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ABSTRACT

SOMATIC COPY NUMBER VARIANT LOAD IN NEURONS OF HEALTHY
CONTROLS AND ALZHEIMERS DISEASE PATIENTS

Turan, Zelı̇ha Gözde
Ph.D., Department of Biology

Supervisor: Prof. Dr. Mehmet Somel

Co-Supervisor: Assist. Prof. Dr. Idil Yet

January 2023, 156 pages

The possible role of somatic copy number variations (CNVs) in Alzheimer’s dis-

ease (AD) aetiology has been controversial. Although cytogenetic studies suggested

increased CNV loads in AD brains, a recent single-cell whole-genome sequencing

(scWGS) experiment, studying frontal cortex brain samples, found no such evidence.

Here we readdressed this issue using low-coverage scWGS on pyramidal neurons

dissected via both laser capture microdissection (LCM) and fluorescence activated

cell sorting (FACS) across five brain regions: entorhinal cortex, temporal cortex, hip-

pocampal CA1, hippocampal CA3, and the cerebellum. Among reliably detected

somatic CNVs identified in 1301 cells obtained from the brains of 13 AD patients

and 7 healthy controls, deletions were more frequent compared to duplications. In-

terestingly, we observed slightly higher frequencies of CNV events in cells from AD

compared to similar numbers of cells from controls (4.1% vs. 1.4%, or 0.9% vs.

0.7%, using different filtering approaches), although the differences were not statisti-

cally significant. On the technical aspects, we observed that LCM-isolated cells show

higher within-cell read depth variation compared to cells isolated with FACS. To re-
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duce within-cell read depth variation, we proposed a principal component analysis-

based denoising approach that significantly improves signal-to-noise ratios. Lastly,

we showed that LCM-isolated neurons in AD harbour slightly more read depth vari-

ability than neurons of controls, which might be related to the reported hyperploid

profiles of some AD-affected neurons.

Keywords: Single-cell whole-genome sequencing, Copy number variation, Alzheimer’s

disease, Brain, Laser capture microdissection, Fluorescence-activated cell sorting,

Denoising
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ÖZ

SAĞLIKLI KONTROLLERİN VE ALZHEİMER HASTALARININ
NÖRONLARINDA KOPYA SAYISI VARYASYONU YÜKÜNÜN

BELİRLENMESİ

Turan, Zelı̇ha Gözde
Doktora, Biyoloji Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Somel

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Idil Yet

Ocak 2023 , 156 sayfa

Alzheimer hastalığı (AH) etiyolojisinde somatik kopya sayısı varyasyonlarının (KSV)

olası rolü tartışmalıdır. Sitogenetik çalışmalar AH beyinlerinde artan CNV yükünü

rapor etsede, son zamanlarda yapılan ve tekil hücre tüm genom dizilemesi yöntemi

kullanarak frontal korteks beyin örneklerini inceleyen çalışma böyle bir bulgu rapor

etmemiştir. Bu çalışmada, beş farkli beyin bölgesinde (entorhinal korteks, temporal

korteks, hipokampal CA1, hipokampal CA3 ve beyincik) hem lazerle kesme ve ya-

kalama (LCM) hem de floresan ile aktive edilen hücre sınıflandırılması (FACS) yön-

temiyle diseke edilen piramidal nöronlar üzerinde düşük kapsamlı tekil hücre tüm

genom dizilemesi yöntemi kullanarak bu soruyu yeniden ele aldık. 13 AH hastası-

nın ve 7 sağlıklı kontrolün beyinlerinden elde edilen 1301 hücrede güvenilir şekilde

saptanan somatik KSV’ler arasında, silinmeler, kazanimlara kıyasla daha sıktır. İl-

ginç bir şekilde, kontrollerden alınan benzer sayıda hücreye kıyasla (farklı filtreleme

yaklaşımları kullanılarak %4,1’e karşı %1.4 veya %0,9’a karşı %0,7), farklılıklar is-

tatistiksel olarak olmasa da, AH’deki hücrelerde CNV olaylarının biraz daha yük-
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sek sıklıkta gözlemledik. Teknik açıdan, LCM ile izole edilmiş hücrelerin, FACS ile

izole edilmiş hücrelere kıyasla hücre içi okuma derinliği varyasyonunun daha yük-

sek olduğunu gözlemledik. Hücre içi okuma derinliği varyasyonunu azaltmak için,

sinyal-gürültü oranlarını önemli ölçüde iyileştiren temel bileşen analizine dayalı gü-

rültü giderme yaklaşımı önerdik. Son olarak, AH’deki LCM ile izole edilmiş nöronla-

rın, kontrol nöronlarından biraz daha fazla okuma derinliği değişkenliği barındırdığını

gösterdik; bu, AH’den etkilenen bazı nöronların rapor edilen hiperploid profilleriyle

ilgili olabilir.

Anahtar Kelimeler: Tekil hücre tüm genom dizilemesi, Kopya sayısı varyasyonu, Alz-

heimer hastalığı, Beyin, Lazer yakalayıcı mikro diseksiyon, Floresan ile aktive edilen

hücre sınıflandırılması, Gürültü azaltma
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I want to thank my co-advisor İdil Yet for her support, encouragement and moti-

vation. I also thank her for sharing her experience with me. I really appreciate her

positive attitude throughout my PhD.

I am grateful to my dissertation monitoring committee members, İsmail Kudret Sağlam

and Çağdaş Devrim Son for their valuable times they spent on my thesis. Their per-

spectives helped me to look the concepts quite differently. Also, I would like to thank

Aybar Can Acar and Arda Çetinkaya for their valuable times they spent on my thesis.

I would like to acknowledge several people for their efforts: Poorya Parvizi, Ulaş
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CHAPTER 1

INTRODUCTION

The outline of the thesis is as follows.

Chapter 1, introduction, gives general information about Alzheimer’s disease (AD),

including pathological and clinical hallmarks and types of AD (early-onset, late-

onset). Also I answered the following questions:

• What are AD stages and how are AD stages determined?

• How does AD affect different brain regions?

• What are the neurochemical markers and neuroimaging techniques to diagnose

AD?

• What are the contributors to AD and how do they contribute to the AD pheno-

type?

• What is aneuploidy and where does it stem from in post-mitotic neurons?

• What are the experimental methods to count aneuploidy in mitotic and post-

mitotic cells?

• What is the role of aneuploidy in healthy and AD brains?

• What was the aim of this study?

Chapter 2, method, gives detailed information about web-lab experiments that were

conducted at the Paul-Flechsig-Institute (Leipzig University, Germany), and dry-lab

analyses. The steps/parameters of the bioinformatic analyses were described in detail,

including:
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• Quality control and alignment of single-cell whole genome sequencing reads to

the reference genome

• Post-processing of alignment files

• Coverage calculation

• Steps of the CNV prediction and cell elimination: binning, coverage normal-

ization, GC bias correction, segmentation, post hoc adjustment.

• Analyses of published datasets

• Statistical models to test the difference between AD and control

• PCA-based denoising approach and its pseudocode

Chapter 3, results, contains the results of the bioinformatic analyses, including:

• Summary of the produced data and clinical and demographic properties of sam-

ples

• Comparison between FACS-isolated and LCM-isolated cells

• Testing the difference between AD control using different cell filters and CNV

thresholds

• The results of the PCA-based denoising approach

Chapter 4, discussion, discuss the findings of the study. These are:

• What would be the biological and technical origins of the high noise in the

data?

• The possible approaches that could be taken to disentangle biological variation

from technical one

• Pros and cons of PCA-based denoising approach

• Limitations and possible improvements of the study

• The reason for using the Ginkgo algorithm

Chapter 5 is conclusion that summarizes the entire work.
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1.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disease of multifactorial aetiology,

with numerous genetic and environmental factors each explaining a small proportion

of variance in disease onset and progression [5].

AD affects more than 20 million people worldwide and it is the most common cause

of irreversible dementia [6]. Indeed, the increasing human lifespan is expected to be

reflected in the high incidence of AD within the next 50 years [7].

1.2 Types of Alzheimer’s disease

AD is pathologically characterized by the accumulation of extracellular amyloid β

(Aβ) plaques and intracellular neurofibrillary tangles (Figure 1.1). These pathologi-

cal alterations are clinically reflected as memory loss and executive function deficit,

followed by death after an average of nine years of diagnosis [8].

Even though they are clinically indistinguishable, there are two types of AD. Familial

or early-onset Alzheimer’s disease (FAD) accounts for ~5% of AD cases and affects

individuals below the age of 60. FAD is mainly associated with causative mutations

in three genes: APP (on chromosome 21) encoding for amyloid precursor protein,

PSEN1 (on chromosome 14) encoding for Presenilin 1, and PSEN2 (on chromosome

1) encoding for Presenilin 2 [9, 10]. AD-causing mutations on these genes are highly

penetrant and inherited in an autosomal dominant manner [10].

Sporadic or late-onset Alzheimer’s disease (LOAD) manifests itself after the age of 60

and accounts for over 95% of AD cases [11]. The estimated heritability of the disease

changes between 40 and 80% [12, 13, 14]. Studies suggested that genetic variants

showing low penetrance with high prevalence are the main contributors to LOAD.

For example, genome-wide association studies (GWAS) have identified dozens of ge-

netic loci that could be associated with AD [15].
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Figure 1.1: Pathological hallmarks of AD. The upper panel shows a healthy brain.

The lower panel illustrates the AD-affected brain. The figure was modified and taken

from https://biorender.com/.

GWAS can be a powerful method to identify single nucleotide polymorphisms (SNPs)

associated with human diseases and traits. SNPs hitting protein-coding regions show

their impact on phenotype by changing protein function and can be characterized

by high penetrance and predictable inheritance patterns as in FAD. Most GWAS-

identified SNPs (~88%), nevertheless, lie in non-coding parts of the DNA, and the

transition from association to causation is hampered by both the linkage disequilib-

rium structure of the genome (correlation among SNPs) and their small effect size on

phenotype [16]. GWAS-identified loci will be discussed in the section 1.5.

1.3 Stages of Alzheimer’s Disease

The severity of AD can be determined using the location of the neurofibrillary tangles

in the brain, which is called Braak staging (I–VI) [17].

AD does not affect each brain region equally. At Braak stages I and II, neurofib-
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rillary tangles could be found in the entorhinal cortex and hippocampus. At Braak

stages III and IV, neurofibrillary tangles are distributed throughout the limbic system

and temporal cortex. At the latest stages of the disease, Braak stages V-VI, tangles

spread through the primary sensory cortices [18, 19].

Accumulation of tangles also manifests itself as impairment in cognitive and exec-

utive functions. For example, the hippocampus, entorhinal cortex and cingulate gyrus

are the heavily affected brain regions (Figure 1.2) [20]. The hippocampus and en-

torhinal cortex are part of the temporal lobe and have a role in memory formation.

The cingulate gyrus is a part of the limbic lobe and involves emotional regulation. By

Braak stages III-IV, these three brain regions are already affected. Thus, individuals

with AD experience mood changes, memory impairment and face recognition deficits

[18].

Beyond neurofibrillary tangles, Aβ deposition is also used to determine the sever-

ity of AD (stage A-C). Aβ deposition starts in the frontal and temporal lobes and

spreads through the other part of the cerebral cortex [18, 21].

Figure 1.2: Structure of the human brain. (A) lateral view of left hemisphere, (B)

medial view of right hemisphere, and (C) sagittal view of one hemisphere. The figure

was taken from [1].

1.4 Diagnosis of Alzheimer’s Disease

Neuropathological lesions of AD (i.e. accumulation of Aβ extracellular plaques and

intracellular neurofibrillary tangles) usually manifest themselves earlier than clinical
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symptoms [22, 23]. To take advantage of potential therapies, diagnosing AD in the

earlier stages of the disease is crucial [24, 25]. For this aim, several neurochemical

markers and neuroimaging techniques have been employed [26].

Neurochemical markers can be used to identify pathological lesions. For example,

reduced Aβ42 levels in the cerebrospinal fluid (CSF) is the biomarker of the Aβ

plaques [24]. Similarly, an increased concentration of hyperphosphorylated tau pro-

tein in the CSF is the marker of neurofibrillary tangles [27].

Magnetic resonance imaging (MRI) is also widely used to detect hallmarks of neu-

rodegeneration. For example, atrophy of the hippocampus and entorhinal cortex is an

important structural marker of AD [28, 29, 30, 31]. Other structural changes that neu-

roimaging techniques could detect are reduction in the cortical grey matter and in the

cortical thickness of the temporal regions [32, 33, 34]. Beyond structural changes,

one functional magnetic resonance imaging (fMRI) study showed that AD patients

had reduced functional connectivity in the posterior cingulate cortex (have a role in

retrieving autobiographical memories) and other parts of the brain [35].

In contrast to fMRI, positron emission tomography (PET) is an invasive technique

that measures the metabolic activity of the cerebral cortex using fluorodeoxyglucose

(FDG). FDG behave similarly to glucose and accumulate in the brain according to

the glucose metabolic rate. PET studies showed that AD patients had decreased

metabolic rates of glucose in the temporal and parietal association cortices [36]. On

the other hand, the brain regions least affected by AD (i.e. primary motor cortex,

visual cortex, cerebellum) show no sign of impairment in glucose metabolic rate [37].

In summary, multiple biomarkers and anatomical changes can be used to study AD

development. It is possible that combination of markers (i.e. Aβ42 and hyperphos-

phorylated tau in the CSF, cerebral glucose metabolism, hippocampal volumetry) will

increase the probability of detecting people with mild cognitive impairment who are

likely to develop AD [27].
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1.5 Contributors of Alzheimer’s Disease

One of the leading contributors to AD is the aggregation of Aβ peptides as a form

of amyloid plaques in the extracellular spaces in the brain [38]. The APP gene on

chromosome 21 encodes for amyloid precursor protein (APP). The Aβ peptide is

the cleavage product of APP by secretases (α-secretase, β-secretase and γ-secretase)

[39]. In the non-amyloidogenic pathway, cleavage of APP is mediated by α-secretase

and γ-secretase. The product of the non-amyloidogenic pathway is a soluble peptide.

In the amyloidogenic pathway, on the other hand, Aβ40 and Aβ42 are the derivatives

of the APP by β-and γ-secretases [40, 41, 42]. These are hydrophobic species and

contribute to formation of senile plaques. Moreover, Aβ42 isoform has a tendency to

aggregate more than Aβ40 [43, 21, 44, 38]. For example, missense mutations in APP,

PSEN1 and PSEN2 are the leading causes for the familial AD [45, 46, 47, 48]. The

way that these three genes contribute to AD pathology is by increasing the ratio of

Aβ42/Aβ40 and thus promoting the aggregation of insoluble Aβ plaques [49, 50, 51].

The role of Aβ in AD could be explained by the amyloid cascade hypothesis (Figure

1.3) which was proposed by Hardy and Higgins [52, 53]. According to the amyloid

cascade hypothesis, overproduction and accumulation of Aβ42 start the sequence

of pathogenic events that result in AD. Aβ42 oligomers can stimulate the activa-

tion of microglia and astrocytes. Failure to remove Aβ42 oligomers might lead to

synaptic damage, following chronic immune responses. Aβ42 also propagates the

hyperphosphorylation of tau in the downstream of the cascade. Hyperphosphory-

lated tau forms neurofibrillary tangles, which are another pathological lesion in AD.

The last step of the cascade is neuronal dysfunction that eventually causes dementia

[54, 53, 38, 55, 2].

Another hallmark of AD is neuroinflammation, characterized by the increased num-

ber of astrocytes or microglial cells (also called gliosis) [56, 57, 58, 59, 60]. Microglia

are a member of the innate immune system and have several roles, including the en-

gulfment of damaged neurons [61, 62, 63, 64]. In AD pathology, microglia help to

mitigate the burden of senile plaques by degrading Aβ (reviewed in [65, 66, 67].

However, the burden of senile plaque causes chronic activation of innate immune
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Figure 1.3: Steps of the amyloid cascade hypothesis. The figure was taken from [2].

response and exacerbates neuroinflammation, followed by impairment in microglial

phagocytosis [68, 69, 70, 71]. The crucial role of microglia in AD progression has

been identified by GWAS.

GWAS identified ~30 risk loci for AD and most of them were related to the im-

mune response [72, 73]. One of them is the TREM2 (triggering receptor expressed

on myeloid cells 2) gene, which is mainly expressed by microglia in the brain and

encodes proteins for TREM2 receptors. TREM2 receptors are located on the surface

of the microglia. Aβ peptides are one of the ligands of TREM2 receptors and trigger

the chain of events that can result in the degradation or compaction of Aβ peptides. It

was identified that loss-of-function variants of the TREM2 gene are associated with

the increased risk of developing AD by approximately 2-4 folds [74, 75].
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Apart from TREM2, the apolipoprotein E (APOE) gene is another GWAS-identified

genetic risk factor for developing LOAD [76, 77, 78, 79, 80, 81]. APOE is mainly

expressed by astrocytes and microglial cells in the brain, and it is a polymorphic gene

that has three alleles (ε2, ε3, and ε4) [82, 83]. APOE protein contributes to AD pathol-

ogy by slowing down Aβ clearance and accelerating Aβ deposition [84, 85, 86, 87].

The burden of Aβ changes in a dose-dependent manner. For example, individuals

carrying the ε4 allele of APOE in the homozygous state have been identified to show

15-fold increased susceptibility to AD and have the highest plaque density in their

brain compared to other genotypes [88, 89, 90]. On the other hand, the ε2 allele of

APOE plays a protective role against AD [88].

The formation of neurofibrillary tangles (consists of hyperphosphorylated tau) is an-

other neuropathological hallmark of AD and is triggered by Aβ as in neuroinflamma-

tion. Microtubules play an important role in cellular functions such as division and

axonal stability [91]. The assembly and stabilization of microtubules are mediated

by microtubule-associated proteins. In the brain, tau is the microtubule-associated

protein (encoded by MAPT gene on chromosome 17) which is responsible for main-

taining axonal stability [92, 93, 94, 95]. Phosphorylation of tau is crucial to bind

microtubules. On the other hand, when it is in the hyperphosphorylated stage, tau de-

taches from microtubules [96], and the hyperphosphorylated tau aggregate into neu-

rofibrillary tangles. Also, tau could disassociate from the microtubule-tau complex

that causes instability of microtubules and end up with impairment in axonal trans-

port [97, 98]. The formation of neurofibrillary tangles is not specific to AD and could

also be observed in several neurodegenerative diseases like Parkinson’s [99].

On the other hand, one of the less-studied potential contributors of AD is aneuploidies

and copy number variations (CNVs) in the brain, which can be defined as the gain or

loss of whole chromosomes or chromosomal segments. The role of aneuploidies and

CNVs in AD will be discussed in the following sections.
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1.6 Origin of CNVs and aneuploidies in the brain

Aneuploidy refers to the gain or loss of the whole chromosome and CNVs can be

defined as the gain or loss DNA segment (≥ 1 kilobase pair) [100, 101]. Early studies

using cytogenetic techniques reported the relatively high frequency of aneuploid cells

in the human brain (4-40%) [102, 103, 104]. This raises the question about the origin

of aneuploidy in postmitotic neurons.

