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SEYREK OLUMSALLIK ÇİZELGELERİNDE ODDS ORANLARINA BAYESCİ 

YAKLAŞIM 

 

Deniz Taşçı 

 

ÖZ 

Bu çalışmanın amacı, seyrek olumsallık çizelgelerinde Bayesci yaklaşım 

yardımıyla odds oranı tahminlerine ulaşmaktır. 

Bir olumsallık çizelgesinde sıfır sıklıklı gözeler, örnekleme yapısından 

kaynaklanıyorsa ve örneklem değiştiğinde sıfır sıklık içermeyecek yapıdaysa bu 

gözeler örneklem sıfırı olarak adlandırılır. Örneklem sıfırı içeren olumsallık 

çizelgelerine seyrek olumsallık çizelgeleri adı verilir. Klasik yaklaşım ile seyrek 

olumsallık çizelgelerinde odds oranı tahmini yapıldığında tüm gözelere bir sabit 

eklenir. Bu sabit her araştırmacı için değişik bir değer alacağından elde edilecek 

tahminler güvenilir olmayabilir. 

Bu çalışmada Bayesci yaklaşım ile seyrek olumsallık çizelgelerinde odds oranı 

tahmini yapmak için kullanılan olabilirlik fonksiyonu ve önsel dağılım, örneklem 

sıfırı içeren ve içermeyen gözeler için incelenmiştir. 

Çalışma sonunda elde edilen sonsal dağılım, Markov Zinciri Monte Carlo 

yöntemleri kullanılarak gerçek bir veri kümesi üzerinde odds oranı tahmini yapmak 

için çözümlemeye alınmıştır. 

Anahtar Kelimeler: Bayesci çıkarsama, Odds oranı, Olumsallık çizelgesi, 

Örneklem sıfırı, Seyrek olumsallık çizelgesi, Metropolis Hastings algoritması. 

Danışman: Prof. Dr. Süleyman GÜNAY, Hacettepe Üniversitesi, İstatistik Bölümü, 

Uygulamalı İstatistik Anabilim Dalı. 
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A BAYESIAN APPROACH TO ODDS RATIOS FOR THE SPARSE 

CONTINGENCY TABLES  

 

Deniz Taşçı 

 

ABSTRACT 

The purpose of this study is to find odds ratios estimates by using Bayesian 

approach when the contingency tables are sparse. 

A contingency table can contain zero cell frequencies which are caused by 

sampling structure. Zero cell frequencies can be filled by taking new samples from 

the same population. These cells are said to be sampling zeros. The contingency 

tables which contain sampling zeros are called sparse contingency tables. While 

odds ratios are estimated for sparse contingency tables by using classical 

approaches, a constant is added to all the cells. Since this constant may take 

different values for each researcher, reliable estimates may not be obtained.  

In this study, likelihood function and prior distribution, which are utilized for 

estimation of odds ratios in sparse contingency tables by employing Bayesian 

approach, are examined for the cells with or without sampling zeros.  

In conclusion, in order to estimate odds ratios, obtained posterior distribution is 

used on a real data set by employing Markov Chain Monte Carlo techniques. 

Keywords: Bayesian inference, Contingency tables, Odds ratio, Sampling zeros, 

Sparse tables, Metropolis Hastings algorithm. 

Advisor: Prof. Dr. Süleyman GÜNAY, Hacettepe University, Departmant of 

Statistics, Applied Statistics Section. 
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1. GİRİŞ 

Tarihin başlangıcından bu yana araştırmacılar ilgi duydukları alanlarla ilgili veri 

kümesi elde etmişler ve bu veri kümesini de farklı farklı yöntemlerle 

değerlendirmişlerdir. Veri toplamanın yetersiz kaldığı karar verme sürecinde, 

belirsiz durumlar hakkında yorum yapabilmek ve karar verebilmek için 

araştırmacılar olasılık kavramını keşfetmişler ve bu kavramla ilgilenmeye 

başlamışlardır. Zaman içinde matematiğin gelişmesi, istatistiğin bir bilim dalı olarak 

ortaya çıkmasıyla araştırmacılar, bu veri kümesi üzerinde çözümlemeler 

yapmışlar, yorumlamışlar ve karar vermişlerdir. 

Kategorik değişkenler kullanılarak oluşturulan RxC boyutlu olumsallık çizelgeleri 

(contingency tables), elde edilen veri kümesini göstermenin en klasik yoludur. 

Belirtilen değişkenler hakkındaki bilgi çapraz çizelgeleme sayesinde daha düzenli 

ve daha anlaşılır biçimde ifade edilir.  

Günümüzde olumsallık çizelgeleri sosyolojik, psikolojik, medikal olmak üzere 

birçok alanda yapılan çalışmalarda yoğun biçimde kullanılmaktadır. Bu 

çalışmalarda farklı yapılardaki olumsallık çizelgeleri ile karşılaşılır. Seyrek 

olumsallık çizelgeleri bunlardan bir tanesidir. Seyrek olumsallık çizelgelerinde 

klasik yaklaşım ile yapılan parametre tahminlerinde genellikle tutarsız sonuçlar ile 

karşılaşılır. 

Olumsallık çizelgelerinde parametre tahminlerinde araştırmacılar en çok odds 

oranının tahmini ile ilgilenmektedirler. Odds oranı ile kategorik değişken düzeyleri 

arasında başarı etkenlerinin var olup olmadığının araştırılması önemli bir sorun 

olarak karşımıza çıkmaktadır.  

Bayesci yaklaşım, sadece örneklem bilgisini temsil eden olabilirlik fonksiyonu ile 

yetinmez. Bu yaklaşımda daha önceki deneyimler ve bu deneyimlerden gelen 

bilginin de tahmin sürecinde kullanılması gerekir. Bayesci yaklaşımı benimsemiş 

araştırmacılar tahmin sürecinde önsel bilgi ile örneklem bilgisini birleştirirler. Klasik 

yaklaşımı benimseyen istatistikçiler, her ne kadar bu noktada Bayesci yaklaşımı 

benimseyenlerle karşı karşıya gelseler de aslında klasikçiler de çözümlemede 

araştırmalarına kendi deneyimlerini tahmin sürecine katmak isterler.   



 2 

Literatürde olumsallık çizelgelerinde Bayesci yaklaşım ile birçok çalışma yapılmış 

olsa da olumsallık çizelgelerinde odds oranları hakkında çalışmalar çok az 

sayıdadır.  

Albert (1987) odds oranlarında değişebilirlik (exchangeability) olduğunda 2x2xK 

boyutlu çizelgeler için odds oranlarının eşzamanlı tahminleri ile 2x2 boyutlu bir 

olumsallık çizelgesinde önsel bağımsızlık koşulu altında odds oranlarının tahmini 

üzerinde çalışmıştır.  

Demirhan ve Hamurkaroğlu (2008) RxC ve 2x2xK boyutlu olumsallık 

çizelgelerinde log odds oranı tahminlerine ulaşmak için uyguladıkları tahmin süreci 

ve elde ettikleri sonsal tahminler hakkında kapsamlı bilgi vermişlerdir. 

Tez çalışmasında Bayesci yaklaşım ile seyrek olumsallık çizelgelerinde odds oranı 

tahmini yaparken, örneklem sıfırı (sampling zeros) ile karşılaşılması durumunda, 

tahminlerin klasik yaklaşıma göre daha güvenilir ve etkin sonuçlar vermesi 

amaçlanmıştır. Bu nedenle; bilgi içermeyen sıfır sıklıklı gözeler için bilgi içeren 

önsel dağılımlar belirlenerek o gözelerin de tahmin sürecinde yer alması önemlidir.  

Tez çalışmasının birinci bölümünde giriş yapılmış ve seyrek olumsallık 

çizelgelerinde odds oranlarının neden Bayesci yaklaşım ile tahmin edildiği 

açıklanmıştır. İkinci bölümünde olumsallık çizelgeleri, seyrek olumsallık çizelgeleri 

ve odds oranı hakkında, üçüncü bölümünde ise Bayesci yaklaşım, Bayes teoremi, 

Bayesci tahmin süreci ve bu süreçte kullanılan olabilirlik fonksiyonu, önsel dağılım, 

sonsal dağılım ve sonsal tahminler, Bayesci yaklaşımda karşılaşılan zorluklar, 

Bayesci yaklaşım ile klasik yaklaşımın karşılaştırılması hakkında genel bilgiler 

verilmiştir. Dördüncü bölümde seyrek olumsallık çizelgelerinde log odds 

oranlarının Bayesci tahminleri için kullanılan Bayesci tahmin süreci detaylı olarak 

anlatılmıştır. Beşinci bölümde ise sini kaplumbağa yavrularına ait sayısal örnek 

için MATLAB paket programı kullanılarak 2 x 2, 2 x 3 ve 3 x 2 boyutlu seyrek 

olumsallık çizelgelerinde odds oranlarının tahminleri hakkında incelemeler 

yapılmıştır. Son bölümde elde edilen sonuçlar incelenmiş, yapılan tartışmalara yer 

verilmiştir. Ekte ise Markov zinciri Monte Carlo (MCMC) yöntemlerinden biri olan 

Metropolis Hastings (MH) algoritması, uygulamada kullanılan önsel dağılım 

parametreleri ve bulunan sonsal tahminler hakkında bilgi verilmiştir. 
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2. OLUMSALLIK ÇİZELGELERİ 

İki ya da daha çok kategorik değişkenin sıklıklarının belirtildiği çizelgelere 

olumsallık çizelgeleri denir.  

“Olumsallık çizelgesi” terimi ilk kez İngiliz matematikçi Karl Pearson (1904) 

tarafından "On the Theory of Contingency and Its Relation to Association and 

Normal Correlation" adlı çalışmasında kullanılmıştır (Ünsay, 2004). Günümüzde 

birbirinden farklı çalışma alanlarında olumsallık çizelgelerinden yararlanılmakta ve 

bu çizelgeler üzerinden istatistiksel çözümlemeler yapılmaktadır. 

 

2.1. RxC Boyutlu Çizelgeler 

X kategorik değişkeninin R tane, Y kategorik değişkeninin C tane düzeyi 

bulunması durumunda, bu kategorik değişkenleri ifade etmek için kullanılan 

olumsallık çizelgelerine RxC boyutlu çizelgeler adı verilir (Agresti, 1997).  

RxC boyutlu çizelgelerde satır değişkeninin i. düzeyi ve sütun değişkeninin j. 

düzeyinde (X,Y) durumunun ortaya çıkması olasılığı pij olarak ve yine satır 

değişkeninin i. düzeyi ve sütun değişkeninin j. düzeyinde gözlenen sıklık ise yij ile 

ifade edilir. Satır değişkeni olan X kategorik değişkeninin i. düzeyi için marjinal 

olasılıklar pi+ ve gözlenen sıklıklar yi+ ile gösterilirken, sütun değişkeni olan Y 

kategorik değişkeninin j. düzeyi için marjinal olasılıklar p+j ve gözlenen sıklıklar y+j 

ile gösterilir. 

Toplam denek sayısı y, 0ijp  ve 
y

y
p

ij

ij   olmak üzere, satır ve sütun değişkenleri 

için göze olasılıkları ve gözlenen göze sıklarına ait eşitlikler,  


j

iji pp   
i

ijj pp   1 
i j

ij
j

j
i

i ppp  


j

iji yy   
i

ijj yy   yyyy
i j

ij
j

j
i

i    

şeklinde yazılabilir. 
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X kategorik değişkeninin i. düzeyine göre Y kategorik değişkeninin j. düzeyinin 

ortaya çıkma olasılığı i|jp  (j=1, ..., C) şeklinde ifade edilir ve 1
j

i|jp 'dir. 

X ve Y kategorik değişkenleri için RxC boyutlu olumsallık çizelgesinde sıklıklar ve 

olasılık dağılımlarına ait gösterimleri Çizelge 1'de verilmiştir.  

