistir. Burada Ai;, Az, ..., An ayrik olaylari, S drneklem uzayini

olusturmakta, B olayi, S drneklem uzayinin herhangi bir olayini temsil etmekte ve

Zn:P(Ai |B)=1"dir (inal ve Giinay, 2010).
i=1

0=(6,...6,) parametresine bagl, y=(Y,....Y,) biciminde n boyutlu gdzlem
vektorline ait olasilik fonksiyonu f(yle) ve O parametresine ait olasilik

fonksiyonu f(O) olmak uzere, 0 ve y'nin bilesik olasilik fonksiyonu,

£(0,y)=1(0)-f(y|0) (3.3)
biciminde ifade edilir.

Y raslanti degiskeninin dagilimi, kesikli oldugu durumda,
f(y)=2.f(y10)-1(8),

Ry
surekli oldugu durumda ise,

f(y)=[f(y16)-f(6)-de

Ry

olmak tizere, y bilindiginde, 6’nin kosullu dagilimi (f(y)> 0 igin),

fely)= (6y)_1(y19)-1(6) (3.4)

f(y) f(y)




bigiminde ifade edilebilir (Gelman v.d., 2004).

0 parametresi raslanti degiskeni olarak alindigindan dolayi f(0|y) ifadesi ile

Bayes Teoremi tutarhdir (Demirhan, 2004). Burada f(y), 0 parametresini

icermediginden dolayi, C gibi bir sabit olarak algilanir ve bu sabit normallestirme

sabiti adini alir (Gelman v.d., 2004). Bu durumda Bayes teoremi,
f(8]y)=C-f(y|6)-1(6) (3.5)

seklinde yazilabilir. Buradaki C sabiti, elde edilen f(e | y) dagihmin, kesikli oldugu

durumda toplaminin, surekli oldugu durumda ise integralinin bire esit olmasini
saglayan katsayidir. Bayesci yaklasimda C sabiti ihmal edilerek f(9|y) dagilimi

orantihdir “oc” ifadesi ile yazilabilir:
f(0]y)ocf(y|0)-f(0). (3.6)

Es. 3.6'da f(y | 9) ifadesi, y bilindiginde 6 ’nin olabilirlik fonksiyonu K(Gly) olarak
da tanimlanabilir (Demirhan, 2004). Bu durumda Es. 3.6,

f(8]y)oct(B]y)-f(0) (3.7)

biciminde yazilir.

3.2. Bayesci Tahmin Sureci

Bayesci yaklasimda arastirmaci, bilinmeyen parametrelere iliskin inancini, bilgisini,
deneyimini, konu hakkinda uzmanlagsmis bagka kisilerin gorugslerini de tahmin
surecine katmak ister. Arastirmacinin elde ettigi bu mantikli bilgiye énsel bilgi
(prior information) adi verilir. Arastirmaci bu asamadan sonra gesitli yollarla
topladigi veri kimesini (6rneklem bilgisini) 6nsel bilgi ile sentezler. Bu iki bilginin
birlesmesiyle, arastirmaya ait sonsal bilgi (posterior information) elde edilir. Es.

3.7’de, f(BIy) ile ifade edilen olabilirlik fonksiyonu o&rneklem bilgisini temsil

ederken, f(O) bilinmeyen parametreye ait dnsel bilginin dagihmini (6nsel dagilimi)



ve elde edilen f(8]y) bilinmeyen parametreye ait sonsal dagilimi géstermektedir.

Bu bilgiler 1sidinda Es. 3.7,
Sonsal Dagilim o Olabilirlik Fonksiyonu x Onsel Dagilim
bigiminde yazilabilir (Box ve Tiao, 1973).

Bayesci yaklasimda Onsel bilgiden o6nsel dagilimlara, sonsal dagilimlardan da
sonsal bilgiye gegis s6z konusudur (O’Hagan, 1986). Bayesci yaklagim yardimiyla
elde edilen sonsal dagilim, bir sonraki asamada 6énsel dagihim olarak alinabilir
(Demirhan, 2004).

Bayesci yaklagimda arastirmaci, yukarida da belirtildigi gibi, bilinmeyen
parametreye ait onsel dagilimin yanisira veri kimesinden ya da modelden elde
edilen olabilirik fonksiyonunu da tahmin sidrecinde goérmek ister. Olabilirlik
fonksiyonu icin genellikle slrekli veri kiimesinde normal model, kesikli veri
kimesinde poisson ya da negatif binom modelleri, iki deder alan degiskenlerde
binom modeli, tekrarll ya da cizelgelestiriimis veri kimesinde ise multinomial

modeller kullanilir.

Olabilirlik, ilgilenilen parametre igin, her bir noktada verilerin olasilik dagilimina
dayanir (Stauffer, 2008).

3.2.1. Onsel Dagilimlar

Onsel bilgi, Bayesci istatistigin temel 6gesi olmakla beraber, ayni zamanda
tartismalara aciktir. Arastirmacinin elde ettigi tum bilgiyi ¢6zUmlemeye katmasi
Bayesci istatistigin en guclu yani ve temeli iken, onsel bilgiden elde edilen 6nsel
dagilim, farkl arastirmacilar tarafindan farkli alindiginda, ayni parametre igin farkl
sonsal dagilimlar ve sonsal tahminler elde edilebilir. Bu durum, Bayesci istatistigin
tartismalara neden oldugu alandir. Bilinmeyen parametreye ait Onsel bilgi
kullanilarak 6nsel dagilimin belirlenmesi surecinde ¢ok dikkatli olunmali ve
mantikli hareket edilmelidir. Eger onsel dagilimin belirlenmesinde celigkiler s6z
konusu ise duyarliik ¢ozimlemesi kullanilarak her bir 6nsel dagilimin sonsal

tahminler Uzerindeki etkileri incelenebilir ve en uygun énsel dagilim segilebilir.
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Her ne kadar onsel dagilimin belirlenmesi agsamasinda tartigmalarla karsilagilsa
da, bu durum ile ilgili kesin kurallar ortaya konulamamaktadir. Bu nedenle onsel
dagilimin belirlenmesinde, Bayes teoreminin etkin bir sekilde uygulanabilmesi ve
belirlenecek onsel dagilim yardimiyla elde edilecek sonsal dagilimin mantikh

sonuglar vermesi 6nem tasir.

Onsel dagilimlar, bilgi igerme durumlarina gére bilgi iceren (informative) ve bilgi

icermeyen (non-informative) 6nsel dagilimlar olmak tzere ikiye ayrilir.

Bilgi iceren o6nsel dagilimlar, olabilirlik fonksiyonundan etkilenmez ve sonsal

dagihm Gzerinde etkili olur.

Bilgi icermeyen 6nsel dadihimlar?, olabilirlik fonksiyonu tarafindan baskilanir ve
sonsal dagilim Uzerinde etkisi ¢cok az olur. Baslica kullanilan bilgi icermeyen onsel
dagihimlar; yaygin (diffuse), bilgi icermeyen (noninformative), zayif (weak), etkisiz
(vague), duzgun (flat) onsel dagilimlandir (Demirhan 2004; Stauffer, 2008).
Arastirmaci bilinmeyen parametreler hakkinda ¢ok az miktarda onsel bilgiye
sahipse ya da elindeki érneklem bilgisinin dnsel bilgi tarafindan baskilanmasini
istemiyorsa bilgi icermeyen onsel dagihmi tercih edebilir. Bayesci yaklagimda bilgi
icermeyen onsel dagilimlar tahmin surecinde kullanildiginda elde edilen sonsal
tahminler, klasik yaklasimda elde edilen tahminlerle benzer sonuglar verir
(Winkler, 2003).

Bilgi iceren ya da igcermeyen onsel dagilmin segimi sonsal dagilimi etkilediginden
onemlidir. Parametrelere ait dnsel bilgi zayif ise orneklem buyuklugu arttikga onsel

dagilimin énemliligi azalir (Iversen, 1984; Yardimci, 2000; Demirhan, 2004).

Onsel dagihmlar, tanimh olduklari aileye gore eslenik (conjugate) ve eslenik

olmayan (non-conjugate) 6énsel dagihmlar olmak tzere ikiye ayrilir.

Bayesci tahmin surecinde kullanilan onsel dagiim ile sure¢ sonunda elde edilen
sonsal dagilim ayni aileye ait ise kullanilan 6nsel dagihm egslenik 6nsel dagilim
olarak adlandirilir. Ornegin: olabilirlik fonksiyonu poisson olan A parametresi igin

onsel dagihm olarak gamma ailesinden eslenik gamma dagilimi kullanilirsa sonsal

* Referans dagilimlar olarak da adlandirilir.
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dagihm yine gamma dagilimi olarak bulunur. Eglenik o6nsel dagilimlarin

kullaniimasiyla sonsal dagilimlar kolaylikla kapali formda elde edilebilir.

Eslenik onsel dagilimlar hesaplama rahatligi saglar ve ayni zamanda ek veri
olarak da kullanilir (Gelman v.d., 2004).

Karmagsik modeller s6z konusu oldugunda eslenik aile kullanilarak bir 6nsel
belirlenemeyebilir. Bu durumda eglenik olmayan o6nsel dagihmlarin kullaniimasi

zorunlulugu ile karsilasilir (Gelman v.d., 2004).