In 2001, Rehen and colleagues estimated that ~33% of neural progenitor cells (NPCs)

are aneuploid in embryonic mice [105]. NPCs have mitotic capacity; and during the

proliferation of NPCs, several mitotic errors, like chromosome missegregation, could

generate aneuploid NPCs. Then, aneuploid NPCs can give rise to postmitotic neurons

[105, 106].

CNV formation in the brain mainly occurs due to an error in the DNA repair mech-

anism which is called nonhomologous end joining [107, 108, 109]. On the other

hand, there could be several chromosome segregation defects that lead to aneuploidy

in the brain which are lagging chromosomes, supernumerary centrosomes, and non-

disjunction [106].

• Lagging chromosomes: When a kinetochore is attached to microtubules com-

ing from both spindle poles, it is known as merotelic kinetochore attachment.

Due to the merotelic kinetochore attachment, chromosomes could lag behind

in the spindle midzone during anaphase which could end up gain or loss of

chromosome(s) [106, 110].

• Supernumerary centrosomes: Before anaphase, centrosomes separate into two

groups and form bipolar spindle poles. Sometimes, there could be more than

two centrosomes, which are called supernumerary centrosomes. Cells with su-

pernumerary centrosomes could suffer from merotelic kinetochore attachments,

which violates bipolar cell division, leading to aneuploid progeny [106, 111].

• Non-disjunction: Due to the segregation error in sister chromatids, both of them

could move to the one pole of the cell. Non-disjunction results in a two aneu-
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ploid progeny: one with monosomy and another with trisomy [106].

Previous studies showed that neural aneuploidy can appear on each chromosome with

equal probability, without any preferences [105, 112, 113, 114, 112, 115]. On the

other hand, we and others reported more deletions than duplications [105, 103, 104,

116, 117, 118, 114, 119]. For example, Rehen and colleagues calculated that ~33%

of neuronal progenitors were aneuploid in embryonic mice brains [105] using cyto-

genetic techniques. The percentage of hypoploid cells was striking which was 98%.

Similarly, in the 2014 single-cell study, Cai and colleagues identified more losses than

gains in the adult human brain. The authors also examined the frequency of CNVs in

human lymphoblasts and they found approximately equal numbers of loss and gains.

The observed trend in the brain could be explained by the following. Chromosome

segregation defects tend to occur in the type of lagging chromosomes and supernu-

merary centromeres rather than nondisjunction in the developing mice brains. And

these two chromosome missegregation events predominantly produce hypoploid cells

[106]. Indeed, nondisjunction is not only a rare event during neurogenesis but also

produces hypoploid and hyperploid cells at a similar rate [106].

1.7 Experimental methods to study aneuploidy

There are several methods to study copy number variations in cells: karyotype anal-

ysis, spectral karyotyping (SKY), interphase fluorescence in situ hybridization (i-

FISH), metaphase fluorescence in situ hybridization (metaphase-FISH) and single-

cell whole genome sequencing (scWGS) [120].

Karyotype analysis, SKY and metaphase-FISH are proper for cells with mitotic ca-

pacity [121]. In karyotype analysis, cultured cells are arrested in metaphase to enu-

merate condensed chromosomes. SKY and metaphase-FISH take advantage of the

stability of DNA molecules. First, fluorescently-labelled probe DNA and comple-

mentary target sequences are denatured to single-stranded DNAs. Then, both molecules

are annealed to form a stable double-stranded molecule. Due to the limited number

of fluorescent labels, one can use metaphase-FISH to analyze a limited number of

chromosomes per cell [121, 122]. On the other hand, SKY allows us to study all
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chromosomes by employing 24 chromosome-specific probes [123, 124, 125].

It is generally accepted that mature neurons in healthy brains may carry somatic CN-

Vs/ aneuploidies, but the frequency of such events is uncertain. i-FISH and scWGS

are the methods for studying aneuploidy in non-dividing cells like neurons. However,

the frequency of aneuploidy that was reported by these two methods varies dramati-

cally. Studies using i-FISH (4-40%) [102, 103, 104] reported much higher aneuploidy

frequency than studies using scWGS (<4%) [107, 126, 127].

Andriani and colleagues compared two methods to understand the underlying rea-

sons for the difference in the reported aneuploidy frequency [128]. One possible ex-

planation for the overestimation of aneuploidy by i-FISH is that i-FISH could suffer

from probe hybridization problems and/or probe clustering [129, 130]. To overcome

these problems, the authors suggested a 2-probe/chromosome i-FISH assay rather

than one probe/chromosome i-FISH assay. In the 2-probe/chromosome i-FISH as-

say, the authors used two probes which are labelled by different fluorophores. If

two probes report the same events (gains or losses), then loci are called aneuploid.

Even though 2-probe/chromosome assay reduces the false positives compared to 1-

probe/chromosome, still this method is not proper for calling aneuploidy across the

genome. This is because similar to metaphase-FISH, i-FISH allows only studying a

few chromosomes at a time.

To test the sensitivity scWGS, the authors used mock aneuploid cells which are ei-

ther polyploid (i.e. 4n, 8n) or have complex aneuploidy (aneuploidy in a polyploid

background, i.e. chromosome 2 gain in 8n ploidy background). The reason for test-

ing complex aneuploidy is to mimic the biology of aneuploidy. For example, in the

liver most hepatocytes are polyploid [131]. The authors showed that scWGS fail to

identify polyploidy (4n and 8n are predicted as 2n) with a 0% sensitivity. On the

other hand, scWGS sensitivity was 33.3% accurate in predicting complex aneuploidy

(i.e. predicting aneuploidy in the polyploid background). Andriani and colleagues

suggested the improvement in the DNA amplification step in scWGS and the usage

of the combination of two methods as possible solutions.
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1.8 The role of aneuploidy in the healthy brain

Over the last decade, advances in next-generation sequencing (NGS) technologies

gave fresh impetus to somatic CNV analyses by allowing variants to be determined

at the single-cell level across species [132]:

• McConnell et al., 2013: The authors sequenced 110 frontal cortex neurons from

three young humans (20-26 years) [107]. The authors showed that 41% of the

analyzed cells include at least one CNV (2.9-75 Mb) and 2.7% of them have

aneuploidy. The authors also reported that deletions occur approximately twice

as frequently as duplications. These results implied that neurons with mosaic

CNVs are common in the human frontal cortex. The data coverage was ~0.1X

and DNA was amplified using the GenomePlex Single Cell Whole Genome

Amplification Kit (Sigma).

• Cai et al., 2014: The authors analyzed 97 neurons from three neurotypical

human cerebral cortex at ~0.08X coverage [116]. The authors did not report

any neurons having aneuploidy. Among 19 neurons from one individual, 68%

(13/19) harboured megabase-scale CNVs (median 2.3 Mb; 1.7-17 Mb), with an

average of 3.4 CNVs per neuron. In addition, two cells (6%) shared the same

CNVs which supports the idea that the CNVs might stem from progenitor cells

during development. The authors also reported more deletions than duplica-

tions, consistent with McConnell et al., 2013 [107]. In this study, DNA was

amplified by GenomePlex (Sigma).

• Knouse et al., 2014: In this single-cell study, the authors first tested the sensi-

tivity and specificity of their methods using trisomy 16 mouse embryos [127].

Using HMMcopy, the authors reported that trisomy 16 was detected across all

samples without any false positive or negative calls. Then, to investigate the

prevalence of aneuploidy in the mouse brain, the authors sequenced 19 neurons

from the mouse cerebral cortex, and found no aneuploidy (predicted by HMM-

copy). The authors stated that labelling neurons with NeuN could result in

high sequence variability. The reason for this is that the labelling steps includ-

ing fixation and immunostaining might affect the whole genome amplification.
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Then, 89 neurons from four neurotypical human frontal cortex were sequenced

at ~0.1X coverage. The age of the individuals ranged between 48 and 70 years.

The authors only reported the prevalence of aneuploidy in the human frontal

cortex, as 2.2%. In this study, DNA was amplified using GenomePlex (Sigma)

and ~10% of the cells showing high variation in read depth were removed from

the study.

• Knouse et al., 2016: The authors compared the accuracy of different CNV pre-

diction algorithms (DNAcopy and HMMcopy, see 2.2.2) and stated that CNVs

larger than 5 Mb could reliably be called at ~0.1X coverage [133]. The authors

analyzed 105 neurons from four neurotypical human frontal cortex at ~0.1X

coverage. The prevalence of CNVs in the human brain was estimated as 9%.

Most CNVs were deletions (90%) and located near the telomeres. Compared to

keratinocytes from the skin, the authors reported high read depth variability in

neurons that could be explained by differences in chromatin structure. The data

from the previous studies were also reanalyzed (McConnell: 41%, Cai: 68%),

and the authors reported a lower rate of CNV frequency than the original stud-

ies (McConnell: 17%, Cai: 10%) [107, 116]. This result indicates how chosen

methods affect the reported CNV frequency.

• van den Bos et al., 2016: van den Bos and colleagues first tested the accuracy of

their pipeline using trisomy 21 data from individuals having Down’s syndrome

(n = 36 single cells) [126]. Trisomy 21 were detected across all samples without

any false positive or negative calls. Analyzing 589 neurons from 6 control

individuals, the authors reported aneuploid prevalence at 0.7% and concluded

that aneuploid cells are not common in the healthy brain. To avoid PCR biases,

the authors skipped the DNA amplification steps. Even though there was no

such step, 40% of cells showing high read depth variation were discarded from

the analyses.

• Vitak et al., 2017: Vitak and colleagues implemented an experimental method,

single-cell combinatorial indexed sequencing (SCI-seq), to produce thousands

of low-coverage single-cell libraries in parallel [134]. An advantage of SCI-seq

is that it does not require labour-intensive cell isolation steps. Thus, SCI-seq

may be preferable for low-pass scWGS. The authors also prepared 552 single-
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cell libraries from two rhesus macaques (4 and 9 years), and used different

thresholds to report an aneuploidy rate of ~10% (min: 3.1%, max: 25.0%).

• Rohrback et al., 2018: Rohrback and colleagues determined how the frequency

of CNVs changes during mouse brain development using 658 cells from 43

mice [135]. The authors claimed that DNA amplification with GenomePlex

(Sigma) introduces noise in the data, so instead, they used transposase-based

amplification (TbA) to amplify genomic DNA. This approach made it possible

to assess CNVs as small as 0.25 Mb. The authors reported 5394 events in 488

cells (~11 per cell), most of which were smaller than 5 Mb. Consistent with

previous studies, deletions dominated the frequency of CNVs [107, 116, 133].

• Chronister et al., 2019: Chronister and colleagues sequenced 589 neurons from

the neocortex of five neurotypical human individuals [136]. The authors es-

timated CNV-carrying neurons at around 30% (n = 197) in young adults and

10% (n = 392) in old adults. In other words, CNV-bearing neuron frequen-

cies decrease from young to old adulthood. This result might indicate that

CNV-bearing neurons may be eliminated throughout a lifetime in neurotypi-

cal individuals. Consistent with previous studies, there were more deletions

than duplications among somatic mutations [107, 116, 133, 135]. The authors

also reported that CNV frequencies in neurons (4%–23.1%) are higher than in

non-neuronal cells (4.7%–8.7%).

1.9 The role of aneuploidy in AD brain

Over the last two decades, a number of FISH and cytogenetic-based studies investi-

gated CNV frequencies in AD and healthy control brains [137, 102, 117, 138, 139,

113, 140]. Several of these reported extra copies of chromosomes in neurons of

the AD brain [137, 140, 117, 138, 139, 113]. This, in turn, implies that chromo-

somal imbalance might contribute to AD pathogenesis via altered gene expression

levels. An example of such imbalance is seen in individuals with Down’s syndrome

(DS); carrying an extra copy of chromosome 21 appears to facilitate aggregation of

amyloid-β (Aβ) plaques in the brains of DS individuals similar to the AD phenotype

[46, 138, 141].
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There are various explanations for why post-mitotic neurons in AD brains could carry

high frequencies of somatic CNV [142]. According to one view, the high CNV bur-

den in the AD brain originates from neurogenesis in the embryonic period. This

excessive somatic mutation may be pathogenic and manifest itself as increased AD

risk during aging [143]. However, Abascal et al. recently analyzed single cells from

granulocytes, smooth muscle, neurons, skin, colon, bronchus and bladder in humans,

and showed that somatic mutation (single nucleotide change or indel) accumulation

in cells with mitotic capacity and in post-mitotic neurons follow similar trajectories.

That is, mutational processes (possibly also including CNVs) appear to occur in a

time-dependent manner rather than being division-dependent [144]. Accordingly,

CNVs in AD brains may have accumulated during individuals’ lifetimes. However,

this scenario also appears inconsistent with the observation that CNV-bearing neu-

ron frequencies decrease from young to old adulthood [136]. Another view suggests

that AD itself might cause dysregulation in neurons, and AD-affected mature neurons

might re-enter the cell cycle, resulting in increased CNV load [117, 145], which may

then be eliminated at later stages of AD, thus causing neurodegeneration [139].

In a 2016 study, van den Bos and colleagues used scWGS to compare the prevalence

of aneuploidy in neurons from healthy control and AD patients [126]. Analyzing

1482 neurons from 10 AD patients and 6 control individuals, the authors reported

aneuploid prevalence at 0.7% and 0.6% for control and AD neurons, respectively,

and concluded that aneuploid cells are not more common in the AD brain.

These findings by van den Bos and colleagues implied that CNVs might have no

relationship to AD pathogenesis, in contrast with earlier findings from FISH and cy-

tometry studies. However, the study by van den Bos and colleagues had a number

of limitations. One was that the authors only estimated aneuploidy (full chromosome

gain or loss), while large CNVs, which could also contribute to pathogenesis, had

remained uncharacterized. Another limitation was that only one brain region was ex-

amined, the frontal cortex, while atrophy of the medial temporal lobe and specifically

the hippocampus is generally considered to be a strong predictor of AD [146]. The

study also did not distinguish among neuron types that may carry sensitivity to AD
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differentially [147]. Thirdly, the study discarded a large fraction of cells (39%) for

showing high within-cell variability in genome coverage, although it was unclear to

what extent these represented pure technical error versus cells with complex kary-

otypes. Finally, only NeuN positive neurons were included in the experiment, which

substantially restricts the significance of this study due to different reasons:

1. Recently, up to 30% of cortical neurons have been reported being NeuN-negative

following diffuse brain injury, which may be related to certain neurons being

particularly vulnerable to membrane disruption [148], a process which was also

recently associated with AD [149, 150].

2. Considerable or even complete loss of NeuN immunoreactivity was also re-

ported for neurons affected by ischemic insults (middle cerebral artery occlu-

sion) without significant cell loss [151] or in neurons that just entered the cell

death process [152]. Interestingly, these neuronal populations are of special

interest because energy and nutritional deficiency and cell loss are essential

characteristics of the AD brain [153].

3. The intensity of NeuN staining is reported to be lower in AD samples [154],

and further due to many NeuN negative cortical neurons in FTLD-TDP (fron-

totemporal lobar degeneration with TDP-43 inclusions) patients, Yousef et al.

suggested NeuN staining as an indicator of healthy neurons [155]. However,

if NeuN reflects a neuron’s health, any selection of NeuN positive cells would

lead to a substantial bias for studying any neurodegenerative disease.

These methodological issues could potentially explain the discrepancies between the

findings by van den Bos et al. and those based on FISH and cytogenetic studies

[137, 117, 140, 138, 139, 113]. Notably, a recent technical comparison between FISH

and scWGS using mock aneuploid cells reported a tendency of the latter to severely

underestimate aneuploidy [128]. It is thus possible that both neurons with CNV and

nuclei thereof display altered physicochemical properties. This may result in selec-

tion bias against abnormal nuclei with high CNV loads when using the fluorescence

activated cell/nuclei sorting (FACS, FANS) isolation method (exerting mechanical

stress [156]) and high hydrodynamic pressure [157], applied by van den Bos and col-

leagues, and artificially inflate euploidy frequencies. Moreover, besides restriction to
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NeuN positive cells, usage of only intact nuclei could preclude or bias AD neurons

with nuclear envelope stress or rupture [158].

1.10 Research Objectives

Here we generated and analyzed scWGS data to establish the frequency of CNVs

(both full chromosome aneuploidies and sub-chromosomal CNVs) in five different

brain regions that differ in vulnerability to AD in healthy brains and brains of AD

patients [20]. We employed two different single-cell isolation methods, laser capture

microdissection (LCM) and FACS, to isolate neuronal nuclei. LCM, despite being

technically challenging, has the advantages of allowing for specific neuron types to be

chosen, and being neutral towards normal and abnormal nuclei. We further employed

a principal component analysis-based denoising approach to eliminate false positive

CNV calls that might result from either systematic experimental biases or repetitive

regions in the human genome. Finally, we analyzed published datasets to replicate our

main results and check the sensitivity and specificity of our bioinformatics pipeline.

Overall, the aim of the study was to answer the following questions:

• Do the frequency of whole chromosome aneuploidy/ CNV differ in the brains

of healthy control and AD?

• Are there region-specific differences in the prevalence and distribution of ane-

uploidy/CNV between healthy controls and AD?

• Are there differences between the frequency of gains and losses?

• Does aneuploidy/CNV preferentially affect certain chromosomes?

• Are there any differences between LCM and FACS in terms of technical noise?
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CHAPTER 2

MATERIAL AND METHODS

2.1 Wet lab experiments

All experiments were conducted at the Paul-Flechsig-Institute (Leipzig University,

Germany). People who contributed the data generation were Uwe Ueberham, Thomas

Arendt, Vincent Richter, Jana Bochmann, Sarah-Kristin Waterholter, Sabrina Leclere-

Turbant and Charles Duyckaerts.

2.1.1 Ethics approval and consent to participate

The samples were obtained from brains collected in a Brain Donation Program of

the Brain Bank NeuroCEB run by a consortium of Patients Associations: ARSEP

(association for research on multiple sclerosis), CSC (cerebellar ataxias), LECMA

(European league against Alzheimer disease) and France Parkinson.

The consents, that have been validated by the Ethical Committee Ile de France 6,

were signed by the patients themselves or their next of kin in their name, in accor-

dance with the French Bioethical Laws.

The Brain Bank NeuroCEB has been declared at the Ministry of Higher Education

and Research and has received approval to distribute samples (agreement AC-2013-

1887). The autopsy protocol has been approved by the Biomedicine Agency as re-

quested by the French Law.
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2.1.2 Tissue sources

Frozen postmortem human brain tissues -temporal cortex, hippocampal subfields cornu

ammonis (CA) 1, hippocampal subfields cornu ammonis (CA) 3, cerebellum (CB)

and entorhinal cortex (EC)- from a total of 13 AD patients and 7 non-demented age-

matched controls were obtained from the GIE NeuroCEB Brain Bank (France).

