
A NEW LOSS FUNCTION TO BE USED IN DEEP NETWORKS

FOR IMAGE SEGMENTATION OF COLORECTAL POLYPS

Mahmut Ozan GÖKKAN

Supervisor : Prof. Dr. Mehmet KUNTALP

 İzmir

 2023

T.R.

EGE UNIVERSITY

Graduate School of Applied and Natural Science

Department of Biomedical Te chnologies

Industrial Ph.D. Programme of Advanced Biomedical Technologies

EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ETİK KURALLARA UYGUNLUK BEYANI

EÜ Lisansüstü Eğitim ve Öğretim Yönetmeliğinin ilgili hükümleri uyarınca

Doktora Tezi olarak sunduğum “A New Loss Function to be used in Deep

Networks for Image Segmentation of Colorectal Polyps” başlıklı bu tezin kendi

çalışmam olduğunu, sunduğum tüm sonuç, doküman, bilgi ve belgeleri bizzat ve bu

tez çalışması kapsamında elde ettiğimi, bu tez çalışmasıyla elde edilmeyen bütün

bilgi ve yorumlara atıf yaptığımı ve bunları kaynaklar listesinde usulüne uygun

olarak verdiğimi, tez çalışması ve yazımı sırasında patent ve telif haklarını ihlal

edici bir davranışımın olmadığını, bu tezin herhangi bir bölümünü bu üniversite

veya diğer bir üniversitede başka bir tez çalışması içinde sunmadığımı, bu tezin

planlanmasından yazımına kadar bütün safhalarda bilimsel etik kurallarına uygun

olarak davrandığımı ve aksinin ortaya çıkması durumunda her türlü yasal sonucu

kabul edeceğimi beyan ederim.

27/01/2023

 Mahmut Ozan Gökkan

ÖZET

KOLOREKTAL POLİPLERİN GÖRÜNTÜ BÖLÜTLEMESİ İÇİN

DERİN AĞLARDA KULLANILACAK YENİ BİR KAYIP FONKSİYONU

GÖKKAN, Mahmut Ozan

Doktora Tezi, Biyomedikal Teknolojiler Anabilim Dalı

Tez Danışmanı: Prof. Dr. Mehmet KUNTALP

Ocak 2023, 65 sayfa

Poliplerin geç saptanması sonucunda kolorektal kanserler ortaya

çıkabilmektedir. Kolonoskopistler, eksizyonel biyopsi ile polipleri çıkarmak için

bir kolonoskopi cihazı kullanır. Bu çalışmanın amacı, klinik uygulamaya katkı

niteliğinde bir polip bölütleme modeli sağlayan bir web uygulaması geliştirmektir.

Polip segmentasyonu için, derin sinir ağlarında hem dengesiz veri setinin hem de

kaybolan gradyan probleminin üstesinden gelmek için kullanılmak üzere yeni bir

dengesizlik farkındalıklı kayıp fonksiyonu, yani her şeyi kapsayan kayıp

geliştirilmiştir. Yeni bir fonksiyon geliştirmenin ikinci önemli nedeni, bölge bazlı,

şekle duyarlı ve piksel bazında dağıtım kaybı yaklaşımlarının değerlendirme

yeteneklerine sahip daha kapsamlı bir fonksiyonunu bir kerede üretebilmektir.

Bunu yapmak için, bir algoritma karmaşıklığını tanımlamanın temsili bir

parametresi olarak her biri saniyede farklı kayan nokta işlemine (FLOPS) sahip

iki farklı evrişimsel sinir ağı (CNN) ele alınmıştır. İlk olarak, kodlayıcı olarak

ResNet18 ve kod çözücü olarak bir UNet gerçekleştirilmiştir. İkinci olarak,

kodlayıcı olarak 34 katmanlı bir artık ağ ve kod çözücü olarak bir UNet

tasarlanmıştır. Her iki CNN mimarisi için, popüler dengesizlik farkında kayıpları

kullanmanın sonuçları, önerilen yeni kayıp fonksiyonumuzu kullanmanın

sonuçlarıyla karşılaştırılmıştır. Eğitim, 5 katlamalı çapraz doğrulama ve test

adımları için, erişime açık birden çok veri kümesi kullanılmıştır. Bu veri

kümelerindeki orijinal verilere ek olarak, çevirme, ölçekleme, döndürme ve

kontrast sınırlı uyarlanabilir histogram eşitleme işlemleriyle bunların artırılmış

vii

örnekleri de oluşturulmuştur. Arttırılmış örnek veriler hem eğitim hem de

doğrulama aşamasında kullanılırken, orijinal görülen veri kümeleri test

aşamasında işlenmiştir. Sonuç olarak, önerilen yeni özel kayıp fonksiyonumuz,

popüler kayıp işlevleriyle karşılaştırıldığında en iyi performans ölçümlerini

üretmiştir.

Anahtar Kelimeler: Polip bölütleme, kayıp fonksiyonu, derin sinir ağı, sınıf

dengesizliği, kaybolan gradyan problemi.

viii

ABSTRACT

A NEW LOSS FUNCTION TO BE USED IN DEEP NETWORKS FOR IMAGE

SEGMENTATION OF COLORECTAL POLYPS

GÖKKAN, Mahmut Ozan

PhD thesis in Biomedical Technologies Department

Supervisor: Prof. Dr. Mehmet KUNTALP

January 2023, 65 pages

Colorectal cancers may occur as a result of late detection of polyps.

Colonoscopists use a colonoscopy device to remove polyps by excisional biopsy.

The aim of this study is to develop a web application that provides a polyp

segmentation model that contributes to the clinical application. For polyp

segmentation, a new imbalance-aware loss function, i.e. omni-comprehensive

loss, has been developed to be used in deep neural networks to overcome both

imbalanced datasets and the vanishing gradient problem. The second crucial

reason for developing a new loss function is to be able to produce a more

comprehensive one with the evaluation capabilities of region-based, shape-

sensitive and pixel-wise distribution loss approaches at once. To do this, two

different convolutional neural networks (CNNs) have been implemented, each

with different floating point operations per second (FLOPS) that is a

representative parameter to identify an algorithm complexity. First, ResNet18 as

the encoder and a UNet as the decoder is implemented. Second, a 34-layer

residual network is designed as the encoder and a UNet as the decoder is

designed. For both CNN architectures, the results of using the popular imbalance-

aware losses are compared with the results of using our new proposed loss

function. Multiple publicly available datasets are used for training, 5-fold cross

validation, and testing steps. In addition to the original data in these datasets,

augmented versions of these datasets have also been generated by

flipping,rotating and contrast-limited adaptive histogram equalization operations.

While the augmented samples are used both in the training and validation phases,

the original datasets are tackled in the testing phase.While the augmented samples

ix

are used both in the training and validation phases, the original datasets are

tackled in the testing phase. As a result, our proposed new custom loss function

produced the best performance metrics compared to the popular loss functions.

 Keywords: Polyp segmentation, loss function, deep neural network, class

imbalance, vanishing gradient problem.

x

 PREFACE

Colorectal polyps may cause cancer and may carry a mortal risk. Due

to the epidemiology of colorectal polyps, such an abnormal tissue structure with a

high prevalence may differ according to age, gender and demographic structure.

Therefore, early diagnosis and polyp resection by excisional biopsy play

important roles. At this point, it has become possible with this thesis study to

provide an application model integrated into the clinical application by using

advanced computer vision technologies. Thanks to the developed web application

module, segmentation of polyps and the number of segmented polyps are

monitored. It can be said that this is a very important technological development

in providing a fast and accurate diagnosis for colonoscopists.

I sincerely would like to thank my supervisor Prof. Dr. Mehmet Kuntalp for

his valuable guidance, suggestions, criticism, and support during this study.

I would also like to thank dear thesis committee members to their time,

generous share of knowledge, and constructive comments.

 Finally, I want to thank my family for supporting me.

İZMİR

27/01/2023 Mahmut Ozan GÖKKAN

xi

xii

TABLE OF CONTENTS

Page

ÖZET ……………….……… ... …………vii

ABSTRACT……………………………………………………….……………...ix

PREFACE….………………………………..…………………………………....xi

TABLE OF CONTENTS. ... …………………………………………………….xiii

LIST OF FIGURES………………………………………………………………xv

LIST OF TABLES …………………………………………xvi

LIST OF SYMBOLS AND ABBREVIATIONS……………………….………xvii

1 INTRODUCTION……...………………………………………………….……1

2 LITERATURE SURVEY……….....…………………………………………...3

3 PUBLICLY AVAILABLE DATASETS .. 4

 3.1 Content structure of the datasets…………………………………………...4

 3.2 Augmentation techniques & "Ready-to-Feed" data preparation…………...5

4 PROPOSED DEEP LEARNING MODEL………………………………….....6

 4.1 Training CNN models……………………………………………………...6

 4.2 Omni-Comprehensive loss Function……………………………...……....10

 4.3 Popular Loss Functions ……………………………..……………..……..14

5 EXPERIMENTAL PROCEDURE…………………………………….………15

xiii

TABLE OF CONTENTS (Continued)

 5.1 Carbon Footprint of training the CNN models…………………………...15

6 RESULTS…………………………………………………………………….17

7 PRODUCTION……………………………………………………………….25

8 DISCUSSION………………………………………………………………...26

9 CONCLUSION……………………………………………………………….28

REFERENCES…………………………………………………………………...29

ACKNOWLEDGEMENT……………………………………………………….35

RESUME…………………………………………………………………………36

APPENDIX A……………………………………………………………………38

APPENDIX B……………………………………………………………………40

APPENDIX C……………………………………………………………………42

APPENDIX D……………………………………………………………………43

APPENDIX E…………………………………………………….………………44

APPENDIX F………………………………………….…………………………45

xiv

LIST OF FIGURES

Figure Page

Figure 4.1 The training pipeline of the combination of ResNet18 and UNet……..6

Figure 4.2 The training pipeline of the combination of ResNet34 and UNet……..8

Figure 4.3 A flowchart for data augmentation and training-validation process…...9

Figure 4.4 An illustration of true positives (TP), false positives (FP), true

negatives (TN) and false negatives (FN)………………………………………....10

Figure 4.5 (a) Illustration of matching between circle and shifted circle masks. (b)

Matching index values corresponding to shifting parameters in pixels………….10

Figure 6.1 Loss scores for the case of omni-comprehensive loss and ResNet18-

UNet architecture………………………………………………………………...20

Figure 6.2 Dice scores for the case of omni-comprehensive loss and ResNet18-

UNet architecture………………………………………………………………...21

Figure 6.3 Loss scores for the case of omni-comprehensive loss and ResNet34-

UNet architecture………………………………………………………………...21

Figure 6.4 Dice scores for the case of omni-comprehensive loss and ResNet34-

UNet architecture………………………………………………………………...22

Figure 6.5 Evaluation results with different tuning parameters used in omni-

comprehensive loss……………………………………………………………….23

Figure 6.6 Evaluation results for the case of omni-comprehensive loss and

ResNet18-UNet architecture. First column: original images. Second column:

Ground truths. Third column: Predicted masks. Fourth column: Overlaid

segmented images between original images and predicted masks.........................24