Çizelge 1: RxC Boyutlu Olumsallık Çizelgesi (Sıklıklar ve Olasılık Dağılımları) 

  Y DEĞİŞKENİ 

 DÜZEY 1 2 ... C-1 C TOPLAM 

X
 D

E
Ğ

İŞ
K

E
N

İ 

1 
y11 y12 ... y1(C-1) y1C y1+ 

p11 p12 ... p1(C-1) p1C p1+ 

2 
y21 y22 ... y2(C-1) y2C y2+ 

p21 p22 ... p2(C-1) p2C p2+ 

              

R-1 
y(R-1)1 y(R-1)2 ... y(R-1)(C-1) y(R-1)C y(R-1)+ 

p(R-1)1 p(R-1)2 ... p(R-1)(C-1) p(R-1)C p(R-1)+ 

R 
yR1 yR2 ... yR(C-1) yRC yR+ 

pR1 pR2 ... pR(C-1) pRC pR+ 

 TOPLAM 
y+1 y+2 ... y+(C-1) y+C y 

p+1 p+2 ... p+(C-1) p+C 1 
 

Olumsallık çizelgeleri poisson, multinomial ve hipergeometrik örnekleme 

yöntemleri kullanılarak oluşturulabilir (Agresti, 1997).  

 

2.2. Seyrek Olumsallık Çizelgeleri  

Bir kitleden alınan örneklem küçük olduğunda ya da örneklem büyük olmasına 

karşın olumsallık çizelgelerinde satır ve sütunda yer alan değişken sayıları veya 

bu değişkenlere ait düzey sayıları çok sayıda olduğunda ortaya çıkan olumsallık 

çizelgeleri seyrek olumsallık çizelgeleri olarak adlandırılır (Agresti, 2002). 

Olumsallık çizelgelerinde sıfır sıklık içeren gözeler bulunabilir. Burada dikkat 

edilmesi gereken durum, bu gözelerin beklenen sıklıklarının sıfırdan büyük 

değerler alabileceğidir. Bu durumda alınan örneklemde göze sıklığı sıfır olurken, 

örneklem büyüklüğü değiştiğinde ya da kitleden söz edildiğinde bu sıklık sıfırdan 
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farklı olabilir. Bu duruma örneklem sıfırı adı verilir. Seyrek olumsallık çizelgelerinde 

örneklem sıfırı ile karşılaşılır. Örneklem sıfırlarından, log-doğrusal ve lojit model 

parametrelerinin en çok olabilirlik tahmin edicileri etkilenir. Göze sıklığı sıfır 

olduğunda yapılan tahminlerde de güvenilir olmayan sonuçlara ulaşılır. Bu 

durumdan kurtulmak için değişik yöntemler kullanılır, kimi zaman sıfır sıklıklı 

gözelere küçük sabit bir sayı eklenir, kimi zaman ise düzleştirme yöntemleri 

uygulanır. Eklenen sabit sayılar hemen hemen her araştırmada farklı alınır ve 

kullanılan düzleştirme yöntemlerinde farklı kısıtlar bulunur. Bu nedenle; odds oranı 

tahmini ele alındığında her yöntem için farklı odds oranı tahminlerine ulaşılabilir. 

 

2.3. Odds Oranı 

Odds, bir olayın meydana gelmesi olasılığının, meydana gelmemesi olasılığına 

oranıdır. İki oddsun birbirine oranı ise odds oranı olarak adlandırılır. Odds oranı 

medikal çalışmalar başta olmak üzere, sosyolojik alanda yapılan çalışmalarda ve 

benzeri kategorik değişkenlerin söz konusu olduğu birçok alanda kullanılır.  

Olumsallık çizelgelerinde parametre tahminlerinin yanısıra değişkenlerin 

düzeylerinin birbirlerini nasıl etkilediklerini incelemek için odds oranı tahmini 

yapılır. Odds oranı sıfırdan büyük herhangi bir değer alabilir. X ve Y kategorik 

değişkenleri bağımsız olduklarında odds oranı bire eşit olur. Eğer odds oranı 

birden büyük ise 1. satırdaki başarının oddsu, 2. satırdakinden daha yüksektir 

şeklinde yorumlanabilir. Birden uzak odds oranı değerlerinin, belirlenen yönde 

daha güçlü ilişkiyi ifade ettiği de söylenilebilir.  

RxC boyutlu olumsallık çizelgelerinde klasik yaklaşım ile yerel (local) odds oranı; 

 

1 1 1 1

1 1 1 1

ij (i )( j ) ij (i )( j )

ij

i( j ) (i ) j i( j ) (i ) j

p p y y
ˆ ,

p p y y

   

   

 
  

 
 i 1,...,R 1 ; j 1,...,C 1      (2.1) 

biçiminde tahmin edilir. RxC boyutlu olumsallık çizelgelerinde 
















22

CR
 tane odds 

oranı tahmini yapılabilir. 
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Örneklem yeterince büyük olmadığında, odds oranının örneklem dağılımının sivri 

(sharp) bir yapıya sahip olduğu ve bu sivrilikten dolayı odds oranının asimetrik bir 

yapıda olduğu gözlemlenmiştir. Bu nedenle; istatistiksel çıkarımlarda, odds 

oranının doğal logaritması (log odds oranı) alınarak tahminler yapılır. Böylece log 

odds oranının örneklem dağılımı, sıfır noktasının etrafında simetrik özellik gösterir. 

Log odds oranının standart hatası (SE);  

 
1 1 1 1

1 1 1 1
ij

ij (i ) j i( j ) (i )( j )

ˆSE log
y y y y

   

          (2.2) 

formülü ile hesaplanabilir.  

Log odds oranının örneklem dağılımı asimptotik olarak normal dağılıma 

yakınsadığından, 1  güven düzeyinde log odds oranının güven aralığı;  

    2ij ij
ˆ ˆlog z SE log   


       (2.3) 

formülünden bulunabilir. 

Seyrek olumsallık çizelge yapısı dikkate alındığında, odds oranının tahmini 

hesaplanırken, paydadaki göze bilgisi ( )j(ip 1 , j)i(p 1  ya da )j(iy 1 , j)i(y 1 ) sıfır 

olduğunda hesaplamalarda zorluklarla karşılaşılabilir. Bu durumda, klasik 

yaklaşımda   gibi küçük bir sayının eşitliklere eklenerek hesaplamaların yapılması 

önerilir.  
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3. BAYESCİ YAKLAŞIM 

Olasılık teorisi incelendiğinde, olasılığın göreli sıklık ve klasik tanımları ile 

karşılaşılır (Karadağ, 2011). Bunların yanısıra olasılık teorisine yeni bir soluk 

getiren öznel olasılık tanımı da zaman içinde olasılık teorisinde yerini almıştır.  

Öznel olasılık kavramının temeli, İngiliz matematikçi ve rahip Thomas Bayes 

tarafından atılmıştır. Bayes’in olasılıkta çığır açan teorisi1 her ne kadar yaşamı 

süresince kabul görmemiş olsa da ölümünden iki yıl sonra çalışmaları Richard 

Price tarafından derlenip yayınlanmıştır2. Laplace’ın olasılık teorisi üzerine yaptığı 

çalışmalar3 sonucunda Bayes Teoremi tekrar gündeme gelmiş, ancak bu da 

Bayesci yaklaşımın hemen kabul görmesine neden olmamıştır. Yirminci yüzyılın 

sonlarına doğru klasik yaklaşımın ilgilenilen problemlerin çözümünde yetersiz 

kaldığı görülmüş ve Bayesci yaklaşıma olan ilgi artmıştır. MCMC (Gelfand ve 

Smith, 1990) olarak adlandırılan benzetim tekniğinin geliştirilmesi sonucunda 

problemlerin incelenmesinde ve çözümünde Bayesci yaklaşım daha da yaygın bir 

şekilde kullanılmaya başlanmıştır. 

 

3.1. Bayesci Yaklaşım ve Bayes Teoremi 

Bayesci yaklaşımda araştırılan konuya ait tüm bilginin kullanılması hedeflenir 

(Demirhan, 2004). Bu nedenle; Bayesci istatistikte, araştırmacının veri toplayarak 

elde ettiği bilgi ile benzer çalışmalardan, uzman görüşlerinden ya da 

araştırmacının inançlarından elde edilen tüm mantıklı bilgi bir arada değerlendirilir. 

Araştırmacının veri toplayarak elde ettiği örneklem bilgisi nesnel bir yapıya sahip 

iken, benzer çalışmalardan, uzman görüşlerinden ya da araştırmacının 

inançlarından elde edilen önsel bilgi öznel bir yapıya sahiptir. Bayes teoremi 

yardımıyla bu farklı iki yapıya sahip bilgi birleştirilir.  

Bayes teoremi, Bayes tarafından (1763), 0)B(P  olmak üzere, B olayının ortaya 

çıktığı bilindiğinde A olayının ortaya çıkma olasılığı, 

                                                 
1
 Bayes Teoremi ve bu teoremin olasılık teorisindeki yeri. 

2
 Thomas Bayes’in en önemli eseri olan ve Bayes Teoremini içeren 1763 yılında yayınlanan bu 

makalenin adı “An Essay Towards Solving a Problem in the Doctorine of Chances”dır. 
3
 Laplace’ın 1812 yılında yaptığı bu çalışmalar Theorie Analytique des Probabilités adlı kitabında 

yer almaktadır. 
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   
)B(P

APA|BP
)B|A(P


          (3.1) 

şeklinde ifade edilmiştir.  

Bayes teoreminin genelleştirilmiş ifadesi ise;  

   

   

i

i n

i i

i 1

P B | A P Ai
P(A | B) , i 1,2,...,n

P B | A P A



 


     (3.2) 

biçiminde verilmiştir. Burada A1, A2, …, An ayrık olayları, S örneklem uzayını 

oluşturmakta, B olayı, S örneklem uzayının herhangi bir olayını temsil etmekte ve 

 



n

i

i B|AP
1

1’dir (İnal ve Günay, 2010).  

 1 n,...,    parametresine bağlı,  1 ny ,...,yy  biçiminde n boyutlu gözlem 

vektörüne ait olasılık fonksiyonu  f | y  ve   parametresine ait olasılık 

fonksiyonu  f   olmak üzere,   ve y’nin bileşik olasılık fonksiyonu, 

     f , f f |   y y         (3.3) 

biçiminde ifade edilir. 

Y raslantı değişkeninin dağılımı, kesikli olduğu durumda,  

     
Ry

f f | f   y y ,  

sürekli olduğu durumda ise, 

     
Ry

f f | f d     y y   

olmak üzere, y bilindiğinde,  ’nın koşullu dağılımı (  f 0y  için), 

 
 
 

   
 

f f | f
f |

f f


 

 


y
y

y y

θ,y
       (3.4) 
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biçiminde ifade edilebilir (Gelman v.d., 2004).  

  parametresi raslantı değişkeni olarak alındığından dolayı  f | y  ifadesi ile 

Bayes Teoremi tutarlıdır (Demirhan, 2004). Burada  f y ,   parametresini 

içermediğinden dolayı, C gibi bir sabit olarak algılanır ve bu sabit normalleştirme 

sabiti adını alır (Gelman v.d., 2004). Bu durumda Bayes teoremi,  

     f | C f | f    y y         (3.5) 

şeklinde yazılabilir. Buradaki C sabiti, elde edilen  f | y  dağılımın, kesikli olduğu 

durumda toplamının, sürekli olduğu durumda ise integralinin bire eşit olmasını 

sağlayan katsayıdır. Bayesci yaklaşımda C sabiti ihmal edilerek  f | y  dağılımı 

orantılıdır “ ” ifadesi ile yazılabilir:   

     f | f f   y y | .        (3.6) 

Eş. 3.6’da  f y |  ifadesi, y bilindiğinde  ’nın olabilirlik fonksiyonu  θ y|  olarak 

da tanımlanabilir (Demirhan, 2004). Bu durumda Eş. 3.6,  

     f | f  y θ y|         (3.7) 

biçiminde yazılır. 