AD cases were diagnosed according to the National Institute of Aging and Reagan

Institute Criteria [159] and immunohistochemically processed for tau and amyloid

pathologies [17, 160]. Control cases were non-demented individuals who died with-

out known neurological disorders.

Post-mortem delays and mean ages of control and AD cases were not significantly

different. The average age of death was for control cases (n = 7) 71.57 years (±5.13

years SEM) and for AD cases (n = 13) 70.15 years (±3.63 years SEM) (p = 0.822).

The average post-mortem delays were 31.14 hours (±7.10 hours SEM) for control

cases and 26.17 hours (±4.08 hours SEM) (p = 0.52).

2.1.3 Methods for single-cell isolation

Fluorescence-activated cell sorting (FACS): Neuronal nuclei were extracted follow-

ing the protocol described in [161]. Briefly, frozen brain samples were thawed in

the hypotonic lysis buffer. Neuronal nuclei were stained with propidium iodide and

sorted using BD FACSAria II SORP (BD Biosciences). Genomic DNA was then

isolated and amplified as described below (see 2.1.4).

Laser capture microdissection (LCM): Frozen brain samples at –80°C were thawed

to -20°C, sliced using CryoCut Freezing Microtome at 30 µm thickness, and mounted

on a membrane slide (Carl Zeiss). After staining with cresyl violet, single cells were

cut out and placed into an adhesive cap by PALM MicroBeam (Carl Zeiss). Neurons

of the individual 5603 were collected using both FACS (n = 12) and LCM (n = 64).
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2.1.4 scWGS library preparation and sequencing

Genomic DNA was amplified using WGA4 (GenomePlex® Single Cell Whole Genome

Amplification Kit) and then purified using the MinElute PCR Purification Kit (Qia-

gen). The specific adapters were added to the DNA via Phusion® PCR followed

by purification with the MinElute PCR Purification Kit (Qiagen). Sample quality

was evaluated using agarose gel electrophoresis. Sequencing was performed on the

HiSeq2500 platform (Illumina) with paired-end 100 bp (PE100) or 150 bp (PE150)

modes.

2.2 Data analyses pipeline for scWGS data

Analyses were conducted by myself with the help of Poorya Parvizi, Ulaş Işıldak and

Etka Yapar. Data analyses pipeline for scWGS data consist of two main parts: (1)

NGS data analyses and (2) CNV detection (Figure2.1).

1. NGS data analyses

1.  quality control
FASTQC & MultiQC

2.  adapter & quality trimming
                 Trimmomatic

3. alignment
     BWA aln

5. sort & index & remove 

4. quality control

6. change file format
          bamtobed

FASTQ - processed reads

FASTQ - raw reads

SAM

BAM

sorted & indexed BAM

BED

HEADCROP:35

CROP:66

ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8:TRUE

MINLEN:66

PE

samtools view -h file.bam | egrep -i "^@|XT:A:U" |
samtools view -Shu - > file.bam2

samtools view -h -q 60 file.bam2 > file.bam3

samtools view -f 2 -F 3852 -b file.sam > file.bam

samtools sort file.bam3 > file.sorted.bam

samtools index -b file_rm.sorted.bam

samtools rmdup -S file.sorted.bam file_rm.sorted.bam

bin reads  

GC bias correction

call integer copy number

2. CNV detection

Figure 2.1: The pipeline of NGS data analysis and CNV detection.
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2.2.1 NGS data analysis

2.2.1.1 Read quality control and alignment

The FastQC tool (version 0.11.9) was used to check the quality of the raw Illumina

reads. The results of FastQC were summarized using MultiQC (version 1.9)

[162]. The mean sequence lengths of the reads (ranging between 101 and 151) were

inspected using the output of the MultiQC (general_stats_table). To avoid biases

that would affect the interpretation of the results, all reads were trimmed to a length

of 66 (the longest possible length in all reads). Illumina adapter and low-quality

bases (the first 35 bp) were removed using Trimmomatic [163] with the following

parameters: "ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8:TRUE HEADCROP:35

MINLEN:66 CROP:66".

The quality of the trimmed reads was checked again using FastQC and MultiQC.

Adapter-trimmed paired-end FASTQ files were mapped to the hg19 human reference

genome (/ftp://ftp.ensembl.org/pub/release-75/fasta/homo_

sapiens/dna/) using Burrows-Wheeler Alignment (BWA v.0.7.17) [164] with

"aln" and "sampe" options.

2.2.1.2 Filtering

The output of the BWA aligner in Sequence Alignment/Map (SAM) format was

further processed by SAMtools v1.10 [165] to obtain high-quality uniquely aligned

reads. The applied steps are as follows:

(1) keep reads mapped in proper pair and discard reads marked with SAM flag

3852:

samtools view -f 2 -F 3852 -b file.sam > file.bam

(2) extract uniquely mapped reads from BAM files:

samtools view -h file.bam | egrep -i "^@ | XT:A:U" |
samtools view -Shu - > file.bam2 [166]
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(3) obtain reads having MAPQ scores 60:

samtools view -h -q 60 file.bam2 > file.bam3

(4) sort BAM files:

samtools sort file.bam3 > file.sorted.bam

(5) filter out PCR duplicates:

samtools rmdup -S file.sorted.bam file_rm.sorted.bam

(6) index BAM files:

samtools index -b file_rm.sorted.bam

(7) convert BAM file into BED format using the Bedtools "bamToBed" command

(Bedtools v2.27.1) [167].

2.2.1.3 Coverage

Bedtools v2.27.1 algorithm "genomeCoverageBed" was used to obtain coverage of

the bases on each BAM file.

2.2.2 CNV prediction and cell elimination

CNV calling was performed using Ginkgo [3]. We had three main reasons for using

Ginkgo over its most commonly used alternative, HMMcopy [168]. First, a recent

study [169] performed benchmarking on Ginkgo and two other widely used methods

HMMcopy and CopyNumber, and found that Ginkgo was the most accurate

algorithm for inferring the absolute copy number profiles (although HMMcopy was

superior in identifying breakpoints and running time). Second, Ginkgo provided the

advantage of outputting data with normalised coverages per cell, which we could

use in our PCA-based denoising method, and further in estimating the genome-wide

copy number of each cell, which we used to filter cells for high levels of variability

in read depth. Third, our tests on the sensitivity and specificity of Ginkgo using

trisomy-21 in DS and monosomy-X in males in published data [126, 107] revealed

100% and 94% detection rates across the two published datasets. Overall, apart from

its advantages, Ginkgo enable us to develop PCA-based method denoising approach.
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CNV prediction involves several steps. These steps and the parameters used in

Ginkgo [3] will be discussed as follows (Figure 2.3):

• Binning: Uniquely mapped reads are binned into the non-overlapping fixed- or

variable-size genomic windows. The aim of the binning is to reduce the effect

of the amplification biases [3]. Also, working with a lower resolution is more

manageable than working on the entire genome [168].

The use of variable-length bins has several advantages. The first one is

to avoid false positive deletions in the regions that correspond to blacklisted

areas (repetitive or low-mappability regions) in the human genome [170].

Variable-size bins have wider intervals in the regions that span blacklisted

areas [170]. In this way, each bin also has the same number of reads with a

constant variance [3]. Considering that the read counts in each bin are used to

predict CNVs, having the same number of reads with a constant variance is

important. Due to the above-mentioned advantages of variable-length bins, we

used variable length bins with an average size of 500-kb.

• Coverage normalization: Ginkgo performs coverage normalization; the read

count in each bin is divided by the mean read count across bins per sample [3].

This scaling step is crucial for our PCA-based denoising approach, which will

be discussed in the following section, to work accurately.

• GC bias correction: GC extreme regions (GC-poor < 40% or GC-rich > 60%)

could form secondary structures that hamper the efficiency of DNA polymerase

during PCR amplifications [171, 172, 173, 3, 174, 175, 176, 177]. Inefficient

amplification of GC extreme regions can be reflected as uneven coverage or

even no coverage of reads in Illumina sequencing, known as GC content bias.

Ginkgo fit locally weighted linear regression (LOWESS) between GC con-

tent and log-scaled read counts in each bin to correct GC bias [3]. Then, GC-

normalized values will used for segmentation.

• Segmentation: The aim of the segmentation is to divide the genome into

non-overlapping regions that have different copy numbers [169]. The bound-
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aries of the segments are called breakpoints. To identify change points or

breakpoints where copy number transitions occur, most segmentation methods

are based on the idea that chromosomal aberrations, for human deviation from

two, can be distinguished by abrupt changes in the read count distribution [178].

One method that can be used to identify breakpoints in the genome is

circular binary segmentation (Figure 2.2) [179, 180]. Ginkgo uses CBS which

is implemented in the DNAcopy package in R [180]. To identify breakpoints,

CBS compares the log values of the read count in each potential segment with

the regions outside the segment using a t-test. CBS runs per chromosome and

splits them into subsegments recursively. The start and end positions of the

chromosome are connected and the connection is called 0. X and Y are the

breakpoints of the segment, where 0 < X < Y . If the read count distribution

is statistically significant between X → Y and Y → 0 → X , the region is

segmented as X → Y , Y → 0 and 0 → X [179, 178, 181].

• Post hoc adjustment: CBS only determines the breakpoints of the segment.

Post hoc adjustment is required to determine the integer copy number states.

Ginkgo takes the following steps to do it [3]:

(1) Variable size of 500-kb bins that correspond to 5578 genomic windows;

and suppose DNAcopy estimated the first breakpoint to be between bin 1

and bin 25, then Ginkgo takes the median of the normalized read counts

(coverage- and GC-normalized) between bin 1 and bin 25 (called segment

X). Then, the read counts for all bins in segment X are replaced with the

median bin count of segment X .

(2) To determine the copy number state of each sample, Ginkgo next scales

the segmented bin counts so that the mean bin count equals the ploidy of

the sample. Thus, the values from the previous step are divided by the

mean for each sample. The resulting value is called the raw copy-number

profile (RCNP).

(3) RCNP is multiplied with the possible genome-wide copy number of the

sample, ranging from 1.5 to 6 with increment of 0.5 [1.50, 1.55, . . ., 5.95,

6.00]. The product of the RCNP and genome-wide copy number is called
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the scaled copy-number profile (SCNP).

(4) To determine the genome-wide copy number of the sample, the sum-of-

squares (SoS) error between the SCNP and the RCNP is then calculated

for each multiplier. The multiplier with the smallest SoS error will be the

genome-wide copy number of the sample.

(5) The rounded value of the SCNP is called the final integer copy-number

profile (FCNP), such that each segment is represented with an integer

value.
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Figure 2.2: Steps of circular binary segmentation. Figure was copied from https:

//github.com/melissayan/vnowchi, and to increase the resolution, re-

drawed with https://biorender.com/.

The command-line version of Ginkgo was downloaded from https:

//github.com/robertaboukhalil/ginkgo. The tool was run under

the following settings: (1) variable size of 500 kb bins [166] based on simulations

of 76 bp reads aligned with BWA, (2) independent segmentation method, (3) ward

and euclidean options for the clustering method and clustering distance metric,

respectively. Before the segmentation step, GC correction was performed by

Ginkgo using the R function "LOWESS" (see [3]). For segmentation, Ginkgo uses
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the CBS algorithm implemented in DNAcopy in R [182]. DNAcopy runs with

the following parameters: alpha=0.0001, undo.SD=1, min.width=5

[133]. We also run HMMcopy as described in [168] (using the parameter e = 0.995).

The number of reads was divided into the variable size of 500 kb bins that

correspond to 5578 genomic windows. Only cells with >50,000 reads were kept in

downstream analyses (approximately nine reads per window), resulting in n = 1337

cells.

Figure 2.3: Workflow of Ginkgo. Figure was taken from [3].
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2.3 Published datasets

The van den Bos 2016 dataset: Data was downloaded from EBI ArrayExpress with

the accession numbers E-MTAB-4184 and E-MTAB-4185 [126]. Only the cells that

were reported as having good quality libraries were included in the analysis (AD:883;

control:586; Down’s syndrome:34). Adapter sequences were trimmed with the

following parameters: "ILLUMINACLIP:adapter.fa:2:30:10:8:TRUE MINLEN:51".

Single end reads were aligned to the hg19 human reference genome using BWA with

"aln" and "samse" options. The remaining steps are the same as those described in

sections Filtering, except that here we used the SAM flag 3844 (because this dataset

was single-end sequenced) and used MAPQ scores 20 (because this dataset did not

have enough reads which having the MAPQ 60). Note that due to the missing sample

information in the database, the number of analyzed cells in this work does not match

what van den Bos and colleagues reported in their original publication.

The McConnell 2013 dataset: FASTQ files of 110 cells were downloaded

from the NCBI SRA database with accession number SRP030642 [107].

Adapter sequence was trimmed with the following parameters: "ILLUMINA-

CLIP:adapter.fa:2:30:10:8:TRUE MINLEN:39". Paired-end reads were aligned to

the hg19 human reference genome using BWA with "aln" and "sampe" options. The

remaining steps are the same as those described in sections 2.2.1.2.

2.4 Statistical modeling of CNV frequencies and index of dispersion (IOD) lev-

els

When modelling CNV frequencies, our null hypothesis was no difference in the

frequency of CNVs in the AD brain when compared to healthy controls. The

overdispersed and zero-dominated nature of the response variable (the frequency of

CNVs) suggest that the data should be fitted using a zero-inflated negative binomial

model. For this aim, the "glmmadmb" function (package: glmmADMB) [183] in R

3.6.3 with the following parameters was used: "zero-inflated = TRUE" and "family

= nbinom1". The fixed factors of the model were diagnoses (AD and control),

chromosomes (autosomes), sex (male and female), brain regions (temporal cortex,
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hippocampus CA1, hippocampus CA3, cerebellum, entorhinal cortex) and coverage.

Individual effects were added as a random factor. Note that sex could not be used

as a fixed factor in the van den Bos 2016 dataset because cells that remained after

filtering only belonged to females.

We also compared the difference between AD and control in terms of CNV

frequency using HMMcopy estimates. The fixed factors of the model were diagnoses

(AD vs. control) and coverage per cell. The individual effect was added as a random

factor.

When modelling the index of dispersion (IOD, the ratio between the variance

of read coverage and the mean), we used the same approach as above. IOD (the

response variable) were predicted using diagnoses (AD and control), brain regions

(temporal cortex, hippocampus CA1, hippocampus CA3, cerebellum, entorhinal

cortex) and coverage as an explanatory variables using "glmmadmb" function

(package: glmmADMB) [183] in R 3.6.3. Individual effects were added as a random

factor. The distribution of the IOD was right-skewed and the model was run with

"family = gamma" parameter.

To compare the IOD across different brain regions, "lme" function (package:

"nlme") in R 3.6.3 with diagnoses as fixed effects and the individual as a random

effect was used.

2.5 Copy number statistics

After reads were mapped into the bins, read counts in each bin were divided by the

mean read counts across bins for each cell. This value corresponds to the normalized

read counts as calculated by Ginkgo (see [3]).

A Z1-score for each CNV was calculated using the normalized read counts. It was

calculated as the cell mean (mean normalized read counts across autosomes) minus

the CNV mean (mean read counts between CNV boundaries) divided by the standard
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deviation (sd) of CNV:

Z1-score =
meancell −meanCNV

sdCNV

The Z2-score of each CNV was calculated by calculating the difference between the

Ginkgo-estimated integer copy number state (1 or 3) and the observed normalized

read count, dividing by the standard deviation (sd) of the normalized read counts:

Z2-score =
estimated_stateCNV −mean(observed_readcountCNV )

sdCNV

CNVs with two standard deviations below or above the cell’s mean and CNVs with

Z2-score smaller than or equal to 0.5 were kept in the analysis. Using these combina-

tions, monosomy X (≥90% of the chromosome’s length) was correctly predicted in

58.1% (217 of 373) of males in the uncorrected data.

2.6 Principal component analysis (PCA)

To remove experimental noise from the data, the following steps were applied for

every cell:

(1) One cell (x) at a time was discarded from the analysis. For the remaining cells,

PCA was applied on the normalized read counts using the "prcomp" function

with the parameter "scale.=TRUE" in R 3.6.3.

(2) n PCs that explained at least 90% of the variance in total was chosen.

(3) To remove the effect of the chosen PCs from the focal cell x, a linear regression

model with normalized read counts from cell x as a response, and the n PCs as

explanatory variables was constructed using the R "lm" function.

(4) Residuals from this model were calculated.

(5) To prevent errors during a lowess fit of GC content (log transformation of neg-

ative residuals produces NaNs), plus one was added to the residuals. If there

still remained values less than or equal to zero, those values were replaced with

the smallest positive number for the focal cell x.
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(6) The resulting value was set as a new value of the focal cell x, and Ginkgo was

run with the new values.

The pseudocode of the method is as follows:

Data = SegNorm

DataX = prcomp(Data)

PCs = which(cumsum(DataX) > 90%)

Res = residuals(lm(cell X))

Res = Res+1

if(min(Res)≤0){

Res[Res ≤ 0] = posMin(Res[Res > 0])}

Coverage normalized read counts, except cell X

m × n matrix of m bins and n cells

PCA was applied on the normalized read counts

Choose n PCs that explained at least 90% varia-

tion

Fit a linear model to capture all the pattern in the

data and get residuals

Add 1 to the residuals to prevent error during lowess fit of

GC content

If there, replace values less than or equal to zero

with the smallest positive number

Also, PCA of the normalized read counts across different datasets was performed in

R 3.6.3 using the "prcomp" function with the parameter "scale.=FALSE".

2.7 Data access

All data from this study have been submitted to the European Nucleotide Archive

(ENA) repository under accession number PRJEB51941. The codes and additional

information can be found in the Github repository (https://github.com/

zgturan/brain_CN).
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CHAPTER 3

RESULTS

3.1 Summary of the dataset

We used scWGS to determine the frequency of CNVs in the temporal cortex, hip-

pocampal subfields cornu ammonis (CA) 1, hippocampal subfields cornu ammonis

(CA) 3, cerebellum (CB) and entorhinal cortex (EC) of 13 AD patients and 7 age-

matched healthy controls (Table 3.1). We collected samples from multiple regions

from 8 donors, and only the temporal cortex from the rest. Overall, we maintained a

balanced distribution with respect to condition, donor, and brain regions. Figure 3.2A

shows the distribution of cells according to each individual and brain region.

Figure 3.1: Schematic of the workflow. The pipeline of NGS data analysis and CNV

detection. Figure was created with https://biorender.com/

Neuronal nuclei were isolated using either FACS (sorted with propidium iodide,

n = 12) or LCM (sorted with cresyl violet, n = 1552), the latter performed on frozen

brain slices (Figure 3.3). LCM-isolated non-neuronal "blank" regions were used as
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negative control (n = 10). The LCM method, although more difficult to implement

than FACS, was chosen to ensure the selection of nuclei of pyramidal neurons for se-

quencing, known to be particularly sensitive to AD [147]. For technical comparison,

neurons of a single individual were collected both using FACS (n = 12) and LCM

(n = 64). scWGS libraries were prepared using GenomePlex whole-genome am-

plification and specific adapters were inserted using Phusion® PCR. Paired-end reads

were mapped to the human reference genome, followed by stringent filtering to obtain

uniquely mapped reads. This resulted in a median of 276,446 reads, corresponding

to a coverage of 0.006X per LCM-isolated cell (range: [133 - 1,909,016] reads and

[0.000003X - 0.04X] coverage) (Figure 3.5A).

