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BEYAN

“Ug Boyutlu Kompakt Lie Gruplarinda Baz1 Genellestirilmis Egriler” adl1 yiiksek lisans tezi
hazirlik ve yazimi sirasinda bilimsel arastirma ve etik kurallarina uydugumu, baskalarinin
eserlerinden yararlandigim boliimlerde bilimsel kurallara uygun olarak atifta bulundugumu,
kullandigim verilerde herhangi bir tahrifat yapmadigimi, tezin herhangi bir kisminin Bilecik
Seyh Edebali Universitesi veya baska bir iiniversitede baska bir tez ¢alismasi olarak
sunulmadigini, aksinin tespit edilecegi muhtemel durumlarda dogabilecek her tiirlii hukuki

sorumlulugu kabul ettigimi ve vermis oldugum bilgilerin dogru oldugunu beyan ederim.
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destekleyen kurumun ad1 proje numarasi ile birlikte, ETIK KURUL onay1 alinmas1 durumunda ise ETIK KURUL
tarih karar ve say1 bilgilerinin beyan edilmesi gerekmektedir.
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OZET

UC BOYUTLU KOMPAKT LiE GRUPLARINDA BAZI GENELLESTIRILMIS
EGRILER

Bu ¢alisma ii¢ boliimden olusmaktadir.
Birinci Boliimde giris kismina yer verilmistir.
Ikinci kistmda 3-boyutlu Oklid uzayinda egriler ile ilgili temel tanim ve teoremler ile baz1 6zel
egriler i¢in tanimlar ve temel teoremler verilmistir. Daha sonra bi-invaryant metrik ile 3-boyutlu
Lie gruplarinda literatiirde yer alan ¢alismalarda tanimlanan bazi 6zel egrilerin tanimlar1 ve bu
egrilerle ilgili temel teoremler verilmistir. Son olarak sol-invaryant metrik ile 3-boyutlu Lie
gruplarinda genellestirilmis helislere iligskin tanim ve teoremler verilmistir.
Ucgiincii béliim bu ¢alismanm orijinal kismini olusturmaktadir. Bu ¢alismasinda sol-invaryant
metrik ile 3-boyutlu Lie gruplarinda Involiit-Evoliit egri ¢ifti, Bertand ve Mannheim egrilerini
tanimlanmis ve oncelikle bu egrilerin Frenet bilesenleri arasindaki iligkiler arastirilmistir. Daha

sonra bu iliskiler yardimiyla bu egriler ile ilgili baz1 karakterizasyonlar verilmistir.

Anahtar Kelimeler: 3-Boyutlu Oklid Uzay1, Bi-invaryant Metric, Sol-invaryant Metrik, Lie
Gruplari



ABSTRACT

SOME GENERALIZED CURVES IN THREE DIMENSIONAL COMPACT LIE
GROUPS

This study consists of three parts.
In the first part, an introduction is given.
In the second part, basic definitions and theorems about curves in 3-dimensional Euclidean
space and definitions and basic theorems for some special curves are given. Then, definitions
of some special curves defined in the literature in 3-dimensional Lie groups with bi-invariant
metric and basic theorems about these curves are given. Finally, definitions and theorems about
generalized helices in 3-dimensional Lie groups with left-invariant metric are given.
The third chapter constitutes the original part of this work. In this work, the Involute-Evolute
curves, Bertand and Mannheim curves in 3-dimensional Lie groups with left-invariant metric
are defined and firstly the relations between Frenet elements of these curves are investigated.

Then, with the help of these relations, some characterizations of these curves are given.

Keywords: 3-Dimensional Eucledean Space, Bi-Invariant Metric, Left-Invariant Metric, Lie

Groups



ICINDEKILER

Sayfa No

ON SOZ ... [
OZET ... s 1
A B ST RACT <ttt ettt e e bt et e st e R e et e e Re e eRe bt nt e R e e te et e nreenreenee e ii
ICINDEKILER..........ooiiiieeeeeeeeeeeeeeeeeee ettt ettt ettt ettt ettt ettt sttt et en et et en s en s iv
SEKILLER LISTESI ..ottt v
SIMGELER VE KISALTMALAR LISTESI ......cccooiiiiinneecseseeseeens Vi
LUGTRIS ..ottt ettt en et enees 1
2.TEMEL KAVRAMLAR ...ttt ettt sbe e nneas 3
2.1.R3, 3- Boyutlu Oklid Uzayinda Egriler Teorisi...............cccocoevirrierriererriererennnn, 3
2.2.R3 ,3-Boyutlu Oklid uzayinda Bazi Ozel EZriler.................ccccccoovevvirerernierrerennnnn, 5
2.3.Bi-invaryant Metrikle 3-Boyutlu Lie Gruplarinda Baz1 Ozel Egriler ................... 8
2.4.S0l-invaryant Metrik ile Lie gruplarinda Egriler.............c.cccccoocovovevevinrecernnnn, 14
2.5.50l-invaryant Metrik ile Lie gruplarinda Genellestirilmis Helisler-................... 18
3.SOL INVARYANT METRIK iLE 3-BOYUTLU LIE GRUPLARINDA BAZI OZEL
EGRILER ....coooiiiiii s 20
3.1.Sol invaryant Metrik ile 3-Boyutlu Lie Gruplarinda involiit-Evoliit Egri Cifti. 20

3.2. Sol invaryant Metrik ile 3-Boyutlu Lie Gruplarinda Bertrand Egri Cifti.......... 24

3.3. Sol invaryant Metrik ile 3-Boyutlu Lie Gruplarinda Mannheim Egri Cifti ...... 27
KAYNALKCA ...ttt bbb bt e bt st b e bt et e sbeenbeenbesbeenbe e 32



SEKILLER LISTESI

Sekil 2.1. y Egrisi ve Tegetler GOStETZEST ......oiviiriiiiiiiiiiieiisie e 6

Sekil 2.2. Bi-invaryant Metrik ile G Lie grubunda Mannheim egri ¢ifti {y, f}...coovvrenininnns 12
Sekil 2.3. Bi-invaryant Metrik ile G Lie grubunda Bertrand egri ¢ifti {y, B} .oovvveveerrcenceninnens 13
Sekil 3.1. {y, £} involiit-Evoliit Egri ikilisinin Frenet Vektor Alanlari ............ccc.cooeeoeeeevenennne. 21
Sekil 3.2. Sol-invaryant Metrik ile G Lie grubunda Bertrand egri ¢ifti {y, B}..ccovovvvevreenceninnens 24
Sekil 3.3. Sol-invaryant Metrik ile G de Mannheim egri Gifti {}, 5} ..o 28



Simgeler
RS

KISALTMALAR VE SIMGELER LiSTESI

: 3-Boyutlu Oklid Uzay1

: Vektor Uzay1

: i¢ Carpim Fonksiyonu

: Vektorel Carpim Fonksiyonu
: Norm fonksiyonu

: Metrik fonksiyonu

: Egrinin Frenet Vektor Alanlari
: Egrinin Egriligi

: Egrinin Burulmasi

: Egrinin Grup Egriligi

: Egrinin Grup Torsiyonu

: 3-Boyutlu Lie Grubu

: Lie Grubunun Lie Cebiri

Vi



1. GIRIS

Diferansiyel geometride, egriler teorisi en ¢ok galisilan konulardan biridir. Egriler
teorisi ile ilgilenen arastirmacilar 3-boyutlu Oklid Uzayinda genel helisler, slant helisler,
Bertrand ¢ifti, Mannheim cifti egrileri gibi 6zel egrileri tanimlamis ve bu egrilere iliskin pek
cok karakterizasyonlar elde etmislerdir. Bahsettigimiz bu egrileri tanimlamada ve karakterizede
etmede egrilerinin Frenet bilesenleri olarak bilenen {T°, V', B, k, »} bilesenleri 6nemli ve etkin

bir role sahiptir.

Bu egrilerden genel helisler egrinin her noktasindaki teget vektorii eger sabit dogrultulu
bir dogru ile sabit a¢1 yapiyorsa o egriye genel helis denir seklinde tanimlanmistir. Daha sonra
genel helisler ile ilgili 3-boyutlu Oklid Uzayinda 6nemli ve iyi bilinen bir karakterizasyon olan,
egrinin lizerindeki her noktada tanimli olan egrilik fonksiyonlar1 k ve » nun oranlarinin sabit
olmasi1 kosuludur. Bu kosul ilk defa Lancret tarafindan 1802 yilinda ortaya konmus ve Saint
Venant tarafindan 1845 yilinda ispatlanmistir. Slant helisler ilk kez Izumiya tarafindan 2004
yilinda bir egrinin slant helis olabilmesi i¢in her noktasindaki normal vektoriinlin sabit
dogrultulu bir dogruyla sabit ac1 yapmasi gerekir seklinde tanimlanmistir. Ayni1 zamanda slant
helisler ile ilgili 6nemli bir karakterizasyon vermistir. 1850 yilinda Bertrand, karsilik gelen
noktalarinda normal vektorleri lineer bagimli olan egrileri Bertrand egri cifti olarak
tanimlamugtir. 2007 yi1linda Wang ve Liu ise karsilik gelen noktalarinda normal vektorii ile bi-

normal vektdrii lineer bagimli olan egrileri Mannheim egri ¢ifti olarak tanimlamustir.