Onsel dagilimlar, tanim araliklarinda integrallerinin/toplamlarinin bire esit olup
olmamasina goére belirli (proper) ve belirsiz (improper) onsel dagihmlar olmak

uzere ikiye ayrilhr.

Belirli 6nsel dagilimlar, tanim araliginda integralinin/toplaminin sonucu bire esit
olan dagilimlardir. Onsel dagilim integrali/toplami pozitif bir sabite esit ise bu
dagihm normallestiriimemis siklik olarak adlandirilir ve C gibi bir sabit ile ¢arpilarak

belirli bir dnsel dagilim olarak kullanilir (Gelman v.d., 2004).

Belirsiz 6nsel dagilimlar ise tanim araliginda integralinin/toplaminin sonucu bire

esit olmayan, sonsuza esit olan dagilimlardir.

ligilenilen parametreye iliskin onsel olasilik yogunluk fonksiyonu diiz ve dogruya
yakin ise onsel dagihm olarak tekbigimli (uniform) dagihm ya da sabit bir deger
kullanilabilir. Bu durumda ilgilenilen parametrenin tum degerlerini almasi

olasiliklari esit olur (Box ve Tiao, 1973).

Kullanilan dnsel dagilim turl ne olursa olsun elde edilecek sonsal dagilim belirli

olmak zorundadir (Gelman v.d., 2004).

Onsel dagilimlar ile sonsal dagilimlar arasindaki iliski ile 6nsel dagihmlar ile
olabilirlik fonksiyonu arasindaki iliski de sonsal dagilimi etkiler (Demirhan, 2004).
Belirlenen onsel dagilim, ornekleme planina uyumsuz oldugunda elde edilecek

sonsal dagilim etkilenir, sonsal tahminlerde tutarli olmayan sonuglara ulasilir.
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3.2.2. Sonsal Tahminler

Sonsal dagilim, parametre hakkindaki given dizeyini, veri kimesini gordukten
sonra Ozetlemeye yarayan dagilimdir (Bolstad, 2007). Tahmin edilmek istenen
parametreye ait tum bilgiyi icerir. Bu durumda elde edilen sonsal dagilimdan gerek
konum Olguleri, gerekse yayilim olculeri kullanilarak sonsal tahminler yani sonsal
bilgi elde edilmelidir. Bu islem tamamlandiginda Bayesci tahmin slreci sona ermis

olur.

Bayesci yaklasimda sonsal nokta tahmini icin kullanilan konum O&lguleri; sonsal
ortalama, sonsal tepe degeri ve sonsal ortancadir. Yayillim olguleri ise sonsal

varyans, sonsal standart sapma olarak verilebilir.

Bayesci yaklasimda sonsal nokta tahminin yanisira sonsal belirsizligi iceren sonsal
aralk tahmini de yapilabilir. Bayesci yaklasimda aralik tahmini yorumu guven

araliginin parametreyi icermesi olasiligi seklinde ifade edilir.

3.3. Bayesci Yaklagim ile Klasik Yaklagimin Karsilagtiriimasi

Bayesci yaklasimda onsel bilgi, sonuglar Uzerindeki nesnel etkiyi ortadan
kaldirdigindan dolayr sik¢ca elestiriimektedir. Fakat klasik yaklagimda da
katmaktadirlar. Freedman, Bayesci bir aragtirmaci olmamasina ragmen yaptigi bir
calismada, veri kumesinden tahminler yapilacadi zaman en tutucu Kklasik
istatistikginin bile bazi varsayimlari ve onsel bilgiyi gormezden gelemeyecegini
belirtmistir (Seving, 2007).

Bayesci yaklagim ile klasik yaklasimi karsilastirmak gerekirse birgok agidan
Bayesci yaklasimin daha Ustun oldugu gorilmektedir. Bayesci yaklasimda modele
onsel bilginin dahil edilmesinin nedeni, parametrelerin sabit degil raslanti degiskeni
olarak belirtimesinden kaynaklanir. Bayesci yaklagimda, parametreler raslanti
degiskeni olarak kabul edildiginden ve kendi dagilimlarina sahip olduklarindan
dolayr tahmin edilen parametrelerin tahmin edici Ozelliklerini tasimasi

gerekmemektedir (Karadag, 2011).
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Bayesci yaklagimda, klasik yaklagimdan farkli olarak olabilirlik fonksiyonu onsel
dagilimla birlestirilerek tahminler yapildigindan dolay! parametre hakkindaki tum
bilgiler kullanilir ve bu nedenle bilgi kaybi1 s6z konusu olamaz. Bayesci yaklagimda
orneklem buyukligu icin herhangi bir kisitlama s6z konusu degildir. Cok kiguk veri
kimelerinde bile kapsamli arastirmalar yapilabilir. Hatta veriye ulasilamadigi
durumlarda sadece 6nsel bilgiden yola cikilarak tahminler yapilabilir. Onsel bilginin
bilgi icermemesi durumunda Bayesci yaklagim ile klasik yaklagim ayni sonuglari

verir.

Bayesci yaklasim, klasik yaklasima gore daha az varsayimla tahminler
yapabilmektedir (Ghosh v.d., 2006).

Bayesci yaklagsim, klasik yaklasimin vyetersiz kaldigi, ¢6zium getiremedigi

problemlere ¢ozum bulabilir.

Klasik yaklasimda nokta tahmini i¢in tahmin edilen degerin, gercek degerden
farklihgi hatanin dogrusal ya da karesel kayip fonksiyonu ile Ol¢ulir. Bayesci
yaklasimda ise Once her bir tahmin edici igin riskler hesaplanir, parametre
degerleri icin dnsel olasiliklar belirlenir ve beklenen riskler her bir tahmin edici igin
hesaplanir. En kuguk beklenen riskli tahmin edici en iyi tahmin edicidir. Bu
asamada sonsal dagilimin ortalamasi bir nokta tahmin edicisi olmaktadir
(Demirhan, 2004).

Klasik yaklagimda aralik tahminlerinin yorumu, araligin parametreyi igcermesi
olasihgr Uzerine yapilirken, Bayesci yaklasimda bu yorum parametrenin araliga
dusmesi olasiligl ile ilgilidir. Bayesci yaklasimda araligin iginde bulunan her
noktanin sahip oldugu olasilik yogunlugu, aralik diginda bulunanlardan daha
buylk oldugunda bu araliga en yuksek yogunluk arahgi adi verilir (Demirhan,
2004).

Bayesci yaklagsimda, Onsel bilgiye ait dagilimin uygun bir sekilde segilmesi
durumunda elde edilen sonsal tahminlerin hatasi, klasik yaklagima goére daha
kliguk olmakla beraber aralik tahminleri de daha dar bulunur. Mantikli tim bilgi
dogru sekilde kullanildiginda daha etkili sonuglar elde edilir (Karadag, 2011;
Demirhan, 2004).
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Bayesci yaklasim ile parametreler Uzerindeki belirsizlikler azaltilir (Iverson, 1984;
Demirhan, 2004).

3.4. Bayesci Yaklasimda Karsilasilan Zorluklar

Bayesci yaklagimin tahmin surecinde bilinmeyen parametre hakkinda elde edilmis
kesin olmayan &nsel bilginin énsel dagiim formatina getiriimesi gerekir. Bu
noktada onsel dagilimin segiminde, veri kumesine iliskin olasiliklarin
bulunmasinda ve Bayes teoremi uygulanarak sonsal dagilimin bulunmasinda

zorluklarla kargilasilir (Demirhan, 2004).

Cok degiskenli c¢ozimlemelerde bilgi iceren o6nsel dagilimi belirlemek,
parametreler arasindaki iligkileri ifade etmek zordur. Veri kimesi bilinen bir
dagilima uymadiginda bu veri kimesine iligkin olasiliklarin belirlenmesinde de

zorluklarla kargilasilir (Demirhan, 2004).
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4. SEYREK OLUMSALLIK GiZELGELERINDE ODDS ORANLARININ
BAYESCI TAHMINI

Olumsallik cizelgelerinde parametre tahminleri icin, klasik yaklasimda en c¢ok
olabilirlik (Maximum Likelihood/ML) tahmin edicileri kullanilir. Fakat olumsallik
cizelgesinde dOrneklem sifiri ile kargilasiimasi durumunda ML tahmin edicileri
kullanilarak tahmin yapilmasi sonucu bazi sorunlarla karsilasilir. Gerek bu
sorunlari gidermek acgisindan, gerekse klasik yaklagima gore daha iyi tahminler
elde etmek igin, arastirmacilar Bayesci yaklasimlarla ¢ozimleme yapmayi tercih

etmektedirler.

