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MART 2023





Beytullah SARICA, a Ph.D. student of ITU Graduate School student ID 706142007,
successfully defended the thesis entitled “DEEP LEARNING APPROACHES FOR
MULTIPLE SCLEROSIS LESION SEGMENTATION USING MULTI-SEQUENCE
3D MR IMAGES”, which he prepared after fulfilling the requirements specified in the
associated legislations, before the jury whose signatures are below.

Thesis Advisor : Prof. Dr. Dursun Zafer ŞEKER ........................
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DEEP LEARNING APPROACHES FOR MULTIPLE SCLEROSIS LESION
SEGMENTATION USING MULTI-SEQUENCE 3D MR IMAGES

SUMMARY

Multiple Sclerosis (MS) is a chronic inflammatory, immune-mediated, neurodegener-
ative, and demyelinating disease that impacts the Central Nervous System (CNS). The
disease can cause permanent damage or deterioration (demyelination) to the nerves in
the CNS. This damage results in the formation of lesions or plaques in the nervous
system, leading to a wide range of symptoms such as problems with vision, loss
of coordination, muscle weakness, and cognitive impairment. Early diagnosis and
monitoring of MS are crucial since diagnosing the disease in its advanced stages can
be more challenging. Therefore, effective methods for diagnosing and monitoring MS
in its early stages are needed to improve patient quality of life and treatment outcomes.
Magnetic Resonance Imaging (MRI) is widely used for monitoring, measuring,
detecting, and characterizing MS lesions. T1-weighted (T1-w), T2-weighted (T2-w),
and Fluid-Attenuated Inversion Recovery (FLAIR) sequences are commonly exploited
in MS diagnosis as they provide different information about the brain tissues and the
presence of lesions. Thereby, MRI is a useful tool for diagnosing and monitoring
MS. Recently, Deep Learning (DL) methods have achieved remarkable results in
the automated segmentation of MS lesions from MRI data, potentially improving
the accuracy and efficiency of MS diagnosis and monitoring. Although automated
methods for MS lesion segmentation have usually been performed on individual MRI
scans, tracking lesion activity for quantifying and monitoring MS disease progression,
especially detecting new lesions, has become an important biomarker in recent years.
This Ph.D. thesis aims to develop novel and fully automated DL approaches for
detecting and segmenting MS lesions from a single time-point brain MRI of a patient
and also new MS lesions between two time points brain MRI of a patient. DL
techniques simplify the feature extraction process from the given input data. Therefore,
in this thesis, DL approaches were investigated and examined, then exploited to
improve the segmentation and detection of MS lesions for both challenging tasks.
Accordingly, a novel dense residual U-Net model that combines Attention Gate (AG),
Efficient Channel Attention (ECA), and Atrous Spatial Pyramid Pooling (ASPP) is
proposed to enhance the performance of the automatic MS lesion segmentation using
3D MRI sequences. Similarly, a unique pipeline with a deep neural network that
combines U-Net, attention gate, and residual learning is proposed to perform better
MS new lesion segmentation using baseline and follow-up 3D FLAIR MR images for
lesion activity determination.

In the proposed novel dense residual U-Net model, convolution layers in each block of
the U-Net architecture are replaced by residual blocks and connected densely. Then,

xxi



AGs are exploited to capture salient features passed through the skip connections. The
ECA module is appended at the end of each residual block and each downsampling
block of U-Net. Later, the bottleneck of U-Net is replaced with the ASSP module to
extract multi-scale contextual information. Furthermore, 3D MR images of FLAIR,
T1-w, and T2-w are exploited jointly to perform better MS lesion segmentation. The
proposed model is validated on the publicly available ISBI2015 and MSSEG2016
challenge datasets. This model produced an ISBI score of 92.75, a mean Dice score of
66.88%, a mean Positive Predictive Value (PPV) of 86.50%, and a mean Lesion-Wise
True Positive Rate (LTPR) of 60.64% on the ISBI2015 testing set. Also, it achieved a
mean Dice score of 67.27%, a mean PPV of 65.19%, and a mean sensitivity of 74.40%
on the MSSEG2016 testing set. The results show that the proposed model performs
better than the results of some experts and some of the other state-of-the-art methods
realized related to this particular subject. Specifically, the best Dice score and the best
LTPR are obtained on the ISBI2015 testing set by using the proposed model to segment
MS lesions.

On the other hand, the generated model for the lesion activity determination within the
proposed pipeline has a similar architecture to U-Net and is formed from residual units
which facilitate the training of deep networks. Networks with fewer parameters are
designed with better performance through the skip connections of U-Net and residual
units, which facilitate information propagation without degradation. AGs also learn
to focus on salient features of the target structures of various sizes and shapes. The
MSSEG-2 challenge dataset was used for training and testing the proposed pipeline,
and the results were compared with those of other proposed pipelines of the challenge
and experts who participated in the same challenge. According to the results obtained
from the testing set, the lesion-wise F1 and Dice scores were obtained as a mean of 48
and 44.30%. For the no-lesion cases, the number of tested and volume of tested lesions
were obtained as a mean of 0.148 and 1.488, respectively. The proposed pipeline
outperformed 22 proposed pipelines and ranked 8th in the challenge for the Dice and
F1 scores. It was also ranked 4th and 5th for the number of tested and volume of tested
lesions, respectively.
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ÇOK SEKANSLI 3B MR GÖRÜNTÜLERİ KULLANILARAK MULTİPLE
SKLEROZ LEZYON BÖLÜTLEMESİ İÇİN DERİN ÖĞRENME

YAKLAŞIMLARI

ÖZET

Multiple Skleroz (MS), Merkezi Sinir Sistemini (MMS) etkileyen, otoimmün,
kronik ve demiyelinizan bir hastalıktır. Bu hastalıkta nöronlar etrafındaki koruyucu
kılıf (miyelin kılıf), bağışıklık sistemindeki (immün sistem) antikorlar tarafından
yabancı bir madde olarak algılanır, yok edilmeye çalışılır ve sonuç olarak koruyucu
kılıf hasar görür ve sertleşmiş MS plakları oluşur. Hastalık sinirlerde kalıcı
hasara veya bozulmaya neden olabilir. Miyelin tabaka üzerinde oluşan fiziksel
tahribat nedeniyle beyinden yollanan mesajların iletilmesi engellenmektedir. MS
hastalarında fonksiyonel yeti kayıpları görülebilir ve bu hastalığın ileri safhalarında
geri döndürülemez beyin hasarları da oluşabilir. MS kesin tedavisi olmayan
bir hastalıktır ve belirtileri hastadan hastaya değişiklik gösterebilmektedir. Bazı
hastalarda yaşam konforu önemli ölçüde düşebilmekte, hasta bakıma muhtaç hale
gelebilmektedir. Yapılan çalışmalar, MS hastalığının genellikle 20-45 yaş aralığında
ortaya çıktığını göstermiştir. 25-35 yaş aralığında ise MS hastalığının görülme
sıklığının yüksek olduğu ifade edilmiştir. Hastalığın kronik olması ve kesin tedavisinin
olmaması, hastaların uzun seneler boyunca bu hastalıkla mücadele etmesi anlamına
gelir. İleri evrelerde tanı daha zor hale gelebileceğinden, erken evrede MS tespiti ve
sürecinin izlenmesi için etkili yöntemlere ihtiyaç vardır.

Manyetik Rezonans Görüntüleme (MRG), MS teşhisinde en önemli ve duyarlı
görüntüleme yöntemidir. MRG, MS hastalığının tanı koyma sürecinde etkin olduğu
gibi klinik olarak diğer hastalıklardan ayırıcı tanının yapılmasında da önemlidir. Ayrıca
tedavi sürecinde kontrol görüntüleme ile tedaviye verilen cevabın değerlendirmesinde
önemli bir yer tutmaktadır. MS tanısında genellikle T1 ağırlıklı (T1-w), T2 ağırlıklı
(T2-w), Sıvı Zayıflatılmış İnversiyon Kurtarma (FLAIR) ve Proton Dansite ağırlıklı
(PD-w) MRG sekansları kullanılmaktadır. MS plakları tipik olarak T1-w sekansta
beyaz cevhere göre benzer veya düşük sinyalde, T2-w ve FLAIR sekansta ise yüksek
sinyalde izlenmektedir.

Son yıllarda, derin öğrenme yöntemlerinin kullanılmasıyla, MS lezyonlarının
MR görüntülerinden otomatik olarak segmentasyonunda dikkate değer sonuçlar
üretilmiştir. MS lezyon segmentasyonu için otomatik yöntemler genellikle bireysel
MRI taramalarında gerçekleştirilmiş olsa da son zamanlarda MS hastalığının
ilerlemesini ölçmek ve izlemek için lezyon aktivitesinin izlenmesi, özellikle yeni
lezyonların saptanması, önemli bir biyobelirteç haline gelmiştir.

Doktora tez çalışmasının amacı, MS lezyonlarının tek bir zaman noktalı beyin MR
görüntülerinden ve ayrıca bir hastanın iki farklı zamanda elde edilen beyin MR
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görüntülerinden yeni MS lezyonlarının saptanması ve segmentasyonu için yeni ve
tam otomatik derin öğrenme yöntemleri geliştirmektir. Derin öğrenme teknikleri,
girdi verilerinden özellik çıkarma sürecini basitleştirir. Bu nedenle, bu tezde, derin
öğrenme yaklaşımları araştırılmış ve ardından her iki görev için MS lezyonlarının
segmentasyonunu ve tespitini iyileştirmek için kullanılmıştır. Buna göre, 3B MRG
dizileri kullanılarak otomatik MS lezyon segmentasyon performansını artırmak için
dikkat geçidini (AG), verimli kanal dikkatini (ECA) ve Atrous uzamsal piramit
havuzlamayı (ASPP) birleştiren yeni bir yoğun rezidüel U-Net modeli önerilmiştir.
Benzer şekilde, lezyon aktivitesinin belirlenmesi için temel ve takip eden 3B
FLAIR MR görüntülerini kullanarak, yeni MS lezyon segmentasyonunu daha iyi
gerçekleştirmek için U-Net, dikkat kapısı ve artık öğrenmeyi birleştiren derin bir sinir
ağına sahip yeni bir işlem akışı önerilmiştir.

Tez kapsamında, 3B görüntülerinin her bir düzleminden elde edilen 2B kesitler,
modellerin eğitilmesinde girdi verisi olarak kullanılmıştır. Her bir düzlemden elde
edilen 2B kesitlerin tahmin edilmesiyle, herbir düzlem için 3B segmentasyon çıktısı
üretilmiştir. Herbir düzlem için elde edilen 3B çıktılar arasında çoğunluk oylaması
yapılarak nihai 3B segmentasyon çıktısı üretilmiştir. 3B görüntüyü bütün olarak
işlemek yüksek bilgisayar kaynakları gerektirmektedir. Derin öğrenme modellerinde
az veri kullanmak aşırı öğrenmeye sebep olabilir. Medikal alanda da veri azlığı
olduğundan 3B medikal görüntüyü bütün olarak kullanmak aşırı öğrenmeye yol
açabilir. Diğer yandan, yama tabanlı elde edilen küçük boyutlu 3B girdiler veri
sayısını arttırsa bile görüntünün genel yapısal bilgisini ihmal etmektedir. Bu çalışmada
hem aşırı öğrenmeden kaçınmak, hem de genel yapısal bilgi kaybını azaltmak için
koronel, aksiyel ve sagital düzlemlerden elde edilen 2B kesitler bütün olarak birlikte
kullanılmıştır. Ayrıca bu yöntem daha az bilgisayar kaynağı gerektirdiği için pratikte
oldukça etkili bir yöntemdir. Bu tezde kullanılan yöntemin, literatürdeki 3B yama
tabanlı ya da 3B tüm görüntünün işlenmesiyle elde edilen sonuçlara yakın hatta daha
iyi sonuçlar aldığı gözlemlenmiştir.

Önerilen yeni yoğun rezidüel U-Net modelinde, U-Net mimarisinin her bloğundaki
evrişim katmanları, rezidüel bloklarla değiştirilmiş ve yoğun bir şekilde bağlanmıştır.
Daha sonra, atlama bağlantılarından geçen önemli özellikleri yakalamak için
AG’lerden yararlanılmıştır. ECA modülü, U-Net’in her rezidüel bloğunun ve her
aşağı örnekleme bloğunun sonuna eklenmiştir. Daha sonra, çok ölçekli bağlamsal
bilgileri çıkarmak için U-Net’in darboğazı ASSP modülüyle değiştirilmıştir. Ayrıca,
FLAIR, T1-w ve T2-w 3B MR görüntüleri, daha iyi MS lezyon segmentasyonu
gerçekleştirmek için birlikte kullanılmıştır. 3B MR görüntülerinden elde edilen çok
düzlemli (koronel, aksiyel ve sagital) 2B kesitler, tüm düzlem yönlerinde bağlamsal
bilgileri elde etmek için birlikte kullanılmış ve daha sonra tahmin edilen 2B kesitler,
çoğunluk oylamasıyla nihai bir 3B segmentasyon çıktısı üretmek için toplanmıştır.
Önerilen model, halka açık ISBI2015 ve MSSEG2016 veri setlerinde doğrulanmıştır.
ISBI2015 veri seti 19 hastaya ait farklı zamanlarda elde edilmiş 3B FLAIR, T1-w ve
T2-w MR görüntülerinden oluşmaktadır. Eğitim veri seti için 5 hastaya ait toplam
21 tane 3B MR görüntüleri bulunmaktadır. Bu görüntülerin iki uzman tarafından
manuel olarak işaretlenmiş etiketli verisi bulunmaktadır. Geri kalan 14 hastaya ait
61 tane 3B MR görüntüsü ise önerilen model ve yöntemleri değerlendirmek için
kullanılmaktadır. ISBI2015 test veri setinin değerlendirilmesi için ISBI organizasyonu
tarafından sağlanan web sitesinin kullanılması gerekmektedir. Test seti verilerine ait
etiketlenmiş veri araştırmacıların kullanımına sunulmamaktadır. MSSEG2016 veri
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seti farklı merkezlerden ve farklı MR cihazlarından elde edilen 53 hastaya ait 3B
MR görüntülerinden oluşmaktadır. Her hasta için tek bir zamanda elde edilen 3B
FLAIR, T1-w ve T2-w MR görüntüleri etiketli verileri ile araştırmacıların kullanımına
sunulmuştur. 38 hastaya ait veriler önerilen otomatik yöntemlerin performanslarını
doğrulamak ve test etmek için kullanılmaktadır. Bu model ISBI2015 test veri setinde
92,75 ISBI skoru, %66,88’lik ortalama Dice skoru, %86,50’lik ortalama Pozitif
Tahmin Değeri (PPV) ve %60,64’lük ortalama Lezyon Bazında Gerçek Pozitif Oran
(LTPR) üretmiştir. MSSEG2016 test veri setinde ise %67,27’lik ortalama Dice skoru,
%65,19’luk ortalama PPV ve %74,40’lık ortalama hassasiyet elde edilmiştir. Önerilen
modelden elde edilen sonuçlar, bazı uzmanlardan elde edilen sonuçlara göre ve diğer
bazı son teknoloji yöntemlerden elde edilen sonuçlara göre daha iyidir. Spesifik olarak,
MS lezyonlarını segmentlere ayırmak için önerilen bu model ile, ISBI2015 test veri
setinde en iyi Dice skoru ve en iyi LTPR elde edilmiştir.

