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OZET

Anahtar kelimeler: Av-avci modeli, kararlilik, asimptotik kararlilik, kesirli tiirev, geri
besleme kontrolii, popiilasyon dinamigi, avci popiilasyonlarinin rekabeti

Ekolojideki temel siire¢lerden biri av ve aver arasindaki etkilesimlerdir. Av ve avcei
arasindaki etkilesimi; av ile avcinin ayni ortami paylagmasi ve bir tiirlin digerini
avlamasi nedeniyle iki tiirlin popiilasyon yogunlugunun birbirleriyle baglantili olarak
degisimleri ifade eder. Bu tez calismasinda geri besleme kontroliiyle iki avci-tek av
iceren genellestirilmis etkilesim fonksiyonuna sahip av-avci etkilesim modelinin
dinamik davranisi incelenmistir. Model olusturulmasindaki en onemli varsayim,
gercek diinya durumunun gii¢lii bir yansimasini veren tek av lizerindeki geri besleme
kontroliiniin ve 1iki avcr popiilasyonunun rekabetinin etkileridir. Model
olusturulduktan sonra elde edilen modelin denge noktalarinin varlig1 arastirilmus,
bulunan denge noktalarinda Jacobian matrisi yardimiyla sistemin karakteristik
denklemleri analiz edilerek sistemin kararlilig1 incelenmistir. Ayrica, kesirli zaman
tiirevi ile Olgililen bellegin zamansal davranis {izerindeki etkisi incelenmis, ii¢ tiiriin
bir arada yasadig1 denge noktasinda sistemin kararlilig1 gosterilmistir.



PREDATOR- PREY MODELS AND INVESTIGATION OF
PREDATOR- PREY CAPUTO FRACTIONAL
DERIVATIVE

SUMMARY

Keywords: Predator-prey model, stability, asymptotic stability, fractional-order,
feedback control, population dynamics, predator competition

The interaction between prey and predator is one of the most fundamental processes
in ecology. In this thesis, we first consider the system incorporating a feedback
control and we discuss the dynamic behavior of prey-predator interaction model that
includes two competitive predators and one prey with a generalized interaction
functional. The primary presumption in the model construction is the effects of
feedback control and the competition between two predators on the only prey which
gives a strong implication of the real-world situation. By analyzing characteristic
equations, we carry out detailed discussion with respect to stability of equilibrium
points of the considered model. Further, we investigate the impact of the memory
measured by fractional time derivative on the temporal behavior.
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BOLUM 1. GIRIS

Gergek diinya etkilesimlerinin matematiksel modellemesi baz1 ekolojik ve biyolojik
bilesenleri tahmin etmek i¢in giiglii bir aractir. Arastirmacilar karsilastiklar1 doga
olaylarin1 anlayabilmek amaciyla ve bilime dayanarak aciklama yapabilmek igin
bircok calisma yapmuslardir. Bu calismalar matematik, fizik, biyoloji, ekoloji gibi
temel bilimlerin daha fazla 6nem kazanmasini ve bu bilim dallarinin kendi aralarinda
etkilesim i¢inde olan biyofizik, matematiksel biyoloji gibi genel olarak uygulamali
matematik alaninda toplanan alanlarinin dogmasmni saglamistir. Bu alanlar
matematiksel modelleme teknikleri kullanarak doga olaylarimi anlamaya

calismislardir.

Genel olarak matematiksel model olusturmak icin; once calisilan olay1 yansitacak
probleme ait bagimli ve bagimsiz degiskenleri igeren; matematiksel olarak problemi
ifade eden model olusturulur. Daha sonra modelin davranisini anlayabilmek igin;
analiz, diferansiyel denklemler teorisi gibi matematik bilgileri modele uygulanir ve
matematiksel sonucglar elde edilir. Son olarak modelin analizinden elde edilen
sonuclar yorumlanarak problem ile karsilagtirilir ve bulunan matematiksel sonuglar

ile yapilan tahminler toplanan gercek verilerle karsilastirilir.

Yapisi zamana, konuma, yasa veya baska degiskenlere goére degisen sistemlere
dinamik sistemler; dinamik sistemlerin ge¢cmis zamandaki, simdiki zamandaki ve
gelecek zamandaki durumlarini analiz eden disiplinler arasi ¢alisma alanina ise

dinamik denir.

Dinamikte esas amag, iizerinde c¢alistigimiz modeli matematiksel olarak
modelleyerek, elde edilen dinamik sistem modelinin matematiksel olarak

incelenmesi ve dinamik sistem modelinin incelenen 6nceki degisimleri yardimiyla



sistemin gelecekteki durumu hakkinda ¢ikarimlarda bulunabilmektir.

Herhangi bir kompleks dinamik sistemin davranisi o sistemin bilesenleri arasindaki
etkilesimin dogal sonucudur. Bu sistemlerin 6nemli 6rnekleri, biyolojik bir ortamda
belirli organizmalar arasindaki kompleks etkilesimlerin ozelliklerini tanimlayan
biyolojik modellerdir. Bu sistemlerin incelenmesi matematikte kesin ve gelismis

hesaplama yontemlerinin kullanilmasini gerektirir.

Dinamik sistemlerde modelleme yapmak icin en yaygin olarak kullanilan
denklemler; diferansiyel denklemler, kismi tiirevli denklemler ya da fark
denklemleridir. Calistigimiz probleme gore secimimiz degisiklik gosterir. Modelde
kullanilan zaman aralig1 ayrik zaman dilimleri halinde ise fark denklemleri, degisim
stirekli bir zamanda gergeklesiyor ise diferansiyel denklemler kullanilabilir. Dinamik
sistemlerde modelleme yapmak i¢in son yillarda ¢ogunlukla modeli daha dogru
tanimlayabildigi ve tiirler arasindaki iligkiyi, arastirilan durumu gercege daha yakin

modelleyebildigi i¢in kesirli mertebeden tiirevler kullanilmaktadir.

Modeller baglangigta oldukea basit tutulurken, daha sonra bu modeller gelistirilebilir.
Ornegin, modelleri iyilestirmek i¢in daha ¢ok parametre ekleyebilir, modele baska
fonksiyonlar eklenebilir ya da modelin boyutunu arttrmak gibi yontemler
kullanilabilinir. Bu 6zelligiyle dinamik sistemler; fizik, kimya, biyoloji, miithendislik,
ekoloji ve ekonomi gibi bir¢ok alanda uygulama alanina sahip olup bir¢ok teknolojik

gelismenin ortaya ¢ikmasinda etkin rol oynayan ¢alisma alanidir.

Canlilarin yasamlar1 boyunca siirekli olarak besin ve enerji ihtiyaglar1 olmaktadir.
Ayn tiirden bireyler; kaynaklarin sinirli olmasi, bireysel cabalarin yetersiz kalmasi,
nesillerin devamliligini saglama, degisen c¢evre sartlarina karst hayatta kalma

miicadeleleri gibi ¢esitli nedenlerle bir arada yasarlar.

Belirli bir yasam alaninda bulunan tek bir tiire ait bireylerin, olusturdugu topluluklara
popiilasyon denir. Son yillarda, dinamikte biyolojik modellerin dinamik sistemleri

alanindaki birgok bilim insan1 ve arastirmaci tarafindan yapilan c¢aligsmalar,



popiilasyon modelleri ve popiilasyonlar arasi etkilesim iizerine yogunlagmigtir. Bu
yogunlagmanin temel nedenlerinden birisi dogal popiilasyonlarin siirekli olarak

degisim icinde olmasidir.

Yasam alani ortak olan canlilar; barinma ortami olusturma, su bulma, besin bulma,
enerji kaynaklarindan faydalanma gibi ¢esitli faktorler nedeniyle birbirleriyle yaris

halindedirler.

Farkli tiirler ayn1 ortamda yasasa bile ortamdan farkli etkilenir ve ortama farkli
etkiler birakirlar. Popiilasyon tiirleri, kendi bireyleri arasinda tiir i¢i rekabet; farkli

tiirlerle tiirler aras1 rekabet veya av-avci iligkisi igerisinde olurlar.

Av-avcr iligkisi ayn1 alanda yasayan farkli tiirler arasinda gozlemlenen beslenme
iliskisidir. Avci, avdan beslenerek beslenme ihtiyacini1 karsilar, av ise ortamda

bulunan bagka yiyeceklerle beslenir

Avci ve av arasindaki etkilesim ekolojideki en temel siire¢lerden biridir. Bu nedenle,
bircok matematik¢i, ekolog ve biyolog bu konu iizerinde arastirmalar yapmis ve av-

avci arasindaki etkilesimi tanimlayan dinamik davranisi incelemislerdir.

Av-avel modellerinde av popiilasyonlarinin ve avci popiilasyonlariin arasindaki
etkilesimin zamana gére degisimi incelenmektedir. Ornegin avci popiilasyonunun
besin kaynaginin sadece av oldugu varsayimiyla avci popiilasyonun yogun olmasi, av
popiilasyonun azalmasina yol agmaktadir. Av popiilasyonunun azalmasi, temel besin
kaynagi av olan avci popiilasyonunun azalmasina yol acacaktir. Azalan avci
popiilasyonu karsisinda av popiilasyonu liremek i¢in elverigli ortam bulacagindan
dolay1 av popiilasyonu artar. Dolayisiyla artan av popiilasyonu, avci popiilasyonu
icin uygun besleme alani olusturup avecr popiilasyonunun artmasina katki
saglamaktadir. BOoylece av ve avci popiilasyonlar1 arasindaki etkilesim bu sekilde

dongii halinde devam etmektedir.

Av ve aver etkilesimleri genellikle lineer olmayan diferansiyel denklemler araciligi



ile ifade edilir. Dinamik sistem modellerinden biri olan av-avci denklem sistemleri
fark denklemleri, adi diferansiyel denklemler veya kismi diferansiyel denklemler
kullanilarak ifade edilebilir ve av-avci modelleri de diger dinamik sistem modelleri
gibi son yillarda popiilasyon modellerini daha dogru tanimlayabildigi ve av tiirleri ile
avcl tiirleri arasindaki iligskiyi gergege daha yakin modelleyebildigi icin kesirli

mertebeden tlirevler kullanilarak olusturulmaktadir.

Ekolojik sistemlerin kararliligi ve icindeki tiirlerin kaliciligi ekolojide temel
kaygilardir. Belli bir denklem veya denklem sistemleri icin baslangi¢ sartlari
degistirildiginde problemi yeniden ¢dzmek gerekir. Ustelik, sdz konusu o6zel
¢Oziimler bagimsiz degiskenin belli bir araliktaki degerleri i¢in gegerlidir, yani
bagimsiz degiskenin keyfi degerlerinde (degisken sonsuza da yaklasabilir) ¢oziimiin

ne oldugunu sdylemek kolay olmayabilir.

Av-avci problemleri gibi ¢ogu problem tiirlerinde merak konusu, problemin ¢oziimii
degil, ¢oziimiin karakteridir. Ornegin, baslangi¢ sartlarinin degisimi ¢oziimii nasil
etkiler, ¢6ziim periyodik midir, ¢o6ziimiin diferansiyel 6zellikleri nelerdir, asimptotik
olarak belli bir fonksiyona yaklasiyor mu gibi sorular merak edilmektedir. Bu

durumda incelenmesi gereken ¢oziimiin kararliligidir.

Bu tez ¢alismasinda, amacimiz av-avcl modellerinde iki aver arasindaki rekabetin ve
geri besleme kontrolii ile av-avci popiilasyonlarinin etkilesimini incelemektir. Bu
nedenle, ¢alismamizda av-avel problem modelini avci popiilasyonunu ikiye ¢ikarip

modele geri besleme kontrol degiskeni getirerek Caputo kesirli tiirevi ile inceledik.
Bu tez ¢alismasinda sirasiyla;
1. boliimde, gercek doga olaylarinin dinamik sistemler ile matematiksel
modellenmesinden, bu modelin bir 6rnegi olan av-avci modeli ve av ile

avci aralarindaki etkilesimden bahsedildi.

