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M™ UZERINDE aFX + 2"FT = 0 SARTINI SAGLAYAN GENEL
F,,(K,T) — YAPISI VE BU YAPIYLA ILGILI LIFT
PROBLEMLERI

OZET

Bu tezin amaci daha 6nce elde edilmis olan yapilar1 kapsayan genel yapi denklemini
elde etmektir. Bu baglamda ¢alisma 3 temel boliimden meydana gelmistir. ilk béliimde
M™ manifoldu iizerinde aF¥ + A"FT =0,(F # 0,K >3,T>1ve (K >T),KveT
tam say1, a Ve A sifirdan farkli karmagik sayilar, r sonlu tam sayilardir) sartin1 saglayan
genel F, 5 (K, T) —yapisini tanimlayarak bazi 6zel 6rnekler verilmeye calisildi.

Ikinci bélimde aFX + A"FT = 0 sartim saglayan genel F, ;(K,T) —yapisinin yatay
liftlerinin Nijenhuis tensoriinii hesaplayarak integrallenebilirlik sartlar1 elde edildi.
Daha sonra kotanjant demet igerisinde genel F,,(K,T) — yapismm horizontal
liftlerine gore vektdr ve kovektor alanlarina uygulanan Tachibana operatoriiniin
sonuglari elde edildi. Ek olarak yapinin horizontal liftlerine gore Sasaki metriginin
purliik sartlar1 gosterilmeye c¢alisildi. En son kisim igerisinde ise ikinci boliim
icerisinde elde edilen tiim sonuglar tanjant demet iizerindeki genel F, (K, T) —
yapisinin tam ve yatay liftlerine gore arastirildi.

Anahtar kelimeler: F —Yapisi, integrallenebilirlik Sartlari, Tachibana Operatorii,
liftler, Sasakian metrigi, tanjant ve kotanjant demet



THE GENERAL F,,(K,T) — STRUCTURE SATISFYING

aF¥ + 2"FT = 0 ON M™ AND LIFTS PROBLEMS ASSOCIATED
WITH THIS STRUCTURE

SUMMARY

In this thesis our aim is to get the general structure equation which covers previously
acquired structures. In this context this paper consists of three main sections. In the
first section, we define the general F, ; (K, T) —structure satisfying aF¥ + A"FT =
0,(F#0,K>=3,T>1and (K =>T),K and T integer, @ and A are non zero complex
numbers, r finite integer) on manifold M™ and studied to give some special examples.
The second part, we find the integrability conditions by calculating Nijenhuis tensors
of the horizontal lifts of the general F, (K, T) — structure satisfying aF¥ + A"FT =
0. Later, we get the results of Tachibana operators applied to vector and covector fields
according to the horizonal lifts of the general F, ;(K,T) — structure in cotangent
bundle T*(M™). In addition, we have studied to show the purity conditions of Sasakian
metric with respect to the horizontal lifts of the structure. In the final section, all results
obtained in the second section were investigated according to the complete and
horizontal lifts of the general F, (K, T) — structure on tangent bundle T(M™).

Keywords: F —structure, Integrability conditions, Tachibana operators, lifts, Sasakian
metric, tangent and cotangent bundles
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BOLUM 1. GiRiS

M™ manifoldu iizerinde tensorel yapilarin integrallenebilirligi i¢in tanjant ve kotanjant
demete genigletilmesi son 50 yil i¢inde aragtirma konusu olarak aktif bir sekilde
incelenmistir. 1lk olarak Kentaro Yano ve onun calisma grubu tarafindan
baslatilmistir. Yano ve Ishihara’nin (1973) ¢alismasi buna 6rnek olarak verilebilir. M™,
n boyutlu diferansiyellenebilir manifoldu iizerinde bircok yap1 vardir. ilk olarak,
Ishihara ve Yano (Ishihara, Yano, 1964) F3 + F = 0 sartim saglayan F yapisinin
integrallenebilirlik sartlarini elde etmistir.Andreou (1983) F° + F = 0 sartim saglayan
bir F yapisinin integrallenebilirlik sartlar1 tizerinde ¢aligti. Daha sonra,Nivas ve Prasad
(1985) F,(5,1) — yapisi tizerinde ¢alisti. Ayrica F3(7,1) —yapist M™ den T*(M™)’ye
Das, Nivas ve Pathak (2005) tarafindan genisletilmistir. 1989 yilinda Gupta (1998)
K > 2 pozitif bir tam say1 olmak iizere FX + F = 0 sartim saglayan daha genel
F(K,1) — yapust iizerinde calisti. Ek olarak, Singh tarafindan F2K+5) + FS$ = 0 (F #
0,K = 1 sabit tam say1, S = 1 sabit tek tam say1) sartin1 saglayan F(2K + S,S) —
yapisini ve bunun {lizerinde calisti.Singh, Pandey ve Khare (2016) tarafindan
F(2K+S,S) — yapisinin tam ve yatay liftleri ile M™ den T(M™) tanjant demete
genigletilmistir. Daha sonraki zamanlarda Upadhyay ve Grag (1985) ve Upadhyay ve
Gupta sirastyla FP — FP~9 = 0 (F # 0;p, q tek say1; [ birim afinor) sartin1 saglayan
F(p,-(p-q)) — yapist ve FX — FK=2 =0, (F # 0; I birim afinor) sartim saglayan
F(K,—(K — 2)) — yapis1 lizerinde galistilar. 2004 yilinda,Nivas ve Saxena (2004)
F*+ A"F? =0 (F # 0, A sifirdan farkli kompleks bir say1, 7 sonlu tam say1) sartini
saglayan HSU — (4,2) —yapisinin tam ve yatay liftleri iizerinde calistilar. Daha
sonra,Dube (1998), F?V** + F2 = 0,F + 0 sartin1 saglayan F(2v + 4,2) —yapisi

tizerinde calismustir.

Bu tez igerisinde bizim amacimiz daha dnce elde edilmis olan yapilar1 kapsayan genel
yapt denklemini elde etmektir. Bu baglamda bu arastirma {i¢ ana bdliimden
olusmaktadir. {lk boliimde, M™ manifoldu iizerinde aFX + A"FT = 0,(F # 0,K >

3,T=>1ve (K >=T), KveT tam sayi, a Ve A sifirdan farkli kompleks sayilar,r sonlu



tam say1) sartini saglayan genel F, ; (K, T) —yapist tanimlandi. Ikinci boliimde, aFX +
A"FT =0 sartimi saglayan genel F,;(K,T) —yapisinin yatay liftlerinin Nijenhuis
tensorlinii  hesaplayarak integrallenebilirlik kosullar1 bulunmustur. Daha sonra,
T*(M™) kotanjant demeti igerisinde genel F,, 5 (K, T) — yapisinin yatay liftlerine gore
vektor ve kovektor alanlarina Tachibana operatorii uygulanip vektér ve kovektor
alanlarina uygulanan Tachibana operatoriiniin sonuglar1 elde edilmistir. Ek olarak,
yapinin yatay liftlerine gore Sasaki metriginin piirliik sartlar1 gosterilmistir. Son
boliimde, ikinci boliimde arastirilan ve elde edilen tiim sonuglar T(M™) tanjant demet

tizerinde F, 3 (K, T) —yapisinin tam ve yatay liftlerine gore arastirilmigtur.