Son yillarda bu egriler bi-invaryant metrik ile G de ¢alisilmaya baslamigtir. 2009 yilinda
Ciftci, bi-invaryant metrik ile G de genel helisleri tanimlamis ve elde ettigi karakterizasyonun
3-boyutlu uzaylar i¢in bir genellestirme oldugunu gdstermis. Daha sonra 2013 yilinda Okuyucu
ve digerleri bi-invaryant metrik ile G de slant helisleri tanimlamis ve bu egriler ile
karakterizyonlar elde etmisler ayrica bu karakterizasyonlarin 3-boyutlu uzaylarda slant helisler
icin elde edilen karakterizsasyonlarin bir genellestirilmesi oldugunu gostermislerdir. Daha
sonra 2014 yilinda yayinladiklar1 ¢alismalarinda Gok ve digerler bi-invaryant metrik ile
G de Mannheim egri giftlerini ve 2016 yilinda Okuyucu ve digerleri yaymladiklart
calismalarinda Bertrand egri ¢iftlerini bi-invaryant metrik ile G de tanimlamislar ve bu egriler
ile ilgili cesitli karakterizasyonlar elde etmislerdir. 2019 yilinda ise Yampolsky A. ve Opariy
A. Sol-invaryant metrik ile G de helis egrilerini ¢aligmis ve gesitli karakterizasyonlar elde
etmiglerdir. Elde ettikleri bu sartlarin daha 6nce genel helisler ile slant helisler igin bi-invaryant

metrikle G de elde edilen sartlardan daha genel sartlar olduklarini gostermislerdir.



Bu tez calismasinda. Sol-invaryant metrik ile G de involiit-evoliit, Mannheim ve
Bertrand egri ¢iftlerinin tanimlar1 verildi ve bu egri ciftlerinin Frenet bilesenleri arasinda bazi
iligkiler elde edildi. Daha sonra bu iliskiler yardimiyla bu egri ciftleri ile ilgili bir takim

karakterizasyonlar verildi.



2. TEMEL KAVRAMLAR
2.1 R3, 3-Boyutlu Oklid Uzayinda Egriler Teorisi
Bu boéliimde R3 uzayindaki egriler ile ilgili temel kavram ve teoremler verilecektir.

Tamm 2.1.1. ] © R agik bir alt aralik olmak iizere ¥ : I - R3 seklinde tanimlanan diizgiin bir
y doniisiimiine, R3 uzayinda bir diferansiyellenebilir egri denir. Vt € I degerine karsilik gelen
Y(@®) = (y2(©),v2(6),y3(t)) degeri, R? iin bir noktasina karsilik gelir. Buradaki t degiskenine
y egrisinin parametresi denir (O’ Neill,1966:11).

Tanm 2.1.2. y:I c R - R3 doniisiimii R3 uzayinda bir egri olsun ve Vt € I degeri i¢in
y'(t) = (yl’(t),yz’(t),y3’(t)) vektoriine y nin y(t) noktasindaki hiz vektorii denir (O’
Neill,1966:16).

Tamm 2.1.3. R3 uzaymda y : I € R - R3 egrisi verilsin. y egrisinin her noktasindaki hiz
vektorii birim ise yani Vs € I igin ||[y'(s)|| = 1ise y egrisine yay parametreli egri denir ve
s € I parametresine de y egrisinin yay parametresi denir (Yiice,2020:178).

Tanm 2.1.4. y : | ¢ R > R3® , R3 uzaymda bir diferansiyellenebilir egri olsun ve Vt € I

araligi icin ||y’ (t)|| # 0 oluyorsa y ya regiiler egri denir (Yiice,2020:178).

Tamm 2.1.5.y : I € R > R3, R3 uzayinda yay parametreli bir egri olmak iizere,

T(s)=y'(s),
_v"s T
NG =761 = e

B(s) =T (s) AN(s)

dir. Verilen denklemlerde T'(s) vektoriine y egrisinin y(s) noktasindaki birim teget vektori,
N (s) vektoriine y nin y(s) noktasindaki asli normal vektorii ve B(s) vektoriine y egrisinin

y(s) noktasindaki binormal vektorii denir. T, V' ve B vektor alanlarina y egrisinin Frenet

vektor alanlari denir (O’ Neill,1966:58).

Tanm 2.1.6. y : I € R - R3 birim hizl1 egri olsun. T, V. ve B, y(s) egrisinin Frenet vektor

alanlar olacak sekilde,
kil >R, k(s)= 7"l

seklinde tanimlanan fonksiyona, y egrisinin egrilik fonksiyonu denir. k(s) reel sayisina y

egrisinin y(s) noktasindaki egriligi denir (Sabuncuoglu, 2014:74).



Tamim 2.1.7.y : I € R - R3 birim hizl1 egri olsun. y egrisinin Frenet vektdr alanlar1 77, V' ve

‘B olmak iizere,
w:l >R, xu(s)= —(B'(s),N(s))

fonksiyonuna y egrisinin burulma fonksiyonu denir. x#(s) reel sayisina y egrisinin y(s)

noktasindaki burulmasi veya torsiyonu denir (Sabuncuoglu, 2014:76).

Teorem 2.1.1. y:1 c R — R3 egrisi s yay parametreli bir egri ve y min Frenet bilesenleri
{T,NV,B, k, x} olmak lizere

k(s) = lly "(s)ll,

IAORSORSO)
lly " ()17

seklinde ifade edilir (O’ Neill,1966:59).

u(s)

Teorem 2.1.2. ¥, R® uzaymda yay parametreli bir egri ve y nin Frenet bilesenleri

{T,N,B, k,x}olsun. Frenet vektorlerinin tirevleri
T'(s) = k(s)N(s)
N'(s) = =k(s)T(s) + x(s)B(s)
B'(s) = —x(s) N(s)

seklindedir (O’ Neill,1966:59).

Tamm 2.1.8. R3 uzayinda , y egrisi Frenet vektor alanlart 7, V', B olan yay parametreli bir

egri olsun. Bu durumda
Sp{T (s), V' (s)} diizlemine, y nin y(s) noktasindaki oskiilatér (normal) diizlemi denir.
Sp{T (s),B(s)} diizlemine, y nin y(s) noktasindaki rektifiyan diizlemi denir.

Sp{N(s),B(s)} dizlemine, y egrisinin y(s) noktasindaki normal diizlemi denir

(Sabuncuoglu, 2014:80).

Teorem 2.1.3 y, 3-boyutlu Oklid uzaymda birim hizli bir egri ve y egrisinin egriligi k = 0
olmast durumunda y egrisine bir dogrudur denir. Aksine y egrisi bir dogru olarak alinirsa y
egrisinin egriligi k = 0 dir (O’ Neill,1966:60).

Teorem 2.1.4. y, 3-boyutlu Oklid uzayinda birim hizl1 bir egri ve y egrisinin egriligi k > 0
alinirsa y egrisinin diizlemsel bir egri olabilmesi i¢in gerek ve yeter kosul y egrisinin burulmasi

u = 0 olmasidir (O’ Neill,1966:60).



2.2. R? 3-Boyutlu Oklid Uzayinda Baz1 Ozel Egriler

Bu kisimda R3 uzayindaki bazi1 dzel egriler ile ilgili temel tanimlar ve kavramlar ele

alinmustir.

Tanmm 2.2.1. R3 uzayinda y : I € R — R3 birim hizl1 egrisi verilsin. y egrisinin teget vektor

alan1 T olmak tizere T vektor alani, sabit bir v vektorii ile sabit ag1 yapiyorsa, yani
<T,v>=cosp, ¢ =sabit
kosullarini saglayan v vektorii varsa y egrisine helis denir (Izumiya ve Takeuchi, 2004: 158).

Teorem 2.2.1. R3 uzayinda y : I € R —» R3 birim hizli egrisi verilsin. k ve » sirasiyla y
egrisinin egriligi ve burulmasi olsun. k # 0 segilirse y:1 — R® egrisinin genel helis olmasi

icin gerek ve yeter kosul
" .
L=c= sabit
olmasidir (Izumiya ve Takeuchi, 2004: 158).