Figure 7.1 An architecture for production phase………………………………..25

Figure 7.2 Standalone web application and polyp image choosing step………...26

Figure 7.3 The result of both polyp segmentation and the number of detected

polyps on web application……………………………………………….……….26

xv

LIST OF TABLES

Table Page

Table 3.1 Properties of the datasets used in our experimental study……………...4

Table 6.1 Performance comparison of losses using ResNet34 + UNet

architecture……………………………………………………………………….18

Table 6.2 Comparison of loss functions using ResNet18 + UNet architecture….18

Table 6.3 Summarized parameters of the training models……………………….18

Table 6.4 Evaluation metrics……………………………………………………..20

Table 6.5 Test performance comparison using unseen CVC-Clinic DB and CVC-

Colon DB………………………………………………………………….……...22

Table 6.6 Test performance comparison using unseen Kvasir-SEG and ETIS Larib

DB………………………………………………………………………………..23

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

Symbol Definition

 𝜇𝑐 Mean value of RGB channels

𝜎𝑐 Standard deviation RGB channels

 αt Coefficient used in focal loss and

focal Tversky loss

γ Controlling factor used in focal loss

 𝛼 Adjusting parameters used in Tversky

loss and Omni-Comprehensive loss

 θ Penalizing factor for false positive

and false negative used in Omni-

comprehensive loss

 β Penalizing factor for false positive

and false negative used in Tversky

loss

 ∂ʆ Derivative of Omni-comprehensive

loss function

 ∂θ(𝐰) Derivative of normalized cross

correlation

 Abbreviation Definition

CNN Convolutional Neurl Network

TI Tversky Index

TL Tversky loss

FTL Focal Tversky loss

BCE Binary Cross Entropy

NCC Normalized Cross Correlation

FPNet Feature Pyramidal Network

xvii

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

Abbreviation Definition

RPNet Region Proposal Network

FN False Negative

CLAHE Contrast-limited adaptive histogram

equalization

CVC-Clinic DB Colonoscopic polyp database

extracted from colonoscopy videos

CVC-Colon DB Colonoscopic polyp database

extracted from colonoscopy videos

DC Dice Coefficient

DL Dice loss

ETIS-Larib DB Colonoscopic polyp image database

FL Focal Loss

FLOPS Floating Point Operations per Second

FP False Positive

GFLOPS Giga Floating Point Operations per

Second

Kvasir-SEG DB Gastrointestinal and colonoscopic

polyp image database

mAcc Mean of accuracy values using test

set

MCC Matthews correlation coefficient

mDice Mean of dice values using test set

mF2 Mean of F2 values using test set

mPrec Mean of precision values using test

set

xviii

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

Abbreviation Definition

mSens Mean of sensitivity values using test

set

mSpec Mean of specificity values using test

set

Nvidia GTX Nvidia Graphics Card Model

Params (M) Parameters in million

PUE Power Usage Effectiveness

ReLu Rectified linear unit

ResNet Residual Neural Network

ResNet18 18-layered residual neural network

ResNet34 34-layered residual neural network

TN True Negative

TP True Positive

UNet U-shaped Neural Network

DL Dice loss

Params (M) Parameters in million

mDice Mean of dice values using test set

mAcc Mean of accuracy values using test

set

mSens Mean of sensitivity values using test

set

mSpec Mean of specificity values using test

set

xix

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

Abbreviation Definition

mPrec Mean of precision values using test

set

mF2 Mean of F2 values using test set

mMCC Mean of matthews correlation

coefficient values using test set

xx

1

1 INTRODUCTION

 Colorectal polyps may develop into cancerous tissue types. Operator-

dependent colonoscopy is the gold standard and colonoscopists often use this

procedure for viewing the entire colon to remove polyps by excisional biopsy.

Colonoscopy devices need special training and experience to prevent misdiagnosis

of suspected lesions. For this reason, computer vision applications are developed

using colonoscopic different type of images, including white light and filtered

images for the purpose of classification and segmentation. In addition, the

experience of a colonoscopist and the characteristics of a physician also play an

important role in the correct determination of adenoma (Mehrotra et al., 2018).

Deep neural networks can be a good decision-making system for polyp detection.

Hence, such an application model could help clinicians make excisions without

damaging healthy mucosal tissue. At this point, the encoder-decoder neural

networks can be used to segment a polyp on an image to contribute to the clinical

application in gastroenterology units.

For pattern recognition and feature extraction step, one of the encoders may

be used as a backbone such as residual neural networks (ResNets). Channel

concatenation, known as skip connection, can be used for combining a decoder

with one of the encoders. Datasets used for obtaining reliable and high scores play

an important role for acquaring high performance. When analyzing CVC-Clinic

DB, CVC-Colon DB, ETIS-Larib polyp DB and Kvasir-Seg polyp datasets and

their spatial information as shown in Table 3.1, it is possible to say that these

datasets have relatively much more background area than the foreground,

identified as non-polyp region and polyp region, respectively. Due to the

imbalanced distribution of the datasets, the number of the 0-labeled class is much

higher than the respective number of the 1-labeled class in all datasets. That’s why

building a democratized loss layer has a critical importance when developing a

loss function and focusing more on polyp regions than non-polyp regions. In this

thesis, the ratio of 0-labeled pixel class is 89.6% while the ratio of 1-labeled pixel

class is 10.4% in all datasets due to changeable polyp size. 0-labeled class has no

polyp region and 1-labeled class has polyp region. This kind of imbalanced

distribution of classes may cause unfair and degenerated learning models. A

solution is to use a suitable and generalizable loss function. In addition, such a

loss function should have two important properties: First, a loss function should

be aware of the unbalanced distribution between both intra-class distribution of

images and inter-class distribution of pixel-wise levels in an image. Second, a loss

function should overcome the vanishing gradient problem to prevent overfitting.

2

For this situation, a novel loss function is developed for making training

model democratize to segment the precise region of a polyp by using 18-layer and

34-layer ResNets as encoders and a UNet as the decoder network. For model

training, the encoders are initialized using pre-trained imagenet weights in a way

of transfer learning. The challenge of this study is to create a new paradigm,

developing an artificial intelligence enabling technology with the loss function

called omni-comprehensive loss, to be used in deep neural networks to overcome

both imbalanced dataset and the vanishing gradient problem. The second reason

and important advantages of developing this function is to be able to produce a

more comprehensive one that has evaluation capabilities of region-based, shape-

aware, and pixel-wise distribution loss approaches at once. Also, the proposed

loss function is compared with the popular loss functions such as binary cross

entropy loss and focal loss for distribution-based approach, whereas dice loss,

Tversky loss (Salehi et al., 2017) and focal Tversky loss (Abraham et al., 2019)

for region-based approach. A boundary-aware loss function can also be handled to

tackle the segmentation of polyps such as hausdorff distance loss (Ribera et al.,

2019). This loss is a great way if an object has a contour with bounded or closed

border (Ribera et al., 2019; Attouch et al., 1991). However, a neural network may

not have predicted some pixels and that predicted binary object may not have a

closed contour. In addition, another drawback of hausdorff is that it doesn’t have

adjustable parameters to penalize the false positives and false negatives. That’s

why, hausdorff loss function is not take into account for this thesis. In our

proposed loss function, there are two adjustable hyperparameters, such as α and θ.

The purpose of α is to make the function more comprehensive and adjustable due

to handle shape-aware condition and semantically asymmetric similarity case,

while using θ, it is possible to emphasis and weigh more on false negatives to

increase recall.

The critical choice of α and θ plays an crucial role on the morphological

template of polyps and on balancing the class imbalances, respectively. Another

important problem is the vanishing gradient that may occur in the loss layer when

using a loss function. Sigmoid function is often preferred to use for binary

classification. However, the gradient of sigmoid goes to zero at some points and

this situation can lead to infinitesimally small weights during backpropagation. At

this point, our loss function is constructed and is outperformed popular losses in

overcoming these problems. From research to production, a mobile-friendly web

application is developed to make polyp segmentation and to integrate colonoscopy

devices in clinical application during intervention. To do this, a frame grabber

device (i.e. blackmagic mini recorder) can be used to transmit frames from the

3

device to an external web server based PC for providing communication in real-

time to make polyp segmentation. A colonoscopy device has an endoscopy

processor and for example, Fujinon EPX-4450D is one of the them to acquire and

process colonoscopic white light images. Images can be captured using a frame

grabber device compatible with this processor that has a HD-SDI type digital

output. Then, web-server can acquire those images by a frame grabber to segment

polyps.

2 LITERATURE SURVEY

Deep learning has an efficient methodology for polyp segmentation. For

instance, ResUNet++ has been designed for polyp segmentation. With the use of

Kvasir-Seg dataset, 81.33% dice score was acquired, while using the cvc-clinic db

dataset, 79.55% dice score was achieved (Jha et al., 2019). A miss rate of 27%

was obtained for serrated polyps reached (Zhao et al., 2019) in another study.

Moreover, the rate of missed colorectal cancers is between 2% and 6%, shown by

another study (Bressler et al., 2007).

PLPNet (Jha et al., 2020) is a CNN architecture that perform for detection

task. It consists of ResNet50 as encoder and feature pyramid network (FPNet)

(Lin T-Y. Et al., 2017) as the decoder part. Depending on this, PLPNet has two

steps; i) polyp proposal using region proposal network (RPN) for both

classification and bounding box regression, and ii) polyp segmentation using

ground truth masks. For the segmentation task, fully convolutional networks

(Long et al., 2015) are applied using feature pyramids and initialized the network

by feature sharing from polyp proposals. Thereby, it is claimed that richer spatial

contents can be acquired with a fully convolutional architecture to achieve better

accuracy.PLPNet is trained with CVC-Colon DB using binary cross entropy loss

and is tested with CVC-Clinic DB. Hence, 74.7% IoU and 83.9% dice scores are

obtained. While using only two databases for training and testing may cause

poorly generalized model, it can be deduced that there is a need to develop a

model that performs better due to the low success rate when compared with our

study.

ColonSegNet is another architecture for detection, localization, and

segmentation at once (Jha et al., 2021). It consists of an encoding - decoding

neural network that include residual building blocks with squeeze and excitation

network. ColonSegNet has both less trainable parameters and multifunctional

specialty, and it achieved a dice score of 82.06%, 84.35% precision, 84.96% recall

and 82.06% F2 score using Kvasir-SEG dataset for the case of cross entropy and

dice loss combination.

4

There is another study to segment polyps using CVC-Clinic DB dataset, U-

Net architecture, and focal loss (Yeung et al., 2021). With the hyperparameters

used in (Lin et al., 2017), a dice score of 86.8%, intersection over union score of

79%, precision of 84.4% and recall of 93.3% are acquired. With the same model

concept, 87.4% dice score, 79.6% intersection over union, 86.4% precision and

90.9% recall are achieved with using Tversky loss while using focal Tversky loss,

89.4% dice, 83.1% intersection over union, 89.6% precision and 91.9% recall are

obtained (Yeung et al., 2021). In another study, PolypSegNet architecture is

developed and a dice score of 84.04%, intersection over union score of 77.83%,

precision of 95.06% and recall of 85.11% by using Tversky loss are achieved.

Likewise, in the same study, a dice score of 84.79%, intersection over union score

of 78.32%, precision of 95.71% and recall of 84.34% are achieved by focal

Tversky loss (Mahmud et al., 2020).

3 PUBLICLY AVAILABLE DATASETS

3.1 Content structure of the datasets

 KUDO (pit pattern) classification (Cassinotti et al., 2020) and Paris

classification (Doorn et al., 2015) are the standards for the categorization of

polyps. KUDO classification is based on the surface textural pattern of polyps

such as tubulo-villous adenoma, tubular adenoma and hyperplastic polyp. For

Paris classification, polyps can be subclassified into morphological structures such

as pedunculated, flat, or sessile type.

Convolutional neural networks can be a way to recognize a pattern and can

provide a well-generalized model using different type of datasets. Especially,

having different polyp types would provide us with creating a better generalizable

learning model. According to this paradigm, four publicly available datasets are

used in this thesis: CVC Clinic DB, CVC Colon DB, Etis-Larib and Kvasir-Seg

datasets. These datasets include white light images with variations in size, color,

shape and pattern. CVC clinic DB consists of 612 images (Bernal et al., 2015).

CVC Colon DB has 380 sequential images extracted from 15 videos (Rodriquez et

al., 2021; Bernal et al., 2012). Kvasir-SEG database has 1000 polyp images (Jha

et al., 2020). ETIS-Larib DB contains 196 polyp images (Jha, Smedsrud and

Riegler et al., 2021). The augmented versions of images in all datasets are

combined and used in deep neural networks for train and validation steps. For the

testing step, each original dataset we used has been evaluated as unseen or an

5

external dataset and the results have been obtained as shown in Table 6.5 and

Table 6.6.

Table 3.1 Properties of the datasets used in our experimental study.

Database # of polyp images Pixel resolution Website

CVC-Clinic DB 612 384x288 Link

CVC-Colon DB 300 500x574 Link

Kvasir-SEG DB 1000 1225x966 Link

ETIS-Larib DB 196 712x480 or 1920x1080 Link

3.2 Augmentation tecniques & “Ready-to-Feed” data preparation

In this thesis, data augmentation using “albumentations” package in

PyTorch is used to only training and validation phases. The trained model is then

evaluated on all original images with no augmentation for testing phase. The trend

analysis of validation error should continue to decrease in parallel with the

training error with tackling data augmentation approach.

