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ÖZET 

ÜÇ BOYUTLU KOMPAKT LİE GRUPLARINDA BAZI GENELLEŞTİRİLMİŞ 

EĞRİLER 

Bu çalışma üç bölümden oluşmaktadır.  

Birinci Bölümde giriş kısmına yer verilmiştir.  

İkinci kısımda 3-boyutlu Öklid uzayında eğriler ile ilgili temel tanım ve teoremler ile bazı özel 

eğriler için tanımlar ve temel teoremler verilmiştir. Daha sonra bi-invaryant metrik ile 3-boyutlu 

Lie gruplarında literatürde yer alan çalışmalarda tanımlanan bazı özel eğrilerin tanımları ve bu 

eğrilerle ilgili temel teoremler verilmiştir. Son olarak sol-invaryant metrik ile 3-boyutlu Lie 

gruplarında genelleştirilmiş helislere ilişkin tanım ve teoremler verilmiştir. 

Üçüncü bölüm bu çalışmanın orijinal kısmını oluşturmaktadır. Bu çalışmasında sol-invaryant 

metrik ile 3-boyutlu Lie gruplarında İnvolüt-Evolüt eğri çifti, Bertand ve Mannheim eğrilerini 

tanımlanmış ve öncelikle bu eğrilerin Frenet bileşenleri arasındaki ilişkiler araştırılmıştır. Daha 

sonra bu ilişkiler yardımıyla bu eğriler ile ilgili bazı karakterizasyonlar verilmiştir. 

 

Anahtar Kelimeler: 3-Boyutlu Öklid Uzayı, Bi-İnvaryant Metric, Sol-İnvaryant Metrik, Lie 

Grupları 
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ABSTRACT 

SOME GENERALIZED CURVES IN THREE DIMENSIONAL COMPACT LIE 

GROUPS 

This study consists of three parts.  

In the first part, an introduction is given. 

In the second part, basic definitions and theorems about curves in 3-dimensional Euclidean 

space and definitions and basic theorems for some special curves are given. Then, definitions 

of some special curves defined in the literature in 3-dimensional Lie groups with bi-invariant 

metric and basic theorems about these curves are given. Finally, definitions and theorems about 

generalized helices in 3-dimensional Lie groups with left-invariant metric are given. 

The third chapter constitutes the original part of this work. In this work, the Involute-Evolute 

curves, Bertand and Mannheim curves in 3-dimensional Lie groups with left-invariant metric 

are defined and firstly the relations between Frenet elements of these curves are investigated. 

Then, with the help of these relations, some characterizations of these curves are given. 

 

Keywords: 3-Dimensional Eucledean Space, Bi-Invariant Metric, Left-Invariant Metric, Lie 

Groups 
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KISALTMALAR VE SİMGELER LİSTESİ 

Simgeler 

ℝ𝟑                                            : 3-Boyutlu Öklid Uzayı 

𝑉 : Vektör Uzayı 

〈 , 〉 : İç Çarpım Fonksiyonu 

∧ : Vektörel Çarpım Fonksiyonu 
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𝜘𝐺 : Eğrinin Grup Torsiyonu 

𝐺 : 3-Boyutlu Lie Grubu 

𝔤 : Lie Grubunun Lie Cebiri 
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1. GİRİŞ 

Diferansiyel geometride, eğriler teorisi en çok çalışılan konulardan biridir. Eğriler 

teorisi ile ilgilenen araştırmacılar 3-boyutlu Öklid Uzayında genel helisler, slant helisler, 

Bertrand çifti, Mannheim çifti eğrileri gibi özel eğrileri tanımlamış ve bu eğrilere ilişkin pek 

çok karakterizasyonlar elde etmişlerdir. Bahsettiğimiz bu eğrileri tanımlamada ve karakterizede 

etmede eğrilerinin Frenet bileşenleri olarak bilenen {𝒯,𝒩,ℬ, 𝑘, 𝜘} bileşenleri önemli ve etkin 

bir role sahiptir. 

Bu eğrilerden genel helisler eğrinin her noktasındaki teğet vektörü eğer sabit doğrultulu 

bir doğru ile sabit açı yapıyorsa o eğriye genel helis denir şeklinde tanımlanmıştır. Daha sonra 

genel helisler ile ilgili 3-boyutlu Öklid Uzayında önemli ve iyi bilinen bir karakterizasyon olan, 

eğrinin üzerindeki her noktada tanımlı olan eğrilik fonksiyonları 𝑘 ve 𝜘 nun oranlarının sabit 

olması koşuludur. Bu koşul ilk defa Lancret tarafından 1802 yılında ortaya konmuş ve Saint 

Venant tarafından 1845 yılında ispatlanmıştır. Slant helisler ilk kez Izumiya tarafından 2004 

yılında bir eğrinin slant helis olabilmesi için her noktasındaki normal vektörünün sabit 

doğrultulu bir doğruyla sabit açı yapması gerekir şeklinde tanımlanmıştır. Aynı zamanda slant 

helisler ile ilgili önemli bir karakterizasyon vermiştir. 1850 yılında Bertrand, karşılık gelen 

noktalarında normal vektörleri lineer bağımlı olan eğrileri Bertrand eğri çifti olarak 

tanımlamıştır. 2007 yılında Wang ve Liu ise karşılık gelen noktalarında normal vektörü ile bi-

normal vektörü lineer bağımlı olan eğrileri Mannheim eğri çifti olarak tanımlamıştır. 

Son yıllarda bu eğriler bi-invaryant metrik ile 𝐺 de çalışılmaya başlamıştır. 2009 yılında 

Çiftçi, bi-invaryant metrik ile 𝐺 de genel helisleri tanımlamış ve elde ettiği karakterizasyonun 

3-boyutlu uzaylar için bir genelleştirme olduğunu göstermiş. Daha sonra 2013 yılında Okuyucu 

ve diğerleri bi-invaryant metrik ile 𝐺 de slant helisleri tanımlamış ve bu eğriler ile 

karakterizyonlar elde etmişler ayrıca bu karakterizasyonların 3-boyutlu uzaylarda slant helisler 

için elde edilen karakterizsasyonların bir genelleştirilmesi olduğunu göstermişlerdir. Daha 

sonra 2014 yılında yayınladıkları çalışmalarında Gök ve diğerler bi-invaryant metrik ile  

𝐺 de Mannheim eğri çiftlerini ve 2016 yılında Okuyucu ve diğerleri yayınladıkları 

çalışmalarında Bertrand eğri çiftlerini bi-invaryant metrik ile 𝐺 de tanımlamışlar ve bu eğriler 

ile ilgili çeşitli karakterizasyonlar elde etmişlerdir. 2019 yılında ise Yampolsky A. ve Opariy 

A. Sol-invaryant metrik ile 𝐺 de helis eğrilerini çalışmış ve çeşitli karakterizasyonlar elde 

etmişlerdir. Elde ettikleri bu şartların daha önce genel helisler ile slant helisler için bi-invaryant 

metrikle 𝐺 de elde edilen şartlardan daha genel şartlar olduklarını göstermişlerdir. 
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Bu tez çalışmasında. Sol-invaryant metrik ile 𝐺 de involüt-evolüt, Mannheim ve 

Bertrand eğri çiftlerinin tanımları verildi ve bu eğri çiftlerinin Frenet bileşenleri arasında bazı 

ilişkiler elde edildi. Daha sonra bu ilişkiler yardımıyla bu eğri çiftleri ile ilgili bir takım 

karakterizasyonlar verildi. 
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2. TEMEL KAVRAMLAR 

2.1 ℝ𝟑, 3-Boyutlu Öklid Uzayında Eğriler Teorisi 

Bu bölümde ℝ3 uzayındaki eğriler ile ilgili temel kavram ve teoremler verilecektir. 

Tanım 2.1.1. 𝐼 ⊂ ℝ açık bir alt aralık olmak üzere 𝛾 ∶ 𝐼 → ℝ3 şeklinde tanımlanan düzgün  bir 

𝛾 dönüşümüne, ℝ3 uzayında bir diferansiyellenebilir eğri denir. ∀𝑡 ∈ 𝐼 değerine karşılık gelen  

𝛾(𝑡) = (𝛾1(𝑡), 𝛾2(𝑡), 𝛾3(𝑡))  değeri, ℝ3 ün bir noktasına karşılık gelir. Buradaki t değişkenine 

𝛾 eğrisinin parametresi denir (O’ Neill,1966:11). 

Tanım 2.1.2.  𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 dönüşümü  ℝ3 uzayında bir eğri olsun ve ∀𝑡 ∈ 𝐼 değeri için   

𝛾′(𝑡) = (𝛾1
′(𝑡), 𝛾2

′(𝑡), 𝛾3
′(𝑡)) vektörüne 𝛾 nın 𝛾(𝑡) noktasındaki hız vektörü denir (O’ 

Neill,1966:16). 

Tanım 2.1.3. ℝ3 uzayında 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 eğrisi verilsin. 𝛾 eğrisinin her noktasındaki hız 

vektörü birim ise yani ∀𝑠 ∈ 𝐼  için ‖𝛾′(𝑠)‖ = 1 ise 𝛾 eğrisine yay parametreli  eğri denir ve  

𝑠 ∈ 𝐼 parametresine de 𝛾 eğrisinin yay parametresi denir (Yüce,2020:178). 

Tanım 2.1.4. 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 , ℝ3 uzayında bir diferansiyellenebilir eğri olsun ve ∀𝑡 ∈ 𝐼 

aralığı için ‖𝛾′(𝑡)‖ ≠ 0 oluyorsa 𝛾 ya regüler eğri denir (Yüce,2020:178).   

Tanım 2.1.5. 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 , ℝ3 uzayında yay parametreli  bir eğri olmak üzere, 

𝒯(𝑠) = 𝛾 ′(𝑠),             

𝒩(𝑠) =
 𝛾 ′′(𝑠)      

‖𝛾 ′′(𝑠)‖
= 

𝒯′(𝑠)

‖𝒯′(𝑠)‖
 ,                        

ℬ(𝑠) = 𝒯(𝑠) ∧ 𝒩(𝑠)  

dir. Verilen denklemlerde 𝒯(𝑠) vektörüne 𝛾 eğrisinin 𝛾(𝑠) noktasındaki birim teğet vektörü, 

𝒩(𝑠) vektörüne 𝛾 nın 𝛾(𝑠) noktasındaki asli normal vektörü ve ℬ(𝑠) vektörüne 𝛾 eğrisinin 

𝛾(𝑠) noktasındaki binormal vektörü denir. 𝒯,𝒩 ve ℬ vektör alanlarına 𝛾 eğrisinin Frenet 

vektör alanları denir (O’ Neill,1966:58). 

Tanım 2.1.6. 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 birim hızlı eğri olsun. 𝒯, 𝒩 ve ℬ, 𝛾(𝑠) eğrisinin Frenet vektör 

alanları olacak şekilde, 

𝑘: 𝐼 → ℝ,    𝑘(𝑠) =  ‖𝒯′‖   

şeklinde tanımlanan fonksiyona, 𝛾 eğrisinin eğrilik fonksiyonu denir. 𝑘(𝑠) reel sayısına 𝛾 

eğrisinin  𝛾(𝑠) noktasındaki  eğriliği denir (Sabuncuoğlu, 2014:74). 
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Tanım 2.1.7. 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 birim hızlı eğri olsun. 𝛾 eğrisinin Frenet vektör alanları 𝒯, 𝒩 ve 

ℬ olmak üzere,  

𝜘: 𝐼 → ℝ,    𝜘(𝑠) =  −〈ℬ′(𝑠),𝒩(𝑠) 〉  

fonksiyonuna 𝛾 eğrisinin burulma fonksiyonu denir. 𝜘(𝑠) reel sayısına 𝛾 eğrisinin 𝛾(𝑠) 

noktasındaki burulması veya torsiyonu denir (Sabuncuoğlu, 2014:76). 

Teorem 2.1.1.  𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 eğrisi 𝑠 yay parametreli bir eğri ve 𝛾 nın Frenet bileşenleri 

{𝒯,𝒩,ℬ, 𝑘, 𝜘} olmak üzere 

𝑘(𝑠) = ‖𝛾 ′′(𝑠)‖, 

𝜘(𝑠) =
〈𝛾 ′(𝑠),  𝛾 ′′(𝑠)  ×  𝛾 ′′′(𝑠) 〉

‖𝛾 ′′(𝑠)‖2
 

şeklinde ifade edilir (O’ Neill,1966:59). 

Teorem 2.1.2. 𝛾, ℝ3 uzayında yay parametreli bir eğri ve 𝛾 nın Frenet bileşenleri 

{𝒯,𝒩,ℬ, 𝑘, 𝜘} olsun.  Frenet vektörlerinin türevleri  

𝒯′(𝑠) = 𝑘(𝑠)𝒩(𝑠)  

𝒩′(𝑠) = −𝑘(𝑠)𝒯(𝑠) + 𝜘(𝑠)ℬ(s)                              

ℬ′(𝑠) = −𝜘(𝑠) 𝒩(𝑠)  

şeklindedir (O’ Neill,1966:59). 