2. bolumde, ilk av avcr modeli olan Lotka-Volterra av-avcl modeli tanitila-



rak, av-avclt modelinin tarihsel gelisimi, daha once literatirde yapilan

calismalar ve analiz edilen sistemler incelendi.

boliimde, denge noktalari, sistemin kararliligi ve Caputo kesirli tilirev ile

ilgili temel tanim ve teoremler ifade edildi.

boliimde, geri besleme kontrol degiskeni igeren iki avci-tek av modeli q.
mertebeden Caputo kesirli tiireviyle modellenerek, olusturulan denklem
sisteminin denge noktalar1 arastirilmis ve bulunan denge noktalarinda

denklem sisteminin kararlilig1 ve sayisal ¢6ziimii incelenmistir.

. boliimde Caputo kesirli tiirev ile olusturulan av-avcr modelinin denge
noktalarinda denklem sisteminin kararliligiyla ilgi elde edilen teroremler

ifade edilmistir.

. bolimde yapilan c¢alismalardan elde edilen sonuglar ifade edilmistir.



BOLUM 2. AV-AVCI MODELLERININ TARIHSEL GELIiSIMi

Av ve avci gruplan arasinda var olan iligkinin incelenmesi Lotka-Volterra modeli ile
baslamistir. Av ve avci sistemlerini modelleyen ilk denklem sistemi 1925°te
Amerikali biyofizik¢i Alfred Lotka [1] tarafindan, kimyasal bilesiklerin salinimsal
davranis gosterdigi kimyasal bilesikleri ifade etmek; 1926’da Lotka’dan bagimsiz
olarak Italyan matematik¢i Vito Volterra [2] tarafindan, I. Diinya Savasi sirasinda
Adriyatik Denizindeki avci baliklar ile avcl baliklar tarafindan yenilen av baliklarinin
niifusundaki degisiklikleri incelemek icin gelistirilmistir. Avusturya ve Italya
arasindaki savas, ticari avlanmay1 duraksamaya ugrattigindan savastan dnceki yillara
oranla avci baliklarin niifusu artmis, av baliklarinin niifusu da azalmistir. Savas avci
baliklara fayda saglamistir. Savastan sonraki niifuslar1 da ifade eden klasik Lotka-

Volterra modeli diferansiyel denklem sistemi ile asagidaki gibi verilmistir;

dx_ by = x( by)

7¢ = ax — bxy = x(a - by),

d
d—i=—cy+dxy=y(—c+dx).

Avcinin avi besin kaynagi olarak se¢mesi durumunda aralarinda diismanlik iligkisi
baslamaktadir. Burada biri digerini avlayan, digeri ise farkli kaynaklardan beslenen
iki tiirden olusan ekolojik bir durumu (yemek igin rekabet etmiyorlar, ancak avci

besin kaynagi olan avi avliyor) incelenmektedir.

Ornegin, kapali bir ormandaki tilkiler ve tavsanlar diisiiniildiigiinde tilkiler tavsanlar:
avlar, tavsanlar ormandaki bitkilerle beslenir. Diger 6rnekler sdyledir; bir gélde avei
olarak levrek ve av olarak giines balig1, avci olarak ugur bocegi ve av olarak yaprak
biti verilebilir. Iki tiirii igeren bir modelin dogada tiirler arasinda meydana gelen

karmasik iligkileri tamamen tarif edemeyecegini tekrar vurgulayabiliriz. Bununla bir-



likte basit modellerin aragtirilmasi daha karmasik fenomenlerin anlagilmasina dogru

ilk adimdir. iki tiiriin etkilesiminin bir modelini olustururken;

1. Avcinin yoklugunda, av simdiki popiilasyonuyla orantili bir

hizda artar. Béylece; y = 0 oldugunda % = ax,a > 0 olur.

2. Av olmadig1 zaman, avci niifusu kendi niifusuyla orantili bir

hizda azalir ve yok olur. Bdylece; x = 0 oldugunda %=

—cy,c > 0 olur.

3. Av ve avcmin bir arada bulunmasi avci tiirlinlin niifusunun
artmasina yararken av niifusunun azalmasina neden olur. Av ve
avcl arasindaki karsilasma sayist  avlarin  ve avcilarin
popiilasyonlarinin ¢arpimi ile orantilidir. Bu karsilagsmalarin her
birisi avcmnin g¢ogalmasint desteklemeye ve avin c¢ogalmasinm
kisitlamaya egilimlidir. Boylece avcinin ¢ogalma hizi dxy
formundaki bir terimle artarken, avin ¢ogalma hizi —bxy

formundaki bir terimle azalir. Burada b ve d pozitif sabitlerdir.

Modelde x(t) ve y(t) sirasiyla t anindaki av ve avci popiilasyonlarini gosterirken,
a, b, c ve d sabitlerinin hepsi pozitiftir. a avin ¢ogalma hizini, ¢ ise avcinin Sliim
hizim1 gosterir. b ve d iki tiir arasindaki etkilesimin birbirlerine etkilerinin
Olctimleridir. b parametresi av ve avci karsilasmasi sonucu 6len av oranini, bx avcel
basina diisen avlanma miktarini, bxy ise avlanma sonucunda av popiilasyonunda
meydana gelen azalmayr gostermektedir. d parametresi av ve avcinin

karsilagmasinin, avel poplilasyonuna olan pozitif etkisini gostermektedir.

Modelde avciin sadece avi tiikettigi varsayildigi i¢in d parametresi avcl biiyliime
orani olarak da diisiiniilebilir. dx avci bagina diisen av tiiketim miktarint dxy ise avci
niifusunun tiikettigi toplam av miktarini gostermektedir. Her ne kadar bunlar olduk¢a

basit denklemler olsa da, genis bir problem sinifin1 karakterize eder [3].



Lotka-Volterra modeliyle birlikte av-avcr problemiyle ilgili bir¢ok arastirilmalar ya-

pilmis, yeni modeller iiretilmistir. Bu modeller iiretilirken av ya da aver popiilasyon
sayisini arttirilmis veya modele tasima kapasitesi, av siginagi, geri besleme, benzer
tiirden popiilasyonlarin bir arada olma etkisi, goc etkisi ve cevresel sartlarda

degisiklik gibi daha bircok degisken eklenerek arastirilmalar yapilmistir.

Av ve avcl poplilasyonlar1 arasinda belirtilen iliski, her iki popiilasyon i¢in dongii
olusturur. Ancak incelenen bazi modeller bu dongiiye olanak saglarken baz1 modeller
tiirlerden birinin yok olusunu ya da sinirsiz biiylimesini ortaya ¢ikarabilmektedir.
Modelde dongii olusmamasinin nedeni, modeldeki baslangi¢c sartlar1 ve secilen

parametrelerle iliskilendirilmektedir.

Literatiirde, av-avci modellerinde avlanma miktar1 islevsel tepki fonksiyonu,
avlanmanin avci popiilasyon biiyiime oranina etkisi ise nlimerik tepki olarak
adlandirilmaktadir. Belirli bir ortamda farkli popiilasyon tiirleri arasindaki etkilesimi
tanimlayan fonksiyona ise etkilesim fonksiyonu denir. Literatiirde bu fonksiyonlarin
her birinin iki tiir arasinda belirli bir birbirine ge¢gme tarzini acikladig farkh tiirleri
vardir [4,5,6,7,8]. x(t) ve y(t), srastyla t aninda av ve avci popiilasyonlarinin
yogunluklarin1 gostermek iizere ilk etkilesim fonksiyonlarindan biri a avcinin
saldirma orani olmak tizere ax(t)y(t), Holling I etkilesim fonksiyonudur. Bu
fonksiyon literatiirde en ¢ok kullanilanlardan biridir. Ancak bu etkilesim
fonksiyonuyla avin avci tarafindan tiiketilmesinin dogadaki gercek sartlarla

bagdasmayan sinirsizlig1 gergek etkilesimi tam olarak yansitmamaktadir.

Holling tarafindan yapilan diger calismada [4], avci tarafindan av tiikketiminin

ax(t)y(t)

smirsizligi Holling 11, 1+atpx(t)

etkilesim fonksiyonuyla ortadan kaldirilmigtir.

Burada t; avcinin bir avi ortalama avlanma stiresidir.

Literatiirdeki diger etkilesim fonksiyonlari agagida listelenmistir;

a(x(®)*y(t)

Holling IIT etkilesim fonksiyonu 570~ 71

[91,



a(x(®)*y(t)

Genellestirilmis Holling III etkilesim fonksiyonu oo (D)3 (xO) [10],

ax(t)y(t) [11]

Beddington-De Angelis etkilesim fonksiyonu T X (D) +ox D)

. o . ax(®)y(®)
Ratio-Dependent etkilesim fonksiyonu Dy D) [12,13].

Etkilesim fonksiyonlarindaki tiim parametreler pozitiftir. Fonksiyonlardaki bu biiyiik
cesitliligin sebebi problemdeki c¢evresel sartlarin ¢esitliliginden kaynaklanmaktadir.
Bu parametrelerin se¢imini etkileyen faktorlerden bazilari, avin davranisi, avcinin
davranisi, av ve avcinin birbirleriyle etkilesimi ve ¢alisilan alandir. Calisilan alan i¢in
nehirler (su mevcudiyeti), yiyecek (av i¢in) ile av ve aveinin yogunlugu gibi bir¢ok

bilesen 6nemli rol oynar.

C.S Holling, Lotka-Volterra sistemini, b, ¢, d pozitif birer katsay1 olmak iizere

dx

x
E: r(l —E)x—bxy,
dy
T y(—c + zx),

seklinde diizenlemistir [4]. Burada; r, artan av popiilasyon oranini gosteren pozitif
sabit ve k ise poplilasyon yogunlugunun tasima kapasitesidir. Holling, bu denklem
sisteminin diger av popiilasyon modellerinden daha iyi oldugu sonucuna varmistir. x

kiictildiikge, kaynaklar i¢in popiilasyon tiirleri arasinda rekabet ¢ok azdir. Cilinkii
1 —% degeri 1’e yaklasir ve r(l —z) degeri r’ye yaklagir. x artarken tiirler
arasinda rekabet azalir yani 1 — % degeri 0'a yaklasir ve birey bagina tireme oran1 0'a

yaklasir.

Holling ve arkadaslarmin ¢alismalarinda, smir kapasitesine ulasana kadar av
yogunlugunun artmastyla birlikte aveiligin da arttigi goriilmiistiir. Cok fazla av

oldugunda avcilar daha fazla av 6ldiiremeyeceginden dolayi;
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fonksiyonuyla, av orani temsil edilmektedir.

James Tanner [14], bu diizenlemeleri dikkate alarak caligmalarin1 genigletmistir.
Burada w ve r sabitleri avin az olmas1 durumunda avcinin avlanma ihtiyacinin ne
kadar hizli arttigimmin belirlenmesi i¢in kullanilan degerlerdir. r avcinin av arama
stiresi, w ise maksimum avlanma orani olarak ifade edilir (yani x sonsuza gittiginde
avlanma limiti). Avlanma icin bu yeni modelle birlikte sistem yeniden diizenlenirse

a, ¢, d pozitif birer katsay1 olmak iizere Holling -Tanner modeli;

dx_ (1 x) X
dt_a k ywr+x'
d

d—{=y(—c+zx),

seklinde olur.

Bazi arastirmacilar av si§inaginin av-avci modelleri i¢in etkilerini arastirmis ve av
siginagimin av-avcl etkilesimi lizerinde olumlu bir dengeleyici etkisi oldugu aym
zamanda av popiilasyonunun kismen avcilardan korunabilecegi sonucuna

varmiglardir [15,16].