For data preparation, data augmentation and data normalization steps are

conducted, respectively. First, the augmentation techniques are used as follows; i)

random horizontal-vertical flipping or both, ii) scaling (scaling limit as 0.1), iii)

determining rotation angle among 0, 10, 45, 90, 180, 270, iv) Contrast-limited

adaptive histogram equalization (CLAHE) by adjusting clip limit as 1 and tile grid

size as 8 by 8. For scaling, image sizes are rescaled with a multiplier factor of 0.1.

For flipping case, the rows and columns of an image are symmetrically flipped

depending on the horizontal and vertical cases. For CLAHE, each image is

divided by 8x8 grids and then histogram equalization is applied to each local

subimage or grid. Contrast limiting or thresholding value as clip limit is applied to

each grid’s histogram to enhance the contrast. Then bilinear interpolation is

applied to whole-slide image to make good combination of grids. The second

crucial step is to prepare data to input to the neural network by normalization

process to provide computational ease and to avoid overfitting issue. To do this,

each input image at the beginning of pretrained ResNet18 is normalized using the

mean values of each RGB channels as 0.485, 0.456, 0.406 and standard deviations

as 0.229, 0.224, 0.225, respectively. Hence, each image is normalized by the

equation (1) (Li et al., 2022).

 𝑥𝑖,𝑗 =
(𝑥𝑖,𝑗−𝜇𝑐)

𝜎𝑐
 (1)

https://polyp.grand-challenge.org/CVCClinicDB/
http://mv.cvc.uab.es/projects/colon-qa/cvccolondb
https://datasets.simula.no/kvasir-seg/
https://polyp.grand-challenge.org/EtisLarib/

6

where (𝑖, 𝑗) represents the pixel coordinate, 𝜇𝑐 refers to the mean of

corresponding channel (c) value as red, green, and blue, and 𝜎𝑐 is the standard

deviation with related to each channel.

4 PROPOSED DEEP LEARNING MODEL

4.1. Training CNN models

For training of a network, CNN have many expedients when a problem gets

more complex. Deeper layers in neural networks can be optimal to overcome

obstacles for making an image segmentation.

Even if there are difficulties in the use of the colonoscopy device during

imaging depending on a colonoscopist’s experience, a polyp should be able to be

detected as the target object by a decision-making system. At this point, two

different scenarios have been conducted for polyp segmentation in this thesis.

Figure 4.1 The training pipeline of the combination of ResNet18 and UNet.

First, an 18 layered residual network as decoder and UNet as decoder is

implemented. Then, as a second stage, a 34 layered residual network as an

encoder and a UNet as decoder are connected to perform a polyp segmentation

model. Residual neural networks are deep neural networks and one of their

abilities is to use residual blocks in terms of getting an identity map. It has more

comprehensive and rich spatial image content due to using its input reference. The

other important benefits of ResNets provide us with the following strengths: 1) To

accelerate the speed of training of the networks, 2) To increase depth of the

network that results in less extra parameters when comparing with widen

networks, 3) To reduce the effect of vanishing gradient problem and, hence

In
p

u
t

Im
a
g
e
 s

iz
e
:4

4
8

x
4

4
8

 c
h

:3

C
o
n

v
 7

x
7

si

z
e
:2

2
4

x
2

2
4

 c
h

:6
4

M
a
x
 p

o
o
li

n
g
 s

iz
e
:1

1
2

x
1

1
2

 c
h

:6
4

x2

x2

x2

x2

Skip connections

Conv 3x3

size:14x14

ch:512

Conv

3x3

size:14

x14

ch:256

Transpose

Conv 3x3

size:14x14

ch:512

C
o
n

v
 3

x
3

 s
iz

e
:2

8
x
2

8
 c

h
:2

5
6

T
ra

n
sp

o
se

C
o
n

v
 3

x
3

 s
iz

e
:2

8
x
2

8

c
h

:2
5

6

C
o
n

v
 3

x
3

 s
iz

e
:5

6
x
5

6
 c

h
:3

8
4

T
ra

n
sp

o
se

C
o
n

v
 3

x
3

 s
iz

e
:5

6
x
5

6
 c

h
:1

2
8

C
o
n

v
 3

x
3

 s
iz

e
:1

1
2

x
1

1
2

 c
h

:1
9

2

T
ra

n
sp

o
se

C
o
n

v
 3

x
3

 s
iz

e
:1

1
2

x
1

1
2

 c
h

:6
4

T
ra

n
sp

o
se

C
o
n

v
 3

x
3

 s
iz

e
:2

2
4

x
2

2
4

 c
h

:1
2

8

C
o
n

v
 3

x
3

 s
iz

e
:4

4
8

x
4

4
8

 c
h

:3
2

C
o
n

v
 3

x
3

 s
iz

e
:4

4
8

x
4

4
8

 c
h

:1
6

 +
 C

o
n

v
 1

x
1

S
e
g
m

e
n

te
d

 I
m

a
g
e
 C

o
n

v
 1

x
1

 s
iz

e
:4

4
8

x
4

4
8

 c
h

:1

C
o
n

v
 3

x
3

 s
iz

e
:1

1
2

x
1

1
2

 c
h

:6
4

C
o
n

v
 3

x
3

 s
iz

e
:5

6
x
5

6
 c

h
:1

2
8

C
o
n

v
 3

x
3

 s
iz

e
:2

8
x
2

8
 c

h
:2

5
6

Conv 3x3 + BN + RELU

+ Conv 3x3 + BN

Conv 3x3 + BN + RELU

Conv 7x7 + BN + RELU

7

achieve a good generalization performance (He et al., 2016). That’s why, residual

neural networks are preferred to use to extract meaningful feature maps in this

study. A residual neural network is a neural network of building on constructs

known from pyramidal cells in the cerebral cortex (Wen et al., 2018, Meijer et al.,

2019). For modelling approach, ResNets are based on a residual learning that

constructs a building block to add the output from the previous layer to the layer

ahead.

The objective of this thesis is to build a novel loss function beyond making

comparisons with state-of-the-art loss functions. Our loss function, called omni-

comprehensive loss, is proposed and integrated to CNN models for overcoming

both class imbalance and the gradient vanishing issue. Another reason of

constructing a new paradigm on loss function is to be able to produce multiple

evaluations of region-based, shape-aware, and pixel-wise distribution loss

approaches at once. Hence, aside from the popular loss functions used by many

studies in the literature, a more comprehensive one has been built in this thesis.

Also, the choice of optimum hyperparameters used in a loss function has a critical

importance (Eelbode et al., 2020).

The performance of deep neural networks can be affected by these criteria;

data preparation, using a suitable architecture, learning “from scratch” or using

“transfer learning”, using an optimal loss function, and tunable hyper-parameters.

In the training phase, the combination of an 18 layered ResNet and a UNet

(Ronneberger et al., 2015) are used and the model is fed with pre-trained imagenet

weights based on transfer learning.

ResNet18+UNet architecture consists of an encoder network and decoder

network that are connected by skip connections (see APPENDIX A for source

code). In this model architecture, while ResNet is used as a backbone, the decoder

part of the UNet architecture is combined to this architecture. The reason for using

ResNet18 as the backbone is to make the model faster and less complex than

those, which contain more complicated encoder parts like ResNet50, ResNet101

and ResNet152. ResNet34 model, on the other hand, is used as the backbone in

the second scenario to see whether the use of omni-comprehensive loss increases

the performance of a simpler model, i.e., ResNet18, to a level which is close to

that obtained with a more complex model, i.e., ResNet34.

8

Figure 4.2 The training pipeline of the combination of ResNet34 and UNet.

The use of decoder part of UNet is to obtain a good segmentation result with

the use of transpose convolutions and skip connections. Transpose convolutions

have learnable parameters that positively effect the model performance. In

residual blocks, the specified numbers of repeated operation to reach better spatial

resolution are applied as shown in Figure 4.1 and Figure 4.2. Also, Rectified

linear unit (ReLu) activation function has been used to overcome the overfitting

and the gradient vanishing issue. As shown in Figure 1 and Figure 2, the meaning

of operations x2, x3, x4 and x6 are the number of times to apply the respective

techniques (He et al., 2016). Hence, ResNet18 includes 18 convolutional layers,

whereas ResNet34 includes 34 convolutional layers. As shown in Figure 4.2, four

different identity shortcuts in the encoder part are used as building blocks. Just as

in ResNet18, pre-trained imagenet weights are used to initialize the network for

producing feature maps and then multiple feature maps are concatenated by skip

connections. The combinations of 3x3 convolutional filters, batch normalization

and ReLu activation functions are used during the training of the pipeline. This

way, the vanishing gradient problem can be prevented because the derivative of

ReLu doesn't go to zero. At the end of the network, sigmoid function is used to

calculate the probabilistic value of each pixel. Depending on this, the

backpropagation algorithm is performed using the loss function. In addition, each

probabilistic map is thresholded by 0.5 and binarized to calculate dice score and

intersection over union using target mask as shown in Figure 4.3.

 In this thesis, all images are resized as 448𝑥448, convolved with pretrained

imagenet weights using 64 different 7x7 convolutional filters at the beginning of

ResNet18. In the decoder part, UNet with the contributions such as a kernel size

of 3x3 and the specified channel numbers are implemented as shown in Figure 4.1

In
p

u
t

Im
a
g
e
 s

iz
e
:4

4
8

x
4

4
8

 c
h

:3

C
o
n

v
 7

x
7

si

z
e
:2

2
4

x
2

2
4

 c
h

:6
4

M
a
x
 p

o
o
li

n
g
 s

iz
e
:1

1
2

x
1

1
2

 c
h

:6
4

x3

x4

x6

x3

Skip connections

Conv 3x3

size:14x14

ch:512

Conv

3x3

size:14

x14

ch:256

Transpose

Conv 3x3

size:14x14

ch:512

C
o
n

v
 3

x
3

 s
iz

e
:2

8
x
2

8
 c

h
:7

6
8

T
ra

n
sp

o
se

C
o
n

v
 3

x
3

 s
iz

e
:2

8
x
2

8

c
h

:2
5

6

C
o
n

v
 3

x
3

 s
iz

e
:5

6
x
5

6
 c

h
:3

8
4

T
ra

n
sp

o
se

C
o
n

v
 3

x
3

 s
iz

e
:5

6
x
5

6
 c

h
:1

2
8

C
o
n

v
 3

x
3

 s
iz

e
:1

1
2

x
1

1
2

 c
h

:1
9

2

T
ra

n
sp

o
se

C
o
n

v
 3

x
3

 s
iz

e
:1

1
2

x
1

1
2

 c
h

:6
4

T
ra

n
sp

o
se

C
o
n

v
 3

x
3

 s
iz

e
:2

2
4

x
2

2
4

 c
h

:1
2

8

C
o
n

v
 3

x
3

 s
iz

e
:4

4
8

x
4

4
8

 c
h

:3
2

C
o
n

v
 3

x
3

 s
iz

e
:4

4
8

x
4

4
8

 c
h

:3
2

 +
 C

o
n

v
 1

x
1

S
e
g
m

e
n

te
d

 I
m

a
g
e
 C

o
n

v
 1

x
1

 s
iz

e
:4

4
8

x
4

4
8

 c
h

:1

C
o
n

v
 3

x
3

 s
iz

e
:1

1
2

x
1

1
2

 c
h

:6
4

C
o
n

v
 3

x
3

 s
iz

e
:5

6
x
5

6
 c

h
:1

2
8

C
o
n

v
 3

x
3

 s
iz

e
:2

8
x
2

8
 c

h
:2

5
6

Conv 3x3 + BN + RELU

+ Conv 3x3 + BN

Conv 3x3 + BN + RELU

Conv 7x7 + BN + RELU

9

and Figure 4.2. Bridge connections function as a network binding to provide both

concatenation of image channels and translation invariance property. For each

passing step in the decoder part, feature maps are upsampled by transpose

convolutions. At the output of the network, a sigmoid function is used to predict

the latest feature or probabilistic map. Then the loss function is calculated

between probabilistic maps and target masks for weight updation. Another deep

neural network architecture is also used with ResNet34 and Unet combination (see

APPENDIX B for source code) for the comparison of performance metrics. In this

thesis, six different losses are functioned in the loss layer, including omni-

comprehensive loss and the performances are compared as shown in Table 6.1 and

Table 6.2.

Figure 4.3 A flowchart for data augmentation and training-validation process.