Tanım 2.1.8. ℝ3 uzayında , 𝛾  eğrisi Frenet vektör alanları 𝒯,𝒩,ℬ olan yay parametreli bir 

eğri olsun. Bu durumda 

 𝑆𝑝{𝒯(𝑠),𝒩(𝑠)} düzlemine, 𝛾 nın 𝛾(𝑠) noktasındaki oskülatör (normal) düzlemi denir. 

 𝑆𝑝{𝒯(𝑠), ℬ(𝑠)} düzlemine, 𝛾 nın 𝛾(𝑠) noktasındaki rektifiyan düzlemi denir. 

 𝑆𝑝{𝑁(𝑠), ℬ(𝑠)} düzlemine, 𝛾 eğrisinin 𝛾(𝑠) noktasındaki normal düzlemi denir 

(Sabuncuoğlu, 2014:80). 

Teorem 2.1.3 𝛾, 3-boyutlu Öklid uzayında birim hızlı bir eğri ve 𝛾 eğrisinin eğriliği 𝑘 = 0 

olması durumunda 𝛾 eğrisine bir doğrudur denir. Aksine 𝛾 eğrisi bir doğru olarak alınırsa 𝛾 

eğrisinin eğriliği 𝑘 = 0 dır (O’ Neill,1966:60). 

Teorem 2.1.4.  𝛾, 3-boyutlu Öklid uzayında birim hızlı bir eğri ve 𝛾 eğrisinin eğriliği 𝑘 > 0 

alınırsa 𝛾 eğrisinin düzlemsel bir eğri olabilmesi için gerek ve yeter koşul  𝛾 eğrisinin burulması 

𝜘 = 0 olmasıdır (O’ Neill,1966:60). 
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2.2. ℝ𝟑  3-Boyutlu Öklid Uzayında Bazı Özel Eğriler 

Bu kısımda ℝ3 uzayındaki bazı özel eğriler ile ilgili temel tanımlar ve kavramlar ele 

alınmıştır.  

Tanım 2.2.1. ℝ3 uzayında 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 birim hızlı eğrisi verilsin. 𝛾 eğrisinin teğet vektör 

alanı 𝒯 olmak üzere 𝒯 vektör alanı, sabit bir 𝑣 vektörü ile sabit açı yapıyorsa, yani 

< 𝒯, 𝑣 > = 𝑐𝑜𝑠𝜑,      𝜑 = 𝑠𝑎𝑏𝑖𝑡            

koşullarını sağlayan 𝑣  vektörü varsa 𝛾 eğrisine helis denir (Izumiya ve Takeuchi, 2004: 158). 

Teorem 2.2.1. ℝ3 uzayında 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 birim hızlı eğrisi verilsin. 𝑘 ve 𝜘 sırasıyla 𝛾 

eğrisinin eğriliği ve burulması olsun. 𝑘 ≠ 0 seçilirse  𝛾: 𝐼 → ℝ3 eğrisinin genel helis olması 

için gerek ve yeter koşul 

𝜘

𝑘
= 𝑐 = 𝑠𝑎𝑏𝑖𝑡  

olmasıdır (Izumiya ve Takeuchi, 2004: 158). 

Tanım 2.2.2. ℝ3 uzayında 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 birim hızlı eğrisi verilsin. 𝒩, 𝛾 eğrisinin birim asli 

normal vektör alanı ve 𝑣 de herhangi bir birim vektörü olsun. Eğer 𝒩 asli normal vektör alanı 

ile 𝑣  birim vektörü ile sabit bir açı yapıyorsa bu eğriye slant helis denir yani; 

< 𝑁⃗⃗ , 𝑣 > = 𝑐𝑜𝑠𝜑,               𝜑 = 𝑠𝑎𝑏𝑖𝑡  

dir. (Lancret 1802:418). 

Tanım 2.2.3. ℝ3 uzayında 𝑎 merkezli ve 𝑟 yarıçaplı bir küre 

𝑆2 = {𝑋 ∈ ℝ3 |〈𝑋 − 𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑋 − 𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗〉 = 𝑟2}  

şeklinde ifade edilir. 𝑋 = (𝑥1, 𝑥2, 𝑥3) ve 𝑎 =  (𝑎1, 𝑎2, 𝑎3) olmak üzere 

 (𝑥1 − 𝑎1)
2 + (𝑥2 − 𝑎2)

2 + (𝑥3 − 𝑎3)
2 = 𝑟2 

dir. r = 1 için 𝑆2 birim küredir. (Yüce, 2020:178). 

Tanım 2.2.4. ℝ3 uzayında verilen bir 𝛾 eğrisi, 𝑆2 üzerinde yatıyorsa 𝛾 eğrisine küresel eğri 

denir (Yüce,2020:178). 

Tanım 2.2.5. ℝ3 uzayında 𝛾, 𝑠 birim hızlı eğrisi ve 𝛾 eğrisinin bir 𝑃 anındaki birim teğet vektör 

alanı 𝒯 olmak üzere, 𝑃𝑄⃗⃗⃗⃗  ⃗ = 𝒯 olacak şekilde 𝑄 ∈ 𝑆2 vardır. Burada P anında 𝛾 eğrisini çizerken  

𝑄 anındaki birim küre yüzeyinde oluşturduğu eğriye 𝛾 nın küresel veya teğetler göstergesi denir 

(Hacısalihoğlu, 1998:259). 
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Şekil 2.1. 𝛾 Eğrisi ve Teğetler Göstergesi 

Tanım 2.2.6. ℝ3 uzayında 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 eğrisi verilsin.  𝛾 eğrisinin asli normal vektör alanı 

𝒩 olsun. 𝛾 eğrisi çizilirken 𝒩 ye karşılık gelen vektörlerin uç noktalarının birim küre yüzeyi 

üzerinde meydana getirdiği eğriye 𝛾 eğrisinin asli normaller göstergesi denir (Hacısalihoğlu, 

1998:262). 

Tanım 2.2.7. ℝ3 uzayında 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 eğrisi verilsin. 𝛾 eğrisinin binormal vektör alanı ℬ 

olsun. 𝛾 eğrisi çizilirken ℬ ye karşılık gelen vektörlerin uç noktaları ile  birim küre yüzeyinde 

oluşan eğriye 𝛾 nın binormaller göstergesi denir (Hacısalihoğlu, 1998:262). 

Teorem 2.2.2. ℝ3 uzayında 𝛾 ∶ 𝐼 ⊂ ℝ → ℝ3 birim hızlı eğrisi verilsin. 𝛾 nın eğriliği 𝑘 ≠ 0 

seçilirse 𝛾 nın slant helis olabilmesi için 𝛾 nın asli normaller göstergesinin küresel tasvirinin 

eğriliği olan   

𝜎(𝑠) = (
𝑘2

(𝑘2+𝜘2)
3

2⁄
(
𝜘

𝑘
)
′
) (𝑠)  

sabit olmalıdır (Hacısalihoğlu, 1998:262). 

Teorem 2.2.3. ℝ3 uzayında 𝛾 eğrisinin slant helis olması için gerek ve yeter koşul teğetler 

göstergesinin genel helis olmasıdır (Kula vd., 2005:602). 

Teorem 2.2.3. ℝ3 uzayında 𝛾 eğrisinin slant helis olabilmesi için gerek ve yeter şart normaller 

göstergesinin çember olmasıdır (Kula vd., 2005:602). 

Teorem 2.2.4. ℝ3 uzayında 𝜏 ≠ 0 seçilsin. 𝛾 eğrisine slant helis denilebilmesi için gerek ve 

yeter koşul  binormaller göstergesinin genel helis olmasıdır (Kula vd., 2005:602). 

Tanım 2.2.8. Birim hızlı bir  𝛾: 𝐼 ⊂ ℝ → ℝ3 eğrisi s yay parametresi ile 𝛽: 𝐼 ̅ ⊂ ℝ → ℝ3  eğrisi 

𝑠̅ yay parametresi ile verilsin. 𝛾 ve 𝛽 eğrilerinin Frenet bileşenleri sırasıyla {𝒯,𝒩, ℬ, 𝑘, 𝜘} ve 

{𝒯̅, 𝒩̅, ℬ̅, 𝑘̅, 𝜘̅} olmak üzere  < 𝒯(𝑠), 𝒯̅(𝑠) > = 0 ve 𝛾 eğrisinin 𝛾(𝑠) noktasındaki teğeti 𝛽(𝑠) 
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noktasından geçiyorsa 𝛽 eğrisine 𝛾 eğrisinin bir involütü, 𝛽(𝑠) noktasındaki teğet doğrusu 𝛾(𝑠) 

noktasından geçiyorsa 𝛽 eğrisine 𝛾 eğrisinin evolütü denir. (Sabuncuoğlu, 2014:86). 

Tanım 2.2.9. ℝ3 uzayında 𝛾  ve 𝛽  uzay eğrilerinin sırasıyla Frenet bileşenleri  {𝒯,𝒩,ℬ, 𝑘, 𝜘} 

ve {𝒯̅, 𝒩̅, ℬ̅, 𝑘̅, 𝜘̅} ile verilsin. Bu eğrilerinin karşılıklı noktalarında 𝛾 eğrisinin asli normal 

vektör alanı ile 𝛽 eğrisinin asli normal vektör alanı lineer bağımlı ise  𝛾 eğrisine Bertrand eğrisi, 

𝛽 eğrisine 𝛾eğrisinin Bertrand eğri çifti ve { 𝛾, 𝛽} eğri çiftine de Bertrand eğri çifti denir denir 

(Wang, ve Liu 2007:123). 

Teorem 2.2.5.  { 𝛾, 𝛽} eğri ikilisi Bertrand eğri çifti, 𝑑 uzaklık fonksiyonu ve 𝜆 sabit bir sayı 

olmak üzere 𝛾 ve 𝛽 eğrilerinin karşılık gelen noktaları arasındaki uzaklık sabittir. Yani  

 𝑑( 𝛾, 𝛽) =  𝜆  

dır (Hacısalihoğlu, 1998:70). 

Teorem 2.2.6. ℝ3 uzayında 𝛾 eğrisinin eğriliği ve ikinci eğriliği sırasıyla 𝜅 ve 𝜏 olsun. 𝛾 

eğrisinin Bertrand eğrisi olabilmesi için gerek ve yeter şart 

∃𝜆, 𝜇 ∈ ℝ için 𝜆𝑘 + 𝜇𝜘 = 1 

olmasıdır (Hacisalihoğlu , 1998:70). 

Tanım 2.2.10 ℝ3 uzayında 𝛾  ve 𝛽 eğrilerinin Frenet bileşenleri sırasıyla  {𝒯,𝒩, ℬ, 𝑘, 𝜘} ve 

{𝒯̅, 𝒩̅, ℬ̅, 𝑘̅, 𝜘̅} şeklinde verilsin. Bu eğrilerinin karşılıklı noktalarında, 𝛾 eğrisinin asli normal 

vektör alanı ile 𝛽 eğrisinin binormal vektör alanı lineer bağımlı ise  𝛾 eğrisine Mannheim eğrisi 

𝛽 eğrisine 𝛾 eğrisinin Mannheim çifti ve { 𝛾, 𝛽} ikilisine de Mannheim eğri çifti denir (Wang, 

ve Liu 2007:123). 

Teorem 2.2.7. { 𝛾, 𝛽} Mannheim eğri çifti, 𝑑 uzaklık fonksiyonu ve 𝜆 sabit bir sayı olmak üzere 

𝛾 ve 𝛽 eğrilerinin karşılık gelen noktaları arasındaki uzaklık sabittir. Yani  

𝑑( 𝛾, 𝛽) =  𝜆  

dır (Orbay ve Kasap, 2009:262). 

Teorem 2.2.8. ℝ3 uzayında 𝛾 eğrisinin eğriliği ve ikinci eğriliği sırasıyla 𝑘 ve 𝜘 olsun. 𝛾 nın 

Bertrand eğrisi olabilmesi için gerek ve yeter koşul 

𝑘 = 𝜆(𝑘2 + 𝜘2)  

eşitliğinin sağlanmasıdır (Orbay ve Kasap, 2009:263). 

 



8 

 

2.3 Bi-invaryant Metrik ile 3-Boyutlu Lie Gruplarında Bazı Özel Eğriler 

Bu bölümde literatürde yer alan bi-invaryant metrik ile 𝐺 de genel helis, slant helis, 

Bertrand ve Mannheim eğrileri tanıtılacak ve bu eğrilerle ilgili bazı teoremler tanıtılacaktır. 