 

3.2. Bayesci Tahmin Süreci 

Bayesci yaklaşımda araştırmacı, bilinmeyen parametrelere ilişkin inancını, bilgisini, 

deneyimini, konu hakkında uzmanlaşmış başka kişilerin görüşlerini de tahmin 

sürecine katmak ister. Araştırmacının elde ettiği bu mantıklı bilgiye önsel bilgi 

(prior information) adı verilir. Araştırmacı bu aşamadan sonra çeşitli yollarla 

topladığı veri kümesini (örneklem bilgisini) önsel bilgi ile sentezler. Bu iki bilginin 

birleşmesiyle, araştırmaya ait sonsal bilgi (posterior information)  elde edilir. Eş. 

3.7’de,  θ y|  ile ifade edilen olabilirlik fonksiyonu örneklem bilgisini temsil 

ederken,  f   bilinmeyen parametreye ait önsel bilginin dağılımını (önsel dağılımı) 
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ve elde edilen  f | y  bilinmeyen parametreye ait sonsal dağılımı göstermektedir.  

Bu bilgiler ışığında Eş. 3.7, 

Sonsal Dağılım   Olabilirlik Fonksiyonu x Önsel Dağılım 

biçiminde yazılabilir (Box ve Tiao, 1973). 

Bayesci yaklaşımda önsel bilgiden önsel dağılımlara, sonsal dağılımlardan da 

sonsal bilgiye geçiş söz konusudur (O’Hagan, 1986). Bayesci yaklaşım yardımıyla 

elde edilen sonsal dağılım, bir sonraki aşamada önsel dağılım olarak alınabilir 

(Demirhan, 2004). 

Bayesci yaklaşımda araştırmacı, yukarıda da belirtildiği gibi, bilinmeyen 

parametreye ait önsel dağılımın yanısıra veri kümesinden ya da modelden elde 

edilen olabilirlik fonksiyonunu da tahmin sürecinde görmek ister. Olabilirlik 

fonksiyonu için genellikle sürekli veri kümesinde normal model, kesikli veri 

kümesinde poisson ya da negatif binom modelleri, iki değer alan değişkenlerde 

binom modeli, tekrarlı ya da çizelgeleştirilmiş veri kümesinde ise multinomial 

modeller kullanılır.  

Olabilirlik, ilgilenilen parametre için, her bir noktada verilerin olasılık dağılımına 

dayanır (Stauffer, 2008). 

 

3.2.1. Önsel Dağılımlar 

Önsel bilgi, Bayesci istatistiğin temel ögesi olmakla beraber, aynı zamanda 

tartışmalara açıktır. Araştırmacının elde ettiği tüm bilgiyi çözümlemeye katması 

Bayesci istatistiğin en güçlü yanı ve temeli iken, önsel bilgiden elde edilen önsel 

dağılım, farklı araştırmacılar tarafından farklı alındığında, aynı parametre için farklı 

sonsal dağılımlar ve sonsal tahminler elde edilebilir. Bu durum, Bayesci istatistiğin 

tartışmalara neden olduğu alandır. Bilinmeyen parametreye ait önsel bilgi 

kullanılarak önsel dağılımın belirlenmesi sürecinde çok dikkatli olunmalı ve 

mantıklı hareket edilmelidir. Eğer önsel dağılımın belirlenmesinde çelişkiler söz 

konusu ise duyarlılık çözümlemesi kullanılarak her bir önsel dağılımın sonsal 

tahminler üzerindeki etkileri incelenebilir ve en uygun önsel dağılım seçilebilir. 
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Her ne kadar önsel dağılımın belirlenmesi aşamasında tartışmalarla karşılaşılsa 

da, bu durum ile ilgili kesin kurallar ortaya konulamamaktadır. Bu nedenle önsel 

dağılımın belirlenmesinde, Bayes teoreminin etkin bir şekilde uygulanabilmesi ve 

belirlenecek önsel dağılım yardımıyla elde edilecek sonsal dağılımın mantıklı 

sonuçlar vermesi önem taşır. 

Önsel dağılımlar, bilgi içerme durumlarına göre bilgi içeren (informative) ve bilgi 

içermeyen (non-informative) önsel dağılımlar olmak üzere ikiye ayrılır. 

Bilgi içeren önsel dağılımlar, olabilirlik fonksiyonundan etkilenmez ve sonsal 

dağılım üzerinde etkili olur.  

Bilgi içermeyen önsel dağılımlar4, olabilirlik fonksiyonu tarafından baskılanır ve 

sonsal dağılım üzerinde etkisi çok az olur. Başlıca kullanılan bilgi içermeyen önsel 

dağılımlar; yaygın (diffuse), bilgi içermeyen (noninformative), zayıf (weak), etkisiz 

(vague), düzgün (flat) önsel dağılımlarıdır (Demirhan 2004; Stauffer, 2008). 

Araştırmacı bilinmeyen parametreler hakkında çok az miktarda önsel bilgiye 

sahipse ya da elindeki örneklem bilgisinin önsel bilgi tarafından baskılanmasını 

istemiyorsa bilgi içermeyen önsel dağılımı tercih edebilir. Bayesci yaklaşımda bilgi 

içermeyen önsel dağılımlar tahmin sürecinde kullanıldığında elde edilen sonsal 

tahminler, klasik yaklaşımda elde edilen tahminlerle benzer sonuçlar verir 

(Winkler, 2003).  

Bilgi içeren ya da içermeyen önsel dağılımın seçimi sonsal dağılımı etkilediğinden 

önemlidir. Parametrelere ait önsel bilgi zayıf ise örneklem büyüklüğü arttıkça önsel 

dağılımın önemliliği azalır (Iversen, 1984; Yardımcı, 2000; Demirhan, 2004). 

Önsel dağılımlar, tanımlı oldukları aileye göre eşlenik (conjugate) ve eşlenik 

olmayan (non-conjugate) önsel dağılımlar olmak üzere ikiye ayrılır. 

Bayesci tahmin sürecinde kullanılan önsel dağılım ile süreç sonunda elde edilen 

sonsal dağılım aynı aileye ait ise kullanılan önsel dağılım eşlenik önsel dağılım 

olarak adlandırılır. Örneğin: olabilirlik fonksiyonu poisson olan λ parametresi için 

önsel dağılım olarak gamma ailesinden eşlenik gamma dağılımı kullanılırsa sonsal 

                                                 
4
 Referans dağılımlar olarak da adlandırılır.  
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dağılım yine gamma dağılımı olarak bulunur. Eşlenik önsel dağılımların 

kullanılmasıyla sonsal dağılımlar kolaylıkla kapalı formda elde edilebilir. 

Eşlenik önsel dağılımlar hesaplama rahatlığı sağlar ve aynı zamanda ek veri 

olarak da kullanılır (Gelman v.d., 2004).  

Karmaşık modeller söz konusu olduğunda eşlenik aile kullanılarak bir önsel 

belirlenemeyebilir. Bu durumda eşlenik olmayan önsel dağılımların kullanılması 

zorunluluğu ile karşılaşılır (Gelman v.d., 2004). 

Önsel dağılımlar, tanım aralıklarında integrallerinin/toplamlarının bire eşit olup 

olmamasına göre belirli (proper) ve belirsiz (improper) önsel dağılımlar olmak 

üzere ikiye ayrılır. 

Belirli önsel dağılımlar, tanım aralığında integralinin/toplamının sonucu bire eşit 

olan dağılımlardır. Önsel dağılım integrali/toplamı pozitif bir sabite eşit ise bu 

dağılım normalleştirilmemiş sıklık olarak adlandırılır ve C gibi bir sabit ile çarpılarak 

belirli bir önsel dağılım olarak kullanılır (Gelman v.d., 2004). 

Belirsiz önsel dağılımlar ise tanım aralığında integralinin/toplamının sonucu bire 

eşit olmayan, sonsuza eşit olan dağılımlardır. 

İlgilenilen parametreye ilişkin önsel olasılık yoğunluk fonksiyonu düz ve doğruya 

yakın ise önsel dağılım olarak tekbiçimli (uniform) dağılım ya da sabit bir değer 

kullanılabilir. Bu durumda ilgilenilen parametrenin tüm değerlerini alması 

olasılıkları eşit olur (Box ve Tiao, 1973). 

Kullanılan önsel dağılım türü ne olursa olsun elde edilecek sonsal dağılım belirli 

olmak zorundadır (Gelman v.d., 2004). 

Önsel dağılımlar ile sonsal dağılımlar arasındaki ilişki ile önsel dağılımlar ile 

olabilirlik fonksiyonu arasındaki ilişki de sonsal dağılımı etkiler (Demirhan, 2004). 

Belirlenen önsel dağılım, örnekleme planına uyumsuz olduğunda elde edilecek 

sonsal dağılım etkilenir, sonsal tahminlerde tutarlı olmayan sonuçlara ulaşılır. 
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3.2.2. Sonsal Tahminler 

Sonsal dağılım, parametre hakkındaki güven düzeyini, veri kümesini gördükten 

sonra özetlemeye yarayan dağılımdır (Bolstad, 2007). Tahmin edilmek istenen 

parametreye ait tüm bilgiyi içerir. Bu durumda elde edilen sonsal dağılımdan gerek 

konum ölçüleri, gerekse yayılım ölçüleri kullanılarak sonsal tahminler yani sonsal 

bilgi elde edilmelidir. Bu işlem tamamlandığında Bayesci tahmin süreci sona ermiş 

olur.  

Bayesci yaklaşımda sonsal nokta tahmini için kullanılan konum ölçüleri; sonsal 

ortalama, sonsal tepe değeri ve sonsal ortancadır. Yayılım ölçüleri ise sonsal 

varyans, sonsal standart sapma olarak verilebilir. 

Bayesci yaklaşımda sonsal nokta tahminin yanısıra sonsal belirsizliği içeren sonsal 

aralık tahmini de yapılabilir. Bayesci yaklaşımda aralık tahmini yorumu güven 

aralığının parametreyi içermesi olasılığı şeklinde ifade edilir.  

 

3.3. Bayesci Yaklaşım ile Klasik Yaklaşımın Karşılaştırılması 

Bayesci yaklaşımda önsel bilgi, sonuçlar üzerindeki nesnel etkiyi ortadan 

kaldırdığından dolayı sıkça eleştirilmektedir. Fakat klasik yaklaşımda da 

araştırmacılar yaptıkları çalışmalarda ister istemez kendi öznel bilgisini işin içine 

katmaktadırlar. Freedman, Bayesci bir araştırmacı olmamasına rağmen yaptığı bir 

çalışmada, veri kümesinden tahminler yapılacağı zaman en tutucu klasik 

istatistikçinin bile bazı varsayımları ve önsel bilgiyi görmezden gelemeyeceğini 

belirtmiştir (Sevinç, 2007). 

Bayesci yaklaşım ile klasik yaklaşımı karşılaştırmak gerekirse birçok açıdan 

Bayesci yaklaşımın daha üstün olduğu görülmektedir. Bayesci yaklaşımda modele 

önsel bilginin dahil edilmesinin nedeni, parametrelerin sabit değil raslantı değişkeni 

olarak belirtilmesinden kaynaklanır. Bayesci yaklaşımda, parametreler raslantı 

değişkeni olarak kabul edildiğinden ve kendi dağılımlarına sahip olduklarından 

dolayı tahmin edilen parametrelerin tahmin edici özelliklerini taşıması 

gerekmemektedir (Karadağ, 2011). 
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Bayesci yaklaşımda, klasik yaklaşımdan farklı olarak olabilirlik fonksiyonu önsel 

dağılımla birleştirilerek tahminler yapıldığından dolayı parametre hakkındaki tüm 

bilgiler kullanılır ve bu nedenle bilgi kaybı söz konusu olamaz. Bayesci yaklaşımda 

örneklem büyüklüğü için herhangi bir kısıtlama söz konusu değildir. Çok küçük veri 

kümelerinde bile kapsamlı araştırmalar yapılabilir. Hatta veriye ulaşılamadığı 

durumlarda sadece önsel bilgiden yola çıkılarak tahminler yapılabilir. Önsel bilginin 

bilgi içermemesi durumunda Bayesci yaklaşım ile klasik yaklaşım aynı sonuçları 

verir.  

Bayesci yaklaşım, klasik yaklaşıma göre daha az varsayımla tahminler 

yapabilmektedir (Ghosh v.d., 2006). 