Ma [7] tarafindan yapilan ¢alismada, sabit bir av siginagi iceren bir av-avcl denklem

sistemi asagidaki sekilde incelenmistir;

dx(t) x

It =rx (1 _E) —c(x — R)y,
dy(t)
TR —dy + e(x — R)y.

Buradaki x(t) ve y(t) avin ve avcinn ilgili popiilasyon yogunluklaridir, R ise av

popiilasyonunun sigimakta saklanma miktaridir. Bu denklem sisteminde t ve denklem
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sistemiyle ilgili biitiin diger parametreler pozitiftir.

Kesirli mertebeden denklem sistemleri, yalnizca matematikte geleneksel tam say1
mertebeli denklem sistemlerinin bir uzantis1 degil ayn1 zamanda bellek ve kalitsal
Ozellikler gibi tam sayr mertebeli denklem sistemlerinin sahip olmadigi bazi

degerlere sahiptir [17,18].

Bilindigi gibi bir¢ok biyolojik sistem bellege sahiptir [19]. Tam sayili mertebeden
denklem sistemleri ile karsilastirildiginda kesirli mertebeden denklem sistemleri
popiilasyon modellerini daha dogru tanimlayabilir ve av tiirleri ile avci tiirleri
arasindaki iliskileri gercege daha yakin olarak ortaya koyabilir [20,21]. Ek olarak,
kesirli sirali tiirevler bir¢ok disiplinler arasi alana da yaygin olarak uygulanmistir.
Ahmed ve ark. [20] yaptiklar1 ¢alismada asagidaki gibi Lotka-Volterra av-avci

denklem sisteminin kesirli av-avci sistemi haline getirmistir;

SDfx(t) = x(r — ax — by), x(0) = xo,

sDIy(t) =y(—d +cx),  y(0) =y,

Buradaki 0 < g < 1 i¢in (C,D;2 q. mertebeden Caputo kesirli tiirevi olmak tlizere x >

0 ve y = 0 sirastyla av ve avei niifuslaridir ve 7, a, b, ¢, d pozitif sabitlerdir.

Tam say1 mertebelii tiirev iceren Leslie-Gower av-avcl modeli, x; av popiilasyonu ve

X, avci poplilasyonu olmak iizere;

dx; X, a X1 Xy
= T‘x1 ( ) -

dr d/ ny+x’
dx, (1 a,x, )
T ny, + x5/
seklindedir [22].

Caputo kesirli tiirevi igeren Leslie-Gower av-avcl modeli ise;
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c _ ay o
( Dg+x)(t) _x(l_k+x_r+x)'
(DLy)(®) = vy (1 - kﬁ%)

olarak modellenmistir [23]. Burada a,f,k, 0,7 ve y pozitif parametrelerdir ve q €

(0,1) dir.

Av-avct modellerinde incelenen modelin denge degerinin bazen istedigimiz sey
olmadigini, belki de daha kiiciik bir degerin bazi durumlarda aranan deger oldugunu
unutmayalim. Bu durumda biyolojik kontrol stratejisi kullanilarak uygulanabilecek
bir geri besleme kontrol degiskeni getirerek modeli yapisal olarak degistirebiliriz
[24,25]. Son yillarda geri bildirim kontrollerine sahip popiilasyon modelleri ve
biyolojik modeller yaygin olarak incelenmistir [26,27]. Li ve ark. [28] tarafindan
yaptiklar1 ¢alismada, sabit bir av siginagi ve kontrol degiskeni igeren sistemi

asagidaki sekilde incelenmistir;

§Dix(t) =x(r—ax) —b(x—R)y —cu,  x(0) = x,,

§D{y(t) = —dy +e(x —R)y,  y(0) = y,,
SDMu(t) = —ku+mx,  u(0) = u,.

Burada x(t) ve y(t), t zamaninda avin ve avcinn ilgili popiilasyon yogunluklari
oldugunda, u(t), t zamaninda av popiilasyonu geri besleme kontrol degiskenini
belirtir; 7, av poplilasyonunun igsel bilylime oranini; a av popiilasyonunun spesifik
olmayan rekabet katsayisini; b, avcilarin av popiilasyonuna saldir1 oranini; e
tilkketilen avlar1 yeni avciya doniistliren avcilarin etkinliging; d, aveilarin 6liim oranini

belirtmektedir. R ise avin saklanma miktarini belirtir.

Ug tiire sahip av ve avcl modelleri bircok arastirmacinin ilgisini ¢ekmistir. Cevrede
i¢ ice gegme sadece iki popiilasyonla siirli degildir ancak etkilesimler tek bir yerde
ikiden fazla tiir arasinda tanimlanabilir. Bu bakis a¢isina sahip bilim insanlar1 son
yillarda bu tiir kompleks etkilesimleri modellemek iizerine calistilar. Ornek olarak;

iki tiir av ve bir avct modeli verilebilir. Burada avci her iki av popiilasyonunu da
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avlama kapasitesine sahiptir [29]. Dahasi av-avci-siiper aver modellerinde avci
yalnizca avdan beslenirken siiper avci hem avdan hem avcidan beslenir [30]. Bazi
modellerde bir av iki avci arasindaki etkilesim incelenmistir. Burada iki tiir ayni
avdan beslenir ve avci hayvanlarin dogasi geregi bu tek avi yakalayabilmek igin
stirekli bir miicadele halindedirler. Gergek durumlarda, bir avcinin kendi avlanma
bolgesini belirledigi goriilmektedir. Bu tiir bolgelerde baska yirticilarin varhigi
kesinlikle kabul edilemez. Bu duruma rekabet denir. Rekabetin bulundugu modeller,

birgok arastirma makalesinde de biiyiik ilgi gérmiistiir [8,31].

Dijilali ve ark. [32] yaptiklar1 calismada iki aver bir av igeren av-aver modeli Caputo

kesirli tiirevi ile asagidaki gibi incelemistir;

X (1-3) = fGy - 9@
qre =X . fx)y —gx)z,
dty

Jpe = af )y =y - Byz,

déz

Jre = 29()y — iy —yyz.

Burada tek avci igeren denklemlerden farkli olarak sisteme iki aver tiirtiniin kendi

arasindaki rekabet katsayis1 eklenmistir.



BOLUM 3. TEMEL KAVRAM VE TEOREMLER

3.1. Ozdeger ve Ozvektorler

A,n X n tiirtinde reel degerli sabit bir matris olsun ve S biitiin, n X 1 tiiriinde sabit

kolon vektorlerini gostersin. x € S bilinmeyen vektdr ve A bir say1 olmak {izere;

Ax = Ax

denklemini gz oniine alalim. Agik olarak, 0 vektorii bu denklemin her A sayisi igin
bir ¢Ozlimiidiir. A sayisinin bazi degerlerine karsilik gelen, Ax = Ax denklemini
saglayan ve sifir olmayan bir x € S vektoril i¢in saglaniyorsa, bu durumda A ya A

matrisinin bir 6zdegeri, x vektoriine de A matrisinin bir karakteristik vektorii denir.

aq i, v Qqp

a a e Ao
A=00 F0 T )

ap1 Qpz ... Qpupn
A\~

X1

X3
x=1 .

Xn

a;; Qq2 . Qqp X1 X1
a21 a22 aZTL xZ xz

ani Qan2 v Qpp Xn Xn
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veya
a11x1 + a12x2 + A + alnxn /1X1
alel + azzxz + + aann _ sz
Ap1X1 + ApaXy + o+ AppXy Axy,

biciminde yazilir. Bu iki esit matrisin karsilikli bilesenleri esitlenip diizenlenirse,

(ay; = A)xg + agpx; + -+ agpx, =0

az1%1 + (A — )X + -+ azpx, =0

An1X; + AppXy + -+ (A — Dx, =0

(3.1)

denklem sistemi bulunur. Asikar olmayan bir ¢6ziim aradigimizdan (3.1) denklem

sisteminin katsayilar matrisinin determinanti sifir olmalidir. O halde

(a;; —4) Ay Qin
az1 (azz = 4) d2n =0
anq oY) (ann - /1) (3-2)

olmalidir. Bu determinant matris notasyonu yardimiyla

|A—2AIl =0

seklinde yazilabilir, burada I,n X n tiirlinde birim matristir. Bdylece Ax = Ax
denkleminin belli bir A degerine karsilik sifir olmayan bir x vektor ¢oziimiine sahip
olmasi i¢in gerek ve yeter sart Anin n. dereceden (3.2) polinom denklemini

saglamasidir.

Tamm 3.1. A = (al- j), n Xn tiriinde bir reel matris olsun. (3.2) denklemine A

matrisinin karakteristik denklemi denir. A matrisinin 6zdegerleri (3.2) denkleminin
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kokleridir.

Tanim 3.2.

dx

Ez F(X,y)

ay _
dt - G(X,y) (33)
denklem sistemini ele alalim.

F(X'O,yo) = 0 ve G(xO'yO) = 0

esitliklerini saglayan (x,,y,) noktalarina (3.3) denklem sisteminin kritik noktalari

denir. Kritik noktada garanti olan tek ¢éziim x = xg, y = y, sabit ¢oziimiidiir [33].

(3.3) denklem sistemine esdeger olan lineer olmayan denklem,

d’x ( dx)
TANET (3.4)
seklindedir.

x ekseni lizerinde hareket eden birim kiitleli bir pargaciktan olusan dinamik sistem
disiiniiliirse ve f (x, %) de ona etki yapan kuvvet ise bu durumda (3.4) denklemi

parcacigin hareket denklemidir. (3.4) denklemi ya da ona esdeger (3.3) denklem

sisteminin kritik noktalar1 (0, x,) noktalaridir.

dy _ d?

. . o .. dx X . ..
Boyle bir nokta pargacigin hareketinin hem o hiz1 hem de 1. = 7.z lvmesinin stfir

oldugu bir duruma karsilik gelir. Dolayistyla parcacik hareketsiz durumdadir ve bu
ylizden pargacik denge durumundadir denir. Bu nedenle kritik nokta yerine denge

noktasi terimi de kullanilir.
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Tanim 3.3. (xg, Y), (3.3) denklem sisteminin kritik noktasi olsun. C : [x(t), y(t)],

(3.3) denklem sisteminin bir yolu olmak iizere;
tlim x(t) = x, ve L}im y(t) =y, (3.5)
ise; bu durumda t — oo a giderken C yolu (x,, yo) kritik noktasina yaklasiyor denir.

Tanim 3.4. (x,, V), (3.3) denklem sisteminin kritik noktas1 olsun ve (3.5) esitlikleri

saglansin;

y(®) = o
t-o0 x(t) — X

limiti mevcut ya da t — oo i¢in bu oran pozitif ya da negatif sonsuz ise bu durumda

t = oo igin C yolu (xy, ) kritik noktasina giriyor denir.

3.2. Denge Noktalarinin Bulunmasi

(dx
— = filxy )
dx

4 d_t2 = fo(x1, oo, Xy)
dx '

\d_tn = fn(xl' ""xn)

diferansiyel denklem sisteminde t bagimsiz degisken, xq, ..., x,, bagiml degiskenler
ve fi,f2 -, fn strekli ve kismi tiirevlere sahip fonksiyonlardir. Bu denklem

sistemini;

X1 fi
x(@®) ={ "2 ve F(x) = {2

Xn fn
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vektorleri ile en genel formda,

olarak ifade edersek; F(X) = 0 sartinu saglayan dinamik bir sistemin X sabit vektorii

denge noktasi olarak adlandirilir. i = 1,2, ...,n igin

dxi -0
dt |z

denkleminin sonucu olarak, x(t) = X sabit fonksiyonu dinamik sistemin bir

¢Ozimiudiir.