For validating the trained model at each iteration, different image sets are

used to calculate dice and intersection over union scores between the predicted

map and the target one. To do this, first step is to calculate true positives (TP),

false positives (FP), and false negatives (FN) that represent how many of pixel

values matched between predicted mask and target mask as illustrated in Figure 4.

According to the validation scores, early stopping criteria, weight decay

regularization, and hyperparameter optimization are also taken into consideration.

For example, learning rate is updated with a multiplication factor of 0.1 as the

learning rate decay if there is no improvement at the end of each three epochs.

Likewise, the training process is terminated if there is no improvement or

decreasing situation of loss scores at the end of each ten epochs. Also, decoupled

weight decay regularization is used for adaptive gradient descent optimization. At

the end, the performances of loss functions are compared to decide which one is

the best in this thesis.

10

Figure 4.4 An illustration of true positives (TP), false positives (FP), true negatives (TN) and false negatives

(FN).

4.2 Omni-Comprehensive Loss Function

The important novelty and the challenge of this thesis is to produce Omni-

comprehensive loss function (see APPENDIX C for source code) that is

developed for creating a new paradigm to overcome both class imabalanced

datasets and the gradient vanishing issue. Another reason of developing this novel

loss function is to be able to produce a more comprehensive one that has

calculation capabilities of region-based, shape-aware, and pixel-wise distribution

loss approaches at once. As known, there are critical priority steps to better train

deep neural networks. Loss layer has a critical importance in achieving this as the

heart of learning stage. In the loss layer, a loss functional model is used to be able

to produce a generalizable deep learning model. The main objective should be

comprehensively serving as a pattern recognition of morphological structures,

pixel-manner distributions, and shape-sensitive condition in an image at once in

terms of providing a fair and more generalizable model.

 (a) (b)

Figure 4.5 (a) Illustration of matching between circle and shifted circle masks. (b) Matching index values

corresponding to shifting parameters in pixels.

As mentioned in Section (1), class imbalance and the vanishing gradient

problem should be considered when building a loss function to achieve better

accuracy and generalization results. In this thesis, a loss is modeled considering

Target

Predicted

Image

TP

FP
FN

TN

11

three components, which are i) normalized cross correlation coefficient (NCC),

(ii) Tversky index (TI) and (iii) binary cross entropy (BCE). The aim of all

matching indices used in this thesis would be to keep improving their predictions

with each passing epoch, until the predicted and target images perfectly overlap.

BCE handles in a pixel wise distribution-based manner. Similarity indices like

NCC, TI and IoU related to two same-sized circle images are calculated as

illustrated in Figure 4.5(b). To do this, each circle is shifted 20 pixels to the left at

each step as shown in Figure 4.5(a), then, the related indices are plotted on the

graph. Finally, the relationships among the indices are evaluated. Whole-slide

shape-sensitive based normalized cross correlation (NCC) can be used to

determine how much matching there is between two images, and it is possible to

create an index between them. As it is known, NCC matching index is in the

range of -1 and 1. As the similarity between two images increases, the index

approaches 1 which means strongly positive correlation. When it approaches to -1,

it means strongly negative correlation, and 0 means no correlation exists. TI

denotes a region-based similarity and is a generalizable form of dice coefficient.

Also, it has a tunable parameter that weights false positives and false negatives

due to the case of both input-class imbalance and inter-input-class imbalance as

shown in equation (8).

Moreover, this novel method is proposed based on the use of both NCC and

Tversky indices. Intersection over union (IoU) is used for describing an overlap

ratio of two images between predicted image and target one. As shown in Figure

4.5 (b), the matching indices of NCC, TI and IoU are plotted and it is observed

that there is a positive relationship between them and by summing NCC and TI

terms as indices and then subtracting from 1 due to calculating a loss, the

functionality of both shape-sensitive and region-based loss is provided together.

NCC can be used for measuring the similarity between an image and a template in

a way of template matching (Huang et al., 2022). A template can be a part of an

image that contains a target object or can be a whole slide image. Also, it can be

used as a loss function. It has been observed that the NCC index can be

considered in a shape-sensitive manner by performing trend analysis as shown in

Figure 4.5 (b). In equation (2), BCE plays important roles as a stabilizer and a

multiplier factor. The aim of using BCE as a feature of pixel-level distribution-

based is to control the omni-comprehensive loss to provide the minimization of

that, overcoming the vanishing gradient problem. Equation (3) represents the three

components of omni-comprehensive loss.

ʆ(α, θ, pi, ti) = [1 − (α ∗ NCC + (1 − α) ∗ TI)] ∗ BCE (2)

12

 NCC =
∑ (pi−μp)(ti−μt)

N
i

Nσpσt
, TI =

1+∑ piti
N
i

1+∑ piti+θ ∑ pi(1−ti)+
N
i (1−θ)∑ ti(1−pi)

N
i

N
i

 (3a)

 BCE = −
1

N
∑ ti log(pi) + (1 − ti) log(1 − pi)

N
i (3b)

where N is the flattened image size of 448x448, pi is the one-dimensional

flattened array of predicted image, ti is the one-dimensional flattened array of the

target image, μp is the average value of the predicted image, μt is the average value

of the target image, σp and σt are the standard deviations of p and t images, TP =

∑ piti
N
i , FP = ∑ pi(1 − ti)

N
i , TN = ∑ (pi − 1)(ti − 1)N

i , and FN = ∑ (1 − pi)ti
N
i .

α parameter weights NCC and TI, and θ parameter weights FPs and FNs in

Tversky index due to the class imbalance issue, so β provides to optimize the trade-

off between precision and recall. The parameters of α and θ for omni-

comprehensive loss function take values between 0 and 1. For example, in this

study, the optimal values of α and θ are set to 0.5 and 0.1, respectively. In our

case, θ is focused more on false negatives. The values of hyperparameters in our

loss function, α and θ, are selected by considering tuning the shape-sensitive case

and class imbalance ratio (89.6% for 0-labeled class and 10.4% for 1-labeled

class) by Tversky index, respectively. It is observed that using lower θ in our

democratized loss function in training led us to decrease FNs and to boost recall.

For BCE, the first part, ti log(pi), is penalized on false negatives whereas the

second part, (1 − ti) log(1 − pi), is punished part of the false positives during

training. Through all the tunable hyperparameters used in our loss function, It is

handled to provide the necessary and the sufficient conditions such as, 1)

penalizing on FNs and FPs, 2) Balancing the class imbalance case, 3) Addressing

the shape-aware approach, 4) Providing pixel-manner distribution loss function,

and 5) Overcoming the gradient vanishing issue. Thus, the loss function is

modeled, considering these properties without using any other additional

hyperparameters that may cause a risk of slow execution of model training.

∂ʆ

∂𝐰𝐢
= ʆ′ = X′Y + Y′X, where X = [1 −

NCC+TI

2
] , Y = BCE (4)

The vanishing gradient problem occurs when the derivative of a function

goes to zero at some values. This situation may cause reusing of feature maps due

to unchangeable or very smooth variation of weights during backpropagation. For

both architectures used in this study, the pipeline of the neural networks till the

loss layer uses ReLu activation function. Derivative of ReLu activation function

never goes to zero, so the problem is solved by our loss function during

backpropagation. As seen in equation (4), the outcome is the derivative of our loss

function that is needed to update weights during backpropagation. The derivative

13

of the sum of NCC and TI is taken into account with the contribution of BCE to

overcome the vanishing gradient problem caused by the sigmoid function as its

derivative goes to zero at some points. BCE functions as a stabilizer factor for

considering pixel-level distribution in our loss function. It is possible to fix the

effects of class imbalance problem with the contribution of NCC and TI, and to

also fix the vanishing gradient problem with the contribution of BCE, in the

output of the deep neural network.

As seen in equation (5), the derivative of BCE, Y′, never goes to zero. For

proof of this, let’s assume that h = 𝐰X + b and p = σ(h) =
1

1+e−h, where 𝐰 is the

filter weight, X is the input image, b is the bias factor, p̂ is the predicted output of

sigmoid function and t is the target value. If we say that BCE is a function of w

and denoted by J(𝐰), then according to chain rule;

 Y′ =
∂J(𝐰)

∂𝐰
=

∂J(𝐰)

∂p

∂p

∂h

∂h

∂𝐰
=

p−t

p(1−p)
 p(1 − p) X (5a)

∂J(𝐰)

∂𝐰
= (p − t)X (5b)

Likewise, the derivative of NCC, NCC′, as a function of 𝐰 and let’s assume that NCC

denoted by θ(𝐰);

 NCC =
∑ (pi−μp)(ti−μt)

N
i

N√∑ (pi−μp)
2N

i
𝑁

σt

 (6a)

 NCC′ =
∂θ(𝐰)

∂𝐰
=

∂θ(𝐰)

∂pi

∂pi

∂h

∂h

∂𝐰
=

∂θ(𝐰)

∂pi
 pi(1 − pi) X; (6b)

∂θ(𝐰)

∂pi
=

1

𝑁σt

∂

∂pi

[

∑ (pi−μp)(ti−μt)

N
i

√∑ (pi−μp)
2N

i
𝑁]

 (6c)

∂

∂pi

[

∑ (pi−μp)N
i

√∑ (pi−μp)
2N

i
𝑁]

=

∑ (ti−μt)
√∑ (pi−μp)

2N
i

𝑁
−∑ (pi−μp)(ti−μt)

1

2√𝑁√∑ (pi−μp)N
i

N
i

N
i

∑ (pi−μp)
2N

i
𝑁

 (6d)

 NCC′ =

∑ (ti−μt)
√∑ (pi−μp)

2N
i

N
−∑ (pi−μp)(ti−μt)

1

2√N√∑ (pi−μp)N
i

N
i

N
i

∑ (pi−μp)
2N

i
N

. pi(1 − pi). X (6e)

In equation (5b), the derivative of BCE doesn't contain the derivative of

sigmoid function. In addition, the derivative of NCC is also calculated as seen in

equation (6a-6e). As seen in equation (8), constant 1 has been added to the

numerator and denominator in the Tversky index formulation. The reason for this

is to get rid of the division by zero problem and, hence to overcome the vanishing

14

gradient problem. The NCC formula alone does not overcome the vanishing

gradient problem as seen in equation (6e) because of the derivative of sigmoid

function still remaining. However, this formula is added to the Tversky index to

solve the problem. Moreover, the contribution of BCE with a multiplicative

manner has been provided to guarantee completely eliminate the vanishing

gradient problem. Hence, it can be said that the derivative of the omni-

comprehensive loss has no way to be zero when combining all components of the

loss. At this point, AdamW optimization algorithm is applied to update filter

weights during backpropagation (Loshchilov et al., 2019).

4.3 Popular Loss Functions

A loss function should sense of imbalance distribution among different

classes. In this thesis, imbalanced datasets are used to balance by the popular loss

functions. Almost each polyp image has a large area of background and has a

small part of foreground which is polyp region. This situation may lead to two

negative outcomes: 1) high bias factor in training model and 2) a poorly

generalized model.

Focal loss (FL) functions as a popular loss function for dealing with class-

imbalance problem. It emphasizes more on background samples to down-weight

the contribution of true negatives during training. As can be seen in equation (7),

there are two hyperparameters that can be tackled to fine-tune the function. These

are α as the balanced factor and γ as the controlling parameter between foreground

and background. Also, it can be said that focal loss is an extended version of cross

entropy. After trying three different cases of the parameter pairs for our

experimental procedure, the optimum values of α are set to 0.25 and of γ to 2.0

based on the best produced performance of FL using equation (7).

 FL(pt) =-αt(1 − pt)

γ 𝑙𝑜𝑔(pt) (7)

where pt refers to the predicted output.

Tversky loss (TL) is our second choice. It uses Tversky index that is a special case

of dice similarity coefficient. Tversky's ratio model is an appropriate basis for

computational approaches to semantic and asymmetric similarity, which is the

comparison of objects such as images in a semantically meaningful way. The aim

of using TL is to control the magnitude of penalties for FPs and FNs.

Tversky index =
TP

TP+𝛂FP+𝛃FN
; Tversky loss = 1 − [

1+TP

1+TP+𝛂FP+𝛃FN
)] (8)

15

where α and β are the adjustable parameters. α is set to 0.1 in the range of

[0,1] and β is set to 0.9 in the range of [0,1] in equation (8) in our study. Also,

constant 1 is added to both numerator and denominator to avoid zero divided by

zero and division by zero errors (Jadon et al., 2020).

