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ÖZET 

 

Yüksek Lisans Tezi 

 

DA-DA BOOST KONVERTÖR İÇİN KLASIK PI VE KESİR DERECELİ PID 

KONTROLÖRLERİNİN TASARIMI VE PERFORMANS ANALİZİ 

 

Erdoğan DİNÇ 

 

Zonguldak Bülent Ecevit Üniversitesi  

Fen Bilimleri Enstitüsü  

Elektrik Elektronik Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: Doç. Dr. İbrahim ALIŞKAN  

Ocak 2023, 75 sayfa 

 

 

Bu çalışma, Sürekli İletim Modu (CCM) boost DA-DA dönüştürücü için parametreleri 

Ziegler-Nichols Yöntemi ile tasarlanan PI ve parametreleri Parçacık Sürü Optimizasyonu 

(PSO) ile ayarlanan PID kontrolörlerinin performans analizini sunmaktadır. 

 

DA-DA boost dönüştürücüler, elektrikli araç şarj cihazları, DC motor sürücüsü, mobil cihaz 

yenilenebilir enerji sistemleri ve fotovoltaik uygulamalar gibi birçok güç elektroniği 

uygulamasında kullanılmaktadır. Yüksek güç seviyeleri, yüksek verim, yüksek güç 

yoğunluğu, düşük maliyet ve küçük boyutları onları cazip kılmaktadır. Güncel yaşamda pek 

çok alanda kullanılan DA-DA dönüştürücüler bu nedenle kontrol çalışmalarında her zaman 

ilgi görmüştür. Bu çalışmada da bu tür bir konvertör ele alınmıştır. 
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ÖZET (devam ediyor) 

 

Öncelikle 5-15 V giriş gerilim aralığında ve 25 V çıkış gerilimi için tasarlanan 

dönüştürücünün lineer modeli sürekli iletim modunda çalışmasına uygun olarak elde 

edilmiştir.  

 

İkinci olarak, nominal çalışma koşulları için sistem modeli, durum uzayı averaj modeli ve 

küçük sinyal modeli yaklaşımları ile elde edilmiştir. Daha sonra kontrolörler Ziegler Nichols 

Metodu ve Parçacık Sürü Optimizasyonu ile tasarlanmıştır. PSO, 10 ve 20 parçacıklı olmak 

üzere iki farklı şekilde gerçekleştirilmiştir. Daha sonra elde edilen oransal kazanç, integral 

kazancı, türevsel kazanç parametreleri opamplar ile analog devre olarak sentezlenmiştir.  

 

İki farklı yöntemle tasarlanan bu üç PI ve PID denetleyicilerin performans analizleri, 

PSIM’de gerçeklenen simülasyon çalışmalarının sonuçları kullanılarak sunulmuştur. Ortalama 

Karesel Hata (MSE), sunulan çalışmalar için kontrol performans indeksi olarak kabul 

edilmiştir. Kontrolörler üst aşım ve yerleşme zamanı açısından da değerlendirilmiştir. 

Sonuçlar 20 parçacıklı PSO algoritması ile geliştirilen PID kontrolörün diğerle 

denetleyicilerden daha başarılı olduğunu göstermiştir. Son olarak kontrolörler laboratuvar 

ortamında gerçekleştirilmiş ve benzetim çalışmalarındaki gibi performans verdiği 

gözlemlenmiştir.   

 

Anahtar Kelimeler: Sürekli İletim Modu, Durum Uzayı Averaj Modeli, Boost Dönüştürücü, 

PI Kontrolör, PID kontrolör, Ziegler-Nichols Methodu, Parçacık Sürü Optimizasyonu 

 

Bilim Kodu: 608.01.05 
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ABSTRACT 

 

M. Sc. Thesis 

 

DESIGN AND PERFORMANCE ANALYSIS OF CLASSICAL PI AND 

FRACTIONAL ORDER PID CONTROLLERS FOR DC-DC BOOST CONVERTER 

 

Erdoğan DİNÇ 

 

Zonguldak Bülent Ecevit University 

Graduate School of Natural and Applied Sciences 

Department of Electrical and Electronics Engineering 

 

Thesis Advisor: Assoc. Prof. Dr. İbrahim ALIŞKAN 

January 2023, 75 pages 

 

This study presents the performance analysis of PI whose parameters are designed by Ziegler-

Nichols Method and PID controllers whose parameters are adjusted by Particle Swarm 

Optimization (PSO) for Continuous Conduction Mode (CCM) boost DA-DA converter. 

 

DC-DC boost converters are used in many power electronics applications such as electric 

vehicle chargers, DC motor drive, mobile device renewable energy systems and photovoltaic 

applications. Their high power levels, high efficiency, high power density, low cost and small 

size make them attractive. For this reason, DC-DC converters, which are used in many areas 

in current life, have always attracted attention in control studies. In this study, such a 

converter is considered. 
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ABSTRACT (continued) 

 

First of all, the linear model of the converter, which is designed for 5-15 V input voltage 

range and 25 V output voltage, has been obtained in accordance with its operation in 

continuous conduction mode. 

 

Secondly, the system model for nominal operating conditions is obtained by state space 

average model and small signal model approaches. Later, the controllers were designed with 

the Ziegler Nichols Method and Particle Swarm Optimization. PSO was carried out in two 

different ways with 10 and 20 particles. Then, proportional gain, integral gain, derivative gain 

parameters were synthesized as analog circuit with opamps. 

 

Finally, the performance analyzes of these three PI and PID controllers designed with two 

different methods are presented using the results of the simulation studies performed in PSIM. 

Mean Squared Error (MSE) was accepted as the control performance index for the studies 

presented. Controllers were also evaluated in terms of overshoot and settling time. The results 

validated that the PID controller developed with the 20-particle PSO algorithm was more 

successful than the others. 

 

Keywords: Continuous Conduction Mode, State Space Average Model, Boost Converter, PI 

Controller, PID controller, Ziegler-Nichols Method, Particle Swarm Optimization 
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D𝑚𝑎𝑥 : Maximum anahtar Doluluk oranı 

𝐿𝑚𝑖𝑛 : Minimum bobin değeri 

C𝑚𝑖𝑛 : Minimum kapasitör  

V𝑟 : Voltaj ripple faktörü 

Ts : Anahtarlama periyodu 

A1 : Kısa devre durumu için durum denklemi 

 A2 : Açık devre durumu için durum denklemi 

Δd  : Küçük bir doluluk oranı artışı  

Δx1 : Küçük bir indüktör akımı artışı  

Δx2 : Küçük bir kapasitör voltaj artışı  

Ti : İntegral zamanı  

Td : Differensiyel zamanı 

Kcr   : Kritik Kazanç 

ꙍ𝑐𝑟   : Sürekli salınımların frekansını 

 pbest  : Uygunluk değeri 

lbest : Komşu parçacığın belirli bir ana kadar olan en iyi konumu 

gbest  : Global en iyi 

𝑣𝑖   : Pozisyon değişikliği vektörü  
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SİMGELER VE KISALTMALAR DİZİNİ (devam ediyor) 

 

𝑥𝑖  : Parçacığın konumu 

𝑝𝑖  : Parçacıkların önceki en iyi konumu  

𝑝𝑔  : Komşu parçacıkalar arasındaki en iyi konum  

𝜑1   : Bireysel deneyim  

𝜑2   : Sosyal deneyim 

𝑐1    : Bilişsel sabit 

𝑐2  : Bilişsel sabit 

 𝑟1   : [0,1] arasında oluşturulan rastgele sayı  

𝑟2  : [0,1] arasında oluşturulan rastgele sayı 

𝛾  : Kompleks olabilen kesir derecesidir 

 𝑎  : Başlangıç koşullarına ilişkin sabit  

ℜ (𝛾)  : Kesir derecenin reel kısmını  

Γ(x) : Gama fonksiyonu 

ℎ  : Zaman artışı 

𝑦(𝑡)    : Sistemin çıkış 

𝑢(𝑡)    : Sistemin girişi  

y  : Çıktı 

r   : Referans girişi  

e  : Hata   

u   : Kontrol sinyali 

G(s)  : Sistemin transfer fonksiyonu  

C(s)   : Kesirli dereceli kontrolörün transfer fonksiyonu 
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SİMGELER VE KISALTMALAR DİZİNİ (devam ediyor) 

 

KISALTMALAR 

CPU : Merkezi İşlem Birimi 

DA : Doğru Akım 

FOPID: Kesirli dereceli PID  

GA : Genetik algoritma 

GWO  : Gri kurt optimizasyonu 

KGY : Kirchhoff'un Gerilim Yasası  

MSE : Ortalama karesel hata 

𝐏𝐈𝛌𝐃𝝁  : Kesirli dereceli Oransal-türevsel-integral kontrolörü 

PI  : Oransal-integral  

PID  : Oransal-türevsel-integral 

PSO : Parçacık Sürü Optimizasyonu  

𝐏𝐈𝛌  : Kesirli dereceli oransal-integral kontrolörü 
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BÖLÜM 1  

 

GİRİŞ 

 

DA-DA boost dönüştürücüler, DA motor sürücü, fotovoltaik enerji kaynakları, pil ve yakıt 

hücreleri gibi çeşitli uygulamalarda düşük giriş geriliminden yüksek çıkış voltajı elde etmek 

için kullanılmaktadır [1-6]. Ancak değişken giriş gerilimlerine karşı boost konvertörler tek 

başına yeterli değildir. Değişken giriş gerilimli konvertörün açık çevrim konfigürasyonu, 

voltaj regülasyonu ve doğru dinamik performanstan yoksundur. Bu tür boost konvertörler 

kontrol uygulamalarına ihtiyaç duymaktadır [7-8].  

 

Araştırmacılar, geniş uygulama alanları olan boost konvertörlerin kontrolü için çeşitli 

çalışmalar yapmıştır [9-11]. Endüstri ve diğer alanlarda yaygın olarak kullanılan boost 

konvertörün kontrolü üreticilerin kazançları açısından da önem arz etmektedir [8]. Dolayısıyla 

en iyi kontrol yöntemini bulmak için kontrolörlerin karşılaştırmalı çalışmaları önemli bir 

araştırma alanı olmuştur [10, 13-15]. 

 

Bu çalışmada da iki farklı yöntem (Ziegler-Nichols ve Parçacık Sürü Optimizasyonu) ile 

tasarlanan kontrolörlerin kıyaslanması yapılmıştır. Aşağıda otomatik kontrol teorisinin 

tarihsel geçmişinden kısaca bahsedilmiştir. 

 

Otomatik kontrol yöntemleri temelde üç gruba ayrılmaktadır. Günümüzde yaygın olarak 

kullanılan kontrol teorileri, klasik kontrol teorisi (geleneksel kontrol teorisi) modern kontrol 

teorisi ve gürbüz kontrol teorisidir. Otomatik kontrol, herhangi bir mühendislik ve bilim 

alanında temel bir konu olmakla birlikte uzay aracı sistemlerinin, robotik sistemlerin, modern 

üretim sistemlerinin, sıcaklık, basınç, nem, akış vb. kontrolünü içeren herhangi bir endüstriyel 

işlemin önemli ve ayrılmaz bir parçasıdır [16]. 

 

Otomatik kontrol konusundaki ilk önemli çalışma, James Watt'ın on sekizinci yüzyıldaki bir 

buhar motorunun hız kontrolü için yaptığı merkezkaç denetleyicisidir [17]. Kontrol teorisinin 

gelişmesindeki diğer önemli çalışmalarını Minorsky, Hazen ve Nyquist yapmıştır. Minorsky 
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1922'de sistemi tanımlayan diferansiyel denklemleri elde ederek gemi dümeninde otomatik 

kontrolörler ile stabilitenin nasıl sağlanacağını göstermiştir [18]. 

 

1932 yılında Nyquist'in kapalı döngünün kararlılığını belirlemek için nispeten basit bir 

prosedür geliştirmiştir. Hazen, 1934'te pozisyon kontrol sistemleri için değişen bir girişi 

yakından takip edebilen servo mekanizmalarının tasarımını tanıtmıştır [16]. 

 

Frekans tepkisi yöntemleri (özellikle bode diagramı yöntemi), mühendislerin performans 

gereksinimlerini karşılayan doğrusal kapalı döngü kontrol sistemleri tasarlamasını mümkün 

kılmıştır. 1940'larda ve 1950'lerde birçok endüstriyel sistemde basınç, sıcaklık vb. kontrol 

etmek için çeşitli kontrolörler kullanmıştır [19]. 

 

1940'ların başında Ziegler ve Nichols, Ziegler-Nichols ayarlama kuralları adı verilen PID 

kontrolörlerinin elde edilmesi için kurallar önermişlerdir. Evans tarafından 1940’dan 1950’ye 

kadar kök yer eğrisi yöntemi tamamı ile geliştirilmiştir. Frekans cevabı ve kök yer eğrisi 

metodu klasik kontrol teorisinin temelini oluşturmuştur [16]. 

 

Kontrol tasarım problemlerinde, 1950’lerden itibaren çalışan birçok sistemden birinin 

tasarımına verilen önem tek bir optimalin tasarımına doğru kaymıştır. Bir başka değişle artık 

kontrolör tasarımı değil en iyi kontrolörün tasarımı önem kazanmıştır [16].  

 

Modern bir kontrol sisteminin tanımı çok sayıda denklem gerektirmektedir. Birçok girdi ve 

çıktıya sahip modern tesisler giderek daha karmaşık hale geldikçe, yalnızca tek girişli, tek 

çıkışlı sistemlerle ilgilenen klasik kontrol teorisi, çoklu giriş, çoklu çıkış sistemleri için 

yetersiz kalmaktadır [20]. 

 

1960'lardan beri, dijital bilgisayarların mevcudiyeti karmaşık sistemlerin zaman domeni 

analizini mümkün kıldığı için, zaman domeni analizine ve durum değişkenlerini kullanan 

senteze dayanan modern kontrol teorisi, modern sistemlerin artan karmaşıklığı ile başa 

çıkmak için geliştirilmiştir [16].  

 

1960'dan 1980'e kadar, hem deterministik hem de stokastik sistemlerin optimal kontrolü ve 

karmaşık sistemlerin uyarlanabilirliği araştırılmıştır [20]. 1980'lerden 1990'lara kadar, modern 

kontrol teorisindeki gelişmeler, gürbüz kontrol ve ilgili konular etrafında toplanmıştır [16]. 
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Modern kontrol teorisi, diferansiyel denklemin zaman domeni analizine dayanmaktadır. Bu 

teori, gerçek bir kontrol sistemi modeline dayandığından kontrol sistemlerinin tasarımını daha 

basit hale getirmiştir. Ancak, sistemin kararlığı, gerçek sistem ile modeli arasındaki hataya 

karşı duyarlılık göstermektedir. Bu, bir modele dayalı olarak tasarlanan denetleyici gerçek 

sisteme uygulandığında sistemin kararlı olmayabileceği anlamına gelmektedir. Bu durumdan 

kaçınmak için, önce olası hataların aralığı ayarlanmakta ve ardından denetleyici, sistemin 

hatası varsayılan aralık içinde kalacak şekilde tasarlanmaktadır. Eğer sistem varsayılan 

aralıkta kalırsa tasarlanan sistem kararlı olmaktadır. Bu prensibe dayanan tasarım yöntemine 

gürbüz kontrol teorisi adı verilmektedir. Bu teori hem frekans tepkisi yaklaşımını hem de 

zaman domeni yaklaşımını içermektedir [16].  

 

Klasik PID kontrolörler dayanıklı ve uygulanabilir olması nedeni ile endüstri ve literatürde 

çokca kullanılmıştır [21]. PID parametrelerinin ayar yöntemleri, geleneksel ve akıllı 

yöntemler olarak sınıflandırılabilir. Ziegler ve Nichols ve Simpleks yöntemi gibi geleneksel 

yöntemler de kontrolör tasarımında kullanılmaktadır. Ancak bu yöntemlerde optimal PID 

parametrelerini belirlemek zordur. Genellikle iyi ayarlama yapmaya olanak sağlayamamakta, 

dalgalanma ve yüksek aşım üretmektedir [22]. Dolayısıyla son zamanlarda, akıllı yaklaşımlar 

da önerilmiştir. Bunlar: genetik, parçacık sürüsü optimizasyonu, karınca kolonisi, gri kurt, 

yapay arı kolonisi, benzetimli tavlama algoritmaları gibi yöntemlerdir [22-28].  