Table 3.1: Summary of clinical and demographic variables of samples analyzed.

Case ID Diagnoses Age Sex Braak level Post-mortem delay

(h)

106 AD 52 male 4 58

108 AD 84 male 3 30

6203 control 78 male 0 23

3549 control 69 male 0 6

3862 AD 58 male 3 5.5

6563 AD 82 male 6 25

7753 AD 71 male 4 30

8401 control 60 female 0 28

5603 control 92 female 1 21

5946 AD 89 female 6 10

7903 AD 84 female 4 38

107 control 68 male 0 48

5433 control 52 female 2 29

7654 AD 78 male 6 8.5

7145 AD 56 female 6 26

7354 AD 76 male 6 27

7542 AD 53 male 6 Not determined

8730 control 82 male 2 63
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Table 3.1 (continued)

Case ID Diagnoses Age Sex Braak level Post-mortem delay

(hour)

5138 AD 60 female 6 26

8326 AD 69 male 6 30
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Figure 3.2: Sample information. (A) Bar plot showing the number of cells that have

been sequenced for each individual. Brain regions are illustrated in different colors

(see the colour key on the top of the figure). (B) Dot plot showing age of AD (pink)

and control (green) individuals. (C) The table summarises sex, diagnoses and Braak

level of the individuals. The Braak stages of AD patients ranged between III and VI.

CNVs were predicted using the Ginkgo algorithm, which uses circular binary

segmentation (CBS) to estimate deletion or duplication events [3]. Negative controls

(n = 10) and FACS-isolated neurons (n = 12) were analyzed separately and are

not included in the main results. Ginkgo was run on our dataset with n = 1542
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cells, while in parallel, two published scWGS datasets were also analyzed: one

by van den Bos and colleagues ("van den Bos 2016"), comprising n = 1469 cells

from healthy and AD brains (median coverage 0.005X), and another by McConnell

and colleagues ("McConnell 2013"), comprising n = 110 cells from healthy brains

(median coverage 0.047X). Note that the van den Bos 2016 dataset includes only

61% of cells produced in that study, because data from cells filtered for high noise

levels were not published and thus could not be included here.

50 µm

Figure 3.3: Images from a frozen hippocampal brain slice stained with cresyl-violet

showing a pyramidal cell before (left) and after (right) laser capture microdissection-

based isolation process using the PALM device. Circles in (left) indicate positions

where two pyramidal cells have already been isolated just prior to the picture being

taken. Scale Bar, 50 µm

3.2 LCM-isolated cells show a high frequency of depth variability

We first evaluated the sensitivity and specificity of our bioinformatics pipeline on

scWGS data using trisomy-21 in DS and monosomy-X in males in published data.

Analyzing n = 34 neuronal nuclei from DS individuals [126], trisomy-21 was

correctly predicted across all samples without any false positive or false negative

calls. In addition, monosomy-X was accurately predicted in 94.2% (338 of 359) of

cells from males across the two published datasets [126, 107] (Figure 3.4).
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Ginkgo includes an algorithm that uses the distribution of read depth across

the genome to infer the average DNA copy number of each cell, which is estimated

within a range of 1.5 to 6. It would be expected that the majority of human neurons

would carry on average two copies of each autosome, although high frequencies

(10-35%) of hyperploid neurons have also been reported, especially in AD brains

[139].
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Figure 3.4: Median copy number profile of chromosome X or 21 across datasets.

Median of the distributions: McConnell Female: 1.94, McConnell Male: 0.96; van

den Bos Female: 1.91, van den Bos Female: 0.94, van den Bos Trisomy: 3.00; This

paper (Uncorrected) Female: 1.60, This paper (Uncorrected) Male: 1.00.

Applying Ginkgo on the two published datasets, we found that for 99.9% (1577

of 1579) of cells the estimated average copy number lies within [1.9-2]. Using

the same algorithm on our dataset, however, only 45% (687 of 1542) of the cells

had average copy numbers estimated within the [1.9-2] range; i.e. 55% were

non-euploid. Although hyperploid neurons have been described in control brains

at ~10% frequency using FISH [139], the observed non-euploidy estimates suggest

that our dataset carries particularly high levels of variability in read depth. These

differences, in turn, could be related to the LCM protocol used, as the published

scWGS experiments had used FACS.

To investigate this possibility, we compared the quality metrics of cells we had
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collected using FACS or LCM for this study. These metrics were mapping proportion

(the number of mapped reads/ the total number of reads), coverage, and index of

dispersion (IOD, the ratio between the variance of read coverage and the mean).

FACS-isolated cells had higher sequencing coverage and mapping proportions

than the LCM-isolated ones (Wilcoxon two-sided rank-sum test, p < 0.0001 and

p < 0.001 for coverage and mapping proportion, respectively) (Figure 3.5A-B). Note

that the difference in coverage variability between FACS and LCM has not been

reported elsewhere. In addition, FACS-isolated cells had low IOD values, indicating

less variation in sequence depth than the rest of the samples (Kruskal–Wallis test,

p = 1.5e− 07) (Figure 3.5C).

Because our LCM and FACS samples originated from different brain regions

with different cell type proportions, we also asked whether such differences could

explain the observed LCM vs. FACS differences. To rule out this possibility, we

compared the index of dispersion value of the cells that were taken from the temporal

cortex of the same individual using FACS (n = 12) and using LCM (n = 64). We

found a significant difference in the direction of higher variability in LCM (Wilcoxon

rank-sum test p < 0.001), indicating that the observed variability between LCM and

FACS can not be simply explained by differences in cell type proportion among brain

regions. We note that the higher noise observed in LCM data was not solely due to

higher genome coverage, as the FACS-based data from the van den Bos 2016 dataset

had a median coverage comparable to ours (0.005X vs. 0.006X), but did not show

comparable variability as in our LCM data.

These differences in IOD between LCM and FACS could be potentially ex-

plained by the higher sensitivity of the LCM procedure to experimental noise,

compared to FACS. Alternatively, they could partly represent abnormal nuclei

selected out in FACS but captured by LCM.

We next investigated the possibility that underlying variation may be caused

by technical and/or biological factors. For this, we used a generalized linear mixed

model (GLMM) to explain IOD (the response variable) per LCM-isolated cell
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(n = 1542) as a function of diagnosis (AD vs. control), genome coverage, and brain

region as fixed factors, and individual as a random factor.
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Figure 3.5: Comparison between different cell isolation methods. Box plots show-

ing the distribution of coverage (A), mapping proportion (B), index of dispersion

(C) among FACS-isolated, LCM-isolated and LCM-isolated blank samples. P-values

were calculated using Kruskal–Wallis test among groups and Wilcoxon rank-sum test

between groups.

We found that coverage has a significant negative effect on IOD, as may be expected

(z = −21.06, p < 0.0001). Compared to the cerebellum, the region least affected

by neurodegenerative diseases [20], we found a significantly high IOD for the

entorhinal cortex (z = 2.61, p < 0.05), hippocampal CA1 (z = 3.34, p < 0.001) and

hippocampal CA3 (z = 3.75, p < 0.001), but not for the temporal cortex (z = −0.28,

p = 0.78) (Figure 3.6B).

Finally, neurons from control individuals have slightly less IOD than AD pa-

tients (z = −1.93, p = 0.054) (Figure 3.6). This result might suggest a tendency

for neurons of AD patients to carry more variable DNA content and is consistent

with cytometry analyses reporting a high occurrence of hyperploid neurons in the

AD brain [139]. Although these findings imply a role of biological factors in read

count variation within cells, it still remains possible that confounding technical

factors influence our data. Given this uncertainty about the source of variability, we

continued the analyses by filtering our dataset to remove the most variable cells.
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3.3 No difference in CNV frequency between AD and control in the

"uncorrected-filtered" dataset

We then used Ginkgo to call CNV events from the "uncorrected-filtered" dataset

(n = 882 cells from 13 AD patients, and n = 660 cells from 7 healthy controls). We

found 19,608 events in 882 cells from AD patients (22.2 per cell), and 14,844 events

in 660 cells from healthy controls (22.5 per cell).

We then tested the observed frequency difference between AD and control us-

ing a GLMM with a negative binomial error distribution. The response variable (the

frequency of CNVs) was predicted using a combination of fixed factors, including

diagnoses, chromosomes, brain regions, sex and coverage. The individual effect was

added as a random factor. We found no statistically significant difference between

AD and control across all tested combinations (GLMM, p ≥ 0.17; Table U-Z).

CNV estimation from low coverage scWGS data is known to be highly sensi-

tive to technical noise, and a large proportion of the called CNV events likely

represent false positives. We thus decided to filter both cells and CNV events in our

dataset to obtain a more reliable dataset [136, 127, 116].

We started by removing the most highly variable cells among the LCM-isolated

ones (n = 1542) using the following criteria. First, 13% (205 of 1542) of the cells

with a low number of reads (<50,000) were discarded from the analysis. Second,

as most cells are expected to be diploid, and also given that the Ginkgo-estimated

copy number (CN) profiles of 99% of cells in the McConnell 2013 and van den Bos

2016 datasets were observed to lie between [1.9-2], we excluded those cells with

CN values beyond this range (54% excluded, 726 of 1337). Third, we filtered out

23 of the remaining 611 cells (4%) that showed extreme CNV intensity, which we

defined as three or more chromosomes of a cell carrying predicted CNVs that cover

>70% of their length (Figure 3.8). Information about the remaining cells (n = 588)

is provided in Figure 3.19.

From these 588 cells, we called 3521 CNVs (~5.9 events per cell) in the uncorrected
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Figure 3.6: The distribution of index of dispersion ("IOD") for LCM-isolated cells

(n = 1542) according to (A) diagnoses (Alzheimer’s disease ("AD"), control), (B)

brain regions (hippocampal subfields CA1 ("Hippocampal CA1"), hippocampal sub-

fields CA3 ("Hippocampal CA3"), Entorhinal cortex, Cerebellum, Temporal cortex).

For each brain region, we tested whether AD diagnosis was predictive of IOD using a

linear mixed-effects (lme) model. Individuals were added as a random factor. Across

all tested brain regions, differences were only marginally significant (p = 0.069). (C)

The distribution of IOD across individuals (n = 20). Box plots were ordered by the

median. Y-axes illustrate the IOD values on the log10 scale.

data, which we call the "uncorrected-filtered" dataset. We further applied a number

of conservative filtering criteria to remove potential false positives: (1) We only

included megabase scale CNVs (≥10 Mb), considering that detection of small events

with low coverage data will be unreliable. (2) We limited the analyses to 1-somy

and 3-somy events, assuming that most somatic CNVs involving chromosomes or

chromosome segments would involve loss or duplication of a single copy. (3) We

only included CNVs with unique boundaries across all analysed cells, assuming

that somatic CNV breakpoint boundaries should be generally randomly distributed

across the human genome. (4) We removed CNVs on the proximal portion of the

chr19 p-arm, where frequently observed duplications were previously reported as

low coverage sequencing artifacts [166]. (5) To ensure the reliability of the CNV

signal, we calculated a standard Z-score for each CNV that reflects the deviation in
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read count distribution in that region compared to the rest of the cell (which we call

Z1, see Methods), and only accepted CNVs with absolute values of Z1-scores ≥2.

(6) We reasoned that read counts in a real CNV should be closely clustered around

expected integer values (e.g. 1 or 3). To assess this, we calculated a Z-score for the

deviation from the expectation (called Z2), and only accepted events with absolute

values of Z2-scores ≤0.5 (Figure 3.8, Figure 3.7).

After CNV filtering, we found 12 CNV events across 295 cells in 13 AD indi-

viduals and 4 CNV events across 293 cells in 7 controls (Table A). Among the 295

pyramidal neurons analyzed from the 13 AD patients, we found 10 deletions (3.39%

per cell) and 2 duplications (0.68% per cell). These events ranged in size from about

10.14 to 77.01 Mb (median: 19.31 Mb) and were observed in the temporal cortex

and the entorhinal cortex.

Of the 293 neurons from 7 control brains, 1 deletion (0.34% per cell) and 3

duplications (1.02% per cell) were detected in the temporal cortex with a size

range of 10.81 to 54.67 Mb (median: 14.51 Mb). Again testing the CNV fre-

quency differences between AD and control brains using a GLMM, we found no

statistically significant effect (GLMM, p ≥ 0.88) (Figure 3.9, Figure 3.17, Table D-J).

We also implemented an alternative algorithm, HMMcopy [168], to predict

CNVs (see Methods). Overall, 75% (12/16) of the HMMcopy predictions over-

lapped with the CNV events that we found after filtering the uncorrected Ginkgo

predictions. Comparing predicted CNV event frequencies between AD and control

we again found no significant difference (z = −1.34, p = 0.18).

3.4 A PCA-based denoising approach minimizes within-cell depth variability

To gain further insight into within-cell variability in our dataset (the uncorrected-

filtered version) compared to the two published scWGS datasets, we calculated the

median CN of chr1 and chr21 (the largest and smallest chromosomes) across all three.

We still found conspicuously higher within-cell variation in our dataset, despite hav-

ing discarded highly variable cells (Figure 3.10).
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Figure 3.7: Examples of CNVs that (upper panels) failed to pass and (lower panels)

passed the filtering criteria (Z1-scores ≥2 and Z2-scores ≤0.5) in the uncorrected-

filtered data (A) and PCA-corrected data (B). Absolute values of the Z1- and Z2

scores for the CNV were indicated on the plot. Mentioned CNV was marked with

a red star. X-axes show chromosomes and Y-axes illustrate the CN profile of chromo-

somes estimated by Ginkgo. Each grey dot represents the scaled read counts per bin.

Amplifications (CN>2) are shown in red; deletions (CN<2) in blue; disomy (CN=2)

in black.

We then used the autosomal normalized read counts to perform a PCA on the

uncorrected-filtered data and published datasets. We also included blank (negative

control) samples and FACS-isolated cells to illustrate how reads counts from these

two groups relate to others. According to the PCA, LCM-isolated uncorrected-
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Figure 3.8: Overview of cell and CNVs elimination steps in the uncorrected and cor-

rected data. *If CNVs’ breakpoints were within the three base pairs window around

each other, those were discarded. Figure was created with https://biorender.

com/
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Figure 3.9: The heatmap shows the genome-wide copy number profile of cells ana-

lyzed in the uncorrected data (n = 15) with at least one reliable CNV. CNVs, brain

regions and diagnoses are illustrated in different colors (see the colour key on the left

of the figure). Each row shows a cell and each column shows a chromosome.

filtered data and blank samples were separated from the published datasets and

FACS-isolated cells (Figure 3.11). This result might also highlight distinct profiles

of LCM-isolated cells.

We then sought an approach that could reduce this elevated within-cell vari-

ability in read depth, assuming it is of technical origin and possibly related to the

LCM procedure. Experimental biases could involve cross-contamination across cells

during isolation, or biases that arise during DNA amplification. Although the former

should be mainly random, the latter may follow systematic patterns, such as some

chromosome segments being more or less prone to be amplified.

We thus devised a procedure for removing putative patterns of systematic read

depth variation across cells (see Methods). The algorithm starts by choosing a focal
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Figure 3.10: Boxplots showing the distribution of median CN of chromosome 1

(chr1, upper part of the figure) and chromosome 21 (chr21, lower part of the figure)

across bins (n = 440 and n = 68 for chr1 and chr21, respectively). Each point corre-

sponds to the median CN of each cell. Minimum ("Min"), median ("Med"), maximum

("Max") and standard deviation ("sd") of each distribution were shown on the boxplot.

Cells that deviated from the [1.9-2] range were excluded from the analyses to be con-

sistent with our filtering criteria (except for the uncorrected datasets). This study [Un-

corrected (n = 1337), Uncorrected-filtered (n = 588), PCA-corrected (n = 1301)]:

blue; van den Bos 2016 (n = 1468): brown; McConnell 2013 (n = 109): purple.

cell x in the dataset, and calculating principal components (PCs) from the normalized

read counts per autosome across the rest of the cells (except cell x). It then collects all

PCs explaining ≥90% of the variance. Treating these as representatives of systematic

variation, it removes their values from the normalized read counts of cell x using

multiple regression analysis. These steps are performed on all cells individually,

creating a "denoised" dataset. The final dataset contains residuals from the multiple

regressions instead of the normalized read counts. Notably, this procedure should

remove experimentally-induced variation in read depth shared among cells, and also

any recurrently occurring somatic CNVs. Rare somatic CNVs, instead, would be

mostly unique to each cell and randomly distributed in the genome, and thus would

not be affected.

To test the accuracy of the PCA-based denoising approach, we used published

Down’s syndrome data [126]. To prevent the algorithm from capturing the common
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Figure 3.11: A principal components analysis (PCA) was performed using the nor-

malized read counts across autosomal bins (n = 5243) in published datasets and this

study. Because they dominated the PCs, cells deviating from the [1.9-2] range were

not included in the analyses. The number of cells for each dataset were indicated

on the plot. X-axes illustrate PC1 and PC3 that explain 18.4% and 1.3% of the total

variance, respectively. Y-axes show PC2 and PC4 that explain 2.8% and 0.9% of the

total variance, respectively.

variation in trisomy 21, we only included one cell with DS at a time. The common

variation was removed in 10% intervals, starting from 50% (Figure 3.12). When we

remove 50% and 60% of the variations, we can capture trisomy 21 in 97% (33 of 34)

of the cells. However, removing more than 60% of the variation results in disomy in

chromosome 21. We will look for the reasons for the loss of the aneuploidy signal.

After filtering cells with a low number of reads (n = 205) and denoising our

dataset with this approach, CN and CNV prediction were performed using Ginkgo.