Lezyon aktivitesinin belirlenmesi için önerilen iş akışı içinde yeni geliştirilen model,
U-Net’e benzer bir mimariye sahiptir ve derin ağların eğitimini kolaylaştıran rezidüel
birimlerden oluşur. Daha az parametreli ağlar, U-Net ve rezidüel birimlerinin atlama
bağlantıları sayesinde daha iyi performansla tasarlanır ve bu da bozulma olmadan bilgi
yayılımını kolaylaştırır. Ayrıca, AG’ler çeşitli boyut ve şekillerdeki hedef yapıların
önemli özelliklerine odaklanmayı öğrenir ve modelin daha keskin segmentasyon
yapmasına yardımcı olur. MSSEG-2 veri seti, önerilen iş akışını eğitmek ve test
etmek için kullanılmıştır. MSSEG-2 veri seti toplam 100 hastaya ait, her bir
hasta için iki farklı zaman diliminden elde edilmiş 3B FLAIR MR görüntülerinden
oluşmaktadır. Bu hastalardan 40’ına ait etiketli veri eğitim seti olarak paylaşılmaktadır.
Geriye kalan 60 hastaya ait görüntüler ise önerilen algoritmaların segmentasyon
performanslarını ölçmek için kullanılmaktadır. Bu test setinde, 32 hastanın 2. zaman
dilimindeki görüntülerinde yeni lezyon varken 28 hastaya ait görüntülerde ise yeni
lezyon bulunmamaktadır. Böylece, lezyon olmayan hasta verileri için de önerilen
algoritmalar değerlendirilmektedir. Eğitim veri setindeki 3B MR görüntüleri ham
olarak verildiği için, bu veri setine bazı ön veri işlemleri gerçekleştirilmiştir. Örneğin,
MS lezyonlarının görülmediği beyin tası gibi bölgeler görüntülerden çıkartılmıştır.
Elde edilen sonuçlar yarışma kapsamında önerilen diğer işlem akışı sonuçları ve bu
yarışmadaki uzmanların etiketli verisinden elde edilen sonuçlar ile karşılaştırılmıştır.
Test veri setinden elde edilen sonuçlara göre, lezyon bazında F1 ve Dice skorları
sırasıyla ortalama %48 ve %44,30 olarak elde edilmiştir. İkinci zaman noktasından
elde edilen görüntülerde yeni lezyon görülmeyen vakalar için, test edilen lezyonların
sayısı ve test edilen lezyonların hacmi sırasıyla ortalama 0,148 ve 1,488 olarak
bulunmuştur. Yeni geliştirilen model ile önerilen iş akışı diğer önerilen 22 iş akışından
daha iyi performans göstermiştir. Önerilen iş akışı elde edilen Dice ve F1 skorlarına
göre yarışmada 8. sırada, lezyon olmayan görüntüler için, test edilen lezyonların
sayısına ve test edilen lezyonların hacmine göre sırasıyla 4. ve 5. sırada yer almıştır.
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1. INTRODUCTION

Multiple Sclerosis (MS) is a chronic inflammatory, immune-mediated, neurodegenera-

tive, and demyelinating disease that impacts the Central Nervous System (CNS) [1–3].

In MS, the myelin sheath that protects and surrounds nerve fibers is attacked by the

immune system, which causes the nerves to either be damaged or deteriorated. This

damage causes the formation of lesions (also called plaques) in the brain and spinal

cord. The resulting plaques cause communication issues between the brain and the

rest of the body by blocking the transmission of messages sent from the brain due

to the physical destruction of the myelin layers in the brain and spinal cord [2]. MS

is a disease without definitive treatment, and its symptoms can vary from patient to

patient. For some patients, the disease may significantly impact their comfort in life

and the patient may need care. The incidence of MS is increasing in the age range

of 20-45 years, reaching its highest point between the ages of 25 and 35, decreasing

gradually, and becoming rare in those over 50 years of age [2, 4]. The lack of chronic

and definitive treatment for the disease means that the patient has been fighting it for

many years. Therefore, effective methods are needed for diagnosing and monitoring

the MS disease process. Early diagnosis of the disease is necessary because diagnosis

in its advanced stages can become more difficult. Magnetic Resonance Imaging

(MRI) techniques are widely used to detect MS lesions, the quantitative evaluation

of inflammatory activity, and lesion load [4, 5]. In clinical practice, MRI data can

be used to diagnose and assess MS lesions, which helps physicians better understand

the natural history of MS [4, 6]. MRI sequences (modalities) such as T1-weighted

(T1-w), T2-weighted (T2-w), Proton Density-weighted (PD-w), and Fluid-Attenuated

Inversion Recovery (FLAIR) are used in the diagnosis of MS because they have

different signal properties and can provide different information [7]. In particular,

these techniques facilitate lesion segmentation to acquire quantitative features such as

the number and volume of lesions [8].
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Change detection of MS lesions from MRI data is another essential task to track lesion

activity, which is defined as the emergence of new lesions or the expansion of existing

lesions [9]. The most important biomarker for monitoring inflammatory changes and

disease progression in MS is to track lesion activity between two longitudinal MR

images of a patient [6, 10]. Recently, the delineation of new MS lesions on T2/FLAIR

by comparing two time-points MRI data has gained attraction. Determination of new

lesions has become even more important than identifying the total number and volume

of lesions as it allows clinicians to determine whether a given anti-inflammatory

Disease Modifying Drug (DMD) is effective for the patient [11]. However, the

detection and delineation of new lesions appearing at the second time point are

particularly challenging and intra- and inter-rater variability are unavoidable due to

small and subtle new lesions [12]. Therefore, automating the detection of these new

lesions will also be a significant improvement in assessing the disease activity of a

patient.

Manual MRI segmentation is challenging since delineating 3D MRI is tedious,

time-consuming, and prone to both inter-observer variability and intra-observer

variability [7, 13]. Therefore, accurate automated segmentation methods are required

to perform MS lesion detection [14, 15]. In fact, an automatic computer-aided

diagnosis system using MRI data could be developed to support physicians in

diagnosing, tracking, and treating MS diseases effectively by reducing assessment

time and both intra- and inter-rater variability. To design such a system, automatic

segmentation approaches have been widely studied in the last two decades for the

MS lesion segmentation problem [4], such as [16–19]. Therefore, accurate MS lesion

segmentation is an important task to gather useful information about the disease’s

diagnosis and progress [14]. However, automated lesion segmentation in MS is a

challenging task because the size and location of the lesions vary, the lesion boundaries

are not very well characterized, and MR images might have low resolution or artifacts.

To yield more effective results, machine learning methods were previously proposed to

make faster computations and reduce expert bias [7,20]. Recently, Deep Learning (DL)

methods, especially those relying on Convolutional Neural Networks (CNNs) [21],

have shown state-of-the-art results in medical image analysis compared to previous

conventional methods. These methods have produced satisfactory results in different
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problems of medical imaging, such as brain extraction [22], segmentation of neuronal

structures [23], brain tumors [24], MS lesion segmentation [17, 18, 25], and MS lesion

activity, especially new lesions appearing on the follow-up images [26–28].

CNN-Based medical image segmentation can be accomplished through either

patch-based or image-based approaches [17]. Patch-based segmentation takes a pixel

as a center and generates small patches as a classifier input. Then, a CNN is trained

with these patches to detect whether each central pixel/voxel is classified as a healthy

region. The advantage of this technique is that it exploits better contextual information

around pixels and is also preferred in medical image analysis to obtain more training

samples, reducing class imbalance problems [29]. However, a longer training time

and omitting global structure information are disadvantages of this approach due to

repeated computations and small patch sizes. On the other hand, image-based methods

exploit the global structure when processing the entire image, and they have higher

computational efficiency due to one forward propagation to classify all pixels from

the input image [29–31]. Image-based segmentation can be performed with either

slice-based or 3D-based segmentation methods. Slice-based segmentation is defined

as converting each 3D MRI into 2D slices along the x, y, and z axes, then processing

each slice individually as an input to a CNN. Afterward, the segmented slices are fused

again to form a 3D binary segmentation. This approach can be further expanded to

a whole-brain slice-based segmentation by combining all of the 2D slices extracted

from the three planes, resulting in the acquisition of contextual information in all

directions. In 3D-based segmentation, extracting meaningful information from original

3D images is obtained via a CNN with 3D kernels. A standard 3D segmentation is

prone to a high risk of overfitting due to having many parameters when training small

datasets, which is common in the medical field due to limitations in data collection

and manual delineation [30]. To handle this issue, Liu et al. [32] and Tetteh et al. [33]

proposed 3D cross-hair convolution. They defined three 2D filters for each of the

three orthogonal plane orientations around the voxel, and then the sum of the results

obtained from each convolution is given to the central voxel. This reduces the number

of training parameters, resulting in a shorter training time when compared to a standard

3D segmentation. Nevertheless, this method has three times more parameters for each
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layer in the network when compared to slice-based methods, making it more prone to

overfitting in the presence of smaller datasets [17].

In this thesis, it is argued that a computer-aided diagnosis system would be a

significant improvement in the diagnosis, follow-up, treatment, and monitoring of

therapies for MS disease. Automatic lesion segmentation approaches have been widely

investigated in the last two decades for the MS lesion segmentation problem, making

it a crucial aspect in gathering relevant information for MS diagnosis and progression.

Hereby, different CNN-based approaches were investigated and examined to find better

solutions for accurate MS lesion segmentation and detection. To yield more effective

results, fully automated deep learning-based models were proposed for segmenting and

detecting MS lesions from a single time point brain MRI of a patient and also newly

formed MS lesions in the follow-up images of two different time points. Moreover,

2D slices obtained from three plane directions of 3D MR images were utilized to

alleviate the computational burden. Afterward, the processed 2D slices were exploited

to produce the final 3D binary segmentation output using a majority voting method.

Figure 1.1 shows the workflow of the study.

Figure 1.1 : The workflow of the thesis.

4



1.1 Purpose of Thesis

In this study, the detection and segmentation of MS lesions from 3D MRI data

using deep learning and image processing techniques are investigated and assessed

to achieve more accurate and robust segmentation, especially with CNN-based deep

learning approaches. The aim of the study is to reduce the workload of manual

MRI segmentation performed by experts since manual delineation of 3D MRI data

by experts is costly, time-consuming, and prone to both inter-observer variability and

intra-observer variability [7, 34, 35]. Furthermore, developing novel deep learning

methods for the detection and segmentation of MS lesions would allow experts to

better understand the natural history of the MS disease. In this study, different 3D

MRI sequences are exploited to extract more features related to MS lesions. Instead of

using whole 3D MRI or patches extracted from 3D MRI, a whole-brain 2D slice-based

segmentation is preferred to avoid both the overfitting that occurs in 3D-based methods

and the loss of global structural information that occurs in patch-based methods

[8,30,36]. Moreover, it is aimed to compare the performances of existing deep learning

architectures for the detection and segmentation of MS lesions, to present an improved

deep learning model on a single time-point brain MRI of a patient based on the results

obtained, and to present an improved deep learning model to monitor newly formed

lesions in the follow-up MR images.

This study resulted in the publication of two SCI-Expanded papers in this field [25,26].

The first paper proposed a unique pipeline with a deep neural network to perform better

new MS lesion segmentation using baseline and follow-up 3D FLAIR MR images. The

second paper proposed a novel dense residual U-Net model to enhance the automatic

MS lesion segmentation performance by exploiting different 3D MRI sequences on a

single time point brain MRI of a patient. Eventually, this study has been prepared to

include these two published studies.

Additionally, the purpose of this thesis is to seek answers to the following questions.

• What is the performance of DL algorithms in segmenting MS lesions?

• How can DL algorithms be optimized for better MS lesion segmentation?
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• What is the impact of imaging sequences on the accuracy of DL algorithms in MS

lesion segmentation?

• What is the effect of data augmentation techniques on the performance of DL

algorithms in MS lesion segmentation?

• How can transfer learning be applied to enhance DL algorithms in MS lesion

segmentation?

• How do process 3D MRI scans with computational efficiency approaches?

• What is the performance of DL algorithms in MS lesion activity segmentation?

• How to handle class imbalance problem for MS lesion segmentation?

1.2 Thesis Organization

This thesis is structured as follows:

• Chapter 1: This chapter provides an overview of the definition, diagnosis,

and treatment of MS, highlighting the crucial role of MR imaging and the

challenges faced by physicians during image analysis. Later, the relevance of deep

learning techniques is highlighted and an overview of CNN-based medical image

segmentation approaches is presented. Finally, it introduces the purpose of the

thesis, presents the intellectual foundations of the thesis study, and outlines the

main hypothesis, objectives, research questions, and structure of the thesis.

• Chapter 2: This chapter provides a comprehensive overview of MS, including an

in-depth explanation of MRI, its four sequences, and the analysis of MR images

for MS lesion segmentation. It delves into the preprocessing steps involved in MR

image analysis, covers MS lesion segmentation, and examines the use of MRI in

this process. Additionally, DL approaches are surveyed, especially those relying on

CNNs, for the MS lesion activity segmentation between two time points brain MRI

of a patient and for MS lesion segmentation on a single time point brain MRI of a

patient.

• Chapter 3: This chapter describes the data used in the thesis, specifically, three

well-known challenge datasets in MS lesion segmentation, namely, ISBI2015,
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MSSEG2016, and MSSEG-2. It also outlines the recent DL approaches applied

in the proposed models for both MS lesion segmentation on individual MR images

and new MS lesion segmentation on longitudinal MR images. Additionally, the

common loss functions used in MS lesion segmentation are explained in detail.

The evaluation metrics used to assess the performance of the proposed models for

MS lesion segmentation at a single time point MRI of a patient and MS lesion

activity segmentation between two different time points MRI of a patient, along

with their mathematical formulas, are presented. Finally, a dense residual U-Net

for MS lesion segmentation on individual MRI scans, deep residual attention gate

U-Net for MS lesion activity between two different MRI scans of a patient, and

their implementations are explained in detail.

• Chapter 4: This chapter presents the results obtained from the proposed models

using the three datasets. It compares the results of the proposed models with other

state-of-the-art methods and with the results of experts. Additionally, cross-dataset

validation results between ISBI2015 and MSSEG2016 are presented. The results of

the two proposed models are also thoroughly discussed based on the three datasets.

Finally, the results of the research questions have been evaluated.

• Chapter 5: This chapter presents the conclusion of the studies presented with future

studies.
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2. LITERATURE REVIEW

2.1 Multiple Sclerosis (MS)

MS is a chronic autoimmune disease that affects the CNS, which consists of the brain,

spinal cord, and optic nerves. It is characterized by the immune system attacking and

damaging the myelin sheaths that protect the nerve fibers in the CNS [1, 14, 37]. In

MS, the body’s immune system targets and damages the myelin sheath, resulting in

difficulties in communication between the brain and the rest of the body. Eventually,

the disease can lead to long-term (chronic) damage or deterioration of the axons,

known as nerve fibers. This damage (demyelination) results in various neurological

symptoms such as muscle weakness, numbness, coordination and balance issues,

vision problems, and cognitive impairment. MS has been considered a demyelinating

disease as the damage to the myelin surrounding nerve fibers in the CNS causes

disruptions in the normal communication between the nerve cells. This can lead to

various symptoms, depending on the location and severity of the damage [14, 38, 39].

To make a definitive MS diagnosis, there is a set of guidelines known as the McDonald

criteria, which were published by an international panel in 2001 and updated several

times since then, with the most recent revision occurring in 2017. These criteria

incorporate clinical, laboratory, and imaging findings with the goal of enhancing the

accuracy and consistency of MS diagnosis. The McDonald criteria are commonly

used in clinical settings and have been demonstrated to improve the accuracy of MS

diagnosis, especially in the early stages of the disease [40–43].

The cause of MS is not fully understood; however, it is thought to be a combination of

genetic and environmental factors [2, 14]. Although no cure is currently available for

MS, various treatments are available to manage the symptoms and slow the progression

of the disease. To summarize, MS is a complex and variable disease that affects

millions of people worldwide and can have a significant impact on their quality of

life. Research into the underlying causes and potential treatments for MS is ongoing,

9



with the goal of improving the diagnosis and management of the disease [2]. Figure 2.1

shows the nerve affected by MS.

Figure 2.1 : The nerve affected by MS. Image extracted from
https://www.news-medical.net/health/Types-of-Multiple-Sclerosis-%
28MS%29.aspx

2.2 Magnetic Resonance Imaging (MRI)

MRI is a medical imaging technique that employs radio waves and strong magnetic

fields to generate three-dimensional, detailed anatomical images of the human body

[44, 45]. MRI scans are a very safe and efficient method to diagnose a variety of

medical conditions since they are painless, noninvasive, and do not involve ionizing

radiation. The images generated by MRI can be utilized to diagnose a variety of

conditions, including problems with the spinal cord, the brain, joints, the heart, bones,

breasts, and blood vessels. In other words, the results of an MRI scan can be exploited

to aid in planning treatments, diagnosing conditions, and evaluating how effective

previous treatments have been [42, 46]. There are different types of MRI scanners

that can be identified by their magnetic field strength, which is measured in teslas

(T). The strength of the magnet can vary from 0.5T to 7.0T. A 1.5T MRI scanner

delivers high-quality images, quick scanning times, and the capability to assess the

functioning of specific body structures. It is also currently the most frequently used

MRI for diagnosing MS. The 3.0T MRI scanner is ideal for observing very small

details, including blood vessels in the brain and heart [47]. A 3D MRI volume is
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generated by combining multiple 2D slices obtained in three distinct orientations:

axial, coronal, and sagittal. Figure 2.2 shows these plane orientations of the brain

MRI.