Tamm 2.2.2. R3 uzayinda y : I € R - R3 birim hizh egrisi verilsin. V', y egrisinin birim asli
normal vektor alan1 ve v de herhangi bir birim vektorii olsun. Eger V' asli normal vektdr alani

ile v birim vektorii ile sabit bir ag1 yapiyorsa bu egriye slant helis denir yani;
< IV, v > = cosQ, ¢ = sabit

dir. (Lancret 1802:418).

Tamm 2.2.3. R3 uzayinda a merkezli ve r yarigapl bir kiire
S?2={XeR|(X—a,X —a)=r?}

seklinde ifade edilir. X = (x4, x5, x3) Ve a = (a4, a,, as) olmak tiizere
(x —ap)? + (= a)® + (x5 —az)? =12

dir. r = 1 icin S2 birim kiiredir. (Yiice, 2020:178).

Tamm 2.2.4. R3 uzayinda verilen bir y egrisi, S? {izerinde yatiyorsa y egrisine kiiresel egri

denir (Yiice,2020:178).

Tamm 2.2.5. R3 uzayinda y, s birim hizli egrisi ve y egrisinin bir P anindaki birim teget vektor

alan1 7" olmak iizere, P_Q) = T olacak sekilde Q € S? vardir. Burada P aninda y egrisini ¢izerken
Q anindaki birim kiire ylizeyinde olusturdugu egriye y nin kiiresel veya tegetler gostergesi denir

(Hacisalihoglu, 1998:259).



P' ¢

¥ =¥ls)

Sekil 2.1. y Egrisi ve Tegetler Gostergesi

Tamm 2.2.6. R3 uzaymday : I € R —» R3 egrisi verilsin. y egrisinin asli normal vektor alan
NV olsun. y egrisi ¢izilitken V' ye karsilik gelen vektorlerin ug¢ noktalarinin birim kiire ylizeyi
tizerinde meydana getirdigi egriye y egrisinin asli normaller gostergesi denir (Hacisalihoglu,

1998:262).

Tamm 2.2.7. R3 uzaymda y : I € R - R3 egrisi verilsin. y egrisinin binormal vektor alan1 B
olsun. y egrisi gizilirken B ye karsilik gelen vektorlerin u¢ noktalari ile birim kiire yiizeyinde

olusan egriye y nin binormaller gostergesi denir (Hacisalihoglu, 1998:262).

Teorem 2.2.2. R3 uzaymda y : I € R - R3 birim hizli egrisi verilsin. y nin egriligi k # 0
segilirse y nin slant helis olabilmesi i¢in y nin asli normaller gostergesinin kiiresel tasvirinin

egriligi olan
k? ©\'
o(s) = <(k2+;{2)3/2 (E) )(S)

sabit olmalidir (Hacisalihoglu, 1998:262).

Teorem 2.2.3. R3 uzayinda y egrisinin slant helis olmas1 i¢in gerek ve yeter kosul tegetler

gostergesinin genel helis olmasidir (Kula vd., 2005:602).

Teorem 2.2.3. R3 uzayinda y egrisinin slant helis olabilmesi i¢in gerek ve yeter sart normaller

gostergesinin ¢gember olmasidir (Kula vd., 2005:602).

Teorem 2.2.4. R3 uzayinda 7 # 0 segilsin. y egrisine slant helis denilebilmesi igin gerek ve

yeter kosul binormaller gostergesinin genel helis olmasidir (Kula vd., 2005:602).
Tanim 2.2.8. Birim hizli bir y:1 € R - R3 egrisi s yay parametresi ile f:] € R > R3 egrisi
§ yay parametresi ile verilsin. y ve B egrilerinin Frenet bilesenleri sirasiyla {7, V', B, k, %} ve

{T,V, B, k, i} olmak iizere < T(s),T(s) > =0 ve y egrisinin y(s) noktasindaki tegeti B(s)



noktasindan gegiyorsa 8 egrisine y egrisinin bir involiitii, 5 (s) noktasindaki teget dogrusu y (s)

noktasindan gegiyorsa f egrisine y egrisinin evoliitii denir. (Sabuncuoglu, 2014:86).

Tamim 2.2.9. R3 uzayinda y ve B uzay egrilerinin sirasiyla Frenet bilesenleri {7, NV, B, k, x}
ve {7_’ VN, B, k, JZ} ile verilsin. Bu egrilerinin karsilikli noktalarinda y egrisinin asli normal
vektor alani ile f egrisinin asli normal vektor alani lineer bagimli ise y egrisine Bertrand egrisi,
B egrisine yegrisinin Bertrand egri ¢ifti ve { y, §} egri ¢iftine de Bertrand egri ¢ifti denir denir
(Wang, ve Liu 2007:123).

Teorem 2.2.5. {y, [} egri ikilisi Bertrand egri ¢ifti, d uzaklik fonksiyonu ve A sabit bir say1

olmak iizere y ve B egrilerinin karsilik gelen noktalar1 arasindaki uzaklik sabittir. Yani

d(y,B) = 4
dir (Hacisalihoglu, 1998:70).

Teorem 2.2.6. R® uzayinda y egrisinin egriligi ve ikinci egriligi sirasiyla k ve T olsun. y
egrisinin Bertrand egrisi olabilmesi i¢in gerek ve yeter sart

AL pu eERicin Ak +we =1
olmasidir (Hacisalihoglu , 1998:70).
Tamm 2.2.10 R® uzayinda y ve B egrilerinin Frenet bilesenleri sirasiyla {7, V', B, k, %} ve
{7_" , N, B, k, J—?} seklinde verilsin. Bu egrilerinin karsilikli noktalarinda, y egrisinin asli normal
vektor alani ile  egrisinin binormal vektor alani lineer bagimli ise y egrisine Mannheim egrisi

B egrisine y egrisinin Mannheim ¢ifti ve { y, §} ikilisine de Mannheim egri ¢ifti denir (Wang,
ve Liu 2007:123).

Teorem 2.2.7. { y, £} Mannheim egri ¢ifti, d uzaklik fonksiyonu ve A sabit bir say1 olmak iizere

y ve [ egrilerinin karsilik gelen noktalar1 arasindaki uzaklik sabittir. Yani
d(y,p) = 1
dir (Orbay ve Kasap, 2009:262).

Teorem 2.2.8. R3 uzayinda y egrisinin egriligi ve ikinci egriligi sirastyla k ve 3 olsun. y min

Bertrand egrisi olabilmesi igin gerek ve yeter kosul
k= 2A(k? + x?)

esitliginin saglanmasidir (Orbay ve Kasap, 2009:263).



2.3 Bi-invaryant Metrik ile 3-Boyutlu Lie Gruplarinda Baz1 Ozel Egriler

Bu béliimde literatiirde yer alan bi-invaryant metrik ile G de genel helis, slant helis,

Bertrand ve Mannheim egrileri tanitilacak ve bu egrilerle ilgili bazi teoremler tanitilacaktir.

G tzerinde taniml (, ) bi-invaryant metrik tanimli bir Lie grubu olmak {izere g, G nin
Lie cebiri ve D konneksiyonu G nin Levi-Civita konneksiyonu olsun. e, G nin birim elemani

olmak tizere T, G ile g izimorftur.
X,Y,Z € g ve (,) bi-invaryant metrik olmak tizere
(X,[y,z]) = ([X,Y], Z)

ve

DXy -

N |-

[X,Y]
dir.

{X1, X5, ..., X, } kiimesi g nin ortanormal bir baz1 ve y:I € R — G yay parametreli bir
egri ve egri boyunca iki vektor alan1 W ve Z olsun. w;: I = Rve z;: I = R fonksiyonlar diizgiin
fonksiyonlar olmak tizere W = Y-, w;X; ve Z = YI-, z;X; seklinde yazilabilir. W ve Z vektor

alanlarinin Lie ¢arpimi

W,Z] = X wz; [X;, X;]

olacak sekilde y boyunca bir W vektor alaninin kovaryant tiirevi D,w

o1
DW= W +=[T,W]

n 4w

seklindedir. Burada y' =7 ve W = XL, wX; = YL, —*X; dir. Eger W, sol-invaryant

vektor alaninin y egrisine simirlandirilisi ise, W = 0 dir (Ciftgi, 2009:1599).

Tammm 2.3.1. G de y:I c R— G yay parametreli bir egri olsun. y nin Frenet bilesenleri
{T,N,B, k,x} olacak sekilde

%G =5 (T, V'], B)

veya

_ 1
T 2k2x

&, [7, 7)) + =7, 7]

4Kk2 »

Mg

seklindedir (Croch ve Silva, 1995:1507).



Lemma 2.3.1. G, (,) bi-invaryant metrik ile Lie grubu olsun
I Eger G abelyan grup ise »x; = 0,
ii. Eger G, SO3Lie grubu ise »; = %
iii. Eger G, SU? Lie grubu ise »#; = 1
dir (Ciftci, 2009:1599).