BOLUM 2. KAYNAK ARASTIRMASI

M™, C* smifindan diferansiyellenebilir bir manifold olsun ve F ise asagidaki sarti

saglayan sifirdan farkli (1,1) tipli bir tensor alan1 olsun
aFK + 2'FT =0, (2.1)

burada F # 0,K >3, T > 1 ve (K> T), a ve A sifirdan farkli kompleks sayilar, r
sonlu tam sayidir. F degeri M™ nin her yerinde sabit r rankina sahiptir. Biz boyle bir

yapiy1 r rankli Fy (K, T) — yapisi olarak adlandiririz.

M™ iizerinde I birim tensor alan1 olmak {izere [ ve m operatdrleri

aFK-T aFK-T

l=— m=1+—

= (2.2)

seklinde tanimlanir. (2.2) ile tanimlanan [ ve m operatorleri asagidaki sartlari saglar.

2 =— = (2.3)

aFK_T aZFZK—ZT

2 _ 12
m®=1"+2—¢ YT (2.4)

_ I 2 aFK_T azeK—T aF—T

=1+ AT AT AT

42 aFK-T  qp2K-T

B T

42 afFK-T  oqFK-T

=it e— =




l+m=IIm=ml=0,

Fl=IF =F,Fm=mF =0, (2.5)

burada I birim tensor alanidir.

Sonug olarak, eger F # 0 sartim1 saglayan (1,1) tipli bir tensor alan1 varsa, o zaman
sirastyla | ve m ye karsilik M™ {izerinde L ve M gibi iki tamamlayic1 dagilim vardir.
F nin ranki sabit ve her yerde r’ye esit olsun. O zaman, L ve M nin boyutu sirasiyla n
ve n — r dir. Biz bdyle bir yapiy1 F,, ; (K, T) — yapisi olarak adlandiririz ve n boyutlu

M™ manifoldunu F, ; (K, T) —manifoldu olarak adlandiririz.

M™ manifoldu iizerinde aFX + A"FT = 0(F # 0,K >3,T>1ve (K>T), a ve 1
sifirdan farkli kompleks sayilar, r sonlu tamsay1) sarti ile verilen M™ manifoldu

afFk-T
AT

icerisinde (1,1) tipli ¥ tensor alanm ¢ =l —m = —[ — 2 seklinde elde ederiz

ve bu (1,1) tipli tensor alan1 bir almost product yapidir.

Simdi, M"™ manifoldu iizerinde aFX + A"FT =0(F #0,K >3,T>1, a ve A
sifirdan farkli kompleks sayilar, 7 sonlu tamsay1) sartin1 saglayan genel F,, (K, T) —

yapist i¢in birkag 6rnek verelim:

Ornek 2.1. F #0,K =3,T =1vea = A" = 1igin, F? + F = 0 ( Ishthara ve Yano,
1964) sartin1 saglayan F (3,1) —yapisini elde ederiz. Ek olarak, (2.2) sartin1 kullanarak

[ ve m operatdrleri

OKFK_T 2 OIFK_T
l=—-—F—=-Fvem=I1+—:

=]+ F?



Porm?i=mim=ml=0,l+m=1,

Fl=IF=F,Fm=mF = 0.

afFK-T
AT

seklinde tanimlanir. (1,1) tipli Y tensér alamp =l —m = —[ — 2 = —] — 2F?

bir almost product yapis1 verir. Burada I, M™ {izerinde birim tensor alanidir.

Ornek 22. F#0,K=K,T=1ve a=A"=1 igin FK + F =0 (Gupta, 1998)
sartin1 saglayan F (K, 1) —yapisini elde ederiz. Ek olarak, (2.2) sartin1 kullanarak [ ve

m operatorlert;

aFK‘T _ GCFK_T
=—Flvem=1+

[=- AT AT

=1+ FK1,

Porm?=milm=ml=0,l+m=1,

Fl=IF =F,Fm=mF = 0.

(ZFK_T

N

seklinde tanimlanir. (1,1) tipli Y tensor alam Yy =1l—m = —] — 2

2FX=1 bir almost product yapisi verir. Burada I, M™ iizerinde birim tensor alanidr.

Ornek 23. F#0,K =2v+4(v =0),T=2ve a=A" =1 igin F??** + F2 =0
(Dube, 1998) sartin1 saglayan F(2v + 4,2) — yapisin1 elde ederiz. Ek olarak, (2.2)

sartin1 kullanarak [ ve m operatorleri

OKFK_T (ZFK_T
=—F"*2vem=1+

l=_ AT AT

=J+4 F217+2

Po1m?i=mim=ml=0,l+m=1,

Fl=IF=F,Fm=mF = 0.

(ZFK_T

e

seklinde tanimlanir. (1,1) tipli Y tensor alam p =1l —m = —] — 2

2F?Y*2 bir almost product yapisi verir. Burada I, M™ iizerinde birim tensor alamdr.



Ornek 24.F # 0,K = 4,T = 2vea = 1ve A" = 1 (A sifirdan farkli kompleks say1,
r sonlu tam say1) icin F* + A"F? = 0 (Nivas ve Saxena, 2004) sartin1 saglayan HSU —

(4,2) — yapisini elde ederiz. Ek olarak, (2.2) sartin1 kullanarak [ ve m operatorleri

afFk-T F? aFK-T F?
l=— = vem=l+——=I+-—,
Porm?i=mim=ml=0,l+m=1,
Fl=IF=F,Fm=mF =0
K-T 2
seklinde tanimlanir. (1,1) tipli ¢ tensor alamyp =l —m = —[ — 2 aFAr =—-1-2 i—r

bir almost product yapis1 verir. Burada I, M™ {izerinde birim tensor alanidir.

Benzer yollar1 kullanarak diger yapilar1 elde edebiliriz. (Andruou, 1983; Nivas ve
Prasad, 1985 ; Upadhyay ve Grag, 1985 ; Nivas ve Saxena, 2004 ; Lovejoy ve Nivas,
2005 ; Singh ve ark., 2016)



BOLUM 3. MATERYAL VE YONTEM
3.1. Diferansiyellenebilir Manifoldlar

Tamm 3.1.1. Eger X Hausdorff uzayinin n —boyutlu ¢, haritalarinin U, boélgeleri bu

uzay1 Orterse, yani

X = Ugea Uy, (A-indisler kiimesi )

ise Xe n —boyutlu topolojik manifold veya sadece n —boyutlu manifold denir.