 

Eberhart ve Kennedy (1995), yakın zamanda bir sürü zekası tekniği olan ve evrimsel 

hesaplama algoritmalarından biri olan parçacık sürü optimizasyonu (PSO) algoritmasını 

önermişlerdir. Bu algoritmanın son yıllarda çokça ilgi görmesi birçok nedene dayanmaktadır. 

 

 Birincisi, PSO algoritmasını gerçekleştirmek için yalnızca birkaç satır bilgisayar kodu 

gerekmektedir. İkincisi, gradyan bilgisini değil, amaç fonksiyonunun değerlerini kullanan 

arama tekniği, onu kullanımı kolay bir algoritma haline getirmektedir. Üçüncüsü, bellek ve 

CPU hızı gereksinimleri çok düşük olduğundan hesaplama açısından ucuzdur. Dördüncüsü, 

problemi verimli bir şekilde çözmek için doğrusallık, türevlenebilirlik, dışbükeylik, 

ayrılabilirlik veya kısıtların olmaması gibi geleneksel deterministik yöntemlerde yapılan güçlü 

bir varsayımı gerektirmez. Son olarak ise, çözümü, optimizasyon yaklaşımlarına dayalı 

mühendislik tasarım problemlerinde büyük bir avantaj olabilecek parçacıkların başlangıç 

durumlarına pek bağlı değildir [29].  
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Kesirli dereceli PID (FOPID) denetleyicisi de 1999 yılında Podlubny tarafından önerilmiştir 

ve sembolik olarak PIλDμ olarak yazılmaktadır. Burada λ ve μ integral ve türev dereceleridir 

ve bunlar kesir sayılarıdır. FOPID denetleyicisinin beş parametresi bulunmaktadır. Bunlar: 

orantısal kazanç, integral kazanç, türev kazancı, integral derecesi ve türev derecesidir [30]. 

 

Kesirli dereceli kontrol sistemi yaklaşımı, kontrol sistemi performanslarını iyileştirmek için 

yaygın olarak kullanılmaktadır. Literatürde çeşitli kesir dereceli PID tipi kontrol sistemi 

analiz ve tasarım yöntemleri geliştirilmiştir [31-34]. Ayrıca (Genetik Algoritma) GA 

Optimizasyonu, (Parçacık Sürü Optimizasyanu) PSO, (Gri Kurt Algoritması) GWA ve 

(Karınca Kolonisi Algoritması) KKA gibi yöntemler FOPID ve FOPI uygulamalarında 

kullanılmıştır [10, 13-15]. 

 

Birçok araştırmacı, boost konvertörün kontrolü için bir klasik kontrol yöntemi olan Ziegler-

Nichols ile PI [35-37] ve PID [38-40] kontrolörler geliştirmişlerdir. Ayrıca, genetik [41], 

parçacık sürüsü optimizasyonu [42-43], karınca kolonisi [44], gri kurt [45-46], yapay arı 

kolonisi [47], benzetimli tavlama [48] algoritmaları gibi akıllı yaklaşımlar ile DA-DA 

yükselticiler için kontrolörler tasarlamıştır. Bu yöntemler kesir dereceli kontrolörler için de 

kullanılmıştır ve çalışmalarda performans kıyaslamaları da yapılmıştır [49-54]. 

 

Bu çalışmada, tüm FOPID parametreleri (KP, KI, KD, μ ve, λ) parçacık sürüsü optimizasyonu 

kullanılarak optimize edilmiştir. Ayrıca yer alan birinci kontrolör yukarıda anlatılan klasik PI 

yöntemi olan Ziegler-Nichols yöntemi ile tasarlanmıştır. İkinci kontrolör ise Kesir Dereceli 

PID olarak tasarlanmıştır. Sonrasında bu iki yöntem kıyaslanmıştır. 
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BÖLÜM 2  

 

BOOST KONVERTÖR 

 

İdeal bir boost DA-DA dönüştürücü devresi Şekil 2.1’de gösterilmiştir. Boost Konverter 

gerilimi daha yüksek bir seviyeye çıkartmaktadır. Kararlı durum çalışması için çıkış voltajı 

(Vo) her zaman giriş voltajından (Vi) daha yüksektir. Dönüştürücü bir indüktör (L), bir güç 

MOSFET’i, bir diyot (D), bir filtre kapasitörü (C) ve bir yük direnci (RL) içermektedir. S 

anahtarı, anahtarlama frekansında (fs = 1/T) doluluk oranı ile (D = tON/T) anahtarlama yapar. 

Burada tON anahtarın kısa devre durumundaki zaman aralığıdır.  

 

Boost dönüştürücü indüktör akımının dalga biçimine bağlı olarak iki moddan birinde 

çalışabilir: Sürekli iletim modu (CCM) veya süreksiz iletim modu (DCM). DCM'deki boost 

dönüştürücü, RL = ∞ değerinde çalışır çünkü filtre kapasitörünün deşarj yolu yoktur.  Bu 

çalışmada CCM boost converter ele alınmıştır. Şekil 2.2 ve 2.3 CCM için sırasıyla S anahtarı 

kapalı, diyot kesimde ve S anahtarı açık, diyot iletimde iken boost dönüştürücünün eşdeğer 

devrelerini gösterir.  

 

Akım ve gerilimin ideale yakın dalga formları, boost dönüştürücünün çalışma prensibini 

açıklamak için Şekil 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10’da gösterilmiştir. 

 

Şekil 2.2’de 0 < t ≤ DT zaman aralığındaki durum gösterilmiştir. Anahtar kapalı ve diyot 

yükün yönüne göre ters yönlü olduğundan üzerindeki voltaj VD = −Vo olur. İndüktör 

üzerindeki voltaj VL = Vi'dır ve indüktör akımı Vi/L oranında doğrusal olarak artar. Böylelikle 

manyetik enerji de artar.  

 

Anahtar MOSFET’in G ve S uçları arasındaki voltaj ile açıldığında (t = DT anında) anahtar 

akımı indüktör akımına eşittir. İndüktör bir akım kaynağı görevi görür ve Şekil 2.3’deki gibi 

diyot iletime geçer. İndüktör üzerindeki voltaj VL = Vi −Vo < 0'dır. Dolayısıyla, indüktör 

akımı (Vi −Vo)/L'lik bir eğim ile azalır ve diyot akımı, indüktör akımına eşittir. Bu zaman 
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aralığında enerji indüktör L'den filtre kapasitörü C ve yük direnci RL'ye aktarılır. t = T anında, 

anahtar tekrar kapanarak döngü sonlandırılır [55].  

 

Şekil 2.1 İdeal boost konvertör devresi 

 

 

Şekil 2. 2 İdeal boost konvertör devresinde anahtarın kapalı diyodun açık devre olduğu durum 

 

 

Şekil 2.3 İdeal boost konvertör için anahtarın açık devre diyodun kısa devre olduğu durumu 

 

Şekil 2.1’deki boost dönüştürücünün analizi aşağıdaki varsayımlarla başlar. 

1) Güç MOSFET ve diyot ideal anahtarlardır. 

2) Transistör çıkış kapasitansı, diyot kapasitansı ve iletken endüktansları (ve dolayısıyla 

anahtarlama kayıpları) sıfır. 

3) Pasif bileşenler doğrusaldır, zamanla değişmez ve frekanstan bağımsızdır. 
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4) Giriş voltaj kaynağı Vi'nın çıkış empedansı, hem DA hem de AA bileşenleri için 

sıfırdır.  

 

Zaman Aralığı 0 < t ≤ DT 

0 < t ≤ DT, zaman aralığı  için ideal bir eşdeğer devre Şekil 2.2'de gösterilmiştir. Anahtar 

kapalı, VD diyotundaki voltaj Şekil 2.10’da görüldüğü gibi yaklaşık olarak –V0'ya eşittir. Şekil 

2.8’de ve Şekil 2.9’da, VS anahtarındaki voltajın ve diyot akımının sıfır olduğu gösterilmiştir. 

Bobin üzerindeki voltaj: 

 

𝑉𝐿 = 𝑉𝑖 = 𝐿
𝜕𝑖𝐿
𝜕𝑡
   (2.1) 

 

İndüktör akımı 𝑖𝐿  anahtar akımı 𝑖𝑆 olmak üzere 

 

𝑖𝑆  = 𝑖𝐿 =
1

𝐿
∫ 𝑉𝐿

𝑡𝑖

0

𝑑𝑡 + 𝑖𝐿(0) =
1

𝐿
∫ 𝑉𝑖

𝑡𝑖

0

𝑑𝑡 + 𝑖𝐿(0) =
𝑉𝑖
𝐿
𝑡𝑖 + 𝑖𝐿(0) , 𝑡𝑖 = 𝐷𝑇 (2.2) 

 

burada iL(0), t = 0 anında ilk indüktör akımıdır. (2.2)'den, indüktörün akımının tepe değeri 

elde edilir.  

 

𝑖𝐿(𝐷𝑇) =
𝑉𝑖𝐷𝑇

𝐿
+ 𝑖𝐿(0)   (2.3) 

 

Aşağıda DA gerilim transfer fonksiyonunun M𝑉𝐷𝐶 = V0/V𝑖  =  I𝑖/I0  =  1 ∕ (1 −  D) olduğu 

kısaca gösterilecektir. Bu nedenle indüktör dalgalanma akımının tepeden tepeye değeri şu 

şekilde ifade edilir: 

 

𝑖𝐿(𝐷𝑇) =
𝑉𝑖𝐷𝑇

𝐿
+ 𝑖𝐿(0)   (2.3) 

 

𝛥𝑖𝐿(𝐷𝑇) − 𝑖𝐿(0) =
V𝑖DT

𝐿
+ 𝑖𝐿(0) − 𝑖𝐿(0) =

V𝑖DT

𝐿
=
V𝑖D

𝑓𝑠𝐿
=

V0D

M𝑉𝐷𝐶 𝑓𝑠𝐿
 

                                 =
V0D(1 − D)

𝑓𝑠𝐿
 

 

 

(2.4) 
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V0, 𝑓𝑠 ve 𝐿 'nin sabit değerleri için, 

 

𝜕𝛥𝑖𝐿
𝜕𝐷

=
V0D

𝑓𝑠𝐿
(1 − 2𝐷) = 0   (2.5) 

 

Bu türevi sıfıra eşitleyerek 𝛥𝑖𝐿 değerinin, 𝐷 = 0.5  olduğunda maximum olduğu 

gözlemlenebilir. 

 

𝛥𝑖𝐿𝑚𝑎𝑥 =
V00.5(1 − 0.5)

𝑓𝑠𝐿
=

V0
4𝑓𝑠𝐿

   (2.6) 

 

Doluluk oranı D,  0'dan 1'e yükseltildiğinde, tepeden tepeye indüktör dalgalanma akımı 𝛥𝑖𝐿 

sıfırdan artmaya başlar, D = 0,5'te maksimuma ulaşır ve sonra tekrar sıfıra düşer.  

 

Diyot voltajı; 

 

𝑉𝐷 = −𝑉0  (2.7) 

 

olarak verilir. 

 

İndüktör akımı IL'nin ortalama değeri, DA giriş akımı Ii'ye eşittir. Buradan anahtar akımının 

değeri en yüksek noktasına ulaşır. 

 

𝐼𝑆𝑀 = 𝐼𝑖 +
𝛥𝑖𝐿 

2
=

𝐼0
1 − 𝐷

+
𝛥𝑖𝐿 

2
 (2.8) 

 

t = DT zaman aralığında anahtar sürücü tarafından açılır. MOSFET’in üzerindeki kapı kaynak 

değişimi Şekil 2.4’de gösterilmiştir. CCM için İndüktör akımı iL sürekli akar. Anahtar 

açıldığında  iL sıfır olmadığı için, neredeyse bir akım kaynağı gibi davranır ve diyotu açar. 

 

İndüktörde depolanan manyetik enerji, 

𝑤𝐿(𝑡) =
1

2
𝐿𝑖𝐿

2 + 𝑤𝐿(0) =
1

2
𝐿𝑖𝐿

2(𝑡) +
1

2
𝐿𝑖𝐿

2                                

                                              =
1

2

𝑉𝑖
2

𝐿
𝑡2 +

1

2
𝐿𝑖𝐿

2(0)   

(2.9) 
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İndüktör manyetik enerjisindeki artış, 

 

𝛥𝑊𝐿(𝑖𝑛) =
1

2
𝐿[𝑖𝐿

2(𝐷𝑇) − 𝑖𝐿
2(0)] (2.10) 

 

şeklinde olur [55]. 

 

Zaman Aralığı: DT < t ≤ T 

 

DT < t ≤ T zaman aralığında, anahtar açık ve diyot iletimdedir. Şekil 2.3 ideal bir eşdeğeri 

gösterir. Bu zaman aralığı için dönüştürücü devresi. Anahtar akımı iS ve diyot voltajı VD 

sıfırdır ve indüktör bu zaman aralığında boşalır. Durumlar sırasıyla Şekil 2.7, 2.10, 2.6’da 

gösterilmiştir. 

 

Şekil 2.5’de verilen indüktör üzerindeki gerilim, 

 

𝑉𝐿 = 𝑉𝑖 − 𝑉0 = 𝐿
𝜕𝑖𝐿
𝜕𝑡

< 0  (2.11) 

 

bu da VO > Vi olduğunu gösterir. İndüktör ve diyottan geçen akım şu şekilde bulunabilir: 

 

𝑖𝐷  = 𝑖𝐿 =
1

𝐿
∫𝑉𝐿

𝑡

𝐷𝑇

𝑑𝑡 + 𝑖𝐿(𝐷𝑇) =
1

𝐿
∫(𝑉𝑖 − 𝑉0 )

𝑡

𝐷𝑇

𝑑𝑡 + 𝑖𝐿(𝐷𝑇) 

                =
𝑉𝑖 − 𝑉0 
𝐿

(𝑡 − 𝐷𝑇) + 𝑖𝐿(𝐷𝑇) 

(2.12) 

 

burada iL(DT), t = DT'deki başlangıç indüktör akımı iL'dir. İndüktör dalgalanma akımının 

tepeden tepeye değeri: 

 

𝛥𝑖𝐿 = 𝑖𝐿(𝐷𝑇) − 𝑖𝐿(𝑇) =
(𝑉0 − 𝑉𝑖 )(1 − 𝐷)𝑇

𝐿
=
𝑉0 𝐷(1 − 𝐷)

𝑓𝑠𝐿
 (2.13) 

 

Burada  𝑉𝑖 = 𝑉0 (1 − 𝐷) 
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Anahtar üzerindeki gerilim, 

𝑉𝑠 = 𝑉0 = 𝑉𝑆𝑀  

 

Tepe diyot akımı ve tepe anahtar akımı şu şekilde verilir, 

 

𝐼𝑆𝑀 = 𝐼𝐷𝑀 = 𝐼𝑖 +
𝛥𝑖𝐿 

2
=

𝐼0
1 − 𝐷

+
𝛥𝑖𝐿 

2
 (2.14) 

 

𝐼𝑆𝑀𝑚𝑎𝑥 = 𝐼𝐷𝑀𝑚𝑎𝑥 = 𝐼𝑖𝑚𝑎𝑥 +
𝛥𝑖𝐿𝑚𝑎𝑥 

2
=

𝐼0𝑚𝑎𝑥
1 − 𝐷𝑚𝑎𝑥

+
𝛥𝑖𝐿𝑚𝑎𝑥 

2
 (2.15) 

 

Anahtar  sürücü tarafından kapandığında zaman aralığı t = T'de sona erer. DT < t ≤ T zaman 

aralığında, L indüktöründe depolanan manyetik enerjideki azalma,  

 

𝛥𝑊𝐿(𝑜𝑢𝑡) =
1

2
𝐿[𝑖𝐿

2(𝐷𝑇) − 𝑖𝐿
2(𝑇)] (2.16) 

 

olarak verilir.  