Genellikle denge noktalar1 civarindaki sistemin davranisi ile ilgileniriz ve denge
noktalarinin civarindaki yoriingeler bu noktalara yakinsiyor ise sistem asimptotiksel
olarak kararli denir. Denge noktalarmin civarindaki yoriingeler bu noktalara 1raksiyor
ise kararsiz ya da denge noktasi civarinda bir yoriingede kaliyor ise kararli fakat
asimptotiksel olarak kararli degil denir. Kritik nokta olmayan bir noktadan baslayan
sistem sonlu zaman sonra kritik noktaya ulagsamaz. Ayrica kritik nokta olmayan en az
bir noktadan gecen yoriinge periyodik c¢oziime karsilik gelen kapali bir egri

olmadikg¢a kendini kesmez.

Dort temel denge noktasi cesidi bulunmaktadir. Bunlar; diigiim noktasi, semer

noktasi, merkez nokta ve sarmal noktadir.

1. Diigiim Noktasi: Yollarin dort tane yar1 dogru ve parabol benzeri egrilerden
olustugu bir denge noktasi1 diiglim noktasidir. Boyle bir noktaya t — oo (ya da

t — —o0) icin her bir yol ile yaklasilir ve girilir.

2. Semer Noktasi: Yollarin dort tane yar1 dogru ve hiperbol benzeri egrilerden
olustugu bu denge noktasi bir semer noktasidir. Bdyle bir noktaya t — oo i¢in

iki yar1 dogru boyunca, t - —oo boyunca diger iki yar1 dogru i¢in yaklagsma
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ve girme yoktur.

3. Merkez Nokta: Bir kapali yol ailesi ile ¢evrili her bir denge noktasi merkez
noktadir. Boyle bir denge noktasina t — o ya da t —» —oo i¢in yaklagsma ve

girme yoktur.
4. Sarmal Nokta: Etrafinda sarmal bicimde sonsuz sayida donen yollar ile
cevrili bir denge noktasi sarmal noktadir. Boyle bir noktaya bir yol boyunca

t » oo yadat —» —oo i¢in yaklagma vardir ancak girme yoktur.

3.3. Denge Noktalarinin Kararhihig:

(dx

P a,x + by

dy

qr - BX + b,y (3.6)

denklem sistemi ele alindiginda; a4, a,, by, b, katsayilar reel sabitler olmak iizere

a,b, — a,b; # 0 ise sistemin tek denge noktasi (0,0) noktasidir.

(3.6) denklem sisteminin karakteristik denklemi,

/12 - (a1 + bz)ﬂ + a1b2 - a2b1 = 0

olmak iizere bu karakteristik denklemin kokleri A; ve A, 6zdegerleri olsun. Buna
gore (3.6) denklem sisteminin denge noktasinin yapisint 4; ve A, denkleminin
koklerinin yapisiyla belirlenecegi agiktir. 1; ve A, koklerinin yapisiyla ilgili ortaya
¢ikan durumlar incelendiginde denge noktasinin kararliligryla ilgili sartlar asagidaki

sekilde elde edilir.

1. A4 ve A, kokleri farkli reel say1 ve ayni isaretli olsun. Bu durumda (0,0)
denge noktasi bir diiglim noktasidir. Ayrica 1, 4, < 0 ise denge noktasi

asimptotik kararlidir. 14, 1, > 0 ise denge noktasi kararsizdir.
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2. A1 ve A, kokleri farkli reel say1 ve zit isaretli olsun. Bu durumda (0,0)
denge noktast bir semer noktasidir. Semer noktasinda bir 6zdeger
kararlilik bolgesinde olmasina ragmen diger 6zdeger kararlilik bolgesinde

olmadig1 i¢in semer noktasi kararsiz olur.

3. A4 ve 4, kokleri sirf sanal olmayan eslenik kompleks say1 ise bu durumda
(0,0) denge noktas1 bir sarmal noktadir. Ayrica A, A, = a * ib olmak
tizere a < 0 ise denge noktas1 asimptotik kararli, a > 0 ise denge noktas1

kararsizdir.

4. A4 ve A, kokleri esit reel say1 olsun. Bu durumda (0,0) denge noktast bir
diigim noktasidir. Ayrica 4; = A, <0 ise denge noktasi asimptotik

kararli, A; = A, > 0 ise denge noktasi1 kararsizdir.

5. A1 ve A, kokleri sirf sanal olsun. Bu durumda (0,0) denge noktas1 bir

merkez nokta olup kararsizdir.

6. (0,0) denge noktasinin kararli olmasi; her iki A; ve A, kokiiniin pozitif
olmayan reel kisimli olmasi ile ve asimptotik kararli olmasi her iki

kokiinilin negatif reel kisimli olmasi ile esdegerdir.

n sayida denklemin olusturdugu,

() _
xl —_ a11x1 + a12x2 + + alnxn

le(t) = ay1X1 + AyrXy + -+ anxn

X' (£) = Qpy Xy + AppXy + o0 + A Xy (3.7

sabit katsayili lineer homojen denklem sisteminin, (i = 1,2,3,...n) olmak iizere

x;'(t) = 0 ¢6ziimii i¢in,
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all - A a12 al'l’l
a21 a22 - /1 a’ZTl — 0
. )

an1 An2 Ann-2

karakteristik denkleminin koklerine gore kararlilik sartlart asagidaki gibi ifade

edilebilir.

1. Tim koklerinin (birinci veya k. dereceden kok) reel kisimlari negatif
oldugunda asimptotik kararlidir (reel kokler de kompleks say1 olarak
distiniliir);

2. Koklerinden en az birinin reel kismi sifirdan biiyiik oldugunda kararsizdir;

3. Tum kokleri birinci dereceden ayni zamanda reel kismi sifir veya bir
boliimiiniin sifirdan kiiciik, bir boliimiiniin ise reel kismu sifir oldugunda
marjinal kararlidir ancak asimptotik kararl degildir;

4. Yukaridaki segeneklerin kapsamadigi tiim durumlarda kararsizdir.

Tammm 3.5. [17] Bir & fonksiyonun . mertebeden Riemann- Liouville kesirli

integrali asagidaki sekilde tanimlanir;

6 (E) = ——
ot r(q)

J(t —s)41 g(s)ds, q>0.
0

BuradaI'(.), I'(z) = [ OOO e~ 't?~1 dt seklinde tanimlanan Gamma fonksiyonudur.

Tanim 3.6. [17] Bir & fonksiyonunun q. mertebeden Caputo kesirli tiirevi asagidaki

sekilde tanimlanir;
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cp4 :;t_n——l M)
0P80 =m0 Of (¢ — )" EW(s)ds.

Burada n — 1 < q < n i¢in n pozitif bir tamsay1 ve £€™(s), £(s) nin n. mertebeden
tiirevidir. Ozel olarak 0 < q < 1 oldugunda;

DI = 1= j (£ =) §ds

elde edilir.

Lemma 3.1. [17] Caputo kesirli tiirevi; gODfE(t) nin integrallenebilir olmasi

durumunda,

" (0
oIf §DIE) = £1) —ZE D

dir. Ozel olarak 0 < q < 1 igin,

¢ §DFE() = £(t) — £(0)
elde edilir.
3.4. Kesirli Analizin Temel Teoremi
Caputo tiirevinin en 6nemli uygulamalarindan biri kesirli diferansiyel denklemlerdir.
Tam say1 mertebeli olmayan tiirevlerle baslatilan Riemann-Liouville tiirevli kesirli
diferansiyel denklemlerin aksine, Caputo'nun tiirevine sahip bir kesirli diferansiyel

denklem (veya bir kesirli diferansiyel denklemler sistemi) i¢in bir baslangi¢ deger

problemi su sekilde formiile edilebilir:
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DL y(@®) = f(t,y(D),

y(to) = Y0, 5" (t0) = 0@, e, y I (t) = y, ™.

Burada, f(t,y)nin siirekli oldugu varsayilir ve vo,yo™, ..., o™ D (t,) tiirevleri
y(ty) 1n t, noktasindaki tiirevinin degerleridir. Agikga kesirli tiirevlere gore daha net
bir fiziksel anlama sahip olduklarindan, tam sayr mertebeden tiirevlerin atanmis
degerleri ile kesirli diferansiyel denklemi baslatmak daha faydalidir. Riemann-

Liouville OI?0 integralinin denklem sisteminin her iki tarafina uygulanmasi; y(t)

fonksiyonun t, merkezli (m — 1) dereceli Taylor polomu olmak {iizere,

(t—to)"
k!

TN CEDY
k=1

ve
ol §DEY () = y(£) = Tynoa [y3 £0] ()

ile birlikte kesirli diferansiyel denklemin;

1 t
y(©) = i tol(0) + s f (¢ — )71 £(s,y(s))ds

olarak yeniden formiile edilmesine yol acar [34].
Lemma 3.2. [35] v(t), [0, )iizerinde siirekli fonksiyon olma sartlarini saglarsa
SDlv(t) < Ov(t)

elde edilir. Burada 0 < q < 1 ve 8 sabittir ve
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v(t) < v(0)E,(6t9), VE=0
elde edilir.
Tanmm 3.7. z # 0 ve z € C olmak iizere bir z = x + iy kompleks sayisini orijine

birlestiren dogrunun reel eksenle pozitif yonde yaptig1 ac1 € olsun. Bu z kompleks

say1s1 i¢in,
_ y
0 = arctan (;)

esitligi saglaniyorsa bu durumda 6 sayisina z nin argiimenti denir. Eger 0 < 0 < 2m

ise bu durumda 6 ya esas argiiment denir ve Arg(z) = 6 seklinde gosterilir.

Lemma 3.3. [36] q. mertebeden kesirli denklem sistemini;

§D{z(t) = f(2),

z(0) = z,,
g0z Oniine alalim.

Burada 0 < g <1 ve zeR"™ dir. Bu kesirli mertebeden denklem sisteminin denge

noktast f(z) = 0 denklemi ¢oziilerek hesaplanabilir. Eger denge noktalarinda | =

Z—/: Jacobian matrisinin biitiin A; 6zdegerleri Matignon sartini,
qm
|ArgA;| > Dk

saglarsa denklem sistemi bu noktalarda yerel asimptotik kararhidir.

Teorem 3.1. [28] Sistemin karakteristik denklemi A2 + (k —1)A+cm —rk =0

ise agagidaki kriterlerden herhangi birinin saglanmasi durumunda sistem denge nok-
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tasinda yerel asimptotik olarak kararlidir.

1. k=2rverk <cm,

2. k<r, tk<cm, (k+71)?<4cmve

— —(k—=71)2
0<g< %arctan (‘/4(”” rh)-(k-1) )

r-k

Teorem 3.2. [28] Sistemin karakteristik denklemi A% + (k —7)A+ cm —rk = 0 ise
asagidaki kriterlerden herhangi birinin saglanmasi durumunda sistem denge
noktasinda yerel asimptotik olarak kararhdir.

1. k*+rk—2cm=>0verk >cm,

2. k*+rk—2cm<0verk >cm, (k? +rk —2cm)? < 4k?(rk — 2cm)

Jak2(rk—2cm)—(k2+rk—2cm)?2
2cm—k2-rk ’

ve< q < %arctan(
3.5. Routh-Hurwitz Kararhhk Kriteri
Routh-Hurwitz kararlilik kriteri bir denklem sisteminin kararkteristik denklemini
cozmeye gerek kalmadan denklem sisteminin kararliligimi veya kararsizligim
gosterir. Bu kriter sadece sonlu sayida terime sahip karakteristik denklemlere
uygulanabilir.