Kategorik veri ¢ézimlemesinde, arastirmacilar klasik yontemlerin yetersiz kaldigi
noktalarda ya da klasik yaklagsima gore daha iyi tahminler elde etmek i¢in Bayesci
istatistik kullanarak bazi sorunlara ¢6zim aramaya 1950'lerden itibaren daha
yogun bir sekilde baglamislardir. Ornegin; Fisher (1956) binomial parametreler igin
yapilacak tahmin slrecinde, dnsel dagilim olarak uniform dagilimin kullaniimasini
Onermistir. Fisher'in yanisira Lindley (1964), Good (1956, 1965), Cornfield (1966),
Novick (1969), Leonard (1972, 1973), Bernardo (1979, 1994, 1998), Albert ve
Gupta (1982), Dickey (1983,1987), Albert (1984, 1987), Walters (1985), Guttman
(1989), Freedman (1990), Smith (1991), Chib ve Greenberg (1998), Forster
(2004a), Congdon (1995) gibi bircok bilimadami Bayesci yaklasim kullanarak
binomial ve multinomial parametrelerin 6nsel dagilimlari, nokta ve aralik
tahminleri, géze olasiliklarinin tahminleri, log-dogrusal model parametrelerinin
tahminleri, grafiksel modellemeler, regresyon modellemeleri hakkinda incelemeler
yapmiglar ve cesitli istatistiksel problemlere ¢6zim aramiglardir (Agresti ve
Hitchcock, 2005).

Olumsallik gizelgelerinde odds oraninin Bayesci yaklagim ile tahmininde ise Albert
(1987), Demirhan ve Hamurkaroglu (2008)'nun vyaptiklari ¢alhsmalar dikkat
cekmektedir.

Albert (1987) yaptigi g¢alismada, 2x2 boyutlu bir olumsallik ¢izelgesinde 6nsel
bagimsizlik kosulu altinda odds oranlarinin tahmini ve odds oranlarinda
degisebilirlik (exchangeability) oldugunda 2x2xK boyutlu gizelgeler i¢in odds
oranlarinin eszamanl tahminleri olmak Uzere kargilagilan iki problem Uzerinde

durmustur.
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Demirhan ve Hamurkaroglu (2008) RxC ve 2x2xK boyutlu olumsallik
cizelgelerinde, olabilirlik fonksiyonlarinin ve uygun onsel dagilimlarin belirlenmesi
ile MCMC algoritmalari kullanilarak log odds oraninin sonsal tahmini Uzerinde

durmuslardir.

Odds oranlarinin tahminlerini, géze olasiliklarini Bayesci yolla tahmin ederek
yapmak mumkundudr. Fakat goze olasiliklari i¢in verilecek dnsel bilginin, ilgilenilen
odds orani igin tutarli olmasi gerekir. Burada bir yerel odds orani tahmini igin dort
goze olasiliginin tahmini kullanilarak hesaplama yapilacagindan, bire birgok iligki
yapisi gozlemlenir. Dort gbze olasiligina ait 6nsel bilginin kullaniimasi tahmin
surecinde birgok sorun ortaya c¢ikarmaktadir. Diger taraftan, odds orani ve log
odds orani arasindaki iligki birebir seklindedir. Bu nedenle; odds orani igin
kullanilacak 6nsel bilgi ile log odds orani icin kullanilacak 6nsel bilgi arasindaki

iliski dogrusaldir (Demirhan ve Hamurkaroglu, 2008).

Tez calismasinin bu boélumdnde, seyrek olumsallik ¢izelgelerinde log odds
oranlarinin Bayesci tahminleri igin kullanilacak olabilirlik fonksiyonunun bulunmasi,
onsel dagilimin belirlenmesi, sonsal dagihm ve sonsal tahminlerin hesaplanmasi

amaclanmistir.

4.1. Olabilirlik Fonksiyonu

Bayesci tahmin suirecinin ilk adiminda o6rnekleme planina uygun olabilirlik
fonksiyonu belirlenmelidir. Alt bolim 2.1'de verilen Cizelge 1'deki gibi bir RxC
olumsallik cizelgesi icin y gozlenen goze sikliklarini, n beklenen goze sikliklarini
ve p ilgili gbzeye ait goze olasiligini ifade eder.

RxC boyutlu olumsallik gizelgesi i¢in yerel log odds orani,

pi"pi+ j+ i:l""
kijZIOQLwJ’ _ l

1
(4.2)
Pigiy *Peisn; 1= 1

seklinde bulunur.
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Tez calismasinda log odds oranlarina ait olabilirlik fonksiyonunu belirlemek igin

Demirhan ve Hamurkaroglu (2008) tarafindan Onerilen p; olasiliklari igin %, a;

donusumau kullaniimigtir. Bu donusumler;

G Py i=1...R-1
p; = exp(k” + aij) a, = |09(M] , ' L
Piisni+n) ]=1...,C-1
* Pginc 1 .
Pic = [exp(}‘i(cfl) + ai(C—l) )J ac =log| ———— ) =1..,.R-1
pi(C—l) 'p(i+1)c
o Pr-1+ :
Pr = [exp(x(Rfl)j + a(R—l)j )} g = log ’ ]=%..C-1
Pr-v; “Praia)
Pr-nc Prec-
Pre = exp(x(R_l)(c_l) + aRc) A = |09[M] 1 (4.2)
Pr-vcn

seklinde verilmisgtir.

Olumsallik ¢izelgelerinde poisson ya da multinomial 6rnekleme kullanildiginda

olumsallik gizelgesine ait olabilirlik fonksiyonunun genel tanimi ise,

((pylyy) = T1(py)" (4.3)

i

bigiminde ifade edilir (Dickey v.d., 1987; Agresti, 2002). p; olasiliklar igin Es.

4.2'de verilen donugumler uygulandiginda olabilirlik fonksiyonu;

Cc-1

R-1
L(haly;)=exp {Z(xu tay )y, + ;(7‘«01) +8cy )(—yic )+ Z<7‘(R4)J + &gy )(_yRJ )

0 =
+ (X(R—l)((:—l) +8gc ) Yre } (4.4)

seklinde yazilabilir.

Es. 4.3 ve Es. 4.4te verilen olabilirik fonksiyonu olumsallik ¢izelgesinde

drneklemden gelen tim bilgiyi icerir. Orneklem sifirn bulunan ve bulunmayan

18



gOzelere ait bilgi igin olabilirlik fonksiyonunu iki pargaya ayirarak iki olabilirlik

fonksiyonu seklinde ifade etmek gerekirse;
L(maly;)=L,xL, (4.5)

biciminde gosterilebilir. Burada L, Orneklem sifirt bulunmayan gozeler igin
olabilirlik fonksiyonunu ifade ederken, L, Orneklem sifirt bulunan gozelerin

olabilirlik fonksiyonunu ifade eder.

Es. 4.5 te yer alan L, ifadesi,

L, = {(H [exp(n,+a,)]" } 1, (4.6)

ij)eA

biciminde yazilabilir.

A= {(lj) LYy, > O},A’ ={i:Vy.>0},A"= {j VY > 0} ve = {(]; i:RC ig olmak
' RC —
uzere,
R-1 c1
ne exp{(i%A (s 2)y, + g;(k‘(“) B G )(_y‘c )+ ,ZA: (X(R,l),- + 8 Ry )(_yRi )
+(}\‘(R—1)(C—1) + aRC)yRC ) I} 4.7)

seklinde ifade edilebilir.

Benzer sekide B={(ij):vy,=0}, B'={i:vy,=0}, B'={j:vy,=0} ve

z; =y, +¢& olmak Uzere 6rneklem sifiri bulunan gézelere ait olabilirlik fonksiyonu,

R-1 c-1
L, =exp {(”Z)E:B (A +ay)z;+ ;’,(Mc_g T8y >(_Zic )+ ;(}\'(R—l)j TR )(_ZRJ' )
+(7\‘(R—1)(C—1) +8gc ) AN I} (4.8)
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seklinde ifade edilebilir.

Es. 4.7 ve Es. 4.8'den goruldugu Uzere boyutu farkh olan seyrek olumsallik
cizelgelerinde L, ve L, olabilirlik fonksiyonlari farkli bulunur. Benzer sekilde, ayni
boyutlu gizelgelerde 6rneklem sifirlarinin bulundugu gézeler farkh ise yine L, ve
L, fonksiyonlari farkh bulunur. Bu nedenle uygulama asamasinda gizelge

boyutuna ve 6rneklem sifiri igceren goézelerin bulunduklari noktalara dikkat edilerek

bu olabilirlik fonksiyonlari bulunur.

4.2. Onsel Dagilim

Tez calismasinin bu béluminde bagimsiz log odds oranlari igin bilgi iceren ve

icermeyen onsel dagilimlarin tahmin sirecinde nasil kullanildigi incelenmistir.

Her bir parametre icin 6nsel bilgiye olan glven, birbirinden bagimsiz olarak ifade
edilebilir. Benzer sekilde parametreler arasindaki iligkilere ait Onsel bilgi ve
hiperparametrelere ait dnsel bilgi de arastirmaci tarafindan belirtilebilir ve tahmin

sUrecine katilabilir.

RxC boyutlu olumsallik gizelgesine ait a ve A igin bilesik dnsel dagilim,
f(ra)=f(a)-f(r]a) (4.9)

biciminde ifade edilebilir. Burada a parametresinin dagilimi ¢ok degigkenli bilgi
icermeyen dagilim olarak alinirsa yapilacak log odds orani tahminlerinin sonuglari

etkilenmemis olur.

Onsel bilgiyi icerecek onsel dagiimin seciminde drnekleme plani ile dnsel bilgi
arasindaki uyuma ve tahmin edilmek istenen parametrenin 6zelliklerine dikkat
edilmelidir. Bu noktada log odds orani i¢in dnsel dagilimin suarekli bir dagihm

olmasi ve belirlenecek onsel dagilimin tanim araliginin reel sayilar olmasi gerekir.