Tammm 3.1.2. M, sayilabilir baza sahip Hausdorff uzay olsun. Eger, M {iizerinde
n —boyutlu C* atlaslarinin C* yapisi verilmigse M uzayia n — boyutlu C* sinifindan
diferensiyellenebilir manifold veya diizgiin manifold denir ve M™ ile gosterilir(Bishop

ve Goldberg, 1968).

3.2. Tensor Alam

Tamim 3.2.1. M™, C* sinifindan bir manifold ve Tf (M) her m € M™ noktasindaki
(p, q) tipli tensor uzayi olsun. M™ manifoldunun her m € M™ noktasina Tf (M)

tensOr uzayindan bir tg (M) tensorii karsilik getiren T fonksiyonuna (p, q) tipli

tensor alani denir(Bishop ve Goldberg, 1968).

Tanmim 3.2.2. ¢ € 37 (M™), M™ iizerinde bir afinor alani olsun, keyfi X;,X,,..., X, €

1 2 r
So(M™) ve §,&,...,§ € 39(M™) icin asagidaki sart1 saglayan (7,s) tipli t tensor

alanina ¢ e gore piir tensor alan1 denir:



(PX s Xy X s EY =t (K X X5 E1 & E)

(X Xy XS 5B E)
=t(Xp, Xy X5 (091892392) (3.1)

(X Xy Xy &9 ErnE)

1 2 , r
=t(X,, Xy X5 E,E,.0 08)
Burada ¢, X € S5(M,,) ve & € 39(M™) igin,

(&) = E(PX) = (§ 2 d)(X)
ile tanimlanan ¢ nin eslenik operatdriidiir.

x1,x2,...,x™;, M™ de lokal koordinat sistemi olmak iizere, (3.1) de X; =

T . .
2 — j — Ay 5 s 5 i J1wJr
Py yoen Xg = oo Ve f dx’1,...,& = dx’/ralindiginda, piir tensor alani ¢; ve t;

bilesenleriyle asagidaki gibi ifade edilir.

bk ol =thien ==t el =t ) =t/ gl = =th Ty (3.2)

Vektor, kovektor ve skaler alanlar, kolaylik olmasi i¢in piir tensor alanlart gibi kabul

edilir(Salimov, 2013).

Tanim 3.2.3. M™, C*smifindan bir manifold ve Ty, her p € M™ noktasindaki tanjant
uzay1 olsun. M™ her p € M™ noktasina T, uzayimndan bir X,, vektorii karsilik getiren X

vektor degerli fonksiyonuna vektor alan1 denir(Salimov ve Magden, 2008).



3.3. Kotanjant Demet

M"™ .n —boyutlu diferensiyellenebilen bir manifold ve P € M noktasindaki tanjant
uzayin Tp € T(M) dual uzay1 olan kotanjant uzay1 Tp € T*(M) olsun. P € M
noktasinda Tp € T*(M) nin herhangi bir elemani kovektor olarak adlandirilir. O zaman

M manifoldu iizerindeki kotanjant demet asagidaki sekilde tanimlanir.

T € T*(M) = U T:

pPeM

Herhangi bir P € T*(M) noktas1 (bu nokta aym1 zamanda T (M) ninde bir elemanidir)
m:T*(M) — M projeksiyon déniisiimii ile P — P durumunu alir. Burada M temel(baz)

uzaydir ve m~1(P) kiimesi Ty (M) kiimesini belirtir ve P € M iizerinde fibre olarak

adlandirilir (Yano ve Ishihara, 1973).

M {izerinde w kovektor alan1 ve X vektor alaninin bir U kiimesi iginde lokal ifadeleri
F a . . oy e . .
X=X SxiVEw = w;dx" olsun. O zaman w’nin vertikal lifti w" ile X vektor alaninim

strasi ile yatay lift ve tam lifti X#, X¢ indirgenmis koordinatlara gore

(l)V = (,l)l'ai,
XH = Xial' + phFJ‘Xfal
XC = Xiai - phainai,

seklinde ifade edilir. Burada 9; = -=,0; = - ve I" ifadeleri M igerisinde bir 7

axt’ xt

simetrik afin konneksiyonun katsayilaridir.

T*(M) iizerinde dikey ve yatay vektor alanlarinin Lie parantez (bracked) islemi

asagidaki formiiller ile verilir(Yano ve Ishihara, 1973).



[XH,VH] = [X,Y]" + (po R(X, V)"
(X", 0"] = (Vyw)”
[8Y,wY] =0

X,Y € 35(M) ve V simetrik konneksiyonu igin R egrilik tensori
R(X,Y) = [V, Vy] — V[X,Y]

seklinde tanimlanr.

10



BOLUM 4. ARASTIRMA BULGULARI ve TARTISMA

4.1. Kotanjant Demetteki Sonuclar

4.1.1. Kotanjant Demet Uzerinde aFX + A"FT = 0 Sartim Saglayan Genel
F,,(K,T) — Yapisinn Yatay Lifti

M™ manifoldu tizerinde (1,1) tipli iki tensor alan1 F, G olsun. Eger F nin horizontal lifti

FH ile tanimlanirsa (Yano ve Ishihara, 1973 ; Lovejoy ve Nivas, 2005)

FEGH + GHFY = (FG + GF)". (4.1)
yazilir.

F ve G ayni alinirsa

(FH)? = (F2)H,

elde edilir.

F nin baz1 daha yiiksek kuvvetleri tarafindan (4.1) esitliginin igerisinde G nin yerine

yukaridaki hesaplamaya devam edilirse
(FO" = (FHE, FDH = (FDHT (4.2)

elde edilir.Burada F # 0,K > 3,T > 1 ve (K = T), a ve A sifirdan farkli karmasik

sayilar, r sonlu tam sayidir.
Ayrica, G ve H ayni tiirden tensor alanlari ise
(G + )" =G + HY, (4.3)

11



elde edilir.

aFX + A"FT = 0 esitliginin her iki tarafinin horizontal liftini alirsak

a(F)H + 27 (FTY! = 0. (4.4)

elde edilir.

(4.2) ve (4.3) denklemleri dogrultusunda (Lovejoy ve Nivas, 2005 ; Singh ve ark.,
2016)

a(FHX + 27(FET = 0. (4.5)
yazilir.
Onerme 4.1.1.1. g metrigi ile M™ bir Riemannian manifoldu olsun. V, Levi-Civita
konneksiyonu ve R, Riemannian egrilik tensorii olsun. O zaman M™’nin T*(M™)
kotanjant demeti lizerinde Lie parantezi asagidaki sartlar1 saglar:
i) [w",6v] =0, (4.6)
i) X", 0] = (Vyw)Y,
i) [XP Y] =[X, Y] +yR(X,Y) = [X,Y]" + (pR(X,Y))"

tim X,Y € I3 (M™) ve w, 8 € I9(M™) (Yano ve Ishihara, 1973) igin.