 

Kararlı durum için, 0 < t ≤ DT zaman aralığında indüktörde depolanan manyetik enerjideki 

artış, DT < t ≤ T zaman aralığında indüktörde depolanan manyetik enerjideki azalmaya eşittir.  

 

 

 

 

 

 

 

 

Şekil 2.4 MOSFET’in kapı–kaynak gerilim değişimi 
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Şekil 2.8 Anahtar üzerindeki gerilim değişimi 

Şekil 2.6 Bobin akımındaki değişim 

Şekil 2.5 Bobin gerilimindeki değişim 

Şekil 2.7 Anahtar üzerindeki akım değişimi 
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DA Gerilim Transfer Fonksiyonu: 

 

Durgun durum için indüktör üzerindeki voltajın ortalama değeri [55]: 

 

VL(AV) = 
1

T
∫VLdt

T

0

   = 0 (2.17) 

 

ViDT =  (V0  −  Vi)(1 −  D)T (2.18) 

 

V0 =
Vi

1 −  D
 (2.19) 

 

MVDC=
V0

Vi

=
II

I0

=
1

1-D
 (2.20) 

Şekil 2.9 Diyot üzerindeki akım değişimi 

Şekil 2.10 Diyot üzerindeki gerilim değişimi 
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Kayıpsız bir boost dönüştürücü için MVDC değeri; 

 

1 ≤  MVDC  ≤  ∞ (2.21) 

 

2.1 KESİNTİSİZ İLETİM MODUNDA BOOST KONVERTÖRÜN TASARIMI 

 

Devre elemanları (R, L, C) tasarım kısıtları dikkate alınarak belirlenir. Dönüştürücü tasarım 

kısıtları, maksimum çıkış gücü 30W, giriş voltajı (Vin) aralığı 5-15V, çıkış voltajı (Vo) 25V 

ve anahtarlama frekansı 20 kHz olarak seçilmiştir. 

 

Maximum çıkış gücü  𝑃𝑜,𝑚𝑎𝑥 = 30 = 𝑉𝑜. 𝐼𝑜,𝑚𝑎𝑥, olarak yazılırsa maximum yük akımı 1.2 A 

olarak elde edilmiştir. 

 

Minumum yük akımı, maximum yük akımının %5’i kadar olduğu varsayılarak,  

 

𝑅𝐿𝑚𝑖𝑛 =
𝑉0

𝐼0𝑚𝑎𝑥
= 20.833 Ω (2.22) 

 

𝑅𝐿𝑚𝑎𝑥 =
𝑉0
𝐼0𝑚𝑖𝑛

= 416.66 Ω (2.23) 

 

minimum ve maximum yük direnci (𝑅𝐿𝑚𝑖𝑛, 𝑅𝐿𝑚𝑎𝑥) elde edilmiştir. Verilen eşitliklerde (1-2) 

𝐼0𝑚𝑎𝑥, maximum yük akımıdır, 𝐼0𝑚𝑖𝑛, minimum yük akımıdır. Ayrıca DA voltaj için MDCmin , 

MDCmax aşağıdaki gibi sunulmuştur. 

 

M𝑉𝐷𝐶𝑚𝑖𝑛 =
V0

V𝑖𝑛𝑚𝑎𝑥
= 1.6666 (2.24) 

 

M𝑉𝐷𝐶𝑚𝑎𝑥 =
V0

V𝑖𝑛𝑚𝑖𝑛
= 5 (2.25) 

 

Konvertörün verimi (η) %90 olarak düşünülmüştür; 

 

D𝑚𝑖𝑛 = 1 −
η

M𝑉𝐷𝐶𝑚𝑖𝑛
= 0.46 (2.26) 
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D𝑚𝑎𝑥 = 1 −
η

M𝑉𝐷𝐶𝑚𝑎𝑥
= 0.82 (2.27) 

 

𝐿𝑚𝑖𝑛 =
𝑅𝐿𝑚𝑎𝑥D𝑚𝑖𝑛(1 − D𝑚𝑖𝑛)

2

2𝑓𝑠
= 1.40 mH (2.28) 

 

İndüktör değeri (7)’de gösterildiği gibi 1.40 mH olarak elde edilmiştir. Eşitliklerde, D𝑚𝑎𝑥, 

maximum doluluk oranı, D𝑚𝑖𝑛, minimum doluluk oranı, 𝐿𝑚𝑖𝑛, minimum indüktör değeri, 𝑓𝑠, 

anahtarlama frekansı, C𝑚𝑖𝑛, minimum kapasitör değeri ve V𝑟  voltaj ripple faktörüdür. 

 

V𝑟

V0
 <  %1       (V𝑟 = 0.25) olarak seçilmiştir. 

V𝑐𝑝𝑝 =
V𝑟

2
=0.125 (2.29) 

 

C𝑚𝑖𝑛 =
D𝑚𝑎𝑥v0

𝑓𝑠𝑅𝐿𝑚𝑖𝑛V𝑐𝑝𝑝
= 393.6 𝜇𝐹 (2.30) 

 

Son olarak piyasadaki kapasitörler dikkate alınarak 470 μF'lık bir sığaç seçilmiştir. 

 

 

2.2 BOOST KONVERTERİN MODELLENMESİ  

 

2.2.1 Boost Konvertörün Averaj Modeli 

 

Boost dönüştürücünün anahtarlama döngüsü başına iki modu bulunmaktadır. Bu modlar 

devrenin esas anahtarı olan MOSFET’in durumuna göre adlandırılmaktadr. Anahtar kısa 

devre modu: MOSFET iletimde ve diyot açık devredir. Anahtar açık devre modunda 

MOSFET kesintide ve diyot iletimdedir. Kısa devre ve açık devre modda parazitik eleman 

içeren yükseltici dönüştürücünün, D.Ts ve (1-D).Ts zaman aralıkları ile ilintili olarak eşdeğer 

devresi sırayla Şekil 2.9 ve 2.10’de verilmiştir [56]. D, iletim süresinin anahtarlama 

periyoduna (Ts) oranıdır. 
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Şekil 2.11 Parazitik boost converter devresinde anahtarın kapalı diyodun açık olduğu durum 

 

İki durum için de durum uzayı denklemleri Kirchhoff'un Gerilim Yasası (KGY) kullanılarak 

türetilebilir. Anahtarın kısa devre durumu için KGY denklemleri (2.31), (2.32) ve (2.33)'de 

verilmiştir. 

𝑉0(𝑡) = 𝑉𝐶(𝑡) −
𝑅𝐶

𝑅+𝑅𝐶
𝑉𝐶(𝑡) (2.31) 

 

𝑉0(𝑡) =
𝑅

𝑅+𝑅𝐶
𝑉𝐶(𝑡) (2.32) 

 

Deşarj akımı −
𝑉0(𝑡)

𝑅
 

Anahtar kapalı iken kapasitör direnç üzerinden boşalır. 

𝐿
𝑑𝐼𝐿(𝑡)

𝑑𝑡
= 𝑉𝑖𝑛 − 𝐼𝐿(𝑡)𝑅𝐿 (2.33) 

 

𝐶
𝑑𝑉𝐶(𝑡)

𝑑𝑡
=
−𝑉𝐶(𝑡)

𝑅 + 𝑅𝑐
 (2.34) 

 

[

ⅆ𝐼𝐿(𝑡)

ⅆ𝑡
ⅆ𝑉𝐶(𝑡)

ⅆ𝑡

]=[
−
𝑅𝐿

𝐿
0

0 −
1

𝐶(𝑅+𝑅𝑐)

] [
𝐼𝐿
𝑉𝐶
]+[

𝑉𝑖𝑛

𝐿

0
] (2.35) 

 

𝑉0AK = [0       
𝑅

𝑅 + 𝑅𝑐
 ] [
𝐼𝐿
𝑉𝐶
] (2.36) 
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Şekil 2.12 Paratizik boost converter devresinde anahtarın açık diyodun kısa devre olduğu durum 

 

𝐿
𝑑𝐼𝐿(𝑡)

𝑑𝑡
= 𝑉𝑖𝑛 − 𝑉𝐷 − (𝑅𝐿 +

𝑅𝑅𝐶
𝑅 + 𝑅𝐶

) 𝐼𝐿 −
𝑅

𝑅 + 𝑅𝐶
𝑉𝐶(𝑡) (2.37) 

 

𝐶
𝑑𝑉𝐶(𝑡)

𝑑𝑡
=

𝑅

𝑅 + 𝑅𝑐
𝐼𝐿(𝑡) −

𝑉𝑐(𝑡)

𝑅 + 𝑅𝑐
 (2.38) 

 

𝑉0 =
𝑅

𝑅 + 𝑅𝑐
𝑉𝐶(𝑡) +

𝑅𝑅𝐶
𝑅 + 𝑅𝑐

𝐼𝐿(𝑡) (2.39) 

 

𝑉0 =
𝑅

𝑅 + 𝑅𝑐
(𝑉𝐶(𝑡) + 𝑅𝑐𝐼𝐿(𝑡)) (2.40) 

 

Anahtarın açık devre durumu için eşitlikler durum uzayı formunda (2.41) ve (2.42)’de 

sunulmuştur. 

 

[
 
 
 
 
𝑑𝐼𝐿(𝑡)

𝑑𝑡
ⅆ𝑉𝐶(𝑡)

ⅆ𝑡 ]
 
 
 
 

=

[
 
 
 
 −
𝑅𝑅𝐶 + (𝑅 + 𝑅𝐶)𝑅𝐿

𝐿(𝑅+𝑅𝐶)
−

𝑅

𝐿(𝑅 + 𝑅𝐶)
𝑅

𝐶(𝑅 + 𝑅𝑐)
−

1

𝐶(𝑅 + 𝑅𝑐)]
 
 
 
 

[
𝐼𝐿
𝑉𝐶
] + [

𝑉𝑖𝑛 − 𝑉𝐷
𝐿
0

] (2.41) 

 

𝑉0AA = [
𝑅𝑅𝐶
𝑅 + 𝑅𝑐

       
𝑅

𝑅 + 𝑅𝑐
 ] [
𝐼𝐿
𝑉𝐶
] (2.42) 

 

Devre modlarının durum-uzay formlarına (2.45)‘deki gibi averaj model yaklaşımı 

uygulanmıştır. 
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A1 =

[
 
 
 −
RL
L

0

0 −
1

C(R + Rc)]
 
 
 
  (2.43) 

  

A2 =

[
 
 
 
 −
RRC+(R + RC)RL

L(R + RC)
−

R

L(R + RC)
R

C(R + Rc)
−

1

C(R + Rc)]
 
 
 
 

  (2.44) 

 

A = A1D + A2 (1 − D)  (2.45) 

 

A=

[
 
 
 −
RL
L
D 0

0 −
1

C(R + Rc)
D
]
 
 
 
  

 

+

[
 
 
 
 −
RRC+(R + RC)RL

L(R + RC)
(1 − D) −

R

L(R + RC)
(1 − D)

R

C(R + Rc)
(1 − D) −

1

C(R + Rc)
(1 − D)

]
 
 
 
 

 

 

 

 

 

 

 

(2.46) 

 

A111D + A211  (1 − D) = −
RL
L
D −

RRC
L(R + RC)

(1 − D) −
(R + RC)RL
L(R + RC)

(1 − D) 

 

= −
RL
L
D −

RRC
L(R + RC)

(1 − D) −
RL
L
+
RL
L
D 

= −
RRC

L(R + RC)
(1 − D) −

RL
L

 

 

 

 

 

(2.47) 

 

A112D + A212  (1 − D) = 0 −
R

L(R + RC)
(1 − D) =  −

R

L(R + RC)
(1 − D) (2.48) 

 

A121D + A221  (1 − D) = 0 +
R

C(R + RC)
(1 − D) =  

R

C(R + RC)
(1 − D) (2.49) 
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A122D + A222  (1 − D) = −
1

C(R + Rc)
D −

1

C(R + Rc)
(1 − D) =  −

1

C(R + Rc)
 (2.50) 

 

B1 = [
𝑉𝑖𝑛

𝐿

0
]   (2.51) 

 

B2 = [
𝑉𝑖𝑛−𝑉𝐷

𝐿

0
]   (2.52) 

 

B = B1D + B2 (1 − D)  (2.53) 

 

B111D + B211(1 − D) =  
𝑉𝑖𝑛
𝐿
𝐷 +

𝑉𝑖𝑛 − 𝑉𝐷
𝐿

(1 − D) 

 

=
𝑉𝑖𝑛
𝐿
(1 − D) −

𝑉𝐷
𝐿
(1 − D) +

𝑉𝑖𝑛
𝐿
D 

(2.54) 

 

=
𝑉𝑖𝑛
𝐿
D +

𝑉𝑖𝑛
𝐿
−
𝑉𝑖𝑛
𝐿
D −

𝑉𝐷
𝐿
(1 − D) = −

𝑉𝐷
𝐿
(1 − D) +

𝑉𝑖𝑛
𝐿

 

 

(2.55) 

 

B121D + B221(1 − D) = 0 (2.56) 

 

C1 = [0       
𝑅

𝑅 + 𝑅𝑐
 ] (2.57) 

 

C2 = [
𝑅𝑅𝐶
𝑅 + 𝑅𝑐

       
𝑅

𝑅 + 𝑅𝑐
 ] (2.58) 

    

C = C1D + C2 (1 − D) (2.59) 

 

C111D + C211(1 − D) = 0 +
𝑅𝑅𝐶
𝑅 + 𝑅𝑐

(1 − D) =
𝑅𝑅𝐶
𝑅 + 𝑅𝑐

(1 − D) 

 

(2.60) 
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C112D + C212(1 − D) =
R

(R + RC)
D +

R

(R + RC)
(1 − D) =

R

(R + RC)
 

 

(2.61) 

 

Yukarıda, A1 kısa devre durumu için durum denklemidir, A2 açık devre durumu için durum 

denklemidir. Benzer bir yaklaşım B1-B2 ve C1-C2 vektörlerine de uygulanırsa, 

dönüştürücünün averaj modeli (2.62) ve (2.63)’deki gibi elde edilebilir.  

 

[
 
 
 
 
𝑑𝐼𝐿(𝑡)

𝑑𝑡
ⅆ𝑉𝐶(𝑡)

ⅆ𝑡 ]
 
 
 
 

=

[
 
 
 −

𝑅𝑅𝐶
𝐿(𝑅+𝑅𝐶)

(1 − 𝐷) −
𝑅𝐿
𝐿

−
𝑅

𝐿(𝑅 + 𝑅𝐶)
(1 − 𝐷)

𝑅

𝐶(𝑅 + 𝑅𝑐)
(1 − 𝐷) −

1

𝐶(𝑅 + 𝑅𝑐) ]
 
 
 

[
𝐼𝐿
𝑉𝐶
] 

 

+[−
𝑉𝐷(1 − 𝐷)

𝐿
+
𝑉𝑖𝑛
𝐿

0

] 

 

 

 

(2.62) 

 

V0 = [
𝑅𝑅𝐶

(𝑅+𝑅𝐶)
(1 − 𝐷)    

𝑅

(𝑅+𝑅𝐶)
] [
𝐼𝐿
𝑉𝐶
] (2.63) 

 

2.2.2 Boost Konvertörün Küçük İşaret Modeli 

 

PID denetleyiciyi elde etmek için averaj modelin doğrusallaştırılması gereklidir. 

Doğrusallaştırma işlemi için Euler yöntemi uygulanır ve pertürbasyonlar aşağıdaki gibidir 

Küçük bir doluluk oranı artışı (Δd), küçük bir kapasitör voltaj artışı (Δx2) ve küçük bir 

indüktör akımı artışı (Δx1) olduğu varsayılırsa. 