Bayesci yaklaşım, klasik yaklaşımın yetersiz kaldığı, çözüm getiremediği 

problemlere çözüm bulabilir. 

Klasik yaklaşımda nokta tahmini için tahmin edilen değerin, gerçek değerden 

farklılığı hatanın doğrusal ya da karesel kayıp fonksiyonu ile ölçülür. Bayesci 

yaklaşımda ise önce her bir tahmin edici için riskler hesaplanır, parametre 

değerleri için önsel olasılıklar belirlenir ve beklenen riskler her bir tahmin edici için 

hesaplanır. En küçük beklenen riskli tahmin edici en iyi tahmin edicidir. Bu 

aşamada sonsal dağılımın ortalaması bir nokta tahmin edicisi olmaktadır 

(Demirhan, 2004). 

Klasik yaklaşımda aralık tahminlerinin yorumu, aralığın parametreyi içermesi 

olasılığı üzerine yapılırken, Bayesci yaklaşımda bu yorum parametrenin aralığa 

düşmesi olasılığı ile ilgilidir. Bayesci yaklaşımda aralığın içinde bulunan her 

noktanın sahip olduğu olasılık yoğunluğu, aralık dışında bulunanlardan daha 

büyük olduğunda bu aralığa en yüksek yoğunluk aralığı adı verilir (Demirhan, 

2004). 

Bayesci yaklaşımda, önsel bilgiye ait dağılımın uygun bir şekilde seçilmesi 

durumunda elde edilen sonsal tahminlerin hatası, klasik yaklaşıma göre daha 

küçük olmakla beraber aralık tahminleri de daha dar bulunur. Mantıklı tüm bilgi 

doğru şekilde kullanıldığında daha etkili sonuçlar elde edilir (Karadağ, 2011; 

Demirhan, 2004). 
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Bayesci yaklaşım ile parametreler üzerindeki belirsizlikler azaltılır (Iverson, 1984; 

Demirhan, 2004).  

 

3.4. Bayesci Yaklaşımda Karşılaşılan Zorluklar 

Bayesci yaklaşımın tahmin sürecinde bilinmeyen parametre hakkında elde edilmiş 

kesin olmayan önsel bilginin önsel dağılım formatına getirilmesi gerekir. Bu 

noktada önsel dağılımın seçiminde, veri kümesine ilişkin olasılıkların 

bulunmasında ve Bayes teoremi uygulanarak sonsal dağılımın bulunmasında 

zorluklarla karşılaşılır (Demirhan, 2004).  

Çok değişkenli çözümlemelerde bilgi içeren önsel dağılımı belirlemek, 

parametreler arasındaki ilişkileri ifade etmek zordur. Veri kümesi bilinen bir 

dağılıma uymadığında bu veri kümesine ilişkin olasılıkların belirlenmesinde de 

zorluklarla karşılaşılır (Demirhan, 2004). 
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4. SEYREK OLUMSALLIK ÇİZELGELERİNDE ODDS ORANLARININ 
BAYESCİ TAHMİNİ 

Olumsallık çizelgelerinde parametre tahminleri için, klasik yaklaşımda en çok 

olabilirlik (Maximum Likelihood/ML) tahmin edicileri kullanılır. Fakat olumsallık 

çizelgesinde örneklem sıfırı ile karşılaşılması durumunda ML tahmin edicileri 

kullanılarak tahmin yapılması sonucu bazı sorunlarla karşılaşılır. Gerek bu 

sorunları gidermek açısından, gerekse klasik yaklaşıma göre daha iyi tahminler 

elde etmek için, araştırmacılar Bayesci yaklaşımlarla çözümleme yapmayı tercih 

etmektedirler. 

Kategorik veri çözümlemesinde, araştırmacılar klasik yöntemlerin yetersiz kaldığı 

noktalarda ya da klasik yaklaşıma göre daha iyi tahminler elde etmek için Bayesci 

istatistik kullanarak bazı sorunlara çözüm aramaya 1950'lerden itibaren daha 

yoğun bir şekilde başlamışlardır. Örneğin; Fisher (1956) binomial parametreler için 

yapılacak tahmin sürecinde, önsel dağılım olarak uniform dağılımın kullanılmasını 

önermiştir. Fisher'in yanısıra Lindley (1964), Good (1956, 1965), Cornfield (1966), 

Novick (1969), Leonard (1972, 1973), Bernardo (1979, 1994, 1998), Albert ve 

Gupta (1982), Dickey (1983,1987), Albert (1984, 1987), Walters (1985), Guttman 

(1989), Freedman (1990), Smith (1991), Chib ve Greenberg (1998), Forster 

(2004a), Congdon (1995) gibi birçok bilimadamı Bayesci yaklaşım kullanarak 

binomial ve multinomial parametrelerin önsel dağılımları, nokta ve aralık 

tahminleri, göze olasılıklarının tahminleri, log-doğrusal model parametrelerinin 

tahminleri, grafiksel modellemeler, regresyon modellemeleri hakkında incelemeler 

yapmışlar ve çeşitli istatistiksel problemlere çözüm aramışlardır (Agresti ve 

Hitchcock, 2005).  

Olumsallık çizelgelerinde odds oranının Bayesci yaklaşım ile tahmininde ise Albert 

(1987), Demirhan ve Hamurkaroğlu (2008)'nun yaptıkları çalışmalar dikkat 

çekmektedir.  

Albert (1987) yaptığı çalışmada, 2x2 boyutlu bir olumsallık çizelgesinde önsel 

bağımsızlık koşulu altında odds oranlarının tahmini ve odds oranlarında 

değişebilirlik (exchangeability) olduğunda 2x2xK boyutlu çizelgeler için odds 

oranlarının eşzamanlı tahminleri olmak üzere karşılaşılan iki problem üzerinde 

durmuştur.  
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Demirhan ve Hamurkaroğlu (2008) RxC ve 2x2xK boyutlu olumsallık 

çizelgelerinde, olabilirlik fonksiyonlarının ve uygun önsel dağılımların belirlenmesi 

ile MCMC algoritmaları kullanılarak log odds oranının sonsal tahmini üzerinde 

durmuşlardır.  

Odds oranlarının tahminlerini, göze olasılıklarını Bayesci yolla tahmin ederek 

yapmak mümkündür. Fakat göze olasılıkları için verilecek önsel bilginin, ilgilenilen 

odds oranı için tutarlı olması gerekir. Burada bir yerel odds oranı tahmini için dört 

göze olasılığının tahmini kullanılarak hesaplama yapılacağından, bire birçok ilişki 

yapısı gözlemlenir. Dört göze olasılığına ait önsel bilginin kullanılması tahmin 

sürecinde birçok sorun ortaya çıkarmaktadır. Diğer taraftan, odds oranı ve log 

odds oranı arasındaki ilişki birebir şeklindedir. Bu nedenle; odds oranı için 

kullanılacak önsel bilgi ile log odds oranı için kullanılacak önsel bilgi arasındaki 

ilişki doğrusaldır (Demirhan ve Hamurkaroğlu, 2008).  

Tez çalışmasının bu bölümünde, seyrek olumsallık çizelgelerinde log odds 

oranlarının Bayesci tahminleri için kullanılacak olabilirlik fonksiyonunun bulunması, 

önsel dağılımın belirlenmesi, sonsal dağılım ve sonsal tahminlerin hesaplanması 

amaçlanmıştır. 

 

4.1. Olabilirlik Fonksiyonu  

Bayesci tahmin sürecinin ilk adımında örnekleme planına uygun olabilirlik 

fonksiyonu belirlenmelidir. Alt bölüm 2.1'de verilen Çizelge 1'deki gibi bir RxC 

olumsallık çizelgesi için y gözlenen göze sıklıklarını, n beklenen göze sıklıklarını 

ve p ilgili gözeye ait göze olasılığını ifade eder.  

RxC boyutlu olumsallık çizelgesi için yerel log odds oranı, 

ij (i 1)( j 1)

ij

i( j 1) (i 1) j

p p i 1,...,R 1
log ,

p p j 1,...,C 1

 

 

   
       

       (4.1) 

şeklinde bulunur.  
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Tez çalışmasında log odds oranlarına ait olabilirlik fonksiyonunu belirlemek için 

Demirhan ve Hamurkaroğlu (2008) tarafından önerilen i jp  olasılıkları için i j i ja  

dönüşümü kullanılmıştır. Bu dönüşümler; 

 ijijij aexpp     
i( j 1) (i 1) j

ij

(i 1)( j 1)

p p
a log

p

 

 

 
  

 
 

 , 
i 1,...,R 1

j 1,...,C 1

 

 
 

    
1

iC i C 1 i C 1
p exp a



 
   
 

  
(i 1)(C 1)

iC

i(C 1) (i 1)C

p
a log

p p

 

 

 
    

 , i 1,...,R 1   

    
1

Rj R 1 j R 1 j
p exp a



 
   
 

 
(R 1)( j 1)

Rj

(R 1) j R( j 1)

p
a log

p p

 

 

 
  

  

 , j 1,...,C 1   

   RC RCR 1 C 1
p exp a

 
     

(R 1)C R(C 1)

RC

(R 1)(C 1)

p p
a log

p

 

 

 
   

 

 ,  (4.2) 

şeklinde verilmiştir. 

Olumsallık çizelgelerinde poisson ya da multinomial örnekleme kullanıldığında 

olumsallık çizelgesine ait olabilirlik fonksiyonunun genel tanımı ise,  

    ijy

ij ij ij

i,j

p | y p
  

      (4.3) 

biçiminde ifade edilir (Dickey v.d., 1987; Agresti, 2002). i jp  olasılıkları için Eş. 

4.2’de verilen dönüşümler uygulandığında olabilirlik fonksiyonu; 

               
R 1 C 1

ij ij ij ij iC Rji C 1 i C 1 R 1 j R 1 j
i,j i 1 j 1

L , | y exp a y a y a y
 

   
 


          


  a  

        
    RC RCR 1 C 1

a y
 

       (4.4) 

şeklinde yazılabilir.  

Eş. 4.3 ve Eş. 4.4’te verilen olabilirlik fonksiyonu olumsallık çizelgesinde 

örneklemden gelen tüm bilgiyi içerir. Örneklem sıfırı bulunan ve bulunmayan 
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gözelere ait bilgi için olabilirlik fonksiyonunu iki parçaya ayırarak iki olabilirlik 

fonksiyonu şeklinde ifade etmek gerekirse; 

 ij 1 2L , | y L L a          (4.5) 

biçiminde gösterilebilir. Burada 
1

L  örneklem sıfırı bulunmayan gözeler için 

olabilirlik fonksiyonunu ifade ederken, 
2

L  örneklem sıfırı bulunan gözelerin 

olabilirlik fonksiyonunu ifade eder. 

Eş. 4.5’ te yer alan 
1

L  ifadesi,  

 
 

ijy

1 ij ij A

i,j A

L exp a


         
  
        (4.6) 

biçiminde yazılabilir.  

      0 0 0ij iC RjA i, j : y ,A i : y ,A j : y           ve 
RC

RC

1, y 0

0, y 0


  


  olmak 

üzere, 

             
R 1 C 1

1 ij ij ij iC Rji C 1 i C 1 R 1 j R 1 j
(i,j) A i A j A

L exp a y a y a y
 

   
   


          


    

        
    RC RCR 1 C 1

a y
 

         (4.7) 

şeklinde ifade edilebilir.  

Benzer şekilde   0ijB i, j : y   ,  0iCB i : y    ,  0RjB j : y     ve 

ij ijz y    olmak üzere örneklem sıfırı bulunan gözelere ait olabilirlik fonksiyonu, 

             
R 1 C 1

2 ij ij ij iC Rji C 1 i C 1 R 1 j R 1 j
(i,j) B i B j B

L exp a z a z a z
 

   
   


          


    

        
    RC RCR 1 C 1

a z
 

         (4.8) 
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şeklinde ifade edilebilir. 