L(D) = y(n) + aly(n_l) + o+ apy = 0 (38)

denklemini goz oniine alalim. Burada aq, a,, ..., a,, katsayilar reel sabitlerdir. (3.8)

denkleminin ¢6ziimlerinin asimptotik davranig1 onun
LA =2+ a A"+ + a,_1A+a,

karakteristik polinomunun koklerinin yapisina baghdir.
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Reel katsayili,

M+a A+ o+ aAta, =0

karakteristik denkleminin koklerinin tiimiiniin reel kisimlarinin negatif olmasi i¢in
gerek ve yeter sart asagidaki n X n boyutundaki Hurwitz matrisinin biitiin asli

kosegen mindrlerinin pozitif olmasidir.

s 1 0 0 0 0 0 0
a; a, a 1 0 0 O 0

o 0 O o0 0 0 0 o0 au

Hurwitz matrisinin biitiin asli kosegen mindrleri asagidaki gibidir:

g 1 aa 1 0

1

Dl = |a1|, DZ = a a |’ D3 =l|as a, a4, ...,Dn = detHn.
S as a4 4z

Burada D, =a,D,,_; oldugundan D, >0, D, >0,...,D, > 0 sartlarindan

sonuncusu a,, > 0 sart1 ile degistirilebilir [37].

Tanmm 3.8. (3.8) denkleminin L(A) karakteristik polinomunun koklerinin timii

negatif reel kisimlara sahip ise bu durumda L(D) polinomuna kararlidir denir.

Teorem 3.3. (3.8) denkleminin L(A) karakteristik polinomunun koéklerinin tiimii
negatif reel kisimlara sahip ise bu durumda diferensiyel denklemin y = 0 asikar

¢Ozlimii asimptotik kararhdir.

3.6. n. Dereceden Polinomlarim Diskriminanti

n. dereceden;



) =x"+ax" 1+ +ax"t+ - +a,

polinomu i¢in genel diskriminant ifadesi;

nn-1)
M) =(-1) Z

seklinde tanimlanir [38].

0 n
: (n—Day
1 (n—2)a,
a; :
a, :
: An-1
: 0
0 :
An-1
an 0
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n—1Day
(n—2)a,




BOLUM 4. AV-AVCI MODELININ CAPUTO KESIiRLi TUREV
ILE INCELENMESI

Bu boéliimde g.mertebeden Caputo kesirli tiirev ile geri besleme kontrol degiskeni
iceren iki avci-tek av modeli incelenmistir. {1k olarak Caputo kesirli tiirev ile av-avci
modeli olusturularak daha sonra bu modelin denge noktalar1 incelenmis ve bulunan

denge noktalarinda modelin kararlilig1 incelenmistir.

4.1. Geri Besleme Kontrol Degiskeni ile iki Aver-Tek Av Iceren Modelin Caputo

Kesirli Tiirev ile Incelenmesi

0 < g <1 olmak iizere gq. mertebeden Sth Caputo kesirli tiirevi ile asagidaki

sistemi goz Oniine alalim.

ena rX
6D x(t) = x (r —ax — ?) — f)y —gx)z —cu, x(0) = x,,
D/ y(®) = erf )y —my —Byz,  y(0) =y,
6D/ 2(t) = e29(x)z — oz —yyz,  2(0) =z,
’ 4.1)

ngu(t) = —hu + mx, u(0) = u,.
(4.1) denklem sisteminde f ve g fonksiyonlar1 asagidaki sartlar1 saglar;

1. f(0)=0, g(0)=0

2. x>0i¢in f'(x) >0, g'(x)>0. (4.2)

Burada; §D/, q € (0,1) olmak iizere q. mertebeden Caputo kesirli tiirevini x(t), t
zamaninda av popiilasyonun yogunlugunu; y(t) ve z(t) swrasiyla t zamaninda

birinci avcl ve ikinci aveilarin popiilasyon yogunlugunu; u(t), t zamaninda av
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popiilasyonu i¢in geri besleme kontrol degiskenini; r, av popiilasyonunun igsel
bliylime oranmini; a, av popiilasyonunun tiir i¢i rekabet katsayisini; £, av
poplilasyonu i¢in uzayin tasima kapasitesini; e;, av biyokiitlesinin birinci avci
poplilasyonuna doniisiim oranini; e,, av biyokiitlesinin ikinci avci popiilasyonuna
doniislim oranini; p4, birinci aver popiilasyonun 6lim oranini; p,, ikinci avci
poplilasyonun Oliim oranini; [, birinci aver popiilasyonunun ikinci avci
poplilasyonuyla rekabet oranini; y, ikinci avci popiilasyonunun birinci avci
popiilasyonuyla rekabet oranini;  f(x), birinci aver poplilasyonunun av
popiilasyonuyla etkilesim oraninmi; g(x), ikinci avcr popiilasyonunun av

popiilasyonuyla etkilesim oranini gostermektedir. Burada tiim parametreler pozitiftir.
4.2. 1ki Avel-Tek Av Modelinin Denge Noktalar1

Bu kisimda (4.1) denklem sisteminin yerel davranis1 incelenecektir. Oncelikle (4.1)
denklem sisteminin ¢oziimleri olan asagidaki sistemin ¢oziimleri bulunarak, (4.1)

denklem sisteminin denge noktalar1 bulunacaktir;

0= x(r —ax —E) —f(x)y—gx)z—cu,
k
0=ef(x)y —my—Byz
0=e,9(x)z — Uz — yyz, (4.3)
0 = —hu + mx.
1. (4.1) denklem sisteminin her zaman E;(0,0,0,0) denge noktas1 vardir.

Bu durumda E; denge noktasi, ii¢ popiilasyon tiiriiniin yok olusunu

temsil eder.

2. Iki aveinin da olmadig1 denge noktast E; (x4, 0,0,u;) olmak iizere bu
denge noktasi iki avcinin da neslinin tilkenmesi anlamina gelir. E;

denge noktasina yirtict olmayan denge noktasi denir. Burada,
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k(rh—cm) km(rh—cm)
1 -, 1 == 2— dlr.
h(ak+r) h4(ak+r)

Birinci avcinin yok oldugu ikinci aveinin var oldugu denge noktasi,

E,(x,,0,2z,,u,) denge noktasidir. y =0 degerini (4.3) denklem

sisteminin iiglincii denkleminde yerine yazarak x, = g1 (?), U, =
2

m

o gt (?) bulunur. Burada, g fonksiyonu birebir ve 6rten oldugundan
2

g~! ters fonksiyonu vardir. Bu son sonucu (4.3) denklem sisteminin

ilk denkleminde yerine yazarak,

rx, cm
eas (r — ax, - 32— )
Zz =
U2
elde edilir. z, degerinin pozitif olmasi i¢in x, < kTh=em) - o lmast
- 2 h(ak+r)

k(rh—cm)

gerekir. Boylece x, < “h(ak+r)

saglandiginda birinci avcinin olmadigi

ama av ve ikinci avci tiiriiniin birlikte yasadigi pozitif bir dengenin var

oldugu bilgisine ulasabiliriz.

Ikinci avcidan arinmis, birinci aveimin var oldugu denge noktast,

E5(x3,V3,0,u3) noktasidir. z = 0 degerini (4.3) denklem sisteminin

ikinci denkleminde yerine yazarak x; = f~! (%), Uz = % f1 (%)
1 1

bulunur. Burada f fonksiyonu birebir ve orten oldugundan f~1 ters
fonksiyonu vardir. Bu son sonucu (4.3) denklem sisteminin ilk

denkleminde yerine yazarak,

rX3 cm
exs (1 —axz — > — 5~

Uy

Y3 =

k(rh—cm)

elde edilir. y; degerinin pozitif olmasi i¢in x5 < hakir)

saglanmasi

gerekir.
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k(rh—cm)

X3 < h(ak+r)

olmasi biyolojik agidan birinci avci ve avin birlikte

yasadiklar1 pozitif dengeyi verdigi i¢in Onemlidir. Bu durumda,

k(rh—cm)

E5(x3,v3,0,u3) denge noktasinin varhgmda x; < T

oldugu

sonucunu elde ederiz.

f(x) ve g(x) fonksiyonlari (4.2) denklemleriyle verilen (1) ve (2) sartlarin1 sagladigi

icin x’e gore artan fonksiyonlardir. x, ve x5 degerleri igin eger lim f(x) = b, ve
X—00

u

lim g(x) = b, ise parametreler lizerinde = < b; ve % < b, sart1 daha ortaya ¢ikar
X—00 2

ki bu f(x) =

sarttir.

e1

U1

o Ve glx) = g—j denklemlerinin bir ¢éziime sahip olmasi i¢in gerekli

Simdi {i¢ tiiriin bir arada varolus dengesini inceleyelim. Ug tiiriin bir
arada yasadig1 pozitif denge noktas1 E, = (x*,y", z*,u"), asagidaki

denklem sisteminin pozitif ¢oziimleridir.

O=x(r—ax—%)—f(x)y—g(x)z—cu,

0=ce f(x)—p — Pz
0=-eg(x) —u —yy,
0 = —hu + mx.

(4.4)

(4.4) denklem sisteminde 0 = e, g(x) — u, — yy esitliginden,

. (=5} 125 (45)
=24 -4
Y Y g |4

esitligini elde ederiz. Daha sonra, 0 = e; f(x) — u; — Bz esitliginden,

7t = % £ — % (4.6)
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esitligini elde ederiz.

Buldugumuz (4.5) ve (4.6) degerlerini, (4.4) denklem sisteminin ilk
denkleminde yerine yazarak, F;(x) = F,(x) sonucuna ulasiriz.

Burada;

rXx cmx
)

F;(x) =x(r—ax—?

R = 09 (- 7) - (%f(x) - %g(x))

olarak elde edilir.

Boylece, F; (x) fonksiyonu i¢in asagidaki sonuglar elde edilir.

k(rh —
F(0) = Fy (%) =0,
i h(ak + 1)
A=Y kGh—em)
k< , X > h(T—FT‘) ise

Iki egri arasinda, degiskenlerin sifir olmadig1 en az bir kesismeyi garanti etmek igin
X, =gt (%) ve x5 = f1 (%) olmak iizere, F;(x) ve F,(x) fonksiyonlar1 igin
2 1

asagidaki sartlar1 ele alabiliriz.

% = max{xy, x3} icin F, (%) > F,(%) ve FZ(

k(rh—cm)
h(ak+7) ) > 0.

k

x +T+ax

<f(x)g(x)(%—%)—(%f(x)—%g(x)) om >

k(rh—cm)
h(ak+1r) "’

Bu sart; ¥ < > = seklinde
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yeniden yazabiliriz. Boylece bu sart bize sistemin negatif olmayan en az bir ¢dziimiin
varligint gosterir. Bu durum bize (4.1) denklem sisteminin {i¢ tiiriin bir arada

yasadig1 pozitif denge noktasinin varligini verir.

4.3. 1ki Avel-Tek Av Modelinin Asimptotik Davrams

Bu boliimde oOnceki boliimde ifade edilen (4.1) denklem sisteminin, denge
noktalarimin asimptotik kararliligini inceleyecegiz. Kesirli mertebeden tiirev igin
yerel asimptotik kararlilik kavrami, birinci mertebeden tiirevden farklidir. Birinci

mertebeden tiirev ile karsilastirildiginda kararlilik bolgesinin genisledigi goriiliir.

E(x,y,z,u) noktas1 (4.1) denklem sisteminin denge noktasi olmak {iizere (4.1)

denklem sisteminin E (X, y, z, u) denge noktasindaki Jacobian matrisi;

J(E)
(r‘”“‘%?—fﬁﬂy—j@ﬁ —f(x) —g(x) —m\
- e f'(0)y e f(x) —p — Pz —By 0
e,9'(x)z —yz e,g(x) —u,—yy 0
m 0 0 —h
seklinde ifade edilir.