𝐺 üzerinde tanımlı 〈 , 〉 bi-invaryant metrik tanımlı bir Lie grubu olmak üzere 𝔤, 𝐺 nin 

Lie cebiri ve   𝐷 konneksiyonu 𝐺 nin Levi-Civita konneksiyonu olsun. 𝑒, 𝐺 nin  birim elemanı 

olmak üzere 𝑇𝑒𝐺 ile 𝔤 izimorftur. 

𝑋, 𝑌, 𝑍 ∈ 𝔤 ve 〈 , 〉 bi-invaryant metrik olmak üzere  

〈𝑋, [𝑌, 𝑍]〉 =  〈[𝑋, 𝑌], 𝑍〉  

ve  

𝐷𝑋𝑌 = 
1

2
[𝑋, 𝑌]  

dir. 

{𝑋1, 𝑋2, … , 𝑋𝑛} kümesi 𝔤 nin ortanormal bir bazı  ve 𝛾: 𝐼 ⊂ ℝ → 𝐺  yay parametreli bir 

eğri ve eğri boyunca iki vektör alanı W ve Z olsun. 𝑤𝑖: 𝐼 → ℝ ve  𝑧𝑖: 𝐼 → ℝ fonksiyonları düzgün 

fonksiyonlar olmak üzere 𝑊 = ∑ 𝑤𝑖𝑋𝑖
𝑛
𝑖=1  ve 𝑍 = ∑ 𝑧𝑖𝑋𝑖

𝑛
𝑖=1   şeklinde yazılabilir. W ve Z vektör 

alanlarının Lie çarpımı  

[𝑊, 𝑍] =  ∑𝑤𝑖𝑧𝑖 [𝑋𝑖, 𝑋𝑗]  

olacak şekilde 𝛾 boyunca bir W vektör alanının kovaryant türevi 𝐷𝛾′
 𝑊 

𝐷𝛾′
 𝑊 = 𝑊̇ +

1

2
[𝑇,𝑊]   

şeklindedir. Burada 𝛾′ = 𝒯 ve  𝑊̇ =  ∑  𝑤̇𝑋𝑖 = 𝑛
𝑖=1  ∑

𝑑𝑤𝑖

𝑑𝑡
𝑋𝑖

𝑛
𝑖=1  dir. Eğer W, sol-invaryant 

vektör alanının 𝛾 eğrisine sınırlandırılışı ise, 𝑊̇ = 0 dır (Çiftçi, 2009:1599). 

Tanım 2.3.1. 𝐺 de  𝛾: 𝐼 ⊂ ℝ → 𝐺  yay parametreli bir eğri olsun. 𝛾 nın Frenet bileşenleri 

{𝒯,𝒩,ℬ, 𝑘, 𝜘}  olacak şekilde  

 𝜘𝐺 =
1

2
〈[𝒯,𝒩], ℬ〉  

veya  

 𝜘𝐺 =
1

2𝑘2 𝜘
〈𝒯̈, [𝒯, 𝒯̇]〉 +

1

4𝑘2 𝜘
‖[𝒯, 𝒯̇]‖

2
  

şeklindedir (Croch ve Silva, 1995:1507). 
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Lemma  2.3.1. 𝐺, 〈 , 〉 bi-invaryant metrik ile Lie grubu olsun  

i. Eğer 𝐺 abelyan grup ise 𝜘𝐺 = 0, 

ii. Eğer 𝐺, 𝑆𝑂3Lie grubu ise 𝜘𝐺 =
1

2
, 

iii. Eğer 𝐺, 𝑆𝑈2 Lie grubu ise 𝜘𝐺 = 1 

dir (Çiftçi, 2009:1599).  

Tanım 2.3.2. Bi-invaryant metrik ile 𝐺 de Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘, 𝜘}  şeklinde verilen 

bir 𝛾: 𝐼 ⊂ ℝ → 𝐺  yay parametreli eğrisi  ve 𝑋 sol-invaryant vektör alanı olsun. Eğer  𝛾 eğrisinin 

her noktasındaki teğet vektörü 𝒯(𝑠) ile sol-invaryant vektör alanı 𝑋 sabit bir açı yapıyorsa yani  

〈𝒯(𝑠), 𝑋〉 = 𝑐𝑜𝑠𝜃,   𝑠 ∈ 𝐼                           

ise 𝛾 ya 𝐺 de helis denir (Croch ve Silva, 1995:1507). 

Teorem 2.3.1. Bi-invaryant metrik ile 3-boyutlu 𝐺 Lie grubunda 𝛾: 𝐼 ⊂ ℝ → 𝐺  Frenet 

bileşenleri {𝒯,𝒩,ℬ, 𝑘, 𝜘}  olan yay parametreli bir eğri olsun. 𝛾 eğrisinin genel helis olması 

için gerek ve yeter şart  

𝜘 = 𝑐𝑘 + 𝜘𝐺 ,     𝑐 = 𝑠𝑎𝑏𝑖𝑡                                                                                                   (2.1)  

olmasıdır (Çiftçi,2009:1600). 

Sonuç 2.3.1. Eğer 𝐺 bi-invaryant metrik ile 3-boyutlu abelyan Lie grubu ise 𝜘𝐺 = 0 dır. 𝐺 nin 

abelyan Lie grubu olması durumunda (2.1) denkleminde 𝜘𝐺 = 0  olduğu düşünülürse 
𝜘

𝑘
= 𝑐 

sonucu elde edilir.  

Bu sonuç bi-invaryant metrik ile  3-boyutlu 𝐺 Lie grubunda elde edilen koşulun 3-

boyutlu Öklid uzayında genel helisler için elde edilen sonucun bir genelleştirilmesi olduğunu 

gösterir. 

Tanım 2.3.3 𝛾: 𝐼 ⊂ ℝ → 𝐺  eğrisi  𝐺 de Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘, 𝜘}  olan yay parametreli 

bir eğri ve ve 𝑋 sol-invaryant vektör alanı olsun. 𝛾 nın asli normal vektör alanı 𝒩 ile 𝑋 sol-

invaryant vektör alanı sabit açı yapıyorsa , yani  

〈𝒩(𝑠), 𝑋〉 = 𝑐𝑜𝑠𝜃,     𝜃 = 𝑠𝑎𝑏𝑖𝑡 ≠
𝜋

2
  

ise 𝛾 eğrisi 𝐺 de slant helis denir (Okuyucu vd., 2013:674). 
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Tanım 2.3.4. Bi-invaryant metrik ile  𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘, 𝜘}  

olan yay parametreli bir eğri olsun.  𝛾 eğrisinin harmonik eğriliği H olmak üzere,  

𝐻 = 
𝜘−𝜘𝐺

𝑘
             

dir. Buradan  𝜘𝐺 =
1

2
〈[𝒯,𝒩], ℬ〉 dir (Okuyucu vd., 2013:674). 

Tanım 2.3.5. Bi-invaryant metrik ile 𝐺  de 𝛾: 𝐼 ⊂ ℝ → 𝐺  Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘, 𝜘}  

olan yay parametreli bir eğri olsun. Asli normaller göstergesinin küresel tasvirinin geodezik 

eğriliği,  

𝜎𝑁 =
𝜅(1+𝐻2)

3
2⁄

𝐻′
            

şeklinde tanımlıdır. Burada 𝐻, 𝛾 eğrisinin harmonik eğriliğidir (Okuyucu vd., 2013:674). 

Lemma 2.3.2. Bi-invaryant metrik ile 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘, 𝜘}  

olan yay parametreli bir eğri olmak üzere 

[𝒯, ℬ] = 〈[𝒯, ℬ],𝒩〉𝒩 = −2𝜘𝐺𝒩  

[𝒯,𝒩] = 〈[𝒯,𝒩], ℬ〉ℬ = 2𝜘𝐺ℬ  

dir (Okuyucu vd., 2013:674). 

Teorem 2.3.2. Bi-invaryant metrik ile 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘, 𝜘}  

olan yay parametreli bir eğri olmak üzere, 𝛾 eğrisi 𝐺 Lie grubunda bir slant helis ise 𝛾 eğrisinin 

ekseni 

𝑈 = {
𝑘𝐻(1+𝐻2)

𝐻′
𝑇 + 𝑁 +

𝑘(1+𝐻2)

𝐻′
𝐵} 𝑐𝑜𝑠𝜃, 𝜃 = 𝑠𝑎𝑏𝑖𝑡 ≠

𝜋

2
  

dir. Burada  𝐻 = 
𝜘−𝜘𝐺

𝑘
,  𝛾 eğrisinin harmonik eğriliğidir (Okuyucu vd., 2013:675). 

Teorem 2.3.3. Bi-invaryant metrik ile 𝐺 de  𝛾: 𝐼 ⊂ ℝ → 𝐺  Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘, 𝜘}  

olan yay parametreli bir eğri olusn. 𝛾 nın slant helis olması için gerek ve yeter koşul  

𝜎𝑁 =
𝑘(1+𝐻2)

3
2⁄

𝐻′
= 𝑡𝑎𝑛𝜃,      𝜃 = 𝑠𝑎𝑏𝑖𝑡 ≠

𝜋

2
        

eşitliğinin sabit olmasıdır. Burada 𝐻, 𝛾 eğrisinin harmonik eğriliğidir (Okuyucu vd., 2013:676). 
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Tanım 2.3.6. Bi-invaryant metrik ile 3-boyutlu 𝐺 Lie grubunda 𝛾: 𝐼 ⊂ ℝ → 𝐺  yay parametreli 

bir eğri olsun. 𝛾 eğrisinin teğetler göstergesi olan 𝛽: 𝐼 ⊂ ℝ → 𝑆2 ⊂ 𝔤 eğrisi, yay parametresi 𝑠∗ 

olacak şekilde  her 𝑠 ∈ 𝐼 değeri için 

 𝛽(𝑠∗) = 𝒯(𝑠) = ∑ 𝑡𝑖𝑋𝑖
3
𝑖=1  

ile tanımlıdır (Okuyucu vd., 2013: 677). 

Teorem 2.3.4 Bi-invaryant metrik ile 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  birim hızlı bir eğri olmak üzere  

𝛽: 𝐼 ⊂ ℝ → 𝐺 eğrisi 𝛾 eğrisinin teğetler göstergesi olsun. 𝛾 eğrisinin slant helis olması için 

gerek ve yeter koşul 𝛽 nın helis olmasıdır (Okuyucu vd., 2013: 677). 

Tanım 2.3.7 Bi-invaryant metrik ile 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  yay parametreli bir eğri olmak üzere  

𝛾 eğrisinin normaller göstergesi olan 𝛿: 𝐼 ⊂ ℝ → 𝑆2 ⊂ 𝔤 eğrisi, yay parametresi 𝑠∗ olacak 

şekilde her 𝑠 ∈ 𝐼 değeri için 

 𝛿(𝑠∗) = 𝒩(𝑠) = ∑ 𝑛𝑖𝑋𝑖
3
𝑖=1  

ile tanımlıdır (Okuyucu vd., 2013: 678). 

Teorem 2.3.5 Bi-invaryant metrik ile 𝐺 de  𝛾: 𝐼 ⊂ ℝ → 𝐺 yay parametreli bir eğri ve 𝛾 eğrisinin 

normal göstergesi 𝛿: 𝐼 ⊂ ℝ → 𝑆2 ⊂ 𝔤  eğrisi olsun. 𝛾 eğrisi slant helis ise 𝛿 eğrisi düzlemsel 

bir eğridir (Okuyucu vd., 2013: 678). 

Tanım 2.3.8. Bi-invaryant metrik ile 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  yay parametreli bir eğri olmak üzere 

𝛾 nın binormaller göstergesi olan 𝜁: 𝐼 ⊂ ℝ → 𝑆2 ⊂ 𝔤 eğrisinin yay parametresi 𝑠∗ olmak üzere 

∀𝑠 ∈ 𝐼 için 

 𝜁(𝑠∗) = ℬ(𝑠) = ∑ 𝑏𝑖𝑋𝑖
3
𝑖=1  

ile tanımlıdır (Okuyucu vd., 2013: 678). 

Teorem 2.3.6. Bi-invaryant metrik ile 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  yay parametreli bir eğri ve 𝜁: 𝐼 ⊂

ℝ → 𝑆2 ⊂ 𝔤 eğrisi 𝛾 eğrisinin binormaller göstergesi olsun. 𝛾 eğrisinin slant helis olması için 

gerek ve yeter şart 𝜁 eğrisinin genel helis olmasıdır (Okuyucu vd., 2013: 679). 

Tanım. 2.3.6. Bi-invaryant metrik ile 𝐺 de 𝛾 ve 𝛽 eğrilerinin karşılık geldiği anlardaki 𝛾 

eğrisinin asli normal vektör alanı ile 𝛽 eğrisinin binormal vektör alanı lineer bağımlı ise 𝛾 ya 

Mannheim eğrisi, 𝛽 ya da 𝛾 nın Mannheim çifti  ve {𝛾, 𝛽} ikilisine de Mannheim eğri çifti denir 

(Gök vd., 2014:470). 
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 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺, s yay parametreli bir eğri ve Tanım 2.3.6 yardımıyla 𝛽: 𝐼 ̅ ⊂ ℝ →

𝐺  yay parametreli eğrisi 𝛽(𝑠) =  𝛾 (s) + λ(s)𝒩(s)  şeklinde yazılabilen bir eğri olsun. Burada  

λ  sabit bir fonksiyon ve 𝒩 vektör alanı 𝛾 eğrisinin asli normal vektör alanıdır (Gök vd., 

2014:471). 