Eş. 4.7 ve Eş. 4.8’den görüldüğü üzere boyutu farklı olan seyrek olumsallık 

çizelgelerinde 
1

L  ve 
2

L  olabilirlik fonksiyonları farklı bulunur. Benzer şekilde, aynı 

boyutlu çizelgelerde örneklem sıfırlarının bulunduğu gözeler farklı ise yine 
1

L  ve 

2
L  fonksiyonları farklı bulunur. Bu nedenle uygulama aşamasında çizelge 

boyutuna ve örneklem sıfırı içeren gözelerin bulundukları noktalara dikkat edilerek 

bu olabilirlik fonksiyonları bulunur.  

 

4.2. Önsel Dağılım  

Tez çalışmasının bu bölümünde bağımsız log odds oranları için bilgi içeren ve 

içermeyen önsel dağılımların tahmin sürecinde nasıl kullanıldığı incelenmiştir. 

Her bir parametre için önsel bilgiye olan güven, birbirinden bağımsız olarak ifade 

edilebilir. Benzer şekilde parametreler arasındaki ilişkilere ait önsel bilgi ve 

hiperparametrelere ait önsel bilgi de araştırmacı tarafından belirtilebilir ve tahmin 

sürecine katılabilir.  

RxC boyutlu olumsallık çizelgesine ait a ve   için bileşik önsel dağılım, 

     f , f f |  a a a         (4.9) 

biçiminde ifade edilebilir. Burada a parametresinin dağılımı çok değişkenli bilgi 

içermeyen dağılım olarak alınırsa yapılacak log odds oranı tahminlerinin sonuçları 

etkilenmemiş olur.   

Önsel bilgiyi içerecek önsel dağılımın seçiminde örnekleme planı ile önsel bilgi 

arasındaki uyuma ve tahmin edilmek istenen parametrenin özelliklerine dikkat 

edilmelidir. Bu noktada log odds oranı için önsel dağılımın sürekli bir dağılım 

olması ve belirlenecek önsel dağılımın tanım aralığının reel sayılar olması gerekir. 

Bu nedenle  f | a  önsel dağılımının belirlenmesinde tanım aralığına göre normal 

dağılım tercih edilebileceği açıktır. Aynı zamanda dikkat edilmesi gereken diğer bir 
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nokta ise örneklem bilgisine ait olan 
1

L  ve 
2

L  olabilirlik fonksiyonlarının bilinmeyen 

parametreyi içermesidir. Tahmin edilmek istenen log odds oranı parametresi, 

1. Durum: sadece 
1

L  olabilirlik fonksiyonunda yer alıyorsa, dağılım 

parametreleri bilinen (ortalaması  , varyansı 2  olan), bilgi içermeyen normal 

dağılım önsel dağılım,  

 2

ij ij ij ij| a N ,             (4.10) 

olarak, 

2. Durum: sadece 
2

L  olabilirlik fonksiyonunda yer alıyorsa, dağılım 

parametreleri bilinen (ortalaması  , varyansı   olan), bilgi içeren normal dağılım 

önsel dağılım, 

 ij ij ij ij| a N ,             (4.11) 

olarak, 

3. Durum: 
1

L  ve 
2

L  olabilirlik fonksiyonlarının her ikisinde de yer alıyorsa 

dağılım parametreleri bilinen karma normal dağılım kullanılarak önsel dağılım, 

0 1    olmak üzere, 

     2 1ij ij ij ij ij ij| a N , N ,              (4.12) 

olarak ifade edilebilir.  

  ve a için bileşik önsel dağılım genel olarak (1. durum için 1  , 2. durum için 

0   olarak alınırsa), 

     2 1, | , , , N , N ,         a 2σ      (4.13) 

biçiminde ifade edilebilir. 

Log odds oranına ilişkin önsel bilgi normal dağılımın ortalamasında ifade edilirken, 

her bir odds oranına ait varyans, önsel bilginin güven düzeyini temsil eder.  
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Bağımsız log odds oranları için bilgi içeren önsel dağılımlar tahmin sürecinde 

kullanılırsa, varyanslarda yansıtılan önsel bilgiye olan güven düzeyi değiştirilerek 

örneklem bilgisinin ya da önsel bilginin, sonsal tahminler üzerindeki etkileri 

gözlemlenebilir. Bu durumda, önsel bilgiye olan güven yüksek olduğunda olabilirlik 

fonksiyonları önsel bilgi tarafından bastırılır ve sonsal tahminlerde önsel bilginin 

ağırlığı daha fazla olur. Önsel bilgiye olan güven düşük ise önsel bilgi olabilirlik 

fonksiyonu tarafından baskılanır ve elde edilen sonsal tahminler ML tahmin 

yönteminden elde edilen tahminlere yakın sonuç verir.  

Log odds oranlarının bağımlı olması durumunda ise parametrelerin birlikte nasıl 

değiştikleri varyans kovaryans matrisinde ifade edilir. Araştırmacı, araştırmasında 

kullanacağı ilişki miktarlarını ister daha önceki çalışmalarından ister başka 

uzmanların bilgisinden yararlanarak hiperparametreler ile ifade edebilir. 

 

4.3. Sonsal Dağılım ve Sonsal Tahminler 

Bayesci tahmin süreci sonucunda elde edilen sonsal dağılımdan sonsal tahminlere 

ulaşılır.  

Tez çalışmasının bu bölümünde ilgi dışı (nuisance) parametrelerin sonsal 

dağılımdan arındırılması, log odds oranlarına ait sonsal dağılımın elde edilmesi ve 

elde edilen sonsal dağılımdan sonsal tahminlere ulaşılması hakkında bilgi 

verilmiştir. 

Log odds oranının marjinal sonsal dağılımına ulaşabilmek için ilgi dışı a 

parametresine göre integral alınmalıdır. Bu noktada   parametresi için marjinal 

sonsal dağılım, 

   
aR

f | , , , , f , | , , , , d        y a y a2 2σ σ      (4.14) 

şeklinde hesaplanır.   ve a parametrelerine ait bileşik sonsal dağılım, 

     f , | , , , , f | , , , , , f | , , , ,           a y a y a y2 2 2σ σ σ    (4.15) 
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biçiminde koşullu dağılımlar kullanılarak ifade edilebilirken, Eş. 4.14 ve Eş. 

4.15’ten faydalanarak   parametresi için marjinal sonsal dağılımın son hali, 

   
aR

f | , , , , f , | , , , , d        y a y a2 2σ σ  

           
aR

f | , , , , , f | , , , , d        a y a y a2 2σ σ    (4.16) 

integrali alınarak bulunabilir. Burada dikkat edilmesi gereken ilgi dışı parametrenin 

integrallenmesidir. Bu integrallenme sürecinde dikkat edilmesi gereken iki nokta 

bulunmaktadır. Birincisi;  f | , , , ,  a y2σ  sivri ise a’nın tepe değeri  â  etrafında 

küçük bir alanda olasılıkların yoğunlaştığı görülür. Bu durumda   parametresine 

ilişkin sonsal dağılım, 

   ˆf | , , , , f | , , , , ,y a y       2 2σ σ       (4.17) 

biçiminde ifade edilebilir. İkincisi;  f | , , , ,  a y2σ  düzgün ise önsel bilgiden ve 

örneklemden a için az da olsa bilgi gelir. Eğer mümkünse a parametresi hakkında 

daha fazla bilgi elde edilir ve   parametresinin tahmini daha da sivrileştirilir. Eğer 

a parametresi hakkında başka bilgi elde edilemez ise  f | , , , ,  a y2σ ’ye göre 

 f | , , , , ,   a y2σ ’nın nasıl değiştiği bilgisi integrallenme sürecine eklenebilir (Box 

ve Tiao, 1973).  

Bu iki durum göz önüne alındığında  f | , , , ,  a y2σ  sivri olarak belirlenmiş ve tez 

çalışmasında a parametresinin integrallenmesi sürecine bu bilgi doğrultusunda 

devam edilmiştir.  

Eş. 4.13’de verilen dağılım parametreleri belli olan önsel dağılım ile RxC boyutlu 

seyrek olumsallık çizelgesi için Eş. 4.7 ve Eş. 4.8’de belirtilmiş olan olabilirlik 

fonksiyonları kullanılarak  f , | , , , ,   a y2σ  bileşik sonsal dağılımından ilgi dışı 

parametreler integrallendiğinde log odds oranına ait marjinal sonsal dağılım, 
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            

1 1

1 1 1 1

R C

ij ij iC Rj RCi C R j R C
(i,j) A i A j A

f | , , , , exp y y y y
 

   
   

 
            

 
      y2σ  

                   

1 1

1 1 1 1

R C

ij ij iC Rj RCi C R j R C
(i,j) B i B j B

exp z z z z
 

   
   

 
            

 
    

          
2 2

2 2

1 1 1

2 2
exp exp

     
           

       
 (4.18) 

biçiminde ifade edilebilir. Bu dağılımdan sonsal tahminlerin el ile hesaplanması 

zordur, fakat MCMC yöntemlerinden MH algoritması kullanılarak sonsal tahminlere 

kolaylıkla ulaşılabilir.  

MH algoritmasının uygulanabilmesi için  q ,  *  biçiminde bir öneri dağılımı 

belirlenir ve bu öneri dağılımından faydalanarak aday noktaları üretilir. Üretilen 

aday noktaları  

 
   
   

f | , , , , q ,
, min ,1

f | , , , , q ,

 
  
 
 

     
 

     

* *

*

*

y

y

2

2

σ

σ
     (4.19) 

olasılığı ile kabul edilir ya da reddedilir (Gamerman, 1997; Chen v.d., 2000).  
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5. UYGULAMA 

Tez çalışmasının bu bölümünde sayısal örneklerden faydalanılarak seyrek 

olumsallık çizelgelerinde odds oranları Bayesci yaklaşım ile tahmin edilecektir.  

Türkiye’de Dalyan sahilinde 1991-1993 yılları arasında sini kaplumbağa (C. 

caretta) yavrularının ölümleri üzerine yapılan araştırmada, ölüm nedeninin güneş 

ışığının altında çok fazla kalarak yürümeleri olduğu belirtilmiştir (Özmen ve 

Famoye, 2007). 1993 yılında 4704 sini kaplumbağa yavrusunun yumurtadan 

çıktığı ve 48 tanesinin güneş ışığına maruz kalarak öldüğü kayıtlara geçirilmiştir. 

Bu çalışma için iki kategorik değişken: Alan (A1-A3) ile Uzaklık (U1-U3) olarak 

alınmış, bu değişkenlerin yavru ölümleri üzerinde etkili olabilecekleri 

düşünülmüştür. Yapılan bu çalışmadan 1993 yılına ait veri kümesi Çizelge 2’de 

verilmiştir.  

Çizelge 2: 1993 yılında Dalyan sahilinde güneş ışığına maruz kalarak ölen sini 
kaplumbağa yavrularının sayısı 

 Uzaklık 

Alan U1: 0-10 U2: 10-20 U3: 20-30 

A1: 0-1 1 0 0 

A2: 1-2 23 9 7 

A3: 2-3 3 1 4 

 

Kaplumbağaların Dalyan sahilinde yuvalama alanı olarak dar bir boğazı 

kullandıkları görülmüş ve bu boğaz araştırmada üç eşit parçaya bölünerek ele 

alınmıştır (A1: 0-1 kilometreleri, A2: 1-2 kilometreleri ve A3: 2-3 kilometreleri 

arasında). Benzer şekilde yuvaların denize olan uzaklıkları üç parçada 

incelenmiştir (U1: 0-10 metre, U2: 10-20 metre, U3: 20-30 metre). 

Çizelgede bulunan sıfır sıklıklı gözeler, kaplumbağa yavrularının yuvadan çıktığını 

ve denize ulaşana kadar herhangi bir ölüm olayının yaşanmadığını 

göstermektedir. Dolayısıyla bu çizelgenin seyrek olumsallık çizelgesi yapısına 

sahip olduğu söylenilebilir. Örneklem sıfırı içeren olumsallık çizelgelerinde klasik 

yaklaşım ile odds oranı tahmini yaparken tüm gözelere 0 05,   gibi bir sabit sayı 

eklendiği Alt bölüm 2.1’de belirtildi.  