 

ẋ1 = ẋ1 + Δẋ1 (2.64) 

 

ẋ2 = ẋ2 + Δẋ2 (2.65) 

 

D = D + Δⅆ (2.66) 

 

Vo = y = y + Δy = Vo + ∆vo (2.67) 
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ẋ1 + Δẋ1 = (−
RRC

L(R+RC)
(1 − (D + Δⅆ)) −

RL
L
)(x1 + Δx1) 

−
R

L(R + RC)
(1 − (D + Δⅆ))(x2 + Δx2) −

𝑉𝐷
𝐿
(1 − (D + Δⅆ)) +

𝑉𝑖𝑛
𝐿

 

(2.68) 

 

ẋ1 + Δẋ1 = (−
RRC

L(R+RC)
(1 − D) +

RRC
L(R+RC)

Δⅆ −
RL
L
)(x1 + Δx1) 

 (−
R

L(R+RC)
(1 − D) +

R

L(R+RC)
Δⅆ)(x2 + Δx2)) −

𝑉𝐷
𝐿
(1 − 𝐷) +

𝑉𝐷
𝐿
Δⅆ 

+
𝑉𝑖𝑛
𝐿

 

 

 

 

 

(2.69) 

 

ẋ1 + Δẋ1 = −
RRC

L(R+RC)
(1 − D)x1 +

RRC
L(R+RC)

Δⅆx1 −
RL
L
x1 

−
RRC

L(R+RC)
(1 − D)Δx1 +

RRC
L(R+RC)

ΔⅆΔx1 −
RL
L
Δx1 −

R

L(R+RC)
(1 − D)x2 

+
R

L(R+RC)
Δⅆx2 −

R

L(R+RC)
(1 − D)Δx2 +

R

L(R+RC)
ΔⅆΔx1 −

𝑉𝐷
𝐿
(1 − 𝐷) 

+
𝑉𝐷
𝐿
Δⅆ +

𝑉𝑖𝑛
𝐿

 

 

 

 

 

 

 

(2.70) 

Denklem 2.70’de  
RRC

L(R+RC)
ΔⅆΔx1 ve 

R

L(R+RC)
ΔⅆΔx1 ifadeleri ihmal edilir. 

ẋ1 = (−
RRC

L(R+RC)
(1 − D) −

RL
L
)x1 −−

R

L(R+RC)
(1 − D)x2)) −

𝑉𝐷
𝐿
(1 − D) 

+
𝑉𝑖𝑛
𝐿

 

 

 

(2.71) 

 

Δẋ1 = (−
RRC

L(R+RC)
(1 − D) −

RL
L
)Δx1 −

R

L(R+RC)
(1 − D)Δx2 

+(
R(RCx1 + x2)

L(R+RC)
+
𝑉𝐷
𝐿
)Δⅆ 

 

 

(2.72) 

 

ẋ2 + Δẋ2 =
R

C(R+RC)
(1 − (D + Δⅆ))(x1 + Δx1) −

1

C(R+RC)
(x2 + Δx2) 

= (
R

C(R+RC)
(1 − D) −

R

C(R+RC)
 Δⅆ)x1 + (

R

C(R+RC)
(1 − D))Δx1 

 

 

 

(2.73) 
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−
R

C(R+RC)
ΔⅆΔx1 −

1

C(R+RC)
 x2 −

1

C(R+RC)
Δx2 

 

 

Denklem 2.73’de  −
R

C(R+RC)
ΔⅆΔx1 ifadesi ihmal edilir. 

 

ẋ2 = (
R

C(R+RC)
(1 − D)x1 −

1

C(R+RC)
x2  (2.74) 

 

Δẋ2 =
R

C(R+RC)
(1 − D)Δx1 −

1

C(R+RC)
Δx2 −

R

C(R+RC)
 x1Δⅆ (2.75) 

 

y + Δy =
RRC
R+RC

(1 − (D + Δⅆ))((x1 + Δx1)) +
R

R + RC 
(x2 + Δx2) 

RRC
R+RC

(1 − D)x1 −
RRC
R+RC

Δⅆx1 +
RRC
R+RC

(1 − D)Δx1 −
RRC
R+RC

ΔⅆΔx1 

+
R

R+RC
x2 ++

R

R+RC
Δx2 

 

 

 

(2.76) 

 

Denklem 2.76’da  −
RRC

R+RC
ΔⅆΔx1 ifadesi ihmal edilir. 

 

y =
RRC
R+RC

(1 − D)x1 +
R

R + RC
x2 (2.77) 

 

Δy = 
RRC
R+RC

(1 − D)Δx1 +
R

R+RC
Δx2 −

RRCx1
R+RC

Δⅆ (2.78) 

 

[
Δẋ1
Δẋ2

] =

[
 
 
 −

RRC
L(RRC)

(1 − D) −
RL
L

−
R

L(R + RC)
(1 − D)

R

C(R + Rc)
(1 − D) −

1

C(R + Rc) ]
 
 
 

[
Δx1
Δx2

] 

+

[
 
 
 
R(RCx1 + x2)

L(R + Rc)
+
VD
L

−
RIL

C(R + Rc) ]
 
 
 

 Δⅆ 

(2.79) 
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 Δy = [
RRC
R+RC

(1 − D)    
R

R+RC
] ΔX + [

RRCX1
R + RC

] Δⅆ (2.80) 

 

Küçük işaret modeli (2.79) ve (2.80)’deki gibi elde edilmiştir. Bölüm 2.1'de elde edilen 

tasarım parametreleri, sayısal modeli elde etmek için (2.79) ve (2.80) de kullanılmıştır. 

 

𝐴 = [
−74 −257.13

765.919 −10.637
]  (2.81) 

 

𝐵 = [
19766.9266
−796.981

] (2.82) 

 

𝐶 = [
0.0036 
1

]  (2.83) 

 

 𝐷 = [0.003745]  (2.84) 

 

Son olarak geliştirilen yükseltici devresinin transfer fonksiyonu (2.85)’deki gibi bulunmuştur. 

 

G(s) =
Vo(s)

ⅆ(s)
=
0.003745s2 −  725.5s +  1.508e07

s2 + 84.64 s +  1.977e05
 (2.85) 
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BÖLÜM 3  

 

DENETLEYİCİ TASARIM ÇALIŞMALARI İLE KONTROLÖR TASARIMI 

 

3.1 ZİEGLER NİCHOLS YÖNTEMİ 

 

1942'de Ziegler-Nichols, zaman tepkisi ve deneyimlere dayanan bir ayar formülü [57-58], 

sunmuştur. Ziegler-Nichols ayarlama yöntemi, bir PID denetleyicisini ayarlamanın deneysel 

bir yöntemidir. Kontrolörlerin parametrelerinin belirlenmesi veya PID kontrolörlerin 

ayarlanması sistem üzerinde yapılan deneylerle elde edilmiştir.  

 

Ziegler-Nichols yöntemi motor hız kontrol uygulamaları [59-62] fotovoltaik güneş enerji 

sistemlerinin kontrolü [63-65] konvertörler [66-69] ve invertörlerin [70-72] kontrol 

uygulamaları gibi birçok güç elektroniği uygulamalarında çokça kullanılmıştır. 

 

Ziegler ve Nichols, belirli bir sistemin geçici tepki özelliklerine bağlı olarak oransal kazanç, 

integral zamanı ve türev zamanı değerlerinin belirlenmesi için bazı denklemleri öne 

sürmüştür. Bu değerlerin yer aldığı transfer fonksiyonunu içeren kapalı çevrim bir sistem 

Şekil 3.1’de sunulmuştur. Ziegler-Nichols ayar kuralları olarak adlandırılan iki yöntem 

bulunmaktadır. Bunlar, birinci yöntem ve ikinci yöntemdir. Aşağıda bu iki yöntemin kısa bir 

sunumu verilmiştir.  

 

Birinci yöntem: Bu yöntemde sistemin birim basamak cevabı deneysel olarak elde edilir. 

Sistem ne entegratör(ler)i ne de baskın kompleks eşlenik kutupları içermiyorsa, birim 

basamak tepkisi S şekline benzer şekilde olabilir. Böyle bir basamak cevabı deneysel olarak 

ya da sistemin dinamik simulasyonları ile oluşturulabilir.  
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Şekil 3.1 Kapalı çevrim transfer fonksiyonu 

 

Bu S şekilli eğri iki sabit ile karakterize edilir: Gecikme zamanı L ve zaman sabiti T. Bu 

parametreleri elde etmek için S-şekilli eğrinin bükülme noktasından teğet bir çizgi çizilir, bu 

çizginin zaman ekseni ve c(t)=K doğrusu ile kesişme noktaları belirlenir ve Şekil 3.2’de 

gösterildiği gibi elde edilir. Teğetin zaman ekseni ile kesiştiği noktanın sıfır noktasına olan 

uzaklığı gecikme zamanı olarak adlandırılır ve teğet ile c(t)=K doğrusunun kesiştiği noktanın 

zaman eksenindeki izdüşümünün sıfır noktasına olan uzaklığının L kadar eksiği de zaman 

sabiti olarak adlandırılır.  

 

 

 

 

 

 

 

 

 

 

 

 

Çizelge 3.1 Birinci yöntem için Ziegler-Nichols parametre ayarlama tablosu. 

Kontrol 

Tipi 

Kp Ti Td 

P T

 L
 

∞ 0 

PI 
0.9

T

 L
 

L

0.3
 

0 

PID 
1.2

T

L
 

2L 0.5L 

 

Şekil 3.2 Birinci yöntem için bir sistemin birim basamak cevabı 

c(t) 

K 

T

 

L 

Kıvrılma 

noktasından 

çizilen teğet  

0 

t 

 T 
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C(s)/U(s) fonksiyonu yaklaşık olarak aşağıdaki gibi hesaplanır: 

 

C(s)

U(s)
=
Ke-LS

Ts+1
 (3.1) 

 

Ziegler ve Nichols değerlerini Çizelge 3.1’deki gösterilmiş olan formüle göre ayarlamayı 

önerdiler. 

 

Gc(s)=Kp(1+
1

Tis
+Tⅆs)=1.2

T

L
(1+

1

2Ls
+0.5Ls)=0.6T

(s+
1
L )

2

s
 

 

(3.2) 

  

Buradan, PID kontrolörün orjinde bir kutbu ve s=-1/L noktasında da iki tane sıfırı olduğu 

görülür. 

 

İkinci Method: Bu metodda ilk olarak Ti=∞ (integral zamanı) ve Td=0 (differensiyel zamanı) 

olacak şekilde ayarlanır. Sadece şekilde görülen oransal kontrol kullanılır. Kp, 0'dan çıktının 

ilk olarak sürekli salınımlar gösterdiği Kcr kritik değerine yükseltilir. Eğer çıktı, Kp'nin 

alabileceği değer ne olursa olsun sürekli salınımlar göstermiyorsa, o zaman bu metod 

uygulanamaz.  

 

Şekil 3.4’de kritik kazanç Kcr ve karşılık gelen periyot deneysel olarak belirlenir. Çizelge 

3.2’ye göre parametreler hesaplanır. 

 

 

Şekil 3.3 Oransal kontrolör ile kapalı çevrim bir sistem 
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Çizelge 3.2 Birinci yöntem için Ziegler-Nichols parametre ayarlama tablosu 

Kontrol 

Tipi 

Kp Ti Td 

P 0.5Kcr ∞ 0 

PI 0.45Kcr 1

1.2
Pcr 

0 

PID 0.6Kcr 0.5𝑃𝑐𝑟 0.125𝑃𝑐𝑟  

 

Gc(s)=Kp(1+
1

Tis
+Tⅆs)=Gc(s)=0.6Kcr(1+

1

0.5Pcrs
+0.125Pcrs)=0.075KcrPcr

(s+
4
Pcr
)
2

s
 

 

(3.3) 

 

Ziegler-Nichols’un ikinci yöntemi ile tasarlanan PID’de orjinde bir kutup ve -4/Pcr 

noktasında iki tane sıfırı vardır. Sistemin bilinen bir matematiksel modeli varsa o zaman Kcr 

kritik kazancını ve sürekli salınımların frekansını ꙍ𝑐𝑟  bulmak için kök-yer eğrisi yöntemini 

kullanabiliriz, burada 2π/ꙍcr=Pcr ‘dir. Bu değerler jꙍ ekseni ile kök yer eğrisinin kollarının 

kesişme noktalarından bulunabilir. Eğer kök yer eğrisinin kollarının jꙍ eksenini kesmiyor ise, 

bu yöntem uygulanamaz.  

 

Ziegler-Nichols ayarlama kuralları kontrol sistemlerinde sistem dinamiklerinin tam olarak 

bilinmediği yerlerde PID kontrolörlerini ayarlamak için yaygın olarak kullanılmıştır ve uzun 

yıllar boyunca, bu tür ayarlama kurallarının faydalı olduğunu kanıtlanmıştır. Ziegler-Nichols 

ayarlama kuralları elbette dinamikleri bilinen sistemlerde de uygulanabilir [16].  

 

İkinci yöntemde, kritik kazanç Kcr ve sürekli salınımların frekansı ꙍcr 'yi bulmak için root-

locus yöntemi kullanılır. Bu çalışmada bu değerler sırasıyla 0.017 ve 6.28 rad/s ‘dir.   

c(t) 

 

 

0 

t 

Pcr 

 T 

Şekil 3.4  Sürekli osilasyonda Pcr ölçümü 
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3.2 YAPAY ZEKA OPTİMİZASYON ALGORİTMALARI VE PARÇACIK SÜRÜ 

OPTİMİZASYONU İLE PID KONTROLÖR TASARIMI 

 

Yapay zeka teknolojisi, 1950'lerde yükselen yeni bir çalışma alanı olmuştur [73-74]. Sadece 

teknolojiyi incelemekle kalmamış, aynı zamanda ilgili teknolojiyi ürünlere uygular ve akıllı 

ürünler geliştirmiştir. İnsanların ilgili faaliyetleri tamamlamasına ve insan zekasının bir 

kısmını genişletmesine yardımcı olmak için kullanılan, insana benzeyen veya kısmen 

benzeyen teknik bir disiplindir. 

 

Yapay zeka algoritması temel olarak doğadaki bazı yasaları taklit etmektir ve insanlar 

doğanın bu kanunlarını, matematiksel problemleri çözmek için kullanmaktadır [75]. 

Bunlardan bazıları; yapay arı koloni, parçacık sürü, karınca koloni, genetik, benzetimli 

tavlama, gri kurt gibi algoritmalardır. 

 

Karınca Koloni Algoritmaları yeni bir biyonik algoritmadır [76-77] ve İtalyan bilim adamı 

Marco Dorigo, karıncaların yiyecek arama davranışlarını inceleyerek temel prensibini 

araştırmıştır [75]. Marco Dorigo ve arkadaşları ilk olarak üç karınca algoritması tanımlamıştır. 

Bu algoritmaları gezgin satıcı problemi üzerinde incelemiştir [78]. 

 

Karıncalar, yiyecek arama sürecinde gruplar arasında bilgi alışverişinde bulunabilirler. Bu 

iletişim daha çok yolculukları sırasında açığa çıkan feromon denilen maddelerle gerçekleşir. 

Karıncalar genellikle daha fazla feromon maddesinin bulunduğu yolu seçer. Elbette daha az 

maddenin bulunduğu yöne doğru gitme ihtimalleri de vardır. Bu iletişim aynı zamanda 

karıncaların yiyeceklerden en iyi çıkış yolunu bulmalarının da sağlar. Bu hayvanlar, 

feromonlarını kullanarak yuvasından yiyeceğe giden en iyi yolu tespit eder. Karınca koloni 

algoritması böyle bir besin arama mekanizmasını temel alarak geliştirilmiştir [79]. Elbette 

algoritmadaki karıncalar doğadaki karıncalardan biraz farklıdır. Bunların, hafızası vardır ve 

tamamen görmez değildirler [78]. 