Figure 2.2 : A 3D brain MRI visualization with its three plane orientations. The red
arrow shows an axial slice, the green arrow shows a coronal slice, and the
blue arrow shows a sagittal slice.

There are several MRI sequences that can be used to identify and characterize lesions

associated with MS [7, 48]. Each of them utilizes a different set of settings and

techniques to produce images that highlight different aspects of the body’s anatomy.

Additionally, these MRI sequences can be used individually or in combination to

enhance the sensitivity and specificity of MS lesion detection and characterization

[4,48,49]. These sequences are shown in Figure 2.3 and described in detail as follows:

• T1-weighted (T1-w): This technique employs a short Repetition Time (TR) and

short Echo Time (TE) to produce images with good contrast between different

tissue types. T1-w images are often utilized to identify areas of inflammation and

demyelination in the brain and spinal cord.

• T2-weighted (T2-w): This technique employs a longer TR and TE to produce

images with good contrast between different fluid-filled spaces. T2-w images are

often utilized to identify areas of edema or swelling in the brain and spinal cord.
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• Fluid-Attenuated Inversion Recovery (FLAIR): This technique employs an

inversion recovery pulse and a long TR to suppress cerebrospinal fluid signal, which

makes it simpler to visualize abnormalities in the brain and spinal cord. FLAIR

images are often utilized to identify areas of inflammation and demyelination in the

brain’s white matter.

• Proton Density-weighted (PD-w): This technique employs the tissue’s proton

density to produce images, giving information about the relative number of protons

in a given area of tissue. This information can be beneficial for identifying certain

types, such as fluid, muscle, and fat.

Accordingly, each sequence exploited to visualize MS lesions in the brain has its own

unique advantages and disadvantages. T1-w imaging, for example, is known for its

elevated anatomical resolution, which provides clear images of the brain’s structural

details, while T2-w imaging is particularly useful for the detection of MS lesions due

to its elevated sensitivity to the enhanced water content that is frequently found in

the affected tissue. Furthermore, PD-w imaging can reveal both anatomy and disease

[47, 50].

Figure 2.3 : An axial view of different MR images of the brain from the ISBI2015
dataset: a) FLAIR b) T1-w, c) T2-w, and d) PD-w.

2.3 MRI Analysis for MS

MRI is exploited to identify and characterize MS lesions in the CNS. These lesions

are often associated with a range of neurological symptoms, and their presence and

distribution can be employed to diagnose and monitor the disease. MRI can be

exploited to acquire different types of images of the brain and spinal cord, including
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T1-w, T2-w, FLAIR, and PD-w images. These images are sensitive to different tissue

properties and can be employed to distinguish different types of tissue, such as brain

tissue, blood vessels, and MS lesions. Manual analysis of MR images is a challenging

and time-consuming task due to the vast number of MRI slices that make up the 3D

information for each patient. Furthermore, it is subject to inter-observer variability

and intra-observer variability. Since the early 1990s, a variety of methods have been

developed for preprocessing MRI and segmentation of lesions to the requirement for

manual input and the variations that come with manual delineations [13, 51, 52].

2.3.1 Preprocessing of MR images

The automatic analysis of MR images is challenging due to a variety of factors,

including variations in imaging parameters, blurred edges, normal anatomical

variations, noise, overlapping intensities, susceptibility artifacts, and motion artifacts

[53]. These images, taken directly from the scanner, often include the entire head and

sometimes the neck, and may have issues with intensity non-uniformity. Therefore,

preprocessing techniques are essential to address these issues before performing any

automated methods for further processing or analysis. These include aligning different

MR images to a standard coordinate system for comparison with others or for use in

image registration, and performing various preprocessing techniques to enhance the

quality of the images for automated analysis [20]. Some common preprocessing steps

for brain MR images are described as follows:

• Brain extraction: This technique is exploited to remove non-brain tissues, such

as the skull, from MRI scans. The segmentation performance of both tissues and

lesions is negatively affected by non-brain tissues which have an impact on the

distribution of intensity values in the image [54]. Brain Surface Extractor (BSE)

[55], Brain Extraction Tool (BET) [56], and most recently BEaST [57] and ROBEX

[58] are the most commonly used methods for skull-stripping.

• Bias field correction: It is exploited to remove intensity inhomogeneities or

"bias fields" from medical images, including MR scans. Various factors, such as

irregularities in the scanner or the anatomy of the patient, can lead to these bias

fields. The aim of bias field correction is to enhance the quality of the images by

eliminating the intensity inhomogeneities, producing images with a more uniform
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intensity and accurate representation of the underlying tissue. This can improve the

accuracy of image segmentation, registration, and analysis, as well as the reliability

of the results. The N3 (nonparametric nonuniformity normalization) correction

technique for intensity inhomogeneity was introduced by Sled et al. [59]. It uses

an iterative approach to discover the smooth multiplicative field that enhances the

high-frequency content of the tissue intensity distribution. Later, Tustison et al. [60]

attempt to enhance this method by replacing its B-spline smoothing technique

with a more advantageous solution that tackles significant problems highlighted

in earlier evaluations of N3, known as N4. The iterative optimization scheme was

also changed, leading to improved convergence. These approaches for bias field

correction are currently the most widely exploited.

• Histogram matching: Due to variations in the scanner and other factors, MR

images of a patient taken at different times using the same scanner may appear

dissimilar from one another, which makes the absolute intensity values difficult to

interpret. Thus, histogram matching aims to adjust the brightness and contrast of

an MR image to match the appearance of a reference image by analyzing the pixel

intensity values to overcome this issue [61]. One of the most commonly employed

tools for intensity normalization in MRI is the method developed by Nyúl et al. [61].

This method works by transforming the image histograms so that they match an

average histogram that has been established through training. Apart from histogram

matching for intensity normalization, other approaches that normalize the data

to a specific range are also utilized, including z-score normalization, min-max

normalization, and percentile normalization [49].

• Image registration: Once the brain extraction, the bias field correction, and

histogram matching are completed, the registration process, which is the process

of aligning two images that are in different spaces, can be performed. It plays

a vital role in many automated brain MRI applications and is an essential step

in both inter-subject and intra-subject analyses. The process of aligning various

sequences of images from the same subject, which is also called co-registration, is

achieved using intra-subject registration, while inter-subject registration is utilized

to align images from different subjects, often from the same sequence, or to

register a subject image to a standard template, which is also referred to as
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atlas registration [62, 63]. The registration methods employed share a similar

approach, which is to optimize the deformation of one image to best match the

other image using an energy function and a transformation model. In particular,

the registration techniques can be categorized into two different steps: affine

and rigid registration and nonrigid registration according to several reviews and

surveys [64–66]. Consequently, image registration is an important tool in the field

of medical imaging, as it enables the comparison and combination of information

from multiple images, thereby improving the diagnostic accuracy and precision of

the imaging process.

Ultimately, preprocessing steps are chosen based on the type of image and the task.

The choice of preprocessing steps, their order, and the parameters used can notably

affect the final outcome of the segmentation.

2.3.2 MS lesion segmentation

MS lesion segmentation is the process of identifying and delimiting the boundaries

of lesions that are characteristic of MS within an MR image. These lesions can be

difficult to detect due to their small size and the presence of other brain structures,

such as blood vessels and tissue. Several methods have been proposed for MS lesion

segmentation, including manual, semi-automatic, and fully automatic methods [4,15].

Manual segmentation, which is performed by a radiologist using a software tool to

manually delineate the lesions on an MRI scan, is considered the gold standard for

accurately identifying and quantifying MS lesions [67]. However, this approach is

time-consuming and subject to observer variability [13]. Therefore, semi-automated

and fully automatic methods have been developed to enhance the accuracy and

efficiency of the segmentation process.

The McDonald criteria, discussed in section 2.1, aims to use MRI scans as evidence

for the presence of lesions in various locations and over a period of time, which are

necessary for a definite diagnosis of MS. Therefore, automatic methods would be

beneficial in MS lesion segmentation for both diagnosing the condition and monitoring

a patient’s progress and response to treatment. DL algorithms, such as CNNs, have

been applied to this task and have shown promising results in terms of accuracy and

efficiency. In particular, MRI and MS lesion segmentation are important tools in the
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diagnosis and management of MS, and have greatly improved the understanding of the

disease and its effects on the CNS.

2.3.3 MRI in MS lesion segmentation

In the context of MS, MRI is often utilized to detect and characterize lesions, or areas

of abnormal tissue, within the brain and spinal cord [48]. As discussed previously,

MS is a chronic autoimmune disorder that affects the CNS and can lead to a wide

range of neurological symptoms, including muscle weakness, difficulty with balance

and coordination, and problems with vision. Several approaches have been developed

for automated or semi-automated lesion segmentation in MRI images of patients with

MS. These approaches typically involve the use of algorithms that analyze the intensity,

texture, and shape of the lesions in the image. Some methods also incorporate prior

knowledge about the typical location and appearance of MS lesions in order to improve

the accuracy of the segmentation. To sum up, MRI plays a key role in the diagnosis and

management of MS, and lesion segmentation is an important aspect of this process. In

what follows the next two subsections, a review of MS lesion segmentation between

the two time points, also known as lesion activity, and MS lesion segmentation in a

single time point is presented.

2.3.4 MS lesion activity segmentation

The emergence of new lesions or the expansion of existing lesions is referred to

as lesion activity [9]. The most important bio-marker for monitoring inflammatory

changes and disease progression in MS is to track lesion activity between two

longitudinal MR images [6, 10]. Recently, the delineation of new MS lesions on

T2/FLAIR by comparing two time-points MRI data has gained attraction. The

determination of new lesions has become even more important than identifying the

total number and volume of lesions as it allows clinicians to determine whether a given

anti-inflammatory disease modifying drug (DMD) is effective for the patient [11].

However, detection and delineation of new lesions appearing at the second-time point

are particularly challenging and intra- and inter-rater variability are unavoidable due to

small and subtle new lesions [12]. Therefore, automating the detection of these new

lesions will be a significant improvement in assessing the disease activity of a patient.
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Recently, DL methods, especially relying on CNNs [68], have improved the

performance of brain lesion segmentation tasks [69]; such as brain tumor segmentation

[24], brain extraction [22], and MS lesion segmentation [8, 17, 18]. Most of these

methods rely on encoder-decoder networks, which take MRI data as an input and

generate a segmentation output for each pixel [48]. Many CNN-based methods

and their variations have also been proposed with different input strategies, such as

multi-scale [30], multi-branch [17], and cascaded [36] approaches. However, these

together with most of the classical methods perform lesion segmentation on a single

MRI data. For determining MS lesion activity, classical image processing approaches

have usually been preferred such as image differences, intensity-based approaches, and

deformation fields [70–73]. However, some of these approaches have high variability

and inconsistency as they use two different segmentation outputs obtained from the

baseline and follow-up images to produce the lesion activity [74]. To perform better

lesion activity segmentation, DL approaches relying on CNNs are essential which take

these two images as input; however, these methods have been so far limited for MS

lesion activity segmentation. Salem et al. [75] who used a classical approach in their

previous study proposed the first CNN-based longitudinal approach for detecting new

T2-w lesions in brain MRI. In their study, intensity- and deformation- based features

from two time-points data were incorporated into the proposed network and trained

within an end-to-end procedure. The performance of the method was evaluated on

the MRI data of 60 MS patients obtained from the Vall d’Hebron Hospital’s center.

While 36 patients of the follow-up scans have new T2-w lesions, 24 patients do

not have new lesions on their follow-up scans. Gessert et al. [76] have proposed a

CNN-based method using two FLAIR images acquired at two different times to detect

lesion activity. They used two-path architectures with attention-guided interactions

to process two time-points MRI data. Furthermore, they extended their work to full

4D deep learning using a history of MRI volumes and proposed a 3D ResNet-based

multi-encoder-decoder network in which temporal aggregation was performed by

convolutional gated recurrent units (convGRUs) for lesion activity segmentation [77].

The performance of the proposed method was evaluated on a private dataset obtained

from the University Hospital of Zurich, Switzerland. A 3.0T Philips Ingenia Scanner

was exploited for image acquisition using similar acquisition parameters for all scans.
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A baseline, follow-up, and history scans of FLAIR modality were used for MS lesion

assessment in their studies. However, the dataset of these studies consists of MR

images from the same scanner, which decreases the generalizability of these methods

towards the intensity and texture characteristics variations, which can be inherited if

the data is obtained from different scanners. Thus, there is a need for new deep learning

approaches to cope with variation problems that may arise through the use of data from

multiple scanners as well.

2.3.5 CNN-based MS lesion segmentation

In the literature, many CNN-based methods are proposed for the automatic

segmentation of MS lesions with various input data strategies and networks.

Vaidya et al. [78] proposed a 3D patch-based CNN consisting of only four layers

with sub-sampling methods and sparse convolutions to improve the segmentation

performance. A post-preprocessing step was added by applying a white matter mask

to the output prediction in order to enhance the performance of the proposed model.

The ISBI2015 dataset [79], including FLAIR, T1-w, T2-w, and Pd-w sequences, has

been employed to assess the performance of their method. 2D patch-based CNNs

from multiple images, multiple views, and multiple time points have been proposed by

Birembaum and Greenspan [16] to take advantage of longitudinal data for MS lesion

segmentation. Preprocessing, candidate extraction, and CNN prediction are the three

phases of their proposed segmentation approach. In the first phase, co-registration,

brain extraction, bias field correction, and intensity normalization were performed

on the MR images. In the second phase, masks based on FLAIR and white matter

(WM) prior were computed and applied to the MR images. In the last phase, the

multi-view CNN predicted the probability of a lesion for each voxel in the MR image.

The proposed segmentation method was evaluated using four MRI sequences of the

ISBI2015 dataset. Brosch et al. [30] proposed a whole-brain segmentation approach

using a 3D CNN with a single shortcut connection between the first and last layers

of the network. This shortcut connection allows the proposed network to integrate

high- and low-level features to obtain information on the structure of MS lesions.

However, their proposed network could not benefit from mid-level features, affecting

the segmentation performance [23]. They evaluated their proposed method on the

MICCAI2008 [80] and ISBI2015 datasets. Additionally, a clinical private dataset was
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used to evaluate the proposed method with five methods widely used for MS lesion

segmentation. A pipeline for white matter lesion segmentation using a cascade of two

3D patch-based CNNs has been proposed by Valverde et al. [36]. In their study, the

first network was designed to detect potential lesion voxels with high sensitivity, while

the second network focuses on decreasing the number of false positive results produced

by the first network. In fact, the second network obtained the input features from the

first network which was designed to select features. Their proposed network consisted

of a 7-layer CNN model and used multi-sequence 3D patches from training images.

They evaluated their proposed method on two private clinical MS datasets and the

MICCAI2008 dataset, using three MRI sequences for each. Roy et al. [8] developed a

2D patch-based fully CNN model for MS lesion segmentation. Their network contains

two pathways for FLAIR and T1-w modalities and then concatenates the outputs of

each path to generate a member function for MS lesions. Their proposed method was

evaluated on the ISBI2015 dataset and a private dataset. A 3D fully convolutional

densely connected network (FC-DenseNet) using a 3D patch-based CNN has been

proposed by Hashemi et al. [81]. The 3D patches with 50% overlap from different MRI

sequences were employed as the training input for the proposed method. In addition,

they used an asymmetric similarity loss layer based on the Tversky index to handle

unbalanced data issues in medical imaging. Their networks were trained and evaluated

on the ISBI2015 and MSSEG2016 datasets.