Alt bölüm 4.1 ve Alt bölüm 4.2’de belirtildiği üzere olumsallık çizelgelerinin, 

boyutları farklı olduğunda ya da boyutları aynı olmasına rağmen örneklem sıfırı 
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farklı gözelerde bulunduğunda, Bayesci tahmin süreci işleyişine dikkat edilmelidir. 

Bu nedenle Çizelge 2’de verilen olumsallık çizelgesini 2x2, 2x3 ve 3x2 olumsallık 

çizelgeleri biçiminde incelenecektir. 

2x2 boyutlu olumsallık çizelgeleri Çizelge 3’te ve Çizelge 4’te verilmiştir.  

Çizelge 3: Alan (A1,A2) x Uzaklık (U1,U2) Olumsallık Çizelgesi 

 Uzaklık 

Alan U1: 0-10 U2: 10-20 

A1: 0-1 1 0 

A2: 1-2 23 9 

 
Çizelge 4: Alan (A1,A2) x Uzaklık (U2,U3) Olumsallık Çizelgesi 

 Uzaklık 

Alan U2: 10-20 U3: 20-30 

A1: 0-1 0 0 

A2: 1-2 9 7 

 

Çizelge 3 ve Çizelge 4’te örneklem sıfırı bulunduğundan oluşturulan çizelgelerin 

seyrek olumsallık çizelgesi olduğu açıktır. Bu nedenle; Alt bölüm 2.3’te verilen Eş. 

2.1, Eş. 2.2 ve Eş. 2.3 doğrudan uygulanamamaktadır. Tanımsızlığa neden olan 

bu durumdan kurtulmak için klasik yaklaşım tüm gözelere 0,05   gibi bir sabitin 

eklenmesini önerir. Bu durumda, Çizelge 3 ve Çizelge 4 için klasik yaklaşım ile 

bulunan odds oranı tahminleri Çizelge 5’te verilmiştir. 

Çizelge 5: Çizelge 3 ve Çizelge 4’te Verilen Olumsallık Çizelgeleri için Klasik 
Yaklaşım ile Odds Oranı Tahminleri 

 
Odds 
Oranı 

Log  
Odds Oranı 

Log Odds Oranının  
Güven Aralığı 

Odds Oranının  
Güven Aralığı 

Çizelge 3 1,2128 0,192904 (-3,09527;3,48108) (0,045263;32,49487) 

Çizelge 4 0,7895 -0,236389 (-4,27161;3,79883) (0,013959;44,64892) 

 

Klasik yaklaşım yardımıyla bulunan odds oranlarını yorumlamak gerekirse; Çizelge 

3 için: boğazın 0-1 km’leri arasında yer alan ve denize uzaklığı 0-10 metre olan 

yuvalardan çıkan yavruların ölmesi olasılığı, boğazın 1-2 km’leri arasında yer alan 

ve denize uzaklığı 10-20 metre olan yuvalardan çıkan yavruların ölmesi 

olasılığından yaklaşık olarak 1,21 kat daha fazladır.  Çizelge 4 için: boğazın 0-1 

km’leri arasında yer alan ve denize uzaklığı 10-20 metre olan yuvalardan çıkan 

yavruların ölmesi olasılığı, boğazın 1-2 km’leri arasında yer alan ve denize uzaklığı 
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20-30 metre olan yuvalardan çıkan yavruların ölmesi olasılığından yaklaşık olarak 

0,79 kat daha fazladır. 

Çizelge 3'te örneklem sıfırı  içeren A1-U2 gözesine ait bilgi bulunmamaktadır. 

Ancak daha önce bu konu ile ilgili olarak yapılmış çalışmalarda, A1-U2 gözesine 

ait bilgi elde edilmiştir. Bu nedenle; daha önceki çalışmalardan elde edilen bu bilgi, 

örneklem sıfırı içeren A1-U2 gözesindeki bilgi kaybını ortadan kaldırmak, nokta ve 

aralık tahminlerinde daha tutarlı ve etkin sonuçlara ulaşmak için Bayesci yaklaşım 

ile tahmin sürecine dahil edilmiştir. 

Bayesci yaklaşım ile Çizelge 3’ün çözümlemesini yapmak için öncelikle Alt bölüm 

4.1’de belirtilen Eş. 4.7’den faydalanarak 
1

L  ve Eş. 4.8’den faydalanarak 
2

L  

olabilirlik fonksiyonları, 

     1 11 11 11 12 11 22 22
L exp a y y a y        

   2 11 11 21
L exp a z      

biçiminde bulunur.  

Tahmin edilmek istenen log odds oranı için  11
  önsel dağılım belirlenirken sıfır 

sıklıklı gözeye ait bilginin bilgi içermesi amaçlanmıştır. Örnekleme planı ile önsel 

dağılım arasındaki uyum önemli olduğundan, Eş. 4.13’de verilen önsel dağılım 

dikkate alınırsa 
11
  için önsel dağılım, 

     2

11 11 11 11 11
1N , N ,         

şeklindedir. Burada 
1

L  olabilirlik fonksiyonunu temsil eden  2

11 11
N ,    kısmı için 

bilgi içermeyen önsel dağılım alınırken, 
2

L  olabilirlik fonksiyonunu temsil eden 

 11 11
1( )N ,    kısım için bilgi içeren önsel dağılım belirtilir.  

Bulunan olabilirlik fonksiyonları ile önsel dağılım çarpılır ve a parametresine göre 

integrallenerek log odds oranının sonsal dağılımı, 
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       2

11 11 11 11 11 11 11 11 12 11 22 22
f | , , , ,y exp a y y a y             

      11 11 21
exp a z     

      
2 2

11 11 11 112 2

11 11 11 11

1 1 1

2 2
exp exp

     
           

       
 

biçiminde bulunur. 

Bulunan bilgiler doğrultusunda yapılan araştırma, MATLAB paket programında 

sayısal olarak çözümlenirse Çizelge 3 için sonuçlar Çizelge 6’da verilmiştir.  

Çizelge 6: Çizelge 3’te Verilen Olumsallık Çizelgeleri için Bayesci Yaklaşım ile 
Odds Oranı Tahmini 

Odds Oranı 
Log  

Odds Oranı 
Log Odds Oranının  

Güven Aralığı 
Odds Oranının  
Güven Aralığı 

1,0023 0,0023 (-0,02033;0,024932) (0,979873;1,025246) 

 

Bayesci yaklaşım ile elde edilen sonuçları yorumlamak gerekirse, boğazın 0-1 

km’leri arasında yer alan ve denize uzaklığı 0-10 metre olan yuvalardan çıkan 

yavruların ölmesi olasılığı, boğazın 1-2 km’leri arasında yer alan ve denize uzaklığı 

10-20 metre olan yuvalardan çıkan yavruların ölmesi olasılığından 1,0023 kat 

daha fazladır. 

Sonsal aralık tahmini incelendiğinde, klasik yaklaşımda elde edilen odds oranına 

ait 1 0,95   güven katsayısındaki güven aralığı (0,045263;32,49487) iken 

Bayesci yaklaşım kullanılarak bulunan 1 0,95   güven katsayısındaki Bayes 

güven aralığı (0,979873;1,025246)’dır. Bayesci yaklaşımda bulunan aralık 

tahmininin, klasik yaklaşıma göre daha dar olduğu açık bir şekilde görülmektedir. 

Bayesci yaklaşım ile bulunan güven aralığını yorumlamak gerekirse, 

(0,979873;1,025246) Bayes güven aralığının parametreyi içermesi olasılığı 0,95'tir. 

Çizelge 4'te örneklem sıfırı  içeren A1-U2 ve A1-U3 gözelerine ait bilgi 

bulunmamaktadır. Ancak daha önce bu konu ile ilgili olarak yapılmış çalışmalarda, 

bu gözelere ait bilgi elde edilmiştir. Bu nedenle; daha önceki çalışmalardan elde 

edilen bu bilgi, örneklem sıfırı içeren gözelerdeki bilgi kaybını ortadan kaldırmak, 
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nokta ve aralık tahminlerinde daha tutarlı ve etkin sonuçlara ulaşmak için Bayesci 

yaklaşım ile tahmin sürecine dahil edilmiştir. 

Bayesci yaklaşım ile Çizelge 4’e ait log odds oranı tahmini için kullanılacak 
1

L  ve 

2
L  olabilirlik fonksiyonları, 

     1 12 12 22 12 23 23
L exp a y a y        

   2 12 12 12 13
L exp a z z      

biçiminde bulunur.  

Örnekleme planı ile önsel dağılım arasındaki uyum önemli olduğundan, 
12
  için 

önsel dağılım, 

     2

12 12 12 12 12
1N , N ,         

şeklinde ifade edilir.  

Bulunan olabilirlik fonksiyonları ile önsel dağılım çarpılır ve a parametresine göre 

integrallenerek log odds oranının sonsal dağılımı, 

       2

12 12 12 12 12 12 12 22 12 23 23
f | , , , ,y exp a y a y             

   12 12 12 13
exp a z z     

      
2 2

12 12 12 122 2

12 12 12 12

1 1 1

2 2
exp exp

     
           

       
 

biçiminde bulunur. 

MATLAB paket programında sayısal olarak çözümlenirse Çizelge 4 için sonuçlar 

Çizelge 7’de verilmiştir.  
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Çizelge 7: Çizelge 4’te Verilen Olumsallık Çizelgeleri için Bayesci Yaklaşım ile 
Odds Oranı Tahmini 

Odds Oranı 
Log  

Odds Oranı 
Log Odds Oranının  

Güven Aralığı 
Odds Oranının  
Güven Aralığı 

2,5654 0,9421 (0,909597;0,974603) (2,483322;2,650115) 

 

Bayesci yaklaşım ile elde edilen sonuçları yorumlamak gerekirse, boğazın 0-1 

kmleri arasında yer alan ve denize uzaklığı 10-20 metre olan yuvalardan çıkan 

yavruların ölmesi olasılığı, boğazın 1-2 kmleri arasında yer alan ve denize uzaklığı 

20-30 metre olan yuvalardan çıkan yavruların ölmesi olasılığından yaklaşık olarak 

2,56 kat daha fazladır.  

Sonsal aralık tahmini incelendiğinde, klasik yaklaşımda elde edilen odds oranına 

ait 1 0,95   güven katsayısındaki güven aralığı (0,013959;44,64892) iken 

Bayesci yaklaşım kullanılarak bulunan 1 0,95   güven katsayısındaki Bayes 

güven aralığı (2,483322;2,650115) olarak bulunmuştur. Bayesci yaklaşımda 

bulunan aralık tahmini, klasik yaklaşıma göre daha dardır. Bayesci yaklaşım ile 

bulunan güven aralığını yorumlamak gerekirse, (2,483322;2,650115) Bayes güven 

aralığının parametreyi içermesi olasılığı 0,95'tir. 

2x3 boyutlu olumsallık çizelgesi Çizelge 8’de verilmiştir.  

Çizelge 8: Alan (A1,A2) x Uzaklık (U1,U2,U3) Olumsallık Çizelgesi 

 Uzaklık 

Alan U1: 0-10 U2: 10-20 U3: 20-30 

A1: 0-1 1 0 0 

A2: 1-2 23 9 7 

 

Klasik yaklaşım ile odds oranı tahmini yapmak için 0,05   sabiti tüm gözelere 

eklenir. Bu durumda bulunan odds oranı tahminleri Çizelge 9’daki gibidir. 

Çizelge 9: Çizelge 8’de Verilen Olumsallık Çizelgesi için Klasik Yaklaşım ile Odds 
Oranı Tahminleri 

(i,j) Odds Oranı 
Log  

Odds Oranı 
Log Odds Oranının  

Güven Aralığı 
Odds Oranının  
Güven Aralığı 

(1,1) 1,2128 0,192904 (-3,09527;3,48108) (0,045263;32,49487) 

(1,2) 0,7895 -0,236389 (-4,27161;3,79883) (0,013959;44,64892) 
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Çizelge 8'de örneklem sıfırı  içeren A1-U2 ve A1-U3 gözelerine ait bilgi 

bulunmamaktadır. Ancak daha önce bu konu ile ilgili olarak yapılmış çalışmalarda, 

bu gözelere ait bilgi elde edilmiştir. Bu nedenle; daha önceki çalışmalardan elde 

edilen bu bilgi, örneklem sıfırı içeren gözelerdeki bilgi kaybını ortadan kaldırmak, 

nokta ve aralık tahminlerinde daha tutarlı ve etkin sonuçlara ulaşmak için Bayesci 

yaklaşım ile tahmin sürecine dahil edilmiştir. 