 

 

 

 

 

 

 

 

 

Şekil 2.2. Bi-invaryant Metrik ile G Lie grubunda Mannheim eğri çifti {𝛾, 𝛽} 

 

Teorem 2.3.7. 𝛾: 𝐼 ⊂ ℝ → 𝐺  ve 𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺   eğrileri 3-boyutlu 𝐺 Lie grubunda sırasıyla 

yay parametreleri 𝑠 ve 𝑠̅ olan Mannheim eğri çifti olsun. 𝛾 ve 𝛽 eğrilerine karşılık gelen 

noktaları arasındaki uzaklık daima sabittir. Yani  

∀𝑠 ∈ 𝐼 𝑖ç𝑖𝑛 𝑑(𝛾(𝑠), 𝛽(𝑠̅)) = 𝑠𝑎𝑏𝑖𝑡  

dir (Gök vd., 2014:471). 

Teorem 2.3.8. Bi-invaryant metrik ile 𝐺 de  𝛾: 𝐼 ⊂ ℝ → 𝐺  Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘 , 𝜘}  

olan yay parametreli bir eğri olsun. 𝜆 sabit fonksiyon ve 𝐻 ise 𝛾 eğrisinin harmonik eğrilik 

fonksiyonu olacak şekilde 𝛾 eğrisine Mannheim eğrisi diyebilmemiz için gerek ve yeter koşul 

∀𝑠 ∈ 𝐼 için  

𝜆𝑘(1 + 𝐻2) = 1  

olmasıdır (Gök vd., 2014:472). 

Tanım. 2.3.7 Bi-invaryant metrik ile 𝐺 de 𝛾 ve 𝛽 eğrilerinin karşılık gelen noktalarında 𝛾 nın 

asli normal vektör alanı ile 𝛽 nın asli normal vektör alanı lineer bağımlı ise 𝛾 eğrisine Bertrand 



13 

 

eğrisi, 𝛽 eğrisine 𝛾 eğrisinin Bertrand çifti ve {𝛾, 𝛽} ikilisine de Bertrand eğri çifti denir 

(Okuyucu vd., 2017:1003). 

𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  s yay parametreli bir eğri ve Tanım 2.3.7  yardımıyla  𝛽: 𝐼 ̅ ⊂ ℝ →

𝐺  eğrisi 𝛽(𝑠) =  𝛾 (s) + λ(s)𝒩(s)  şeklinde yazılabilen bir eğri olsun. Burada  λ  sabit bir 

fonksiyon ve 𝛾 eğrisinin asli normal vektör alanı 𝒩 vektör alanıdır (Okuyucu vd., 2017:1004). 

 

Şekil 2.3. Bi-invaryant Metrik ile G Lie grubunda Bertrand eğri çifti {𝛾, 𝛽} 

 

Teorem 2.3.9. 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  ve 𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺 sırasıyla yay parametreleri 𝑠 ve 𝑠̅ olan 

Bertrand eğri çifti olsun. 𝛾 ve 𝛽 eğrilerine karşılık gelen noktaları arasındaki uzaklık daima 

sabittir. Yani  

∀𝑠 ∈ 𝐼 𝑖ç𝑖𝑛 𝑑(𝛾(𝑠), 𝛽(𝑠̅)) = 𝑠𝑎𝑏𝑖𝑡  

dir (Okuyucu vd., 2017:1004). 

Teorem 2.3.10. Bi-invaryant metrik ile 𝐺 de, Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘 , 𝜘} olan bir  𝛾: 𝐼 ⊂

ℝ → 𝐺 eğrisi verilsin.  𝜆 ve 𝜇 sabit fonksiyonlar olmak üzere 𝛾 eğrisi Bertrand eğrisi ise   

𝜆𝑘 + 𝜇(𝜘 − 𝜘𝐺) = 1  

dir (Okuyucu vd., 2017:1005). 
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2.4 Sol-İnvaryant Metrik ile Lie gruplarında Eğriler  

Bu kısımda sol-invaryant metrik ile 3-boyutlu 𝐺 Lie grubunda tanımlanmış 

genelleştirilmiş helis eğrileri ile ilgili temel tanımlar ve kavramlar verilecektir. Bu kavramları 

vermeden önce sol-invaryant metrik ile 3-boyutlu 𝐺 Lie grupları ile ilgili bazı temel kavramlar 

ve önermeler verilmiştir.  

Kabul edelim ki 𝐺 sol-invaryant metrik  <, > ile üç boyutlu Lie grubu olsun. 𝐺 nin sol-

sol öteleme altında değişmeyen tüm vektör alanlarından oluşan Lie cebirini 𝔤 ile gösterelim. Bu 

durumda 3-boyutlu Lie gruplarının unimodular ve nonunimodular olmak üzere iki sınıfı vardır. 

3-boyutlu Lie gruplarının unimodular ve nonunimodular sınıflarları; 

Eğer 𝐺 Lie grubu unimodular ise { 𝑒1, 𝑒2, 𝑒3} sol-invaryant vektör alanlarının kümesi 

pozitif yönlendirilmiş ortonormal bir çatı oluşturur ve bu vektörler için 𝜆𝑖 ler yapı sabitleri 

olmak üzere 

 [𝑒1, 𝑒2] = 𝜆3𝑒3, [𝑒1, 𝑒3] = 𝜆2𝑒2,   [𝑒2, 𝑒3] = 𝜆1𝑒1 

şeklinde sağlanır.  

 Eğer 𝐺 Lie grubu nonunimodular ise sol-invaryant vektör alanlarının oluşturduğu 

{ 𝑒1, 𝑒2, 𝑒3} ortonormal çatısının elemanları için parantez çarpımları 

 [𝑒1, 𝑒2] = 𝛼𝑒2 + 𝛽𝑒3, [𝑒1, 𝑒3] = −𝛽𝑒2 + 𝛿𝑒3, [𝑒2, 𝑒3] = 0 

şeklindedir (Yampolsky ve Opariy, 2019:1448). 

Koszul formülü kullanılarak ∇𝑒𝑖
𝑒𝑗 değerleri sırasıyla Lie grubunun unimodular ve 

nonunimodular durumları için 

 

 

   ve  

 

 

 

şeklinde hesaplanır. Buradaki 𝜇𝑖 değerleri 

 𝜇𝑖 =
1

2
(𝜆1 + 𝜆2 + 𝜆3) − 𝜆𝑖 

∇ 𝑒1 𝑒2 𝑒3 

𝑒1 0 𝜇1𝑒3 −𝜇1𝑒2 

𝑒2 −𝜇2𝑒3 0 𝜇2𝑒1 

𝑒3 𝜇3𝑒2 −𝜇3𝑒1 0 

∇ 𝑒1 𝑒2 𝑒3 

𝑒1 0 𝛽𝑒3 −𝛽𝑒2 

𝑒2 −𝛼𝑒2 𝛼𝑒1 0 

𝑒3 𝛿𝑒3 0 𝛿𝑒1 
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eşitliği ile tanımlı sabitlerdir. 

 Üç boyutlu durumda 𝑒1, 𝑒2, 𝑒3 vektör alanlarının vektörel çarpımları için elde edilen 

eşitlikler 

𝑒1 × 𝑒2 = 𝑒3, 𝑒2 × 𝑒3 = 𝑒1, 𝑒3 × 𝑒1 = 𝑒2   

şeklindedir. 

 Hem unimodular hem de nonunimodular gruplarda ∇𝑒𝑖
𝑒𝑘 = 𝜇(𝑒𝑖) × 𝑒𝑘 olup herhangi 

bir 𝑋 vektör alanı için ∇𝑋𝑒𝑘 = 𝜇(𝑋) × 𝑒𝑘 dir. Burada 𝜇 bir afin dönüşüm olup sırasıyla  

unimodiler ve nonunimodular gruplar için 

 𝜇(𝑋) = {
𝜇1𝑋

1𝑒1 + 𝜇2𝑋
2𝑒2 + 𝜇3𝑋

3𝑒3                                      

𝛽1𝑋
1𝑒1 + 𝛿2𝑋

3𝑒2 − 𝛼3𝑋
2𝑒3,                                     

 

dir (Yampolsky ve Opariy, 2019:1449). 

 𝛾 eğrisi sol-invaryant metrik ile 3-boyutlu Lie Grubu 𝐺 de kendi yay parametresi ile 

parametrelendirilmiş bir eğri olsun. Bu durumda 𝒯 = 𝛾̇ vektör alanı 𝛾 eğrisinin birim teğet 

vektör alanı ve 𝜉𝜊 𝛾 vektör alanı 𝛾 eğrisine kısıtlanmış bir vektör alanı olmak üzere 

 ∇𝒯
𝜉
= 𝒯𝑖∇𝑒𝑖(𝜉𝑘𝑒𝑘) = 𝒯𝑖(𝑒𝑖𝜉𝑘)𝑒𝑘 + 𝜉𝑘∇𝑒𝑘

= 𝒯(𝜉𝑘)𝑒𝑘 + 𝜉𝑘𝜇(𝒯) × 𝑒𝑘 

      =
𝑑𝜉𝑘

𝑑𝑠
𝑒𝑘 + 𝜇(𝒯) × 𝜉 = 𝜉̇𝑘𝑒𝑘 + 𝜇(𝒯) × 𝜉                                                                  (2.2)                                                            

dir. Burada 𝜉̇ =
𝑑𝜉𝑖

𝑑𝑠
𝑒𝑖 vektör alanı 𝛾 eğrisi boyunca 𝜉 vektör alanının nokta türevidir. Eğer 𝜉 

vektör alanı sol-invaryant vektör alanı ise 𝜉̇ = 0 dır, bunun tersi de doğrudur. { 𝑒1, 𝑒2, 𝑒3} 

çatısını oluşturan vektör alanları sol-invaryant vektör alanları olduğundan skaler çarpımın ve 

vektörel çarpımın nokta türevleri 

 < 𝜉  , 𝜂 >̇  = < 𝜉  ̇ , 𝜂 >  + < 𝜉, 𝜂̇ > ,        (𝜉 × 𝜂)̇ = ( 𝜉̇ × 𝜂) + (𝜉 × 𝜂)̇ 

şeklindedir (Yampolsky ve Opariy, 2019:1449). 

 𝛾 eğrisinin Frenet vektör alanları {𝒯,𝒩, ℬ} olmak üzere ∇𝒯
𝜉
=

𝑑𝜉𝑘

𝑑𝑠
𝑒𝑘 + 𝜇(𝒯) × 𝜉 =

𝜉̇𝑘𝑒𝑘 + 𝜇(𝒯) × 𝜉  denkleminden 

∇𝒯𝒯 = 𝒯̇ + 𝜇(𝒯) × 𝒯,   ∇𝒯𝐵 = ℬ̇ + 𝜇(𝒯) × ℬ,   ∇𝒯𝒩 = 𝒩̇ + 𝜇(𝒯) × 𝒩            (2.3)  

eşitlikleri elde edilir.  
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 𝑘0 = ‖𝒯̇‖ ≠ 0 olduğunu varsayarak 𝛾 eğrisi boyunca yeni bir çatı olan ve nokta-Frenet 

çatısı diyeceğimiz {𝜏, 𝑣, 𝛽} çatısını 

 𝜏 = 𝒯,     𝑣 =
1

𝑘0
𝜏̇,      𝛽 = 𝜏 × 𝑣                                                                                          (2.4)     

şeklinde tanımlayabiliriz. 𝜘0 = ‖𝛽̇‖ olarak tanımlanır (Yampolsky ve Opariy, 2019:1449). 

Önerme 2.4.1. 𝛾 eğrisinin nokta-Frenet çatısı { 𝜏, 𝑣, 𝛽} için nokta-Frenet formülleri  

𝜏̇ = 𝑘0𝑣,    𝑣̇ = −𝑘0𝜏 + 𝜘0𝛽,       𝛽̇ = −𝜘0𝑣                                                                    (2.5)

                 

dir. Burada 𝑘0 ve 𝜘0 sırasıyla 𝛾 eğrisinin nokta-eğriliği ve nokta-torsiyonu olarak isimlendirilir. 