 

Gri kurt optimizasyonu (GWO), Mirjalili ve arkadaşları tarafından tanıtılan yeni meta-sezgisel 

optimizasyon algoritmalarından biridir [80]. Gholizadeh, doğrusal olmayan davranışı göz 

önünde bulundurarak çift katmanlı ızgaraların optimizasyon problemini çözmek için GWO 

algoritmasını geliştirmiştir. Sonuçlar, GWO'nun doğrusal olmayan çift katmanlı ızgaraların 
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optimal tasarımını bulmada diğer algoritmalara daha etkin performans sergilediğini ortaya 

koymuştur [81].  

 

GWO, sosyal hiyerarşiden ve gri kurtların akıllı avlanma yönteminden ilham almıştır. 

Genellikle gri kurtlar yaşam alanlarında besin zincirinin en tepesinde yer alır. Gri kurtlar 

çoğunlukla 5-12 kişilik bir guruplar halinde yaşar. Özellikle bozkurtların hayatında katı bir 

sosyal hiyerarşi vardır. Şekil 3.5'de gösterildiği gibi, bir gri kurt sürüsünün (alfa) liderleri, 

genellikle sürüleri için uyku yeri, avlanma ve uyanma zamanı gibi kararlardan sorumlu olan 

erkek ve dişi kurtlardır. 

 

 

Şekil 3.5 Gri kurtların hiyerarşisi 

 

Çoğunlukla, sürünün diğer bireyleri, alfa tarafından verilen karara uymak zorundadır.  

Grubu yönetmek, alfanın ana rolüdür. Bir gri kurt sürüsünde disiplin ve organizasyon en 

önemli unsurlardır. Gri kurtların sosyal hiyerarşisinde alfa'nın yanındaki seviye beta'dır ve 

beta'nın rolü alfaya karar vermede yardımcı olmaktır. 

 

Beta, erkek veya dişi kurtlar olabilir ve beta, biri yaşlandığında veya öldüğünde alfa için en 

iyi ikame adayı olabilir. Beta, alfa sıralarını güçlendirir ve alfaya geri bildirimler verir. Bir gri 

kurt sürüsünün en zayıf seviyesi omega'dır. Alfa, beta ve omega dışındaki kalan kurtlara alt 

(delta) adı verilir.  

 

GWO algoritmasında gri kurtların sosyal hiyerarşisinin matematiksel olarak modellenmesi en 

iyi çözümün alfa (α) olduğunun düşünülmesiyle başlar. Diğer en iyi çözümler sırasıyla beta 
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(β) ve delta (δ) olarak değerlendirilir ve son olarak omeganın (ω) bir diğer çözüm olduğu 

varsayılır. Gri kurt algoritmasında optimizasyon α, β ve δ ile yönlendirilir ve ω kurtları onları 

takip eder [82]. 

 

Genetik Algoritmalar, Darwin'in doğada en uygun olanın hayatta kalması teorisini taklit eder. 

GA, 1992'de J.H. Holland tarafından önerimiştir. GA'nın temel öğeleri, kromozom temsili, 

uygunluk seçimi ve biyolojikten ilham alan operatörlerdir. Holland ayrıca, genellikle GA 

uygulamalarında kullanılan Inversion adlı yeni bir öğeyi de tanıtmıştır [83]. 

 

GA, evrimden ilham alan bir modeldir. Bu algoritmalar, basit bir kromozom benzeri veri 

yapısı üzerinde çözüm üretir ve önemli bilgileri korumak için bu yapılara rekombinasyon 

operatörleri uygular. Genetik algoritmaların kullanıldığı problemler oldukça çeşitli olmasına 

rağmen, genetik algoritmalar genellikle fonksiyon optimize edici olarak görülür. 

 

Genetik algoritmanın bir uygulaması bir kromozom popülasyonu ile başlar. Ardından bu 

yapılar analiz edilir ve ele alınan soruna daha iyi bir çözüm getiren bu kromozomlara, daha 

zayıf çözümler olan kromozomlardan daha çok “çoğalma” olanağı verilecek şekilde üreme 

fırsatları belirlenir. Bir çözümün ne kadar iyi olduğu mevcut nüfusa göre tanımlanır. 

 

GA'lar, bir ilk çözüm veya hipotez kümesinden başlayarak ve ardışık çözüm "nesilleri" 

üreterek evrimi simüle ederek arama yapar ve canlıların doğada daha dayanıklı bireylere 

dönüşme çabasını temel alır. Ana fikir, en uygun olanın, yani doğal seçilimin hayatta 

kalmasıdır. 

 

Genetik Algoritmalar, doğal seleksiyon ve doğal genetik kavramlarına dayanan arama 

algoritmalarıdır. Genetik algoritma, kromozomlar (canlının yapısını kodlamak için organik 

cihazlar) üzerinde doğal evrimde gözlemlenen bazı süreçlerin benzetimini yapmak için 

geliştirilmiştir. Genetik algoritma, bir nokta popülasyonu arasında arama yapması ve 

parametre değerlerinin kendisinden ziyade bir parametre seti kodlamasıyla çalışması 

bakımından diğer arama yöntemlerinden farklıdır. 

 

Ayrıca herhangi bir gradyan bilgisi olmadan amaç fonksiyonu bilgisini kullanır. Genetik 

algoritmanın geçiş şeması iki olasılıklı iken, geleneksel yöntemler gradyan bilgisini kullanır. 

Genetik algoritmalar bu özellikleri nedeniyle genel amaçlı optimizasyon algoritması olarak 
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kullanılırlar. Ayrıca düzensiz uzayda arama yapmak için araçlar sağlarlar ve bu nedenle çeşitli 

fonksiyon optimizasyonu, parametre tahmini ve makine öğrenimi uygulamalarına uygulanırlar 

[84]. Güç elektroniği uygulamalarında da diğer algoritmalarla kıyaslamaları çokça yapılmıştır 

[85-88]. 

 

Yapay Arı Kolonisi algoritması, sayısal problemleri optimize etmek için 2005 yılında 

Karaboğa tarafından tanıtılan sürü tabanlı bir meta-sezgisel algoritmadır. Bal arılarının akıllı 

yiyecek arama davranışlarından ilham almıştır [89]. Ayrıca D. Karaboğa, B. Akay ile birlikte 

bu algoritmanın diğer sezgisel algoritmalarla karşılaştırılma çalışmasını [90] ve modifiye 

edilmiş bir yapay arı algoritmasını da [91] sunmuştur. Elektrikli araç uygulamaları [92-93],  

optimal enerji yönetim sistemleri [94], PV sistemler [95], filtre tasarımı [96-97] güç iletim 

dağıtım uygulamaları [98-99] gibi çok geniş bir alanda kullanılmıştır. 

 

Algoritma, özellikle bal arısı kolonilerinin yiyecek arama davranışı için Tereshko ve 

Loengarov (2005) tarafından sunulan modeldir. Modeli üç temel bileşen oluşturur: İşçi arılar, 

toplayıcı arılar ve yiyecekler. İlk iki bileşen, işçi ve toplayıcı arılar, üçüncü bileşen olan 

zengin besin kaynaklarını kovanlarına yakın yerlerde ararlar. Model ayrıca, kendi kendilerini 

organize edebilme ve müşterek hafıza için gerekli olan iki önemli davranışı tanımlamaktadır. 

Pozitif geri dönütle sonuçlanan zengin besin kaynaklarına diğer toplayıcıların kabul edilmesi 

ve negatif dönüşlere sebep olan toplayıcılar tarafından kötü kaynaklardan uzaklaşılmasıdır. 

 

Yapay arı kolonisi algoritmasnda, bir yapay toplayıcı arı (aracı) kolonisi, zengin yapay besin 

kaynak ya da kaynakları (sorun için en iyi çözüm ya da çözümler) arar. Algoritma'yı 

uygulamak için düşünülen optimizasyon problemi öncelikle amaç fonksiyonunu minimize 

eden en iyi çözümü bulma problemine çevrilir. Sonrasında, yapay arılar keyfi bir başlangıç 

çözüm popülasyonu elde ederler ardından stratejileri uygulayarak bunları tekrarlamalı olarak 

geliştirirler: Kötü çözümleri bırakırken bir komşu arama mekanizması vasıtası ile daha iyi 

çözümlere yönelirler [100]. 

 

Benzetimli tavlama, Kirkpatrick, Gelett ve Vecchi (1983) ve Cerny'de (1985) birkaç yerel 

minimuma sahip olabilen bir maliyet fonksiyonunun global minimumunu bulmak için 

önerilen olasılıksal bir yöntemdir. Bir katının yavaş yavaş soğutulduğu fiziksel süreci taklit 

ederek çalışır [101]. 
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Benzetilmiş tavlama edilmiş tavlama, ayrık ve daha az ölçüde sürekli optimizasyon 

problemlerini ele almak için kullanılan, iyi çalışılmış bir yerel arama metasezgisel 

algoritmadır. Algoritmanın temeli, küresel bir optimum çözüm bulma umuduyla tepe 

tırmanma hareketlerine (yani, amaç fonksiyon değerini kötüleştiren hareketlere) müsade 

ederek yerel optimumdan kaçmak için bir mekanizma sağlamasıdır. 

 

Doğal fenomenleri çoğaltmak için kurallar ve rastgelelik kombinasyonu genellikle 

metasezgisel algoritmalarda kullanılır. Bu fenomenler, Genetik Algoritmalar, Genetik 

Programlama, Evrim Stratejisi (ve Diferansiyel Evrim gibi biyolojik evrim sürecini içerebilir 

[102]. 

 

Örneğin bir etoloji fenomeni olarak hayvan davranışları, Karınca Kolonisi Optimizasyonu 

,Parçacık Sürü Optimizasyonu ,Bakteri Toplayıcılık Optimizasyon Algoritmaları ve Arı 

Kolonisi Optimizasyonudur. Fizik olaylarının örnekleri, benzetilmiş Tavlama, Eşik Kabul 

Yöntemi ve Mikro kanonik Tavlamadır [100]. 

 

Metasezgisel Algoritmalar üç ana amaç için çalışır: problemi daha hızlı çözmek, büyük 

problemleri çözmek ve sağlam algoritmalar elde etmek. Ayrıca esnektirler, tasarımı basittir ve 

uygulanması zor değildir [103]. 

 

3.2.1 Parçacık Sürü Optimizasyonu  

 

Parçacık sürüsü optimizasyonu (PSO), 1995 yılında Dr. Eberhart ve Dr. Kennedy tarafından 

kuş sürülerinin veya balık sürülerinin sosyal davranışlarından esinlenerek geliştirilen 

popülasyona dayalı stokastik bir optimizasyon tekniğidir [104].  

 

PSO birçok uygulama ve araştırma alanında başarıyla uygulanmıştır. PSO'nun diğer 

yöntemlere göre daha hızlı ve ucuz bir şekilde daha iyi çıktılar verdiği gösterilmiştir [105]. 

PSO'nun kullanışlı olmasının bir diğer iyi tarafı da ayarlanacak çok az parametrenin 

olmasıdır. Küçük farklılıklar içeren bir sürüm, çok çeşitli uygulamalarda iyi çalışabilir [106]. 

 

PSO, parçacık kullanarak doğrusal olmayan fonksiyonların optimizasyonu için sürü 

metodolojisi kullanır. Ayrıca Genetik Algoritmalar (GA) gibi evrimsel hesaplama 

yöntemleriyle birçok benzerliğe sahiptir. Algoritma rastgele çözümler popülasyonu ile başlar 
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ve nesilleri güncelleyerek optimumu arar. Ancak, GA'dan farklı olarak PSO, çaprazlama ve 

mutasyon gibi evrim operatörlerine sahip değildir. PSO'da parçacık adı verilen muhtemel 

çözümler, mevcuttur ve optimum parçacıkları izleyerek problem uzayında uçar. 

 

Bütün parçacıklar, belirli bir ana kadar elde ettiği en iyi çözüm (uygunluk değeri) ile ilişkili 

olan problem uzayındaki koordinatlarını tutar. Yani uygunluk değeri de saklanır. Bu değere 

pbest denir. Parçacık sürüsü optimize edici tarafından izlenen diğer bir "en iyi" değer, belirli bir 

parçacığın komşularındaki rasgele bir parçacık tarafından o ana kadar elde edilen en iyi 

değerdir. Bu konuma lbest denir. Tüm popülasyon topolojik olarak bir parçacığın komşuları ise 

en iyi değer global en iyisidir ve gbest olarak adlandırılmaktadır. 

 

Parçacık sürüsü optimizasyonu kavramı, her bir zaman aralığında, her bir parçacığın hızının 

lbest ve gbest’e doğru değiştirilmesinden oluşur ve pbest ve lbest konumlarına doğru hızlanma için 

rastgele sayılar üretmektedir.  

 

Her bir birey, kendi yer değiştirmesine karar vermek için ulaşabileceği en yakın komşuların 

yer değiştirmesiyle ilgili yerel bilgileri kullanmaktadır. Bu yöntem, arama alanında vektörler 

şeklinde hareket eden büyük bir parçacık grubunu tasarlamaktadır. Her 𝑖 parçacığı, konumu 

𝑥𝑖  ve pozisyon değişikliği vektörü 𝑣𝑖 (hız) ile karakterize edilir. Her bir iterasyon için 

parçacığın hareketi: 𝑥𝑖(𝑡)  =  𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡 − 1)  olarak verilir. Yöntemin özü her bir 

iterasyondan sonra 𝑣𝑖’nin seçilme biçiminden oluşur. Bireyler kendi son davranışlarından ve 

komşularının hareketlerinden etkilenmektedir. Bu nedenle, parçacıkların konumunun 

güncellenmesi şunlara bağlıdır: hareketlerinin yönü, hızları, önceki en iyi konumları (𝑝𝑖) ve 

komşular arasında en iyi konum (𝑝𝑔). 

 

𝑥𝑖(𝑡)  =  𝑓 (𝑥𝑖(𝑡 −  1), 𝑣𝑖(𝑡 −  1), 𝑝𝑖, 𝑝𝑔)  (3.4) 

 

Her bir itererasyonda konumdaki değişiklik aşağıdaki şekilde uygulanır: 

 

𝑣𝑖(𝑡)  =  𝑣𝑖(𝑡 −  1)  + 𝜑1 (𝑝𝑖  −  𝑥𝑖(𝑡 −  1))  +  𝜑2 (𝑝𝑔  −  𝑥𝑖(𝑡 −  1)) 𝑥𝑖(𝑡)  (3.5) 

 

𝑥𝑖(𝑡) =  𝑥𝑖(𝑡 −  1) + 𝑣𝑖(𝑡 −  1), (3.6) 
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𝜑𝑛 parametreleri rastgele belirlenir, 𝜑1  ve  𝜑2  sırasıyla bireysel deneyim ve sosyal 

deneyimlerdir [107]. 𝜑1 = 𝑐1𝑟2, 𝜑2 = 𝑐2𝑟2 olarak düşünülürse. 𝑐1, 𝑐2, bilişsel sabit, 𝑟1,  𝑟2  ise 

[0,1] arasında oluşturulan rastgele sayılardır. PSO algoritması, sonlandırma kriterine ulaşana 

kadar çalışmaya devam etmektedir.  

 

Bu çalışmada, sonlandırma kriteri olarak iterasyon sayısı seçilmiştir. Sürüdeki parçacıklar, 

belirlenen performans indeksine göre en iyi değeri elde etmeye çalışırlar. PSO tabanlı 

optimizasyon çalışmasında parçacık sayısı 10 ve 20 olarak alınmıştır. Iterasyon sayısı 20, 

𝑐1=0.707, 𝑐2=0.707 olarak seçilmiştir ve maliyet fonksiyonu (IAE: Integral of the Absolute 

Error) Şekil 3.6’daki gibi elde edilmiştir. Son olarak, yukarıda sunulan yöntemlerle elde 

edilen kontrolörlerin parametreleri Çizelge 4.1'de listelenmiştir. PSO optimizasyon adımları 

Şekil 3.7’de gösterildiği gibidir, iterasyon devam ettikçe parçacıkların konumları ve hızları 

güncellenir. 

 

 

Şekil 3.6 10 Parçacıklı ve 20 Parçacıklı PSO için maliyet fonksiyonu 
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Şekil 3.7 PSO Algoritma Şeması. 