Although the patch-based methods improve lesion segmentation and perform well,

global structural information is not used; namely, the global brain structure and

lesion locations are not part of the segmentation. To address this issue, whole-brain

slice-based methods for MS segmentation using CNNs based algorithms are also

proposed in the literature. For example, Aslani et al. [17, 82] proposed a deep

end-to-end 2D encoder-decoder CNN utilizing the slice-based segmentation approach

for 3D MRI data of different modalities. In their first study, they exploited a stack

of 3-channel slices extracted from each plane of each corresponding modality and a

modified ResNet50 architecture. Their other study used single-channel slices obtained

from each plane of each modality using multiple networks separately. Their proposed

network includes a multi-branch downsampling path and multi-scale feature fusion

blocks to merge features from multimodal MRI data. To overcome the overfitting issue
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in 3D-based segmentation and the deficiency of global structure in the patch-based

method, they preferred a whole-brain slice-based approach in their research. Their

proposed models were evaluated on the ISBI2015 dataset and a private dataset. Zhang

et al. [18] proposed a method using a fully convolutional densely connected network

and stacked adjacent slices from the orthogonal planes (axial, sagittal, coronal) of

different modalities along the x, y, and z axes as 2.5D input data. They took advantage

of the global and local context from slices, and these slices increased training samples

to make accurate segmentation as well. Their proposed model was evaluated on the

ISBI2015 and the in-house datasets. Kang et al. [83] presented a 3D attention context

U-Net (ACU-Net) which is a novel end-to-end segmentation framework to cope with

the challenge of MS lesion segmentation. To expand the perception field and guide

contextual information, a 3D context-guided module was used in the encoding and

decoding stages of 3D U-Net. They used a 3D spatial attention block to enhance

feature representation in the skip connection phase as well. The proposed model was

evaluated on the ISBI2015 dataset with the provided four MRI sequences. During the

training, the size of the input image cropped from these MRIs was 160×192×160.

To enhance the data, they performed the rotation along the axial view and flipped the

original and the rotated volumes horizontally.

Recently, Zhang et al. [84] proposed a deep CNN model based on 3D U-Net to

perform fast and accurate MS lesion segmentation that uses FLAIR, T1-w, and

T2-w sequences. Anatomical information obtained using distance transformation

mapping and lesion-wise loss function were integrated to obtain anatomical structure

information and improve small lesion detection, respectively. The proposed method

was assessed on a larger in-house Cornell MS and the ISBI2015 datasets. For

the ISBI2015 dataset, each 3D volume of each modality was resized to the size

of 217×217×217 voxels for all subjects. Data augmentation was performed by

applying elastic deformation, random changes in intensity, and random scaling. As

for the larger Cornell MS dataset, the training samples were randomly extracted from

the original images with the size of 128×128×48 voxels. Kamraoui et al. [19]

proposed a DeepLesionBrain (DLB) method which is a novel and robust method

for domain shift using the 3D CNN model. A spatially distributed strategy of

multiple compact 3D CNNs with large overlapping receptive fields was employed to
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generate consensus-based segmentation robust to domain shift. To effectively combine

both generic and specialized features, they trained the model using hierarchical

specialization learning. To increase training data variability, they proposed a novel

image quality data augmentation as well. The generalization ability of DLB was tested

in cross-dataset experiments with two to four MRI modalities using the MSSEG2016

dataset, the ISBI2015 dataset, and an internal dataset.

Additionally, Weeda et al. [85] aimed to test the CNN-based nicMSlesions software

and compare it with manual and other automatic segmentation to investigate its

performance using an independent dataset. They focused on five segmentation

methods, which are LessionTOADS, LST-LPA default, LST-LPA adjusted-threshold,

BIANCA, and nicMSlesions single-subject, respectively. Their results show that the

nicMSLesions method can be easily trained with only one manual delineation and

achieves better results than others. Most of these studies have focused on accurate MS

lesion segmentation using MRI data from the same domain. However, quantifying

MS lesions through the use of MRI data from different centers and scanners has

become essential for evaluating segmentation performance. Therefore, new deep

learning-based segmentation approaches are still required for accurate MS lesion

segmentation and generalization capabilities toward different centers and scanners.
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3. DATA, METHODOLOGY, AND IMPLEMENTATION

3.1 Data Used

In medical imaging analysis, obtaining labeled datasets is challenging as manual

delineation of MRI data by several experts is a costly and time-consuming process. To

address this, challenges have been organized for MS lesion segmentation and detection

to provide publicly available labeled datasets associated with the MS disease including

various sequences such as FLAIR, T1-w, T2-w, and PD-w. Most of these datasets

also provide both raw and preprocessed images for all sequences. Additionally,

these challenges serve a fair comparison platform for automated methods. Therefore,

in this study, three challenge datasets were exploited to evaluate the segmentation

performance, generalization, robustness, and lesion activity. The evaluation of

proposed deep learning methods was also performed using the provided platforms.

To obtain these datasets, each challenge has its own website to download them by

registering and approving their data usage policies. In this thesis, three publicly

available datasets, the ISBI2015 MS lesion segmentation challenge dataset which will

be denoted as ISBI2015, the MSSEG2016 challenge dataset which will be denoted

as MSSEG2016, and the MSSEG-2 challenge dataset which will be denoted as

MSSEG-2, were exploited to evaluate proposed models. Furthermore, some of these

datasets enable assessing the generalization ability and robustness of the proposed

models on unseen datasets since they present high variability in terms of acquisition

sites, resolution, preprocessing, and clinical cases.

3.1.1 ISBI2015 longitudinal MS lesion segmentation dataset

The ISBI2015 dataset, which is publicly available and downloadable from the

Challenge Evaluation website1, was used to evaluate the MS lesion segmentation task

in the proposed models. It has five training and fourteen testing subjects with 4 to 6

1Challange website: https://smart-stats-tools.org/lesion-challenge-2015
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follow-up 3D scans per subject and a mean of 4.4 time-points. T1-w, T2-w, PD-w, and

FLAIR sequences are provided for each time-point with data acquired on a 3.0T MRI

scanner [79]. 181 (axial and sagittal) and 217 (coronal) slices make up the volumes

with 1mm cubic voxel resolution. The training set comprises 21 3D scans that belong

to five patients with white matter lesions associated with MS and has been annotated by

the two expert raters, while 14 patients of the testing dataset comprising 61 3D scans

do not have their delineated masks available for the public. Rater #1 has four years

of experience delineating lesions, while rater #2 has ten years of experience in manual

segmentation and 17 years in structural MRI analysis [79]. Moreover, in the training

set, subject 2 is with high lesion load while subject 3 is with low lesion load. The

performance of the proposed methods can be evaluated via the ISBI2015 challenge

website2 by submitting the 3D binary masks obtained from the ISBI2015 testing set.

This dataset has also been widely used as a benchmark in many research studies for

the automatic MS lesion segmentation [49].

The preprocessed and raw of images for all modalities are given by the challenge

organizers. The provided preprocessed dataset, in which the brain is stripped from

the skull using the BET [56], has been employed in this study. First, intensity

normalization was performed on each 3D MRI using Kernel Density Estimation (KDE)

with the Gaussian kernel. Then, slices along three orthogonal directions were extracted

from all modalities for both raters. The size of each slice – axial, sagittal, and coronal

– is 181 × 217, 217 × 181, and 181 × 181, respectively. To acquire the same size

for each plane view (224 × 224), a zero-padding technique was applied by centering

the brain without considering its orientation. Furthermore, the slices that have MS

lesions, including at least one pixel, were preferred to remove non-informative samples

and excessively unbalanced data when feeding the models. Figure 3.1 shows the

training sample of subject 2, which has a high lesion load, for FLAIR, T1-w, and

T2-w modalities of each plane orientation.

2Evaluation: https://smart-stats-tools.org/lesion-challenge-upload-results
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Figure 3.1 : Illustration of the preprocessed ISBI2015 dataset training samples with
axial, sagittal, and coronal views of FLAIR, T1-w, and T2-w modalities
with their corresponding manual delineations by two raters, Rater #1 and
Rater #2.

3.1.2 MSSEG2016 dataset

The MSSEG2016 dataset is composed of 3D MR images of 53 MS patients gathered

from four different clinical centers (Center01, Center03, Center07, and Center08) and

four MRI scanners (1.5T or 3T). 3D FLAIR, 3D T1-w, 3D T1-w GADO, 2D DP, and

2D T2 sequences are provided for each patient [86]. These images have been divided

into two subsets, 15 patients for training and 38 patients for testing. The MRI images

from Center03 are only included in the testing set to evaluate the generalization and

robustness of models. The MS lesions have been manually delineated by seven experts

to evaluate not only the performance of automatic methods but also the inter-expert

variability of manual segmentation, and consensus mask data has been computed from

their outputs for each patient. The voxel size of each MRI scan ranges in size from 1 ×

0.5 × 0.5 to 1.25 × 1.04 × 1.0 mm3 in this dataset. Raw and preprocessed MR images

for each patient have been provided by the challenge organizers as well.

In this study, the provided preprocessed dataset was exploited to evaluate the

generalization and robustness of the proposed model on unseen centers and scanners.
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For the provided preprocessed data, the non-local means algorithm for denoising, the

block-matching registration approach for a rigid registration, brain extraction using

the volBrain platform, and the N4 algorithm for bias field correction were performed

by the challenge organizers [86]. In addition to these steps, intensity normalization

wasperformed on each 3D MRI as in the ISBI2015 dataset. Afterward, each extracted

2D slice from each 3D MRI, which has different spatial dimensions, is resized to a

224 × 224 shape using the nearest interpolation with keeping the original range of

values [87] since the proposed models depend on the fixed input size. Similar to

the ISBI2015 dataset, slices only having at least one lesion were chosen to remove

excessively unbalanced data and non-informative samples. Figure 3.2 shows the

training sample for this dataset.

Figure 3.2 : Illustration of the preprocessed MSSEG2016 dataset training samples
with axial, sagittal, and coronal views of FLAIR, T1-w, and T2-w
modalities with their consensus manual delineation.
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3.1.3 MSSEG-2 dataset

In this study, a total of 100 patients’ MRI data that was associated with MS disease

provided by the MSSEG-2 challenge3 was utilized for the lesion activity detection and

segmentation. The voxel size of each MRI data in this dataset varies from 0.5 × 0.5

× 0.5 to 1.2 × 1.2 × 1.2 mm3. The dataset was divided into two groups for training

and testing. 40 image pairs were used for the training and the remaining were used for

testing. For each patient, raw 3D T2/FLAIR MRI pairs were obtained from 15 different

MRI scanners at 1.5T and 3T. A rigid registration was applied to these images to bring

them into a middle point in which the ground truth data was calculated by the challenge

organizers. Thereafter, a consensus delineated ground truth data for the follow-up

images were formed by a majority voting among the four experts and validated by a

senior expert neuroradiologist. Figure 3.3 shows the raw and preprocessed input data

for the two time points dataset with the delineated ground truth data.

Figure 3.3 : The raw, preprocessed, and delineated mask slices including two-time
points for the new MS lesions segmentation task [26].

3Challenge Data: https://portal.fli-iam.irisa.fr/msseg-2/data/

27

https://portal.fli-iam.irisa.fr/msseg-2/data/


3.1.4 Data preprocessing and preparation

Figure 3.4 shows the whole framework of how to process 3D MRI data associated

with MS disease for the ISBI2015 and MSSEG2016 datasets. Although the FLAIR

sequence has a higher contrast between lesions and white matter than others, other

modalities also provide useful features like location and shape. Thus, a stack of 2D

slices was generated using 3D volumetric scans of FLAIR, T1-w, and T2-w sequences

per channel with their corresponding plane orientations along the x, y, and z axes.

Then, stacked 2D slices of all plane orientations were concatenated to form the training

input data. For the ISBI2015 dataset, two manual delineations are available, so these

two delineation masks were concatenated to create a single training set. The total

number of 2D slices extracted from 3D MRI data of each rater was 5197 and 5716,

resulting in a total of 10913 2D slices. Later, the total input data was divided into 90%

for the training and 10% for the validation data which derived a total of 9821 slices

for the training set and a total of 1092 slices for the validation set before feeding the

proposed model. For the MSSEG2016 dataset, a total of 5414 2D slices from 15 3D

MR images in the provided training set were obtained. Afterward, the data division for

training and validation sets was performed similarly to the ISBI2015 dataset, resulting

in a total of 4872 slices for the training set and a total of 542 slices for the validation

set.

Figure 3.4 : A framework for MS lesion segmentation using the proposed model with
2D slices extracted from 3D MR images of multiple sequences including
the output of the final 3D binary mask [25].
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Data augmentation is a process of artificially increasing the amount of data by

performing random realistic transformations to ensure making the training step is

robust, properly improving the prediction accuracy, and reducing overfitting. In

this study, data augmentation was performed for the ISBI2015 and MSSEG2016

datasets during the training using Albumentations, an open-source library for image

augmentations [88]. In particular, random 90 degrees rotation (p=0.5), vertical flip,

horizontal flip, random crop, transpose (p=0.5), shift scale rotate (shift_limit=0.01,

scale_limit=0.04, rotate_limit=0, p=0.25), random brightness contrast (p=0.5), random

gamma (p=0.25), emboss (p=0.25), blur (p=0.01, blur_limit=3), and one of these on

elastic transform (p=0.5, alpha=120, sigma=120 × 0.05, alpha_affine=120 × 0.03),

grid distortion (p=0.5), optical distortion (p=1, distort_limit=2, shift_limit=0.5) were

used.

CNN transfer learning from another domain (not medical) to medical domains is

usually exploited to initialize training weights in the segmentation tasks due to the

data scarcity in this domain. However, in this study, training weights obtained from the

ISBI2015 dataset (medical domain) were exploited to initialize training weights on the

MSSEG2016 as a transfer learning strategy to improve the segmentation performance,

generalization, and robustness of the models.

For the MSSEG-2 challenge, the MSSEG-2 dataset has been gathered to detect

and segment new lesions appearing in the follow-up images. This dataset contains

60 3D FLAIR raw images for the training. Data preprocessing is a crucial step

for the segmentation task in medical image processing since the raw MRIs may

contain irrelevant information like non-brain tissues and skulls. Thus, brain extraction

followed by N4 bias field correction [60] was performed on these raw 3D images

using the Anima MS longitudinal preprocessing script4. Intensity normalization was

performed on each 3D MRI scan using the 99th percentile and KDE with the Gaussian

kernel similar to one described by Reinhold et al. [89] and Zhang and Oguz [49].

Then, early fusion was performed on the baseline and follow-up images to produce

2-channel input data allowing the proposed model to obtain temporal features from

MRI sequences.

4Anima scripts: RRID SCR_017072 https://anima.irisa.fr/
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The resulting 3D MRI data consists of orthogonal plane orientations which yield three

views. From this data, the axial, sagittal, and coronal views along the x, y, and z

axes were obtained as 2D slices. Since each generated 2D slice has a different size

that depends on the orientation, zero padding was applied to obtain a 512 x 512 slice

size for all orientations by centering the brain without affecting the original voxel size.

As discussed in detail by Hashemi [90], zero padding does not deform the patterns in

the image and does not affect the network weights during the backpropagation. To

restrict excessively unbalanced data and ignore non-informative samples, the slices

which have at least one pixel delineated as a new lesion on the follow-up MR images

were chosen to create a training subset. As a result, a total of 2637 2D slices for each

time point were derived to be used for training and validation sets. Afterward, the

baseline and follow-up images were stacked to generate a 2-channel feature map for

each plane orientation. Finally, all 2D stacked slices extracted from all three planes

were aggregated to generate a single training input, which allowed to increase training

samples and use the contextual information in all directions.

3.2 Methodology

DL has achieved state-of-the-art performance in many computer vision tasks, including

medical image analysis, and has become a fundamental tool in artificial intelligence.

CNNs have developed into a beneficial approach for the automated segmentation of

various tasks in medical image analysis with the advent of deep learning. CNNs are

commonly used for these tasks due to their ability to automatically learn and extract

features from the given images. Long et al. [91] proposed fully convolutional networks

(FCNs) to enhance the performance of CNNs. The fully connected layers in traditional

CNNs were replaced with convolutional layers to allow the network to output feature

maps at the same resolution as the input image. Subsequently, deconvolutional layers

for upsampling are employed to increase the resolution of the feature maps and produce

a dense pixel-wise classification. Although FCNs have been successful in many

computer vision tasks, such as semantic segmentation, instance segmentation, and

object detection, they have only a deconvolutional operation for upsampling, causing

significant information loss in the decoder and affecting the segmentation performance.

Later, Ronneberger et al. [23] modified and extended this network to generate the
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U-Net architecture, which works with fewer training images and combines feature

maps from multiple levels to enhance segmentation accuracy. Recent advancements

in deep learning techniques have led to many potential improvements in architectural

designs, particularly with regard to U-Net which is a commonly utilized architecture

for image segmentation. Furthermore, several CNN architectures have been developed

specifically for the task of image segmentation, such as FPN and ResNet. These

architectures have achieved good performance on benchmark datasets and have the

potential to improve the accuracy and efficiency of the segmentation tasks. In this

section, deep learning approaches are explained in detail.