Ug tiiriin yok olmasi anlamma gelen E;(0,0,0,0) denge noktasmin kararliligimni
inceleyelim. E;(0,0,0,0) denge noktasinda (4.1) denklem sisteminin Jacobian

matrisi;

r —f(0) —g(0) —¢

0 e f(0)—py 0 0
J(Eq) = e1f(0) —u

\0 0 e29(0) — 1, 0/
m 0 0 —h
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ve J(E,) Jacobian matrisi i¢in karakteristik denklem,

(A — (e1f(0) — .U1))(A — (e29(0) — l«lz))(/12 +(th—=-mA+cm—rh) =0 4.7)
olur. (4.7) karakteristik denklemin 6zdegerleri;

Ay = e f(0) — g, A3 =e,g(0) — py

Ve

P O E RV
A 2 (4.8)

olarak elde edilir. Burada A;= (h —r)? — 4(c¢cm — rh) dir.

Acikga gorilmektedir ki A, = e, f(0) —pu; <0 ve A3 =e,9(0) —u, <0 yani A,
ve A3 Ozdegerleri daima negatiftir. Boylece |Arg (A,)| =m > % ve |Arg (A3)| =

T .
T > q? dir.

Bu durumda (4.1) denklem sisteminin; E, denge noktasinda kararliginin
belirlenebilmesi i¢in diger iki 6zdegerlerin incelenmesi gerekmektedir. 4; ve 4,

0zdegerleri icin h > r, h = r ve h < r olmak iizere ii¢ farkli durum incelenmelidir.
I. h>r.

(la) rh < cm icin eger A;=> 0 ise (4.8) denkleminden E, denge noktasinda
Jacobian matrisin karakteristik denkleminin A4,4,,A; ve A, 6zdegerlerinin
negatif oldugu goriilir. Bu durumda (4.1) denklem sistemi E, denge
noktasinda her 0 < g < 1 degeri icin yerel asimptotik kararli olur. Aslinda
|Arg (11,2,3,4)| =m > % oldugu i¢in her 0 < g < 1 i¢in Lemma 3.3 e gore

kararhdir.
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Eger A;< 0 ise 4; ve A, Ozdegerleri negatif reel kisimlara sahip kompleks

eslenik koklerdir. Bu durumda her 0 < g < 1 i¢in

I—A1>+n>qn

|Arg(All4)| = arctan (r _—

olur.

Lemma 3.3 ten E, denge noktasinda yerel asimptotoik kararli oldugunu

goruriz.

(1b) rh=cm i¢in Jacobian matrisin karakteristik denkleminden bir
0zdegerin sifir oldugunu ve kalan {i¢ Ozdegerin negatif olacagini
soyleyebiliriz. Oyleyse E, denge noktasinda (4.1) denklem sistemi marjinal

kararhdir.

(Ic) trh>cm ise A= (h+71)>—4cm >0 ve E, denge noktasindaki
Jacobian matrisin karakteristik denkleminden ise A; ve A, 6zdegerlerinden

birinin pozitif digerinin negatif oldugunu goriiriiz.

Oyleyse 2, >0 ve 1, <0 olsun. Bu durumda her 0<qg <1 icin
|Arg (A)] =0 < qz—” |Arg (A = > qz—n olur. Dolayasiyla E, denge

noktasinda (4.1) denklem sistemi kararsizdir.
h=r.

(2a) rh < cm ve A;< 0 saglanirsa karakteristik denklem reel olmayan eslenik
6zdegerlere sahiptir. 1; = 2vem — rhi ve A, = —2vVem — rhi 6zdegerlerine
sahiptir. Bu durumda her0 < g <1 i¢in |Arg (/11’4)| = g > ? saglanir.
Ayni zamanda A4, < 0 ve 13 < 0 oldugu i¢in Lemma 3.3. geregi E, denge

noktasinda (4.1) denklem sistemi yerel asimptotik olarak kararlidir.
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(2b) rh = cm igin A, = A, = 0 ve A, ve A3 negatiftir. Bu durumda E; denge

noktasinda (4.1) denklem sistemi marjinal olarak kararhdir.

(2c) th>cm  ise (4.7) denkleminden A; =2Vem—rh ve A=
—2vcm —rh degerleri elde edilir. Bu durumda her 0<g<1 igin
|Arg (A)| =0< qTH ve |Arg(Ay)| =m> q%[ olur. Dolayisiyla E, denge

noktasinda (4.1) denklem sistemi kararsizdir.
3. h<r.

(3a) rh < cm igin eger A;= 0 olursa A; ve A, 6zdegerleri pozitif olur. Bu

durumda her 0 < g < 1 i¢in
|Arg (A)| =0 <%
olur. Dolayistyla E, denge noktasinda (4.1) denklem sistemi kararsizdir.

A;< 0 olursa A; ve A, pozitif reel kisimlart olan kompleks esleniklerdir.

Lemma 3.3. geregi |Arg (7\1,4)| = arctan <—“rj11) > qz—ﬂ saglanirsa E, denge

noktasinda (4.1) denklem sistemi yerel asimptotik kararl olur.

(3b) rh = cm ise (4.7) denkleminin A; = r — h 6zdegerinin pozitif oldugu
goriiliir. Bu durumda her 0< g <1 i¢in |[Arg ()| =0< %n olur ve

Lemma 3.3 ten E;, denge noktasinda (4.1) denklem sistemi kararsizdir.

(3¢c) th > cmigin A;= (h +1r)? — 4cm > 0 olur. (4.7) denkleminden 2, ve
A, pozitif ve diger iki 6zdeger olan A, ve A3 negatif oldugunu goriiriiz.

Dolayisiyla E, denge noktasinda (4.1) denklem sistemi kararsizdir.

r <h, th<cm, (h+r)?<4cm igin |Arg(?\1,4)| = arctan (—“r:il) oldugunda;
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A= (h —1)? — 4(cm — rh) olmak iizere,

<2xT=1

— —(h-=r)2
0<qg< %arctan (\/4(Cm th)~(h-1) ) >

r—h

E]

elde edilir.

Simdi (4.1) denklem sisteminin avcidan armnmis E;(xq,0,0,u;) denge noktasinin
kararliligini inceleyelim. (4.1) denklem sisteminin E; (x4, 0,0, u;) denge noktasindaki

Jacobian matrisi;

2cm k(rh — cm) _ <k(rh — cm)) .
r_T P <h(ak+r) > h(ak + 1)
k(rh — cm) 0 0
J(Ey) = 0 eif (m) — I
k(rh — cm) 0
0 0 ex9 (m) — H2
m 0 0 —h

seklindedir. Bu Jacobian matrisin karakterstik denklemi,

(h~ Cef () ~ 1)) (A~ (eag () — 1)) (32 + (7 = 2 4 1) th — cm)

=0

olur. E; (x4, 0,0, u,) denge noktasindaki Jacobian matrisin 6zdegerleri ;

A = k(rh — cm) \ = k(rh — cm)
2=ef <m> —H1, A3 = €39 (m) — U2,

Ve

h?> +rh —2cm
2

Mg = (4.9)
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olarak elde edilir. Burada,

(h? + rh — 2cm)? — 4h2(rh — cm)
2= hz

olarak yazilabilir. Boylece x5 = f ™1 (?) olmak {izere;
1

k(rh — cm)

, W<X3 Lse

vex, =gt (’:—22) olmak iizere;

k(rh — cm) ]
< 0, W < Xy LSe

As = k(rh — cm) ]
k> 0, m > Xy LSE

elde edilir. Acik¢a goriilmektedir ki eger x <X = min{x,,X3} ise A, ve

A3 negatiftir.

Simdi A; ve A, ©zdegerlerini inceleyelim. Burada h? + rh —2cm > 0, h? + rh —
2cm =0 ve h? + rh — 2cm < 0 olmak iizere ii¢ farkli durum olusur. Bu ii¢ farkh

durumu sirasiyla inceleyelim.

1. h®+rh—2cm>0.

rh > cm igin eger A,> 0 olursa (4.9) denkleminden A; ve A, 6zdegerlerinin
negatif oldugunu goriiriiz. Eger x < X = min {x,, X3} ise A, ve A3 6zdegerleri
de negatif olur. Bu durumda E; (x4, 0,0,u,) denge noktasinda (4.1) denklem

sistemi her 0 < g < 1 i¢in yerel asimptotik kararli olur.
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Aslinda |Arg (/’11’2’3,4)| =1 > qz—n ise her 0<qg<1 icin (4.1) denklem

sistemi Lemma 3.3. nedeniyle kararlidir.

Eger A,< 0 ise A; ve A, 0zdegerleri negatif reel kisimlara sahip kompleks
eslenik  koklerdir.  Boylece her 0<g<1 i¢in |Arg(11,4)| =
hy=0;

amr < o _
—h2—rh+zcm> +m >~ saglamr. Bu durumda eger x <X=

arctan (

min {x,,x3} ise E;(xq,0,0,u,) denge noktasinda (4.1) denklem sistemi

Lemma 3.3. geregi yerel asimptotik olarak kararlidir.
h? + rh — 2cm = 0.

rh > cm i¢in A,< 0 ise E; denge noktasindaki Jacobian matrisin karakteristik

denkleminden A; = 2Vrh —cmi ve A, = —2Vrh — cmi 6zdegerleri sanal
koklere sahiptir.

Bunun anlami her 0 < g < 1 igin |Arg (/11’4)| = g > qz—”. Boylece eger x <

X = min {x,,X3} ise E;(x4,0,0,u;) denge noktast Lemma 3.3. geregi (4.1)

denklem sistemi yerel asimptotik olarak kararlidir.
h? + rh — 2cm < 0.

rh > cmicin eger A,> 0 olursa A, ve A, pozitif olur. Bunun anlami her 0 <
q <1 icin |Arg (/11‘4)| =0< qz—n ve E;(xq,0,0,u,) denge noktasinda (4.1)

denklem sistemi kararsizdir.

A,< 0ise A, ve A4 reel kisimlart olan kompleks esleniklerdir. Eger x < ¥ =
min {x,,X3} ise A, < 0 ve A3 < 0 olur. Lemma 3.3 geregi |Arg (/11,4)| =
e

—hZ-rh+2cm

arctan( ) > % saglanirsa E; denge noktasinda (4.1) denklem

sistemi yerel asimptotik kararli olur.
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h? +rh —2cm < 0, th > cm, (h? + rh — 2cm)? < 4h?(rh — cm) igin,

J4h2(rh—cm)—(h2+rh—2cm)2
—h2-rh+2cm

|Arg(7\1,4)| = arctan( ) < g saglanirsa,

J4h2(rh—cm)—(h2+rh—2cm)? 2 «T=1
—hZ2—rh+2cm 2

2
q < —arctan (

elde edilir.

Simdi (4.1) denklem sisteminin birinci avcinin olmayip ikinci aveinin ve avin oldugu
E,(x4,0,2,,u,) denge noktasinin kararliligini inceleyelim. (4.1) denklem sisteminin

E,(x,,0, z,, u,) denge noktasindaki Jacobian matrisi,

21X,

r—2ax, — P g’ (x3)z, —f(xy) —g(x) ¢
0
J(E,)) = 0 erf (x2) = — Bz,
0 0
\ e29'(x2)7, L /
m 0 0 —h

seklindedir. ilk olarak A, = e;f(x,) — py — Bz, nin J(E,) Jacobian matrisinin

0zdegeri oldugu goriilebilir.

ezxz(r—axz—m—z—ﬂ)
A, dzdegerinde, z, = k__h/ jfadesini yerine yazarak,
2 g 2 s Y y
X, cm
Be,x, (r — ax, % TR
Ay =ef(x3) =y — u
2

elde ederiz. Agikga gortilmektedir ki eger e, f(x,) —pu; < 0 (x, < x5 ise) olursa
|Arg (A,)| > qz—” olur. Simdi biz e f(x;) —pu; >0 (x, > x5 ise) oldugunu

varsayalim. Bu durumda,
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(e1f(x2)—p1)p2 cm
_ k(—Bezxz +axy+ h) .