 

3.2.2 Kesir Dereceli Kontrol Sistemleri 

 

Kesirli dereceli sistem, diferansiyel denklemlerle temsil edilen dinamik bir sistem olarak 

tanımlanmaktadır. Türevlerin dereceleri herhangi bir gerçek sayı alabilir, tamsayı olması 

gerekmez. Analizin kesirli mertebelere genişletilmesi, analitik matematiğin geliştirilmesinden 

beri bilinmektedir ve 1695'te Leibniz ve L'Hospital arasındaki mektuplaşmalar konuyla ilgili 

ilk referans olarak kabul edilir [104]. Kesirli analiz ile ilgili ilk çalışmalar Liouville (1832), 

Holmgren (1864), and Riemann (1953) isminde birkaç araştırmacı tarafından yapılmıştır 

[105].  Kesir dereceli hesabın uygulamalarından biri olan kesir dereceli kontrol, elli yıl önce 

büyük nesnelerin konum kontrolü için Tustin tarafından tanıtılmıştır [106]. Diğer bazı 

araştırmalar ise 1960'lı yıllarda Manabe tarafından yapılmıştır [107]. Bununla birlikte, kesirli 



35 

dereceli kontrol, temel olarak yeterli matematik bilgisinin olmaması ve o sırada mevcut olan 

sınırlı hesaplama gücü nedeniyle kontrol mühendisliği çalışmalarında yer almamıştır. Ancak 

son birkaç on yılda araştırmacılar, farklı uygulamalar içeren bilim ve mühendislik 

alanlarındaki birçok problemi kesir dereceli modelleme teknikleri ile tartışmıştır [108-110]. 

Ayrıca çeşitli sistemleri kesirli mertebeden diferansiyel denklemlerle tamsayı mertebeli 

olanlardan daha iyi bir şekilde modelleyebileceklerini ve kesirli dereceli diferansiyel 

denklemlerin dinamik süreçleri açıklamak için mükemmel bir yol sunduğunu keşfetmişlerdir 

[111-113]. 

 

3.2.2.1  Kesir Dereceli Sistemlerin Tanımları 

 

Analitik matematik, çeşitli yaklaşımlarla kesirli türevlerin ve integrallerin çeşitli tanımlarını 

ortaya koymuştur [114].  

 

𝐷𝑎
 
𝑡
𝛾 = 

{
 
 

 
   
𝑑𝛾

𝑑𝑡𝛾
,                          ℜ (𝛾) >  0  

 1,                              ℜ (𝛾) = 0

∫ (𝑑𝜏)−𝛾,
𝑡

𝑎

                ℜ (𝛾) <  0

 (3.7) 

 

Burada, 𝛾, kompleks olabilen kesir derecesidir, 𝑎, başlangıç koşullarına ilişkin sabittir. ℜ (𝛾), 

kesir derecenin reel kısmını ifade eder. Bu eşitlik differansiyel ve integral kavramlarını tek bir 

eşitlik üzerinde birleştirdiği için Oldham and Spanier tarafından differintegral olarak 

adlandırılmıştır [115]. 

 

Kesir dereceli türev ve integralin en temel tanımı Gr¨unwald–Letnikov tarafından yapılmıştır. 

 

𝐷𝑎
 
𝑡
𝛾 𝑓(𝑡) = lim

ℎ→0

1

ℎ𝛾
∑ (−1)𝑗

[(𝑡−𝑎)/ℎ]

𝑗=0

(
𝛾

𝑗
)  𝑓(𝑡 − 𝑗ℎ) (3.8) 

 

(
𝛾

𝑗
) =

𝛤(𝛾 + 1)

𝛤(𝑗 + 1)𝛤(𝛾 − 𝑗 + 1)
 (3.9) 
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Burada Γ(x), gama fonksiyonu ℎ, zaman artışı, f(t), fonksiyon’dur. Bu tanım, tamsayı dereceli 

türevlerin sonlu bir seriyi ifade ederken, kesir dereceli türevlerin sonsuz sayıda terim 

gerektirdiğini ortaya koymaktadır. 

 

Otomatik kontrol sistemlerinin analiz ve sentezinde yaygın olarak Laplace dönüşümü yöntemi 

kullanılmaktadır. Diferansiyel operatör 𝐷𝑎
 
𝑡
𝛾 'nin Laplace dönüşümü, aşağıdaki şekilde 

verilmiştir. 

 

ℒ{ 𝐷𝑎
 
𝑡
𝛾𝑓(𝑡) } = ∫ 𝑒𝑠𝑡

∞

𝑎

𝐷𝑎
 
𝑡
𝛾𝑓(𝑡)𝑑(𝑡) = 𝑠𝛾 𝐹(𝑠) ,   ( 𝑎 = 0) (3.10) 

 

 ∑ 𝑠𝑚(−1)𝑗
𝑛−1

𝑚=0

𝐷0
 
𝑡
𝛾−𝑚−1 𝑓(𝑡) ∣𝑡=0 (3.11) 

 

𝐹(𝑠) =  ℒ{𝑓(𝑡) }, normal bir Laplace dönüşümü, n, bir tam sayıdır, 𝑛 − 1 < 𝛾 ≤ 𝑛. 

Eğer,  

𝐷0
 
𝑡
𝛾−𝑚−1 𝑓(𝑡) ∣𝑡=0  , m = 0, 1, 2, . . . , n − 1        

ise  

ℒ{ 𝐷𝑎
 
𝑡
𝛾𝑓(𝑡) } = 𝑠𝛾 𝐹(𝑠)         olur. 

 

Dahası, Fourier dönüşümü, tıpkı tamsayı dereceli karşılığı gibi, Laplace dönüşümü formunda 

s'yi jω ile değiştirerek tam olarak elde edilmektedir. 

 

Kesir dereceli bir sistem, kesir dereceli matematiksel modellerle daha iyi tanımlanır. 

Geleneksel yaklaşımın aksine, kesirli dereceli sistem keyfi bir gerçek mertebenin transfer 

fonksiyonuna sahiptir. 

 

Bir transfer fonksiyonu aşağıdaki şekilde düşünüldüğünde; 

 

𝐺(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
=

𝑏𝑛𝑠 
 𝛽𝑛 + 𝑏𝑛−1𝑠 

 𝛽𝑛−1 +⋯+ 𝑏1𝑠 
 𝛽1 + 𝑏0𝑠 

 𝛽0

𝑎𝑛𝑠 
 𝛼𝑛 + 𝑎𝑛−1𝑠 

 𝛼𝑛−1 +⋯+ 𝑎1𝑠 
 𝛼1 + 𝑎0𝑠 

 𝛼0
=
∑ 𝑏𝑖𝑠

𝛽𝑖𝑛
𝑖=0

∑ 𝑎𝑖
𝑛
𝑖=0 𝑠𝛼𝑖

 (3.12) 

 

Burada, 𝑎𝑖, 𝑏𝑖, 𝛽𝑛 > ⋯ > 𝛽1 > 𝛽0 ≥ 0  ve    𝑎𝑛 > ⋯ > 𝑎1 > 𝑎0 ≥ 0  reel sayılardır. 



37 

Zaman domeninde, G(s), homojen olmayan kesirli dereceli diferansiyel denklemin (n + 1) 

terimlerine karşılık gelmektedir. 

 

∑ 𝐷 
𝛼𝑖𝑦(𝑡) =𝑎𝑖

 

𝑛

𝑖=0

∑ 𝐷 
𝛽𝑖𝑢(𝑡)𝑏𝑖

 

𝑛

𝑖=0

 (3.13) 

 

Burada, 𝑦(𝑡), sistemin çıkış 𝑢(𝑡) ise sistemin girişidir.  

 

3.2.2.2 Kesir dereceli  𝐏𝐈𝛌 ve 𝐏𝐈𝛌𝐃𝝁  Kontrol sistemeleri 

 

Şekil 3.8’de genel bir kesir dereceli sistemi göstermektedir. Burada, y çıktıdır, r referans 

girişidir, e hata ve u kontrol sinyalidir. G(s) sistemin transfer fonksiyonu ve C(s), kesirli 

dereceli PIλ veya PIλD𝜇  tipteki kontrolörün transfer fonksiyonudur. 

 

Şekil 3.8 Kesir dereceli kapalı çevrim bir sistem 

 

Bu tip kontrolörlerle kontrol edilecek sistem hem kesirli hem de tamsayılı olabilir. 

Kontrolörün transfer fonksiyonu şu şekildedir: 

 

𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 +

𝑘𝑖
𝑠λ
+ 𝑘𝑑𝑠

𝜇 

 

(3.14) 

 

λ ve 𝜇, değerleri (0, 2) aralığında olan kesirli derecelerdir. Eğer λ ≥ 2 veya μ ≥ 2 ise kontrolör, 

PID yapısından farklı formda daha yüksek dereceli yapıya dönüştürülür. 

 

Eğer differansiyel eleman bulunmuyorsa bu durumda kontrolör 3.15 formunda ifade edilir. 
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𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 +

𝑘𝑖

𝑠λ
  

 

(3.15) 

 

Denklem 3.14’de λ = 1 ve μ = 1 alındığında, klasik bir PID denetleyicisi elde edilir. λ = 1 ve μ 

= 0 bir PI denetleyicisi verir, λ = 0 ve μ = 1 bir PD denetleyicisi verir ve λ = 0 ve μ = 0 bir 

kazanç verir. Tüm bu klasik PID denetleyici türleri, kesirli PIλD𝜇 denetleyicinin özel 

durumlarıdır [116]. Bu nedenle, PIλD𝜇 denetleyicileri, λ mertebesinde bir entegratör ve μ 

mertebesinde bir türev alıcı içerdiğinden, geleneksel PID denetleyicilerinin bir genellemesi 

olarak düşünülebilir. Bununla birlikte, PIλD𝜇 denetleyicisi daha esnektir ve kesirli mertebeli 

bir kontrol sisteminin dinamik özelliklerini daha iyi ayarlamayı sağlamaktadır [117]. 

 

 𝐏𝐈𝛌 Kontrolör 

 

Şekil 3.8'de gösterilen birim geri beslemeli kesirli dereceli kontrol sistemini göz önünde 

bulundurulduğunda, burada G(s), kontrol edilecek tesistir ve C(s), Denklem (3.15) formuna 

sahip bir PIλ  kontrolörüdür.  

 

𝑦 = 𝑒𝐶(𝑠)𝐺(𝑠) (3.16) 

 

𝑒 = 𝑟 − 𝑦 (3.17) 

 

𝑦 = (𝑟 − 𝑦)𝐶(𝑠)𝐺(𝑠) (3.18) 

 

𝑦 =
𝐶(𝑠)𝐺(𝑠)

1 + 𝐶(𝑠)𝐺(𝑠)
𝑟  (3.19) 

 

Denklem 3.19’un paydası, kapalı çevrim sistemin kesir dereceli karakteristik polinomu olarak 

adlandırılır ve 3.12, 3.15 ve 3.19 kullanılarak eşitlik 3.21 elde edilmiştir. 

 

𝑃(𝑠; 𝑘𝑝, 𝑘𝑖, λ) = 1 + 𝐶(𝑠)𝐺(𝑠) = 1 + (𝑘𝑝 +
𝑘𝑖
𝑠λ
)
𝑁(𝑠)

𝐷(𝑠)
=  𝐷(𝑠) + (𝑘𝑝 +

𝑘𝑖
𝑠λ
)𝑁(𝑠)

=   𝐷(𝑠)𝑠λ + (𝑘𝑝𝑠
λ + 𝑘𝑖)𝑁(𝑠)      

 

(3.20) 
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Ardından, 𝑁(𝑠) = ∑ 𝑏𝑖𝑠
𝛽𝑖𝑛

𝑖=0  ,  𝐷(𝑠) = ∑ 𝑎𝑖
𝑛
𝑖=0 𝑠𝛼𝑖  yazılırsa 

 

=∑[𝑎𝑖𝑠
(𝛼𝑖+λ)

𝑛

𝑖=0

+ 𝑘𝑝𝑏𝑖𝑠
(𝛽𝑖+λ) + 𝑘𝑖𝑏𝑖𝑠

𝛽𝑖  (3.21) 

 

Eğer  𝑃(𝑠; 𝑘𝑝, 𝑘𝑖 , λ) denklemi, s-düzleminin sağ tarafında kök bulundurmuyorsa kapalı 

çevrim sistemin sınırlı giriş sınırlı çıkış kararlı bir sistem olduğu söylenebilir. 

 

 

 

Karakteristik polinom genel olarak aşağıdaki gibi verilebilir; 

𝑃(𝑠) = 𝑝𝑘𝑠
𝑞𝑘 + 𝑝𝑘−1𝑠

𝑞𝑘−1 +⋯+ 𝑝1𝑠
𝑞1 + 𝑝0𝑠

𝑞0 =∑𝑝𝑖𝑠
𝑞𝑖

𝑘

𝑖=0

  

 

(3.22) 

 

Burada, 𝑝𝑖, katsayı 𝑞𝑖, kesir derecesidir. P uzay parametresindeki kararlılık ve kararsızlık 

alanları arasındaki sınırlar, aşağıdaki üç durum tarafından tanımlanır. 

 

i) Reel kök sınırı: Bir reel kök s=0 noktasında sanal eksenin üzerinden geçiyorsa, denklem 

3.22’deki P(s) polinomunda s=0 yerine yazılır. Kesir dereceli karakteristik polinomun 

yalnızca en küçük mertebesinin (q0) değeri sıfır, yani 𝑠𝑞0 = 1 ise, bu sınır 𝑝0 = 0 olarak 

belirlenebilir. 

 

ii) Komplex kök sınırı: Bir çift karmaşık kök hayali eksen üzerinden s = jω noktasında kesişir. 

Bu nedenle, Denklem 3.22 kararsız hale gelir, bu da bu denklemin gerçek ve sanal 

kısımlarının aynı anda sıfır olduğu anlamına gelir. 

 

iii) Sonsuz kök sınırı: Reel bir kök sanal eksen üzerinde 𝑠 =  ∞ noktasında kesişir. Böylece 

sonsuz kök sınırı, Denklem 3.22'dan 𝑝𝑘  =  0 alınarak karakterize edilebilir. 

 

Yukarıdaki açıklamalar Denklem 3.21’teki kesir dereceli karakteristik polinoma 

uygulanırken, 𝑠𝛽0 = 1 için i'den reel kök sınırının şu şekilde belirlendiği sonucu çıkar: 𝑘𝑖  =  0. 
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Bu sınır, Denklem (3.20)'de 𝑠𝛽0 = 1 ve 𝑠 =  0'ın yerine yazılarak ve sıfıra eşitlenerek elde 

edilir.  

 

Komplex kök sınırları için 𝑠 = 𝑗𝜔  yazılır. 

 

𝑃(𝜔; 𝑘𝑝, 𝑘𝑖 , λ) =∑[𝑎𝑖𝑗𝜔
(𝛼𝑖+λ)

𝑛

𝑖=0

+ 𝑘𝑝𝑏𝑖𝑗𝜔
(𝛽𝑖+λ) + 𝑘𝑖𝑏𝑖𝑗𝜔

𝛽𝑖    

= ℜ{𝑃(𝑠)} + 𝑗𝐼{𝑃(𝑠)} = 0 

 

(3.23) 

Burada, 𝑅{𝑃(𝑠)} ve 𝐼{𝑃(𝑠)} kesir dereceli karakteristik polinomun sırasıyla reel ve imajiner 

kısımlarıdır. 

