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DERİN AĞLARDA KULLANILACAK YENİ BİR KAYIP FONKSİYONU 
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Ocak 2023, 65 sayfa 

Poliplerin geç saptanması sonucunda kolorektal kanserler ortaya 

çıkabilmektedir. Kolonoskopistler, eksizyonel biyopsi ile polipleri çıkarmak için 

bir kolonoskopi cihazı kullanır. Bu çalışmanın amacı, klinik uygulamaya katkı 

niteliğinde bir polip bölütleme modeli sağlayan bir web uygulaması geliştirmektir. 

Polip segmentasyonu için, derin sinir ağlarında hem dengesiz veri setinin hem de 

kaybolan gradyan probleminin üstesinden gelmek için kullanılmak üzere yeni bir 

dengesizlik farkındalıklı kayıp fonksiyonu, yani her şeyi kapsayan kayıp 

geliştirilmiştir. Yeni bir fonksiyon geliştirmenin ikinci önemli nedeni, bölge bazlı, 

şekle duyarlı ve piksel bazında dağıtım kaybı yaklaşımlarının değerlendirme 

yeteneklerine sahip daha kapsamlı bir fonksiyonunu bir kerede üretebilmektir. 

Bunu yapmak için, bir algoritma karmaşıklığını tanımlamanın temsili bir 

parametresi olarak her biri saniyede farklı kayan nokta işlemine (FLOPS) sahip 

iki farklı evrişimsel sinir ağı (CNN) ele alınmıştır. İlk olarak, kodlayıcı olarak 

ResNet18 ve kod çözücü olarak bir UNet gerçekleştirilmiştir. İkinci olarak, 

kodlayıcı olarak 34 katmanlı bir artık ağ ve kod çözücü olarak bir UNet 

tasarlanmıştır. Her iki CNN mimarisi için, popüler dengesizlik farkında kayıpları 

kullanmanın sonuçları, önerilen yeni kayıp fonksiyonumuzu kullanmanın 

sonuçlarıyla karşılaştırılmıştır. Eğitim, 5 katlamalı çapraz doğrulama ve test 

adımları için, erişime açık birden çok veri kümesi kullanılmıştır. Bu veri 

kümelerindeki orijinal verilere ek olarak, çevirme, ölçekleme, döndürme ve 

kontrast sınırlı uyarlanabilir histogram eşitleme işlemleriyle bunların artırılmış 
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örnekleri de oluşturulmuştur. Arttırılmış örnek veriler hem eğitim hem de 

doğrulama aşamasında kullanılırken, orijinal görülen veri kümeleri test 

aşamasında işlenmiştir. Sonuç olarak, önerilen yeni özel kayıp fonksiyonumuz, 

popüler kayıp işlevleriyle karşılaştırıldığında en iyi performans ölçümlerini 

üretmiştir. 

Anahtar Kelimeler: Polip bölütleme, kayıp fonksiyonu, derin sinir ağı, sınıf 

dengesizliği, kaybolan gradyan problemi. 
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ABSTRACT 

A NEW LOSS FUNCTION TO BE USED IN DEEP NETWORKS FOR IMAGE 

SEGMENTATION OF COLORECTAL POLYPS  

GÖKKAN, Mahmut Ozan 

PhD thesis in Biomedical Technologies Department 

Supervisor: Prof. Dr. Mehmet KUNTALP 

January 2023, 65 pages 

Colorectal cancers may occur as a result of late detection of polyps. 

Colonoscopists use a colonoscopy device to remove polyps by excisional biopsy. 

The aim of this study is to develop a web application that provides a polyp 

segmentation model that contributes to the clinical application. For polyp 

segmentation, a new imbalance-aware loss function, i.e. omni-comprehensive 

loss, has been developed to be used in deep neural networks to overcome both 

imbalanced datasets and the vanishing gradient problem. The second crucial 

reason for developing a new loss function is to be able to produce a more 

comprehensive one with the evaluation capabilities of region-based, shape-

sensitive and pixel-wise distribution loss approaches at once. To do this, two 

different convolutional neural networks (CNNs) have been implemented, each 

with different floating point operations per second (FLOPS) that is a 

representative parameter to identify an algorithm complexity. First, ResNet18 as 

the encoder and a UNet as the decoder is implemented. Second, a 34-layer 

residual network is designed as the encoder and a UNet as the decoder is 

designed. For both CNN architectures, the results of using the popular imbalance-

aware losses are compared with the results of using our new proposed loss 

function. Multiple publicly available datasets are used for training, 5-fold cross 

validation, and testing steps. In addition to the original data in these datasets, 

augmented versions of these datasets have also been generated by 

flipping,rotating and contrast-limited adaptive histogram equalization operations. 

While the augmented samples are used both in the training and validation phases, 

the original datasets are tackled in the testing phase.While the augmented samples    

ix 



are used both in the training and validation phases, the original datasets are 

tackled in the testing phase. As a result, our proposed new custom loss function 

produced the best performance metrics compared to the popular loss functions. 

        Keywords: Polyp segmentation, loss function, deep neural network, class 

imbalance, vanishing gradient problem. 
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       PREFACE 

Colorectal polyps may cause cancer and may carry a mortal risk. Due 

to the epidemiology of colorectal polyps, such an abnormal tissue structure with a 

high prevalence may differ according to age, gender and demographic structure. 

Therefore, early diagnosis and polyp resection by excisional biopsy play 

important roles. At this point, it has become possible with this thesis study to 

provide an application model integrated into the clinical application by using 

advanced computer vision technologies. Thanks to the developed web application 

module, segmentation of polyps and the number of segmented polyps are 

monitored. It can be said that this is a very important technological development 

in providing a fast and accurate diagnosis for colonoscopists. 

I sincerely would like to thank my supervisor Prof. Dr. Mehmet Kuntalp for 

his valuable guidance, suggestions, criticism, and support during this study. 

I would also like to thank dear thesis committee members to their time, 

generous share of knowledge, and constructive comments. 

   Finally, I want to thank my family for supporting me. 
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27/01/2023 Mahmut Ozan GÖKKAN 
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1     INTRODUCTION

        Colorectal polyps may develop into cancerous tissue types. Operator-

dependent colonoscopy is the gold standard and colonoscopists often use this 

procedure for viewing the entire colon to remove polyps by excisional biopsy. 

Colonoscopy devices need special training and experience to prevent misdiagnosis 

of suspected lesions. For this reason, computer vision applications are developed 

using colonoscopic different type of images, including white light and filtered 

images for the purpose of classification and segmentation. In addition, the 

experience of a colonoscopist and the characteristics of a physician also play an 

important role in the correct determination of adenoma (Mehrotra et al., 2018).  

Deep neural networks can be a good decision-making system for polyp detection. 

Hence, such an application model could help clinicians make excisions without 

damaging healthy mucosal tissue. At this point, the encoder-decoder neural 

networks can be used to segment a polyp on an image to contribute to the clinical 

application in gastroenterology units.  

For pattern recognition and feature extraction step, one of the encoders may 

be used as a backbone such as residual neural networks (ResNets). Channel 

concatenation, known as skip connection, can be used for combining a decoder 

with one of the encoders. Datasets used for obtaining reliable and high scores play 

an important role for acquaring high performance. When analyzing CVC-Clinic 

DB, CVC-Colon DB, ETIS-Larib polyp DB and Kvasir-Seg polyp datasets and 

their spatial information as shown in Table 3.1, it is possible to say that these 

datasets have relatively much more background area than the foreground, 

identified as non-polyp region and polyp region, respectively. Due to the 

imbalanced distribution of the datasets, the number of the 0-labeled class is much 

higher than the respective number of the 1-labeled class in all datasets. That’s why 

building a democratized loss layer has a critical importance when developing a 

loss function and focusing more on polyp regions than non-polyp regions. In this 

thesis, the ratio of 0-labeled pixel class is 89.6% while the ratio of 1-labeled pixel 

class is 10.4% in all datasets due to changeable polyp size. 0-labeled class has no 

polyp region and 1-labeled class has polyp region. This kind of imbalanced 

distribution of classes may  cause unfair and degenerated learning models. A 

solution is to use a suitable and generalizable loss function. In addition, such a 

loss function should have two important properties: First, a loss function should 

be aware of the unbalanced distribution between both intra-class distribution of 

images and inter-class distribution of pixel-wise levels in an image. Second, a loss 

function should overcome the vanishing gradient problem to prevent overfitting.  
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For this situation, a novel loss function is developed for making training 

model democratize to segment the precise region of a polyp by using 18-layer and 

34-layer ResNets as encoders and a UNet as the decoder network. For model 

training, the encoders are initialized using pre-trained imagenet weights in a way 

of transfer learning. The challenge of this study is to create a new paradigm, 

developing an artificial intelligence enabling technology with the loss function 

called omni-comprehensive loss, to be used in deep neural networks to overcome 

both imbalanced dataset and the vanishing gradient problem. The second reason 

and important advantages of developing this function is to be able to produce a 

more comprehensive one that has evaluation capabilities of region-based, shape-

aware, and pixel-wise distribution loss approaches at once. Also, the proposed 

loss function is compared with the popular loss functions such as binary cross 

entropy loss and focal loss for distribution-based approach, whereas dice loss, 

Tversky loss (Salehi et al., 2017) and focal Tversky loss (Abraham et al., 2019) 

for region-based approach. A boundary-aware loss function can also be handled to 

tackle the segmentation of polyps such as hausdorff distance loss (Ribera et al., 

2019). This loss is a great way if an object has a contour with bounded or closed 

border (Ribera et al., 2019; Attouch et al., 1991). However, a neural network may 

not have predicted some pixels and that predicted binary object may not have a 

closed contour. In addition, another drawback of hausdorff is that it doesn’t have 

adjustable parameters to penalize the false positives and false negatives. That’s 

why, hausdorff loss function is not take into account for this thesis. In our 

proposed loss function, there are two adjustable hyperparameters, such as α and θ. 