Tamm 4.1.1.1. M™ iizerinde aF¥ + A"FT = 0 sartim saglayan (1,1) tipli tensor alam

F olsun. M™ nin (1,1) tipli F tensor alaninin Nijenhuis tensort su sekilde verilir:
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Ny = [FX,FY] — F[X,FY] — F[FX,Y] + F2[X,Y] (4.7)

herhangi bir X,Y € I§(M™) i¢in (Salimov, 2013 ; Salimov ve Cayir, 2013 ; Cayir,
2015). Np(X,Y) =N(X,Y) =0 sarti, bu yapilardaki integrallenebilirlik sart1 igin
gereklidir.

N Nijenhuis tensorii lokal koordinatlarda su sekilde tanimlanir.
Nf0, = (FfO§Ff — FO\Ff — 0,F} Ff + 0;F Ff)0,
Burada X = 9;,Y = 9;,F € I1(M™) seklindedir.

4.1.2. Kotanjant Demeti T*(M™) Uzerinde (F¥)# Nijenhuis Tensorleri

Teorem 4.1.2.1. (FK¥)® ve FT nin Nijenhuis tensorleri sirasiyla N ve N seklinde
tanimlanir. Burada, a(F¥)¥ + A"(FT)" = 0 yapisi, Onerme 4.1.1.1. ve igerisinde
ifade edilen (4.6) formiilleri ile Nijenhuis tensoriiniin tanimi géz Oniine alindiginda

asagida hesaplanan sonuglar elde edilir:

N(FK)H(FK)H(XH, YH) = ’L—z:{{[FTX, FTY] - FT[FTX,Y] — FT[X,FTY]
+(FD2[X, Y + {R(FTX,FTY)
—R(FTX,Y)FT — R(X,FTY)FT
+R(X, Y)(FT)2}}.

i. N(FK)H(FK)H(XH! w') = %{w ° (VFTXFT) — (w o (IxkFTFT)Y,

N VgV —

iii. N(FK)H(FK)H((U ,0") =0.

Ispat:

i. Eger FT bir almost kompleks yap1, (FT)? = —1 ve R(FTX,FTY) = R(X,Y) ise (FK)H

yatay liftinin Nijenhuis tensorii sifirdir.
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N eyt KT, Y1) = [CFRYXC, (PR H] = (R (R, )

_(FRYH[XH (FRYRYH] 4 (FKYH(FRYH[XH yH]

= L (LY XH, (FTYHYH] — (FTYH[(FT)PXH, v
—(FDP[X™, (FORYH] + (FTHP)2[XH, v H]}

= %{[FTX, FTY]" + yR(FTX,FTY)
—(FOPIFTX), Y]" = (F)"yR(FTX,F"Y)
—(FDOH[X, FTY]" — (FD)"yR(X, FTY)
+(FDD2X, YT+ ((FT)T)*YR(X, Y)}

= Z{UFTX, FTY] — FT[FTX,Y] - FT[X,FTY]
+(FT?[X, Y} + y{R(F"X,FTY) — R(F"X,Y)F"
—RX, FTY)FT + R(X,Y)(FT)?}}.

Eger V’nin egrilik tensorii R(FTX, FTY) = R(X,Y) sartin1 sagliyor ve FT bir almost
kompleks yapr ise (FX)# integrallenebilirdir. O zaman,R(FTX,Y) = —R(X,FTY)
esitligi elde edilir. Bundan dolay1 (FT)? = —I esitligi kullanilarak

R(FTX,FTY) — R(FTX,Y)FT — R(X,FTY)FT + R(X,Y)(FT)2 = 0

elde edilir. Buradan N a(XH,YH") = 0 yazilir.

(F)" (F9)

ii. Eger VFT =0 ise (FK)H yatay liftinin Nijenhuis tensori N(FK)H(FK)H(XH,(UV)
sifirdur.
N ey e (K@) = [FOPXH, (FR) ] = (FRYP [P X, )

—(FIOMIXH, (Y V] 4+ (PO (Y XM, )
= S X", FTY 0] = FTY[(FT) X, ]
—(FTYXH, (FY V] + (FM? X, 0" 1)
= ZUEOM, (@ o F1) ] = FYET0H, o]

—(FDIXH, (w o F) T+ (FD)?(7xw)'}
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—(FDHXH, (o FT) ]+ (FT)")?(Vxw)"}

2r
=S {w o (TryFT) = (@ o (FxFT)FTY,
Burada FT € 31(M™), X € I5(M™), w € I)(M™) seklindedir.

iii. (F¥)" nin yatay liftinin Nijenhuis tensorii Nz proyn (w”,6") sifirdir.
T*(M™) iizerinde w o FT,0 o FT,w,0 € I?(M™) olmak Uzere, [w',8Y] = 0 oldugu

igin (F¥)¥ nin Nijenhuis tensorii N pioyn pieyn (@”, %) sifirdur.

4.1.3. T*(M™) Uzerinde aF¥ + A"FT = 0 Yapisimn Liflerine Gore Vektor ve

Kovektor Alanlarina Uygulanan Tachibana Operatorleri

Tamm 4.1.3.1. ¢ € J1(M™) igin, R iizerinde
SMM) =D Fecg M)

bir tensor cebridit. Qg |ri550: I(M™) = IJ(M™) doniisiimii eger asagidaki sartlar

saglanirsa Tachibana operatorii ya da ¢4 operatori olarak adlandirilir.

a) @ sabit katsayiya gore lineerdir,

b) Tumr ve s’ler igin @ 4: %(M”) - 3 (M),

¢) Tim K, L € S(M™) igin ¢ - <K ® L) = (9sK) @ L+ K ® gy,
d) TimX,Y € I5(M™) i¢in ppxY = —(Lyp)X

burada Ly,Y ye gore Lie diferansiyellenebilmesidir (Kobayashi ve Nomizu,
1963 ; Cayir, 2016 ; Cayir ve Koseoglu , 2016).

&) (eormW = (dm)(@V) — (d(tw(r e )V +1(Lwd)V)  (48)

= oV wn) — V(igwn) + n(LwP)V)

15



C *
n € I(M™) ve X,Y € IH(M™) igin 1y,n = n(Y) =n Q Y.IL(M™) afinor alanlarina

c
gbre M"™ iizerinde (r,s) tipli tim piir tensor alanlarinin modiilidir. @ bir

C kontraksiyonuyla bir tensér ¢arpimidir (piir tensor alanlarina uygulanmasi ile ilgili

bkz. (Salimov ve Cayir, 2013)).

Yorum 4.1.3.1. Tanim 2’nin d) sikkindan

PexY = [dX, Y] — g(YF)X. 4.9
elde edilir. Herhangi bir f, g € I5(M™) igin

[FX,gY] = Fg[X,Y] + F(Xg)Y — g(YF)X (4.10)

formullinden, @4xY nin X e gore lineer oldugunu fakat ¥ ye gore lineer olmadigini

anlariz (Salimov, 2013).

Teorem 4.1.3.2. (F¥)#, T*(M™) Uzerinde (1,1) tipli bir tensdr alani olsun. Eger
T*(M™) iizerinde (4.4) ile tammlanan aF¥ + A"FT = 0 yapisin yatay liftlerine gore

vektor alanlarina Tachibana operatorii uygularsa asagidaki sonuglari elde ederiz.

