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1. GĐRĐŞ                                                                                                                                 

 

Enerji, günümüzde tüm insanlığın en yaşamsal ihtiyaçlarından biri haline gelmiştir. 

Yapılan her üretim sürecinin bir enerji ihtiyacı vardır. Đnsanlığın artan yaşam 

talepleri ve gelişen üretim süreçleri, enerjiye ve enerji kullanımına olan ihtiyacı 

artırmıştır. Bu enerjinin çok önemli miktarını ise elektrik enerjisi oluşturmaktadır. 

Elektrik enerjisi birçok farklı kaynaktan elde edilip yine çok çeşitli tüketim 

alanlarında kullanılmaktadır. Ayrıca elektrik enerjisi, ekonomik büyümedeki önemli 

rolü ile kalkınma programlarının vazgeçilmez bir öğesidir. Ülkelerin ekonomik 

gelişme düzeyleri yükseldikçe, toplam enerji tüketimleri içinde elektrik enerjisinin 

payı artmaktadır. Ayrıca birçok ülkede ekonomik gelişmeyi sürükleyen sanayi 

sektörünün oransal olarak en fazla elektrik enerjisi tüketen sektör olması da 

ekonomik gelişme – elektrik enerjisi ilişkisinin artmasına neden olmaktadır. 

 

Enerji tüketimindeki payı sürekli yükselen elektrik enerjisine yönelik talep, her geçen 

gün hızlı bir şekilde artmaya devam etmektedir. Oluşan talebin kesintisiz olarak en 

düşük maliyetle ve en kaliteli biçimde karşılanması, arz ve çevre güvenliğinin 

sağlanması, günümüz yeni nesil elektrik sistemlerinin tasarım ve kaynak 

planlamalarında temel hedefler haline gelmiştir.  

 

Enerji politikaları, özellikle gelişmekte olan ülkelerde, sürdürülebilir kalkınma 

planlarının tümleşik bir parçasıdır. Dünya pazarlarında ülkemizin rekabet gücünü 

artırmak üzere ekonomiyi büyütecek ve yasam standartlarını yükseltecek yeterli, 

sürekli ve temiz enerjinin temini, “güvenilir ve sürdürülebilir enerji politikaları” ile 

mümkündür. 

 

Elektrik enerjisinin sürdürülebilir ve yüksek verimli kullanılabilmesi için, ana felsefe 

tüketilen elektrik enerjisi kadar elektrik üretilmelidir. Bunun yanında bugün mevcut 

olan elektrik enerji sistemlerinin, gelecekteki artan enerji ihtiyacını karşılayacak 

şekilde büyütülmesi gerekmektedir. Đnsan yaşamının tüm alanlarında, elektrik 

enerjisine olan bağımlılık bu zorunluluğu doğurmaktadır. Bu nedenlerle; kesintisiz  
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bir elektrik enerjisi için gerekli olan planlamaların yapılabilmesi için doğru yük veya 

enerji tüketim tahmininin yapılması elektrik mühendisliği ana bilim dalının önemli 

araştırma konularından biri olmuştur. Özellikle bu tahmin araştırmalarının üç farklı 

kategori altında toplandığı görülmektedir. Bunlar kısa dönemli (saatlik, günlük veya 

haftalık) tahmin çalışmaları, orta dönemli (aylık,üç aylık, yıllık) tahmin çalışmaları 

ve uzun dönemli (bir yıldan daha uzun dönem) tahmin çalışmalarıdır. Bu türlü 

dönemsel farklılıklar gösteren tahminlerin gerçeğe yakın ve hassas yapılması;  

altyapı, elektrik piyasası dengeleme uygulamaları, büyük sermaye gerektiren enerji 

yatırımları ve kurumsal planlamalarda büyük önem taşımaktadır. 

 

Tahmin performansını yükseltmek için model seçiminde kimi zaman teorik kriterler 

yerine, tahmin performansını artırmaya yönelik kriterler ön plana çıkmaktadır. 

Tahmin doğruluğuna yönelik çalışmalar, çeşitli modellerin tahmin doğruluklarını 

değerlendirmeye ve karşılaştırmaya yönelik metotlar üzerinde yoğunlaşmıştır. Diğer 

yandan, alternatif bir yöntem olarak farklı modellerden alınan öngörülerin 

kompozisyonu (birleştirilmesi) ile performans (öngörü) kalitesinin artırılmasına 

yönelik çalışmalar da bulunmaktadır [Oğurlu, 2011]. 

                                                                                                                              

Bilhassa, son yıllarda bilimsel literatürde farklı birçok elektrik tüketim tahmini 

çalışması yapılmış ve bu çalışmalarda farklı sistematik yöntemler kullanılmıştır. 

Uluslararası alanda farklı ülkelerde yapılan ve bu tez çalışmasında da incelenen, 

çalışmalardan bazıları aşağıda sıralanmıştır.  

 

Çoklu Lineer regresyon analizi metodu ile giriş verisi olarak brüt elektrik üretimi, 

Nüfus ve ortalama elektrik fiyatı gibi ekonomik-demografik değişkenler kullanılarak, 

Yeni Zelanda’nın uzun dönemli gelecek elektrik tüketim tahmini yapılmıştır 

[Mohamed ve Bodger, 2005]. 

 

Tayvan’ın ulusal gelir, brüt iç üretim, nüfus ve tüketici fiyat endeksi gibi konular göz 

önünde tutularak yapay sinir ağları (YSA) ve lineer/lineer olmayan istatistiksel 

modeller kullanılarak elektrik enerjisi talep gelişim projeksiyonu yapılmıştır [Pao, 

2006]. 
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Brüt elektrik üretimi, nüfus, ithalat ve ihracat ekonomik ve sosyal göstergeler 

alınarak YSA modeli ile Güney Kore’nin uzun dönemli tüketim tahmini test edilmiş 

ve modelin başarısı incelenmiştir [Geem ve Roper, 2010]. 

 

Yunanistan’ın uzun dönemli elektrik tüketim tahmini için; ortam sıcaklığı, kurulu 

güç kapasitesi, konut başı yıllık elektrik tüketimi ve brüt elektrik üretimi geçmiş 

verileri giriş değişkenleri olarak seçilerek, YSA modeli oluşturularak gelecek 

tüketim tahminleri yapılmıştır [Ekonomou, 2010].  

 

Aylık ortalama dış kuru hava termometre sıcaklığı, bağıl nem ve global güneş 

radyasyonu gibi üç farklı giriş değişkeni kullanılarak Singapur’un tropikal 

bölgesinde, rastgele seçilen dört ticari binanın aylık enerji tüketim hesaplaması için 

Destek Vektör Makinalarının (DVM) uygulanabilirliği incelenmiştir. Tüm tahmin 

sonuçlarının %3’den daha az varyans katsayısına sahip olduğu görülmüştür [Dong ve 

ark., 2005]. 

 

Malezya’da kimyasal işlem yoğunlaşması ve viskozitesi okuma süresi, uluslar arası 

havayolu yolcuları, özel ürünlerin günlük fiyat tahminleri gibi birçok farklı alanda ve 

farklı giriş verileri üzerinden, DVM uygulaması farklı giriş parametreleri 

kullanılarak yapılmış ve elde edilen sonuçların anlamlılığı Çok Katmanlı Geri 

Beslemeli Ağ ile kıyaslanmıştır [Samsudin ve ark., 2010]. 

 

Brezilya’da kısa dönemli (saatlik) yük tahmini için En Küçük Kareler Destek Vektör 

Makineleri (EKK-DVM) tercih edilmiştir. Çalışma 3000 adet örnek geçmiş saatlik 

yük verisi ve günlük sıcaklık değişimleri baz alınarak yapılmış ve test verileri 

(verilerin 1/3’ü) üzerinde performanslar maksimum hata, ortalama yüzde mutlak hata 

ve çoklu korelasyon katsayısı sonuçları ile irdelenmiştir. Sonuç olarak bu metodun 

çok iyi sonuçlar vermediği fakat giriş parametrelerinin ayarlanması ile ümit kar 

sonuçlar elde edilebileceği vurgulanmıştır [Coelho ve Klein, 2009]. 

 

Yine son yıllarda Türkiye’de de yük tahmininde ve enerji tüketim tahmininde farklı 

yöntemlerle farklı çalışmalar yapılmıştır.  
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Nüfus, brüt elektrik üretimi, kurulu güç, net elektrik üretimi, ithalat ve ihracat gibi 

ekonomik ve demografik değişkenlerin 1975 - 2003 yılları arası geçmiş verileri, giriş 

verileri olarak baz alınarak, YSA ağ modeli tasarlanmış ve Türkiye’nin 2020 yılına 

kadar uzun dönemli elektrik tüketim tahmini yapılmıştır [Sözen ve Arcaklioğlu, 

2007]. 

 

Türkiye’nin 2015 yılına kadar  toplam ve endüstriyel elektrik tüketim tahmini için, 

1970 - 2004 arası geçmiş verileri kullanılarak, silindirik mekanizmalı kapalı tahmin 

methodu (Grey prediction with rolling mechanism) kullanılmıştır [Akay ve Atak, 

2007]. 

 

1979 - 2005 yılları arası brüt elektrik üretimi, nüfus, ithalat ve ihracat data setleri 

kullanılarak, Türkiye’nin 2025 yıllına kadar elektrik yük tahmini parçacık sürüsü 

optimizasyonu (particle swarm optimization) kullanılarak yapılmıştır [Ünler, 2008]. 

 

1970 - 2001 yılları arası brüt elektrik üretimi, nüfus, ithalat ve ihracat geçmiş data 

setleri baz alınarak, Türkiye’nin 2025 yılına kadar elektrik demand tahmini Genetik 

Algoritma (GA) yaklaşımı ile yapılmıştır [Canyurt ve ark., 2004]. 

 

2003 - 2020 yılları arasında Türkiye’nin sektörel bazlı net elektrik tüketimini tahmin 

etmek için, sektörel bağımsız değişkenlere (ulaşım, ziraat, rezidans vb..) sahip bir 

yapay sinir ağı modeli kurulmuştur [Hamzaçebi, 2007].  

 

1953 - 2000 yılları arasındaki geçmiş nüfus, brüt üretim, kurulu güç ve yılların 

bağımsız değişkenleri olduğu ve Türkiye’nin net elektrik tüketimini tahmin etmek 

için YSA tabanlı bir model kurulmuştur [Sözen ve ark., 2006]. 

 

Türkiye’de uzun dönemli elektrik demand tahmini için alternatif bir yaklaşım olarak 

Destek Vektör Makineleri (DVM) ve YSA modeli kurulmuştur. Çalışmada 1980 -

2000 yılları arasındaki veriler eğitim, 2001 - 2008 yılları arasındaki veriler test için 

kullanılmıştır. Özellikle test verileri üzerinde, DVM algoritmasının daha iyi sonuçlar 

verdiği gözlenmiştir [Kücükdeniz, 2010]. 
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Türkiye’nin 2016 yılına kadar uzun dönemli elektrik tüketim tahmin modellemesi 

için altı farklı giriş parametresi kullanılan Destek Vektör Regresyon metodolojisi 

oluşturulmuştur.  Gerçek data değerleri ile tahmin sonuçları arasında ortalama kare 

hatanın karekökü (RMSE) kriter sonuçları verilerek, bulunan sonuçların geleceğe 

uzun dönemli tahmin çalışmalarında kullanılabileceği sonucuna varılmıştır 

[Kavaklioğlu, 2011]. 

 

Türkiye ve dünyanın farklı ülkelerinde yapılan çalışmalarda görüldüğü üzere yük 

veya tüketim tahmin çalışmalarında farklı teknik ve yöntemler kullanılmıştır. Bu 

çalışmaların bütününde amaç gelecekteki yıllarda elektrik enerji tüketiminin ne kadar 

artış göstereceğini gerçeğe en yakın şekilde tahmin etmeye çalışarak ilgili 

kuruluşların yatırım ve planlamalarına yardımcı olmaktır. Bu nedenle de her çalışma 

kullandığı metodolojiye göre farklı bağımsız değişkenler seçmiş, yine farklı sayıda 

giriş verisi kullanmıştır. Ortak amaç gerçekliği ve hassaslığı yüksek tahminler 

yapabilmektir.  

 

Çalışmamızda gerçeğe yakın tahminler yapabilmek için Türkiye’de net elektrik 

tüketimini etkileyen parametreler çeşitli tahmin çalışmaları incelenerek ve analizler 

yapılarak elde edilmiştir. Kurulan modellerde bağımsız değişkenler olarak kurulu 

güç (installed power), brüt elektrik üretimi (gross electricity generation), nüfus 

(population) ve toplam abone sayısı (total subscribership) seçilmiştir. Bu giriş 

verilerinin 1970 -2009 yılları arasındaki gerçekleşme değerleri TEĐAŞ, TEDAŞ, 

DPT, EPDK ve TUIK gibi resmi kurumların istatistikî bilgilerinden elde edilmiştir. 

Bu veriler tahmin çalışmalarında kullanılmadan önce Matlab 2009 programı ile 

ortalaması 0, standart sapması 1 olacak şekilde normalize edilerek yeniden 

düzenlenmiştir.  

 

Tahmin çalışmasına başlamadan önce çalışmamızın ikinci bölümünde Türkiye 

yenilenebilir ve yenilenemez enerji kaynakları üzerine, üçüncü bölümünde ise 

Türkiye’nin üretim, iletim ve dağıtım sistemleri üzerine bilgiler verilmiştir. 

Dördüncü bölümde ise enerji sistemlerinde planlamanın önemi ve enerji 

sistemlerinde planlama stratejileri üzerine ön bilgiler sunulmuştur.   
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Çalışmamızın beşinci bölümünde; elektrik tüketim tahmini, tahmin yöntemleri ve 

tahmini etkileyen faktörler açıklanmıştır. Tezimizde kullanacağımız çoklu lineer 

regresyon (ÇLR), yapay sinir ağları (YSA), destek vektör makineleri (DVM) ve 

destek vektör makinelerinin bir türü olan EKK-DVM metotlarının, teorik alt yapısı 

verilmiştir.  

 

Altıncı bölümde; ÇLR, YSA, EKK-DVM metotlarının Türkiye net elektrik tüketim 

tahminine uygulaması yapılmış ve sayısal sonuçlar elde edilmiştir. Sonuçların hata 

oranları tipik performans kıstasları kullanılarak,  metotların birbirleri ile kıyaslaması 

verilerek ve tahminleme başarı performansı yüksek bulunan EKK-DVM metodu 

kullanılarak, Türkiye net elektrik tüketimi düşük ve yüksek talep durumları da göz 

önüne alınarak 2018 yılına kadar tüketim projeksiyonunda bulunulmuştur. 

 

Çalışmamızın yedinci ve son bölümünde ise; altıncı bölümde elde edilen sonuçların 

ne tür anlamlar taşıdığı ve bilime katkısı sunulmuştur.  
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2. ENERJĐ KAYNAKLARI  

 

2.1. Yenilenemez Enerji Kaynakları 

 

Enerji, bir cisim ya da sistemin iş yapabilme kapasitesidir ve değişik şekillerde 

karşımıza çıkar. Bunlar; Isı enerjisi, ışık enerjisi, mekanik enerji, elektrik enerjisi, 

kimyasal enerji ve nükleer enerji bunlardan bazılarıdır. Enerji kaynaklarının ise 

yenilenebilir, yenilenemeyen (tükenen) ve yeni nesil enerji kaynakları olmak üzere 

üç grup altında toplandığı görülmektedir.  

 

Yenilenemez enerji basit bir ifade ile kısa zaman aralığında yeniden oluşmayan 

enerji olarak tanımlanabilir. Bunlar genelde, petrol, doğal gaz ve kömür gibi fosil 

yakıtlardır. Bu tür enerjiler, yaşamları milyonlarca yıl önce sona ermiş bitki ve 

hayvan gibi organik kalıntıların fosillerinden kaynaklanmaktadır. Hâlihazırda dünya 

enerji ihtiyacının önemli bir bölümünü karşılamakta olan fosil yakıtların rezervleri 

hızla tükenmektedir. Bu yüzyılın ikinci yarısında petrol ve doğalgaz gibi bazı fosil 

yakıtların rezervlerinin sonuna gelineceği tahmin edildiğinden, bütün enerji 

kaynaklarının verimli bir şekilde kullanılması büyük önem taşımaktadır. Enerji 

ihtiyacının sürekli arttığı ama kaynakların gittikçe azaldığı dünyada, enerjinin 

verimli kullanılmasını sağlamak için çok çeşitli programlar uygulanmaktadır. Enerji 

sektörlerinde kullanılan fosil yakıtlar, iklim değişikliğine yol açan ve atmosfere 

dağılan en önemli sera gazlarından biri olan CO2’nin (karbondioksit) de başlıca 

kaynağıdır. 

 

Linyit, ısıl değeri düşük, barındırdığı kül ve nem miktarı fazla olduğu için genellikle 

termik santrallerde yakıt olarak kullanılan bir kömür çeşididir. Buna rağmen 

yerkabuğunda bolca bulunduğu için sıklıkla kullanılan bir enerji hammaddesidir. 

Taşkömürü ise yüksek kalorili kömürler grubundadır. Yerli kaynak potansiyelimizin 

12,4 milyar tonunu linyit, 1,33 milyar tonunu taşkömürü oluşturmaktadır. 

Türkiye'nin toplam linyit rezervi 12,4 milyar ton seviyesinde olup işletilebilir rezerv 

miktarı ise 3,9 milyar ton düzeyinde bulunmaktadır. Bununla birlikte linyit 

kaynaklarımızın,  büyük  kısmının ısıl  değeri düşük  olduğundan, termik santrallerde  
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kullanımı ön plana çıkmıştır. Ülkemiz linyit rezervinin yaklaşık %46'sı Afşin-

Elbistan havzasında bulunmaktadır. Ülkemizin en önemli taşkömürü rezervleri ise 

Zonguldak ve civarındadır. Zonguldak Havzası'ndaki toplam taşkömürü rezervi 1,33 

milyar ton, buna karşılık görünür rezerv ise 519 milyon ton düzeyinde 

bulunmaktadır. 

 

2008 yılında 106 milyon TEP1 olan ülkemizin toplam birincil enerji tüketiminde 

kömürün payı %28'dir. Ülkemizde 2008 yılı sonu itibariyle linyite dayalı termik 

santrallerimizin kurulu gücü 8205MW olup bu değer toplam kurulu gücümüzün 

%19,6'sını karşılamaktadır. Kömürün toplamda kurulu güce katkısı 10191MW olup 

bu değer toplam kurulu gücümüzün %24'ünü oluşturmaktadır. Taşkömürüne dayalı 

termik santralimizin kurulu gücü 335MW olup, toplam kurulu gücümüzün %0,8'ine 

karşılık gelmektedir.  

 

2009 sonu itibariyle Türkiye petrol rezervleri 44,3 milyon ton, 2008 yılı üretimi 2,2 

milyon ton, 2008 yılı tüketimi 27,8 milyon tondur. 2009 yılı üretim miktarı ise 2,4 

milyon ton olarak gerçekleşmiştir. Ülkemizde petrol arama faaliyetlerinin başladığı 

tarihten 2009 yılı sonuna kadar ham petrol üretimi ise 132,5 milyon tondur. 

Ülkemizde 2008 yılı sonu itibariyle petrol ve petrol ürünlerine dayalı termik 

santrallerimizin kurulu gücü yaklaşık 2300MW olup bu değer toplam kurulu 

gücümüzün %5,5' ini karşılamaktadır. 2008 yılında petrole dayalı santrallerden 

üretilen elektrik enerjisi miktarı 7519GWh'dir [ETKB, 2010].  

 

Doğal gaz rezervlerinin ise; 76 trilyon metreküpü (%41) Orta Doğu ülkelerinde, 59 

trilyon metreküpü (%33) Rusya ve BDT ülkelerinde, 31 trilyon metreküpü (%17) 

Afrika/Asya Pasifik ülkelerinde bulunmaktadır. 2009 yılı sonu itibari ile kalan 

üretilebilir doğalgaz rezervimiz 6,2 milyar m³'tür. Elektrik enerjisi üretiminde 

doğalgaza dayalı kurulu gücümüz 14576MW olup, bu değer toplam kurulu 

gücümüzün 32,7'sini karşılamaktadır [ETKB, 2010]. 

 

                                                
1 TEP(Ton Eşdeğer Petrol): Enerji üretim ve tüketim hesaplamalarında kullanılan bir ton ham petrolün 
eşdeğeridir. 1000kWh’lik elektrik enerjisi 0,0860TEP çevrim katsayısı ile ifade edilmektedir. 
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Türkiye’de 2010 yılında yakıt tiplerine göre, termik santrallerde elde edilen elektrik 

enerjisi miktarları incelendiğinde; katı yakıtlardan (taşkömürü, linyit) 55046,4GWh, 

sıvı yakıtlardan (Fuel-oil, motorin, LPG vb..) 2180,0GWh ve doğalgazdan 98143,7 

GWh’lik enerji elde edilmiştir (Şekil 2.1). Doğalgazın termik santraller içindeki 

enerji payı %62,98’dir [ETKB, 2010]. Ülkemizde özellikle doğalgazda talebin yoğun 

olduğu kış aylarında kaynak ülkelerdeki veya güzergâh ülkelerindeki aksamalarında, 

dönemsel arz-talep dengesizliklerine yol açabildiği bilinmektedir.  

 

 

 

 

 

 

 

Şekil 2.1. Türkiye’de termik santrallerde kullanılan yakıt türleri dağılımı 

 

Özetle; Ülkemizdeki üretilen enerjinin büyük bir bölümü (%73,78’i) özel veya kamu 

termik santrallerinden karşılanmakta, bu karşın diğer yenilenebilir enerji 

kaynaklarının(hidrolik, jeotermal, rüzgar, güneş) genel pasta içerisindeki toplamı 

%26,22 değerini aşmamaktadır (Şekil 2.2). Bu durumun dışa bağımlı olduğumuz bu 

hammaddeye, alternatif olacak diğer kaynaklara yönelimin ülkemizin gelecekteki 

enerji politikalarını belirleyecek en önemli ölçüt olacağı aşikardır. 

 

 

 

 

 

 

 

 

 

Şekil 2.2. Türkiye’de üretilen enerjinin kaynaklara göre dağılımı 

 

KÖMÜR-

LİNYİT

SIVI YAKITLAR

DOĞAL GAZ
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2.2. Yenilenebilir Enerji Kaynakları 

 

Yenilenebilir enerji, basit bir ifade ile sınırsız varsayılan, sürekli, tekrar tekrar 

kullanılabilen enerji biçimlerini ifade etmektedir. Güneş enerjisi, rüzgâr enerjisi, 

yerküreden gelen jeotermal enerji, bitkilerden üretilen biokütle ve sudan elde edilen 

hidrolik güç de yenilenebilir enerji grubunda değerlendirilmektedir. Yenilenebilir 

enerji, kısa sürede yerine konulan enerjidir.  

 

Türkiye’nin coğrafi konumu nedeniyle sahip olduğu güneş enerjisi potansiyeli 

ortalama yıllık toplam güneşlenme süresi 2640 saat (günlük toplam 7,2 saat) ve 

ortalama toplam ışınım şiddeti 1311 kWh/m²-yıl (günlük toplam 3,6 kWh/m²) olduğu 

tespit edilmiştir. Güneş Enerjisi potansiyeli 380 milyar kWh/yıl olarak ifade 

edilmektedir. Ülkemizde kurulu olan güneş kolektörü miktarı toplam yaklaşık 12 

milyon m² ve teknik güneş enerjisi potansiyeli toplamı 76 TEP olup, yıllık üretim 

hacmi 750 000 m²'dir ve bu üretimin belli bir miktarı ise ihraç edilmektedir. Bu 

kullanım miktarı, kişi başına 0,15 m² güneş kolektörü kullanıldığı şeklinde de 

yorumlanabilir. Ülkemizin Güneş enerjisinden, ısı enerjisi yıllık üretimi 420 000TEP 

dolaylarındadır. Bu genel görüntü itibari ile ülkemiz, dünyada kayda değer bir güneş 

kolektörü üreticisi ve kullanıcısı durumundadır. Ülkemizde birçoğu çoğu kamu 

kurum ve kuruluşlarında olmak üzere, küçük güçlerin karşılanması ve araştırma 

amacıyla kullanılan güneş pili kurulu gücü 1 MW' a ulaşmıştır [ETKB, 2010]. 

 

Rüzgâr santralleri, geleneksel güç santrallerinin aksine, enerji güvenliği açısından 

yakıt maliyetlerini ve uzun dönemli yakıt fiyatı risklerini elimine eden, aynı zamanda 

politik/mali veya tedarik riskleri açısından diğer ülkelere bağımlılığı azaltan, yerli 

her zaman kullanılabilir santrallerdir.  

 

Dünyada rüzgâr enerji kapasitesinde en büyük pay % 72 ile Avrupa kıtasındadır. 

Türkiye 2001 yılında, Avrupa’da kurulu kapasitede % 0,11’lik bir paya sahiptir 

[Ogulata, 2003]. Türkiye’de 2004 yılında 18 MW olan rüzgâr kurulu gücü, 2009 yılı 

sonu itibariyle 802,8 MW gibi azımsanmayacak oranda artış göstermiştir. Yine 

yaklaşık  olarak  1100 MW  kurulu gücünde  rüzgâr  santralinin  ise yapımına  devam  
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edilmektedir. Jeotermal enerji tanım itibari ile yerin derinliklerindeki kayaçlar 

içerisinde birikmiş olan ısı enerjisinin akışkanlarca taşınarak, rezervuarlarda 

depolanması ile oluşan sıcak su, buhar ve kuru buhar ile kızgın kayalardan suni 

yollarla elde edilen ısı enerjisidir. Türkiye, Alp-Himalaya kuşağı üzerinde yer 

aldığından, oldukça yüksek jeotermal potansiyele sahip olan bir ülke konumundadır. 

Ülkemizin toplam jeotermal potansiyeli 31500 MW'tır. Ülkemizde jeotermal 

potansiyel oluşturan alanlar genelde Batı Anadolu'da (%77,9) yoğunlaşmıştır. Bu 

güne kadar potansiyelin %13'ü yani 4000 MW’lık kısmı MTA tarafından kullanıma 

hazır hale getirilmiştir. Jeotermal enerji potansiyelimizin 1500 MW'lık bölümünün 

elektrik enerjisi üretimi için uygun olduğu değerlendirilmekte olup, kesinleşen veri 

şu an için 600 MWe'dir. 2009 yılı sonu itibari ile Türkiye’nin jeotermal enerjisi 

kurulu gücü 77,2 MW düzeyine ulaşmıştır [ETKB,2010]. 

 

Biyoyakıt tanımsal olarak; içeriklerinin hacim olarak en az % 80'i son on yıl 

içerisinde toplanmış canlı organizmalardan elde edilmiş her türlü yakıt olarak 

tanımlanmaktadır. Bunlar; biyodizel, biyoetanol, biyogaz ve biyokütle olarak 

örneklenebilir. Biyokütle kaynaklarımız; tarım, orman, hayvan, organik şehir atıkları 

ve benzeri türevlerinden oluşmaktadır. Atık potansiyelimiz yaklaşık olarak 8,6 

milyon TEP olup, bu toplam potansiyelin 6 milyon TEP civarı ısınma amacı ile 

kullanılmaktadır. 2008 yılında biyokütle kaynaklarından elde edilen toplam enerji 

miktarı 66 bin TEP'tir [ETKB, 2010]. 

 

Hidroelektrik santraller yenilenebilir, temiz, çevreye uyumlu, verimli, enerji 

fiyatlarında bir sigorta görevi üstlenen, uzun ömürlü, işletme gideri çok düşük dışa 

bağımlılık oranı sınırlı olan santrallerdir.  

 

Enerji ve Tabii Kaynaklar Bakanlığı teknik verilerine göre; Türkiye'de ekonomik 

olarak değerlendirilebilir hidroelektrik potansiyeli yılda 140 GWh olarak ifade 

edilmektedir [ETKB,2010]. Yine 2010 yılı TEĐAŞ raporlarına göre; ülkemizin 

hidroelektrik santralleri toplam kurulu gücü 15.831,2MW ve elde edilen enerji 

miktarı ise 51795,5 GWh’dir [TEĐAŞ, 2010]. 

 



12 

 

2.3. Yeni Nesil Enerji Kaynakları  

 

Yeni nesil enerji kaynakları ülkemizde yeni projelendirme çalışmaları başlamış, 

teknolojisi henüz fazla gelişmemiş veya kullanımı henüz kısıtlı olan enerji kaynakları 

olarak da ifade edilebilir.  

 

Hidrojen enerjisi tanımsal olarak, Güneşin veya galaksideki diğer yıldızların 

termonükleer tepkimeye vermiş olduğu ısının yakıtıdır ve evrenin temel enerji 

kaynağıdır. Bilinen tüm yakıtlar içerisinde, birim kütle başına en yüksek enerji 

içeriğine sahiptir. Dünyada her yıl yaklaşık 500 milyar m3 hidrojen üretilmekte, 

depolanmakta, taşınmakta ve kullanılmaktadır. Özellikle ülkemizde ve dünyada 

Petrokimya sanayi ve rafinerilerde daha çok tercih edilen hidrojen enerjisinin, 

fiyatının diğer enerji kaynaklarından ortalama üç kat fazla olması nedeni ile özelikle 

enerji alanında şu an için fazla kullanım alanı bulacağı düşünülmemektedir. Ancak 

teknolojideki ilerleme ile birlikte, üretimindeki maliyet düşürücü gelişmelere bağlı 

olarak kullanımı gelecek vaat eden bir enerji türüdür.  

 

Ülkemiz için güncel olan bir diğer yeni nesil enerji türü nükleer enerjidir. Nükleer 

enerji, maddenin atom çekirdeklerinin parçalanması sonucu açığa çıkan ısı enerjisi 

olarak tanımlanabilir. Nükleer reaktörler açığa çıkan bu ısı enerjisini, kinetik enerjiye 

ve daha sonrasında jeneratör sisteminde elektrik enerjisine dönüştürürler.  

 

Ülkemizde elektrik enerjisi arz ve talep tahminlerine bağlı olarak, 2020 yılına kadar, 

nükleer enerji santrallerinin, elektrik enerjisi üretimi içerisindeki payının en az % 5 

seviyesine ulaşması hedeflenmektedir. Bu amaçla hükümetce 2007 yılında 5710 

sayılı Nükleer Güç Santrallerinin Kurulması ve Đşletilmesi ile Enerji Satışına Đlişkin 

Kanun çıkartılmıştır. Yine 2010 yılı mayıs ayında, Türkiye ile Rusya Federasyonu 

arasında Mersin-Akkuyu'da nükleer santral yapımına ilişkin hükümetler arası 

anlaşma imzalanmıştır [ETKB,2010]. 
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3. TÜRKĐYE ELEKTRĐK SĐSTEMĐ 

 

3.1. Elektrik Üretim 

 

Bir kamu kuruluşu olan Elektrik Üretim A.Ş. (EÜAŞ) Türkiye’de üretim alanında 

halen en büyük paya sahip kuruluştur ve 2010 yılı sonu itibariyle 11674,7MW kurulu 

güce sahip 106 adet hidroelektrik santraline ve 12524,9MW kurulu güce sahip 19 

termik santrale sahiptir. Özel sektör yatırımları dâhil 2010 yılı sonu itibariyle 

Türkiye toplam kurulu gücü 48587,8MW’dır. Kurulu güç itibari ile EÜAŞ Türkiye 

kurulu gücünün % 49,81’ini diğer bir ifade ile yaklaşık olarak yarısını 

oluşturmaktadır. Çizelge 3.1.’de Türkiye’de 2010 yılı itibariyle, kurulu güç ve üretim 

miktarlarının üretici sınıflarına göre dağılımı gösterilmiştir [TEĐAS,Đstatistik2010]. 

Çizelge 3.1’de mobil santraller, işletme hakkı devredilen santraller ve yap-işlet-

devret (YĐD) santralleri “diğer grubu” altında gösterilmektedir. 