3.2.1 U-Net

U-Net, an encoder-decoder convolutional neural network architecture for semantic

segmentation with skip connections, was developed for medical image segmentation

by Ronneberger et al. [23]. It has been widely used in medical image segmentation

tasks and has shown competitive results in the medical field. This network

concatenates features from different levels to enhance segmentation performance. It

consists of a contracting path (encoder), a bottleneck (bridge), and an expansive

path (decoder). In the contracting path, the input image is encoded into the feature

representations at multiple different levels with convolution blocks followed by a max

pooling operation, and its spatial resolution was reduced by halving its size. In the

expansive path, upsampling operations are performed to expand the feature dimensions

to concatenate with the corresponding features from the contracting path through the

skip connections to better learn representations. The bottleneck typically consists of

two 3x3 convolutions that enable propagating features from the contracting path to the

expansive path while also compressing the high-level feature representations learned

by the encoder into a smaller representation that can be easily propagated through the

decoder. This compression yields a more effective computational process while still

enabling it to gather the necessary information for accurate semantic segmentation.

The skip connections between the contracting and expansive paths allow the network

to fuse both low-level and high-level features for the segmentation task. They also

help to alleviate the problem of vanishing gradients, which can occur when training

deep CNNs. The standard U-Net architecture consists of four downsampling and four

upsampling blocks with skip connections added between each corresponding block.
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Each block of U-Net consists of two 3x3 convolutions each followed by a Rectified

Linear Unit (ReLU) activation. Besides, a 2x2 max pooling operation is applied for

each downsampling block while a 2x2 convolution is applied for each upsampling

block to change the spatial dimensions of the input feature map. The final layer of

the U-Net utilizes a 1x1 convolution with a sigmoid activation function to predict each

pixel value ranging from 0 to 1 [23]. The U-Net is illustrated in Figure 3.5.

Figure 3.5 : The illustration of U-Net architecture with a contracting path, a
bottleneck, and an expansive path.

3.2.2 Feature pyramid network (FPN)

FPN is designed to extract features from a single-scale image of any size, by producing

proportionally sized feature maps at multiple levels through a fully convolutional

process [92]. FPN has shown competitive performance in instance segmentation and

has been employed in many object detection tasks. It consists of bottom-up and

top-down pathways as shown in Figure 3.6. The bottom-up pathway of the network is

a standard CNN used for image classification, while the top-down pathway generates

pyramid-shaped features that can be utilized for object detection at different scales.

This pathway takes input from the final layer of the bottom-up path and then increases

the resolution of the output from the previous layer as it moves up through the pyramid,
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adding in the output from the bottom-up path at each level via lateral connections. As a

result, each layer in the top-down path generates features that are specifically designed

to detect objects of different sizes.

Figure 3.6 : The illustration of FPN architecture and a building block showing the
lateral connection and the top-down pathway.

3.2.3 Residual learning (RL)

Adding more layers to build a deeper neural network could enhance the performance

of networks; however, increasing the depth of the network may slow down the training

process, perhaps resulting in a degradation problem [93]. Deep residual learning uses

several residual blocks together in which an identity mapping is created to handle the

performance problem, and also address the degradation problem [93]. Indeed, the

key idea behind RL is that it allows for the training of much deeper neural networks

without encountering the problem of vanishing gradients. RL has been successful in

addressing the problem of vanishing gradients and has enabled the training of very

deep neural networks with good performance. It has also been applied to a wide range

of tasks, including image classification, object detection, and image segmentation. The

residual unit consists of two 3x3 convolutional blocks, each with a convolutional layer,

BN, and a ReLU activation, as well as an identity mapping that combines the input and

output of the residual unit. Figure 3.7 shows the original residual unit in [93].
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Figure 3.7 : Original residual unit with identity mapping. xl and xl+1 are the input and
output of the l-th unit, respectively.

Each residual unit is formulated according to He et al. [94] as follows:

yl = h(xl)+F(xl,Wl) (3.1)

xl+1 = f (yl) (3.2)

where xl and xl+1 are the input and output of the l-th unit while F , f , and h indicate

the residual function, activation function, and identity mapping, respectively.

3.2.4 Attention gate (AG)

In the context of image segmentation, attention is a technique to suppress

feature activations in irrelevant regions of the image during training, reducing the

computational resources due to focusing on the relevant feature activations of the given

input image. In CNNs, an attention mechanism is a useful tool for feature selection

since it simultaneously captures crucial local information and suppresses noisy features

[95]. The attention mechanism is categorized into two groups: hard attention and soft

attention. Hard attention, such as iterative region proposal and cropping, is typically

non-differentiable and depends on reinforcement learning for parameter updates. Due

to its non-differentiable, the network can either pay attention to or not to a given region
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in an input image. Since standard back-propagation cannot be performed for hard

attention, Monte Carlo sampling is required to compute the accuracy over different

stages of back-propagation. Contrary to hard attention, soft attention is probabilistic

and does not require Monte Carlo sampling; instead, it uses standard back-propagation.

In soft attention, different parts of a given image are weighted based on their relevance.

High-relevance regions are multiplied with larger weights, while low-relevance regions

are multiplied with smaller weights. During training, the model focuses more on the

higher-weighted regions [96]. In the standard U-Net, low-level and high-level semantic

features are combined via skip connections; however, the high-level features represent

poor representation. Therefore, to improve the performance of the U-Net architecture,

AGs are used at skip connections before concatenating features that are passed through

skip connections and upsampling operations. This allows the network to focus more

on features related to different sizes and shapes in the target structure. Indeed, AGs

help the CNN models focus on learning the salient features beneficial for specific tasks

while avoiding unnecessary regions in an input image [96]. Contextual information

provided by the gating signal (g) which is obtained from a coarser scale is used to

achieve feature selectivity in AGs [96]. Figure 3.8 shows the additive attention gate

approach proposed by Oktay et al. [96].

Figure 3.8 : Schematic of the attention gate.

3.2.5 Efficient channel attention (ECA)

The performance of deep CNNs is continuously being improved by many research

studies [93, 97, 98]. Squeeze-and-excitation networks (SENet) [99] are one of the

notable approaches that improve the performance of CNNs by selectively focusing

on important features in the input data. It does this by learning to pay attention to

specific channels in each convolutional block, resulting in a clear improvement in
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performance across different CNN architectures. Specifically, the SE block takes in

input features and first uses global average pooling (GAP) for each channel separately.

It then uses two fully-connected layers with non-linearity and a sigmoid function to

generate channel weights. These two layers are used to capture non-linear interactions

between channels, while also reducing dimensionality to control the complexity of

the model. Some research studies have improved the SE block by capturing more

complex dependencies among channels or by incorporating additional spatial attention

[100–103]. While these methods have produced better accuracy, they also tend to

increase the complexity of the model and result in an increased computational burden.

Furthermore, dimensionality reduction has a negative impact on the ability to predict

channel attention and it is not necessary or efficient to capture dependencies among all

channels [104]. Therefore, Wang et al. [104] introduce a new module called ECA for

deep CNNs which captures cross-channel interaction efficiently without reducing the

dimensionality. The ECA captures local cross-channel interaction by looking at every

channel and its k closest neighboring channels. This method has been shown to be

both efficient and effective. The ECA can be implemented using fast 1D convolution

of size k, where k represents the number of neighboring channels involved in attention

prediction for one channel. To avoid manually tuning k via cross-validation, they

suggest a method to adaptively determine k, where the coverage of interaction (i.e.,

kernel size k) is proportional to the channel dimension. Consequently, the ECA module

is able to learn effective channel attention without dimensionality reduction and by

efficiently capturing cross-channel interactions.

3.2.6 Atrous spatial pyramid pooling (ASPP)

ASPP is a deep learning-based approach for semantic image segmentation proposed

by Chen et al. [105]. It was built on the idea of "spatial pyramid pooling" [106–108],

which has been proven to be effective in classifying regions of various sizes by

resampling features at different scales. ASPP involves using dilated convolutions,

also known as atrous convolutions, to expand the network’s receptive field without

adding more parameters. Also, a fully connected conditional random field (CRF)

is employed to enhance the segmentation results. Specifically, ASPP uses multiple

parallel atrous convolutional layers with different dilation rates to capture multi-scale

context information. The outputs of these atrous convolutional layers are then
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concatenated and passed through a final 1 × 1 convolutional layer to reduce the

dimension before upsampling to the original image size. This allows the network to

effectively capture both fine and coarse context information, resulting in improved

performance on semantic segmentation tasks. ASPP can be used in the context of

any CNN architecture and has been shown to improve the performance of CNNs

on a variety of tasks, including image classification, object detection, and semantic

segmentation. Indeed, ASPP is a useful approach for improving the ability of CNNs

to capture contextual information in images and has been widely used in the field of

computer vision. Figure 3.9 shows the proposed ASPP module in [105].

Figure 3.9 : Atrous Spatial Pyramid Pooling (ASPP). ASPP uses multiple parallel
filters with varying rates to take advantage of multi-scale features in order
to classify the central pixel (shown in red). The different Field-Of-Views
are depicted in different colors.

3.2.7 Loss functions

In DL, a loss function is a measure of how well a neural network is able to predict

the correct output for a given input. When training a neural network, the goal is to

minimize the loss function by adjusting the weights and biases of the network in order

to improve its performance. There are many different types of loss functions that can

be used in medical image analysis, depending on the specific task and the desired

properties of the model [109]. The most commonly used loss functions are as follows:
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3.2.7.1 Binary cross-entropy loss

The binary cross-entropy (BCE) loss function is commonly utilized for binary

classification tasks in medical image analysis. It measures the difference between the

predicted probability of the positive class and the true label (0 or 1). The BCE loss

function can be calculated for each pixel, and the total loss for the model can then be

calculated using the average loss over all the pixels. It is formulated as,

L(gt, pr) =−(gt log(pr)+(1−gt) log(1− pr)) (3.3)

where gt and pr indicate ground truth and predicted segmentation, respectively.

3.2.7.2 Categorical cross-entropy loss

This loss function is similar to BCE loss; however, it is used for multi-class

classification tasks, where the output can belong to one of multiple classes. It is

formulated as,

L(gt, pr) =−gt log(pr) (3.4)

where gt and pr indicate ground truth and predicted segmentation, respectively.

3.2.7.3 Dice loss

The Dice Similarity Coefficient (DSC) is used to measure the similarity between the

evaluated segmentation and the ground truth. Later, it was also adapted as a Dice

loss function [110]. This loss function is often exploited for image segmentation

tasks to measure the overlap between the predicted segmentation and ground truth,

and is particularly useful for imbalanced datasets. Indeed, it is a variant of the

standard cross-entropy loss function and is designed to improve the performance of

deep learning models on tasks in which the classes are imbalanced. Milletari et

al. [110] indicate that the dice loss function can improve the performance of a deep

learning model on a medical image segmentation task, compared to using the standard

cross-entropy loss function, and can be expressed as,

L(gt, pr) = 1− 2gt pr+1
gt + pr+1

(3.5)
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where gt and pr indicate ground truth and predicted segmentation, respectively. 1

is added in the numerator and denominator to prevent the function from being not

undefined in edge-case scenarios such as when gt = pr = 0.

3.2.7.4 Binary focal loss

The binary loss function was introduced by Lin et al. [111] and designed to address the

problem of class imbalance in binary classification tasks when the number of examples

belonging to one class is noticeably greater than the number of examples belonging to

the other class. The binary focal loss function modifies the standard cross-entropy loss

function by introducing a weighting term that gives easy samples less weight and hard

samples more weight. This weighting term is based on the prediction probability of

the model, and is designed to focus the model’s attention on the hard examples that are

more likely to be misclassified. It can be defined as follows:

L(gt, pr) =−(gtα(1− pr)γ log(pr)+(1−gt)α prγ log(1− pr)) (3.6)

where gt and pr indicate ground truth and predicted segmentation, respectively. The

default values of α and γ are 0.25 and 0.2, respectively.

3.2.7.5 Categorical focal loss

The categorical focal loss function is designed to address the class imbalance problem

in multi-class classification problems. It is a modification of the standard cross-entropy

loss function and can be defined as follows:

L(gt, pr) =−gtα(1− pr)γ log(pr) (3.7)

where gt and pr indicate ground truth and predicted segmentation, respectively. The

default values of α and γ are 0.25 and 0.2, respectively.

3.2.8 Evaluation metrics

The ISBI2015, MSSEG2016, and MSSEG-2 challenges use several evaluation

metrics to assess segmentation quality. Accordingly, common metrics in these

challenges are Dice and positive predictive value (PPV) scores. In addition to these

metrics, Lesion-Wise True Positive Rate (LTPR), Lesion-Wise False Positive Rate

(LFPR), and absolute volume difference (VD) metrics are provided for the ISBI2015
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challenge while the F1 score, sensitivity, and specificity metrics are provided for

the MSSEG2016 and MSSEG-2 challenges. The results of the ISBI2015 can be

obtained via the online website by submitting predicted 3D binary masks. However,

to evaluate the model performance on the MSSEG2016 testing set, the segmentation

performance analyzer tool available in Anima (animaSegPerfAnalyzer)5 is used. To

obtain evaluation metric results, each final 3D binary mask obtained from a majority

voting and its corresponding ground truth data provided by the MSSEG2016 challenge

organizers are given as input to the animaSegPerfAnalyzer tool [35]. To evaluate

the model performance on the MSSEG-2 testing set for those who attended the

challenge, a Docker or Singularity image was supposed to publish on the Virtual

Imaging Platform (VIP)6, a web-based portal specialized in medical simulations and

image data analysis. Additionally, the segmentation performance analyzer tool can be

utilized if the MSSEG-2 testing set is available.

DSC is the most commonly used metric in validating MS lesion segmentation. It is

generally exploited in image segmentation tasks across different domains, including

medical image analysis [110, 112]. DSC is employed to measure the overall

segmentation accuracy between the predicted segmentation and the ground truth, and

is formulated as follows:

DSC =
2T P

2T P+FP+FN
(3.8)

where T P, FP, and FN indicate the true positive, false positive, and false negative

voxels, respectively.

To compare the proposed model with other models used in the literature for the

ISBI2015 testing dataset, LTPR and LFPR are also exploited for all experiments. LTPR

is expected to be a higher percentage while LFPR is expected to be a lower percentage,

and these metrics are calculated as follows:

LT PR =
LT P
RL

LFPR =
LFP
PL

(3.9)

where LT P is the number of lesions in the ground truth that overlap with a lesion in

the predicted segmentation. RL denotes the total number of lesions in the ground truth.

5Anima scripts: RRID SCR_017072 https://anima.irisa.fr/
6VIP:https://vip.creatis.insa-lyon.fr/
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LFP is the number of lesions in the predicted segmentation that do not overlap with a

lesion in the ground truth reference mask. PL denotes the total number of lesions in

the predicted segmentation.

The ISBI Challenge website also provides additional metrics for performance

evaluation, such as PPV and VD [79]. The PPV and VD metrics can be formulated as

follows:

PPV =
T P

T P+FP
V D =

|T Ps −T Pgt |
T Pgt

(3.10)

where T Ps and T Pgt indicate the number of segmented voxels in the automatic

segmentation output and the ground truth, respectively.

The ISBI challenge exploits some of these metrics in the ISBI score calculation. The

total score used on the official ISBI website is calculated as follows:

Score =
1

|R|.|S|
.∑

R,S

(
DSC

8
+

PPV
8

+
1−LFPR

4
+

LT PR
4

+
Cor

4

)
(3.11)

where S is all test subjects (14 test subjects consisting of 61 3D scans), R is all raters

(rater 1 and rater 2), and Cor is Pearson’s correlation coefficient of the volumes. The

inter-rater score was computed as a score of 90, which means a score of 90 or higher

can be considered a comparable score to a human rater [79].

In addition to these metrics, the F1 score, sensitivity, and specificity were employed

to evaluate the segmentation performance of the proposed models on the MSSEG2016

and MSSEG-2 datasets. The F1 score is a detection and lesion-wise metric that focuses

on the number of lesions correctly recognized without considering the precision of

their contours. Lesion sensitivity (S) and lesion positive predictive (P) are exploited to

calculate the F1 score defined in equation 3.12 according to [35]:

S =
T PG

M
P =

T PA

N
F1 =

2SP
S+P

(3.12)

where M, N, T PG, and T PA indicate the number of lesions in the ground truth, in

the automatic segmentation, overlapped in the ground truth, and overlapped in the

automatic segmentation, respectively.