S G %T{((LYFT)X)H + (pR(Y, FTX))V
—((pr(v, X)) 0 FT)V} ,
ii. (p(FK)HXHO)V = %(((wa) o FT)V - (V(FTX)(U)V) ,

AT v
1. (p(FK)HwVXH = ;(w ° (VXFT)) :

iv. (p(FI()HwVHV =0,

Sirastyla; X,Y € I5(M™) igin yatay liftler X7, Y € SL(T*(M™)) ve w, 8 € I2(M™)
i¢in dikey liftler w”, 0V € IJ(T*(M™)) seklinde verilir.
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Ispat:

1) ‘P(FK)HXHYH = —(Lyn (FF)M)XH
= —(Lyn (FOMXH + (F*)" Ly u X"
=2 (Lyu(FTYDX" = Z (FTY (v, X1 + @R(Y, X))")
B RO — PP
—((PR(Y, X)) o FT)V}

= T (L FTOM + (pRCY, FTX))Y = (oR(Y, X)) © FT)V}

i) @iy’ = —(L,v(FF)MXH
= —L, v(F)"X" + (FK)HL vX"
AT A
= Lav (FT0O% + 7 (FD (Txw)”
_LT(V w)V+’1—r((|7 w) o FT)V
3 a (FTX) a X

= 2 ((730) © FT)Y = (Tryy@)")

i) iy v X = —(Lyn (FK)Mw”
= —Lyn(F)" 0" + (F*) Lnw"
=L Lyn(w o FT)Y =2 (FTYH ()"

a

_ %r(VX(a) o FT))V — %r((vxw) o FT)V

- %T(w o (VxFT))Y

1v) ‘P(FK)HngV = —(Lov(F)Mw"
— —LQV(FK)H(UV + (FK)H(LQV(UV)
= %LQV((A) o FT)V

=0
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4.1.4. (FKYH Uzerinde Sasakian Metriginin Piirliik Kosullar

Tamim 4.1.4.1. T*(M™) iizerinde Sg Sasaki metrigi asagidaki ii¢ esitlik ile tanimlanur.

*9(@”,8") = (97 (@,0))" =g (w,0) o, (4.11)
Sg(wV' YH) — O, (412)
Sgx"Y") = (X, ) =g V)em (4.13)

Her x € M™ icin g~' = (g¥) skaler carpimi m~!(x) = Ty (M™) kotanjant uzayi

uzerinde
9 (w,0) = gYw;b;

seklinde tanimlanir.Burada X, Y € 33(M™) ve w, 8 € I)(M™) igin. T*(M™) iizerinde
(0,2) tipli herhangi bir tensér alan1 X“ ve w" (Yano ve Ishihara, 1973) vektor

alanlariyla belirlenir ve *g (4.11), (4.12) ve (4.13) denklemleriyle verilir.

Teorem 4.1.4.1. T*(M™) kotanjant demeti, *g Sasaki metrigi ve (4.4) ile tanimlanan
(1,1) tipli (F¥) tensor alaniyla tanimlansin. g Sasaki metrigi eger FT = I (I,(1,1)

tipli birim tensdr alami) ise (FX)H’ye gore purdr.

Ispat:Eger S(X,¥) = 0 ise

SX,¥) = Sg((F)"X, 1) = Sg(X, (FF)HT).

w”, 0V yada X", YH liftlerinin tiim X ve ¥ vektor alanlar igin eger S(X,¥) = 0 ise o

zaman S =0 dir. (FFHOX+A"(FHT =0 ve (4.11), (4.12), (4.13) denklemleri

vasitastyla
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i) S(”,60) =5 g((F¥)Hw,6")~5g(w”, (FK)6)
=5 g(—== (F1)"w",6")=Sg(w’, - = (FT)"6")

= L Sg(( e FTY,0")=59(@", (6 ° FT)")).

ii) (XM, 8Y) =5 g((F¥)"x™,07)—5g(X", (F¥)"6")
=S g(= = (FTY" X", 0V)=Sg (X", — 2 (FT)"g")
= —Z (Sg((FTX)",6M) =5 g (X", (w o FT)")).

=0.

iil) S(XH, YH) =S g((FF)HXH, Y H)—=Sg(XH, (FK)HYH)
=S g(= 2 (FTYIXM, Y =Sg (X, =T (FT)"Y ™)

=~ S g(FTXY, Y)Y =S g(X¥, (FTYY)).

elde edilir. Buradan FT = ] ise o zaman  Sg, (FX)H ye gore plrdir.
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4.2. Tanjant Demetteki Sonuclar
4.2.1. Tanjant Demet T(M™) Uzerinde aFX + A"FT = 0 Yapisimn Tam Lifti

M, C* smifindan n boyutlu diferansiyellenebilir bir manifold, Tp (M™)’de M™ nin bir

P noktasindaki tanjant uzay1 olsun. Bu takdirde

r(M™) = U Tp(M") (4.14)

ifadesi M manifoldu iizerinde bir tanjant demettir.

C® smifindan tiim tensoér alanlarmin kiimesini Ty (M™) ve M manifoldu iizerindeki
tanjant demeti T(M™) ile gosterelim. T (M™) nin bir F elemaninm tam lifti F¢ local

bilesenleri ile F{* seklinde gosterilir (Yano ve Patterson, 1967).

I 48 l (4.15)

st FP
aF¥ + 'FT =0(F # 0,K >3, T > 1 ve (K =T), a ve A sifirdan farkli karmasik
sayilar, r sonlu tam say1) sartin1 saglayan genel Fy, ; (K, T) — yapisin1 olusturan F’nin
tam liftinin sonuglarini elde edecegiz.

F,G € TL(M™) olsun. O zaman (Yano ve Patterson, 1967)

(FG)C = FCGC . (4.16)

elde edilir.(4.16) denkleminde G nin yerine F yazildiginda,
(FF)¢ = FCF¢ veya (F?)¢ = (F¢)2. (4.17)

elde edilir.(4.16) denkleminde G = F* yazildiginda

(FF4)C — FC(F4)C
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elde edilir.(4.17) denkleminden de
(FS)C — (FC)S )
elde edilir.

F nin yiiksek dereceli mertebelerinde (4.16) denklemi igerisinde G yerine yukaridaki

stire¢ devam ettirildiginde

(FK)C — (FC)K,
(FT)C — (FC)T,

elde edilir. Burada (F # 0,K = 3,T = 1 ve (K = T)) seklindedir.

Eger G ve H ayni tipli tensor alanlari ise o zaman

(G+H) =G +HC. (4.18)
yazilir. aFK + A" FT = 0 denkleminin her iki tarafinin tam liftini aldigimiz zaman
(aFK + A'FTYC =0

elde edilir.(4.18) ve I¢ = I kullanarak

a(FK)C + AT (FTYC = 0. (4.19)
a(FOK + AT (FT = 0.

elde edilir.