 

Çizelge 3.1. Kurulu güç ve üretim miktarlarının üretici gruplara göre dağılımı 
 
Üretici Santral tipi Kurulu Güç(MW) Üretim(GWh) 

Termik 12524,9 54156,2 EÜAŞ 

Hidrolik 11674,7 41210,4 

Termik 8215,8 31525,1 Özel Üretim 

Şirketleri Hidrolik 3547,7 8380,9 

Termik 2625,4 10582,7 Otoprodüktör 

Hidrolik+Rüzgar 545,4 1225,1 

Termik 8434,1 59580,1 Diğer 

Hidrolik+Rüzgar 1019,9 3520,9 

Termik 31800,2 155844,2 Toplam 

Hidrolik+Rüzgar 16787,6 54337,4 

 

2010 yılı sonu itibariyle 210,18 milyar kWh olarak gerçekleşen Türkiye elektrik 

üretimi miktarının, 95,37 milyar kWh’i EÜAŞ tarafından gerçekleştirilmiştir. Bir 

diğer ifade ile EÜAŞ ve bağlı ortaklıkları, Türkiye elektrik üretiminin ise % 45,4’ünü  
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karşılamaktadır. Türkiye’de 1999 yılından sonra özel sektör yatırımlarının hızlanarak 

özellikle de termik santrallerin faaliyete girmesi yerleşik kurulu gücün artmasına 

neden olmuştur.  

 

1970 - 2010 yılları arası Türkiye’deki Kurulu güç kapasitesinin gelişimi Şekil 3.1.’de 

görülmektedir. Türkiye’deki kurulu güçteki bu gelişim incelendiğinde; özellikle 

yenilenebilir enerji kaynaklarından Jeotermal ve Rüzgar enerjisine dayalı gücün, 

enerji ihtiyaçları da göz önüne alınarak 1984 yılına kadar artan oranda kullanılmadığı 

veya kullanılamadığı anlaşılmaktadır. Türkiye’nin 1984 yılında 17,5MW olan 

jeotermal ve rüzgâr enerjisi toplam kurulu gücü, 2010 yılı itibariyle 1414,4MW 

değerine ulaşmıştır. Sadece 2010 yılında bir önceki yıla göre artış oranı %10,6 

civarında olmuştur [TEĐAŞ, Đstatistik2010]. Bu durum şuan için yeterli olmasa bile, 

özellikle yeni elektrik piyasasındaki gelişmelerde göz önüne alındığında, öncelikle 

rüzgâr enerjisinin kullanımının ve dolayısıyla bu alandaki kurulu kapasitenin artacağı 

yönünde işaretler vermektedir. Yine 1997 yılından sonra Türkiye’deki Kurulu 

güçteki toplam artışın, özellikle termik Santraller ile birlikte artış gösterdiği, buna 

karşın yenilenebilir enerji kaynaklarına dayalı üretim tesislerinin aynı paralelde genel 

toplama katkısının az olduğu, açık şekilde görülmektedir. 

 

 

 

 

   

 

 

 

 
 
 
 
 
Şekil 3.1. Türkiye’deki kurulu kapasitenin yıllara göre gelişimi 

 

 

0

10000

20000

30000

40000

50000

60000

1
97

0

1
97

2

1
97

4

1
97

6

1
97

8

1
98

0

1
98

2

1
98

4

1
98

6

1
98

8

1
99

0

1
99

2

1
99

4

1
99

6

1
99

8

2
00

0

2
00

2

2
00

4

2
00

6

2
00

8

2
01

0

Termik

Hidrolik

Jeotermal+Rüzgar

Kapasite toplamı(MW)



15 

 

Özellikle 1990’lı yılların sonlarından itibaren özel sektöre ait kurulu gücün artmış 

olması, bu kurulu gücün büyük kısmının termik olması ve üretimlerine devlet 

tarafından satın alma garantisi verilmiş olması, kamu santrallerinin talebe bağlı 

olarak ihtiyaç duyulmadığı zamanlarda kısıtlı çalıştırılmaları sonucunu ortaya 

çıkartmıştır. Bilindiği üzere; elektrik enerjisi ihtiyaç duyulduğu anda üretilir. Tabii 

neticesi olarak üretim kapasitesi miktarı, enerji talebinden yüksek olduğu zaman 

fazla olan kurulu kapasite kullanılamayacaktır. Santrallerin eşit koşullarda olduğu 

hallerde ise; elektrik enerjisi üretimine maliyeti düşük olan santralden başlanıp 

yüksek olana doğru sıra ile üretim yaptırılması en ekonomik işletme yöntemlerinden 

birisidir. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Şekil 3.2. Türkiye’de elektrik üretiminin yıllara göre gelişimi 
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toplam üretim içerisinde en büyük paya sahip olduğu açık bir şekilde görülmektedir. 
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görülebilir. Üretim santrallerinin (tesislerinin) yakıt tipi ve sisteme giriş yılı 

itibariyle, yatırım kararlarının yatırımcı kuruluş veya şirketler tarafından verildiği bir 

enerji piyasa yapısında, Türkiye toplam talebinin güvenilir bir yedekle karşılanması 

için gerekli üretimin takip edilmesi, arz güvenliği açısından önemli bir husustur. 

Ayrıca talebin önemli bir artış oranı ile gelişmesinin beklendiği bir piyasada lisans 

alan, lisans almak için başvuruda bulunan üretim tesislerinin taahhüt ettikleri tarihte 

gerçekleşmelerini sağlamak için gerekli önlemlerin alınması yine arz güvenliği 

açısından önemlidir. 

 

TEĐAŞ tarafından 2011 - 2020 yılları arası Türkiye’nin üretim kapasite projeksiyonu 

yapılmıştır. Bu projeksiyon raporunda; EPDK tarafından lisans verilmiş ve çalışma 

döneminde işletmeye girmesi beklenen inşa halindeki kamu ve özel sektör santralleri 

dikkate alınarak iki farklı senaryo oluşturulmuştur. Senaryo 1’e göre toplam 17183 

MW ve Senaryo 2’ye göre toplam 15369 MW ilave kapasitenin sisteme dâhil olması 

beklenmektedir [TEĐAŞ, 2011]. Yine ETKB tarafından belirlenen yüksek talep ve 

düşük talep serileri her iki senaryo için uygulanarak proje ve güvenilir üretim 

kapasitelerine göre arz-talep dengeleri kurulmuştur. Her iki senaryo sonuçlarına göre 

ve beklenen talebin yüksek oranda gerçekleşmesi durumunda güvenilir üretim 

kapasitesine göre 2016 - 2017 yılları arasında Türkiye’de elektrik enerjisi açığı 

beklenmektedir [TEĐAŞ, 2011]. EPDK tarafından üretim lisansı verilmiş ancak 

sisteme (işletmeye) giriş tarihi tam olarak belirsiz olan veya lisans alma aşamasına 

gelinmiş ve işletmeye giriş tarihi belirsiz projelerden oluşan uygun üretim 

yatırımlarından, yeni ilave güç kapasitesinin 2016 - 2017 yıllarından itibaren devrede 

olacak şekilde, sisteme dâhil edilmesi için bugünden itibaren önlemlerin alınması, 

yatırım planlamalarının yapılması ülkemizin enerji dengesi için çok büyük önem 

taşımaktadır.  

 

3.2. Elektrik Đletim 

 

Türkiye’de elektrik iletimi ve işletiminden sorumlu yegâne kuruluş TEĐAŞ’dir. 4628 

sayılı elektrik piyasası kanunu hükümlerine göre, iktisadi devlet teşekkülü olarak 

yapılandırılan  TEĐAŞ,   sermayesinin  tamamı   iktisadi   alanda  ticari  esaslara  göre  
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faaliyet göstermek üzere kurulmuştur. TEĐAŞ’ın ana faaliyet alanı; elektrik iletimi ile 

ilgili tesislerin planlanmasından yapımına, bakımından işletilmesine kadar her türlü 

hizmetleri yapmak ve elektrik piyasa işletmecisi olarak ilgili her türlü hizmetleri 

yürütmektedir. Đletim Sistemi, üretim tesislerinden itibaren gerilim seviyesi 36 kV 

üzerindeki hatlar üzerinden elektrik enerjisinin iletiminin gerçekleştirildiği tesisler 

olup, 380 kV’luk Çok Yüksek Gerilim (ÇYG) ve 154 kV Yüksek Gerilim Hatları, 

380/154 kV oto-trafolar ve 154/OG indirici trafolardan oluşan Türkiye Đletim Sistemi 

teknik ve ekonomik açıdan avantajları nedeniyle yeterli miktarda seri ve şönt 

kapasitörlerle donatılmıştır. Đletim Sistemi gerilim seviyesi 380 kV ve 154 kV ile 

standartlaştırılmıştır. Gürcistan ve Ermenistan ile olan enterkonneksiyon hatlarımız 

bu ülkelerdeki gerilim seviyesine uygun olarak 220 kV’tur. Türkiye üretim ve iletim 

sistemi, bir Milli Yük Tevzi Merkezi (Gölbaşı) ile 9 adet Bölgesel Yük Tevzi 

Merkezinden (Adapazarı, Çarşamba, Keban, Đzmir, Gölbaşı, Đkitelli, Erzurum, 

Çukurova ve Kepez) gözlenip yönetilmektedir. Elektrik sistemi işletmesi, sistemin 

380 kV trafo merkezlerini ve 50 MW’ın üzerindeki tüm santralleri kapsayan bir 

SCADA ve Enerji Yönetim Sistemi Programı (EMS) ile yapılmaktadır. Sistem 

işleticisi (Sistem Operatörü) bu sistem sayesinde daha kaliteli bir işletme için gerekli 

olan her tür sistem çalışmasını, günlük işletme programlarını ve yük frekans 

kontrolünü yapabilmektedir.  

 

TEĐAŞ iletim şebekesi; 2010 yılı itibariyle 48 760 km uzunluğunda enerji güç iletim 

hattı, 588 adet TM (trafo merkezi) ve 93 672 MVA trafo gücü yine komşu ülkelerle 

bütünleşik toplam 10 adet enterkoneksiyon sisteminden meydana gelen büyük bir 

iletim ağıdır. TEĐAŞ, 2009 yılı sonu itibariyle 44 761 MW kurulu gücü, 29 870MW 

ani puantı, 610 milyon kWh maksimum günlük tüketimi ve 194,1 milyar kWh’lik 

yıllık elektrik enerjisi üretimi olan enterkonnekte(bağlaşımlı) elektrik sistemini 

kesintisiz, kaliteli ve güvenilir bir şekilde işletmektedir [TEĐAŞ, 2011]. 

 

Yıllar itibari ile Türkiye elektrik dağıtım bölgelerinin genişlemesi bununla birlikte 

elektrik tüketiminin artış göstermesi neticesinde; elektrik iletim hatlarının hat 

kapasitesi ve hat uzunluklarında yıllar itibari ile değişiklikler ve artışlar olmuştur. 

Özellikle    66kV   gerilim    seviyesindeki     hatların,    33kV    gerilim   hatlarına                                                                 
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dönüştürülmesi bu hatların uzunluğunda düşüşler şeklinde kendini göstermektedir. 

Yine 220kV gerilim seviyesindeki iletim hatlarının son on yıllık dönemde uygulanan 

projeler ışığında, tesis edilmesinin durdurulduğu açık şekilde görülecektir. Bu bahsi 

edilen durumlar Çizelge 3.2.’de görülmektedir [TEĐAŞ, 2011]. 

 

Çizelge 3.2. Đletim hat uzunluklarının yıllar itibari ile gelişimi 
 
Yıllar 380kv 

(km) 

220kV 

(km) 

154kV 

(km) 

66kV 

(km) 

Toplam hat 

uzunluğu(km) 

1999 12802,9 84,5 28871,4 678,8 42437,7 

2000 12957,3 84,5 29443,7 682,3 43167,9 

2001 13166,6 84,5 29731,8 670,7 43653,7 

2002 13625,5 84,5 30163,2 670,7 44544,0 

2003 13958,1 84,5 30961,7 718,9 45723,2 

2004 13970,4 84,5 31005,7 718,9 45779,6 

2005 13976,9 84,5 31030,0 718,9 45810,3 

2006 14307,3 84,5 31163,4 477,4 46032,6 

2007 14338,4 84,5 31383,0 477,4 46283,3 

2008 14420,4 84,5 31653,9 508,5 46667,3 

2009 14622,9 84,5 31931,7 508,5 47147,6 

2010 15559,2 84,5 32607,8 508,5 48760,0 

 

Türkiye’de işlevsel, etkin ve rekabetçi bir elektrik piyasa yapısı için genel politika; 

kamunun elektrik sektöründe iletim haricinde yatırımcı olmaktan arındırılması ve 

sahip olduğu tesisleri özelleştirmesi, gerekli yatırımların rekabetçi bir piyasa 

pazarında özel teşebbüs tarafından yapılması ile kamunun düzenleyici konumunun 

güçlendirilmesi ve arz güvenliğini temin etmesi olarak özetlenebilir. 

 

3.3. Elektrik Dağıtım 

 

Elektrik enerjisi, gerilimi düşürüldükten sonra bölgesel şebekelere iletilir ve bu 

şebekeler   yardımıyla   ayrılarak  dağıtım   merkezlerine  ve  dolayısıyla tüketicilerin 
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kullanımına sunulur. Dağıtım merkezlerinin ise temel olarak iki farklı görevi vardır. 

Bunlar; hatların birbirine bağlantısını (enterconnection) ve gerilim seviyesinin 

dönüştürülmesini (transformation) sağlamaktır. Dağıtım kuruluşu veya şirketleri 

tüketim ihtiyacına göre yeni tesisler kurmak, bunları yönetmek/yenilemek, yeni 

tüketicileri şebekeye almak, serbest tüketici işlemlerini yapmak, arızaları onararak 

dağıtılan elektriğin sürekliliğini sağlamak ve miktarını sabit kılmakla yükümlüdür. 

 

Türkiye Elektrik sektöründe tekel olan Türkiye Elektrik Kurumu (TEK) 1994 yılında 

Dağıtım hizmetleri için TEDAS, üretim ve iletim hizmetleri için ise TEAŞ olarak 

yeniden kurgulanmış devamında TEAŞ’ta EÜAŞ, TEĐAŞ ve TETAŞ olmak üzere üç 

farklı şirket hüviyetine bürünmüştür. 2005 yılında, yaklaşık 28 milyon müşterisi, 

toplam 93 milyar kWh elektrik satışı ve elektrik dağıtımında ülke genelinde %98’lik 

pazar payı ile TEDAŞ ve sahibi olduğu dağıtım şirketleri, topluca Türkiye’nin en 

büyük organizasyonlarından birini oluşturmaktadırlar.  

 

Elektrik dağıtım ve perakende satış sektöründe rekabete dayalı bir ortamın 

oluşturulması ve gerekli reformların yapılmasını temin etmek için; dağıtım bölgeleri 

baz alınarak kamu mülkiyetindeki elektrik işletmelerinin yeniden yapılandırılması 

suretiyle elektrik enerjisi dağıtım hizmetlerinin özelleştirilmesine karar verilmiş ve 

TEDAŞ 02.04.2004 tarih ve 2004/22 sayılı Özelleştirme Yüksek Kurulu Kararı ile 

özelleştirme kapsam ve programına alınmıştır.  

 

Dağıtım bölgeleri coğrafi yakınlık, yönetim yapısı ve enerji talebi gibi etkenler göz 

önüne alınarak yeniden belirlenmiş, Türkiye 21 elektrik dağıtım bölgesine 

ayrılmıştır.  

 

Dağıtım bölgeleri ve 2008 yılı mevcut abone sayıları1 Çizelge 3.3.’de 

gösterilmektedir [TEDAŞ, 2008]. Dağıtım bölgeleri içerisinde ilk işletme hakkı devri 

yapılan şirket, 1990 yılında devri gerçekleşen KCETAŞ (Kayseri ve civarı)’dır.  

 

                                                
1 Dağıtım şirketlerinin 2009 yılından itibaren hızla özel sektöre devri ile birlikte doğru istatistiki 
bilgilerin raporlanmasında ve yayınlanmasında TEDAŞ zorluklar yaşamıştır. Bu itibarla dağıtım 
şirketlerinin abone büyüklüğünü doğru yansıtması açısından 2008 yılı değerleri kullanılmıştır. 



20 

 

2009 yılı başı itibari ile de Başkent ve Sakarya dağıtım bölgelerindeki özelleştirmeler 

ile elektrik dağıtım bölgelerindeki özelleştirme uygulamaları ivme kazanmıştır.

Çizelge 3.3. Türkiye’de elektrik dağıtım bölgeleri 
 

Bölge Dağıtım Bölgesi Abone sayısı Yönetim Görev alanı 

1 Dicle EDAŞ 1 044 300 Kamu  Diyarbakır, Şanlıurfa, Mardin, Batman, Siirt, Şırnak 

2 Van Golu EDAŞ 401 400 Kamu   Bitlis, Hakkari, Muş, Van 

3 Aras EDAŞ 725 200 Kamu  Erzurum, Ağrı, Ardahan, Bayburt, Erzincan, Iğdır,Kars 

4 Coruh EDAŞ 989 600 Özel Trabzon, Artvin, Giresun, Gümüşhane, Rize 

5 Firat EDAŞ 663 700 Özel Elazığ, Bingöl, Malatya, Tunceli 

6 Camlibel EDAŞ 734 700 Özel Sivas, Tokat, Yozgat 

7 Toroslar EDAŞ 2 597 400 Kamu  Adana, Gaziantep, Hatay, Mersin, Osmaniye, Kilis 

8 Meram EDAŞ 1 530 500 Özel Kırşehir, Nevşehir, Niğde, Aksaray, Konya, Karaman 

9 Enerjisa Baskent 
EDAŞ 

3 075 800 Özel 
Ankara, Kırıkkale, Zonguldak, Bartın, Karabük, Çankırı, 

Kastamonu 

10 Akdeniz EDAŞ 1 469 800 Kamu  Antalya, Burdur, Isparta 

11 Gediz EDAŞ 2 331 500 Kamu  Đzmir, Manisa 

12 Uludag EDAŞ 2 278 500 Özel Balıkesir, Bursa, Çanakkale, Yalova 

13 Trakya EDAŞ 767 800 Özel Edirne, Kırklareli, Tekirdağ 

14 Anadolu Y. EDAŞ 2 037 900 Kamu  Đstanbul ili Anadolu Yakası 

15 Sakarya EDAŞ 1 307 300 Özel Sakarya, Bolu, Düzce, Kocaeli 

16 Osmangazi EDAŞ 1 277 300 Özel Eskişehir, Afyon, Bilecik, Kütahya, Uşak 

17 Bogazici EDAŞ 3 832 800 Kamu  Đstanbul ili Rumeli Yakası 

18 Kayseri(KCETAŞ) 521 453 Özel Kayseri 

19 Aydem EDAŞ 1 475 700 Özel Denizli, Aydın, Muğla 

20 Goksu EDAŞ 479 800 Özel K.Maraş, Adıyaman 

21 Yesilirmak EDAŞ 1 466 700 Özel Samsun, Amasya, Çorum, Ordu, Sinop 

 

 

2012 yılı nisan ayı sonu itibari ile Türkiye’de mevcut 21 dağıtım şirketinin yaklaşık 

%60’ı yani 13 tanesinin özel sektöre devri tamamlanmıştır. Bir kamu iktisadi 

teşekkülü (KĐT) olan TEDAŞ’a bağlı ve özelleştirmesi tamamlanmamış (veya devir 

işlemleri bitmemiş) 8 adet dağıtım şirketi kalmıştır. Türkiye’de 2009 yılı itibari 

toplam 31,85 milyon abonesi olan dağıtım sisteminde tüm dağıtım hatlarının toplam 

uzunluğu 969 238 km’dir [TEDAŞ, 2009]. 

 

0,4kV gerilim seviyesindeki hat uzunluğu 562 342 km iken 33kV gerilim 

seviyesindeki   hat  uzunluğu   ise   364 407’dir. Yine  2009  verilerine  göre  Türkiye  
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dağıtım şebekesinde toplam 111 082 MVA kurulu gücünde 335 099 adet dağıtım 

trafosu mevcuttur [TEDAŞ, 2009]. 

 

3.4. Sistem Kayıpları 

 

Genel bir elektrik sisteminde meydana gelen kayıplar, üretim, iletim ve dağıtım 

sistemlerinde olmak üzere ayrı alanlar olarak incelenebilir. Üretimden elde edilen 

elektrik, iletim (transmisyon) hatlarıyla transformatörlere taşınmaktadır. Talep edilen 

gerilim seviyerlerine göre kullanıcıların kullanımına sunulmaktadır. Global olarak 

genel kabul; ortalama maliyetler dikkate alındığında, sistem maliyetlerinin % 50’si 

üretimden, % 20’si iletimden ve % 30’u ise dağıtımdan kaynaklanmaktadır. Fakat 

kayıplara bakıldığında bu durum tam tersi olarak ortaya çıkmaktadır. Kayıpların 

büyük kısmı iletim ve dağıtım tesislerinde oluşmaktadır. Dağıtım tesisleri veya 

sistemlerinde gerilim seviyesinin düşük ve akımın yüksek olmasından dolayı daha 

fazla kayıplar oluşmaktadır. Enerji santrallerinde üretilen elektriğin ortalama % 6’sı 

iç kayıp ve iç tüketime harcanırken bu oran iletim tesislerinde Avrupa normlarına 

yakın seyretmekte olup yaklaşık %3 dolaylarındadır. Dağıtım tesislerinde ise teknik 

kayıpların ve abonesel kaçak oranının yüksek olmasından dolayı % 20’nin üzerine 

olmaktadır. Bu oranlar göz önüne alındığında; toplam üretilen enerjinin % 30’nun 

kayıpları karşıladığı ve büyük bir enerji gücünün yok olduğu görülmektedir [Sargın, 

2006]. Türkiye’de elektrik dağıtım sistemindeki kayıpları ise; teknik ve teknik 

olmayan kayıplar olmak üzere iki farklı şekilde incelemek doğru olacaktır.  

 

Teknik kayıplar dağıtım hatlarındaki dağıtılan enerjiden ve gücün dağıtımı için 

kullanılan donanımlardan kaynaklanan kayıplardır. Enerji dağıtımda meydana gelen 

teknik kayıpların büyük bir çoğunluğunu akıma bağlı kayıplar (kablo bağlantı 

klemenslerinde, kablolarda zırh, siper kayıpları ile karşılıklı reaktanstan kaynaklanan 

kayıplar vb.) oluşturmaktadır. Hatlardaki akıma bağlı bu kayıplar ısı enerjisi olarak 

ortaya çıkmaktadır. Bununla birlikte yüke bağlı olan ve yükten bağımsız olarak 

hatlarda veya trafoların çekirdek ve bakır kısımlarında da teknik kayıplar meydana 

gelmektedir. Teknik olmayan kayıplar ise daha çok son tüketiciler ile ilgili bir 

kavram  olup  kasıtlı  (kaçak)  veya  kasıtsız  (bilinçsiz)   olarak   enerji   kullanımları  
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sonucunda ortaya çıkmaktadır. Teknik olmayan kayıp elektrik abonelerine teslim 

edilen ve tüketilen ama bazı sebeplerden dolayı satış olarak kaydedilmeyen değerleri 

de içermektedir. Bunun temel sebepleri kaçak elektrik kullanımı, eksik ölçümler ve 

hatalı sayaç okuma ya da faturalandırmada yapılan hatalar olarak ifade edilebilir.  

 

Türkiye’de özelleştirme işlemleri tamamlanmamış, yani TEDAŞ bağlı ortaklık 

konumundaki dağıtım şirketlerinin verilerine göre; TEDAŞ’a 2009 yılı sonu 

itibariyle toplam 129 789 010MWh’lik elektrik enerjisi, iletim sistemi üzerinden 

aktarılmış bu enerjinin ancak 106 755 880MWh’lik kısmı faturalandırılmıştır. 

Sistemdeki kayıp-kaçak miktarı ise 23 033 130MWh (%17,7) olarak gerçekleşmiştir 

[TEDAŞ, 2009].   

 

Elektrik dağıtım hizmetinin özel sektör aracılığı ile yapıldığı sektörel toplamlara 

bakıldığında ise; 2009 yılı itibariyle 30 683 346 MWh’lik enerji teminine karşılık, 28 

698 483MWh enerji faturalandırılmış ve toplam 1 984 864MWh’lik (%6,5) sistemsel 

kayıp-kaçak oluşmuştur [TEDAŞ, 2009].  

 

Ülkemizin nüfus yoğunluğu, arz kaynaklarının yeri ve coğrafi koşullarına uygun 

olarak Avrupa standartlarına göre dizayn edilen iletim sistemi kayıpları, uluslararası 

performans düzeyindedir [TEĐAŞ, 2011].  

 

Türkiye iletim sistemi kaybı 2009 yılı için %2,1 (3973,4GWh)  iken 2010 yılı için 

%2,8 (5690,5GWh) olarak ölçülmüştür. Türkiye’de iletim ve dağıtım sistemlerindeki 

kayıp ve kaçakların yıllara göre yüzdesel değişimi Şekil 3.3’de gösterilmektedir 

[TEĐAŞ, 2011]. 

 

Enerji nakli yapılan dağıtım ve iletim sistemlerinde, kayıpların tamamını ortadan 

kaldırmak doğal olarak pratikte pek mümkün değildir. Özellikle dağıtımdaki teknik 

kayıpları minimum seviyelere indirmek için; güç sistemlerinde güç faktörünün 

düzeltilmesi, kablo kesitinin doğru seçilmesi, dağıtım transformatör gücünün yeterli 

miktarda olması, ölçü aletlerinin hassas olması gibi ölçütlere öncelik verilmelidir.  
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Şekil 3.3. Türkiye iletim ve dağıtım sistem kayıplarının yıllara göre yüzdesel   
                değişimi 

 

3.5. Elektrik Tüketimi 

 

Ülkemizde sanayileşmenin bir sonucu olarak; köylerden şehirlere göçlerin olması, 

tüketim toplumuna dönüşüm, işsizlik ve nüfus artışı, enerji talebimizi ve bunun 

sonucu olarak enerji ithalatımızı artırmaktadır. Enerji hammaddelerini ithal eden ve 

elektrik üretiminde % 60 oranında ithalata bağımlı olan ülkemizde, elektrik fiyatları 

da bununla paralel olarak artış göstermektedir. Türkiye’de bu elektrik fiyatlarındaki 

artışa rağmen, ülkemizdeki sanayileşme ve modernleşme süreçleri ile net elektrik 

tüketiminin yıllar itibari ile (Şekil 3.4) lineer biçimde artış gösterdiği görülmektedir.  

 

Türkiye elektrik tüketim verileri baz alındığında; brüt tüketim (Türkiye brüt 

üretimi+dış alışlar–dış satışlar) 2009 yılında % 2 azalarak 194,1 Milyar kWh, 2010 

yılında ise % 8,4 artış ile 210,4 Milyar kWh olarak gerçekleşmiştir. Türkiye net 

elektrik tüketimi ise (iç tüketim, şebeke kaybı ve kaçaklar hariç) 2009 yılında 156,9 

Milyar kWh, 2010 yılında ise 169,4 Milyar kWh olarak gerçekleşmiştir [TEĐAŞ, 

2011]. 
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Şekil 3.4. Türkiye net elektrik tüketiminin yıllara göre değişimi 

 

Türkiye’nin net elektrik tüketimi yıllar itibari ile doğrusal bir artış gösterir. Ancak 

Şekil 3.4’de görüldüğü üzere, 2001 yılında büyük oranda yaşanan ekonomik krizin 

de etkisi ile net elektrik talebi düşmüştür. Yine 2009 yılında elektrik tüketiminde 

büyük oranda düşüş yaşanmış ancak 2010 yılında tekrar normal artış eğilimini 

(trend) yakaladığı görülmektedir. Türkiye kişi başı tüketim verileri (Şekil 3.5) 

incelendiğinde ise;  Türkiye net elektrik tüketimi ile paralel olarak, lineer bir artış 

seyri olduğu ve 2009 yılında kişi başı tüketiminde genel yapı içerisinde düşüş 

meydana geldiği görülmektedir. 

 

 

 

 

 

 

 

 

 

 

 
Şekil 3.5. Türkiye kişi başı elektrik tüketiminin yıllara göre değişimi 
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Türkiye tüketim istatistiklerine göre; 2009 yılı için toplam 156894,1 GWh’lik net 

elektrik enerjisi tüketilmiştir. Bu tüketilen enerjinin büyük bir kısmı 70470,1 GWh’i 

(%44,9’ü) sanayi iş kolunda ve 39147,5 GWh’lik kısmı ise meskenlerde 

kullanılmıştır.  

 

Yine Türkiye elektrik enerjisi tüketim pastası içerisinde, aydınlatma tüketimleri 

yaklaşık % 2,5’lik ve resmi daireler ise % 4,5’lik pay ile tüketimin az gerçekleştiği 

kolları oluşturmaktadır [TEDAŞ, 2009]. Türkiye’deki net tüketimin 2009 yılı sonu 

verilerine göre sektörel dağılımı Şekil 3.6’da gösterilmektedir. 

 

 

 

 

 

 

 

 

 

 

Şekil 3.6. Türkiye elektrik tüketiminin sektör tabanlı dağılımı 

 

ETKB tarafından hesaplanan elektrik enerjisi yüksek ve düşük enerji taleplerinin 

gerçekleşmesi halinde; 2010 yılı sonunda işletmede olan üretim tesislerinden oluşan 

mevcut elektrik enerjisi üretim sistemimize, Senaryo 1’e göre 13707 MW ve Senaryo 

2’ye göre 11893 MW Lisans almış ve inşa halindeki özel sektör projeleri, 3475.7 

MW Đnşa halindeki kamu üretim tesislerinin ilave edilmesi ile her iki senaryo için de; 

proje üretim kapasitelerine göre 2018 – 2019 yıllarından itibaren, güvenilir üretim 

kapasitelerine göre ise 2016 - 2017 yıllarından itibaren öngörülen elektrik enerjisi 

talebinin karşılanamayacağı hesaplanmaktadır [TEĐAŞ, 2011]. 
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3.6. Elektrik Piyasası 

 

3.6.1. Piyasa gelişim süreci 

 

Elektrik üretimi Türkiye’de ilk defa Tarsus’ta su değirmeni ile çevrilen 2 kW’lık bir 

dinamo ile gerçekleştirilmiştir. Yine ilk santral ise, 1913 yılında Đstanbul Silahtar 

Ağa’da kurulmuştur. Cumhuriyetin ilk yıllarında yerli sermaye birikimindeki ve mali 

kaynaklardaki yetersizlik sebebi ile elektrik sektörü yatırımları ağırlıklı olarak 

yabancı kaynaklı yatırımcılar tarafından gerçekleştirilmiştir. Bahsi edilen bu 

dönemde, genellikle Belçika, Almanya, Đtalya ve Macaristan menşeli şirketler 

elektrik tedarikine ilişkin faaliyetleri yürütmüşlerdir [Hepbaşlı, 2005]. 

 

Enerji ve Tabii Kaynaklar Bakanlığı (ETKB) 1963 yılında teşkilat yapısına 

kavuşturulmuş, bundan yedi yıl sonra yani 1970 yılında ise Türkiye Elektrik Kurumu 

(TEK) kurulmuştur. Elektrik dağıtım hizmetleri haricinde, elektrik sektörünün bütün 

hizmet kollarında faaliyet gösteren TEK’in kurulması ile elektrik sektörü dikey 

bütünleşik yapıda bir tekel olarak konumlandırılmıştır. Belediyelerin elektrik dağıtım 

yetkisi 1982 yılında elinden alınması ile TEK elektrik sektörünün bütün kollarında 

hizmet veren milli bir elektrik kurumu konumuna gelmiştir. 

 

1980’li yıllar ile birlikte ihracata dayalı büyüme stratejisini benimseyen Türkiye, özel 

müteşebbislerin elektrik endüstrisine girmesi için değişik alternatifler ve teşvikler 

üretmeye başlamıştır [Bağdadioğlu, 2009]. TEK’in elektrik sektöründeki tek ve 

bütünleşik yapısını sona erdirmek için; 1984 yılında düzenlenen 3096 sayılı kanun ile 

özel sektörün Đşletme Hakkı Devri (ĐHD) veya Yap-Đşlet-Devret (YĐD) gibi 

yöntemlerle Türkiye elektrik piyasasının iştirak etmesi ve piyasa oluşumunun 

temelleri atılmak istenmiştir. Yine bu kanunda; yeni tesis edilecek elektrik üretim 

tesisleri için YĐD modeli, hali hazırda kurulu olan elektrik dağıtım ve üretim tesisleri 

için ise mülkiyeti TEK’te kalmak üzere işletme hakkının özel sektör yatırımcılarına 

devri düşünülmüştür. Ancak bazı siyasi ve hukuki etmenlerden dolayı bu kanun 1994 

yılına kadar, tam olarak uygulamaya konulamamıştır. 1994 yılında TEK iki ayrı 

şirket   olarak   ikiye   ayrılmış   ve   elektrik  enerjisi  üretim  ve  iletim faaliyetlerini  
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yürütmek üzere Türkiye Elektrik Üretim ve Đletim A.Ş. (TEAŞ) ve elektrik dağıtım 

faaliyetlerini yürütmek üzere Türkiye Elektrik Dağıtım A.Ş. (TEDAŞ) kurulmuştur. 