Tamm 2.3.2. Bi-invaryant metrik ile G de Frenet bilesenleri {7, V', B, k, #} seklinde verilen
biry:I ¢ R — G yay parametreli egrisi ve X sol-invaryant vektor alani olsun. Eger y egrisinin

her noktasindaki teget vektorii 7 (s) ile sol-invaryant vektor alan1 X sabit bir ag1 yapiyorsa yani
(T(s),X)=cosO, sel
ise y ya G de helis denir (Croch ve Silva, 1995:1507).

Teorem 2.3.1. Bi-invaryant metrik ile 3-boyutlu G Lie grubunda y:I c R —» G Frenet
bilesenleri {T', V', B, k, #} olan yay parametreli bir egri olsun. y egrisinin genel helis olmasi
icin gerek ve yeter sart

n=ck+xn; c=sabit (2.1)
olmasidir (Cift¢i,2009:1600).
Sonug 2.3.1. Eger G bi-invaryant metrik ile 3-boyutlu abelyan Lie grubu ise »; = 0 dir. G nin
abelyan Lie grubu olmasi durumunda (2.1) denkleminde »; = 0 oldugu disiiniiliirse % =c

sonucu elde edilir.

Bu sonug bi-invaryant metrik ile 3-boyutlu G Lie grubunda elde edilen kosulun 3-
boyutlu Oklid uzaymda genel helisler i¢in elde edilen sonucun bir genellestirilmesi oldugunu

gosterir.

Tanmm 2.3.3y:1 € R - G egrisi G de Frenet bilesenleri {7, V', B, k, »} olan yay parametreli
bir egri ve ve X sol-invaryant vektor alan1 olsun. y nin asli normal vektor alant V" ile X sol-

invaryant vektor alani sabit a¢1 yapiyorsa , yani
(NV(s),X) = cosf, 6 = sabit ¢§

ise y egrisi G de slant helis denir (Okuyucu vd., 2013:674).



Tamim 2.3.4. Bi-invaryant metrik ile G de y:I € R — G Frenet bilesenleri {T', V', B, k, }

olan yay parametreli bir egri olsun. y egrisinin harmonik egriligi H olmak {izere,

n—ug
H =
k

dir. Buradan x; = %([T, N, B) dir (Okuyucu vd., 2013:674).

Tammm 2.3.5. Bi-invaryant metrik ile G de y:I € R — G Frenet bilesenleri {T', NV, B, k, }
olan yay parametreli bir egri olsun. Asli normaller gostergesinin kiiresel tasvirinin geodezik
egriligi,

_ k(+H?)’/2
O-N - HI

seklinde tanimlidir. Burada H, y egrisinin harmonik egriligidir (Okuyucu vd., 2013:674).

Lemma 2.3.2. Bi-invaryant metrik ile G de y:I c R —» G Frenet bilesenleri {7, NV, B, k, »}

olan yay parametreli bir egri olmak iizere
[7,B] =([T,B], )N = =2x;N
[T, N] =([T,N],B)B = 2x;B
dir (Okuyucu vd., 2013:674).

Teorem 2.3.2. Bi-invaryant metrik ile G de y:1 ¢ R —» G Frenet bilesenleri {T, NV, B, k, }
olan yay parametreli bir egri olmak tizere, y egrisi G Lie grubunda bir slant helis ise y egrisinin

ekseni

k(1+H )

%)
U= T+N+

{M B} cos@, 8 = sabit # g

dir. Burada H = , ¥ egrisinin harmonik egriligidir (Okuyucu vd., 2013:675).

Teorem 2.3.3. Bi-invaryant metrik ile G de y:1 c R —» G Frenet bilesenleri {T', NV, B, k, }

olan yay parametreli bir egri olusn. y nin slant helis olmasi igin gerek ve yeter kosul

k(1+H?)/2

oy = o = tanf, 6 = sabit # g

esitliginin sabit olmasidir. Burada H, y egrisinin harmonik egriligidir (Okuyucu vd., 2013:676).
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Tamim 2.3.6. Bi-invaryant metrik ile 3-boyutlu G Lie grubunday:I ¢ R - G yay parametreli
bir egri olsun. y egrisinin tegetler gdstergesi olan f: 1 € R — S? C g egrisi, yay parametresi s*

olacak sekilde her s € I degeri i¢in
B(s) =T(s) = Zi_i tiX;
ile tanimlidir (Okuyucu vd., 2013: 677).

Teorem 2.3.4 Bi-invaryant metrik ile G de y:1 c R = G birim hizli bir egri olmak iizere
B:1 € R — G egrisi y egrisinin tegetler gostergesi olsun. y egrisinin slant helis olmasi igin

gerek ve yeter kosul 8 nin helis olmasidir (Okuyucu vd., 2013: 677).
Tanmm 2.3.7 Bi-invaryant metrik ile G de y:I ¢ R - G yay parametreli bir egri olmak {izere
y egrisinin normaller gostergesi olan §:1 € R — S% C g egrisi, yay parametresi s* olacak
sekilde her s € I degeri igin

8(s%) = N(s) = Xitq X
ile tanimlidir (Okuyucu vd., 2013: 678).
Teorem 2.3.5 Bi-invaryant metrik ile G de y: I ¢ R — G yay parametreli bir egri ve y egrisinin

normal gostergesi §:1 € R —» S% C g egrisi olsun. y egrisi slant helis ise &§ egrisi diizlemsel
bir egridir (Okuyucu vd., 2013: 678).

Tamm 2.3.8. Bi-invaryant metrik ile G de y: I € R —» G yay parametreli bir egri 0lmak iizere
y nin binormaller gdstergesi olan {:I € R — S2 C g egrisinin yay parametresi s* olmak iizere

Vs €1 i¢in
(s = B(s) = i1 biX;
ile tanimlidir (Okuyucu vd., 2013: 678).

Teorem 2.3.6. Bi-invaryant metrik ile G de y:1 ¢ R = G yay parametreli bir egri ve {:] C
R — S? c g egrisi y egrisinin binormaller gostergesi olsun. y egrisinin slant helis olmasi i¢in

gerek ve yeter sart { egrisinin genel helis olmasidir (Okuyucu vd., 2013: 679).

Tamm. 2.3.6. Bi-invaryant metrik ile G de y ve B egrilerinin karsilik geldigi anlardaki y
egrisinin asli normal vektor alani ile § egrisinin binormal vektor alan1 lineer bagimli ise y ya
Mannheim egrisi, § ya da y nin Mannheim ¢ifti ve {y, 8} ikilisine de Mannheim egri ¢ifti denir
(Gok vd., 2014:470).
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G de y:1 c R - G, s yay parametreli bir egri ve Tanim 2.3.6 yardimiyla f:1 ¢ R —
G yay parametreli egrisi S(s) = y (s) + A(s)N'(s) seklinde yazilabilen bir egri olsun. Burada
A sabit bir fonksiyon ve V' vektor alant y egrisinin asli normal vektor alanidir (Gok vd.,
2014:471).

B(s)
y
T(s)
N(s)
B(s)
/ ’
Fs) —
N(s)

Sekil 2.2. Bi-invaryant Metrik ile G Lie grubunda Mannheim egri ¢ifti {y, £}

Teorem 2.3.7.y: I c R—> G ve B:] c R - G egrileri 3-boyutlu G Lie grubunda sirastyla
yay parametreleri s ve § olan Mannheim egri ¢ifti olsun. y ve B egrilerine karsilik gelen

noktalar arasindaki uzaklik daima sabittir. Yani
vs € I igind(y(s), B(5)) = sabit
dir (Gok vd., 2014:471).

Teorem 2.3.8. Bi-invaryant metrik ile G de y:I € R — G Frenet bilesenleri {7, N, B, k , }
olan yay parametreli bir egri olsun. A sabit fonksiyon ve H ise y egrisinin harmonik egrilik
fonksiyonu olacak sekilde y egrisine Mannheim egrisi diyebilmemiz igin gerek ve yeter kosul

Vs € I i¢in
Ak(1+H*) =1
olmasidir (Gok vd., 2014:472).
Tamim. 2.3.7 Bi-invaryant metrik ile G de y ve S egrilerinin karsilik gelen noktalarinda y nin

asli normal vektor alani ile £ nin asli normal vektor alani lineer bagimli ise y egrisine Bertrand
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egrisi, B egrisine y egrisinin Bertrand ¢ifti ve {y, 8} ikilisine de Bertrand egri ¢ifti denir
(Okuyucu vd., 2017:1003).

Gdey:I cR— G s yay parametreli bir egri ve Tanim 2.3.7 yardimiyla f:] c R —
G egrisi B(s) = y (s) + A(s)N'(s) seklinde yazilabilen bir egri olsun. Burada A sabit bir

fonksiyon ve y egrisinin asli normal vektor alan1 V' vektor alanidir (Okuyucu vd., 2017:1004).