(1,1) tipli F yapis1 M™ manifoldu igerisinde r rankina sahip olsun. O zaman [ nin tam

lifti 1€ = —%(FK‘T)C ve m’nin tam lifti m¢ = I + %(FK‘T)C , T(M™) igerisinde
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tamamlayic1 izdiisiim tensorleridir. Burada T(M™) igerisinde sirasiyla [¢ ve m¢

tarafindan olusturulan iki tane L¢ ve M¢ tamamlayic1 dagilimlar1 vardr.

Onerme 4.2.1.1. T(M™) iizerinde 1, (1,1) tipli tensdr alani

P =16 —mf = 2 (FT)C

bir almost product yapi belirtir.

Ispat:
¢ _ _ @ LK-T\C . C _ a® LK-T\C _ JC Cc _ a K-TN\C
1€ == (F¥NEme =1+ (FMCvep = 1€ —m® = =2 (FKT)C 1
ifadeleri i¢in
a? a?
lpz — 4W(F2K—2T)C +4W(FK_T)C + 1

— 4‘%(F2K_T)C(%F_T)C + 4%(FK—T)C +1
— 4‘%(F2K_T)C(—F_K)C + 4%(FK—T)C +1
= —4— (FK)E + 4 (FKT)E +1

=],
elde edilir. Burada i € 31 (T(M™)),1 = (1,1) tipli birim tensér alamdir.

4.2.2. Tanjant Demet T(M™) Uzerinde a(F¥)¢+ A"(FT)¢ =0 Yapisinin

Integrallenebilirlik Sartlari

Tanim 4.2.2.1. Bir Riemannian manifoldu lizerinde X ve Y herhangi iki vektor alanlari
olsun (Yano ve Ishihara, 1973)

(X", Y] = [X,Y]" = (R(X, Y)w)",

(X", Y] = 7)Y,

[XV,YV] =0,
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elde edilir. Burada R,R(X,Y) = [Vx,Vy] —Vixy; seklinde tanimlanan g’nin
Riemannian egrilik tensoriidiir. EK olarak, T(M™) iizerinde dikey lift u" ve yatay lift

uf asagidaki sekilde tanimlanur.
u =ut(0,)V = woy, ut! = ut ()" = u's;,

Burada §; = —ujl}isas— seklindedir. Ayrica u”, T(M™) iizerinde kanonikal ya da

Liouville vektor alani olarak da adlandirilir.

F, (1.1) tipli tensor alan1 ve F € J1(M™) olsun. O zaman (1.2) tipli F nin Nijenhuis

tensOri Ny asagidaki gibi tanimlanir:
N(V,W) = [FV,FW] — F[FV,W] — F[V, FW] + F2[V, W] (4.20)
T(M™) igerisinde F¢ nin Nijenhuis tensérii N¢ olsun. O zaman

NC(XC,YC) = [FCXC,FCYC] — FC[FCXC,YC] = FC[XC, FCYC] + (F)[XC,Y¢]
denklemi yazilir.
F € 31(M™) ve herhangi X,Y € J}(M™) icin,
[XC,YC] = [X,Y]C, FCXC = (FX)© (4.21)
X+ =XC+v¢
yazilir. (2.5) ve (4.21) den;

FEIC = (FI)€ = F€ (4.22)
Fm¢ =(Fm)‘ =0

elde edilir.
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Teorem 4.2.2.1. Asagidaki 6zdeslikler elde edilir.

a)mENC(I€XC, 1Y) = mE[FEXC, FCY €]

b)y mENC(XC,Y¢) —mE[FCXC, FCYC]

C) NC(mCXC, mCyC) — (FC)Z [mCxC' mCyC]

d)ymENC((a@F" + A"FTYCXC, (aFX + A"FT)CY©)) = mENC[I€X¢, 167 €]
Ispat:(1.2), (2.15) ve (2.17) esitlikleri kullamlarak kolaylikla sonuglar elde edilir.
Teorem 4.2.2.2. Herhangi bir X,Y € JI§(M™) igin asagidaki sartlar denktir.

) mENC(XE,YE) =0

i) mENC(IEXE,16YE) =0

iii) mCNC((aFX + A" FTYCXC, (aFK + ' FTYCYC)) = 0

Ispat: Yukaridaki teorem igerisinde d) esitliginin sonucu olarak eger tim X,Y €

IL(M™) igin
NE(CVE WY =0
ise ancak ve ancak
NE¢((aFK + ' FTYCVE, (aFK + 7 FDHYCW ) =0
seklindedir.

a) ve b) esitliklerinin sag tarafi Teorem4.2.2.2 igerisinde esittir ve en son esitlikten de

anlasildigr gibi (i),(ii) ve (iii) sartlar1 da esittir.
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Teorem 4.2.2.3. Eger M" igerisinde M integrallenebilirse M™ manifoldu igerisindeki

M nin T(M™) icerisindeki tam lifti integrallenebilirdir.

Ispat: X,Y € 33(M™) ve | = I — migin F integrallenebilirse ancak ve ancak (Yano
ve Ishihara, 1973)

I[((mV,mW) =0, (4.23)

(4.21) kullanilarak her iki tarafin tam liftini aldigimizda

(Ve mewe) =0,

elde edilir. Burada tiim X, Y € I5(M™) ve 1€ = (I — m)¢ = I —m® tam lifti m® icin

tamamlayici izdiisiim tensoriidiir.
Teorem 4.2.2.4. M™ manifoldu icerisinde bir M dagilimmin T(M™) igerisindeki tam
lifti M€ integrallenebilirdir eger I*N¢(m¢X¢, m¢yY¢) =0 ise veya tim X,Y €

IL(M™) igin N¢(mEXCE, mCY©) = 0 ise.

Ispat: Herhangi X,Y € 3§(M™) icin N(mV,mW) = 0 ise (Yano ve Ishihara, 1973)

ancak ve ancak M™ manifoldu igerisinde M dagilimi integrallenebilirdir.

mENC(UCXC,16YC) = mC[FCXC, FCY €] sart1 sayesinde
NC(mCXC, mCyC) — (FC)Z[mCXC,mCYC]

elde edilir.Her iki taraf [¢ ile carpildig1 zaman

lCNC(mCXC,mCYC) — (FC)ZlC[mCxC’mCyC]

elde edilir.(2.2) denklemi vasitasiyla yukaridaki bagintidan

ICNE(mEXC, mEyY®) = 0. (4.24)
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elde edilir.Ayrica

IENC(mXE,mEY©) = 0. (4.25)
elde edilir.(4.24) ve (4.25) e ek olarak

(1€ + mONEmEXE, mcYyS) =0

yazilabilir.[¢ + m¢ = I¢ = I oldugundan dolay1

N¢(mcXx¢,mty¢) =0

elde edilir.