2001 yılında ise; 4628 sayılı elektrik piyasası kanunu yürürlüğe sokularak, elektrik 

piyasasının serbest rekabet esasları çerçevesinde yürütüleceği bir piyasa 

mekanizması kurulması hedeflenmiştir. Bu kanunla birlikte, TEAŞ üç farklı şirket 

hüviyetine bölünmüştür. TEAŞ’ın elektrik üretim faaliyetlerini gerçekleştirmek üzere 

Elektrik Üretim A.Ş. (EÜAŞ), elektrik iletim faaliyetleri için Türkiye Elektrik Đletim 

A.Ş. (TEĐAŞ) ve elektrik ticaret faaliyetleri için Türkiye Elektrik Ticaret ve Taahhüt 

A.Ş. (TETAŞ) kurulmuştur. Elektrik piyasa kanunu ile birlikte eş zamanlı olarak 

Enerji Piyasası Düzenleme Kurumu (EPDK) kurulmuştur. EPDK, Türkiye’de 

elektrik piyasasının düzenleyicisi ve tüm enerji sektörü üzerinde, piyasa yaptırım 

kimliğine haiz üst kurum hüviyetindedir.     

 

3.6.2. Piyasa yapısı (konfigürasyonu) 

 

Elektriğin üretimi, iletimi, dağıtımı, toptan satışı, perakende satışı, perakende satış 

hizmeti, ticareti, ithalatı ve ihracat faaliyetleri toplamı, elektrik piyasasının genel 

kapsamını oluşturmaktadır.  

 

Türkiye’de elektrik üretim faaliyetleri, EÜAŞ (ve bağlı ortaklıkları), özel elektrik 

üretim şirketleri, otoprodüktörler, kojenerasyon tesisleri ile YĐD/YĐ hükümleri 

çerçevesinde üretim yapan şirketlerce gerçekleştirilmektedir. 17 Mart 2004 tarihinde 

Yüksek Planlama Kurulu (YPK) Kararı ile açıklanmış olan Elektrik Enerjisi Sektörü 

Reformu ve Özelleştirme Strateji Belgesinde özelleştirilecek portföy üretim 

gruplarının belirlenmesini öngörmüştür. Strateji belgesinde, belirlenen portföy üretim 

gruplarının 30 Eylül 2005 tarihine kadar özelleştirilmesi öngörülmüştür. Ancak, 

belirlenmiş olan portföy üretim gruplarının özelleştirilme süreçleri henüz 

başlatılmamıştır. Ayrıca elektrik üretim veya otoprodüktör lisansı başvuruları EPDK 

tarafından incelenmekte ve uygun bulunan şirketlere kurul kararı ile lisans 

düzenlenmektedir.   
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TEĐAŞ, Türkiye’de ise 4628 sayılı yasa gereğince iletim sistemi işletmecisi tek 

kuruluştur. Güncel mevzuatlar gereği ve YPK kararı ile açıklanmış olan Strateji 

Belgesinde, iletim hizmetlerinin kati surette özelleştirme kapsamı dışında tutulacağı 

açıkça ifade edilmektedir. TEĐAŞ, Enerji Bakanlığı’nın ilgili bir kuruluşu 

durumundadır. TEĐAŞ, piyasa işletim hizmetini bünyesindeki Piyasa Mali 

Uzlaştırma Merkezi (PMUM) aracılığı ile yürütmektedir. TEĐAŞ’ın piyasa 

işletmecisi ana görevinin dışında, yük dağıtımı ve frekans kontrolünü 

gerçekleştirmek, iletim sisteminde gerekli kapasite artışını sağlamak, gerçek zamanlı 

sistem güvenilirliğini Yük Tevzi Merkezi (YTM) aracılığı ile takip etmek gibi 

stratejik görevleri vardır.  

 

Türkiye’de elektrik dağıtımı faaliyetleri TEDAŞ tarafından yürütülürken; TEDAŞ 21 

coğrafi dağıtım şirketine bölünmüş olup, strateji belgesinde bu şirketlerin tamamının 

2009 yılı sonuna kadar özelleştirilmesi planlanmıştır. Ancak 2012 yılı ilk yarısı 

itibari ile halen 8 adet dağıtım şirketinin henüz ihale veya devir işlemleri 

tamamlanamamıştır. 4628 sayılı yasa elektrik dağıtım şirketlerinin çok sayıda 

olmasını ve lisanslarında yer alan bölgelerde faaliyet göstermelerini zorunlu 

kılmaktadır. EPDK tarafından elektrik dağıtım lisans başvuruları değerlendirilmekte 

ve uygun bulunan şirketlere kurul tarafından dağıtım lisansı düzenlenmektedir. 

Ayrıca, Türkiye’de elektrik piyasasında Organize Sanayi Bölgeleri (OSB) elektrik 

dağıtım hizmetleri kapsamında dağıtım şirketleri olarak değerlendirilmektedir. 

 

Türkiye elektrik piyasasında elektrik ticareti, ikili anlaşmalar kapsamında veya 

dengeleme uzlaştırma piyasasında gerçekleştirilmektedir. Şekil 3.7’de Türkiye’de 

mevcut elektrik piyasasının genel yapısı görülmektedir. Kamuya ait üretim tesisleri, 

TETAŞ aracılığı ile veya doğrudan iletim sistemi aracılığıyla dağıtım şirketlerine 

elektriklerini ulaştırabilmektedir. Otoprodüktörler ve özel üretici şirketler, TETAŞ 

veya  iletim  şebekesi aracılığı ile ürettikleri elektriği piyasa havuzuna satabilecekleri  
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gibi doğrudan iletim ve dağıtım şebekesi aracılığı ile serbest tüketicilere1 ürettikleri 

elektriği satabilmektedirler. 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 3.7. Türkiye elektrik piyasası genel yapısı  

 

EÜAŞ (ve bağlı ortaklıkları) üretmiş olduğu enerjiyi TETAŞ’a satmakta ve yine şekil 

3.7’de görüldüğü üzere, EÜAŞ elektrik dağıtım şirketlerine de iletim sistemi 

üzerinden direkt olarak elektrik satışı yapabilmektedir. Ayrıca YĐD, YĐ sözleşmeleri 

kapsamında üretim faaliyeti gerçekleştiren güç santralleri de üretmiş oldukları 

enerjiyi TETAŞ’a satmaktadır. TETAŞ, söz konusu santraller ve EÜAŞ’tan almış 

olduğu enerjiyi, dağıtım şirketleri ile özel perakende şirketlere satabilmektedir. 

Türkiye elektrik piyasasında otoprodüktörler tesisleri de elektrik ticareti 

yapabilmektedir. Elektrik piyasası hükümlerine göre bir otoprodüktör şirketi, bir 

takvim yılı içerisinde lisansına derç edilen yıllık ortalama elektrik enerjisi üretim 

miktarının yüzde yirmisini, piyasada satabilmektedir.  

 

Türkiye elektrik piyasasında, dengeleme ve uzlaştırma piyasası katılımcıları lisanslı 

üretim, otoprodüktör, toptan satış ve perakende satış şirketlerinden meydana 

gelmektedir. Dengeleme sistemi katılımcıları kendi adına PMUM’a kayıtlı en az bir 

dengeleme birimi olan ve piyasada üretim faaliyeti gösteren tesisleri ifade 

etmektedir.  Bu tesisler,   aynı zamanda  Milli Yük  Tevzi  Merkezi  tarafından uygun  

                                                
1 Elektrik tüketimi, EPDK tarafından belirlenen yıllık elektrik enerjisi tüketim miktarından daha fazla 
olan veya iletim sistemine doğrudan bağlı olması nedeniyle tedarikçisini seçme serbestisine sahip 
gerçek veya tüzel kişiler serbest tüketici(eligible consumer) olarak tanımlanmaktadır. 
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bulunan yük alma (YAL) ve yük atma (YAT) gibi fonksiyonel işlevleri bağımsız 

yapabilme yetisine sahiptirler.  

 

Milli Yük Tevzi Merkezi’nin yürütmüş olduğu gerçek zamanlı (real time) dengeleme 

işlemine katılan üretim tesisleri, YAL ve YAT fiyatlarına ilişkin önerilerini ayda iki 

kez Milli Yük Tevzi Merkezine bildirmekte ve piyasa işletmecisi olan PMUM bu 

teklifleri ekonomik sıralamalarına göre değerlendirmektedir. Sistemde enerji açığı 

olacağının tespiti halinde yük alma talimatları aracılığıyla en düşük fiyat teklifini 

veren üreticiden başlanarak elektrik üretimi artırılmaktadır. Enerji fazlası olacağının 

tespiti halinde ise en yüksek yük atma teklifini vermiş olan üreticiden başlanarak 

elektrik üretiminin azaltılması sağlanmaktadır. 

 

Elektrik piyasası kanunun yayımlanması ve EPDK’nın kuruluşu ile birlikte 

Türkiye’de elektrik piyasası yapısında eskiye göre büyük değişiklikler meydana 

gelmiştir. Bazı değişiklikler ve eski-yeni yapının karşılaştırması Çizelge 3.4’de 

verilmektedir. Çizelge 3.4’de de görüleceği üzere; yeni elektrik piyasası öncesi 

yapıda rekabetçi bir yapıdan söz etmek olanaksızdır. 

 

Çizelge 3.4. Türkiye’de eski-yeni piyasa yapılarının karşılaştırılması 
 
Parametre  Piyasa öncesi yapı Yeni piyasa 

Genel yapı Tek alıcı-tek satıcı Dengeleme piyasası, ikili 

anlaşmalar 

Tüketici Aynı müşteri grupları Farklı müşteri grupları 

Tüketici tarifeleri Tek tip tarife Farklı tarifeler 

Fiyatlandırma  Maliyetin etkisi yok Maliyet tabanlı 

Piyasaya giriş Öneri yolu ile Lisans ile 

Düzenleme ETKB ve ilgili kurumlar EPDK 

Avrupa Birliğine uyum Uyumlu değil Uyumlu 
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4. ELEKTRĐK ENERJĐ SĐSTEMLERĐNDE PLANLAMA 

 

4.1. Planlama Kavramı ve Süreçleri 

 

Planlama, geleceğe bakma ve muhtemel seçenekleri saptama sürecidir. Planlamanın 

bir özelliği de geleceği bugünden görme ve kontrol etme aracı olmasıdır. Ekonomik 

manada, bir kaynak dağıtım mekanizması olarak da görülebilir. Yani sınırsız 

ihtiyaçlar ile sınırlı kaynaklar arasında bir denge sağlar. Geleceği yönetme ve 

kaynakları dağıtma aracı olan planlama neyin, ne zaman ve nasıl yapılacağının, 

bütün bu çalışmalarda kimlerin sorumlu olacağının belirlenmesi ve saptanmasına da 

olanak verir. Bu özellikler planlamanın disiplinler arası bir aktivite olduğunu 

göstermektedir. 

 

Elektrik enerji sistemlerinde planlama ise, belirlenen hedefler doğrultusunda göz 

önüne alınan çalışma koşullarına göre sistemin gelişiminin ve buna ilişkin seçimlerin 

kesin ve açık olarak belirlenmesini gerektirmektedir. Elektrik enerjisinin üretimi, 

iletimi ve dağıtımındaki en önemli amaç, enerjinin tüketicilere ucuz ve kaliteli olarak 

ulaştırılmasıdır. 

 

Tüketicilere güvenilir, kaliteli, sürekli ve ekonomik elektrik enerjisi arz edebilmek 

için hâlihazırda var olan elektrik enerji sistemlerinin, gelecekteki elektrik enerji 

ihtiyacını ve demant yükünü karşılayabilecek biçimde revize edilmesi gerekmektedir 

[Ceylan, 2004]. 

 

Kısa dönem planlamalarda doğrudan doğruya süratle ve değişmeyecek kesin kararlar 

alınmalıdır. Kısa dönemde, önerilen işletme programının seçimi yapılarak, kısa 

vadeli amaçların gerçekleştirilmesinde kullanılacak en kullanışlı alternatif 

yöntemlerin de değerlendirilmesiyle, yakın gelecek için en iyi çözümlerin bulunması 

temel hedefler olarak ifade edilebilir.  

 

Orta dönem planlamada yapılacak işlemler kısa dönem planlamaya göre daha geniş 

bir zamana yayılmıştır. Bu  tür  planlamada  yapılacak yatırım programının seçiminin   
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yanı sıra, amaçların gerçekleştirilmesi için alternatif seçenekler göz önünde 

bulundurularak, geleceğe ilişkin belirlemeler yapılır ve program kapsamına dâhil 

edilir.  

 

Enerji sistemlerinde uzun dönem planlamada ise; güç üretimi, elektrik iletimi ve 

dağıtım hizmetlerinde değişik alternatiflerin incelenebilme imkanı vardır. Planlama 

için kullanılacak birçok verinin farklı araçlar kullanılarak değerlendirilmesi ile reel 

yaklaşımlar ortaya çıkarılır. Finansal gelişmelerden, sosyal verilere kadar uzanan pek 

çok farklı veriyi birleştirerek elde edilen sonuçları enerji tüketimi ile ilişkilendirmek 

ve geleceğe dönük reel sonuçlar ortaya çıkarmak için uzun ve ayrıntılı bir çalışma 

yapılır. Bu çalışma, kısa dönemli ve orta dönemli planlamada alınan kararlarda ve 

yatırım programlarında da yön gösterici olarak işlev görür [Oğurlu, 2004]. 

 

Elektrik sistemlerinin planlanmasında; planlama dönemleri ve planlamanın 

muhteviyatı göz önüne alındığında, elektriğin üretiminden elektriğin tüketiciye 

dağıtımına kadar süreçte belirli bir sıra takip edilir. Her donanımın planlanması için 

bir önceki planda yer alan verilerden faydalanılır. Elektrik sistemlerinin 

planlanmasında ilk adım, talep edilecek yükün veya enerji tüketiminin tahmin 

edilmesidir. Bununla birlikte üretim, iletim ve dağıtım sistemlerinin planlaması ile bu 

bölümde de ayrıntılı olarak bahsedilen planlama çalışmaları (finansal, çevresel vb..) 

bir sıra dahilinde icra edilmektedir.    

 

4.1.1. Enerji tüketim ve puant yük tahmini 

 

Etkili bir sistem planlaması için, demant (puant) yük ve elektrik enerji ihtiyacının 

tahmin edilmesi gereklidir. Đhtiyaç olan enerjinin tahmini, üretim sistemi planlaması 

için oldukça önem arz etmektedir. Güç santrallerine yapılması gerekecek ilave 

ve/veya yeni güç santrallerinin tesis edilmesi, puant güçlerde dikkate alınarak, 

tahmin edilen enerji talebini karşılamak üzere belirlenmektedir. Yine duruma uygun 

tesis türü ve bu tesisler için üretim imkânları araştırılır. Yük tahminleri sonucuna 

göre; üretimle birlikte iletim ve dağıtım sistemlerine yapılması gereken kapasite 

artırımları  ile  bu  eklemelere  ilgili  yatırım  ve  risk  maliyetleri  belirlenmektedir.  
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Gerekenden daha düşük yük ve tüketim tahminlerine dayalı yapılan planlamada, güç 

sistem güvenilirliğinin azalmasına, tüketiciye arz edilen enerjinin kısıtlanmasına ve 

enerji kalitesinde kaydadeğer düşmelere neden olacaktır. Gerekenden fazla 

tahminlerde ise; tam kapasite ile hizmet veremeyen, düşük kapasite ise çalışan ve 

dolayısıyla ekonomik olmayan sistem isletme sorunlarına neden olacaktır. Bu gibi 

durumlar, aynı zamanda elektrik sistemine büyük ölçekli yatırımlar yapan enerji 

kuruluşlarınında önemli mali problemler ile karşı karşıya kalmasına neden olacaktır 

[Yoldaş, 2004].  

 

Elektrik tüketim tahmini, elektrik piyasası oyuncuları ve enerji sektöründeki şirketler 

açısından planlama ve koordinasyonun yapılabilmesi için her zaman stratejik öneme 

sahip bir konu olmuştur. Bununla birlikte EPDK tarafından enerji mevzuatı üzerinde 

yapılan değişiklikler ile üretim, iletim ve dağıtım sistem operatörlerine verilen yeni 

görevler, elektrik tüketim tahminini daha fazla önemli hale getirmiştir.   

 

4.1.2. Üretim sistem planlaması 

 

Elektrik enerjisinin üretiminin gelecekteki maliyetinin daha ekonomik olması ve 

kullanıcıların talep edeceği elektrik enerjisini karşılayabilecek yeterlikte, optimum 

üretim kapasitesinin sağlanabilmesi için daha öncede bahsi edilen üretim sistem 

planlaması yapılmaktadır. Hali hazırda kurulu bulunan güç sistem donanımlarına 

eklenmesi gereken veya eklenecek yeni tesis, tesis güçleri ve eklenecek donanımların 

devreye alınma zamanlarını gösteren termin planlarının oluşturulmasında üretim 

sistem planlaması önem arz etmektedir. Üretim planlamasında üç tür aşamadan söz 

edilebilir. Bunlar kapasite planlanması, üretim ve yatırım maliyetinin hesaplanması 

ve tesis kurulduktan sonraki işletme, bakım masraflarının hesaplanmasıdır.  

 

Güç sistemlerinin üretim sistem planlaması geliştirilirken, sisteme ilişkin olarak 

güvenilirlik analizi (enerjideki süreklilik kriteri) sağlanmalıdır. Gerekli olan güç 

kapasiteni belirlemek üzere, programlanan sistem bakım görevlerini de kapsayan güç 

üretim modelleri ile elektrik yük modelleri birleştirilerek incelenmelidir. Enerji güç 

sistemlerindeki üretim birimlerine ilişkin, kullanılacak hammaddenin yakın ve kolay  
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elde edilmesi, dışa bağımlılık yönü, işletme bakım çalışmalarının ve öngörülen 

zorunlu devre dışı kalma sürelerinin sistem üzerindeki etkileri göz önüne alınarak, 

sistemin enerji ihtiyaçlarına karsı düsen üretim maliyetleri hesaplanabilir. Santralin 

kurulması düşünülen saha araştırması yapılırken ise; santrallerin kurulması 

düşünülen yerlerin jeolojik/jeofizik özelliklerinin ve deprem risklerini göz önünde 

bulundurulması önemlidir. Bununla birlikte, yatırım isletme ve bakım maliyetlerinin 

aktüel değerleri hesaplanarak, önceden belirlenen bu değerler üzerinde daha ayrıntılı 

ve hassas incelemelerde bulunulabilir [Yoldaş,2004]. 

 

4.1.3. Đletim sistem planlaması 

 

Đletim sistemi planlamasının, üretim ve yük merkezlerinin yerleşim yerleri ile 

kapasitelerine bağlı olması bununla birlikte yeni iletim sistemi donanımlarının tesis 

edilme, tesislerin devreye alınma zamanlarının üretim tesisleri kurulması için 

harcanan zamandan az olması üretimden sonra iletim planlaması yapılması yönünde 

bir sıralama oluşturmaktadır. Bu planlamada temel amaç; planlama süreci içerisinde 

iletim sisteminin geleceğini belirlemektir. Bir diğer ifade ile, geleceğe dönük 

öngörüsü yapılan yük, tüketim ve üretim senaryolarına göre enerji iletim 

koridorlarına ilişkin kısıtlamaların, yatırım maliyetlerinin ve iletim sistemi 

elemanlarının kapasitelerinin belirlenmesidir. Đletim sistemi üzerinde yapılacak 

geliştirmeler ve değişik şartlar altında iletim sisteminde çıkabilecek problemler 

bilgisayar yazılımlarından yararlanılarak yapılmaktadır. Optimal şartlar altında iletim 

hatlarının devreden çıkarılması veya bazı ana iletim hatlarında arızaların meydana 

gelmesi durumları ayrı olarak incelenmelidir. Enterkonnekte sistemlerin her bir 

parçasında güç ve enerji alışverişleri gerçekleştirildiğinden, her bir parçanın ve bütün 

sistemin ilave devre eklemeleri planlama üzerinde etkili olacaktır. 

 

Alt iletim sistemi planlaması ise; indirici merkezlerini dağıtım trafolarına (veya 

baralarına) bağlayan, gerilimi 154kV ana iletim sistemine oranla daha düşük gerilim 

kademesinde olan iletim elemanlarının ve dağıtım trafolarının yüksek gerilim 

tarafındaki planlamalar olarak düşünülebilir. 
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4.1.4. Dağıtım sistem planlaması 

 

Hızla artan nüfusun doğal sonucu olan yüksek yük ve artan elektrik tüketimi, 

bağlaşık (interkonnekte) sistemden dağıtım trafoları aracılığıyla alınan elektrik 

enerjisinin, mümkün olduğu kadar düşük maliyette, sürdürülebilir ve yeterli güç 

kalitesinde abonelere ulaştırılması dağıtım sistem planlaması ile sağlanır.  

 

Elektrik dağıtım sistem planlamasında indirici trafo merkezlerinin lokasyonları, 

kurulu güçleri, teknik karakteristikleri, gerilim kademeleri, besleme sahalarının 

büyüklükleri, yoğunlukları ve özellikleri dikkate alınır. Bununla birlikte etkin,  

güvenilir ve düşük maliyetli sistem planlamalarını sağlayabilmek için, ayrıntılı bir alt 

iletim sistem planlamaları ve iletim sistemi planlamalarının öngördüğü düzenlemeler 

göz önünde bulundurulmalıdır [Yoldaş,2006]. 

 

Dağıtım sistem özelliklerini, mevcut dağıtım sistemine bağlı tüketicilerin enerji talep 

miktarı, talep türü, yük faktörü ve diğer teknik kapasiteleri şekillendirir. Elektrik 

dağıtımda tüketicilerin mevcut yük karakteristiği saptandıktan sonra, dağıtım 

şebekelerine bağlı alt dağıtım sistemleri kendi aralarında gruplandırılır. Bu şekilde 

yapılan gruplamalar sonucunda ana dağıtım şebekeleri diğer bir deyişle dağıtım 

trafoları üzerindeki yükler, talep miktarını belirlemek için bir araya getirilir. Ana 

dağıtım şebekeleri üzerindeki toplam yük talebi bir üst indirici merkezlerine aktarılır. 

Dağıtım şebekeleri üzerindeki yükler, indirici trafo merkezlerinin yerleşimini ve 

teknik karakteristiğinin belirlenmesini de sağlayacaktır. Đletim sistemi planlamasında 

olduğu gibi dağıtım sistemi planlamalarında da bilgisayar yazılımından 

faydalanılmaktadır. Bu tür bilgisayar yazılımları ile mevcut dağıtım ağlarındaki güç 

akışı, gerilim düşümü, kısa devre, gerilim regülâsyonu ve yük tahminlerinin gerçeğe 

yakın simülasyonuna imkân tanınmaktadır. 

 

4.1.5. Çevresel planlama 

 

Elektrik enerji tesislerinin planlamalarında konumlandırma, boyutlandırmalarının ve 

geçerli yakıt imkânlarının değerlendirilmesinde çevre ile ilgili mevzuat hükümlerine  
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uygun hareket etmek bir zorunluluktur. Çevresel planlamalar, enerji tesislerinde 

genişletme planları yapılırken alternatif seçeneklere veya farklı sınıflandırmalara da 

olanak vermektedir. 

 

4.1.6. Finansal planlama  

 

Finansal analiz ve modeller, yıllık, aylık veya belirli bir dönemi kapsayan raporların 

hazırlanmasında kullanılır. Üretim, iletim ve dağıtım enerji tesislerinde, sistem 

genişletmesine ilişkin yatırımlarda parasal giriş ve çıkışları, vergi, harç, sigorta gibi 

hukuki kısıtlamaları de içerecek şekilde finansal planlamalar yapılmaktadır. Finansal 

bir planlama şirketlerin veya kurumların bütçe olanakları içinde, yatırım harcamaları 

üzerinde sınırlamalar getirmektedir. 

 

4.1.7. Yakıt destek ve yöneylem planlamaları 

 

Yakıt destek ve yöneylem planlamalarının temel hedefi şebeke işletmesine en uygun 

sistem modelini belirlemek için ilgili dataları, üretim sistem planlamasının 

geliştirilmesine yönelik olarak kullanmaktadır. Yakıt destek planlamasında, farklı 

yakıt tiplerinin geçerlilikleri ve maliyet fiyatları tahmin edilir, uzun dönemli yakıt 

tedarikine ilişkin olarak yapılan girişimler,  bunların sonuçları toplu olarak 

değerlendirilir. Yöneylem planlamasında ise, alternatif olabilecek enerji kaynakları, 

enerji güç santrallerinin kapasitelerine ilişkin sınırlandırmalar, mevcut enerji 

santrallerinin sistem bakımları gibi etkenler göz önüne alınmalıdır [Yoldaş,2006]. 

 

4.1.8. Ar-Ge planlamaları 

 

Tüzel veya gerçek kişiliklerin bilimsel ve teknolojik bilgiyi ürüne, sürece, yönteme, 

uygulamaya ya da sisteme dönüştürme safhalarında üreteceği teknolojik geliştirme, 

her türlü yenilik amaçlı geliştirme ve revizyon (yenileme) projelerinin 

değerlendirilmesine dönük süreçler araştırma-geliştirme planlaması kapsamında 

değerlendirilebilir.  
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5. ELEKTRĐK TÜKETĐM TAHMĐNĐ VE TAHMĐN YÖNTEMLERĐ 

 

5.1. Tahmini Etkileyen Faktörler ve Tahmin Yöntemleri 

 

Elektrik enerji sistem planlamalarının ilk safhası, gelecekteki net elektrik tüketim 

tahminidir. Net elektrik tüketim tahmini geçmiş ve mevcut koşulların incelenmesi, 

değişim analizlerinin yapılması ve sonucunda gelecekteki durumun öngörüsüne 

dayanır. Bu öngörünün yapılması üretim sistemi planlaması için oldukça önemlidir. 

Üretim santrallerine yapılması gerekecek ilave veya yeni üretim santrallerinin tesis 

edilmesi yapılacak olan tahmine göre belirlenmektedir. 

 

Genel itibari ile tahmin yöntemleri, sübjektif, tek değişkenli, çok değişkenli, son 

kullanıcı ve birleştirme yöntemi olmak üzere beş ana grupta incelenebilir. Sübjektif 

tahmini yaklaşımlar; karar, önsezi, deneyim ve benzer bilgileri kullanarak, tahmini 

yapan kişinin geçmiş bilgileri göz önüne alarak yapacağı tahminlerdir. Tek 

değişkenli tahminsel yaklaşımlar; zaman serisi analizi biçiminde verilerin geçmişteki 

değerlerine bağlı olarak elde edilen tahminlerdir. Çok değişkenli tahminler sebepsel 

ilişkileri ortaya koymaya uğraşmaktadır. Son kullanıcı metodu ise öngörü yapılırken 

veriler temel bileşenlerine ayrılarak projeksiyonlar ortaya çıkarılır. Birleştirme 

yaklaşımı ise değişik tahminleri bütünleştirerek, daha iyi tahminler elde etmeyi 

hedeflemektedir [Yoldaş,2006]. 

 

Tüketim ve yük tahmini için son yıllarda birçok farklı yöntem geliştirilmiştir. Zaman 

serisi analizi, regresyon analizi gibi geleneksel yöntemlere ilave olarak bilgisayar 

yazılımlarının geliştirilmesiyle yapay zekâ, bulanık mantık gibi yöntemlerde tahmin 

çalışmalarında kullanılmaya başlanmıştır.  

 

Tüketim veya yük tahmin yöntemleri genel olarak istatistiksel yöntemler ve 

öğrenmeye dayalı yöntemler olarak ayrılmaktadır. Đstatistiksel yöntemler içerisinde 

zaman serisi analizi, ekonomik göstergeler ile yapılan tahmin, yüzeysel verilerle 

yapılan tahmin ortalama artış yüzdelerinden elde edilen tahmin ve regresyon analizi 

yöntemleri  gösterilebilir.   Öğrenmeye  dayalı  tahmin  yöntemleri  ise;  yapay  sinir  
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ağları(YSA), bulanık mantık algoritmaları, sinirsel-bulanık veya bulanık-sinirsel 

algoritmaları kullanan yöntemler olarak ifade edilebilir. Ancak yukarıda bahsedilen 

istatistiksel yöntemler ve öğrenmeye dayalı yöntemler dışında, hem istatistiksel hem 

de öğrenme tabanlı çalışan, ilaveten makine öğrenmesinden çeşitli teknikleri 

kombine eden, bilimsel literatürde yeni popülerlik kazanmaya başlayan destek vektör 

makineleridir. 

 

Zaman kavramı bakımından ise tahmin yöntemlerini üç bölüm altında 

değerlendirebiliriz; bunlar kısa dönemli tüketim tahminleri (saatlik,haftalık), orta 

dönemli tüketim tahminleri (aylık, on iki aylık) ve uzun dönemli (bir yıldan fazla) 

tüketim tahminleridir. 

 

Kısa dönemli tahminler için tüketim zaman dilimi, elektriksel veri ve tüketici 

sınıfları gibi etkenler göz önünde bulundurulurken, orta ve uzun dönem tahminlerde 

ise geçmiş tüketim verileri, elektriksel veriler, farklı tüketici (abone) sayıları, 

uygulama sahası, ekonomik etkenler daha önem kazanır. 

 

Elektrik tüketimini etkileyebilecek birçok faktör vardır. Geçmişteki veriler, 

endüstriyel planlar, gayri safi yurt içi hâsıla (GSYĐH), nüfus ve demografik 

göstergeler, toplam tüketici sayısı, ortalama hane halkı büyüklüğü, elektrikli hane 

sayısı, köy oranı, çok odalı konut yüzdesi, brüt elektrik üretimi, kurulu güç 

şehirleşme oranı, istihdam verileri ve elektrik fiyatı bu faktörlerden bazılarıdır. Bu 

etkenlerden bazıları elde edilecek tahminler üzerinde doğrudan ve büyük oranda 

etkiye sahipken, bazıları ise dolaylı şekilde ve daha zayıf etki göstermektedir. Talebi 

etkilediği saptanan faktörler, etki derecelerine bağlı olarak elektrik tüketim tahmin 

modellerinde bağımsız değişken olarak kullanılmaktadır. 

 

Bunun yanında yukarıda bahsi edilen etkenlerin birbirleri ile etkileşimi olanlar da 

bulunabilir. Bu türlü etkileşimler yapılacak tahminler için daha kompleks 

matematiksel denklemlerin ortaya çıkmasına veya hatalı tahmin algoritmalarının 

kurulmasına sebep olmaktadır. Misal olarak sanayinin gelişmesi ile ortaya çıkan 

nüfus  yoğunluğu  ve  buna  bağlı  olarak   artış   göstermesi  beklenen  sosyal  yaşam  
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farklılıkları yapılacak tüketim tahmini üzerinde etkili olacaktır. Veya GSYĐH ile 

elektrik tüketiminden hangisinin birbirini daha çok etkilediği her zaman tartışma 

konusu olmuştur. 

 

Gelişmiş elektrik tüketim tahmin modellerinde, tüketimi etkileyen faktörler göz 

önüne alınarak, sektör bazında net elektrik talepleri tahmin edilerek, bunların 

toplamına kayıp ve kaçak öngörüleri eklenmek suretiyle brüt tüketim 

hesaplanmaktadır. 

 

Geleceğe yönelik yük veya tüketim taleplerinin belirlenmesinde, kullanılacak tahmin 

modelinin seçimi oldukça önemlidir. Talepdeki değişimlerin yapısına bağlı olarak bir 

yöntem diğerine göre üstünlük sağlayabilir. Verimize özel bir metodu seçmeden 

önce, talebin davranışını incelemek oldukça önemlidir. Talebin davranışından uygun 

bir eğrinin mi, yoksa stokastik bir modelin mi seçilmesinin uygun olduğu kolaylıkla 

saptanabilir. Elektrik dağıtım sistemleri birbirinden çok farklı karakteristikler 

sergilediğinden, mevcut şebekenin yapısı da incelenmelidir. Đncelenen sisteme göre 

en uygun tahmin modelini seçmek için farklı yöntemlerin avantaj ve 

dezavantajlarının da bilinmesi önem arz etmektedir [Oğurlu, 2011]. 