The purpose of α is to make the function more comprehensive and adjustable due 

to handle shape-aware condition and semantically asymmetric similarity case, 

while using θ, it is possible to emphasis and weigh more on false negatives to 

increase recall. 

The critical choice of α and θ plays an crucial role on the morphological 

template of polyps and on balancing the class imbalances, respectively. Another 

important problem is the vanishing gradient that may occur in the loss layer when 

using a loss function. Sigmoid function is often preferred to use for binary 

classification. However, the gradient of sigmoid goes to zero at some points and 

this situation can lead to infinitesimally small weights during backpropagation. At 

this point, our loss function is constructed and is outperformed popular losses in 

overcoming these problems. From research to production, a mobile-friendly web 

application is developed to make polyp segmentation and to integrate colonoscopy 

devices in clinical application during intervention. To do this, a frame grabber 

device (i.e. blackmagic mini recorder) can be used to transmit frames from the 
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device to an external web server based PC for providing communication in real-

time to make polyp segmentation. A colonoscopy device has an endoscopy 

processor and for example, Fujinon EPX-4450D is one of the them to acquire and 

process colonoscopic white light images. Images can be captured using a frame 

grabber device compatible with this processor that has a HD-SDI type digital 

output. Then, web-server can acquire those images by a frame grabber to segment 

polyps. 

2 LITERATURE SURVEY 

Deep learning has an efficient methodology for polyp segmentation. For 

instance, ResUNet++ has been designed for polyp segmentation. With the use of 

Kvasir-Seg dataset, 81.33% dice score was acquired, while using the cvc-clinic db 

dataset, 79.55% dice score was achieved (Jha et al., 2019).  A miss rate of 27% 

was obtained for serrated polyps reached (Zhao et al., 2019) in another study. 

Moreover, the rate of missed colorectal cancers is between 2% and 6%, shown by 

another study (Bressler et al., 2007).  

PLPNet (Jha et al., 2020) is a CNN architecture that perform for detection 

task. It consists of ResNet50 as encoder and feature pyramid network (FPNet) 

(Lin T-Y. Et al., 2017) as the decoder part. Depending on this, PLPNet has two 

steps; i) polyp proposal using region proposal network (RPN) for both 

classification and bounding box regression, and ii) polyp segmentation using 

ground truth masks. For the segmentation task, fully convolutional networks 

(Long et al., 2015) are applied using feature pyramids and initialized the network 

by feature sharing from polyp proposals. Thereby, it is claimed that richer spatial 

contents can be acquired with a fully convolutional architecture to achieve better 

accuracy.PLPNet is trained with CVC-Colon DB using binary cross entropy loss 

and is tested with CVC-Clinic DB. Hence, 74.7% IoU and 83.9% dice scores are 

obtained. While using only two databases for training and testing may cause 

poorly generalized model, it can be deduced that there is a need to develop a 

model that performs better due to the low success rate when compared with our 

study.  

ColonSegNet is another architecture for detection, localization, and 

segmentation at once (Jha et al., 2021). It consists of an encoding - decoding 

neural network that include residual building blocks with squeeze and excitation 

network. ColonSegNet has both less trainable parameters and multifunctional 

specialty, and it achieved a dice score of 82.06%, 84.35% precision, 84.96% recall 

and 82.06% F2 score using Kvasir-SEG dataset for the case of cross entropy and 

dice loss combination.  
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There is another study to segment polyps using CVC-Clinic DB dataset, U-

Net architecture, and focal loss (Yeung et al., 2021). With the hyperparameters 

used in (Lin et al., 2017), a dice score of 86.8%, intersection over union score of 

79%, precision of 84.4% and recall of 93.3% are acquired. With the same model 

concept, 87.4% dice score, 79.6% intersection over union, 86.4% precision and 

90.9% recall are achieved with using Tversky loss while using focal Tversky loss, 

89.4% dice, 83.1% intersection over union, 89.6% precision and 91.9% recall are 

obtained (Yeung et al., 2021). In another study, PolypSegNet architecture is 

developed and a dice score of 84.04%, intersection over union score of 77.83%, 

precision of 95.06% and recall of 85.11% by using Tversky loss are achieved. 

Likewise, in the same study, a dice score of 84.79%, intersection over union score 

of 78.32%, precision of 95.71% and recall of 84.34% are achieved by focal 

Tversky loss (Mahmud et al., 2020). 

 

3      PUBLICLY AVAILABLE DATASETS 

3.1    Content structure of the datasets 

 KUDO (pit pattern) classification (Cassinotti et al., 2020) and Paris 

classification (Doorn et al., 2015) are the standards for the categorization of 

polyps. KUDO classification is based on the surface textural pattern of polyps 

such as tubulo-villous adenoma, tubular adenoma and hyperplastic polyp. For 

Paris classification, polyps can be subclassified into morphological structures such 

as pedunculated, flat, or sessile type.  

Convolutional neural networks can be a way to recognize a pattern and can 

provide a well-generalized model using different type of datasets. Especially, 

having different polyp types would provide us with creating a better generalizable 

learning model. According to this paradigm, four publicly available datasets are 

used in this thesis: CVC Clinic DB, CVC Colon DB, Etis-Larib and Kvasir-Seg 

datasets. These datasets include white light images with variations in size, color, 

shape and pattern. CVC clinic DB consists of 612 images (Bernal et al., 2015). 

CVC Colon DB has 380 sequential images extracted from 15 videos (Rodriquez et 

al., 2021; Bernal et al., 2012). Kvasir-SEG database has 1000 polyp images (Jha 

et al., 2020). ETIS-Larib DB contains 196 polyp images (Jha, Smedsrud and 

Riegler et al., 2021). The augmented versions of images in all datasets are 

combined and used in deep neural networks for train and validation steps. For the 

testing step, each original dataset we used has been evaluated as unseen or an 
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external dataset and the results have been obtained as shown in Table 6.5 and 

Table 6.6. 

 
Table 3.1 Properties of the datasets used in our experimental study. 

Database # of polyp images Pixel resolution Website 

CVC-Clinic DB 612 384x288 Link 

CVC-Colon DB 300 500x574 Link 

Kvasir-SEG DB 1000 1225x966 Link 

ETIS-Larib DB 196 712x480 or 1920x1080 Link 

3.2 Augmentation tecniques & “Ready-to-Feed” data preparation 

In this thesis, data augmentation using “albumentations” package in 

PyTorch is used to only training and validation phases. The trained model is then 

evaluated on all original images with no augmentation for testing phase. The trend 

analysis of validation error should continue to decrease in parallel with the 

training error with tackling data augmentation approach.  

For data preparation, data augmentation and data normalization steps are 

conducted, respectively. First, the augmentation techniques are used as follows; i) 

random horizontal-vertical flipping or both, ii) scaling (scaling limit as 0.1), iii) 

determining rotation angle among 0, 10, 45, 90, 180, 270, iv) Contrast-limited 

adaptive histogram equalization (CLAHE) by adjusting clip limit as 1 and tile grid 

size as 8 by 8. For scaling, image sizes are rescaled with a multiplier factor of 0.1. 

For flipping case, the rows and columns of an image are symmetrically flipped 

depending on the horizontal and vertical cases. For CLAHE, each image is 

divided by 8x8 grids and then histogram equalization is applied to each local 

subimage or grid. Contrast limiting or thresholding value as clip limit is applied to 

each grid’s histogram to enhance the contrast. Then bilinear interpolation is 

applied to whole-slide image to make good combination of grids. The second 

crucial step is to prepare data to input to the neural network by normalization 

process to provide computational ease and to avoid overfitting issue. To do this, 

each input image at the beginning of pretrained ResNet18 is normalized using the 

mean values of each RGB channels as 0.485, 0.456, 0.406 and standard deviations 

as 0.229, 0.224, 0.225, respectively. Hence, each image is normalized by the 

equation (1) (Li et al., 2022).  

      𝑥𝑖,𝑗 =
(𝑥𝑖,𝑗−𝜇𝑐)

𝜎𝑐
                                          (1) 

https://polyp.grand-challenge.org/CVCClinicDB/
http://mv.cvc.uab.es/projects/colon-qa/cvccolondb
https://datasets.simula.no/kvasir-seg/
https://polyp.grand-challenge.org/EtisLarib/
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where (𝑖, 𝑗) represents the pixel coordinate, 𝜇𝑐 refers to the mean of 

corresponding channel (c) value as red, green, and blue, and 𝜎𝑐 is the standard 

deviation with related to each channel.  

 

4     PROPOSED DEEP LEARNING MODEL 

4.1. Training CNN models 

For training of a network, CNN have many expedients when a problem gets 

more complex. Deeper layers in neural networks can be optimal to overcome 

obstacles for making an image segmentation. 

Even if there are difficulties in the use of the colonoscopy device during 

imaging depending on a colonoscopist’s experience, a polyp should be able to be 

detected as the target object by a decision-making system. At this point, two 

different scenarios have been conducted for polyp segmentation in this thesis. 

Figure 4.1 The training pipeline of the combination of ResNet18 and UNet. 