Teorem 4.2.2.5. M™ igerisinde L dagilimi integrallenebilir ve tim X, Y € I3 (M™) igin
mN(X,Y) =0 olsun. Tim X,Y € J3(M™) igin Teorem 4.2.2.3’(in sartlarindan
herhangi birisi saglanir ise ancak ve ancak L¢ dagilimn T(M™) igerisinde

integrallenebilir.

Ispat: M™ icerisinde L dagilim integrallenebilir ancak ve ancak mN (X, 1Y) = 0 ise.

Buradan L¢ dagilimi T(M™) igerisinde integrallenebilir ancak ve ancak

mENC(CXC, 1Y) =0

olmak Gzere Teorem 4.2.2.2’nin d) sikkini kullanarak asagidaki teorem elde edilir.
Teorem 4.2.2.6. F, M™ igerisinde kismi integrallenebilirse ancak ve ancak M™

igerisinde F nin bir (aFX + A"FT) — yapisinin tam lifti T(M™) igerisinde kismen

integrallenebilir.
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Ispat: M™ igerisindeki F nin (aF¥ + A"FT) — yapis1 kismen integrallenebilir ancak

ve ancak herhangi X,Y € J3(M™) i¢in

N(IX, 1Y) = 0 (4.26)
sartinin olmasi halinde (2.1) ve (4.7) esitlikleri 1s181nda

NE(IEXE, ICYC) = (N(IX, IY))C

elde edilir. N(IX,1Y) = 0 olmasi halinde ancak ve ancak N¢(m¢X¢ m¢y¢) =0
denklemi elde edilir. Ayrica Teorem 4.2.2.3.°ten NC(I°XC,1°Y¢) =0 ifadesi

NE((F?K*S + FSYCXC, (F?K+S 4+ FS)CYC)) = 0 ifadesine denktir.

Teorem 4.2.2.7. M™ igerisinde F kismi integrallenebilirse ancak ve ancak T(M™)

igerisinde F nin bir (aFX + A"FT) —yapismin tam lifti olan F¢ kismi integrallenebilir.

Ispat:

Bir (aFX + A"FT) —yapisinin integrallenebilir olmasi i¢in gerekli ve yeterli sart

herhangi iki X, Y € J5(M™) igin

NV, W) = 0. (4.27)

sartimin saglanmasidir. Teorem 4.2.2.2. vasitasiyla, N¢(X¢,Y¢) = (N(X,Y))¢ elde

edilir.

4.2.3. Tanjant Demet T(M™) Uzerinde a(FX)¢ + A"(FT)¢ = 0 Yapisina Gore

Sasakian Metriginin Piirliik Sartlari

Tamm 4.2.3.1. °g Sasaki metrigi, T(M™) tanjant demet iizerinde bir (pozitif tanimlr)
Riemannian metrigidir. Oyleki M™ {izerinde verilen bir Riemannian metriginden

tiiretilmistir ve tiim X, Y € I5(M™) icin asagidaki sekilde tanimlanir (Salimov, 2013).
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SgX",v") = gX,Y), (4.28)
Sgx",Y") =5 g(x¥,y") =0,
SgX¥,v") =% g(X,Y)

Teorem 4.2.3.1. Eger VFT =0 ve FT = %TI sartlar1 saglanirsa, Sg Sasaki metrigi

(FKY¢ ye gore purdir. Burada I,(1,1) tipli birim tensdr alanidir.
Ispat: Eger X ve Y XV, YV veya X, YH olmak tizere S(X,Y) = 0ise S = 0 dir. Burada

SX, V) = Sg((FX)X 1) - “g(X, (FX)°T)
seklinde ifade edilir.

) SV, Y") =% g((F)X",Y)=5g (X", (F©)YY)

= — L (Sg(F™X)",YV)=Sg (X", (FTY)")}

a

=~ {GETX Y)Y — (9K FTV)Y)

i) SEXY, Y =5 g((FK)XY, Y1) =S g(X¥, (F¥)Cy™)
=2 SgY, FTY)! — (%, FT)r'h)

=2 Sg(x¥, v, FT)YH)
=L (g(x, (@FMwY")

i) S(XH,YH) =S g((FK)CxH, yH)—Sg(XH, (FK)CYH)
/’{T

_ A Sg((FT)CXH, YH) +/1;T Sg(XH’ (FTYCYH)

a
AT
=== Sg((F"X)" + (R F1)x", Y™

+2 SgH, (FTYY! + (7, FT)YH)

= —Z{g((F™X), V)Y — g(X, (F'Y))"}
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Teorem 4.2.3.2. Sirasiyla, ¢, Tanim 4.1.3.1.de belirtilen Tachibana operatorii ve
a(FKYC + A"(FT)¢ = 0 yapis1 da (4.19) denklemi ile ifade edilen yap1 olsun. Eger

LyFT = 0 ise o zaman (F¥)¢ ye gore tiim sonuglar sifirdur.

Burada X,Y € I3 (M™),XC€,Y¢ € IL(T(M™) ve XV, YV € I3(T(M™)) dir.

. AT

i) (p(FK)cXcYC = +;((LYFT)X)C,
. v _ M Ty y\V
i) PFrycxcY’ =+ " ((LyF")X)",
ii6) @ pioyexr Y€ = + 2 (LyFTX)Y,

iv) (p(FK)CXVYV =0
Ispat:

1) @Erycxc?€ = —(Lyc(FF))XC
= — 2 {Lyc(F"X)° + (FT)°LycX)

=2 (L FTYX)E

i) (p(FK)cXcYV = —(Lyv(F®)©)X¢
= —Lv(FK)CXC + (FX)CL,vX¢
= 2Ly (FTX)C + (FT)°L,vXC)

a

=2 (W FTX)

{iD) @erycxu¥ € = —(Lyc(FF))XY
= —L,c(FEYXV + (F®)CLycX"
= _)‘_T — Ty \u TN\C u
= == {=LycU"V)* + ") LycV*}
A

= 2 (W FTYX)Y

a
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iv) (p(FK)CXVYV = —(LYV(FK)C)XV
= —Lyv(FK)XV + (FKYCL,vXY
=0

Teorem 4.2.3.3. Eger Y € M i¢in Ly FT = 0 ise 0 zaman Y nin tam lifti Y¢, a(F¥)¢ +

A"(FT)¢ = 0 yapisma gore T(M™) iizerinde bir almost holomorfik vektor alanidir.
Ispat:

D) (Lyc(FK))XE = L,c(FKYCXE — (FKYCL,cXC

= — 2 (L c(FTX)¢ = (FT)CL,cXC)

a

= =2 ((LycFT)X)°

i) (Lyc(FKYO)XV = Lyc(FKYCXV — (FK)CL,cX"

= — 2L c(FTX)” = (FT)CLycX")

a

= -2 (@ FMX)"
4.2.4. Tanjant Demet T(M™) Uzerinde F ;(K,T) — Yapisimn Yatay Lifti
M™ manifoldunun U koordinat komsulugu igerisinde A noktasindaki F’nin bilesenleri

F[* olsun. O zaman F’nin yatay lifti F¥, T(M™) iizerinde (1,1) tipli bir tens6r alamdur.