In the case of using Focal Tversky loss (FTL), it has an extra controllable

parameter,𝛾, when comparing with Tversky loss. This parameter controls the

balance between background and foreground regions. It is possible to say that

FTL also balances the trade-off between precision and recall, so it is possible to

weight FNs more than FPs to prevent high precision and low recall values as seen

in equation (9).

 Focal Tversky loss = [(1 − Tversky index)]
(
1

γ
)
 (9)

where, α=0.1 in the range of [0,1], β=0.9 in the range of [0,1] and γ=1.33

in the range of [1,3] are selected using equation (9). For dice loss, it is produced

from dice coefficient (DC), also known as the Sørensen dice index, that it

measures the similarity between two images. Tversky index represents a dice

coefficient when α and β are set to equal number as 0.5 as seen in equation (8).

DC is simply formulated as 2TP/(2TP + FP + FN) and hence dice loss becomes

1-DC (Jadon et al., 2020).

5 EXPERIMENTAL PROCEDURE

5.1. Carbon Footprint of Training the CNN models

The development of deep learning (DL) algorithms and hardware

developments are progressing rapidly day by day. Such rapid developments have

led to the need for powerful hardware. This situation affects energy consumption.

Ensuring energy efficiency with the use of DL algorithms will make a significant

positive contribution to climate change. In terms of carbon emission, it is possible

to mitigate the energy consumption with low algorithm complexity and low-

capacity hardware processing units. With this awareness, keeping the algorithm

complexity low can be seen as an important improvement. Moreover, there are

other factors that affect the carbon footprint such as how many hours the hardware

works, region and cloud provider. In this study, the open source "carbontracker"

tool is used. Thus, energy consumption estimation and tracking were made during

the training of DL models. The carbon footprint is predicted using forecasted

carbon intensity with an API used in the tool. The carbon intensity varies

according to the region (country) lived in, and this also affects the carbon

footprint during training of a DL model. The aforementioned API has an ability to

16

fetch IP address of a user who make training a DL model, and thus the region can

be found. Combining FLOPS (floating point operations per second), which is one

of the parameters that can represent algorithm complexity, and some GPUs can

provide higher efficiency, as well as have the effect of reducing carbon emissions.

Converting energy consumption to carbon emission can be calculated using the

following formulations respectively (Anthony et al., 2020).

 𝑃𝑈𝐸 (𝑃𝑜𝑤𝑒𝑟 𝑈𝑠𝑎𝑔𝑒 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠) =
𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝐸𝑛𝑒𝑟𝑔𝑦

𝐼𝑇 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝐸𝑛𝑒𝑟𝑔𝑦
 (10a)

 𝐸𝑛𝑒𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝑃𝑈𝐸 ∑ ∑ 𝑃𝑎𝑣𝑔,𝑑𝑒𝑇𝑒𝑑𝜖𝐷𝑒𝜖𝜉 (10b)

 𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑥 𝐶𝑎𝑟𝑏𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (10c)

where 𝑃𝑎𝑣𝑔,𝑑𝑒 is the average power consumed by used device, 𝑑𝜖𝐷 in epoch 𝑒𝜖𝜉.

𝑇𝑒 is the training time for epoch 𝑒. PUE is the ratio of the total energy used in a

server or a data center to the energy used by IT equipment that are hardware and

network equipment. Carbontracker uses 1.58 as constant value for PUE. The

predicted carbon emission results are obtained developing a code function as seen

in APPENDIX D section.

Carbon emission result for ResNet18+UNet CNN model

CarbonTracker: The following components were found: GPU with device(s)

NVIDIA GeForce GTX 1070 with Max-Q Design.

epoch: 1 --- step: train --- time: 15:07:29

100%|██████████| 238/238 [01:32<00:00, 2.58it/s]

Loss: 0.2749 --- dice: 0.4308 --- IoU: 0.3203

epoch: 1 --- step: val --- time: 15:09:01

100%|██████████| 60/60 [00:12<00:00, 4.94it/s]

Loss: 0.1579 --- dice: 0.4974 --- IoU: 0.3911

******** Saved optimum case ********

CarbonTracker: Average carbon intensity during training was 294.21 gCO2/kWh at

detected location: İzmir, İzmir, TR.

CarbonTracker:

Actual consumption for 1 epoch(s):

Time: 0:01:45

Energy: 0.002224 kWh

CO2eq: 0.654208 g

This is equivalent to:

0.005434 km travelled by car

CarbonTracker:

Predicted consumption for 100 epoch(s):

Time: 2:54:37

Energy: 0.222364 kWh

CO2eq: 65.420772 g

This is equivalent to:

0.543362 km travelled by car

CarbonTracker: Finished monitoring.
Carbon emission result for ResNet34+UNet CNN model

CarbonTracker: The following components were found: GPU with device(s)

NVIDIA GeForce GTX 1070 with Max-Q Design.

epoch: 1 --- step: train --- time: 15:11:19

100%|██████████| 238/238 [01:41<00:00, 2.33it/s]

Loss: 0.2930 --- dice: 0.3321 --- IoU: 0.2421

epoch: 1 --- step: val --- time: 15:13:01

17

100%|██████████| 60/60 [00:11<00:00, 5.30it/s]

Loss: 0.1416 --- dice: 0.4657 --- IoU: 0.3677

******** Saved optimum case ********

CarbonTracker: Average carbon intensity during training was 294.21 gCO2/kWh at

detected location: İzmir, İzmir, TR.

CarbonTracker:

Actual consumption for 1 epoch(s):

 Time: 0:01:54

 Energy: 0.002695 kWh

 CO2eq: 0.793022 g

 This is equivalent to:

 0.006587 km travelled by car

CarbonTracker:

Predicted consumption for 100 epoch(s):

 Time: 3:09:50

 Energy: 0.269546 kWh

 CO2eq: 79.302204 g

 This is equivalent to:

 0.658656 km travelled by car

CarbonTracker: Finished monitoring.

6 RESULTS

In this thesis, it is aimed to provide a performance comparison by evaluating

popular loss functions, instead of comparing different state-of-the-art CNN

models. As it is known, dice loss, Tversky loss and focal Tversky loss studies are

produced respectively by using dice coefficient, Tversky index and focal loss, all

of which already exist in the literature. The most important emphasis of our study

is to provide the performance evaluation of our proposed loss function. To do this,

two approaches have been conducted. 1) To compare different loss functions

using the same CNN model, 2) To compare the same loss functions using a

second CNN model. Thus, a general performance evaluation is provided for CNN

models with two different algorithm complexities.

Because in this study, it is not aimed to achieve high success rates by

choosing CNN models with very high complexity. Instead, the models that have

low complexities are preferred among the residual neural network architectures as

backbone. Thereby, it is provided to achieve higher success rates by using our loss

function compared to existing popular loss functions as seen in Table 6.1 and

Table 6.2. At this point, while taking into account the trade-off between accuracy

and algorithm complexity, indeed, the performance of the loss function and its

results it produces are focused in this study. Even though deeper residual neural

networks achieve higher performance metrics, it has been preferred to use

ResNets, having lower complexity for making training faster.

18

As seen in Table 6.5 and Table 6.6, the performance results of the state-of-

the-art models are available. Multiple performance metrics are handled in this

study. The reason for this is to provide reliable and comprehensive analysis when

evaluating the performance of a CNN model (Hicks et al., 2022). However, recent

studies including the state-of-the-art models do not have such multiple

performance metrics or success criteria as shown in Table 6.5 and Table 6.6.

Table 6.1 Performance comparison of losses using ResNet34 + UNet architecture.

Validation scores Dice IoU

Omni-comprehensive loss (α=0.5, 𝛉=0.1) 0.8767 0.8163

Omni-comprehensive loss (α=0.3, θ=0.3) 0.8537 0.7840

Omni-comprehensive loss (α=0.7, θ=0.3) 0.8459 0.7757

BCE loss 0.8721 0.7984

Dice loss 0.8303 0.7597

Focal loss (α = 0.25, 𝛾=2.0) 0.8433 0.7711

Tversky loss (α = 0.1, β=0.9) 0.7747 0.6747

Focal Tversky loss (α = 0.1, β=0.9, 𝛾=1.33) 0.7919 0.6952

Table 6.2 Comparison of loss functions using ResNet18 + UNet architecture.

Validation scores Dice IoU

Omni-comprehensive loss (α=0.5, 𝛉=0.1) 0.8653 0.8046

Omni-comprehensive loss (α=0.3, θ=0.3) 0.8588 0.79

Omni-comprehensive loss (α=0.7, θ=0.3) 0.8642 0.8043

BCE loss 0.8605 0.7931

Dice loss 0.8443 0.7760

Focal loss (α = 0.25, 𝛾=2.0) 0.8135 0.7396

Tversky loss (α = 0.1, β=0.9) 0.7689 0.6662

Focal Tversky loss (α = 0.1, β=0.9, 𝛾=1.33) 0.7669 0.6653

Dice scores and other CNN model properties are given in Table 6.3.

Table 6.3 Summarized parameters of the training models.

Architecture
of

epochs

#Params

(M)

Validation

Dice score

(%)

Loss function GFLOPS

ResNet18+UNet 39 14.3 81.35 Focal loss 16.6

ResNet34+UNet 40 24.44 84.33 Focal loss 24.02

ResNet18+UNet 41 14.3 86.53

Omni-

comprehensive

loss

16.6

ResNet34+UNet 24.44 87.67

Omni-

comprehensive

loss

24.02

19

As can be seen in Figure 6.1, training and validation sets are separately

handled for each epoch and loss values are accordingly calculated. When doing

this, the loss function is calculated by the use of the training set and the

backpropagation is conducted. Next, the predicted mask is produced based on the

validation set. Finally, the validation loss is calculated between the predicted and

target mask by using the same loss function.

In Figure 6.2, the starting score of dice is around ~51%. In addition to this,

the starting score of intersection over union is around ~40% according to our

experiments. Therefore, it is observed that the NCC coefficient, thus the template

matching index, never falls below zero in this experimental process. Trend

analysis of losses and dices in Figure 6.2 and Figure 6.4 show that the model

using omni-comprehensive loss prevents overfitting due to the tuning of

hyperparameters such as batch size, learning rate, weight decay, learning decay

rate and early stopping criteria.

As illustrated in Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4, train and

validation sets are separately tackled to produce loss and dice scores. The

ResNet18+UNet model is evaluated and achieved as re-validation scores of

92.61% dice, 87.28% IoU, 93.81% sensitivity, 92.60% precision and 93.21% F2

score. By using ResNet34+UNet model, it is achieved as re-validation scores of

93.09% dice, 88.09% IoU, 93.27% sensitivity, 93.78% precision and 93.11% F2

score. One of our goals in this study is to keep the encoder part as low in

complexity as possible compared to 34, 50, 101 and 152 layered residual neural

networks. The results showed that floating point operations per second (FLOPS)

of the 18-layered ResNet model is 1.8𝑥109, whereas FLOPS of 152-layered

ResNet model is 11.3𝑥109.

20

Table 6.4 Evaluation metrics.

Dice coefficient (F1)
2𝑥𝑇𝑃

2𝑥𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

Intersection Over Union (Jaccard

index)

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

Sensitivity (Recall)
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Specificity
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Precision
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

F2
5𝑥𝑇𝑃

4𝑥(𝑇𝑃 + 𝐹𝑁) + 𝑇𝑃 + 𝐹𝑃

Matthews correlation coefficient

𝑇𝑃𝑥𝑇𝑁 − 𝐹𝑃𝑥𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)𝑥(𝑇𝑃 + 𝐹𝑁)𝑥(𝑇𝑁 + 𝐹𝑃)𝑥(𝑇𝑁 + 𝐹𝑁)

Accuracy
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

Figure 6.1 Loss scores for the case of omni-comprehensive loss and ResNet18-UNet architecture.

21

Figure 6.2 Dice scores for the case of omni-comprehensive loss and ResNet18-UNet architecture.

Figure 6.3 Loss scores for the case of omni-comprehensive loss and ResNet34-UNet architecture.

22

Figure 6.4 Dice scores for the case of omni-comprehensive loss and ResNet34-UNet architecture.