Bu nedenle f(k | a) onsel dagiliminin belirlenmesinde tanim araligina gére normal

dagihim tercih edilebilecedi agiktir. Ayni zamanda dikkat edilmesi gereken diger bir
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nokta ise 6rneklem bilgisine ait olan L, ve L, olabilirlik fonksiyonlarinin bilinmeyen

parametreyi icermesidir. Tahmin edilmek istenen log odds orani parametresi,

1. Durum: sadece L, olabilirik fonksiyonunda vyer aliyorsa, dagilim

arametreleri bilinen (ortalamasi u, varyansi o olan), bilgi icermeyen normal
1

dagilim 6nsel dagilim,
Ayl ~ N(“u’ci?) (4.10)
olarak,

2. Durum: sadece L, olabilirik fonksiyonunda yer aliyorsa, dagilim
parametreleri bilinen (ortalamasi n, varyansi t olan), bilgi iceren normal dagihm

onsel dagilim,
A lay ~ N(nij’rij) (4.11)
olarak,

3. Durum: L, ve L, olabilirlik fonksiyonlarinin her ikisinde de yer aliyorsa

dagilim parametreleri bilinen karma normal dagilim kullanilarak 6nsel dagilim,

0 <a <1 olmak uzere,
Xy 18, ~ aN(py, 07 ) +(1—a)N(ny, ) (4.12)
olarak ifade edilebilir.

A ve a igin bilesik onsel dagilim genel olarak (1. durum igin o =1, 2. durum igin

o =0 olarak alinirsa),
k,alu,cz,n,t~aN(u,02)+(l—a)N(n,r) (4.13)
biciminde ifade edilebilir.

Log odds oranina iligkin dnsel bilgi normal dagihmin ortalamasinda ifade edilirken,

her bir odds oranina ait varyans, onsel bilginin gliven dizeyini temsil eder.
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Bagimsiz log odds oranlari igin bilgi igeren onsel dagilimlar tahmin surecinde
kullanilirsa, varyanslarda yansitilan onsel bilgiye olan guven duzeyi degistirilerek
orneklem bilgisinin ya da onsel bilginin, sonsal tahminler Uzerindeki etkileri
g6zlemlenebilir. Bu durumda, 6nsel bilgiye olan gliven yuksek oldugunda olabilirlik
fonksiyonlari 6nsel bilgi tarafindan bastirilir ve sonsal tahminlerde 6nsel bilginin
agirhgr daha fazla olur. Onsel bilgiye olan giiven duisiik ise 6nsel bilgi olabilirlik
fonksiyonu tarafindan baskilanir ve elde edilen sonsal tahminler ML tahmin

yonteminden elde edilen tahminlere yakin sonug verir.

Log odds oranlarinin bagimh olmasi durumunda ise parametrelerin birlikte nasil
degistikleri varyans kovaryans matrisinde ifade edilir. Arastirmaci, arastirmasinda
kullanacag@i iligki miktarlarini ister daha onceki c¢alismalarindan ister baska

uzmanlarin bilgisinden yararlanarak hiperparametreler ile ifade edebilir.

4.3. Sonsal Dagilim ve Sonsal Tahminler

Bayesci tahmin stureci sonucunda elde edilen sonsal dagilimdan sonsal tahminlere

ulasihr.

Tez calismasinin bu bdliuminde ilgi disi (nuisance) parametrelerin sonsal
dagihimdan arindiriimasi, log odds oranlarina ait sonsal dagilimin elde edilmesi ve
elde edilen sonsal dagilimdan sonsal tahminlere ulasiimasi hakkinda bilgi

verilmistir.

Log odds oraninin marjinal sonsal dagilimina ulasabilmek igin ilgi disi a
parametresine goére integral alinmalidir. Bu noktada A parametresi igin marjinal

sonsal dagilim,

f(klu,oz,n,t,y)= jf(k,alu,oz,n,r,y)da (4.14)

R

a

seklinde hesaplanir. A ve a parametrelerine ait bilesik sonsal dagilim,

f(halmo®nry)=f(Alapo®nry)f(alpo®nry) (4.15)
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biciminde kosullu dagilimlar kullanilarak ifade edilebilirken, Es. 4.14 ve Es.

4.15'ten faydalanarak A parametresi icin marjinal sonsal dagilimin son hali,

f()L | u,oz,n,t,y) = If(x,a|u,02,n,‘c,y)da

R

a

= J'f(k lapo®nry) -f(alwo®nry)da (4.16)
Ra

integrali alinarak bulunabilir. Burada dikkat edilmesi gereken ilgi digI parametrenin

integrallenmesidir. Bu integrallenme sirecinde dikkat edilmesi gereken iki nokta

bulunmaktadir. Birincisi; f(a|u,02,n,r,y) sivri ise a’nin tepe degeri (&) etrafinda

kUguk bir alanda olasiliklarin yodunlastigr gorulur. Bu durumda A parametresine

iligkin sonsal dagilim,
f(A o nry)=f(A|apno®nry) (4.17)

biciminde ifade edilebilir. ikincisi; f(a|u,02,n,t,y) duzgun ise Onsel bilgiden ve

orneklemden a i¢in az da olsa bilgi gelir. Eger mimkinse a parametresi hakkinda

daha fazla bilgi elde edilir ve A parametresinin tahmini daha da sivrilegtirilir. Eger
a parametresi hakkinda baska bilgi elde edilemez ise f(a|u,02,n,r,y)’ye gore
f(x | a,u,oz,n,r,y)’nln nasil degistigi bilgisi integrallenme surecine eklenebilir (Box

ve Tiao, 1973).

Bu iki durum g6z 6nune alindiginda f(a| p,oz,n,r,y) sivri olarak belirlenmis ve tez
calismasinda a parametresinin integrallenmesi surecine bu bilgi dogrultusunda

devam edilmistir.

Es. 4.13'de verilen dagilim parametreleri belli olan 6nsel dagilim ile RxC boyutlu
seyrek olumsallik gizelgesi icin Es. 4.7 ve Es. 4.8'de belirtiimis olan olabilirlik

fonksiyonlari kullanilarak f(A,a|p,0%m,7,y) bilesik sonsal dagilimindan ilgi disi

parametreler integrallendiginde log odds oranina ait marjinal sonsal dagilim,
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R-1 c-1
f (7” | H702an’ T, Y) o eXp{ Z }\‘ijyij + z}\‘i(cfl) (_in ) + Z X(R—l)j (_ij ) + x‘(R—l)(C—l)yRC ’ I}

(i,j)eA ieA’ jeA”

R-1 C-1
xexp {(;B Az + ;xi(c_l) (-z¢)+ ZB: M e (—sz ) + A g e Zre I}
i,j)e iel jel

o 1 2| 1-a 1 2
x{?exp{—g(k—u) }+Texp{—z(k—n) H (4.18)

biciminde ifade edilebilir. Bu dagdilimdan sonsal tahminlerin el ile hesaplanmasi
zordur, fakat MCMC yontemlerinden MH algoritmasi kullanilarak sonsal tahminlere

kolaylikla ulasilabilir.

MH algoritmasinin uygulanabilmesi igin q(k,x*) bigiminde bir oneri dagihmi

belirlenir ve bu 6neri dagilimindan faydalanarak aday noktalari dretilir. Uretilen

aday noktalari

f(?L* |u,02,n,‘r,y)q(l,7t*)
f(A lmo®nzy)a(d’ )

a(AA")=min 1 (4.19)

olasiligi ile kabul edilir ya da reddedilir (Gamerman, 1997; Chen v.d., 2000).
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5. UYGULAMA

Tez c¢alismasinin bu boéliminde sayisal 6rneklerden faydalanilarak seyrek

olumsallik gizelgelerinde odds oranlari Bayesci yaklasim ile tahmin edilecektir.

Tarkiye’de Dalyan sahilinde 1991-1993 yillan arasinda sini kaplumbaga (C.
caretta) yavrularinin élumleri Uzerine yapilan arastirmada, 6lum nedeninin gunes
IsIginin altinda ¢ok fazla kalarak yirimeleri oldugu belirtilmistir (Ozmen ve
Famoye, 2007). 1993 yilinda 4704 sini kaplumbaga yavrusunun yumurtadan
ciktigi ve 48 tanesinin gunes i1sigina maruz kalarak oldugu kayitlara gegirilmistir.
Bu calisma icin iki kategorik degisken: Alan (A1-A3) ile Uzaklik (U1-U3) olarak
alinmis, bu degiskenlerin yavru oOlumleri Uzerinde etkili olabilecekleri
disundlmustir. Yapilan bu g¢alismadan 1993 yilina ait veri kimesi Cizelge 2'de

verilmigtir.

Cizelge 2: 1993 yilinda Dalyan sahilinde gines isigina maruz kalarak élen sini
kaplumbaga yavrularinin sayisi

Uzaklik
Alan Ul: 0-10 U2:10-20 U3: 20-30
Al: 0-1 1 0 0
A2:1-2 23 9 7
A3: 2-3 3 1 4

Kaplumbagalarin Dalyan sahilinde yuvalama alani olarak dar bir bogazi
kullandiklari gorulmus ve bu bogaz arastirmada U¢ esit parcaya bolunerek ele
alinmigtir (Al: 0-1 kilometreleri, A2: 1-2 kilometreleri ve A3: 2-3 kilometreleri
arasinda). Benzer sekilde yuvalarin denize olan uzakliklari U¢ pargada
incelenmigtir (U1: 0-10 metre, U2: 10-20 metre, U3: 20-30 metre).