B (s)
IV (s)
S
B(s)

Sekil 2.3. Bi-invaryant Metrik ile G Lie grubunda Bertrand egri ¢ifti {y, 8}

Teorem 2.39. G de y:I c R—> G ve B:] € R — G sirastyla yay parametreleri s ve § olan
Bertrand egri ¢ifti olsun. y ve f egrilerine karsilik gelen noktalar1 arasindaki uzaklik daima

sabittir. Yani
Vs € I icin d(y(s),ﬁ(§)) = sabit
dir (Okuyucu vd., 2017:1004).

Teorem 2.3.10. Bi-invaryant metrik ile G de, Frenet bilesenleri {7, V', B, k , %} olan bir y: I c

R — G egrisi verilsin. A ve u sabit fonksiyonlar olmak iizere y egrisi Bertrand egrisi ise
Ak +u(Ge—ng) =1

dir (Okuyucu vd., 2017:1005).

13



2.4 Sol-Invaryant Metrik ile Lie gruplarinda Egriler

Bu kisimda sol-invaryant metrik ile 3-boyutlu G Lie grubunda tanimlanmis
genellestirilmis helis egrileri ile ilgili temel tanimlar ve kavramlar verilecektir. Bu kavramlari
vermeden once sol-invaryant metrik ile 3-boyutlu G Lie gruplari ile ilgili baz1 temel kavramlar

ve Onermeler verilmistir.

Kabul edelim ki G sol-invaryant metrik <, > ile {i¢ boyutlu Lie grubu olsun. G nin sol-
sol 6teleme altinda degismeyen tiim vektor alanlarindan olusan Lie cebirini g ile gosterelim. Bu
durumda 3-boyutlu Lie gruplarinin unimodular ve nonunimodular olmak iizere iki sinifi vardir.

3-boyutlu Lie gruplarmin unimodular ve nonunimodular siniflarlari;

Eger G Lie grubu unimodular ise { e;, e,, e5} sol-invaryant vektor alanlarinin kiimesi
pozitif yonlendirilmis ortonormal bir ¢at1 olusturur ve bu vektdrler i¢in A; ler yap: sabitleri

olmak tizere
[e1, e2] = Azes, [e1,e3] = Ayey, [ep,e3] = 4104
seklinde saglanir.

Eger G Lie grubu nonunimodular ise sol-invaryant vektor alanlarinin olusturdugu

{ e,, €5, €3} ortonormal ¢atisinin elemanlari i¢in parantez ¢arpimlari
[e1, e2] = ae; + Bes, [e1,e3] = —PBe; + Ses, [ez,e35] =0
seklindedir (Yampolsky ve Opariy, 2019:1448).

Koszul formiilii kullanilarak V. e; degerleri sirasiyla Lie grubunun unimodular ve

nonunimodular durumlari i¢in

seklinde hesaplanir. Buradaki y; degerleri

=5 A+ A+ Ag) — 4y

% ey ez e3 v ey €z €3
€1 0 Hi€3 —H1€3 ve e, 0 Bes —Le,
ez —Hz€3 0 Haeq e, —ae, | ae 0
€3 1) —Hzéq1 0 e3 des 0 deq
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esitligi ile taniml1 sabitlerdir.

Ug boyutlu durumda ey, e,, e5 vektor alanlarmin vektdrel garpimlart icin elde edilen

esitlikler
elxezze3, ezxe3:el, e3><e]_:ez
seklindedir.

Hem unimodular hem de nonunimodular gruplarda V. e, = u(e;) X ey olup herhangi

bir X vektor alani i¢in Vye, = u(X) X e, dir. Burada u bir afin doniisim olup sirasiyla

unimodiler ve nonunimodular gruplar i¢in

X) = {ﬂ1X191 + U X?e; + i3 X3es
A= p1X'e; + 85,X3e, — azX?es,
dir (Yampolsky ve Opariy, 2019:1449).

y egrisi sol-invaryant metrik ile 3-boyutlu Lie Grubu G de kendi yay parametresi ile
parametrelendirilmis bir egri olsun. Bu durumda 7 = y vektor alan1 y egrisinin birim teget

vektor alani ve o y vektor alani y egrisine kisitlanmig bir vektor alani olmak tizere
Vi= T8 er) = T(e'§)er + £V, = T(E e, + Eu(T) X &

=B FU(T) X E = Ekey + u(T) X & (2.2)

ds
. . dEt . .. " e T
dir. Burada ¢ = d—i e’ vektor alan1 y egrisi boyunca ¢ vektor alaninin nokta tiirevidir. Eger &

vektor alani sol-invaryant vektor alani ise & = 0 dur, bunun tersi de dogrudur. { ey, e,, e}
catisini olusturan vektor alanlari sol-invaryant vektor alanlari oldugundan skaler ¢arpimin ve

vektorel ¢arpimin nokta tiirevleri
<EM>=<E > +<EN>, (Exm)=(Exn)+ (€ xn)
seklindedir (Yampolsky ve Opariy, 2019:1449).

k
y egrisinin Frenet vektor alanlar1 {77, V', B} olmak {izere V§= % e +u@) xé =

E*e, + u(T) x & denkleminden
Vel =T +u@)XT, VpB=B+u(T)XB, Vs N =N+uT)xN  (23)

esitlikleri elde edilir.
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ko = ||fT || # 0 oldugunu varsayarak y egrisi boyunca yeni bir ¢at1 olan ve nokta-Frenet

catis1 diyecegimiz {7, v, f} ¢atisin

t=7T, v=k—r', B=1tXv (2.4)
0

seklinde tanimlayabiliriz. »y = || ¢ || olarak tanimlanir (Yampolsky ve Opariy, 2019:1449).
Onerme 2.4.1. y egrisinin nokta-Frenet ¢atis1 { 7, v, 8} i¢in nokta-Frenet formiilleri

t=kov, V=—koT+ #of, B =—xyv (2.5)

dir. Burada k, ve 3, sirastyla y egrisinin nokta-egriligi ve nokta-torsiyonu olarak isimlendirilir.
y egrsinin {T, V', B} Frenet bilesenleri ile { 7, v, B} nokta-Frenet elemalar1 arasindaki
iligki
=7, v = cosalN + sinaB, f = —sinalN + cosaB (2.6)
esitlikleriyle verilir. Bu yaziligin tersi ise
T =1, N =cosav — sinafs, B = sinav + cosaf (2.7)
seklindedir (Yampolsky ve Opariy, 2019:1450).
Onerme 2.4.2. y egrsinin {7, V', B} Frenet elemanhlarina gore u(T) doniisiimii
u@) =t +a —uy)T + kosinaN + (k — kycosa)B (2.8)
seklinde verilebilir (Yampolsky ve Opariy, 2019:1450).
Ispat (7)) déniisiimii y egrsinin {T, V', B} Frenet vektorlerinin lineer birlesimi olarak
u(@) = (@), )T +{u(T), NN +{(u(T),B)B
seklinde yazilabilir.
VoT =T +u(T)XT, V4B =B+ u(T) X B, Vo N = N + u(T) x N denklemi ve
T =kov, U =—kot+ no8, B = —nyv denklemlerinden
Vol =T +u(T) X T = kov + u(T) XT = kN
elde edilir. Bu ifadenin her iki yam1 IV ile carpilirve T =T, v = cosalN' + sinaB,
B = —sinalV' + cosaB esitlikleri ele alinirsa

k = kocosa + (u(T) X T,N')
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olarak elde edilir. Bu esitlikte (u(T) X T, N) = (u(T),T X N') = (u(T),B) oldugu
diistintiliirse k = kgcosa + (u(T), B) buradan ise {(u(7),B) = k — kycosa dir.

VeV = N+ u(T) X N = —kT + »B ifadesinde ki V' degeri © = kqv,

V=—koT+ B, B=—-nov Ve T =1, N =cosav—sinaf, B = sinav + cosaf

esitlikleri yardimiyla hesaplanirsa
N = (=d+1y)B — kocosaT

elde edilir. V' + u(7) x V = —kT + »B ifadesinde V" nin degeri yerine yazilir ve elde edilen
esitligin her iki yani B ile carpilirsa

u=—da+u, +{(u(@)xXN,B)

olarak bulunur. Bu esitlikte (u(7") X N, B) = (u(T"), T') oldugu disiiniiliirse (u(7),T) = x +

a—x, olarak bulunur.