We further compared the results between the PCA-corrected and "uncorrected-

filtered" datasets. Examples of cells having "noisy" profiles before and after

correction are shown in Figure 3.13, which suggests a dramatic reduction in within-

cell variability. Beyond visual inspection, we also analyzed three statistics. First,

we studied the CN profile of cells after PCA correction. We found 97% (1302 of

1337) now lie between 1.9 and 2. This result is comparable to the two published

datasets described above and much higher than uncorrected data (45%). Second, we
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calculated the number of CNV events per cell (sum of the number of CNV/ number

of cells) across datasets. In the van den Bos 2016 and McConnell 2013 datasets, we

estimated 5.6 and 8.1 CNVs per cell, respectively (Figure 3.15E). In our dataset, in

the uncorrected version, we found 23.9 CNVs per cell, in the "uncorrected-filtered"

data 6.0 CNVs per cell, and in the PCA-corrected data, we estimated on average

1.0 CNV event per cell. The denoising leads to lower CNV estimates in our data,

which is more conservative and possibly more realistic than the higher estimates

without correction (Figure 3.16). Third, we estimated the standard deviation in CN

among cells for chr1 and chr21. For chr1 and chr21, the standard deviations in the

PCA-based data were 4 and 2.3 times lower than in the "uncorrected-filtered" data,

respectively, and comparable to CN standard deviations in the two published datasets

(Figure 3.10).
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Figure 3.15: Properties of published datasets and this study. (A) Violin plot show-

ing the distribution of coverage among different datasets. This study, including only

LCM: blue; van den Bos 2016: brown; McConnell 2013: purple. (B) Bar plot show-

ing the number of CNVs per cell across datasets. The datasets from our study include

cells from both AD and control (Uncorrected, Uncorrected-filtered, PCA-corrected):

blue; van den Bos 2016 (including cells from both AD and control): brown; Mc-

Connell 2013: purple). The number of cells that were used to calculate CNVs per

cell was shown on the X-axis label.
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3.5 Subchromosomal CNVs are enriched in deletions in the PCA-corrected

data

Based on these three statistics, we decided to study this PCA-corrected version of our

dataset. For downstream analysis, we further eliminated cells that deviated from the

ploidy range of [1.9-2] (2.6%, 35 of 1337) or showed extreme CNV intensity (0.08%,

1 of 1302) (Figure 3.8A). We thus created a denoised dataset of 1301 pyramidal

neurons from 20 individuals (Figure 3.19).

Estimating CNVs in this dataset using Ginkgo, we found 1298 CNVs in total

(~1 event per cell). To remove false positives, we also performed the same CNV

prediction and downstream analyses on our PCA-corrected data (Figure 3.8A). After

these steps, we found a total of 9 deletion events (0.7% per cell) and 1 duplication

event (0.08% per cell) across 1301 cells in 20 individuals among all tested brain

regions (except for the hippocampal CA1 where no CNV event was found). This

excess of deletions is unexpected under the null hypothesis of equal expectation of

duplication and deletions (two-sided binomial test p = 0.021), but consistent with

previous observations of more deletions than duplications among somatic mutations

[136, 133, 107, 116].

0

500

1000

1500

2000

0−
so

m
y

1−
so

m
y

3−
so

m
y

4−
so

m
y

5−
so

m
y

6−
so

m
y

7−
so

m
y

8−
so

m
y

9−
so

m
y

N
um

be
r 

of
 C

N
V

Uncorrected−filtered

0

500

1000

1500

2000

0−
so

m
y

1−
so

m
y

3−
so

m
y

4−
so

m
y

5−
so

m
y

6−
so

m
y

7−
so

m
y

9−
so

m
y

PCA−corrected

Figure 3.16: Distributions of the number of CN before (n = 3, 521) and after correc-

tion (n = 1298) across autosomes. For illustration purposes, the bar plot includes up

to 10-somy.
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3.6 No significant difference between AD and control after PCA-correction or

in the van den Bos dataset

Studying CNV frequencies with respect to diagnosis, we found 6 CNV events across

688 cells in 13 AD individuals and 4 CNV events across 613 cells in 7 controls (Fig.

6E). Performing the formal test for the hypothesis of AD versus control differences

with this data, we again found no significant difference between the groups (GLMM,

p ≥ 0.80; Table K-Q). Information about the CNVs and cells can be found in Table B.

We also repeated the same analysis on the van den Bos 2016 dataset, from

which originally only aneuploidy was reported. Here we identified 11 CNV events

across 883 cells in 10 AD individuals and 3 CNV events across 585 cells in 6 controls

(Table C). The difference was in the same direction as in our dataset, but again not

significant (GLMM, p ≥ 0.79) (Figure 3.17, Table R-T).
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Figure 3.12: Accuracy of the PCA-based denoising approach. The sample ID is

ERR1378095. Examples of CN estimates of cells using uncorrected data (A) and

using data after PCA-based correction (B-F). The x-axes show chromosomes and the

y-axes show the CN profile of chromosomes estimated by Ginkgo. Each grey dot

represents the scaled and normalized read counts per bin. Amplifications (CN>2) are

shown in red; deletions (CN<2) in blue; disomy (CN=2) in black.
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CHAPTER 4

DISCUSSION

The sequence of the human genome was completed in 2003 [184]. The cost of

sequencing has been declining rapidly since the beginning of the human genome

project. The availability of the vast amount of data and the desire to identify biologi-

cal phenomena, including the role of copy number variations in complex diseases,

gave fresh impetus to scientific research. Studies using cytogenetic techniques

reported a high frequency of CNVs in the AD brain [137, 140, 117, 138, 139, 113].

On the other hand, the scWGS study showed that there was not any difference

between the AD brain and healthy control in terms of CNVs [126]. In this work, we

produced scWGS data to solve this discrepancy.

Here we discuss technical aspects and the biological outcomes of our work.

4.1 The sources of variability among LCM-isolated cells

To the best of our knowledge, this is the first study to use LCM to collect neuronal

nuclei for scWGS. Our results showed that LCM-isolated cells showed significantly

higher within-cell read depth variation compared to FACS-isolated ones (Figure

3.5C). One random source of high variation could be cross-contamination of

LCM-isolated cells during the isolation [185], which in turn might be reflected in the

downstream analysis as duplications. In line with this possibility, we found that the

number of duplications (≥3-somy) is higher than the number of deletions (0- and

1-somy) in the uncorrected data (deletion to duplication ratio: 0.39). We applied

several elimination steps to remove "noisy" cells and to filter nominally false positive
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CNVs. After these elimination steps, the deletion to duplication ratio increased to

6.46 in the uncorrected-filtered data.

In addition to filtering the uncorrected data, we devised a PCA-based denois-

ing approach to remove systematic variation across the genome, which could be

experimentally-induced, but could also reflect convergent somatic CNVs shared

among different individuals. Segments systematically deviating from the genome

average have also been described in other neuronal scWGS datasets [136]. Our

results showed that PCA-based denoising can strongly reduce within-cell variance

in CN among cells (Figure 3.13). If the noise that was removed is experimentally-

induced, then our result means that this noise was partly shared among cells and not

entirely random. One source of systematic bias might be genome-wide variation in

the propensity to DNA degradation and/or DNA amplification, perhaps due to GC

content, chromatin structure or nuclear location of chromosomal segments [133].

Such biases would be shared among cells and effectively removed by PCA.

Beyond technical biases, biological factors could also explain the higher read-

depth variability in LCM-isolated than FACS-isolated neurons. Chronister and

colleagues recently reported that CNV frequencies in neurons (4%–23.1%) are

higher than non-neuronal cells (4.7%–8.7%) [136]. Moreover, cytological studies

suggested that AD brains harbour hyperploid neurons more frequently than healthy

controls [139]. Consistent with the latter report, we found that neurons from AD

patients tend to have higher IOD than control individuals. Also, the cerebellum,

which is relatively spared from AD, had lower IOD than the entorhinal cortex

and hippocampal areas (but not the temporal cortex). This might be interpreted

as a reflection of biological factors on the read-depth variation which is captured

efficiently in LCM data. Indeed, if the FACS procedure eliminated cells having

abnormal karyotypes, this would result in a cell population with artificially uniform

and "clean" ploidy levels. In conclusion, we predict that although random factors

(e.g. contamination) and systematic biases most likely contribute to relatively

high variation in LCM-collected scWGS data, biological variation may also be a

contributor.
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To disentangle biological variation from technical variation, the following ap-

proaches could be taken. First, apart from our work, there is only one study which

tested the difference between AD and control in terms of CNVs [126]. In that study,

the authors discarded the large proportion of cells (39%) having high within-cell

variability (data is not available) [126]. Analyzing the discarded cells from this study

and comparing the read-depth variability between AD and control, as we did in our

data, would have given a better understanding of the origin of the variability.

Second, the biological phenomenon underlying the hypothesis being tested should be

considered, as we did in the PCA-based denoising approach. CNVs are expected to

be randomly distributed in the genome without any common patterns across different

individuals or datasets. Thus, taken into account, PCA could have been applied to

the other published datasets. Then we tried to answer whether the variation that was

captured in our dataset is correlated with the others. If it has a technical origin, we

expect to find a high correlation among PCs that are captured in different datasets.

The same approach could have been applied to FACS-isolated cells in our data.

Third, one can test the difference between AD and control, as we did in our work,

using different thresholds to eliminate cells with high variability. Even though this

approach might not help differentiate technical noise from biological variation, it

will demonstrate the robustness of the results.

4.2 PCA-based denoising: advantages and caveats

scWGS is a promising method for predicting CNVs with limited sequencing per

cell. However, as in our study, within-cell variation that may represent false-positive

CNVs hinder analyses in low coverage data. Our PCA-based denoising method can

be used as a practical solution for in silico cleaning of such data. The approach

is based on the idea that somatic CNVs are randomly distributed in the human

genome and are particular to each cell. One possible drawback of this approach

is that if some neurons from the same individual share the same CNV due to

shared developmental ancestry, our method will eliminate such real signals. A more

subtle approach could take into account possible clonal relatedness among cells [186].
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The PCA-based denoising is expected to have removed any CNVs and aneu-

ploidies that are shared among neurons (instead of being cell-specific), due to

common origin in the same individual or due to recurrent mutations. Therefore our

results only pertain to single cell-specific CNVs.

Another drawback could arise if certain genomic regions are predisposed to

undergo copy number changes; in that case, our method may cause overcorrection.

In our dataset, observing an unexpectedly high frequency of CNVs (23.9 events) per

cell in the uncorrected version, we chose to remove ≥90% of the common variance.

After applying PCA-based correction, the CNV rate per cell decreased by 96%.

This, in turn, resulted in a lower number of CNVs per cell in the corrected data,

even compared to published datasets (see Figure 3.15B, van den Bos 2016: 5.6,

McConnell 2013: 8.1 CNVs, PCA-corrected data: 1.0 per cell). This difference

might be attributable to the overcorrection of normalized read counts.

4.2.1 Possible application of PCA-based denoising approach in other fields of

biology

In cancer studies, identifying whether different tumours in the same patient develop

from a single ancestral cell or share a clonal origin (also known as metastasis) are of

paramount importance. If the second tumour originates from a different founder cell,

that is known as the second primary cancer [187, 188, 4]. Origin of recurrence has

clinical implications by defining which treatment would be applied. For example,

assume a patient with head and neck cancer developed lung cancer after treatment

[189, 190]. If lung cancer arises from different precursor cells, then surgery is one

commonly used method to properly treat second primary lung cancers. Otherwise, if

lung cancer originated from the same ancestral cell that means that can also spread

to other parts of the body [187].

Genetic fingerprints of tumour cells are used to identify the origin of tumour

cells including loss of heterozygosity (LOH) and analysis of copy number vari-

ations. It is expected that clonal tumours share common somatic mutations like
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chromosomal aberrations [191, 192, 193]. One possible outcome of chromosomal

aberrations (i.e. chromosome loss) is the loss of heterozygosity (LOH) which is

characterized by heterozygous non-cancerous cells for a given loci and homozygotes

tumour cell [188, 194, 195, 196, 197]. LOH occurs frequently in the regions that are

associated with tumour suppressor genes. This means chromosome loss promotes

tumorigenesis by affecting the expression profile of genes that are related to cell

proliferation [187, 198].

For example, Bollet and colleagues hypothesized that loss of tumour suppres-

sor genes can be observed in both clonal and primary seconder cancer. However, if

the two tumour cells share identical breakpoints for deletion that cover the tumour

suppressor genes, these two cells should be clonally related [199]. Figure 4.1 shows

the copy number profile of two lung tumours that have the same origin from the same

patient. They have the same deletions on chromosomes 1, 3, 6 and 22 [200, 4].

Overall, contrary to CNV analysis in the brain, cancer genomics seeks for a

common breakpoint to relate two different tumour cells. We note that our PCA-based

approach could also be used to detect recurrent breakpoints in single-cell cancer

genomics. Because clonal cancer cells would also inherit the same CNVs, shared

CNV breakpoints identified in PCAs can be used to study clonal evolution.

4.3 Limitations and Possible Improvements

Our study has several limitations:

• This study only focused on relatively large (≥10 Mb) CNVs for sake of sensi-

tivity. However, smaller CNVs may still be much more common and could have

contributions to neurodegenerative disease. Future studies on somatic genomic

variation in AD might therefore focus on a smaller scale (<10 Mb) CNVs, for

which improvement of experimental protocols and/or the use of higher cover-

age data appears to be needed [169].

• Our analysis of published data from van den Bos et al. (2016) could not in-

clude a large fraction of cells that they had discarded for showing high depth
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Figure 4.1: Copy number profile clonal lung tumours. X-axis shows chromosomes,

Y-axis shows low ratio of the read counts. The plot was taken from [4].

variability [126]. Even though studies exclude the cells assuming their tech-

nical origin, the data belonging to excluded cells should also be uploaded to

the public repository. This is especially important for the research areas with

controversial findings. In our case, cytogenetic-based studies reported the in-

creased frequency of CNVs in AD. One might think that this might be reflected

as high within-cell variability in single-cell studies. Considering this, all data

from this study were submitted to the ENA repository.

• Recent work has suggested that CNV-bearing neurons may be eliminated through

lifetime in neurotypical individuals [136], and work on hyperploid neurons

has also suggested selection against hyperploidy during AD progression [139].

This raises the possibility that dynamic elimination may have obscured a possi-

ble signal of AD-control difference in neuronal CNV loads, because our sample

size did not allow studying disease stage as a separate factor. To study the AD

stage as a separate factor, the following steps would have been taken. First,

the same number of cells from different stages could be sequenced. After the

downstream analysis, the CNVs, which pass filters (we and others applied strin-

gent filters to eliminate false positive calls), for each AD stage would be found.

This information could be used to determine the number of sequenced cells in

62



the next round of sequencing. More cells from the less-represented AD stage

can be included.
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CHAPTER 5

CONCLUSION

Our main motivation in this study was to describe the relative prevalence of CNVs in

the AD brain, where the evidence has been equivocal. Contrary to earlier cytogenetic

work [137, 117, 138, 139, 113, 140, 46, 141], an scWGS study had reported no differ-

ence in neuronal aneuploidy levels in the frontal cortex of AD patients versus controls

[126]. However, the CNV load in different brain regions and relative frequency to the

healthy age-matched controls had remained unclear. For example, the entorhinal cor-

tex and hippocampal CA1 have roles in memory formation and learning and are the

earliest and most heavily affected regions in AD [1]. On the other hand, hippocampal

CA3 is less affected, and neurons in the cerebellum are thought to be relatively spared

from neurodegenerative disease [20].

Here we tackled the same question by comparing AD patients and controls using

LCM-isolated cells across five different brain regions, either using the raw data (n =

588 cells after filtering) or using a denoising approach (n = 1301 cells after filtering).

To our knowledge, this is the first dataset that includes scWGS data from pyramidal

neurons isolated from AD and control brains in multiple brain regions. Although our

AD sample contained slightly higher CNV frequencies than the control sample, none

of the comparisons was statistically significant. Our analysis of the van den Bos 2016

dataset yielded a qualitatively similar result, also consistent with the original obser-

vation of no significant difference in aneuploidy levels in this dataset [126].

Cost-effective and high-throughput Illumina sequencing has dominated the research

area for the last decade. Next-generation sequencing technologies produce a short

read length ranging from 50 to 1000 bases [201, 202]. The short read length hampers
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the mapping and analysis of complex genomic regions including repetitive regions

[203, 204, 205]. In addition to that GC extreme regions could not efficiently be am-

plified during the PCR amplification step and are manifested as uneven coverage of

Illumina reads. This in turn is reflected in little knowledge of the genomic regions that

have repeat or atypical GC content [171, 172, 173, 3, 174, 175, 176, 177] (see section

2.2.2). To overcome these drawbacks one possible solution could be taking advan-

tage of third-generation sequencing or long-read sequencing. Long-read sequencing

was developed by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies

(ONT) [206, 207, 208, 209, 210]. These technologies produce reads ranging between

10 kilobases to several megabases that encompass the repetitive regions of the genome

[211]. Apart from spanning repetitive genomic regions, PCR amplification is not re-

quired [212]. So this leads to evenly distributed coverage across the genome, even

in GC extreme regions. Overall, our results call for further research into the possible

role of CNVs in AD pathogenesis using different methods like long-read sequencing.
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Appendix A

INFORMATION ABOUT THE SIGNIFICANT CNVS IN THE

UNCORRECTED DATA

Table A.1: Id: The id of the fastq file; Chr: The name of the chromosome that CNV

is located; Start, End: The start and end position of the CNV; z2_score: Z-score for

the deviation from the expectation; z1_score: Z-score for each CNV that reflects the

deviation in read count distribution; Diagnosis: The state of the individual.

Id Chr Start End Cnv Diagnosis

UU_107_12_S77 17 58256478 74514052 3 Control

UU_3862_79_L034 7 45295083 65896370 1 AD

UU_5138_96_S147 13 44035004 80109253 1 AD

UU_5433_51_S53 3 56213156 67019640 3 Control

UU_5603_21_L005 9 71032126 125699272 1 Control

UU_5946_28_L001 22 1 24295222 1 AD

UU_6563_49_L006 20 25787596 36796499 3 AD

UU_7354_I_137_S43 13 101594898 111734294 3 AD

UU_7354_I_137_S43 1 73189692 150204341 1 AD

UU_7654_12_S3 7 45808404 63834492 1 AD

UU_7654_15_S13 14 1 22375568 1 AD

UU_7654_26_S21 11 48176543 61353311 1 AD

UU_7753_36_L007 16 28407614 63225072 1 AD

UU_7903_61_L004 10 49428736 59674967 1 AD

UU_87_L006 8 104342980 117105149 3 Control
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Appendix B

INFORMATION ABOUT THE SIGNIFICANT CNVS IN THE CORRECTED

DATA

Table B.1: Id: The id of the fastq file; Chr: The name of the chromosome that CNV is

located; Start: The start position of the CNV; End: The end position of the variation;

Cnv: The integer copy number state of the copy number variation; z2_score: Z-score

for the deviation from the expectation (1-somy or 3-somy); z1_score: Z-score for

each CNV that reflects the deviation in read count distribution; Diagnosis: The state

of the individual that cell was taken from.

Id Chr Start End Cnv Diagnosis

UU_5138_35_S134 4 86984399 106932571 1 AD

UU_5433_326_S30 8 96140297 119137264 1 Control

UU_5603_52_L006 14 1 24916961 1 Control

UU_7354_I_103_S36 8 43329609 55035801 3 AD

UU_7354_I_103_S36 22 1 23276518 1 AD

UU_7354_II_047_S92 2 164822153 176008128 1 AD

UU_7542_II_097_S48 9 1 11826032 1 AD

UU_8326_7_S83 6 95928146 107672699 1 AD

UU_8730_II_093_S188 1 76770431 88562330 1 Control

UU_8730_II_097_S192 9 74083336 85787269 1 Control
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Appendix C

INFORMATION ABOUT THE SIGNIFICANT CNVS IN VAN DEN BOS

DATA

Table C.1: Id: The id of the fastq file; Chr: The name of the chromosome that CNV is

located; Start: The start position of the CNV; End: The end position of the variation;

Cnv: The integer copy number state of the copy number variation; z2_score: Z-score

for the deviation from the expectation (1-somy or 3-somy); z1_score: Z-score for

each CNV that reflects the deviation in read count distribution; Diagnosis: The state

of the individual that cell was taken from.