(V) igerisinde F# bilesenleri

h
FH = FC —y(VF) = i 0 (4.29)
~I"Ff + 'F Rl

seklinde verilir.

M™ manifoldu iizerinde (1,1) tipinde iki tensor alan1 F ve G olsun. Eger F nin yatay

lifti F¥ seklinde tanimlanirsa
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(FG)H = FHGH, (4.30)

yazilir. F ve G 6zdes olarak alirsa

(FG)H = FHGH. (4.31)

elde edilir. (4.31) denkleminin her iki tarafin1 F¥ ile carpilirsa

(FH)3 — (F3)H

elde edilir. Buradan

(F)* = (FHH, (F7)® = (F*)F (4.32)

yazilir. Bu sekilde devam edilirse, aFX + A"FT = 0 esitliginin her iki tarafinin yatay

lifti alindiginda

a(FKYH + A7 (FTYH = 0 (4.33)

elde edilir. (4.32) “den

a(FIK + A7 (FIT = 0.

yazilir.
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4.25. Tanjant Demet T(M™) Uzerinde a(FX)H + A"(F")H =0 Yapisinin

Integrallenebilirlik Sartlar

Teorem 4.2.5.1. Eger FT’nin Nijenhuis tensorii sifir ve

{~(R(FTX,FTY)u) + (FT(R(FTX,V)w)) + (FT(R(X,FTY)u)) —

((FT)?(R(X, Y)u))}v =0 ise FX mn vyatay liftinin Nijenhuis tensori
N gxyn pryn (X7, YH) sifirdar.

Ispat:

N iy iy (X7, YH) = [(F)HXH, (FKYHYH] — (FIOH[(FF)HXH, yH]

—(F)H[XH, (F)HYH] 4 (FF)H (FFY[XH, YH]

=L {FTX,FTY] = (FD)[FTX, Y]
—(FM[X,FTY] = (FDYED[X, YD?
—(R(FTX,FTY)w)” + (FT(R(FTX,)u))"
+(FT(R(V, FTW)u))* — (F)2RV, W))u)*}

= (N prpr Y)Y = (RCFTX, FTY Y)Y
+(FR(FTX,Y)w)" + (F(R(X, FTY)u))”
—((FT)2(RX, V)u)'},

Burada R, V,V,W = V,,V + [V, W] ile tamimlanan afin konneksiyon V’nun egrilik

tensoridir ve u, Tanim 4.2.3.1. de belirtilen bir vektor alanidir.

Teorem 4.2.5.2. Eger FT Nijenhuis tensorii sifir ve VFT = 0 ise FX nin yatay liftinin

Nijenhuis tensorii Nk xyn (X, YY) sifirdir.
Ispat:

N e ygereys (X, YY) = [(FEYIXH, (FEYIYV] = (FK)R[(FK)HXH, YY)

—(FK)H[XH, (FK)HyV] + (FK)H(FK)H[XH, YV]
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= {QFTKFTYY — (FDIFTX, Y)Y — (FTX, FTY])
HE XYY + Ty FTX) = (FT (B FTX)
—(FT @)y V)" + (FT)* )"}

- %”{(NFTFT(X, Y)Y — (Very FT)X

—(FT((WyFHX))Y}
Teorem 4.2.5.3. FX nin yatay liftinin Nijenhuis tensdrii
N iyt ey (XY, YY) = 0
seklindedir.
Ispat: X,Y € M i¢in [X",YV] = 0 oldugundan dolay1, kolaylikla
N ey iy (XY, YY) = 0
elde edilir.
Teorem 4.2.5.4. Eger FT = %TI ise °g Sasakian metrigi(F¥) ye gore purdir.
Ispat: Eger tiim Xve ¥ vektor alanlar1 X, Y" veya X", Y olmak tizere S(X,¥) = 0

ise S =0 dir. Burada S(X,¥) = Sg((FK)¢X, V) — Sg(X, (F¥)¢Y) seklinde ifade

edilir.

) SXV, YY) = Sg((F¥)"XV,¥¥) = Sg(x¥, (F¥)HYY)
= —Z{Sg(FTX)",Y") = Sg(x", (F")")

= —Z{@EFX, )Y — (g(X,FTY))"}
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i0) SKXV,¥M) = Sg((FY"XY, Y = Sg(x¥, (F)"y™)
=2 Sgv,FTY)")

=0

iii) SXH, Yy = Sg((FK)HXH, Yy — Sg(xH, (FK)HYH)
= IV~ Sg(x", (FTY))

= -Z{WE™ 0, - (g(X, (FT)")"}

Teorem 4.2.5.5. Sirasiyla, ¢, Tanim 4.1.3.1. de belirtilen Tachibana operatorii ve
a(FFYH + A1(FT)H = 0 yapis1 da (4.33) denkleminde belirtildigi gibi olsun. Eger
LyFT =0veF = %TI ise 0 zaman (F¥)H ye gére tiim sonuglar sifirdir. Burada X,Y €

I5(M), XH,YH € SLT(M™) ve XV, YV € I3(T(M™)) seklindedir.

D) Qg™ = {— (LX) + (R(Y, FTX)u)"
—(FTR(Y, Xyw)"},
it) PueryaynY’ = =S {=((LyFMX)Y + (7 FTX)'},
ii1) Peicyigr V! = =2 {—((LyFTYX)" = (Vg V)" + (FT (1))},

iv) (p(FK)HXVYV =0,
Ispat:

D) @ryxnY ™t = —(Lyn(FMXH
—Lyc(FRYHXH + (FKY L, n X"
= [v, FTX]" = ZyR[Y, F"X]
S ETY XD+ S EDIRE, XY
= (W FNN! + R, FT X)W

—FT(R(Y, X)u)"}
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i) @ryaxnY” = —(Lyv(FF)X!
= —Lyv(FKX)H + (FK)HL,vXH
=21y, FTX) - Z (XY
LY XDY + EETwx)Y

=~ L@ FHY + (W FTHX)'}

ii0) @iy = —(Lyn(FOM)XY
= —Lyn(FXX)V + (F*)HLynX"

AT A"
= = Z W FTX)Y 4+ 2 (Vpry V)Y

_%T(FT[Y, X]H- %T(FT(VXY))V

(W FX) = Try V)Y + (FT (7))

a

iv) @ryyvY? = —(Lyu(FF)M)XY
ar A
= ;LYV(FTX)V -2 (F"YPLyvXx"
=0
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BOLUM 5. SONUC

Faa (K, T) — yapisi kotanjant ve tanjant demetlerine tasindi. Sirastyla kotanjant ve

tanjant demetleri igerisinde F; (K, T) — yapisimn Nijenhuis tensorii hesaplanarak

integrallenebilirlik kosullar1 incelendi ve liftlere gére Tachibana operatdrii uygulandi.

Ayrica Sasaki metriginin plrliik sartlar1 incelendi.
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