VsB = B+ u(T) x B = —xV ifadesinde ki B nin degeri © = kv, ¥ = —koT + 2,05,
B =-uyv ve T =1, N =cosav — sinaf, B = sinav + cosaf esitlikleri yardimiyla

hesaplanirsa
B = (d—xy) N — kocosaT

elde edilir. B + u(7) X B = —x» V" ifadesinde B degeri yerine yazilir ve elde edilen esitligin
her iki yan1 7 ile ¢arpilirsa

—kysina + (u(T) X B,T)=0

olarak bulunur. Bu esitlikte (u(7) X B, T) = (u(T),N') oldugu gbéz Oniine alinirsa

(u(T), V') = kysina olarak bulunur. Buda ispati tamamlar.

Burada y egrisinin grup-egriligi k; ve grup-burulmasi s

ke = u(@) x T, ng = [u(T) x B (2.9)
seklinde tanimlanir ise grup-egriligi ve grup-torsiyonu igin.

k% = (k — ko)? + 4kkysin? (%), nt = kolsin?a® + (i — ny + @)?

esitlikleri mevcuttur (Yampolsky ve Opariy, 2019:1451).
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2.5 Sol-Invaryant Metrik ile Lie gruplarinda Genellestirilmis Helisler

Tamim 2.5.1. G sol-invaryant metrik ile 3-boyutlu Lie grubu ve y egrisi G de Frenet elamanlari
{T, V", B} den olusan yay parametreli bir egri olmak iizere, y boyunca birim bir sol-invaryant
& olmak lizere eger < 7', > = sabit ise y egrisine ekseni ¢ olan birinci tip genellestirilmis

helis,

< INV,§& > = sabit ise y egrisine ekseni ¢ olan ikinci tip genellestirilmis helis, < B,§ > =
sabit ise y egrisine ekseni ¢ olan {igilincii tip genellestirilmis helis denir (Yampolsky ve Opariy,
2019:1451).

Teorem 2.5.1. Sol-invaryant metrik ileG dediizgiin bir y egrisinin birinci tip genellestirilmis

helis olmasi i¢in gerek ve yeter sart

2 = cotf, (ko #0) (2.10)

0

olmasidir. Burada € sabit bir agidir (Yampolsky ve Opariy, 2019:1451).

Onerme 2.5.1. Eger G bi-invaryant metrik ile 3-boyutlu Lie grubu ise yu; = u, = pz == p diir
ve boylece u(T) = uT dir. Sonug olarak @« = 0, ks = 0,k = ko, %5 = % — », bulunur. Bu

—xg
k

durumda (2.10) esitligi z = cot# esitligine donisiir. (Yampolsky ve Opariy, 2019:1451).

Bu 6nerme bize sol-invaryant metrik ile 3-boyutlu G Lie grubunda bir egrinin birinci
tip genellestirilmis helis olmasi i¢in saglamasi gereken sartin, bi-invaryant metrik ile G de

helisler icin elde edilen sartin bir genellestirilmesi oldugunu soyler.
Teorem 2.5.2. Sol-invaryant metrik ile G de diferansiyellenebilir y egrisinin ikinci tip
genellestirilmis helis olmasi i¢in gerek ve yeter kosul

3
kocosa(H?+1)2

H-kosina(H2+1) = tand, (2.11)

Ho—

burada H =
k

:‘a ve 6 sabit bir agidir (Yampolsky ve Opariy, 2019:1451).

oCO
Onerme 2.5.2 Eger G bi-invaryant metrik ile 3-boyutlu Lie grubu ise u; = p, = uz == p diir
ve boylece u(T) = uT dir. Sonug olarak &« = 0, k; = 0,k = kg, #; = 1 — %, bulunur. Bu

K(1+H2) /2

Y = cotf esitligine doniisiir

durumda (2.11) esitligi H = % olmak iizere oy =

(Yampolsky ve Opariy, 2019:1453).
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Bu 6nerme bize sol-invaryant metrik ile 3-boyutlu G Lie grubunda bir egrinin ikinci tip
genellestirilmis helis olmas1 igin saglamasi gereken sartin, bi-invaryant metrik G de slant

helisler i¢in elde edilen sartin bir genellestirilmesi oldugunu soyler.

Teorem 2.5.3. Sol-invaryant metrik ile G de diizgiin bir y egrisinin ti¢lincii tip genellestirilmis

helis olmasi i¢in gerek ve yeter kosul

.kosina(Q2+1)% = tand,
H—kgcosa(Q?+1)
Burada H = k“;% = —Hcota Ve 8 sabit bir agidir (Yampolsky ve Opariy, 2019:1454).
0
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3. SOL INVARYANT METRIK iLE 3-BOYUTLU LiE GRUPLARINDA BAZI
OZEL EGRILER

Bu bolimde sol-invaryant metrik ile 3-boyutlu G Lie gruplarinda involiit-evoliit,
Bertrand ve Mannheim egrileri tanimlandi. Ayrica bu egrilerin Frenet bilesenleri arasinda bir
takim iligkiler elde edildi. Elde edilen bu iliskiler yardimiyla bahsedilen egri ¢iftleri arasinda

bazi karakterizasyonlar elde edildi.
3.1 Sol invaryant Metrik ile 3-Boyutlu Lie Gruplarinda Involiit-Evoliit Egri Cifti

Tamm 3.1.1. Sol-invaryant metrik ile G de y: 1 € R —» G ve B:1 € R — G birim hizli egrileri

verilsin. y ve B egrilerinin yay parametreleri sirasiyla sve § olmak iizere y nin Frenet
bilesenleri {T', V', B, k,, #,, @} ve B nin Frenet bilesenleri {f]_", N, B, ko, %y, (7} olsun. y ve B

egrilerinin karsilik gelen noktalarinda teget vektorleri birbirine dik konumunda ise yani
<T,T>=0
ise 8 egrisine y egrisinin involiitli, y egrisine de B egrisinin evoliitii denir.

Teorem 3.1.1. y:I c R = G, sol-invaryant metrik ile 3-boyutlu G Lie grubunda Frenet
bilesenleri {T, N, B, ko, #,, a} olan s birim hizli bir egri ve B:1 € R - G egrisi de Frenet
bilesenleri {T', V', B, ko, 7y, @} olan § yay parametreli bir egri olsun. § , ¥ nin involiitii ise y ve
B egrilerinin Frenet vektorleri arasinda asagidaki iligkiler vardir:
i. T = cosalN + sinaB,

ii. N = cosaB — sinalV, (3.1)

iii. B=T.
Ispat y ve B egrileri sol-invaryant metrik ile G de yay parametreli egriler ve {y, 8} egri ikilisi

de Involiit-Evoliit egri ikilisi olsun. Bu durumda 8 egrisi

B(s) = v (s) + A()T(s) (3.2)

bi¢iminde ifade edilir. (3.2) denkleminin nokta tiirevi hesaplanirsa

B(s) = y(s) + A($)T(s) + A(s)T (s),

= T(s) + A(8)T(s) + A(s) (kocosalN + kysinaB),
B(s) = (1 - i(s)) T(s) + A(s)(kgcosaN' + kysinaB), (3.3)
esitligi elde edilir. (3.3) esitliginde her iki taraf T ile garpilirsa
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1+ A=0

yani A = —1 dir. Buradan ¢ € R olmak iizere A(s) = —s + c olarak bulunur. A nin bu degeri

(3.2) ifadesinde yerine yazilirsa

B(s) =y (8) + (=s+ )T (s) (3.4)
elde edilir. (3.4) esitliginin nokta tiirevi alinirsa

B(s) =T(s)—T(s)+ (=s + c)(kocosalN + k,sinaB),

B(s) = (=s+ c)(kocosaN + kysinaB)

elde edilir. Bu ifadenin normu alinirsa

6| = J(—s +¢)2(ko’cos?a + ky’sin2a) = |—s + clk,

elde edilir. Buradan,

F = 1:3(5) _ (=s+o)(kocosaN +kosinaB)
Bl |-s+clko

dir. —s + ¢ > 0 kabul edilirse
T = cosaN + sinaB
dir.

Dolayisiyla y ve f egrilerinin Frenet vektorlerinin konumu Sekil (3.1) deki gibi verilebilir.

o]

N

Sekil 3.1. {y, 8} Involiit-Evoliit Egri ikilisinin Frenet Vektér Alanlar

Sekil (3.1.) den V' = cosaB — sinaN ve B = T seklinde yazilabilecegi goriiliir.
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Teorem 3.1.2. y:I € R — G egrisi sol-invaryant metrikle tanimlanan G de birim hizli egrisi
ve B:I c R - G egrisi de y nin involiitii olsun. ¥ egrisinin birinci tip genellestirilmis helis

olabilmesi i¢in gerek ve yeter kosul f egrisinin tigilincii tip genellestirilmis helis olmasidir.