 

First, an 18 layered residual network as decoder and UNet as decoder is 

implemented. Then, as a second stage, a 34 layered residual network as an 

encoder and a UNet as decoder are connected to perform a polyp segmentation 

model. Residual neural networks are deep neural networks and one of their 

abilities is to use residual blocks in terms of getting an identity map. It has more 

comprehensive and rich spatial image content due to using its input reference. The 

other important benefits of ResNets provide us with the following strengths: 1) To 

accelerate the speed of training of the networks, 2) To increase depth of the 

network that results in less extra parameters when comparing with widen 

networks, 3) To reduce the effect of vanishing gradient problem and, hence 
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achieve a good generalization performance (He et al., 2016). That’s why, residual 

neural networks are preferred to use to extract meaningful feature maps in this 

study. A residual neural network is a neural network of building on constructs 

known from pyramidal cells in the cerebral cortex (Wen et al., 2018, Meijer et al., 

2019). For modelling approach, ResNets are based on a residual learning that 

constructs a building block to add the output from the previous layer to the layer 

ahead. 

The objective of this thesis is to build a novel loss function beyond making 

comparisons with state-of-the-art loss functions. Our loss function, called omni-

comprehensive loss, is proposed and integrated to CNN models for overcoming 

both class imbalance and the gradient vanishing issue. Another reason of 

constructing a new paradigm on loss function is to be able to produce multiple 

evaluations of region-based, shape-aware, and pixel-wise distribution loss 

approaches at once. Hence, aside from the popular loss functions used by many 

studies in the literature, a more comprehensive one has been built in this thesis. 

Also, the choice of optimum hyperparameters used in a loss function has a critical 

importance (Eelbode et al., 2020).  

The performance of deep neural networks can be affected by these criteria; 

data preparation, using a suitable architecture, learning “from scratch” or using 

“transfer learning”, using an optimal loss function, and tunable hyper-parameters. 

In the training phase, the combination of an 18 layered ResNet and a UNet 

(Ronneberger et al., 2015) are used and the model is fed with pre-trained imagenet 

weights based on transfer learning.  

ResNet18+UNet architecture consists of an encoder network and decoder 

network that are connected by skip connections (see APPENDIX A for source 

code). In this model architecture, while ResNet is used as a backbone, the decoder 

part of the UNet architecture is combined to this architecture. The reason for using 

ResNet18 as the backbone is to make the model faster and less complex than 

those, which contain more complicated encoder parts like ResNet50, ResNet101 

and ResNet152. ResNet34 model, on the other hand, is used as the backbone in 

the second scenario to see whether the use of omni-comprehensive loss increases 

the performance of a simpler model, i.e., ResNet18, to a level which is close to 

that obtained with a more complex model, i.e., ResNet34. 
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Figure 4.2 The training pipeline of the combination of ResNet34 and UNet. 

 

The use of decoder part of UNet is to obtain a good segmentation result with 

the use of transpose convolutions and skip connections. Transpose convolutions 

have learnable parameters that positively effect the model performance. In 

residual blocks, the specified numbers of repeated operation to reach better spatial 

resolution are applied as shown in Figure 4.1 and Figure 4.2. Also, Rectified 

linear unit (ReLu) activation function has been used to overcome the overfitting 

and the gradient vanishing issue. As shown in Figure 1 and Figure 2, the meaning 

of operations x2, x3, x4 and x6 are the number of times to apply the respective 

techniques (He et al., 2016). Hence, ResNet18 includes 18 convolutional layers, 

whereas ResNet34 includes 34 convolutional layers. As shown in Figure 4.2, four 

different identity shortcuts in the encoder part are used as building blocks. Just as 

in ResNet18, pre-trained imagenet weights are used to initialize the network for 

producing feature maps and then multiple feature maps are concatenated by skip 

connections. The combinations of 3x3 convolutional filters, batch normalization 

and ReLu activation functions are used during the training of the pipeline. This 

way, the vanishing gradient problem can be prevented because the derivative of 

ReLu doesn't go to zero. At the end of the network, sigmoid function is used to 

calculate the probabilistic value of each pixel. Depending on this, the 

backpropagation algorithm is performed using the loss function. In addition, each 

probabilistic map is thresholded by 0.5 and binarized to calculate dice score and 

intersection over union using target mask as shown in Figure 4.3. 

 In this thesis, all images are resized as 448𝑥448, convolved with pretrained 

imagenet weights using 64 different 7x7 convolutional filters at the beginning of 

ResNet18. In the decoder part, UNet with the contributions such as a kernel size 

of 3x3 and the specified channel numbers are implemented as shown in Figure 4.1 
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and Figure 4.2. Bridge connections function as a network binding to provide both 

concatenation of image channels and translation invariance property. For each 

passing step in the decoder part, feature maps are upsampled by transpose 

convolutions. At the output of the network, a sigmoid function is used to predict 

the latest feature or probabilistic map. Then the loss function is calculated 

between probabilistic maps and target masks for weight updation. Another deep 

neural network architecture is also used with ResNet34 and Unet combination (see 

APPENDIX B for source code) for the comparison of performance metrics. In this 

thesis, six different losses are functioned in the loss layer, including omni-

comprehensive loss and the performances are compared as shown in Table 6.1 and 

Table 6.2. 

 

Figure 4.3 A flowchart for data augmentation and training-validation process. 

For validating the trained model at each iteration, different image sets are 

used to calculate dice and intersection over union scores between the predicted 

map and the target one. To do this, first step is to calculate true positives (TP), 

false positives (FP), and false negatives (FN) that represent how many of pixel 

values matched between predicted mask and target mask as illustrated in Figure 4. 

According to the validation scores, early stopping criteria, weight decay 

regularization, and hyperparameter optimization are also taken into consideration. 

For example, learning rate is updated with a multiplication factor of 0.1 as the 

learning rate decay if there is no improvement at the end of each three epochs. 

Likewise, the training process is terminated if there is no improvement or 

decreasing situation of loss scores at the end of each ten epochs. Also, decoupled 

weight decay regularization is used for adaptive gradient descent optimization. At 

the end, the performances of loss functions are compared to decide which one is 

the best in this thesis. 
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Figure 4.4 An illustration of true positives (TP), false positives (FP), true negatives (TN) and false negatives 

(FN). 

 

4.2 Omni-Comprehensive Loss Function 

The important novelty and the challenge of this thesis is to produce Omni-

comprehensive loss function (see APPENDIX C for source code) that is 

developed for creating a new paradigm to overcome both class imabalanced 

datasets and the gradient vanishing issue. Another reason of developing this novel 

loss function is to be able to produce a more comprehensive one that has 

calculation capabilities of region-based, shape-aware, and pixel-wise distribution 

loss approaches at once. As known, there are critical priority steps to better train 

deep neural networks. Loss layer has a critical importance in achieving this as the 

heart of learning stage.  In the loss layer, a loss functional model is used to be able 

to produce a generalizable deep learning model. The main objective should be 

comprehensively serving as a pattern recognition of morphological structures, 

pixel-manner distributions, and shape-sensitive condition in an image at once in 

terms of providing a fair and more generalizable model. 

 

 

      (a)                                                       (b) 

Figure 4.5 (a) Illustration of matching between circle and shifted circle masks. (b) Matching index values 

corresponding to shifting parameters in pixels. 

As mentioned in Section (1), class imbalance and the vanishing gradient 

problem should be considered when building a loss function to achieve better 

accuracy and generalization results. In this thesis, a loss is modeled considering 
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three components, which are i) normalized cross correlation coefficient (NCC), 

(ii) Tversky index (TI) and (iii) binary cross entropy (BCE). The aim of all 

matching indices used in this thesis would be to keep improving their predictions 

with each passing epoch, until the predicted and target images perfectly overlap. 

BCE handles in a pixel wise distribution-based manner. Similarity indices like 

NCC, TI and IoU related to two same-sized circle images are calculated as 

illustrated in Figure 4.5(b). To do this, each circle is shifted 20 pixels to the left at 

each step as shown in Figure 4.5(a), then, the related indices are plotted on the 

graph. Finally, the relationships among the indices are evaluated. Whole-slide 

shape-sensitive based normalized cross correlation (NCC) can be used to 

determine how much matching there is between two images, and it is possible to 

create an index between them. As it is known, NCC matching index is in the 

range of -1 and 1. As the similarity between two images increases, the index 

approaches 1 which means strongly positive correlation. When it approaches to -1, 

it means strongly negative correlation, and 0 means no correlation exists. TI 

denotes a region-based similarity and is a generalizable form of dice coefficient. 

Also, it has a tunable parameter that weights false positives and false negatives 

due to the case of both input-class imbalance and inter-input-class imbalance as 

shown in equation (8).  

Moreover, this novel method is proposed based on the use of both NCC and 

Tversky indices. Intersection over union (IoU) is used for describing an overlap 

ratio of two images between predicted image and target one. As shown in Figure 

4.5 (b), the matching indices of NCC, TI and IoU are plotted and it is observed 

that there is a positive relationship between them and by summing NCC and TI 

terms as indices and then subtracting from 1 due to calculating a loss, the 

functionality of both shape-sensitive and region-based loss is provided together. 

NCC can be used for measuring the similarity between an image and a template in 

a way of template matching (Huang et al., 2022). A template can be a part of an 

image that contains a target object or can be a whole slide image. Also, it can be 

used as a loss function. It has been observed that the NCC index can be 

considered in a shape-sensitive manner by performing trend analysis as shown in 

Figure 4.5 (b). In equation (2), BCE plays important roles as a stabilizer and a 

multiplier factor. The aim of using BCE as a feature of pixel-level distribution-

based is to control the omni-comprehensive loss to provide the minimization of 

that, overcoming the vanishing gradient problem. Equation (3) represents the three 

components of omni-comprehensive loss. 