 

𝑗𝛾 = cos(𝛾
𝜋

2
) + 𝑗𝑠𝑖𝑛(𝛾

𝜋

2
) (3.24) 

 

𝑃(𝜔; 𝑘𝑝, 𝑘𝑖 , λ) =∑[𝑎𝑖𝜔
(𝛼𝑖+λ) (cos((𝛼

𝑖
+ λ)

𝜋

2
) + 𝑗𝑠𝑖𝑛((𝛼

𝑖
+ λ)

𝜋

2
))

𝑛

𝑖=0

+ 𝑘𝑝𝑏𝑖𝜔
(𝛽𝑖+λ) (cos((𝛽

𝑖
+ λ)

𝜋

2
) + 𝑗𝑠𝑖𝑛((𝛽

𝑖
+ λ)

𝜋

2
)

+ 𝑘𝑖𝑏𝑖𝜔
𝛽𝑖 (cos(𝛽𝑖

𝜋

2
) + 𝑗𝑠𝑖𝑛(𝛽𝑖

𝜋

2
))] 

(3.25) 

 

Ardından gerçek ve imajinar kısımlar sıfıra eşitlenir. 

 

∑[𝑎𝑖𝜔
(𝛼𝑖+λ) cos((𝛼

𝑖
+ λ)

𝜋

2
)

𝑛

𝑖=0

+ 𝑘𝑝𝑏𝑖𝜔
(𝛽𝑖+λ) cos((𝛽

𝑖
+ λ)

𝜋

2
) 

+𝑘𝑖𝑏𝑖𝜔
𝛽𝑖 (cos(𝛽𝑖

𝜋

2
)] = 0 

(3.26) 

 

∑[𝑎𝑖𝜔
(𝛼𝑖+λ)

𝑛

𝑖=0

 𝑠𝑖𝑛((𝛼
𝑖
+ λ

𝜋

2
) + 𝑘𝑝𝑏𝑖𝜔

(𝛽𝑖+λ) sin((𝛽
𝑖
+ λ)

𝜋

2
) 

+𝑘𝑖𝑏𝑖𝜔
𝛽𝑖 𝑠𝑖𝑛(𝛽𝑖

𝜋

2
))] = 0 

(3.27) 
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Son olarak bu iki denklem çözülerek çözerek PIλ denetleyici parametreleri şu şekilde elde 

edilir: 

 

𝑘𝑝 =
1

𝜔λ𝑠𝑖𝑛(λ
𝜋
2)

𝐴1(𝜔)𝐵2(𝜔) − 𝐴2(𝜔)𝐵1(𝜔)

𝐵1
2(𝜔) + 𝐵2

2(𝜔)
 (3.28) 

 

𝑘𝑖 =
1

𝜔λ𝑠𝑖𝑛(λ
𝜋
2)

𝐴2(𝜔)𝐵3(𝜔) − 𝐴1(𝜔)𝐵4(𝜔)

𝐵1
2(𝜔) + 𝐵2

2(𝜔)
 (3.29) 

 

𝐴1(𝜔) =∑[𝑎𝑖𝜔
(𝛼𝑖+λ) cos((𝛼

𝑖
+ λ)

𝜋

2
)

𝑛

𝑖=0

 (3.30) 

 

𝐴2(𝜔) =∑[𝑎𝑖𝜔
(𝛼𝑖+λ)

𝑛

𝑖=0

 𝑠𝑖𝑛((𝛼
𝑖
+ λ)

𝜋

2
) (3.31) 

 

𝐵1(𝜔) =∑ 

𝑛

𝑖=0

𝑏𝑖𝜔
𝛽𝑖 cos(𝛽𝑖

𝜋

2
) (3.32) 

 

 

 

 

𝐵4(𝜔) =∑ 

𝑛

𝑖=0  

𝑏𝑖𝜔
(𝛽𝑖+λ) sin((𝛽

𝑖
+ λ)

𝜋

2
) (3.35) 

 

Sonsuz kök sınırı ise sadece 𝛼𝑛 = 𝛽𝑛 olduğunda hesaplanabilir. Bu durumda kararlılık bölgesi 

𝑘𝑝 = −𝛼𝑛/𝑏𝑛  çizgisi ile sınırlıdır. 

 

𝐵2(𝜔) =∑ 

𝑛

𝑖=0

𝑏𝑖𝜔
𝛽𝑖 sin(𝛽𝑖

𝜋

2
) (3.33) 

𝐵3(𝜔) =∑ 

𝑛

𝑖=0  

𝑏𝑖𝜔
(𝛽𝑖+λ) cos((𝛽

𝑖
+ λ)

𝜋

2
) (3.34) 



42 

  𝐏𝐈𝛌𝐃𝝁  Kontrolör 

 

PIλD𝜇’in karakteristik polinomu eşitlik 3.36’da verilmiştir. 

 

P(s) =∑[𝑎𝑖𝑠
(𝛼𝑖+λ)

𝑛

𝑖=0

+ 𝑘𝑑𝑏𝑖𝑠
(𝛽𝑖+λ+𝜇) + 𝑘𝑝𝑏𝑖𝑠

(𝛽𝑖+λ)  + 𝑘𝑖𝑏𝑖𝑠
𝛽𝑖 
 
 (3.36) 

 

 

 

Reel kök sınırı: 

 

{  

𝑠𝛽0 = 1 ,               için               𝑘𝑖 = 0 
 

𝑠𝛽0 ≠ 1,                için                  0       
 

 (3.37) 

 

Sonsuz kök sınırı: 

 

{  

  (𝛼
𝑛
= 𝑏𝑛 )  yaⅆa  (𝛼𝑛 > 𝛽𝑛 ve 𝜇 > 𝛼

𝑛
− 𝛽𝑛),       için                         𝑘𝑑 =  0  

(𝛼𝑛 > 𝛽𝑛 ve 𝜇 > 𝛼
𝑛
− 𝛽𝑛),                                        için             𝑘𝑝 = −𝛼𝑛/𝑏𝑛

(𝛼
𝑛
> 𝛽𝑛 ve 𝜇 < 𝛼

𝑛
− 𝛽𝑛),                                        için                                0   

 (3.38) 

 

Eğer eşitlik 3.38’de 𝛼𝑛, 𝛽𝑛’den büyük ise PIλD𝜇 kontrol sistemi  𝜇’ya bağlı olarak 3 farklı 

kararlılık bölgesine sahiptir. Bu tasarımcı için kontrol parametrelerini seçme açısından bir 

serbestlik sunmaktadır. 

 

2 boyutlu üç bilinmeyenli denklemler aşağıdaki şekilde sunulmuştur. 

 

𝑘𝑝𝐵3(𝜔) + 𝑘𝑖𝐵1(𝜔) + 𝑘𝑑𝐵5(𝜔) + 𝐴1(𝜔) = 0 (3.39) 

 

𝑘𝑝𝐵4(𝜔) + 𝑘𝑖𝐵2(𝜔) + 𝑘𝑑𝐵6(𝜔) + 𝐴2(𝜔) = 0 (3.40) 

 

𝐵5(𝜔) =∑ 

𝑛

𝑖=0  

𝑏𝑖𝜔
(𝛽𝑖+λ+𝜇) cos((𝛽

𝑖
+ λ + 𝜇)

𝜋

2
) (3.41) 
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𝐵4(𝜔) =∑ 

𝑛

𝑖=0  

𝑏𝑖𝜔
(𝛽𝑖+λ+𝜇) sin((𝛽

𝑖
+ λ + 𝜇)

𝜋

2
) (3.42) 

 

Eşitlikliklerden daha fazla bilinmeyen bulunduğu için paremetrelerden bir tanesi rasgele 

olarak seçilebilir. Bu durumda kompleks kök sınırı 3 farklı formda elde edilebilir. Bunlar: 

sabit 𝑘𝑑 durumunda  𝑘𝑝  ve 𝑘𝑖’nin ayarlanması, sabit 𝑘𝑖 durumunda  𝑘𝑝  ve 𝑘𝑑’nin 

ayarlanması ve sabit 𝑘𝑝 durumunda   𝑘𝑖  ve 𝑘𝑑 'nin ayarlanmasıdır. 

 

Eğer  𝑘𝑝 rasgele seçilir ve 𝑘𝑖   ve 𝑘𝑑 elde edilmesi gerekir ise; 

𝑘𝑖 =
1

𝜔λ+𝜇 sin ((λ + 𝜇)
𝜋
2)

 

×
𝐴2(𝜔)𝐵5(𝜔) − 𝐴1(𝜔)𝐵6(𝜔) + 𝑘𝑝[𝐵4

 (𝜔)𝐵5
 (𝜔) − 𝐵3

 (𝜔)𝐵6
 (𝜔)]

𝐵1
2(𝜔) + 𝐵2

2(𝜔)
 

(3.43) 

 

𝑘𝑑 =
1

𝜔λ+𝜇 sin ((λ + 𝜇)
𝜋
2)

 

×
𝐴1(𝜔)𝐵2(𝜔) − 𝐴2(𝜔)𝐵1(𝜔) + 𝑘𝑝[𝐵2

 (𝜔)𝐵3
 (𝜔) − 𝐵1

 (𝜔)𝐵4
 (𝜔)]

𝐵1
2(𝜔) + 𝐵2

2(𝜔)
 

 

 

(3.44) 

Görülebileceği gibi λ + 𝜇=2 için (3.43) ve (3.44) denklemlerin çözümü yoktur.  

Eğer  𝑘𝑑 rasgele seçilir ve 𝑘𝑝  ve 𝑘𝑖 elde edilmesi gerekir ise [97]; 

𝑘𝑝 =
1

𝜔λ sin (λ
𝜋
2)

 

×
𝐴1(𝜔)𝐵2(𝜔) − 𝐴2(𝜔)𝐵1(𝜔) + 𝑘𝑑[𝐵2

 (𝜔)𝐵5
 (𝜔) − 𝐵1

 (𝜔)𝐵6
 (𝜔)]

𝐵1
2(𝜔) + 𝐵2

2(𝜔)
 

 

 

(3.45) 

 

𝑘𝑖 =
1

𝜔λ sin (λ
𝜋
2)

 

×
𝐴2(𝜔)𝐵3(𝜔) − 𝐴1(𝜔)𝐵4(𝜔) + 𝑘𝑑[𝐵3

 (𝜔)𝐵6
 (𝜔) − 𝐵4

 (𝜔)𝐵5
 (𝜔)]

𝐵1
2(𝜔) + 𝐵2

2(𝜔)
 

 

 

(3.46) 

 

Eğer  𝑘𝑖 rasgele seçilir ve 𝑘𝑝  ve 𝑘𝑑 elde edilmesi gerekir ise; 
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𝑘𝑝 =
1

𝜔2λ+𝜇 sin (𝜇
𝜋
2)

 

×
𝐴2(𝜔)𝐵5(𝜔) − 𝐴1(𝜔)𝐵6(𝜔) + 𝑘𝑖[𝐵2

 (𝜔)𝐵5
 (𝜔) − 𝐵1

 (𝜔)𝐵6
 (𝜔)]

𝐵1
2(𝜔) + 𝐵2

2(𝜔)
 

 

 

(3.47) 

𝑘𝑑 =
1

𝜔2λ+𝜇 sin (𝜇
𝜋
2)

 

×
𝐴1(𝜔)𝐵4(𝜔) − 𝐴2(𝜔)𝐵3(𝜔) + 𝑘𝑖[𝐵1

 (𝜔)𝐵4
 (𝜔) − 𝐵2

 (𝜔)𝐵3
 (𝜔)]

𝐵1
2(𝜔) + 𝐵2

2(𝜔)
 

 

 

(3.48) 

 

Sonuç olarak verilen eşitliklerle 3 farklı durum için parametreden bir tanesi rasgele seçilir ve 

diğer 2 parametre elde edilir. 
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BÖLÜM 4 

 

 BENZETİM ÇALIŞMALARI VE LABORATUVAR SONUÇLARI  

 

 

Klasik analog PI devresi için Katsuhiko Ogatanın Modern Kontrol Engineering 3. Kısımda 

yer alan çözümleme yöntemleri kullanılmıştır [16]. Kesir dereceli kontrolör için ise kısmi 

kesir genişletme yöntemlerine göre yaklaşık transfer fonksiyon modellerinin temel transfer 

fonksiyon terimleri toplamına ayrıştırılması uygulanarak analog devre çözümlemesi 

yapılmıştır [118-121]. Her bir kısmi kesir terimi, filtreler ve yükselticiler gibi temel elektronik 

devreler kullanılarak gerçekleştirilebilir. Tsirimokou, Psychalinos ve Elwakil gerilim ve akım 

filtre formlarına dayanan analog gerçekleştirme yöntemleri ve bunların uygulamaları için 

kapsamlı bir araştırma sunmaktadır [122]. İntegral eleman, endüstriyel elektronikte en çok 

kullanılan devrelerden biridir [110]. Bu çalışmada da Matsuda'nın FO integral elemanının 

devre tasarımı sunulmaktadır. Oluşturulan kontrolörlerin kapasitör ve direnç değerleri Çizelge 

4.1’de verilmiştir. 

 

Çizelge 4.1 Farklı kontrolör için direnç ve kapasitör değerleri 

Parametreler 

R (ohm) / C(Farad) 

Ziegler- Nichols 

PI 

FO-PID 

(10 parçacıklı) 

FO-PID 

(20 parçacıklı) 

R1  9145         2.16         2.083 

R2 589087         52.36         497.73 

R3 -         469.75         5223.56 

R4 -         359590.25         240639.13 

R5 -         100000         10000 

R6 -         38.911         36.765 

R7 -         100         10 

R8 -         2419.2         2394 

C1 470n         1u         0.1u 

C2 -         470u         10u 

 

Ziegler-Nichols ve 10-20 parçacıklı PSO ile elde edilen kontrolörlerin parametreleri Çizelge 

4.2’de sunulmuştur. Bu kontrolörler boost konvertöre uygulanmıştır Şekil 4.1 ve 4.2’de 

devrelerin PSIM görüntüleri verilmiştir. Şekil 4.1 Ziegler- Nichols ile gerçekleştirilen kontrol 
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devresini içerirken Şekil 4.2 PSO ile tasarlanan bir PID kontrolör devresidir. Bu sistemde 

nominal yük 200 ohm ve nominal gerilimin 10 volt olarak modellenmiştir. 

 

Benzetim çalışmalarında, konvertörün çıkış direnci sırasıyla 400, 200 ve 100 ohm’dur. 

Konvertör 0 ile 0.7 saniye arasında 400 ohm, 0.7 ile 1.0’ıncı saniyeler arasında 200 ohm ve 

1.0 ile 1.4’üncü saniyeler arasında da 100 ohm ile yüklenmiştir. Yüklenme işlemi birbirine 

parelel olan 400-400 ve 200’luk dirençlerin 0.7 ve 1.0’ıncı saniyelerde devreye alınması ile 

sağlanmıştır. Devreler de 5, 10, ve 15 volt giriş gerilimleri için konverterin çıkışı 

gözlemlenmiştir. 

  

Ziegler-Nichols Yöntemi ile tasarlanan PI kontrolör için bahsedilen giriş gerilimlerine karşı 

konvertörün çıkış voltajı Şekil 4.3, 4.4, 4.5’te gösterilmiştir. Aynı şekilde 10 parçacıklı PSO-

FOPID ile tasarlanan kontrolör için yükselticinin çıkış gerilimi Şekil 4.6, 4.7 ve 4.8’de 20 

parçacıklı PSO-FOPID ise Şekil 4.9, 4.10 ve 4.11’de sunulmuştur.  

          

Çizelge 4.2 Herbir kontrolörün parametreleri 

     Parametreler 

Yöntem 

Kp Ki KD λ  μ 

Ziegler-Nichols Methodu 0.01552 232.658 - - - 

Parçacık Sürü 

Optimizasyonu 

(10 Parçacık) 

0.0862 4.4778 0.007 0.98 0.7951 

Parçacık Sürü 

Optimizasyonu 

(20 Parçacık) 

0.045 11.4197 0.0704 0.5174 0.7908 

 

 

Şekil 4.1 Ziegler- Nichols yöntemi ile tasarlanan PI kontrolörün devreye uygulanışı. 
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Şekil 4.2 PSO ile tasarlanan PID kontrolörün devreye uygulanışı. 

 

 

Şekil 4.3 Ziegler-Nichols-PI ile kontrol edilen Devrenin 5 volt giriş için çıkış gerilimi. 