Id Chr Start End Cnv Diagnosis

ERR1378282 22 1 23782366 1 Control

ERR1378629 4 108476285 119736342 1 AD

ERR1378635 13 1 30294913 1 AD

ERR1378719 14 77445367 89115254 1 AD

ERR1378826 3 152127567 172018108 1 AD

ERR1378878 3 89454397 111352570 1 AD

ERR1379126 14 40760956 57126369 1 AD

ERR1379307 11 85385566 101970188 1 AD

ERR1379307 11 47164512 60338499 1 AD

ERR1379401 12 63446848 107326971 1 AD

ERR1379401 3 141979881 153142991 1 AD

ERR1379401 12 10901928 25156069 1 AD

ERR1391220 6 13337848 24533404 1 Control

ERR1391220 4 17484969 54220408 1 Control
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Appendix D

THE EFFECTS OF DIAGNOSIS AND COVERAGE ON THE FREQUENCY

OF CNVS IN THE UNCORRECTED-FILTERED DATA

Table D.1: The table shows the results of the GLMM that diagnosis and coverage

were added as fixed factors to predict the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.034 0.5699 -5.324 <0.0001

DiagnosisControl -0.1182 0.7604 -0.1554 0.8765

Coverage 3.564 56.66 0.06289 0.9499
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Appendix E

THE EFFECTS OF DIAGNOSIS, BRAIN REGIONS, SEX AND COVERAGE

ON THE FREQUENCY OF CNVS IN THE UNCORRECTED-FILTERED

DATA

Table E.1: The table shows the results of the GLMM that diagnosis, brain regions,

sex and coverage were added as fixed factors to predict the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -20.44 8731 -0.002341 0.9981

ChrChr7 18.84 8731 0.002158 0.9983

ChrChr13 18.84 8731 0.002158 0.9983

ChrChr3 -1.519e-05 12350 -1.23e-09 1

ChrChr9 1.222e-05 12350 9.896e-10 1

ChrChr22 18.15 8731 0.002079 0.9983

ChrChr20 18.15 8731 0.002079 0.9983

ChrChr1 18.15 8731 0.002079 0.9983

ChrChr14 18.15 8731 0.002079 0.9983

ChrChr11 18.15 8731 0.002079 0.9983

ChrChr16 18.15 8731 0.002079 0.9983

ChrChr10 18.15 8731 0.002079 0.9983

ChrChr2 18.15 8731 0.002079 0.9983

ChrChr8 4.26e-06 12340 3.452e-10 1

ChrChr12 -1.047e-06 12350 -8.476e-11 1

ChrChr15 -3.237e-06 12350 -2.621e-10 1

ChrChr18 -4.314e-06 12350 -3.493e-10 1
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Table E.1: Table E (continued)

ChrChr19 -1.896e-06 12350 -1.535e-10 1

ChrChr21 -1.88e-07 12350 -1.522e-11 1

ChrChr4 2.063e-06 12350 1.671e-10 1

ChrChr5 -1.565e-06 12350 -1.267e-10 1

ChrChr6 1.092e-05 12350 8.839e-10 1

DiagnosisControl 19.14 8731 0.002192 0.9983

Brain_regionTemporal_Cortex -0.4751 0.6891 -0.6894 0.4906

SexMale 0.1779 0.5439 0.3271 0.7436

Coverage 17.16 60.73 0.2825 0.7776
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Appendix F

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAIN REGIONS, SEX

AND COVERAGE ON THE FREQUENCY OF CNVS IN THE

UNCORRECTED-FILTERED DATA

Table F.1: The table shows the results of the GLMM that chromosome, diagnosis,

brain regions, sex and coverage were added as fixed factors to predict the frequency

of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.575 1.27 -2.029 0.04249

ChrChr7 0.6932 1.225 0.566 0.5714

ChrChr13 0.6931 1.225 0.5659 0.5715

ChrChr3 3.399e-06 1.414 2.404e-06 1

ChrChr9 5.634e-06 1.414 3.984e-06 1

ChrChr22 4.247e-06 1.414 3.003e-06 1

ChrChr20 1.356e-05 1.414 9.587e-06 1

ChrChr1 8.246e-05 1.414 -5.831e-05 1

ChrChr14 1.795e-05 1.414 1.269e-05 1

ChrChr11 3.455e-05 1.414 2.443e-05 1

ChrChr16 2.769e-05 1.414 1.958e-05 1

ChrChr10 1.251e-05 1.414 8.848e-06 1

ChrChr2 1.713e-06 1.414 1.211e-06 1

ChrChr8 4.492e-05 1.414 3.176e-05 1

ChrChr12 -18.51 10430 -0.001774 0.9986

ChrChr15 -18.51 10430 -0.001774 0.9986

ChrChr18 -18.51 10430 -0.001773 0.9986
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Table F.1: Table F (continued)

ChrChr19 -18.51 10430 -0.001773 0.9986

ChrChr21 -18.51 10430 -0.001774 0.9986

ChrChr4 -18.51 10430 -0.001774 0.9986

ChrChr5 -18.51 10430 -0.001774 0.9986

ChrChr6 -18.51 10430 -0.001774 0.9986

DiagnosisControl -0.111 0.7721 -0.1437 0.8857

Brain_regionTemporal_Cortex -0.4751 0.6892 -0.6893 0.4906

SexMale 0.1779 0.5439 0.327 0.7437

Coverage 17.17 60.73 0.2828 0.7773
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Appendix G

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAIN REGIONS AND

COVERAGE ON THE FREQUENCY OF CNVS IN THE

UNCORRECTED-FILTERED DATA

Table G.1: The table shows the results of the GLMM that interaction of chromosome

and diagnosis, brain regions, sex and coverage were added as fixed factors to predict

the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -22.17 22200 -0.0009987 0.9992

ChrChr7 20.71 22200 0.0009329 0.9993

ChrChr13 20.71 22200 0.0009329 0.9993

ChrChr3 -1.665e-05 31360 -5.309e-10 1

ChrChr9 1.345e-05 31590 4.26e-10 1

ChrChr22 20.02 22200 0.0009017 0.9993

ChrChr20 20.02 22200 0.0009017 0.9993

ChrChr1 20.02 22200 0.0009017 0.9993

ChrChr14 20.02 22200 0.0009017 0.9993

ChrChr11 20.02 22200 0.0009017 0.9993

ChrChr16 20.02 22200 0.0009017 0.9993

ChrChr10 20.02 22200 0.0009017 0.9993

ChrChr2 20.02 22200 0.0009017 0.9993

ChrChr8 4.676e-06 31380 1.49e-10 1

ChrChr12 -1.149e-06 31450 -3.654e-11 1

ChrChr15 -3.553e-06 31440 -1.13e-10 1

ChrChr18 -4.735e-06 31440 -1.506e-10 1
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Table G.1: Table G (continued)

ChrChr19 -2.082e-06 31460 -6.616e-11 1

ChrChr21 -2.063e-07 31450 -6.561e-12 1

ChrChr4 2.265e-06 31470 7.196e-11 1

ChrChr5 -1.718e-06 31460 -5.46e-11 1

ChrChr6 1.198e-05 31450 3.81e-10 1

DiagnosisControl 21.02 22200 0.0009469 0.9992

Brain_regionTemporal_Cortex -0.4378 0.6868 -0.6374 0.5239

Coverage 11.54 58.52 0.1973 0.8436
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Appendix H

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAIN REGIONS AND

COVERAGE ON THE FREQUENCY OF CNVS IN THE

UNCORRECTED-FILTERED DATA

Table H.1: The table shows the results of the GLMM that chromosome, diagnosis,

brain regions and coverage were added as fixed factors to predict the frequency of

CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.441 1.189 -2.052 0.04016

ChrChr7 0.693 1.225 0.5658 0.5715

ChrChr13 0.6931 1.225 0.5659 0.5714

ChrChr3 -0.0001457 1.414 -0.000103 0.9999

ChrChr9 -6.131e-05 1.414 -4.335e-05 1

ChrChr22 -0.000116 1.414 -8.202e-05 0.9999

ChrChr20 -1.25e-05 1.414 -8.841e-06 1

ChrChr1 -0.0003361 1.414 -0.0002376 0.9998

ChrChr14 -6.301e-05 1.414 -4.455e-05 1

ChrChr11 -0.0001026 1.414 -7.252e-05 0.9999

ChrChr16 -3.996e-05 1.414 -2.826e-05 1

ChrChr10 -6.213e-05 1.414 -4.394e-05 1

ChrChr2 -0.0001153 1.414 -8.152e-05 0.9999

ChrChr8 -5.347e-05 1.414 -3.781e-05 1

ChrChr12 -15.91 2853 -0.005577 0.9956

ChrChr15 -15.91 2853 -0.005577 0.9956

ChrChr18 -15.91 2853 -0.005577 0.9956
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Table H.1: Table H (continued)

ChrChr19 -15.91 2853 -0.005577 0.9956

ChrChr21 -15.91 2853 -0.005577 0.9956

ChrChr4 -15.91 2853 -0.005577 0.9956

ChrChr5 -15.91 2853 -0.005577 0.9956

ChrChr6 -15.91 2853 -0.005577 0.9956

DiagnosisControl -0.09548 0.7742 -0.1233 0.9018

Brain_regionTemporal_Cortex -0.4377 0.6868 -0.6373 0.5239

Coverage 11.54 58.52 0.1973 0.8436
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Appendix I

THE EFFECTS OF CHROMOSOME, DIAGNOSIS AND COVERAGE ON

THE FREQUENCY OF CNVS IN THE UNCORRECTED-FILTERED DATA

Table I.1: The table shows the results of the GLMM that interaction of chromosome

and diagnosis and coverage were added as fixed factors to predict the frequency of

CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -22.72 25500 -0.000891 0.9993

ChrChr7 20.99 25500 0.000823 0.9993

ChrChr13 20.99 25500 0.000823 0.9993

ChrChr3 -1.689e-05 35800 -4.719e-10 1

ChrChr9 1.364e-05 35850 3.806e-10 1

ChrChr22 20.29 25500 0.0007958 0.9994

ChrChr20 20.29 25500 0.0007958 0.9994

ChrChr1 20.29 25500 0.0007958 0.9994

ChrChr14 20.29 25500 0.0007958 0.9994

ChrChr11 20.29 25500 0.0007958 0.9994

ChrChr16 20.29 25500 0.0007958 0.9994

ChrChr10 20.29 25500 0.0007958 0.9994

ChrChr2 20.29 25500 0.0007958 0.9994

ChrChr8 4.744e-06 36340 1.305e-10 1

ChrChr12 -1.166e-06 36070 -3.232e-11 1

ChrChr15 -3.604e-06 36080 -9.991e-11 1

ChrChr18 -4.804e-06 36060 -1.332e-10 1
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Table I.1: Table I (continued)

ChrChr19 -2.112e-06 36130 -5.845e-11 1

ChrChr21 -2.093e-07 36070 -5.803e-12 1

ChrChr4 2.298e-06 36050 6.374e-11 1

ChrChr5 -1.743e-06 36100 -4.827e-11 1

ChrChr6 1.216e-05 36060 3.371e-10 1

DiagnosisControl 21.27 25500 0.0008342 0.9993

Coverage 3.589 56.66 0.06334 0.5239

ChrChr7:Diagnosiscontrol -42.29 48940 -0.0008641 0.9993

ChrChr13:Diagnosiscontrol -42.29 49170 -0.0008602 0.9993

ChrChr3:Diagnosiscontrol -0.0001432 35800 -4e-09 1

ChrChr9:Diagnosiscontrol -3.587e-05 35850 -1.001e-09 1

ChrChr22:Diagnosiscontrol -41.6 49410 -0.0008419 0.9993

ChrChr20:Diagnosiscontrol -41.6 49110 -0.0008471 0.9993

ChrChr1:Diagnosiscontrol -41.6 49440 -0.0008414 0.9993

ChrChr14:Diagnosiscontrol -41.6 49460 -0.000841 0.9993

ChrChr11:Diagnosiscontrol -41.6 49360 -0.0008427 0.9993

ChrChr16:Diagnosiscontrol -41.6 49390 -0.0008422 0.9993

ChrChr10:Diagnosiscontrol -41.6 49220 -0.0008451 0.9993

ChrChr2:Diagnosiscontrol -41.6 49530 -0.0008399 0.9993

ChrChr8:Diagnosiscontrol -8.318e-05 36340 -2.289e-09 1

ChrChr12:Diagnosiscontrol -21.31 55780 -0.000382 0.9997

ChrChr15:Diagnosiscontrol -21.31 55650 -0.0003828 0.9997

ChrChr18:Diagnosiscontrol -21.31 55690 -0.0003826 0.9997

ChrChr19:Diagnosiscontrol -21.31 55720 -0.0003824 0.9997

ChrChr21:Diagnosiscontrol -21.31 55620 -0.000383 0.9997

ChrChr4:Diagnosiscontrol -21.31 55550 -0.0003835 0.9997

ChrChr5:Diagnosiscontrol -21.31 55540 -0.0003836 0.9997

ChrChr6:Diagnosiscontrol -21.31 55520 -0.0003837 0.9997
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Appendix J

THE EFFECTS OF CHROMOSOME, DIAGNOSIS AND COVERAGE ON

THE FREQUENCY OF CNVS IN THE UNCORRECTED-FILTERED DATA

Table J.1: The table shows the results of the GLMM that chromosome, diagnosis and

coverage were added as fixed factors to predict the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.716 1.124 -2.417 0.01563

ChrChr7 0.6931 1.225 0.5659 0.5714

ChrChr13 0.6931 1.225 0.5659 0.5714

ChrChr3 -7.826e-05 1.414 -5.534e-05 1

ChrChr9 -2.08e-05 1.414 -1.471e-05 1

ChrChr22 -8.441e-05 1.414 -5.969e-05 1

ChrChr20 -2.588e-05 1.414 -1.83e-05 1

ChrChr1 -3.683e-05 1.414 -2.605e-05 1

ChrChr14 -5.146e-05 1.414 -3.639e-05 1

ChrChr11 -6.307e-05 1.414 -4.46e-05 1

ChrChr16 -3.28e-05 1.414 -2.319e-05 1

ChrChr10 -4.468e-05 1.414 -3.159e-05 1

ChrChr2 -8.541e-05 1.414 -6.039e-05 1

ChrChr8 -3.793e-07 1.414 -2.682e-07 1

ChrChr12 -18.96 13090 -0.001449 0.9988

ChrChr15 -18.96 13090 -0.001448 0.9988

ChrChr18 -18.96 13100 -0.001447 0.9988

Table J.1: Table J (continued)
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ChrChr19 -18.96 13100 -0.001448 0.9988

ChrChr21 -18.96 13100 -0.001448 0.9988

ChrChr4 -18.96 13100 -0.001448 0.9988

ChrChr5 -18.96 13090 -0.001448 0.9988

ChrChr6 -18.96 13090 -0.001448 0.9988

Diagnosiscontrol -0.1182 0.7604 -0.1555 0.8765

Coverage 3.586 56.66 0.06328 0.9495

114



Appendix K

THE EFFECTS OF DIAGNOSIS AND COVERAGE ON THE FREQUENCY

OF CNVS IN THE PCA-CORRECTED DATA

Table K.1: The table shows the results of the GLMM that diagnosis and coverage

were added as fixed factors to predict the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.205 0.7247 -4.423 <0.0001

DiagnosisControl -0.168 0.6474 -0.2595 0.7953

Coverage 40.27 76.4 0.527 0.5982
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Appendix L

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAINS REGIONS,

COVERAGE AND SEX ON THE FREQUENCY OF CNVS IN THE

PCA-CORRECTED DATA

Table L.1: The table shows the results of the GLMM that interaction of chromosome

and diagnosis, brain regions, sex and coverage were added as fixed factors to predict

the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.268 2.042 -1.11 0.2668

ChrChr8 8.401e-06 1.414 5.941e-06 1

ChrChr14 -17.23 5508 -0.003128 0.9975

ChrChr22 2.302e-06 1.414 1.628e-06 1

ChrChr2 -3.136e-05 1.414 -2.218e-05 1

ChrChr9 -2.622e-05 1.414 -1.854e-05 1

ChrChr6 5.389e-06 1.414 3.81e-06 1

ChrChr1 -17.23 5506 -0.003129 0.9975

ChrChr10 -17.23 5507 -0.003128 0.9975

ChrChr11 -17.23 5507 -0.003128 0.9975

ChrChr12 -17.23 5507 -0.003128 0.9975

ChrChr13 -17.23 5506 -0.003129 0.9975

ChrChr15 -17.23 5507 -0.003128 0.9975

ChrChr16 -17.23 5507 -0.003128 0.9975

ChrChr17 -17.23 5507 -0.003128 0.9975

ChrChr18 -17.23 5507 -0.003129 0.9975

ChrChr19 -17.23 5507 -0.003128 0.9975
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Table L.1: Table L (continued)

ChrChr20 -17.23 5507 -0.003128 0.9975

ChrChr21 -17.23 5507 -0.003128 0.9975

ChrChr3 -17.23 5507 -0.003128 0.9975

ChrChr5 -17.23 5507 -0.003128 0.9975

ChrChr7 -17.23 5507 -0.003128 0.9975

DiagnosisControl -16.91 6127 -0.00276 0.9978

Brain_regionEntorhinal_Cortex 0.6403 2.279 0.2809 0.7788

Brain_regionHippocampus_CA3 0.3698 1.956 0.1891 0.85

Brain_regionTemporal_Cortex -0.16 1.462 -0.1094 0.9129

SexMale -0.2137 1.341 -0.1594 0.8733

Coverage 45.62 106.1 0.4299 0.6673

ChrChr8:DiagnosisControl 17.44 6127 0.002847 0.9977

ChrChr14:DiagnosisControl 34.67 8238 0.004208 0.9966

ChrChr22:DiagnosisControl 9.486e-06 8664 1.095e-09 1

ChrChr2:DiagnosisControl 2.255e-05 8664 2.602e-09 1

ChrChr9:DiagnosisControl 17.44 6127 0.002847 0.9977

ChrChr6:DiagnosisControl -1.985e-05 8663 -2.291e-09 1

ChrChr1:DiagnosisControl 34.67 8238 0.004209 0.9966

ChrChr10:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr11:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr12:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr13:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr15:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr16:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr17:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr18:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr19:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr20:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr21:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr3:DiagnosisControl 17.23 10270 0.001678 0.9987
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Table L.1: Table L (continued)

ChrChr5:DiagnosisControl 17.23 10270 0.001678 0.9987

ChrChr7:DiagnosisControl 17.23 10270 0.001678 0.9987
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Appendix M