Bayesci yaklaşım ile Çizelge 8’e ait log odds oranı tahmini için kullanılacak 
1

L  ve 

2
L  olabilirlik fonksiyonları, 

        1 11 11 11 21 12 12 22 12 23 23
L exp a y y a y a y            

   2 12 12 12 13
L exp a z z      

biçiminde bulunur.  

Örnekleme planı ile önsel dağılım arasındaki uyum önemli olduğundan, 
11
  ve 

12
  

parametreleri için önsel dağılımlar, 

 2

11 11 11
N ,    

     2

12 12 12 12 12
1N , N ,         

şeklinde verilir.  

Bulunan olabilirlik fonksiyonları ile önsel dağılım çarpılır ve a parametresine göre 

integrallenirse, log odds oranlarının sonsal dağılımı, 

          11 11 11 21 12 12 22 12 23 23
f | , , , , exp a y y a y a y              y2σ  

   12 12 12 13
exp a z z     

 
2

11 112

11

1

2
exp

 
    

 
 

      
2 2

12 12 12 122 2

12 12 12 12

1 1 1

2 2
exp exp

     
           

       
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biçiminde bulunur. 

MATLAB paket programında sayısal olarak çözümlenirse Çizelge 8 için sonuçlar 

Çizelge 10’da verilmiştir.  

Çizelge 10: Çizelge 8’de Verilen Olumsallık Çizelgesi için Bayesci Yaklaşım ile 
Odds Oranı Tahminleri 

(i,j) Odds Oranı 
Log  

Odds Oranı 
Log Odds Oranının  

Güven Aralığı 
Odds Oranının  
Güven Aralığı 

(1,1) 0,9506 -0,0510 (-0,07910;-0,022297) (0,923945;0,977949) 

(1,2) 1,0539 0,0525 (0,036101;0,068898) (1,036761;1,071327) 

 

Bayesci yaklaşım ile elde edilen sonuçları yorumlamak gerekirse, boğazın 0-1 

km’leri arasında yer alan ve denize uzaklığı 0-10 metre olan yuvalardan çıkan 

yavruların ölmesi olasılığı, boğazın 1-2 km’leri arasında yer alan ve denize uzaklığı 

10-20 metre mesafesi olan yuvalardan çıkan yavruların ölmesi olasılığından 

yaklaşık olarak 0,95 kat daha fazladır.  

Sonsal aralık tahmini, klasik yaklaşımda elde edilen odds oranına ait 1 0,95   

güven katsayısındaki güven aralığı (0,045263;32,49487) iken Bayesci yaklaşım 

kullanılarak bulunan 1 0,95   güven katsayısındaki Bayes güven aralığı 

(0,923945;0,977949) olarak bulunur.  Bayesci yaklaşımda bulunan aralık tahmini, 

klasik yaklaşıma göre daha dardır. Bayesci yaklaşım ile bulunan güven aralığını 

yorumlamak gerekirse, (0,923945;0,977949) Bayes güven aralığının parametreyi 

içermesi olasılığı 0,95'tir. 

Boğazın 0-1 km’leri arasında yer alan ve denize uzaklığı 10-20 metre olan 

yuvalardan çıkan yavruların ölmesi olasılığı, boğazın 1-2 km’leri arasında yer alan 

ve denize uzaklığı 20-30 metre olan yuvalardan çıkan yavruların ölmesi 

olasılığından yaklaşık olarak 1,05 kat daha fazladır.  

Sonsal aralık tahmini, klasik yaklaşımda elde edilen odds oranına ait 1 0,95   

güven katsayısındaki güven aralığı (0,013959;44,64892) iken Bayesci yaklaşım 

kullanılarak bulunan 1 0,95   güven katsayısındaki Bayes güven aralığı 

(1,036761;1,071327)’dır. Bayesci yaklaşımda bulunan aralık tahmini, klasik 

yaklaşıma göre daha dardır. Bayesci yaklaşım ile bulunan güven aralığını 
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yorumlamak gerekirse, (1,036761;1,071327) Bayes güven aralığının parametreyi 

içermesi olasılığı 0,95'tir. 

3x2 boyutlu olumsallık çizelgesi Çizelge 11’de verilmiştir.  

Çizelge 11: Alan (A1,A2,A3) x Uzaklık (U1,U2) Olumsallık Çizelgesi 

 Uzaklık 

Alan U1: 0-10 U2: 10-20 

A1: 0-1 1 0 

A2: 1-2 23 9 

A3: 2-3 3 1 

 

Klasik yaklaşım ile odds oranı tahmini yapmak için 0,05   sabiti tüm gözelere 

eklenmiş ve bulunan odds oranı tahminleri Çizelge 12’de verilmiştir. 

Çizelge 12: Çizelge 11’de Verilen Olumsallık Çizelgesi için Klasik Yaklaşım ile 
Odds Oranı Tahminleri 

 Odds Oranı 
Log  

Odds Oranı 
Log Odds Oranının  

Güven Aralığı 
Odds Oranının  
Güven Aralığı 

(1,1) 1,2128 0,192904 (-3,09527;3,48108) (0,045263;32,49487) 

(2,1) 1,0601 0,058411 (-1,99744;2,11426) (0,135682;8,283458) 

 

Çizelge 11'de örneklem sıfırı  içeren A1-U2 gözesine ait bilgi bulunmamaktadır. 

Ancak daha önce bu konu ile ilgili olarak yapılmış çalışmalarda, A1-U2 gözesine 

ait bilgi elde edilmiştir. Bu nedenle; daha önceki çalışmalardan elde edilen bu bilgi, 

örneklem sıfırı içeren A1-U2 gözesindeki bilgi kaybını ortadan kaldırmak, nokta ve 

aralık tahminlerinde daha tutarlı ve etkin sonuçlara ulaşmak için Bayesci yaklaşım 

ile tahmin sürecine dahil edilmiştir. 

Bayesci yaklaşım ile Çizelge 11’e ait log odds oranı tahmini için kullanılacak 
1

L  ve 

2
L  olabilirlik fonksiyonları, 

       1 11 11 11 21 21 21 22 31 21 32 32
L exp a y a y y y a y            

   2 11 11 12
L exp a z      

biçiminde bulunur.  
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Örnekleme planı ile önsel dağılım arasındaki uyum önemli olduğundan, 
11
  ve 

21
  

parametreleri için önsel dağılımlar, 

     2

11 11 11 11 11
1N , N ,         

 2

21 21 21
N ,    

şeklinde verilirler.  

Bulunan olabilirlik fonksiyonları ile önsel dağılım çarpılır ve a parametresine göre 

integrallenirse, log odds oranlarının sonsal dağılımı, 

         11 11 11 21 21 21 22 31 21 32 32
f | , , , , exp a y a y y y a y              y2σ  

   11 11 12
exp a z     

   
2 2

11 11 11 112 2

11 11 11 11

1 1 1

2 2
exp exp

     
           

       
 

 
2

21 212

21

1

2
exp

 
    

 
 

biçiminde bulunur. 

MATLAB paket programında sayısal olarak çözümlenirse Çizelge 11 için sonuçlar 

Çizelge 13’te verilmiştir.  

Çizelge 13: Çizelge 11’de Verilen Olumsallık Çizelgesi için Bayesci Yaklaşım ile 
Odds Oranı Tahminleri 

(i,j) Odds Oranı 
Log  

Odds Oranı 
Log Odds Oranının  

Güven Aralığı 
Odds Oranının  
Güven Aralığı 

(1,1) 1,2526 0,2252 (0,179404;0,270996) (1,196504;1,311271) 

(2,1) 1,1239 0,1168 (0,083782;0,149818) (1,087392;1,161623) 

 

Bayesci yaklaşım ile elde edilen sonuçları yorumlamak gerekirse, boğazın 0-1 

km’leri arasında yer alan ve denize uzaklığı 0-10 metre olan yuvalardan çıkan 

yavruların ölmesi olasılığı, boğazın 1-2 km’leri arasında yer alan ve denize uzaklığı 
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10-20 metre olan yuvalardan çıkan yavruların ölmesi olasılığından yaklaşık olarak 

1,25 kat daha fazladır.  

Sonsal aralık tahmini incelendiğinde, klasik yaklaşımda elde edilen odds oranına 

ait 1 0,95   güven aralığı (0,045263;32,49487) iken Bayesci yaklaşım 

kullanılarak bulunan 1 0,95   Bayes güven aralığı (1,196504;1,311271)’dır. 

Bayesci yaklaşımda bulunan aralık tahmini, klasik yaklaşıma göre daha dardır. 

Bayesci yaklaşım ile bulunan güven aralığını yorumlamak gerekirse, 

(1,196504;1,311271) Bayes güven aralığının parametreyi içermesi olasılığı 0,95'tir. 

Bayesci yaklaşım ile elde edilen sonuçları yorumlamak gerekirse, boğazın 1-2 

km’leri arasında yer alan ve denize uzaklığı 0-10 metre olan yuvalardan çıkan 

yavruların ölmesi olasılığı, boğazın 2-3 km’leri arasında yer alan ve denize uzaklığı 

0-10 metre olan yuvalardan çıkan yavruların ölmesi olasılığından yaklaşık olarak 

1,12 kat daha fazladır.  

Sonsal aralık tahmininde, klasik yaklaşımda elde edilen odds oranına ait 

1 0,95   güven aralığı (0,135682;8,283458) iken Bayesci yaklaşım kullanılarak 

bulunan 1 0,95   Bayes güven aralığı (1,087392;1,161623) olduğu görülür. 

Bayesci yaklaşımda bulunan aralık tahmini, klasik yaklaşıma göre daha dardır. 

Bayesci yaklaşım ile bulunan güven aralığını yorumlamak gerekirse, 

(1,087392;1,161623) Bayes güven aralığının parametreyi içermesi olasılığı 0,95'tir. 
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6. SONUÇ VE TARTIŞMA 

Seyrek olumsallık çizelgelerinde örneklem sıfırı içeren gözelerden bilgi elde 

edilemediğinden dolayı klasik yaklaşım ile odds oranı tahmin edilirken sabit bir 

sayı eklenir. Eklenen bu sabit araştırmacıdan araştırmacıya değişebileceği gibi 

tüm gözelere eklendiği için elde edilen tahminlerde tutarsızlıklara ve yanlılığa 

neden olabilir.  

Tez çalışmasında R x C boyutlu seyrek olumsallık çizelgelerinde örneklem sıfırı 

içeren gözelerdeki bilgi kaybını ortadan kaldırarak, Bayesci yaklaşım ile odds 

oranının nokta ve aralık tahmininde daha tutarlı ve etkin sonuçlara ulaşmak 

amaçlanmıştır.  

Seyrek olumsallık çizelgelerinde Bayesci yaklaşım ile çözümleme yaparken, 

örneklem sıfırı içeren gözeler için bilgi içeren önsel dağılımlar tercih edilir. 

Örneklem sıfırı içermeyen gözeler için ise bilgi içermeyen önsel dağılımlar 

kullanılır. Olabilirlik fonksiyonu tanımlamalarında Demirhan ve Hamurkaroğlu’nun 

kullandığı dönüşümlerden de faydalanılarak örneklem sıfırı içeren ve içermeyen 

gözeler için iki farklı olabilirlik fonksiyonu tanımlanmıştır. Olabilirlik fonksiyonları ve 

önsel dağılımlar sentezlenerek karmaşık yapıda sonsal dağılım elde edilmiştir. 

Analitik olarak elde edilen sonsal dağılımdan, MCMC benzetim yöntemlerinden biri 

olan MH algoritması yardımıyla sayısal örnekler çözümlenmiştir.  