Cizelgede bulunan sifir sikhkli gbézeler, kaplumbaga yavrularinin yuvadan ¢iktigini
ve denize ulasana kadar herhangi bir 6lum olayinin yagsanmadigini
gOstermektedir. Dolayisiyla bu cizelgenin seyrek olumsallik gizelgesi yapisina
sahip oldugu sdylenilebilir. Orneklem sifiri igeren olumsallik gizelgelerinde klasik
yaklagim ile odds orani tahmini yaparken tum gozelere ¢ =0,05 gibi bir sabit sayi

eklendigi Alt bolum 2.1'de belirtildi.

Alt bolum 4.1 ve Alt bdlim 4.2’de belirtildigi Uzere olumsallik ¢izelgelerinin,

boyutlari farkh oldugunda ya da boyutlari ayni olmasina ragmen 6rneklem sifiri
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farkh gozelerde bulundugunda, Bayesci tahmin sureci isleyisine dikkat edilmelidir.
Bu nedenle Cizelge 2’de verilen olumsallik gizelgesini 2x2, 2x3 ve 3x2 olumsallik

cizelgeleri biciminde incelenecektir.
2x2 boyutlu olumsallik gizelgeleri Cizelge 3’te ve Cizelge 4’te verilmistir.

Cizelge 3: Alan (A1,A2) x Uzakhk (U1,U2) Olumsallik Cizelgesi

Uzaklhk
Alan Ul: 0-10 U2: 10-20
Al: 0-1 1 0
A2:1-2 23 9

Cizelge 4: Alan (A1,A2) x Uzaklik (U2,U3) Olumsallik Cizelgesi

Uzaklk
Alan |U2: 10-20 U3: 20-30
Al: 0-1 0 0
A2:1-2 9 7

Cizelge 3 ve Cizelge 4’te 6rneklem sifirn bulundugundan olusturulan cgizelgelerin
seyrek olumsallik cizelgesi oldugu aciktir. Bu nedenle; Alt bolim 2.3’te verilen Es.
2.1, Es. 2.2 ve Es. 2.3 dogrudan uygulanamamaktadir. Tanimsizliga neden olan
bu durumdan kurtulmak icin klasik yaklasim tim goézelere €=0,05 gibi bir sabitin
eklenmesini 6nerir. Bu durumda, Cizelge 3 ve Cizelge 4 icin klasik yaklasim ile

bulunan odds orani tahminleri Cizelge 5’te verilmistir.

Cizelge 5: Cizelge 3 ve Cizelge 4’te Verilen Olumsallik Cizelgeleri icin Klasik
Yaklasim ile Odds Orani Tahminleri

Odds Log Log Odds Oraninin Odds Oraninin

Orani | Odds Orani Gulven Aralig Guven Aralig
Cizelge 3 1,2128 | 0,192904 | (-3,09527;3,48108) |(0,045263;32,49487)
Cizelge 4 | 0,7895 | -0,236389 | (-4,27161;3,79883) |(0,013959;44,64892)

Klasik yaklagim yardimiyla bulunan odds oranlarini yorumlamak gerekirse; Cizelge
3 i¢in: bogazin 0-1 km’leri arasinda yer alan ve denize uzakligi 0-10 metre olan
yuvalardan cikan yavrularin élmesi olasiligi, bogazin 1-2 km’leri arasinda yer alan
ve denize uzakhdr 10-20 metre olan yuvalardan c¢ikan yavrularin o6lmesi
olasihgindan yaklasik olarak 1,21 kat daha fazladir. Cizelge 4 igin: bogazin 0-1
km’leri arasinda yer alan ve denize uzakhgdr 10-20 metre olan yuvalardan gikan

yavrularin 6lmesi olasihigi, bogazin 1-2 km’leri arasinda yer alan ve denize uzakhgi
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20-30 metre olan yuvalardan g¢ikan yavrularin 6lmesi olasiligindan yaklasik olarak
0,79 kat daha fazladir.

Cizelge 3'te orneklem sifiri  iceren Al-U2 gbzesine ait bilgi bulunmamaktadir.
Ancak daha 6nce bu konu ile ilgili olarak yapilmis ¢alismalarda, A1-U2 gbzesine
ait bilgi elde edilmistir. Bu nedenle; daha dnceki galigmalardan elde edilen bu bilgi,
orneklem sifiri iceren A1-U2 gozesindeki bilgi kaybini ortadan kaldirmak, nokta ve
aralik tahminlerinde daha tutarli ve etkin sonuglara ulagmak icin Bayesci yaklagim

ile tahmin surecine dahil edilmigtir.

Bayesci yaklagsim ile Cizelge 3’Un ¢dzimlemesini yapmak i¢in dncelikle Alt bolim
4.1’de belirtilen Eg. 4.7'den faydalanarak L, ve Es. 4.8'den faydalanarak L,

olabilirlik fonksiyonlari,
Ll = exp{(kn + a11)(y11 - y12)+ (}‘11 +a, )yzz}

L, = exp{(kn + all)(_ZZl)}
biciminde bulunur.

Tahmin edilmek istenen log odds orani igin (kn) onsel dagihm belirlenirken sifir

siklikli gbzeye ait bilginin bilgi icermesi amaglanmigtir. Ornekleme plani ile énsel
dagihm arasindaki uyum 6nemli oldugundan, Es. 4.13'de verilen 6nsel dagilim

dikkate alinirsa A, igin onsel dagihm,
My ~ aN(Hn’Glzl) + (1_ OL)N(T]H,’L'H)

seklindedir. Burada L, olabilirlik fonksiyonunu temsil eden ocN(pn,cfl) kismi igin
bilgi icermeyen onsel dagihm alinirken, L, olabilirlik fonksiyonunu temsil eden

(1—a)N(n,, 1y, ) kisim igin bilgi iceren 6nsel dagilim belirtilir.

Bulunan olabilirlik fonksiyonlari ile énsel dagilim ¢arpilir ve a parametresine goére

integrallenerek log odds oraninin sonsal dagilimi,
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f (}Vn | b 6121,1’]11, T y) o< exp {(7‘11 + all)(yll —Yi ) + (7‘11 T ay )yzz}

xexp {(7&11 + a11)(_221 )}

o 1 2 1-a 1 2
x| —-expd——— (A, — + exps———(hy, —
|:6121 p{ 2051( 11 un) } T p{ 2111( 11 1111) }:|

biciminde bulunur.

Bulunan bilgiler dogrultusunda yapilan arastirma, MATLAB paket programinda

sayisal olarak ¢ozumlenirse Cizelge 3 igin sonuglar Cizelge 6’da verilmigtir.

Cizelge 6: Cizelge 3’te Verilen Olumsallik Cizelgeleri icin Bayesci Yaklagsim ile
Odds Orani Tahmini

Log Log Odds Oraninin Odds Oraninin
Odds Orani | Odds Orani Guven Araligi Guven Araligi
1,0023 0,0023 (-0,02033;0,024932) (0,979873;1,025246)

Bayesci yaklasim ile elde edilen sonuglari yorumlamak gerekirse, bogazin 0-1
km’leri arasinda yer alan ve denize uzakligi 0-10 metre olan yuvalardan c¢ikan
yavrularin dlmesi olasiligi, bogazin 1-2 km'’leri arasinda yer alan ve denize uzakligi
10-20 metre olan yuvalardan c¢ikan yavrularin 6lmesi olasiligindan 1,0023 kat

daha fazladir.

Sonsal aralik tahmini incelendiginde, klasik yaklagsimda elde edilen odds oranina
ait 1-a=0,95 guven katsayisindaki guven arahgi (0,045263;32,49487) iken
Bayesci yaklasim kullanilarak bulunan 1-a=0,95 guven katsayisindaki Bayes
guven arahgr (0,979873;1,025246)'dir. Bayesci yaklasimda bulunan aralik
tahmininin, klasik yaklagima gore daha dar oldugu acik bir sekilde gorulmektedir.
Bayesci yaklasim ile bulunan guven arahgini yorumlamak gerekirse,
(0,979873;1,025246) Bayes guven araliginin parametreyi icermesi olasiligi 0,95'ir.

Cizelge 4'te orneklem sifin  iceren A1-U2 ve A1-U3 gOzelerine ait bilgi
bulunmamaktadir. Ancak daha 6nce bu konu ile ilgili olarak yapiimig ¢calismalarda,
bu gobzelere ait bilgi elde edilmistir. Bu nedenle; daha onceki ¢alismalardan elde

edilen bu bilgi, 6érneklem sifiri iceren gdzelerdeki bilgi kaybini ortadan kaldirmak,
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nokta ve aralik tahminlerinde daha tutarl ve etkin sonuglara ulagsmak igin Bayesci

yaklasim ile tahmin surecine dahil edilmigtir.