Sensitivity (Se) and Specificity (Sp) are defined as overlap metrics that consider the

voxel-based overlap of the automatic segmentation (A) and the ground truth (G). These
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two metrics are computed as follows:

Se =
A∩G

G
Sp =

B−A∩G
B−G

(3.13)

where B denotes the entire image.

Mean Surface Distance (S) is also an overlap metric and is formulated as follows:

S =
∑i∈AS

d(xi,GS)+∑ j∈GS
d(x j,AS)

NA +NG
(3.14)

where d indicates the minimal Euclidean distance of a point of one surface to the other

surface. NA and NG reveal the number of points of each surface, respectively.

In addition to these evaluation metrics used for the MSSEG-2 challenge, two simple

metrics are developed based on the number and volume (mm3) of lesions detected for

cases that do not have any new lesions on their follow-up images. This is usual in

clinical cases, and this challenge also has similar cases in both training and test data

sets. For example, the testing set consists of 28 patients with no new lesions and 32

patients with at least one or more new lesions. The number and volume of new lesions

were used as evaluation metrics as well. The volume of new lesions was calculated by

multiplying the number of voxels in the segmentation with the voxel volume. A value

of zero is the optimal value for these metrics.

3.3 Proposed a Dense Residual U-Net for MS Lesion Segmentation and Detection

The proposed model integrates different components into the modified U-Net

architecture. U-Net was chosen since it performs well over different domains in

image segmentation, especially in the medical domain [23]. It is an encoder-decoder

architecture for semantic segmentation with skip connections and consists of a

contracting path, a bottleneck, and an expansive path. In the contracting path, the

input image is encoded into the feature representations at multiple different levels

with convolution blocks followed by a max pooling operation. In the expansive path,

upsampling operations are performed to expand the feature dimensions to concatenate

with the corresponding features from the contracting path through the skip connections

to better learn representations. The bottleneck, consisting of two 3x3 convolutions,

enables propagating features from the contracting path to the expansive path. The

standard U-Net architecture consists of four downsampling and four upsampling

42



blocks with skip connections added between each corresponding block. Each block of

U-Net consists of two 3x3 convolutions each followed by a ReLU activation function.

Besides, a 2x2 max pooling operation is applied for each downsampling block while a

2x2 convolution is applied for each upsampling block to change the spatial dimensions

of the input feature map. At the final layer of U-Net, each pixel value is predicted in

the range of 0 to 1 by employing a 1x1 convolution followed by a sigmoid activation

function [23]. To improve the performance of MS lesion segmentation, the U-Net

architecture was modified by batch normalization (BN), spatial dropout (SD), an

exponential linear unit (ELU) for the activation function, strided convolutions for

the pooling operations, and transposed convolutions for the upsampling operations.

BN standardizes the input to a layer for each mini-batch, enhances convergence, and

reduces overfitting. The ELU activation used in this study is given in equation 3.15 as

follows [113]:

ELU = f (x) =

{
x if x > 0
α(exp(x)−1), if x ≤ 0

(3.15)

where α is a positive scale factor to control negative x values.

In addition to these modifications, the 3x3 convolution in each block was replaced

by a residual block that handles performance and degradation problems [93]. A full

pre-activation residual unit was implemented according to He et al. [94], and each

residual block in each block was densely connected as presented in Figure 3.10.

AGs, which allow the model to focus on relevant features while avoiding irrelevant

regions in an input image [96], were modified by adding ELU and BN. To suppress

feature activations in irrelevant regions of the image, AGs are implemented at

skip connections before concatenating features passed through skip connections and

upsampling operations as shown in Figure 3.10. Furthermore, the ECA module

proposed by Wang et al. [104] was incorporated into the proposed model as given in

Figure 3.11(a) in detail. This module was appended to the end of each downsampling

block and each residual block as shown in Figure 3.10. This module produces channel

weights based on the features aggregated from GAP by applying a fast 1D convolution

operation of size k, which is adaptively determined by channel dimension. Later,

BN and a sigmoid activation function are performed, respectively. Another important

component is the modified ASPP semantic segmentation module. The bottleneck of

U-Net was replaced by this module which resamples a given feature layer at multiple
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rates before the convolution operation [105]. The ASPP has demonstrated promising

results on numerous segmentation tasks by providing multi-scale information. Hence,

ASPP was exploited to acquire useful multi-scale information for the MS lesion

segmentation task. Figure 3.11(b) shows the implemented ASSP component in this

study. This component consists of four 3x3 convolutional layers with dilation rates of

1, 6, 12, and 18 each followed by BN. Later, the extracted feature maps from each

convolutional layer are added, and a 1x1 convolution, BN having L2 regularization of

gamma and beta, and ELU are performed, respectively.
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Figure 3.11 : a) Diagram of the ECA module. GAP is used to obtain the aggregated
features from the given input. In ECA, a fast 1D convolution of size k
is performed to obtain channel weights, where a mapping of the channel
dimension C is used to adaptively calculate k [104]. b) Diagram of
the ASPP module. From given the features, ASPP performs multi-rate
convolution operations to obtain multi-scale information [25].

3.4 Proposed Deep Residual Attention Gate U-Net for MS Lesion Activity

In this study, the combination of U-Net, deep residual learning, and AG was proposed

for the new MS lesion segmentation task. In this combination, the residual unit

will facilitate the network training. Information will be able to propagate without

degradation thanks to the skip connections within a residual unit and between low and

high levels of the network. Thus, deep neural networks are built with fewer parameters

while still achieving a competitive segmentation performance. As such, the standard

blocks were replaced with residual blocks in the proposed model. Figure 3.12 shows

the residual unit including identity mapping within the proposed model. He et al. [94]

also recommended a full pre-activation as demonstrated in Figure 3.12. In this study,

a full pre-activation residual unit was used to construct and design the deep residual

attention gate U-Net.

Figure 3.12 : A residual unit with identity mapping. xl and xl+1 are the input and
output of the l-th unit, respectively [26].
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AGs, modified by adding BN and a ReLU activation for both input features before

convolutional operations, were added between the corresponding encoding part and

the upsampling of feature maps produced from the lower level. Thus, allowing the

model to learn to focus on salient features of various shapes and sizes. Figure 3.13

demonstrates the details of the designed network with the input data formed by the

axial, sagittal, and coronal views extracted from the baseline and follow-up 3D MRI

for the new MS lesion segmentation. Additionally, Figure 3.13 shows the overview of

the attention gate mechanism used within the proposed model.
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3.5 Implementation

The ISBI2015 and MSSEG2016 training sets are composed of 21 and 15 3D MR

images, respectively. FLAIR, T1-w, and T2-w sequences are also provided for both

datasets. To prepare training input data, 2D slices were extracted from these 3D

MR images for each sequence according to the three orthogonal directions. Then,

a three-channel input feature map was generated by leveraging each corresponding 2D

slice obtained from plane orientations of the three sequences as discussed previously.

Afterward, the obtained total 2D slices were divided into the training and validation

sets with a ratio of 90 to 10 for each dataset, respectively. The proposed model

was implemented in the Python programming language7 using Keras8 running on top

of TensorFlow9 [114, 115]. All experiments were conducted on Google Colab Pro,

which provides an NVIDIA Tesla P100 GPU with 16GB memory [116]. The models

were trained by using the Adam optimizer [117] with an initial learning rate of 1e-4

(adjusting with patience = 10, factor = 0.1, cooldown = 10, and min_lr = 1e-5 during

the training), and a batch size of 8 over 300 epochs. BN was implemented by gamma

and beta regularizers with L2 (1e-4). Class imbalance is a common problem in MS

lesion segmentation, as lesions only constitute a minority of the MRI volume [31].

Therefore, a hybrid loss function, the addition of Dice and focal losses [111,118], was

exploited as the training loss function to handle the class imbalance problem. The final

loss function is calculated in equation 3.16.

L(gt, pr)=
(

1− 2gt pt +1
gt + pt +1

)
+1×(−gtα(1− pr)γ log(pr)−(1−gt)prγ log(1− pr))

(3.16)

where gt and pr indicate the ground truth and the prediction segmentation, respectively.

The values of α and γ are 0.25 and 2.0, respectively.

The training dataset was divided into training and validation sets to adjust the network

weights and early stopping criterion. The validation loss was monitored to choose the

best model, and model weights were saved at the end of the epoch where the validation

7https://www.python.org/
8https://keras.io/
9https://www.tensorflow.org/
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loss was at its minimum during the training. Moreover, early stopping, used to avoid

overfitting, was exploited to enable the training to be automatically stopped when the

validation loss stopped improving for 50 epochs. To yield the final 3D segmentation

output, the predictions of 3D binary output generated from 2D slices of each plane

orientation were fused using a majority voting method as shown in Figure 3.4.

For the MSSEG-2 challenge, the training set comprised 3D FLAIR images of 40

patients and only 29 had new lesions in their follow-up images. These 29 MR

images were divided into the training and validation sets (24 patients for training and

5 patients for validation). To prepare input data, each 3D image was divided into

its axial, sagittal, and coronal views. Two-channel input feature data was created

using each corresponding 2D slice from both time points as discussed previously.

Keras and TensorFlow libraries were used for the model development in the Python

language [114, 115]. The Google Colaboratory, having a Tesla K80 GPU, was used

for the training procedure [116]. The proposed model was trained by using the

Adam optimizer [117], an initial learning rate of 1e-4 (adjusting with patience=10 and

factor=0.1 during the training), and batch size of 8 over 200 epochs, respectively. The

validation dice score was also monitored to choose the best model, and model weights

were saved based on the best validation dice score during the training. Early stopping

(patience=50) was exploited to prevent overfitting as well. Hashemi et al. [119] used

the sum of dice loss with a 1.5 coefficient and binary cross entropy loss as a custom loss

function for MS lesion segmentation. Similarly, in this study, a hybrid loss function

consisting of binary focal loss and dice loss (dice loss + (1 × binary focal loss)) was

employed in order to handle unbalanced labeled data between lesion and background

since lesion pixels constitute a minor portion of the whole image. The total loss

function is defined as follows:

Lt = (1− 2gt pr+1
gt + pr+1

)+(1× (−gtα(1− pr)γ log(pr)− (1−gt)α prγ log(1− pr)))

(3.17)

where gt denotes the ground truth, and pr indicates prediction. 0.25 and 2.0 default

values were used for the parameters of α and γ , respectively.

Additionally, the Keras data generator was used for performing real-time data

augmentation such as vertical flipping, horizontal flipping, random rotation, and shift

range to increase the number of training samples. Figure 3.14 shows the proposed
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pipeline for new lesion segmentation of MS activity. First, 3D MRIs were converted

into their plane orientations along the x, y, and z axes. Then, 2D slices of two-time

points were fused together to create a single input training data for the proposed model.

Predicted 2D slices based on the axial, sagittal, and coronal views were converted into

the 3D binary segmentation output, and then the final output segmentation mask was

generated by using the majority voting among the 3D binary outputs obtained from

each view.

51



Fi
gu

re
3.

14
:T

he
pr

op
os

ed
pi

pe
lin

e
of

ne
w

M
S

le
si

on
s

se
gm

en
ta

tio
n

us
in

g
a

sl
ic

e-
ba

se
d

ap
pr

oa
ch

in
cl

ud
in

g
th

e
m

aj
or

ity
vo

tin
g

fo
r

th
e

fin
al

3D
se

gm
en

ta
tio

n
ou

tp
ut

us
in

g
th

e
pr

ed
ic

te
d

2D
ax

ia
l,

sa
gi

tta
l,

an
d

co
ro

na
ls

lic
es

[2
6]

.

52



To compare components of the designed network, a testing subset was created

from the MSSEG-2 test dataset provided by the challenge organizers. This subset

comprised MRI data of 7 patients by considering the different scanners and new lesion

loads. Satisfactory results with the MSSEG-2 dataset could not be obtained by the

implementation of the original U-Net. Therefore, this implementation was modified

with transpose upsampling instead of a simple upsampling operation, and BN to make

the neural network more stable. A hybrid loss function, the summation of binary focal

and Dice losses, was used for all models.

To generate a 3D binary prediction output, a 3D image reconstruction approach

was utilized. The slices from each view were used to reconstruct the final 3D

binary segmentation output. The 3D binary segmentation was produced using the 2D

predicted slices from each plane orientation. Then, a majority voting was applied to

these 3D segmentation outputs to generate the final 3D binary segmentation as shown

in Figure 3.14.
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4. RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed model [25] both quantitatively and

qualitatively, several experiments were conducted on the ISBI2015 and MSSEG2016

datasets. First, an ablation study was performed to demonstrate the effectiveness

of each component used to build the proposed model. Second, a comparison with

other methods in the literature was performed based on the results of both datasets.

Finally, comparisons between datasets were performed to evaluate the generalization

ability and robustness of the model, including transferring weights from one dataset to

another.

Regarding the MSSEG-2 challenge, evaluations were conducted based on the results

published on the VIP platform for the proposed pipelines. First, the detection and

segmentation metrics F1 and Dice scores were assessed. Second, the number and

volume of lesions detected for cases with no new lesions were evaluated. Third,

a comprehensive evaluation was performed using the additional metrics sensitivity,

specificity, PPV, and surface distance, discussed in Section 3.2.8. Lastly, an ablation

study was conducted to demonstrate the impact of each component in the proposed

model [26].

4.1 ISBI2015 Dataset Results

4.1.1 Ablation study

The ISBI2015 dataset was employed to conduct the ablation study due to performing

a fair comparison of the results obtained from the challenge website. Figure 4.1

and Table 4.1 summarize the performance of different components of the proposed

model [25] according to Dice score, PPV, LTRP, LFPR, and VD evaluation metrics. As

seen in Figure 4.1 and Table 4.1, the proposed model, which contains all components,

outperformed variants of other components used to build the proposed model. Dice

score is one of the most important evaluation metrics for MS lesion segmentation, as
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such this proposed model produced a mean Dice score of 66.88% and also an ISBI

score of 92.75. Eventually, this model achieved the highest Dice and ISBI scores

compared to its variants. Additionally, this model achieved the best PPV of 0.8650

and the best LFPR of 0.2617 among its variants.

Figure 4.1 : Evaluation metric results on the ISBI2015 testing set for each variant of
the proposed model [25].
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Figure 4.2 shows the boxplot of the Dice score and PPV for each patient data of

two raters to make comparisons visually, as well. The proposed model surpassed its

variants with statistical significance in Dice score with p-values p <=0.0001 and in PPV

with p-values ranging from p <= 0.05 and p <= 0.0001 according to a Wilcoxon test.

Figure 4.3 demonstrates the predicted samples for the FLAIR modality of three views

for each variant of the proposed model. MS lesions on the output segmentation can

be easily distinguished and give a hint of where possible MS lesions could be located.

The prediction outputs would assist physicians in monitoring MS disease progression

or measuring lesion volume in a short time.
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Figure 4.2 : The boxplot of Dice and PPV scores for each patient across raters on the
ISBI2015 testing set for the proposed model and its variants. Asterisks
indicate statistical significance (* p <= 0.05, ** p <= 0.01, *** p <=
0.001, and **** p <= 0.0001) when using a Wilcoxon test compared to
the proposed model (denoted as A) [25].
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In addition to the ablation study, Table 4.2 summarizes the comparison of the proposed

and other state-of-the-art approaches for MS lesion segmentation on the ISBI2015

testing dataset. The results of the recently proposed methods can also be accessed

through the ISBI official website1. The ISBI score, Dice score, PPV, LTPR, LFPR,

and VD metric results were exploited for the comparison of models. Accordingly, our

method achieved a competitive performance among all other methods, especially the

Dice score and LTPR. The proposed method achieved the best Dice score by improving

the second-best score by 3.43% (from 0.6451 to 0.6688). In terms of LTPR, the

proposed method achieved the best score, while the second-best score was achieved

by Zhang et al. [84]. As such, the LTPR score was improved by an average of 13.77%

from 0.5330 to 0.6064 compared to the second-best score. The best PPV and LFPR of

0.9207 and 0.0866 were achieved by Hashemi et al. [81] while the second-best PPV

and LFPR of 0.9140 and 0.1220 were achieved by Zhang et al. [84]. The best VD of

0.3653 was obtained by Maier and Handels [120] while the proposed method achieved

the second-best VD of 0.3882. In terms of the ISBI score, the best and second-best

performances in the overall scores which are 93.32 and 93.21 were achieved by Zhang

et al. [84] and Zhang et al. [18], respectively.