ʆ(α, θ, pi, ti) = [1 − (α ∗ NCC + (1 − α) ∗ TI)] ∗ BCE             (2) 
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           NCC =
∑ (pi−μp)(ti−μt)

N
i

Nσpσt
, TI =

1+∑ piti
N
i

1+∑ piti+θ ∑ pi(1−ti)+
N
i (1−θ)∑ ti(1−pi)

N
i

N
i

                (3a) 

           BCE = −
1

N
∑ ti log(pi) + (1 − ti) log(1 − pi)

N
i                                  (3b)                                           

where N is the flattened image size of 448x448, pi is the one-dimensional 

flattened array of predicted image, ti is the one-dimensional flattened array of the 

target image, μp is the average value of the predicted image, μt is the average value 

of the target image, σp and σt are the standard deviations of p and t images, TP =

∑ piti
N
i , FP = ∑ pi(1 − ti)

N
i , TN = ∑ (pi − 1)(ti − 1)N

i , and FN = ∑ (1 − pi)ti
N
i . 

 

α parameter weights NCC and TI, and θ parameter weights FPs and FNs in 

Tversky index due to the class imbalance issue, so β provides to optimize the trade-

off between precision and recall. The parameters of α and θ for omni-

comprehensive loss function take values between 0 and 1. For example, in this 

study, the optimal values of α and θ are set to 0.5 and 0.1, respectively. In our 

case, θ is focused more on false negatives. The values of hyperparameters in our 

loss function, α and θ, are selected by considering tuning the shape-sensitive case 

and class imbalance ratio (89.6% for 0-labeled class and 10.4% for 1-labeled 

class) by Tversky index, respectively. It is observed that using lower θ in our 

democratized loss function in training led us to decrease FNs and to boost recall. 

For BCE, the first part, ti log(pi), is penalized on false negatives whereas the 

second part, (1 − ti) log(1 − pi), is punished part of the false positives during 

training. Through all the tunable hyperparameters used in our loss function, It is 

handled to provide the necessary and the sufficient conditions such as, 1) 

penalizing on FNs and FPs, 2) Balancing the class imbalance case, 3) Addressing 

the shape-aware approach, 4) Providing pixel-manner distribution loss function, 

and 5) Overcoming the gradient vanishing issue. Thus, the loss function is 

modeled, considering these properties without using any other additional 

hyperparameters that may cause a risk of slow execution of model training. 

 

   
∂ʆ

∂𝐰𝐢
= ʆ′ = X′Y + Y′X, where X = [1 −

NCC+TI

2
] , Y = BCE                    (4) 

The vanishing gradient problem occurs when the derivative of a function 

goes to zero at some values. This situation may cause reusing of feature maps due 

to unchangeable or very smooth variation of weights during backpropagation.  For 

both architectures used in this study, the pipeline of the neural networks till the 

loss layer uses ReLu activation function. Derivative of ReLu activation function 

never goes to zero, so the problem is solved by our loss function during 

backpropagation. As seen in equation (4), the outcome is the derivative of our loss 

function that is needed to update weights during backpropagation. The derivative 
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of the sum of NCC and TI is taken into account with the contribution of BCE to 

overcome the vanishing gradient problem caused by the sigmoid function as its 

derivative goes to zero at some points. BCE functions as a stabilizer factor for 

considering pixel-level distribution in our loss function. It is possible to fix the 

effects of class imbalance problem with the contribution of NCC and TI, and to 

also fix the vanishing gradient problem with the contribution of BCE, in the 

output of the deep neural network.  

As seen in equation (5), the derivative of BCE, Y′, never goes to zero. For 

proof of this, let’s assume that h = 𝐰X + b and p = σ(h) =
1

1+e−h, where 𝐰 is the 

filter weight, X is the input image, b is the bias factor, p̂ is the predicted output of 

sigmoid function and t is the target value. If we say that BCE is a function of w 

and denoted by J(𝐰), then according to chain rule; 

 

   Y′ =
∂J(𝐰)

∂𝐰
=

∂J(𝐰)

∂p
 
∂p

∂h
 
∂h

∂𝐰
=

p−t

p(1−p)
 p(1 − p) X                                     (5a) 

     
∂J(𝐰)

∂𝐰
= (p − t)X                                                                     (5b) 

 

Likewise, the derivative of NCC, NCC′, as a function of 𝐰 and let’s assume that NCC 

denoted by θ(𝐰); 

 

    NCC =
∑ (pi−μp)(ti−μt)

N
i

N√∑ (pi−μp)
2N

i
𝑁

σt

                                                         (6a) 

 

   NCC′ =
∂θ(𝐰)

∂𝐰
=

∂θ(𝐰)

∂pi
 
∂pi

∂h
 
∂h

∂𝐰
=

∂θ(𝐰)

∂pi
 pi(1 − pi) X;                           (6b) 

    
∂θ(𝐰)

∂pi
=

1

𝑁σt

∂

∂pi

[
 
 
 
∑ (pi−μp)(ti−μt)

N
i

√∑ (pi−μp)
2N

i
𝑁 ]

 
 
 

                                            (6c) 

  
∂

∂pi

[
 
 
 

∑ (pi−μp)N
i

√∑ (pi−μp)
2N

i
𝑁 ]

 
 
 

=

∑ (ti−μt)
√∑ (pi−μp)

2N
i

𝑁
−∑ (pi−μp)(ti−μt)

1

2√𝑁√∑ (pi−μp)N
i

N
i

N
i

∑ (pi−μp)
2N

i
𝑁

               (6d) 

  NCC′ =

∑ (ti−μt)
√∑ (pi−μp)

2N
i

N
−∑ (pi−μp)(ti−μt)

1

2√N√∑ (pi−μp)N
i

N
i

N
i

∑ (pi−μp)
2N

i
N

. pi(1 − pi). X          (6e) 

In equation (5b), the derivative of BCE doesn't contain the derivative of 

sigmoid function. In addition, the derivative of NCC is also calculated as seen in 

equation (6a-6e). As seen in equation (8), constant 1 has been added to the 

numerator and denominator in the Tversky index formulation. The reason for this 

is to get rid of the division by zero problem and, hence to overcome the vanishing 
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gradient problem. The NCC formula alone does not overcome the vanishing 

gradient problem as seen in equation (6e) because of the derivative of sigmoid 

function still remaining. However, this formula is added to the Tversky index to 

solve the problem. Moreover, the contribution of BCE with a multiplicative 

manner has been provided to guarantee completely eliminate the vanishing 

gradient problem. Hence, it can be said that the derivative of the omni-

comprehensive loss has no way to be zero when combining all components of the 

loss. At this point, AdamW optimization algorithm is applied to update filter 

weights during backpropagation (Loshchilov et al., 2019). 

4.3 Popular Loss Functions 

A loss function should sense of imbalance distribution among different 

classes. In this thesis, imbalanced datasets are used to balance by the popular loss 

functions. Almost each polyp image has a large area of background and has a 

small part of foreground which is polyp region. This situation may lead to two 

negative outcomes: 1) high bias factor in training model and 2) a poorly 

generalized model.  

Focal loss (FL) functions as a popular loss function for dealing with class-

imbalance problem. It emphasizes more on background samples to down-weight 

the contribution of true negatives during training. As can be seen in equation (7), 

there are two hyperparameters that can be tackled to fine-tune the function. These 

are α as the balanced factor and γ as the controlling parameter between foreground 

and background. Also, it can be said that focal loss is an extended version of cross 

entropy. After trying three different cases of the parameter pairs for our 

experimental procedure, the optimum values of α are set to 0.25 and of γ to 2.0 

based on the best produced performance of FL using equation (7). 

 
                                   FL(pt) =-αt(1 − pt)

γ 𝑙𝑜𝑔(pt)                                                (7) 

 

where pt refers to the predicted output.  

Tversky loss (TL) is our second choice. It uses Tversky index that is a special case 

of dice similarity coefficient. Tversky's ratio model is an appropriate basis for 

computational approaches to semantic and asymmetric similarity, which is the 

comparison of objects such as images in a semantically meaningful way. The aim 

of using TL is to control the magnitude of penalties for FPs and FNs.   

  

Tversky index =
TP

TP+𝛂FP+𝛃FN
;  Tversky loss = 1 − [

1+TP

1+TP+𝛂FP+𝛃FN
)]                              (8)   
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where α and β are the adjustable parameters. α is set to 0.1 in the range of 

[0,1] and β is set to 0.9 in the range of [0,1] in equation (8) in our study. Also, 

constant 1 is added to both numerator and denominator to avoid zero divided by 

zero and division by zero errors (Jadon et al., 2020).  

In the case of using Focal Tversky loss (FTL), it has an extra controllable 

parameter,𝛾, when comparing with Tversky loss. This parameter controls the 

balance between background and foreground regions. It is possible to say that 

FTL also balances the trade-off between precision and recall, so it is possible to 

weight FNs more than FPs to prevent high precision and low recall values as seen 

in equation (9). 