During the implementation and development of our software, giga floating

point operations per second (GFLOPS) of the two CNN architectures are

calculated to observe the computation-intensive of the models. 5-fold stratified

cross validation is used when setting up the learning rate and early stopping

criteria to prevent overfitting during training. The training process is terminated if

there is no improvement on validation scores of dice and IoU at the end of each

ten epochs. For our model development, the training process is performed using

Nvidia GTX 1070 Max-Q design graphics card, and Python programming

language is used for code development.

Table 6.5 Test performance comparison using unseen CVC-Clinic DB and CVC-Colon DB.

 External DB test scores (%)

CVC-Clinic DB CVC-Colon DB

mDice mIoU mAcc mSens mSpec mPrec mF2 mMCC mDice mIoU mAcc mSens mSpec mPrec mF2 mMCC

BLE-

net [Ta

et al.

 2022]
- - - - - - - - 73.1 63.8 - - - - - -

SwinE-

Net

[Park et

al.,

2022]

- - - - - - - - 80.4 72.5 - - - - - -

Ours 70.66 61.66 95.54 70.83 98.71 83.16 70.02 86.40 78.71 70.03 96.53 81.81 99.05 83.30 79.94 89.52

mDice=mean dice, mAcc=mean accuracy, mSens=mean sensitivity, mSpec=mean specificity, mF2=mean F2 score, mMCC=mean Matthews correlation coefficient.

23

Table 6.6 Test performance comparison using unseen Kvasir-SEG and ETIS Larib DB.

 External DB test scores (%)

Kvasir-SEG DB ETIS Larib DB

mDice mIoU mAcc mSens mSpec mPrec mF2 mMCC mDice mIoU mAcc mSens mSpec mPrec mF2 mMCC

BLE-

net [Ta

et al.,

2022]
- - - - - - - - 67.3 59.4 - - - - - -

SwinE-

Net

[Park et

al.,

2022]

- - - - - - - - 75.8 68.7 - - - - - -

Ours 81.58 73.18 94.17 86.20 96.82 84.12 82.88 87.85 71.31 62.5 98.07 79.71 98.55 73.34 75.34 87.10

mDice=mean dice, mAcc=mean accuracy, mSens=mean sensitivity, mSpec=mean specificity, mF2=mean F2 score, mMCC=mean Matthews correlation coefficient.

The aim of using small step size is to guarantee finding the global minimum

of a loss function and to avoid updating learning rate many times. For the learning

rate, it is advantageous to initialize with a small value. Hereby, initial learning rate

is set to 5𝑥10−4. Weight decay regularization using AdamW optimizer is also

performed. The value of the weight decay is chosen as a small value, which is

optimally determined as 1𝑥10−5. Learning decay rate is used as the default value

assigned as 0.1 in PyTorch. Also, beta momentum values are assigned as β1 = 0.9

and β2 = 0.999 in AdamW optimizer. For testing the results of the model, original

Figure 6.5 Evaluation results with different tuning parameters used in omni-comprehensive loss.

databases are used for making predictions and binarization. Some of the results

obtained are illustrated in Figure 6.6. Our deep learning model can segment

24

multiple polyps, even small sized ones, at once. In the testing phase, our algorithm

checks the connected contours as polyp region for each predicted binary image. In

addition, our deep learning model is aware of difficult imaging conditions even

with white light saturation that can be exposed on a polyp, air bubbles and so on.

All evaluation metrics as shown in Table 6.4 are calculated as the average values

of each unseen dataset as seen the scores in Table 6.5 and Table 6.6. It is also

considered Matthews correlation coefficient (MCC) in this study. MCC is a

special form of Pearson’s correlation coefficient and can be used as a measure of

association for binary classification in the case of imbalanced classes (Hicks et al.,

2022; Chicco and Jurman, 2020). The MCC takes a value in a range of -1 and 1,

where 1 means perfect prediction, 0 means random prediction with no relationship

between target and predicted class, -1 means worst prediction. In Table 6.5 and

Table 6.6, it is seen that the state-of-the-art models don't include many other

evaluation metrics and our study has comparable good results among these

studies. In Figure 6.6, It is seen that the overlaid images obtained with blending of

original images and related prediction masks. The adding or blending operation

can be applied using g(x)=(1−α)f0(x)+αf1(x), where g(x) is the blended image, f0

is the original image, f1 is the prediction mask, and alpha (α) is a weight factor

that is assigned to 0.8 in this study. OpenCV library is used for the blending

operation.

Figure 6.6 Evaluation results for the case of omni-comprehensive loss and ResNet18-UNet architecture. First

column: original images. Second column: Ground truths. Third column: Predicted masks. Fourth column:

Overlaid segmented images between original images and predicted masks.

25

7 PRODUCTION

The production phase of this study includes the integration of the developed

polyp segmentation model into clinical application. For data acquisition, “Fujinon

EPX-4450D” endoscopy processor, which is used in a colonoscopy device, can be

considered. Image data can be captured using a frame grabber device compatible

with this processor that has a HD-SDI type digital output. As seen in Figure 7.1,

frames can be acquired from colonoscopy device by using ultra studio mini-

recorder as a frame grabber. Captured frames can be read using OpenCV library

thanks to an external AI server. Code snippet of frame capture using OpenCV

library is included in the Appendix E section. Then, the obtained frames are given

as input to the trained model to make polyp segmentation is provided. To

visualize the polyp segmentation stage, the frames transferred to the server can be

processed and monitored via the web application by using a monitor connected to

the AI server. A mobile-friendly web application can be developed using the

“streamlit” library in the Python programming language. In addition, OpenCV,

PIL and PyTorch libraries are used for capturing and processing the images. Thus,

such an architecture is developed from research to production. It is included the

full code in the CD for both real-time video and a single image.

Figure 7.1 An architecture for production phase.

In this thesis, a standalone mobile-friendly web application is also developed for a

second application model as a device-independent and integrable solution using

streamlit library in Python programming language as seen in Figure 7.2 and

Figure 7.3 (see APPENDIX F for source code).

26

Figure 7.2 Standalone web application and polyp image choosing step.

Figure 7.3 The result of both polyp segmentation and the number of detected polyps via web application.

8 DISCUSSION

Colorectal cancers may occur as a result of late detection of polyps.

Colonoscopists use a colonoscopy device to remove polyps by excisional biopsy.

The morphology of polyps has specific patterns that can dynamically change and

may cause misdiagnosis of lesions due to the characterization of mucosal tissue

from person to person. In addition, colonoscopic lightning conditions, inadequate

bowel preparation, mucus on the lesion, polyps that form behind the folds, and

27

blind spots can increase the missed polyp rate. Despite such difficult imaging

conditions, accurate and precise segmentation of polyps captured by the

colonoscopy camera has a critical importance.

The aim of this study is to develop a web application that provides a polyp

segmentation model that contributes to the clinical application. For polyp

segmentation, a new imbalance-aware loss function, i.e. omni-comprehensive

loss, has been developed to be used in deep neural networks to overcome both

imbalanced datasets and the vanishing gradient problem. The second crucial

reason for developing a new loss function is to be able to produce a more

comprehensive one with the evaluation capabilities of region-based, shape-

sensitive and pixel-wise distribution loss approaches at once. For doing such

binary segmentation (as polyp and non-polyp regions), two different architectures

have been conducted for observing the performance of our proposed new loss

function. First, an 18-layer residual network as the backbone with UNet as the

decoder is implemented. Second, a 34-layer residual network as the encoder and a

UNet as the decoder are combined to perform a segmentation model.

Tunable hyperparameters play an important role. Weighting the false positives

and false negatives used in the loss functions is also critical. For omni-

comprehensive loss, α parameter weighs the NCC and the TI to tune the shape

sensitive case and semantically asymmetric similarity case, respectively. θ

parameter weighs FPs and FNs due to the class imbalance issue and it controls the

trade-off between precision and recall. To do this, the parameter θ is selected by

considering the class imbalance ratio (89.6% for 0-labeled class and 10.4% for 1-

labeled class) and weigh more on false negatives. It is observed that using lower θ

in our proposed loss function in training led us to decrease FNs and to boost

recall.

Multiple publicly available datasets are used for this thesis, 5-fold cross

validation, and testing steps. In addition to the original data in these datasets,

augmented versions of these datasets have also been generated by flipping,rotating

and contrast-limited adaptive histogram equalization operations. While the

augmented samples are used both in the training and validation phases, the

original datasets are tackled in the testing phase.

28

The networks trained with our proposed loss function achieved re-validation

scores using all seen original datasets such as 92.61% dice, 87.28% IoU, 93.81%

sensitivity, 92.60% precision and 93.21% F2 scores by using ResNet18+UNet

model. Likewise, ResNet34+UNet has achieved re-validation scores as 93.09%

dice, 88.09% IoU, 93.27% sensitivity, 93.78% precision and 93.11% F2 score.

For the performance comparison of state-of-the-art mathematical models used

during training, obtaining the best performance metrics among the popular

imbalance-aware losses are provided as the emphasis of this study as shown in

Table 6.1 and Table 6.2.

9 CONCLUSION

This thesis is focused on creating a new loss function, i.e., omni-

comprehensive loss, that aims to make instance segmentation of polyps to

determine the precise localization of them using colonoscopic white light images.

At this point, our new loss function is proposed to overcome both the imbalanced

dataset and the vanishing gradient problem. In conclusion, in this way, when the

loss we proposed is used, it is possible for a simpler architecture (i.e.,

ResNet18+UNet) to achieve very close and even higher performance compared to

a more complex architecture (i.e., ResNet34+UNet). These convolutional neural

network architectures powered by our new imbalance-aware omni-comprehensive

loss also exhibit the best performance compared to the other popular state-of-the-

art loss functions such as dice loss, BCE loss, focal loss, focal Tversky loss and

Tversky loss.

Based on the results obtained, it is hoped that this system would be helpful

to colonoscopists during polyp removal. Therefore, it can be put into clinical use.

As future work, it is aimed to achieve higher success rates by developing a new

convolutional architecture with the following strengths: 1-) customizing the

combination of residual neural network and UNet with novel methods. 2-)

keeping the model complexity lower to boost the performance of the segmentation

model.

29

REFERENCES

Abraham, N., Khan, M. N., 2019, A NOVEL FOCAL TVERSKY LOSS

FUNCTION WITH IMPROVED ATTENTION U-NET FOR LESION

SEGMENTATION, IEEE 16th International Symposium on Biomedical

Imaging (ISBI), doi: https://doi.org/10.48550/arXiv.1810.07842

Anthony, Wolf, F., L., Kanding B., Selvan R., 2020, Carbontracker: Tracking

and Predicting the Carbon Footprint of Training Deep Learning

Models,ICML workshop, doi: https://doi.org/10.48550/arXiv.2007.03051

Attouch, H., Lucchetti, R. and Wets, R. J. B., 1991, The topology of the ρ-

hausdorff distance., Annali di Matematica pura ed applicata 160, 303–320.

https://doi.org/10.1007/BF01764131

Bernal, J., Sánchez, F. J., Fernández-Esparrach, G. Gil D., Rodríguez, C.,

Vilariño, F., 2015, WM-DOVA maps for accurate polyp highlighting in

colonoscopy: Validation vs. saliency maps from physicians.,

Computerized Medical Imaging and Graphics,

doi: 10.1016/j.compmedimag.2015.02.007

Bernal, J., Sánchez, J., and Vilarino, F., 2012, Towards automatic polyp

detection with a polyp appearance model. Pattern Recognition, 45(9),

3166-3182pp.

Bressler, B., Paszat, LF., Chen, Z., et al., 2007, Rates of new or missed

colorectal cancers after colonoscopy and their risk factors: a population-

based analysis., Elsevier, Gastroenterology,

doi: 10.1053/j.gastro.2006.10.027

Cassinotti, A., Fociani, P., Duca, P. et al., 2020, Modified Kudo classification

can improve accuracy virtual chromoendoscopy with FICE in endoscopic

https://doi.org/10.48550/arXiv.1810.07842
https://doi.org/10.48550/arXiv.2007.03051
https://doi.org/10.1007/BF01764131
https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/10.1053/j.gastro.2006.10.027

30

surveillance of ulcerative colitis, Endoscopy International Open, vol.8,

doi: 10.1055/a-1165-0169

Chicco, D., Jurman, G., 2020, The advantages of Matthews correlation

coefficient (MCC) over F1 score and accuracy in binary classification

evaluation, BMC Genomics 21, 6, https://doi.org/10.1186/s12864-019-

6413-7.