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAINS REGIONS,

COVERAGE AND SEX ON THE FREQUENCY OF CNVS IN THE

PCA-CORRECTED DATA

Table M.1: The table shows the results of the GLMM that chromosome, diagnosis,

brain regions, sex and coverage were added as fixed factors to predict the frequency

of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.779 2.058 -1.35 0.177

ChrChr8 0.6932 1.225 0.566 0.5714

ChrChr14 4.769e-06 1.414 3.372e-06 1

ChrChr22 0.0003745 1.414 0.0002648 0.9998

ChrChr2 -2.708e-06 1.414 -1.915e-06 1

ChrChr9 0.6932 1.225 0.566 0.5714

ChrChr6 4.19e-05 1.414 2.963e-05 1

ChrChr1 -6.059e-06 1.414 -4.284e-06 1

ChrChr10 -17.74 7125 -0.00249 0.998

ChrChr11 -17.74 7125 -0.00249 0.998

ChrChr12 -17.74 7124 -0.00249 0.998

ChrChr13 -17.74 7125 -0.00249 0.998

ChrChr15 -17.74 7124 -0.00249 0.998

ChrChr16 -17.74 7125 -0.00249 0.998

ChrChr17 -17.74 7125 -0.00249 0.998

ChrChr18 -17.74 7125 -0.00249 0.998

ChrChr19 -17.74 7125 -0.00249 0.998
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Table M.1: Table M (continued)

ChrChr20 -17.74 7124 -0.00249 0.998

ChrChr21 -17.74 7125 -0.00249 0.998

ChrChr3 -17.74 7125 -0.00249 0.998

ChrChr5 -17.74 7124 -0.00249 0.998

ChrChr7 -17.74 7125 -0.00249 0.998

DiagnosisControl 0.1263 1.056 0.1195 0.9048

Brain_regionEntorhinal_Cortex 0.6408 2.279 0.2811 0.7786

Brain_regionHippocampus_CA3 0.37 1.956 0.1892 0.8499

Brain_regionTemporal_Cortex -0.16 1.462 -0.1094 0.9129

Sexmale -0.2137 1.341 -0.1594 0.8734

Coverage 45.61 106.1 0.4298 0.6674

122



Appendix N

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAINS REGIONS

AND COVERAGE ON THE FREQUENCY OF CNVS IN THE

PCA-CORRECTED DATA

Table N.1: The table shows the results of the GLMM that interaction of chromosome

and diagnosis, brain regions and coverage were added as fixed factors to predict the

frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.14 1.862 -1.149 0.2506

ChrChr8 -3.707e-05 1.414 -2.621e-05 1

ChrChr14 -17.63 6736 -0.002617 0.9979

ChrChr22 -4.331e-05 1.414 -3.062e-05 1

ChrChr2 -3.472e-05 1.414 -2.455e-05 1

ChrChr9 -3.088e-05 1.414 -2.184e-05 1

chrchr6 -1.194e-05 1.414 -8.44e-06 1

ChrChr1 -17.63 6736 -0.002618 0.9979

ChrChr10 -17.63 6735 -0.002618 0.9979

ChrChr11 -17.63 6735 -0.002618 0.9979

ChrChr12 -17.63 6736 -0.002617 0.9979

ChrChr13 -17.63 6735 -0.002618 0.9979

ChrChr15 -17.63 6735 -0.002618 0.9979

ChrChr16 -17.63 6736 -0.002617 0.9979

ChrChr17 -17.63 6736 -0.002617 0.9979

ChrChr18 -17.63 6735 -0.002618 0.9979

ChrChr19 -17.63 6736 -0.002618 0.9979
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Table N.1: Table N (continued)

ChrChr20 -17.63 6735 -0.002618 0.9979

ChrChr21 -17.63 6736 -0.002617 0.9979

ChrChr3 -17.63 6736 -0.002617 0.9979

ChrChr5 -17.63 6736 -0.002617 0.9979

ChrChr7 -17.63 6735 -0.002618 0.9979

DiagnosisControl -17.39 7490 -0.002322 0.9981

Brain_regionEntorhinal_Cortex 0.3666 1.475 0.2486 0.8037

Brain_regionHippocampus_CA3 0.1333 1.268 0.1051 0.9163

Brain_regionTemporal_Cortex -0.1369 1.454 -0.09413 0.925

Coverage 39.04 96.4 0.4049 0.6855

ChrChr8:DiagnosisControl 17.84 7490 0.002382 0.9981

ChrChr14:DiagnosisControl 35.47 10070 0.003522 0.9972

ChrChr22:DiagnosisControl 5.537e-05 10590 5.228e-09 1

ChrChr2:DiagnosisControl 2.57e-05 10590 2.427e-09 1

ChrChr9:DiagnosisControl 17.84 7490 0.002382 0.9981

ChrChr6:DiagnosisControl -2.862e-06 10590 -2.702e-10 1

ChrChr1:DiagnosisControl 35.47 10070 0.003522 0.9972

ChrChr10:DiagnosisControl 17.63 12550 0.001404 0.9989

ChrChr11:DiagnosisControl 17.63 12550 0.001404 0.9989

ChrChr12:DiagnosisControl 17.63 12550 0.001405 0.9989

ChrChr13:DiagnosisControl 17.63 12550 0.001405 0.9989

ChrChr15:DiagnosisControl 17.63 12550 0.001405 0.9989

ChrChr16:DiagnosisControl 17.63 12550 0.001405 0.9989

ChrChr17:DiagnosisControl 17.63 12550 0.001404 0.9989

ChrChr18:DiagnosisControl 17.63 12550 0.001405 0.9989

ChrChr19:DiagnosisControl 17.63 12550 0.001404 0.9989

ChrChr20:DiagnosisControl 17.63 12550 0.001404 0.9989

ChrChr21:DiagnosisControl 17.63 12550 0.001405 0.9989

ChrChr3:Diagnosiscontrol 17.63 12550 0.001404 0.9989

ChrChr5:DiagnosisControl 17.63 12550 0.001404 0.9989
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Table N.1: Table N (continued)

ChrChr7:DiagnosisControl 17.63 12550 0.001404 0.9989
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Appendix O

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAINS REGIONS

AND COVERAGE ON THE FREQUENCY OF CNVS IN THE

PCA-CORRECTED DATA

Table O.1: The table shows the results of the GLMM that chromosome, brain regions

and coverage were added as fixed factors to predict the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.651 1.88 -1.41 0.1585

ChrChr8 0.6932 1.225 0.566 0.5714

ChrChr14 -0.0001017 1.414 -7.192e-05 0.9999

ChrChr22 0.0001801 1.414 0.0001274 0.9999

ChrChr2 -0.0002293 1.414 -0.0001622 0.9999

ChrChr9 0.6931 1.225 0.5659 0.5715

ChrChr6 1.118e-05 1.414 7.904e-06 1

ChrChr1 -7.867e-05 1.414 -5.563e-05 1

ChrChr10 -16.47 3765 -0.004374 0.9965

ChrChr11 -16.47 3765 -0.004373 0.9965

ChrChr12 -16.47 3765 -0.004373 0.9965

ChrChr13 -16.47 3765 -0.004374 0.9965

ChrChr15 -16.47 3765 -0.004374 0.9965

ChrChr16 -16.47 3765 -0.004374 0.9965

ChrChr17 -16.47 3765 -0.004374 0.9965

ChrChr18 -16.47 3765 -0.004374 0.9965

ChrChr19 -16.47 3765 -0.004374 0.9965
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Table O.1: Table O (continued)

ChrChr20 -16.47 3765 -0.004374 0.9965

ChrChr21 -16.47 3765 -0.004373 0.9965

ChrChr3 -16.47 3765 -0.004374 0.9965

ChrChr5 -16.47 3765 -0.004374 0.9965

chrchr7 -16.47 3765 -0.004374 0.9965

DiagnosisControl 0.04898 0.9259 0.0529 0.9578

Brain_regionEntorhinal_Cortex 0.3665 1.475 0.2485 0.8038

Brain_regionHippocampus_CA3 0.1337 1.268 0.1054 0.9161

Brain_regionTemporal_Cortex -0.1377 1.454 -0.09469 0.9246

Coverage 39.1 96.4 0.4056 0.685
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Appendix P

THE EFFECTS OF CHROMOSOME, DIAGNOSIS AND COVERAGE ON

THE FREQUENCY OF CNVS IN THE PCA-CORRECTED DATA

Table P.1: The table shows the results of the GLMM that interaction of chromosome

and diagnosis and coverage were added as fixed factors to predict the frequency of

CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.906 1.166 -1.635 0.102

ChrChr8 -7.308e-05 1.414 -5.167e-05 1

ChrChr14 -19.68 18810 -0.001046 0.9992

ChrChr22 -8.002e-05 1.414 -5.658e-05 1

ChrChr2 -8.633e-05 1.414 -6.105e-05 1

ChrChr9 -3.616e-05 1.414 -2.557e-05 1

ChrChr6 -1.124e-05 1.414 -7.948e-06 1

ChrChr1 -19.68 18760 -0.001049 0.9992

ChrChr10 -19.68 18790 -0.001048 0.9992

ChrChr11 -19.68 18780 -0.001048 0.9992

ChrChr12 -19.68 18790 -0.001047 0.9992

ChrChr13 -19.68 18790 -0.001047 0.9992

ChrChr15 -19.68 18800 -0.001047 0.9992

ChrChr16 -19.68 18800 -0.001047 0.9992

ChrChr17 -19.68 18790 -0.001047 0.9992

ChrChr18 -19.68 18790 -0.001048 0.9992

ChrChr19 -19.68 18800 -0.001047 0.9992

ChrChr20 -19.68 18790 -0.001047 0.9992
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Table P.1: Table P (continued)

ChrChr21 -19.68 18800 -0.001047 0.9992

ChrChr3 -19.68 18800 -0.001047 0.9992

ChrChr5 -19.68 18800 -0.001047 0.9992

ChrChr7 -19.68 18800 -0.001047 0.9992

DiagnosisControl -19.66 20950 -0.0009386 0.9993

Coverage 40.27 76.4 0.5271 0.5981

ChrChr8:DiagnosisControl 19.9 20950 0.00095 0.9992

ChrChr14:DiagnosisControl 39.58 28150 0.001406 0.9989

ChrChr22:DiagnosisControl 9.349e-05 29620 3.156e-09 1

ChrChr2:DiagnosisControl 7.626e-05 29630 2.574e-09 1

ChrChr9:DiagnosisControl 19.9 20950 0.00095 0.9992

ChrChr6:DiagnosisControl -5.282e-06 29630 -1.783e-10 1

ChrChr1:DiagnosisControl 39.58 28130 0.001407 0.9989

ChrChr10:DiagnosisControl 19.68 35090 0.000561 0.9996

ChrChr11:DiagnosisControl 19.68 35080 0.0005611 0.9996

ChrChr12:DiagnosisControl 19.68 35080 0.000561 0.9996

ChrChr13:DiagnosisControl 19.68 35080 0.0005611 0.9996

ChrChr15:DiagnosisControl 19.68 35080 0.000561 0.9996

ChrChr16:DiagnosisControl 19.68 35080 0.0005611 0.9996

ChrChr17:DiagnosisControl 19.68 35080 0.0005611 0.9996

ChrChr18:DiagnosisControl 19.68 35080 0.0005611 0.9996

ChrChr19:DiagnosisControl 19.68 35090 0.0005609 0.9996

ChrChr20:DiagnosisControl 19.68 35080 0.0005611 0.9996

ChrChr21:DiagnosisControl 19.68 35080 0.000561 0.9996

ChrChr3:DiagnosisControl 19.68 35080 0.0005611 0.9996

ChrChr5:DiagnosisControl 19.68 35080 0.0005611 0.9996

ChrChr7:DiagnosisControl 19.68 35080 0.000561 0.9996
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Appendix Q

THE EFFECTS OF CHROMOSOME, DIAGNOSIS AND COVERAGE ON

THE FREQUENCY OF CNVS IN THE PCA-CORRECTED DATA

Table Q.1: The table shows the results of the GLMM that chromosome, diagnosis and

coverage were added as fixed factors to predict the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.417 1.194 -2.024 0.04292

ChrChr8 0.6932 1.225 0.566 0.5714

ChrChr14 -2.678e-05 1.414 -1.894e-05 1

ChrChr22 5.337e-05 1.414 3.774e-05 1

ChrChr2 -4.205e-05 1.414 -2.974e-05 1

ChrChr9 0.6931 1.225 0.5659 0.5715

ChrChr6 3.948e-06 1.414 2.792e-06 1

ChrChr1 3.775e-05 1.414 2.67e-05 1

ChrChr10 -15.94 2891 -0.005513 0.9956

ChrChr11 -15.94 2891 -0.005513 0.9956

ChrChr12 -15.94 2891 -0.005514 0.9956

ChrChr13 -15.94 2891 -0.005514 0.9956

ChrChr15 -15.94 2891 -0.005514 0.9956

ChrChr16 -15.94 2891 -0.005513 0.9956

ChrChr17 -15.94 2891 -0.005513 0.9956

ChrChr18 -15.94 2891 -0.005513 0.9956

ChrChr19 -15.94 2891 -0.005513 0.9956

ChrChr20 -15.94 2891 -0.005513 0.9956
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Table Q.1: Table Q (continued)

ChrChr21 -15.94 2891 -0.005513 0.9956

ChrChr3 -15.94 2891 -0.005513 0.9956

ChrChr5 -15.94 2891 -0.005513 0.9956

ChrChr7 -15.94 2891 -0.005513 0.9956

DiagnosisControl -0.1679 0.6474 -0.2594 0.7953

Coverage 40.26 76.4 0.5269 0.5982
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Appendix R

THE EFFECTS OF DIAGNOSIS AND COVERAGE ON THE FREQUENCY

OF CNVS IN VAN DEN BOS DATA

Table R.1: The table shows the results of the GLMM that diagnosis and coverage

were added as fixed factors to predict the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.301 1.426 -1.613 0.1067

Diagnosisnormal 0.1033 0.7325 0.141 0.8879

Coverage 200.2 216.2 0.926 0.3544
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Appendix S

THE EFFECTS OF CHROMOSOME, DIAGNOSIS AND COVERAGE ON

THE FREQUENCY OF CNVS IN VAN DEN BOS DATA

Table S.1: The table shows the results of the GLMM that interaction of chromosome

and diagnosis and coverage were added as fixed factors to predict the frequency of

CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -21.17 8236 -0.002571 0.9979

ChrChr4 18.03 8236 0.00219 0.9983

ChrChr13 18.03 8236 0.00219 0.9983

ChrChr14 18.73 8236 0.002274 0.9982

ChrChr3 19.13 8236 0.002323 0.9981

ChrChr11 18.72 8236 0.002273 0.9982

ChrChr12 18.72 8236 0.002274 0.9982

ChrChr6 4.003e-06 11650 3.437e-10 1

ChrChr1 -7.964e-06 11650 -6.837e-10 1

ChrChr10 -6.203e-06 11650 -5.326e-10 1

ChrChr15 -7.016e-06 11650 -6.024e-10 1

ChrChr16 -5.838e-06 11650 -5.012e-10 1

ChrChr17 -7.026e-06 11650 -6.032e-10 1

ChrChr18 -5.859e-06 11650 -5.03e-10 1

ChrChr19 -7.156e-06 11650 -6.144e-10 1

ChrChr2 -7.32e-06 11650 -6.285e-10 1

ChrChr20 -5.422e-06 11650 -4.655e-10 1

ChrChr21 -7.32e-06 11650 -6.285e-10 1
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Table S.1: Table S (continued)

ChrChr5 -4.294e-06 11650 -3.687e-10 1

ChrChr7 -6.69e-06 11650 -5.744e-10 1

ChrChr8 -8.699e-06 11650 -7.468e-10 1

ChrChr9 -1.701e-13 11650 -1.46e-17 1

DiagnosisNormal 19.48 8236 0.002365 0.9981

Coverage 192.5 195.8 0.9831 0.3256

ChrChr4:DiagnosisNormal -18.03 8236 -0.00219 0.9983

ChrChr13:DiagnosisNormal -37.48 18660 -0.002009 0.9984

ChrChr14:DiagnosisNormal -38.18 18660 -0.002046 0.9984

ChrChr3:DiagnosisNormal -38.58 18660 -0.002068 0.9984

ChrChr11:DiagnosisNormal -38.18 18660 -0.002046 0.9984

ChrChr12:DiagnosisNormal -38.18 18660 -0.002045 0.9984

ChrChr6:DiagnosisNormal -7.814e-05 11650 -6.708e-09 1

ChrChr1:DiagnosisNormal -19.45 20400 -0.0009536 0.9992

ChrChr10:DiagnosisNormal -19.45 20400 -0.0009536 0.9992

ChrChr15:DiagnosisNormal -19.45 20400 -0.0009535 0.9992

ChrChr16:DiagnosisNormal -19.45 20400 -0.0009535 0.9992

ChrChr17:DiagnosisNormal -19.45 20400 -0.0009536 0.9992

ChrChr18:DiagnosisNormal -19.45 20400 -0.0009535 0.9992

ChrChr19:DiagnosisNormal -19.45 20400 -0.0009535 0.9992

ChrChr2:DiagnosisNormal -19.45 20400 -0.0009536 0.9992

ChrChr20:DiagnosisNormal -19.45 20400 -0.0009538 0.9992

ChrChr21:DiagnosisNormal -19.45 20400 -0.0009536 0.9992

ChrChr5:DiagnosisNormal -19.45 20400 -0.0009535 0.9992

ChrChr7:DiagnosisNormal -19.45 20400 -0.0009535 0.9992

ChrChr8:DiagnosisNormal -19.45 20400 -0.0009537 0.9992

ChrChr9:DiagnosisNormal -19.45 20400 -0.0009536 0.9992
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Appendix T

THE EFFECTS OF CHROMOSOME, DIAGNOSIS AND COVERAGE ON

THE FREQUENCY OF CNVS IN VAN DEN BOS DATA

Table T.1: The table shows the results of the GLMM that chromosome, diagnosis and

coverage were added as fixed factors to predict the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.976 1.739 -1.711 0.08708

ChrChr4 0.6948 1.26 0.5514 0.5813

ChrChr13 0.03085 1.45 0.02127 0.983

ChrChr14 0.7201 1.266 0.5689 0.5694

ChrChr3 1.037 1.197 0.8665 0.3862

ChrChr11 0.7622 1.281 0.5951 0.5517

ChrChr12 0.713 1.264 0.5643 0.5726

ChrChr6 0.0106 1.446 0.007333 0.9941

ChrChr1 -18.04 8297 -0.002174 0.9983

ChrChr10 -18.04 8298 -0.002173 0.9983

ChrChr15 -18.04 8295 -0.002174 0.9983

ChrChr16 -18.04 8297 -0.002174 0.9983

ChrChr17 -18.04 8297 -0.002174 0.9983

ChrChr18 -18.04 8298 -0.002173 0.9983

ChrChr19 -18.04 8299 -0.002173 0.9983

ChrChr2 -18.04 8296 -0.002174 0.9983

ChrChr20 -18.04 8298 -0.002174 0.9983

ChrChr21 -18.04 8297 -0.002174 0.9983

ChrChr5 -18.04 8296 -0.002174 0.9983
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Table T.1: Table T (continued)