Bayesci yaklagim ile Cizelge 4’e ait log odds orani tahmini i¢in kullanilacak L, ve

L, olabilirlik fonksiyonlari,
L, = exp{(klz + a12)(_y22)+(7‘12 +a23)y23}

L, = exp{(xlz + a12)(212 —Zy3 )}
biciminde bulunur.

Ornekleme plani ile 6nsel dagilim arasindaki uyum 6nemli oldugundan, 2, igin

onsel dagilim,
Ay ~ OLI\I(Mz’Glzz)+ (1_ OL)N(mz’le)

seklinde ifade edilir.

Bulunan olabilirlik fonksiyonlari ile dnsel dagihm carpilir ve a parametresine gore

integrallenerek log odds oraninin sonsal dagilimi,
f(;\‘12 | M1210122’n12’112’y) oc exp {(}‘12 + a12)(_y22 ) + (7‘12 + azs)y23}

xexp{(klz +a,;, )(212 —Zy3 )}

o 1 l-a
X|:—2eXp{_2—2(7\112 —Hp )2}+ eXp{_
Gy

1 2
}\’ _
12 T 2'512( . an) }}

biciminde bulunur.

MATLAB paket programinda sayisal olarak ¢dézimlenirse Cizelge 4 icin sonuglar

Cizelge 7’de verilmigtir.
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Cizelge 7: Cizelge 4’te Verilen Olumsallik Cizelgeleri icin Bayesci Yaklasim ile
Odds Orani Tahmini

Log Log Odds Oraninin Odds Oraninin
Odds Orani | Odds Orani Gulven Aralig Guven Aralig
2,5654 0,9421 (0,909597;0,974603) (2,483322;2,650115)

Bayesci yaklasim ile elde edilen sonuglari yorumlamak gerekirse, bogazin 0-1
kmleri arasinda yer alan ve denize uzakhgr 10-20 metre olan yuvalardan ¢ikan
yavrularin 6lmesi olasili§i, bogazin 1-2 kmleri arasinda yer alan ve denize uzakligi
20-30 metre olan yuvalardan ¢ikan yavrularin 6lmesi olasiligindan yaklasik olarak
2,56 kat daha fazladir.

Sonsal aralik tahmini incelendiginde, klasik yaklagsimda elde edilen odds oranina
ait 1-a=0,95 guven katsayisindaki guven araligi (0,013959;44,64892) iken
Bayesci yaklasim kullanilarak bulunan 1-a=0,95 guven katsayisindaki Bayes
gluven araligi (2,483322;2,650115) olarak bulunmustur. Bayesci yaklasimda
bulunan aralik tahmini, klasik yaklagima gore daha dardir. Bayesci yaklasim ile
bulunan guven arahidini yorumlamak gerekirse, (2,483322;2,650115) Bayes gliven

araliginin parametreyi icermesi olasiligi 0,95'ir.
2x3 boyutlu olumsallik ¢izelgesi Cizelge 8'de verilmistir.

Cizelge 8: Alan (A1,A2) x Uzakhk (U1,U2,U3) Olumsallik Cizelgesi

Uzaklhk
Alan Ul: 0-10 U2: 10-20 U3: 20-30
Al: 0-1 1 0 0
A2:1-2 23 9 7

Klasik yaklagsim ile odds orani tahmini yapmak i¢in € =0,05 sabiti tum gozelere

eklenir. Bu durumda bulunan odds orani tahminleri Cizelge 9’daki gibidir.

Cizelge 9: Cizelge 8'de Verilen Olumsallik Cizelgesi icin Klasik Yaklagim ile Odds
Orani Tahminleri

Log Log Odds Oraninin Odds Oraninin
(i,) Odds Orani | Odds Orani Guven Araligi Guven Araligi
(1,1) 1,2128 0,192904 | (-3,09527;3,48108) |(0,045263;32,49487)
(1,2) 0,7895 -0,236389 | (-4,27161;3,79883) |(0,013959;44,64892)
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Cizelge 8'de oOrneklem sifin iceren A1-U2 ve A1-U3 gozelerine ait bilgi
bulunmamaktadir. Ancak daha 6nce bu konu ile ilgili olarak yapilmig ¢alismalarda,
bu gozelere ait bilgi elde edilmistir. Bu nedenle; daha onceki ¢aligmalardan elde
edilen bu bilgi, érneklem sifiri iceren gozelerdeki bilgi kaybini ortadan kaldirmak,
nokta ve aralik tahminlerinde daha tutarli ve etkin sonuglara ulagsmak igin Bayesci

yaklasim ile tahmin surecine dahil edilmigtir.

Bayesci yaklagim ile Cizelge 8’e ait log odds orani tahmini i¢in kullanilacak L, ve

L, olabilirlik fonksiyonlari,
L, = exp{(xn + an)(yn - y21) + (7‘12 +a, )(_y22)+ (7‘12 + azs)yzs}

L, = exp{(xlz + a12)(212 —Zy3 )}
biciminde bulunur.

Ornekleme plani ile 6nsel dagilim arasindaki uyum énemli oldugundan, A,, ve A,

parametreleri i¢in 6nsel dagihmlar,
Ay ~ N(“1110_121)

Ay, ~ aN(Mz’Glzz ) + (1_ 0‘)l\l(nlz!'clz)
seklinde verilir.

Bulunan olabilirlik fonksiyonlari ile dnsel dagihim carpilir ve a parametresine gore

integrallenirse, log odds oranlarinin sonsal dagilimi,

f(?\, | u,oz,n,T’Y) oc exp{(x’ll +a11)(y11 _yZl) +(}\’12 +a12)(_y22)+(7‘12 +azs)yza}

xexp{(llz +a, )(212 —Zys )}

1
Xexp{_g(xu - Mn)z}

11

o 1 2 l1-a 1 2
x| ——expd——— (A, - + expi———(hy, —
{0122 p{ 20122( 12 Mlz) } - p{ 2112( 12 T112) }}
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biciminde bulunur.

MATLAB paket programinda sayisal olarak ¢ézUmlenirse Cizelge 8 i¢in sonugclar

Cizelge 10’da verilmistir.

Cizelge 10: Cizelge 8'de Verilen Olumsallik Cizelgesi icin Bayesci Yaklasim ile
Odds Orani Tahminleri

Log Log Odds Oraninin Odds Oraninin
(i,j)) | Odds Orani | Odds Orani Guven Araligi Guven Araligi
(1,1) 0,9506 -0,0510 (-0,07910;-0,022297) | (0,923945;0,977949)
(1,2) 1,0539 0,0525 (0,036101;0,068898) | (1,036761;1,071327)

Bayesci yaklasim ile elde edilen sonuglari yorumlamak gerekirse, bogazin 0-1
km’leri arasinda yer alan ve denize uzakligi 0-10 metre olan yuvalardan ¢ikan
yavrularin 6lmesi olasiligi, bogazin 1-2 km’leri arasinda yer alan ve denize uzakligi
10-20 metre mesafesi olan yuvalardan c¢ikan yavrularin 6lmesi olasiligindan

yaklasik olarak 0,95 kat daha fazladir.

Sonsal aralik tahmini, klasik yaklagimda elde edilen odds oranina ait 1-o =0,95
glven katsayisindaki guven arahgi (0,045263;32,49487) iken Bayesci yaklasim
kullanilarak bulunan 1-a=0,95 guven katsayisindaki Bayes guven araligi
(0,923945;0,977949) olarak bulunur. Bayesci yaklagimda bulunan aralik tahmini,
klasik yaklagsima gore daha dardir. Bayesci yaklagsim ile bulunan glven araligini
yorumlamak gerekirse, (0,923945;0,977949) Bayes glven araliginin parametreyi

icermesi olasihgl 0,95'tir.

Bogazin 0-1 km’leri arasinda yer alan ve denize uzakligi 10-20 metre olan
yuvalardan c¢ikan yavrularin élmesi olasilgi, bogazin 1-2 km’leri arasinda yer alan
ve denize uzakhdr 20-30 metre olan yuvalardan c¢ikan vyavrularin dlmesi

olasiligindan yaklasik olarak 1,05 kat daha fazladir.

Sonsal aralik tahmini, klasik yaklagimda elde edilen odds oranina ait 1-a =0,95
glven katsayisindaki guven aralgi (0,013959;44,64892) iken Bayesci yaklagim
kullanilarak bulunan 1-a=0,95 guven katsayisindaki Bayes guven araligi
(1,036761;1,071327)'dir. Bayesci yaklagimda bulunan aralik tahmini, klasik

yaklasima gobre daha dardir. Bayesci yaklasim ile bulunan given aralgini
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yorumlamak gerekirse, (1,036761;1,071327) Bayes guven araliginin parametreyi

icermesi olasihigi 0,95'ir.
3x2 boyutlu olumsallik gizelgesi Cizelge 11’de verilmigtir.

Cizelge 11: Alan (A1,A2,A3) x Uzaklik (U1,U2) Olumsallik Cizelgesi

Uzaklik
Alan Ul: 0-10 U2:10-20
Al: 0-1 1 0
A2:1-2 23 9
A3: 2-3 3 1

Klasik yaklagim ile odds orani tahmini yapmak igin &€ =0,05 sabiti tum gozelere

eklenmis ve bulunan odds orani tahminleri Cizelge 12’de verilmistir.