Doorn, Van, C. S., Hazewinkel, Y., East, E. J. et al, 2015, Polyp Morphology:

An Interobserver Evaluation for the Paris Classification Among

International Experts, The American Journal of Gastroenterology,

doi: 10.1038/ajg.2014.326

Eelbode, T., Bertels, J., Berman, M., Vandermeulen, D., Maes, F., Bisschops,

R., Blaschko, B. M., 2020, Optimization for Medical Image

Segmentation: Theory and Practice when evaluating with Dice Score or

Jaccard Index, IEEE Transactions on Medical Imaging, 3679-3690pp.

He, K., Zhank, X., Ren, S., Sun, J., 2016, Deep Residual Learning for Image

Recognition., IEEE CVPR conference, doi: 10.1109/CVPR.2016.90.

Hicks, A. S., Strümke, I., Thambawita, V., Hambou, M., Riegler, A. M.,

Halvorsen, P., Parasa, S., 2022, On evaluation metrics for medical

applications of artificial intelligence, Sci Rep 12, 5979,

https://doi.org/10.1038/s41598-022-09954-8.

Huang, Y., Yang, X., Huang, X., Liang, J., Zhou, X., Chen, C., Dou, H., Hu,

X., Cao, Y., Ni, D., 2022, Online Reflective Learning for Robust Medical

Image Segmentation, MICCAI conference, doi:

https://link.springer.com/chapter/10.1007/978-3-031-16452-1_62.

https://dx.doi.org/10.1055%2Fa-1165-0169
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1038/ajg.2014.326
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/s41598-022-09954-8

31

Jadon, S., 2020, A Survey of loss functions for semantic segmentation., IEEE,

doi: 10.1109/CIBCB48159.2020.9277638.

Jha, D., Smedsrud, H. P., Johansen, D., Lange, d. T., Johansen, D. H.,

Halvorsen, P., Riegler, A. M., 2021, A Comprehensive Study on

Colorectal Polyp Segmentation With ResUNet++, Conditional Random

Field and Test-Time Augmentation, IEEE, Journal of Biomedical and

Health Informatics, vol.25, doi:

https://doi.org/10.1109/jbhi.2021.3049304.

Jha, D., Smedsrud, H. P., Riegler, A. M., Halvorsen, P., Lange, d. T.,

Johansen, D., and Johansen, D. H., 2020, Kvasir-SEG: A Segmented

Polyp Dataset., In Proc. of the international conference on Multimedia

Modeling, 451–462pp.

Jha, D., Ali, S., Tomar, K. N., Johansen, D. H., Johansen, D., Rittscher, J.,

Riegler, A. M., and Halvorsen, P., 2021, Real-Time Polyp Detection,

Localization and Segmentation in Colonoscopy Using Deep Learning.,

IEEE access, vol. 9, doi: 10.1109/ACCESS.2021.3063716

Jia, X., Mai, X., Yuan, Y. Y., Xing, X., Seo, H., Xing, L., and MengQ, H. M.,

2020, Automatic Polyp Recognition in Colonoscopy Images Using Deep

Learning and Two-Stage Pyramidal Feature Prediction, IEEE

TRANSACTIONS ON AUTOMATION SCIENCE AND

ENGINEERING, doi: 10.1109/TASE.2020.2964827

Jha, D., Smedsrud, H. P., Riegler, A. M., Johansen, D., 2019, ResUNet++: An

Advanced Architecture for Medical Image Segmentation, IEEE,

doi: 10.1109/ISM46123.2019.00049

Lin, T-Y., Dollar, R., Girshick, R., He, K., Hariharan, B. and Belongie, S.,

2017, Feature pyramid networks for object detection, in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), vol. 1, Jul., 4pp.

https://doi.org/10.1109/CIBCB48159.2020.9277638
https://doi.org/10.1109/jbhi.2021.3049304
https://dx.doi.org/10.1109%2FACCESS.2021.3063716
https://doi.org/10.1109/TASE.2020.2964827
https://doi.org/10.1109/ISM46123.2019.00049

32

Lin, Y., Goyal, P., Girshick, R., He, K., and Dollar, P., 2017, Focal loss for

Dense Object Detection, Proceedings of the IEEE International Conference

on Computer Vision (ICCV), 2980-2988pp.

Li, W., Zhao, Y., Li, F., and Wang, L., 2022, MIA-Net: Multi-information

aggregation network combining transformers and convolutional feature

learning for polyp segmentation. Elsevier, Knowledge-Based Systems, doi:

https://doi.org/10.1016/j.knosys.2022.108824.

Long, J., Shelhamer, E., and Darrell, T., 2015, Fully convolutional networks

for semantic segmentation, in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), 3431–3440pp.

Loshchilov, I. and Hutter, F., 2019, DECOUPLED WEIGHT DECAY

REGULARIZATION, ICLR conference.

Mahmud, T., Paul, B., Fattah, A. S., 2020, PolypSegNet: A modified encoder-

decoder architecture for automated polyp segmentation from colonoscopy

images, Elsevier, Computers in Biology and Medicine, doi:

https://doi.org/10.1016/j.compbiomed.2020.104119.

Mehrotra, A., Morris, M., Gourevitch, A. R., Carrell, S. D., et.al., 2018,

Physician characteristics associated with higher adenoma detection rate.,

Elsevier, Gastrointestinal Endoscopy, vol.87,

doi: 10.1016/j.gie.2017.08.023

Meijer, José, A., Visser, A., 2019, A Residual Neural-Network Model to Predict

Visual Cortex Measurements, BNAIC/BENELEARN

Park, Beom-K., Lee, Y. J., 2022, SwinE-Net: hybrid deep learning approach to

novel polyp segmentation using convolutional neural network and Swin

Transformer, Journal of Computational Design and Engineering, Volume

9, Issue 2, 616–632pp, https://doi.org/10.1093/jcde/qwac018.

https://doi.org/10.1016/j.compbiomed.2020.104119
https://doi.org/10.1016/j.gie.2017.08.023
https://doi.org/10.1093/jcde/qwac018

33

Rodriquez, N. A., Carbajales, D. R., Fernandez, L. H. et al, 2021, Deep Neural

Networks approaches for detecting and classifying colorectal polyps,

Elsevier Neurocomputing, doi:

https://doi.org/10.1016/j.neucom.2020.02.123

Ribera, J., Güera, D., Chen, Y., Delp, J. E., 2019, Locating Objects Without

Bounding Boxes, Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 6479-6489pp.

Ronneberger, O., Fischer, P., Brox, T., 2015, U-Net: Convolutional

Networks for Biomedical Image Segmentation. In: Navab N., Hornegger

J., Wells W., Frangi A. (eds) Medical Image Computing and Computer-

Assisted Intervention, MICCAI., Lecture Notes in Computer Science,

vol 9351. Springer, Cham., doi: https://doi.org/10.1007/978-3-319-

24574-4_28.

Salehi, S. S. M., Erdogmus, D., Gholipour, A., 2017, Tversky Loss Function

for Image Segmentation Using 3D Fully Convolutional Deep Networks.

In: Wang Q., Shi Y., Suk HI., Suzuki K. (eds) Machine Learning in

Medical Imaging. MLMI 2017. Lecture Notes in Computer Science, vol

10541. Springer, Cham., doi: https://doi.org/10.1007/978-3-319-67389-

9_44

Ta, N., Chen, H., Lyu, Y., Wu, T., 2022, BLE-Net:boundary learning and

enhancement network for polyp segmentation, Multimedia Systems, doi:

https://doi.org/10.1007/s00530-022-00900-2.

Wen, H., Shi, J., Chen, W., Liu, Z., 2018, Deep Residual Network Predicts

Cortical Representation and Organization of Visual Features for Rapid

Categorization. Sci Rep 8, doi: https://doi.org/10.1038/s41598-018-22160-9

Yeung, M., Sala, E., Schönlieb, B-C., Rundo, L., 2021, Unified Focal Loss:

Generalising Dice and cross entropy-based losses to handle class

https://doi.org/10.1016/j.neucom.2020.02.123
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-67389-9_44
https://doi.org/10.1007/978-3-319-67389-9_44
https://doi.org/10.1007/s00530-022-00900-2
https://doi.org/10.1038/s41598-018-22160-9

34

imbalanced medical image segmentation, Elsevier, Computerized Medical

Imaging and Graphics, doi:

https://doi.org/10.1016/j.compmedimag.2021.102026.

Zhao, S., Wang, S., Pan, P. et al, 2019, Magnitude, Risk Factors, and Factors

Associated with Adenoma Miss Rate of Tandem Colonoscopy: A

Systematic Review and Meta-analysis, Elsevier, Gastroenterology, vol.156,

doi: 10.1053/j.gastro.2019.01.260

https://doi.org/10.1016/j.compmedimag.2021.102026
https://doi.org/10.1053/j.gastro.2019.01.260

35

ACKNOWLEDGEMENT

I sincerely would like to acknowledge and give my warmest thanks to my

supervisor Prof. Dr. Mehmet KUNTALP, for his guidance, valuable suggestions,

criticism, and support during this study. His contributions and advices motivated

me through all the stages of doing my thesis.

I would also thank to my committee members for letting me defense be an

enjoyable and motivational.

Finally, I am deeply grateful to my parents for their support, appreciation,

encouragement and keen interest in my academic achievements.

36

RESUME

Mahmut Ozan GÖKKAN

EDUCATION

Ege University, Bornova, Izmir, Turkey

Ph.D. in Biomedical Tecnologies Deparment,

Institute of Natural and Applied Sciences

2018-2023

Ege University, Bornova, Izmir, Turkey

M.Sc. in Electrical & Electronics Engineering Department,

Institute of Natural and Applied Sciences

2012-2014

Başkent University, Etimesgut, Ankara, Turkey

B.S. in Computer Engineering Department,

2005-2011

PUBLICATIONS

O. Gökkan, M. Kuntalp, "A new imbalance-aware loss function to be used

in a deep neural network for colorectal polyp segmentation " Computers in

Biology and Medicine, Elsevier,

doi:https://doi.org/10.1016/j.compbiomed.2022.106205, 2022.

M. O. Gökkan, S. Tozburun, "Automatic classification of melanocytic skin

tumors based on hyperparameters optimized by cross-validation using

support vector machines" SPIE Photonics West,

doi:https://doi.org/10.1117/12.2542161, 2020.

INTERNATIONAL CONFERENCES

Ozan Gökkan, Mehmet Kuntalp, “Identification of Colorectal Polyp Region

using Optimized Deep Convolutional Encoder-Decoder Network”, Journal

of Artificial Intelligence Theory and Applications (AITA), 2021, Turkey.

https://www.google.com/url?q=https%3A%2F%2Fdoi.org%2F10.1016%2Fj.compbiomed.2022.106205&sa=D&sntz=1&usg=AOvVaw3UxVhVS6dq6oUUJMU31w_q
https://www.google.com/url?q=https%3A%2F%2Fdoi.org%2F10.1117%2F12.2542161&sa=D&sntz=1&usg=AOvVaw2ltpCuW22CG-rKKj2GOhpd

37

Ozan Gökkan, Mehmet Kuntalp, “Performance Comparison of Polyp

Segmentation Model using Imbalance-Aware Losses in Deep Neural

Networks”, Journal of Artificial Intelligence Theory and Applications

(AITA), 2021, Turkey.

38

 APPENDIX A

Python code for ResNet18+UNet CNN model

1. import torch

2. import torch.nn as nn

3. from torchvision import models

4. def conv_bn_relu(in_channels, out_channels):

5. return nn.Sequential(

6. nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=1),

7. nn.BatchNorm2d(out_channels),

8. nn.ReLU(inplace=True)

9.)

10. def double_conv_bn_relu(in_channels, out_channels):

11. return nn.Sequential(

12. nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),

13. nn.BatchNorm2d(out_channels),

14. nn.ReLU(inplace=True),

15. nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),

16. nn.BatchNorm2d(out_channels)

17.)