> 0, r<nr = ise
}\2 = k—xz

<0, r > 71 ise

elde edilir. A, > 0 oldugunda |Arg (A,)| < %ﬂ olur ve bunun anlami E, denge

noktasinda (4.1) denklem sisteminin kararsiz oldugudur.

Bu durumda E, denge noktasinda (4.1) denklem sisteminin kararliligini ya da
kararsizligin1 diger iic 6zdeger belirleyecektir. Bu onemli 6zdegerlerin asagidaki

matrisin 6zdegerleri olduguna dikkat edelim.

erZ A
[T 2ax;— PR (x2)z, —g(x) —c
J = e29'(x2) 2, 0 0
m 0 —h

J indirgenmis matrisinin 6zdegerlerinin dogasimi belirlemek igin J indirgenmis

matrisinin karakteristik denklemi,
P(A) - )\3 + 1917t2+1927\ + 193
seklinde ifade edilir. Burada

Zsz

Y9, =h—r+2ax, + X

+9'(x2)z,

hrx,

k

2
9, = —cm — hr + 2hax, + + hg'(x3)z, — e,9' (x3)z,9(x5),

U3 = heyg'(x3)2,9(x7),

denklemlerine karsilik gelmektedir. P(A) polinomunun A;(P) diskriminanti;
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1 9, Y92 93 0
0 1 91 VY U3
Az;(P) =13 20, 9, 0 0
0 3 29, 9, O
0 0 3 29 U,

= 189,9,9; + (919,)* — 493(9;)* — 4(9,)* — 27(95)?
seklindedir.

P(A) polinomunun Hurwitz matrisi,

9, 95 0
0 9, O

seklinde yazilabilir. [39], [40] ve [41]' de tanimlanan kesirli hesap i¢in Routh—
Hurwitz kararlilk kriterini kullanarak, indirgenmis ] matrisinin denge noktalarina
iliskin kararlilik sartlarini elde ederiz.
Teorem 4.1. Indirgenmis ] matrisinin karakteristik denklemine iliskin;

1. A3(P) > 0 l(}ln 191 > 0, 193 > O, 191192 - 193 > O, qE(O,l),

2. As(P) < Oigin 9, =0, 9,>0, 95 >0, 0<q<§,

3. Ag(P) <0 1(;11'1 191 > 0, 192 > 0, 191192 = 193, qE(O,l),

sartlarindan herhangi birinin saglanmasi durumunda denge noktasinda (4.1) denklem

sistemi kararhdir.
Ispat 4.1. Teoremin ispat1 ii¢ farkli durum incelenerek yapilabilir.

1. A;(P) > 0 igin P(A) karakteristik denkleminin tiim kokleri yani 6zdegerleri

farkli reel sayidir. P(A) karakteristik denkleminin reel bir kokiiniin



43

A; oldugunu varsayalim. A; ve A, diger iki eslenik kompleks kok olsun.

Kokler yardimiyla P (A) karakteristik denkleminin diskriminanti;

A3(P) = [(7\1 - )\3)(7\1 - )\4)(7\3 - )\4)]2

seklinde yeniden yazilabilir. Az diskriminant denklemini yeniden

diizenlersek;

A3 (P) = [(A = 23) (A — A) (A3 — A)]?
= [ — 2 (A — 5) (A — &)
= [y — 2) (A — 13)2ImAy)i]”
= [ — )Ty — Ag)2im(Ay)i]”
= [2|( = A3)[2Im(A3)i]?

elde edilir. Bu durumda A3 (P) < 0 gikar. Bu ise A;(P) > 0 olmasiyla gelisir.

Bu nedenle A;(P) > 0oldugundan, P()A) karakteristik denkleminin tim
Ozdegerleri farkl reel sayidir. 9; >0, 93 >0, 9,9, — I3 > 0 oldugundan
Hurwitz kararlilik kriterleri saglanir ve P(A) karakteristik denkleminin tiim
kokleri yani 6zdegerleri negatif reel sayr koklere veya negatif reel kisimlar

olan kompleks eslenik koklere sahip olur.

Boylece A;(P) > 0 oldugundan, P(A) karakteristik denkleminin tiim kokleri

negatif reel sayidir. Sonug olarak,
= an
|Arg(?\1,3,4)| =m>
elde edilir. Boylece denge noktasinda sistem yerel asimptotik kararli olur.

. A3(P) <0 oldugunda 1. giktan P(A) karakteristik denkleminin reel bir
kokiinlin A; oldugu, A; ve A, diger iki 6zdegerinin iki kompleks eslenik kok
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oldugu elde edilir. P()) karakteristik denkleminden, 93 > 0 oldugunda reel
kok negatiftir. Kokler, A; = —I (I € R*) ve A3, = m £ ni (m,n € R) olarak

alinirsa;
PA) =(A+DA —m —ni)(A — m + ni)

elde edilir. Buradan ; =1—2m, 9, = m?+n?—2mn, 9; = [(m? +
n?) elde edilir. 9; = 0 ise [ = 2m ve m?sec?d = m? + n? olurve 9, =0

ise sec?6 > 4 elde edilir.

Boylece 6 = |Arg(Q)| > g oldugundan 0 < q < 1igin |Arg(A)| =6 > g >

qz—” olur. Bdylece P(A) karakteristik denkleminin biitiin 6zdegerlert,

|Arg(Ay34)] > an:

sartin1 saglar. Bu durumda sistem denge noktasinda yerel asimptotik olarak

kararlidir.
. A3(P) < 0 oldgunda 9; > 0, 9, > 0 oldugunda 6nceki siktan,
9, =1-2m, 9, =m? +n?—2mn, 93 = l(m? +n?)

esitlikleri elde edildi. Burada 9; > 0 ise | > 2m, 9, > 0 ise m? + n? —
2mn > 0 ve 9,9, =93 ise (I —2m)(m? + n? —2mn) = [(m? + n?) ise
m(l? + m? + n? — 2mn) = 0 bulunur. Buradan iki farkli durum ortaya

cikar.

Eger m = 0 ise P(A) karakteristik denkleminin 6zdegerleri, Ay = —I, A3, =
+in olur. Boylece 0 < g < 1i¢in |Arg(A,)| =7 > % ve |Arg(?\3,4)| = g >
qz—n elde edilir. Bu durumda sistem denge noktasinda yerel asimptotik kararli

olur.
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Eger (I +m? +n?—-2mn) =0 ise L=m ve n =0 olur. Bu durum [ >

2m ve m? + n? > 2mn oldugundan [ < 0 ise bu durum [ € R* olmasiyla

celisir.

Boylece ¥; >0, 9, >0 ve 9,9, = 95 ise 6zdegerlerden biri reel negatif

diger ikisi sanal koktiir. Bdylece 0 < ¢ < ligin |Arg(d,)| =7 > 2= ve

|Arg(7\3’4)| =g> qz—n saglandig1 icin sistem denge noktasinda yerel

asimptotik kararli olur.

Boylece lic durumunda incelenmesiyle teoremin ispat1 tamamlanmis olur.

Bu durumda, E,(x,,0,z,,u,) denge noktasi i¢in x, < x5 veya (x, > x3ver > 1)

saglanir ve eger Teorem 4.1. in (1), (2) ya da (3) sartlarindan herhangi biri saglanirsa

(4.1) denklem sistemi E, denge noktasinda yerel asimptotik olarak kararlidir.

Simdi (4.1) denklem sisteminin birinci avcinin ve avin oldugu ikinci avcinin

olmadig1 E5(x3,y3,0,u3) denge noktasinin kararliligini inceleyelim. (4.1) denklem

sisteminin E5(x3, y3, 0, u3) denge noktasindaki Jacobian matrisi;

2rx3 ,
r—2ax; — P f'(x3)ys —f(x3)
J(Es) = e1f'(x3)ys 0
0 0
m 0

seklindedir. Ilk olarak A; = e,g(x3) — U, — yy3

0zdegeri oldugunu gorebiliriz. Bu denklemde

X3 cm
e1xX3|\r—axs T

258

V3

degerini yerine yazarak,

—9(x3) —¢
—Bys

e g(x3) — Uy —vys3 0

in J(E3) Jacobian matrisinin
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yeix;3 (r —2ax; — % - %)

251

A3 = e,g(x3) — pp —

elde ederiz. Agikga goriilmektedir ki eger e,g(x3) —u, < 0 (x, > x5 ise) olursa
|Arg (A3)| > qz—n dir. e;g(x3) —py; >0 (x, < x3 ise) oldugunu varsayalim. Bu

durumda,

(e9(x) — po) iy cm
k ( ye1x3 + a.X3 + T)

A3 =1>0, rT<1yi= %
— X3

ise,

<0, r >, ise,

elde edilir. A3 > 0 oldugunda |Arg (A3)] < qz—” olur ve bunun anlami E5 denge

noktasinda (4.1) denklem sisteminin kararsiz oldugudur. Bu durumda E; denge
noktasinda denklem sisteminin kararliligmni ya da kararsizhigini diger ti¢ 6zdeger

belirleyecektir. Bu 6nemli 6zdegerlerin;

2rx3 ,
L r—2ax; — K f'x3)ys —flx3) —c
] = e f'(x3)y3 0 0
m 0 —h

matrisinin 6zdegerleri olduguna dikkat edelim.

]Tindirgenmis matrisinin 6zdegerlerinin dogasini belirlemek i¢in ]Tindirgenmis

matrisinin karakteristik denklemi;
P*()L) =7\3 +91A2 +62)L+93
olarak ifade edilir. Burada,

2rx3

0, =h—r+2ax; + X

+ f'(x3)ys,
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2hrx, , .
0, = —cm — hr + 2hax; + X + hf'(x3)ys + e f' (x3) f (x3)y3,

05 = hey f'(x3)f (x3)y3,
denklemlerine karsilik gelmektedir. P*(A) polinomunun A, (P*) diskriminant;

9, 6. 6; O |
1 6 0, 03
20, 0, 0 0
3 20, 6, 0
0 3 20, 6,

= 180,0,05 + (6102) — 405(01)* — 4(6,)* — 27(65)*

A (P7) =

OO WO -

seklindedir.

P*(A) polinomunun Hurwitz matrisi,
6, 6; O
H(P*) = <1 0, O)
0 6, 05
seklinde yazilabilir.
Bu durumda x, > x5 veya (x, < x3 ve r > r; ) saglanir ve eger Teorem 4.1. in (1),
(2) ya da (3) sartlarindan herhangi biri saglanirsa E5 denge noktasinda (4.1) denklem

sistemi yerel asimptotik olarak kararlidir.

Simdi {i¢ tiiriin birlikte yasadigi E,(x*, y*, z*, u") pozitif denge noktasinin yerel dav-

ranigini inceleyelim.