 

Son yıllarda bilimsel literatürde elektrik tüketim tahmini için birçok yöntem 

geliştirilmiş ve değişik algoritmalar kullanılmıştır. Đstatistiksel yöntemlerden zaman 

serisi analizi, regresyon analizi, eğri uydurma yöntemi, ortalama artış yüzdesi vb.. 

pek çok farklı yöntem kullanılırken, öğrenmeye dayalı metotlardan bilgisayar 

yazılımları ile yapay sinir  ağları ve bulanık mantık gibi yöntemler enerji tüketim 

tahminlerinde kullanılmaya başlanmıştır. Çalışmamızda tahmin yöntemlerinden 

regresyon analizi, yapay sinir ağları ve istatistiksel öğrenme tabanlı çalışan destek 

vektör makineleri kullanılmaktadır. 

 

5.2. Regresyon Analizi 

 

Bilimsel araştırmalarda karşılaştığımız sorunların çoğunluğu iki veya daha fazla 

değişken   arasında   bir   ilişki  bulunup   bulunmadığının   saptanması   ile   ilgilidir.  
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Değişkenler arasında bir ilişki bulunup bulunmadığı, eğer varsa bu ilişkinin 

derecesinin saptanması, istatistiksel çözümlemelerde sık karşılaşılan bir problemdir. 

Regresyon, değişkenler arasındaki ilişkinin irdelenmesinde en çok uygulanan 

tekniklerden birisidir. Đstatistik biliminde iki değişken arasındaki ilişki, değerlerinin 

karşılıklı değişimleri arasında bir bağlılık şeklinde ifade edilmektedir.  

 

X değişkeninin değerleri değişirken buna bağlı olarak Y değişkeninin değerleri de 

değişiyorsa, bu iki değişken arasında pozitif doğrusal veya negatif doğrusal bir ilişki 

olduğu söylenebilir. Regresyon analizinde; değişkenler bağımlı değişken ve bağımsız 

değişkenler olarak isimlendirilmektedir. Bağımsız değişkenlerin, bağımlı değişkenler 

üzerindeki etki biçimi ve yönü, istatistik denklemler ile ifade edilmektedir. Genel 

regresyon denklemleri bize bağımlı ve bağımsız değişkenler arasındaki gerçek 

ilişkiden ziyade, noktaların dağılımına göre teorik ortalama bir ilişkiyi vermektedir. 

Bu nedenle bir x gerçek değerine karşılık tahmin edilen f(x) fonksiyon değeri 

regresyon doğrusunun üstünde bir nokta olacaktır. Ancak uygulamada gerçekleşen 

değerler, regresyon doğrusunun yakın noktalarına serpilmiş olacaklarından tahmin 

değerlerinde hatalar meydana gelecektir. Hata payının küçük olması, bağımlı ve 

bağımsız değişkenler arasındaki ilişkinin kuvvetlilik derecesi ile orantılı olacaktır. 

Değişkenler arasındaki ilişkinin çok kuvvetli olması, regresyon analizi ile elde edilen 

tahminlerdeki hataların düşük olmasına neden olmaktadır. Bağımlı ve bağımsız 

değişkenler arasındaki ilişkinin bağlılığı, önemi ve ilişkinin derecesi korelâsyon 

tekniği ile incelenmektedir.  

 

Đki veya daha çok değişken arasında ilişki olup olmadığı, ilişki var ise ilişkinin yön 

ve gücü korelasyon yöntemi ile bulunur. Korelasyon, özellikle regresyon 

denklemlerinde yer alan, bağımsız değişkenlerin seçimi açısından son derece önem 

arz etmektedir. Đki değişken arasındaki ilişkinin gücünü gösteren ölçü korelasyon 

katsayısı ile ifade edilmektedir.  

 

∑ ∑∑ ∑
∑ ∑ ∑

−−

−
=

2222 )()()()(

))((

yynxxn

yxxyn
r                                                         (5.1) 
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Eş 5.1’de görüldüğü gibi genellikle “r” sembolü ile gösterilen korelasyon katsayısı x 

ve y gibi iki değişken arasında doğrusal ilişkinin gücünü ölçer. Korelasyon katsayısı 

-1≤ r ≤ 1 arağında değerler alabilir. Đki değişken arasında mükemmel bir pozitif 

doğrusal ilişki olması durumunda r=1 olurken, negatif doğrusal bir ilişkide r=-1 

olarak ölçülür. r=0 durumunda ise iki değişken arasında doğrusal bir ilişkiden söz 

edilemez. 

 

Regresyon analizi, bağımsız değişken sayısına göre; basit regresyon ve çoklu 

regresyon analizi ve yine fonksiyon tipine göre; doğrusal ve doğrusal olmayan 

(eğrisel) regresyon gibi farklı problem tiplerine göre, farklı analizler 

içerebilmektedir.  

 

5.2.1. Basit doğrusal regresyon analizi 

 

Basit regresyon analizi, Y bağımlı değişkeninin tek bir bağımsız değişken X ile ifade 

edilmesine dayanmaktadır. Bu model genellikle aşağıdaki gibi ifade edilebilir.   

X ve Y ana kütle verilerini göstermek üzere, X ile Y arasında ilişkinin  

 

Yi = α+βX i +εi  (i=1,2,3,...)                                                                                    (5.2) 

 

gibi lineer bir ilişki olduğu tahmin ediliyor ise;  ilk olarak modelin bilinmeyen α ve β 

parametrelerinin tahmin edilmesi gerekmektedir. Bu modelin  α  ve β parametrelerini 

bulmak için ise X bağımsız değişkeni, Y bağımlı değişkeni ve ε hata terimi ile ilgili 

gözlemlere ihtiyaç duyulmaktadır. Modelin bilinmeyen parametreleri tahmin edilerek 

bağımsız değişkenlerin farklı değerler alması ile birlikte bağımlı değişkenin alacağı 

değeri tahmin etmek regresyonun ana hedeflerinden birisidir. Burada α doğrusal 

fonksiyonun sabitidir. X= 0 olduğunda regresyon doğrusunun dikey eksen olan Y ile 

kesiştiği noktayı göstermektedir. β doğrusal fonksiyonun eğimidir. Aynı zamanda 

regresyon katsayısı olarak isimlendirilmektedir. 
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Şekil 5.1. Basit doğrusal regresyon doğrusu 

 

Şekil 5.1.’deki çeşitli X değerleri karşısındaki Y değerlerinin dağılımını gösteren 

serpilme diyagramındaki gözlem noktaları arasından, çok sayıda doğrusal fonksiyon 

geçebilir ancak bu fonksiyonlardan en uygun olan Y gözlem değerine en yakın teorik 

tahmini Y` değerini veren doğrusal fonksiyon olmalıdır. Diğer bir ifade ile;  

 

e = YY ′− = xYi βα ˆˆ −− (minimum)                                                                        (5.3) 

 

minimum olan fonksiyon seçilmelidir. Bu durumun tüm gözlem değerlerine 

uygulanması gerektiğinden, 
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n

i

iiii XYYYe
1 1 1

2
2^

2 ˆˆ βα                                                               (5.4) 

 

fonksiyonunun da minimum yapılması gerekmektedir. Bu yöntem “En Küçük 

Kareler Yöntemi (EKK)” olarak bilinmektedir. Bu fonksiyonun minimum olabilmesi 

için α̂  ve β̂  parametrelerine göre kısmi türevlerinin alınması ve bunların 0’a 

eşitlenmesi gerekir. Denklemlerin çözülmesi ile; 

 

∑ ∑+= ii XnY βα ˆˆ                                                                                               (5.5) 
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∑ ∑ ∑+= 2ˆˆ
iiii XXYX βα                                                                                   (5.6) 

 

elde edilir. Bu denklemlerin gözlem değerleri kullanılarak α̂  ve β̂  için birlikte 

çözülmesi ile; 

 

n

X
X

i∑
=                                                                                                               (5.7) 

 

n

Y
Y

i∑
=                                                                                                                 (5.8) 

 

XbY −=α                                                                                                              (5.9) 
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−
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b

2
                                                                                           (5.10) 

 

olarak elde edilir. Yordamada (tahminde) kullanılan normal eşitlikte bilinmeyen 

saptandıktan sonra, artık X yerine değişik değerler koyarak, bunların karşılığı olarak 

yordanacak Y değerleri kolayca bulunabilir [Arıcı, 2006]. 

 

5.2.2. Çoklu doğrusal regresyon analizi 

 

Eğer Y bağımlı değişkeni, çok sayıda bağımsız X değişkeni ile ifade ediliyor ise bu 

analize  “Çoklu Regresyon Analizi (Multiple Regression Analysis) adı verilmektedir. 

Çoklu regresyon analizinde lineer bir ilişki; 

  

Yi = βo+β1X1+β2X2+β3X3+…+εi                                                                          (5.11) 

 

şeklinde verilebilir. Çoklu regresyon analizinde n adet β kısmi regresyon katsayısı 

içermektedir. Bu katsayıların her biri ilgili bağımsız değişkenlerde meydana 

gelebilecek bir değişkenliğin bağımlı değişken üzerindeki etkisini ölçmektedir. 



44 

 

Çoklu regresyon modelinde katsayıların çözümü normal olarak bilgisayar programı 

kullanılarak yapılmaktadır. Bununla birlikte, metodun temelinin anlaşılması 

önemlidir [Makridakis, 1998]. Örneğin iki bağımsız değişkenli doğrusal bir 

regresyon denklemi; 

 

Yi = βo+β1X1+β2X2                                                                                               (5.12) 

 

olarak ifade edilebilir. Bu fonksiyon üç boyutlu uzayda bir düzlem ifade eder. βo, β1 

ve  β2 kısmi regresyon katsayıları, basit regresyon analizinde Eş.5.2’de olduğu gibi 

hatayı mimimize etme ilkesi, diğer bir ifade ile en küçük kareler yöntemi kullanarak 

bulunabilir. 

 

∑∑∑ ++= iii xxny 22110
ˆˆˆ βββ                                                                         (5.13) 

 

iiiiii xxxxxy 212
2
11101

ˆˆˆ ∑∑∑∑ ++= βββ                                                          (5.14) 

 

∑∑∑∑ ++= 2
22211202

ˆˆˆ
iiiiii xxxxxy βββ                                                         (5.15) 

 

burada xi ve yi değerleri yerine, her xi ve yi değerinin aritmetik ortalamasından 

farkları iii xxx −=′  ve iii yyy −=′  denklemlerde yerine konulursa ve 

denklemlerdeki terimlerin, aritmetik ortalamadan farklarının cebirsel toplamının sıfır 

olduğu varsayımı altında aşağıdaki çözümler yapılarak bilinmeyen katsayılara ait 

denklemler elde edilebilir.  

 

Veya gözlem sonuçlarına göre matrislerden yararlanılarak da 0β̂ , 1β̂  ve 2β̂  

değerlerine ulaşmak mümkündür: 
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5.2.3. Polinom(eğrisel) regresyon analizi 

 

X bağımsız değişken ile Y bağımlı değişkeni arasındaki ilişki polinomal diğer bir 

deyişle eğrisel form; 

 

Yi = βo+β1X
1+β2X

2+….+βnX
n                                                                              (5.21) 

 

şeklinde olabilir. Eğrisel regresyon denkleminde βo, β1, …, βn katsayıları örnekleme 

yoluyla saptanan X ve Y ölçü değerlerinde ve en küçük kareler yöntemi ile 

hesaplanır. Değişken olan βo, β1, …, βn regresyon katsayıları, fonksiyonun tahmin 

değerleri ile gerçek değerleri arasındaki farkların kareleri toplamı en 

küçük(minimum) olacak şekilde seçilmelidir. Örneğin üç katsayılı bir regresyon 

denkleminde katsayıların bulunması için minimum amaç fonksiyonunun, katsayılar 

cinsinden kısmi türevleri sıfıra eşitlenerek çözüme devam edilmelidir. 
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Eşitliklerin çözülmesi ile yeni denklem takımları elde edilir.  
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Elde edilen denklem takımları hiperbolik ya da üstel olması nedeniyle denklemlerin 

çözümünde güçlükler olabilir bu durumlarda ters sayı veya logaritmik dönüşümler 

yapılarak model doğrusal çoklu regresyon modeline dönüştürülerek çözümler elde 

edilir. 

 

5.3. Yapay Sinir Ağları 

 

Yapay sinir ağları (YSA), insan beyninden esinlenerek geliştirilmiş, ağırlıklı 

bağlantılar aracılığıyla birbirine bağlanan ve her biri kendi hafızasına sahip proses 

elemanlarından oluşan paralel ve dağıtılmış bilgi işleme yapılarıdır. Yapay sinir 

ağları, bir başka ifade ile insanın biyolojik sinir sistemini taklit eden bilgisayar 

programlarıdır. Yapay sinir ağları zaman zaman paralel dağıtılmış ağlar (parallel 

distributed networks), bağlantılı ağlar (connectionist networks), nuromorfik sistemler  
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(neuromorfic systems), sinirsel işlem, doğal zeka sistemleri ve makine öğrenme 

algoritmaları gibi, isimlerle de anılmaktadır. 

 

Yapay sinir ağaları günümüzde birçok probleme çözüm üretebilecek yeteneğe 

sahiptir. Değişik biçimlerde tanımlanmaktadır. YSA için temel tanımların ortak 

birkaç noktası vardır. Bunların en temeli yapay sinir ağlarının birbirine hiyerarşik 

olarak bağlı ve paralel olarak çalışabilen yapay hücrelerden meydana gelmesidir. 

Proses (işlem) elemanları da denilen bu hücrelerin birbirlerine bağlandıkları ve her 

bağlantının bir değerinin(öneminin) olduğu kabul edilir. Bilginin öğrenme yolu ile 

elde edildiği ve işlem elemanlarının bağlantı değerlerinde (ağırlık) saklandığı 

dolayısıyla dağıtık bir hafızanın söz konusu olduğu da ortak noktalarıdır. Proses 

elemanlarının birbirleri ile bağlanmaları sonucu oluşan ağa yapay sinir ağı olarak 

bilinir. Şekil 5.2’de örnek bir yapay sinir ağı yapısı görülmektedir. Bu ağın 

oluşturulması biyolojik sinir sistemine ilişkin bulgulara dayanmaktadır [Öztemel, 

2006]. 

 

 

 

 

 

 

 

 

 

Şekil 5.2. Yapay sinir ağı örneği 

 

Teknik olarak da, bir yapay sinir ağının esas işlevi, kendisine gösterilen bir girdi 

setine karşılık, bir çıktı seti belirlemektir. Ağın bunu yapabilmesi için, ilgili olayın 

örnekleri ile eğitilerek (öğrenme) genelleme yapabilecek özelliğe(yeteneğe) ulaşması 

gerekir. Bu genelleme ile benzer olaylara karşılık gelen çıktı setleri belirlenir 

[Öztemel, 2006]. YSA  üzerindeki ilk çalışmanın 1943 yılında başladığı  kabul edilir.  
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McCullogh ve Pitts ilk olarak yapay sinir tanımını yaparak hücre modelini 

geliştirdiler. Yapılan bu çalışmada sinir hücreleri sabit eşik değerli mantıksal 

elemanlar olarak modellenmiştir. Yapısında ±1 sabit bağlantı ağırlıklarına sahip olan 

bu model aritmetik mantık hesaplama elemanları olarak da adlandırılmıştır. Öğrenme 

üzerine çalışmaların yoğunlaştığı 1949’lu yıllarda, bilim adamları insan öğrenme 

sürecini modellemeye uğraşmaları ile artmıştır. Hebb, YSA’daki öğrenme için 

başlangıç noktası sayılabilecek bir kuralı geliştirmiştir. Ortaya atılan bu öğrenme 

kuralı, o dönemde bir sinir ağının öğrenme işini nasıl gerçekleştirebileceği 

konusunda fikir vermekle birlikte, günümüzde halen geçerli olan öğrenme 

kurallarından birçoğunun da temelini teşkil etmiştir. Çalışmaların hızlandığı 1960’lı 

yılların başında yeni bir yaklaşım olarak Widrow ve Hoff tarafından ADALINE 

(Adaptive Linear Combiner) geliştirildi. Bununla birlikte yeni ve güçlü bir öğrenme 

kuralı olarak Widrow-Hoff öğrenme kuralı ortaya atıldı. Bu kuralın en önemli 

özelliği eğitim boyunca toplam hatayı en aza indirmeyi hedeflemesidir. YSA’daki ilk 

yöntemlerin, karmaşık hesaplama problemlerini çözemeyecek kadar zayıf olması bu 

konudaki çalışmaların ilerlemesini engelledi. 1969 yılında matematikçi Minsky ve 

Papert tarafından algılayıcı karşıtı olan yayınlar YSA’ya ve özellikle TDA’ya 

(perceptron) karşı olan ilgiyi iyice azalttı. 1980’li yıllar başında yapılan çalışmalarla 

YSA yeniden yaygın hale geldi. Đlk kıpırdanmalar Hopfield tarafından eğrisel ağların 

geliştirilmesi ile başladı. O çalışmalarını özellikle çağrışımlı YSA ağları mimarisi 

üzerine yoğunlaştırdı. Bununla birlikte Kohonen ve Anderson tarafından yapılan 

çalışmalar sonucunda eğiticisiz öğrenen ağların geliştirilmesiyle çalışmalar yeniden 

ivme kazanmıştır. Böylece bu yıllar YSA’ya olan ilginin yeniden canlandığı ve 

çalışmaların yoğunlaştırıldığı yıllar olmuştur. 1986 yılında Rumelhart ve arkadaşları 

tarafından çok tabakalı algılayıcı tipi ağlar için geriye yayılma olarak adlandırılan bir 

eğitme algoritması geliştirildi. Bu algoritma güçlü olmakla birlikte oldukça karmaşık 

matematik esaslara dayanmaktaydı. Ayrıca bu algoritmanın etkin bir öğrenmeyi 

mümkün kılma yeteneği dikkatleri tamamen üzerine çekmiştir. En çok kullanılan 

öğrenme algoritmalarından biri olan bu algoritmanın ortaya atılması YSA alanında 

bir çığır açmıştır. Günümüzde YSA üzerinde yapılan çalışmalar her geçen gün 

değişik öğrenme algoritmaları ve ağ mimarileri ile büyük bir hızla aynen devam 

etmektedir [Öztemel, 2006; Sağıroğlu 2003]. 
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5.3.1. Yapay sinir ağlarının genel özellikleri 

 

Yapay sinir ağlarının esas görevi yazılımlar ile bilgisayarların öğrenmesini 

sağlamaktır. Geçmiş olayları öğrenerek, benzer olaylar ile karşılaşıldığında benzer 

kararlar almaya çalışırlar. Yapay sinir ağlarının geleneksel programlama ve yapay 

zeka yöntemlerinin uygulandığı veri işleme metotlarından tamamen farklı bir bilgi 

işleme metodu vardır. Yapay sinir ağlarında bilgi ağın bağlantılarının ağırlık 

değerleri ile ölçülmekte ve ağ bağlantılarında gizlenmektedir. Diğer programlarda 

olduğu gibi bilgiler bir veri tabanında veya programın içerisinde saklı değildir. 

Veriler ağın üzerinde saklıdır ve çıkartılması, yorumlanması oldukça güçtür 

[Öztemel, 2006]. 

 

Yapay sinir ağlarının olayları öğrenebilmesi için o olay ile ilgili örneklerin 

belirlenmesi gerekmektedir. Örnekleri kullanarak ilgili olay hakkında genelleme 

yapabilecek yeteneğe kavuşturulurlar. Bu yetenek adaptif öğrenme yeteneği olarak 

bilinmektedir. Olayla ilgili örnek yok ise YSA’nın eğitilmesi mümkün değildir. 

Yapay sinir ağına, olaylar bütün yönleri ile gösterilemez ve eldeki örnekler 

bütünüyle sunulmaz ise başarılı sonuçlar elde edilemez. Bir yapay sinir ağına 

örnekler sadece nümerik olarak gösterilebilir. Zira bir yapay sinir ağı, bulanık mantık 

tabanlı sistemlerde olduğu gibi sözel ifadeler ile işlem yapması olanaksızdır.  

 

YSA’lar eğitimden sonra eksik bilgiler ile işlem yapabilmekte ve gelen yeni 

bilgilerle, modelde eksik bilgi olmasına rağmen doğru sonuçlar üretebilmektedir. 

Yapay sinir ağlarının bu tür eksik verilerle çalışabilme yetenekleri onların hatalara 

karşı toleranslı olmalarını sağlamaktadır. Ağ üzerindeki bazı işlem elemanlarının 

bozulması veya işlemez duruma gelmesi durumunda bile ağ çalışmasını 

yürütmektedir. Hangi proses (işlem) elemanının ağ üzerinde daha çok öneme sahip 

olacağına yine ağın eğitimi esnasında kendisi belirlemektedir [Öztemel, 2006]. 

YSA’nın en büyük dezavantajı ağ içerisinde ne olduğunun ve bilgilerin nasıl 

saklandığının bilinememesidir. Diğer en büyük dezavantajları arasında; tasarlanan bir 

YSA yapısının, farklı sistemlere uyarlanmasının zor olması ve bazı ağlar hariç 

kararlılık analizlerinin yapılamamasıdır.  
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5.3.2. Bir yapay nöronun ana öğeleri 

 

Yapay sinir ağları birbirine bağlı doğrusal veya doğrusal olmayan birçok yapay 

nöron hücresinden oluşmaktadır. Bir yapay sinir hücresi girişler, ağırlıklar, toplama 

fonksiyonu, transfer fonksiyonu ve çıkış elemanından oluşmaktadır. Şekil 5.3’de i 

adet girişi olan tek bir işlem (proses) elemanı gösterilmektedir. Bu şekilden de 

görüleceği gibi x1, x2,…,xi girişleri, w1, w2,…,wi ağırlıkları, v toplam fonksiyonu 

çıkışını ve y ise proses elemanı (veya aktivasyon fonksiyonu) çıkışını 

göstermektedir. 

 

 

 

 

 

 

 

 
 
 
Şekil 5.3. Yapay nöron yapısı 

 

Bir yapay nöronda giriş desenlerinin uzayı i-boyutlu olarak ifade edilebilir. Diğer bir 

ifade ile; giriş işaretleri i elemanlı sütun vektörü olarak düzenlenir. Ağırlıklar ise i 

elemanlı satır vektörü olarak ifade edilebilmektedir. 
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Bir yapay nöron işlemcisinde Eş. 5.29’da elde edilen toplam fonksiyonu, çıkış 

işaretini üreten aktivasyon fonksiyonundan geçirilerek, çıkış fonksiyonu üretilir.  
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5.3.3. Aktivasyon fonksiyonları  

 

Transfer fonksiyonu olarak da bilinen aktivasyon fonksiyonları öğrenme eğrisi olarak 

da adlandırılmaktadır. Aktivasyon fonksiyonları bir YSA’da nöronun çıkış 

büyüklüğünü (genliğini) istenilen değerler arasında sınırlamaktadır. Bu değerler 

çoğunlukla 0 ve 1 veya -1 ve 1 aralıklarında yer almaktadır. Ayrıca, yapay sinir ağına 

bir kutuplama(bias) değeri ekleyerek aktivasyon fonksiyonu artırılabilir. Kutuplama 

değeri, eşik değerinin negatif değerlisi olarakta ifade edilebilir [Sağıroğlu, 2003].  

 

YSA’larda kullanılacak olan aktivasyon fonksiyonlarının türevi alınabilir ve 

süreklilik arz eden özellikte olması gerekmektedir. YSA’nın kullanım amacına göre 

tek veya çift yönlü aktivasyon fonksiyonları tercih edilebilir [Sağıroğlu, 2003]. 

Aktivasyon fonksiyonu özellik olarak, çıkış işaretini normalize eden bir fonksiyon 

olmalıdır. Aktivasyon fonksiyonu olarak uygulamalarda en çok sigmoid veya tanjant 

hiperbolik fonksiyonları tercih edilmektedir. Pratik uygulamalarda en çok kullanılan 

aktivasyon fonksiyonları aşağıda özetlenmektedir.  

 

Eşik(basamak) fonksiyonu: Bu fonksiyon tek veya çift kutuplu fonksiyon 

olabilmektedir. Bu fonksiyonun matematiksel ifadesi Eş. 5.30’da verilmiştir. Çift 

kutuplu fonksiyonun genel davranışı ise Şekil 5.4’de gösterilmektedir.  

 

 




<−

>+
==

01

01
)(

v

v
vfy                                                                                        (5.30) 

 

 

 

 

 

 

 

Şekil 5.4. Çift kutuplu eşik(basamak) fonksiyon 
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Sigmoid fonksiyonu: Yapay sinir ağlarında en çok kullanılan aktivasyon fonksiyonu 

türüdür. Lineer ve lineer olmayan davranışlar arasında, denge vazifesi gören bir 

fonksiyon olarak tanımlanır.  
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Şekil 5.5. Sigmoid fonksiyon 

 

Tanjant hiperbolik: Sigmoid fonksiyonundan sonra uygulamalarda en çok kullanılan 

aktivasyon fonksiyonudur. Giriş uzayının genişletilmesinde etkili bir fonksiyondur. 

Tanjant hiperbolik fonksiyonu çift kutuplu bir fonksiyon yapısındadır. 
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Şekil 5.6. Tanjant hiperbolik fonksiyon 
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5.3.4. Yapay sinir ağlarının oluşturulması 

 

Yapay sinir ağları düğüm veya sinir hücresi olarak adlandırılan çok sayıda işlem 

elemanının bütünleşmesinden oluşmaktadır. Hiyerarşik bir sinir ağı düğümlerin sıralı 

bir şekilde art arda bağlantısından oluşmaktadır. Bu tür ağların özelliği sahip 

oldukları basit dinamik yapılarıdır. Fakat giriş katmanına bir işaret girdiğinde bu 

işaret sinir elemanı arasındaki bağlantılar aracılığıyla diğer katmana gönderilir. Giriş 

katmanının düğümleri tarafından diğer katmana iletilmeden önce, bu işaret üzerinde 

basit bir işlem yerine getirilir. Bu süreç çıkış katmanına ulaşıncaya kadar tekrar eden 

bir süreç görünümündedir [Elmas, 2003].  

 

YSA’da düğümler ve ara bağlantıları çok değişik biçimlerde bir araya getirilebilir. 

YSA’lar bu düğüm ve bağlantı mimarilerine göre değişik adlar alırlar. Yapay sinir ağ 

mimarileri, sinirler arasındaki bağlantıların yönlerine göre veya ağ yapısı içindeki 

işaretlerin akış yönlerine göre birbirlerinden farklılık göstermektedir. Buna göre 

yapay sinir ağları için, ileri beslemeli (feedforward) ve geri beslemeli (feedback) 

ağlar olmak üzere iki esas ağ mimarisi mevcuttur [Elmas, 2003].  

 

Bir ağ içerisinde düğüm(proses) elemanları katmanlar halinde yerleştirilir. Đlk 

katmandan girişe verilen veriler ağ içinde ileriye doğru yayılır. Her katmandaki 

düğümlere sadece önceki katmandaki düğümlerden girişlere izin verilmektedir. Bir 

düğüm kendinden sonraki herhangi bir düğüme bağlanabilirken kendisine asla 

bağlanmamaktadır. Son katmandaki elde edilen işaretler ağın çıkışını vermektedir. 

Geri beslemeli veya tekrarlanan ağlarda en azından bir düğümün geriye yayıldığı bir 

dönüş bağlantısı mevcuttur. Tekrarlanan ağlar tamamen veya kısmi olarak geri 

besleme yollarına sahiptirler. Bu tür ağların davranışları ve tasarımları oldukça 

karmaşık yapıdadır [Elmas, 2003].  

 

Sinir ağlarında istenen sonucun elde edilmesi için ağın uyarlanabilir olması gerekir. 

Bunu sağlamak için uygun değerli ağırlıklar ve doğru bağlantılar seçilmelidir. Ağ bu 

şartları karşılayabilmek için sistemin davranışlarını öğrenmeli veya ya da kendi 

kendini   örgütlemelidir.   Öğrenme   yapay   sinir   ağının   ayrılmaz   bir   parçasıdır.  
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Öğrenme; giriş değerlerine veya bu girişlerin çıkışlarına bağlı olarak ağın bağlantı 

ağırlıklarını değiştiren veya ayarlayan öğrenme kuralı olarak gerçekleştirilir.  

 

YSA’ların eğitilmesi için kullanılan öğrenme kuralları genellikle danışmanlı 

öğrenme (supervised learning), danışmanlı öğrenme (unsupervised learning) ve 

pekiştirerek öğrenme (reinforcement learning) olmak üzere üç öğrenme yöntemi 

başlığı altında toplanabilir [Elmas, 2003].  

 

Danışmanlı öğrenme kuralları, arzu edilen ağ çıkışının elde edilebilmesi için, çıkış 

hatasının düşürülmesinde ağırlıkların uyarlanabilir hale getirilmesini gerektirir. 

Danışmanlı öğrenmede her giriş değeri için istenen çıkış sisteme tanıtılır ve yapay 

sinir ağının giriş-çıkış ilişkisini gerçekleştirene kadar aşama aşama ayarlar. 

Danışmanlı öğrenmeye çok katmanlı perceptron, geriye yayılım, delta kuralı, 

widrow-hoff veya en küçük karelerin ortalamas (least mean square) ve uyarlanabilir 

doğrusal elaman anlamına gelen ADALINE örnek olarak verilebilir.  

 

Danışmansız öğrenmede bir danışman veya öğretmen, sinir ağına girişin hangi vergi 

parçası sınıfına ait olduğunu veya ağın nerede iyi sonuç vereceğini söylemez. Ağ 

veriyi üyeleri birbirinin benzeri olan öbeklere yol gösterilmeksizin ayırır. 

Danışmansız öğrenme danışmanlı öğrenmeye göre çok daha hızlıdır. Ayrıca 

matematik algoritmaları da daha basittir. Danışmansız öğrenmeye yarışmacı öğrenme 

(competetive learning), Kohonen’in özörgütlenmeli harita ağları (SOM), hebbian 

öğrenme, grossberg öğrenme gibi öğrenme kuralları örnek olarak verilebilir.  

 

5.3.5. Đleri beslemeli ağlar 

 

Reel değerli n boyutlu girdi özel vektörleri şu şekilde ifade edilir; j gizli katman 

siniri, i girdisini wij(i=1,2,…,n, j=1,2,…) ağırlığına göre alır. j birimi x girdi 

işaretinin ve wij ağırlıklarının bir işlevini hesaplayıp, sonucu sonraki tüm komşu 

sinirlere iletir. Đlk gizli katman gibi ikinci gizli katman sinirleri de ağırlıklarla önceki 

katmana tam bağlıdır. Bu sinirler de girişlerin ve girişlerin ağırlıklarının bir işlevini 

hesaplayıp  sonucu  sonraki  aşamaya  aktarır.  Bu işlem,  çıkış  katmanındaki sinirler  
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tarafından da yapıldıktan sonra tamamlanır. Bu ağlar, çok katmanlı ileri beslemeli 

ağlar olarak isimlendirilir [Elmas, 2003]. Widrow-Hoff ve en küçük ortalama kareler 

(least mean square) veya delta öğrenme kuralı, doğrusal etkinlik işlevleri için 

tanımlanmasının dışında, perceptron öğrenme algoritmasına benzer. Gerçekte türevi 

alınabilir etkinlik işlevi kullandığımız için, eğimli iniş öğrenme yönteminin 

gerçekleştirilebileceği bir türevi alınabilir hata işlevi tanımlanabilir.  

 

ijjij xw ηδ=∆                                                                                                          (5.33) 

 

Eş. 5.33’de tanımlanan bu kural, daima “hataların kareleri toplamını” en 

küçükleyecek ağırlık kümelerini belirlemeyi amaçlar. Bu metotlar gizli ağırlık 

katmanlarının nasıl ayarlanacağını ve saptanacağını belirlemede başarısız olmaktadır. 

Bu metotlar, çıkış katmanındaki hataların hangi gizli katmanda hangi ağırlıkta 

meydana gelebileceğini belirleyemediği için bu durum kredi atama problemi ile 

belirtilebilir. Oysa genelleştirilmiş delta kuralı (geri yayılım yöntemi), gizli 

katmanların nasıl ayarlanacağını tanımlamaktadır [Elmas, 2003]. 

 

5.3.6. Geri beslemeli ağlar 

 

Geri beslemeli ağ mimarileri, genelde danışmansız öğrenme kurallarının uygulandığı 

ağlarda kullanılmaktadır. Geri beslemeli ağlar adında anlaşılacağı üzere, bir tür geri 

besleme işlemine sahiptir. Örneğin Hopfield ağı bu tür mimariye sahip bir yapay 

sinir ağı türüdür. Ağın çalışması Eş. 5.34 ile ifade edilmektedir.  
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olarak ifade edilmektedir. ao =0 olması katı sınırlayıcı transfer işleve karşılık gelir. ao 

değeri yeterince küçük olduğunda, ağırlıkların simetrik yani tüm i ve j’ler için 

wij=wji olması durumunda hopfield ağı, 

 

∑∑∑
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−−=
n
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iij
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n

j

iij xyyywE
11 12

1
                                                                            (5.36) 

 

biçiminde bir sistem, enerji işlev fonksiyonunu en küçükleyecek şekilde davranır ve 

bu enerji işlevinin bir yerel minimuma karşılık gelen kararlı duruma erişmesi sağlanır 

[Elmas 2003].  