1Results: https://smart-stats-tools.org/top25
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4.2 MSSEG2016 Dataset Results

Table 4.3 summarizes the performance of the proposed model [26] on the MSSEG2016

testing dataset for each center. This dataset was gathered from four different centers

to evaluate the generalization and robustness of the model for unseen centers. Hence,

the training set contains data from three centers, excluding the center03. Although

the testing data consists of 38 patients, one of the cases is an outlier due to no

visible lesions delineated by five experts out of seven. Therefore, this outlier case

(Center07-Patient08) was excluded while measuring all metrics used in this study for

experts and our model. The proposed model produced the highest Dice score on the

testing data of center01. In terms of F1 score and sensitivity, the proposed model

achieved the best scores of 0.6556 and 0.7793 on the Center07 data, respectively. The

best PPV was obtained with a mean of 0.7315 on the Center01 data. In terms of

specificity, the proposed model achieved a similar score for all centers around 0.9998.

Table 4.3 : Results comparison of the proposed model for each center on the
MSSEG2016 test set. To be ranked first, all metrics are expected to have
high numerical values.

Centers Dice Score F1 Score PPV Sensitivity Specificity

Center01 0.7069 0.6003 0.7315 0.6952 0.9998
Center03 (Unseen center) 0.6360 0.4913 0.5674 0.7683 0.9997
Center07 0.6916 0.6556 0.6663 0.7793 0.9997
Center08 0.6564 0.6059 0.6421 0.7334 0.9998
Average 0.6727 0.5883 0.6519 0.7440 0.9997

1 This table is ordered according to the center name.
2 The bold value indicates the highest score among centers.

Table 4.4 summarizes the comparison of the proposed model and the experts on

the MSSEG2016 testing dataset. The proposed model performed similarly to the

segmentation output of experts and even better than the results of some experts. As

such, the average Dice score of the proposed model was obtained as 0.6727 where

expert3, expert6, and expert7 produced a mean Dice score of 0.6724, 0.6717, and

0.6690, respectively. In terms of PPV, sensitivity, and specificity, our model produced

a mean score of 0.6519, 0.7440, and 0.9997, respectively. According to the results

of expert3, expert6, and expert7, their sensitivity scores were obtained as a mean of

0.7206, 0.6136, and 0.6867, respectively. In terms of specificity, the proposed model
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and experts achieved a similar score. Figure 4.4 presents the qualitative results of our

proposed method for the MSSEG2016 testing set. Accordingly, the proposed method

achieves good performance in detecting MS lesions. Additionally, it is observed that

the proposed model can detect more MS lesions in the data of all centers compared to

the outputs of some experts.

Table 4.4 : Comparison of the results of this study with the manual delineations of
experts for the MSSEG2016 testing set. All metrics are expected to have
high numerical values to be considered the best and second-best scores.

Model Dice Score F1 Score PPV Sensitivity Specificity

Expert5 0.7819 0.8928 0.7359 0.8518 0.9997
Expert4 0.7590 0.8619 0.6837 0.8677 0.9996
Expert1 0.7428 0.8509 0.7046 0.8090 0.9997
Expert2 0.6961 0.8141 0.5912 0.8736 0.9994
Proposed Model 0.6727 0.5883 0.6519 0.7440 0.9997
Expert3 0.6724 0.6782 0.6575 0.7206 0.9997
Expert6 0.6717 0.7544 0.8051 0.6136 0.9998
Expert7 0.6690 0.6561 0.6980 0.6867 0.9997
1 The results of the experts can be accessed at http://doi.org/10.5281/zenodo.1307653.
2 This table is sorted in descending order of the Dice score.
3 Bold and underlined values indicate the best and second-best scores among the proposed method

and the experts, respectively.
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Figure 4.5 demonstrates the barplot of Dice score, PPV, sensitivity, and specificity for

our model and the experts who delineated the structures, comparing visually as well.

In addition, Figure 4.6 shows the boxplot of the Dice score, F1, PPV, and sensitivity of

each patient on the testing set for experts and our model, and also shows the statistical

significance test.

Figure 4.5 : Evaluation metric results on the MSSEG2016 testing dataset for our
model and experts. The figure is sorted in descending order of the Dice
score [25].

66



Figure 4.6 : The boxplot of Dice score, F1 score, PPV, and sensitivity evaluation
metrics of each patient for experts and the proposed model on the
MSSEG2016 testing set. Asterisks and ns indicate statistical significance
(* p <= 0.05, ** p <= 0.01, *** p <= 0.001, **** p <= 0.0001, and ns
(non-significance)) when using a Wilcoxon test compared to the proposed
model [25].

4.3 Cross-dataset Validation Results

The cross-dataset robustness and generalization ability of the proposed approach

were assessed using the segmentation outputs produced by the proposed model [25]

on different datasets. First, the ISBI2015 dataset was trained and tested on the

MSSEG2016. Then, the MSSEG2016 dataset was trained and tested on the ISBI2015

via the online challenge website by submitting 3D binary output masks. Table 4.5

summarizes the performance of each dataset in terms of Dice score, PPV, and

sensitivity, which are common in both dataset evaluation metrics. Accordingly, the

prediction results of the MSSEG2016 on the ISBI2015 testing set achieved a mean

Dice score of 0.4819, a mean PPV of 0.9450, and a mean sensitivity of 0.3540,

respectively. On the other hand, the prediction results of the ISBI2015 on the

MSSEG2016 testing set obtained a mean Dice score of 0.6031, a mean PPV of 0.7011,

and a mean sensitivity of 0.5797, respectively.
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Table 4.5 : Results comparison of cross-dataset, namely, training on the ISBI2015 and
testing on the MSSEG2016 or vice versa. Dice score, PPV, and sensitivity
are expected to have high numerical values.

Trained on Tested on Dice Score PPV Sensitivity

ISBI2015 MSSEG2016 0.6031 0.7011 0.5797
MSSEG2016 ISBI2015 0.4819 0.9450 0.3540

Additionally, the segmentation results of the MSSEG2016 on the ISBI2015 testing set

were compared with other methods in the literature. The results were obtained from

the challenge website to make a fair comparison with the others. Table 4.6 shows the

numerical details of the results compared with the previously proposed two methods.

The results of these two methods were obtained from the study of Kamraoui et al. [19].

For the proposed model, the evaluation metric results of ISBI score, PPV, LTPR, LFPR,

and Cor were obtained 91.84, 0.4819, 0.9450, 0.1604, and 0.8398, respectively. As a

result, the proposed model obtained the highest scores in terms of the ISBI score, PPV,

LTPR, and Cor. As for Dice score and LFPR, the highest Dice score of 0.5350 was

achieved by Kamraoui et al. [19] while the best LFPR of 0.0750 was obtained by Zhang

et al. [18].

Table 4.6 : Results comparison with other methods when trained on the MSSEG2016
dataset and tested on the ISBI2015 testing set. To be ranked first and
second, the ISBI score, Dice score, PPV, LTPR, and Cor are expected
to have high numerical values, while the LFPR is expected to have low
numerical values.

Model ISBI Score Dice Score PPV LTPR LFPR Cor

Proposed Model 91.84 0.4819 0.9450 0.4493 0.1604 0.8398
Kamraoui et al. [19] 89.04 0.5350 0.6970 0.3730 0.3530 0.8350
Zhang et al. [18] 86.69 0.1650 0.9370 0.1600 0.0750 0.2120

1 This table is sorted in descending order of the ISBI score.
2 The results of compared methods were taken from the study of Kamraoui et al. [19].
3 Bold and underlined values indicate the best and second-best scores, respectively.

4.4 MSSEG-2 Dataset Results

The MSSEG-2 challenge aims to segment and detect new MS lesions by comparing

the baseline and the follow-up 3D FLAIR images of a patient. 24 teams with a total

number of 30 pipelines participated in this challenge. Deep learning approaches, most

of them relying on the U-Net architecture, were proposed by most of the participants,
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while only one of the teams used a conventional statistical method and the subtraction

between two MR images [121]. Table 4.7 shows the average quantitative metric results

of some of the methods presented in the challenge, including the results of the experts2.

2Quantitative metrics for all proposed pipelines are available at https://doi.org/10.5281/zenodo.5775523
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Four metrics were used to evaluate the proposed pipelines for new MS lesion

segmentation and detection. The test data set consists of MR images of 60 patients and

32 of them were used for the calculation of the F1 and dice scores due to possessing

new lesions at their follow-up images. The remaining patients’ data were used for the

calculation of the number of tested lesions and volume of tested lesions. According

to the challenge results, the proposed pipeline in this study was ranked as the 8th for

F1 and Dice scores among the proposed methods. The proposed pipeline produced a

mean score of 48.00% for the F1 score and a mean score of 44.30% for the dice score.

For the no-lesion cases, this pipeline was ranked in 5th and 4th places with a mean score

of 0.148 and 1.488, respectively for the number of tested and volume of tested lesions.

Also, the highest F1 and Dice scores including the expert raters were a mean score

of 71.20% and 63.10% respectively, which belonged to expert 1. As for the number

of tested and volume of tested lesions, the highest score was 0 which belonged to

expert 3. On the other hand, the highest F1 and dice scores for the automated methods

belonged to team Mediaire-B and MedICL with a mean score of 54.10% and 50.70%,

respectively. The highest score for the number of tested lesions and volume of tested

lesions belonged to team LYLE with a mean score of 0.036 and 0.498, respectively.

The lowest F1 and dice scores, belonging to the team IBBM, had a mean score of

14.30% and 15.50%, respectively. Figure 4.7 shows the segmentation performance of

the proposed model, consensus, and experts on a slice of an axial view of four patients.

As seen in the figure, the proposed model had competitive performance compared to

the segmentation output of experts.
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The challenge also provides additional metrics discussed in subsection 3.2.8 for a

complete evaluation although these metrics were not considered for the ranking. The

results obtained from some of the proposed methods and experts for additional metrics

are given in Table 4.8. Accordingly, the results of the proposed pipeline with respect

to sensitivity, specificity, PPV, and surface distance were a mean score of 0.364, 1.000,

0.675, and 8.548, respectively. This pipeline had competitive performance compared

to experts and other proposed pipelines in some of these metrics. For example, the

highest PPV score among experts and proposed methods were a mean of 0.813 and

0.703 for expert 1 and the team LYLE, respectively. Also, the highest score for surface

distance belonged to expert 2 and the team LYLE with a mean score of 4.543 and

7.210.

Table 4.8 : Prediction results of evaluating the challenge test data set published on the
challenge website for other useful metrics. Bold and italic values are the
highest and the second-best scores among some of the proposed methods
and the experts, respectively. Sensitivity, Specificity, and PPV are expected
to be a high numerical value while Surface Distance is expected to be a low
numerical value.

Methods Sensitivity Specificity PPV Surface Distance

Expert 1 0.650 1.000 0.707 5.907
Mediaire-B 0.616 1.000 0.394 8.803
Expert 3 0.589 1.000 0.760 5.990
Expert 2 0.526 1.000 0.813 4.543
MedICL 0.514 1.000 0.556 9.194
Expert 4 0.407 1.000 0.801 7.885
Proposed Model 0.364 1.000 0.675 8.548
LYLE 0.344 1.000 0.703 7.210
SCAN 0.340 1.000 0.678 8.521
IBBM 0.170 1.000 0.242 24.102
1 The source data can be accessed at https://doi.org/10.5281/zenodo.5775523
2 This table is ordered according to the highest to the lowest based on the sensitivity score.

Finally, comparisons between U-Net, U-Net with AGs, U-Net with RUs, U-Net with

RUs and AGs (two types) were realized for the new MS lesion segmentation. The

results of U-Net, U-Net + AGs, U-Net + RUs, and U-Net + RUs + AGs are presented

in Table 4.9. As seen in this table, the proposed model achieved the highest dice and

F1 scores, a mean score of 58.70% and 61.10%, respectively. U-Net + RUs achieved

the highest PPV score, a mean score of 62.40%. Furthermore, this network had fewer

training parameters and performed better compared to the U-Net architecture.

73

https://doi.org/10.5281/zenodo.5775523


Table 4.9 : The evaluation results of the proposed method with different components
using a subset of the MSSEG-2 test dataset.

Methods Dice F1 Score PPV Total Parameters

U-Net + RUs + AGs 0.587 0.611 0.567 4,934,613
U-Net + RUs 0.551 0.441 0.624 4,722,897
U-Net + AGs 0.505 0.592 0.609 7,947,109
U-Net 0.558 0.490 0.467 7,771,585

4.5 Discussions

In this thesis, an automated pipeline for MS lesion segmentation was designed using

3D MRI data of FLAIR, T1-2, and T2-w sequences. The proposed model [25] within

this pipeline was developed by modifying the U-Net architecture. First, the network

was modified by adding BN, SD, ELU, strided convolutions for the pooling operations,

and transposed convolutions for the upsampling operations. Then, dense connections,

residual blocks, AG, ECA, and ASSP were incorporated to improve overall MS

lesion segmentation performance measured by several common metrics, such as the

Dice score and LTPR. This model achieved advantages through the modification of

the encoder-decoder network together with modified components, such as replacing

the bottleneck of the network with atrous convolutions with different dilated rates

to extract multi-scale contextual information from the given feature map. In the

ablation study (see Table 4.1 and Figure 4.1), the proposed model, which contains

all components, outperformed its variants. Additionally, this model outperformed

other proposed methods in the literature in terms of Dice score and LTPR according

to the results obtained from ISBI2015 as given in Table 4.2. Moreover, this model

outperformed the results of some experts for the MSSEG2016 testing data, especially

for the Dice score, PPV, sensitivity, and specificity as presented in Table 4.4.

Although a lower number of modalities might be sufficient to evaluate MS lesions,

automated MS lesion segmentation should consider using different modalities such

as T1-w and T2-w to improve the segmentation performance. These modalities will

provide additional information, such as the location and shape of MS lesions. All

MS benchmark datasets provide different modalities for better segmentation. The

proposed model achieved a competitive performance using three modalities compared

to the state-of-the-art methods published recently, as given in Table 4.2, even on
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unseen datasets. According to the results of the ISBI2015 testing set, the proposed

model improved the Dice score by an average of 3.43% and the LTPR by an average

of 13.77% compared to the second-best scores. Additionally, data augmentation

strategies are realized to make a robust model, improve prediction accuracy, and reduce

overfitting during the training. Therefore, data augmentation methods as discussed

previously rather than using simple strategies (rotating and flipping) were applied to

improve the performance, generalization, and robustness of the proposed model.

In this study, the MS lesion segmentation performance was improved due to the use of

different components in the encoder-decoder network. Modifications to the U-Net and

other components, which were used to build the proposed model, obtained competitive

performance in most of the evaluation metrics as presented in Table 4.1, Table 4.2, and

Table 4.4. Besides, a whole-brain slice-based approach was exploited as patch-based

CNNs suffer from spatial information about MS lesions due to patch size limitations

[17,84]. The results indicated that the proposed approach using whole brain slices had

a competitive performance for most measures, such as Dice score and LTPR, compared

to other methods and experts, as presented in Table 4.2 and Table 4.4. Especially, the

results obtained from the MSSEG2016 testing set have shown that the proposed model

outperformed the manual delineation of some experts (see Figure 4.5). According to

the results of the MSSEG2016 testing set, the proposed model improved the Dice score

by 0.5%, the PPV score by 10.26%, and the sensitivity score by 21.25% compared

to the results of experts who achieved lower scores among the evaluation metrics.

Furthermore, Figure 4.4 exhibits visually detected lesions, as such the proposed model

could be able to detect better than the results of some experts, even on an unseen

center. We observed that transferring weights obtained from the ISBI2015 training

set is an effective approach for training the proposed model on the MSSEG2016

training set. Indeed, this approach improved MS lesion segmentation performance

on the MSSEG2016 testing set, as given in Table 4.4. Another observation was

that MS lesion segmentation performance improved significantly when corresponding

axial, sagittal, and coronal slices, which were obtained from three modalities, were

stacked into the input channel, respectively. Although Aslani et al. [17] emphasized

that stacking corresponding modalities together into the three-channel input is not an

optimal solution, the proposed model and stacking corresponding modalities into the
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input channel dimension enhanced the segmentation performance compared with their

results presented in Table 4.2. This network exploited the contextual information in all

plane directions and obtained useful features of the location and shape of the lesions

with channel-wise stacking.