 

                  Focal Tversky loss = [(1 − Tversky index)]
(
1

γ
)
                                             (9) 

where, α=0.1 in the range of [0,1], β=0.9 in the range of [0,1] and γ=1.33 

in the range of [1,3] are selected using equation (9). For dice loss, it is produced 

from dice coefficient (DC), also known as the Sørensen dice index, that it 

measures the similarity between two images. Tversky index represents a dice 

coefficient when α and β are set to equal number as 0.5 as seen in equation (8). 

DC is simply formulated as 2TP/(2TP + FP + FN) and hence dice loss becomes 

1-DC (Jadon et al., 2020). 

5     EXPERIMENTAL PROCEDURE 

5.1.  Carbon Footprint of Training the CNN models 

The development of deep learning (DL) algorithms and hardware 

developments are progressing rapidly day by day. Such rapid developments have 

led to the need for powerful hardware. This situation affects energy consumption. 

Ensuring energy efficiency with the use of DL algorithms will make a significant 

positive contribution to climate change. In terms of carbon emission, it is possible 

to mitigate the energy consumption with low algorithm complexity  and low-

capacity hardware processing units. With this awareness, keeping the algorithm 

complexity low can be seen as an important improvement. Moreover, there are 

other factors that affect the carbon footprint such as how many hours the hardware 

works, region and cloud provider. In this study, the open source "carbontracker" 

tool is used. Thus, energy consumption estimation and tracking were made during 

the training of DL models. The carbon footprint is predicted using forecasted 

carbon intensity with an API used in the tool. The carbon intensity varies 

according to the region (country) lived in, and this also affects the carbon 

footprint during training of a DL model. The aforementioned API has an ability to 
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fetch IP address of a user who make training a DL model, and thus the region can 

be found. Combining FLOPS (floating point operations per second), which is one 

of the parameters that can represent algorithm complexity, and some GPUs can 

provide higher efficiency, as well as have the effect of reducing carbon emissions. 

Converting energy consumption to carbon emission can be calculated using the 

following formulations respectively (Anthony et al., 2020). 

  𝑃𝑈𝐸 (𝑃𝑜𝑤𝑒𝑟 𝑈𝑠𝑎𝑔𝑒 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠) =
𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝐸𝑛𝑒𝑟𝑔𝑦

𝐼𝑇 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝐸𝑛𝑒𝑟𝑔𝑦
                        (10a) 

  𝐸𝑛𝑒𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝑃𝑈𝐸 ∑ ∑ 𝑃𝑎𝑣𝑔,𝑑𝑒𝑇𝑒𝑑𝜖𝐷𝑒𝜖𝜉                                        (10b) 

  𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑥 𝐶𝑎𝑟𝑏𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦            (10c) 

where 𝑃𝑎𝑣𝑔,𝑑𝑒 is the average power consumed by used device, 𝑑𝜖𝐷 in epoch 𝑒𝜖𝜉. 

𝑇𝑒 is the training time for epoch 𝑒. PUE is the ratio of the total energy used in a 

server or a data center to the energy used by IT equipment that are hardware and 

network equipment. Carbontracker uses 1.58 as constant value for PUE. The 

predicted carbon emission results are obtained developing a code function as seen 

in APPENDIX D section. 

Carbon emission result for ResNet18+UNet CNN model 
 

CarbonTracker: The following components were found: GPU with device(s) 

NVIDIA GeForce GTX 1070 with Max-Q Design. 

epoch: 1 --- step: train --- time: 15:07:29 

100%|██████████| 238/238 [01:32<00:00,  2.58it/s] 

Loss: 0.2749 --- dice: 0.4308 --- IoU: 0.3203 

epoch: 1 --- step: val --- time: 15:09:01 

100%|██████████| 60/60 [00:12<00:00,  4.94it/s] 

Loss: 0.1579 --- dice: 0.4974 --- IoU: 0.3911 

******** Saved optimum case ******** 

 

CarbonTracker: Average carbon intensity during training was 294.21 gCO2/kWh at 

detected location: İzmir, İzmir, TR. 

CarbonTracker: 

Actual consumption for 1 epoch(s): 

Time: 0:01:45 

Energy: 0.002224 kWh 

CO2eq: 0.654208 g 

This is equivalent to: 

0.005434 km travelled by car 

CarbonTracker: 

Predicted consumption for 100 epoch(s): 

Time: 2:54:37 

Energy: 0.222364 kWh 

CO2eq: 65.420772 g 

This is equivalent to: 

0.543362 km travelled by car 

CarbonTracker: Finished monitoring. 
Carbon emission result for ResNet34+UNet CNN model 
 

CarbonTracker: The following components were found: GPU with device(s) 

NVIDIA GeForce GTX 1070 with Max-Q Design. 

epoch: 1 --- step: train --- time: 15:11:19 

100%|██████████| 238/238 [01:41<00:00,  2.33it/s] 

Loss: 0.2930 --- dice: 0.3321 --- IoU: 0.2421 

epoch: 1 --- step: val --- time: 15:13:01 
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100%|██████████| 60/60 [00:11<00:00,  5.30it/s] 

Loss: 0.1416 --- dice: 0.4657 --- IoU: 0.3677 

******** Saved optimum case ******** 

 

CarbonTracker: Average carbon intensity during training was 294.21 gCO2/kWh at 

detected location: İzmir, İzmir, TR. 

CarbonTracker:  

Actual consumption for 1 epoch(s): 

 Time: 0:01:54 

 Energy: 0.002695 kWh 

 CO2eq: 0.793022 g 

 This is equivalent to: 

 0.006587 km travelled by car 

CarbonTracker:  

Predicted consumption for 100 epoch(s): 

 Time: 3:09:50 

 Energy: 0.269546 kWh 

 CO2eq: 79.302204 g 

 This is equivalent to: 

 0.658656 km travelled by car 

CarbonTracker: Finished monitoring. 

 

6     RESULTS 

 

In this thesis, it is aimed to provide a performance comparison by evaluating 

popular loss functions, instead of comparing different state-of-the-art CNN 

models. As it is known, dice loss, Tversky loss and focal Tversky loss studies are 

produced respectively by using dice coefficient, Tversky index and focal loss, all 

of which already exist in the literature. The most important emphasis of our study 

is to provide the performance evaluation of our proposed loss function. To do this, 

two approaches have been conducted. 1) To compare different loss functions 

using the same CNN model, 2) To compare the same loss functions using a 

second CNN model. Thus, a general performance evaluation is provided for CNN 

models with two different algorithm complexities.  

Because in this study, it is not aimed to achieve high success rates by 

choosing CNN models with very high complexity. Instead, the models that have 

low complexities are preferred among the residual neural network architectures as 

backbone. Thereby, it is provided to achieve higher success rates by using our loss 

function compared to existing popular loss functions as seen in Table 6.1 and 

Table 6.2. At this point, while taking into account the trade-off between accuracy 

and algorithm complexity, indeed, the performance of the loss function and its 

results it produces are focused in this study. Even though deeper residual neural 

networks achieve higher performance metrics, it has been preferred to use 

ResNets, having lower complexity for making training faster.  
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As seen in Table 6.5 and Table 6.6, the performance results of the state-of-

the-art models are available. Multiple performance metrics are handled in this 

study. The reason for this is to provide reliable and comprehensive analysis when 

evaluating the performance of a CNN model (Hicks et al., 2022). However, recent 

studies including the state-of-the-art models do not have such multiple 

performance metrics or success criteria as shown in Table 6.5 and Table 6.6. 

 
Table 6.1 Performance comparison of losses using ResNet34 + UNet architecture. 

Validation scores Dice IoU 

Omni-comprehensive loss (α=0.5, 𝛉=0.1) 0.8767 0.8163 

Omni-comprehensive loss (α=0.3, θ=0.3) 0.8537 0.7840 

Omni-comprehensive loss (α=0.7, θ=0.3) 0.8459 0.7757 

BCE loss 0.8721 0.7984 

Dice loss 0.8303 0.7597 

Focal loss (α = 0.25, 𝛾=2.0) 0.8433 0.7711 

Tversky loss (α = 0.1, β=0.9) 0.7747 0.6747 

Focal Tversky loss (α = 0.1, β=0.9, 𝛾=1.33) 0.7919 0.6952 
 

 

 

Table 6.2 Comparison of loss functions using ResNet18 + UNet architecture. 

Validation scores Dice IoU 

Omni-comprehensive loss (α=0.5, 𝛉=0.1) 0.8653 0.8046 

Omni-comprehensive loss (α=0.3, θ=0.3) 0.8588 0.79 

Omni-comprehensive loss (α=0.7, θ=0.3) 0.8642 0.8043 

BCE loss 0.8605 0.7931 

Dice loss 0.8443 0.7760 

Focal loss (α = 0.25, 𝛾=2.0) 0.8135 0.7396 

Tversky loss (α = 0.1, β=0.9) 0.7689 0.6662 

Focal Tversky loss (α = 0.1, β=0.9, 𝛾=1.33) 0.7669 0.6653 
 

Dice scores and other CNN model properties are given in Table 6.3. 
 

 

Table 6.3 Summarized parameters of the training models. 

Architecture 
# of 

epochs 

#Params 

(M) 

Validation 

Dice score 

(%) 

Loss function GFLOPS 

ResNet18+UNet 39 14.3 81.35 Focal loss 16.6 

ResNet34+UNet 40 24.44 84.33 Focal loss 24.02 

ResNet18+UNet 41 14.3 86.53 

Omni-

comprehensive 

loss 

16.6 

ResNet34+UNet  24.44 87.67 

Omni-

comprehensive 

loss 

24.02 
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As can be seen in Figure 6.1, training and validation sets are separately 

handled for each epoch and loss values are accordingly calculated. When doing 

this, the loss function is calculated by the use of the training set and the 

backpropagation is conducted. Next, the predicted mask is produced based on the 

validation set. Finally, the validation loss is calculated between the predicted and 

target mask by using the same loss function. 