Cizelge 12: Cizelge 11’de Verilen Olumsallik Cizelgesi i¢in Klasik Yaklasim ile
Odds Orani Tahminleri

Log Log Odds Oraninin Odds Oraninin

Odds Orani | Odds Orani Guven Araligi Guven Araligi
(1,1) 1,2128 0,192904 | (-3,09527;3,48108) [(0,045263;32,49487)
(2,1) 1,0601 0,058411 | (-1,99744;2,11426) |(0,135682;8,283458)

Cizelge 11'de orneklem sifiri igceren A1-U2 gdzesine ait bilgi bulunmamaktadir.
Ancak daha 6nce bu konu ile ilgili olarak yapilmis ¢alismalarda, A1-U2 gbzesine
ait bilgi elde edilmistir. Bu nedenle; daha onceki ¢alismalardan elde edilen bu bilgi,
orneklem sifiri iceren A1-U2 gbzesindeki bilgi kaybini ortadan kaldirmak, nokta ve
aralik tahminlerinde daha tutarli ve etkin sonuglara ulagsmak igin Bayesci yaklagim

ile tahmin surecine dahil edilmistir.

Bayesci yaklagim ile Cizelge 11’e ait log odds orani tahmini igin kullanilacak L, ve

L, olabilirlik fonksiyonlari,
Ll = exp{(}“u + a11)y11 + (7‘21 + aZl)(yZl Y~ y31) + (le +a; )ysz}

L, = exp{(kn + all)(_ZIZ )}

biciminde bulunur.
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Ornekleme plani ile 6nsel dagilim arasindaki uyum énemli oldugundan, A, ve A,

parametreleri icin onsel dagilimlar,
My ~ aN(Hn’Glzl) + (1_ G)N(nn’":n)
Ay ~ N(“’Zl’cgl)

seklinde verilirler.

Bulunan olabilirlik fonksiyonlari ile dnsel dagihim carpilir ve a parametresine goére

integrallenirse, log odds oranlarinin sonsal dagilimi,

f(?\. | u,Cz,n,T,y) o exp{(xn +a11)y11 + (7“21 +a21)(y21 Y _y3l) +(7‘21 +a32)y32}

xexp {(Kn + a11)(_212 )}

a 1 2| 1-a 1 2
X| ——expi—— (A, — + exp< — Ay —
{0121 p{ 20121( u M) } T, p{ 2T11( 5 ) H

1
xexp {_F(}\‘Zl - le)z}

21

biciminde bulunur.

MATLAB paket programinda sayisal olarak ¢ézumlenirse Cizelge 11 igin sonuglar

Cizelge 13’te verilmigtir.

Cizelge 13: Cizelge 11’de Verilen Olumsallik Cizelgesi icin Bayesci Yaklasim ile
Odds Orani Tahminleri

Log Log Odds Oraninin Odds Oraninin
(i,j) | Odds Orani | Odds Orani Guven Araligi Guven Araligi
1,1) 1,2526 0,2252 (0,179404;0,270996) | (1,196504;1,311271)
(2,1) 1,1239 0,1168 (0,083782;0,149818) | (1,087392;1,161623)

Bayesci yaklasim ile elde edilen sonuglari yorumlamak gerekirse, bogazin 0-1
km’leri arasinda yer alan ve denize uzaklhgi 0-10 metre olan yuvalardan gikan

yavrularin 6lmesi olasiligl, bogazin 1-2 km’leri arasinda yer alan ve denize uzakligi
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10-20 metre olan yuvalardan gikan yavrularin 6lmesi olasiligindan yaklasik olarak
1,25 kat daha fazladir.

Sonsal aralik tahmini incelendiginde, klasik yaklasimda elde edilen odds oranina
at 1-a=0,95 guven aralhg (0,045263;32,49487) iken Bayesci yaklagim
kullanilarak bulunan 1-o=0,95 Bayes guven arahd (1,196504;1,311271)dir.
Bayesci yaklagimda bulunan aralik tahmini, klasik yaklasima gore daha dardir.
Bayesci vyaklagim ile bulunan guven araligini yorumlamak gerekirse,

(1,196504;1,311271) Bayes guven araliginin parametreyi icermesi olasihgi 0,95'ir.

Bayesci yaklasim ile elde edilen sonuclari yorumlamak gerekirse, bogazin 1-2
km’leri arasinda yer alan ve denize uzakligi 0-10 metre olan yuvalardan c¢ikan
yavrularin 6lmesi olasiligi, bogazin 2-3 knm’leri arasinda yer alan ve denize uzakligi
0-10 metre olan yuvalardan c¢ikan yavrularin élmesi olasiligindan yaklasik olarak
1,12 kat daha fazladir.

Sonsal aralik tahmininde, klasik yaklasimda elde edilen odds oranina ait
1-a =0,95 guven aralgi (0,135682;8,283458) iken Bayesci yaklagim kullanilarak
bulunan 1-a=0,95 Bayes guven araligi (1,087392;1,161623) oldugu gorulir.
Bayesci yaklasimda bulunan aralik tahmini, klasik yaklasima gore daha dardir.
Bayesci yaklagim ile bulunan guven araligini yorumlamak gerekirse,

(1,087392;1,161623) Bayes gliven araliginin parametreyi icermesi olasiligi 0,95'ir.
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6. SONUC VE TARTISMA

Seyrek olumsallik cizelgelerinde &6rneklem sifiri iceren gdzelerden bilgi elde
edilemediginden dolay! klasik yaklasim ile odds orani tahmin edilirken sabit bir
say! eklenir. Eklenen bu sabit arastirmacidan arastirmaciya degisebilecegi gibi
tum gozelere eklendigi icin elde edilen tahminlerde tutarsizliklara ve yanliliga

neden olabilir.

Tez calismasinda R x C boyutlu seyrek olumsallik ¢gizelgelerinde drneklem sifiri
iceren gozelerdeki bilgi kaybini ortadan kaldirarak, Bayesci yaklasim ile odds
oraninin nokta ve aralik tahmininde daha tutarli ve etkin sonuglara ulagsmak

amaclanmistir.

Seyrek olumsallik cizelgelerinde Bayesci yaklasim ile ¢ézimleme yaparken,
orneklem sifir iceren gobzeler igin bilgi iceren oOnsel dagilimlar tercih edilir.
Orneklem sifin icermeyen gozeler icin ise bilgi icermeyen onsel dagiimlar
kullanilir. Olabilirlik fonksiyonu tanimlamalarinda Demirhan ve Hamurkaroglu'nun
kullandigi déntstimlerden de faydalanilarak érneklem sifiri iceren ve icermeyen
gozeler icin iki farkli olabilirlik fonksiyonu tanimlanmistir. Olabilirlik fonksiyonlari ve
onsel dagilimlar sentezlenerek karmasik yapida sonsal dagilim elde edilmistir.
Analitik olarak elde edilen sonsal dagilimdan, MCMC benzetim yéntemlerinden biri

olan MH algoritmasi yardimiyla sayisal ornekler ¢ozumlenmigtir.

Bu calismada Sini kaplumbaga yavrularinin denize ulasana kadar gegen surede
glines 1sigina maruz kalarak Olmeleri Uzerine yapilmis bir arastirmadan
faydalanilarak, 2x2, 2x3, 3x2 boyutlu seyrek olumsallik gizelgelerinde klasik ve
Bayesci odds orani tahmini yapilmigtir. Bayesci yaklasim ile elde edilen odds
oraninin nokta ve aralik tahminleri klasik yaklasim ile elde edilen tahminlerle
karsilastirildiginda, nokta tahminlerinde benzer sonuglarla kargilasilirken, aralik
tahminlerinin daha dar oldugu gorulmustir. Bayesci yaklagsimin, klasik yaklagima

gore daha etkin sonugclar verdigi yapilan bu ¢alismada da gorulmuastar.

Tez galismasinda kullanilan Bayesci odds orani tahmini sadece R x C boyutlu
seyrek olumsallik cizelgelerinde, 6nsel dagdilim parametreleri bilinen, bagimsiz
yerel odds oranlari i¢in bulunmustur. Calismay1 daha da ileri gétirmek icin R x C

boyutlu seyrek olumsallik gizelgelerinde bagimh odds oranlari ya da onsel dagilhm
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parametreleri bilinmeyen odds oranlari i¢in tahminler incelenebilir. Benzer
arastirmalar, o6rneklem sifirr nedeniyle hesaplanamayan yerel-butunsel (local-
global) ve butlunsel (global) odds oranlar igin de yapilabilir. Seyrek olumsallik
cizelge boyutu RxCxK veya daha fazla oldugunda odds orani tahmini Bayesci

yaklasim ile yapilabilir.
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EK 1. MCMC ve MH ALGORITMASI

Bayesci yaklasimda bilinen basit model ve dagilimlar ile sonsal dagilima ve
tahminlere ulagsmak kolay iken karmasik yapidaki modeller ve dagilimlar
kullanildiginda sonsal dagilima ve sonsal tahminlere ulasmak zordur. Bu durumda

MCMC yontemleri kullanilarak kolaylikla sonsal tahminlere ulasilir.

n

Herhangi bir t <t, <..<t, kimesi igin X ’nin X Ky X, N verilen
degerlerine gére kosullu dagilimi yalnizca X, e bagh ise {X,teT} sirecine