Ispat Sol-invaryant metrik ile G de y:I ¢ R = G egrisinin Frenet vektor alanlari {77, V', B} ve
B:I c R — G egrisi de Frenet vektor alanlar1 {T, N, B} olan iki egri ve {y, B} egri ikilisi
involiit-evoliit egri ¢ifti olsun. y egrisi boyunca & birim sol-invaryant vektor alani olmak iizere
< T,& > = sabit ise yani y egrisi birinci tip genellestirilmis helis ise Teorem (3.1.1) den y
egrisinin involiitii olan £ egrisi i¢in < B, & > = sabit dir. Bu da bize B egrisinin iigiincii tip

genellestirilmis helis oldugunu soyler.

Teorem 3.1.3. Sol-invaryant metrikle ¢ dey:Ic R— G ve f:I c R— G birim hizh

egrilerinin sirasiyla Frenet bilesenleri {T, V', B, k,, #,, a} ve {7_", N, B, ko, %o, (7} olsun. {y, B}

egri ikilisi involiit-evoliit egri cifti ise

L = ] = Jeot et

N _ . ko
1. a = —arcsin >

k02+ }‘f02
_ ko
ii. 7, = | —arcsin

k02+ J'f02
dir
Ispat Sol-invaryant metrikle G de y egrisinin involiitii olan 8 egrsinin teget vektdr alan1 igin

Teorem 3.1.1 de verilen T = cosalV' + sinaB esitliginin nokta tiirevi alinirsa
T = —dsinalV + dacosaB + cosa((—a + #,)B — kocosaT)
+sina((@ — #o) N — kosinaT),
T = —koT — ngsinaN + uycosaB

esitligi elde edilir. Bu esitlikte her iki tarafin normu alinirsa

Bo = [17]] = Jia? + 2

esitligi bulunur.

Teorem 3.1.1 de verilen B = T esitliginin nokta tiirevi alinirsa
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B = kocosaN + kysinaB

elde edilir. Bu esitlik V" ile i¢ carpilirsa

(@,J\_/”) = (kycosaN + kysinaB, cosaB — sinalNV'),
@ — 1y = —kycosasina + kycosasina,
a =i,

elde edilir.

B = kocosalV + kgsinaB esitliginin her iki tarafi T ile ¢arpilirsa
(§,T ) = (kocosaN + kysinaB ,cosaN + sinaB )
—kgsin@ = kycos?a + kysin’a,

—kosina =k,

elde edilir. Bu esitlikten sin@ :_RTO olarak bulunur. Burada k, = /koz + 1,2 oldugu

0

diisiiniiliirse

ko

,k02+ }{02

a = arcsin| —

dir. @ = 5, oldugundan

ko

k02+ }(02

%y =| —arcsin

dir.

23



3.2 Sol invaryant Metrik ile 3-Boyutlu Lie Gruplarinda Bertrand Egri Cifti

Tanmm 3.2.1.y:I c R—> G ve f:1 € R - G egrileri sol-invaryant metrik ile 3-boyutlu G Lie
grubunda iki egri olmak tiizere, bu egrilerin karsilik gelen noktalarinda asli normal vektor
alanlar1 lineer bagimli ise y egrisine Bertrand egrisi,  egrisine y egrisinin Bertrand egri ¢ifti
ve {y, f} ikilisine de Bertrand egri ¢ifti denir.

G de y:I c R - G egrisi s yay parametreli ve Frenet bilesenleri {7, V', B, k,, #,, a} olan bir

egri olsun. B:1 € R - G egrisi de y nin Bertrand egri ¢ifti olsun. Bu durumda Sekil 3.2. den
B egrisi B(s) = y (s) + A(s)NV'(s) seklinde yazilabilir. Burada A: 1 — R bir fonksiyondur.

B (s)
/—N
' NV (5)
E N(s)
T(s)
B(s)

Sekil 3.2. Sol-invaryant Metrik ile G Lie grubunda Bertrand egri ¢ifti {y, 5}

Teorem 3.2.1 Sol-invaryant metrik ile G de y:I c R—> G ve f:1 € R - G sirasiyla yay

parametreleri s ve §, Frenet bilesenleri {T,V,B, ko, #o,a} ve {T,N,B,ky, %y, &} olan
Bertrand egri ¢ifti olsun. y ve S egrilerinin karsilik gelen noktalar1 arasindaki uzaklik daima

sabittir. Yani
Vs € I icin d(y(s),ﬁ(s‘)) = A = sabit
dir.
Ispat: Tanim 3.2.1 yardimiyla 8 egrisi
B(s) =y (s) + A(s)N (s)
esitligi ile yazilabilir. Esitligin tiirevi alinirsa
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B(s) = y(s) + A(S)NV(s) + ASIN (s),

L(s) = (1 — A(8)kocosa)T(s) + A(S)N(s) + A(s)(—a + 1y)B — kocosaT)
esitligi elde edilir. Elde edilen esitlik V" ile ¢arpilirsa

0 = A(s)
elde edilir. Buradan A(s) = sabit. oldugu agiktir.

Teorem 3.2.2. Sol-invaryant metrik ile G de y:IcR - G Frenet bilesenleri
{T,V,B, ko, #y,a} olan s birim hizli bir egri ve S: IcR->G egrisi de Frenet bilesenleri
{7_", N, B, ko, %, &} olan § birim hizli bir egri olsun. Eger {y, f} Bertrand egri ikilisi ise Frenet

bilesenleri arasinda asagidaki iligkiler vardir:

— F 1

T =7 Vit+Fz 7

N =N,

— F 1

B= VitFz = JitF?
Burada F = ——SK0cos® g

A (—d+ %0) ’

Ispat: y ve 8 egrileri sol-invaryant metrik ile G de yay parametreli egriler ve {y, B} egri ikilisi

Bertrand egri ¢ifti olsun. Bu durumda Tanim 3.2.1 den § egrisi
B(s) = v () +A(S)N(s) (3.5)
bigiminde yazilabilir. A(s) = sabit oldugu diisiiniilerek (3.5) esitliginin tiirevini alinirsa
B(s) = 7(s) + AN (s) + A(HN (s),
=T(s)+ /1((—6'1 + xy,)B — kocosaT),
B(s) = (1 — Akgcosa)T + A(—a + x,)B (3.6)

elde edilir. (3.6) ifadesinin normu alinirsa,

||,B(s)|| = \/(1 — Akycosa)? + (A2(—a + #4)?)

B = [ o (GEET 1)
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dir. Burada F = G=2K0€0S® yonilirse
A(=a+ xg)

18| = A(—d + 2#)V1+ F2 seklinde yazilabilir. A(—ct + 3,) > 0 alalim.
Buradan

B'(s) _ F 1

T= 1B' (I~ Vi+F2 + Vi+F2

olarak bulunur. Sekil-3.2.den V' ile V' linner bagimli oldugundan

N=N (3.7)
dir. Buradan,

= = — F 1

B=TXN=mm8"7mm
elde edilir.

Teorem 3.2.3. y: I € R — G egrisi sol-invaryant metrikle G de birim hizli bir egri olmak tizere
f:I cR— G egrisi de y nin Bertrand ¢ifti olsun. y egrisinin II. tip genellestirilmis helis

olabilmesi igin gerek ve yeter kosul S nin IL. tip genellestirilmis helis olmasidir.

Ispat Sol-invaryant metrik ile G verilsin. y uzay egrisinin Frenet elamanlar1 {7, V', B} olsun.
y boyunca birim sol-invaryant vektor alani & olmak tizere y Il. tip genellestirilmis helis ise <
N, & > = sabit dir. G de f egrisi y egrisinin Bertrand ¢ifti ise Teorem 3.2.2’nin ispatindaki
(3.7) esitligi ve < IV, & > = sabit oldugu bir arada diisiiniiliirse < N,& > = sabit oldugu
elde edilir. Buda y egrisinin Bertrand ¢ifti § egrisinin II. tip genellestirilmis helis oldugunu

soyler.

Teorem 3.2.4. y:I c R — G egrisi sol-invaryant metrikle 3 boyutlu G Lie grubunda Frenet

bilesenleri {7, V', B, kg, *,, @} olan birim hizli bir Bertrand egrisi olsun. Bu duruda
Akgcosa + u(—a + #y) =1
esitligi saglanir. Burada u ve A sabitlerdir.

Ispat y egrisi egrisi sol-invaryant metrikle 3-boyutlu G Lie grubunda Bertrand egrisi olsun. y

egrisinin Bertrand ¢ifti olan f egrisi
B(s) = v () +A(S)N(s)
seklinde yazilabilir.