In Figure 6.2, the starting score of dice is around ~51%. In addition to this, 

the starting score of intersection over union is around ~40% according to our 

experiments. Therefore, it is observed that the NCC coefficient, thus the template 

matching index, never falls below zero in this experimental process. Trend 

analysis of losses and dices in Figure 6.2 and Figure 6.4 show that the model 

using omni-comprehensive loss prevents overfitting due to the tuning of 

hyperparameters such as batch size, learning rate, weight decay, learning decay 

rate and early stopping criteria. 

As illustrated in Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4, train and 

validation sets are separately tackled to produce loss and dice scores. The 

ResNet18+UNet model is evaluated and achieved as re-validation scores of 

92.61% dice, 87.28% IoU, 93.81% sensitivity, 92.60% precision and 93.21% F2 

score. By using ResNet34+UNet model, it is achieved as re-validation scores of 

93.09% dice, 88.09% IoU, 93.27% sensitivity, 93.78% precision and 93.11% F2 

score. One of our goals in this study is to keep the encoder part as low in 

complexity as possible compared to 34, 50, 101 and 152 layered residual neural 

networks. The results showed that floating point operations per second (FLOPS) 

of the 18-layered ResNet model is 1.8𝑥109, whereas FLOPS of 152-layered 

ResNet model is 11.3𝑥109. 
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Table 6.4 Evaluation metrics. 

Dice coefficient (F1) 
2𝑥𝑇𝑃

2𝑥𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Intersection Over Union (Jaccard 

index) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity (Recall) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F2 
5𝑥𝑇𝑃

4𝑥(𝑇𝑃 + 𝐹𝑁) + 𝑇𝑃 + 𝐹𝑃
 

Matthews correlation coefficient 

𝑇𝑃𝑥𝑇𝑁 − 𝐹𝑃𝑥𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)𝑥(𝑇𝑃 + 𝐹𝑁)𝑥(𝑇𝑁 + 𝐹𝑃)𝑥(𝑇𝑁 + 𝐹𝑁)
 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

 
Figure 6.1 Loss scores for the case of omni-comprehensive loss and ResNet18-UNet architecture. 
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Figure 6.2 Dice scores for the case of omni-comprehensive loss and ResNet18-UNet architecture. 

 

Figure 6.3 Loss scores for the case of omni-comprehensive loss and ResNet34-UNet architecture. 
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Figure 6.4 Dice scores for the case of omni-comprehensive loss and ResNet34-UNet architecture. 

During the implementation and development of our software, giga floating 

point operations per second (GFLOPS) of the two CNN architectures are 

calculated to observe the computation-intensive of the models. 5-fold stratified 

cross validation is used when setting up the learning rate and early stopping 

criteria to prevent overfitting during training. The training process is terminated if 

there is no improvement on validation scores of dice and IoU at the end of each 

ten epochs. For our model development, the training process is performed using 

Nvidia GTX 1070 Max-Q design graphics card, and Python programming 

language is used for code development.   

Table 6.5 Test performance comparison using unseen CVC-Clinic DB and CVC-Colon DB. 

 External DB test scores (%) 

CVC-Clinic DB CVC-Colon DB 

 
mDice mIoU mAcc mSens mSpec mPrec mF2 mMCC mDice mIoU mAcc mSens mSpec mPrec mF2 mMCC 

BLE-

net [Ta 

et al. 

 2022] 
- - - - - - - - 73.1 63.8 - - - - - - 

SwinE-

Net 

[Park et 

al., 

2022] 

- - - - - - - - 80.4 72.5 - - - - - - 

Ours 70.66 61.66 95.54 70.83 98.71 83.16 70.02 86.40 78.71 70.03 96.53 81.81 99.05 83.30 79.94 89.52 

mDice=mean dice, mAcc=mean accuracy, mSens=mean sensitivity, mSpec=mean specificity, mF2=mean F2 score, mMCC=mean Matthews correlation coefficient. 
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Table 6.6 Test performance comparison using unseen Kvasir-SEG and ETIS Larib DB. 

 External DB test scores (%) 

Kvasir-SEG DB ETIS Larib DB 

 
mDice mIoU mAcc mSens mSpec mPrec mF2 mMCC mDice mIoU mAcc mSens mSpec mPrec mF2 mMCC 

BLE-

net [Ta 

et al., 

2022] 
- - - - - - - - 67.3 59.4 - - - - - - 

SwinE-

Net 

[Park et 

al., 

2022] 

- - - - - - - - 75.8 68.7 - - - - - - 

Ours 81.58 73.18 94.17 86.20 96.82 84.12 82.88 87.85 71.31 62.5 98.07 79.71 98.55 73.34 75.34 87.10 

mDice=mean dice, mAcc=mean accuracy, mSens=mean sensitivity, mSpec=mean specificity, mF2=mean F2 score, mMCC=mean Matthews correlation coefficient. 

 

The aim of using small step size is to guarantee finding the global minimum 

of a loss function and to avoid updating learning rate many times. For the learning 

rate, it is advantageous to initialize with a small value. Hereby, initial learning rate 

is set to 5𝑥10−4. Weight decay regularization using AdamW optimizer is also 

performed. The value of the weight decay is chosen as a small value, which is 

optimally determined as 1𝑥10−5. Learning decay rate is used as the default value  

assigned as 0.1 in PyTorch. Also, beta momentum values are assigned as β1 = 0.9 

and β2 = 0.999 in AdamW optimizer. For testing the results of the model, original  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Evaluation results with different tuning parameters used in omni-comprehensive loss. 

 

databases are used for making predictions and binarization. Some of the results 

obtained are illustrated in Figure 6.6. Our deep learning model can segment 
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multiple polyps, even small sized ones, at once. In the testing phase, our algorithm 

checks the connected contours as polyp region for each predicted binary image. In 

addition, our deep learning model is aware of difficult imaging conditions even 

with white light saturation that can be exposed on a polyp, air bubbles and so on. 

All evaluation metrics as shown in Table 6.4 are calculated as the average values 

of each unseen dataset as seen the scores in Table 6.5 and Table 6.6. It is also 

considered Matthews correlation coefficient (MCC) in this study. MCC is a 

special form of Pearson’s correlation coefficient and can be used as a measure of 

association for binary classification in the case of imbalanced classes (Hicks et al., 

2022; Chicco and Jurman, 2020). The MCC takes a value in a range of -1 and 1, 

where 1 means perfect prediction, 0 means random prediction with no relationship 

between target and predicted class, -1 means worst prediction.  In Table 6.5 and 

Table 6.6, it is seen that the state-of-the-art models don't include many other 

evaluation metrics and our study has comparable good results among these 

studies. In Figure 6.6, It is seen that the overlaid images obtained with blending of 

original images and related prediction masks. The adding or blending operation 

can be applied using g(x)=(1−α)f0(x)+αf1(x), where g(x) is the blended image, f0 

is the original image,   f1 is the prediction mask, and alpha (α) is a weight factor 

that is assigned to 0.8 in this study. OpenCV library is used for the blending 

operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Evaluation results for the case of omni-comprehensive loss and ResNet18-UNet architecture. First 

column: original images. Second column: Ground truths. Third column: Predicted masks. Fourth column: 

Overlaid segmented images between original images and predicted masks. 
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7     PRODUCTION 

The production phase of this study includes the integration of the developed 

polyp segmentation model into clinical application. For data acquisition, “Fujinon 

EPX-4450D” endoscopy processor, which is used in a colonoscopy device, can be 

considered. Image data can be captured using a frame grabber device compatible 

with this processor that has a HD-SDI type digital output. As seen in Figure 7.1, 

frames can be acquired from colonoscopy device by using ultra studio mini-

recorder as a frame grabber. Captured frames can be read using OpenCV library 

thanks to an external AI server. Code snippet of frame capture using OpenCV 

library is included in the Appendix E section. Then, the obtained frames are given 

as input to the trained model to make polyp segmentation is provided. To 

visualize the polyp segmentation stage, the frames transferred to the server can be 

processed and monitored via the web application by using a monitor connected to 

the AI server. A mobile-friendly web application can be developed using the 

“streamlit” library in the Python programming language. In addition, OpenCV, 

PIL and PyTorch libraries are used for capturing and processing the images. Thus, 

such an architecture is developed from research to production. It is included the 

full code in the CD for both real-time video and a single image. 

Figure 7.1 An architecture for production phase. 

In this thesis, a standalone mobile-friendly web application is also developed for a 

second application model as a device-independent and integrable solution using 

streamlit library in Python programming language as seen in Figure 7.2 and 

Figure 7.3 (see APPENDIX F for source code). 
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Figure 7.2 Standalone web application and polyp image choosing step. 

 

 

Figure 7.3 The result of both polyp segmentation and the number  of detected polyps via web application. 

 

8     DISCUSSION 

Colorectal cancers may occur as a result of late detection of polyps. 

Colonoscopists use a colonoscopy device to remove polyps by excisional biopsy. 

The morphology of polyps has specific patterns that can dynamically change and 

may cause misdiagnosis of lesions due to the characterization of mucosal tissue 

from person to person. In addition, colonoscopic lightning conditions, inadequate 

bowel preparation, mucus on the lesion, polyps that form behind the folds, and 
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blind spots can increase the missed polyp rate. Despite such difficult imaging 

conditions, accurate and precise segmentation of polyps captured by the 

colonoscopy camera has a critical importance. 