Bu pozitif denge noktast icin, (4.1) denklem sisteminin en az bir negatif olmayan

¢Ozlimiiniin var olmasi i¢in gerekli sartlarin saglandigini kabul edelim.
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E,(x*,y*, z*,u*) denge noktasinda (4.1) denklem sisteminin Jacobian matrisi;

J(E4)
r—Zax" - Zrkx* — ')y —g'(x)z” —f(x") —g(x")
= e f ' (xM)y” e f(x*) —py — Bz* —By"
e,g'(x")z* _yz* e,g(x*) =y —yy”
0

m 0

seklinde yazilabilir. J(E,) Jacobian matrisinin karakteristik denklemi,

P*(1) = 2+ 0 13 + 9,02 + Pz + D,

seklindedir. Burada,;

*

2rx

@, =h—r+2ax*+ T

+g'(x)z" + ' (xN)y",

*

h'rx ! * * i * * * *
w thg (x)z* + hf'(x")y* + By yz

+ef' ()f(x)y" +e9'(x)g(x")z",

2
®, =cm—rh+ 2hax™ +

@3 = hpy*yz* + he f' (x")f(x")y" + he,g' (x")g(x™)z" —rfy*yz"

* * * zr'x* * * ! * *\ 2 *
+2ax"Byyz" + ——By'yz" + g'(x")(z) By"y

+ (@) Byz — fF(x)By eg' (x)z" — g(xe f' (x)y*yz*,

*

2hrx .
P By'vz

@, = cmPBy*yz* —rhfy*yz* + h2ax*Ly*yz* +

+hg'(x)(2*)*By*y + hf'(x)(y*)?Byz* — hf (x)By*e,g' (x*)z*
—hg(x e f' (x")y yz",

denklemlerine karsilik gelmektedir. Dordiincii  dereceden P**(1) polinomunun

A (P**) diskriminanti;
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1 0 0 4 0 0 0
®» 1 0 30, 4 0 0
®, &, 1 20, 3P, 4 0
As(P*) = |03 @, & &, 20, 30, 4
®, &3 &, 0 @ 2b, 3P,
0 & @ 0 0 & 20,
00 ® 0 0 0 o

= 256(®,)3 — 1920, D5(D,)? — 128(D,) 3 (D,)? + 144D, (D3)% D, — 27(D3)*
+144(P1)? O, (P1)? — 6(P1)*(P3)* Py — 80D, (P,)* P3P, + 18D, P, (P3)°
+16(P,) P, — 4(P,)%(@3)? — 27(P)*(@4)? + 18(P1)* P, P3P, — 4(P1)%(@3)°
—4(P1)* ()P, + (91)%(D,)*(93)°

seklindedir. P**(4) polinomunun Hurwitz matrisi,

1 @ o, 0
H P** — 2 4
(P™) 0 & @ 0
0 1 @, 9
seklindedir.

Boylece Routh-Hurwitz kararlilik kriterini kullanarak, (4.1) denklem sistemi {i¢ tiiriin

bir arada yasadig1 E, (x*, y*, z*, u*) pozitif denge noktasinda;
1. A (P™) > 0 igin,

¢1 > 0, ¢3 > 0, ¢4 > 0, (p1¢2 - ¢3 > 0, d)3(¢1¢2 - ¢3) -
(®1)?®, > 0veq € (0,1),

2. A (P™) < 0 igin,
®, >0, &, >0, P; >0, q>420veo<q<§,

3. A (P™) < 0igin,
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¢1 > 0, ¢3 > 0, (p4 > 0, ¢1(p2 = (p3, ¢3((p1¢2 - (p3) s ((pl)z(p4
ve q € (0,1),

sartlarindan birinin saglanmasi1 durumunda, (4.1) denklem sisteminin asimptotik

kararli oldugu sonucuna ulasilir.

4.4. Modelin Sayisal Analizi

Bu boliimde
DV () = P(t,V(D)),
kesirli tiirevinin sayisal olarak ¢oziimiinii arastiracagiz.

Kesirli analizin temel teoremini, (4.1) denklem sistemine uygulayarak,

1 t
V() -V (0) = TCI)J P(s,V(s)) (t — s)7ds
0

elde ederiz. Bu denklemde t = t,, = nh alinirsa,

n—1 ti+1
1 —_—
Vit =V + 505 izo tf P(s,V(s)) (tn — )% "ds (4.10)

sonucuna ulagiriz. Simdi P(t,V(t)) fonksiyonunu asagidaki lineer yaklagimla elde

edebiliriz.

P(t,K() = P(tiss, Viar) + = (P(tisn, Vird) = P(6, V)
4.11)
t € [ti tiva]

Burada V; = V (t;) olarak yazilabilir.
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(4.10) ve (4.11) denklemlerinde cebirsel islemler uygulayarak; (daha fazla bilgi i¢in
[34]’e bakilabilir.)

n
V, =V, + h4 (gan(tO, Vo) + Z llun—ip(tifvi)> (4.12)

=0

elde edilir. Burada;

(n— 1D —ni(n—q - 1)

@, =

riq+2) ’
( 1
¥, rg+zy "=Y
T (= 1)7-2n7 + (n + 1)1 ..
F(q+2) ) n= 1y Iy e
seklinde yazilabilir.

(4.1) denklem sistemini ¢ézmek icin (4.12) formiiliinde verilen sayisal yontemi

kullanarak

n
Xn = Xo + h <(pnP1(xOr yO'ZO'uO) + Z llUn—iPl(xi' Yis Zl"ui)>'

i=0

n
Yn = Yo + h1 (chPZ (X0, Y0, Zo» Ug) + 2 ¥n-iP; (xi'Yi'Zi;ui))

i=0

n
Zn = 2o + hf <(pnP3 (X0, Y0, Zo» Ug) + Z ¥n-iPs (xi'yi'zi'ui)):

=0



n
Uy = Xxo + h? <‘1’np4(x0:3’0'20'uo) + Z W —iPa(Xi, ¥i, 21 u;)

i=0
iterasyon dizilerini elde ederiz.

Burada;

X
P,(x,y,z,u) = x (r —ax — ?) —f(x)y —gx)z,
PZ(X,y,Z,U) = elf(x)y —H —,ByZ,
Py(x,y,z,u) = e;9(x)z — pp — vyz,

P,(x,y,z,u) = —hu + mx.

seklinde ifade edilir.

)
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BOLUM 5. ARASTIRMA BULGULARI

Bu bolimde elde edilen sonuglardan olusan makale [42], Proceedings of

International Mathematical Science Dergisinde yayinlanmistir.

Bu boliimde geri besleme kontrolii ile iki avci-tek av igeren av-aver modelinin
Caputo kesirli tiirev ile incelenmesiyle olusturulan modelin, denge noktalarindaki

kararliligiyla ilgili elde edilen teoremler ifade edildi.

Teorem 5.1. (E, Denge Noktasimn Kararhlig) Uc tiiriin neslinin tilkenmesi

anlamina gelen (4.1) denklem sisteminin asikar E;(0,0,0,0) denge noktasinda;
I. h=2r icinrth<cm,

2. h<r,rh<cmigin (h+71)? < 4cmve

JV4(cm-rh)—(h-r)2
r-h i

0<g< %arctan(

sartlardan herhangi birinin saglanmasi durumunda, (4.1) denklem sistemi yerel

asimptotik olarak kararlidir.

Teorem 5.2. (E; Denge Noktasinin Kararhiligi) Avci neslinin tilkkenmesi anlamina

gelen (4.1) denklem sisteminin E;(x;,0,0,u,) denge noktasinda x, = g1 (?) ve
2

x3=f1 (ﬂ), olmak {izere;
€1

1. h? +rh—2cm = 0igin x < ¥ = min {x,, X3},
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2. h24+rh—2cm <0 iginrh > cm, (h? + rh — 2cm)? < 4h?(rh —

J4h2(rh-2cm)—(h2+rh—2cm)?2
2cm—h?-rh

2cm), O<q<§arctan( )Vex<f=

min {X,, X3},

sartlardan herhangi birinin saglanmasi durumunda (4.1) denklem sistemi yerel

asimptotik olarak kararhdir.

Teorem 5.3. (E; Denge Noktasinin Kararhhigl) Birinci avcinin olmadigi sadece

e . o . . k(rh—cm) .
ikinci aver ve avin oldugu E,(x,,0, z,,u,) denge noktasi igin x, < W ise

kararlilik sartlar1 asagidaki gibidir:

1. Eger x, > x5 ve r <1y ise E, denge noktasinda (4.1) denklem

kararsizdir.

2. Eger x, < x5 veya (x, > x3 ve r > 1y ) saglanir ve Teorem 4.1
in (1), (2) ya da (3) sartlarindan herhangi biri saglanirsa E,
denge noktasinda, (4.1) denklem sistemi yerel asimptotik olarak

kararhdir.

Teorem 5.4. (E; Denge Noktasinin Kararhihi@i) Birinci avemnin ve avin oldugu

o 9 . k(rh— .
ikinci avcinin olmadigi denge noktast Es;(xs3,y5,0,u3) igin x5 < % 1se

kararlilik sartlar1 asagidaki gibidir:

1. Eger x, < x5 ve r <, ise E, denge noktasinda (4.1) denklem

sistemi kararsizdir.

2. Eger x, > x5 veya (x, < x3 ve v > 1y ) saglanir ve Teorem 4.1
in (1), (2) ya da (3) sartlarindan herhangi biri saglanirsa E;
denge noktasinda, (4.1) denklem sistemi yerel asimptotik olarak

kararhdir.
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Teorem 5.5. (E4 Denge Noktasimin Kararhhgi) Uc tiiriin bir arada yasadig1 pozitif

E,(x*,y*,z*,u") denge noktasinda;
1. A (P™) > 0 igin,

B, >0, Dy >0, B, >0, Bb,— Dy >0, Dy(D,D, — D) —
(®)?®, > 0veq € (0,1),

2. A (P™) < 0 igin,
G =0, 0,20, D320, &, 20 ve 0<q<2,
3. Ac(P™) < 0 igin,

@1 > O, @3 > 0, ¢4 > 0, d)1¢2 = ¢3, d)3(¢1¢2 - d)3) == ((p1)2¢4
ve q € (0,1),

sartlarindan herhangi biri saglandiginda (4.1) denklem sistemi yerel asimptotik

olarak kararhidir.



BOLUM 6. SONUC

Bu arastirmada, genellestirilmis bir islevsel tepki fonksiyonu ile bir av {izerinde
savasan iki avci ile ekolojik bir model incelenmistir. Av popiilasyonu i¢in geri
besleme kontroliinii i¢eren kesirli mertebeden iki avci-tek av modeli ele alinarak iki
avcinin bir av lizerindeki rekabeti arastirlmistir. Kapsamli bir genellestirilmis
fonksiyonel etkilesim simifinin  diisiiniilmesinin nedeni, ¢evre ile avci-av
etkilesimindeki cesitliligi modellemektir. Bu etkilesimler, c¢evre ve ii¢ tiiriin
adaptasyonu gibi birgok faktorden etkilenebilir. Farkli denge noktalarinin varlig
analiz edilerek, bu denge noktalarinin asimptotik kararliligin1 saglamak igin bazi
kriterler tiiretilmistir. 1k olarak ii¢ tiiriin neslinin tiikenme noktas1 anlaminda gelen
denge, daha sonra avci popiilasyonlarinin olmadig1 dengenin yaninda sirastyla birinci
aveinin ve ikinci avemnin olmadigi dengeler ve son olarak ii¢ tiirin bir arada
yasayabildigi denge gibi (4.1) denklem sisteminin sahip oldugu dengelerin varligi
incelendi. Denge noktalarinin varligin1 analiz ederek, bu popiilasyonlarin bir¢ok
senaryoya sahip olabilecegi elde edildi. Bunlar, ii¢c popiilasyonun neslinin
tiikenmesini, iki tiir avcr neslinin tiikenmesini, sirayla her bir yirtic1 popiilasyonun
neslinin tlikenip diger yirtict popiilasyonunun yasamasini ve son olarak Tig
poplilasyonun bir arada yasamasini icerir. Birlikte yasama asamasi ve bu dengenin
varlig1 i¢in model parametreleri lizerinde bazi sartlar saglanmigtir. Hangi senaryonun
gecerli olacagini belirlemek icin Jacobian matrisini kullanarak  (4.1) denklem
sisteminin yerel asimptotik kararliligi incelendi. Teorik sonuclar, geri besleme
kontroliiniin, av tiirlerinin ve yirtict tiirlerin bir arada yasamasinin ayarlanmasinda
onemli roller oynadigin1 ve iki avcl ve tek avin bir arada yasayabilecegi pozitif

dengenin gerekli sartlar saglandiginda kararliligin1 gostermektedir.
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