 𝛾  eğrsinin {𝒯,𝒩,ℬ} Frenet bileşenleri ile { 𝜏, 𝑣, 𝛽} nokta-Frenet elemaları arasındaki 

ilişki  

𝜏 = 𝒯,        𝑣 = 𝑐𝑜𝑠𝛼𝒩 + 𝑠𝑖𝑛𝛼ℬ,     𝛽 = −𝑠𝑖𝑛𝛼𝒩 + 𝑐𝑜𝑠𝛼ℬ                                      (2.6) 

eşitlikleriyle verilir. Bu yazılışın tersi ise 

𝒯 = 𝜏,   𝒩 = 𝑐𝑜𝑠𝛼𝑣 − 𝑠𝑖𝑛𝛼𝛽,   ℬ = 𝑠𝑖𝑛𝛼𝑣 + 𝑐𝑜𝑠𝛼𝛽                                                   (2.7)             

şeklindedir (Yampolsky ve Opariy, 2019:1450). 

Önerme 2.4.2. 𝛾  eğrsinin {𝒯,𝒩,ℬ} Frenet elemanlılarına göre 𝜇(𝑇) dönüşümü  

𝜇(𝒯) = (𝜘 + 𝛼̇ − 𝜘0)𝒯 + 𝑘0𝑠𝑖𝑛𝛼𝒩 + (𝑘 − 𝑘0𝑐𝑜𝑠𝛼)ℬ                                            (2.8)  

şeklinde verilebilir (Yampolsky ve Opariy, 2019:1450). 

İspat 𝜇(𝒯) dönüşümü 𝛾  eğrsinin {𝒯,𝒩,ℬ} Frenet vektörlerinin lineer birleşimi olarak 

 𝜇(𝒯) = 〈𝜇(𝒯), 𝒯〉𝒯 + 〈𝜇(𝒯),𝒩〉𝒩 + 〈𝜇(𝒯), ℬ〉ℬ 

şeklinde yazılabilir. 

 ∇𝒯𝒯 = 𝒯̇ + 𝜇(𝒯) × 𝒯,   ∇𝒯𝐵 = ℬ̇ + 𝜇(𝒯) × ℬ,   ∇𝒯𝒩 = 𝒩̇ + 𝜇(𝒯) × 𝒩 denklemi ve 

 𝜏̇ = 𝑘0𝑣,    𝑣̇ = −𝑘0𝜏 + 𝜘0𝛽,       𝛽̇ = −𝜘0𝑣 denklemlerinden  

 ∇𝒯𝒯 = 𝒯̇ + 𝜇(𝒯) × 𝒯 = 𝑘0𝑣 + 𝜇(𝒯) × 𝒯 = 𝑘𝒩 

elde edilir. Bu ifadenin her iki yanı 𝒩 ile çarpılır ve  𝜏 = 𝒯, 𝑣 = 𝑐𝑜𝑠𝛼𝒩 + 𝑠𝑖𝑛𝛼ℬ,     

𝛽 = −𝑠𝑖𝑛𝛼𝒩 + 𝑐𝑜𝑠𝛼ℬ eşitlikleri ele alınırsa 

 𝑘 = 𝑘0𝑐𝑜𝑠𝛼 + 〈𝜇(𝒯) × 𝒯,𝒩〉 
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olarak elde edilir. Bu eşitlikte 〈𝜇(𝒯) × 𝒯,𝒩〉 = 〈𝜇(𝒯), 𝒯 × 𝒩〉 = 〈𝜇(𝒯), ℬ〉 olduğu 

düşünülürse 𝑘 = 𝑘0𝑐𝑜𝑠𝛼 + 〈𝜇(𝒯), ℬ〉 buradan ise 〈𝜇(𝒯), ℬ〉 = 𝑘 − 𝑘0𝑐𝑜𝑠𝛼 dir. 

 ∇𝒯𝒩 = 𝒩̇ + 𝜇(𝒯) × 𝒩 = −𝑘𝒯 + 𝜘ℬ ifadesinde ki 𝒩̇ değeri  𝜏̇ = 𝑘0𝑣, 

 𝑣̇ = −𝑘0𝜏 + 𝜘0𝛽, 𝛽̇ = −𝜘0𝑣 ve 𝒯 = 𝜏,   𝒩 = 𝑐𝑜𝑠𝛼𝑣 − 𝑠𝑖𝑛𝛼𝛽,   ℬ = 𝑠𝑖𝑛𝛼𝑣 + 𝑐𝑜𝑠𝛼𝛽 

eşitlikleri yardımıyla hesaplanırsa 

 𝒩̇ = (−𝛼̇+𝜘0)ℬ − 𝑘0𝑐𝑜𝑠𝛼𝒯 

elde edilir. 𝒩̇ + 𝜇(𝒯) × 𝒩 = −𝑘𝒯 + 𝜘ℬ ifadesinde 𝒩̇ nın değeri yerine yazılır ve elde edilen 

eşitliğin her iki yanı ℬ ile çarpılırsa 

 𝜘 = −𝛼̇+𝜘0 + 〈𝜇(𝒯) × 𝒩,ℬ〉 

olarak bulunur. Bu eşitlikte 〈𝜇(𝒯) × 𝒩,ℬ〉 = 〈𝜇(𝒯), 𝒯〉 olduğu düşünülürse 〈𝜇(𝒯), 𝒯〉 = 𝜘 +

𝛼̇−𝜘0 olarak bulunur. 

 ∇𝒯𝐵 = ℬ̇ + 𝜇(𝒯) × ℬ = −𝜘𝒩 ifadesinde ki ℬ̇ nın değeri  𝜏̇ = 𝑘0𝑣, 𝑣̇ = −𝑘0𝜏 + 𝜘0𝛽,

𝛽̇ = −𝜘0𝑣 ve 𝒯 = 𝜏,   𝒩 = 𝑐𝑜𝑠𝛼𝑣 − 𝑠𝑖𝑛𝛼𝛽,   ℬ = 𝑠𝑖𝑛𝛼𝑣 + 𝑐𝑜𝑠𝛼𝛽 eşitlikleri yardımıyla 

hesaplanırsa 

 ℬ̇ = (𝛼̇−𝜘0)𝒩 − 𝑘0𝑐𝑜𝑠𝛼𝒯 

elde edilir. ℬ̇ + 𝜇(𝒯) × ℬ = −𝜘𝒩  ifadesinde ℬ̇ değeri yerine yazılır ve elde edilen eşitliğin 

her iki yanı 𝒯 ile çarpılırsa 

 −𝑘0𝑠𝑖𝑛𝛼 + 〈𝜇(𝒯) × ℬ, 𝒯〉 = 0  

olarak bulunur. Bu eşitlikte 〈𝜇(𝒯) × ℬ, 𝒯〉 = 〈𝜇(𝒯),𝒩〉 olduğu göz önüne alınırsa  

〈𝜇(𝒯),𝒩〉 = 𝑘0𝑠𝑖𝑛𝛼 olarak bulunur. Buda ispatı tamamlar. 

Burada 𝛾 eğrisinin grup-eğriliği 𝑘𝐺  ve grup-burulması 𝜘𝐺 

𝑘𝐺 = |𝜇(𝒯) 𝑥 𝒯|, 𝜘𝐺 = |𝜇(𝒯) 𝑥 ℬ|                                                                       (2.9) 

şeklinde tanımlanır ise grup-eğriliği ve grup-torsiyonu için.  

𝑘𝐺
2 = (𝑘 − 𝑘0)

2 + 4𝑘𝑘0𝑠𝑖𝑛
2 (

𝛼

2
) , 𝜘𝐺

2 = 𝑘0
2𝑠𝑖𝑛2𝛼2 + (𝜘 − 𝜘0 + 𝛼̇)2  

eşitlikleri mevcuttur (Yampolsky ve Opariy, 2019:1451). 
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2.5 Sol-İnvaryant Metrik ile Lie gruplarında Genelleştirilmiş Helisler 

Tanım 2.5.1. 𝐺 sol-invaryant metrik ile 3-boyutlu Lie grubu ve  𝛾 eğrisi 𝐺 de  Frenet elamanları 

{𝒯,𝒩,ℬ} den oluşan yay parametreli bir eğri olmak üzere,  𝛾  boyunca birim bir sol-invaryant 

𝜉 olmak üzere eğer < 𝒯, 𝜉 > = 𝑠𝑎𝑏𝑖𝑡 ise 𝛾 eğrisine ekseni 𝜉 olan birinci tip genelleştirilmiş 

helis,  

< 𝒩, 𝜉 > = 𝑠𝑎𝑏𝑖𝑡 ise 𝛾 eğrisine ekseni 𝜉 olan ikinci tip genelleştirilmiş helis, < ℬ, 𝜉 > =

𝑠𝑎𝑏𝑖𝑡 ise 𝛾 eğrisine ekseni 𝜉 olan üçüncü tip genelleştirilmiş helis denir (Yampolsky ve Opariy, 

2019:1451). 

Teorem 2.5.1. Sol-invaryant metrik ile𝐺 dedüzgün bir 𝛾 eğrisinin birinci tip genelleştirilmiş 

helis olması için gerek ve yeter şart 

 
𝜘0

𝑘0
= 𝑐𝑜𝑡𝜃,    (𝑘 0 ≠ 0)                                                                                                       (2.10)  

olmasıdır. Burada 𝜃 sabit bir açıdır (Yampolsky ve Opariy, 2019:1451). 

Önerme 2.5.1. Eğer 𝐺 bi-invaryant metrik ile  3-boyutlu Lie grubu ise 𝜇1 = 𝜇2 = 𝜇3 ≔  𝜇 dür 

ve böylece 𝜇(𝒯) = 𝜇𝒯 dir. Sonuç olarak 𝛼 = 0 , 𝑘𝐺 = 0, 𝑘 = 𝑘0, 𝜘𝐺 = 𝜘 − 𝜘0 bulunur. Bu 

durumda (2.10) eşitliği  
𝜘−𝜘𝐺

𝑘
= 𝑐𝑜𝑡𝜃 eşitliğine dönüşür. (Yampolsky ve Opariy, 2019:1451). 

 Bu önerme bize sol-invaryant metrik ile 3-boyutlu 𝐺 Lie grubunda bir eğrinin birinci 

tip genelleştirilmiş helis olması için sağlaması gereken şartın, bi-invaryant metrik ile 𝐺 de 

helisler için elde edilen şartın bir genelleştirilmesi olduğunu söyler. 

Teorem 2.5.2. Sol-invaryant metrik ile 𝐺 de diferansiyellenebilir 𝛾 eğrisinin ikinci tip 

genelleştirilmiş helis olması için gerek ve yeter koşul 

𝑘0𝑐𝑜𝑠𝛼(𝐻2+1)
3
2

𝐻̇−𝑘0𝑠𝑖𝑛𝛼(𝐻2+1)
= 𝑡𝑎𝑛𝜃,                                                                                                      (2.11)  

burada 𝐻 =
𝜘0−𝛼̇

𝑘0𝑐𝑜𝑠𝛼
  ve 𝜃 sabit bir açıdır (Yampolsky ve Opariy, 2019:1451). 

Önerme 2.5.2 Eğer 𝐺 bi-invaryant metrik ile  3-boyutlu Lie grubu ise 𝜇1 = 𝜇2 = 𝜇3 ≔  𝜇 dür 

ve böylece 𝜇(𝒯) = 𝜇𝒯 dir. Sonuç olarak 𝛼 = 0 , 𝑘𝐺 = 0, 𝑘 = 𝑘0, 𝜘𝐺 = 𝜘 − 𝜘0 bulunur. Bu 

durumda (2.11) eşitliği 𝐻 = 
𝜘−𝜘𝐺

𝑘
 olmak üzere 𝜎𝑁 =

𝜅(1+𝐻2)
3

2⁄

𝐻′
= 𝑐𝑜𝑡𝜃 eşitliğine dönüşür 

(Yampolsky ve Opariy, 2019:1453). 
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 Bu önerme bize sol-invaryant metrik ile 3-boyutlu 𝐺 Lie grubunda bir eğrinin ikinci tip 

genelleştirilmiş helis olması için sağlaması gereken şartın, bi-invaryant metrik 𝐺 de slant 

helisler için elde edilen şartın bir genelleştirilmesi olduğunu söyler. 

Teorem 2.5.3. Sol-invaryant metrik ile  𝐺 de düzgün bir 𝛾 eğrisinin üçüncü tip genelleştirilmiş 

helis olması için gerek ve yeter koşul 

𝑘0𝑠𝑖𝑛𝛼(𝑄2+1)
3
2

𝐻̇−𝑘0𝑐𝑜𝑠𝛼(𝑄2+1)
= 𝑡𝑎𝑛𝜃,  

Burada 𝐻 =
𝛼̇−𝜘0

𝑘0𝑠𝑖𝑛𝛼
= −𝐻𝑐𝑜𝑡𝛼 ve 𝜃 sabit bir açıdır (Yampolsky ve Opariy, 2019:1454). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

3.  SOL İNVARYANT METRİK İLE 3-BOYUTLU LİE GRUPLARINDA BAZI 

ÖZEL EĞRİLER 

Bu bölümde sol-invaryant metrik ile 3-boyutlu 𝐺 Lie gruplarında involüt-evolüt, 

Bertrand ve Mannheim eğrileri tanımlandı. Ayrıca bu eğrilerin Frenet bileşenleri arasında bir 

takım ilişkiler elde edildi.  Elde edilen bu ilişkiler yardımıyla bahsedilen eğri çiftleri arasında 

bazı karakterizasyonlar elde edildi. 