The aim of this study is to develop a web application that provides a polyp 

segmentation model that contributes to the clinical application. For polyp 

segmentation, a new imbalance-aware loss function, i.e. omni-comprehensive 

loss, has been developed to be used in deep neural networks to overcome both 

imbalanced datasets and the vanishing gradient problem. The second crucial 

reason for developing a new loss function is to be able to produce a more 

comprehensive one with the evaluation capabilities of region-based, shape-

sensitive and pixel-wise distribution loss approaches at once. For doing such 

binary segmentation (as polyp and non-polyp regions), two different architectures 

have been conducted for observing the performance of our proposed new loss 

function. First, an 18-layer residual network as the backbone with UNet as the 

decoder is implemented. Second, a 34-layer residual network as the encoder and a 

UNet as the decoder are combined to perform a segmentation model. 

Tunable hyperparameters play an important role. Weighting the false positives 

and false negatives used in the loss functions is also critical. For omni-

comprehensive loss, α parameter weighs the NCC and the TI to tune the shape 

sensitive case and semantically asymmetric similarity case, respectively. θ 

parameter weighs FPs and FNs due to the class imbalance issue and it controls the 

trade-off between precision and recall. To do this, the parameter θ is selected by 

considering the class imbalance ratio (89.6% for 0-labeled class and 10.4% for 1-

labeled class) and weigh more on false negatives. It is observed that using lower θ 

in our proposed loss function in training led us to decrease FNs and to boost 

recall. 

Multiple publicly available datasets are used for this thesis, 5-fold cross 

validation, and testing steps. In addition to the original data in these datasets, 

augmented versions of these datasets have also been generated by flipping,rotating 

and contrast-limited adaptive histogram equalization operations. While the 

augmented samples are used both in the training and validation phases, the 

original datasets are tackled in the testing phase. 
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The networks trained with our proposed loss function achieved re-validation 

scores using all seen original datasets such as 92.61% dice, 87.28% IoU, 93.81% 

sensitivity, 92.60% precision and 93.21% F2 scores by using ResNet18+UNet 

model. Likewise, ResNet34+UNet has achieved re-validation scores as 93.09% 

dice, 88.09% IoU, 93.27% sensitivity, 93.78% precision and 93.11% F2 score. 

For the performance comparison of state-of-the-art mathematical models used 

during training, obtaining the best performance metrics among the popular 

imbalance-aware losses are provided as the emphasis of this study as shown in 

Table 6.1 and Table 6.2. 

9     CONCLUSION 

This thesis is focused on creating a new loss function, i.e., omni-

comprehensive loss, that aims to make instance segmentation of polyps to 

determine the precise localization of them using colonoscopic white light images. 

At this point, our new loss function is proposed to overcome both the imbalanced 

dataset and the vanishing gradient problem. In conclusion, in this way, when the 

loss we proposed is used, it is possible for a simpler architecture (i.e., 

ResNet18+UNet) to achieve very close and even higher performance compared to 

a more complex architecture (i.e., ResNet34+UNet). These convolutional neural 

network architectures powered by our new imbalance-aware omni-comprehensive 

loss also exhibit the best performance compared to the other popular state-of-the-

art loss functions such as dice loss, BCE loss, focal loss, focal Tversky loss and 

Tversky loss. 

Based on the results obtained, it is hoped that this system would be helpful 

to colonoscopists during polyp removal. Therefore, it can be put into clinical use. 

As future work, it is aimed to achieve higher success rates by developing a new 

convolutional architecture with the following strengths: 1-) customizing the 

combination of residual neural network and UNet with novel methods. 2-) 

keeping the model complexity lower to boost the performance of the segmentation 

model. 
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     APPENDIX A 

-------------------------------------------------------------------------------------------  

Python code for ResNet18+UNet CNN model 

-------------------------------------------------------------------------------------------  

1. import torch 

2. import torch.nn as nn 

3. from torchvision import models 

 

4. def conv_bn_relu(in_channels, out_channels): 

5. return nn.Sequential( 

6. nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=1), 

7. nn.BatchNorm2d(out_channels), 

8. nn.ReLU(inplace=True) 

9. ) 

 

10. def double_conv_bn_relu(in_channels, out_channels): 

11. return nn.Sequential( 

12. nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1), 

13. nn.BatchNorm2d(out_channels), 

14. nn.ReLU(inplace=True), 

15. nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), 

16. nn.BatchNorm2d(out_channels) 

17. ) 

 

18. class Res18Unet(nn.Module): 

19. def __init__(self, net_out_ch=1): 

20. super().__init__() 

21. encoder = models.resnet18(pretrained=True) 

22. self.encoder_layers = list(encoder.children()) 

 

23. self.block1 = nn.Sequential(*self.encoder_layers[:3]) 

24. self.block2 = nn.Sequential(*self.encoder_layers[3:5]) 

25. self.block3 = self.encoder_layers[5] 

26. self.block4 = self.encoder_layers[6] 

27. self.block5 = self.encoder_layers[7] 

 

28. self.up_6 = nn.ConvTranspose2d(512, 512, kernel_size=2, stride=2) 

29. self.double_6 = double_conv_bn_relu(768, 512) 

30. self.up_7 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2) 

31. self.double_7 = double_conv_bn_relu(384, 256) 

32. self.up_8 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2) 

33. self.double_8 = double_conv_bn_relu(192, 128) 

34. self.up_9 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2) 

35. self.double_9 = double_conv_bn_relu(128, 64) 

36. self.up_10 = nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2) 

37. self.conv10 = nn.Conv2d(32, 16, kernel_size=3) 

38. self.conv11 = conv_bn_relu(16, net_out_ch) 

 

39. def forward(self, x): 

40. block1 = self.block1(x) 

41. block2 = self.block2(block1) 

42. block3 = self.block3(block2) 

43. block4 = self.block4(block3) 

44. block5 = self.block5(block4) 

 

45. x = self.up_6(block5) 

46. x = torch.cat([x, block4], dim=1) 

47. x = self.double_6(x) 
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48. x = self.up_7(x) 

49. x = torch.cat([x, block3], dim=1) 

50. x = self.double_7(x) 

 

51. x = self.up_8(x) 

52. x = torch.cat([x, block2], dim=1) 

53. x = self.double_8(x) 

 

54. x = self.up_9(x) 

55. x = torch.cat([x, block1], dim=1) 

56. x = self.double_9(x) 

 

57. x = self.up_10(x) 

58. x = self.conv10(x) 

59. x = self.conv11(x) 

 

60. return x 

 

61. model = Res18Unet().cuda() 
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     APPENDIX B 

-------------------------------------------------------------------------------------------  

Python code for ResNet34+UNet CNN model 

-------------------------------------------------------------------------------------------  

1. import torch 

2. import torch.nn as nn 

3. from torchvision import models 

 

4. def conv_bn_relu(in_channels, out_channels): 

5. return nn.Sequential( 

6. nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=1), 

7. nn.BatchNorm2d(out_channels), 

8. nn.ReLU(inplace=True), 

9. ) 

 

10. def double_conv_bn_relu(in_channels, out_channels): 

11. return nn.Sequential( 

12. nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1), 

13. nn.BatchNorm2d(out_channels), 

14. nn.ReLU(inplace=True), 

15. nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), 

16. nn.BatchNorm2d(out_channels), 

17. ) 

 

18. class Res34Unet(nn.Module): 

19. def __init__(self, net_out_ch=1): 

20. super().__init__() 

21. encoder = models.resnet34(pretrained=True) 

22. self.encoder_layers = list(encoder.children()) 

 

23. self.block1 = nn.Sequential(*self.encoder_layers[:3]) 

24. self.block2 = nn.Sequential(*self.encoder_layers[3:5]) 

25. self.block3 = self.encoder_layers[5] 

26. self.block4 = self.encoder_layers[6] 

27. self.block5 = self.encoder_layers[7] 

 

28. self.up_6 = nn.ConvTranspose2d(512, 512, kernel_size=2, stride=2) 

29. self.double_6 = double_conv_bn_relu(768, 512) 

30. self.up_7 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2) 

31. self.double_7 = double_conv_bn_relu(384, 256) 

32. self.up_8 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2) 

33. self.double_8 = double_conv_bn_relu(192, 128) 

34. self.up_9 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2) 

35. self.double_9 = double_conv_bn_relu(128, 32) 

36. self.up_10 = nn.ConvTranspose2d(32, 32, kernel_size=2, stride=2) 

37. self.conv10 = conv_bn_relu(32, net_out_ch) 

 

38. def forward(self, x): 

39. block1 = self.block1(x) 

40. block2 = self.block2(block1) 

41. block3 = self.block3(block2) 

42. block4 = self.block4(block3) 

43. block5 = self.block5(block4) 

 

44. x = self.up_6(block5) 

45. x = torch.cat([x, block4], dim=1) 

46. x = self.double_6(x) 

 

47. x = self.up_7(x) 
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48. x = torch.cat([x, block3], dim=1) 

49. x = self.double_7(x) 

 

50. x = self.up_8(x) 

51. x = torch.cat([x, block2], dim=1) 

52. x = self.double_8(x) 

 

53. x = self.up_9(x) 

54. x = torch.cat([x, block1], dim=1) 

55. x = self.double_9(x) 

 

56. x = self.up_10(x) 

57. x = self.conv10(x) 

 

58. return x 

 