 

5.3.7. Öğrenme, adaptif öğrenme ve test etme 

 

Daha önce yapay sinir ağlarında işlem elemanlarının bağlantılarının ağırlık 

değerlerinin belirlenmesi işlemine “ağın eğitilmesi” olarak ifade edilmişti. 

Başlangıçta bu ağırlık değerleri rastgele olarak atanır. Yapay sinir ağları kendilerine 

örnekler gösterildikçe bu ağırlık değerlerini değiştirirler. Amaç ağa gösterilen 

örnekler için doğru çıktıları üretecek ağırlık değerlerini bulmaktır. Örnekler ağa 

defalarca gösterilerek en doğru ağırlık değerleri bulunmaya çalışılır. Ağın doğru 

ağırlık değerlerine ulaşması örneklerin temsil ettiği olay hakkında genellemeler 

yapabilme yeteneğine kavuşması demektir. Bu genelleştirme özelliğine kavuşması 

işlemine ağın öğrenmesi denir. Ağırlıkların değerlerinin değişmesi belirli kurallara 

göre yürütülmektedir. Bu kurallara “öğrenme kuralları” denir. Kullanılan öğrenme 

stratejisine göre değişik öğrenme kuralları geliştirilmiştir. 

 

5.3.8. Yapay sinir ağlarının sınıflandırılması 

 

YSA 'lar, genel olarak birbirleri ile bağlantılı işlemci birimlerden veya diğer bir ifade 

ile nöronlar veya proses elemanlarından oluşurlar. Nöronlar arasındaki bağlantıların 

yapısı ağın yapısını belirler. Đstenilen hedefe ulaşmak için bağlantıların nasıl 

değiştirileceği, öğrenme algoritması tarafından belirlenir. Kullanılan bir öğrenme 

kuralına  göre,  hatayı sıfıra indirecek şekilde, ağın ağırlıkları değiştirilir. Yapay sinir  
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ağları, yapılarına göre, ileri beslemeli (“feed-forward”) ve geri beslemeli (“feed-

back”) ağlar olmak üzere iki farklı yapıda incelenmektedir.  

 

Đleri beslemeli bir ağda proses elemanlar genellikle katmanlara ayrılmışlardır. 

Đşaretler, giriş katmanından çıkış katmanına doğru tek yönlü bağlantılarla iletilir. 

Süreç elemanlar bir katmandan diğer bir katmana bağlantı kurarlarken, aynı katman 

içerisinde bağlantıları bulunmaz. Đleri beslemeli ağlara örnek olarak çok katmanlı 

perseptronlar (multi-layer perceptrons-MLP) ve LVQ (Learning Vector 

Quantization) ağları verilebilir. Bu ağlar statik ağlar olarak da bilinirler. 

 

Geri beslemeli bir sinir ağı, çıkış ve ara katman çıkışlarının giriş katmanına veya 

önceki ara katmanlara geri besleme yapıldığı bir ağ biçimidir. Bu şekilde veriler hem 

ileri yönde, hem de geri yönde iletilmiş olur. Bu tür sinir ağlarının dinamik hafızaları 

vardır ve bir andaki çıkış hem o andaki hem de önceki girişleri yansıtabilmektedir. 

Bundan sebeple, bu ağlar özellikle ileriye dönük tahmin uygulamaları için 

uygundurlar. Bu ağlar farklı tipteki zaman-serilerinin tahmininde oldukça başarı 

sağlamışlardır. Bu ağlara Hopfield, Elman ve Jordan ağları örnek gösterilebilir 

[Öztemel, 2006].  

 

5.3.9. Geri yayılım algoritması 

 

En yaygın ve çok tercih edilen öğretme algoritmasıdır. Teorik olarak kolayca 

ispatlanabilir ve basit olmasından dolayı tercih edilen bir öğretme algoritması 

türüdür. Bu algoritmanın en temel esası hataları çıkıştan geriye doğru yayarak hatayı 

düşürmeye çalışmasıdır [Rumelhart ve ark., 1986]. 

 

Geri yayılım algoritması çok katmanlı yapay sinir ağlarını eğitmede çok tercih 

edilmektedir. YSA’nın eğitilmesi ve eğitimden sonraki süreçteki test işlemi bu 

algoritma yönüne göre yapılmaktadır. Burada i ve j kat proses elemanları arasındaki 

ağırlıklardaki )(tw ji∆ değişikliği ile bulunmaktadır. Bu ifade Eşitlik 3.1’de 

verilmiştir. 
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)1()( −+=∆ twxtw jiijji αηδ                                                                                  (5.37) 

 

Eş. 5.37’de α  momentum katsayısını η  öğrenme katsayısını, jδ  ara ve çıkış 

katındaki herhangi bir j çıkış nöronuna ait bir faktörü temsil etmektedir. Çıkış katı 

için bu faktör Eş. 5.38 ve Eş. 5.39’daki denklemlerle verilmektedir. 
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jijj wxnet ∑=                                                                                                       (5.39) 

 

burada )(t
jy  ise proses elemanının amaç(hedef) çıkışıdır. Ara katmanlardaki yapay 

nöronlar için ise bu faktör Eş. 5.40’daki şekilde ifade edilmektedir [Sağıroğlu, 2003]. 
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Ara katmanlarda bulunan yapay nöronlar için bir hedef çıkış var olmadığından, Eş. 

5.39 yerine Eş. 5.40 kullanılır. Bu duruma bağlı olarak çıkış katından başlayarak jδ  

faktörü, bütün katlardaki nöronlar için hesaplanmalıdır. Devamında Eş. 5.38'deki 

formüle bağlı olarak, bütün ara bağlantılar için ağırlıkların güncelleştirilmesi 

sağlanmaktadır. Bu aynı zamanda bir dereceli azalma algoritması olmakla birlikte, 

çok katmanlı yapıları eğitmede kullanılan bir algoritmadır. Burada amaç arzu edilen 

çıkış ile ağ çıkışı arasındaki hatanın ağırlıklara bağlı olarak azaltılması temeline 

dayanmaktadır. Hızlı ve kaliteli bir eğitim süreci için, β  ve α  değerlerinin seçimi 

önem arz etmektedir. Geri yayılım öğrenme süreci β  ve α  değerlerinden oldukça 

etkilenmektedir. Bu katsayıların seçilmesi deneysel olarak belirlense de bu değerler, 

uygulamalara ve problemlere göre farklılıklar göstermektedir. Öğrenme katsayısı için 

tipik değerler, 0.01 ile 0.9 arasında değişmektedir. Daha karmaşık ve zor 

çalışmalarda daha küçük değerlerin seçilmesi önerilmektedir [Sağıroğlu, 2003]. 
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5.3.10. Levenberg-Marquardt metodu 

 

Esas itibari ile bu algoritma, maksimum komşuluk düşüncesi temelinde kurulmuş bir 

en az kareler hesaplama yöntemidir. Bu algoritma, Gauss-Newton ve Steepest-

Descent algoritmalarının en iyi özelliklerinden oluşur ve bu iki metodun 

kısıtlamalarını ve dezavantajlarını ortadan kaldırmaktadır Genel itibari ile bu metot 

yavaş yakınsama probleminden etkilenmemektedir. E(w) 'nin bir hedef hata 

fonksiyonu olduğu farz edilirse m adet hata terimi için )(2 wei aşağıda verilmektedir 

 

2

1

2 )()()( wfwewE
m

i

i ==∑
=

                                                                                   (5.41) 

 

22 )()( iii ydywe −=                                                                                                (5.42) 

 

Burada, hedef fonksiyonu f(w) ve onun jakobiyeni olan J'nin yalnız bir noktada 

bilindiği düşünülür. Levenberg-Marquardt algoritmasında öncelikli hedef, parametre 

vektörü (w)'nın, E(w) minimum olduğu durumda bulunmasıdır. Levenberg-

Marquardt algoritması ile yeni vektör 1+kw , tahmin edilen vektör kw ’dan 

hesaplanmaktadır [Sağıroğlu, 2003]. 

 

kkk www δ−=+1                                                                                                      (5.43) 

 

Eş. 5.43’deki kwδ  ise; Eş. 5.44’deki gibi ifade edilmektedir.  

 

)()( k

T

kkk

t

k WfJwIJJ −=+ δλ                                                                                (5.44) 

 

Burada Jk f’nin değerlendirilmiş jakobiyenini, λ Levenberg-Marquardt parametresini 

ve I birim matrisini göstermektedir. Levenberg-Marquardt algoritması sırası ile şu 

basamakları içermektedir: 
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1. basamakta: Öncelikle E(w)’yi kwδ hesapla. 

2. basamakta: Minimum bir λ değeri ile başlat. 

3. basamakta: kwδ için Eş.5.44’ü bul ve )( kk wwE δ+ değerini hesaplat 

4. basamakta: )()( kkk wEwwE ≥+ δ ise λ yı 10 kat arttır ve 3. basamağa geri döndür 

5. basamakta: )()( kkk wEwwE ≤+ δ ise λ  yı 10 kat azalt )( kk ww δ+ güncelleştir ve 

basamak 3’e geri döndür şeklindedir. 

 

Hedef çıkışı hesaplamak için çok katmanlı bir yapay sinir ağının, Levenberg-

Marquardt algoritmasının kullanılarak eğitilmesi, ağırlık dizisi 0w  için bir başlangıç 

değerinin atanması ile başlamakta ve hataların kareleri toplamı 2
ie  teriminin 

hesaplanmasıyla süreç devam etmektedir [Sağıroğlu, 2003]. 

 

Her 2
ie  terimi, amaç çıkış ( y ) ile reel çıkış ( dy ) arasındaki farkın karesini temsil 

etmektedir. Bütün giriş seti için 2
ie  hata terimlerinin tümünün elde edilmesiyle, 

ağırlık dizileri Levenberg-Marquardt algoritması adımlarının uygulanmasıyla daha 

öncede ifade edildiği gibi uyumlu hale getirilir. [Sağıroğlu, 2003]. 

 

5.3.11. Yapay sinir ağları tasarım aşamaları 

 

YSA uygulamalarının başarısı, uygulanacak olan yaklaşımlar ve deneyimlerle 

yakından ilgilidir. YSA sisteminin davranışını etkileyen çok sayıda yapısal parametre 

vardır. Bu parametrelerin her problem için en uygununu belirleyebilmek başlı başına 

bir problemdir ve seçimi çok önemlidir. En uygun parametreleri belirleyebilmek 

teorik olarak mümkün gibi görülse de pratik olarak pekte mümkün değildir. 

Genellikle bu parametreleri önceden kestirmek de oldukça güçtür. Bu uygun 

parametrelerin elde edilmesi uzun ve zahmetli benzetimler sonunda mümkün 

olabilmektedir. Bunun için literatürdeki benzer çalışmalar gözden geçirilerek 

uygulanacak problem için belirlenmiş olan parametrelerle yapıyı tasarlamaya ve 

eğitmeye başlamak en akılcı yaklaşım olacaktır. Eğer YSA yeni bir probleme 

uygulanıyorsa,  mevcut  yazılımlardaki  belirlenmiş parametre değerlerini kullanmak,  
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başlangıç için uygun bir yaklaşım olabilir. Yapay sinir ağlarının tasarımda dikkat 

edilmesi gereken en önemli faktörler aşağıda açıklanmaktadır.  

 

Yapı seçimi: Uygun yapay sinir ağı mimarisi veya yapısı, mevcut probleme bağlı 

olarak seçilmelidir. Bunun için YSA bağlantı yapılarının hangi tür uygulama 

problemlerinde başarılı olacağının önceden bilinmesi fayda sağlamaktadır. YSA 

yapısı uygulamaya bağlı olarak seçilmelidir. Uygulanacak problemin giriş data 

yapısı, bu seçimi etkileyecek diğer önemli bir husustur. Problem bir sınıf1andırma 

problemi ise problemin zorluğuna ve ayrıştırılacak sınıf sayısına göre çok katmanlı 

perceptron (MLP) ağlardan başlayarak, Lineer vektör nicelendirme (LVQ), RBFNN 

ve SOM gibi yapılar sırasıyla denenmelidir. MLP ve Radyal tabanlı ağlar (RBFNN) 

yapılarının literatürdeki çalışmalarda yüksek performans gösterdiklerini görülmüştür. 

Karmaşık ve zor uygulamalarda genellikle çok katmanlı ağ mimarisi ile başlamak 

doğru bir tercih olacağı vurgulanmıştır [Öztemel, 2006]. 

 

Bir YSA’nın karmaşıklığının azaltılmasında en etkili vasıta, ağın mimari yapısını 

değiştirmektir. Gerektiğinden çok sayıda proses elemanı içeren ağ yapılarında, daha 

düşük genelleme yeteneği ile karşılaşılacağı belirtilmektedir. Bunun yanında belli 

sayının üstünde proses elemanı kullanmak da YSA’nın performansını çoğu zaman 

yükseltmediği vurgulanmıştır [Yamaçlı, 2010]. 

 

Öğrenme algoritması seçimi: Bir yapay sinir ağının yapı seçiminden sonra uygulama 

etkinliğini belirleyen en önemli faktör öğrenme algoritmasıdır. YSA yapısı için en 

uygun optimal öğrenme algoritmasının seçimi ağ yapısının belirlenmesinden sonra 

çözülmesi gereken en önemli sorundur. Genellikle ağ yapısı öğrenme algoritmasının 

seçiminde belirleyici olmaktadır. Bu sebeple ağ yapısı üzerinde kullanılabilecek 

öğrenme algoritması, genellikle ağ mimarisine de bağlı olmaktadır. Bazen tasarımda 

öğrenme algoritmasının kurgulanması ağ yapısının tasarımı ile paralel veya daha 

önce gerçekleştirilebilir. Bu genellikle basit sınıflandırıcı ağ yapısı ya da basit 

öğrenme algoritmaları için geçerlidir. Öğrenme algoritmalarından herhangi birisi 

uygun olan YSA yapısı ile ağın eğitiminde kullanılabilmektedir.  
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Yapay sinir ağlarının az sayıda giriş verisi ile öğrenebilmesi veya genelleme 

yapabilmesi YSA’ları birçok uygulamada uygulanması için tercih edilir yapmaktadır. 

Bunun sebebi ise, pratik olarak fazla sayıda veri elde etmenin maliyeti veya zorluğu 

oldukça yüksektir. YSA sistemlerinin öğrenme başarısı, kullanılabilirliğini belirleyen 

genelleme etkisi ile belirlenmektedir. Genelleme yeteneği, gerçekleştirilen testlerle 

kontrol edilmelidir. Genelleme testlerinde karşılaşılan aşırı-öğrenme (overfitting) 

eğilimi, yapay sinir ağlarının probleme ilişkin verileri, istenilen seviyede öğrenmiş 

olmasına rağmen, eğitimde karşılaşmadığı veri kümeleri için kabul edilebilir sistem 

çıkışları üretememesi olarak tanımlanır. Bu duruma, gürültü içeren uygulamalarda 

sıkça rastlandığı vurgulanmaktadır [Yamaçlı, 2010].  

 

En uygun öğrenme seviyesi, öğrenme fonksiyonunun kontrolü için kullanılan 

performans fonksiyonunun önceden amaçlanan bir değere ulaşması ile 

sağlanamayabilir. Uygulamalarda, eğitim süreci boyunca performans fonksiyonunun 

izlenmesi ile birlikte sık sık genelleme testlerinin gerçekleştirilmesi yolu ile en uygun 

öğrenme seviyesi elde edilebilir. Eğer en uygun öğrenme seviyesine, performans 

fonksiyonunun öngörülerinden önce ulaşılmış ise eğitim süresi daha erken 

dönemlerde de sona erdirilebilir. 

 

Ön/son veri işleme(Pre/Post Processing): Yapay sinir ağlarının en belirgin 

özelliklerinden olan doğrusal olmama(nonlinearity) özelliğini mantıklı kılan 

yaklaşım, girişlerin bir normalizasyona tabi tutulmasıdır. Normalizasyon 

yapılmasının nedeni aktivasyonu fonksiyonunun veri setinin minimum ve maksimum 

aralığındaki giriş verileri için ayırt edilebilir çıktılar verebilmesi olduğu 

vurgulanmaktadır. Bu aralığın dışındaki girişler için, eşit çıktılar elde edilmektedir ve 

işlem yapılan proses elemanının yakınsaması olanaksız hale gelmektedir. Genelde 

verinin [0 1] veya [-1 +1] aralıklarından birine ölçeklenmesi önerilmektedir. 

Ölçekleme, verinin geçerli eksen sisteminde sıkıştırılması anlamı taşıdığından data 

kalitesi aşırı salınımlar içeren sorunlarda YSA modellerini olumsuz yönde 

etkileyebilir. Bu durum kullanılacak öğrenme fonksiyonunu da başarısız duruma 

düşürebilir. Eğer öğrenme fonksiyonu bipolar bir fonksiyon ise ölçekleme [-1 +1] 

aralığına,   aksi   durumda  ölçekleme   [0 +1]   aralığına  yapılmalıdır.  Bir    X   veri  
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kümesinin, 0.0 ile 1.0 arasında bir ölçeklendirmeye tabi tutulabilmesi için o kümenin 

Xmin, Xmaks aralığı bulunur ve Eş. 5.45’deki gibi yeni değer aralığı tanımlanır.  

 

min
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=                                                                                              (5.45) 

 

Eğer ölçeklendirmede en genel ifade ile a ve b gibi iki sayı aralığına çekilmek 

istenirse Eş. 5.46’da kullanılabilir [Sağıroğlu, 2003].  
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Eğitim esnasında, bu işlemlerden elde edilen normalize edilmiş giriş ve çıkış 

değerleri kullanılır. Đşlem tamamlandıktan sonra elde edilen YSA sonuçları ters 

normalize işlemine tabi tutularak gerçek değerlerine çevrilmelidir. Veri ölçeklemede 

kullanılan normalizasyon araçlarından birisinin de kullanılan transfer fonksiyonu 

olduğu unutulmamalıdır. Fonksiyonun kendisinin aynı zamanda bir veri ölçekleme 

aracı olarak da kullanılabileceği ise unutulmamalıdır. Bununla beraber bu öneri YSA 

sisteminden beklenen giriş ve çıkış sayısının değişmediği durumlar için geçerlidir. 

Bununla beraber seçilen bir ağ yapısı için en uygun ağ mimarisinin aranmasında çok 

sayıda birbirinden farklı ağ mimarisi ile gerçekleştirilen benzetimler elde edilerek 

problemin çözümüne en uygun ağ yapısının ne olduğu tahmin edilebilir. Bu amaçla 

kullanılabilecek uygun arama yaklaşımları bulunmaktadır. Monte-Carlo ile Quasi-

Newton metodu bunlara örnek verilebilir. 

 

Öncül veri işleme aşaması, verinin en doğru, en kısa ve en hızlı şekilde işlenmesi için 

hazırlanmasını ifade eder. Öncül işlemler sırasında çeşitli veri geliştirme araçlarından 

faydalanılabilir. Son yıllarda en çok ilgi çeken ön işlem Temel Bileşenler Analizi 

yöntemidir. Bu aşamada temel amaç verinin YSA modeli ile uyum içerisinde 

olmasını sağlamaktır.  
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YSA tasarımında sistem karmaşıklığı üzerinde en fazla etkiye sahip dış faktörler, 

veri kodlama yapısı ve normalizasyon yöntemidir. Veri kodlama, bir verinin bilgiye 

dönüştürülmesi için işlenebilmesini kolaylaştırıcı bir araçtır ve verinin genel 

mimarisinin değiştirilmesini ifade eder. Buna veri ön işleme de denilmektedir.  

 

Aktivasyon fonksiyonu seçimi: YSA tasarımı için seçilecek olan transfer 

fonksiyonları öğrenmede önemli bir yaklaşım olarak karşımıza çıkmaktadır. 

Problemin davranışına uygun olan fonksiyon tipinin belirlenmesi başarı yüzdesini 

yükseltebilir. Bazı problemlerde tek bir tip transfer fonksiyonu seçimi yerine karma 

kullanım başarıyı arttırabilecektir. Aktivasyon fonksiyonlarından herhangi birisi, 

çözülecek veya uygulanacak olan problemin davranışı göz önünde bulundurularak 

seçilmesi büyük önem taşımaktadır.  

 

Ara katman ve ara katman nöron sayısını belirleme: YSA mimarisinde optimal 

sayıda ara katman sayısını ve ara katmanlardaki nöron sayılarını saptamak için 

bilimsel literatürde farklı yaklaşımlar görülmektedir. Fakat bazı özel uygulamalarda, 

bu yaklaşımlar geçerli sonuçlar vermeyebilir. Geçerli bir sonuç elde etmek için bir 

kaç deneme yapılarak en uygun yapının ve nöron adedi belirlenebilir. Literatürde, her 

türlü problemin maksimum iki ara katman kullanılması gerektiği ile ilgili ispatlarında 

olduğu vurgulanmaktadır. Bazı özel problemler için bu yaklaşım her zaman geçerli 

olmayabilmektedir. Bunun beraber, bazı özel problemlerin çözümünde bazı düğüm 

elemanları arasında kompleks karmaşık bağlantılara ihtiyaç duyulabilir. Bu 

durumlarda en uygun düğüm elemanı sayısını saptamanın yanında uygun bağlantı 

sayısı ve yapısını da bulmak yararlı olmaktadır. YSA tasarımında temel amaç, YSA 

sisteminin mümkün olduğunca sade ve basit bir yapıda tasarlanmasına dikkat 

etmektir. Bu karmaşıklığın artması öğrenme sürecini doğrudan arttırmakta ve yapının 

performansını olumsuz yönde etkileyebileceği de söylenmektedir [Yamaçlı, 2010].  

 

Ara bağlantı tiplerini belirleme: Ara bağlantıların, kısmi olarak veya tamamı itibari 

ile, ileri beslemeli veya çift yönlü olmaları tasarım için önemli kriterlerdir. Đleri 

beslemeli ve çift yönlü bağlantılar birbirleri ile kısmen veya tamamen ilişkili 

olabilmektedir.  Aşırı   kompleks   yapılarda,   yapay   nöronların  aynı  kat içerisinde  
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birbirleri ile iletişim kurmasına intra-ara katman bağlantıları denilmektedir. 

“Recurrent” ve “On-center/off” sarmal bağlantıları bu tip bağlantılar olmakla birlikte 

tasarımlarda dikkate alınması önemlidir [Yamaçlı, 2003]. 

 

Performans Fonksiyonu Seçimi: Bir yapay sinir ağının öğrenme performansını 

etkileyen önemli faktörlerden birisi de performans fonksiyonudur. Özellikle Đleri 

beslemeli(feedback) ağlarda kullanılan tipik performans fonksiyonları olarak; karesel 

ortalama hata (MSE), toplam karesel hata (SSE) ve karesel ortalama hata karekökü 

(RMSE) olarak verilebilir. 
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YSA’ların genelleştirme özelliğini yükseltmek için kullanılan metotlardan biri de 

öğrenmeyi erken sonlandırma (early stopping) işlemidir. Bu metotda veri kümesi üç 

bölüme ayrılmaktadır. Đlk set YSA nesnesinin eğitiminde kullanılarak bağlantı 

ağırlıklarının, biasların ve gradiyentin güncelleştirilmesinde kullanılmaktadır. Đkinci 

set bir onaylama verisi olarak kullanılmaktadır. YSA eğitimi, test ve onaylama işlemi 

ile birlikte yapılabilmektedir. Bu kapsamda eğitim, test ve onaylama için 3 set data 

kümesi gerekmektedir. Eğitim esnasında, test veri kümesine ait hata normal olarak 

düşmektedir. Bu azalma, eğitim verilerinden hesaplanan hata miktarında da 

görülmektedir. Bununla birlikte YSA, eğitim verisi üzerinde bir overfitting eğilimine 

girerse, onaylama veri kümesinden hesaplanan hata değeri artmaya başlayacaktır. 

Onaylama veri kümesinden hesaplanan hata değeri saptanan bir değeri aşarsa, eğitim 

durdurularak bağlantı ağırlıkları ve biaslar onaylama veri kümesinden elde edilen 

hataların olduğu andaki değerlerine geri çevrilir [Yamaçlı, 2010]. 
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5.3.12. SOM(Self Organizing Map) ağları 

 

Öz örgütlemeli harita veya öz örgütlemeli özellik haritası olarak da bilinen SOM 

ağları, eğitim örneklerinin giriş uzayının düşük boyutlu ayrık bir gösterimini üreten, 

danışmansız öğrenme kullanan bir yapay sinir ağı çeşididir.  SOM ağları, giriş 

uzayının topolojik özelliklerini korumak için bir komşuluk fonksiyonu kullandığı 

için diğer yapay sinir ağları modellerinden farklı yapıdır. Bu özellik yüksek boyutlu 

verinin, düşük boyutlu görselleşmesi için faydalıdır. SOM ağları ilk olarak Finli Prof. 

Tuevo Kohonen tarafından bir yapay sinir ağı modeli olarak tanıtılmıştır ki bu 

nedenle bu ağlar Kohonen ağları/haritaları olarak da bilinmektedir.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 5.7. SOM ağ mimarisi  

 

SOM ağları yapısal olarak oldukça sade şekilde bir girdi ve bir çıktı katmanından 

meydana gelmektedir. Çıktı katmanı genellikle iki boyutlu bir düzlemden 

oluşmaktadır. Şekil 5.7’de görüleceği gibi proses elemanları diğer bir deyişle ağ 

düğümleri(node), çıktı katmanı üzerine dağılmış vektörleri göstermektedir. SOM 

ağlarının temel çalışma prensibi yarışmayı kazanma ve kazanan elemanın “1” 

diğerlerinin “0” değerini alması üzerinedir.  Tüm  girdi  uzayı, tüm çıktı elemanlarına  
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belirli bir ağırlıklar ile bağlıdır. Çıktı uzayında değerlenen bir diğer ifade ile 

yarışmayı kazanan çıkış elemanının etrafında yer alan komşuları ağın eğitimi 

sırasında ağırlıklarını değiştirmektedir [Öztemel, 2006].   

 

SOM ağının eğitilmesi sürecinde; bir t zamanında girdi uzayından bir örnek ağa 

verilir. Burada önemli bir nokta diğer yapay sinir ağlarında olduğu gibi giriş ve 

ağırlık vektörlerinin mutlaka ölçeklenmesi yani normalize edilmesi gerekmektedir. 

Her düğüm çıktısı ağırlıklar ile girdi örneğinin çarpımının toplamı ile ifade edilir. 

Bulunan bu toplam değerinden en yüksek ölçüme sahip olan düğüm(proses) elemanı, 

yarışmayı kazanmış kabul edilmektedir. Diğer elemanların çıkışları ise sıfır 

olmaktadır. Euclid mesafesi(d) ile girdi vektörüne en yakın ağırlık vektörüne sahip 

elaman kazanan elamanı temsil etmektedir. Đki vektör arasındaki uzaklık Eş. 

5.50’deki şekilde hesaplanmaktadır. 

 

jj wXd −=                                                                                                         (5.50) 

 

SOM ağında her çıktı elemanı için euclid mesafesi hesaplanarak en küçük uzaklık 

değerine sahip eleman kazanan eleman olmaktadır. Kazanan elemanını belirlenmesi 

ile birlikte komşularının ağırlıkları Eş. 5.51’deki formül ile güncellenmektedir.  

 

))()()(,()()1( twtxiletwtw −+=+ λ                                                                      (5.51) 

 

Eş. 5.51’de verilen λ  öğrenme katsayısını, ),( ile  ise komşuluk fonksiyonunu temsil 

etmektedir. ),( ile  komşuluk fonksiyonunda l  ve i  elemanlarının komşuluklarını 

göstermektedir. il =  iken 1),( =ile  olmaktadır. il −  değeri arttıkça, ),( ile  

komşuluk fonksiyonu, zaman içerisinde bir gauss eğrisi şeklinde azalan bir 

fonksiyondur.  
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Hassas bir yakınsama için, ağın öğrenme sürecinde komşuluk fonksiyonunun 

genişliği yavaş şekilde azalır. Örnek olarak; komşuluk fonksiyonu bir gauss 

fonksiyonu ise bu σ  değerinin düşürülmesine karşılık gelmektedir. Komşu 

birimlerde ağırlık güncellemeleri ile birlikte, komşu birimlerde girdiye doğru 

çekildiğinden, önemsiz birimler engellenmiş olmaktadır [Alpaydın, 2010].  

 

5.4. Destek Vektör Makineleri(DVM) 

 

Destek Vektör Makineleri (DVM), Destek Vektör Sınıflandırıcı (DVS) ve Destek 

Vektör Regresör (DVR)’den oluşan ve bilinen tüm veri madenciliği algoritmaları 

içinde en sağlam, en doğru metotlardan birisidir [Cortes, 1995]. DVM’ler orijinal 

olarak Vapnik tarafından 1990’larda geliştirilmiştir. Đstatistik öğrenme teorisinde 

köklü sağlam bir teorik temele sahiptirler ve öğrenme için bir düzüne kadar az sayıda 

örnek ile çalışabilmektedirler. Çoğu zaman boyutların sayılarına duyarsızdırlar. 

Geçen on yıllık sürede, hem pratik hem de teori alanlarda DVM kullanımı artmıştır. 

Destek vektör makinesi temeli diğer bir değişle kökeni yapısal risk minimizasyon 

prensibine dayanmaktadır, ayrıca yapısal risk minimizasyon, VC-boyut(Vapnik 

Chernonvekis Dimension) içerisinde yer aldığından destek vektör makinesini daha da 

önemli kılmaktadır. Adından anlaşıldığı üzere, makine tasarımı destek vektörler 

olarak hizmet veren eğitme verisinin bir alt kümesinin elde edilmesine 

dayanmaktadır ve bu nedenle verinin bir istikrarlı özelliğini ifade etmektedir. Destek 

vektör makinesi çok terimli (polinom) makine öğrenmesi, radyal temelli fonksiyon 

ağ ve iki katmanlı algılayıcı (two-layer perceptron) fonksiyonlarını içermektedirler. 

Bu yöntemler eğitim verisinde bulunan yapısal istatistik düzenliliğin değişik 

temsillerini sağlasa bile, bunların hepsi bir destek vektör makinesi temelinde ortak 

bir kökten gelmektedirler [Haykin, 2001]. Destek vektör makineleri istatistiksel 

öğrenme teorisi üzerine inşa edilmiştir. Öğrenme, sınıflandırma, kümeleme, 

yoğunluk tahmini ve veriden regresyon kuralları üretmek için kullanılan bir eğitme 

algoritmasıdır.   
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5.4.1. Vapnik-Chervonenkis(VC) boyutu 

 

Vapnik-Chervonenkis(VC dimension) boyut bir fonksiyonlar sınıfının elemanlarının 

ne kadar dinamik olduğunun saptanarak, bu sınıfın karmaşıklığını ölçen bir metotdur. 

[Hastie ve ark., 2009]. Hatalarının(örnekleme) öngörülenmesinin kullanılmasındaki 

güçlük, adaptasyonda kullanılan parametrelerin ya da karmaşıklığın saptanmasıdır. 

 

Vapnik-Chervonenkis(VC) teorisi karmaşıklığın(d) böyle bir ölçütünü 

vermektedir. }{ ),( αxf gibi bir fonksiyonlar sınıfı olduğunu düşünürsek ve bunun 

α gibi bir vektör tarafından indekslendiğini ve px ℜ∈  olduğunu düşünelim. f  

gösterge fonksiyonu 0 veya 1 değerlerini almaktadır. Eğer ),( 10 aaa = ve f  lineer 

gösterge fonksiyonlar ise )0( 10 >+ xaaI
T , o halde sınıf f’in karmaşıklığının p+1 

olduğu ifade edilmektektedir. Şekil 5.8’de verilen düzlemlerin soldan ilk üç lineer 

gösterge fonksiyonların VC boyutunu göstermektedir. Ancak soldan dördüncü 

düzlemde ise bir VC boyut söz konusu değildir çünkü belirli bir doğrular kümesi 

tarafından dört adet nokta parçalara bölünememiştir. p boyuttaki bir lineer gösterge 

fonksiyonu p+1 sayıda VC-boyut’a sahip ve bu serbest parametrelerin sayısını ifade 

etmektedir. Şekil 5.8’deki soldan ilk üç panelde, düzlemdeki doğrular verileri 

parçalara böldüğü görülmektedir [Kuzey, 2012]. 