 

Şekil 4.4 Ziegler-Nichols-PI ile kontrol edilen devrenin 10 volt giriş için çıkış gerilimi.  



48 

 

 

Şekil 4.5 Ziegler-Nichols-PI ile kontrol edilen devrenin 15 volt giriş için çıkış gerilimi. 

 

Şekil 4.6 10 parçacıklı PSO-FOPID ile kontrol edilen Devrenin 5 volt girişe karşı çıkış 

gerilimi. 

 

Şekil 4.7 10 parçacıklı PSO-FOPID ile kontrol edilen Devrenin 10 volt girişe karşı çıkış 

gerilimi. 
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Şekil 4.8 10 parçacıklı PSO-FOPID ile kontrol edilen Devrenin 15 volt girişe karşı çıkış 

gerilimi. 

 

Şekil 4.9 20 parçacıklı PSO-FOPID ile kontrol edilen devrenin 5 volt girişe karşı çıkış 

gerilimi.  

 

Şekil 4.10 20 parçacıklı PSO-FOPID ile kontrol edilen devrenin 10 volt girişe karşı çıkış 

gerilimi. 
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Şekil 4.11 20 parçacıklı PSO-FOPID ile kontrol edilen devrenin 15 volt girişe karşı çıkış 

gerilimi. 

Çizelge 4.3 her bir kontrolörün farklı gerilim değerleri için MSE indexi değerlerini 

göstermektedir. Ortalama Karesel Hata (MSE), yukarıda sunulan çalışmalar için kontrol 

performans indeksi olarak kabul edilmiştir. MSE sonuçlarını elde etmek için örnekleme frekansı 

500 kHz olarak seçilmiştir. Denklem (4.1) hata hesabını gösterir ve (4.2) MSE’nin temel 

denklemidir. Denklemde, n örnek sayısıdır, i. örnekleme noktası için elde edilen hatadır. Ayrıca 

her bir kontrol için üst aşım ve yerleşme zamanları Çizelge 4.4’te gösterilmiştir.  

 

𝑒 = 𝑟𝑒𝑓𝑒𝑟𝑎𝑛𝑠 𝑑𝑒ğ𝑒𝑟 − 𝑠𝑖𝑠𝑡𝑒𝑚 ç𝚤𝑘𝚤ş 𝑑𝑒ğ𝑒𝑟𝑖 (4.1) 

 

𝑀𝑆𝐸 =
1

𝑛
∑𝑒𝑖

2

𝑛

𝑖=1

 (4.2) 

 

Çizelge 4.3 Kontrol çalışmaları için MSE kontrol performans indeksleri. 

 

 

Gerilim (V) 5 10 15 

Ziegler-Nichols Methodu 

ile Tasarlanan PI 

 

45.4664 

 

15.5139 

 

6.2332 

PSO ile Tasarlanan PID 

(10 Parçacık) 

 

26.9282 

 

10.0792 

 

4.1849 

PSO ile Tasarlanan 

PID 

(20 Parçacık) 

 

9.4534 

 

2.7778 

 

1.2277 
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Çizelge 4.4 Gerilim değerlerine karşı üst aşım ve yerleşme zamanı. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Üst Aşım (%) Yerleşme Zamanı (s) 

 Giriş Gerilimi (V) 5 10 15 5 10 15 

Ziegler-Nichols Methodu 

Tasarlanan PI 

 

2.52 

 

0.48 

 

10 

 

0.40 

 

0.45 

 

0.56 

PSO ile Tasarlanan PID 

(10 Parçacık) 

 

2.4 

 

0.16 

 

0.8 

 

0.32 

 

0.28 

 

0.36 

PSO ile Tasarlanan PID 

(20 Parçacık) 

 

3.6 

 

0.64 

 

10.64 

 

0.056 

 

0.088 

 

0.12 
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BÖLÜM 5 

 

UYGULAMA ÇALIŞMALARI 

 

Sistem laboratuvar ortamında denenmiştir ve tasarlanan denetleyicilerin yükseltici tip 

konvertörü kontrol edip edemediği gözlemlenmiştir. Sistemin 6 ve 14 volt’da 350 ve 100 ohm 

yük dirençlerinde çalışma durumuna bakılmıştır. Şekil 5.1 ve 5.2 6 volt gerilim değeri için 

sırasıyla 350 ohm ve 100 ohm yüke karşı çıkış voltajını, MOSFET’in kapı işaretini ve bobin 

akımını göstermektedir. Şekil 5.3 ve 5.4 ise 14 volt giriş gerilimi için sırasıyla 350 ohm 100 

ohm yüke karşı çıkışları sunmaktadır.  

 

Giriş gerilimi 6 volt ve çıkış dirençleri 350 ve 100 ohm olan boost konvertöre 10 parçacıklı 

FOPID uygulanmıştır. Bu devrenin çıkış gerilimi, bobin akımı ve kapı işareti grafikleri Şekil 

5.5 ve 5.6’da sunulmuştur. Aynı devrenini giriş gerilimi 14 volt olarak değiştirilerek devre 

tekrar çalıştırılmıştır. Bununla ilgili göreseller Şekil 5.7 ve 5.8’de sunulmuştur. 

 

20 parçacıklı FOPID için de benzer bir şekilde 6 volt ve 14 volt giriş gerilimleri ile devre 

çalıştırılmıştır. İlgili görseller Şekil 5.9, 5.10, 5.11, 5.12’de sunulmuştur. Bu devrenin 

performansı da 350 ve 100 ohm’luk yüklerle denenmiştir. Görsellerde 1’nolu grafik çıkış 

gerilimini, 2’nolu grafik kapı işaretini ve 3’nolu grafik bobin akımını göstermektedir. 

Şekillerden görüleceği gibi konvertörün çıkışı 25 volt çıkış gerilimini sağlamaktadır. Kapı 

işareti devreye uygun olarak çalışmaktadır.  
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Şekil 5.1 Ziegler- Nichols PI için 6 volt giriş gerilimi ve 350 ohm direnç için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri. 

 

Şekil 5.2 Ziegler- Nichols PI için 6 volt giriş gerilimi ve 100 ohm direnç için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri. 

 
Şekil 5.3 Ziegler- Nichols PI için 14 volt giriş gerilimi ve 350 ohm direnç için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri.  
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Şekil 5.4 Ziegler- Nichols PI için 14 volt giriş gerilimi ve 100 ohm direnç için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri. 

 
Şekil 5.5 10 parçacıkla geliştirilen FOPID’in 6 volt giriş ve 350 ohm yük için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri. 

 

 
Şekil 5.6 10 parçacıkla geliştirilen FOPID’in 6 volt giriş ve 100 ohm yük için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri. 
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Şekil 5.7 10 parçacıkla geliştirilen FOPID’in 14 volt giriş ve 350 ohm yük için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri. 

 
Şekil 5.8 10 parçacıkla geliştirilen FOPID’in 14 volt giriş ve 100 ohm yük için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri. 

 
Şekil 5.9 20 parçacıkla geliştirilen FOPID’in 6 volt giriş ve 350 ohm yük için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri. 
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Şekil 5.10 20 parçacıkla geliştirilen FOPID’in 6 volt giriş ve 100 ohm yük için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri 

 
Şekil 5. 11 20 parçacıkla geliştirilen FOPID’in 14 volt giriş ve 350 ohm yük için çıkış 

gerilimi (sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri. 

 
Şekil 5.12 20 parçacıkla geliştirilen FOPID’in 14 volt giriş ve 100 ohm yük için çıkış gerilimi 

(sarı), bobin akımı (mor) ve kapı işareti (mavi) grafikleri. 
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Şekil 5.13 Uygulama Devresi genel görünümü 

Şekil 5.13, benzetim çalışmalarında kullanılan devrelerin laboratuvar ortamındaki bir 

görselini sunmaktadır. Bölüm 2’de hesaplananan boost konvertörün bobin değerini sağlayan 

indüktörü elde etmek için LCR metre kullanılmıştır. Bobin 1.40 mH'lik değere ulaşana kadar 

sarım yapılmıştır. Hesaplanan kondansatör değeri ise piyasada bulunan bir üst değere 

yuvarlanmıştır. 55N10 MOSFET, bir hızlı diyot kullanılmıştır ve delikli bir kart üzerine 

lehimlenmiştir. Dirençler 25 wattlık taş dirençlerden seçilmiştir ve yük değişimi bir anahtar 

yardımı ile yapılmıştır. 

 

Kontrol devresi ve hata devresi için LM741 opampları kullanılmıştır. PWM’in (sinyal 

genişlik modülasyonu) elde edilmesi için karşılaştırma devresinde LM311 entegresi 

kullanılmıştır. Entegrenin pozitif ucuna denetleyicinin çıkışı, negatif ucuna da sinyal 

üretecinden 20kHz’lik üçgen dalga verilmiştir. Bu DIP entegrelerin beslemesi görselde 

verilen DC kaynaklar ile yapılmıştır. Konvertörün girişine uygulanacak olan 6 volt ve 14 

voltluk gerilimler Şekil 5.13’deki yüksek akım verebilen DC kaynaklar ile üretilmiştir. 

Direnç, kapasitör değerleri ve bazı gerilim değerleri multimetre ile ölçülmüştür. Görseldeki 

osiloskop yardımı ile çıkış gerilimi, MOSFET’in kapı işareti ve bobin akımı grafikleri 

gözlemlenmiştir. Akım ölçümü için bir akım probu kaynak ile bobin arasına bağlanmıştır. 

 

6 volt çıkış veren 

DC kaynak 

 

DT 

Boost konverter 

devresi 

100 ve 350 ohm yükler 

Osiloskop 

Multimetre 

Opampların beslenme 

gerilimlerini ve referans gerilimi 

sağlayan DC kaynaklar 

14 volt çıkış veren 

DC kaynak 

 

Üçgen dalganın 

üretildiği sinyal 

üreteci 

 

Kontrol devresi 
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BÖLÜM 6 

 

SONUÇLAR 

 

Boost konvertörün tasarımında maksimum güç üzerinden maksimum yük akım değeri 

bulunmuştur. Minimum yük akımının, maksimum yük akımının %5’i kadar olacağı 

varsayılmıştır. Maksimum ve minimum yük akımları kullanılarak konvertörün çalışabileceği 

maksimum direnç ve minimum direnç değerleri bulunmuştur. Yükseltici tip konvertörün 

verimi de yine gerçekçi bir varsayım ile %90 olarak seçilmiştir ve bu seçimle maksimum 

doluluk oranı ve minimum doluluk oranı hesaplanmıştır. Maksimum direnç, minumum 

doluluk oranı ve anahtarlama frekansı kullanılarak konvertörün minimum bobin değeri 

hesaplanmıştır. Hesaplanan bobin değeri ile minimum kapasitör hesabı yapılmıştır. Sonuç 

değer piyasada bulunan bir üst kapasitör değerine yuvarlanmıştır. Böylece bir boost 

konvertörün tüm bileşenleri elde edilmiştir. 

 

Yükseltici tip konvertörün modellenmesinde öncelikle averaj model ardından küçük işaret 

modeli elde edilmiştir. Averaj modelde anahtarın açık ve diyodun kısa devre olduğu durum 

için sonrasında da anahtarın kapalı ve diyodun açık devre olduğu durum için Kirchoff Gerilim 

Yasası uygulanmştır. Ardından devrenin bu iki modu durum-uzayı formuna taşınmıştır. 

Doğrusallaştırma işlemi için Euler yöntemi kullanılmıştır ve küçük işaretler durum uzayı 

formunda elde edilmiştir. Buradan da parametreler yerlerine yazılıp transfer fonksiyonuna 

dönüşüm yapılmıştır. 

 

Kontrolörler için Ziegler ve Nichols’un 2. yöntemi, Kesir dereceli denetleyiciler için de 

Parçacık Sürü Optimizasyonu kullanılmıştır. Ziegler-Nichols yönteminde öncelikle Kcr, kritik 

kazanç ve ꙍcr, sürekli salınımların frekansı bulunmuştur ve araştırmacılar tarafından verilen 

tablodan parametreler elde edilmiştir. Kesir dereceli kontrolör için ise Dr. Eberhart ve Dr. 

Kennedy tarafından sunulan optimizasyon kullanılmıştır. 
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MSE performans endeksinin düşük olması, kontrolörün daha başarılı çalıştığının bir 

göstergesidir. Parçacık sayısı 20 olan PSO-FOPID kontrolörün MSE değerleri her üç gerilim 

değerinde de diğer iki kontrolcüden daha azdır. Bu da 20 parcacıkla gerçekleştirilen 

kontrolörün her bir voltaj değeri için daha iyi bir kontrol sağladığını göstermektedir. Örneğin 

nominal gerilim (10 volt) için her üç denetleyicinin de MSE değeri göz önüne alınırsa en 

iyisinin 2.7778 ile 20 parçacığa sahip PSO-FOPID olduğu görülmektedir.  MSE değeri 

10.0792 olan 10 parçacıklı PSO-FOPID kontrolör ikinci en iyi kontrolü sağlamıştır. Bu durum 

parçacık sayısının bu sistemin kontrolündeki önemini ortaya koymaktadır. 20 parçacıklı kesir 

dereceli kontrolör yerleşme zamanı açısından da daha iyi bir çözüm sunmuştur. Simulasyon 

ortamında gerçekleştirilen devreler labarotuvar ortamında da başarılı bir performans 

göstererek gerekli çıkış olan 25 volt değerini vermiştir.  

 

Ziegler-Nichols PI ve 10-20 parçacık kullanılarak yapılan PSO’nun simulasyon devreleri ile 

laboratuvar ortamındaki devrelerin maximum akım değerleri her ne kadar aynı olmasa da 

gerçeğe yakın bir benzerlik göstermektedir. Örneğin; Ziegler-Nichols devresi 6 volt giriş 

gerilimi için simulasyon devresinde 350 ohm devrede iken bobin akımı 1.5 amper, 100 ohm 

devrede iken bobin akımı 4 amperdir. Labarotuvar çalışmasında ise maksimum bobin akımı 

değerleri sırasıyla 0.5 amper ve 2 amperdir. 10 parçacık kullanılarak yapılan PSO için 6 volt 

giriş gerilimi ve 350 ohm yük için 6 amper, 100 ohm yük için 20 amperdir. Labaratuvar  

ortamında ise bu değerler 4 amper ve 15 amperdir. 20 parçacık kullanılarak yapılan PSO 6 

volt giriş gerilimi ve 350 ohm yük için maksimum akım 2 amper, 100 ohm yük için 4 amper 

ve labaratuvar  ortamında ise bu değerler 2 amper ve 6 amperdir. 

 

PI ve kesir dereceli PID kontrolörlerin arasındaki temel fark türevsel kazanç ifadesi ve onun 

kesir derecesidir. Bu kazanç ifadesinin sistemin yerleşme zamanında iyileşme sağladığı 

görülebilmektedir. Ek olarak kesir dereceli kontrolör için kapı işaretine bakıldığında doluluk 

oranı süresince belirli aralıklarla yeniden ateşleme yaptığı görülmektedir. Kesir dereceli PID 

çıkış voltajını belirli bir bant içerisinde tutacak şekilde belirli bir zaman diliminde en yüksek 

doluluk oranını uygulamakta, geri kalan zaman diliminde birkaç periyot boyunca sıfır doluluk 

oranıyla çalışmaktadır. 

 

Gelecekteki çalışmalarda Ziegler-Nichols veya Simpleks yöntemi gibi bir başka klasik 

kontrolör tasarlama tekniği ile tasarlanan bir kontrolör, yapay zeka algoritması ile tasarlanan 

kontrolörler ile kıyaslanabilir. Ya da bu optimizasyon algoritmaları ile denetleyiciler 
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tasarlanarak kendi aralarında kıyaslama yapılabilir. İlerideki çalışmalar için bir başka öneri de 

şudur; kesir dereceli analog devre sentezinde kullanılan matsuda fonksiyonu yerine crone gibi 

bir fonksiyon kullanılarak kontrol performası ile ilgili çeşitli değerlendirmeler yapılabilir. 
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