59. model = Res34Unet().cuda() 
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     APPENDIX C 

-------------------------------------------------------------------------------------------  

Python code for omni-comprehensive loss function 

-------------------------------------------------------------------------------------------  

1. import numpy as np 

2. import torch.nn as nn 

3. from torch.nn import functional as F 

 

4. # Normalized Cross Correlation 

5. def NCC(inputs, targets): 

6.     c = (inputs - inputs.mean()) / (inputs.std() * len(inputs)) 

7.     d = (targets - targets.mean()) / (targets.std()) 

8.     c = c.cpu().detach().numpy() 

9.     d = d.cpu().detach().numpy() 

10.     ncc = np.correlate(c, d, 'valid') 

11.     return ncc.mean() 

 

12. # Calculation of Tversky Index 

13. def TverskyIndex(inputs, targets, adding_term=1, beta=0.1):     

14.     #True Positives, False Positives & False Negatives 

15.     TP = (inputs * targets).sum()     

16.     FP = ((1-targets) * inputs).sum() 

17.     FN = (targets * (1-inputs)).sum() 

18.     Tversky = (TP + adding_term) / (TP + beta*FP + (1-beta)*FN + adding_term)   

19.     return Tversky.mean() 

 

20. class omni_comprehensive_loss(nn.Module): 

21.     def __init__(self): 

22.         super(omni_comprehensive_loss, self).__init__() 

23.     def forward(self, inputs, targets): 

24.         alpha = 0.5 

25.         #sigmoid activation layer 

26.         inputs = F.sigmoid(inputs)  

27.         #flatten label and prediction tensors 

28.         inputs = inputs.view(-1) 

29.         targets = targets.view(-1) 

30.         #compute binary cross-entropy  

31.         BCE = F.binary_cross_entropy(inputs, targets, reduction='mean') 

32.         omni_comprehensive = (1 - (alpha*NCC(inputs,targets)+\ 

33.                              (1-alpha)*TverskyIndex(inputs, targets)))*BCE 

34.        return omni_comprehensive 
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APPENDIX D 

-------------------------------------------------------------------------------------------  

Python code for carbon emission measurement 

-------------------------------------------------------------------------------------------  

1. def start_training(self): 

2.         for epoch in range(self.num_epochs): 

3.             self.tracker.epoch_start() 

4.             self.phase(epoch, "train") 

5.             state = { 

6.                 "epoch": epoch, 

7.                 "best_loss": self.best_loss, 

8.                 "state_dict": self.net.state_dict(), 

9.                 "optimizer": self.optimizer.state_dict(), 

10.             } 

11.             val_loss = self.phase(epoch, "val") 

12.             self.scheduler.step(val_loss) 

13.             if val_loss < self.best_loss: 

14.                 self.val_no_improve = 0 

15.                 print("******** Saved optimum case ********\n") 

16.                 state["best_loss"] = self.best_loss = val_loss 

17.                 torch.save(state, "./model.pth") 

18.             else: 

19.                 self.val_no_improve +=1 

20.                   # Check early stopping condition 

21.                 if self.val_no_improve == self.n_epochs_stop: 

22.                     print('Early stopping!' ) 

23.                     early_stop = True 

24.                     break 

25.                 else: 

26.                     continue 

27.                 if early_stop: 

28.                     print("Stopped") 

29.                     break 

30.             self.tracker.epoch_end() 

31.         print("--------------------------------------------------\n") 

32.         self.tracker.stop() 
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APPENDIX E 

-------------------------------------------------------------------------------------------  

Python code for data capturing from colonoscopy device using frame grabber 

-------------------------------------------------------------------------------------------  

1. import cv2 

2. import streamlit as st 

3. from PIL import Image 

 

4. st.title("Application of Polyp Segmentation") 

5. FRAME_WINDOW = st.image([]) 

 

6. # Blackmagic --ultra studio mini recorder (frame grabber) for video capturing stage using 

opencv  

7. cam = cv2.VideoCapture('decklinksrc mode=7 connection=0 ! videoconvert ! appsink') 

 

8. #image upload 

9. ret, frame = cam.read() 

 

10. #real-time video streaming, measuring frames per second (FPS) and making polyp 

segmentation 

11. cam.set(cv2.CAP_PROP_FPS, 30) 

12. fps = int(cam.get(5)) 

13. print("fps:", fps) 

 

14. if st.button("Apply"): 

15. while True: 

16. ret, frame = cam.read() 

17. frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 

18. prediction = model_prediction(frame, model) # model prediction function 

19. st.image(Image.open(prediction)) 

20. FRAME_WINDOW.image(frame) 

21. else: 

22. st.write('Stopped') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

APPENDIX F 

-------------------------------------------------------------------------------------------  

Python code for standalone and device-independent web application 

-------------------------------------------------------------------------------------------  

1. import cv2 

2. import streamlit as st 

3. from PIL import Image 

4. import torchvision.transforms as T 

5. import torch  

6. import numpy as np 

7. import torch.nn as nn 

8. from torchvision import models 

 

9. best_threshold=0.5  

10. min_size=5  

11. image_size=448 

 

12. def post_process(probability, threshold, min_region_size,size): 

13. mask = cv2.threshold(probability, threshold, 1, cv2.THRESH_BINARY)[1] 

14. num_component, component = cv2.connectedComponents(mask.astype(np.uint8)) 

15. predictions = np.zeros((size, size), np.float32) 

16. num = 0 

17. for c in range(1, num_component): 

18. p = component > 0 

19. if p.sum() > min_region_size: # if region of polyp is greater than min_region_size 

20. predictions[p] = 1 

21. num += 1 

22. return predictions, num 

 

 

23. def conv_bn_relu(in_channels, out_channels): 

24. return nn.Sequential( 

25. nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=1), 

26. nn.BatchNorm2d(out_channels), 

27. nn.ReLU(inplace=True) 

28. ) 

 

29. def double_conv_bn_relu(in_channels, out_channels): 

30. return nn.Sequential( 

31. nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1), 

32. nn.BatchNorm2d(out_channels), 

33. nn.ReLU(inplace=True), 

34. nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), 

35. nn.BatchNorm2d(out_channels), 

36. ) 

 

37. class Res18Unet(nn.Module): 

38. def __init__(self, net_out_ch=1): 

39. super().__init__() 

40. encoder = models.resnet18(pretrained=True) 

41. self.encoder_layers = list(encoder.children()) 

 

42. self.block1 = nn.Sequential(*self.encoder_layers[:3]) 

43. self.block2 = nn.Sequential(*self.encoder_layers[3:5]) 

44. self.block3 = self.encoder_layers[5] 

45. self.block4 = self.encoder_layers[6] 

46. self.block5 = self.encoder_layers[7] 

 

47. self.up_6 = nn.ConvTranspose2d(512, 512, kernel_size=2, stride=2) 
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48. self.double_6 = double_conv_bn_relu(768, 512) 

49. self.up_7 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2) 

50. self.double_7 = double_conv_bn_relu(384, 256) 

51. self.up_8 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2) 

52. self.double_8 = double_conv_bn_relu(192, 128) 

53. self.up_9 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2) 

54. self.double_9 = double_conv_bn_relu(128, 64) 

55. self.up_10 = nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2) 

56. self.conv10 = nn.Conv2d(32, 16, kernel_size=3) 

57. self.conv11 = conv_bn_relu(16, net_out_ch) 

 

58. def forward(self, x): 

59. block1 = self.block1(x) 

60. block2 = self.block2(block1) 

61. block3 = self.block3(block2) 

62. block4 = self.block4(block3) 

63. block5 = self.block5(block4) 

 

64. x = self.up_6(block5) 

65. x = torch.cat([x, block4], dim=1) 

66. x = self.double_6(x) 

 

67. x = self.up_7(x) 

68. x = torch.cat([x, block3], dim=1) 

69. x = self.double_7(x) 

 

70. x = self.up_8(x) 

71. x = torch.cat([x, block2], dim=1) 

72. x = self.double_8(x) 

 

73. x = self.up_9(x) 

74. x = torch.cat([x, block1], dim=1) 

75. x = self.double_9(x) 

 

76. x = self.up_10(x) 

77. x = self.conv10(x) 

78. x = self.conv11(x) 

 

79. return x 

 

80. model = Res18Unet().cuda() 

81. st.title("Application of Polyp Segmentation") 

 

82. img = st.file_uploader("Upload a polyp image for segmentation", 

type=["png","tif","tiff","jpg", "jpeg"]) 

83. img = Image.open(img) 

84. st.image(img) 

85. model.eval() 

86. state = torch.load("C:/Users/ozangokkan/Desktop/PhD/thesis/codes/model.pth", 

map_location=lambda storage, loc: storage) 

87. model.load_state_dict(state["state_dict"]) 

 

88. preprocess = T.Compose([ 

89. T.Resize([448,448]), 

90. T.ToTensor(), 

91. T.Normalize( 

92. mean = [0.485, 0.456, 0.406], 

93. std = [0.229, 0.224, 0.225] 

94. ) 

95. ]) 
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96. x = preprocess(img) 

97. x.shape 

 

98. transformed = torch.unsqueeze(torch.tensor(x), 0) 

99. print(transformed.shape) 

100. out = model(transformed) 

101. out = np.squeeze(out) 

102. out = out.detach().numpy() 

103. predict_image, num_predict_ = post_process(out, best_threshold, min_size, image_size) 

104. if st.button("Apply"): 

105. st.image(predict_image)   

106. st.write('The number of detected polyps :', num_predict_) 
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