 

 

 

 

 

 
Şekil 5.8. VC boyutu 

 

Problemimizde N adet noktadan oluşan bir veri kümesi olduğunu farz edersek, bu N 

nokta, pozitif ve negatif olarak 2N yolla türetilebilir veya etiketlenebilir 

denilmektedir. Bu yüzden 2N farklı öğrenme problemi N veri noktaları tarafından 

ifade edilebilir. Bu problemlerden bir tanesi için, negatif örnekleri diğer pozitif  
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örneklerden ayıran Hh ∈ olacak şekilde bir hipotez sınıfı bulabileceği söylenebilir. 

Bu duruma H N adet noktaları tuz buz ettiği(shattering) diğer bir ifade ile parçalara 

ayırdığı benzetmesi yapılabilmektedir. N adet örnek yolu ile tanımlanabilen herhangi 

bir öğrenme problemi H’den çekilen bir hipotez yolu ile hatasız şekilde öğrenilebilir. 

H tarafından parçalara ayrılabilen maksimum noktaların sayısına H’nin Vapnik-

Chervonenkis(VC) boyutu adı olarak tanımlanır ve VC(H) olarak gösterilir ve H’nin 

kapasitesini ölçmektedir. VC- boyut, bir sınıflandırıcının karmaşıklığının ölçüsüdür. 

Yani, bu ölçüm bir ikili sınıflandırıcının iki sınıf arasındaki sınırı ne kadar iyi 

ölçmesi olarak bilinir. Eğer VC-boyut çok büyük ise sınıflandırıcı daha karmaşık bir 

hal alır ve böylece ilgili sınıflara ait olan gözlemleri daha iyi bölebilir. Daha açık bir 

ifadeyle, karmaşık sınıflandırıcılar karmaşık sınıf sınırlarını daha az karmaşık 

sınıflandırıcılara oranla daha iyi modeller. Daha doğrusu, bir model ne kadar çok 

karmaşık ise, bir eğitme kümesindeki gözlemleri daha iyi böler [Kuzey, 2012]. 

 

5.4.2. Deneysel risk minimizasyonu(DRM) 

 

Ampirik diğer bir değişle deneysel risk minimizasyonu (ARM) bir öğrenme kümesi 

prensipler bütünü olarak tanımlanabilir ve öğrenme algoritmalarının kalitesi için 

sınırlar belirlemektedir.  

 

Bir genelleme hatası tahmin yöntemi olan PAC (probably approximately correct) 

öğrenme teorisi, deneysel (ampirik) risk minimizasyon (DRM) ile örnek veriler 

üzerinden çalışır. Model olmadığı durumlarda, reel değerli bir fonksiyonun dağılımı 

olmaksızın öğrenme için bir perspektif sunabilir [Vapnik, 1982]. Destek Vektör 

makinaları yöntemi bir nevi kernel çekirdeği tabanlı deneysel risk 

minimizasyon(DRM) algoritmasıdır. Faydalı özellikleri olması nedeni ile popülerliği 

günden güne artmaktadır ve deneysel performansı açısından oldukça ümit verici 

olduğu ifade edilebilir [Cortes, 1995]. 

 

[ ]fR ˆ  beklenen riski göstermek üzere, makine öğrenimi beklenen riskin 

minimizasyonudur.  
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=                                                                                            (5.53) 

 

Eş. 5.53’de ),( yxP bileşik olasılık dağılımını bilinmediğinden, makine öğrenimi 

mümkün değildir. Bunun yanında D eğitme verisinde, gözlemler şeklinde bileşik 

olasılık dağılımı hakkında Eş.5.54’deki bilgiye sahip olduğumuz kabul edilir. 

 

{ } { }1,1),),......(,( 1111 −+ℜ⊂= xyxyxD n                                                                (5.54) 

 

Bu gözlemleri kullanarak risk tahmin edilebilir. Buna bazı model  f̂ lerin deneysel 

riski [ ]fRemp
ˆ  adı verilir ve aşağıdaki şekilde tanımlanır: 
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Eş. 5.55’de yer alan Dyx ii ∈),( şeklinde tanımlanmaktadır. Giriş eğitme kümeleri 

çoğunlukla sonlu olduğundan ve ayrık örnekler içermesi nedeniyle ayrık numeriksel 

beklenti Eş. 5.56’deki gibi kullanılmaktadır.  
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Olması muhtemel diğer bir değişle olması beklenen riske benzer biçimde deneysel 

riski minimize ederek en iyi model elde edilmektedir [Kuzey, 2012]. 
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Ampirik riski küçüklemek için muhtemel tüm F̂ modellerinin sınıfından bir model 

seçimine izin verildiği için, deneysel riski sıfıra veya sıfıra yakın bir değere indiren  
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herhangi bir model her zaman olabilir. Amprik riski küçüklemek için aşırı optimist 

olması olasılık dahilinde olduğu vurgulanmaktadır [Hamel, 2009].   

 

5.4.3. Yapısal risk minimizasyonu(YRM) 

 

Orijinal adı “Structural Risk Minimization” olan yapısal risk minimizasyonu Vapnik 

tarafından  1974 yılında geliştirilen ve öğrenme için sonlu sayıda eğitme giriş 

kümesinden, optimal model seçimi için geliştirilmiş tümevarımsal prensipler 

bütünüdür. Bu model fonksiyonların VC boyutu ile giriş eğitme verisinin adaptasyon 

kalitesi arasında ödünleşim eğrisini vermektedir. Yapısal risk minimizasyonu işleyiş 

süreci genel olarak şu şekilde özetlenebilir; Giriş kümesinin ön bilgilerini kullanarak, 

k dereceli polinomlar, k sayıda gizli katman nöronlara sahip sinir ağlar, k nöronlu 

kübik fonksiyonları gibi sınıflar seçilerek, her bir alt kümede deneysel risk 

minimizasyonu sağlanır. 

 

5.4.4. Destek vektör sınıflandırıcı 

 

Lineer olarak ayrılabilen iki sınıflı öğrenme için, destek vektör sınıflandırıcının 

hedefi verilen örneklerin iki sınıfın maksimal bir marj ile bölebileceği bir aşırı 

düzlem tanımlamaktır. Bu tür aşırı düzlemin en iyi genelleştirme yeteneğini 

verebildiği ispatlanmıştır. Genelleştirme yeteneği bir sınıflandırıcının giriş eğitme 

verisinde çok iyi sınıflandırma performansı olduğu gibi aynı zamanda giriş eğitme 

verisi gibi aynı dağılımdan gelecek verisi için yüksek tahmin kalitesini garanti eder 

[Kuzey, 2012].  

 

Bir sınıflandırıcının genelleştirme yeteneği giriş eğitme verisinde çok iyi sınıflayıcı 

performansına sahip olduğunu( örneğin doğruluk) göstermesi yanında eğitme verisi 

gibi aynı dağılımdan gelen gelecek verisi için de yüksek öngörü doğruluğunu garanti 

edeceği ifade edilmektedir [Kuzey, 2012]. 
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Şekil 5.9. Destek vektör sınıflayıcı ve hiperdüzlem 

 

Bir marjin bir aşırı düzlem tarafından tanımlanan iki sınıf arasındaki mesafe miktarı 

olarak ifade edilmektedir. Geometrik manada marjin düzlemde en yakın veri 

noktaları ile aşırı düzlem üzerindeki herhangi bir nokta arasındaki en kısa mesafeye 

denk gelmektedir. Şekil 5.9 bir iki-boyutlu girdi uzayı için optimal aşırı düzlemin bir 

geometrik yapısını görülmektedir.  

 

Farz edelim w ve b sırası ile hiper düzlemde ağırlık vektörü ve yanlı(bias) olsun. 

Đlgili hiper düzlem şu şekilde ifade edilebilir; 

 

0. =+ bxwT                                                                                                           (5.58) 

 

X örnek verisinden optimal hiper düzleme ve istenilen yönde geometrik uzaklık 

r=g(x)/w olarak ifade edilir. Burada bxwxg T +=)(  aşırı düzlem tarafından 

tanımlanan bir diskriminant fonksiyonudur [Christianini ve Taylor, 2000].  

 

w ve x’in bilinmesiyle )(xg fonksiyonel marjin olarak oluşturulmaktadır. Destek 

vektör sınıflayıcısı optimal aşırı düzlem için ayırma marjı p’yi aşırı yükseltmek için 

w ve b parametrelerinin bulunmasını amaçlamaktadır. Bu parametreler iki sınıftan en 

kısa  geometrik  uzaklılar  olan r* yolu  ile  saptanmaktadır.  Böylece  destek  vektör  
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sınıflayıcısının ismi maksimal marj sınıflandırıcı adını almaktadır. Genellik kayıp 

olmadan, fonksiyonel marjı 1’ e eşit olacak şekilde düzeltilir ve verilen bir eğitme 

kümesi { } }{ 1, 1 ±ℜ∈
=

xyx m

iii  olmak üzere Eş. 5.59’daki denklemler ile elde 

edilmektedir [Christianini ve Taylor, 2000]. 

 

1,1 +=≥+ ii

T ybxw  

1,1 −=−≤+ ii

T ybxw                                                                                       (5.59) 

 

Eş. 5.59’daki birinci veya ikinci parçalardaki eşitlikleri sağlayan özel veri noktaları 

(xi, yi ) destek vektörler olarak adlandırılır, bu noktalar tam olarak optimal hiper 

düzleme en yakın veri noktalardır [Haykin, 2001]. Sonra, destek vektör x* dan 

optimal hiper düzleme karşılık gelen geometrik uzaklık r* şu şekilde ifade 

edilmektedir.  
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Şekil 5.9’den de anlaşılacağı gibi, ayırma düzlemi p= wr /2*2 =   şeklinde ifade 

edilebilir. Maksimum marjlı hiper düzlemi bulunabileceğinden emin olmak için, 

sınıflayıcı w ve b ye göre p’yi maksimize etmek için çalışmaktadır.   
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T
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2

1
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2

, =≥+=                                            (5.62) 

 

Eş.5.61 ve Eş.5.62 sonucunda, sonraki optimizasyon basamaklarını kolaylıkla 

gerçekleştirmek için çoğu zaman w yerine 
2

w kullanılır [Kuzey, 2012]. Genellikle, 

primal  problem  olarak  bilinen  Eş.5.62  denkleminde  kısıtlara  sahip  optimizasyon  
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problemini Lagrange çarpanları metodu kullanılarak çözülür. ai i. eşitsizliğe göre 

Lagrange çarpanını göstermek üzere; 
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T                                                         (5.63) 

 

şeklinde gösterilir. ),,( abwL ’nın w ve b ye göre diferansiyelini alınırsa ve sonuçları 

sıfıra eşitlersek, aşağıdaki iki optimal olma koşulu elde edilir.  
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Eş. 5.64’de elde edilen denklemi Eş. 5.63’da Lagrange fonksiyonunda yerine 

koyarsak, bir dual problemi elde ederiz. 
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Karush-Kuhn-Tucker tamamlayıcı koşulu; 

 

nibxwya i

T

ii ,...,1,0]1)([ ==−+                                                                       (5.66) 

 

Sonuçta yalnız optimal aşırı düzleme en yakın veri noktaları ve maksimal marjı 

sınırını belirleyen destek vektörleri olan )( ii yx  sıfır olmayan i değerlerine karşılık 

olarak gelmektedir. Diğer tüm ai değerleri sıfıra eşit olmaktadır [Kuzey, 2012]. 

 

Eş. 5.65’deki dual problem bir konveks kuadratik programlama optimizasyonu 

problemidir. Genellikle sıralı minimal optimizasyon (squential minimal optimization 
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algorithm) gibi bazı uygun optimizasyon metotlarının benimsenmesi ile verimli bir 

şekilde global optimuma yakınsar [Christianini, 2000]. Lagrange çarpanları(optimal 

olan) olan *
ia ve optimal ağırlık vektörü olan *w yı Eş. 5.64’de yerine koyarak 

hesaplama yapabilmektedir [Kuzey, 2012]. 

 

ii

n

i

yxaw ∑
=

=
1

*
,

*                                                                                                       (5.67) 

 

5.4.5. Maksimal marjlı sınıflandırıcı ve optimizasyon 

 

Maksimal marjlı destek vektör sınıflandırıcı, ileride tanımlanacak destek vektör 

regresyonunda eklenmesi birlikte destek vektör makineleri(DVM) algoritmalarının 

orijinal başlama noktasını temsil etmektedir. Ancak gerçek dünya problemlerinde, 

tüm noktaların lineer olarak ayrılabilir olma gerekliliği çok katı olabilmektedir. 

Özellikle birçok kompleks lineer olmayan sınıflandırma durumlarında örneklerin 

tamamen lineer olarak ayrılabilir olamadığı zaman, marjlar negatif değerli 

olabilmektedir. Bu gibi durumlarda, primal problemin uygun çözüm bölgesi boştur 

ve bu duruma uygun düşen ikilik(dual) problem ise sınırsız bir hedef fonksiyonudur. 

Bu durum ise en uygun biçime sokma problemini çözmeyi imkânsız yapmaktadır 

[Christianini, 2000].  

 

Bu tür ayrılamaz verileri çözmek için, genellikle iki tür yaklaşım tercih edilmektedir. 

Đlk yöntem Eş.5.62 no’lu denklemdeki katı eşitsizlikleri çözmek gevşetmektir. Bu 

şekilde “soft marj optimizasyon”olarak adlandırılan yöntem elde edilmektedir. Đkinci 

yöntem ise lineer olmayan o problemlere “kernel trick” yani çekirdek hilesi 

uygulayarak bunları doğrusal hale getirmektir [Kuzey, 2012]. 

 

Giriş uzayında yer alan verilerde karşı sınıflara dahil olmuş birkaç noktanın olduğu 

durumları düşünecek olursak, bu noktalar maksimum marjlı aşırı düzlem için bile var 

olan eğitim hatasını temsil etmektedir. Soft marjin fikri DVC algoritmasını 

genişletmeyi  amaçlar  bu  şekilde aşırı düzlem böyle gürültülü verilerin var olmasına  
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izin vermektedir. Özellikle, gevşek yapay değişken(slack) iξ  sınıflandırıcı 

tarafından, sınıflandırma ihlalinin miktarını açıklamak için verilmektedir [Kuzey, 

2012]. 
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Eş.5.68’deki C parametresi makinenin karmaşıklığı ve lineer olarak ayrılmayan 

noktaların sayısı arasındaki bir nevi dengeyi sağlamaktadır. Bu parametre literatürde 

“düzenleştirme” parametresi(regularized parameter) olarak bilinmektedir. C 

parametresi uzman tarafından, analitik veya deney yolu ile seçilebilmektedir. 

 

Gevşek yapay değişken olan iξ ’nin yanlış sınıflandırılmış bir veri örneğinin aşırı 

düzleme olan uzaklık yolunun, direkt olarak bir geometrik yorumudur. Bu parametre,  

ideal durumdan bir örneğin sapmasını ifade etmektedir. Lagrange çarpanları metodu 

kullanılarak, oluşan dual problemi şu şekilde ifade edebiliriz; 
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Eş.5.65 ile Eş.5.69 no’lu denklemler kıyaslandığında, iξ  gevşek yapay değişkeninin 

dual problemde görünmediği önemli bir ayrıntıdır. Doğrusal olarak ayrılabilen ve 

ayrılamayan durumlar arasındaki önemli fark 0≥ia  kısıtından daha sıkı bir kısıt 

olan Cai ≤≤0  kısıt ile yer değiştirmesinden kaynaklanmaktadır. Aksi takdirde, bu 

iki durum birbirinin benzeri yapıdadır [Christianini, 2000; Haykin, 2001].   

 

Veri noktalarının düzlem üzerinde ayrılamaz(inseparable) durumlarda Karush-Kuhn-

Tucker tamamlayıcı koşulu Eş.5.71’deki gibi ifade edilmektedir. 
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Eş. 5.71’de tanımlanan iγ ’ler iξ ’nin pozitifliğini uygulatmak için verilen iξ ’e 

karşılık gelen Lagrange çarpanlarıdır [Haykin,2001]. Primal problem için Lagrange 

fonksiyonunun iξ ’ye görevi türevi sıfırdır, türevlerin hesaplamalarından aşağıdaki 

sonuç elde edilir. 

 

Ca ii =+ γ                                                                                                             (5.72) 

 

Eş.5.71 ve Eş.5.72 denklemleri beraber düşünüldüğünde ve 0=iξ  şayet Cai < ise, 

optimal ağırlık w* Eş.5.73’deki gibi verilir.  
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5.4.6. Çekirdek hilesi(kernel trick) 

 

Lineer olarak ayrılamayan problemleri çözmek için kullanılan metotlardan birisi de 

çekirdek hilesidir. Problem verilen giriş verileri arasında iç çarpıma dayalı uygun bir 

çekirdek fonksiyonu tanımlamak, problemleri doğrusal olarak ayrılabilir yapmak için 

giriş uzayından, yüksek boyutlu (sonsuz da olabilir) öznitelik uzayına verinin lineer 

olmayan dönüşümünü yapmaktır. Kompleks bir örüntüye(patern) sahip bir 

sınıflandırma problemi yüksek boyutlu bir uzayda lineer olmayacak bir biçimde 

oluşmuşsa, düşük boyutlu uzaydakine oranla büyük ihtimalle lineer olarak ayrılabilir 

[Haykin,2001]. 

 

Φ : X → H giriş uzayından X ⊂ Rm öznitelik uzayına H doğrusal olmayan dönüşümü 

gösterdiğini farz edersek, problem H’de lineer olarak ayrılabilir. Buna karşılık gelen en 

uygun hiper düzlem Eş. 5.74’deki şekilde ifade edilebilir.  
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0)( =+ bxW T φφ                                                                                                     (5.74) 

 

öznitelik uzayında hesaplanan optimal hiper düzlem ise; 
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Eş. 5.75’de yer alan 0)()( =xxW i

T φφ terimi )( ixφ ve )(xφ vektörlerinin iç çarpımını 

göstermektedir. Bu yüzden de burada iç çarpım çekirdek fonksiyonunu kullanmak 

gerekmektedir. Çekirdek(kernel) fonksiyonu Eş.5.76’deki gibi bir fonksiyondur.  

 

)()(),( ''
xxxxK

T φφ==                                                                                        (5.76) 

 

Eş. 5.76’daki φ giriş uzayı(input space) olan X’dan öznitelik uzayı olan H’ye olan 

dönüşüm fonksiyonunu göstermektedir. Optimal öznitelik uzayında aşırı düzlem 

oluşturmak için φ  dönüşümünün somutlaştırılmış biçimini gözetmeksizin çekirdek 

fonksiyonunu kullanabilmektedir. Bu sebeple, destek vektör makinaları için kernel 

fonksiyonun önemi çok büyüktür [Christianini, 2000]. 

 

Çekirdek fonksiyonunun uygulanması geçerli algoritmanın boyuta bağlılığını ortadan 

kaldırmaktadır. Bununla birlikte lineer olarak ayrılamaz veri problemlerinin etkili 

çözümü ile yüksek boyutlu bir uzayda lineer bir sınıflandırıcıyı eğitmek amacıyla da 

tercih edilmektedir. Bahsedilen bu durum Eş.5.75’de )()( '
xx

T φφ yerine K(xi,x) 

kullanarak yapılabilir ve optimal hiper düzlem Eş. 5.77’deki biçimde verilir 

[Christianini, 2000]. 
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Çekirdek hilesi hesaplamayı basitleştirmek için öncelikli tercih edilen yöntemlerden 

biridir. Bu yöntem sayesinde karmaşık öznitelik uzayını hesaplama karmaşıklığından  
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sakınılmış olunabilir. Çekirdek hilesini uygulamadan önce, çekirdek fonksiyonunun 

nasıl seçileceği, hangi karakteristik özellikleri taşıyacağı oldukça önemlidir. Yani bir 

çekirdek fonksiyonu hangi karakteristikleri sağlamalıdır. Gerçek bir çekirdek 

fonksiyonu olarak kabul gören kernel fonksiyonunun özelliğini karakterize eden 

“Mercer teoreminin” iyi bilinmesi de çekirdek fonksiyonun özelliklerinin anlaşılması 

için oldukça önemlidir [Christianini, 2000]. 

 

Destek Vektör Makinelerinde çekirdek fonksiyonu seçimi genellikle “Mercer 

Teoremini” sağlamak içindir. Bundan dolayı, yaygın kullanılan çekirdek 

fonksiyonları olarak: sigmoid, polinom, ve radyal tabanlı fonksiyonlar sayılabilir. Bu 

fonksiyonlar bazı zamanlar kernel trick uygulanmasını sınırlandırabilmektedir. 

[Kuzey, 2012].  

 

5.4.7. Destek vektör regresyon 

 

Daha önce bahsedilen konularda destek vektör makinelerinin sınıflandırma boyutu 

ile ilgilendik. Bu kısımda ise; Destek Vektör Makinelerini kullanarak, doğrusal 

olmayan regresyon problemlerini çözümü üzerine odaklanılmıştır. Ve metod destek 

vektör regresyon olarak isimlendirilmektedir.  

 

Destek vektör regresyonda da, sınıflandırma algoritmasında olduğu gibi, doğrusal 

öğrenme metotlarını ve çekirdek hilesi (kernel trick) kullanılarak elde edilen lineer 

olmayan fonksiyonlar kullanılarak maksimum marj metodunun temel özelliklerinin 

bulunması amaçlanmaktadır. Regresyon problemleri için, gürültünün(additive noise) 

ardındaki dağılım uzun bir uzantıya sahip olduğu durumlarda regresörde meydana 

gelen kötü performansa sahip olan aykırı verilerin var olması ile birlikte geleneksel 

en küçük kareler tahmin edicisi(least–square estimator) uygulanamayabilir 

[Haykin,2001]. Bu sebepledir ki, tasarlanan model içinde ufak farklılıklara karşın  ε  

duyarsızlık kayıp fonksiyonu tanımlanmıştır. Duyarsızlık kayıp fonksiyonunun 

regresyon doğru üzerindeki lokasyonu Şekil 5.9’da gösterilmektedir.  
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Şekil 5.10. Lineer DVM ε  kayıp fonksiyonu  

 

Varsayalım ki; f fonksiyonu X’de tanımlı reel değerlikli bir fonksiyon olsun. ε  

duyarsızlık kayıp fonksiyonu ),,( fyxL =ε Eş 5.78’deki gibi ifade edilmektedir. 

 

ε
ε

ε −−=−== )(,0max()(),,( xfyxfyfyxL                                                (5.78) 

 

Şayet arzu edilen sistem çıkışı olan y değerliği ile tahmin edicinin çıktısı f(x) 

arasındaki farkın mutlak değeri ε ’dan küçük veya sıfıra eşit ise, 0),,( == fyxLε  

Aksi halde, sapmanın mutlak değerinden ε  değerinin farkına eşit olmaktadır. 

Doğrusal olmayan bir regresyon modeli; 

 

vxgy += )(                                                                                                           (5.79)  

 

Şeklinde tanımlanacak olursa; v yani toplanır gürültü(additive noise) terimi, çıktı 

vektör olan x dan bağımsızdır. Fonksiyon g(.)’nin  ve toplanır gürültü terimi v’nin 

istatistiğinin bilinmesi oldukça zordur. Eğitim verilerinin bir kümesi olan 

{ })),.......(( 11 nn yxyxS =  ve Eş. 5.80’deki fonksiyon sınıfı ise modelimizde var olan 

bilgilerdir [Christianini, 2000]. 

 

{ }RbRwbxwxfF mT ∈∈+== ,,)(                                                                    (5.80) 
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Destek vektör regresyonunda hedef uygun w ve b parametrelerini belirleyerek f(x), 

bilinmeyen hedef fonksiyon g(x)’e yaklaşmaktır. Optimizasyonda primal problem 

aşağıdaki gibi ifade edilir.  
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Lagrange çarpanları ile dual problem aşağıdaki gibi tanımlanmaktadır. 
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Eş. 5.85 bir optimizasyon problemidir ve bunun için çarpım çekirdeği gösterilebilir 

ve lineer olmayan fonksiyonlar, çekirdek uzayında doğrusal öğrenme makineleri 

yolu ile elde edilebilmesi amacıyla regresyon algoritması öznitelik uzayına 

genişletilebilir [Christianini, 2000]. 

 

Destek vektör makinaları uygulamalarında regresyon ve sınıflama işlemleri 

karşılaştırıldığında, destek vektör regresyon ε  gibi ilave bir serbest parametreye 

sahiptir. Đki parametre olan ε  ve C Vapnik Chervonenkis boyutunu bias sıfır olduğu 

durumlarda kontrol etmektedirler 
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Eş. 5.86’da destek vektör regresyon fonksiyonun genel denklemi görülemektedir. 

Burada α  lagrange çarpanlarını göstermektedir. ε  ve C kullanıcı tarafından 

seçilmelidirler ve regresyon uygulamasında karmaşıklığın kontrolünü etkilemekte 

öncüdürler. Optimal bir yaklaşım fonksiyonu elde etmek için ε  ve C değerlerinin 

senkronize olarak nasıl seçilmesi gerektiği konusu farklı hipotezler ortaya çıkmasına 

rağmen, henüz netleşmemiş bir araştırma sorunudur [Christianini, 2000]. 

 

5.4.8. En küçük kareler destek vektör regresyon 

 

En küçük kareler destek vektör makineleri(least square support vector machines) 

1999 yılında Suykens ve Vandewalle tarafından önerilmiştir [Suykens ve 

Vandewalle, 1999]. Bir destek vektör makinesi çeşidi olan en küçük kareler destek 

vektör makinasının(least square support vector machine) teorik temelleri yine 

standart destek vektör sınıflandırıcılarında olduğu gibi iki sınıflı sınıflandırma 

düşünülerek oluşturulmaktadır. Destek vektör makine sınıflandırıcılarındaki 

kullanılan ikinci dereceden programlama yöntemleri en küçük kareler destek vektör 

makinalarında kullanılmamaktadır. Model kurulumunda, bu tür ikinci derece 

programlama yöntemi yerine lineer eşitlik kümesi tercih edilmektedir.  
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[ ] niwxwy iii ,.....,2,11).( 0 =−=+ ξ                                                                   (5.88) 

 

Eş.5.87’de verilen formül Eş.5.88’de ifade edilen koşula bağlı olarak en 

küçüklenmesi gerekmektedir. EKK-DVM için verilen Eş. 5.88’deki eşitlik durumuna 

dikkat edilecek olursa, destek vektör makine sınıflandırıcılarda Eş. 5.88’deki bu 

denklem eşitsizlik durumundadır. EKK-DVM’da standart destek vektör makine 

sınıflandırıcılarda olduğu gibi Eş.5.87’deki ana denklem Eş. 5.89’daki gibi dual 

probleme dönüştürülmektedir [Suykens ve Vandewalle, 1999]. Daha sonra 

optimizasyon çözümü bu dual problem eşiğinde çözülmelidir. 
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Eş. 5.89’da ifade edilen formülün standart destek vektör makine sınıflandırıcılarda 

kullanılan formülden bir farkı yoktur. Tek fark “ a ” çoğullayıcılarının standart destek 

vektör makine sınıflandırıcılarda pozitif olması gerekirken, en küçük kareler destek 

vektör makinelerinde ise pozitif veya negatif olabilmesidir [Tsujinishi ve Abe, 2003]. 

Bu formülsel fark ile birlikte eğitim zamanı avantajı gibi nedenlerle en küçük kareler 

destek vektör makine regressörleri standart destek vektör makine regresörlerinden 

ayrılmaktadır. 

 

Daha önce teorik açıklamasını yaptığımız destek vektör regresyonu( ε -DVR olarak 

da bilinmektedir.) ile en küçük kareler destek vektör regresyonu yukarıda ifade 

edildiği gibi benzer matematiksel eşitsizliklerden oluşmakla birlikte farklı 

optimizasyon çözümleri ile açıklanmaktadır. Bunun sonucunda iki regresyon metodu 

arasındaki temel fark; ε -DVR’de eğitim için, hata çıkışlarının kontrolünün ε , C ve 

σ ile yapılırken, EKK-DVR’de eğitimin sadece iki değişken γ  ve σ  kullanılarak 

yapılmasıdır.  

 

Destek vektör sınıflandırma uygulamalarında performans; bazı uygulamalarda 

standart DVM öğrenme metoduna yaklaşsa bile düşük çıkma ihtimalide oldukça 

fazladır. Bunun nedeni eğitme aşamasında daha kuvvetli ama zaman alan ikinci 

dereceden programlama yerine daha basit ama kısa sürede uygulanabilen 

doğrusal(lineer) programlamayı kullanmasındandır.  
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6. YÖNTEMLERĐN UYGULANMASI VE SAYISAL SONUÇLAR 

 

6.1. Giriş Verilerinin Belirlenmesi 

 

Son yıllarda bilimsel literatürde elektrik tüketim tahmini için birçok yöntem 

geliştirilmiş ve değişik algoritmalar kullanılmıştır. Yine bu çalışmalarda girdi olarak 

birçok farklı bağımsız değişken ve farklı modeller tercih edildiği görülmektedir. 

Bölüm 5.1’de de ifade edildiği üzere elektrik tüketimini etkileyen en önemli 

faktörler(parametreler ) arasında; nüfus ve demografik göstergeler, toplam tüketici 

sayısı, ortalama hane halkı büyüklüğü, elektrikli hane sayısı, köy oranı, çok odalı 

konut yüzdesi, brüt elektrik üretimi, kurulu güç şehirleşme oranı, istihdam verileri ve 

elektrik fiyatı, gayri safi yurt içi hâsıla(GSYĐH) ve endüstriyel planlar gösterilebilir. 

Bu etkenlerden bazıları elde edilecek tahminler üzerinde doğrudan ve büyük oranda 

etkiye sahipken, bazıları ise dolaylı şekilde ve daha zayıf etki göstermektedir. Talebi 

etkilediği saptanan faktörler, etki derecelerine bağlı olarak elektrik tüketim tahmin 

modellerinde bağımsız değişken olarak kullanılmaktadır.  

 

Chen ve arkadaşları tarafından yapılan çalışmada elektrik tüketimi ile ekonomik 

büyüme arasında nedensellik ilişkisinin olmadığı, yani elektrik tüketiminin ekonomik 

büyüme ile ilişkili olmadığını analizlerle ortaya koymuşlardır[Chen ve ark., 2007]. 

Elektrik tüketimi ile ekonomik bir gösterge olan gayri safi yurt içi hâsılanın(GSYĐH) 

birbirini etkileme yönünün ne yönde olduğu, yani elektrik tüketimindeki artışın mı 

GSYĐH’yı yoksa GSYĐH’nın mı elektrik tüketimini etkilediği hususunda tartışmalar 

halen devam etmektedir. Özellikle bu tür bir ilişkinin ülkelere göre farklılıklar 

gösterdiği görülmektedir. Özellikle Türkiye’de gayri safi yurt içi hâsılanın(GSYĐH) 

düşük olduğu dönemlerde dahi elektrik enerjisi tüketiminde artışlar görülmektedir. 

Türkiye’de elektrik tüketiminin yıllar itibari ile seyri incelendiğinde özellikle 

ekonomik krizlerden etkilendiği görülmektedir. Ekonomik krizler ise önceden 

tahminlemesi zor veya saptanması güç süreçlerdir. Çalışmamızda yukarıda bahsi 

edilen bu nedenlerle GSYĐH’ye bağımsız değişken(etkileyici) olarak hiçbir modelde 

yer verilmemiştir. 
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Çalışmamızda kullanılacak bağımsız değişken seçimi için bir sonraki bölümde çoklu 

lineer regresyon sonuçları ile de verilecek, üç farklı model kurulmuştur. Bu modeller 

üzerinde yapılan korelasyon ve regresyon sonuçları ile bağımsız değişkenlerin, 

bağımlı değişken üzerindeki etkisi incelenmiştir. Bu modeller arasında “Model 3” 

olarak isimlendirilen model en uygun model olarak seçilmiştir.  

 

Çalışmamızdaki tüm analizlerde kullanacağımız “Model 3” içerisinde yer alan 

bağımsız değişkenler; kurulu güç(installed power), brüt elektrik üretimi(gross 

electricity generation), nüfus(population) ve toplam abone sayısı(total 

subscribership)  verileri olacaktır.  

 

Yine çalışmamızda modellerin eğitiminde kullanacağımız bağımsız değişkenlerin 

geçmiş bilgilerinin elde edilmesi için; Türkiye toplam kurulu güç ve brüt elektrik 

üretimi verileri için TEĐAŞ istatistik veri tabanı, nüfus bilgileri için ise TUĐK veri 

tabanı kullanılmıştır. Türkiye’deki toplam elektrik abone sayısının elde edilmesi için 

ise bir kamu kuruluşu olan TEDAŞ ve diğer özel elektrik dağıtım şirketlerinin 

geçmiş istatistiksel bilgilerinden faydalanılmıştır.  