Markov siireci denir. Bu ifadeye gore herhangi reel x,,X,,...,X, sayilari igin,
P(X, =X | X, =X X, =X X, =X 1) =P(X, =X, X, =%,,)

olur. Bu ozellik Markov ézelligi olarak adlandirilir. Bu Ozellige gore surecin t,

t t

zamanindaki durumu bilindiginde, t, ~zamanindaki durumu t,t,,...t ,

n 17
zamanlarindan bagimsizdir (inal, 1988). Markov surecini olusturan durum uzayi
kesikli ise sure¢ Markov zinciri (MC) adini alir. Pij(k) k adim gecis olasiligi olmak

uzere k=0, 1, 2, ... i¢in,
PY =P(X, =ilX =i) (ij)eS

olarak tanimlanir ve t aninda surecin i durumunda oldugu bilindiginde, t+k aninda
slrecin j durumunda bulunmasi olasihgini ifade eder. =, ilk adimda durum
uzayina ait olasiliklari igeren bir vektor, PU.(”) n adim gegcis olasiligi ve P" n adim
gegis matrisidir. Durum uzayinda tum durumlar arasinda birbirine gegis varsa (her
i,j icin PU(”) >0) zincir indirgenemez MC olarak adlandirilir. Indirgenemez
MC’lerinde =, ve P ne olursa olsun =,,=,,... vektorleri bir sire sonra m denge

dagihmina yakinsar. indirgenemez MC’lerinde durumlarin timi déngel durum

oldugunda bir denge dagilim vardir ve bu dagilim tektir.

MCMC yontemlerinin temelini de bu 6zellik olusturmaktadir. Denge dagilmi =

olan bir zincir Uretmek igin sadece P ’ye ihtiyag duyulur (Demirhan, 2004).
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MH, MCMC yontemlerinde karmasik yapidaki fonksiyonlari ¢ézumlemek igin
geligtiriimis bir algoritmadir. MH algoritmasi, Metropolis (1953) tarafindan
geligtiriimis ve Hastings (1970) tarafindan genellestiriimistir. Chib ve Greenberg
(1995) algoritmayi detayli bir sekilde incelemislerdir (Chen v.d., 2000).

Bilinmeyen parametreleri igeren k boyutlu vektor 9=(61,62,...,ek)' ve MH
algoritmasinda belirtilen éneri dagihmi® (proposal density) q(e,e*) olsun. Oneri

dagihmi kullanarak aday nokta (0": candidate point) uUretilirken, ayni zamanda
tekbicimli(0,1) dagilimindan da rasgele gézlem olan u uretilir. Bu bilgiler 1si§ginda

MH algoritma adimlari agagida verilmigtir;

Adim 1:i = 0 noktasinda keyfi bir baglangi¢ noktasi olarak 6, belirlenir.
Adim 2: Oneri dagihmi q(ei,-)’dan 6" ve tekbicimli(0,1)’den u uretilir.

Adim 3: Eger u<a(6,0") ise 6,,=6" olur, aksi takdirde 6,, =6, olarak kalir. Bu

adimda a(e,e*) ifadesi kabul orani (acceptance rate) ya da kabul olasiligi

(acceptance probability) olarak adlandirilir ve

a(e,e*)minLM 1}

f(8)a(r’A)’

biciminde ifade edilir.
Adim 4: i=i+1 olarak alinir ve adim 2’ye doénulir.

Roberts, Gelman ve Gilks (1994) hedef (target) dagilimi ve o6neri dagiliminin
normal dagilm oldugu varsayimi altinda kabul oraninin yaklagik olarak %45
olmasi gerektigini one surerken, Bennet, Racine-Poon ve Wakefield (1995) ile
Besag ve arkadaslari (1995) kabul oraninin %20 ile %50 arasinda olmasi

gerektigini 6ne surmuslerdir (Chib ve Greenberg, 1995; Gamerman, 1997). Ayni

zamanda secilen oneri dagiimi (qg(--)) ile hedef dagiimin (f(-)) birbirine

® Aday yaratici dagilim (candidate-generating density) olarak da adlandirilir ve dagilimin 0
parametresine gore integrali bire esittir (Chib ve Greenberg, 1995).
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benzemesi durumunda kabul orani bire yakinsadigi gorulir (Gamerman, 1997).
Bu nedenle MH algoritmasinin kullanilabilir olmasi i¢in 6neri dagiliminin segimine
dikkat edilmelidir.

MH algoritmasinda érneklem buyUkligl sonsuza yaklastikca (n - oo) elde edilen

sonsal tahminler denge noktasina yakinsamasi gerekir. Bu amacla kullanilan

algoritma yardimiyla n uzunlugunda m tane zincir olusturulsun ve bilinmeyen 0

parametresinin benzetim sirecinde sayisal tahmini 0, (i =1..,nj= J,...,m) ile ifade

edilsin. 0. :EZG.. ve 6 ==>6, olmak lizere zincirler arasi (B) varyans,
Tongzg? ) i1 !

3|~

B= Li(éi - 6--)2

m_l =0

formili ile hesaplanirken, zincir igi (W) varyans ise, s’ = (6ij _élj)z olmak
n—1%7

uzere,

m
28

j=1

W =

S

formall ile hesaplanir. B ve W varyanslari agirliklandirilarak marjinal sonsal

varyans (var(e | x)) asagidaki gibi elde edilir,

var(0 | x) =nT_1W+%B.

Sonsal tahminler n— o« iken denge durumuna yakinsadiginda,

R- var(6 | x)
_\/ W

biciminde hesaplanan potensiyel dlgek kuglltme katsayisinin bire yakinsamasi
gerekir (Gelman v.d., 2004).
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EK 2. BENZETIM YONTEMLERINDE KULLANILAN ONSEL BILGi

Tarkiye’de Dalyan sahilinde 1991-1993 yillari arasinda yapilan arastirmada sini

kaplumbaga (C. caretta) yavrularinin élumleri ile ilgili bilgi toplanmistir.

1991 1992 1993
Alan| Ul U2 U3 Ul U2 U3 Ul U2 U3
Al 0 17 1 0 2 5 1 0 0
A2 2 7 2 0 1 8 23 9 7
A3 0 0 0 0 3 1 3 1 4

1993 yilindaki veri kimesi alinarak Bolum 5'te Bayesci yaklasim ile odds orani

tahminleri incelenmistir. Bayesci yaklasimda kullanilan 6nsel bilgi, log odds

oraninin yapisina goére ve orneklem bilgisine uyumlu olacak bigimde normal

dagilimla ya da normal dagihmlardan olusan karma dagilimlarla ifade edilmistir.

Klasik yaklagim yardimiyla hesaplanan,

1991-1992 vyillarina ait odds orani

tahminleri, orneklem sifirn icermeyen gozeler i¢in dagiim parametreleri olarak

alinmigtir. Orneklem sifiri iceren gozeler iginse bilgi iceren normal dagihm onsel

dagilim olarak belirlenmigtir. Bu nedenle bilgi iceren onsel dagilim ozelliklerinden

faydalanilmistir. Bu dagilim parametreleri asagidaki gizelgede verildigi gibidir.

Orneklem Sifiri igermeyen |  Orneklem Sifiri igeren
Cizelge | Parametre Gozeler Gozeler

H o’ n T

3 oy 11,4838 88,2286 1 10
4 . 1,1521 31,8899 05 1
Ay -1,4838 88,2286 - ]

8 hry 1,1521 31,8899 05 0,01
11 Ay -1,4838 88,2286 0,5 0,1
Aoy -0,7416 83,1003 - -
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EK 3. BENZETIM YONTEMi SONUGLARI

Tuarkiye'de Dalyan sahilinde 1993 yilinda sini kaplumbaga (C. caretta) yavrularinin
olumleri ile ilgili toplanan bilgiler kullanilarak Bayesci yaklagsim ile odds orani

tahmini yapiimig ve bulunan sonuglar asagidaki gizelgede elde edilmigtir.

Cizelge 3
Log Log Odds Orani
Odds Orani | Odds Orani Varyansi Kabul Orani R
(1,2 1,0023 0,0023 0,0044 0,7100 1,0000
Cizelge 4
w2 25654 | 09421 | 0,8454 | 09953 | 1,0000
Cizelge 8
(1,1) 0,9506 -0,0510 0,0084 0,7052 1,2775
(1,2) 1,0539 0,0525 0,0028 0,7078 1,7095
Cizelge 11
(1,1) 1,2526 0,2252 0,0202 0,7068 1,1364
(2,1) 1,1239 0,1168 0,0105 0,7044 1,2482

MH algoritmasi kullanilarak ulasilan sonsal tahminlere iligkin yorumlar Bolum 5'te
yer almaktadir. Kabul oranlari incelendiginde gizelgelerin gogunda yaklasik olarak
0,70 ciktigi, Cizelge 4'te bu oranin yaklasik bir oldugu goérulmektedir. Bunun
nedeni, algoritmada belirlenen 6neri dagihmi ile hedef dagiimin normal dagilim

olmasidir.

MH algoritmasinda potensiyel dlgek kugultme katsayisilarinin bir ve bire ¢ok yakin

oldugu, dolayisiyla sayisal tahminlerin bir denge noktasina ulastigi soylenilebilir.
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