{N, N} lineer bagimli oldugundan @ , 7 ile T arasindaki a¢1 olmak iizere
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T = cosOT + sinfB

. . = F 1 g
seklinde yazilabilir. Teorem 3.2.2de T = W‘T t B oldugundan
050 = —
1+F?
mo = L
Sind = ——
dir.
cosO F V1+F2 1-Acosa
sinf  V1+FZ 1 = cotd =F = A(=a+ 3g)
__ 1-ckgcosa
cotd = FYarTen
buradan
cotOA(—a + x,) + Akycosa = 1
elde edilir. cotOA = u denilirse
Akgcosa + u(—a + »y) =1 (3.8)

elde edilir.

Sonug 3.2.1. Eger G bi-invaryant metrik ile 3-boyutlu Lie grubu ise « = 0, k; = 0,k = k,,
n; = 1 — n, dir. Bu esitlikler (3.8) esitliginde yazilirsa
Ak +uGe—ng) =1

esitligi elde edilir. Bu sonug bize sol-invaryant metrik ile 3-boyutlu G Lie grubunda Bertrand
egrileri i¢in elde ettigimiz sonucun daha once bi-invaryant metrik ile 3-boyultu G Lie grubunda

Bertrand egrileri i¢in elde edilen sonucun bir genellestirilmesi oldugunu gosterir.

3.3 Sol invaryant Metrik ile 3-Boyutlu Lie Gruplarinda Mannheim Egri Cifti

Tamm 3.3.1 G sol-invaryant metrik ile 3-boyutlu bir Lie grubu olsun. G de y ve f egrilerinin
karsilik gelen noktalarinda y nin asli normal vektor alani ile £ nin binormal vektor alani lineer
bagimli ise y ya Mannheim egrisi, S ya da y nin Mannheim cifti ve {y,} ikilisine de

Mannheim egri ¢ifti denir.

Sol-invaryant metrik G de y:I c R — G egrisi s yay parametreli ve Frenet bilesenleri

{T,V,B, kg, ny,a} olan bir egri ve Sekil-3.3.1 yardimiyla S:I1 c R — G egrisi f(s) =

27



¥ (s) + A(s)V'(s) seklinde yazilabilen ve Frenet bilesenleri {T, NV, B, ko, 7o, @} olan bir egri

olsun. Burada A sabit bir fonksiyon ve N vektor alani y egrisinin asli normal vektor alanidir

B(s)
14
T(s)
v NV (s)
==2_3(5)
T(s
p
N (s)

Sekil 3.3. Sol-invaryant Metrik ile G de Mannheim egri ¢ifti {y, 8}

Teorem 3.3.1 3-boyutlu G Lie grubunda y:Ic R—> G ve B:I € R - G sirasiyla yay
parametreleri s ve § olan Bertrand egri ¢ifti olsun. y ve S egrilerine karsilik gelen noktalar

arasindaki uzaklik daima sabittir. Yani
Vs € [ igind(y(s), B(5)) = sabit
dir.
Ispat: Tanim 3.3.1 yardimiyla 8 egrisi
B(s) = v () +A(S)N(s)
esitligi ile yazilabilir. Esitligin her iki yaninin tlirevi alinirsa
B(s) = 1(s) + AN (s) + A(s)N (s)
=T(8) + A(S)N(s) + A(s)(—a + 3#,)B — kycosaT)
elde edilir. Elde edilen esitlik V' ile garpilirsa
0 = A(s)
elde edilir. Buradan A(s) = sabit. oldugu agiktir.

Teorem 3.3.2. y ve B egrileri sol-invaryant metrikle G de yay parametreli iki egri ve y ve 8 nin
Frenet bilesenleri sirastyla {7, V', B, ko, 1o, a} ve {T,N,B, kg, #,, @} olsun. Eger {y,}
Mannheim egri ¢ifti ise Frenet bilesenleri arasinda asagidaki iliski

T=——T+-—72
1+F2 14F?
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F 1

N=  Vi+F2 V1+F2

o]

=N

seklinde edilir. Burada F = (H"ﬂ) dir.

Ispaty ve B egrileri sol-invaryant metrik de G de yay parametreli iki egri ve {y, £} egri ikilisi
Mannheim egri ¢ifti olsun. Bu durumda S egrisi
B(s) = vy (s)+AN(s) (3.9)

seklinde yazilir. (3.9) esitliginin tiirevi alinirsa

B(s) = (1 — Akgcosa)T + A(—a + »,)B

esitligi elde edilir. Buradan

||,6"(s)|| = \/(1 — Akycosa)? + A2 (—a + x,)?

= \//12(—6‘1 + )2 Gtkocosa)” | g

2,2(—6.{"‘ Ko)z
dir.

(1—/1kocosa
A(—d+ }fo)

)=F olmak iizere [|f(s)|| = A(=d+ #o).VI+FZ  seklinde yazilabilir.

A(—a + y) > 0 alalim. Buradan

TF = B(s) _ 1-Akgcosa n A(—a+ xp)
B — A(=a+ xo)Vi+F2 A=t 7o)Vt F2
— F 1
T =5 V1+F2 (3.10)

dir. ¥ ve B Mannheim egri ¢ifti oldugundan {V', B} lineer bagimlidir. Yani B = V" alinabilir.

Buradan
N=BXT
F 1

=N x (=T + 7 B)
=L _(WNXT)+ —— (N xB
= Tiare 7 C )
=L _B+——T

1+F2 1+F2

olarak bulunur.
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Teorem 3.3.3 y:1 c R — G egrisi sol-invaryant metrikle G de yay parametreli bir egri ve
B:I c R — G egrisi de y egrisinin Mannheim cifti olsun. y egrisinin II. tip genellestirilmis

helis olabilmesi i¢in gerek ve yeter kosul £ nin III. tip genellestirilmis helis olmasidir.

Ispat Sol-invaryant metrik ile G de y egrisinin Frenet elamanlar1 {7°, V', B} olsun. ¥ boyunca
birim sol-invaryant vektor alani & olmak tizere y 1L tip genellestirilmis helis ise < NV, & > =
sabit dir. G de B egrisi y egrisinin Mannheim ¢ifti ise Teorem 3.3.2 de ifade edile B =
esitligi ve < IV, & > = sabit oldugu bir arada diisiiniiliirse < B, > = sabit oldugu elde
edilir. Buda y egrisinin Mannheim ¢ifti § egrisinin III. tip genellestirilmis helis oldugunu

sOyler.

Teorem 3.3.4.y:1 c R - G, Frenet bilesenleri {T, NV, B, k,, #,, a} olan s yay parametreli bir
egri ve f:1 € R —> G, Frenet bilesenleri {T, V', B, ko, 7,, @} olan § yay parametreli bir egri
olsun. Eger {y, } ikilisi bir Mannheim egri ¢ifti ise

Fkocosa + (—a + )
A(=a+ xy)(1+ F?)

kysin &=
. __ (1-Akgcosa .
dir. Burada F = (—)l(—éH J{0)) dir.

Ispat {y, B} ikili bir Mannheim egrisi cifti olsun. O halde A bir sabit olmak iizere;

B(5) =y(s) + AN (s)

seklinde yazilabilir. Bu ifadede her iki tarafin s parametresine gore tiirevi alinirsa
Tg = (1 — Akgcosa)T + A(—d + x,)B (3.11)

1-Akgcosa
A(-(’X‘l' J{O)

denklemi elde edilir. A(—d + ,) > 0 oldugu kabul edilirse F = ( ) olmak iizere

(3.11) esitliginin normu alindiginda

B _ =i+ wNIFF? (3.12)

ds

olarak elde edilir. (3.11) ve (3.12) denklemleri bir arada diistiniiliirse

T(5) = == T(s) + 7=="B(s) (3.13)
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olarak elde edilir. (3.13) denkleminde her iki tarafin s parametresine gore tiirevi alinirsa

FINITFZ— Fa2FF! 2FF!
dT ds 2V1+72 aV1r72
—— = T+ kocosalN + kysinaB) + ———=—B
ds ds 1+F2 v ( 0 0 ) 1+F2

1 . .
+ = ((—a + #o)N — kysinaT

T,

_7 "(1+F2)-F'F?
(1+72) /2

(1+F2)%/2 + ~/

(kocosa]\f + kysinaB) —

1 . .
+ = ((& — #0)N — kosinaT)
= — = 7 . — =\ds§ F! kosina Fkocosa+(&— )
(kOCOS XN+ kosin & B)E - ((1+g:'2)3/2 - \/01+:F2> T+ ( ; V1+F2 ; )N

Fkosina  FF'
T ( V1+F?2 (1+j:2)3/2) B

dir. V" ile B lineer bagiml1 oldugundan, her iki taraf V" ile ¢arpilirsa

(Eosin &) g _ Fkocosa+(a— ) (3.14)

V1+F?
esitligi elde edilir. (3.12) ve (3.14) esitlikleri bir arada diisiiniiliirse

Fkocosa+(—a+ xg)
A(—a+ 3#0)(1+F3?)

kosin X=

dir. Buda ispati tamamlar.
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