3.1  Sol İnvaryant Metrik ile 3-Boyutlu Lie Gruplarında İnvolüt-Evolüt Eğri Çifti 

Tanım 3.1.1. Sol-invaryant metrik ile 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  ve 𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺 birim hızlı eğrileri 

verilsin. 𝛾 ve 𝛽 eğrilerinin yay parametreleri sırasıyla 𝑠 ve 𝑠̅ olmak üzere 𝛾 nın Frenet 

bileşenleri {𝒯,𝒩,ℬ, 𝑘0,  𝜘0, 𝛼} ve 𝛽 nın Frenet bileşenleri {𝒯̅, 𝒩̅, ℬ̅, 𝑘0
̅̅ ̅,  𝜘0̅̅ ̅̅ , 𝛼̅} olsun. 𝛾 ve 𝛽 

eğrilerinin karşılık gelen noktalarında teğet vektörleri birbirine dik konumunda ise yani  

< 𝒯̅, 𝒯 > = 0 

ise 𝛽 eğrisine 𝛾 eğrisinin involütü, 𝛾  eğrisine de  𝛽 eğrisinin evolütü denir.   

Teorem 3.1.1. 𝛾: 𝐼 ⊂ ℝ → 𝐺, sol-invaryant metrik ile 3-boyutlu 𝐺 Lie grubunda Frenet 

bileşenleri {𝒯,𝒩,ℬ, 𝑘0,  𝜘0, 𝛼} olan 𝑠 birim hızlı bir eğri ve  𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺 eğrisi de Frenet 

bileşenleri {𝒯̅, 𝒩̅, ℬ̅, 𝑘0
̅̅ ̅,  𝜘0̅̅ ̅̅ , 𝛼̅} olan 𝑠̅ yay parametreli bir eğri olsun. 𝛽 , 𝛾 nın involütü ise 𝛾 ve 

𝛽 eğrilerinin Frenet vektörleri arasında aşağıdaki ilişkiler vardır: 

i. 𝒯̅ = 𝑐𝑜𝑠𝛼𝒩 + 𝑠𝑖𝑛𝛼ℬ, 

ii. 𝒩̅ = 𝑐𝑜𝑠𝛼𝐵 − 𝑠𝑖𝑛𝛼𝒩,                                                                                            (3.1)  

iii. ℬ̅ = 𝒯.  

İspat  𝛾 ve 𝛽 eğrileri  sol-invaryant metrik ile 𝐺 de yay parametreli eğriler ve {𝛾, 𝛽} eğri ikilisi 

de İnvolüt-Evolüt eğri ikilisi olsun. Bu durumda 𝛽 eğrisi  

𝛽(𝑠) =  𝛾 (s) + λ(s)𝒯(s)                      (3.2) 

biçiminde ifade edilir. (3.2) denkleminin nokta türevi hesaplanırsa 

𝛽̇(𝑠) =  𝛾̇(𝑠) + λ̇(𝑠)𝒯(𝑠) + 𝜆(𝑠)𝒯̇(𝑠),   

        = 𝒯(𝑠) + λ̇(𝑠)𝒯(𝑠) + 𝜆(𝑠)(𝑘0𝑐𝑜𝑠𝛼𝒩 + 𝑘0𝑠𝑖𝑛𝛼ℬ),         

𝛽̇(𝑠) = (1 − 𝜆̇(𝑠))𝒯(𝑠) +  λ(s)(𝑘0𝑐𝑜𝑠𝛼𝒩 + 𝑘0𝑠𝑖𝑛𝛼ℬ),                                           (3.3)  

eşitliği elde edilir. (3.3) eşitliğinde her iki taraf  𝑇 ile çarpılırsa  
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1 + λ̇ = 0    

yani  λ̇ =  −1  dir. Buradan 𝑐 ∈ ℝ olmak üzere 𝜆(𝑠) = −𝑠 + 𝑐 olarak bulunur. 𝜆 nın bu değeri 

(3.2) ifadesinde yerine yazılırsa 

𝛽(𝑠) = 𝛾 (s) + (−𝑠 + 𝑐)𝒯(𝑠)                   (3.4) 

elde edilir.  (3.4) eşitliğinin nokta türevi alınırsa 

𝛽̇(𝑠)   = 𝒯(𝑠) − 𝒯(𝑠) + (−𝑠 + 𝑐)(𝑘0𝑐𝑜𝑠𝛼𝒩 + 𝑘0𝑠𝑖𝑛𝛼ℬ),  

𝛽̇(𝑠)   = (−𝑠 + 𝑐)(𝑘0𝑐𝑜𝑠𝛼𝒩 + 𝑘0𝑠𝑖𝑛𝛼ℬ)  

elde edilir. Bu ifadenin normu alınırsa 

‖𝛽̇(𝑠)‖ = √(−𝑠 + 𝑐)2(𝑘0
2𝑐𝑜𝑠2𝛼 + 𝑘0

2𝑠𝑖𝑛2𝛼)    = |−𝑠 + 𝑐|𝑘0  

elde edilir. Buradan, 

𝒯̅ =
𝛽̇(𝑠)

‖𝛽̇(𝑠)‖
 =

(−𝑠+𝑐)(𝑘0𝑐𝑜𝑠𝛼𝒩+𝑘0𝑠𝑖𝑛𝛼ℬ)

|−𝑠+𝑐|𝑘0 
  

dir.  −𝑠 + 𝑐 > 0  kabul edilirse 

  𝒯̅ = 𝑐𝑜𝑠𝛼𝒩 + 𝑠𝑖𝑛𝛼ℬ          

dir.                  

Dolayısıyla 𝛾 ve 𝛽 eğrilerinin Frenet vektörlerinin konumu Şekil (3.1) deki gibi verilebilir. 

 

 

Şekil 3.1.  {𝛾, 𝛽} İnvolüt-Evolüt Eğri İkilisinin Frenet Vektör Alanları  

 

Şekil (3.1. ) den 𝒩̅ = 𝑐𝑜𝑠𝛼ℬ − 𝑠𝑖𝑛𝛼𝒩 ve ℬ̅ = 𝒯 şeklinde yazılabileceği görülür. 
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Teorem 3.1.2.  𝛾: 𝐼 ⊂ ℝ → 𝐺 eğrisi sol-invaryant metrikle tanımlanan 𝐺 de birim hızlı eğrisi 

ve  𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺  eğrisi de 𝛾  nın involütü olsun. 𝛾 eğrisinin birinci tip genelleştirilmiş helis 

olabilmesi için gerek ve yeter koşul 𝛽  eğrisinin üçüncü tip genelleştirilmiş helis olmasıdır. 

İspat Sol-invaryant metrik ile 𝐺 de  𝛾: 𝐼 ⊂ ℝ → 𝐺 eğrisinin Frenet vektör alanları {𝒯,𝒩,ℬ} ve 

𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺  eğrisi de Frenet vektör alanları {𝒯̅, 𝒩̅, ℬ̅} olan iki eğri ve {𝛾, 𝛽} eğri ikilisi 

involüt-evolüt eğri çifti olsun.  𝛾 eğrisi boyunca 𝜉 birim sol-invaryant vektör alanı olmak üzere  

< 𝒯, 𝜉 > = 𝑠𝑎𝑏𝑖𝑡 ise yani 𝛾 eğrisi birinci tip genelleştirilmiş helis ise Teorem (3.1.1) den 𝛾 

eğrisinin involütü olan 𝛽 eğrisi için < ℬ̅, 𝜉 > = 𝑠𝑎𝑏𝑖𝑡 dir. Bu da bize 𝛽 eğrisinin üçüncü tip 

genelleştirilmiş helis olduğunu söyler. 

Teorem 3.1.3. Sol-invaryant metrikle 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺 ve 𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺  birim hızlı 

eğrilerinin sırasıyla Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘0,  𝜘0, 𝛼} ve {𝒯̅, 𝒩̅, ℬ̅, 𝑘0
̅̅ ̅,  𝜘0,̅̅ ̅̅̅ 𝛼̅} olsun. {𝛾, 𝛽} 

eğri ikilisi involüt-evolüt eğri çifti ise  

i. 𝑘0
̅̅ ̅ = ‖𝒯̇̅‖ = √𝑘0

2 +  𝜘0
2,   

ii. 𝛼̅ = −𝑎𝑟𝑐𝑠𝑖𝑛
𝑘0

√𝑘0
2+ 𝜘0

2

, 

iii. 𝜘̅0 = (−𝑎𝑟𝑐𝑠𝑖𝑛
𝑘0

√𝑘0
2+ 𝜘0

2

)

̇

 

dir  

İspat Sol-invaryant metrikle 𝐺 de 𝛾 eğrisinin involütü olan 𝛽 eğrsinin teğet vektör alanı için 

Teorem 3.1.1 de verilen  𝒯̅ = 𝑐𝑜𝑠𝛼𝒩 + 𝑠𝑖𝑛𝛼ℬ  eşitliğinin nokta türevi alınırsa  

𝒯̇̅  = −𝛼̇𝑠𝑖𝑛𝛼𝒩 + 𝛼̇𝑐𝑜𝑠𝛼ℬ + 𝑐𝑜𝑠𝛼((−𝛼̇ +  𝜘0)ℬ − 𝑘0𝑐𝑜𝑠𝛼𝒯)  

         +𝑠𝑖𝑛𝛼((𝛼̇ −  𝜘0)𝒩 − 𝑘0𝑠𝑖𝑛𝛼𝒯),  

𝒯̇̅ = −𝑘0𝒯 − 𝜘0𝑠𝑖𝑛𝛼𝒩 +  𝜘0𝑐𝑜𝑠𝛼ℬ  

eşitliği elde edilir. Bu eşitlikte her iki tarafın normu alınırsa 

𝑘0
̅̅ ̅ = ‖𝒯̇̅‖ = √𝑘0

2 +  𝜘0
2  

eşitliği bulunur. 

Teorem 3.1.1 de verilen  ℬ̅ = 𝒯 eşitliğinin nokta türevi alınırsa 
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ℬ̇̅ = 𝑘0𝑐𝑜𝑠𝛼𝒩 + 𝑘0𝑠𝑖𝑛𝛼ℬ  

elde edilir. Bu eşitlik 𝒩̅ ile iç çarpılırsa 

〈ℬ̇̅, 𝒩̅ 〉 = 〈𝑘0𝑐𝑜𝑠𝛼𝒩 + 𝑘0𝑠𝑖𝑛𝛼ℬ , 𝑐𝑜𝑠𝛼ℬ − 𝑠𝑖𝑛𝛼𝒩〉,  

𝛼̇̅ − 𝜘̅0 = −𝑘0𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛼 + 𝑘0𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛼, 

              𝛼̇̅ = 𝜘̅0 

elde edilir. 

ℬ̇̅ = 𝑘0𝑐𝑜𝑠𝛼𝒩 + 𝑘0𝑠𝑖𝑛𝛼ℬ  eşitliğinin her iki tarafı 𝒯̅ ile çarpılırsa 

〈𝐵̇̅, 𝑇̅ 〉 = 〈𝑘0𝑐𝑜𝑠𝛼𝑁 + 𝑘0𝑠𝑖𝑛𝛼𝐵 , 𝑐𝑜𝑠𝛼𝑁 + 𝑠𝑖𝑛𝛼𝐵 〉   

−𝑘̅0𝑠𝑖𝑛𝛼̅ =  𝑘0𝑐𝑜𝑠
2𝛼 + 𝑘0𝑠𝑖𝑛

2𝛼,  

−𝑘̅0𝑠𝑖𝑛𝛼̅ = 𝑘0 

elde edilir. Bu eşitlikten 𝑠𝑖𝑛𝛼̅ =
𝑘0

−𝑘̅0
 olarak bulunur. Burada 𝑘0

̅̅ ̅ = √𝑘0
2 +  𝜘0

2 olduğu 

düşünülürse 

𝛼̅ = 𝑎𝑟𝑐𝑠𝑖𝑛 (−
𝑘0

√𝑘0
2+ 𝜘0

2

)  

dir. 𝛼̇̅ = 𝜘̅0 olduğundan  

𝜘̅0 = (−𝑎𝑟𝑐𝑠𝑖𝑛
𝑘0

√𝑘0
2+ 𝜘0

2

)

̇

  

dir. 
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3.2 Sol İnvaryant Metrik ile 3-Boyutlu Lie Gruplarında Bertrand Eğri Çifti 

Tanım 3.2.1. 𝛾: 𝐼 ⊂ ℝ → 𝐺 ve 𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺  eğrileri sol-invaryant metrik ile 3-boyutlu 𝐺 Lie 

grubunda iki eğri olmak üzere, bu eğrilerin karşılık gelen noktalarında asli normal vektör 

alanları lineer bağımlı ise 𝛾 eğrisine Bertrand eğrisi, 𝛽 eğrisine 𝛾 eğrisinin Bertrand eğri çifti 

ve {𝛾, 𝛽} ikilisine de Bertrand eğri çifti denir. 

𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺 eğrisi 𝑠 yay parametreli ve Frenet bileşenleri {𝒯,𝒩,ℬ, 𝑘0,  𝜘0, 𝛼} olan bir 

eğri olsun. 𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺  eğrisi de 𝛾 nın Bertrand eğri çifti olsun. Bu durumda Şekil 3.2. den  

𝛽 eğrisi 𝛽(𝑠) =  𝛾 (s) + λ(s)𝒩(s)  şeklinde yazılabilir. Burada  λ: 𝐼 → ℝ  bir fonksiyondur. 

 

 

Şekil 3.2. Sol-invaryant Metrik ile 𝐺 Lie grubunda Bertrand eğri çifti {𝛾, 𝛽} 

Teorem 3.2.1 Sol-invaryant metrik ile 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺  ve 𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺 sırasıyla yay 

parametreleri 𝑠 ve 𝑠̅, Frenet bileşenleri {𝒯,𝒩, ℬ, 𝑘0,  𝜘0, 𝛼} ve {𝒯̅, 𝒩̅, ℬ̅, 𝑘0
̅̅ ̅,  𝜘0,̅̅ ̅̅̅ 𝛼̅} olan 

Bertrand eğri çifti olsun. 𝛾 ve 𝛽 eğrilerinin karşılık gelen noktaları arasındaki uzaklık daima 

sabittir. Yani  

∀𝑠 ∈ 𝐼 𝑖ç𝑖𝑛 𝑑(𝛾(𝑠), 𝛽(𝑠̅)) = λ = 𝑠𝑎𝑏𝑖𝑡 

dir.  

İspat: Tanım 3.2.1 yardımıyla 𝛽 eğrisi  

 𝛽(𝑠) = 𝛾 (s) + λ(s)𝒩(s)   

eşitliği ile yazılabilir. Eşitliğin türevi alınırsa 
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𝛽̇(𝑠) =  𝛾̇(𝑠) + λ̇(𝑠)𝒩(𝑠) + 𝜆(𝑠)𝒩̇(𝑠),  

             𝛽̇(𝑠) = (1 − 𝜆(𝑠)𝑘0𝑐𝑜𝑠𝛼)𝒯(𝑠) + λ̇(𝑠)𝒩(𝑠) + 𝜆(𝑠)(−𝛼̇ +  𝜘0)ℬ − 𝑘0𝑐𝑜𝑠𝛼𝒯)  

eşitliği elde edilir. Elde edilen eşitlik 𝒩 ile çarpılırsa 

0 = λ̇(𝑠)   

elde edilir. Buradan 𝜆(𝑠) = 𝑠𝑎𝑏𝑖𝑡. olduğu açıktır. 

Teorem 3.2.2. Sol-invaryant metrik ile 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺 Frenet bileşenleri 

{𝒯,𝒩,ℬ, 𝑘0,  𝜘0, 𝛼} olan 𝑠 birim hızlı bir eğri ve 𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺 eğrisi de Frenet bileşenleri 

{𝒯̅, 𝒩̅, ℬ̅, 𝑘0
̅̅ ̅,  𝜘0,̅̅ ̅̅̅ 𝛼̅} olan 𝑠̅ birim hızlı bir eğri olsun. Eğer {𝛾, 𝛽} Bertrand eğri ikilisi ise Frenet 

bileşenleri arasında aşağıdaki ilişkiler vardır: 

𝒯̅ =
ℱ

√1+ℱ2  
𝒯 +

1

√1+ℱ2  
ℬ,  

𝒩̅ = 𝒩,  

ℬ̅ =
ℱ

√1+ℱ2  
ℬ −

1

√1+ℱ2  
𝒯.  

Burada ℱ =
1−𝑐𝑘0𝑐𝑜𝑠𝛼

𝜆 (−𝛼̇+ 𝜘0) 
 dir. 

İspat: 𝛾 ve 𝛽 eğrileri sol-invaryant metrik ile 𝐺 de yay parametreli eğriler ve {𝛾, 𝛽} eğri ikilisi 

Bertrand eğri çifti olsun. Bu durumda Tanım 3.2.1 den 𝛽 eğrisi  

𝛽(𝑠)    =   𝛾 (s) + λ(s)𝒩(s)         (3.5) 

biçiminde yazılabilir. 𝜆(𝑠) = 𝑠𝑎𝑏𝑖𝑡 olduğu düşünülerek (3.5) eşitliğinin türevini alınırsa 

𝛽̇(𝑠) =  𝛾̇(𝑠) + λ̇(𝑠)𝒩(𝑠) + 𝜆(𝑠)𝒩̇(𝑠),  

         = 𝒯(𝑠) + 𝜆((−𝛼̇ +  𝜘0)ℬ − 𝑘0𝑐𝑜𝑠𝛼𝒯),   

𝛽̇(𝑠) = (1 − 𝜆𝑘0𝑐𝑜𝑠𝛼)𝒯 + 𝜆(−𝛼̇ +  𝜘0)ℬ       (3.6) 

elde edilir. (3.6) ifadesinin normu alınırsa, 

‖𝛽̇(𝑠)‖ = √(1 − 𝜆𝑘0𝑐𝑜𝑠𝛼)2 + (𝜆2(−𝛼̇ +  𝜘0)2)  

‖𝛽̇(𝑠)‖ = √𝜆2(−𝛼̇ +  𝜘0)2 (
(1−𝜆𝑘0𝑐𝑜𝑠𝛼)2

𝜆2(−𝛼̇+ 𝜘0)2
+ 1)  
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dir. Burada ℱ =
(1−𝜆𝑘0𝑐𝑜𝑠𝛼)

𝜆(−𝛼̇+ 𝜘0) 
 denilirse 

‖𝛽̇(𝑠)‖ =  𝜆(−𝛼̇ +  𝜘0)√1 + ℱ2   şeklinde yazılabilir. 𝜆(−𝛼̇ +  𝜘0) > 0 alalım. 

Buradan 

𝒯̅ =
𝛽′(𝑠)

‖𝛽′(𝑠)‖
=

ℱ

√1+ℱ2  
𝒯 +

1

√1+ℱ2  
ℬ  

olarak bulunur. Şekil-3.2.den 𝒩 ile 𝒩̅ linner bağımlı olduğundan  

𝒩̅ = 𝒩                                                                                                                                     (3.7)  

dir. Buradan, 

ℬ̅ = 𝒯̅ × 𝒩̅ =
ℱ

√1+ℱ2  
ℬ −

1

√1+ℱ2  
𝒯  

elde edilir. 

Teorem 3.2.3. 𝛾: 𝐼 ⊂ ℝ → 𝐺 eğrisi sol-invaryant metrikle 𝐺 de birim hızlı bir eğri olmak üzere 

𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺  eğrisi de 𝛾  nın Bertrand çifti olsun. 𝛾 eğrisinin II. tip genelleştirilmiş helis 

olabilmesi için gerek ve yeter koşul  𝛽  nın II. tip genelleştirilmiş helis olmasıdır. 

İspat Sol-invaryant metrik ile 𝐺 verilsin.  𝛾 uzay eğrisinin Frenet elamanları {𝒯,𝒩,ℬ} olsun. 

𝛾 boyunca birim sol-invaryant vektör alanı 𝜉 olmak üzere 𝛾 II. tip genelleştirilmiş helis ise <

𝒩, 𝜉 > = 𝑠𝑎𝑏𝑖𝑡 dir. G de 𝛽 eğrisi 𝛾 eğrisinin Bertrand çifti ise Teorem 3.2.2’nin ispatındaki 

(3.7) eşitliği ve < 𝒩, 𝜉 > = 𝑠𝑎𝑏𝑖𝑡 olduğu bir arada düşünülürse < 𝒩̅, 𝜉 > = 𝑠𝑎𝑏𝑖𝑡 olduğu 

elde edilir. Buda 𝛾 eğrisinin Bertrand çifti 𝛽 eğrisinin II. tip genelleştirilmiş helis olduğunu 

söyler. 

Teorem 3.2.4.  𝛾: 𝐼 ⊂ ℝ → 𝐺 eğrisi sol-invaryant metrikle 3 boyutlu 𝐺 Lie grubunda Frenet 

bileşenleri {𝒯,𝒩,ℬ, 𝑘0,  𝜘0, 𝛼} olan birim hızlı bir Bertrand eğrisi olsun. Bu duruda 

λ𝑘0𝑐𝑜𝑠𝛼 + 𝜇(−𝛼̇ +  𝜘0) = 1  

eşitliği sağlanır. Burada 𝜇 ve 𝜆 sabitlerdir. 

İspat  𝛾 eğrisi eğrisi sol-invaryant metrikle 3-boyutlu 𝐺 Lie grubunda Bertrand eğrisi olsun. 𝛾 

eğrisinin Bertrand çifti olan 𝛽 eğrisi 

𝛽(𝑠)    =   𝛾 (s) + λ(s)𝒩(s)    

şeklinde yazılabilir.  

{𝒩̅,𝒩}  lineer bağımlı olduğundan 𝜃 , 𝒯 ile 𝒯̅ arasındaki açı olmak üzere 
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𝒯̅ = 𝑐𝑜𝑠𝜃𝒯 + 𝑠𝑖𝑛𝜃ℬ  

şeklinde yazılabilir. Teorem 3.2.2 de    𝒯̅ =
ℱ

√1+ℱ2  
𝒯 +

1

√1+ℱ2  
 ℬ  olduğundan 

𝑐𝑜𝑠𝜃 =
ℱ

√1+ℱ2  
  

 𝑠𝑖𝑛𝜃 =
1

√1+ℱ2  
  

dir. 

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
=

ℱ

√1+ℱ2  
.
√1+ℱ2

1
 ⟹ 𝑐𝑜𝑡𝜃 = ℱ =

1−λ𝑐𝑜𝑠𝛼

λ(−𝛼̇+ 𝜘0)
    

𝑐𝑜𝑡𝜃 =
1−𝑐𝑘0𝑐𝑜𝑠𝛼

λ(−𝛼̇+ 𝜘0)
  

buradan 

𝑐𝑜𝑡𝜃λ(−𝛼̇ +  𝜘0) + λ𝑘0𝑐𝑜𝑠𝛼 = 1                      

elde edilir. 𝑐𝑜𝑡𝜃λ = 𝜇 denilirse 

λ𝑘0𝑐𝑜𝑠𝛼 + 𝜇(−𝛼̇ +  𝜘0) = 1        (3.8) 

elde edilir. 

Sonuç 3.2.1. Eğer 𝐺 bi-invaryant metrik ile 3-boyutlu Lie grubu ise 𝛼 = 0 , 𝑘𝐺 = 0, 𝑘 = 𝑘0,

𝜘𝐺 = 𝜘 − 𝜘0 dır. Bu eşitlikler (3.8) eşitliğinde yazılırsa 

𝜆𝑘 + 𝜇(𝜘 − 𝜘𝐺) = 1 

eşitliği elde edilir. Bu sonuç bize sol-invaryant metrik ile 3-boyutlu 𝐺 Lie grubunda Bertrand 

eğrileri için elde ettiğimiz sonucun daha önce bi-invaryant metrik ile 3-boyultu 𝐺 Lie grubunda 

Bertrand eğrileri için elde edilen sonucun bir genelleştirilmesi olduğunu gösterir.  

 

3.3 Sol İnvaryant Metrik ile 3-Boyutlu Lie Gruplarında Mannheim Eğri Çifti 

Tanım 3.3.1 𝐺 sol-invaryant metrik ile 3-boyutlu bir Lie grubu olsun. 𝐺 de 𝛾 ve 𝛽 eğrilerinin 

karşılık gelen  noktalarında 𝛾 nın asli normal vektör alanı ile 𝛽 nın binormal vektör alanı lineer 

bağımlı ise 𝛾 ya Mannheim eğrisi,  𝛽 ya da 𝛾 nın Mannheim çifti ve {𝛾, 𝛽} ikilisine de 

Mannheim eğri çifti denir. 