The Dice score between two raters who delineated the same structures is relatively low

compared to automated methods evaluated on the ISBI2015 testing set. The average

Dice score across raters is approximately 73%, and an ISBI score of 90 or higher can

be considered a comparable score to the human rater mentioned in [79]. According to

the results obtained from the official ISBI test set, the proposed model and its variants

produced a score over 90, as presented in Table 4.1. Moreover, this model and its

variants achieved a competitive segmentation performance compared to the results

across raters for other metrics, such as a mean Dice score of 0.6688, a mean LTPR

of 0.6064, and a mean LFPR of 0.2617, as presented in Table 4.1. Indeed, rater#1

produced a mean LTPR of 0.6450 and a mean LFPR of 0.1740 on the ground truth of

rater#2, while rater#2 produced a mean LTPR of 0.8260 and a mean LFPR of 0.3550

on the ground truth of rater#1 [79].

MS appearance can vary significantly based on the manufacturer and imaging

protocol. Aggregating additional MRI data would generalize the DL models for

better segmentation outputs in clinical setups since DL models would be better trained

with a large number of patients’ data [15]. Although the segmentation of a 3D

scan requires several steps, such as extracting slices as 2D, processing these slices

individually, and reconstructing a 3D binary output mask, 2D CNNs using 3D MRI

data are still achieving state-of-the-art results compared to 3D-based CNN methods.

According to the results of this study, it is observed that processing 3D MRI data

by converting it into 2D slices still outperformed others, especially in terms of Dice

score and LTPR [19, 83, 84]. According to Altay et al. [122], when clinical raters

with different levels of experience assessed MS lesions on an MS dataset for no more

than 10 minutes per a study, notable variability among these raters in counting lesions

manually was observed. Hence, training the proposed model with a larger dataset

would reduce the variability of experts, and even decrease the lesion detection time

and effort since processing a 3D scan takes around 35 seconds on a mid-range GPU

in our study. This is faster than the approach of Aslani et al. [17], which segments the
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input image in approximately 90 seconds. Overall, this study has provided clues about

recent techniques regarding accuracy that can be used to guide future research about

MS lesion segmentation using multiple datasets.

A deep learning model [26] was developed to handle the problem of identifying new

MS lesions using the baseline and the follow-up 3D FLAIR MR images. Activity

segmentation particularly for new lesions is a more challenging task compared to

lesion segmentation in a single-time MR scan due to small lesion loads. MS lesion

segmentation using traditional and deep learning approaches has usually been studied

in a single MRI scan in recent years. However, deep learning approaches for MS

lesion activity using the baseline and follow-up MR images still remain limited. In

most of these studies, the researchers have been using their own datasets making it

difficult to compare and reproduce their results with the proposed pipeline. Thus,

in this study, comparisons were performed on the automated methods proposed in

the challenge. Moreover, comparisons were performed among components used for

building the designed network as well. The proposed network, which combines the

strengths of U-Net, residual units, and attention gates, has outperformed other methods

comprising different combinations of components in terms of dice and F1 scores.

A whole-brain slice-based approach was used as patch-based CNNs lack spatial

information about MS lesions due to the patch size limitation [17]. The results

indicated that the proposed pipeline with this approach had competitive performance

for most measures compared to the other pipelines, as given in Table 4.7. The

segmentation performance of new MS lesions improved significantly when baseline

and follow-up MRI scans were stacked in the input channel dimension. Thus, baseline

and follow-up scans for each patient were stacked as a two-channel input for the

proposed pipeline. Furthermore, AGs modified with BN and ReLU allowed the model

to focus on small and subtle new lesions.

Figure 4.8 presents the analysis of differences in detection and segmentation for F1 and

dice scores for each expert and each team that participated in the MSSEG-2 challenge,

respectively. The red box highlights the team performance of this study for these two

metrics. According to F1 and dice scores, proposed methods could not reach the expert

level; however, some methods were able to outperform experts who revealed varying
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scores in different patients3. Based on this observation, it was concluded that the

detection and segmentation of MS new lesions in longitudinal studies is a difficult

task, even for experts. Therefore, an external reviewer may be needed while analyzing

the new lesions with automated methods for lesion activity.

Figure 4.8 : Analysis of differences in detection and segmentation by using F1 and
dice scores for each expert and each team that participated in the
challenge, respectively [26].

The evaluation metrics for no new lesions are indicated in Figure 4.9. The number

of connected components in automatic segmentation was used to find the number of

lesions detected. Also, the volume of lesions detected (mm3) was used to evaluate

3Evaluation results and analysis slides at https://files.inria.fr/empenn/msseg-2/Challenge_Day_
MSSEG2_Results_2021.pdf
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the segmentation performance of both automated and expert delineation outputs. As

seen in Figure 4.9 and Table 4.7, the proposed pipeline outperformed compared to

some of the other proposed methods. The dotted red rectangle highlights the proposed

pipeline within this study. Accordingly, some of the proposed methods, including ours,

outperformed those of some experts.

Figure 4.9 : Analysis of the number and volume of lesions detection for each expert
and each team that participated in the challenge (The data of volume of
tested lesions was scaled by log10) [26].

Instead of using a 3D segmentation approach requiring more computational power

and learning parameters, the proposed method and the slice-based approach were used

together for detecting and segmenting new lesions on the follow-up images. While

the appearance of new lesions is of primary interest for the challenge, enlarged or

disappearance of MS lesions could also be studied. Different MRI modalities, such as

T1-w and T2-w, can also be incorporated into the given task to extract more features
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related to the size or location of new MS lesions, even though the FLAIR images

reveal lesions as more intense. To achieve a robust automated model for the given task,

large datasets from different scanners are needed; however, it is difficult to obtain such

datasets.

Finally, the results of the research questions have been evaluated as follows:

Q1. What is the performance of DL algorithms in segmenting MS lesions?

A1. In this study, a deep learning model based on the U-Net architecture was proposed

to enhance the performance of MS lesion segmentation. Accordingly, several

experiments were conducted on how DL approaches could perform better for this

task. According to the results obtained from the ISBI2015 and MSSEG2016

datasets, the proposed model outperformed the results of experts who performed

manual delineation for MS lesions. Table 4.1 shows the results of the proposed

model and its variants. An ISBI score of 90 or higher can be considered a

comparable score to the human rater mentioned in [79]. As such, DL-based models

produced an ISBI score higher than 90.

Q2. How can deep learning algorithms be optimized for better MS lesion

segmentation?

A2. Several strategies can be used to optimize DL algorithms for better MS

lesion segmentation, such as network architecture, hyperparameter tuning, data

augmentation, loss function, and using additional MRI sequences. The choice of

DL architecture can significantly impact performance. CNNs have been used for

this segmentation task in recent years. For example, U-Net, which is a fully CNN,

has been widely used and achieved remarkable results in various medical imaging

tasks, such as semantic segmentation of organs, tissues, or lesions. Therefore, the

proposed models are based on the U-Net architecture to improve the segmentation

performance of MS lesions. This architecture is detailed in section 3.2.1 and its

modifications for MS lesion segmentation on both a single time point MRI of a

patient and two different time points MRI of a patient are presented in sections 3.3

and 3.4. Data augmentation techniques were heavily used to prevent overfitting and

realize a robust model. Additionally, a hybrid loss function, which is the addition
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of focal and Dice losses, was employed to overcome the class imbalance problem

in MS lesion segmentation. Multiple MRI sequences, such as FLAIR, T1-w, and

T2-w, have been used jointly to obtain more features related to MS lesions, such

as shape and location. According to the results of these proposed models given in

chapter 4, MS lesion segmentation can be improved based on these strategies.

Q3. What is the impact of imaging sequences on the accuracy of DL algorithms in MS

lesion segmentation?

A3. Imaging sequences can have a significant impact on the accuracy of DL algorithms

in MS lesion segmentation. The use of multiple imaging sequences can also be

incorporated to improve the accuracy of DL algorithms in MS lesion segmentation.

For this purpose, multiple MRI sequences, such as FLAIR, T1-w, and T2-w,

have been used jointly to obtain more features related to MS lesions since they

have different signal properties and can provide different information. According

to the results presented in the section of results and discussions, using these

sequences jointly performed better MS lesion segmentation. For example, the

study of Kamraoui et al. [19], in which the results are given in Table 4.2, used

T1-w and FLAIR sequences; however, this study performed better in terms of

several evaluation metrics. For the MSSEG-2 dataset, it is concluded that different

MRI sequences, such as T1-w and T2-w, can be incorporated to perform better

segmentation due to extracting more features related to the size or location of new

MS lesions given in section 4.5.

Q4. What is the effect of data augmentation techniques on the performance of DL

algorithms in MS lesion segmentation?

A4. Data augmentation is used to improve the generalization of a model and reduce

overfitting by applying various transformations to the images, such as random

rotations, translations, flipping, scaling, and adding random noise. In this study,

the data augmentation techniques used are explained in section 3.1.4.

Q5. How can transfer learning be applied to enhance deep learning algorithms in MS

lesion segmentation?
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A5. Transfer learning can be applied to enhance DL models for MS lesion

segmentation as it allows the DL model to utilize the knowledge acquired from

a pre-training task, reducing the amount of data needed for training and improving

performance on the MS lesion segmentation task. In this study, training weights

obtained from the ISBI2015 dataset (same domain) were exploited to initialize

training weights on the MSSEG2016 as a transfer learning strategy to improve the

segmentation performance, generalization, and robustness of the model. According

to the results obtained from the MSSEG2016 testing set given in Table 4.4, it has

been observed that transferring weights from one dataset to another in the same

domain has outperformed, especially on the MSSEG2016 dataset that contains

different acquisition sites, resolutions, preprocessing, and clinical cases.

Q6. How do process 3D MRI scans with computational efficiency approaches?

A6. Processing the entire 3D MRI data can be a challenging task, due to the large

volume of data involved. An alternative approach is to process the MRI data

based on slices, which can be more computationally efficient because each slice

can be processed individually. This method, however, has some drawbacks,

such as the chance of information loss during the slicing process. It is also

critical to ensure a careful reconstruction of the 3D MRI scan from the processed

slices. In this study, the slice-based approach was further expanded to whole-brain

segmentation by combining slices extracted from the three planes (axial, sagittal,

and coronal), thereby enabling the acquisition of contextual information in all

directions. Moreover, a 3D image reconstruction method was introduced using

slices from each plane orientation presented in section 3.5, and a majority voting

approach was applied to the 3D outputs obtained from each plane to form the final

3D segmentation result. The results showed that his approach achieved competitive

performance for most measures, such as Dice score and LTPR, compared to other

methods and the results of experts, as presented in Table 4.2 and Table 4.4.

Q7. What is the performance of DL algorithms in MS lesion activity segmentation?

A7. MS lesion activity segmentation is a challenging task due to the complex nature

of MS lesions and the variability in their appearance across patients and over time.

DL approaches, those relying on CNNs, have demonstrated their efficacy in the task
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of MS lesion segmentation. This is due to the ability of CNNs to learn significant

features and patterns from a large amount of delineated training data. Therefore,

DL approaches can incorporate into the task of MS lesion activity segmentation to

achieve better performance. In this study, the DL-based model was proposed to

detect and segment new MS lesions appearing at the second time point detailed in

section 3.2.1. This study shows that an encoder-decoder-based architecture, namely

U-Net, showed acceptable results in detecting and segmenting lesion activity. Also,

this proposed model improved the segmentation of lesion activity on MRI data

acquired from different scanners. The results of the MSSEG-2 testing set, presented

in Table 4.7 and Table 4.8, indicate that the model outperformed the results of some

experts based on certain evaluation metrics.

Q8. How to handle class imbalance problem for MS lesion segmentation?

A8. Class imbalance is a common problem in medical image segmentation,

particularly in the context of MS lesion segmentation, as lesions are often small,

scarce, and only constitute a minority of the MRI volume. Therefore, a hybrid loss

function, which is the addition of focal and Dice losses, was used as the training

loss function to handle the class imbalance problem during the training procedure.

The implementation details are given in section 3.5.
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5. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a novel dense residual U-Net that combines modified AG, ECA, and

ASPP modules was proposed to improve the segmentation of MS lesions. Two

publicly available datasets, namely, the ISBI2015 and MSSEG2016, were employed

to validate the proposed model’s segmentation performance, generalization ability, and

robustness. 2D axial, sagittal, and coronal slices extracted from 3D volumetric scans

of FLAIR, T1-w, and T2-w sequences were exploited jointly to obtain contextual

information in all directions and complementary information related to MS lesions.

2D slices extracted from the corresponding orientation of each sequence were stacked

to generate a 3-channel input feature map. Then, all the 2D stacked slices were

aggregated to form the training input data. Additionally, for the ISBI2015 dataset,

the manual delineations of two raters were concatenated to form a single training set,

which enables an increase in the training samples.

Data augmentation methods of the Albumentations library were employed to make a

robust model, improve prediction accuracy, and reduce overfitting during the training.

While manual delineation of MS lesions is time-consuming, costly, and subject to

variability across experts, DL methods, which learn features from their input data

during the training period, can automatically assist in MS lesion segmentation and

detection, reducing cost and variability. Thus, CNN-based deep learning methods

were used in this study for accurate automatic MS lesion segmentation. Furthermore,

whole-brain slice-based segmentation of MS lesions gave promising results according

to most of the metrics in all experiments and comparisons.

The proposed model was also compared with some other proposed methods that

employed these two datasets in their research. The results of the MSSEG2016

testing set were used to compare the proposed model’s segmentation performance,

generalization, and robustness according to the results of experts and each center.

Additionally, the results of the ISBI2015 obtained from the official test set via the

online website were exploited to make a fair comparison with other methods.
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The results showed promising outputs in most of the metrics when compared to the

evaluation metric results of the inter-rater and scores from other methods. Also, a

quantitative evaluation comparing the consistency of the two datasets was presented.

Finally, the ISBI score of 92.75 is considered comparable to a human rater, as discussed

previously. As such, the proposed model can be used for different segmentation

problems in image analysis.

Additionally, an automated pipeline for new MS lesion segmentation using the baseline

and follow-up 3D FLAIR MRI has been designed with a deep learning-based network

that fuses the strengths of U-Net, residual learning, and AG. For more accurate

segmentation of new MS lesions, this network architecture was designed as a deep

encoder-decoder network to enhance the U-Net by replacing plain blocks with residual

blocks and adding AGs. These residual blocks replaced with the plain blocks facilitate

the training. Skip connections within both residual units and U-Net facilitate the

propagation of information in both forward and backward phases during the training

procedure. AGs integrated into the proposed model emphasize important features

propagated over skip connections.

A hybrid loss function was introduced as the addition of dice loss and 1 × binary

focal loss. The input data for the proposed method was prepared by converting 3D

scans into their plane orientations of axial, sagittal, and coronal views which yielded

2D slices. Baseline and follow-up slices were stacked to create a two-channel feature

mapping for each plane orientation. Then, all slices extracted from all three planes

were grouped into a single input to increase training samples and use the contextual

information in all directions. The predicted 2D slices for each view were aggregated

using a majority voting to generate the final 3D binary output. Although new MS

lesion segmentation and detection pose a difficult problem due to small lesion sizes,

the proposed method has achieved comparable segmentation performance compared

to the experts and top-ranked automated methods in the challenge.

Finding the appropriate data sets and using the existing ones as publicly available will

reduce the gap for the data required in these studies and the lack of which is frequently

discussed, and will allow different studies to be carried out. This study provides clues

about the recent techniques regarding MS lesion activity segmentation that can be used

as a guide for future research in this field.
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One of the most important outputs of this thesis is to facilitate the diagnosis process

performed by physicians who usually need to depict MR scans in 3D in their minds

while delineating MS lesions. Since this study provides the exact location of lesions

based on the axial, sagittal, and coronal slices, physicians will be able to quickly

evaluate their findings using the outputs of this study. Additionally, training the

proposed models with a large dataset will aid in the diagnosis of MS disease in its

early stages in clinical settings. However, the output of this study is not mature enough

to be used in clinical settings due to the lack of a large enough dataset and limited

computational resources.

In future studies, different large datasets will be investigated and used to improve the

segmentation, generalization ability, and robustness of the deep learning models and

proposed models, although it is challenging to obtain such datasets. Also, the outcomes

of this study will be integrated into digital twin technology to improve the diagnosis

and treatment of disease.
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• 2015-2019 Senior Java Developer at SoftTech A.Ş
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