ChrChr7 -18.04 8297 -0.002174 0.9983

ChrChr8 -18.04 8298 -0.002174 0.9983

ChrChr9 -18.04 8297 -0.002174 0.9983

DiagnosisNormal 0.1909 0.7024 0.2718 0.7858

Coverage 181.3 205 0.8842 0.3766
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Appendix U

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAIN REGIONS AND

COVERAGE ON THE FREQUENCY OF CNVS IN THE UNCORRECTED

DATA

Table U.1: The table shows the results of the GLMM that interaction of chromosome

and diagnosis, brains regions and coverage were added as fixed factors to predict the

frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.4794 0.108 4.437 <0.0001

ChrChr5 -0.05698 0.04189 -1.36 0.1738

ChrChr9 0.2184 0.03907 5.59 <0.0001

ChrChr7 -0.6189 0.04919 -12.58 <0.0001

ChrChr10 -0.1922 0.04326 -4.443 <0.0001

ChrChr2 -0.02477 0.04178 -0.593 0.5532

ChrChr12 -0.6451 0.04972 -12.98 <0.0001

ChrChr15 -0.8027 0.05156 -15.57 <0.0001

ChrChr18 -0.9557 0.05452 -17.53 <0.0001

ChrChr17 -0.8859 0.05328 -16.63 <0.0001

ChrChr4 -0.4701 0.04749 -9.898 <0.0001

ChrChr14 -0.684 0.04995 -13.69 <0.0001

ChrChr13 -0.7818 0.05166 -15.13 <0.0001

ChrChr3 -0.3766 0.04647 -8.105 <0.0001

ChrChr11 -0.5702 0.04886 -11.67 <0.0001

ChrChr20 -0.8581 0.05272 -16.28 <0.0001

ChrChr22 -1.079 0.05636 -19.15 <0.0001

139



Table U.1: Table U (continued)

ChrChr16 -0.921 0.0538 -17.12 <0.0001

ChrChr19 -0.8119 0.05173 -15.7 <0.0001

ChrChr21 -1.104 0.05676 -19.46 <0.0001

ChrChr8 -0.8159 0.05234 -15.59 <0.0001

ChrChr6 -0.6059 0.04948 -12.25 <0.0001

DiagnosisControl 0.239 0.1755 1.362 0.1733

Brain_regionEntorhinal_Cortex 0.3164 0.02404 13.16 <0.0001

Brain_regionHippocampus_CA1 0.4514 0.02305 19.59 <0.0001

Brain_regionHippocampus_CA3 0.4471 0.02389 18.72 <0.0001

Brain_regionTemporal_Cortex -0.756 0.03566 -21.2 <0.0001

Coverage 32.47 1.275 25.46 <0.0001

ChrChr5:DiagnosisControl -0.1399 0.0619 -2.26 0.0238

ChrChr9:DiagnosisControl -0.168 0.05776 -2.908 0.003633

ChrChr7:DiagnosisControl -0.2754 0.07526 -3.66 0.0002527

ChrChr10:DiagnosisControl -0.02414 0.06291 -0.3838 0.7012

ChrChr2:DiagnosisControl -0.1807 0.06207 -2.912 0.003592

ChrChr12:DiagnosisControl -0.2696 0.07606 -3.545 0.0003933

ChrChr15:DiagnosisControl -0.1998 0.07765 -2.573 0.01009

ChrChr18:DiagnosisControl -0.266 0.08338 -3.191 0.001419

ChrChr17:DiagnosisControl -0.2804 0.0818 -3.428 0.0006074

ChrChr4:DiagnosisControl -0.2504 0.07214 -3.471 0.0005176

ChrChr14:DiagnosisControl -0.2228 0.07565 -2.945 0.003233

ChrChr13:DiagnosisControl -0.2393 0.0787 -3.04 0.002366

ChrChr3:DiagnosisControl -0.2689 0.0706 -3.808 0.0001399

ChrChr11:DiagnosisControl -0.3494 0.07557 -4.624 <0.0001

ChrChr20:DiagnosisControl -0.2519 0.08048 -3.13 0.001747

ChrChr22:DiagnosisControl -0.3252 0.08719 -3.73 0.0001918

ChrChr16:DiagnosisControl -0.2471 0.08196 -3.014 0.002574

ChrChr19:DiagnosisControl -0.2767 0.07909 -3.499 0.0004668

ChrChr21:DiagnosisControl -0.2985 0.08741 -3.415 0.0006372

140



Table U.1: Table U (continued)

ChrChr8:DiagnosisControl -0.1824 0.07902 -2.308 0.021

ChrChr6:DiagnosisControl -0.2438 0.07513 -3.245 0.001174
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Appendix V

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAIN REGIONS,

COVERAGE AND SEX ON THE FREQUENCY OF CNVS IN THE

UNCORRECTED DATA

Table V.1: The table shows the results of the GLMM that interaction of chromosome

and diagnosis, brains regions, sex and coverage were added as fixed factors to predict

the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.5497 0.159 3.458 0.0005451

ChrChr5 -0.05698 0.04189 -1.36 0.1738

ChrChr9 0.2184 0.03907 5.59 <0.0001

ChrChr7 -0.6189 0.04919 -12.58 <0.0001

ChrChr10 -0.1922 0.04326 -4.443 <0.0001

ChrChr2 -0.02478 0.04177 -0.5931 0.5531

ChrChr12 -0.6451 0.04972 -12.98 <0.0001

ChrChr15 -0.8027 0.05156 -15.57 <0.0001

ChrChr18 -0.9557 0.05452 -17.53 <0.0001

ChrChr17 -0.8859 0.05328 -16.63 <0.0001

ChrChr4 -0.4701 0.04749 -9.898 <0.0001

ChrChr14 -0.684 0.04995 -13.69 <0.0001

ChrChr13 -0.7818 0.05166 -15.13 <0.0001

ChrChr3 -0.3766 0.04647 -8.105 <0.0001

ChrChr11 -0.5702 0.04886 -11.67 <0.0001

ChrChr20 -0.8581 0.05272 -16.28 <0.0001

ChrChr22 -1.079 0.05636 -19.15 <0.0001
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Table V.1: Table V (continued)

ChrChr16 -0.921 0.0538 -17.12 <0.0001

ChrChr19 -0.8119 0.05173 -15.7 <0.0001

ChrChr21 -1.104 0.05676 -19.46 <0.0001

ChrChr8 -0.8159 0.05234 -15.59 <0.0001

ChrChr6 -0.6059 0.04948 -12.25 <0.0001

DiagnosisControl 0.2271 0.1752 1.296 0.1949

Brain_regionEntorhinal_Cortex 0.3163 0.02404 13.16 <0.0001

Brain_regionHippocampus_CA1 0.4514 0.02305 19.59 <0.0001

Brain_regionHippocampus_CA3 0.447 0.02389 18.71 <0.0001

Brain_regionTemporal_Cortex -0.7557 0.03566 -21.19 <0.0001

SexMale -0.1021 0.1704 -0.5993 0.549

Coverage 32.47 1.275 25.46 <0.0001

ChrChr5:Diagnosiscontrol -0.1399 0.0619 -2.26 0.0238

ChrChr9:DiagnosisControl -0.168 0.05776 -2.908 0.003634

ChrChr7:DiagnosisControl -0.2754 0.07526 -3.66 0.0002526

ChrChr10:DiagnosisControl -0.02414 0.06291 -0.3838 0.7012

ChrChr2:DiagnosisControl -0.1807 0.06207 -2.912 0.003593

ChrChr12:DiagnosisControl -0.2696 0.07606 -3.545 0.0003933

ChrChr15:DiagnosisControl -0.1998 0.07765 -2.573 0.01009

ChrChr18:DiagnosisControl -0.266 0.08338 -3.191 0.001418

ChrChr17:DiagnosisControl -0.2804 0.0818 -3.428 0.0006074

ChrChr4:DiagnosisControl -0.2504 0.07214 -3.472 0.0005174

ChrChr14:DiagnosisControl -0.2228 0.07565 -2.945 0.003234

ChrChr13:DiagnosisControl -0.2393 0.0787 -3.04 0.002366

ChrChr3:DiagnosisControl -0.2689 0.0706 -3.809 0.0001397

ChrChr11:DiagnosisControl -0.3494 0.07557 -4.624 <0.0001

ChrChr20:DiagnosisControl -0.2519 0.08048 -3.13 0.001747

ChrChr22:DiagnosisControl -0.3252 0.08719 -3.73 0.0001918

ChrChr16:DiagnosisControl -0.2471 0.08196 -3.015 0.002574

ChrChr19:DiagnosisControl -0.2767 0.07909 -3.499 0.0004669
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Table V.1: Table V (continued)

ChrChr21:DiagnosisControl -0.2985 0.08741 -3.415 0.0006373

ChrChr8:DiagnosisControl -0.1824 0.07902 -2.308 0.021

ChrChr6:DiagnosisControl -0.2438 0.07513 -3.245 0.001174
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Appendix W

THE EFFECTS OF CHROMOSOME, DIAGNOSIS AND COVERAGE ON

THE FREQUENCY OF CNVS IN THE UNCORRECTED DATA

Table W.1: The table shows the results of the GLMM that interaction of chromosome

and diagnosis and coverage were added as fixed factors to predict the frequency of

CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.2814 0.1196 2.353 0.01861

ChrChr5 -0.05783 0.04283 -1.35 0.177

ChrChr9 0.2243 0.03988 5.623 <0.0001

ChrChr7 -0.6209 0.05026 -12.35 <0.0001

ChrChr10 -0.1882 0.04414 -4.263 <0.0001

ChrChr2 -0.03356 0.04285 -0.7834 0.4334

ChrChr12 -0.6482 0.05083 -12.75 <0.0001

ChrChr15 -0.7892 0.05228 -15.09 <0.0001

ChrChr18 -0.9467 0.05535 -17.1 <0.0001

ChrChr17 -0.8778 0.05413 -16.22 <0.0001

ChrChr4 -0.4819 0.04876 -9.883 <0.0001

ChrChr14 -0.6788 0.05087 -13.34 <0.0001

ChrChr13 -0.7777 0.05262 -14.78 <0.0001

ChrChr3 -0.3968 0.04789 -8.286 <0.0001

ChrChr11 -0.577 0.05005 -11.53 <0.0001

ChrChr20 -0.847 0.05352 -15.83 <0.0001

ChrChr22 -1.058 0.05688 -18.61 <0.0001

ChrChr16 -0.9084 0.05455 -16.65 <0.0001
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Table W.1: Table W (continued)

ChrChr19 -0.7976 0.05244 -15.21 <0.0001

ChrChr21 -1.084 0.05732 -18.91 <0.0001

ChrChr8 -0.8162 0.05338 -15.29 <0.0001

ChrChr6 -0.6156 0.05073 -12.14 <0.0001

DiagnosisControl 0.1803 0.1996 0.9032 0.3664

Coverage 14.83 1.23 12.06 <0.0001

ChrChr5:DiagnosisControl -0.1269 0.0636 -1.995 0.04608

ChrChr9:DiagnosisControl -0.1546 0.05927 -2.608 0.009118

ChrChr7:DiagnosisControl -0.2704 0.07733 -3.497 0.0004713

ChrChr10:DiagnosisControl -0.01381 0.06452 -0.2141 0.8305

ChrChr2:DiagnosisControl -0.1701 0.06401 -2.658 0.007867

ChrChr12:DiagnosisControl -0.2759 0.07847 -3.515 0.000439

ChrChr15:DiagnosisControl -0.1897 0.07906 -2.399 0.01644

ChrChr18:DiagnosisControl -0.2573 0.08501 -3.026 0.002475

ChrChr17:DiagnosisControl -0.2791 0.0836 -3.339 0.0008412

ChrChr4:DiagnosisControl -0.2614 0.07486 -3.491 0.0004803

ChrChr14:DiagnosisControl -0.2118 0.0774 -2.737 0.006199

ChrChr13:DiagnosisControl -0.2439 0.08084 -3.018 0.002548

ChrChr3:DiagnosisControl -0.2715 0.07341 -3.698 0.0002172

ChrChr11:DiagnosisControl -0.3515 0.07803 -4.505 <0.0001

ChrChr20:DiagnosisControl -0.2509 0.08225 -3.051 0.002281

ChrChr22:DiagnosisControl -0.3107 0.08819 -3.523 0.0004263

ChrChr16:DiagnosisControl -0.2476 0.08366 -2.959 0.003086

ChrChr19:DiagnosisControl -0.268 0.08053 -3.328 0.0008754

ChrChr21:DiagnosisControl -0.2812 0.0884 -3.182 0.001465

ChrChr8:DiagnosisControl -0.186 0.08127 -2.289 0.02209

ChrChr6:DiagnosisControl -0.245 0.07768 -3.154 0.00161
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Appendix X

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAIN REGIONS AND

COVERAGE ON THE FREQUENCY OF CNVS IN THE UNCORRECTED

DATA

Table X.1: The table shows the results of the GLMM that chromosome, diagnosis,

brain regions and coverage were added as fixed factors to predict the frequency of

CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.5696 0.1064 5.355 <0.0001

ChrChr5 -0.1202 0.03085 -3.895 <0.0001

ChrChr9 0.143 0.02879 4.969 <0.0001

ChrChr7 -0.7395 0.03717 -19.9 <0.0001

ChrChr10 -0.203 0.03144 -6.457 <0.0001

ChrChr2 -0.1058 0.0309 -3.425 0.0006144

ChrChr12 -0.7633 0.03757 -20.32 <0.0001

ChrChr15 -0.8916 0.03857 -23.12 <0.0001

ChrChr18 -1.073 0.04123 -26.02 <0.0001

ChrChr17 -1.008 0.04038 -24.97 <0.0001

ChrChr4 -0.5806 0.03572 -16.25 <0.0001

ChrChr14 -0.7827 0.03749 -20.88 <0.0001

ChrChr13 -0.8874 0.03893 -22.79 <0.0001

ChrChr3 -0.495 0.03498 -14.15 <0.0001

ChrChr11 -0.7212 0.03719 -19.39 <0.0001

ChrChr20 -0.9689 0.0398 -24.34 <0.0001

ChrChr22 -1.22 0.04301 -28.37 <0.0001
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Table X.1: Table X (continued)

ChrChr16 -1.03 0.04057 -25.38 <0.0001

ChrChr19 -0.9331 0.03911 -23.86 <0.0001

ChrChr21 -1.234 0.04319 -28.58 <0.0001

ChrChr8 -0.8978 0.03919 -22.91 <0.0001

ChrChr6 -0.7137 0.0372 -19.18 <0.0001

DiagnosisControl 0.04001 0.1709 0.2341 0.8149

Brain_regionEntorhinal_Cortex 0.3157 0.02405 13.13 <0.0001

Brain_regionHippocampus_CA1 0.451 0.02305 19.56 <0.0001

Brain_regionHippocampus_CA3 0.4466 0.02389 18.69 <0.0001

Brain_regionTemporal_Cortex -0.7574 0.03569 -21.22 <0.0001

Coverage 32.46 1.276 25.44 <0.0001
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Appendix Y

THE EFFECTS OF CHROMOSOME, DIAGNOSIS, BRAIN REGIONS,

COVERAGE AND SEX ON THE FREQUENCY OF CNVS IN THE

UNCORRECTED DATA

Table Y.1: The table shows the results of the GLMM that chromosome, diagnosis,

brain regions, sex and coverage were added as fixed factors to predict the frequency

of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.6398 0.1579 4.051 <0.0001

ChrChr5 -0.1202 0.03085 -3.895 <0.0001

ChrChr9 0.143 0.02879 4.968 <0.0001

ChrChr7 -0.7395 0.03717 -19.9 <0.0001

ChrChr10 -0.203 0.03144 -6.457 <0.0001

ChrChr2 -0.1058 0.0309 -3.425 0.0006143

ChrChr12 -0.7633 0.03757 -20.32 <0.0001

ChrChr15 -0.8916 0.03857 -23.12 <0.0001

ChrChr18 -1.073 0.04123 -26.02 <0.0001

ChrChr17 -1.008 0.04038 -24.97 <0.0001

ChrChr4 -0.5806 0.03572 -16.25 <0.0001

ChrChr14 -0.7827 0.03749 -20.88 <0.0001

ChrChr13 -0.8874 0.03893 -22.79 <0.0001

ChrChr3 -0.495 0.03498 -14.15 <0.0001

ChrChr11 -0.7212 0.03719 -19.39 <0.0001

ChrChr20 -0.9689 0.0398 -24.34 <0.0001

ChrChr22 -1.22 0.04301 -28.37 <0.0001
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Table Y.1: Table Y (continued)

ChrChr16 -1.03 0.04057 -25.38 <0.0001

ChrChr19 -0.9331 0.03911 -23.86 <0.0001

ChrChr21 -1.234 0.04319 -28.58 <0.0001

ChrChr8 -0.8978 0.03919 -22.91 <0.0001

ChrChr6 -0.7137 0.0372 -19.18 <0.0001

DiagnosisControl 0.02804 0.1706 0.1644 0.8694

Brain_regionEntorhinal_Cortex 0.3157 0.02405 13.13 <0.0001

Brain_regionHippocampus_CA1 0.4509 0.02305 19.56 <0.0001

Brain_regionHippocampus_CA3 0.4466 0.02389 18.69 <0.0001

Brain_regionTemporal_Cortex -0.7571 0.03569 -21.21 <0.0001

SexMale -0.102 0.1706 -0.5979 0.5499

Coverage 32.45 1.276 25.44 <0.0001
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Appendix Z

THE EFFECTS OF CHROMOSOME, DIAGNOSIS AND COVERAGE ON

THE FREQUENCY OF CNVS IN THE UNCORRECTED DATA

Table Z.1: The table shows the results of the GLMM that chromosome, diagnosis and

coverage were added as fixed factors to predict the frequency of CNV.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3672 0.1179 3.115 0.001841

ChrChr5 -0.1142 0.03168 -3.604 0.0003134

ChrChr9 0.156 0.02952 5.283 <0.0001

ChrChr7 -0.7376 0.03814 -19.34 <0.0001

ChrChr10 -0.1938 0.03224 -6.011 <0.0001

ChrChr2 -0.1087 0.03184 -3.414 0.000639

ChrChr12 -0.767 0.03866 -19.84 <0.0001

ChrChr15 -0.8724 0.03925 -22.23 <0.0001

ChrChr18 -1.058 0.042 -25.19 <0.0001

ChrChr17 -0.9979 0.04122 -24.21 <0.0001

ChrChr4 -0.5951 0.03696 -16.1 <0.0001

ChrChr14 -0.7714 0.03832 -20.13 <0.0001

ChrChr13 -0.8835 0.03991 -22.14 <0.0001

ChrChr3 -0.5143 0.03628 -14.17 <0.0001

ChrChr11 -0.7266 0.03832 -18.96 <0.0001

ChrChr20 -0.9557 0.04062 -23.53 <0.0001
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