18. class Res18Unet(nn.Module):

19. def __init__(self, net_out_ch=1):

20. super().__init__()

21. encoder = models.resnet18(pretrained=True)

22. self.encoder_layers = list(encoder.children())

23. self.block1 = nn.Sequential(*self.encoder_layers[:3])

24. self.block2 = nn.Sequential(*self.encoder_layers[3:5])

25. self.block3 = self.encoder_layers[5]

26. self.block4 = self.encoder_layers[6]

27. self.block5 = self.encoder_layers[7]

28. self.up_6 = nn.ConvTranspose2d(512, 512, kernel_size=2, stride=2)

29. self.double_6 = double_conv_bn_relu(768, 512)

30. self.up_7 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)

31. self.double_7 = double_conv_bn_relu(384, 256)

32. self.up_8 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)

33. self.double_8 = double_conv_bn_relu(192, 128)

34. self.up_9 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)

35. self.double_9 = double_conv_bn_relu(128, 64)

36. self.up_10 = nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2)

37. self.conv10 = nn.Conv2d(32, 16, kernel_size=3)

38. self.conv11 = conv_bn_relu(16, net_out_ch)

39. def forward(self, x):

40. block1 = self.block1(x)

41. block2 = self.block2(block1)

42. block3 = self.block3(block2)

43. block4 = self.block4(block3)

44. block5 = self.block5(block4)

45. x = self.up_6(block5)

46. x = torch.cat([x, block4], dim=1)

47. x = self.double_6(x)

39

48. x = self.up_7(x)

49. x = torch.cat([x, block3], dim=1)

50. x = self.double_7(x)

51. x = self.up_8(x)

52. x = torch.cat([x, block2], dim=1)

53. x = self.double_8(x)

54. x = self.up_9(x)

55. x = torch.cat([x, block1], dim=1)

56. x = self.double_9(x)

57. x = self.up_10(x)

58. x = self.conv10(x)

59. x = self.conv11(x)

60. return x

61. model = Res18Unet().cuda()

40

 APPENDIX B

Python code for ResNet34+UNet CNN model

1. import torch

2. import torch.nn as nn

3. from torchvision import models

4. def conv_bn_relu(in_channels, out_channels):

5. return nn.Sequential(

6. nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=1),

7. nn.BatchNorm2d(out_channels),

8. nn.ReLU(inplace=True),

9.)

10. def double_conv_bn_relu(in_channels, out_channels):

11. return nn.Sequential(

12. nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),

13. nn.BatchNorm2d(out_channels),

14. nn.ReLU(inplace=True),

15. nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),

16. nn.BatchNorm2d(out_channels),

17.)

18. class Res34Unet(nn.Module):

19. def __init__(self, net_out_ch=1):

20. super().__init__()

21. encoder = models.resnet34(pretrained=True)

22. self.encoder_layers = list(encoder.children())

23. self.block1 = nn.Sequential(*self.encoder_layers[:3])

24. self.block2 = nn.Sequential(*self.encoder_layers[3:5])

25. self.block3 = self.encoder_layers[5]

26. self.block4 = self.encoder_layers[6]

27. self.block5 = self.encoder_layers[7]

28. self.up_6 = nn.ConvTranspose2d(512, 512, kernel_size=2, stride=2)

29. self.double_6 = double_conv_bn_relu(768, 512)

30. self.up_7 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)

31. self.double_7 = double_conv_bn_relu(384, 256)

32. self.up_8 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)

33. self.double_8 = double_conv_bn_relu(192, 128)

34. self.up_9 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)

35. self.double_9 = double_conv_bn_relu(128, 32)

36. self.up_10 = nn.ConvTranspose2d(32, 32, kernel_size=2, stride=2)

37. self.conv10 = conv_bn_relu(32, net_out_ch)

38. def forward(self, x):

39. block1 = self.block1(x)

40. block2 = self.block2(block1)

41. block3 = self.block3(block2)

42. block4 = self.block4(block3)

43. block5 = self.block5(block4)

44. x = self.up_6(block5)

45. x = torch.cat([x, block4], dim=1)

46. x = self.double_6(x)

47. x = self.up_7(x)

41

48. x = torch.cat([x, block3], dim=1)

49. x = self.double_7(x)

50. x = self.up_8(x)

51. x = torch.cat([x, block2], dim=1)

52. x = self.double_8(x)

53. x = self.up_9(x)

54. x = torch.cat([x, block1], dim=1)

55. x = self.double_9(x)

56. x = self.up_10(x)

57. x = self.conv10(x)

58. return x

59. model = Res34Unet().cuda()

42

 APPENDIX C

Python code for omni-comprehensive loss function

1. import numpy as np

2. import torch.nn as nn

3. from torch.nn import functional as F

4. # Normalized Cross Correlation

5. def NCC(inputs, targets):

6. c = (inputs - inputs.mean()) / (inputs.std() * len(inputs))

7. d = (targets - targets.mean()) / (targets.std())

8. c = c.cpu().detach().numpy()

9. d = d.cpu().detach().numpy()

10. ncc = np.correlate(c, d, 'valid')

11. return ncc.mean()

12. # Calculation of Tversky Index

13. def TverskyIndex(inputs, targets, adding_term=1, beta=0.1):

14. #True Positives, False Positives & False Negatives

15. TP = (inputs * targets).sum()

16. FP = ((1-targets) * inputs).sum()

17. FN = (targets * (1-inputs)).sum()

18. Tversky = (TP + adding_term) / (TP + beta*FP + (1-beta)*FN + adding_term)

19. return Tversky.mean()

20. class omni_comprehensive_loss(nn.Module):

21. def __init__(self):

22. super(omni_comprehensive_loss, self).__init__()

23. def forward(self, inputs, targets):

24. alpha = 0.5

25. #sigmoid activation layer

26. inputs = F.sigmoid(inputs)

27. #flatten label and prediction tensors

28. inputs = inputs.view(-1)

29. targets = targets.view(-1)

30. #compute binary cross-entropy

31. BCE = F.binary_cross_entropy(inputs, targets, reduction='mean')

32. omni_comprehensive = (1 - (alpha*NCC(inputs,targets)+\

33. (1-alpha)*TverskyIndex(inputs, targets)))*BCE

34. return omni_comprehensive

43

APPENDIX D

Python code for carbon emission measurement

1. def start_training(self):

2. for epoch in range(self.num_epochs):

3. self.tracker.epoch_start()

4. self.phase(epoch, "train")

5. state = {

6. "epoch": epoch,

7. "best_loss": self.best_loss,

8. "state_dict": self.net.state_dict(),

9. "optimizer": self.optimizer.state_dict(),

10. }

11. val_loss = self.phase(epoch, "val")

12. self.scheduler.step(val_loss)

13. if val_loss < self.best_loss:

14. self.val_no_improve = 0

15. print("******** Saved optimum case ********\n")

16. state["best_loss"] = self.best_loss = val_loss

17. torch.save(state, "./model.pth")

18. else:

19. self.val_no_improve +=1

20. # Check early stopping condition

21. if self.val_no_improve == self.n_epochs_stop:

22. print('Early stopping!')

23. early_stop = True

24. break

25. else:

26. continue

27. if early_stop:

28. print("Stopped")

29. break

30. self.tracker.epoch_end()

31. print("--\n")

32. self.tracker.stop()

44

APPENDIX E

Python code for data capturing from colonoscopy device using frame grabber

1. import cv2

2. import streamlit as st

3. from PIL import Image

4. st.title("Application of Polyp Segmentation")

5. FRAME_WINDOW = st.image([])

6. # Blackmagic --ultra studio mini recorder (frame grabber) for video capturing stage using

opencv

7. cam = cv2.VideoCapture('decklinksrc mode=7 connection=0 ! videoconvert ! appsink')

8. #image upload

9. ret, frame = cam.read()

10. #real-time video streaming, measuring frames per second (FPS) and making polyp

segmentation

11. cam.set(cv2.CAP_PROP_FPS, 30)

12. fps = int(cam.get(5))

13. print("fps:", fps)

14. if st.button("Apply"):

15. while True:

16. ret, frame = cam.read()

17. frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

18. prediction = model_prediction(frame, model) # model prediction function

19. st.image(Image.open(prediction))

20. FRAME_WINDOW.image(frame)

21. else:

22. st.write('Stopped')

45

APPENDIX F

Python code for standalone and device-independent web application

1. import cv2

2. import streamlit as st

3. from PIL import Image

4. import torchvision.transforms as T

5. import torch

6. import numpy as np

7. import torch.nn as nn

8. from torchvision import models

9. best_threshold=0.5

10. min_size=5

11. image_size=448

12. def post_process(probability, threshold, min_region_size,size):

13. mask = cv2.threshold(probability, threshold, 1, cv2.THRESH_BINARY)[1]

14. num_component, component = cv2.connectedComponents(mask.astype(np.uint8))

15. predictions = np.zeros((size, size), np.float32)

16. num = 0

17. for c in range(1, num_component):

18. p = component > 0

19. if p.sum() > min_region_size: # if region of polyp is greater than min_region_size

20. predictions[p] = 1

21. num += 1

22. return predictions, num

23. def conv_bn_relu(in_channels, out_channels):

24. return nn.Sequential(

25. nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=1),

26. nn.BatchNorm2d(out_channels),

27. nn.ReLU(inplace=True)

28.)

29. def double_conv_bn_relu(in_channels, out_channels):

30. return nn.Sequential(

31. nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),

32. nn.BatchNorm2d(out_channels),

33. nn.ReLU(inplace=True),

34. nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),

35. nn.BatchNorm2d(out_channels),

36.)

37. class Res18Unet(nn.Module):

38. def __init__(self, net_out_ch=1):

39. super().__init__()

40. encoder = models.resnet18(pretrained=True)

41. self.encoder_layers = list(encoder.children())

42. self.block1 = nn.Sequential(*self.encoder_layers[:3])

43. self.block2 = nn.Sequential(*self.encoder_layers[3:5])

44. self.block3 = self.encoder_layers[5]

45. self.block4 = self.encoder_layers[6]

46. self.block5 = self.encoder_layers[7]

47. self.up_6 = nn.ConvTranspose2d(512, 512, kernel_size=2, stride=2)

46

48. self.double_6 = double_conv_bn_relu(768, 512)

49. self.up_7 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)

50. self.double_7 = double_conv_bn_relu(384, 256)

51. self.up_8 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)

52. self.double_8 = double_conv_bn_relu(192, 128)

53. self.up_9 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)

54. self.double_9 = double_conv_bn_relu(128, 64)

55. self.up_10 = nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2)

56. self.conv10 = nn.Conv2d(32, 16, kernel_size=3)

57. self.conv11 = conv_bn_relu(16, net_out_ch)

58. def forward(self, x):

59. block1 = self.block1(x)

60. block2 = self.block2(block1)

61. block3 = self.block3(block2)

62. block4 = self.block4(block3)

63. block5 = self.block5(block4)

64. x = self.up_6(block5)

65. x = torch.cat([x, block4], dim=1)

66. x = self.double_6(x)

67. x = self.up_7(x)

68. x = torch.cat([x, block3], dim=1)

69. x = self.double_7(x)

70. x = self.up_8(x)

71. x = torch.cat([x, block2], dim=1)

72. x = self.double_8(x)

73. x = self.up_9(x)

74. x = torch.cat([x, block1], dim=1)

75. x = self.double_9(x)

76. x = self.up_10(x)

77. x = self.conv10(x)

78. x = self.conv11(x)

79. return x

80. model = Res18Unet().cuda()

81. st.title("Application of Polyp Segmentation")

82. img = st.file_uploader("Upload a polyp image for segmentation",

type=["png","tif","tiff","jpg", "jpeg"])

83. img = Image.open(img)

84. st.image(img)

85. model.eval()

86. state = torch.load("C:/Users/ozangokkan/Desktop/PhD/thesis/codes/model.pth",

map_location=lambda storage, loc: storage)

87. model.load_state_dict(state["state_dict"])

88. preprocess = T.Compose([

89. T.Resize([448,448]),

90. T.ToTensor(),

91. T.Normalize(

92. mean = [0.485, 0.456, 0.406],

93. std = [0.229, 0.224, 0.225]

94.)

95.])

47

96. x = preprocess(img)

97. x.shape

98. transformed = torch.unsqueeze(torch.tensor(x), 0)

99. print(transformed.shape)

100. out = model(transformed)

101. out = np.squeeze(out)

102. out = out.detach().numpy()

103. predict_image, num_predict_ = post_process(out, best_threshold, min_size, image_size)

104. if st.button("Apply"):

105. st.image(predict_image)

106. st.write('The number of detected polyps :', num_predict_)

	Boş Sayfa