 

Türkiye’de özellikle 1970 öncesi toplam abone sayısı ve nüfus bilgilerinin doğru ve 

sağlıklı olmaması nedeniyle çalışmamızda geçmiş verisi olarak 1970-2009 yılı 

verileri kullanılmıştır. Bilindiği üzere; 1970-2009 yılları arası dönemde Türkiye’de 

nüfus sayımının 5 yılda bir yapıldığı göz önüne alındığında, ara değerler TUIK 

kayıtlarında mevcut değildir. Bu ara değerlerin bulunması için ara değer hesabı 

(interpolation) uygulanmıştır. Modeller kurulduktan sonra gelecek tüketimleri 

tahmin edebilmemiz için gerekli olan gelecek giriş verilerinden; kurulu güç ve brüt 

üretim için gelecek öngörüleri, EPDK tarafından lisans verilmiş ve önümüzdeki beş 

yıl içerisinde üretime başlayacak santraller de göz önüne alınarak belirlenen TEĐAŞ 

2011-2020 yılı projeksiyon bilgileri kullanılacaktır. Türkiye nüfusu için gelecek 

tahmin bilgilerinin elde edilmesinde ise DPT ve TUIK tarafından yapılan 

öngörülerden faydalanılmıştır. Türkiye’de hiçbir resmi kurum tarafından elektrik 

abone sayısı ile ilgili olarak herhangi bir gelecek öngörüsü yapılmadığından, 

çalışmamızda dış değer hesabı(extrapolasyon) uygulanmıştır. 
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Çalışmamızda tasarımı yapılan tüm tahmin modellerinde giriş verilerinin 2/3’ü 

eğitim ve 1/3’ü test için kullanılacaktır. 2010 yılı verisi ise doğrulama(validation) 

amacıyla kullanılmıştır.1 

 

Çizelge 6.1 ve Çizelge 6.2’de sırasıyla tasarım modellerinde kullanılacak eğitim ve 

test kümeleri verilmektedir. 

 

Çizelge 6.1. Model eğitimleri için giriş verileri. 
 

Yıl 
Kurulu 
güç(GW) 

Brüt Elektrik 
Üretimi(TWh) 

Nüfus(Milyon) 
Abone 
Sayısı(Milyon) 

Net Elektrik 
Tüketimi(TWh) 

1970 2,235 8,623 35,32 4,43 7,31 

1971 2,578 9,781 36,22 4,78 8,29 

1973 3,193 12,43 38,07 5,52 10,53 

1974 3,732 13,48 39,04 5,92 11,36 

1976 4,36 18,28 40,92 6,79 16,08 

1977 4,73 20,56 41,77 7,22 17,97 

1979 5,12 22,52 43,53 8,32 19,63 

1980 5,12 23,28 44,44 8,75 20,4 

1982 6,64 26,55 46,69 10,01 23,59 

1983 6,94 27,35 47,86 10,62 24,47 

1985 9,12 34,22 50,31 11,85 29,71 

1986 10,12 39,69 51,48 12,53 32,21 

1988 14,52 48,05 53,27 13,95 39,72 

1989 15,81 52,04 54,19 14,69 43,12 

1991 17,21 60,25 56,06 16,28 49,28 

1992 18,72 67,34 56,99 16,97 53,99 

1994 20,86 78,32 58,84 18,7 61,4 

1995 20,95 86,25 59,76 19,47 67,39 

1997 21,89 103,3 61,58 21,12 81,88 

1998 23,35 111,02 62,46 21,99 87,71 

2000 27,26 124,92 64,26 24,02 98,3 

2001 28,33 122,72 65,14 24,81 97,07 

2003 35,59 140,58 66,87 26,62 111,77 

2004 36,82 150,7 67,73 27,71 121,14 

2006 40,56 176,3 69,42 29,37 144,09 

2007 40,84 191,56 70,26 30,02 155,14 

2009 43,49 216,46 71,9 31,85 158,06 

 

 

 
                                                
1 2010 yılı istatistiki bilgilerinin, ilgili kurumlarca yayınlanması geciktiğinden, 2010 yılı verileri 
tasarlanan modellerde ancak doğrulama amacıyla kullanılabilmiştir.  
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Çizelge 6.2. Model eğitimleri için test verileri 
 

Yıl 
Kurulu 

güç(GW) 
Brüt Elektrik 

Üretimi(TWh) 
Nüfus(Milyon) 

Abone 
Sayısı(Milyon) 

Net Elektrik 
Tüketimi(TWh) 

1972 2,711 11,24 37,13 5,14 9,53 

1975 4,19 15,62 40,03 6,35 13,49 

1978 4,87 21,73 42,64 7,81 18,93 

1981 5,54 24,67 45,54 9,43 22,03 

1984 8,46 30,61 49,07 11,19 27,64 

1987 12,5 44,35 52,37 13,22 36,7 

1990 16,32 57,54 55,12 15,54 46,82 

1993 20,34 73,81 57,91 17,77 59,24 

1996 21,25 94,86 60,67 20,58 74,16 

1999 26,12 116,44 63,37 22,94 91,2 

2002 31,85 129,4 66,01 25,68 102,95 

2005 38,84 161,96 68,58 28,44 130,26 

2008 41,82 198,42 71,08 31,01 161,95 

 

 

Modellerimizde kullanılacak giriş değişkenlerinin(bağımsız değişkenlerin) yıllar 

itibari ile gelecek öngörü noktalarını da içeren gelişimi Şekil 6.1, Şekil 6.2, Şekil 6.3, 

ve Şekil 6.4’de gösterilmektedir. Bu şekillerden görüleceği üzere özellikle Türkiye 

nüfus sayıları ve toplam elektrik abone sayılarının yıllar içerisinde gelişimi düzgün 

lineer(doğrusal) bir gelişim seyrederken, Türkiye kurulu gücü ile brüt elektrik 

üretimindeki gelişim her ne kadar doğrusal bir trend gösterse de belli yıllarda trend 

doğrusundan sapmalar göstermiştir.  

 

 

 

 

 

 

 

 

 

 

Şekil 6.1.Türkiye brüt üretiminin yıllar itibari ile gelişimi 
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Şekil 6.2. Türkiye’de nüfusun yıllar itibari ile gelişimi. 
 
 
 

 

 

 

 

 

 

 

 
Şekil 6.3. Türkiye’de kurulu gücün yıllar itibari ile gelişimi. 
 
 

 

 

 

 

 

 

 

 
 
Şekil 6.4. Türkiye’de toplam abonenin sayısının yıllar itibari ile gelişimi. 
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6.2. Ön ve Son Verilerin Đşlenmesi 

 

Veri normalizasyonu, özellikle yapay sinir ağları gibi işlemci elemanlarından oluşan 

sistemlerde, aşırı değerlenmiş kümülatif toplamların oluşturacağı olumsuzlukların 

engellenmesi için önemlidir. Eğitimden önce giriş verilerinin belirli bir aralığa 

transferi ile ölçeklenme, diğer bir deyişle normalizasyon yapılmış olur.  

 

Çalışmamızda her bir giriş uzayı [-1,+1] aralığına aşağıda Eş. 6.1’de verilen formül 

ile ölçeklendirilmiştir.(Matlab programında aynı işlem için premnmx(p,t) komutuda 

kullanılmıştır.)  

 

12
minmax

min −
−

−
=

xx

xX
X yeni

                                                                                          (6.1) 

 

Ölçeklendirilmiş veriler tahmin modelleri ile işlendikten sonra çıkan sonuçlar tekrar 

denormalize edilerek orijinal boyutlarına dönüştürülmesi gereklidir. Bu kapsamda da 

çalışmamızda denormalize işlemi Matlab2009R programında 

“postmnmx(an,mint,maxt)” komutu  kullanılarak yapılmıştır.(Aynı işlem Eş.6.1’deki 

formülasyonun yeniden kullanılması ile de yapılabilmektedir.) 

 

6.3. Performans Fonksiyonları 

 

Çalışmamızda farklı algoritmalarla tasarımını yapacağımız tahmin modellerinin 

performansını değerlendirmek için bilimsel literatürde kabul görmüş, tipik 

performans fonksiyonlarından hemen hemen tümünden faydalanılmaktadır. Bunlar 

maksimum hata(MaxError), ortalama mutlak yüzde hata(mean absolute percent 

error-MAPE), ortalama kare hata(mean square error-MSE), ortalama kare hatanın 

karekökü(root mean square error-RMSE) ve toplam karesel hata(sum square error-

SSE) olarak ifade edilebilir. Bu performans kriterlerinin matematiksel gösterimi 

aşağıdaki eşitliklerde verilmektedir.  
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gerçektahmn yyMaxError −= max                                                                              (6.2) 
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6.4. Çoklu Lineer Regresyon çözümü 

 

Bilindiği gibi Y bağımlı değişkeni, çok sayıda bağımsız X değişkeni ile ifade ediliyor 

ise bu analize  “Çoklu Regresyon Analizi(Multiple Regression Analysis) 

denilmektedir.  

 

Bu bölümde, daha önce teorik kapsamı anlatılan çoklu doğrusal(lineer) regresyon 

modelinin Türkiye elektrik tüketim modellemesi çalışması yapılmıştır. Bağımsız 

değişkenlerin, bağımlı değişkeni üzerindeki etkisini incelemek ve en iyi regresyon 

sonucunu bulmak için üç farklı model üzerinde çalışma yapılmıştır. Bu modeller 

aşağıdaki eşitliklerde ve görsel olarak Şekil 6.5’de gösterilmiştir.  

 

x1:Kurulu Güç(Installed Capacity) 

x2:Brüt Elektrik Üretimi(Gross Electricity Generation)              

x3:Nüfus(Population)           
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x4:Toplam Abone sayısı(Total Subscribership)            

x5:Đhracat(Export)          

x6:Đthalat(Import)  

 

Model 1: y = b1x2 + c1x3 + f1 

Model 2: y = a1x1 + b2x2 + c2x3 + d1x4 + e1x5 + g1x6 + f2 

Model 3: y = a2x1 + b3x2 + c3x3 + d2x4 + f2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 6.5. Tüketim modeli seçimi 

 

Bu modellerde bağımlı değişken parametresi olarak; x1:Kurulu Güç(Installed 

Capacity), x2:Brüt Elektrik Üretimi(Gross Electricity Generation), 

x3:Nüfus(Population), x4:Toplam Abone sayısı(Total Subscribership), 

x5:Đhracat(Export), x6:Đthalat(Import) şeklinde gösterilmiştir. 

 

Regresyon katsayılarının bulunması ve modeller üzerindeki performansların analiz 

edilmesi için MATLAB2009 araç kutusu kullanılmıştır.  
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Çizelge 6.3. Regresyon katsayıları 
 
  a b c d e  g f 

Model 1 - 1,78801 0.027973 - - - -49567 

Model 2 0.00522 0.004977 1,57688 0.99865 0.27655 0.04896 -29233 

Model 3 0,41689 0,58500 -0,56730 1,42719 - - 16,24841 

 

Çizelge 6.4. Regresyon parametreleri 

  Adjusted R 2 Test Hatası(RMSE) Eğitim Hatası(RMSE) 

Model 1 0.988 7,88 1,40 

Model 2 0.996 4,04 1,09 

Model 3 0.997 2,54 2,46 

 

Sonuçlar dikkatle incelendiğinde Model 1 ve Model 2’de eğitim hataları çok düşük 

çıkmasına rağmen test hataları çok yüksek bulunmuştur. Model 3 de ise eğitim hatası 

Model 1 ve Model 2’ye göre biraz yüksek çıkmasına rağmen test hatası RMSE’de 

2.54 gibi optimal bir değeri yakalamıştır. Yine R2 katsayısının yüksek olması da 

model 3’ün daha optimal olduğunu göstermektedir. Bu nedenlerle regresyon 

sonuçları kapsamında ve ileride çalışmamızda analizi yapılacak YSA ve EKK-DVM 

uygulamasında Model 3’de yer alan regresyon denklemi esas alınacaktır. Sonuç 

olarak; Model 3 üzerinde, çoklu lineer regresyon çalışmasına ait performans kriterleri 

sonuçları Çizelge 6.5’de verilmektedir.  

 

Çizelge 6.5. Model 3 regresyon kalite parametreleri 

  MAPE MaxError MSE RMSE SSE 

Eğitim  4,01 7,62 6,06 2,46 163,69 

Test 3,34 8,25 6,45 2,54 83,79 

 

6.5. Yapay Sinir Ağı Analizi 

 

Çalışmamızda, Türkiye elektrik tüketim tahmini için çok katmanlı ileri beslemeli-

geri yayılımlı yapay sinir ağı tercih edilmiştir. Ağ tasarımında; giriş verileri olarak 

çalışmamızda baz alınan Model 3 verileri esas alınmıştır.   
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Ağ tasarımı için MATLAB2009 programı kullanılmış, m-file üzerinde kod yazılarak 

1970 yılından 2009 yılına kadar olan verilerin 2/3’ü eğitim ve 1/3’ü test için 

kullanılmıştır. Çalışmamızda verilerimize en uygun ağ yapısının bulunması için 

birçok ağ yapısı üzerinde çalışmalar yapılmıştır. Yine çok sayıda öğrenme 

algoritması kullanılarak; ağın çıkışlarının, hata oranı en düşük cevabı verecek 

öğrenme metodunu bulması için çalışılmıştır. Katman sayıları ve katmanlardaki 

nöron sayıları belli bir seviyeden başlanarak artırma ve eksiltme yöntemleri ile en 

uygun çözüme ulaşılmaya çalışılmıştır. Bu kapsamda Çizelge 6.6.’da Gradient 

descent öğrenme algoritmalı çeşitli ağ yapılarında eğitim ve test araştırma sonuçları 

verilmiştir. Yine devamında Çizelge 6.7’de Levenberg- Marquart öğrenme ve 

Çizelge 6.8’de Resilient backpropagation öğrenmeli çeşitli ağ yapılarının sonuçları 

sunulmuştur. 

 

Çizelge 6.6. Gradient descent öğrenme tabanlı tasarım 

 

Öğrenme 
Algoritması Kod 

Katman 
sayısı 

Aktivasyon 
fonksiyonu 

Eğitim 
hatası(%) 

Test 
Hatası(%) 

Epoch 
sayısı 

[ 10 9 1 ] tansig-tansig-purelin 1,86 4,18 89 

[ 10 5 1 ] tansig-tansig-purelin 3,58 3,41 185 

[ 10 5 1 ] purelin-purelin-purelin 4,52 3,77 319 

[ 10 5 1 ] purelin-tansig-purelin 3,49 3,47 278 

[ 5 5 1 ] tansig-tansig-purelin 4,68 4,53 164 

[ 5 5 1 ] purelin-tansig-purelin 3,7 3,78 133 

[ 10 1 ] tansig-purelin 5,11 3,49 58 

Gradient 
Descent 

traingdx 

[ 10 1 ] purelin-purelin 4,22 4,25 87 

 

 Çizelge 6.7. Levenberg-Marquart öğrenme tabanlı tasarım 
 

Öğrenme 
Algoritması Kod 

Katman 
sayısı 

Aktivasyon 
fonksiyonu 

Eğitim 
hatası 
(%) 

Test 
Hatası 
(%) 

Epoch 
sayısı 

[ 10 9 1 ] tansig-tansig-purelin 1,02 3,77 34 

[ 10 5 1 ] tansig-tansig-purelin 2,66 3,33 23 

[ 10 5 1 ] purelin-purelin-purelin 3,01 4,31 51 

[ 10 9 1 ] purelin-tansig-purelin 0,11 3,31 43 

[ 5 5 1 ] tansig-tansig-purelin 4,12 3,64 12 

[ 5 5 1 ] purelin-tansig-purelin 4,29 3,35 5 

[ 10 1 ] tansig-purelin 3,87 3,75 27 

Levenberg-
Marquart 

trainlm 

[ 10 1 ] purelin-purelin 4,06 3,56 46 



95 

 
 
Çizelge 6.8. Resilient backpropagation öğrenme tabanlı tasarım 
 

Öğrenme 
Algoritması Kod 

Katman 
sayısı 

Aktivasyon 
fonksiyonu 

Eğitim 
hatası 
(%) 

Test 
Hatası 
(%) Epoch  

[ 10 9 1 ] tansig-tansig-purelin 2,55 3,44 163 

[ 10 5 1 ] tansig-tansig-purelin 3,33 4,8 194 

[ 10 5 1 ] purelin-purelin-purelin 3,87 4,03 159 

[ 10 9 1 ] purelin-tansig-purelin 2,09 4,51 105 

[ 5 5 1 ] tansig-tansig-purelin 3,29 3,32 166 

[ 5 5 1 ] purelin-tansig-purelin 4,87 3,88 123 

[ 10 1 ] tansig-purelin 3,5 4,24 79 

Resilient 
Backpropagation  

trainrp 

[ 10 1 ] purelin-purelin 3,56 4,72 97 

      

Sonuçlar ışığında çalışmamızda; en düşük test ve eğitim hatası çıkışı üreten 

Levenberg-Marquart öğrenmeli çok katmanlı ileri beslemeli-geri yayılımlı bir yapay 

sinir ağı tercih edilmiştir. Şekil 6.6’da gösterildiği gibi birinci gizli katmanda 10 

nöron, ikinci gizli katmanda 9 nöron, çıkış katmanında ise bir nöron şeklinde bir ağ 

konfigürasyonu kullanılmıştır.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Şekil 6.6. Oluşturulan YSA gizli katman mimarisi 

 

MATLAB2009 programında, oluşturulan ağ nesnesi için aşağıda ifade edilen yapı 

oluşturulmuştur. 
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net = newff([-1 1;-1 1;-1 1;-1 1],[10 9 1],{'purelin','tansig','purelin'},'trainlm') 

 

Bu nesne yapısı üzerinden de görüleceği üzere; 1. gizli katmandaki nöronlarda 

“purelin”, 2. gizli katmandaki nöronlarda “tansig” ve çıkış katmanında ise yine 

“purelin” aktivasyon fonksiyonları kullanılmıştır. Ayrıca öğrenme oranı 

0,1(net.trainParam.lr=0.1), moment katsayısı olarak 0,9(net.trainParam.mc=0.9) ve 

performans fonksiyonu olarak ise ortalama kare hata(net.performFcn = 'mse') 

kullanılmıştır.  

 
Çalışmamızda modellenen yapay sinir ağının, Şekil 6.7.’de eğitim sürecinde giriş 

verilerini öğrenebilmesinde uyum ve Şekil 6.8’de ise eğitim sürecinden sonra ağın 

hedef çıkışlara olan uyumunu gösteren ağ çıkışları verilmiştir.   

 

 

Şekil 6.7. Eğitim hedef performans eğrisi 
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Şekil 6.8. YSA çıkışlarını hedef performans uyum eğrisi 

 

Çalışmamızda tercih ettiğimiz en düşük test ve eğitim hatası çıkışı üreten Levenberg-

Marquart öğrenme algoritmalı çok katmanlı ileri beslemeli-geri yayılımlı bir yapay 

sinir ağı eğitim ve test sonuçlarının performans kriter sonuçları Çizelge 6.9’da 

sunulmuştur.  

 

Çizelge 6.9. YSA eğitim ve test performans kriterleri sonuçları 

Eğitim 

MAPE(%) MaxError MSE RMSE SSE 

0,906 0,84 0,11 0,319 2,75 

          

Test 

MAPE(%) MaxError MSE RMSE SSE 

1,19 5,92 3,3 1,82 42,85 
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6.6. Öz örgütlenmeli harita(SOM) analizi 

 

Çalışmamızda SOM ağının tasarımı için, MATLAB7.9 programı kullanılmıştır. Ağın 

kurulumu için program içerisinde yer alan “newsom” ağ nesnesi içerisinde, bir SOM 

ağı tasarımı için tüm bileşenler tanımlanmıştır. Bahse konu ağ tasarımında öncelikle 

giriş verilerinin dağılımı ve birimsel farklılıkları nedeni ile -1 ve +1 aralığında 

normalize edilerek, matris formunda ağ nesnesine bu şekilde tanımlaması yapılmıştır.  

 

Đkinci adımda, çıkış katmanın boyutları belirlenmesi gerekmektedir. Program 

içerisinde mevcut ağ nesnesinde hâlihazırda [5,8] boyutu tanımlıdır. Bu boyut en ve 

boy olarak artırma eksiltme yolu diğer bir ifade ile deneme yanılma yöntemi ile 

değiştirilerek, optimum model arayışları gerçekleştirilmiştir.  

 

Üçüncü adımda, SOM ağının topolojik fonksiyonun seçimi yapılmalıdır. Bunun için 

ağ nesnesinde üç farklı yapıdan söz edilebilir. Bunlar ‘hextop’, ‘gridtop’ veya 

‘randtop’dur. Mesafe fonksiyonu olarak ise ‘linkdist’, ‘dist’ veya ‘mandist’ 

fonksiyonlarının ayrı ayrı uygulaması gerçekleştirilmiştir.  

 

Dördüncü adımda, derecelendirme öğrenme oranı(ordering phase learning rate-

OLR), adım değeri(ordering phase steps-OSTEPS), ayarlama öğrenme oranı(tuning 

phase learning rate-TLR) ve komşuluk mesafesi(TND) oranları ağ nesnesinde sırası 

ile “default” olarak yani hazır olarak bulunan değerlerden başlatılmıştır. (OLR: 0,9, 

OSTEPS:1000, TLR:0,02, TND:1) 

 

Ağ için ‘hextop’ topolojisi ve “dist” mesafe fonksiyonu kullanarak, çıkış katmanı 

9x9 boyutunda bir harita üzerine yapılandırılmıştır. Öz örgütlenmeli haritalar, 

danışmansız(unsupervised) öğrenme stratejisine göre çalıştığından çıkış verileri ağa 

gösterilmemiştir.     

 

p=[input1;input2;input3;input4] 
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net=train(net,p) fonksiyonu ile ağ eğitimi yapılmıştır. Eğitilen SOM ağı ile birlikte 

özellikle eğitim verilerinin az olması nedeni ile, ileriye dönük öngürü yapılabilecek 

bir öbekleme olmadığı (Şekil 6.9) ve dolayısıyla Türkiye net elektrik tüketiminin 

uzun dönemli tahmininde, mevcut bilgi yapısıyla SOM ağının yeni girişlere cevap 

vermesinin elde olan mevcut mümkün gözükmediği değerlendirilmiştir.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Şekil 6.9. SOM ağı komşu ağırlık mesafeleri ve pozisyonları  
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6.7. En Küçük Kareler Destek Vektör Makineleri Analizi  
 

Daha önce teorik temellerini Bölüm 5.4’de verdiğimiz destek vektör makinelerinin  

iki ayrı normda incelendiğini bunların sınıflandırma ve regresyon temelli olduğunu 

belirtmiştik. Temelde destek vektör regresyonu( ε -DVR) ile en küçük kareler destek 

vektör regresyonu(EKK-DVR) benzer matematiksel eşitsizliklerden oluşmakla 

birlikte farklı ve karmaşık optimizasyon çözümleri içerir. Optimizasyon çözümleri 

sonucunda iki regresyon modeli arasındaki temel fark; ε -DVR’de eğitim için, hata 

çıkışlarının kontrolünün ε , C ve σ ile yapılırken, EKK-DVR’de eğitimin daha basit, 

sade ve çözüme sadece iki değişken C ve σ  kullanılarak yapılmasıdır. Şekil 6.10’da 

basit bir regresyon doğrusu gösterilmektedir.  

 

 

Şekil 6.10. Destek vektör regresyon doğrusu 

 

Burada ε  çıkışta izin verilebilir maksimum hata, C düzenlileştirme 

parametresi(regularization parameter), σ  kernel fonksiyonu band genişliği(spread of 

the function) olarak ifade edilebilmektedir.  

 

Özellikle kernel fonksiyonuna özgü parametrelerin çok küçük ve çok büyük 

seçilmesi optimum regresyon doğrusunun oluşmasında ciddi değişiklikler meydana 

getirecektir. Özetle uygun parametre seçimi EKK-DVR’nin performansını direkt 

olarak etkileyen bir faktördür. Çalışmamızda EKK-DVM eğitimi için  

 

x

y

*
2ξ

1ξ

ε

ε
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MATLAB2009b programı kullanılmıştır. Çalışmada, Belçikalı bilim insanları 

grubunun yayınladığı (http://www.esat.kuleuven.be/sista/lssvmlab), internet 

adreslerinden indirilebilen kullanıma açık “LS-SVMlab1.8 araç kutusu” ve araç 

kutusunun iyi anlaşılabilmesi için “LS-SVMlab Toolbox User’s Guide version 1.8” 

çalışmada rehber olarak kullanılmıştır. Çalışmamızda MATLAB programında 

kullanılan en küçük kareler destek vektör makinası kurulum nesnesi aşağıdaki 

şekilde oluşturulmuştur. 

 

[alpha, b]=trainlssvm({X,Y,type,gam,sig2,”RBF_kernel”}) 

 

Kurulum nesnesinden de görüleceği üzere; kernel fonksiyonu olarak radyal tabanlı 

fonksiyon(Radial Basis Function-RBF) kullanılmıştır. C(regularization) ve sig2( 2σ ) 

parametrelerinin belirlenmesi ve değiştirilmesi süreçlerini gösterir algoritma Şekil 

6.11’da verilmektedir.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 6.11. Sigma2 ve gama parametrelerini belirleme algoritması 
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Algoritma sonucunda tüketim tahmin modelimizin en iyi hata oranına sahip bir 

regresyon makinesi özelliğine sahip olması için; deneylerle elde edilen optimum 

Gama(γ )(veya C) ve sig2( 2σ ) parametreleri Çizelge 6.10’da verilmiştir. Çizelge 

6.10’da da görüleceği üzere; tüketim tahmin modelimizde oluşturacağımız en küçük 

kareler destek vektör makinesi, eğitimde en düşük ortalama kare hatayı(MSE) γ =50 

ve 2σ =0,3 olduğu durumda yakaladığı görülecektir. Çizelge 6.10’da Gama(γ ) ve 

sig2( 2σ ) için belirlenen [30-200] ve [0,1-1] aralıkları dışında kalan üst ve alt 

değerlerde büyük değişiklikler olmamıştır.  

 
Çizelge 6.10. sigma2 ve gama parametre MSE hata değişimi. 
 

C(veya gama) 

Sima2/gama(veyaC) 30 50 100 150 200 

0,1 0,287 0,1822 0,265 0,312 0,342 

0,3 0,1967 0,1699 0,1743 0,1769 0,4895 

0,5 0,288 0,198 0,222 0,344 0,385 

0,7 0,313 0,212 0,342 0,505 3,18 

σ2 

1 0,464 0,233 2,1 2,85 3,01 
 

En küçük kareler destek vektör makinesinin optimal parametre seçimi ile birlikte 

eğitim süreci tamamlandıktan sonra eğitim ve test verimiz üzerinde oluşan tüm 

performans kriterler sonuçları aşağıda Çizelge 6.11’de verilmektedir.  

 

Çizelge 6.11. EKK-DVM eğitim ve test sonuçları 
 

EKK-DVM Eğitim 

MAPE(%) MaxError MSE RMSE SSE 

0,876 1,05 0,1699 0,412 4,59 

EKK-DVM Test 

MAPE(%) MaxError MSE RMSE SSE 

1,004 4,40 2,060 1,435 26,782 

 

Şekil 6.12’de En küçük kareler destek vektör makinesinin(EKK-DVM) parametre 

seçimi ile birlikte eğitim sürecinin tamamlanması sonucu elde edilmiş regresyon 

eğrisi görülmektedir.  



103 

 

 
 
Şekil 6.12. EKK-DVM eğitim sonucu elde edilen regresyon doğrusu. 

 

6.8. Sayısal Sonuçların Değerlendirilmesi 

 

Çalışmamızdaki uygulanan tüm analizlerde bağımsız değişkenler olarak; kurulu 

güç(installed power), brüt elektrik üretimi(gross electricity generation), 

nüfus(population) ve toplam abone sayısı(total subscribership)  verilerinin 1970-

2009 yılı arası veri temini yapılmış ve objektif bir değerlendirme olması açısından 

tüm verilerin 2/3’ü eğitim ve 1/3’ü test amacıyla kullanılmıştır. Giriş verileri 

öncelikle normalize edilerek, tasarımı yapılan sistemlere sunulmuş ve ağ veya sistem 

çıkışları tekrar denormalize edilerek sonuçlar raporlanmıştır. Daha önceki 

bölümlerde çoklu doğrusal regresyon analizi, yapay sinir ağları analizi ve en küçük 

kareler destek vektör makinesi performans sonuçları verilmişti. Bu bölümde özellikle 

eğitim ve test verileri üzerinde sonuçların birlikte irdelenmesi önemli bir kriter  



104 

 

gösterge olan yüzde mutlak hata ile gösterilecektir. Çizelge 6.12’de tasarımlanan 

algoritmalarda eğitim sürecindeki ve Çizelge 6.13’de test sürecindeki yüzde mutlak 

hatalar verilmiştir.   

 

Çizelge 6.12. Eğitim grubu için denormalize edilmiş eğitim grupları 

 
Gerçek 
Elektrik 
Tüketimi 

ÇLR YSA 
EKK-
DVM 

ÇLR 
%Hata 

YSA 
%Hata 

EKK-DVM 
%Hata 

7,31 8,5101293 7,16 7,2 16,41760 2,05198 1,50478 
8,29 9,3195044 8,44 8,18 12,41860 1,80941 1,3269 
10,53 11,132184 10,69 10,48 5,71875 1,51947 0,47483 
11,36 11,991738 11,81 11,64 5,56107 3,96127 2,46479 
16,08 15,236695 15,72 15,71 5,24443 2,23880 2,30099 
17,97 16,856239 17,63 17,62 6,19789 1,89204 1,94769 
19,63 18,736897 19,75 19,4 4,54968 0,61131 1,17167 
20,4 19,27895 20,44 20,52 5,49534 0,19608 0,58824 
23,59 22,347421 23,57 23,48 5,26739 0,08478 0,46629 
24,47 23,147337 24,39 24,43 5,40524 0,32693 0,16346 
29,71 28,440692 29,23 30,11 4,27232 1,61561 1,34635 
32,21 32,364299 33,05 31,35 0,47904 2,60789 2,66997 
39,72 40,100386 39,93 39,54 0,95767 0,52870 0,45317 
43,12 43,506543 42,96 43,33 0,89644 0,37105 0,48701 
49,28 50,101449 48,77 49,72 1,66690 1,03490 0,89286 
53,99 55,335799 53,61 54,22 2,49268 0,70383 0,426 
61,4 64,070814 61,78 60,87 4,34986 0,61889 0,86319 
67,39 69,324432 67,71 67,88 2,87050 0,47485 0,72711 
81,88 81,012993 81,55 81,48 1,05887 0,40302 0,48852 
87,71 86,880309 87,57 87,52 0,94594 0,15961 0,21662 
98,3 98,51795 98,77 97,94 0,22172 0,47813 0,36622 
97,07 98,305273 96,85 98,12 1,27256 0,22664 1,08169 
111,77 113,38184 112,01 112,44 1,44210 0,21473 0,59945 
121,14 120,8826 120,84 121,22 0,21248 0,24764 0,06604 
144,09 138,82825 144,02 144,18 3,65171 0,04858 0,06246 
155,14 148,32327 155,19 155,07 4,39392 0,03223 0,04512 
158,06 165,676 158,07 158,77 4,81842 0,00633 0,4492 
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Çizelge 6.13. Test grubu için denormalize edilmiş  test grupları 
 
Gerçek 
Elektrik 
Tüketimi 

ÇLR YSA 
EKK-
DVM 

ÇLR 
%Hata 

YSA 
%Hata 

EKK-DVM 
%Hata 

9,53 10,226017 9,49 9,58 7,30343 0,41972 0,0052 

13,49 13,486647 13,65 13,3 0,02485 1,18606 0,0141 

18,93 17,94755 18,84 18,87 5,18991 0,47543 0,0032 

22,03 20,613659 21,95 22,12 6,42914 0,36314 0,0041 

27,64 25,815188 26,69 27,1 6,60206 3,43704 0,0195 

36,7 36,562477 36,75 36,86 0,37472 0,13624 0,0044 

46,82 47,622198 46,84 46,77 1,71337 0,04272 0,0011 

59,24 60,415968 58,45 58,53 1,98509 1,33355 0,0120 

74,16 75,554315 75,5 73,19 1,88014 1,80690 0,0131 

91,2 92,0454 91,24 91,5 0,92697 0,04386 0,0033 

102,95 104,42865 101,31 103,59 1,43628 1,59300 0,0062 

130,26 128,8715 131,58 128 1,06594 1,01336 0,0173 

161,95 153,69268 156,03 157,55 5,09868 3,65544 0,0272 
 

Çoklu doğrusal(lineer) regresyon analizi, yapay sinir ağları analizi ve en küçük 

kareler destek vektör makinesi sonuçlarının tüm performans kriterleri ile birlikte 

gösterimi Çizelge 6.14’de verilmiştir.  