Sol-invaryant metrik 𝐺 de 𝛾: 𝐼 ⊂ ℝ → 𝐺 eğrisi 𝑠 yay parametreli ve Frenet bileşenleri 

{𝒯,𝒩,ℬ, 𝑘0,  𝜘0, 𝛼} olan bir eğri ve Şekil-3.3.1 yardımıyla  𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺  eğrisi 𝛽(𝑠) =
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 𝛾 (s) + λ(s)𝒩(s)  şeklinde yazılabilen ve Frenet bileşenleri {𝒯̅, 𝒩̅, ℬ̅, 𝑘0
̅̅ ̅,  𝜘0,̅̅ ̅̅̅ 𝛼̅} olan bir eğri 

olsun. Burada  λ  sabit bir fonksiyon ve 𝑁 vektör alanı 𝛾 eğrisinin asli normal vektör alanıdır 

 

 

 

 

 

 

 

Şekil 3.3. Sol-invaryant Metrik ile 𝐺 de Mannheim eğri çifti {𝛾, 𝛽} 

Teorem 3.3.1 3-boyutlu G Lie grubunda 𝛾: 𝐼 ⊂ ℝ → 𝐺  ve 𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺 sırasıyla yay 

parametreleri 𝑠 ve 𝑠̅ olan Bertrand eğri çifti olsun. 𝛾 ve 𝛽 eğrilerine karşılık gelen noktaları 

arasındaki uzaklık daima sabittir. Yani  

∀𝑠 ∈ 𝐼 𝑖ç𝑖𝑛 𝑑(𝛾(𝑠), 𝛽(𝑠̅)) = 𝑠𝑎𝑏𝑖𝑡  

dir. 

İspat: Tanım 3.3.1 yardımıyla 𝛽 eğrisi  

 𝛽(𝑠)    =   𝛾 (s) + λ(s)𝒩(s)   

eşitliği ile yazılabilir. Eşitliğin her iki yanının türevi alınırsa 

𝛽̇(𝑠) =  𝛾̇(𝑠) + λ̇(𝑠)𝒩(𝑠) + 𝜆(𝑠)𝒩̇(𝑠)  

                       = 𝒯(𝑠) + λ̇(𝑠)𝒩(𝑠) + 𝜆(𝑠)(−𝛼̇ +  𝜘0)ℬ − 𝑘0𝑐𝑜𝑠𝛼𝒯)  

elde edilir.  Elde edilen eşitlik 𝒩 ile çarpılırsa 

0 = λ̇(𝑠)   

elde edilir. Buradan  𝜆(𝑠) = 𝑠𝑎𝑏𝑖𝑡. olduğu açıktır. 

Teorem 3.3.2. 𝛾 ve 𝛽 eğrileri sol-invaryant metrikle 𝐺 de yay parametreli iki eğri ve 𝛾 ve 𝛽 nın 

Frenet bileşenleri sırasıyla  {𝒯,𝒩,ℬ, 𝑘0,  𝜘0, 𝛼} ve {𝒯̅, 𝒩̅, ℬ̅, 𝑘0
̅̅ ̅,  𝜘0,̅̅ ̅̅̅ 𝛼̅} olsun. Eğer {𝛾, 𝛽} 

Mannheim eğri çifti ise Frenet bileşenleri arasında aşağıdaki ilişki  

𝒯̅ =  
ℱ

√1+ℱ2
𝒯 + 

1

√1+ℱ2
ℬ  

𝛾 

𝛽 

ℬ(s) 

𝒯(s) 

𝒩(s) 

ℬ̅(𝑠) 

 𝒯̅(𝑠) 

𝒩̅(𝑠)
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𝒩̅ = −
ℱ

√1+ℱ2
ℬ +

1

√1+ℱ2
𝒯  

ℬ̅ = 𝒩  

şeklinde edilir. Burada ℱ = (
1−𝜆𝑘0𝑐𝑜𝑠𝛼

𝜆(−𝛼̇+ 𝜘0)
) dir.  

İspat 𝛾  ve 𝛽 eğrileri sol-invaryant metrik de 𝐺 de yay parametreli iki eğri ve {𝛾, 𝛽} eğri ikilisi 

Mannheim eğri çifti olsun. Bu durumda 𝛽 eğrisi  

𝛽(𝑠) =   𝛾 (s) + λ𝒩(s)                     (3.9) 

şeklinde yazılır. (3.9) eşitliğinin türevi alınırsa 

𝛽̇(𝑠) = (1 − 𝜆𝑘0𝑐𝑜𝑠𝛼)𝒯 + 𝜆(−𝛼̇ +  𝜘0)ℬ   

 eşitliği elde edilir. Buradan  

‖𝛽̇(𝑠)‖ = √(1 − 𝜆𝑘0𝑐𝑜𝑠𝛼)2 + 𝜆2(−𝛼̇ +  𝜘0)2  

 = √𝜆2(−𝛼̇ +  𝜘0)2 (1−𝜆𝑘0𝑐𝑜𝑠𝛼)2

𝜆2(−𝛼̇+ 𝜘0)2
+ 1    

dir.   

(
1−𝜆𝑘0𝑐𝑜𝑠𝛼

𝜆(−𝛼̇+ 𝜘0)
) = ℱ olmak üzere ‖𝛽̇(𝑠)‖  = 𝜆(−𝛼̇ +  𝜘0). √1 + ℱ2  şeklinde yazılabilir. 

𝜆(−𝛼̇ +  𝜘0) > 0 alalım. Buradan  

𝒯̅ =
𝛽̇(𝑠)

‖𝛽̇(𝑠)‖
=

1−𝜆𝑘0𝑐𝑜𝑠𝛼

𝜆(−𝛼̇+ 𝜘0)√1+ℱ2  
𝒯 +

𝜆(−𝛼̇+ 𝜘0)

𝜆(−𝛼̇+ 𝜘0)√1+ℱ2
ℬ   

𝒯̅ =
ℱ

√1+ℱ2 
𝒯 +

1

√1+ℱ2 
ℬ                          (3.10) 

dir.  𝛾 ve  𝛽  Mannheim eğri çifti olduğundan {𝒩, ℬ̅} lineer bağımlıdır. Yani  ℬ̅ = 𝒩 alınabilir. 

Buradan  

𝒩̅ = ℬ̅ × 𝒯̅  

    = 𝒩 × (
ℱ

√1+ℱ2 
𝒯 +

1

√1+ℱ2 
ℬ)    

    =
ℱ

√1+ℱ2 
(𝒩 × 𝒯) + 

1

√1+ℱ2 
(𝒩 × ℬ)   

    = −
ℱ

√1+ℱ2 
ℬ +

1

√1+ℱ2 
𝒯  

olarak bulunur. 
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Teorem 3.3.3 𝛾: 𝐼 ⊂ ℝ → 𝐺 eğrisi sol-invaryant metrikle 𝐺 de yay parametreli bir eğri ve  

𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺  eğrisi de 𝛾  eğrisinin Mannheim çifti olsun. 𝛾 eğrisinin II. tip genelleştirilmiş 

helis olabilmesi için gerek ve yeter koşul  𝛽  nın III. tip genelleştirilmiş helis olmasıdır. 

İspat Sol-invaryant metrik ile 𝐺 de  𝛾 eğrisinin Frenet elamanları {𝒯,𝒩,ℬ} olsun. 𝛾 boyunca 

birim sol-invaryant vektör alanı 𝜉 olmak üzere 𝛾  II. tip genelleştirilmiş helis ise < 𝒩, 𝜉 > =

𝑠𝑎𝑏𝑖𝑡 dir. 𝐺 de 𝛽 eğrisi 𝛾 eğrisinin Mannheim çifti ise Teorem 3.3.2 de ifade edile ℬ̅ = 𝒩 

eşitliği ve < 𝒩, 𝜉 > = 𝑠𝑎𝑏𝑖𝑡 olduğu bir arada düşünülürse < ℬ̅, 𝜉 > = 𝑠𝑎𝑏𝑖𝑡 olduğu elde 

edilir. Buda 𝛾 eğrisinin Mannheim çifti 𝛽 eğrisinin III. tip genelleştirilmiş helis olduğunu 

söyler. 

Teorem 3.3.4. 𝛾: 𝐼 ⊂ ℝ → 𝐺, Frenet bileşenleri {𝒯,𝒩, ℬ, 𝑘0,  𝜘0, 𝛼} olan 𝑠 yay parametreli bir 

eğri ve 𝛽: 𝐼 ̅ ⊂ ℝ → 𝐺 , Frenet bileşenleri {𝒯̅, 𝒩̅, ℬ̅, 𝑘0
̅̅ ̅,  𝜘0,̅̅ ̅̅̅ 𝛼̅} olan 𝑠̅ yay parametreli bir eğri 

olsun. Eğer {𝛾, 𝛽} ikilisi bir Mannheim eğri çifti ise  

𝑘̅0𝑠𝑖𝑛 ∝̅=
ℱ𝑘0𝑐𝑜𝑠𝛼 + (−𝛼̇ +  𝜘0)

𝜆(−𝛼̇ +  𝜘0)(1 + ℱ2)
 

dir. Burada ℱ = (
1−𝜆𝑘0𝑐𝑜𝑠𝛼

𝜆(−𝛼̇+ 𝜘0)
) dir.  

İspat {𝛾, 𝛽} ikili bir Mannheim eğrisi çifti olsun. O halde 𝜆 bir sabit olmak üzere; 

  𝛽(𝑠̅) = 𝛾(𝑠) + 𝜆𝒩(𝑠) 

şeklinde yazılabilir. Bu ifadede her iki tarafın 𝑠 parametresine göre türevi alınırsa 

 𝒯̅
𝑑𝑠̅

𝑑𝑠
= (1 − 𝜆𝑘0𝑐𝑜𝑠𝛼)𝒯 + 𝜆(−𝛼̇ +  𝜘0)ℬ               (3.11) 

denklemi elde edilir. 𝜆(−𝛼̇ +  𝜘0) > 0 olduğu kabul edilirse ℱ = (
1−𝜆𝑘0𝑐𝑜𝑠𝛼

𝜆(−𝛼̇+ 𝜘0)
) olmak üzere 

(3.11) eşitliğinin normu alındığında 

 
𝑑𝑠̅

𝑑𝑠
= 𝜆(−𝛼̇ +  𝜘0)√1 + ℱ2                 (3.12) 

olarak elde edilir. (3.11) ve (3.12) denklemleri bir arada düşünülürse 

 𝒯̅(𝑠̅) =
ℱ

√1+ℱ2 
𝒯(𝑠) +

1

√1+ℱ2 
ℬ(𝑠)                (3.13) 
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olarak elde edilir. (3.13) denkleminde her iki tarafın 𝑠 parametresine göre türevi alınırsa 

𝑑𝒯̅

𝑑𝑠̅

𝑑𝑠̅

𝑑𝑠
=

ℱ′√1+ℱ2−
ℱ2ℱℱ′

2√1+ℱ2

1+ℱ2 𝒯 +
ℱ

√1+ℱ2
(𝑘0𝑐𝑜𝑠𝛼𝒩 + 𝑘0𝑠𝑖𝑛𝛼ℬ) +

−
2ℱℱ′

2√1+ℱ2

1+ℱ2 ℬ   

+
1

√1+ℱ2
((−𝛼̇ +  𝜘0)𝒩 − 𝑘0𝑠𝑖𝑛𝛼𝒯               

          =
ℱ′(1+ℱ2)−ℱ′ℱ2

(1+ℱ2)
3

2⁄
𝒯 +

ℱ

√1+ℱ2
(𝑘0𝑐𝑜𝑠𝛼𝒩 + 𝑘0𝑠𝑖𝑛𝛼ℬ) −

ℱℱ′

(1+ℱ2)
3

2⁄
ℬ 

+
1

√1+ℱ2
((𝛼̇ −  𝜘0)𝒩 − 𝑘0𝑠𝑖𝑛𝛼𝒯)             

(𝑘̅0𝑐𝑜𝑠 ∝̅ 𝒩̅ + 𝑘̅0𝑠𝑖𝑛 ∝̅ 𝐵̅)
𝑑𝑠̅

𝑑𝑠
=  (

ℱ′

(1+ℱ2)
3

2⁄
−

𝑘0𝑠𝑖𝑛𝛼

√1+ℱ2
)𝒯 + (

ℱ𝑘0𝑐𝑜𝑠𝛼+(𝛼̇− 𝜘0)

√1+ℱ2
)𝒩  

       +(
ℱ𝑘0𝑠𝑖𝑛𝛼

√1+ℱ2
−

ℱℱ′

(1+ℱ2)
3

2⁄
)ℬ 

dir. 𝒩 ile ℬ̅ lineer bağımlı olduğundan, her iki taraf 𝒩 ile çarpılırsa 

 (𝑘̅0𝑠𝑖𝑛 ∝̅)
𝑑𝑠̅

𝑑𝑠
=

ℱ𝑘0𝑐𝑜𝑠𝛼+(𝛼̇− 𝜘0)

√1+ℱ2
                 (3.14) 

eşitliği elde edilir. (3.12) ve (3.14) eşitlikleri bir arada düşünülürse 

 𝑘̅0𝑠𝑖𝑛 ∝̅=
ℱ𝑘0𝑐𝑜𝑠𝛼+(−𝛼̇+ 𝜘0)

𝜆(−𝛼̇+ 𝜘0)(1+ℱ2)
 

dir. Buda ispatı tamamlar. 
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