Bu çalışmada Sini kaplumbağa yavrularının denize ulaşana kadar geçen sürede 

güneş ışığına maruz kalarak ölmeleri üzerine yapılmış bir araştırmadan 

faydalanılarak, 2x2, 2x3, 3x2 boyutlu seyrek olumsallık çizelgelerinde klasik ve 

Bayesci odds oranı tahmini yapılmıştır. Bayesci yaklaşım ile elde edilen odds 

oranının nokta ve aralık tahminleri klasik yaklaşım ile elde edilen tahminlerle 

karşılaştırıldığında, nokta tahminlerinde benzer sonuçlarla karşılaşılırken, aralık 

tahminlerinin daha dar olduğu görülmüştür. Bayesci yaklaşımın, klasik yaklaşıma 

göre daha etkin sonuçlar verdiği yapılan bu çalışmada da görülmüştür. 

Tez çalışmasında kullanılan Bayesci odds oranı tahmini sadece R x C boyutlu 

seyrek olumsallık çizelgelerinde, önsel dağılım parametreleri bilinen, bağımsız 

yerel odds oranları için bulunmuştur. Çalışmayı daha da ileri götürmek için R x C 

boyutlu seyrek olumsallık çizelgelerinde bağımlı odds oranları ya da önsel dağılım 
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parametreleri bilinmeyen odds oranları için tahminler incelenebilir. Benzer 

araştırmalar, örneklem sıfırı nedeniyle hesaplanamayan yerel-bütünsel (local-

global) ve bütünsel (global) odds oranları için de yapılabilir. Seyrek olumsallık 

çizelge boyutu RxCxK veya daha fazla olduğunda odds oranı tahmini Bayesci 

yaklaşım ile yapılabilir.  
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EK 1. MCMC ve MH ALGORİTMASI 

Bayesci yaklaşımda bilinen basit model ve dağılımlar ile sonsal dağılıma ve 

tahminlere ulaşmak kolay iken karmaşık yapıdaki modeller ve dağılımlar 

kullanıldığında sonsal dağılıma ve sonsal tahminlere ulaşmak zordur. Bu durumda 

MCMC yöntemleri kullanılarak kolaylıkla sonsal tahminlere ulaşılır. 

Herhangi bir 
1 2 nt t ... t    kümesi için 

nt
X ’nin  

1 2 n 1t t tX ,X ,...,X


’in verilen 

değerlerine göre koşullu dağılımı yalnızca 
n 1tX


’e bağlı ise  tX ,t T  sürecine 

Markov süreci denir. Bu ifadeye göre herhangi reel 1 2 nx ,x ,...,x  sayıları için, 

   
n 1 2 n 1 n n 1t n t 1 t 2 t n 1 t n t n 1P X x | X x ,X x ,...,X x P X x | X x

  
        

olur. Bu özellik Markov özelliği olarak adlandırılır. Bu özelliğe göre sürecin n 1t


 

zamanındaki durumu bilindiğinde, nt  zamanındaki durumu 
1 2 n 2t ,t ,...,t


 

zamanlarından bağımsızdır (İnal, 1988). Markov sürecini oluşturan durum uzayı 

kesikli ise süreç Markov zinciri (MC) adını alır.  k

ijP  k adım geçiş olasılığı olmak 

üzere k=0, 1, 2, … için, 

   k

ij t k tP P X j | X i


     i, j S  

olarak tanımlanır ve t anında sürecin i durumunda olduğu bilindiğinde, t+k anında 

sürecin j durumunda bulunması olasılığını ifade eder. 0  ilk adımda durum 

uzayına ait olasılıkları içeren bir vektör,  n

ijP  n adım geçiş olasılığı ve nP  n adım 

geçiş matrisidir. Durum uzayında tüm durumlar arasında birbirine geçiş varsa (her 

i,j için  n

ijP 0 ) zincir indirgenemez MC olarak adlandırılır. İndirgenemez 

MC’lerinde 0  ve P  ne olursa olsun 1 2, ,...   vektörleri bir süre sonra   denge 

dağılımına yakınsar. İndirgenemez MC’lerinde durumların tümü döngel durum 

olduğunda bir denge dağılım vardır ve bu dağılım tektir.  

MCMC yöntemlerinin temelini de bu özellik oluşturmaktadır. Denge dağılımı   

olan bir zincir üretmek için sadece P ’ye ihtiyaç duyulur (Demirhan, 2004). 
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MH, MCMC yöntemlerinde karmaşık yapıdaki fonksiyonları çözümlemek için 

geliştirilmiş bir algoritmadır. MH algoritması, Metropolis (1953) tarafından 

geliştirilmiş ve Hastings (1970) tarafından genelleştirilmiştir. Chib ve Greenberg 

(1995) algoritmayı detaylı bir şekilde incelemişlerdir (Chen v.d., 2000). 

Bilinmeyen parametreleri içeren k boyutlu vektör  1 2 k, ,...,      ve MH 

algoritmasında belirtilen öneri dağılımı5 (proposal density)  q , *  olsun. Öneri 

dağılımı kullanarak aday nokta (  : candidate point) üretilirken, aynı zamanda 

tekbiçimli(0,1) dağılımından da rasgele gözlem olan u üretilir. Bu bilgiler ışığında 

MH algoritma adımları aşağıda verilmiştir; 

Adım 1: i = 0 noktasında keyfi bir başlangıç noktası olarak 
0  belirlenir. 

Adım 2: Öneri dağılımı  iq , ’dan   ve tekbiçimli(0,1)’den u üretilir. 

Adım 3: Eğer  iu ,   *  ise 
i 1




   olur, aksi takdirde 

i 1 i
   olarak kalır. Bu 

adımda  ,  *  ifadesi kabul oranı (acceptance rate) ya da kabul olasılığı 

(acceptance probability)  olarak adlandırılır ve  

 
   
   

f q ,
, min ,1

f q ,

 
  
 
 

  
 

  

* *

*

*
 

biçiminde ifade edilir. 

Adım 4: i i 1   olarak alınır ve adım 2’ye dönülür. 

Roberts, Gelman ve Gilks (1994) hedef (target) dağılımı ve öneri dağılımının 

normal dağılım olduğu varsayımı altında kabul oranının yaklaşık olarak %45 

olması gerektiğini öne sürerken, Bennet, Racine-Poon ve Wakefield (1995) ile 

Besag ve arkadaşları (1995) kabul oranının %20 ile %50 arasında olması 

gerektiğini öne sürmüşlerdir (Chib ve Greenberg, 1995; Gamerman, 1997). Aynı 

zamanda seçilen öneri dağılımı    q ,  ile hedef dağılımın   f  birbirine 

                                                 
5
 Aday yaratıcı dağılım (candidate-generating density) olarak da adlandırılır ve dağılımın 

*
  

parametresine göre integrali bire eşittir (Chib ve Greenberg, 1995). 
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benzemesi durumunda kabul oranı bire yakınsadığı görülür (Gamerman, 1997). 

Bu nedenle MH algoritmasının kullanılabilir olması için öneri dağılımının seçimine 

dikkat edilmelidir. 

MH algoritmasında örneklem büyüklüğü sonsuza yaklaştıkça  n  elde edilen 

sonsal tahminler denge noktasına yakınsaması gerekir. Bu amaçla kullanılan 

algoritma yardımıyla n uzunluğunda m tane zincir oluşturulsun ve bilinmeyen   

parametresinin benzetim sürecinde sayısal tahmini ij    i 1,...,n; j 1,...,m  ile ifade 

edilsin. 
n

.j ij

i 1

1

n 

    ve 
m

.. .j

j 1

1

m 

    olmak üzere zincirler arası (B) varyans, 

 
m

2

.j ..

j 1

n
B

m 1 

   

  

formülü ile hesaplanırken, zincir içi (W) varyans ise,  
n

2
2

j ij .j

i 1

1
s

n 1 

   

  olmak 

üzere, 

m
2

j

j 1

1
W s

m 

   

formülü ile hesaplanır. B ve W varyansları ağırlıklandırılarak marjinal sonsal 

varyans  var( | x)  aşağıdaki gibi elde edilir, 

n 1 1
var( | x) W B.

n n


    

Sonsal tahminler n  iken denge durumuna yakınsadığında, 

var( | x)
R

W


  

biçiminde hesaplanan potensiyel ölçek küçültme katsayısının bire yakınsaması 

gerekir (Gelman v.d., 2004).  
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EK 2. BENZETİM YÖNTEMLERİNDE KULLANILAN ÖNSEL BİLGİ 

Türkiye’de Dalyan sahilinde 1991-1993 yılları arasında yapılan araştırmada sini 

kaplumbağa (C. caretta) yavrularının ölümleri ile ilgili bilgi toplanmıştır.  

  1991 1992 1993 

Alan U1 U2 U3 U1 U2 U3 U1 U2 U3 

A1 0 17 1 0 2 5 1 0 0 

A2 2 7 2 0 1 8 23 9 7 

A3 0 0 0 0 3 1 3 1 4 

 

1993 yılındaki veri kümesi alınarak Bölüm 5'te Bayesci yaklaşım ile odds oranı 

tahminleri incelenmiştir. Bayesci yaklaşımda kullanılan önsel bilgi, log odds 

oranının yapısına göre ve örneklem bilgisine uyumlu olacak biçimde normal 

dağılımla ya da normal dağılımlardan oluşan karma dağılımlarla ifade edilmiştir.  

Klasik yaklaşım yardımıyla hesaplanan, 1991-1992 yıllarına ait odds oranı 

tahminleri, örneklem sıfırı içermeyen gözeler için dağılım parametreleri olarak 

alınmıştır. Örneklem sıfırı içeren gözeler içinse bilgi içeren normal dağılım önsel 

dağılım olarak belirlenmiştir. Bu nedenle bilgi içeren önsel dağılım özelliklerinden 

faydalanılmıştır. Bu dağılım parametreleri aşağıdaki çizelgede verildiği gibidir. 

Çizelge Parametre 

Örneklem Sıfırı İçermeyen 
Gözeler 

Örneklem Sıfırı İçeren 
Gözeler 

  2      

3 11  -1,4838 88,2286 1 10 

4 12  1,1521 31,8899 0,5 1 

8 
11  -1,4838 88,2286 - - 

12  1,1521 31,8899 0,5 0,01 

11 
11  -1,4838 88,2286 0,5 0,1 

21  -0,7416 83,1003 - - 
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EK 3. BENZETİM YÖNTEMİ SONUÇLARI 

Türkiye’de Dalyan sahilinde 1993 yılında sini kaplumbağa (C. caretta) yavrularının 

ölümleri ile ilgili toplanan bilgiler kullanılarak Bayesci yaklaşım ile odds oranı 

tahmini yapılmış ve bulunan sonuçlar aşağıdaki çizelgede elde edilmiştir. 

 Çizelge 3 

 Odds Oranı 
Log  

Odds Oranı 
Log Odds Oranı  

Varyansı Kabul Oranı R 

(1,1) 1,0023 0,0023 0,0044 0,7100 1,0000 

           

 Çizelge 4 

(1,2) 2,5654 0,9421 0,8454 0,9953 1,0000 

           

 Çizelge 8 

(1,1) 0,9506 -0,0510 0,0084 0,7052 1,2775 

(1,2) 1,0539 0,0525 0,0028 0,7078 1,7095 

           

 Çizelge 11 

(1,1) 1,2526 0,2252 0,0202 0,7068 1,1364 

(2,1) 1,1239 0,1168 0,0105 0,7044 1,2482 

 

MH algoritması kullanılarak ulaşılan sonsal tahminlere ilişkin yorumlar Bölüm 5'te 

yer almaktadır. Kabul oranları incelendiğinde çizelgelerin çoğunda yaklaşık olarak 

0,70 çıktığı, Çizelge 4'te bu oranın yaklaşık bir olduğu görülmektedir. Bunun 

nedeni, algoritmada belirlenen öneri dağılımı ile hedef dağılımın normal dağılım 

olmasıdır. 

MH algoritmasında potensiyel ölçek küçültme katsayısılarının bir ve bire çok yakın 

olduğu, dolayısıyla sayısal tahminlerin bir denge noktasına ulaştığı söylenilebilir. 
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