 

Çizelge 6.14. Performans sonuçları. 

Eğitim  Test Performans 
kriteri ÇLR YSA EKK-DVM ÇLR YSA EKK-DVM 

MAPE(%) 4,01 0,906 0,876 3,34 1,19 1,004 

MaxError 7,62 0,84 1,05 8,25 5,92 4,40 

MSE 6,06 0,11 0,1699 6,45 3,3 2,060 

RMSE 2,46 0,319 0,412 2,54 1,82 1,435 

SSE 163,69 2,75 4,59 83,79 42,85 26,782 
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Yine ÇLR, yapay sinir ağları (YSA) ve EKK-DVM (LS-SVM) analizi ile yapılan 

tahmin sonuçlarının Türkiye’nin gerçek net elektrik tüketimi zaman serisi üzerinde 

gösterimi aşağıda Şekil 6.13’de verilmiştir.  

 
 

Şekil 6.13. Tahmin model sonuçlarının gerçek tüketim eğrisi ile kıyaslanması  

 

Sonuçlar incelendiğinde en dikkat çekici noktanın EKK-DVM modelinin YSA ve 

ÇLR modeline göre test başarısının daha iyi olduğu görülmektedir. Eğitim hata 

oranları dikkate alındığında ise EKK-DVM ile YSA sonuçlarının birbirine yakın 

olduğu görülecektir. Yine dikkat çekici bir nokta ise; özellikle kriz dönemlerinde 

düşen tüketimin YSA ve EKK-DVM yöntemlerince başarılı algılandığı 

görülmektedir.  
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6.8.1. ROC(Receiver Operating Characteristic) eğrisi analizi 

 

Özellikle Sinyal algılamada, algılayıcı işleyiş karakteristiği orijinal ismi ile 

ROC(Receiver Operating Characteristic) eğrisi ikili bir sınıflayıcı sistemin 

performansını gösteren ve belli eşik seviyeleri kullanan grafiksel bir çizimdir. Bu 

grafiksel çizim ile değişik eşik(threshold) ayarlarında pozitif değerlerin gerçek 

pozitif bölümleri(TPR, True Positive Rate) ile negatif değerlerin yanlış pozitif 

bölümleri(FPR, Yanlış Positive Rate) oluşturulur. Burada; TPR 

duyarlılılık(sensitivity), FPR ise özgüllük(specificity) olarak bilinir.  

 

ROC analizi, en uygun modelleri seçmek sınıfsal dağıtım problemlerinde bağımsız 

alt optimal alanları atmak için araçlar sağlar. ROC analizinin, özellikle bio-istatistik 

çalışmalarda hastalık tanı karar aşamasındaki maliyet/fayda analizinde, doğrudan ve 

doğal bir şekilde ilişkisi olduğu söylenebilir. ROC analizi tıp, radyoloji, biometri, 

makine öğrenmesi ve veri madenciliği araştırmalarında artan bir şekilde kullanılmaya 

devam etmektedir.  

 

Bir sınıflama modelini, bazı sınıflar ve gruplar arasında örnekleri eşleme olarak ifade 

edebiliriz. Bir sınıflandırıcı veya tanı sonucu gerçek bir değer olabilir. Sınıfların 

sınırları arasında bir eşik değeri ile sınıflar belirlenmelidir. Sınıflandırma 

problemlerinde, ROC eğrisi belirli bir eşik(threshold) değerlerine göre doğru 

pozitiflerin sayısının, yanlış pozitiflerin bir fonksiyonu olarak elde edilmesi ile 

meydana gelmektedir.  

 

Örneğin iki sınıflı bir tahmin probleminde pozitif(p) ve negatif(n) etiketli 

çıkışlarımız olduğunda, ikili tahminde dört farklı olasılıktan söz edilebilir. Eğer 

tahmin çıkışımız pozitif(p) olduğunda, gerçek çıkışımız pozitif(p) ise; bu durum 

gerçek pozitif(True Positive-TP), gerçek çıkışımız negatif(n) ise; bu durum yanlış 

positive(False Positive-FP) tanımlanabilir. Yine tahmin çıkışı negatif(n) olduğunda; 

gerçek çıkış negatif(n) ise gerçek negatif(True Negative-TN), gerçek çıkış pozitif(p) 

ise yanlış negatif(False Negative-FN) olarak ifade edilebilir. P tane pozitif örnek ve 

N tane negatif örnek için dört farklı çıkış ihtimali söz konusudur. Bu durum Şekil  
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6.14’de verilen tablo ile özetlenebilir. Bu tablo genellikle, 2x2’lik ihtimal 

tablosu(contingency table), veya bozulma tablosu(confusion table) olarak 

isimlendirilmektedir. Bu ihtimaller matrisi, birçok ortak ölçümler için temel 

oluşturmaktadır [Fawcett, 2006]. 

 

 

 

 

 

 

 

 

 

 

 
Şekil. 6.14. Đhtimal tablosu 

 

Eş. 6.7’de verilen gerçek pozitif oran(TPR) modelin duyarlılık ölçüsü olarak 

bilinmektedir. Bir diğer ifade ile doğru şekilde sınıflanmış pozitiflerin, topla 

pozitiflere oranı olarak ifade edilebilir. Yine Eş. 6.8’deki yanlış pozitif oran(FPR) 

hatalı şekilde sınıflandırılmış negatiflerin, toplam negatiflere oranı olarak 

açıklanabilir. Eş. 6.9’da verilen ACC(accuracy) ise modelin doğruluğunu veren bir 

ölçüttür. ROC eğrisi analizinde bir diğer önemli parametre ise sistemin belirliliği 

veya özgüllüğüdür. Sistem belirliliği(specificity) SPC Eş. 6.10’da verilmektedir.  
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ROC grafikleri x ekseni üzerinde yanlış pozitif oran(FP oran), y ekseni üzerinde ise 

gerçek pozitif oran(TP oran) çizilen iki boyutlu grafiklerdir. Bir ROC grafiği, doğru 

pozitifler ve yanlış pozitiflerin göreceli bir karşılaştırmasını(ödünleşimini) verir. 

Gerçek pozitif değerler “duyarlılık”, yanlış pozitif değerler ise “özgüllük” olarak da 

bilinmektedir. Yanlış değerlere sahip olmayan ideal bir testte ROC eğrisi (0,0) (0,1) 

ve (1,1) noktalarını birleştirmektedir. ROC çizimi y=x fonksiyonuna yaklaştıkça 

başarısız bir test ortaya çıkmaktadır. 

 

 

Şekil 6.15. Beş ayrı sınıflayıcı gösteren basit bir ROC grafiği 

 

Bir ayrık sınıflandırıcı, yalnızca bir sınıf etiketi çıkışlarından birisidir. Yani her bir 

ayrık sınıflandırıcı ROC uzayında bir noktaya karşılık gelen TPR ve FPR çiftini ifade 

eder. Örnek ayrık sınıflandırıcılar Şekil 7.2’de gösterilmektedir. ROC uzayında en 

düşük (0,0) noktası pozitif bir sınıflama stratejisi vermez. (0,1) noktası ise 

mükemmel bir sınıflama sunar.  Şekil 6.15’de verilen D’nin performansı mükemmel 

gözükmektedir. Diagonal hat y=x rastgele bir sınıf tahmin stratejisini temsil eder.  
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C’nin performansı ise gerçekte rastgeledir(random) ve (0,7-0,7) noktasında %70 

pozitif tahmin olacağı söylenebilir [Fawcett, 2006]. E ise rastgele bir durumdan daha 

kötüdür ve B noktasının olumsuzluğu olarak görülebilir. 

 

Bir ROC eğrisi sınıflandırıcı performansının iki boyutlu anlatımıdır. Sınıflandırıcıları 

karşılaştırmak için; beklediğimiz performansı temsil eden tek bir skaler değer için 

ROC performansını azaltmak isteyebiliriz. Bunun için yaygın bir yöntem, ROC 

eğrisi altında kalan alanı hesaplamaktır. ROC eğrisi altında kalan alan kısaca AUC 

olarak gösterilir. AUC birimi kare alanın belirli bir bölümü olduğundan, mutlaka 0 

ile 1,0 değeri arasında bir değer alacaktır. Diagonal hat yani rastgele tahmin noktaları 

altıda kalan alan 0,5 olacağından, hiçbir gerçek sınıflandırıcının alanı 0,5’in altında 

olmamalıdır.  

 

 

 
 
Şekil 6.16. ROC eğrisi AUC yaklaşımları 
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Örnek olarak ROC eğrisi altında kalan alanların, alansal olarak büyüklük gösterimi 

Şekil 6.16’de verilmektedir. Burada 0<AUC(C)<AUC(B)<AUC(A)=1 olduğu için, 

en iyi sınıflayıcı performansının A eğrisi üzerinde olduğu görülecektir.  

 

Analiz: Çalışmamızda tasarlanan modellerin tahmin performansı en genel bir ifade 

ile gerçek elektrik tüketimine olan yakınlığı ile ölçülür. Özellikle test verileri 

üzerinde modellerin duyarlılık ve belirlilik(özgüllük) testlerinin yapılması 

performans kıyaslamasında büyük önem taşımaktadır. Bu amaçla gerçek tüketim 

eğrisi üzerinde belirli bir eşik(threshold) aralığı tanımlanarak, bu aralığın içerisinde 

kalan model tahminlerini “sınıf-1”, bu aralığın dışında kalan alanlara ise “sınıf-0” 

etiketlemesi yaparsak ROC analizi için gerekli olan 2x2’lik ihtimal tablosu 

oluşturulabilir. Bu durumun sembolik gösterimi Şekil 6.17’de verilmektedir. Şekil 

6.17’den de anlaşılacağı gibi, çalışmamızda sınıf eşik aralığı olarak [-1,30 +1,30] 

aralığı sınıf etiketlemesi için kullanılmaktadır.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Şekil 6.17. Tüketim değişimi üzerinde sınıf etiketleri gösterimi 

 

Çalışma sonucunda tasarlanan üç farklı model için oluşturulan ihtimal 

matrisleri(confusion matrix) aşağıda yer alan Çizelge 6.15, Çizelge 6.16 ve Çizelge 

6.17’de düzenlenmiştir.  
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Çizelge 6.15. Çoklu lineer regresyon modeli için ihtimal matrisi 
 

ÇLR Gerçek "0" Gerçek "1" Toplam 

Sınıflanmış "0" 4 1 5 

Sınıflanmış "1" 2 6 8 

Total 6 7 13 

TPR 0,6667 0,8571   

FPR 0,1429 0,3333   

TNR 0,8571 0,6667   

FNR 0,3333 0,1429   

Duyarlılık 66,67% 85,71%   

Belirlilik 85,71% 66,67%   
 

Çizelge 6.15’de yer alan çoklu lineer regresyon modeli ihtimal matrisi tablosu 

incelendiğinde hassas ölçüm sınıfı olan sınıf-1’de %85,71 duyarlılık ve %66,67 

belirlilik oranı ile modelin kabul edilebilir seviyede olduğu genel itibari ile 

normalüstü bir performans sergilediği söylenebilir.  

 

Çizelge 6.16. Yapay sinir ağı modeli için ihtimal matrisi 
 

YSA Actual "0" Actual "1" Total 

Sınıflanmış "0" 4 1 5 

Sınıflanmış "1" 0 8 8 

Total 4 9 13 

TPR 1 0,8889   

FPR 0,1111 0   

TNR 0,8889 1   

FNR 0 0,1111   

Duyarlılık 100,00% 88,89%   
Belirlilik 88,89% 100,00%   

 

Çizelge 6.16’da çok katmanlı ileri beslemeli bir YSA modeli için ihtimaller 

tablosu(matrisi) incelendiğinde, hassas ölçüm sınıfı olan sınıf-1’de %88,89 duyarlılık 

ve %100 belirlilik oranı ile modelin performansı yüksek bir model olduğu 

görülmektedir.  
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Çizelge 6.17’de ise en küçük kareler destek vektör makinesi modeli için oluşturulan 

ihtimaller tablosunda ise, sınıf-1’de %100 duyarlılık ve belirliliğe ulaştığı 

görülmektedir. Bu durum EKK-DVM modelinin ise literatürde mükemmel diye 

tanımlanabilecek bir performans sergilediği görülmektedir.  

 

Çizelge 6.17. EKK-DVM modeli için ihtimal matrisi 
 

EKK-DVM Gerçek "0" Gerçek "1" Toplam 

Sınıflanmış "0" 2 0 2 

Sınıflanmış "1" 0 11 11 

Total 2 11 13 

TPR 1 1   

FPR 0 0   

TNR 1 1   

FNR 0 0   

Duyarlılık 100,00% 100,00%   

Belirlilik 100,00% 100,00%   
 

Çizelge 6.18. Modellerin hassaslık ve özgüllük performansı  
 

Model Duyarlılık(%) Belirlilik(%) AUC(%) 

ÇLR 85,71 66,67 92,86 

YSA 88,89 100,00 97,22 

EKK-DVM 100,00 100,00 100,00 
 

Çalışmada kullanılan tüm modellerin karşılaştırmalı olarak; duyarlılık(%), 

belirlilik(%) ve eğri altında kalan alan(%) ölçüleri Çizelge 6.18’de gösterilmektedir.   
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                                  (a)                                                                 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         
                                                                  (c) 
 
Şekil 6.18. Elektrik tüketim değişiminin ROC eğrileri (a) YSA (b) ÇLR (c) EKK-       
                  DVM 
 

6.8.2. ETKB projeksiyonları ile EKK-DVM model sonuçlarının karşılaştırması 

 

Ülkemiz enerji planlamaları çalışmaları için 1984 yılından başlayarak günümüze 

kadar olan süreçte Enerji ve Tabii Kaynaklar Bakanlığı, “Model for Analysis of 

Energy Demand” (MAED) talep modelini kullanmış ve gelecek yıllar için ülkemiz 

enerji ihtiyacını (tahminlerini) bu model tabanında belirlemiştir. MAED talep 

modeli, Uluslararası Atom Enerjisi Ajansı’nca (UAEA) gelistirilen ülkenin orta ve 

uzun  dönemli genel enerji  ve  elektrik enerjisi talebini degerlendiren bir simülasyon  
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modelidir. Bu modelde çok genis bir bağımsız değişken grubu (ekonomik, sosyal ve 

teknik birçok yapı) model girdisi olarak kullanılmaktadır. Bu çalışmaların önemli bir 

kısmını oluşturan elektrik enerjisi üretim planlaması çalısmaları ise TEĐAŞ 

tarafından yapılmakta ve bu amaç için “Wienn Automatic System Planning Package” 

(WASP) yazılım modeli tercih edilmektedir [Yoldaş, 2006]. 

 

Türkiye’de elektrik dağıtım şirketlerinin özelleştirilmesi ile birlikte yaşanan verilerin 

elde edilmesi, bilgilerin geç toplanması ve birleştirilmesi gibi sorunları sebebiyle;  

ETKB ve TEĐAŞ ekonomik krizin etkileri dikkate alınarak revize edilmiş olan 

“yüksek talep” ve “düşük talep” serilerini kullanmaktadır. TEĐAŞ tarafından yapılan 

üretim kapasite projeksiyonu periyodu 10 yıllık dönemler halinde belirlenmektedir. 

Çalışmamızda da baz alınan “2009 yılı Türkiye elektrik enerjisi 10 yıllık üretim 

kapasite projeksiyonu” raporlarında; Mevcut, inşası devam eden ve Enerji Piyasası 

Düzenleme Kurumu’nca (EPDK) Ocak 2009 dönemi Đlerleme Raporlarına göre iki 

ayrı senaryo halinde (Senaryo 1 ve Senaryo 2) hazırlanan 2009 – 2013 yılları 

arasında işletmeye gireceği öngörülen (varsayılan) projelerin bu periyotdaki üretim 

kapasiteleri ve güçleri dikkate alınarak iki talep serisine göre arz-talep dengeleri, güç 

ve enerjileri dikkate alınarak işlemler tesis edilmektedir [TEĐAŞ, 2010].  

 

2009 – 2018 dönemini kapsayan üretim kapasite projeksiyonu (tahmini) çalışması ile 

elektrik enerjisi brüt tüketiminin mevcut, inşası devam eden, lisans almış ve 

öngörülen tarihlerde devreye girmesi beklenen kapasite ile güvenilir bir şekilde nasıl 

sağlanacağının analizi yapılmaktadır. Söz konusu bu üretim tesislerinin 

yapabilecekleri üretim miktarları proje ve güvenilir üretim kapasitesi olarak 

çalışmaya dâhil edilmektedir [TEĐAŞ, 2010]. Tez çalışmamızda optimum sonuç 

üreten EKK-DVM modeli ile ileriye dönük tahminlemede giriş verileri olacak kurulu 

güç ve brüt elektrik üretim verileri (inşası devam eden, lisans almış ve öngörülen 

tarihlerde devreye girecek santral verileri dikkate alınarak) 2009 yılı TEĐAŞ 

projeksiyon raporlarından elde edilmektedir.  

 

ETKB projeksiyonlarında, Türkiye elektrik enerjisi talebini brüt tüketim (Türkiye 

brüt üretimi+dış alım-dış satım) üzerinden yapmakta ve bu tahminler net tüketim (iç 
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tüketim, şebeke kaybı ve kaçaklar) tahminleri olmadığı için gerçek fiili talebi 

(Elektrik dağıtım şirketlerinden alınan değerleri) tam olarak yansıtmamaktadır. Yine 

ETKB tarafından yapılan projeksiyonlarda; tahmin edilen brüt değerlerin, gerçekleşen 

brüt tüketim değerlerinden oldukça yüksek olduğu yani sapma miktarının kabul 

edilebilir sınırlar içerisinde olmadığı görülmektedir. Bu durum Çizelge 6.19’da da 

gösterilmektedir. 

 

Çizelge 6.19. Geçmiş yıllar için ETKB brüt tüketim projeksiyonu ve sapmalar 
 

Yıllar 

Brüt tüketim 

gerçekleşme 

(milyar kWh) 

Önceki yıla 

göre artış (%) 

ETKB tarafından yapılan 

(2000 yılı) brüt tüketim 

projeksiyonu (milyar kWh) 

Sapma 

(%) 

1999 118,49 3,9 118,50 0,0 

2000 128,28 8,3 126,80 -1,2 

2001 126,87 -1,1 138,80 9,4 

2002 132,55 4,5 151,40 14,2 

2003 141,15 6,5 165,20 17,0 

2004 150,02 6,3 180,20 20,1 

2005 160,79 7,2 196,60 22,3 

2006 174,64 8,6 213,20 22,1 

2007 190,00 8,8 231,10 21,6 

2008 198,09 4,2 250,60 26,6 

 

ETKB tarafından uygulanan MAED model sonuçlarının, gerçekleşen brüt tüketim ve 

net tüketim sonuçlarına olan niceliksel uzaklığı ile çalışmamızda tasarlanan EKK-

DVM model sonuçlarının hedeflenen ve gerçekleşme değeri olan net tüketim oranına 

yakınlığı Şekil 6.19’da gösterilmektedir.  
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Şekil 6.19. Model sonuçlarının gerçekleşme değerlerine yakınlığı 
 

ETKB tarafından MAED modeli kullanılarak yapılan yüksek talep ve düşük talep 

projeksiyonları ve bu taleplerde yer alan (gelecek öngörüsünde bulunulmuş) kurulu 

güç ve brüt elektrik tüketimi verilerinin giriş verileri olarak kullanıldığı EKK-DVM 

modeli sonuçları Şekil 6.20 ve Çizelge 6.20’de kıyaslanmaktadır. 

Şekil 6.20. 2010-2018 yılları arası uzun dönem gelecek projeksiyonları 

 

 

 



118 

 

Çizelge 6.20. Modellerin uzun dönem gelecek projeksiyonları. 

ETKB (MAED modeli)  

tüketim talep tahmini 

EKK-DVM modeli tüketim talep 

tahmini 
Yıllar 

Yüksek 

talep(TWh) 

Düşük talep 

(TWh) 

Yüksek 

talep(TWh) 

Düşük talep 

(TWh) 

2009 194,00 194,00 Eğitim verisi Eğitim verisi 

2010 202,73 202,73 174,98 169,85 

2011 215,91 213,88 191,75 184,86 

2012 232,10 228,21 202,26 199,14 

2013 249,52 243,50 228,68 220,49 

2014 268,22 259,82 247,77 240,12 

2015 288,34 277,22 260,08 252,18 

2016 309,68 295,52 270,44 265,82 

2017 332,59 315,02 278,56 274,07 

2018 357,20 335,82 303,23 298,26 
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7. SONUÇLAR VE ÖNERĐLER 

 

Dünyamızda ve ülkemizde enerji tüketimindeki pay sürekli yükselerek artmaya 

devam etmektedir. Oluşan talebin kesintisiz olarak en düşük maliyetle ve en kaliteli 

biçimde karşılanması, arz ve çevre güvenliğinin sağlanması, günümüz yeni nesil 

elektrik sistemleri tasarım, kaynak planlamalarında ve liberal bir elektrik piyasasında 

temel hedefler haline gelmiştir. Bu sebeple kesintisiz bir elektrik enerjisi için gerekli 

olan üretim, iletim ve dağıtım planlamaları yapabilmek amacıyla tüketim tahmininde 

bulunmak kaçınılmazdır.  

 

Yıllardır değişik metotlar kullanılarak elektrik tüketim veya yük talep tahmin 

çalışmaları çeşitli metotlar kullanılarak yapılmıştır. Talep tahmin çalışmalarında 

önemli olan tahmin edilen sonucun gerçeğe en yakın olmasıdır. Bunun için 

kullanılan yöntem, yöntemlerde girdi olarak kullanılacak olan bağımsız değişkenlerin 

iyi ve eksiksiz tespit edilmesi kaçınılmaz olmuştur. Yine tahmin çalışmalarında 

geçmişe ait olarak ne kadar çok veri elde edilebilirse, geçmişteki gidişata göre 

önümüzdeki yıllarda, gerçeğe yakın ve hata oranı daha düşük tahmin sonuçlarına 

ulaşmak mümkün olabilir.  

 

Çalışmamızda sağlıklı ve gerçeğe yakın tahminler yapabilmek için öncelikle hangi 

verilerin girdi olarak kullanılacağı ve hangi yöntemlerin kullanılacağı tespit 

edilmiştir. Bu tespit için, geçmişte yapılan tahmin çalışmalarında kullanılan bağımsız 

değişkenler incelenmiş ve incelenen değişkenlere korelasyon ve regresyon analizleri 

yapılarak bağımlı değişken üzerindeki etkileri araştırılarak, en uygun model tespit 

edilmiştir. Geçmiş verilerin iyi analiz edilerek, geleceğe yönelik iyi tahminlerde 

bulunabilmek için; 1970-2009 yılları arası bir veri seti oluşturulmuştur. Bu yıllar 

arası veri setinin 2/3’ü eğitim ve 1/3’ü ise test verisi olarak iki gruba ayrılmıştır. 

Türkiye’nin gelecekteki elektrik tüketimi ÇLR, YSA ve EKK-DVM yöntemleri 

kullanılarak hesaplandığında eğitimde %0,876, testte %1,004 ortalama mutlak hata 

veren EKK-DVM modeli en iyi sonucu üretmiştir. Ancak tasarlanan YSA modelinin 

de eğitimde %0,906 ve testte %1,19 ortalama mutlak hata üretmesi de YSA 

modelinin iyi eğitildiği ve tüketim tahminlerinde daima güçlü bir alternatif olduğu  
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gerçeğini görmemizi sağlamaktadır. Geleneksel ÇLR modeli ise eğitimde %4,01, 

testte %3,34 gibi ortalama mutlak hata üretmesi incelenen bu üç model arasında hata 

oranı en yüksek model olmuştur. Çizelge 7.1 ve Çizelge 7.2’de 2010 yılı için 

validasyon sonuçlarına bakıldığında ÇLR modelinin hem yüksek talep durumu, 

hemde düşük talep durumlarında yüzdesel hatasının çok yüksek olmasına karşın, 

YSA modelinin daha başarılı sonuçlar verdiği görülmektedir. 2010 yılı validasyon 

sonuçlarında yüksek ve düşük talep durumumda EKK-DVM modelinin ÇLR ve YSA 

modellerine göre sırasıyla %1,70 ve %1,28 ile daha başarılı sonuçlar verdiği ve 

modelimizin başarılı bir şekilde tahmin yapabildiğini göstermektedir. 

 

Çizelge 7.1. 2010 yılı yüksek talep durumu validasyon sonuçları 
 

Gerçek 
Elektrik 
Tüketimi ÇLR YSA 

EKK-
DVM 

ÇLR 
%Hata 

YSA 
%Hata 

EKK-
DVM 
%Hata 

172,05 188,22 175,57 174,98 9,39843 2,04592 1,70299 
 

Çizelge 7.2. 2010 yılı düşük talep durumu validasyon sonuçları 
 

Gerçek 
Elektrik 
Tüketimi ÇLR YSA 

EKK-
DVM 

ÇLR 
%Hata 

YSA 
%Hata 

EKK-
DVM 
%Hata 

172,05 165,52 168,34 169,85 3,79541 2,15635 1,2787 
 

Özellikle sonuçlar tüketimde meydana gelen ani pik noktalarını yakalamada EKK-

DVM eğitiminin daha etkin olduğunu göstermektedir. Yine çalışmamızda kullanılan 

bağımsız değişkenler ve bağımlı değişkenin zaman serisi lineer bir forma yapısına 

yakın olduğu düşünüldüğünde EKK-DVM yönteminin daha başarılı olduğu 

değerlendirilebilir. Bu nedenle iyi öğrenme yaptığı tespit edilen en küçük kareler 

destek vektör makineleri(EKK-DVM) ile yapılan tüketim tahminlerinin, ülkedeki 

normal koşullar dâhilinde gerçek tüketim değerlerine daha yakın olacağı 

değerlendirilmektedir. EKK-DVM yöntemi ile elde edilen tahminlere göre 

Türkiye’nin 2018 yılında net elektrik tüketimi 298,26TWh olacağı tahmin edilmiştir 

(Çizelge 7.3). Bu çalışmada gelecek giriş verileri belirlenirken, TEĐAŞ tarafından 

belirlenen 10 yıllık üretim kapasite projeksiyonu, ETKB ve EPDK verileri baz  
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alınarak, yüksek talep ve düşük talep durumları ayrı ayrı dikkate alınarak gelecek 

öngörülerinde bulunulmuştur. 

 

 Çizelge 7.3. EKK-DVM metodu ile tüketim tahmini 
 

Yıllar 
Düşük talep 
durumu(TWh) 

Yüksek talep 
durumu(TWh) 

2012 199,14 202,26 
2013 220,49 228,68 
2014 240,12 247,77 
2015 252,18 260,08 
2016 265,82 270,44 
2017 274,07 278,56 
2018 298,26 303,23 

 

 
Çalışmamızda kullandığımız EKK-DVM yöntemi; özellikle Türkiye elektrik 

piyasasında yer alan elektrik dağıtım şirketlerinin, enerji talep tahminlerini bildirme 

(kısa ve uzun dönemli) sorumluluğu olması nedeniyle, ilgili kuruluşlar tarafından 

tercih edilebilir. Yine ETKB tarafından uzun ve orta dönemli yük ve tüketim talep 

tahmin hesaplamalarında kullanılan MAED model sonuçlarının gerçekleşme 

değerlerinden çok yüksek olmasıda Türkiye’de daha hassas tahmin çalışmalarının 

yapılmasının faydalı olacağını göstermektedir. Bundan sonra yapılacak çalışmalarda; 

özellikle kısa dönemli yük tahmini ve elektrik fiyat analizi konularında EKK-DVM 

yönteminin başarı performansı yeni bir araştırma konusu olacaktır. 
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EK-1. Türkiye tüketim istatistikleri 

 

Çizelge 1.1. Türkiye net tüketiminin(MWh) 2009 yılı için tüketici gruplara göre              
                    dağılımı 

TEDAŞ * ÖZEL 

  Tüketici Grupları D.Şirketi. D.Şirketi. Diğer Toplam 

1-a Tarımsal Sulama    3 355 346   306 458      3 661 805 

1-b Orman.,Avcılık,Balıkçılık,Hayvancılık   831 020   384 400   1 444  1 216 864 

2 Maden Kömürü ve Linyit Üretim Tesisleri   352 415   370 646       723 061 

3 Maden Kömürü ve Linyit Dışı Üretim Tesisleri   485 850   119 978   39 811   645 639 

4 Gıda, Meşrubat, Đçki ve Tütün Sanayii  3 264 513   609 868  1 041 756  4 916 138 

5 Tekstil, Deri ve Giyim Sanayii  8 928 321  1 267 599  1 812 437  12 008 357 

6 Ağaç işleri ve Kağıt Sanayii  1 678 567   740 935  1 052 421  3 471 923 

7 Kauçuk, Lastik ve Plastik Sanayii  1 729 211   351 436   381 335  2 461 983 

8 Kimya Sanayii    1 379 726   399 175  2 701 442  4 480 344 

9 Toprak ve Çimento Sanayii  6 242 111  1 220 447  2 210 149  9 672 708 

10 Demir-Çelik Üretimi ve Đşleme Sanayii  7 521 546  1 611 183  6 867 565  16 000 294 

11 Demir Dışı Metal Üretimi ve Đşleme Sanayii   879 579   348 563   696 268  1 924 409 

12 Makine, Elektrikli Aletler ve Ulaşım  1 435 777  1 698 042   863 729  3 997 547 

13 Organize ve Diğer Fabrikasyon Sanayii  5 763 193  1 418 677  1 065 838  8 247 707 

14 Đnşaat, Bayındırlık    1 495 684   277 972   146 311  1 919 967 

 15-a Resmi Daire      4 992 165  1 853 746   143 730  6 989 641 

 15-b Hastane, Banka, Vakıf, Okul, Kooperatif vb.   580 816   45 158   281 575   907 548 

 15-c Köy ve Diğer Halk Hizmetleri  3 858 240   654 873   20 999  4 534 113 

16 Ticarethane,Yazıhane,Turizm  18 086 466  4 593 040  1 815 354  24 494 860 

17-a Ulaşım, Taşımacılık     430 990   8 068   220 419   659 476 

17-b Haberleşme       681 228   209 491   76 628   967 347 

18 Aydınlatma      3 134 889   709 944      3 844 834 

19 Mesken Đçi Hizmetler    31 363 978  7 783 032    495  39 147 505 

           Toplam      108 471 633  26 982 730  21 439 707  156 894 070 

 

 

 

 

 

 

 

 

 
 
 

Şekil 1.1. Türkiye net tüketiminin genel dağılımı 
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EK-2. TEĐAŞ 2010-2020 yılları arası üretim kapasite projeksiyonları 

 

Çizelge 2.1. Yüksek talep projeksiyonu 

Yıl 
Kurulu 
Güç(GW) 

Brüt Elektrik 
Üretimi(TWh) 

Nüfus(Milyon) 
Toplam 
Abonelik(Million) 

2010 45,01 253,50 72,70 32,34 
2011 48,18 263,62 73,50 33,22 
2012 53,13 287,25 74,28 34,09 
2013 55,18 311,63 75,07 34,97 
2014 55,18 313,93 75,84 35,84 
2015 55,18 314,75 76,60 36,71 
2016 56,38 320,00 77,36 37,59 
2017 56,38 318,78 78,10 38,46 
2018 56,38 315,00 78,83 39,34 

 

Çizelge 2.2. Düşük talep projeksiyonu 

Yıl 
Kurulu 

Güç(GW) 
Brüt Elektrik 

Üretimi(TWh) 
Nüfus(Milyon) 

Toplam 
Abonelik(Million) 

2010 45,01 214,70 72,70 32,34 
2011 48,18 223,37 73,50 33,22 
2012 53,13 244,96 74,28 34,09 
2013 55,18 275,00 75,07 34,97 
2014 55,18 276,00 75,84 35,84 
2015 55,18 278,13 76,60 36,71 
2016 56,38 281,48 77,36 37,59 
2017 56,38 280,78 78,10 38,46 
2018 56,38 277,00 78,83 39,34 
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